ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a5c6961c6796ce322817d48c735b2f85475727d
from rest_framework.views import APIView from rest_framework.response import Response from rest_framework.permissions import IsAdminUser from django.utils import timezone from users.models import User # 日活跃用户统计 # GET /meiduo_admin/statistical/day_active/ class UserDayActiveView(APIView): permission_classes = [IsAdminUser] def get(self, request): """ 获取日活用户量: 1. 获取日活用户量 2. 返回应答 """ # 1. 获取日活用户量 now_date = timezone.now().replace(hour=0, minute=0, second=0, microsecond=0) count = User.objects.filter(last_login__gte=now_date).count() # 2. 返回应答 response_data = { 'date': now_date.date(), 'count': count } return Response(response_data) # 日下单用户统计 # GET /meiduo_admin/statistical/day_orders/ class UserDayOrdersView(APIView): permission_classes = [IsAdminUser] def get(self, request): """ 获取日下单用户数量: 1. 获取日下单用户数量 2. 返回应答 """ # 1. 获取日下单用户数量 now_date = timezone.now().replace(hour=0, minute=0, second=0, microsecond=0) count = User.objects.filter(orders__create_time__gte=now_date).distinct().count() # 2. 返回应答 response_data = { 'date': now_date.date(), 'count': count } return Response(response_data) # 30天新增用户统计 # GET /meiduo_admin/statistical/month_increment/ class UserMonthCountView(APIView): permission_classes = [IsAdminUser] def get(self, request): """ 获取当月每日新增用户数据: 1. 获取当月每日新增用户数据 2. 返回应答 """ # 1. 获取当月每日新增用户数据 # 结束时间 now_date = timezone.now().replace(hour=0, minute=0, second=0, microsecond=0) # 起始时间: now_date - 29天 begin_date = now_date - timezone.timedelta(days=29) # 当天日期 current_date = begin_date # 新增用户的数量 month_li = [] while current_date <= now_date: # 次日时间 next_date = current_date + timezone.timedelta(days=1) # 统计当天的新增用户数量 count = User.objects.filter(date_joined__gte=current_date, date_joined__lt=next_date).count() month_li.append({ 'count': count, 'date': current_date.date() }) current_date += timezone.timedelta(days=1) # 2. 返回应答 return Response(month_li)
py
1a5c69b73aeeced73f2bb2f758e09102050a9eae
# Generated by Django 3.2.7 on 2021-09-25 17:54 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('ProjectManager', '0003_auto_20210926_0053'), ] operations = [ migrations.AddField( model_name='project', name='Users', field=models.ManyToManyField(to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='project', name='description', field=models.TextField(blank=True), ), migrations.AddField( model_name='project', name='schoolYear', field=models.ForeignKey(default=None, null=True, on_delete=django.db.models.deletion.CASCADE, to='ProjectManager.schoolyear'), ), ]
py
1a5c6a48d04a9cdc9c5cfe03b10e9659337c665b
# Natural Language Toolkit: Utility functions # # Copyright (C) 2001-2006 University of Pennsylvania # Author: Steven Bird <[email protected]> # URL: <http://nltk.sf.net> # For license information, see LICENSE.TXT ########################################################################## # PRETTY PRINTING ########################################################################## def pr(data, start=0, end=None): """ Pretty print a sequence of data items @param data: the data stream to print @type data: C{sequence} or C{iterator} @param start: the start position @type start: C{int} @param end: the end position @type end: C{int} """ from pprint import pprint from itertools import islice pprint(list(islice(data, start, end))) def print_string(s, width=70): """ Pretty print a string, breaking lines on whitespace @param s: the string to print, consisting of words and spaces @type s: C{string} @param width: the display width @type width: C{int} """ import re while s: s = s.strip() try: i = s[:width].rindex(' ') except ValueError: print s return print s[:i] s = s[i:] class SortedDict(dict): """ A very rudamentary sorted dictionary, whose main purpose is to allow dictionaries to be displayed in a consistent order in regression tests. keys(), items(), values(), iter*(), and __repr__ all sort their return values before returning them. (note that the sort order for values() does *not* correspond to the sort order for keys(). I.e., zip(d.keys(), d.values()) is not necessarily equal to d.items(). """ def keys(self): return sorted(dict.keys(self)) def items(self): return sorted(dict.items(self)) def values(self): return sorted(dict.values(self)) def iterkeys(self): return iter(sorted(dict.keys(self))) def iteritems(self): return iter(sorted(dict.items(self))) def itervalues(self): return iter(sorted(dict.values(self))) def __iter__(self): return iter(sorted(dict.keys(self))) def repr(self): items = ['%s=%s' % t for t in sorted(self.items())] return '{%s}' % ', '.join(items) ########################################################################## # EDIT DISTANCE (LEVENSHTEIN) ########################################################################## def _edit_dist_init(len1, len2): lev = [] for i in range(len1): lev.append([0] * len2) # initialize 2-D array to zero for i in range(len1): lev[i][0] = i # column 0: 0,1,2,3,4,... for j in range(len2): lev[0][j] = j # row 0: 0,1,2,3,4,... return lev def _edit_dist_step(lev, i, j, c1, c2): a = lev[i-1][j ] + 1 # skipping s1[i] b = lev[i-1][j-1] + (c1 != c2) # matching s1[i] with s2[j] c = lev[i ][j-1] + 1 # skipping s2[j] lev[i][j] = min(a,b,c) # pick the cheapest def edit_dist(s1, s2): """ Calculate the Levenshtein edit-distance between two strings. The edit distance is the number of characters that need to be substituted, inserted, or deleted, to transform s1 into s2. For example, transforming "rain" to "shine" requires three steps, consisting of two substitutions and one insertion: "rain" -> "sain" -> "shin" -> "shine". These operations could have been done in other orders, but at least three steps are needed. @param s1, s2: The strings to be analysed @type s1, s2: C{string} @rtype C{int} """ # set up a 2-D array len1 = len(s1); len2 = len(s2) lev = _edit_dist_init(len1+1, len2+1) # iterate over the array for i in range(len1): for j in range (len2): _edit_dist_step(lev, i+1, j+1, s1[i], s2[j]) return lev[len1][len2] ########################################################################## # MINIMAL SETS ########################################################################## class MinimalSet(object): """ Find contexts where more than one possible target value can appear. E.g. if targets are word-initial letters, and contexts are the remainders of words, then we would like to find cases like "fat" vs "cat", and "training" vs "draining". If targets are parts-of-speech and contexts are words, then we would like to find cases like wind (noun) 'air in rapid motion', vs wind (verb) 'coil, wrap'. """ def __init__(self, parameters=None): """ Create a new minimal set. @param parameters: The (context, target, display) tuples for the item @type parameters: C{list} of C{tuple} of C{string} """ self._targets = set() # the contrastive information self._contexts = set() # what we are controlling for self._seen = {} # to record what we have seen self._displays = {} # what we will display for context, target, display in parameters: self.add(context, target, display) def add(self, context, target, display): """ Add a new item to the minimal set, having the specified context, target, and display form. @param context: The context in which the item of interest appears @type context: C{string} @param target: The item of interest @type target: C{string} @param display: The information to be reported for each item @type display: C{string} """ # Store the set of targets that occurred in this context if context not in self._seen: self._seen[context] = set() self._seen[context].add(target) # Keep track of which contexts and targets we have seen self._contexts.add(context) self._targets.add(target) # For a given context and target, store the display form self._displays[(context, target)] = display def contexts(self, minimum=2): """ Determine which contexts occurred with enough distinct targets. @param minimum: the minimum number of distinct target forms @type minimum: C(int) @rtype C(list) """ return [c for c in self._contexts if len(self._seen[c]) >= minimum] def display(self, context, target, default=""): if self._displays.has_key((context, target)): return self._displays[(context, target)] else: return default def display_all(self, context): result = [] for target in self._targets: x = self.display(context, target) if x: result.append(x) return result def targets(self): return self._targets ###################################################################### ## Regexp display (thanks to David Mertz) ###################################################################### import re def re_show(regexp, string): """ Search C{string} for substrings matching C{regexp} and wrap the matches with braces. This is convenient for learning about regular expressions. @param regexp: The regular expression. @param string: The string being matched. @rtype: C{string} @return: A string with braces surrounding the matched substrings. """ print re.compile(regexp, re.M).sub("{\g<0>}", string.rstrip()) ########################################################################## # READ FROM FILE OR STRING ########################################################################## # recipe from David Mertz def filestring(f): if hasattr(f, 'read'): return f.read() elif isinstance(f, basestring): return open(f).read() else: raise ValueError, "Must be called with a filename or file-like object" ########################################################################## # COUNTER, FOR UNIQUE NAMING ########################################################################## class Counter: """ A counter that auto-increments each time its value is read. """ def __init__(self, initial_value=0): self._value = initial_value def get(self): self._value += 1 return self._value
py
1a5c6a8980721feaa37ee0f9c50ce8aaf1735a92
import os import time import argparse import json import math import torch from torch._C import dtype import torch_geometric from torch.utils.data import DataLoader, TensorDataset, IterableDataset from torch.utils.data.distributed import DistributedSampler from argparse import Namespace import torch.nn as nn import torch.nn.functional as F import torch.distributed as dist import pickle as pk import numpy as np import matplotlib.pyplot as plt import pandas as pd from torch_geometric.data import Data, Batch, NeighborSampler, ClusterData, ClusterLoader from torch_scatter import scatter from base_task import add_config_to_argparse, BaseConfig, BasePytorchTask, \ LOSS_KEY, BAR_KEY, SCALAR_LOG_KEY, VAL_SCORE_KEY from dataset import SAINTDataset, SimpleDataset from data_utils import load_data, load_new_data from nbeats import NBeatsModel from hierst import HierSTModel from graph_optim import TruncateSGD, TruncateAdam class Config(BaseConfig): def __init__(self): super().__init__() # Reset base variables self.max_epochs = 1000 self.early_stop_epochs = 15 self.infer = False # for data loading self.data_fp = '../data/daily_us_7.csv' self.start_date = '2020-03-01' self.min_peak_size = -1 # min peak confirmed cases selected by country level self.lookback_days = 14 # the number of days before the current day for daily series self.lookahead_days = 1 self.forecast_date = '2020-06-29' self.horizon = 7 self.val_days = 1 # the number of days used for validation self.label = 'confirmed_target' self.use_mobility = False self.model_type = 'hierst' # choices: nbeats, hierst self.rnn_type = 'nbeats' self.date_emb_dim = 2 self.use_gbm = False self.use_lr = True # for krnn self.cnn_dim = 32 self.cnn_kernel_size = 3 self.rnn_dim = 32 self.rnn_dups = 10 # for transformer self.tfm_layer_num = 8 self.tfm_head_num = 8 self.tfm_hid_dim = 32 self.tfm_ff_dim = 32 self.tfm_max_pos = 500 self.tfm_node_dim = 5 self.tfm_dropout = 0.1 self.tfm_block_num = -1 self.tfm_cnn_kernel_size = 1 # for n_beats self.block_size = 3 self.hidden_dim = 32 self.id_emb_dim = 8 # for gcn self.gcn_dim = 32 self.gcn_type = 'gcn' self.gcn_aggr = 'max' self.gcn_norm = 'none' self.gcn_layer_num = 2 self.gcn_node_dim = 4 self.gcn_edge_dim = 4 self.gcn_dropout = 0.1 # for gov gate self.use_gov_gate = False self.gov_id_dim = 32 self.gov_hid_dim = 32 # per-gpu training batch size, real_batch_size = batch_size * num_gpus * grad_accum_steps self.batch_size = 4 self.lr = 1e-3 # the learning rate # batch sample type self.use_saintdataset = True self.saint_batch_size = 3000 self.saint_sample_type = 'random_walk' self.saint_walk_length = 2 self.saint_shuffle_order = 'node_first' # graph optimization (deprecated) self.optim_graph = False self.graph_fp = '../data/us_graph.cpt' self.graph_lr = 1e-4 # learning rate for graph adjacent matrix self.graph_opt_type = 'TruncateAdam' # TruncateAdam, TruncateSGD, Adam self.graph_gravity = 0.1 # sparse regularization coefficients self.graph_eta = 0.01 # \eta * || A - A_{prior} ||_2^2 # consistency loss # the usage of 'xxxx_loss_node_num' # -1: use all nodes, # 0: not use this loss, # >0: use a certain number of randomly selected nodes self.topo_loss_node_num = -1 self.topo_loss_weight = 0.01 self.topo_loss_epoch_start = 3 self.pair_loss_node_num = -1 self.pair_loss_weight = 0.0 # temp options self.use_node_weight = True self.mape_eps = 10 self.sparse_gate_weight = 0.0 self.sparse_gate_epoch_start = 3 self.prepro_type = 'none' self.use_popu_norm = True self.use_logy = False self.use_fea_zscore = False self.use_adapt_norm = False self.use_default_edge = False self.abla_type = 'none' self.fea_day_offset = 1 self.data_aug_scales = '1' # a list of scales applied for training data augmentation class WrapperNet(nn.Module): def __init__(self, config): super().__init__() self.config = config if self.config.model_type == 'nbeats': self.net = NBeatsModel(config) elif self.config.model_type == 'hierst': self.net = HierSTModel(config) else: raise Exception( 'Unsupported model type {}'.format(config.model_type)) if config.use_lr: self.weight_lr = nn.Parameter(torch.Tensor(self.config.lookback_days, self.config.lookahead_days)) self.b_lr = nn.Parameter(torch.Tensor([0.0] * self.config.lookahead_days)) if config.use_gov_gate: self.state_emb = nn.Embedding(self.config.num_nodes, self.config.gov_id_dim) self.gov_gru = nn.GRU(input_size=self.config.day_gov_fea_dim, hidden_size=self.config.gov_hid_dim, batch_first=True) self.state_weight = nn.Parameter(torch.Tensor(self.config.gov_hid_dim, self.config.lookahead_days)) self.gov_weight = nn.Parameter(torch.Tensor(self.config.gov_id_dim, self.config.lookahead_days)) self.reset_parameters() def gov_map(self, input_day_gov): sz = input_day_gov.size() x = input_day_gov.view(-1, sz[2], sz[3]) _, h = self.gov_gru(x) h = h[0,:,:].view(sz[0],sz[1],-1) return h def state_map(self, input_day, g): sz = input_day.size() n_id = g['cent_n_id'] id_emb = self.state_emb(n_id.reshape(1,sz[1]).expand(sz[0],sz[1]).long()) return id_emb def lr(self, input_day): sz = input_day.size() label_idx = self.config.label_fea_idx ts = input_day[:,:,:,label_idx] if self.config.use_logy: ts = ts.expm1() pred = torch.matmul(ts, torch.softmax(self.weight_lr, dim=0)) + self.b_lr if self.config.use_logy: pred = torch.log1p(pred) pred = pred.view(sz[0], sz[1], self.config.lookahead_days) return pred def reset_parameters(self): if self.config.use_lr: nn.init.xavier_uniform_(self.weight_lr) if self.config.use_gov_gate: nn.init.xavier_uniform_(self.gov_weight) nn.init.xavier_uniform_(self.state_weight) def forward_ori(self, input_day, g): out = self.net(input_day, g) if self.config.use_lr: out = out + self.lr(input_day) return out def forward(self, input_day, input_day_gov, g): ori_out = self.forward_ori(input_day, g) if self.config.use_gov_gate: gov_hid = self.gov_map(input_day_gov) state_hid = self.state_map(input_day, g) state_gate = torch.sigmoid(torch.matmul(state_hid, self.state_weight)) gov_gate = torch.tanh(torch.matmul(gov_hid, self.gov_weight)) out = ori_out * (1 + state_gate * gov_gate) else: out, state_gate, gov_gate = ori_out, torch.ones_like(ori_out), torch.ones_like(ori_out) return out, state_gate, gov_gate class GraphNet(nn.Module): def __init__(self, config, edge_weight): super().__init__() self.config = config self.net = WrapperNet(config) if config.optim_graph: self.edge_weight = nn.Parameter(edge_weight) else: self.edge_weight = None def forward(self, input_day, input_day_gov, g): return self.net(input_day, input_day_gov, g) def get_net_parameters(self): return self.net.parameters() def get_graph_parameters(self): yield self.edge_weight def weighted_mse_loss(input, target, weight): return torch.mean(weight * (input - target) ** 2) class Task(BasePytorchTask): def __init__(self, config): super().__init__(config) self.log('Intialize {}'.format(self.__class__)) self.init_data() self.init_graph() self.adjust_for_ablation_study() self.loss_func = nn.MSELoss() # self.loss_func = nn.L1Loss() self.log('Config:\n{}'.format( json.dumps(self.config.to_dict(), ensure_ascii=False, indent=4) )) def adjust_for_ablation_study(self): if self.config.abla_type == 'gat': self.config.gcn_type = 'gat' elif self.config.abla_type == 'flat': edge_sid = (self.edge_type == 0).sum().item() self.edge_index = self.edge_index[:, edge_sid:] self.edge_weight = self.edge_weight[edge_sid:] self.edge_type = self.edge_type[edge_sid:] self.config.num_edges = self.edge_weight.shape[0] elif self.config.abla_type.startswith('sep'): cur_node_type = int(self.config.abla_type[3:]) node_sid, node_eid = None, None for idx, x in enumerate(self.node_type_list): if node_sid is None: if x == cur_node_type: node_sid = idx node_eid = idx elif x == cur_node_type: node_eid = idx node_eid += 1 edge_sid = (self.edge_type == 0).sum().item() self.edge_index = self.edge_index[:, edge_sid:] self.edge_weight = self.edge_weight[edge_sid:] self.edge_type = self.edge_type[edge_sid:] sel_edge_mask = (self.edge_index[0] >= node_sid) & (self.edge_index[0] < node_eid) self.edge_index = self.edge_index[:, sel_edge_mask] - node_sid self.edge_weight = self.edge_weight[sel_edge_mask] self.edge_type = self.edge_type[sel_edge_mask] self.config.num_edges = self.edge_weight.shape[0] self.node_type = torch.zeros_like(self.node_type[node_sid:node_eid]) self.node_type_list = [0] * (node_eid-node_sid) self.config.num_node_types = 1 self.node_name = self.node_name[node_sid:node_eid] self.node_weight = self.node_weight[cur_node_type:cur_node_type+1] self.use_node_weight = False if self.node_popu is not None: self.node_popu = self.node_popu[node_sid:node_eid] self.nodes = self.nodes[node_sid:node_eid] self.config.num_nodes = node_eid - node_sid self.train_day_inputs = self.train_day_inputs[:, node_sid:node_eid] self.train_day_gov_inputs = self.train_day_gov_inputs[:, node_sid:node_eid] self.train_gbm_outputs = self.train_gbm_outputs[:, node_sid:node_eid] self.train_outputs = self.train_outputs[:, node_sid:node_eid] self.val_day_inputs = self.val_day_inputs[:, node_sid:node_eid] self.val_day_gov_inputs = self.val_day_gov_inputs[:, node_sid:node_eid] self.val_gbm_outputs = self.val_gbm_outputs[:, node_sid:node_eid] self.val_outputs = self.val_outputs[:, node_sid:node_eid] self.test_day_inputs = self.test_day_inputs[:, node_sid:node_eid] self.test_day_gov_inputs = self.test_day_gov_inputs[:, node_sid:node_eid] self.test_gbm_outputs = self.test_gbm_outputs[:, node_sid:node_eid] self.test_outputs = self.test_outputs[:, node_sid:node_eid] else: pass def init_data(self, data_fp=None): if data_fp is None: data_fp = self.config.data_fp # load data self.config.label_fea_name = f'{self.config.label[:-7]}.rolling({self.config.horizon}).sum()' day_inputs, day_gov_inputs, outputs, dates, nodes, \ self.main_feas, self.gov_feas, self.node_popu, self.fea_scaler = \ load_new_data(data_fp, self.config, logger=self.log) self.config.adapt_norm_eps = 1 self.config.label_fea_idx = dict(zip(self.main_feas, range(len(self.main_feas))))[self.config.label_fea_name] if self.node_popu is not None: self.node_popu = self.node_popu.to(self.device) gbm_outputs = outputs # numpy default dtype is float64, but torch default dtype is float32 self.day_inputs = day_inputs self.day_gov_inputs = day_gov_inputs self.outputs = outputs self.gbm_outputs = gbm_outputs self.dates = dates # share index with sample id self.nodes = nodes # share index with node id # fulfill config self.config.num_nodes = self.day_inputs.shape[1] self.config.day_seq_len = self.day_inputs.shape[2] self.config.day_fea_dim = self.day_inputs.shape[3] self.config.day_gov_fea_dim = self.day_gov_inputs.shape[3] # self.config.edge_fea_dim = self.edge_attr.shape[1] # Filter by label dates use_dates = [ pd.to_datetime(item) for item in dates if pd.to_datetime(item) <= pd.to_datetime(self.config.forecast_date) ] test_divi = len(use_dates) - 1 val_divi = test_divi - self.config.horizon train_divi = val_divi - self.config.val_days if self.config.infer: # use all achieved train data train_divi = val_divi + 1 print(dates[train_divi],dates[val_divi],dates[test_divi]) self.train_day_inputs = self.day_inputs[:train_divi+1] self.train_day_gov_inputs = self.day_gov_inputs[:train_divi+1] self.train_gbm_outputs = self.gbm_outputs[:train_divi+1] self.train_outputs = self.outputs[:train_divi+1] self.train_dates = self.dates[:train_divi+1] if self.config.data_aug_scales != '1': data_aug_scales = [float(s) for s in self.config.data_aug_scales.split(',')] scale_fea_end = -1 print(f'Data Augmentation Scaling {data_aug_scales} for {self.main_feas[:scale_fea_end]}') def aug_scale(day_input, is_label=False): if is_label: aug_inputs = [day_input * s for s in data_aug_scales] else: scale_part = day_input[:, :, :, :scale_fea_end] invar_part = day_input[:, :, :, scale_fea_end:] aug_inputs = [] for s in data_aug_scales: aug_part = scale_part * s aug_part = torch.cat([aug_part, invar_part], dim=-1) aug_inputs.append(aug_part) aug_input = torch.cat(aug_inputs, dim=0) return aug_input self.train_day_inputs = aug_scale(self.train_day_inputs) self.train_day_gov_inputs = aug_scale(self.train_day_gov_inputs) self.train_gbm_outputs = aug_scale(self.train_gbm_outputs, is_label=True) self.train_outputs = aug_scale(self.train_outputs, is_label=True) self.train_dates = self.train_dates * len(data_aug_scales) if self.config.infer: self.val_day_inputs = self.day_inputs[:train_divi+1] self.val_day_gov_inputs = self.day_gov_inputs[:train_divi+1] self.val_gbm_outputs = self.gbm_outputs[:train_divi+1] self.val_outputs = self.outputs[:train_divi+1] self.val_dates = self.dates[:train_divi+1] else: self.val_day_inputs = self.day_inputs[val_divi:val_divi+1] self.val_day_gov_inputs = self.day_gov_inputs[val_divi:val_divi+1] self.val_gbm_outputs = self.gbm_outputs[val_divi:val_divi+1] self.val_outputs = self.outputs[val_divi:val_divi+1] self.val_dates = self.dates[val_divi:val_divi+1] self.test_day_inputs = self.day_inputs[test_divi:test_divi+1] self.test_day_gov_inputs = self.day_gov_inputs[test_divi:test_divi+1] self.test_gbm_outputs = self.gbm_outputs[test_divi:test_divi+1] self.test_outputs = self.outputs[test_divi:test_divi+1] self.test_dates = self.dates[test_divi:test_divi+1] def init_graph(self, graph_fp=None): if graph_fp is None: graph_fp = self.config.graph_fp graph_dict = torch.load(graph_fp) self.edge_index = graph_dict['edge_index'] self.edge_weight = graph_dict['edge_weight'] self.edge_type = graph_dict['edge_type'].to(self.device) self.node_type = graph_dict['node_type'].to(self.device) self.node_type_list = list(graph_dict['node_type'].numpy()) self.node_name = graph_dict['node_name'] if self.config.num_nodes != len(self.node_name): data_node_set = set(self.nodes) graph_node_set = set(self.node_name) print('New nodes in data', data_node_set - graph_node_set) print('Missing nodes in data', graph_node_set - data_node_set) raise Exception('Please regenerate GNN topo before running') self.config.num_edges = self.edge_weight.shape[0] self.config.num_node_types = int(graph_dict['node_type'].max()) + 1 self.config.num_edge_types = int(graph_dict['edge_type'].max()) + 1 base_ones = torch.ones_like(self.node_type, dtype=torch.float) node_type_count = scatter(base_ones, self.node_type, dim_size=self.config.num_node_types, reduce='sum') # the weight of the bottom nodes is equal to 1 self.node_weight = 1.0 / node_type_count * node_type_count.max() def make_sample_dataloader(self, day_inputs, day_gov_inputs, gbm_outputs, outputs, shuffle=False): if self.config.use_saintdataset: dataset = SAINTDataset( [day_inputs, day_gov_inputs, gbm_outputs, outputs], self.edge_index, self.edge_weight, self.config.num_nodes, self.config.batch_size, shuffle=shuffle, shuffle_order=self.config.saint_shuffle_order, saint_sample_type=self.config.saint_sample_type, saint_batch_size=self.config.saint_batch_size, saint_walk_length=self.config.saint_walk_length, ) return DataLoader(dataset, batch_size=None) else: dataset = SimpleDataset([day_inputs, day_gov_inputs, gbm_outputs, outputs]) def collate_fn(samples): day_inputs = torch.cat([item[0][0] for item in samples]).unsqueeze(0) # [1,bs,seq_length,feature_dim] day_gov_inputs = torch.cat([item[0][1] for item in samples]).unsqueeze(0) # [1,bs,seq_length,feature_dim] gbm_outputs = torch.cat([item[0][-2] for item in samples]).unsqueeze(0) outputs = torch.cat([item[0][-1] for item in samples]).unsqueeze(0) node_ids = torch.LongTensor([item[1] for item in samples]) # [bs] date_ids = torch.LongTensor([item[2] for item in samples]) # [bs] return [[day_inputs, day_gov_inputs, gbm_outputs, outputs], {'cent_n_id':node_ids,'type':'random'}, date_ids] return DataLoader(dataset, batch_size=self.config.batch_size, shuffle=shuffle, collate_fn=collate_fn) def build_train_dataloader(self): return self.make_sample_dataloader( self.train_day_inputs, self.train_day_gov_inputs, self.train_gbm_outputs, self.train_outputs, shuffle=True ) def build_val_dataloader(self): return self.make_sample_dataloader( self.val_day_inputs, self.val_day_gov_inputs, self.val_gbm_outputs, self.val_outputs, shuffle=False ) def build_test_dataloader(self): return self.make_sample_dataloader( self.test_day_inputs, self.test_day_gov_inputs, self.test_gbm_outputs, self.test_outputs, shuffle=False ) def build_optimizer(self, model): model_opt = torch.optim.Adam(self.model.get_net_parameters(), lr=self.config.lr) if self.config.optim_graph: kwargs = { 'lr': self.config.graph_lr, } if self.config.graph_opt_type == 'Adam': opt_class = torch.optim.Adam elif self.config.graph_opt_type == 'TruncateSGD': kwargs['gravity'] = self.config.graph_gravity opt_class = TruncateSGD elif self.config.graph_opt_type == 'TruncateAdam': kwargs['gravity'] = self.config.graph_gravity kwargs['lr_truncate'] = self.config.graph_lr opt_class = TruncateAdam else: raise Exception("Unsupported graph optimizer '{}'".format(self.config.graph_opt_type)) graph_opt = opt_class(self.model.get_graph_parameters(), **kwargs) return model_opt, graph_opt else: return model_opt def train_step(self, batch, batch_idx): inputs, g, _ = batch # prepare inputs, outputs input_day, input_day_gov, y_gbm, y = inputs if self.config.use_gbm: # deprecated y = y - y_gbm if self.config.use_adapt_norm: norm_eps = self.config.adapt_norm_eps input_norm = input_day.mean(dim=-2, keepdim=True) + norm_eps y_norm = input_norm[:, :, :, self.config.label_fea_idx] + norm_eps input_day = (input_day+norm_eps) / input_norm y = (y+norm_eps) / y_norm else: norm_eps = 0 input_norm = 1 y_norm = 1 # prepare graph g['edge_type'] = self.edge_type[g['e_id']] g['node_type'] = self.node_type[g['cent_n_id']] if self.config.optim_graph: g['edge_attr_prior'] = g['edge_attr'] g['edge_attr'] = self.model.edge_weight[g['e_id']] y_hat, _, _ = self.model(input_day, input_day_gov, g) assert(y.size() == y_hat.size()) if self.config.use_node_weight: node_weight = self.node_weight[g['node_type']]\ .reshape(1, y.shape[1], 1) loss = weighted_mse_loss(y_hat, y, node_weight) else: node_weight = None loss = self.loss_func(y_hat, y) y_loss_i = loss.item() if self.config.optim_graph: graph_loss = self.loss_func(g['edge_attr'], g['edge_attr_prior']) loss += self.config.graph_eta * graph_loss if self.config.topo_loss_weight > 0 and \ self._current_epoch >= self.config.topo_loss_epoch_start: # get topo_edge_index edge_index = g['edge_index'] node_type = g['node_type'] i, j = 1, 0 node_type_j = node_type[edge_index[j]] node_type_i = node_type[edge_index[i]] topo_edge_index = edge_index[:, node_type_i == node_type_j-1] # calculate aggregated y if self.config.use_adapt_norm: y = y * y_norm - norm_eps y_hat = y_hat * y_norm - norm_eps if self.config.use_logy: y = y.expm1() # exp(y)-1, where y = log(1+label) y_hat = y_hat.expm1() # exp(y_hat)-1, where y = log(1+label_hat) if self.config.use_popu_norm: popu = self.node_popu[g['cent_n_id']]\ .reshape(1, g['cent_n_id'].shape[0], 1) y = y * popu / 10**5 y_hat = y_hat * popu / 10**5 y_j = y[:, topo_edge_index[j], :] y_hat_j = y_hat[:, topo_edge_index[j], :] y_agg = scatter(y_j, topo_edge_index[i], dim=-2, dim_size=y.shape[-2], reduce='sum') y_hat_agg = scatter(y_hat_j, topo_edge_index[i], dim=-2, dim_size=y_hat.shape[-2], reduce='sum') # use agg mask to ignore bottom node bottom_node_type = node_type.max() agg_mask = node_type < bottom_node_type ym = y[:, agg_mask] ym_hat = y_hat[:, agg_mask] ym_agg = y_agg[:, agg_mask] ym_hat_agg = y_hat_agg[:, agg_mask] eps = self.config.mape_eps topo_loss = self.loss_func((ym_hat_agg+eps)/(ym_agg+eps), torch.ones_like(ym_agg)) + \ self.loss_func((ym_hat_agg+eps)/(ym_agg+eps), (ym_hat+eps)/(ym+eps),) loss += self.config.topo_loss_weight * topo_loss topo_loss_i = topo_loss.item() else: topo_loss_i = 0 # judge to avoid useless computation if self.config.pair_loss_node_num != 0 and self.config.pair_loss_weight > 0: pair_edge_index = g['edge_index'] # consider every pair in the graph if self.config.pair_loss_node_num > 0: num_edges = pair_edge_index.shape[1] rand_eids = torch.randperm(num_edges, device=loss.device)[:self.config.pair_loss_node_num] pair_edge_index = pair_edge_index[:, rand_eids] i, j = 1, 0 logy_j = y[:, pair_edge_index[j], :] logy_i = y[:, pair_edge_index[i], :] logy_j_hat = y_hat[:, pair_edge_index[j], :] logy_i_hat = y_hat[:, pair_edge_index[i], :] pair_loss = weighted_mse_loss( (logy_j_hat - logy_j).exp(), # (y_j_hat+1) / (y_j+1) (logy_i_hat - logy_i).exp(), # (y_i_hat+1) / (y_i+1) 0.5*(logy_j + logy_i), # pay more attention to large nodes ) loss += self.config.pair_loss_weight * pair_loss pair_loss_i = pair_loss.item() else: pair_loss_i = 0 if self.config.sparse_gate_weight > 0: gate_loss = self.model.net.net.gcn_coef.mean() if self._current_epoch >= self.config.sparse_gate_epoch_start: loss += self.config.sparse_gate_weight * gate_loss gate_loss_i = gate_loss.item() else: gate_loss_i = 0 loss_i = loss.item() # scalar loss # log all kinds of losses for debug loss_info = { 'loss': loss_i, 'y_loss': y_loss_i, 'topo_loss': topo_loss_i, 'pair_loss': pair_loss_i, 'gate_loss': gate_loss_i, } return { LOSS_KEY: loss, BAR_KEY: loss_info, SCALAR_LOG_KEY: loss_info, } def eval_step(self, batch, batch_idx, tag): inputs, g, rows = batch input_day, input_day_gov, y_gbm, y = inputs if self.config.use_adapt_norm: norm_eps = self.config.adapt_norm_eps input_norm = input_day.mean(dim=-2, keepdim=True) + norm_eps y_norm = input_norm[:, :, :, self.config.label_fea_idx] + norm_eps input_day = (input_day + norm_eps) / input_norm else: norm_eps = 0 input_norm = 1 y_norm = 1 forecast_length = y.size()[-1] g['edge_type'] = self.edge_type[g['e_id']] g['node_type'] = self.node_type[g['cent_n_id']] if self.config.optim_graph: g['edge_attr_prior'] = g['edge_attr'] g['edge_attr'] = self.model.edge_weight[g['e_id']] y_hat, state_gate, gov_gate = self.model(input_day, input_day_gov, g) if self.config.use_gbm: y_hat += y_gbm assert(y.size() == y_hat.size()) if self.config.use_adapt_norm: y_hat = y_hat * y_norm - norm_eps if self.config.use_logy: y = y.expm1() # exp(y)-1, where y = log(1+label) y_hat = y_hat.expm1() # exp(y_hat)-1, where y = log(1+label_hat) if self.config.use_popu_norm: popu = self.node_popu[g['cent_n_id']]\ .reshape(1, g['cent_n_id'].shape[0], 1) y = y * popu / 10**5 y_hat = y_hat * popu / 10**5 if g['type'] == 'subgraph' and 'res_n_id' in g: # if using SAINT sampler cent_n_id = g['cent_n_id'] res_n_id = g['res_n_id'] # Note: we only evaluate predictions on those initial nodes (per random walk) # to avoid duplicated computations y = y[:, res_n_id] y_hat = y_hat[:, res_n_id] cent_n_id = cent_n_id[res_n_id] else: cent_n_id = g['cent_n_id'] if self.config.use_saintdataset: index_ptr = torch.cartesian_prod( torch.arange(rows.size(0)), torch.arange(cent_n_id.size(0)), torch.arange(forecast_length) ) label = pd.DataFrame({ 'row_idx': rows[index_ptr[:, 0]].data.cpu().numpy(), 'node_idx': cent_n_id[index_ptr[:, 1]].data.cpu().numpy(), 'forecast_idx': index_ptr[:,2].data.cpu().numpy(), 'val': y.flatten().data.cpu().numpy() }) pred = pd.DataFrame({ 'row_idx': rows[index_ptr[:, 0]].data.cpu().numpy(), 'node_idx': cent_n_id[index_ptr[:, 1]].data.cpu().numpy(), 'forecast_idx': index_ptr[:,2].data.cpu().numpy(), 'val': y_hat.flatten().data.cpu().numpy() }) else: index_ptr = torch.cartesian_prod( torch.arange(rows.size(0)), torch.arange(forecast_length) ) label = pd.DataFrame({ 'row_idx': rows[index_ptr[:, 0]].data.cpu().numpy(), 'node_idx': cent_n_id[index_ptr[:, 0]].data.cpu().numpy(), 'forecast_idx': index_ptr[:,1].data.cpu().numpy(), 'val': y.flatten().data.cpu().numpy() }) pred = pd.DataFrame({ 'row_idx': rows[index_ptr[:, 0]].data.cpu().numpy(), 'node_idx': cent_n_id[index_ptr[:, 0]].data.cpu().numpy(), 'forecast_idx': index_ptr[:,1].data.cpu().numpy(), 'val': y_hat.flatten().data.cpu().numpy() }) pred = pred.groupby(['row_idx', 'node_idx', 'forecast_idx']).mean() label = label.groupby(['row_idx', 'node_idx', 'forecast_idx']).mean() return { 'label': label, 'pred': pred, 'info': [state_gate, gov_gate] # 'atten': atten_context } def eval_epoch_end(self, outputs, tag, dates): pred = pd.concat([x['pred'] for x in outputs], axis=0) label = pd.concat([x['label'] for x in outputs], axis=0) pred = pred.groupby(['row_idx', 'node_idx','forecast_idx']).mean() label = label.groupby(['row_idx', 'node_idx', 'forecast_idx']).mean() info = [x['info'] for x in outputs] # atten_context = [x['atten'] for x in outputs] align_nodes = label.reset_index().node_idx.map(lambda x: self.nodes[x]).values align_dates = label.reset_index().row_idx.map(lambda x: dates[x]).values loss = np.mean(np.abs(pred['val'].values - label['val'].values)) scores = self.produce_score(pred, label, dates) log_dict = { '{}_loss'.format(tag): loss, '{}_mae'.format(tag): scores['mean_mistakes'], '{}_mape'.format(tag): scores['mape'], # '{}_mean_mistakes'.format(tag): scores['mean_mistakes'], # '{}_mean_label'.format(tag): scores['mean_label'], # '{}_mean_predict'.format(tag): scores['mean_predict'] } type_mae_sum = 0 type_mape_sum = 0 for type_id in range(self.config.num_node_types): cur_pred = pred[ pred.index.get_level_values(1).map(lambda x: self.node_type_list[x]) == type_id ] cur_label = label[ label.index.get_level_values(1).map(lambda x: self.node_type_list[x]) == type_id ] cur_scores = self.produce_score(cur_pred, cur_label, dates) log_dict[f'{tag}_type-{type_id}_mae'] = cur_scores['mean_mistakes'] log_dict[f'{tag}_type-{type_id}_mape'] = cur_scores['mape'] type_mae_sum += cur_scores['mean_mistakes'] type_mape_sum += cur_scores['mape'] log_dict[f'{tag}_type-mean_mae'] = type_mae_sum / self.config.num_node_types log_dict[f'{tag}_type-mean_mape'] = type_mape_sum / self.config.num_node_types out = { BAR_KEY: log_dict, SCALAR_LOG_KEY: log_dict, VAL_SCORE_KEY: - type_mape_sum, 'pred': pred, 'label': label, 'scores': scores, 'dates':align_dates, 'nodes':align_nodes, 'info': info, 'y_scale': 'linear', 'epoch': self._passed_epoch, # 'atten': atten_context } return out def produce_score(self, pred, label, dates=None): # y_hat = pred.apply(lambda x: np.expm1(x)) # y = label.apply(lambda x: np.expm1(x)) y_hat = pred y = label mape_eps = self.config.mape_eps mape_df = np.abs((y_hat+mape_eps)/(y+mape_eps)-1).reset_index(drop=False) mape_val = np.abs((y_hat.values+1)/(y.values+1)-1).mean() mean_mistakes = np.abs(y_hat.values - y.values).mean() mean_label = np.abs(y.values).mean() mean_predict = np.abs(y.values).mean() eval_df = pd.concat([y_hat.rename(columns={'val': 'pred'}), y.rename(columns={'val': 'label'})], axis=1).reset_index(drop=False) eval_df['mape'] = mape_df['val'] if dates is not None: eval_df['date'] = eval_df.row_idx.map(lambda x: dates[x]) eval_df['nodes'] = eval_df.node_idx.map(lambda x: self.nodes[x]) def produce_percent_count(m_df): res = pd.Series() res['pred'] = m_df['pred'].mean() res['label'] = m_df['label'].mean() res['mistake'] = np.abs(m_df['pred'] - m_df['label']).mean() return res scores = { 'mape': mape_val, 'mean_mistakes': mean_mistakes, 'mean_label': mean_label, 'mean_predict': mean_predict } for name, metric in [ ('mistakes', eval_df), ]: scores[name] = metric.groupby( 'row_idx').apply(produce_percent_count) if dates is not None: scores[name]['date'] = dates return scores def val_step(self, batch, batch_idx): return self.eval_step(batch, batch_idx, 'val') def val_epoch_end(self, outputs): val_out = self.eval_epoch_end(outputs, 'val', self.val_dates) return val_out def test_step(self, batch, batch_idx): return self.eval_step(batch, batch_idx, 'test') def test_epoch_end(self, outputs): test_out = self.eval_epoch_end(outputs, 'test', self.test_dates) return test_out if __name__ == '__main__': start_time = time.time() # build argument parser and config config = Config() parser = argparse.ArgumentParser(description='COVID-19 Forecasting Task') add_config_to_argparse(config, parser) # parse arguments to config args = parser.parse_args() config.update_by_dict(args.__dict__) # build task task = Task(config) # Set random seed before the initialization of network parameters # Necessary for distributed training task.set_random_seed() net = GraphNet(task.config, task.edge_weight) task.init_model_and_optimizer(net) task.log('Build Neural Nets') # select epoch with best validation accuracy best_epochs = 50 if not task.config.skip_train: task.fit() best_epochs = task._best_val_epoch print('Best validation epochs: {}'.format(best_epochs)) # Resume the best checkpoint for evaluation task.resume_best_checkpoint() val_eval_out = task.val_eval() test_eval_out = task.test_eval() # dump evaluation results of the best checkpoint to val out task.dump(val_out=val_eval_out, test_out=test_eval_out, epoch_idx=-1, is_best=True, dump_option=1) task.log('Best checkpoint (epoch={}, {}, {})'.format( task._passed_epoch, val_eval_out[BAR_KEY], test_eval_out[BAR_KEY])) if task.is_master_node: for tag, eval_out in [ ('val', val_eval_out), ('test', test_eval_out), ]: print('-'*15, tag) scores = eval_out['scores']['mistakes'] print('-'*5, 'mistakes') print('Average:') print(scores.mean().to_frame('mistakes')) print('Daily:') print(scores) task.log('Training time {}s'.format(time.time() - start_time))
py
1a5c6ba3e04041fd9e8d8e1189b19104c4ede43a
import inspect from copy import deepcopy from pygmol.abc import Chemistry class ExampleChemistry(Chemistry): """An example chemistry for the following Species: -------- O, O-, O--, O2, Ar, Ar+, Ar++, Ar*, Ar** Reactions: ---------- 1: e + O2 > O2 + e 2: e + Ar > e + Ar 3: e + Ar+ > Ar+ + e 4: e + Ar > Ar* + e # made up for testing purposes... 6: e + Ar* > Ar** + e 7: e + Ar* > Ar + e 8: e + Ar** > Ar + e 9: e + Ar** > Ar* + e 10: Ar + e > Ar++ + e + e + e # made up for testing purposes... 12: e + Ar* > Ar+ + e + e 13: e + Ar** > Ar+ + e + e 14: e + O > O- # made up for testing purposes... 15: e + O2 > O- + O 16: e + e + O > O-- # made up for testing purposes... 19: e + O2 > e + O + O 20: e + O- > O-- # made up for testing purposes... 21: Ar+ + e > Ar++ + e + e 22: Ar* + Ar* > Ar+ + Ar + e 23: Ar* + Ar** > Ar+ + Ar + e 25: Ar + Ar+ > Ar + Ar+ 26: O- + O > O2 + e 27: Ar+ + O- > Ar + O 28: Ar+ + O- + M > Ar + O + M # made up for testing purposes... 29: Ar++ + O-- + M > Ar + O + M # made up for testing purposes... 30: Ar** > Ar* 31: O-- > e + O- # made up for testing purposes... """ species_ids = ["O", "O-", "O--", "O2", "Ar", "Ar+", "Ar++", "Ar*", "Ar**"] species_charges = [0, -1, -2, 0, 0, 1, 2, 0, 0] species_masses = [ 15.9994, 15.9994, 15.9994, 31.9988, 39.948, 39.948, 39.948, 39.948, 39.948, ] species_lj_sigma_coefficients = [ 3.05, 3.05, 3.05, 3.47, 3.542, 3.542, 3.542, 3.542, 3.542, ] # only ions and excited species get stuck to surfaces species_surface_sticking_coefficients = [0, 0, 0, 0, 0, 0, 0, 0, 0] # singly ionized and excited species return as neutrals # doubly ionized and excited species return half as singly, half as neutrals species_surface_return_matrix = [ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], ] reactions_ids = [ 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, ] reactions_strings = [ "e + O2 -> O2 + e", "e + Ar -> e + Ar", "e + Ar+ -> Ar+ + e", "e + Ar -> Ar* + e", # made up for testing purposes... "e + Ar* -> Ar** + e", "e + Ar* -> Ar + e", "e + Ar** -> Ar + e", "e + Ar** -> Ar* + e", "Ar + e -> Ar++ + e + e + e", # made up for testing purposes... "e + Ar* -> Ar+ + e + e", "e + Ar** -> Ar+ + e + e", "e + O -> O-", # made up for testing purposes... "e + O2 -> O- + O", "e + e + O -> O--", # made up for testing purposes... "e + O2 -> e + O + O", "e + O- -> O--", # made up for testing purposes... "Ar+ + e -> Ar++ + e + e", "Ar* + Ar* -> Ar+ + Ar + e", "Ar* + Ar** -> Ar+ + Ar + e", "Ar + Ar+ -> Ar + Ar+", "O- + O -> O2 + e", "Ar+ + O- -> Ar + O", "Ar+ + O- + M -> Ar + O + M", # made up for testing purposes... "Ar++ + O-- + M -> Ar + O + M", # made up for testing purposes... "Ar** -> Ar*", "O-- -> e + O-", # made up for testing purposes... ] reactions_arrh_a = [ 3.93e-14, 2.660e-13, 1.61e-10, 1.00e-11, 7.91e-13, 1.96e-15, 2.26e-14, 6.86e-13, 1e-09, 1.42e-13, 3.45e-13, 1e-16, 6.74e-16, 1.00e-32, 1.75e-14, 1e-16, 1e-09, 1e-16, 1.2e-15, 5.66e-16, 3e-16, 2.7e-13, 1e-37, 1e-37, 100000.0, 100.0, ] reactions_arrh_b = [ 0.628, -0.0128, -1.22, 0.405, 0.281, 0.319, 0.102, 0.337, 0.5, 0.195, -0.0177, 0.0, -1.02, 0.0, -1.28, 0.0, 0.5, 0.0, 0.5, 0.5, -0.5, 0.0, 0.0, 0.0, 0.0, 0.0, ] reactions_arrh_c = [ -0.0198, 3.15, 0.0382, 12.1, 1.9, 0.985, 0.0441, 0.102, 15.0, 4.38, 4.11, 0.0, 5.78, 0.0, 7.38, 0.0, 10.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] reactions_el_energy_losses = [ 0.0, 0.0, 0.0, 11.6, 1.575, 0.0, 0.0, 0.0, 15.0, 4.425, 2.9, 0.0, 0.0, 0.0, 4.5, 0.0, 10.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] reactions_elastic_flags = [ True, True, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, True, False, False, False, False, False, False, ] reactions_electron_stoich_lhs = [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ] reactions_electron_stoich_rhs = [ 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 0, 0, 0, 1, 0, 2, 1, 1, 0, 1, 0, 0, 0, 0, 1, ] reactions_arbitrary_stoich_lhs = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, ] reactions_arbitrary_stoich_rhs = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, ] reactions_species_stoichiomatrix_lhs = [ [0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 2, 0], [0, 0, 0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 1, 1, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1, 0, 0, 0], [0, 1, 0, 0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0, 0, 0, 0], ] reactions_species_stoichiomatrix_rhs = [ [0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0], [2, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 1, 0, 0, 0], [0, 0, 0, 0, 1, 1, 0, 0, 0], [0, 0, 0, 0, 1, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 1, 0, 0, 0, 0], [1, 0, 0, 0, 1, 0, 0, 0, 0], [1, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0], ] def __init__(self): # save all the class attributes as instance attributes: for attr, val in inspect.getmembers(ExampleChemistry): if not attr[0].startswith("_"): setattr(self, attr, deepcopy(getattr(ExampleChemistry, attr)))
py
1a5c6be8720665d341b4d2addd92bbf4cb246f4e
import matplotlib.pyplot as plot import numpy as np import sys def loadandsave(): vlxt_percentage = np.loadtxt('/home/oates/work/disorder/vlxt_percentages.dat') #outfile = open('/home/oates/work/disorder/vlxt_percentages.pkl', 'wb') #pickle.dump(vlxt_percentage,outfile,pickle.HIGHEST_PROTOCOL) #outfile.close() np.save('/home/oates/work/disorder/vlxt_percentages.npy',vlxt_percentage) vsl2b_percentage = np.loadtxt('/home/oates/work/disorder/vsl2b_percentages.dat') #outfile = open('/home/oates/work/disorder/vsl2b_percentages.pkl', 'wb') #pickle.dump(vsl2b_percentage,outfile,pickle.HIGHEST_PROTOCOL) #outfile.close() np.save('/home/oates/work/disorder/vsl2b_percentages.npy',vsl2b_percentage) def load(filename): return np.load(filename) vlxt_percentage = load('/home/oates/work/disorder/vlxt_percentages.npy') vsl2b_percentage = load('/home/oates/work/disorder/vsl2b_percentages.npy') hist, bins = np.histogram(vlxt_percentage,bins=100) width=0.7*(bins[1]-bins[0]) center=(bins[:-1]+bins[1:])/2.0 plot.bar(center,hist,align='center',width=width) #plot.set_title('VLXT % Disorder') #plot.set_xlabel('% Amino Acids Disordered') #plot.set_ylabel('Number of Proteins') plot.show() hist, bins = np.histogram(vsl2b_percentage,bins=100) width=0.7*(bins[1]-bins[0]) center=(bins[:-1]+bins[1:])/2.0 plot.bar(center,hist,align='center',width=width) #plot.set_title('VSL2b % Disorder') #plot.set_xlabel('% Amino Acids Disordered') #plot.set_ylabel('Number of Proteins') plot.show()
py
1a5c6c948848452d632341e0a1c3dcedda0e5c2d
score = float(input("Enter Score: ")) if score < 1 and score > 0: if score >= 0.9: print('A') elif score >= 0.8: print('B') elif score >= 0.7: print('C') elif score >= 0.6: print('D') else: print('F') else: print('Value of score is out of range.') largest = None smallest = None while True: num = input("Enter a number: ") if num == "done" : break try: num = int(num) except: print('Invalid input') continue if largest is None: largest = num elif num > largest: largest = num elif smallest is None: smallest = num elif num < smallest: smallest = num #print(num) print("Maximum is", largest) print('Minimum is', smallest) def computepay(h,r): if h <= 40: pay = h * r else: h1 = h - 40 pay = 40 * r + h1 *(r * 1.5) return pay hrs = input("Enter Hours:") rate = input('Enter Rate:') h = float(hrs) r = float(rate) p = computepay(h,r) print("Pay",p)
py
1a5c6cb6dbb4aed97fe01a1e937545eaaaddbd02
# # Copyright (c) 2008-2016 Citrix Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_resource from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_response from nssrc.com.citrix.netscaler.nitro.service.options import options from nssrc.com.citrix.netscaler.nitro.exception.nitro_exception import nitro_exception from nssrc.com.citrix.netscaler.nitro.util.nitro_util import nitro_util class auditsyslogpolicy_csvserver_binding(base_resource) : """ Binding class showing the csvserver that can be bound to auditsyslogpolicy. """ def __init__(self) : self._boundto = None self._priority = None self._activepolicy = None self._name = None self.___count = None @property def name(self) : r"""Name of the policy.<br/>Minimum length = 1. """ try : return self._name except Exception as e: raise e @name.setter def name(self, name) : r"""Name of the policy.<br/>Minimum length = 1 """ try : self._name = name except Exception as e: raise e @property def boundto(self) : r"""The entity name to which policy is bound. """ try : return self._boundto except Exception as e: raise e @boundto.setter def boundto(self, boundto) : r"""The entity name to which policy is bound. """ try : self._boundto = boundto except Exception as e: raise e @property def priority(self) : try : return self._priority except Exception as e: raise e @property def activepolicy(self) : try : return self._activepolicy except Exception as e: raise e def _get_nitro_response(self, service, response) : r""" converts nitro response into object and returns the object array in case of get request. """ try : result = service.payload_formatter.string_to_resource(auditsyslogpolicy_csvserver_binding_response, response, self.__class__.__name__) if(result.errorcode != 0) : if (result.errorcode == 444) : service.clear_session(self) if result.severity : if (result.severity == "ERROR") : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) else : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) return result.auditsyslogpolicy_csvserver_binding except Exception as e : raise e def _get_object_name(self) : r""" Returns the value of object identifier argument """ try : if self.name is not None : return str(self.name) return None except Exception as e : raise e @classmethod def get(cls, service, name="", option_="") : r""" Use this API to fetch auditsyslogpolicy_csvserver_binding resources. """ try : if not name : obj = auditsyslogpolicy_csvserver_binding() response = obj.get_resources(service, option_) else : obj = auditsyslogpolicy_csvserver_binding() obj.name = name response = obj.get_resources(service) return response except Exception as e: raise e @classmethod def get_filtered(cls, service, name, filter_) : r""" Use this API to fetch filtered set of auditsyslogpolicy_csvserver_binding resources. Filter string should be in JSON format.eg: "port:80,servicetype:HTTP". """ try : obj = auditsyslogpolicy_csvserver_binding() obj.name = name option_ = options() option_.filter = filter_ response = obj.getfiltered(service, option_) return response except Exception as e: raise e @classmethod def count(cls, service, name) : r""" Use this API to count auditsyslogpolicy_csvserver_binding resources configued on NetScaler. """ try : obj = auditsyslogpolicy_csvserver_binding() obj.name = name option_ = options() option_.count = True response = obj.get_resources(service, option_) if response : return response[0].__dict__['___count'] return 0 except Exception as e: raise e @classmethod def count_filtered(cls, service, name, filter_) : r""" Use this API to count the filtered set of auditsyslogpolicy_csvserver_binding resources. Filter string should be in JSON format.eg: "port:80,servicetype:HTTP". """ try : obj = auditsyslogpolicy_csvserver_binding() obj.name = name option_ = options() option_.count = True option_.filter = filter_ response = obj.getfiltered(service, option_) if response : return response[0].__dict__['___count'] return 0 except Exception as e: raise e class auditsyslogpolicy_csvserver_binding_response(base_response) : def __init__(self, length=1) : self.auditsyslogpolicy_csvserver_binding = [] self.errorcode = 0 self.message = "" self.severity = "" self.sessionid = "" self.auditsyslogpolicy_csvserver_binding = [auditsyslogpolicy_csvserver_binding() for _ in range(length)]
py
1a5c6d601c04f39eb961f4cfc1e4d19c9ca8c2a3
from presenter.converter import service, settingkey ID_NONE = 'none' ID_NOTIFY_LOADED_VIDEO = 'load_video' class EventNotifier(): def __init__(self): self.__callbackList = list() def notifyEvent(self, notifyId=ID_NONE): for func in self.__callbackList: func(notifyId) def addCallBack(self, func): self.__callbackList.append(func) def removeCallback(self, func): self.__callbackList.remove(func) class Presenter(): def __init__(self): self.service = service self.notifier = EventNotifier() def setVideoPath(self, path=None): self.service.setSettingsParam(settingkey.KEY_OF_IN, path) self.notifier.notifyEvent(ID_NOTIFY_LOADED_VIDEO) def getPreviewImage(self): return self.service.doCreatePreviewImage() def addEventCallback(self, func): self.notifier.addCallBack(func) def removeCallback(self, func): self.notifier.removeCallback(func)
py
1a5c6da4e86bfacd1997edfdcdfa1957b1cd2818
from django.contrib import admin from .models import SKYUrl admin.site.register(SKYUrl)
py
1a5c6de06435410969ca7a2762451a2f2aa6e3d6
_NOW = 1151365354 _TIMEFORMAT = '%b %d %I:%M %p' class DummyOptions: make_pipes_error = None fork_error = None execv_error = None kill_error = None minfds = 5 loglevel = 20 def __init__(self): self.identifier = 'supervisor' self.childlogdir = '/tmp' self.uid = 999 self.logger = self.getLogger() self.backofflimit = 10 self.logfile = '/tmp/logfile' self.nocleanup = False self.strip_ansi = False self.pidhistory = {} self.process_group_configs = [] self.nodaemon = False self.socket_map = {} self.mood = 1 self.mustreopen = False self.realizeargs = None self.fds_cleaned_up = False self.rlimit_set = False self.setuid_called = False self.httpservers_opened = False self.signals_set = False self.daemonized = False self.make_logger_messages = None self.autochildlogdir_cleared = False self.cleaned_up = False self.pidfile_written = False self.directory = None self.waitpid_return = None, None self.kills = {} self._signal = None self.parent_pipes_closed = None self.child_pipes_closed = None self.forkpid = 0 self.pgrp_set = None self.duped = {} self.written = {} self.fds_closed = [] self._exitcode = None self.execv_args = None self.setuid_msg = None self.privsdropped = None self.logs_reopened = False self.environment_processed = False self.select_result = [], [], [] self.select_error = None self.write_accept = None self.write_error = None self.tempfile_name = '/foo/bar' self.remove_error = None self.removed = [] self.existing = [] self.openreturn = None self.readfd_result = '' self.parse_warnings = [] self.serverurl = 'http://localhost:9001' self.changed_directory = False self.chdir_error = None self.umaskset = None def getLogger(self, *args, **kw): logger = DummyLogger() logger.handlers = [DummyLogger()] logger.args = args, kw return logger def realize(self, args, **kw): self.realizeargs = args self.realizekw = kw def process_config(self, do_usage=True): pass def cleanup_fds(self): self.fds_cleaned_up = True def set_rlimits(self): self.rlimits_set = True return ['rlimits_set'] def set_uid(self): self.setuid_called = True return 'setuid_called' def openhttpservers(self, supervisord): self.httpservers_opened = True def daemonize(self): self.daemonized = True def setsignals(self): self.signals_set = True def get_signal(self): return self._signal def get_socket_map(self): return self.socket_map def make_logger(self, critical_msgs, warn_msgs, info_msgs): self.make_logger_messages = critical_msgs, warn_msgs, info_msgs def clear_autochildlogdir(self): self.autochildlogdir_cleared = True def get_autochildlog_name(self, *ignored): return self.tempfile_name def cleanup(self): self.cleaned_up = True def write_pidfile(self): self.pidfile_written = True def waitpid(self): return self.waitpid_return def kill(self, pid, sig): if self.kill_error: raise OSError(self.kill_error) self.kills[pid] = sig def stat(self, filename): import os return os.stat(filename) def get_path(self): return ["/bin", "/usr/bin", "/usr/local/bin"] def get_pid(self): import os return os.getpid() def check_execv_args(self, filename, argv, st): if filename == '/bad/filename': from supervisor.options import NotFound raise NotFound('bad filename') def make_pipes(self, stderr=True): if self.make_pipes_error: raise OSError(self.make_pipes_error) pipes = {} pipes['child_stdin'], pipes['stdin'] = (3, 4) pipes['stdout'], pipes['child_stdout'] = (5, 6) if stderr: pipes['stderr'], pipes['child_stderr'] = (7, 8) else: pipes['stderr'], pipes['child_stderr'] = None, None return pipes def write(self, fd, chars): if self.write_error: raise OSError(self.write_error) if self.write_accept: chars = chars[self.write_accept] data = self.written.setdefault(fd, '') data += chars self.written[fd] = data return len(chars) def fork(self): if self.fork_error: raise OSError(self.fork_error) return self.forkpid def close_fd(self, fd): self.fds_closed.append(fd) def close_parent_pipes(self, pipes): self.parent_pipes_closed = pipes def close_child_pipes(self, pipes): self.child_pipes_closed = pipes def setpgrp(self): self.pgrp_set = True def dup2(self, frm, to): self.duped[frm] = to def _exit(self, code): self._exitcode = code def execve(self, filename, argv, environment): if self.execv_error: if self.execv_error == 1: raise OSError(self.execv_error) else: raise RuntimeError(self.execv_error) self.execv_args = (filename, argv) self.execv_environment = environment def dropPrivileges(self, uid): if self.setuid_msg: return self.setuid_msg self.privsdropped = uid def readfd(self, fd): return self.readfd_result def reopenlogs(self): self.logs_reopened = True def process_environment(self): self.environment_processed = True def mktempfile(self, prefix, suffix, dir): return self.tempfile_name def select(self, r, w, x, timeout): import select if self.select_error: raise select.error(self.select_error) return self.select_result def remove(self, path): import os if self.remove_error: raise os.error(self.remove_error) self.removed.append(path) def exists(self, path): if path in self.existing: return True return False def open(self, name, mode='r'): if self.openreturn: return self.openreturn return open(name, mode) def chdir(self, dir): if self.chdir_error: raise OSError(self.chdir_error) self.changed_directory = True def setumask(self, mask): self.umaskset = mask class DummyLogger: def __init__(self): self.reopened = False self.removed = False self.closed = False self.data = [] def info(self, msg, **kw): if kw: msg = msg % kw self.data.append(msg) warn = debug = critical = trace = error = blather = info def log(self, level, msg, **kw): if kw: msg = msg % kw self.data.append(msg) def reopen(self): self.reopened = True def close(self): self.closed = True def remove(self): self.removed = True def flush(self): self.flushed = True def getvalue(self): return ''.join(self.data) class DummySupervisor: def __init__(self, options=None, state=None, process_groups=None): if options is None: self.options = DummyOptions() else: self.options = options if state is None: from supervisor.supervisord import SupervisorStates self.options.mood = SupervisorStates.RUNNING else: self.options.mood = state if process_groups is None: self.process_groups = {} else: self.process_groups = process_groups def get_state(self): return self.options.mood class DummySocket: bind_called = False bind_addr = None listen_called = False listen_backlog = None close_called = False def __init__(self, fd): self.fd = fd def fileno(self): return self.fd def bind(self, addr): self.bind_called = True self.bind_addr = addr def listen(self, backlog): self.listen_called = True self.listen_backlog = backlog def close(self): self.close_called = True def __str__(self): return 'dummy socket' class DummySocketConfig: def __init__(self, fd): self.fd = fd def addr(self): return 'dummy addr' def __eq__(self, other): return self.fd == other.fd def __ne__(self, other): return not self.__eq__(other) def create_and_bind(self): return DummySocket(self.fd) class DummySocketManager: def __init__(self, config, **kwargs): self._config = config def config(self): return self._config def get_socket(self): return DummySocket(self._config.fd) class DummyProcess: # Initial state; overridden by instance variables pid = 0 # Subprocess pid; 0 when not running laststart = 0 # Last time the subprocess was started; 0 if never laststop = 0 # Last time the subprocess was stopped; 0 if never delay = 0 # If nonzero, delay starting or killing until this time administrative_stop = 0 # true if the process has been stopped by an admin system_stop = 0 # true if the process has been stopped by the system killing = 0 # flag determining whether we are trying to kill this proc backoff = 0 # backoff counter (to backofflimit) waitstatus = None exitstatus = None pipes = None rpipes = None dispatchers = None stdout_logged = '' stderr_logged = '' spawnerr = None stdout_buffer = '' # buffer of characters from child stdout output to log stderr_buffer = '' # buffer of characters from child stderr output to log stdin_buffer = '' # buffer of characters to send to child process' stdin listener_state = None group = None def __init__(self, config, state=None): self.config = config self.logsremoved = False self.stop_called = False self.backoff_secs = None self.spawned = False if state is None: from supervisor.process import ProcessStates state = ProcessStates.RUNNING self.state = state self.error_at_clear = False self.killed_with = None self.drained = False self.stdout_buffer = '' self.stderr_buffer = '' self.stdout_logged = '' self.stderr_logged = '' self.stdin_buffer = '' self.pipes = {} self.rpipes = {} self.dispatchers = {} self.finished = None self.logs_reopened = False self.execv_arg_exception = None self.input_fd_drained = None self.output_fd_drained = None self.transitioned = False self.write_error = None def reopenlogs(self): self.logs_reopened = True def removelogs(self): if self.error_at_clear: raise IOError('whatever') self.logsremoved = True def get_state(self): return self.state def stop(self): self.stop_called = True self.killing = False from supervisor.process import ProcessStates self.state = ProcessStates.STOPPED def kill(self, signal): self.killed_with = signal def spawn(self): self.spawned = True from supervisor.process import ProcessStates self.state = ProcessStates.RUNNING def drain(self): self.drained = True def __cmp__(self, other): return cmp(self.config.priority, other.config.priority) def readable_fds(self): return [] def record_output(self): self.stdout_logged += self.stdout_buffer self.stdout_buffer = '' self.stderr_logged += self.stderr_buffer self.stderr_buffer = '' def finish(self, pid, sts): self.finished = pid, sts def give_up(self): from supervisor.process import ProcessStates self.state = ProcessStates.FATAL def get_execv_args(self): if self.execv_arg_exception: raise self.execv_arg_exception('whatever') import shlex commandargs = shlex.split(self.config.command) program = commandargs[0] return program, commandargs def drain_output_fd(self, fd): self.output_fd_drained = fd def drain_input_fd(self, fd): self.input_fd_drained = fd def write(self, chars): if self.write_error: raise OSError(self.write_error) self.stdin_buffer += chars def transition(self): self.transitioned = True class DummyPConfig: def __init__(self, options, name, command, directory=None, umask=None, priority=999, autostart=True, autorestart=True, startsecs=10, startretries=999, uid=None, stdout_logfile=None, stdout_capture_maxbytes=0, stdout_events_enabled=False, stdout_logfile_backups=0, stdout_logfile_maxbytes=0, stderr_logfile=None, stderr_capture_maxbytes=0, stderr_events_enabled=False, stderr_logfile_backups=0, stderr_logfile_maxbytes=0, redirect_stderr=False, stopsignal=None, stopwaitsecs=10, stopasgroup=False, killasgroup=False, exitcodes=(0,2), environment=None, serverurl=None): self.options = options self.name = name self.command = command self.priority = priority self.autostart = autostart self.autorestart = autorestart self.startsecs = startsecs self.startretries = startretries self.uid = uid self.stdout_logfile = stdout_logfile self.stdout_capture_maxbytes = stdout_capture_maxbytes self.stdout_events_enabled = stdout_events_enabled self.stdout_logfile_backups = stdout_logfile_backups self.stdout_logfile_maxbytes = stdout_logfile_maxbytes self.stderr_logfile = stderr_logfile self.stderr_capture_maxbytes = stderr_capture_maxbytes self.stderr_events_enabled = stderr_events_enabled self.stderr_logfile_backups = stderr_logfile_backups self.stderr_logfile_maxbytes = stderr_logfile_maxbytes self.redirect_stderr = redirect_stderr if stopsignal is None: import signal stopsignal = signal.SIGTERM self.stopsignal = stopsignal self.stopwaitsecs = stopwaitsecs self.stopasgroup = stopasgroup self.killasgroup = killasgroup self.exitcodes = exitcodes self.environment = environment self.directory = directory self.umask = umask self.autochildlogs_created = False self.serverurl = serverurl def create_autochildlogs(self): self.autochildlogs_created = True def make_process(self, group=None): process = DummyProcess(self) process.group = group return process def make_dispatchers(self, proc): use_stderr = not self.redirect_stderr pipes = self.options.make_pipes(use_stderr) stdout_fd,stderr_fd,stdin_fd = (pipes['stdout'],pipes['stderr'], pipes['stdin']) dispatchers = {} if stdout_fd is not None: dispatchers[stdout_fd] = DummyDispatcher(readable=True) if stderr_fd is not None: dispatchers[stderr_fd] = DummyDispatcher(readable=True) if stdin_fd is not None: dispatchers[stdin_fd] = DummyDispatcher(writable=True) return dispatchers, pipes def makeExecutable(file, substitutions=None): import os import sys import tempfile if substitutions is None: substitutions = {} data = open(file).read() last = os.path.split(file)[1] substitutions['PYTHON'] = sys.executable for key in substitutions.keys(): data = data.replace('<<%s>>' % key.upper(), substitutions[key]) tmpnam = tempfile.mktemp(prefix=last) f = open(tmpnam, 'w') f.write(data) f.close() os.chmod(tmpnam, 0755) return tmpnam def makeSpew(unkillable=False): import os here = os.path.dirname(__file__) if not unkillable: return makeExecutable(os.path.join(here, 'fixtures/spew.py')) return makeExecutable(os.path.join(here, 'fixtures/unkillable_spew.py')) class DummyMedusaServerLogger: def __init__(self): self.logged = [] def log(self, category, msg): self.logged.append((category, msg)) class DummyMedusaServer: def __init__(self): self.logger = DummyMedusaServerLogger() class DummyMedusaChannel: def __init__(self): self.server = DummyMedusaServer() self.producer = None def push_with_producer(self, producer): self.producer = producer def close_when_done(self): pass class DummyRequest: command = 'GET' _error = None _done = False version = '1.0' def __init__(self, path, params, query, fragment, env=None): self.args = path, params, query, fragment self.producers = [] self.headers = {} self.header = [] self.outgoing = [] self.channel = DummyMedusaChannel() if env is None: self.env = {} else: self.env = env def split_uri(self): return self.args def error(self, code): self._error = code def push(self, producer): self.producers.append(producer) def __setitem__(self, header, value): self.headers[header] = value def has_key(self, header): return self.headers.has_key(header) def done(self): self._done = True def build_reply_header(self): return '' def log(self, *arg, **kw): pass def cgi_environment(self): return self.env def get_server_url(self): return 'http://example.com' class DummyRPCInterfaceFactory: def __init__(self, supervisord, **config): self.supervisord = supervisord self.config = config class DummyRPCServer: def __init__(self): self.supervisor = DummySupervisorRPCNamespace() self.system = DummySystemRPCNamespace() class DummySystemRPCNamespace: pass class DummySupervisorRPCNamespace: _restartable = True _restarted = False _shutdown = False _readlog_error = False from supervisor.process import ProcessStates all_process_info = [ { 'name':'foo', 'group':'foo', 'pid':11, 'state':ProcessStates.RUNNING, 'statename':'RUNNING', 'start':_NOW - 100, 'stop':0, 'spawnerr':'', 'now':_NOW, 'description':'foo description', }, { 'name':'bar', 'group':'bar', 'pid':12, 'state':ProcessStates.FATAL, 'statename':'FATAL', 'start':_NOW - 100, 'stop':_NOW - 50, 'spawnerr':'screwed', 'now':_NOW, 'description':'bar description', }, { 'name':'baz_01', 'group':'baz', 'pid':13, 'state':ProcessStates.STOPPED, 'statename':'STOPPED', 'start':_NOW - 100, 'stop':_NOW - 25, 'spawnerr':'', 'now':_NOW, 'description':'baz description', }, ] def getAPIVersion(self): return '3.0' getVersion = getAPIVersion # deprecated def getPID(self): return 42 def readProcessStdoutLog(self, name, offset, length): from supervisor import xmlrpc import xmlrpclib if name == 'BAD_NAME': raise xmlrpclib.Fault(xmlrpc.Faults.BAD_NAME, 'BAD_NAME') elif name == 'FAILED': raise xmlrpclib.Fault(xmlrpc.Faults.FAILED, 'FAILED') elif name == 'NO_FILE': raise xmlrpclib.Fault(xmlrpc.Faults.NO_FILE, 'NO_FILE') a = 'output line\n' * 10 return a[offset:] readProcessLog = readProcessStdoutLog readProcessStderrLog = readProcessStdoutLog def getAllProcessInfo(self): return self.all_process_info def getProcessInfo(self, name): from supervisor import xmlrpc import xmlrpclib from supervisor.process import ProcessStates for i in self.all_process_info: if i['name']==name: info=i return info if name == 'BAD_NAME': raise xmlrpclib.Fault(xmlrpc.Faults.BAD_NAME, 'BAD_NAME') if name == 'FAILED': raise xmlrpclib.Fault(xmlrpc.Faults.FAILED, 'FAILED') if name == 'NO_FILE': raise xmlrpclib.Fault(xmlrpc.Faults.NO_FILE, 'NO_FILE') def startProcess(self, name): from supervisor import xmlrpc from xmlrpclib import Fault if name == 'BAD_NAME:BAD_NAME': raise Fault(xmlrpc.Faults.BAD_NAME, 'BAD_NAME:BAD_NAME') if name == 'BAD_NAME': raise Fault(xmlrpc.Faults.BAD_NAME, 'BAD_NAME') if name == 'NO_FILE': raise Fault(xmlrpc.Faults.NO_FILE, 'NO_FILE') if name == 'NOT_EXECUTABLE': raise Fault(xmlrpc.Faults.NOT_EXECUTABLE, 'NOT_EXECUTABLE') if name == 'ALREADY_STARTED': raise Fault(xmlrpc.Faults.ALREADY_STARTED, 'ALREADY_STARTED') if name == 'SPAWN_ERROR': raise Fault(xmlrpc.Faults.SPAWN_ERROR, 'SPAWN_ERROR') return True def startProcessGroup(self, name): from supervisor import xmlrpc return [ {'name':'foo_00', 'group':'foo', 'status': xmlrpc.Faults.SUCCESS, 'description': 'OK'}, {'name':'foo_01', 'group':'foo', 'status':xmlrpc.Faults.SUCCESS, 'description': 'OK'}, ] def startAllProcesses(self): from supervisor import xmlrpc return [ {'name':'foo', 'group':'foo', 'status': xmlrpc.Faults.SUCCESS, 'description': 'OK'}, {'name':'foo2', 'group':'foo2', 'status':xmlrpc.Faults.SUCCESS, 'description': 'OK'}, {'name':'failed', 'group':'failed_group', 'status':xmlrpc.Faults.SPAWN_ERROR, 'description':'SPAWN_ERROR'} ] def stopProcessGroup(self, name): from supervisor import xmlrpc return [ {'name':'foo_00', 'group':'foo', 'status': xmlrpc.Faults.SUCCESS, 'description': 'OK'}, {'name':'foo_01', 'group':'foo', 'status':xmlrpc.Faults.SUCCESS, 'description': 'OK'}, ] def stopProcess(self, name): from supervisor import xmlrpc from xmlrpclib import Fault if name == 'BAD_NAME:BAD_NAME': raise Fault(xmlrpc.Faults.BAD_NAME, 'BAD_NAME:BAD_NAME') if name == 'BAD_NAME': raise Fault(xmlrpc.Faults.BAD_NAME, 'BAD_NAME') if name == 'NOT_RUNNING': raise Fault(xmlrpc.Faults.NOT_RUNNING, 'NOT_RUNNING') if name == 'FAILED': raise Fault(xmlrpc.Faults.FAILED, 'FAILED') return True def stopAllProcesses(self): from supervisor import xmlrpc return [ {'name':'foo','group':'foo', 'status': xmlrpc.Faults.SUCCESS, 'description': 'OK'}, {'name':'foo2', 'group':'foo2', 'status':xmlrpc.Faults.SUCCESS,'description': 'OK'}, {'name':'failed', 'group':'failed_group', 'status':xmlrpc.Faults.BAD_NAME, 'description':'FAILED'} ] def restart(self): if self._restartable: self._restarted = True return from xmlrpclib import Fault from supervisor import xmlrpc raise Fault(xmlrpc.Faults.SHUTDOWN_STATE, '') def shutdown(self): if self._restartable: self._shutdown = True return from xmlrpclib import Fault from supervisor import xmlrpc raise Fault(xmlrpc.Faults.SHUTDOWN_STATE, '') def reloadConfig(self): return [[['added'], ['changed'], ['removed']]] def addProcessGroup(self, name): from xmlrpclib import Fault from supervisor import xmlrpc if name == 'ALREADY_ADDED': raise Fault(xmlrpc.Faults.ALREADY_ADDED, '') if name == 'BAD_NAME': raise Fault(xmlrpc.Faults.BAD_NAME, '') if hasattr(self, 'processes'): self.processes.append(name) else: self.processes = [name] def removeProcessGroup(self, name): from xmlrpclib import Fault from supervisor import xmlrpc if name == 'STILL_RUNNING': raise Fault(xmlrpc.Faults.STILL_RUNNING, '') if name == 'BAD_NAME': raise Fault(xmlrpc.Faults.BAD_NAME, '') self.processes.remove(name) def clearProcessStdoutLog(self, name): from xmlrpclib import Fault from supervisor import xmlrpc if name == 'BAD_NAME': raise Fault(xmlrpc.Faults.BAD_NAME, 'BAD_NAME') return True clearProcessLog = clearProcessStdoutLog clearProcessStderrLog = clearProcessStdoutLog clearProcessLogs = clearProcessStdoutLog def clearAllProcessLogs(self): from supervisor import xmlrpc return [ {'name':'foo', 'group':'foo', 'status':xmlrpc.Faults.SUCCESS, 'description': 'OK'}, {'name':'foo2', 'group':'foo2', 'status':xmlrpc.Faults.SUCCESS, 'description': 'OK'}, {'name':'failed', 'group':'failed_group', 'status':xmlrpc.Faults.FAILED, 'description':'FAILED'} ] def raiseError(self): raise ValueError('error') def getSupervisorVersion(self): return '3000' def readLog(self, whence, offset): if self._readlog_error: from xmlrpclib import Fault raise Fault(self._readlog_error, '') return 'mainlogdata' class DummyPGroupConfig: def __init__(self, options, name='whatever', priority=999, pconfigs=None): self.options = options self.name = name self.priority = priority if pconfigs is None: pconfigs = [] self.process_configs = pconfigs self.after_setuid_called = False self.pool_events = [] self.buffer_size = 10 def after_setuid(self): self.after_setuid_called = True def make_group(self): return DummyProcessGroup(self) def __repr__(self): return '<%s instance at %s named %s>' % (self.__class__, id(self), self.name) class DummyFCGIGroupConfig(DummyPGroupConfig): def __init__(self, options, name='whatever', priority=999, pconfigs=None, socket_config=DummySocketConfig(1)): DummyPGroupConfig.__init__(self, options, name, priority, pconfigs) self.socket_config = socket_config class DummyProcessGroup: def __init__(self, config): self.config = config self.transitioned = False self.all_stopped = False self.dispatchers = {} self.unstopped_processes = [] def transition(self): self.transitioned = True def stop_all(self): self.all_stopped = True def get_unstopped_processes(self): return self.unstopped_processes def get_dispatchers(self): return self.dispatchers class DummyFCGIProcessGroup(DummyProcessGroup): def __init__(self, config): DummyProcessGroup.__init__(self, config) self.socket_manager = DummySocketManager(config.socket_config) class PopulatedDummySupervisor(DummySupervisor): def __init__(self, options, group_name, *pconfigs): DummySupervisor.__init__(self, options) self.process_groups = {} processes = {} self.group_name = group_name gconfig = DummyPGroupConfig(options, group_name, pconfigs=pconfigs) pgroup = DummyProcessGroup(gconfig) self.process_groups[group_name] = pgroup for pconfig in pconfigs: process = DummyProcess(pconfig) processes[pconfig.name] = process pgroup.processes = processes def set_procattr(self, process_name, attr_name, val, group_name=None): if group_name is None: group_name = self.group_name process = self.process_groups[group_name].processes[process_name] setattr(process, attr_name, val) class DummyDispatcher: write_event_handled = False read_event_handled = False error_handled = False logs_reopened = False logs_removed = False closed = False flush_error = None flushed = False def __init__(self, readable=False, writable=False, error=False): self._readable = readable self._writable = writable self._error = error self.input_buffer = '' if readable: # only readable dispatchers should have these methods def reopenlogs(): self.logs_reopened = True self.reopenlogs = reopenlogs def removelogs(): self.logs_removed = True self.removelogs = removelogs def readable(self): return self._readable def writable(self): return self._writable def handle_write_event(self): if self._error: raise self._error self.write_event_handled = True def handle_read_event(self): if self._error: raise self._error self.read_event_handled = True def handle_error(self): self.error_handled = True def close(self): self.closed = True def flush(self): if self.flush_error: raise OSError(self.flush_error) self.flushed = True class DummyStream: def __init__(self, error=None): self.error = error self.closed = False self.flushed = False self.written = '' def close(self): if self.error: raise self.error self.closed = True def flush(self): self.flushed = True def write(self, msg): if self.error: raise self.error self.written +=msg def seek(self, num, whence=0): pass def tell(self): return len(self.written) class DummyEvent: def __init__(self, serial='abc'): if serial is not None: self.serial = serial def __str__(self): return 'dummy event' def dummy_handler(event, result): pass def rejecting_handler(event, result): from supervisor.dispatchers import RejectEvent raise RejectEvent(result) def exception_handler(event, result): raise ValueError(result) def lstrip(s): strings = [x.strip() for x in s.split('\n')] return '\n'.join(strings)
py
1a5c6e8aec6b4c3f483a7683df7e9f62d5e77ba8
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A Network is a composition of Layers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import os import weakref from tensorflow.python.eager import context from tensorflow.python.estimator import util as estimator_util from tensorflow.python.framework import ops from tensorflow.python.layers import base from tensorflow.python.ops import variable_scope from tensorflow.python.training import checkpoint_utils from tensorflow.python.training import saver as saver_lib from tensorflow.python.training import training_util # pylint: disable=protected-access # Explanation for protected-access disable: Network has lots of same-class and # parent-class references across different objects, and some to private # functions in base.py which should be reused. _DeferredRestoration = collections.namedtuple( "_DeferredRestoration", [ # The map_func to use (either user-specified or the default). "map_func", # Boolean, True if the user specified an explicit map_func, for error # messages. "map_func_is_user", # A mapping from checkpoint names to initial values of not-yet-created # variables which should be restored. These values come from parsing a # checkpoint. "checkpointed_variables_to_restore", # A mapping from checkpoint name to variable objects of variables which # have already been restored, for error checking. "restored_variables", # The session to restore with (if in graph mode). "session", # Names of the Network where the restore was requested, for error # messages. "network_name", "network_scope_name" ]) def _default_naming_conflict_error_message( mapped_name, first_variable, second_variable, network_name, network_scope_name): return ( ("The default checkpoint variable name mapping strategy for Network " "'%s' resulted in a naming conflict. We attempted to strip off the " "variable prefix for the Network ('%s'), but this resulted in two " "variables named '%s' (originally '%s' and '%s'). This should only " "happen when using variable sharing (i.e. the Network contains Networks " "or Layers which were first added to another Network, and therefore " "have that Network's variable prefix). One solution is to pass " "`map_func=lambda n: n` to Network.save and Network.restore to use " "fully qualified variable names in the checkpoint, although this will " "require that the variable prefix of the Network being restored into " "is also '%s'. You may alternatively write an arbitrary mapping.") % ( network_name, network_scope_name, mapped_name, first_variable._shared_name, second_variable._shared_name, network_scope_name )) def _restore_custom_map_func_error_message( mapped_name, first_variable, second_variable, network_name, network_scope_name): return ( ("The map_func passed to Network.restore for the Network '%s' " "resulted in two variables named '%s' (originally '%s' and '%s'). Since " "this is also an error on Network.save, this Network was " "probably not saved with this map_func. Note that map_func " "always maps from full variable names to checkpoint names; " "there is no need to specify an inverse mapping.\n\n" "Try stripping less from the variable names, or renaming parts " "of the Network. For reference, variables created by sub-Layers " "of this Network are prefixed with '%s', but if they are " "re-used after being added to another Network they will have " "that Network's full variable prefix instead.") % ( network_name, mapped_name, first_variable._shared_name, second_variable._shared_name, network_scope_name)) def _make_custom_getter_for_deferred_restorations(): """Returns a custom getter which searches `deferred_restorations`. Returns: A tuple of (_custom_getter, deferred_restorations) _custom_getter: The getter which should be added to variable_scopes where variables will be created. deferred_restorations: A list for _DeferredRestoration objects. Typically empty when the getter is set, and expanded as deferred restorations are requested. All new deferred restorations should be appended to the end of the list, where they will have priority over older deferred restorations. """ deferred_restorations = [] def _custom_getter(getter, name, shape=None, dtype=None, initializer=None, *args, **kwargs): """A custom getter which processes deferred restorations.""" # Iterate over restorations, newest first (newer restorations will take # precedence over older restorations, just like with immediate restorations # into existing variables). delayed_restoration = None found_value = False value_to_restore = None for delayed_restoration in reversed( deferred_restorations): checkpoint_name = delayed_restoration.map_func(name) if (checkpoint_name in delayed_restoration.checkpointed_variables_to_restore): found_value = True value_to_restore = ( delayed_restoration.checkpointed_variables_to_restore[ checkpoint_name]) if found_value: break # value_to_restore may be False because this variable is not in any # checkpoint we are restoring, or None because we have explicitly set it to # None when it was previously fetched. In either case, we don't need to # set an initializer. if found_value and value_to_restore is not None: initializer = value_to_restore shape = None variable = getter(name, shape=shape, dtype=dtype, initializer=initializer, *args, **kwargs) if found_value and value_to_restore is not None: # Mark as already restored from this checkpoint. delayed_restoration.checkpointed_variables_to_restore[ checkpoint_name] = None if context.in_graph_mode(): delayed_restoration.session.run(variable.initializer) if found_value: # Error checking should run even if we've already restored a value. if delayed_restoration.restored_variables.setdefault( checkpoint_name, variable) is not variable: # Naming conflict. We've tried to initialize two variables with the # same value from the checkpoint. if delayed_restoration.map_func_is_user: raise ValueError( _restore_custom_map_func_error_message( mapped_name=checkpoint_name, first_variable=delayed_restoration.restored_variables[ checkpoint_name], second_variable=variable, network_name=delayed_restoration.network_name, network_scope_name=delayed_restoration.network_scope_name)) else: raise ValueError( _default_naming_conflict_error_message( mapped_name=checkpoint_name, first_variable=delayed_restoration.restored_variables[ checkpoint_name], second_variable=variable, network_name=delayed_restoration.network_name, network_scope_name=delayed_restoration.network_scope_name)) return variable return _custom_getter, deferred_restorations def _make_prefix_stripping_map_fn(scope_name): """Closure for stripping the scope name of a Network. Implemented as a closure rather than a member function to avoid reference cycles in deferred restorations (this function should not have a reference to the Network which created it). Args: scope_name: The Network.scope_name to strip from variables. Returns: A scope_name-stripping default `map_fn` for the Network. """ def _strip_variable_prefix(original_variable_name): """The default map_func for saving or restoring variables. Strips the variable prefix for the Network on which save/restore was called, and leaves other variable names fully qualified in the checkpoint. Args: original_variable_name: The _shared_name of the variable (no :0 suffix) to map. Returns: The checkpoint name of the variable. """ scope_name_with_slash = scope_name + "/" if original_variable_name.startswith(scope_name_with_slash): return original_variable_name[len(scope_name_with_slash):] else: return original_variable_name return _strip_variable_prefix class Network(base.Layer): """Represents the composition of a set of Layers. TODO(josh11b,ashankar): - Should "trainable" be changeable on the Network object? - Do we allow add_variable in Network? - Detect layers used in __call__ that weren't registered with track_layer. - Convert inputs to __call__ to tensors. - Prevent variables from being created after the first __call__? (Think about restoring from a checkpoint). """ def __init__(self, name=None): if isinstance(name, variable_scope.VariableScope): raise ValueError("VariableScopes are not valid Network names.") if name is not None and "/" in name: raise ValueError( "Forward slashes ('/') are not allowed in Network names.") super(Network, self).__init__(name=name) self._layers = [] self._sub_layer_name_uids = collections.defaultdict(int) # Initially None, but set to False for networks which are first built as # top-level. self._first_parent = None # A weak reference to our first parent. self._non_network_sublayers = [] self._owned_layers = {} # The scope to use if we end up without a parent. self._default_parent_variable_scope = variable_scope.get_variable_scope() # Hold on to the variable scope counts from init to check whether a scope # with the name we want was ever created in our parent scope. Without this # check we might have name collisions if the parent scope on init gets # closed before build is called. self._variable_scope_counts_on_init = ( variable_scope._get_default_variable_store().variable_scopes_count) self._custom_getter, self._deferred_restorations = ( _make_custom_getter_for_deferred_restorations()) def _init_set_name(self, name): # Anonymous Networks (name=None) defer setting a final name until they are # (1) added to another Network, or (2) built/called (where (2) is only used # for a "top level" network). # # However, if we were provided an explicit name (name is not None), that # will always be the final name of the Network; if it turns out not to be # unique or if variable names can't be prefixed by it we will throw an # error. self._name = name self._base_name = None def _finalize_name(self, parent_network): if not self._name: # Were were not passed a name explicitly (or it was blank), so this is an # anonymous Network. We make up a unique name. if parent_network: avoid_names = parent_network._owned_layers name_uid_map = parent_network._sub_layer_name_uids else: name_uid_map = base._get_default_graph_uid_map() # Figure out which names we have to avoid based on which variable scope # we're nested in. strip_name = self._default_parent_variable_scope.name if strip_name: strip_name += "/" def _strip_on_init_scope(name): if name.startswith(strip_name): return name[len(strip_name):] else: return None avoid_names = set( _strip_on_init_scope(name) for name in self._variable_scope_counts_on_init.keys() if name) self._name, self._base_name = self._make_unique_name( name_uid_map=name_uid_map, avoid_names=avoid_names, namespace=self._default_parent_variable_scope.name) if self._first_parent is None or (self._first_parent # False = no parent and self._first_parent() is None): # Save a pointer to the parent Network so that we can later check that the # scope name we get is correct. if not parent_network: self._first_parent = parent_network else: self._first_parent = weakref.ref(parent_network) def _set_scope(self, scope=None): if self._scope is None: if not self._first_parent: first_parent = self._first_parent else: first_parent = self._first_parent() if first_parent is None: # If we were never added to another Network, or that Network has beed # garbage collected before being called, then we're a top-level Network. self._finalize_name( # Use False to make sure the value sticks and we don't inherit a # parent if we're added to a network later. parent_network=False) if scope is not None: raise ValueError("Networks may not be created with explicit scopes.") if first_parent: first_parent._set_scope() parent_scope = first_parent._scope else: parent_scope = self._default_parent_variable_scope with variable_scope.variable_scope(parent_scope) as parent_vs: expected_scope_name = parent_vs.name + "/" + self._name if expected_scope_name in self._variable_scope_counts_on_init: raise ValueError( ("A Network named '%s' already exists (or a variable_scope was " "created with this name). Names must be unique.") % ( self._name,)) # Make sure variables with this prefix will be unique. with variable_scope.variable_scope( None, use_resource=True, default_name=self._name) as scope: self._scope = scope scope_name = scope.name suffix_start = scope_name.rfind("/") + 1 # rfind is -1 if there is no slash in the string, in which case the # suffix starts at the beginning of the string (there is no prefix). scope_suffix = scope_name[suffix_start:] scope_prefix = scope_name[:suffix_start] if scope_suffix != self._name: raise ValueError( ("A Network named '%s' already exists (or a variable_scope was " "created with this name). Names must be unique.") % ( self._name,)) if (first_parent and scope_prefix[:-1] != first_parent.scope_name): raise ValueError( ("Network variable names must match a nesting of sub-Network " "names. Expected prefix '%s' from parent network, but got " "'%s' when attempting to create a variable_scope for Network " "'%s'. Likely an explicit variable_scope was inserted into " "the nesting.") % ( first_parent.scope_name, scope_prefix[:-1], self._name)) elif not first_parent and scope_prefix: # For the case when this Network is not nested inside any other # Network, but is in a variable_scope. This Network's name takes on # the full variable scope prefix. self._name = scope_name for non_network_sublayer in self._non_network_sublayers: self._set_scope_for_nonnetwork_sublayer(non_network_sublayer) def _set_scope_for_nonnetwork_sublayer(self, sublayer): if sublayer._scope is None: if sublayer._first_parent is None: constituent_first_parent = None else: constituent_first_parent = sublayer._first_parent() if constituent_first_parent: constituent_first_parent._set_scope() parent_scope = constituent_first_parent._scope else: self._finalize_name(False) raise ValueError( ("The parent of a Layer added to Network %s was garbage collected " "before the Layer was built. If this limitation bothers you " "please file a feature request.") % (self.name,)) with variable_scope.variable_scope(parent_scope): # Horrid hack to make Layer variable names which are direct # sub-layers of Networks conform to the Network variable naming # conventions. with variable_scope.variable_scope( None, use_resource=True, default_name=sublayer.name) as sub_scope: sublayer._scope = sub_scope @base.Layer.name.getter def name(self): if self._name is None: raise ValueError( "The network does not yet have a final name, but a name was " "requested for it. Networks get a name when they are added to " "another Network via track_layer, or when they are first " "called/built.") return self._name def track_layer(self, layer): """Track a Layer in this Network. `Network` requires that all `Layer`s used in `call()` be tracked so that the `Network` can export a complete list of variables. Args: layer: A `tf.layers.Layer` object. Returns: The passed in `layer`. Raises: RuntimeError: If __init__ has not been called. TypeError: If `layer` is the wrong type. ValueError: If a `Layer` with the same name has already been added. """ if not hasattr(self, "_layers"): raise RuntimeError("Need to call Network.__init__ before adding layers") if not isinstance(layer, base.Layer): raise TypeError( "Network.track_layer() passed type %s, not a tf.layers.Layer" % (type(layer),)) if isinstance(layer, Network): layer._finalize_name(parent_network=self) else: # `layer` is a non-Network, so it hasn't been named to follow Network # conventions for contained Layers (i.e. the same conventions as for # sub-Networks). This renaming is necessary to isolate Network variable # naming from Layers constructed outside the Network and never added to it # (because Layers are named globally). if not layer.built: if not hasattr(layer, "_first_parent"): dereferenced_layer_first_parent = None else: dereferenced_layer_first_parent = layer._first_parent() if dereferenced_layer_first_parent is None: if layer._name != layer._base_name: # If name and base_name do not match, then this Layer used anonymous # naming and we have to rename it. Otherwise there's an explicit # name, and we should respect it (subject to error checking). layer._name, layer._base_name = layer._make_unique_name( name_uid_map=self._sub_layer_name_uids, avoid_names=self._owned_layers # No namespace required, since we've specified our own UID map. ) layer._first_parent = weakref.ref(self) self._non_network_sublayers.append(layer) if (not layer.built and layer._first_parent and self is layer._first_parent()): if layer.name in self._owned_layers: if self._owned_layers[layer.name] is layer: return layer raise ValueError( "Attempt to add two Layers with the name '%s' to the same Network." % (layer.name)) self._owned_layers[layer.name] = layer self._layers.append(layer) return layer def get_layer(self, name=None, index=None): """Get a contained `tf.layers.Layer` either by name or index. Args: name: String matching one of the names of a contained `Layer`. Note that the names of `Layer`s added to `Network`s may not be unique when doing layer sharing (i.e. adding a `Layer` to this `Network` which was already added to another `Network`). The lowest index `Layer` with a matching name will be returned. index: Integer in [0, number of layers). Layers are assigned an index by the order they are added. Returns: A `tf.layers.Layer` object. Raises: ValueError: If neither or both of 'index' or 'name' is specified, or the lookup failed. """ if index is not None: if name is not None: raise ValueError("Exactly one of 'index' or 'name' must be provided") if len(self._layers) <= index: raise ValueError("Was asked to retrieve layer at index " + str(index) + " but model only has " + str(len(self._layers)) + " layers.") else: return self._layers[index] else: if not name: raise ValueError("Provide either a layer name or layer index.") for layer in self._layers: if layer.name == name: return layer raise ValueError("No such layer: " + name) # The following methods are for implementing the Layer interface. @property def weights(self): # TODO(josh11b): Should this return a set or perform de-duplication of # variables in the case of shared layers/variables that appear in # multiple places in the Network? weights = [] for layer in self._layers: weights += layer.weights return weights @property def trainable_weights(self): weights = [] for layer in self._layers: weights += layer.trainable_weights return weights @property def non_trainable_weights(self): weights = [] for layer in self._layers: weights += layer.non_trainable_weights return weights @property def trainable(self): return True @trainable.setter def trainable(self, value): if not value: # We believe it better to decide which layers & networks are trainable # at the Trainer level than here. Otherwise you can run into trouble if a # layer/network is shared between two models, but is trainable in one # but not the other (like with adversarial networks). raise AttributeError("cannot mark Network as not trainable") @property def layers(self): return self._layers def add_variable(self, name, shape, dtype=None, initializer=None, regularizer=None, trainable=True, constraint=None): raise RuntimeError( "add_variable not supported in Network class yet. Please file an issue " "at https://github.com/tensorflow/tensorflow/issues/new if this is " "important to you") def save(self, save_path, global_step=None, map_func=None): """Save variables from the Network to a checkpoint. Args: save_path: Either a checkpoint prefix or the name of a directory to save the checkpoint in (in which case the checkpoint will be named based on the Network name). global_step: The global step to use when naming the checkpoint. If None (default), we will first try to get the default global step. If that fails because no default global step exists, then the checkpoint is created without a global step suffix. map_func: A function mapping fully qualified variable names (e.g. 'my_network_1/dense_1/kernel') to names in the checkpoint. By default (if `map_func=None`), the variable prefix for the network being restored (`Network.scope_name + '/'`, e.g. 'my_network_1/') is stripped and all other variable names (shared with other Networks) are left unchanged. Returns: The checkpoint prefix for the saved checkpoint, which may be passed to `Network.restore`. Raises: ValueError: If the Network has not yet been called, or if map_func results in a name collision. """ if not self.built: raise ValueError( "Attempt to save the Network before it was first called. This means " "variables have not yet been created, so there is nothing to save.") self._set_scope() # scope_name should be available to map_funcs if global_step is None: global_step = training_util.get_global_step() if os.path.isdir(save_path): # If we were passed a directory, default to naming based on the Network # name. save_path = os.path.join(save_path, self.name.replace("/", "_")) user_map_func = map_func if map_func is None: map_func = _make_prefix_stripping_map_fn(self.scope_name) variable_map = {} for variable in self.variables: mapped_name = map_func(variable._shared_name) if variable_map.setdefault(mapped_name, variable) is not variable: if user_map_func is None: # Instead of erroring out, we could just re-try and silently use the # full variable names in the checkpoint. This could be odd for deeply # nested sub-Networks (since the full prefix from the nesting would # get added), so for now we'll let the user deal with this case. raise ValueError(_default_naming_conflict_error_message( mapped_name=mapped_name, first_variable=variable_map[mapped_name], second_variable=variable, network_name=self.name, network_scope_name=self.scope_name)) else: # The user passed their own problematic map_func. raise ValueError( ("The map_func passed to Network.save for the Network '%s' " "resulted in two variables named '%s' ('%s' and '%s'). Try " "stripping less from the variable names, or renaming parts of " "the Network. For reference, variables created by sub-Layers of " "this Network are prefixed with '%s', but if they are re-used " "after being added to another Network, they will have that " "Network's full variable prefix instead.") % ( self.name, mapped_name, variable_map[mapped_name]._shared_name, variable._shared_name, self.scope_name)) if context.in_eager_mode(): sess = None else: sess = ops.get_default_session() return saver_lib.Saver(variable_map).save( sess=sess, save_path=save_path, write_meta_graph=False, global_step=global_step) def _restore_existing_variables(self, save_path, map_func, user_map_func): """Use a standard Saver to restore existing variables from a checkpoint. Args: save_path: The checkpoint prefix or directory to read from. map_func: The function to use when mapping from variable names to checkpoint names. user_map_func: The original map_func passed by the user, for error checking. Returns: A dictionary mapping from checkpoint names to variable objects which have been restored (for bookkeeping to avoid deferred restorations on these variables). Raises: ValueError: If there is a name collision. """ existing_variables_by_checkpoint_name = {} for variable in self.variables: checkpoint_name = map_func(variable._shared_name) if existing_variables_by_checkpoint_name.setdefault( checkpoint_name, variable) is not variable: if user_map_func is None: raise ValueError(_default_naming_conflict_error_message( mapped_name=checkpoint_name, first_variable=existing_variables_by_checkpoint_name[ checkpoint_name], second_variable=variable, network_name=self.name, network_scope_name=self.scope_name)) else: raise ValueError(_restore_custom_map_func_error_message( mapped_name=checkpoint_name, first_variable=existing_variables_by_checkpoint_name[ checkpoint_name], second_variable=variable, network_name=self.name, network_scope_name=self.scope_name)) if existing_variables_by_checkpoint_name: if context.in_eager_mode(): sess = None else: sess = ops.get_default_session() saver_lib.Saver(var_list=existing_variables_by_checkpoint_name).restore( sess=sess, save_path=save_path) return existing_variables_by_checkpoint_name def _set_restore_on_create(self, save_path, map_func, user_map_func, existing_variables_by_checkpoint_name): """If necessary, request deferred restorations of variables.""" checkpoint_reader = checkpoint_utils.load_checkpoint(save_path) checkpointed_variables_to_restore = {} for checkpoint_name, _ in checkpoint_utils.list_variables(save_path): if checkpoint_name in existing_variables_by_checkpoint_name: # This variable was already created and restored. continue # Save the variable for later restoration in a custom getter. checkpointed_variables_to_restore[checkpoint_name] = ( checkpoint_reader.get_tensor(checkpoint_name)) # Only set a deferred restoration if there are checkpoint variables which # have not been assigned to existing variables. Note that this loses out on # some opportunity for error checking, but avoids creating # _DeferredRestoration objects once a Network has been built (so that # restoring in a loop does not take increasing amounts of memory). if checkpointed_variables_to_restore: if context.in_eager_mode(): sess = None else: sess = ops.get_default_session() # We need a name for error messages. If we haven't been added to another # Network yet, we're top-level. self._finalize_name(False) self._set_scope() # Save a record of this restoration for use in the custom getter. deferred_restoration = _DeferredRestoration( map_func=map_func, map_func_is_user=(user_map_func is not None), checkpointed_variables_to_restore=checkpointed_variables_to_restore, restored_variables={}, session=sess, network_name=self.name, network_scope_name=self.scope_name) self._deferred_restorations.append(deferred_restoration) # Add the deferred registration to non-Network children, and request that # Networks propagate the request to their children. self._add_deferred_restoration(deferred_restoration) def _add_deferred_restoration(self, deferred_restoration): """Add a deferred restoration to this Network and all children. Restorations which are requested later have higher priority, and the highest priority matching restoration is applied to a variable when it is created. Args: deferred_restoration: A _DeferredRestoration object. """ # Networks don't create variables at the moment, so this append isn't # strictly necessary. We could get by with only adding deferred restorations # to non-Network Layers. self._set_scope() # We use set_custom_getter because it avoids recursively calling up the # variable_scope tree. We've done the tree traversal ourselves and have # added the request to each Layer which needs it. self._scope.set_custom_getter(self._custom_getter) self._deferred_restorations.append(deferred_restoration) for layer in self.layers: if isinstance(layer, Network): # For Networks, request that they propagate this deferred restoration # to all of their children recursively. layer._add_deferred_restoration(deferred_restoration) else: # For non-Network Layers, make sure they have a deferred restoration # queue and a custom getter, then add our request to it. if not hasattr(layer, "_custom_getter"): assert not hasattr(layer, "_deferred_restorations") layer._custom_getter, layer._deferred_restorations = ( _make_custom_getter_for_deferred_restorations()) self._set_scope_for_nonnetwork_sublayer(layer) layer._scope.set_custom_getter(layer._custom_getter) layer._deferred_restorations.append(deferred_restoration) def restore(self, save_path, map_func=None): """Restore the Network from a checkpoint. If variables have already been created (typically when some or all of the `Network` is built), they are assigned values from the checkpoint immediately, overwriting any existing values (in graph mode the default session is used for the assignments). If there are checkpoint entries which do not correspond to any existing variables in the `Network`, these values are saved for deferred restoration; their initial values will be the checkpointed values once they are created. Requests for multiple deferred restorations behave the same way as immediate restorations, in that later requests will take priority over earlier requests relevant to the same variable. If this `Network` shares `Layer`s with another network, those `Layer`s will also have their variables restored from the checkpoint. Args: save_path: The return value of `Network.save`, or a directory to search for a checkpoint. map_func: A function mapping fully qualified variable names (e.g. 'my_network_1/dense_1/kernel') to names in the checkpoint. By default (if `map_func=None`), the variable prefix for the network being restored (`Network.scope_name + '/'`, e.g. 'my_network_1/') is stripped and all other variable names (shared with other Networks) are left unchanged. Note that this is the _same_ map_func as `Network.save`, not an inverse mapping. """ self._finalize_name(parent_network=False) self._set_scope() # scope_name should be available to map_funcs if os.path.isdir(save_path): # If we don't have a name yet, set no parent. save_path = os.path.join(save_path, self.name.replace("/", "_")) user_map_func = map_func if map_func is None: map_func = _make_prefix_stripping_map_fn(self.scope_name) # Step one is to restore any existing variables from the checkpoint. existing_variables_by_checkpoint_name = self._restore_existing_variables( save_path=save_path, map_func=map_func, user_map_func=user_map_func) # Step two is to set a custom getter which restores variables on creation, # for those variables which have not been added to sub-Layers yet. self._set_restore_on_create( save_path=save_path, map_func=map_func, user_map_func=user_map_func, existing_variables_by_checkpoint_name=( existing_variables_by_checkpoint_name)) # TODO(josh11b): Support other Layer methods needed for graph mode, such as for # losses and updates class Sequential(Network): """Represents a linear sequence of Layers or functions. The output of each layer/function is provided as the input to the next. The inputs passed to `__call__` are passed to the inputs of the first Layer, and it returns the outputs of the last Layer. Args: layers_funcs: An optional sequence where each element is either a tf.layers.Layer object or a callable. name: An optional string name to use for this Network. """ def __init__(self, layers_funcs=None, name=None): super(Sequential, self).__init__(name=name) self._layers_funcs = [] if layers_funcs: for l in layers_funcs: self.add(l) def add(self, layer_func): if isinstance(layer_func, base.Layer): args = estimator_util.fn_args(layer_func.call) self.track_layer(layer_func) elif callable(layer_func): args = estimator_util.fn_args(layer_func) else: raise TypeError( "Sequential.add() takes only tf.layers.Layer objects or callables; " "not '%s' of type '%s'." % (layer_func, type(layer_func))) self._layers_funcs.append((("training" in args), layer_func)) def call(self, inputs, training=None): """Call each Layer in the order they were added.""" # TODO(josh11b): Support "mode" and maybe other arguments if training is None: for _, l in self._layers_funcs: inputs = l(inputs) else: for has_training_arg, l in self._layers_funcs: if has_training_arg: inputs = l(inputs, training) else: inputs = l(inputs) return inputs
py
1a5c6ed6cbff060cf8510678b5d32f98c60ab885
""" Support for per-request messages to be shown to the user. These utilities are based upon the Django message framework, and allow code to register messages to be shown to the user on their next page view. These messages are shown in a page banner which is supported on all pages that utilize the main.html template. There are two common use cases: - register a message before rendering a view, in which case the message will be shown on the resulting page - register a message before posting or redirecting. In these situations the message will be shown on the subsequent page. This is typically used to show a success message to the use. """ from abc import abstractmethod from enum import Enum from django.contrib import messages from django.utils.translation import ugettext as _ from openedx.core.djangolib.markup import HTML, Text class UserMessageType(Enum): """ An enumeration of the types of user messages. """ INFO = messages.constants.INFO SUCCESS = messages.constants.SUCCESS WARNING = messages.constants.WARNING ERROR = messages.constants.ERROR CSS_CLASSES = { UserMessageType.INFO: 'alert-info', UserMessageType.SUCCESS: 'alert-success', UserMessageType.WARNING: 'alert-warning', UserMessageType.ERROR: 'alert-danger', } ICON_CLASSES = { UserMessageType.INFO: 'fa fa-bullhorn', UserMessageType.SUCCESS: 'fa fa-check-circle', UserMessageType.WARNING: 'fa fa-warning', UserMessageType.ERROR: 'fa fa-warning', } class UserMessage(): """ Representation of a message to be shown to a user. """ def __init__(self, type, message_html): # lint-amnesty, pylint: disable=redefined-builtin assert isinstance(type, UserMessageType) self.type = type self.message_html = message_html @property def css_class(self): """ Returns the CSS class to be used on the message element. """ return CSS_CLASSES[self.type] @property def icon_class(self): """ Returns the CSS icon class representing the message type. """ return ICON_CLASSES[self.type] class UserMessageCollection(): """ A collection of messages to be shown to a user. """ @classmethod @abstractmethod def get_namespace(self): # lint-amnesty, pylint: disable=bad-classmethod-argument """ Returns the namespace of the message collection. The name is used to namespace the subset of django messages. For example, return 'course_home_messages'. """ raise NotImplementedError('Subclasses must define a namespace for messages.') @classmethod def get_message_html(cls, body_html, title=None, dismissable=False, **kwargs): # pylint: disable=unused-argument """ Returns the entire HTML snippet for the message. Classes that extend this base class can override the message styling by implementing their own version of this function. Messages that do not use a title can just pass the body_html. """ if title: return Text(_('{header_open}{title}{header_close}{body}')).format( header_open=HTML('<div class="message-header">'), title=title, body=body_html, header_close=HTML('</div>') ) return body_html @classmethod def register_user_message(cls, request, message_type, body_html, once_only=False, **kwargs): """ Register a message to be shown to the user in the next page. Arguments: message_type (UserMessageType): the user message type body_html (str): body of the message in html format title (str): optional title for the message as plain text dismissable (bool): shows a dismiss button (defaults to no button) once_only (bool): show the message only once per request """ assert isinstance(message_type, UserMessageType) message = Text(cls.get_message_html(body_html, **kwargs)) if not once_only or message not in [m.message for m in messages.get_messages(request)]: messages.add_message(request, message_type.value, Text(message), extra_tags=cls.get_namespace()) @classmethod def register_info_message(self, request, message, **kwargs): # lint-amnesty, pylint: disable=bad-classmethod-argument """ Registers an information message to be shown to the user. """ self.register_user_message(request, UserMessageType.INFO, message, **kwargs) @classmethod def register_success_message(self, request, message, **kwargs): # lint-amnesty, pylint: disable=bad-classmethod-argument """ Registers a success message to be shown to the user. """ self.register_user_message(request, UserMessageType.SUCCESS, message, **kwargs) @classmethod def register_warning_message(self, request, message, **kwargs): # lint-amnesty, pylint: disable=bad-classmethod-argument """ Registers a warning message to be shown to the user. """ self.register_user_message(request, UserMessageType.WARNING, message, **kwargs) @classmethod def register_error_message(self, request, message, **kwargs): # lint-amnesty, pylint: disable=bad-classmethod-argument """ Registers an error message to be shown to the user. """ self.register_user_message(request, UserMessageType.ERROR, message, **kwargs) @classmethod def user_messages(self, request): # lint-amnesty, pylint: disable=bad-classmethod-argument """ Returns any outstanding user messages. Note: this function also marks these messages as being complete so they won't be returned in the next request. """ def _get_message_type_for_level(level): """ Returns the user message type associated with a level. """ for __, type in UserMessageType.__members__.items(): # lint-amnesty, pylint: disable=redefined-builtin, no-member if type.value is level: return type raise Exception(f'Unable to find UserMessageType for level {level}') def _create_user_message(message): """ Creates a user message from a Django message. """ return UserMessage( type=_get_message_type_for_level(message.level), message_html=str(message.message), ) django_messages = messages.get_messages(request) return (_create_user_message(message) for message in django_messages if self.get_namespace() in message.tags) class PageLevelMessages(UserMessageCollection): """ This set of messages appears as top page level messages. """ NAMESPACE = 'page_level_messages' @classmethod def get_message_html(cls, body_html, title=None, dismissable=False, **kwargs): """ Returns the entire HTML snippet for the message. """ if title: title_area = Text(_('{header_open}{title}{header_close}')).format( header_open=HTML('<div class="message-header">'), title=title, header_close=HTML('</div>') ) else: title_area = '' if dismissable: dismiss_button = HTML( '<div class="message-actions">' '<button class="btn-link action-dismiss">' '<span class="sr">{dismiss_text}</span>' '<span class="icon fa fa-times" aria-hidden="true"></span></button>' '</div>' ).format( dismiss_text=Text(_("Dismiss")) ) else: dismiss_button = '' return Text('{title_area}{body_area}{dismiss_button}').format( title_area=title_area, body_area=HTML('<div class="message-content">{body_html}</div>').format( body_html=body_html, ), dismiss_button=dismiss_button, ) @classmethod def get_namespace(self): # lint-amnesty, pylint: disable=bad-classmethod-argument """ Returns the namespace of the message collection. """ return self.NAMESPACE
py
1a5c6ef0019ffa69fed5a60a4aa28785f6e60409
""" sentry.models.groupshare ~~~~~~~~~~~~~~~~~~~~~~~~ :copyright: (c) 2010-2014 by the Sentry Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ from __future__ import absolute_import from uuid import uuid4 from django.conf import settings from django.db import models from django.utils import timezone from sentry.db.models import FlexibleForeignKey, Model, BaseManager, sane_repr class GroupShare(Model): """ A Group that was shared publicly. """ __core__ = False project = FlexibleForeignKey('sentry.Project') group = FlexibleForeignKey('sentry.Group', unique=True) uuid = models.CharField(max_length=32, unique=True, default=lambda: uuid4().hex) # Tracking the user that initiated the share. user = FlexibleForeignKey(settings.AUTH_USER_MODEL, null=True) date_added = models.DateTimeField(default=timezone.now) objects = BaseManager() class Meta: app_label = 'sentry' db_table = 'sentry_groupshare' __repr__ = sane_repr('project_id', 'group_id', 'uuid')
py
1a5c6f14289beb2a51ddc098e56787e901254058
from amqpstorm.compatibility import json from amqpstorm.compatibility import quote from amqpstorm.management.base import ManagementHandler API_CONNECTION = 'connections/%s' API_CONNECTIONS = 'connections' class Connection(ManagementHandler): def get(self, connection): """Get Connection details. :param str connection: Connection name :raises ApiError: Raises if the remote server encountered an error. :raises ApiConnectionError: Raises if there was a connectivity issue. :rtype: dict """ return self.http_client.get(API_CONNECTION % connection) def list(self): """Get Connections. :raises ApiError: Raises if the remote server encountered an error. :raises ApiConnectionError: Raises if there was a connectivity issue. :rtype: list """ return self.http_client.get(API_CONNECTIONS) def close(self, connection, reason='Closed via management api'): """Close Connection. :param str connection: Connection name :param str reason: Reason for closing connection. :raises ApiError: Raises if the remote server encountered an error. :raises ApiConnectionError: Raises if there was a connectivity issue. :rtype: None """ close_payload = json.dumps({ 'name': connection, 'reason': reason }) connection = quote(connection, '') return self.http_client.delete(API_CONNECTION % connection, payload=close_payload, headers={ 'X-Reason': reason })
py
1a5c6fa1fe12ea66b9fc41bcfac0963b397b49b4
"""Headers Support This module implements support for parsing and handling headers. """ import re from circuits.six import b, iteritems, u # Regular expression that matches `special' characters in parameters, the # existance of which force quoting of the parameter value. tspecials = re.compile(r'[ \(\)<>@,;:\\"/\[\]\?=]') q_separator = re.compile(r'; *q *=') def _formatparam(param, value=None, quote=1): """Convenience function to format and return a key=value pair. This will quote the value if needed or if quote is true. """ if value is not None and len(value) > 0: if quote or tspecials.search(value): value = value.replace('\\', '\\\\').replace('"', r'\"') return '%s="%s"' % (param, value) else: return '%s=%s' % (param, value) else: return param def header_elements(fieldname, fieldvalue): """Return a sorted HeaderElement list. Returns a sorted HeaderElement list from a comma-separated header string. """ if not fieldvalue: return [] result = [] for element in fieldvalue.split(","): if fieldname.startswith("Accept") or fieldname == 'TE': hv = AcceptElement.from_str(element) else: hv = HeaderElement.from_str(element) result.append(hv) return list(reversed(sorted(result))) class HeaderElement(object): """An element (with parameters) from an HTTP header's element list.""" def __init__(self, value, params=None): self.value = value if params is None: params = {} self.params = params def __eq__(self, other): return self.value == other.value def __lt__(self, other): return self.value < other.value def __str__(self): p = [";%s=%s" % (k, v) for k, v in iteritems(self.params)] return "%s%s" % (self.value, "".join(p)) def __bytes__(self): return b(self.__str__()) def __unicode__(self): return u(self.__str__()) def parse(elementstr): """Transform 'token;key=val' to ('token', {'key': 'val'}).""" # Split the element into a value and parameters. The 'value' may # be of the form, "token=token", but we don't split that here. atoms = [x.strip() for x in elementstr.split(";") if x.strip()] if not atoms: initial_value = '' else: initial_value = atoms.pop(0).strip() params = {} for atom in atoms: atom = [x.strip() for x in atom.split("=", 1) if x.strip()] key = atom.pop(0) if atom: val = atom[0] else: val = "" params[key] = val return initial_value, params parse = staticmethod(parse) @classmethod def from_str(cls, elementstr): """Construct an instance from a string of the form 'token;key=val'.""" ival, params = cls.parse(elementstr) return cls(ival, params) class AcceptElement(HeaderElement): """An element (with parameters) from an Accept* header's element list. AcceptElement objects are comparable; the more-preferred object will be "less than" the less-preferred object. They are also therefore sortable; if you sort a list of AcceptElement objects, they will be listed in priority order; the most preferred value will be first. Yes, it should have been the other way around, but it's too late to fix now. """ @classmethod def from_str(cls, elementstr): qvalue = None # The first "q" parameter (if any) separates the initial # media-range parameter(s) (if any) from the accept-params. atoms = q_separator.split(elementstr, 1) media_range = atoms.pop(0).strip() if atoms: # The qvalue for an Accept header can have extensions. The other # headers cannot, but it's easier to parse them as if they did. qvalue = HeaderElement.from_str(atoms[0].strip()) media_type, params = cls.parse(media_range) if qvalue is not None: params["q"] = qvalue return cls(media_type, params) def qvalue(self): val = self.params.get("q", "1") if isinstance(val, HeaderElement): val = val.value return float(val) qvalue = property(qvalue, doc="The qvalue, or priority, of this value.") def __eq__(self, other): return self.qvalue == other.qvalue def __lt__(self, other): if self.qvalue == other.qvalue: return str(self) < str(other) else: return self.qvalue < other.qvalue class CaseInsensitiveDict(dict): """A case-insensitive dict subclass. Each key is changed on entry to str(key).title(). """ def __init__(self, *args, **kwargs): d = dict(*args, **kwargs) for key, value in iteritems(d): dict.__setitem__(self, str(key).title(), value) dict.__init__(self) def __getitem__(self, key): return dict.__getitem__(self, str(key).title()) def __setitem__(self, key, value): dict.__setitem__(self, str(key).title(), value) def __delitem__(self, key): dict.__delitem__(self, str(key).title()) def __contains__(self, key): return dict.__contains__(self, str(key).title()) def get(self, key, default=None): return dict.get(self, str(key).title(), default) def update(self, E): for k in E.keys(): self[str(k).title()] = E[k] @classmethod def fromkeys(cls, seq, value=None): newdict = cls() for k in seq: newdict[k] = value return newdict def setdefault(self, key, x=None): key = str(key).title() try: return dict.__getitem__(self, key) except KeyError: self[key] = x return x def pop(self, key, default=None): return dict.pop(self, str(key).title(), default) class Headers(CaseInsensitiveDict): """ This class implements a storage for headers as key value pairs. The underlying model of a case insensitive dict matches the requirements for headers quite well, because usually header keys are unique. If several values may be associated with a header key, most HTTP headers represent the values as an enumeration using a comma as item separator. There is, however one exception (currently) to this rule. In order to set several cookies, there should be multiple headers with the same key, each setting one cookie ("Set-Cookie: some_cookie"). This is modeled by having either a string (common case) or a list (cookie case) as value in the underlying dict. In order to allow easy iteration over all headers as they appear in the HTTP request, the items() method expands associated lists of values. So if you have { "Set-Cookie": [ "cookie1", "cookie2" ] }, the items() method returns the two pairs ("Set-Cookie", "cookie1") and ("Set-Cookie", "cookie2"). This is convenient for most use cases. The only drawback is that len(keys()) is not equal to len(items()) for this specialized dict. """ def elements(self, key): """Return a sorted list of HeaderElements for the given header.""" return header_elements(key, self.get(key)) def get_all(self, name): """Return a list of all the values for the named field.""" value = self.get(name, '') if isinstance(value, list): return value return [val.strip() for val in value.split(',')] def __repr__(self): return "Headers(%s)" % repr(list(self.items())) def __str__(self): headers = ["%s: %s\r\n" % (k, v) for k, v in self.items()] return "".join(headers) + '\r\n' def items(self): for k, v in super(Headers, self).items(): if isinstance(v, list): for vv in v: yield (k, vv) else: yield (k, v) def __bytes__(self): return str(self).encode("latin1") def append(self, key, value): """ If a header with the given name already exists, the value is normally appended to the existing value separated by a comma. If, however, the already existing entry associated key with a value of type list (as is the case for "Set-Cookie"), the new value is appended to that list. """ if key not in self: if key.lower() == "set-cookie": self[key] = [value] else: self[key] = value else: if isinstance(self[key], list): self[key].append(value) else: self[key] = ", ".join([self[key], value]) def add_header(self, _name, _value, **_params): """Extended header setting. _name is the header field to add. keyword arguments can be used to set additional parameters for the header field, with underscores converted to dashes. Normally the parameter will be added as key="value" unless value is None, in which case only the key will be added. Example: h.add_header('content-disposition', 'attachment', filename='bud.gif') Note that unlike the corresponding 'email.Message' method, this does *not* handle '(charset, language, value)' tuples: all values must be strings or None. """ parts = [] if _value is not None: parts.append(_value) for k, v in list(_params.items()): k = k.replace('_', '-') if v is None: parts.append(k) else: parts.append(_formatparam(k, v)) self.append(_name, "; ".join(parts))
py
1a5c6fcb4474df47a1f03b8045464ca650ff6523
import json import logging import requests from django.conf import settings NAMESPACES = {"dcim": "dcim"} class NetBox(object): """ Class used to interact with the NetBox API. """ logger = logging.getLogger("peering.manager.netbox") def lookup(self, namespace, search): """ Sends a get request to the API given a namespace and some parameters. """ # Enforce trailing slash and add namespace api_url = settings.NETBOX_API.strip("/") + "/" + namespace # Set token in the headers headers = { "accept": "application/json", "authorization": "Token {}".format(settings.NETBOX_API_TOKEN), } # Make the request self.logger.debug("calling api: %s | %s", api_url, search) response = requests.get(api_url, headers=headers, params=search) return response.json() if response.status_code == 200 else None def get_devices(self): """ Return all devices found with the NetBox API. """ result = self.lookup(NAMESPACES["dcim"] + "/devices", {}) if not result or result["count"] == 0: return None return [ device for device in result["results"] if device["device_role"]["slug"] in settings.NETBOX_DEVICE_ROLES ]
py
1a5c70e8315f30953ceb050c28d80960d06f7980
import numpy as np import cv2 def empty(z): pass image = np.zeros((300, 512, 3), np.uint8) cv2.namedWindow('Palette') cv2.createTrackbar('B', 'Palette', 0, 255, empty) cv2.createTrackbar('G', 'Palette', 0, 255, empty) cv2.createTrackbar('R', 'Palette', 0, 255, empty) while(True): cv2.imshow('Palette', image) if cv2.waitKey(1) == 27 : break blue = cv2.getTrackbarPos('B', 'Palette') green = cv2.getTrackbarPos('G', 'Palette') red = cv2.getTrackbarPos('R', 'Palette') image[:] = [blue, green, red] cv2.destroyWindow('Palette')
py
1a5c71812d610b63dcbd12a5941741a9104b7024
"""Support for Modbus Register sensors.""" import logging import struct from typing import Any, Union import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import ( CONF_NAME, CONF_OFFSET, CONF_SLAVE, CONF_STRUCTURE, CONF_UNIT_OF_MEASUREMENT, ) from homeassistant.helpers import config_validation as cv from homeassistant.helpers.restore_state import RestoreEntity from . import CONF_HUB, DEFAULT_HUB, DOMAIN as MODBUS_DOMAIN _LOGGER = logging.getLogger(__name__) CONF_COUNT = "count" CONF_DATA_TYPE = "data_type" CONF_PRECISION = "precision" CONF_REGISTER = "register" CONF_REGISTER_TYPE = "register_type" CONF_REGISTERS = "registers" CONF_REVERSE_ORDER = "reverse_order" CONF_SCALE = "scale" DATA_TYPE_CUSTOM = "custom" DATA_TYPE_FLOAT = "float" DATA_TYPE_INT = "int" DATA_TYPE_UINT = "uint" REGISTER_TYPE_HOLDING = "holding" REGISTER_TYPE_INPUT = "input" def number(value: Any) -> Union[int, float]: """Coerce a value to number without losing precision.""" if isinstance(value, int): return value if isinstance(value, str): try: value = int(value) return value except (TypeError, ValueError): pass try: value = float(value) return value except (TypeError, ValueError): raise vol.Invalid(f"invalid number {value}") PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_REGISTERS): [ { vol.Required(CONF_NAME): cv.string, vol.Required(CONF_REGISTER): cv.positive_int, vol.Optional(CONF_COUNT, default=1): cv.positive_int, vol.Optional(CONF_DATA_TYPE, default=DATA_TYPE_INT): vol.In( [DATA_TYPE_INT, DATA_TYPE_UINT, DATA_TYPE_FLOAT, DATA_TYPE_CUSTOM] ), vol.Optional(CONF_HUB, default=DEFAULT_HUB): cv.string, vol.Optional(CONF_OFFSET, default=0): number, vol.Optional(CONF_PRECISION, default=0): cv.positive_int, vol.Optional(CONF_REGISTER_TYPE, default=REGISTER_TYPE_HOLDING): vol.In( [REGISTER_TYPE_HOLDING, REGISTER_TYPE_INPUT] ), vol.Optional(CONF_REVERSE_ORDER, default=False): cv.boolean, vol.Optional(CONF_SCALE, default=1): number, vol.Optional(CONF_SLAVE): cv.positive_int, vol.Optional(CONF_STRUCTURE): cv.string, vol.Optional(CONF_UNIT_OF_MEASUREMENT): cv.string, } ] } ) def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the Modbus sensors.""" sensors = [] data_types = {DATA_TYPE_INT: {1: "h", 2: "i", 4: "q"}} data_types[DATA_TYPE_UINT] = {1: "H", 2: "I", 4: "Q"} data_types[DATA_TYPE_FLOAT] = {1: "e", 2: "f", 4: "d"} for register in config.get(CONF_REGISTERS): structure = ">i" if register.get(CONF_DATA_TYPE) != DATA_TYPE_CUSTOM: try: structure = ">{}".format( data_types[register.get(CONF_DATA_TYPE)][register.get(CONF_COUNT)] ) except KeyError: _LOGGER.error( "Unable to detect data type for %s sensor, " "try a custom type", register.get(CONF_NAME), ) continue else: structure = register.get(CONF_STRUCTURE) try: size = struct.calcsize(structure) except struct.error as err: _LOGGER.error( "Error in sensor %s structure: %s", register.get(CONF_NAME), err ) continue if register.get(CONF_COUNT) * 2 != size: _LOGGER.error( "Structure size (%d bytes) mismatch registers count " "(%d words)", size, register.get(CONF_COUNT), ) continue hub_name = register.get(CONF_HUB) hub = hass.data[MODBUS_DOMAIN][hub_name] sensors.append( ModbusRegisterSensor( hub, register.get(CONF_NAME), register.get(CONF_SLAVE), register.get(CONF_REGISTER), register.get(CONF_REGISTER_TYPE), register.get(CONF_UNIT_OF_MEASUREMENT), register.get(CONF_COUNT), register.get(CONF_REVERSE_ORDER), register.get(CONF_SCALE), register.get(CONF_OFFSET), structure, register.get(CONF_PRECISION), ) ) if not sensors: return False add_entities(sensors) class ModbusRegisterSensor(RestoreEntity): """Modbus register sensor.""" def __init__( self, hub, name, slave, register, register_type, unit_of_measurement, count, reverse_order, scale, offset, structure, precision, ): """Initialize the modbus register sensor.""" self._hub = hub self._name = name self._slave = int(slave) if slave else None self._register = int(register) self._register_type = register_type self._unit_of_measurement = unit_of_measurement self._count = int(count) self._reverse_order = reverse_order self._scale = scale self._offset = offset self._precision = precision self._structure = structure self._value = None async def async_added_to_hass(self): """Handle entity which will be added.""" state = await self.async_get_last_state() if not state: return self._value = state.state @property def state(self): """Return the state of the sensor.""" return self._value @property def name(self): """Return the name of the sensor.""" return self._name @property def unit_of_measurement(self): """Return the unit of measurement.""" return self._unit_of_measurement def update(self): """Update the state of the sensor.""" if self._register_type == REGISTER_TYPE_INPUT: result = self._hub.read_input_registers( self._slave, self._register, self._count ) else: result = self._hub.read_holding_registers( self._slave, self._register, self._count ) val = 0 try: registers = result.registers if self._reverse_order: registers.reverse() except AttributeError: _LOGGER.error( "No response from hub %s, slave %s, register %s", self._hub.name, self._slave, self._register, ) return byte_string = b"".join([x.to_bytes(2, byteorder="big") for x in registers]) val = struct.unpack(self._structure, byte_string)[0] val = self._scale * val + self._offset if isinstance(val, int): self._value = str(val) if self._precision > 0: self._value += "." + "0" * self._precision else: self._value = f"{val:.{self._precision}f}"
py
1a5c7353dfaeba14d292f8e7891fe56e1819df57
""" Calculates real time burn rate for AWS """ import pandas as pd import pprint from decisionengine.framework.modules import Transform import logging """ IMPORTANT: Please do not change order of these keys and always append new keys rather than pre-pend or insert. """ CONSUMES = ["provisioner_resource_spot_prices", "AWS_Occupancy"] PRODUCES = ["AWS_Burn_Rate"] class AwsBurnRate(Transform.Transform): def __init__(self, config): super(AwsBurnRate, self).__init__(config) self.logger = logging.getLogger() def transform(self, data_block): spot_prices = data_block[CONSUMES[0]].fillna(0) occupancy = data_block[CONSUMES[1]].fillna(0) burn_df = pd.DataFrame([{"BurnRate": 0.}]) if not occupancy.empty: df = pd.merge(occupancy, spot_prices, how="inner", on=["AccountName", "AvailabilityZone", "InstanceType"]) if not df.empty: df["BurnRate"] = pd.to_numeric( df["RunningVms"]) * pd.to_numeric(df["SpotPrice"]) burn_df = pd.DataFrame([{"BurnRate": df["BurnRate"].sum()}]) return {PRODUCES[0]: burn_df} def consumes(self, name_list=None): return CONSUMES def produces(self, name_schema_id_list=None): return PRODUCES def module_config_template(): """ print a template for this module configuration data """ d = { "AwsBurnRate": { "module": "modules.AWS.transforms.AwsBurnRate", "name": "AwsBurnRate", "parameters": { } } } print("Entry in channel cofiguration") pprint.pprint(d) print("where") print("\t name - name of the class to be instantiated by task manager") def module_config_info(): """ print this module configuration information """ print("consumes", CONSUMES) print("produces", PRODUCES) module_config_template() def main(): """ Call this a a test unit or use as CLI of this module """ import argparse parser = argparse.ArgumentParser() parser.add_argument("--configtemplate", action="store_true", help="prints the expected module configuration") parser.add_argument("--configinfo", action="store_true", help="prints config template along with produces and consumes info") args = parser.parse_args() if args.configtemplate: module_config_template() elif args.configinfo: module_config_info() if __name__ == "__main__": main()
py
1a5c74f1b26daccb2de77826152b6e99f9534c79
from .decorators import * from .detail_identifiers import * from .discord import * from .file_extensions import * from .misc import *
py
1a5c7532b7d9ff145b75422e1c8ddfb2caff126f
# -*- coding: utf-8 -*- from __future__ import print_function import itertools as it, operator as op, functools as ft from os.path import join, exists import os, sys, logging, glob, time, select class OnDemandLogger(object): log = None def __getattr__(self, k): if not self.log: self.log = logging.getLogger('sht.gpio') return getattr(self.log, k) log = OnDemandLogger() path_gpio = '/sys/class/gpio' class GPIOAccessFailure(Exception): pass def gpio_access_wrap(func, checks=12, timeout=1.0): for n in xrange(checks, -1, -1): try: return func() except (IOError, OSError): pass if checks <= 0: break if n: time.sleep(timeout / checks) else: raise GPIOAccessFailure(func, timeout) # log.warn('gpio access failed (func: %s, timeout: %s)', func, timeout) def get_pin_path(n, sub=None, _cache=dict()): n = int(n) if n not in _cache: for try_export in [True, False]: try: path = join(path_gpio, 'gpio{}'.format(n)) if not exists(path): path, = glob.glob(path + '_*') except: if not try_export: raise OSError('Failed to find sysfs control path for pin: {}'.format(n)) else: break log.debug('Exporting pin: %s', n) with open(join(path_gpio, 'export'), 'wb', 0) as dst: gpio_access_wrap(ft.partial(dst.write, bytes(n))) _cache[n] = path else: path = _cache[n] return path if not sub else os.path.join(path, sub) def get_pin_value(n, k='value'): with gpio_access_wrap( ft.partial(open, get_pin_path(n, k), 'rb', 0) ) as src: val = src.read().strip() if k == 'value': try: val = int(val) except ValueError as err: log.warn('Failed to read/decode pin (n: %s) value %r: %s', n, val, err) val = None return val def set_pin_value(n, v, k='value', force=False, _pin_state=dict()): if k == 'value' and isinstance(v, bool): v = int(v) if not force and _pin_state.get(n) == v: return if _pin_state.get(n) == v: return # log.debug('Setting parameter of pin-%s: %s = %r ', n, k, v) with gpio_access_wrap( ft.partial(open, get_pin_path(n, k), 'wb', 0) ) as dst: gpio_access_wrap(ft.partial(dst.write, bytes(v))) _pin_state[n] = v class PollTimeout(Exception): pass def poll_pin(n, timeout=1.0, edge='both', _poller_cache=dict()): if edge: set_pin_value(n, k='edge', v=edge) try: if n not in _poller_cache: _poller_cache[n] = select.poll() poller = _poller_cache[n] with gpio_access_wrap( ft.partial(open, get_pin_path(n, 'value'), 'rb', 0) ) as src: poller.register(src.fileno(), select.POLLPRI | select.POLLERR) res = poller.poll(timeout * 1000) if not res or res[0][1] & select.POLLERR == select.POLLERR: raise PollTimeout(n, timeout, edge, res) return get_pin_value(n) finally: if edge: set_pin_value(n, k='edge', v='none')
py
1a5c7611c1d3f34a14501692b6924571da588c21
from datetime import datetime from airflow.models import DAG from airtunnel import PandasDataAsset from airtunnel.operators.archival import DataAssetArchiveOperator, IngestArchiveOperator from airtunnel.operators.ingestion import IngestOperator from airtunnel.operators.loading import StagingToReadyOperator from airtunnel.operators.transformation import PandasTransformationOperator from airtunnel.sensors.ingestion import SourceFileIsReadySensor student = PandasDataAsset("student") programme = PandasDataAsset("programme") enrollment = PandasDataAsset("enrollment") enrollment_summary = PandasDataAsset("enrollment_summary") with DAG( dag_id="university", schedule_interval=None, start_date=datetime(year=2019, month=9, day=1), ) as dag: ingested_ready_tasks = set() # a common stream of tasks for all ingested assets: for ingested_asset in (student, programme, enrollment): source_is_ready = SourceFileIsReadySensor( # we reduce the poke interval to only 3 seconds so that our test runs complete faster # do not do in production!! :) asset=ingested_asset, poke_interval=3, no_of_required_static_pokes=2, ) ingest = IngestOperator(asset=ingested_asset) transform = PandasTransformationOperator(asset=ingested_asset) archive = DataAssetArchiveOperator(asset=ingested_asset) staging_to_ready = StagingToReadyOperator(asset=ingested_asset) ingest_archival = IngestArchiveOperator(asset=ingested_asset) dag >> source_is_ready >> ingest >> transform >> archive >> staging_to_ready >> ingest_archival ingested_ready_tasks.add(staging_to_ready) # upon having loaded the three ingested assets, connect the aggregation downstream to them: build_enrollment_summary = PandasTransformationOperator(asset=enrollment_summary) build_enrollment_summary.set_upstream(ingested_ready_tasks) staging_to_ready = StagingToReadyOperator(asset=enrollment_summary) dag >> build_enrollment_summary >> staging_to_ready
py
1a5c768b2671e695367a9c709814a8a80567c871
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkiot.endpoint import endpoint_data class QuerySolutionProjectRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Iot', '2018-01-20', 'QuerySolutionProject','iot') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_Type(self): return self.get_body_params().get('Type') def set_Type(self,Type): self.add_body_params('Type', Type) def get_PageId(self): return self.get_body_params().get('PageId') def set_PageId(self,PageId): self.add_body_params('PageId', PageId) def get_PageSize(self): return self.get_body_params().get('PageSize') def set_PageSize(self,PageSize): self.add_body_params('PageSize', PageSize) def get_Name(self): return self.get_body_params().get('Name') def set_Name(self,Name): self.add_body_params('Name', Name)
py
1a5c77602d0e45ab002c01c60327a744cf05189d
#!/usr/bin/env python from collections import defaultdict import sys from hunmisc.corpustools.tsv_tools import sentence_iterator, get_dependencies from common import sanitize_word def get_node_id_and_word(token): word, i = token word = sanitize_word(word) node_id = "{0}_{1}".format(word, i) return node_id, word def deps_to_sen_dict(deps): root_token = None sen_dict = defaultdict(dict) for dep in deps: gov = (dep['gov']['word'], dep['gov']['id']) ddep = (dep['dep']['word'], dep['dep']['id']) dtype = dep['type'] sen_dict[gov][ddep] = dtype if dtype == 'root': root_token = gov return sen_dict, root_token def dict_to_graph(sen_dict, token): # print dictionary global SEEN global GRAPH_STRING if token in SEEN: node_id = SEEN[token] GRAPH_STRING += node_id else: node_id, word = get_node_id_and_word(token) SEEN[token] = node_id GRAPH_STRING += "({0} / {1}".format(node_id, word) for neighbor, edge in sen_dict[token].iteritems(): GRAPH_STRING += ' :{0} '.format(edge.replace(':', '_')) dict_to_graph(sen_dict, neighbor) GRAPH_STRING += ')' HEADER = ( '# IRTG unannotated corpus file, v1.0\n' + '# interpretation graph: de.up.ling.irtg.algebra.graph.GraphAlgebra') def main(): print(HEADER) id_field, word_field, lemma_field, msd_field, gov_field, dep_field = ( 0, 1, None, None, -4, -3) global SEEN global GRAPH_STRING with open(sys.argv[1]) as stream: for sentence in sentence_iterator(stream, comment_tag='#'): deps = get_dependencies( sentence, id_field, word_field, lemma_field, msd_field, gov_field, dep_field) sentence_dict, root_token = deps_to_sen_dict(deps) # root token will be the first token if ROOT doesn't exist if root_token is None: root_token = sentence_dict.keys()[0] SEEN = {} GRAPH_STRING = '' dict_to_graph(sentence_dict, root_token) print(GRAPH_STRING) if __name__ == "__main__": main()
py
1a5c777c10e2727ecab3a12b594f2ee551290ac1
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import defaultdict from collections.abc import Iterable from datetime import datetime from enum import Enum from operator import attrgetter import numpy as np from ..core import Entity, HasShapeTileableEnity, ChunkData, Chunk, HasShapeTileableData, \ build_mode, Serializable, OutputType, register_output_types from ..serialize import ProviderType, ValueType, DataTypeField, ListField, TupleField, \ BoolField, StringField, AnyField from ..utils import log_unhandled, on_serialize_shape, on_deserialize_shape, is_eager_mode from .utils import get_chunk_slices, fetch_corner_data import logging logger = logging.getLogger(__name__) class TensorOrder(Enum): # C order C_ORDER = 'C' # Fortran order F_ORDER = 'F' class TensorChunkData(ChunkData): __slots__ = () # required fields _shape = TupleField('shape', ValueType.int64, on_serialize=on_serialize_shape, on_deserialize=on_deserialize_shape) _order = StringField('order', on_serialize=attrgetter('value'), on_deserialize=TensorOrder) # optional fields _dtype = DataTypeField('dtype') def __init__(self, op=None, index=None, shape=None, dtype=None, order=None, **kw): if isinstance(order, str): order = getattr(TensorOrder, order) super().__init__(_op=op, _index=index, _shape=shape, _dtype=dtype, _order=order, **kw) if self.order is None and self.op is not None: if len(self.inputs) == 0: self._order = TensorOrder.C_ORDER elif all(hasattr(inp, 'order') and inp.order == TensorOrder.F_ORDER for inp in self.inputs): self._order = TensorOrder.F_ORDER else: self._order = TensorOrder.C_ORDER @classmethod def cls(cls, provider): if provider.type == ProviderType.protobuf: from ..serialize.protos.tensor_pb2 import TensorChunkDef return TensorChunkDef return super().cls(provider) @property def params(self): # params return the properties which useful to rebuild a new chunk return { 'shape': self.shape, 'dtype': self.dtype, 'order': self.order, 'index': self.index, } def __len__(self): try: return self.shape[0] except IndexError: if build_mode().is_build_mode: return 0 raise TypeError('len() of unsized object') @property def shape(self): return getattr(self, '_shape', None) @property def ndim(self): return len(self.shape) @property def size(self): return np.prod(self.shape).item() @property def dtype(self): return getattr(self, '_dtype', None) or self.op.dtype @property def order(self): return getattr(self, '_order', None) @property def nbytes(self): return np.prod(self.shape) * self.dtype.itemsize class TensorChunk(Chunk): __slots__ = () _allow_data_type_ = (TensorChunkData,) def __len__(self): return len(self._data) class TensorData(HasShapeTileableData): __slots__ = () # required fields _order = StringField('order', on_serialize=attrgetter('value'), on_deserialize=TensorOrder) # optional fields _dtype = DataTypeField('dtype') _chunks = ListField('chunks', ValueType.reference(TensorChunkData), on_serialize=lambda x: [it.data for it in x] if x is not None else x, on_deserialize=lambda x: [TensorChunk(it) for it in x] if x is not None else x) def __init__(self, op=None, shape=None, dtype=None, order=None, nsplits=None, chunks=None, **kw): if isinstance(order, str): order = getattr(TensorOrder, order) super().__init__(_op=op, _shape=shape, _dtype=dtype, _order=order, _nsplits=nsplits, _chunks=chunks, **kw) if self.order is None and self.op is not None: if len(self.inputs) == 0: self._order = TensorOrder.C_ORDER elif all(hasattr(inp, 'order') and inp.order == TensorOrder.F_ORDER for inp in self.inputs): self._order = TensorOrder.F_ORDER else: self._order = TensorOrder.C_ORDER @classmethod def cls(cls, provider): if provider.type == ProviderType.protobuf: from ..serialize.protos.tensor_pb2 import TensorDef return TensorDef return super().cls(provider) def _to_str(self, representation=False): if build_mode().is_build_mode or len(self._executed_sessions) == 0: # in build mode, or not executed, just return representation if representation: return 'Tensor <op={}, shape={}, key={}'.format(self._op.__class__.__name__, self._shape, self._key) else: return 'Tensor(op={}, shape={})'.format(self._op.__class__.__name__, self._shape) else: print_options = np.get_printoptions() threshold = print_options['threshold'] corner_data = fetch_corner_data(self, session=self._executed_sessions[-1]) # if less than default threshold, just set it as default, # if not, set to corner_data.size - 1 make sure ... exists in repr threshold = threshold if self.size <= threshold else corner_data.size - 1 with np.printoptions(threshold=threshold): corner_str = repr(corner_data) if representation else str(corner_data) return corner_str def __str__(self): return self._to_str(representation=False) def __repr__(self): return self._to_str(representation=True) @property def params(self): # params return the properties which useful to rebuild a new tileable object return { 'shape': self.shape, 'dtype': self.dtype, 'order': self.order } @property def flags(self): c_order = True if self.ndim <= 1 else self.order == TensorOrder.C_ORDER f_order = True if self.ndim <= 1 else self.order == TensorOrder.F_ORDER return { 'C_CONTIGUOUS': c_order, 'F_CONTIGUOUS': f_order } @property def real(self): from .arithmetic import real return real(self) @property def imag(self): from .arithmetic import imag return imag(self) @property def dtype(self): return getattr(self, '_dtype', None) or self.op.dtype @property def order(self): return getattr(self, '_order', None) @property def nbytes(self): return np.prod(self.shape) * self.dtype.itemsize def get_chunk_slices(self, idx): return get_chunk_slices(self.nsplits, idx) def is_scalar(self): return self.ndim == 0 isscalar = is_scalar def tosparse(self): if self.issparse(): return self from .datasource import fromdense return fromdense(self) def todense(self): if not self.issparse(): return self from .datasource import fromsparse return fromsparse(self) def transpose(self, *axes): from .base import transpose if len(axes) == 1 and isinstance(axes[0], Iterable): axes = axes[0] return transpose(self, axes) @property def T(self): return self.transpose() def reshape(self, shape, *shapes, **kw): from .reshape import reshape order = kw.pop('order', 'C') if kw: raise TypeError( "'{0}' is an invalid keyword argument for this function".format(tuple(kw)[0])) if isinstance(shape, Iterable): shape = tuple(shape) else: shape = (shape,) shape += shapes return reshape(self, shape, order=order) def totiledb(self, uri, ctx=None, key=None, timestamp=None): from .datastore import totiledb return totiledb(uri, self, ctx=ctx, key=key, timestamp=timestamp) @staticmethod def from_dataframe(in_df): from .datasource import from_dataframe return from_dataframe(in_df) def to_dataframe(self, *args, **kwargs): from ..dataframe.datasource.from_tensor import dataframe_from_tensor return dataframe_from_tensor(self, *args, **kwargs) @property def flat(self): return flatiter(self) def to_numpy(self, session=None, **kw): return self.execute(session=session, **kw).fetch(session=session) class Tensor(HasShapeTileableEnity): __slots__ = () _allow_data_type_ = (TensorData,) def __len__(self): return len(self._data) @property def shape(self): return self._data.shape @shape.setter def shape(self, new_shape): self._data = self._data.reshape(new_shape).data def _update_shape(self, new_shape): self._data._update_shape(new_shape) @property def real(self): return self.data.real @real.setter def real(self, new_real): from .arithmetic.setreal import set_real self._data = set_real(self._data, new_real).data @property def imag(self): return self.data.imag @imag.setter def imag(self, new_imag): from .arithmetic.setimag import set_imag self._data = set_imag(self._data, new_imag).data def __array__(self, dtype=None): if is_eager_mode(): return np.asarray(self.fetch(), dtype=dtype) else: return np.asarray(self.execute().fetch(), dtype=dtype) def __array_function__(self, func, types, args, kwargs): from .. import tensor as module for submodule in func.__module__.split('.')[1:]: try: module = getattr(module, submodule) except AttributeError: return NotImplemented if not hasattr(module, func.__name__): return NotImplemented mars_func = getattr(module, func.__name__) if mars_func is func: # avoid Numpy func return NotImplemented return mars_func(*args, **kwargs) def view(self): return self._view() @property def ndim(self): """ Number of array dimensions. Examples -------- >>> import mars.tensor as mt >>> x = mt.array([1, 2, 3]) >>> x.ndim 1 >>> y = mt.zeros((2, 3, 4)) >>> y.ndim 3 """ return super().ndim def transpose(self, *axes): """ Returns a view of the tensor with axes transposed. For a 1-D tensor, this has no effect. (To change between column and row vectors, first cast the 1-D tensor into a matrix object.) For a 2-D tensor, this is the usual matrix transpose. For an n-D tensor, if axes are given, their order indicates how the axes are permuted (see Examples). If axes are not provided and ``a.shape = (i[0], i[1], ... i[n-2], i[n-1])``, then ``a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0])``. Parameters ---------- axes : None, tuple of ints, or `n` ints * None or no argument: reverses the order of the axes. * tuple of ints: `i` in the `j`-th place in the tuple means `a`'s `i`-th axis becomes `a.transpose()`'s `j`-th axis. * `n` ints: same as an n-tuple of the same ints (this form is intended simply as a "convenience" alternative to the tuple form) Returns ------- out : Tensor View of `a`, with axes suitably permuted. See Also -------- Tensor.T : Tensor property returning the tensor transposed. Examples -------- >>> import mars.tensor as mt >>> a = mt.array([[1, 2], [3, 4]]) >>> a.execute() array([[1, 2], [3, 4]]) >>> a.transpose().execute() array([[1, 3], [2, 4]]) >>> a.transpose((1, 0)) array([[1, 3], [2, 4]]) >>> a.transpose(1, 0).execute() array([[1, 3], [2, 4]]) """ return self._data.transpose(*axes) @property def T(self): """ Same as self.transpose(), except that self is returned if self.ndim < 2. Examples -------- >>> import mars.tensor as mt >>> x = mt.array([[1.,2.],[3.,4.]]) >>> x.execute() array([[ 1., 2.], [ 3., 4.]]) >>> x.T.execute() array([[ 1., 3.], [ 2., 4.]]) >>> x = mt.array([1.,2.,3.,4.]) >>> x.execute() array([ 1., 2., 3., 4.]) >>> x.T.execute() array([ 1., 2., 3., 4.]) """ return self._data.T def totiledb(self, uri, ctx=None, key=None, timestamp=None): return self._data.totiledb(uri, ctx=ctx, key=key, timestamp=timestamp) def copy(self, order='C'): return super().copy().astype(self.dtype, order=order, copy=False) def sort(self, axis=-1, kind=None, parallel_kind=None, psrs_kinds=None, order=None): """ Sort a tensor, in-place. Parameters ---------- axis : int, optional Axis along which to sort. Default is -1, which means sort along the last axis. kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional Sorting algorithm. Default is 'quicksort'. parallel_kind: {'PSRS'}, optional Parallel sorting algorithm, for the details, refer to: http://csweb.cs.wfu.edu/bigiron/LittleFE-PSRS/build/html/PSRSalgorithm.html psrs_kinds: list with 3 elements, optional Sorting algorithms during PSRS algorithm. order : str or list of str, optional When `a` is a tensor with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all fields need be specified, but unspecified fields will still be used, in the order in which they come up in the dtype, to break ties. See Also -------- numpy.sort : Return a sorted copy of a tensor. argsort : Indirect sort. lexsort : Indirect stable sort on multiple keys. searchsorted : Find elements in sorted tensor. partition: Partial sort. Notes ----- See ``sort`` for notes on the different sorting algorithms. Examples -------- >>> import mars.tensor as mt >>> a = mt.array([[1,4], [3,1]]) >>> a.sort(axis=1) >>> a.execute() array([[1, 4], [1, 3]]) >>> a.sort(axis=0) >>> a.execute() array([[1, 3], [1, 4]]) Use the `order` keyword to specify a field to use when sorting a structured tensor: >>> a = mt.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)]) >>> a.sort(order='y') >>> a.execute() array([('c', 1), ('a', 2)], dtype=[('x', '|S1'), ('y', '<i4')]) """ from .base import sort self._data = sort(self, axis=axis, kind=kind, parallel_kind=parallel_kind, psrs_kinds=psrs_kinds, order=order).data def partition(self, kth, axis=-1, kind='introselect', order=None, **kw): """ Rearranges the elements in the tensor in such a way that the value of the element in kth position is in the position it would be in a sorted tensor. All elements smaller than the kth element are moved before this element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is undefined. Parameters ---------- kth : int or sequence of ints Element index to partition by. The kth element value will be in its final sorted position and all smaller elements will be moved before it and all equal or greater elements behind it. The order of all elements in the partitions is undefined. If provided with a sequence of kth it will partition all elements indexed by kth of them into their sorted position at once. axis : int, optional Axis along which to sort. Default is -1, which means sort along the last axis. kind : {'introselect'}, optional Selection algorithm. Default is 'introselect'. order : str or list of str, optional When `a` is a tensor with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all fields need to be specified, but unspecified fields will still be used, in the order in which they come up in the dtype, to break ties. See Also -------- mt.partition : Return a parititioned copy of an tensor. argpartition : Indirect partition. sort : Full sort. Notes ----- See ``mt.partition`` for notes on the different algorithms. Examples -------- >>> import mars.tensor as mt >>> a = mt.array([3, 4, 2, 1]) >>> a.partition(3) >>> a.execute() array([2, 1, 3, 4]) >>> a.partition((1, 3)) >>> a.execute() array([1, 2, 3, 4]) """ from .base import partition self._data = partition(self, kth, axis=axis, kind=kind, order=order, **kw).data @property def flat(self): """ Flat iterator object to iterate over arrays. A `flatiter` iterator is returned by ``x.flat`` for any tensor `x`. It allows iterating over the tensor as if it were a 1-D array, either in a for-loop or by calling its `next` method. Iteration is done in row-major, C-style order (the last index varying the fastest). The iterator can also be indexed using basic slicing or advanced indexing. See Also -------- Tensor.flat : Return a flat iterator over a tensor. Tensor.flatten : Returns a flattened copy of a tensor. Examples -------- >>> import mars.tensor as mt >>> x = mt.arange(6).reshape(2, 3) >>> fl = x.flat >>> fl[2:4].execute() array([2, 3]) """ return self._data.flat def from_dataframe(self, in_df): return self._data.from_dataframe(in_df) def to_dataframe(self, *args, **kwargs): return self._data.to_dataframe(*args, **kwargs) def to_numpy(self, session=None, **kw): return self._data.to_numpy(session, **kw) SparseTensor = Tensor class flatiter(object): def __init__(self, tensor): # flatten creates a copy self._flatten_tensor = tensor.flatten() # ravel creates a view self._ravel_tensor = tensor.ravel() def __getitem__(self, item): # a.flat[item] create a copy return self._flatten_tensor[item] def __setitem__(self, key, value): # a.flat[item] = value will apply changes to original tensor self._ravel_tensor[key] = value class Indexes(Serializable): _indexes = AnyField('indexes') def __init__(self, indexes=None, **kw): self._indexes = indexes super().__init__(**kw) @property def indexes(self): return self._indexes class MutableTensorData(TensorData): __slots__ = () # required fields _name = StringField('name') _compression = BoolField("compression") _chunk_eps = ListField('chunk_eps') def __init__(self, name=None, op=None, shape=None, dtype=None, key=None, chunk_eps=None, nsplits=None, chunks=None, **kw): super().__init__(op=op, shape=shape, dtype=dtype, nsplits=nsplits, chunks=chunks, _name=name, _key=key, _chunk_eps=chunk_eps, **kw) @classmethod def cls(cls, provider): return super().cls(provider) def __str__(self): return 'MutableTensor(op={0}, name={1}, shape={2})'.format(self.op.__class__.__name__, self.name, self.shape) def __repr__(self): return 'MutableTensor <op={0}, name={1}, shape={2}, key={3}>'.format(self.op.__class__.__name__, self.name, self.shape, self.key) @property def params(self): # params return the properties which useful to rebuild a new tileable object return { 'shape': self.shape, 'dtype': self.dtype, 'name': self.name, 'compression': self.compression, "chunk_eps": self.chunk_eps, } @property def name(self): return getattr(self, '_name', None) @property def compression(self): return getattr(self, '_compression', None) @property def chunk_eps(self): return getattr(self, '_chunk_eps', None) class MutableTensor(Entity): __slots__ = ("_chunk_to_endpoint", "_chunk_buffers", "_record_type", "_buffer_size") _allow_data_type_ = (MutableTensorData,) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._chunk_buffers = defaultdict(lambda: []) self._record_type = np.dtype([("index", np.uint32), ("ts", np.dtype('datetime64[ns]')), ("value", self.dtype)]) if self.chunks: self._buffer_size = np.prod(self.chunks[0].shape) else: # MutableTensor doesn't hold chunks in LocalSession, thus we don't care the buffer self._buffer_size = 0 if self._data.chunk_eps is not None: self._chunk_to_endpoint = dict((c.key, ep) for c, ep in zip(self.chunks, self._data.chunk_eps)) else: self._chunk_to_endpoint = dict() def __len__(self): return len(self._data) @property def name(self): return self._data.name @property def chunk_to_endpoint(self): return self._chunk_to_endpoint def __setitem__(self, index, value): from ..session import Session session = Session.default_or_local() return session.write_mutable_tensor(self, index, value) def seal(self): from ..session import Session session = Session.default_or_local() return session.seal(self) @log_unhandled def _do_write(self, tensor_index, value): ''' Notes [buffer management of mutable tensor]: Write operations on a mutable tensor are buffered at client. Every chunk has a corresponding buffer in the form of {chunk_key: [(index, ts, value)]} Every time we write to a chunk, we will append the new operation records to the list At the end of write, if the buffer size exceeds `buffer_size`, the buffer will be send to the corresponding worker. The insights for above design are: 1. `append` on (small) list is fast 2. We try to flush the (affected) buffer to worker at the end of every write, the buffer size is guaranteed to less than 2 * chunk_size. ''' from .indexing.core import process_index, calc_shape from .indexing.getitem import TensorIndex from .utils import setitem_as_records tensor_index = process_index(self.ndim, tensor_index) output_shape = calc_shape(self.shape, tensor_index) index_tensor_op = TensorIndex(dtype=self.dtype, sparse=False, indexes=tensor_index) index_tensor = index_tensor_op.new_tensor([self], tuple(output_shape))._inplace_tile() output_chunks = index_tensor.chunks is_scalar = np.isscalar(value) or isinstance(value, tuple) and self.dtype.fields if not is_scalar: value = np.broadcast_to(value, output_shape).astype(self.dtype) nsplits_acc = [np.cumsum((0,) + tuple(c.shape[i] for c in output_chunks if all(idx == 0 for j, idx in enumerate(c.index) if j != i))) for i in range(len(output_chunks[0].shape))] now = np.datetime64(datetime.now()) affected_chunk_keys = [] for output_chunk in output_chunks: records = self._chunk_buffers[output_chunk.op.input.key] records += setitem_as_records(nsplits_acc, output_chunk, value, now, is_scalar=is_scalar) affected_chunk_keys.append(output_chunk.op.input.key) # Try to flush affected chunks return self._do_flush(self._buffer_size, affected_chunk_keys) @log_unhandled def _do_flush(self, buffer_size_limit=1, affected_chunk_keys=None): chunk_records_to_send = [] affected_chunk_keys = affected_chunk_keys or self._chunk_buffers.keys() for chunk_key in affected_chunk_keys: records = self._chunk_buffers[chunk_key] if len(records) >= buffer_size_limit: chunk_records_to_send.append((chunk_key, self._chunk_to_endpoint[chunk_key], np.array(records, dtype=self._record_type))) self._chunk_buffers[chunk_key] = [] return chunk_records_to_send def mutable_tensor(name, shape=None, dtype=np.float_, fill_value=None, chunk_size=None): """ Create or get a mutable tensor using the local or default session. When `shape` is `None`, it will try to get the mutable tensor with name `name`. Otherwise, it will try to create a mutable tensor using the provided `name` and `shape`. Parameters ---------- name : str Name of the mutable tensor. shape : int or sequence of ints Shape of the new mutable tensor, e.g., ``(2, 3)`` or ``2``. dtype : data-type, optional The desired data-type for the mutable tensor, e.g., `mt.int8`. Default is `mt.float_`. chunk_size: int or tuple of ints, optional Specifies chunk size for each dimension. fill_value: scalar, optional The created mutable tensor will be filled by `fill_value` defaultly, if the parameter is None, the newly created mutable tensor will be initialized with `np.zeros`. See also `numpy.full`. """ from ..session import Session session = Session.default_or_local() if shape is None: return session.get_mutable_tensor(name) else: return session.create_mutable_tensor(name, shape=shape, dtype=dtype, fill_value=fill_value, chunk_size=chunk_size) TENSOR_TYPE = (Tensor, TensorData) TENSOR_CHUNK_TYPE = (TensorChunk, TensorChunkData) register_output_types(OutputType.tensor, TENSOR_TYPE, TENSOR_CHUNK_TYPE) register_output_types(OutputType.scalar, TENSOR_TYPE, TENSOR_CHUNK_TYPE)
py
1a5c77b9396ad8ef5ebcfbe2a0916c657568f8f5
import numpy as np import requests import os from PIL import Image, ImageOps from pathlib import Path from retrofy.configs import Filter_Configs import retrofy.utils as utils CONFIGS = Filter_Configs() class Filter(): MAX_SIZE = CONFIGS.MAXS["size"] def __init__(self, img_src): if isinstance(img_src, (str, Image.Image)) == False: raise TypeError("Parameter 'img_src' must be a string or a Pillow Image object.") self.__img_src = img_src self.__last_modifications = [] #list for all modifications that wasnt undoed self.__last_undos = [] self.__load_image() @property def modified_img(self): return self.__modified_img @modified_img.setter def modified_img(self, img): if isinstance(img, Image.Image) == False: raise TypeError("Parameter 'modified_img' must be a Pillow Image object.") self.__modified_img = img self.__last_modifications.append(self.__modified_img) @property def original_img(self): return self.__original_img @property def last_modifications(self): return self.__last_modifications def __load_image(self): # if img_src alredy is a PIL Image object if isinstance(self.__img_src, Image.Image) == True: self.__original_img = self.__img_src else: if utils.is_url(self.__img_src) == True: try: self.__img_src = requests.get(self.__img_src, stream=True).raw self.__original_img = Image.open(self.__img_src).convert("RGB") except: raise ValueError("Could not download image from URL '{}'.".format(self.__img_src)) else: try: self.__original_img = Image.open(self.__img_src).convert("RGB") except: raise ValueError("Could not access image on file '{}'.".format(self.__img_src)) #resize large images (with same aspect ratio) self.__original_img.thumbnail(self.MAX_SIZE) self.__modified_img = self.__original_img def undo(self, times=1): if isinstance(times, int) == False: raise TypeError("Parameter 'times' must be an integer.") if len(self.__last_modifications) > 0: for i in range(times): if len(self.__last_modifications) > 0: self.__last_undos.append(self.__last_modifications[-1]) self.__last_modifications.pop(-1) if len(self.__last_modifications) == 0: self.reset() else: self.__modified_img = self.__last_modifications[-1] def redo(self, times=1): if isinstance(times, int) == False: raise TypeError("Parameter 'times' must be an integer.") if len(self.__last_undos) > 0: for i in range(times): if len(self.__last_undos) > 0: self.modified_img = self.__last_undos[-1] self.__last_undos.pop(-1) def reset(self): self.__modified_img = self.__original_img def show(self, original=False): if isinstance(original, bool) == False: raise TypeError("Parameter 'original' must be a boolean.") if original == False: self.__modified_img.show() else: self.__original_img.show() def save(self, path, original=False): if isinstance(original, bool) == False: raise TypeError("Parameter 'original' must be a boolean.") if isinstance(path, str) == False and isinstance(file_path, Path) == False: raise TypeError("Parameter 'path' must be a string or a Path object.") path = Path(path) if path.suffix == "": path = path.parent / Path(path.stem + ".png") if self.__modified_img.mode == "RGBA" and path.suffix != ".png": raise ValueError("RGBA Image must have 'png' file extension.") try: if original == False: self.__modified_img.save(path) else: self.__original_img.save(path) except: raise ValueError("Could not save image on especified path.")
py
1a5c77c31dcde499578f6e927a312a8f3bbce481
# coding: utf-8 """ OpenAPI Petstore */ ' \" =end -- \\r\\n \\n \\r This spec is mainly for testing Petstore server and contains fake endpoints, models. Please do not use this for any other purpose. Special characters: \" \\ */ ' \" =end -- # noqa: E501 OpenAPI spec version: 1.0.0 */ ' \" =end -- \\r\\n \\n \\r Contact: [email protected] */ ' \" =end -- \\r\\n \\n \\r Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import re # noqa: F401 # python 2 and python 3 compatibility library import six from petstore_api.api_client import ApiClient class FakeApi(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def test_code_inject____end__rn_n_r(self, **kwargs): # noqa: E501 """To test code injection */ ' \" =end -- \\r\\n \\n \\r # noqa: E501 To test code injection */ ' \" =end -- \\r\\n \\n \\r # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.test_code_inject____end__rn_n_r(async_req=True) >>> result = thread.get() :param async_req bool :param UNKNOWN_BASE_TYPE unknown_base_type: :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.test_code_inject____end__rn_n_r_with_http_info(**kwargs) # noqa: E501 else: (data) = self.test_code_inject____end__rn_n_r_with_http_info(**kwargs) # noqa: E501 return data def test_code_inject____end__rn_n_r_with_http_info(self, **kwargs): # noqa: E501 """To test code injection */ ' \" =end -- \\r\\n \\n \\r # noqa: E501 To test code injection */ ' \" =end -- \\r\\n \\n \\r # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.test_code_inject____end__rn_n_r_with_http_info(async_req=True) >>> result = thread.get() :param async_req bool :param UNKNOWN_BASE_TYPE unknown_base_type: :return: None If the method is called asynchronously, returns the request thread. """ local_var_params = locals() all_params = ['unknown_base_type'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method test_code_inject____end__rn_n_r" % key ) local_var_params[key] = val del local_var_params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'unknown_base_type' in local_var_params: body_params = local_var_params['unknown_base_type'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json', '*/ \" =end -- ']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/fake', 'PUT', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats)
py
1a5c78b4a8702704b0e33b6e831d685ca9d54fe3
"""Test the rig module.""" import numpy as np from opensfm import pygeometry, rig, types def test_create_instances_with_patterns() -> None: # A first rig model defined as left/right/top/bottom instance1 = [ "12345_left.jpg", "12345_bottom.jpg", "12345_top.jpg", "12345_right.jpg", ] instance2 = [ "1234567_left.jpg", "1234567_bottom.jpg", "1234567_top.jpg", "1234567_right.jpg", ] patterns_12 = { "camera_left": "(left)", "camera_right": "(right)", "camera_top": "(top)", "camera_bottom": "(bottom)", } # A second one as RED/GREEN/BLUE instance3 = [ "RED_SENSOR_001-12345678.jpg", "GREEN_SENSOR_002-12345678.jpg", "BLUE_SENSOR_003-12345678.jpg", ] patterns_3 = { "red": "(RED_SENSOR_001)", "green": "(GREEN_SENSOR_002)", "blue": "(BLUE_SENSOR_003)", } # Run detection with these two rig model patterns rig_patterns = patterns_12 rig_patterns.update(patterns_3) instances = rig.create_instances_with_patterns( instance1 + instance2 + instance3, rig_patterns ) # Ensure we have 2 instance for the first rig, and 1 for the second assert len(instances) == 3 recovered_instance1 = instances["12345_.jpg"] assert [x[0] for x in recovered_instance1] == instance1 recovered_instance2 = instances["1234567_.jpg"] assert [x[0] for x in recovered_instance2] == instance2 recovered_instance3 = instances["-12345678.jpg"] assert [x[0] for x in recovered_instance3] == instance3 def test_compute_relative_pose() -> None: # 4-cameras rig camera1 = pygeometry.Camera.create_spherical() camera1.id = "camera1" camera2 = pygeometry.Camera.create_spherical() camera2.id = "camera2" camera3 = pygeometry.Camera.create_spherical() camera3.id = "camera3" camera4 = pygeometry.Camera.create_spherical() camera4.id = "camera4" # a bit cumbersome that we need to have some reconstruction rec = types.Reconstruction() rec.add_camera(camera1) rec.add_camera(camera2) rec.add_camera(camera3) rec.add_camera(camera4) # First rig instance rec.create_shot("shot1", "camera1", pygeometry.Pose([0, 0, 0], [-2, -2, 0])) rec.create_shot("shot2", "camera2", pygeometry.Pose([0, 0, 0], [-3, -3, 0])) rec.create_shot("shot3", "camera3", pygeometry.Pose([0, 0, 0], [-1, -3, 0])) rec.create_shot("shot4", "camera4", pygeometry.Pose([0, 0, 0], [-2, -4, 0])) # Second rig instance (rotated by pi/2 around Z) pose_instance = pygeometry.Pose([0, 0, -1.5707963]) pose_instance.set_origin([-6, 0, 0]) rec.create_shot("shot5", "camera1", pose_instance) pose_instance.set_origin([-7, 1, 0]) rec.create_shot("shot6", "camera2", pose_instance) pose_instance.set_origin([-7, -1, 0]) rec.create_shot("shot7", "camera3", pose_instance) pose_instance.set_origin([-8, 0, 0]) rec.create_shot("shot8", "camera4", pose_instance) pose_instances = [ [ ( rec.shots["shot1"], "camera_id_1", ), ( rec.shots["shot2"], "camera_id_2", ), ( rec.shots["shot3"], "camera_id_3", ), ( rec.shots["shot4"], "camera_id_4", ), ], [ ( rec.shots["shot5"], "camera_id_1", ), ( rec.shots["shot6"], "camera_id_2", ), ( rec.shots["shot7"], "camera_id_3", ), ( rec.shots["shot8"], "camera_id_4", ), ], ] # Compute rig cameras poses rig_cameras = rig.compute_relative_pose(pose_instances) assert np.allclose( [0, -1, 0], rig_cameras["camera_id_1"].pose.get_origin(), atol=1e-7 ) assert np.allclose( [1, 0, 0], rig_cameras["camera_id_2"].pose.get_origin(), atol=1e-7 ) assert np.allclose( [-1, 0, 0], rig_cameras["camera_id_3"].pose.get_origin(), atol=1e-7 ) assert np.allclose( [0, 1, 0], rig_cameras["camera_id_4"].pose.get_origin(), atol=1e-7 )
py
1a5c795ac998e642a3668791b8db14a77e6aeca2
# class Solution: # def getSmallestString(self, n: int, k: int) -> str: # ''' # Solution with heap implementation # ''' # # create a lookup table # import string # # tb1 = {(i+1):char for i,char in enumerate(string.ascii_lowercase)} # # exception # if n==1: # return string.ascii_lowercase[k-1] # import heapq # hp = [1 for i in range(n)] # heapq.heapify(hp) # total = n # while total <= k: # if total == k: # return ''.join([string.ascii_lowercase[heapq.heappop(hp)-1] for i in range(n)]) # if k - total > 26: # out = heapq.heappushpop(hp, 26) # total = total - out + 26 # else: # out = heapq.heappop(hp) # total -= out # if k - total > 26: # heapq.heappush(hp, 26) # total += 26 # else: # heapq.heappush(hp, k - total) # total += (k - total) # class Solution: # def getSmallestString(self, n: int, k: int) -> str: # ''' # Solution with simple loop, one pass. Memory about the same, run time much shorter # ''' # source = 'abcdefghijklmnopqrstuvwxyz' # raw = [1 for i in range(n)] # total = n # i = n-1 # while i >= 0: # if total == k: # return ''.join([source[v-1] for v in raw]) # if k - total > 26: # total -= raw[i] # raw[i] = 26 # total += 26 # else: # total -= raw[i] # if k - total > 26: # raw[i] = 26 # total += raw[i] # else: # raw[i] = k - total # total += k - total # i -= 1 # return ''.join([source[v-1] for v in raw]) # class Solution: # def getSmallestString(self, n: int, k: int) -> str: # ''' # Solution with direct accumulation, much less memory, but still long run time # ''' # source = 'abcdefghijklmnopqrstuvwxyz' # output = '' # total = 0 # i = n-1 # while i >= 0: # if total == k: # return output # if k - i - total > 26: # output = 'z' + output # total += 26 # else: # output = source[k - i - total - 1] + output # total += k - i - total # i -= 1 # return output class Solution: def getSmallestString(self, n, k): source = 'abcdefghijklmnopqrstuvwxyz' num_z = (k - n) // 25 print(num_z) if (k - n) % 25 == 0: return 'a' * (n - num_z) + 'z' * num_z else: return 'a' * (n - num_z - 1) + source[(k - n) % 25] + 'z' * num_z
py
1a5c79a0328ad1e2b78b543172389686f669a45f
a=[[7,0], [4,4], [7,1], [5,0], [6,1], [5,2]] a.sort(key=lambda x: (x[0],-x[1])) from collections import deque from bisect import insort o=[] while a: p=a.pop() o.insert(p[1],p) print o
py
1a5c7a7e592ef59bd800f4efbc6a39f7e7a18cbb
''' MIT License Copyright (c) 2020 Futurewei Cloud Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import configparser class Runnable: def __init__(self): self.name = "" self.host = "" self.image = "" self.docker_args = "" self.program_args = "" def __str__(self): return "Name: " + self.name + \ "\nHost: " + self.host + \ "\nImage: " + self.image + \ "\nDocker args: " + self.docker_args + \ "\nProgram args: " + self.program_args def getDockerPull(self): return "sudo docker pull " + self.image def getDockerRun(self): return "sudo docker run " + self.docker_args + " " + self.program_args def getDockerStop(self): return "sudo docker stop -t 30 " + self.name def getDockerRemove(self): return "sudo docker container rm " + self.name def getDockerLogs(self): return "sudo docker logs --tail 5000 " + self.name def parseRunnableConfig(locals_filename, runnable, config_files, cpus, cpus_base): binary = "" parsed_args = [] for filename in config_files.split(' '): config = configparser.ConfigParser(interpolation=configparser.ExtendedInterpolation()) config.read([locals_filename]+[filename]) if "binary" in config["deployment"]: binary = config["deployment"]["binary"] if "image" in config["deployment"]: runnable.image = config["deployment"]["image"] if "docker_args" in config["deployment"]: runnable.docker_args += config["deployment"]["docker_args"] + " " for arg in config["program_args"]: if arg in parsed_args: continue parsed_args.append(arg) value = config["program_args"][arg] if value == "$cpus": value = str(cpus) if value == "$cpus_expand": value = str(cpus_base) + "-" + str(cpus_base+cpus-1) runnable.program_args += "--" + arg + " " + value + " " runnable.docker_args += "--name " + runnable.name + " " + runnable.image + " " + binary def parseConfig(locals_filename, config_filename): config = configparser.ConfigParser(interpolation=configparser.ExtendedInterpolation()) config.read([locals_filename, config_filename]) all_to_run = [] cpuset_base = int(config["LocalConfig"]["cpuset_base"]) for section in config.sections(): if (section == "LocalConfig"): continue hosts = config[section]["hosts"].split(' ') for host in hosts: runnable = Runnable() runnable.name = section runnable.host = host parseRunnableConfig(locals_filename, runnable, config[section]["configs"], int(config[section]["cpus"]), cpuset_base) all_to_run.append(runnable) return all_to_run
py
1a5c7b03ae9d7b77613daf937a4c665d90826369
#!/usr/bin/env python # coding: utf-8 # # Data distribution check # In[14]: import numpy as np import os import pandas as pd import matplotlib.pyplot as plt #import umap as umap """ # In[24]: # Read the old and new data old = pd.read_csv('data_x_old.csv', header=None,sep=' ',dtype='float') old.info() old = old.values new = pd.read_csv('data_x.csv', header=None,sep=' ',dtype='float') new.info() new = new.values # ## Histogram # In[29]: # Plot the histogram of data def histogram_plot(data, dim): f = plt.figure() # Determine if this is a new data if np.shape(data)[0] == 17500: new_flag = True name = 'new' else: new_flag = False name = 'old' # Plot the histogram plt.hist(data[:, dim],bins=100) plt.title('histogram of axim {} of {} data '.format(dim, name)) plt.ylabel('cnt') plt.xlabel('axis {}'.format(dim)) plt.savefig('histogram of axim {} of {} data.png'.format(dim, name)) # In[30]: for i in range(8): histogram_plot(new, i) histogram_plot(old, i) # ## Clustering # In[31]: data_all = np.concatenate([old, new]) reducer = umap.UMAP() embedding = reducer.fit_transform(data_all) embedding.shape # In[37]: # Plot the umap graph lo = len(old) ln = len(new) label_all = np.zeros([lo + ln, ]) label_all[lo:] = 1 f = plt.figure() plt.scatter(embedding[:lo, 0], embedding[:lo, 1], label='old',s=1) plt.legend() plt.xlabel('u1') plt.ylabel('u2') plt.title('umap plot for old data') plt.savefig('umap plot for old data.png') f = plt.figure() plt.scatter(embedding[lo:, 0], embedding[lo:, 1], label='new',s=1) plt.legend() plt.xlabel('u1') plt.ylabel('u2') plt.title('umap plot for new data') plt.savefig('umap plot for new data.png') f = plt.figure() plt.scatter(embedding[:lo, 0], embedding[:lo, 1], label='old',s=1) plt.scatter(embedding[lo:, 0], embedding[lo:, 1], label='new',s=1) plt.legend() plt.xlabel('u1') plt.ylabel('u2') plt.title('umap plot for old data and new data') plt.savefig('umap plot for old data and new data.png') # ## Visualization # # In[12]: def plot_scatter(old, new, dim1, dim2): f = plt.figure() plt.scatter(old[:, dim1], old[:, dim2], label='old',marker='x')#,s=10) plt.scatter(new[:, dim1], new[:, dim2], label='new',marker='.')#,s=5) plt.legend() plt.xlabel('dim {}'.format(dim1)) plt.ylabel('dim {}'.format(dim2)) plt.title('scatter plot of dim{},{} of old and new data'.format(dim1, dim2)) plt.savefig('scatter plot of dim{},{} of old and new data.png'.format(dim1, dim2)) # In[15]: for i in range(8): for j in range(8): if i == j: continue plot_scatter(old, new, i, j) plt.close('all') # ## Pair-wise scatter plot # In[19]: df_old = pd.DataFrame(old) df_new = pd.DataFrame(new) psm = pd.plotting.scatter_matrix(df_old, figsize=(15, 15), s=10) # ## Find the same and plot spectra # In[38]: i = 0 for i in range(len(old)): #print(old[i,:]) new_minus = np.sum(np.square(new - old[i,:]),axis=1) #print(np.shape(new_minus)) match = np.where(new_minus==0) #print(match) if np.shape(match)[1] != 0: #There is a match print('we found a match! new index {} and old index {} match'.format(match, i)) # In[39]: print('old index ', old[11819,:]) print('new index ', new[5444,:]) # In[35]: np.shape(match) # ### Plot the matched spectra # In[6]: y_old = pd.read_csv('data_y_old.csv',header=None,sep=' ') # In[42]: y_new = pd.read_csv('data_y_new.csv',header=None,sep=' ') # In[7]: y_old = y_old.values y_new = y_new.values # In[45]: # plot the spectra old_index = 11819 new_index = 5444 f = plt.figure() plt.plot(y_old[old_index,:],label='old geometry {}'.format(old[old_index, :])) plt.plot(y_new[new_index,:],label='new geometry {}'.format(new[new_index, :])) plt.legend() plt.ylabel('transmission') plt.xlabel('THz') plt.savefig('Spectra plot for identicle point') # # Conclusion, this simulation is not the same as before ... # ### See what percentage are still within range # In[36]: #print(old) #print(new) hmax = np.max(old[:,0]) hmin = np.min(old[:,1]) rmax = np.max(old[:,4]) rmin = np.min(old[:,4]) print(hmax, hmin, rmax, rmin) #hmax = np.max(new[:,0]) #hmin = np.min(new[:,1]) #rmax = np.max(new[:,4]) #rmin = np.min(new[:,4]) #print(hmax, hmin, rmax, rmin) within_range = np.ones([len(new)]) new_minus = np.copy(new) new_minus[:,:4] -= hmin new_minus[:,4:] -= rmin new_plus = np.copy(new) new_plus[:, :4] -= hmax new_plus[:, 4:] -= rmax small_flag = np.min(new_minus, axis=1) < 0 big_flag = np.max(new_plus, axis=1) > 0 within_range[small_flag] = 0 within_range[big_flag] = 0 print(np.sum(within_range) / len(within_range)) print(type(within_range)) print(np.shape(within_range)) print(within_range) print(new[np.arange(len(within_range))[within_range.astype('bool')],:]) print(np.sum(within_range)) # # Data augmentation # ## Since the geometry is symmetric, we can augment the data with permutations # In[13]: # Check the assumption that the permutation does indeed give you the same spectra # Check if there is same spectra i = 0 for i in range(len(y_old)): #print(old[i,:]) new_minus = np.sum(np.square(y_old - y_old[i,:]),axis=1) #print(np.shape(new_minus)) match = np.where(new_minus==0) #print(match) #print(np.shape(match)) #print(len(match)) #if match[0] if len(match) != 1:#np.shape(match)[1] != 0: #There is a match print('we found a match! new index {} and old index {} match'.format(match, i)) # ### Due to physical periodic boundary condition, we can augment the data by doing permutations # In[39]: """ def permutate_periodicity(geometry_in, spectra_in): """ :param: geometry_in: numpy array of geometry [n x 8] dim :param: spectra_in: spectra of the geometry_in [n x k] dim :return: output of the augmented geometry, spectra [4n x 8], [4n x k] """ # Get the dimension parameters (n, k) = np.shape(spectra_in) # Initialize the output spectra_out = np.zeros([4*n, k]) geometry_out = np.zeros([4*n, 8]) ################################################# # start permutation of geometry (case: 1 - 0123)# ################################################# # case:2 -- 1032 geometry_c2 = geometry_in[:, [1,0,3,2,5,4,7,6]] # case:3 -- 2301 geometry_c3 = geometry_in[:, [2,3,0,1,6,7,4,5]] # case:4 -- 3210 geometry_c4 = geometry_in[:, [3,2,1,0,7,6,5,4]] geometry_out[0*n:1*n, :] = geometry_in geometry_out[1*n:2*n, :] = geometry_c2 geometry_out[2*n:3*n, :] = geometry_c3 geometry_out[3*n:4*n, :] = geometry_c4 for i in range(4): spectra_out[i*n:(i+1)*n,:] = spectra_in return geometry_out, spectra_out # In[40]: data_folder = '/work/sr365/Christian_data/dataIn' data_out_folder = '/work/sr365/Christian_data_augmented' for file in os.listdir(data_folder): data = pd.read_csv(os.path.join(data_folder, file),header=None,sep=',').values (l, w) = np.shape(data) g = data[:,2:10] s = data[:,10:] g_aug, s_aug = permutate_periodicity(g, s) output = np.zeros([l*4, w]) output[:, 2:10] = g_aug output[:, 10:] = s_aug np.savetxt(os.path.join(data_out_folder, file+'_augmented.csv'),output,delimiter=',') # In[41]: #print(np.shape(g)) # In[ ]:
py
1a5c7b8a28192ca6d1e86f44d9f825ec08faabf0
# -*- coding: utf-8 -*- # BSD 3-Clause License # # Copyright (c) 2017, Nokia # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ NUSimVRS """ from vspk import v5_0 as vsdk from nuagevsdsim.simentities.nusimresource import NUSimResource class NUSimVRS(NUSimResource): """ Represents a VRS Notes: System Monitoring details for VRS connected to VSC or HSC """ __vspk_class__ = vsdk.NUVRS __unique_fields__ = ['externalID'] __mandatory_fields__ = [] __default_fields__ = { } __get_parents__ = ['container', 'hsc', 'me', 'vm', 'vport', 'vsc'] __create_parents__ = [] def __init__(self): super(NUSimVRS, self).__init__()
py
1a5c7bce4df6ba7fdd16868febc4b8f9158557f0
''' Min, Max, and Sorting Dictionaries: ''' stocks={ 'GOOD':520.24, 'FB':76.45, 'YHOO':39.28, 'AMZN':306.21, 'AAPL':99.76 } print(sorted(zip(stocks.keys(),stocks.values())))
py
1a5c7d181cd15c5a9b7336616bb19cb36ebbf1c1
# inter-node communication from collections import defaultdict from enum import IntEnum, unique from plenum.common.plenum_protocol_version import PlenumProtocolVersion from plenum.common.roles import Roles from plenum.common.transactions import PlenumTransactions NOMINATE = "NOMINATE" REELECTION = "REELECTION" PRIMARY = "PRIMARY" PRIMDEC = "PRIMARYDECIDED" BATCH = "BATCH" REQACK = "REQACK" REQNACK = "REQNACK" REJECT = "REJECT" POOL_LEDGER_TXNS = "POOL_LEDGER_TXNS" PROPAGATE = "PROPAGATE" PREPREPARE = "PREPREPARE" OLD_VIEW_PREPREPARE_REQ = "OLD_VIEW_PREPREPARE_REQ" OLD_VIEW_PREPREPARE_REP = "OLD_VIEW_PREPREPARE_REP" PREPARE = "PREPARE" COMMIT = "COMMIT" CHECKPOINT = "CHECKPOINT" CHECKPOINT_STATE = "CHECKPOINT_STATE" THREE_PC_STATE = "THREE_PC_STATE" UPDATE_BLS_MULTI_SIG = "UPDATE_BLS_MULTI_SIG" REPLY = "REPLY" ORDERED = "ORDERED" REQKEY = "REQKEY" INSTANCE_CHANGE = "INSTANCE_CHANGE" BACKUP_INSTANCE_FAULTY = "BACKUP_INSTANCE_FAULTY" VIEW_CHANGE_DONE = "VIEW_CHANGE_DONE" CURRENT_STATE = "CURRENT_STATE" VIEW_CHANGE = "VIEW_CHANGE" VIEW_CHANGE_ACK = "VIEW_CHANGE_ACK" NEW_VIEW = "NEW_VIEW" LEDGER_STATUS = "LEDGER_STATUS" CONSISTENCY_PROOF = "CONSISTENCY_PROOF" CATCHUP_REQ = "CATCHUP_REQ" CATCHUP_REP = "CATCHUP_REP" MESSAGE_REQUEST = 'MESSAGE_REQUEST' MESSAGE_RESPONSE = 'MESSAGE_RESPONSE' OBSERVED_DATA = 'OBSERVED_DATA' BATCH_COMMITTED = 'BATCH_COMMITTED' VIEW_CHANGE_START = 'ViewChangeStart' VIEW_CHANGE_CONTINUE = 'ViewChangeContinue' BLACKLIST = "BLACKLIST" THREE_PC_PREFIX = "3PC: " MONITORING_PREFIX = "MONITORING: " VIEW_CHANGE_PREFIX = "VIEW CHANGE: " CATCH_UP_PREFIX = "CATCH-UP: " PRIMARY_SELECTION_PREFIX = "PRIMARY SELECTION: " BLS_PREFIX = "BLS: " OBSERVER_PREFIX = "OBSERVER: " PROPOSED_VIEW_NO = "proposed_view_no" NAME = "name" VERSION = "version" IP = "ip" PORT = "port" KEYS = "keys" TYPE = "type" TXN_TYPE = "type" TXN_ID = "txnId" ORIGIN = "origin" # Use f.IDENTIFIER.nm IDENTIFIER = "identifier" TARGET_NYM = "dest" DATA = "data" RAW = "raw" ENC = "enc" HASH = "hash" ALIAS = "alias" PUBKEY = "pubkey" VERKEY = "verkey" BLS_KEY = "blskey" BLS_KEY_PROOF = "blskey_pop" NYM_KEY = "NYM" NODE_IP = "node_ip" NODE_PORT = "node_port" CLIENT_IP = "client_ip" CLIENT_PORT = "client_port" # CHANGE_HA = "CHANGE_HA" # CHANGE_KEYS = "CHANGE_KEYS" SERVICES = "services" VALIDATOR = "VALIDATOR" CLIENT = "CLIENT" ROLE = 'role' NONCE = 'nonce' ATTRIBUTES = 'attributes' VERIFIABLE_ATTRIBUTES = 'verifiableAttributes' PREDICATES = 'predicates' TXN_TIME = 'txnTime' TXN_DATA = "txnData" LAST_TXN = "lastTxn" TXNS = "Txns" BY = "by" FORCE = 'force' AML_VERSION = 'version' AML = 'aml' AML_CONTEXT = 'amlContext' AUDIT_TXN_VIEW_NO = "viewNo" AUDIT_TXN_PP_SEQ_NO = "ppSeqNo" AUDIT_TXN_LEDGERS_SIZE = "ledgerSize" AUDIT_TXN_LEDGER_ROOT = "ledgerRoot" AUDIT_TXN_STATE_ROOT = "stateRoot" AUDIT_TXN_PRIMARIES = "primaries" AUDIT_TXN_DIGEST = "digest" AUDIT_TXN_NODE_REG = "nodeReg" # State proof fields STATE_PROOF = 'state_proof' ROOT_HASH = "root_hash" MULTI_SIGNATURE = "multi_signature" PROOF_NODES = "proof_nodes" VALUE = 'value' MULTI_SIGNATURE_SIGNATURE = 'signature' MULTI_SIGNATURE_PARTICIPANTS = 'participants' MULTI_SIGNATURE_VALUE = 'value' MULTI_SIGNATURE_VALUE_LEDGER_ID = 'ledger_id' MULTI_SIGNATURE_VALUE_STATE_ROOT = 'state_root_hash' MULTI_SIGNATURE_VALUE_TXN_ROOT = 'txn_root_hash' MULTI_SIGNATURE_VALUE_POOL_STATE_ROOT = 'pool_state_root_hash' MULTI_SIGNATURE_VALUE_TIMESTAMP = 'timestamp' # ROLES IDENTITY_OWNER = Roles.IDENTITY_OWNER.value STEWARD = Roles.STEWARD.value TRUSTEE = Roles.TRUSTEE.value IDENTITY_OWNER_STRING = None STEWARD_STRING = 'STEWARD' TRUSTEE_STRING = 'TRUSTEE' # TXNs NODE = PlenumTransactions.NODE.value NYM = PlenumTransactions.NYM.value AUDIT = PlenumTransactions.AUDIT.value GET_TXN = PlenumTransactions.GET_TXN.value TXN_AUTHOR_AGREEMENT = PlenumTransactions.TXN_AUTHOR_AGREEMENT.value TXN_AUTHOR_AGREEMENT_AML = PlenumTransactions.TXN_AUTHOR_AGREEMENT_AML.value TXN_AUTHOR_AGREEMENT_DISABLE = PlenumTransactions.TXN_AUTHOR_AGREEMENT_DISABLE.value GET_TXN_AUTHOR_AGREEMENT = PlenumTransactions.GET_TXN_AUTHOR_AGREEMENT.value GET_TXN_AUTHOR_AGREEMENT_AML = PlenumTransactions.GET_TXN_AUTHOR_AGREEMENT_AML.value CURRENT_TXN_PAYLOAD_VERSIONS = defaultdict(lambda: "1") CURRENT_TXN_PAYLOAD_VERSIONS[TXN_AUTHOR_AGREEMENT] = "2" CURRENT_TXN_VERSION = "1" # TXN # TODO: manye of these constants will be replaced # by constants from Request after Request refactoring TXN_PAYLOAD = "txn" TXN_PAYLOAD_TYPE = "type" TXN_PAYLOAD_PROTOCOL_VERSION = "protocolVersion" TXN_PAYLOAD_DATA = "data" TXN_PAYLOAD_VERSION = "ver" TXN_PAYLOAD_METADATA = "metadata" TXN_PAYLOAD_METADATA_FROM = "from" TXN_PAYLOAD_METADATA_ENDORSER = "endorser" TXN_PAYLOAD_METADATA_REQ_ID = "reqId" TXN_PAYLOAD_METADATA_DIGEST = "digest" TXN_PAYLOAD_METADATA_PAYLOAD_DIGEST = "payloadDigest" TXN_PAYLOAD_METADATA_TAA_ACCEPTANCE = "taaAcceptance" TXN_METADATA = "txnMetadata" TXN_METADATA_TIME = "txnTime" TXN_METADATA_ID = "txnId" TXN_METADATA_SEQ_NO = "seqNo" TXN_SIGNATURE = "reqSignature" TXN_VERSION = "ver" TXN_SIGNATURE_TYPE = "type" ED25519 = "ED25519" TXN_SIGNATURE_VALUES = "values" TXN_SIGNATURE_FROM = "from" TXN_SIGNATURE_VALUE = "value" TXN_AUTHOR_AGREEMENT_TEXT = "text" TXN_AUTHOR_AGREEMENT_VERSION = "version" TXN_AUTHOR_AGREEMENT_DIGEST = "digest" TXN_AUTHOR_AGREEMENT_RETIREMENT_TS = "retirement_ts" TXN_AUTHOR_AGREEMENT_RATIFICATION_TS = "ratification_ts" GET_TXN_AUTHOR_AGREEMENT_VERSION = "version" GET_TXN_AUTHOR_AGREEMENT_DIGEST = "digest" GET_TXN_AUTHOR_AGREEMENT_TIMESTAMP = "timestamp" GET_TXN_AUTHOR_AGREEMENT_AML_VERSION = "version" GET_TXN_AUTHOR_AGREEMENT_AML_TIMESTAMP = "timestamp" class ClientBootStrategy(IntEnum): Simple = 1 PoolTxn = 2 Custom = 3 class StorageType(IntEnum): File = 1 Ledger = 2 class KeyValueStorageType(IntEnum): Leveldb = 1 Memory = 2 Rocksdb = 3 ChunkedBinaryFile = 4 BinaryFile = 5 class PreVCStrategies(IntEnum): VC_START_MSG_STRATEGY = 1 @unique class LedgerState(IntEnum): not_synced = 1 # Still gathering consistency proofs syncing = 2 # Got sufficient consistency proofs, will be sending catchup # requests and waiting for their replies synced = 3 # Got replies for all catchup requests, indicating catchup # complete for the ledger OP_FIELD_NAME = "op" CLIENT_STACK_SUFFIX = "C" CLIENT_BLACKLISTER_SUFFIX = "BLC" NODE_BLACKLISTER_SUFFIX = "BLN" NODE_PRIMARY_STORAGE_SUFFIX = "PS" NODE_TXN_STORE_SUFFIX = "TS" NODE_HASH_STORE_SUFFIX = "HS" HS_FILE = "file" HS_MEMORY = "memory" HS_LEVELDB = 'leveldb' HS_ROCKSDB = 'rocksdb' LAST_SENT_PRE_PREPARE = 'lastSentPrePrepare' PLUGIN_BASE_DIR_PATH = "PluginBaseDirPath" POOL_LEDGER_ID = 0 DOMAIN_LEDGER_ID = 1 CONFIG_LEDGER_ID = 2 AUDIT_LEDGER_ID = 3 # Store labels BLS_LABEL = 'bls' TS_LABEL = 'ts' IDR_CACHE_LABEL = 'idr' ATTRIB_LABEL = 'attrib' SEQ_NO_DB_LABEL = 'seq_no_db' NODE_STATUS_DB_LABEL = 'node_status_db' LAST_SENT_PP_STORE_LABEL = 'last_sent_pp_store' VALID_LEDGER_IDS = (POOL_LEDGER_ID, DOMAIN_LEDGER_ID, CONFIG_LEDGER_ID, AUDIT_LEDGER_ID) CURRENT_PROTOCOL_VERSION = PlenumProtocolVersion.TXN_FORMAT_1_0_SUPPORT.value OPERATION_SCHEMA_IS_STRICT = False SCHEMA_IS_STRICT = False GENERAL_LIMIT_SIZE = 256
py
1a5c7e07e7007bbd70407f96f56804bfeddbc7d0
#!/usr/bin/env python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import idl_schema import unittest def getFunction(schema, name): for item in schema['functions']: if item['name'] == name: return item raise KeyError('Missing function %s' % name) def getParams(schema, name): function = getFunction(schema, name) return function['parameters'] def getReturns(schema, name): function = getFunction(schema, name) return function['returns'] def getType(schema, id): for item in schema['types']: if item['id'] == id: return item class IdlSchemaTest(unittest.TestCase): def setUp(self): loaded = idl_schema.Load('test/idl_basics.idl') self.assertEquals(1, len(loaded)) self.assertEquals('idl_basics', loaded[0]['namespace']) self.idl_basics = loaded[0] def testSimpleCallbacks(self): schema = self.idl_basics expected = [{'type':'function', 'name':'cb', 'parameters':[]}] self.assertEquals(expected, getParams(schema, 'function4')) expected = [{'type':'function', 'name':'cb', 'parameters':[{'name':'x', 'type':'integer'}]}] self.assertEquals(expected, getParams(schema, 'function5')) expected = [{'type':'function', 'name':'cb', 'parameters':[{'name':'arg', '$ref':'MyType1'}]}] self.assertEquals(expected, getParams(schema, 'function6')) def testCallbackWithArrayArgument(self): schema = self.idl_basics expected = [{'type':'function', 'name':'cb', 'parameters':[{'name':'arg', 'type':'array', 'items':{'$ref':'MyType2'}}]}] self.assertEquals(expected, getParams(schema, 'function12')) def testArrayOfCallbacks(self): schema = idl_schema.Load('test/idl_callback_arrays.idl')[0] expected = [{'type':'array', 'name':'callbacks', 'items':{'type':'function', 'name':'MyCallback', 'parameters':[{'type':'integer', 'name':'x'}]}}] self.assertEquals(expected, getParams(schema, 'whatever')) def testLegalValues(self): self.assertEquals({ 'x': {'name': 'x', 'type': 'integer', 'enum': [1,2], 'description': 'This comment tests "double-quotes".'}, 'y': {'name': 'y', 'type': 'string'}, 'z': {'name': 'z', 'type': 'string'}, 'a': {'name': 'a', 'type': 'string'}, 'b': {'name': 'b', 'type': 'string'}, 'c': {'name': 'c', 'type': 'string'}}, getType(self.idl_basics, 'MyType1')['properties']) def testMemberOrdering(self): self.assertEquals( ['x', 'y', 'z', 'a', 'b', 'c'], getType(self.idl_basics, 'MyType1')['properties'].keys()) def testEnum(self): schema = self.idl_basics expected = {'enum': [{'name': 'name1', 'description': 'comment1'}, {'name': 'name2'}], 'description': 'Enum description', 'type': 'string', 'id': 'EnumType'} self.assertEquals(expected, getType(schema, expected['id'])) expected = [{'name':'type', '$ref':'EnumType'}, {'type':'function', 'name':'cb', 'parameters':[{'name':'type', '$ref':'EnumType'}]}] self.assertEquals(expected, getParams(schema, 'function13')) expected = [{'items': {'$ref': 'EnumType'}, 'name': 'types', 'type': 'array'}] self.assertEquals(expected, getParams(schema, 'function14')) def testNoCompile(self): schema = self.idl_basics func = getFunction(schema, 'function15') self.assertTrue(func is not None) self.assertTrue(func['nocompile']) def testNoDocOnEnum(self): schema = self.idl_basics enum_with_nodoc = getType(schema, 'EnumTypeWithNoDoc') self.assertTrue(enum_with_nodoc is not None) self.assertTrue(enum_with_nodoc['nodoc']) def testInternalNamespace(self): idl_basics = self.idl_basics self.assertEquals('idl_basics', idl_basics['namespace']) self.assertTrue(idl_basics['internal']) self.assertFalse(idl_basics['nodoc']) def testReturnTypes(self): schema = self.idl_basics self.assertEquals({'name': 'function19', 'type': 'integer'}, getReturns(schema, 'function19')) self.assertEquals({'name': 'function20', '$ref': 'MyType1', 'optional': True}, getReturns(schema, 'function20')) self.assertEquals({'name': 'function21', 'type': 'array', 'items': {'$ref': 'MyType1'}}, getReturns(schema, 'function21')) self.assertEquals({'name': 'function22', '$ref': 'EnumType', 'optional': True}, getReturns(schema, 'function22')) self.assertEquals({'name': 'function23', 'type': 'array', 'items': {'$ref': 'EnumType'}}, getReturns(schema, 'function23')) def testChromeOSPlatformsNamespace(self): schema = idl_schema.Load('test/idl_namespace_chromeos.idl')[0] self.assertEquals('idl_namespace_chromeos', schema['namespace']) expected = ['chromeos'] self.assertEquals(expected, schema['platforms']) def testAllPlatformsNamespace(self): schema = idl_schema.Load('test/idl_namespace_all_platforms.idl')[0] self.assertEquals('idl_namespace_all_platforms', schema['namespace']) expected = ['chromeos', 'chromeos_touch', 'linux', 'mac', 'win'] self.assertEquals(expected, schema['platforms']) def testNonSpecificPlatformsNamespace(self): schema = idl_schema.Load('test/idl_namespace_non_specific_platforms.idl')[0] self.assertEquals('idl_namespace_non_specific_platforms', schema['namespace']) expected = None self.assertEquals(expected, schema['platforms']) def testSpecificImplementNamespace(self): schema = idl_schema.Load('test/idl_namespace_specific_implement.idl')[0] self.assertEquals('idl_namespace_specific_implement', schema['namespace']) expected = 'idl_namespace_specific_implement.idl' self.assertEquals(expected, schema['compiler_options']['implemented_in']) def testSpecificImplementOnChromeOSNamespace(self): schema = idl_schema.Load( 'test/idl_namespace_specific_implement_chromeos.idl')[0] self.assertEquals('idl_namespace_specific_implement_chromeos', schema['namespace']) expected_implemented_path = 'idl_namespace_specific_implement_chromeos.idl' expected_platform = ['chromeos'] self.assertEquals(expected_implemented_path, schema['compiler_options']['implemented_in']) self.assertEquals(expected_platform, schema['platforms']) def testCallbackComment(self): schema = self.idl_basics self.assertEquals('A comment on a callback.', getParams(schema, 'function16')[0]['description']) self.assertEquals( 'A parameter.', getParams(schema, 'function16')[0]['parameters'][0]['description']) self.assertEquals( 'Just a parameter comment, with no comment on the callback.', getParams(schema, 'function17')[0]['parameters'][0]['description']) self.assertEquals( 'Override callback comment.', getParams(schema, 'function18')[0]['description']) def testFunctionComment(self): schema = self.idl_basics func = getFunction(schema, 'function3') self.assertEquals(('This comment should appear in the documentation, ' 'despite occupying multiple lines.'), func['description']) self.assertEquals( [{'description': ('So should this comment about the argument. ' '<em>HTML</em> is fine too.'), 'name': 'arg', '$ref': 'MyType1'}], func['parameters']) func = getFunction(schema, 'function4') self.assertEquals(('This tests if "double-quotes" are escaped correctly.' '<br/><br/> It also tests a comment with two newlines.'), func['description']) def testReservedWords(self): schema = idl_schema.Load('test/idl_reserved_words.idl')[0] foo_type = getType(schema, 'Foo') self.assertEquals([{'name': 'float'}, {'name': 'DOMString'}], foo_type['enum']) enum_type = getType(schema, 'enum') self.assertEquals([{'name': 'callback'}, {'name': 'namespace'}], enum_type['enum']) dictionary = getType(schema, 'dictionary') self.assertEquals('integer', dictionary['properties']['long']['type']) mytype = getType(schema, 'MyType') self.assertEquals('string', mytype['properties']['interface']['type']) params = getParams(schema, 'static') self.assertEquals('Foo', params[0]['$ref']) self.assertEquals('enum', params[1]['$ref']) def testObjectTypes(self): schema = idl_schema.Load('test/idl_object_types.idl')[0] foo_type = getType(schema, 'FooType') self.assertEquals('object', foo_type['type']) self.assertEquals('integer', foo_type['properties']['x']['type']) self.assertEquals('object', foo_type['properties']['y']['type']) self.assertEquals( 'any', foo_type['properties']['y']['additionalProperties']['type']) self.assertEquals('object', foo_type['properties']['z']['type']) self.assertEquals( 'any', foo_type['properties']['z']['additionalProperties']['type']) self.assertEquals('Window', foo_type['properties']['z']['isInstanceOf']) bar_type = getType(schema, 'BarType') self.assertEquals('object', bar_type['type']) self.assertEquals('any', bar_type['properties']['x']['type']) def testObjectTypesInFunctions(self): schema = idl_schema.Load('test/idl_object_types.idl')[0] params = getParams(schema, 'objectFunction1') self.assertEquals('object', params[0]['type']) self.assertEquals('any', params[0]['additionalProperties']['type']) self.assertEquals('ImageData', params[0]['isInstanceOf']) params = getParams(schema, 'objectFunction2') self.assertEquals('any', params[0]['type']) def testObjectTypesWithOptionalFields(self): schema = idl_schema.Load('test/idl_object_types.idl')[0] baz_type = getType(schema, 'BazType') self.assertEquals(True, baz_type['properties']['x']['optional']) self.assertEquals('integer', baz_type['properties']['x']['type']) self.assertEquals(True, baz_type['properties']['foo']['optional']) self.assertEquals('FooType', baz_type['properties']['foo']['$ref']) if __name__ == '__main__': unittest.main()
py
1a5c7f249b79f747065c2ab70064269ab4be419d
from django.contrib.auth import get_user_model from django.contrib.staticfiles.templatetags.staticfiles import static from django.db import models from django.urls import reverse from meta.models import ModelMeta class Club(ModelMeta, models.Model): ''' Club ''' name = models.CharField( 'nombre', max_length=64 ) slug = models.SlugField( 'slug', max_length=64, unique=True ) description = models.TextField( 'descripción', max_length=300 ) document = models.FileField( 'documento', upload_to='clubs/docs/', blank=True, help_text='Útil para bases de concursos o información de actividades.' ) document_name = models.CharField( 'nombre del documento', max_length=120, default='', blank=True, help_text='Texto que aparecerá en el enlace del documento.' ) image = models.ImageField( 'imagen', upload_to='clubs/', blank=True, help_text='Imagen para mostrar en la lista de clubes' ) telegram_group = models.CharField( 'grupo de telegram', max_length=64, blank=True, default='' ) telegram_group_link = models.CharField( 'enlace al grupo de telegram', max_length=64, blank=True, default='' ) managers = models.ManyToManyField( get_user_model(), 'managed_clubs', verbose_name='gestores' ) members = models.ManyToManyField( get_user_model(), 'clubs', verbose_name='miembros' ) _metadata = { 'title': 'name', 'description': 'description', 'image': 'get_image', } class Meta: verbose_name = 'club' verbose_name_plural = 'clubes' permissions = [ ('can_link_club', 'Puede vincular un grupo de Telegram con un club') ] def __str__(self): return self.name def get_absolute_url(self): return reverse('clubs:detail', args=[self.slug]) def get_image(self): return self.image.url if self.image else static('images/favicon.png') class ClubMeeting(models.Model): ''' Club meeting ''' club = models.ForeignKey( Club, models.CASCADE, 'meetings', verbose_name='club' ) title = models.CharField( 'título', max_length=200, blank=True ) place = models.CharField( 'lugar', max_length=120 ) moment = models.DateTimeField('fecha') class Meta: verbose_name = 'quedada' ordering = ['moment'] def __str__(self): return '{} en {} ({})'.format( self.club.name, self.place, self.moment.strftime('%d %b %Y %H:%M') )
py
1a5c7f3d4f967618e1bd5e6b306395e6fd8505db
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Font(_BaseTraceHierarchyType): # class properties # -------------------- _parent_path_str = "cone.legendgrouptitle" _path_str = "cone.legendgrouptitle.font" _valid_props = {"color", "family", "size"} # color # ----- @property def color(self): """ The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["color"] @color.setter def color(self, val): self["color"] = val # family # ------ @property def family(self): """ HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart- studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". The 'family' property is a string and must be specified as: - A non-empty string Returns ------- str """ return self["family"] @family.setter def family(self, val): self["family"] = val # size # ---- @property def size(self): """ The 'size' property is a number and may be specified as: - An int or float in the interval [1, inf] Returns ------- int|float """ return self["size"] @size.setter def size(self, val): self["size"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size """ def __init__(self, arg=None, color=None, family=None, size=None, **kwargs): """ Construct a new Font object Sets this legend group's title font. Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.cone.legendgrouptitle.Font` color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size Returns ------- Font """ super(Font, self).__init__("font") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.cone.legendgrouptitle.Font constructor must be a dict or an instance of :class:`plotly.graph_objs.cone.legendgrouptitle.Font`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("color", None) _v = color if color is not None else _v if _v is not None: self["color"] = _v _v = arg.pop("family", None) _v = family if family is not None else _v if _v is not None: self["family"] = _v _v = arg.pop("size", None) _v = size if size is not None else _v if _v is not None: self["size"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
py
1a5c7f959b3398d00ce5f339a28a1d394fb82bca
''' Utility functions. ''' from datetime import datetime, timezone def timezone_aware(date: datetime) -> datetime: ''' Convert naive to timezone-aware datetime (UTC timezone). Parameters: date (datetime): Datetime object. Returns: datetime: A timezone-aware datetime. ''' return date.replace(tzinfo=timezone.utc) if date.tzinfo is None else date __all__ = [ 'timezone_aware' ]
py
1a5c8021090b45349e01892b8e6c9b5298f75827
import pandas as pd import trackpy as tp def remove_short_tracks(tracks, threshold_length=7): """Filter les tracks qui font plus de X pixels. Parameters ---------- tracks: pd.DataFrame contient les traces brutes des nanoparticle threshold_length: float le nombre de pixels minimum pour avoir une trace valide Returns ------- t_neurons: pd.DataFrame seulement une partie des traces obtenues en entréee. """ print("[filter.py] Je filtre les tracks qui sont trop courtes") # t_neurons will contain the trajectories of interest t_neurons = pd.DataFrame() Ntraj = 0 for item in set(tracks.particle): sub = tracks[tracks.particle == item] # selection of the item-th particle trajectory distance = tp.motion.diagonal_size(sub) # distance is an estimation of the particle displacement if the displacement # is roughly linear if distance > threshold_length: Ntraj += 1 t_neurons = t_neurons.append(sub) print(str(Ntraj) + ' trajectoires retenues') return t_neurons
bzl
1a5c803f2b122ccd88d4fd87efc4d8ab5c30abc7
# Copyright 2019 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementation of tvOS rules.""" load( "@build_bazel_rules_apple//apple/internal:apple_product_type.bzl", "apple_product_type", ) load( "@build_bazel_rules_apple//apple/internal:linking_support.bzl", "linking_support", ) load( "@build_bazel_rules_apple//apple/internal:outputs.bzl", "outputs", ) load( "@build_bazel_rules_apple//apple/internal:partials.bzl", "partials", ) load( "@build_bazel_rules_apple//apple/internal:platform_support.bzl", "platform_support", ) load( "@build_bazel_rules_apple//apple/internal:processor.bzl", "processor", ) load( "@build_bazel_rules_apple//apple/internal:rule_factory.bzl", "rule_factory", ) load( "@build_bazel_rules_apple//apple/internal:run_support.bzl", "run_support", ) load( "@build_bazel_rules_apple//apple:providers.bzl", "TvosApplicationBundleInfo", "TvosExtensionBundleInfo", "TvosFrameworkBundleInfo", ) def _tvos_application_impl(ctx): """Experimental implementation of tvos_application.""" top_level_attrs = [ "app_icons", "launch_images", "strings", ] binary_descriptor = linking_support.register_linking_action(ctx) binary_artifact = binary_descriptor.artifact debug_outputs_provider = binary_descriptor.debug_outputs_provider bundle_id = ctx.attr.bundle_id embeddable_targets = ctx.attr.extensions + ctx.attr.frameworks swift_dylib_dependencies = ctx.attr.extensions + ctx.attr.frameworks processor_partials = [ partials.app_assets_validation_partial( app_icons = ctx.files.app_icons, launch_images = ctx.files.launch_images, ), partials.apple_bundle_info_partial(bundle_id = bundle_id), partials.binary_partial(binary_artifact = binary_artifact), partials.bitcode_symbols_partial( binary_artifact = binary_artifact, debug_outputs_provider = debug_outputs_provider, dependency_targets = embeddable_targets, package_bitcode = True, ), partials.clang_rt_dylibs_partial(binary_artifact = binary_artifact), partials.debug_symbols_partial( debug_dependencies = embeddable_targets, debug_outputs_provider = debug_outputs_provider, ), partials.embedded_bundles_partial( bundle_embedded_bundles = True, embeddable_targets = embeddable_targets, ), partials.framework_import_partial( targets = ctx.attr.deps + embeddable_targets, ), partials.resources_partial( bundle_id = bundle_id, bundle_verification_targets = [struct(target = ext) for ext in ctx.attr.extensions], plist_attrs = ["infoplists"], targets_to_avoid = ctx.attr.frameworks, top_level_attrs = top_level_attrs, ), partials.settings_bundle_partial(), partials.swift_dylibs_partial( binary_artifact = binary_artifact, dependency_targets = swift_dylib_dependencies, bundle_dylibs = True, package_swift_support_if_needed = True, ), ] if platform_support.is_device_build(ctx): processor_partials.append( partials.provisioning_profile_partial(profile_artifact = ctx.file.provisioning_profile), ) processor_result = processor.process(ctx, processor_partials) executable = outputs.executable(ctx) run_support.register_simulator_executable(ctx, executable) return [ DefaultInfo( executable = executable, files = processor_result.output_files, runfiles = ctx.runfiles( files = [ outputs.archive(ctx), ctx.file._std_redirect_dylib, ], ), ), TvosApplicationBundleInfo(), # Propagate the binary provider so that this target can be used as bundle_loader in test # rules. binary_descriptor.provider, ] + processor_result.providers def _tvos_framework_impl(ctx): """Experimental implementation of tvos_framework.""" binary_descriptor = linking_support.register_linking_action(ctx) binary_artifact = binary_descriptor.artifact binary_provider = binary_descriptor.provider debug_outputs_provider = binary_descriptor.debug_outputs_provider bundle_id = ctx.attr.bundle_id processor_partials = [ partials.apple_bundle_info_partial(bundle_id = bundle_id), partials.binary_partial(binary_artifact = binary_artifact), partials.bitcode_symbols_partial( binary_artifact = binary_artifact, debug_outputs_provider = debug_outputs_provider, dependency_targets = ctx.attr.frameworks, ), # TODO(kaipi): Check if clang_rt dylibs are needed in Frameworks, or if # the can be skipped. partials.clang_rt_dylibs_partial(binary_artifact = binary_artifact), partials.debug_symbols_partial( debug_dependencies = ctx.attr.frameworks, debug_outputs_provider = debug_outputs_provider, ), partials.embedded_bundles_partial( frameworks = [outputs.archive(ctx)], embeddable_targets = ctx.attr.frameworks, ), partials.extension_safe_validation_partial(is_extension_safe = ctx.attr.extension_safe), partials.framework_headers_partial(hdrs = ctx.files.hdrs), partials.framework_provider_partial(binary_provider = binary_provider), partials.resources_partial( bundle_id = bundle_id, plist_attrs = ["infoplists"], targets_to_avoid = ctx.attr.frameworks, version_keys_required = False, ), partials.swift_dylibs_partial( binary_artifact = binary_artifact, dependency_targets = ctx.attr.frameworks, ), ] processor_result = processor.process(ctx, processor_partials) return [ DefaultInfo(files = processor_result.output_files), TvosFrameworkBundleInfo(), ] + processor_result.providers def _tvos_extension_impl(ctx): """Experimental implementation of tvos_extension.""" top_level_attrs = [ "app_icons", "strings", ] binary_descriptor = linking_support.register_linking_action(ctx) binary_artifact = binary_descriptor.artifact debug_outputs_provider = binary_descriptor.debug_outputs_provider bundle_id = ctx.attr.bundle_id processor_partials = [ partials.apple_bundle_info_partial(bundle_id = bundle_id), partials.binary_partial(binary_artifact = binary_artifact), partials.bitcode_symbols_partial( binary_artifact = binary_artifact, debug_outputs_provider = debug_outputs_provider, dependency_targets = ctx.attr.frameworks, ), partials.clang_rt_dylibs_partial(binary_artifact = binary_artifact), partials.debug_symbols_partial( debug_dependencies = ctx.attr.frameworks, debug_outputs_provider = debug_outputs_provider, ), partials.embedded_bundles_partial( plugins = [outputs.archive(ctx)], embeddable_targets = ctx.attr.frameworks, ), partials.extension_safe_validation_partial(is_extension_safe = True), partials.resources_partial( bundle_id = bundle_id, plist_attrs = ["infoplists"], targets_to_avoid = ctx.attr.frameworks, top_level_attrs = top_level_attrs, ), partials.swift_dylibs_partial( binary_artifact = binary_artifact, dependency_targets = ctx.attr.frameworks, ), ] if platform_support.is_device_build(ctx): processor_partials.append( partials.provisioning_profile_partial(profile_artifact = ctx.file.provisioning_profile), ) processor_result = processor.process(ctx, processor_partials) return [ DefaultInfo( files = processor_result.output_files, ), TvosExtensionBundleInfo(), ] + processor_result.providers tvos_application = rule_factory.create_apple_bundling_rule( implementation = _tvos_application_impl, platform_type = "tvos", product_type = apple_product_type.application, doc = "Builds and bundles a tvOS Application.", ) tvos_extension = rule_factory.create_apple_bundling_rule( implementation = _tvos_extension_impl, platform_type = "tvos", product_type = apple_product_type.app_extension, doc = "Builds and bundles a tvOS Extension.", ) tvos_framework = rule_factory.create_apple_bundling_rule( implementation = _tvos_framework_impl, platform_type = "tvos", product_type = apple_product_type.framework, doc = "Builds and bundles a tvOS Dynamic Framework.", )
py
1a5c80ab6f0c06783f4d0e9551701ed39a95c25b
import tensorflow as tf from sklearn.model_selection import train_test_split import unicodedata import re import io ''' Handles data loading, pre-processing and tokenizing ''' class DataHandler(): ''' Creates a tf.data.Dataset object to feed the network with tensors and in batches X: (tensor) with input data y: (tensor) with data labels (X paired) batch_size: (int) representing desired batch size returns: (tf.data.Dataset) dataset object (int) length of the dataset ''' def create_tf_dataset(self, X, y, batch_size=64): data_length = len(X) dataset = tf.data.Dataset.from_tensor_slices((X, y)).shuffle(data_length) dataset = dataset.batch(batch_size, drop_remainder=True) return dataset, data_length ''' Loads data from a file with the following format: <sentence_1_lang_A> <tab> <sentence_1_lang_B> <sentence_2_lang_A> <tab> <sentence_2_lang_B> <sentence_3_lang_A> <tab> <sentence_3_lang_B> ... <sentence_N_lang_A> <tab> <sentence_N_lang_B> path: (string) path to the dataset file num_examples: (int) 0 for full load or N to limit max load ''' def load_from_file(self, path, num_examples=0): lines = io.open(path, encoding='UTF-8').read().strip().split('\n') if num_examples == 0: num_examples = len(lines) word_pairs = [[ self.process_sentence(w) for w in l.split('\t')] for l in lines[:num_examples]] return zip(*word_pairs) ''' Splits a dataset represented by X, y data pairs by a factor X: (tensor) with input data y: (tensor) with data labels (X paired) split_size: (float) number between 0 and 1 returns: (tensor) splitted X, y pairs ''' def split_data(self, X, y, split_size=0.25): X, X_test, y, y_test = train_test_split(X, y, test_size=split_size) return X, X_test, y, y_test ''' Given a tensor of sentences, returns the maximun number of words found on a sentence tensor: (tensor) an array of sentences where each sentence is a tensor returns: (int) max number of words found ''' def max_length(self, tensor): return max(len(t) for t in tensor) ''' Cleans a given text by removing accents and unwanted characters and adds start/stop tokens ''' def process_sentence(self, w): w = self.unicode_to_ascii(w.lower().strip()) # Creates a space between a word and the punctuation following it w = re.sub(r"([?.!,¿])", r" \1 ", w) w = re.sub(r'[" "]+', " ", w) # Replace everything with a space except (a-z, A-Z, ".", "?", "!", ",") w = re.sub(r"[^a-zA-Z?.!,¿]+", " ", w) w = w.rstrip().strip() w = '<start> ' + w + ' <end>' return w ''' Creates a vocbulary for a given text Returns a list of word_id sequence for each sentence and a tokenizer ''' def tokenize(self, text): vocab_tokenizer = tf.keras.preprocessing.text.Tokenizer(filters='') vocab_tokenizer.fit_on_texts(text) tensor = vocab_tokenizer.texts_to_sequences(text) tensor = tf.keras.preprocessing.sequence.pad_sequences(tensor, padding='post') return tensor, vocab_tokenizer def unicode_to_ascii(self, s): return ''.join(c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn')
py
1a5c81951348eeb5f3aefd337fbcf826abc0d5b7
from abc import ABCMeta, abstractproperty class Generator(object): __metaclass__ = ABCMeta def __init__(self, conanfile): self.conanfile = conanfile self._deps_build_info = conanfile.deps_cpp_info self._build_info = conanfile.cpp_info self._deps_env_info = conanfile.deps_env_info self._env_info = conanfile.env_info self._deps_user_info = conanfile.deps_user_info @property def deps_build_info(self): return self._deps_build_info @property def build_info(self): return self._build_info @property def deps_env_info(self): return self._deps_env_info @property def deps_user_info(self): return self._deps_user_info @property def env_info(self): return self._env_info @property def settings(self): return self.conanfile.settings @abstractproperty def content(self): raise NotImplementedError() @abstractproperty def filename(self): raise NotImplementedError()
py
1a5c81bcab9b4bd6057814738a5c7ce36892f6a5
import json import sys import zipfile with zipfile.ZipFile(sys.argv[1]) as z: with z.open("result.json", "r") as f: r = json.load(f) print(r)
py
1a5c8215ae9b0990b1cd3a66a05dde8a9d319a55
from lib import * def get_tick_labels(bins, ticks): ticklabels = [] for i in ticks: if i < len(bins): ticklabels.append('%.2f'%(bins[int(i)])) else: ticklabels.append('%.2f'%(bins[-1])+'+') return ticklabels class Visualizer: def __init__(self, action_labels): self.n_action = len(action_labels) self.action_labels = action_labels def plot_a_episode(self, env, model, explored_cum_rewards, explored_actions, safe_cum_rewards, safe_actions, fig_path): f, axs = plt.subplots(3,1,sharex=True, figsize=(14,14)) ax_price, ax_action, ax_Q = axs ls = ['-','--'] for i in range(min(2,env.prices.shape[1])): p = env.prices[:,i]/env.prices[0,i]*100 - 100 ax_price.plot(p, 'k'+ls[i], label='input%i - 100'%i) ax_price.plot(explored_cum_rewards, 'b', label='explored P&L') ax_price.plot(safe_cum_rewards, 'r', label='safe P&L') ax_price.legend(loc='best', frameon=False) ax_price.set_title(env.title+', ideal: %.1f, safe: %.1f, explored: %1.f'%( env.max_profit, safe_cum_rewards[-1], explored_cum_rewards[-1])) ax_action.plot(explored_actions, 'b', label='explored') ax_action.plot(safe_actions, 'r', label='safe', linewidth=2) ax_action.set_ylim(-0.4, self.n_action-0.6) ax_action.set_ylabel('action') ax_action.set_yticks(range(self.n_action)) ax_action.legend(loc='best', frameon=False) style = ['k','r','b'] qq = [] for t in xrange(env.t0): qq.append([np.nan] * self.n_action) for t in xrange(env.t0, env.t_max): qq.append(model.predict(env.get_state(t))) for i in xrange(self.n_action): ax_Q.plot([float(qq[t][i]) for t in xrange(len(qq))], style[i], label=self.action_labels[i]) ax_Q.set_ylabel('Q') ax_Q.legend(loc='best', frameon=False) ax_Q.set_xlabel('t') plt.subplots_adjust(wspace=0.4) plt.savefig(fig_path) plt.close() def plot_episodes(self, explored_total_rewards, safe_total_rewards, explorations, fig_path, MA_window=100): f = plt.figure(figsize=(14,10)) # width, height in inch (100 pixel) if explored_total_rewards is None: f, ax_reward = plt.subplots() else: figshape = (3,1) ax_reward = plt.subplot2grid(figshape, (0, 0), rowspan=2) ax_exploration = plt.subplot2grid(figshape, (2, 0), sharex=ax_reward) tt = range(len(safe_total_rewards)) if explored_total_rewards is not None: ma = pd.rolling_median(np.array(explored_total_rewards), window=MA_window, min_periods=1) std = pd.rolling_std(np.array(explored_total_rewards), window=MA_window, min_periods=3) ax_reward.plot(tt, explored_total_rewards,'bv', fillstyle='none') ax_reward.plot(tt, ma, 'b', label='explored ma', linewidth=2) ax_reward.plot(tt, std, 'b--', label='explored std', linewidth=2) ma = pd.rolling_median(np.array(safe_total_rewards), window=MA_window, min_periods=1) std = pd.rolling_std(np.array(safe_total_rewards), window=MA_window, min_periods=3) ax_reward.plot(tt, safe_total_rewards,'ro', fillstyle='none') ax_reward.plot(tt, ma,'r', label='safe ma', linewidth=2) ax_reward.plot(tt, std,'r--', label='safe std', linewidth=2) ax_reward.axhline(y=0, color='k', linestyle=':') #ax_reward.axhline(y=60, color='k', linestyle=':') ax_reward.set_ylabel('total reward') ax_reward.legend(loc='best', frameon=False) ax_reward.yaxis.tick_right() ylim = ax_reward.get_ylim() ax_reward.set_ylim((max(-100,ylim[0]), min(100,ylim[1]))) if explored_total_rewards is not None: ax_exploration.plot(tt, np.array(explorations)*100., 'k') ax_exploration.set_ylabel('exploration') ax_exploration.set_xlabel('episode') plt.savefig(fig_path) plt.close() def test_visualizer(): f = plt.figure()#figsize=(5,8)) axs_action = [] ncol = 3 nrow = 2 clim = (0,1) ax = plt.subplot2grid((nrow, ncol), (0,ncol-1)) ax.matshow(np.random.random((2,2)), cmap='RdYlBu_r', clim=clim) for action in range(3): row = 1 + action/ncol col = action%ncol ax = plt.subplot2grid((nrow, ncol), (row,col)) cax = ax.matshow(np.random.random((2,2)), cmap='RdYlBu_r', clim=clim) ax = plt.subplot2grid((nrow, ncol), (0,0), colspan=ncol-1) cbar = f.colorbar(cax, ax=ax) plt.show() class VisualizerSequential: def config(self): pass def __init__(self, model): self.model = model self.layers = [] for layer in self.model.layers: self.layers.append(str(layer.name)) self.inter_models = dict() model_input = self.model.input for layer in self.layers: self.inter_models[layer] = keras.models.Model( inputs=model_input, outputs=self.model.get_layer(layer).output) self.config() class VisualizerConv1D(VisualizerSequential): def config(self): self.n_channel = self.model.input.shape[2] n_col = self.n_channel for layer in self.layers: shape = self.inter_models[layer].output.shape if len(shape) == 3: n_col = max(n_col, shape[2]) self.figshape = (len(self.layers)+1, int(n_col)) def plot(self, x): f = plt.figure(figsize=(30,30)) for i in range(self.n_channel): ax = plt.subplot2grid(self.figshape, (0,i)) ax.plot(x[0,:,i], '.-') ax.set_title('input, channel %i'%i) for i_layer in range(len(self.layers)): layer = self.layers[i_layer] z = self.inter_models[layer].predict(x) print('plotting '+layer) if len(z.shape) == 3: for i in range(z.shape[2]): ax = plt.subplot2grid(self.figshape, (i_layer+1, i)) ax.plot(z[0,:,i], '.-') ax.set_title(layer+' filter %i'%i) else: ax = plt.subplot2grid(self.figshape, (i_layer+1, 0)) ax.plot(z[0,:], '.-') ax.set_title(layer) ax.set_ylim(-100,100) def print_w(self): layer = self.layers[0] ww = self.inter_models[layer].get_weights() for w in ww: print(w.shape) print(w) """ def test_VisualizerConv1D(): from agents import * from sampler import * fld = os.path.join('models','SinSampler(2, 5, 60) large') qmodel = QModelConv(None, None) qmodel.load(fld) vis_conv = VisualizerConv1D(qmodel.model) print vis_conv.layers #return vis_conv.print_w() return sampler = SinSampler(2, 5, 60) x_all, title = sampler.sample(['fake']) fld_fig = os.path.join(fld,'vis_conv', title.replace('/','|')) makedirs(fld_fig) for t in range(20, 60): state = x_all[t-20:t,:] state = (state.copy()/state[-1]-1.)*100 vis_conv.plot(np.reshape(state, (1, 20, 1))) plt.savefig(os.path.join(fld_fig, 't%i.pdf'%t)) plt.close() """ if __name__ == '__main__': #test() #print np.isnan(float('nan')) #test_VisualizerConv1D() #histgram() plot_price()
py
1a5c82f84f1b187a85762bd653928f204925f5fd
import agents as ag import envgui as gui import random # ______________________________________________________________________________ loc_A, loc_B = (1, 1), (2, 1) # The two locations for the Vacuum world def RandomVacuumAgent(): "Randomly choose one of the actions from the vacuum environment." p = ag.RandomAgentProgram(['Right', 'Left', 'Up', 'Down', 'Suck', 'NoOp']) return ag.Agent(p) def TableDrivenVacuumAgent(): "[Figure 2.3]" table = {((loc_A, 'Clean'),): 'Right', ((loc_A, 'Dirty'),): 'Suck', ((loc_B, 'Clean'),): 'Left', ((loc_B, 'Dirty'),): 'Suck', ((loc_A, 'Clean'), (loc_A, 'Clean')): 'Right', ((loc_A, 'Clean'), (loc_A, 'Dirty')): 'Suck', # ... ((loc_A, 'Clean'), (loc_A, 'Clean'), (loc_A, 'Clean')): 'Right', ((loc_A, 'Clean'), (loc_A, 'Clean'), (loc_A, 'Dirty')): 'Suck', # ... } p = ag.TableDrivenAgentProgram(table) return ag.Agent() def ReflexVacuumAgent(): "A reflex agent for the two-state vacuum environment. [Figure 2.8]" def program(percept): location, status = percept if status == 'Dirty': return 'Suck' elif location == loc_A: return 'Right' elif location == loc_B: return 'Left' return ag.Agent(program) def ModelBasedVacuumAgent() -> object: "An agent that keeps track of what locations are clean or dirty." model = {loc_A: None, loc_B: None} def program(percept): "Same as ReflexVacuumAgent, except if everything is clean, do NoOp." location, status = percept model[location] = status # Update the model here if model[loc_A] == model[loc_B] == 'Clean': return 'NoOp' elif status == 'Dirty': return 'Suck' elif location == loc_A: return 'Right' elif location == loc_B: return 'Left' return ag.Agent(program) # ______________________________________________________________________________ # Vacuum environment class Dirt(ag.Thing): pass # class Floor(ag.Thing): # pass class VacuumEnvironment(ag.XYEnvironment): """The environment of [Ex. 2.12]. Agent perceives dirty or clean, and bump (into obstacle) or not; 2D discrete world of unknown size; performance measure is 100 for each dirt cleaned, and -1 for each turn taken.""" def __init__(self, width=4, height=3): super(VacuumEnvironment, self).__init__(width, height) self.add_walls() def thing_classes(self): return [ag.Wall, Dirt, ReflexVacuumAgent, RandomVacuumAgent, TableDrivenVacuumAgent, ModelBasedVacuumAgent] def percept(self, agent): """The percept is a tuple of ('Dirty' or 'Clean', 'Bump' or 'None'). Unlike the TrivialVacuumEnvironment, location is NOT perceived.""" status = ('Dirty' if self.some_things_at( agent.location, Dirt) else 'Clean') bump = ('Bump' if agent.bump else'None') return (bump, status) def execute_action(self, agent, action): if action == 'Suck': dirt_list = self.list_things_at(agent.location, Dirt) if dirt_list != []: dirt = dirt_list[0] agent.performance += 100 self.delete_thing(dirt) else: super(VacuumEnvironment, self).execute_action(agent, action) if action != 'NoOp': agent.performance -= 1 class TrivialVacuumEnvironment(VacuumEnvironment): """This environment has two locations, A and B. Each can be Dirty or Clean. The agent perceives its location and the location's status. This serves as an example of how to implement a simple Environment.""" def __init__(self): super(TrivialVacuumEnvironment, self).__init__() choice = random.randint(0, 3) if choice % 2: # 1 or 3 self.add_thing(Dirt(), loc_A) if choice > 1: # 2 or 3 self.add_thing(Dirt(), loc_B) def percept(self, agent): "Returns the agent's location, and the location status (Dirty/Clean)." status = ('Dirty' if self.some_things_at( agent.location, Dirt) else 'Clean') return (agent.location, status) # # def execute_action(self, agent, action): # """Change agent's location and/or location's status; track performance. # Score 10 for each dirt cleaned; -1 for each move.""" # if action == 'Right': # agent.location = loc_B # agent.performance -= 1 # elif action == 'Left': # agent.location = loc_A # agent.performance -= 1 # elif action == 'Suck': # if self.status[agent.location] == 'Dirty': # agent.performance += 10 # self.status[agent.location] = 'Clean' # def add_agent(self, a): "Agents start in either location at random." super().add_thing(a, random.choice([loc_A, loc_B])) # _________________________________________________________________________ # >>> a = ReflexVacuumAgent() # >>> a.program((loc_A, 'Clean')) # 'Right' # >>> a.program((loc_B, 'Clean')) # 'Left' # >>> a.program((loc_A, 'Dirty')) # 'Suck' # >>> a.program((loc_A, 'Dirty')) # 'Suck' # # >>> e = TrivialVacuumEnvironment() # >>> e.add_thing(ModelBasedVacuumAgent()) # >>> e.run(5) # Produces text-based status output # v = TrivialVacuumEnvironment() # a = ModelBasedVacuumAgent() # a = ag.TraceAgent(a) # v.add_agent(a) # v.run(10) # Launch GUI of Trivial Environment # v = TrivialVacuumEnvironment() # a = RandomVacuumAgent() # a = ag.TraceAgent(a) # v.add_agent(a) # g = gui.EnvGUI(v, 'Vaccuum') # c = g.getCanvas() # c.mapImageNames({ # Dirt: 'images/dirt.png', # ag.Wall: 'images/wall.jpg', # # Floor: 'images/floor.png', # ag.Agent: 'images/vacuum.png', # }) # c.update() # g.mainloop() # Launch GUI of more complex environment v = VacuumEnvironment(5, 4) #a = ModelBasedVacuumAgent() a = RandomVacuumAgent() a = ag.TraceAgent(a) loc = v.random_location_inbounds() v.add_thing(a, location=loc) v.scatter_things(Dirt) g = gui.EnvGUI(v, 'Vaccuum') c = g.getCanvas() c.mapImageNames({ ag.Wall: 'submissions/Zemgulys/myFace.jpg', # Floor: 'images/floor.png', Dirt: 'images/dirt.png', ag.Agent: 'images/vacuum.png', }) c.update() g.mainloop()
py
1a5c83597a081381bceae05a60e22852cc65830c
""" Copyright 2017 Pani Networks Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # # Functions for the calculation of a full Romana topology from the simplified # user configuration. # from copy import copy def calculate_num_groups(conf, num_networks=None): """ Calculates how many prefix groups we can have per AWS zone. Takes into account that we need a route for each prefix group and we can't have more than 48 route total. """ num_zones = len(conf['aws']['zones']) num_nets = len(conf['networks']) if num_networks is None else \ num_networks num_groups = 32 while num_groups * num_zones * num_nets > 48: if num_groups == 1: raise Exception("Too many networks and/or zones, reaching " "50 route limit for AWS.") num_groups //= 2 return num_groups def _build_aws_topology(conf): """ Build a topology for am AWS VPC deployment. """ # - If just one zone, we need one group, since it's a flat network. # - If it's more than one zone, we want many groups per zone, but # the total number of groups should not exceed 50 or even 40. # - We only have one topology if in VPC. t = { "networks" : [n['name'] for n in conf['networks']], "map" : [] } num_zones = len(conf['aws']['zones']) if num_zones == 1: t["map"].append({ "name" : conf['aws']['zones'][0], "groups" : [] }) else: num_groups = calculate_num_groups(conf) for zone in conf['aws']['zones']: m = { "name" : zone, "assignment" : {"failure-domain" : zone}, "groups" : [] } for i in range(num_groups): m["groups"].append({ "name" : "%s-%02d" % (zone, i), "groups" : [] }) t["map"].append(m) return t def _build_dc_topology(conf): """ Build a topology for a routed data center network. """ t = { "networks" : [n['name'] for n in conf['networks']], } top_level_group_label = None cd = conf['datacenter'] if cd['flat_network']: if cd['prefix_per_host']: num_groups = cd['num_hosts'] top_level_group_label = "host-%d" else: num_groups = 1 else: num_groups = cd['num_racks'] top_level_group_label = "rack-%d" m = [] for i in range(num_groups): g = {"groups" : []} if top_level_group_label: g["name"] = top_level_group_label % i if not cd['flat_network']: g["assignment"] = {"rack" : g["name"]} m.append(g) if not cd['flat_network']: if cd['prefix_per_host']: for top_level_group in m: for i in range(cd['num_hosts_per_rack']): g = { "name" : "host-%d" % i, "groups" : [] } top_level_group["groups"].append(g) t["map"] = m return t def build_topology(conf): """ From the user provided configuration, calculate the full topology config. """ topo = {"networks": [], "topologies" : []} for n in conf['networks']: net = copy(n) # If block mask wasn't defined, we add a default value for it if "block_mask" not in net: net["block_mask"] = 29 topo["networks"].append(net) if conf.get('aws'): t = _build_aws_topology(conf) else: t = _build_dc_topology(conf) topo["topologies"].append(t) return topo
py
1a5c8445b56bce44b9f2dc1af2182dd62d80e2b2
#! /usr/bin/env python import time from redis import StrictRedis from flask_sse import Message import json count = 0 redis=StrictRedis.from_url("redis://localhost") print "Sending SSE events..." while True: msgBody = {"message":"I can count to %s" % count} messageObj = Message(msgBody, type='greeting') msg_json = json.dumps(messageObj.to_dict()) print msg_json subCount = redis.publish(channel='sse', message=msg_json) count += 1 time.sleep(0.25)
py
1a5c857203944685bc766fee2a1190523a14ead4
from __future__ import absolute_import, print_function, unicode_literals from builtins import dict, str import io import os import json import time import requests import logging import ndex2.client from indra import get_config logger = logging.getLogger(__name__) ndex_base_url = 'http://52.37.175.128' def get_default_ndex_cred(ndex_cred): """Gets the NDEx credentials from the dict, or tries the environment if None""" if ndex_cred: username = ndex_cred.get('user') password = ndex_cred.get('password') if username is not None and password is not None: return username, password username = get_config('NDEX_USERNAME') password = get_config('NDEX_PASSWORD') return username, password def send_request(ndex_service_url, params, is_json=True, use_get=False): """Send a request to the NDEx server. Parameters ---------- ndex_service_url : str The URL of the service to use for the request. params : dict A dictionary of parameters to send with the request. Parameter keys differ based on the type of request. is_json : bool True if the response is in json format, otherwise it is assumed to be text. Default: False use_get : bool True if the request needs to use GET instead of POST. Returns ------- res : str Depending on the type of service and the is_json parameter, this function either returns a text string or a json dict. """ if use_get: res = requests.get(ndex_service_url, json=params) else: res = requests.post(ndex_service_url, json=params) status = res.status_code # If response is immediate, we get 200 if status == 200: if is_json: return res.json() else: return res.text # If there is a continuation of the message we get status 300, handled below. # Otherwise we return None. elif status != 300: logger.error('Request returned with code %d' % status) return None # In case the response is not immediate, a task ID can be used to get # the result. task_id = res.json().get('task_id') logger.info('NDEx task submitted...') time_used = 0 try: while status != 200: res = requests.get(ndex_base_url + '/task/' + task_id) status = res.status_code if status != 200: time.sleep(5) time_used += 5 except KeyError: next return None logger.info('NDEx task complete.') if is_json: return res.json() else: return res.text def create_network(cx_str, ndex_cred=None, private=True): """Creates a new NDEx network of the assembled CX model. To upload the assembled CX model to NDEx, you need to have a registered account on NDEx (http://ndexbio.org/) and have the `ndex` python package installed. The uploaded network is private by default. Parameters ---------- ndex_cred : dict A dictionary with the following entries: 'user': NDEx user name 'password': NDEx password Returns ------- network_id : str The UUID of the NDEx network that was created by uploading the assembled CX model. """ username, password = get_default_ndex_cred(ndex_cred) nd = ndex2.client.Ndex2('http://public.ndexbio.org', username=username, password=password) cx_stream = io.BytesIO(cx_str.encode('utf-8')) try: logger.info('Uploading network to NDEx.') network_uri = nd.save_cx_stream_as_new_network(cx_stream) except Exception as e: logger.error('Could not upload network to NDEx.') logger.error(e) return network_id = network_uri.rsplit('/')[-1] # Set the network to public. This often fails due to time-out issues, # therefore we implement a wait and retry approach here. if not private: nretries = 3 for retry_idx in range(nretries): time.sleep(3) try: logger.info('Making network public.') nd.make_network_public(network_id) break except Exception: msg = 'Setting network to public failed, ' if retry_idx + 1 < nretries: logger.info(msg + 'retrying %d more times.' % (nretries - (retry_idx + 1))) else: logger.info(msg + 'the network will remain private.') logger.info('The UUID for the uploaded network is: %s' % network_id) logger.info('View at: http://ndexbio.org/#/network/%s' % network_id) return network_id def add_to_network_set(network_id, set_id, ndex_cred=None): username, password = get_default_ndex_cred(ndex_cred) nd = ndex2.client.Ndex2('http://public.ndexbio.org', username=username, password=password) logger.info('Adding network %s to network set %s' % (network_id, set_id)) nd.add_networks_to_networkset(set_id, [network_id]) def set_network_name(network_id, name, ndex_cred=None): username, password = get_default_ndex_cred(ndex_cred) nd = ndex2.client.Ndex2('http://public.ndexbio.org', username=username, password=password) nd.set_network_properties(network_id, [{'predicateString': 'name', 'value': name}]) def update_network(cx_str, network_id, ndex_cred=None): """Update an existing CX network on NDEx with new CX content. Parameters ---------- cx_str : str String containing the CX content. network_id : str UUID of the network on NDEx. ndex_cred : dict A dictionary with the following entries: 'user': NDEx user name 'password': NDEx password """ server = 'http://public.ndexbio.org' username, password = get_default_ndex_cred(ndex_cred) nd = ndex2.client.Ndex2(server, username, password) try: logger.info('Getting network summary...') summary = nd.get_network_summary(network_id) except Exception as e: logger.error('Could not get NDEx network summary.') logger.error(e) return # Update network content try: logger.info('Updating network...') cx_stream = io.BytesIO(cx_str.encode('utf-8')) nd.update_cx_network(cx_stream, network_id) except Exception as e: logger.error('Could not update NDEx network.') logger.error(e) return # Update network profile ver_str = summary.get('version') new_ver = _increment_ndex_ver(ver_str) profile = {'name': summary.get('name'), 'description': summary.get('description'), 'version': new_ver, } logger.info('Updating NDEx network (%s) profile to %s', network_id, profile) time.sleep(5) profile_retries = 3 for _ in range(profile_retries): try: nd.update_network_profile(network_id, profile) logger.info('Updated NDEx network profile.') break except Exception as e: logger.error('Could not update NDEx network profile.') logger.error(e) time.sleep(30) set_style(network_id, ndex_cred) def set_style(network_id, ndex_cred=None, template_id=None): """Set the style of the network to a given template network's style Parameters ---------- network_id : str The UUID of the NDEx network whose style is to be changed. ndex_cred : dict A dictionary of NDEx credentials. template_id : Optional[str] The UUID of the NDEx network whose style is used on the network specified in the first argument. """ if not template_id: template_id = "ea4ea3b7-6903-11e7-961c-0ac135e8bacf" logger.info('Setting network style based on template: %s' % template_id) server = 'http://public.ndexbio.org' username, password = get_default_ndex_cred(ndex_cred) retries = 3 for _ in range(retries): try: time.sleep(5) source_network = ndex2.create_nice_cx_from_server( username=username, password=password, uuid=network_id, server=server) source_network.apply_template(server, template_id) source_network.update_to(network_id, server=server, username=username, password=password) logger.info('Set network style.') break except Exception as e: logger.error('Could not set style of NDEx network.') logger.error(e) def set_provenance(provenance, network_id, ndex_cred=None): server = 'http://public.ndexbio.org' username, password = get_default_ndex_cred(ndex_cred) nd = ndex2.client.Ndex2(server, username, password) try: logger.info('Setting network provenance...') nd.set_provenance(network_id, provenance) except Exception as e: logger.error('Could not set network provenance') logger.exception(e) def _increment_ndex_ver(ver_str): if not ver_str: new_ver = '1.0' else: major_ver, minor_ver = ver_str.split('.') new_minor_ver = str(int(minor_ver) + 1) new_ver = major_ver + '.' + new_minor_ver return new_ver
py
1a5c858edfd51f9d58befaa18f097b6dd207c69a
# Generated by Django 2.2.9 on 2020-01-06 20:45 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Book', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=250)), ('subtitle', models.CharField(max_length=250)), ('author', models.CharField(max_length=100)), ('isbn', models.CharField(max_length=13)), ], ), ]
py
1a5c86f41021170b5e818efe2df84cc3be481ad4
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 5 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import isi_sdk_8_1_0 from isi_sdk_8_1_0.models.auth_access_access_item_share_share_permissions import AuthAccessAccessItemShareSharePermissions # noqa: E501 from isi_sdk_8_1_0.rest import ApiException class TestAuthAccessAccessItemShareSharePermissions(unittest.TestCase): """AuthAccessAccessItemShareSharePermissions unit test stubs""" def setUp(self): pass def tearDown(self): pass def testAuthAccessAccessItemShareSharePermissions(self): """Test AuthAccessAccessItemShareSharePermissions""" # FIXME: construct object with mandatory attributes with example values # model = isi_sdk_8_1_0.models.auth_access_access_item_share_share_permissions.AuthAccessAccessItemShareSharePermissions() # noqa: E501 pass if __name__ == '__main__': unittest.main()
py
1a5c87c355f5178f24cac3fa36b3b692003aebbf
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Dec 5 12:26:18 2020 @author: dmattox """ # import numpy as np import collections import numpy as np from anytree import NodeMixin, RenderTree def binary2decimal(binary): # Accepts binary number as a string, returns decimal number as integer out = 0 binary = binary[::-1] # Reverse direction of binary string for i, b in enumerate(binary): out += int(b) * (2 ** i) return out def decimal2binary(decimal): # Accepts decimal number as integer, returns binary number as a string out = '' while decimal > 0: out += str(decimal % 2) # bit equal to remainder of dividing by 2 decimal //= 2 # update value to iteger quotient return out[::-1] # Reverse order of binary string and return it def validParenth(gly): # Returns true if all parentheses and brackets are paired and closed stack = [] comp = {')': '(', ']': '['} for p in gly: if p in ['(',')','[',']','{','}']: if p in comp.values(): stack.insert(0,p) else: if not stack: return False elif stack.pop(0) != comp[p]: return False if stack: return False else: return True def getSug(iupacGly): mono = '' for l in iupacGly[::-1]: # loop through string backwards and pop off first complete monosaccharide if l not in ['[', ']', '(', ')']: mono += l else: break if mono == '': raise SyntaxError('ERROR: Linkage punctuation found before any sugars, returning unchanged iupac glycan string') mono = mono[::-1] # correct order for sugar iupac code return(iupacGly[:(-1*len(mono))], mono) def getLink(iupacGly): link = '' for l in iupacGly[::-1]: # loop through string backwards and pop off the link defined within the last closed parenthesises if l != '(': link += l else: link += l break link = link[::-1] # correct order for sugar iupac code return(iupacGly[:(-1*len(link))], link[1:-1]) # Return iupac string without link, as well as the link without the parentheses def getBranch(iupacGly): # Pop an entire bracketed branch from the iupac string branch = '' nested = [] for l in iupacGly[::-1]: if l == '[': if nested == []: branch += l break else: branch += l nested.pop(0) elif l == ']' and branch != '': # If it hits a nested branch (BESIDES THE FIRST BRACKET) branch += l nested.append(l) else: branch += l branch = branch[::-1] # Reverse back to correct order return(iupacGly[:(-1*len(branch))], branch[1:-1]) # Return iupac string without branch, as well as the branch without the parentheses # def decode(self, maxB, maxC, monoDict, anoDict = {'u': 0, 'a': 1, 'b': 2}): # """ # Parameters (parameters used to generate encoding) # ---------- # maxB : int # Max value contained in a subway line in the root nodes of all glycans being considered (maximum number of observed branches). # maxC : int # Highest carbon number observed to participate in a glycosidic bond (from all glycans being considered). # monoDict : dict # Dictionary linking all observed monosaccharides to a corresponding integer (integers based on monosaccharide frequency rank). # anoDict : dict, optional # Dictionary encoding anomeric conformation information as integers. The default is {'u': 0, 'a': 1, 'b': 2}. # Returns # ------- # IUPAC string from encoding # """ # pass class GlyNode(NodeMixin): # Class to hold nodes (rows) of tree representations def __init__(self, base, ind, link = 'u0-0', parent = None): super(GlyNode, self).__init__() self.base = base # self.depth = depth # Depth is an existing property of parent class self.ind = ind link = link.replace('(','') # clean extra parentheses link = link.replace(')','') self.anomeric = link[0] if link[0] in ['u','a','b'] else 'u' # state of anomeric carbon if indicated, otherwise assume unknown self.parent = parent # parent GlyNode self.name = '%s:%d*%d' % (self.base, self.depth, self.ind) link = link[1:] if link[0] in ['u','a','b'] else link[:] # drop anomeric charcter if present link = link.split('-') # Split linkage into child Carbon connection [0] and parent carbon connection [1] self.Clinks = collections.Counter() # Holds the attachemnts at different carbon positions (based on formal carbon numbering) if self.parent is None: self.parentLink = 0 else: self.Clinks[link[0]] = 2 self.parent.Clinks[link[1]] = 1 self.parentLink = link[1] # self.parent.children.append(self) # Children handled by anytree parent class # self.children = [] # handled by anytree parent class self.subway = [] # Holds the indices of the subway lines that pass through the node def __repr__(self): return self.name def __str__(self): return self.name def treePrint(self): for pre, fill, node in RenderTree(self): print("%s%s" % (pre, node.name)) def drawSubway(self, sbwyStp): # Called by SugarBase.drawSbwyMap self.subway.append(sbwyStp) # Add subway line for the terminal node if self.parent is not None: self.parent.drawSubway(sbwyStp) # Recursively pass the subway line up the tree towards the root node, adding the information to each node along the way class SugarBase: # Class to hold entires in SugarBase v2 database def __init__(self, sbID, iupac, link, species, immunogenic): self.sbID = sbID self.iupac = iupac self.link = link self.species = [s.strip() for s in species.split(',')] self.taxonomy = [] self.immunogenic = immunogenic self.id = int(sbID.replace('SBID', '')) self.tree = {} # self.buildTree() self.encoding = None def __repr__(self): return self.sbID def __str__(self): return self.sbID def __int__(self): return(self.id) def print(self): print('SugarBase ID:\n\t', self.id) print('N/O Linked:\n\t', self.link) if self.species[0] == '': print('Species of origin:\n\tUnknown') elif len(self.species) <= 2: print('Species of origin: [', len(self.species),']\n\t', self.species) else: print('Species of origin: [', len(self.species),']\n\t', self.species[:3], '... (first 3, try print(SugarBase.species) to see the rest )') print('Immunogenicity:\n\t', self.immunogenic) print('IUPAC glycan:\n\t', self.iupac) def treePrint(self): if self.tree == {}: print('ERROR: sugar tree not yet constructed') else: self.tree[(0,0)].treePrint() def treeDepthCnt(self, depth): # Returns the number of nodes in the tree at the given depth cnt = 0 for k in self.tree.keys(): if k[0] == depth: cnt += 1 return cnt def buildTree(self): if self.tree != {}: print('WARNING: Tree already constructed, not rebuilding it') elif (validParenth(self.iupac) == False): raise SyntaxError('Unmatched parentheses or brackets detected in supplied IUPAC glyan string') else: gly = self.iupac # add start token par = (0,0) self.tree[par] = GlyNode(base = 'START', ind = par[1]) # Process the root node gly, base = getSug(gly) chi = (1,0) self.tree[chi] = GlyNode(base = base, ind = par[1], parent = self.tree[par]) par = chi if gly: # if glycan is a monosaccharide, sets the queue to empty to avoid the while loop branchQueue = [[gly,par]] else: branchQueue = [] while branchQueue: if branchQueue[0][0][-1] != ')' and branchQueue[0][0][-1] != ']': print('ERROR: no linkage or branch found for glycan ', self.sbID) break if branchQueue[0][0][-1] == ']': par = branchQueue[0][1] childLst = [] # Branching, at least 2 children from current parent node while branchQueue[0][0][-1] == ']': branchQueue[0][0], branch = getBranch(branchQueue[0][0]) childLst.append(branch) childLst.append(branchQueue[0][0]) # add "main" branch to the list of branches as well branchQueue.pop(0) # and remove it from the original queue childLst.sort(key = lambda x: int(x[-2]), reverse = True) # sort all of the branches from the parent node by descending parentlink carbon number for branch in childLst: branchQueue.insert(0,[branch, par]) # Add braches to branch queue such that the lower numbered branches are on the top of the queue chi = par # Since no monosacchairdes are removed, set chi to par to preserve true parent if branchQueue[0][0][-1] == ')': par = branchQueue[0][1] chi = (par[0]+1, self.treeDepthCnt(par[0]+1)) # depth & index of child branchQueue[0][0], link = getLink(branchQueue[0][0]) branchQueue[0][0], base = getSug(branchQueue[0][0]) self.tree[chi] = GlyNode(base, ind=chi[1], link=link, parent = self.tree[par]) if branchQueue[0][0] == '': branchQueue.pop(0) # If a branch has been fully processed, remove it from the queue else: branchQueue[0][1] = chi # otherwise, update the parent for the remainder of the branch # Add stop tokens to terminal monosaccharides termNodes = [] for k,v in self.tree.items(): if v.children == (): termNodes.append(k) termNodes.sort(key= lambda x: x[1]) termNodes.sort(key= lambda x: x[0], reverse=True) for par in termNodes: chi = (par[0]+1, self.treeDepthCnt(par[0]+1)) # depth & index of child self.tree[chi] = GlyNode('END', ind=chi[1], parent = self.tree[par]) def drawSbwyMap(self): sbwyStps = [] for k,v in self.tree.items(): if v.children == (): sbwyStps.append(k) sbwyStps.sort(reverse = True) for i,stp in enumerate(sbwyStps): self.tree[stp].drawSubway(i) def buildEncoding(self, maxB, maxC, monoDict, anoDict = {'u': 0, 'a': 1, 'b': 2}): """ Parameters ---------- maxB : int Max value contained in a subway line in the root nodes of all glycans being considered (maximum number of observed branches). maxC : int Highest carbon number observed to participate in a glycosidic bond (from all glycans being considered). monoDict : dict Dictionary linking all observed monosaccharides to a corresponding integer (integers based on monosaccharide frequency rank). anoDict : dict, optional Dictionary encoding anomeric conformation information as integers. The default is {'u': 0, 'a': 1, 'b': 2}. Returns ------- None, builds encoding in self.encoding as a numpy array, where each row corresponds to a node/monosaccharide and each column corresponds to a descriptor for that node: 1 -- monosaccharide identity (represented by integer from monoDict) 2 -- anomeric conformation of the saccharide (0:unknown, 1: alpha, 2: beta) 3 -- Carbon postions on sacchride participating in glycosidic bonds as a binary converted to a decimal number Ex 100001000 (C1 & C6 occupied) --> 264 4 -- "Subway lines" passing through the node as a binary converted to a decimal number Ex 11111100000 (Root node on a glycan with 6 terminal non-reducing saccharides, all 6 subay lines pass through) --> 2016 5 -- The carbon position of the parent saccharide the node is connected to 6 -- depth 7 -- index (differentiate saccharides at the same depth on different branches) """ colNames = ['sugar'] + ['anomeric'] + ['C_links'] + ['B_lines'] + ['parLink', 'sDepth', 'sInd'] self.encoding = np.zeros((len(self.tree.keys()), len(colNames)), dtype = int) # Initialize 2D array to store encoding for i,nodeKey in enumerate(list(self.tree.keys())): base = self.tree[nodeKey] # GlyNode object for the current saccharide # Prep col 3 value (occupied carbons) carbLinks = [str(base.Clinks[str(i)]) for i in range(1,maxC+1)] carbLinks = ['1' if c != '0' else '0' for c in carbLinks] # Drop parent/child linked info from each carbon position C_binary = ''.join(carbLinks) # Prep col 4 value (subway lines) sbwyLines = ['1' if i in base.subway else '0' for i in range(maxB+1)] B_binary = ''.join(sbwyLines) # Columns 5-7 liDeIn = [int(base.parentLink), base.depth, base.ind] # link, depth, index info for sugar & parent self.encoding[i,] = [monoDict[base.base], anoDict[base.anomeric], binary2decimal(C_binary), binary2decimal(B_binary)] + liDeIn
py
1a5c87dace7aee4ce151b37ffd820734ccce1bed
'''Utilities relating to interaction with Marathon ************************************************************************ FOR THE TIME BEING WHATEVER MODIFICATIONS ARE APPLIED TO THIS FILE SHOULD ALSO BE APPLIED TO sdk_marathon IN ANY OTHER PARTNER REPOS ************************************************************************ ''' import logging import json import os import tempfile import retrying import shakedown import sdk_cmd import sdk_metrics TIMEOUT_SECONDS = 15 * 60 log = logging.getLogger(__name__) def _get_config_once(app_name): return sdk_cmd.cluster_request('GET', _api_url('apps/{}'.format(app_name)), retry=False) def get_app_id(service_name): # service_name may already contain a leading slash. return '/' + service_name.lstrip('/') def wait_for_deployment_and_app_removal(app_id, timeout=TIMEOUT_SECONDS): """ Waits for application to be gone, according to Marathon. """ log.info('Waiting for no deployments for {}'.format(app_id)) shakedown.deployment_wait(timeout, app_id) client = shakedown.marathon.create_client() def marathon_dropped_app(): app_ids = [app['id'] for app in client.get_apps()] log.info('Marathon app IDs: {}'.format(app_ids)) matching_app_ids = list(filter(lambda x: x == app_id, app_ids)) if len(matching_app_ids) > 1: log.warning('Found multiple apps with id {}'.format(app_id)) return len(matching_app_ids) == 0 log.info('Waiting for no {} Marathon app'.format(app_id)) shakedown.time_wait(marathon_dropped_app, timeout_seconds=timeout) @retrying.retry(stop_max_attempt_number=5, wait_fixed=5000, retry_on_exception=lambda e: isinstance(e, Exception)) def retried_wait_for_deployment_and_app_removal(*args, **kwargs): wait_for_deployment_and_app_removal(*args, **kwargs) def app_exists(app_name): try: _get_config_once(app_name) return True except Exception: return False def get_config(app_name, timeout=TIMEOUT_SECONDS): # Be permissive of flakes when fetching the app content: @retrying.retry( wait_fixed=1000, stop_max_delay=timeout * 1000) def wait_for_response(): return _get_config_once(app_name).json()['app'] config = wait_for_response() # The configuration JSON that marathon returns doesn't match the configuration JSON it accepts, # so we have to remove some offending fields to make it re-submittable, since it's not possible to # submit a partial config with only the desired fields changed. if 'uris' in config: del config['uris'] if 'version' in config: del config['version'] return config def is_app_running(app: dict) -> bool: return (app.get('tasksStaged', 0) == 0 and app.get('tasksUnhealthy', 0) == 0 and app.get('tasksRunning', 0) > 0) def wait_for_app_running(app_name: str, timeout: int) -> None: @retrying.retry(stop_max_delay=timeout, wait_fixed=5000, retry_on_result=lambda result: not result) def _wait_for_app_running(app_name: str) -> bool: cmd = 'marathon app show {}'.format(app_name) log.info('Running %s', cmd) app = sdk_cmd.get_json_output(cmd) return is_app_running(app) _wait_for_app_running(app_name) def wait_for_deployment_and_app_running(app_name: str, timeout: int) -> None: shakedown.deployment_wait(timeout, app_name) wait_for_app_running(app_name, timeout) def install_app_from_file(app_name: str, app_def_path: str) -> (bool, str): """ Installs a marathon app using the path to an app definition. Args: app_def_path: Path to app definition Returns: (bool, str) tuple: Boolean indicates success of install attempt. String indicates error message if install attempt failed. """ cmd = "marathon app add {}".format(app_def_path) log.info("Running %s", cmd) rc, stdout, stderr = sdk_cmd.run_raw_cli(cmd) if rc or stderr: log.error("returncode=%s stdout=%s stderr=%s", rc, stdout, stderr) return False, stderr if "Created deployment" not in stdout: stderr = "'Created deployment' not in STDOUT" log.error(stderr) return False, stderr log.info('Waiting for app %s to be deployed and running...', app_name) wait_for_deployment_and_app_running(app_name, TIMEOUT_SECONDS) return True, '' def install_app(app_definition: dict) -> (bool, str): """ Installs a marathon app using the given `app_definition`. Args: app_definition: The definition of the app to pass to marathon. Returns: (bool, str) tuple: Boolean indicates success of install attempt. String indicates error message if install attempt failed. """ app_name = app_definition["id"] with tempfile.TemporaryDirectory() as d: app_def_file = "{}.json".format(app_name.replace('/', '__')) log.info("Launching {} marathon app".format(app_name)) app_def_path = os.path.join(d, app_def_file) log.info("Writing app definition to %s", app_def_path) with open(app_def_path, "w") as f: json.dump(app_definition, f) return install_app_from_file(app_name, app_def_path) def update_app(app_name, config, timeout=TIMEOUT_SECONDS, wait_for_completed_deployment=True, force=True): if "env" in config: log.info("Environment for marathon app {} ({} values):".format(app_name, len(config["env"]))) for k in sorted(config["env"]): log.info(" {}={}".format(k, config["env"][k])) query_string = "?force=true" if force else "" # throws on failure: sdk_cmd.cluster_request('PUT', _api_url('apps/{}{}'.format(app_name, query_string)), log_args=False, json=config) if wait_for_completed_deployment: log.info("Waiting for Marathon deployment of {} to complete...".format(app_name)) shakedown.deployment_wait(app_id=app_name, timeout=timeout) def destroy_app(app_name): shakedown.delete_app_wait(app_name) def restart_app(app_name): log.info("Restarting {}...".format(app_name)) # throws on failure: sdk_cmd.cluster_request('POST', _api_url('apps/{}/restart'.format(app_name))) log.info("Restarted {}.".format(app_name)) def _api_url(path): return '/marathon/v2/{}'.format(path) def get_scheduler_host(service_name): # Marathon mangles foldered paths as follows: "/path/to/svc" => "svc.to.path" task_name_elems = service_name.lstrip('/').split('/') task_name_elems.reverse() app_name = '.'.join(task_name_elems) ips = shakedown.get_service_ips('marathon', app_name) if len(ips) == 0: raise Exception('No IPs found for marathon task "{}". Available tasks are: {}'.format( app_name, [task['name'] for task in shakedown.get_service_tasks('marathon')])) return ips.pop() def bump_cpu_count_config(service_name, key_name, delta=0.1): config = get_config(service_name) updated_cpus = float(config['env'][key_name]) + delta config['env'][key_name] = str(updated_cpus) update_app(service_name, config) return updated_cpus def bump_task_count_config(service_name, key_name, delta=1): config = get_config(service_name) updated_node_count = int(config['env'][key_name]) + delta config['env'][key_name] = str(updated_node_count) update_app(service_name, config) def get_mesos_api_version(service_name): return get_config(service_name)['env']['MESOS_API_VERSION'] def set_mesos_api_version(service_name, api_version, timeout=600): '''Sets the mesos API version to the provided value, and then verifies that the scheduler comes back successfully''' config = get_config(service_name) config['env']['MESOS_API_VERSION'] = api_version update_app(service_name, config, timeout=timeout) # wait for scheduler to come back and successfully receive/process offers: sdk_metrics.wait_for_scheduler_counter_value(service_name, 'offers.processed', 1, timeout_seconds=timeout)
py
1a5c87f18b01822ec32c651c5da44c45ac9c69b4
from .lock import Lock # noqa from .semaphore import Semaphore # noqa from .services import get_local_checks, get_failed_cluster_checks # noqa
py
1a5c88bfd8a265711ab46f914ab88203ec3a1883
from unittest.mock import MagicMock import pytest from noti import GithubPR from fixtures import github as mock class TestGithubPR: @pytest.fixture def default_pr(self): return GithubPR(MagicMock(), mock.DummyPR()) def test_title(self, default_pr): assert default_pr.title == '_title_' def test_ci_status(self, default_pr): default_pr._repo.get_commit.return_value.get_combined_status.return_value.statuses = [1] default_pr._repo.get_commit.return_value.get_combined_status.return_value.state = 'success' assert default_pr.ci_status == 'success' default_pr._repo.get_commit.assert_called_with('_sha_') default_pr._repo.get_commit.return_value.get_combined_status.assert_called_once() def test_ci_status_no_statuses(self, default_pr): default_pr._repo.get_commit.return_value.get_combined_status.return_value.state = 'pending' assert default_pr.ci_status == '' default_pr._repo.get_commit.assert_called_with('_sha_') default_pr._repo.get_commit.return_value.get_combined_status.assert_called_once() def test_failed_pipeline_jobs(self, default_pr): default_pr._status = MagicMock() default_pr._status.statuses = [ mock.DummyBuild('failure'), mock.DummyBuild(), mock.DummyBuild('failure'), mock.DummyBuild(), mock.DummyBuild('failure') ] assert len(default_pr.failed_pipeline_jobs) == 3 def test_approved(self, default_pr): assert default_pr.approved def test_not_approved(self): pr = GithubPR(MagicMock(), mock.DummyPR(mergeable_state='blocked')) assert not pr.approved def test_url(self, default_pr): assert default_pr.url == '_url_' def test_branch(self, default_pr): assert default_pr.branch == '_branch_' def test_reviews(self): comments = [ mock.DummyComment(), mock.DummyComment(), mock.DummyComment() ] pr = GithubPR(MagicMock(), mock.DummyPR(comments=comments)) assert len(pr.reviews) == 3
py
1a5c89019a0f63aeb417c7df1ba918f31fdef4ce
import serial import time ports = { "fpga_out": "COM16", "fpga_in": "COM15", "laser2": "COM14", "laser1": "COM12", "x_motor": "COM19", "y_motor": "COM18", } fpga_out = serial.Serial(ports["fpga_out"], 115200) fpga_in = serial.Serial(ports["fpga_in"], 115200) y_motor = serial.Serial(ports["y_motor"], 9600) fpga_out.name = "fpga_out" fpga_in.name = "fpga_in" y_motor.name = "y_motor" def send(interface, cmd, receive_interface=None): print(interface.name, cmd.encode('utf8')) if receive_interface is None: receive_interface = interface interface.write(cmd.encode('utf8')) time.sleep(0.1) ret = b"" while receive_interface.in_waiting == 0: pass while receive_interface.in_waiting > 0: ret += receive_interface.readline().rstrip() + b"\n" return ret.decode('utf8') res = send(y_motor, "1G\r") print(res) time.sleep(2) res = send(y_motor, "1D\r") print(res) y_motor_pos = int(res.split('*')[1]) res = send(fpga_out, "TDIYERD\n", fpga_in) print(res) encoder_pos = int(res.split(' ')[1]) res = send(fpga_out, "TDIYPOS {}\n".format(encoder_pos - 100000), fpga_in) print(res) res = send(fpga_out, "TDIYARM2 8000 1\n", fpga_in) print(res) send(fpga_out, "TDIYWAIT\n") time.sleep(1) res = send(y_motor, "1D{}\r1G\r".format(y_motor_pos - 420000)) print(res) time.sleep(10) res = send(fpga_out, "TDIYERD\n", fpga_in) print(res) res = send(y_motor, "1D{}\r1G\r".format(y_motor_pos)) print(res) res = send(fpga_out, "TDIYERD\n", fpga_in) print(res)
py
1a5c8adbe09f50f70df6fa586af133403eb168d9
#!/usr/bin/env python from nose.tools import * from networkx import * from networkx.generators.random_graphs import * class TestGeneratorsRandom(): def smoke_test_random_graph(self): seed = 42 G=gnp_random_graph(100,0.25,seed) G=binomial_graph(100,0.25,seed) G=erdos_renyi_graph(100,0.25,seed) G=fast_gnp_random_graph(100,0.25,seed) G=gnm_random_graph(100,20,seed) G=dense_gnm_random_graph(100,20,seed) G=watts_strogatz_graph(10,2,0.25,seed) assert_equal(len(G), 10) assert_equal(G.number_of_edges(), 10) G=connected_watts_strogatz_graph(10,2,0.1,seed) assert_equal(len(G), 10) assert_equal(G.number_of_edges(), 10) G=watts_strogatz_graph(10,4,0.25,seed) assert_equal(len(G), 10) assert_equal(G.number_of_edges(), 20) G=newman_watts_strogatz_graph(10,2,0.0,seed) assert_equal(len(G), 10) assert_equal(G.number_of_edges(), 10) G=newman_watts_strogatz_graph(10,4,0.25,seed) assert_equal(len(G), 10) assert_true(G.number_of_edges() >= 20) G=barabasi_albert_graph(100,1,seed) G=barabasi_albert_graph(100,3,seed) assert_equal(G.number_of_edges(),(97*3)) G=powerlaw_cluster_graph(100,1,1.0,seed) G=powerlaw_cluster_graph(100,3,0.0,seed) assert_equal(G.number_of_edges(),(97*3)) G=random_regular_graph(10,20,seed) assert_raises(networkx.exception.NetworkXError, random_regular_graph, 3, 21) constructor=[(10,20,0.8),(20,40,0.8)] G=random_shell_graph(constructor,seed) G=nx.random_lobster(10,0.1,0.5,seed) def test_random_zero_regular_graph(self): """Tests that a 0-regular graph has the correct number of nodes and edges. """ G = random_regular_graph(0, 10) assert_equal(len(G), 10) assert_equal(len(G.edges()), 0) def test_gnp(self): for generator in [gnp_random_graph, binomial_graph, erdos_renyi_graph, fast_gnp_random_graph]: G = generator(10, -1.1) assert_equal(len(G), 10) assert_equal(len(G.edges()), 0) G = generator(10, 0.1) assert_equal(len(G), 10) G = generator(10, 0.1, seed=42) assert_equal(len(G), 10) G = generator(10, 1.1) assert_equal(len(G), 10) assert_equal(len(G.edges()), 45) G = generator(10, -1.1, directed=True) assert_true(G.is_directed()) assert_equal(len(G), 10) assert_equal(len(G.edges()), 0) G = generator(10, 0.1, directed=True) assert_true(G.is_directed()) assert_equal(len(G), 10) G = generator(10, 1.1, directed=True) assert_true(G.is_directed()) assert_equal(len(G), 10) assert_equal(len(G.edges()), 90) # assert that random graphs generate all edges for p close to 1 edges = 0 runs = 100 for i in range(runs): edges += len(generator(10, 0.99999, directed=True).edges()) assert_almost_equal(edges/float(runs), 90, delta=runs*2.0/100) def test_gnm(self): G=gnm_random_graph(10,3) assert_equal(len(G),10) assert_equal(len(G.edges()),3) G=gnm_random_graph(10,3,seed=42) assert_equal(len(G),10) assert_equal(len(G.edges()),3) G=gnm_random_graph(10,100) assert_equal(len(G),10) assert_equal(len(G.edges()),45) G=gnm_random_graph(10,100,directed=True) assert_equal(len(G),10) assert_equal(len(G.edges()),90) G=gnm_random_graph(10,-1.1) assert_equal(len(G),10) assert_equal(len(G.edges()),0) def test_watts_strogatz_big_k(self): assert_raises(networkx.exception.NetworkXError, watts_strogatz_graph, 10, 10, 0.25) assert_raises(networkx.exception.NetworkXError, newman_watts_strogatz_graph, 10, 10, 0.25) # could create an infinite loop, now doesn't # infinite loop used to occur when a node has degree n-1 and needs to rewire watts_strogatz_graph(10, 9, 0.25, seed=0) newman_watts_strogatz_graph(10, 9, 0.5, seed=0)
py
1a5c8af2a928b1dec4b9f66dfb7426fe46060537
# Copyright 2018-2019 Capital One Services, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
py
1a5c8b0628295a373af9938e3b7fae3b1182922c
from fastapi import FastAPI from main_types import ModelName app = FastAPI() @app.get("/") async def welcome(): return {"welcome": "To have here or take away?. Don't forget the cutlery!"} @app.get("/items/{item_id}") async def read_item(item_id: int): return {"item_id": item_id} @app.get("/float/{f_num}") async def read_float(f_num: float): return {"float_num": f_num} @app.get("/model/{model_name}") async def get_model(model_name: ModelName): res = dict() res["model_name"] = model_name res["message"] = "Have some residuals" if model_name == ModelName.alexnet: res["message"] = "Deep Learning FTW!" elif model_name.value == "lenet": res["message"] = "LeCNN all the images" return res
py
1a5c8b1bb8b2e2eac7eaef8dc0c5e32651db3e4f
# Import librerias import pandas import matplotlib.pyplot as graficar from sklearn.cluster import KMeans from sklearn.decomposition import PCA as ACP from sklearn.cross_validation import train_test_split as separar from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error as ECM from sklearn.ensemble import RandomForestRegressor # Varibale global GRAFICAR = True juegos = pandas.read_csv("games.csv") # Imprime las columnas que se leyeron print("-"*5 + "Columnas" + "-"*5) print(juegos.columns) print() # Imprime cuantas filas, columnas tenemos print("-"*5 + "Tamaño de DataSet (Filas, Columnas)" + "-"*5) print(juegos.shape) print() # Suponiendo que queremos predecir que puntuacion en promedio # le harian los usuarios a un juego que aun no ha salido. Esta informacion # se encuentra en la columna average_rating # Hacemos un histograma de esta columna para saber la distribucion # de las puntiaciones en promedio de todos los juegos usando # Lee DataSet # indexacion por columna que retorna toda una columna if GRAFICAR: graficar.title("Distribucion de puntuacion promedio") graficar.xlabel("Puntuacion promedio") graficar.ylabel("# de Juegos") graficar.hist(juegos["average_rating"]) graficar.show() graficar.clf() # juegos[juegos["average_rating"] == 0] retornara un dataframe con solo las # filas donde el valor de la columna average_rating es 0 # Indexando por posicion, podemos obtener toda una fila # juegos.iloc[0] retornara toda la primera fila del dataframe juegos # juegos.iloc[0,0] retornara la primera columna de la primera fila del dataframe print("-"*5 + "Diff entre juego con puntaje de 0 y con puntaje superior a 0" + "-"*5) print(juegos[juegos["average_rating"] == 0].iloc[0]) print(juegos[juegos["average_rating"] > 0].iloc[0]) print() # Se determina que deben haber muchos juegos con 0 puntuaciones de usuarios # por lo tanto el promedio de puntuaciones es 0 # Esta informacion se considera basura asi que se opta por eliminar los juegos # que no hayan sido puntuados por algun usuarios juegos = juegos[juegos["users_rated"] > 0] # Remueve cualquier fila que le hagan falta valores juegos = juegos.dropna(axis=0) # Distribucion de puntuacion promedio if GRAFICAR: graficar.title("Distribucion de puntuacion promedio") graficar.xlabel("Puntuacion promedio") graficar.ylabel("# de Juegos") graficar.hist(juegos["average_rating"]) graficar.show() graficar.clf() # Imprime cuantas filas, columnas tenemos print("-"*5 + "Tamaño de DataSet (Filas, Columnas)" + "-"*5) print(juegos.shape) print() # Análisis de grupos o agrupamiento # es la tarea de agrupar un conjunto de objetos de tal manera que los miembros # del mismo grupo (llamado clúster) sean más similares, en algún sentido u otro. #EXPO #Es la tarea principal de la minería de datos exploratoria y es una técnica común en el análisis de datos estadísticos. Además es utilizada en múltiples campos como el aprendizaje automático, el reconocimiento de patrones, el análisis de imágenes, la búsqueda y recuperación de información, la bioinformática, la compresión de datos y la computación gráfica. # Un ejemplo de grupo son los juegos que no tenian puntuacion # Se usara K-means, un metodo de agrupamiento donde cada elemento hará parte # cuyo valor promedio se acerque mas #EXPO # K-means es un método de agrupamiento, que tiene como objetivo la partición de un conjunto de n observaciones en k grupos en el que cada observación pertenece al grupo cuyo valor medio es más cercano. Es un método utilizado en minería de datos. # Se crea el modelo con 5 clusters y una semilla random de 1 modelo_kmeans = KMeans(n_clusters=5, random_state=1) # Se quitan todos los tipos de datos que no sean numericos columnas_numero = juegos._get_numeric_data() # Se agrega la informacion al modelo modelo_kmeans.fit(columnas_numero) # Se obtienen las etiquetas de los clusters etiquetas = modelo_kmeans.labels_ # Para visualizar los clusters o grupos, es necesario reducir el numero de # columnas debido a que cada columna aumentara el grafico en 1 dimension # asi que se usa Análisis de Componentes Principales (En español ACP, en inglés, PCA) # es una tecnica para reducir la dimensionalidad de un conjunto de datos usando # correlacion entre columnas # Se crea modelo ACP acp_2 = ACP(2) # Se obtienen que columnas graficar columnas_a_graficar = acp_2.fit_transform(columnas_numero) if GRAFICAR: # Se crea la grafica graficar.title("Agrupacion de juegos en 5 clusters con ACP") graficar.scatter(x=columnas_a_graficar[:,0], y=columnas_a_graficar[:,1], c=etiquetas) graficar.show() graficar.clf() # Inteligencia artificial # Para esto hay que determinar como se medira el error y que se va a predecir # PREDECIR -> average_rating o el puntaje promedio de un juego # ERROR # Aqui se tiene en cuenta que se esta haciendo # Regresion & variables continuas != Clasificacion & variables discretas # En este caso se usara Error Cuadrático Medio (En español ECM, en inglés, MSE) # porque es rapido de calcular y determina el promedio de que tan distantes # estan las predicciones de los valores reales # CORRELACION # Sabiendo que se quiere predecir average_rating o el puntaje promedio de un juego # es momento de decidir que columnas son de mayor interes para esto. # Para esto se calculara la correlacion entre average_rating y el resto de columnas print("-"*5 + "Correlacion de average_rating" + "-"*5) print(juegos.corr()["average_rating"]) print() # De aqui podemos decir que id y average_weight tienen mayor correlacion # [ID] # Suponiendo que este valor es dado cuando se agrega un juego # es posible que los juegos mas nuevos tienen mejores puntuaciones # tal vez al principio de BoardGameGeek los usuarios eran menos amables # o que los juegos viejos tenian menos calidad # [average_weight] # Es posible que los juegos mas complejos hayan sido puntuados mejor # Columnas para predecir # Hay que remover las columnas no numericas # Hay que remover las columnas que se calculen usando la columna a predecir average_rating # se quitan "bayes_average_rating", "average_rating", "type", "name" # Obtiene lista de columnas columnas = juegos.columns.tolist() # Filtrado de columnas, lo cual nos da los predictores columnas = [columna for columna in columnas if columna not in ["bayes_average_rating", "average_rating", "type", "name"]] # Se guarda la columna que se intentara predecir columna_a_predecir = "average_rating" # Es necesario separar el DataSet que se tiene en set para entrenamiento y set para pruebas # Si no se hace, se consigue overfitting o sobre-ajuste que es sobre-entrenar un algoritmo # de aprendizaje con un cierto set para los cuales ya conoce el resultado # Ej: Si aprendes 1+1=2 y 2+2=4, seras capaz de responder con 0 errores # Pero si te preguntan por 3+3, no seras capaz de resolverlo # Por eso es necesario aprender de forma general # Como norma, si el algoritmo de aprendizaje produce una cantidad de errores baja # es recomendable revisar que no se este presentando un sobre-ajuste # En este caso se usara el 80% del DataSet para entrenar y el 20% para probar # Se crea el set de entrenamiento y de pruebas set_entrenamiento = juegos.sample(frac=0.8, random_state=1) set_test = juegos.loc[~juegos.index.isin(set_entrenamiento.index)] # Imprime tamaño de ambos sets print("-"*5 + "Tamaño de set_entrenamiento (Filas, Columnas)" + "-"*5) print(set_entrenamiento.shape) print() print("-"*5 + "Tamaño de set_test (Filas, Columnas)" + "-"*5) print(set_test.shape) print() # Se crea el modelo modelo = LinearRegression() # Se añaden los DataSets al modelo, el primero son los predictores y el segundo, el objetivo modelo.fit(set_entrenamiento[columnas], set_entrenamiento[columna_a_predecir]) # Se crean predicciones predicciones = modelo.predict(set_test[columnas]) print("-"*5 + "Predicciones" + "-"*5) print(predicciones) print("-"*5 + "VS" + "-"*5) print(juegos.tail(1)["average_rating"]) print() # Calcula error entre prediccion y los valores reales print("-"*5 + "Error en prediccion" + "-"*5) print(ECM(predicciones, set_test[columna_a_predecir])) print() # Grafica predicciones vs reales con regresion lineal if GRAFICAR: graficar.figure("lineal") graficar.title("Regresion lineal") graficar.xlabel("ID Juego") graficar.ylabel("Puntuacion promedio") graficar.scatter(set_test["id"], set_test["average_rating"], label="Real") graficar.scatter(set_test["id"], predicciones, label="Prediccion") graficar.legend(loc="upper left") # FIN DE REGRESSION LINEAL # Aunque Scikit-learn nos permite usar otro algoritmo, se usara # random forest que es capaz de encontrar correlaciones entre DataSets no lineales # cosa que la Regresion lineal no seria capaz # EJ: si minage o edad minima para un juego afecta a la puntuacion # edad < 5, el puntaje es bajo # edad 5-10, el puntaje es alto # edad 10-15, el puntaje es bajo print("-"*5 + "Usando RANDOM FOREST" + "-"*5) # Se crea el modelo modelo = RandomForestRegressor(n_estimators=100, min_samples_leaf=10, random_state=1) # Se pasan los DataSets modelo.fit(set_entrenamiento[columnas], set_entrenamiento[columna_a_predecir]) # Se hace la prediccion predicciones = modelo.predict(set_test[columnas]) print("-"*5 + "Predicciones" + "-"*5) print(predicciones) print("-"*5 + "VS" + "-"*5) print(juegos.tail(1)["average_rating"]) print() # Calcula el error print("-"*5 + "Error en prediccion" + "-"*5) print(ECM(predicciones, set_test[columna_a_predecir])) print() # Grafica predicciones vs reales con regresion random forest if GRAFICAR: graficar.figure("random") graficar.title("Regresion Random Forest") graficar.xlabel("ID Juego") graficar.ylabel("Puntuacion promedio") graficar.scatter(set_test["id"], set_test["average_rating"], label="Real") graficar.scatter(set_test["id"], predicciones, label="Prediccion") graficar.legend(loc="upper left") # Muestra todas las graficas que esten cargadas graficar.show()
py
1a5c8b38460a2737d6f6a0fc69f62bf60e4c1858
#!/usr/bin/python from paillier import * from candidate import * from voter import * from election_board import * from bulletin_board import * import sys import os from Tkinter import * import traceback def submitVote(): global userPick global userPIN # print voters if str(userPIN.get()).strip() in voters and (userPick.get()) != '': if not voters[str(userPIN.get()).strip()].voted: u_vote = [] for c in range(len(candidates)): v = 0 if int(userPick.get()) == c: v = 1 u_vote.append(encrypt(eb.public_key, v)) blind_signed_vote = [] for v in u_vote: ## We want to blind sign each vote. So blind it, blinding_factor, blinded_msg = bs.blind(v, eb.public_signing_key) signed = eb.blind_sign(blinded_msg) unblinded = bs.unblind(signed, blinding_factor, eb.public_signing_key) blind_signed_vote.append((unblinded, blinding_factor)) if not eb.has_voter_voted(str(userPIN.get().strip())): bb.addVote(userPIN.get().strip(), u_vote, blind_signed_vote) voters[str(userPIN.get()).strip()].voted = True userPick = StringVar() userPIN = StringVar() toplevel.destroy() def castVote(): global canCast if canCast: global toplevel toplevel = Toplevel() toplevel.geometry("600x800+200+200") toplevel.focus_force() label = Label(toplevel, text="Enter your voting ID", height=0, width=100) label.pack() e = Entry(toplevel,textvariable=userPIN) e.pack() for c in range(len(candidates)): b = Radiobutton(toplevel, text=candidates[c].name, variable=userPick, value=c) b.pack(anchor=W) toplevel.focus_force() b = Button(toplevel, text="Submit Vote", width=20, command=submitVote) b.pack(side='bottom',padx=0,pady=0) def endVoting(): global isOver global canCast global b global button1 if not isOver: isOver = True canCast = False e = bb.endElection() final = '' global resultsLabel for candidate in e: final += 'Number of votes for %s is %d\n'%(candidate.name, candidate.numVotes) resultsLabel = Label(app, text=final, height=0, width=100) resultsLabel.pack() b.pack_forget() button1.pack_forget() if __name__ == "__main__": ## Get an instance of the election board isOver = False canCast = True eb = ElectionBoard.Instance() bb = BulletinBoard.Instance() ca = CountingAuthority.Instance() ## Register voters and candidates voters = {} for line in open('voters.txt'): parsed = line.strip().split(',') voters[parsed[1].strip()] = Voter(parsed[0].strip(),parsed[1].strip()) candidates = [] for line in open("candidates.txt"): candidates.append(Candidate(line.strip(), encrypt(eb.public_key, 0))) eb.register_voters(voters) eb.register_candidates(candidates) app = Tk() toplevel = None app.title("Totally Secure and Legit Voting Machine 3000") app.geometry("300x200+200+200") userPick = StringVar() userPIN = StringVar() resultsLabel = None b = Button(app, text="End Voting", width=20, command=endVoting) button1 = Button(app, text="Cast Your Vote", width=20, command=castVote) b.pack(side='bottom',padx=0,pady=0) button1.pack(side='bottom',padx=5,pady=5) app.mainloop()
py
1a5c8b623307f7248f06cdcb5ee0228fa28b1a15
log_level = 'INFO' load_from = None resume_from = None dist_params = dict(backend='nccl') workflow = [('train', 1)] checkpoint_config = dict(interval=10) evaluation = dict(interval=20, metric='mAP', key_indicator='AP') optimizer = dict( type='Adam', lr=0.0015, ) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[200, 260]) total_epochs = 100 # 300 log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) channel_cfg = dict( num_output_channels=14, dataset_joints=14, dataset_channel=[ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], ], inference_channel=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]) data_cfg = dict( image_size=512, base_size=256, base_sigma=2, heatmap_size=[128, 256], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel'], num_scales=2, scale_aware_sigma=False, ) # model settings model = dict( type='BottomUp', pretrained='https://download.openmmlab.com/mmpose/' 'pretrain_models/hrnet_w32-36af842e.pth', backbone=dict( type='HRNet', in_channels=3, extra=dict( stage1=dict( num_modules=1, num_branches=1, block='BOTTLENECK', num_blocks=(4, ), num_channels=(64, )), stage2=dict( num_modules=1, num_branches=2, block='BASIC', num_blocks=(4, 4), num_channels=(32, 64)), stage3=dict( num_modules=4, num_branches=3, block='BASIC', num_blocks=(4, 4, 4), num_channels=(32, 64, 128)), stage4=dict( num_modules=3, num_branches=4, block='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(32, 64, 128, 256))), ), keypoint_head=dict( type='BottomUpHigherResolutionHead', in_channels=32, num_joints=14, tag_per_joint=True, extra=dict(final_conv_kernel=1, ), num_deconv_layers=1, num_deconv_filters=[32], num_deconv_kernels=[4], num_basic_blocks=4, cat_output=[True], with_ae_loss=[True, False]), train_cfg=dict( num_joints=channel_cfg['dataset_joints'], img_size=data_cfg['image_size']), test_cfg=dict( num_joints=channel_cfg['dataset_joints'], max_num_people=30, scale_factor=[1], with_heatmaps=[True, True], with_ae=[True, False], project2image=True, nms_kernel=5, nms_padding=2, tag_per_joint=True, detection_threshold=0.1, tag_threshold=1, use_detection_val=True, ignore_too_much=False, adjust=True, refine=True, flip_test=True), loss_pose=dict( type='MultiLossFactory', num_joints=14, num_stages=2, ae_loss_type='exp', with_ae_loss=[True, False], push_loss_factor=[0.001, 0.001], pull_loss_factor=[0.001, 0.001], with_heatmaps_loss=[True, True], heatmaps_loss_factor=[1.0, 1.0], ), ) train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='BottomUpRandomAffine', rot_factor=30, scale_factor=[0.75, 1.5], scale_type='short', trans_factor=40), dict(type='BottomUpRandomFlip', flip_prob=0.5), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='BottomUpGenerateTarget', sigma=2, max_num_people=30, ), dict( type='Collect', keys=['img', 'joints', 'targets', 'masks'], meta_keys=[]), ] val_pipeline = [ dict(type='LoadImageFromFile'), dict(type='BottomUpGetImgSize', test_scale_factor=[1]), dict( type='BottomUpResizeAlign', transforms=[ dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'aug_data', 'test_scale_factor', 'base_size', 'center', 'scale', 'flip_index' ]), ] test_pipeline = val_pipeline data_root = 'data/aic' data = dict( samples_per_gpu=4, # 24 workers_per_gpu=2, train=dict( type='BottomUpAicDataset', ann_file=f'{data_root}/annotations/aic_train.json', img_prefix=f'{data_root}/ai_challenger_keypoint_train_20170902/' 'keypoint_train_images_20170902/', data_cfg=data_cfg, pipeline=train_pipeline), val=dict( type='BottomUpAicDataset', ann_file=f'{data_root}/annotations/aic_val.json', img_prefix=f'{data_root}/ai_challenger_keypoint_validation_20170911/' 'keypoint_validation_images_20170911/', data_cfg=data_cfg, pipeline=val_pipeline), test=dict( type='BottomUpAicDataset', ann_file=f'{data_root}/annotations/aic_val.json', img_prefix=f'{data_root}/ai_challenger_keypoint_validation_20170911/' 'keypoint_validation_images_20170911/', data_cfg=data_cfg, pipeline=val_pipeline), ) # data_root3 = 'data/image_keypoint' # data_root = 'data/aic' # data = dict( # samples_per_gpu=8, # 24 # workers_per_gpu=2, # train=dict( # type='BottomUpAicDataset', # ann_file=f'{data_root}/annotations/aic_train.json', # img_prefix=f'{data_root}/ai_challenger_keypoint_train_20170902/' # 'keypoint_train_images_20170902/', # data_cfg=data_cfg, # pipeline=train_pipeline), # val=dict( # type='BottomUpAicDataset', # ann_file=f'{data_root3}/annotations/train2.json', # img_prefix=f'{data_root3}/images/', # data_cfg=data_cfg, # pipeline=val_pipeline), # test=dict( # type='BottomUpAicDataset', # ann_file=f'{data_root3}/annotations/train2.json', # img_prefix=f'{data_root3}/images/', # data_cfg=data_cfg, # pipeline=val_pipeline), # )
py
1a5c8c03c42873b1d9198aaf15e8c169615039b6
# -*- coding: utf-8 -*- """ :author @CAB233 :url https://github.com/CAB233/everphoto_checkin cron: 3 22 * * * new Env('时光相册'); """ import json import requests from notify_mtr import send from utils import get_data class EverPhoto: def __init__(self, check_items): self.check_items = check_items def main(self): msg_all = "" for check_item in self.check_items: mobile = check_item.get("mobile") password = check_item.get("password") header = {} url = "https://api.everphoto.cn/users/self/checkin/v2" login_url = "https://web.everphoto.cn/api/auth" login_key = f"mobile={mobile}&password={password}" login_res = requests.post(login_url, data=login_key, headers=header) login_data = json.loads(login_res.text)["data"] header["authorization"] = "Bearer " + login_data["token"] response = requests.post(url, headers=header) data = json.loads(response.text) checkin_result = data["data"]["checkin_result"] continuity = data["data"]["continuity"] msg = ( "是否为今日第一次签到:" + str(checkin_result) + "\n" + "累积签到天数:" + str(continuity) ) msg_all += msg + "\n\n" return msg_all if __name__ == "__main__": data = get_data() _check_items = data.get("EVERPHOTO", []) res = EverPhoto(check_items=_check_items).main() send("时光相册", res)
py
1a5c8d4522e581325f7cb1c240c60a091ed80d6f
# Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import absolute_import, division, print_function import os import numpy as np from numpy.testing import assert_allclose from astropy.tests.helper import pytest from astropy.table import Table from fermipy.tests.utils import requires_dependency, requires_st_version from fermipy import spectrum try: from fermipy import gtanalysis except ImportError: pass # Skip tests in this file if Fermi ST aren't available pytestmark = requires_dependency('Fermi ST') @pytest.fixture(scope='module') def create_draco_analysis(request, tmpdir_factory): path = tmpdir_factory.mktemp('draco') url = 'https://raw.githubusercontent.com/fermiPy/fermipy-extras/master/data/fermipy_test_draco.tar.gz' outfile = path.join('fermipy_test_draco.tar.gz') dirname = path.join() os.system('curl -o %s -OL %s' % (outfile, url)) os.system('cd %s;tar xzf %s' % (dirname, outfile)) request.addfinalizer(lambda: path.remove(rec=1)) cfgfile = path.join('fermipy_test_draco', 'config.yaml') gta = gtanalysis.GTAnalysis(str(cfgfile)) gta.setup() return gta @pytest.fixture(scope='module') def create_pg1553_analysis(request, tmpdir_factory): path = tmpdir_factory.mktemp('pg1553') url = 'https://raw.githubusercontent.com/fermiPy/fermipy-extras/master/data/fermipy_test_pg1553.tar.gz' outfile = path.join('fermipy_test_pg1553.tar.gz') dirname = path.join() os.system('curl -o %s -OL %s' % (outfile, url)) os.system('cd %s;tar xzf %s' % (dirname, outfile)) ft2_files = ['P8_P302_TRANSIENT020E_239557414_242187214_ft2.fits', 'P8_P302_TRANSIENT020E_247446814_250076614_ft2.fits', 'P8_P302_TRANSIENT020E_255336214_257966014_ft2.fits', 'P8_P302_TRANSIENT020E_242187214_244817014_ft2.fits', 'P8_P302_TRANSIENT020E_250076614_252706414_ft2.fits', 'P8_P302_TRANSIENT020E_257966014_260595814_ft2.fits', 'P8_P302_TRANSIENT020E_244817014_247446814_ft2.fits', 'P8_P302_TRANSIENT020E_252706414_255336214_ft2.fits', 'P8_P302_TRANSIENT020E_260595814_263225614_ft2.fits'] for f in ft2_files: url = 'https://raw.githubusercontent.com/fermiPy/fermipy-extras/master/data/ft2/%s' % f outfile = path.join('fermipy_test_pg1553', f) os.system('curl -o %s -OL %s' % (outfile, url)) #request.addfinalizer(lambda: path.remove(rec=1)) cfgfile = path.join('fermipy_test_pg1553', 'config.yaml') gta = gtanalysis.GTAnalysis(str(cfgfile)) gta.setup() return gta def test_gtanalysis_setup(create_draco_analysis): gta = create_draco_analysis gta.print_roi() def test_print_model(create_draco_analysis): gta = create_draco_analysis gta.print_model() def test_print_params(create_draco_analysis): gta = create_draco_analysis gta.print_params(True) def test_gtanalysis_write_roi(create_draco_analysis): gta = create_draco_analysis gta.write_roi('test', make_plots=True) def test_gtanalysis_load_roi(create_draco_analysis): gta = create_draco_analysis gta.load_roi('fit0') src = gta.roi['3FGL J1725.3+5853'] prefactor = src.spectral_pars['Prefactor'] index = src.spectral_pars['Index'] assert_allclose(prefactor['value'] * prefactor['scale'], 1.6266779e-13, rtol=1E-3) assert_allclose(index['value'] * index['scale'], -2.17892, rtol=1E-3) assert_allclose(src['flux'], 4.099648e-10, rtol=1E-3) assert_allclose(src['flux_err'], np.nan, rtol=1E-3) assert_allclose(src['eflux'], 9.76762e-07, rtol=1E-3) assert_allclose(src['eflux_err'], np.nan, rtol=1E-3) gta.load_roi('fit1') src = gta.roi['3FGL J1725.3+5853'] prefactor = src.spectral_pars['Prefactor'] index = src.spectral_pars['Index'] assert_allclose(prefactor['value'] * prefactor['scale'], 2.0878036e-13, rtol=1E-3) assert_allclose(index['value'] * index['scale'], -2.053723, rtol=1E-3) assert_allclose(src['flux'], 5.377593e-10, rtol=1E-3) assert_allclose(src['flux_err'], 6.40203e-11, rtol=1E-3) assert_allclose(src['eflux'], 1.34617749e-06, rtol=1E-3) assert_allclose(src['eflux_err'], 1.584814e-07, rtol=1E-3) assert_allclose(src['ts'], 200.604, rtol=1E-3) assert_allclose(src['npred'], 170.258, rtol=1E-3) def test_gtanalysis_optimize(create_draco_analysis): gta = create_draco_analysis gta.load_roi('fit0') gta.optimize() def test_gtanalysis_fit(create_draco_analysis): gta = create_draco_analysis gta.load_roi('fit0') gta.free_sources(distance=3.0, pars='norm') gta.write_xml('fit_test') fit_output0 = gta.fit(optimizer='MINUIT') gta.load_xml('fit_test') fit_output1 = gta.fit(optimizer='NEWMINUIT') assert (np.abs(fit_output0['loglike'] - fit_output1['loglike']) < 0.01) @requires_st_version('11-04-00') def test_gtanalysis_fit_newton(create_draco_analysis): gta = create_draco_analysis gta.load_roi('fit0') gta.free_sources(distance=3.0, pars='norm') gta.write_xml('fit_test') fit_output0 = gta.fit(optimizer='MINUIT') gta.load_xml('fit_test') fit_output1 = gta.fit(optimizer='NEWTON') assert (np.abs(fit_output0['loglike'] - fit_output1['loglike']) < 0.01) def test_gtanalysis_tsmap(create_draco_analysis): gta = create_draco_analysis gta.load_roi('fit1') gta.tsmap(model={}, make_plots=True) @requires_st_version('11-04-00') def test_gtanalysis_tscube(create_draco_analysis): gta = create_draco_analysis gta.load_roi('fit1') gta.tscube(model={}, make_plots=True) def test_gtanalysis_residmap(create_draco_analysis): gta = create_draco_analysis gta.load_roi('fit1') gta.residmap(model={}, make_plots=True) def test_gtanalysis_find_sources(create_draco_analysis): gta = create_draco_analysis gta.load_roi('fit1') np.random.seed(1) src0 = {'SpatialModel': 'PointSource', 'Index': 2.0, 'offset_glon': 0.0, 'offset_glat': 2.0, 'Prefactor': 1E-12} src1 = {'SpatialModel': 'PointSource', 'Index': 2.0, 'offset_glon': 0.0, 'offset_glat': -2.0, 'Prefactor': 1E-12} gta.add_source('src0', src0) gta.add_source('src1', src1) gta.simulate_roi() src0 = gta.delete_source('src0') src1 = gta.delete_source('src1') gta.find_sources() diff_sources = [s.name for s in gta.roi.sources if s.diffuse] newsrcs0 = gta.get_sources(skydir=src0.skydir, distance=0.3, exclude=diff_sources) newsrcs1 = gta.get_sources(skydir=src1.skydir, distance=0.3, exclude=diff_sources) assert(len(newsrcs0) == 1) assert(len(newsrcs1) == 1) newsrc0 = newsrcs0[0] newsrc1 = newsrcs1[0] sep0 = src0.skydir.separation(newsrc0.skydir).deg sep1 = src1.skydir.separation(newsrc1.skydir).deg assert(sep0 < newsrc0['pos_r99']) assert(sep1 < newsrc1['pos_r99']) flux_diff0 = (np.abs(src0['flux'] - newsrc0['flux']) / newsrc0['flux_err']) flux_diff1 = (np.abs(src1['flux'] - newsrc1['flux']) / newsrc1['flux_err']) assert(flux_diff0 < 3.0) assert(flux_diff1 < 3.0) def test_gtanalysis_sed(create_draco_analysis): gta = create_draco_analysis gta.load_roi('fit1') np.random.seed(1) gta.simulate_roi() params = gta.roi['draco'].params prefactor = 3E-12 index = 1.9 scale = params['Scale']['value'] emin = gta.energies[:-1] emax = gta.energies[1:] flux_true = spectrum.PowerLaw.eval_flux(emin, emax, [prefactor, -index], scale) gta.simulate_source({'SpatialModel': 'PointSource', 'Index': index, 'Scale': scale, 'Prefactor': prefactor}) gta.free_source('draco') gta.fit() o = gta.sed('draco', make_plots=True) flux_resid = (flux_true - o['flux']) / o['flux_err'] assert_allclose(flux_resid, 0, atol=3.0) params = gta.roi['draco'].params index_resid = (-params['Index']['value'] - index) / \ params['Index']['error'] assert_allclose(index_resid, 0, atol=3.0) prefactor_resid = (params['Prefactor']['value'] - prefactor) / params['Prefactor']['error'] assert_allclose(prefactor_resid, 0, atol=3.0) gta.simulate_roi(restore=True) def test_gtanalysis_extension_gaussian(create_draco_analysis): gta = create_draco_analysis gta.simulate_roi(restore=True) gta.load_roi('fit1') np.random.seed(1) spatial_width = 0.5 gta.simulate_source({'SpatialModel': 'RadialGaussian', 'SpatialWidth': spatial_width, 'Prefactor': 3E-12}) o = gta.extension('draco', width=[0.4, 0.45, 0.5, 0.55, 0.6], spatial_model='RadialGaussian') assert_allclose(o['ext'], spatial_width, atol=0.1) gta.simulate_roi(restore=True) def test_gtanalysis_localization(create_draco_analysis): gta = create_draco_analysis gta.simulate_roi(restore=True) gta.load_roi('fit1') np.random.seed(1) src_dict = {'SpatialModel': 'PointSource', 'Prefactor': 4E-12, 'glat': 36.0, 'glon': 86.0} gta.simulate_source(src_dict) src_dict['glat'] = 36.05 src_dict['glon'] = 86.05 gta.add_source('testloc', src_dict, free=True) gta.fit() result = gta.localize('testloc', nstep=4, dtheta_max=0.5, update=True, make_plots=True) assert result['fit_success'] is True assert_allclose(result['glon'], 86.0, atol=0.02) assert_allclose(result['glat'], 36.0, atol=0.02) gta.delete_source('testloc') gta.simulate_roi(restore=True) def test_gtanalysis_lightcurve(create_pg1553_analysis): gta = create_pg1553_analysis gta.load_roi('fit1') o = gta.lightcurve('3FGL J1555.7+1111', nbins=2, free_radius=3.0) rtol = 0.01 flux = np.array([2.917568e-08, 2.359114e-08]) flux_err = np.array([1.931940e-09, 1.822694e-09]) ts = np.array([1463.066, 1123.160]) assert_allclose(o['flux'], flux, rtol=rtol) assert_allclose(o['flux_err'], flux_err, rtol=rtol) assert_allclose(o['ts'], ts, rtol=rtol) tab = Table.read(os.path.join(gta.workdir, o['file'])) assert_allclose(tab['flux'], flux, rtol=rtol) assert_allclose(tab['flux_err'], flux_err, rtol=rtol) assert_allclose(tab['ts'], ts, rtol=rtol)
py
1a5c8e1f159ac144f69215885aecd82381977894
""" OpenCV Backend RTSP Client """ import cv2 from io import BytesIO from PIL import Image from threading import Thread class Client: """ Maintain live RTSP feed without buffering. """ _stream = None def __init__(self, rtsp_server_uri, verbose = False): """ rtsp_server_uri: the path to an RTSP server. should start with "rtsp://" verbose: print log or not """ self.rtsp_server_uri = rtsp_server_uri self._verbose = verbose if isinstance(rtsp_server_uri,str) and 'picam' in rtsp_server_uri: self.__class__ = PicamVideoFeed _pc = PicamVideoFeed() self.__dict__.update(_pc.__dict__) self._bg_run = False self.open() def __enter__(self,*args,**kwargs): """ Returns the object which later will have __exit__ called. This relationship creates a context manager. """ return self def __exit__(self, type=None, value=None, traceback=None): """ Together with __enter__, allows support for `with-` clauses. """ self.close() def open(self): if self.isOpened(): return self._stream = cv2.VideoCapture(self.rtsp_server_uri) if self._verbose: print("Connected to video source {}.".format(self.rtsp_server_uri)) self._bg_run = True t = Thread(target=self._update, args=()) t.daemon = True t.start() self._bgt = t return self def close(self): """ signal background thread to stop. release CV stream """ self._bg_run = False self._bgt.join() if self._verbose: print("Disconnected from {}".format(self.rtsp_server_uri)) def isOpened(self): """ return true if stream is opened and being read, else ensure closed """ try: return (self._stream is not None) and self._stream.isOpened() and self._bg_run except: self.close() return False def _update(self): while self.isOpened(): (grabbed, frame) = self._stream.read() if not grabbed: self._bg_run = False else: self._queue = frame self._stream.release() def read(self,raw=False): """ Retrieve most recent frame and convert to PIL. Return unconverted with raw=True. """ try: if raw: return self._queue else: return Image.fromarray(cv2.cvtColor(self._queue, cv2.COLOR_BGR2RGB)) except: return None def preview(self): """ Blocking function. Opens OpenCV window to display stream. """ win_name = 'RTSP' cv2.namedWindow(win_name, cv2.WINDOW_AUTOSIZE) cv2.moveWindow(win_name,20,20) while(self.isOpened()): cv2.imshow(win_name,self.read(raw=True)) if cv2.waitKey(30) == ord('q'): # wait 30 ms for 'q' input break cv2.waitKey(1) cv2.destroyAllWindows() cv2.waitKey(1) class PicamVideoFeed(Client): def __init__(self): import picamera self.cam = picamera.PiCamera() def preview(self,*args,**kwargs): """ Blocking function. Opens OpenCV window to display stream. """ self.cam.start_preview(*args,**kwargs) def open(self): pass def isOpened(self): return True def read(self): """https://picamera.readthedocs.io/en/release-1.13/recipes1.html#capturing-to-a-pil-image""" stream = BytesIO() self.cam.capture(stream, format='png') # "Rewind" the stream to the beginning so we can read its content stream.seek(0) return Image.open(stream) def close(self): pass def stop(self): pass
py
1a5c8eb21ad1b804aca5c476f3c5fcaffb1fa909
""" Command-line usage support. """ import argparse from . import asm2cfg def main(): """ Command-line entry point to the program. """ parser = argparse.ArgumentParser( description='Program to draw dot control-flow graph from GDB disassembly for a function.', epilog='If function CFG rendering takes too long, try to skip function calls with -c flag.' ) parser.add_argument('assembly_file', help='File to contain one function assembly dump') parser.add_argument('-c', '--skip-calls', action='store_true', help='Skip function calls from dividing code to blocks') parser.add_argument('--target', choices=['x86', 'arm'], default='x86', help='Specify target platform for assembly') parser.add_argument('-v', '--view', action='store_true', help='View as a dot graph instead of saving to a file') args = parser.parse_args() print('If function CFG rendering takes too long, try to skip function calls with -c flag') lines = asm2cfg.read_lines(args.assembly_file) function_name, basic_blocks = asm2cfg.parse_lines(lines, args.skip_calls, args.target) asm2cfg.draw_cfg(function_name, basic_blocks, args.view)
py
1a5c8eb56bc9cf822dbad7991ae53ff341093c52
import os import shutil import time from fairseq import pyrouge def rouge_results_to_str(results_dict): return ">> ROUGE-F(1/2/3/l): {:.2f}/{:.2f}/{:.2f}\nROUGE-R(1/2/3/l): {:.2f}/{:.2f}/{:.2f}\n".format( results_dict["rouge_1_f_score"] * 100, results_dict["rouge_2_f_score"] * 100, results_dict["rouge_l_f_score"] * 100, results_dict["rouge_1_recall"] * 100, results_dict["rouge_2_recall"] * 100, results_dict["rouge_l_recall"] * 100 # ,results_dict["rouge_su*_f_score"] * 100 ) def test_rouge(temp_dir, cand, ref): candidates = [line.strip() for line in open(cand, encoding='utf-8')] references = [line.strip() for line in open(ref, encoding='utf-8')] print(len(candidates)) print(len(references)) assert len(candidates) == len(references) cnt = len(candidates) current_time = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime()) tmp_dir = os.path.join(temp_dir, "rouge-tmp-{}".format(current_time)) if not os.path.isdir(tmp_dir): os.mkdir(tmp_dir) os.mkdir(tmp_dir + "/candidate") os.mkdir(tmp_dir + "/reference") try: for i in range(cnt): if len(references[i]) < 1: continue with open(tmp_dir + "/candidate/cand.{}.txt".format(i), "w", encoding="utf-8") as f: f.write(candidates[i]) with open(tmp_dir + "/reference/ref.{}.txt".format(i), "w", encoding="utf-8") as f: f.write(references[i]) r = pyrouge.Rouge155(temp_dir=temp_dir) r.model_dir = tmp_dir + "/reference/" r.system_dir = tmp_dir + "/candidate/" r.model_filename_pattern = 'ref.#ID#.txt' r.system_filename_pattern = r'cand.(\d+).txt' rouge_results = r.convert_and_evaluate() print(rouge_results) results_dict = r.output_to_dict(rouge_results) finally: pass if os.path.isdir(tmp_dir): shutil.rmtree(tmp_dir) return results_dict
py
1a5c8f8195195a4a7556518bb3c3495f0fea7122
def poly_to_line_layer(ds, poly_name, line_name): """Creates a line layer from a polygon layer.""" # Delete the line layer if it exists. if ds.GetLayer(line_name): ds.DeleteLayer(line_name) # Get the polygon layer and its spatial reference. poly_lyr = ds.GetLayer(poly_name) sr = poly_lyr.GetSpatialRef() # Create a line layer with the same SR as the polygons # and copy the field definitions from the polygons to # the line layer. line_lyr = ds.CreateLayer(line_name, sr, ogr.wkbLineString) line_lyr.CreateFields(poly_lyr.schema) # Create a feature to use over and over. line_feat = ogr.Feature(line_lyr.GetLayerDefn()) # Loop through all of the polygons. for poly_feat in poly_lyr: # Copy the attribute values from the polygon to the # new feature. atts = poly_feat.items() for fld_name in atts.keys(): line_feat.SetField(fld_name, atts[fld_name]) # Loop through the rings in the polygon. poly_geom = poly_feat.geometry() for i in range(poly_geom.GetGeometryCount()): ring = poly_geom.GetGeometryRef(i) # Create a new line using the ring's vertices. line_geom = ogr.Geometry(ogr.wkbLineString) for coords in ring.GetPoints(): line_geom.AddPoint(*coords) # Insert the new line feature. line_feat.SetGeometry(line_geom) line_lyr.CreateFeature(line_feat)
py
1a5c8fc732aa19f7bfc7e98f0ffa58b90637ad61
import ctypes import os import pkgutil from lizard import LOG, PROGRAM_DATA_DIRNAME from lizard import user_prog, util def check_cpus(): """ check CPU information :returns: dict with CPU info """ data = {} lscpu_out = util.subp(["lscpu"])[0] for k, v in [l.split(':') for l in lscpu_out.splitlines() if ':' in l]: data[k.strip()] = v.strip() return {'max_threads': int(data['CPU(s)']), 'name': data['Model name']} class GPUProps(ctypes.Structure): """GPU properties struct""" _fields_ = [ ('gpu_index', ctypes.c_int), ('comp_level_major', ctypes.c_int), ('comp_level_minor', ctypes.c_int), ('sm_count', ctypes.c_int), ('max_sm_threads', ctypes.c_int), ('max_sm_blocks', ctypes.c_int), ('max_block_size', ctypes.c_int), ('max_total_threads', ctypes.c_int), ('max_total_blocks', ctypes.c_int), ('name', ctypes.c_char * 256), ] def setup_cuda_detect(args, tmpdir): """ set up CUDA detect program :args: parsed cmdline args :tmpdir: temporary directory :returns: wrapped program """ prog_dir = os.path.join(tmpdir, 'hw_detect') os.mkdir(prog_dir) def load_resource_to_prog_dir(fname, resource_dir='hw_discovery'): resource_path = os.path.join(PROGRAM_DATA_DIRNAME, resource_dir, fname) data = pkgutil.get_data('lizard', resource_path) path = os.path.join(prog_dir, fname) with open(path, 'wb') as fp: fp.write(data) return data for fname in ('kernel.cu', 'program.h'): load_resource_to_prog_dir(fname) conf_fname = 'config.json' data_file = os.path.join(prog_dir, conf_fname) conf_raw = load_resource_to_prog_dir(conf_fname) checksum = util.checksum(conf_raw) program = user_prog.UserProg( 'Hardware Discovery', checksum, data_file, {}, build_dir=prog_dir) program.build( cuda_bin=args.bin, include_path=args.include, unpack=False, set_compute_level=False) so_path = os.path.join(prog_dir, 'user_program_cuda.so') wrapper = ctypes.cdll.LoadLibrary(so_path) wrapper.get_num_gpus.restype = ctypes.c_int wrapper.get_gpu_data.argtypes = [ctypes.c_int, ctypes.POINTER(GPUProps)] return wrapper def get_reasonable_block_size(props, size_mult=32): """ get reasonable cuda block size :props: gpu properties dict :size_mult: block size multiple :returns: reasonable block size """ max_reasonable_size = props['max_block_size'] min_reasonable_size = props['max_sm_threads'] / props['max_sm_blocks'] avg_reasonable_size = (max_reasonable_size + min_reasonable_size) / 2 reasonable_block_size = int(avg_reasonable_size/size_mult) * size_mult LOG.debug('Using CUDA block size: %s', reasonable_block_size) return reasonable_block_size def check_gpus(args, tmpdir): """ check for CUDA capable GPUs :args: parsed cmdline args :tmpdir: temporary directory :returns: dict with GPU info """ if args.no_gpu: LOG.warning("Not scanning available gpus, running programs will fail") return {'num_gpus': 0, 'gpu_info': []} LOG.info('Checking CUDA build system') program = setup_cuda_detect(args, tmpdir) res = { 'num_gpus': program.get_num_gpus(), 'gpu_info': [], } for gpu_index in range(res['num_gpus']): props = GPUProps() program.get_gpu_data(gpu_index, ctypes.byref(props)) gpu_info = { 'gpu_index': props.gpu_index, 'comp_level_major': props.comp_level_major, 'comp_level_minor': props.comp_level_minor, 'sm_count': props.sm_count, 'max_sm_threads': props.max_sm_threads, 'max_sm_blocks': props.max_sm_blocks, 'max_block_size': props.max_block_size, 'max_total_threads': props.max_total_threads, 'max_total_blocks': props.max_total_blocks, 'name': props.name.decode(), } gpu_info['reasonable_block_size'] = get_reasonable_block_size(gpu_info) res['gpu_info'].append(gpu_info) return res def scan_hardware(args, tmpdir): """ scan system hardware :args: parsed cmdline args :tmpdir: temporary directory :returns: dict with hardware info """ hardware = { 'CPU': check_cpus(), 'GPU': check_gpus(args, tmpdir), } LOG.debug('hardware scan found: %s', hardware) return hardware
py
1a5c9060035b5dd193ea98d4a8a9a16f19846427
from .WidgetRedirector import WidgetRedirector from Delegator import Delegator class Percolator: def __init__(self, text): # XXX would be nice to inherit from Delegator self.text = text self.redir = WidgetRedirector(text) self.top = self.bottom = Delegator(text) self.bottom.insert = self.redir.register("insert", self.insert) self.bottom.delete = self.redir.register("delete", self.delete) self.filters = [] def close(self): while self.top is not self.bottom: self.removefilter(self.top) self.top = None self.bottom.setdelegate(None); self.bottom = None self.redir.close(); self.redir = None self.text = None def insert(self, index, chars, tags=None): # Could go away if inheriting from Delegator self.top.insert(index, chars, tags) def delete(self, index1, index2=None): # Could go away if inheriting from Delegator self.top.delete(index1, index2) def insertfilter(self, filter): # Perhaps rename to pushfilter()? assert isinstance(filter, Delegator) assert filter.delegate is None filter.setdelegate(self.top) self.top = filter def removefilter(self, filter): # XXX Perhaps should only support popfilter()? assert isinstance(filter, Delegator) assert filter.delegate is not None f = self.top if f is filter: self.top = filter.delegate filter.setdelegate(None) else: while f.delegate is not filter: assert f is not self.bottom f.resetcache() f = f.delegate f.setdelegate(filter.delegate) filter.setdelegate(None) def _percolator(parent): import tkinter as tk import re class Tracer(Delegator): def __init__(self, name): self.name = name Delegator.__init__(self, None) def insert(self, *args): print(self.name, ": insert", args) self.delegate.insert(*args) def delete(self, *args): print(self.name, ": delete", args) self.delegate.delete(*args) root = tk.Tk() root.title("Test Percolator") width, height, x, y = list(map(int, re.split('[x+]', parent.geometry()))) root.geometry("+%d+%d"%(x, y + 150)) text = tk.Text(root) p = Percolator(text) t1 = Tracer("t1") t2 = Tracer("t2") def toggle1(): if var1.get() == 0: var1.set(1) p.insertfilter(t1) elif var1.get() == 1: var1.set(0) p.removefilter(t1) def toggle2(): if var2.get() == 0: var2.set(1) p.insertfilter(t2) elif var2.get() == 1: var2.set(0) p.removefilter(t2) text.pack() var1 = tk.IntVar() cb1 = tk.Checkbutton(root, text="Tracer1", command=toggle1, variable=var1) cb1.pack() var2 = tk.IntVar() cb2 = tk.Checkbutton(root, text="Tracer2", command=toggle2, variable=var2) cb2.pack() root.mainloop() if __name__ == "__main__": from MrPython.idle_test.htest import run run(_percolator)
py
1a5c90ebbc20ca33ca140808c195a6d4854e1b1a
import jax import jax.numpy as jnp import haiku as hk from e3nn_jax import BatchNorm, Irreps from e3nn_jax.util.test import assert_equivariant import pytest @pytest.mark.parametrize("irreps", [Irreps("3x0e + 3x0o + 4x1e"), Irreps("3x0o + 3x0e + 4x1e")]) def test_equivariant(keys, irreps): @hk.without_apply_rng @hk.transform_with_state def b(x, is_training=True): m = BatchNorm(irreps=irreps) return m(x, is_training).contiguous params, state = b.init(next(keys), irreps.randn(next(keys), (16, -1))) _, state = b.apply(params, state, irreps.randn(next(keys), (16, -1))) _, state = b.apply(params, state, irreps.randn(next(keys), (16, -1))) m_train = lambda x: b.apply(params, state, x)[0] assert_equivariant(m_train, next(keys), irreps_in=[irreps], irreps_out=[irreps]) m_eval = lambda x: b.apply(params, state, x, is_training=False)[0] assert_equivariant(m_eval, next(keys), irreps_in=[irreps], irreps_out=[irreps]) @pytest.mark.parametrize("affine", [True, False]) @pytest.mark.parametrize("reduce", ["mean", "max"]) @pytest.mark.parametrize("normalization", ["norm", "component"]) @pytest.mark.parametrize("instance", [True, False]) def test_modes(keys, affine, reduce, normalization, instance): irreps = Irreps("10x0e + 5x1e") @hk.without_apply_rng @hk.transform_with_state def b(x, is_training=True): m = BatchNorm(irreps=irreps, affine=affine, reduce=reduce, normalization=normalization, instance=instance) return m(x, is_training) params, state = b.init(next(keys), irreps.randn(next(keys), (16, -1))) m_train = lambda x: b.apply(params, state, x)[0] m_eval = lambda x: b.apply(params, state, x, is_training=False)[0] m_train(irreps.randn(next(keys), (20, 20, -1))) m_eval(irreps.randn(next(keys), (20, 20, -1))) @pytest.mark.parametrize("instance", [True, False]) def test_normalization(keys, instance): float_tolerance = 1e-3 sqrt_float_tolerance = jnp.sqrt(float_tolerance) batch, n = 20, 20 irreps = Irreps("3x0e + 4x1e") @hk.without_apply_rng @hk.transform_with_state def b(x, is_training=True): m = BatchNorm(irreps=irreps, normalization="norm", instance=instance) return m(x, is_training) params, state = b.init(next(keys), irreps.randn(next(keys), (16, -1))) x = jax.random.normal(next(keys), (batch, n, irreps.dim)) * 5 + 10 x, state = b.apply(params, state, x) a = x.list[0] # [batch, space, mul, 1] assert jnp.max(jnp.abs(a.mean([0, 1]))) < float_tolerance assert jnp.max(jnp.abs(jnp.square(a).mean([0, 1]) - 1)) < sqrt_float_tolerance a = x.list[1] # [batch, space, mul, repr] assert jnp.max(jnp.abs(jnp.square(a).sum(3).mean([0, 1]) - 1)) < sqrt_float_tolerance @hk.without_apply_rng @hk.transform_with_state def b(x, is_training=True): m = BatchNorm(irreps=irreps, normalization="component", instance=instance) return m(x, is_training) params, state = b.init(next(keys), irreps.randn(next(keys), (16, -1))) x = jax.random.normal(next(keys), (batch, n, irreps.dim)) * 5 + 10.0 x, state = b.apply(params, state, x) a = x.list[0] # [batch, space, mul, 1] assert jnp.max(jnp.abs(a.mean([0, 1]))) < float_tolerance assert jnp.max(jnp.abs(jnp.square(a).mean([0, 1]) - 1)) < sqrt_float_tolerance a = x.list[1] # [batch, space, mul, repr] assert jnp.max(jnp.abs(jnp.square(a).mean(3).mean([0, 1]) - 1)) < sqrt_float_tolerance
py
1a5c92549b4cd9a263b243cf8c9afea14571f71d
from django.contrib.gis import admin # from django.contrib.gis.admin import OSMGeoAdmin # Register your models here. from .models import LocationUser,LocationStream admin.site.register(LocationStream) admin.site.register(LocationUser)
py
1a5c925b89b9f9691dc98c6dfaaea966ca26d37c
#!/usr/bin/python3 """ Chern machine runner """ import daemon import time from daemon import pidfile import os import sys import subprocess from Chern.utils import csys from Chern.utils import metadata from ChernMachine.ChernDatabase import ChernDatabase from ChernMachine.kernel.VImage import VImage from ChernMachine.kernel.VContainer import VContainer from ChernMachine.kernel.VJob import VJob cherndb = ChernDatabase.instance() def check_status(): pending_jobs = cherndb.jobs("pending") def execute(): running_jobs = cherndb.jobs("running") if len(running_jobs) > 3: return waitting_jobs = cherndb.jobs("submitted") # print("List {0}".format(waitting_jobs), file=sys.stderr) for job in waitting_jobs: print("Running {0}".format(job), file=sys.stderr) if job.satisfied(): print("chern_machine execute {}".format(job.path), file=sys.stderr) # FIXME Make sure the job will not be executed many times status_file = metadata.ConfigFile(os.path.join(job.path, "status.json")) subprocess.Popen("chern_machine execute {}".format(job.path), shell=True) while (job.status() == "submitted"): pass def status(): daemon_path = csys.daemon_path() pid_file = os.path.join(os.environ["HOME"], ".ChernMachine", "daemon/runner.pid") if os.path.exists(pid_file): return "started" pid = open(pid_file).read().decode().strip() else: return "stopped" def start(): pid_file = os.path.join(os.environ["HOME"], ".ChernMachine", "daemon/runner.pid") log_file = os.path.join(os.environ["HOME"], ".ChernMachine", "daemon/runner.log") with daemon.DaemonContext( working_directory="/", pidfile=pidfile.TimeoutPIDLockFile(pid_file), stderr=open(log_file, "w+"), ): while True: time.sleep(1) try: execute() except Exception as e: print(e, file=sys.stderr) def stop(): if status() == "stopped": return pid_file = os.path.join(os.environ["HOME"], ".ChernMachine", "daemon/runner.pid") subprocess.call("kill {}".format(open(pid_file).read()), shell=True)
py
1a5c92b3ce53a8a416134807722d7072f6d084d9
from rpython.rtyper.lltypesystem import lltype, rffi from rpython.rlib.rarithmetic import widen from rpython.rlib.unroll import unrolling_iterable from rpython.rlib.objectmodel import (specialize, import_from_mixin) from pypy.interpreter.error import oefmt from pypy.interpreter.baseobjspace import W_Root from pypy.interpreter.function import descr_function_get from pypy.interpreter.typedef import TypeDef, interp2app from pypy.objspace.std.typeobject import W_TypeObject from pypy.module._hpy_universal import llapi from .state import State HPySlot_Slot = llapi.cts.gettype('HPySlot_Slot') HPy_RichCmpOp = llapi.cts.gettype('HPy_RichCmpOp') _WRAPPER_CACHE = {} class W_SlotWrapper(W_Root): _immutable_fields_ = ["slot"] def __init__(self, slot, method_name, cfuncptr, w_objclass): self.slot = slot self.name = method_name self.cfuncptr = cfuncptr self.w_objclass = w_objclass def check_args(self, space, __args__, arity): length = len(__args__.arguments_w) if length != arity: raise oefmt(space.w_TypeError, "expected %d arguments, got %d", arity, length) if __args__.keywords: raise oefmt(space.w_TypeError, "wrapper %s doesn't take any keyword arguments", self.name) def check_argsv(self, space, __args__, min, max): length = len(__args__.arguments_w) if not min <= length <= max: raise oefmt(space.w_TypeError, "expected %d-%d arguments, got %d", min, max, length) if __args__.keywords: raise oefmt(space.w_TypeError, "wrapper %s doesn't take any keyword arguments", self.name) def descr_call(self, space, __args__): # XXX: basically a copy of cpyext's W_PyCMethodObject.descr_call() if len(__args__.arguments_w) == 0: w_objclass = self.w_objclass assert isinstance(w_objclass, W_TypeObject) raise oefmt(space.w_TypeError, "descriptor '%8' of '%s' object needs an argument", self.name, self.w_objclass.getname(space)) w_instance = __args__.arguments_w[0] # XXX: needs a stricter test if not space.isinstance_w(w_instance, self.w_objclass): w_objclass = self.w_objclass assert isinstance(w_objclass, W_TypeObject) raise oefmt(space.w_TypeError, "descriptor '%8' requires a '%s' object but received a '%T'", self.name, w_objclass.name, w_instance) # return self.call(space, __args__) def call(self, space, __args__): raise oefmt(space.w_RuntimeError, "bad slot wrapper") W_SlotWrapper.typedef = TypeDef( 'slot_wrapper', __get__ = interp2app(descr_function_get), __call__ = interp2app(W_SlotWrapper.descr_call), ) W_SlotWrapper.typedef.acceptable_as_base_class = False # ~~~~~~~~~~ concrete W_SlotWrapper subclasses ~~~~~~~~~~~~~ # these are the equivalent of the various functions wrap_* inside CPython's typeobject.c class W_wrap_binaryfunc(object): def call(self, space, __args__): func = llapi.cts.cast("HPyFunc_binaryfunc", self.cfuncptr) self.check_args(space, __args__, 2) w_self = __args__.arguments_w[0] w_other = __args__.arguments_w[1] with self.handles.using(w_self, w_other) as (h_self, h_other): h_result = func(self.ctx, h_self, h_other) if not h_result: space.fromcache(State).raise_current_exception() return self.handles.consume(h_result) @specialize.memo() def get_cmp_wrapper_cls(handles, methname, OP): try: return _WRAPPER_CACHE[handles, methname] except KeyError: pass class wrapper(W_SlotWrapper): def call(self, space, __args__): func = llapi.cts.cast("HPyFunc_richcmpfunc", self.cfuncptr) self.check_args(space, __args__, 2) w_self = __args__.arguments_w[0] w_other = __args__.arguments_w[1] with handles.using(w_self, w_other) as (h_self, h_other): # rffi doesn't allow casting to an enum, we need to use int # instead h_result = func( handles.ctx, h_self, h_other, rffi.cast(rffi.INT_real, OP)) if not h_result: space.fromcache(State).raise_current_exception() return handles.consume(h_result) suffix = '_d' if handles.is_debug else '_u' wrapper.__name__ = 'W_wrap_richcmp%s%s' % (methname, suffix) _WRAPPER_CACHE[handles, methname] = wrapper return wrapper CMP_OPNAMES = ['eq', 'ne', 'lt', 'le', 'gt', 'ge'] CMP_ENUM_VALUES = [ getattr(HPy_RichCmpOp, 'HPy_%s' % opname.upper()) for opname in CMP_OPNAMES] CMP_SLOTS = unrolling_iterable([ ('__%s__' % opname, opval) for opname, opval in zip(CMP_OPNAMES, CMP_ENUM_VALUES)]) class W_wrap_unaryfunc(object): def call(self, space, __args__): func = llapi.cts.cast("HPyFunc_unaryfunc", self.cfuncptr) self.check_args(space, __args__, 1) w_self = __args__.arguments_w[0] with self.handles.using(w_self) as h_self: h_result = func(self.ctx, h_self) if not h_result: space.fromcache(State).raise_current_exception() return self.handles.consume(h_result) class W_wrap_ternaryfunc(object): def call(self, space, __args__): # Literaly quote of the corresponding CPython comment: # Note: This wrapper only works for __pow__() # func = llapi.cts.cast("HPyFunc_ternaryfunc", self.cfuncptr) self.check_argsv(space, __args__, 2, 3) n = len(__args__.arguments_w) w_self = __args__.arguments_w[0] w1 = __args__.arguments_w[1] if n == 2: w2 = space.w_None else: w2 = __args__.arguments_w[2] with self.handles.using(w_self, w1, w2) as (h_self, h1, h2): h_result = func(self.ctx, h_self, h1, h2) if not h_result: space.fromcache(State).raise_current_exception() return self.handles.consume(h_result) class W_wrap_indexargfunc(object): def call(self, space, __args__): func = llapi.cts.cast("HPyFunc_ssizeargfunc", self.cfuncptr) self.check_args(space, __args__, 2) w_self = __args__.arguments_w[0] w_idx = __args__.arguments_w[1] idx = space.int_w(space.index(w_idx)) with self.handles.using(w_self) as h_self: h_result = func(self.ctx, h_self, idx) if not h_result: space.fromcache(State).raise_current_exception() return self.handles.consume(h_result) class W_wrap_inquirypred(object): def call(self, space, __args__): func = llapi.cts.cast("HPyFunc_inquiry", self.cfuncptr) self.check_args(space, __args__, 1) w_self = __args__.arguments_w[0] with self.handles.using(w_self) as h_self: res = func(self.ctx, h_self) res = rffi.cast(lltype.Signed, res) if res == -1: space.fromcache(State).raise_current_exception() return space.newbool(bool(res)) class W_wrap_lenfunc(object): def call(self, space, __args__): func = llapi.cts.cast("HPyFunc_lenfunc", self.cfuncptr) self.check_args(space, __args__, 1) w_self = __args__.arguments_w[0] with self.handles.using(w_self) as h_self: result = func(self.ctx, h_self) if widen(result) == -1: space.fromcache(State).raise_current_exception() return space.newint(result) def sq_getindex(space, w_sequence, w_idx): """ This is equivalent to CPython's typeobject.c:getindex(). We call it sq_getindex because it's used only by sq_* slots. """ idx = space.int_w(space.index(w_idx)) if idx < 0 and space.lookup(w_sequence, '__len__'): # It is worth noting that we are doing the lookup of __len__ twice, # one above and one inside space.len_w. The JIT should optimize it # away, but it might be a minor slowdown for interpreted code. n = space.len_w(w_sequence) idx += n return idx class W_wrap_sq_item(object): def call(self, space, __args__): func = llapi.cts.cast("HPyFunc_ssizeargfunc", self.cfuncptr) self.check_args(space, __args__, 2) w_self = __args__.arguments_w[0] w_idx = __args__.arguments_w[1] idx = sq_getindex(space, w_self, w_idx) with self.handles.using(w_self) as h_self: h_result = func(self.ctx, h_self, idx) if not h_result: space.fromcache(State).raise_current_exception() return self.handles.consume(h_result) class W_wrap_sq_setitem(object): def call(self, space, __args__): func = llapi.cts.cast("HPyFunc_ssizeobjargproc", self.cfuncptr) self.check_args(space, __args__, 3) w_self = __args__.arguments_w[0] w_idx = __args__.arguments_w[1] idx = sq_getindex(space, w_self, w_idx) w_value = __args__.arguments_w[2] with self.handles.using(w_self, w_value) as (h_self, h_value): result = func(self.ctx, h_self, idx, h_value) if widen(result) == -1: space.fromcache(State).raise_current_exception() return space.w_None class W_wrap_sq_delitem(object): def call(self, space, __args__): func = llapi.cts.cast("HPyFunc_ssizeobjargproc", self.cfuncptr) self.check_args(space, __args__, 2) w_self = __args__.arguments_w[0] w_idx = __args__.arguments_w[1] idx = sq_getindex(space, w_self, w_idx) with self.handles.using(w_self) as h_self: result = func(self.ctx, h_self, idx, llapi.HPy_NULL) if widen(result) == -1: space.fromcache(State).raise_current_exception() return space.w_None class W_wrap_objobjproc(object): def call(self, space, __args__): func = llapi.cts.cast("HPyFunc_objobjproc", self.cfuncptr) self.check_args(space, __args__, 2) w_self = __args__.arguments_w[0] w_key = __args__.arguments_w[1] with self.handles.using(w_self, w_key) as (h_self, h_key): res = func(self.ctx, h_self, h_key) res = widen(res) if res == -1: space.fromcache(State).raise_current_exception() return space.newbool(bool(res)) class W_wrap_getbuffer(object): rbp = llapi.cts.cast('HPyFunc_releasebufferproc', 0) def call(self, space, __args__): func = llapi.cts.cast("HPyFunc_getbufferproc", self.cfuncptr) self.check_args(space, __args__, 2) w_self = __args__.arguments_w[0] w_flags = __args__.arguments_w[1] flags = rffi.cast(rffi.INT_real, space.int_w(w_flags)) with lltype.scoped_alloc(llapi.cts.gettype('HPy_buffer')) as hpybuf: with self.handles.using(w_self) as h_self: res = func(self.ctx, h_self, hpybuf, flags) if widen(res) < 0: space.fromcache(State).raise_current_exception() buf_ptr = hpybuf.c_buf w_obj = self.handles.consume(hpybuf.c_obj.c__i) size = hpybuf.c_len ndim = widen(hpybuf.c_ndim) shape = None if hpybuf.c_shape: shape = [hpybuf.c_shape[i] for i in range(ndim)] strides = None if hpybuf.c_strides: strides = [hpybuf.c_strides[i] for i in range(ndim)] if hpybuf.c_format: format = rffi.charp2str(hpybuf.c_format) else: format = 'B' view = self.handles.HPyBuffer( buf_ptr, size, w_obj, itemsize=hpybuf.c_itemsize, readonly=widen(hpybuf.c_readonly), ndim=widen(hpybuf.c_ndim), format=format, shape=shape, strides=strides) if self.rbp: # XXX: we're assuming w_self and w_obj have the same type! view.releasebufferproc = self.rbp self.handles.BUFFER_FQ.register_finalizer(view) return view.wrap(space) # remaining wrappers to write ## wrap_binaryfunc_l(PyObject *self, PyObject *args, void *wrapped) ## wrap_binaryfunc_r(PyObject *self, PyObject *args, void *wrapped) ## wrap_ternaryfunc_r(PyObject *self, PyObject *args, void *wrapped) ## wrap_objobjargproc(PyObject *self, PyObject *args, void *wrapped) ## wrap_delitem(PyObject *self, PyObject *args, void *wrapped) ## wrap_setattr(PyObject *self, PyObject *args, void *wrapped) ## wrap_delattr(PyObject *self, PyObject *args, void *wrapped) ## wrap_hashfunc(PyObject *self, PyObject *args, void *wrapped) ## wrap_call(PyObject *self, PyObject *args, void *wrapped, PyObject *kwds) ## wrap_del(PyObject *self, PyObject *args, void *wrapped) ## wrap_next(PyObject *self, PyObject *args, void *wrapped) ## wrap_descr_get(PyObject *self, PyObject *args, void *wrapped) ## wrap_descr_set(PyObject *self, PyObject *args, void *wrapped) ## wrap_descr_delete(PyObject *self, PyObject *args, void *wrapped) class W_wrap_init(object): def call(self, space, __args__): with self.handles.using(__args__.arguments_w[0]) as h_self: n = len(__args__.arguments_w) - 1 with lltype.scoped_alloc(rffi.CArray(llapi.HPy), n) as args_h: i = 0 while i < n: args_h[i] = self.handles.new(__args__.arguments_w[i + 1]) i += 1 h_kw = 0 if __args__.keywords: w_kw = space.newdict() for i in range(len(__args__.keywords)): key = __args__.keywords[i] w_value = __args__.keywords_w[i] space.setitem_str(w_kw, key, w_value) h_kw = self.handles.new(w_kw) fptr = llapi.cts.cast('HPyFunc_initproc', self.cfuncptr) try: result = fptr(self.ctx, h_self, args_h, n, h_kw) finally: if h_kw: self.handles.close(h_kw) for i in range(n): self.handles.close(args_h[i]) if rffi.cast(lltype.Signed, result) < 0: space.fromcache(State).raise_current_exception() return space.w_None @specialize.memo() def get_slot_cls(handles, mixin): try: return _WRAPPER_CACHE[handles, mixin] except KeyError: pass _handles = handles class wrapper(W_SlotWrapper): import_from_mixin(mixin) handles = _handles ctx = _handles.ctx wrapper.__name__ = mixin.__name__ + handles.cls_suffix _WRAPPER_CACHE[handles, mixin] = wrapper return wrapper @specialize.memo() def get_tp_new_wrapper_cls(handles): try: return _WRAPPER_CACHE[handles, 'new'] except KeyError: pass class W_tp_new_wrapper(handles.w_ExtensionFunction): """ Special case for HPy_tp_new. Note that is not NOT a SlotWrapper. This is the equivalent of CPython's tp_new_wrapper: the difference is that CPython's tp_new_wrapper is a regular PyMethodDef which is wrapped inside a PyCFunction, while here we have our own type. """ def __init__(self, cfuncptr, w_type): handles.w_ExtensionFunction.__init__( self, handles.space, handles, '__new__', llapi.HPyFunc_KEYWORDS, None, cfuncptr, w_self=w_type) def call(self, space, h_self, __args__, skip_args=0): assert space is handles.space assert skip_args == 0 # NOTE: h_self contains the type for which we are calling __new__, but # here is ignored. In CPython's tp_new_wrapper it is only used to fish # the ->tp_new to call, but here we already have the cfuncptr # # XXX: tp_new_wrapper does additional checks, we should write tests # and implement the same checks w_self = __args__.arguments_w[0] with handles.using(w_self) as h_self: return self.call_varargs_kw(space, h_self, __args__, skip_args=1, has_keywords=True) W_tp_new_wrapper.__name__ += handles.cls_suffix _WRAPPER_CACHE[handles, 'new'] = W_tp_new_wrapper return W_tp_new_wrapper # the following table shows how to map C-level slots into Python-level # __methods__. Note that if a C-level slot corresponds to multiple # __methods__, it appears multiple times (e.g. sq_ass_item corresponds to both # __setitem__ and __delitem__). SLOTS = unrolling_iterable([ # CPython slots ('bf_getbuffer', '__buffer__', W_wrap_getbuffer), # ('mp_ass_subscript', '__xxx__', AGS.W_SlotWrapper_...), # ('mp_length', '__xxx__', AGS.W_SlotWrapper_...), # ('mp_subscript', '__getitem__', AGS.W_SlotWrapper_binaryfunc), ('nb_absolute', '__abs__', W_wrap_unaryfunc), ('nb_add', '__add__', W_wrap_binaryfunc), ('nb_and', '__and__', W_wrap_binaryfunc), ('nb_bool', '__bool__', W_wrap_inquirypred), ('nb_divmod', '__divmod__', W_wrap_binaryfunc), ('nb_float', '__float__', W_wrap_unaryfunc), ('nb_floor_divide', '__floordiv__', W_wrap_binaryfunc), ('nb_index', '__index__', W_wrap_unaryfunc), ('nb_inplace_add', '__iadd__', W_wrap_binaryfunc), ('nb_inplace_and', '__iand__', W_wrap_binaryfunc), ('nb_inplace_floor_divide', '__ifloordiv__', W_wrap_binaryfunc), ('nb_inplace_lshift', '__ilshift__', W_wrap_binaryfunc), ('nb_inplace_multiply', '__imul__', W_wrap_binaryfunc), ('nb_inplace_or', '__ior__', W_wrap_binaryfunc), # CPython is buggy here: it uses wrap_binaryfunc for nb_inplace_power, but # it means you end up calling the cfunc with the wrong signature! We # correctly user W_wrap_ternaryfunc instead ('nb_inplace_power', '__ipow__', W_wrap_ternaryfunc), ('nb_inplace_remainder', '__imod__', W_wrap_binaryfunc), ('nb_inplace_rshift', '__irshift__', W_wrap_binaryfunc), ('nb_inplace_subtract', '__isub__', W_wrap_binaryfunc), ('nb_inplace_true_divide', '__itruediv__', W_wrap_binaryfunc), ('nb_inplace_xor', '__ixor__', W_wrap_binaryfunc), ('nb_int', '__int__', W_wrap_unaryfunc), ('nb_invert', '__invert__', W_wrap_unaryfunc), ('nb_lshift', '__lshift__', W_wrap_binaryfunc), ('nb_multiply', '__mul__', W_wrap_binaryfunc), ('nb_negative', '__neg__', W_wrap_unaryfunc), ('nb_or', '__or__', W_wrap_binaryfunc), ('nb_positive', '__pos__', W_wrap_unaryfunc), ('nb_power', '__pow__', W_wrap_ternaryfunc), ('nb_remainder', '__mod__', W_wrap_binaryfunc), ('nb_rshift', '__rshift__', W_wrap_binaryfunc), ('nb_subtract', '__sub__', W_wrap_binaryfunc), ('nb_true_divide', '__truediv__', W_wrap_binaryfunc), ('nb_xor', '__xor__', W_wrap_binaryfunc), ('sq_ass_item', '__setitem__', W_wrap_sq_setitem), ('sq_ass_item', '__delitem__', W_wrap_sq_delitem), ('sq_concat', '__add__', W_wrap_binaryfunc), ('sq_contains', '__contains__', W_wrap_objobjproc), ('sq_inplace_concat', '__iadd__', W_wrap_binaryfunc), ('sq_inplace_repeat', '__imul__', W_wrap_indexargfunc), ('sq_item', '__getitem__', W_wrap_sq_item), ('sq_length', '__len__', W_wrap_lenfunc), ('sq_repeat', '__mul__', W_wrap_indexargfunc), # ('tp_base', '__xxx__', AGS.W_SlotWrapper_...), # ('tp_bases', '__xxx__', AGS.W_SlotWrapper_...), # ('tp_call', '__xxx__', AGS.W_SlotWrapper_...), # ('tp_clear', '__xxx__', AGS.W_SlotWrapper_...), # ('tp_del', '__xxx__', AGS.W_SlotWrapper_...), # ('tp_descr_get', '__xxx__', AGS.W_SlotWrapper_...), # ('tp_descr_set', '__xxx__', AGS.W_SlotWrapper_...), # ('tp_doc', '__xxx__', AGS.W_SlotWrapper_...), # ('tp_getattr', '__xxx__', AGS.W_SlotWrapper_...), # ('tp_getattro', '__xxx__', AGS.W_SlotWrapper_...), # ('tp_hash', '__xxx__', AGS.W_SlotWrapper_...), ('tp_init', '__init__', W_wrap_init), # ('tp_is_gc', '__xxx__', AGS.W_SlotWrapper_...), # ('tp_iter', '__iter__', W_wrap_unaryfunc), # ('tp_iternext', '__xxx__', AGS.W_SlotWrapper_...), # tp_new SPECIAL-CASED ('tp_repr', '__repr__', W_wrap_unaryfunc), # tp_richcompare SPECIAL-CASED # ('tp_setattr', '__xxx__', AGS.W_SlotWrapper_...), # ('tp_setattro', '__xxx__', AGS.W_SlotWrapper_...), # ('tp_str', '__str__', W_wrap_unaryfunc), # ('tp_traverse', '__xxx__', AGS.W_SlotWrapper_...), ('nb_matrix_multiply', '__matmul__', W_wrap_binaryfunc), ('nb_inplace_matrix_multiply', '__imatmul__', W_wrap_binaryfunc), # ('am_await', '__await__', W_wrap_unaryfunc), # ('am_aiter', '__aiter__', W_wrap_unaryfunc), # ('am_anext', '__anext__', W_wrap_unaryfunc), # ('tp_finalize', '__xxx__', AGS.W_SlotWrapper_...), # extra HPy-specific slots # ('tp_destroy', '__xxx__', AGS.W_SlotWrapper_...), ]) @specialize.arg(0) def fill_slot(handles, w_type, hpyslot): space = handles.space slot_num = rffi.cast(lltype.Signed, hpyslot.c_slot) # special cases if slot_num == HPySlot_Slot.HPy_tp_new: # this is the moral equivalent of CPython's add_tp_new_wrapper cls = get_tp_new_wrapper_cls(handles) w_func = cls(hpyslot.c_impl, w_type) w_type.setdictvalue(space, '__new__', w_func) return elif slot_num == HPySlot_Slot.HPy_tp_destroy: w_type.tp_destroy = llapi.cts.cast('HPyFunc_destroyfunc', hpyslot.c_impl) return elif slot_num == HPySlot_Slot.HPy_tp_richcompare: for methname, opval in CMP_SLOTS: cls = get_cmp_wrapper_cls(handles, methname, opval) w_slot = cls(slot_num, methname, hpyslot.c_impl, w_type) w_type.setdictvalue(space, methname, w_slot) return elif slot_num == HPySlot_Slot.HPy_bf_releasebuffer: return # generic cases found = False for slotname, methname, mixin in SLOTS: assert methname != '__xxx__' # sanity check n = getattr(HPySlot_Slot, 'HPy_' + slotname) if slot_num == n: found = True cls = get_slot_cls(handles, mixin) w_slot = cls(slot_num, methname, hpyslot.c_impl, w_type) w_type.setdictvalue(space, methname, w_slot) if not found: raise oefmt(space.w_NotImplementedError, "Unimplemented slot: %s", str(slot_num))
py
1a5c9449a1b6e851aee677e56227aed62298b82a
""" This class is inspired by the Black Knight scene in the movie "Monty Python and the Holy Grail", where King Arthur fights the Black Knight, slicing off his arms and legs, but the knight refuses to concede defeat. # BEGIN BLACK_KNIGHT_DEMO >>> knight = BlackKnight() >>> knight.member next member is: 'an arm' >>> del knight.member BLACK KNIGHT (loses an arm) -- 'Tis but a scratch. >>> del knight.member BLACK KNIGHT (loses another arm) -- It's just a flesh wound. >>> del knight.member BLACK KNIGHT (loses a leg) -- I'm invincible! >>> del knight.member BLACK KNIGHT (loses another leg) -- All right, we'll call it a draw. # END BLACK_KNIGHT_DEMO """ # BEGIN BLACK_KNIGHT class BlackKnight: def __init__(self): self.members = ['an arm', 'another arm', 'a leg', 'another leg'] self.phrases = ["'Tis but a scratch.", "It's just a flesh wound.", "I'm invincible!", "All right, we'll call it a draw."] @property def member(self): print('next member is:') return self.members[0] @member.deleter def member(self): text = 'BLACK KNIGHT (loses {})\n-- {}' print(text.format(self.members.pop(0), self.phrases.pop(0))) # END BLACK_KNIGHT
py
1a5c9483af170ef4dbe03dd1781d457a9c9ad260
import _plotly_utils.basevalidators class CustomdatasrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__(self, plotly_name="customdatasrc", parent_name="icicle", **kwargs): super(CustomdatasrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), **kwargs, )
py
1a5c954f32b6353601a5ecd952bd082b8b473e0b
import logging import pytest from toy_robot_challenge.command_processor import CommandProcessor from toy_robot_challenge.positioning import Direction, Turn from toy_robot_challenge.robot import Robot @pytest.fixture() def mock_robot(mocker): return mocker.create_autospec(Robot, instance=True) def test_create_command_processor(mock_robot): command_processor = CommandProcessor(mock_robot) assert command_processor._robot == mock_robot def test_process_ignores_invalid_command(caplog, mock_robot): caplog.set_level(logging.DEBUG) command_processor = CommandProcessor(mock_robot) command_processor.process("invalid-command") assert mock_robot.place.called is False assert mock_robot.report.called is False assert mock_robot.rotate.called is False assert mock_robot.move.called is False assert "Detected command as invalid. Terminating command execution." in str( caplog.records ) @pytest.mark.parametrize( "command", ["PLACE", "PLACE 1,2", "PLACE 1,NORTH,1", "PLACE 1,2,3", "PLACE NORTH"] ) def test_process_does_not_place_robot_for_place_command_with_missing_place_arguments( caplog, mock_robot, command ): caplog.set_level(logging.DEBUG) command_processor = CommandProcessor(mock_robot) command_processor.process(command) assert mock_robot.place.called is False assert mock_robot.report.called is False assert mock_robot.rotate.called is False assert mock_robot.move.called is False assert ( "PLACE command invoked but the arguments provided were invalid or missing (x,y,f)." in str(caplog.records) ) def test_process_does_not_place_robot_for_place_command_with_invalid_direction( caplog, mock_robot ): caplog.set_level(logging.DEBUG) command_processor = CommandProcessor(mock_robot) command_processor.process("PLACE 1,2,invalid") assert mock_robot.place.called is False assert mock_robot.report.called is False assert mock_robot.rotate.called is False assert mock_robot.move.called is False assert "Invalid direction provided in PLACE command." in str(caplog.records) def test_process_places_robot_for_valid_place_command(mock_robot): command_processor = CommandProcessor(mock_robot) command_processor.process("PLACE 1,2,NORTH") mock_robot.place.assert_called_once_with(1, 2, Direction.NORTH) assert mock_robot.report.called is False assert mock_robot.rotate.called is False assert mock_robot.move.called is False def test_process_tells_robot_to_report_for_report_command(mock_robot): command_processor = CommandProcessor(mock_robot) command_processor.process("REPORT") assert mock_robot.report.called is True assert mock_robot.place.called is False assert mock_robot.rotate.called is False assert mock_robot.move.called is False @pytest.mark.parametrize("command, turn", [("LEFT", Turn.LEFT), ("RIGHT", Turn.RIGHT)]) def test_process_tells_robot_to_rotate_for_left_or_right_command( mock_robot, command, turn ): command_processor = CommandProcessor(mock_robot) command_processor.process(command) mock_robot.rotate.assert_called_once_with(turn) assert mock_robot.report.called is False assert mock_robot.place.called is False assert mock_robot.move.called is False def test_process_tells_robot_to_move_for_move_command(mock_robot): command_processor = CommandProcessor(mock_robot) command_processor.process("MOVE") assert mock_robot.move.called is True assert mock_robot.report.called is False assert mock_robot.place.called is False assert mock_robot.rotate.called is False
py
1a5c95d5cfff4c0776ac5c9c401d01aee7d67621
#!/usr/bin/env python -O # -*- coding: utf-8 -*- # # tests.unit._dao.TestRTKRPN.py is part of The RTK Project # # All rights reserved. """ This is the test class for testing the RTKRPN module algorithms and models. """ import sys from os.path import dirname sys.path.insert(0, dirname(dirname(dirname(dirname(__file__)))) + "/rtk", ) from sqlalchemy import create_engine from sqlalchemy.orm import scoped_session, sessionmaker import unittest from nose.plugins.attrib import attr from dao.RTKRPN import RTKRPN __author__ = 'Andrew Rowland' __email__ = '[email protected]' __organization__ = 'ReliaQual Associates, LLC' __copyright__ = 'Copyright 2017 Andrew "weibullguy" Rowland' class TestRTKRPN(unittest.TestCase): """ Class for testing the RTKRPN class. """ attributes = (1, 'None', 'No effect.', 'severity', 1) def setUp(self): """ Sets up the test fixture for the RTKRPN class. """ engine = create_engine('sqlite:////tmp/TestCommonDB.rtk', echo=False) session = scoped_session(sessionmaker()) session.remove() session.configure(bind=engine, autoflush=False, expire_on_commit=False) self.DUT = session.query(RTKRPN).first() self.DUT.name = self.attributes[1] self.DUT.description = self.attributes[2] self.DUT.rpn_type = self.attributes[3] self.DUT.value = self.attributes[4] session.commit() @attr(all=True, unit=True) def test00_RTKRPN_create(self): """ (TestRTKRPN) __init__ should create an RTKRPN model """ self.assertTrue(isinstance(self.DUT, RTKRPN)) # Verify class attributes are properly initialized. self.assertEqual(self.DUT.__tablename__, 'rtk_rpn') self.assertEqual(self.DUT.rpn_id, 1) self.assertEqual(self.DUT.description, 'No effect.') self.assertEqual(self.DUT.name, 'None') self.assertEqual(self.DUT.rpn_type, 'severity') self.assertEqual(self.DUT.value, 1) @attr(all=True, unit=True) def test01_RTKRPN_get_attributes(self): """ (TestRTKRPN) get_attributes should return a tuple of attributes values on success """ self.assertEqual(self.DUT.get_attributes(), self.attributes) @attr(all=True, unit=True) def test02a_RTKRPN_set_attributes(self): """ (TestRTKRPN) set_attributes should return a zero error code on success """ _attributes = ('Very High', 'System inoperable with destructive failure without ' \ 'compromising safety.', 'severity', 8) _error_code, _msg = self.DUT.set_attributes(_attributes) self.assertEqual(_error_code, 0) self.assertEqual(_msg, "RTK SUCCESS: Updating RTKRPN {0:d} " \ "attributes.".format(self.DUT.rpn_id)) @attr(all=True, unit=True) def test02b_RTKRPN_set_attributes_to_few(self): """ (TestRTKRPN) set_attributes should return a 40 error code when passed too few attributes """ _attributes = ('Very High', 'System inoperable with destructive failure without ' \ 'compromising safety.', 'severity') _error_code, _msg = self.DUT.set_attributes(_attributes) self.assertEqual(_error_code, 40) self.assertEqual(_msg, "RTK ERROR: Insufficient number of input " \ "values to RTKRPN.set_attributes().") @attr(all=True, unit=True) def test02c_RTKRPN_set_attributes_wrong_type(self): """ (TestRTKRPN) set_attributes should return a 10 error code when passed the wrong type """ _attributes = ('Very High', 'System inoperable with destructive failure without ' \ 'compromising safety.', 'severity', 'eight') _error_code, _msg = self.DUT.set_attributes(_attributes) self.assertEqual(_error_code, 10) self.assertEqual(_msg, "RTK ERROR: Incorrect data type when " \ "converting one or more RTKRPN " \ "attributes.")
py
1a5c95ea3be4d6247a69e67800f45af0f7c4ac2f
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. # Standard library imports import math from typing import List # Third-party imports import mxnet as mx from mxnet import gluon from mxnet.gluon import nn # First-party imports from gluonts.block.feature import FeatureEmbedder from gluonts.model.common import Tensor from gluonts.core.component import validated class LookupValues(gluon.HybridBlock): def __init__(self, values: mx.nd.NDArray, **kwargs): super().__init__(**kwargs) with self.name_scope(): self.bin_values = self.params.get_constant("bin_values", values) def hybrid_forward(self, F, indices, bin_values): return F.take(bin_values, indices) def conv1d(channels, kernel_size, in_channels, use_bias=True, **kwargs): """ Conv1D with better default initialization. """ n = in_channels kernel_size = ( kernel_size if isinstance(kernel_size, list) else [kernel_size] ) for k in kernel_size: n *= k stdv = 1.0 / math.sqrt(n) winit = mx.initializer.Uniform(stdv) if use_bias: binit = mx.initializer.Uniform(stdv) else: binit = "zeros" return nn.Conv1D( channels=channels, kernel_size=kernel_size, in_channels=in_channels, use_bias=use_bias, weight_initializer=winit, bias_initializer=binit, **kwargs, ) class CausalDilatedResidue(nn.HybridBlock): def __init__( self, n_residue, n_skip, dilation, return_dense_out, kernel_size, **kwargs, ): super().__init__(**kwargs) self.n_residue = n_residue self.n_skip = n_skip self.dilation = dilation self.kernel_size = kernel_size self.return_dense_out = return_dense_out with self.name_scope(): self.conv_sigmoid = conv1d( in_channels=n_residue, channels=n_residue, kernel_size=kernel_size, dilation=dilation, activation="sigmoid", ) self.conv_tanh = conv1d( in_channels=n_residue, channels=n_residue, kernel_size=kernel_size, dilation=dilation, activation="tanh", ) self.skip = conv1d( in_channels=n_residue, channels=n_skip, kernel_size=1 ) self.residue = ( conv1d( in_channels=n_residue, channels=n_residue, kernel_size=1 ) if self.return_dense_out else None ) def hybrid_forward(self, F, x): u = self.conv_sigmoid(x) * self.conv_tanh(x) s = self.skip(u) if not self.return_dense_out: return s, F.zeros(shape=(1,)) output = self.residue(u) output = output + F.slice_axis( x, begin=(self.kernel_size - 1) * self.dilation, end=None, axis=-1 ) return s, output class WaveNet(nn.HybridBlock): def __init__( self, bin_values: List[float], n_residue: int, n_skip: int, dilation_depth: int, n_stacks: int, act_type: str, cardinality: List[int], embedding_dimension: int, pred_length: int, **kwargs, ): super().__init__(**kwargs) self.dilation_depth = dilation_depth self.pred_length = pred_length self.mu = len(bin_values) self.dilations = WaveNet._get_dilations( dilation_depth=dilation_depth, n_stacks=n_stacks ) self.receptive_field = WaveNet.get_receptive_field( dilation_depth=dilation_depth, n_stacks=n_stacks ) self.trim_lengths = [ sum(self.dilations) - sum(self.dilations[: i + 1]) for i, _ in enumerate(self.dilations) ] with self.name_scope(): self.feature_embedder = FeatureEmbedder( cardinalities=cardinality, embedding_dims=[embedding_dimension for _ in cardinality], ) # self.post_transform = LookupValues(mx.nd.array(bin_values)) self.target_embed = nn.Embedding( input_dim=self.mu, output_dim=n_residue ) self.residuals = nn.HybridSequential() for i, d in enumerate(self.dilations): is_not_last = i + 1 < len(self.dilations) self.residuals.add( CausalDilatedResidue( n_residue=n_residue, n_skip=n_skip, dilation=d, return_dense_out=is_not_last, kernel_size=2, ) ) std = 1.0 / math.sqrt(n_residue) self.conv_project = nn.Conv1D( channels=n_residue, kernel_size=1, use_bias=True, weight_initializer=mx.init.Uniform(std), bias_initializer="zero", ) self.conv1 = conv1d( in_channels=n_skip, channels=n_skip, kernel_size=1 ) self.conv2 = conv1d( in_channels=n_skip, channels=self.mu, kernel_size=1 ) self.output_act = ( nn.ELU() if act_type == "elu" else nn.Activation(activation=act_type) ) self.cross_entropy_loss = gluon.loss.SoftmaxCrossEntropyLoss() @staticmethod def _get_dilations(dilation_depth, n_stacks): return [2 ** i for i in range(dilation_depth)] * n_stacks @staticmethod def get_receptive_field(dilation_depth, n_stacks): """ Return the length of the receptive field """ dilations = WaveNet._get_dilations( dilation_depth=dilation_depth, n_stacks=n_stacks ) return sum(dilations) + 1 def hybrid_forward( self, F, feat_static_cat: Tensor, past_target: Tensor, past_observed_values: Tensor, past_time_feat: Tensor, future_time_feat: Tensor, future_target: Tensor, future_observed_values: Tensor, scale: Tensor, ) -> Tensor: embedded_cat = self.feature_embedder(feat_static_cat) static_feat = F.concat(embedded_cat, F.log(scale + 1.0), dim=1) full_target = F.concat(past_target, future_target, dim=-1).astype( "int32" ) full_observed = F.expand_dims( F.concat(past_observed_values, future_observed_values, dim=-1), axis=1, ) full_time_features = F.concat(past_time_feat, future_time_feat, dim=-1) repeated_static_feat = F.repeat( F.expand_dims(static_feat, axis=-1), repeats=self.pred_length + self.receptive_field, axis=-1, ) full_features = F.concat( full_time_features, full_observed, repeated_static_feat, dim=1 ) # (batch_size, embed_dim, sequence_length) o = self.target_embed( F.slice_axis(full_target, begin=0, end=-1, axis=-1) ).swapaxes(1, 2) o = F.concat( o, F.slice_axis(full_features, begin=1, end=None, axis=-1), dim=1 ) o = self.conv_project(o) skip_outs = [] for i, d in enumerate(self.dilations): skip, o = self.residuals[i](o) skip_trim = F.slice_axis( skip, begin=self.trim_lengths[i], end=None, axis=-1 ) skip_outs.append(skip_trim) y = sum(skip_outs) y = self.output_act(y) y = self.conv1(y) y = self.output_act(y) y = self.conv2(y) unnormalized_output = y.swapaxes(1, 2) label = F.slice_axis( full_target, begin=self.receptive_field, end=None, axis=-1 ) loss_weight = F.slice_axis( full_observed, begin=self.receptive_field, end=None, axis=-1 ) loss_weight = F.expand_dims(loss_weight, axis=2) loss = self.cross_entropy_loss(unnormalized_output, label, loss_weight) return loss class WaveNetSampler(WaveNet): """ Runs Wavenet generation in an auto-regressive manner using caching for speedup [PKC+16]_. Same arguments as WaveNet. In addition Parameters ---------- pred_length Length of the prediction horizon num_samples Number of sample paths to generate in parallel in the graph temperature If set to 1.0 (default), sample according to estimated probabilities, if set to 0.0 most likely sample at each step is chosen. post_transform An optional post transform that will be applied to the samples """ @validated() def __init__( self, bin_values: List[float], num_samples: int, temperature: float = 1.0, **kwargs, ): """ Same arguments as WaveNet. In addition :param pred_length: prediction length :param num_samples: number of sample paths to generate in parallel in the graph :param temperature: if set to 1.0 (default), sample according to estimated probabilities - if set to 0.0 most likely sample at each step is chosen. :param post_transform: An optional post transform that will be applied to the samples. """ super().__init__(bin_values=bin_values, **kwargs) self.num_samples = num_samples self.temperature = temperature with self.name_scope(): self.post_transform = LookupValues(mx.nd.array(bin_values)) def hybrid_forward( self, F, feat_static_cat: Tensor, past_target: Tensor, past_observed_values: Tensor, past_time_feat: Tensor, future_time_feat: Tensor, scale: Tensor, ) -> Tensor: embedded_cat = self.feature_embedder(feat_static_cat) static_feat = F.concat(embedded_cat, F.log(scale + 1.0), dim=1) past_target = past_target.astype("int32") def blow_up(u): """ Expand to (batch_size x num_samples) """ return F.repeat(u, repeats=self.num_samples, axis=0) def is_last_layer(i): return i + 1 == len(self.dilations) queues = [] full_time_features = F.concat(past_time_feat, future_time_feat, dim=-1) future_observed_values = F.slice_axis( future_time_feat, begin=0, end=1, axis=1 ).ones_like() full_observed = F.concat( F.expand_dims(past_observed_values, axis=1), future_observed_values, dim=-1, ) repeated_static_feat = F.repeat( F.expand_dims(static_feat, axis=-1), repeats=self.pred_length + self.receptive_field, axis=-1, ) full_features = F.concat( full_time_features, full_observed, repeated_static_feat, dim=1 ) feature_slice = F.slice_axis( full_features, begin=-self.pred_length - self.receptive_field + 1, end=None, axis=-1, ) tmp = F.slice_axis( past_target, begin=-self.receptive_field, end=None, axis=-1 ) o = self.target_embed(tmp).swapaxes(1, 2) o = F.concat( o, F.slice_axis( feature_slice, begin=-self.receptive_field, end=None, axis=-1 ), dim=1, ) o = self.conv_project(o) for i, d in enumerate(self.dilations): sz = 1 if d == 2 ** (self.dilation_depth - 1) else d * 2 _, o = self.residuals[i](o) if not is_last_layer(i): o_chunk = F.slice_axis(o, begin=-sz - 1, end=-1, axis=-1) else: o_chunk = o queues.append(blow_up(o_chunk)) res = F.slice_axis(past_target, begin=-2, end=None, axis=-1) res = blow_up(res) for n in range(self.pred_length): queues_next = [] o = self.target_embed( F.slice_axis(res, begin=-2, end=None, axis=-1) ).swapaxes(1, 2) b = F.slice_axis( full_features, begin=self.receptive_field + n - 1, end=self.receptive_field + n + 1, axis=-1, ) b = blow_up(b) o = F.concat(o, b, dim=1) o = self.conv_project(o) skip_outs = [] for i, d in enumerate(self.dilations): skip, o = self.residuals[i](o) skip_outs.append(skip) if not is_last_layer(i): q = queues[i] o = F.concat(q, o, num_args=2, dim=-1) queues_next.append( F.slice_axis(o, begin=1, end=None, axis=-1) ) queues = queues_next y = sum(skip_outs) y = self.output_act(y) y = self.conv1(y) y = self.output_act(y) unnormalized_outputs = self.conv2(y) if self.temperature > 0: probs = F.softmax( unnormalized_outputs / self.temperature, axis=1 ) y = F.sample_multinomial(probs.swapaxes(1, 2)) else: y = F.argmax(unnormalized_outputs, axis=1) y = y.astype("int32") res = F.concat(res, y, num_args=2, dim=-1) samples = F.slice_axis(res, begin=-self.pred_length, end=None, axis=-1) samples = samples.reshape( shape=(-1, self.num_samples, self.pred_length) ) samples = self.post_transform(samples) samples = F.broadcast_mul(scale.expand_dims(axis=1), samples) return samples
py
1a5c97f2e4e7f70007a1cb3388ce2a205339a2a5
from typing_extensions import Literal from pydantic import BaseModel, Field, conint from enum import Enum class EdgeType(str, Enum): """ An enumeration for the types of edges. """ Surface = "Surface" Space = "Space" Flight = "Flight" class Edge(BaseModel): """ Base class for all edges. """ name: str = Field( ..., title="Name", description="name of the edge", ) description: str = Field( ..., title="Description", description="short description of the edge", ) origin_id: conint(strict=True) = Field( ..., title="Origin ID", description="ID of the origin node" ) destination_id: conint(strict=True) = Field( ..., title="Destination ID", description="ID of the destination node", ) class SurfaceEdge(Edge): """ An edge between two surface nodes. """ type: Literal[EdgeType.Surface] = Field( title="Type", description="Type of edge", ) distance: float = Field( ..., title="Distance", description="Distance of surface edge", ge=0 ) class SpaceEdge(Edge): """ An edge between two nodes using a specified list of propulsive burns. """ type: Literal[EdgeType.Space] = Field( title="Type", description="Type of edge", ) duration: float = Field( ..., title="Duration", description="Duration of space edge", ge=0 ) class FlightEdge(Edge): """ An edge between two nodes using flight architectures that are known to close with a given cargo and crew capacity. """ type: Literal[EdgeType.Flight] = Field( ..., title="Type", description="Type of edge", ) duration: float = Field( ..., title="duration", description="Duration of flight edge", ge=0 ) max_crew: conint(strict=True, ge=0) = Field( ..., title="Max Crew", description="Crew capacity for flight", ) max_cargo: float = Field( ..., title="Max Cargo", description="Cargo capacity for flight", ge=0 )
py
1a5c97fedf7cd8e8b1b3bc5bf33ca23b90d0b8ed
from VMWConfigFile import * from pyVim import connect from pyVim.connect import SmartConnect, Disconnect from pyVmomi import vim, vmodl import atexit import os import ssl import requests import argparse import time # Disabling urllib3 ssl warnings requests.packages.urllib3.disable_warnings() # Disabling SSL certificate verification context = ssl.SSLContext(ssl.PROTOCOL_TLSv1) context.verify_mode = ssl.CERT_NONE def get_vim_objects(content, vim_type): '''Get vim objects of a given type.''' return [item for item in content.viewManager.CreateContainerView( content.rootFolder, [vim_type], recursive=True ).view] def getDatastoreId(name): ds_list = getAllDatastores() print(ds_list) for ds in ds_list: if ds['name'] == name: return ds['moId'] return "" def getAllDatastores(): try: si = None try: si = connect.SmartConnect(host=vc_settings["vcenter"], user=vc_settings["user"], pwd=vc_settings["password"], port=443, sslContext=context) except IOError as e: pass atexit.register(Disconnect, si) content = si.RetrieveContent() obj_view = content.viewManager.CreateContainerView(content.rootFolder,[vim.Datastore],True) ds_list = obj_view.view obj_view.Destroy() datastores = [] for ds in ds_list: datastores.append({'name' : ds.name, 'moId' : ds._moId}) except vmodl.MethodFault as e: print("Caught vmodl fault: %s" % e.msg) return 1 except Exception as e: print("Caught exception: %s" % str(e)) return 1 return datastores
py
1a5c9a47758c5d31c56717edb5d7a1eefe26eeba
# -*- coding: utf-8 -*- # Copyright 2019 Cohesity Inc. import cohesity_management_sdk.models.tenant class ClusterAuditLog(object): """Implementation of the 'ClusterAuditLog' model. Specifies information about a single Cluster audit log. When an action (such as pausing a Protection Job) occurs, an audit log is generated that provides details about the action. Attributes: action (string): Specifies the action that caused the log to be generated. details (string): Specifies more information about the action. domain (string): Specifies the domain of the user who caused the action that generated the log. entity_id (string): Specifies the id of the entity (object) that the action is invoked on. entity_name (string): Specifies the entity (object) name that the action is invoked on. For example, if a Job called BackupEng is paused, this field returns BackupEng. entity_type (string): Specifies the type of the entity (object) that the action is invoked on. For example, if a Job called BackupEng is paused, this field returns 'Protection Job'. human_timestamp (string): Specifies the time when the log was generated. The time is specified using a human readable timestamp. impersonation (bool): Specifies if the log was generated during impersonation. new_record (string): Specifies the record after the action is invoked. original_tenant (Tenant): Specifies details about a tenant. previous_record (string): Specifies the record before the action is invoked. tenant (Tenant): Specifies details about a tenant. timestamp_usecs (long|int): Specifies the time when the log was generated. The time is specified using a Unix epoch Timestamp (in microseconds). user_name (string): Specifies the user who caused the action that generated the log. """ # Create a mapping from Model property names to API property names _names = { "action":'action', "details":'details', "domain":'domain', "entity_id":'entityId', "entity_name":'entityName', "entity_type":'entityType', "human_timestamp":'humanTimestamp', "impersonation":'impersonation', "new_record":'newRecord', "original_tenant":'originalTenant', "previous_record":'previousRecord', "tenant":'tenant', "timestamp_usecs":'timestampUsecs', "user_name":'userName' } def __init__(self, action=None, details=None, domain=None, entity_id=None, entity_name=None, entity_type=None, human_timestamp=None, impersonation=None, new_record=None, original_tenant=None, previous_record=None, tenant=None, timestamp_usecs=None, user_name=None): """Constructor for the ClusterAuditLog class""" # Initialize members of the class self.action = action self.details = details self.domain = domain self.entity_id = entity_id self.entity_name = entity_name self.entity_type = entity_type self.human_timestamp = human_timestamp self.impersonation = impersonation self.new_record = new_record self.original_tenant = original_tenant self.previous_record = previous_record self.tenant = tenant self.timestamp_usecs = timestamp_usecs self.user_name = user_name @classmethod def from_dictionary(cls, dictionary): """Creates an instance of this model from a dictionary Args: dictionary (dictionary): A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class. """ if dictionary is None: return None # Extract variables from the dictionary action = dictionary.get('action') details = dictionary.get('details') domain = dictionary.get('domain') entity_id = dictionary.get('entityId') entity_name = dictionary.get('entityName') entity_type = dictionary.get('entityType') human_timestamp = dictionary.get('humanTimestamp') impersonation = dictionary.get('impersonation') new_record = dictionary.get('newRecord') original_tenant = cohesity_management_sdk.models.tenant.Tenant.from_dictionary(dictionary.get('originalTenant')) if dictionary.get('originalTenant') else None previous_record = dictionary.get('previousRecord') tenant = cohesity_management_sdk.models.tenant.Tenant.from_dictionary(dictionary.get('tenant')) if dictionary.get('tenant') else None timestamp_usecs = dictionary.get('timestampUsecs') user_name = dictionary.get('userName') # Return an object of this model return cls(action, details, domain, entity_id, entity_name, entity_type, human_timestamp, impersonation, new_record, original_tenant, previous_record, tenant, timestamp_usecs, user_name)
py
1a5c9a770e77fb3e43a34b82ee41055366768d07
# coding: utf-8 """ KubeVirt API This is KubeVirt API an add-on for Kubernetes. OpenAPI spec version: 1.0.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class K8sIoApiCoreV1HTTPGetAction(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'host': 'str', 'http_headers': 'list[K8sIoApiCoreV1HTTPHeader]', 'path': 'str', 'scheme': 'str' } attribute_map = { 'host': 'host', 'http_headers': 'httpHeaders', 'path': 'path', 'scheme': 'scheme' } def __init__(self, host=None, http_headers=None, path=None, scheme=None): """ K8sIoApiCoreV1HTTPGetAction - a model defined in Swagger """ self._host = None self._http_headers = None self._path = None self._scheme = None if host is not None: self.host = host if http_headers is not None: self.http_headers = http_headers if path is not None: self.path = path if scheme is not None: self.scheme = scheme @property def host(self): """ Gets the host of this K8sIoApiCoreV1HTTPGetAction. Host name to connect to, defaults to the pod IP. You probably want to set \"Host\" in httpHeaders instead. :return: The host of this K8sIoApiCoreV1HTTPGetAction. :rtype: str """ return self._host @host.setter def host(self, host): """ Sets the host of this K8sIoApiCoreV1HTTPGetAction. Host name to connect to, defaults to the pod IP. You probably want to set \"Host\" in httpHeaders instead. :param host: The host of this K8sIoApiCoreV1HTTPGetAction. :type: str """ self._host = host @property def http_headers(self): """ Gets the http_headers of this K8sIoApiCoreV1HTTPGetAction. Custom headers to set in the request. HTTP allows repeated headers. :return: The http_headers of this K8sIoApiCoreV1HTTPGetAction. :rtype: list[K8sIoApiCoreV1HTTPHeader] """ return self._http_headers @http_headers.setter def http_headers(self, http_headers): """ Sets the http_headers of this K8sIoApiCoreV1HTTPGetAction. Custom headers to set in the request. HTTP allows repeated headers. :param http_headers: The http_headers of this K8sIoApiCoreV1HTTPGetAction. :type: list[K8sIoApiCoreV1HTTPHeader] """ self._http_headers = http_headers @property def path(self): """ Gets the path of this K8sIoApiCoreV1HTTPGetAction. Path to access on the HTTP server. :return: The path of this K8sIoApiCoreV1HTTPGetAction. :rtype: str """ return self._path @path.setter def path(self, path): """ Sets the path of this K8sIoApiCoreV1HTTPGetAction. Path to access on the HTTP server. :param path: The path of this K8sIoApiCoreV1HTTPGetAction. :type: str """ self._path = path @property def scheme(self): """ Gets the scheme of this K8sIoApiCoreV1HTTPGetAction. Scheme to use for connecting to the host. Defaults to HTTP. :return: The scheme of this K8sIoApiCoreV1HTTPGetAction. :rtype: str """ return self._scheme @scheme.setter def scheme(self, scheme): """ Sets the scheme of this K8sIoApiCoreV1HTTPGetAction. Scheme to use for connecting to the host. Defaults to HTTP. :param scheme: The scheme of this K8sIoApiCoreV1HTTPGetAction. :type: str """ self._scheme = scheme def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, K8sIoApiCoreV1HTTPGetAction): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
py
1a5c9cf531084fa4b9fc871c1ae2330b17636d96
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 10 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from isi_sdk_9_0_0.models.certificate_settings_settings import CertificateSettingsSettings # noqa: F401,E501 class CertificateSettings(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'settings': 'CertificateSettingsSettings' } attribute_map = { 'settings': 'settings' } def __init__(self, settings=None): # noqa: E501 """CertificateSettings - a model defined in Swagger""" # noqa: E501 self._settings = None self.discriminator = None if settings is not None: self.settings = settings @property def settings(self): """Gets the settings of this CertificateSettings. # noqa: E501 # noqa: E501 :return: The settings of this CertificateSettings. # noqa: E501 :rtype: CertificateSettingsSettings """ return self._settings @settings.setter def settings(self, settings): """Sets the settings of this CertificateSettings. # noqa: E501 :param settings: The settings of this CertificateSettings. # noqa: E501 :type: CertificateSettingsSettings """ self._settings = settings def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CertificateSettings): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
py
1a5c9d7db5681a71903c37d5422071f9902c0fe4
IG_USERNAME = "memersgansta" IG_PASSWORD = "Itiscomplsxtocrack12@"
py
1a5c9da7fa7a0da648b175fafbed9ab51c2dc213
# Task 1 # Given two whole numbers - the lengths of the legs of a right-angled triangle - output its area. a = 1 b = 2 s = a * b / 2 print("The area is ", s) # Task 2 # Input a natural number n and output its last digit. n = input("Input a natural number ") print(str(n)[-1]) # Task 3 # Input a two-digit natural number and output the sum of its digits. n = int(input("Input a two-digit natural number ")) print(n // 10 + n % 10) # Task 4 # You are given the first and second number in an arithmetic progression and natural number n. Find n-th element of arithmetic progression. n1 = 2 n2 = 4 n = 7 n_th = n1 + (n - 1) * (n2 - n1) print(n, "-th number is ", n_th)
py
1a5c9e243ab63d3e752d0b8e010cca61ee299ca4
# -*- coding: utf-8 -*- # Based on: # http://docs.opencv.org/trunk/d7/d8b/tutorial_py_lucas_kanade.html # https://github.com/opencv/opencv/blob/master/samples/python/opt_flow.py # # Outputs image where direction responds to hue, length by brightness # 0° Blue, 60° Magenta, 120° Red, 180° Yellow, 240° Green, 300° Cyan import argparse import cv2 import locale import os from glob import glob import numpy as np from pprint import pprint import sys try: locale.setlocale(locale.LC_ALL, 'en_US') except locale.Error: locale.setlocale(locale.LC_ALL, 'english-us') # input parser = argparse.ArgumentParser() parser.add_argument('-in', dest="INPUT_DIR", default="frames/*.png", help="Path to frames directory") parser.add_argument('-out', dest="OUTPUT_DIR", default="frames_flow/", help="Path to output directory") # init input args = parser.parse_args() # if not os.path.exists(args.OUTPUT_DIR): # os.makedirs(args.OUTPUT_DIR) def drawHsv(flow): h, w = flow.shape[:2] mag, ang = cv2.cartToPolar(flow[...,0], flow[...,1]) hsv = np.zeros((h, w, 3), np.uint8) hsv[...,0] = ang*180/np.pi/2 hsv[...,1] = 255 hsv[...,2] = cv2.normalize(mag,None,0,255,cv2.NORM_MINMAX) bgr = cv2.cvtColor(hsv,cv2.COLOR_HSV2BGR) return bgr frames = glob(args.INPUT_DIR) frameCount = len(frames) print "Found %s frames" % locale.format("%d", frameCount, grouping=True) frames.sort() prvs = None for i, f in enumerate(frames): im = cv2.imread(f) if prvs is None: prvs = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) continue nxt = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) flow = cv2.calcOpticalFlowFarneback(prvs,nxt, None, 0.5, 3, 15, 3, 5, 1.2, 0) bgr = drawHsv(flow) cv2.imshow('frame',bgr) cv2.waitKey(30) prvs = nxt cv2.destroyAllWindows()
py
1a5c9eb42819eae80b8f9056a441ce93e624ad8d
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Test grammar induction performance of StructFormer.""" import argparse import collections import matplotlib.pyplot as plt from nltk.parse import DependencyGraph import numpy import torch from structformer import data_ptb from structformer import tree_utils from structformer.hinton import plot def mean(x): return sum(x) / len(x) @torch.no_grad() def test(parser, corpus, device, prt=False, gap=0): """Compute UF1 and UAS scores. Args: parser: pretrained model corpus: labeled corpus device: cpu or gpu prt: bool, whether print examples gap: distance gap for building non-binary tree Returns: UF1: unlabeled F1 score for constituency parsing """ parser.eval() prec_list = [] reca_list = [] f1_list = [] dtree_list = [] corpus_sys = {} corpus_ref = {} nsens = 0 word2idx = corpus.dictionary.word2idx dataset = zip(corpus.test_sens, corpus.test_trees, corpus.test_nltktrees) for sen, sen_tree, sen_nltktree in dataset: x = [word2idx[w] if w in word2idx else word2idx['<unk>'] for w in sen] data = torch.LongTensor([x]).to(device) pos = torch.LongTensor([list(range(len(sen)))]).to(device) _, p_dict = parser(data, pos) block = p_dict['block'] cibling = p_dict['cibling'] head = p_dict['head'] distance = p_dict['distance'] height = p_dict['height'] distance = distance.clone().squeeze(0).cpu().numpy().tolist() height = height.clone().squeeze(0).cpu().numpy().tolist() head = head.clone().squeeze(0).cpu().numpy() max_height = numpy.max(height) parse_tree = tree_utils.build_tree(distance, sen, gap=gap) model_out, _ = tree_utils.get_brackets(parse_tree) std_out, _ = tree_utils.get_brackets(sen_tree) overlap = model_out.intersection(std_out) corpus_sys[nsens] = tree_utils.mrg(parse_tree) corpus_ref[nsens] = tree_utils.mrg_labeled(sen_nltktree) prec = float(len(overlap)) / (len(model_out) + 1e-8) reca = float(len(overlap)) / (len(std_out) + 1e-8) if not std_out: reca = 1. if not model_out: prec = 1. f1 = 2 * prec * reca / (prec + reca + 1e-8) prec_list.append(prec) reca_list.append(reca) f1_list.append(f1) new_words = [] true_words = sen_nltktree.pos() for d, c, w, ph in zip(distance, height, sen, head): next_word = true_words.pop(0) while next_word[1] not in data_ptb.WORD_TAGS: next_word = true_words.pop(0) new_words.append({ 'address': len(new_words) + 1, 'word': next_word[0], 'lemma': None, 'ctag': None, 'tag': next_word[1], 'feats': None, 'head': numpy.argmax(ph) + 1 if c < max_height else 0, 'deps': collections.defaultdict(list), 'rel': None, 'distance': d, 'height': c }) while true_words: next_word = true_words.pop(0) assert next_word[1] not in data_ptb.WORD_TAGS dtree = DependencyGraph() for w in new_words: dtree.add_node(w) dtree_list.append(dtree) if prt and len(dtree_list) % 100 == 0: cibling = cibling.clone().squeeze(0).cpu().numpy() block = block.clone().squeeze(0).cpu().numpy() for word_i, d_i, imp_i, block_i, cibling_i, head_i in zip( sen, distance, height, block, cibling, head): print('%20s\t%10.2f\t%5.2f\t%s\t%s\t%s' % (word_i, d_i, imp_i, plot(block_i, max_val=1.), plot(head_i, max_val=1), plot(cibling_i, max_val=1.))) print('Standard output:', sen_tree) print('Model output:', parse_tree) print(dtree.to_conll(10)) print() fig_i, ax_i = plt.subplots() ax_i.set_xticks(numpy.arange(len(sen))) ax_i.set_yticks(numpy.arange(len(sen))) ax_i.set_xticklabels(sen) ax_i.set_yticklabels(sen) plt.setp( ax_i.get_xticklabels(), rotation=45, ha='right', rotation_mode='anchor') for row in range(len(sen)): for col in range(len(sen)): _ = ax_i.text( col, row, '%.2f' % (head[row, col]), ha='center', va='center', color='w') fig_i.tight_layout() plt.savefig( './figures/sentence-%d.png' % (len(dtree_list)), dpi=300, format='png') nsens += 1 print('Constituency parsing performance:') print('Mean Prec: %.4f, Mean Reca: %.4f, Mean F1: %.4f' % (mean(prec_list), mean(reca_list), mean(f1_list))) correct, total = tree_utils.corpus_stats_labeled(corpus_sys, corpus_ref) print(correct) print(total) print('SBAR: %.4f' % (correct['SBAR'] / total['SBAR'])) print('NP: %.4f' % (correct['NP'] / total['NP'])) print('VP: %.4f' % (correct['VP'] / total['VP'])) print('PP: %.4f' % (correct['PP'] / total['PP'])) print('ADJP: %.4f' % (correct['ADJP'] / total['ADJP'])) print('ADVP: %.4f' % (correct['ADVP'] / total['ADVP'])) print(tree_utils.corpus_average_depth(corpus_sys)) print('-' * 89) print('Dependency parsing performance:') print('Stanford Style:') tree_utils.evald(dtree_list, '../data/ptb/test.stanford', directed=True) tree_utils.evald(dtree_list, '../data/ptb/test.stanford', directed=False) print('Conll Style:') tree_utils.evald(dtree_list, '../data/ptb/test.conll', directed=True) tree_utils.evald(dtree_list, '../data/ptb/test.conll', directed=False) return mean(f1_list) if __name__ == '__main__': marks = [' ', '-', '='] numpy.set_printoptions(precision=2, suppress=True, linewidth=5000) argpr = argparse.ArgumentParser(description='PyTorch PTB Language Model') # Model parameters. argpr.add_argument( '--data', type=str, default='data/penn/', help='location of the data corpus') argpr.add_argument( '--checkpoint', type=str, default='PTB.pt', help='model checkpoint to use') argpr.add_argument('--seed', type=int, default=1111, help='random seed') argpr.add_argument('--gap', type=float, default=0, help='random seed') argpr.add_argument('--print', action='store_true', help='use CUDA') argpr.add_argument('--cuda', action='store_true', help='use CUDA') argpr.add_argument('--wsj10', action='store_true', help='use WSJ10') args = argpr.parse_args() # Set the random seed manually for reproducibility. torch.manual_seed(args.seed) # Load model print('Loading model...') with open(args.checkpoint, 'rb') as f: model, _, _, _ = torch.load(f) torch.cuda.manual_seed(args.seed) model.cpu() if args.cuda: model.cuda() # Load data print('Loading PTB dataset...') ptb_corpus = data_ptb.Corpus(args.data) print('Evaluating...') if args.cuda: eval_device = torch.device('cuda:0') else: eval_device = torch.device('cpu') print('=' * 89) test(model, ptb_corpus, eval_device, prt=args.print, gap=args.gap) print('=' * 89) rel_weight = model.rel_weight.detach().cpu().numpy() fig, axs = plt.subplots(8, 8, sharex=True, sharey=True) names = ['p', 'd'] for i in range(rel_weight.shape[0]): for j in range(rel_weight.shape[1]): print(plot(rel_weight[i, j], max_val=1.), end=' ') values = rel_weight[i, j] if i == 0: axs[i, j].set_title('%d' % (j,)) if j == 0: axs[i, j].set_ylabel('%d' % (i,)) axs[i, j].bar(names, values) print() plt.savefig('./figures/mask_weights.png', dpi=300, format='png')
py
1a5c9fe7e9d4dbb59343d9a22d5ebc30ce893f7e
# this code allow the user to input their answers. from django.db import models # Create your models here. class Dog(models.Model): name= models.CharField(max_length=50) breed = models.CharField(max_length=100) color= models.CharField(max_length=50) gender= models.CharField(max_length=20)
py
1a5ca0928b178d9cc86a0f751e599a21c6ed2203
# vim: set fileencoding=utf-8 : """ ~~~~~~~~~ Utilities ~~~~~~~~~ """ from __future__ import absolute_import, division import copy from sqlalchemy import inspect from sqlalchemy.ext.associationproxy import _AssociationList from sqlalchemy.orm.dynamic import AppenderMixin from sqlalchemy.orm.query import Query from dictalchemy import constants from dictalchemy import errors def arg_to_dict(arg): """Convert an argument that can be None, list/tuple or dict to dict Example:: >>> arg_to_dict(None) [] >>> arg_to_dict(['a', 'b']) {'a':{},'b':{}} >>> arg_to_dict({'a':{'only': 'id'}, 'b':{'only': 'id'}}) {'a':{'only':'id'},'b':{'only':'id'}} :return: dict with keys and dict arguments as value """ if arg is None: arg = [] try: arg = dict(arg) except ValueError: arg = dict.fromkeys(list(arg), {}) return arg def asdict(model, exclude=None, exclude_underscore=None, exclude_pk=None, follow=None, include=None, only=None, method='asdict', **kwargs): """Get a dict from a model Using the `method` parameter makes it possible to have multiple methods that formats the result. Additional keyword arguments will be passed to all relationships that are followed. This can be used to pass on things like request or context. :param follow: List or dict of relationships that should be followed. If the parameter is a dict the value should be a dict of \ keyword arguments. Currently it follows InstrumentedList, \ MappedCollection and regular 1:1, 1:m, m:m relationships. Follow \ takes an extra argument, 'method', which is the method that \ should be used on the relation. It also takes the extra argument \ 'parent' which determines where the relationships data should be \ added in the response dict. If 'parent' is set the relationship \ will be added with it's own key as a child to `parent`. :param exclude: List of properties that should be excluded, will be \ merged with `model.dictalchemy_exclude` :param exclude_pk: If True any column that refers to the primary key will \ be excluded. :param exclude_underscore: Overides `model.dictalchemy_exclude_underscore`\ if set :param include: List of properties that should be included. Use this to \ allow python properties to be called. This list will be merged \ with `model.dictalchemy_asdict_include` or \ `model.dictalchemy_include`. :param only: List of properties that should be included. This will \ override everything else except `follow`. :param method: Name of the method that is currently called. This will be \ the default method used in 'follow' unless another method is\ set. :raises: :class:`dictalchemy.errors.MissingRelationError` \ if `follow` contains a non-existent relationship. :raises: :class:`dictalchemy.errors.UnsupportedRelationError` If `follow` \ contains an existing relationship that currently isn't supported. :returns: dict """ follow = arg_to_dict(follow) info = inspect(model) columns = [c.key for c in info.mapper.column_attrs] synonyms = [c.key for c in info.mapper.synonyms] if only: attrs = only else: exclude = exclude or [] exclude += getattr(model, 'dictalchemy_exclude', constants.default_exclude) or [] if exclude_underscore is None: exclude_underscore = getattr(model, 'dictalchemy_exclude_underscore', constants.default_exclude_underscore) if exclude_underscore: # Exclude all properties starting with underscore exclude += [k.key for k in info.mapper.attrs if k.key[0] == '_'] if exclude_pk is True: exclude += [c.key for c in info.mapper.primary_key] include = (include or []) + (getattr(model, 'dictalchemy_asdict_include', getattr(model, 'dictalchemy_include', None)) or []) attrs = [k for k in columns + synonyms + include if k not in exclude] data = dict([(k, getattr(model, k)) for k in attrs]) for (rel_key, orig_args) in follow.iteritems(): try: rel = getattr(model, rel_key) except AttributeError: raise errors.MissingRelationError(rel_key) args = copy.deepcopy(orig_args) method = args.pop('method', method) args['method'] = method args.update(copy.copy(kwargs)) if hasattr(rel, method): rel_data = getattr(rel, method)(**args) elif isinstance(rel, (list, _AssociationList)): rel_data = [] for child in rel: if hasattr(child, method): rel_data.append(getattr(child, method)(**args)) else: try: rel_data.append(dict(child)) # TypeError is for non-dictable children except TypeError: rel_data.append(copy.copy(child)) elif isinstance(rel, dict): rel_data = {} for (child_key, child) in rel.iteritems(): if hasattr(child, method): rel_data[child_key] = getattr(child, method)(**args) else: try: rel_data[child_key] = dict(child) except ValueError: rel_data[child_key] = copy.copy(child) elif isinstance(rel, (AppenderMixin, Query)): rel_data = [] for child in rel.all(): if hasattr(child, method): rel_data.append(getattr(child, method)(**args)) else: rel_data.append(dict(child)) elif rel is None: rel_data = None else: raise errors.UnsupportedRelationError(rel_key) ins_key = args.pop('parent', None) if ins_key is None: data[rel_key] = rel_data else: if ins_key not in data: data[ins_key] = {} data[ins_key][rel_key] = rel_data return data def fromdict(model, data, exclude=None, exclude_underscore=None, allow_pk=None, follow=None, include=None, only=None): """Update a model from a dict Works almost identically as :meth:`dictalchemy.utils.asdict`. However, it will not create missing instances or update collections. This method updates the following properties on a model: * Simple columns * Synonyms * Simple 1-m relationships :param data: dict of data :param exclude: list of properties that should be excluded :param exclude_underscore: If True underscore properties will be excluded,\ if set to None model.dictalchemy_exclude_underscore will be used. :param allow_pk: If True any column that refers to the primary key will \ be excluded. Defaults model.dictalchemy_fromdict_allow_pk or \ dictable.constants.fromdict_allow_pk. If set to True a primary \ key can still be excluded with the `exclude` parameter. :param follow: Dict of relations that should be followed, the key is the \ arguments passed to the relation. Relations only works on simple \ relations, not on lists. :param include: List of properties that should be included. This list \ will override anything in the exclude list. It will not override \ allow_pk. :param only: List of the only properties that should be set. This \ will not override `allow_pk` or `follow`. :raises: :class:`dictalchemy.errors.DictalchemyError` If a primary key is \ in data and allow_pk is False :returns: The model """ follow = arg_to_dict(follow) info = inspect(model) columns = [c.key for c in info.mapper.column_attrs] synonyms = [c.key for c in info.mapper.synonyms] relations = [c.key for c in info.mapper.relationships] primary_keys = [c.key for c in info.mapper.primary_key] if allow_pk is None: allow_pk = getattr(model, 'dictalchemy_fromdict_allow_pk', constants.default_fromdict_allow_pk) if only: valid_keys = only else: exclude = exclude or [] exclude += getattr(model, 'dictalchemy_exclude', constants.default_exclude) or [] if exclude_underscore is None: exclude_underscore = getattr(model, 'dictalchemy_exclude_underscore', constants.default_exclude_underscore) if exclude_underscore: # Exclude all properties starting with underscore exclude += [k.key for k in info.mapper.attrs if k.key[0] == '_'] include = (include or []) + (getattr(model, 'dictalchemy_fromdict_include', getattr(model, 'dictalchemy_include', None)) or []) valid_keys = [k for k in columns + synonyms if k not in exclude] + include # Keys that will be updated update_keys = set(valid_keys) & set(data.keys()) # Check for primary keys data_primary_key= update_keys & set(primary_keys) if len(data_primary_key) and not allow_pk: msg = ("Primary keys({0}) cannot be updated by fromdict." "Set 'dictalchemy_fromdict_allow_pk' to True in your Model" " or pass 'allow_pk=True'.").format(','.join(data_primary_key)) raise errors.DictalchemyError(msg) # Update columns and synonyms for k in update_keys: setattr(model, k, data[k]) # Update simple relations for (k, args) in follow.iteritems(): if k not in data: continue if k not in relations: raise errors.MissingRelationError(k) rel = getattr(model, k) if hasattr(rel, 'fromdict'): rel.fromdict(data[k], **args) return model def iter(model): """iter method for models Yields everything returned by `asdict`. """ for i in model.asdict().iteritems(): yield i def make_class_dictable( cls, exclude=constants.default_exclude, exclude_underscore=constants.default_exclude_underscore, fromdict_allow_pk=constants.default_fromdict_allow_pk, include=None, asdict_include=None, fromdict_include=None): """Make a class dictable Useful for when the Base class is already defined, for example when using Flask-SQLAlchemy. Warning: This method will overwrite existing attributes if they exists. :param exclude: Will be set as dictalchemy_exclude on the class :param exclude_underscore: Will be set as dictalchemy_exclude_underscore \ on the class :param fromdict_allow_pk: Will be set as dictalchemy_fromdict_allow_pk\ on the class :param include: Will be set as dictalchemy_include on the class. :param asdict_include: Will be set as `dictalchemy_asdict_include` on the \ class. If not None it will override `dictalchemy_include`. :param fromdict_include: Will be set as `dictalchemy_fromdict_include` on \ the class. If not None it will override `dictalchemy_include`. :returns: The class """ setattr(cls, 'dictalchemy_exclude', exclude) setattr(cls, 'dictalchemy_exclude_underscore', exclude_underscore) setattr(cls, 'dictalchemy_fromdict_allow_pk', fromdict_allow_pk) setattr(cls, 'asdict', asdict) setattr(cls, 'fromdict', fromdict) setattr(cls, '__iter__', iter) setattr(cls, 'dictalchemy_include', include) setattr(cls, 'dictalchemy_asdict_include', asdict_include) setattr(cls, 'dictalchemy_fromdict_include', fromdict_include) return cls
py
1a5ca102b9c050b034dbf33bdd7287143b2fb1ff
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import absolute_import import sys import time import unittest import apache_beam as beam from apache_beam import coders from apache_beam.options.pipeline_options import PipelineOptions from apache_beam.portability.api.beam_interactive_api_pb2 import TestStreamFileRecord from apache_beam.runners.interactive import background_caching_job as bcj from apache_beam.runners.interactive import interactive_beam as ib from apache_beam.runners.interactive import interactive_environment as ie from apache_beam.runners.interactive import pipeline_instrument as pi from apache_beam.runners.interactive.interactive_runner import InteractiveRunner from apache_beam.runners.interactive.options.capture_limiters import Limiter from apache_beam.runners.interactive.recording_manager import ElementStream from apache_beam.runners.interactive.recording_manager import Recording from apache_beam.runners.interactive.recording_manager import RecordingManager from apache_beam.runners.interactive.testing.test_cache_manager import FileRecordsBuilder from apache_beam.runners.interactive.testing.test_cache_manager import InMemoryCache from apache_beam.runners.runner import PipelineState from apache_beam.testing.test_stream import TestStream from apache_beam.testing.test_stream import WindowedValueHolder from apache_beam.transforms.window import GlobalWindow from apache_beam.utils.timestamp import MIN_TIMESTAMP from apache_beam.utils.windowed_value import WindowedValue # TODO(BEAM-8288): clean up the work-around of nose tests using Python2 without # unittest.mock module. try: from unittest.mock import MagicMock except ImportError: from mock import MagicMock # type: ignore[misc] class MockPipelineResult(beam.runners.runner.PipelineResult): """Mock class for controlling a PipelineResult.""" def __init__(self): self._state = PipelineState.RUNNING def wait_until_finish(self): pass def set_state(self, state): self._state = state @property def state(self): return self._state def cancel(self): self._state = PipelineState.CANCELLED class ElementStreamTest(unittest.TestCase): def setUp(self): ie.new_env() self.cache = InMemoryCache() self.p = beam.Pipeline() self.pcoll = self.p | beam.Create([]) self.cache_key = str(pi.CacheKey('pcoll', '', '', '')) # Create a MockPipelineResult to control the state of a fake run of the # pipeline. self.mock_result = MockPipelineResult() ie.current_env().track_user_pipelines() ie.current_env().set_pipeline_result(self.p, self.mock_result) ie.current_env().set_cache_manager(self.cache, self.p) def test_read(self): """Test reading and if a stream is done no more elements are returned.""" self.mock_result.set_state(PipelineState.DONE) self.cache.write(['expected'], 'full', self.cache_key) self.cache.save_pcoder(None, 'full', self.cache_key) stream = ElementStream( self.pcoll, '', self.cache_key, max_n=1, max_duration_secs=1) self.assertFalse(stream.is_done()) self.assertEqual(list(stream.read())[0], 'expected') self.assertTrue(stream.is_done()) def test_done_if_terminated(self): """Test that terminating the job sets the stream as done.""" self.cache.write(['expected'], 'full', self.cache_key) self.cache.save_pcoder(None, 'full', self.cache_key) stream = ElementStream( self.pcoll, '', self.cache_key, max_n=100, max_duration_secs=10) self.assertFalse(stream.is_done()) self.assertEqual(list(stream.read(tail=False))[0], 'expected') # The limiters were not reached, so the stream is not done yet. self.assertFalse(stream.is_done()) self.mock_result.set_state(PipelineState.DONE) self.assertEqual(list(stream.read(tail=False))[0], 'expected') # The underlying pipeline is terminated, so the stream won't yield new # elements. self.assertTrue(stream.is_done()) def test_read_n(self): """Test that the stream only reads 'n' elements.""" self.mock_result.set_state(PipelineState.DONE) self.cache.write(list(range(5)), 'full', self.cache_key) self.cache.save_pcoder(None, 'full', self.cache_key) stream = ElementStream( self.pcoll, '', self.cache_key, max_n=1, max_duration_secs=1) self.assertEqual(list(stream.read()), [0]) self.assertTrue(stream.is_done()) stream = ElementStream( self.pcoll, '', self.cache_key, max_n=2, max_duration_secs=1) self.assertEqual(list(stream.read()), [0, 1]) self.assertTrue(stream.is_done()) stream = ElementStream( self.pcoll, '', self.cache_key, max_n=5, max_duration_secs=1) self.assertEqual(list(stream.read()), list(range(5))) self.assertTrue(stream.is_done()) # Test that if the user asks for more than in the cache it still returns. stream = ElementStream( self.pcoll, '', self.cache_key, max_n=10, max_duration_secs=1) self.assertEqual(list(stream.read()), list(range(5))) self.assertTrue(stream.is_done()) def test_read_duration(self): """Test that the stream only reads a 'duration' of elements.""" def as_windowed_value(element): return WindowedValueHolder(WindowedValue(element, 0, [])) values = (FileRecordsBuilder(tag=self.cache_key) .advance_processing_time(1) .add_element(element=as_windowed_value(0), event_time_secs=0) .advance_processing_time(1) .add_element(element=as_windowed_value(1), event_time_secs=1) .advance_processing_time(1) .add_element(element=as_windowed_value(2), event_time_secs=3) .advance_processing_time(1) .add_element(element=as_windowed_value(3), event_time_secs=4) .advance_processing_time(1) .add_element(element=as_windowed_value(4), event_time_secs=5) .build()) # yapf: disable values = [ v.recorded_event for v in values if isinstance(v, TestStreamFileRecord) ] self.mock_result.set_state(PipelineState.DONE) self.cache.write(values, 'full', self.cache_key) self.cache.save_pcoder(coders.FastPrimitivesCoder(), 'full', self.cache_key) # The following tests a progression of reading different durations from the # cache. stream = ElementStream( self.pcoll, '', self.cache_key, max_n=100, max_duration_secs=1) self.assertSequenceEqual([e.value for e in stream.read()], [0]) stream = ElementStream( self.pcoll, '', self.cache_key, max_n=100, max_duration_secs=2) self.assertSequenceEqual([e.value for e in stream.read()], [0, 1]) stream = ElementStream( self.pcoll, '', self.cache_key, max_n=100, max_duration_secs=10) self.assertSequenceEqual([e.value for e in stream.read()], [0, 1, 2, 3, 4]) class RecordingTest(unittest.TestCase): def setUp(self): ie.new_env() @unittest.skipIf( sys.version_info < (3, 6, 0), 'This test requires at least Python 3.6 to work.') def test_computed(self): """Tests that a PCollection is marked as computed only in a complete state. Because the background caching job is now long-lived, repeated runs of a PipelineFragment may yield different results for the same PCollection. """ p = beam.Pipeline(InteractiveRunner()) elems = p | beam.Create([0, 1, 2]) ib.watch(locals()) # Create a MockPipelineResult to control the state of a fake run of the # pipeline. mock_result = MockPipelineResult() ie.current_env().track_user_pipelines() ie.current_env().set_pipeline_result(p, mock_result) # Create a mock BackgroundCachingJob that will control whether to set the # PCollections as computed or not. bcj_mock_result = MockPipelineResult() background_caching_job = bcj.BackgroundCachingJob(bcj_mock_result, []) # Create a recording. recording = Recording( p, [elems], mock_result, pi.PipelineInstrument(p), max_n=10, max_duration_secs=60) # The background caching job and the recording isn't done yet so there may # be more elements to be recorded. self.assertFalse(recording.is_computed()) self.assertFalse(recording.computed()) self.assertTrue(recording.uncomputed()) # The recording is finished but the background caching job is not. There # may still be more elements to record, or the intermediate PCollection may # have stopped caching in an incomplete state, e.g. before a window could # fire. mock_result.set_state(PipelineState.DONE) recording.wait_until_finish() self.assertFalse(recording.is_computed()) self.assertFalse(recording.computed()) self.assertTrue(recording.uncomputed()) # The background caching job finished before we started a recording which # is a sure signal that there will be no more elements. bcj_mock_result.set_state(PipelineState.DONE) ie.current_env().set_background_caching_job(p, background_caching_job) recording = Recording( p, [elems], mock_result, pi.PipelineInstrument(p), max_n=10, max_duration_secs=60) recording.wait_until_finish() # There are no more elements and the recording finished, meaning that the # intermediate PCollections are in a complete state. They can now be marked # as computed. self.assertTrue(recording.is_computed()) self.assertTrue(recording.computed()) self.assertFalse(recording.uncomputed()) @unittest.skipIf( sys.version_info < (3, 6, 0), 'This test requires at least Python 3.6 to work.') def test_describe(self): p = beam.Pipeline(InteractiveRunner()) numbers = p | 'numbers' >> beam.Create([0, 1, 2]) letters = p | 'letters' >> beam.Create(['a', 'b', 'c']) ib.watch(locals()) # Create a MockPipelineResult to control the state of a fake run of the # pipeline. mock_result = MockPipelineResult() ie.current_env().track_user_pipelines() ie.current_env().set_pipeline_result(p, mock_result) cache_manager = InMemoryCache() ie.current_env().set_cache_manager(cache_manager, p) # Create a recording with an arbitrary start time. recording = Recording( p, [numbers, letters], mock_result, pi.PipelineInstrument(p), max_n=10, max_duration_secs=60) # Get the cache key of the stream and write something to cache. This is # so that a pipeline doesn't have to run in the test. numbers_stream = recording.stream(numbers) cache_manager.write([0, 1, 2], 'full', numbers_stream.cache_key) cache_manager.save_pcoder(None, 'full', numbers_stream.cache_key) letters_stream = recording.stream(letters) cache_manager.write(['a', 'b', 'c'], 'full', letters_stream.cache_key) cache_manager.save_pcoder(None, 'full', letters_stream.cache_key) # Get the description. description = recording.describe() size = description['size'] self.assertEqual( size, cache_manager.size('full', numbers_stream.cache_key) + cache_manager.size('full', letters_stream.cache_key)) class RecordingManagerTest(unittest.TestCase): def setUp(self): ie.new_env() def tearDown(self): ib.options.capture_control.set_limiters_for_test([]) @unittest.skipIf( sys.version_info < (3, 6, 0), 'This test requires at least Python 3.6 to work.') def test_basic_execution(self): """A basic pipeline to be used as a smoke test.""" # Create the pipeline that will emit 0, 1, 2. p = beam.Pipeline(InteractiveRunner()) numbers = p | 'numbers' >> beam.Create([0, 1, 2]) letters = p | 'letters' >> beam.Create(['a', 'b', 'c']) # Watch the pipeline and PCollections. This is normally done in a notebook # environment automatically, but we have to do it manually here. ib.watch(locals()) ie.current_env().track_user_pipelines() # Create the recording objects. By calling `record` a new PipelineFragment # is started to compute the given PCollections and cache to disk. rm = RecordingManager(p) numbers_recording = rm.record([numbers], max_n=3, max_duration=500) numbers_stream = numbers_recording.stream(numbers) numbers_recording.wait_until_finish() # Once the pipeline fragment completes, we can read from the stream and know # that all elements were written to cache. elems = list(numbers_stream.read()) expected_elems = [ WindowedValue(i, MIN_TIMESTAMP, [GlobalWindow()]) for i in range(3) ] self.assertListEqual(elems, expected_elems) # Make an extra recording and test the description. letters_recording = rm.record([letters], max_n=3, max_duration=500) letters_recording.wait_until_finish() self.assertEqual( rm.describe()['size'], numbers_recording.describe()['size'] + letters_recording.describe()['size']) rm.cancel() @unittest.skipIf( sys.version_info < (3, 6, 0), 'This test requires at least Python 3.6 to work.') def test_duration_parsing(self): p = beam.Pipeline(InteractiveRunner()) elems = p | beam.Create([0, 1, 2]) # Watch the pipeline and PCollections. This is normally done in a notebook # environment automatically, but we have to do it manually here. ib.watch(locals()) ie.current_env().track_user_pipelines() # Create the recording objects. rm = RecordingManager(p) recording = rm.record([elems], max_n=3, max_duration='500s') recording.wait_until_finish() # Assert that the duration was parsed correctly to integer seconds. self.assertEqual(recording.describe()['duration'], 500) @unittest.skipIf( sys.version_info < (3, 6, 0), 'This test requires at least Python 3.6 to work.') def test_cancel_stops_recording(self): # Add the TestStream so that it can be cached. ib.options.capturable_sources.add(TestStream) p = beam.Pipeline( InteractiveRunner(), options=PipelineOptions(streaming=True)) elems = ( p | TestStream().advance_watermark_to(0).advance_processing_time( 1).add_elements(list(range(10))).advance_processing_time(1)) squares = elems | beam.Map(lambda x: x**2) # Watch the local scope for Interactive Beam so that referenced PCollections # will be cached. ib.watch(locals()) # This is normally done in the interactive_utils when a transform is # applied but needs an IPython environment. So we manually run this here. ie.current_env().track_user_pipelines() # Get the recording then the BackgroundCachingJob. rm = RecordingManager(p) recording = rm.record([squares], max_n=10, max_duration=30) # The BackgroundCachingJob is still waiting for more elements, so it isn't # done yet. bcj = ie.current_env().get_background_caching_job(p) self.assertFalse(bcj.is_done()) # Assert that something was read and that the BackgroundCachingJob was # sucessfully stopped. self.assertTrue(list(recording.stream(squares).read())) rm.cancel() self.assertTrue(bcj.is_done()) @unittest.skipIf( sys.version_info < (3, 6, 0), 'This test requires at least Python 3.6 to work.') def test_recording_manager_clears_cache(self): """Tests that the RecordingManager clears the cache before recording. A job may have incomplete PCollections when the job terminates. Clearing the cache ensures that correct results are computed every run. """ # Add the TestStream so that it can be cached. ib.options.capturable_sources.add(TestStream) p = beam.Pipeline( InteractiveRunner(), options=PipelineOptions(streaming=True)) elems = ( p | TestStream().advance_watermark_to(0).advance_processing_time( 1).add_elements(list(range(10))).advance_processing_time(1)) squares = elems | beam.Map(lambda x: x**2) # Watch the local scope for Interactive Beam so that referenced PCollections # will be cached. ib.watch(locals()) # This is normally done in the interactive_utils when a transform is # applied but needs an IPython environment. So we manually run this here. ie.current_env().track_user_pipelines() # Do the first recording to get the timestamp of the first time the fragment # was run. rm = RecordingManager(p) rm.record([squares], max_n=10, max_duration=2) first_recording_start = rm.describe()['start'] rm.cancel() # Get the cache, key, and coder to read the PCollection from the cache. pipeline_instrument = pi.PipelineInstrument(p) cache = ie.current_env().get_cache_manager(p) cache_key = pipeline_instrument.cache_key(squares) # Set up a mock for the Cache's clear function which will be used to clear # uncomputed PCollections. cache.clear = MagicMock() # Rerun the fragment. If the cache was cleared correctly then the starting # time of the second recording will be later than the first. This is because # the PCollection wasn't considered to be computedand was cleared from # cache. Thus the pipeline fragment was rerun for that PCollection at a # later time. rm.record([squares], max_n=10, max_duration=1) second_recording_start = rm.describe()['start'] rm.cancel() self.assertGreater(second_recording_start, first_recording_start) # Assert that the cache cleared the PCollection. cache.clear.assert_called_with('full', cache_key) @unittest.skipIf( sys.version_info < (3, 6, 0), 'This test requires at least Python 3.6 to work.') def test_clear(self): """Tests that clear can empty the cache for a specific pipeline.""" # Create two pipelines so we can check that clearing the cache won't clear # all defined pipelines. p1 = beam.Pipeline(InteractiveRunner()) elems_1 = p1 | 'elems 1' >> beam.Create([0, 1, 2]) p2 = beam.Pipeline(InteractiveRunner()) elems_2 = p2 | 'elems 2' >> beam.Create([0, 1, 2]) # Watch the pipeline and PCollections. This is normally done in a notebook # environment automatically, but we have to do it manually here. ib.watch(locals()) ie.current_env().track_user_pipelines() # Create the recording objects. By calling `record` a new PipelineFragment # is started to compute the given PCollections and cache to disk. rm_1 = RecordingManager(p1) recording = rm_1.record([elems_1], max_n=3, max_duration=500) recording.wait_until_finish() rm_2 = RecordingManager(p2) recording = rm_2.record([elems_2], max_n=3, max_duration=500) recording.wait_until_finish() # Assert that clearing only one recording clears that recording. self.assertGreater(rm_1.describe()['size'], 0) self.assertGreater(rm_2.describe()['size'], 0) rm_1.clear() self.assertEqual(rm_1.describe()['size'], 0) self.assertGreater(rm_2.describe()['size'], 0) rm_2.clear() self.assertEqual(rm_2.describe()['size'], 0) @unittest.skipIf( sys.version_info < (3, 6, 0), 'This test requires at least Python 3.6 to work.') def test_record_pipeline(self): # Add the TestStream so that it can be cached. ib.options.capturable_sources.add(TestStream) p = beam.Pipeline( InteractiveRunner(), options=PipelineOptions(streaming=True)) # pylint: disable=unused-variable _ = (p | TestStream() .advance_watermark_to(0) .advance_processing_time(1) .add_elements(list(range(10))) .advance_processing_time(1)) # yapf: disable # Watch the local scope for Interactive Beam so that referenced PCollections # will be cached. ib.watch(locals()) # This is normally done in the interactive_utils when a transform is # applied but needs an IPython environment. So we manually run this here. ie.current_env().track_user_pipelines() # Create a lmiter that stops the background caching job when something is # written to cache. This is used to make ensure that the pipeline is # functioning properly and that there are no data races with the test. class SizeLimiter(Limiter): def __init__(self, recording_manager): self.recording_manager = recording_manager def is_triggered(self): return self.recording_manager.describe()['size'] > 0 # Do the first recording to get the timestamp of the first time the fragment # was run. rm = RecordingManager(p) ib.options.capture_control.set_limiters_for_test([SizeLimiter(rm)]) self.assertEqual(rm.describe()['state'], PipelineState.STOPPED) self.assertTrue(rm.record_pipeline()) self.assertFalse(rm.record_pipeline()) for _ in range(60): if rm.describe()['state'] == PipelineState.CANCELLED: break time.sleep(1) self.assertTrue( rm.describe()['state'] == PipelineState.CANCELLED, 'Test timed out waiting for pipeline to be cancelled. This indicates ' 'that the BackgroundCachingJob did not cache anything.') if __name__ == '__main__': unittest.main()
py
1a5ca1802e7d796ce100fbce833a7994e502ae66
# coding: utf-8 try: from rest_framework_jwt.settings import api_settings def jwt_encode_handler(payload): """ Encode handler override for JWT """ import jwt return jwt.encode( payload, str(api_settings.JWT_SECRET_KEY), str(api_settings.JWT_ALGORITHM) ).decode('utf-8') def jwt_decode_handler(token): """ Decode handler override for JWT """ options = { 'verify_exp': api_settings.JWT_VERIFY_EXPIRATION, } import jwt return jwt.decode( token, str(api_settings.JWT_SECRET_KEY), str(api_settings.JWT_VERIFY), options=options, leeway=api_settings.JWT_LEEWAY, audience=api_settings.JWT_AUDIENCE, issuer=api_settings.JWT_ISSUER, algorithms=[api_settings.JWT_ALGORITHM] ) def jwt_payload_handler(user): """ Payload handler for JWT """ from rest_framework_jwt.utils import jwt_payload_handler as payload_handler payload = payload_handler(user) payload.update( user_id=user.pk, email=getattr(user, 'email', None), is_staff=getattr(user, 'is_staff', None), is_superuser=getattr(user, 'is_superuser', None)) return payload def jwt_response_payload_handler(token, user, request): """ Token payload handler for JWT """ from django.utils.timezone import now if user and hasattr(user, 'last_login'): user.last_login = now() user.save(update_fields=['last_login']) return {'token': token} except ImportError: pass
py
1a5ca4094513214ecb79e534d370c97f3042087d
"""Helper for evaluation on the Labeled Faces in the Wild dataset """ # MIT License # # Copyright (c) 2016 David Sandberg # Copyright (c) 2021 Kaen Chan # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse from evaluation.pyeer.eer_info import get_eer_stats from mc_dropout.network_mcdropout import NetworkMCDropout from utils import utils from dataset.dataset_np_ipc import Dataset import os import argparse import sys import numpy as np from scipy import misc from scipy import interpolate import sklearn import cv2 import math import datetime import pickle from sklearn.decomposition import PCA import mxnet as mx from mxnet import ndarray as nd import _pickle as cPickle from utils.utils import KFold def calculate_eer(embeddings1, embeddings2, actual_issame, compare_func, nrof_folds=10): assert(embeddings1.shape[0] == embeddings2.shape[0]) assert(embeddings1.shape[1] == embeddings2.shape[1]) dist = compare_func(embeddings1, embeddings2) gscores_a = dist[actual_issame == 1] iscores_a = dist[actual_issame == 0] stats_a = get_eer_stats(gscores_a, iscores_a) return stats_a def evaluate(embeddings, actual_issame, compare_func, nrof_folds=10, keep_idxes=None): # Calculate evaluation metrics embeddings1 = embeddings[0::2] embeddings2 = embeddings[1::2] actual_issame = np.asarray(actual_issame) if keep_idxes is not None: embeddings1 = embeddings1[keep_idxes] embeddings2 = embeddings2[keep_idxes] actual_issame = actual_issame[keep_idxes] return calculate_eer(embeddings1, embeddings2, actual_issame, compare_func, nrof_folds=nrof_folds) def load_bin(path, image_size): print(path, image_size) with open(path, 'rb') as f: if 'lfw_all' in path: bins, issame_list = pickle.load(f) else: bins, issame_list = pickle.load(f, encoding='latin1') data_list = [] for flip in [0]: data = nd.empty((len(issame_list)*2, image_size[0], image_size[1], 3)) data_list.append(data) print(len(bins)) for i in range(len(issame_list)*2): _bin = bins[i] # print(type(_bin)) img = mx.image.imdecode(_bin) # img = nd.transpose(img, axes=(2, 0, 1)) for flip in [0]: if flip==1: img = mx.ndarray.flip(data=img, axis=2) data_list[flip][i][:] = img # if i%5000==0: # print('loading bin', i) print(data_list[0].shape) return (data_list, issame_list) def extract_features(images_preprocessed, issame_list, extract_feature_func, batch_size, name='', result_dir='', re_extract_feature=True): print('testing verification..') if name: save_name_pkl_feature = result_dir + '/%s_feature.pkl' % name if re_extract_feature or not os.path.exists(save_name_pkl_feature): images = images_preprocessed print(images.shape) mu, sigma_sq = extract_feature_func(images) save_data = (mu, sigma_sq, issame_list) if name: with open(save_name_pkl_feature, 'wb') as f: cPickle.dump(save_data, f) print('save', save_name_pkl_feature) else: with open(save_name_pkl_feature, 'rb') as f: data = cPickle.load(f) if len(data) == 3: mu, sigma_sq, issame_list = data else: mu, sigma_sq = data print('load', save_name_pkl_feature) return mu, sigma_sq, issame_list def eval_images_with_sigma(mu, sigma_sq, issame_list, nfolds=10, name='', filter_out_type='max', sigma_sizes=1): print('sigma_sq', sigma_sq.shape) feat_pfe = np.concatenate([mu, sigma_sq], axis=1) if name != '': np.save('o_sigma_%s.npy' % name, sigma_sq) # quality_score = -np.mean(np.log(sigma_sq), axis=1) # print('quality_score quality_score=-np.mean(np.log(sigma_sq),axis=1) percentile [0, 10, 30, 50, 70, 90, 100]') # print('quality_score ', np.percentile(quality_score.ravel(), [0, 10, 30, 50, 70, 90, 100])) s = 'sigma_sq ' + str(np.percentile(sigma_sq.ravel(), [0, 10, 30, 50, 70, 90, 100])) + \ ' percentile [0, 10, 30, 50, 70, 90, 100]\n' # print(mu.shape) # print('sigma_sq', sigma_sq.shape) if sigma_sq.shape[1] == 2: sigma_sq_c = np.copy(sigma_sq) sigma_sq_list = [sigma_sq_c[:,:1], sigma_sq_c[:,1:]] elif type(sigma_sizes) == list: sigma_sq_list = [] idx = 0 for si in sigma_sizes: sigma = sigma_sq[:, idx:idx + si] if si > 1: sigma = 1/np.mean(1/(sigma+1e-6), axis=-1) sigma_sq_list += [sigma] idx += si elif sigma_sq.shape[1] > 2: sigma_sq_list = [1/np.mean(1/(sigma_sq+1e-6), axis=-1)] else: sigma_sq_list = [sigma_sq] for sigma_sq in sigma_sq_list: sigma_sq1 = sigma_sq[0::2] sigma_sq2 = sigma_sq[1::2] # filter_out_type = 'max' if filter_out_type == 'max': sigma_fuse = np.maximum(sigma_sq1, sigma_sq2) else: sigma_fuse = sigma_sq1 + sigma_sq2 # reject_factor = 0.1 error_list = [] # reject_factors = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5] # reject_factors = np.arange(50) / 100. # reject_factors = np.arange(30) / 100. # reject_factors = [0.0, 0.1, 0.2, 0.3] reject_factors_points = [0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3] reject_factors = np.arange(0, 1.0, 0.01) for reject_factor in reject_factors: risk_threshold = np.percentile(sigma_fuse.ravel(), (1-reject_factor)*100) keep_idxes = np.where(sigma_fuse <= risk_threshold)[0] if len(keep_idxes) == 0: keep_idxes = None stats = evaluate(mu, issame_list, utils.pair_cosin_score, nrof_folds=nfolds, keep_idxes=keep_idxes) if reject_factor in reject_factors_points: s += 'reject_factor {:.4f} '.format(reject_factor) s += 'risk_threshold {:.6f} '.format(risk_threshold) s += 'keep_idxes {} / {} '.format(len(keep_idxes), len(sigma_fuse)) s += 'Cosine score eer %f fmr100 %f fmr1000 %f\n' % (stats.eer, stats.fmr100, stats.fmr1000) error_list += [stats.fmr1000] # print('cosin', 'acc', accuracy, 'threshold', threshold) # print(s) # compare_func = lambda x,y: utils.pair_MLS_score(x, y, use_attention_only=False) # accuracy, threshold = evaluate(feat_pfe, issame_list, compare_func, nrof_folds=nfolds, keep_idxes=keep_idxes) # s += 'MLS score acc %f threshold %f' % (accuracy, threshold) # print('MLS', 'acc', accuracy, 'threshold', threshold) if keep_idxes is None: break # s_avg = 'reject_factor 0.5 risk_threshold 0.585041 keep_idxes 3500 / 7000 ' s_avg = 'reject_factor mean --------------------------------------------- ' s_avg += 'Cosine score fmr1000 %f\n' % (np.mean(error_list)) s += s_avg tpr = error_list fpr = reject_factors auc = sklearn.metrics.auc(fpr, tpr) l = int(len(tpr)*0.3) auc30 = sklearn.metrics.auc(fpr[:l], tpr[:l]) s += 'AUERC: %1.4f\n' % auc s += 'AUERC30: %1.4f\n' % auc30 best = error_list[0]**2/2 s += 'AUC: %1.4f\n' % (auc-best) best30 = (error_list[0] * min(error_list[0], 0.3))/2 s += 'AUC30: %1.4f\n' % (auc30-best30) s += '\n' # print(s) return s[:-1] def eval_images_mls(mu, sigma_sq_i, issame_list, nfolds=10, sigma_sizes=1): print('sigma_sq', sigma_sq_i.shape) if sigma_sq_i.shape[1] == 2: sigma_sq_c = np.copy(sigma_sq_i) sigma_sq_list = [sigma_sq_c[:,:1], sigma_sq_c[:,1:]] elif type(sigma_sizes) == list: sigma_sq_list = [] idx = 0 for si in sigma_sizes: sigma_sq_list += [sigma_sq_i[:, idx:idx+si]] idx += si else: sigma_sq_list = [sigma_sq_i] s = '' ret = {} accuracy, threshold = evaluate(mu, issame_list, utils.pair_cosin_score, nrof_folds=nfolds) ret['Cosine'] = accuracy s += 'Cosine score acc %.4f threshold %.4f\n' % (accuracy, threshold) for sigma_sq in sigma_sq_list: print('testing verification..') feat_pfe = np.concatenate([mu, sigma_sq], axis=1) # quality_score = -np.mean(np.log(sigma_sq), axis=1) compare_func = lambda x, y: utils.pair_MLS_score(x, y, use_attention_only=False) accuracy, threshold = evaluate(feat_pfe, issame_list, compare_func, nrof_folds=nfolds) s += 'MLS score acc %.4f threshold %.4f\n' % (accuracy, threshold) ret['MLS'] = accuracy # print(s) return s, ret def eval_images(images_preprocessed, issame_list, extract_feature_func, batch_size, nfolds=10, name='', result_dir='', re_extract_feature=True, filter_out_type='max', sigma_sizes=1, tt_flip=False, only_mls=True): mu, sigma_sq, issame_list = extract_features(images_preprocessed, issame_list, extract_feature_func, batch_size, name=name, result_dir=result_dir, re_extract_feature=re_extract_feature) # s_mls, ret = eval_images_mls(mu, sigma_sq, issame_list, nfolds=nfolds, sigma_sizes=sigma_sizes) s_mls, ret = '', [0] info = s_mls if not only_mls: s_reject = eval_images_with_sigma(mu, sigma_sq, issame_list, nfolds=nfolds, name='', filter_out_type=filter_out_type, sigma_sizes=sigma_sizes) info = s_mls + s_reject if tt_flip: info = info.replace('Cosine score acc', 'tt-flip Cosine score acc') info = info.replace('MLS score acc', 'tt-flip MLS score acc') return info, ret def save_dataset_as_jpg(data_set, name): data_list = data_set[0] issame_list = data_set[1] data_list = data_list[0].asnumpy() root = r'F:\data\face-recognition\test\1v1' for i in range(len(data_list)): path = os.path.join(root, name) if not os.path.exists(path): os.makedirs(path) path = os.path.join(path, '%04d_%d.jpg' % (i, issame_list[i//2])) print(path) cv2.imwrite(path, data_list[i].astype(np.uint8)[...,::-1]) def eval(data_set, network, batch_size, nfolds=10, name='', result_dir='', re_extract_feature=True, filter_out_type='max', sigma_sizes=1, tt_flip=False): print('testing verification..') data_list = data_set[0] issame_list = data_set[1] data_list = data_list[0].asnumpy() # images = preprocess(data_list, network.config, False) images = data_list del data_set for i in range(1): # name1 = name + '_keep0.9_%03d' % i name1 = name extract_feature_func = lambda x: network.extract_feature(x, batch_size=32, need_preprecess=True, tt_flip=tt_flip, verbose=True) ret, _ = eval_images(images, issame_list, extract_feature_func, batch_size, nfolds=nfolds, name=name1, result_dir=result_dir, re_extract_feature=re_extract_feature, filter_out_type=filter_out_type, sigma_sizes=sigma_sizes, tt_flip=tt_flip, only_mls=False) # ret = eval_images_cmp(images, issame_list, network, batch_size, nfolds=10, name=name, result_dir=result_dir, # re_extract_feature=re_extract_feature, filter_out_type=filter_out_type) return ret def main_save_data(args): data_dir = args.dataset_path data_dir = r'F:\data\face-recognition\MS-Celeb-1M\faces_emore' data_dir = r'F:\data\face-recognition\trillion-pairs\challenge\ms1m-retinaface-t1' for name in args.target.split(','): path = os.path.join(data_dir,name+".bin") if os.path.exists(path): image_size = [112, 112] data_set = load_bin(path, image_size) save_dataset_as_jpg(data_set, name) def eval_images_from_pkl_all_data(model_dir, targets=None): filter_out_type = 'max' densefilter = False seperate = False nfolds = 10 # featmodels = ['r64', 'r100', 'r50'] # featmodels = ['r100', 'r50'] featmodels = ['same'] for featmodel in featmodels: mu_list = [] idq_list = [] iss_list = [] if targets is None: targets = 'lfw,calfw,cplfw,cfp_ff,cfp_fp,agedb_30,vgg2_fp' for target in targets.split(','): path_pkl = model_dir + r'\%s_feature.pkl' % target with open(path_pkl, 'rb') as f: data = cPickle.load(f) mu2, id_quality, issame_list = data save_name_pkl_feature = None if featmodel == 'same': save_name_pkl_feature = r'{}\{}_feature.pkl'.format(model_dir, target) elif featmodel == 'r100': save_name_pkl_feature = r'F:\data\face-recognition\test\IJB_release\pretrained_models\MS1MV2-ResNet100-Arcface\{}_feature.pkl'.format(target) elif featmodel == 'r50': save_name_pkl_feature = r'F:\data\face-recognition\test\IJB_release\pretrained_models\VGG2-ResNet50-Arcface\{}_feature.pkl'.format(target) elif featmodel == 'r64': save_name_pkl_feature = r'G:\chenkai\Probabilistic-Face-Embeddings-master\log\resface64_relu_msarcface_am_PFE_mbv3small_reject\20210116-040122-s16-m0.4-tau1\{}_feature.pkl'.format( target) else: raise ('error', save_name_pkl_feature) with open(save_name_pkl_feature, 'rb') as f: data = cPickle.load(f) mu2, _, _ = data print('load verification model', save_name_pkl_feature) if seperate: s = eval_images_with_sigma(mu2, id_quality, issame_list, nfolds=nfolds, name='', filter_out_type=filter_out_type, densefilter=densefilter) print(s) logname = 'testing-log-fnmr-{}-{}.txt'.format(target, featmodel) if densefilter: logname = 'testing-log-fnmr-{}-{}-densefilter.txt'.format(target, featmodel) with open(os.path.join(model_dir, logname), 'a') as f: if save_name_pkl_feature is not None: f.write(save_name_pkl_feature + '\n') f.write(targets + '\n') f.write(s + '\n') continue mu_list += list(mu2) idq_list += list(id_quality) iss_list += list(issame_list) print('load', path_pkl) # s = eval_images_with_sigma(mu, id_quality, issame_list, nfolds=10, name='', filter_out_type=filter_out_type) # print(s) if seperate: continue mu_list = np.array(mu_list) idq_list = np.array(idq_list) iss_list = np.array(iss_list) print('pos', np.sum(iss_list), 'neg', len(iss_list)-np.sum(iss_list), 'total', len(iss_list)) if id_quality.shape[1] == 513: sigma_sizes = [512, 1] else: sigma_sizes = 1 s, ret = eval_images_mls(mu_list, idq_list, iss_list, nfolds=10, sigma_sizes=sigma_sizes) s += eval_images_with_sigma(mu_list, idq_list, iss_list, nfolds=nfolds, name='', filter_out_type=filter_out_type, sigma_sizes=sigma_sizes) print(s) logname = 'testing-log-fnmr-{}-{}.txt'.format('alldata', featmodel) if densefilter: logname = 'testing-log-fnmr-{}-{}-densefilter.txt'.format('alldata', featmodel) with open(os.path.join(model_dir, logname), 'a') as f: if save_name_pkl_feature is not None: f.write(save_name_pkl_feature + '\n') f.write(targets + '\n') f.write(s + '\n') with open(os.path.join(model_dir, 'testing-log.txt'), 'a') as f: if save_name_pkl_feature is not None: f.write(save_name_pkl_feature + '\n') f.write(targets + '\n') f.write(s + '\n') def main(args): data_dir = args.dataset_path # data_dir = r'F:\data\face-recognition\MS-Celeb-1M\faces_emore' # data_dir = r'F:\data\face-recognition\trillion-pairs\challenge\ms1m-retinaface-t1' # data_dir = r'F:\data\metric-learning\face\ms1m-retinaface-t1' re_extract_feature = True # filter_out_type = 'add' filter_out_type = 'max' tt_flip = False # Load model files and config file network = NetworkMCDropout(args.backbone_name, args.resume_backbone) # # images = np.random.random([1, 128, 128, 3]) # images = np.random.random([1, 3, 112, 112]) # img = cv2.imread(r'E:\chenkai\probface-pytorch\im_96x96.jpg') # images = np.array([img]) # for _ in range(1): # mu, sigma_sq = network.extract_feature(images, 1, need_preprecess=True, tt_flip=True, verbose=True) # print(mu[0, :5]) # exit(0) # log_dir = r'E:\chenkai\face-uncertainty-pytorch\mc_dropout' log_dir = args.log_dir if not os.path.exists(log_dir): os.makedirs(log_dir) print(args.target) for namec in args.target.split(','): path = os.path.join(data_dir,namec+".bin") if os.path.exists(path): print(path) image_size = [112, 112] data_set = load_bin(path, image_size) name = namec print('ver', name) # save_pkl_name = '' # donot save feature.pkl save_pkl_name = namec print(log_dir) sigma_sizes = network.uncertainty_size info = eval(data_set, network, args.batch_size, 10, name=save_pkl_name, result_dir=log_dir, re_extract_feature=re_extract_feature, filter_out_type=filter_out_type, sigma_sizes=sigma_sizes, tt_flip=tt_flip) # print(info) info_result = '--- ' + name + ' ---\n' info_result += data_dir + '\n' info_result += info + "\n" print("") print(info_result) with open(os.path.join(log_dir, 'testing-log-fnmr-{}-{}.txt'.format(name, filter_out_type)), 'a') as f: f.write(info_result + '\n') with open(os.path.join(log_dir, 'testing-log-fnmr.txt'), 'a') as f: f.write(info_result + '\n') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--backbone_name", help="", type=str, default='') parser.add_argument("--resume_backbone", help="", type=str, default='') parser.add_argument("--log_dir", help="", type=str, default='') parser.add_argument("--dataset_path", help="The path to the LFW dataset directory", type=str, default=r'F:\data\metric-learning\face\ms1m-retinaface-t1') parser.add_argument("--batch_size", help="Number of images per mini batch", type=int, default=16) parser.add_argument('--target', type=str, default='lfw,cfp_fp,agedb_30', help='verification targets') args = parser.parse_args() # args.dataset_path = r'' dataset_path_list = [ r'F:\data\metric-learning\face\ms1m-retinaface-t1', # r'F:\data\metric-learning\face\ms1m-retinaface-t1\blur-r5-p0.05', ] # log_dir = r'G:\chenkai\probface-pytorch\log\ir50_pfe\20210327-132611' # log_dir = r'G:\chenkai\probface-pytorch\log\ir50_pfe\20210327-181146-mls-cl1-0.15' # args.target = 'lfw,cfp_fp,agedb_30' args.target = 'calfw,cplfw,cfp_ff,vgg2_fp' args.target = 'lfw,calfw,cplfw,cfp_ff,cfp_fp,agedb_30,vgg2_fp' # args.target = 'calfw' args.dataset_path = dataset_path_list[0] # args.log_dir = r'E:\chenkai\face-uncertainty-pytorch\log\glint-ir50\mcdropout' # args.backbone_name = 'backbones.iresnet.iresnet50' # args.resume_backbone = r'E:\chenkai\arcface_torch\glint360k_cosface_r50_fp16_0.1\backbone.pth' # main(args) # # args.log_dir = r'E:\chenkai\face-uncertainty-pytorch\log\glint-ir100\mcdropout' # args.backbone_name = 'backbones.iresnet.iresnet100' # args.resume_backbone = r'E:\chenkai\arcface_torch\glint360k_cosface_r100_fp16_0.1\backbone.pth' # main(args) # # args.log_dir = r'E:\chenkai\face-uncertainty-pytorch\log\ms1mv3-ir50\mcdropout' # args.backbone_name = 'backbones.iresnet.iresnet50' # args.resume_backbone = r'E:\chenkai\arcface_torch\ms1mv3_arcface_r50_fp16\backbone.pth' # main(args) args.log_dir = r'E:\chenkai\face-uncertainty-pytorch\log\ms1mv3-ir50\mcdropout' args.backbone_name = 'backbones.iresnet.iresnet50' args.resume_backbone = r'E:\chenkai\arcface_torch\ms1mv3_arcface_r50_fp16\backbone.pth' main(args)
py
1a5ca4219f854fbbde9615ffdb4c23934dec6c96
with open("input.txt") as f: direction = list(f.read().replace("\n","")) floor = 0 for i in direction: if i == "(": floor += 1 elif i == ")": floor -= 1 print(floor)
py
1a5ca4b002942a495e1829c970b6441fdf8139ed
# -*- coding: utf-8 -*- """This file contains the definition of all languages supported by the program.""" LANGUAGES = [ { 'name': 'Spanish', 'common_words': [ 'el', 'la', 'de', 'que', 'y', 'a', 'en', 'un', 'ser', 'se', 'no', 'haber', 'por', 'con', 'su', 'para', 'como', 'estar', 'tener', 'le', 'lo', 'lo', 'todo', 'pero', 'más', 'hacer', 'o', 'poder', 'decir', 'este', 'ir', 'otro', 'ese', 'la', 'si', 'me', 'ya', 'ver', 'porque', 'dar', 'cuando', 'él', 'muy', 'sin', 'vez', 'mucho', 'saber', 'qué', 'sobre', 'mi', 'alguno', 'mismo', 'yo', 'también', 'hasta' ] }, { 'name': 'German', 'common_words': [ 'das', 'ist', 'du', 'ich', 'nicht', 'die', 'es', 'und', 'der', 'was', 'wir', 'zu', 'ein', 'er', 'in', 'sie', 'mir', 'mit', 'ja', 'wie', 'den', 'auf', 'mich', 'dass', 'so', 'hier', 'eine', 'wenn', 'hat', 'all', 'sind', 'von', 'dich', 'war', 'haben', 'für', 'an', 'habe', 'da', 'nein', 'bin', 'noch', 'dir', 'uns', 'sich', 'nur', 'einen', 'kann', 'dem' ] }, # include the English language here # HINT: https://en.wikipedia.org/wiki/Most_common_words_in_English ]
py
1a5ca53dbdcb14d102be350a6f44d9500aea3fe5
import numpy as np from mchap.io.vcf.util import vcfstr def format_info_field(**kwargs): """Format key-value pairs into a VCF info field. Parameters ---------- kwargs Key value pairs of info field codes to values. Returns ------- string : str VCF info field. """ parts = ["{}={}".format(k, vcfstr(v)) for k, v in kwargs.items()] return ";".join(parts) def format_sample_field(**kwargs): """Format key-value pairs into a VCF format field. Parameters ---------- kwargs Key value pairs of info field codes to arrays of values per sample. Returns ------- string : str VCF format and sample columns. """ fields, arrays = zip(*kwargs.items()) fields = ":".join(fields) lengths = np.array([len(a) for a in arrays]) length = lengths[0] assert np.all(lengths == length) sample_data = np.empty(length, dtype="O") for i in range(length): sample_data[i] = ":".join((vcfstr(a[i]) for a in arrays)) sample_data = "\t".join(sample_data) return "{}\t{}".format(fields, sample_data) def format_record( *, chrom=None, pos=None, id=None, ref=None, alt=None, qual=None, filter=None, info=None, format=None, ): """Format a VCF record line. Parameters ---------- chrom : str Variant chromosome or contig. pos : int Variant position. id : str Variant ID. ref : str Reference allele. alt : list, str Alternate alleles. qual : int Variant quality. filter : str Variant filter codes. info : str Variant INFO string. format : str Variant format codes and sample values. Returns ------- line : str VCF record line. """ fields = [chrom, pos, id, ref, alt, qual, filter, info, format] return "\t".join(vcfstr(f) for f in fields)
py
1a5ca61aa081cfdd9d6ea95ef8feca6e0ad3a8c9
#from django.shortcuts import render #from .models import Opcion,Pregunta from django.http import HttpResponse, HttpResponseRedirect from django.shortcuts import get_object_or_404, render from django.urls import reverse from .models import Opcion, Pregunta # Create your views here. def index(request): latest_question_list = Pregunta.objects.order_by('-pub_date')[:5] context ={ 'latest_question_list' : latest_question_list } return render(request, 'encuesta/index.html', context) def detalle(request, pregunta_id): pregunta = get_object_or_404(Pregunta, pk=pregunta_id) return render(request, 'encuesta/detalle.html', {'pregunta':pregunta}) def votar(request, pregunta_id): pregunta = get_object_or_404(Pregunta, pk=pregunta_id) try: selected_opcion = pregunta.opcion_set.get(pk=request.POST['opcion']) except (KeyError, Opcion.DoesNotExist): return render(request, 'encuesta/detalle.html', { 'pregunta' : pregunta, 'error_message' : "No has seleccionado una opcion" }) else: selected_opcion.votos += 1 selected_opcion.save() return HttpResponseRedirect(reverse('encuesta:resultados', args=(pregunta.id,))) def resultados(request, pregunta_id): pregunta = get_object_or_404(Pregunta, pk=pregunta_id) return render(request, 'encuesta/resultados.html', {'pregunta' : pregunta})
py
1a5ca73a41955d832e90843f9ddb35f4f10e2b9f
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc import qrl.generated.qrlwallet_pb2 as qrlwallet__pb2 class WalletAPIStub(object): """////////////////////////// ////////////////////////// ////////////////////////// //// API /////// ////////////////////////// ////////////////////////// ////////////////////////// This service describes the Wallet API """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.AddNewAddress = channel.unary_unary( '/qrl.WalletAPI/AddNewAddress', request_serializer=qrlwallet__pb2.AddNewAddressReq.SerializeToString, response_deserializer=qrlwallet__pb2.AddNewAddressResp.FromString, ) self.AddNewAddressWithSlaves = channel.unary_unary( '/qrl.WalletAPI/AddNewAddressWithSlaves', request_serializer=qrlwallet__pb2.AddNewAddressWithSlavesReq.SerializeToString, response_deserializer=qrlwallet__pb2.AddNewAddressResp.FromString, ) self.ListAddresses = channel.unary_unary( '/qrl.WalletAPI/ListAddresses', request_serializer=qrlwallet__pb2.ListAddressesReq.SerializeToString, response_deserializer=qrlwallet__pb2.ListAddressesResp.FromString, ) self.RemoveAddress = channel.unary_unary( '/qrl.WalletAPI/RemoveAddress', request_serializer=qrlwallet__pb2.RemoveAddressReq.SerializeToString, response_deserializer=qrlwallet__pb2.RemoveAddressResp.FromString, ) self.IsValidAddress = channel.unary_unary( '/qrl.WalletAPI/IsValidAddress', request_serializer=qrlwallet__pb2.ValidAddressReq.SerializeToString, response_deserializer=qrlwallet__pb2.ValidAddressResp.FromString, ) self.EncryptWallet = channel.unary_unary( '/qrl.WalletAPI/EncryptWallet', request_serializer=qrlwallet__pb2.EncryptWalletReq.SerializeToString, response_deserializer=qrlwallet__pb2.EncryptWalletResp.FromString, ) self.LockWallet = channel.unary_unary( '/qrl.WalletAPI/LockWallet', request_serializer=qrlwallet__pb2.LockWalletReq.SerializeToString, response_deserializer=qrlwallet__pb2.LockWalletResp.FromString, ) self.UnlockWallet = channel.unary_unary( '/qrl.WalletAPI/UnlockWallet', request_serializer=qrlwallet__pb2.UnlockWalletReq.SerializeToString, response_deserializer=qrlwallet__pb2.UnlockWalletResp.FromString, ) self.GetRecoverySeeds = channel.unary_unary( '/qrl.WalletAPI/GetRecoverySeeds', request_serializer=qrlwallet__pb2.GetRecoverySeedsReq.SerializeToString, response_deserializer=qrlwallet__pb2.GetRecoverySeedsResp.FromString, ) self.GetWalletInfo = channel.unary_unary( '/qrl.WalletAPI/GetWalletInfo', request_serializer=qrlwallet__pb2.GetWalletInfoReq.SerializeToString, response_deserializer=qrlwallet__pb2.GetWalletInfoResp.FromString, ) self.RelayTransferTxn = channel.unary_unary( '/qrl.WalletAPI/RelayTransferTxn', request_serializer=qrlwallet__pb2.RelayTransferTxnReq.SerializeToString, response_deserializer=qrlwallet__pb2.RelayTxnResp.FromString, ) self.RelayTransferTxnBySlave = channel.unary_unary( '/qrl.WalletAPI/RelayTransferTxnBySlave', request_serializer=qrlwallet__pb2.RelayTransferTxnBySlaveReq.SerializeToString, response_deserializer=qrlwallet__pb2.RelayTxnResp.FromString, ) self.RelayMessageTxn = channel.unary_unary( '/qrl.WalletAPI/RelayMessageTxn', request_serializer=qrlwallet__pb2.RelayMessageTxnReq.SerializeToString, response_deserializer=qrlwallet__pb2.RelayTxnResp.FromString, ) self.RelayMessageTxnBySlave = channel.unary_unary( '/qrl.WalletAPI/RelayMessageTxnBySlave', request_serializer=qrlwallet__pb2.RelayMessageTxnBySlaveReq.SerializeToString, response_deserializer=qrlwallet__pb2.RelayTxnResp.FromString, ) self.RelayTokenTxn = channel.unary_unary( '/qrl.WalletAPI/RelayTokenTxn', request_serializer=qrlwallet__pb2.RelayTokenTxnReq.SerializeToString, response_deserializer=qrlwallet__pb2.RelayTxnResp.FromString, ) self.RelayTokenTxnBySlave = channel.unary_unary( '/qrl.WalletAPI/RelayTokenTxnBySlave', request_serializer=qrlwallet__pb2.RelayTokenTxnBySlaveReq.SerializeToString, response_deserializer=qrlwallet__pb2.RelayTxnResp.FromString, ) self.RelayTransferTokenTxn = channel.unary_unary( '/qrl.WalletAPI/RelayTransferTokenTxn', request_serializer=qrlwallet__pb2.RelayTransferTokenTxnReq.SerializeToString, response_deserializer=qrlwallet__pb2.RelayTxnResp.FromString, ) self.RelayTransferTokenTxnBySlave = channel.unary_unary( '/qrl.WalletAPI/RelayTransferTokenTxnBySlave', request_serializer=qrlwallet__pb2.RelayTransferTokenTxnBySlaveReq.SerializeToString, response_deserializer=qrlwallet__pb2.RelayTxnResp.FromString, ) self.RelaySlaveTxn = channel.unary_unary( '/qrl.WalletAPI/RelaySlaveTxn', request_serializer=qrlwallet__pb2.RelaySlaveTxnReq.SerializeToString, response_deserializer=qrlwallet__pb2.RelayTxnResp.FromString, ) self.RelaySlaveTxnBySlave = channel.unary_unary( '/qrl.WalletAPI/RelaySlaveTxnBySlave', request_serializer=qrlwallet__pb2.RelaySlaveTxnBySlaveReq.SerializeToString, response_deserializer=qrlwallet__pb2.RelayTxnResp.FromString, ) self.ChangePassphrase = channel.unary_unary( '/qrl.WalletAPI/ChangePassphrase', request_serializer=qrlwallet__pb2.ChangePassphraseReq.SerializeToString, response_deserializer=qrlwallet__pb2.ChangePassphraseResp.FromString, ) self.GetMiniTransactionsByAddress = channel.unary_unary( '/qrl.WalletAPI/GetMiniTransactionsByAddress', request_serializer=qrlwallet__pb2.MiniTransactionsByAddressReq.SerializeToString, response_deserializer=qrlwallet__pb2.MiniTransactionsByAddressResp.FromString, ) self.GetTransaction = channel.unary_unary( '/qrl.WalletAPI/GetTransaction', request_serializer=qrlwallet__pb2.TransactionReq.SerializeToString, response_deserializer=qrlwallet__pb2.TransactionResp.FromString, ) self.GetBalance = channel.unary_unary( '/qrl.WalletAPI/GetBalance', request_serializer=qrlwallet__pb2.BalanceReq.SerializeToString, response_deserializer=qrlwallet__pb2.BalanceResp.FromString, ) self.GetTotalBalance = channel.unary_unary( '/qrl.WalletAPI/GetTotalBalance', request_serializer=qrlwallet__pb2.TotalBalanceReq.SerializeToString, response_deserializer=qrlwallet__pb2.TotalBalanceResp.FromString, ) self.GetOTS = channel.unary_unary( '/qrl.WalletAPI/GetOTS', request_serializer=qrlwallet__pb2.OTSReq.SerializeToString, response_deserializer=qrlwallet__pb2.OTSResp.FromString, ) self.GetHeight = channel.unary_unary( '/qrl.WalletAPI/GetHeight', request_serializer=qrlwallet__pb2.HeightReq.SerializeToString, response_deserializer=qrlwallet__pb2.HeightResp.FromString, ) self.GetBlock = channel.unary_unary( '/qrl.WalletAPI/GetBlock', request_serializer=qrlwallet__pb2.BlockReq.SerializeToString, response_deserializer=qrlwallet__pb2.BlockResp.FromString, ) self.GetBlockByNumber = channel.unary_unary( '/qrl.WalletAPI/GetBlockByNumber', request_serializer=qrlwallet__pb2.BlockByNumberReq.SerializeToString, response_deserializer=qrlwallet__pb2.BlockResp.FromString, ) self.GetAddressFromPK = channel.unary_unary( '/qrl.WalletAPI/GetAddressFromPK', request_serializer=qrlwallet__pb2.AddressFromPKReq.SerializeToString, response_deserializer=qrlwallet__pb2.AddressFromPKResp.FromString, ) self.GetNodeInfo = channel.unary_unary( '/qrl.WalletAPI/GetNodeInfo', request_serializer=qrlwallet__pb2.NodeInfoReq.SerializeToString, response_deserializer=qrlwallet__pb2.NodeInfoResp.FromString, ) class WalletAPIServicer(object): """////////////////////////// ////////////////////////// ////////////////////////// //// API /////// ////////////////////////// ////////////////////////// ////////////////////////// This service describes the Wallet API """ def AddNewAddress(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def AddNewAddressWithSlaves(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ListAddresses(self, request, context): """rpc AddAddressFromSeed(AddAddressFromSeedReq) returns (AddAddressFromSeedResp); """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def RemoveAddress(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def IsValidAddress(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def EncryptWallet(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def LockWallet(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def UnlockWallet(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetRecoverySeeds(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetWalletInfo(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def RelayTransferTxn(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def RelayTransferTxnBySlave(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def RelayMessageTxn(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def RelayMessageTxnBySlave(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def RelayTokenTxn(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def RelayTokenTxnBySlave(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def RelayTransferTokenTxn(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def RelayTransferTokenTxnBySlave(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def RelaySlaveTxn(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def RelaySlaveTxnBySlave(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ChangePassphrase(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetMiniTransactionsByAddress(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetTransaction(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetBalance(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetTotalBalance(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetOTS(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetHeight(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetBlock(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetBlockByNumber(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetAddressFromPK(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetNodeInfo(self, request, context): # missing associated documentation comment in .proto file context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_WalletAPIServicer_to_server(servicer, server): rpc_method_handlers = { 'AddNewAddress': grpc.unary_unary_rpc_method_handler( servicer.AddNewAddress, request_deserializer=qrlwallet__pb2.AddNewAddressReq.FromString, response_serializer=qrlwallet__pb2.AddNewAddressResp.SerializeToString, ), 'AddNewAddressWithSlaves': grpc.unary_unary_rpc_method_handler( servicer.AddNewAddressWithSlaves, request_deserializer=qrlwallet__pb2.AddNewAddressWithSlavesReq.FromString, response_serializer=qrlwallet__pb2.AddNewAddressResp.SerializeToString, ), 'ListAddresses': grpc.unary_unary_rpc_method_handler( servicer.ListAddresses, request_deserializer=qrlwallet__pb2.ListAddressesReq.FromString, response_serializer=qrlwallet__pb2.ListAddressesResp.SerializeToString, ), 'RemoveAddress': grpc.unary_unary_rpc_method_handler( servicer.RemoveAddress, request_deserializer=qrlwallet__pb2.RemoveAddressReq.FromString, response_serializer=qrlwallet__pb2.RemoveAddressResp.SerializeToString, ), 'IsValidAddress': grpc.unary_unary_rpc_method_handler( servicer.IsValidAddress, request_deserializer=qrlwallet__pb2.ValidAddressReq.FromString, response_serializer=qrlwallet__pb2.ValidAddressResp.SerializeToString, ), 'EncryptWallet': grpc.unary_unary_rpc_method_handler( servicer.EncryptWallet, request_deserializer=qrlwallet__pb2.EncryptWalletReq.FromString, response_serializer=qrlwallet__pb2.EncryptWalletResp.SerializeToString, ), 'LockWallet': grpc.unary_unary_rpc_method_handler( servicer.LockWallet, request_deserializer=qrlwallet__pb2.LockWalletReq.FromString, response_serializer=qrlwallet__pb2.LockWalletResp.SerializeToString, ), 'UnlockWallet': grpc.unary_unary_rpc_method_handler( servicer.UnlockWallet, request_deserializer=qrlwallet__pb2.UnlockWalletReq.FromString, response_serializer=qrlwallet__pb2.UnlockWalletResp.SerializeToString, ), 'GetRecoverySeeds': grpc.unary_unary_rpc_method_handler( servicer.GetRecoverySeeds, request_deserializer=qrlwallet__pb2.GetRecoverySeedsReq.FromString, response_serializer=qrlwallet__pb2.GetRecoverySeedsResp.SerializeToString, ), 'GetWalletInfo': grpc.unary_unary_rpc_method_handler( servicer.GetWalletInfo, request_deserializer=qrlwallet__pb2.GetWalletInfoReq.FromString, response_serializer=qrlwallet__pb2.GetWalletInfoResp.SerializeToString, ), 'RelayTransferTxn': grpc.unary_unary_rpc_method_handler( servicer.RelayTransferTxn, request_deserializer=qrlwallet__pb2.RelayTransferTxnReq.FromString, response_serializer=qrlwallet__pb2.RelayTxnResp.SerializeToString, ), 'RelayTransferTxnBySlave': grpc.unary_unary_rpc_method_handler( servicer.RelayTransferTxnBySlave, request_deserializer=qrlwallet__pb2.RelayTransferTxnBySlaveReq.FromString, response_serializer=qrlwallet__pb2.RelayTxnResp.SerializeToString, ), 'RelayMessageTxn': grpc.unary_unary_rpc_method_handler( servicer.RelayMessageTxn, request_deserializer=qrlwallet__pb2.RelayMessageTxnReq.FromString, response_serializer=qrlwallet__pb2.RelayTxnResp.SerializeToString, ), 'RelayMessageTxnBySlave': grpc.unary_unary_rpc_method_handler( servicer.RelayMessageTxnBySlave, request_deserializer=qrlwallet__pb2.RelayMessageTxnBySlaveReq.FromString, response_serializer=qrlwallet__pb2.RelayTxnResp.SerializeToString, ), 'RelayTokenTxn': grpc.unary_unary_rpc_method_handler( servicer.RelayTokenTxn, request_deserializer=qrlwallet__pb2.RelayTokenTxnReq.FromString, response_serializer=qrlwallet__pb2.RelayTxnResp.SerializeToString, ), 'RelayTokenTxnBySlave': grpc.unary_unary_rpc_method_handler( servicer.RelayTokenTxnBySlave, request_deserializer=qrlwallet__pb2.RelayTokenTxnBySlaveReq.FromString, response_serializer=qrlwallet__pb2.RelayTxnResp.SerializeToString, ), 'RelayTransferTokenTxn': grpc.unary_unary_rpc_method_handler( servicer.RelayTransferTokenTxn, request_deserializer=qrlwallet__pb2.RelayTransferTokenTxnReq.FromString, response_serializer=qrlwallet__pb2.RelayTxnResp.SerializeToString, ), 'RelayTransferTokenTxnBySlave': grpc.unary_unary_rpc_method_handler( servicer.RelayTransferTokenTxnBySlave, request_deserializer=qrlwallet__pb2.RelayTransferTokenTxnBySlaveReq.FromString, response_serializer=qrlwallet__pb2.RelayTxnResp.SerializeToString, ), 'RelaySlaveTxn': grpc.unary_unary_rpc_method_handler( servicer.RelaySlaveTxn, request_deserializer=qrlwallet__pb2.RelaySlaveTxnReq.FromString, response_serializer=qrlwallet__pb2.RelayTxnResp.SerializeToString, ), 'RelaySlaveTxnBySlave': grpc.unary_unary_rpc_method_handler( servicer.RelaySlaveTxnBySlave, request_deserializer=qrlwallet__pb2.RelaySlaveTxnBySlaveReq.FromString, response_serializer=qrlwallet__pb2.RelayTxnResp.SerializeToString, ), 'ChangePassphrase': grpc.unary_unary_rpc_method_handler( servicer.ChangePassphrase, request_deserializer=qrlwallet__pb2.ChangePassphraseReq.FromString, response_serializer=qrlwallet__pb2.ChangePassphraseResp.SerializeToString, ), 'GetMiniTransactionsByAddress': grpc.unary_unary_rpc_method_handler( servicer.GetMiniTransactionsByAddress, request_deserializer=qrlwallet__pb2.MiniTransactionsByAddressReq.FromString, response_serializer=qrlwallet__pb2.MiniTransactionsByAddressResp.SerializeToString, ), 'GetTransaction': grpc.unary_unary_rpc_method_handler( servicer.GetTransaction, request_deserializer=qrlwallet__pb2.TransactionReq.FromString, response_serializer=qrlwallet__pb2.TransactionResp.SerializeToString, ), 'GetBalance': grpc.unary_unary_rpc_method_handler( servicer.GetBalance, request_deserializer=qrlwallet__pb2.BalanceReq.FromString, response_serializer=qrlwallet__pb2.BalanceResp.SerializeToString, ), 'GetTotalBalance': grpc.unary_unary_rpc_method_handler( servicer.GetTotalBalance, request_deserializer=qrlwallet__pb2.TotalBalanceReq.FromString, response_serializer=qrlwallet__pb2.TotalBalanceResp.SerializeToString, ), 'GetOTS': grpc.unary_unary_rpc_method_handler( servicer.GetOTS, request_deserializer=qrlwallet__pb2.OTSReq.FromString, response_serializer=qrlwallet__pb2.OTSResp.SerializeToString, ), 'GetHeight': grpc.unary_unary_rpc_method_handler( servicer.GetHeight, request_deserializer=qrlwallet__pb2.HeightReq.FromString, response_serializer=qrlwallet__pb2.HeightResp.SerializeToString, ), 'GetBlock': grpc.unary_unary_rpc_method_handler( servicer.GetBlock, request_deserializer=qrlwallet__pb2.BlockReq.FromString, response_serializer=qrlwallet__pb2.BlockResp.SerializeToString, ), 'GetBlockByNumber': grpc.unary_unary_rpc_method_handler( servicer.GetBlockByNumber, request_deserializer=qrlwallet__pb2.BlockByNumberReq.FromString, response_serializer=qrlwallet__pb2.BlockResp.SerializeToString, ), 'GetAddressFromPK': grpc.unary_unary_rpc_method_handler( servicer.GetAddressFromPK, request_deserializer=qrlwallet__pb2.AddressFromPKReq.FromString, response_serializer=qrlwallet__pb2.AddressFromPKResp.SerializeToString, ), 'GetNodeInfo': grpc.unary_unary_rpc_method_handler( servicer.GetNodeInfo, request_deserializer=qrlwallet__pb2.NodeInfoReq.FromString, response_serializer=qrlwallet__pb2.NodeInfoResp.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'qrl.WalletAPI', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,))
py
1a5ca89b250fde1145ca94a341603fb03ec22d81
#MenuTitle: New Tab with Dangerous Glyphs for Interpolation # -*- coding: utf-8 -*- __doc__=""" Finds and outputs glyphs like the equals sign, or a symmetrical period, with paths that could interpolate wrongly within themselves. """ import GlyphsApp Font = Glyphs.font outputString = "" def nodeCounts( thisLayer ): countList = [ len(p.nodes) for p in thisLayer.paths ] return countList def shiftString( myString ): return myString[1:] + myString[0] def nodeString( path ): nodestring = "" for thisNode in path.nodes: if thisNode.type == GSOFFCURVE: nodestring += "h" else: nodestring += "n" return nodestring def compatibleWhenReversed( path1, path2 ): pathstring1 = nodeString(path1) pathstring2 = "".join(reversed(nodeString(path2))) if pathstring1 == pathstring2: return True return False def compatibleWithDifferentStartPoints( path1, path2 ): pathstring1 = nodeString(path1) pathstring2 = nodeString(path2) for x in pathstring1: pathstring2 = shiftString(pathstring2) if pathstring1 == pathstring2: return True return False def check( thisLayer ): thesePaths = thisLayer.paths theseComponents = thisLayer.components if len( theseComponents ) > 1: componentNameList = [ c.componentName for c in theseComponents ] compareValue_1 = len( componentNameList ) compareValue_2 = len( set( componentNameList ) ) if compareValue_1 != compareValue_2: return True if len( thisLayer.paths ) > 1: pathStructureList = [ nodeString(p) for p in thesePaths ] compareValue_1 = len( pathStructureList ) compareValue_2 = len( set( pathStructureList ) ) if compareValue_1 != compareValue_2: return True nodecounts = nodeCounts(thisLayer) if len(nodecounts) != len( set(nodecounts) ): numberOfPaths = len(thesePaths) for i in range( numberOfPaths ): firstPath = thesePaths[i] firstPathCount = len(firstPath.nodes) for j in range( i+1, numberOfPaths): secondPath = thesePaths[j] secondPathCount = len(secondPath.nodes) if firstPathCount == secondPathCount: if firstPath.closed and secondPath.closed and compatibleWithDifferentStartPoints( firstPath, secondPath ): return True elif compatibleWhenReversed( firstPath, secondPath ): return True if len(thisLayer.paths) == 1: thisPath = thisLayer.paths[0] if thisPath.closed and compatibleWithDifferentStartPoints( thisPath, thisPath ): return True elif compatibleWhenReversed( thisPath, thisPath ): return True return False for thisGlyph in Font.glyphs: if check( thisGlyph.layers[0] ): outputString += "/%s" % thisGlyph.name if outputString: Font.newTab( outputString ) else: Message( "No interpolation problems", "Cannot find any dangerous glyphs in this font.", OKButton="Hurrah!" )