ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a32a65ae13adcbe8ae39c2625f358d6b614e70e
# -*- coding: utf-8 -*- # This sample demonstrates handling intents from an Alexa skill using the Alexa Skills Kit SDK for Python. # Please visit https://alexa.design/cookbook for additional examples on implementing slots, dialog management, # session persistence, api calls, and more. # This sample is built using the handler classes approach in skill builder. import logging import ask_sdk_core.utils as ask_utils from ask_sdk_core.skill_builder import SkillBuilder from ask_sdk_core.dispatch_components import AbstractRequestHandler from ask_sdk_core.dispatch_components import AbstractExceptionHandler from ask_sdk_core.handler_input import HandlerInput from ask_sdk_model import Response logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) class LaunchRequestHandler(AbstractRequestHandler): """Handler for Skill Launch.""" def can_handle(self, handler_input): # type: (HandlerInput) -> bool return ask_utils.is_request_type("LaunchRequest")(handler_input) def handle(self, handler_input): # type: (HandlerInput) -> Response speak_output = "Welcome to EduToken, my name is Veronica. What can I do for you? " return ( handler_input.response_builder .speak(speak_output) .ask(speak_output) .response ) class CraftonCollegeIntentHandler(AbstractRequestHandler): """Handler for CraftonCollegeIntent. """ def can_handle(self, handler_input): # type: (HandlerInput) -> bool return ask_utils.is_intent_name("CraftonCollegeIntent")(handler_input) def handle(self, handler_input): # type: (HandlerInput) -> Response speak_output = "With its dedicated professors, ample extracurricular opportunities, supportive staff, and beautiful surroundings, Crafton Hills College is a place where students thrive. " speak_output += "CHC offers more than 50 majors in the liberal arts and sciences, vocations, and technical studies, and currently serves about 4,500 students." speak_output += "Professors are experts in their field, and are active in their professions outside of the classroom." return ( handler_input.response_builder .speak(speak_output) .response ) class FallEnrollmentIntentHandler(AbstractRequestHandler): """Handler for FallEnrollmentIntent. """ def can_handle(self, handler_input): # type: (HandlerInput) -> bool return ask_utils.is_intent_name("FallEnrollmentIntent")(handler_input) def handle(self, handler_input): # type: (HandlerInput) -> response speak_output = "Depending on your priority level, registration for the Fall 2021 term is open from May 10th through August 15th. " return ( handler_input.response_builder .speak(speak_output) .response ) class FallStartIntentHandler(AbstractRequestHandler): """Handler for FallStartIntent. """ def can_handle(self, handler_input): # type: (HandlerInput) -> bool return ask_utils.is_intent_name("FallStartIntent")(handler_input) def handle(self, handler_input): # type: (HandlerInput) -> response speak_output = "The Fall 2021 term commences on August 16th. " return ( handler_input.response_builder .speak(speak_output) .response ) class FinancialAidAvailableIntentHandler(AbstractRequestHandler): """Handler for FinancialAidAvailableIntent. """ def can_handle(self, handler_input): # type: (HandlerInput) -> bool return ask_utils.is_intent_name("FinancialAidAvailableIntent")(handler_input) def handle(self, handler_input): # type: (HandlerInput) -> response speak_output = "For the 2021 and 2022 academic year, financial aid applications opened on October 1st, 2020. " return ( handler_input.response_builder .speak(speak_output) .response ) class FounderIntentHandler(AbstractRequestHandler): """Handler for FounderIntent. """ def can_handle(self, handler_input): # type: (HandlerInput) -> bool return ask_utils.is_intent_name("FounderIntent")(handler_input) def handle(self, handler_input): # type: (HandlerInput) -> response speak_output = "EduToken was created by Aruna Bisht, Lucas Manning, and Aaron Montano at the UC Berkeley FinTech Bootcamp in June, 2021. " return ( handler_input.response_builder .speak(speak_output) .response ) class JokeIntentHandler(AbstractRequestHandler): """Handler for JokeIntent. """ def can_handle(self, handler_input): # type: (HandlerInput) -> bool return ask_utils.is_intent_name("JokeIntent")(handler_input) def handle(self, handler_input): # type: (HandlerInput) -> response speak_output = "I don't mean to brag about my financial skills...but my bank calls me every day to tell me that my debt is outstanding. " return ( handler_input.response_builder .speak(speak_output) .response ) class OverviewIntentHandler(AbstractRequestHandler): """Handler for OverviewIntent. """ def can_handle(self, handler_input): # type: (HandlerInput) -> bool return ask_utils.is_intent_name("OverviewIntent")(handler_input) def handle(self, handler_input): # type: (HandlerInput) -> response speak_output = "EduToken is a revolutionary system of redeeming and ensuring educational costs. " speak_output += "Our goal is to ensure that all of your educational needs are properly accounted for." return ( handler_input.response_builder .speak(speak_output) .response ) class SummerEnrollmentIntentHandler(AbstractRequestHandler): """Handler for SummerEnrollmentIntent. """ def can_handle(self, handler_input): # type: (HandlerInput) -> bool return ask_utils.is_intent_name("SummerEnrollmentIntent")(handler_input) def handle(self, handler_input): # type: (HandlerInput) -> response speak_output = "Depending on your priority level, enrollment for the 2021 Summer term begins on April 12th, and ends on May 31st. " speak_output += "Please visit the Crafton Hills College Admissions page to determine your priority level." return ( handler_input.response_builder .speak(speak_output) .response ) class SummerSchoolStartIntentHandler(AbstractRequestHandler): """Handler for SummerSchoolStartIntent. """ def can_handle(self, handler_input): # type: (HandlerInput) -> bool return ask_utils.is_intent_name("SummerSchoolStartIntent")(handler_input) def handle(self, handler_input): # type: (HandlerInput) -> response speak_output = "Summer classes begin June 1st, June 14th, and July 6th. " return ( handler_input.response_builder .speak(speak_output) .response ) class HelpIntentHandler(AbstractRequestHandler): """Handler for Help Intent.""" def can_handle(self, handler_input): # type: (HandlerInput) -> bool return ask_utils.is_intent_name("AMAZON.HelpIntent")(handler_input) def handle(self, handler_input): # type: (HandlerInput) -> Response speak_output = "You can say hello to me! How can I help?" return ( handler_input.response_builder .speak(speak_output) .ask(speak_output) .response ) class CancelOrStopIntentHandler(AbstractRequestHandler): """Single handler for Cancel and Stop Intent.""" def can_handle(self, handler_input): # type: (HandlerInput) -> bool return (ask_utils.is_intent_name("AMAZON.CancelIntent")(handler_input) or ask_utils.is_intent_name("AMAZON.StopIntent")(handler_input)) def handle(self, handler_input): # type: (HandlerInput) -> Response speak_output = "Goodbye!" return ( handler_input.response_builder .speak(speak_output) .response ) class FallbackIntentHandler(AbstractRequestHandler): """Single handler for Fallback Intent.""" def can_handle(self, handler_input): # type: (HandlerInput) -> bool return ask_utils.is_intent_name("AMAZON.FallbackIntent")(handler_input) def handle(self, handler_input): # type: (HandlerInput) -> Response logger.info("In FallbackIntentHandler") speech = "Hmm, I'm not sure. You can say Hello or Help. What would you like to do?" reprompt = "I didn't catch that. What can I help you with?" return handler_input.response_builder.speak(speech).ask(reprompt).response class SessionEndedRequestHandler(AbstractRequestHandler): """Handler for Session End.""" def can_handle(self, handler_input): # type: (HandlerInput) -> bool return ask_utils.is_request_type("SessionEndedRequest")(handler_input) def handle(self, handler_input): # type: (HandlerInput) -> Response # Any cleanup logic goes here. return handler_input.response_builder.response class IntentReflectorHandler(AbstractRequestHandler): """The intent reflector is used for interaction model testing and debugging. It will simply repeat the intent the user said. You can create custom handlers for your intents by defining them above, then also adding them to the request handler chain below. """ def can_handle(self, handler_input): # type: (HandlerInput) -> bool return ask_utils.is_request_type("IntentRequest")(handler_input) def handle(self, handler_input): # type: (HandlerInput) -> Response intent_name = ask_utils.get_intent_name(handler_input) speak_output = "You just triggered " + intent_name + "." return ( handler_input.response_builder .speak(speak_output) # .ask("add a reprompt if you want to keep the session open for the user to respond") .response ) class CatchAllExceptionHandler(AbstractExceptionHandler): """Generic error handling to capture any syntax or routing errors. If you receive an error stating the request handler chain is not found, you have not implemented a handler for the intent being invoked or included it in the skill builder below. """ def can_handle(self, handler_input, exception): # type: (HandlerInput, Exception) -> bool return True def handle(self, handler_input, exception): # type: (HandlerInput, Exception) -> Response logger.error(exception, exc_info=True) speak_output = "Sorry, I had trouble doing what you asked. Please try again." return ( handler_input.response_builder .speak(speak_output) .ask(speak_output) .response ) # The SkillBuilder object acts as the entry point for your skill, routing all request and response # payloads to the handlers above. Make sure any new handlers or interceptors you've # defined are included below. The order matters - they're processed top to bottom. sb = SkillBuilder() sb.add_request_handler(LaunchRequestHandler()) sb.add_request_handler(CraftonCollegeIntentHandler()) sb.add_request_handler(FallEnrollmentIntentHandler()) sb.add_request_handler(FallStartIntentHandler()) sb.add_request_handler(FinancialAidAvailableIntentHandler()) sb.add_request_handler(FounderIntentHandler()) sb.add_request_handler(JokeIntentHandler()) sb.add_request_handler(OverviewIntentHandler()) sb.add_request_handler(SummerEnrollmentIntentHandler()) sb.add_request_handler(SummerSchoolStartIntentHandler()) sb.add_request_handler(HelpIntentHandler()) sb.add_request_handler(CancelOrStopIntentHandler()) sb.add_request_handler(FallbackIntentHandler()) sb.add_request_handler(SessionEndedRequestHandler()) sb.add_request_handler(IntentReflectorHandler()) # make sure IntentReflectorHandler is last so it doesn't override your custom intent handlers sb.add_exception_handler(CatchAllExceptionHandler()) lambda_handler = sb.lambda_handler()
py
1a32a66412ac752dfef1346767dada6ace8dbe66
import socket import struct send_sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, 0) data_bytes = struct.pack("!BBBB", 0, 0, 255, 255) header = struct.pack("!BIIH", 0, 0, 0, len(data_bytes)) message = header + data_bytes send_sock.sendto(message, ("localhost", 42000))
py
1a32a6d95eb08cf8a9c3aedd782f8f574e321aa1
# coding: utf-8 import pprint import re import six class DeleteBatchTaskFileRequest: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'instance_id': 'str', 'file_id': 'str' } attribute_map = { 'instance_id': 'Instance-Id', 'file_id': 'file_id' } def __init__(self, instance_id=None, file_id=None): """DeleteBatchTaskFileRequest - a model defined in huaweicloud sdk""" self._instance_id = None self._file_id = None self.discriminator = None if instance_id is not None: self.instance_id = instance_id self.file_id = file_id @property def instance_id(self): """Gets the instance_id of this DeleteBatchTaskFileRequest. :return: The instance_id of this DeleteBatchTaskFileRequest. :rtype: str """ return self._instance_id @instance_id.setter def instance_id(self, instance_id): """Sets the instance_id of this DeleteBatchTaskFileRequest. :param instance_id: The instance_id of this DeleteBatchTaskFileRequest. :type: str """ self._instance_id = instance_id @property def file_id(self): """Gets the file_id of this DeleteBatchTaskFileRequest. :return: The file_id of this DeleteBatchTaskFileRequest. :rtype: str """ return self._file_id @file_id.setter def file_id(self, file_id): """Sets the file_id of this DeleteBatchTaskFileRequest. :param file_id: The file_id of this DeleteBatchTaskFileRequest. :type: str """ self._file_id = file_id def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DeleteBatchTaskFileRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
py
1a32a755a13ca1eec9164162ca4334666b974765
# --- # jupyter: # jupytext: # formats: ipynb,py:light # text_representation: # extension: .py # format_name: light # format_version: '1.3' # jupytext_version: 1.0.0 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # %matplotlib inline # %autosave 0 # %load_ext autoreload # %autoreload 2 import os import logging import numpy as np import pandas as pd import pkg_resources import seaborn as sns import matplotlib.pyplot as plt from math import sqrt from GIPlot import GIPlot from crispy.Utils import Utils from crispy.QCPlot import QCplot from scipy.stats import spearmanr, skew from minlib.Utils import density_interpolate from sklearn.metrics import mean_squared_error from minlib.Utils import project_score_sample_map from crispy.CRISPRData import CRISPRDataSet, Library from crispy.LibRepresentationReport import LibraryRepresentaion LOG = logging.getLogger("Crispy") DPATH = pkg_resources.resource_filename("crispy", "data/") RPATH = pkg_resources.resource_filename("notebooks", "minlib/reports/") # MinLibCas9 library information # mlib = Library.load_library("MinLibCas9.csv.gz", set_index=False) mlib.index = [f"{i}" for i in mlib["WGE_ID"]] mlib["sgRNA"] = [s if len(s) == 19 else s[1:-3] for s in mlib["WGE_Sequence"]] # Assemble raw counts matrix # SPATH = pkg_resources.resource_filename("notebooks", "minlib/minlibcas9_screens") plasmid_counts = pd.read_csv(f"{SPATH}/Minimal_library_output_108.csv", index_col=0).rename(columns=dict(counts="MinLibCas9")) # # lib_report = LibraryRepresentaion(plasmid_counts[["MinLibCas9"]]) pal = dict(MHG_library_v1=QCplot.PAL_DBGD[0], MinLibCas9=QCplot.PAL_DBGD[1]) # Lorenz curves# lib_report.lorenz_curve(palette=pal) plt.gcf().set_size_inches(2., 2.) plt.savefig(f"{RPATH}/librepresentation_lorenz_curve.pdf", bbox_inches="tight", dpi=600) plt.close("all") # Lorenz curves# plot_df = plasmid_counts["MinLibCas9"].sort_values().reset_index() skew_ratio = plot_df["MinLibCas9"].quantile([.9, .1]) skew_ratio = skew_ratio[.9] / skew_ratio[.1] fig, ax = plt.subplots(1, 1, figsize=(2.5, 1.5), dpi=600) ax.plot( plot_df.index, plot_df["MinLibCas9"], color=pal["MinLibCas9"], # edgecolor="w", lw=1, # s=6, alpha=.8, zorder=3, ) ax.set_xlabel("Ranked sgRNAs") ax.set_ylabel("Number of reads") ax.set_xticks([0, plot_df.shape[0] / 2, plot_df.shape[0]]) ax.grid(True, ls="-", lw=0.1, alpha=1.0, zorder=0, axis="y") annot_text = f"Skew ratio = {skew_ratio:.2f}" ax.text( 0.95, 0.05, annot_text, fontsize=6, transform=ax.transAxes, ha="right", ) plt.savefig(f"{RPATH}/librepresentation_scatter.pdf", bbox_inches="tight", dpi=600) plt.close("all")
py
1a32a809590ad5571f2993aa39ebf621fe2df074
""" WSGI config for caremanager project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'caremanager.settings') application = get_wsgi_application()
py
1a32a82190b7ca4eb50b0d8b9125b04c92ad8925
import torch import torch.nn as nn from mmcv.cnn.utils.weight_init import xavier_init from mmedit.models.registry import COMPONENTS @COMPONENTS.register_module() class PlainRefiner(nn.Module): """Simple refiner from Deep Image Matting. Args: conv_channels (int): Number of channels produced by the three main convolutional layer. loss_refine (dict): Config of the loss of the refiner. Default: None. pretrained (str): Name of pretrained model. Default: None. """ def __init__(self, conv_channels=64, pretrained=None): super(PlainRefiner, self).__init__() self.refine_conv1 = nn.Conv2d( 4, conv_channels, kernel_size=3, padding=1) self.refine_conv2 = nn.Conv2d( conv_channels, conv_channels, kernel_size=3, padding=1) self.refine_conv3 = nn.Conv2d( conv_channels, conv_channels, kernel_size=3, padding=1) self.refine_pred = nn.Conv2d( conv_channels, 1, kernel_size=3, padding=1) self.relu = nn.ReLU(inplace=True) def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): xavier_init(m) def forward(self, x, raw_alpha): """Forward function. Args: x (Tensor): The input feature map of refiner. raw_alpha (Tensor): The raw predicted alpha matte. Returns: Tensor: The refined alpha matte. """ out = self.relu(self.refine_conv1(x)) out = self.relu(self.refine_conv2(out)) out = self.relu(self.refine_conv3(out)) raw_refine = self.refine_pred(out) pred_refine = torch.sigmoid(raw_alpha + raw_refine) return pred_refine
py
1a32a8328a03762e6550a70872b294749dcf4d7f
import tensorflow as tf def get_loss_and_keys(which, params, ff_means_only=False): """ Returns the loss function. :param which: submodel, must be one of "flux_fractions" or "histograms" :param params: parameter dictionary :param ff_means_only: even if aleatoric uncertainties for flux fractions are enabled, only train the means :return: loss function, list of keys required (apart from true label, which is always assumed to be first input) """ if which == "flux_fractions": loss, loss_keys = get_loss_and_keys_flux_fractions(params.train["ff_loss"], do_var=params.nn.ff["alea_var"] and not ff_means_only, do_covar=params.nn.ff["alea_covar"] and not ff_means_only) elif which == "histograms": loss, loss_keys = get_loss_and_keys_histograms(params.train["hist_loss"], smoothing_empl=params.train["hist_pinball_smoothing"]) else: raise NotImplementedError return loss, loss_keys def get_loss_and_keys_flux_fractions(ff_loss_str, do_var=False, do_covar=False): """ Returns the loss function for the flux fraction estimation. :param ff_loss_str: : string specifying histogram loss :param do_var: estimate aleatoric variances? :param do_covar: estimate aleatoric covariance matrix? :return: loss function, list of keys required (apart from true label, which is always assumed to be first input) """ assert not (do_var and do_covar), "Either 'do_var' or 'do_covar' should be chosen, not both!" if do_var or do_covar: assert ff_loss_str.lower() in ["l2", "mse"], "For flux fraction uncertainty estimation choose 'l2' loss!" if ff_loss_str.lower() in ["l2", "mse"]: if do_covar: loss = max_llh_loss_covar loss_keys = ["ff_mean", "ff_covar"] elif do_var: loss = max_llh_loss_var loss_keys = ["ff_mean", "ff_logvar"] else: loss = tf.keras.losses.mse loss_keys = ["ff_mean"] elif ff_loss_str.lower() in ["l1", "mae"]: loss = tf.keras.losses.mae loss_keys = ["ff_mean"] elif ff_loss_str.lower() in ["x-ent", "x_ent"]: loss = tf.keras.losses.categorical_crossentropy loss_keys = ["ff_mean"] else: raise NotImplementedError return loss, loss_keys def get_loss_and_keys_histograms(hist_loss_str, smoothing_empl=None): """ Returns the loss function for the SCD histogram estimation. :param hist_loss_str: string specifying histogram loss :param smoothing_empl: scalar determining the smoothing for Earth Mover's Pinball loss :return: loss function, list of keys required (apart from true label, which is always assumed to be first input) """ loss_keys = ["hist"] if hist_loss_str.lower() in ["l2", "mse"]: def loss(y_true, y_pred): return tf.reduce_mean(tf.keras.losses.mse(y_true, y_pred), 1) # avg. over channels elif hist_loss_str.lower() in ["l1", "mae"]: def loss(y_true, y_pred): return tf.reduce_mean(tf.keras.losses.mae(y_true, y_pred), 1) # avg. over channels elif hist_loss_str.lower() in ["x-ent", "x_ent"]: def loss(y_true, y_pred): return tf.reduce_mean(tf.keras.losses.categorical_crossentropy(y_true, y_pred), 1) elif hist_loss_str.lower() in ["em1", "em_1"]: def loss(y_true, y_pred): return emd_loss(y_true, y_pred, r=1) elif hist_loss_str.lower() in ["em2", "em_2"]: def loss(y_true, y_pred): return emd_loss(y_true, y_pred, r=2) elif hist_loss_str.lower() == "cjs": loss = cjs_loss elif hist_loss_str.lower() == "empl": def loss(y_true, y_pred, tau): return empl(y_true, y_pred, tau, smoothing=smoothing_empl) loss_keys += ["tau"] else: raise NotImplementedError return loss, loss_keys ############################ # FLUX FRACTION LOSSES ############################ def max_llh_loss_covar(y_true, y_pred, covar, eps=None): """ (Neg.) maximum likelihood loss function for a full Gaussian covariance matrix. :param y_true: label :param y_pred: prediction :param covar: uncertainty covariance matrix :param eps: small number for numerical stability, defaults to tf.keras.backend.epsilon() :return: max. likelihood loss (up to a constant) """ if eps is None: eps = tf.keras.backend.epsilon() err = tf.expand_dims(y_pred - y_true, -1) term1 = tf.squeeze(err * tf.linalg.matmul(tf.linalg.inv(covar), err), -1) term2 = tf.math.log(eps + tf.linalg.det(covar)) max_llh_loss = (tf.reduce_sum(term1, 1) + term2) / 2.0 return max_llh_loss def max_llh_loss_var(y_true, y_pred, logvar): """ (Neg.) maximum likelihood loss function for a diagonal Gaussian covariance matrix. :param y_true: label :param y_pred: prediction :param logvar: uncertainty log-variances :return: max. likelihood loss (up to a constant) """ err = y_pred - y_true precision = tf.exp(-logvar) term1 = err ** 2 * precision term2 = logvar max_llh_loss = tf.reduce_sum(term1 + term2, 1) / 2.0 return max_llh_loss ############################ # HISTOGRAM LOSSES ############################ def emd_loss(y_true, y_pred, r=2, weights=None, do_root=False): """ Computes the Earth Mover's Distance loss. Hou, Le, Chen-Ping Yu, and Dimitris Samaras. "Squared Earth Mover's Distance-based Loss for Training Deep Neural Networks." arXiv:1611.05916. :param y_true: a 2-D (or 3-D) `Tensor` of the ground truth probability mass functions :param y_pred: a 2-D (or 3-D) `Tensor` of the estimated p.m.f.-s :param r: a constant for the r-norm. :param weights: weight the loss differently for different samples :param do_root: if True: raise result to the power of "1/r" `y_true` and `y_pred` are assumed to have equal mass as \sum^{N}_{i=1} {y_true}_i = \sum^{N}_{i=1} {y_pred}_i :return: A 0-D `Tensor` with EMD loss. """ ecdf_true = tf.math.cumsum(y_true, axis=1) ecdf_pred = tf.math.cumsum(y_pred, axis=1) if weights is None: weights = tf.ones_like(ecdf_true) if len(weights.shape) < len(y_true.shape): # if bin-dimension is missing weights = tf.expand_dims(weights, 1) if r == 1: emd = tf.reduce_mean(tf.abs(ecdf_true - ecdf_pred) * weights, axis=1) elif r == 2: emd = tf.reduce_mean((ecdf_true - ecdf_pred) ** 2 * weights, axis=1) if do_root: emd = tf.sqrt(emd) else: emd = tf.reduce_mean(tf.pow(tf.abs(ecdf_true - ecdf_pred) * weights, r), axis=1) if do_root: emd = tf.pow(emd, 1 / r) return tf.reduce_mean(emd, 1) # average over channels def cjs_loss(y_true, y_pred, eps=1e-10): """ Computes the symmetrical discrete cumulative Jensen-Shannon divergence from https://arxiv.org/pdf/1708.07089.pdf :param y_true: labels :param y_pred: prediction :param eps: lower cutoff for logarithm (for numerical stability) :return CJS loss """ cdf_true = tf.cumsum(y_true, axis=1) cdf_pred = tf.cumsum(y_pred, axis=1) def accjs(p_, q_): # if p(i) = 0 then ACCJS(p, q)(i) = 0 since xlog(x) -> 0 as x-> 0 p_ = tf.clip_by_value(p_, eps, 1.0) return 0.5 * tf.reduce_sum(p_ * tf.math.log(p_ / (0.5 * (p_ + q_))), axis=1) loss = accjs(cdf_pred, cdf_true) + accjs(cdf_true, cdf_pred) return tf.reduce_mean(loss, 1) # average over channels def empl(y_true, y_pred, tau, weights=None, smoothing=0.0): """ Compute the Earth Mover's Pinball Loss (arXiv:2106.02051). :param y_true: label :param y_pred: prediction :param tau: quantile levels of interest :param weights: weight the loss differently for different samples :param smoothing: scalar >= 0 that determines smoothing of loss function around 0 :return Earth Mover's Pinball Loss """ ecdf_true = tf.math.cumsum(y_true, axis=1) ecdf_pred = tf.math.cumsum(y_pred, axis=1) delta = ecdf_pred - ecdf_true # If there is an extra dimension for the channel: tau might need to be expanded if len(tau.shape) == 2 and len(delta.shape) == 3: tau = tf.expand_dims(tau, 2) # Non-smooth C0 loss (default) if smoothing == 0.0: mask = tf.cast(tf.greater_equal(delta, tf.zeros_like(delta)), tf.float32) - tau loss = mask * delta # Smooth loss else: loss = -tau * delta + smoothing * tf.math.softplus(delta / smoothing) if weights is None: weights = tf.ones_like(ecdf_true) if len(weights.shape) < len(y_true.shape): # if bin-dimension is missing weights = tf.expand_dims(weights, 1) # avg. the weighted loss over the bins (1) and channel dimension (2) return tf.reduce_mean(loss * weights, [1, 2])
py
1a32a8c27bcb19dbf33714c4992f30cf3f7b4a34
from dataclasses import dataclass from datetime import datetime from datetime import timezone from typing import Any from telliot_core.datasource import DataSource from telliot_core.dtypes.datapoint import DataPoint from telliot_feed_examples.utils.log import get_logger logger = get_logger(__name__) @dataclass class DivaManualSource(DataSource[Any]): """DataSource for Diva Protocol manually-entered data.""" reference_asset: str = "" timestamp: int = 0 def parse_user_val(self) -> float: """Parse historical price from user input.""" print( "Enter price to report for reference asset " f"{self.reference_asset} at timestamp {self.timestamp}:" ) data = None while data is None: inpt = input() try: inpt = float(inpt) # type: ignore except ValueError: print("Invalid input. Enter decimal value (float).") continue print(f"Submitting value: {inpt}\nPress [ENTER] to confirm.") _ = input() data = inpt return data async def fetch_new_datapoint(self) -> DataPoint[float]: """Update current value with time-stamped value fetched from user input. Returns: Current time-stamped value """ data = self.parse_user_val() dt = datetime.fromtimestamp(self.timestamp, tz=timezone.utc) datapoint = (data, dt) self.store_datapoint(datapoint) logger.info(f"Stored price of {self.reference_asset} at {dt}: {data}") return datapoint
py
1a32a93c5b72de37625ecaf6fe39059fe9d843ce
from collections import namedtuple Electron = namedtuple('Electron', ['pt', 'hadronicOverEm']) class Event(object): def __init__(self, run_number, event_number, electrons=()): self._electrons = electrons self._run_number = run_number self._event_number = event_number def getRun(self): return self._run_number def id(self): return self._event_number @property def electrons(self): return self._electrons def nice_electrons(self): """ same as 'Event.electrons' but accessed via a function """ return self._electrons class CMSSWEvent(object): """ Emulates a CMSSW event event number -> event._event.id().event() run number -> event._event.getRun() muons -> handle = Handle ('std::vector<pat::Muon>') label = ("slimmedMuons"); event.getByLabel (label, handle) muons = handle.product() """ def __init__(self): pass
py
1a32aa583301ad5563bf1bba091f0d487cdcf62f
from flaskr.db import get_db def test_poly(client, app): client.post("/api/poly", data="2x+x^2-y^2") with app.app_context(): db = get_db() count = db.execute("SELECT COUNT(id) FROM polynomials").fetchone()[0] assert count == 1 with app.app_context(): db = get_db() count = db.execute("SELECT COUNT(id) FROM p_members").fetchone()[0] assert count == 3 response = client.get("/api/poly/eval?polynomial_id=1&x=3.0&y=3.0") assert response.data == b"6.0"
py
1a32aadc8db254713a28b8dd872370928c26620d
""" Django settings for ownphotos project. Generated by 'django-admin startproject' using Django 1.11.2. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import datetime import os for envvar in ( 'SECRET_KEY', 'BACKEND_HOST', 'DB_BACKEND', 'DB_NAME', 'DB_USER', 'DB_PASS', 'DB_HOST', 'DB_PORT'): if not envvar in os.environ : raise NameError('Environnement variable not set :' + envvar) # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = os.environ['SECRET_KEY'] RQ_API_TOKEN = os.environ['SECRET_KEY'] # SECURITY WARNING: don't run with debug turned on in production! DEBUG = (os.environ.get('DEBUG', '') == '1') ALLOWED_HOSTS = ['backend', 'localhost', os.environ.get('BACKEND_HOST')] AUTH_USER_MODEL = 'api.User' SIMPLE_JWT = { 'ACCESS_TOKEN_LIFETIME': datetime.timedelta(minutes=5), # 'ACCESS_TOKEN_LIFETIME': datetime.timedelta(minutes=60), 'REFRESH_TOKEN_LIFETIME': datetime.timedelta(days=7), } # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.postgres', 'api', 'nextcloud', 'rest_framework', 'corsheaders', 'django_extensions', "django_rq", 'constance', 'constance.backends.database', 'drf_yasg', ] CONSTANCE_BACKEND = 'constance.backends.database.DatabaseBackend' CONSTANCE_DATABASE_CACHE_BACKEND = 'default' CONSTANCE_CONFIG = { 'ALLOW_REGISTRATION': (False, 'Publicly allow user registration', bool), 'IMAGE_DIRS': ("/data", 'Image dirs list (serialized json)', str), } INTERNAL_IPS = ('127.0.0.1', 'localhost', '192.168.1.100') CORS_ALLOW_HEADERS = ( 'cache-control', 'accept', 'accept-encoding', 'allow-credentials', 'withcredentials', 'authorization', 'content-type', 'dnt', 'origin', 'user-agent', 'x-csrftoken', 'x-requested-with', ) CORS_ORIGIN_WHITELIST = ( 'http://localhost:3000', 'http://192.168.1.100:3000' ) REST_FRAMEWORK = { 'DEFAULT_PERMISSION_CLASSES': ( 'rest_framework.permissions.IsAuthenticated', ), 'DEFAULT_AUTHENTICATION_CLASSES': ( 'rest_framework_simplejwt.authentication.JWTAuthentication', 'rest_framework.authentication.SessionAuthentication', 'rest_framework.authentication.BasicAuthentication', ), 'DEFAULT_SCHEMA_CLASS': 'rest_framework.schemas.coreapi.AutoSchema', 'DEFAULT_FILTER_BACKENDS': ('django_filters.rest_framework.DjangoFilterBackend', ), 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.LimitOffsetPagination', 'PAGE_SIZE': 20000, } REST_FRAMEWORK_EXTENSIONS = { 'DEFAULT_OBJECT_CACHE_KEY_FUNC': 'rest_framework_extensions.utils.default_object_cache_key_func', 'DEFAULT_LIST_CACHE_KEY_FUNC': 'rest_framework_extensions.utils.default_list_cache_key_func', } MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'corsheaders.middleware.CorsMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'api.middleware.FingerPrintMiddleware', ] ROOT_URLCONF = 'ownphotos.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'ownphotos.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.' + os.environ['DB_BACKEND'], 'NAME': os.environ['DB_NAME'], 'USER': os.environ['DB_USER'], 'PASSWORD': os.environ['DB_PASS'], 'HOST': os.environ['DB_HOST'], 'PORT': os.environ['DB_PORT'], }, } if 'REDIS_PATH' in os.environ: redis_path = 'unix://' + os.environ['REDIS_PATH'] redis_path += '?db=' + os.environ.get('REDIS_DB', '0') else: redis_path = "redis://" + os.environ['REDIS_HOST'] redis_path += ":" + os.environ["REDIS_PORT"] + "/1" if 'REDIS_PASS' in os.environ: redis_password = os.environ['REDIS_PASS'] else: redis_password = "" CACHES = { "default": { "BACKEND": "django_redis.cache.RedisCache", "LOCATION": redis_path, "TIMEOUT": 60 * 60 * 24, "OPTIONS": { "CLIENT_CLASS": "django_redis.client.DefaultClient", "PASSWORD": redis_password, } } } RQ_QUEUES = { 'default': { 'USE_REDIS_CACHE': 'default', 'DEFAULT_TIMEOUT': 60 * 60 * 24 * 7, 'DB': 0 } } RQ = { 'DEFAULT_RESULT_TTL': 60, } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = os.environ['TIME_ZONE'] USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ # Allow to define data folder like /var/lib/librephotos BASE_DATA = os.environ.get('BASE_DATA', '/') BASE_LOGS = os.environ.get('BASE_LOGS', '/logs/') STATIC_URL = '/static/' MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DATA, 'protected_media' ) STATIC_ROOT = os.path.join(BASE_DIR, 'static') DATA_ROOT = os.path.join(BASE_DATA, 'data' ) IM2TXT_ROOT = os.path.join(BASE_DATA, 'data_models', 'im2txt') PLACES365_ROOT = os.path.join(BASE_DATA, 'data_models', 'places365', 'model' ) CLIP_ROOT = os.path.join(BASE_DATA, 'data_models', 'clip-embeddings' ) LOGS_ROOT = BASE_LOGS THUMBNAIL_SIZE_TINY = 100 THUMBNAIL_SIZE_SMALL = 200 THUMBNAIL_SIZE_MEDIUM = 400 THUMBNAIL_SIZE = 800 THUMBNAIL_SIZE_BIG = (2048, 2048) FULLPHOTO_SIZE = (1000, 1000) DEFAULT_FAVORITE_MIN_RATING = os.environ.get('DEFAULT_FAVORITE_MIN_RATING', 4) CORS_ORIGIN_ALLOW_ALL = False CORS_ALLOW_CREDENTIALS = True IMAGE_SIMILARITY_SERVER = 'http://localhost:8002' #Must be less or egal of nb core CPU ( Nearly 2GB per process) HEAVYWEIGHT_PROCESS_ENV = os.environ.get('HEAVYWEIGHT_PROCESS', '1') HEAVYWEIGHT_PROCESS = int(HEAVYWEIGHT_PROCESS_ENV) if HEAVYWEIGHT_PROCESS_ENV.isnumeric() else 1 LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'handlers': { 'console': { 'class': 'logging.StreamHandler', }, }, 'loggers': { 'django': { 'handlers': ['console'], 'level': 'INFO', }, }, }
py
1a32aaeddd997c98de77273588a37af05635123a
from django.db import models from django.contrib.auth.models import AbstractBaseUser, PermissionsMixin, BaseUserManager from django.conf import settings class UserProfileManager(BaseUserManager): """Manager for user profiles""" def create_user(self, email, name, password=None): """Create a new user profile""" if not email: raise ValueError("User must have an email address") email = self.normalize_email(email) user = self.model(email=email, name=name) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, name, password): """Create and save a new superuser with given details""" user = self.create_user(email, name, password) user.is_superuser = True user.is_staff = True user.save(using=self._db) return user class UserProfile(AbstractBaseUser,PermissionsMixin): """Database model for users in the system""" email = models.EmailField(max_length=255, unique=True) name = models.CharField(max_length=255) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) objects = UserProfileManager() USERNAME_FIELD = 'email' REQUIRED_FIELDS = ['name'] def get_full_name(self): """Retrieve the full name of the user""" return self.name def get_short_name(self): """Retrieve short name of user""" return self.name def __str__(self): """Return the string representation of the user""" return self.email class ProfileFeedItem(models.Model): """Profile status update""" user_profile = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE ) status_text = models.CharField(max_length=255) created_on = models.DateTimeField(auto_now_add=True) def __str__(self): """Return the model as a string""" return self.status_text
py
1a32ac76fee85b045581cecf91f12fa870249f06
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.8.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import kubernetes.client from kubernetes.client.rest import ApiException from kubernetes.client.models.v1beta1_ingress_spec import V1beta1IngressSpec class TestV1beta1IngressSpec(unittest.TestCase): """ V1beta1IngressSpec unit test stubs """ def setUp(self): pass def tearDown(self): pass def testV1beta1IngressSpec(self): """ Test V1beta1IngressSpec """ # FIXME: construct object with mandatory attributes with example values #model = kubernetes.client.models.v1beta1_ingress_spec.V1beta1IngressSpec() pass if __name__ == '__main__': unittest.main()
py
1a32ac8b572d657ff0a866b6bfa4cca8f671928f
# coding=utf-8 import ast from asdl.lang.py3.py3_transition_system import * from asdl.hypothesis import * import astor if __name__ == '__main__': # read in the grammar specification of Python 2.7, defined in ASDL asdl_text = open('py3_asdl.simplified.txt').read() grammar = ASDLGrammar.from_text(asdl_text) py_code = """pandas.read('file.csv', nrows=100)""" # get the (domain-specific) python AST of the example Python code snippet py_ast = ast.parse(py_code) # convert the python AST into general-purpose ASDL AST used by tranX asdl_ast = python_ast_to_asdl_ast(py_ast.body[0], grammar) print('String representation of the ASDL AST: \n%s' % asdl_ast.to_string()) print('Size of the AST: %d' % asdl_ast.size) # we can also convert the ASDL AST back into Python AST py_ast_reconstructed = asdl_ast_to_python_ast(asdl_ast, grammar) # initialize the Python transition parser parser = Python3TransitionSystem(grammar) # get the sequence of gold-standard actions to construct the ASDL AST actions = parser.get_actions(asdl_ast) # a hypothesis is an (partial) ASDL AST generated using a sequence of tree-construction actions hypothesis = Hypothesis() for t, action in enumerate(actions, 1): # the type of the action should belong to one of the valid continuing types # of the transition system assert action.__class__ in parser.get_valid_continuation_types(hypothesis) # if it's an ApplyRule action, the production rule should belong to the # set of rules with the same LHS type as the current rule if isinstance(action, ApplyRuleAction) and hypothesis.frontier_node: assert action.production in grammar[hypothesis.frontier_field.type] p_t = hypothesis.frontier_node.created_time if hypothesis.frontier_node else -1 print('t=%d, p_t=%d, Action=%s' % (t, p_t, action)) hypothesis.apply_action(action) # get the surface code snippets from the original Python AST, # the reconstructed AST and the AST generated using actions # they should be the same src1 = astor.to_source(py_ast).strip() src2 = astor.to_source(py_ast_reconstructed).strip() src3 = astor.to_source(asdl_ast_to_python_ast(hypothesis.tree, grammar)).strip() assert src1 == src2 == src3 == "pandas.read('file.csv', nrows=100)"
py
1a32ac9768a1125fccd5044a8775a479b96a9e75
__author__ = "David Northcote" __organisation__ = "The Univeristy of Strathclyde" __support__ = "https://github.com/strath-sdr/rfsoc_sam" import numpy as np import ipywidgets as ipw import plotly.graph_objs as go import matplotlib.colors as mcolors import time from .spectrum_analyser import SpectrumAnalyser from .bandwidth_selector import BandwidthSelector from .quick_widgets import FloatText, IntText, Button, Accordion, DropDown, Label, Image, CheckBox, QuickButton DDC_SPURS = ['rx_alias', 'rx_image', 'nyquist_up', 'nyquist_down', 'hd2', 'hd2_image', 'hd3', 'hd3_image', 'pll_mix_up', 'pll_mix_up_image', 'pll_mix_down', 'pll_mix_down_image', 'tis_spur', 'tis_spur_image', 'offset_spur', 'offset_spur_image'] class RadioOfdmAnalyser(): def __init__(self, adc_tile, adc_block, adc_description, spectrum_analyser, ofdm_receiver, decimator, inspector): self._tile = adc_tile self._block = adc_block self._spectrum_analyser = spectrum_analyser self._decimator = decimator self._ofdm_receiver = ofdm_receiver self._inspector = inspector self._adc_description = adc_description self._ofdm_receiver.reset_synchronisation() @property def constellation_enable(self): if self._inspector.stopped: return False else: return True @constellation_enable.setter def constellation_enable(self, enable): if enable: self._inspector.start() else: self._inspector.stop() @property def centre_frequency(self): return abs(self._block.MixerSettings['Freq']) @centre_frequency.setter def centre_frequency(self, centre_frequency): nyquist_zone = int(np.ceil(centre_frequency/(self._block.BlockStatus['SamplingFreq']*1e3/2))) if nyquist_zone == 0: nyquist_zone = 1 if nyquist_zone != self._block.NyquistZone: self._block.NyquistZone = nyquist_zone if (nyquist_zone % 2) == 0: self._block.MixerSettings['Freq'] = centre_frequency else: self._block.MixerSettings['Freq'] = -centre_frequency self._spectrum_analyser.centre_frequency = centre_frequency*1e6 self._block.UpdateEvent(1) @property def decimation_factor(self): if self._decimator.decimation_factor > 0: return self._block.DecimationFactor * self._decimator.decimation_factor else: return self._block.DecimationFactor @decimation_factor.setter def decimation_factor(self, decimation_factor): word_lut = [8, 4, 2] sel = int(np.log2(decimation_factor)) if decimation_factor in [2, 4, 8]: self._block.DecimationFactor = decimation_factor self._block.FabRdVldWords = word_lut[sel-1] self._spectrum_analyser.ssr_packetsize = 0 self._spectrum_analyser.ssr_mode = 4-sel self._safe_restart() self._decimator.decimation_factor = 0 self._spectrum_analyser.sample_frequency = self._block.BlockStatus['SamplingFreq']*1e9 self._spectrum_analyser.decimation_factor = decimation_factor self._spectrum_analyser.ssr_packetsize = int(self._spectrum_analyser.fft_size/8) elif decimation_factor in [16, 32, 64, 128, 256, 512, 1024, 2048]: self._block.DecimationFactor = 8 self._block.FabRdVldWords = 2 self._spectrum_analyser.ssr_packetsize = 0 self._spectrum_analyser.ssr_mode = 0 self._safe_restart() self._decimator.decimation_factor = int(decimation_factor/8) self._spectrum_analyser.sample_frequency = self._block.BlockStatus['SamplingFreq']*1e9 self._spectrum_analyser.decimation_factor = decimation_factor self._spectrum_analyser.ssr_packetsize = int(self._spectrum_analyser.fft_size/8) @property def number_frames(self): return self._spectrum_analyser.plot.data_windowsize @number_frames.setter def number_frames(self, number_frames): if number_frames in range(1, 65): self._spectrum_analyser.plot.data_windowsize = int(number_frames) @property def sample_frequency(self): return self._block.BlockStatus['SamplingFreq']*1e9 @property def calibration_mode(self): return self._block.CalibrationMode @calibration_mode.setter def calibration_mode(self, calibration_mode): if calibration_mode in [1, 2]: self._block.CalibrationMode = calibration_mode self._safe_restart() @property def nyquist_stopband(self): return self._spectrum_analyser.nyquist_stopband * 100 @nyquist_stopband.setter def nyquist_stopband(self, nyquist_stopband): self._spectrum_analyser.nyquist_stopband = nyquist_stopband/100 @property def fftsize(self): return self._spectrum_analyser.fft_size @fftsize.setter def fftsize(self, fftsize): self._spectrum_analyser.fft_size = fftsize @property def spectrum_type(self): return self._spectrum_analyser.spectrum_type @spectrum_type.setter def spectrum_type(self, spectrum_type): self._spectrum_analyser.spectrum_type = spectrum_type @property def spectrum_units(self): return self._spectrum_analyser.spectrum_units @spectrum_units.setter def spectrum_units(self, spectrum_units): self._spectrum_analyser.spectrum_units = spectrum_units @property def window(self): return self._spectrum_analyser.window @window.setter def window(self, window_type): self._spectrum_analyser.window = window_type @property def spectrum_window(self): return self._spectrum_analyser.spectrum_window @property def height(self): return self._spectrum_analyser.height @height.setter def height(self, height): self._spectrum_analyser.height = height @property def width(self): return self._spectrum_analyser.width @width.setter def width(self, width): self._spectrum_analyser.width = width @property def spectrum_enable(self): return self._spectrum_analyser.plot.enable_updates @spectrum_enable.setter def spectrum_enable(self, enable): if enable: self._spectrum_analyser.plot.enable_updates = True else: self._spectrum_analyser.plot.enable_updates = False @property def waterfall_enable(self): return self._spectrum_analyser.spectrogram.enable_updates @waterfall_enable.setter def waterfall_enable(self, enable): if enable: self._spectrum_analyser.spectrogram.enable_updates = True else: self._spectrum_analyser.spectrogram.enable_updates = False @property def dma_enable(self): return self._spectrum_analyser.dma_enable @dma_enable.setter def dma_enable(self, enable): if enable: self._spectrum_analyser.dma_enable = 1 self._spectrum_analyser.timer.start() else: self._spectrum_analyser.timer.stop() self._spectrum_analyser.dma_enable = 0 @property def update_frequency(self): return self._spectrum_analyser.update_frequency @update_frequency.setter def update_frequency(self, update_frequency): self._spectrum_analyser.update_frequency = update_frequency @property def plotly_theme(self): return self._spectrum_analyser.plotly_theme @plotly_theme.setter def plotly_theme(self, plotly_theme): self._spectrum_analyser.plotly_theme = plotly_theme self._inspector._c_plot._plot.layout.template = plotly_theme @property def line_colour(self): return self._spectrum_analyser.line_colour @line_colour.setter def line_colour(self, line_colour): self._spectrum_analyser.line_colour = line_colour @property def line_fill(self): return self._spectrum_analyser.line_fill @line_fill.setter def line_fill(self, line_fill): self._spectrum_analyser.line_fill = line_fill @property def zmin(self): return self._spectrum_analyser.zmin @zmin.setter def zmin(self, zmin): self._spectrum_analyser.zmin = zmin @property def zmax(self): return self._spectrum_analyser.zmax @zmax.setter def zmax(self, zmax): self._spectrum_analyser.zmax = zmax @property def quality(self): return self._spectrum_analyser.quality @quality.setter def quality(self, quality): self._spectrum_analyser.quality = quality @property def post_process(self): return self._spectrum_analyser.plot.post_process @post_process.setter def post_process(self, post_process): if post_process in ['max', 'min', 'average', 'median']: self._spectrum_analyser.plot.post_process = post_process else: self._spectrum_analyser.plot.post_process = 'none' @property def display_max(self): return self._spectrum_analyser.plot.display_max @display_max.setter def display_max(self, display_max): self._spectrum_analyser.plot.display_max = display_max @property def display_min(self): return self._spectrum_analyser.plot.display_min @display_min.setter def display_min(self, display_min): self._spectrum_analyser.plot.display_min = display_min @property def number_max_indices(self): return self._spectrum_analyser.plot.number_max_indices @number_max_indices.setter def number_max_indices(self, number_max_indices): self._spectrum_analyser.plot.number_max_indices = number_max_indices @property def colour_map(self): return self._spectrum_analyser.spectrogram.cmap @colour_map.setter def colour_map(self, colour_map): self._spectrum_analyser.spectrogram.cmap = colour_map @property def spectrogram_performance(self): return self._spectrum_analyser.spectrogram.ypixel @spectrogram_performance.setter def spectrogram_performance(self, performance): self._spectrum_analyser.spectrogram.ypixel = performance @property def ymin(self): return self._spectrum_analyser.plot.yrange[0] @ymin.setter def ymin(self, ymin): temp_range = list(self._spectrum_analyser.plot.yrange) temp_range[0] = ymin self._spectrum_analyser.plot.yrange = tuple(temp_range) @property def ymax(self): return self._spectrum_analyser.plot.yrange[1] @ymax.setter def ymax(self, ymax): temp_range = list(self._spectrum_analyser.plot.yrange) temp_range[1] = ymax self._spectrum_analyser.plot.yrange = tuple(temp_range) @property def number_min_indices(self): return self._spectrum_analyser.plot.number_min_indices @number_min_indices.setter def number_min_indices(self, number_min_indices): self._spectrum_analyser.plot.number_min_indices = number_min_indices @property def display_ddc_plan(self): return self._spectrum_analyser.plot.display_ddc_plan @display_ddc_plan.setter def display_ddc_plan(self, display_ddc_plan): self._spectrum_analyser.plot.display_ddc_plan = display_ddc_plan @property def ddc_centre_frequency(self): return self._spectrum_analyser.plot.ddc_centre_frequency*1e-6 @ddc_centre_frequency.setter def ddc_centre_frequency(self, ddc_centre_frequency): self._spectrum_analyser.plot.ddc_centre_frequency = ddc_centre_frequency*1e6 self._spectrum_analyser.plot.update_ddc_plan() @property def ddc_plan_hd2_db(self): return self._spectrum_analyser.plot.ddc_plan.hd2_db @ddc_plan_hd2_db.setter def ddc_plan_hd2_db(self, hd2_db): self._spectrum_analyser.plot.ddc_plan.hd2_db = hd2_db self._spectrum_analyser.plot.update_ddc_plan() @property def ddc_plan_hd3_db(self): return self._spectrum_analyser.plot.ddc_plan.hd3_db @ddc_plan_hd3_db.setter def ddc_plan_hd3_db(self, hd3_db): self._spectrum_analyser.plot.ddc_plan.hd3_db = hd3_db self._spectrum_analyser.plot.update_ddc_plan() @property def ddc_plan_nsd_db(self): return self._spectrum_analyser.plot.ddc_plan.nsd_db @ddc_plan_nsd_db.setter def ddc_plan_nsd_db(self, nsd_db): self._spectrum_analyser.plot.ddc_plan.nsd_db = nsd_db self._spectrum_analyser.plot.update_ddc_plan() @property def ddc_plan_pll_mix_db(self): return self._spectrum_analyser.plot.ddc_plan.pll_mix_db @ddc_plan_pll_mix_db.setter def ddc_plan_pll_mix_db(self, pll_mix_db): self._spectrum_analyser.plot.ddc_plan.pll_mix_db = pll_mix_db self._spectrum_analyser.plot.update_ddc_plan() @property def ddc_plan_off_spur_db(self): return self._spectrum_analyser.plot.ddc_plan.off_spur_db @ddc_plan_off_spur_db.setter def ddc_plan_off_spur_db(self, off_spur_db): self._spectrum_analyser.plot.ddc_plan.off_spur_db = off_spur_db self._spectrum_analyser.plot.update_ddc_plan() @property def ddc_plan_tis_spur_db(self): return self._spectrum_analyser.plot.ddc_plan.tis_spur_db @ddc_plan_tis_spur_db.setter def ddc_plan_tis_spur_db(self, tis_spur_db): self._spectrum_analyser.plot.ddc_plan.tis_spur_db = tis_spur_db self._spectrum_analyser.plot.update_ddc_plan() @property def dma_status(self): return self._spectrum_analyser.dma_status def spectrum(self): return self._spectrum_analyser.plot.get_plot() def waterfall(self): return self._spectrum_analyser.spectrogram.get_plot() def reset_ofdm_receiver(self): self._ofdm_receiver.reset_synchronisation() def _safe_restart(self): tile_number = self._adc_description[0] self._tile.ShutDown() running = self._tile._parent.IPStatus['ADCTileStatus'][tile_number]['PowerUpState'] while running: time.sleep(0.1) running = self._tile._parent.IPStatus['ADCTileStatus'][tile_number]['PowerUpState'] self._tile.StartUp() running = self._tile._parent.IPStatus['ADCTileStatus'][tile_number]['PowerUpState'] while not running: time.sleep(0.1) running = self._tile._parent.IPStatus['ADCTileStatus'][tile_number]['PowerUpState'] #_freq_planner_props = [("enable_rx_alias"), # ("enable_rx_image"), # ("enable_nyquist_up"), # ("enable_nyquist_down"), # ("enable_hd2"), # ("enable_hd2_image"), # ("enable_hd3"), # ("enable_hd3_image"), # ("enable_pll_mix_up"), # ("enable_pll_mix_up_image"), # ("enable_pll_mix_down"), # ("enable_pll_mix_down_image"), # ("enable_tis_spur"), # ("enable_tis_spur_image"), # ("enable_offset_spur"), # ("enable_offset_spur_image")] #_freq_planner_desc = [("RX Alias"), # ("RX Image"), # ("Nyquist Up"), # ("Nyquist Down"), # ("HD2"), # ("HD2 Image"), # ("HD3"), # ("HD3 Image"), # ("PLL Mix Up"), # ("PLL Mix Up Image"), # ("PLL Mix Down"), # ("PLL Mix Down Image"), # ("TIS Spur"), # ("TIS Spur Image"), # ("Offset Spur"), # ("Offset Spur Image")] _freq_planner_props = [("enable_rx_alias"), ("enable_rx_image"), ("enable_hd2"), ("enable_hd2_image"), ("enable_hd3"), ("enable_hd3_image"), ("enable_pll_mix_up"), ("enable_pll_mix_up_image"), ("enable_pll_mix_down"), ("enable_pll_mix_down_image")] _freq_planner_desc = [("Fc"), ("Fc Image"), ("HD2"), ("HD2 Image"), ("HD3"), ("HD3 Image"), ("PLL Mix Up"), ("PLL Mix Up Image"), ("PLL Mix Down"), ("PLL Mix Down Image")] def _create_mmio_property(idx): def _get(self): return self._spectrum_analyser.plot.display_ddc_plan[idx] def _set(self, value): if value: self._spectrum_analyser.plot.display_ddc_plan[idx] = True else: self._spectrum_analyser.plot.display_ddc_plan[idx] = False self._spectrum_analyser.plot.update_ddc_plan() return property(_get, _set) for idx, name in enumerate(_freq_planner_props): setattr(RadioOfdmAnalyser, name, _create_mmio_property(idx)) class RadioOfdmAnalyserGUI(): def __init__(self, adc_tile, adc_block, adc_description, spectrum_analyser, decimator, ofdm_receiver, inspector): self._widgets = {} self._accordions = {} self._running_update = False self._update_que = [] self._stopped = False self._runtime_status = {'spectrum_enable' : False, 'waterfall_enable' : False} self._inspector = inspector self.analyser = RadioOfdmAnalyser(adc_tile=adc_tile, adc_block=adc_block, adc_description=adc_description, spectrum_analyser=spectrum_analyser, decimator=decimator, ofdm_receiver=ofdm_receiver, inspector=self._inspector) self._config = {'centre_frequency' : 819, 'nyquist_stopband' : 80, 'decimation_factor' : self.analyser.decimation_factor, 'calibration_mode' : self.analyser.calibration_mode, 'fftsize' : 2048, 'spectrum_type' : self.analyser.spectrum_type, 'spectrum_units' : self.analyser.spectrum_units, 'window' : 'hanning', 'height' : self.analyser.height, 'spectrum_enable' : self.analyser.spectrum_enable, 'waterfall_enable' : self.analyser.waterfall_enable, 'constellation_enable' : self.analyser.constellation_enable, 'dma_enable' : self.analyser.dma_enable, 'update_frequency' : 10, 'plotly_theme' : self.analyser.plotly_theme, 'line_colour' : self.analyser.line_colour, 'zmin' : self.analyser.zmin, 'zmax' : self.analyser.zmax, 'quality' : self.analyser.quality, 'width' : self.analyser.width, 'post_process' : 'average', 'number_frames' : 6, 'display_max' : False, 'display_min' : False, 'number_max_indices' : 1, 'number_min_indices' : 1, 'colour_map' : self.analyser.colour_map, 'spectrogram_performance' : 4, 'ymin' : self.analyser.ymin, 'ymax' : self.analyser.ymax, 'enable_rx_alias' : False, 'enable_rx_image' : False, 'enable_hd2' : False, 'enable_hd2_image' : False, 'enable_hd3' : False, 'enable_hd3_image' : False, 'enable_pll_mix_up' : False, 'enable_pll_mix_up_image' : False, 'enable_pll_mix_down' : False, 'enable_pll_mix_down_image' : False, 'ddc_centre_frequency' : 0, 'ddc_plan_hd2_db' : self.analyser.ddc_plan_hd2_db, 'ddc_plan_hd3_db' : self.analyser.ddc_plan_hd3_db, 'ddc_plan_nsd_db' : self.analyser.ddc_plan_nsd_db, 'ddc_plan_pll_mix_db' : self.analyser.ddc_plan_pll_mix_db, 'ddc_plan_off_spur_db' : self.analyser.ddc_plan_off_spur_db, 'ddc_plan_tis_spur_db' : self.analyser.ddc_plan_tis_spur_db} self._initialise_frontend() @property def config(self): return self._config @config.setter def config(self, config_dict): self._update_config(config_dict) def start(self): self.config = {'spectrum_enable' : self._runtime_status['spectrum_enable'], 'waterfall_enable' : self._runtime_status['waterfall_enable']} self._stopped = False def stop(self): if not self._stopped: self._runtime_status.update({'spectrum_enable' : self._config['spectrum_enable'], 'waterfall_enable' : self._config['waterfall_enable']}) self.config = {'spectrum_enable' : False, 'waterfall_enable' : False} self._stopped = True def _initialise_frontend(self): self._widgets.update({'ddc_centre_frequency' : FloatText(callback=self._update_config, value=self._config['ddc_centre_frequency'], min_value=0, max_value=self.analyser._block.BlockStatus['SamplingFreq']*1e3, step=1, dict_id='ddc_centre_frequency', description='Centre Frequency (MHz):')}) self._widgets.update({'ddc_plan_hd2_db' : FloatText(callback=self._update_config, value=self._config['ddc_plan_hd2_db'], min_value=-300, max_value=300, step=1, dict_id='ddc_plan_hd2_db', description='HD2 (dB)')}) self._widgets.update({'ddc_plan_hd3_db' : FloatText(callback=self._update_config, value=self._config['ddc_plan_hd3_db'], min_value=-300, max_value=300, step=1, dict_id='ddc_plan_hd3_db', description='HD3 (dB)')}) self._widgets.update({'ddc_plan_nsd_db' : FloatText(callback=self._update_config, value=self._config['ddc_plan_nsd_db'], min_value=-300, max_value=300, step=1, dict_id='ddc_plan_nsd_db', description='NSD (dBFs/Hz)')}) self._widgets.update({'ddc_plan_pll_mix_db' : FloatText(callback=self._update_config, value=self._config['ddc_plan_pll_mix_db'], min_value=-300, max_value=300, step=1, dict_id='ddc_plan_pll_mix_db', description='PLL Ref Mixing (dB)')}) self._widgets.update({'ddc_plan_off_spur_db' : FloatText(callback=self._update_config, value=self._config['ddc_plan_off_spur_db'], min_value=-300, max_value=300, step=1, dict_id='ddc_plan_off_spur_db', description='Offset Spur (dB)')}) self._widgets.update({'ddc_plan_tis_spur_db' : FloatText(callback=self._update_config, value=self._config['ddc_plan_tis_spur_db'], min_value=-300, max_value=300, step=1, dict_id='ddc_plan_tis_spur_db', description='TI Spur (dB)')}) for idx, freq_prop in enumerate(_freq_planner_props): self._widgets.update({freq_prop : CheckBox(callback=self._update_config, description=_freq_planner_desc[idx], value=self._config[freq_prop], indent=False, layout_width='150px', dict_id=freq_prop)}) self._widgets.update({'decimation_factor' : DropDown(callback=self._update_config, options=[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048], value=self._config['decimation_factor'], dict_id='decimation_factor', description='Decimation Factor:')}) self._widgets.update({'spectrum_type' : DropDown(callback=self._update_config, options=[('Power Spectrum'), ('Power Spectral Density')], value=self._config['spectrum_type'], dict_id='spectrum_type', description='Spectrum Type:', description_width='100px')}) self._widgets.update({'spectrum_units' : DropDown(callback=self._update_config, options=[('dBFS'), ('dBm')], value=self._config['spectrum_units'], dict_id='spectrum_units', description='Spectrum Units:', description_width='100px')}) self._widgets.update({'post_process' : DropDown(callback=self._update_config, options=[('None', 'none'), ('Maximum Hold', 'max'), ('Minimum Hold', 'min'), ('Running Average', 'average'), ('Running Median', 'median')], value=self._config['post_process'], dict_id='post_process', description='Post Processing:', description_width='100px')}) self._widgets.update({'fftsize' : DropDown(callback=self._update_config, options=[64, 128, 256, 512, 1024, 2048, 4096, 8192], value=4096, dict_id='fftsize', description = 'FFT Size:')}) self._widgets.update({'calibration_mode' : DropDown(callback=self._update_config, options=[('1 (Fs/2 ≤ ±30%)', 1), ('2 (Fs/2 > ±30%)', 2)], value=self._config['calibration_mode'], dict_id='calibration_mode', description='Calibration Mode:')}) self._widgets.update({'window' : DropDown(callback=self._update_config, options=[('Rectangular', 'rectangular'), ('Bartlett', 'bartlett'), ('Blackman', 'blackman'), ('Hamming', 'hamming'), ('Hanning', 'hanning')], value='rectangular', dict_id='window', description='')}) self._widgets.update({'plotly_theme' : DropDown(callback=self._update_config, options=[('Seaborn', 'seaborn'), ('Simple White', 'simple_white'), ('Plotly', 'plotly'), ('Plotly White', 'plotly_white'), ('Plotly Dark', 'plotly_dark')], value='plotly', dict_id='plotly_theme', description='Plotly Theme:')}) self._widgets.update({'colour_map' : DropDown(callback=self._update_config, options=[('Grey' , 'gray'), ('Spring' , 'spring'), ('Summer' , 'summer'), ('Autumn' , 'autumn'), ('Winter' , 'winter'), ('Cool' , 'cool'), ('Hot' , 'hot'), ('Copper' , 'copper'), ('Rainbow', 'rainbow'), ('Jet' , 'jet')], value='gray', dict_id='colour_map', description='Colour Map:', description_width='100px')}) self._widgets.update({'line_colour' : DropDown(callback=self._update_config, options=list(mcolors.CSS4_COLORS), value='white', dict_id='line_colour', description='Line Colour:')}) self._widgets.update({'line_fill' : DropDown(callback=self._update_config, options=list(mcolors.CSS4_COLORS), value='lightpink', dict_id='line_fill', description='Line Fill:')}) self._widgets.update({'spectrogram_performance' : DropDown(callback=self._update_config, options=[('Low', 8), ('Medium', 4), ('High', 2)], value=2, dict_id='spectrogram_performance', description='Resolution:', description_width='100px')}) self._widgets.update({'number_max_indices' : IntText(callback=self._update_config, value=self._config['number_max_indices'], min_value=1, max_value=64, step=1, dict_id='number_max_indices', description='Number of Maximums:')}) self._widgets.update({'number_min_indices' : IntText(callback=self._update_config, value=self._config['number_min_indices'], min_value=1, max_value=64, step=1, dict_id='number_min_indices', description='Number of Minimums:')}) self._widgets.update({'number_frames' : FloatText(callback=self._update_config, value=self._config['number_frames'], min_value=1, max_value=64, step=1, dict_id='number_frames', description='Number Frames:', description_width='100px')}) self._widgets.update({'ymin' : FloatText(callback=self._update_config, value=self._config['ymin'], min_value=-300, max_value=300, step=1, dict_id='ymin', description='Y-Low (dB):', description_width='100px')}) self._widgets.update({'ymax' : FloatText(callback=self._update_config, value=self._config['ymax'], min_value=-300, max_value=300, step=1, dict_id='ymax', description='Y-High (dB):', description_width='100px')}) self._widgets.update({'centre_frequency' : FloatText(callback=self._update_config, value=self._config['centre_frequency'], min_value=0, max_value=self.analyser._block.BlockStatus['SamplingFreq']*1e3, step=1, dict_id='centre_frequency', description='Centre Frequency (MHz):')}) self._widgets.update({'nyquist_stopband' : FloatText(callback=self._update_config, value=self._config['nyquist_stopband'], min_value=50, max_value=100, step=1, dict_id='nyquist_stopband', description='Nyquist Stopband (%):')}) self._widgets.update({'height' : FloatText(callback=self._update_config, value=self._config['height'], min_value=200, max_value=2160, step=1, dict_id='height', description='Plot Height (Px):')}) self._widgets.update({'width' : FloatText(callback=self._update_config, value=self._config['width'], min_value=400, max_value=4096, step=1, dict_id='width', description='Plot Width (Px):')}) #self._widgets.update({'update_frequency' : # FloatText(callback=self._update_config, # value=self._config['update_frequency'], # min_value=5, # max_value=12, # step=1, # dict_id='update_frequency', # description='Update Frequency:')}) self._widgets.update({'update_frequency' : DropDown(callback=self._update_config, options=[('Low', 5), ('Medium', 10), ('High', 15)], value=5, dict_id='update_frequency', description='Plot Performance:')}) self._widgets.update({'zmin' : FloatText(callback=self._update_config, value=self._config['zmin'], min_value=-300, max_value=300, step=1, dict_id='zmin', description='Z-Low (dB):', description_width='100px')}) self._widgets.update({'zmax' : FloatText(callback=self._update_config, value=self._config['zmax'], min_value=-300, max_value=300, step=1, dict_id='zmax', description='Z-High (dB):', description_width='100px')}) self._widgets.update({'quality' : FloatText(callback=self._update_config, value=self._config['quality'], min_value=80, max_value=100, step=1, dict_id='quality', description='Quality (%):', description_width='100px')}) self._widgets.update({'constellation_enable' : Button(callback=self._update_config, description_on = 'On', description_off = 'Off', state=False, dict_id='constellation_enable')}) self._widgets.update({'dma_enable' : Button(callback=self._update_config, description_on = 'On', description_off = 'Off', state=False, dict_id='dma_enable')}) self._widgets.update({'spectrum_enable' : Button(callback=self._update_config, description_on = 'On', description_off = 'Off', state=False, dict_id='spectrum_enable')}) self._widgets.update({'waterfall_enable' : Button(callback=self._update_config, description_on = 'On', description_off = 'Off', state=False, dict_id='waterfall_enable')}) self._widgets.update({'reset_ofdm_receiver' : QuickButton(callback=self.analyser.reset_ofdm_receiver, description_on = 'Resetting', description_off = 'Reset', state=False, dict_id='reset_ofdm_receiver')}) self._widgets.update({'sample_frequency_label' : Label(value=str((self.analyser.sample_frequency/self.analyser.decimation_factor)*1e-6), svalue='Sample Frequency: ', evalue=' MHz', dict_id='sample_frequency_label')}) self._widgets.update({'resolution_bandwidth_label' : Label(value=str(((self.analyser.sample_frequency/self.analyser.decimation_factor)/ \ self.analyser.fftsize)*1e-3), svalue='Frequency Resolution: ', evalue=' kHz', dict_id='resolution_bandwidth_label')}) self._widgets.update({'display_max' : CheckBox(callback=self._update_config, description='Display Maximum', value=self._config['display_max'], dict_id='display_max')}) self._widgets.update({'display_min' : CheckBox(callback=self._update_config, description='Display Minimum', value=self._config['display_min'], dict_id='display_min')}) self._window_plot = go.FigureWidget(layout={'hovermode' : 'closest', 'height' : 225, 'width' : 300, 'margin' : { 't':0, 'b':20, 'l':0, 'r':0 }, 'showlegend' : False, }, data=[{ 'x': np.arange(self.analyser.fftsize), 'y': np.ones(self.analyser.fftsize), 'line':{ 'color' : 'palevioletred', 'width' : 2 }, 'fill' : 'tozeroy', 'fillcolor' : 'rgba(128, 128, 128, 0.5)' }]) self._accordions.update({'properties' : ipw.Accordion(children=[ipw.HBox( [ipw.VBox([ipw.Label(value='Spectrum Analyzer: ', layout=ipw.Layout(width='150px')), ipw.Label(value='Spectrogram: ', layout=ipw.Layout(width='150px'))]), ipw.VBox([self._widgets['spectrum_enable'].get_widget(), self._widgets['waterfall_enable'].get_widget()])], layout=ipw.Layout(justify_content='space-around')), ipw.VBox([self._widgets['centre_frequency'].get_widget(), self._widgets['decimation_factor'].get_widget(), self._widgets['fftsize'].get_widget()]), ipw.VBox([self._widgets['post_process'].get_widget(), self._widgets['number_frames'].get_widget(), self._widgets['ymin'].get_widget(), self._widgets['ymax'].get_widget()]), ipw.VBox([ipw.Label(value='Experimental Control Panel'), self._widgets['ddc_centre_frequency'].get_widget(), ipw.HBox([ ipw.VBox([self._widgets[_freq_planner_props[i]].get_widget() for i in range(0,int(len(_freq_planner_props)/2))]), ipw.VBox([self._widgets[_freq_planner_props[i]].get_widget() for i in range(int(len(_freq_planner_props)/2),len(_freq_planner_props))]) ]) ]), ipw.VBox([self._widgets['spectrogram_performance'].get_widget(), self._widgets['colour_map'].get_widget(), self._widgets['zmin'].get_widget(), self._widgets['zmax'].get_widget()]), ipw.VBox([self._window_plot, self._widgets['window'].get_widget()]), ipw.VBox([self._widgets['nyquist_stopband'].get_widget(), self._widgets['height'].get_widget(), self._widgets['width'].get_widget(), self._widgets['update_frequency'].get_widget()]) ])}) """ Frequency Planner Widgets ipw.VBox([self._widgets['ddc_centre_frequency'].get_widget(), self._widgets['ddc_plan_hd2_db'].get_widget(), self._widgets['ddc_plan_hd3_db'].get_widget(), self._widgets['ddc_plan_pll_mix_db'].get_widget(), self._widgets['ddc_plan_off_spur_db'].get_widget(), self._widgets['ddc_plan_tis_spur_db'].get_widget(), self._widgets['ddc_plan_nsd_db'].get_widget(), ipw.HBox([ ipw.VBox([self._widgets[_freq_planner_props[i]].get_widget() for i in range(0,int(len(_freq_planner_props)/2))]), ipw.VBox([self._widgets[_freq_planner_props[i]].get_widget() for i in range(int(len(_freq_planner_props)/2),len(_freq_planner_props))]) ]) ]), """ self._accordions['properties'].set_title(0, 'System') self._accordions['properties'].set_title(1, 'Receiver') self._accordions['properties'].set_title(2, 'Spectrum Analyzer') self._accordions['properties'].set_title(3, 'Frequency Planner') self._accordions['properties'].set_title(4, 'Spectrogram') self._accordions['properties'].set_title(5, 'Window Settings') self._accordions['properties'].set_title(6, 'Plot Settings') """The transmit system accordion""" self._accordions.update({'constellation_properties' : ipw.Accordion(children=[ipw.HBox([ipw.VBox([ipw.Label(value='Constellation: ', layout=ipw.Layout(width='150px')), ipw.Label(value='Reset Receiver: ', layout=ipw.Layout(width='150px'))]), ipw.VBox([self._widgets['constellation_enable'].get_widget(), self._widgets['reset_ofdm_receiver'].get_widget()])], layout=ipw.Layout(justify_content='space-around'))], layout=ipw.Layout(justify_content='flex-start', width='initial'))}) self._accordions['constellation_properties'].set_title(0, 'System') self._update_config(self._config) def _update_config(self, config_dict): for key in config_dict.keys(): if key not in self._config: raise KeyError(''.join(['Key ', str(key), ' not in dictionary.'])) self._config.update(config_dict) self._update_que.append(config_dict.keys()) if not self._running_update: self._running_update = True self._update_frontend() def _update_frontend(self): if self._update_que: plot_running = self._config['spectrum_enable'] self.analyser.spectrum_enable = False while self.analyser.dma_status != 32: time.sleep(0.1) while self._running_update: keys = self._update_que.pop(0) for key in keys: if key in self._config: if key in ['centre_frequency', 'decimation_factor', 'quality']: self._widgets['waterfall_enable'].value = False self.analyser.waterfall_enable = False setattr(self.analyser, key, self._config[key]) self._widgets[key].value = self._config[key] if key in ['plotly_theme', 'line_colour', 'decimation_factor', 'spectrum_enable', 'waterfall_enable']: self._update_widgets(key) if key in ['fftsize', 'window']: self._update_figurewidgets(key) self._update_textwidgets() time.sleep(0.2) if not self._update_que: self.analyser.spectrum_enable = plot_running self._running_update = False self._running_update = False def _update_textwidgets(self): self._widgets['sample_frequency_label'].value = str((self.analyser.sample_frequency/ \ self.analyser.decimation_factor)*1e-6) self._widgets['resolution_bandwidth_label'].value = str(((self.analyser.sample_frequency/ \ self.analyser.decimation_factor)/self.analyser.fftsize)*1e-3) def _update_figurewidgets(self, key): if key in ['fftsize']: self._window_plot.data[0].x = np.arange(self.analyser.fftsize) self._window_plot.data[0].y = self.analyser.spectrum_window elif key in ['window']: self._window_plot.data[0].y = self.analyser.spectrum_window def _update_widgets(self, key): if key in ['line_colour']: self._window_plot.data[0].line.color = self._config['line_colour'] self._widgets['dma_enable'].button_colour = self._config['line_colour'] self._widgets['spectrum_enable'].button_colour = self._config['line_colour'] self._widgets['waterfall_enable'].button_colour = self._config['line_colour'] self._widgets['constellation_enable'].button_colour = self._config['line_colour'] self._widgets['reset_ofdm_receiver'].button_colour = self._config['line_colour'] elif key in ['plotly_theme']: self._window_plot.layout.template = self._config['plotly_theme'] elif key in ['decimation_factor']: step_list = [10, 1, 1, 1, 0.1, 0.1, 0.1, 0.01, 0.01, 0.01, 0.001] self._widgets['centre_frequency'].step = step_list[int(np.log2(self._config['decimation_factor']) - 1)] elif key in ['spectrum_enable']: if self._config['spectrum_enable']: self._widgets['dma_enable'].configure_state(True) else: if not self._config['waterfall_enable']: self._widgets['dma_enable'].configure_state(False) elif key in ['waterfall_enable']: if self._config['waterfall_enable']: self._widgets['dma_enable'].configure_state(True) else: if not self._config['spectrum_enable']: self._widgets['dma_enable'].configure_state(False) def spectrum_analyser(self, config=None): if config is not None: self.config = config return ipw.VBox([ipw.HBox([ipw.VBox([self.analyser.spectrum(), self.analyser.waterfall(), ipw.HBox([self._widgets['sample_frequency_label'].get_widget(), ipw.Label(value=' | '), self._widgets['resolution_bandwidth_label'].get_widget()], layout=ipw.Layout(justify_content='flex-end')) ]), self._accordions['properties'] ]) ]) def constellation_plot(self): return ipw.HBox([self._inspector.constellation_plot(), self._accordions['constellation_properties'] ]) class RadioAnalyser(): def __init__(self, adc_tile, adc_block, adc_description, spectrum_analyser, decimator): self._tile = adc_tile self._block = adc_block self._spectrum_analyser = spectrum_analyser self._decimator = decimator self._adc_description = adc_description @property def centre_frequency(self): return abs(self._block.MixerSettings['Freq']) @centre_frequency.setter def centre_frequency(self, centre_frequency): nyquist_zone = int(np.ceil(centre_frequency/(self._block.BlockStatus['SamplingFreq']*1e3/2))) if nyquist_zone == 0: nyquist_zone = 1 if nyquist_zone != self._block.NyquistZone: self._block.NyquistZone = nyquist_zone if (nyquist_zone % 2) == 0: self._block.MixerSettings['Freq'] = centre_frequency else: self._block.MixerSettings['Freq'] = -centre_frequency self._spectrum_analyser.centre_frequency = centre_frequency*1e6 self._block.UpdateEvent(1) @property def decimation_factor(self): if self._decimator.decimation_factor > 0: return self._block.DecimationFactor * self._decimator.decimation_factor else: return self._block.DecimationFactor @decimation_factor.setter def decimation_factor(self, decimation_factor): word_lut = [8, 4, 2] sel = int(np.log2(decimation_factor)) if decimation_factor in [2, 4, 8]: self._block.DecimationFactor = decimation_factor self._block.FabRdVldWords = word_lut[sel-1] self._spectrum_analyser.ssr_packetsize = 0 self._spectrum_analyser.ssr_mode = 4-sel self._safe_restart() self._decimator.decimation_factor = 0 self._spectrum_analyser.sample_frequency = self._block.BlockStatus['SamplingFreq']*1e9 self._spectrum_analyser.decimation_factor = decimation_factor self._spectrum_analyser.ssr_packetsize = int(self._spectrum_analyser.fft_size/8) elif decimation_factor in [16, 32, 64, 128, 256, 512, 1024, 2048]: self._block.DecimationFactor = 8 self._block.FabRdVldWords = 2 self._spectrum_analyser.ssr_packetsize = 0 self._spectrum_analyser.ssr_mode = 0 self._safe_restart() self._decimator.decimation_factor = int(decimation_factor/8) self._spectrum_analyser.sample_frequency = self._block.BlockStatus['SamplingFreq']*1e9 self._spectrum_analyser.decimation_factor = decimation_factor self._spectrum_analyser.ssr_packetsize = int(self._spectrum_analyser.fft_size/8) @property def number_frames(self): return self._spectrum_analyser.plot.data_windowsize @number_frames.setter def number_frames(self, number_frames): if number_frames in range(1, 65): self._spectrum_analyser.plot.data_windowsize = int(number_frames) @property def sample_frequency(self): return self._block.BlockStatus['SamplingFreq']*1e9 @property def calibration_mode(self): return self._block.CalibrationMode @calibration_mode.setter def calibration_mode(self, calibration_mode): if calibration_mode in [1, 2]: self._block.CalibrationMode = calibration_mode self._safe_restart() @property def nyquist_stopband(self): return self._spectrum_analyser.nyquist_stopband * 100 @nyquist_stopband.setter def nyquist_stopband(self, nyquist_stopband): self._spectrum_analyser.nyquist_stopband = nyquist_stopband/100 @property def fftsize(self): return self._spectrum_analyser.fft_size @fftsize.setter def fftsize(self, fftsize): self._spectrum_analyser.fft_size = fftsize @property def spectrum_type(self): return self._spectrum_analyser.spectrum_type @spectrum_type.setter def spectrum_type(self, spectrum_type): self._spectrum_analyser.spectrum_type = spectrum_type @property def spectrum_units(self): return self._spectrum_analyser.spectrum_units @spectrum_units.setter def spectrum_units(self, spectrum_units): self._spectrum_analyser.spectrum_units = spectrum_units @property def window(self): return self._spectrum_analyser.window @window.setter def window(self, window_type): self._spectrum_analyser.window = window_type @property def spectrum_window(self): return self._spectrum_analyser.spectrum_window @property def height(self): return self._spectrum_analyser.height @height.setter def height(self, height): self._spectrum_analyser.height = height @property def width(self): return self._spectrum_analyser.width @width.setter def width(self, width): self._spectrum_analyser.width = width @property def spectrum_enable(self): return self._spectrum_analyser.plot.enable_updates @spectrum_enable.setter def spectrum_enable(self, enable): if enable: self._spectrum_analyser.plot.enable_updates = True else: self._spectrum_analyser.plot.enable_updates = False @property def waterfall_enable(self): return self._spectrum_analyser.spectrogram.enable_updates @waterfall_enable.setter def waterfall_enable(self, enable): if enable: self._spectrum_analyser.spectrogram.enable_updates = True else: self._spectrum_analyser.spectrogram.enable_updates = False @property def dma_enable(self): return self._spectrum_analyser.dma_enable @dma_enable.setter def dma_enable(self, enable): if enable: self._spectrum_analyser.dma_enable = 1 self._spectrum_analyser.timer.start() else: self._spectrum_analyser.timer.stop() self._spectrum_analyser.dma_enable = 0 @property def update_frequency(self): return self._spectrum_analyser.update_frequency @update_frequency.setter def update_frequency(self, update_frequency): self._spectrum_analyser.update_frequency = update_frequency @property def plotly_theme(self): return self._spectrum_analyser.plotly_theme @plotly_theme.setter def plotly_theme(self, plotly_theme): self._spectrum_analyser.plotly_theme = plotly_theme @property def line_colour(self): return self._spectrum_analyser.line_colour @line_colour.setter def line_colour(self, line_colour): self._spectrum_analyser.line_colour = line_colour @property def line_fill(self): return self._spectrum_analyser.line_fill @line_fill.setter def line_fill(self, line_fill): self._spectrum_analyser.line_fill = line_fill @property def zmin(self): return self._spectrum_analyser.zmin @zmin.setter def zmin(self, zmin): self._spectrum_analyser.zmin = zmin @property def zmax(self): return self._spectrum_analyser.zmax @zmax.setter def zmax(self, zmax): self._spectrum_analyser.zmax = zmax @property def quality(self): return self._spectrum_analyser.quality @quality.setter def quality(self, quality): self._spectrum_analyser.quality = quality @property def post_process(self): return self._spectrum_analyser.plot.post_process @post_process.setter def post_process(self, post_process): if post_process in ['max', 'min', 'average', 'median']: self._spectrum_analyser.plot.post_process = post_process else: self._spectrum_analyser.plot.post_process = 'none' @property def display_max(self): return self._spectrum_analyser.plot.display_max @display_max.setter def display_max(self, display_max): self._spectrum_analyser.plot.display_max = display_max @property def display_min(self): return self._spectrum_analyser.plot.display_min @display_min.setter def display_min(self, display_min): self._spectrum_analyser.plot.display_min = display_min @property def number_max_indices(self): return self._spectrum_analyser.plot.number_max_indices @number_max_indices.setter def number_max_indices(self, number_max_indices): self._spectrum_analyser.plot.number_max_indices = number_max_indices @property def colour_map(self): return self._spectrum_analyser.spectrogram.cmap @colour_map.setter def colour_map(self, colour_map): self._spectrum_analyser.spectrogram.cmap = colour_map @property def spectrogram_performance(self): return self._spectrum_analyser.spectrogram.ypixel @spectrogram_performance.setter def spectrogram_performance(self, performance): self._spectrum_analyser.spectrogram.ypixel = performance @property def ymin(self): return self._spectrum_analyser.plot.yrange[0] @ymin.setter def ymin(self, ymin): temp_range = list(self._spectrum_analyser.plot.yrange) temp_range[0] = ymin self._spectrum_analyser.plot.yrange = tuple(temp_range) @property def ymax(self): return self._spectrum_analyser.plot.yrange[1] @ymax.setter def ymax(self, ymax): temp_range = list(self._spectrum_analyser.plot.yrange) temp_range[1] = ymax self._spectrum_analyser.plot.yrange = tuple(temp_range) @property def number_min_indices(self): return self._spectrum_analyser.plot.number_min_indices @number_min_indices.setter def number_min_indices(self, number_min_indices): self._spectrum_analyser.plot.number_min_indices = number_min_indices @property def display_ddc_plan(self): return self._spectrum_analyser.plot.display_ddc_plan @display_ddc_plan.setter def display_ddc_plan(self, display_ddc_plan): self._spectrum_analyser.plot.display_ddc_plan = display_ddc_plan @property def ddc_centre_frequency(self): return self._spectrum_analyser.plot.ddc_centre_frequency*1e-6 @ddc_centre_frequency.setter def ddc_centre_frequency(self, ddc_centre_frequency): self._spectrum_analyser.plot.ddc_centre_frequency = ddc_centre_frequency*1e6 self._spectrum_analyser.plot.update_ddc_plan() @property def ddc_plan_hd2_db(self): return self._spectrum_analyser.plot.ddc_plan.hd2_db @ddc_plan_hd2_db.setter def ddc_plan_hd2_db(self, hd2_db): self._spectrum_analyser.plot.ddc_plan.hd2_db = hd2_db self._spectrum_analyser.plot.update_ddc_plan() @property def ddc_plan_hd3_db(self): return self._spectrum_analyser.plot.ddc_plan.hd3_db @ddc_plan_hd3_db.setter def ddc_plan_hd3_db(self, hd3_db): self._spectrum_analyser.plot.ddc_plan.hd3_db = hd3_db self._spectrum_analyser.plot.update_ddc_plan() @property def ddc_plan_nsd_db(self): return self._spectrum_analyser.plot.ddc_plan.nsd_db @ddc_plan_nsd_db.setter def ddc_plan_nsd_db(self, nsd_db): self._spectrum_analyser.plot.ddc_plan.nsd_db = nsd_db self._spectrum_analyser.plot.update_ddc_plan() @property def ddc_plan_pll_mix_db(self): return self._spectrum_analyser.plot.ddc_plan.pll_mix_db @ddc_plan_pll_mix_db.setter def ddc_plan_pll_mix_db(self, pll_mix_db): self._spectrum_analyser.plot.ddc_plan.pll_mix_db = pll_mix_db self._spectrum_analyser.plot.update_ddc_plan() @property def ddc_plan_off_spur_db(self): return self._spectrum_analyser.plot.ddc_plan.off_spur_db @ddc_plan_off_spur_db.setter def ddc_plan_off_spur_db(self, off_spur_db): self._spectrum_analyser.plot.ddc_plan.off_spur_db = off_spur_db self._spectrum_analyser.plot.update_ddc_plan() @property def ddc_plan_tis_spur_db(self): return self._spectrum_analyser.plot.ddc_plan.tis_spur_db @ddc_plan_tis_spur_db.setter def ddc_plan_tis_spur_db(self, tis_spur_db): self._spectrum_analyser.plot.ddc_plan.tis_spur_db = tis_spur_db self._spectrum_analyser.plot.update_ddc_plan() @property def dma_status(self): return self._spectrum_analyser.dma_status def spectrum(self): return self._spectrum_analyser.plot.get_plot() def waterfall(self): return self._spectrum_analyser.spectrogram.get_plot() def _safe_restart(self): tile_number = self._adc_description[0] self._tile.ShutDown() running = self._tile._parent.IPStatus['ADCTileStatus'][tile_number]['PowerUpState'] while running: time.sleep(0.1) running = self._tile._parent.IPStatus['ADCTileStatus'][tile_number]['PowerUpState'] self._tile.StartUp() running = self._tile._parent.IPStatus['ADCTileStatus'][tile_number]['PowerUpState'] while not running: time.sleep(0.1) running = self._tile._parent.IPStatus['ADCTileStatus'][tile_number]['PowerUpState'] def _create_mmio_property(idx): def _get(self): return self._spectrum_analyser.plot.display_ddc_plan[idx] def _set(self, value): if value: self._spectrum_analyser.plot.display_ddc_plan[idx] = True else: self._spectrum_analyser.plot.display_ddc_plan[idx] = False self._spectrum_analyser.plot.update_ddc_plan() return property(_get, _set) for idx, name in enumerate(_freq_planner_props): setattr(RadioAnalyser, name, _create_mmio_property(idx)) class RadioAnalyserGUI(): def __init__(self, adc_tile, adc_block, adc_description, spectrum_analyser, decimator): self._widgets = {} self._accordions = {} self._running_update = False self._update_que = [] self._stopped = False self._runtime_status = {'spectrum_enable' : False, 'waterfall_enable' : False} self.analyser = RadioAnalyser(adc_tile=adc_tile, adc_block=adc_block, adc_description=adc_description, spectrum_analyser=spectrum_analyser, decimator=decimator) self._config = {'centre_frequency' : 819, 'nyquist_stopband' : 80, 'decimation_factor' : self.analyser.decimation_factor, 'calibration_mode' : self.analyser.calibration_mode, 'fftsize' : 2048, 'spectrum_type' : self.analyser.spectrum_type, 'spectrum_units' : self.analyser.spectrum_units, 'window' : 'hanning', 'height' : self.analyser.height, 'spectrum_enable' : self.analyser.spectrum_enable, 'waterfall_enable' : self.analyser.waterfall_enable, 'dma_enable' : self.analyser.dma_enable, 'update_frequency' : 10, 'plotly_theme' : self.analyser.plotly_theme, 'line_colour' : self.analyser.line_colour, 'zmin' : self.analyser.zmin, 'zmax' : self.analyser.zmax, 'quality' : self.analyser.quality, 'width' : self.analyser.width, 'post_process' : 'average', 'number_frames' : 6, 'display_max' : False, 'display_min' : False, 'number_max_indices' : 1, 'number_min_indices' : 1, 'colour_map' : self.analyser.colour_map, 'spectrogram_performance' : 4, 'ymin' : self.analyser.ymin, 'ymax' : self.analyser.ymax, 'enable_rx_alias' : False, 'enable_rx_image' : False, 'enable_hd2' : False, 'enable_hd2_image' : False, 'enable_hd3' : False, 'enable_hd3_image' : False, 'enable_pll_mix_up' : False, 'enable_pll_mix_up_image' : False, 'enable_pll_mix_down' : False, 'enable_pll_mix_down_image' : False, 'ddc_centre_frequency' : 0, 'ddc_plan_hd2_db' : self.analyser.ddc_plan_hd2_db, 'ddc_plan_hd3_db' : self.analyser.ddc_plan_hd3_db, 'ddc_plan_nsd_db' : self.analyser.ddc_plan_nsd_db, 'ddc_plan_pll_mix_db' : self.analyser.ddc_plan_pll_mix_db, 'ddc_plan_off_spur_db' : self.analyser.ddc_plan_off_spur_db, 'ddc_plan_tis_spur_db' : self.analyser.ddc_plan_tis_spur_db} self._initialise_frontend() @property def config(self): return self._config @config.setter def config(self, config_dict): self._update_config(config_dict) def start(self): self.config = {'spectrum_enable' : self._runtime_status['spectrum_enable'], 'waterfall_enable' : self._runtime_status['waterfall_enable']} self._stopped = False def stop(self): if not self._stopped: self._runtime_status.update({'spectrum_enable' : self._config['spectrum_enable'], 'waterfall_enable' : self._config['waterfall_enable']}) self.config = {'spectrum_enable' : False, 'waterfall_enable' : False} self._stopped = True def _initialise_frontend(self): self._widgets.update({'ddc_centre_frequency' : FloatText(callback=self._update_config, value=self._config['ddc_centre_frequency'], min_value=0, max_value=self.analyser._block.BlockStatus['SamplingFreq']*1e3, step=1, dict_id='ddc_centre_frequency', description='Centre Frequency (MHz):')}) self._widgets.update({'ddc_plan_hd2_db' : FloatText(callback=self._update_config, value=self._config['ddc_plan_hd2_db'], min_value=-300, max_value=300, step=1, dict_id='ddc_plan_hd2_db', description='HD2 (dB)')}) self._widgets.update({'ddc_plan_hd3_db' : FloatText(callback=self._update_config, value=self._config['ddc_plan_hd3_db'], min_value=-300, max_value=300, step=1, dict_id='ddc_plan_hd3_db', description='HD3 (dB)')}) self._widgets.update({'ddc_plan_nsd_db' : FloatText(callback=self._update_config, value=self._config['ddc_plan_nsd_db'], min_value=-300, max_value=300, step=1, dict_id='ddc_plan_nsd_db', description='NSD (dBFs/Hz)')}) self._widgets.update({'ddc_plan_pll_mix_db' : FloatText(callback=self._update_config, value=self._config['ddc_plan_pll_mix_db'], min_value=-300, max_value=300, step=1, dict_id='ddc_plan_pll_mix_db', description='PLL Ref Mixing (dB)')}) self._widgets.update({'ddc_plan_off_spur_db' : FloatText(callback=self._update_config, value=self._config['ddc_plan_off_spur_db'], min_value=-300, max_value=300, step=1, dict_id='ddc_plan_off_spur_db', description='Offset Spur (dB)')}) self._widgets.update({'ddc_plan_tis_spur_db' : FloatText(callback=self._update_config, value=self._config['ddc_plan_tis_spur_db'], min_value=-300, max_value=300, step=1, dict_id='ddc_plan_tis_spur_db', description='TI Spur (dB)')}) for idx, freq_prop in enumerate(_freq_planner_props): self._widgets.update({freq_prop : CheckBox(callback=self._update_config, description=_freq_planner_desc[idx], value=self._config[freq_prop], indent=False, layout_width='150px', dict_id=freq_prop)}) self._widgets.update({'decimation_factor' : DropDown(callback=self._update_config, options=[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048], value=self._config['decimation_factor'], dict_id='decimation_factor', description='Decimation Factor:')}) self._widgets.update({'spectrum_type' : DropDown(callback=self._update_config, options=[('Power Spectrum'), ('Power Spectral Density')], value=self._config['spectrum_type'], dict_id='spectrum_type', description='Spectrum Type:', description_width='100px')}) self._widgets.update({'spectrum_units' : DropDown(callback=self._update_config, options=[('dBFS'), ('dBm')], value=self._config['spectrum_units'], dict_id='spectrum_units', description='Spectrum Units:', description_width='100px')}) self._widgets.update({'post_process' : DropDown(callback=self._update_config, options=[('None', 'none'), ('Maximum Hold', 'max'), ('Minimum Hold', 'min'), ('Running Average', 'average'), ('Running Median', 'median')], value=self._config['post_process'], dict_id='post_process', description='Post Processing:', description_width='100px')}) self._widgets.update({'fftsize' : DropDown(callback=self._update_config, options=[64, 128, 256, 512, 1024, 2048, 4096, 8192], value=4096, dict_id='fftsize', description = 'FFT Size:')}) self._widgets.update({'calibration_mode' : DropDown(callback=self._update_config, options=[('1 (Fs/2 ≤ ±30%)', 1), ('2 (Fs/2 > ±30%)', 2)], value=self._config['calibration_mode'], dict_id='calibration_mode', description='Calibration Mode:')}) self._widgets.update({'window' : DropDown(callback=self._update_config, options=[('Rectangular', 'rectangular'), ('Bartlett', 'bartlett'), ('Blackman', 'blackman'), ('Hamming', 'hamming'), ('Hanning', 'hanning')], value='rectangular', dict_id='window', description='')}) self._widgets.update({'plotly_theme' : DropDown(callback=self._update_config, options=[('Seaborn', 'seaborn'), ('Simple White', 'simple_white'), ('Plotly', 'plotly'), ('Plotly White', 'plotly_white'), ('Plotly Dark', 'plotly_dark')], value='plotly', dict_id='plotly_theme', description='Plotly Theme:')}) self._widgets.update({'colour_map' : DropDown(callback=self._update_config, options=[('Grey' , 'gray'), ('Spring' , 'spring'), ('Summer' , 'summer'), ('Autumn' , 'autumn'), ('Winter' , 'winter'), ('Cool' , 'cool'), ('Hot' , 'hot'), ('Copper' , 'copper'), ('Rainbow', 'rainbow'), ('Jet' , 'jet')], value='gray', dict_id='colour_map', description='Colour Map:', description_width='100px')}) self._widgets.update({'line_colour' : DropDown(callback=self._update_config, options=list(mcolors.CSS4_COLORS), value='white', dict_id='line_colour', description='Line Colour:')}) self._widgets.update({'line_fill' : DropDown(callback=self._update_config, options=list(mcolors.CSS4_COLORS), value='lightpink', dict_id='line_fill', description='Line Fill:')}) self._widgets.update({'spectrogram_performance' : DropDown(callback=self._update_config, options=[('Low', 8), ('Medium', 4), ('High', 2)], value=2, dict_id='spectrogram_performance', description='Resolution:', description_width='100px')}) self._widgets.update({'number_max_indices' : IntText(callback=self._update_config, value=self._config['number_max_indices'], min_value=1, max_value=64, step=1, dict_id='number_max_indices', description='Number of Maximums:')}) self._widgets.update({'number_min_indices' : IntText(callback=self._update_config, value=self._config['number_min_indices'], min_value=1, max_value=64, step=1, dict_id='number_min_indices', description='Number of Minimums:')}) self._widgets.update({'number_frames' : FloatText(callback=self._update_config, value=self._config['number_frames'], min_value=1, max_value=64, step=1, dict_id='number_frames', description='Number Frames:', description_width='100px')}) self._widgets.update({'ymin' : FloatText(callback=self._update_config, value=self._config['ymin'], min_value=-300, max_value=300, step=1, dict_id='ymin', description='Y-Low (dB):', description_width='100px')}) self._widgets.update({'ymax' : FloatText(callback=self._update_config, value=self._config['ymax'], min_value=-300, max_value=300, step=1, dict_id='ymax', description='Y-High (dB):', description_width='100px')}) self._widgets.update({'centre_frequency' : FloatText(callback=self._update_config, value=self._config['centre_frequency'], min_value=0, max_value=self.analyser._block.BlockStatus['SamplingFreq']*1e3, step=1, dict_id='centre_frequency', description='Centre Frequency (MHz):')}) self._widgets.update({'nyquist_stopband' : FloatText(callback=self._update_config, value=self._config['nyquist_stopband'], min_value=50, max_value=100, step=1, dict_id='nyquist_stopband', description='Nyquist Stopband (%):')}) self._widgets.update({'height' : FloatText(callback=self._update_config, value=self._config['height'], min_value=200, max_value=2160, step=1, dict_id='height', description='Plot Height (Px):')}) self._widgets.update({'width' : FloatText(callback=self._update_config, value=self._config['width'], min_value=400, max_value=4096, step=1, dict_id='width', description='Plot Width (Px):')}) #self._widgets.update({'update_frequency' : # FloatText(callback=self._update_config, # value=self._config['update_frequency'], # min_value=5, # max_value=12, # step=1, # dict_id='update_frequency', # description='Update Frequency:')}) self._widgets.update({'update_frequency' : DropDown(callback=self._update_config, options=[('Low', 5), ('Medium', 10), ('High', 15)], value=5, dict_id='update_frequency', description='Plot Performance:')}) self._widgets.update({'zmin' : FloatText(callback=self._update_config, value=self._config['zmin'], min_value=-300, max_value=300, step=1, dict_id='zmin', description='Z-Low (dB):', description_width='100px')}) self._widgets.update({'zmax' : FloatText(callback=self._update_config, value=self._config['zmax'], min_value=-300, max_value=300, step=1, dict_id='zmax', description='Z-High (dB):', description_width='100px')}) self._widgets.update({'quality' : FloatText(callback=self._update_config, value=self._config['quality'], min_value=80, max_value=100, step=1, dict_id='quality', description='Quality (%):', description_width='100px')}) self._widgets.update({'dma_enable' : Button(callback=self._update_config, description_on = 'On', description_off = 'Off', state=False, dict_id='dma_enable')}) self._widgets.update({'spectrum_enable' : Button(callback=self._update_config, description_on = 'On', description_off = 'Off', state=False, dict_id='spectrum_enable')}) self._widgets.update({'waterfall_enable' : Button(callback=self._update_config, description_on = 'On', description_off = 'Off', state=False, dict_id='waterfall_enable')}) self._widgets.update({'sample_frequency_label' : Label(value=str((self.analyser.sample_frequency/self.analyser.decimation_factor)*1e-6), svalue='Sample Frequency: ', evalue=' MHz', dict_id='sample_frequency_label')}) self._widgets.update({'resolution_bandwidth_label' : Label(value=str(((self.analyser.sample_frequency/self.analyser.decimation_factor)/ \ self.analyser.fftsize)*1e-3), svalue='Frequency Resolution: ', evalue=' kHz', dict_id='resolution_bandwidth_label')}) self._widgets.update({'display_max' : CheckBox(callback=self._update_config, description='Display Maximum', value=self._config['display_max'], dict_id='display_max')}) self._widgets.update({'display_min' : CheckBox(callback=self._update_config, description='Display Minimum', value=self._config['display_min'], dict_id='display_min')}) self._window_plot = go.FigureWidget(layout={'hovermode' : 'closest', 'height' : 225, 'width' : 300, 'margin' : { 't':0, 'b':20, 'l':0, 'r':0 }, 'showlegend' : False, }, data=[{ 'x': np.arange(self.analyser.fftsize), 'y': np.ones(self.analyser.fftsize), 'line':{ 'color' : 'palevioletred', 'width' : 2 }, 'fill' : 'tozeroy', 'fillcolor' : 'rgba(128, 128, 128, 0.5)' }]) self._accordions.update({'properties' : ipw.Accordion(children=[ipw.HBox( [ipw.VBox([ipw.Label(value='Spectrum Analyzer: ', layout=ipw.Layout(width='150px')), ipw.Label(value='Spectrogram: ', layout=ipw.Layout(width='150px'))]), ipw.VBox([self._widgets['spectrum_enable'].get_widget(), self._widgets['waterfall_enable'].get_widget()])], layout=ipw.Layout(justify_content='space-around')), ipw.VBox([self._widgets['centre_frequency'].get_widget(), self._widgets['decimation_factor'].get_widget(), self._widgets['fftsize'].get_widget()]), ipw.VBox([self._widgets['post_process'].get_widget(), self._widgets['number_frames'].get_widget(), self._widgets['ymin'].get_widget(), self._widgets['ymax'].get_widget()]), ipw.VBox([ipw.Label(value='Experimental Control Panel'), self._widgets['ddc_centre_frequency'].get_widget(), ipw.HBox([ ipw.VBox([self._widgets[_freq_planner_props[i]].get_widget() for i in range(0,int(len(_freq_planner_props)/2))]), ipw.VBox([self._widgets[_freq_planner_props[i]].get_widget() for i in range(int(len(_freq_planner_props)/2),len(_freq_planner_props))]) ]) ]), ipw.VBox([self._widgets['spectrogram_performance'].get_widget(), self._widgets['colour_map'].get_widget(), self._widgets['zmin'].get_widget(), self._widgets['zmax'].get_widget()]), ipw.VBox([self._window_plot, self._widgets['window'].get_widget()]), ipw.VBox([self._widgets['nyquist_stopband'].get_widget(), self._widgets['height'].get_widget(), self._widgets['width'].get_widget(), self._widgets['update_frequency'].get_widget()]) ])}) """ Frequency Planner Widgets ipw.VBox([self._widgets['ddc_centre_frequency'].get_widget(), self._widgets['ddc_plan_hd2_db'].get_widget(), self._widgets['ddc_plan_hd3_db'].get_widget(), self._widgets['ddc_plan_pll_mix_db'].get_widget(), self._widgets['ddc_plan_off_spur_db'].get_widget(), self._widgets['ddc_plan_tis_spur_db'].get_widget(), self._widgets['ddc_plan_nsd_db'].get_widget(), ipw.HBox([ ipw.VBox([self._widgets[_freq_planner_props[i]].get_widget() for i in range(0,int(len(_freq_planner_props)/2))]), ipw.VBox([self._widgets[_freq_planner_props[i]].get_widget() for i in range(int(len(_freq_planner_props)/2),len(_freq_planner_props))]) ]) ]), """ self._accordions['properties'].set_title(0, 'System') self._accordions['properties'].set_title(1, 'Receiver') self._accordions['properties'].set_title(2, 'Spectrum Analyzer') self._accordions['properties'].set_title(3, 'Frequency Planner') self._accordions['properties'].set_title(4, 'Spectrogram') self._accordions['properties'].set_title(5, 'Window Settings') self._accordions['properties'].set_title(6, 'Plot Settings') self._update_config(self._config) def _update_config(self, config_dict): for key in config_dict.keys(): if key not in self._config: raise KeyError(''.join(['Key ', str(key), ' not in dictionary.'])) self._config.update(config_dict) self._update_que.append(config_dict.keys()) if not self._running_update: self._running_update = True self._update_frontend() def _update_frontend(self): if self._update_que: plot_running = self._config['spectrum_enable'] self.analyser.spectrum_enable = False while self.analyser.dma_status != 32: time.sleep(0.1) while self._running_update: keys = self._update_que.pop(0) for key in keys: if key in self._config: if key in ['centre_frequency', 'decimation_factor', 'quality']: self._widgets['waterfall_enable'].value = False self.analyser.waterfall_enable = False setattr(self.analyser, key, self._config[key]) self._widgets[key].value = self._config[key] if key in ['plotly_theme', 'line_colour', 'decimation_factor', 'spectrum_enable', 'waterfall_enable']: self._update_widgets(key) if key in ['fftsize', 'window']: self._update_figurewidgets(key) self._update_textwidgets() time.sleep(0.2) if not self._update_que: self.analyser.spectrum_enable = plot_running self._running_update = False self._running_update = False def _update_textwidgets(self): self._widgets['sample_frequency_label'].value = str((self.analyser.sample_frequency/ \ self.analyser.decimation_factor)*1e-6) self._widgets['resolution_bandwidth_label'].value = str(((self.analyser.sample_frequency/ \ self.analyser.decimation_factor)/self.analyser.fftsize)*1e-3) def _update_figurewidgets(self, key): if key in ['fftsize']: self._window_plot.data[0].x = np.arange(self.analyser.fftsize) self._window_plot.data[0].y = self.analyser.spectrum_window elif key in ['window']: self._window_plot.data[0].y = self.analyser.spectrum_window def _update_widgets(self, key): if key in ['line_colour']: self._window_plot.data[0].line.color = self._config['line_colour'] self._widgets['dma_enable'].button_colour = self._config['line_colour'] self._widgets['spectrum_enable'].button_colour = self._config['line_colour'] self._widgets['waterfall_enable'].button_colour = self._config['line_colour'] elif key in ['plotly_theme']: self._window_plot.layout.template = self._config['plotly_theme'] elif key in ['decimation_factor']: step_list = [10, 1, 1, 1, 0.1, 0.1, 0.1, 0.01, 0.01, 0.01, 0.001] self._widgets['centre_frequency'].step = step_list[int(np.log2(self._config['decimation_factor']) - 1)] elif key in ['spectrum_enable']: if self._config['spectrum_enable']: self._widgets['dma_enable'].configure_state(True) else: if not self._config['waterfall_enable']: self._widgets['dma_enable'].configure_state(False) elif key in ['waterfall_enable']: if self._config['waterfall_enable']: self._widgets['dma_enable'].configure_state(True) else: if not self._config['spectrum_enable']: self._widgets['dma_enable'].configure_state(False) def spectrum_analyser(self, config=None): if config is not None: self.config = config return ipw.VBox([ipw.HBox([ipw.VBox([self.analyser.spectrum(), self.analyser.waterfall(), ipw.HBox([self._widgets['sample_frequency_label'].get_widget(), ipw.Label(value=' | '), self._widgets['resolution_bandwidth_label'].get_widget()], layout=ipw.Layout(justify_content='flex-end')) ]), self._accordions['properties'] ]) ])
py
1a32aca416a52445a0cd13b7d89392948ebcf337
#!/usr/bin/env python import sys from nfbuildwindows import NFBuildWindows def main(): library_target = 'NFDecoder' nfbuild = NFBuildWindows() nfbuild.build_print("Installing Dependencies") nfbuild.installDependencies(android=True) # Make our main build artifacts nfbuild.build_print("C++ Build Start (x86)") nfbuild.makeBuildDirectory() nfbuild.generateProject(android=True, android_arm=False) targets = [library_target] for target in targets: nfbuild.buildTarget(target) nfbuild.build_print("C++ Build Start (arm64)") nfbuild.makeBuildDirectory() nfbuild.generateProject(android=False, android_arm=True) targets = [library_target] for target in targets: nfbuild.buildTarget(target) if __name__ == "__main__": main()
py
1a32acaa75f77356e6bf7432fc61c9646cf4740a
import random from collections import deque from typing import List, Tuple from IPython.display import clear_output import matplotlib.pyplot as plt import numpy as np def epsilon(current_episode, num_episodes): """ epsilon decays as the current episode gets higher because we want the agent to explore more in earlier episodes (when it hasn't learned anything) explore less in later episodes (when it has learned something) i.e. assume that episode number is directly related to learning """ # return 1 - (current_episode/num_episodes) return .5 * .9**current_episode def update_q_prime(Qprincipal, Qtarget): for v, v_ in zip(Qprincipal.model.parameters(), Qtarget.model.parameters()): v_.data.copy_(v.data) def plot_episode_rewards(values, title=''): """ Plot the reward curve and histogram of results over time.""" # Update the window after each episode clear_output(wait=True) # Define the figure f, ax = plt.subplots(nrows=1, ncols=2, figsize=(12,5)) f.suptitle(title) ax[0].plot(values, label='score per run') ax[0].axhline(195, c='red', ls='--', label='goal') ax[0].set_xlabel('Episodes') ax[0].set_ylabel('Reward') x = range(len(values)) ax[0].legend() # Calculate the trend try: z = np.polyfit(x, values, 1) p = np.poly1d(z) ax[0].plot(x, p(x), "--", label='trend') except: print('') # Plot the histogram of results ax[1].hist(values[-50:]) ax[1].axvline(195, c='red', label='goal') ax[1].set_xlabel('Scores per Last 50 Episodes') ax[1].set_ylabel('Frequency') ax[1].legend() plt.show() class Experience(Tuple): """A tuple containing (state, action, reward, done, next_state). state (Tensor) action (int) reward (float) done (bool) next_state (Tensor) """ class ReplayBuffer(object): def __init__(self, maxlength: int): """ maxlength: max number of tuples to store in the buffer if there are more tuples than maxlength, pop out the oldest tuples """ self.buffer = deque() self.number: int = 0 self.maxlength: int = maxlength def __len__(self) -> int: return self.number def append(self, experience: Experience): """ this function implements appending new experience tuple experience: a tuple of the form (s,a,r,s^\prime) """ self.buffer.append(experience) self.number += 1 def pop(self): """ pop out the oldest tuples if self.number > self.maxlength """ while self.number > self.maxlength: self.buffer.popleft() self.number -= 1 def sample(self, batchsize: int) -> List[Experience]: """Samples 'batchsize' experience tuples Args: batchsize (int) Returns: (List[Experience]) """ minibatch: List[Experience] = random.sample(self.buffer, batchsize) return minibatch
py
1a32ad3e207f61f694f57613b1892f69f611da0a
# Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file or at # https://developers.google.com/open-source/licenses/bsd """Unittests for monorail.tracker.issuedetailezt.""" from __future__ import print_function from __future__ import division from __future__ import absolute_import import logging import mock import mox import time import unittest import settings from businesslogic import work_env from proto import features_pb2 from features import hotlist_views from features import send_notifications from framework import authdata from framework import exceptions from framework import framework_views from framework import framework_helpers from framework import urls from framework import permissions from framework import profiler from framework import sorting from framework import template_helpers from proto import project_pb2 from proto import tracker_pb2 from proto import user_pb2 from services import service_manager from services import issue_svc from services import tracker_fulltext from testing import fake from testing import testing_helpers from tracker import issuedetailezt from tracker import tracker_constants from tracker import tracker_helpers class GetAdjacentIssueTest(unittest.TestCase): def setUp(self): self.cnxn = 'fake cnxn' self.services = service_manager.Services( config=fake.ConfigService(), issue=fake.IssueService(), user=fake.UserService(), project=fake.ProjectService(), issue_star=fake.IssueStarService(), spam=fake.SpamService()) self.services.project.TestAddProject('proj', project_id=789) self.mr = testing_helpers.MakeMonorailRequest() self.mr.auth.user_id = 111 self.mr.auth.effective_ids = {111} self.mr.me_user_id = 111 self.work_env = work_env.WorkEnv( self.mr, self.services, 'Testing phase') def testGetAdjacentIssue_PrevIssue(self): cur_issue = fake.MakeTestIssue(789, 2, 'sum', 'New', 111, issue_id=78902) next_issue = fake.MakeTestIssue(789, 3, 'sum', 'New', 111, issue_id=78903) prev_issue = fake.MakeTestIssue(789, 1, 'sum', 'New', 111, issue_id=78901) self.services.issue.TestAddIssue(cur_issue) self.services.issue.TestAddIssue(next_issue) self.services.issue.TestAddIssue(prev_issue) with self.work_env as we: we.FindIssuePositionInSearch = mock.Mock( return_value=[78901, 1, 78903, 3]) actual_issue = issuedetailezt.GetAdjacentIssue( self.mr, we, cur_issue) self.assertEqual(prev_issue, actual_issue) we.FindIssuePositionInSearch.assert_called_once_with(cur_issue) def testGetAdjacentIssue_NextIssue(self): cur_issue = fake.MakeTestIssue(789, 2, 'sum', 'New', 111, issue_id=78902) next_issue = fake.MakeTestIssue(789, 3, 'sum', 'New', 111, issue_id=78903) prev_issue = fake.MakeTestIssue(789, 1, 'sum', 'New', 111, issue_id=78901) self.services.issue.TestAddIssue(cur_issue) self.services.issue.TestAddIssue(next_issue) self.services.issue.TestAddIssue(prev_issue) with self.work_env as we: we.FindIssuePositionInSearch = mock.Mock( return_value=[78901, 1, 78903, 3]) actual_issue = issuedetailezt.GetAdjacentIssue( self.mr, we, cur_issue, next_issue=True) self.assertEqual(next_issue, actual_issue) we.FindIssuePositionInSearch.assert_called_once_with(cur_issue) def testGetAdjacentIssue_NotFound(self): cur_issue = fake.MakeTestIssue(789, 2, 'sum', 'New', 111, issue_id=78902) prev_issue = fake.MakeTestIssue(789, 1, 'sum', 'New', 111, issue_id=78901) self.services.issue.TestAddIssue(cur_issue) self.services.issue.TestAddIssue(prev_issue) with self.work_env as we: we.FindIssuePositionInSearch = mock.Mock( return_value=[78901, 1, 78903, 3]) with self.assertRaises(exceptions.NoSuchIssueException): issuedetailezt.GetAdjacentIssue( self.mr, we, cur_issue, next_issue=True) we.FindIssuePositionInSearch.assert_called_once_with(cur_issue) def testGetAdjacentIssue_Hotlist(self): cur_issue = fake.MakeTestIssue(789, 2, 'sum', 'New', 111, issue_id=78902) next_issue = fake.MakeTestIssue(789, 3, 'sum', 'New', 111, issue_id=78903) prev_issue = fake.MakeTestIssue(789, 1, 'sum', 'New', 111, issue_id=78901) self.services.issue.TestAddIssue(cur_issue) self.services.issue.TestAddIssue(next_issue) self.services.issue.TestAddIssue(prev_issue) hotlist = fake.Hotlist('name', 678, owner_ids=[111]) with self.work_env as we: we.GetIssuePositionInHotlist = mock.Mock( return_value=[78901, 1, 78903, 3]) actual_issue = issuedetailezt.GetAdjacentIssue( self.mr, we, cur_issue, hotlist=hotlist, next_issue=True) self.assertEqual(next_issue, actual_issue) we.GetIssuePositionInHotlist.assert_called_once_with( cur_issue, hotlist, self.mr.can, self.mr.sort_spec, self.mr.group_by_spec) class FlipperRedirectTest(unittest.TestCase): def setUp(self): self.services = service_manager.Services( config=fake.ConfigService(), features=fake.FeaturesService(), issue=fake.IssueService(), user=fake.UserService(), project=fake.ProjectService()) self.project = self.services.project.TestAddProject( 'proj', project_id=987, committer_ids=[111]) self.next_servlet = issuedetailezt.FlipperNext( 'req', 'res', services=self.services) self.prev_servlet = issuedetailezt.FlipperPrev( 'req', 'res', services=self.services) self.list_servlet = issuedetailezt.FlipperList( 'req', 'res', services=self.services) mr = testing_helpers.MakeMonorailRequest(project=self.project) mr.local_id = 123 mr.me_user_id = 111 self.next_servlet.mr = mr self.prev_servlet.mr = mr self.list_servlet.mr = mr self.fake_issue_1 = fake.MakeTestIssue(987, 123, 'summary', 'New', 111, project_name='rutabaga') self.services.issue.TestAddIssue(self.fake_issue_1) self.fake_issue_2 = fake.MakeTestIssue(987, 456, 'summary', 'New', 111, project_name='rutabaga') self.services.issue.TestAddIssue(self.fake_issue_2) self.fake_issue_3 = fake.MakeTestIssue(987, 789, 'summary', 'New', 111, project_name='potato') self.services.issue.TestAddIssue(self.fake_issue_3) self.next_servlet.redirect = mock.Mock() self.prev_servlet.redirect = mock.Mock() self.list_servlet.redirect = mock.Mock() @mock.patch('tracker.issuedetailezt.GetAdjacentIssue') def testFlipperNext(self, patchGetAdjacentIssue): patchGetAdjacentIssue.return_value = self.fake_issue_2 self.next_servlet.mr.GetIntParam = mock.Mock(return_value=None) self.next_servlet.get(project_name='proj', viewed_username=None) self.next_servlet.mr.GetIntParam.assert_called_once_with('hotlist_id') patchGetAdjacentIssue.assert_called_once() self.next_servlet.redirect.assert_called_once_with( '/p/rutabaga/issues/detail?id=456') @mock.patch('tracker.issuedetailezt.GetAdjacentIssue') def testFlipperNext_Hotlist(self, patchGetAdjacentIssue): patchGetAdjacentIssue.return_value = self.fake_issue_3 self.next_servlet.mr.GetIntParam = mock.Mock(return_value=123) # TODO(jeffcarp): Mock hotlist_id param on path here. self.next_servlet.get(project_name='proj', viewed_username=None) self.next_servlet.mr.GetIntParam.assert_called_with('hotlist_id') self.next_servlet.redirect.assert_called_once_with( '/p/potato/issues/detail?id=789') @mock.patch('tracker.issuedetailezt.GetAdjacentIssue') def testFlipperPrev(self, patchGetAdjacentIssue): patchGetAdjacentIssue.return_value = self.fake_issue_2 self.next_servlet.mr.GetIntParam = mock.Mock(return_value=None) self.prev_servlet.get(project_name='proj', viewed_username=None) self.prev_servlet.mr.GetIntParam.assert_called_with('hotlist_id') patchGetAdjacentIssue.assert_called_once() self.prev_servlet.redirect.assert_called_once_with( '/p/rutabaga/issues/detail?id=456') @mock.patch('tracker.issuedetailezt.GetAdjacentIssue') def testFlipperPrev_Hotlist(self, patchGetAdjacentIssue): patchGetAdjacentIssue.return_value = self.fake_issue_3 self.prev_servlet.mr.GetIntParam = mock.Mock(return_value=123) # TODO(jeffcarp): Mock hotlist_id param on path here. self.prev_servlet.get(project_name='proj', viewed_username=None) self.prev_servlet.mr.GetIntParam.assert_called_with('hotlist_id') self.prev_servlet.redirect.assert_called_once_with( '/p/potato/issues/detail?id=789') @mock.patch('tracker.issuedetailezt._ComputeBackToListURL') def testFlipperList(self, patch_ComputeBackToListURL): patch_ComputeBackToListURL.return_value = '/p/test/issues/list' self.list_servlet.mr.GetIntParam = mock.Mock(return_value=None) self.list_servlet.get() self.list_servlet.mr.GetIntParam.assert_called_with('hotlist_id') patch_ComputeBackToListURL.assert_called_once() self.list_servlet.redirect.assert_called_once_with( '/p/test/issues/list') @mock.patch('tracker.issuedetailezt._ComputeBackToListURL') def testFlipperList_Hotlist(self, patch_ComputeBackToListURL): patch_ComputeBackToListURL.return_value = '/p/test/issues/list' self.list_servlet.mr.GetIntParam = mock.Mock(return_value=123) self.list_servlet.get() self.list_servlet.mr.GetIntParam.assert_called_with('hotlist_id') self.list_servlet.redirect.assert_called_once_with( '/p/test/issues/list') class ShouldShowFlipperTest(unittest.TestCase): def setUp(self): self.cnxn = 'fake cnxn' def VerifyShouldShowFlipper( self, expected, query, sort_spec, can, create_issues=0): """Instantiate a _Flipper and check if makes a pipeline or not.""" services = service_manager.Services( config=fake.ConfigService(), issue=fake.IssueService(), project=fake.ProjectService(), user=fake.UserService()) project = services.project.TestAddProject( 'proj', project_id=987, committer_ids=[111]) mr = testing_helpers.MakeMonorailRequest(project=project) mr.query = query mr.sort_spec = sort_spec mr.can = can mr.project_name = project.project_name mr.project = project for idx in range(create_issues): _local_id, _ = services.issue.CreateIssue( self.cnxn, services, project.project_id, 'summary_%d' % idx, 'status', 111, [], [], [], [], 111, 'description_%d' % idx) self.assertEqual(expected, issuedetailezt._ShouldShowFlipper(mr, services)) def testShouldShowFlipper_RegularSizedProject(self): # If the user is looking for a specific issue, no flipper. self.VerifyShouldShowFlipper( False, '123', '', tracker_constants.OPEN_ISSUES_CAN) self.VerifyShouldShowFlipper(False, '123', '', 5) self.VerifyShouldShowFlipper( False, '123', 'priority', tracker_constants.OPEN_ISSUES_CAN) # If the user did a search or sort or all in a small can, show flipper. self.VerifyShouldShowFlipper( True, 'memory leak', '', tracker_constants.OPEN_ISSUES_CAN) self.VerifyShouldShowFlipper( True, 'id=1,2,3', '', tracker_constants.OPEN_ISSUES_CAN) # Any can other than 1 or 2 is doing a query and so it should have a # failry narrow result set size. 5 is issues starred by me. self.VerifyShouldShowFlipper(True, '', '', 5) self.VerifyShouldShowFlipper( True, '', 'status', tracker_constants.OPEN_ISSUES_CAN) # In a project without a huge number of issues, still show the flipper even # if there was no specific query. self.VerifyShouldShowFlipper( True, '', '', tracker_constants.OPEN_ISSUES_CAN) def testShouldShowFlipper_LargeSizedProject(self): settings.threshold_to_suppress_prev_next = 1 # In a project that has tons of issues, save time by not showing the # flipper unless there was a specific query, sort, or can. self.VerifyShouldShowFlipper( False, '', '', tracker_constants.ALL_ISSUES_CAN, create_issues=3) self.VerifyShouldShowFlipper( False, '', '', tracker_constants.OPEN_ISSUES_CAN, create_issues=3)
py
1a32ad7e8b148eb1790f256ae1f907cf87f917a6
""" The list of words used by DPG """ words = [ "and", "ask", "ass", "ape", "ate", "axe", "air", "aim", "ana", "awe", "act", "add", "age", "all", "ant", "bat", "ban", "bar", "bed", "bee", "bet", "bit", "bug", "bob", "bot", "boy", "bud", "but", "cab", "can", "cap", "cat", "car", "cog", "con", "cop", "cot", "cow", "coy", "cub", "cut", "dad", "dam", "dan", "day", "den", "did", "dig", "dip", "doc", "dog", "don", "dot", "dry", "dug", "ear", "eat", "egg", "ego", "elf", "elk", "elm", "end", "eye", "eve", "fad", "fan", "far", "fat", "fax", "fig", "fit", "fix", "fly", "few", "foe", "fog", "for", "fur", "gag", "gap", "gel", "gem", "get", "god", "goo", "got", "gum", "gun", "gut", "guy", "gym", "hot", "how", "has", "had", "ham", "hat", "him", "her", "hit", "hop", "ice", "icy", "ill", "ink", "inn", "ion", "its", "ivy", "jam", "jar", "jaw", "jay", "jet", "jim", "joe", "jog", "jot", "joy", "jug", "keg", "ken", "key", "kid", "kim", "kit", "kin", "lab", "lad", "lap", "law", "lie", "lee", "let", "lip", "lob", "log", "lot", "low", "lug", "mac", "mag", "map", "man", "mat", "max", "meg", "men", "met", "mom", "moo", "mop", "mow", "mud", "mug", "mut", "nab", "nag", "nap", "net", "new", "nip", "nod", "not", "now", "nun", "nut", "oak", "oat", "oar", "off", "oil", "old", "one", "our", "out", "own", "pan", "pal", "pam", "pat", "pea", "pen", "pet", "pig", "pit", "pot", "rag", "ray", "run", "ram", "ran", "rap", "rat", "rig", "rip", "rob", "ron", "rot", "sad", "sag", "sam", "sat", "say", "see", "sex", "set", "she", "shy", "sin", "sir", "sit", "sky", "soy", "sun", "tan", "tap", "tar", "tea", "ted", "too", "the", "tim", "tip", "toe", "tom", "toy", "wag", "was", "wax", "way", "web", "wee", "wet", "why", "wig", "win", "wow", "won", "yak", "yam", "yap", "yen", "yep", "yes", "yet", "yew", "you", "yum", "zag", "zig", "zit", "zap", "zip", "zoo" ]
py
1a32add1c2015636bafa91b86ed5f98205901d66
import logging from typing import List, Optional, Union, Tuple from venidium.types.blockchain_format.program import Program, SerializedProgram from venidium.types.generator_types import BlockGenerator, GeneratorArg, GeneratorBlockCacheInterface, CompressorArg from venidium.util.ints import uint32, uint64 from venidium.wallet.puzzles.load_clvm import load_clvm from venidium.wallet.puzzles.rom_bootstrap_generator import get_generator GENERATOR_MOD = get_generator() DECOMPRESS_BLOCK = load_clvm("block_program_zero.clvm", package_or_requirement="venidium.wallet.puzzles") DECOMPRESS_PUZZLE = load_clvm("decompress_puzzle.clvm", package_or_requirement="venidium.wallet.puzzles") # DECOMPRESS_CSE = load_clvm("decompress_coin_spend_entry.clvm", package_or_requirement="venidium.wallet.puzzles") DECOMPRESS_CSE_WITH_PREFIX = load_clvm( "decompress_coin_spend_entry_with_prefix.clvm", package_or_requirement="venidium.wallet.puzzles" ) log = logging.getLogger(__name__) def create_block_generator( generator: SerializedProgram, block_heights_list: List[uint32], generator_block_cache: GeneratorBlockCacheInterface ) -> Optional[BlockGenerator]: """`create_block_generator` will returns None if it fails to look up any referenced block""" generator_arg_list: List[GeneratorArg] = [] for i in block_heights_list: previous_generator = generator_block_cache.get_generator_for_block_height(i) if previous_generator is None: log.error(f"Failed to look up generator for block {i}. Ref List: {block_heights_list}") return None generator_arg_list.append(GeneratorArg(i, previous_generator)) return BlockGenerator(generator, generator_arg_list) def create_generator_args(generator_ref_list: List[SerializedProgram]) -> Program: """ `create_generator_args`: The format and contents of these arguments affect consensus. """ gen_ref_list = [bytes(g) for g in generator_ref_list] return Program.to([gen_ref_list]) def create_compressed_generator( original_generator: CompressorArg, compressed_cse_list: List[List[Union[List[uint64], List[Union[bytes, None, Program]]]]], ) -> BlockGenerator: """ Bind the generator block program template to a particular reference block, template bytes offsets, and SpendBundle. """ start = original_generator.start end = original_generator.end program = DECOMPRESS_BLOCK.curry( DECOMPRESS_PUZZLE, DECOMPRESS_CSE_WITH_PREFIX, Program.to(start), Program.to(end), compressed_cse_list ) generator_arg = GeneratorArg(original_generator.block_height, original_generator.generator) return BlockGenerator(program, [generator_arg]) def setup_generator_args(self: BlockGenerator) -> Tuple[SerializedProgram, Program]: args = create_generator_args(self.generator_refs()) return self.program, args def run_generator(self: BlockGenerator, max_cost: int) -> Tuple[int, SerializedProgram]: program, args = setup_generator_args(self) return GENERATOR_MOD.run_safe_with_cost(max_cost, program, args) def run_generator_unsafe(self: BlockGenerator, max_cost: int) -> Tuple[int, SerializedProgram]: """This mode is meant for accepting possibly soft-forked transactions into the mempool""" program, args = setup_generator_args(self) return GENERATOR_MOD.run_with_cost(max_cost, program, args)
py
1a32adf81af18b1ad9e4600ca6dc544620746e91
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Worker process for running remote inference. The worker wraps the inference model in an infinte loop: input features are fetched via RPC at the top of the loop, and inference output is written back at the bottom (again, via RPC). """ import abc from contextlib import contextmanager import sys import time import threading from absl import flags import grpc import numpy as np from proto import inference_service_pb2 from proto import inference_service_pb2_grpc import tensorflow as tf from tensorflow.python.training import saver import dual_net import features as features_lib import go from utils import dbg flags.DEFINE_string("model", "", "Path to the TensorFlow model.") flags.DEFINE_string("checkpoint_dir", "", "Path to a directory containing TensorFlow model " "checkpoints. The inference worker will monitor this " "when a new checkpoint is found, load the model and use it " "for futher inferences.") flags.DEFINE_string("server_address", "localhost:50051", "Inference server local address.") flags.DEFINE_string("descriptor", "proto/inference_service_py_pb2.pb.descriptor_set", "Path to the InferenceService proto descriptor.") flags.DEFINE_integer("parallel_tpus", 8, "Number of TPU cores to run on in parallel.") FLAGS = flags.FLAGS # The default maximum receive RPC size is only 4MB, which isn't large enough # for our messages. GRPC_OPTIONS = [ ("grpc.max_message_length", 50 * 1024 * 1024), ("grpc.max_receive_message_length", 50 * 1024 * 1024), ] NUM_WORKER_THREADS = 2 class RwMutex(object): """A simple read/write mutex. I'm surprised Python doesn't provide one of these by default. """ def __init__(self): self._resource_lock = threading.Semaphore() self._read_lock = threading.Semaphore() self._read_count = 0 @contextmanager def write_lock(self): self._acquire_write() try: yield finally: self._release_write() @contextmanager def read_lock(self): self._acquire_read() try: yield finally: self._release_read() def _acquire_write(self): self._resource_lock.acquire() def _release_write(self): self._resource_lock.release() def _acquire_read(self): with self._read_lock: self._read_count += 1 if self._read_count == 1: self._resource_lock.acquire() def _release_read(self): with self._read_lock: self._read_count -= 1 if self._read_count == 0: self._resource_lock.release() def const_model_inference_fn(features): """Builds the model graph with weights marked as constant. This improves TPU inference performance because it prevents the weights being transferred to the TPU every call to Session.run(). Returns: (policy_output, value_output, logits) tuple of tensors. """ def custom_getter(getter, name, *args, **kwargs): with tf.control_dependencies(None): return tf.guarantee_const( getter(name, *args, **kwargs), name=name + "/GuaranteeConst") with tf.variable_scope("", custom_getter=custom_getter): return dual_net.model_inference_fn(features, False) class Session(abc.ABC): def __init__(self, sess): self._sess = sess # Event that gets set after a model is loaded. # The worker threads wait for this event before starting inference. self.model_available = threading.Event() self._model_path = None self._mutex = RwMutex() def maybe_load_model(self, path): """Loads the given model if it's different from the current one.""" with self._mutex.read_lock(): if path == self._model_path: return with self._mutex.write_lock(): dbg(time.time(), "loading %s" % path) self._locked_load_model(path) self._model_path = path dbg(time.time(), "loaded %s" % path) self.model_available.set() def run(self, raw_features): """Performs inference on the given raw features.""" features = self._prepare_features(raw_features) with self._mutex.read_lock(): policy, value = self._locked_run(features) local_model_path = self._model_path return policy, value, local_model_path def shutdown(self): """Shuts down the session.""" with self._mutex.write_lock(): self._locked_shutdown() @abc.abstractmethod def _locked_load_model(self, path): """Device-specific wrapper around a call to _load_graph. Must be called with self._lock held for write. """ pass @abc.abstractmethod def _locked_run(self, raw_features): """Device-specific evaluation of the model with the given raw features. Must be called with self._lock held for read. """ pass @abc.abstractmethod def _locked_shutdown(self, raw_features): """Device-specific shutdown. Must be called with self._lock held for write. """ pass @abc.abstractmethod def _prepare_features(self, raw_features): """Device-specific preparation of raw features. Does not require a lock to be held. """ pass class BasicSession(Session): def __init__(self): Session.__init__(self, tf.Session(graph=tf.Graph())) with self._sess.graph.as_default(): self._feature_placeholder = tf.placeholder( tf.float32, [None, go.N, go.N, features_lib.NEW_FEATURES_PLANES], name='pos_tensor') def _locked_shutdown(self): pass def _locked_load_model(self, path): tf.reset_default_graph() if path[-3:] == ".pb": graph_def = tf.GraphDef() with tf.gfile.FastGFile(path, 'rb') as f: graph_def.ParseFromString(f.read()) with self._sess.graph.as_default(): self._outputs = tf.import_graph_def( graph_def, input_map={'pos_tensor': self._feature_placeholder}, return_elements=['policy_output:0', 'value_output:0']) else: with self._sess.graph.as_default(): self._outputs = dual_net.model_inference_fn( self._feature_placeholder, training=False) tf.train.Saver().restore(self._sess, path) def _locked_run(self, features): outputs = self._sess.run(self._outputs, {self._feature_placeholder: features}) return outputs[0], outputs[1] def _prepare_features(self, raw_features): features = np.frombuffer(raw_features, dtype=np.int8) features = features.reshape([-1, go.N, go.N, features_lib.NEW_FEATURES_PLANES]) return features class TpuSession(Session): def __init__(self, tpu_name, parallel_tpus, batch_size): tpu = [tpu_name] if tpu_name else None tpu_grpc_url = tf.contrib.cluster_resolver.TPUClusterResolver( tpu=tpu).get_master() sess = tf.Session(tpu_grpc_url) Session.__init__(self, sess) self._parallel_tpus = parallel_tpus self._batch_size = batch_size # Create init & shutdown ops up front. This is probably not really # necessary but it's what the sample code does. self._tpu_init = tf.contrib.tpu.initialize_system() self._tpu_shutdown = tf.contrib.tpu.shutdown_system() self._feature_placeholders = [] with self._sess.graph.as_default(): for i in range(parallel_tpus): features = tf.placeholder( tf.float32, [None, go.N, go.N, features_lib.NEW_FEATURES_PLANES], name='pos_tensor') self._feature_placeholders.append((features,)) self._outputs = tf.contrib.tpu.replicate( const_model_inference_fn, self._feature_placeholders) # tpu.replicate requires a list, but sess.run requires a tuple... self._feature_placeholders = tuple(self._feature_placeholders) def _locked_shutdown(self): self._sess.run(self._tpu_shutdown) def _locked_load_model(self, path): if self._model_path: dbg("shutting down tpu") self._sess.run(self._tpu_shutdown) with self._sess.graph.as_default(): tf.train.Saver().restore(self._sess, path) dbg("initializing tpu") self._sess.run(self._tpu_init) def _locked_run(self, features): outputs = self._sess.run(self._outputs, {self._feature_placeholders: features}) policy = [] value = [] for x in outputs: policy.extend(x[0]) value.extend(x[1]) return policy, value def _prepare_features(self, raw_features): num_board_features = go.N * go.N * features_lib.NEW_FEATURES_PLANES num_features = self._batch_size * num_board_features assert len(raw_features) == num_features * self._parallel_tpus features = [] for i in range(self._parallel_tpus): begin = i * num_features x = np.frombuffer( raw_features, dtype=np.int8, count=num_features, offset=begin) x = x.reshape([self._batch_size, go.N, go.N, features_lib.NEW_FEATURES_PLANES]) features.append(x) return features class Worker(object): def __init__(self): self.parallel_inferences = FLAGS.parallel_tpus if FLAGS.use_tpu else 1 self._get_server_config() if FLAGS.use_tpu: self.sess = TpuSession( FLAGS.tpu_name, self.parallel_inferences, self.batch_size) else: self.sess = BasicSession() if FLAGS.model: self.sess.maybe_load_model(FLAGS.model) def run(self): self._running = True try: self._run_threads() finally: self._running = False dbg("shutting down session") self.sess.shutdown() dbg("all done!") def _get_server_config(self): while True: try: channel = grpc.insecure_channel(FLAGS.server_address) self.stub = inference_service_pb2_grpc.InferenceServiceStub( channel) config = self.stub.GetConfig( inference_service_pb2.GetConfigRequest()) break except grpc.RpcError: dbg("Waiting for server") time.sleep(1) if config.board_size != go.N: raise RuntimeError("Board size mismatch: server=%d, worker=%d" % ( config.board_size, go.N)) positions_per_inference = (config.games_per_inference * config.virtual_losses) if positions_per_inference % self.parallel_inferences != 0: raise RuntimeError( "games_per_inference * virtual_losses must be divisible by " "parallel_tpus") self.batch_size = positions_per_inference // self.parallel_inferences dbg("parallel_inferences = %d" % self.parallel_inferences) dbg("games_per_inference = %d" % config.games_per_inference) dbg("virtual_losses = %d" % config.virtual_losses) dbg("positions_per_inference = %d" % positions_per_inference) dbg("batch_size = %d" % self.batch_size) def _run_threads(self): """Run inference threads and optionally a thread that updates the model. Synchronization between the inference threads and the model update thread is performed using a RwLock that protects access to self.sess. The inference threads enter the critical section using a read lock, so they can both run inference concurrently. The model update thread enters the critical section using a write lock for exclusive access. """ threads = [] # Start the worker threads before the checkpoint thread: if the parent # process dies, the worker thread RPCs will fail and the thread will # exit. This gives us a chance below to set self._running to False, # telling the checkpoint thread to exit. for i in range(NUM_WORKER_THREADS): threads.append(threading.Thread( target=self._worker_thread, args=[i])) if FLAGS.checkpoint_dir: threads.append(threading.Thread(target=self._checkpoint_thread)) for t in threads: t.start() for i, t in enumerate(threads): t.join() dbg("joined thread %d" % i) # Once the first thread has joined, tell the remaining ones to stop. self._running = False def _checkpoint_thread(self): dbg("starting model loader thread") while self._running: freshest = saver.latest_checkpoint(FLAGS.checkpoint_dir) if freshest: self.sess.maybe_load_model(freshest) # Wait a few seconds before checking again. time.sleep(5) def _worker_thread(self, thread_id): dbg("waiting for model") while self._running and not self.sess.model_available.wait(1): pass dbg("running worker", thread_id) while self._running: features_response = self.stub.GetFeatures( inference_service_pb2.GetFeaturesRequest()) policy, value, model_path = self.sess.run( features_response.features) put_outputs_request = inference_service_pb2.PutOutputsRequest( batch_id=features_response.batch_id, policy=np.concatenate(policy), value=value, model_path=model_path) self.stub.PutOutputs(put_outputs_request) dbg("stopping worker", thread_id) def main(): tf.logging.set_verbosity(tf.logging.DEBUG) worker = Worker() worker.run() if __name__ == "__main__": flags.FLAGS(sys.argv, known_only=True) main()
py
1a32aeaa69b41cf0693416173fc788d7d7177059
## ## # File auto-generated by PythonFileGenerator __all__ = [ 'ClusterActivationNotification', 'SiteActivationNotification' ] from .ClusterActivationNotification import ClusterActivationNotification from .SiteActivationNotification import SiteActivationNotification
py
1a32aefa5b795e61bec8c03086f4c8e59a728974
""" us_tx_jails.py - Retrieve a list of TDCJ Jails in Texas. These data were scraped from https://www.tdcj.texas.gov/unit_directory/ on Feb 7, 2020. Copyright (c) 2020 by Thomas J. Daley, J.D. All Rights Reserved. """ from docassemble.base.util import Person, Address from docassemble.base.logger import logmessage JAILS = { "Allred": { "unit_name": "James V. Allred Unit", "telephone": "(940) 855-7477 (**069)", "address": "2101 FM 369 North", "city": " Iowa Park", "state": "TX", "zip": "76367", }, "Bell": { "unit_name": "Oliver J. Bell Unit", "telephone": "(281) 592-9559", "address": "P.O. Box 1678", "city": " Cleveland", "state": "TX", "zip": "77328", }, "Beto": { "unit_name": "George Beto Unit", "telephone": "(903) 928-2217 (**022)", "address": "1391 FM 3328", "city": " Tennessee Colony", "state": "TX", "zip": "75880", }, "Boyd": { "unit_name": "William R. Boyd Unit", "telephone": "(254) 739-5555 (**051)", "address": "200 Spur 113", "city": " Teague", "state": "TX", "zip": "75860-20", }, "Bradshaw": { "unit_name": "James Bradshaw State Jail", "telephone": "(903) 655-0880", "address": "P.O. Box 9000", "city": " Henderson", "state": "TX", "zip": "75653", }, "Bridgeport": { "unit_name": "Bridgeport Correctional Center", "telephone": "(940) 683-3010 (**674)", "address": "4000 North Tenth Street", "city": " Bridgeport", "state": "TX", "zip": "76426", }, "Briscoe": { "unit_name": "Dolph Briscoe Unit", "telephone": "(830) 965-4444 (**052)", "address": "1459 West Highway 85", "city": " Dilley", "state": "TX", "zip": "78017", }, "Byrd": { "unit_name": 'James "Jay H. Byrd Unit', "telephone": "(936) 295-5768 (**008)", "address": "21 FM 247", "city": " Huntsville", "state": "TX", "zip": "77320", }, "Clemens": { "unit_name": "Clemens Unit", "telephone": "(979) 798-2188 (**005)", "address": "11034 Hwy 36", "city": " Brazoria", "state": "TX", "zip": "77422", }, "Clements": { "unit_name": "William P. Clements Unit", "telephone": "(806) 381-7080 (**037)", "address": "9601 Spur 591", "city": " Amarillo", "state": "TX", "zip": "79107-96", }, "Coffield": { "unit_name": "H. H. Coffield Unit", "telephone": "(903) 928-2211 (**006)", "address": "2661 FM 2054", "city": " Tennessee Colony", "state": "TX", "zip": "75884", }, "Cole": { "unit_name": "Buster Cole State Jail", "telephone": "(903) 583-1100 (**102)", "address": "3801 Silo Road", "city": " Bonham", "state": "TX", "zip": "75418", }, "Connally": { "unit_name": "John B. Connally Unit", "telephone": "(830) 583-4003 (**068)", "address": "899 FM 632", "city": " Kenedy", "state": "TX", "zip": "78119", }, "Cotulla": { "unit_name": "Cotulla Transfer Facility", "telephone": "(830) 879-3077 (**061)", "address": "610 FM 624", "city": " Cotulla", "state": "TX", "zip": "78014", }, "Crain": { "unit_name": "Christina Melton Crain Unit", "telephone": "(254) 865-8431 (**024)", "address": "1401 State School Road", "city": " Gatesville", "state": "TX", "zip": "76599-29", }, "Dalhart": { "unit_name": "Dalhart Unit", "telephone": "(806) 249-8655 (**072)", "address": "11950 FM 998", "city": " Dalhart", "state": "TX", "zip": "79022", }, "Daniel": { "unit_name": "Price Daniel Unit", "telephone": "(325) 573-1114 (**038)", "address": "938 South FM 1673", "city": " Snyder", "state": "TX", "zip": "79549", }, "Darrington": { "unit_name": "Darrington Unit", "telephone": "(281) 595-3465 (**007)", "address": "59 Darrington Road", "city": " Rosharon", "state": "TX", "zip": "77583", }, "Diboll": { "unit_name": "Diboll Correctional Center", "telephone": "(936) 829-2295", "address": "1604 South First Street", "city": " Diboll", "state": "TX", "zip": "75941", }, "Dominguez": { "unit_name": "Fabian Dale Dominguez State Jail", "telephone": "(210) 675-6620 (**098)", "address": "6535 Cagnon Road", "city": " San Antonio", "state": "TX", "zip": "78252-22", }, "Duncan": { "unit_name": "Rufus H. Duncan Geriatric Facility", "telephone": "(936) 829-2616 (**063)", "address": "1502 South First Street", "city": " Diboll", "state": "TX", "zip": "75941", }, "East Texas": { "unit_name": "East Texas Multi-Use Facility", "telephone": "(903) 655-3300", "address": "900 Industrial Drive", "city": " Henderson", "state": "TX", "zip": "75652", }, "Eastham": { "unit_name": "Eastham Unit", "telephone": "(936) 636-7321 (**009)", "address": "2665 Prison Road #1", "city": " Lovelady", "state": "TX", "zip": "75851", }, "Ellis": { "unit_name": "O.B. Ellis Unit", "telephone": "(936) 295-5756 (**010)", "address": "1697 FM 980", "city": " Huntsville", "state": "TX", "zip": "77343", }, "Estelle": { "unit_name": 'W. J. "Jim" Estelle Unit', "telephone": "(936) 291-4200 (**032)", "address": "264 FM 3478", "city": " Huntsville", "state": "TX", "zip": "77320-33", }, "Estes": { "unit_name": 'Sanders "Sandy" Estes Unit"', "telephone": "(972) 366-3334 (**670)", "address": "1100 Hwy 1807", "city": " Venus", "state": "TX", "zip": "76084", }, "Ferguson": { "unit_name": "Jim Ferguson Unit", "telephone": "(936) 348-3751 (**011)", "address": "12120 Savage Drive", "city": " Midway", "state": "TX", "zip": "75852", }, "Formby": { "unit_name": "Formby State Jail", "telephone": "(806) 296-2448 (**106)", "address": "998 County Road AA", "city": " Plainview", "state": "TX", "zip": "79072", }, "Fort Stockton": { "unit_name": "Fort Stockton Transfer Facility", "telephone": "(432) 336-7676 (**062)", "address": "1536 IH-10 East", "city": " Fort Stockton", "state": "TX", "zip": "79735", }, "Garza East": { "unit_name": "Garza East Transfer Facility", "telephone": "(361) 358-9880 (**096)", "address": "4304 Highway 202", "city": " Beeville", "state": "TX", "zip": "78102", }, "Garza West": { "unit_name": "Garza West Transfer Facility", "telephone": "(361) 358-9890 (**095)", "address": "4250 Highway 202", "city": " Beeville", "state": "TX", "zip": "78102", }, "Gist": { "unit_name": "Larry Gist State Jail", "telephone": "(409) 727-8400 (**097)", "address": "3295 FM 3514", "city": " Beaumont", "state": "TX", "zip": "77705", }, "Glossbrenner": { "unit_name": "Ernestine Glossbrenner Unit", "telephone": "(361) 279-2705 (**088)", "address": "5100 South FM 1329", "city": " San Diego", "state": "TX", "zip": "78384", }, "Goodman": { "unit_name": "Glen Ray Goodman Transfer Facility", "telephone": "(409) 383-0012 (**086)", "address": "349 Private Road 8430", "city": " Jasper", "state": "TX", "zip": "75951", }, "Goree": { "unit_name": "Thomas Goree Unit", "telephone": "(936) 295-6331 (**012)", "address": "7405 Hwy 75 South", "city": " Huntsville", "state": "TX", "zip": "77344", }, "Gurney": { "unit_name": "Joe F. Gurney Transfer Facility", "telephone": "(903) 928-3118 (**094)", "address": "1385 FM 3328", "city": " Palestine", "state": "TX", "zip": "75803", }, "Halbert": { "unit_name": "Ellen Halbert Unit", "telephone": "(512) 756-6171 (**084)", "address": "800 Ellen Halbert Drive", "city": " Burnet", "state": "TX", "zip": "78611", }, "Hamilton": { "unit_name": "J. W. Hamilton Unit", "telephone": "(979) 779-1633 (**077)", "address": "200 Lee Morrison Lane", "city": " Bryan", "state": "TX", "zip": "77807", }, "Havins": { "unit_name": "Thomas R. Havins Unit", "telephone": "(325) 643-5575 (**082)", "address": "500 FM 45 East", "city": " Brownwood", "state": "TX", "zip": "76801", }, "Henley": { "unit_name": "Dempsie Henley State Jail", "telephone": "(936) 258-2476 (**083)", "address": "7581 Hwy 321", "city": " Dayton", "state": "TX", "zip": "77535", }, "Hightower": { "unit_name": "L.V. Hightower Unit", "telephone": "(936) 258-8013 (**041)", "address": "902 FM 686", "city": " Dayton", "state": "TX", "zip": "77535", }, "Hilltop": { "unit_name": "Hilltop Unit", "telephone": "(254) 865-8901 (**031)", "address": "1500 State School Road", "city": " Gatesville", "state": "TX", "zip": "76598-2", }, "Hobby": { "unit_name": "William P. Hobby Unit", "telephone": "(254) 883-5561 (**039)", "address": "742 FM 712", "city": " Marlin", "state": "TX", "zip": "76661", }, "Hodge": { "unit_name": "Jerry H. Hodge Unit", "telephone": "(903) 683-5781 (**075)", "address": "379 FM 2972 West", "city": " Rusk", "state": "TX", "zip": "75785-36", }, "Holliday": { "unit_name": "Reverend C.A. Holliday Transfer Facility", "telephone": "(936) 295-8200 (**092)", "address": "295 IH-45 North", "city": " Huntsville", "state": "TX", "zip": "77320-84", }, "Hospital Galveston": { "unit_name": "Hospital Galveston", "telephone": "(409) 772-2875 (**023)", "address": "P.O. Box 48 Substation #1", "city": "Galveston", "state": "TX", "zip": "77555", }, "Hughes": { "unit_name": "Alfred D. Hughes Unit", "telephone": "(254) 865-6663 (**042)", "address": "Route 2 Box 4400", "city": " Gatesville", "state": "TX", "zip": "76597", }, "Huntsville": { "unit_name": "Huntsville Unit", "telephone": "(936) 437-1555 (**013)", "address": "815 12th Street", "city": " Huntsville", "state": "TX", "zip": "77348", }, "Hutchins": { "unit_name": "Hutchins State Jail", "telephone": "(972) 225-1304 (**099)", "address": "1500 East Langdon Road", "city": " Dallas", "state": "TX", "zip": "75241", }, "Jester I": { "unit_name": "Beauford H. Jester I Unit", "telephone": "(281) 277-3030 (**014)", "address": "1 Jester Road", "city": " Richmond", "state": "TX", "zip": "77406", }, "Jester III": { "unit_name": "Beauford H. Jester III Unit", "telephone": "(281) 277-7000 (**030)", "address": "3 Jester Road", "city": " Richmond", "state": "TX", "zip": "77406", }, "Jester IV": { "unit_name": "Beauford H. Jester IV Unit", "telephone": "(281) 277-3700 (**033)", "address": "4 Jester Road", "city": " Richmond", "state": "TX", "zip": "77406", }, "Johnston": { "unit_name": "Clyde M. Johnston Unit", "telephone": "(903) 342-6166 (**089)", "address": "703 Airport Road", "city": " Winnsboro", "state": "TX", "zip": "75494", }, "Jordan": { "unit_name": "Rufe Jordan Unit / Baten Intermediate Sanction Facility", "telephone": "(806) 665-7070 (**056)", "address": "1992 Helton Road", "city": " Pampa", "state": "TX", "zip": "79065", }, "Kyle": { "unit_name": "Kyle Correctional Center", "telephone": "(512) 268-0079 (**633)", "address": "23001 IH-35", "city": " Kyle", "state": "TX", "zip": "78640", }, "LeBlanc": { "unit_name": "Richard P. LeBlanc Unit", "telephone": "(409) 724-1515 (**076)", "address": "3695 FM 3514", "city": " Beaumont", "state": "TX", "zip": "77705", }, "Lewis": { "unit_name": "Gib Lewis Unit", "telephone": "(409) 283-8181 (**040)", "address": "777 FM 3497", "city": " Woodville", "state": "TX", "zip": "75990", }, "Lindsey": { "unit_name": "John R. Lindsey State Jail", "telephone": "(940) 567-2272", "address": "1620 FM 3344", "city": " Jacksboro", "state": "TX", "zip": "76458", }, "Lockhart": { "unit_name": "Lockhart Correctional Facility", "telephone": "(512) 398-3480 (**109)", "address": "1400 Industrial Blvd", "city": " Lockhart", "state": "TX", "zip": "78644", }, "Lopez": { "unit_name": "Reynoldo V. Lopez State Jail", "telephone": "(956) 316-3810 (**103)", "address": "1203 El Cibolo Road", "city": " Edinburg", "state": "TX", "zip": "78542", }, "Luther": { "unit_name": "O.L. Luther Unit", "telephone": "(936) 825-7547 (**029)", "address": "1800 Luther Drive", "city": " Navasota", "state": "TX", "zip": "77868", }, "Lychner": { "unit_name": "Pam Lychner State Jail", "telephone": "(281) 454-5036 (**100)", "address": "2350 Atascocita Road", "city": " Humble", "state": "TX", "zip": "77396", }, "Lynaugh": { "unit_name": "James Lynaugh Unit", "telephone": "(432) 395-2938 (**073)", "address": "1098 South Highway 2037", "city": " Fort Stockton", "state": "TX", "zip": "79735", }, "Marlin": { "unit_name": "Marlin Transfer Facility", "telephone": "(254) 883-3858 (**064)", "address": "2893 State Hwy 6", "city": " Marlin", "state": "TX", "zip": "76661-65", }, "McConnell": { "unit_name": "William G. McConnell Unit", "telephone": "(361) 362-2300 (**048)", "address": "3001 South Emily Drive", "city": " Beeville", "state": "TX", "zip": "78102", }, "Michael": { "unit_name": "Mark W. Michael Unit", "telephone": "(903) 928-2311 (**036)", "address": "2664 FM 2054", "city": " Tennessee Colony", "state": "TX", "zip": "75886", }, "Middleton": { "unit_name": "John Middleton Transfer Facility", "telephone": "(325) 548-9075 (**093)", "address": "13055 FM 3522", "city": " Abilene", "state": "TX", "zip": "79601", }, "Montford/West Texas Hospital": { "unit_name": "John Montford Unit", "telephone": "(806) 745-1021 (**090)", "address": "8602 Peach Street", "city": " Lubbock", "state": "TX", "zip": "79404", }, "Moore, B.": { "unit_name": "Billy Moore Correctional Center", "telephone": "(903) 834-6186", "address": "8500 North FM 3053", "city": " Overton", "state": "TX", "zip": "75684", }, "Moore, C.": { "unit_name": "Choice Moore Transfer Facility", "telephone": "(903) 583-4464 (**079)", "address": "1700 North FM 87", "city": " Bonham", "state": "TX", "zip": "75418", }, "Mountain View": { "unit_name": "Mountain View Unit", "telephone": "(254) 865-7226 (**016)", "address": "2305 Ransom Road", "city": " Gatesville", "state": "TX", "zip": "76528", }, "Murray": { "unit_name": "Dr. Lane Murray Unit", "telephone": "(254) 865-2000 (**105)", "address": "1916 North Hwy 36 Bypass", "city": " Gatesville", "state": "TX", "zip": "76596", }, "Neal": { "unit_name": "Nathaniel J. Neal Unit", "telephone": "(806) 383-1175 (**070)", "address": "9055 Spur 591", "city": " Amarillo", "state": "TX", "zip": "79107-96", }, "Ney": { "unit_name": "Joe Ney State Jail", "telephone": "(830) 426-8030 (**085)", "address": "114 Private Road 4303", "city": " Hondo", "state": "TX", "zip": "78861-3", }, "Pack": { "unit_name": "Wallace Pack Unit", "telephone": "(936) 825-3728 (**026)", "address": "2400 Wallace Pack Road", "city": " Navasota", "state": "TX", "zip": "77868", }, "Plane/Santa Maria Baby Bonding": { "unit_name": "Lucile Plane State Jail", "telephone": "(936) 258-2476 (**101)", "address": "904 FM 686", "city": " Dayton", "state": "TX", "zip": "77535", }, "Polunsky": { "unit_name": "Allan B. Polunsky Unit", "telephone": "(936) 967-8082 (**054)", "address": "3872 FM 350 South", "city": " Livingston", "state": "TX", "zip": "77351", }, "Powledge": { "unit_name": "Louis C. Powledge Unit", "telephone": "(903) 723-5074 (**028)", "address": "1400 FM 3452", "city": " Palestine", "state": "TX", "zip": "75803", }, "Ramsey": { "unit_name": "W. F. Ramsey Unit", "telephone": "(281) 595-3491 (**017)", "address": "1100 FM 655", "city": " Rosharon", "state": "TX", "zip": "77583", }, "Roach": { "unit_name": "T.L. Roach Unit", "telephone": "(940) 937-6364 (**050)", "address": "15845 FM 164", "city": " Childress", "state": "TX", "zip": "79201", }, "Robertson": { "unit_name": "French Robertson Unit", "telephone": "(325) 548-9035 (**047)", "address": "12071 FM 3522", "city": " Abilene", "state": "TX", "zip": "79601", }, "San Saba": { "unit_name": "San Saba Transfer Facility", "telephone": "(325) 372-4255 (**65)", "address": "206 South Wallace Creek Road", "city": " San Saba", "state": "TX", "zip": "76877", }, "Sanchez": { "unit_name": "Rogelio Sanchez State Jail", "telephone": "(915) 856-0046 (**108)", "address": "3901 State Jail Road", "city": " El Paso", "state": "TX", "zip": "79938-84", }, "Sayle": { "unit_name": "Walker Sayle Unit", "telephone": "(254) 559-1581 (**080)", "address": "4176 FM 1800", "city": " Breckenridge", "state": "TX", "zip": "76424-73", }, "Scott": { "unit_name": "Wayne Scott Unit", "telephone": "(979) 849-9306 (**019)", "address": "6999 Retrieve", "city": " Angleton", "state": "TX", "zip": "77515", }, "Segovia": { "unit_name": "Manuel A. Segovia Unit", "telephone": "(956) 316-2400 (**078)", "address": "1201 E. El Cibolo Road", "city": " Edinburg", "state": "TX", "zip": "78542", }, "Skyview": { "unit_name": "Skyview Unit", "telephone": "(903) 683-5781 (**034)", "address": "379 FM 2972 West", "city": " Rusk", "state": "TX", "zip": "75785-36", }, "Smith": { "unit_name": "Preston E. Smith Unit", "telephone": "(806) 872-6741 (**053)", "address": "1313 CR 19", "city": " Lamesa", "state": "TX", "zip": "79331-18", }, "Stevenson": { "unit_name": "Clarence N. Stevenson Unit", "telephone": "(361) 275-2075 (**071)", "address": "1525 FM 766", "city": " Cuero", "state": "TX", "zip": "77954", }, "Stiles": { "unit_name": "Mark W. Stiles Unit", "telephone": "(409) 722-5255 (**049)", "address": "3060 FM 3514", "city": " Beaumont", "state": "TX", "zip": "77705", }, "Stringfellow": { "unit_name": 'A.M. "Mac" Stringfellow Unit', "telephone": "(281) 595-3413 (**018)", "address": "1200 FM 655", "city": " Rosharon", "state": "TX", "zip": "77583", }, "Telford": { "unit_name": "Barry B. Telford Unit", "telephone": "(903) 628-3171 (**067)", "address": "3899 Hwy 98", "city": " New Boston", "state": "TX", "zip": "75570", }, "Terrell": { "unit_name": "C.T. Terrell Unit", "telephone": "(281) 595-3481 (**027)", "address": "1300 FM 655", "city": " Rosharon", "state": "TX", "zip": "77583", }, "Torres": { "unit_name": "Ruben M. Torres Unit", "telephone": "(830) 426-5325 (**055)", "address": "125 Private Road 4303", "city": " Hondo", "state": "TX", "zip": "78861", }, "Travis County": { "unit_name": "Travis County State Jail", "telephone": "(512) 926-4482 (**118)", "address": "8101 FM 969", "city": " Austin", "state": "TX", "zip": "78724", }, "Tulia": { "unit_name": "Tulia Transfer Facility", "telephone": "(806) 995-4109 (**066)", "address": "4000 Highway 86 West", "city": " Tulia", "state": "TX", "zip": "79088", }, "Vance": { "unit_name": "Carol S. Vance Unit", "telephone": "(281) 277-3030 (**015)", "address": "2 Jester Road", "city": " Richmond", "state": "TX", "zip": "77406", }, "Wallace/San Angelo Work Camp": { "unit_name": "Daniel Webster Wallace Unit", "telephone": "(325) 728-2162 (**074)", "address": "1675 South FM 3525", "city": " Colorado City", "state": "TX", "zip": "79512", }, "Wheeler": { "unit_name": "J.B. Wheeler State Jail", "telephone": "(806) 293-1081 (**087)", "address": "986 County Road AA", "city": " Plainview", "state": "TX", "zip": "79072", }, "Willacy County": { "unit_name": "Willacy County State Jail", "telephone": "(956) 689-4900", "address": "1695 South Buffalo Drive", "city": " Raymondville", "state": "TX", "zip": "78580", }, "Woodman": { "unit_name": "Linda Woodman State Jail", "telephone": "(254) 865-9398 (**107)", "address": "1210 Coryell City Road", "city": " Gatesville", "state": "TX", "zip": "76528", }, "Wynne": { "unit_name": "John M. Wynne Unit", "telephone": "(936) 295-9126 (**020)", "address": "810 FM 2821", "city": " Huntsville", "state": "TX", "zip": "77349", }, "Young": { "unit_name": "Carole S. Young Medical Facility", "telephone": "(409) 948-0001 (**129)", "address": "5509 Attwater Ave.", "city": " Dickinson", "state": "TX", "zip": "77539", }, } class UsTxJails(object): """ A database of Texas Department of Corrections Facilities. """ def get_jails(self) -> list: """ Returns: (list): A list of jails operated by the state """ the_list = [self.make_jail(jail) for short_name, jail in JAILS.items()] return the_list def get_jail(self, short_name: str) -> Person: """ Return a given jail. Args: short_name (str): Key into the JAILS dict Returns: (Person): Name and address of the requested jail facility """ jail = JAILS.get(short_name, None) if not jail: return None return self.make_jail(jail) def make_jail(self, jail: dict) -> Person: """ Make a jail from a dict. """ address = Address( address = jail['address'], city = jail['city'], state = jail['state'], zip = jail['zip'] ) result = Person(address=address, name=str(jail['unit_name'])) return result
py
1a32afcd24234f926a0cb7047654dd666e5727c8
from __future__ import annotations import functools import operator from abc import abstractmethod from typing import ( Callable, Dict, NamedTuple, Protocol, Tuple, TypeVar, Union, overload, runtime_checkable, ) from torch import Tensor from torch import device as Device from torch import dtype as DType from . import constants T = TypeVar("T", covariant=True) V = TypeVar("V", contravariant=True) @runtime_checkable class Runnable(Protocol[T]): @abstractmethod def run(self) -> T: ... @runtime_checkable class TensorMixin(Protocol): @overload @abstractmethod def size(self) -> Tuple[int, ...]: ... @overload @abstractmethod def size(self, dim: int) -> int: ... @abstractmethod def size(self, dim: int | None = None) -> int | Tuple[int, ...]: ... def numel(self) -> int: return functools.reduce(operator.mul, self.size(), 1) def dim(self) -> int: return len(self.size()) @abstractmethod def dtype(self) -> DType: ... @abstractmethod def device(self) -> str | Device: ... class BatchNoBatch(NamedTuple): batch: int no_batch: int class BatchInfo(NamedTuple): index: int value: int def map(self, func: Callable[[int], int]) -> BatchInfo: index = func(self.index) return BatchInfo(index, self.value) @runtime_checkable class RunnableTensor(Runnable[Tensor], TensorMixin, Protocol): @abstractmethod def batch(self) -> BatchInfo | None: ... @abstractmethod def take_batch(self, low: int, high: int) -> Tensor: ... @abstractmethod def visit(self, nodes: Dict[int, TensorLike]) -> None: ... def buffer(self) -> Dict[int, TensorLike]: nodes = {} self.visit(nodes) return nodes def buffer_numel(self) -> BatchNoBatch: buffer = self.buffer().values() return BatchNoBatch( sum(t.numel() for t in buffer if bat(t) is not None), sum(t.numel() for t in buffer if bat(t) is None), ) def buffer_memory(self) -> BatchNoBatch: buffer = self.buffer().values() return BatchNoBatch( sum(mem(t) for t in buffer if bat(t) is not None), sum(mem(t) for t in buffer if bat(t) is None), ) def memory(self) -> int: return mem(self) def dtyp(tensor: TensorLike) -> DType: if isinstance(tensor, Tensor): return tensor.dtype return tensor.dtype() def dev(tensor: TensorLike) -> str | Device: if isinstance(tensor, Tensor): return tensor.device return tensor.device() def mem(tensor: TensorLike) -> int: dt = dtyp(tensor) numel = tensor.numel() return constants.MEMORY_BYTES[dt] * numel def bat(tensor: TensorLike) -> BatchInfo | None: if isinstance(tensor, RunnableTensor): return tensor.batch() return None TensorLike = Union[Tensor, RunnableTensor]
py
1a32b020673b7b4d09fa91acc41e9717c592520d
import argparse def parse_args(): parser = argparse.ArgumentParser( description="Get parameters for the ABM Simulation" ) # Name and seed parser.add_argument("--name", help="experiment name", required=True) parser.add_argument("--seed", help="seed for reproducibility", type=int, default=42) return parser.parse_args() if __name__ == "__main__": config = parse_args()
py
1a32b0acff8c82d48cd95f575d1dad710e5fc0dd
from pydigree.common import spans from pydigree.genotypes import Alleles try: import line_profiler except ImportError: print("No line profiler, skipping test.") import sys sys.exit(0) test_data = Alleles([0] * 10000) func = spans for start in range(1, 10000, 200): test_data[start:(start+100)] = 1 profile = line_profiler.LineProfiler(func) profile.runcall(func, test_data) profile.print_stats()
py
1a32b1d60e24425ae8ab02d277373372e2c3244a
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs from ._enums import * __all__ = [ 'AssignmentPrincipalResponse', 'CanonicalProfileDefinitionResponse', 'CanonicalProfileDefinitionResponseProperties', 'ConnectorMappingAvailabilityResponse', 'ConnectorMappingCompleteOperationResponse', 'ConnectorMappingErrorManagementResponse', 'ConnectorMappingFormatResponse', 'ConnectorMappingPropertiesResponse', 'ConnectorMappingStructureResponse', 'DataSourcePrecedenceResponse', 'HubBillingInfoFormatResponse', 'KpiAliasResponse', 'KpiExtractResponse', 'KpiGroupByMetadataResponse', 'KpiParticipantProfilesMetadataResponse', 'KpiThresholdsResponse', 'ParticipantProfilePropertyReferenceResponse', 'ParticipantPropertyReferenceResponse', 'PredictionDistributionDefinitionResponse', 'PredictionDistributionDefinitionResponseDistributions', 'PredictionResponseGrades', 'PredictionResponseMappings', 'PredictionResponseSystemGeneratedEntities', 'ProfileEnumValidValuesFormatResponse', 'PropertyDefinitionResponse', 'RelationshipLinkFieldMappingResponse', 'RelationshipTypeFieldMappingResponse', 'RelationshipTypeMappingResponse', 'ResourceSetDescriptionResponse', 'StrongIdResponse', 'TypePropertiesMappingResponse', ] @pulumi.output_type class AssignmentPrincipalResponse(dict): """ The AssignmentPrincipal """ @staticmethod def __key_warning(key: str): suggest = None if key == "principalId": suggest = "principal_id" elif key == "principalType": suggest = "principal_type" elif key == "principalMetadata": suggest = "principal_metadata" if suggest: pulumi.log.warn(f"Key '{key}' not found in AssignmentPrincipalResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: AssignmentPrincipalResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: AssignmentPrincipalResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, principal_id: str, principal_type: str, principal_metadata: Optional[Mapping[str, str]] = None): """ The AssignmentPrincipal :param str principal_id: The principal id being assigned to. :param str principal_type: The Type of the principal ID. :param Mapping[str, str] principal_metadata: Other metadata for the principal. """ pulumi.set(__self__, "principal_id", principal_id) pulumi.set(__self__, "principal_type", principal_type) if principal_metadata is not None: pulumi.set(__self__, "principal_metadata", principal_metadata) @property @pulumi.getter(name="principalId") def principal_id(self) -> str: """ The principal id being assigned to. """ return pulumi.get(self, "principal_id") @property @pulumi.getter(name="principalType") def principal_type(self) -> str: """ The Type of the principal ID. """ return pulumi.get(self, "principal_type") @property @pulumi.getter(name="principalMetadata") def principal_metadata(self) -> Optional[Mapping[str, str]]: """ Other metadata for the principal. """ return pulumi.get(self, "principal_metadata") @pulumi.output_type class CanonicalProfileDefinitionResponse(dict): """ Definition of canonical profile. """ def __init__(__self__, *, canonical_profile_id: Optional[int] = None, properties: Optional[Sequence['outputs.CanonicalProfileDefinitionResponseProperties']] = None): """ Definition of canonical profile. :param int canonical_profile_id: Canonical profile ID. :param Sequence['CanonicalProfileDefinitionResponseProperties'] properties: Properties of the canonical profile. """ if canonical_profile_id is not None: pulumi.set(__self__, "canonical_profile_id", canonical_profile_id) if properties is not None: pulumi.set(__self__, "properties", properties) @property @pulumi.getter(name="canonicalProfileId") def canonical_profile_id(self) -> Optional[int]: """ Canonical profile ID. """ return pulumi.get(self, "canonical_profile_id") @property @pulumi.getter def properties(self) -> Optional[Sequence['outputs.CanonicalProfileDefinitionResponseProperties']]: """ Properties of the canonical profile. """ return pulumi.get(self, "properties") @pulumi.output_type class CanonicalProfileDefinitionResponseProperties(dict): """ The definition of a canonical profile property. """ def __init__(__self__, *, profile_name: Optional[str] = None, profile_property_name: Optional[str] = None, rank: Optional[int] = None, type: Optional[str] = None, value: Optional[str] = None): """ The definition of a canonical profile property. :param str profile_name: Profile name. :param str profile_property_name: Property name of profile. :param int rank: The rank. :param str type: Type of canonical property value. :param str value: Value of the canonical property. """ if profile_name is not None: pulumi.set(__self__, "profile_name", profile_name) if profile_property_name is not None: pulumi.set(__self__, "profile_property_name", profile_property_name) if rank is not None: pulumi.set(__self__, "rank", rank) if type is not None: pulumi.set(__self__, "type", type) if value is not None: pulumi.set(__self__, "value", value) @property @pulumi.getter(name="profileName") def profile_name(self) -> Optional[str]: """ Profile name. """ return pulumi.get(self, "profile_name") @property @pulumi.getter(name="profilePropertyName") def profile_property_name(self) -> Optional[str]: """ Property name of profile. """ return pulumi.get(self, "profile_property_name") @property @pulumi.getter def rank(self) -> Optional[int]: """ The rank. """ return pulumi.get(self, "rank") @property @pulumi.getter def type(self) -> Optional[str]: """ Type of canonical property value. """ return pulumi.get(self, "type") @property @pulumi.getter def value(self) -> Optional[str]: """ Value of the canonical property. """ return pulumi.get(self, "value") @pulumi.output_type class ConnectorMappingAvailabilityResponse(dict): """ Connector mapping property availability. """ def __init__(__self__, *, interval: int, frequency: Optional[str] = None): """ Connector mapping property availability. :param int interval: The interval of the given frequency to use. :param str frequency: The frequency to update. """ pulumi.set(__self__, "interval", interval) if frequency is not None: pulumi.set(__self__, "frequency", frequency) @property @pulumi.getter def interval(self) -> int: """ The interval of the given frequency to use. """ return pulumi.get(self, "interval") @property @pulumi.getter def frequency(self) -> Optional[str]: """ The frequency to update. """ return pulumi.get(self, "frequency") @pulumi.output_type class ConnectorMappingCompleteOperationResponse(dict): """ The complete operation. """ @staticmethod def __key_warning(key: str): suggest = None if key == "completionOperationType": suggest = "completion_operation_type" elif key == "destinationFolder": suggest = "destination_folder" if suggest: pulumi.log.warn(f"Key '{key}' not found in ConnectorMappingCompleteOperationResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: ConnectorMappingCompleteOperationResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: ConnectorMappingCompleteOperationResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, completion_operation_type: Optional[str] = None, destination_folder: Optional[str] = None): """ The complete operation. :param str completion_operation_type: The type of completion operation. :param str destination_folder: The destination folder where files will be moved to once the import is done. """ if completion_operation_type is not None: pulumi.set(__self__, "completion_operation_type", completion_operation_type) if destination_folder is not None: pulumi.set(__self__, "destination_folder", destination_folder) @property @pulumi.getter(name="completionOperationType") def completion_operation_type(self) -> Optional[str]: """ The type of completion operation. """ return pulumi.get(self, "completion_operation_type") @property @pulumi.getter(name="destinationFolder") def destination_folder(self) -> Optional[str]: """ The destination folder where files will be moved to once the import is done. """ return pulumi.get(self, "destination_folder") @pulumi.output_type class ConnectorMappingErrorManagementResponse(dict): """ The error management. """ @staticmethod def __key_warning(key: str): suggest = None if key == "errorManagementType": suggest = "error_management_type" elif key == "errorLimit": suggest = "error_limit" if suggest: pulumi.log.warn(f"Key '{key}' not found in ConnectorMappingErrorManagementResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: ConnectorMappingErrorManagementResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: ConnectorMappingErrorManagementResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, error_management_type: str, error_limit: Optional[int] = None): """ The error management. :param str error_management_type: The type of error management to use for the mapping. :param int error_limit: The error limit allowed while importing data. """ pulumi.set(__self__, "error_management_type", error_management_type) if error_limit is not None: pulumi.set(__self__, "error_limit", error_limit) @property @pulumi.getter(name="errorManagementType") def error_management_type(self) -> str: """ The type of error management to use for the mapping. """ return pulumi.get(self, "error_management_type") @property @pulumi.getter(name="errorLimit") def error_limit(self) -> Optional[int]: """ The error limit allowed while importing data. """ return pulumi.get(self, "error_limit") @pulumi.output_type class ConnectorMappingFormatResponse(dict): """ Connector mapping property format. """ @staticmethod def __key_warning(key: str): suggest = None if key == "formatType": suggest = "format_type" elif key == "acceptLanguage": suggest = "accept_language" elif key == "arraySeparator": suggest = "array_separator" elif key == "columnDelimiter": suggest = "column_delimiter" elif key == "quoteCharacter": suggest = "quote_character" elif key == "quoteEscapeCharacter": suggest = "quote_escape_character" if suggest: pulumi.log.warn(f"Key '{key}' not found in ConnectorMappingFormatResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: ConnectorMappingFormatResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: ConnectorMappingFormatResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, format_type: str, accept_language: Optional[str] = None, array_separator: Optional[str] = None, column_delimiter: Optional[str] = None, quote_character: Optional[str] = None, quote_escape_character: Optional[str] = None): """ Connector mapping property format. :param str format_type: The type mapping format. :param str accept_language: The oData language. :param str array_separator: Character separating array elements. :param str column_delimiter: The character that signifies a break between columns. :param str quote_character: Quote character, used to indicate enquoted fields. :param str quote_escape_character: Escape character for quotes, can be the same as the quoteCharacter. """ pulumi.set(__self__, "format_type", format_type) if accept_language is not None: pulumi.set(__self__, "accept_language", accept_language) if array_separator is not None: pulumi.set(__self__, "array_separator", array_separator) if column_delimiter is not None: pulumi.set(__self__, "column_delimiter", column_delimiter) if quote_character is not None: pulumi.set(__self__, "quote_character", quote_character) if quote_escape_character is not None: pulumi.set(__self__, "quote_escape_character", quote_escape_character) @property @pulumi.getter(name="formatType") def format_type(self) -> str: """ The type mapping format. """ return pulumi.get(self, "format_type") @property @pulumi.getter(name="acceptLanguage") def accept_language(self) -> Optional[str]: """ The oData language. """ return pulumi.get(self, "accept_language") @property @pulumi.getter(name="arraySeparator") def array_separator(self) -> Optional[str]: """ Character separating array elements. """ return pulumi.get(self, "array_separator") @property @pulumi.getter(name="columnDelimiter") def column_delimiter(self) -> Optional[str]: """ The character that signifies a break between columns. """ return pulumi.get(self, "column_delimiter") @property @pulumi.getter(name="quoteCharacter") def quote_character(self) -> Optional[str]: """ Quote character, used to indicate enquoted fields. """ return pulumi.get(self, "quote_character") @property @pulumi.getter(name="quoteEscapeCharacter") def quote_escape_character(self) -> Optional[str]: """ Escape character for quotes, can be the same as the quoteCharacter. """ return pulumi.get(self, "quote_escape_character") @pulumi.output_type class ConnectorMappingPropertiesResponse(dict): """ The connector mapping properties. """ @staticmethod def __key_warning(key: str): suggest = None if key == "completeOperation": suggest = "complete_operation" elif key == "errorManagement": suggest = "error_management" elif key == "fileFilter": suggest = "file_filter" elif key == "folderPath": suggest = "folder_path" elif key == "hasHeader": suggest = "has_header" if suggest: pulumi.log.warn(f"Key '{key}' not found in ConnectorMappingPropertiesResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: ConnectorMappingPropertiesResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: ConnectorMappingPropertiesResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, availability: 'outputs.ConnectorMappingAvailabilityResponse', complete_operation: 'outputs.ConnectorMappingCompleteOperationResponse', error_management: 'outputs.ConnectorMappingErrorManagementResponse', format: 'outputs.ConnectorMappingFormatResponse', structure: Sequence['outputs.ConnectorMappingStructureResponse'], file_filter: Optional[str] = None, folder_path: Optional[str] = None, has_header: Optional[bool] = None): """ The connector mapping properties. :param 'ConnectorMappingAvailabilityResponse' availability: The availability of mapping property. :param 'ConnectorMappingCompleteOperationResponse' complete_operation: The operation after import is done. :param 'ConnectorMappingErrorManagementResponse' error_management: The error management setting for the mapping. :param 'ConnectorMappingFormatResponse' format: The format of mapping property. :param Sequence['ConnectorMappingStructureResponse'] structure: Ingestion mapping information at property level. :param str file_filter: The file filter for the mapping. :param str folder_path: The folder path for the mapping. :param bool has_header: If the file contains a header or not. """ pulumi.set(__self__, "availability", availability) pulumi.set(__self__, "complete_operation", complete_operation) pulumi.set(__self__, "error_management", error_management) pulumi.set(__self__, "format", format) pulumi.set(__self__, "structure", structure) if file_filter is not None: pulumi.set(__self__, "file_filter", file_filter) if folder_path is not None: pulumi.set(__self__, "folder_path", folder_path) if has_header is not None: pulumi.set(__self__, "has_header", has_header) @property @pulumi.getter def availability(self) -> 'outputs.ConnectorMappingAvailabilityResponse': """ The availability of mapping property. """ return pulumi.get(self, "availability") @property @pulumi.getter(name="completeOperation") def complete_operation(self) -> 'outputs.ConnectorMappingCompleteOperationResponse': """ The operation after import is done. """ return pulumi.get(self, "complete_operation") @property @pulumi.getter(name="errorManagement") def error_management(self) -> 'outputs.ConnectorMappingErrorManagementResponse': """ The error management setting for the mapping. """ return pulumi.get(self, "error_management") @property @pulumi.getter def format(self) -> 'outputs.ConnectorMappingFormatResponse': """ The format of mapping property. """ return pulumi.get(self, "format") @property @pulumi.getter def structure(self) -> Sequence['outputs.ConnectorMappingStructureResponse']: """ Ingestion mapping information at property level. """ return pulumi.get(self, "structure") @property @pulumi.getter(name="fileFilter") def file_filter(self) -> Optional[str]: """ The file filter for the mapping. """ return pulumi.get(self, "file_filter") @property @pulumi.getter(name="folderPath") def folder_path(self) -> Optional[str]: """ The folder path for the mapping. """ return pulumi.get(self, "folder_path") @property @pulumi.getter(name="hasHeader") def has_header(self) -> Optional[bool]: """ If the file contains a header or not. """ return pulumi.get(self, "has_header") @pulumi.output_type class ConnectorMappingStructureResponse(dict): """ Connector mapping property structure. """ @staticmethod def __key_warning(key: str): suggest = None if key == "columnName": suggest = "column_name" elif key == "propertyName": suggest = "property_name" elif key == "customFormatSpecifier": suggest = "custom_format_specifier" elif key == "isEncrypted": suggest = "is_encrypted" if suggest: pulumi.log.warn(f"Key '{key}' not found in ConnectorMappingStructureResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: ConnectorMappingStructureResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: ConnectorMappingStructureResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, column_name: str, property_name: str, custom_format_specifier: Optional[str] = None, is_encrypted: Optional[bool] = None): """ Connector mapping property structure. :param str column_name: The column name of the import file. :param str property_name: The property name of the mapping entity. :param str custom_format_specifier: Custom format specifier for input parsing. :param bool is_encrypted: Indicates if the column is encrypted. """ pulumi.set(__self__, "column_name", column_name) pulumi.set(__self__, "property_name", property_name) if custom_format_specifier is not None: pulumi.set(__self__, "custom_format_specifier", custom_format_specifier) if is_encrypted is not None: pulumi.set(__self__, "is_encrypted", is_encrypted) @property @pulumi.getter(name="columnName") def column_name(self) -> str: """ The column name of the import file. """ return pulumi.get(self, "column_name") @property @pulumi.getter(name="propertyName") def property_name(self) -> str: """ The property name of the mapping entity. """ return pulumi.get(self, "property_name") @property @pulumi.getter(name="customFormatSpecifier") def custom_format_specifier(self) -> Optional[str]: """ Custom format specifier for input parsing. """ return pulumi.get(self, "custom_format_specifier") @property @pulumi.getter(name="isEncrypted") def is_encrypted(self) -> Optional[bool]: """ Indicates if the column is encrypted. """ return pulumi.get(self, "is_encrypted") @pulumi.output_type class DataSourcePrecedenceResponse(dict): """ The data source precedence is a way to know the precedence of each data source. """ @staticmethod def __key_warning(key: str): suggest = None if key == "dataSourceReferenceId": suggest = "data_source_reference_id" elif key == "dataSourceType": suggest = "data_source_type" if suggest: pulumi.log.warn(f"Key '{key}' not found in DataSourcePrecedenceResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: DataSourcePrecedenceResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: DataSourcePrecedenceResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, data_source_reference_id: str, data_source_type: str, id: int, name: str, status: str, precedence: Optional[int] = None): """ The data source precedence is a way to know the precedence of each data source. :param str data_source_reference_id: The data source reference id. :param str data_source_type: The data source type. :param int id: The data source ID. :param str name: The data source name :param str status: The data source status. :param int precedence: the precedence value. """ pulumi.set(__self__, "data_source_reference_id", data_source_reference_id) pulumi.set(__self__, "data_source_type", data_source_type) pulumi.set(__self__, "id", id) pulumi.set(__self__, "name", name) pulumi.set(__self__, "status", status) if precedence is not None: pulumi.set(__self__, "precedence", precedence) @property @pulumi.getter(name="dataSourceReferenceId") def data_source_reference_id(self) -> str: """ The data source reference id. """ return pulumi.get(self, "data_source_reference_id") @property @pulumi.getter(name="dataSourceType") def data_source_type(self) -> str: """ The data source type. """ return pulumi.get(self, "data_source_type") @property @pulumi.getter def id(self) -> int: """ The data source ID. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> str: """ The data source name """ return pulumi.get(self, "name") @property @pulumi.getter def status(self) -> str: """ The data source status. """ return pulumi.get(self, "status") @property @pulumi.getter def precedence(self) -> Optional[int]: """ the precedence value. """ return pulumi.get(self, "precedence") @pulumi.output_type class HubBillingInfoFormatResponse(dict): """ Hub billing info. """ @staticmethod def __key_warning(key: str): suggest = None if key == "maxUnits": suggest = "max_units" elif key == "minUnits": suggest = "min_units" elif key == "skuName": suggest = "sku_name" if suggest: pulumi.log.warn(f"Key '{key}' not found in HubBillingInfoFormatResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: HubBillingInfoFormatResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: HubBillingInfoFormatResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, max_units: Optional[int] = None, min_units: Optional[int] = None, sku_name: Optional[str] = None): """ Hub billing info. :param int max_units: The maximum number of units can be used. One unit is 10,000 Profiles and 100,000 Interactions. :param int min_units: The minimum number of units will be billed. One unit is 10,000 Profiles and 100,000 Interactions. :param str sku_name: The sku name. """ if max_units is not None: pulumi.set(__self__, "max_units", max_units) if min_units is not None: pulumi.set(__self__, "min_units", min_units) if sku_name is not None: pulumi.set(__self__, "sku_name", sku_name) @property @pulumi.getter(name="maxUnits") def max_units(self) -> Optional[int]: """ The maximum number of units can be used. One unit is 10,000 Profiles and 100,000 Interactions. """ return pulumi.get(self, "max_units") @property @pulumi.getter(name="minUnits") def min_units(self) -> Optional[int]: """ The minimum number of units will be billed. One unit is 10,000 Profiles and 100,000 Interactions. """ return pulumi.get(self, "min_units") @property @pulumi.getter(name="skuName") def sku_name(self) -> Optional[str]: """ The sku name. """ return pulumi.get(self, "sku_name") @pulumi.output_type class KpiAliasResponse(dict): """ The KPI alias. """ @staticmethod def __key_warning(key: str): suggest = None if key == "aliasName": suggest = "alias_name" if suggest: pulumi.log.warn(f"Key '{key}' not found in KpiAliasResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: KpiAliasResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: KpiAliasResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, alias_name: str, expression: str): """ The KPI alias. :param str alias_name: KPI alias name. :param str expression: The expression. """ pulumi.set(__self__, "alias_name", alias_name) pulumi.set(__self__, "expression", expression) @property @pulumi.getter(name="aliasName") def alias_name(self) -> str: """ KPI alias name. """ return pulumi.get(self, "alias_name") @property @pulumi.getter def expression(self) -> str: """ The expression. """ return pulumi.get(self, "expression") @pulumi.output_type class KpiExtractResponse(dict): """ The KPI extract. """ @staticmethod def __key_warning(key: str): suggest = None if key == "extractName": suggest = "extract_name" if suggest: pulumi.log.warn(f"Key '{key}' not found in KpiExtractResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: KpiExtractResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: KpiExtractResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, expression: str, extract_name: str): """ The KPI extract. :param str expression: The expression. :param str extract_name: KPI extract name. """ pulumi.set(__self__, "expression", expression) pulumi.set(__self__, "extract_name", extract_name) @property @pulumi.getter def expression(self) -> str: """ The expression. """ return pulumi.get(self, "expression") @property @pulumi.getter(name="extractName") def extract_name(self) -> str: """ KPI extract name. """ return pulumi.get(self, "extract_name") @pulumi.output_type class KpiGroupByMetadataResponse(dict): """ The KPI GroupBy field metadata. """ @staticmethod def __key_warning(key: str): suggest = None if key == "displayName": suggest = "display_name" elif key == "fieldName": suggest = "field_name" elif key == "fieldType": suggest = "field_type" if suggest: pulumi.log.warn(f"Key '{key}' not found in KpiGroupByMetadataResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: KpiGroupByMetadataResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: KpiGroupByMetadataResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, display_name: Optional[Mapping[str, str]] = None, field_name: Optional[str] = None, field_type: Optional[str] = None): """ The KPI GroupBy field metadata. :param Mapping[str, str] display_name: The display name. :param str field_name: The name of the field. :param str field_type: The type of the field. """ if display_name is not None: pulumi.set(__self__, "display_name", display_name) if field_name is not None: pulumi.set(__self__, "field_name", field_name) if field_type is not None: pulumi.set(__self__, "field_type", field_type) @property @pulumi.getter(name="displayName") def display_name(self) -> Optional[Mapping[str, str]]: """ The display name. """ return pulumi.get(self, "display_name") @property @pulumi.getter(name="fieldName") def field_name(self) -> Optional[str]: """ The name of the field. """ return pulumi.get(self, "field_name") @property @pulumi.getter(name="fieldType") def field_type(self) -> Optional[str]: """ The type of the field. """ return pulumi.get(self, "field_type") @pulumi.output_type class KpiParticipantProfilesMetadataResponse(dict): """ The KPI participant profile metadata. """ @staticmethod def __key_warning(key: str): suggest = None if key == "typeName": suggest = "type_name" if suggest: pulumi.log.warn(f"Key '{key}' not found in KpiParticipantProfilesMetadataResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: KpiParticipantProfilesMetadataResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: KpiParticipantProfilesMetadataResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, type_name: str): """ The KPI participant profile metadata. :param str type_name: Name of the type. """ pulumi.set(__self__, "type_name", type_name) @property @pulumi.getter(name="typeName") def type_name(self) -> str: """ Name of the type. """ return pulumi.get(self, "type_name") @pulumi.output_type class KpiThresholdsResponse(dict): """ Defines the KPI Threshold limits. """ @staticmethod def __key_warning(key: str): suggest = None if key == "increasingKpi": suggest = "increasing_kpi" elif key == "lowerLimit": suggest = "lower_limit" elif key == "upperLimit": suggest = "upper_limit" if suggest: pulumi.log.warn(f"Key '{key}' not found in KpiThresholdsResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: KpiThresholdsResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: KpiThresholdsResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, increasing_kpi: bool, lower_limit: float, upper_limit: float): """ Defines the KPI Threshold limits. :param bool increasing_kpi: Whether or not the KPI is an increasing KPI. :param float lower_limit: The lower threshold limit. :param float upper_limit: The upper threshold limit. """ pulumi.set(__self__, "increasing_kpi", increasing_kpi) pulumi.set(__self__, "lower_limit", lower_limit) pulumi.set(__self__, "upper_limit", upper_limit) @property @pulumi.getter(name="increasingKpi") def increasing_kpi(self) -> bool: """ Whether or not the KPI is an increasing KPI. """ return pulumi.get(self, "increasing_kpi") @property @pulumi.getter(name="lowerLimit") def lower_limit(self) -> float: """ The lower threshold limit. """ return pulumi.get(self, "lower_limit") @property @pulumi.getter(name="upperLimit") def upper_limit(self) -> float: """ The upper threshold limit. """ return pulumi.get(self, "upper_limit") @pulumi.output_type class ParticipantProfilePropertyReferenceResponse(dict): """ The participant profile property reference. """ @staticmethod def __key_warning(key: str): suggest = None if key == "interactionPropertyName": suggest = "interaction_property_name" elif key == "profilePropertyName": suggest = "profile_property_name" if suggest: pulumi.log.warn(f"Key '{key}' not found in ParticipantProfilePropertyReferenceResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: ParticipantProfilePropertyReferenceResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: ParticipantProfilePropertyReferenceResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, interaction_property_name: str, profile_property_name: str): """ The participant profile property reference. :param str interaction_property_name: The source interaction property that maps to the target profile property. :param str profile_property_name: The target profile property that maps to the source interaction property. """ pulumi.set(__self__, "interaction_property_name", interaction_property_name) pulumi.set(__self__, "profile_property_name", profile_property_name) @property @pulumi.getter(name="interactionPropertyName") def interaction_property_name(self) -> str: """ The source interaction property that maps to the target profile property. """ return pulumi.get(self, "interaction_property_name") @property @pulumi.getter(name="profilePropertyName") def profile_property_name(self) -> str: """ The target profile property that maps to the source interaction property. """ return pulumi.get(self, "profile_property_name") @pulumi.output_type class ParticipantPropertyReferenceResponse(dict): """ The participant property reference. """ @staticmethod def __key_warning(key: str): suggest = None if key == "sourcePropertyName": suggest = "source_property_name" elif key == "targetPropertyName": suggest = "target_property_name" if suggest: pulumi.log.warn(f"Key '{key}' not found in ParticipantPropertyReferenceResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: ParticipantPropertyReferenceResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: ParticipantPropertyReferenceResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, source_property_name: str, target_property_name: str): """ The participant property reference. :param str source_property_name: The source property that maps to the target property. :param str target_property_name: The target property that maps to the source property. """ pulumi.set(__self__, "source_property_name", source_property_name) pulumi.set(__self__, "target_property_name", target_property_name) @property @pulumi.getter(name="sourcePropertyName") def source_property_name(self) -> str: """ The source property that maps to the target property. """ return pulumi.get(self, "source_property_name") @property @pulumi.getter(name="targetPropertyName") def target_property_name(self) -> str: """ The target property that maps to the source property. """ return pulumi.get(self, "target_property_name") @pulumi.output_type class PredictionDistributionDefinitionResponse(dict): """ The definition of the prediction distribution. """ def __init__(__self__, *, distributions: Optional[Sequence['outputs.PredictionDistributionDefinitionResponseDistributions']] = None, total_negatives: Optional[float] = None, total_positives: Optional[float] = None): """ The definition of the prediction distribution. :param Sequence['PredictionDistributionDefinitionResponseDistributions'] distributions: Distributions of the prediction. :param float total_negatives: Total negatives in the distribution. :param float total_positives: Total positive in the distribution. """ if distributions is not None: pulumi.set(__self__, "distributions", distributions) if total_negatives is not None: pulumi.set(__self__, "total_negatives", total_negatives) if total_positives is not None: pulumi.set(__self__, "total_positives", total_positives) @property @pulumi.getter def distributions(self) -> Optional[Sequence['outputs.PredictionDistributionDefinitionResponseDistributions']]: """ Distributions of the prediction. """ return pulumi.get(self, "distributions") @property @pulumi.getter(name="totalNegatives") def total_negatives(self) -> Optional[float]: """ Total negatives in the distribution. """ return pulumi.get(self, "total_negatives") @property @pulumi.getter(name="totalPositives") def total_positives(self) -> Optional[float]: """ Total positive in the distribution. """ return pulumi.get(self, "total_positives") @pulumi.output_type class PredictionDistributionDefinitionResponseDistributions(dict): """ The definition of a prediction distribution. """ def __init__(__self__, *, negatives: Optional[float] = None, negatives_above_threshold: Optional[float] = None, positives: Optional[float] = None, positives_above_threshold: Optional[float] = None, score_threshold: Optional[int] = None): """ The definition of a prediction distribution. :param float negatives: Number of negatives. :param float negatives_above_threshold: Number of negatives above threshold. :param float positives: Number of positives. :param float positives_above_threshold: Number of positives above threshold. :param int score_threshold: Score threshold. """ if negatives is not None: pulumi.set(__self__, "negatives", negatives) if negatives_above_threshold is not None: pulumi.set(__self__, "negatives_above_threshold", negatives_above_threshold) if positives is not None: pulumi.set(__self__, "positives", positives) if positives_above_threshold is not None: pulumi.set(__self__, "positives_above_threshold", positives_above_threshold) if score_threshold is not None: pulumi.set(__self__, "score_threshold", score_threshold) @property @pulumi.getter def negatives(self) -> Optional[float]: """ Number of negatives. """ return pulumi.get(self, "negatives") @property @pulumi.getter(name="negativesAboveThreshold") def negatives_above_threshold(self) -> Optional[float]: """ Number of negatives above threshold. """ return pulumi.get(self, "negatives_above_threshold") @property @pulumi.getter def positives(self) -> Optional[float]: """ Number of positives. """ return pulumi.get(self, "positives") @property @pulumi.getter(name="positivesAboveThreshold") def positives_above_threshold(self) -> Optional[float]: """ Number of positives above threshold. """ return pulumi.get(self, "positives_above_threshold") @property @pulumi.getter(name="scoreThreshold") def score_threshold(self) -> Optional[int]: """ Score threshold. """ return pulumi.get(self, "score_threshold") @pulumi.output_type class PredictionResponseGrades(dict): """ The definition of a prediction grade. """ @staticmethod def __key_warning(key: str): suggest = None if key == "gradeName": suggest = "grade_name" elif key == "maxScoreThreshold": suggest = "max_score_threshold" elif key == "minScoreThreshold": suggest = "min_score_threshold" if suggest: pulumi.log.warn(f"Key '{key}' not found in PredictionResponseGrades. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: PredictionResponseGrades.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: PredictionResponseGrades.__key_warning(key) return super().get(key, default) def __init__(__self__, *, grade_name: Optional[str] = None, max_score_threshold: Optional[int] = None, min_score_threshold: Optional[int] = None): """ The definition of a prediction grade. :param str grade_name: Name of the grade. :param int max_score_threshold: Maximum score threshold. :param int min_score_threshold: Minimum score threshold. """ if grade_name is not None: pulumi.set(__self__, "grade_name", grade_name) if max_score_threshold is not None: pulumi.set(__self__, "max_score_threshold", max_score_threshold) if min_score_threshold is not None: pulumi.set(__self__, "min_score_threshold", min_score_threshold) @property @pulumi.getter(name="gradeName") def grade_name(self) -> Optional[str]: """ Name of the grade. """ return pulumi.get(self, "grade_name") @property @pulumi.getter(name="maxScoreThreshold") def max_score_threshold(self) -> Optional[int]: """ Maximum score threshold. """ return pulumi.get(self, "max_score_threshold") @property @pulumi.getter(name="minScoreThreshold") def min_score_threshold(self) -> Optional[int]: """ Minimum score threshold. """ return pulumi.get(self, "min_score_threshold") @pulumi.output_type class PredictionResponseMappings(dict): """ Definition of the link mapping of prediction. """ def __init__(__self__, *, grade: str, reason: str, score: str): """ Definition of the link mapping of prediction. :param str grade: The grade of the link mapping. :param str reason: The reason of the link mapping. :param str score: The score of the link mapping. """ pulumi.set(__self__, "grade", grade) pulumi.set(__self__, "reason", reason) pulumi.set(__self__, "score", score) @property @pulumi.getter def grade(self) -> str: """ The grade of the link mapping. """ return pulumi.get(self, "grade") @property @pulumi.getter def reason(self) -> str: """ The reason of the link mapping. """ return pulumi.get(self, "reason") @property @pulumi.getter def score(self) -> str: """ The score of the link mapping. """ return pulumi.get(self, "score") @pulumi.output_type class PredictionResponseSystemGeneratedEntities(dict): """ System generated entities. """ @staticmethod def __key_warning(key: str): suggest = None if key == "generatedInteractionTypes": suggest = "generated_interaction_types" elif key == "generatedKpis": suggest = "generated_kpis" elif key == "generatedLinks": suggest = "generated_links" if suggest: pulumi.log.warn(f"Key '{key}' not found in PredictionResponseSystemGeneratedEntities. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: PredictionResponseSystemGeneratedEntities.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: PredictionResponseSystemGeneratedEntities.__key_warning(key) return super().get(key, default) def __init__(__self__, *, generated_interaction_types: Optional[Sequence[str]] = None, generated_kpis: Optional[Mapping[str, str]] = None, generated_links: Optional[Sequence[str]] = None): """ System generated entities. :param Sequence[str] generated_interaction_types: Generated interaction types. :param Mapping[str, str] generated_kpis: Generated KPIs. :param Sequence[str] generated_links: Generated links. """ if generated_interaction_types is not None: pulumi.set(__self__, "generated_interaction_types", generated_interaction_types) if generated_kpis is not None: pulumi.set(__self__, "generated_kpis", generated_kpis) if generated_links is not None: pulumi.set(__self__, "generated_links", generated_links) @property @pulumi.getter(name="generatedInteractionTypes") def generated_interaction_types(self) -> Optional[Sequence[str]]: """ Generated interaction types. """ return pulumi.get(self, "generated_interaction_types") @property @pulumi.getter(name="generatedKpis") def generated_kpis(self) -> Optional[Mapping[str, str]]: """ Generated KPIs. """ return pulumi.get(self, "generated_kpis") @property @pulumi.getter(name="generatedLinks") def generated_links(self) -> Optional[Sequence[str]]: """ Generated links. """ return pulumi.get(self, "generated_links") @pulumi.output_type class ProfileEnumValidValuesFormatResponse(dict): """ Valid enum values in case of an enum property. """ @staticmethod def __key_warning(key: str): suggest = None if key == "localizedValueNames": suggest = "localized_value_names" if suggest: pulumi.log.warn(f"Key '{key}' not found in ProfileEnumValidValuesFormatResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: ProfileEnumValidValuesFormatResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: ProfileEnumValidValuesFormatResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, localized_value_names: Optional[Mapping[str, str]] = None, value: Optional[int] = None): """ Valid enum values in case of an enum property. :param Mapping[str, str] localized_value_names: Localized names of the enum member. :param int value: The integer value of the enum member. """ if localized_value_names is not None: pulumi.set(__self__, "localized_value_names", localized_value_names) if value is not None: pulumi.set(__self__, "value", value) @property @pulumi.getter(name="localizedValueNames") def localized_value_names(self) -> Optional[Mapping[str, str]]: """ Localized names of the enum member. """ return pulumi.get(self, "localized_value_names") @property @pulumi.getter def value(self) -> Optional[int]: """ The integer value of the enum member. """ return pulumi.get(self, "value") @pulumi.output_type class PropertyDefinitionResponse(dict): """ Property definition. """ @staticmethod def __key_warning(key: str): suggest = None if key == "dataSourcePrecedenceRules": suggest = "data_source_precedence_rules" elif key == "fieldName": suggest = "field_name" elif key == "fieldType": suggest = "field_type" elif key == "arrayValueSeparator": suggest = "array_value_separator" elif key == "enumValidValues": suggest = "enum_valid_values" elif key == "isArray": suggest = "is_array" elif key == "isAvailableInGraph": suggest = "is_available_in_graph" elif key == "isEnum": suggest = "is_enum" elif key == "isFlagEnum": suggest = "is_flag_enum" elif key == "isImage": suggest = "is_image" elif key == "isLocalizedString": suggest = "is_localized_string" elif key == "isName": suggest = "is_name" elif key == "isRequired": suggest = "is_required" elif key == "maxLength": suggest = "max_length" elif key == "propertyId": suggest = "property_id" elif key == "schemaItemPropLink": suggest = "schema_item_prop_link" if suggest: pulumi.log.warn(f"Key '{key}' not found in PropertyDefinitionResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: PropertyDefinitionResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: PropertyDefinitionResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, data_source_precedence_rules: Sequence['outputs.DataSourcePrecedenceResponse'], field_name: str, field_type: str, array_value_separator: Optional[str] = None, enum_valid_values: Optional[Sequence['outputs.ProfileEnumValidValuesFormatResponse']] = None, is_array: Optional[bool] = None, is_available_in_graph: Optional[bool] = None, is_enum: Optional[bool] = None, is_flag_enum: Optional[bool] = None, is_image: Optional[bool] = None, is_localized_string: Optional[bool] = None, is_name: Optional[bool] = None, is_required: Optional[bool] = None, max_length: Optional[int] = None, property_id: Optional[str] = None, schema_item_prop_link: Optional[str] = None): """ Property definition. :param Sequence['DataSourcePrecedenceResponse'] data_source_precedence_rules: This is specific to interactions modeled as activities. Data sources are used to determine where data is stored and also in precedence rules. :param str field_name: Name of the property. :param str field_type: Type of the property. :param str array_value_separator: Array value separator for properties with isArray set. :param Sequence['ProfileEnumValidValuesFormatResponse'] enum_valid_values: Describes valid values for an enum property. :param bool is_array: Indicates if the property is actually an array of the fieldType above on the data api. :param bool is_available_in_graph: Whether property is available in graph or not. :param bool is_enum: Indicates if the property is an enum. :param bool is_flag_enum: Indicates if the property is an flag enum. :param bool is_image: Whether the property is an Image. :param bool is_localized_string: Whether the property is a localized string. :param bool is_name: Whether the property is a name or a part of name. :param bool is_required: Whether property value is required on instances, IsRequired field only for Interaction. Profile Instance will not check for required field. :param int max_length: Max length of string. Used only if type is string. :param str property_id: The ID associated with the property. :param str schema_item_prop_link: URL encoded schema.org item prop link for the property. """ pulumi.set(__self__, "data_source_precedence_rules", data_source_precedence_rules) pulumi.set(__self__, "field_name", field_name) pulumi.set(__self__, "field_type", field_type) if array_value_separator is not None: pulumi.set(__self__, "array_value_separator", array_value_separator) if enum_valid_values is not None: pulumi.set(__self__, "enum_valid_values", enum_valid_values) if is_array is not None: pulumi.set(__self__, "is_array", is_array) if is_available_in_graph is not None: pulumi.set(__self__, "is_available_in_graph", is_available_in_graph) if is_enum is not None: pulumi.set(__self__, "is_enum", is_enum) if is_flag_enum is not None: pulumi.set(__self__, "is_flag_enum", is_flag_enum) if is_image is not None: pulumi.set(__self__, "is_image", is_image) if is_localized_string is not None: pulumi.set(__self__, "is_localized_string", is_localized_string) if is_name is not None: pulumi.set(__self__, "is_name", is_name) if is_required is not None: pulumi.set(__self__, "is_required", is_required) if max_length is not None: pulumi.set(__self__, "max_length", max_length) if property_id is not None: pulumi.set(__self__, "property_id", property_id) if schema_item_prop_link is not None: pulumi.set(__self__, "schema_item_prop_link", schema_item_prop_link) @property @pulumi.getter(name="dataSourcePrecedenceRules") def data_source_precedence_rules(self) -> Sequence['outputs.DataSourcePrecedenceResponse']: """ This is specific to interactions modeled as activities. Data sources are used to determine where data is stored and also in precedence rules. """ return pulumi.get(self, "data_source_precedence_rules") @property @pulumi.getter(name="fieldName") def field_name(self) -> str: """ Name of the property. """ return pulumi.get(self, "field_name") @property @pulumi.getter(name="fieldType") def field_type(self) -> str: """ Type of the property. """ return pulumi.get(self, "field_type") @property @pulumi.getter(name="arrayValueSeparator") def array_value_separator(self) -> Optional[str]: """ Array value separator for properties with isArray set. """ return pulumi.get(self, "array_value_separator") @property @pulumi.getter(name="enumValidValues") def enum_valid_values(self) -> Optional[Sequence['outputs.ProfileEnumValidValuesFormatResponse']]: """ Describes valid values for an enum property. """ return pulumi.get(self, "enum_valid_values") @property @pulumi.getter(name="isArray") def is_array(self) -> Optional[bool]: """ Indicates if the property is actually an array of the fieldType above on the data api. """ return pulumi.get(self, "is_array") @property @pulumi.getter(name="isAvailableInGraph") def is_available_in_graph(self) -> Optional[bool]: """ Whether property is available in graph or not. """ return pulumi.get(self, "is_available_in_graph") @property @pulumi.getter(name="isEnum") def is_enum(self) -> Optional[bool]: """ Indicates if the property is an enum. """ return pulumi.get(self, "is_enum") @property @pulumi.getter(name="isFlagEnum") def is_flag_enum(self) -> Optional[bool]: """ Indicates if the property is an flag enum. """ return pulumi.get(self, "is_flag_enum") @property @pulumi.getter(name="isImage") def is_image(self) -> Optional[bool]: """ Whether the property is an Image. """ return pulumi.get(self, "is_image") @property @pulumi.getter(name="isLocalizedString") def is_localized_string(self) -> Optional[bool]: """ Whether the property is a localized string. """ return pulumi.get(self, "is_localized_string") @property @pulumi.getter(name="isName") def is_name(self) -> Optional[bool]: """ Whether the property is a name or a part of name. """ return pulumi.get(self, "is_name") @property @pulumi.getter(name="isRequired") def is_required(self) -> Optional[bool]: """ Whether property value is required on instances, IsRequired field only for Interaction. Profile Instance will not check for required field. """ return pulumi.get(self, "is_required") @property @pulumi.getter(name="maxLength") def max_length(self) -> Optional[int]: """ Max length of string. Used only if type is string. """ return pulumi.get(self, "max_length") @property @pulumi.getter(name="propertyId") def property_id(self) -> Optional[str]: """ The ID associated with the property. """ return pulumi.get(self, "property_id") @property @pulumi.getter(name="schemaItemPropLink") def schema_item_prop_link(self) -> Optional[str]: """ URL encoded schema.org item prop link for the property. """ return pulumi.get(self, "schema_item_prop_link") @pulumi.output_type class RelationshipLinkFieldMappingResponse(dict): """ The fields mapping for Relationships. """ @staticmethod def __key_warning(key: str): suggest = None if key == "interactionFieldName": suggest = "interaction_field_name" elif key == "relationshipFieldName": suggest = "relationship_field_name" elif key == "linkType": suggest = "link_type" if suggest: pulumi.log.warn(f"Key '{key}' not found in RelationshipLinkFieldMappingResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: RelationshipLinkFieldMappingResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: RelationshipLinkFieldMappingResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, interaction_field_name: str, relationship_field_name: str, link_type: Optional[str] = None): """ The fields mapping for Relationships. :param str interaction_field_name: The field name on the Interaction Type. :param str relationship_field_name: The field name on the Relationship metadata. :param str link_type: Link type. """ pulumi.set(__self__, "interaction_field_name", interaction_field_name) pulumi.set(__self__, "relationship_field_name", relationship_field_name) if link_type is not None: pulumi.set(__self__, "link_type", link_type) @property @pulumi.getter(name="interactionFieldName") def interaction_field_name(self) -> str: """ The field name on the Interaction Type. """ return pulumi.get(self, "interaction_field_name") @property @pulumi.getter(name="relationshipFieldName") def relationship_field_name(self) -> str: """ The field name on the Relationship metadata. """ return pulumi.get(self, "relationship_field_name") @property @pulumi.getter(name="linkType") def link_type(self) -> Optional[str]: """ Link type. """ return pulumi.get(self, "link_type") @pulumi.output_type class RelationshipTypeFieldMappingResponse(dict): """ Map a field of profile to its corresponding StrongId in Related Profile. """ @staticmethod def __key_warning(key: str): suggest = None if key == "profileFieldName": suggest = "profile_field_name" elif key == "relatedProfileKeyProperty": suggest = "related_profile_key_property" if suggest: pulumi.log.warn(f"Key '{key}' not found in RelationshipTypeFieldMappingResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: RelationshipTypeFieldMappingResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: RelationshipTypeFieldMappingResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, profile_field_name: str, related_profile_key_property: str): """ Map a field of profile to its corresponding StrongId in Related Profile. :param str profile_field_name: Specifies the fieldName in profile. :param str related_profile_key_property: Specifies the KeyProperty (from StrongId) of the related profile. """ pulumi.set(__self__, "profile_field_name", profile_field_name) pulumi.set(__self__, "related_profile_key_property", related_profile_key_property) @property @pulumi.getter(name="profileFieldName") def profile_field_name(self) -> str: """ Specifies the fieldName in profile. """ return pulumi.get(self, "profile_field_name") @property @pulumi.getter(name="relatedProfileKeyProperty") def related_profile_key_property(self) -> str: """ Specifies the KeyProperty (from StrongId) of the related profile. """ return pulumi.get(self, "related_profile_key_property") @pulumi.output_type class RelationshipTypeMappingResponse(dict): """ Maps fields in Profile to their corresponding StrongIds in Related Profile. """ @staticmethod def __key_warning(key: str): suggest = None if key == "fieldMappings": suggest = "field_mappings" if suggest: pulumi.log.warn(f"Key '{key}' not found in RelationshipTypeMappingResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: RelationshipTypeMappingResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: RelationshipTypeMappingResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, field_mappings: Sequence['outputs.RelationshipTypeFieldMappingResponse']): """ Maps fields in Profile to their corresponding StrongIds in Related Profile. :param Sequence['RelationshipTypeFieldMappingResponse'] field_mappings: Maps a profile property with the StrongId of related profile. This is an array to support StrongIds that are composite key as well. """ pulumi.set(__self__, "field_mappings", field_mappings) @property @pulumi.getter(name="fieldMappings") def field_mappings(self) -> Sequence['outputs.RelationshipTypeFieldMappingResponse']: """ Maps a profile property with the StrongId of related profile. This is an array to support StrongIds that are composite key as well. """ return pulumi.get(self, "field_mappings") @pulumi.output_type class ResourceSetDescriptionResponse(dict): """ The resource set description. """ def __init__(__self__, *, elements: Optional[Sequence[str]] = None, exceptions: Optional[Sequence[str]] = None): """ The resource set description. :param Sequence[str] elements: The elements included in the set. :param Sequence[str] exceptions: The elements that are not included in the set, in case elements contains '*' indicating 'all'. """ if elements is not None: pulumi.set(__self__, "elements", elements) if exceptions is not None: pulumi.set(__self__, "exceptions", exceptions) @property @pulumi.getter def elements(self) -> Optional[Sequence[str]]: """ The elements included in the set. """ return pulumi.get(self, "elements") @property @pulumi.getter def exceptions(self) -> Optional[Sequence[str]]: """ The elements that are not included in the set, in case elements contains '*' indicating 'all'. """ return pulumi.get(self, "exceptions") @pulumi.output_type class StrongIdResponse(dict): """ Property/Properties which represent a unique ID. """ @staticmethod def __key_warning(key: str): suggest = None if key == "keyPropertyNames": suggest = "key_property_names" elif key == "strongIdName": suggest = "strong_id_name" elif key == "displayName": suggest = "display_name" if suggest: pulumi.log.warn(f"Key '{key}' not found in StrongIdResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: StrongIdResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: StrongIdResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, key_property_names: Sequence[str], strong_id_name: str, description: Optional[Mapping[str, str]] = None, display_name: Optional[Mapping[str, str]] = None): """ Property/Properties which represent a unique ID. :param Sequence[str] key_property_names: The properties which make up the unique ID. :param str strong_id_name: The Name identifying the strong ID. :param Mapping[str, str] description: Localized descriptions. :param Mapping[str, str] display_name: Localized display name. """ pulumi.set(__self__, "key_property_names", key_property_names) pulumi.set(__self__, "strong_id_name", strong_id_name) if description is not None: pulumi.set(__self__, "description", description) if display_name is not None: pulumi.set(__self__, "display_name", display_name) @property @pulumi.getter(name="keyPropertyNames") def key_property_names(self) -> Sequence[str]: """ The properties which make up the unique ID. """ return pulumi.get(self, "key_property_names") @property @pulumi.getter(name="strongIdName") def strong_id_name(self) -> str: """ The Name identifying the strong ID. """ return pulumi.get(self, "strong_id_name") @property @pulumi.getter def description(self) -> Optional[Mapping[str, str]]: """ Localized descriptions. """ return pulumi.get(self, "description") @property @pulumi.getter(name="displayName") def display_name(self) -> Optional[Mapping[str, str]]: """ Localized display name. """ return pulumi.get(self, "display_name") @pulumi.output_type class TypePropertiesMappingResponse(dict): """ Metadata for a Link's property mapping. """ @staticmethod def __key_warning(key: str): suggest = None if key == "sourcePropertyName": suggest = "source_property_name" elif key == "targetPropertyName": suggest = "target_property_name" elif key == "linkType": suggest = "link_type" if suggest: pulumi.log.warn(f"Key '{key}' not found in TypePropertiesMappingResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: TypePropertiesMappingResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: TypePropertiesMappingResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, source_property_name: str, target_property_name: str, link_type: Optional[str] = None): """ Metadata for a Link's property mapping. :param str source_property_name: Property name on the source Entity Type. :param str target_property_name: Property name on the target Entity Type. :param str link_type: Link type. """ pulumi.set(__self__, "source_property_name", source_property_name) pulumi.set(__self__, "target_property_name", target_property_name) if link_type is not None: pulumi.set(__self__, "link_type", link_type) @property @pulumi.getter(name="sourcePropertyName") def source_property_name(self) -> str: """ Property name on the source Entity Type. """ return pulumi.get(self, "source_property_name") @property @pulumi.getter(name="targetPropertyName") def target_property_name(self) -> str: """ Property name on the target Entity Type. """ return pulumi.get(self, "target_property_name") @property @pulumi.getter(name="linkType") def link_type(self) -> Optional[str]: """ Link type. """ return pulumi.get(self, "link_type")
py
1a32b1d64d5769000be80a47743e98198a16f32b
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Aug 18 2017 @author: Alvaro Radigales A simple Python implementation of the Lanchester Linear Law. Force strength for each time pulse of the simulation is stored in a NumPy array, and later plotted using MatPlotLib. """ import numpy import matplotlib.pyplot as plot from math import ceil # The length of the time step will not alter the end result. # Use only to determine the resolution of the graph. timeStart = 0.0 timeEnd = 10.0 timeStep = 0.01 steps = int((timeEnd - timeStart) / timeStep) # Initialise numpy arrays covering each step of the simulation. blue = numpy.zeros(steps) red = numpy.zeros(steps) time = numpy.zeros(steps) # To remove the frontage constraint, change the frontage variable to # the smaller remaining force, both in its declaration and in the loop. blue[0] = 42 red[0] = 30 frontage = 5 blueLethality = 1 redLethality = 1 time[0] = timeStart for i in range(steps -1): frontage = min(frontage, ceil(red[i]), ceil(blue[i])) blue[i+1] = max(0, blue[i] - timeStep * (frontage * redLethality)) red[i+1] = max(0, red[i] - timeStep * (frontage * blueLethality)) time[i+1] = time[i] + timeStep # Remaining forces at the end of the simulation, for plot label purposes. blueRemaining = int(blue[len(blue)-1]) redRemaining = int(red[len(red)-1]) # Plot code. plot.figure() plot.step(time, blue, '-b', where = 'post', label = 'Blue army') plot.step(time, red, '-r', where = 'post', label = 'Red army') plot.ylabel('Strength') plot.xlabel('Time') plot.legend() plot.annotate(blueRemaining, xy=(timeEnd, blue[len(blue)-1]), xytext=(-15,10), textcoords='offset points') plot.annotate(redRemaining, xy=(timeEnd, red[len(red)-1]), xytext=(-15,10), textcoords='offset points') plot.show()
py
1a32b1fcbb1c9940433d71d90e8c69b39988a486
"""Loguru utils""" # List of files in `fairseq_cli` that use logging. Any files other than these # attempting to use logging will have their logger with the same file name # (i.e., `__name__`). name_list = ["eval_lm", "generate", "hydra_train", "interactive", "preprocess", "train", "validate"] def loguru_name_patcher(record): filename = record["file"].name # filename, e.g., `train.py` name = ".".join(filename.split(".")[:-1]) # remove the ".py" part if name in name_list: name = f"fairseq_cli.{name}" # legacy name, e.g., `fairseq_cli.train` record["extra"].update(name=name) def loguru_reset_logger(logger): """Remove all handlers""" handlers_count = logger._core.handlers for _ in range(len(handlers_count)): logger.remove() class LoguruLevels: TRACE = 5 DEBUG = 10 INFO = 20 SUCCESS = 25 WARNING = 30 ERROR = 40 CRITICAL = 50 def loguru_set_level(logger, level): """Set level of all handlers of the provided logger. Note that this implementation is very non-standard. Avoid using in any case.""" for handler in logger._core.handlers.values(): handler._levelno = level def get_effective_level(logger): """Get effective level of the logger by finding the smallest level among all handlers.""" levels = [] for handler in logger._core.handlers.values(): levels.append(handler.levelno) return min(levels) def loguru_emit_some_handlers(logger, handler_ids, message, name, level_id="INFO"): """Emit message using specific handlers while ignoring others. Currently only supports for non-colorized messages. Parameters ---------- logger : loguru._logger.Logger Loguru logger. handler_ids : list of int List of handler IDs to deal with. message : str Message to emit. name : str Logger name. level_id : str Level name. """ from loguru._recattrs import RecordLevel from loguru._datetime import aware_now core = logger._core level_name, level_no, _, level_icon = core.levels[level_id] for handler_id in handler_ids: handler = core.handlers[handler_id] log_record = { "message": message, "level": RecordLevel(level_name, level_no, level_icon), "exception": None, "time": aware_now(), "extra": {"name": name}, } handler.emit(log_record, level_id, from_decorator=False, is_raw=False, colored_message=None)
py
1a32b42dad5832ff1fc3bf73796d36e5c11cc019
import pytest import fsspec pytest.importorskip("distributed") @pytest.fixture() def cli(tmpdir): import dask.distributed client = dask.distributed.Client(n_workers=1) def setup(): m = fsspec.filesystem("memory") with m.open('afile', 'wb') as f: f.write(b'data') client.run(setup) try: yield client finally: client.close() def test_basic(cli): fs = fsspec.filesystem('dask', remote_protocol='memory') assert fs.ls('') == ['afile'] assert fs.cat('afile') == b'data'
py
1a32b52dd26333e774be5de99dec594b6cbc3684
# Copyright (c) 2015-2016, 2018-2020 Claudiu Popa <[email protected]> # Copyright (c) 2015-2016 Ceridwen <[email protected]> # Copyright (c) 2015 Florian Bruhin <[email protected]> # Copyright (c) 2016 Derek Gustafson <[email protected]> # Copyright (c) 2018 hippo91 <[email protected]> # Copyright (c) 2018 Bryce Guinta <[email protected]> # Copyright (c) 2021 Pierre Sassoulas <[email protected]> # Copyright (c) 2021 Marc Mueller <[email protected]> # Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html # For details: https://github.com/PyCQA/astroid/blob/main/LICENSE """ Inference objects are a way to represent composite AST nodes, which are used only as inference results, so they can't be found in the original AST tree. For instance, inferring the following frozenset use, leads to an inferred FrozenSet: Call(func=Name('frozenset'), args=Tuple(...)) """ from astroid import bases, decorators, node_classes, scoped_nodes, util from astroid.const import BUILTINS from astroid.exceptions import ( AttributeInferenceError, InferenceError, MroError, SuperError, ) from astroid.manager import AstroidManager objectmodel = util.lazy_import("interpreter.objectmodel") class FrozenSet(node_classes._BaseContainer): """class representing a FrozenSet composite node""" def pytype(self): return "%s.frozenset" % BUILTINS def _infer(self, context=None): yield self @decorators.cachedproperty def _proxied(self): # pylint: disable=method-hidden ast_builtins = AstroidManager().builtins_module return ast_builtins.getattr("frozenset")[0] class Super(node_classes.NodeNG): """Proxy class over a super call. This class offers almost the same behaviour as Python's super, which is MRO lookups for retrieving attributes from the parents. The *mro_pointer* is the place in the MRO from where we should start looking, not counting it. *mro_type* is the object which provides the MRO, it can be both a type or an instance. *self_class* is the class where the super call is, while *scope* is the function where the super call is. """ # pylint: disable=unnecessary-lambda special_attributes = util.lazy_descriptor(lambda: objectmodel.SuperModel()) def __init__(self, mro_pointer, mro_type, self_class, scope): self.type = mro_type self.mro_pointer = mro_pointer self._class_based = False self._self_class = self_class self._scope = scope super().__init__() def _infer(self, context=None): yield self def super_mro(self): """Get the MRO which will be used to lookup attributes in this super.""" if not isinstance(self.mro_pointer, scoped_nodes.ClassDef): raise SuperError( "The first argument to super must be a subtype of " "type, not {mro_pointer}.", super_=self, ) if isinstance(self.type, scoped_nodes.ClassDef): # `super(type, type)`, most likely in a class method. self._class_based = True mro_type = self.type else: mro_type = getattr(self.type, "_proxied", None) if not isinstance(mro_type, (bases.Instance, scoped_nodes.ClassDef)): raise SuperError( "The second argument to super must be an " "instance or subtype of type, not {type}.", super_=self, ) if not mro_type.newstyle: raise SuperError("Unable to call super on old-style classes.", super_=self) mro = mro_type.mro() if self.mro_pointer not in mro: raise SuperError( "The second argument to super must be an " "instance or subtype of type, not {type}.", super_=self, ) index = mro.index(self.mro_pointer) return mro[index + 1 :] @decorators.cachedproperty def _proxied(self): ast_builtins = AstroidManager().builtins_module return ast_builtins.getattr("super")[0] def pytype(self): return "%s.super" % BUILTINS def display_type(self): return "Super of" @property def name(self): """Get the name of the MRO pointer.""" return self.mro_pointer.name def qname(self): return "super" def igetattr(self, name, context=None): """Retrieve the inferred values of the given attribute name.""" if name in self.special_attributes: yield self.special_attributes.lookup(name) return try: mro = self.super_mro() # Don't let invalid MROs or invalid super calls # leak out as is from this function. except SuperError as exc: raise AttributeInferenceError( ( "Lookup for {name} on {target!r} because super call {super!r} " "is invalid." ), target=self, attribute=name, context=context, super_=exc.super_, ) from exc except MroError as exc: raise AttributeInferenceError( ( "Lookup for {name} on {target!r} failed because {cls!r} has an " "invalid MRO." ), target=self, attribute=name, context=context, mros=exc.mros, cls=exc.cls, ) from exc found = False for cls in mro: if name not in cls.locals: continue found = True for inferred in bases._infer_stmts([cls[name]], context, frame=self): if not isinstance(inferred, scoped_nodes.FunctionDef): yield inferred continue # We can obtain different descriptors from a super depending # on what we are accessing and where the super call is. if inferred.type == "classmethod": yield bases.BoundMethod(inferred, cls) elif self._scope.type == "classmethod" and inferred.type == "method": yield inferred elif self._class_based or inferred.type == "staticmethod": yield inferred elif isinstance(inferred, Property): function = inferred.function try: yield from function.infer_call_result( caller=self, context=context ) except InferenceError: yield util.Uninferable elif bases._is_property(inferred): # TODO: support other descriptors as well. try: yield from inferred.infer_call_result(self, context) except InferenceError: yield util.Uninferable else: yield bases.BoundMethod(inferred, cls) if not found: raise AttributeInferenceError(target=self, attribute=name, context=context) def getattr(self, name, context=None): return list(self.igetattr(name, context=context)) class ExceptionInstance(bases.Instance): """Class for instances of exceptions It has special treatment for some of the exceptions's attributes, which are transformed at runtime into certain concrete objects, such as the case of .args. """ @decorators.cachedproperty def special_attributes(self): qname = self.qname() instance = objectmodel.BUILTIN_EXCEPTIONS.get( qname, objectmodel.ExceptionInstanceModel ) return instance()(self) class DictInstance(bases.Instance): """Special kind of instances for dictionaries This instance knows the underlying object model of the dictionaries, which means that methods such as .values or .items can be properly inferred. """ # pylint: disable=unnecessary-lambda special_attributes = util.lazy_descriptor(lambda: objectmodel.DictModel()) # Custom objects tailored for dictionaries, which are used to # disambiguate between the types of Python 2 dict's method returns # and Python 3 (where they return set like objects). class DictItems(bases.Proxy): __str__ = node_classes.NodeNG.__str__ __repr__ = node_classes.NodeNG.__repr__ class DictKeys(bases.Proxy): __str__ = node_classes.NodeNG.__str__ __repr__ = node_classes.NodeNG.__repr__ class DictValues(bases.Proxy): __str__ = node_classes.NodeNG.__str__ __repr__ = node_classes.NodeNG.__repr__ class PartialFunction(scoped_nodes.FunctionDef): """A class representing partial function obtained via functools.partial""" def __init__( self, call, name=None, doc=None, lineno=None, col_offset=None, parent=None ): super().__init__(name, doc, lineno, col_offset, parent) self.filled_positionals = len(call.positional_arguments[1:]) self.filled_args = call.positional_arguments[1:] self.filled_keywords = call.keyword_arguments def infer_call_result(self, caller=None, context=None): if context: current_passed_keywords = { keyword for (keyword, _) in context.callcontext.keywords } for keyword, value in self.filled_keywords.items(): if keyword not in current_passed_keywords: context.callcontext.keywords.append((keyword, value)) call_context_args = context.callcontext.args or [] context.callcontext.args = self.filled_args + call_context_args return super().infer_call_result(caller=caller, context=context) def qname(self): return self.__class__.__name__ # TODO: Hack to solve the circular import problem between node_classes and objects # This is not needed in 2.0, which has a cleaner design overall node_classes.Dict.__bases__ = (node_classes.NodeNG, DictInstance) class Property(scoped_nodes.FunctionDef): """Class representing a Python property""" def __init__( self, function, name=None, doc=None, lineno=None, col_offset=None, parent=None ): self.function = function super().__init__(name, doc, lineno, col_offset, parent) # pylint: disable=unnecessary-lambda special_attributes = util.lazy_descriptor(lambda: objectmodel.PropertyModel()) type = "property" def pytype(self): return "%s.property" % BUILTINS def infer_call_result(self, caller=None, context=None): raise InferenceError("Properties are not callable") def infer(self, context=None, **kwargs): return iter((self,))
py
1a32b5a8fd12b569b9f297c385b75190207f093a
import time import random format = "R01G02T%02d%02d+%s+" types = ["WT","DT","LT","PT", "XX"] def slot(min, sec, label): for m in range(min,-1, -1): for s in range(sec,-1, -1): print format % (m, s, label) time.sleep(1) while 1: slot(0,30,"PT") slot(0,30, "NF") slot(0,30, "WT") slot(0,30, "LT") slot(0,30, "DT")
py
1a32b671b2f4531a89f5c60ff6aeca97b940b93a
# pylint: disable=too-many-lines # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, Callable, Dict, List, Optional, TypeVar from msrest import Serializer from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models as _models from .._vendor import _convert_request, _format_url_section T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] _SERIALIZER = Serializer() _SERIALIZER.client_side_validation = False def build_get_request( location: str, publisher_name: str, offer: str, skus: str, version: str, subscription_id: str, **kwargs: Any ) -> HttpRequest: api_version = kwargs.pop('api_version', "2018-10-01") # type: str accept = "application/json" # Construct URL _url = kwargs.pop("template_url", "/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/publishers/{publisherName}/artifacttypes/vmimage/offers/{offer}/skus/{skus}/versions/{version}") # pylint: disable=line-too-long path_format_arguments = { "location": _SERIALIZER.url("location", location, 'str'), "publisherName": _SERIALIZER.url("publisher_name", publisher_name, 'str'), "offer": _SERIALIZER.url("offer", offer, 'str'), "skus": _SERIALIZER.url("skus", skus, 'str'), "version": _SERIALIZER.url("version", version, 'str'), "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), } _url = _format_url_section(_url, **path_format_arguments) # Construct parameters _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] _query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=_url, params=_query_parameters, headers=_header_parameters, **kwargs ) def build_list_request( location: str, publisher_name: str, offer: str, skus: str, subscription_id: str, *, expand: Optional[str] = None, top: Optional[int] = None, orderby: Optional[str] = None, **kwargs: Any ) -> HttpRequest: api_version = kwargs.pop('api_version', "2018-10-01") # type: str accept = "application/json" # Construct URL _url = kwargs.pop("template_url", "/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/publishers/{publisherName}/artifacttypes/vmimage/offers/{offer}/skus/{skus}/versions") # pylint: disable=line-too-long path_format_arguments = { "location": _SERIALIZER.url("location", location, 'str'), "publisherName": _SERIALIZER.url("publisher_name", publisher_name, 'str'), "offer": _SERIALIZER.url("offer", offer, 'str'), "skus": _SERIALIZER.url("skus", skus, 'str'), "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), } _url = _format_url_section(_url, **path_format_arguments) # Construct parameters _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] if expand is not None: _query_parameters['$expand'] = _SERIALIZER.query("expand", expand, 'str') if top is not None: _query_parameters['$top'] = _SERIALIZER.query("top", top, 'int') if orderby is not None: _query_parameters['$orderby'] = _SERIALIZER.query("orderby", orderby, 'str') _query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=_url, params=_query_parameters, headers=_header_parameters, **kwargs ) def build_list_offers_request( location: str, publisher_name: str, subscription_id: str, **kwargs: Any ) -> HttpRequest: api_version = kwargs.pop('api_version', "2018-10-01") # type: str accept = "application/json" # Construct URL _url = kwargs.pop("template_url", "/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/publishers/{publisherName}/artifacttypes/vmimage/offers") # pylint: disable=line-too-long path_format_arguments = { "location": _SERIALIZER.url("location", location, 'str'), "publisherName": _SERIALIZER.url("publisher_name", publisher_name, 'str'), "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), } _url = _format_url_section(_url, **path_format_arguments) # Construct parameters _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] _query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=_url, params=_query_parameters, headers=_header_parameters, **kwargs ) def build_list_publishers_request( location: str, subscription_id: str, **kwargs: Any ) -> HttpRequest: api_version = kwargs.pop('api_version', "2018-10-01") # type: str accept = "application/json" # Construct URL _url = kwargs.pop("template_url", "/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/publishers") # pylint: disable=line-too-long path_format_arguments = { "location": _SERIALIZER.url("location", location, 'str'), "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), } _url = _format_url_section(_url, **path_format_arguments) # Construct parameters _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] _query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=_url, params=_query_parameters, headers=_header_parameters, **kwargs ) def build_list_skus_request( location: str, publisher_name: str, offer: str, subscription_id: str, **kwargs: Any ) -> HttpRequest: api_version = kwargs.pop('api_version', "2018-10-01") # type: str accept = "application/json" # Construct URL _url = kwargs.pop("template_url", "/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/publishers/{publisherName}/artifacttypes/vmimage/offers/{offer}/skus") # pylint: disable=line-too-long path_format_arguments = { "location": _SERIALIZER.url("location", location, 'str'), "publisherName": _SERIALIZER.url("publisher_name", publisher_name, 'str'), "offer": _SERIALIZER.url("offer", offer, 'str'), "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), } _url = _format_url_section(_url, **path_format_arguments) # Construct parameters _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] _query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=_url, params=_query_parameters, headers=_header_parameters, **kwargs ) class VirtualMachineImagesOperations(object): """VirtualMachineImagesOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.compute.v2018_10_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace def get( self, location: str, publisher_name: str, offer: str, skus: str, version: str, **kwargs: Any ) -> "_models.VirtualMachineImage": """Gets a virtual machine image. :param location: The name of a supported Azure region. :type location: str :param publisher_name: A valid image publisher. :type publisher_name: str :param offer: A valid image publisher offer. :type offer: str :param skus: A valid image SKU. :type skus: str :param version: A valid image SKU version. :type version: str :keyword callable cls: A custom type or function that will be passed the direct response :return: VirtualMachineImage, or the result of cls(response) :rtype: ~azure.mgmt.compute.v2018_10_01.models.VirtualMachineImage :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.VirtualMachineImage"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = kwargs.pop('api_version', "2018-10-01") # type: str request = build_get_request( location=location, publisher_name=publisher_name, offer=offer, skus=skus, version=version, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.get.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('VirtualMachineImage', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': "/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/publishers/{publisherName}/artifacttypes/vmimage/offers/{offer}/skus/{skus}/versions/{version}"} # type: ignore @distributed_trace def list( self, location: str, publisher_name: str, offer: str, skus: str, expand: Optional[str] = None, top: Optional[int] = None, orderby: Optional[str] = None, **kwargs: Any ) -> List["_models.VirtualMachineImageResource"]: """Gets a list of all virtual machine image versions for the specified location, publisher, offer, and SKU. :param location: The name of a supported Azure region. :type location: str :param publisher_name: A valid image publisher. :type publisher_name: str :param offer: A valid image publisher offer. :type offer: str :param skus: A valid image SKU. :type skus: str :param expand: The expand expression to apply on the operation. Default value is None. :type expand: str :param top: Default value is None. :type top: int :param orderby: Default value is None. :type orderby: str :keyword callable cls: A custom type or function that will be passed the direct response :return: list of VirtualMachineImageResource, or the result of cls(response) :rtype: list[~azure.mgmt.compute.v2018_10_01.models.VirtualMachineImageResource] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List["_models.VirtualMachineImageResource"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = kwargs.pop('api_version', "2018-10-01") # type: str request = build_list_request( location=location, publisher_name=publisher_name, offer=offer, skus=skus, subscription_id=self._config.subscription_id, api_version=api_version, expand=expand, top=top, orderby=orderby, template_url=self.list.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('[VirtualMachineImageResource]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list.metadata = {'url': "/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/publishers/{publisherName}/artifacttypes/vmimage/offers/{offer}/skus/{skus}/versions"} # type: ignore @distributed_trace def list_offers( self, location: str, publisher_name: str, **kwargs: Any ) -> List["_models.VirtualMachineImageResource"]: """Gets a list of virtual machine image offers for the specified location and publisher. :param location: The name of a supported Azure region. :type location: str :param publisher_name: A valid image publisher. :type publisher_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: list of VirtualMachineImageResource, or the result of cls(response) :rtype: list[~azure.mgmt.compute.v2018_10_01.models.VirtualMachineImageResource] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List["_models.VirtualMachineImageResource"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = kwargs.pop('api_version', "2018-10-01") # type: str request = build_list_offers_request( location=location, publisher_name=publisher_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.list_offers.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('[VirtualMachineImageResource]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list_offers.metadata = {'url': "/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/publishers/{publisherName}/artifacttypes/vmimage/offers"} # type: ignore @distributed_trace def list_publishers( self, location: str, **kwargs: Any ) -> List["_models.VirtualMachineImageResource"]: """Gets a list of virtual machine image publishers for the specified Azure location. :param location: The name of a supported Azure region. :type location: str :keyword callable cls: A custom type or function that will be passed the direct response :return: list of VirtualMachineImageResource, or the result of cls(response) :rtype: list[~azure.mgmt.compute.v2018_10_01.models.VirtualMachineImageResource] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List["_models.VirtualMachineImageResource"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = kwargs.pop('api_version', "2018-10-01") # type: str request = build_list_publishers_request( location=location, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.list_publishers.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('[VirtualMachineImageResource]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list_publishers.metadata = {'url': "/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/publishers"} # type: ignore @distributed_trace def list_skus( self, location: str, publisher_name: str, offer: str, **kwargs: Any ) -> List["_models.VirtualMachineImageResource"]: """Gets a list of virtual machine image SKUs for the specified location, publisher, and offer. :param location: The name of a supported Azure region. :type location: str :param publisher_name: A valid image publisher. :type publisher_name: str :param offer: A valid image publisher offer. :type offer: str :keyword callable cls: A custom type or function that will be passed the direct response :return: list of VirtualMachineImageResource, or the result of cls(response) :rtype: list[~azure.mgmt.compute.v2018_10_01.models.VirtualMachineImageResource] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List["_models.VirtualMachineImageResource"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = kwargs.pop('api_version', "2018-10-01") # type: str request = build_list_skus_request( location=location, publisher_name=publisher_name, offer=offer, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.list_skus.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('[VirtualMachineImageResource]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list_skus.metadata = {'url': "/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/publishers/{publisherName}/artifacttypes/vmimage/offers/{offer}/skus"} # type: ignore
py
1a32b6f71ddcf87bacce11b337f4f6b09170a71f
# Copyright 2013-2018 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RNp(RPackage): """This package provides a variety of nonparametric (and semiparametric) kernel methods that seamlessly handle a mix of continuous, unordered, and ordered factor data types. We would like to gratefully acknowledge support from the Natural Sciences and Engineering Research Council of Canada (NSERC:www.nserc.ca), the Social Sciences and Humanities Research Council of Canada (SSHRC:www.sshrc.ca), and the Shared Hierarchical Academic Research Computing Network (SHARCNET:www.sharcnet.ca).""" homepage = "https://github.com/JeffreyRacine/R-Package-np/" url = "https://cran.r-project.org/src/contrib/np_0.60-2.tar.gz" list_url = "https://cran.r-project.org/src/contrib/Archive/np" version('0.60-2', 'e094d52ddff7280272b41e6cb2c74389') depends_on('r-boot', type=('build', 'run')) depends_on('r-cubature', type=('build', 'run'))
py
1a32b74d8195f15f1dfd0539520f9a05fabf5eff
import pytest from mock import Mock, patch from service import get_maps @patch('service.map_service_common.get_all_maps') def test_get_maps(get_all_maps_mock): get_all_maps_mock.return_value = {} response = get_maps.lambda_handler({}, None) valid_response = {'statusCode': 200, 'body': '{"Maps": {}}', 'headers': {'Access-Control-Allow-Origin': '*'}} get_all_maps_mock.assert_called() assert response == valid_response @patch('service.map_service_common.get_all_maps') def test_get_maps_dynamo_failure(get_all_maps_mock): with pytest.raises(IOError): get_all_maps_mock.side_effect = Mock(side_effect=IOError('Dynamo Exception')) get_maps.lambda_handler({}, None)
py
1a32b761f54543810989b90cc761016884577745
import os import json import random META = "../../important_data/" N = 10000 def load_metadata(filename): print("Start reading " + filename) with open(os.path.join(META, filename)) as f: data = json.load(f) return data def remove_version_ending(arxiv_id): return arxiv_id.rsplit("v", 1)[0] def format_name_to_id(name): return ''.join(name.split()).lower() def path_to_id(name): """ Convert filepath name of ArXiv file to ArXiv ID """ if '.' in name: # new ID return name split = name.split("_") return "/".join(split) valid_aids = set(list(map(remove_version_ending, load_metadata("sampled_aids_100k.json")))) arxiv_metadata = load_metadata("arxiv_id_to_doi_title.json") # Get ground truth print("Get Ground truth") # Filter mag data to only include ID from the sampled 100k and which have an DOI mag_gt_overall = {key: value for key, value in load_metadata("aid_to_ref_magids.json").items() if ((key in valid_aids) and (arxiv_metadata[key][0]))} # Add empty references for key in load_metadata("aids_without_ref.json"): if (key in valid_aids) and (arxiv_metadata[key][0]): mag_gt_overall[key] = [] # Sample 10k random.seed("Random Seed for similar results upon rerunning the code") gt_keys = set(random.sample(list(mag_gt_overall.keys()), N)) # Build sampled_gt mag_data = load_metadata("magid_to_data.json") # Get (title,arxiv_id) for all references entries by MAG data gt_aid_to_data = {key: [(mag_data[ref_mag_id][2], mag_data[ref_mag_id][3]) for ref_mag_id in mag_gt_overall[key]] for key in gt_keys} gt_len = len(gt_aid_to_data) gt_overall_references = sum([len(value) for key, value in gt_aid_to_data.items()]) # Get Bierbaum Work print("Get Bierbaum data") bierbaum_overall = load_metadata("merged_internal-citations.json") bierbaum_compare_with_version = {key: value for key, value in bierbaum_overall.items() if remove_version_ending(key) in gt_keys} bierbaum_compare = {} for key, value in bierbaum_compare_with_version.items(): aid_without_version = remove_version_ending(key) arxiv_citations_without_version = [remove_version_ending(tmp_aid) for tmp_aid in value] bierbaum_compare[aid_without_version] = arxiv_citations_without_version # Compare Bierbaum Work print("Compare Bierbaum data") bb_len = len(bierbaum_compare) bb_overall_references = sum([len(value) for key, value in bierbaum_compare.items()]) bb_hit = 0 bb_miss = 0 bb_self = 0 # Compare based only arxiv IDs as bierbaum's work only has arxiv IDs arxiv_metadata_keys = set(arxiv_metadata.keys()) for arxiv_id, references in bierbaum_compare.items(): # Get values of Ground truth gt_references = gt_aid_to_data[arxiv_id] gt_arxiv_ids = set([data[1] for data in gt_references if data[1]]) gt_titles = set([format_name_to_id(data[0]) for data in gt_references]) # Check compliance for ref_aid in references: # Skip in case of self reference if ref_aid == arxiv_id: bb_self += 1 continue if ref_aid in gt_arxiv_ids: bb_hit += 1 continue if (ref_aid in arxiv_metadata_keys) and (format_name_to_id(arxiv_metadata[ref_aid][1]) in gt_titles): bb_hit += 1 continue # Unable to match the reference found by bierbaum to a reference in the ground truth bb_miss += 1 # Compare parser results print("Get Parser data") parsed_100k = load_metadata("parsed_sampled_100k.json") parsed_sampled_without_version = {} for key, p_references in parsed_100k.items(): # Remove version aid_no_version = remove_version_ending(key) # Make _ to / as its coming from file names aid_fixed = path_to_id(aid_no_version) if aid_fixed in gt_keys: parsed_sampled_without_version[aid_fixed] = [format_name_to_id(ref["title"]) for ref in p_references] print("Compare Parser data") p_len = len(parsed_sampled_without_version) p_overall_references = sum([len(value) for key, value in parsed_sampled_without_version.items()]) p_hit = 0 p_miss = 0 p_self = 0 # Compare based only arxiv IDs as bierbaum's work only has arxiv IDs for arxiv_id, references in parsed_sampled_without_version.items(): # Get values of Ground truth gt_references = gt_aid_to_data[arxiv_id] gt_titles = set([format_name_to_id(data[0]) for data in gt_references]) # Check compliance for ref_title in references: # Skip in case of self reference if (arxiv_id in arxiv_metadata_keys) and (ref_title == format_name_to_id(arxiv_metadata[arxiv_id][1])): p_self += 1 continue if ref_title in gt_titles: p_hit += 1 continue # Unable to match the reference found by bierbaum to a reference in the ground truth p_miss += 1 print("\n[Ground Truth (GT) MAG] Entries: {}; Overall references {}".format(gt_len, gt_overall_references)) print(("[Bierbaum] Entries: {} (%-of-GT: {:.2%}); Overall references {} (%-of-GT: {:.2%}); " + "Found {} of GT references ({:.2%}). Found {} references not in GT (%-of-Bierbaum-Refs: {:.2%}). Self-references: {}").format( bb_len, bb_len / gt_len, bb_overall_references, bb_overall_references / gt_overall_references, bb_hit, bb_hit / gt_overall_references, bb_miss, bb_miss / bb_overall_references, bb_self) ) print(("[Parser] Entries: {} (%-of-GT: {:.2%}); Overall references {} (%-of-GT: {:.2%}); " + "Found {} of GT references ({:.2%}). Found {} references not in GT (%-of-Parser-Refs: {:.2%}). Self-references: {}").format( p_len, p_len / gt_len, p_overall_references, p_overall_references / gt_overall_references, p_hit, p_hit / gt_overall_references, p_miss, p_miss / p_overall_references, p_self) )
py
1a32b7c6c59975846de1a35c9d2df8c8d7fdbe06
# mininode.py - Bitcoin P2P network half-a-node # # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # This python code was modified from ArtForz' public domain half-a-node, as # found in the mini-node branch of http://github.com/jgarzik/pynode. # # NodeConn: an object which manages p2p connectivity to a bitcoin node # NodeConnCB: a base class that describes the interface for receiving # callbacks with network messages from a NodeConn # CBlock, CTransaction, CBlockHeader, CTxIn, CTxOut, etc....: # data structures that should map to corresponding structures in # bitcoin/primitives # msg_block, msg_tx, msg_headers, etc.: # data structures that represent network messages # ser_*, deser_*: functions that handle serialization/deserialization import struct import socket import asyncore import binascii import time import sys import random import cStringIO import hashlib from threading import RLock from threading import Thread import logging import copy from pyblake2 import blake2b from .equihash import ( gbp_basic, gbp_validate, hash_nonce, vcoin_person, ) OVERWINTER_PROTO_VERSION = 170003 BIP0031_VERSION = 60000 SPROUT_PROTO_VERSION = 170002 # past bip-31 for ping/pong SAPLING_PROTO_VERSION = 170006 MY_SUBVERSION = "/python-mininode-tester:0.0.1/" OVERWINTER_VERSION_GROUP_ID = 0x03C48270 MAX_INV_SZ = 50000 COIN = 100000000 # 1 zel in zatoshis # Keep our own socket map for asyncore, so that we can track disconnects # ourselves (to workaround an issue with closing an asyncore socket when # using select) mininode_socket_map = dict() # One lock for synchronizing all data access between the networking thread (see # NetworkThread below) and the thread running the test logic. For simplicity, # NodeConn acquires this lock whenever delivering a message to to a NodeConnCB, # and whenever adding anything to the send buffer (in send_message()). This # lock should be acquired in the thread running the test logic to synchronize # access to any data shared with the NodeConnCB or NodeConn. mininode_lock = RLock() # Serialization/deserialization tools def sha256(s): return hashlib.new('sha256', s).digest() def hash256(s): return sha256(sha256(s)) def deser_string(f): nit = struct.unpack("<B", f.read(1))[0] if nit == 253: nit = struct.unpack("<H", f.read(2))[0] elif nit == 254: nit = struct.unpack("<I", f.read(4))[0] elif nit == 255: nit = struct.unpack("<Q", f.read(8))[0] return f.read(nit) def ser_string(s): if len(s) < 253: return chr(len(s)) + s elif len(s) < 0x10000: return chr(253) + struct.pack("<H", len(s)) + s elif len(s) < 0x100000000L: return chr(254) + struct.pack("<I", len(s)) + s return chr(255) + struct.pack("<Q", len(s)) + s def deser_uint256(f): r = 0L for i in xrange(8): t = struct.unpack("<I", f.read(4))[0] r += t << (i * 32) return r def ser_uint256(u): rs = "" for i in xrange(8): rs += struct.pack("<I", u & 0xFFFFFFFFL) u >>= 32 return rs def uint256_from_str(s): r = 0L t = struct.unpack("<IIIIIIII", s[:32]) for i in xrange(8): r += t[i] << (i * 32) return r def uint256_from_compact(c): nbytes = (c >> 24) & 0xFF v = (c & 0xFFFFFFL) << (8 * (nbytes - 3)) return v def deser_vector(f, c): nit = struct.unpack("<B", f.read(1))[0] if nit == 253: nit = struct.unpack("<H", f.read(2))[0] elif nit == 254: nit = struct.unpack("<I", f.read(4))[0] elif nit == 255: nit = struct.unpack("<Q", f.read(8))[0] r = [] for i in xrange(nit): t = c() t.deserialize(f) r.append(t) return r def ser_vector(l): r = "" if len(l) < 253: r = chr(len(l)) elif len(l) < 0x10000: r = chr(253) + struct.pack("<H", len(l)) elif len(l) < 0x100000000L: r = chr(254) + struct.pack("<I", len(l)) else: r = chr(255) + struct.pack("<Q", len(l)) for i in l: r += i.serialize() return r def deser_uint256_vector(f): nit = struct.unpack("<B", f.read(1))[0] if nit == 253: nit = struct.unpack("<H", f.read(2))[0] elif nit == 254: nit = struct.unpack("<I", f.read(4))[0] elif nit == 255: nit = struct.unpack("<Q", f.read(8))[0] r = [] for i in xrange(nit): t = deser_uint256(f) r.append(t) return r def ser_uint256_vector(l): r = "" if len(l) < 253: r = chr(len(l)) elif len(l) < 0x10000: r = chr(253) + struct.pack("<H", len(l)) elif len(l) < 0x100000000L: r = chr(254) + struct.pack("<I", len(l)) else: r = chr(255) + struct.pack("<Q", len(l)) for i in l: r += ser_uint256(i) return r def deser_string_vector(f): nit = struct.unpack("<B", f.read(1))[0] if nit == 253: nit = struct.unpack("<H", f.read(2))[0] elif nit == 254: nit = struct.unpack("<I", f.read(4))[0] elif nit == 255: nit = struct.unpack("<Q", f.read(8))[0] r = [] for i in xrange(nit): t = deser_string(f) r.append(t) return r def ser_string_vector(l): r = "" if len(l) < 253: r = chr(len(l)) elif len(l) < 0x10000: r = chr(253) + struct.pack("<H", len(l)) elif len(l) < 0x100000000L: r = chr(254) + struct.pack("<I", len(l)) else: r = chr(255) + struct.pack("<Q", len(l)) for sv in l: r += ser_string(sv) return r def deser_int_vector(f): nit = struct.unpack("<B", f.read(1))[0] if nit == 253: nit = struct.unpack("<H", f.read(2))[0] elif nit == 254: nit = struct.unpack("<I", f.read(4))[0] elif nit == 255: nit = struct.unpack("<Q", f.read(8))[0] r = [] for i in xrange(nit): t = struct.unpack("<i", f.read(4))[0] r.append(t) return r def ser_int_vector(l): r = "" if len(l) < 253: r = chr(len(l)) elif len(l) < 0x10000: r = chr(253) + struct.pack("<H", len(l)) elif len(l) < 0x100000000L: r = chr(254) + struct.pack("<I", len(l)) else: r = chr(255) + struct.pack("<Q", len(l)) for i in l: r += struct.pack("<i", i) return r def deser_char_vector(f): nit = struct.unpack("<B", f.read(1))[0] if nit == 253: nit = struct.unpack("<H", f.read(2))[0] elif nit == 254: nit = struct.unpack("<I", f.read(4))[0] elif nit == 255: nit = struct.unpack("<Q", f.read(8))[0] r = [] for i in xrange(nit): t = struct.unpack("<B", f.read(1))[0] r.append(t) return r def ser_char_vector(l): r = "" if len(l) < 253: r = chr(len(l)) elif len(l) < 0x10000: r = chr(253) + struct.pack("<H", len(l)) elif len(l) < 0x100000000L: r = chr(254) + struct.pack("<I", len(l)) else: r = chr(255) + struct.pack("<Q", len(l)) for i in l: r += chr(i) return r # Objects that map to bitcoind objects, which can be serialized/deserialized class CAddress(object): def __init__(self): self.nServices = 1 self.pchReserved = "\x00" * 10 + "\xff" * 2 self.ip = "0.0.0.0" self.port = 0 def deserialize(self, f): self.nServices = struct.unpack("<Q", f.read(8))[0] self.pchReserved = f.read(12) self.ip = socket.inet_ntoa(f.read(4)) self.port = struct.unpack(">H", f.read(2))[0] def serialize(self): r = "" r += struct.pack("<Q", self.nServices) r += self.pchReserved r += socket.inet_aton(self.ip) r += struct.pack(">H", self.port) return r def __repr__(self): return "CAddress(nServices=%i ip=%s port=%i)" % (self.nServices, self.ip, self.port) class CInv(object): typemap = { 0: "Error", 1: "TX", 2: "Block"} def __init__(self, t=0, h=0L): self.type = t self.hash = h def deserialize(self, f): self.type = struct.unpack("<i", f.read(4))[0] self.hash = deser_uint256(f) def serialize(self): r = "" r += struct.pack("<i", self.type) r += ser_uint256(self.hash) return r def __repr__(self): return "CInv(type=%s hash=%064x)" \ % (self.typemap[self.type], self.hash) class CBlockLocator(object): def __init__(self): self.nVersion = SPROUT_PROTO_VERSION self.vHave = [] def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.vHave = deser_uint256_vector(f) def serialize(self): r = "" r += struct.pack("<i", self.nVersion) r += ser_uint256_vector(self.vHave) return r def __repr__(self): return "CBlockLocator(nVersion=%i vHave=%s)" \ % (self.nVersion, repr(self.vHave)) G1_PREFIX_MASK = 0x02 G2_PREFIX_MASK = 0x0a class ZCProof(object): def __init__(self): self.g_A = None self.g_A_prime = None self.g_B = None self.g_B_prime = None self.g_C = None self.g_C_prime = None self.g_K = None self.g_H = None def deserialize(self, f): def deser_g1(self, f): leadingByte = struct.unpack("<B", f.read(1))[0] return { 'y_lsb': leadingByte & 1, 'x': f.read(32), } def deser_g2(self, f): leadingByte = struct.unpack("<B", f.read(1))[0] return { 'y_gt': leadingByte & 1, 'x': f.read(64), } self.g_A = deser_g1(f) self.g_A_prime = deser_g1(f) self.g_B = deser_g2(f) self.g_B_prime = deser_g1(f) self.g_C = deser_g1(f) self.g_C_prime = deser_g1(f) self.g_K = deser_g1(f) self.g_H = deser_g1(f) def serialize(self): def ser_g1(self, p): return chr(G1_PREFIX_MASK | p['y_lsb']) + p['x'] def ser_g2(self, p): return chr(G2_PREFIX_MASK | p['y_gt']) + p['x'] r = "" r += ser_g1(self.g_A) r += ser_g1(self.g_A_prime) r += ser_g2(self.g_B) r += ser_g1(self.g_B_prime) r += ser_g1(self.g_C) r += ser_g1(self.g_C_prime) r += ser_g1(self.g_K) r += ser_g1(self.g_H) return r def __repr__(self): return "ZCProof(g_A=%s g_A_prime=%s g_B=%s g_B_prime=%s g_C=%s g_C_prime=%s g_K=%s g_H=%s)" \ % (repr(self.g_A), repr(self.g_A_prime), repr(self.g_B), repr(self.g_B_prime), repr(self.g_C), repr(self.g_C_prime), repr(self.g_K), repr(self.g_H)) ZC_NUM_JS_INPUTS = 2 ZC_NUM_JS_OUTPUTS = 2 ZC_NOTEPLAINTEXT_LEADING = 1 ZC_V_SIZE = 8 ZC_RHO_SIZE = 32 ZC_R_SIZE = 32 ZC_MEMO_SIZE = 512 ZC_NOTEPLAINTEXT_SIZE = ( ZC_NOTEPLAINTEXT_LEADING + ZC_V_SIZE + ZC_RHO_SIZE + ZC_R_SIZE + ZC_MEMO_SIZE ) NOTEENCRYPTION_AUTH_BYTES = 16 ZC_NOTECIPHERTEXT_SIZE = ( ZC_NOTEPLAINTEXT_SIZE + NOTEENCRYPTION_AUTH_BYTES ) class JSDescription(object): def __init__(self): self.vpub_old = 0 self.vpub_new = 0 self.anchor = 0 self.nullifiers = [0] * ZC_NUM_JS_INPUTS self.commitments = [0] * ZC_NUM_JS_OUTPUTS self.onetimePubKey = 0 self.randomSeed = 0 self.macs = [0] * ZC_NUM_JS_INPUTS self.proof = None self.ciphertexts = [None] * ZC_NUM_JS_OUTPUTS def deserialize(self, f): self.vpub_old = struct.unpack("<q", f.read(8))[0] self.vpub_new = struct.unpack("<q", f.read(8))[0] self.anchor = deser_uint256(f) self.nullifiers = [] for i in range(ZC_NUM_JS_INPUTS): self.nullifiers.append(deser_uint256(f)) self.commitments = [] for i in range(ZC_NUM_JS_OUTPUTS): self.commitments.append(deser_uint256(f)) self.onetimePubKey = deser_uint256(f) self.randomSeed = deser_uint256(f) self.macs = [] for i in range(ZC_NUM_JS_INPUTS): self.macs.append(deser_uint256(f)) self.proof = ZCProof() self.proof.deserialize(f) self.ciphertexts = [] for i in range(ZC_NUM_JS_OUTPUTS): self.ciphertexts.append(f.read(ZC_NOTECIPHERTEXT_SIZE)) def serialize(self): r = "" r += struct.pack("<q", self.vpub_old) r += struct.pack("<q", self.vpub_new) r += ser_uint256(self.anchor) for i in range(ZC_NUM_JS_INPUTS): r += ser_uint256(self.nullifiers[i]) for i in range(ZC_NUM_JS_OUTPUTS): r += ser_uint256(self.commitments[i]) r += ser_uint256(self.onetimePubKey) r += ser_uint256(self.randomSeed) for i in range(ZC_NUM_JS_INPUTS): r += ser_uint256(self.macs[i]) r += self.proof.serialize() for i in range(ZC_NUM_JS_OUTPUTS): r += ser_uint256(self.ciphertexts[i]) return r def __repr__(self): return "JSDescription(vpub_old=%i.%08i vpub_new=%i.%08i anchor=%064x onetimePubKey=%064x randomSeed=%064x proof=%s)" \ % (self.vpub_old, self.vpub_new, self.anchor, self.onetimePubKey, self.randomSeed, repr(self.proof)) class COutPoint(object): def __init__(self, hash=0, n=0): self.hash = hash self.n = n def deserialize(self, f): self.hash = deser_uint256(f) self.n = struct.unpack("<I", f.read(4))[0] def serialize(self): r = "" r += ser_uint256(self.hash) r += struct.pack("<I", self.n) return r def __repr__(self): return "COutPoint(hash=%064x n=%i)" % (self.hash, self.n) class CTxIn(object): def __init__(self, outpoint=None, scriptSig="", nSequence=0): if outpoint is None: self.prevout = COutPoint() else: self.prevout = outpoint self.scriptSig = scriptSig self.nSequence = nSequence def deserialize(self, f): self.prevout = COutPoint() self.prevout.deserialize(f) self.scriptSig = deser_string(f) self.nSequence = struct.unpack("<I", f.read(4))[0] def serialize(self): r = "" r += self.prevout.serialize() r += ser_string(self.scriptSig) r += struct.pack("<I", self.nSequence) return r def __repr__(self): return "CTxIn(prevout=%s scriptSig=%s nSequence=%i)" \ % (repr(self.prevout), binascii.hexlify(self.scriptSig), self.nSequence) class CTxOut(object): def __init__(self, nValue=0, scriptPubKey=""): self.nValue = nValue self.scriptPubKey = scriptPubKey def deserialize(self, f): self.nValue = struct.unpack("<q", f.read(8))[0] self.scriptPubKey = deser_string(f) def serialize(self): r = "" r += struct.pack("<q", self.nValue) r += ser_string(self.scriptPubKey) return r def __repr__(self): return "CTxOut(nValue=%i.%08i scriptPubKey=%s)" \ % (self.nValue // 100000000, self.nValue % 100000000, binascii.hexlify(self.scriptPubKey)) class CTransaction(object): def __init__(self, tx=None): if tx is None: self.fOverwintered = False self.nVersion = 1 self.nVersionGroupId = 0 self.vin = [] self.vout = [] self.nLockTime = 0 self.nExpiryHeight = 0 self.vJoinSplit = [] self.joinSplitPubKey = None self.joinSplitSig = None self.sha256 = None self.hash = None else: self.fOverwintered = tx.fOverwintered self.nVersion = tx.nVersion self.nVersionGroupId = tx.nVersionGroupId self.vin = copy.deepcopy(tx.vin) self.vout = copy.deepcopy(tx.vout) self.nLockTime = tx.nLockTime self.nExpiryHeight = tx.nExpiryHeight self.vJoinSplit = copy.deepcopy(tx.vJoinSplit) self.joinSplitPubKey = tx.joinSplitPubKey self.joinSplitSig = tx.joinSplitSig self.sha256 = None self.hash = None def deserialize(self, f): header = struct.unpack("<I", f.read(4))[0] self.fOverwintered = bool(header >> 31) self.nVersion = header & 0x7FFFFFFF self.nVersionGroupId = (struct.unpack("<I", f.read(4))[0] if self.fOverwintered else 0) isOverwinterV3 = (self.fOverwintered and self.nVersionGroupId == OVERWINTER_VERSION_GROUP_ID and self.nVersion == 3) self.vin = deser_vector(f, CTxIn) self.vout = deser_vector(f, CTxOut) self.nLockTime = struct.unpack("<I", f.read(4))[0] if isOverwinterV3: self.nExpiryHeight = struct.unpack("<I", f.read(4))[0] if self.nVersion >= 2: self.vJoinSplit = deser_vector(f, JSDescription) if len(self.vJoinSplit) > 0: self.joinSplitPubKey = deser_uint256(f) self.joinSplitSig = f.read(64) self.sha256 = None self.hash = None def serialize(self): header = (int(self.fOverwintered)<<31) | self.nVersion isOverwinterV3 = (self.fOverwintered and self.nVersionGroupId == OVERWINTER_VERSION_GROUP_ID and self.nVersion == 3) r = "" r += struct.pack("<I", header) if self.fOverwintered: r += struct.pack("<I", self.nVersionGroupId) r += ser_vector(self.vin) r += ser_vector(self.vout) r += struct.pack("<I", self.nLockTime) if isOverwinterV3: r += struct.pack("<I", self.nExpiryHeight) if self.nVersion >= 2: r += ser_vector(self.vJoinSplit) if len(self.vJoinSplit) > 0: r += ser_uint256(self.joinSplitPubKey) r += self.joinSplitSig return r def rehash(self): self.sha256 = None self.calc_sha256() def calc_sha256(self): if self.sha256 is None: self.sha256 = uint256_from_str(hash256(self.serialize())) self.hash = hash256(self.serialize())[::-1].encode('hex_codec') def is_valid(self): self.calc_sha256() for tout in self.vout: if tout.nValue < 0 or tout.nValue > 21000000L * 100000000L: return False return True def __repr__(self): r = ("CTransaction(fOverwintered=%r nVersion=%i nVersionGroupId=0x%08x " "vin=%s vout=%s nLockTime=%i nExpiryHeight=%i" % (self.fOverwintered, self.nVersion, self.nVersionGroupId, repr(self.vin), repr(self.vout), self.nLockTime, self.nExpiryHeight)) if self.nVersion >= 2: r += " vJoinSplit=%s" % repr(self.vJoinSplit) if len(self.vJoinSplit) > 0: r += " joinSplitPubKey=%064x joinSplitSig=%064x" \ (self.joinSplitPubKey, self.joinSplitSig) r += ")" return r class CBlockHeader(object): def __init__(self, header=None): if header is None: self.set_null() else: self.nVersion = header.nVersion self.hashPrevBlock = header.hashPrevBlock self.hashMerkleRoot = header.hashMerkleRoot self.hashReserved = header.hashReserved self.nTime = header.nTime self.nBits = header.nBits self.nNonce = header.nNonce self.nSolution = header.nSolution self.sha256 = header.sha256 self.hash = header.hash self.calc_sha256() def set_null(self): self.nVersion = 4 self.hashPrevBlock = 0 self.hashMerkleRoot = 0 self.hashReserved = 0 self.nTime = 0 self.nBits = 0 self.nNonce = 0 self.nSolution = [] self.sha256 = None self.hash = None def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.hashPrevBlock = deser_uint256(f) self.hashMerkleRoot = deser_uint256(f) self.hashReserved = deser_uint256(f) self.nTime = struct.unpack("<I", f.read(4))[0] self.nBits = struct.unpack("<I", f.read(4))[0] self.nNonce = deser_uint256(f) self.nSolution = deser_char_vector(f) self.sha256 = None self.hash = None def serialize(self): r = "" r += struct.pack("<i", self.nVersion) r += ser_uint256(self.hashPrevBlock) r += ser_uint256(self.hashMerkleRoot) r += ser_uint256(self.hashReserved) r += struct.pack("<I", self.nTime) r += struct.pack("<I", self.nBits) r += ser_uint256(self.nNonce) r += ser_char_vector(self.nSolution) return r def calc_sha256(self): if self.sha256 is None: r = "" r += struct.pack("<i", self.nVersion) r += ser_uint256(self.hashPrevBlock) r += ser_uint256(self.hashMerkleRoot) r += ser_uint256(self.hashReserved) r += struct.pack("<I", self.nTime) r += struct.pack("<I", self.nBits) r += ser_uint256(self.nNonce) r += ser_char_vector(self.nSolution) self.sha256 = uint256_from_str(hash256(r)) self.hash = hash256(r)[::-1].encode('hex_codec') def rehash(self): self.sha256 = None self.calc_sha256() return self.sha256 def __repr__(self): return "CBlockHeader(nVersion=%i hashPrevBlock=%064x hashMerkleRoot=%064x hashReserved=%064x nTime=%s nBits=%08x nNonce=%064x nSolution=%s)" \ % (self.nVersion, self.hashPrevBlock, self.hashMerkleRoot, self.hashReserved, time.ctime(self.nTime), self.nBits, self.nNonce, repr(self.nSolution)) class CBlock(CBlockHeader): def __init__(self, header=None): super(CBlock, self).__init__(header) self.vtx = [] def deserialize(self, f): super(CBlock, self).deserialize(f) self.vtx = deser_vector(f, CTransaction) def serialize(self): r = "" r += super(CBlock, self).serialize() r += ser_vector(self.vtx) return r def calc_merkle_root(self): hashes = [] for tx in self.vtx: tx.calc_sha256() hashes.append(ser_uint256(tx.sha256)) while len(hashes) > 1: newhashes = [] for i in xrange(0, len(hashes), 2): i2 = min(i+1, len(hashes)-1) newhashes.append(hash256(hashes[i] + hashes[i2])) hashes = newhashes return uint256_from_str(hashes[0]) def is_valid(self, n=48, k=5): # H(I||... digest = blake2b(digest_size=(512/n)*n/8, person=vcoin_person(n, k)) digest.update(super(CBlock, self).serialize()[:108]) hash_nonce(digest, self.nNonce) if not gbp_validate(self.nSolution, digest, n, k): return False self.calc_sha256() target = uint256_from_compact(self.nBits) if self.sha256 > target: return False for tx in self.vtx: if not tx.is_valid(): return False if self.calc_merkle_root() != self.hashMerkleRoot: return False return True def solve(self, n=48, k=5): target = uint256_from_compact(self.nBits) # H(I||... digest = blake2b(digest_size=(512/n)*n/8, person=vcoin_person(n, k)) digest.update(super(CBlock, self).serialize()[:108]) self.nNonce = 0 while True: # H(I||V||... curr_digest = digest.copy() hash_nonce(curr_digest, self.nNonce) # (x_1, x_2, ...) = A(I, V, n, k) solns = gbp_basic(curr_digest, n, k) for soln in solns: assert(gbp_validate(curr_digest, soln, n, k)) self.nSolution = soln self.rehash() if self.sha256 <= target: return self.nNonce += 1 def __repr__(self): return "CBlock(nVersion=%i hashPrevBlock=%064x hashMerkleRoot=%064x hashReserved=%064x nTime=%s nBits=%08x nNonce=%064x nSolution=%s vtx=%s)" \ % (self.nVersion, self.hashPrevBlock, self.hashMerkleRoot, self.hashReserved, time.ctime(self.nTime), self.nBits, self.nNonce, repr(self.nSolution), repr(self.vtx)) class CUnsignedAlert(object): def __init__(self): self.nVersion = 1 self.nRelayUntil = 0 self.nExpiration = 0 self.nID = 0 self.nCancel = 0 self.setCancel = [] self.nMinVer = 0 self.nMaxVer = 0 self.setSubVer = [] self.nPriority = 0 self.strComment = "" self.strStatusBar = "" self.strReserved = "" def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.nRelayUntil = struct.unpack("<q", f.read(8))[0] self.nExpiration = struct.unpack("<q", f.read(8))[0] self.nID = struct.unpack("<i", f.read(4))[0] self.nCancel = struct.unpack("<i", f.read(4))[0] self.setCancel = deser_int_vector(f) self.nMinVer = struct.unpack("<i", f.read(4))[0] self.nMaxVer = struct.unpack("<i", f.read(4))[0] self.setSubVer = deser_string_vector(f) self.nPriority = struct.unpack("<i", f.read(4))[0] self.strComment = deser_string(f) self.strStatusBar = deser_string(f) self.strReserved = deser_string(f) def serialize(self): r = "" r += struct.pack("<i", self.nVersion) r += struct.pack("<q", self.nRelayUntil) r += struct.pack("<q", self.nExpiration) r += struct.pack("<i", self.nID) r += struct.pack("<i", self.nCancel) r += ser_int_vector(self.setCancel) r += struct.pack("<i", self.nMinVer) r += struct.pack("<i", self.nMaxVer) r += ser_string_vector(self.setSubVer) r += struct.pack("<i", self.nPriority) r += ser_string(self.strComment) r += ser_string(self.strStatusBar) r += ser_string(self.strReserved) return r def __repr__(self): return "CUnsignedAlert(nVersion %d, nRelayUntil %d, nExpiration %d, nID %d, nCancel %d, nMinVer %d, nMaxVer %d, nPriority %d, strComment %s, strStatusBar %s, strReserved %s)" \ % (self.nVersion, self.nRelayUntil, self.nExpiration, self.nID, self.nCancel, self.nMinVer, self.nMaxVer, self.nPriority, self.strComment, self.strStatusBar, self.strReserved) class CAlert(object): def __init__(self): self.vchMsg = "" self.vchSig = "" def deserialize(self, f): self.vchMsg = deser_string(f) self.vchSig = deser_string(f) def serialize(self): r = "" r += ser_string(self.vchMsg) r += ser_string(self.vchSig) return r def __repr__(self): return "CAlert(vchMsg.sz %d, vchSig.sz %d)" \ % (len(self.vchMsg), len(self.vchSig)) # Objects that correspond to messages on the wire class msg_version(object): command = "version" def __init__(self, protocol_version=SPROUT_PROTO_VERSION): self.nVersion = protocol_version self.nServices = 1 self.nTime = time.time() self.addrTo = CAddress() self.addrFrom = CAddress() self.nNonce = random.getrandbits(64) self.strSubVer = MY_SUBVERSION self.nStartingHeight = -1 def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] if self.nVersion == 10300: self.nVersion = 300 self.nServices = struct.unpack("<Q", f.read(8))[0] self.nTime = struct.unpack("<q", f.read(8))[0] self.addrTo = CAddress() self.addrTo.deserialize(f) if self.nVersion >= 106: self.addrFrom = CAddress() self.addrFrom.deserialize(f) self.nNonce = struct.unpack("<Q", f.read(8))[0] self.strSubVer = deser_string(f) if self.nVersion >= 209: self.nStartingHeight = struct.unpack("<i", f.read(4))[0] else: self.nStartingHeight = None else: self.addrFrom = None self.nNonce = None self.strSubVer = None self.nStartingHeight = None def serialize(self): r = "" r += struct.pack("<i", self.nVersion) r += struct.pack("<Q", self.nServices) r += struct.pack("<q", self.nTime) r += self.addrTo.serialize() r += self.addrFrom.serialize() r += struct.pack("<Q", self.nNonce) r += ser_string(self.strSubVer) r += struct.pack("<i", self.nStartingHeight) return r def __repr__(self): return 'msg_version(nVersion=%i nServices=%i nTime=%s addrTo=%s addrFrom=%s nNonce=0x%016X strSubVer=%s nStartingHeight=%i)' \ % (self.nVersion, self.nServices, time.ctime(self.nTime), repr(self.addrTo), repr(self.addrFrom), self.nNonce, self.strSubVer, self.nStartingHeight) class msg_verack(object): command = "verack" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return "" def __repr__(self): return "msg_verack()" class msg_addr(object): command = "addr" def __init__(self): self.addrs = [] def deserialize(self, f): self.addrs = deser_vector(f, CAddress) def serialize(self): return ser_vector(self.addrs) def __repr__(self): return "msg_addr(addrs=%s)" % (repr(self.addrs)) class msg_alert(object): command = "alert" def __init__(self): self.alert = CAlert() def deserialize(self, f): self.alert = CAlert() self.alert.deserialize(f) def serialize(self): r = "" r += self.alert.serialize() return r def __repr__(self): return "msg_alert(alert=%s)" % (repr(self.alert), ) class msg_inv(object): command = "inv" def __init__(self, inv=None): if inv is None: self.inv = [] else: self.inv = inv def deserialize(self, f): self.inv = deser_vector(f, CInv) def serialize(self): return ser_vector(self.inv) def __repr__(self): return "msg_inv(inv=%s)" % (repr(self.inv)) class msg_getdata(object): command = "getdata" def __init__(self): self.inv = [] def deserialize(self, f): self.inv = deser_vector(f, CInv) def serialize(self): return ser_vector(self.inv) def __repr__(self): return "msg_getdata(inv=%s)" % (repr(self.inv)) class msg_notfound(object): command = "notfound" def __init__(self): self.inv = [] def deserialize(self, f): self.inv = deser_vector(f, CInv) def serialize(self): return ser_vector(self.inv) def __repr__(self): return "msg_notfound(inv=%s)" % (repr(self.inv)) class msg_getblocks(object): command = "getblocks" def __init__(self): self.locator = CBlockLocator() self.hashstop = 0L def deserialize(self, f): self.locator = CBlockLocator() self.locator.deserialize(f) self.hashstop = deser_uint256(f) def serialize(self): r = "" r += self.locator.serialize() r += ser_uint256(self.hashstop) return r def __repr__(self): return "msg_getblocks(locator=%s hashstop=%064x)" \ % (repr(self.locator), self.hashstop) class msg_tx(object): command = "tx" def __init__(self, tx=CTransaction()): self.tx = tx def deserialize(self, f): self.tx.deserialize(f) def serialize(self): return self.tx.serialize() def __repr__(self): return "msg_tx(tx=%s)" % (repr(self.tx)) class msg_block(object): command = "block" def __init__(self, block=None): if block is None: self.block = CBlock() else: self.block = block def deserialize(self, f): self.block.deserialize(f) def serialize(self): return self.block.serialize() def __repr__(self): return "msg_block(block=%s)" % (repr(self.block)) class msg_getaddr(object): command = "getaddr" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return "" def __repr__(self): return "msg_getaddr()" class msg_ping_prebip31(object): command = "ping" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return "" def __repr__(self): return "msg_ping() (pre-bip31)" class msg_ping(object): command = "ping" def __init__(self, nonce=0L): self.nonce = nonce def deserialize(self, f): self.nonce = struct.unpack("<Q", f.read(8))[0] def serialize(self): r = "" r += struct.pack("<Q", self.nonce) return r def __repr__(self): return "msg_ping(nonce=%08x)" % self.nonce class msg_pong(object): command = "pong" def __init__(self, nonce=0L): self.nonce = nonce def deserialize(self, f): self.nonce = struct.unpack("<Q", f.read(8))[0] def serialize(self): r = "" r += struct.pack("<Q", self.nonce) return r def __repr__(self): return "msg_pong(nonce=%08x)" % self.nonce class msg_mempool(object): command = "mempool" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return "" def __repr__(self): return "msg_mempool()" # getheaders message has # number of entries # vector of hashes # hash_stop (hash of last desired block header, 0 to get as many as possible) class msg_getheaders(object): command = "getheaders" def __init__(self): self.locator = CBlockLocator() self.hashstop = 0L def deserialize(self, f): self.locator = CBlockLocator() self.locator.deserialize(f) self.hashstop = deser_uint256(f) def serialize(self): r = "" r += self.locator.serialize() r += ser_uint256(self.hashstop) return r def __repr__(self): return "msg_getheaders(locator=%s, stop=%064x)" \ % (repr(self.locator), self.hashstop) # headers message has # <count> <vector of block headers> class msg_headers(object): command = "headers" def __init__(self): self.headers = [] def deserialize(self, f): # comment in bitcoind indicates these should be deserialized as blocks blocks = deser_vector(f, CBlock) for x in blocks: self.headers.append(CBlockHeader(x)) def serialize(self): blocks = [CBlock(x) for x in self.headers] return ser_vector(blocks) def __repr__(self): return "msg_headers(headers=%s)" % repr(self.headers) class msg_reject(object): command = "reject" def __init__(self): self.message = "" self.code = "" self.reason = "" self.data = 0L def deserialize(self, f): self.message = deser_string(f) self.code = struct.unpack("<B", f.read(1))[0] self.reason = deser_string(f) if (self.message == "block" or self.message == "tx"): self.data = deser_uint256(f) def serialize(self): r = ser_string(self.message) r += struct.pack("<B", self.code) r += ser_string(self.reason) if (self.message == "block" or self.message == "tx"): r += ser_uint256(self.data) return r def __repr__(self): return "msg_reject: %s %d %s [%064x]" \ % (self.message, self.code, self.reason, self.data) class msg_filteradd(object): command = "filteradd" def __init__(self): self.data = "" def deserialize(self, f): self.data = deser_string(f) def serialize(self): return ser_string(self.data) def __repr__(self): return "msg_filteradd(data=%s)" % (repr(self.data)) class msg_filterclear(object): command = "filterclear" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return "" def __repr__(self): return "msg_filterclear()" # This is what a callback should look like for NodeConn # Reimplement the on_* functions to provide handling for events class NodeConnCB(object): def __init__(self): self.verack_received = False # Derived classes should call this function once to set the message map # which associates the derived classes' functions to incoming messages def create_callback_map(self): self.cbmap = { "version": self.on_version, "verack": self.on_verack, "addr": self.on_addr, "alert": self.on_alert, "inv": self.on_inv, "getdata": self.on_getdata, "notfound": self.on_notfound, "getblocks": self.on_getblocks, "tx": self.on_tx, "block": self.on_block, "getaddr": self.on_getaddr, "ping": self.on_ping, "pong": self.on_pong, "headers": self.on_headers, "getheaders": self.on_getheaders, "reject": self.on_reject, "mempool": self.on_mempool } def deliver(self, conn, message): with mininode_lock: try: self.cbmap[message.command](conn, message) except: print "ERROR delivering %s (%s)" % (repr(message), sys.exc_info()[0]) def on_version(self, conn, message): if message.nVersion >= 209: conn.send_message(msg_verack()) conn.ver_send = min(SPROUT_PROTO_VERSION, message.nVersion) if message.nVersion < 209: conn.ver_recv = conn.ver_send def on_verack(self, conn, message): conn.ver_recv = conn.ver_send self.verack_received = True def on_inv(self, conn, message): want = msg_getdata() for i in message.inv: if i.type != 0: want.inv.append(i) if len(want.inv): conn.send_message(want) def on_addr(self, conn, message): pass def on_alert(self, conn, message): pass def on_getdata(self, conn, message): pass def on_notfound(self, conn, message): pass def on_getblocks(self, conn, message): pass def on_tx(self, conn, message): pass def on_block(self, conn, message): pass def on_getaddr(self, conn, message): pass def on_headers(self, conn, message): pass def on_getheaders(self, conn, message): pass def on_ping(self, conn, message): if conn.ver_send > BIP0031_VERSION: conn.send_message(msg_pong(message.nonce)) def on_reject(self, conn, message): pass def on_close(self, conn): pass def on_mempool(self, conn): pass def on_pong(self, conn, message): pass # The actual NodeConn class # This class provides an interface for a p2p connection to a specified node class NodeConn(asyncore.dispatcher): messagemap = { "version": msg_version, "verack": msg_verack, "addr": msg_addr, "alert": msg_alert, "inv": msg_inv, "getdata": msg_getdata, "notfound": msg_notfound, "getblocks": msg_getblocks, "tx": msg_tx, "block": msg_block, "getaddr": msg_getaddr, "ping": msg_ping, "pong": msg_pong, "headers": msg_headers, "getheaders": msg_getheaders, "reject": msg_reject, "mempool": msg_mempool } MAGIC_BYTES = { "mainnet": "\x24\xe9\x27\x64", # mainnet "testnet3": "\xfa\x1a\xf9\xbf", # testnet3 "regtest": "\xaa\xe8\x3f\x5f" # regtest } def __init__(self, dstaddr, dstport, rpc, callback, net="regtest", protocol_version=SPROUT_PROTO_VERSION): asyncore.dispatcher.__init__(self, map=mininode_socket_map) self.log = logging.getLogger("NodeConn(%s:%d)" % (dstaddr, dstport)) self.dstaddr = dstaddr self.dstport = dstport self.create_socket(socket.AF_INET, socket.SOCK_STREAM) self.sendbuf = "" self.recvbuf = "" self.ver_send = 209 self.ver_recv = 209 self.last_sent = 0 self.state = "connecting" self.network = net self.cb = callback self.disconnect = False # stuff version msg into sendbuf vt = msg_version(protocol_version) vt.addrTo.ip = self.dstaddr vt.addrTo.port = self.dstport vt.addrFrom.ip = "0.0.0.0" vt.addrFrom.port = 0 self.send_message(vt, True) print 'MiniNode: Connecting to Bitcoin Node IP # ' + dstaddr + ':' \ + str(dstport) + ' using version ' + str(protocol_version) try: self.connect((dstaddr, dstport)) except: self.handle_close() self.rpc = rpc def show_debug_msg(self, msg): self.log.debug(msg) def handle_connect(self): self.show_debug_msg("MiniNode: Connected & Listening: \n") self.state = "connected" def handle_close(self): self.show_debug_msg("MiniNode: Closing Connection to %s:%d... " % (self.dstaddr, self.dstport)) self.state = "closed" self.recvbuf = "" self.sendbuf = "" try: self.close() except: pass self.cb.on_close(self) def handle_read(self): try: t = self.recv(8192) if len(t) > 0: self.recvbuf += t self.got_data() except: pass def readable(self): return True def writable(self): with mininode_lock: length = len(self.sendbuf) return (length > 0) def handle_write(self): with mininode_lock: try: sent = self.send(self.sendbuf) except: self.handle_close() return self.sendbuf = self.sendbuf[sent:] def got_data(self): while True: if len(self.recvbuf) < 4: return if self.recvbuf[:4] != self.MAGIC_BYTES[self.network]: raise ValueError("got garbage %s" % repr(self.recvbuf)) if self.ver_recv < 209: if len(self.recvbuf) < 4 + 12 + 4: return command = self.recvbuf[4:4+12].split("\x00", 1)[0] msglen = struct.unpack("<i", self.recvbuf[4+12:4+12+4])[0] checksum = None if len(self.recvbuf) < 4 + 12 + 4 + msglen: return msg = self.recvbuf[4+12+4:4+12+4+msglen] self.recvbuf = self.recvbuf[4+12+4+msglen:] else: if len(self.recvbuf) < 4 + 12 + 4 + 4: return command = self.recvbuf[4:4+12].split("\x00", 1)[0] msglen = struct.unpack("<i", self.recvbuf[4+12:4+12+4])[0] checksum = self.recvbuf[4+12+4:4+12+4+4] if len(self.recvbuf) < 4 + 12 + 4 + 4 + msglen: return msg = self.recvbuf[4+12+4+4:4+12+4+4+msglen] th = sha256(msg) h = sha256(th) if checksum != h[:4]: raise ValueError("got bad checksum " + repr(self.recvbuf)) self.recvbuf = self.recvbuf[4+12+4+4+msglen:] if command in self.messagemap: f = cStringIO.StringIO(msg) t = self.messagemap[command]() t.deserialize(f) self.got_message(t) else: self.show_debug_msg("Unknown command: '" + command + "' " + repr(msg)) def send_message(self, message, pushbuf=False): if self.state != "connected" and not pushbuf: return self.show_debug_msg("Send %s" % repr(message)) command = message.command data = message.serialize() tmsg = self.MAGIC_BYTES[self.network] tmsg += command tmsg += "\x00" * (12 - len(command)) tmsg += struct.pack("<I", len(data)) if self.ver_send >= 209: th = sha256(data) h = sha256(th) tmsg += h[:4] tmsg += data with mininode_lock: self.sendbuf += tmsg self.last_sent = time.time() def got_message(self, message): if message.command == "version": if message.nVersion <= BIP0031_VERSION: self.messagemap['ping'] = msg_ping_prebip31 if self.last_sent + 30 * 60 < time.time(): self.send_message(self.messagemap['ping']()) self.show_debug_msg("Recv %s" % repr(message)) self.cb.deliver(self, message) def disconnect_node(self): self.disconnect = True class NetworkThread(Thread): def run(self): while mininode_socket_map: # We check for whether to disconnect outside of the asyncore # loop to workaround the behavior of asyncore when using # select disconnected = [] for fd, obj in mininode_socket_map.items(): if obj.disconnect: disconnected.append(obj) [ obj.handle_close() for obj in disconnected ] asyncore.loop(0.1, use_poll=True, map=mininode_socket_map, count=1) # An exception we can raise if we detect a potential disconnect # (p2p or rpc) before the test is complete class EarlyDisconnectError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value)
py
1a32b7fbf3c450655f5a3bd5a4e6407bbe56c86d
# Copyright 2021 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from ament_cmake_python import find_packages_data class TestFindPackagesData(unittest.TestCase): def test_all_packages_data_is_found(self): data = find_packages_data() assert set(data) == {'foo', 'foo.bar', 'baz'} assert set(data['foo']) == {'data', 'data.txt'} assert set(data['foo.bar']) == { 'data.txt', os.path.join('resources', 'fizz.txt'), os.path.join('resources', 'buzz.txt') } assert set(data['baz']) == {'data.bin', 'data'} def test_whole_package_data_is_included(self): data = find_packages_data( include=('foo', 'foo.*')) assert set(data) == {'foo', 'foo.bar'} assert set(data['foo']) == {'data', 'data.txt'} assert set(data['foo.bar']) == { 'data.txt', os.path.join('resources', 'fizz.txt'), os.path.join('resources', 'buzz.txt') } def test_whole_package_data_is_excluded(self): data = find_packages_data( include=('foo', 'foo.*'), exclude=('foo.bar',)) assert set(data) == {'foo'} assert set(data['foo']) == {'data', 'data.txt'} def test_partial_package_data_is_excluded(self): data = find_packages_data( include=('foo', 'foo.*'), exclude={'foo.bar': ['resources/*']}) assert set(data) == {'foo', 'foo.bar'} assert set(data['foo']) == {'data', 'data.txt'} assert set(data['foo.bar']) == {'data.txt'} def test_partial_package_data_is_included(self): data = find_packages_data( include={ 'foo': ['*.txt'], 'foo.*': ['resources/*.txt'] }, ) assert set(data) == {'foo', 'foo.bar'} assert set(data['foo']) == {'data.txt'} assert set(data['foo.bar']) == { os.path.join('resources', 'fizz.txt'), os.path.join('resources', 'buzz.txt') } def test_nested_packages_data_is_found(self): data = find_packages_data(where='nested/pkgs') assert set(data) == {'fizz', 'fizz.buzz'} assert set(data['fizz']) == { os.path.join('data', 'buzz.bin') } assert set(data['fizz.buzz']) == {'data.txt'} if __name__ == '__main__': unittest.main()
py
1a32b86407ddaf240907aa9427ac218f5280be6d
"""Classes for providing extra information about an :class:`ihm.Entity`""" # Handle different naming of urllib in Python 2/3 try: import urllib.request as urllib2 except ImportError: import urllib2 import sys class Reference(object): """Base class for extra information about an :class:`ihm.Entity`. This class is not used directly; instead, use a subclass such as :class:`Sequence` or :class:`UniProtSequence`. These objects are then typically passed to the :class:`ihm.Entity` constructor.""" pass class Sequence(Reference): """Point to the sequence of an :class:`ihm.Entity` in a sequence database; convenience subclasses are provided for common sequence databases such as :class:`UniProtSequence`. These objects are typically passed to the :class:`ihm.Entity` constructor. See also :attr:`alignments` to describe the correspondence between the database and entity sequences. :param str db_name: The name of the database. :param str db_code: The name of the sequence in the database. :param str accession: The database accession. :param str sequence: The complete sequence, as a string of one-letter codes. :param str details: Longer text describing the sequence. """ def __init__(self, db_name, db_code, accession, sequence, details=None): self.db_name, self.db_code, self.accession = db_name, db_code, accession self.sequence, self.details = sequence, details #: All alignments between the reference and entity sequences, as #: :class:`Alignment` objects. If none are provided, a simple 1:1 #: alignment is assumed. self.alignments = [] def _get_alignments(self): if self.alignments: return self.alignments elif not hasattr(self, '_default_alignment'): self._default_alignment = Alignment() return [self._default_alignment] class UniProtSequence(Sequence): """Point to the sequence of an :class:`ihm.Entity` in UniProt. These objects are typically passed to the :class:`ihm.Entity` constructor. :param str db_code: The UniProt name (e.g. NUP84_YEAST) :param str accession: The UniProt accession (e.g. P52891) See :class:`Sequence` for a description of the remaining parameters. """ _db_name = 'UNP' def __init__(self, db_code, accession, sequence, details=None): super(UniProtSequence, self).__init__( self._db_name, db_code, accession, sequence, details) def __str__(self): return "<ihm.reference.UniProtSequence(%s)>" % self.accession @classmethod def from_accession(cls, accession): """Create :class:`UniProtSequence` from just an accession. This is done by querying the UniProt web API, so requires network access. :param str accession: The UniProt accession (e.g. P52891) """ # urlopen returns bytes if sys.version_info[0] >= 3: def decode(t): return t.decode('ascii') else: decode = lambda t: t url = 'https://www.uniprot.org/uniprot/%s.fasta' % accession with urllib2.urlopen(url) as fh: header = decode(fh.readline()) spl = header.split('|') if len(spl) < 3 or spl[0] != '>sp': raise ValueError("Cannot parse UniProt header %s" % header) cd = spl[2].split(None, 1) code = cd[0] details = cd[1].rstrip('\r\n') if len(cd) > 1 else None seq = decode(fh.read()).replace('\n', '') return cls(code, accession, seq, details) class Alignment(object): """A sequence range that aligns between the database and the entity. This describes part of the sequence in the sequence database (:class:`Sequence`) and in the :class:`ihm.Entity`. The two ranges must be the same length and have the same primary sequence (any differences must be described with :class:`SeqDif` objects). :param int db_begin: The first residue in the database sequence that is used (defaults to the entire sequence). :param int db_end: The last residue in the database sequence that is used (or None, the default, to use the entire sequence). :param int entity_begin: The first residue in the :class:`~ihm.Entity` sequence that is taken from the reference (defaults to the entire entity sequence). :param int entity_end: The last residue in the :class:`~ihm.Entity` sequence that is taken from the reference (or None, the default, to use the entire sequence). :param seq_dif: Single-point mutations made to the sequence. :type seq_dif: Sequence of :class:`SeqDif` objects. """ def __init__(self, db_begin=1, db_end=None, entity_begin=1, entity_end=None, seq_dif=[]): self.db_begin, self.db_end = db_begin, db_end self.entity_begin, self.entity_end = entity_begin, entity_end self.seq_dif = [] self.seq_dif.extend(seq_dif) class SeqDif(object): """Annotate a sequence difference between a reference and entity sequence. See :class:`Alignment`. :param int seq_id: The residue index in the entity sequence. :param db_monomer: The monomer type (as a :class:`~ihm.ChemComp` object) in the reference sequence. :type db_monomer: :class:`ihm.ChemComp` :param monomer: The monomer type (as a :class:`~ihm.ChemComp` object) in the entity sequence. :type monomer: :class:`ihm.ChemComp` :param str details: Descriptive text for the sequence difference. """ def __init__(self, seq_id, db_monomer, monomer, details=None): self.seq_id, self.db_monomer, self.monomer = seq_id, db_monomer, monomer self.details = details
py
1a32b87cdef7ae1f0c3b1478a5a2c17718f8525b
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import json import logging import socket import time import traceback from telemetry import decorators from telemetry.internal.backends.chrome_inspector import inspector_websocket from telemetry.internal.backends.chrome_inspector import websocket from tracing.trace_data import trace_data as trace_data_module class TracingUnsupportedException(Exception): pass class TracingTimeoutException(Exception): pass class TracingUnrecoverableException(Exception): pass class TracingHasNotRunException(Exception): pass class TracingUnexpectedResponseException(Exception): pass class ClockSyncResponseException(Exception): pass class _DevToolsStreamReader(object): def __init__(self, inspector_socket, stream_handle): self._inspector_websocket = inspector_socket self._handle = stream_handle self._trace_file_handle = None self._callback = None def Read(self, callback): # Do not allow the instance of this class to be reused, as # we only read data sequentially at the moment, so a stream # can only be read once. assert not self._callback self._trace_file_handle = trace_data_module.TraceFileHandle() self._trace_file_handle.Open() self._callback = callback self._ReadChunkFromStream() # The below is not a typo -- queue one extra read ahead to avoid latency. self._ReadChunkFromStream() def _ReadChunkFromStream(self): # Limit max block size to avoid fragmenting memory in sock.recv(), # (see https://github.com/liris/websocket-client/issues/163 for details) req = {'method': 'IO.read', 'params': { 'handle': self._handle, 'size': 32768}} self._inspector_websocket.AsyncRequest(req, self._GotChunkFromStream) def _GotChunkFromStream(self, response): # Quietly discard responses from reads queued ahead after EOF. if self._trace_file_handle is None: return if 'error' in response: raise TracingUnrecoverableException( 'Reading trace failed: %s' % response['error']['message']) result = response['result'] # Convert the trace data that's receive as UTF32 to its native encoding of # UTF8 in order to reduce its size. self._trace_file_handle.AppendTraceData(result['data'].encode('utf8')) if not result.get('eof', False): self._ReadChunkFromStream() return req = {'method': 'IO.close', 'params': {'handle': self._handle}} self._inspector_websocket.SendAndIgnoreResponse(req) self._trace_file_handle.Close() self._callback(self._trace_file_handle) self._trace_file_handle = None class TracingBackend(object): _TRACING_DOMAIN = 'Tracing' def __init__(self, inspector_socket, is_tracing_running=False, support_modern_devtools_tracing_start_api=False): self._inspector_websocket = inspector_socket self._inspector_websocket.RegisterDomain( self._TRACING_DOMAIN, self._NotificationHandler) self._is_tracing_running = is_tracing_running self._start_issued = False self._can_collect_data = False self._has_received_all_tracing_data = False self._support_modern_devtools_tracing_start_api = ( support_modern_devtools_tracing_start_api) self._trace_data_builder = None @property def is_tracing_running(self): return self._is_tracing_running def StartTracing(self, chrome_trace_config, timeout=10): """When first called, starts tracing, and returns True. If called during tracing, tracing is unchanged, and it returns False. """ if self.is_tracing_running: return False assert not self._can_collect_data, 'Data not collected from last trace.' # Reset collected tracing data from previous tracing calls. if not self.IsTracingSupported(): raise TracingUnsupportedException( 'Chrome tracing not supported for this app.') params = {'transferMode': 'ReturnAsStream'} if self._support_modern_devtools_tracing_start_api: params['traceConfig'] = ( chrome_trace_config.GetChromeTraceConfigForDevTools()) else: if chrome_trace_config.requires_modern_devtools_tracing_start_api: raise TracingUnsupportedException( 'Trace options require modern Tracing.start DevTools API, ' 'which is NOT supported by the browser') params['categories'], params['options'] = ( chrome_trace_config.GetChromeTraceCategoriesAndOptionsForDevTools()) req = {'method': 'Tracing.start', 'params': params} logging.info('Start Tracing Request: %r', req) response = self._inspector_websocket.SyncRequest(req, timeout) if 'error' in response: raise TracingUnexpectedResponseException( 'Inspector returned unexpected response for ' 'Tracing.start:\n' + json.dumps(response, indent=2)) self._is_tracing_running = True self._start_issued = True return True def RecordClockSyncMarker(self, sync_id): assert self.is_tracing_running, 'Tracing must be running to clock sync.' req = { 'method': 'Tracing.recordClockSyncMarker', 'params': { 'syncId': sync_id } } rc = self._inspector_websocket.SyncRequest(req, timeout=2) if 'error' in rc: raise ClockSyncResponseException(rc['error']['message']) def StopTracing(self): """Stops tracing and pushes results to the supplied TraceDataBuilder. If this is called after tracing has been stopped, trace data from the last tracing run is pushed. """ if not self.is_tracing_running: raise TracingHasNotRunException() else: if not self._start_issued: # Tracing is running but start was not issued so, startup tracing must # be in effect. Issue another Tracing.start to update the transfer mode. # TODO(caseq): get rid of it when streaming is the default. params = { 'transferMode': 'ReturnAsStream', 'traceConfig': {} } req = {'method': 'Tracing.start', 'params': params} self._inspector_websocket.SendAndIgnoreResponse(req) req = {'method': 'Tracing.end'} self._inspector_websocket.SendAndIgnoreResponse(req) self._is_tracing_running = False self._start_issued = False self._can_collect_data = True def DumpMemory(self, timeout=30): """Dumps memory. Returns: GUID of the generated dump if successful, None otherwise. Raises: TracingTimeoutException: If more than |timeout| seconds has passed since the last time any data is received. TracingUnrecoverableException: If there is a websocket error. TracingUnexpectedResponseException: If the response contains an error or does not contain the expected result. """ request = { 'method': 'Tracing.requestMemoryDump' } try: response = self._inspector_websocket.SyncRequest(request, timeout) except websocket.WebSocketTimeoutException: raise TracingTimeoutException( 'Exception raised while sending a Tracing.requestMemoryDump ' 'request:\n' + traceback.format_exc()) except (socket.error, websocket.WebSocketException, inspector_websocket.WebSocketDisconnected): raise TracingUnrecoverableException( 'Exception raised while sending a Tracing.requestMemoryDump ' 'request:\n' + traceback.format_exc()) if ('error' in response or 'result' not in response or 'success' not in response['result'] or 'dumpGuid' not in response['result']): raise TracingUnexpectedResponseException( 'Inspector returned unexpected response for ' 'Tracing.requestMemoryDump:\n' + json.dumps(response, indent=2)) result = response['result'] return result['dumpGuid'] if result['success'] else None def CollectTraceData(self, trace_data_builder, timeout=60): if not self._can_collect_data: raise Exception('Cannot collect before tracing is finished.') self._CollectTracingData(trace_data_builder, timeout) self._can_collect_data = False def _CollectTracingData(self, trace_data_builder, timeout): """Collects tracing data. Assumes that Tracing.end has already been sent. Args: trace_data_builder: An instance of TraceDataBuilder to put results into. timeout: The timeout in seconds. Raises: TracingTimeoutException: If more than |timeout| seconds has passed since the last time any data is received. TracingUnrecoverableException: If there is a websocket error. """ self._has_received_all_tracing_data = False start_time = time.time() self._trace_data_builder = trace_data_builder try: while True: try: self._inspector_websocket.DispatchNotifications(timeout) start_time = time.time() except websocket.WebSocketTimeoutException: pass except (socket.error, websocket.WebSocketException): raise TracingUnrecoverableException( 'Exception raised while collecting tracing data:\n' + traceback.format_exc()) if self._has_received_all_tracing_data: break elapsed_time = time.time() - start_time if elapsed_time > timeout: raise TracingTimeoutException( 'Only received partial trace data due to timeout after %s ' 'seconds. If the trace data is big, you may want to increase ' 'the timeout amount.' % elapsed_time) finally: self._trace_data_builder = None def _NotificationHandler(self, res): if 'Tracing.dataCollected' == res.get('method'): value = res.get('params', {}).get('value') self._trace_data_builder.AddTraceFor( trace_data_module.CHROME_TRACE_PART, value) elif 'Tracing.tracingComplete' == res.get('method'): stream_handle = res.get('params', {}).get('stream') if not stream_handle: self._has_received_all_tracing_data = True return reader = _DevToolsStreamReader(self._inspector_websocket, stream_handle) reader.Read(self._ReceivedAllTraceDataFromStream) def _ReceivedAllTraceDataFromStream(self, trace_handle): self._trace_data_builder.AddTraceFor( trace_data_module.CHROME_TRACE_PART, trace_handle) self._has_received_all_tracing_data = True def Close(self): self._inspector_websocket.UnregisterDomain(self._TRACING_DOMAIN) self._inspector_websocket = None @decorators.Cache def IsTracingSupported(self): req = {'method': 'Tracing.hasCompleted'} res = self._inspector_websocket.SyncRequest(req, timeout=10) return not res.get('response')
py
1a32b88261831a9f0445bf22acab03b4c2f98915
import graphene from graphql_jwt.exceptions import PermissionDenied from ...core.permissions import WebhookPermissions from ...webhook import models, payloads from ...webhook.event_types import WebhookEventType from ..utils import sort_queryset from .sorters import WebhookSortField from .types import Webhook, WebhookEvent def resolve_webhooks(info, sort_by=None, **_kwargs): service_account = info.context.service_account if service_account: qs = models.Webhook.objects.filter(service_account=service_account) else: user = info.context.user if not user.has_perm(WebhookPermissions.MANAGE_WEBHOOKS): raise PermissionDenied() qs = models.Webhook.objects.all() return sort_queryset(qs, sort_by, WebhookSortField) def resolve_webhook(info, webhook_id): service_account = info.context.service_account if service_account: _, webhook_id = graphene.Node.from_global_id(webhook_id) return service_account.webhooks.filter(id=webhook_id).first() user = info.context.user if user.has_perm(WebhookPermissions.MANAGE_WEBHOOKS): return graphene.Node.get_node_from_global_id(info, webhook_id, Webhook) raise PermissionDenied() def resolve_webhook_events(): return [ WebhookEvent(event_type=event_type[0]) for event_type in WebhookEventType.CHOICES ] def resolve_sample_payload(info, event_name): service_account = info.context.service_account required_permission = WebhookEventType.PERMISSIONS.get(event_name) if required_permission: if service_account and service_account.has_perm(required_permission): return payloads.generate_sample_payload(event_name) if info.context.user.has_perm(required_permission): return payloads.generate_sample_payload(event_name) raise PermissionDenied()
py
1a32b9a3eb0199af17fdd77d79acc6e8732721ef
import factory USERS = 1000 GROUPS = 5 EVENTS = 5 NOTIFICATIONS = 5000 OCCURENCES = 2000 AUDITLOGS = 1000 if __name__ == '__main__': # noqa: C901 import os import random from django.core.wsgi import get_wsgi_application os.environ['DJANGO_SETTINGS_MODULE'] = 'bitcaster.config.settings' application = get_wsgi_application() from bitcaster.models import Organization, Subscription, Notification, Event from bitcaster.utils.tests import factories org = Organization.objects.first() app = factories.ApplicationFactory(organization=org, name='Dummy1') users = [] for i in range(0, USERS): print('.', end='') user = factories.UserFactory(email='user%[email protected]' % i) org_member = factories.OrganizationMemberFactory(organization=org, user=user) users.append(org_member) factories.ApplicationMemberFactory(application=app, org_member=org_member) assert Organization.objects.count() == 1 if not users: users = list(org.memberships.all()) channels = list(org.channels.all()) for i in range(0, GROUPS): group = factories.OrganizationGroupFactory(organization=org, name='Group-%s' % i) assert Organization.objects.count() == 1 if not group.members.exists(): members = random.sample(users, random.randint(5, 15)) for m in members: group.members.add(m) for i in range(0, EVENTS): event = factories.EventFactory(application=app, enabled=True, name='Event-%s' % i) assert Organization.objects.count() == 1 chs = random.sample(channels, random.randint(1, 5)) for ch in chs: event.channels.add(ch) factories.MessageFactory(event=event, channel=ch, body='test') members = random.sample(users, random.randint(5, 300)) for m in members: ch = random.choice(chs) factories.AddressFactory(user=m.user, address='123') assert Organization.objects.count() == 1 factories.SubscriptionFactory(subscriber=m.user, trigger_by=m.user, channel=ch, event=event) assert Organization.objects.count() == 1 fld = Notification._meta.get_field('timestamp') fld.auto_now_add = False Notification.timestamp.auto_now_add = False events = list(app.events.all()) subscriptions = list(Subscription.objects.filter(event__application=app)) # Notification Log for i in range(NOTIFICATIONS): subscription = random.choice(subscriptions) factories.NotificationFactory(id=i, application=app, event=subscription.event, subscription=subscription, channel=subscription.channel) assert Organization.objects.count() == 1 # Notification Log for i in range(OCCURENCES): factories.OccurenceFactory(id=i, organization=org, application=app, event=factory.LazyAttribute(lambda a: Event.objects.order_by('?').first())) # Audit Log for i in range(AUDITLOGS): e = factories.AuditLogEntryFactory(id=i, organization=org, )
py
1a32bba38cd5789f71c42d6b2e9589368c27d81d
from rpaths import Path import subprocess import unittest class TestTimeDelta(unittest.TestCase): def call_function(self, delta): p = subprocess.Popen( ['/bin/sh', '-s', '%d' % delta], cwd=(Path(__file__).parent.parent / 'tej/remotes/default/commands').path, stdin=subprocess.PIPE, stdout=subprocess.PIPE) stdout, stderr = p.communicate(b""" #!/bin/sh set -e . "lib/utils.sh" format_timedelta "$1" """) self.assertEqual(p.wait(), 0) return stdout def test_format(self): self.assertEqual(self.call_function(0), b'0:00\n') self.assertEqual(self.call_function(4), b'0:04\n') self.assertEqual(self.call_function(42), b'0:42\n') self.assertEqual(self.call_function(120), b'2:00\n') self.assertEqual(self.call_function(124), b'2:04\n') self.assertEqual(self.call_function(154), b'2:34\n') self.assertEqual(self.call_function(3599), b'59:59\n') self.assertEqual(self.call_function(3600), b'1:00:00\n') self.assertEqual(self.call_function(3602), b'1:00:02\n') self.assertEqual(self.call_function(3660), b'1:01:00\n') self.assertEqual(self.call_function(5400), b'1:30:00\n') self.assertEqual(self.call_function(3722), b'1:02:02\n') self.assertEqual(self.call_function(3762), b'1:02:42\n') self.assertEqual(self.call_function(9762), b'2:42:42\n') self.assertEqual(self.call_function(25200), b'7:00:00\n')
py
1a32bbf503ec88197be787ac4bcbc6141c6208a1
#!/usr/bin/env python # Copyright (C) 2013 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from hashlib import sha1 from optparse import OptionParser from os import link, makedirs, path, remove import shutil from subprocess import check_call, CalledProcessError from sys import stderr from util import hash_file, resolve_url from zipfile import ZipFile, BadZipfile, LargeZipFile GERRIT_HOME = path.expanduser('~/.gerritcodereview') # TODO(davido): Rename in bazel-cache CACHE_DIR = path.join(GERRIT_HOME, 'buck-cache', 'downloaded-artifacts') LOCAL_PROPERTIES = 'local.properties' def safe_mkdirs(d): if path.isdir(d): return try: makedirs(d) except OSError as err: if not path.isdir(d): raise err def download_properties(root_dir): """ Get the download properties. First tries to find the properties file in the given root directory, and if not found there, tries in the Gerrit settings folder in the user's home directory. Returns a set of download properties, which may be empty. """ p = {} local_prop = path.join(root_dir, LOCAL_PROPERTIES) if not path.isfile(local_prop): local_prop = path.join(GERRIT_HOME, LOCAL_PROPERTIES) if path.isfile(local_prop): try: with open(local_prop) as fd: for line in fd: if line.startswith('download.'): d = [e.strip() for e in line.split('=', 1)] name, url = d[0], d[1] p[name[len('download.'):]] = url except OSError: pass return p def cache_entry(args): if args.v: h = args.v else: h = sha1(args.u.encode('utf-8')).hexdigest() name = '%s-%s' % (path.basename(args.o), h) return path.join(CACHE_DIR, name) opts = OptionParser() opts.add_option('-o', help='local output file') opts.add_option('-u', help='URL to download') opts.add_option('-v', help='expected content SHA-1') opts.add_option('-x', action='append', help='file to delete from ZIP') opts.add_option('--exclude_java_sources', action='store_true') opts.add_option('--unsign', action='store_true') args, _ = opts.parse_args() root_dir = args.o while root_dir and path.dirname(root_dir) != root_dir: root_dir, n = path.split(root_dir) if n == 'WORKSPACE': break redirects = download_properties(root_dir) cache_ent = cache_entry(args) src_url = resolve_url(args.u, redirects) if not path.exists(cache_ent): try: safe_mkdirs(path.dirname(cache_ent)) except OSError as err: print('error creating directory %s: %s' % (path.dirname(cache_ent), err), file=stderr) exit(1) print('Download %s' % src_url, file=stderr) try: check_call(['curl', '--proxy-anyauth', '-ksSfLo', cache_ent, src_url]) except OSError as err: print('could not invoke curl: %s\nis curl installed?' % err, file=stderr) exit(1) except CalledProcessError as err: print('error using curl: %s' % err, file=stderr) exit(1) if args.v: have = hash_file(sha1(), cache_ent).hexdigest() if args.v != have: print(( '%s:\n' + 'expected %s\n' + 'received %s\n') % (src_url, args.v, have), file=stderr) try: remove(cache_ent) except OSError as err: if path.exists(cache_ent): print('error removing %s: %s' % (cache_ent, err), file=stderr) exit(1) exclude = [] if args.x: exclude += args.x if args.exclude_java_sources: try: with ZipFile(cache_ent, 'r') as zf: for n in zf.namelist(): if n.endswith('.java'): exclude.append(n) except (BadZipfile, LargeZipFile) as err: print('error opening %s: %s' % (cache_ent, err), file=stderr) exit(1) if args.unsign: try: with ZipFile(cache_ent, 'r') as zf: for n in zf.namelist(): if (n.endswith('.RSA') or n.endswith('.SF') or n.endswith('.LIST')): exclude.append(n) except (BadZipfile, LargeZipFile) as err: print('error opening %s: %s' % (cache_ent, err), file=stderr) exit(1) safe_mkdirs(path.dirname(args.o)) if exclude: try: shutil.copyfile(cache_ent, args.o) except (shutil.Error, IOError) as err: print('error copying to %s: %s' % (args.o, err), file=stderr) exit(1) try: check_call(['zip', '-d', args.o] + exclude) except CalledProcessError as err: print('error removing files from zip: %s' % err, file=stderr) exit(1) else: try: link(cache_ent, args.o) except OSError as err: try: shutil.copyfile(cache_ent, args.o) except (shutil.Error, IOError) as err: print('error copying to %s: %s' % (args.o, err), file=stderr) exit(1)
py
1a32bc1be2a6f281a7b726d52e862e9032647ba8
# Testing the basic intent functionality of ONOS # TODO: Replace the CLI calls with REST API equivalents as they become available. # - May need to write functions in the onosrestdriver.py file to do this # TODO: Complete implementation of case 3000, 4000, and 6000 as REST API allows # -Currently there is no support in the REST API for Multi to Single and Single to Multi point intents # As such, these cases are incomplete and should not be enabled in the .params file import time import json class FUNCintentRest: def __init__( self ): self.default = '' def CASE1( self, main ): import time import imp import re """ - Construct tests variables - GIT ( optional ) - Checkout ONOS master branch - Pull latest ONOS code - Building ONOS ( optional ) - Install ONOS package - Build ONOS package """ main.case( "Constructing test variables and building ONOS package" ) main.step( "Constructing test variables" ) main.caseExplanation = "This test case is mainly for loading " +\ "from params file, and pull and build the " +\ " latest ONOS package" stepResult = main.FALSE # Test variables try: main.testOnDirectory = re.sub( "(/tests)$", "", main.testDir ) main.apps = main.params[ 'ENV' ][ 'cellApps' ] gitBranch = main.params[ 'GIT' ][ 'branch' ] main.dependencyPath = main.testOnDirectory + \ main.params[ 'DEPENDENCY' ][ 'path' ] main.topology = main.params[ 'DEPENDENCY' ][ 'topology' ] main.scale = ( main.params[ 'SCALE' ][ 'size' ] ).split( "," ) if main.ONOSbench.maxNodes: main.maxNodes = int( main.ONOSbench.maxNodes ) else: main.maxNodes = 0 wrapperFile1 = main.params[ 'DEPENDENCY' ][ 'wrapper1' ] wrapperFile2 = main.params[ 'DEPENDENCY' ][ 'wrapper2' ] wrapperFile3 = main.params[ 'DEPENDENCY' ][ 'wrapper3' ] main.startUpSleep = int( main.params[ 'SLEEP' ][ 'startup' ] ) main.checkIntentSleep = int( main.params[ 'SLEEP' ][ 'checkintent' ] ) main.removeIntentsleeo = int( main.params[ 'SLEEP' ][ 'removeintent' ] ) main.rerouteSleep = int( main.params[ 'SLEEP' ][ 'reroute' ] ) main.fwdSleep = int( main.params[ 'SLEEP' ][ 'fwd' ] ) main.addIntentSleep = int( main.params[ 'SLEEP' ][ 'addIntent' ] ) main.checkTopoAttempts = int( main.params[ 'SLEEP' ][ 'topoAttempts' ] ) gitPull = main.params[ 'GIT' ][ 'pull' ] main.numSwitch = int( main.params[ 'MININET' ][ 'switch' ] ) main.numLinks = int( main.params[ 'MININET' ][ 'links' ] ) main.cellData = {} # for creating cell file main.hostsData = {} main.CLIs = [] main.CLIs2 = [] main.ONOSip = [] main.scapyHostNames = main.params[ 'SCAPY' ][ 'HOSTNAMES' ].split( ',' ) main.scapyHosts = [] # List of scapy hosts for iterating main.assertReturnString = '' # Assembled assert return string main.ONOSip = main.ONOSbench.getOnosIps() print main.ONOSip # Assigning ONOS cli handles to a list try: for i in range( 1, main.maxNodes + 1 ): main.CLIs.append( getattr( main, 'ONOSrest' + str( i ) ) ) main.CLIs2.append( getattr( main, 'ONOScli' + str( i ) ) ) except AttributeError: main.log.warn( "A " + str( main.maxNodes ) + " node cluster " + "was defined in env variables, but only " + str( len( main.CLIs ) ) + " nodes were defined in the .topo file. " + "Using " + str( len( main.CLIs ) ) + " nodes for the test." ) # -- INIT SECTION, ONLY RUNS ONCE -- # main.startUp = imp.load_source( wrapperFile1, main.dependencyPath + wrapperFile1 + ".py" ) main.intentFunction = imp.load_source( wrapperFile2, main.dependencyPath + wrapperFile2 + ".py" ) main.topo = imp.load_source( wrapperFile3, main.dependencyPath + wrapperFile3 + ".py" ) copyResult1 = main.ONOSbench.scp( main.Mininet1, main.dependencyPath + main.topology, main.Mininet1.home + "custom/", direction="to" ) if main.CLIs and main.CLIs2: stepResult = main.TRUE else: main.log.error( "Did not properly created list of ONOS CLI handle" ) stepResult = main.FALSE except Exception as e: main.log.exception(e) main.cleanup() main.exit() utilities.assert_equals( expect=main.TRUE, actual=stepResult, onpass="Successfully construct " + "test variables ", onfail="Failed to construct test variables" ) if gitPull == 'True': main.step( "Building ONOS in " + gitBranch + " branch" ) onosBuildResult = main.startUp.onosBuild( main, gitBranch ) stepResult = onosBuildResult utilities.assert_equals( expect=main.TRUE, actual=stepResult, onpass="Successfully compiled " + "latest ONOS", onfail="Failed to compile " + "latest ONOS" ) else: main.log.warn( "Did not pull new code so skipping mvn " + "clean install" ) main.ONOSbench.getVersion( report=True ) def CASE2( self, main ): """ - Set up cell - Create cell file - Set cell file - Verify cell file - Kill ONOS process - Uninstall ONOS cluster - Verify ONOS start up - Install ONOS cluster - Connect to cli """ # main.scale[ 0 ] determines the current number of ONOS controller main.numCtrls = int( main.scale[ 0 ] ) main.case( "Starting up " + str( main.numCtrls ) + " node(s) ONOS cluster" ) main.caseExplanation = "Set up ONOS with " + str( main.numCtrls ) +\ " node(s) ONOS cluster" #kill off all onos processes main.log.info( "Safety check, killing all ONOS processes" + " before initiating environment setup" ) time.sleep( main.startUpSleep ) main.step( "Uninstalling ONOS package" ) onosUninstallResult = main.TRUE for ip in main.ONOSip: onosUninstallResult = onosUninstallResult and \ main.ONOSbench.onosUninstall( nodeIp=ip ) stepResult = onosUninstallResult utilities.assert_equals( expect=main.TRUE, actual=stepResult, onpass="Successfully uninstalled ONOS package", onfail="Failed to uninstall ONOS package" ) time.sleep( main.startUpSleep ) for i in range( main.maxNodes ): main.ONOSbench.onosDie( main.ONOSip[ i ] ) print "NODE COUNT = ", main.numCtrls tempOnosIp = [] for i in range( main.numCtrls ): tempOnosIp.append( main.ONOSip[i] ) main.ONOSbench.createCellFile( main.ONOSbench.ip_address, "temp", main.Mininet1.ip_address, main.apps, tempOnosIp ) main.step( "Apply cell to environment" ) cellResult = main.ONOSbench.setCell( "temp" ) verifyResult = main.ONOSbench.verifyCell() stepResult = cellResult and verifyResult utilities.assert_equals( expect=main.TRUE, actual=stepResult, onpass="Successfully applied cell to " + \ "environment", onfail="Failed to apply cell to environment " ) main.step( "Creating ONOS package" ) packageResult = main.ONOSbench.onosPackage() stepResult = packageResult utilities.assert_equals( expect=main.TRUE, actual=stepResult, onpass="Successfully created ONOS package", onfail="Failed to create ONOS package" ) time.sleep( main.startUpSleep ) main.step( "Installing ONOS package" ) onosInstallResult = main.TRUE for i in range( main.numCtrls ): onosInstallResult = onosInstallResult and \ main.ONOSbench.onosInstall( node=main.ONOSip[ i ] ) stepResult = onosInstallResult utilities.assert_equals( expect=main.TRUE, actual=stepResult, onpass="Successfully installed ONOS package", onfail="Failed to install ONOS package" ) time.sleep( main.startUpSleep ) main.step( "Starting ONOS service" ) stopResult = main.TRUE startResult = main.TRUE onosIsUp = main.TRUE for i in range( main.numCtrls ): onosIsUp = onosIsUp and main.ONOSbench.isup( main.ONOSip[ i ] ) if onosIsUp == main.TRUE: main.log.report( "ONOS instance is up and ready" ) else: main.log.report( "ONOS instance may not be up, stop and " + "start ONOS again " ) for i in range( main.numCtrls ): stopResult = stopResult and \ main.ONOSbench.onosStop( main.ONOSip[ i ] ) for i in range( main.numCtrls ): startResult = startResult and \ main.ONOSbench.onosStart( main.ONOSip[ i ] ) stepResult = onosIsUp and stopResult and startResult utilities.assert_equals( expect=main.TRUE, actual=stepResult, onpass="ONOS service is ready", onfail="ONOS service did not start properly" ) # Start an ONOS cli to provide functionality that is not currently # supported by the Rest API remove this when Leader Checking is supported # by the REST API main.step( "Start ONOS cli" ) cliResult = main.TRUE for i in range( main.numCtrls ): cliResult = cliResult and \ main.CLIs2[ i ].startOnosCli( main.ONOSip[ i ] ) stepResult = cliResult utilities.assert_equals( expect=main.TRUE, actual=stepResult, onpass="Successfully start ONOS cli", onfail="Failed to start ONOS cli" ) # Remove the first element in main.scale list main.scale.remove( main.scale[ 0 ] ) main.intentFunction.report( main ) def CASE8( self, main ): # OLD FUNCintentRest CASE 8 # This remains here for archiving and reference purposes and will be # removed when the new FUNCintentRest is verified to work. # """ # Compare Topo # """ # import json # main.case( "Compare ONOS Topology view to Mininet topology" ) # main.caseExplanation = "Compare topology elements between Mininet" +\ # " and ONOS" # main.step( "Gathering topology information" ) # # TODO: add a paramaterized sleep here # devicesResults = main.TRUE # Overall Boolean for device correctness # linksResults = main.TRUE # Overall Boolean for link correctness # hostsResults = main.TRUE # Overall Boolean for host correctness # devices = main.topo.getAllDevices( main ) # hosts = main.topo.getAllHosts( main ) # ports = main.topo.getAllPorts( main ) # links = main.topo.getAllLinks( main ) # clusters = main.topo.getAllClusters( main ) # mnSwitches = main.Mininet1.getSwitches() # mnLinks = main.Mininet1.getLinks() # mnHosts = main.Mininet1.getHosts() # main.step( "Comparing MN topology to ONOS topology" ) # for controller in range( main.numCtrls ): # controllerStr = str( controller + 1 ) # if devices[ controller ] and ports[ controller ] and\ # "Error" not in devices[ controller ] and\ # "Error" not in ports[ controller ]: # currentDevicesResult = main.Mininet1.compareSwitches( # mnSwitches, # json.loads( devices[ controller ] ), # json.loads( ports[ controller ] ) ) # else: # currentDevicesResult = main.FALSE # utilities.assert_equals( expect=main.TRUE, # actual=currentDevicesResult, # onpass="ONOS" + controllerStr + # " Switches view is correct", # onfail="ONOS" + controllerStr + # " Switches view is incorrect" ) # if links[ controller ] and "Error" not in links[ controller ]: # currentLinksResult = main.Mininet1.compareLinks( # mnSwitches, mnLinks, # json.loads( links[ controller ] ) ) # else: # currentLinksResult = main.FALSE # utilities.assert_equals( expect=main.TRUE, # actual=currentLinksResult, # onpass="ONOS" + controllerStr + # " links view is correct", # onfail="ONOS" + controllerStr + # " links view is incorrect" ) # if hosts[ controller ] or "Error" not in hosts[ controller ]: # currentHostsResult = main.Mininet1.compareHosts( # mnHosts, # json.loads( hosts[ controller ] ) ) # else: # currentHostsResult = main.FALSE # utilities.assert_equals( expect=main.TRUE, # actual=currentHostsResult, # onpass="ONOS" + controllerStr + # " hosts exist in Mininet", # onfail="ONOS" + controllerStr + # " hosts don't match Mininet" ) # NEW FUNCintentRest Case 8 as based off of the CASE 8 from FUNCintent """ Compare ONOS Topology to Mininet Topology """ import json main.case( "Compare ONOS Topology view to Mininet topology" ) main.caseExplanation = "Compare topology elements between Mininet" +\ " and ONOS" main.log.info( "Gathering topology information from Mininet" ) devicesResults = main.FALSE # Overall Boolean for device correctness linksResults = main.FALSE # Overall Boolean for link correctness hostsResults = main.FALSE # Overall Boolean for host correctness deviceFails = [] # Nodes where devices are incorrect linkFails = [] # Nodes where links are incorrect hostFails = [] # Nodes where hosts are incorrect attempts = main.checkTopoAttempts # Remaining Attempts mnSwitches = main.Mininet1.getSwitches() mnLinks = main.Mininet1.getLinks() mnHosts = main.Mininet1.getHosts() main.step( "Comparing Mininet topology to ONOS topology" ) while ( attempts >= 0 ) and\ ( not devicesResults or not linksResults or not hostsResults ): time.sleep( 2 ) if not devicesResults: devices = main.topo.getAllDevices( main ) ports = main.topo.getAllPorts( main ) devicesResults = main.TRUE deviceFails = [] # Reset for each failed attempt if not linksResults: links = main.topo.getAllLinks( main ) linksResults = main.TRUE linkFails = [] # Reset for each failed attempt if not hostsResults: hosts = main.topo.getAllHosts( main ) hostsResults = main.TRUE hostFails = [] # Reset for each failed attempt # Check for matching topology on each node for controller in range( main.numCtrls ): controllerStr = str( controller + 1 ) # ONOS node number # Compare Devices if devices[ controller ] and ports[ controller ] and\ "Error" not in devices[ controller ] and\ "Error" not in ports[ controller ]: try: deviceData = json.loads( devices[ controller ] ) portData = json.loads( ports[ controller ] ) except (TypeError,ValueError): main.log.error( "Could not load json: {0} or {1}".format( str( devices[ controller ] ), str( ports[ controller ] ) ) ) currentDevicesResult = main.FALSE else: currentDevicesResult = main.Mininet1.compareSwitches( mnSwitches,deviceData,portData ) else: currentDevicesResult = main.FALSE if not currentDevicesResult: deviceFails.append( controllerStr ) devicesResults = devicesResults and currentDevicesResult # Compare Links if links[ controller ] and "Error" not in links[ controller ]: try: linkData = json.loads( links[ controller ] ) except (TypeError,ValueError): main.log.error("Could not load json:" + str( links[ controller ] ) ) currentLinksResult = main.FALSE else: currentLinksResult = main.Mininet1.compareLinks( mnSwitches, mnLinks,linkData ) else: currentLinksResult = main.FALSE if not currentLinksResult: linkFails.append( controllerStr ) linksResults = linksResults and currentLinksResult # Compare Hosts if hosts[ controller ] and "Error" not in hosts[ controller ]: try: hostData = json.loads( hosts[ controller ] ) except (TypeError,ValueError): main.log.error("Could not load json:" + str( hosts[ controller ] ) ) currentHostsResult = main.FALSE else: currentHostsResult = main.Mininet1.compareHosts( mnHosts,hostData ) else: currentHostsResult = main.FALSE if not currentHostsResult: hostFails.append( controllerStr ) hostsResults = hostsResults and currentHostsResult # Decrement Attempts Remaining attempts -= 1 utilities.assert_equals( expect=[], actual=deviceFails, onpass="ONOS correctly discovered all devices", onfail="ONOS incorrectly discovered devices on nodes: " + str( deviceFails ) ) utilities.assert_equals( expect=[], actual=linkFails, onpass="ONOS correctly discovered all links", onfail="ONOS incorrectly discovered links on nodes: " + str( linkFails ) ) utilities.assert_equals( expect=[], actual=hostFails, onpass="ONOS correctly discovered all hosts", onfail="ONOS incorrectly discovered hosts on nodes: " + str( hostFails ) ) topoResults = hostsResults and linksResults and devicesResults utilities.assert_equals( expect=main.TRUE, actual=topoResults, onpass="ONOS correctly discovered the topology", onfail="ONOS incorrectly discovered the topology" ) def CASE9( self, main ): ''' Report errors/warnings/exceptions ''' main.log.info( "Error report: \n" ) main.ONOSbench.logReport( globalONOSip[0], [ "INFO", "FOLLOWER", "WARN", "flow", "ERROR" , "Except" ], "s" ) #main.ONOSbench.logReport( globalONOSip[1], [ "INFO" ], "d" ) def CASE10( self, main ): """ Start Mininet topology with OF 1.0 switches """ main.OFProtocol = "1.0" main.log.report( "Start Mininet topology with OF 1.0 switches" ) main.case( "Start Mininet topology with OF 1.0 switches" ) main.caseExplanation = "Start mininet topology with OF 1.0 " +\ "switches to test intents, exits out if " +\ "topology did not start correctly" main.step( "Starting Mininet topology with OF 1.0 switches" ) args = "--switch ovs,protocols=OpenFlow10" topoResult = main.Mininet1.startNet( topoFile=main.dependencyPath + main.topology, args=args ) stepResult = topoResult utilities.assert_equals( expect=main.TRUE, actual=stepResult, onpass="Successfully loaded topology", onfail="Failed to load topology" ) # Exit if topology did not load properly if not topoResult: main.cleanup() main.exit() def CASE11( self, main ): """ Start Mininet topology with OF 1.3 switches """ main.OFProtocol = "1.3" main.log.report( "Start Mininet topology with OF 1.3 switches" ) main.case( "Start Mininet topology with OF 1.3 switches" ) main.caseExplanation = "Start mininet topology with OF 1.3 " +\ "switches to test intents, exits out if " +\ "topology did not start correctly" main.step( "Starting Mininet topology with OF 1.3 switches" ) args = "--switch ovs,protocols=OpenFlow13" topoResult = main.Mininet1.startNet( topoFile=main.dependencyPath + main.topology, args=args ) stepResult = topoResult utilities.assert_equals( expect=main.TRUE, actual=stepResult, onpass="Successfully loaded topology", onfail="Failed to load topology" ) # Exit if topology did not load properly if not topoResult: main.cleanup() main.exit() def CASE12( self, main ): """ Assign mastership to controllers """ import re main.case( "Assign switches to controllers" ) main.step( "Assigning switches to controllers" ) main.caseExplanation = "Assign OF " + main.OFProtocol +\ " switches to ONOS nodes" assignResult = main.TRUE switchList = [] # Creates a list switch name, use getSwitch() function later... for i in range( 1, ( main.numSwitch + 1 ) ): switchList.append( 's' + str( i ) ) tempONOSip = [] for i in range( main.numCtrls ): tempONOSip.append( main.ONOSip[ i ] ) assignResult = main.Mininet1.assignSwController( sw=switchList, ip=tempONOSip, port='6653' ) if not assignResult: main.cleanup() main.exit() for i in range( 1, ( main.numSwitch + 1 ) ): response = main.Mininet1.getSwController( "s" + str( i ) ) print( "Response is " + str( response ) ) if re.search( "tcp:" + main.ONOSip[ 0 ], response ): assignResult = assignResult and main.TRUE else: assignResult = main.FALSE stepResult = assignResult utilities.assert_equals( expect=main.TRUE, actual=stepResult, onpass="Successfully assigned switches" + "to controller", onfail="Failed to assign switches to " + "controller" ) def CASE13( self,main ): """ Create Scapy components """ main.case( "Create scapy components" ) main.step( "Create scapy components" ) import json scapyResult = main.TRUE for hostName in main.scapyHostNames: main.Scapy1.createHostComponent( hostName ) main.scapyHosts.append( getattr( main, hostName ) ) main.step( "Start scapy components" ) for host in main.scapyHosts: host.startHostCli() host.startScapy() host.updateSelf() main.log.debug( host.name ) main.log.debug( host.hostIp ) main.log.debug( host.hostMac ) utilities.assert_equals( expect=main.TRUE, actual=scapyResult, onpass="Successfully created Scapy Components", onfail="Failed to discover Scapy Components" ) def CASE14( self, main ): """ Discover all hosts and store its data to a dictionary """ main.case( "Discover all hosts" ) stepResult = main.TRUE main.step( "Discover all ipv4 host hosts " ) hostList = [] # List of host with default vlan defaultHosts = [ "h1", "h3", "h8", "h9", "h11", "h16", "h17", "h19", "h24" ] # Lists of host with unique vlan vlanHosts1 = [ "h4", "h12", "h20" ] vlanHosts2 = [ "h5", "h13", "h21" ] vlanHosts3 = [ "h6", "h14", "h22" ] vlanHosts4 = [ "h7", "h15", "h23" ] hostList.append( defaultHosts ) hostList.append( vlanHosts1 ) hostList.append( vlanHosts2 ) hostList.append( vlanHosts3 ) hostList.append( vlanHosts4 ) stepResult = main.intentFunction.getHostsData( main, hostList ) utilities.assert_equals( expect=main.TRUE, actual=stepResult, onpass="Successfully discovered hosts", onfail="Failed to discover hosts" ) def CASE15( self, main ): """ Discover all hosts with scapy arp packets and store its data to a dictionary """ main.case( "Discover all hosts using scapy" ) main.step( "Send packets from each host to the first host and confirm onos discovery" ) import collections if len( main.scapyHosts ) < 1: main.log.error( "No scapy hosts have been created" ) main.skipCase() # Send ARP packets from each scapy host component main.intentFunction.sendDiscoveryArp( main, main.scapyHosts ) stepResult = utilities.retry( f=main.intentFunction.confirmHostDiscovery, retValue=main.FALSE, args=[ main ], attempts=main.checkTopoAttempts, sleep=2 ) utilities.assert_equals( expect=main.TRUE, actual=stepResult, onpass="ONOS correctly discovered all hosts", onfail="ONOS incorrectly discovered hosts" ) main.step( "Populate hostsData" ) stepResult = main.intentFunction.populateHostData( main ) utilities.assert_equals( expect=main.TRUE, actual=stepResult, onpass="Successfully populated hostsData", onfail="Failed to populate hostsData" ) def CASE16( self, main ): """ Balance Masters """ main.case( "Balance mastership of switches" ) main.step( "Balancing mastership of switches" ) balanceResult = main.FALSE balanceResult = utilities.retry( f=main.CLIs2[ 0 ].balanceMasters, retValue=main.FALSE, args=[] ) utilities.assert_equals( expect=main.TRUE, actual=stepResult, onpass="Successfully balanced mastership of switches", onfail="Failed to balance mastership of switches" ) def CASE17( self, main ): """ Stop mininet and remove scapy hosts """ main.log.report( "Stop Mininet and Scapy" ) main.case( "Stop Mininet and Scapy" ) main.caseExplanation = "Stopping the current mininet topology " +\ "to start up fresh" main.step( "Stopping and Removing Scapy Host Components" ) scapyResult = main.TRUE for host in main.scapyHosts: scapyResult = scapyResult and host.stopScapy() main.log.info( "Stopped Scapy Host: {0}".format( host.name ) ) for host in main.scapyHosts: scapyResult = scapyResult and main.Scapy1.removeHostComponent( host.name ) main.log.info( "Removed Scapy Host Component: {0}".format( host.name ) ) main.scapyHosts = [] main.scapyHostIPs = [] utilities.assert_equals( expect=main.TRUE, actual=scapyResult, onpass="Successfully stopped scapy and removed host components", onfail="Failed to stop mininet and scapy" ) main.step( "Stopping Mininet Topology" ) mininetResult = main.Mininet1.stopNet( ) utilities.assert_equals( expect=main.TRUE, actual=stepResult, onpass="Successfully stop mininet", onfail="Failed to stop mininet" ) # Exit if topology did not load properly if not (mininetResult and scapyResult ): main.cleanup() main.exit() def CASE1000( self, main ): """ Add host intents between 2 host: - Discover hosts - Add host intents - Check intents - Verify flows - Ping hosts - Reroute - Link down - Verify flows - Check topology - Ping hosts - Link up - Verify flows - Check topology - Ping hosts - Remove intents """ import time import json import re # Assert variables - These variable's name|format must be followed # if you want to use the wrapper function assert main, "There is no main" assert main.CLIs, "There is no main.CLIs" assert main.Mininet1, "Mininet handle should be named Mininet1" assert main.numSwitch, "Placed the total number of switch topology in \ main.numSwitch" # Save leader candidates intentLeadersOld = main.CLIs2[ 0 ].leaderCandidates() main.case( "Host Intents Test - " + str( main.numCtrls ) + " NODE(S) - OF " + main.OFProtocol ) main.caseExplanation = "This test case tests Host intents using " +\ str( main.numCtrls ) + " node(s) cluster;\n" +\ "Different type of hosts will be tested in " +\ "each step such as IPV4, Dual stack, VLAN " +\ "etc;\nThe test will use OF " + main.OFProtocol\ + " OVS running in Mininet" main.step( "IPV4: Add and test host intents between h1 and h9" ) main.assertReturnString = "Assertion result for IPV4 host intent with mac addresses\n" host1 = { "name":"h1","id":"00:00:00:00:00:01/-1" } host2 = { "name":"h9","id":"00:00:00:00:00:09/-1" } testResult = main.FALSE installResult = main.intentFunction.installHostIntent( main, name='IPV4', onosNode='0', host1=host1, host2=host2 ) if installResult: testResult = main.intentFunction.testHostIntent( main, name='IPV4', intentId = installResult, onosNode='0', host1=host1, host2=host2, sw1='s5', sw2='s2', expectedLink = 18 ) utilities.assert_equals( expect=main.TRUE, actual=testResult, onpass=main.assertReturnString, onfail=main.assertReturnString ) main.step( "DUALSTACK1: Add host intents between h3 and h11" ) main.assertReturnString = "Assertion Result for dualstack IPV4 with MAC addresses\n" host1 = { "name":"h3", "id":"00:00:00:00:00:03/-1" } host2 = { "name":"h11","id":"00:00:00:00:00:0B/-1"} testResult = main.FALSE installResult = main.intentFunction.installHostIntent( main, name='DUALSTACK1', onosNode='0', host1=host1, host2=host2 ) if installResult: testResult = main.intentFunction.testHostIntent( main, name='DUALSTACK1', intentId = installResult, onosNode='0', host1=host1, host2=host2, sw1='s5', sw2='s2', expectedLink = 18 ) utilities.assert_equals( expect=main.TRUE, actual=testResult, onpass=main.assertReturnString, onfail=main.assertReturnString) main.step( "DUALSTACK2: Add host intents between h1 and h11" ) main.assertReturnString = "Assertion Result for dualstack2 host intent\n" host1 = { "name":"h1" } host2 = { "name":"h11" } testResult = main.FALSE installResult = main.intentFunction.installHostIntent( main, name='DUALSTACK2', onosNode='0', host1=host1, host2=host2 ) if installResult: testResult = main.intentFunction.testHostIntent( main, name='DUALSTACK2', intentId = installResult, onosNode='0', host1=host1, host2=host2, sw1='s5', sw2='s2', expectedLink = 18 ) utilities.assert_equals( expect=main.TRUE, actual=testResult, onpass=main.assertReturnString, onfail=main.assertReturnString ) main.step( "1HOP: Add host intents between h1 and h3" ) main.assertReturnString = "Assertion Result for 1HOP for IPV4 same switch\n" host1 = { "name":"h1" } host2 = { "name":"h3" } testResult = main.FALSE installResult = main.intentFunction.installHostIntent( main, name='1HOP', onosNode='0', host1=host1, host2=host2 ) if installResult: testResult = main.intentFunction.testHostIntent( main, name='1HOP', intentId = installResult, onosNode='0', host1=host1, host2=host2, sw1='s5', sw2='s2', expectedLink = 18 ) utilities.assert_equals( expect=main.TRUE, actual=testResult, onpass=main.assertReturnString, onfail=main.assertReturnString ) main.step( "VLAN1: Add vlan host intents between h4 and h12" ) main.assertReturnString = "Assertion Result vlan IPV4\n" host1 = { "name":"h4","id":"00:00:00:00:00:04/100" } host2 = { "name":"h12","id":"00:00:00:00:00:0C/100" } testResult = main.FALSE installResult = main.intentFunction.installHostIntent( main, name='VLAN1', onosNode='0', host1=host1, host2=host2 ) if installResult: testResult = main.intentFunction.testHostIntent( main, name='VLAN1', intentId = installResult, onosNode='0', host1=host1, host2=host2, sw1='s5', sw2='s2', expectedLink = 18 ) utilities.assert_equals( expect=main.TRUE, actual=testResult, onpass=main.assertReturnString, onfail=main.assertReturnString ) main.step( "VLAN2: Add inter vlan host intents between h13 and h20" ) main.assertReturnString = "Assertion Result different VLAN negative test\n" host1 = { "name":"h13" } host2 = { "name":"h20" } testResult = main.FALSE installResult = main.intentFunction.installHostIntent( main, name='VLAN2', onosNode='0', host1=host1, host2=host2 ) if installResult: testResult = main.intentFunction.testHostIntent( main, name='VLAN2', intentId = installResult, onosNode='0', host1=host1, host2=host2, sw1='s5', sw2='s2', expectedLink = 18 ) utilities.assert_equals( expect=main.TRUE, actual=testResult, onpass=main.assertReturnString, onfail=main.assertReturnString ) # Change the following to use the REST API when leader checking is # supported by it main.step( "Confirm that ONOS leadership is unchanged") intentLeadersNew = main.CLIs2[ 0 ].leaderCandidates() main.intentFunction.checkLeaderChange( intentLeadersOld, intentLeadersNew ) utilities.assert_equals( expect=main.TRUE, actual=testResult, onpass="ONOS Leaders Unchanged", onfail="ONOS Leader Mismatch") main.intentFunction.report( main ) def CASE2000( self, main ): """ Add point intents between 2 hosts: - Get device ids | ports - Add point intents - Check intents - Verify flows - Ping hosts - Reroute - Link down - Verify flows - Check topology - Ping hosts - Link up - Verify flows - Check topology - Ping hosts - Remove intents """ import time import json import re # Assert variables - These variable's name|format must be followed # if you want to use the wrapper function assert main, "There is no main" assert main.CLIs, "There is no main.CLIs" assert main.Mininet1, "Mininet handle should be named Mininet1" assert main.numSwitch, "Placed the total number of switch topology in \ main.numSwitch" main.case( "Point Intents Test - " + str( main.numCtrls ) + " NODE(S) - OF " + main.OFProtocol ) main.caseExplanation = "This test case will test point to point" +\ " intents using " + str( main.numCtrls ) +\ " node(s) cluster;\n" +\ "Different type of hosts will be tested in " +\ "each step such as IPV4, Dual stack, VLAN etc" +\ ";\nThe test will use OF " + main.OFProtocol +\ " OVS running in Mininet" # No option point intents main.step( "NOOPTION: Add point intents between h1 and h9" ) main.assertReturnString = "Assertion Result for NOOPTION point intent\n" senders = [ { "name":"h1","device":"of:0000000000000005/1" } ] recipients = [ { "name":"h9","device":"of:0000000000000006/1" } ] testResult = main.FALSE installResult = main.intentFunction.installPointIntent( main, name="NOOPTION", senders=senders, recipients=recipients ) if installResult: testResult = main.intentFunction.testPointIntent( main, intentId=installResult, name="NOOPTION", senders=senders, recipients=recipients, sw1="s5", sw2="s2", expectedLink=18) utilities.assert_equals( expect=main.TRUE, actual=testResult, onpass=main.assertReturnString, onfail=main.assertReturnString ) main.step( "IPV4: Add point intents between h1 and h9" ) main.assertReturnString = "Assertion Result for IPV4 point intent\n" senders = [ { "name":"h1","device":"of:0000000000000005/1","mac":"00:00:00:00:00:01" } ] recipients = [ { "name":"h9","device":"of:0000000000000006/1","mac":"00:00:00:00:00:09" } ] installResult = main.intentFunction.installPointIntent( main, name="IPV4", senders=senders, recipients=recipients, ethType="IPV4" ) if installResult: testResult = main.intentFunction.testPointIntent( main, intentId=installResult, name="IPV4", senders=senders, recipients=recipients, sw1="s5", sw2="s2", expectedLink=18) utilities.assert_equals( expect=main.TRUE, actual=testResult, onpass=main.assertReturnString, onfail=main.assertReturnString ) main.step( "IPV4_2: Add point intents between h1 and h9" ) main.assertReturnString = "Assertion Result for IPV4 no mac address point intents\n" senders = [ { "name":"h1","device":"of:0000000000000005/1" } ] recipients = [ { "name":"h9","device":"of:0000000000000006/1" } ] installResult = main.intentFunction.installPointIntent( main, name="IPV4_2", senders=senders, recipients=recipients, ethType="IPV4" ) if installResult: testResult = main.intentFunction.testPointIntent( main, intentId=installResult, name="IPV4_2", senders=senders, recipients=recipients, sw1="s5", sw2="s2", expectedLink=18) utilities.assert_equals( expect=main.TRUE, actual=testResult, onpass=main.assertReturnString, onfail=main.assertReturnString ) main.step( "SDNIP-ICMP: Add point intents between h1 and h9" ) main.assertReturnString = "Assertion Result for SDNIP-ICMP IPV4 using TCP point intents\n" senders = [ { "name":"h1","device":"of:0000000000000005/1","mac":"00:00:00:00:00:01", "ip":main.h1.hostIp } ] recipients = [ { "name":"h9","device":"of:0000000000000006/1","mac":"00:00:00:00:00:09", "ip":main.h9.hostIp } ] ipProto = main.params[ 'SDNIP' ][ 'icmpProto' ] # Uneccessary, not including this in the selectors tcpSrc = main.params[ 'SDNIP' ][ 'srcPort' ] tcpDst = main.params[ 'SDNIP' ][ 'dstPort' ] installResult = main.intentFunction.installPointIntent( main, name="SDNIP-ICMP", senders=senders, recipients=recipients, ethType="IPV4", ipProto=ipProto, tcpSrc=tcpSrc, tcpDst=tcpDst ) if installResult: testResult = main.intentFunction.testPointIntent( main, intentId=installResult, name="SDNIP_ICMP", senders=senders, recipients=recipients, sw1="s5", sw2="s2", expectedLink=18) utilities.assert_equals( expect=main.TRUE, actual=testResult, onpass=main.assertReturnString, onfail=main.assertReturnString ) main.step( "SDNIP-TCP: Add point intents between h1 and h9" ) main.assertReturnString = "Assertion Result for SDNIP-TCP IPV4 using ICMP point intents\n" mac1 = main.hostsData[ 'h1' ][ 'mac' ] mac2 = main.hostsData[ 'h9' ][ 'mac' ] ip1 = str( main.hostsData[ 'h1' ][ 'ipAddresses' ][ 0 ] ) + "/32" ip2 = str( main.hostsData[ 'h9' ][ 'ipAddresses' ][ 0 ] ) + "/32" ipProto = main.params[ 'SDNIP' ][ 'tcpProto' ] tcp1 = main.params[ 'SDNIP' ][ 'srcPort' ] tcp2 = main.params[ 'SDNIP' ][ 'dstPort' ] stepResult = main.intentFunction.pointIntentTcp( main, name="SDNIP-TCP", host1="h1", host2="h9", deviceId1="of:0000000000000005/1", deviceId2="of:0000000000000006/1", mac1=mac1, mac2=mac2, ethType="IPV4", ipProto=ipProto, ip1=ip1, ip2=ip2, tcp1=tcp1, tcp2=tcp2 ) utilities.assert_equals( expect=main.TRUE, actual=stepResult, onpass=main.assertReturnString, onfail=main.assertReturnString ) main.step( "DUALSTACK1: Add point intents between h3 and h11" ) main.assertReturnString = "Assertion Result for Dualstack1 IPV4 with mac address point intents\n" senders = [ { "name":"h3","device":"of:0000000000000005/3","mac":"00:00:00:00:00:03" } ] recipients = [ { "name":"h11","device":"of:0000000000000006/3","mac":"00:00:00:00:00:0B" } ] installResult = main.intentFunction.installPointIntent( main, name="DUALSTACK1", senders=senders, recipients=recipients, ethType="IPV4" ) if installResult: testResult = main.intentFunction.testPointIntent( main, intentId=installResult, name="DUALSTACK1", senders=senders, recipients=recipients, sw1="s5", sw2="s2", expectedLink=18) utilities.assert_equals( expect=main.TRUE, actual=testResult, onpass=main.assertReturnString, onfail=main.assertReturnString ) main.step( "VLAN: Add point intents between h5 and h21" ) main.assertReturnString = "Assertion Result for VLAN IPV4 with mac address point intents\n" senders = [ { "name":"h5","device":"of:0000000000000005/5","mac":"00:00:00:00:00:05" } ] recipients = [ { "name":"h21","device":"of:0000000000000007/5","mac":"00:00:00:00:00:15" } ] installResult = main.intentFunction.installPointIntent( main, name="DUALSTACK1", senders=senders, recipients=recipients, ethType="IPV4" ) if installResult: testResult = main.intentFunction.testPointIntent( main, intentId=installResult, name="DUALSTACK1", senders=senders, recipients=recipients, sw1="s5", sw2="s2", expectedLink=18) utilities.assert_equals( expect=main.TRUE, actual=testResult, onpass=main.assertReturnString, onfail=main.assertReturnString ) main.step( "1HOP: Add point intents between h1 and h3" ) main.assertReturnString = "Assertion Result for 1HOP IPV4 with no mac address point intents\n" senders = [ { "name":"h1","device":"of:0000000000000005/1","mac":"00:00:00:00:00:01" } ] recipients = [ { "name":"h3","device":"of:0000000000000005/3","mac":"00:00:00:00:00:03" } ] installResult = main.intentFunction.installPointIntent( main, name="1HOP IPV4", senders=senders, recipients=recipients, ethType="IPV4" ) if installResult: testResult = main.intentFunction.testPointIntent( main, intentId=installResult, name="1HOP IPV4", senders=senders, recipients=recipients, sw1="s5", sw2="s2", expectedLink=18) utilities.assert_equals( expect=main.TRUE, actual=testResult, onpass=main.assertReturnString, onfail=main.assertReturnString ) main.intentFunction.report( main ) def CASE3000( self, main ): """ Add single point to multi point intents - Get device ids - Add single point to multi point intents - Check intents - Verify flows - Ping hosts - Reroute - Link down - Verify flows - Check topology - Ping hosts - Link up - Verify flows - Check topology - Ping hosts - Remove intents """ assert main, "There is no main" assert main.CLIs, "There is no main.CLIs" assert main.Mininet1, "Mininet handle should be named Mininet1" assert main.numSwitch, "Placed the total number of switch topology in \ main.numSwitch" main.case( "Single To Multi Point Intents Test - " + str( main.numCtrls ) + " NODE(S) - OF " + main.OFProtocol ) main.caseExplanation = "This test case will test single point to" +\ " multi point intents using " +\ str( main.numCtrls ) + " node(s) cluster;\n" +\ "Different type of hosts will be tested in " +\ "each step such as IPV4, Dual stack, VLAN etc" +\ ";\nThe test will use OF " + main.OFProtocol +\ " OVS running in Mininet" main.step( "NOOPTION: Add single point to multi point intents" ) stepResult = main.TRUE hostNames = [ 'h8', 'h16', 'h24' ] devices = [ 'of:0000000000000005/8', 'of:0000000000000006/8', \ 'of:0000000000000007/8' ] macs = [ '00:00:00:00:00:08', '00:00:00:00:00:10', '00:00:00:00:00:18' ] stepResult = main.intentFunction.singleToMultiIntent( main, name="NOOPTION", hostNames=hostNames, devices=devices, sw1="s5", sw2="s2", expectedLink=18 ) utilities.assert_equals( expect=main.TRUE, actual=stepResult, onpass="NOOPTION: Successfully added single " + " point to multi point intents" + " with no match action", onfail="NOOPTION: Failed to add single point" + " point to multi point intents" + " with no match action" ) main.step( "IPV4: Add single point to multi point intents" ) stepResult = main.TRUE stepResult = main.intentFunction.singleToMultiIntent( main, name="IPV4", hostNames=hostNames, devices=devices, ports=None, ethType="IPV4", macs=macs, bandwidth="", lambdaAlloc=False, ipProto="", ipAddresses="", tcp="", sw1="s5", sw2="s2", expectedLink=18 ) utilities.assert_equals( expect=main.TRUE, actual=stepResult, onpass="IPV4: Successfully added single " + " point to multi point intents" + " with IPV4 type and MAC addresses", onfail="IPV4: Failed to add single point" + " point to multi point intents" + " with IPV4 type and MAC addresses" ) main.step( "IPV4_2: Add single point to multi point intents" ) stepResult = main.TRUE hostNames = [ 'h8', 'h16', 'h24' ] stepResult = main.intentFunction.singleToMultiIntent( main, name="IPV4", hostNames=hostNames, ethType="IPV4", lambdaAlloc=False ) utilities.assert_equals( expect=main.TRUE, actual=stepResult, onpass="IPV4_2: Successfully added single " + " point to multi point intents" + " with IPV4 type and no MAC addresses", onfail="IPV4_2: Failed to add single point" + " point to multi point intents" + " with IPV4 type and no MAC addresses" ) main.step( "VLAN: Add single point to multi point intents" ) stepResult = main.TRUE hostNames = [ 'h4', 'h12', 'h20' ] devices = [ 'of:0000000000000005/4', 'of:0000000000000006/4', \ 'of:0000000000000007/4' ] macs = [ '00:00:00:00:00:04', '00:00:00:00:00:0C', '00:00:00:00:00:14' ] stepResult = main.intentFunction.singleToMultiIntent( main, name="VLAN", hostNames=hostNames, devices=devices, ports=None, ethType="IPV4", macs=macs, bandwidth="", lambdaAlloc=False, ipProto="", ipAddresses="", tcp="", sw1="s5", sw2="s2", expectedLink=18 ) utilities.assert_equals( expect=main.TRUE, actual=stepResult, onpass="VLAN: Successfully added single " + " point to multi point intents" + " with IPV4 type and MAC addresses" + " in the same VLAN", onfail="VLAN: Failed to add single point" + " point to multi point intents" + " with IPV4 type and MAC addresses" + " in the same VLAN") def CASE4000( self, main ): """ Add multi point to single point intents - Get device ids - Add multi point to single point intents - Check intents - Verify flows - Ping hosts - Reroute - Link down - Verify flows - Check topology - Ping hosts - Link up - Verify flows - Check topology - Ping hosts - Remove intents """ assert main, "There is no main" assert main.CLIs, "There is no main.CLIs" assert main.Mininet1, "Mininet handle should be named Mininet1" assert main.numSwitch, "Placed the total number of switch topology in \ main.numSwitch" main.case( "Multi To Single Point Intents Test - " + str( main.numCtrls ) + " NODE(S) - OF " + main.OFProtocol ) main.caseExplanation = "This test case will test single point to" +\ " multi point intents using " +\ str( main.numCtrls ) + " node(s) cluster;\n" +\ "Different type of hosts will be tested in " +\ "each step such as IPV4, Dual stack, VLAN etc" +\ ";\nThe test will use OF " + main.OFProtocol +\ " OVS running in Mininet" main.step( "NOOPTION: Add multi point to single point intents" ) stepResult = main.TRUE hostNames = [ 'h8', 'h16', 'h24' ] devices = [ 'of:0000000000000005/8', 'of:0000000000000006/8', \ 'of:0000000000000007/8' ] macs = [ '00:00:00:00:00:08', '00:00:00:00:00:10', '00:00:00:00:00:18' ] stepResult = main.intentFunction.multiToSingleIntent( main, name="NOOPTION", hostNames=hostNames, devices=devices, sw1="s5", sw2="s2", expectedLink=18 ) utilities.assert_equals( expect=main.TRUE, actual=stepResult, onpass="NOOPTION: Successfully added multi " + " point to single point intents" + " with no match action", onfail="NOOPTION: Failed to add multi point" + " to single point intents" + " with no match action" ) main.step( "IPV4: Add multi point to single point intents" ) stepResult = main.TRUE stepResult = main.intentFunction.multiToSingleIntent( main, name="IPV4", hostNames=hostNames, devices=devices, ports=None, ethType="IPV4", macs=macs, bandwidth="", lambdaAlloc=False, ipProto="", ipAddresses="", tcp="", sw1="s5", sw2="s2", expectedLink=18 ) utilities.assert_equals( expect=main.TRUE, actual=stepResult, onpass="IPV4: Successfully added multi point" + " to single point intents" + " with IPV4 type and MAC addresses", onfail="IPV4: Failed to add multi point" + " to single point intents" + " with IPV4 type and MAC addresses" ) main.step( "IPV4_2: Add multi point to single point intents" ) stepResult = main.TRUE hostNames = [ 'h8', 'h16', 'h24' ] stepResult = main.intentFunction.multiToSingleIntent( main, name="IPV4", hostNames=hostNames, ethType="IPV4", lambdaAlloc=False ) utilities.assert_equals( expect=main.TRUE, actual=stepResult, onpass="IPV4_2: Successfully added multi point" + " to single point intents" + " with IPV4 type and no MAC addresses", onfail="IPV4_2: Failed to add multi point" + " to single point intents" + " with IPV4 type and no MAC addresses" ) main.step( "VLAN: Add multi point to single point intents" ) stepResult = main.TRUE hostNames = [ 'h5', 'h13', 'h21' ] devices = [ 'of:0000000000000005/5', 'of:0000000000000006/5', \ 'of:0000000000000007/5' ] macs = [ '00:00:00:00:00:05', '00:00:00:00:00:0D', '00:00:00:00:00:15' ] stepResult = main.intentFunction.multiToSingleIntent( main, name="VLAN", hostNames=hostNames, devices=devices, ports=None, ethType="IPV4", macs=macs, bandwidth="", lambdaAlloc=False, ipProto="", ipAddresses="", tcp="", sw1="s5", sw2="s2", expectedLink=18 ) utilities.assert_equals( expect=main.TRUE, actual=stepResult, onpass="VLAN: Successfully added multi point" + " to single point intents" + " with IPV4 type and MAC addresses" + " in the same VLAN", onfail="VLAN: Failed to add multi point" + " to single point intents" ) def CASE5000( self, main ): # """ # Will add description in next patch set # """ # assert main, "There is no main" # assert main.CLIs, "There is no main.CLIs" # assert main.Mininet1, "Mininet handle should be named Mininet1" # assert main.numSwitch, "Placed the total number of switch topology in \ # main.numSwitch" # main.case( "Test host mobility with host intents " ) # main.step( " Testing host mobility by moving h1 from s5 to s6" ) # h1PreMove = main.hostsData[ "h1" ][ "location" ][ 0:19 ] # main.log.info( "Moving h1 from s5 to s6") # main.Mininet1.moveHost( "h1","s5","s6" ) # main.intentFunction.getHostsData( main ) # h1PostMove = main.hostsData[ "h1" ][ "location" ][ 0:19 ] # utilities.assert_equals( expect="of:0000000000000006", # actual=h1PostMove, # onpass="Mobility: Successfully moved h1 to s6", # onfail="Mobility: Failed to moved h1 to s6" + # " to single point intents" + # " with IPV4 type and MAC addresses" + # " in the same VLAN" ) # main.step( "IPV4: Add host intents between h1 and h9" ) # stepResult = main.TRUE # stepResult = main.intentFunction.hostIntent( main, # onosNode='0', # name='IPV4', # host1='h1', # host2='h9', # host1Id='00:00:00:00:00:01/-1', # host2Id='00:00:00:00:00:09/-1' ) # utilities.assert_equals( expect=main.TRUE, # actual=stepResult, # onpass="IPV4: Host intent test successful " + # "between two IPV4 hosts", # onfail="IPV4: Host intent test failed " + # "between two IPV4 hosts") """ Tests Host Mobility Modifies the topology location of h1 """ assert main, "There is no main" assert main.CLIs, "There is no main.CLIs" assert main.Mininet1, "Mininet handle should be named Mininet1" assert main.numSwitch, "Placed the total number of switch topology in \ main.numSwitch" main.case( "Test host mobility with host intents " ) main.step( "Testing host mobility by moving h1 from s5 to s6" ) h1PreMove = main.hostsData[ "h1" ][ "location" ][ 0:19 ] main.log.info( "Moving h1 from s5 to s6") main.Mininet1.moveHost( "h1","s5","s6" ) # Send discovery ping from moved host # Moving the host brings down the default interfaces and creates a new one. # Scapy is restarted on this host to detect the new interface main.h1.stopScapy() main.h1.startScapy() # Discover new host location in ONOS and populate host data. # Host 1 IP and MAC should be unchanged main.intentFunction.sendDiscoveryArp( main, [ main.h1 ] ) main.intentFunction.populateHostData( main ) h1PostMove = main.hostsData[ "h1" ][ "location" ][ 0:19 ] utilities.assert_equals( expect="of:0000000000000006", actual=h1PostMove, onpass="Mobility: Successfully moved h1 to s6", onfail="Mobility: Failed to move h1 to s6" + " to single point intents" + " with IPV4 type and MAC addresses" + " in the same VLAN" ) main.step( "IPV4: Add host intents between h1 and h9" ) main.assertReturnString = "Assert result for IPV4 host intent between h1, moved, and h9\n" host1 = { "name":"h1","id":"00:00:00:00:00:01/-1" } host2 = { "name":"h9","id":"00:00:00:00:00:09/-1" } installResult = main.intentFunction.installHostIntent( main, name='IPV4 Mobility IPV4', onosNode='0', host1=host1, host2=host2) if installResult: testResult = main.intentFunction.testHostIntent( main, name='Host Mobility IPV4', intentId = installResult, onosNode='0', host1=host1, host2=host2, sw1="s6", sw2="s2", expectedLink=18 ) utilities.assert_equals( expect=main.TRUE, actual=testResult, onpass=main.assertReturnString, onfail=main.assertReturnString ) main.intentFunction.report( main )
py
1a32bcf9e733abe7a49cd10963bf802c836bbb5b
#! /usr/bin/env python # -*- encoding: UTF-8 -*- """Example: Use getFootSteps Method""" import qi import argparse import sys import time def main(session): """ This example uses the getFootSteps method. """ # Get the services ALMotion & ALRobotPosture. motion_service = session.service("ALMotion") posture_service = session.service("ALRobotPosture") # Wake up robot motion_service.wakeUp() # Send NAO to Pose Init posture_service.goToPosture("StandInit", 0.5) ##################################### # A small example using getFootSteps ##################################### # First call of move API # Use _async=True argument to not be blocking here. motion_service.moveTo(0.3, 0.0, 0.5, _async=True) # wait that the move process start running time.sleep(1.0) # get the foot steps vector footSteps = motion_service.getFootSteps() # print the result leftFootWorldPosition = footSteps[0][0] print "leftFootWorldPosition:" print leftFootWorldPosition print "" rightFootWorldPosition = footSteps[0][1] print "rightFootWorldPosition:" print rightFootWorldPosition print "" footStepsUnchangeable = footSteps[1] print "Unchangeable:" print footStepsUnchangeable print "" footStepsChangeable = footSteps[2] print "Changeable:" print footStepsChangeable print "" motion_service.waitUntilMoveIsFinished() # Go to rest position motion_service.rest() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--ip", type=str, default="127.0.0.1", help="Robot IP address. On robot or Local Naoqi: use '127.0.0.1'.") parser.add_argument("--port", type=int, default=9559, help="Naoqi port number") args = parser.parse_args() session = qi.Session() try: session.connect("tcp://" + args.ip + ":" + str(args.port)) except RuntimeError: print ("Can't connect to Naoqi at ip \"" + args.ip + "\" on port " + str(args.port) +".\n" "Please check your script arguments. Run with -h option for help.") sys.exit(1) main(session)
py
1a32c030dc0b9c4e7069d638671045e0bad37f2f
import re from parso.python import tree from jedi._compatibility import zip_longest from jedi import debug from jedi.evaluate import analysis from jedi.evaluate.lazy_context import LazyKnownContext, LazyKnownContexts, \ LazyTreeContext, get_merged_lazy_context from jedi.evaluate.filters import ParamName from jedi.evaluate.base_context import NO_CONTEXTS from jedi.evaluate.context import iterable from jedi.evaluate.param import get_executed_params, ExecutedParam def try_iter_content(types, depth=0): """Helper method for static analysis.""" if depth > 10: # It's possible that a loop has references on itself (especially with # CompiledObject). Therefore don't loop infinitely. return for typ in types: try: f = typ.py__iter__ except AttributeError: pass else: for lazy_context in f(): try_iter_content(lazy_context.infer(), depth + 1) def repack_with_argument_clinic(string, keep_arguments_param=False): """ Transforms a function or method with arguments to the signature that is given as an argument clinic notation. Argument clinic is part of CPython and used for all the functions that are implemented in C (Python 3.7): str.split.__text_signature__ # Results in: '($self, /, sep=None, maxsplit=-1)' """ clinic_args = list(_parse_argument_clinic(string)) def decorator(func): def wrapper(*args, **kwargs): if keep_arguments_param: arguments = kwargs['arguments'] else: arguments = kwargs.pop('arguments') try: args += tuple(_iterate_argument_clinic(arguments, clinic_args)) except ValueError: return NO_CONTEXTS else: return func(*args, **kwargs) return wrapper return decorator def _iterate_argument_clinic(arguments, parameters): """Uses a list with argument clinic information (see PEP 436).""" iterator = arguments.unpack() for i, (name, optional, allow_kwargs) in enumerate(parameters): key, argument = next(iterator, (None, None)) if key is not None: debug.warning('Keyword arguments in argument clinic are currently not supported.') raise ValueError if argument is None and not optional: debug.warning('TypeError: %s expected at least %s arguments, got %s', name, len(parameters), i) raise ValueError context_set = NO_CONTEXTS if argument is None else argument.infer() if not context_set and not optional: # For the stdlib we always want values. If we don't get them, # that's ok, maybe something is too hard to resolve, however, # we will not proceed with the evaluation of that function. debug.warning('argument_clinic "%s" not resolvable.', name) raise ValueError yield context_set def _parse_argument_clinic(string): allow_kwargs = False optional = False while string: # Optional arguments have to begin with a bracket. And should always be # at the end of the arguments. This is therefore not a proper argument # clinic implementation. `range()` for exmple allows an optional start # value at the beginning. match = re.match('(?:(?:(\[),? ?|, ?|)(\w+)|, ?/)\]*', string) string = string[len(match.group(0)):] if not match.group(2): # A slash -> allow named arguments allow_kwargs = True continue optional = optional or bool(match.group(1)) word = match.group(2) yield (word, optional, allow_kwargs) class AbstractArguments(object): context = None argument_node = None trailer = None def eval_all(self, funcdef=None): """ Evaluates all arguments as a support for static analysis (normally Jedi). """ for key, lazy_context in self.unpack(): types = lazy_context.infer() try_iter_content(types) def get_calling_nodes(self): return [] def unpack(self, funcdef=None): raise NotImplementedError def get_executed_params(self, execution_context): return get_executed_params(execution_context, self) class AnonymousArguments(AbstractArguments): def get_executed_params(self, execution_context): from jedi.evaluate.dynamic import search_params return search_params( execution_context.evaluator, execution_context, execution_context.tree_node ) def __repr__(self): return '%s()' % self.__class__.__name__ class TreeArguments(AbstractArguments): def __init__(self, evaluator, context, argument_node, trailer=None): """ The argument_node is either a parser node or a list of evaluated objects. Those evaluated objects may be lists of evaluated objects themselves (one list for the first argument, one for the second, etc). :param argument_node: May be an argument_node or a list of nodes. """ self.argument_node = argument_node self.context = context self._evaluator = evaluator self.trailer = trailer # Can be None, e.g. in a class definition. def _split(self): if self.argument_node is None: return # Allow testlist here as well for Python2's class inheritance # definitions. if not (self.argument_node.type in ('arglist', 'testlist') or ( # in python 3.5 **arg is an argument, not arglist (self.argument_node.type == 'argument') and self.argument_node.children[0] in ('*', '**'))): yield 0, self.argument_node return iterator = iter(self.argument_node.children) for child in iterator: if child == ',': continue elif child in ('*', '**'): yield len(child.value), next(iterator) elif child.type == 'argument' and \ child.children[0] in ('*', '**'): assert len(child.children) == 2 yield len(child.children[0].value), child.children[1] else: yield 0, child def unpack(self, funcdef=None): named_args = [] for star_count, el in self._split(): if star_count == 1: arrays = self.context.eval_node(el) iterators = [_iterate_star_args(self.context, a, el, funcdef) for a in arrays] for values in list(zip_longest(*iterators)): # TODO zip_longest yields None, that means this would raise # an exception? yield None, get_merged_lazy_context( [v for v in values if v is not None] ) elif star_count == 2: arrays = self.context.eval_node(el) for dct in arrays: for key, values in _star_star_dict(self.context, dct, el, funcdef): yield key, values else: if el.type == 'argument': c = el.children if len(c) == 3: # Keyword argument. named_args.append((c[0].value, LazyTreeContext(self.context, c[2]),)) else: # Generator comprehension. # Include the brackets with the parent. comp = iterable.GeneratorComprehension( self._evaluator, self.context, self.argument_node.parent) yield None, LazyKnownContext(comp) else: yield None, LazyTreeContext(self.context, el) # Reordering var_args is necessary, because star args sometimes appear # after named argument, but in the actual order it's prepended. for named_arg in named_args: yield named_arg def as_tree_tuple_objects(self): for star_count, argument in self._split(): if argument.type == 'argument': argument, default = argument.children[::2] else: default = None yield argument, default, star_count def __repr__(self): return '<%s: %s>' % (self.__class__.__name__, self.argument_node) def get_calling_nodes(self): from jedi.evaluate.dynamic import DynamicExecutedParams old_arguments_list = [] arguments = self while arguments not in old_arguments_list: if not isinstance(arguments, TreeArguments): break old_arguments_list.append(arguments) for name, default, star_count in reversed(list(arguments.as_tree_tuple_objects())): if not star_count or not isinstance(name, tree.Name): continue names = self._evaluator.goto(arguments.context, name) if len(names) != 1: break if not isinstance(names[0], ParamName): break param = names[0].get_param() if isinstance(param, DynamicExecutedParams): # For dynamic searches we don't even want to see errors. return [] if not isinstance(param, ExecutedParam): break if param.var_args is None: break arguments = param.var_args break if arguments.argument_node is not None: return [arguments.argument_node] if arguments.trailer is not None: return [arguments.trailer] return [] class ValuesArguments(AbstractArguments): def __init__(self, values_list): self._values_list = values_list def unpack(self, funcdef=None): for values in self._values_list: yield None, LazyKnownContexts(values) def __repr__(self): return '<%s: %s>' % (self.__class__.__name__, self._values_list) def _iterate_star_args(context, array, input_node, funcdef=None): try: iter_ = array.py__iter__ except AttributeError: if funcdef is not None: # TODO this funcdef should not be needed. m = "TypeError: %s() argument after * must be a sequence, not %s" \ % (funcdef.name.value, array) analysis.add(context, 'type-error-star', input_node, message=m) else: for lazy_context in iter_(): yield lazy_context def _star_star_dict(context, array, input_node, funcdef): from jedi.evaluate.context.instance import CompiledInstance if isinstance(array, CompiledInstance) and array.name.string_name == 'dict': # For now ignore this case. In the future add proper iterators and just # make one call without crazy isinstance checks. return {} elif isinstance(array, iterable.Sequence) and array.array_type == 'dict': return array.exact_key_items() else: if funcdef is not None: m = "TypeError: %s argument after ** must be a mapping, not %s" \ % (funcdef.name.value, array) analysis.add(context, 'type-error-star-star', input_node, message=m) return {}
py
1a32c057399a84dedcf6a5b350eeeec81371a657
import json class PEXEL: def __init__(self, annotations_file): print("Loading captions from pexels dataset ...") self.annotations_file = annotations_file self.dataset = dict() self.anns = dict() if not annotations_file == None: self.dataset = json.load(open(annotations_file, 'r')) self.createIndex() def createIndex(self): anns = {} for entry in self.dataset: anns[int(entry['_id'])] = entry['annotation'] self.anns = anns print('pexels: loaded {} captions'.format(len(anns))) def getImgPath(self, id): return 'img_{}.jpg'.format(id)
py
1a32c12c7689394022da8a298a27e92eb79e5ac7
# Copyright 2015 The Shaderc Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import expect import os.path from glslc_test_framework import inside_glslc_testsuite from placeholder import FileShader, TempFileName @inside_glslc_testsuite('OptionDashO') class TestOptionDashOConcatenatedArg(expect.SuccessfulReturn, expect.CorrectObjectFilePreamble): """Tests that we can concatenate -o and the output filename.""" shader = FileShader('#version 140\nvoid main() {}', '.vert') glslc_args = ['-ofoo', shader] def check_output_foo(self, status): output_name = os.path.join(status.directory, 'foo') return self.verify_object_file_preamble(output_name) @inside_glslc_testsuite('OptionDashO') class ManyOutputFilesWithDashO(expect.ErrorMessage): """Tests -o and -c with several files generates an error.""" shader1 = FileShader('', '.vert') shader2 = FileShader('', '.frag') glslc_args = ['-o', 'foo', '-c', shader1, shader2] expected_error = [ 'glslc: error: cannot specify -o when ' 'generating multiple output files\n'] @inside_glslc_testsuite('OptionDashO') class OutputFileLocation(expect.SuccessfulReturn, expect.CorrectObjectFilePreamble): """Tests that the -o flag puts a file in a new location.""" shader = FileShader('#version 310 es\nvoid main() {}', '.frag') glslc_args = [shader, '-o', TempFileName('a.out')] def check_output_a_out(self, status): output_name = os.path.join(status.directory, 'a.out') return self.verify_object_file_preamble(output_name) @inside_glslc_testsuite('OptionDashO') class DashOMissingArgumentIsAnError(expect.ErrorMessage): """Tests that -o without an argument is an error.""" glslc_args = ['-o'] expected_error = ['glslc: error: argument to \'-o\' is missing ' + '(expected 1 value)\n']
py
1a32c166af9e57e7fe68c3c39230344b9dfa131e
cmd.do('list = setting.get_name_list();[print("%s => %s" % (name, setting.get_setting_text(name))) for name in list];')
py
1a32c1974d6b0b324cc34912e841502bc76bfbbd
# Generated by Django 2.0.3 on 2018-06-03 04:53 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('questionnaire', '0015_auto_20180602_2026'), ] operations = [ migrations.RenameField( model_name='questionnaireblockgroupmembershowcondition', old_name='need_to_be_member', new_name='group', ), migrations.RenameField( model_name='questionnaireblockvariantcheckedshowcondition', old_name='need_to_be_checked', new_name='variant', ), ]
py
1a32c24c2207027c751a4f49641d6e408b4e788e
from .engine import TradingEngine # noqa: F401
py
1a32c2606880d97edf6d14de0d558f02fdc16751
import os import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output from app import app, server style = {'maxWidth': '960px', 'margin': 'auto'} app.layout = html.Div([ dcc.Tabs(id='tabs', value='tab-intro', children=[ dcc.Tab(label='Intro', value='tab-intro'), dcc.Tab(label='Examples', value='tab-examples'), dcc.Tab(label='Map', value='tab-map') ]), html.Div(id='tabs-content') ], style=style) from tabs import intro, map, examples @app.callback(Output('tabs-content', 'children'), [Input('tabs', 'value')]) def render_content(tab): if tab == 'tab-intro': return intro.layout elif tab == 'tab-examples': return examples.layout elif tab == 'tab-map': return map.layout if __name__ == '__main__': app.run_server(debug=True)
py
1a32c27e1ee728816d74e0edc97ea6801e4a18eb
from datetime import datetime from typing import Dict, Optional from datetime import datetime from dateutil.tz import tzutc from ..util import Estimator from ..const import SOURCE_GOOGLE_DRIVE, SOURCE_HA from ..logger import getLogger logger = getLogger(__name__) PROP_KEY_SLUG = "snapshot_slug" PROP_KEY_DATE = "snapshot_date" PROP_KEY_NAME = "snapshot_name" PROP_TYPE = "type" PROP_VERSION = "version" PROP_PROTECTED = "protected" PROP_RETAINED = "retained" DRIVE_KEY_TEXT = "Google Drive's snapshot metadata" HA_KEY_TEXT = "Home Assistant's snapshot metadata" class AbstractSnapshot(): def __init__(self, name: str, slug: str, source: str, date: str, size: int, version: str, snapshotType: str, protected: bool, retained: bool = False, uploadable: bool = False, details={}): self._options = None self._name = name self._slug = slug self._source = source self._date = date self._size = size self._retained = retained self._uploadable = uploadable self._details = details self._version = version self._snapshotType = snapshotType self._protected = protected def setOptions(self, options): self._options = options def getOptions(self): return self._options def name(self) -> str: return self._name def slug(self) -> str: return self._slug def size(self) -> int: return self._size def sizeInt(self) -> int: try: return int(self.size()) except ValueError: return 0 def date(self) -> datetime: return self._date def source(self) -> str: return self._source def retained(self) -> str: return self._retained def version(self): return self._version def snapshotType(self): return self._snapshotType def protected(self): return self._protected def setRetained(self, retained): self._retained = retained def uploadable(self) -> bool: return self._uploadable def considerForPurge(self) -> bool: return not self.retained() def setUploadable(self, uploadable): self._uploadable = uploadable def details(self): return self._details def status(self): return None class Snapshot(object): """ Represents a Home Assistant snapshot stored on Google Drive, locally in Home Assistant, or a pending snapshot we expect to see show up later """ def __init__(self, snapshot: Optional[AbstractSnapshot] = None): self.sources: Dict[str, AbstractSnapshot] = {} self._purgeNext: Dict[str, bool] = {} self._options = None self._status_override = None self._status_override_args = None if snapshot is not None: self.addSource(snapshot) def setOptions(self, options): self._options = options def getOptions(self): return self._options def updatePurge(self, source: str, purge: bool): self._purgeNext[source] = purge def addSource(self, snapshot: AbstractSnapshot): self.sources[snapshot.source()] = snapshot if snapshot.getOptions() and not self.getOptions(): self.setOptions(snapshot.getOptions()) def removeSource(self, source): if source in self.sources: del self.sources[source] if source in self._purgeNext: del self._purgeNext[source] def getPurges(self): return self._purgeNext def getSource(self, source: str): return self.sources.get(source, None) def name(self): for snapshot in self.sources.values(): return snapshot.name() return "error" def slug(self) -> str: for snapshot in self.sources.values(): return snapshot.slug() return "error" def size(self) -> int: for snapshot in self.sources.values(): return snapshot.size() return 0 def sizeInt(self) -> int: for snapshot in self.sources.values(): return snapshot.sizeInt() return 0 def snapshotType(self) -> str: for snapshot in self.sources.values(): return snapshot.snapshotType() return "error" def version(self) -> str: for snapshot in self.sources.values(): return snapshot.snapshotType() return "?" def details(self): for snapshot in self.sources.values(): return snapshot.details() return "?" def protected(self) -> bool: for snapshot in self.sources.values(): return snapshot.protected() return False def date(self) -> datetime: for snapshot in self.sources.values(): return snapshot.date() return datetime.now(tzutc()) def sizeString(self) -> str: size_string = self.size() if type(size_string) == str: return size_string return Estimator.asSizeString(size_string) def status(self) -> str: if self._status_override is not None: return self._status_override.format(*self._status_override_args) for snapshot in self.sources.values(): status = snapshot.status() if status: return status inDrive = self.getSource(SOURCE_GOOGLE_DRIVE) is not None inHa = self.getSource(SOURCE_HA) is not None if inDrive and inHa: return "Backed Up" if inDrive: return "Drive Only" if inHa: return "HA Only" return "Deleted" def isDeleted(self) -> bool: return len(self.sources) == 0 def overrideStatus(self, format, *args) -> None: self._status_override = format self._status_override_args = args def clearStatus(self): self._status_override = None self._status_override_args = None def __str__(self) -> str: return "<Slug: {0} {1} {2}>".format(self.slug(), " ".join(self.sources), self.date().isoformat()) def __format__(self, format_spec: str) -> str: return self.__str__() def __repr__(self) -> str: return self.__str__()
py
1a32c2e78670cf2750c4ac9ea861f4e177e34d9c
#!/usr/bin/env python # # Copyright 2007 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Tests for google.appengine.runtime.context.""" import os from unittest import mock from google.appengine.runtime import context from google.appengine.runtime.context import ctx_test_util from absl.testing import absltest @ctx_test_util.isolated_context class ContextTest(absltest.TestCase): def setUp(self): super().setUp() orig_val = context.READ_FROM_OS_ENVIRON def restore(): context.READ_FROM_OS_ENVIRON = orig_val self.addCleanup(restore) def testBooleanConversionOnWrite(self): context.init_from_wsgi_environ({ 'HTTP_X_APPENGINE_USER_IS_ADMIN': '1', }) self.assertEqual(context.gae_headers.USER_IS_ADMIN.get(), True) def testBooleanConversionOnRead(self): context.READ_FROM_OS_ENVIRON = False context.gae_headers.USER_IS_ADMIN.set(True) self.assertEqual(context.get('USER_IS_ADMIN'), '1') @mock.patch.dict(os.environ) @mock.patch.object(context, 'READ_FROM_OS_ENVIRON') def testReadFrom(self, mock_read_from_os_environ): del mock_read_from_os_environ context.gae_headers.USER_ID.set('value in context') os.environ['USER_ID'] = 'value in os.environ' with self.subTest('contextvars'): context.READ_FROM_OS_ENVIRON = False self.assertEqual(context.get('USER_ID'), 'value in context') with self.subTest('os.environ'): context.READ_FROM_OS_ENVIRON = True self.assertEqual(context.get('USER_ID'), 'value in os.environ') if __name__ == '__main__': absltest.main()
py
1a32c31639824cc735976337b519959149c52ceb
""" Copyright: Wenyi Tang 2017-2018 Author: Wenyi Tang Email: [email protected] Created Date: June 8th 2018 Updated Date: June 8th 2018 Image Super-Resolution via Deep Recursive Residual Network (CVPR 2017) See http://cvlab.cse.msu.edu/pdfs/Tai_Yang_Liu_CVPR2017.pdf """ from ..Framework.SuperResolution import SuperResolution from ..Util.Utility import * class DRRN(SuperResolution): """Image Super-Resolution via Deep Recursive Residual Network Args: residual_unit: number of residual blocks in one recursion recursive_block: number of recursions grad_clip: gradient clip ratio according to the paper custom_upsample: use --add_custom_callbacks=upsample during fitting, or use `bicubic_rescale`. TODO: REMOVE IN FUTURE. """ def __init__(self, residual_unit=3, recursive_block=3, custom_upsample=False, grad_clip=0.01, name='drrn', **kwargs): self.ru = residual_unit self.rb = recursive_block self.grad_clip = grad_clip self.do_up = not custom_upsample self.name = name super(DRRN, self).__init__(**kwargs) def display(self): super(DRRN, self).display() tf.logging.info('Recursive Blocks: %d' % self.rb) tf.logging.info('Residual Units: %d' % self.ru) def _shared_resblock(self, inputs, **kwargs): x = self.relu_conv2d(inputs, 128, 3) for _ in range(self.ru): x = self.resblock(x, 128, 3, reuse=tf.AUTO_REUSE, name='Res') return x def build_graph(self): super(DRRN, self).build_graph() with tf.variable_scope(self.name): x = self.inputs_preproc[-1] if self.do_up: x = bicubic_rescale(self.inputs_preproc[-1], self.scale) bic = x for _ in range(self.rb): x = self._shared_resblock(x) x = self.conv2d(x, self.channel, 3) self.outputs.append(x + bic) def build_loss(self): with tf.name_scope('loss'): y_true = self.label[-1] y_pred = self.outputs[-1] mse = tf.losses.mean_squared_error(y_true, y_pred) loss = tf.add_n([mse] + tf.losses.get_regularization_losses()) opt = tf.train.AdamOptimizer(self.learning_rate) if self.grad_clip > 0: grads_and_vars = [] for grad, var in opt.compute_gradients(loss): grads_and_vars.append(( tf.clip_by_value( grad, -self.grad_clip / self.learning_rate, self.grad_clip / self.learning_rate), var)) op = opt.apply_gradients(grads_and_vars, self.global_steps) else: op = opt.minimize(loss, self.global_steps) self.loss.append(op) self.train_metric['loss'] = loss self.metrics['mse'] = mse self.metrics['psnr'] = tf.reduce_mean( tf.image.psnr(y_true, y_pred, 255)) self.metrics['ssim'] = tf.reduce_mean( tf.image.ssim(y_true, y_pred, 255)) def build_saver(self): self.savers[self.name] = tf.train.Saver(tf.global_variables(self.name), max_to_keep=1)
py
1a32c324dad9862fb504757442989e480fc9c2f2
from turtle import Turtle, Screen turtle = Turtle() screen = Screen() for a in range(4): turtle.fd(100) turtle.right(90) screen.exitonclick()
py
1a32c339f16e335f67a778abac8be68559694e03
""" Modules to test data gathering. This is quite complex testing as it requires mock projects, sites, evals metadata and evals data to appropriately test everything. Recall that evals data is simply spectra data reduced to the evaluation frequencies. It is, however, separated into its own data folder to avoid in potential future ambiguity in which data is being fetched. The test works towards gathering data for three sites - site1: measurements meas1, meas2, meas3 - site2: measurements run1, run2 - site3: measurements data1 The intention is to setup intersite processing with a remote reference. Each site will have two channels, namely, - site1: Ex, Ey (output site) - site2: Hx, Hy (input site) - site3: Hx, Hy (remote/cross site) There are only two frequencies per decimation level, but multiple windows """ from typing import Dict from pathlib import Path import numpy as np import pandas as pd import pytest from resistics.errors import ChannelNotFoundError from resistics.project import ProjectMetadata, Project from resistics.project import get_meas_evals_path from resistics.decimate import DecimationSetup from resistics.spectra import SpectraData, SpectraDataReader, SpectraMetadata import resistics.gather as gather from resistics.transfunc import TransferFunction, ImpedanceTensor from testing_data_evals import get_evals_metadata_site1, get_evals_data_site1 from testing_data_evals import get_evals_metadata_site2, get_evals_data_site2 from testing_data_evals import get_evals_metadata_site3, get_evals_data_site3 from testing_data_evals import SITE1_COMBINED_DATA, SITE2_COMBINED_DATA from testing_data_evals import SITE3_COMBINED_DATA from testing_data_evals import SITE2_RUN2_QUICK_OUT, SITE2_RUN2_QUICK_IN from testing_data_evals import SITE2_RUN2_QUICK_CROSS TEST_PROJECT_PATH = Path(".") TEST_CONFIG_NAME = "test" def get_evals_metadata(site_name: str, meas_name: str) -> SpectraMetadata: """Get example evals metadata for testing""" if site_name == "site1": return get_evals_metadata_site1(meas_name) if site_name == "site2": return get_evals_metadata_site2(meas_name) if site_name == "site3": return get_evals_metadata_site3(meas_name) raise ValueError(f"Site {site_name} not known") def get_evals_metadata_by_path(spectra_path: Path): """Get example evals metadata for testing""" # site 1 for meas_name in ["meas1", "meas2", "meas3"]: if spectra_path == get_meas_evals_path( TEST_PROJECT_PATH, "site1", meas_name, TEST_CONFIG_NAME ): return get_evals_metadata("site1", meas_name) # site 2 for meas_name in ["run1", "run2"]: if spectra_path == get_meas_evals_path( TEST_PROJECT_PATH, "site2", meas_name, TEST_CONFIG_NAME ): return get_evals_metadata("site2", meas_name) # site 3 for meas_name in ["data1"]: if spectra_path == get_meas_evals_path( TEST_PROJECT_PATH, "site3", meas_name, TEST_CONFIG_NAME ): return get_evals_metadata("site3", meas_name) raise ValueError("Spectra path not as expected") def get_evals_data(site_name: str, meas_name: str) -> SpectraData: """Get example evals data for testing""" if site_name == "site1": return get_evals_data_site1(meas_name) if site_name == "site2": return get_evals_data_site2(meas_name) if site_name == "site3": return get_evals_data_site3(meas_name) raise ValueError(f"Site {site_name} not known") def get_evals_data_by_path(evals_path: Path): """Get example evals data for testing""" # site 1 for meas_name in ["meas1", "meas2", "meas3"]: if evals_path == get_meas_evals_path( TEST_PROJECT_PATH, "site1", meas_name, TEST_CONFIG_NAME ): return get_evals_data("site1", meas_name) # site 2 for meas_name in ["run1", "run2"]: if evals_path == get_meas_evals_path( TEST_PROJECT_PATH, "site2", meas_name, TEST_CONFIG_NAME ): return get_evals_data("site2", meas_name) # site 3 for meas_name in ["data1"]: if evals_path == get_meas_evals_path( TEST_PROJECT_PATH, "site3", meas_name, TEST_CONFIG_NAME ): return get_evals_data("site3", meas_name) raise ValueError("Spectra path not as expected") def get_test_project(project_path) -> Project: """Get a testing project""" metadata = ProjectMetadata(ref_time="2021-01-01 00:00:00") dir_path = project_path begin_time = "2021-01-01 01:00:00" end_time = "2021-01-01 05:00:00" proj = Project( dir_path=dir_path, begin_time=begin_time, end_time=end_time, metadata=metadata ) return proj class MockMeas: def __init__(self, name: str): """Initialise with the measurement name""" self.name = name class MockSite: def __init__(self, name: str): """Initialise""" self.name = name def __getitem__(self, meas_name: str) -> Dict[str, str]: """Get a mock measurement""" return MockMeas(meas_name) def get_measurements(self, fs: float): """Get the measurements for the site""" if self.name == "site1": return ["meas1", "meas2", "meas3"] if self.name == "site2": return ["run1", "run2"] if self.name == "site3": return ["data1"] @pytest.fixture def mock_project_site(monkeypatch): """Mock getting of site from project""" def mock_project_get_site(*args, **kwargs): """Mock for getting a site""" site_name = args[1] return MockSite(site_name) monkeypatch.setattr(Project, "get_site", mock_project_get_site) @pytest.fixture def mock_spec_reader_metadata_only(monkeypatch): """Mock fixture for reading spectra metadata""" def mock_spectra_data_reader_run(*args, **kwargs): """Mock for reading spectra metadata""" evals_path = args[1] if "metadata_only" in kwargs: return get_evals_metadata_by_path(evals_path) else: return get_evals_data_by_path(evals_path) monkeypatch.setattr(SpectraDataReader, "run", mock_spectra_data_reader_run) def get_selection(): """Get a selection as it is used in multiple places""" proj = get_test_project(TEST_PROJECT_PATH) site_names = ["site1", "site2", "site3"] dec_params = DecimationSetup(n_levels=4, per_level=2).run(128) selection = gather.Selector().run(TEST_CONFIG_NAME, proj, site_names, dec_params) return selection def test_get_site_evals_metadata(mock_project_site, mock_spec_reader_metadata_only): """Test gathering of spectra metadata""" proj = get_test_project(TEST_PROJECT_PATH) meas_metadata = gather.get_site_evals_metadata(TEST_CONFIG_NAME, proj, "site1", 128) assert len(meas_metadata) == 3 for meas_name, metadata in meas_metadata.items(): assert get_evals_metadata("site1", meas_name) == metadata def test_get_site_level_wins(): """Test getting site level windows for decimation level 0""" meas_metadata = {} for meas_name in ["meas1", "meas2", "meas3"]: meas_metadata[meas_name] = get_evals_metadata("site1", meas_name) table = gather.get_site_level_wins(meas_metadata, 0) # fmt:off index = [4, 5, 6, 7, 8, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 41, 42, 43, 44, 45, 46, 47] data = ["meas1", "meas1", "meas1", "meas1", "meas1"] data += ["meas2", "meas2", "meas2", "meas2", "meas2", "meas2", "meas2", "meas2", "meas2", "meas2", "meas2", "meas2"] data += ["meas3", "meas3", "meas3", "meas3", "meas3", "meas3", "meas3"] # fmt:on pd.testing.assert_series_equal(table, pd.Series(data=data, index=index)) def test_get_site_wins(mock_project_site, mock_spec_reader_metadata_only): """Test getting site windows for all decimation levels""" proj = get_test_project(TEST_PROJECT_PATH) tables = gather.get_site_wins(TEST_CONFIG_NAME, proj, "site1", 128) # level 0 # fmt:off index = [4, 5, 6, 7, 8, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 41, 42, 43, 44, 45, 46, 47] data = ["meas1", "meas1", "meas1", "meas1", "meas1"] data += ["meas2", "meas2", "meas2", "meas2", "meas2", "meas2", "meas2", "meas2", "meas2", "meas2", "meas2", "meas2"] data += ["meas3", "meas3", "meas3", "meas3", "meas3", "meas3", "meas3"] # fmt:on pd.testing.assert_series_equal(tables[0], pd.Series(data=data, index=index)) # level 1 # fmt:off index = [2, 3, 4, 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 38, 39, 40, 41] data = ["meas1", "meas1", "meas1", "meas1"] data += ["meas2", "meas2", "meas2", "meas2", "meas2", "meas2", "meas2", "meas2", "meas2"] data += ["meas3", "meas3", "meas3", "meas3"] # fmt:on pd.testing.assert_series_equal(tables[1], pd.Series(data=data, index=index)) # level 2 # fmt:off index = [1, 2, 3, 8, 9, 10, 11, 12, 13, 14, 35, 36] data = ["meas1", "meas1", "meas1"] data += ["meas2", "meas2", "meas2", "meas2", "meas2", "meas2", "meas2"] data += ["meas3", "meas3"] # fmt:on pd.testing.assert_series_equal(tables[2], pd.Series(data=data, index=index)) def test_selector(mock_project_site, mock_spec_reader_metadata_only): """Test the Selector""" selection = get_selection() selector_site_names = [x.name for x in selection.sites] expected_site_names = ["site1", "site2", "site3"] assert set(expected_site_names) == set(selector_site_names) assert selection.n_levels == 2 assert selection.get_n_evals() == 4 assert selection.get_n_wins(0, 0) == 15 assert selection.get_n_wins(0, 1) == 15 assert selection.get_n_wins(1, 0) == 5 assert selection.get_n_wins(1, 1) == 5 assert selection.get_measurements(MockSite("site1")) == ["meas1", "meas2"] assert selection.get_measurements(MockSite("site2")) == ["run1", "run2"] assert selection.get_measurements(MockSite("site3")) == ["data1"] # level 0 index = [4, 5, 6, 7, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] data = {} # fmt:off data["site1"] = ["meas1", "meas1", "meas1", "meas1", "meas1", "meas2", "meas2", "meas2", "meas2", "meas2", "meas2", "meas2", "meas2", "meas2", "meas2"] data["site2"] = ["run1", "run1", "run1", "run1", "run1", "run2", "run2", "run2", "run2", "run2", "run2", "run2", "run2", "run2", "run2"] data["site3"] = ["data1", "data1", "data1", "data1", "data1", "data1", "data1", "data1", "data1", "data1", "data1", "data1", "data1", "data1", "data1"] data[0] = [True, True, True, True, True, True, True, True, True, True, True, True, True, True, True] data[1] = [True, True, True, True, True, True, True, True, True, True, True, True, True, True, True] # fmt:on pd.testing.assert_frame_equal( pd.DataFrame(data=data, index=index), selection.tables[0] ) eval_wins = pd.DataFrame(data=data, index=index).drop([0, 1], axis=1) pd.testing.assert_frame_equal(eval_wins, selection.get_eval_wins(0, 0)) pd.testing.assert_frame_equal(eval_wins, selection.get_eval_wins(0, 1)) # level 1 index = [3, 10, 11, 12, 13] data = {} data["site1"] = ["meas1", "meas2", "meas2", "meas2", "meas2"] data["site2"] = ["run1", "run2", "run2", "run2", "run2"] data["site3"] = ["data1", "data1", "data1", "data1", "data1"] data[0] = [True, True, True, True, True] data[1] = [True, True, True, True, True] pd.testing.assert_frame_equal( pd.DataFrame(data=data, index=index), selection.tables[1] ) eval_wins = pd.DataFrame(data=data, index=index).drop([0, 1], axis=1) pd.testing.assert_frame_equal(eval_wins, selection.get_eval_wins(1, 0)) pd.testing.assert_frame_equal(eval_wins, selection.get_eval_wins(1, 1)) def test_projectgather_get_empty_data( mock_project_site, mock_spec_reader_metadata_only ): """Test creating empty data""" selection = get_selection() chans = ["Hx", "Hy"] n_chans = len(chans) # now test gatherer._get_empty_data gatherer = gather.ProjectGather() empty_data = gatherer._get_empty_data(selection, chans) assert len(empty_data) == 4 assert sorted(list(empty_data.keys())) == [0, 1, 2, 3] # check size of arrays for eval_idx, data in empty_data.items(): # two decimation levels level = eval_idx // 2 eval_level_idx = eval_idx - level * 2 n_wins = selection.get_n_wins(level, eval_level_idx) assert data.shape == (n_wins, n_chans) assert data.dtype == np.complex128 def test_projectgather_get_indices_site1_meas1( mock_project_site, mock_spec_reader_metadata_only ): """Test project gathering of data""" # get required data site = MockSite("site1") meas_name = "meas1" metadata = get_evals_metadata(site.name, meas_name) selection = get_selection() # now test gatherer._get_indices gatherer = gather.ProjectGather() # site 1, meas1, level 0 eval_wins = selection.get_eval_wins(0, 0) level_metadata = metadata.levels_metadata[0] spectra_indices, combined_indices = gatherer._get_indices( eval_wins, site, meas_name, level_metadata ) np.testing.assert_array_equal(spectra_indices, np.array([0, 1, 2, 3, 4])) np.testing.assert_array_equal(combined_indices, np.array([0, 1, 2, 3, 4])) # site 1, meas1, level 1 eval_wins = selection.get_eval_wins(1, 0) level_metadata = metadata.levels_metadata[1] spectra_indices, combined_indices = gatherer._get_indices( eval_wins, site, meas_name, level_metadata ) np.testing.assert_array_equal(spectra_indices, np.array([1])) np.testing.assert_array_equal(combined_indices, np.array([0])) def test_projectgather_get_indices_site2_run2( mock_project_site, mock_spec_reader_metadata_only ): """Test project gathering of data""" # get required data site = MockSite("site2") meas_name = "run2" metadata = get_evals_metadata(site.name, meas_name) selection = get_selection() # now test gatherer._get_indices gatherer = gather.ProjectGather() # site 2, run1, level 0 eval_wins = selection.get_eval_wins(0, 0) level_metadata = metadata.levels_metadata[0] spectra_indices, combined_indices = gatherer._get_indices( eval_wins, site, meas_name, level_metadata ) expected_spectra = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] expeceted_combined = [5, 6, 7, 8, 9, 10, 11, 12, 13, 14] np.testing.assert_array_equal(spectra_indices, np.array(expected_spectra)) np.testing.assert_array_equal(combined_indices, np.array(expeceted_combined)) # site 2, run1, level 1 eval_wins = selection.get_eval_wins(1, 0) level_metadata = metadata.levels_metadata[1] spectra_indices, combined_indices = gatherer._get_indices( eval_wins, site, meas_name, level_metadata ) np.testing.assert_array_equal(spectra_indices, np.array([1, 2, 3, 4])) np.testing.assert_array_equal(combined_indices, np.array([1, 2, 3, 4])) def test_projectgather_get_indices_site3_data1( mock_project_site, mock_spec_reader_metadata_only ): """Test project gathering of data""" # get required data site = MockSite("site3") meas_name = "data1" metadata = get_evals_metadata(site.name, meas_name) selection = get_selection() # now test gatherer._get_indices gatherer = gather.ProjectGather() # site 3, data1, level 0 eval_wins = selection.get_eval_wins(0, 0) level_metadata = metadata.levels_metadata[0] spectra_indices, combined_indices = gatherer._get_indices( eval_wins, site, meas_name, level_metadata ) expected_spectra = [0, 1, 2, 3, 4, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] expected_combined = np.arange(15) np.testing.assert_array_equal(spectra_indices, np.array(expected_spectra)) np.testing.assert_array_equal(combined_indices, expected_combined) # site 3, data1, level 1 eval_wins = selection.get_eval_wins(1, 0) level_metadata = metadata.levels_metadata[1] spectra_indices, combined_indices = gatherer._get_indices( eval_wins, site, meas_name, level_metadata ) np.testing.assert_array_equal(spectra_indices, np.array([0, 7, 8, 9, 10])) np.testing.assert_array_equal(combined_indices, np.array([0, 1, 2, 3, 4])) def test_projectgather_get_site_data_site1( mock_project_site, mock_spec_reader_metadata_only ): """Test combining data for site1""" # get required data proj = get_test_project(TEST_PROJECT_PATH) site_name = "site1" selection = get_selection() # now test gatherer._get_indices gatherer = gather.ProjectGather() combined_data = gatherer._get_site_data( TEST_CONFIG_NAME, proj, selection, site_name, ["Ex", "Ey"] ) assert len(combined_data.data) == 4 assert combined_data.metadata.chans == ["Ex", "Ey"] assert combined_data.metadata.n_evals == 4 assert combined_data.metadata.measurements == ["meas1", "meas2"] np.testing.assert_equal(combined_data.data[0], SITE1_COMBINED_DATA[0]) np.testing.assert_equal(combined_data.data[1], SITE1_COMBINED_DATA[1]) np.testing.assert_equal(combined_data.data[2], SITE1_COMBINED_DATA[2]) np.testing.assert_equal(combined_data.data[3], SITE1_COMBINED_DATA[3]) def test_projectgather_get_site_data_site2( mock_project_site, mock_spec_reader_metadata_only ): """Test combining data for site2""" # get required data proj = get_test_project(TEST_PROJECT_PATH) site_name = "site2" selection = get_selection() # now test gatherer._get_indices gatherer = gather.ProjectGather() combined_data = gatherer._get_site_data( TEST_CONFIG_NAME, proj, selection, site_name, ["Hx", "Hy"] ) assert len(combined_data.data) == 4 assert combined_data.metadata.chans == ["Hx", "Hy"] assert combined_data.metadata.n_evals == 4 assert combined_data.metadata.measurements == ["run1", "run2"] np.testing.assert_equal(combined_data.data[0], SITE2_COMBINED_DATA[0]) np.testing.assert_equal(combined_data.data[1], SITE2_COMBINED_DATA[1]) np.testing.assert_equal(combined_data.data[2], SITE2_COMBINED_DATA[2]) np.testing.assert_equal(combined_data.data[3], SITE2_COMBINED_DATA[3]) def test_projectgather_get_site_data_site3( mock_project_site, mock_spec_reader_metadata_only ): """Test combining data for site1""" # get required data proj = get_test_project(TEST_PROJECT_PATH) site_name = "site3" selection = get_selection() # now test gatherer._get_indices gatherer = gather.ProjectGather() combined_data = gatherer._get_site_data( TEST_CONFIG_NAME, proj, selection, site_name, ["Hx", "Hy"] ) assert len(combined_data.data) == 4 assert combined_data.metadata.chans == ["Hx", "Hy"] assert combined_data.metadata.n_evals == 4 assert combined_data.metadata.measurements == ["data1"] np.testing.assert_equal(combined_data.data[0], SITE3_COMBINED_DATA[0]) np.testing.assert_equal(combined_data.data[1], SITE3_COMBINED_DATA[1]) np.testing.assert_equal(combined_data.data[2], SITE3_COMBINED_DATA[2]) np.testing.assert_equal(combined_data.data[3], SITE3_COMBINED_DATA[3]) def test_projectgather_run(mock_project_site, mock_spec_reader_metadata_only): """Test gathering data for all sites""" # get required data proj = get_test_project(TEST_PROJECT_PATH) tf = ImpedanceTensor() selection = get_selection() gathered_data = gather.ProjectGather().run( TEST_CONFIG_NAME, proj, selection, tf, out_name="site1", in_name="site2", cross_name="site3", ) # output data assert gathered_data.out_data.metadata.site_name == "site1" assert gathered_data.out_data.metadata.chans == ["Ex", "Ey"] assert gathered_data.out_data.metadata.fs == 128 assert gathered_data.out_data.metadata.n_evals == 4 np.testing.assert_equal(gathered_data.out_data.data[0], SITE1_COMBINED_DATA[0]) np.testing.assert_equal(gathered_data.out_data.data[1], SITE1_COMBINED_DATA[1]) np.testing.assert_equal(gathered_data.out_data.data[2], SITE1_COMBINED_DATA[2]) np.testing.assert_equal(gathered_data.out_data.data[3], SITE1_COMBINED_DATA[3]) # input data assert gathered_data.in_data.metadata.site_name == "site2" assert gathered_data.in_data.metadata.chans == ["Hx", "Hy"] assert gathered_data.in_data.metadata.fs == 128 assert gathered_data.in_data.metadata.n_evals == 4 np.testing.assert_equal(gathered_data.in_data.data[0], SITE2_COMBINED_DATA[0]) np.testing.assert_equal(gathered_data.in_data.data[1], SITE2_COMBINED_DATA[1]) np.testing.assert_equal(gathered_data.in_data.data[2], SITE2_COMBINED_DATA[2]) np.testing.assert_equal(gathered_data.in_data.data[3], SITE2_COMBINED_DATA[3]) # cross data assert gathered_data.cross_data.metadata.site_name == "site3" assert gathered_data.cross_data.metadata.chans == ["Hx", "Hy"] assert gathered_data.cross_data.metadata.fs == 128 assert gathered_data.cross_data.metadata.n_evals == 4 np.testing.assert_equal(gathered_data.cross_data.data[0], SITE3_COMBINED_DATA[0]) np.testing.assert_equal(gathered_data.cross_data.data[1], SITE3_COMBINED_DATA[1]) np.testing.assert_equal(gathered_data.cross_data.data[2], SITE3_COMBINED_DATA[2]) np.testing.assert_equal(gathered_data.cross_data.data[3], SITE3_COMBINED_DATA[3]) def test_quickgather_run(): """Test quick gathering with some spectra data""" dir_path = Path("test") dec_params = DecimationSetup(n_levels=4, per_level=2).run(128) tf = TransferFunction(out_chans=["Hy"], in_chans=["Hx"], cross_chans=["Ex", "Ey"]) eval_data = get_evals_data("site2", "run2") with pytest.raises(ChannelNotFoundError): # there are no electronic channels in the data gathered_data = gather.QuickGather().run(dir_path, dec_params, tf, eval_data) tf = TransferFunction(in_chans=["Hx"], out_chans=["Hy"], cross_chans=["Hx", "Hy"]) gathered_data = gather.QuickGather().run(dir_path, dec_params, tf, eval_data) # output data assert gathered_data.out_data.metadata.site_name == "test" assert gathered_data.out_data.metadata.chans == ["Hy"] assert gathered_data.out_data.metadata.fs == 128 assert gathered_data.out_data.metadata.n_evals == 4 np.testing.assert_equal(gathered_data.out_data.data[0], SITE2_RUN2_QUICK_OUT[0]) np.testing.assert_equal(gathered_data.out_data.data[1], SITE2_RUN2_QUICK_OUT[1]) np.testing.assert_equal(gathered_data.out_data.data[2], SITE2_RUN2_QUICK_OUT[2]) np.testing.assert_equal(gathered_data.out_data.data[3], SITE2_RUN2_QUICK_OUT[3]) # input data assert gathered_data.in_data.metadata.site_name == "test" assert gathered_data.in_data.metadata.chans == ["Hx"] assert gathered_data.in_data.metadata.fs == 128 assert gathered_data.in_data.metadata.n_evals == 4 np.testing.assert_equal(gathered_data.in_data.data[0], SITE2_RUN2_QUICK_IN[0]) np.testing.assert_equal(gathered_data.in_data.data[1], SITE2_RUN2_QUICK_IN[1]) np.testing.assert_equal(gathered_data.in_data.data[2], SITE2_RUN2_QUICK_IN[2]) np.testing.assert_equal(gathered_data.in_data.data[3], SITE2_RUN2_QUICK_IN[3]) # cross data assert gathered_data.cross_data.metadata.site_name == "test" assert gathered_data.cross_data.metadata.chans == ["Hx", "Hy"] assert gathered_data.cross_data.metadata.fs == 128 assert gathered_data.cross_data.metadata.n_evals == 4 np.testing.assert_equal(gathered_data.cross_data.data[0], SITE2_RUN2_QUICK_CROSS[0]) np.testing.assert_equal(gathered_data.cross_data.data[1], SITE2_RUN2_QUICK_CROSS[1]) np.testing.assert_equal(gathered_data.cross_data.data[2], SITE2_RUN2_QUICK_CROSS[2]) np.testing.assert_equal(gathered_data.cross_data.data[3], SITE2_RUN2_QUICK_CROSS[3])
py
1a32c3623e132c9ad235341f526b60314b31e412
# -*- coding: utf-8 -*- # # Copyright (C) 2021 CERN. # # CDS-ILS is free software; you can redistribute it and/or modify it under # the terms of the MIT License; see LICENSE file for more details. """Test loan migration.""" import os import pytest from invenio_app_ils.circulation.indexer import LoanIndexer from invenio_circulation.api import Loan from invenio_circulation.pidstore.pids import CIRCULATION_LOAN_PID_TYPE from invenio_circulation.proxies import current_circulation from invenio_search import current_search from cds_ils.migrator.errors import LoanMigrationError from cds_ils.migrator.loans.api import import_loans_from_json from tests.migrator.utils import reindex_record def test_import_loan_returned(test_data_migration, patrons, es_clear): filepath = os.path.join(os.path.dirname(__file__), "data", "loans.json") with open(filepath) as fp: import_loans_from_json(fp) reindex_record(CIRCULATION_LOAN_PID_TYPE, Loan, LoanIndexer()) current_search.flush_and_refresh(index="*") loan_search = current_circulation.loan_search_cls search = ( loan_search() .filter("term", document_pid="docid-1") .filter("term", state="ITEM_RETURNED") ) results = search.execute() assert results.hits.total.value == 1 assert results[0].start_date == "2010-09-29T00:00:00" search = ( loan_search() .filter("term", document_pid="docid-1") .filter("term", state="ITEM_ON_LOAN") .filter("term", item_pid__value="itemid-1") ) results = search.execute() assert results.hits.total.value == 1 assert results[0].start_date == "2009-07-07T00:00:00" def test_import_invalid_loan(testdata): filepath = os.path.join( os.path.dirname(__file__), "data", "loan_ongoing_anonymous_user.json" ) with open(filepath) as fp: with pytest.raises(LoanMigrationError): import_loans_from_json(fp, raise_exceptions=True)
py
1a32c43c84d2bbd166c94b5569589bae045fec9c
''' Tenable.io ========== .. autoclass:: TenableIO :members: .. toctree:: :hidden: :glob: cs/index access_groups_v2 access_groups agent_config agent_exclusions agent_groups agents assets audit_log credentials editor exclusions exports files filters folders groups networks permissions plugins policies remediation_scans scanner_groups scanners scans server session tags target_groups users workbenches ''' from typing import Dict, List, Optional from requests import Response from tenable.base.platform import APIPlatform from .access_groups import AccessGroupsAPI from .access_groups_v2 import AccessGroupsV2API from .agent_config import AgentConfigAPI from .agent_exclusions import AgentExclusionsAPI from .agent_groups import AgentGroupsAPI from .agents import AgentsAPI from .assets import AssetsAPI from .audit_log import AuditLogAPI from .credentials import CredentialsAPI from .editor import EditorAPI from .exclusions import ExclusionsAPI from .exports import ExportsAPI from .files import FileAPI from .filters import FiltersAPI from .folders import FoldersAPI from .groups import GroupsAPI from .networks import NetworksAPI from .permissions import PermissionsAPI from .plugins import PluginsAPI from .policies import PoliciesAPI from .scanner_groups import ScannerGroupsAPI from .scanners import ScannersAPI from .scans import ScansAPI from .remediation_scans import RemediationScansAPI from .server import ServerAPI from .session import SessionAPI from .tags import TagsAPI from .target_groups import TargetGroupsAPI from .users import UsersAPI from .workbenches import WorkbenchesAPI class TenableIO(APIPlatform): # noqa: PLR0904 ''' The Tenable.io object is the primary interaction point for users to interface with Tenable.io via the pyTenable library. All of the API endpoint classes that have been written will be grafted onto this class. Args: access_key (str, optional): The user's API access key for Tenable.io If an access key isn't specified, then the library will attempt to read the environment variable ``TIO_ACCESS_KEY`` to acquire the key. secret_key (str, optional): The user's API secret key for Tenable.io If a secret key isn't specified, then the library will attempt to read the environment variable ``TIO_SECRET_KEY`` to acquire the key. url (str, optional): The base URL that the paths will be appended onto. The default is ``https://cloud.tenable.com`` retries (int, optional): The number of retries to make before failing a request. The default is ``5``. backoff (float, optional): If a 429 response is returned, how much do we want to backoff if the response didn't send a Retry-After header. The default backoff is ``1`` second. vendor (str, optional): The vendor name for the User-Agent string. product (str, optional): The product name for the User-Agent string. build (str, optional): The version or build identifier for the User-Agent string. timeout (int, optional): The connection timeout parameter informing the library how long to wait in seconds for a stalled response before terminating the connection. If unspecified, the default is 120 seconds. Examples: Basic Example: >>> from tenable.io import TenableIO >>> tio = TenableIO('ACCESS_KEY', 'SECRET_KEY') Example with proper identification: >>> tio = TenableIO('ACCESS_KEY', 'SECRET_KEY', >>> vendor='Company Name', >>> product='My Awesome Widget', >>> build='1.0.0') Example with proper identification leveraging environment variables for access and secret keys: >>> tio = TenableIO( >>> vendor='Company Name', product='Widget', build='1.0.0') ''' _env_base = 'TIO' _tzcache = None _url = 'https://cloud.tenable.com' _timeout = 120 def __init__(self, access_key: Optional[str] = None, secret_key: Optional[str] = None, **kwargs ): if access_key: kwargs['access_key'] = access_key if secret_key: kwargs['secret_key'] = secret_key super().__init__(**kwargs) def _retry_request(self, response: Response, retries: int, **kwargs) -> Dict: ''' If the call is retried, we will need to set some additional headers ''' kwargs['headers'] = kwargs.get('headers', {}) # if the request uuid exists in the response, then we will send the # uuid back so that there is solid request chain in the Tenable.io # platform logs. request_uuid = response.headers.get('X-Tio-Last-Request-Uuid') if request_uuid: kwargs['headers']['X-Tio-Last-Request-Uuid'] = request_uuid # We also need to return the number of times that we have attempted to # retry this call. kwargs['headers']['X-Tio-Retry-Count'] = str(retries) # Return the keyword arguments back to the caller. return kwargs @property def _tz(self): ''' As we will be using the timezone listing in a lot of parameter checking, we should probably cache the response as a private attribute to speed up checking times. ''' if not self._tzcache: self._tzcache = self.scans.timezones() return self._tzcache @property def access_groups(self): ''' The interface object for the :doc:`Tenable.io Access Groups APIs <access_groups>`. ''' return AccessGroupsAPI(self) @property def access_groups_v2(self): ''' The interface object for the :doc:`Tenable.io Access Groups v2 APIs <access_groups_v2>`. ''' return AccessGroupsV2API(self) @property def agent_config(self): ''' The interface object for the :doc:`Tenable.io Agent Config APIs <agent_config>`. ''' return AgentConfigAPI(self) @property def agent_groups(self): ''' The interface object for the :doc:`Tenable.io Agent Groups APIs <agent_groups>`. ''' return AgentGroupsAPI(self) @property def agent_exclusions(self): ''' The interface object for the :doc:`Tenable.io Agent Exclusions APIs <agent_exclusions>`. ''' return AgentExclusionsAPI(self) @property def agents(self): ''' The interface object for the :doc:`Tenable.io Agents APIs <agents>`. ''' return AgentsAPI(self) @property def assets(self): ''' The interface object for the :doc:`Tenable.io assets APIs <assets>`. ''' return AssetsAPI(self) @property def audit_log(self): ''' The interface object for the :doc:`Tenable.io Audit Log APIs <audit_log>`. ''' return AuditLogAPI(self) @property def credentials(self): ''' The interface object for the :doc:`Tenable.io Credentials APIs <credentials>`. ''' return CredentialsAPI(self) @property def editor(self): ''' The interface object for the :doc:`Tenable.io Editor APIs <editor>`. ''' return EditorAPI(self) @property def exclusions(self): ''' The interface object for the :doc:`Tenable.io Exclusions APIs <exclusions>`. ''' return ExclusionsAPI(self) @property def exports(self): ''' The interface object for the :doc:`Tenable.io Exports APIs <exports>`. ''' return ExportsAPI(self) @property def files(self): ''' The interface object for the :doc:`Tenable.io Files APIs <files>`. ''' return FileAPI(self) @property def filters(self): ''' The interface object for the :doc:`Tenable.io Filters APIs <filters>`. ''' return FiltersAPI(self) @property def folders(self): ''' The interface object for the :doc:`Tenable.io Folders APIs <folders>`. ''' return FoldersAPI(self) @property def groups(self): ''' The interface object for the :doc:`Tenable.io Groups APIs <groups>`. ''' return GroupsAPI(self) @property def networks(self): ''' The interface object for the :doc:`Tenable.io Networks APIs <networks>`. ''' return NetworksAPI(self) @property def permissions(self): ''' The interface object for the :doc:`Tenable.io Permissions APIs <permissions>`. ''' return PermissionsAPI(self) @property def plugins(self): ''' The interface object for the :doc:`Tenable.io Plugins APIs <plugins>`. ''' return PluginsAPI(self) @property def policies(self): ''' The interface object for the :doc:`Tenable.io Policies APIs <policies>`. ''' return PoliciesAPI(self) @property def scanner_groups(self): ''' The interface object for the :doc:`Tenable.io Scanner Groups APIs <scanner_groups>`. ''' return ScannerGroupsAPI(self) @property def scanners(self): ''' The interface object for the :doc:`Tenable.io Scanners APIs <scanners>`. ''' return ScannersAPI(self) @property def scans(self): ''' The interface object for the :doc:`Tenable.io Scans APIs <scans>`. ''' return ScansAPI(self) @property def remediationscans(self): ''' The interface object for the :doc:`Tenable.io Remediation Scans APIs <remediation_scans>`. ''' return RemediationScansAPI(self) @property def server(self): ''' The interface object for the :doc:`Tenable.io Server APIs <server>`. ''' return ServerAPI(self) @property def session(self): ''' The interface object for the :doc:`Tenable.io Session APIs <session>`. ''' return SessionAPI(self) @property def tags(self): ''' The interface object for the :doc:`Tenable.io Tags APIs <tags>`. ''' return TagsAPI(self) @property def target_groups(self): ''' The interface object for the :doc:`Tenable.io Target Groups APIs <target_groups>`. ''' return TargetGroupsAPI(self) @property def users(self): ''' The interface object for the :doc:`Tenable.io Users APIs <users>`. ''' return UsersAPI(self) @property def workbenches(self): ''' The interface object for the :doc:`Tenable.io Workbenches APIs <workbenches>`. ''' return WorkbenchesAPI(self)
py
1a32c482c404b4448fbd922eada6984f21502a89
try: import ustruct as struct except: import struct print(struct.calcsize("<bI")) print(struct.unpack("<bI", b"\x80\0\0\x01\0")) print(struct.calcsize(">bI")) print(struct.unpack(">bI", b"\x80\0\0\x01\0")) # 32-bit little-endian specific #print(struct.unpack("bI", b"\x80\xaa\x55\xaa\0\0\x01\0")) print(struct.pack("<i", 1)) print(struct.pack(">i", 1)) print(struct.pack("<h", 1)) print(struct.pack(">h", 1)) print(struct.pack("<b", 1)) print(struct.pack(">b", 1)) print(struct.pack("<bI", -128, 256)) print(struct.pack(">bI", -128, 256)) print(struct.calcsize("100sI")) print(struct.calcsize("97sI")) print(struct.unpack("<6sH", b"foo\0\0\0\x12\x34")) print(struct.pack("<6sH", b"foo", 10000)) s = struct.pack("BHBI", 10, 100, 200, 300) v = struct.unpack("BHBI", s) print(v == (10, 100, 200, 300)) # check maximum pack on 32-bit machine print(struct.pack("<I", 2**32 - 1)) print(struct.pack("<I", 0xffffffff)) # long long ints print(struct.pack("<Q", 2**64 - 1)) print(struct.pack(">Q", 2**64 - 1)) print(struct.pack("<Q", 0xffffffffffffffff)) print(struct.pack(">Q", 0xffffffffffffffff)) print(struct.pack("<q", -1)) print(struct.pack(">q", -1)) print(struct.pack("<Q", 1234567890123456789)) print(struct.pack("<q", -1234567890123456789)) print(struct.pack(">Q", 1234567890123456789)) print(struct.pack(">q", -1234567890123456789)) print(struct.unpack("<Q", b"\x12\x34\x56\x78\x90\x12\x34\x56")) print(struct.unpack(">Q", b"\x12\x34\x56\x78\x90\x12\x34\x56")) print(struct.unpack("<q", b"\x12\x34\x56\x78\x90\x12\x34\xf6")) print(struct.unpack(">q", b"\xf2\x34\x56\x78\x90\x12\x34\x56")) # check maximum unpack print(struct.unpack("<I", b"\xff\xff\xff\xff")) print(struct.unpack("<Q", b"\xff\xff\xff\xff\xff\xff\xff\xff")) # network byte order print(struct.pack('!i', 123)) # first arg must be a string try: struct.pack(1, 2) except TypeError: print('TypeError')
py
1a32c60d5739934e4de9fdb01d123aeafa5104fc
_base_ = [ '../../_base_/models/faster_rcnn_r50_dc5.py', '../../_base_/datasets/imagenet_vid_fgfa_style.py', '../../_base_/default_runtime.py' ] model = dict( type='SELSA', detector=dict( roi_head=dict( type='SelsaRoIHead', bbox_roi_extractor=dict( type='TemporalRoIAlign', num_most_similar_points=2, num_temporal_attention_blocks=4, roi_layer=dict( type='RoIAlign', output_size=7, sampling_ratio=2), out_channels=512, featmap_strides=[16]), bbox_head=dict( type='SelsaBBoxHead', num_shared_fcs=3, aggregator=dict( type='SelsaAggregator', in_channels=1024, num_attention_blocks=16))))) # dataset settings data = dict( val=dict( ref_img_sampler=dict( _delete_=True, num_ref_imgs=14, frame_range=[-7, 7], method='test_with_adaptive_stride')), test=dict( ref_img_sampler=dict( _delete_=True, num_ref_imgs=14, frame_range=[-7, 7], method='test_with_adaptive_stride'))) # optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) optimizer_config = dict( _delete_=True, grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[2, 5]) # runtime settings total_epochs = 7 evaluation = dict(metric=['bbox'], interval=7)
py
1a32c690bf64efe9e393d682ff5fb0adfd598222
from __future__ import absolute_import, division, print_function, unicode_literals import logging import numpy as np import os from madminer.analysis import DataAnalyzer from madminer.utils.various import math_commands, weighted_quantile, sanitize_array, mdot from madminer.utils.various import less_logging from madminer.ml import ParameterizedRatioEstimator, ScoreEstimator, Ensemble, load_estimator logger = logging.getLogger(__name__) class FisherInformation(DataAnalyzer): """ Functions to calculate expected Fisher information matrices. After inializing a `FisherInformation` instance with the filename of a MadMiner file, different information matrices can be calculated: * `FisherInformation.truth_information()` calculates the full truth-level Fisher information. This is the information in an idealized measurement where all parton-level particles with their charges, flavours, and four-momenta can be accessed with perfect accuracy. * `FisherInformation.full_information()` calculates the full Fisher information in realistic detector-level observations, estimated with neural networks. In addition to the MadMiner file, this requires a trained SALLY or SALLINO estimator as well as an unweighted evaluation sample. * `FisherInformation.rate_information()` calculates the Fisher information in the total cross section. * `FisherInformation.histo_information()` calculates the Fisher information in the histogram of one (parton-level or detector-level) observable. * `FisherInformation.histo_information_2d()` calculates the Fisher information in a two-dimensional histogram of two (parton-level or detector-level) observables. * `FisherInformation.histogram_of_information()` calculates the full truth-level Fisher information in different slices of one observable (the "distribution of the Fisher information"). Finally, don't forget that in the presence of nuisance parameters the constraint terms also affect the Fisher information. This term is given by `FisherInformation.calculate_fisher_information_nuisance_constraints()`. Parameters ---------- filename : str Path to MadMiner file (for instance the output of `madminer.delphes.DelphesProcessor.save()`). include_nuisance_parameters : bool, optional If True, nuisance parameters are taken into account. Default value: True. """ def __init__(self, filename, include_nuisance_parameters=True): super(FisherInformation, self).__init__(filename, False, include_nuisance_parameters) def truth_information( self, theta, luminosity=300000.0, cuts=None, efficiency_functions=None, include_nuisance_parameters=True ): """ Calculates the full Fisher information at parton / truth level. This is the information in an idealized measurement where all parton-level particles with their charges, flavours, and four-momenta can be accessed with perfect accuracy, i.e. the latent variables `z_parton` can be measured directly. Parameters ---------- theta : ndarray Parameter point `theta` at which the Fisher information matrix `I_ij(theta)` is evaluated. luminosity : float Luminosity in pb^-1. cuts : None or list of str, optional Cuts. Each entry is a parseable Python expression that returns a bool (True if the event should pass a cut, False otherwise). Default value: None. efficiency_functions : list of str or None Efficiencies. Each entry is a parseable Python expression that returns a float for the efficiency of one component. Default value: None. include_nuisance_parameters : bool, optional If True, nuisance parameters are taken into account. Default value: True. Returns ------- fisher_information : ndarray Expected full truth-level Fisher information matrix with shape `(n_parameters, n_parameters)`. fisher_information_uncertainty : ndarray Covariance matrix of the Fisher information matrix with shape `(n_parameters, n_parameters, n_parameters, n_parameters)`, calculated with plain Gaussian error propagation. """ # Input if cuts is None: cuts = [] if efficiency_functions is None: efficiency_functions = [] include_nuisance_parameters = include_nuisance_parameters and (self.nuisance_parameters is not None) # Loop over batches n_all_parameters = self.n_parameters if include_nuisance_parameters: n_all_parameters += self.n_nuisance_parameters fisher_info = np.zeros((n_all_parameters, n_all_parameters)) covariance = np.zeros((n_all_parameters, n_all_parameters, n_all_parameters, n_all_parameters)) for observations, weights in self.event_loader(): # Cuts cut_filter = [self._pass_cuts(obs_event, cuts) for obs_event in observations] observations = observations[cut_filter] weights = weights[cut_filter] # Efficiencies efficiencies = np.array( [self._eval_efficiency(obs_event, efficiency_functions) for obs_event in observations] ) weights *= efficiencies[:, np.newaxis] # Fisher information this_fisher_info, this_covariance = self._calculate_fisher_information( theta, weights, luminosity, sum_events=True, calculate_uncertainty=True, include_nuisance_parameters=include_nuisance_parameters, ) fisher_info += this_fisher_info covariance += this_covariance return fisher_info, covariance def full_information( self, theta, model_file, unweighted_x_sample_file=None, luminosity=300000.0, include_xsec_info=True, mode="score", calculate_covariance=True, batch_size=100000, test_split=0.2, ): """ Calculates the full Fisher information in realistic detector-level observations, estimated with neural networks. In addition to the MadMiner file, this requires a trained SALLY or SALLINO estimator. Nuisance parameter are taken into account automatically if the SALLY / SALLINO model was trained with them. Parameters ---------- theta : ndarray Parameter point `theta` at which the Fisher information matrix `I_ij(theta)` is evaluated. model_file : str Filename of a trained local score regression model that was trained on samples from `theta` (see `madminer.ml.Estimator`). unweighted_x_sample_file : str or None Filename of an unweighted x sample that is sampled according to theta and obeys the cuts (see `madminer.sampling.SampleAugmenter.extract_samples_train_local()`). If None, the Fisher information is instead calculated on the full, weighted samples (the data in the MadMiner file). Default value: None. luminosity : float, optional Luminosity in pb^-1. Default value: 300000. include_xsec_info : bool, optional Whether the rate information is included in the returned Fisher information. Default value: True. mode : {"score", "information"}, optional How the ensemble uncertainty on the kinematic Fisher information is calculated. If mode is "information", the Fisher information for each estimator is calculated individually and only then are the sample mean and covariance calculated. If mode is "score", the sample mean is calculated for the score for each event. Default value: "score". calculate_covariance : bool, optional If True, the covariance between the different estimators is calculated. Default value: True. batch_size : int, optional Batch size. Default value: 100000. test_split : float or None, optional If unweighted_x_sample_file is None, this determines the fraction of weighted events used for evaluation. If None, all events are used (this will probably include events used during training!). Default value: 0.2. Returns ------- fisher_information : ndarray or list of ndarray Estimated expected full detector-level Fisher information matrix with shape `(n_parameters, n_parameters)`. If more then one value ensemble_vote_expectation_weight is given, this is a list with results for all entries in ensemble_vote_expectation_weight. fisher_information_uncertainty : ndarray or list of ndarray or None Covariance matrix of the Fisher information matrix with shape `(n_parameters, n_parameters, n_parameters, n_parameters)`. If more then one value ensemble_vote_expectation_weight is given, this is a list with results for all entries in ensemble_vote_expectation_weight. """ # Check input if mode not in ["score", "information", "modified_score"]: raise ValueError("Unknown mode {}, has to be 'score', 'modified_score', or 'information'!".format(mode)) # Load Estimator model if os.path.isdir(model_file) and os.path.exists(model_file + "/ensemble.json"): model_is_ensemble = True model = Ensemble() model.load(model_file) if isinstance(model.estimators[0], ParameterizedRatioEstimator): model_type = "Parameterized Ratio Ensemble" elif isinstance(model.estimators[0], ScoreEstimator): model_type = "Score Ensemble" else: raise RuntimeError("Ensemble is not a score or parameterized_ratio type!") else: model_is_ensemble = False model = load_estimator(model_file) if isinstance(model, ParameterizedRatioEstimator): model_type = "Parameterized Ratio Estimator" elif isinstance(model, ScoreEstimator): model_type = "Score Estimator" else: raise RuntimeError("Estimator is not a score or parameterized_ratio type!") # Nuisance parameters? if model.n_parameters == self.n_parameters: logger.info( "Found %s parameters in %s model, matching %s physical parameters in MadMiner file", model.n_parameters, model_type, self.n_parameters, ) include_nuisance_parameters = False elif model.n_parameters == self.n_parameters + self.n_nuisance_parameters: logger.info( "Found %s parameters in %s model, matching %s physical parameters + %s nuisance parameters" + " in MadMiner file", model.n_parameters, model_type, self.n_parameters, self.n_nuisance_parameters, ) include_nuisance_parameters = True else: raise RuntimeError( "Inconsistent numbers of parameters! Found %s in %s model, %s physical parameters in " "MadMiner file, and %s nuisance parameters in MadMiner file.", model.n_parameters, model_type, self.n_parameters, self.n_nuisance_parameters, ) if include_nuisance_parameters: logger.debug("Including nuisance parameters") else: logger.debug("Not including nuisance parameters") # Total xsec total_xsec = self._calculate_xsec(theta=theta) logger.debug("Total cross section: %s pb", total_xsec) # Rate part of Fisher information fisher_info_rate = 0.0 rate_covariance = 0.0 if include_xsec_info: logger.info("Evaluating rate Fisher information") fisher_info_rate, rate_covariance = self.rate_information( theta=theta, luminosity=luminosity, include_nuisance_parameters=include_nuisance_parameters ) # Evaluation from weighted events if unweighted_x_sample_file is None: # Which events to sum over if test_split is None or test_split <= 0.0 or test_split >= 1.0: start_event = 0 else: start_event = int(round((1.0 - test_split) * self.n_samples, 0)) + 1 if start_event > 0: total_sum_weights_theta = self._calculate_xsec(theta=theta, start_event=start_event) else: total_sum_weights_theta = total_xsec # Theta morphing matrix theta_matrix = self._get_theta_benchmark_matrix(theta) # Prepare output fisher_info_kin = None covariance = None # Number of batches n_batches = int(np.ceil((self.n_samples - start_event) / batch_size)) n_batches_verbose = max(int(round(n_batches / 10, 0)), 1) for i_batch, (observations, weights_benchmarks) in enumerate( self.event_loader( batch_size=batch_size, start=start_event, include_nuisance_parameters=include_nuisance_parameters ) ): if (i_batch + 1) % n_batches_verbose == 0: logger.info("Evaluating kinematic Fisher information on batch %s / %s", i_batch + 1, n_batches) else: logger.debug("Evaluating kinematic Fisher information on batch %s / %s", i_batch + 1, n_batches) weights_theta = mdot(theta_matrix, weights_benchmarks) # Calculate Fisher info on this batch if model_is_ensemble: with less_logging(): this_fisher_info, this_covariance = model.calculate_fisher_information( x=observations, theta=theta, obs_weights=weights_theta, n_events=luminosity * total_xsec * np.sum(weights_theta) / total_sum_weights_theta, calculate_covariance=calculate_covariance, mode=mode, ) else: with less_logging(): this_fisher_info = model.calculate_fisher_information( x=observations, theta=theta, weights=weights_theta, n_events=luminosity * total_xsec * np.sum(weights_theta) / total_sum_weights_theta, ) this_covariance = None # Sum up results if fisher_info_kin is None: fisher_info_kin = this_fisher_info elif isinstance(fisher_info_kin, list): for i in range(len(fisher_info_kin)): fisher_info_kin[i] += this_fisher_info[i] else: fisher_info_kin += this_fisher_info if this_covariance is not None: if covariance is None: covariance = this_covariance elif isinstance(covariance, list): for i in range(len(covariance)): covariance[i] += this_covariance[i] else: covariance += this_covariance # Evaluation from unweighted event sample else: with less_logging(): if model_is_ensemble: fisher_info_kin, covariance = model.calculate_fisher_information( x=unweighted_x_sample_file, theta=theta, n_events=luminosity * total_xsec, mode=mode, calculate_covariance=calculate_covariance, ) else: fisher_info_kin = model.calculate_fisher_information( x=unweighted_x_sample_file, n_events=luminosity * total_xsec, theta=theta ) covariance = None # Returns if model_is_ensemble: return fisher_info_rate + fisher_info_kin, rate_covariance + covariance return fisher_info_rate + fisher_info_kin, rate_covariance def rate_information( self, theta, luminosity, cuts=None, efficiency_functions=None, include_nuisance_parameters=True ): """ Calculates the Fisher information in a measurement of the total cross section (without any kinematic information). Parameters ---------- theta : ndarray Parameter point `theta` at which the Fisher information matrix `I_ij(theta)` is evaluated. luminosity : float Luminosity in pb^-1. cuts : None or list of str, optional Cuts. Each entry is a parseable Python expression that returns a bool (True if the event should pass a cut, False otherwise). Default value: None. efficiency_functions : list of str or None Efficiencies. Each entry is a parseable Python expression that returns a float for the efficiency of one component. Default value: None. include_nuisance_parameters : bool, optional If True, nuisance parameters are taken into account. Default value: True. Returns ------- fisher_information : ndarray Expected Fisher information in the total cross section with shape `(n_parameters, n_parameters)`. fisher_information_uncertainty : ndarray Covariance matrix of the Fisher information matrix with shape `(n_parameters, n_parameters, n_parameters, n_parameters)`, calculated with plain Gaussian error propagation. """ include_nuisance_parameters = include_nuisance_parameters and (self.nuisance_parameters is not None) # Get weights at benchmarks weights_benchmarks, weights_benchmark_uncertainties = self._calculate_xsec( cuts=cuts, efficiency_functions=efficiency_functions, return_benchmark_xsecs=True, return_error=True, include_nuisance_parameters=include_nuisance_parameters, ) weights_benchmarks = weights_benchmarks.reshape((1, -1)) weights_benchmark_uncertainties = weights_benchmark_uncertainties.reshape((1, -1)) # Get Fisher information fisher_info, covariance = self._calculate_fisher_information( theta=theta, weights_benchmarks=weights_benchmarks, luminosity=luminosity, sum_events=True, calculate_uncertainty=True, weights_benchmark_uncertainties=weights_benchmark_uncertainties, include_nuisance_parameters=include_nuisance_parameters, ) return fisher_info, covariance def histo_information( self, theta, luminosity, observable, bins, histrange=None, cuts=None, efficiency_functions=None, n_events_dynamic_binning=None, ): """ Calculates the Fisher information in the one-dimensional histogram of an (parton-level or detector-level, depending on how the observations in the MadMiner file were calculated) observable. Parameters ---------- theta : ndarray Parameter point `theta` at which the Fisher information matrix `I_ij(theta)` is evaluated. luminosity : float Luminosity in pb^-1. observable : str Expression for the observable to be histogrammed. The str will be parsed by Python's `eval()` function and can use the names of the observables in the MadMiner files. bins : int or ndarray If int: number of bins in the histogram, excluding overflow bins. Otherwise, defines the bin boundaries (excluding overflow bins). histrange : tuple of float or None, optional Minimum and maximum value of the histogram in the form `(min, max)`. Overflow bins are always added. If None and bins is an int, variable-width bins with equal cross section are constructed automatically. Default value: None. cuts : None or list of str, optional Cuts. Each entry is a parseable Python expression that returns a bool (True if the event should pass a cut, False otherwise). Default value: None. efficiency_functions : list of str or None Efficiencies. Each entry is a parseable Python expression that returns a float for the efficiency of one component. Default value: None. n_events_dynamic_binning : int or None, optional Number of events used to calculate the dynamic binning (if histrange is None). If None, all events are used. Note that these events are not shuffled, so if the events in the MadMiner file are sorted, using a value different from None can cause issues. Default value: None. Returns ------- fisher_information : ndarray Expected Fisher information in the histogram with shape `(n_parameters, n_parameters)`. fisher_information_uncertainty : ndarray Covariance matrix of the Fisher information matrix with shape `(n_parameters, n_parameters, n_parameters, n_parameters)`, calculated with plain Gaussian error propagation. """ # Input if cuts is None: cuts = [] if efficiency_functions is None: efficiency_functions = [] # Binning bin_boundaries, n_bins_total = self._calculate_binning( bins, cuts, efficiency_functions, histrange, n_events_dynamic_binning, observable, theta ) # Loop over batches weights_benchmarks = np.zeros((n_bins_total, self.n_benchmarks)) weights_squared_benchmarks = np.zeros((n_bins_total, self.n_benchmarks)) for observations, weights in self.event_loader(): # Cuts cut_filter = [self._pass_cuts(obs_event, cuts) for obs_event in observations] observations = observations[cut_filter] weights = weights[cut_filter] # Efficiencies efficiencies = np.array( [self._eval_efficiency(obs_event, efficiency_functions) for obs_event in observations] ) weights *= efficiencies[:, np.newaxis] # Evaluate histogrammed observable histo_observables = np.asarray([self._eval_observable(obs_event, observable) for obs_event in observations]) # Find bins i_bins = np.searchsorted(bin_boundaries, histo_observables) assert ((0 <= i_bins) & (i_bins < n_bins_total)).all(), "Wrong bin {}".format(i_bins) # Add up for i in range(n_bins_total): if len(weights[i_bins == i]) > 0: weights_benchmarks[i] += np.sum(weights[i_bins == i], axis=0) weights_squared_benchmarks[i] += np.sum(weights[i_bins == i] ** 2, axis=0) weights_benchmark_uncertainties = weights_squared_benchmarks ** 0.5 # Check cross sections per bin self._check_binning_stats(weights_benchmarks, weights_benchmark_uncertainties, theta) # Calculate Fisher information in histogram fisher_info, covariance = self._calculate_fisher_information( theta, weights_benchmarks, luminosity, sum_events=True, weights_benchmark_uncertainties=weights_benchmark_uncertainties, calculate_uncertainty=True, ) return fisher_info, covariance def histo_information_2d( self, theta, luminosity, observable1, bins1, observable2, bins2, histrange1=None, histrange2=None, cuts=None, efficiency_functions=None, n_events_dynamic_binning=None, ): """ Calculates the Fisher information in a two-dimensional histogram of two (parton-level or detector-level, depending on how the observations in the MadMiner file were calculated) observables. Parameters ---------- theta : ndarray Parameter point `theta` at which the Fisher information matrix `I_ij(theta)` is evaluated. luminosity : float Luminosity in pb^-1. observable1 : str Expression for the first observable to be histogrammed. The str will be parsed by Python's `eval()` function and can use the names of the observables in the MadMiner files. bins1 : int or ndarray If int: number of bins along the first axis in the histogram in the histogram, excluding overflow bins. Otherwise, defines the bin boundaries along the first axis in the histogram (excluding overflow bins). observable2 : str Expression for the first observable to be histogrammed. The str will be parsed by Python's `eval()` function and can use the names of the observables in the MadMiner files. bins2 : int or ndarray If int: number of bins along the second axis in the histogram in the histogram, excluding overflow bins. Otherwise, defines the bin boundaries along the second axis in the histogram (excluding overflow bins). histrange1 : tuple of float or None, optional Minimum and maximum value of the first axis of the histogram in the form `(min, max)`. Overflow bins are always added. If None, variable-width bins with equal cross section are constructed automatically. Default value: None. histrange2 : tuple of float or None, optional Minimum and maximum value of the first axis of the histogram in the form `(min, max)`. Overflow bins are always added. If None, variable-width bins with equal cross section are constructed automatically. Default value: None. cuts : None or list of str, optional Cuts. Each entry is a parseable Python expression that returns a bool (True if the event should pass a cut, False otherwise). Default value: None. efficiency_functions : list of str or None Efficiencies. Each entry is a parseable Python expression that returns a float for the efficiency of one component. Default value: None. n_events_dynamic_binning : int or None, optional Number of events used to calculate the dynamic binning (if histrange is None). If None, all events are used. Note that these events are not shuffled, so if the events in the MadMiner file are sorted, using a value different from None can cause issues. Default value: None. Returns ------- fisher_information : ndarray Expected Fisher information in the histogram with shape `(n_parameters, n_parameters)`. fisher_information_uncertainty : ndarray Covariance matrix of the Fisher information matrix with shape `(n_parameters, n_parameters, n_parameters, n_parameters)`, calculated with plain Gaussian error propagation. """ # Input if cuts is None: cuts = [] if efficiency_functions is None: efficiency_functions = [] # Binning bin1_boundaries, n_bins1_total = self._calculate_binning( bins1, cuts, efficiency_functions, histrange1, n_events_dynamic_binning, observable1, theta ) bin2_boundaries, n_bins2_total = self._calculate_binning( bins2, cuts, efficiency_functions, histrange2, n_events_dynamic_binning, observable2, theta ) # Loop over batches weights_benchmarks = np.zeros((n_bins1_total, n_bins2_total, self.n_benchmarks)) weights_squared_benchmarks = np.zeros((n_bins1_total, n_bins2_total, self.n_benchmarks)) for observations, weights in self.event_loader(): # Cuts cut_filter = [self._pass_cuts(obs_event, cuts) for obs_event in observations] observations = observations[cut_filter] weights = weights[cut_filter] # Efficiencies efficiencies = np.array( [self._eval_efficiency(obs_event, efficiency_functions) for obs_event in observations] ) weights *= efficiencies[:, np.newaxis] # Evaluate histogrammed observable histo1_observables = np.asarray( [self._eval_observable(obs_event, observable1) for obs_event in observations] ) histo2_observables = np.asarray( [self._eval_observable(obs_event, observable2) for obs_event in observations] ) # Find bins i_bins1 = np.searchsorted(bin1_boundaries, histo1_observables) i_bins2 = np.searchsorted(bin2_boundaries, histo2_observables) assert ((0 <= i_bins1) & (i_bins1 < n_bins1_total)).all(), "Wrong bin {}".format(i_bins1) assert ((0 <= i_bins2) & (i_bins2 < n_bins1_total)).all(), "Wrong bin {}".format(i_bins2) # Add up for i in range(n_bins1_total): for j in range(n_bins2_total): if len(weights[(i_bins1 == i) & (i_bins2 == j)]) > 0: weights_benchmarks[i, j] += np.sum(weights[(i_bins1 == i) & (i_bins2 == j)], axis=0) weights_squared_benchmarks[i, j] += np.sum( weights[(i_bins1 == i) & (i_bins2 == j)] ** 2, axis=0 ) weights_benchmark_uncertainties = weights_squared_benchmarks ** 0.5 # Calculate Fisher information in histogram weights_benchmarks = weights_benchmarks.reshape(-1, self.n_benchmarks) weights_benchmark_uncertainties = weights_benchmark_uncertainties.reshape(-1, self.n_benchmarks) self._check_binning_stats( weights_benchmarks, weights_benchmark_uncertainties, theta, n_bins_last_axis=n_bins2_total ) fisher_info, covariance = self._calculate_fisher_information( theta, weights_benchmarks, luminosity, sum_events=True, weights_benchmark_uncertainties=weights_benchmark_uncertainties, calculate_uncertainty=True, ) return fisher_info, covariance def histogram_of_information( self, theta, observable, nbins, histrange, model_file=None, luminosity=300000.0, cuts=None, efficiency_functions=None, batch_size=100000, test_split=0.2, ): """ Calculates the full and rate-only Fisher information in slices of one observable. For the full information, it will return the truth-level information if model_file is None, and otherwise the detector-level information based on the SALLY-type score estimator saved in model_file. Parameters ---------- theta : ndarray Parameter point `theta` at which the Fisher information matrix `I_ij(theta)` is evaluated. observable : str Expression for the observable to be sliced. The str will be parsed by Python's `eval()` function and can use the names of the observables in the MadMiner files. nbins : int Number of bins in the slicing, excluding overflow bins. histrange : tuple of float Minimum and maximum value of the slicing in the form `(min, max)`. Overflow bins are always added. model_file : str or None, optional If None, the truth-level Fisher information is calculated. If str, filename of a trained local score regression model that was trained on samples from `theta` (see `madminer.ml.Estimator`). Default value: None. luminosity : float, optional Luminosity in pb^-1. Default value: 300000. cuts : None or list of str, optional Cuts. Each entry is a parseable Python expression that returns a bool (True if the event should pass a cut, False otherwise). Default value: None. efficiency_functions : list of str or None Efficiencies. Each entry is a parseable Python expression that returns a float for the efficiency of one component. Default value: None. batch_size : int, optional If model_file is not None: Batch size. Default value: 100000. test_split : float or None, optional If model_file is not None: If unweighted_x_sample_file is None, this determines the fraction of weighted events used for evaluation. If None, all events are used (this will probably include events used during training!). Default value: 0.2. Returns ------- bin_boundaries : ndarray Observable slice boundaries. sigma_bins : ndarray Cross section in pb in each of the slices. fisher_infos_rate : ndarray Expected rate-only Fisher information for each slice. Has shape `(n_slices, n_parameters, n_parameters)`. fisher_infos_full : ndarray Expected full Fisher information for each slice. Has shape `(n_slices, n_parameters, n_parameters)`. """ # Input if cuts is None: cuts = [] if efficiency_functions is None: efficiency_functions = [] # Theta morphing matrix theta_matrix = self._get_theta_benchmark_matrix(theta) # Number of bins n_bins_total = nbins + 2 bin_boundaries = np.linspace(histrange[0], histrange[1], num=nbins + 1) # Prepare output weights_benchmarks_bins = np.zeros((n_bins_total, self.n_benchmarks)) fisher_info_full_bins = np.zeros((n_bins_total, self.n_parameters, self.n_parameters)) # Main loop: truth-level case if model_file is None: for observations, weights in self.event_loader(): # Cuts cut_filter = [self._pass_cuts(obs_event, cuts) for obs_event in observations] observations = observations[cut_filter] weights = weights[cut_filter] # Efficiencies efficiencies = np.array( [self._eval_efficiency(obs_event, efficiency_functions) for obs_event in observations] ) weights *= efficiencies[:, np.newaxis] # Fisher info per event fisher_info_events = self._calculate_fisher_information(theta, weights, luminosity, sum_events=False) # Evaluate histogrammed observable histo_observables = np.asarray( [self._eval_observable(obs_event, observable) for obs_event in observations] ) # Get rid of nuisance parameters fisher_info_events = fisher_info_events[:, : self.n_parameters, : self.n_parameters] # Find bins bins = np.searchsorted(bin_boundaries, histo_observables) assert ((0 <= bins) & (bins < n_bins_total)).all(), "Wrong bin {}".format(bins) # Add up for i in range(n_bins_total): if len(weights[bins == i]) > 0: weights_benchmarks_bins[i] += np.sum(weights[bins == i], axis=0) fisher_info_full_bins[i] += np.sum(fisher_info_events[bins == i], axis=0) # ML case else: # Load SALLY model if os.path.isdir(model_file) and os.path.exists(model_file + "/ensemble.json"): model_is_ensemble = True model = Ensemble() model.load(model_file) else: model_is_ensemble = False model = ScoreEstimator() model.load(model_file) # Nuisance parameters? if model.n_parameters == self.n_parameters: logger.debug( "Found %s parameters in SALLY model, matching %s physical parameters in MadMiner file", model.n_parameters, self.n_parameters, ) include_nuisance_parameters = False elif model.n_parameters == self.n_parameters + self.n_nuisance_parameters: logger.debug( "Found %s parameters in SALLY model, matching %s physical parameters + %s nuisance parameters" + " in MadMiner file", model.n_parameters, self.n_parameters, self.n_nuisance_parameters, ) include_nuisance_parameters = True else: raise RuntimeError( "Inconsistent numbers of parameters! Found %s in SALLY model, %s physical parameters in " "MadMiner file, and %s nuisance parameters in MadMiner file.", model.n_parameters, self.n_parameters, self.n_nuisance_parameters, ) # Total xsec total_xsec = self._calculate_xsec(theta=theta) logger.debug("Total cross section: %s pb", total_xsec) # Which events to sum over if test_split is None or test_split <= 0.0 or test_split >= 1.0: start_event = 0 else: start_event = int(round((1.0 - test_split) * self.n_samples, 0)) + 1 if start_event > 0: total_sum_weights_theta = self._calculate_xsec(theta=theta, start_event=start_event) else: total_sum_weights_theta = total_xsec # Number of batches n_batches = int(np.ceil((self.n_samples - start_event) / batch_size)) n_batches_verbose = max(int(round(n_batches / 10, 0)), 1) # ML main loop for i_batch, (observations, weights_benchmarks) in enumerate( self.event_loader( batch_size=batch_size, start=start_event, include_nuisance_parameters=include_nuisance_parameters ) ): if (i_batch + 1) % n_batches_verbose == 0: logger.info("Evaluating kinematic Fisher information on batch %s / %s", i_batch + 1, n_batches) else: logger.debug("Evaluating kinematic Fisher information on batch %s / %s", i_batch + 1, n_batches) # Cuts cut_filter = [self._pass_cuts(obs_event, cuts) for obs_event in observations] observations = observations[cut_filter] weights_benchmarks = weights_benchmarks[cut_filter] # Efficiencies efficiencies = np.array( [self._eval_efficiency(obs_event, efficiency_functions) for obs_event in observations] ) weights_benchmarks *= efficiencies[:, np.newaxis] # Rescale for test_split if test_split is not None: correction = np.array([1.0 / test_split for obs_event in observations]) weights_benchmarks *= correction[:, np.newaxis] weights_theta = mdot(theta_matrix, weights_benchmarks) # Calculate Fisher info on this batch if model_is_ensemble: fisher_info_events, _ = model.calculate_fisher_information( x=observations, obs_weights=weights_theta, n_events=luminosity * np.sum(weights_theta), mode="score", calculate_covariance=False, sum_events=False, ) else: fisher_info_events = model.calculate_fisher_information( x=observations, weights=weights_theta, n_events=luminosity * np.sum(weights_theta), sum_events=False, ) # Get rid of nuisance parameters if include_nuisance_parameters: fisher_info_events = fisher_info_events[:, : self.n_parameters, : self.n_parameters] # Evaluate histogrammed observable histo_observables = np.asarray( [self._eval_observable(obs_event, observable) for obs_event in observations] ) # Find bins bins = np.searchsorted(bin_boundaries, histo_observables) assert ((0 <= bins) & (bins < n_bins_total)).all(), "Wrong bin {}".format(bins) # Add up for i in range(n_bins_total): if len(weights_benchmarks[bins == i]) > 0: weights_benchmarks_bins[i] += np.sum(weights_benchmarks[bins == i], axis=0) fisher_info_full_bins[i] += np.sum(fisher_info_events[bins == i], axis=0) # Calculate xsecs in bins sigma_bins = mdot(theta_matrix, weights_benchmarks_bins) # (n_bins,) # Calculate rate-only Fisher informations in bins fisher_info_rate_bins = self._calculate_fisher_information( theta, weights_benchmarks_bins, luminosity, sum_events=False ) # Get rid of nuisance parameters fisher_info_rate_bins = fisher_info_rate_bins[:, : self.n_parameters, : self.n_parameters] # If ML: xsec info is still missing ! if model_file is not None: fisher_info_full_bins += fisher_info_rate_bins return bin_boundaries, sigma_bins, fisher_info_rate_bins, fisher_info_full_bins def histogram_of_sigma_dsigma(self, theta, observable, nbins, histrange, cuts=None, efficiency_functions=None): """ Fills events into histograms and calculates the cross section and first derivative for each bin Parameters ---------- theta : ndarray Parameter point `theta` at which the Fisher information matrix `I_ij(theta)` is evaluated. observable : str Expression for the observable to be sliced. The str will be parsed by Python's `eval()` function and can use the names of the observables in the MadMiner files. nbins : int Number of bins in the slicing, excluding overflow bins. histrange : tuple of float Minimum and maximum value of the slicing in the form `(min, max)`. Overflow bins are always added. cuts : None or list of str, optional Cuts. Each entry is a parseable Python expression that returns a bool (True if the event should pass a cut, False otherwise). Default value: None. efficiency_functions : list of str or None Efficiencies. Each entry is a parseable Python expression that returns a float for the efficiency of one component. Default value: None. Returns ------- bin_boundaries : ndarray Observable slice boundaries. sigma_bins : ndarray Cross section in pb in each of the slices. dsigma_bins : ndarray Cross section in pb in each of the slices. """ # Input if cuts is None: cuts = [] if efficiency_functions is None: efficiency_functions = [] # Binning dynamic_binning = histrange is None if dynamic_binning: n_bins_total = nbins bin_boundaries = self._calculate_dynamic_binning(observable, theta, nbins, None, cuts, efficiency_functions) else: n_bins_total = nbins + 2 bin_boundaries = np.linspace(histrange[0], histrange[1], num=nbins + 1) # # Number of bins # n_bins_total = nbins + 2 # bin_boundaries = np.linspace(histrange[0], histrange[1], num=nbins + 1) # Prepare output weights_benchmarks_bins = np.zeros((n_bins_total, self.n_benchmarks)) # Main loop: truth-level case for observations, weights in self.event_loader(): # Cuts cut_filter = [self._pass_cuts(obs_event, cuts) for obs_event in observations] observations = observations[cut_filter] weights = weights[cut_filter] # Efficiencies efficiencies = np.array( [self._eval_efficiency(obs_event, efficiency_functions) for obs_event in observations] ) weights *= efficiencies[:, np.newaxis] # Evaluate histogrammed observable histo_observables = np.asarray([self._eval_observable(obs_event, observable) for obs_event in observations]) # Find bins bins = np.searchsorted(bin_boundaries, histo_observables) assert ((0 <= bins) & (bins < n_bins_total)).all(), "Wrong bin {}".format(bins) # Add up for i in range(n_bins_total): if len(weights[bins == i]) > 0: weights_benchmarks_bins[i] += np.sum(weights[bins == i], axis=0) # Get morphing matrices theta_matrix = self._get_theta_benchmark_matrix(theta, zero_pad=False) # (n_benchmarks_phys,) dtheta_matrix = self._get_dtheta_benchmark_matrix(theta, zero_pad=False) # (n_parameters, n_benchmarks_phys) # Calculate xsecs in bins sigma_bins = mdot(theta_matrix, weights_benchmarks_bins) # (n_bins,) dsigma_bins = mdot(dtheta_matrix, weights_benchmarks_bins) # (n_parameters,n_bins,) return bin_boundaries, sigma_bins, dsigma_bins def nuisance_constraint_information(self): """ Builds the Fisher information term representing the Gaussian constraints on the nuisance parameters """ diagonal = np.array([0.0 for _ in range(self.n_parameters)] + [1.0 for _ in range(self.n_nuisance_parameters)]) return np.diag(diagonal) def _check_binning_stats( self, weights_benchmarks, weights_benchmark_uncertainties, theta, report=5, n_bins_last_axis=None ): theta_matrix = self._get_theta_benchmark_matrix(theta, zero_pad=False) # (n_benchmarks_phys,) sigma = mdot(theta_matrix, weights_benchmarks) # Shape (n_bins,) sigma_uncertainties = mdot(theta_matrix, weights_benchmark_uncertainties) # Shape (n_bins,) rel_uncertainties = sigma_uncertainties / np.maximum(sigma, 1.0e-12) order = np.argsort(rel_uncertainties)[::-1] logger.info("Bins with largest statistical uncertainties on rates:") for i_bin in order[:report]: bin_nd = i_bin + 1 if n_bins_last_axis is not None: bin_nd = (i_bin // n_bins_last_axis + 1, i_bin % n_bins_last_axis + 1) logger.info( " Bin %s: (%.5f +/- %.5f) fb (%.0f %%)", bin_nd, 1000.0 * sigma[i_bin], 1000.0 * sigma_uncertainties[i_bin], 100.0 * rel_uncertainties[i_bin], ) def _calculate_binning( self, bins, cuts, efficiency_functions, histrange, n_events_dynamic_binning, observable, theta ): dynamic_binning = histrange is None and isinstance(bins, int) if dynamic_binning: n_bins_total = bins bin_boundaries = self._calculate_dynamic_binning( observable, theta, bins, n_events_dynamic_binning, cuts, efficiency_functions ) logger.debug("Automatic dynamic binning: bin boundaries %s", bin_boundaries) elif isinstance(bins, int): n_bins_total = bins + 2 bin_boundaries = np.linspace(histrange[0], histrange[1], num=bins + 1) else: bin_boundaries = bins n_bins_total = len(bins) + 1 return bin_boundaries, n_bins_total def _calculate_fisher_information( self, theta, weights_benchmarks, luminosity=300000.0, include_nuisance_parameters=True, sum_events=False, calculate_uncertainty=False, weights_benchmark_uncertainties=None, ): """ Low-level function that calculates a list of full Fisher information matrices for a given parameter point and benchmark weights. Do not use this function directly, instead use the other `FisherInformation` functions. Parameters ---------- theta : ndarray Parameter point. weights_benchmarks : ndarray Benchmark weights. Shape (n_events, n_benchmark). luminosity : float, optional Luminosity in pb^-1. Default value: 300000. include_nuisance_parameters : bool, optional If True, nuisance parameters are taken into account. Default value: True. sum_events : bool, optional If True, returns the summed FIsher information. Otherwise, a list of Fisher information matrices for each event. Default value: False. calculate_uncertainty : bool, optional Whether an uncertainty of the result is calculated. Note that this uncertainty is currently only implemented for the "physical" part of the FIsher information, not for the nuisance parameters. Default value: False. weights_benchmark_uncertainties : ndarray or None, optional If calculate_uncertainty is True, weights_benchmark_uncertainties sets the uncertainties on each entry of weights_benchmarks. If None, weights_benchmark_uncertainties = weights_benchmarks is assumed. Returns ------- fisher_information : ndarray If sum_events is True, the return value is an nxn matrix, the total Fisher information summed over all events. Otherwise, a n_events x n_parameters x n_parameters tensor is returned that includes the Fisher information matrices for each event separately. fisher_information_uncertainty : ndarray Only returned if calculate_uncertainty is True. Covariance matrix of the Fisher information. Note that this does not take into account any uncertainty on the nuisance parameter part of the Fisher information, and correlations between events are neglected. Note that independent of sum_events, the covariance matrix is always summed over the events. """ include_nuisance_parameters = include_nuisance_parameters and self.include_nuisance_parameters # Get morphing matrices theta_matrix = self._get_theta_benchmark_matrix(theta, zero_pad=False) # (n_benchmarks_phys,) dtheta_matrix = self._get_dtheta_benchmark_matrix(theta, zero_pad=False) # (n_parameters, n_benchmarks_phys) # Get differential xsec per event, and the derivative wrt to theta sigma = mdot(theta_matrix, weights_benchmarks) # Shape (n_events,) total_xsec = np.sum(sigma) inv_sigma = sanitize_array(1.0 / sigma) # Shape (n_events,) dsigma = mdot(dtheta_matrix, weights_benchmarks) # Shape (n_parameters, n_events) # Calculate physics Fisher info for this event fisher_info_phys = luminosity * np.einsum("n,in,jn->nij", inv_sigma, dsigma, dsigma) # Nuisance parameter Fisher info if include_nuisance_parameters: nuisance_a = self.nuisance_morpher.calculate_a(weights_benchmarks) # Shape (n_nuisance_params, n_events) # grad_i dsigma(x), where i is a nuisance parameter, is given by # sigma[np.newaxis, :] * a fisher_info_nuisance = luminosity * np.einsum("n,in,jn->nij", sigma, nuisance_a, nuisance_a) fisher_info_mix = luminosity * np.einsum("in,jn->nij", dsigma, nuisance_a) fisher_info_mix_transposed = luminosity * np.einsum("in,jn->nji", dsigma, nuisance_a) n_all_parameters = self.n_parameters + self.n_nuisance_parameters fisher_info = np.zeros((fisher_info_phys.shape[0], n_all_parameters, n_all_parameters)) fisher_info[:, : self.n_parameters, : self.n_parameters] = fisher_info_phys fisher_info[:, : self.n_parameters, self.n_parameters :] = fisher_info_mix fisher_info[:, self.n_parameters :, : self.n_parameters] = fisher_info_mix_transposed fisher_info[:, self.n_parameters :, self.n_parameters :] = fisher_info_nuisance else: n_all_parameters = self.n_parameters fisher_info = fisher_info_phys # Error propagation if calculate_uncertainty: if weights_benchmarks.shape[1] > self.n_benchmarks_phys: weights_benchmarks_phys = weights_benchmarks[:, np.logical_not(self.benchmark_is_nuisance)] else: weights_benchmarks_phys = weights_benchmarks n_events = weights_benchmarks_phys.shape[0] # Input uncertainties if weights_benchmark_uncertainties is None: weights_benchmark_uncertainties = weights_benchmarks_phys # Shape (n_events, n_benchmarks_phys) # Build covariance matrix of inputs # We assume full correlation between weights_benchmarks[i, b1] and weights_benchmarks[i, b2] covariance_inputs = np.zeros((n_events, self.n_benchmarks_phys, self.n_benchmarks_phys)) for i in range(n_events): for b1 in range(self.n_benchmarks_phys): for b2 in range(self.n_benchmarks_phys): if b1 == b2: # Diagonal covariance_inputs[i, b1, b2] = weights_benchmark_uncertainties[i, b1] ** 2 else: # Off-diagonal, same event covariance_inputs[i, b1, b2] = ( weights_benchmark_uncertainties[i, b1] * weights_benchmark_uncertainties[i, b2] ) # Jacobian temp1 = np.einsum("ib,jn,n->ijnb", dtheta_matrix, dsigma, inv_sigma) temp2 = np.einsum("jb,in,n->ijnb", dtheta_matrix, dsigma, inv_sigma) temp3 = np.einsum("b,in,jn,n,n->ijnb", theta_matrix, dsigma, dsigma, inv_sigma, inv_sigma) temp1, temp2, temp3 = sanitize_array(temp1), sanitize_array(temp2), sanitize_array(temp3) jacobian = luminosity * (temp1 + temp2 + temp3) # (n_parameters, n_parameters, n_events, n_benchmarks_phys) # Covariance of information covariance_information_phys = np.einsum("ijnb,nbc,klnc->ijkl", jacobian, covariance_inputs, jacobian) if include_nuisance_parameters: covariance_information = np.zeros( (n_all_parameters, n_all_parameters, n_all_parameters, n_all_parameters) ) covariance_information[ : self.n_parameters, : self.n_parameters, : self.n_parameters, : self.n_parameters ] = covariance_information_phys else: covariance_information = covariance_information_phys if sum_events: return np.sum(fisher_info, axis=0), covariance_information return fisher_info, covariance_information if sum_events: return np.sum(fisher_info, axis=0) return fisher_info def _pass_cuts(self, observations, cuts=None): """ Checks if an event, specified by a list of observations, passes a set of cuts. Parameters ---------- observations : list of float list of float. Values of the observables for a single event. cuts : list of str or None, optional Each entry is a parseable Python expression that returns a bool (True if the event should pass a cut, False otherwise). Default value: None. Returns ------- passes : bool True if the event passes all cuts, False otherwise. """ # Check inputs if cuts is None: cuts = [] assert len(observations) == len(self.observables), "Mismatch between observables and observations" # Variables that can be used in cuts variables = math_commands() for observable_name, observable_value in zip(self.observables, observations): variables[observable_name] = observable_value # Check cuts for cut in cuts: if not bool(eval(cut, variables)): return False return True def _eval_efficiency(self, observations, efficiency_functions=None): """ Calculates the efficiency for an event. Parameters ---------- observations : list of float Values of the observables. efficiency_functions : list of str or None Each entry is a parseable Python expression that returns a float for the efficiency of one component. Default value: None. Returns ------- efficiency : float Efficiency (0. <= efficiency <= 1.), product of the results of the calls to all entries in efficiency_functions. """ # Check inputs if efficiency_functions is None: efficiency_functions = [] assert len(observations) == len(self.observables), "Mismatch between observables and observations" # Variables that can be used in efficiency functions variables = math_commands() for observable_name, observable_value in zip(self.observables, observations): variables[observable_name] = observable_value # Check cuts efficiency = 1.0 for efficency_function in efficiency_functions: efficiency *= float(eval(efficency_function, variables)) return efficiency def _eval_observable(self, observations, observable_definition): """ Calculates an observable expression for an event. Parameters ---------- observations : ndarray Values of the observables for an event, should have shape `(n_observables,)`. observable_definition : str A parseable Python expression that returns the value of the observable to be calculated. Returns ------- observable_value : float Value of the observable defined in observable_definition. """ assert len(observations) == len(self.observables), "Mismatch between observables and observations" # Variables that can be used in efficiency functions variables = math_commands() for observable_name, observable_value in zip(self.observables, observations): variables[observable_name] = observable_value # Check cuts return float(eval(observable_definition, variables)) def _calculate_xsec( self, theta=None, cuts=None, efficiency_functions=None, return_benchmark_xsecs=False, return_error=False, include_nuisance_parameters=True, start_event=0, ): """ Calculates the total cross section for a parameter point. Parameters ---------- theta : ndarray or None, optional The parameter point. If None, return_benchmark_xsecs should be True. Default value: None. cuts : list of str or None, optional Cuts. Each entry is a parseable Python expression that returns a bool (True if the event should pass a cut, False otherwise). Default value: None. efficiency_functions : list of str or None Efficiencies. Each entry is a parseable Python expression that returns a float for the efficiency of one component. Default value: None. return_benchmark_xsecs : bool, optional If True, this function returns the benchmark xsecs. Otherwise, it returns the xsec at theta. Default value: False. return_error : bool, optional If True, this function also returns the square root of the summed squared weights. include_nuisance_parameters : bool, optional If True and if return_benchmark_xsecs is True, the nuisance benchmarks are included in the output. Default value: True. start_event : int, optional Index of first event in MadMiner file to consider. Default value: 0. Returns ------- xsec : ndarray or float If return_benchmark_xsecs is True, an ndarray of benchmark xsecs in pb is returned. Otherwise, the cross section at theta in pb is returned. xsec_uncertainty : ndarray or float Only returned if return_error is True. Uncertainty (square root of the summed squared weights) on xsec. """ logger.debug("Calculating total cross section for theta = %s", theta) # Input if cuts is None: cuts = [] if efficiency_functions is None: efficiency_functions = [] assert (theta is not None) or return_benchmark_xsecs, "Please supply theta or set return_benchmark_xsecs=True" # Total xsecs for benchmarks xsecs_benchmarks = None xsecs_uncertainty_benchmarks = None for observations, weights in self.event_loader( start=start_event, include_nuisance_parameters=include_nuisance_parameters ): # Cuts cut_filter = [self._pass_cuts(obs_event, cuts) for obs_event in observations] observations = observations[cut_filter] weights = weights[cut_filter] # Efficiencies efficiencies = np.array( [self._eval_efficiency(obs_event, efficiency_functions) for obs_event in observations] ) weights *= efficiencies[:, np.newaxis] # xsecs if xsecs_benchmarks is None: xsecs_benchmarks = np.sum(weights, axis=0) xsecs_uncertainty_benchmarks = np.sum(weights ** 2, axis=0) else: xsecs_benchmarks += np.sum(weights, axis=0) xsecs_uncertainty_benchmarks += np.sum(weights ** 2, axis=0) assert xsecs_benchmarks is not None, "No events passed cuts" xsecs_uncertainty_benchmarks = xsecs_uncertainty_benchmarks ** 0.5 logger.debug("Benchmarks xsecs [pb]: %s", xsecs_benchmarks) if return_benchmark_xsecs: if return_error: return xsecs_benchmarks, xsecs_uncertainty_benchmarks return xsecs_benchmarks # Translate to xsec for theta theta_matrix = self._get_theta_benchmark_matrix(theta) xsec = mdot(theta_matrix, xsecs_benchmarks) xsec_error = mdot(theta_matrix, xsecs_uncertainty_benchmarks) logger.debug("Theta matrix: %s", theta_matrix) logger.debug("Cross section at theta: %s pb", xsec) if return_error: return xsec, xsec_error return xsec def _calculate_dynamic_binning( self, observable, theta, n_bins, n_events=None, cuts=None, efficiency_functions=None ): if cuts is None: cuts = [] if efficiency_functions is None: efficiency_functions = [] # Quantile values quantile_values = np.linspace(0.0, 1.0, n_bins + 1) # Get data x_pilot, weights_pilot = next(self.event_loader(batch_size=n_events)) # Cuts cut_filter = [self._pass_cuts(x, cuts) for x in x_pilot] x_pilot = x_pilot[cut_filter] weights_pilot = weights_pilot[cut_filter] # Efficiencies efficiencies = np.array([self._eval_efficiency(x, efficiency_functions) for x in x_pilot]) weights_pilot *= efficiencies[:, np.newaxis] # Evaluate histogrammed observable histo_observables_pilot = np.asarray([self._eval_observable(x, observable) for x in x_pilot]) # Weights at theta theta_matrix = self._get_theta_benchmark_matrix(theta) weight_theta_pilot = mdot(theta_matrix, weights_pilot) # Bin boundaries bin_boundaries = weighted_quantile(histo_observables_pilot, quantile_values, weight_theta_pilot) bin_boundaries = bin_boundaries[1:-1] return bin_boundaries # Aliases for backward compatibility calculate_fisher_information_full_truth = truth_information calculate_fisher_information_full_detector = full_information calculate_fisher_information_rate = rate_information calculate_fisher_information_hist1d = histo_information calculate_fisher_information_hist2d = histo_information_2d histogram_of_fisher_information = histogram_of_information calculate_fisher_information_nuisance_constraints = nuisance_constraint_information
py
1a32c695156c4ae0788e9414d27d3cc793cd81d7
# Suite B tests # Copyright (c) 2014-2015, Jouni Malinen <[email protected]> # # This software may be distributed under the terms of the BSD license. # See README for more details. import time import logging logger = logging.getLogger() import hostapd from utils import HwsimSkip def check_suite_b_capa(dev): if "GCMP" not in dev[0].get_capability("pairwise"): raise HwsimSkip("GCMP not supported") if "BIP-GMAC-128" not in dev[0].get_capability("group_mgmt"): raise HwsimSkip("BIP-GMAC-128 not supported") if "WPA-EAP-SUITE-B" not in dev[0].get_capability("key_mgmt"): raise HwsimSkip("WPA-EAP-SUITE-B not supported") check_suite_b_tls_lib(dev) def check_suite_b_tls_lib(dev): tls = dev[0].request("GET tls_library") if not tls.startswith("OpenSSL"): raise HwsimSkip("TLS library not supported for Suite B: " + tls); supported = False for ver in [ '1.0.2', '1.1.0' ]: if "build=OpenSSL " + ver in tls and "run=OpenSSL " + ver in tls: supported = True break if not supported: raise HwsimSkip("OpenSSL version not supported for Suite B: " + tls) def test_suite_b(dev, apdev): """WPA2/GCMP connection at Suite B 128-bit level""" check_suite_b_capa(dev) dev[0].flush_scan_cache() params = { "ssid": "test-suite-b", "wpa": "2", "wpa_key_mgmt": "WPA-EAP-SUITE-B", "rsn_pairwise": "GCMP", "group_mgmt_cipher": "BIP-GMAC-128", "ieee80211w": "2", "ieee8021x": "1", "openssl_ciphers": "SUITEB128", #"dh_file": "auth_serv/dh.conf", "eap_server": "1", "eap_user_file": "auth_serv/eap_user.conf", "ca_cert": "auth_serv/ec-ca.pem", "server_cert": "auth_serv/ec-server.pem", "private_key": "auth_serv/ec-server.key" } hapd = hostapd.add_ap(apdev[0]['ifname'], params) dev[0].connect("test-suite-b", key_mgmt="WPA-EAP-SUITE-B", ieee80211w="2", openssl_ciphers="SUITEB128", eap="TLS", identity="tls user", ca_cert="auth_serv/ec-ca.pem", client_cert="auth_serv/ec-user.pem", private_key="auth_serv/ec-user.key", pairwise="GCMP", group="GCMP", scan_freq="2412") tls_cipher = dev[0].get_status_field("EAP TLS cipher") if tls_cipher != "ECDHE-ECDSA-AES128-GCM-SHA256": raise Exception("Unexpected TLS cipher: " + tls_cipher) bss = dev[0].get_bss(apdev[0]['bssid']) if 'flags' not in bss: raise Exception("Could not get BSS flags from BSS table") if "[WPA2-EAP-SUITE-B-GCMP]" not in bss['flags']: raise Exception("Unexpected BSS flags: " + bss['flags']) dev[0].request("DISCONNECT") dev[0].wait_disconnected(timeout=20) dev[0].dump_monitor() dev[0].request("RECONNECT") ev = dev[0].wait_event(["CTRL-EVENT-EAP-STARTED", "CTRL-EVENT-CONNECTED"], timeout=20) if ev is None: raise Exception("Roaming with the AP timed out") if "CTRL-EVENT-EAP-STARTED" in ev: raise Exception("Unexpected EAP exchange") def suite_b_as_params(): params = {} params['ssid'] = 'as' params['beacon_int'] = '2000' params['radius_server_clients'] = 'auth_serv/radius_clients.conf' params['radius_server_auth_port'] = '18129' params['eap_server'] = '1' params['eap_user_file'] = 'auth_serv/eap_user.conf' params['ca_cert'] = 'auth_serv/ec-ca.pem' params['server_cert'] = 'auth_serv/ec-server.pem' params['private_key'] = 'auth_serv/ec-server.key' params['openssl_ciphers'] = 'SUITEB128' return params def test_suite_b_radius(dev, apdev): """WPA2/GCMP (RADIUS) connection at Suite B 128-bit level""" check_suite_b_capa(dev) dev[0].flush_scan_cache() params = suite_b_as_params() hostapd.add_ap(apdev[1]['ifname'], params) params = { "ssid": "test-suite-b", "wpa": "2", "wpa_key_mgmt": "WPA-EAP-SUITE-B", "rsn_pairwise": "GCMP", "group_mgmt_cipher": "BIP-GMAC-128", "ieee80211w": "2", "ieee8021x": "1", 'auth_server_addr': "127.0.0.1", 'auth_server_port': "18129", 'auth_server_shared_secret': "radius", 'nas_identifier': "nas.w1.fi" } hapd = hostapd.add_ap(apdev[0]['ifname'], params) dev[0].connect("test-suite-b", key_mgmt="WPA-EAP-SUITE-B", ieee80211w="2", openssl_ciphers="SUITEB128", eap="TLS", identity="tls user", ca_cert="auth_serv/ec-ca.pem", client_cert="auth_serv/ec-user.pem", private_key="auth_serv/ec-user.key", pairwise="GCMP", group="GCMP", scan_freq="2412") def check_suite_b_192_capa(dev): if "GCMP-256" not in dev[0].get_capability("pairwise"): raise HwsimSkip("GCMP-256 not supported") if "BIP-GMAC-256" not in dev[0].get_capability("group_mgmt"): raise HwsimSkip("BIP-GMAC-256 not supported") if "WPA-EAP-SUITE-B-192" not in dev[0].get_capability("key_mgmt"): raise HwsimSkip("WPA-EAP-SUITE-B-192 not supported") check_suite_b_tls_lib(dev) def test_suite_b_192(dev, apdev): """WPA2/GCMP-256 connection at Suite B 192-bit level""" check_suite_b_192_capa(dev) dev[0].flush_scan_cache() params = { "ssid": "test-suite-b", "wpa": "2", "wpa_key_mgmt": "WPA-EAP-SUITE-B-192", "rsn_pairwise": "GCMP-256", "group_mgmt_cipher": "BIP-GMAC-256", "ieee80211w": "2", "ieee8021x": "1", "openssl_ciphers": "SUITEB192", "eap_server": "1", "eap_user_file": "auth_serv/eap_user.conf", "ca_cert": "auth_serv/ec2-ca.pem", "server_cert": "auth_serv/ec2-server.pem", "private_key": "auth_serv/ec2-server.key" } hapd = hostapd.add_ap(apdev[0]['ifname'], params) dev[0].connect("test-suite-b", key_mgmt="WPA-EAP-SUITE-B-192", ieee80211w="2", openssl_ciphers="SUITEB192", eap="TLS", identity="tls user", ca_cert="auth_serv/ec2-ca.pem", client_cert="auth_serv/ec2-user.pem", private_key="auth_serv/ec2-user.key", pairwise="GCMP-256", group="GCMP-256", scan_freq="2412") tls_cipher = dev[0].get_status_field("EAP TLS cipher") if tls_cipher != "ECDHE-ECDSA-AES256-GCM-SHA384": raise Exception("Unexpected TLS cipher: " + tls_cipher) bss = dev[0].get_bss(apdev[0]['bssid']) if 'flags' not in bss: raise Exception("Could not get BSS flags from BSS table") if "[WPA2-EAP-SUITE-B-192-GCMP-256]" not in bss['flags']: raise Exception("Unexpected BSS flags: " + bss['flags']) dev[0].request("DISCONNECT") dev[0].wait_disconnected(timeout=20) dev[0].dump_monitor() dev[0].request("RECONNECT") ev = dev[0].wait_event(["CTRL-EVENT-EAP-STARTED", "CTRL-EVENT-CONNECTED"], timeout=20) if ev is None: raise Exception("Roaming with the AP timed out") if "CTRL-EVENT-EAP-STARTED" in ev: raise Exception("Unexpected EAP exchange") def test_suite_b_192_radius(dev, apdev): """WPA2/GCMP-256 (RADIUS) connection at Suite B 192-bit level""" check_suite_b_192_capa(dev) dev[0].flush_scan_cache() params = suite_b_as_params() params['ca_cert'] = 'auth_serv/ec2-ca.pem' params['server_cert'] = 'auth_serv/ec2-server.pem' params['private_key'] = 'auth_serv/ec2-server.key' params['openssl_ciphers'] = 'SUITEB192' hostapd.add_ap(apdev[1]['ifname'], params) params = { "ssid": "test-suite-b", "wpa": "2", "wpa_key_mgmt": "WPA-EAP-SUITE-B-192", "rsn_pairwise": "GCMP-256", "group_mgmt_cipher": "BIP-GMAC-256", "ieee80211w": "2", "ieee8021x": "1", 'auth_server_addr': "127.0.0.1", 'auth_server_port': "18129", 'auth_server_shared_secret': "radius", 'nas_identifier': "nas.w1.fi" } hapd = hostapd.add_ap(apdev[0]['ifname'], params) dev[0].connect("test-suite-b", key_mgmt="WPA-EAP-SUITE-B-192", ieee80211w="2", openssl_ciphers="SUITEB192", eap="TLS", identity="tls user", ca_cert="auth_serv/ec2-ca.pem", client_cert="auth_serv/ec2-user.pem", private_key="auth_serv/ec2-user.key", pairwise="GCMP-256", group="GCMP-256", scan_freq="2412")
py
1a32c6c7f9fa4b99a25541f74fd763fb8b32a26e
#coding:utf-8 # # id: bugs.core_0014 # title: Trigger do it wrong # decription: Computed by columns inside triggers always=NULL # tracker_id: CORE-0014 # min_versions: ['2.5.0'] # versions: 2.5 # qmid: None import pytest from firebird.qa import db_factory, isql_act, Action # version: 2.5 # resources: None substitutions_1 = [] init_script_1 = """""" db_1 = db_factory(sql_dialect=3, init=init_script_1) test_script_1 = """ -- Works OK on 1.5.6 and up to 4.0.0. create domain dom_datum_vreme as timestamp not null; create domain dom_dokid as varchar(20) not null; create domain dom_jid as integer; create domain dom_kolicina as integer default 0; create domain dom_naziv as varchar(100) not null; create domain dom_novac as double precision default 0; create domain dom_rabat as float default 0; create domain dom_status as integer default 0; commit; create table ulaz_master ( ulzid dom_jid not null, datum dom_datum_vreme not null, broj_racuna dom_dokid not null, dobid dom_jid not null, dobavljac dom_naziv not null, napid dom_jid not null, nacin_placanja dom_naziv not null, datumprispeca timestamp, -- dom_datum_vreme null , vrednost dom_novac default 0, rvrednost dom_novac default 0, status dom_status default 0, constraint pk_ulaz_master primary key (ulzid) ); create table ulaz_detalji ( ulzid dom_jid not null, artid dom_jid not null, artikal dom_naziv not null, kolicina dom_kolicina default 0 not null, cena dom_novac default 0 not null, rabat dom_rabat default 0 not null, ukupno computed by (kolicina * cena), vratio dom_kolicina default 0, constraint pk_ulaz_detalji primary key (ulzid, artid) ); set term ^; create trigger trig_ulaz_detalji_ai for ulaz_detalji active after insert position 0 as begin update ulaz_master u set u.vrednost = u.vrednost + new.ukupno where u.ulzid = new.ulzid; update ulaz_master u set u.rvrednost = u.rvrednost + (1 - new.rabat/100) * new.ukupno where u.ulzid = new.ulzid; end ^ set term ;^ commit; -- this trigger sets fiedls to null on rc8. -- on rc6 it works as it should. insert into ulaz_master(ulzid, datum, broj_racuna, dobid, dobavljac, napid, nacin_placanja) values(1000, '19.03.2016 12:01:03', 'qwerty123', 78966, 'foo-bar', 32101, 'asd-fgh-jkl' ); /* create domain dom_datum_vreme as timestamp not null; create domain dom_dokid as varchar(20) not null; create domain dom_jid as integer; create domain dom_kolicina as integer default 0; create domain dom_naziv as varchar(100) not null; create domain dom_novac as double precision default 0; create domain dom_rabat as float default 0; create domain dom_status as integer default 0; datum dom_datum_vreme not null, broj_racuna dom_dokid not null, dobid dom_jid not null, dobavljac dom_naziv not null, napid dom_jid not null, nacin_placanja dom_naziv not null, */ set list on; set count on; select ulzid, datum, broj_racuna, dobid, dobavljac, napid, nacin_placanja, datumprispeca ,cast(vrednost as numeric(10,2)) as vrednost ,cast(rvrednost as numeric(10,2)) as rvrednost ,status from ulaz_master; insert into ulaz_detalji(ulzid, artid, artikal, kolicina, cena, rabat, vratio) values(1000, 1000, 'liste', 19, 7, 30, 0); select ulzid, artid, artikal, kolicina, cast(cena as numeric(12,2)) as cena, rabat, cast(ukupno as numeric(12,2)) as ukupno, vratio from ulaz_detalji; select ulzid, datum, broj_racuna, dobid, dobavljac, napid, nacin_placanja, datumprispeca ,cast(vrednost as numeric(10,2)) as vrednost ,cast(rvrednost as numeric(10,2)) as rvrednost ,status from ulaz_master; """ act_1 = isql_act('db_1', test_script_1, substitutions=substitutions_1) expected_stdout_1 = """ ULZID 1000 DATUM 2016-03-19 12:01:03.0000 BROJ_RACUNA qwerty123 DOBID 78966 DOBAVLJAC foo-bar NAPID 32101 NACIN_PLACANJA asd-fgh-jkl DATUMPRISPECA <null> VREDNOST 0.00 RVREDNOST 0.00 STATUS 0 Records affected: 1 Records affected: 1 ULZID 1000 ARTID 1000 ARTIKAL liste KOLICINA 19 CENA 7.00 RABAT 30 UKUPNO 133.00 VRATIO 0 Records affected: 1 ULZID 1000 DATUM 2016-03-19 12:01:03.0000 BROJ_RACUNA qwerty123 DOBID 78966 DOBAVLJAC foo-bar NAPID 32101 NACIN_PLACANJA asd-fgh-jkl DATUMPRISPECA <null> VREDNOST 133.00 RVREDNOST 93.10 STATUS 0 Records affected: 1 """ @pytest.mark.version('>=2.5') def test_1(act_1: Action): act_1.expected_stdout = expected_stdout_1 act_1.execute() assert act_1.clean_expected_stdout == act_1.clean_stdout
py
1a32c70bd1cb2b6de541d19cd2d4344950263c81
# Generated by Django 3.0 on 2020-03-19 01:19 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('generative_model', '0002_auto_20200318_0449'), ] operations = [ migrations.RenameField( model_name='generativemodel', old_name='sdf', new_name='pdb', ), migrations.AddField( model_name='generativemodel', name='iterations', field=models.IntegerField(default=3), ), migrations.AddField( model_name='generativemodel', name='residue_name', field=models.CharField(default='LIG', max_length=3), ), ]
py
1a32c727dba2591f40e976b3820ecec21000954d
import math import itertools def menu(): while True: try: print(menuStr) print(stars) choose = int(input("For Encrypter = 1\nFor Decrypter = 2\nFor Exit = 0\nChoose : ")) print(stars) break except: print("Girdi de bir problem var.") pass if choose == 1: print("Encrypter opening...") print(stars) myEncrypter() elif choose == 2: print("Decrypter opening...") myDecrypter() elif choose == 0: print("Cya dude.") else: print("Hata menüde.") menu() def myEncrypter(): inputWord = str(input("Input : ")) print(stars) iList = list(inputWord) aList = [] tempList = [] outputList = [] t=0 for item in iList: try: aList.append(((alphabet.index(item)+1)*2)%29) except: print("Şuan sadece alfabe ile işlem yapabilirsiniz.") iList.clear() myEncrypter() for x in aList: tempList = list(str(math.sin(x))) tempList.reverse() for items in itertools.islice(tempList,0,3): outputList.append(items) for a in outputList: if t == 0 :print("Sonucunuz: ",end="") t+=1 print(a,end="") def myDecrypter(): print("b") alphabet = ['a', 'b', 'c', 'ç', 'd', 'e', 'f', 'g', 'ğ', 'h', 'ı', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'ö', 'p', 'r', 's', 'ş', 't', 'u', 'ü', 'v', 'y', 'z'] menuStr = """ _______________________________________________________________________________________ _____ _ _ __ ___ _ _| ____|_ __ ___ _ __ _ _ _ __ | |_ ___ _ __ | '_ ` _ \| | | | _| | '_ \ / __| '__| | | | '_ \| __/ _ \ '__| | | | | | | |_| | |___| | | | (__| | | |_| | |_) | || __/ | |_| |_| |_|\__, |_____|_| |_|\___|_| \__, | .__/ \__\___|_| |___/ |___/|_| v.0.0.2 _________________________________________________________________________________________ """ stars = "_" * 89 menu()
py
1a32c7c33fb38f7161db3e9c8eaa1cbc24b5131a
__author__ = 'hisham' info = { "title": "Feature List", "description": "Map and configurable feature list side by side. Map and feature list are connected in zoom and pan. Use for store locations or similar apps.", "author": 'Cartologic', "home_page": 'http://cartologic.com/cartoview/apps/feature_list', "help_url": "http://cartologic.com/cartoview/apps/feature_list/help/", "tags": [ 'map', 'viewer', 'feature_list', 'features', 'list'], "licence": 'BSD', "author_website": "http://www.cartologic.com", "single_instance": False} def install(): pass def uninstall(): pass
py
1a32c7cf858e7ec3d8b83fbe23815676d192ee60
# pylint: disable=W0401 from .base import * from .test_views import * from .test_filters import * from .test_translation import * from .test_trek_relationship import * from .test_models import * from .test_admin import *
py
1a32c9736dc17aed0969063be582a9ac42080b96
import unittest import pandas as pd import numpy as np from copy import deepcopy from darts.dataprocessing.transformers import BoxCox, Mapper from darts.utils.timeseries_generation import sine_timeseries, linear_timeseries from darts import TimeSeries class BoxCoxTestCase(unittest.TestCase): sine_series = sine_timeseries(length=50, value_y_offset=5, value_frequency=0.05) lin_series = linear_timeseries(start_value=1, end_value=10, length=50) multi_series = sine_series.stack(lin_series) def test_boxbox_lambda(self): boxcox = BoxCox(lmbda=0.3) boxcox.fit(self.multi_series) self.assertEqual(boxcox._fitted_params, [[0.3, 0.3]]) boxcox = BoxCox(lmbda=[0.3, 0.4]) boxcox.fit(self.multi_series) self.assertEqual(boxcox._fitted_params, [[0.3, 0.4]]) with self.assertRaises(ValueError): boxcox = BoxCox(lmbda=[0.2, 0.4, 0.5]) boxcox.fit(self.multi_series) boxcox = BoxCox(optim_method="mle") boxcox.fit(self.multi_series) lmbda1 = boxcox._fitted_params[0].tolist() boxcox = BoxCox(optim_method="pearsonr") boxcox.fit(self.multi_series) lmbda2 = boxcox._fitted_params[0].tolist() self.assertNotEqual(lmbda1, lmbda2) def test_boxcox_transform(self): log_mapper = Mapper(lambda x: np.log(x)) boxcox = BoxCox(lmbda=0) transformed1 = log_mapper.transform(self.sine_series) transformed2 = boxcox.fit(self.sine_series).transform(self.sine_series) np.testing.assert_almost_equal( transformed1.all_values(copy=False), transformed2.all_values(copy=False), decimal=4, ) def test_boxcox_inverse(self): boxcox = BoxCox() transformed = boxcox.fit_transform(self.multi_series) back = boxcox.inverse_transform(transformed) pd.testing.assert_frame_equal( self.multi_series.pd_dataframe(), back.pd_dataframe(), check_exact=False ) def test_boxcox_multi_ts(self): test_cases = [ ([[0.2, 0.4], [0.3, 0.6]]), # full lambda (0.4), # single value None, # None ] for lmbda in test_cases: box_cox = BoxCox(lmbda=lmbda) transformed = box_cox.fit_transform([self.multi_series, self.multi_series]) back = box_cox.inverse_transform(transformed) pd.testing.assert_frame_equal( self.multi_series.pd_dataframe(), back[0].pd_dataframe(), check_exact=False, ) pd.testing.assert_frame_equal( self.multi_series.pd_dataframe(), back[1].pd_dataframe(), check_exact=False, ) def test_boxcox_multiple_calls_to_fit(self): """ This test checks whether calling the scaler twice is calculating new lambdas instead of keeping the old ones """ box_cox = BoxCox() box_cox.fit(self.sine_series) lambda1 = deepcopy(box_cox._fitted_params)[0].tolist() box_cox.fit(self.lin_series) lambda2 = deepcopy(box_cox._fitted_params)[0].tolist() self.assertNotEqual( lambda1, lambda2, "Lambdas should change when the transformer is retrained" ) def test_multivariate_stochastic_series(self): transformer = BoxCox() vals = np.random.rand(10, 5, 10) series = TimeSeries.from_values(vals) new_series = transformer.fit_transform(series) series_back = transformer.inverse_transform(new_series) # Test inverse transform np.testing.assert_allclose(series.all_values(), series_back.all_values())
py
1a32ca380b2192e95523f14f1d91018c381666d1
#!/usr/bin/python3 from brownie import * from scripts.deployment.deploy_protocol import deployProtocol from scripts.deployment.deploy_loanToken import deployLoanTokens from scripts.deployment.deploy_tokens import deployTokens, readTokens from scripts.deployment.deploy_multisig import deployMultisig import shared import json from munch import Munch ''' Deploys all of the contracts. 1. deploys the tokens or reads exsiting token contracts. if configData contains token addresses, use the given addresses else, deploy new tokens 2. deploys the base protocol contracts. 3. deploys, configures and tests the loan token contracts. 4. writes the relevant contract addresses into swap_test.json. ''' def main(): global configData #owners = [accounts[0], accounts[1], accounts[2]] requiredConf=2 configData = {} # deploy new tokens ''' configData = { 'WRBTC': '0x69FE5cEC81D5eF92600c1A0dB1F11986AB3758Ab', 'SUSD': '0xCb46C0DdC60d18eFEB0e586c17AF6Ea36452DaE0', 'medianizer': '0x2d39Cc54dc44FF27aD23A91a9B5fd750dae4B218' } ''' thisNetwork = network.show_active() if thisNetwork == "development": acct = accounts[0] elif thisNetwork == "testnet" or thisNetwork == "rsk-mainnet": acct = accounts.load("rskdeployer") else: raise Exception("network not supported") if('WRBTC' in configData and 'SUSD' in configData): tokens = readTokens(acct, configData['WRBTC'], configData['SUSD']) elif('SUSD' in configData): tokens = deployWRBTC(acct, configData['SUSD']) else: tokens = deployTokens(acct) if(not 'medianizer' in configData): medianizer = deployMoCMockup(acct) configData['medianizer'] = medianizer.address if(not 'mocState' in configData): mocState = deployBProPriceFeedMockup(acct) configData['mocState'] = mocState.address (sovryn, feeds) = deployProtocol(acct, tokens, configData['medianizer']) (loanTokenSUSD, loanTokenWRBTC, loanTokenSettingsSUSD, loanTokenSettingsWRBTC) = deployLoanTokens(acct, sovryn, tokens) #deployMultisig(sovryn, acct, owners, requiredConf) configData["sovrynProtocol"] = sovryn.address configData["PriceFeeds"] = feeds.address configData["WRBTC"] = tokens.wrbtc.address configData["SUSD"] = tokens.susd.address configData["loanTokenSettingsSUSD"] = loanTokenSettingsSUSD.address configData["loanTokenSUSD"] = loanTokenSUSD.address configData["loanTokenSettingsWRBTC"] = loanTokenSettingsWRBTC.address configData["loanTokenRBTC"] = loanTokenWRBTC.address with open('./scripts/swapTest/swap_test.json', 'w') as configFile: json.dump(configData, configFile) def deployMoCMockup(acct): priceFeedMockup = acct.deploy(PriceFeedsMoCMockup) priceFeedMockup.setHas(True) priceFeedMockup.setValue(10000e18) return priceFeedMockup def deployBProPriceFeedMockup(acct): bproPriceFeedMockup = acct.deploy(BProPriceFeedMockup) bproPriceFeedMockup.setValue(20000e18) return bproPriceFeedMockup
py
1a32cb7e536194f03f5af7ed75eec272d6d93adf
# Copyright 2011 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from cinderclient.v1 import client as cinder_client_v1 from cinderclient.v2 import client as cinder_client_v2 from requests_mock.contrib import fixture from testtools import matchers from nova import context from nova import exception from nova import test from nova.volume import cinder _image_metadata = { 'kernel_id': 'fake', 'ramdisk_id': 'fake' } class BaseCinderTestCase(object): def setUp(self): super(BaseCinderTestCase, self).setUp() cinder.reset_globals() self.requests = self.useFixture(fixture.Fixture()) self.api = cinder.API() self.context = context.RequestContext('username', 'project_id', auth_token='token', service_catalog=self.CATALOG) def flags(self, *args, **kwargs): super(BaseCinderTestCase, self).flags(*args, **kwargs) cinder.reset_globals() def create_client(self): return cinder.cinderclient(self.context) def test_context_with_catalog(self): self.assertEqual(self.URL, self.create_client().client.get_endpoint()) def test_cinder_http_retries(self): retries = 42 self.flags(http_retries=retries, group='cinder') self.assertEqual(retries, self.create_client().client.connect_retries) def test_cinder_api_insecure(self): # The True/False negation is awkward, but better for the client # to pass us insecure=True and we check verify_cert == False self.flags(insecure=True, group='cinder') self.assertFalse(self.create_client().client.session.verify) def test_cinder_http_timeout(self): timeout = 123 self.flags(timeout=timeout, group='cinder') self.assertEqual(timeout, self.create_client().client.session.timeout) def test_cinder_api_cacert_file(self): cacert = "/etc/ssl/certs/ca-certificates.crt" self.flags(cafile=cacert, group='cinder') self.assertEqual(cacert, self.create_client().client.session.verify) class CinderTestCase(BaseCinderTestCase, test.NoDBTestCase): """Test case for cinder volume v1 api.""" URL = "http://localhost:8776/v1/project_id" CATALOG = [{ "type": "volumev2", "name": "cinderv2", "endpoints": [{"publicURL": URL}] }] def create_client(self): c = super(CinderTestCase, self).create_client() self.assertIsInstance(c, cinder_client_v1.Client) return c def stub_volume(self, **kwargs): volume = { 'display_name': None, 'display_description': None, "attachments": [], "availability_zone": "cinder", "created_at": "2012-09-10T00:00:00.000000", "id": '00000000-0000-0000-0000-000000000000', "metadata": {}, "size": 1, "snapshot_id": None, "status": "available", "volume_type": "None", "bootable": "true" } volume.update(kwargs) return volume def test_cinder_endpoint_template(self): endpoint = 'http://other_host:8776/v1/%(project_id)s' self.flags(endpoint_template=endpoint, group='cinder') self.assertEqual('http://other_host:8776/v1/project_id', self.create_client().client.endpoint_override) def test_get_non_existing_volume(self): self.requests.get(self.URL + '/volumes/nonexisting', status_code=404) self.assertRaises(exception.VolumeNotFound, self.api.get, self.context, 'nonexisting') def test_volume_with_image_metadata(self): v = self.stub_volume(id='1234', volume_image_metadata=_image_metadata) m = self.requests.get(self.URL + '/volumes/5678', json={'volume': v}) volume = self.api.get(self.context, '5678') self.assertThat(m.last_request.path, matchers.EndsWith('/volumes/5678')) self.assertIn('volume_image_metadata', volume) self.assertEqual(_image_metadata, volume['volume_image_metadata']) class CinderV2TestCase(BaseCinderTestCase, test.NoDBTestCase): """Test case for cinder volume v2 api.""" URL = "http://localhost:8776/v2/project_id" CATALOG = [{ "type": "volumev2", "name": "cinder", "endpoints": [{"publicURL": URL}] }] def setUp(self): super(CinderV2TestCase, self).setUp() cinder.CONF.set_override('catalog_info', 'volumev2:cinder:publicURL', group='cinder') self.addCleanup(cinder.CONF.reset) def create_client(self): c = super(CinderV2TestCase, self).create_client() self.assertIsInstance(c, cinder_client_v2.Client) return c def stub_volume(self, **kwargs): volume = { 'name': None, 'description': None, "attachments": [], "availability_zone": "cinderv2", "created_at": "2013-08-10T00:00:00.000000", "id": '00000000-0000-0000-0000-000000000000', "metadata": {}, "size": 1, "snapshot_id": None, "status": "available", "volume_type": "None", "bootable": "true" } volume.update(kwargs) return volume def test_cinder_endpoint_template(self): endpoint = 'http://other_host:8776/v2/%(project_id)s' self.flags(endpoint_template=endpoint, group='cinder') self.assertEqual('http://other_host:8776/v2/project_id', self.create_client().client.endpoint_override) def test_get_non_existing_volume(self): self.requests.get(self.URL + '/volumes/nonexisting', status_code=404) self.assertRaises(exception.VolumeNotFound, self.api.get, self.context, 'nonexisting') def test_volume_with_image_metadata(self): v = self.stub_volume(id='1234', volume_image_metadata=_image_metadata) self.requests.get(self.URL + '/volumes/5678', json={'volume': v}) volume = self.api.get(self.context, '5678') self.assertIn('volume_image_metadata', volume) self.assertEqual(_image_metadata, volume['volume_image_metadata'])
py
1a32cc48698e063422822614e8e31777ec7c3f68
from selenium import webdriver chrome_options = webdriver.ChromeOptions() chrome_options.add_argument("headless") chrome_options.add_argument("no-sandbox") chrome_options.add_argument("disable-dev-shm-usage") driver = webdriver.Chrome(options=chrome_options) base_url = "https://www.google.com/" driver.get(base_url) source = driver.page_source if "I'm Feeling Lucky" in source: print("Test passed") else: print("Test failed") driver.close() #asda
py
1a32cc92e68fa84098c8459efe92559cd0639bfb
#!/usr/bin/env python3 import json import os import platform import struct import sys import subprocess def main(): message = get_message() url = message.get("url") args = ["mpv", "--", url] # need to remove terminal because it need to capture the output of yt-dlp kwargs = {} # https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Native_messaging#Closing_the_native_app if platform.system() == "Windows": kwargs["creationflags"] = subprocess.CREATE_BREAKAWAY_FROM_JOB # HACK(ww): On macOS, graphical applications inherit their path from `launchd` # rather than the default path list in `/etc/paths`. `launchd` doesn't include # `/usr/local/bin` in its default list, which means that any installations # of MPV and/or youtube-dl under that prefix aren't visible when spawning # from, say, Firefox. The real fix is to modify `launchd.conf`, but that's # invasive and maybe not what users want in the general case. # Hence this nasty hack. if platform.system() == "Darwin": path = os.environ.get("PATH") os.environ["PATH"] = f"/usr/local/bin:{path}" process = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE,**kwargs) pOut, pErr = process.communicate() # @see https://docs.python.org/3/library/subprocess.html#subprocess.Popen.communicate # Need to respond something to avoid "Error: An unexpected error occurred" # in Browser Console. if "ERROR" not in str(pOut) : send_message("ok") else : send_message(pOut.decode("utf-8")) # https://developer.mozilla.org/en-US/Add-ons/WebExtensions/Native_messaging#App_side def get_message(): raw_length = sys.stdin.buffer.read(4) if not raw_length: return {} length = struct.unpack("@I", raw_length)[0] message = sys.stdin.buffer.read(length).decode("utf-8") return json.loads(message) def send_message(message): content = json.dumps(message).encode("utf-8") length = struct.pack("@I", len(content)) sys.stdout.buffer.write(length) sys.stdout.buffer.write(content) sys.stdout.buffer.flush() if __name__ == "__main__": main()
py
1a32ccbce61149b0a9320d807a510298c503ebde
""" @ saving utils """ import math import torch from torchvision import utils import matplotlib.pyplot as plt from PIL import Image from torchvision import transforms def numpy_grid(x, pad=0, nrow=None, uint8=True): """ thin wrap to make_grid to return frames ready to save to file args pad (int [0]) same as utils.make_grid(padding) nrow (int [None]) # defaults to horizonally biased rectangle closest to square uint8 (bool [True]) convert to img in range 0-255 uint8 """ x = x.clone().detach().cpu() nrow = nrow or int(math.sqrt(x.shape[0])) x = ((utils.make_grid(x, nrow=nrow, padding=pad).permute(1,2,0) - x.min())/(x.max()-x.min())).numpy() if uint8: x = (x*255).astype("uint8") return x def to_image(image, save=True, show=True, pad=1): """ util tensor to image, show, save """ image = numpy_grid(image, pad=pad) if save: im = Image.fromarray(image) im.save(save) print(f"saved image {save}") if show: plt.imshow(image) plt.axis("off") plt.show() return image def strf (x): """ format time output strf = lambda x: f"{int(x//86400)}D{int((x//3600)%24):02d}:{int((x//60)%60):02d}:{int(x%60):02d}s" """ days = int(x//86400) hours = int((x//3600)%24) minutes = int((x//60)%60) seconds = int(x%60) out = f"{minutes:02d}:{seconds:02d}" if hours or days: out = f"{hours:02d}:{out}" if days: out = f"{days}_{out}" return out # pylint: disable=no-member def open_image(path, channels=3, image_size=128): """ open img with same transforms as ddpm dataset """ if isinstance(path, (list, tuple)): return torch.cat([open_image(p, channels=channels, image_size=image_size) for p in path]) img = Image.open(path) if channels == 1: img = img.convert('L') else: img = img.convert('RGB') transform = transforms.Compose([ transforms.Resize(image_size), transforms.RandomHorizontalFlip(), transforms.CenterCrop(image_size), transforms.ToTensor(), transforms.Lambda(lambda t: (t * 2) - 1) ]) return transform(img)[None,...]
py
1a32cce4e4027d0364e58dbf562cabc6edc382a3
from __future__ import absolute_import, unicode_literals import os import pytest import kombu from .common import ( BasicFunctionality, BaseExchangeTypes, BaseTimeToLive, BasePriority, BaseFailover ) def get_connection(hostname, port, vhost): return kombu.Connection('pyamqp://{}:{}'.format(hostname, port)) def get_failover_connection(hostname, port, vhost): return kombu.Connection( 'pyamqp://localhost:12345;pyamqp://{}:{}'.format(hostname, port) ) @pytest.fixture() def connection(request): return get_connection( hostname=os.environ.get('RABBITMQ_HOST', 'localhost'), port=os.environ.get('RABBITMQ_5672_TCP', '5672'), vhost=getattr( request.config, "slaveinput", {} ).get("slaveid", None), ) @pytest.fixture() def failover_connection(request): return get_failover_connection( hostname=os.environ.get('RABBITMQ_HOST', 'localhost'), port=os.environ.get('RABBITMQ_5672_TCP', '5672'), vhost=getattr( request.config, "slaveinput", {} ).get("slaveid", None), ) @pytest.mark.env('py-amqp') @pytest.mark.flaky(reruns=5, reruns_delay=2) class test_PyAMQPBasicFunctionality(BasicFunctionality): pass @pytest.mark.env('py-amqp') @pytest.mark.flaky(reruns=5, reruns_delay=2) class test_PyAMQPBaseExchangeTypes(BaseExchangeTypes): pass @pytest.mark.env('py-amqp') @pytest.mark.flaky(reruns=5, reruns_delay=2) class test_PyAMQPTimeToLive(BaseTimeToLive): pass @pytest.mark.env('py-amqp') @pytest.mark.flaky(reruns=5, reruns_delay=2) class test_PyAMQPPriority(BasePriority): pass @pytest.mark.env('py-amqp') @pytest.mark.flaky(reruns=5, reruns_delay=2) class test_PyAMQPFailover(BaseFailover): pass
py
1a32cda512ca87f0794d66ca1617d840568dd523
""" Functions for applying functions that act on arrays to xarray's labeled data. """ from __future__ import annotations import functools import itertools import operator import warnings from collections import Counter from typing import ( TYPE_CHECKING, AbstractSet, Any, Callable, Hashable, Iterable, Mapping, Sequence, overload, ) import numpy as np from . import dtypes, duck_array_ops, utils from .alignment import align, deep_align from .common import zeros_like from .duck_array_ops import datetime_to_numeric from .indexes import Index, filter_indexes_from_coords from .merge import merge_attrs, merge_coordinates_without_align from .options import OPTIONS, _get_keep_attrs from .pycompat import is_duck_dask_array from .utils import is_dict_like from .variable import Variable if TYPE_CHECKING: from .coordinates import Coordinates from .dataarray import DataArray from .dataset import Dataset from .types import T_Xarray _NO_FILL_VALUE = utils.ReprObject("<no-fill-value>") _DEFAULT_NAME = utils.ReprObject("<default-name>") _JOINS_WITHOUT_FILL_VALUES = frozenset({"inner", "exact"}) def _first_of_type(args, kind): """Return either first object of type 'kind' or raise if not found.""" for arg in args: if isinstance(arg, kind): return arg raise ValueError("This should be unreachable.") def _all_of_type(args, kind): """Return all objects of type 'kind'""" return [arg for arg in args if isinstance(arg, kind)] class _UFuncSignature: """Core dimensions signature for a given function. Based on the signature provided by generalized ufuncs in NumPy. Attributes ---------- input_core_dims : tuple[tuple] Core dimension names on each input variable. output_core_dims : tuple[tuple] Core dimension names on each output variable. """ __slots__ = ( "input_core_dims", "output_core_dims", "_all_input_core_dims", "_all_output_core_dims", "_all_core_dims", ) def __init__(self, input_core_dims, output_core_dims=((),)): self.input_core_dims = tuple(tuple(a) for a in input_core_dims) self.output_core_dims = tuple(tuple(a) for a in output_core_dims) self._all_input_core_dims = None self._all_output_core_dims = None self._all_core_dims = None @property def all_input_core_dims(self): if self._all_input_core_dims is None: self._all_input_core_dims = frozenset( dim for dims in self.input_core_dims for dim in dims ) return self._all_input_core_dims @property def all_output_core_dims(self): if self._all_output_core_dims is None: self._all_output_core_dims = frozenset( dim for dims in self.output_core_dims for dim in dims ) return self._all_output_core_dims @property def all_core_dims(self): if self._all_core_dims is None: self._all_core_dims = self.all_input_core_dims | self.all_output_core_dims return self._all_core_dims @property def dims_map(self): return { core_dim: f"dim{n}" for n, core_dim in enumerate(sorted(self.all_core_dims)) } @property def num_inputs(self): return len(self.input_core_dims) @property def num_outputs(self): return len(self.output_core_dims) def __eq__(self, other): try: return ( self.input_core_dims == other.input_core_dims and self.output_core_dims == other.output_core_dims ) except AttributeError: return False def __ne__(self, other): return not self == other def __repr__(self): return "{}({!r}, {!r})".format( type(self).__name__, list(self.input_core_dims), list(self.output_core_dims), ) def __str__(self): lhs = ",".join("({})".format(",".join(dims)) for dims in self.input_core_dims) rhs = ",".join("({})".format(",".join(dims)) for dims in self.output_core_dims) return f"{lhs}->{rhs}" def to_gufunc_string(self, exclude_dims=frozenset()): """Create an equivalent signature string for a NumPy gufunc. Unlike __str__, handles dimensions that don't map to Python identifiers. Also creates unique names for input_core_dims contained in exclude_dims. """ input_core_dims = [ [self.dims_map[dim] for dim in core_dims] for core_dims in self.input_core_dims ] output_core_dims = [ [self.dims_map[dim] for dim in core_dims] for core_dims in self.output_core_dims ] # enumerate input_core_dims contained in exclude_dims to make them unique if exclude_dims: exclude_dims = [self.dims_map[dim] for dim in exclude_dims] counter = Counter() def _enumerate(dim): if dim in exclude_dims: n = counter[dim] counter.update([dim]) dim = f"{dim}_{n}" return dim input_core_dims = [ [_enumerate(dim) for dim in arg] for arg in input_core_dims ] alt_signature = type(self)(input_core_dims, output_core_dims) return str(alt_signature) def result_name(objects: list) -> Any: # use the same naming heuristics as pandas: # https://github.com/blaze/blaze/issues/458#issuecomment-51936356 names = {getattr(obj, "name", _DEFAULT_NAME) for obj in objects} names.discard(_DEFAULT_NAME) if len(names) == 1: (name,) = names else: name = None return name def _get_coords_list(args) -> list[Coordinates]: coords_list = [] for arg in args: try: coords = arg.coords except AttributeError: pass # skip this argument else: coords_list.append(coords) return coords_list def build_output_coords_and_indexes( args: list, signature: _UFuncSignature, exclude_dims: AbstractSet = frozenset(), combine_attrs: str = "override", ) -> tuple[list[dict[Any, Variable]], list[dict[Any, Index]]]: """Build output coordinates and indexes for an operation. Parameters ---------- args : list List of raw operation arguments. Any valid types for xarray operations are OK, e.g., scalars, Variable, DataArray, Dataset. signature : _UfuncSignature Core dimensions signature for the operation. exclude_dims : set, optional Dimensions excluded from the operation. Coordinates along these dimensions are dropped. Returns ------- Dictionaries of Variable and Index objects with merged coordinates. """ coords_list = _get_coords_list(args) if len(coords_list) == 1 and not exclude_dims: # we can skip the expensive merge (unpacked_coords,) = coords_list merged_vars = dict(unpacked_coords.variables) merged_indexes = dict(unpacked_coords.xindexes) else: merged_vars, merged_indexes = merge_coordinates_without_align( coords_list, exclude_dims=exclude_dims, combine_attrs=combine_attrs ) output_coords = [] output_indexes = [] for output_dims in signature.output_core_dims: dropped_dims = signature.all_input_core_dims - set(output_dims) if dropped_dims: filtered_coords = { k: v for k, v in merged_vars.items() if dropped_dims.isdisjoint(v.dims) } filtered_indexes = filter_indexes_from_coords( merged_indexes, set(filtered_coords) ) else: filtered_coords = merged_vars filtered_indexes = merged_indexes output_coords.append(filtered_coords) output_indexes.append(filtered_indexes) return output_coords, output_indexes def apply_dataarray_vfunc( func, *args, signature, join="inner", exclude_dims=frozenset(), keep_attrs="override", ): """Apply a variable level function over DataArray, Variable and/or ndarray objects. """ from .dataarray import DataArray if len(args) > 1: args = deep_align( args, join=join, copy=False, exclude=exclude_dims, raise_on_invalid=False ) objs = _all_of_type(args, DataArray) if keep_attrs == "drop": name = result_name(args) else: first_obj = _first_of_type(args, DataArray) name = first_obj.name result_coords, result_indexes = build_output_coords_and_indexes( args, signature, exclude_dims, combine_attrs=keep_attrs ) data_vars = [getattr(a, "variable", a) for a in args] result_var = func(*data_vars) if signature.num_outputs > 1: out = tuple( DataArray( variable, coords=coords, indexes=indexes, name=name, fastpath=True ) for variable, coords, indexes in zip( result_var, result_coords, result_indexes ) ) else: (coords,) = result_coords (indexes,) = result_indexes out = DataArray( result_var, coords=coords, indexes=indexes, name=name, fastpath=True ) attrs = merge_attrs([x.attrs for x in objs], combine_attrs=keep_attrs) if isinstance(out, tuple): for da in out: da.attrs = attrs else: out.attrs = attrs return out def ordered_set_union(all_keys: list[Iterable]) -> Iterable: return {key: None for keys in all_keys for key in keys}.keys() def ordered_set_intersection(all_keys: list[Iterable]) -> Iterable: intersection = set(all_keys[0]) for keys in all_keys[1:]: intersection.intersection_update(keys) return [key for key in all_keys[0] if key in intersection] def assert_and_return_exact_match(all_keys): first_keys = all_keys[0] for keys in all_keys[1:]: if keys != first_keys: raise ValueError( "exact match required for all data variable names, " f"but {keys!r} != {first_keys!r}" ) return first_keys _JOINERS: dict[str, Callable] = { "inner": ordered_set_intersection, "outer": ordered_set_union, "left": operator.itemgetter(0), "right": operator.itemgetter(-1), "exact": assert_and_return_exact_match, } def join_dict_keys(objects: Iterable[Mapping | Any], how: str = "inner") -> Iterable: joiner = _JOINERS[how] all_keys = [obj.keys() for obj in objects if hasattr(obj, "keys")] return joiner(all_keys) def collect_dict_values( objects: Iterable[Mapping | Any], keys: Iterable, fill_value: object = None ) -> list[list]: return [ [obj.get(key, fill_value) if is_dict_like(obj) else obj for obj in objects] for key in keys ] def _as_variables_or_variable(arg): try: return arg.variables except AttributeError: try: return arg.variable except AttributeError: return arg def _unpack_dict_tuples( result_vars: Mapping[Any, tuple[Variable, ...]], num_outputs: int ) -> tuple[dict[Hashable, Variable], ...]: out: tuple[dict[Hashable, Variable], ...] = tuple({} for _ in range(num_outputs)) for name, values in result_vars.items(): for value, results_dict in zip(values, out): results_dict[name] = value return out def apply_dict_of_variables_vfunc( func, *args, signature, join="inner", fill_value=None ): """Apply a variable level function over dicts of DataArray, DataArray, Variable and ndarray objects. """ args = [_as_variables_or_variable(arg) for arg in args] names = join_dict_keys(args, how=join) grouped_by_name = collect_dict_values(args, names, fill_value) result_vars = {} for name, variable_args in zip(names, grouped_by_name): result_vars[name] = func(*variable_args) if signature.num_outputs > 1: return _unpack_dict_tuples(result_vars, signature.num_outputs) else: return result_vars def _fast_dataset( variables: dict[Hashable, Variable], coord_variables: Mapping[Hashable, Variable], indexes: dict[Hashable, Index], ) -> Dataset: """Create a dataset as quickly as possible. Beware: the `variables` dict is modified INPLACE. """ from .dataset import Dataset variables.update(coord_variables) coord_names = set(coord_variables) return Dataset._construct_direct(variables, coord_names, indexes=indexes) def apply_dataset_vfunc( func, *args, signature, join="inner", dataset_join="exact", fill_value=_NO_FILL_VALUE, exclude_dims=frozenset(), keep_attrs="override", ): """Apply a variable level function over Dataset, dict of DataArray, DataArray, Variable and/or ndarray objects. """ from .dataset import Dataset if dataset_join not in _JOINS_WITHOUT_FILL_VALUES and fill_value is _NO_FILL_VALUE: raise TypeError( "to apply an operation to datasets with different " "data variables with apply_ufunc, you must supply the " "dataset_fill_value argument." ) objs = _all_of_type(args, Dataset) if len(args) > 1: args = deep_align( args, join=join, copy=False, exclude=exclude_dims, raise_on_invalid=False ) list_of_coords, list_of_indexes = build_output_coords_and_indexes( args, signature, exclude_dims, combine_attrs=keep_attrs ) args = [getattr(arg, "data_vars", arg) for arg in args] result_vars = apply_dict_of_variables_vfunc( func, *args, signature=signature, join=dataset_join, fill_value=fill_value ) if signature.num_outputs > 1: out = tuple( _fast_dataset(*args) for args in zip(result_vars, list_of_coords, list_of_indexes) ) else: (coord_vars,) = list_of_coords (indexes,) = list_of_indexes out = _fast_dataset(result_vars, coord_vars, indexes=indexes) attrs = merge_attrs([x.attrs for x in objs], combine_attrs=keep_attrs) if isinstance(out, tuple): for ds in out: ds.attrs = attrs else: out.attrs = attrs return out def _iter_over_selections(obj, dim, values): """Iterate over selections of an xarray object in the provided order.""" from .groupby import _dummy_copy dummy = None for value in values: try: obj_sel = obj.sel(**{dim: value}) except (KeyError, IndexError): if dummy is None: dummy = _dummy_copy(obj) obj_sel = dummy yield obj_sel def apply_groupby_func(func, *args): """Apply a dataset or datarray level function over GroupBy, Dataset, DataArray, Variable and/or ndarray objects. """ from .groupby import GroupBy, peek_at from .variable import Variable groupbys = [arg for arg in args if isinstance(arg, GroupBy)] assert groupbys, "must have at least one groupby to iterate over" first_groupby = groupbys[0] if any(not first_groupby._group.equals(gb._group) for gb in groupbys[1:]): raise ValueError( "apply_ufunc can only perform operations over " "multiple GroupBy objects at once if they are all " "grouped the same way" ) grouped_dim = first_groupby._group.name unique_values = first_groupby._unique_coord.values iterators = [] for arg in args: if isinstance(arg, GroupBy): iterator = (value for _, value in arg) elif hasattr(arg, "dims") and grouped_dim in arg.dims: if isinstance(arg, Variable): raise ValueError( "groupby operations cannot be performed with " "xarray.Variable objects that share a dimension with " "the grouped dimension" ) iterator = _iter_over_selections(arg, grouped_dim, unique_values) else: iterator = itertools.repeat(arg) iterators.append(iterator) applied = (func(*zipped_args) for zipped_args in zip(*iterators)) applied_example, applied = peek_at(applied) combine = first_groupby._combine if isinstance(applied_example, tuple): combined = tuple(combine(output) for output in zip(*applied)) else: combined = combine(applied) return combined def unified_dim_sizes( variables: Iterable[Variable], exclude_dims: AbstractSet = frozenset() ) -> dict[Hashable, int]: dim_sizes: dict[Hashable, int] = {} for var in variables: if len(set(var.dims)) < len(var.dims): raise ValueError( "broadcasting cannot handle duplicate " f"dimensions on a variable: {list(var.dims)}" ) for dim, size in zip(var.dims, var.shape): if dim not in exclude_dims: if dim not in dim_sizes: dim_sizes[dim] = size elif dim_sizes[dim] != size: raise ValueError( "operands cannot be broadcast together " "with mismatched lengths for dimension " f"{dim}: {dim_sizes[dim]} vs {size}" ) return dim_sizes SLICE_NONE = slice(None) def broadcast_compat_data( variable: Variable, broadcast_dims: tuple[Hashable, ...], core_dims: tuple[Hashable, ...], ) -> Any: data = variable.data old_dims = variable.dims new_dims = broadcast_dims + core_dims if new_dims == old_dims: # optimize for the typical case return data set_old_dims = set(old_dims) missing_core_dims = [d for d in core_dims if d not in set_old_dims] if missing_core_dims: raise ValueError( "operand to apply_ufunc has required core dimensions {}, but " "some of these dimensions are absent on an input variable: {}".format( list(core_dims), missing_core_dims ) ) set_new_dims = set(new_dims) unexpected_dims = [d for d in old_dims if d not in set_new_dims] if unexpected_dims: raise ValueError( "operand to apply_ufunc encountered unexpected " f"dimensions {unexpected_dims!r} on an input variable: these are core " "dimensions on other input or output variables" ) # for consistency with numpy, keep broadcast dimensions to the left old_broadcast_dims = tuple(d for d in broadcast_dims if d in set_old_dims) reordered_dims = old_broadcast_dims + core_dims if reordered_dims != old_dims: order = tuple(old_dims.index(d) for d in reordered_dims) data = duck_array_ops.transpose(data, order) if new_dims != reordered_dims: key_parts: list[slice | None] = [] for dim in new_dims: if dim in set_old_dims: key_parts.append(SLICE_NONE) elif key_parts: # no need to insert new axes at the beginning that are already # handled by broadcasting key_parts.append(np.newaxis) data = data[tuple(key_parts)] return data def _vectorize(func, signature, output_dtypes, exclude_dims): if signature.all_core_dims: func = np.vectorize( func, otypes=output_dtypes, signature=signature.to_gufunc_string(exclude_dims), ) else: func = np.vectorize(func, otypes=output_dtypes) return func def apply_variable_ufunc( func, *args, signature, exclude_dims=frozenset(), dask="forbidden", output_dtypes=None, vectorize=False, keep_attrs="override", dask_gufunc_kwargs=None, ): """Apply a ndarray level function over Variable and/or ndarray objects.""" from .variable import Variable, as_compatible_data dim_sizes = unified_dim_sizes( (a for a in args if hasattr(a, "dims")), exclude_dims=exclude_dims ) broadcast_dims = tuple( dim for dim in dim_sizes if dim not in signature.all_core_dims ) output_dims = [broadcast_dims + out for out in signature.output_core_dims] input_data = [ broadcast_compat_data(arg, broadcast_dims, core_dims) if isinstance(arg, Variable) else arg for arg, core_dims in zip(args, signature.input_core_dims) ] if any(is_duck_dask_array(array) for array in input_data): if dask == "forbidden": raise ValueError( "apply_ufunc encountered a dask array on an " "argument, but handling for dask arrays has not " "been enabled. Either set the ``dask`` argument " "or load your data into memory first with " "``.load()`` or ``.compute()``" ) elif dask == "parallelized": numpy_func = func if dask_gufunc_kwargs is None: dask_gufunc_kwargs = {} else: dask_gufunc_kwargs = dask_gufunc_kwargs.copy() allow_rechunk = dask_gufunc_kwargs.get("allow_rechunk", None) if allow_rechunk is None: for n, (data, core_dims) in enumerate( zip(input_data, signature.input_core_dims) ): if is_duck_dask_array(data): # core dimensions cannot span multiple chunks for axis, dim in enumerate(core_dims, start=-len(core_dims)): if len(data.chunks[axis]) != 1: raise ValueError( f"dimension {dim} on {n}th function argument to " "apply_ufunc with dask='parallelized' consists of " "multiple chunks, but is also a core dimension. To " "fix, either rechunk into a single dask array chunk along " f"this dimension, i.e., ``.chunk(dict({dim}=-1))``, or " "pass ``allow_rechunk=True`` in ``dask_gufunc_kwargs`` " "but beware that this may significantly increase memory usage." ) dask_gufunc_kwargs["allow_rechunk"] = True output_sizes = dask_gufunc_kwargs.pop("output_sizes", {}) if output_sizes: output_sizes_renamed = {} for key, value in output_sizes.items(): if key not in signature.all_output_core_dims: raise ValueError( f"dimension '{key}' in 'output_sizes' must correspond to output_core_dims" ) output_sizes_renamed[signature.dims_map[key]] = value dask_gufunc_kwargs["output_sizes"] = output_sizes_renamed for key in signature.all_output_core_dims: if key not in signature.all_input_core_dims and key not in output_sizes: raise ValueError( f"dimension '{key}' in 'output_core_dims' needs corresponding (dim, size) in 'output_sizes'" ) def func(*arrays): import dask.array as da res = da.apply_gufunc( numpy_func, signature.to_gufunc_string(exclude_dims), *arrays, vectorize=vectorize, output_dtypes=output_dtypes, **dask_gufunc_kwargs, ) return res elif dask == "allowed": pass else: raise ValueError( "unknown setting for dask array handling in " "apply_ufunc: {}".format(dask) ) else: if vectorize: func = _vectorize( func, signature, output_dtypes=output_dtypes, exclude_dims=exclude_dims ) result_data = func(*input_data) if signature.num_outputs == 1: result_data = (result_data,) elif ( not isinstance(result_data, tuple) or len(result_data) != signature.num_outputs ): raise ValueError( "applied function does not have the number of " "outputs specified in the ufunc signature. " "Result is not a tuple of {} elements: {!r}".format( signature.num_outputs, result_data ) ) objs = _all_of_type(args, Variable) attrs = merge_attrs( [obj.attrs for obj in objs], combine_attrs=keep_attrs, ) output = [] for dims, data in zip(output_dims, result_data): data = as_compatible_data(data) if data.ndim != len(dims): raise ValueError( "applied function returned data with unexpected " f"number of dimensions. Received {data.ndim} dimension(s) but " f"expected {len(dims)} dimensions with names: {dims!r}" ) var = Variable(dims, data, fastpath=True) for dim, new_size in var.sizes.items(): if dim in dim_sizes and new_size != dim_sizes[dim]: raise ValueError( "size of dimension {!r} on inputs was unexpectedly " "changed by applied function from {} to {}. Only " "dimensions specified in ``exclude_dims`` with " "xarray.apply_ufunc are allowed to change size.".format( dim, dim_sizes[dim], new_size ) ) var.attrs = attrs output.append(var) if signature.num_outputs == 1: return output[0] else: return tuple(output) def apply_array_ufunc(func, *args, dask="forbidden"): """Apply a ndarray level function over ndarray objects.""" if any(is_duck_dask_array(arg) for arg in args): if dask == "forbidden": raise ValueError( "apply_ufunc encountered a dask array on an " "argument, but handling for dask arrays has not " "been enabled. Either set the ``dask`` argument " "or load your data into memory first with " "``.load()`` or ``.compute()``" ) elif dask == "parallelized": raise ValueError( "cannot use dask='parallelized' for apply_ufunc " "unless at least one input is an xarray object" ) elif dask == "allowed": pass else: raise ValueError(f"unknown setting for dask array handling: {dask}") return func(*args) def apply_ufunc( func: Callable, *args: Any, input_core_dims: Sequence[Sequence] = None, output_core_dims: Sequence[Sequence] | None = ((),), exclude_dims: AbstractSet = frozenset(), vectorize: bool = False, join: str = "exact", dataset_join: str = "exact", dataset_fill_value: object = _NO_FILL_VALUE, keep_attrs: bool | str | None = None, kwargs: Mapping | None = None, dask: str = "forbidden", output_dtypes: Sequence | None = None, output_sizes: Mapping[Any, int] | None = None, meta: Any = None, dask_gufunc_kwargs: dict[str, Any] | None = None, ) -> Any: """Apply a vectorized function for unlabeled arrays on xarray objects. The function will be mapped over the data variable(s) of the input arguments using xarray's standard rules for labeled computation, including alignment, broadcasting, looping over GroupBy/Dataset variables, and merging of coordinates. Parameters ---------- func : callable Function to call like ``func(*args, **kwargs)`` on unlabeled arrays (``.data``) that returns an array or tuple of arrays. If multiple arguments with non-matching dimensions are supplied, this function is expected to vectorize (broadcast) over axes of positional arguments in the style of NumPy universal functions [1]_ (if this is not the case, set ``vectorize=True``). If this function returns multiple outputs, you must set ``output_core_dims`` as well. *args : Dataset, DataArray, DataArrayGroupBy, DatasetGroupBy, Variable, numpy.ndarray, dask.array.Array or scalar Mix of labeled and/or unlabeled arrays to which to apply the function. input_core_dims : sequence of sequence, optional List of the same length as ``args`` giving the list of core dimensions on each input argument that should not be broadcast. By default, we assume there are no core dimensions on any input arguments. For example, ``input_core_dims=[[], ['time']]`` indicates that all dimensions on the first argument and all dimensions other than 'time' on the second argument should be broadcast. Core dimensions are automatically moved to the last axes of input variables before applying ``func``, which facilitates using NumPy style generalized ufuncs [2]_. output_core_dims : list of tuple, optional List of the same length as the number of output arguments from ``func``, giving the list of core dimensions on each output that were not broadcast on the inputs. By default, we assume that ``func`` outputs exactly one array, with axes corresponding to each broadcast dimension. Core dimensions are assumed to appear as the last dimensions of each output in the provided order. exclude_dims : set, optional Core dimensions on the inputs to exclude from alignment and broadcasting entirely. Any input coordinates along these dimensions will be dropped. Each excluded dimension must also appear in ``input_core_dims`` for at least one argument. Only dimensions listed here are allowed to change size between input and output objects. vectorize : bool, optional If True, then assume ``func`` only takes arrays defined over core dimensions as input and vectorize it automatically with :py:func:`numpy.vectorize`. This option exists for convenience, but is almost always slower than supplying a pre-vectorized function. Using this option requires NumPy version 1.12 or newer. join : {"outer", "inner", "left", "right", "exact"}, default: "exact" Method for joining the indexes of the passed objects along each dimension, and the variables of Dataset objects with mismatched data variables: - 'outer': use the union of object indexes - 'inner': use the intersection of object indexes - 'left': use indexes from the first object with each dimension - 'right': use indexes from the last object with each dimension - 'exact': raise `ValueError` instead of aligning when indexes to be aligned are not equal dataset_join : {"outer", "inner", "left", "right", "exact"}, default: "exact" Method for joining variables of Dataset objects with mismatched data variables. - 'outer': take variables from both Dataset objects - 'inner': take only overlapped variables - 'left': take only variables from the first object - 'right': take only variables from the last object - 'exact': data variables on all Dataset objects must match exactly dataset_fill_value : optional Value used in place of missing variables on Dataset inputs when the datasets do not share the exact same ``data_vars``. Required if ``dataset_join not in {'inner', 'exact'}``, otherwise ignored. keep_attrs : bool, optional Whether to copy attributes from the first argument to the output. kwargs : dict, optional Optional keyword arguments passed directly on to call ``func``. dask : {"forbidden", "allowed", "parallelized"}, default: "forbidden" How to handle applying to objects containing lazy data in the form of dask arrays: - 'forbidden' (default): raise an error if a dask array is encountered. - 'allowed': pass dask arrays directly on to ``func``. Prefer this option if ``func`` natively supports dask arrays. - 'parallelized': automatically parallelize ``func`` if any of the inputs are a dask array by using :py:func:`dask.array.apply_gufunc`. Multiple output arguments are supported. Only use this option if ``func`` does not natively support dask arrays (e.g. converts them to numpy arrays). dask_gufunc_kwargs : dict, optional Optional keyword arguments passed to :py:func:`dask.array.apply_gufunc` if dask='parallelized'. Possible keywords are ``output_sizes``, ``allow_rechunk`` and ``meta``. output_dtypes : list of dtype, optional Optional list of output dtypes. Only used if ``dask='parallelized'`` or ``vectorize=True``. output_sizes : dict, optional Optional mapping from dimension names to sizes for outputs. Only used if dask='parallelized' and new dimensions (not found on inputs) appear on outputs. ``output_sizes`` should be given in the ``dask_gufunc_kwargs`` parameter. It will be removed as direct parameter in a future version. meta : optional Size-0 object representing the type of array wrapped by dask array. Passed on to :py:func:`dask.array.apply_gufunc`. ``meta`` should be given in the ``dask_gufunc_kwargs`` parameter . It will be removed as direct parameter a future version. Returns ------- Single value or tuple of Dataset, DataArray, Variable, dask.array.Array or numpy.ndarray, the first type on that list to appear on an input. Notes ----- This function is designed for the more common case where ``func`` can work on numpy arrays. If ``func`` needs to manipulate a whole xarray object subset to each block it is possible to use :py:func:`xarray.map_blocks`. Note that due to the overhead :py:func:`xarray.map_blocks` is considerably slower than ``apply_ufunc``. Examples -------- Calculate the vector magnitude of two arguments: >>> def magnitude(a, b): ... func = lambda x, y: np.sqrt(x**2 + y**2) ... return xr.apply_ufunc(func, a, b) ... You can now apply ``magnitude()`` to :py:class:`DataArray` and :py:class:`Dataset` objects, with automatically preserved dimensions and coordinates, e.g., >>> array = xr.DataArray([1, 2, 3], coords=[("x", [0.1, 0.2, 0.3])]) >>> magnitude(array, -array) <xarray.DataArray (x: 3)> array([1.41421356, 2.82842712, 4.24264069]) Coordinates: * x (x) float64 0.1 0.2 0.3 Plain scalars, numpy arrays and a mix of these with xarray objects is also supported: >>> magnitude(3, 4) 5.0 >>> magnitude(3, np.array([0, 4])) array([3., 5.]) >>> magnitude(array, 0) <xarray.DataArray (x: 3)> array([1., 2., 3.]) Coordinates: * x (x) float64 0.1 0.2 0.3 Other examples of how you could use ``apply_ufunc`` to write functions to (very nearly) replicate existing xarray functionality: Compute the mean (``.mean``) over one dimension: >>> def mean(obj, dim): ... # note: apply always moves core dimensions to the end ... return apply_ufunc( ... np.mean, obj, input_core_dims=[[dim]], kwargs={"axis": -1} ... ) ... Inner product over a specific dimension (like :py:func:`dot`): >>> def _inner(x, y): ... result = np.matmul(x[..., np.newaxis, :], y[..., :, np.newaxis]) ... return result[..., 0, 0] ... >>> def inner_product(a, b, dim): ... return apply_ufunc(_inner, a, b, input_core_dims=[[dim], [dim]]) ... Stack objects along a new dimension (like :py:func:`concat`): >>> def stack(objects, dim, new_coord): ... # note: this version does not stack coordinates ... func = lambda *x: np.stack(x, axis=-1) ... result = apply_ufunc( ... func, ... *objects, ... output_core_dims=[[dim]], ... join="outer", ... dataset_fill_value=np.nan ... ) ... result[dim] = new_coord ... return result ... If your function is not vectorized but can be applied only to core dimensions, you can use ``vectorize=True`` to turn into a vectorized function. This wraps :py:func:`numpy.vectorize`, so the operation isn't terribly fast. Here we'll use it to calculate the distance between empirical samples from two probability distributions, using a scipy function that needs to be applied to vectors: >>> import scipy.stats >>> def earth_mover_distance(first_samples, second_samples, dim="ensemble"): ... return apply_ufunc( ... scipy.stats.wasserstein_distance, ... first_samples, ... second_samples, ... input_core_dims=[[dim], [dim]], ... vectorize=True, ... ) ... Most of NumPy's builtin functions already broadcast their inputs appropriately for use in ``apply_ufunc``. You may find helper functions such as :py:func:`numpy.broadcast_arrays` helpful in writing your function. ``apply_ufunc`` also works well with :py:func:`numba.vectorize` and :py:func:`numba.guvectorize`. See Also -------- numpy.broadcast_arrays numba.vectorize numba.guvectorize dask.array.apply_gufunc xarray.map_blocks :ref:`dask.automatic-parallelization` User guide describing :py:func:`apply_ufunc` and :py:func:`map_blocks`. References ---------- .. [1] https://numpy.org/doc/stable/reference/ufuncs.html .. [2] https://numpy.org/doc/stable/reference/c-api/generalized-ufuncs.html """ from .dataarray import DataArray from .groupby import GroupBy from .variable import Variable if input_core_dims is None: input_core_dims = ((),) * (len(args)) elif len(input_core_dims) != len(args): raise ValueError( f"input_core_dims must be None or a tuple with the length same to " f"the number of arguments. " f"Given {len(input_core_dims)} input_core_dims: {input_core_dims}, " f" but number of args is {len(args)}." ) if kwargs is None: kwargs = {} signature = _UFuncSignature(input_core_dims, output_core_dims) if exclude_dims: if not isinstance(exclude_dims, set): raise TypeError( f"Expected exclude_dims to be a 'set'. Received '{type(exclude_dims).__name__}' instead." ) if not exclude_dims <= signature.all_core_dims: raise ValueError( f"each dimension in `exclude_dims` must also be a " f"core dimension in the function signature. " f"Please make {(exclude_dims - signature.all_core_dims)} a core dimension" ) # handle dask_gufunc_kwargs if dask == "parallelized": if dask_gufunc_kwargs is None: dask_gufunc_kwargs = {} else: dask_gufunc_kwargs = dask_gufunc_kwargs.copy() # todo: remove warnings after deprecation cycle if meta is not None: warnings.warn( "``meta`` should be given in the ``dask_gufunc_kwargs`` parameter." " It will be removed as direct parameter in a future version.", FutureWarning, stacklevel=2, ) dask_gufunc_kwargs.setdefault("meta", meta) if output_sizes is not None: warnings.warn( "``output_sizes`` should be given in the ``dask_gufunc_kwargs`` " "parameter. It will be removed as direct parameter in a future " "version.", FutureWarning, stacklevel=2, ) dask_gufunc_kwargs.setdefault("output_sizes", output_sizes) if kwargs: func = functools.partial(func, **kwargs) if keep_attrs is None: keep_attrs = _get_keep_attrs(default=False) if isinstance(keep_attrs, bool): keep_attrs = "override" if keep_attrs else "drop" variables_vfunc = functools.partial( apply_variable_ufunc, func, signature=signature, exclude_dims=exclude_dims, keep_attrs=keep_attrs, dask=dask, vectorize=vectorize, output_dtypes=output_dtypes, dask_gufunc_kwargs=dask_gufunc_kwargs, ) # feed groupby-apply_ufunc through apply_groupby_func if any(isinstance(a, GroupBy) for a in args): this_apply = functools.partial( apply_ufunc, func, input_core_dims=input_core_dims, output_core_dims=output_core_dims, exclude_dims=exclude_dims, join=join, dataset_join=dataset_join, dataset_fill_value=dataset_fill_value, keep_attrs=keep_attrs, dask=dask, vectorize=vectorize, output_dtypes=output_dtypes, dask_gufunc_kwargs=dask_gufunc_kwargs, ) return apply_groupby_func(this_apply, *args) # feed datasets apply_variable_ufunc through apply_dataset_vfunc elif any(is_dict_like(a) for a in args): return apply_dataset_vfunc( variables_vfunc, *args, signature=signature, join=join, exclude_dims=exclude_dims, dataset_join=dataset_join, fill_value=dataset_fill_value, keep_attrs=keep_attrs, ) # feed DataArray apply_variable_ufunc through apply_dataarray_vfunc elif any(isinstance(a, DataArray) for a in args): return apply_dataarray_vfunc( variables_vfunc, *args, signature=signature, join=join, exclude_dims=exclude_dims, keep_attrs=keep_attrs, ) # feed Variables directly through apply_variable_ufunc elif any(isinstance(a, Variable) for a in args): return variables_vfunc(*args) else: # feed anything else through apply_array_ufunc return apply_array_ufunc(func, *args, dask=dask) def cov(da_a, da_b, dim=None, ddof=1): """ Compute covariance between two DataArray objects along a shared dimension. Parameters ---------- da_a : DataArray Array to compute. da_b : DataArray Array to compute. dim : str, optional The dimension along which the covariance will be computed ddof : int, optional If ddof=1, covariance is normalized by N-1, giving an unbiased estimate, else normalization is by N. Returns ------- covariance : DataArray See Also -------- pandas.Series.cov : corresponding pandas function xarray.corr : respective function to calculate correlation Examples -------- >>> from xarray import DataArray >>> da_a = DataArray( ... np.array([[1, 2, 3], [0.1, 0.2, 0.3], [3.2, 0.6, 1.8]]), ... dims=("space", "time"), ... coords=[ ... ("space", ["IA", "IL", "IN"]), ... ("time", pd.date_range("2000-01-01", freq="1D", periods=3)), ... ], ... ) >>> da_a <xarray.DataArray (space: 3, time: 3)> array([[1. , 2. , 3. ], [0.1, 0.2, 0.3], [3.2, 0.6, 1.8]]) Coordinates: * space (space) <U2 'IA' 'IL' 'IN' * time (time) datetime64[ns] 2000-01-01 2000-01-02 2000-01-03 >>> da_b = DataArray( ... np.array([[0.2, 0.4, 0.6], [15, 10, 5], [3.2, 0.6, 1.8]]), ... dims=("space", "time"), ... coords=[ ... ("space", ["IA", "IL", "IN"]), ... ("time", pd.date_range("2000-01-01", freq="1D", periods=3)), ... ], ... ) >>> da_b <xarray.DataArray (space: 3, time: 3)> array([[ 0.2, 0.4, 0.6], [15. , 10. , 5. ], [ 3.2, 0.6, 1.8]]) Coordinates: * space (space) <U2 'IA' 'IL' 'IN' * time (time) datetime64[ns] 2000-01-01 2000-01-02 2000-01-03 >>> xr.cov(da_a, da_b) <xarray.DataArray ()> array(-3.53055556) >>> xr.cov(da_a, da_b, dim="time") <xarray.DataArray (space: 3)> array([ 0.2 , -0.5 , 1.69333333]) Coordinates: * space (space) <U2 'IA' 'IL' 'IN' """ from .dataarray import DataArray if any(not isinstance(arr, DataArray) for arr in [da_a, da_b]): raise TypeError( "Only xr.DataArray is supported." "Given {}.".format([type(arr) for arr in [da_a, da_b]]) ) return _cov_corr(da_a, da_b, dim=dim, ddof=ddof, method="cov") def corr(da_a, da_b, dim=None): """ Compute the Pearson correlation coefficient between two DataArray objects along a shared dimension. Parameters ---------- da_a : DataArray Array to compute. da_b : DataArray Array to compute. dim : str, optional The dimension along which the correlation will be computed Returns ------- correlation: DataArray See Also -------- pandas.Series.corr : corresponding pandas function xarray.cov : underlying covariance function Examples -------- >>> from xarray import DataArray >>> da_a = DataArray( ... np.array([[1, 2, 3], [0.1, 0.2, 0.3], [3.2, 0.6, 1.8]]), ... dims=("space", "time"), ... coords=[ ... ("space", ["IA", "IL", "IN"]), ... ("time", pd.date_range("2000-01-01", freq="1D", periods=3)), ... ], ... ) >>> da_a <xarray.DataArray (space: 3, time: 3)> array([[1. , 2. , 3. ], [0.1, 0.2, 0.3], [3.2, 0.6, 1.8]]) Coordinates: * space (space) <U2 'IA' 'IL' 'IN' * time (time) datetime64[ns] 2000-01-01 2000-01-02 2000-01-03 >>> da_b = DataArray( ... np.array([[0.2, 0.4, 0.6], [15, 10, 5], [3.2, 0.6, 1.8]]), ... dims=("space", "time"), ... coords=[ ... ("space", ["IA", "IL", "IN"]), ... ("time", pd.date_range("2000-01-01", freq="1D", periods=3)), ... ], ... ) >>> da_b <xarray.DataArray (space: 3, time: 3)> array([[ 0.2, 0.4, 0.6], [15. , 10. , 5. ], [ 3.2, 0.6, 1.8]]) Coordinates: * space (space) <U2 'IA' 'IL' 'IN' * time (time) datetime64[ns] 2000-01-01 2000-01-02 2000-01-03 >>> xr.corr(da_a, da_b) <xarray.DataArray ()> array(-0.57087777) >>> xr.corr(da_a, da_b, dim="time") <xarray.DataArray (space: 3)> array([ 1., -1., 1.]) Coordinates: * space (space) <U2 'IA' 'IL' 'IN' """ from .dataarray import DataArray if any(not isinstance(arr, DataArray) for arr in [da_a, da_b]): raise TypeError( "Only xr.DataArray is supported." "Given {}.".format([type(arr) for arr in [da_a, da_b]]) ) return _cov_corr(da_a, da_b, dim=dim, method="corr") def _cov_corr(da_a, da_b, dim=None, ddof=0, method=None): """ Internal method for xr.cov() and xr.corr() so only have to sanitize the input arrays once and we don't repeat code. """ # 1. Broadcast the two arrays da_a, da_b = align(da_a, da_b, join="inner", copy=False) # 2. Ignore the nans valid_values = da_a.notnull() & da_b.notnull() da_a = da_a.where(valid_values) da_b = da_b.where(valid_values) valid_count = valid_values.sum(dim) - ddof # 3. Detrend along the given dim demeaned_da_a = da_a - da_a.mean(dim=dim) demeaned_da_b = da_b - da_b.mean(dim=dim) # 4. Compute covariance along the given dim # N.B. `skipna=False` is required or there is a bug when computing # auto-covariance. E.g. Try xr.cov(da,da) for # da = xr.DataArray([[1, 2], [1, np.nan]], dims=["x", "time"]) cov = (demeaned_da_a * demeaned_da_b).sum(dim=dim, skipna=True, min_count=1) / ( valid_count ) if method == "cov": return cov else: # compute std + corr da_a_std = da_a.std(dim=dim) da_b_std = da_b.std(dim=dim) corr = cov / (da_a_std * da_b_std) return corr def cross( a: DataArray | Variable, b: DataArray | Variable, *, dim: Hashable ) -> DataArray | Variable: """ Compute the cross product of two (arrays of) vectors. The cross product of `a` and `b` in :math:`R^3` is a vector perpendicular to both `a` and `b`. The vectors in `a` and `b` are defined by the values along the dimension `dim` and can have sizes 1, 2 or 3. Where the size of either `a` or `b` is 1 or 2, the remaining components of the input vector is assumed to be zero and the cross product calculated accordingly. In cases where both input vectors have dimension 2, the z-component of the cross product is returned. Parameters ---------- a, b : DataArray or Variable Components of the first and second vector(s). dim : hashable The dimension along which the cross product will be computed. Must be available in both vectors. Examples -------- Vector cross-product with 3 dimensions: >>> a = xr.DataArray([1, 2, 3]) >>> b = xr.DataArray([4, 5, 6]) >>> xr.cross(a, b, dim="dim_0") <xarray.DataArray (dim_0: 3)> array([-3, 6, -3]) Dimensions without coordinates: dim_0 Vector cross-product with 2 dimensions, returns in the perpendicular direction: >>> a = xr.DataArray([1, 2]) >>> b = xr.DataArray([4, 5]) >>> xr.cross(a, b, dim="dim_0") <xarray.DataArray ()> array(-3) Vector cross-product with 3 dimensions but zeros at the last axis yields the same results as with 2 dimensions: >>> a = xr.DataArray([1, 2, 0]) >>> b = xr.DataArray([4, 5, 0]) >>> xr.cross(a, b, dim="dim_0") <xarray.DataArray (dim_0: 3)> array([ 0, 0, -3]) Dimensions without coordinates: dim_0 One vector with dimension 2: >>> a = xr.DataArray( ... [1, 2], ... dims=["cartesian"], ... coords=dict(cartesian=(["cartesian"], ["x", "y"])), ... ) >>> b = xr.DataArray( ... [4, 5, 6], ... dims=["cartesian"], ... coords=dict(cartesian=(["cartesian"], ["x", "y", "z"])), ... ) >>> xr.cross(a, b, dim="cartesian") <xarray.DataArray (cartesian: 3)> array([12, -6, -3]) Coordinates: * cartesian (cartesian) <U1 'x' 'y' 'z' One vector with dimension 2 but coords in other positions: >>> a = xr.DataArray( ... [1, 2], ... dims=["cartesian"], ... coords=dict(cartesian=(["cartesian"], ["x", "z"])), ... ) >>> b = xr.DataArray( ... [4, 5, 6], ... dims=["cartesian"], ... coords=dict(cartesian=(["cartesian"], ["x", "y", "z"])), ... ) >>> xr.cross(a, b, dim="cartesian") <xarray.DataArray (cartesian: 3)> array([-10, 2, 5]) Coordinates: * cartesian (cartesian) <U1 'x' 'y' 'z' Multiple vector cross-products. Note that the direction of the cross product vector is defined by the right-hand rule: >>> a = xr.DataArray( ... [[1, 2, 3], [4, 5, 6]], ... dims=("time", "cartesian"), ... coords=dict( ... time=(["time"], [0, 1]), ... cartesian=(["cartesian"], ["x", "y", "z"]), ... ), ... ) >>> b = xr.DataArray( ... [[4, 5, 6], [1, 2, 3]], ... dims=("time", "cartesian"), ... coords=dict( ... time=(["time"], [0, 1]), ... cartesian=(["cartesian"], ["x", "y", "z"]), ... ), ... ) >>> xr.cross(a, b, dim="cartesian") <xarray.DataArray (time: 2, cartesian: 3)> array([[-3, 6, -3], [ 3, -6, 3]]) Coordinates: * time (time) int64 0 1 * cartesian (cartesian) <U1 'x' 'y' 'z' Cross can be called on Datasets by converting to DataArrays and later back to a Dataset: >>> ds_a = xr.Dataset(dict(x=("dim_0", [1]), y=("dim_0", [2]), z=("dim_0", [3]))) >>> ds_b = xr.Dataset(dict(x=("dim_0", [4]), y=("dim_0", [5]), z=("dim_0", [6]))) >>> c = xr.cross( ... ds_a.to_array("cartesian"), ds_b.to_array("cartesian"), dim="cartesian" ... ) >>> c.to_dataset(dim="cartesian") <xarray.Dataset> Dimensions: (dim_0: 1) Dimensions without coordinates: dim_0 Data variables: x (dim_0) int64 -3 y (dim_0) int64 6 z (dim_0) int64 -3 See Also -------- numpy.cross : Corresponding numpy function """ if dim not in a.dims: raise ValueError(f"Dimension {dim!r} not on a") elif dim not in b.dims: raise ValueError(f"Dimension {dim!r} not on b") if not 1 <= a.sizes[dim] <= 3: raise ValueError( f"The size of {dim!r} on a must be 1, 2, or 3 to be " f"compatible with a cross product but is {a.sizes[dim]}" ) elif not 1 <= b.sizes[dim] <= 3: raise ValueError( f"The size of {dim!r} on b must be 1, 2, or 3 to be " f"compatible with a cross product but is {b.sizes[dim]}" ) all_dims = list(dict.fromkeys(a.dims + b.dims)) if a.sizes[dim] != b.sizes[dim]: # Arrays have different sizes. Append zeros where the smaller # array is missing a value, zeros will not affect np.cross: if ( not isinstance(a, Variable) # Only used to make mypy happy. and dim in getattr(a, "coords", {}) and not isinstance(b, Variable) # Only used to make mypy happy. and dim in getattr(b, "coords", {}) ): # If the arrays have coords we know which indexes to fill # with zeros: a, b = align( a, b, fill_value=0, join="outer", exclude=set(all_dims) - {dim}, ) elif min(a.sizes[dim], b.sizes[dim]) == 2: # If the array doesn't have coords we can only infer # that it has composite values if the size is at least 2. # Once padded, rechunk the padded array because apply_ufunc # requires core dimensions not to be chunked: if a.sizes[dim] < b.sizes[dim]: a = a.pad({dim: (0, 1)}, constant_values=0) # TODO: Should pad or apply_ufunc handle correct chunking? a = a.chunk({dim: -1}) if is_duck_dask_array(a.data) else a else: b = b.pad({dim: (0, 1)}, constant_values=0) # TODO: Should pad or apply_ufunc handle correct chunking? b = b.chunk({dim: -1}) if is_duck_dask_array(b.data) else b else: raise ValueError( f"{dim!r} on {'a' if a.sizes[dim] == 1 else 'b'} is incompatible:" " dimensions without coordinates must have have a length of 2 or 3" ) c = apply_ufunc( np.cross, a, b, input_core_dims=[[dim], [dim]], output_core_dims=[[dim] if a.sizes[dim] == 3 else []], dask="parallelized", output_dtypes=[np.result_type(a, b)], ) c = c.transpose(*all_dims, missing_dims="ignore") return c def dot(*arrays, dims=None, **kwargs): """Generalized dot product for xarray objects. Like np.einsum, but provides a simpler interface based on array dimensions. Parameters ---------- *arrays : DataArray or Variable Arrays to compute. dims : ..., str or tuple of str, optional Which dimensions to sum over. Ellipsis ('...') sums over all dimensions. If not specified, then all the common dimensions are summed over. **kwargs : dict Additional keyword arguments passed to numpy.einsum or dask.array.einsum Returns ------- DataArray Examples -------- >>> da_a = xr.DataArray(np.arange(3 * 2).reshape(3, 2), dims=["a", "b"]) >>> da_b = xr.DataArray(np.arange(3 * 2 * 2).reshape(3, 2, 2), dims=["a", "b", "c"]) >>> da_c = xr.DataArray(np.arange(2 * 3).reshape(2, 3), dims=["c", "d"]) >>> da_a <xarray.DataArray (a: 3, b: 2)> array([[0, 1], [2, 3], [4, 5]]) Dimensions without coordinates: a, b >>> da_b <xarray.DataArray (a: 3, b: 2, c: 2)> array([[[ 0, 1], [ 2, 3]], <BLANKLINE> [[ 4, 5], [ 6, 7]], <BLANKLINE> [[ 8, 9], [10, 11]]]) Dimensions without coordinates: a, b, c >>> da_c <xarray.DataArray (c: 2, d: 3)> array([[0, 1, 2], [3, 4, 5]]) Dimensions without coordinates: c, d >>> xr.dot(da_a, da_b, dims=["a", "b"]) <xarray.DataArray (c: 2)> array([110, 125]) Dimensions without coordinates: c >>> xr.dot(da_a, da_b, dims=["a"]) <xarray.DataArray (b: 2, c: 2)> array([[40, 46], [70, 79]]) Dimensions without coordinates: b, c >>> xr.dot(da_a, da_b, da_c, dims=["b", "c"]) <xarray.DataArray (a: 3, d: 3)> array([[ 9, 14, 19], [ 93, 150, 207], [273, 446, 619]]) Dimensions without coordinates: a, d >>> xr.dot(da_a, da_b) <xarray.DataArray (c: 2)> array([110, 125]) Dimensions without coordinates: c >>> xr.dot(da_a, da_b, dims=...) <xarray.DataArray ()> array(235) """ from .dataarray import DataArray from .variable import Variable if any(not isinstance(arr, (Variable, DataArray)) for arr in arrays): raise TypeError( "Only xr.DataArray and xr.Variable are supported." "Given {}.".format([type(arr) for arr in arrays]) ) if len(arrays) == 0: raise TypeError("At least one array should be given.") if isinstance(dims, str): dims = (dims,) common_dims = set.intersection(*[set(arr.dims) for arr in arrays]) all_dims = [] for arr in arrays: all_dims += [d for d in arr.dims if d not in all_dims] einsum_axes = "abcdefghijklmnopqrstuvwxyz" dim_map = {d: einsum_axes[i] for i, d in enumerate(all_dims)} if dims is ...: dims = all_dims elif dims is None: # find dimensions that occur more than one times dim_counts = Counter() for arr in arrays: dim_counts.update(arr.dims) dims = tuple(d for d, c in dim_counts.items() if c > 1) dims = tuple(dims) # make dims a tuple # dimensions to be parallelized broadcast_dims = tuple(d for d in all_dims if d in common_dims and d not in dims) input_core_dims = [ [d for d in arr.dims if d not in broadcast_dims] for arr in arrays ] output_core_dims = [tuple(d for d in all_dims if d not in dims + broadcast_dims)] # construct einsum subscripts, such as '...abc,...ab->...c' # Note: input_core_dims are always moved to the last position subscripts_list = [ "..." + "".join(dim_map[d] for d in ds) for ds in input_core_dims ] subscripts = ",".join(subscripts_list) subscripts += "->..." + "".join(dim_map[d] for d in output_core_dims[0]) join = OPTIONS["arithmetic_join"] # using "inner" emulates `(a * b).sum()` for all joins (except "exact") if join != "exact": join = "inner" # subscripts should be passed to np.einsum as arg, not as kwargs. We need # to construct a partial function for apply_ufunc to work. func = functools.partial(duck_array_ops.einsum, subscripts, **kwargs) result = apply_ufunc( func, *arrays, input_core_dims=input_core_dims, output_core_dims=output_core_dims, join=join, dask="allowed", ) return result.transpose(*all_dims, missing_dims="ignore") def where(cond, x, y, keep_attrs=None): """Return elements from `x` or `y` depending on `cond`. Performs xarray-like broadcasting across input arguments. All dimension coordinates on `x` and `y` must be aligned with each other and with `cond`. Parameters ---------- cond : scalar, array, Variable, DataArray or Dataset When True, return values from `x`, otherwise returns values from `y`. x : scalar, array, Variable, DataArray or Dataset values to choose from where `cond` is True y : scalar, array, Variable, DataArray or Dataset values to choose from where `cond` is False keep_attrs : bool or str or callable, optional How to treat attrs. If True, keep the attrs of `x`. Returns ------- Dataset, DataArray, Variable or array In priority order: Dataset, DataArray, Variable or array, whichever type appears as an input argument. Examples -------- >>> x = xr.DataArray( ... 0.1 * np.arange(10), ... dims=["lat"], ... coords={"lat": np.arange(10)}, ... name="sst", ... ) >>> x <xarray.DataArray 'sst' (lat: 10)> array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]) Coordinates: * lat (lat) int64 0 1 2 3 4 5 6 7 8 9 >>> xr.where(x < 0.5, x, x * 100) <xarray.DataArray 'sst' (lat: 10)> array([ 0. , 0.1, 0.2, 0.3, 0.4, 50. , 60. , 70. , 80. , 90. ]) Coordinates: * lat (lat) int64 0 1 2 3 4 5 6 7 8 9 >>> y = xr.DataArray( ... 0.1 * np.arange(9).reshape(3, 3), ... dims=["lat", "lon"], ... coords={"lat": np.arange(3), "lon": 10 + np.arange(3)}, ... name="sst", ... ) >>> y <xarray.DataArray 'sst' (lat: 3, lon: 3)> array([[0. , 0.1, 0.2], [0.3, 0.4, 0.5], [0.6, 0.7, 0.8]]) Coordinates: * lat (lat) int64 0 1 2 * lon (lon) int64 10 11 12 >>> xr.where(y.lat < 1, y, -1) <xarray.DataArray (lat: 3, lon: 3)> array([[ 0. , 0.1, 0.2], [-1. , -1. , -1. ], [-1. , -1. , -1. ]]) Coordinates: * lat (lat) int64 0 1 2 * lon (lon) int64 10 11 12 >>> cond = xr.DataArray([True, False], dims=["x"]) >>> x = xr.DataArray([1, 2], dims=["y"]) >>> xr.where(cond, x, 0) <xarray.DataArray (x: 2, y: 2)> array([[1, 2], [0, 0]]) Dimensions without coordinates: x, y See Also -------- numpy.where : corresponding numpy function Dataset.where, DataArray.where : equivalent methods """ if keep_attrs is None: keep_attrs = _get_keep_attrs(default=False) if keep_attrs is True: # keep the attributes of x, the second parameter, by default to # be consistent with the `where` method of `DataArray` and `Dataset` keep_attrs = lambda attrs, context: getattr(x, "attrs", {}) # alignment for three arguments is complicated, so don't support it yet return apply_ufunc( duck_array_ops.where, cond, x, y, join="exact", dataset_join="exact", dask="allowed", keep_attrs=keep_attrs, ) @overload def polyval(coord: DataArray, coeffs: DataArray, degree_dim: Hashable) -> DataArray: ... @overload def polyval(coord: T_Xarray, coeffs: Dataset, degree_dim: Hashable) -> Dataset: ... @overload def polyval(coord: Dataset, coeffs: T_Xarray, degree_dim: Hashable) -> Dataset: ... def polyval( coord: T_Xarray, coeffs: T_Xarray, degree_dim: Hashable = "degree" ) -> T_Xarray: """Evaluate a polynomial at specific values Parameters ---------- coord : DataArray or Dataset Values at which to evaluate the polynomial. coeffs : DataArray or Dataset Coefficients of the polynomial. degree_dim : Hashable, default: "degree" Name of the polynomial degree dimension in `coeffs`. Returns ------- DataArray or Dataset Evaluated polynomial. See Also -------- xarray.DataArray.polyfit numpy.polynomial.polynomial.polyval """ if degree_dim not in coeffs._indexes: raise ValueError( f"Dimension `{degree_dim}` should be a coordinate variable with labels." ) if not np.issubdtype(coeffs[degree_dim].dtype, int): raise ValueError( f"Dimension `{degree_dim}` should be of integer dtype. Received {coeffs[degree_dim].dtype} instead." ) max_deg = coeffs[degree_dim].max().item() coeffs = coeffs.reindex( {degree_dim: np.arange(max_deg + 1)}, fill_value=0, copy=False ) coord = _ensure_numeric(coord) # using Horner's method # https://en.wikipedia.org/wiki/Horner%27s_method res = coeffs.isel({degree_dim: max_deg}, drop=True) + zeros_like(coord) for deg in range(max_deg - 1, -1, -1): res *= coord res += coeffs.isel({degree_dim: deg}, drop=True) return res def _ensure_numeric(data: T_Xarray) -> T_Xarray: """Converts all datetime64 variables to float64 Parameters ---------- data : DataArray or Dataset Variables with possible datetime dtypes. Returns ------- DataArray or Dataset Variables with datetime64 dtypes converted to float64. """ from .dataset import Dataset def to_floatable(x: DataArray) -> DataArray: if x.dtype.kind in "mM": return x.copy( data=datetime_to_numeric( x.data, offset=np.datetime64("1970-01-01"), datetime_unit="ns", ), ) return x if isinstance(data, Dataset): return data.map(to_floatable) else: return to_floatable(data) def _calc_idxminmax( *, array, func: Callable, dim: Hashable = None, skipna: bool = None, fill_value: Any = dtypes.NA, keep_attrs: bool = None, ): """Apply common operations for idxmin and idxmax.""" # This function doesn't make sense for scalars so don't try if not array.ndim: raise ValueError("This function does not apply for scalars") if dim is not None: pass # Use the dim if available elif array.ndim == 1: # it is okay to guess the dim if there is only 1 dim = array.dims[0] else: # The dim is not specified and ambiguous. Don't guess. raise ValueError("Must supply 'dim' argument for multidimensional arrays") if dim not in array.dims: raise KeyError(f'Dimension "{dim}" not in dimension') if dim not in array.coords: raise KeyError(f'Dimension "{dim}" does not have coordinates') # These are dtypes with NaN values argmin and argmax can handle na_dtypes = "cfO" if skipna or (skipna is None and array.dtype.kind in na_dtypes): # Need to skip NaN values since argmin and argmax can't handle them allna = array.isnull().all(dim) array = array.where(~allna, 0) # This will run argmin or argmax. indx = func(array, dim=dim, axis=None, keep_attrs=keep_attrs, skipna=skipna) # Handle dask arrays. if is_duck_dask_array(array.data): import dask.array chunks = dict(zip(array.dims, array.chunks)) dask_coord = dask.array.from_array(array[dim].data, chunks=chunks[dim]) res = indx.copy(data=dask_coord[indx.data.ravel()].reshape(indx.shape)) # we need to attach back the dim name res.name = dim else: res = array[dim][(indx,)] # The dim is gone but we need to remove the corresponding coordinate. del res.coords[dim] if skipna or (skipna is None and array.dtype.kind in na_dtypes): # Put the NaN values back in after removing them res = res.where(~allna, fill_value) # Copy attributes from argmin/argmax, if any res.attrs = indx.attrs return res def unify_chunks(*objects: T_Xarray) -> tuple[T_Xarray, ...]: """ Given any number of Dataset and/or DataArray objects, returns new objects with unified chunk size along all chunked dimensions. Returns ------- unified (DataArray or Dataset) – Tuple of objects with the same type as *objects with consistent chunk sizes for all dask-array variables See Also -------- dask.array.core.unify_chunks """ from .dataarray import DataArray # Convert all objects to datasets datasets = [ obj._to_temp_dataset() if isinstance(obj, DataArray) else obj.copy() for obj in objects ] # Get arguments to pass into dask.array.core.unify_chunks unify_chunks_args = [] sizes: dict[Hashable, int] = {} for ds in datasets: for v in ds._variables.values(): if v.chunks is not None: # Check that sizes match across different datasets for dim, size in v.sizes.items(): try: if sizes[dim] != size: raise ValueError( f"Dimension {dim!r} size mismatch: {sizes[dim]} != {size}" ) except KeyError: sizes[dim] = size unify_chunks_args += [v._data, v._dims] # No dask arrays: Return inputs if not unify_chunks_args: return objects # Run dask.array.core.unify_chunks from dask.array.core import unify_chunks _, dask_data = unify_chunks(*unify_chunks_args) dask_data_iter = iter(dask_data) out = [] for obj, ds in zip(objects, datasets): for k, v in ds._variables.items(): if v.chunks is not None: ds._variables[k] = v.copy(data=next(dask_data_iter)) out.append(obj._from_temp_dataset(ds) if isinstance(obj, DataArray) else ds) return tuple(out)
py
1a32ce48df83198856eb71892f2de080e9c01dcb
import datetime import json import logging import os import re import shutil import cherrypy import core from core import plugins, snatcher from core.library import Metadata, Manage from core.downloaders import PutIO logging = logging.getLogger(__name__) class Postprocessing(object): def __init__(self): shutil.copystat = self.null def null(*args, **kwargs): return @cherrypy.expose def putio_process(self, *args, **transfer_data): ''' Method to handle postprocessing callbacks from Put.io Gets called from Put.IO when download completes via POST request including download metadata as transfer_data kwargs. Sample kwargs: { "apikey": "APIKEY", "percent_done": "100", "peers_getting_from_us": "0", "completion_percent": "0", "seconds_seeding": "0", "current_ratio": "0.00", "created_torrent": "False", "size": "507637", "up_speed": "0", "callback_url": "http://MYDDNS/watcher/postprocessing/putio_process?apikey=APIKEY", "source": "<full magnet uri including trackers>", "peers_connected": "0", "down_speed": "0", "is_private": "False", "id": "45948956", # Download ID "simulated": "True", "type": "TORRENT", "save_parent_id": "536510251", "file_id": "536514172", # Put.io file ID # "download_id": "21596709", "torrent_link": "https://api.put.io/v2/transfers/<transferid>/torrent", "finished_at": "2018-04-09 04:13:58", "status": "COMPLETED", "downloaded": "0", "extract": "False", "name": "<download name>", "status_message": "Completed", "created_at": "2018-04-09 04:13:57", "uploaded": "0", "peers_sending_to_us": "0" } ''' logging.info('########################################') logging.info('PUT.IO Post-processing request received.') logging.info('########################################') conf = core.CONFIG['Downloader']['Torrent']['PutIO'] data = {'downloadid': str(transfer_data['id'])} if transfer_data['source'].startswith('magnet'): data['guid'] = transfer_data['source'].split('btih:')[1].split('&')[0] else: data['guid'] = None data.update(self.get_movie_info(data)) if conf['downloadwhencomplete']: logging.info('Downloading Put.IO files and processing locally.') download = PutIO.download(transfer_data['file_id']) if not download['response']: logging.error('PutIO processing failed.') return data['path'] = download['path'] data['original_file'] = self.get_movie_file(data['path']) data.update(self.complete(data)) if data['status'] == 'finished' and conf['deleteafterdownload']: data['tasks']['delete_putio'] = PutIO.delete(transfer_data['file_id']) else: logging.info('Marking guid as Finished.') guid_result = {} if data['guid']: if Manage.searchresults(data['guid'], 'Finished'): guid_result['update_SEARCHRESULTS'] = True else: guid_result['update_SEARCHRESULTS'] = False if Manage.markedresults(data['guid'], 'Finished', imdbid=data['imdbid']): guid_result['update_MARKEDRESULTS'] = True else: guid_result['update_MARKEDRESULTS'] = False # create result entry for guid data['tasks'][data['guid']] = guid_result # update MOVIES table if data.get('imdbid'): db_update = {'finished_file': 'https://app.put.io/files/{}'.format(transfer_data['file_id']), 'status': 'finished'} core.sql.update_multiple_values('MOVIES', db_update, 'imdbid', data['imdbid']) title = data['data'].get('title') year = data['data'].get('year') imdbid = data['data'].get('imdbid') resolution = data['data'].get('resolution') rated = data['data'].get('rated') original_file = data['data'].get('original_file') finished_file = data['data'].get('finished_file') downloadid = data['data'].get('downloadid') finished_date = data['data'].get('finished_date') quality = data['data'].get('quality') plugins.finished(title, year, imdbid, resolution, rated, original_file, finished_file, downloadid, finished_date, quality) logging.info('#################################') logging.info('Post-processing complete.') logging.info(data) logging.info('#################################') @cherrypy.expose @cherrypy.tools.json_out() def default(self, **data): ''' Handles post-processing requests. **data: keyword params send through POST request payload Required kw params: apikey (str): Watcher api key mode (str): post-processing mode (complete, failed) guid (str): download link of file. Can be url or magnet link. path (str): absolute path to downloaded files. Can be single file or dir Optional kw params: imdbid (str): imdb identification number (tt123456) downloadid (str): id number from downloader While processing many variables are produced to track files through renaming, moving, etc Perhaps the most important name is data['finished_file'], which is the current name/location of the file being processed. This is updated when renamed, moved, etc. Returns dict of post-processing tasks and data ''' logging.info('#################################') logging.info('Post-processing request received.') logging.info('#################################') # check for required keys for key in ('apikey', 'mode', 'guid', 'path'): if key not in data: logging.warning('Missing key {}'.format(key)) return {'response': False, 'error': 'missing key: {}'.format(key)} # check if api key is correct if data['apikey'] != core.CONFIG['Server']['apikey']: logging.warning('Incorrect API key.'.format(key)) return {'response': False, 'error': 'incorrect api key'} # check if mode is valid if data['mode'] not in ('failed', 'complete'): logging.warning('Invalid mode value: {}.'.format(data['mode'])) return {'response': False, 'error': 'invalid mode value'} logging.debug(data) # modify path based on remote mapping data['path'] = self.map_remote(data['path']) # get the actual movie file name data['original_file'] = self.get_movie_file(data['path'], check_size=False if data['mode'] == 'failed' else True) data['parent_dir'] = os.path.basename(os.path.dirname(data['original_file'])) if data.get('original_file') else '' if not data['original_file']: logging.warning('Movie file not found') data['mode'] = 'failed' # Get possible local data or get TMDB data to merge with self.params. logging.info('Gathering release information.') data.update(self.get_movie_info(data)) # At this point we have all of the information we're going to get. if data['mode'] == 'failed': logging.warning('Post-processing as Failed.') response = self.failed(data) elif data['mode'] == 'complete': logging.info('Post-processing as Complete.') if 'task' not in data: directory = core.CONFIG['Postprocessing']['Scanner']['directory'] if data['path'] == directory: core.sql.save_postprocessed_path(data['original_file']) else: core.sql.save_postprocessed_path(data['path']) response = self.complete(data) response['data'].pop('backlog', '') response['data'].pop('predb', '') response['data'].pop('source', '') title = response['data'].get('title') year = response['data'].get('year') imdbid = response['data'].get('imdbid') resolution = response['data'].get('resolution') rated = response['data'].get('rated') original_file = response['data'].get('original_file') finished_file = response['data'].get('finished_file') downloadid = response['data'].get('downloadid') finished_date = response['data'].get('finished_date') quality = response['data'].get('quality') plugins.finished(title, year, imdbid, resolution, rated, original_file, finished_file, downloadid, finished_date, quality) else: logging.warning('Invalid mode value: {}.'.format(data['mode'])) return {'response': False, 'error': 'invalid mode value'} logging.info('#################################') logging.info('Post-processing complete.') logging.info(json.dumps(response, indent=2, sort_keys=True)) logging.info('#################################') return response def get_movie_file(self, path, check_size=True): ''' Looks for the filename of the movie being processed path (str): url-passed path to download dir If path is a file, just returns path. If path is a directory, recursively finds the largest file in that dir. Returns str absolute path of movie file ''' logging.info('Finding movie file.') if os.path.isfile(path): logging.info('Post-processing file {}.'.format(path)) return path else: # Find the biggest file in the dir. Assume that this is the movie. biggestfile = None try: s = 0 for root, dirs, filenames in os.walk(path): for file in filenames: f = os.path.join(root, file) logging.debug('Found file {} in postprocessing dir.'.format(f)) size = os.path.getsize(f) if size > s: biggestfile = f s = size except Exception as e: # noqa logging.warning('Unable to find file to process.', exc_info=True) return None if biggestfile: minsize = core.CONFIG['Postprocessing']['Scanner']['minsize'] * 1048576 if check_size and os.path.getsize(os.path.join(path, biggestfile)) < minsize: logging.info('Largest file in directory {} is {}, but is smaller than the minimum size of {} bytes'.format(path, biggestfile, minsize)) return None logging.info('Largest file in directory {} is {}, processing this file.'.format(path, biggestfile.replace(path, ''))) else: logging.warning('Unable to determine largest file. Postprocessing may fail at a later point.') return biggestfile def get_movie_info(self, data): ''' Gets score, imdbid, and other information to help process data (dict): url-passed params with any additional info Uses guid to look up local details. If that fails, uses downloadid. If that fails, searches tmdb for imdbid If everything fails returns empty dict {} Returns dict of any gathered information ''' # try to get searchresult imdbid using guid first then downloadid result = None if data.get('guid'): logging.info('Searching local database for guid.') result = core.sql.get_single_search_result('guid', data['guid']) if result: logging.info('Local release info found by guid.') else: logging.info('Unable to find local release info by guid.') if not result: # not found from guid logging.info('Guid not found.') if data.get('downloadid'): logging.info('Searching local database for downloadid.') result = core.sql.get_single_search_result('downloadid', str(data['downloadid'])) if result: logging.info('Local release info found by downloadid.') if result['guid'] != data['guid']: logging.info('Guid for downloadid does not match local data. Adding guid2 to processing data.') data['guid2'] = result['guid'] else: logging.info('Unable to find local release info by downloadid.') if not result: # not found from guid or downloadid fname = os.path.basename(data.get('path')) if fname: logging.info('Searching local database for release name {}'.format(fname)) result = core.sql.get_single_search_result('title', fname) if result: logging.info('Found match for {} in releases.'.format(fname)) else: logging.info('Unable to find local release info by release name, trying fuzzy search.') result = core.sql.get_single_search_result('title', re.sub(r'[\[\]\(\)\-.:]', '_', fname), like=True) if result: logging.info('Found match for {} in releases.'.format(fname)) else: logging.info('Unable to find local release info by release name.') # if we found it, get local movie info if result: logging.info('Searching local database by imdbid.') local = core.sql.get_movie_details('imdbid', result['imdbid']) if local: logging.info('Movie data found locally by imdbid.') data.update(local) data['guid'] = result['guid'] data['finished_score'] = result['score'] data['resolution'] = result['resolution'] data['downloadid'] = result['downloadid'] else: logging.info('Unable to find movie in local db.') # Still no luck? Try to get the info from TMDB else: logging.info('Unable to find local data for release. Using only data found from file.') if data and data.get('original_file'): mdata = Metadata.from_file(data['original_file'], imdbid=data.get('imdbid')) mdata.update(data) if not mdata.get('quality'): data['quality'] = 'Default' return mdata elif data: return data else: return {} def failed(self, data): ''' Post-process a failed download data (dict): of gathered data from downloader and localdb/tmdb In SEARCHRESULTS marks guid as Bad In MARKEDRESULTS: Creates or updates entry for guid and optional guid2 with status=Bad Updates MOVIES status If Clean Up is enabled will delete path and contents. If Auto Grab is enabled will grab next best release. Returns dict of post-processing results ''' config = core.CONFIG['Postprocessing'] # dict we will json.dump and send back to downloader result = {} result['status'] = 'finished' result['data'] = data result['tasks'] = {} # mark guid in both results tables logging.info('Marking guid as Bad.') guid_result = {'url': data['guid']} if data['guid']: # guid can be empty string if Manage.searchresults(data['guid'], 'Bad'): guid_result['update_SEARCHRESULTS'] = True else: guid_result['update_SEARCHRESULTS'] = False if Manage.markedresults(data['guid'], 'Bad', imdbid=data['imdbid']): guid_result['update_MARKEDRESULTS'] = True else: guid_result['update_MARKEDRESULTS'] = False # create result entry for guid result['tasks']['guid'] = guid_result # if we have a guid2, do it all again if 'guid2' in data.keys(): logging.info('Marking guid2 as Bad.') guid2_result = {'url': data['guid2']} if Manage.searchresults(data['guid2'], 'Bad'): guid2_result['update SEARCHRESULTS'] = True else: guid2_result['update SEARCHRESULTS'] = False if Manage.markedresults(data['guid2'], 'Bad', imdbid=data['imdbid'], ): guid2_result['update_MARKEDRESULTS'] = True else: guid2_result['update_MARKEDRESULTS'] = False # create result entry for guid2 result['tasks']['guid2'] = guid2_result # set movie status if data['imdbid']: logging.info('Setting MOVIE status.') r = Manage.movie_status(data['imdbid']) else: logging.info('Imdbid not supplied or found, unable to update Movie status.') r = '' result['tasks']['update_movie_status'] = r # delete failed files if config['cleanupfailed']: result['tasks']['cleanup'] = {'enabled': True, 'path': data['path']} logging.info('Deleting leftover files from failed download.') if self.cleanup(data['path']) is True: result['tasks']['cleanup']['response'] = True else: result['tasks']['cleanup']['response'] = False else: result['tasks']['cleanup'] = {'enabled': False} # grab the next best release if core.CONFIG['Search']['autograb']: result['tasks']['autograb'] = {'enabled': True} logging.info('Grabbing the next best release.') if data.get('imdbid') and data.get('quality'): best_release = snatcher.get_best_release(data) if best_release and snatcher.download(best_release): r = True else: r = False else: r = False result['tasks']['autograb']['response'] = r else: result['tasks']['autograb'] = {'enabled': False} # all done! result['status'] = 'finished' return result def complete(self, data): ''' Post-processes a complete, successful download data (dict): all gathered file information and metadata data must include the following keys: path (str): path to downloaded item. Can be file or directory guid (str): nzb guid or torrent hash downloadid (str): download id from download client All params can be empty strings if unknown In SEARCHRESULTS marks guid as Finished In MARKEDRESULTS: Creates or updates entry for guid and optional guid with status=bad In MOVIES updates finished_score and finished_date Updates MOVIES status Checks to see if we found a movie file. If not, ends here. If Renamer is enabled, renames movie file according to core.CONFIG If Mover is enabled, moves file to location in core.CONFIG, then... If Clean Up enabled, deletes path after Mover finishes. Clean Up will not execute without Mover success. Returns dict of post-processing results ''' config = core.CONFIG['Postprocessing'] # dict we will json.dump and send back to downloader result = {} result['status'] = 'incomplete' result['data'] = data result['data']['finished_date'] = str(datetime.date.today()) result['tasks'] = {} # mark guid in both results tables logging.info('Marking guid as Finished.') data['guid'] = data['guid'].lower() guid_result = {} if data['guid'] and data.get('imdbid'): if Manage.searchresults(data['guid'], 'Finished', movie_info=data): guid_result['update_SEARCHRESULTS'] = True else: guid_result['update_SEARCHRESULTS'] = False if Manage.markedresults(data['guid'], 'Finished', imdbid=data['imdbid']): guid_result['update_MARKEDRESULTS'] = True else: guid_result['update_MARKEDRESULTS'] = False # create result entry for guid result['tasks'][data['guid']] = guid_result # if we have a guid2, do it all again if data.get('guid2') and data.get('imdbid'): logging.info('Marking guid2 as Finished.') guid2_result = {} if Manage.searchresults(data['guid2'], 'Finished', movie_info=data): guid2_result['update_SEARCHRESULTS'] = True else: guid2_result['update_SEARCHRESULTS'] = False if Manage.markedresults(data['guid2'], 'Finished', imdbid=data['imdbid']): guid2_result['update_MARKEDRESULTS'] = True else: guid2_result['update_MARKEDRESULTS'] = False # create result entry for guid2 result['tasks'][data['guid2']] = guid2_result # set movie status and add finished date/score if data.get('imdbid'): if core.sql.row_exists('MOVIES', imdbid=data['imdbid']): data['category'] = core.sql.get_movie_details('imdbid', data['imdbid'])['category'] else: logging.info('{} not found in library, adding now.'.format(data.get('title'))) data['status'] = 'Disabled' Manage.add_movie(data) logging.info('Setting MOVIE status.') r = Manage.movie_status(data['imdbid']) db_update = {'finished_date': result['data']['finished_date'], 'finished_score': result['data'].get('finished_score')} core.sql.update_multiple_values('MOVIES', db_update, 'imdbid', data['imdbid']) else: logging.info('Imdbid not supplied or found, unable to update Movie status.') r = '' result['tasks']['update_movie_status'] = r data.update(Metadata.convert_to_db(data)) # mover. sets ['finished_file'] if config['moverenabled']: result['tasks']['mover'] = {'enabled': True} response = self.mover(data) if not response: result['tasks']['mover']['response'] = False else: data['finished_file'] = response result['tasks']['mover']['response'] = True else: logging.info('Mover disabled.') data['finished_file'] = data.get('original_file') result['tasks']['mover'] = {'enabled': False} # renamer if config['renamerenabled']: result['tasks']['renamer'] = {'enabled': True} new_file_name = self.renamer(data) if new_file_name == '': result['tasks']['renamer']['response'] = False else: path = os.path.split(data['finished_file'])[0] data['finished_file'] = os.path.join(path, new_file_name) result['tasks']['renamer']['response'] = True else: logging.info('Renamer disabled.') result['tasks']['renamer'] = {'enabled': False} if data.get('imdbid') and data['imdbid'] is not 'N/A': core.sql.update('MOVIES', 'finished_file', result['data'].get('finished_file'), 'imdbid', data['imdbid']) # Delete leftover dir. Skip if file links are enabled or if mover disabled/failed if config['cleanupenabled']: result['tasks']['cleanup'] = {'enabled': True} if config['movermethod'] in ('copy', 'hardlink', 'symboliclink'): logging.info('File copy or linking enabled -- skipping Cleanup.') result['tasks']['cleanup']['response'] = None return result elif os.path.isfile(data['path']): logging.info('Download is file, not directory -- skipping Cleanup.') result['tasks']['cleanup']['response'] = None return result # fail if mover disabled or failed if config['moverenabled'] is False or result['tasks']['mover']['response'] is False: logging.info('Mover either disabled or failed -- skipping Cleanup.') result['tasks']['cleanup']['response'] = None else: if self.cleanup(data['path']): r = True else: r = False result['tasks']['cleanup']['response'] = r else: result['tasks']['cleanup'] = {'enabled': False} # all done! result['status'] = 'finished' return result def map_remote(self, path): ''' Alters directory based on remote mappings settings path (str): path from download client Replaces the base of the file tree with the 'local' mapping. Ie, '/home/user/downloads/Watcher' becomes '//server/downloads/Watcher' 'path' can be file or directory, it doesn't matter. If more than one match is found, defaults to the longest path. remote: local = '/home/users/downloads/': '//server/downloads/' '/home/users/downloads/Watcher/': '//server/downloads/Watcher/' In this case, a supplied remote '/home/users/downloads/Watcher/' will match a startswith() for both supplied settings. So we will default to the longest path. Returns str new path ''' maps = core.CONFIG['Postprocessing']['RemoteMapping'] matches = [] for remote in maps.keys(): if path.startswith(remote): matches.append(remote) if not matches: return path else: match = max(matches, key=len) new_path = path.replace(match, maps[match]) logging.info('Changing remote path from {} to {}'.format(path, new_path)) return new_path def compile_path(self, string, data, is_file=False): ''' Compiles string to file/path names string (str): brace-formatted string to substitue values (ie '/movies/{title}/') data (dict): of values to sub into string is_file (bool): if path is a file, false if directory Takes a renamer/mover path and adds values. ie '{title} {year} {resolution}' -> 'Movie 2017 1080P' Subs double spaces. Trims trailing spaces. Removes any invalid characters. Can return blank string '' Sends string to self.sanitize() to remove illegal characters Returns str new path ''' new_string = string for k, v in data.items(): k = '{' + k + '}' if k in new_string: new_string = new_string.replace(k, (v or '')) while ' ' in new_string: new_string = new_string.replace(' ', ' ') if not is_file: new_string = self.map_remote(new_string).strip() logging.debug('Created path "{}" from "{}"'.format(new_string, string)) return self.sanitize(new_string, is_file=is_file) def renamer(self, data): ''' Renames movie file based on renamerstring. data (dict): movie information. Renames movie file based on params in core.CONFIG Returns str new file name (blank string on failure) ''' logging.info('## Renaming Downloaded Files') config = core.CONFIG['Postprocessing'] renamer_string = config['renamerstring'] # check to see if we have a valid renamerstring if re.match(r'{(.*?)}', renamer_string) is None: logging.info('Invalid renamer string {}'.format(renamer_string)) return '' # existing absolute path path = os.path.split(data['finished_file'])[0] # get the extension ext = os.path.splitext(data['finished_file'])[1] # get the new file name new_name = self.compile_path(renamer_string, data, is_file=True) if not new_name: logging.info('New file name would be blank. Cancelling renamer.') return '' if core.CONFIG['Postprocessing']['replacespaces']: new_name = new_name.replace(' ', '.') new_name = new_name + ext logging.info('Renaming {} to {}'.format(os.path.basename(data.get('original_file')), new_name)) try: os.rename(data['finished_file'], os.path.join(path, new_name)) except (SystemExit, KeyboardInterrupt): raise except Exception as e: # noqa logging.error('Renamer failed: Could not rename file.', exc_info=True) return '' # return the new name so the mover knows what our file is return new_name def recycle(self, recycle_bin, abs_filepath): ''' Sends file to recycle bin dir recycle_bin (str): absolute path to recycle bin directory abs_filepath (str): absolute path of file to recycle Creates recycle_bin dir if neccesary. Moves file to recycle bin. If a file with the same name already exists, overwrites existing file. Returns bool ''' file_dir, file_name = os.path.split(abs_filepath) if not os.path.isdir(recycle_bin): logging.info('Creating recycle bin directory {}'.format(recycle_bin)) try: os.makedirs(recycle_bin) except Exception as e: logging.error('Recycling failed: Could not create Recycle Bin directory {}.'.format(recycle_bin), exc_info=True) return False logging.info('Recycling {} to recycle bin {}'.format(abs_filepath, recycle_bin)) try: if os.path.isfile(os.path.join(recycle_bin, file_name)): os.remove(os.path.join(recycle_bin, file_name)) shutil.move(abs_filepath, recycle_bin) return True except Exception as e: # noqa logging.error('Recycling failed: Could not move file.', exc_info=True) return False def remove_additional_files(self, movie_file): ''' Removes addtional associated files of movie_file movie_file (str): absolute file path of old movie file Removes any file in original_file's directory that share the same file name Does not cause mover failure on error. Returns bool ''' logging.info('## Removing additional files for {}'.format(movie_file)) path, file_name = os.path.split(movie_file) fname = os.path.splitext(file_name)[0] for i in os.listdir(path): name = os.path.splitext(i)[0] no_lang_name = None # check if filename ends with .<2-char-lang-code> if re.search(r'\.[a-z]{2}$', name, re.I): no_lang_name = os.path.splitext(name)[0] if name == fname or no_lang_name == fname: logging.info('Removing additional file {}'.format(i)) try: os.remove(os.path.join(path, i)) except Exception as e: # noqa logging.warning('Unable to remove {}'.format(i), exc_info=True) return False return True def mover(self, data): '''Moves movie file to path constructed by moverstring data (dict): movie information. Moves file to location specified in core.CONFIG If target file already exists either: Delete it prior to copying new file in (since os.rename in windows doesn't overwrite) OR: Create Recycle Bin directory (if neccesary) and move the old file there. Copies and renames additional files Returns str new file location (blank string on failure) ''' logging.info('## Moving Downloaded Files') config = core.CONFIG['Postprocessing'] if config['recyclebinenabled']: recycle_bin = self.compile_path(config['recyclebindirectory'], data) category = data.get('category', None) if category in core.CONFIG['Categories']: moverpath = core.CONFIG['Categories'][category]['moverpath'] else: moverpath = config['moverpath'] target_folder = os.path.normpath(self.compile_path(moverpath, data)) target_folder = os.path.join(target_folder, '') # if the new folder doesn't exist, make it try: if not os.path.exists(target_folder): os.makedirs(target_folder) except Exception as e: logging.error('Mover failed: Could not create directory {}.'.format(target_folder), exc_info=True) return '' current_file_path = data['original_file'] current_path, file_name = os.path.split(current_file_path) # If finished_file exists, recycle or remove if data.get('finished_file'): old_movie = data['finished_file'] logging.info('Checking if old file {} exists.'.format(old_movie)) if os.path.isfile(old_movie): if config['recyclebinenabled']: logging.info('Old movie file found, recycling.') if not self.recycle(recycle_bin, old_movie): return '' else: logging.info('Deleting old file {}'.format(old_movie)) try: os.remove(old_movie) except Exception as e: logging.error('Mover failed: Could not delete file.', exc_info=True) return '' if config['removeadditionalfiles']: self.remove_additional_files(old_movie) # Check if the target file name exists in target dir, recycle or remove if os.path.isfile(os.path.join(target_folder, file_name)): existing_movie_file = os.path.join(target_folder, file_name) logging.info('Existing file {} found in {}'.format(file_name, target_folder)) if config['recyclebinenabled']: if not self.recycle(recycle_bin, existing_movie_file): return '' else: logging.info('Deleting old file {}'.format(existing_movie_file)) try: os.remove(existing_movie_file) except Exception as e: logging.error('Mover failed: Could not delete file.', exc_info=True) return '' if config['removeadditionalfiles']: self.remove_additional_files(existing_movie_file) # Finally the actual move process new_file_location = os.path.join(target_folder, os.path.basename(data['original_file'])) if config['movermethod'] == 'hardlink': logging.info('Creating hardlink from {} to {}.'.format(data['original_file'], new_file_location)) try: os.link(data['original_file'], new_file_location) except Exception as e: logging.error('Mover failed: Unable to create hardlink.', exc_info=True) return '' elif config['movermethod'] == 'copy': logging.info('Copying {} to {}.'.format(data['original_file'], new_file_location)) try: shutil.copy(data['original_file'], new_file_location) except Exception as e: logging.error('Mover failed: Unable to copy movie.', exc_info=True) return '' else: logging.info('Moving {} to {}'.format(current_file_path, new_file_location)) try: shutil.copyfile(current_file_path, new_file_location) os.unlink(current_file_path) except Exception as e: logging.error('Mover failed: Could not move file.', exc_info=True) return '' if config['movermethod'] == 'symboliclink': if core.PLATFORM == 'windows': logging.warning('Attempting to create symbolic link on Windows. This will fail without SeCreateSymbolicLinkPrivilege.') logging.info('Creating symbolic link from {} to {}'.format(new_file_location, data['original_file'])) try: os.symlink(new_file_location, data['original_file']) except Exception as e: logging.error('Mover failed: Unable to create symbolic link.', exc_info=True) return '' keep_extensions = [i.strip() for i in config['moveextensions'].split(',') if i != ''] if len(keep_extensions) > 0: logging.info('Moving additional files with extensions {}.'.format(','.join(keep_extensions))) compiled_name = self.compile_path(config['renamerstring'], data) for root, dirs, filenames in os.walk(data['path']): for name in filenames: old_abs_path = os.path.join(root, name) fname, ext = os.path.splitext(name) # ('filename', '.ext') # check if filename ends with .<2-char-lang-code> if re.search(r'\.[a-z]{2}$', fname, re.I): fname, lang = os.path.splitext(fname) target_ext = lang + ext else: target_ext = ext if config['renamerenabled']: fname = compiled_name target_file = '{}{}'.format(os.path.join(target_folder, fname), target_ext) if ext.replace('.', '') in keep_extensions: append = 0 while os.path.isfile(target_file): append += 1 new_filename = '{}({})'.format(fname, str(append)) target_file = '{}{}'.format(os.path.join(target_folder, new_filename), target_ext) try: logging.info('Moving {} to {}'.format(old_abs_path, target_file)) shutil.copyfile(old_abs_path, target_file) except Exception as e: # noqa logging.error('Moving additional files failed: Could not copy {}.'.format(old_abs_path), exc_info=True) return new_file_location def cleanup(self, path): ''' Deletes specified path path (str): of path to remover path can be file or dir Returns bool ''' # if its a dir if os.path.isdir(path): try: shutil.rmtree(path) return True except Exception as e: logging.error('Could not delete path.', exc_info=True) return False elif os.path.isfile(path): # if its a file try: os.remove(path) return True except Exception as e: # noqa logging.error('Could not delete path.', exc_info=True) return False else: # if it is somehow neither return False def sanitize(self, string, is_file=False): ''' Sanitize file names and paths string (str): to sanitize Removes all illegal characters or replaces them based on user's config. Returns str ''' config = core.CONFIG['Postprocessing'] repl = config['replaceillegal'] if is_file: string = re.sub(r'[\/"*?<>|:]+', repl, string) else: string = re.sub(r'["*?<>|]+', repl, string) drive, path = os.path.splitdrive(string) path = path.replace(':', repl) return ''.join([drive, path])
py
1a32d005d51058c9df8a6acb2b4f9abb70a76f1d
# -*- coding: utf-8 -*- # Generated by Django 1.9.13 on 2018-09-21 20:25 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('restaurant', '0004_auto_20180921_2121'), ] operations = [ migrations.RemoveField( model_name='restaurant', name='inserted_at', ), migrations.AddField( model_name='restaurant', name='longitude', field=models.CharField(blank=True, max_length=255, null=True), ), ]
py
1a32d08583b1d561a6b4dfbccf5f95dc17525439
import json import datetime import http.client from time import time from urllib.parse import quote from urllib.parse import unquote # Only to remember ######################################################################################################################## ##################################################### ENVIRONMENTS ##################################################### ######################################################################################################################## #local conn = http.client.HTTPConnection("localhost:9090") ######################################################################################################################## ######################################################## USERS ######################################################### ######################################################################################################################## conn.request("GET", "/mini-amazon/api/users", headers={'Content-type': 'application/json'}) #conn.request("GET", "/mini-amazon/api/users/mrblack4", headers={'Content-type': 'application/json'}) # create_user_post = { # "username": "mryellow", # "status":"active", # "stars": 3.2 # } # json_data_post = json.dumps(create_user_post) # conn.request("POST", "/mini-amazon/api/users", json_data_post, headers={'Content-type': 'application/json'}) #conn.request("DELETE", "/mini-amazon/api/users/mrgreen", headers={'Content-type': 'application/json'}) start = datetime.datetime.now() res = conn.getresponse() end = datetime.datetime.now() data = res.read() elapsed = end - start print(data.decode("utf-8")) print("\"" + str(res.status) + "\"") print("\"" + str(res.reason) + "\"") print("\"elapsed seconds: " + str(elapsed) + "\"")
py
1a32d2729f3294a33234a9a27c5c610eb4835537
from .PyPCUtils import *
py
1a32d29acddbcd143fa533e26d94f6b80df387e1
import sys from collections import defaultdict, Counter import math ## Reading the arguements train_file = sys.argv[1] # split.train ### Reading the train file to get all the filenames with open(train_file) as f1: filenames = [] conservative_files_train = [] liberal_files_train = [] for line in f1: line = line.replace("\n","") filenames.append(line) if "con" in line: conservative_files_train.append(line) # Conservative filenames else: liberal_files_train.append(line) # Liberal filenames ### ### Calculating Class Prior Probabilities Prob_conservative = math.log(len(conservative_files_train)) - (math.log(len(liberal_files_train) + len(conservative_files_train))) Prob_liberal = math.log(len(liberal_files_train)) - (math.log(len(liberal_files_train) + len(conservative_files_train))) ### ### Generating the vocabulary vocabulary = [] conservative_vocabulary = [] liberal_vocabulary = [] for train_file_name in filenames: ftrain = open(train_file_name) for line in ftrain: line = line.replace("\n","") line = line.lower() # Ignoring Case if "con" in train_file_name: conservative_vocabulary.append(line) # Conservative Vocabulary else: liberal_vocabulary.append(line) # Liberal Vocabulary vocabulary.append(line) ### distinct_vocabulary = set(vocabulary) # Distinct Vocabulary Total_distinct_words = len(distinct_vocabulary) # Total distinct words in the vocabulary ### Creating default Dictionaries for 1. words and their total occurences ## 2. words and their Probabilities ## Liberal Class Prob_words_dict_liberal = defaultdict(int) nliberal = len(liberal_vocabulary) ## Conservative Class Prob_words_dict_conservative = defaultdict(int) nconservative = len(conservative_vocabulary) ### ### Filling the data in both the above dictionaries ---------------- Table 6.2 Tom Mitchell Book ## Liberal Class # Count Distinct_words_dict_liberal = Counter(liberal_vocabulary) # Probability for word in distinct_vocabulary: Prob_words_dict_liberal[word] = math.exp((math.log(Distinct_words_dict_liberal[word] + 1)) - \ math.log(nliberal + Total_distinct_words)) ## Conservative Class # Count Distinct_words_dict_conservative = Counter(conservative_vocabulary) # Probability for word in distinct_vocabulary: Prob_words_dict_conservative[word] = math.exp((math.log(Distinct_words_dict_conservative[word] + 1)) - \ math.log(nconservative + Total_distinct_words)) ### # Finding log-odds ratio lib_cons = {} # lib/cons cons_lib = {} # cons/lib for word in distinct_vocabulary: lib_cons[word] = math.log(Prob_words_dict_liberal[word]/Prob_words_dict_conservative[word]) cons_lib[word] = math.log(Prob_words_dict_conservative[word]/Prob_words_dict_liberal[word]) count = 0 # similar to topwords.py but instead of probabilities, we have log odd ratio # Printing top 20 words for both the classes # lib_cons for w in sorted(lib_cons, key = lib_cons.get,reverse=True): print w , round(lib_cons[w],4) # Printing count += 1 if count == 20: break print "" count = 0 # cons_lib for w in sorted(cons_lib, key = cons_lib.get,reverse=True): print w ,round(cons_lib[w],4) # Printing count += 1 if count == 20: break
py
1a32d38849a30eeea3bb173d8a9f8aef31b7c719
import frappe import unittest test_records = frappe.get_test_records('Opencart Product') class TestOpencartProduct(unittest.TestCase): pass
py
1a32d4c361e2cbb58ad22707c7397a6b6b10321b
""" Support for WeMo device discovery. For more details about this component, please refer to the documentation at https://home-assistant.io/components/wemo/ """ import logging from homeassistant.components.discovery import SERVICE_WEMO from homeassistant.helpers import discovery from homeassistant.const import EVENT_HOMEASSISTANT_STOP REQUIREMENTS = ['pywemo==0.4.3'] DOMAIN = 'wemo' # Mapping from Wemo model_name to component. WEMO_MODEL_DISPATCH = { 'Bridge': 'light', 'Insight': 'switch', 'Maker': 'switch', 'Sensor': 'binary_sensor', 'Socket': 'switch', 'LightSwitch': 'switch' } SUBSCRIPTION_REGISTRY = None KNOWN_DEVICES = [] _LOGGER = logging.getLogger(__name__) # pylint: disable=unused-argument, too-many-function-args def setup(hass, config): """Common setup for WeMo devices.""" import pywemo global SUBSCRIPTION_REGISTRY SUBSCRIPTION_REGISTRY = pywemo.SubscriptionRegistry() SUBSCRIPTION_REGISTRY.start() def stop_wemo(event): """Shutdown Wemo subscriptions and subscription thread on exit.""" _LOGGER.info("Shutting down subscriptions.") SUBSCRIPTION_REGISTRY.stop() hass.bus.listen_once(EVENT_HOMEASSISTANT_STOP, stop_wemo) def discovery_dispatch(service, discovery_info): """Dispatcher for WeMo discovery events.""" # name, model, location, mac _, model_name, _, _, serial = discovery_info # Only register a device once if serial in KNOWN_DEVICES: return _LOGGER.debug('Discovered unique device %s', serial) KNOWN_DEVICES.append(serial) component = WEMO_MODEL_DISPATCH.get(model_name, 'switch') discovery.load_platform(hass, component, DOMAIN, discovery_info, config) discovery.listen(hass, SERVICE_WEMO, discovery_dispatch) _LOGGER.info("Scanning for WeMo devices.") devices = [(device.host, device) for device in pywemo.discover_devices()] # Add static devices from the config file. devices.extend((address, None) for address in config.get(DOMAIN, {}).get('static', [])) for address, device in devices: port = pywemo.ouimeaux_device.probe_wemo(address) if not port: _LOGGER.warning('Unable to probe wemo at %s', address) continue _LOGGER.info('Adding wemo at %s:%i', address, port) url = 'http://%s:%i/setup.xml' % (address, port) if device is None: device = pywemo.discovery.device_from_description(url, None) discovery_info = (device.name, device.model_name, url, device.mac, device.serialnumber) discovery.discover(hass, SERVICE_WEMO, discovery_info) return True
py
1a32d50e2d829f7a466690e306d348b2ab9c0e55
#!/usr/bin/env python import asyncio import websockets import time import threading connections=set() def mandar(): global connections vPrint=True while True: if len(connections)>0: print(connections) mensaje=input("Esto es un mensaje : ") if mensaje!="u": websockets.broadcast(connections,mensaje) vPrint=True elif vPrint: print("Conexiones: ") print(connections) vPrint=False async def handler(websocket): global connections connections.add(websocket) await websocket.wait_closed() connections.remove(websocket) async def main(): threading.Thread (target=mandar).start() async with websockets.serve(handler, "172.24.50.15", 8765): await asyncio.Future() # run forever.. if __name__ == "__main__": asyncio.run(main())
py
1a32d61a13a77f39597cadc0bb4c570664f8f93b
import random def int2bin_str(d): return bin(d)[2:] def txt2int(s): result = '' for c in s: result += '{:03d}'.format(ord(c)) if result.startswith('0'): result = '999' + result return int(result) def int2txt(d): s = str(d) if len(s) % 3 != 0: print('bad int') return result = '' for i in range(0, len(s), 3): sub = s[i : i + 3] if sub == '999': continue result += chr(int(sub)) return result def gen_one_time_pad(M2): result = '' bits = ['0', '1'] for _ in range(len(M2)): result += random.choice(bits) return result def one_time_pad(x, y): result = '' for i in range(len(x)): if x[i] != y[i]: result += '1' else: result += '0' return result def extended_euc(a, b): if a == 0: return b if b == 0: return a r0 = a r1 = b s0 = 1 s1 = 0 t0 = 0 t1 = 1 q1 = r0 // r1 r2 = r0 - q1 * r1 s2 = s0 - q1 * s1 t2 = t0 - q1 * t1 while r2 != 0: r0, r1 = r1, r2 s0, s1 = s1, s2 t0, t1 = t1, t2 q1 = r0 // r1 r2 = r0 - q1 * r1 s2 = s0 - q1 * s1 t2 = t0 - q1 * t1 return (r1, s1, t1) def discrete_exponentiation(N, b, e): d = {1: b} last_e = 1 next_e = 2 while next_e <= e: d[next_e] = (d[last_e] ** 2) % N last_e = next_e next_e *= 2 binary = list(bin(e)) result = 1 curr = 1 while binary[-1] != 'b': if binary.pop() == '1': result = (result * d[curr]) % N curr *= 2 return result def gen_pub_pri_key(P, Q): N = P * Q phi = (P - 1) * (Q - 1) D = random.randrange(phi) (one, E, t) = extended_euc(D, phi) while (one != 1): D = random.randrange(phi) (one, E, t) = extended_euc(D, phi) return (N, D, E) def pub_key_encr(N, E, M): (valid, s, t) = extended_euc(M, N) if not (valid == 1 and M < N): print('bad message') return raised_to_public = discrete_exponentiation(N, M, E) return raised_to_public def pri_key_decr(N, D, code): return discrete_exponentiation(N, code, D) def closure_PGP(N, E, plaintext): M_bin = int2bin_str(txt2int(plaintext)) pad_bin = gen_one_time_pad(M_bin) padded_bin = one_time_pad(M_bin, pad_bin) padded_dec = int(padded_bin, 2) pad_dec = int(pad_bin, 2) pad_encr = pub_key_encr(N, E, pad_dec) return (padded_dec, pad_encr) def closure_PGP_decode(N, D, X): (padded_dec, pad_encr) = X pad_dec = pri_key_decr(N, D, pad_encr) pad_bin = int2bin_str(pad_dec) padded_bin = int2bin_str(padded_dec) while len(padded_bin) < len(pad_bin): padded_bin = '0' + padded_bin while len(pad_bin) < len(padded_bin): pad_bin = '0' + pad_bin M_bin = one_time_pad(padded_bin, pad_bin) M_dec = int(M_bin, 2) plaintext = int2txt(M_dec) return plaintext
py
1a32d63efa7f37856f609301f0552ca0d2b09059
""" Building and world design commands """ import re from django.core.paginator import Paginator from django.conf import settings from django.db.models import Q, Min, Max from evennia import InterruptCommand from evennia.scripts.models import ScriptDB from evennia.objects.models import ObjectDB from evennia.locks.lockhandler import LockException from evennia.commands.cmdhandler import get_and_merge_cmdsets from evennia.utils import create, utils, search, logger, funcparser from evennia.utils.dbserialize import deserialize from evennia.utils.utils import ( inherits_from, class_from_module, get_all_typeclasses, variable_from_module, dbref, crop, interactive, list_to_string, display_len, format_grid, ) from evennia.utils.eveditor import EvEditor from evennia.utils.evmore import EvMore from evennia.utils.evtable import EvTable from evennia.prototypes import spawner, prototypes as protlib, menus as olc_menus from evennia.utils.ansi import raw as ansi_raw COMMAND_DEFAULT_CLASS = class_from_module(settings.COMMAND_DEFAULT_CLASS) _FUNCPARSER = None _ATTRFUNCPARSER = None # limit symbol import for API __all__ = ( "ObjManipCommand", "CmdSetObjAlias", "CmdCopy", "CmdCpAttr", "CmdMvAttr", "CmdCreate", "CmdDesc", "CmdDestroy", "CmdDig", "CmdTunnel", "CmdLink", "CmdUnLink", "CmdSetHome", "CmdListCmdSets", "CmdName", "CmdOpen", "CmdSetAttribute", "CmdTypeclass", "CmdWipe", "CmdLock", "CmdExamine", "CmdFind", "CmdTeleport", "CmdScripts", "CmdObjects", "CmdTag", "CmdSpawn", ) # used by set from ast import literal_eval as _LITERAL_EVAL LIST_APPEND_CHAR = "+" # used by find CHAR_TYPECLASS = settings.BASE_CHARACTER_TYPECLASS ROOM_TYPECLASS = settings.BASE_ROOM_TYPECLASS EXIT_TYPECLASS = settings.BASE_EXIT_TYPECLASS _DEFAULT_WIDTH = settings.CLIENT_DEFAULT_WIDTH _PROTOTYPE_PARENTS = None class ObjManipCommand(COMMAND_DEFAULT_CLASS): """ This is a parent class for some of the defining objmanip commands since they tend to have some more variables to define new objects. Each object definition can have several components. First is always a name, followed by an optional alias list and finally an some optional data, such as a typeclass or a location. A comma ',' separates different objects. Like this: name1;alias;alias;alias:option, name2;alias;alias ... Spaces between all components are stripped. A second situation is attribute manipulation. Such commands are simpler and offer combinations objname/attr/attr/attr, objname/attr, ... """ # OBS - this is just a parent - it's not intended to actually be # included in a commandset on its own! def parse(self): """ We need to expand the default parsing to get all the cases, see the module doc. """ # get all the normal parsing done (switches etc) super().parse() obj_defs = ([], []) # stores left- and right-hand side of '=' obj_attrs = ([], []) # " for iside, arglist in enumerate((self.lhslist, self.rhslist)): # lhslist/rhslist is already split by ',' at this point for objdef in arglist: aliases, option, attrs = [], None, [] if ":" in objdef: objdef, option = [part.strip() for part in objdef.rsplit(":", 1)] if ";" in objdef: objdef, aliases = [part.strip() for part in objdef.split(";", 1)] aliases = [alias.strip() for alias in aliases.split(";") if alias.strip()] if "/" in objdef: objdef, attrs = [part.strip() for part in objdef.split("/", 1)] attrs = [part.strip().lower() for part in attrs.split("/") if part.strip()] # store data obj_defs[iside].append({"name": objdef, "option": option, "aliases": aliases}) obj_attrs[iside].append({"name": objdef, "attrs": attrs}) # store for future access self.lhs_objs = obj_defs[0] self.rhs_objs = obj_defs[1] self.lhs_objattr = obj_attrs[0] self.rhs_objattr = obj_attrs[1] class CmdSetObjAlias(COMMAND_DEFAULT_CLASS): """ adding permanent aliases for object Usage: alias <obj> [= [alias[,alias,alias,...]]] alias <obj> = alias/category <obj> = [alias[,alias,...]:<category> Switches: category - requires ending input with :category, to store the given aliases with the given category. Assigns aliases to an object so it can be referenced by more than one name. Assign empty to remove all aliases from object. If assigning a category, all aliases given will be using this category. Observe that this is not the same thing as personal aliases created with the 'nick' command! Aliases set with alias are changing the object in question, making those aliases usable by everyone. """ key = "@alias" aliases = "setobjalias" switch_options = ("category",) locks = "cmd:perm(setobjalias) or perm(Builder)" help_category = "Building" def func(self): """Set the aliases.""" caller = self.caller if not self.lhs: string = "Usage: alias <obj> [= [alias[,alias ...]]]" self.caller.msg(string) return objname = self.lhs # Find the object to receive aliases obj = caller.search(objname) if not obj: return if self.rhs is None: # no =, so we just list aliases on object. aliases = obj.aliases.all(return_key_and_category=True) if aliases: caller.msg( "Aliases for %s: %s" % ( obj.get_display_name(caller), ", ".join( "'%s'%s" % (alias, "" if category is None else "[category:'%s']" % category) for (alias, category) in aliases ), ) ) else: caller.msg("No aliases exist for '%s'." % obj.get_display_name(caller)) return if not (obj.access(caller, "control") or obj.access(caller, "edit")): caller.msg("You don't have permission to do that.") return if not self.rhs: # we have given an empty =, so delete aliases old_aliases = obj.aliases.all() if old_aliases: caller.msg( "Cleared aliases from %s: %s" % (obj.get_display_name(caller), ", ".join(old_aliases)) ) obj.aliases.clear() else: caller.msg("No aliases to clear.") return category = None if "category" in self.switches: if ":" in self.rhs: rhs, category = self.rhs.rsplit(":", 1) category = category.strip() else: caller.msg( "If specifying the /category switch, the category must be given " "as :category at the end." ) else: rhs = self.rhs # merge the old and new aliases (if any) old_aliases = obj.aliases.get(category=category, return_list=True) new_aliases = [alias.strip().lower() for alias in rhs.split(",") if alias.strip()] # make the aliases only appear once old_aliases.extend(new_aliases) aliases = list(set(old_aliases)) # save back to object. obj.aliases.add(aliases, category=category) # we need to trigger this here, since this will force # (default) Exits to rebuild their Exit commands with the new # aliases obj.at_cmdset_get(force_init=True) # report all aliases on the object caller.msg( "Alias(es) for '%s' set to '%s'%s." % ( obj.get_display_name(caller), str(obj.aliases), " (category: '%s')" % category if category else "", ) ) class CmdCopy(ObjManipCommand): """ copy an object and its properties Usage: copy <original obj> [= <new_name>][;alias;alias..] [:<new_location>] [,<new_name2> ...] Create one or more copies of an object. If you don't supply any targets, one exact copy of the original object will be created with the name *_copy. """ key = "@copy" locks = "cmd:perm(copy) or perm(Builder)" help_category = "Building" def func(self): """Uses ObjManipCommand.parse()""" caller = self.caller args = self.args if not args: caller.msg( "Usage: copy <obj> [=<new_name>[;alias;alias..]]" "[:<new_location>] [, <new_name2>...]" ) return if not self.rhs: # this has no target =, so an identical new object is created. from_obj_name = self.args from_obj = caller.search(from_obj_name) if not from_obj: return to_obj_name = "%s_copy" % from_obj_name to_obj_aliases = ["%s_copy" % alias for alias in from_obj.aliases.all()] copiedobj = ObjectDB.objects.copy_object( from_obj, new_key=to_obj_name, new_aliases=to_obj_aliases ) if copiedobj: string = "Identical copy of %s, named '%s' was created." % ( from_obj_name, to_obj_name, ) else: string = "There was an error copying %s." else: # we have specified =. This might mean many object targets from_obj_name = self.lhs_objs[0]["name"] from_obj = caller.search(from_obj_name) if not from_obj: return for objdef in self.rhs_objs: # loop through all possible copy-to targets to_obj_name = objdef["name"] to_obj_aliases = objdef["aliases"] to_obj_location = objdef["option"] if to_obj_location: to_obj_location = caller.search(to_obj_location, global_search=True) if not to_obj_location: return copiedobj = ObjectDB.objects.copy_object( from_obj, new_key=to_obj_name, new_location=to_obj_location, new_aliases=to_obj_aliases, ) if copiedobj: string = "Copied %s to '%s' (aliases: %s)." % ( from_obj_name, to_obj_name, to_obj_aliases, ) else: string = "There was an error copying %s to '%s'." % (from_obj_name, to_obj_name) # we are done, echo to user caller.msg(string) class CmdCpAttr(ObjManipCommand): """ copy attributes between objects Usage: cpattr[/switch] <obj>/<attr> = <obj1>/<attr1> [,<obj2>/<attr2>,<obj3>/<attr3>,...] cpattr[/switch] <obj>/<attr> = <obj1> [,<obj2>,<obj3>,...] cpattr[/switch] <attr> = <obj1>/<attr1> [,<obj2>/<attr2>,<obj3>/<attr3>,...] cpattr[/switch] <attr> = <obj1>[,<obj2>,<obj3>,...] Switches: move - delete the attribute from the source object after copying. Example: cpattr coolness = Anna/chillout, Anna/nicety, Tom/nicety -> copies the coolness attribute (defined on yourself), to attributes on Anna and Tom. Copy the attribute one object to one or more attributes on another object. If you don't supply a source object, yourself is used. """ key = "@cpattr" switch_options = ("move",) locks = "cmd:perm(cpattr) or perm(Builder)" help_category = "Building" def check_from_attr(self, obj, attr, clear=False): """ Hook for overriding on subclassed commands. Checks to make sure a caller can copy the attr from the object in question. If not, return a false value and the command will abort. An error message should be provided by this function. If clear is True, user is attempting to move the attribute. """ return True def check_to_attr(self, obj, attr): """ Hook for overriding on subclassed commands. Checks to make sure a caller can write to the specified attribute on the specified object. If not, return a false value and the attribute will be skipped. An error message should be provided by this function. """ return True def check_has_attr(self, obj, attr): """ Hook for overriding on subclassed commands. Do any preprocessing required and verify an object has an attribute. """ if not obj.attributes.has(attr): self.caller.msg("%s doesn't have an attribute %s." % (obj.name, attr)) return False return True def get_attr(self, obj, attr): """ Hook for overriding on subclassed commands. Do any preprocessing required and get the attribute from the object. """ return obj.attributes.get(attr) def func(self): """ Do the copying. """ caller = self.caller if not self.rhs: string = """Usage: cpattr[/switch] <obj>/<attr> = <obj1>/<attr1> [,<obj2>/<attr2>,<obj3>/<attr3>,...] cpattr[/switch] <obj>/<attr> = <obj1> [,<obj2>,<obj3>,...] cpattr[/switch] <attr> = <obj1>/<attr1> [,<obj2>/<attr2>,<obj3>/<attr3>,...] cpattr[/switch] <attr> = <obj1>[,<obj2>,<obj3>,...]""" caller.msg(string) return lhs_objattr = self.lhs_objattr to_objs = self.rhs_objattr from_obj_name = lhs_objattr[0]["name"] from_obj_attrs = lhs_objattr[0]["attrs"] if not from_obj_attrs: # this means the from_obj_name is actually an attribute # name on self. from_obj_attrs = [from_obj_name] from_obj = self.caller else: from_obj = caller.search(from_obj_name) if not from_obj or not to_objs: caller.msg("You have to supply both source object and target(s).") return # copy to all to_obj:ects if "move" in self.switches: clear = True else: clear = False if not self.check_from_attr(from_obj, from_obj_attrs[0], clear=clear): return for attr in from_obj_attrs: if not self.check_has_attr(from_obj, attr): return if (len(from_obj_attrs) != len(set(from_obj_attrs))) and clear: self.caller.msg("|RCannot have duplicate source names when moving!") return result = [] for to_obj in to_objs: to_obj_name = to_obj["name"] to_obj_attrs = to_obj["attrs"] to_obj = caller.search(to_obj_name) if not to_obj: result.append("\nCould not find object '%s'" % to_obj_name) continue for inum, from_attr in enumerate(from_obj_attrs): try: to_attr = to_obj_attrs[inum] except IndexError: # if there are too few attributes given # on the to_obj, we copy the original name instead. to_attr = from_attr if not self.check_to_attr(to_obj, to_attr): continue value = self.get_attr(from_obj, from_attr) to_obj.attributes.add(to_attr, value) if clear and not (from_obj == to_obj and from_attr == to_attr): from_obj.attributes.remove(from_attr) result.append( "\nMoved %s.%s -> %s.%s. (value: %s)" % (from_obj.name, from_attr, to_obj_name, to_attr, repr(value)) ) else: result.append( "\nCopied %s.%s -> %s.%s. (value: %s)" % (from_obj.name, from_attr, to_obj_name, to_attr, repr(value)) ) caller.msg("".join(result)) class CmdMvAttr(ObjManipCommand): """ move attributes between objects Usage: mvattr[/switch] <obj>/<attr> = <obj1>/<attr1> [,<obj2>/<attr2>,<obj3>/<attr3>,...] mvattr[/switch] <obj>/<attr> = <obj1> [,<obj2>,<obj3>,...] mvattr[/switch] <attr> = <obj1>/<attr1> [,<obj2>/<attr2>,<obj3>/<attr3>,...] mvattr[/switch] <attr> = <obj1>[,<obj2>,<obj3>,...] Switches: copy - Don't delete the original after moving. Move an attribute from one object to one or more attributes on another object. If you don't supply a source object, yourself is used. """ key = "@mvattr" switch_options = ("copy",) locks = "cmd:perm(mvattr) or perm(Builder)" help_category = "Building" def func(self): """ Do the moving """ if not self.rhs: string = """Usage: mvattr[/switch] <obj>/<attr> = <obj1>/<attr1> [,<obj2>/<attr2>,<obj3>/<attr3>,...] mvattr[/switch] <obj>/<attr> = <obj1> [,<obj2>,<obj3>,...] mvattr[/switch] <attr> = <obj1>/<attr1> [,<obj2>/<attr2>,<obj3>/<attr3>,...] mvattr[/switch] <attr> = <obj1>[,<obj2>,<obj3>,...]""" self.caller.msg(string) return # simply use cpattr for all the functionality if "copy" in self.switches: self.execute_cmd("cpattr %s" % self.args) else: self.execute_cmd("cpattr/move %s" % self.args) class CmdCreate(ObjManipCommand): """ create new objects Usage: create[/drop] <objname>[;alias;alias...][:typeclass], <objname>... switch: drop - automatically drop the new object into your current location (this is not echoed). This also sets the new object's home to the current location rather than to you. Creates one or more new objects. If typeclass is given, the object is created as a child of this typeclass. The typeclass script is assumed to be located under types/ and any further directory structure is given in Python notation. So if you have a correct typeclass 'RedButton' defined in types/examples/red_button.py, you could create a new object of this type like this: create/drop button;red : examples.red_button.RedButton """ key = "@create" switch_options = ("drop",) locks = "cmd:perm(create) or perm(Builder)" help_category = "Building" # lockstring of newly created objects, for easy overloading. # Will be formatted with the {id} of the creating object. new_obj_lockstring = "control:id({id}) or perm(Admin);delete:id({id}) or perm(Admin)" def func(self): """ Creates the object. """ caller = self.caller if not self.args: string = "Usage: create[/drop] <newname>[;alias;alias...] [:typeclass.path]" caller.msg(string) return # create the objects for objdef in self.lhs_objs: string = "" name = objdef["name"] aliases = objdef["aliases"] typeclass = objdef["option"] # create object (if not a valid typeclass, the default # object typeclass will automatically be used) lockstring = self.new_obj_lockstring.format(id=caller.id) obj = create.create_object( typeclass, name, caller, home=caller, aliases=aliases, locks=lockstring, report_to=caller, ) if not obj: continue if aliases: string = "You create a new %s: %s (aliases: %s)." string = string % (obj.typename, obj.name, ", ".join(aliases)) else: string = "You create a new %s: %s." string = string % (obj.typename, obj.name) # set a default desc if not obj.db.desc: obj.db.desc = "You see nothing special." if "drop" in self.switches: if caller.location: obj.home = caller.location obj.move_to(caller.location, quiet=True) if string: caller.msg(string) def _desc_load(caller): return caller.db.evmenu_target.db.desc or "" def _desc_save(caller, buf): """ Save line buffer to the desc prop. This should return True if successful and also report its status to the user. """ caller.db.evmenu_target.db.desc = buf caller.msg("Saved.") return True def _desc_quit(caller): caller.attributes.remove("evmenu_target") caller.msg("Exited editor.") class CmdDesc(COMMAND_DEFAULT_CLASS): """ describe an object or the current room. Usage: desc [<obj> =] <description> Switches: edit - Open up a line editor for more advanced editing. Sets the "desc" attribute on an object. If an object is not given, describe the current room. """ key = "@desc" switch_options = ("edit",) locks = "cmd:perm(desc) or perm(Builder)" help_category = "Building" def edit_handler(self): if self.rhs: self.msg("|rYou may specify a value, or use the edit switch, but not both.|n") return if self.args: obj = self.caller.search(self.args) else: obj = self.caller.location or self.msg("|rYou can't describe oblivion.|n") if not obj: return if not (obj.access(self.caller, "control") or obj.access(self.caller, "edit")): self.caller.msg("You don't have permission to edit the description of %s." % obj.key) return self.caller.db.evmenu_target = obj # launch the editor EvEditor( self.caller, loadfunc=_desc_load, savefunc=_desc_save, quitfunc=_desc_quit, key="desc", persistent=True, ) return def func(self): """Define command""" caller = self.caller if not self.args and "edit" not in self.switches: caller.msg("Usage: desc [<obj> =] <description>") return if "edit" in self.switches: self.edit_handler() return if "=" in self.args: # We have an = obj = caller.search(self.lhs) if not obj: return desc = self.rhs or "" else: obj = caller.location or self.msg("|rYou don't have a location to describe.|n") if not obj: return desc = self.args if obj.access(self.caller, "control") or obj.access(self.caller, "edit"): obj.db.desc = desc caller.msg("The description was set on %s." % obj.get_display_name(caller)) else: caller.msg("You don't have permission to edit the description of %s." % obj.key) class CmdDestroy(COMMAND_DEFAULT_CLASS): """ permanently delete objects Usage: destroy[/switches] [obj, obj2, obj3, [dbref-dbref], ...] Switches: override - The destroy command will usually avoid accidentally destroying account objects. This switch overrides this safety. force - destroy without confirmation. Examples: destroy house, roof, door, 44-78 destroy 5-10, flower, 45 destroy/force north Destroys one or many objects. If dbrefs are used, a range to delete can be given, e.g. 4-10. Also the end points will be deleted. This command displays a confirmation before destroying, to make sure of your choice. You can specify the /force switch to bypass this confirmation. """ key = "@destroy" aliases = ["@delete", "@del"] switch_options = ("override", "force") locks = "cmd:perm(destroy) or perm(Builder)" help_category = "Building" confirm = True # set to False to always bypass confirmation default_confirm = "yes" # what to assume if just pressing enter (yes/no) def func(self): """Implements the command.""" caller = self.caller delete = True if not self.args or not self.lhslist: caller.msg("Usage: destroy[/switches] [obj, obj2, obj3, [dbref-dbref],...]") delete = False def delobj(obj): # helper function for deleting a single object string = "" if not obj.pk: string = "\nObject %s was already deleted." % obj.db_key else: objname = obj.name if not (obj.access(caller, "control") or obj.access(caller, "delete")): return "\nYou don't have permission to delete %s." % objname if obj.account and "override" not in self.switches: return ( "\nObject %s is controlled by an active account. Use /override to delete anyway." % objname ) if obj.dbid == int(settings.DEFAULT_HOME.lstrip("#")): return ( "\nYou are trying to delete |c%s|n, which is set as DEFAULT_HOME. " "Re-point settings.DEFAULT_HOME to another " "object before continuing." % objname ) had_exits = hasattr(obj, "exits") and obj.exits had_objs = hasattr(obj, "contents") and any( obj for obj in obj.contents if not (hasattr(obj, "exits") and obj not in obj.exits) ) # do the deletion okay = obj.delete() if not okay: string += ( "\nERROR: %s not deleted, probably because delete() returned False." % objname ) else: string += "\n%s was destroyed." % objname if had_exits: string += " Exits to and from %s were destroyed as well." % objname if had_objs: string += " Objects inside %s were moved to their homes." % objname return string objs = [] for objname in self.lhslist: if not delete: continue if "-" in objname: # might be a range of dbrefs dmin, dmax = [utils.dbref(part, reqhash=False) for part in objname.split("-", 1)] if dmin and dmax: for dbref in range(int(dmin), int(dmax + 1)): obj = caller.search("#" + str(dbref)) if obj: objs.append(obj) continue else: obj = caller.search(objname) else: obj = caller.search(objname) if obj is None: self.caller.msg( " (Objects to destroy must either be local or specified with a unique #dbref.)" ) elif obj not in objs: objs.append(obj) if objs and ("force" not in self.switches and type(self).confirm): confirm = "Are you sure you want to destroy " if len(objs) == 1: confirm += objs[0].get_display_name(caller) elif len(objs) < 5: confirm += ", ".join([obj.get_display_name(caller) for obj in objs]) else: confirm += ", ".join(["#{}".format(obj.id) for obj in objs]) confirm += " [yes]/no?" if self.default_confirm == "yes" else " yes/[no]" answer = "" answer = yield (confirm) answer = self.default_confirm if answer == "" else answer if answer and answer not in ("yes", "y", "no", "n"): caller.msg( "Canceled: Either accept the default by pressing return or specify yes/no." ) delete = False elif answer.strip().lower() in ("n", "no"): caller.msg("Canceled: No object was destroyed.") delete = False if delete: results = [] for obj in objs: results.append(delobj(obj)) if results: caller.msg("".join(results).strip()) class CmdDig(ObjManipCommand): """ build new rooms and connect them to the current location Usage: dig[/switches] <roomname>[;alias;alias...][:typeclass] [= <exit_to_there>[;alias][:typeclass]] [, <exit_to_here>[;alias][:typeclass]] Switches: tel or teleport - move yourself to the new room Examples: dig kitchen = north;n, south;s dig house:myrooms.MyHouseTypeclass dig sheer cliff;cliff;sheer = climb up, climb down This command is a convenient way to build rooms quickly; it creates the new room and you can optionally set up exits back and forth between your current room and the new one. You can add as many aliases as you like to the name of the room and the exits in question; an example would be 'north;no;n'. """ key = "@dig" switch_options = ("teleport",) locks = "cmd:perm(dig) or perm(Builder)" help_category = "Building" # lockstring of newly created rooms, for easy overloading. # Will be formatted with the {id} of the creating object. new_room_lockstring = ( "control:id({id}) or perm(Admin); " "delete:id({id}) or perm(Admin); " "edit:id({id}) or perm(Admin)" ) def func(self): """Do the digging. Inherits variables from ObjManipCommand.parse()""" caller = self.caller if not self.lhs: string = "Usage: dig[/teleport] <roomname>[;alias;alias...]" "[:parent] [= <exit_there>" string += "[;alias;alias..][:parent]] " string += "[, <exit_back_here>[;alias;alias..][:parent]]" caller.msg(string) return room = self.lhs_objs[0] if not room["name"]: caller.msg("You must supply a new room name.") return location = caller.location # Create the new room typeclass = room["option"] if not typeclass: typeclass = settings.BASE_ROOM_TYPECLASS # create room new_room = create.create_object( typeclass, room["name"], aliases=room["aliases"], report_to=caller ) lockstring = self.new_room_lockstring.format(id=caller.id) new_room.locks.add(lockstring) alias_string = "" if new_room.aliases.all(): alias_string = " (%s)" % ", ".join(new_room.aliases.all()) room_string = "Created room %s(%s)%s of type %s." % ( new_room, new_room.dbref, alias_string, typeclass, ) # create exit to room exit_to_string = "" exit_back_string = "" if self.rhs_objs: to_exit = self.rhs_objs[0] if not to_exit["name"]: exit_to_string = "\nNo exit created to new room." elif not location: exit_to_string = "\nYou cannot create an exit from a None-location." else: # Build the exit to the new room from the current one typeclass = to_exit["option"] if not typeclass: typeclass = settings.BASE_EXIT_TYPECLASS new_to_exit = create.create_object( typeclass, to_exit["name"], location, aliases=to_exit["aliases"], locks=lockstring, destination=new_room, report_to=caller, ) alias_string = "" if new_to_exit.aliases.all(): alias_string = " (%s)" % ", ".join(new_to_exit.aliases.all()) exit_to_string = "\nCreated Exit from %s to %s: %s(%s)%s." exit_to_string = exit_to_string % ( location.name, new_room.name, new_to_exit, new_to_exit.dbref, alias_string, ) # Create exit back from new room if len(self.rhs_objs) > 1: # Building the exit back to the current room back_exit = self.rhs_objs[1] if not back_exit["name"]: exit_back_string = "\nNo back exit created." elif not location: exit_back_string = "\nYou cannot create an exit back to a None-location." else: typeclass = back_exit["option"] if not typeclass: typeclass = settings.BASE_EXIT_TYPECLASS new_back_exit = create.create_object( typeclass, back_exit["name"], new_room, aliases=back_exit["aliases"], locks=lockstring, destination=location, report_to=caller, ) alias_string = "" if new_back_exit.aliases.all(): alias_string = " (%s)" % ", ".join(new_back_exit.aliases.all()) exit_back_string = "\nCreated Exit back from %s to %s: %s(%s)%s." exit_back_string = exit_back_string % ( new_room.name, location.name, new_back_exit, new_back_exit.dbref, alias_string, ) caller.msg("%s%s%s" % (room_string, exit_to_string, exit_back_string)) if new_room and "teleport" in self.switches: caller.move_to(new_room) class CmdTunnel(COMMAND_DEFAULT_CLASS): """ create new rooms in cardinal directions only Usage: tunnel[/switch] <direction>[:typeclass] [= <roomname>[;alias;alias;...][:typeclass]] Switches: oneway - do not create an exit back to the current location tel - teleport to the newly created room Example: tunnel n tunnel n = house;mike's place;green building This is a simple way to build using pre-defined directions: |wn,ne,e,se,s,sw,w,nw|n (north, northeast etc) |wu,d|n (up and down) |wi,o|n (in and out) The full names (north, in, southwest, etc) will always be put as main name for the exit, using the abbreviation as an alias (so an exit will always be able to be used with both "north" as well as "n" for example). Opposite directions will automatically be created back from the new room unless the /oneway switch is given. For more flexibility and power in creating rooms, use dig. """ key = "@tunnel" aliases = ["@tun"] switch_options = ("oneway", "tel") locks = "cmd: perm(tunnel) or perm(Builder)" help_category = "Building" # store the direction, full name and its opposite directions = { "n": ("north", "s"), "ne": ("northeast", "sw"), "e": ("east", "w"), "se": ("southeast", "nw"), "s": ("south", "n"), "sw": ("southwest", "ne"), "w": ("west", "e"), "nw": ("northwest", "se"), "u": ("up", "d"), "d": ("down", "u"), "i": ("in", "o"), "o": ("out", "i"), } def func(self): """Implements the tunnel command""" if not self.args or not self.lhs: string = ( "Usage: tunnel[/switch] <direction>[:typeclass] [= <roomname>" "[;alias;alias;...][:typeclass]]" ) self.caller.msg(string) return # If we get a typeclass, we need to get just the exitname exitshort = self.lhs.split(":")[0] if exitshort not in self.directions: string = "tunnel can only understand the following directions: %s." % ",".join( sorted(self.directions.keys()) ) string += "\n(use dig for more freedom)" self.caller.msg(string) return # retrieve all input and parse it exitname, backshort = self.directions[exitshort] backname = self.directions[backshort][0] # if we recieved a typeclass for the exit, add it to the alias(short name) if ":" in self.lhs: # limit to only the first : character exit_typeclass = ":" + self.lhs.split(":", 1)[-1] # exitshort and backshort are the last part of the exit strings, # so we add our typeclass argument after exitshort += exit_typeclass backshort += exit_typeclass roomname = "Some place" if self.rhs: roomname = self.rhs # this may include aliases; that's fine. telswitch = "" if "tel" in self.switches: telswitch = "/teleport" backstring = "" if "oneway" not in self.switches: backstring = ", %s;%s" % (backname, backshort) # build the string we will use to call dig digstring = "dig%s %s = %s;%s%s" % (telswitch, roomname, exitname, exitshort, backstring) self.execute_cmd(digstring) class CmdLink(COMMAND_DEFAULT_CLASS): """ link existing rooms together with exits Usage: link[/switches] <object> = <target> link[/switches] <object> = link[/switches] <object> Switch: twoway - connect two exits. For this to work, BOTH <object> and <target> must be exit objects. If <object> is an exit, set its destination to <target>. Two-way operation instead sets the destination to the *locations* of the respective given arguments. The second form (a lone =) sets the destination to None (same as the unlink command) and the third form (without =) just shows the currently set destination. """ key = "@link" locks = "cmd:perm(link) or perm(Builder)" help_category = "Building" def func(self): """Perform the link""" caller = self.caller if not self.args: caller.msg("Usage: link[/twoway] <object> = <target>") return object_name = self.lhs # try to search locally first results = caller.search(object_name, quiet=True) if len(results) > 1: # local results was a multimatch. Inform them to be more specific _AT_SEARCH_RESULT = variable_from_module(*settings.SEARCH_AT_RESULT.rsplit(".", 1)) return _AT_SEARCH_RESULT(results, caller, query=object_name) elif len(results) == 1: # A unique local match obj = results[0] else: # No matches. Search globally obj = caller.search(object_name, global_search=True) if not obj: return if self.rhs: # this means a target name was given target = caller.search(self.rhs, global_search=True) if not target: return if target == obj: self.caller.msg("Cannot link an object to itself.") return string = "" note = "Note: %s(%s) did not have a destination set before. Make sure you linked the right thing." if not obj.destination: string = note % (obj.name, obj.dbref) if "twoway" in self.switches: if not (target.location and obj.location): string = "To create a two-way link, %s and %s must both have a location" % ( obj, target, ) string += " (i.e. they cannot be rooms, but should be exits)." self.caller.msg(string) return if not target.destination: string += note % (target.name, target.dbref) obj.destination = target.location target.destination = obj.location string += "\nLink created %s (in %s) <-> %s (in %s) (two-way)." % ( obj.name, obj.location, target.name, target.location, ) else: obj.destination = target string += "\nLink created %s -> %s (one way)." % (obj.name, target) elif self.rhs is None: # this means that no = was given (otherwise rhs # would have been an empty string). So we inspect # the home/destination on object dest = obj.destination if dest: string = "%s is an exit to %s." % (obj.name, dest.name) else: string = "%s is not an exit. Its home location is %s." % (obj.name, obj.home) else: # We gave the command link 'obj = ' which means we want to # clear destination. if obj.destination: obj.destination = None string = "Former exit %s no longer links anywhere." % obj.name else: string = "%s had no destination to unlink." % obj.name # give feedback caller.msg(string.strip()) class CmdUnLink(CmdLink): """ remove exit-connections between rooms Usage: unlink <Object> Unlinks an object, for example an exit, disconnecting it from whatever it was connected to. """ # this is just a child of CmdLink key = "unlink" locks = "cmd:perm(unlink) or perm(Builder)" help_key = "Building" def func(self): """ All we need to do here is to set the right command and call func in CmdLink """ caller = self.caller if not self.args: caller.msg("Usage: unlink <object>") return # This mimics 'link <obj> = ' which is the same as unlink self.rhs = "" # call the link functionality super().func() class CmdSetHome(CmdLink): """ set an object's home location Usage: sethome <obj> [= <home_location>] sethom <obj> The "home" location is a "safety" location for objects; they will be moved there if their current location ceases to exist. All objects should always have a home location for this reason. It is also a convenient target of the "home" command. If no location is given, just view the object's home location. """ key = "@sethome" locks = "cmd:perm(sethome) or perm(Builder)" help_category = "Building" def func(self): """implement the command""" if not self.args: string = "Usage: sethome <obj> [= <home_location>]" self.caller.msg(string) return obj = self.caller.search(self.lhs, global_search=True) if not obj: return if not self.rhs: # just view home = obj.home if not home: string = "This object has no home location set!" else: string = "%s's current home is %s(%s)." % (obj, home, home.dbref) else: # set a home location new_home = self.caller.search(self.rhs, global_search=True) if not new_home: return old_home = obj.home obj.home = new_home if old_home: string = "Home location of %s was changed from %s(%s) to %s(%s)." % ( obj, old_home, old_home.dbref, new_home, new_home.dbref, ) else: string = "Home location of %s was set to %s(%s)." % (obj, new_home, new_home.dbref) self.caller.msg(string) class CmdListCmdSets(COMMAND_DEFAULT_CLASS): """ list command sets defined on an object Usage: cmdsets <obj> This displays all cmdsets assigned to a user. Defaults to yourself. """ key = "@cmdsets" locks = "cmd:perm(listcmdsets) or perm(Builder)" help_category = "Building" def func(self): """list the cmdsets""" caller = self.caller if self.arglist: obj = caller.search(self.arglist[0]) if not obj: return else: obj = caller string = "%s" % obj.cmdset caller.msg(string) class CmdName(ObjManipCommand): """ change the name and/or aliases of an object Usage: name <obj> = <newname>;alias1;alias2 Rename an object to something new. Use *obj to rename an account. """ key = "@name" aliases = ["@rename"] locks = "cmd:perm(rename) or perm(Builder)" help_category = "Building" def func(self): """change the name""" caller = self.caller if not self.args: caller.msg("Usage: name <obj> = <newname>[;alias;alias;...]") return obj = None if self.lhs_objs: objname = self.lhs_objs[0]["name"] if objname.startswith("*"): # account mode obj = caller.account.search(objname.lstrip("*")) if obj: if self.rhs_objs[0]["aliases"]: caller.msg("Accounts can't have aliases.") return newname = self.rhs if not newname: caller.msg("No name defined!") return if not (obj.access(caller, "control") or obj.access(caller, "edit")): caller.msg("You don't have right to edit this account %s." % obj) return obj.username = newname obj.save() caller.msg("Account's name changed to '%s'." % newname) return # object search, also with * obj = caller.search(objname) if not obj: return if self.rhs_objs: newname = self.rhs_objs[0]["name"] aliases = self.rhs_objs[0]["aliases"] else: newname = self.rhs aliases = None if not newname and not aliases: caller.msg("No names or aliases defined!") return if not (obj.access(caller, "control") or obj.access(caller, "edit")): caller.msg("You don't have the right to edit %s." % obj) return # change the name and set aliases: if newname: obj.key = newname astring = "" if aliases: [obj.aliases.add(alias) for alias in aliases] astring = " (%s)" % (", ".join(aliases)) # fix for exits - we need their exit-command to change name too if obj.destination: obj.flush_from_cache(force=True) caller.msg("Object's name changed to '%s'%s." % (newname, astring)) class CmdOpen(ObjManipCommand): """ open a new exit from the current room Usage: open <new exit>[;alias;alias..][:typeclass] [,<return exit>[;alias;..][:typeclass]]] = <destination> Handles the creation of exits. If a destination is given, the exit will point there. The <return exit> argument sets up an exit at the destination leading back to the current room. Destination name can be given both as a #dbref and a name, if that name is globally unique. """ key = "@open" locks = "cmd:perm(open) or perm(Builder)" help_category = "Building" new_obj_lockstring = "control:id({id}) or perm(Admin);delete:id({id}) or perm(Admin)" # a custom member method to chug out exits and do checks def create_exit(self, exit_name, location, destination, exit_aliases=None, typeclass=None): """ Helper function to avoid code duplication. At this point we know destination is a valid location """ caller = self.caller string = "" # check if this exit object already exists at the location. # we need to ignore errors (so no automatic feedback)since we # have to know the result of the search to decide what to do. exit_obj = caller.search(exit_name, location=location, quiet=True, exact=True) if len(exit_obj) > 1: # give error message and return caller.search(exit_name, location=location, exact=True) return None if exit_obj: exit_obj = exit_obj[0] if not exit_obj.destination: # we are trying to link a non-exit string = "'%s' already exists and is not an exit!\nIf you want to convert it " string += ( "to an exit, you must assign an object to the 'destination' property first." ) caller.msg(string % exit_name) return None # we are re-linking an old exit. old_destination = exit_obj.destination if old_destination: string = "Exit %s already exists." % exit_name if old_destination.id != destination.id: # reroute the old exit. exit_obj.destination = destination if exit_aliases: [exit_obj.aliases.add(alias) for alias in exit_aliases] string += " Rerouted its old destination '%s' to '%s' and changed aliases." % ( old_destination.name, destination.name, ) else: string += " It already points to the correct place." else: # exit does not exist before. Create a new one. lockstring = self.new_obj_lockstring.format(id=caller.id) if not typeclass: typeclass = settings.BASE_EXIT_TYPECLASS exit_obj = create.create_object( typeclass, key=exit_name, location=location, aliases=exit_aliases, locks=lockstring, report_to=caller, ) if exit_obj: # storing a destination is what makes it an exit! exit_obj.destination = destination string = ( "" if not exit_aliases else " (aliases: %s)" % (", ".join([str(e) for e in exit_aliases])) ) string = "Created new Exit '%s' from %s to %s%s." % ( exit_name, location.name, destination.name, string, ) else: string = "Error: Exit '%s' not created." % exit_name # emit results caller.msg(string) return exit_obj def parse(self): super().parse() self.location = self.caller.location if not self.args or not self.rhs: self.caller.msg("Usage: open <new exit>[;alias...][:typeclass]" "[,<return exit>[;alias..][:typeclass]]] " "= <destination>") raise InterruptCommand if not self.location: self.caller.msg("You cannot create an exit from a None-location.") raise InterruptCommand self.destination = self.caller.search(self.rhs, global_search=True) if not self.destination: raise InterruptCommand self.exit_name = self.lhs_objs[0]["name"] self.exit_aliases = self.lhs_objs[0]["aliases"] self.exit_typeclass = self.lhs_objs[0]["option"] def func(self): """ This is where the processing starts. Uses the ObjManipCommand.parser() for pre-processing as well as the self.create_exit() method. """ # Create exit ok = self.create_exit(self.exit_name, self.location, self.destination, self.exit_aliases, self.exit_typeclass) if not ok: # an error; the exit was not created, so we quit. return # Create back exit, if any if len(self.lhs_objs) > 1: back_exit_name = self.lhs_objs[1]["name"] back_exit_aliases = self.lhs_objs[1]["aliases"] back_exit_typeclass = self.lhs_objs[1]["option"] self.create_exit(back_exit_name, self.destination, self.location, back_exit_aliases, back_exit_typeclass) def _convert_from_string(cmd, strobj): """ Converts a single object in *string form* to its equivalent python type. Python earlier than 2.6: Handles floats, ints, and limited nested lists and dicts (can't handle lists in a dict, for example, this is mainly due to the complexity of parsing this rather than any technical difficulty - if there is a need for set-ing such complex structures on the command line we might consider adding it). Python 2.6 and later: Supports all Python structures through literal_eval as long as they are valid Python syntax. If they are not (such as [test, test2], ie without the quotes around the strings), the entire structure will be converted to a string and a warning will be given. We need to convert like this since all data being sent over the telnet connection by the Account is text - but we will want to store it as the "real" python type so we can do convenient comparisons later (e.g. obj.db.value = 2, if value is stored as a string this will always fail). """ # Use literal_eval to parse python structure exactly. try: return _LITERAL_EVAL(strobj) except (SyntaxError, ValueError): # treat as string strobj = utils.to_str(strobj) string = ( '|RNote: name "|r%s|R" was converted to a string. ' "Make sure this is acceptable." % strobj ) cmd.caller.msg(string) return strobj except Exception as err: string = "|RUnknown error in evaluating Attribute: {}".format(err) return string class CmdSetAttribute(ObjManipCommand): """ set attribute on an object or account Usage: set[/switch] <obj>/<attr>[:category] = <value> set[/switch] <obj>/<attr>[:category] = # delete attribute set[/switch] <obj>/<attr>[:category] # view attribute set[/switch] *<account>/<attr>[:category] = <value> Switch: edit: Open the line editor (string values only) script: If we're trying to set an attribute on a script channel: If we're trying to set an attribute on a channel account: If we're trying to set an attribute on an account room: Setting an attribute on a room (global search) exit: Setting an attribute on an exit (global search) char: Setting an attribute on a character (global search) character: Alias for char, as above. Example: set self/foo = "bar" set/delete self/foo set self/foo = $dbref(#53) Sets attributes on objects. The second example form above clears a previously set attribute while the third form inspects the current value of the attribute (if any). The last one (with the star) is a shortcut for operating on a player Account rather than an Object. If you want <value> to be an object, use $dbef(#dbref) or $search(key) to assign it. You need control or edit access to the object you are adding. The most common data to save with this command are strings and numbers. You can however also set Python primitives such as lists, dictionaries and tuples on objects (this might be important for the functionality of certain custom objects). This is indicated by you starting your value with one of |c'|n, |c"|n, |c(|n, |c[|n or |c{ |n. Once you have stored a Python primitive as noted above, you can include |c[<key>]|n in <attr> to reference nested values in e.g. a list or dict. Remember that if you use Python primitives like this, you must write proper Python syntax too - notably you must include quotes around your strings or you will get an error. """ key = "@set" locks = "cmd:perm(set) or perm(Builder)" help_category = "Building" nested_re = re.compile(r"\[.*?\]") not_found = object() def check_obj(self, obj): """ This may be overridden by subclasses in case restrictions need to be placed on whether certain objects can have attributes set by certain accounts. This function is expected to display its own error message. Returning False will abort the command. """ return True def check_attr(self, obj, attr_name, category): """ This may be overridden by subclasses in case restrictions need to be placed on what attributes can be set by who beyond the normal lock. This functions is expected to display its own error message. It is run once for every attribute that is checked, blocking only those attributes which are not permitted and letting the others through. """ return attr_name def split_nested_attr(self, attr): """ Yields tuples of (possible attr name, nested keys on that attr). For performance, this is biased to the deepest match, but allows compatability with older attrs that might have been named with `[]`'s. > list(split_nested_attr("nested['asdf'][0]")) [ ('nested', ['asdf', 0]), ("nested['asdf']", [0]), ("nested['asdf'][0]", []), ] """ quotes = "\"'" def clean_key(val): val = val.strip("[]") if val[0] in quotes: return val.strip(quotes) if val[0] == LIST_APPEND_CHAR: # List insert/append syntax return val try: return int(val) except ValueError: return val parts = self.nested_re.findall(attr) base_attr = "" if parts: base_attr = attr[: attr.find(parts[0])] for index, part in enumerate(parts): yield (base_attr, [clean_key(p) for p in parts[index:]]) base_attr += part yield (attr, []) def do_nested_lookup(self, value, *keys): result = value for key in keys: try: result = result.__getitem__(key) except (IndexError, KeyError, TypeError): return self.not_found return result def view_attr(self, obj, attr, category): """ Look up the value of an attribute and return a string displaying it. """ nested = False for key, nested_keys in self.split_nested_attr(attr): nested = True if obj.attributes.has(key): val = obj.attributes.get(key) val = self.do_nested_lookup(val, *nested_keys) if val is not self.not_found: return f"\nAttribute {obj.name}/|w{attr}|n [category:{category}] = {val}" error = f"\nAttribute {obj.name}/|w{attr} [category:{category}] does not exist." if nested: error += " (Nested lookups attempted)" return error def rm_attr(self, obj, attr, category): """ Remove an attribute from the object, or a nested data structure, and report back. """ nested = False for key, nested_keys in self.split_nested_attr(attr): nested = True if obj.attributes.has(key, category): if nested_keys: del_key = nested_keys[-1] val = obj.attributes.get(key, category=category) deep = self.do_nested_lookup(val, *nested_keys[:-1]) if deep is not self.not_found: try: del deep[del_key] except (IndexError, KeyError, TypeError): continue return f"\nDeleted attribute {obj.name}/|w{attr}|n [category:{category}]." else: exists = obj.attributes.has(key, category) if exists: obj.attributes.remove(attr, category=category) return f"\nDeleted attribute {obj.name}/|w{attr}|n [category:{category}]." else: return (f"\nNo attribute {obj.name}/|w{attr}|n [category: {category}] " "was found to delete.") error = f"\nNo attribute {obj.name}/|w{attr}|n [category: {category}] was found to delete." if nested: error += " (Nested lookups attempted)" return error def set_attr(self, obj, attr, value, category): done = False for key, nested_keys in self.split_nested_attr(attr): if obj.attributes.has(key, category) and nested_keys: acc_key = nested_keys[-1] lookup_value = obj.attributes.get(key, category) deep = self.do_nested_lookup(lookup_value, *nested_keys[:-1]) if deep is not self.not_found: # To support appending and inserting to lists # a key that starts with LIST_APPEND_CHAR will insert a new item at that # location, and move the other elements down. # Using LIST_APPEND_CHAR alone will append to the list if isinstance(acc_key, str) and acc_key[0] == LIST_APPEND_CHAR: try: if len(acc_key) > 1: where = int(acc_key[1:]) deep.insert(where, value) else: deep.append(value) except (ValueError, AttributeError): pass else: value = lookup_value attr = key done = True break # List magic failed, just use like a key/index try: deep[acc_key] = value except TypeError as err: # Tuples can't be modified return f"\n{err} - {deep}" value = lookup_value attr = key done = True break verb = "Modified" if obj.attributes.has(attr) else "Created" try: if not done: obj.attributes.add(attr, value, category) return f"\n{verb} attribute {obj.name}/|w{attr}|n [category:{category}] = {value}" except SyntaxError: # this means literal_eval tried to parse a faulty string return ( "\n|RCritical Python syntax error in your value. Only " "primitive Python structures are allowed.\nYou also " "need to use correct Python syntax. Remember especially " "to put quotes around all strings inside lists and " "dicts.|n" ) @interactive def edit_handler(self, obj, attr, caller): """Activate the line editor""" def load(caller): """Called for the editor to load the buffer""" try: old_value = obj.attributes.get(attr, raise_exception=True) except AttributeError: # we set empty buffer on nonexisting Attribute because otherwise # we'd always have the string "None" in the buffer to start with old_value = '' return str(old_value) # we already confirmed we are ok with this def save(caller, buf): """Called when editor saves its buffer.""" obj.attributes.add(attr, buf) caller.msg("Saved Attribute %s." % attr) # check non-strings before activating editor try: old_value = obj.attributes.get(attr, raise_exception=True) if not isinstance(old_value, str): answer = yield( f"|rWarning: Attribute |w{attr}|r is of type |w{type(old_value).__name__}|r. " "\nTo continue editing, it must be converted to (and saved as) a string. " "Continue? [Y]/N?") if answer.lower() in ('n', 'no'): self.caller.msg("Aborted edit.") return except AttributeError: pass # start the editor EvEditor(self.caller, load, save, key=f"{obj}/{attr}") def search_for_obj(self, objname): """ Searches for an object matching objname. The object may be of different typeclasses. Args: objname: Name of the object we're looking for Returns: A typeclassed object, or None if nothing is found. """ from evennia.utils.utils import variable_from_module _AT_SEARCH_RESULT = variable_from_module(*settings.SEARCH_AT_RESULT.rsplit(".", 1)) caller = self.caller if objname.startswith("*") or "account" in self.switches: found_obj = caller.search_account(objname.lstrip("*")) elif "script" in self.switches: found_obj = _AT_SEARCH_RESULT(search.search_script(objname), caller) elif "channel" in self.switches: found_obj = _AT_SEARCH_RESULT(search.search_channel(objname), caller) else: global_search = True if "char" in self.switches or "character" in self.switches: typeclass = settings.BASE_CHARACTER_TYPECLASS elif "room" in self.switches: typeclass = settings.BASE_ROOM_TYPECLASS elif "exit" in self.switches: typeclass = settings.BASE_EXIT_TYPECLASS else: global_search = False typeclass = None found_obj = caller.search(objname, global_search=global_search, typeclass=typeclass) return found_obj def func(self): """Implement the set attribute - a limited form of py.""" caller = self.caller if not self.args: caller.msg("Usage: set obj/attr[:category] = value. Use empty value to clear.") return # get values prepared by the parser value = self.rhs objname = self.lhs_objattr[0]["name"] attrs = self.lhs_objattr[0]["attrs"] category = self.lhs_objs[0].get("option") # None if unset obj = self.search_for_obj(objname) if not obj: return if not self.check_obj(obj): return result = [] if "edit" in self.switches: # edit in the line editor if not (obj.access(self.caller, "control") or obj.access(self.caller, "edit")): caller.msg("You don't have permission to edit %s." % obj.key) return if len(attrs) > 1: caller.msg("The Line editor can only be applied " "to one attribute at a time.") return if not attrs: caller.msg("Use `set/edit <objname>/<attr>` to define the Attribute to edit.\nTo " "edit the current room description, use `set/edit here/desc` (or " "use the `desc` command).") return self.edit_handler(obj, attrs[0], caller) return if not value: if self.rhs is None: # no = means we inspect the attribute(s) if not attrs: attrs = [attr.key for attr in obj.attributes.get(category=None)] for attr in attrs: if not self.check_attr(obj, attr, category): continue result.append(self.view_attr(obj, attr, category)) # we view it without parsing markup. self.caller.msg("".join(result).strip(), options={"raw": True}) return else: # deleting the attribute(s) if not (obj.access(self.caller, "control") or obj.access(self.caller, "edit")): caller.msg("You don't have permission to edit %s." % obj.key) return for attr in attrs: if not self.check_attr(obj, attr, category): continue result.append(self.rm_attr(obj, attr, category)) else: # setting attribute(s). Make sure to convert to real Python type before saving. # add support for $dbref() and $search() in set argument global _ATTRFUNCPARSER if not _ATTRFUNCPARSER: _ATTRFUNCPARSER = funcparser.FuncParser( {"dbref": funcparser.funcparser_callable_search, "search": funcparser.funcparser_callable_search} ) if not (obj.access(self.caller, "control") or obj.access(self.caller, "edit")): caller.msg("You don't have permission to edit %s." % obj.key) return for attr in attrs: if not self.check_attr(obj, attr, category): continue # from evennia import set_trace;set_trace() parsed_value = _ATTRFUNCPARSER.parse(value, return_str=False, caller=caller) if hasattr(parsed_value, "access"): # if this is an object we must have the right to read it, if so, # we will not convert it to a string if not (parsed_value.access(caller, "control") or parsed_value.access(self.caller, "edit")): caller.msg("You don't have permission to set " f"object with identifier '{value}'.") continue value = parsed_value else: value = _convert_from_string(self, value) result.append(self.set_attr(obj, attr, value, category)) # send feedback caller.msg("".join(result).strip("\n")) class CmdTypeclass(COMMAND_DEFAULT_CLASS): """ set or change an object's typeclass Usage: typeclass[/switch] <object> [= typeclass.path] typeclass/prototype <object> = prototype_key typeclasses or typeclass/list/show [typeclass.path] swap - this is a shorthand for using /force/reset flags. update - this is a shorthand for using the /force/reload flag. Switch: show, examine - display the current typeclass of object (default) or, if given a typeclass path, show the docstring of that typeclass. update - *only* re-run at_object_creation on this object meaning locks or other properties set later may remain. reset - clean out *all* the attributes and properties on the object - basically making this a new clean object. This will also reset cmdsets! force - change to the typeclass also if the object already has a typeclass of the same name. list - show available typeclasses. Only typeclasses in modules actually imported or used from somewhere in the code will show up here (those typeclasses are still available if you know the path) prototype - clean and overwrite the object with the specified prototype key - effectively making a whole new object. Example: type button = examples.red_button.RedButton type/prototype button=a red button If the typeclass_path is not given, the current object's typeclass is assumed. View or set an object's typeclass. If setting, the creation hooks of the new typeclass will be run on the object. If you have clashing properties on the old class, use /reset. By default you are protected from changing to a typeclass of the same name as the one you already have - use /force to override this protection. The given typeclass must be identified by its location using python dot-notation pointing to the correct module and class. If no typeclass is given (or a wrong typeclass is given). Errors in the path or new typeclass will lead to the old typeclass being kept. The location of the typeclass module is searched from the default typeclass directory, as defined in the server settings. """ key = "@typeclass" aliases = ["@type", "@parent", "@swap", "@update", "@typeclasses"] switch_options = ("show", "examine", "update", "reset", "force", "list", "prototype") locks = "cmd:perm(typeclass) or perm(Builder)" help_category = "Building" def _generic_search(self, query, typeclass_path): caller = self.caller if typeclass_path: # make sure we search the right database table try: new_typeclass = class_from_module(typeclass_path) except ImportError: # this could be a prototype and not a typeclass at all return caller.search(query) dbclass = new_typeclass.__dbclass__ if caller.__dbclass__ == dbclass: # object or account match obj = caller.search(query) if not obj: return elif (self.account and self.account.__dbclass__ == dbclass): # applying account while caller is object caller.msg(f"Trying to search {new_typeclass} with query '{self.lhs}'.") obj = self.account.search(query) if not obj: return elif hasattr(caller, "puppet") and caller.puppet.__dbclass__ == dbclass: # applying object while caller is account caller.msg(f"Trying to search {new_typeclass} with query '{self.lhs}'.") obj = caller.puppet.search(query) if not obj: return else: # other mismatch between caller and specified typeclass caller.msg(f"Trying to search {new_typeclass} with query '{self.lhs}'.") obj = new_typeclass.search(query) if not obj: if isinstance(obj, list): caller.msg(f"Could not find {new_typeclass} with query '{self.lhs}'.") return else: # no rhs, use caller's typeclass obj = caller.search(query) if not obj: return return obj def func(self): """Implements command""" caller = self.caller if "list" in self.switches or self.cmdname in ('typeclasses', '@typeclasses'): tclasses = get_all_typeclasses() contribs = [key for key in sorted(tclasses) if key.startswith("evennia.contrib")] or [ "<None loaded>" ] core = [ key for key in sorted(tclasses) if key.startswith("evennia") and key not in contribs ] or ["<None loaded>"] game = [key for key in sorted(tclasses) if not key.startswith("evennia")] or [ "<None loaded>" ] string = ( "|wCore typeclasses|n\n" " {core}\n" "|wLoaded Contrib typeclasses|n\n" " {contrib}\n" "|wGame-dir typeclasses|n\n" " {game}" ).format( core="\n ".join(core), contrib="\n ".join(contribs), game="\n ".join(game) ) EvMore(caller, string, exit_on_lastpage=True) return if not self.args: caller.msg("Usage: %s <object> [= typeclass]" % self.cmdstring) return if "show" in self.switches or "examine" in self.switches: oquery = self.lhs obj = caller.search(oquery, quiet=True) if not obj: # no object found to examine, see if it's a typeclass-path instead tclasses = get_all_typeclasses() matches = [ (key, tclass) for key, tclass in tclasses.items() if key.endswith(oquery) ] nmatches = len(matches) if nmatches > 1: caller.msg( "Multiple typeclasses found matching {}:\n {}".format( oquery, "\n ".join(tup[0] for tup in matches) ) ) elif not matches: caller.msg("No object or typeclass path found to match '{}'".format(oquery)) else: # one match found caller.msg( "Docstring for typeclass '{}':\n{}".format(oquery, matches[0][1].__doc__) ) else: # do the search again to get the error handling in case of multi-match obj = caller.search(oquery) if not obj: return caller.msg( "{}'s current typeclass is '{}.{}'".format( obj.name, obj.__class__.__module__, obj.__class__.__name__ ) ) return obj = self._generic_search(self.lhs, self.rhs) if not obj: return if not hasattr(obj, "__dbclass__"): string = "%s is not a typed object." % obj.name caller.msg(string) return new_typeclass = self.rhs or obj.path prototype = None if "prototype" in self.switches: key = self.rhs prototype = protlib.search_prototype(key=key) if len(prototype) > 1: caller.msg( "More than one match for {}:\n{}".format( key, "\n".join(proto.get("prototype_key", "") for proto in prototype) ) ) return elif prototype: # one match prototype = prototype[0] else: # no match caller.msg("No prototype '{}' was found.".format(key)) return new_typeclass = prototype["typeclass"] self.switches.append("force") if "show" in self.switches or "examine" in self.switches: string = "%s's current typeclass is %s." % (obj.name, obj.__class__) caller.msg(string) return if self.cmdstring in ("swap", "@swap"): self.switches.append("force") self.switches.append("reset") elif self.cmdstring in ("update", "@update"): self.switches.append("force") self.switches.append("update") if not (obj.access(caller, "control") or obj.access(caller, "edit")): caller.msg("You are not allowed to do that.") return if not hasattr(obj, "swap_typeclass"): caller.msg("This object cannot have a type at all!") return is_same = obj.is_typeclass(new_typeclass, exact=True) if is_same and "force" not in self.switches: string = (f"{obj.name} already has the typeclass '{new_typeclass}'. " "Use /force to override.") else: update = "update" in self.switches reset = "reset" in self.switches hooks = "at_object_creation" if update and not reset else "all" old_typeclass_path = obj.typeclass_path # special prompt for the user in cases where we want # to confirm changes. if "prototype" in self.switches: diff, _ = spawner.prototype_diff_from_object(prototype, obj) txt = spawner.format_diff(diff) prompt = ( "Applying prototype '%s' over '%s' will cause the follow changes:\n%s\n" % (prototype["key"], obj.name, txt) ) if not reset: prompt += "\n|yWARNING:|n Use the /reset switch to apply the prototype over a blank state." prompt += "\nAre you sure you want to apply these changes [yes]/no?" answer = yield (prompt) if answer and answer in ("no", "n"): caller.msg("Canceled: No changes were applied.") return # we let this raise exception if needed obj.swap_typeclass( new_typeclass, clean_attributes=reset, clean_cmdsets=reset, run_start_hooks=hooks ) if "prototype" in self.switches: modified = spawner.batch_update_objects_with_prototype( prototype, objects=[obj], caller=self.caller) prototype_success = modified > 0 if not prototype_success: caller.msg("Prototype %s failed to apply." % prototype["key"]) if is_same: string = "%s updated its existing typeclass (%s).\n" % (obj.name, obj.path) else: string = "%s changed typeclass from %s to %s.\n" % ( obj.name, old_typeclass_path, obj.typeclass_path, ) if update: string += "Only the at_object_creation hook was run (update mode)." else: string += "All object creation hooks were run." if reset: string += " All old attributes where deleted before the swap." else: string += " Attributes set before swap were not removed." if "prototype" in self.switches and prototype_success: string += ( " Prototype '%s' was successfully applied over the object type." % prototype["key"] ) caller.msg(string) class CmdWipe(ObjManipCommand): """ clear all attributes from an object Usage: wipe <object>[/<attr>[/<attr>...]] Example: wipe box wipe box/colour Wipes all of an object's attributes, or optionally only those matching the given attribute-wildcard search string. """ key = "@wipe" locks = "cmd:perm(wipe) or perm(Builder)" help_category = "Building" def func(self): """ inp is the dict produced in ObjManipCommand.parse() """ caller = self.caller if not self.args: caller.msg("Usage: wipe <object>[/<attr>/<attr>...]") return # get the attributes set by our custom parser objname = self.lhs_objattr[0]["name"] attrs = self.lhs_objattr[0]["attrs"] obj = caller.search(objname) if not obj: return if not (obj.access(caller, "control") or obj.access(caller, "edit")): caller.msg("You are not allowed to do that.") return if not attrs: # wipe everything obj.attributes.clear() string = "Wiped all attributes on %s." % obj.name else: for attrname in attrs: obj.attributes.remove(attrname) string = "Wiped attributes %s on %s." string = string % (",".join(attrs), obj.name) caller.msg(string) class CmdLock(ObjManipCommand): """ assign a lock definition to an object Usage: lock <object or *account>[ = <lockstring>] or lock[/switch] <object or *account>/<access_type> Switch: del - delete given access type view - view lock associated with given access type (default) If no lockstring is given, shows all locks on object. Lockstring is of the form access_type:[NOT] func1(args)[ AND|OR][ NOT] func2(args) ...] Where func1, func2 ... valid lockfuncs with or without arguments. Separator expressions need not be capitalized. For example: 'get: id(25) or perm(Admin)' The 'get' lock access_type is checked e.g. by the 'get' command. An object locked with this example lock will only be possible to pick up by Admins or by an object with id=25. You can add several access_types after one another by separating them by ';', i.e: 'get:id(25); delete:perm(Builder)' """ key = "@lock" aliases = ["@locks"] locks = "cmd: perm(locks) or perm(Builder)" help_category = "Building" def func(self): """Sets up the command""" caller = self.caller if not self.args: string = ( "Usage: lock <object>[ = <lockstring>] or lock[/switch] " "<object>/<access_type>" ) caller.msg(string) return if "/" in self.lhs: # call of the form lock obj/access_type objname, access_type = [p.strip() for p in self.lhs.split("/", 1)] obj = None if objname.startswith("*"): obj = caller.search_account(objname.lstrip("*")) if not obj: obj = caller.search(objname) if not obj: return has_control_access = obj.access(caller, "control") if access_type == "control" and not has_control_access: # only allow to change 'control' access if you have 'control' access already caller.msg("You need 'control' access to change this type of lock.") return if not (has_control_access or obj.access(caller, "edit")): caller.msg("You are not allowed to do that.") return lockdef = obj.locks.get(access_type) if lockdef: if "del" in self.switches: obj.locks.delete(access_type) string = "deleted lock %s" % lockdef else: string = lockdef else: string = "%s has no lock of access type '%s'." % (obj, access_type) caller.msg(string) return if self.rhs: # we have a = separator, so we are assigning a new lock if self.switches: swi = ", ".join(self.switches) caller.msg( "Switch(es) |w%s|n can not be used with a " "lock assignment. Use e.g. " "|wlock/del objname/locktype|n instead." % swi ) return objname, lockdef = self.lhs, self.rhs obj = None if objname.startswith("*"): obj = caller.search_account(objname.lstrip("*")) if not obj: obj = caller.search(objname) if not obj: return if not (obj.access(caller, "control") or obj.access(caller, "edit")): caller.msg("You are not allowed to do that.") return ok = False lockdef = re.sub(r"\'|\"", "", lockdef) try: ok = obj.locks.add(lockdef) except LockException as e: caller.msg(str(e)) if "cmd" in lockdef.lower() and inherits_from( obj, "evennia.objects.objects.DefaultExit" ): # special fix to update Exits since "cmd"-type locks won't # update on them unless their cmdsets are rebuilt. obj.at_init() if ok: caller.msg("Added lock '%s' to %s." % (lockdef, obj)) return # if we get here, we are just viewing all locks on obj obj = None if self.lhs.startswith("*"): obj = caller.search_account(self.lhs.lstrip("*")) if not obj: obj = caller.search(self.lhs) if not obj: return if not (obj.access(caller, "control") or obj.access(caller, "edit")): caller.msg("You are not allowed to do that.") return caller.msg("\n".join(obj.locks.all())) class CmdExamine(ObjManipCommand): """ get detailed information about an object Usage: examine [<object>[/attrname]] examine [*<account>[/attrname]] Switch: account - examine an Account (same as adding *) object - examine an Object (useful when OOC) script - examine a Script channel - examine a Channel The examine command shows detailed game info about an object and optionally a specific attribute on it. If object is not specified, the current location is examined. Append a * before the search string to examine an account. """ key = "@examine" aliases = ["@ex", "@exam"] locks = "cmd:perm(examine) or perm(Builder)" help_category = "Building" arg_regex = r"(/\w+?(\s|$))|\s|$" switch_options = ["account", "object", "script", "channel"] object_type = "object" detail_color = "|c" header_color = "|w" quell_color = "|r" separator = "-" def msg(self, text): """ Central point for sending messages to the caller. This tags the message as 'examine' for eventual custom markup in the client. Attributes: text (str): The text to send. """ self.caller.msg(text=(text, {"type": "examine"})) def format_key(self, obj): return f"{obj.name} ({obj.dbref})" def format_aliases(self, obj): if hasattr(obj, "aliases") and obj.aliases.all(): return ", ".join(utils.make_iter(str(obj.aliases))) def format_typeclass(self, obj): if hasattr(obj, "typeclass_path"): return f"{obj.typename} ({obj.typeclass_path})" def format_sessions(self, obj): if hasattr(obj, "sessions"): sessions = obj.sessions.all() if sessions: return ", ".join(f"#{sess.sessid}" for sess in obj.sessions.all()) def format_email(self, obj): if hasattr(obj, "email") and obj.email: return f"{self.detail_color}{obj.email}|n" def format_account_key(self, account): return f"{self.detail_color}{account.name}|n ({account.dbref})" def format_account_typeclass(self, account): return f"{account.typename} ({account.typeclass_path})" def format_account_permissions(self, account): perms = account.permissions.all() if account.is_superuser: perms = ["<Superuser>"] elif not perms: perms = ["<None>"] perms = ", ".join(perms) if account.attributes.has("_quell"): perms += f" {self.quell_color}(quelled)|n" return perms def format_location(self, obj): if hasattr(obj, "location") and obj.location: return f"{obj.location.key} (#{obj.location.id})" def format_home(self, obj): if hasattr(obj, "home") and obj.home: return f"{obj.home.key} (#{obj.home.id})" def format_destination(self, obj): if hasattr(obj, "destination") and obj.destination: return f"{obj.destination.key} (#{obj.destination.id})" def format_permissions(self, obj): perms = obj.permissions.all() if perms: perms_string = ", ".join(perms) if obj.is_superuser: perms_string += " <Superuser>" return perms_string def format_locks(self, obj): locks = str(obj.locks) if locks: return utils.fill( "; ".join([lock for lock in locks.split(";")]), indent=2 ) return "Default" def format_scripts(self, obj): if hasattr(obj, "scripts") and hasattr(obj.scripts, "all") and obj.scripts.all(): return f"{obj.scripts}" def format_single_tag(self, tag): if tag.db_category: return f"{tag.db_key}[{tag.db_category}]" else: return f"{tag.db_key}" def format_tags(self, obj): if hasattr(obj, "tags"): tags = sorted(obj.tags.all(return_objs=True)) if tags: formatted_tags = [self.format_single_tag(tag) for tag in tags] return utils.fill(", ".join(formatted_tags), indent=2) def format_single_cmdset_options(self, cmdset): def _truefalse(string, value): if value is None: return "" if value: return f"{string}: T" return f"{string}: F" return ", ".join( _truefalse(opt, getattr(cmdset, opt)) for opt in ("no_exits", "no_objs", "no_channels", "duplicates") if getattr(cmdset, opt) is not None ) def format_single_cmdset(self, cmdset): options = self.format_single_cmdset_options(cmdset) return f"{cmdset.path} [{cmdset.key}] ({cmdset.mergetype}, prio {cmdset.priority}{options}" def format_stored_cmdsets(self, obj): if hasattr(obj, "cmdset"): stored_cmdset_strings = [] stored_cmdsets = sorted(obj.cmdset.all(), key=lambda x: x.priority, reverse=True) for cmdset in stored_cmdsets: if cmdset.key != "_EMPTY_CMDSET": stored_cmdset_strings.append(self.format_single_cmdset(cmdset)) return "\n " + "\n ".join(stored_cmdset_strings) def format_merged_cmdsets(self, obj, current_cmdset): if not hasattr(obj, "cmdset"): return None all_cmdsets = [(cmdset.key, cmdset) for cmdset in current_cmdset.merged_from] # we always at least try to add account- and session sets since these are ignored # if we merge on the object level. if hasattr(obj, "account") and obj.account: # get Attribute-cmdsets if they exist all_cmdsets.extend([(cmdset.key, cmdset) for cmdset in obj.account.cmdset.all()]) if obj.sessions.count(): # if there are more sessions than one on objects it's because of multisession mode # we only show the first session's cmdset here (it is -in principle- possible # that different sessions have different cmdsets but for admins who want such # madness it is better that they overload with their own CmdExamine to handle it). all_cmdsets.extend([(cmdset.key, cmdset) for cmdset in obj.account.sessions.all()[0].cmdset.all()]) else: try: # we have to protect this since many objects don't have sessions. all_cmdsets.extend([(cmdset.key, cmdset) for cmdset in obj.get_session(obj.sessions.get()).cmdset.all()]) except (TypeError, AttributeError): # an error means we are merging an object without a session pass all_cmdsets = [cmdset for cmdset in dict(all_cmdsets).values()] all_cmdsets.sort(key=lambda x: x.priority, reverse=True) merged_cmdset_strings = [] for cmdset in all_cmdsets: if cmdset.key != "_EMPTY_CMDSET": merged_cmdset_strings.append(self.format_single_cmdset(cmdset)) return "\n " + "\n ".join(merged_cmdset_strings) def format_current_cmds(self, obj, current_cmdset): current_commands = sorted([cmd.key for cmd in current_cmdset if cmd.access(obj, "cmd")]) return "\n" + utils.fill(", ".join(current_commands), indent=2) def _get_attribute_value_type(self, attrvalue): typ = "" if not isinstance(attrvalue, str): try: name = attrvalue.__class__.__name__ except AttributeError: try: name = attrvalue.__name__ except AttributeError: name = attrvalue if str(name).startswith("_Saver"): try: typ = str(type(deserialize(attrvalue))) except Exception: typ = str(type(deserialize(attrvalue))) else: typ = str(type(attrvalue)) return typ def format_single_attribute_detail(self, obj, attr): global _FUNCPARSER if not _FUNCPARSER: _FUNCPARSER = funcparser.FuncParser(settings.FUNCPARSER_OUTGOING_MESSAGES_MODULES) key, category, value = attr.db_key, attr.db_category, attr.value typ = self._get_attribute_value_type(value) typ = f" |B[type: {typ}]|n" if typ else "" value = utils.to_str(value) value = _FUNCPARSER.parse(ansi_raw(value), escape=True) return (f"Attribute {obj.name}/{self.header_color}{key}|n " f"[category={category}]{typ}:\n\n{value}") def format_single_attribute(self, attr): global _FUNCPARSER if not _FUNCPARSER: _FUNCPARSER = funcparser.FuncParser(settings.FUNCPARSER_OUTGOING_MESSAGES_MODULES) key, category, value = attr.db_key, attr.db_category, attr.value typ = self._get_attribute_value_type(value) typ = f" |B[type: {typ}]|n" if typ else "" value = utils.to_str(value) value = _FUNCPARSER.parse(ansi_raw(value), escape=True) value = utils.crop(value) if category: return f"{self.header_color}{key}|n[{category}]={value}{typ}" else: return f"{self.header_color}{key}|n={value}{typ}" def format_attributes(self, obj): output = "\n " + "\n ".join( sorted(self.format_single_attribute(attr) for attr in obj.db_attributes.all()) ) if output.strip(): # we don't want just an empty line return output def format_nattributes(self, obj): try: ndb_attr = obj.nattributes.all(return_tuples=True) except Exception: return if ndb_attr and ndb_attr[0]: return "\n " + " \n".join( sorted(self.format_single_attribute(attr) for attr, value in ndb_attr) ) def format_exits(self, obj): if hasattr(obj, "exits"): exits = ", ".join(f"{exit.name}({exit.dbref})" for exit in obj.exits) return exits if exits else None def format_chars(self, obj): if hasattr(obj, "contents"): chars = ", ".join(f"{obj.name}({obj.dbref})" for obj in obj.contents if obj.account) return chars if chars else None def format_things(self, obj): if hasattr(obj, "contents"): things = ", ".join(f"{obj.name}({obj.dbref})" for obj in obj.contents if not obj.account and not obj.destination) return things if things else None def format_script_desc(self, obj): if hasattr(obj, "db_desc") and obj.db_desc: return crop(obj.db_desc, 20) def format_script_is_persistent(self, obj): if hasattr(obj, "db_persistent"): return "T" if obj.db_persistent else "F" def format_script_timer_data(self, obj): if hasattr(obj, "db_interval") and obj.db_interval > 0: start_delay = "T" if obj.db_start_delay else "F" next_repeat = obj.time_until_next_repeat() active = "|grunning|n" if obj.db_is_active and next_repeat else "|rinactive|n" interval = obj.db_interval next_repeat = "N/A" if next_repeat is None else f"{next_repeat}s" repeats = "" if obj.db_repeats: remaining_repeats = obj.remaining_repeats() remaining_repeats = 0 if remaining_repeats is None else remaining_repeats repeats = f" - {remaining_repeats}/{obj.db_repeats} remain" return (f"{active} - interval: {interval}s " f"(next: {next_repeat}{repeats}, start_delay: {start_delay})") def format_channel_sub_totals(self, obj): if hasattr(obj, "db_account_subscriptions"): account_subs = obj.db_account_subscriptions.all() object_subs = obj.db_object_subscriptions.all() online = len(obj.subscriptions.online()) ntotal = account_subs.count() + object_subs.count() return f"{ntotal} ({online} online)" def format_channel_account_subs(self, obj): if hasattr(obj, "db_account_subscriptions"): account_subs = obj.db_account_subscriptions.all() if account_subs: return "\n " + "\n ".join( format_grid([sub.key for sub in account_subs], sep=' ', width=_DEFAULT_WIDTH)) def format_channel_object_subs(self, obj): if hasattr(obj, "db_object_subscriptions"): object_subs = obj.db_object_subscriptions.all() if object_subs: return "\n " + "\n ".join( format_grid([sub.key for sub in object_subs], sep=' ', width=_DEFAULT_WIDTH)) def get_formatted_obj_data(self, obj, current_cmdset): """ Calls all other `format_*` methods. """ objdata = {} objdata["Name/key"] = self.format_key(obj) objdata["Aliases"] = self.format_aliases(obj) objdata["Typeclass"] = self.format_typeclass(obj) objdata["Sessions"] = self.format_sessions(obj) objdata["Email"] = self.format_email(obj) if hasattr(obj, "has_account") and obj.has_account: objdata["Account"] = self.format_account_key(obj.account) objdata[" Account Typeclass"] = self.format_account_typeclass(obj.account) objdata[" Account Permissions"] = self.format_account_permissions(obj.account) objdata["Location"] = self.format_location(obj) objdata["Home"] = self.format_home(obj) objdata["Destination"] = self.format_destination(obj) objdata["Permissions"] = self.format_permissions(obj) objdata["Locks"] = self.format_locks(obj) if (current_cmdset and not (len(obj.cmdset.all()) == 1 and obj.cmdset.current.key == "_EMPTY_CMDSET")): objdata["Stored Cmdset(s)"] = self.format_stored_cmdsets(obj) objdata["Merged Cmdset(s)"] = self.format_merged_cmdsets(obj, current_cmdset) objdata[f"Commands vailable to {obj.key} (result of Merged Cmdset(s))"] = ( self.format_current_cmds(obj, current_cmdset)) if self.object_type == "script": objdata["Description"] = self.format_script_desc(obj) objdata["Persistent"] = self.format_script_is_persistent(obj) objdata["Script Repeat"] = self.format_script_timer_data(obj) objdata["Scripts"] = self.format_scripts(obj) objdata["Tags"] = self.format_tags(obj) objdata["Persistent Attributes"] = self.format_attributes(obj) objdata["Non-Persistent Attributes"] = self.format_nattributes(obj) objdata["Exits"] = self.format_exits(obj) objdata["Characters"] = self.format_chars(obj) objdata["Content"] = self.format_things(obj) if self.object_type == "channel": objdata["Subscription Totals"] = self.format_channel_sub_totals(obj) objdata["Account Subscriptions"] = self.format_channel_account_subs(obj) objdata["Object Subscriptions"] = self.format_channel_object_subs(obj) return objdata def format_output(self, obj, current_cmdset): """ Formats the full examine page return. """ objdata = self.get_formatted_obj_data(obj, current_cmdset) # format output main_str = [] max_width = -1 for header, block in objdata.items(): if block is not None: blockstr = f"{self.header_color}{header}|n: {block}" max_width = max(max_width, max(display_len(line) for line in blockstr.split("\n"))) main_str.append(blockstr) main_str = "\n".join(main_str) max_width = max(0, min(self.client_width(), max_width)) sep = self.separator * max_width return f"{sep}\n{main_str}\n{sep}" def _search_by_object_type(self, obj_name, objtype): """ Route to different search functions depending on the object type being examined. This also handles error reporting for multimatches/no matches. Args: obj_name (str): The search query. objtype (str): One of 'object', 'account', 'script' or 'channel'. Returns: any: `None` if no match or multimatch, otherwise a single result. """ obj = None if objtype == "object": obj = self.caller.search(obj_name) elif objtype == "account": try: obj = self.caller.search_account(obj_name.lstrip("*")) except AttributeError: # this means we are calling examine from an account object obj = self.caller.search( obj_name.lstrip("*"), search_object="object" in self.switches ) else: obj = getattr(search, f"search_{objtype}")(obj_name) if not obj: self.caller.msg(f"No {objtype} found with key {obj_name}.") obj = None elif len(obj) > 1: err = "Multiple {objtype} found with key {obj_name}:\n{matches}" self.caller.msg(err.format( obj_name=obj_name, matches=", ".join(f"{ob.key}(#{ob.id})" for ob in obj) )) obj = None else: obj = obj[0] return obj def parse(self): super().parse() self.examine_objs = [] if not self.args: # If no arguments are provided, examine the invoker's location. if hasattr(self.caller, "location"): self.examine_objs.append((self.caller.location, None)) else: self.msg("You need to supply a target to examine.") raise InterruptCommand else: for objdef in self.lhs_objattr: # note that we check the objtype for every repeat; this will always # be the same result, but it makes for a cleaner code and multi-examine # is not so common anyway. obj = None obj_name = objdef["name"] # name obj_attrs = objdef["attrs"] # /attrs # identify object type, in prio account - script - channel object_type = "object" if (utils.inherits_from(self.caller, "evennia.accounts.accounts.DefaultAccount") or "account" in self.switches or obj_name.startswith("*")): object_type = "account" elif "script" in self.switches: object_type = "script" elif "channel" in self.switches: object_type = "channel" self.object_type = object_type obj = self._search_by_object_type(obj_name, object_type) if obj: self.examine_objs.append((obj, obj_attrs)) def func(self): """Process command""" for obj, obj_attrs in self.examine_objs: # these are parsed out in .parse already if not obj.access(self.caller, "examine"): # If we don't have special info access, just look # at the object instead. self.msg(self.caller.at_look(obj)) continue if obj_attrs: # we are only interested in specific attributes attrs = [attr for attr in obj.db_attributes.all() if attr.db_key in obj_attrs] if not attrs: self.msg("No attributes found on {obj.name}.") else: out_strings = [] for attr in attrs: out_strings.append(self.format_single_attribute_detail(obj, attr)) out_str = "\n".join(out_strings) max_width = max(display_len(line) for line in out_strings) max_width = max(0, min(max_width, self.client_width())) sep = self.separator * max_width self.msg(f"{sep}\n{out_str}") return # examine the obj itself if self.object_type in ("object", "account"): # for objects and accounts we need to set up an asynchronous # fetch of the cmdset and not proceed with the examine display # until the fetch is complete session = None if obj.sessions.count(): mergemode = "session" session = obj.sessions.get()[0] elif self.object_type == "account": mergemode = "account" else: mergemode = "object" account = None objct = None if self.object_type == "account": account = obj else: account = obj.account objct = obj # this is usually handled when a command runs, but when we examine # we may have leftover inherited cmdsets directly after a move etc. obj.cmdset.update() # using callback to print results whenever function returns. def _get_cmdset_callback(current_cmdset): self.msg(self.format_output(obj, current_cmdset).strip()) get_and_merge_cmdsets( obj, session, account, objct, mergemode, self.raw_string ).addCallback(_get_cmdset_callback) else: # for objects without cmdsets we can proceed to examine immediately self.msg(self.format_output(obj, None).strip()) class CmdFind(COMMAND_DEFAULT_CLASS): """ search the database for objects Usage: find[/switches] <name or dbref or *account> [= dbrefmin[-dbrefmax]] locate - this is a shorthand for using the /loc switch. Switches: room - only look for rooms (location=None) exit - only look for exits (destination!=None) char - only look for characters (BASE_CHARACTER_TYPECLASS) exact - only exact matches are returned. loc - display object location if exists and match has one result startswith - search for names starting with the string, rather than containing Searches the database for an object of a particular name or exact #dbref. Use *accountname to search for an account. The switches allows for limiting object matches to certain game entities. Dbrefmin and dbrefmax limits matches to within the given dbrefs range, or above/below if only one is given. """ key = "@find" aliases = ["@search", "@locate"] switch_options = ("room", "exit", "char", "exact", "loc", "startswith") locks = "cmd:perm(find) or perm(Builder)" help_category = "Building" def func(self): """Search functionality""" caller = self.caller switches = self.switches if not self.args or (not self.lhs and not self.rhs): caller.msg("Usage: find <string> [= low [-high]]") return if "locate" in self.cmdstring: # Use option /loc as a default for locate command alias switches.append("loc") searchstring = self.lhs try: # Try grabbing the actual min/max id values by database aggregation qs = ObjectDB.objects.values("id").aggregate(low=Min("id"), high=Max("id")) low, high = sorted(qs.values()) if not (low and high): raise ValueError( f"{self.__class__.__name__}: Min and max ID not returned by aggregation; falling back to queryset slicing." ) except Exception as e: logger.log_trace(e) # If that doesn't work for some reason (empty DB?), guess the lower # bound and do a less-efficient query to find the upper. low, high = 1, ObjectDB.objects.all().order_by("-id").first().id if self.rhs: try: # Check that rhs is either a valid dbref or dbref range bounds = tuple( sorted(dbref(x, False) for x in re.split("[-\s]+", self.rhs.strip())) ) # dbref() will return either a valid int or None assert bounds # None should not exist in the bounds list assert None not in bounds low = bounds[0] if len(bounds) > 1: high = bounds[-1] except AssertionError: caller.msg("Invalid dbref range provided (not a number).") return except IndexError as e: logger.log_err( f"{self.__class__.__name__}: Error parsing upper and lower bounds of query." ) logger.log_trace(e) low = min(low, high) high = max(low, high) is_dbref = utils.dbref(searchstring) is_account = searchstring.startswith("*") restrictions = "" if self.switches: restrictions = ", %s" % (", ".join(self.switches)) if is_dbref or is_account: if is_dbref: # a dbref search result = caller.search(searchstring, global_search=True, quiet=True) string = "|wExact dbref match|n(#%i-#%i%s):" % (low, high, restrictions) else: # an account search searchstring = searchstring.lstrip("*") result = caller.search_account(searchstring, quiet=True) string = "|wMatch|n(#%i-#%i%s):" % (low, high, restrictions) if "room" in switches: result = result if inherits_from(result, ROOM_TYPECLASS) else None if "exit" in switches: result = result if inherits_from(result, EXIT_TYPECLASS) else None if "char" in switches: result = result if inherits_from(result, CHAR_TYPECLASS) else None if not result: string += "\n |RNo match found.|n" elif not low <= int(result[0].id) <= high: string += "\n |RNo match found for '%s' in #dbref interval.|n" % searchstring else: result = result[0] string += "\n|g %s - %s|n" % (result.get_display_name(caller), result.path) if "loc" in self.switches and not is_account and result.location: string += " (|wlocation|n: |g{}|n)".format( result.location.get_display_name(caller) ) else: # Not an account/dbref search but a wider search; build a queryset. # Searches for key and aliases if "exact" in switches: keyquery = Q(db_key__iexact=searchstring, id__gte=low, id__lte=high) aliasquery = Q( db_tags__db_key__iexact=searchstring, db_tags__db_tagtype__iexact="alias", id__gte=low, id__lte=high, ) elif "startswith" in switches: keyquery = Q(db_key__istartswith=searchstring, id__gte=low, id__lte=high) aliasquery = Q( db_tags__db_key__istartswith=searchstring, db_tags__db_tagtype__iexact="alias", id__gte=low, id__lte=high, ) else: keyquery = Q(db_key__icontains=searchstring, id__gte=low, id__lte=high) aliasquery = Q( db_tags__db_key__icontains=searchstring, db_tags__db_tagtype__iexact="alias", id__gte=low, id__lte=high, ) # Keep the initial queryset handy for later reuse result_qs = ObjectDB.objects.filter(keyquery | aliasquery).distinct() nresults = result_qs.count() # Use iterator to minimize memory ballooning on large result sets results = result_qs.iterator() # Check and see if type filtering was requested; skip it if not if any(x in switches for x in ("room", "exit", "char")): obj_ids = set() for obj in results: if ( ("room" in switches and inherits_from(obj, ROOM_TYPECLASS)) or ("exit" in switches and inherits_from(obj, EXIT_TYPECLASS)) or ("char" in switches and inherits_from(obj, CHAR_TYPECLASS)) ): obj_ids.add(obj.id) # Filter previous queryset instead of requesting another filtered_qs = result_qs.filter(id__in=obj_ids).distinct() nresults = filtered_qs.count() # Use iterator again to minimize memory ballooning results = filtered_qs.iterator() # still results after type filtering? if nresults: if nresults > 1: header = f"{nresults} Matches" else: header = "One Match" string = f"|w{header}|n(#{low}-#{high}{restrictions}):" res = None for res in results: string += f"\n |g{res.get_display_name(caller)} - {res.path}|n" if ( "loc" in self.switches and nresults == 1 and res and getattr(res, "location", None) ): string += f" (|wlocation|n: |g{res.location.get_display_name(caller)}|n)" else: string = f"|wNo Matches|n(#{low}-#{high}{restrictions}):" string += f"\n |RNo matches found for '{searchstring}'|n" # send result caller.msg(string.strip()) class ScriptEvMore(EvMore): """ Listing 1000+ Scripts can be very slow and memory-consuming. So we use this custom EvMore child to build en EvTable only for each page of the list. """ def init_pages(self, scripts): """Prepare the script list pagination""" script_pages = Paginator(scripts, max(1, int(self.height / 2))) super().init_pages(script_pages) def page_formatter(self, scripts): """Takes a page of scripts and formats the output into an EvTable.""" if not scripts: return "<No scripts>" table = EvTable( "|wdbref|n", "|wobj|n", "|wkey|n", "|wintval|n", "|wnext|n", "|wrept|n", "|wtypeclass|n", "|wdesc|n", align="r", border="tablecols", width=self.width, ) for script in scripts: nextrep = script.time_until_next_repeat() if nextrep is None: nextrep = script.db._paused_time nextrep = f"PAUSED {int(nextrep)}s" if nextrep else "--" else: nextrep = f"{nextrep}s" maxrepeat = script.repeats remaining = script.remaining_repeats() or 0 if maxrepeat: rept = "%i/%i" % (maxrepeat - remaining, maxrepeat) else: rept = "-/-" table.add_row( f"#{script.id}", f"{script.obj.key}({script.obj.dbref})" if (hasattr(script, "obj") and script.obj) else "<Global>", script.key, script.interval if script.interval > 0 else "--", nextrep, rept, script.typeclass_path.rsplit(".", 1)[-1], crop(script.desc, width=20), ) return str(table) class CmdScripts(COMMAND_DEFAULT_CLASS): """ List and manage all running scripts. Allows for creating new global scripts. Usage: script[/switches] [script-#dbref, key, script.path or <obj>] script[/start||stop] <obj> = <script.path or script-key> Switches: start - start/unpause an existing script's timer. stop - stops an existing script's timer pause - pause a script's timer delete - deletes script. This will also stop the timer as needed Examples: script - list scripts script myobj - list all scripts on object script foo.bar.Script - create a new global Script script scriptname - examine named existing global script script myobj = foo.bar.Script - create and assign script to object script/stop myobj = scriptname - stop script on object script/pause foo.Bar.Script - pause global script script/delete myobj - delete ALL scripts on object script/delete #dbref[-#dbref] - delete script or range by dbref When given with an `<obj>` as left-hand-side, this creates and assigns a new script to that object. Without an `<obj>`, this manages and inspects global scripts If no switches are given, this command just views all active scripts. The argument can be either an object, at which point it will be searched for all scripts defined on it, or a script name or #dbref. For using the /stop switch, a unique script #dbref is required since whole classes of scripts often have the same name. Use the `script` build-level command for managing scripts attached to objects. """ key = "@scripts" aliases = ["@script"] switch_options = ("create", "start", "stop", "pause", "delete") locks = "cmd:perm(scripts) or perm(Builder)" help_category = "System" excluded_typeclass_paths = ["evennia.prototypes.prototypes.DbPrototype"] switch_mapping = { "create": "|gCreated|n", "start": "|gStarted|n", "stop": "|RStopped|n", "pause": "|Paused|n", "delete": "|rDeleted|n" } def _search_script(self, args): # test first if this is a script match scripts = ScriptDB.objects.get_all_scripts(key=args) if scripts: return scripts # try typeclass path scripts = ScriptDB.objects.filter(db_typeclass_path__iendswith=args) if scripts: return scripts if "-" in args: # may be a dbref-range val1, val2 = (dbref(part.strip()) for part in args.split('-', 1)) if val1 and val2: scripts = ScriptDB.objects.filter(id__in=(range(val1, val2 + 1))) if scripts: return scripts def func(self): """implement method""" caller = self.caller if not self.args: # show all scripts scripts = ScriptDB.objects.all() if not scripts: caller.msg("No scripts found.") return ScriptEvMore(caller, scripts.order_by("id"), session=self.session) return # find script or object to operate on scripts, obj = None, None if self.rhs: obj_query = self.lhs script_query = self.rhs else: obj_query = script_query = self.args scripts = self._search_script(script_query) objects = ObjectDB.objects.object_search(obj_query) obj = objects[0] if objects else None if not self.switches: # creation / view mode if obj: # we have an object if self.rhs: # creation mode if obj.scripts.add(self.rhs, autostart=True): caller.msg( f"Script |w{self.rhs}|n successfully added and " f"started on {obj.get_display_name(caller)}.") else: caller.msg(f"Script {self.rhs} could not be added and/or started " f"on {obj.get_display_name(caller)} (or it started and " "immediately shut down).") else: # just show all scripts on object scripts = ScriptDB.objects.filter(db_obj=obj) if scripts: ScriptEvMore(caller, scripts.order_by("id"), session=self.session) else: caller.msg(f"No scripts defined on {obj}") elif scripts: # show found script(s) ScriptEvMore(caller, scripts.order_by("id"), session=self.session) else: # create global script try: new_script = create.create_script(self.args) except ImportError: logger.log_trace() new_script = None if new_script: caller.msg(f"Global Script Created - " f"{new_script.key} ({new_script.typeclass_path})") ScriptEvMore(caller, [new_script], session=self.session) else: caller.msg(f"Global Script |rNOT|n Created |r(see log)|n - " f"arguments: {self.args}") elif scripts or obj: # modification switches - must operate on existing scripts if not scripts: scripts = ScriptDB.objects.filter(db_obj=obj) if scripts.count() > 1: ret = yield(f"Multiple scripts found: {scripts}. Are you sure you want to " "operate on all of them? [Y]/N? ") if ret.lower() in ('n', 'no'): caller.msg("Aborted.") return for script in scripts: script_key = script.key script_typeclass_path = script.typeclass_path scripttype = f"Script on {obj}" if obj else "Global Script" for switch in self.switches: verb = self.switch_mapping[switch] msgs = [] try: getattr(script, switch)() except Exception: logger.log_trace() msgs.append(f"{scripttype} |rNOT|n {verb} |r(see log)|n - " f"{script_key} ({script_typeclass_path})|n") else: msgs.append(f"{scripttype} {verb} - " f"{script_key} ({script_typeclass_path})") caller.msg("\n".join(msgs)) if "delete" not in self.switches: ScriptEvMore(caller, [script], session=self.session) else: caller.msg("No scripts found.") class CmdObjects(COMMAND_DEFAULT_CLASS): """ statistics on objects in the database Usage: objects [<nr>] Gives statictics on objects in database as well as a list of <nr> latest objects in database. If not given, <nr> defaults to 10. """ key = "@objects" locks = "cmd:perm(listobjects) or perm(Builder)" help_category = "System" def func(self): """Implement the command""" caller = self.caller nlim = int(self.args) if self.args and self.args.isdigit() else 10 nobjs = ObjectDB.objects.count() Character = class_from_module(settings.BASE_CHARACTER_TYPECLASS) nchars = Character.objects.all_family().count() Room = class_from_module(settings.BASE_ROOM_TYPECLASS) nrooms = Room.objects.all_family().count() Exit = class_from_module(settings.BASE_EXIT_TYPECLASS) nexits = Exit.objects.all_family().count() nother = nobjs - nchars - nrooms - nexits nobjs = nobjs or 1 # fix zero-div error with empty database # total object sum table totaltable = self.styled_table( "|wtype|n", "|wcomment|n", "|wcount|n", "|w%|n", border="table", align="l" ) totaltable.align = "l" totaltable.add_row( "Characters", "(BASE_CHARACTER_TYPECLASS + children)", nchars, "%.2f" % ((float(nchars) / nobjs) * 100), ) totaltable.add_row( "Rooms", "(BASE_ROOM_TYPECLASS + children)", nrooms, "%.2f" % ((float(nrooms) / nobjs) * 100), ) totaltable.add_row( "Exits", "(BASE_EXIT_TYPECLASS + children)", nexits, "%.2f" % ((float(nexits) / nobjs) * 100), ) totaltable.add_row("Other", "", nother, "%.2f" % ((float(nother) / nobjs) * 100)) # typeclass table typetable = self.styled_table( "|wtypeclass|n", "|wcount|n", "|w%|n", border="table", align="l" ) typetable.align = "l" dbtotals = ObjectDB.objects.get_typeclass_totals() for stat in dbtotals: typetable.add_row( stat.get("typeclass", "<error>"), stat.get("count", -1), "%.2f" % stat.get("percent", -1), ) # last N table objs = ObjectDB.objects.all().order_by("db_date_created")[max(0, nobjs - nlim): ] latesttable = self.styled_table( "|wcreated|n", "|wdbref|n", "|wname|n", "|wtypeclass|n", align="l", border="table" ) latesttable.align = "l" for obj in objs: latesttable.add_row( utils.datetime_format(obj.date_created), obj.dbref, obj.key, obj.path ) string = "\n|wObject subtype totals (out of %i Objects):|n\n%s" % (nobjs, totaltable) string += "\n|wObject typeclass distribution:|n\n%s" % typetable string += "\n|wLast %s Objects created:|n\n%s" % (min(nobjs, nlim), latesttable) caller.msg(string) class CmdTeleport(COMMAND_DEFAULT_CLASS): """ teleport object to another location Usage: tel/switch [<object> to||=] <target location> Examples: tel Limbo tel/quiet box = Limbo tel/tonone box Switches: quiet - don't echo leave/arrive messages to the source/target locations for the move. intoexit - if target is an exit, teleport INTO the exit object instead of to its destination tonone - if set, teleport the object to a None-location. If this switch is set, <target location> is ignored. Note that the only way to retrieve an object from a None location is by direct #dbref reference. A puppeted object cannot be moved to None. loc - teleport object to the target's location instead of its contents Teleports an object somewhere. If no object is given, you yourself are teleported to the target location. To lock an object from being teleported, set its `teleport` lock, it will be checked with the caller. To block a destination from being teleported to, set the destination's `teleport_here` lock - it will be checked with the thing being teleported. Admins and higher permissions can always teleport. """ key = "@teleport" aliases = "@tel" switch_options = ("quiet", "intoexit", "tonone", "loc") rhs_split = ("=", " to ") # Prefer = delimiter, but allow " to " usage. locks = "cmd:perm(teleport) or perm(Builder)" help_category = "Building" def parse(self): """ Breaking out searching here to make this easier to override. """ super().parse() self.obj_to_teleport = self.caller self.destination = None if self.rhs: self.obj_to_teleport = self.caller.search(self.lhs, global_search=True) if not self.obj_to_teleport: self.caller.msg("Did not find object to teleport.") raise InterruptCommand self.destination = self.caller.search(self.rhs, global_search=True) elif self.lhs: self.destination = self.caller.search(self.lhs, global_search=True) def func(self): """Performs the teleport""" caller = self.caller obj_to_teleport = self.obj_to_teleport destination = self.destination if "tonone" in self.switches: # teleporting to None if destination: # in this case lhs is always the object to teleport obj_to_teleport = destination if obj_to_teleport.has_account: caller.msg( "Cannot teleport a puppeted object " "(%s, puppeted by %s) to a None-location." % (obj_to_teleport.key, obj_to_teleport.account) ) return caller.msg("Teleported %s -> None-location." % obj_to_teleport) if obj_to_teleport.location and "quiet" not in self.switches: obj_to_teleport.location.msg_contents( "%s teleported %s into nothingness." % (caller, obj_to_teleport), exclude=caller ) obj_to_teleport.location = None return if not self.args: caller.msg("Usage: teleport[/switches] [<obj> =] <target or (X,Y,Z)>||home") return if not destination: caller.msg("Destination not found.") return if "loc" in self.switches: destination = destination.location if not destination: caller.msg("Destination has no location.") return if obj_to_teleport == destination: caller.msg("You can't teleport an object inside of itself!") return if obj_to_teleport == destination.location: caller.msg("You can't teleport an object inside something it holds!") return if obj_to_teleport.location and obj_to_teleport.location == destination: caller.msg("%s is already at %s." % (obj_to_teleport, destination)) return # check any locks if not (caller.permissions.check("Admin") or obj_to_teleport.access(caller, "teleport")): caller.msg(f"{obj_to_teleport} 'teleport'-lock blocks you from teleporting " "it anywhere.") return if not (caller.permissions.check("Admin") or destination.access(obj_to_teleport, "teleport_here")): caller.msg(f"{destination} 'teleport_here'-lock blocks {obj_to_teleport} from " "moving there.") return # try the teleport if not obj_to_teleport.location: # teleporting from none-location obj_to_teleport.location = destination caller.msg(f"Teleported {obj_to_teleport} None -> {destination}") elif obj_to_teleport.move_to( destination, quiet="quiet" in self.switches, emit_to_obj=caller, use_destination="intoexit" not in self.switches): if obj_to_teleport == caller: caller.msg(f"Teleported to {destination}.") else: caller.msg(f"Teleported {obj_to_teleport} -> {destination}.") else: caller.msg("Teleportation failed.") class CmdTag(COMMAND_DEFAULT_CLASS): """ handles the tags of an object Usage: tag[/del] <obj> [= <tag>[:<category>]] tag/search <tag>[:<category] Switches: search - return all objects with a given Tag del - remove the given tag. If no tag is specified, clear all tags on object. Manipulates and lists tags on objects. Tags allow for quick grouping of and searching for objects. If only <obj> is given, list all tags on the object. If /search is used, list objects with the given tag. The category can be used for grouping tags themselves, but it should be used with restrain - tags on their own are usually enough to for most grouping schemes. """ key = "@tag" aliases = ["@tags"] options = ("search", "del") locks = "cmd:perm(tag) or perm(Builder)" help_category = "Building" arg_regex = r"(/\w+?(\s|$))|\s|$" def func(self): """Implement the tag functionality""" if not self.args: self.caller.msg("Usage: tag[/switches] <obj> [= <tag>[:<category>]]") return if "search" in self.switches: # search by tag tag = self.args category = None if ":" in tag: tag, category = [part.strip() for part in tag.split(":", 1)] objs = search.search_tag(tag, category=category) nobjs = len(objs) if nobjs > 0: catstr = ( " (category: '|w%s|n')" % category if category else ("" if nobjs == 1 else " (may have different tag categories)") ) matchstr = ", ".join(o.get_display_name(self.caller) for o in objs) string = "Found |w%i|n object%s with tag '|w%s|n'%s:\n %s" % ( nobjs, "s" if nobjs > 1 else "", tag, catstr, matchstr, ) else: string = "No objects found with tag '%s%s'." % ( tag, " (category: %s)" % category if category else "", ) self.caller.msg(string) return if "del" in self.switches: # remove one or all tags obj = self.caller.search(self.lhs, global_search=True) if not obj: return if self.rhs: # remove individual tag tag = self.rhs category = None if ":" in tag: tag, category = [part.strip() for part in tag.split(":", 1)] if obj.tags.get(tag, category=category): obj.tags.remove(tag, category=category) string = "Removed tag '%s'%s from %s." % ( tag, " (category: %s)" % category if category else "", obj, ) else: string = "No tag '%s'%s to delete on %s." % ( tag, " (category: %s)" % category if category else "", obj, ) else: # no tag specified, clear all tags old_tags = [ "%s%s" % (tag, " (category: %s)" % category if category else "") for tag, category in obj.tags.all(return_key_and_category=True) ] if old_tags: obj.tags.clear() string = "Cleared all tags from %s: %s" % (obj, ", ".join(sorted(old_tags))) else: string = "No Tags to clear on %s." % obj self.caller.msg(string) return # no search/deletion if self.rhs: # = is found; command args are of the form obj = tag obj = self.caller.search(self.lhs, global_search=True) if not obj: return tag = self.rhs category = None if ":" in tag: tag, category = [part.strip() for part in tag.split(":", 1)] # create the tag obj.tags.add(tag, category=category) string = "Added tag '%s'%s to %s." % ( tag, " (category: %s)" % category if category else "", obj, ) self.caller.msg(string) else: # no = found - list tags on object obj = self.caller.search(self.args, global_search=True) if not obj: return tagtuples = obj.tags.all(return_key_and_category=True) ntags = len(tagtuples) tags = [tup[0] for tup in tagtuples] categories = [" (category: %s)" % tup[1] if tup[1] else "" for tup in tagtuples] if ntags: string = "Tag%s on %s: %s" % ( "s" if ntags > 1 else "", obj, ", ".join(sorted("'%s'%s" % (tags[i], categories[i]) for i in range(ntags))), ) else: string = "No tags attached to %s." % obj self.caller.msg(string) # helper functions for spawn class CmdSpawn(COMMAND_DEFAULT_CLASS): """ spawn objects from prototype Usage: spawn[/noloc] <prototype_key> spawn[/noloc] <prototype_dict> spawn/search [prototype_keykey][;tag[,tag]] spawn/list [tag, tag, ...] spawn/list modules - list only module-based prototypes spawn/show [<prototype_key>] spawn/update <prototype_key> spawn/save <prototype_dict> spawn/edit [<prototype_key>] olc - equivalent to spawn/edit Switches: noloc - allow location to be None if not specified explicitly. Otherwise, location will default to caller's current location. search - search prototype by name or tags. list - list available prototypes, optionally limit by tags. show, examine - inspect prototype by key. If not given, acts like list. raw - show the raw dict of the prototype as a one-line string for manual editing. save - save a prototype to the database. It will be listable by /list. delete - remove a prototype from database, if allowed to. update - find existing objects with the same prototype_key and update them with latest version of given prototype. If given with /save, will auto-update all objects with the old version of the prototype without asking first. edit, menu, olc - create/manipulate prototype in a menu interface. Example: spawn GOBLIN spawn {"key":"goblin", "typeclass":"monster.Monster", "location":"#2"} spawn/save {"key": "grunt", prototype: "goblin"};;mobs;edit:all() \f Dictionary keys: |wprototype_parent |n - name of parent prototype to use. Required if typeclass is not set. Can be a path or a list for multiple inheritance (inherits left to right). If set one of the parents must have a typeclass. |wtypeclass |n - string. Required if prototype_parent is not set. |wkey |n - string, the main object identifier |wlocation |n - this should be a valid object or #dbref |whome |n - valid object or #dbref |wdestination|n - only valid for exits (object or dbref) |wpermissions|n - string or list of permission strings |wlocks |n - a lock-string |waliases |n - string or list of strings. |wndb_|n<name> - value of a nattribute (ndb_ is stripped) |wprototype_key|n - name of this prototype. Unique. Used to store/retrieve from db and update existing prototyped objects if desired. |wprototype_desc|n - desc of this prototype. Used in listings |wprototype_locks|n - locks of this prototype. Limits who may use prototype |wprototype_tags|n - tags of this prototype. Used to find prototype any other keywords are interpreted as Attributes and their values. The available prototypes are defined globally in modules set in settings.PROTOTYPE_MODULES. If spawn is used without arguments it displays a list of available prototypes. """ key = "@spawn" aliases = ["@olc"] switch_options = ( "noloc", "search", "list", "show", "raw", "examine", "save", "delete", "menu", "olc", "update", "edit", ) locks = "cmd:perm(spawn) or perm(Builder)" help_category = "Building" def _search_prototype(self, prototype_key, quiet=False): """ Search for prototype and handle no/multi-match and access. Returns a single found prototype or None - in the case, the caller has already been informed of the search error we need not do any further action. """ prototypes = protlib.search_prototype(prototype_key) nprots = len(prototypes) # handle the search result err = None if not prototypes: err = f"No prototype named '{prototype_key}' was found." elif nprots > 1: err = "Found {} prototypes matching '{}':\n {}".format( nprots, prototype_key, ", ".join(proto.get("prototype_key", "") for proto in prototypes), ) else: # we have a single prototype, check access prototype = prototypes[0] if not self.caller.locks.check_lockstring( self.caller, prototype.get("prototype_locks", ""), access_type="spawn", default=True ): err = "You don't have access to use this prototype." if err: # return None on any error if not quiet: self.caller.msg(err) return return prototype def _parse_prototype(self, inp, expect=dict): """ Parse a prototype dict or key from the input and convert it safely into a dict if appropriate. Args: inp (str): The input from user. expect (type, optional): Returns: prototype (dict, str or None): The parsed prototype. If None, the error was already reported. """ eval_err = None try: prototype = _LITERAL_EVAL(inp) except (SyntaxError, ValueError) as err: # treat as string eval_err = err prototype = utils.to_str(inp) finally: # it's possible that the input was a prototype-key, in which case # it's okay for the LITERAL_EVAL to fail. Only if the result does not # match the expected type do we have a problem. if not isinstance(prototype, expect): if eval_err: string = ( f"{inp}\n{eval_err}\n|RCritical Python syntax error in argument. Only primitive " "Python structures are allowed. \nMake sure to use correct " "Python syntax. Remember especially to put quotes around all " "strings inside lists and dicts.|n For more advanced uses, embed " "funcparser callables ($funcs) in the strings." ) else: string = "Expected {}, got {}.".format(expect, type(prototype)) self.caller.msg(string) return if expect == dict: # an actual prototype. We need to make sure it's safe, # so don't allow exec. # TODO: Exec support is deprecated. Remove completely for 1.0. if "exec" in prototype and not self.caller.check_permstring("Developer"): self.caller.msg( "Spawn aborted: You are not allowed to " "use the 'exec' prototype key." ) return try: # we homogenize the protoype first, to be more lenient with free-form protlib.validate_prototype(protlib.homogenize_prototype(prototype)) except RuntimeError as err: self.caller.msg(str(err)) return return prototype def _get_prototype_detail(self, query=None, prototypes=None): """ Display the detailed specs of one or more prototypes. Args: query (str, optional): If this is given and `prototypes` is not, search for the prototype(s) by this query. This may be a partial query which may lead to multiple matches, all being displayed. prototypes (list, optional): If given, ignore `query` and only show these prototype-details. Returns: display (str, None): A formatted string of one or more prototype details. If None, the caller was already informed of the error. """ if not prototypes: # we need to query. Note that if query is None, all prototypes will # be returned. prototypes = protlib.search_prototype(key=query) if prototypes: return "\n".join(protlib.prototype_to_str(prot) for prot in prototypes) elif query: self.caller.msg(f"No prototype named '{query}' was found.") else: self.caller.msg("No prototypes found.") def _list_prototypes(self, key=None, tags=None): """Display prototypes as a list, optionally limited by key/tags. """ protlib.list_prototypes(self.caller, key=key, tags=tags, session=self.session) @interactive def _update_existing_objects(self, caller, prototype_key, quiet=False): """ Update existing objects (if any) with this prototype-key to the latest prototype version. Args: caller (Object): This is necessary for @interactive to work. prototype_key (str): The prototype to update. quiet (bool, optional): If set, don't report to user if no old objects were found to update. Returns: n_updated (int): Number of updated objects. """ prototype = self._search_prototype(prototype_key) if not prototype: return existing_objects = protlib.search_objects_with_prototype(prototype_key) if not existing_objects: if not quiet: caller.msg("No existing objects found with an older version of this prototype.") return if existing_objects: n_existing = len(existing_objects) slow = " (note that this may be slow)" if n_existing > 10 else "" string = ( f"There are {n_existing} existing object(s) with an older version " f"of prototype '{prototype_key}'. Should it be re-applied to them{slow}? [Y]/N" ) answer = yield (string) if answer.lower() in ["n", "no"]: caller.msg( "|rNo update was done of existing objects. " "Use spawn/update <key> to apply later as needed.|n" ) return try: n_updated = spawner.batch_update_objects_with_prototype( prototype, objects=existing_objects, caller=caller, ) except Exception: logger.log_trace() caller.msg(f"{n_updated} objects were updated.") return def _parse_key_desc_tags(self, argstring, desc=True): """ Parse ;-separated input list. """ key, desc, tags = "", "", [] if ";" in argstring: parts = [part.strip().lower() for part in argstring.split(";")] if len(parts) > 1 and desc: key = parts[0] desc = parts[1] tags = parts[2:] else: key = parts[0] tags = parts[1:] else: key = argstring.strip().lower() return key, desc, tags def func(self): """Implements the spawner""" caller = self.caller noloc = "noloc" in self.switches # run the menu/olc if ( self.cmdstring == "olc" or "menu" in self.switches or "olc" in self.switches or "edit" in self.switches ): # OLC menu mode prototype = None if self.lhs: prototype_key = self.lhs prototype = self._search_prototype(prototype_key) if not prototype: return olc_menus.start_olc(caller, session=self.session, prototype=prototype) return if "search" in self.switches: # query for a key match. The arg is a search query or nothing. if not self.args: # an empty search returns the full list self._list_prototypes() return # search for key;tag combinations key, _, tags = self._parse_key_desc_tags(self.args, desc=False) self._list_prototypes(key, tags) return if "raw" in self.switches: # query for key match and return the prototype as a safe one-liner string. if not self.args: caller.msg("You need to specify a prototype-key to get the raw data for.") prototype = self._search_prototype(self.args) if not prototype: return caller.msg(str(prototype)) return if "show" in self.switches or "examine" in self.switches: # show a specific prot detail. The argument is a search query or empty. if not self.args: # we don't show the list of all details, that's too spammy. caller.msg("You need to specify a prototype-key to show.") return detail_string = self._get_prototype_detail(self.args) if not detail_string: return caller.msg(detail_string) return if "list" in self.switches: # for list, all optional arguments are tags. tags = self.lhslist err = self._list_prototypes(tags=tags) if err: caller.msg( "No prototypes found with prototype-tag(s): {}".format( list_to_string(tags, "or") ) ) return if "save" in self.switches: # store a prototype to the database store if not self.args: caller.msg( "Usage: spawn/save [<key>[;desc[;tag,tag[,...][;lockstring]]]] = <prototype_dict>" ) return if self.rhs: # input on the form key = prototype prototype_key, prototype_desc, prototype_tags = self._parse_key_desc_tags(self.lhs) prototype_key = None if not prototype_key else prototype_key prototype_desc = None if not prototype_desc else prototype_desc prototype_tags = None if not prototype_tags else prototype_tags prototype_input = self.rhs.strip() else: prototype_key = prototype_desc = None prototype_tags = None prototype_input = self.lhs.strip() # handle parsing prototype = self._parse_prototype(prototype_input) if not prototype: return prot_prototype_key = prototype.get("prototype_key") if not (prototype_key or prot_prototype_key): caller.msg( "A prototype_key must be given, either as `prototype_key = <prototype>` " "or as a key 'prototype_key' inside the prototype structure." ) return if prototype_key is None: prototype_key = prot_prototype_key if prot_prototype_key != prototype_key: caller.msg("(Replacing `prototype_key` in prototype with given key.)") prototype["prototype_key"] = prototype_key if prototype_desc is not None and prot_prototype_key != prototype_desc: caller.msg("(Replacing `prototype_desc` in prototype with given desc.)") prototype["prototype_desc"] = prototype_desc if prototype_tags is not None and prototype.get("prototype_tags") != prototype_tags: caller.msg("(Replacing `prototype_tags` in prototype with given tag(s))") prototype["prototype_tags"] = prototype_tags string = "" # check for existing prototype (exact match) old_prototype = self._search_prototype(prototype_key, quiet=True) diff = spawner.prototype_diff(old_prototype, prototype, homogenize=True) diffstr = spawner.format_diff(diff) new_prototype_detail = self._get_prototype_detail(prototypes=[prototype]) if old_prototype: if not diffstr: string = f"|yAlready existing Prototype:|n\n{new_prototype_detail}\n" question = ( "\nThere seems to be no changes. Do you still want to (re)save? [Y]/N" ) else: string = ( f'|yExisting prototype "{prototype_key}" found. Change:|n\n{diffstr}\n' f"|yNew changed prototype:|n\n{new_prototype_detail}" ) question = ( "\n|yDo you want to apply the change to the existing prototype?|n [Y]/N" ) else: string = f"|yCreating new prototype:|n\n{new_prototype_detail}" question = "\nDo you want to continue saving? [Y]/N" answer = yield (string + question) if answer.lower() in ["n", "no"]: caller.msg("|rSave cancelled.|n") return # all seems ok. Try to save. try: prot = protlib.save_prototype(prototype) if not prot: caller.msg("|rError saving:|R {}.|n".format(prototype_key)) return except protlib.PermissionError as err: caller.msg("|rError saving:|R {}|n".format(err)) return caller.msg("|gSaved prototype:|n {}".format(prototype_key)) # check if we want to update existing objects self._update_existing_objects(self.caller, prototype_key, quiet=True) return if not self.args: # all switches beyond this point gets a common non-arg return ncount = len(protlib.search_prototype()) caller.msg( "Usage: spawn <prototype-key> or {{key: value, ...}}" f"\n ({ncount} existing prototypes. Use /list to inspect)" ) return if "delete" in self.switches: # remove db-based prototype prototype_detail = self._get_prototype_detail(self.args) if not prototype_detail: return string = f"|rDeleting prototype:|n\n{prototype_detail}" question = "\nDo you want to continue deleting? [Y]/N" answer = yield (string + question) if answer.lower() in ["n", "no"]: caller.msg("|rDeletion cancelled.|n") return try: success = protlib.delete_prototype(self.args) except protlib.PermissionError as err: retmsg = f"|rError deleting:|R {err}|n" else: retmsg = ( "Deletion successful" if success else "Deletion failed (does the prototype exist?)" ) caller.msg(retmsg) return if "update" in self.switches: # update existing prototypes prototype_key = self.args.strip().lower() self._update_existing_objects(self.caller, prototype_key) return # If we get to this point, we use not switches but are trying a # direct creation of an object from a given prototype or -key prototype = self._parse_prototype( self.args, expect=dict if self.args.strip().startswith("{") else str ) if not prototype: # this will only let through dicts or strings return key = "<unnamed>" if isinstance(prototype, str): # A prototype key we are looking to apply prototype_key = prototype prototype = self._search_prototype(prototype_key) if not prototype: return # proceed to spawning try: for obj in spawner.spawn(prototype, caller=self.caller): self.caller.msg("Spawned %s." % obj.get_display_name(self.caller)) if not prototype.get("location") and not noloc: # we don't hardcode the location in the prototype (unless the user # did so manually) - that would lead to it having to be 'removed' every # time we try to update objects with this prototype in the future. obj.location = caller.location except RuntimeError as err: caller.msg(err)
py
1a32d705e4eb9fd556d57f6c1aed9ef238141835
from operator import attrgetter import pyangbind.lib.xpathhelper as xpathhelper from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import __builtin__ class apply_exp_traffic_class_map_name(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module brocade-qos-mpls - based on the path /qos-mpls/map-apply/apply-exp-traffic-class-map-name. Each member element of the container is represented as a class variable - with a specific YANG type. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_rest_name', '_extmethods', '__map_name_cmd1','__all_zero_map_cmd1','__default_map_cmd1','__All_cmd1',) _yang_name = 'apply-exp-traffic-class-map-name' _rest_name = 'exp-traffic-class' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): path_helper_ = kwargs.pop("path_helper", None) if path_helper_ is False: self._path_helper = False elif path_helper_ is not None and isinstance(path_helper_, xpathhelper.YANGPathHelper): self._path_helper = path_helper_ elif hasattr(self, "_parent"): path_helper_ = getattr(self._parent, "_path_helper", False) self._path_helper = path_helper_ else: self._path_helper = False extmethods = kwargs.pop("extmethods", None) if extmethods is False: self._extmethods = False elif extmethods is not None and isinstance(extmethods, dict): self._extmethods = extmethods elif hasattr(self, "_parent"): extmethods = getattr(self._parent, "_extmethods", None) self._extmethods = extmethods else: self._extmethods = False self.__default_map_cmd1 = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="default-map-cmd1", rest_name="default-map", parent=self, choice=(u'apply-exp-traffic-class', u'ca-default-map-cmd1'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Map EXP value to internal traffic-class and drop-prec based on default map', u'alt-name': u'default-map', u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='empty', is_config=True) self.__all_zero_map_cmd1 = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="all-zero-map-cmd1", rest_name="all-zero-map", parent=self, choice=(u'apply-exp-traffic-class', u'ca-all-zero-map-cmd1'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Map EXP value to internal traffic-class 0 and drop-prec 0', u'alt-name': u'all-zero-map', u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='empty', is_config=True) self.__All_cmd1 = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="All-cmd1", rest_name="All", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Apply globally on all interface', u'alt-name': u'All'}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='empty', is_config=True) self.__map_name_cmd1 = YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'[a-zA-Z]{1}([-a-zA-Z0-9_]{0,63})'}), is_leaf=True, yang_name="map-name-cmd1", rest_name="map-name-cmd1", parent=self, choice=(u'apply-exp-traffic-class', u'ca-map-name-cmd1'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'<MAP NAME>;;Name for the MAP(Max 64)', u'cli-drop-node-name': None, u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='map-name-type', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'qos-mpls', u'map-apply', u'apply-exp-traffic-class-map-name'] def _rest_path(self): if hasattr(self, "_parent"): if self._rest_name: return self._parent._rest_path()+[self._rest_name] else: return self._parent._rest_path() else: return [u'qos-mpls', u'map-apply', u'exp-traffic-class'] def _get_map_name_cmd1(self): """ Getter method for map_name_cmd1, mapped from YANG variable /qos_mpls/map_apply/apply_exp_traffic_class_map_name/map_name_cmd1 (map-name-type) """ return self.__map_name_cmd1 def _set_map_name_cmd1(self, v, load=False): """ Setter method for map_name_cmd1, mapped from YANG variable /qos_mpls/map_apply/apply_exp_traffic_class_map_name/map_name_cmd1 (map-name-type) If this variable is read-only (config: false) in the source YANG file, then _set_map_name_cmd1 is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_map_name_cmd1() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'[a-zA-Z]{1}([-a-zA-Z0-9_]{0,63})'}), is_leaf=True, yang_name="map-name-cmd1", rest_name="map-name-cmd1", parent=self, choice=(u'apply-exp-traffic-class', u'ca-map-name-cmd1'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'<MAP NAME>;;Name for the MAP(Max 64)', u'cli-drop-node-name': None, u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='map-name-type', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """map_name_cmd1 must be of a type compatible with map-name-type""", 'defined-type': "brocade-apply-qos-mpls:map-name-type", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'[a-zA-Z]{1}([-a-zA-Z0-9_]{0,63})'}), is_leaf=True, yang_name="map-name-cmd1", rest_name="map-name-cmd1", parent=self, choice=(u'apply-exp-traffic-class', u'ca-map-name-cmd1'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'<MAP NAME>;;Name for the MAP(Max 64)', u'cli-drop-node-name': None, u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='map-name-type', is_config=True)""", }) self.__map_name_cmd1 = t if hasattr(self, '_set'): self._set() def _unset_map_name_cmd1(self): self.__map_name_cmd1 = YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'[a-zA-Z]{1}([-a-zA-Z0-9_]{0,63})'}), is_leaf=True, yang_name="map-name-cmd1", rest_name="map-name-cmd1", parent=self, choice=(u'apply-exp-traffic-class', u'ca-map-name-cmd1'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'<MAP NAME>;;Name for the MAP(Max 64)', u'cli-drop-node-name': None, u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='map-name-type', is_config=True) def _get_all_zero_map_cmd1(self): """ Getter method for all_zero_map_cmd1, mapped from YANG variable /qos_mpls/map_apply/apply_exp_traffic_class_map_name/all_zero_map_cmd1 (empty) """ return self.__all_zero_map_cmd1 def _set_all_zero_map_cmd1(self, v, load=False): """ Setter method for all_zero_map_cmd1, mapped from YANG variable /qos_mpls/map_apply/apply_exp_traffic_class_map_name/all_zero_map_cmd1 (empty) If this variable is read-only (config: false) in the source YANG file, then _set_all_zero_map_cmd1 is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_all_zero_map_cmd1() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGBool, is_leaf=True, yang_name="all-zero-map-cmd1", rest_name="all-zero-map", parent=self, choice=(u'apply-exp-traffic-class', u'ca-all-zero-map-cmd1'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Map EXP value to internal traffic-class 0 and drop-prec 0', u'alt-name': u'all-zero-map', u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='empty', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """all_zero_map_cmd1 must be of a type compatible with empty""", 'defined-type': "empty", 'generated-type': """YANGDynClass(base=YANGBool, is_leaf=True, yang_name="all-zero-map-cmd1", rest_name="all-zero-map", parent=self, choice=(u'apply-exp-traffic-class', u'ca-all-zero-map-cmd1'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Map EXP value to internal traffic-class 0 and drop-prec 0', u'alt-name': u'all-zero-map', u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='empty', is_config=True)""", }) self.__all_zero_map_cmd1 = t if hasattr(self, '_set'): self._set() def _unset_all_zero_map_cmd1(self): self.__all_zero_map_cmd1 = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="all-zero-map-cmd1", rest_name="all-zero-map", parent=self, choice=(u'apply-exp-traffic-class', u'ca-all-zero-map-cmd1'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Map EXP value to internal traffic-class 0 and drop-prec 0', u'alt-name': u'all-zero-map', u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='empty', is_config=True) def _get_default_map_cmd1(self): """ Getter method for default_map_cmd1, mapped from YANG variable /qos_mpls/map_apply/apply_exp_traffic_class_map_name/default_map_cmd1 (empty) """ return self.__default_map_cmd1 def _set_default_map_cmd1(self, v, load=False): """ Setter method for default_map_cmd1, mapped from YANG variable /qos_mpls/map_apply/apply_exp_traffic_class_map_name/default_map_cmd1 (empty) If this variable is read-only (config: false) in the source YANG file, then _set_default_map_cmd1 is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_default_map_cmd1() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGBool, is_leaf=True, yang_name="default-map-cmd1", rest_name="default-map", parent=self, choice=(u'apply-exp-traffic-class', u'ca-default-map-cmd1'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Map EXP value to internal traffic-class and drop-prec based on default map', u'alt-name': u'default-map', u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='empty', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """default_map_cmd1 must be of a type compatible with empty""", 'defined-type': "empty", 'generated-type': """YANGDynClass(base=YANGBool, is_leaf=True, yang_name="default-map-cmd1", rest_name="default-map", parent=self, choice=(u'apply-exp-traffic-class', u'ca-default-map-cmd1'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Map EXP value to internal traffic-class and drop-prec based on default map', u'alt-name': u'default-map', u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='empty', is_config=True)""", }) self.__default_map_cmd1 = t if hasattr(self, '_set'): self._set() def _unset_default_map_cmd1(self): self.__default_map_cmd1 = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="default-map-cmd1", rest_name="default-map", parent=self, choice=(u'apply-exp-traffic-class', u'ca-default-map-cmd1'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Map EXP value to internal traffic-class and drop-prec based on default map', u'alt-name': u'default-map', u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='empty', is_config=True) def _get_All_cmd1(self): """ Getter method for All_cmd1, mapped from YANG variable /qos_mpls/map_apply/apply_exp_traffic_class_map_name/All_cmd1 (empty) """ return self.__All_cmd1 def _set_All_cmd1(self, v, load=False): """ Setter method for All_cmd1, mapped from YANG variable /qos_mpls/map_apply/apply_exp_traffic_class_map_name/All_cmd1 (empty) If this variable is read-only (config: false) in the source YANG file, then _set_All_cmd1 is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_All_cmd1() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGBool, is_leaf=True, yang_name="All-cmd1", rest_name="All", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Apply globally on all interface', u'alt-name': u'All'}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='empty', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """All_cmd1 must be of a type compatible with empty""", 'defined-type': "empty", 'generated-type': """YANGDynClass(base=YANGBool, is_leaf=True, yang_name="All-cmd1", rest_name="All", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Apply globally on all interface', u'alt-name': u'All'}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='empty', is_config=True)""", }) self.__All_cmd1 = t if hasattr(self, '_set'): self._set() def _unset_All_cmd1(self): self.__All_cmd1 = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="All-cmd1", rest_name="All", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Apply globally on all interface', u'alt-name': u'All'}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='empty', is_config=True) map_name_cmd1 = __builtin__.property(_get_map_name_cmd1, _set_map_name_cmd1) all_zero_map_cmd1 = __builtin__.property(_get_all_zero_map_cmd1, _set_all_zero_map_cmd1) default_map_cmd1 = __builtin__.property(_get_default_map_cmd1, _set_default_map_cmd1) All_cmd1 = __builtin__.property(_get_All_cmd1, _set_All_cmd1) __choices__ = {u'apply-exp-traffic-class': {u'ca-default-map-cmd1': [u'default_map_cmd1'], u'ca-map-name-cmd1': [u'map_name_cmd1'], u'ca-all-zero-map-cmd1': [u'all_zero_map_cmd1']}} _pyangbind_elements = {'map_name_cmd1': map_name_cmd1, 'all_zero_map_cmd1': all_zero_map_cmd1, 'default_map_cmd1': default_map_cmd1, 'All_cmd1': All_cmd1, }
py
1a32d7137b654d451e0fd2940731354e0967eaa0
from sklearn.datasets import load_boston import pandas as pd import numpy as np import miceforest as mf from datetime import datetime from miceforest.mean_matching_functions import mean_match_kdtree_classification from matplotlib.pyplot import close # Make random state and load data # Define data random_state = np.random.RandomState(5) boston = pd.DataFrame(load_boston(return_X_y=True)[0]) boston.columns = [str(i) for i in boston.columns] boston["3"] = boston["3"].map({0: 'a', 1: 'b'}).astype('category') boston["8"] = boston["8"].astype("category") boston_amp = mf.ampute_data(boston, perc=0.25, random_state=random_state) def test_defaults_pandas(): new_data = boston_amp.loc[range(10), :].copy() kernel = mf.ImputationKernel( data=boston_amp, datasets=2, mean_match_function=mean_match_kdtree_classification ) kernel.mice(iterations=2) kernel2 = mf.ImputationKernel( data=boston_amp, datasets=1, mean_match_function=mean_match_kdtree_classification ) kernel2.mice(iterations=2) # Test appending and then test kernel. kernel.append(kernel2) # Test mice after appendage kernel.mice(1) kernel.complete_data(0, inplace=True) assert all(kernel.working_data.isnull().sum() == 0) assert kernel.models[0][0][3].params['objective'] == 'regression' assert kernel.models[0][3][3].params['objective'] == 'binary' assert kernel.models[0][8][3].params['objective'] == 'multiclass' # Make sure we didn't touch the original data assert all(boston_amp.isnull().sum() > 0) imp_ds = kernel.impute_new_data(new_data) imp_ds.complete_data(2,inplace=True) assert all(imp_ds.working_data.isnull().sum(0) == 0) assert new_data.isnull().sum().sum() > 0 def test_complex_pandas(): working_set = boston_amp.copy() # Switch our category columns to integer codes. # Replace -1 with np.NaN or lightgbm will complain. working_set["3"] = working_set["3"].cat.codes working_set["8"] = working_set["8"].cat.codes working_set["3"].replace(-1,np.NaN, inplace=True) working_set["8"].replace(-1, np.NaN, inplace=True) new_data = working_set.loc[range(10), :].copy() # Customize everything. vs = {"1": ["2","3","4","5"], "2": ["6","7"], "3": ["1","2","8"], "4": ["8","9","10"]} mmc = {"1": 4, "2": 0.01, "3": 0} ds = {"2": 100, "3": 0.5} io = ["2", "3", "1"] imputed_var_names = io non_imputed_var_names = [str(x) for x in range(13) if str(x) not in io] def mmf( mmc, model, candidate_features, bachelor_features, candidate_values, random_state ): if mmc > 0: imp_values = random_state.choice(candidate_values, size=bachelor_features.shape[0]) else: bachelor_preds = model.predict(bachelor_features) imp_values = bachelor_preds return imp_values kernel = mf.ImputationKernel( data=working_set, datasets=2, variable_schema=vs, imputation_order=io, train_nonmissing=True, mean_match_candidates=mmc, data_subset=ds, mean_match_function=mmf, categorical_feature=[3,8], copy_data=False ) kernel2 = mf.ImputationKernel( data=working_set, datasets=1, variable_schema=vs, imputation_order=io, train_nonmissing=True, mean_match_candidates=mmc, data_subset=ds, mean_match_function=mmf, categorical_feature=[3,8], copy_data=False ) assert kernel.mean_match_candidates == {1: 4, 2: 3, 3: 0, 4: 5}, "mean_match_candidates initialization failed" assert kernel.data_subset == {1: 380, 2: 100, 3: 190, 4: 380}, "mean_match_subset initialization failed" assert kernel.iteration_count() == 0, "iteration initialization failed" assert kernel.categorical_variables == [3, 8], "categorical recognition failed." nround = 2 kernel.mice(nround - 1, variable_parameters={"1": {"n_estimators": 15}}, n_estimators=10, verbose=True) kernel2.mice(nround - 1, variable_parameters={"1": {"n_estimators": 15}}, n_estimators=10, verbose=True) kernel.append(kernel2) assert kernel.models[0][1][nround - 1].params['num_iterations'] == 15 assert kernel.models[0][2][nround - 1].params['num_iterations'] == 10 kernel.mice(1, variable_parameters={1: {"n_estimators": 15}}, n_estimators=10, verbose=True) assert kernel.iteration_count() == nround, "iteration counting is incorrect." assert kernel.models[0][1][nround].params['num_iterations'] == 15 assert kernel.models[0][2][nround].params['num_iterations'] == 10 # Make sure we only impute variables in variable_schema compdat = kernel.complete_data(0) assert all(compdat[imputed_var_names].isnull().sum() == 0) assert all(compdat[non_imputed_var_names].isnull().sum() > 0) # Test the ability to tune parameters with custom setup optimization_steps = 2 op, ol = kernel.tune_parameters( dataset=0, optimization_steps=optimization_steps, variable_parameters={1: {"bagging_fraction": 0.9, "feature_fraction_bynode": (0.85, 0.9)}}, bagging_fraction=0.8, feature_fraction_bynode=(0.70,0.75), verbose=True ) assert op[1]["bagging_fraction"] == 0.9 assert op[2]["bagging_fraction"] == 0.8 assert (op[1]["feature_fraction_bynode"] >= 0.85) and (op[1]["feature_fraction_bynode"] <= 0.9) assert (op[2]["feature_fraction_bynode"] >= 0.70) and (op[2]["feature_fraction_bynode"] <= 0.75) kernel.mice(1, variable_parameters=op, verbose=True) model_2_params = kernel.models[0][2][nround + 1].params model_1_params = kernel.models[0][1][nround + 1].params assert model_2_params["bagging_fraction"] == 0.8 assert model_1_params["bagging_fraction"] == 0.9 assert (model_2_params["feature_fraction_bynode"] >= 0.70) and (model_2_params["feature_fraction_bynode"] <= 0.75) assert (model_1_params["feature_fraction_bynode"] >= 0.85) and (model_1_params["feature_fraction_bynode"] <= 0.9) new_imp_dat = kernel.impute_new_data(new_data=new_data, verbose=True) new_imp_complete = new_imp_dat.complete_data(0) assert all(new_imp_complete[["1","2","3","4"]].isnull().sum() == 0) # Plotting on multiple imputed dataset new_imp_dat.plot_mean_convergence() close() new_imp_dat.plot_imputed_distributions() close() # Plotting on Multiple Imputed Kernel kernel.plot_feature_importance(0) close() kernel.plot_mean_convergence() close() kernel.plot_imputed_distributions() close() def test_defaults_numpy(): working_set = boston_amp.copy() working_set["3"] = working_set["3"].cat.codes working_set["8"] = working_set["8"].cat.codes working_set["3"].replace(-1,np.NaN, inplace=True) working_set["8"].replace(-1, np.NaN, inplace=True) new_data = working_set.loc[range(10), :].copy() working_set = working_set.values new_data = new_data.values s = datetime.now() kernel = mf.ImputationKernel( data=working_set, datasets=3, categorical_feature=[3,8], mean_match_function=mean_match_kdtree_classification ) kernel.mice(iterations=1, verbose=True) # Complete data with copy. comp_dat = kernel.complete_data(0, inplace=False) # We didn't complete data in place. Make sure we created # a copy, and did not affect internal data or original data. assert all(np.isnan(comp_dat).sum(0) == 0) assert all(np.isnan(kernel.working_data).sum(0) > 0) assert all(np.isnan(working_set).sum(0) > 0) # Complete data in place kernel.complete_data(0, inplace=True) # We completed data in place. Make sure we only affected # the kernel.working_data and not the original data. assert all(np.isnan(kernel.working_data).sum(0) == 0) assert all(np.isnan(working_set).sum(0) > 0) imp_ds = kernel.impute_new_data(new_data) imp_ds.complete_data(0,inplace=True) assert all(np.isnan(imp_ds.working_data).sum(0) == 0) assert np.isnan(new_data).sum() > 0 print(datetime.now() - s) def test_complex_numpy(): working_set = boston_amp.copy() # Switch our category columns to integer codes. # Replace -1 with np.NaN or lightgbm will complain. working_set["3"] = working_set["3"].cat.codes working_set["8"] = working_set["8"].cat.codes working_set["3"].replace(-1,np.NaN, inplace=True) working_set["8"].replace(-1, np.NaN, inplace=True) new_data = working_set.loc[range(100), :].copy() working_set = working_set.values new_data = new_data.values # Specify that models should be built for variables 1, 2, 3, 4 vs = {1: [2,3,4,5], 2: [6,7], 3: [1,2,8], 4: [8,9,10]} mmc = {1: 4, 2: 0.01, 3: 0} ds = {2: 100, 3: 0.5} # Only variables 1, 2, 3 should be imputed using mice. io = [2,3,1] niv = np.setdiff1d(np.arange(working_set.shape[1]), io) nivs = np.setdiff1d(np.arange(working_set.shape[1]), list(vs)) def mmf( mmc, model, candidate_features, bachelor_features, candidate_values, random_state ): if mmc > 0: imp_values = random_state.choice(candidate_values, size=bachelor_features.shape[0]) else: bachelor_preds = model.predict(bachelor_features) imp_values = bachelor_preds return imp_values kernel = mf.ImputationKernel( data=working_set, datasets=2, variable_schema=vs, imputation_order=io, train_nonmissing=True, mean_match_candidates=mmc, data_subset=ds, mean_match_function=mmf, categorical_feature=[3,8], copy_data=False ) kernel2 = mf.ImputationKernel( data=working_set, datasets=1, variable_schema=vs, imputation_order=io, train_nonmissing=True, mean_match_candidates=mmc, data_subset=ds, mean_match_function=mmf, categorical_feature=[3,8], copy_data=False ) assert kernel.mean_match_candidates == {2: 3, 3: 0, 1: 4, 4: 5}, "mean_match_candidates initialization failed" assert kernel.data_subset == {2: 100, 3: 190, 1: 380, 4: 380}, "mean_match_subset initialization failed" assert kernel.iteration_count() == 0, "iteration initialization failed" assert kernel.categorical_variables == [3, 8], "categorical recognition failed." nround = 2 kernel.mice(nround - 1, variable_parameters={1: {"n_estimators": 15}}, n_estimators=10, verbose=True) kernel2.mice(nround - 1, variable_parameters={1: {"n_estimators": 15}}, n_estimators=10, verbose=True) kernel.append(kernel2) assert kernel.models[0][1][nround - 1].params['num_iterations'] == 15 assert kernel.models[0][2][nround - 1].params['num_iterations'] == 10 kernel.mice(1, variable_parameters={1: {"n_estimators": 15}}, n_estimators=10, verbose=True) assert kernel.iteration_count() == nround, "iteration counting is incorrect." assert kernel.models[0][1][nround].params['num_iterations'] == 15 assert kernel.models[0][2][nround].params['num_iterations'] == 10 # Complete data with copy. Make sure only correct datasets and variables were affected. compdat = kernel.complete_data(0, inplace=False) assert all(np.isnan(compdat[:,io]).sum(0) == 0) assert all(np.isnan(compdat[:,niv]).sum(0) > 0) # Should have no affect on working_data assert all(np.isnan(kernel.working_data).sum(0) > 0) # Should have no affect on working_set assert all(np.isnan(working_set).sum(0) > 0) # Now complete the data in place kernel.complete_data(0, inplace=True) # Should have affect on working_data and original data assert all(np.isnan(kernel.working_data[:, io]).sum(0) == 0) assert all(np.isnan(working_set[:, io]).sum(0) == 0) assert all(np.isnan(kernel.working_data[:, niv]).sum(0) > 0) assert all(np.isnan(working_set[:, niv]).sum(0) > 0) # Test the ability to tune parameters with custom setup optimization_steps = 2 op, ol = kernel.tune_parameters( dataset=0, optimization_steps=optimization_steps, variable_parameters={1: {"bagging_fraction": 0.9, "feature_fraction_bynode": (0.85, 0.9)}}, bagging_fraction=0.8, feature_fraction_bynode=(0.70,0.75), verbose=True ) assert op[1]["bagging_fraction"] == 0.9 assert op[2]["bagging_fraction"] == 0.8 assert (op[1]["feature_fraction_bynode"] >= 0.85) and (op[1]["feature_fraction_bynode"] <= 0.9) assert (op[2]["feature_fraction_bynode"] >= 0.70) and (op[2]["feature_fraction_bynode"] <= 0.75) kernel.mice(1, variable_parameters=op, verbose=True) model_2_params = kernel.models[0][2][nround + 1].params model_1_params = kernel.models[0][1][nround + 1].params assert model_2_params["bagging_fraction"] == 0.8 assert model_1_params["bagging_fraction"] == 0.9 assert (model_2_params["feature_fraction_bynode"] >= 0.70) and (model_2_params["feature_fraction_bynode"] <= 0.75) assert (model_1_params["feature_fraction_bynode"] >= 0.85) and (model_1_params["feature_fraction_bynode"] <= 0.9) new_imp_dat = kernel.impute_new_data(new_data=new_data, copy_data=True, verbose=True) # Not in place new_imp_complete = new_imp_dat.complete_data(0, inplace=False) assert all(np.isnan(new_imp_complete[:, list(vs)]).sum(0) == 0) assert all(np.isnan(new_imp_complete[:, nivs]).sum(0) > 0) # Should have no affect on working_data or original data assert all(np.isnan(new_imp_dat.working_data).sum(0) > 0) assert all(np.isnan(new_data[:, list(vs)]).sum(0) > 0) # complete data in place new_imp_dat.complete_data(0, inplace=True) assert all(np.isnan(new_imp_dat.working_data[:, list(vs)]).sum(0) == 0) assert all(np.isnan(new_data[:, nivs]).sum(0) > 0) # Alter in place new_imp_dat = kernel.impute_new_data(new_data=new_data, copy_data=False, verbose=True) # Before completion, nan's should still exist in data: assert all(np.isnan(new_data).sum(0) > 0) assert all(np.isnan(new_imp_dat.working_data).sum(0) > 0) # Complete data not in place new_imp_complete = new_imp_dat.complete_data(0, inplace=False) assert all(np.isnan(new_imp_complete[:, nivs]).sum(0) > 0) assert all(np.isnan(new_imp_complete[:, list(vs)]).sum(0) == 0) assert all(np.isnan(new_data).sum(0) > 0) assert all(np.isnan(new_imp_dat.working_data).sum(0) > 0) # Complete data in place new_imp_dat.complete_data(0, inplace=True) assert all(np.isnan(new_data[:, nivs]).sum(0) > 0) assert all(np.isnan(new_data[:, list(vs)]).sum(0) == 0) assert all(np.isnan(new_imp_dat.working_data[:, nivs]).sum(0) > 0) assert all(np.isnan(new_imp_dat.working_data[:, list(vs)]).sum(0) == 0) # Plotting on multiple imputed dataset new_imp_dat.plot_mean_convergence() close() new_imp_dat.plot_imputed_distributions() close() # Plotting on Multiple Imputed Kernel kernel.plot_feature_importance(0) close() kernel.plot_mean_convergence() close() kernel.plot_imputed_distributions() close()
py
1a32d8b1d7727c8277a29e60b7c97c20cdd077de
class _Creep: body = [] memory = {'class' : 'AbstractBaseCreep'} # Override this in subclasses name = None def __init__(self, spawner): self.spawner = spawner def spawn(self): resp = self.spawner.canCreateCreep(self.body, self.name) if resp == OK: print("Spawning new " + self.type) print("Body: " + self.body) print("Memory: " + self.memory) self.spawner.createCreep(self.body, self.name, self.memory) else: print("Tried to spawn a " + self.type + " but got code " + resp) class BasicHarvester(_Creep): body = [WORK, MOVE, CARRY] memory = {'class': 'BasicHarvester'}
py
1a32d98c93d4d0da2db69cbf3f1b069c88ee0d95
# https://gist.github.com/seanchen1991/a151368df32b8e7ae6e7fde715e44b78 # reduce takes a data structure and either finds a key piece of data or # be able to restructure the data structure # 1. Reduce usually takes a linear data structure (99% we use reduce on an array) # 2. Reduce "aggregates" all of the data in the data structure into one final value # 3. Reduce is extremely flexible with how the reduction actually happens # 3a. Reduce doesn't care how the reduction happens # 4. The "reducer" function that's passed in as input is how we specify how the reduction happens # what's the deal with the anonymous function's parameters? # 1. An aggregator value # 2. The current list node # 3. An optional value the aggregator is initialized with # what happens on a single call of the anonymous function? # how many times does the reducer function get called? Once for every element in our data structure # does the anonymous function do the work of iterating over our data structure? # no, the anonymous function itself doesn't do the work of iterating # Steps for our reduce function # How do all of these calls get aggregated into a single value? # The anonymous function needs to update the aggregated value somehow # where is the state set and how is it defaulted to the head? def linked_list_reduce(head, reducer, init=None): # where/when do we initialize the state? # initialize state before we start looping state = None # what do we do when the init value is set? if init != None: state = init # what do we do when the init value is None? elif state is None: # set the state to be the first value in our list state = head.value # move the head to the next list node head = head.next # 1. Loop over the data structure current = head while current: # 2. Call our anonymous function on the current iteration value # 3. Update our state to be the result of the anonymous function state = reducer(state, current.value) # update our current pointer current = current.next # 4. Return the final aggregated state return state class Node: def __init__(self, value, next=None): self.value = value self.next = next l1 = Node(4) l2 = Node(7) l3 = Node(15) l4 = Node(29) l5 = Node(5) l1.next = l2 l2.next = l3 l3.next = l4 l4.next = l5 def reducer(x, y): return x - y print(linked_list_reduce(l1, reducer, 100))
py
1a32db2aa650bfd268f4126b10c5d1b410bd40be
"""Plot a Lyapunov contour""" from typing import cast, List, Tuple, Optional, TYPE_CHECKING import matplotlib.pyplot as plt from matplotlib.pyplot import figure import pandas as pd import seaborn as sns import torch import tqdm from neural_clbf.experiments import Experiment from neural_clbf.systems import ObservableSystem # noqa if TYPE_CHECKING: from neural_clbf.controllers import Controller, NeuralObsBFController # noqa class LFContourExperiment(Experiment): """An experiment for plotting the contours of learned LFs""" def __init__( self, name: str, domain: Optional[List[Tuple[float, float]]] = None, n_grid: int = 50, x_axis_index: int = 0, y_axis_index: int = 1, x_axis_label: str = "$x$", y_axis_label: str = "$y$", default_state: Optional[torch.Tensor] = None, ): """Initialize an experiment for plotting the value of the LF over selected state dimensions. args: name: the name of this experiment domain: a list of two tuples specifying the plotting range, one for each state dimension. n_grid: the number of points in each direction at which to compute h x_axis_index: the index of the state variable to plot on the x axis y_axis_index: the index of the state variable to plot on the y axis x_axis_label: the label for the x axis y_axis_label: the label for the y axis default_state: 1 x dynamics_model.n_dims tensor of default state values. The values at x_axis_index and y_axis_index will be overwritten by the grid values. """ super(LFContourExperiment, self).__init__(name) # Default to plotting over [-1, 1] in all directions if domain is None: domain = [(-1.0, 1.0), (-1.0, 1.0)] self.domain = domain self.n_grid = n_grid self.x_axis_index = x_axis_index self.y_axis_index = y_axis_index self.x_axis_label = x_axis_label self.y_axis_label = y_axis_label self.default_state = default_state @torch.no_grad() def run(self, controller_under_test: "Controller") -> pd.DataFrame: """ Run the experiment, likely by evaluating the controller, but the experiment has freedom to call other functions of the controller as necessary (if these functions are not supported by all controllers, then experiments will be responsible for checking compatibility with the provided controller) args: controller_under_test: the controller with which to run the experiment returns: a pandas DataFrame containing the results of the experiment, in tidy data format (i.e. each row should correspond to a single observation from the experiment). """ # Sanity check: can only be called on a NeuralObsBFController if not (hasattr(controller_under_test, "h")): raise ValueError("Controller under test must be a NeuralObsBFController") controller_under_test = cast("NeuralObsBFController", controller_under_test) # Set up a dataframe to store the results results_df = pd.DataFrame() # Set up the plotting grid device = "cpu" if hasattr(controller_under_test, "device"): device = controller_under_test.device # type: ignore x_vals = torch.linspace( self.domain[0][0], self.domain[0][1], self.n_grid, device=device ) y_vals = torch.linspace( self.domain[1][0], self.domain[1][1], self.n_grid, device=device ) # Default to all zeros if no default provided if self.default_state is None: default_state = torch.zeros(1, controller_under_test.dynamics_model.n_dims) else: default_state = self.default_state default_state = default_state.type_as(x_vals) # Make a copy of the default state, which we'll modify on every loop x = ( default_state.clone() .detach() .reshape(1, controller_under_test.dynamics_model.n_dims) ) # Loop through the grid prog_bar_range = tqdm.trange(self.n_grid, desc="Plotting LF", leave=True) for i in prog_bar_range: for j in range(self.n_grid): # Adjust x to be at the current grid point x[0, self.x_axis_index] = x_vals[i] x[0, self.y_axis_index] = y_vals[j] # Get the value of the LF at this point V = controller_under_test.V(x) # TODO @dawsonc measure violation # Store the results results_df = results_df.append( { self.x_axis_label: x_vals[i].cpu().numpy().item(), self.y_axis_label: y_vals[j].cpu().numpy().item(), "V": V.cpu().numpy().item(), }, ignore_index=True, ) return results_df def plot( self, controller_under_test: "Controller", results_df: pd.DataFrame, display_plots: bool = False, ) -> List[Tuple[str, figure]]: """ Plot the results, and return the plot handles. Optionally display the plots. args: controller_under_test: the controller with which to run the experiment display_plots: defaults to False. If True, display the plots (blocks until the user responds). returns: a list of tuples containing the name of each figure and the figure object. """ # Set the color scheme sns.set_theme(context="talk", style="white") # Plot a contour of h fig, ax = plt.subplots(1, 1) fig.set_size_inches(12, 8) contours = ax.tricontourf( results_df[self.x_axis_label], results_df[self.y_axis_label], results_df["V"], cmap=sns.color_palette("rocket", as_cmap=True), ) plt.colorbar(contours, ax=ax, orientation="vertical") # Make the legend ax.set_xlabel(self.x_axis_label) ax.set_ylabel(self.y_axis_label) fig_handle = ("V Contour", fig) if display_plots: plt.show() return [] else: return [fig_handle]
py
1a32dc3a18f4210b48ab65873270ae64e91aba03
# Copyright 2021 the authors. # This file is part of Hy, which is free software licensed under the Expat # license. See the LICENSE. from __future__ import unicode_literals from contextlib import contextmanager from math import isnan, isinf from hy import _initialize_env_var from hy.errors import HyWrapperError from fractions import Fraction from colorama import Fore PRETTY = True COLORED = _initialize_env_var('HY_COLORED_AST_OBJECTS', False) @contextmanager def pretty(pretty=True): """ Context manager to temporarily enable or disable pretty-printing of Hy model reprs. """ global PRETTY old, PRETTY = PRETTY, pretty try: yield finally: PRETTY = old class _ColoredModel: """ Mixin that provides a helper function for models that have color. """ def _colored(self, text): if COLORED: return self.color + text + Fore.RESET else: return text class Object(object): """ Generic Hy Object model. This is helpful to inject things into all the Hy lexing Objects at once. The position properties (`start_line`, `end_line`, `start_column`, `end_column`) are each 1-based and inclusive. For example, a symbol `abc` starting at the first column would have `start_column` 1 and `end_column` 3. """ properties = ["module", "_start_line", "end_line", "_start_column", "end_column"] def replace(self, other, recursive=False): if isinstance(other, Object): for attr in self.properties: if not hasattr(self, attr) and hasattr(other, attr): setattr(self, attr, getattr(other, attr)) else: raise TypeError("Can't replace a non Hy object '{}' with a Hy object '{}'".format(repr(other), repr(self))) return self @property def start_line(self): return getattr(self, "_start_line", 1) @start_line.setter def start_line(self, value): self._start_line = value @property def start_column(self): return getattr(self, "_start_column", 1) @start_column.setter def start_column(self, value): self._start_column = value def __repr__(self): return (f"hy.models.{self.__class__.__name__}" f"({super(Object, self).__repr__()})") _wrappers = {} def wrap_value(x): """Wrap `x` into the corresponding Hy type. This allows replace_hy_obj to convert a non Hy object to a Hy object. This also allows a macro to return an unquoted expression transparently. """ new = _wrappers.get(type(x), lambda y: y)(x) if not isinstance(new, Object): raise HyWrapperError("Don't know how to wrap {!r}: {!r}".format(type(x), x)) if isinstance(x, Object): new = new.replace(x, recursive=False) return new def replace_hy_obj(obj, other): return wrap_value(obj).replace(other) def repr_indent(obj): return repr(obj).replace("\n", "\n ") class String(Object, str): """ Generic Hy String object. Helpful to store string literals from Hy scripts. It's either a ``str`` or a ``unicode``, depending on the Python version. """ def __new__(cls, s=None, brackets=None): value = super(String, cls).__new__(cls, s) value.brackets = brackets return value _wrappers[str] = String class Bytes(Object, bytes): """ Generic Hy Bytes object. It's either a ``bytes`` or a ``str``, depending on the Python version. """ pass _wrappers[bytes] = Bytes class Symbol(Object, str): """ Hy Symbol. Basically a string. """ def __new__(cls, s=None): return super(Symbol, cls).__new__(cls, s) _wrappers[bool] = lambda x: Symbol("True") if x else Symbol("False") _wrappers[type(None)] = lambda foo: Symbol("None") class Keyword(Object): """Generic Hy Keyword object.""" __slots__ = ['name'] def __init__(self, value): self.name = value def __repr__(self): return f"hy.models.{self.__class__.__name__}({self.name!r})" def __str__(self): return ":%s" % self.name def __hash__(self): return hash(self.name) def __eq__(self, other): if not isinstance(other, Keyword): return NotImplemented return self.name == other.name def __ne__(self, other): if not isinstance(other, Keyword): return NotImplemented return self.name != other.name def __bool__(self): return bool(self.name) _sentinel = object() def __call__(self, data, default=_sentinel): from hy.lex import mangle try: return data[mangle(self.name)] except KeyError: if default is Keyword._sentinel: raise return default # __getstate__ and __setstate__ are required for Pickle protocol # 0, because we have __slots__. def __getstate__(self): return {k: getattr(self, k) for k in self.properties + self.__slots__ if hasattr(self, k)} def __setstate__(self, state): for k, v in state.items(): setattr(self, k, v) def strip_digit_separators(number): # Don't strip a _ or , if it's the first character, as _42 and # ,42 aren't valid numbers return (number[0] + number[1:].replace("_", "").replace(",", "") if isinstance(number, str) and len(number) > 1 else number) class Integer(Object, int): """ Internal representation of a Hy Integer. May raise a ValueError as if int(foo) was called, given Integer(foo). """ def __new__(cls, number, *args, **kwargs): if isinstance(number, str): number = strip_digit_separators(number) bases = {"0x": 16, "0o": 8, "0b": 2} for leader, base in bases.items(): if number.startswith(leader): # We've got a string, known leader, set base. number = int(number, base=base) break else: # We've got a string, no known leader; base 10. number = int(number, base=10) else: # We've got a non-string; convert straight. number = int(number) return super(Integer, cls).__new__(cls, number) _wrappers[int] = Integer def check_inf_nan_cap(arg, value): if isinstance(arg, str): if isinf(value) and "i" in arg.lower() and "Inf" not in arg: raise ValueError('Inf must be capitalized as "Inf"') if isnan(value) and "NaN" not in arg: raise ValueError('NaN must be capitalized as "NaN"') class Float(Object, float): """ Internal representation of a Hy Float. May raise a ValueError as if float(foo) was called, given Float(foo). """ def __new__(cls, num, *args, **kwargs): value = super(Float, cls).__new__(cls, strip_digit_separators(num)) check_inf_nan_cap(num, value) return value _wrappers[float] = Float class Complex(Object, complex): """ Internal representation of a Hy Complex. May raise a ValueError as if complex(foo) was called, given Complex(foo). """ def __new__(cls, real, imag=0, *args, **kwargs): if isinstance(real, str): value = super(Complex, cls).__new__( cls, strip_digit_separators(real) ) p1, _, p2 = real.lstrip("+-").replace("-", "+").partition("+") check_inf_nan_cap(p1, value.imag if "j" in p1 else value.real) if p2: check_inf_nan_cap(p2, value.imag) return value return super(Complex, cls).__new__(cls, real, imag) _wrappers[complex] = Complex class Sequence(Object, tuple, _ColoredModel): """ An abstract type for sequence-like models to inherit from. """ def replace(self, other, recursive=True): if recursive: for x in self: replace_hy_obj(x, other) Object.replace(self, other) return self def __add__(self, other): return self.__class__(super(Sequence, self).__add__( tuple(other) if isinstance(other, list) else other)) def __getslice__(self, start, end): return self.__class__(super(Sequence, self).__getslice__(start, end)) def __getitem__(self, item): ret = super(Sequence, self).__getitem__(item) if isinstance(item, slice): return self.__class__(ret) return ret color = None def __repr__(self): return str(self) if PRETTY else super(Sequence, self).__repr__() def __str__(self): with pretty(): if self: return self._colored("hy.models.{}{}\n {}{}".format( self._colored(self.__class__.__name__), self._colored("(["), self._colored(",\n ").join(map(repr_indent, self)), self._colored("])"), )) else: return self._colored(f"hy.models.{self.__class__.__name__}()") class FComponent(Sequence): """ Analogue of ast.FormattedValue. The first node in the contained sequence is the value being formatted, the rest of the sequence contains the nodes in the format spec (if any). """ def __new__(cls, s=None, conversion=None): value = super().__new__(cls, s) value.conversion = conversion return value def replace(self, other, recursive=True): super().replace(other, recursive) if hasattr(other, "conversion"): self.conversion = other.conversion return self class FString(Sequence): """ Generic Hy F-String object, for smarter f-string handling. Mimics ast.JoinedStr, but using String and FComponent. """ def __new__(cls, s=None, brackets=None): value = super().__new__(cls, s) value.brackets = brackets return value class List(Sequence): color = Fore.CYAN def recwrap(f): return lambda l: f(wrap_value(x) for x in l) _wrappers[FComponent] = recwrap(FComponent) _wrappers[FString] = recwrap(FString) _wrappers[List] = recwrap(List) _wrappers[list] = recwrap(List) _wrappers[tuple] = recwrap(List) class Dict(Sequence, _ColoredModel): """ Dict (just a representation of a dict) """ color = Fore.GREEN def __str__(self): with pretty(): if self: pairs = [] for k, v in zip(self[::2],self[1::2]): k, v = repr_indent(k), repr_indent(v) pairs.append( ("{0}{c}\n {1}\n " if '\n' in k+v else "{0}{c} {1}").format(k, v, c=self._colored(','))) if len(self) % 2 == 1: pairs.append("{} {}\n".format( repr_indent(self[-1]), self._colored("# odd"))) return "{}\n {}{}".format( self._colored("hy.models.Dict(["), "{c}\n ".format(c=self._colored(',')).join(pairs), self._colored("])")) else: return self._colored("hy.models.Dict()") def keys(self): return list(self[0::2]) def values(self): return list(self[1::2]) def items(self): return list(zip(self.keys(), self.values())) _wrappers[Dict] = recwrap(Dict) _wrappers[dict] = lambda d: Dict(wrap_value(x) for x in sum(d.items(), ())) class Expression(Sequence): """ Hy S-Expression. Basically just a list. """ color = Fore.YELLOW _wrappers[Expression] = recwrap(Expression) _wrappers[Fraction] = lambda e: Expression( [Symbol("fraction"), wrap_value(e.numerator), wrap_value(e.denominator)]) class Set(Sequence): """ Hy set (just a representation of a set) """ color = Fore.RED _wrappers[Set] = recwrap(Set) _wrappers[set] = recwrap(Set)
py
1a32dc731e9120e8dd027660b6fed3fbab34677d
# Copyright 2013-2019 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class PyPoster(PythonPackage): """Streaming HTTP uploads and multipart/form-data encoding.""" homepage = "https://pypi.org/project/poster/" url = "https://atlee.ca/software/poster/dist/0.8.1/poster-0.8.1.tar.gz" version('0.8.1', '2db12704538781fbaa7e63f1505d6fc8') depends_on('py-setuptools', type='build') # https://bitbucket.org/chrisatlee/poster/issues/24/not-working-with-python3 # https://bitbucket.org/chrisatlee/poster/issues/25/poster-connot-work-in-python35 # Patch created using 2to3 patch('python3.patch', when='^python@3:')
py
1a32dd34b5f942f811eba6a86511de5dd1ccfa0a
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) Huawei Technologies Co., Ltd. 2019. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Inter-process communication using HCOM.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import json from tensorflow.python.platform import tf_logging as logging from npu_bridge.estimator.npu import util as util_lib class JobInfo: """Job information send by CSA.""" def __init__(self, job_id=0, job_config=None, heartbeat_time=-1, region_id=None, ak=None, sk=None, endpoint_url=None, device_info=None, rank_table_file=None, restart_flag=0, local_app_dir=None, local_data_dir=None, local_checkpoint_dir=None, local_log_dir=None, local_result_dir=None, local_boot_file=None, rank_size=1 ): """ Constructs a JobInfo. Args: job_id: the unique identifier. heartbeat_time: the frequency that framework records the heartbeat. job_config: the configuration of the training task. It's a json string. region_id: the region id to access the OBS. ak: the ak to access the OBS. sk: the sk to access the OBS. endpoint_url: the host name to access the OBS. device_info: the device information of the training task. It's a json string. rank_table_file: the communication routing information. restart_flag: the abnormal re-issued ID (0: Normally issued; 1: Abnormally re-issued). local_app_dir: the local path of the user script downloaded from OBS, for example: userfile/code/ local_data_dir: the local path of the user data downloaded from OBS, for example: userfile/data/ local_checkpoint_dir: the local path of the checkpoint file downloaded from OBS, for example: checkpoint/ local_log_dir: the user-created log path, for example: userfile/log/ local_result_dir: the user-created output file path, for example: userfile/result/ local_boot_file: the local path of the user startup script, for example: userfile/code/boot.py rank_size: Rank size. """ self._job_id = job_id self._job_config = job_config self._heartbeat_time = heartbeat_time self._region_id = region_id self._ak = ak self._sk = sk self._endpoint_url = endpoint_url self._device_info = device_info self._rank_table_file = rank_table_file self._restart_flag = restart_flag self._local_app_dir = local_app_dir self._local_data_dir = local_data_dir self._local_checkpoint_dir = local_checkpoint_dir self._local_log_dir = local_log_dir self._local_result_dir = local_result_dir self._local_boot_file = local_boot_file self._rank_size = rank_size class JobConfig(): """Job configuration.""" def __init__(self, learning_rate=None, batch_size=None): """ Constructs a JobConfig. Args: learning_rate: A Tensor or a floating point value. The learning rate to use. batch_size: Integer, size of batches to return. """ self._learning_rate = learning_rate self._batch_size = batch_size class DeviceInfo(): """Device information.""" def __init__(self, index="0", server_id="123456", dev_index=1): """ Constructs a DeviceInfo. Args: index: the unique identifier. server_id: the server resource unique identifier, obtained from resource management. dev_index: the device serial number in AI server. """ self._index = index self._server_id = server_id self._dev_index = dev_index self._root_rank = 0 def is_master_node(self): """Determines whether the current node is the primary node.""" return self._index == self._root_rank class NPUBasics(object): """Wrapper class for the basic NPU API.""" __instance = None __has_init = False def __new__(cls, file_name): if not cls.__instance: cls.__instance = object.__new__(cls) return cls.__instance def __init__(self, file_name): if not self.__has_init: self._job_info = self._read_job_info(file_name) self.__has_init = True @property def jobinfo(self): """Return property""" return self._job_info def size(self): """A function that returns the number of Tensorflow processes. Returns: An integer scalar containing the number of Tensorflow processes. """ return self._job_info._rank_size def _read_job_info(self, file_name): """Read the job information. Args: file_name: it's a json file which contains the job info from CSA. Returns: The job information. """ try: with open(file_name, 'r', encoding='UTF-8') as f: content = f.read() data = json.loads(content, encoding='UTF-8') # 1. Get the device_info and check it. device_info = data.get('device_info') util_lib.check_not_none(device_info, 'device_info') index = device_info.get('Index', None) util_lib.check_nonnegative_integer(index, 'Index') # 2. Get the rank_table_file and check it. rank_table_file = data.get('rank_table_file', None) util_lib.check_not_none(rank_table_file, 'rank_table_file') # 3. Get the rank_size and check it. rank_size = data.get('rank_size', None) util_lib.check_positive_integer(rank_size, 'rank_size') # 4. Get the local_checkpoint_dir and check it. local_checkpoint_dir = data.get('local_checkpoint_dir', None) # 5. Init the JobInfo. device_info = DeviceInfo(index=str(index)) job_info = JobInfo(device_info=device_info, rank_table_file=rank_table_file, local_checkpoint_dir=local_checkpoint_dir, rank_size=rank_size) return job_info except IOError: logging.warning('Warning:job config file does not exist') job_id = os.getenv('JOB_ID', "") if job_id == "": logging.error('Error:can not get job config from env') return None heartbeat = os.getenv('HEARTBEAT', "") rank_table_file = os.getenv('RANK_TABLE_FILE', "") identity = os.getenv('POD_NAME', "") if identity == "": identity = os.getenv('RANK_ID', "") checkpoint_dir = os.getenv('LOCAL_CHECKPOINT_DIR', "") # cann't get rank_size from env, set to default 1 rank_size = os.getenv('RANK_SIZE', '1') if rank_size.isdigit() is False: print("set rank_size to default 1") rank_size = 1 device_info = DeviceInfo(index=str(identity)) job_info = JobInfo(job_id=job_id, heartbeat_time=heartbeat, device_info=device_info, rank_table_file=rank_table_file, local_checkpoint_dir=checkpoint_dir, rank_size=int(rank_size) ) return job_info
py
1a32dd7b802426f43cc728b12299aba9597a207a
""" ############################################################################## # # Utility functions for resolving file paths for Maya's file texture node. # These utilities are used for dealing with UV tiling and frame numbering in # the file name and can be used to get the current pattern/preset and list # of matching files. # ############################################################################## """ def getFilePatternString(filePath, useFrameExtension, uvTilingMode): """ Given a path to a file and hints about UV tiling and frame extension usage, convert the path to a version with appropriate tags marking the UV tile and frame number. """ pass def _splitPath(filePath): """ ############################################################################## # Private Utilities ############################################################################## """ pass def computeUVForFiles(filePaths, filePattern): """ Given a collection of paths to a file and the UV pattern it matches compute the 0-based UV tile indicated by the file name. If a filePath or the pattern are poorly formed then (0,0) is returned for that path. """ pass def findAllFilesForPattern(pattern, frameNumber): """ Given a path, possibly containing tags in the file name, find all files in the same directory that match the tags. If none found, just return pattern that we looked for. """ pass def _patternToRegex(pattern): pass def computeUVForFile(filePath, filePattern): """ Given a path to a file and the UV pattern it matches compute the 0-based UV tile indicated by the file name. If the filePath or pattern are poorly formed then (0,0) is returned. """ pass _frameExtensionRegex = None _oneBasedRegex = None _zeroBasedRegex = None _VTag = '<V>' _udimRegex = None _uTag = '<u>' _UTag = '<U>' _frameTag = '<f>' _taggedOneBasedRegex = None _udimTag = '<UDIM>' _taggedZeroBasedRegex = None _vTag = '<v>'
py
1a32ddfb5e0db4331307723aea5f2f59565f6b9c
# -*- coding: utf-8 -*- # question 3 def count_letters(word,find): """ Example function with types documented in the docstring. Ce code doit retourner le nombre d'occurences d'un caractère passé en paramètre dans un mot donné également Parameters ---------- param1 : str Le 1er paramètre est une chaine de caractères param2 : char Le 2ème paramètre est un caractère Returns ------- int Nombre d'occurences du caractère Exemples -------- >>> count_letters(abracadabra,a) 5 >>> count_letters(momomotus,u) 1 """ count=0 for i in range(len(word)): if word.find(find,i)!=0: count+=1 return count #exemple print(count_letters('abracadabra','a')) # question 5 import string def remove_punctuation(phrase): """ Example function with types documented in the docstring. Ce code doit renvoyer une chaine de caractère issue d'un extrait dont la ponctuation a été supprimée Parameters ---------- param1 : str Le 1er paramètre est une chaine de caractères Returns ------- str Chaine de caractères passée en paramètre sans la ponctuation """ phrase_sans_punct = "" for letter in phrase: if letter not in string.punctuation: phrase_sans_punct += letter return phrase_sans_punct #exemple print(remove_punctuation("Chaine de caractères, passée en paramètre, sans la ponctuation !!!")) # question 7 def reverse(word) : """ Example function with types documented in the docstring. Ce code doit renverser le mot qui lui est donné en paramètre Parameters ---------- param1 : str Le 1er paramètre est une chaine de caractères (un mot) Returns ------- str Chaine de caractères qui est le mot de départ renversé """ new_word="" for i in range(len(word)) : new_word=new_word+word[-(i+1)] return new_word # question 8 def mirror(word) : """ Example function with types documented in the docstring. Ce code doit afficher le mot qui lui est donné en paramètre en miroir Parameters ---------- param1 : str Le 1er paramètre est une chaine de caractères (un mot) Returns ------- str Chaine de caractères qui est le mot de départ écrit comme s'il était lu dans un miroir """ new_word=word+reverse(word) return new_word
py
1a32df27c997ddde7bb6c83607ecc66618e8b63f
"""Arnoldi algorithm. Computes V and H such that :math:`AV_n = V_{n+1}\\underline{H}_n`. If the Krylov subspace becomes A-invariant then V and H are truncated such that :math:`AV_n = V_n H_n`. :param A: a linear operator that works with the @-operator :param v: the initial vector. :param ortho: (optional) orthogonalization algorithm: may be one of * ``'mgs'``: modified Gram-Schmidt (default). * ``'dmgs'``: double Modified Gram-Schmidt. * ``'lanczos'``: Lanczos short recurrence. * ``'householder'``: Householder. :param M: (optional) a self-adjoint and positive-definite preconditioner. If ``M`` is provided, then also a second basis :math:`P_n` is constructed such that :math:`V_n=MP_n`. This is of importance in preconditioned methods. ``M`` has to be ``None`` if ``ortho=='householder'`` (see ``B``). :param inner: (optional) defines the inner product to use. See :py:meth:`inner`. ``inner`` has to be ``None`` if ``ortho=='householder'``. It's unclear how a variant of the Householder QR algorithm can be used with a non-Euclidean inner product. Compare <https://math.stackexchange.com/q/433644/36678>. """ import numpy as np from ._helpers import Identity, aslinearoperator, get_default_inner from .errors import ArgumentError from .householder import Householder class ArnoldiHouseholder: def __init__(self, A, v): self.inner = get_default_inner(v.shape) # save parameters self.A = A self.v = v self.dtype = np.find_common_type([A.dtype, v.dtype], []) # number of iterations self.iter = 0 # Arnoldi basis self.V = [] # flag indicating if Krylov subspace is invariant self.is_invariant = False self.houses = [Householder(v)] self.vnorm = np.linalg.norm(v, 2) # TODO set self.is_invariant = True for self.vnorm == 0 self.V.append(v / np.where(self.vnorm != 0.0, self.vnorm, 1.0)) # if self.vnorm > 0: # self.V[0] = v / self.vnorm # else: # self.is_invariant = True def __iter__(self): return self def __next__(self): """Carry out one iteration of Arnoldi.""" if self.is_invariant: raise ArgumentError( "Krylov subspace was found to be invariant in the previous iteration." ) k = self.iter Av = self.A @ self.V[k] for j in range(k + 1): Av[j:] = self.houses[j] @ Av[j:] Av[j] *= np.conj(self.houses[j].alpha) N = self.v.shape[0] if k < N - 1: house = Householder(Av[k + 1 :]) self.houses.append(house) Av[k + 1 :] = (house @ Av[k + 1 :]) * np.conj(house.alpha) h = Av[: k + 2] h[-1] = np.abs(h[-1]) if h[-1] <= 1.0e-14: self.is_invariant = True v = None else: vnew = np.zeros_like(self.v) vnew[k + 1] = 1 for j in range(k + 1, -1, -1): vnew[j:] = self.houses[j] @ vnew[j:] v = vnew * self.houses[-1].alpha self.V.append(v) else: h = np.zeros([len(Av) + 1] + list(self.v.shape[1:]), Av.dtype) h[:-1] = Av self.is_invariant = True v = None self.iter += 1 return v, h class ArnoldiMGS: def __init__( self, A, v, num_reorthos: int = 1, M=None, Mv=None, Mv_norm=None, inner=None, ): self.inner = get_default_inner(v.shape) if inner is None else inner # save parameters self.A = A self.v = v self.num_reorthos = num_reorthos self.M = Identity() if M is None else aslinearoperator(M) self.dtype = np.find_common_type([A.dtype, self.M.dtype, v.dtype], []) # number of iterations self.iter = 0 # Arnoldi basis self.V = [] self.P = [] # flag indicating if Krylov subspace is invariant self.is_invariant = False p = v if Mv is None: v = self.M @ p else: v = Mv if Mv_norm is None: self.vnorm = np.sqrt(inner(p, v)) else: self.vnorm = Mv_norm self.P.append(p / np.where(self.vnorm != 0.0, self.vnorm, 1.0)) # TODO set self.is_invariant = True for self.vnorm == 0 self.V.append(v / np.where(self.vnorm != 0.0, self.vnorm, 1.0)) # if self.vnorm > 0: # self.V[0] = v / self.vnorm # else: # self.is_invariant = True def next_mgs(self, k, Av): # modified Gram-Schmidt orthogonalization for j in range(k + 1): alpha = self.inner(self.V[j], Av) self.h[j] += alpha Av -= alpha * self.P[j] def __iter__(self): return self def __next__(self): if self.is_invariant: raise ArgumentError( "Krylov subspace was found to be invariant in the previous iteration." ) k = self.iter # the matrix-vector multiplication Av = self.A @ self.V[k] self.h = np.zeros([k + 2] + list(self.v.shape[1:]), dtype=self.dtype) # determine vectors for orthogonalization for _ in range(self.num_reorthos): self.next_mgs(k, Av) MAv = self.M @ Av self.h[k + 1] = np.sqrt(self.inner(Av, MAv)) if np.all(self.h[k + 1] <= 1.0e-14): self.is_invariant = True v = None else: Hk1k = np.where(self.h[k + 1] != 0.0, self.h[k + 1], 1.0) self.P.append(Av / Hk1k) v = MAv / Hk1k if v is not None: self.V.append(v) # increase iteration counter self.iter += 1 return v, self.h class ArnoldiLanczos: def __init__(self, A, v, M=None, Mv=None, Mv_norm=None, inner=None): self.A = A self.M = Identity() if M is None else aslinearoperator(M) self.inner = get_default_inner(v.shape) if inner is None else inner self.dtype = np.find_common_type([A.dtype, self.M.dtype, v.dtype], []) # number of iterations self.num_iter = 0 # stores the three tridiagonal entries of the Hessenberg matrix self.h = np.zeros([3] + list(v.shape[1:]), dtype=self.dtype) # flag indicating if Krylov subspace is invariant self.is_invariant = False p = v v = self.M @ p if Mv is None else Mv self.vnorm = np.sqrt(inner(p, v)) if Mv_norm is None else Mv_norm # self.P.append(p / np.where(self.vnorm != 0.0, self.vnorm, 1.0)) # # TODO set self.is_invariant = True for self.vnorm == 0 # self.V.append(v / np.where(self.vnorm != 0.0, self.vnorm, 1.0)) self.p_old = None self.p = p / np.where(self.vnorm != 0.0, self.vnorm, 1.0) self.v = v / np.where(self.vnorm != 0.0, self.vnorm, 1.0) # if self.vnorm > 0: # self.V[0] = v / self.vnorm # else: # self.is_invariant = True def __next__(self): """Carry out one iteration of Arnoldi.""" if self.is_invariant: raise ArgumentError( "Krylov subspace was found to be invariant in the previous iteration." ) Av = self.A @ self.v if self.num_iter > 0: # copy the old lower-diagonal entry to the upper diagonal self.h[0] = self.h[2] Av -= self.h[0] * self.p_old # orthogonalize alpha = self.inner(self.v, Av) # if self.ortho == "lanczos": # # check if alpha is real # if abs(alpha.imag) > 1e-10: # warnings.warn( # f"Iter {self.iter}: " # f"abs(alpha.imag) = {abs(alpha.imag)} > 1e-10. " # "Is your operator self-adjoint " # "in the provided inner product?" # ) # alpha = alpha.real self.h[1] = alpha Av -= alpha * self.p MAv = self.M @ Av self.h[2] = np.sqrt(self.inner(Av, MAv)) if np.all(self.h[2] <= 1.0e-14): self.is_invariant = True self.v = None self.p = None else: Hk1k = np.where(self.h[2] != 0.0, self.h[2], 1.0) self.p_old = self.p self.p = Av / Hk1k self.v = MAv / Hk1k # increase iteration counter self.num_iter += 1 return self.v, self.h, self.p def arnoldi_res(A, V, H, inner=None): """Measure Arnoldi residual. :param A: a linear operator that can be used with scipy's aslinearoperator with ``shape==(N,N)``. :param V: Arnoldi basis matrix with ``shape==(N,n)``. :param H: Hessenberg matrix: either :math:`\\underline{H}_{n-1}` with ``shape==(n,n-1)`` or :math:`H_n` with ``shape==(n,n)`` (if the Arnoldi basis spans an A-invariant subspace). :param inner: (optional) the inner product to use, see :py:meth:`inner`. :returns: either :math:`\\|AV_{n-1} - V_n \\underline{H}_{n-1}\\|` or :math:`\\|A V_n - V_n H_n\\|` (in the invariant case). """ invariant = H.shape[0] == H.shape[1] V1 = V if invariant else V[:, :-1] res = A * V1 - np.dot(V, H) return np.sqrt(inner(res, res))
py
1a32df6a557c2c4666f1377e87a61433ba9fcd93
import json import os from azure.media.videoanalyzeredge import * from azure.iot.hub import IoTHubRegistryManager #run pip install azure-iot-hub to get this package from azure.iot.hub.models import CloudToDeviceMethod, CloudToDeviceMethodResult from datetime import time device_id = "lva-sample-device" module_d = "mediaEdge" connection_string = "connectionString" live_pipeline_name = "pipelineInstance1" pipeline_topology_name = "pipelineTopology1" url = "rtsp://sample-url-from-camera" def build_pipeline_topology(): pipeline_topology_properties = PipelineTopologyProperties() pipeline_topology_properties.description = "Continuous video recording to an Azure Media Services Asset" user_name_param = ParameterDeclaration(name="rtspUserName",type="String",default="testusername") password_param = ParameterDeclaration(name="rtspPassword",type="SecretString",default="testpassword") url_param = ParameterDeclaration(name="rtspUrl",type="String",default="rtsp://www.sample.com") hub_param = ParameterDeclaration(name="hubSinkOutputName",type="String") source = RtspSource(name="rtspSource", endpoint=UnsecuredEndpoint(url="${rtspUrl}",credentials=UsernamePasswordCredentials(username="${rtspUserName}",password="${rtspPassword}"))) node = NodeInput(node_name="rtspSource") sink = IotHubMessageSink("msgSink", node, "${hubSinkOutputName}") pipeline_topology_properties.parameters = [user_name_param, password_param, url_param, hub_param] pipeline_topology_properties.sources = [source] pipeline_topology_properties.sinks = [sink] pipeline_topology = PipelineTopology(name=pipeline_topology_name,properties=pipeline_topology_properties) return pipeline_topology def build_live_pipeline(): url_param = ParameterDefinition(name="rtspUrl", value=url) pass_param = ParameterDefinition(name="rtspPassword", value='testpass') live_pipeline_properties = LivePipelineProperties(description="Sample description", topology_name=pipeline_topology_name, parameters=[url_param]) live_pipeline = LivePipeline(name=live_pipeline_name, properties=live_pipeline_properties) return live_pipeline def invoke_method_helper(method): direct_method = CloudToDeviceMethod(method_name=method.method_name, payload=method.serialize()) registry_manager = IoTHubRegistryManager(connection_string) payload = registry_manager.invoke_device_module_method(device_id, module_d, direct_method).payload if payload is not None and 'error' in payload: print(payload['error']) return None return payload def main(): pipeline_topology = build_pipeline_topology() live_pipeline = build_live_pipeline() try: set_pipeline_top_response = invoke_method_helper(PipelineTopologySetRequest(pipeline_topology=pipeline_topology)) print(set_pipeline_top_response) list_pipeline_top_response = invoke_method_helper(PipelineTopologyListRequest()) if list_pipeline_top_response: list_pipeline_top_result = PipelineTopologyCollection.deserialize(list_pipeline_top_response) get_pipeline_top_response = invoke_method_helper(PipelineTopologyGetRequest(name=pipeline_topology_name)) if get_pipeline_top_response: get_pipeline_top_result = PipelineTopology.deserialize(get_pipeline_top_response) set_live_pipeline_response = invoke_method_helper(LivePipelineSetRequest(live_pipeline=live_pipeline)) activate_pipeline_response = invoke_method_helper(LivePipelineActivateRequest(name=live_pipeline_name)) get_pipeline_response = invoke_method_helper(LivePipelineGetRequest(name=live_pipeline_name)) if get_pipeline_response: get_pipeline_result = LivePipeline.deserialize(get_pipeline_response) deactivate_pipeline_response = invoke_method_helper(LivePipelineDeactivateRequest(name=live_pipeline_name)) delete_pipeline_response = invoke_method_helper(LivePipelineDeleteRequest(name=live_pipeline_name)) delete_pipeline_response = invoke_method_helper(PipelineTopologyDeleteRequest(name=pipeline_topology_name)) except Exception as ex: print(ex) if __name__ == "__main__": main()
py
1a32dfe4f92b50f9b45a699e17cc0cfc23723e21
from .image import * from .lines import * from .mark import * from .space import * from .text import *