ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a37ff4f59ecc56719fbbf86b9ce21fe27e51eca
from flask import render_template,request,redirect,url_for,abort from . import main from .forms import UpdateProfile from ..models import User from flask_login import login_required,current_user from .. import db,photos import markdown2 @main.route('/') def index(): ''' View root page function that returns the index page and its data ''' title = 'Home - Welcome to pomodoro' content = "WELCOME TO POMODORO APP" return render_template('index.html', title = title,content = content) @main.route('/about') def about(): return render_template('about.html', title = 'About') @main.route('/pomodoro') @login_required def pomodoro(): ''' View root page function that returns the index page and its data ''' title = 'Home - Welcome to pomodoro' content = "WELCOME TO POMODORO APP" return render_template('pomodoro.html', title = title,content = content) @main.route('/user/<uname>') def profile(uname): user = User.query.filter_by(username = uname).first() if user is None: abort(404) return render_template("profile/profile.html", user = user) @main.route('/user/<uname>/update',methods = ['GET','POST']) @login_required def update_profile(uname): user = User.query.filter_by(username = uname).first() if user is None: abort(404) form = UpdateProfile() if form.validate_on_submit(): user.bio = form.bio.data db.session.add(user) db.session.commit() return redirect(url_for('.profile',uname=user.username)) return render_template('profile/update.html',form =form) @main.route('/user/<uname>/update/pic',methods= ['POST']) @login_required def update_pic(uname): user = User.query.filter_by(username = uname).first() if 'photo' in request.files: filename = photos.save(request.files['photo']) path = f'photos/{filename}' user.profile_pic_path = path db.session.commit() return redirect(url_for('main.profile',uname=uname)) @main.route('/reason/new/<int:id>', methods = ['GET','POST']) @login_required def new_reason(id): form = ReasonForm() reason = get_reason(id) if form.validate_on_submit(): title = form.title.data reason = form.reason.data # Updated reason instance new_reason = Reason(reason_id=reason.id,reason_title=title,reason=reason,user=current_user) # save reason method new_reason.save_reason() return redirect(url_for('.reason',id = reason.id )) title = f'{reason.title} reason' return render_template('new_reason.html',title = title, reason_form=form, reason=reason)
py
1a37ff8acabc66e8c329ec5eceae7a369b9ccf2b
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import collections import copy import grpc import six import threading from concurrent import futures from edl.utils import common_pb2 from edl.utils import data_server_pb2 from edl.utils import data_server_pb2_grpc from edl.utils import error_utils from edl.utils import exceptions from edl.utils.log_utils import logger class PodData(object): """ Manage pod's data: batch_data_ids, file_list, data_server_endpoint """ def __init__(self, pod_id, data_server_endpoint): # batch_data_ids self._pod_id = pod_id self._data_server_endpoint = data_server_endpoint # total ids for filter self._batch_data_ids = set() self._queue = collections.deque() # data_server_pb2.FileListElement self._file_list_slice = [] self._reach_data_end = False def append_file_list_element(self, element): self._file_list_slice.append(element) @property def reach_data_end(self): return self._reach_data_end @reach_data_end.setter def reach_data_end(self, r): self._reach_data_end = r def get_size(self): return len(self._queue) def pop(self, num): a = [] while len(self._queue) > 0: if (num > 0 and len(a) < num) or num <= 0: batch_data_id = self._queue.popleft() a.append(batch_data_id) else: break logger.debug( "batch_data_ids:{}, queue:{}".format( len(self._batch_data_ids), len(self._queue) ) ) return a def put(self, data_server_endpoint, batch_data_ids): self._data_server_endpoint = data_server_endpoint for batch_data_id in batch_data_ids: if batch_data_id in self._batch_data_ids: continue self._queue.append(batch_data_id) self._batch_data_ids.add(batch_data_id) logger.debug( "batch_data_ids:{}, queue:{}".format( len(self._batch_data_ids), len(self._queue) ) ) class PodsData(object): """ Reader's pods data pod_id=>PodData """ def __init__(self, reader_name, file_list, pod_ids): self._reader_name = reader_name # pod_id => PodData self._pod_data = {} # pod_id => BalanceBatchData self._balanced_batch_data = {} self._barrier_ids = set() self._reach_data_end_ids = set() self._lock = threading.Lock() # string list self._file_list = file_list self._pod_ids = set(pod_ids) self._init() self._total = 0 def _init(self): for pod_id in self._pod_ids: self._pod_data[pod_id] = PodData(pod_id, None) self._balanced_batch_data[pod_id] = [] # array of BatchDataMeta i = 0 while i < len(self._file_list): for pod_id in self._pod_ids: m = data_server_pb2.FileListElement() m.idx = i m.path = self._file_list[i] self._pod_data[pod_id].append_file_list_element(m) i += 1 if i >= len(self._file_list): break def get_pod_file_list(self, pod_id): pod_data = self._pod_data[pod_id] return pod_data._file_list_slice def set_data_end(self, pod_id): with self._lock: pod_data = self._pod_data[pod_id] pod_data.reach_data_end() self._reach_data_end_ids.add(pod_id) def _get_batch_data_id_from_others(self, avg_num, need_num): ret = [] for pod_id in self._pod_ids: src = self._pod_data[pod_id] if src.get_size() < avg_num: continue dst = data_server_pb2.BatchDataMeta() dst.reader_name = self._reader_name dst.producer_pod_id = src._pod_id dst.data_server_endpoint = src._data_server_endpoint pop_num = src.get_size() - avg_num ids = src.pop(pop_num) if len(ids) <= 0: continue dst.extend(ids) ret.append(dst) need_num -= len(ids) if need_num <= 0: break return ret def put(self, pod_id, data_server_endpoint, batch_data_ids): with self._lock: pod_data = self._pod_data[pod_id] pod_data.put(data_server_endpoint, batch_data_ids) total = 0 for _, pod_data in six.iteritems(self._pod_data): total += pod_data.get_size() self._barrier_ids.add(pod_id) if (self._barrier_ids | self._reach_data_end_ids) != self._pod_ids: logger.debug( "barrier_ids:{} readch_data_end_ids:{}".format( len(self._barrier_ids), len(self._reach_data_end_ids) ) ) return avg_num = total / len(self._pod_ids) logger.debug("total:{} avg_num:{}".format(total, avg_num)) if avg_num < 1: return # get batch_data_ids from pods_data to balance_batch_data for pod_id in self._pod_ids: src = self._pod_data[pod_id] dst = data_server_pb2.BatchDataMeta() dst.reader_name = self._reader_name dst.producer_pod_id = src._pod_id dst.data_server_endpoint = src._data_server_endpoint ids = src.pop(num=avg_num) if len(ids) >= avg_num: dst.batch_data_ids.extend(ids) self._balanced_batch_data[pod_id].append(dst) logger.debug( "balance_data_ids:{}".format( len(self._balanced_batch_data[pod_id]) ) ) else: need_num = avg_num - len(ids) ret = self._get_batch_data_id_from_others(avg_num, need_num) if len(ret) <= 0: continue self._balanced_batch_data[pod_id].extend(ret) logger.debug( "balance_data_ids:{}".format( len(self._balanced_batch_data[pod_id]) ) ) self._barrier_ids = set() def _is_all_reach_data_end(self): for _, pod_data in six.iteritems(self._pod_data): if not pod_data.reach_data_end: return False return True # FIXME(gongwb): avoid global lock of all pods @error_utils.handle_errors_until_timeout def pop(self, pod_id, ret, timeout=60): with self._lock: balanced_data = self._balanced_batch_data[pod_id] if len(balanced_data) > 0: for data in balanced_data: ret.append(copy.copy(data)) return ret if self._is_all_reach_data_end(): return None raise exceptions.EdlDataGenerateError("wait to generate more data") class DataServerServicer(data_server_pb2_grpc.DataServerServicer): def __init__(self, trainer_env, reader_name, file_list, pod_ids, local_reader): self._lock = threading.Lock() self._trainer_env = trainer_env # string list self._file_list = file_list self._pod_ids = pod_ids self._local_reader = local_reader self._reader_name = reader_name # reader_name=>PodData self._pod_data = PodsData(reader_name, file_list, pod_ids) def _check_leader(self): if self._trainer_env.global_rank != 0: raise exceptions.EdlNotLeaderError( "This server rank:{} is not Leader".format( self._trainer_env.global_rank ) ) # only leader can do this def ReportBatchDataMeta(self, request, context): res = common_pb2.EmptyRet() try: self._check_leader() self._check_pod_id(request.pod_id) self._check_reader_name(request.reader_name) if len(request.batch_data_ids) > 0: self._pod_data.put( request.pod_id, request.data_server_endpoint, request.batch_data_ids ) except Exception as e: import traceback exceptions.serialize(res, e, traceback.format_exc()) return res def ReachDataEnd(self, request, context): res = common_pb2.EmptyRet() try: self._check_leader() self._check_pod_id(request.pod_id) self._check_reader_name(request.reader_name) self._pod_data.set_data_end(request.pod_id) except Exception as e: import traceback exceptions.serialize(res, e, traceback.format_exc()) return res # only leader can do this def GetBatchDataMeta(self, request, context): res = data_server_pb2.BatchDataMetaResponse() try: self._check_leader() self._check_pod_id(request.pod_id) self._check_reader_name(request.reader_name) self._pod_data.pop(request.pod_id, res.data, timeout=60) except Exception as e: import traceback exceptions.serialize(res, e, traceback.format_exc()) return res def GetBatchData(self, request, context): res = data_server_pb2.BatchDataResponse() try: datas = self._local_reader.get_local_batch_data(request) for data in datas: b = copy.copy(data) res.datas.append(b) except Exception as e: import traceback exceptions.serialize(res, e, traceback.format_exc()) return res def _check_file_list(self, file_list): for i, ele in enumerate(file_list): if self._file_list[i] != ele.path: raise exceptions.EdlFileListNotMatchError( "client:{} server:{}".format(file_list, self._file_list) ) def _check_pod_id(self, pod_id): if pod_id not in self._pod_ids: raise exceptions.EdlPodIDNotExistError( "pod_id:{} not exist in {}".format(pod_id, self._pod_ids) ) def _check_reader_name(self, reader_name): if reader_name != self._reader_name: raise exceptions.EdlReaderNameError( "{} not equal {}".format(reader_name, self._reader_name) ) # only leader can do this def GetFileList(self, request, context): """ Get slice of file list for a pod by pod_id Need not lock because there are readonly """ res = data_server_pb2.FileListResponse() try: self._check_leader() self._check_file_list(request.file_list) self._check_pod_id(request.pod_id) self._check_reader_name(request.reader_name) file_list = self._pod_data.get_pod_file_list(request.pod_id) for m in file_list: res.file_list.append(m) return res except exceptions.EdlException as e: exceptions.serialize(res, e) return res class DataServer(object): def __init__(self, trainer_env, reader_name, file_list, local_reader): self._server = None self._addr = None self._port = None self._endpoint = None self._trainer_env = trainer_env self._reader_name = reader_name self._file_list = file_list self._local_reader = local_reader def start(self, addr, cache_capcity=1000, max_workers=100, concurrency=20): server = grpc.server( futures.ThreadPoolExecutor(max_workers=max_workers), options=[ ("grpc.max_send_message_length", 1024 * 1024 * 1024), ("grpc.max_receive_message_length", 1024 * 1024 * 1024), ], maximum_concurrent_rpcs=concurrency, ) data_server_pb2_grpc.add_DataServerServicer_to_server( DataServerServicer( trainer_env=self._trainer_env, reader_name=self._reader_name, file_list=self._file_list, pod_ids=self._trainer_env.pod_ids, local_reader=self._local_reader, ), server, ) self._addr = addr self._port = server.add_insecure_port("{}:0".format(addr)) assert ( self._port > 0 ), "data server start on addr:{} error, selected port is {}".format( addr, self._port ) self._endpoint = "{}:{}".format(self._addr, self._port) server.start() self._server = server print("start data_server:", self._endpoint) @property def endpoint(self): return self._endpoint def wait(self, timeout=None): if timeout is not None: self._server.stop(timeout) return self._server.wait_for_termination(timeout) def shutdown(self): pass
py
1a38000cd316c8eb2937577ef226db089eeb3c22
## This is the code in Python # Your task is to create the code for the same in C/C++ items = input("Input comma separated sequence of words") words = [word for word in items.split(",")] print(",".join(sorted(list(set(words)))))
py
1a38002e8ef7ea27cfa54b6cc6bbb4b9c9045595
__title__ = 'django-daiquiri' __version__ = '0.3' __author__ = 'Jochen Klar' __email__ = '[email protected]' __license__ = 'Apache-2.0' __copyright__ = 'Copyright 2016-2017 Leibniz Institute for Astrophysics Potsdam (AIP)' VERSION = __version__
py
1a3800790f9c57d8b6c3985def0ecb484205a72a
# Generated by Django 3.0.5 on 2020-10-31 16:05 from django.conf import settings import django.core.validators from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('api', '0001_initial'), ] operations = [ migrations.AlterField( model_name='category', name='slug', field=models.SlugField(unique=True, verbose_name='Slug категории'), ), migrations.AlterField( model_name='comment', name='author', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='comments', to=settings.AUTH_USER_MODEL, verbose_name='Автор'), ), migrations.AlterField( model_name='comment', name='pub_date', field=models.DateTimeField(auto_now_add=True, db_index=True, verbose_name='Дата публикации'), ), migrations.AlterField( model_name='comment', name='review', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='comments', to='api.Review', verbose_name='Отзыв'), ), migrations.AlterField( model_name='comment', name='text', field=models.TextField(verbose_name='Комментарий'), ), migrations.AlterField( model_name='genre', name='slug', field=models.SlugField(unique=True, verbose_name='Slug жанра'), ), migrations.AlterField( model_name='review', name='author', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='reviews', to=settings.AUTH_USER_MODEL, verbose_name='Автор'), ), migrations.AlterField( model_name='review', name='pub_date', field=models.DateTimeField(auto_now_add=True, db_index=True, verbose_name='Дата публикации'), ), migrations.AlterField( model_name='review', name='score', field=models.PositiveSmallIntegerField(validators=[django.core.validators.MinValueValidator(1), django.core.validators.MaxValueValidator(10)], verbose_name='Оценка'), ), migrations.AlterField( model_name='review', name='text', field=models.TextField(verbose_name='Отзыв'), ), migrations.AlterField( model_name='review', name='title', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='reviews', to='api.Title', verbose_name='Произведение'), ), migrations.AlterField( model_name='title', name='category', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='titles', to='api.Category', verbose_name='Категория'), ), migrations.AlterField( model_name='title', name='description', field=models.TextField(blank=True, null=True, verbose_name='Описание'), ), migrations.AlterField( model_name='title', name='genre', field=models.ManyToManyField(blank=True, related_name='titles', to='api.Genre', verbose_name='Жанр'), ), migrations.AlterField( model_name='title', name='name', field=models.CharField(max_length=200, unique=True, verbose_name='Название'), ), migrations.AlterField( model_name='title', name='year', field=models.PositiveSmallIntegerField(blank=True, db_index=True, null=True, validators=[django.core.validators.MinValueValidator(1895), django.core.validators.MaxValueValidator(2020)], verbose_name='Год выпуска'), ), ]
py
1a38009cafc383e714a163986c20739ce04b28bc
import re from dataclasses import dataclass, field from typing import Optional, Sequence, Union from snuba_sdk.column import Column from snuba_sdk.expressions import ( Expression, InvalidExpression, ScalarLiteralType, ScalarType, is_literal, is_scalar, ) class InvalidFunction(InvalidExpression): pass alias_re = re.compile(r"^[a-zA-Z](\w|\.)+$") # In theory the function matcher should be the same as the column one. # However legacy API sends curried functions as raw strings, and it # wasn't worth it to import an entire parsing grammar into the SDK # just to accomodate that one case. Instead, allow it for now and # once that use case is eliminated we can remove this. function_name_re = re.compile(r"^[a-zA-Z](\w|[().,+]| |\[|\])+$") @dataclass(frozen=True) class CurriedFunction(Expression): function: str initializers: Optional[Sequence[Union[ScalarLiteralType, Column]]] = None parameters: Optional[ Sequence[Union[ScalarType, Column, "CurriedFunction", "Function"]] ] = None alias: Optional[str] = None def validate(self) -> None: if not isinstance(self.function, str): raise InvalidFunction(f"function '{self.function}' must be a string") if self.function == "": # TODO: Have a whitelist of valid functions to check, maybe even with more # specific parameter type checking raise InvalidFunction("function cannot be empty") if not function_name_re.match(self.function): raise InvalidFunction( f"function '{self.function}' contains invalid characters" ) if self.initializers is not None: if not isinstance(self.initializers, Sequence): raise InvalidFunction( f"initializers of function {self.function} must be a Sequence" ) elif not all( isinstance(param, Column) or is_literal(param) for param in self.initializers ): raise InvalidFunction( f"initializers to function {self.function} must be a scalar or column" ) if self.alias is not None: if not isinstance(self.alias, str) or self.alias == "": raise InvalidFunction( f"alias '{self.alias}' of function {self.function} must be None or a non-empty string" ) if not alias_re.match(self.alias): raise InvalidFunction( f"alias '{self.alias}' of function {self.function} contains invalid characters" ) if self.parameters is not None: if not isinstance(self.parameters, Sequence): raise InvalidFunction( f"parameters of function {self.function} must be a Sequence" ) for param in self.parameters: if not isinstance( param, (Column, CurriedFunction, Function) ) and not is_scalar(param): assert not isinstance(param, bytes) # mypy raise InvalidFunction( f"parameter '{param}' of function {self.function} is an invalid type" ) def __eq__(self, other: object) -> bool: # Don't use the alias to compare equality if not isinstance(other, CurriedFunction): return False return ( self.function == other.function and self.initializers == other.initializers and self.parameters == other.parameters ) @dataclass(frozen=True) class Function(CurriedFunction): initializers: Optional[Sequence[Union[ScalarLiteralType, Column]]] = field( init=False, default=None )
py
1a3801e8d17ec3238541780b26bb6ade318ed806
import numpy as np import glob import os import fridge.Material.Element as Element import fridge.utilities.utilities as utilities AVOGADROS_NUMBER = 0.6022140857 cur_dir = os.path.dirname(__file__) material_dir = os.path.join(cur_dir, '../data/materials/') class Material(object): """Creates a material consisting of elements based on the Material database.""" def __init__(self): self.atomDensity = 0.0 self.density = 0.0 self.linearCoeffExpansion = 0.0 self.name = '' self.materialName = '' self.atomPercent = {} self.enrichmentDict = {} self.weightPercent = {} self.elementDict = {} self.elements = [] self.zaids = [] self.weightFraction = [] self.enrichmentZaids = [] self.enrichmentIsotopes = [] self.enrichmentVector = [] self.isotopicAtomPercents = [] def set_material(self, material): self.name = material self.read_material_data(self.name) self.create_material_data() def read_material_data(self, material): """Read in the material data from the material database.""" material_yaml_file = glob.glob(os.path.join(material_dir, material + '.yaml')) inputs = utilities.yaml_reader(material_yaml_file, material_dir, material) self.name = inputs['Name'] self.materialName = material self.elements = inputs['Elements'] self.zaids = inputs['Elemental ZAIDs'] self.weightFraction = inputs['Elemental Weight Fractions'] if 'Elemental Weight Fractions' in inputs else [] self.enrichmentZaids = inputs['Elemental Adjustment ZAIDs'] if 'Elemental Adjustment ZAIDs' in inputs else [] self.enrichmentIsotopes = inputs['Isotopic Adjustment ZAIDs'] if 'Isotopic Adjustment ZAIDs' in inputs else [] self.enrichmentVector = inputs['Isotopic Weight Percents'] if 'Isotopic Weight Percents' in inputs else [] self.isotopicAtomPercents = inputs['Isotopic Atom Percents'] if 'Isotopic Atom Percents' in inputs else [] self.density = inputs['Density'] self.linearCoeffExpansion = inputs['Linear Coefficient of Expansion'] def create_material_data(self): """Create a material based on the data from the material database.""" for num, zaid in enumerate(self.enrichmentZaids): enriched_isotope_dict = {} for isoNum, isotopes in enumerate(self.enrichmentIsotopes[num]): enriched_isotope_dict[isotopes] = self.enrichmentVector[num][isoNum] self.enrichmentDict[zaid] = enriched_isotope_dict for num, element in enumerate(self.elements): self.elementDict[self.zaids[num]] = Element.Element(element) if self.isotopicAtomPercents: self.atomDensity = self.density self.set_atom_fractions() else: self.set_elemental_enrichment() self.set_weight_percent() self.atomDensity, self.atomPercent = set_atom_percent(self.weightPercent, self.density, self.elementDict) def set_elemental_enrichment(self): """Adjust the element's natural abundance to compensate for enrichment.""" for elementEnrichement, zaidVector in self.enrichmentDict.items(): for zaid, enrichmentPercent in zaidVector.items(): self.elementDict[elementEnrichement].weightPercentDict[zaid] = enrichmentPercent def set_weight_percent(self, void_percent=1.0): """Calculates the weight percent of a material.""" weight_total = 0.0 for zaidNum, zaid in enumerate(self.zaids): for isotope, isotopeFraction in self.elementDict[zaid].weightPercentDict.items(): if isotopeFraction != 0.0: self.weightPercent[isotope] = isotopeFraction * self.weightFraction[zaidNum] * void_percent weight_total += self.weightPercent[isotope] try: assert np.allclose(weight_total, 1.0 * void_percent) except AssertionError: print("Weight percent does not sum to 1.0 for {}. Check the material file.".format(self.name)) def set_void(self, void_percent): """Adjust the atom density/atom percent of a material to account for voiding.""" self.set_weight_percent(void_percent) self.atomDensity, self.atomPercent = set_atom_percent(self.weightPercent, self.density, self.elementDict) def set_atom_fractions(self, void_percent=1.0): """Calculates the atom density of a material given a material with atom densities defined.""" for zaidNum, zaid in enumerate(self.zaids): for isotope, isotopeFraction in self.elementDict[zaid].atomPercentDict.items(): if zaid in self.isotopicAtomPercents: print(self.elementDict[zaid].weightPercentDict[isotope]) self.atomPercent[isotope] = self.elementDict[zaid].atomPercentDict[isotope] * \ self.isotopicAtomPercents[zaid] * void_percent elif isotope in self.isotopicAtomPercents: self.atomPercent[isotope] = self.isotopicAtomPercents[isotope] * void_percent assert np.allclose(sum(self.atomPercent.values()), self.density, 3) def set_atom_percent(weight_percents, density, element_dict): """Converts the weight percent of a material to the atom percent and atom density.""" atom_densities = {} atom_percent = {} for zaid, weight in weight_percents.items(): element = str(zaid) if len(element) < 5: current_element = int(element[:1] + '000') else: current_element = int(element[:2] + '000') atom_densities[zaid] = weight*density*AVOGADROS_NUMBER / element_dict[current_element].molecularMassDict[zaid] atom_density = sum(atom_densities.values()) for zaid, atomicDensity in atom_densities.items(): atom_percent[zaid] = atomicDensity / atom_density return atom_density, atom_percent def get_smeared_material(materials, void_material='', void_percent=1.0): """Create the material data card for a smeared material.""" smear_material = {} for material, materialWeightPercent in materials.items(): void_multiplier = 1.0 if material == 'Void': pass else: base_material = Material() base_material.set_material(material) if base_material.materialName == void_material: void_multiplier = void_percent for isotope, isotopeWeightPercent in base_material.weightPercent.items(): element = str(isotope) if len(element) < 5: current_element = element[:1] + '000' else: current_element = element[:2] + '000' current_element = int(current_element) try: smear_material[isotope] += isotopeWeightPercent * materialWeightPercent * base_material.density \ * AVOGADROS_NUMBER * void_multiplier / \ base_material.elementDict[current_element].molecularMassDict[isotope] except KeyError: smear_material[isotope] = isotopeWeightPercent * materialWeightPercent * base_material.density \ * AVOGADROS_NUMBER * void_multiplier / \ base_material.elementDict[current_element].molecularMassDict[isotope] smeared_material = Material() smeared_material.name = "{}".format([val for val in materials]) smeared_material.atomDensity = sum(smear_material.values()) smeared_atom_percent = {} for k, v in smear_material.items(): smeared_atom_percent[k] = v / smeared_material.atomDensity smeared_material.atomPercent = smeared_atom_percent return smeared_material def smear_coolant_wirewrap(info): """Returns a smeared material for the coolant and wire wrap.""" height = info[0] fuel_radius = info[1] / 2 wirewrap_radius = info[2] / 2 wire_wrap_axial_pitch = info[3] fuel_pitch = info[4] coolant_material = info[5] clad_material = info[6] fuel_volume = utilities.get_cylinder_volume(fuel_radius, height) wire_wrap_volume = utilities.get_toroidal_volume(fuel_radius, wirewrap_radius, wire_wrap_axial_pitch, height) pin_hexagonal_universe_volume = utilities.get_hexagonal_prism_volume(fuel_pitch, height) coolant_volume = pin_hexagonal_universe_volume - fuel_volume - wire_wrap_volume total_coolant_wire_wrap_volume = coolant_volume + wire_wrap_volume wire_wrap_volume_percent = wire_wrap_volume / total_coolant_wire_wrap_volume coolant_volume_percent = coolant_volume / total_coolant_wire_wrap_volume smeared_material_dict = {clad_material: wire_wrap_volume_percent, coolant_material: coolant_volume_percent} return smeared_material_dict
py
1a38022d41be818b2a5cfdc5b70a5306115a1292
#AUTOGENERATED BY NBDEV! DO NOT EDIT! __all__ = ["index", "modules", "custom_doc_links", "git_url"] index = {"hello_world": "00_core.ipynb"} modules = ["core.py"] git_url = "https://github.com/cbjuan/nbdev_test/tree/master/" def custom_doc_links(name): return None
py
1a3802f3c346e2fff413131471e6aa74d04ccc35
""" My 5th bot. I don't actually like those films, but that was an order. And, frankly, a very interesting one! """ from bs4 import BeautifulSoup from datetime import datetime import requests import telebot import json def search_link(name): """Find a link for a film""" with open("database.json", "r", encoding="utf-8") as f: database = json.load(f) try: return "https://doramalive.ru" + database[name] # If there is no such film: except: return "error" def parse_dorama_page(link): """Parse the film webpage""" res = requests.get(link) soup = BeautifulSoup(res.text, 'html.parser') dorama = {} # Put the information into the dictionary dorama["link"] = link dorama["name"] = " ".join(soup.find("h1").string.split()[1::]) dorama["rating"] = soup.find("div", class_="vote-detail").get_text() dorama["description"] = soup.find("div", class_="detail-more").get_text() parametrs = soup.find_all("dl", class_="dl-horizontal") for parametr in parametrs: par = parametr.find_all("dd") dorama["made_in"] = par[1].get_text() dorama["made_date"] = par[2].get_text() dorama["genres"] = [] genres = soup.find_all("span", "label label-default genre") for genre in genres: dorama["genres"].append(" ".join(genre.find("a").get("title").split()[2::]).title()) return dorama # BOT STARTS HERE ### bot = telebot.TeleBot("2133317357:AAEAEsYGXuZqD0psX-GapGh1YjCrFcNkToU") print("Bot is active!") @bot.message_handler(commands=["start"]) def command_start(message): """Handler of the first command /start""" bot.send_message(message.chat.id, "✨") bot.send_message(message.chat.id, "Привет! Я помогу вам найти информацию о дорамах. " "Просто напишите мне название, а всё вам о ней расскажу!") @bot.message_handler(content_types=['text']) def reply(message): """Handler of any text message. It is supposed to be the name of a film""" print(f"Human: {not (message.from_user.is_bot)} || Name: {message.from_user.first_name} " f"{message.from_user.last_name} || Id: {message.from_user.id} || Time: {datetime.now().strftime('%H:%M')};") link = search_link(message.text.lower()) # If there is no such film: if link == "error": bot.send_message(message.chat.id, "К сожаленю такой дорамы нет. Или вы неверно " "ввели название ☹️ Попробуйте, пожалуйста, ещё раз.") # If there is else: dorama = parse_dorama_page(link) n = round(float(dorama["rating"].split()[0])) stars = ["⭐" for i in range(n)] msg = f"<b>Название:</b> {dorama['name']}\n<b>Производство:</b> {dorama['made_in']}\n<b>Дата премьеры:" \ f"</b> {dorama['made_date']}\n<b>Рейтинг: {''.join(stars)}</b> {dorama['rating']}\n<b>Жанры: ▫️</b> " \ f"{'▫️'.join(dorama['genres'])}\n<b>Описание:</b> {dorama['description']}\n<b>Ссылка:</b> " \ f"{dorama['link']}" bot.send_message(message.chat.id, msg, parse_mode="html") bot.polling(none_stop=True, interval=0)
py
1a380399ef5eb63442bf5a1ff8b556df874d108a
#------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. #-------------------------------------------------------------------------- # pylint: disable=super-init-not-called,arguments-differ from uamqp import c_uamqp from uamqp import utils class AMQPType: """Base type for specific AMQP encoded type definitions. :ivar value: The Python value of the AMQP type. :ivar c_data: The C AMQP encoded object. """ def __init__(self, value): self._c_type = self._c_wrapper(value) @property def value(self): return self._c_type.value @property def c_data(self): return self._c_type def _c_wrapper(self, value): raise NotImplementedError() class AMQPSymbol(AMQPType): """An AMQP symbol object. :ivar value: The Python value of the AMQP type. :vartype value: bytes :ivar c_data: The C AMQP encoded object. :vartype c_data: c_uamqp.SymbolValue :param value: The value to encode as an AMQP symbol. :type value: bytes or str :param encoding: The encoding to be used if a str is provided. The default is 'UTF-8'. :type encoding: str """ def __init__(self, value, encoding='UTF-8'): self._c_type = self._c_wrapper(value, encoding) def _c_wrapper(self, value, encoding='UTF-8'): value = value.encode(encoding) if isinstance(value, str) else value return c_uamqp.symbol_value(value) class AMQPLong(AMQPType): """An AMQP long object. :ivar value: The Python value of the AMQP type. :vartype value: int :ivar c_data: The C AMQP encoded object. :vartype c_data: ~uamqp.c_uamqp.LongValue :param value: The value to encode as an AMQP ulong. :type value: int :raises: ValueError if value is not within allowed range. """ def _c_wrapper(self, value): try: return c_uamqp.long_value(int(value)) except TypeError: raise ValueError("Value must be an integer") except OverflowError: raise ValueError("Value {} is too large for a Long value.".format(value)) class AMQPuLong(AMQPType): """An AMQP unsigned long object. :ivar value: The Python value of the AMQP type. :vartype value: int :ivar c_data: The C AMQP encoded object. :vartype c_data: ~uamqp.c_uamqp.ArrayValue :param value: The value to encode as an AMQP Array. :type value: list :raises: ValueError if value is not within allowed range. """ def _c_wrapper(self, value): try: return c_uamqp.ulong_value(int(value)) except TypeError: raise ValueError("Value must be an integer") except OverflowError: raise ValueError("Value {} is too large for an unsigned Long value.".format(value)) class AMQPArray(AMQPType): """An AMQP Array object. All the values in the array must be of the same type. :ivar value: The Python values of the AMQP array. :vartype value: list :ivar c_data: The C AMQP encoded object. :vartype c_data: ~uamqp.c_uamqp.ULongValue :param value: The value to encode as an AMQP symbol. :type value: int :raises: ValueError if all values are not the same type. """ def _c_wrapper(self, value_array): value_type = type(value_array[0]) if not all(isinstance(x, value_type) for x in value_array): raise ValueError("All Array values must be the same type.") c_array = c_uamqp.array_value() for value in value_array: c_array.append(utils.data_factory(value)) return c_array
py
1a3804a091964cbadb7a088c164b9c1804c5cdc3
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fuzzing engine interface.""" _ENGINES = {} class Error(Exception): """Engine error.""" class FuzzOptions(object): """Represents options passed to the engine. Can be overridden to provide more options.""" def __init__(self, corpus_dir, arguments, strategies): self.corpus_dir = corpus_dir self.arguments = arguments self.strategies = strategies class Crash(object): """Represents a crash found by the fuzzing engine.""" def __init__(self, input_path, stacktrace, reproduce_args, crash_time): self.input_path = input_path self.stacktrace = stacktrace self.reproduce_args = reproduce_args self.crash_time = crash_time class FuzzResult(object): """Represents a result of a fuzzing session: a list of crashes found and the stats generated.""" def __init__(self, logs, command, crashes, stats, time_executed): self.logs = logs self.command = command self.crashes = crashes self.stats = stats self.time_executed = time_executed class ReproduceResult(object): """Results from running a testcase against a target.""" def __init__(self, command, return_code, time_executed, output): self.command = command self.return_code = return_code self.time_executed = time_executed self.output = output class Engine(object): """Base interface for a grey box fuzzing engine.""" @property def name(self): """Get the name of the engine.""" raise NotImplementedError def fuzz_additional_processing_timeout(self, options): """Return the maximum additional timeout in seconds for additional operations in fuzz() (e.g. merging back new items). Args: options: A FuzzOptions object. Returns: An int representing the number of seconds required. """ del options return 0 def prepare(self, corpus_dir, target_path, build_dir): """Prepare for a fuzzing session, by generating options. Returns a FuzzOptions object. Args: corpus_dir: The main corpus directory. target_path: Path to the target. build_dir: Path to the build directory. Returns: A FuzzOptions object. """ raise NotImplementedError def fuzz(self, target_path, options, reproducers_dir, max_time): """Run a fuzz session. Args: target_path: Path to the target. options: The FuzzOptions object returned by prepare(). reproducers_dir: The directory to put reproducers in when crashes are found. max_time: Maximum allowed time for the fuzzing to run. Returns: A FuzzResult object. """ raise NotImplementedError def reproduce(self, target_path, input_path, arguments, max_time): """Reproduce a crash given an input. Args: target_path: Path to the target. input_path: Path to the reproducer input. arguments: Additional arguments needed for reproduction. max_time: Maximum allowed time for the reproduction. Returns: A ReproduceResult. Raises: TimeoutError: If the reproduction exceeds max_time. """ raise NotImplementedError def minimize_corpus(self, target_path, arguments, input_dirs, output_dir, reproducers_dir, max_time): """Optional (but recommended): run corpus minimization. Args: target_path: Path to the target. arguments: Additional arguments needed for corpus minimization. input_dirs: Input corpora. output_dir: Output directory to place minimized corpus. reproducers_dir: The directory to put reproducers in when crashes are found. max_time: Maximum allowed time for the minimization. Returns: A FuzzResult object. Raises: TimeoutError: If the corpus minimization exceeds max_time. Error: If the merge failed in some other way. """ raise NotImplementedError def minimize_testcase(self, target_path, arguments, input_path, output_path, max_time): """Optional (but recommended): Minimize a testcase. Args: target_path: Path to the target. arguments: Additional arguments needed for testcase minimization. input_path: Path to the reproducer input. output_path: Path to the minimized output. max_time: Maximum allowed time for the minimization. Returns: A ReproduceResult. Raises: TimeoutError: If the testcase minimization exceeds max_time. """ raise NotImplementedError def cleanse(self, target_path, arguments, input_path, output_path, max_time): """Optional (but recommended): Cleanse a testcase. Args: target_path: Path to the target. arguments: Additional arguments needed for testcase cleanse. input_path: Path to the reproducer input. output_path: Path to the cleansed output. max_time: Maximum allowed time for the cleanse. Returns: A ReproduceResult. Raises: TimeoutError: If the cleanse exceeds max_time. """ raise NotImplementedError def register(name, engine_class): """Register a fuzzing engine.""" if name in _ENGINES: raise ValueError('Engine {name} is already registered'.format(name=name)) _ENGINES[name] = engine_class def get(name): """Get an implemntation of a fuzzing engine, or None if one does not exist.""" engine_class = _ENGINES.get(name) if engine_class: return engine_class() return None
py
1a38054ecc6ff1f86fd421b66213c35caa321ed4
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ '''Training set and test set loader''' import os import pickle import numpy as np class TrainDataset: '''Training data loader''' def __init__(self, sliding_dir, train_pkl_path, valid_pkl_path, visual_dim, sentence_embed_dim, IoU=0.5, nIoU=0.15, context_num=1, context_size=128 ): self.sliding_dir = sliding_dir self.train_pkl_path = train_pkl_path self.valid_pkl_path = valid_pkl_path self.visual_dim = visual_dim self.sentence_embed_dim = sentence_embed_dim self.IoU = IoU self.nIoU = nIoU self.context_num = context_num self.context_size = context_size self.load_data() def load_data(self): '''load_data''' train_csv = pickle.load(open(self.train_pkl_path, 'rb'), encoding='iso-8859-1') self.clip_sentence_pairs = [] for l in train_csv: clip_name = l[0] sent_vecs = l[1] for sent_vec in sent_vecs: self.clip_sentence_pairs.append((clip_name, sent_vec)) movie_names_set = set() self.movie_clip_names = {} for k in range(len(self.clip_sentence_pairs)): clip_name = self.clip_sentence_pairs[k][0] movie_name = clip_name.split("_")[0] if not movie_name in movie_names_set: movie_names_set.add(movie_name) self.movie_clip_names[movie_name] = [] self.movie_clip_names[movie_name].append(k) self.movie_names = list(movie_names_set) self.num_samples = len(self.clip_sentence_pairs) # read sliding windows, and match them with the groundtruths to make training samples sliding_clips_tmp = os.listdir(self.sliding_dir) sliding_clips_tmp.sort() self.clip_sentence_pairs_iou = [] movie_names = set() for clip_name in sliding_clips_tmp: if clip_name.split(".")[2] == "npy": movie_name = clip_name.split("_")[0] movie_names.add(movie_name) movie_names = list(movie_names) movie_names.sort() for movie_name in self.movie_names: start_ends = [] clip_names = [] for clip_name in sliding_clips_tmp: if clip_name.split(".")[2] == "npy": if clip_name.split("_")[0] == movie_name: start = int(clip_name.split("_")[1]) end = int(clip_name.split("_")[2].split(".")[0]) start_ends.append((start, end)) clip_names.append(clip_name) table = {} for clip_sentence in self.clip_sentence_pairs: o_start_ends = [] original_clip_name = clip_sentence[0] original_movie_name = original_clip_name.split("_")[0] if original_movie_name == movie_name: o_start = int(original_clip_name.split("_")[1]) o_end = int(original_clip_name.split("_")[2].split(".")[0]) if (o_start, o_end) in table.keys(): match_indexs = table[(o_start, o_end)] for j in match_indexs: start, end = start_ends[j] clip_name = clip_names[j] start_offset = o_start - start end_offset = o_end - end self.clip_sentence_pairs_iou.append( (clip_sentence[0], clip_sentence[1], clip_name, start_offset, end_offset)) else: o_start_ends.append((o_start, o_end)) start_ends = np.array(start_ends) o_start_ends = np.array(list(set(o_start_ends))) if o_start_ends.shape[0] == 0: continue ious = self.calc_IoU(start_ends, o_start_ends) nIoLs = self.calc_nIoL(o_start_ends, start_ends) match_indexs = (nIoLs < self.nIoU)[0] & (ious > self.IoU)[:, 0] match_indexs = np.where(match_indexs)[0] table[(o_start, o_end)] = match_indexs for k in match_indexs: start, end = start_ends[k] clip_name = clip_names[k] start_offset = o_start - start end_offset = o_end - end self.clip_sentence_pairs_iou.append( (clip_sentence[0], clip_sentence[1], clip_name, start_offset, end_offset)) self.num_samples_iou = len(self.clip_sentence_pairs_iou) def calc_nIoL(self, base, sliding_clip): '''Calculate the nIoL of two fragments''' A = base.shape[0] inter = self.calc_inter(base, sliding_clip) sliding_clip = np.expand_dims(sliding_clip, 0).repeat(A, axis=0) length = sliding_clip[:, :, 1] - sliding_clip[:, :, 0] nIoL = 1 - inter / length return nIoL def calc_IoU(self, clips_a, clips_b): '''Calculate the IoU of two fragments''' inter = self.calc_inter(clips_a, clips_b) union = self.calc_union(clips_a, clips_b) return inter / union def calc_inter(self, clips_a, clips_b): '''Calculate the intersection of two fragments''' A = clips_a.shape[0] B = clips_b.shape[0] clips_a = np.expand_dims(clips_a, 1).repeat(B, axis=1) clips_b = np.expand_dims(clips_b, 0).repeat(A, axis=0) max_min = np.maximum(clips_a[:, :, 0], clips_b[:, :, 0]) min_max = np.minimum(clips_a[:, :, 1], clips_b[:, :, 1]) return np.maximum(min_max - max_min, 0) def calc_union(self, clips_a, clips_b): '''Calculate the union of two fragments''' A = clips_a.shape[0] B = clips_b.shape[0] clips_a = np.expand_dims(clips_a, 1).repeat(B, axis=1) clips_b = np.expand_dims(clips_b, 0).repeat(A, axis=0) min_min = np.minimum(clips_a[:, :, 0], clips_b[:, :, 0]) max_max = np.maximum(clips_a[:, :, 1], clips_b[:, :, 1]) return max_max - min_min def get_context_window(self, clip_name): '''Get the context window of the fragment''' movie_name = clip_name.split("_")[0] start = int(clip_name.split("_")[1]) end = int(clip_name.split("_")[2].split(".")[0]) self.context_size = end - start left_context_feats = np.zeros([self.context_num, self.visual_dim // 3], dtype=np.float32) right_context_feats = np.zeros([self.context_num, self.visual_dim // 3], dtype=np.float32) last_left_feat = np.load(os.path.join(self.sliding_dir, clip_name)) last_right_feat = np.load(os.path.join(self.sliding_dir, clip_name)) for k in range(self.context_num): left_context_start = start - self.context_size * (k + 1) left_context_end = start - self.context_size * k right_context_start = end + self.context_size * k right_context_end = end + self.context_size * (k + 1) left_context_name = movie_name + "_" + str(left_context_start) + "_" + str(left_context_end) + ".npy" right_context_name = movie_name + "_" + str(right_context_start) + "_" + str(right_context_end) + ".npy" left_context_path = os.path.join(self.sliding_dir, left_context_name) if os.path.exists(left_context_path): left_context_feat = np.load(left_context_path) last_left_feat = left_context_feat else: left_context_feat = last_left_feat right_context_path = os.path.join(self.sliding_dir, right_context_name) if os.path.exists(right_context_path): right_context_feat = np.load(right_context_path) last_right_feat = right_context_feat else: right_context_feat = last_right_feat left_context_feats[k] = left_context_feat right_context_feats[k] = right_context_feat return np.mean(left_context_feats, axis=0), np.mean(right_context_feats, axis=0) def __getitem__(self, index): '''Return a data''' left_context_feat, right_context_feat = self.get_context_window(self.clip_sentence_pairs_iou[index][2]) feat_path = os.path.join(self.sliding_dir, self.clip_sentence_pairs_iou[index][2]) featmap = np.load(feat_path) vis = np.hstack((left_context_feat, featmap, right_context_feat)) sent = self.clip_sentence_pairs_iou[index][1][:self.sentence_embed_dim] p_offset = self.clip_sentence_pairs_iou[index][3] l_offset = self.clip_sentence_pairs_iou[index][4] offset = np.array([p_offset, l_offset], dtype=np.float32) return np.concatenate((vis, sent)), offset def __len__(self): '''Return the length of the data set''' return self.num_samples_iou class TestingDataSet: '''TestingDataSet''' def __init__(self, img_dir, csv_path, batch_size): self.batch_size = batch_size self.image_dir = img_dir self.semantic_size = 4800 csv = pickle.load(open(csv_path, 'rb'), encoding='iso-8859-1') self.clip_sentence_pairs = [] for l in csv: clip_name = l[0] sent_vecs = l[1] for sent_vec in sent_vecs: self.clip_sentence_pairs.append((clip_name, sent_vec)) movie_names_set = set() self.movie_clip_names = {} for k in range(len(self.clip_sentence_pairs)): clip_name = self.clip_sentence_pairs[k][0] movie_name = clip_name.split("_")[0] if not movie_name in movie_names_set: movie_names_set.add(movie_name) self.movie_clip_names[movie_name] = [] self.movie_clip_names[movie_name].append(k) self.movie_names = list(movie_names_set) self.movie_names.sort() self.clip_num_per_movie_max = 0 for movie_name in self.movie_clip_names: if len(self.movie_clip_names[movie_name]) > self.clip_num_per_movie_max: self.clip_num_per_movie_max = len(self.movie_clip_names[movie_name]) self.sliding_clip_path = img_dir sliding_clips_tmp = os.listdir(self.sliding_clip_path) self.sliding_clip_names = [] for clip_name in sliding_clips_tmp: if clip_name.split(".")[2] == "npy": movie_name = clip_name.split("_")[0] if movie_name in self.movie_clip_names: self.sliding_clip_names.append(clip_name.split(".")[0]+"."+clip_name.split(".")[1]) self.num_samples = len(self.clip_sentence_pairs) assert self.batch_size <= self.num_samples def get_clip_sample(self, sample_num, movie_name, clip_name): '''Get a clip''' length = len(os.listdir(self.image_dir+movie_name+"/"+clip_name)) sample_step = 1.0*length/sample_num sample_pos = np.floor(sample_step*np.array(range(sample_num))) sample_pos_str = [] img_names = os.listdir(self.image_dir+movie_name+"/"+clip_name) # sort is very important! to get a correct sequence order img_names.sort() for pos in sample_pos: sample_pos_str.append(self.image_dir+movie_name+"/"+clip_name+"/"+img_names[int(pos)]) return sample_pos_str def get_context_window(self, clip_name, win_length): '''Get the context window of the fragment''' movie_name = clip_name.split("_")[0] start = int(clip_name.split("_")[1]) end = int(clip_name.split("_")[2].split(".")[0]) clip_length = 128#end-start left_context_feats = np.zeros([win_length, 4096], dtype=np.float32) right_context_feats = np.zeros([win_length, 4096], dtype=np.float32) last_left_feat = np.load(self.sliding_clip_path+clip_name) last_right_feat = np.load(self.sliding_clip_path+clip_name) for k in range(win_length): left_context_start = start-clip_length*(k+1) left_context_end = start-clip_length*k right_context_start = end+clip_length*k right_context_end = end+clip_length*(k+1) left_context_name = movie_name+"_"+str(left_context_start)+"_"+str(left_context_end)+".npy" right_context_name = movie_name+"_"+str(right_context_start)+"_"+str(right_context_end)+".npy" if os.path.exists(self.sliding_clip_path+left_context_name): left_context_feat = np.load(self.sliding_clip_path+left_context_name) last_left_feat = left_context_feat else: left_context_feat = last_left_feat if os.path.exists(self.sliding_clip_path+right_context_name): right_context_feat = np.load(self.sliding_clip_path+right_context_name) last_right_feat = right_context_feat else: right_context_feat = last_right_feat left_context_feats[k] = left_context_feat right_context_feats[k] = right_context_feat return np.mean(left_context_feats, axis=0), np.mean(right_context_feats, axis=0) def load_movie_byclip(self, movie_name, sample_num): '''Read visual features through clip''' movie_clip_sentences = [] movie_clip_featmap = [] clip_set = set() for k in range(len(self.clip_sentence_pairs)): if movie_name in self.clip_sentence_pairs[k][0]: movie_clip_sentences.append( (self.clip_sentence_pairs[k][0], self.clip_sentence_pairs[k][1][:self.semantic_size])) if not self.clip_sentence_pairs[k][0] in clip_set: clip_set.add(self.clip_sentence_pairs[k][0]) visual_feature_path = self.image_dir+self.clip_sentence_pairs[k][0]+".npy" feature_data = np.load(visual_feature_path) movie_clip_featmap.append((self.clip_sentence_pairs[k][0], feature_data)) return movie_clip_featmap, movie_clip_sentences def load_movie_slidingclip(self, movie_name, sample_num): '''Read visual features through slidingclip''' movie_clip_sentences = [] movie_clip_featmap = [] for k in range(len(self.clip_sentence_pairs)): if movie_name in self.clip_sentence_pairs[k][0]: movie_clip_sentences.append( (self.clip_sentence_pairs[k][0], self.clip_sentence_pairs[k][1][:self.semantic_size])) for k in range(len(self.sliding_clip_names)): if movie_name in self.sliding_clip_names[k]: visual_feature_path = self.sliding_clip_path+self.sliding_clip_names[k]+".npy" left_context_feat, right_context_feat = self.get_context_window(self.sliding_clip_names[k]+".npy", 1) feature_data = np.load(visual_feature_path) comb_feat = np.hstack((left_context_feat, feature_data, right_context_feat)) movie_clip_featmap.append((self.sliding_clip_names[k], comb_feat)) return movie_clip_featmap, movie_clip_sentences
py
1a3805ff34aa29af4fd3867aca86ab953a9b5aa0
# -*- coding: utf-8 -*_ # # Copyright (c) 2020, Pureport, Inc. # All Rights Reserved from __future__ import absolute_import from . import run_command_test from ...utils import utils def test_get(): run_command_test('gateways', 'get', utils.random_string()) def test_get_bgp_routes(): run_command_test('gateways', 'get-bgp-routes', utils.random_string()) def test_get_connectivity_over_time(): run_command_test('gateways', 'get-connectivity-over-time', utils.random_string(), {'gt': utils.random_string()}) def test_get_latest_connectivity(): run_command_test('gateways', 'get-latest-connectivity', utils.random_string()) def test_get_tasks(): run_command_test('gateways', 'get-tasks', utils.random_string()) def test_create_task(): run_command_test('gateways', 'create-task', utils.random_string(), {})
py
1a38066082ae9b708009a9c177d424d1c7f5df19
# Copyright (c) 2013 James King <[email protected]> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. from hy.models.string import HyString class HyLambdaListKeyword(HyString): """ Hy LambdaListKeyword. Demarcates arguments in an argument list. (defun my-fun (x &rest xs &optional (foo "default string"))) becomes: def my_fun(x, *xs, foo="default string"): pass """ _valid_types = ["&rest", "&optional", "&key", "&kwargs"] def __init__(self, string): self += string
py
1a3807123754e66d81a2abb99669bb2aeb837a27
from datetime import datetime from flask import Flask from flask import request, Response, render_template, redirect, url_for, flash, request from flask_sqlalchemy import SQLAlchemy from flask_login import current_user, login_required, login_user, LoginManager, logout_user, UserMixin from werkzeug.security import check_password_hash, generate_password_hash from forms import SignUpForm, LoginForm app = Flask(__name__) #helps with debugging errors while flask app is running app.config["DEBUG"] = True #SECRET_KEY generated using python interpreter: # $ python # >>> import secrets # >>> secrets.token_hex(16) # >>> a65643b9b52d637a11b3182e923e5703 app.config["SECRET_KEY"]= 'a65643b9b52d637a11b3182e923e5703' login_manager = LoginManager() login_manager.init_app(app) #Using SQLite for development app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///hackmerced.db' db = SQLAlchemy(app) ###***** Users Table ******### class Users(UserMixin, db.Model): __tablename__ = "Users" id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(89)) fullname = db.Column(db.String(89)) email = db.Column(db.String(89)) ucmId = db.Column(db.String(89)) pwd = db.Column(db.String(128)) bio = db.Column(db.String(500)) major = db.Column(db.String(89)) gradDate = db.Column(db.String(89)) def check_password(self, userinputPwd): return check_password_hash(self.pwd, userinputPwd) def get_id(self): return self.email ###***** Users Table ******### ###***** Tracks Table ******### class Threads(db.Model): __tablename__ = "Threads" id = db.Column(db.Integer, primary_key=True) views = db.Column(db.Integer, default=0) title = db.Column(db.String(89)) url = db.Column(db.String(89)) addedTimeStamp = db.Column(db.DateTime, default=datetime.now) #we might need a different database type to hold comments (can be very long) description = db.Column(db.String(3000)) '''{"owner": INT , "comment": String},{},{},{}''' replies = db.Column(db.String(3000), default=" ") upvotes = db.Column(db.Integer, default=0) downupvotes = db.Column(db.Integer, default=0) usersUpvoted = db.Column(db.String(3000), default=" ") userDownvoted = db.Column(db.String(3000), default=" ") owner_id = db.Column(db.Integer, db.ForeignKey('Users.id'), nullable=True) owner = db.relationship('Users', foreign_keys=owner_id) ###***** Tracks Table ******### @login_manager.user_loader def load_user(userInputEmail): return Users.query.filter_by(email=userInputEmail).first() @app.route("/signout") @login_required def logout(): logout_user() return redirect(url_for('login')) @app.route("/dashboard") @login_required def dashboard_home(): return render_template('dashboard.html') @app.route('/signup', methods= ['GET', 'POST']) def register(): form = SignUpForm() if request.method == "POST": if not form.validate_on_submit(): flash('Please enter valid credentials!', 'danger') return redirect(url_for('register')) #Check if username already exists #Make password atleast 8 charlong #Take to "finish making profile" one time page if not Users.query.filter_by(username=request.form['username']).first() and not Users.query.filter_by(email=request.form['email']).first(): print('Query responded with None.') #create a row in DataBases newUser = Users(username=request.form['username'], fullname=request.form['username'], email=request.form['email'], pwd= generate_password_hash(str(request.form['password']))) db.session.add(newUser) db.session.commit() flash('Thanks for signing up, you will now be able to login!', 'success') return redirect(url_for('login')) if Users.query.filter_by(username=request.form['username']).first(): flash(f'That username is taken! Select another.', 'danger') return redirect(url_for('register')) if Users.query.filter_by(email=request.form['email']).first(): flash('That email cannot be used.', 'danger') return redirect(url_for('register')) return redirect(url_for('register')) if request.method == "GET": return render_template('signup.html', form=form) @app.route('/login', methods= ['GET', 'POST']) def login(): form = LoginForm() if request.method == "POST": if not Users.query.filter_by(email=request.form['email']).first(): flash('No user with that email!', 'danger') return redirect(url_for('login')) user = load_user(str(request.form['email'])) if not user.check_password(request.form['password']): flash('Wrong password!', 'danger') return redirect(url_for('login')) print(type(user)) login_user(user) return redirect(url_for('dashboard_home')) return render_template('login.html', form=form) @app.route("/thread", methods=['GET','POST']) @login_required def make_thread(): if request.method == "POST": if(request.form['title'] and request.form['description']): newThread = Threads(title=request.form['title'], url = request.form['title'].replace(" ", "-"), description=request.form['description'], owner=current_user) db.session.add(newThread) db.session.commit() else: return render_template("createpost.html") return render_template('dashboard.html') @app.route("/<threadTitle>", methods=['GET','POST']) @login_required def show_thread(threadTitle): query = Threads.query.filter_by(url = threadTitle).first() if query is None: return redirect(url_for("dashboard_home")) else: views = query.views threadDict = {"title": query.title, "description": query.description, "replies": query.replies, "views": views} query.views = query.views + 1 db.session.commit() return render_template('post.html', threadDict = threadDict) if __name__ == '__main__': app.run(host="0.0.0.0", port="8081")
py
1a3809afe0da2516f442abc4c50738e391ed8f46
# Copyright (C) 2019 The Raphielscape Company LLC. # # Licensed under the Raphielscape Public License, Version 1.c (the "License"); # you may not use this file except in compliance with the License. # """ Userbot module containing commands for interacting with dogbin(https://del.dog)""" from requests import get, post, exceptions import os from userbot import BOTLOG, BOTLOG_CHATID, CMD_HELP, TEMP_DOWNLOAD_DIRECTORY from userbot.events import register DOGBIN_URL = "https://del.dog/" NEKOBIN_URL = "https://nekobin.com/" @register(outgoing=True, pattern=r"^.paste(?: |$)([\s\S]*)") async def paste(pstl): """ For .paste command, pastes the text directly to dogbin. """ dogbin_final_url = "" match = pstl.pattern_match.group(1).strip() reply_id = pstl.reply_to_msg_id if not (match or reply_id): await pstl.edit("`Elon Musk said I cannot paste void.`") return if match: message = match elif reply_id: message = await pstl.get_reply_message() if message.media: downloaded_file_name = await pstl.client.download_media( message, TEMP_DOWNLOAD_DIRECTORY, ) m_list = None with open(downloaded_file_name, "rb") as fd: m_list = fd.readlines() message = "" for m in m_list: message += m.decode("UTF-8") + "\r" os.remove(downloaded_file_name) else: message = message.message # Dogbin await pstl.edit("`Pasting text . . .`") resp = post(DOGBIN_URL + "documents", data=message.encode("utf-8")) if resp.status_code == 200: response = resp.json() key = response["key"] dogbin_final_url = DOGBIN_URL + key if response["isUrl"]: reply_text = ( "`Pasted successfully!`\n\n" f"`Shortened URL:` {dogbin_final_url}\n\n" "`Original(non-shortened) URLs`\n" f"`Dogbin URL`: {DOGBIN_URL}v/{key}\n" ) else: reply_text = ( "`Pasted successfully!`\n\n" f"`Dogbin URL`: {dogbin_final_url}" ) else: reply_text = "`Failed to reach Dogbin`" await pstl.edit(reply_text) if BOTLOG: await pstl.client.send_message( BOTLOG_CHATID, "Paste query was executed successfully", ) @register(outgoing=True, pattern="^.getpaste(?: |$)(.*)") async def get_dogbin_content(dog_url): """ For .getpaste command, fetches the content of a dogbin URL. """ textx = await dog_url.get_reply_message() message = dog_url.pattern_match.group(1) await dog_url.edit("`Getting dogbin content...`") if textx: message = str(textx.message) format_normal = f"{DOGBIN_URL}" format_view = f"{DOGBIN_URL}v/" if message.startswith(format_view): message = message[len(format_view) :] elif message.startswith(format_normal): message = message[len(format_normal) :] elif message.startswith("del.dog/"): message = message[len("del.dog/") :] else: await dog_url.edit("`Is that even a dogbin url?`") return resp = get(f"{DOGBIN_URL}raw/{message}") try: resp.raise_for_status() except exceptions.HTTPError as HTTPErr: await dog_url.edit( "Request returned an unsuccessful status code.\n\n" + str(HTTPErr) ) return except exceptions.Timeout as TimeoutErr: await dog_url.edit("Request timed out." + str(TimeoutErr)) return except exceptions.TooManyRedirects as RedirectsErr: await dog_url.edit( "Request exceeded the configured number of maximum redirections." + str(RedirectsErr) ) return reply_text = "`Fetched dogbin URL content successfully!`\n\n`Content:` " + resp.text await dog_url.edit(reply_text) if BOTLOG: await dog_url.client.send_message( BOTLOG_CHATID, "Get dogbin content query was executed successfully", ) @register(outgoing=True, pattern=r"^\.neko(?: |$)([\s\S]*)") async def neko(nekobin): """For .paste command, pastes the text directly to dogbin.""" nekobin_final_url = "" match = nekobin.pattern_match.group(1).strip() reply_id = nekobin.reply_to_msg_id if not match and not reply_id: return await pstl.edit("`Cannot paste text.`") if match: message = match elif reply_id: message = await nekobin.get_reply_message() if message.media: downloaded_file_name = await nekobin.client.download_media( message, TEMP_DOWNLOAD_DIRECTORY, ) m_list = None with open(downloaded_file_name, "rb") as fd: m_list = fd.readlines() message = "" for m in m_list: message += m.decode("UTF-8") os.remove(downloaded_file_name) else: message = message.text # Nekobin await nekobin.edit("`Pasting text . . .`") resp = post(NEKOBIN_URL + "api/documents", json={"content": message}) if resp.status_code == 201: response = resp.json() key = response["result"]["key"] nekobin_final_url = NEKOBIN_URL + key reply_text = ( "`Pasted successfully!`\n\n" f"[Nekobin URL]({nekobin_final_url})\n" f"[View RAW]({NEKOBIN_URL}raw/{key})" ) else: reply_text = "`Failed to reach Nekobin`" await nekobin.edit(reply_text) if BOTLOG: await nekobin.client.send_message( BOTLOG_CHATID, "Paste query was executed successfully", ) CMD_HELP.update( { "dogbin": ".paste <text/reply>\ \nUsage: Create a paste or a shortened url using dogbin (https://del.dog/)\ \n\n.getpaste\ \nUsage: Gets the content of a paste or shortened url from dogbin (https://del.dog/)\ \n\n.neko <text/reply>\ \nUsage: Create a paste or a shortened url using nekobin (https://nekobin.com/)" } )
py
1a3809d426de75da8c380544bb2343e73c578ca9
# -*- coding:utf-8 -*- from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, and_, or_, func from sqlalchemy.orm import sessionmaker # 创建对象基类 Base = declarative_base() class User(Base): """ 1.指定表名 2.指定表结构 """ __tablename__ = 'user' def __init__(self, name=None, age=None, address=None): self.user_name = name self.user_age = age self.user_address = address id = Column(Integer, primary_key=True, autoincrement=True) user_name = Column('userName', String(255)) user_age = Column('userAge', Integer) user_address = Column('userAddress', String(255)) def __str__(self): return self.user_name def __repr__(self): return self.user_age # 数据库连接 echo=True 打印sql engine = create_engine("mysql+pymysql://root:123456@localhost:3306/java?charset=utf8", echo=True) # 创建表结构 # Base.metadata.create_all(engine) # 删除表 # Base.metadata.drop_all(engine) # session Session = sessionmaker(bind=engine) session = Session() if __name__ == '__main__': # 增 u = User('user', 10, 'address') u1 = User() u1.user_name = 'user1' u1.user_age = 11 u1.user_address = 'address' session.add(u) session.add_all([u1]) session.commit() # 删 session.query(User).filter(User.id > 10).delete() session.query(User).filter_by(user_name='user').delete() session.commit() # 改 session.query(User).filter(User.id == 1).update({User.user_name: 'user_name'}) session.query(User).filter_by(user_name='user_name').update({'user_name': 'test_name'}) session.commit() # 查 user = session.query(User).first() # and users = session.query(User).filter(User.id.in_([1, 2, 3]) , User.user_name == 'test_name').all() users1 = session.query(User).filter(and_(User.id == 1, User.user_name == 'test_name')).all() # or users2 = session.query(User).filter(or_(User.id > 1, User.user_name == 'test_name')).all() # like users3 = session.query(User).filter(User.user_name.like('name%')).all() # limit users4 = session.query(User)[0:1] # sort users5 = session.query(User).order_by(User.id.desc()).all() # group users6 = session.query(User).group_by(User.id).all() # func max_id = session.query(func.max(User.id)).one() sum_age = session.query(func.sum(User.user_age)).one()
py
1a3809e43d4ab7109febd12f52bf96973f9471eb
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import time from HTMLTestRunner import HTMLTestRunner import unittest from db_fixture import test_data sys.path.append('./interface') sys.path.append('./db_fixture') # 指定测试用例为当前文件夹下的 interface 目录 test_dir = './interface' discover = unittest.defaultTestLoader.discover(test_dir, pattern='*_test.py') if __name__ == "__main__": # 初始化接口测试数据 test_data.init_data() now = time.strftime("%Y-%m-%d %H_%M_%S") filename = './report/' + now + '_result.html' fp = open(filename, 'wb') runner = HTMLTestRunner(stream=fp, title='Guest Manage System Interface Test Report', description='Implementation Example with: ') runner.run(discover) fp.close()
py
1a380a0eff132dab33aa43b0c43cbdf60a0af1ea
from collections import defaultdict from mesa.time import RandomActivation class RandomActivationByBreed(RandomActivation): """ A scheduler which activates each type of agent once per step, in random order, with the order reshuffled every step. This is equivalent to the NetLogo 'ask breed...' and is generally the default behavior for an ABM. Assumes that all agents have a step() method. """ def __init__(self, model): super().__init__(model) self.agents_by_breed = defaultdict(dict) self.seen_ids = set() def add(self, agent): """ Add an Agent object to the schedule Args: agent: An Agent to be added to the schedule. """ self._agents[agent.unique_id] = agent agent_class = type(agent) self.agents_by_breed[agent_class][agent.unique_id] = agent def remove(self, agent): """ Remove all instances of a given agent from the schedule. """ del self._agents[agent.unique_id] agent_class = type(agent) del self.agents_by_breed[agent_class][agent.unique_id] def step(self, by_breed=True): """ Executes the step of each agent breed, one at a time, in random order. Args: by_breed: If True, run all agents of a single breed before running the next one. """ if by_breed: for agent_class in self.agents_by_breed: self.step_breed(agent_class) self.steps += 1 self.time += 1 else: super().step() def step_breed(self, breed): """ Shuffle order and run all agents of a given breed. Args: breed: Class object of the breed to run. """ agent_keys = list(self.agents_by_breed[breed].keys()) self.model.random.shuffle(agent_keys) for agent_key in agent_keys: self.agents_by_breed[breed][agent_key].step() def get_breed_count(self, breed_class): """ Returns the current number of agents of certain breed in the queue. """ return len(self.agents_by_breed[breed_class].values())
py
1a380a11868e10aaaf75e88802b01c4af4517c33
"Miscellaneous utilities" ########################################################################### # Copyright (C) 2008 William Stein <[email protected]> # # Distributed under the terms of the GNU General Public License (GPL) # # http://www.gnu.org/licenses/ # ########################################################################### from sage.structure.sequence import Sequence from sage.categories.fields import Fields _Fields = Fields() def composite_field(K, L): """ Return a canonical field that contains both $K$ and $L$, if possible. Otherwise, raise a ValueError. INPUT: K -- field L -- field OUTPUT: field EXAMPLES: sage: composite_field(QQ,QQbar) doctest:...: DeprecationWarning: The function composite_field() is deprecated. Use get_coercion_model().common_parent() instead See http://trac.sagemath.org/19415 for details. Algebraic Field sage: composite_field(QQ,QQ[sqrt(2)]) Number Field in sqrt2 with defining polynomial x^2 - 2 sage: composite_field(QQ,QQ) Rational Field sage: composite_field(QQ,GF(7)) Traceback (most recent call last): ... ValueError: unable to find a common field """ from sage.misc.superseded import deprecation deprecation(19415, "The function composite_field() is deprecated. Use get_coercion_model().common_parent() instead") C = Sequence([K(0), L(0)]).universe() if C not in _Fields: raise ValueError("unable to find a common field") return C
py
1a380b7fba5c8a760e2b32d1f5c5ad94a9d5d6a4
#coding: utf-8 class TestParam(object): pass class Test(object): test_param = TestParam() print "Test", id(Test) print "TestParam", id(TestParam) print "Test.TestParam", id(Test.test_param) z = Test() print "Test()", id(z) print "Test().TestParam", id(z.test_param) print "2Test().TestParam", id(Test().test_param)
py
1a380bcf286c6e563362ee589ce3500c52aa0dba
# Package: JSON Mode # License: Released under MIT License # Notice: Copyright (c) 2020 TytusDB Team # Developer: Luis Espino import os import json path = 'data/json/' dataPath = path + 'databases' ################## # Databases CRUD # ################## # CREATE a database checking their existence def createDatabase(database: str) -> int: try: if not database.isidentifier(): raise Exception() initCheck() data = read(dataPath) if database in data: return 2 new = {database:{}} data.update(new) write(dataPath, data) return 0 except: return 1 # READ and show databases by constructing a list def showDatabases() -> list: try: initCheck() databases = [] data = read(dataPath) for d in data: databases.append(d); return databases except: return [] # UPDATE and rename a database name by inserting new_key and deleting old_key def alterDatabase(databaseOld: str, databaseNew) -> int: try: if not databaseOld.isidentifier() or not databaseNew.isidentifier(): raise Exception() initCheck() data = read(dataPath) if not databaseOld in data: return 2 if databaseNew in data: return 3 data[databaseNew] = data[databaseOld] data.pop(databaseOld) write(dataPath, data) return 0 except: return 1 # DELETE a database by pop from dictionary def dropDatabase(database: str) -> int: try: if not database.isidentifier(): raise Exception() initCheck() data = read(dataPath) if not database in data: return 2 data.pop(database) write(dataPath, data) return 0 except: return 1 ############### # Tables CRUD # ############### # CREATE a table checking their existence def createTable(database: str, table: str, numberColumns: int) -> int: try: if not database.isidentifier() \ or not table.isidentifier() \ or not isinstance(numberColumns, int): raise Exception() initCheck() data = read(dataPath) if not database in data: return 2 if table in data[database]: return 3 new = {table:{"NCOL":numberColumns}} data[database].update(new) write(dataPath, data) dataTable = {} write(path+database+'-'+table, dataTable) return 0 except: return 1 # show databases by constructing a list def showTables(database: str) -> list: try: initCheck() tables = [] data = read(dataPath) if not database in data: return None for d in data[database]: tables.append(d); return tables except: return [] # extract all register of a table def extractTable(database: str, table: str) -> list: try: initCheck() rows = [] data = read(dataPath) if not database in data: return None if table not in data[database]: return None data = read(path+database+'-'+table) for d in data: rows.append(data[d]); return rows except: return None # extract a range registers of a table def extractRangeTable(database: str, table: str, lower: any, upper: any) -> list: initCheck() rows = [] with open('data/json/databases') as file: data = json.load(file) if not database in data: return rows else: if table not in data[database]: return rows with open('data/json/'+database+'-'+table) as file: data = json.load(file) for d in data: if (str(d)<=str(upper) and str(d)>=str(lower)): rows.append(data[d]); return rows # Add a PK list to specific table and database def alterAddPK(database: str, table: str, columns: list) -> int: try: if not database.isidentifier() \ or not table.isidentifier() \ or not isinstance(columns, list): raise Exception() initCheck() data = read(dataPath) if not database in data: return 2 if not table in data[database]: return 3 if "PKEY" in data[database][table]: return 4 maxi = max(columns) mini = min(columns) if not (mini>=0 and maxi<data[database][table]["NCOL"]): return 5 new = {"PKEY":columns} data[database][table].update(new) write(dataPath, data) return 0 except: return 1 # Add a PK list to specific table and database def alterDropPK(database: str, table: str) -> int: initCheck() dump = False with open('data/json/databases') as file: data = json.load(file) if not database in data: return 2 else: if not table in data[database]: return 3 if "PKEY" not in data[database][table]: return 4 else: data[database][table].pop("PKEY") dump = True if dump: with open('data/json/databases', 'w') as file: json.dump(data, file) return 0 else: return 1 # Rename a table name by inserting new_key and deleting old_key def alterTable(database: str, tableOld: str, tableNew: str) -> int: try: if not database.isidentifier() \ or not tableOld.isidentifier() \ or not tableNew.isidentifier() : raise Exception() initCheck() data = read(dataPath) if not database in data: return 2 if not tableOld in data[database]: return 3 if tableNew in data[database]: return 4 data[database][tableNew] = data[database][tableOld] data[database].pop(tableOld) write(dataPath, data) return 0 except: return 1 # add a column at the end of register with default value def alterAddColumn(database: str, table: str, default: any) -> int: initCheck() dump = False with open('data/json/databases') as file: data = json.load(file) if not database in data: return 2 else: if not table in data[database]: return 3 data[database][table]['NCOL']+=1 dump = True if dump: with open('data/json/databases', 'w') as file: json.dump(data, file) with open('data/json/'+database+'-'+table) as file: data = json.load(file) for d in data: data[d].append(default) with open('data/json/'+database+'-'+table, 'w') as file: json.dump(data, file) return 0 else: return 1 # drop a column and its content (except primary key columns) def alterDropColumn(database: str, table: str, columnNumber: int) -> int: initCheck() dump = False with open('data/json/databases') as file: data = json.load(file) if not database in data: return 2 else: if not table in data[database]: return 3 ncol = data[database][table]['NCOL'] pkey = data[database][table]['PKEY'] if columnNumber in pkey: return 4 if not ncol >len(pkey): return 4 if columnNumber<0 or columnNumber>ncol-1: return 5 data[database][table]['NCOL']-=1 dump = True if dump: with open('data/json/databases', 'w') as file: json.dump(data, file) with open('data/json/'+database+'-'+table) as file: data = json.load(file) for d in data: data[d].pop(columnNumber) with open('data/json/'+database+'-'+table, 'w') as file: json.dump(data, file) return 0 else: return 1 # Delete a table name by inserting new_key and deleting old_key def dropTable(database: str, table: str) -> int: try: if not database.isidentifier() \ or not table.isidentifier() : raise Exception() initCheck() data = read(dataPath) if not database in data: return 2 if not table in data[database]: return 3 data[database].pop(table) write(dataPath,data) return 0 except: return 1 ################## # Registers CRUD # ################## # CREATE or insert a register def insert(database: str, table: str, register: list) -> int: try: if not database.isidentifier() \ or not table.isidentifier() \ or not isinstance(register, list): raise Exception() initCheck() hide = False ncol = None pkey = None pk = "" data = read(dataPath) if not database in data: return 2 if table not in data[database]: return 3 if len(register)!=data[database][table]["NCOL"]: return 5 if "PKEY" not in data[database][table]: # hidden pk hide = True else: # defined pk pkey = data[database][table]["PKEY"] ncol = data[database][table]["NCOL"] data = read(path+database+'-'+table) if hide: pk = len(data) else: for i in pkey: pk += str(register[i])+'|' if pk in data: return 4 new = {pk:register} data.update(new) write(path+database+'-'+table, data) return 0 except: return 1 # READ or load a CSV file to a table def loadCSV(filepath: str, database: str, table: str) -> list: try: res = [] import csv with open(filepath, 'r') as file: reader = csv.reader(file, delimiter = ',') for row in reader: res.append(insert(database,table,row)) return res except: return [] # READ or extract a register def extractRow(database: str, table: str, columns: list) -> list: initCheck() hide = False ncol = None pkey = None pk = "" with open('data/json/databases') as file: data = json.load(file) if not database in data: return [] else: if table not in data[database]: return [] if "PKEY" not in data[database][table]: # hidden pk hide = True else: # defined pk pkey = data[database][table]["PKEY"] with open('data/json/'+database+'-'+table) as file: data = json.load(file) if hide: pk = columns[0] else: for i in pkey: pk += str(columns[i]) if not pk in data: return [] else: return data[pk] # UPDATE a register def update(database: str, table: str, register: dict, columns: list) -> int: initCheck() dump = False hide = False ncol = None pkey = None pk = "" with open('data/json/databases') as file: data = json.load(file) if not database in data: return 2 else: if table not in data[database]: return 3 if "PKEY" not in data[database][table]: # hidden pk hide = True else: # defined pk pkey = data[database][table]["PKEY"] with open('data/json/'+database+'-'+table) as file: data = json.load(file) if hide: pk = columns[0] else: for i in pkey: pk += str(columns[i]) if not pk in data: return 4 else: for key in register: data[pk][key] = register[key] dump = True if dump: with open('data/json/'+database+'-'+table, 'w') as file: json.dump(data, file) return 0 else: return 1 # DELETE a specific register def delete(database: str, table: str, columns: list) -> int: initCheck() dump = False hide = False ncol = None pkey = None pk = "" with open('data/json/databases') as file: data = json.load(file) if not database in data: return 2 else: if table not in data[database]: return 3 if "PKEY" not in data[database][table]: # hidden pk hide = True else: # defined pk pkey = data[database][table]["PKEY"] with open('data/json/'+database+'-'+table) as file: data = json.load(file) if hide: pk = columns[0] else: for i in pkey: pk += str(columns[i]) if not pk in data: return 4 else: data.pop(pk) dump = True if dump: with open('data/json/'+database+'-'+table, 'w') as file: json.dump(data, file) return 0 else: return 1 # DELETE or truncate all registers of the table def truncate(database: str, table: str) -> int: initCheck() dump = False hide = False ncol = None pkey = None pk = "" with open('data/json/databases') as file: data = json.load(file) if not database in data: return 2 else: if table not in data[database]: return 3 dump = True if dump: data = {} with open('data/json/'+database+'-'+table, 'w') as file: json.dump(data, file) return 0 else: return 1 ############# # Utilities # ############# # Check the existence of data and json folder and databases file # Create databases files if not exists def initCheck(): if not os.path.exists('data'): os.makedirs('data') if not os.path.exists('data/json'): os.makedirs('data/json') if not os.path.exists('data/json/databases'): data = {} with open('data/json/databases', 'w') as file: json.dump(data, file) # Read a JSON file def read(path: str) -> dict: with open(path) as file: return json.load(file) # Write a JSON file def write(path: str, data: dict): with open(path, 'w') as file: json.dump(data, file) # Show the complete file of databases and tables def showJSON(fileName: str): initCheck() with open('data/json/'+fileName) as file: data = json.load(file) print(data) # Delete all databases and tables by creating a new file def dropAll(): initCheck() data = {} with open('data/json/databases', 'w') as file: json.dump(data, file) # show all collection of relational data def showCollection(): initCheck() databases = [] tables = [] datatables = [] with open('data/json/databases') as file: data = json.load(file) for d in data: databases.append(d); for t in data[d]: tables.append(t) datatables.append(d+'-'+t) print('Databases: '+str(databases)) print('Tables: '+str(tables)) for d in datatables: registers = [] with open('data/json/'+d) as file: data = json.load(file) for r in data: registers.append(r) print(d+' pkeys: '+str(registers)) #------------verificar base y tabla jsonMode--------- def verificar_Json(database: str, table: str): try: if not database.isidentifier() \ or not table.isidentifier() : raise Exception() initCheck() data = read(dataPath) if not database in data: return 2 if not table in data[database]: return 3 return 0 except: return 1
py
1a380c03c03b43761f4cee04dcdecdb88183d9b9
from flask import render_template, request from . import main from .. import db from ..models import Subscribers from ..email import welcome_message, notification_message @main.app_errorhandler(404) def notfound(error): """ Function to render the 404 error page """ if request.method == "POST": new_sub = Subscribers(email = request.form.get("subscriber")) db.session.add(new_sub) db.session.commit() welcome_message("Thank you for subscribing to the CM blog", "email/welcome", new_sub.email) return render_template("notfound.html"),404
py
1a380e50ca3bca8dd571c3996db205548784aaa6
import sys from colour.utilities.deprecation import ModuleAPI, build_API_changes from colour.utilities.documentation import is_documentation_building from colour.hints import Any from .primitives import MAPPING_PLANE_TO_AXIS, primitive_grid, primitive_cube from .primitives import PRIMITIVE_METHODS, primitive from .section import hull_section from .vertices import ( primitive_vertices_quad_mpl, primitive_vertices_grid_mpl, primitive_vertices_cube_mpl, primitive_vertices_sphere, ) from .vertices import PRIMITIVE_VERTICES_METHODS, primitive_vertices __all__ = [ "MAPPING_PLANE_TO_AXIS", "primitive_grid", "primitive_cube", ] __all__ += [ "hull_section", ] __all__ += [ "PRIMITIVE_METHODS", "primitive", ] __all__ += [ "primitive_vertices_quad_mpl", "primitive_vertices_grid_mpl", "primitive_vertices_cube_mpl", "primitive_vertices_sphere", ] __all__ += [ "PRIMITIVE_VERTICES_METHODS", "primitive_vertices", ] # ----------------------------------------------------------------------------# # --- API Changes and Deprecation Management ---# # ----------------------------------------------------------------------------# class geometry(ModuleAPI): """Define a class acting like the *geometry* module.""" def __getattr__(self, attribute) -> Any: """Return the value from the attribute with given name.""" return super().__getattr__(attribute) # v0.4.0 API_CHANGES = { "ObjectRenamed": [ [ "colour.geometry.PLANE_TO_AXIS_MAPPING", "colour.geometry.MAPPING_PLANE_TO_AXIS", ], ] } """Defines the *colour.geometry* sub-package API changes.""" if not is_documentation_building(): sys.modules["colour.geometry"] = geometry( # type:ignore[assignment] sys.modules["colour.geometry"], build_API_changes(API_CHANGES) ) del ModuleAPI, is_documentation_building, build_API_changes, sys
py
1a380eab6cd88a2abf0b1ce191d22770e1c7f968
# -*- coding: utf-8 -*- import hashlib from flask import (render_template, g, session, jsonify, request,redirect, flash) from web.app import app from web.model import (User, UserInfo,UserSetting,BasicUser, AdvancedUser,FeedSite, Feed, Sub, ReadFeed) @app.route("/api/pop-feedsite/sub", methods=["POST"]) def sub_pop_feedsite(): feedsiteid = request.form.get("feedsiteid") feedsite = FeedSite.get_feedsite_by_id(feedsiteid) if feedsite == None: flash("add %s failed"%feedsite.title) return jsonify(dict(rcode=404)) g.user.sub_feedsite(feedsite) flash("add %s sucessfully"%feedsite.title) return jsonify(dict(rcode=200)) @app.route("/api/pop-feedsite/<feedsiteid>/", methods=["GET","POST"]) def pop_feeds(feedsiteid=None): if feedsiteid is None: return jsonify(dict(rcode=404)) feeds = [feed.to_dict() for feed in Feed.objects(feedsite=feedsiteid).order_by("-create_date")[:15]] return jsonify(dict(rcode=200, feeds=feeds))
py
1a380eaee62fd6bab266b227545f2c739dba7b95
# functions div = lambda a, b: -(-a//b) if a<0 else a//b def DFS(add, sub, mult, divi, cur, result): ''' add, sub, mult, divi := 각 연산자의 남은 사용 가능 횟수 cur := 현재 연산에 사용되어야 할 수열 숫자의 index result := 현재까지의 계산 결과 ''' global result_max global result_min stack = [(add, sub, mult, divi, cur, result)] while stack: add, sub, mult, divi, cur, result = stack.pop() if add + sub + mult + divi == 0: # 모든 연산자 소진 result_max = max(result_max, result) result_min = min(result_min, result) continue if add > 0: stack.append((add - 1, sub, mult, divi, cur + 1, result + A[cur])) if sub > 0: stack.append((add, sub - 1, mult, divi, cur + 1, result - A[cur])) if mult > 0: stack.append((add, sub, mult - 1, divi, cur + 1, result * A[cur])) if divi > 0: stack.append((add, sub, mult, divi - 1, cur + 1, div(result, A[cur]))) # input N = int(input()) A = tuple(map(int, input().split())) add, sub, mult, divi = map(int, input().split()) # process ''' DFS를 이용한 완전탐색 ''' result_max = -1000000001 result_min = 1000000001 DFS(add, sub, mult, divi, 1, A[0]) # output print(result_max) print(result_min)
py
1a380ed2dcf93f5d8721f75aae3bddef243ed234
""" Test address breakpoints set with shared library of SBAddress work correctly. """ import lldb import lldbsuite.test.lldbutil as lldbutil from lldbsuite.test.lldbtest import * class AddressBreakpointTestCase(TestBase): mydir = TestBase.compute_mydir(__file__) NO_DEBUG_INFO_TESTCASE = True def test_address_breakpoints(self): """Test address breakpoints set with shared library of SBAddress work correctly.""" self.build() self.address_breakpoints() def address_breakpoints(self): """Test address breakpoints set with shared library of SBAddress work correctly.""" exe = self.getBuildArtifact("a.out") # Create a target by the debugger. target = self.dbg.CreateTarget(exe) self.assertTrue(target, VALID_TARGET) # Now create a breakpoint on main.c by name 'c'. breakpoint = target.BreakpointCreateBySourceRegex( "Set a breakpoint here", lldb.SBFileSpec("main.c")) self.assertTrue(breakpoint and breakpoint.GetNumLocations() >= 1, VALID_BREAKPOINT) # Get the breakpoint location from breakpoint after we verified that, # indeed, it has one location. location = breakpoint.GetLocationAtIndex(0) self.assertTrue(location and location.IsEnabled(), VALID_BREAKPOINT_LOCATION) # Next get the address from the location, and create an address breakpoint using # that address: address = location.GetAddress() target.BreakpointDelete(breakpoint.GetID()) breakpoint = target.BreakpointCreateBySBAddress(address) # Disable ASLR. This will allow us to actually test (on platforms that support this flag) # that the breakpoint was able to track the module. launch_info = lldb.SBLaunchInfo(None) flags = launch_info.GetLaunchFlags() flags &= ~lldb.eLaunchFlagDisableASLR launch_info.SetLaunchFlags(flags) error = lldb.SBError() process = target.Launch(launch_info, error) self.assertTrue(process, PROCESS_IS_VALID) # Did we hit our breakpoint? from lldbsuite.test.lldbutil import get_threads_stopped_at_breakpoint threads = get_threads_stopped_at_breakpoint(process, breakpoint) self.assertTrue( len(threads) == 1, "There should be a thread stopped at our breakpoint") # The hit count for the breakpoint should be 1. self.assertEquals(breakpoint.GetHitCount(), 1) process.Kill() # Now re-launch and see that we hit the breakpoint again: launch_info.Clear() launch_info.SetLaunchFlags(flags) process = target.Launch(launch_info, error) self.assertTrue(process, PROCESS_IS_VALID) thread = get_threads_stopped_at_breakpoint(process, breakpoint) self.assertTrue( len(threads) == 1, "There should be a thread stopped at our breakpoint") # The hit count for the breakpoint should now be 2. self.assertEquals(breakpoint.GetHitCount(), 2)
py
1a380f3ded84fa7156c639124f8b01b759cbf1b5
a = 1 b = 2 c = sum(a, b) # код нерабочий! print(c)
py
1a3810c567e12ae5e5b5ab07d5645d6cf66bc226
""" Django settings for app project. Generated by 'django-admin startproject' using Django 2.1.15. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '+=@v!1d50k+c9py@x_mk*^9yc*24sc&rrst!j2a*ip%1lr450(' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'rest_framework.authtoken', 'core', 'user', 'recipe' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'app.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'app.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'HOST': os.environ.get('DB_HOST'), 'NAME': os.environ.get('DB_NAME'), 'USER': os.environ.get('DB_USER'), 'PASSWORD': os.environ.get('DB_PASS'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/' AUTH_USER_MODEL = 'core.User'
py
1a3810dc293218eac7cf942056045fb873b83982
# -*- coding: utf-8 -*- # --------------------------------------------------------------------- # Policy Settings # --------------------------------------------------------------------- # Copyright (C) 2007-2019 The NOC Project # See LICENSE for details # --------------------------------------------------------------------- # Python modules from __future__ import absolute_import # Third-party modules import six from mongoengine.document import Document, EmbeddedDocument from mongoengine.fields import ( StringField, ReferenceField, ListField, EmbeddedDocumentField, BooleanField, ) # NOC modules from .validationpolicy import ValidationPolicy @six.python_2_unicode_compatible class ValidationPolicyItem(EmbeddedDocument): policy = ReferenceField(ValidationPolicy) is_active = BooleanField(default=True) def __str__(self): return self.policy.name @six.python_2_unicode_compatible class ValidationPolicySettings(Document): meta = { "collection": "noc.validationpolicysettings", "strict": False, "auto_create_index": False, "indexes": [("model_id", "object_id")], } model_id = StringField() object_id = StringField() policies = ListField(EmbeddedDocumentField(ValidationPolicyItem)) def __str__(self): return "%s: %s" % (self.model_id, self.object_id)
py
1a3812c290da729451c1d6995827c0e9e344ab69
#!/usr/bin/python # Copyright (c) 2020, 2022 Oracle and/or its affiliates. # This software is made available to you under the terms of the GPL 3.0 license or the Apache 2.0 license. # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # Apache License v2.0 # See LICENSE.TXT for details. # GENERATED FILE - DO NOT EDIT - MANUAL CHANGES WILL BE OVERWRITTEN from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = { "metadata_version": "1.1", "status": ["preview"], "supported_by": "community", } DOCUMENTATION = """ --- module: oci_compute_volume_attachment short_description: Manage a VolumeAttachment resource in Oracle Cloud Infrastructure description: - This module allows the user to create, update and delete a VolumeAttachment resource in Oracle Cloud Infrastructure - For I(state=present), attaches the specified storage volume to the specified instance. version_added: "2.9.0" author: Oracle (@oracle) options: device: description: - The device name. To retrieve a list of devices for a given instance, see L(ListInstanceDevices,https://docs.cloud.oracle.com/en- us/iaas/api/#/en/iaas/latest/Device/ListInstanceDevices). type: str display_name: description: - A user-friendly name. Does not have to be unique, and it's changeable. Avoid entering confidential information. - Required for create, update, delete when environment variable C(OCI_USE_NAME_AS_IDENTIFIER) is set. type: str aliases: ["name"] instance_id: description: - The OCID of the instance. - Required for create using I(state=present). type: str is_read_only: description: - Whether the attachment was created in read-only mode. type: bool is_shareable: description: - Whether the attachment should be created in shareable mode. If an attachment is created in shareable mode, then other instances can attach the same volume, provided that they also create their attachments in shareable mode. Only certain volume types can be attached in shareable mode. Defaults to false if not specified. type: bool type: description: - "The type of volume. The only supported values are \\"iscsi\\" and \\"paravirtualized\\"." - Required for create using I(state=present). type: str choices: - "service_determined" - "emulated" - "iscsi" - "paravirtualized" volume_id: description: - The OCID of the volume. - Required for create using I(state=present). type: str use_chap: description: - Whether to use CHAP authentication for the volume attachment. Defaults to false. - Applicable when type is 'iscsi' type: bool encryption_in_transit_type: description: - Refer the top-level definition of encryptionInTransitType. The default value is NONE. - Applicable when type is 'iscsi' type: str choices: - "NONE" - "BM_ENCRYPTION_IN_TRANSIT" is_pv_encryption_in_transit_enabled: description: - Whether to enable in-transit encryption for the data volume's paravirtualized attachment. The default value is false. - Applicable when type is 'paravirtualized' type: bool volume_attachment_id: description: - The OCID of the volume attachment. - Required for update using I(state=present) when environment variable C(OCI_USE_NAME_AS_IDENTIFIER) is not set. - Required for delete using I(state=absent) when environment variable C(OCI_USE_NAME_AS_IDENTIFIER) is not set. type: str aliases: ["id"] iscsi_login_state: description: - The iscsi login state of the volume attachment. For a multipath volume attachment, all iscsi sessions need to be all logged-in or logged-out to be in logged-in or logged-out state. - This parameter is updatable. type: str choices: - "UNKNOWN" - "LOGGING_IN" - "LOGIN_SUCCEEDED" - "LOGIN_FAILED" - "LOGGING_OUT" - "LOGOUT_SUCCEEDED" - "LOGOUT_FAILED" compartment_id: description: - The L(OCID,https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the compartment. - Required for create using I(state=present). - Required for update when environment variable C(OCI_USE_NAME_AS_IDENTIFIER) is set. - Required for delete when environment variable C(OCI_USE_NAME_AS_IDENTIFIER) is set. type: str state: description: - The state of the VolumeAttachment. - Use I(state=present) to create or update a VolumeAttachment. - Use I(state=absent) to delete a VolumeAttachment. type: str required: false default: 'present' choices: ["present", "absent"] extends_documentation_fragment: [ oracle.oci.oracle, oracle.oci.oracle_creatable_resource, oracle.oci.oracle_wait_options ] """ EXAMPLES = """ - name: Create volume_attachment with type = service_determined oci_compute_volume_attachment: # required instance_id: "ocid1.instance.oc1..xxxxxxEXAMPLExxxxxx" type: service_determined volume_id: "ocid1.volume.oc1..xxxxxxEXAMPLExxxxxx" # optional device: device_example display_name: display_name_example is_read_only: true is_shareable: true - name: Create volume_attachment with type = emulated oci_compute_volume_attachment: # required instance_id: "ocid1.instance.oc1..xxxxxxEXAMPLExxxxxx" type: emulated volume_id: "ocid1.volume.oc1..xxxxxxEXAMPLExxxxxx" # optional device: device_example display_name: display_name_example is_read_only: true is_shareable: true - name: Create volume_attachment with type = iscsi oci_compute_volume_attachment: # required instance_id: "ocid1.instance.oc1..xxxxxxEXAMPLExxxxxx" type: iscsi volume_id: "ocid1.volume.oc1..xxxxxxEXAMPLExxxxxx" # optional device: device_example display_name: display_name_example is_read_only: true is_shareable: true use_chap: true encryption_in_transit_type: NONE - name: Create volume_attachment with type = paravirtualized oci_compute_volume_attachment: # required instance_id: "ocid1.instance.oc1..xxxxxxEXAMPLExxxxxx" type: paravirtualized volume_id: "ocid1.volume.oc1..xxxxxxEXAMPLExxxxxx" # optional device: device_example display_name: display_name_example is_read_only: true is_shareable: true is_pv_encryption_in_transit_enabled: true - name: Update volume_attachment oci_compute_volume_attachment: # required volume_attachment_id: "ocid1.volumeattachment.oc1..xxxxxxEXAMPLExxxxxx" # optional iscsi_login_state: UNKNOWN - name: Update volume_attachment using name (when environment variable OCI_USE_NAME_AS_IDENTIFIER is set) oci_compute_volume_attachment: # required display_name: display_name_example compartment_id: "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx" # optional iscsi_login_state: UNKNOWN - name: Delete volume_attachment oci_compute_volume_attachment: # required volume_attachment_id: "ocid1.volumeattachment.oc1..xxxxxxEXAMPLExxxxxx" state: absent - name: Delete volume_attachment using name (when environment variable OCI_USE_NAME_AS_IDENTIFIER is set) oci_compute_volume_attachment: # required display_name: display_name_example compartment_id: "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx" state: absent """ RETURN = """ volume_attachment: description: - Details of the VolumeAttachment resource acted upon by the current operation returned: on success type: complex contains: attachment_type: description: - The type of volume attachment. returned: on success type: str sample: emulated availability_domain: description: - The availability domain of an instance. - "Example: `Uocm:PHX-AD-1`" returned: on success type: str sample: Uocm:PHX-AD-1 compartment_id: description: - The OCID of the compartment. returned: on success type: str sample: "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx" device: description: - The device name. returned: on success type: str sample: device_example display_name: description: - A user-friendly name. Does not have to be unique, and it's changeable. Avoid entering confidential information. returned: on success type: str sample: display_name_example id: description: - The OCID of the volume attachment. returned: on success type: str sample: "ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx" instance_id: description: - The OCID of the instance the volume is attached to. returned: on success type: str sample: "ocid1.instance.oc1..xxxxxxEXAMPLExxxxxx" is_read_only: description: - Whether the attachment was created in read-only mode. returned: on success type: bool sample: true is_shareable: description: - Whether the attachment should be created in shareable mode. If an attachment is created in shareable mode, then other instances can attach the same volume, provided that they also create their attachments in shareable mode. Only certain volume types can be attached in shareable mode. Defaults to false if not specified. returned: on success type: bool sample: true lifecycle_state: description: - The current state of the volume attachment. returned: on success type: str sample: ATTACHING time_created: description: - The date and time the volume was created, in the format defined by L(RFC3339,https://tools.ietf.org/html/rfc3339). - "Example: `2016-08-25T21:10:29.600Z`" returned: on success type: str sample: "2013-10-20T19:20:30+01:00" volume_id: description: - The OCID of the volume. returned: on success type: str sample: "ocid1.volume.oc1..xxxxxxEXAMPLExxxxxx" is_pv_encryption_in_transit_enabled: description: - Whether in-transit encryption for the data volume's paravirtualized attachment is enabled or not. returned: on success type: bool sample: true is_multipath: description: - Whether the Iscsi or Paravirtualized attachment is multipath or not, it is not applicable to NVMe attachment. returned: on success type: bool sample: true iscsi_login_state: description: - The iscsi login state of the volume attachment. For a Iscsi volume attachment, all iscsi sessions need to be all logged-in or logged-out to be in logged-in or logged-out state. returned: on success type: str sample: UNKNOWN chap_secret: description: - "The Challenge-Handshake-Authentication-Protocol (CHAP) secret valid for the associated CHAP user name. (Also called the \\"CHAP password\\".)" returned: on success type: str sample: chap_secret_example chap_username: description: - The volume's system-generated Challenge-Handshake-Authentication-Protocol (CHAP) user name. See L(RFC 1994,https://tools.ietf.org/html/rfc1994) for more on CHAP. - "Example: `ocid1.volume.oc1.phx.<unique_ID>`" returned: on success type: str sample: chap_username_example ipv4: description: - The volume's iSCSI IP address. - "Example: `169.254.0.2`" returned: on success type: str sample: ipv4_example iqn: description: - The target volume's iSCSI Qualified Name in the format defined by L(RFC 3720,https://tools.ietf.org/html/rfc3720#page-32). - "Example: `iqn.2015-12.us.oracle.com:<CHAP_username>`" returned: on success type: str sample: iqn_example port: description: - The volume's iSCSI port, usually port 860 or 3260. - "Example: `3260`" returned: on success type: int sample: 56 multipath_devices: description: - A list of secondary multipath devices returned: on success type: complex contains: ipv4: description: - The volume's iSCSI IP address. - "Example: `169.254.2.2`" returned: on success type: str sample: ipv4_example iqn: description: - The target volume's iSCSI Qualified Name in the format defined by L(RFC 3720,https://tools.ietf.org/html/rfc3720#page-32). - "Example: `iqn.2015-12.com.oracleiaas:40b7ee03-883f-46c6-a951-63d2841d2195`" returned: on success type: str sample: iqn_example port: description: - The volume's iSCSI port, usually port 860 or 3260. - "Example: `3260`" returned: on success type: int sample: 56 encryption_in_transit_type: description: - Refer the top-level definition of encryptionInTransitType. The default value is NONE. returned: on success type: str sample: NONE iscsi_attach_commands: description: - Commands to attach the iSCSI block volume. Empty if attachment_type is not iscsi. returned: on success type: list sample: [ "sudo iscsiadm -m node -o new -T IQN -p IP:PORT", "sudo iscsiadm -m node -o update ..." ] iscsi_detach_commands: description: - Commands to detach the iSCSI block volume. Empty if attachment_type is not iscsi. returned: on success type: list sample: [ "sudo iscsiadm -m node -T IQN -p IP:PORT -u", "sudo iscsiadm -m node -o delete -T IQN" ] sample: { "attachment_type": "emulated", "availability_domain": "Uocm:PHX-AD-1", "compartment_id": "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx", "device": "device_example", "display_name": "display_name_example", "id": "ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx", "instance_id": "ocid1.instance.oc1..xxxxxxEXAMPLExxxxxx", "is_read_only": true, "is_shareable": true, "lifecycle_state": "ATTACHING", "time_created": "2013-10-20T19:20:30+01:00", "volume_id": "ocid1.volume.oc1..xxxxxxEXAMPLExxxxxx", "is_pv_encryption_in_transit_enabled": true, "is_multipath": true, "iscsi_login_state": "UNKNOWN", "chap_secret": "chap_secret_example", "chap_username": "chap_username_example", "ipv4": "ipv4_example", "iqn": "iqn_example", "port": 56, "multipath_devices": [{ "ipv4": "ipv4_example", "iqn": "iqn_example", "port": 56 }], "encryption_in_transit_type": "NONE", "iscsi_attach_commands": [ "sudo iscsiadm -m node -o new -T IQN -p IP:PORT", "sudo iscsiadm -m node -o update ..." ], "iscsi_detach_commands": [ "sudo iscsiadm -m node -T IQN -p IP:PORT -u", "sudo iscsiadm -m node -o delete -T IQN" ] } """ from ansible.module_utils.basic import AnsibleModule from ansible_collections.oracle.oci.plugins.module_utils import ( oci_common_utils, oci_wait_utils, ) from ansible_collections.oracle.oci.plugins.module_utils.oci_resource_utils import ( OCIResourceHelperBase, get_custom_class, ) try: from oci.core import ComputeClient from oci.core.models import AttachVolumeDetails from oci.core.models import UpdateVolumeAttachmentDetails HAS_OCI_PY_SDK = True except ImportError: HAS_OCI_PY_SDK = False class VolumeAttachmentHelperGen(OCIResourceHelperBase): """Supported operations: create, update, get, list and delete""" def get_possible_entity_types(self): return super(VolumeAttachmentHelperGen, self).get_possible_entity_types() + [ "volumeattachment", "volumeattachments", "corevolumeattachment", "corevolumeattachments", "volumeattachmentresource", "volumeattachmentsresource", "core", ] def get_module_resource_id_param(self): return "volume_attachment_id" def get_module_resource_id(self): return self.module.params.get("volume_attachment_id") def get_get_fn(self): return self.client.get_volume_attachment def get_resource(self): return oci_common_utils.call_with_backoff( self.client.get_volume_attachment, volume_attachment_id=self.module.params.get("volume_attachment_id"), ) def get_required_kwargs_for_list(self): required_list_method_params = [ "compartment_id", ] return dict( (param, self.module.params[param]) for param in required_list_method_params ) def get_optional_kwargs_for_list(self): optional_list_method_params = ["instance_id", "volume_id"] return dict( (param, self.module.params[param]) for param in optional_list_method_params if self.module.params.get(param) is not None and ( self._use_name_as_identifier() or ( not self.module.params.get("key_by") or param in self.module.params.get("key_by") ) ) ) def list_resources(self): required_kwargs = self.get_required_kwargs_for_list() optional_kwargs = self.get_optional_kwargs_for_list() kwargs = oci_common_utils.merge_dicts(required_kwargs, optional_kwargs) return oci_common_utils.list_all_resources( self.client.list_volume_attachments, **kwargs ) def get_create_model_class(self): return AttachVolumeDetails def get_exclude_attributes(self): return ["type", "use_chap"] def create_resource(self): create_details = self.get_create_model() return oci_wait_utils.call_and_wait( call_fn=self.client.attach_volume, call_fn_args=(), call_fn_kwargs=dict(attach_volume_details=create_details,), waiter_type=oci_wait_utils.LIFECYCLE_STATE_WAITER_KEY, operation=oci_common_utils.CREATE_OPERATION_KEY, waiter_client=self.get_waiter_client(), resource_helper=self, wait_for_states=self.get_wait_for_states_for_operation( oci_common_utils.CREATE_OPERATION_KEY, ), ) def get_update_model_class(self): return UpdateVolumeAttachmentDetails def update_resource(self): update_details = self.get_update_model() return oci_wait_utils.call_and_wait( call_fn=self.client.update_volume_attachment, call_fn_args=(), call_fn_kwargs=dict( volume_attachment_id=self.module.params.get("volume_attachment_id"), update_volume_attachment_details=update_details, ), waiter_type=oci_wait_utils.LIFECYCLE_STATE_WAITER_KEY, operation=oci_common_utils.UPDATE_OPERATION_KEY, waiter_client=self.get_waiter_client(), resource_helper=self, wait_for_states=self.get_wait_for_states_for_operation( oci_common_utils.UPDATE_OPERATION_KEY, ), ) def delete_resource(self): return oci_wait_utils.call_and_wait( call_fn=self.client.detach_volume, call_fn_args=(), call_fn_kwargs=dict( volume_attachment_id=self.module.params.get("volume_attachment_id"), ), waiter_type=oci_wait_utils.LIFECYCLE_STATE_WAITER_KEY, operation=oci_common_utils.DELETE_OPERATION_KEY, waiter_client=self.get_waiter_client(), resource_helper=self, wait_for_states=self.get_wait_for_states_for_operation( oci_common_utils.DELETE_OPERATION_KEY, ), ) VolumeAttachmentHelperCustom = get_custom_class("VolumeAttachmentHelperCustom") class ResourceHelper(VolumeAttachmentHelperCustom, VolumeAttachmentHelperGen): pass def main(): module_args = oci_common_utils.get_common_arg_spec( supports_create=True, supports_wait=True ) module_args.update( dict( device=dict(type="str"), display_name=dict(aliases=["name"], type="str"), instance_id=dict(type="str"), is_read_only=dict(type="bool"), is_shareable=dict(type="bool"), type=dict( type="str", choices=["service_determined", "emulated", "iscsi", "paravirtualized"], ), volume_id=dict(type="str"), use_chap=dict(type="bool"), encryption_in_transit_type=dict( type="str", choices=["NONE", "BM_ENCRYPTION_IN_TRANSIT"] ), is_pv_encryption_in_transit_enabled=dict(type="bool"), volume_attachment_id=dict(aliases=["id"], type="str"), iscsi_login_state=dict( type="str", choices=[ "UNKNOWN", "LOGGING_IN", "LOGIN_SUCCEEDED", "LOGIN_FAILED", "LOGGING_OUT", "LOGOUT_SUCCEEDED", "LOGOUT_FAILED", ], ), compartment_id=dict(type="str"), state=dict(type="str", default="present", choices=["present", "absent"]), ) ) module = AnsibleModule(argument_spec=module_args, supports_check_mode=True) if not HAS_OCI_PY_SDK: module.fail_json(msg="oci python sdk required for this module.") resource_helper = ResourceHelper( module=module, resource_type="volume_attachment", service_client_class=ComputeClient, namespace="core", ) result = dict(changed=False) if resource_helper.is_delete_using_name(): result = resource_helper.delete_using_name() elif resource_helper.is_delete(): result = resource_helper.delete() elif resource_helper.is_update_using_name(): result = resource_helper.update_using_name() elif resource_helper.is_update(): result = resource_helper.update() elif resource_helper.is_create(): result = resource_helper.create() module.exit_json(**result) if __name__ == "__main__": main()
py
1a3812c4a9fb12cd7e5d152c2a8e7c10a9557da3
#!/usr/bin/env python3 all_brivla = [ ("tavla", ["speaker", "listener", "subject", "language"]) , ("dunda", ["donor", "gift", "recipient"]) , ("ctuca", ["instructor", "audience/student(s)", "ideas/methods", "subject", "teaching method"]) , ("citka", ["consumer", "aliment"]) , ("ciska", ["writer", "text/symbols", "display/storage medium", "writing implement"]) , ("klama", ["traveler", "destination", "origin", "route", "means/vehicle"]) , ("bridi", ["predicate relationship", "relation", "arguments"]) , ("djuno", ["knower", "facts", "subject", "epistemology"]) , ("nupre", ["promisor", "promise", "beneficiary/victim"]) , ("cusku", ["expresser", "message", "audience", "expressive medium"]) , ("cizra", ["strange thing", "viewpoint holder", "property"]) , ("cmene", ["name/title", "name posessor", "name-giver/name-user"]) , ("cusku", ["agent", "expressed idea", "audience", "expressive medium"]) , ("djica", ["desirer", "event/state", "purpose"]) , ("gleki", ["happy entity", "event/state"]) , ("jimpe", ["understander", "fact/truth", "subject"]) , ("klama", ["traveler", "destination", "origin", "route", "means/vehicle"]) , ("mutce", ["much/extreme thing", "property", "extreme/direction"]) , ("nelci", ["liker", "object/state"]) , ("pilno", ["user", "instrument", "purpose"]) , ("sipna", ["asleep entity"]) , ("xamgu", ["good object/event", "beneficiary", "standard"]) , ("zgana", ["observer", "observed", "senses/means", "conditions"]) , ("bangu", ["language/dialect", "language user", "communicated idea"]) , ("cliva", ["agent", "point of departure", "route"]) , ("finti", ["inventor/composer", "invention", "purpose", "existing elements/ideas"]) , ("gunka", ["worker", "activity", "goal"]) , ("jundi", ["attentive entity", "object/affair"]) , ("kakne", ["capable entity", "capability", "conditions"]) , ("tcidu", ["reader", "text", "reading material"]) , ("valsi", ["word", "meaning", "language"]) , ("zvati", ["atendee/event", "location"]) , ("cinri", ["interesting abstraction", "interested entity"]) , ("drata", ["entity #1", "entity #2", "standard"]) , ("simsa", ["entity #1", "entity #2", "property/quantity"]) , ("klaku", ["crier", "tears", "reason"]) , ("melbi", ["beautiful entity", "viewpoint holder", "aspect", "aesthetic standard"]) , ("smuni", ["meaning/interpretation", "expression", "opinion holder"]) , ("vecnu", ["seller", "goods/service", "buyer", "price"]) , ("plise", ["apple", "species/strain"]) , ("prenu", ["person"]) , ("cilre", ["learner", "facts", "subject", "source", "method"]) , ("cnino", ["new entity", "observer", "feature", "standard"]) , ("drani", ["correct thing", "property", "situation", "standard"]) , ("fanva", ["translator", "text/utterance", "target language", "source language", "translation result"]) , ("gasnu", ["agent", "event"]) , ("kelci", ["player", "toy"]) , ("milxe", ["mild thing", "property"]) , ("mlatu", ["cat", "species/breed"]) , ("nitcu", ["needing entity", "necessity", "purpose"]) , ("pendo", ["friendly entity", "friendliness experiencer"]) , ("pensi", ["thinking entity", "subject/concept"]) , ("skami", ["computer", "purpose"]) , ("slabu", ["familiar/old thing", "observer", "feature", "standard"]) , ("troci", ["trier", "attempted event/state/property", "actions/method"]) , ("zdani", ["house", "owner/user"]) ] def encode_text(text): if "#" in text: return "\"%s\"" % text else: return text for brivla in all_brivla: word = brivla[0] places = brivla[1] x1, x2, x3, x4, x5 = [None, None, None, None, None] try: x1 = encode_text(places[0]) x2 = encode_text(places[1]) x3 = encode_text(places[2]) x4 = encode_text(places[3]) x5 = encode_text(places[4]) except: pass print("%s:" % word) if x1: print(" x1: %s" % x1) if x2: print(" x2: %s" % x2) if x3: print(" x3: %s" % x3) if x4: print(" x4: %s" % x4) if x5: print(" x5: %s" % x5) print()
py
1a38134b59aa58ef4763449495f62517fa3e414d
from enum import Enum class LoggerPrefix(Enum): CRITICAL = 50 FATAL = CRITICAL ERROR = 40 WARNING = 30 WARN = WARNING INFO = 20 DEBUG = 10 NOTSET = 0
py
1a38137659b2e9b07d344f9256ab4e65ad15b789
"""Assets Browser Functions""" import logging import os import sys from PyQt5 import QtWidgets logger = logging.getLogger(__name__) def clear_layout(layout): """Clear layout?""" while layout.count(): child = layout.takeAt(0) if child.widget(): child.widget().deleteLater() def show_cwd(): """Show CWD (Current Work Directory) as a QMessageBox.""" widget = QtWidgets.QWidget() cwd = os.getcwd() QtWidgets.QMessageBox.information(widget, "Information", cwd) def close_app(): """Terminate/Close App.""" sys.exit() def restart_app(): """Restart App. 99% it doesn't restart in an IDE like PyCharm for complex script but it has been tested to work when execute through Python interpreter. """ # QtWidgets.qApp.exit(-123) os.execv(sys.executable, [sys.executable] + sys.argv) def ham(): """When testing or in doubt, it's HAM time!""" print('HAM! HAM! HAM!')
py
1a381385a893515a46968d588bca8acfc2f349ed
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #Taken and modified for fairscale from: # https://github.com/facebookresearch/fairscale/blob/main/fairscale/nn/data_parallel/sharded_ddp.py #Commit: 8acbec718f3c70a6b9785470bb9e05cd84fc3f8e import os import contextlib import logging import time import functools import numpy as np from itertools import chain from functools import reduce from collections import deque from types import MethodType import paddle from paddle import nn import paddle.distributed as dist from paddle.distributed.collective import _get_global_group from ...utils.internal_storage import GradStorage from ...meta_optimizers.dygraph_optimizer.sharding_optimizer_stage2 import ShardingOptimizerStage2 from .sharding_utils import Taskflow, Type def _trainable(param): return param.trainable class ShardingStage2(nn.Layer): """ A wrapper for Sharding Stage2 Layer in Dygraph. .. warning: ShardingStage2 encapsulates the layer strategy and integrates it into the nn.Layer. .. ZeRO: https://arxiv.org/pdf/1910.02054.pdf. """ # TODO (Baibaifan) # Feature Notes:: # 1. Unified memory for param and param.grad to InternalStorage. # 2. Divide param.grad according to rank to centrally apply for and release GPU memory. # 3. Dynamically adjust training parameters and models。 # 4. Support offload function. # 5. Support the establishment of independent communication groups. def __init__( self, layer, sharding_optimizer, group=None, sync_buffers=False, pertrain_sync_models=True, buffer_max_size=2**23, #8MB auto_refresh_trainable=True, device="gpu", use_grad_storage=True, accumulate_grads=False): super().__init__() # training options self._layer = layer self._sharding_optimizers = [sharding_optimizer] if not isinstance( sharding_optimizer, list) else sharding_optimizer assert all( list( map(lambda opt: isinstance(opt, ShardingOptimizerStage2), self._sharding_optimizers)) ), "Please use ShardingOptimizerStage2 optimizer" self._sync_buffers = sync_buffers self._auto_refresh_trainable = auto_refresh_trainable # Gradient accumulation, Gradient flip self._accumulate_grads = accumulate_grads # Communication related attributes self._group = group group = _get_global_group() if group is None else group self._world_size_scaling = 1.0 / group.nranks assert group.nranks > 1, "Training must be distributed, ranks must be greater than 1" self._rank = group.rank self._global_root_rank = 0 # picking rank 0 as the reference self._default_device = device # Global statistical parameters self._all_params = list( chain(*[optim.local_params for optim in self._sharding_optimizers])) self._trainable_params = [] self._grad_reduced = [] self._trainable_param2rank = {} self._trainable_param2align = {} self._trainable_mask = list(map(_trainable, self._all_params)) self._param_grads = [] # Set grad storage size & Display param sizes and model sizes model_size = sum( [np.prod(p.shape) for p in self._layer.parameters()]).item() self._buffer_max_size = self._rank_buffer_size(buffer_max_size, model_size) self._use_grad_storage = use_grad_storage self._grad_storages = {} # {dtype: {rank: GradStorage}} self._has_grad_storage = [] self._grad_storage_list = [] # Offload # TODO(haohongxiang): Now it's not be supported for multi-optimizers using Offload strategy self._offload_optims = list( filter(lambda optim: optim.offload, self._sharding_optimizers)) if len(self._offload_optims) > 0: assert len( self._sharding_optimizers ) == 1, "Only support offload strategy for single optimizer" self._offload = self._sharding_optimizers[0].offload self._offload_device = "cpu" # Set backward pass hooks self._bw_hooks = [] # Synchronous all ranks models if pertrain_sync_models: self._sync_params_and_buffers() # Set tasks flow self._tasks_flow = deque() # Define optimizer step and clear_grad if self._accumulate_grads: self._redefine_opt_step() self._redefine_opt_clear() def forward(self, *inputs, **kwargs): """ A wrapper for Sharding Stage2 layer. - Fresh trainable params or rebuild grad storage - Sync layer's buffer params - Clear all flags states - Forward for origin layers """ # Whether to need to reset trainable parameters needs_fresh = len(self._bw_hooks) == 0 and self.training if self._auto_refresh_trainable: needs_fresh |= self._detect_train_change() # Front hook self._init_internal_storage(needs_fresh) # Sync layer's buffers state if self._sync_buffers: self.__sync_buffers() # Normal FW on the base model fw = self._layer(*inputs, **kwargs) return fw def _clear_gradients(self): """ Set zero to the gradient of the optimizer's current rank trainable parameters. """ # Release grad storages for dtype in self._grad_storages.keys(): if self._rank in self._grad_storages[dtype].keys(): if not self._offload: self._grad_storages[dtype][self._rank].buffer.zero_() # Release params for param in self._trainable_params: if param.name in self._param_grads and param.grad is not None: param.clear_gradient() def _grad_scale(self): """ Before the gradient accumulation, scale the gradient. """ if self._offload: for param in self._trainable_params: if param.name in self._sharding_optimizers[ 0]._master_params.keys(): self._sharding_optimizers[0]._master_params[ param.name].grad.scale_(scale=self._world_size_scaling) else: # Scale grad storages for dtype in self._grad_storages.keys(): if self._rank in self._grad_storages[dtype].keys(): self._grad_storages[dtype][self._rank].buffer.scale_( scale=self._world_size_scaling) # Scale params for param in self._trainable_params: if param.name in self._param_grads and param.grad is not None: param.grad.scale_(scale=self._world_size_scaling) param._reset_grad_inplace_version(True) def _init_internal_storage(self, needs_fresh): """ Judge Fresh trainable params or rebuild grad storage. """ if needs_fresh: self._fresh_trainable() else: self._build_grad_storages() # Clear all flags state self._clear_counters() def to(self, device=None, dtype=None, blocking=True): """ Synchronously or asynchronously convert the data type of the layer, the device is not supported now. """ assert isinstance(device, str), "Device must be type str" assert device == self._default_device, "New devices are not supported, because of the optimizer state is not sync" self._layer.to(device=device, dtype=dtype, blocking=blocking) # Re-build the buckets, hooks, etc.. self._fresh_trainable() def _fresh_trainable(self): """ Whether to update training parameters. """ # Make sure that this is not done while gradients are waiting to be reduced (if no_sync context for instance) if reduce(lambda x, y: x or y, self._grad_reduced, False): logging.warning("Grads waiting to be reduced.") self._trainable_params = list( filter(lambda x: x.trainable, self._all_params)) self._trainable_params.sort(key=lambda x: np.prod(x.shape)) self._trainable_param2rank = {} for optim in self._sharding_optimizers: # Need to be wrappered for Sharding Stage2 Optimizer if len(optim.param_storages.keys()) == 0: optim.update_opt_status() # Get the parameters split by the optimizer according to rank for per_rank_params in optim.dtype_rank_params.values( ): # all the params from all ranks for params in per_rank_params: for param in filter(lambda x: x.trainable, params): self._trainable_param2rank[ param.name] = optim.param2rank[param.name] self._trainable_param2align[ param.name] = optim._param2align[param.name] self._setup_use_grad_storage() # wait next func hook support self._setup_backward_hooks() @paddle.no_grad() def __sync_buffers(self): """ Sync all the param buffers from all ranks (exp: batch norm statistics). """ for buffer in self._layer.buffers(include_sublayers=True): dist.broadcast( buffer, self._global_root_rank, self._group, use_calc_stream=True) # Multi stream operation will be supported later dist.wait(tensor=buffer, group=self._group, use_calc_stream=True) def __getattr__(self, name): """Forward missing attributes to wrapped layer.""" try: return super().__getattr__(name) except AttributeError: return getattr(self._layer, name) @paddle.no_grad() def _clear_counters(self): """Reset all the grad reduce and call counters.""" if self.training: self._grad_reduced = [True for _ in self._trainable_params] if self._use_grad_storage: for grad_storage in self._grad_storage_list: grad_storage.reset_checked_in() def _get_reduce_fn(self, index, param, dst_rank): """ There are two ways to reduce gradient. - 1. Do not use use_grad_storage or exceeded buffer_max_size will be reduced separately. - 2. Use grad_storage Reduce the storage to get the full gradient from different ranks. """ if not self._use_grad_storage or not self._has_grad_storage[index]: # Direct reduction @paddle.no_grad() def reduce(*_): # Skip gradient reduction, do not change status information if self._grad_reduced[index]: assert param.grad is not None, "Parameter gradient cannot be None" # Change reduce information self._grad_reduced[index] = False if not self._accumulate_grads: param.grad.scale_(scale=self._world_size_scaling) param._reset_grad_inplace_version(True) # Clear the gradient that does not belong to the current rank through the callback function def cleanup(): if dst_rank != self._rank: param.clear_gradient(False) elif self._offload: self._sharding_optimizers[0]._master_params[ param.name]._copy_gradient_from(param.grad.cpu( ).cast(dtype=Type.fp32.value)) param.clear_gradient(False) # Synchronize the reduce parameter gradient self._tasks_flow.append( Taskflow( task=dist.reduce( tensor=param.grad, dst=dst_rank, group=self._group, use_calc_stream=True), callback=cleanup)) # Multi stream operation will be supported later dist.wait( tensor=param.grad, group=self._group, use_calc_stream=True) # Clear the task flow and trigger callback to clear the redundant gradient self._clear_task_flow() else: # Buffer reduction @paddle.no_grad() def reduce(*_): # Skip gradient reduction, do not change status information if self._grad_reduced[index]: assert param.grad is not None, "Parameter gradient cannot be None" # Change reduce information self._grad_reduced[index] = False grad_storage = self._grad_storages[param.dtype][dst_rank] grad_storage.params_checked_in += 1 if grad_storage.all_checked_in: assert grad_storage.buffer is not None # Normalize all ranks grad_storage if not self._accumulate_grads: grad_storage.buffer.scale_( scale=self._world_size_scaling) # Clearing up the grad_storage buffer def cleanup(): if dst_rank != self._rank: for p in grad_storage._params: p.clear_gradient(False) p._gradient_set_empty(False) grad_storage.buffer.value().get_tensor()._clear( ) elif self._offload: grad_storage.to(device=self._offload_device) for param in grad_storage._params: self._sharding_optimizers[0]._master_params[ param.name]._copy_gradient_from( param.grad.cast( dtype=Type.fp32.value)) grad_storage.buffer.value().get_tensor()._clear( ) # Reduce the bucket grad_storage.sent = True self._tasks_flow.append( Taskflow( task=dist.reduce( tensor=grad_storage.buffer, dst=grad_storage.destination, group=self._group, use_calc_stream=True), callback=cleanup)) # Multi stream operation will be supported later dist.wait( tensor=grad_storage.buffer, group=self._group, use_calc_stream=True) # Clear the task flow and trigger callback to clear the redundant gradient self._clear_task_flow() return reduce def _setup_backward_hooks(self): """ Set the backward hook to synchronize the gradients of all rank by reduce group ranks. """ # Remove previous backward hooks while len(self._bw_hooks) > 0: self._bw_hooks.pop().remove() # Go through the parameters, attach the hook if not self.training: return for index, param in enumerate(self._trainable_params): dst_rank = self._trainable_param2rank[param.name] reduce_function = self._get_reduce_fn(index, param, dst_rank) self._bw_hooks.append( param._register_backward_hook(reduce_function)) @paddle.no_grad() def _sync_params_and_buffers(self): """ Sync all model states for all ranks """ for t in self._layer.parameters(): dist.broadcast( t, src=self._global_root_rank, group=self._group, use_calc_stream=True) # Multi stream operation will be supported later dist.wait(tensor=t, group=self._group, use_calc_stream=True) def _setup_use_grad_storage(self): """ Integrate the parameters gradient into a continuous memory according to rank, and support the update of training parameters. """ if not self._use_grad_storage: return # According to parameters's numel sort, allocate memory of parameter gradient to continuous memory according to rank self._grad_storages = {} self._has_grad_storage = [False for _ in self._trainable_params] for index, param in enumerate(self._trainable_params): dst_rank = self._trainable_param2rank[param.name] if param.dtype not in self._grad_storages.keys(): self._grad_storages[param.dtype] = {} if dst_rank not in self._grad_storages[param.dtype].keys(): self._grad_storages[param.dtype][dst_rank] = GradStorage( self._buffer_max_size[param.dtype], dtype=param.dtype, device=self._default_device, destination=dst_rank, parm2align=self._trainable_param2align) # Criteria to decide whether this parameter is to be put in GradStorage if self._grad_storages[param.dtype][dst_rank].can_add_grad_view( param, self._trainable_param2align[param.name]): self._grad_storages[param.dtype][dst_rank].add_grad( param, self._trainable_param2align[param.name]) self._has_grad_storage[index] = True else: self._param_grads.append(param.name) print( "Can not add param: {}, param's shape: {}, param align: {}, grad_storages fill: {}, ". format(param.name, param.shape, self._trainable_param2align[ param.name], self._grad_storages[param.dtype][dst_rank] ._fill)) self._grad_storage_list = list( chain(*[ self._grad_storages[dtype].values() for dtype in self._grad_storages.keys() ])) def _clear_task_flow(self): """Try to consume the previous tasks.""" while len(self._tasks_flow) > 0: task = self._tasks_flow.popleft() if task.callback is not None: task.callback() def _detect_train_change(self): # Current trainable parameters trainable_mask = list(map(_trainable, self._all_params)) # Whether parameters trainability changed trainability_changed = trainable_mask != self._trainable_mask if trainability_changed: logging.warning( "Trainable params changed, because of eval/train mode or parameter freezing/unfreeze." ) self._trainable_mask = trainable_mask return trainability_changed def _build_grad_storages(self): """ Rebuild grad storages. """ # Rebuild fp16/fp32 grad storages for dtype in self._grad_storages.keys(): for dst_rank, grad_storage in self._grad_storages[dtype].items(): if self._offload or dst_rank != self._rank: grad_storage.manumal_relase() grad_storage.rebuild() def _rank_buffer_size(self, buffer_max_size, model_size): """ Generate the minimum buffer size for each rank & Display param sizes and model sizes. """ # Initialize buffer size rank_buffer_size = {} for shard_opt in self._sharding_optimizers: if shard_opt.rank_buffer_size: for dtype in shard_opt.rank_buffer_size.keys(): sizes = max(shard_opt.rank_buffer_size[dtype].values()) rank_buffer_size[dtype] = min(sizes, buffer_max_size) if Type.fp16.value in rank_buffer_size.keys(): # FP16 GradStorage and model size print( "====== FP16 GradStorage size: {:.2f}M parameters, Model size {:.2f}M parameters ======". format(rank_buffer_size[Type.fp16.value] / 2**19, model_size / 2 **19)) if Type.fp32.value in rank_buffer_size.keys(): # FP32 GradStorage and model size print( "====== FP32 GradStorage size: {:.2f}M parameters, Model size {:.2f}M parameters ======". format(rank_buffer_size[Type.fp32.value] / 2**18, model_size / 2 **18)) return rank_buffer_size def _redefine_opt_step(self): if not self._accumulate_grads: return grad_func = self._grad_scale for opt in self._sharding_optimizers: opt_step = opt.step def _opt_step(self): grad_func() opt_step() opt.step = MethodType(_opt_step, opt) def _redefine_opt_clear(self): clear_func = self._clear_gradients def _opt_clear(self): clear_func() for opt in self._sharding_optimizers: opt.clear_grad = MethodType(_opt_clear, opt)
py
1a38143b08356b44165324fdbbe5c8e26966d1ba
import os import numpy from rdkit import Chem from rdkit.Chem import AllChem from rdkit.Chem import ChemicalFeatures from rdkit import RDConfig from chainer_chemistry.config import WEAVE_DEFAULT_NUM_MAX_ATOMS from chainer_chemistry.dataset.preprocessors.common \ import construct_atomic_number_array from chainer_chemistry.dataset.preprocessors.common \ import MolFeatureExtractionError from chainer_chemistry.dataset.preprocessors.common import type_check_num_atoms from chainer_chemistry.dataset.preprocessors.mol_preprocessor \ import MolPreprocessor ATOM = ['H', 'C', 'N', 'O', 'S', 'Cl', 'Br', 'F', 'P', 'I'] MAX_DISTANCE = 2 # 7 # --- Atom feature extraction --- def construct_atom_type_vec(mol, num_max_atoms=WEAVE_DEFAULT_NUM_MAX_ATOMS, atom_list=None, include_unknown_atom=False): atom_list = atom_list or ATOM if include_unknown_atom: # all atom not in `atom_list` as considered as "unknown atom" # and its index is `len(atom_list)` n_atom_type = len(atom_list) + 1 else: n_atom_type = len(atom_list) n_atom = mol.GetNumAtoms() atom_type_vec = numpy.zeros((num_max_atoms, n_atom_type), dtype=numpy.float32) for i in range(n_atom): a = mol.GetAtomWithIdx(i) try: atom_idx = atom_list.index(a.GetSymbol()) except ValueError as e: if include_unknown_atom: atom_idx = len(atom_list) else: raise MolFeatureExtractionError(e) atom_type_vec[i, atom_idx] = 1.0 return atom_type_vec def construct_formal_charge_vec(mol, num_max_atoms=WEAVE_DEFAULT_NUM_MAX_ATOMS): n_atom = mol.GetNumAtoms() formal_charge_vec = numpy.zeros((num_max_atoms, 1), dtype=numpy.float32) for i in range(n_atom): a = mol.GetAtomWithIdx(i) formal_charge_vec[i, 0] = a.GetFormalCharge() return formal_charge_vec def construct_hybridization_vec(mol, num_max_atoms=WEAVE_DEFAULT_NUM_MAX_ATOMS): # TODO(Oono) # Can we enhance preprocessing speed by making factory once # prior to calling this function many times? n_atom = mol.GetNumAtoms() hybridization_vec = numpy.zeros((num_max_atoms, 3), dtype=numpy.float32) for i in range(n_atom): a = mol.GetAtomWithIdx(i) if a.GetHybridization() is None: continue hybridization_type = str(a.GetHybridization()) if hybridization_type == 'SP1': hybridization_vec[i, 0] = 1.0 elif hybridization_type == 'SP2': hybridization_vec[i, 1] = 1.0 elif hybridization_type == 'SP3': hybridization_vec[i, 2] = 1.0 return hybridization_vec def construct_partial_charge_vec( mol, num_max_atoms=WEAVE_DEFAULT_NUM_MAX_ATOMS): AllChem.ComputeGasteigerCharges(mol) n = mol.GetNumAtoms() partial_charge_vec = numpy.zeros((num_max_atoms, 1), dtype=numpy.float32) for i in range(n): a = mol.GetAtomWithIdx(i) partial_charge_vec[i, 0] = a.GetProp("_GasteigerCharge") return partial_charge_vec def construct_atom_ring_vec(mol, num_max_atoms=WEAVE_DEFAULT_NUM_MAX_ATOMS): nAtom = mol.GetNumAtoms() sssr = Chem.GetSymmSSSR(mol) ring_feature = numpy.zeros((num_max_atoms, 6,), dtype=numpy.float32) for ring in sssr: ring = list(ring) for i in range(nAtom): if i in ring: ring_size = len(ring) if ring_size >= 3 and ring_size <= 8: ring_feature[i, ring_size - 3] = 1.0 return ring_feature def construct_hydrogen_bonding(mol, num_max_atoms=WEAVE_DEFAULT_NUM_MAX_ATOMS): fdefName = os.path.join(RDConfig.RDDataDir, 'BaseFeatures.fdef') factory = ChemicalFeatures.BuildFeatureFactory(fdefName) feats = factory.GetFeaturesForMol(mol) hydrogen_bonding_vec = numpy.zeros((num_max_atoms, 2), dtype=numpy.float32) for f in feats: if f.GetFamily() == 'Donor': idx = f.GetAtomIds()[0] hydrogen_bonding_vec[idx, 0] = 1.0 if f.GetFamily() == 'Acceptor': idx = f.GetAtomIds()[0] hydrogen_bonding_vec[idx, 1] = 1.0 return hydrogen_bonding_vec def construct_num_hydrogens_vec(mol, num_max_atoms=WEAVE_DEFAULT_NUM_MAX_ATOMS): n_hydrogen_vec = numpy.zeros((num_max_atoms, 1), dtype=numpy.float32) n_atom = mol.GetNumAtoms() for i in range(n_atom): n = 0 for j in range(n_atom): if i == j: continue a = mol.GetAtomWithIdx(j) if a.GetSymbol() != 'H': continue k = mol.GetBondBetweenAtoms(i, j) if k is not None: n += 1 n_hydrogen_vec[i, 0] = n return n_hydrogen_vec def construct_aromaticity_vec(mol, num_max_atoms=WEAVE_DEFAULT_NUM_MAX_ATOMS): aromaticity_vec = numpy.zeros((num_max_atoms, 1), dtype=numpy.float32) aromatix_atoms = mol.GetAromaticAtoms() for a in aromatix_atoms: aromaticity_vec[a.GetIdx()] = 1.0 return aromaticity_vec def construct_atom_feature(mol, add_Hs, num_max_atoms=WEAVE_DEFAULT_NUM_MAX_ATOMS, atom_list=None, include_unknown_atom=False): """construct atom feature Args: mol (Mol): mol instance add_Hs (bool): if the `mol` instance was added Hs, set True. num_max_atoms (int): number of max atoms atom_list (list): list of atoms to extract feature. If None, default `ATOM` is used as `atom_list` include_unknown_atom (bool): If False, when the `mol` includes atom which is not in `atom_list`, it will raise `MolFeatureExtractionError`. If True, even the atom is not in `atom_list`, `atom_type` is set as "unknown" atom. Returns (numpy.ndarray): 2 dimensional array. First axis size is `num_max_atoms`, representing each atom index. Second axis for feature. """ atom_type_vec = construct_atom_type_vec( mol, num_max_atoms, atom_list=atom_list, include_unknown_atom=include_unknown_atom) # TODO(nakago): Chilarity formal_charge_vec = construct_formal_charge_vec( mol, num_max_atoms=num_max_atoms) partial_charge_vec = construct_partial_charge_vec( mol, num_max_atoms=num_max_atoms) atom_ring_vec = construct_atom_ring_vec( mol, num_max_atoms=num_max_atoms) hybridization_vec = construct_hybridization_vec( mol, num_max_atoms=num_max_atoms) hydrogen_bonding = construct_hydrogen_bonding( mol, num_max_atoms=num_max_atoms) aromaticity_vec = construct_aromaticity_vec( mol, num_max_atoms=num_max_atoms) if add_Hs: num_hydrogens_vec = construct_num_hydrogens_vec( mol, num_max_atoms=num_max_atoms) feature = numpy.hstack((atom_type_vec, formal_charge_vec, partial_charge_vec, atom_ring_vec, hybridization_vec, hydrogen_bonding, aromaticity_vec, num_hydrogens_vec)) else: feature = numpy.hstack((atom_type_vec, formal_charge_vec, partial_charge_vec, atom_ring_vec, hybridization_vec, hydrogen_bonding, aromaticity_vec)) return feature # --- Pair feature extraction --- def construct_bond_vec(mol, i, j): bond_feature_vec = numpy.zeros((4, ), dtype=numpy.float32) k = mol.GetBondBetweenAtoms(i, j) if k is not None: bond_type = str(k.GetBondType()) if bond_type == 'SINGLE': bond_feature_vec[0] = 1.0 elif bond_type == 'DOUBLE': bond_feature_vec[1] = 1.0 elif bond_type == 'TRIPLE': bond_feature_vec[2] = 1.0 elif bond_type == 'AROMATIC': bond_feature_vec[3] = 1.0 else: raise ValueError("Unknown bond type {}".format(bond_type)) return bond_feature_vec def construct_distance_vec(distance_matrix, i, j): distance = min(MAX_DISTANCE, int(distance_matrix[i][j])) distance_feature = numpy.zeros((MAX_DISTANCE, ), dtype=numpy.float32) distance_feature[:distance] = 1.0 return distance_feature def construct_ring_feature_vec(mol, num_max_atoms=WEAVE_DEFAULT_NUM_MAX_ATOMS): n_atom = mol.GetNumAtoms() sssr = Chem.GetSymmSSSR(mol) ring_feature_vec = numpy.zeros( (num_max_atoms ** 2, 1,), dtype=numpy.float32) for ring in sssr: ring = list(ring) n_atom_in_ring = len(ring) for i in range(n_atom_in_ring): for j in range(n_atom_in_ring): a0 = ring[i] a1 = ring[j] ring_feature_vec[a0 * n_atom + a1] = 1 return ring_feature_vec def construct_pair_feature(mol, num_max_atoms=WEAVE_DEFAULT_NUM_MAX_ATOMS): """construct pair feature Args: mol (Mol): mol instance num_max_atoms (int): number of max atoms Returns (numpy.ndarray): 2 dimensional array. First axis size is `num_max_atoms` ** 2, representing index of each atom pair. Second axis for feature. """ n_atom = mol.GetNumAtoms() distance_matrix = Chem.GetDistanceMatrix(mol) distance_feature = numpy.zeros((num_max_atoms ** 2, MAX_DISTANCE,), dtype=numpy.float32) for i in range(n_atom): for j in range(n_atom): distance_feature[i * n_atom + j] = construct_distance_vec( distance_matrix, i, j) bond_feature = numpy.zeros((num_max_atoms ** 2, 4,), dtype=numpy.float32) for i in range(n_atom): for j in range(n_atom): bond_feature[i * n_atom + j] = construct_bond_vec(mol, i, j) ring_feature = construct_ring_feature_vec(mol, num_max_atoms=num_max_atoms) feature = numpy.hstack((distance_feature, bond_feature, ring_feature)) return feature class WeaveNetPreprocessor(MolPreprocessor): """WeaveNetPreprocessor WeaveNet must have fixed-size atom list for now, zero_padding option is always set to True. Args: max_atoms (int): Max number of atoms for each molecule, if the number of atoms is more than this value, this data is simply ignored. Setting negative value indicates no limit for max atoms. add_Hs (bool): If True, implicit Hs are added. use_fixed_atom_feature (bool): If True, atom feature is extracted used in original paper. If it is False, atomic number is used instead. atom_list (list): list of atoms to extract feature. If None, default `ATOM` is used as `atom_list` include_unknown_atom (bool): If False, when the `mol` includes atom which is not in `atom_list`, it will raise `MolFeatureExtractionError`. If True, even the atom is not in `atom_list`, `atom_type` is set as "unknown" atom. kekulize (bool): If True, Kekulizes the molecule. """ def __init__(self, max_atoms=WEAVE_DEFAULT_NUM_MAX_ATOMS, add_Hs=True, use_fixed_atom_feature=False, atom_list=None, include_unknown_atom=False, kekulize=False): super(WeaveNetPreprocessor, self).__init__( add_Hs=add_Hs, kekulize=kekulize) zero_padding = True if zero_padding and max_atoms <= 0: raise ValueError('max_atoms must be set to positive value when ' 'zero_padding is True') self.max_atoms = max_atoms self.add_Hs = add_Hs self.zero_padding = zero_padding self.use_fixed_atom_feature = use_fixed_atom_feature self.atom_list = atom_list self.include_unknown_atom = include_unknown_atom def get_input_features(self, mol): """get input features for WeaveNet WeaveNetPreprocessor automatically add `H` to `mol` Args: mol (Mol): """ type_check_num_atoms(mol, self.max_atoms) if self.use_fixed_atom_feature: # original paper feature extraction atom_array = construct_atom_feature(mol, self.add_Hs, self.max_atoms, self.atom_list, self.include_unknown_atom) else: # embed id of atomic numbers atom_array = construct_atomic_number_array(mol, self.max_atoms) pair_feature = construct_pair_feature(mol, num_max_atoms=self.max_atoms) return atom_array, pair_feature
py
1a3814eb7ca054d68fcb0885580bbea0daad3e3b
""" ApiGateway for CloudWedge Provides implementation details for apigateway service. It follows contract outlined in cloudwedge.models.AWSService """ from os import environ import boto3 import jmespath from typing import List, Any, Dict, Optional from cloudwedge.utils.logger import get_logger from cloudwedge.utils.tags import TagsApi from cloudwedge.models import AWSService, AWSResource REGION = environ.get('REGION') LOGGER = get_logger("cloudwedge.apigateway") # Model for Service, extending AWSResource class ApiGatewayResource(AWSResource): pass # Class for Service class ApiGatewayService(AWSService): # Name of the service, must be unique name = "apigateway" # Cloudwatch alarm service specific values cloudwatch_namespace = "AWS/ApiGateway" cloudwatch_dashboard_section_title = "Api Gateway" cloudwatch_dimension = "EnvironmentName" # Default metric to be used when metrics are not explicit in tags default_metrics = ["Latency", "IntegrationLatency", "5XXError", "4XXError"] # Alarm defaults for the service, applied if metric default doesnt exist default_alarm_props = { 'Statistic': "Sum" } # List of supported metrics and default configurations supported_metrics = { 'Latency' :{}, 'IntegrationLatency' :{}, '5XXError' :{}, '4XXError' :{} } # There are dashboard additions that can be added at the metric level override_dashboard_metric_properties = {} @staticmethod def build_dashboard_widgets(resources: List[ApiGatewayResource]) -> List[Any]: """ Build dashboard widgets for the resources """ # Get widgets with base method (like calling super) return AWSService.build_dashboard_widgets(ApiGatewayService, resources) @ staticmethod def get_resources(session: boto3.session.Session) -> List[ApiGatewayResource]: """ Return all AWS ApiGateway resources within scope, based on the tags """ try: # Get things in a neat apigateway resource object cleaned_resources: List[ApiGatewayResource] = [] # Get paginator for service paginator = session.client('apigateway').get_paginator( 'get_rest_apis').paginate() # Collect all resources for page_resources in paginator: for rest_api in page_resources['items']: rest_api_tags = rest_api.get('tags', {}) # Api gateway returns tag as key value dict, convert it to standard format # e.g. {'STAGE': 'prod', 'cloudwedge:active': 'true'} converted_tags = TagsApi.convert_dict_to_tags(rest_api_tags) # If the active monitoring tag is on the instance, include in resource collection # Stripping key so no whitespace mismatch if any((tag['Key'].strip() == AWSService.TAG_ACTIVE and tag['Value'] == 'true') for tag in converted_tags): # This resource has opted in to cloudwedge # Get values from tags if they exist owner_from_tag = TagsApi.get_owner_from_tags(converted_tags) name_from_tag = TagsApi.get_name_from_tags(converted_tags) rest_api_name = rest_api['name'] # Setup ApiGateway values service = ApiGatewayService.name resource_name = name_from_tag or rest_api_name resource_id = rest_api_name resource_owner = owner_from_tag tags = converted_tags # Create ApiGateway clean_resource = ApiGatewayResource( service=service, name=resource_name, uniqueId=resource_id, cloudwatchDimensionId=resource_id, owner=resource_owner, tags=tags ) # Add to collection cleaned_resources.append(clean_resource) return cleaned_resources except Exception as err: LOGGER.info( f"Failed to get resources information with error: {err}") raise err
py
1a3815a1eb5f805cad0962415fe81d25816ff6b7
#basic python program print("double quoted: hello world") print('single quoted: hello world')
py
1a3817f5d423758f9a12e087f66368deda93e149
import sys import os import numpy as np inDir = sys.argv[1] print(inDir) ratesInWins = {} for fileName in os.listdir(inDir): if fileName.endswith(".txt"): print(fileName) with open(inDir + "/" + fileName, "rt") as f: sys.stderr.write("reading {}/{}\n".format(inDir, fileName)) first = True for line in f: if first: first = False else: chrom, winMid, recRate = line.strip().split()[:3] if chrom not in ratesInWins: ratesInWins[chrom] = [] winMid = int(winMid) recRate = float(recRate) ratesInWins[chrom].append((winMid, recRate)) def getWinLenForChrom(ratesInWinsForChrom): prevWin = ratesInWinsForChrom[0][0] winLens = {} for win, recRates in ratesInWinsForChrom[1:]: winLen = win-prevWin if winLen in winLens: winLens[winLen] += 1 else: winLens[winLen] = 1 prevWin = win if len(winLens) != 1: sys.stderr.write("window lengths not consistent within chrom arms!! ARRGHHHH!\n") winLens = sorted(winLens.keys(), key=lambda x: winLens[x]) return winLens[-1] def getWinLens(ratesInWins): winLens = {} for chrom in ratesInWins: winLens[chrom] = getWinLenForChrom(ratesInWins[chrom]) return winLens winLens = getWinLens(ratesInWins) allRates = [] for chrom in ratesInWins: for win, recRate in ratesInWins[chrom]: allRates.append(recRate) allRates.sort() lenCutoff = 1/np.mean(allRates) * 1e6 rateCutoff = allRates[int(len(allRates)*0.05)] sys.stderr.write("rate cutoff: {}; length cutoff: {}\n".format(rateCutoff, lenCutoff)) for chrom in ratesInWins: halfWinLen = int(winLens[chrom]/2) mode = 0 runLen = 0 runStart = 1 for winMid, recRate in ratesInWins[chrom]: winStart = winMid - halfWinLen winEnd = winMid + halfWinLen if mode == 1: if recRate <= rateCutoff: mode = 0 runLen = 1 runStart = winStart else: pass elif mode == 0: if recRate <= rateCutoff: runLen += 1 else: if winStart-runStart >= lenCutoff: print(chrom, runStart, winStart, winStart-runStart, runLen) mode = 1 if mode == 0: if winEnd-runStart >= lenCutoff: print(chrom, runStart, winEnd, winEnd-runStart, runLen)
py
1a38187ca2c41952fd9f7fa5a1694f9484ee738e
import json import random from hashlib import md5 import pytz from django.conf import settings from django.contrib.auth.models import ( AbstractBaseUser, BaseUserManager, PermissionsMixin, ) from django.contrib.contenttypes.models import ContentType from django.db import models, transaction from django.db.models import Q from django.utils.crypto import get_random_string from django.utils.functional import cached_property from django.utils.timezone import now from django.utils.translation import get_language, gettext_lazy as _, override from rest_framework.authtoken.models import Token from pretalx.common.urls import build_absolute_uri class UserManager(BaseUserManager): """The user manager class.""" def create_user(self, password: str = None, **kwargs): user = self.model(**kwargs) user.set_password(password) user.save() return user def create_superuser(self, password: str, **kwargs): user = self.create_user(password=password, **kwargs) user.is_staff = True user.is_administrator = True user.is_superuser = False user.save(update_fields=['is_staff', 'is_administrator', 'is_superuser']) return user def assign_code(obj, length=6): # This omits some character pairs completely because they are hard to read even on screens (1/I and O/0) # and includes only one of two characters for some pairs because they are sometimes hard to distinguish in # handwriting (2/Z, 4/A, 5/S, 6/G). while True: code = get_random_string(length=length, allowed_chars=User.CODE_CHARSET) if not User.objects.filter(code__iexact=code).exists(): obj.code = code return code class User(PermissionsMixin, AbstractBaseUser): """The pretalx user model. Users describe all kinds of persons who interact with pretalx: Organisers, reviewers, submitters, speakers. :param code: A user's alphanumeric code is autogenerated, may not be changed, and is the unique identifier of that user. :param name: A name fit for public display. Will be used in the user interface and for public display for all speakers in all of their events. :param password: The password is stored using Django's PasswordField. Use the ``set_password`` and ``check_password`` methods to interact with it. :param nick: The nickname field has been deprecated and is scheduled to be deleted. Use the email field instead. :param groups: Django internals, not used in pretalx. :param user_permissions: Django internals, not used in pretalx. """ EMAIL_FIELD = 'email' USERNAME_FIELD = 'email' CODE_CHARSET = list('ABCDEFGHJKLMNPQRSTUVWXYZ3789') objects = UserManager() code = models.CharField(max_length=16, unique=True, null=True) nick = models.CharField(max_length=60, null=True, blank=True) name = models.CharField( max_length=120, verbose_name=_('Name'), help_text=_('Please enter the name you wish to be displayed publicly. This name will be used for all events you are participating in on this server.'), ) email = models.EmailField( unique=True, verbose_name=_('E-Mail'), help_text=_( 'Your email address will be used for password resets and notification about your event/submissions.' ), ) is_active = models.BooleanField(default=True, help_text='Inactive users are not allowed to log in.') is_staff = models.BooleanField(default=False, help_text='A default Django flag. Not in use in pretalx.') is_administrator = models.BooleanField(default=False, help_text='Should only be ``True`` for people with administrative access to the server pretalx runs on.') is_superuser = models.BooleanField(default=False, help_text='Never set this flag to ``True``, since it short-circuits all authorization mechanisms.') locale = models.CharField( max_length=32, default=settings.LANGUAGE_CODE, choices=settings.LANGUAGES, verbose_name=_('Preferred language'), ) timezone = models.CharField( choices=[(tz, tz) for tz in pytz.common_timezones], max_length=30, default='UTC' ) avatar = models.ImageField( null=True, blank=True, verbose_name=_('Profile picture'), help_text=_('If possible, upload an image that is least 120 pixels wide.'), ) get_gravatar = models.BooleanField( default=False, verbose_name=_('Retrieve profile picture via gravatar'), help_text=_( 'If you have registered with an email address that has a gravatar account, we can retrieve your profile picture from there.' ), ) pw_reset_token = models.CharField(null=True, max_length=160, verbose_name='Password reset token') pw_reset_time = models.DateTimeField(null=True, verbose_name='Password reset time') def __str__(self) -> str: """For public consumption as it is used for Select widgets, e.g. on the feedback form.""" return self.name or str(_('Unnamed user')) def get_display_name(self) -> str: """Returns a user's name or 'Unnamed user'.""" return self.name if self.name else str(_('Unnamed user')) def save(self, *args, **kwargs): self.email = self.email.lower().strip() if not self.code: assign_code(self) return super().save(args, kwargs) def event_profile(self, event): """Retrieve (and/or create) the event. :class:`~pretalx.person.models.profile.SpeakerProfile` for this user. :type event: :class:`pretalx.event.models.event.Event` :retval: :class:`pretalx.person.models.profile.EventProfile` """ from pretalx.person.models.profile import SpeakerProfile profile = self.profiles.select_related('event').filter(event=event).first() if profile: return profile profile = SpeakerProfile(event=event, user=self) if self.pk: profile.save() return profile def log_action(self, action: str, data: dict=None, person=None, orga: bool=False): """Create a log entry for this user. :param action: The log action that took place. :param data: Addition data to be saved. :param person: The person modifying this user. Defaults to this user. :type person: :class:`~pretalx.person.models.user.User` :param orga: Was this action initiated by a privileged user? """ from pretalx.common.models import ActivityLog if data: data = json.dumps(data) ActivityLog.objects.create( person=person or self, content_object=self, action_type=action, data=data, is_orga_action=orga, ) def logged_actions(self): """Returns all log entries that were made about this user.""" from pretalx.common.models import ActivityLog return ActivityLog.objects.filter( content_type=ContentType.objects.get_for_model(type(self)), object_id=self.pk, ) def own_actions(self): """Returns all log entries that were made by this user.""" from pretalx.common.models import ActivityLog return ActivityLog.objects.filter(person=self) def deactivate(self): """Delete the user by unsetting all of their information.""" from pretalx.submission.models import Answer self.email = f'deleted_user_{random.randint(0, 999)}@localhost' while self.__class__.objects.filter(email__iexact=self.email).exists(): self.email = f'deleted_user_{random.randint(0, 999)}' self.name = 'Deleted User' self.is_active = False self.is_superuser = False self.is_administrator = False self.locale = 'en' self.timezone = 'UTC' self.pw_reset_token = None self.pw_reset_time = None self.save() self.profiles.all().update(biography='') Answer.objects.filter( person=self, question__contains_personal_data=True ).delete() for team in self.teams.all(): team.members.remove(self) @cached_property def gravatar_parameter(self) -> str: return md5(self.email.strip().encode()).hexdigest() @cached_property def has_avatar(self) -> bool: return self.get_gravatar or self.has_local_avatar @cached_property def has_local_avatar(self) -> bool: return self.avatar and self.avatar != 'False' def get_events_with_any_permission(self): """Returns a queryset of events for which this user has any type of permission.""" from pretalx.event.models import Event if self.is_administrator: return Event.objects.all() return Event.objects.filter( Q( organiser_id__in=self.teams.filter(all_events=True).values_list( 'organiser', flat=True ) ) | Q(id__in=self.teams.values_list('limit_events__id', flat=True)) ) def get_events_for_permission(self, **kwargs): """Returns a queryset of events for which this user as all of the given permissions. Permissions are given as named arguments, e.g. ``get_events_for_permission(is_reviewer=True)``. """ from pretalx.event.models import Event if self.is_administrator: return Event.objects.all() orga_teams = self.teams.filter(**kwargs) absolute = orga_teams.filter(all_events=True).values_list( 'organiser', flat=True ) relative = orga_teams.filter(all_events=False).values_list( 'limit_events', flat=True ) return Event.objects.filter( models.Q(organiser__in=absolute) | models.Q(pk__in=relative) ).distinct() def get_permissions_for_event(self, event) -> set: """Returns a set of all permission a user has for the given event. :type event: :class:`~pretalx.event.models.event.Event` """ if self.is_administrator: return { 'can_create_events', 'can_change_teams', 'can_change_organiser_settings', 'can_change_event_settings', 'can_change_submissions', 'is_reviewer', } teams = event.teams.filter(members__in=[self]) if not teams: return set() return set().union(*[team.permission_set for team in teams]) def remaining_override_votes(self, event) -> int: """Returns the amount of override votes a user may still give in reviews in the given event. :type event: :class:`~pretalx.event.models.event.Event` """ allowed = max( event.teams.filter(members__in=[self], is_reviewer=True).values_list( 'review_override_votes', flat=True ) or [0] ) overridden = self.reviews.filter( submission__event=event, override_vote__isnull=False ).count() return max(allowed - overridden, 0) def regenerate_token(self) -> Token: """Generates a new API access token, deleting the old one.""" self.log_action(action='pretalx.user.token.reset') Token.objects.filter(user=self).delete() return Token.objects.create(user=self) @transaction.atomic def reset_password(self, event, user=None): from pretalx.mail.models import QueuedMail self.pw_reset_token = get_random_string(32) self.pw_reset_time = now() self.save() context = { 'name': self.name or '', 'url': build_absolute_uri( 'orga:auth.recover', kwargs={'token': self.pw_reset_token} ), } mail_text = _( '''Hi {name}, you have requested a new password for your pretalx account. To reset your password, click on the following link: {url} If this wasn\'t you, you can just ignore this email. All the best, the pretalx robot''' ) with override(get_language()): mail = QueuedMail.objects.create( subject=_('Password recovery'), text=str(mail_text).format(**context), ) mail.to_users.add(self) mail.send() self.log_action( action='pretalx.user.password.reset', person=user, orga=bool(user) )
py
1a38198fbba11b7a1be9dd67b7eaa85be9a59ed2
# -*- coding: utf-8 -*- # Minio Python Library for Amazon S3 Compatible Cloud Storage, (C) 2016 Minio, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Note: YOUR-ACCESSKEYID, YOUR-SECRETACCESSKEY, my-testfile, my-bucketname and # my-objectname are dummy values, please replace them with original values. import time from datetime import datetime from minio import Minio, CopyConditions from minio.error import ResponseError client = Minio('s3.amazonaws.com', access_key='YOUR-ACCESSKEY', secret_key='YOUR-SECRETKEY') # client.trace_on(sys.stderr) copy_conditions = CopyConditions() # Set modified condition, copy object modified since 2014 April. t = (2014, 4, 0, 0, 0, 0, 0, 0, 0) mod_since = datetime.utcfromtimestamp(time.mktime(t)) copy_conditions.set_modified_since(mod_since) # Set unmodified condition, copy object unmodified since 2014 April. # copy_conditions.set_unmodified_since(mod_since) # Set matching ETag condition, copy object which matches the following ETag. # copy_conditions.set_match_etag("31624deb84149d2f8ef9c385918b653a") # Set matching ETag except condition, copy object which does not match the # following ETag. # copy_conditions.set_match_etag_except("31624deb84149d2f8ef9c385918b653a") try: copy_result = client.copy_object("my-bucket", "my-object", "/my-sourcebucket/my-sourceobject", copy_conditions) print(copy_result) except ResponseError as err: print(err)
py
1a381a0f4140cf754f64a4f6aaa603611a7684b1
""" Space : O(1) Time : O(log n) """ # The isBadVersion API is already defined for you. # @param version, an integer # @return an integer # def isBadVersion(version): class Solution: def firstBadVersion(self, n): """ :type n: int :rtype: int """ low = 1 high = n while(low <= high): mid = (low + high) // 2 if not isBadVersion(mid): if low != mid: low = mid else: low = mid + 1 elif isBadVersion(mid): if not isBadVersion(mid-1) and isBadVersion(mid): return mid else: high = mid
py
1a381a44ce62b0cb51029a4fc0527f70b8d0d814
"""PIL/Tkinter based simulator for InkyWHAT and InkyWHAT.""" import numpy from . import inky from . import inky_uc8159 class InkyMock(inky.Inky): """Base simulator class for Inky.""" def __init__(self, colour, h_flip=False, v_flip=False): """Initialise an Inky pHAT Display. :param colour: one of red, black or yellow, default: black """ global tkinter, ImageTk, Image try: import tkinter except ImportError: raise ImportError('Simulation requires tkinter') try: from PIL import ImageTk, Image except ImportError: raise ImportError('Simulation requires PIL ImageTk and Image') resolution = (self.WIDTH, self.HEIGHT) if resolution not in inky._RESOLUTION.keys(): raise ValueError('Resolution {}x{} not supported!'.format(*resolution)) self.resolution = resolution self.width, self.height = resolution self.cols, self.rows, self.rotation = inky._RESOLUTION[resolution] self.buf = numpy.zeros((self.height, self.width), dtype=numpy.uint8) if colour not in ('red', 'black', 'yellow', 'multi'): raise ValueError('Colour {} is not supported!'.format(colour)) self.colour = colour self.h_flip = h_flip self.v_flip = v_flip impression_palette = [57, 48, 57, # black 255, 255, 255, # white 58, 91, 70, # green 61, 59, 94, # blue 156, 72, 75, # red 208, 190, 71, # yellow 177, 106, 73, # orange 255, 255, 255] # clear bw_inky_palette = [255, 255, 255, # 0 = white 0, 0, 0] # 1 = black red_inky_palette = [255, 255, 255, # 0 = white 0, 0, 0, # 1 = black 255, 0, 0] # index 2 is red ylw_inky_palette = [255, 255, 255, # 0 = white 0, 0, 0, # 1 = black 223, 204, 16] # index 2 is yellow # yellow color value: screen capture from # https://www.thoughtsmakethings.com/Pimoroni-Inky-pHAT self.c_palette = {'black': bw_inky_palette, 'red': red_inky_palette, 'yellow': ylw_inky_palette, 'multi': impression_palette} self._tk_done = False self.tk_root = tkinter.Tk() self.tk_root.title('Inky Preview') self.tk_root.geometry('{}x{}'.format(self.WIDTH, self.HEIGHT)) self.tk_root.aspect(self.WIDTH, self.HEIGHT, self.WIDTH, self.HEIGHT) self.tk_root.protocol('WM_DELETE_WINDOW', self._close_window) self.cv = None self.cvh = self.HEIGHT self.cvw = self.WIDTH def wait_for_window_close(self): """Wait until the Tkinter window has closed.""" while not self._tk_done: self.tk_root.update_idletasks() self.tk_root.update() def _close_window(self): self._tk_done = True self.tk_root.destroy() def resize(self, event): """Resize background image to window size.""" # adapted from: # https://stackoverflow.com/questions/24061099/tkinter-resize-background-image-to-window-size # https://stackoverflow.com/questions/19838972/how-to-update-an-image-on-a-canvas self.cvw = event.width self.cvh = event.height self.cv.config(width=self.cvw, height=self.cvh) image = self.disp_img_copy.resize([self.cvw, self.cvh]) self.photo = ImageTk.PhotoImage(image) self.cv.itemconfig(self.cvhandle, image=self.photo, anchor='nw') self.tk_root.update() def _send_command(self, command, data=None): pass def _simulate(self, region): pass def _display(self, region): im = Image.fromarray(region, 'P') im.putpalette(self.c_palette[self.colour]) self.disp_img_copy = im.copy() # can be changed due to window resizing, so copy image = self.disp_img_copy.resize([self.cvw, self.cvh]) self.photo = ImageTk.PhotoImage(image) if self.cv is None: self.cv = tkinter.Canvas(self.tk_root, width=self.WIDTH, height=self.HEIGHT) self.cv.pack(side='top', fill='both', expand='yes') self.cvhandle = self.cv.create_image(0, 0, image=self.photo, anchor='nw') self.cv.bind('<Configure>', self.resize) self.tk_root.update() def show(self, busy_wait=True): """Show buffer on display. :param busy_wait: Ignored. Updates are simulated and instant. """ print('>> Simulating {} {}x{}...'.format(self.colour, self.WIDTH, self.HEIGHT)) region = self.buf if self.v_flip: region = numpy.fliplr(region) if self.h_flip: region = numpy.flipud(region) if self.rotation: region = numpy.rot90(region, self.rotation // 90) self._simulate(region) class InkyMockPHAT(InkyMock): """Inky PHAT (212x104) e-Ink Display Simulator.""" WIDTH = 212 HEIGHT = 104 WHITE = 0 BLACK = 1 RED = 2 YELLOW = 2 def _simulate(self, region): region = numpy.rot90(region, self.rotation // 90) region = numpy.flipud(region) # spec: phat rotated -90 region = numpy.fliplr(region) # spec: phat rotated -90 self._display(region) class InkyMockPHATSSD1608(InkyMock): """Inky PHAT SSD1608 (250x122) e-Ink Display Simulator.""" WIDTH = 250 HEIGHT = 122 WHITE = 0 BLACK = 1 RED = 2 YELLOW = 2 def _simulate(self, region): region = numpy.rot90(region, self.rotation // 90) region = numpy.flipud(region) # spec: phat rotated -90 region = numpy.fliplr(region) # spec: phat rotated -90 self._display(region) class InkyMockWHAT(InkyMock): """Inky wHAT e-Ink Display Simulator.""" WIDTH = 400 HEIGHT = 300 WHITE = 0 BLACK = 1 RED = 2 YELLOW = 2 def _simulate(self, region): region = numpy.rot90(region, self.rotation // 90) region = region.reshape(300, 400) # for display self._display(region) class InkyMockImpression(InkyMock): """Inky Impression e-Ink Display Simulator.""" BLACK = 0 WHITE = 1 GREEN = 2 BLUE = 3 RED = 4 YELLOW = 5 ORANGE = 6 CLEAN = 7 WIDTH = 600 HEIGHT = 448 def __init__(self): """Initialize a new mock Inky Impression.""" InkyMock.__init__(self, 'multi') def _simulate(self, region): self._display(region) def set_pixel(self, x, y, v): """Set a single pixel on the display.""" self.buf[y][x] = v & 0xf def set_image(self, image, saturation=0.5): """Copy an image to the display. :param image: PIL image to copy, must be 600x448 :param saturation: Saturation for quantization palette - higher value results in a more saturated image """ if not image.size == (self.width, self.height): raise ValueError("Image must be ({}x{}) pixels!".format(self.width, self.height)) if not image.mode == "P": if Image is None: raise RuntimeError("PIL is required for converting images: sudo apt install python-pil python3-pil") palette = inky_uc8159.Inky._palette_blend(self, saturation) # Image size doesn't matter since it's just the palette we're using palette_image = Image.new("P", (1, 1)) # Set our 7 colour palette (+ clear) and zero out the other 247 colours palette_image.putpalette(palette + [0, 0, 0] * 248) # Force source image data to be loaded for `.im` to work image.load() image = image.im.convert("P", True, palette_image.im) self.buf = numpy.array(image, dtype=numpy.uint8).reshape((self.rows, self.cols))
py
1a381afc76417cb474130043db904626cd45af1b
# Handler for ulno-iot devkit1 import config if config.display: import ulno_iot_display as dp if config.devel: import ulno_iot_devel as dv if config.ht: import ulno_iot_ht as ht import gc gc.collect() import wifi import machine from machine import Pin import time import ubinascii from umqtt.simple import MQTTClient gc.collect() # make unique config.mqtt_client_id += b"_" + ubinascii.hexlify(machine.unique_id()) blue_state_topic = config.mqtt_topic + b"/blue" blue_command_topic = blue_state_topic + b"/set" if config.devel: red_state_topic = config.mqtt_topic + b"/red" red_command_topic = red_state_topic + b"/set" yellow_state_topic = config.mqtt_topic + b"/yellow" yellow_command_topic = yellow_state_topic + b"/set" left_state_topic = config.mqtt_topic + b"/left" right_state_topic = config.mqtt_topic + b"/right" bottom_state_topic = config.mqtt_topic + b"/bottom" if config.ht: temperature_state_topic = config.mqtt_topic + b"/temperature" humidity_state_topic = config.mqtt_topic + b"/humidity" if config.display: text_command_topic = config.mqtt_topic + b"/text" OVERFLOW = 1000 onoff = [b'off', b'on'] def publish_status(): global client try: client.publish(blue_state_topic, onoff[dv.blue() ^ 1]) if config.devel: client.publish(red_state_topic, onoff[dv.red()]) client.publish(yellow_state_topic, onoff[dv.yellow()]) client.publish(left_state_topic, onoff[dv.left_button() ^ 1]) client.publish(right_state_topic, onoff[dv.right_button() ^ 1]) client.publish(bottom_state_topic, onoff[dv.lower_button() ^ 1]) if config.ht: client.publish(temperature_state_topic, str(ht.temperature()).encode()) client.publish(humidity_state_topic, str(ht.humidity()).encode()) print('Published status.') except: print('Trouble publishing.') init_client() def callback(topic, msg): if config.devel and topic == red_command_topic: print("Received red in callback:", msg) msg = msg.decode().lower() if msg.startswith('on'): dv.red.high() elif msg.startswith('off'): dv.red.low() elif config.devel and topic == yellow_command_topic: print("Received yellow in callback:", msg) msg = msg.decode().lower() if msg.startswith('on'): dv.yellow.high() elif msg.startswith('off'): dv.yellow.low() elif config.devel and topic == blue_command_topic: msg = msg.decode().lower() if msg.startswith('on'): dv.blue.low() elif msg.startswith('off'): dv.blue.high() elif config.display and topic == text_command_topic: print("Received text in callback:", msg) try: msg = msg.decode() if msg == "&&clear": dp.clear() else: dp.println(msg) except: pass def init_client(): global client print("Trying to connect to mqtt broker.") wifi.connect() try: client = MQTTClient(config.mqtt_client_id, config.mqtt_broker, user=config.mqtt_user, password=config.mqtt_password) client.set_callback(callback) client.connect() print("Connected to {}".format(config.mqtt_broker)) t = config.mqtt_topic + b"/#" client.subscribe(t) print("Subscribed to %s topic" % t) except: print("Trouble to init mqtt.") def receive_sub(): global client try: client.check_msg() # non blocking except: print("Trouble to receive from mqtt.") def run(): init_client() counter = 0 last_left = dv.left_button() last_right = dv.right_button() last_lower = dv.lower_button() while True: if counter % 10 == 0: # every 10th of second receive_sub() if last_left != dv.left_button() \ or last_right != dv.right_button() \ or last_lower != dv.lower_button(): last_left = dv.left_button() last_right = dv.right_button() last_lower = dv.lower_button() publish_status() if counter % 500 == 0: # every 5s publish_status() time.sleep(0.01) counter += 1 if counter >= OVERFLOW: counter = 0
py
1a381b0ddb2da2aa22a5e99d709a5e741ca05107
# Copyright 2019 DeepMind Technologies Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Adds useful functions for working with dictionaries representing policies.""" from __future__ import absolute_import from __future__ import division from __future__ import google_type_annotations from __future__ import print_function import numpy as np from typing import Dict, List, Tuple, Text def get_best_response_actions_as_string( best_response_actions: Dict[bytes, int]) -> Text: """Turns a dict<bytes, int> into a bytestring compatible with C++. i.e. the bytestring can be copy-pasted as the brace initialization for a {std::unordered_,std::,absl::flat_hash_}map<std::string, int>. Args: best_response_actions: A dict mapping bytes to ints. Returns: A bytestring that can be copy-pasted to brace-initialize a C++ std::map<std::string, T>. """ best_response_keys = sorted(best_response_actions.keys()) best_response_strings = [ "%s: %i" % (k, best_response_actions[k]) for k in best_response_keys ] return "{%s}" % (", ".join(best_response_strings)) def tabular_policy_to_cpp_map( policy: Dict[bytes, List[Tuple[int, np.float64]]]) -> Text: """Turns a policy into a C++ compatible bytestring for brace-initializing. Args: policy: A dict representing a tabular policy. The keys are infostate bytestrings. Returns: A bytestring that can be copy-pasted to brace-initialize a C++ std::map<std::string, open_spiel::ActionsAndProbs>. """ cpp_entries = [] policy_keys = sorted(policy.keys()) for key in policy_keys: tuple_strs = ["{%i, %s}" % (p[0], p[1].astype(str)) for p in policy[key]] value = "{" + ", ".join(tuple_strs) + "}" cpp_entries.append('{"%s", %s}' % (key, value)) return "{%s}" % (",\n".join(cpp_entries))
py
1a381b4ebc02cfefe7f2d31dabc8724098cdfe8a
#database.py creates a .db file for performing umls searches. import sqlite3 import os import sys import os import atexit features_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) if features_dir not in sys.path: sys.path.append(features_dir) # find where umls tables are located from read_config import enabled_modules enabled = enabled_modules() umls_tables = enabled['UMLS'] # set to True when create_db() is succesful success = False db_path = None conn = None MRSTY_TABLE_FILE = None MRCON_TABLE_FILE = None MRREL_TABLE_FILE = None LRABR_TABLE_FILE = None # this ensure files are closed properly and umls.db is removed if not succesful @atexit.register def umls_db_cleanup(): global success global conn global db_path global MRSTY_TABLE_FILE global MRCON_TABLE_FILE global MRREL_TABLE_FILE global LRABR_TABLE_FILE if conn is not None: conn.close() if MRSTY_TABLE_FILE is not None: MRSTY_TABLE_FILE.close() if MRCON_TABLE_FILE is not None: MRCON_TABLE_FILE.close() if MRREL_TABLE_FILE is not None: MRREL_TABLE_FILE.close() if LRABR_TABLE_FILE is not None: LRABR_TABLE_FILE.close() if success is False: # remove umls.db, it is junk now if db_path is not None: os.remove(db_path) print(sys.stderr, '\n\tError: umls.db was not created succesfully.\n') def create_db(): global success global conn global db_path global MRSTY_TABLE_FILE global MRCON_TABLE_FILE global MRREL_TABLE_FILE global LRABR_TABLE_FILE print ("\ncreating umls.db") #connect to the .db file we are creating. db_path = os.path.join(umls_tables, 'umls.db') conn = sqlite3.connect( db_path ) conn.text_factory = str print ("opening files") #load data in files. try: mrsty_path = os.path.join(umls_tables, 'MRSTY.RRF') MRSTY_TABLE_FILE = open( mrsty_path, "r" ) except IOError: print ("\nNo file to use for creating MRSTY.RRF table\n") sys.exit() try: mrcon_path = os.path.join(umls_tables, 'MRCONSO.RRF') MRCON_TABLE_FILE = open( mrcon_path , "r" ) except IOError: print ("\nNo file to use for creating MRCONSO.RRF table\n") sys.exit() try: mrrel_path = os.path.join(umls_tables, 'MRREL.RRF') MRREL_TABLE_FILE = open( mrrel_path , "r" ) except IOError: print ("\nNo file to use for creating MRREL.RRF table\n") sys.exit() try: lrabr_path = os.path.join(umls_tables, 'LRABR') LRABR_TABLE_FILE = open( lrabr_path , "r" ) except IOError: print ("\nNo file to use for creating LRABR table\n") sys.exit() print ("creating tables") c = conn.cursor() #create tables. c.execute( "CREATE TABLE MRSTY( CUI, TUI, STN, STY, ATUI, CVF ) ;" ) c.execute( "CREATE TABLE MRCON( CUI, LAT, TS, LUI, STT, SUI, ISPREF, AUI, SAUI, SCUI, SDUI, SAB, TTY, CODE, STR, SRL, SUPPRESS, CVF ) ;" ) c.execute( "CREATE TABLE MRREL( CUI1, AUI1, STYPE1, REL, CUI2, AUI2, STYPE2, RELA, RUI, SRUI, SAB, SL, RG, DIR, SUPPRESS, CVF );") c.execute( "CREATE TABLE LRABR( EUI1, ABR, TYPE, EUI2, STR);") print ("inserting data into MRSTY table") for line in MRSTY_TABLE_FILE: line = line.strip('\n') assert line[-1] == '|', "str: {}, char: ".format(line, line[-1]) line = line.split('|') # end will always be empty str line.pop() assert len(line) == 6 c.execute( "INSERT INTO MRSTY( CUI, TUI, STN, STY, ATUI, CVF ) values( ?, ?, ?, ?, ?, ?)" , tuple(line)) print ("inserting data into MRCON table") for line in MRCON_TABLE_FILE: line = line.strip('\n') assert line[-1] == '|', "str: {}, char: ".format(line, line[-1]) line = line.split('|') # end will always be empty str line.pop() assert len(line) == 18 c.execute( "INSERT INTO MRCON( CUI, LAT, TS, LUI, STT, SUI, ISPREF, AUI, SAUI, SCUI, SDUI, SAB, TTY, CODE, STR, SRL, SUPPRESS, CVF ) values ( ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?);", tuple(line)) print ("inserting data into MRREL table") for line in MRREL_TABLE_FILE: line = line.strip('\n') assert line[-1] == '|', "str: {}, char: ".format(line, line[-1]) line = line.split('|') # end will always be empty str line.pop() assert len(line) == 16 c.execute( "INSERT INTO MRREL( CUI1, AUI1, STYPE1, REL, CUI2, AUI2, STYPE2, RELA, RUI, SRUI, SAB, SL, RG, DIR, SUPPRESS, CVF ) values( ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ? )" , tuple(line)) print ( "inserting into LRABR table") for line in LRABR_TABLE_FILE: line = line.strip('\n') assert line[-1] == '|', "str: {}, char: ".format(line, line[-1]) line = line.split('|') line.pop() assert len(line) == 5 c.execute( "INSERT INTO LRABR( EUI1, ABR, TYPE, EUI2, STR) values( ?, ?, ?, ?,?)" , tuple(line) ) print ( "creating indices") #create indices for faster queries c.execute( "CREATE INDEX mrsty_cui_map ON MRSTY(CUI)") c.execute( "CREATE INDEX mrcon_str_map ON MRCON(STR)") c.execute( "CREATE INDEX mrcon_cui_map ON MRCON(CUI)") c.execute( "CREATE INDEX mrrel_cui2_map ON MRREL( CUI2 )" ) c.execute( "CREATE INDEX mrrel_cui1_map on MRREL( CUI1 ) " ) c.execute( "CREATE INDEX mrrel_rel_map on MRREL( REL )" ) c.execute( "CREATE INDEX lrabr_abr_map on LRABR(ABR)") c.execute( "CREATE INDEX lrabr_str_map on LRABR(STR)") #save changes to .db conn.commit() success = True print ( "\nsqlite database created") if __name__ == "__main__": create_db()
py
1a381b8511c7524f3f8331b5c64c3e07385898b1
#!/usr/bin/env python3 import os import time import codecs import getopt import sys import pickle """ Generates the C header file that #defines the numerical message log IDs """ def write_ids(defname, dstname, strname): current = 0 strings = {} seen = set() with codecs.getreader('utf-8')(open(defname, 'rb')) as src: with codecs.getwriter('utf-8')(open(dstname, 'wb')) as dst: name = os.path.basename(dstname).upper().replace('.', '_') dst.write('\n#ifndef %s\n' % name) dst.write('#define %s\n\n' % name) for line in src: line = line.strip() if not line: dst.write('\n') continue if line.startswith('#'): dst.write('/* %s */\n' % line[1:].strip()) continue idx = line.index(' ') name, value = line[:idx], line[idx:].strip() if value in seen: raise ValueError('Duplicate string ID "%s"' % value) seen.add(value) dst.write('#define %s %d // %s\n' % (name, current, value)) strings[current] = value current += 1 if current == 65536: raise ValueError('Too much string IDs') dst.write('#endif\n') with open(strname, 'wb') as fileobj: pickle.dump(strings, fileobj) def usage(code=1): print('Usage: %s -o output_filename -s strings_filename input_filename' % sys.argv[0]) sys.exit(code) def main(argv): try: opts, args = getopt.getopt(argv, 'ho:s:', ['help', 'output=', 'strings=']) except getopt.Error as exc: print(exc) usage() if len(args) == 0: print('No input file specified') usage() if len(args) > 1: print('Too many arguments') usage() outname = None strname = None for opt, val in opts: if opt in ('-h', '--help'): usage(0) if opt in ('-o', '--output'): outname = val if opt in ('-s', '--strings'): strname = val if outname is None: print('No output file specified') usage() if strname is None: print('No strings file specified') usage() try: write_ids(args[0], outname, strname) except Exception as exc: print(exc) usage() if __name__ == '__main__': main(sys.argv[1:])
py
1a381bc7258251223d8cdeb6fc4416009f3eda63
from __future__ import unicode_literals, division, absolute_import from builtins import * # noqa pylint: disable=unused-import, redefined-builtin import pytest from jinja2 import Template from flexget.plugins.parsers.parser_guessit import ParserGuessit from flexget.plugins.parsers.parser_internal import ParserInternal from flexget.utils.qualities import Quality class TestQualityModule(object): def test_get(self): assert not Quality(), 'unknown quality is not false' assert Quality('foobar') == Quality(), 'unknown not returned' def test_common_name(self): for test_val in ('720p', '1280x720'): got_val = Quality(test_val).name assert got_val == '720p', got_val class TestQualityParser(object): @pytest.fixture(scope='class', params=['internal', 'guessit'], ids=['internal', 'guessit'], autouse=True) def parser(self, request): if request.param == 'internal': return ParserInternal if request.param == 'guessit': return ParserGuessit @pytest.mark.parametrize("test_quality", [ ('Test.File 1080p.web.vp9', '1080p webdl vp9', False), ('Test.File 1080p.web', '1080p webdl'), ('Test.File.2160p.web', '2160p webdl'), ('Test.File.1080.web-random', '1080p webdl'), ('Test.File.1080.webrandom', '1080p'), ('Test.File 1080p.web-dl', '1080p webdl'), ('Test.File.web-dl.1080p', '1080p webdl'), ('Test.File.WebHD.720p', '720p webdl'), ('Test.File.720p.bluray', '720p bluray'), ('Test.File.720hd.bluray', '720p bluray'), ('Test.File.1080p.bluray', '1080p bluray'), ('Test.File.2160p.bluray', '2160p bluray'), ('Test.File.1080p.cam', '1080p cam'), ('A Movie 2011 TS 576P XviD-DTRG', '576p ts xvid'), ('Test.File.720p.bluray.r5', '720p r5'), ('Test.File.1080p.bluray.rc', '1080p r5'), # 10bit ('Test.File.480p.10bit', '480p 10bit'), ('Test.File.720p.10bit', '720p 10bit'), ('Test.File.720p.bluray.10bit', '720p bluray 10bit'), ('Test.File.1080p.10bit', '1080p 10bit'), ('Test.File.1080p.bluray.10bit', '1080p bluray 10bit'), ('Test.File.720p.web', '720p webdl'), ('Test.File.720p.webdl', '720p webdl'), ('Test.File.1280x720_web dl', '720p webdl'), ('Test.File.720p.h264.web.dl', '720p webdl h264'), ('Test.File.1080p.webhd.x264', '1080p webdl h264'), ('Test.File.480.hdtv.x265', '480p hdtv h265'), ('Test.File.web', 'webdl'), ('Test.File.web-dl', 'webdl'), ('Test.File.720P', '720p'), ('Test.File.1920x1080', '1080p'), ('Test.File.3840x2160', '2160p'), ('Test.File.1080i', '1080i'), ('Test File blurayrip', 'bluray'), ('Test.File.br-rip', 'bluray'), ('Test.File.720px', '720p'), ('Test.File.720p50', '720p'), ('Test.File.720p60', '720p'), ('Test.File.dvd.rip', 'dvdrip'), ('Test.File.dvd.rip.r5', 'r5'), ('Test.File.[576p][00112233].mkv', '576p'), ('Test.TS.FooBar', 'ts'), ('Test.File.360p.avi', '360p'), ('Test.File.[360p].mkv', '360p'), ('Test.File.368.avi', '368p'), ('Test.File.720p.hdtv.avi', '720p hdtv'), ('Test.File.1080p.hdtv.avi', '1080p hdtv'), ('Test.File.720p.preair.avi', '720p preair'), # ('Test.File.ts.dvdrip.avi', 'ts'), This should no exists. Having Telesync and DVDRip is a non-sense. ('Test.File.HDTS.blah', 'ts'), # ('Test.File.HDCAM.bluray.lie', 'cam'), This should no exists. Having Cam and Bluray is a non-sense. # Test qualities as part of words. #1593 ('Tsar.File.720p', '720p'), ('Camera.1080p', '1080p'), # Some audio formats ('Test.File.DTSHDMA', 'dtshd'), ('Test.File.DTSHD.MA', 'dtshd'), ('Test.File.DTS.HDMA', 'dtshd'), ('Test.File.dts.hd.ma', 'dtshd'), ('Test.File.DTS.HD', 'dtshd'), ('Test.File.DTSHD', 'dtshd'), ('Test.File.DTS', 'dts'), ('Test.File.truehd', 'truehd'), ('Test.File.DTSHDMA', 'dtshd'), ('Test.File.DD2.0', 'dd5.1'), ('Test.File.AC35.1', 'ac3') ]) def test_quality_failures(self, parser, test_quality): # Kind of a hack to get around the awful limitations of Guessit without creating extra tests guessit = test_quality[2] if len(test_quality) > 2 else False if not guessit and parser.__name__ == 'ParserGuessit': return quality = parser().parse_movie(test_quality[0]).quality assert str(quality) == test_quality[1], ('`%s` quality should be `%s` not `%s`' % ( test_quality[0], test_quality[1], quality )) class TestQualityInternalParser(object): @pytest.mark.parametrize("test_quality", [ ('Test.File.DD+5.1', 'dd+5.1'), ('Test.File.DDP5.1', 'dd+5.1'), ('Test.File.DDP7.1', 'dd+5.1'), ('Test.File.DD5.1', 'dd5.1'), ('Test.File.DD4.0', 'dd5.1'), ('Test.File.DD2.1', 'dd5.1'), ('Test.File.FLAC1.0', 'flac'), ]) def test_quality_failures(self, test_quality): quality = ParserInternal().parse_movie(test_quality[0]).quality assert str(quality) == test_quality[1], ('`%s` quality should be `%s` not `%s`' % ( test_quality[0], test_quality[1], quality )) class TestFilterQuality(object): _config = """ templates: global: parsing: series: {{parser}} movie: {{parser}} mock: - {title: 'Smoke.1280x720'} - {title: 'Smoke.HDTV'} - {title: 'Smoke.cam'} - {title: 'Smoke.HR'} accept_all: yes tasks: qual: quality: - hdtv - 720p min: quality: HR+ max: quality: "<=cam <HR" min_max: quality: HR-720i """ @pytest.fixture(scope='class', params=['internal', 'guessit'], ids=['internal', 'guessit']) def config(self, request): """Override and parametrize default config fixture.""" return Template(self._config).render({'parser': request.param}) def test_quality(self, execute_task): task = execute_task('qual') entry = task.find_entry('rejected', title='Smoke.cam') assert entry, 'Smoke.cam should have been rejected' entry = task.find_entry(title='Smoke.1280x720') assert entry, 'entry not found?' assert entry in task.accepted, '720p should be accepted' assert len(task.rejected) == 2, 'wrong number of entries rejected' assert len(task.accepted) == 2, 'wrong number of entries accepted' def test_min(self, execute_task): task = execute_task('min') entry = task.find_entry('rejected', title='Smoke.HDTV') assert entry, 'Smoke.HDTV should have been rejected' entry = task.find_entry(title='Smoke.1280x720') assert entry, 'entry not found?' assert entry in task.accepted, '720p should be accepted' assert len(task.rejected) == 2, 'wrong number of entries rejected' assert len(task.accepted) == 2, 'wrong number of entries accepted' def test_max(self, execute_task): task = execute_task('max') entry = task.find_entry('rejected', title='Smoke.1280x720') assert entry, 'Smoke.1280x720 should have been rejected' entry = task.find_entry(title='Smoke.cam') assert entry, 'entry not found?' assert entry in task.accepted, 'cam should be accepted' assert len(task.rejected) == 3, 'wrong number of entries rejected' assert len(task.accepted) == 1, 'wrong number of entries accepted' def test_min_max(self, execute_task): task = execute_task('min_max') entry = task.find_entry('rejected', title='Smoke.1280x720') assert entry, 'Smoke.1280x720 should have been rejected' entry = task.find_entry(title='Smoke.HR') assert entry, 'entry not found?' assert entry in task.accepted, 'HR should be accepted' assert len(task.rejected) == 3, 'wrong number of entries rejected' assert len(task.accepted) == 1, 'wrong number of entries accepted' class TestQualityAudio(object): config = """ tasks: test_dd_audio_channels: quality: "dd+5.1" mock: - {title: 'My Show S01E05 720p HDTV DD+7.1'} - {title: 'My Show S01E05 720p HDTV DD+5.0'} test_dd_audio_min: quality: ">dd5.1" mock: - {title: 'My Show S01E05 720p HDTV DD5.1'} - {title: 'My Show S01E05 720p HDTV DD+2.0'} test_dd_audio_max: quality: "<=dd5.1" mock: - {title: 'My Show S01E05 720p HDTV DD5.1'} - {title: 'My Show S01E05 720p HDTV DD+5.1'} - {title: 'My Show S01E05 720p HDTV DD+7.1'} """ def test_dd_audio_channels(self, execute_task): task = execute_task('test_dd_audio_channels') entry = task.find_entry('undecided', title='My Show S01E05 720p HDTV DD+7.1') assert entry, 'Entry "My Show S01E05 720p HDTV DD+7.1" should not have been rejected' assert entry['quality'].audio == 'dd+5.1', 'audio "dd+7.1" should have been parsed as dd+5.1' entry = task.find_entry('undecided', title='My Show S01E05 720p HDTV DD+5.0') assert entry['quality'].audio == 'dd+5.1', 'audio "dd+5.0" should have been parsed as dd+5.1' def test_dd_audio_min(self, execute_task): task = execute_task('test_dd_audio_min') assert len(task.rejected) == 1, 'should have rejected one' entry = task.find_entry('undecided', title='My Show S01E05 720p HDTV DD+2.0') assert entry, 'Entry "My Show S01E05 720p HDTV DD+2.0" should not have been rejected' assert entry['quality'].audio == 'dd+5.1', 'audio should have been parsed as dd+5.1' def test_dd_audio_max(self, execute_task): task = execute_task('test_dd_audio_max') assert len(task.rejected) == 2, 'should have rejected two' entry = task.find_entry('undecided', title='My Show S01E05 720p HDTV DD5.1') assert entry, 'Entry "My Show S01E05 720p HDTV DD5.1" should not have been rejected' assert entry['quality'].audio == 'dd5.1', 'audio should have been parsed as dd5.1'
py
1a381cdd306a97f659d5ecd1c21f210d472af3b7
# -*- coding: utf-8 -*- from __future__ import unicode_literals import torchtext.data as data from ..common.torchtext_test_case import TorchtextTestCase class TestDataset(TorchtextTestCase): def test_tabular_simple_data(self): for data_format in ["csv", "tsv", "json"]: self.write_test_ppid_dataset(data_format=data_format) if data_format == "json": question_field = data.Field(sequential=True) label_field = data.Field(sequential=False) fields = {"question1": ("q1", question_field), "question2": ("q2", question_field), "label": ("label", label_field)} else: question_field = data.Field(sequential=True) label_field = data.Field(sequential=False) fields = [("id", None), ("q1", question_field), ("q2", question_field), ("label", label_field)] dataset = data.TabularDataset( path=self.test_ppid_dataset_path, format=data_format, fields=fields) assert len(dataset) == 3 expected_examples = [ (["When", "do", "you", "use", "シ", "instead", "of", "し?"], ["When", "do", "you", "use", "\"&\"", "instead", "of", "\"and\"?"], "0"), (["Where", "was", "Lincoln", "born?"], ["Which", "location", "was", "Abraham", "Lincoln", "born?"], "1"), (["What", "is", "2+2"], ["2+2=?"], "1")] # Ensure examples have correct contents / test __getitem__ for i in range(len(dataset)): self.assertEqual(dataset[i].q1, expected_examples[i][0]) self.assertEqual(dataset[i].q2, expected_examples[i][1]) self.assertEqual(dataset[i].label, expected_examples[i][2]) # Test __getattr__ for i, (q1, q2, label) in enumerate(zip(dataset.q1, dataset.q2, dataset.label)): self.assertEqual(q1, expected_examples[i][0]) self.assertEqual(q2, expected_examples[i][1]) self.assertEqual(label, expected_examples[i][2]) # Test __iter__ for i, example in enumerate(dataset): self.assertEqual(example.q1, expected_examples[i][0]) self.assertEqual(example.q2, expected_examples[i][1]) self.assertEqual(example.label, expected_examples[i][2]) def test_json_dataset_one_key_multiple_fields(self): self.write_test_ppid_dataset(data_format="json") question_field = data.Field(sequential=True) spacy_tok_question_field = data.Field(sequential=True, tokenize="spacy") label_field = data.Field(sequential=False) fields = {"question1": [("q1", question_field), ("q1_spacy", spacy_tok_question_field)], "question2": [("q2", question_field), ("q2_spacy", spacy_tok_question_field)], "label": ("label", label_field)} dataset = data.TabularDataset( path=self.test_ppid_dataset_path, format="json", fields=fields) expected_examples = [ (["When", "do", "you", "use", "シ", "instead", "of", "し?"], ["When", "do", "you", "use", "シ", "instead", "of", "し", "?"], ["When", "do", "you", "use", "\"&\"", "instead", "of", "\"and\"?"], ["When", "do", "you", "use", "\"", "&", "\"", "instead", "of", "\"", "and", "\"", "?"], "0"), (["Where", "was", "Lincoln", "born?"], ["Where", "was", "Lincoln", "born", "?"], ["Which", "location", "was", "Abraham", "Lincoln", "born?"], ["Which", "location", "was", "Abraham", "Lincoln", "born", "?"], "1"), (["What", "is", "2+2"], ["What", "is", "2", "+", "2"], ["2+2=?"], ["2", "+", "2=", "?"], "1")] for i, example in enumerate(dataset): self.assertEqual(example.q1, expected_examples[i][0]) self.assertEqual(example.q1_spacy, expected_examples[i][1]) self.assertEqual(example.q2, expected_examples[i][2]) self.assertEqual(example.q2_spacy, expected_examples[i][3]) self.assertEqual(example.label, expected_examples[i][4]) def test_errors(self): # Ensure that trying to retrieve a key not in JSON data errors self.write_test_ppid_dataset(data_format="json") question_field = data.Field(sequential=True) label_field = data.Field(sequential=False) fields = {"qeustion1": ("q1", question_field), "question2": ("q2", question_field), "label": ("label", label_field)} with self.assertRaises(ValueError): data.TabularDataset( path=self.test_ppid_dataset_path, format="json", fields=fields) def test_input_with_newlines_in_text(self): # Smoke test for ensuring that TabularDataset works with files with newlines example_with_newlines = [("\"hello \n world\"", "1"), ("\"there is a \n newline\"", "0"), ("\"there is no newline\"", "1")] fields = [("text", data.Field(lower=True)), ("label", data.Field(sequential=False))] for delim in [",", "\t"]: with open(self.test_newline_dataset_path, "wt") as f: for line in example_with_newlines: f.write("{}\n".format(delim.join(line))) format_ = "csv" if delim == "," else "tsv" dataset = data.TabularDataset( path=self.test_newline_dataset_path, format=format_, fields=fields) # if the newline is not parsed correctly, this should raise an error for example in dataset: self.assert_(hasattr(example, "text")) self.assert_(hasattr(example, "label")) def test_csv_file_with_header(self): example_with_header = [("text", "label"), ("HELLO WORLD", "0"), ("goodbye world", "1")] TEXT = data.Field(lower=True, tokenize=lambda x: x.split()) fields = { "label": ("label", data.Field(use_vocab=False, sequential=False)), "text": ("text", TEXT) } for format_, delim in zip(["csv", "tsv"], [",", "\t"]): with open(self.test_has_header_dataset_path, "wt") as f: for line in example_with_header: f.write("{}\n".format(delim.join(line))) # check that an error is raised here if a non-existent field is specified with self.assertRaises(ValueError): data.TabularDataset( path=self.test_has_header_dataset_path, format=format_, fields={"non_existent": ("label", data.Field())}) dataset = data.TabularDataset( path=self.test_has_header_dataset_path, format=format_, skip_header=False, fields=fields) TEXT.build_vocab(dataset) for i, example in enumerate(dataset): self.assertEqual(example.text, example_with_header[i + 1][0].lower().split()) self.assertEqual(example.label, example_with_header[i + 1][1]) # check that the vocabulary is built correctly (#225) expected_freqs = {"hello": 1, "world": 2, "goodbye": 1, "text": 0} for k, v in expected_freqs.items(): self.assertEqual(TEXT.vocab.freqs[k], v) data_iter = data.Iterator(dataset, device=-1, batch_size=1, sort_within_batch=False, repeat=False) next(data_iter.__iter__()) def test_csv_file_no_header_one_col_multiple_fields(self): self.write_test_ppid_dataset(data_format="csv") question_field = data.Field(sequential=True) spacy_tok_question_field = data.Field(sequential=True, tokenize="spacy") label_field = data.Field(sequential=False) # Field name/value as nested tuples fields = [("ids", None), (("q1", "q1_spacy"), (question_field, spacy_tok_question_field)), (("q2", "q2_spacy"), (question_field, spacy_tok_question_field)), ("label", label_field)] dataset = data.TabularDataset( path=self.test_ppid_dataset_path, format="csv", fields=fields) expected_examples = [ (["When", "do", "you", "use", "シ", "instead", "of", "し?"], ["When", "do", "you", "use", "シ", "instead", "of", "し", "?"], ["When", "do", "you", "use", "\"&\"", "instead", "of", "\"and\"?"], ["When", "do", "you", "use", "\"", "&", "\"", "instead", "of", "\"", "and", "\"", "?"], "0"), (["Where", "was", "Lincoln", "born?"], ["Where", "was", "Lincoln", "born", "?"], ["Which", "location", "was", "Abraham", "Lincoln", "born?"], ["Which", "location", "was", "Abraham", "Lincoln", "born", "?"], "1"), (["What", "is", "2+2"], ["What", "is", "2", "+", "2"], ["2+2=?"], ["2", "+", "2=", "?"], "1")] for i, example in enumerate(dataset): self.assertEqual(example.q1, expected_examples[i][0]) self.assertEqual(example.q1_spacy, expected_examples[i][1]) self.assertEqual(example.q2, expected_examples[i][2]) self.assertEqual(example.q2_spacy, expected_examples[i][3]) self.assertEqual(example.label, expected_examples[i][4]) # 6 Fields including None for ids assert len(dataset.fields) == 6
py
1a381ceafbacd67bc57c618035e73056736f4b6a
#!/usr/bin/env python3 # Copyright (c) 2019-2020 The PIVX developers # Copyright (c) 2020 The Supernode Coin developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # -*- coding: utf-8 -*- from io import BytesIO from time import sleep from test_framework.messages import CTransaction, CTxIn, CTxOut, COIN, COutPoint from test_framework.mininode import network_thread_start from test_framework.supernodecoin_node import SupernodeCoinTestNode from test_framework.script import CScript, OP_CHECKSIG from test_framework.test_framework import SupernodeCoinTestFramework from test_framework.util import ( assert_equal, assert_greater_than, assert_raises_rpc_error, p2p_port, bytes_to_hex_str, set_node_times, sync_blocks, sync_mempools, ) # filter utxos based on first 5 bytes of scriptPubKey def getDelegatedUtxos(utxos): return [x for x in utxos if x["scriptPubKey"][:10] == '76a97b63d1'] class SupernodeCoin_ColdStakingTest(SupernodeCoinTestFramework): def set_test_params(self): self.num_nodes = 3 self.extra_args = [[]] * self.num_nodes self.extra_args[0].append('-sporkkey=932HEevBSujW2ud7RfB1YF91AFygbBRQj3de3LyaCRqNzKKgWXi') def setup_chain(self): # Start with PoW cache: 200 blocks self._initialize_chain() self.enable_mocktime() def init_test(self): title = "*** Starting %s ***" % self.__class__.__name__ underline = "-" * len(title) self.log.info("\n\n%s\n%s\n%s\n", title, underline, self.description) self.DEFAULT_FEE = 0.05 # Setup the p2p connections and start up the network thread. self.test_nodes = [] for i in range(self.num_nodes): self.test_nodes.append(SupernodeCoinTestNode()) self.test_nodes[i].peer_connect('127.0.0.1', p2p_port(i)) network_thread_start() # Start up network handling in another thread # Let the test nodes get in sync for i in range(self.num_nodes): self.test_nodes[i].wait_for_verack() def setColdStakingEnforcement(self, fEnable=True): sporkName = "SPORK_17_COLDSTAKING_ENFORCEMENT" # update spork 17 with node[0] if fEnable: self.log.info("Enabling cold staking with SPORK 17...") res = self.activate_spork(0, sporkName) else: self.log.info("Disabling cold staking with SPORK 17...") res = self.deactivate_spork(0, sporkName) assert_equal(res, "success") sleep(1) # check that node[1] receives it assert_equal(fEnable, self.is_spork_active(1, sporkName)) self.log.info("done") def isColdStakingEnforced(self): # verify from node[1] return self.is_spork_active(1, "SPORK_17_COLDSTAKING_ENFORCEMENT") def run_test(self): self.description = "Performs tests on the Cold Staking P2CS implementation" self.init_test() NUM_OF_INPUTS = 20 INPUT_VALUE = 249 # nodes[0] - coin-owner # nodes[1] - cold-staker # 1) nodes[0] and nodes[2] mine 25 blocks each # -------------------------------------------- print("*** 1 ***") self.log.info("Mining 50 Blocks...") for peer in [0, 2]: for j in range(25): self.mocktime = self.generate_pow(peer, self.mocktime) sync_blocks(self.nodes) # 2) node[1] sends his entire balance (50 mature rewards) to node[2] # - node[2] stakes a block - node[1] locks the change print("*** 2 ***") self.log.info("Emptying node1 balance") assert_equal(self.nodes[1].getbalance(), 50 * 250) txid = self.nodes[1].sendtoaddress(self.nodes[2].getnewaddress(), (50 * 250 - 0.01)) assert (txid is not None) sync_mempools(self.nodes) self.mocktime = self.generate_pos(2, self.mocktime) sync_blocks(self.nodes) # lock the change output (so it's not used as stake input in generate_pos) for x in self.nodes[1].listunspent(): assert (self.nodes[1].lockunspent(False, [{"txid": x['txid'], "vout": x['vout']}])) # check that it cannot stake sleep(1) assert_equal(self.nodes[1].getstakingstatus()["stakeablecoins"], 0) # 3) nodes[0] generates a owner address # nodes[1] generates a cold-staking address. # --------------------------------------------- print("*** 3 ***") owner_address = self.nodes[0].getnewaddress() self.log.info("Owner Address: %s" % owner_address) staker_address = self.nodes[1].getnewstakingaddress() staker_privkey = self.nodes[1].dumpprivkey(staker_address) self.log.info("Staking Address: %s" % staker_address) # 4) Check enforcement. # --------------------- print("*** 4 ***") # Check that SPORK 17 is disabled assert (not self.isColdStakingEnforced()) self.log.info("Creating a stake-delegation tx before cold staking enforcement...") assert_raises_rpc_error(-4, "Failed to accept tx in the memory pool (reason: cold-stake-inactive (code 16))\nTransaction canceled.", self.nodes[0].delegatestake, staker_address, INPUT_VALUE, owner_address, False, False, True) self.log.info("Good. Cold Staking NOT ACTIVE yet.") # Enable SPORK self.setColdStakingEnforcement() # double check assert (self.isColdStakingEnforced()) # 5) nodes[0] delegates a number of inputs for nodes[1] to stake em. # ------------------------------------------------------------------ print("*** 5 ***") self.log.info("First check warning when using external addresses...") assert_raises_rpc_error(-5, "Only the owner of the key to owneraddress will be allowed to spend these coins", self.nodes[0].delegatestake, staker_address, INPUT_VALUE, "yCgCXC8N5VThhfiaVuKaNLkNnrWduzVnoT") self.log.info("Good. Warning triggered.") self.log.info("Now force the use of external address creating (but not sending) the delegation...") res = self.nodes[0].rawdelegatestake(staker_address, INPUT_VALUE, "yCgCXC8N5VThhfiaVuKaNLkNnrWduzVnoT", True) assert(res is not None and res != "") self.log.info("Good. Warning NOT triggered.") self.log.info("Now delegate with internal owner address..") self.log.info("Try first with a value (0.99) below the threshold") assert_raises_rpc_error(-8, "Invalid amount", self.nodes[0].delegatestake, staker_address, 0.99, owner_address) self.log.info("Nice. it was not possible.") self.log.info("Then try (creating but not sending) with the threshold value (1.00)") res = self.nodes[0].rawdelegatestake(staker_address, 1.00, owner_address) assert(res is not None and res != "") self.log.info("Good. Warning NOT triggered.") self.log.info("Now creating %d real stake-delegation txes..." % NUM_OF_INPUTS) for i in range(NUM_OF_INPUTS): res = self.nodes[0].delegatestake(staker_address, INPUT_VALUE, owner_address) assert(res != None and res["txid"] != None and res["txid"] != "") assert_equal(res["owner_address"], owner_address) assert_equal(res["staker_address"], staker_address) sync_mempools(self.nodes) self.mocktime = self.generate_pos(2, self.mocktime) sync_blocks(self.nodes) self.log.info("%d Txes created." % NUM_OF_INPUTS) # check balances: self.expected_balance = NUM_OF_INPUTS * INPUT_VALUE self.expected_immature_balance = 0 self.checkBalances() # 6) check that the owner (nodes[0]) can spend the coins. # ------------------------------------------------------- print("*** 6 ***") self.log.info("Spending back one of the delegated UTXOs...") delegated_utxos = getDelegatedUtxos(self.nodes[0].listunspent()) assert_equal(NUM_OF_INPUTS, len(delegated_utxos)) assert_equal(len(delegated_utxos), len(self.nodes[0].listcoldutxos())) u = delegated_utxos[0] txhash = self.spendUTXOwithNode(u, 0) assert(txhash != None) self.log.info("Good. Owner was able to spend - tx: %s" % str(txhash)) sync_mempools(self.nodes) self.mocktime = self.generate_pos(2, self.mocktime) sync_blocks(self.nodes) # check tx self.check_tx_in_chain(0, txhash) self.check_tx_in_chain(1, txhash) # check balances after spend. self.expected_balance -= float(u["amount"]) self.checkBalances() self.log.info("Balances check out after spend") assert_equal(NUM_OF_INPUTS-1, len(self.nodes[0].listcoldutxos())) # 7) check that the staker CANNOT use the coins to stake yet. # He needs to whitelist the owner first. # ----------------------------------------------------------- print("*** 7 ***") self.log.info("Trying to generate a cold-stake block before whitelisting the owner...") assert_equal(self.nodes[1].getstakingstatus()["stakeablecoins"], 0) self.log.info("Nice. Cold staker was NOT able to create the block yet.") self.log.info("Whitelisting the owner...") ret = self.nodes[1].delegatoradd(owner_address) assert(ret) self.log.info("Delegator address %s whitelisted" % owner_address) # 8) check that the staker CANNOT spend the coins. # ------------------------------------------------ print("*** 8 ***") self.log.info("Trying to spend one of the delegated UTXOs with the cold-staking key...") delegated_utxos = getDelegatedUtxos(self.nodes[0].listunspent()) assert_greater_than(len(delegated_utxos), 0) u = delegated_utxos[0] assert_raises_rpc_error(-26, "mandatory-script-verify-flag-failed (Script failed an OP_CHECKCOLDSTAKEVERIFY operation", self.spendUTXOwithNode, u, 1) self.log.info("Good. Cold staker was NOT able to spend (failed OP_CHECKCOLDSTAKEVERIFY)") self.mocktime = self.generate_pos(2, self.mocktime) sync_blocks(self.nodes) # 9) check that the staker can use the coins to stake a block with internal miner. # -------------------------------------------------------------------------------- print("*** 9 ***") assert_equal(self.nodes[1].getstakingstatus()["stakeablecoins"], NUM_OF_INPUTS-1) self.log.info("Generating one valid cold-stake block...") self.mocktime = self.generate_pos(1, self.mocktime) self.log.info("New block created by cold-staking. Trying to submit...") newblockhash = self.nodes[1].getbestblockhash() self.log.info("Block %s submitted" % newblockhash) # Verify that nodes[0] accepts it sync_blocks(self.nodes) assert_equal(self.nodes[0].getblockcount(), self.nodes[1].getblockcount()) assert_equal(newblockhash, self.nodes[0].getbestblockhash()) self.log.info("Great. Cold-staked block was accepted!") # check balances after staked block. self.expected_balance -= INPUT_VALUE self.expected_immature_balance += (INPUT_VALUE + 250) self.checkBalances() self.log.info("Balances check out after staked block") # 10) check that the staker can use the coins to stake a block with a rawtransaction. # ---------------------------------------------------------------------------------- print("*** 10 ***") self.log.info("Generating another valid cold-stake block...") stakeable_coins = getDelegatedUtxos(self.nodes[0].listunspent()) stakeInputs = self.get_prevouts(1, stakeable_coins) assert_greater_than(len(stakeInputs), 0) # Create the block new_block = self.stake_next_block(1, stakeInputs, self.mocktime, staker_privkey) self.log.info("New block created (rawtx) by cold-staking. Trying to submit...") # Try to submit the block ret = self.nodes[1].submitblock(bytes_to_hex_str(new_block.serialize())) self.log.info("Block %s submitted." % new_block.hash) assert(ret is None) # Verify that nodes[0] accepts it sync_blocks(self.nodes) assert_equal(self.nodes[0].getblockcount(), self.nodes[1].getblockcount()) assert_equal(new_block.hash, self.nodes[0].getbestblockhash()) self.log.info("Great. Cold-staked block was accepted!") self.mocktime += 60 set_node_times(self.nodes, self.mocktime) # check balances after staked block. self.expected_balance -= INPUT_VALUE self.expected_immature_balance += (INPUT_VALUE + 250) self.checkBalances() self.log.info("Balances check out after staked block") # 11) check that the staker cannot stake a block changing the coinstake scriptPubkey. # ---------------------------------------------------------------------------------- print("*** 11 ***") self.log.info("Generating one invalid cold-stake block (changing first coinstake output)...") stakeable_coins = getDelegatedUtxos(self.nodes[0].listunspent()) stakeInputs = self.get_prevouts(1, stakeable_coins) assert_greater_than(len(stakeInputs), 0) # Create the block (with dummy key) new_block = self.stake_next_block(1, stakeInputs, self.mocktime, "") self.log.info("New block created (rawtx) by cold-staking. Trying to submit...") # Try to submit the block ret = self.nodes[1].submitblock(bytes_to_hex_str(new_block.serialize())) self.log.info("Block %s submitted." % new_block.hash) assert("rejected" in ret) # Verify that nodes[0] rejects it sync_blocks(self.nodes) assert_raises_rpc_error(-5, "Block not found", self.nodes[0].getblock, new_block.hash) self.log.info("Great. Malicious cold-staked block was NOT accepted!") self.checkBalances() self.log.info("Balances check out after (non) staked block") # 12) neither adding different outputs to the coinstake. # ------------------------------------------------------ print("*** 12 ***") self.log.info("Generating another invalid cold-stake block (adding coinstake output)...") stakeable_coins = getDelegatedUtxos(self.nodes[0].listunspent()) stakeInputs = self.get_prevouts(1, stakeable_coins) assert_greater_than(len(stakeInputs), 0) # Create the block new_block = self.stake_next_block(1, stakeInputs, self.mocktime, staker_privkey) # Add output (dummy key address) to coinstake (taking 100 SUNO from the pot) self.add_output_to_coinstake(new_block, 100) self.log.info("New block created (rawtx) by cold-staking. Trying to submit...") # Try to submit the block ret = self.nodes[1].submitblock(bytes_to_hex_str(new_block.serialize())) self.log.info("Block %s submitted." % new_block.hash) assert_equal(ret, "bad-p2cs-outs") # Verify that nodes[0] rejects it sync_blocks(self.nodes) assert_raises_rpc_error(-5, "Block not found", self.nodes[0].getblock, new_block.hash) self.log.info("Great. Malicious cold-staked block was NOT accepted!") self.checkBalances() self.log.info("Balances check out after (non) staked block") # 13) Now node[0] gets mad and spends all the delegated coins, voiding the P2CS contracts. # ---------------------------------------------------------------------------------------- self.log.info("Let's void the contracts.") self.mocktime = self.generate_pos(2, self.mocktime) sync_blocks(self.nodes) print("*** 13 ***") self.log.info("Cancel the stake delegation spending the delegated utxos...") delegated_utxos = getDelegatedUtxos(self.nodes[0].listunspent()) # remove one utxo to spend later final_spend = delegated_utxos.pop() txhash = self.spendUTXOsWithNode(delegated_utxos, 0) assert(txhash != None) self.log.info("Good. Owner was able to void the stake delegations - tx: %s" % str(txhash)) sync_mempools(self.nodes) self.mocktime = self.generate_pos(2, self.mocktime) sync_blocks(self.nodes) # deactivate SPORK 17 and check that the owner can still spend the last utxo self.setColdStakingEnforcement(False) assert (not self.isColdStakingEnforced()) txhash = self.spendUTXOsWithNode([final_spend], 0) assert(txhash != None) self.log.info("Good. Owner was able to void a stake delegation (with SPORK 17 disabled) - tx: %s" % str(txhash)) sync_mempools(self.nodes) self.mocktime = self.generate_pos(2, self.mocktime) sync_blocks(self.nodes) # check tx self.check_tx_in_chain(0, txhash) self.check_tx_in_chain(1, txhash) # check balances after big spend. self.expected_balance = 0 self.checkBalances() self.log.info("Balances check out after the delegations have been voided.") # re-activate SPORK17 self.setColdStakingEnforcement() assert (self.isColdStakingEnforced()) # 14) check that coinstaker is empty and can no longer stake. # ----------------------------------------------------------- print("*** 14 ***") self.log.info("Trying to generate one cold-stake block again...") assert_equal(self.nodes[1].getstakingstatus()["stakeablecoins"], 0) self.log.info("Cigar. Cold staker was NOT able to create any more blocks.") # 15) check balances when mature. # ----------------------------------------------------------- print("*** 15 ***") self.log.info("Staking 100 blocks to mature the cold stakes...") for i in range(2): for peer in [0, 2]: for j in range(25): self.mocktime = self.generate_pos(peer, self.mocktime) sync_blocks(self.nodes) self.expected_balance = self.expected_immature_balance self.expected_immature_balance = 0 self.checkBalances() delegated_utxos = getDelegatedUtxos(self.nodes[0].listunspent()) txhash = self.spendUTXOsWithNode(delegated_utxos, 0) assert (txhash != None) self.log.info("Good. Owner was able to spend the cold staked coins - tx: %s" % str(txhash)) sync_mempools(self.nodes) self.mocktime = self.generate_pos(2, self.mocktime) sync_blocks(self.nodes) # check tx self.check_tx_in_chain(0, txhash) self.check_tx_in_chain(1, txhash) self.expected_balance = 0 self.checkBalances() def checkBalances(self): w_info = self.nodes[0].getwalletinfo() self.log.info("OWNER - Delegated %f / Cold %f [%f / %f]" % ( float(w_info["delegated_balance"]), w_info["cold_staking_balance"], float(w_info["immature_delegated_balance"]), w_info["immature_cold_staking_balance"])) assert_equal(float(w_info["delegated_balance"]), self.expected_balance) assert_equal(float(w_info["immature_delegated_balance"]), self.expected_immature_balance) assert_equal(float(w_info["cold_staking_balance"]), 0) w_info = self.nodes[1].getwalletinfo() self.log.info("STAKER - Delegated %f / Cold %f [%f / %f]" % ( float(w_info["delegated_balance"]), w_info["cold_staking_balance"], float(w_info["immature_delegated_balance"]), w_info["immature_cold_staking_balance"])) assert_equal(float(w_info["delegated_balance"]), 0) assert_equal(float(w_info["cold_staking_balance"]), self.expected_balance) assert_equal(float(w_info["immature_cold_staking_balance"]), self.expected_immature_balance) def spendUTXOwithNode(self, utxo, node_n): new_addy = self.nodes[node_n].getnewaddress() inputs = [{"txid": utxo["txid"], "vout": utxo["vout"]}] out_amount = (float(utxo["amount"]) - self.DEFAULT_FEE) outputs = {} outputs[new_addy] = out_amount spendingTx = self.nodes[node_n].createrawtransaction(inputs, outputs) spendingTx_signed = self.nodes[node_n].signrawtransaction(spendingTx) return self.nodes[node_n].sendrawtransaction(spendingTx_signed["hex"]) def spendUTXOsWithNode(self, utxos, node_n): new_addy = self.nodes[node_n].getnewaddress() inputs = [] outputs = {} outputs[new_addy] = 0 for utxo in utxos: inputs.append({"txid": utxo["txid"], "vout": utxo["vout"]}) outputs[new_addy] += float(utxo["amount"]) outputs[new_addy] -= self.DEFAULT_FEE spendingTx = self.nodes[node_n].createrawtransaction(inputs, outputs) spendingTx_signed = self.nodes[node_n].signrawtransaction(spendingTx) return self.nodes[node_n].sendrawtransaction(spendingTx_signed["hex"]) def add_output_to_coinstake(self, block, value, peer=1): coinstake = block.vtx[1] if not hasattr(self, 'DUMMY_KEY'): self.init_dummy_key() coinstake.vout.append( CTxOut(value * COIN, CScript([self.DUMMY_KEY.get_pubkey(), OP_CHECKSIG]))) coinstake.vout[1].nValue -= value * COIN # re-sign coinstake prevout = COutPoint() prevout.deserialize_uniqueness(BytesIO(block.prevoutStake)) coinstake.vin[0] = CTxIn(prevout) stake_tx_signed_raw_hex = self.nodes[peer].signrawtransaction( bytes_to_hex_str(coinstake.serialize()))['hex'] block.vtx[1] = CTransaction() block.vtx[1].from_hex(stake_tx_signed_raw_hex) # re-sign block block.hashMerkleRoot = block.calc_merkle_root() block.rehash() block.re_sign_block() if __name__ == '__main__': SupernodeCoin_ColdStakingTest().main()
py
1a381cffece244fa67a66b55ab568cc2b812dbf2
# coding: utf-8 """ NiFi Rest Api The Rest Api provides programmatic access to command and control a NiFi instance in real time. Start and stop processors, monitor queues, query provenance data, and more. Each endpoint below includes a description, definitions of the expected input and output, potential response codes, and the authorizations required to invoke each service. OpenAPI spec version: 1.12.1 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import sys import os import re # python 2 and python 3 compatibility library from six import iteritems from ..configuration import Configuration from ..api_client import ApiClient class ProcessorsApi(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): config = Configuration() if api_client: self.api_client = api_client else: if not config.api_client: config.api_client = ApiClient() self.api_client = config.api_client def clear_state(self, id, **kwargs): """ Clears the state for a processor This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.clear_state(id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: The processor id. (required) :return: ComponentStateEntity If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.clear_state_with_http_info(id, **kwargs) else: (data) = self.clear_state_with_http_info(id, **kwargs) return data def clear_state_with_http_info(self, id, **kwargs): """ Clears the state for a processor This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.clear_state_with_http_info(id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: The processor id. (required) :return: ComponentStateEntity If the method is called asynchronously, returns the request thread. """ all_params = ['id'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method clear_state" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `clear_state`") collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['*/*']) # Authentication setting auth_settings = ['tokenAuth', 'basicAuth'] return self.api_client.call_api('/processors/{id}/state/clear-requests', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ComponentStateEntity', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def delete_processor(self, id, **kwargs): """ Deletes a processor This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.delete_processor(id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: The processor id. (required) :param str version: The revision is used to verify the client is working with the latest version of the flow. :param str client_id: If the client id is not specified, new one will be generated. This value (whether specified or generated) is included in the response. :param bool disconnected_node_acknowledged: Acknowledges that this node is disconnected to allow for mutable requests to proceed. :return: ProcessorEntity If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.delete_processor_with_http_info(id, **kwargs) else: (data) = self.delete_processor_with_http_info(id, **kwargs) return data def delete_processor_with_http_info(self, id, **kwargs): """ Deletes a processor This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.delete_processor_with_http_info(id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: The processor id. (required) :param str version: The revision is used to verify the client is working with the latest version of the flow. :param str client_id: If the client id is not specified, new one will be generated. This value (whether specified or generated) is included in the response. :param bool disconnected_node_acknowledged: Acknowledges that this node is disconnected to allow for mutable requests to proceed. :return: ProcessorEntity If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'version', 'client_id', 'disconnected_node_acknowledged'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method delete_processor" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `delete_processor`") collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] query_params = [] if 'version' in params: query_params.append(('version', params['version'])) if 'client_id' in params: query_params.append(('clientId', params['client_id'])) if 'disconnected_node_acknowledged' in params: query_params.append(('disconnectedNodeAcknowledged', params['disconnected_node_acknowledged'])) header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['*/*']) # Authentication setting auth_settings = ['tokenAuth', 'basicAuth'] return self.api_client.call_api('/processors/{id}', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ProcessorEntity', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_processor(self, id, **kwargs): """ Gets a processor This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_processor(id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: The processor id. (required) :return: ProcessorEntity If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_processor_with_http_info(id, **kwargs) else: (data) = self.get_processor_with_http_info(id, **kwargs) return data def get_processor_with_http_info(self, id, **kwargs): """ Gets a processor This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_processor_with_http_info(id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: The processor id. (required) :return: ProcessorEntity If the method is called asynchronously, returns the request thread. """ all_params = ['id'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_processor" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `get_processor`") collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['*/*']) # Authentication setting auth_settings = ['tokenAuth', 'basicAuth'] return self.api_client.call_api('/processors/{id}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ProcessorEntity', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_processor_diagnostics(self, id, **kwargs): """ Gets diagnostics information about a processor Note: This endpoint is subject to change as NiFi and it's REST API evolve. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_processor_diagnostics(id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: The processor id. (required) :return: ProcessorEntity If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_processor_diagnostics_with_http_info(id, **kwargs) else: (data) = self.get_processor_diagnostics_with_http_info(id, **kwargs) return data def get_processor_diagnostics_with_http_info(self, id, **kwargs): """ Gets diagnostics information about a processor Note: This endpoint is subject to change as NiFi and it's REST API evolve. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_processor_diagnostics_with_http_info(id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: The processor id. (required) :return: ProcessorEntity If the method is called asynchronously, returns the request thread. """ all_params = ['id'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_processor_diagnostics" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `get_processor_diagnostics`") collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['*/*']) # Authentication setting auth_settings = ['tokenAuth', 'basicAuth'] return self.api_client.call_api('/processors/{id}/diagnostics', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ProcessorEntity', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_processor_run_status_details(self, **kwargs): """ Submits a query to retrieve the run status details of all processors that are in the given list of Processor IDs This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_processor_run_status_details(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param RunStatusDetailsRequestEntity body: The request for the processors that should be included in the results :return: ProcessorsRunStatusDetailsEntity If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_processor_run_status_details_with_http_info(**kwargs) else: (data) = self.get_processor_run_status_details_with_http_info(**kwargs) return data def get_processor_run_status_details_with_http_info(self, **kwargs): """ Submits a query to retrieve the run status details of all processors that are in the given list of Processor IDs This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_processor_run_status_details_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param RunStatusDetailsRequestEntity body: The request for the processors that should be included in the results :return: ProcessorsRunStatusDetailsEntity If the method is called asynchronously, returns the request thread. """ all_params = ['body'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_processor_run_status_details" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = ['tokenAuth', 'basicAuth'] return self.api_client.call_api('/processors/run-status-details/queries', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ProcessorsRunStatusDetailsEntity', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_property_descriptor(self, id, property_name, **kwargs): """ Gets the descriptor for a processor property This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_property_descriptor(id, property_name, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: The processor id. (required) :param str property_name: The property name. (required) :param str client_id: If the client id is not specified, new one will be generated. This value (whether specified or generated) is included in the response. :return: PropertyDescriptorEntity If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_property_descriptor_with_http_info(id, property_name, **kwargs) else: (data) = self.get_property_descriptor_with_http_info(id, property_name, **kwargs) return data def get_property_descriptor_with_http_info(self, id, property_name, **kwargs): """ Gets the descriptor for a processor property This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_property_descriptor_with_http_info(id, property_name, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: The processor id. (required) :param str property_name: The property name. (required) :param str client_id: If the client id is not specified, new one will be generated. This value (whether specified or generated) is included in the response. :return: PropertyDescriptorEntity If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'property_name', 'client_id'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_property_descriptor" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `get_property_descriptor`") # verify the required parameter 'property_name' is set if ('property_name' not in params) or (params['property_name'] is None): raise ValueError("Missing the required parameter `property_name` when calling `get_property_descriptor`") collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] query_params = [] if 'client_id' in params: query_params.append(('clientId', params['client_id'])) if 'property_name' in params: query_params.append(('propertyName', params['property_name'])) header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['*/*']) # Authentication setting auth_settings = ['tokenAuth', 'basicAuth'] return self.api_client.call_api('/processors/{id}/descriptors', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='PropertyDescriptorEntity', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_state(self, id, **kwargs): """ Gets the state for a processor This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_state(id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: The processor id. (required) :return: ComponentStateEntity If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_state_with_http_info(id, **kwargs) else: (data) = self.get_state_with_http_info(id, **kwargs) return data def get_state_with_http_info(self, id, **kwargs): """ Gets the state for a processor This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_state_with_http_info(id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: The processor id. (required) :return: ComponentStateEntity If the method is called asynchronously, returns the request thread. """ all_params = ['id'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_state" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `get_state`") collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['*/*']) # Authentication setting auth_settings = ['tokenAuth', 'basicAuth'] return self.api_client.call_api('/processors/{id}/state', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ComponentStateEntity', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def terminate_processor(self, id, **kwargs): """ Terminates a processor, essentially \"deleting\" its threads and any active tasks This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.terminate_processor(id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: The processor id. (required) :return: ProcessorEntity If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.terminate_processor_with_http_info(id, **kwargs) else: (data) = self.terminate_processor_with_http_info(id, **kwargs) return data def terminate_processor_with_http_info(self, id, **kwargs): """ Terminates a processor, essentially \"deleting\" its threads and any active tasks This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.terminate_processor_with_http_info(id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: The processor id. (required) :return: ProcessorEntity If the method is called asynchronously, returns the request thread. """ all_params = ['id'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method terminate_processor" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `terminate_processor`") collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['*/*']) # Authentication setting auth_settings = ['tokenAuth', 'basicAuth'] return self.api_client.call_api('/processors/{id}/threads', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ProcessorEntity', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def update_processor(self, id, body, **kwargs): """ Updates a processor This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.update_processor(id, body, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: The processor id. (required) :param ProcessorEntity body: The processor configuration details. (required) :return: ProcessorEntity If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.update_processor_with_http_info(id, body, **kwargs) else: (data) = self.update_processor_with_http_info(id, body, **kwargs) return data def update_processor_with_http_info(self, id, body, **kwargs): """ Updates a processor This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.update_processor_with_http_info(id, body, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: The processor id. (required) :param ProcessorEntity body: The processor configuration details. (required) :return: ProcessorEntity If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'body'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method update_processor" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `update_processor`") # verify the required parameter 'body' is set if ('body' not in params) or (params['body'] is None): raise ValueError("Missing the required parameter `body` when calling `update_processor`") collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = ['tokenAuth', 'basicAuth'] return self.api_client.call_api('/processors/{id}', 'PUT', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ProcessorEntity', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def update_run_status(self, id, body, **kwargs): """ Updates run status of a processor This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.update_run_status(id, body, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: The processor id. (required) :param ProcessorRunStatusEntity body: The processor run status. (required) :return: ProcessorEntity If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.update_run_status_with_http_info(id, body, **kwargs) else: (data) = self.update_run_status_with_http_info(id, body, **kwargs) return data def update_run_status_with_http_info(self, id, body, **kwargs): """ Updates run status of a processor This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.update_run_status_with_http_info(id, body, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: The processor id. (required) :param ProcessorRunStatusEntity body: The processor run status. (required) :return: ProcessorEntity If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'body'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method update_run_status" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `update_run_status`") # verify the required parameter 'body' is set if ('body' not in params) or (params['body'] is None): raise ValueError("Missing the required parameter `body` when calling `update_run_status`") collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = ['tokenAuth', 'basicAuth'] return self.api_client.call_api('/processors/{id}/run-status', 'PUT', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ProcessorEntity', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
py
1a381da11e3ad72cb81052cc7c61e52f2854ae7c
def split_and_join(line): split_list = line.split(" ") # String split will split the string into List. join_str = "-".join(split_list) # Joins the list with the given string and returns a single string. return join_str if __name__ == '__main__': line = input() result = split_and_join(line) # Calling split_and_join to split using str.spli() and join using str.join() print(result)
py
1a381f7f92f79a6805733d507344df2b2e093841
from distutils.core import setup setup( name='python3-logstash', packages=['logstash'], version='0.4.7', description='Python logging handler for Logstash.', long_description=open('README.md').read(), author='Israel Flores', author_email='[email protected]', url='https://github.com/israel-fl/python3-logstash', classifiers=[ 'Development Status :: 1 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: System :: Logging', ] )
py
1a381fa18e4a3d06ae85ab527ef516dd9e2c5c93
#!/usr/bin/env python3 """ Exercise 32: Flip a Dict "Flip" a dictionary by swapping keys and values. """ def flip(dictionary): return {v: k for k, v in dictionary.items() } if __name__ == '__main__': d = {'a': 1, 'b': 2, 'c': 3} print(f'{d} -> {flip(d)}')
py
1a381fb75e33547ba3c2149596fcb738b0bead2c
""" Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. ---------- Compute upper limit on word perplexity for kenlm ngram models Command : python3 compute_upper_ppl_kenlm.py --vocab_file [...] --kenlm_preds [...] Replace [...] with appropriate paths """ from __future__ import absolute_import, division, print_function, unicode_literals import argparse import numpy from utils import transform_asg def compute_upper_limit_ppl_for_kenlm(known_words_file, kenlm_file): with open(known_words_file, "r") as f: known_words = set(list(map(transform_asg, f.readline().strip().split(" ")))) with open(kenlm_file, "r") as f: sum_logp = 0 sum_logp_unk = 0 n_words = 0 n_words_unk = 0 n_letters = 0 for line in f: if "Total" not in line: continue line = line.strip().split("\t") word = "" word_logp = 0 for token in line: token_val = token.split("=")[0] logp = float(token.split(" ")[-1]) if token_val == "|": if word in known_words: sum_logp += word_logp + numpy.log(numpy.power(10, logp)) n_words += 1 else: sum_logp_unk += word_logp + numpy.log(numpy.power(10, logp)) n_words_unk += 1 word = "" word_logp = 0 elif token_val == "</s>": sum_logp += numpy.log(numpy.power(10, logp)) n_words += 1 else: word += token_val word_logp += numpy.log(numpy.power(10, logp)) n_letters += 1 if token_val == "</s>": break loss_letter = -(sum_logp + sum_logp_unk) / n_letters ppl_word_no_unk = numpy.exp(-sum_logp / n_words) ppl_word_unk = numpy.exp(-sum_logp_unk / n_words_unk) ppl_word = numpy.exp(-(sum_logp + sum_logp_unk) / (n_words + n_words_unk)) print( "Letter loss: {}, letter perplexity: {}".format( loss_letter, numpy.exp(loss_letter) ) ) print("Upper word perplexity for all words: {}".format(ppl_word)) print("Upper word perplexity for unknown words: {}".format(ppl_word_unk)) print( "(Reported in the paper) " "Upper word perplexity for known words: {}".format(ppl_word_no_unk) ) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Upper limit on word perplexity for kenlm predictions" ) parser.add_argument( "--vocab_file", help="vocabulary of known words, use file " "from --limit_vocab_file during word kenLM training.", ) parser.add_argument( "--kenlm_preds", help="file with kenlm predictions after query run" ) args = parser.parse_args() print("Evaluate file {}".format(args.kenlm_preds)) compute_upper_limit_ppl_for_kenlm(args.vocab_file, args.kenlm_preds)
py
1a381fcd1c4946e470c2286c56c7ebec679894bb
# Generated by Django 4.0.3 on 2022-04-06 04:35 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('api', '0005_rename_tutor_name_course_extra_txt_and_more'), ] operations = [ migrations.RemoveField( model_name='profileuser', name='shop_courses', ), migrations.RemoveField( model_name='user', name='initial_test_performed', ), migrations.CreateModel( name='ViewVideo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(auto_now_add=True)), ('modified', models.DateTimeField(auto_now=True)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ('video', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='api.video')), ], options={ 'ordering': ['-created', '-modified'], 'get_latest_by': ('created',), 'abstract': False, }, ), ]
py
1a381ff271df85fe15b83790c71f05e350617f0c
from functools import wraps from typing import Optional def _embed_ipython_shell(ns: Optional[dict] = None): if ns is None: ns = {} from IPython.terminal.embed import InteractiveShellEmbed from IPython.terminal.ipapp import load_default_config @wraps(_embed_ipython_shell) def wrapper(namespace=ns, banner=''): config = load_default_config() InteractiveShellEmbed.clear_instance() shell = InteractiveShellEmbed.instance( banner1=banner, user_ns=namespace, config=config ) shell() return wrapper def start_python_console(namespace: Optional[dict] = None, banner: str = ''): if namespace is None: namespace = {} try: shell = _embed_ipython_shell() shell(namespace, banner) except SystemExit: # raised when invoking exit() hence safe to ignore pass
py
1a38200afca8b22d06ea1de1d45591b368d2b986
import argparse import os import random import string import time from abc import ABC, abstractmethod from diffimg import diff from selenium import webdriver from selenium.webdriver import ChromeOptions, FirefoxOptions from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.wait import WebDriverWait class UITester(ABC): # This image diff threshold is set to an upper bound of 10% for now. We should try our best # to at least maintain this upper bound. _SCREENSHOT_DIFF_THRESHOLD_PERCENT = 10 _BASE_PATH = os.path.dirname(os.path.abspath(__file__)) _DEFAULT_USERNAME = os.getenv('CODALAB_USERNAME', 'codalab') _DEFAULT_PASSWORD = os.getenv('CODALAB_PASSWORD', 'codalab') def __init__(self, test_name, base_url='http://localhost'): self._test_name = test_name self._base_url = base_url @abstractmethod def test(self): pass def run(self): def add_headless(browser_options): if args.headless: browser_options.add_argument('--headless') # Test Chrome options = ChromeOptions() add_headless(options) self.browser = webdriver.Chrome(chrome_options=options) self.test() self.browser.close() # Test Firefox options = FirefoxOptions() add_headless(options) self.browser = webdriver.Firefox(log_path='', firefox_options=options) self.test() self.browser.close() def login(self, username='codalab', password='codalab'): self.browser.get(self.get_url('/home')) self.click(By.LINK_TEXT, 'LOGIN') self.fill_field(By.ID, 'id_login', username) self.fill_field(By.ID, 'id_password', password, press_enter=True) def add_run_to_worksheet(self, command, use_keyboard_shortcut=False): if use_keyboard_shortcut: # ar = Add a new run self.send_keyboard_shortcut('ar') else: self.click(By.CSS_SELECTOR, '[aria-label="Add New Run"]') self.pause() self.scroll_to_bottom('worksheet_container') active_textbox = self.browser.switch_to.active_element active_textbox.send_keys(command) self.pause() if use_keyboard_shortcut: self.save_edit_keyboard_shortcut(active_textbox) else: self.click(By.XPATH, "//span[.='Confirm']") self.longer_pause() def rerun_last_bundle(self, use_keyboard_shortcut=False): if use_keyboard_shortcut: # Shift + g = Jump to the last bundle self.send_keyboard_shortcut(Keys.SHIFT + 'g') # Enter = Expand bundle self.send_keyboard_shortcut(Keys.ENTER) # an = Edit and add a rerun # This keyboard shortcut only works if the bundle is expanded. self.send_keyboard_shortcut('an') else: self.expand_last_bundle() self.scroll_to_bottom('worksheet_container') self.click(By.XPATH, "//span[.='Edit and Rerun']") self.pause() active_textbox = self.browser.switch_to.active_element active_textbox.send_keys(' rerunning bundle...') if use_keyboard_shortcut: self.save_edit_keyboard_shortcut(active_textbox) else: self.scroll_to_bottom('worksheet_container') self.click(By.XPATH, "//span[.='Confirm']") self.longer_pause() def edit_last_bundle_metadata(self, name, description, permission): def edit_field(field, text): field.click() self.browser.switch_to.active_element.send_keys(text) self.browser.switch_to.active_element.send_keys(Keys.ENTER) # Edit name and description self.expand_last_bundle() editable_fields = self.browser.find_elements(By.CLASS_NAME, 'editable-field') edit_field(editable_fields[-2], name) edit_field(editable_fields[-1], description) # Edit bundle permission self.scroll_to_bottom('worksheet_container') self.browser.find_elements_by_tag_name('svg')[-1].click() select_boxes = self.browser.find_elements_by_tag_name('select') self.select_option(select_boxes[-1], permission) self.longer_pause() def toggle_web_terminal(self, use_keyboard_shortcut=False): if use_keyboard_shortcut: # Shift + c = Show/hide web terminal self.send_keyboard_shortcut(Keys.SHIFT + 'c') else: self.browser.find_element_by_id('terminal-button').click() self.pause() def edit_source(self, text, use_keyboard_shortcut=False): if use_keyboard_shortcut: # Shift + e = Edit source mode self.send_keyboard_shortcut(Keys.SHIFT + 'e') else: self.click(By.CSS_SELECTOR, '[aria-label="Edit Source"]') source_field = self.browser.switch_to.active_element source_field.send_keys(Keys.ENTER + Keys.ENTER) source_field.send_keys(text) if use_keyboard_shortcut: self.pause() self.save_edit_keyboard_shortcut(source_field) else: self.click(By.CSS_SELECTOR, '[aria-label="Save Edit"]') self.longer_pause() def expand_last_bundle(self): self.scroll_to_bottom('worksheet_container') self.browser.find_elements_by_tag_name('button')[-1].click() self.pause() def add_text_to_worksheet(self, text, use_keyboard_shortcut=False): if use_keyboard_shortcut: # at = Add text self.send_keyboard_shortcut('at') else: self.click(By.CSS_SELECTOR, '[aria-label="Add Text"]') self.pause() self.scroll_to_bottom('worksheet_container') last_text_box = self.browser.find_elements_by_tag_name('textarea')[-1] self.focus_and_send_keys(last_text_box, text) if use_keyboard_shortcut: self.save_edit_keyboard_shortcut(last_text_box) else: self.click(By.XPATH, "//span[.='Save']") self.pause() def save_edit_keyboard_shortcut(self, element): # Control + Enter = Save current edit webdriver.ActionChains(self.browser).move_to_element(element).key_down( Keys.CONTROL ).key_down(Keys.ENTER).key_up(Keys.ENTER).key_up(Keys.CONTROL).perform() def refresh_worksheet(self): # Shift + r = Refresh worksheet self.send_keyboard_shortcut(Keys.SHIFT + 'r') def pause(self): time.sleep(1) def longer_pause(self): time.sleep(3) def set_browser_size(self, width=1500, height=1200): self.browser.set_window_position(0, 0) self.browser.set_window_size(width, height) def click(self, by, selector): self.browser.find_element(by, selector).click() def focus_and_send_keys(self, element, keys): webdriver.ActionChains(self.browser).move_to_element(element).send_keys(keys).perform() def send_keyboard_shortcut(self, keys): self.browser.find_element(By.TAG_NAME, 'html').send_keys(keys) def fill_field(self, by, selector, text, press_enter=False): textbox = self.browser.find_element(by, selector) textbox.send_keys(text) if press_enter: textbox.send_keys(Keys.ENTER) def wait_until_worksheet_content_loads(self): self.wait_until_page_loads('ws-item') # Wait until placeholder items have been resolved. by = By.CLASS_NAME selector = "codalab-item-placeholder" timeout_message = 'Timed out while waiting for {}: {} to be hidden.'.format(by, selector) WebDriverWait(self.browser, 300).until( EC.invisibility_of_element_located((by, selector)), message=timeout_message ) def wait_until_page_loads(self, selector, by=By.CLASS_NAME): timeout_message = 'Timed out while waiting for {}: {}.'.format(by, selector) return WebDriverWait(self.browser, 15).until( EC.presence_of_element_located((by, selector)), message=timeout_message ) def switch_to_new_tab(self): # Just give enough time for the new tab to get opened self.pause() self.browser.switch_to.window( self.browser.window_handles[len(self.browser.window_handles) - 1] ) def select_option(self, element, to_select): for option in element.find_elements_by_tag_name('option'): if option.text in to_select: option.click() break def constructPartialSelector(self, by, partial_selector): return '//*[contains(@{}, "{}")]'.format(by, partial_selector) def output_images(self, selector, num_of_screenshots=10): output_dir = self._get_output_dir('out') element = "document.getElementById('{}')".format(selector) scroll_height = float(self.browser.execute_script('return {}.scrollHeight'.format(element))) for i in range(num_of_screenshots): y = (i / num_of_screenshots) * scroll_height self.browser.execute_script('{}.scrollTo(0, {})'.format(element, y)) path = os.path.join(output_dir, '{}{}.png'.format(self._test_name, i + 1)) self.browser.save_screenshot(path) def compare_to_baselines(self, num_of_screenshots=10): out_dir = self._get_output_dir('out') baselines_dir = self._get_output_dir('baselines') diff_dir = self._get_output_dir('diff') has_failed = False for i in range(num_of_screenshots): screenshot_filename = '{}{}.png'.format(self._test_name, i + 1) out_img = os.path.join(out_dir, screenshot_filename) baseline_img = os.path.join(baselines_dir, screenshot_filename) diff_img = os.path.join(diff_dir, screenshot_filename) diff_percent = ( diff(baseline_img, out_img, delete_diff_file=True, ignore_alpha=True) * 100 ) print( '{}% difference in {} for {}'.format( diff_percent, self._get_browser_name(), screenshot_filename ) ) if diff_percent > UITester._SCREENSHOT_DIFF_THRESHOLD_PERCENT: # If an image comparison has failed, generate diff and print an error message in red has_failed = True diff( out_img, baseline_img, delete_diff_file=False, diff_img_file=diff_img, ignore_alpha=True, ) print( '\033[91mScreenshot comparison failed in {} for {} by {}%\033[0m'.format( self._get_browser_name(), screenshot_filename, diff_percent ) ) assert not has_failed def get_url(self, path): return '{}/{}'.format(self._base_url, path) def make_name_unique(self, name): # Appends some unique identifier to the string input random_id = ''.join( random.choice(string.ascii_lowercase + string.digits) for _ in range(16) ) return name + random_id def scroll_to_bottom(self, selector): element = "document.getElementById('{}')".format(selector) scroll_height = float(self.browser.execute_script('return {}.scrollHeight'.format(element))) self.browser.execute_script('{}.scrollTo(0, {})'.format(element, scroll_height)) def _get_partial_matched_elements(self, by, selector): return self.browser.find_elements(By.XPATH, self.constructPartialSelector(by, selector)) def _get_output_dir(self, folder_name): def create_path(path): if not os.path.isdir(path): os.mkdir(path) output_dir = os.path.join(UITester._BASE_PATH, folder_name) create_path(output_dir) output_dir = os.path.join(output_dir, self._test_name) create_path(output_dir) output_dir = os.path.join(output_dir, self._get_browser_name()) create_path(output_dir) return output_dir def _get_browser_name(self): return self.browser.capabilities['browserName'] class WorksheetTest(UITester): def __init__(self): super().__init__('worksheet') def test(self): self.login() self.wait_until_worksheet_content_loads() # wait for small worksheet to be resolved from place holder item by = By.LINK_TEXT selector = "Small Worksheet [cl_small_worksheet]" timeout_message = 'Timed out while waiting for {}: {}.'.format(by, selector) WebDriverWait(self.browser, 10).until( EC.presence_of_element_located((by, selector)), message=timeout_message ) self.click(By.LINK_TEXT, 'Small Worksheet [cl_small_worksheet]') self.switch_to_new_tab() self.wait_until_worksheet_content_loads() self.output_images('worksheet_container') self.compare_to_baselines() class EditWorksheetTest(UITester): def __init__(self): super().__init__('edit_worksheet') def test(self): self.set_browser_size() self.login() self.wait_until_worksheet_content_loads() # Create a new worksheet self.click(By.XPATH, '//*[@title="New Worksheet"]') self.fill_field(By.ID, 'name', self.make_name_unique('test-worksheet')) self.browser.find_element(By.XPATH, "//span[.='Confirm']").find_element( By.XPATH, './..' ).click() self.longer_pause() # Add a title to the worksheet self.click(By.CLASS_NAME, 'editable-field') self.browser.switch_to.active_element.send_keys( 'Some Random Title for the UI Test Edit Worksheet in CodaLab' ) self.browser.switch_to.active_element.send_keys(Keys.ENTER) # Add text to the new worksheet self.add_text_to_worksheet('This is some text. ' * 25) # Add a bundle and rerun it self.add_run_to_worksheet('echo hello') self.rerun_last_bundle() # Edit metadata of the last bundle self.edit_last_bundle_metadata( 'New Name Given to this Bundle', 'New Description given to this bundle. ' * 5, 'none' ) # Test keyboard shortcuts self.add_run_to_worksheet('echo goodbye', use_keyboard_shortcut=True) self.rerun_last_bundle(use_keyboard_shortcut=True) # Select the last two bundles and delete them # shift + g = Jump to the last bundle self.send_keyboard_shortcut(Keys.SHIFT + 'g') # x = Select the bundle row self.send_keyboard_shortcut('x') self.send_keyboard_shortcut(Keys.ARROW_UP) self.send_keyboard_shortcut('x') # Backspace = Attempt to delete the selected bundles self.send_keyboard_shortcut(Keys.BACKSPACE) self.browser.find_elements_by_tag_name('button')[-1].click() # Wait for bundles to be deleted before proceeding self.longer_pause() # Add some more text via keyboard shortcuts self.add_text_to_worksheet('Some more text. ' * 25, use_keyboard_shortcut=True) # Edit source self.edit_source('The End.', use_keyboard_shortcut=True) # Refresh the page to ensure that new changes are persisted self.browser.refresh() self.wait_until_worksheet_content_loads() self.toggle_web_terminal(use_keyboard_shortcut=True) self.refresh_worksheet() # Take screenshots and compare to the existing baseline images num_of_screenshots = 1 self.output_images('worksheet_container', num_of_screenshots) self.compare_to_baselines(num_of_screenshots) def main(): # Add UI tests to the list to run them all_tests = [ WorksheetTest(), # TODO: this test is failing intermittently in GHA. Disabling for now. # EditWorksheetTest() ] start_time = time.time() for test in all_tests: test.run() duration_seconds = time.time() - start_time print('Success.') print('\n--- Completion Time: {} minutes---'.format(duration_seconds / 60)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Run frontend automation tests for the CodaLab UI') parser.add_argument( '--headless', action='store_true', help='Whether to test using headless browsers' ) args = parser.parse_args() main()
py
1a3820362a980e358cd25d7ee2adc5ad877bd92f
import pytest from shift_array import insert_shift_array def test_insert_shift_array_even(): """ test the insert_shift_array function with an even # of elements""" output_array = insert_shift_array([1,2,3,4], 5) assert output_array[2] == 5 def test_insert_shift_array_odd(): """ test the insert_shift_array function with an odd # of elements""" output_array = insert_shift_array([4,8,15,23,42], 16) assert output_array[3] == 16
py
1a38216c29f0f5362e0641bbf898b8d85bcefeab
#!/usr/bin/env python3 # Copyright (c) 2016-2019 The Cedicoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test segwit transactions and blocks on P2P network.""" import math import random import struct import time from test_framework.blocktools import create_block, create_coinbase, add_witness_commitment, get_witness_script, WITNESS_COMMITMENT_HEADER from test_framework.key import ECKey from test_framework.messages import ( BIP125_SEQUENCE_NUMBER, CBlock, CBlockHeader, CInv, COutPoint, CTransaction, CTxIn, CTxInWitness, CTxOut, CTxWitness, MAX_BLOCK_BASE_SIZE, MSG_WITNESS_FLAG, NODE_NETWORK, NODE_WITNESS, msg_no_witness_block, msg_getdata, msg_headers, msg_inv, msg_tx, msg_block, msg_witness_tx, ser_uint256, ser_vector, sha256, uint256_from_str, FromHex, ) from test_framework.mininode import ( P2PInterface, mininode_lock, ) from test_framework.script import ( CScript, CScriptNum, CScriptOp, MAX_SCRIPT_ELEMENT_SIZE, OP_0, OP_1, OP_16, OP_2DROP, OP_CHECKMULTISIG, OP_CHECKSIG, OP_DROP, OP_DUP, OP_ELSE, OP_ENDIF, OP_EQUAL, OP_EQUALVERIFY, OP_HASH160, OP_IF, OP_RETURN, OP_TRUE, SIGHASH_ALL, SIGHASH_ANYONECANPAY, SIGHASH_NONE, SIGHASH_SINGLE, SegwitVersion1SignatureHash, SignatureHash, hash160, ) from test_framework.test_framework import CedicoinTestFramework from test_framework.util import ( assert_equal, connect_nodes, disconnect_nodes, softfork_active, hex_str_to_bytes, assert_raises_rpc_error, ) # The versionbit bit used to signal activation of SegWit VB_WITNESS_BIT = 1 VB_PERIOD = 144 VB_TOP_BITS = 0x20000000 MAX_SIGOP_COST = 80000 SEGWIT_HEIGHT = 120 class UTXO(): """Used to keep track of anyone-can-spend outputs that we can use in the tests.""" def __init__(self, sha256, n, value): self.sha256 = sha256 self.n = n self.nValue = value def get_p2pkh_script(pubkeyhash): """Get the script associated with a P2PKH.""" return CScript([CScriptOp(OP_DUP), CScriptOp(OP_HASH160), pubkeyhash, CScriptOp(OP_EQUALVERIFY), CScriptOp(OP_CHECKSIG)]) def sign_p2pk_witness_input(script, tx_to, in_idx, hashtype, value, key): """Add signature for a P2PK witness program.""" tx_hash = SegwitVersion1SignatureHash(script, tx_to, in_idx, hashtype, value) signature = key.sign_ecdsa(tx_hash) + chr(hashtype).encode('latin-1') tx_to.wit.vtxinwit[in_idx].scriptWitness.stack = [signature, script] tx_to.rehash() def get_virtual_size(witness_block): """Calculate the virtual size of a witness block. Virtual size is base + witness/4.""" base_size = len(witness_block.serialize(with_witness=False)) total_size = len(witness_block.serialize()) # the "+3" is so we round up vsize = int((3 * base_size + total_size + 3) / 4) return vsize def test_transaction_acceptance(node, p2p, tx, with_witness, accepted, reason=None): """Send a transaction to the node and check that it's accepted to the mempool - Submit the transaction over the p2p interface - use the getrawmempool rpc to check for acceptance.""" reason = [reason] if reason else [] with node.assert_debug_log(expected_msgs=reason): p2p.send_message(msg_witness_tx(tx) if with_witness else msg_tx(tx)) p2p.sync_with_ping() assert_equal(tx.hash in node.getrawmempool(), accepted) def test_witness_block(node, p2p, block, accepted, with_witness=True, reason=None): """Send a block to the node and check that it's accepted - Submit the block over the p2p interface - use the getbestblockhash rpc to check for acceptance.""" reason = [reason] if reason else [] with node.assert_debug_log(expected_msgs=reason): p2p.send_message(msg_block(block) if with_witness else msg_no_witness_block(block)) p2p.sync_with_ping() assert_equal(node.getbestblockhash() == block.hash, accepted) class TestP2PConn(P2PInterface): def __init__(self): super().__init__() self.getdataset = set() def on_getdata(self, message): for inv in message.inv: self.getdataset.add(inv.hash) def announce_tx_and_wait_for_getdata(self, tx, timeout=60, success=True): with mininode_lock: self.last_message.pop("getdata", None) self.send_message(msg_inv(inv=[CInv(1, tx.sha256)])) if success: self.wait_for_getdata(timeout) else: time.sleep(timeout) assert not self.last_message.get("getdata") def announce_block_and_wait_for_getdata(self, block, use_header, timeout=60): with mininode_lock: self.last_message.pop("getdata", None) self.last_message.pop("getheaders", None) msg = msg_headers() msg.headers = [CBlockHeader(block)] if use_header: self.send_message(msg) else: self.send_message(msg_inv(inv=[CInv(2, block.sha256)])) self.wait_for_getheaders() self.send_message(msg) self.wait_for_getdata() def request_block(self, blockhash, inv_type, timeout=60): with mininode_lock: self.last_message.pop("block", None) self.send_message(msg_getdata(inv=[CInv(inv_type, blockhash)])) self.wait_for_block(blockhash, timeout) return self.last_message["block"].block class SegWitTest(CedicoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 3 # This test tests SegWit both pre and post-activation, so use the normal BIP9 activation. self.extra_args = [ ["-whitelist=127.0.0.1", "-acceptnonstdtxn=1", "-segwitheight={}".format(SEGWIT_HEIGHT)], ["-whitelist=127.0.0.1", "-acceptnonstdtxn=0", "-segwitheight={}".format(SEGWIT_HEIGHT)], ["-whitelist=127.0.0.1", "-acceptnonstdtxn=1", "-segwitheight=-1"] ] def skip_test_if_missing_module(self): self.skip_if_no_wallet() def setup_network(self): self.setup_nodes() connect_nodes(self.nodes[0], 1) connect_nodes(self.nodes[0], 2) self.sync_all() # Helper functions def build_next_block(self, version=4): """Build a block on top of node0's tip.""" tip = self.nodes[0].getbestblockhash() height = self.nodes[0].getblockcount() + 1 block_time = self.nodes[0].getblockheader(tip)["mediantime"] + 1 block = create_block(int(tip, 16), create_coinbase(height), block_time) block.nVersion = version block.rehash() return block def update_witness_block_with_transactions(self, block, tx_list, nonce=0): """Add list of transactions to block, adds witness commitment, then solves.""" block.vtx.extend(tx_list) add_witness_commitment(block, nonce) block.solve() def run_test(self): # Setup the p2p connections # self.test_node sets NODE_WITNESS|NODE_NETWORK self.test_node = self.nodes[0].add_p2p_connection(TestP2PConn(), services=NODE_NETWORK | NODE_WITNESS) # self.old_node sets only NODE_NETWORK self.old_node = self.nodes[0].add_p2p_connection(TestP2PConn(), services=NODE_NETWORK) # self.std_node is for testing node1 (fRequireStandard=true) self.std_node = self.nodes[1].add_p2p_connection(TestP2PConn(), services=NODE_NETWORK | NODE_WITNESS) assert self.test_node.nServices & NODE_WITNESS != 0 # Keep a place to store utxo's that can be used in later tests self.utxo = [] self.log.info("Starting tests before segwit activation") self.segwit_active = False self.test_non_witness_transaction() self.test_v0_outputs_arent_spendable() self.test_block_relay() self.test_getblocktemplate_before_lockin() self.test_unnecessary_witness_before_segwit_activation() self.test_witness_tx_relay_before_segwit_activation() self.test_standardness_v0() self.log.info("Advancing to segwit activation") self.advance_to_segwit_active() # Segwit status 'active' self.test_p2sh_witness() self.test_witness_commitments() self.test_block_malleability() self.test_witness_block_size() self.test_submit_block() self.test_extra_witness_data() self.test_max_witness_push_length() self.test_max_witness_program_length() self.test_witness_input_length() self.test_block_relay() self.test_tx_relay_after_segwit_activation() self.test_standardness_v0() self.test_segwit_versions() self.test_premature_coinbase_witness_spend() self.test_uncompressed_pubkey() self.test_signature_version_1() self.test_non_standard_witness_blinding() self.test_non_standard_witness() self.test_upgrade_after_activation() self.test_witness_sigops() self.test_superfluous_witness() # Individual tests def subtest(func): # noqa: N805 """Wraps the subtests for logging and state assertions.""" def func_wrapper(self, *args, **kwargs): self.log.info("Subtest: {} (Segwit active = {})".format(func.__name__, self.segwit_active)) # Assert segwit status is as expected assert_equal(softfork_active(self.nodes[0], 'segwit'), self.segwit_active) func(self, *args, **kwargs) # Each subtest should leave some utxos for the next subtest assert self.utxo self.sync_blocks() # Assert segwit status is as expected at end of subtest assert_equal(softfork_active(self.nodes[0], 'segwit'), self.segwit_active) return func_wrapper @subtest def test_non_witness_transaction(self): """See if sending a regular transaction works, and create a utxo to use in later tests.""" # Mine a block with an anyone-can-spend coinbase, # let it mature, then try to spend it. block = self.build_next_block(version=1) block.solve() self.test_node.send_message(msg_no_witness_block(block)) self.test_node.sync_with_ping() # make sure the block was processed txid = block.vtx[0].sha256 self.nodes[0].generate(99) # let the block mature # Create a transaction that spends the coinbase tx = CTransaction() tx.vin.append(CTxIn(COutPoint(txid, 0), b"")) tx.vout.append(CTxOut(49 * 100000000, CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE]))) tx.calc_sha256() # Check that serializing it with or without witness is the same # This is a sanity check of our testing framework. assert_equal(msg_tx(tx).serialize(), msg_witness_tx(tx).serialize()) self.test_node.send_message(msg_witness_tx(tx)) self.test_node.sync_with_ping() # make sure the tx was processed assert tx.hash in self.nodes[0].getrawmempool() # Save this transaction for later self.utxo.append(UTXO(tx.sha256, 0, 49 * 100000000)) self.nodes[0].generate(1) @subtest def test_unnecessary_witness_before_segwit_activation(self): """Verify that blocks with witnesses are rejected before activation.""" tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue - 1000, CScript([OP_TRUE]))) tx.wit.vtxinwit.append(CTxInWitness()) tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([CScriptNum(1)])] # Verify the hash with witness differs from the txid # (otherwise our testing framework must be broken!) tx.rehash() assert tx.sha256 != tx.calc_sha256(with_witness=True) # Construct a segwit-signaling block that includes the transaction. block = self.build_next_block(version=(VB_TOP_BITS | (1 << VB_WITNESS_BIT))) self.update_witness_block_with_transactions(block, [tx]) # Sending witness data before activation is not allowed (anti-spam # rule). test_witness_block(self.nodes[0], self.test_node, block, accepted=False, reason='unexpected-witness') # But it should not be permanently marked bad... # Resend without witness information. self.test_node.send_message(msg_no_witness_block(block)) self.test_node.sync_with_ping() assert_equal(self.nodes[0].getbestblockhash(), block.hash) # Update our utxo list; we spent the first entry. self.utxo.pop(0) self.utxo.append(UTXO(tx.sha256, 0, tx.vout[0].nValue)) @subtest def test_block_relay(self): """Test that block requests to NODE_WITNESS peer are with MSG_WITNESS_FLAG. This is true regardless of segwit activation. Also test that we don't ask for blocks from unupgraded peers.""" blocktype = 2 | MSG_WITNESS_FLAG # test_node has set NODE_WITNESS, so all getdata requests should be for # witness blocks. # Test announcing a block via inv results in a getdata, and that # announcing a version 4 or random VB block with a header results in a getdata block1 = self.build_next_block() block1.solve() self.test_node.announce_block_and_wait_for_getdata(block1, use_header=False) assert self.test_node.last_message["getdata"].inv[0].type == blocktype test_witness_block(self.nodes[0], self.test_node, block1, True) block2 = self.build_next_block(version=4) block2.solve() self.test_node.announce_block_and_wait_for_getdata(block2, use_header=True) assert self.test_node.last_message["getdata"].inv[0].type == blocktype test_witness_block(self.nodes[0], self.test_node, block2, True) block3 = self.build_next_block(version=(VB_TOP_BITS | (1 << 15))) block3.solve() self.test_node.announce_block_and_wait_for_getdata(block3, use_header=True) assert self.test_node.last_message["getdata"].inv[0].type == blocktype test_witness_block(self.nodes[0], self.test_node, block3, True) # Check that we can getdata for witness blocks or regular blocks, # and the right thing happens. if not self.segwit_active: # Before activation, we should be able to request old blocks with # or without witness, and they should be the same. chain_height = self.nodes[0].getblockcount() # Pick 10 random blocks on main chain, and verify that getdata's # for MSG_BLOCK, MSG_WITNESS_BLOCK, and rpc getblock() are equal. all_heights = list(range(chain_height + 1)) random.shuffle(all_heights) all_heights = all_heights[0:10] for height in all_heights: block_hash = self.nodes[0].getblockhash(height) rpc_block = self.nodes[0].getblock(block_hash, False) block_hash = int(block_hash, 16) block = self.test_node.request_block(block_hash, 2) wit_block = self.test_node.request_block(block_hash, 2 | MSG_WITNESS_FLAG) assert_equal(block.serialize(), wit_block.serialize()) assert_equal(block.serialize(), hex_str_to_bytes(rpc_block)) else: # After activation, witness blocks and non-witness blocks should # be different. Verify rpc getblock() returns witness blocks, while # getdata respects the requested type. block = self.build_next_block() self.update_witness_block_with_transactions(block, []) # This gives us a witness commitment. assert len(block.vtx[0].wit.vtxinwit) == 1 assert len(block.vtx[0].wit.vtxinwit[0].scriptWitness.stack) == 1 test_witness_block(self.nodes[0], self.test_node, block, accepted=True) # Now try to retrieve it... rpc_block = self.nodes[0].getblock(block.hash, False) non_wit_block = self.test_node.request_block(block.sha256, 2) wit_block = self.test_node.request_block(block.sha256, 2 | MSG_WITNESS_FLAG) assert_equal(wit_block.serialize(), hex_str_to_bytes(rpc_block)) assert_equal(wit_block.serialize(False), non_wit_block.serialize()) assert_equal(wit_block.serialize(), block.serialize()) # Test size, vsize, weight rpc_details = self.nodes[0].getblock(block.hash, True) assert_equal(rpc_details["size"], len(block.serialize())) assert_equal(rpc_details["strippedsize"], len(block.serialize(False))) weight = 3 * len(block.serialize(False)) + len(block.serialize()) assert_equal(rpc_details["weight"], weight) # Upgraded node should not ask for blocks from unupgraded block4 = self.build_next_block(version=4) block4.solve() self.old_node.getdataset = set() # Blocks can be requested via direct-fetch (immediately upon processing the announcement) # or via parallel download (with an indeterminate delay from processing the announcement) # so to test that a block is NOT requested, we could guess a time period to sleep for, # and then check. We can avoid the sleep() by taking advantage of transaction getdata's # being processed after block getdata's, and announce a transaction as well, # and then check to see if that particular getdata has been received. # Since 0.14, inv's will only be responded to with a getheaders, so send a header # to announce this block. msg = msg_headers() msg.headers = [CBlockHeader(block4)] self.old_node.send_message(msg) self.old_node.announce_tx_and_wait_for_getdata(block4.vtx[0]) assert block4.sha256 not in self.old_node.getdataset @subtest def test_v0_outputs_arent_spendable(self): """Test that v0 outputs aren't spendable before segwit activation. ~6 months after segwit activation, the SCRIPT_VERIFY_WITNESS flag was backdated so that it applies to all blocks, going back to the genesis block. Consequently, version 0 witness outputs are never spendable without witness, and so can't be spent before segwit activation (the point at which blocks are permitted to contain witnesses).""" # node2 doesn't need to be connected for this test. # (If it's connected, node0 may propagate an invalid block to it over # compact blocks and the nodes would have inconsistent tips.) disconnect_nodes(self.nodes[0], 2) # Create two outputs, a p2wsh and p2sh-p2wsh witness_program = CScript([OP_TRUE]) witness_hash = sha256(witness_program) script_pubkey = CScript([OP_0, witness_hash]) p2sh_pubkey = hash160(script_pubkey) p2sh_script_pubkey = CScript([OP_HASH160, p2sh_pubkey, OP_EQUAL]) value = self.utxo[0].nValue // 3 tx = CTransaction() tx.vin = [CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b'')] tx.vout = [CTxOut(value, script_pubkey), CTxOut(value, p2sh_script_pubkey)] tx.vout.append(CTxOut(value, CScript([OP_TRUE]))) tx.rehash() txid = tx.sha256 # Add it to a block block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) # Verify that segwit isn't activated. A block serialized with witness # should be rejected prior to activation. test_witness_block(self.nodes[0], self.test_node, block, accepted=False, with_witness=True, reason='unexpected-witness') # Now send the block without witness. It should be accepted test_witness_block(self.nodes[0], self.test_node, block, accepted=True, with_witness=False) # Now try to spend the outputs. This should fail since SCRIPT_VERIFY_WITNESS is always enabled. p2wsh_tx = CTransaction() p2wsh_tx.vin = [CTxIn(COutPoint(txid, 0), b'')] p2wsh_tx.vout = [CTxOut(value, CScript([OP_TRUE]))] p2wsh_tx.wit.vtxinwit.append(CTxInWitness()) p2wsh_tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([OP_TRUE])] p2wsh_tx.rehash() p2sh_p2wsh_tx = CTransaction() p2sh_p2wsh_tx.vin = [CTxIn(COutPoint(txid, 1), CScript([script_pubkey]))] p2sh_p2wsh_tx.vout = [CTxOut(value, CScript([OP_TRUE]))] p2sh_p2wsh_tx.wit.vtxinwit.append(CTxInWitness()) p2sh_p2wsh_tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([OP_TRUE])] p2sh_p2wsh_tx.rehash() for tx in [p2wsh_tx, p2sh_p2wsh_tx]: block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) # When the block is serialized with a witness, the block will be rejected because witness # data isn't allowed in blocks that don't commit to witness data. test_witness_block(self.nodes[0], self.test_node, block, accepted=False, with_witness=True, reason='unexpected-witness') # When the block is serialized without witness, validation fails because the transaction is # invalid (transactions are always validated with SCRIPT_VERIFY_WITNESS so a segwit v0 transaction # without a witness is invalid). # Note: The reject reason for this failure could be # 'block-validation-failed' (if script check threads > 1) or # 'non-mandatory-script-verify-flag (Witness program was passed an # empty witness)' (otherwise). # TODO: support multiple acceptable reject reasons. test_witness_block(self.nodes[0], self.test_node, block, accepted=False, with_witness=False) connect_nodes(self.nodes[0], 2) self.utxo.pop(0) self.utxo.append(UTXO(txid, 2, value)) @subtest def test_getblocktemplate_before_lockin(self): txid = int(self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1), 16) for node in [self.nodes[0], self.nodes[2]]: gbt_results = node.getblocktemplate({"rules": ["segwit"]}) if node == self.nodes[2]: # If this is a non-segwit node, we should not get a witness # commitment. assert 'default_witness_commitment' not in gbt_results else: # For segwit-aware nodes, check the witness # commitment is correct. assert 'default_witness_commitment' in gbt_results witness_commitment = gbt_results['default_witness_commitment'] # Check that default_witness_commitment is present. witness_root = CBlock.get_merkle_root([ser_uint256(0), ser_uint256(txid)]) script = get_witness_script(witness_root, 0) assert_equal(witness_commitment, script.hex()) # Clear out the mempool self.nodes[0].generate(1) self.sync_blocks() @subtest def test_witness_tx_relay_before_segwit_activation(self): # Generate a transaction that doesn't require a witness, but send it # with a witness. Should be rejected for premature-witness, but should # not be added to recently rejected list. tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue - 1000, CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE]))) tx.wit.vtxinwit.append(CTxInWitness()) tx.wit.vtxinwit[0].scriptWitness.stack = [b'a'] tx.rehash() tx_hash = tx.sha256 tx_value = tx.vout[0].nValue # Verify that if a peer doesn't set nServices to include NODE_WITNESS, # the getdata is just for the non-witness portion. self.old_node.announce_tx_and_wait_for_getdata(tx) assert self.old_node.last_message["getdata"].inv[0].type == 1 # Since we haven't delivered the tx yet, inv'ing the same tx from # a witness transaction ought not result in a getdata. self.test_node.announce_tx_and_wait_for_getdata(tx, timeout=2, success=False) # Delivering this transaction with witness should fail (no matter who # its from) assert_equal(len(self.nodes[0].getrawmempool()), 0) assert_equal(len(self.nodes[1].getrawmempool()), 0) test_transaction_acceptance(self.nodes[0], self.old_node, tx, with_witness=True, accepted=False) test_transaction_acceptance(self.nodes[0], self.test_node, tx, with_witness=True, accepted=False) # But eliminating the witness should fix it test_transaction_acceptance(self.nodes[0], self.test_node, tx, with_witness=False, accepted=True) # Cleanup: mine the first transaction and update utxo self.nodes[0].generate(1) assert_equal(len(self.nodes[0].getrawmempool()), 0) self.utxo.pop(0) self.utxo.append(UTXO(tx_hash, 0, tx_value)) @subtest def test_standardness_v0(self): """Test V0 txout standardness. V0 segwit outputs and inputs are always standard. V0 segwit inputs may only be mined after activation, but not before.""" witness_program = CScript([OP_TRUE]) witness_hash = sha256(witness_program) script_pubkey = CScript([OP_0, witness_hash]) p2sh_pubkey = hash160(witness_program) p2sh_script_pubkey = CScript([OP_HASH160, p2sh_pubkey, OP_EQUAL]) # First prepare a p2sh output (so that spending it will pass standardness) p2sh_tx = CTransaction() p2sh_tx.vin = [CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")] p2sh_tx.vout = [CTxOut(self.utxo[0].nValue - 1000, p2sh_script_pubkey)] p2sh_tx.rehash() # Mine it on test_node to create the confirmed output. test_transaction_acceptance(self.nodes[0], self.test_node, p2sh_tx, with_witness=True, accepted=True) self.nodes[0].generate(1) self.sync_blocks() # Now test standardness of v0 P2WSH outputs. # Start by creating a transaction with two outputs. tx = CTransaction() tx.vin = [CTxIn(COutPoint(p2sh_tx.sha256, 0), CScript([witness_program]))] tx.vout = [CTxOut(p2sh_tx.vout[0].nValue - 10000, script_pubkey)] tx.vout.append(CTxOut(8000, script_pubkey)) # Might burn this later tx.vin[0].nSequence = BIP125_SEQUENCE_NUMBER # Just to have the option to bump this tx from the mempool tx.rehash() # This is always accepted, since the mempool policy is to consider segwit as always active # and thus allow segwit outputs test_transaction_acceptance(self.nodes[1], self.std_node, tx, with_witness=True, accepted=True) # Now create something that looks like a P2PKH output. This won't be spendable. script_pubkey = CScript([OP_0, hash160(witness_hash)]) tx2 = CTransaction() # tx was accepted, so we spend the second output. tx2.vin = [CTxIn(COutPoint(tx.sha256, 1), b"")] tx2.vout = [CTxOut(7000, script_pubkey)] tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[0].scriptWitness.stack = [witness_program] tx2.rehash() test_transaction_acceptance(self.nodes[1], self.std_node, tx2, with_witness=True, accepted=True) # Now update self.utxo for later tests. tx3 = CTransaction() # tx and tx2 were both accepted. Don't bother trying to reclaim the # P2PKH output; just send tx's first output back to an anyone-can-spend. self.sync_mempools([self.nodes[0], self.nodes[1]]) tx3.vin = [CTxIn(COutPoint(tx.sha256, 0), b"")] tx3.vout = [CTxOut(tx.vout[0].nValue - 1000, CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE]))] tx3.wit.vtxinwit.append(CTxInWitness()) tx3.wit.vtxinwit[0].scriptWitness.stack = [witness_program] tx3.rehash() if not self.segwit_active: # Just check mempool acceptance, but don't add the transaction to the mempool, since witness is disallowed # in blocks and the tx is impossible to mine right now. assert_equal(self.nodes[0].testmempoolaccept([tx3.serialize_with_witness().hex()]), [{'txid': tx3.hash, 'allowed': True}]) # Create the same output as tx3, but by replacing tx tx3_out = tx3.vout[0] tx3 = tx tx3.vout = [tx3_out] tx3.rehash() assert_equal(self.nodes[0].testmempoolaccept([tx3.serialize_with_witness().hex()]), [{'txid': tx3.hash, 'allowed': True}]) test_transaction_acceptance(self.nodes[0], self.test_node, tx3, with_witness=True, accepted=True) self.nodes[0].generate(1) self.sync_blocks() self.utxo.pop(0) self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue)) assert_equal(len(self.nodes[1].getrawmempool()), 0) @subtest def advance_to_segwit_active(self): """Mine enough blocks to activate segwit.""" assert not softfork_active(self.nodes[0], 'segwit') height = self.nodes[0].getblockcount() self.nodes[0].generate(SEGWIT_HEIGHT - height - 2) assert not softfork_active(self.nodes[0], 'segwit') self.nodes[0].generate(1) assert softfork_active(self.nodes[0], 'segwit') self.segwit_active = True @subtest def test_p2sh_witness(self): """Test P2SH wrapped witness programs.""" # Prepare the p2sh-wrapped witness output witness_program = CScript([OP_DROP, OP_TRUE]) witness_hash = sha256(witness_program) p2wsh_pubkey = CScript([OP_0, witness_hash]) p2sh_witness_hash = hash160(p2wsh_pubkey) script_pubkey = CScript([OP_HASH160, p2sh_witness_hash, OP_EQUAL]) script_sig = CScript([p2wsh_pubkey]) # a push of the redeem script # Fund the P2SH output tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue - 1000, script_pubkey)) tx.rehash() # Verify mempool acceptance and block validity test_transaction_acceptance(self.nodes[0], self.test_node, tx, with_witness=False, accepted=True) block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True, with_witness=True) self.sync_blocks() # Now test attempts to spend the output. spend_tx = CTransaction() spend_tx.vin.append(CTxIn(COutPoint(tx.sha256, 0), script_sig)) spend_tx.vout.append(CTxOut(tx.vout[0].nValue - 1000, CScript([OP_TRUE]))) spend_tx.rehash() # This transaction should not be accepted into the mempool pre- or # post-segwit. Mempool acceptance will use SCRIPT_VERIFY_WITNESS which # will require a witness to spend a witness program regardless of # segwit activation. Note that older cedicoind's that are not # segwit-aware would also reject this for failing CLEANSTACK. with self.nodes[0].assert_debug_log( expected_msgs=(spend_tx.hash, 'was not accepted: non-mandatory-script-verify-flag (Witness program was passed an empty witness)')): test_transaction_acceptance(self.nodes[0], self.test_node, spend_tx, with_witness=False, accepted=False) # Try to put the witness script in the scriptSig, should also fail. spend_tx.vin[0].scriptSig = CScript([p2wsh_pubkey, b'a']) spend_tx.rehash() with self.nodes[0].assert_debug_log( expected_msgs=(spend_tx.hash, 'was not accepted: mandatory-script-verify-flag-failed (Script evaluated without error but finished with a false/empty top stack element)')): test_transaction_acceptance(self.nodes[0], self.test_node, spend_tx, with_witness=False, accepted=False) # Now put the witness script in the witness, should succeed after # segwit activates. spend_tx.vin[0].scriptSig = script_sig spend_tx.rehash() spend_tx.wit.vtxinwit.append(CTxInWitness()) spend_tx.wit.vtxinwit[0].scriptWitness.stack = [b'a', witness_program] # Verify mempool acceptance test_transaction_acceptance(self.nodes[0], self.test_node, spend_tx, with_witness=True, accepted=True) block = self.build_next_block() self.update_witness_block_with_transactions(block, [spend_tx]) # If we're after activation, then sending this with witnesses should be valid. # This no longer works before activation, because SCRIPT_VERIFY_WITNESS # is always set. # TODO: rewrite this test to make clear that it only works after activation. test_witness_block(self.nodes[0], self.test_node, block, accepted=True) # Update self.utxo self.utxo.pop(0) self.utxo.append(UTXO(spend_tx.sha256, 0, spend_tx.vout[0].nValue)) @subtest def test_witness_commitments(self): """Test witness commitments. This test can only be run after segwit has activated.""" # First try a correct witness commitment. block = self.build_next_block() add_witness_commitment(block) block.solve() # Test the test -- witness serialization should be different assert msg_block(block).serialize() != msg_no_witness_block(block).serialize() # This empty block should be valid. test_witness_block(self.nodes[0], self.test_node, block, accepted=True) # Try to tweak the nonce block_2 = self.build_next_block() add_witness_commitment(block_2, nonce=28) block_2.solve() # The commitment should have changed! assert block_2.vtx[0].vout[-1] != block.vtx[0].vout[-1] # This should also be valid. test_witness_block(self.nodes[0], self.test_node, block_2, accepted=True) # Now test commitments with actual transactions tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) # Let's construct a witness program witness_program = CScript([OP_TRUE]) witness_hash = sha256(witness_program) script_pubkey = CScript([OP_0, witness_hash]) tx.vout.append(CTxOut(self.utxo[0].nValue - 1000, script_pubkey)) tx.rehash() # tx2 will spend tx1, and send back to a regular anyone-can-spend address tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) tx2.vout.append(CTxOut(tx.vout[0].nValue - 1000, witness_program)) tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[0].scriptWitness.stack = [witness_program] tx2.rehash() block_3 = self.build_next_block() self.update_witness_block_with_transactions(block_3, [tx, tx2], nonce=1) # Add an extra OP_RETURN output that matches the witness commitment template, # even though it has extra data after the incorrect commitment. # This block should fail. block_3.vtx[0].vout.append(CTxOut(0, CScript([OP_RETURN, WITNESS_COMMITMENT_HEADER + ser_uint256(2), 10]))) block_3.vtx[0].rehash() block_3.hashMerkleRoot = block_3.calc_merkle_root() block_3.rehash() block_3.solve() test_witness_block(self.nodes[0], self.test_node, block_3, accepted=False) # Add a different commitment with different nonce, but in the # right location, and with some funds burned(!). # This should succeed (nValue shouldn't affect finding the # witness commitment). add_witness_commitment(block_3, nonce=0) block_3.vtx[0].vout[0].nValue -= 1 block_3.vtx[0].vout[-1].nValue += 1 block_3.vtx[0].rehash() block_3.hashMerkleRoot = block_3.calc_merkle_root() block_3.rehash() assert len(block_3.vtx[0].vout) == 4 # 3 OP_returns block_3.solve() test_witness_block(self.nodes[0], self.test_node, block_3, accepted=True) # Finally test that a block with no witness transactions can # omit the commitment. block_4 = self.build_next_block() tx3 = CTransaction() tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), b"")) tx3.vout.append(CTxOut(tx.vout[0].nValue - 1000, witness_program)) tx3.rehash() block_4.vtx.append(tx3) block_4.hashMerkleRoot = block_4.calc_merkle_root() block_4.solve() test_witness_block(self.nodes[0], self.test_node, block_4, with_witness=False, accepted=True) # Update available utxo's for use in later test. self.utxo.pop(0) self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue)) @subtest def test_block_malleability(self): # Make sure that a block that has too big a virtual size # because of a too-large coinbase witness is not permanently # marked bad. block = self.build_next_block() add_witness_commitment(block) block.solve() block.vtx[0].wit.vtxinwit[0].scriptWitness.stack.append(b'a' * 5000000) assert get_virtual_size(block) > MAX_BLOCK_BASE_SIZE # We can't send over the p2p network, because this is too big to relay # TODO: repeat this test with a block that can be relayed self.nodes[0].submitblock(block.serialize().hex()) assert self.nodes[0].getbestblockhash() != block.hash block.vtx[0].wit.vtxinwit[0].scriptWitness.stack.pop() assert get_virtual_size(block) < MAX_BLOCK_BASE_SIZE self.nodes[0].submitblock(block.serialize().hex()) assert self.nodes[0].getbestblockhash() == block.hash # Now make sure that malleating the witness reserved value doesn't # result in a block permanently marked bad. block = self.build_next_block() add_witness_commitment(block) block.solve() # Change the nonce -- should not cause the block to be permanently # failed block.vtx[0].wit.vtxinwit[0].scriptWitness.stack = [ser_uint256(1)] test_witness_block(self.nodes[0], self.test_node, block, accepted=False) # Changing the witness reserved value doesn't change the block hash block.vtx[0].wit.vtxinwit[0].scriptWitness.stack = [ser_uint256(0)] test_witness_block(self.nodes[0], self.test_node, block, accepted=True) @subtest def test_witness_block_size(self): # TODO: Test that non-witness carrying blocks can't exceed 1MB # Skipping this test for now; this is covered in p2p-fullblocktest.py # Test that witness-bearing blocks are limited at ceil(base + wit/4) <= 1MB. block = self.build_next_block() assert len(self.utxo) > 0 # Create a P2WSH transaction. # The witness program will be a bunch of OP_2DROP's, followed by OP_TRUE. # This should give us plenty of room to tweak the spending tx's # virtual size. NUM_DROPS = 200 # 201 max ops per script! NUM_OUTPUTS = 50 witness_program = CScript([OP_2DROP] * NUM_DROPS + [OP_TRUE]) witness_hash = uint256_from_str(sha256(witness_program)) script_pubkey = CScript([OP_0, ser_uint256(witness_hash)]) prevout = COutPoint(self.utxo[0].sha256, self.utxo[0].n) value = self.utxo[0].nValue parent_tx = CTransaction() parent_tx.vin.append(CTxIn(prevout, b"")) child_value = int(value / NUM_OUTPUTS) for i in range(NUM_OUTPUTS): parent_tx.vout.append(CTxOut(child_value, script_pubkey)) parent_tx.vout[0].nValue -= 50000 assert parent_tx.vout[0].nValue > 0 parent_tx.rehash() child_tx = CTransaction() for i in range(NUM_OUTPUTS): child_tx.vin.append(CTxIn(COutPoint(parent_tx.sha256, i), b"")) child_tx.vout = [CTxOut(value - 100000, CScript([OP_TRUE]))] for i in range(NUM_OUTPUTS): child_tx.wit.vtxinwit.append(CTxInWitness()) child_tx.wit.vtxinwit[-1].scriptWitness.stack = [b'a' * 195] * (2 * NUM_DROPS) + [witness_program] child_tx.rehash() self.update_witness_block_with_transactions(block, [parent_tx, child_tx]) vsize = get_virtual_size(block) additional_bytes = (MAX_BLOCK_BASE_SIZE - vsize) * 4 i = 0 while additional_bytes > 0: # Add some more bytes to each input until we hit MAX_BLOCK_BASE_SIZE+1 extra_bytes = min(additional_bytes + 1, 55) block.vtx[-1].wit.vtxinwit[int(i / (2 * NUM_DROPS))].scriptWitness.stack[i % (2 * NUM_DROPS)] = b'a' * (195 + extra_bytes) additional_bytes -= extra_bytes i += 1 block.vtx[0].vout.pop() # Remove old commitment add_witness_commitment(block) block.solve() vsize = get_virtual_size(block) assert_equal(vsize, MAX_BLOCK_BASE_SIZE + 1) # Make sure that our test case would exceed the old max-network-message # limit assert len(block.serialize()) > 2 * 1024 * 1024 test_witness_block(self.nodes[0], self.test_node, block, accepted=False) # Now resize the second transaction to make the block fit. cur_length = len(block.vtx[-1].wit.vtxinwit[0].scriptWitness.stack[0]) block.vtx[-1].wit.vtxinwit[0].scriptWitness.stack[0] = b'a' * (cur_length - 1) block.vtx[0].vout.pop() add_witness_commitment(block) block.solve() assert get_virtual_size(block) == MAX_BLOCK_BASE_SIZE test_witness_block(self.nodes[0], self.test_node, block, accepted=True) # Update available utxo's self.utxo.pop(0) self.utxo.append(UTXO(block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue)) @subtest def test_submit_block(self): """Test that submitblock adds the nonce automatically when possible.""" block = self.build_next_block() # Try using a custom nonce and then don't supply it. # This shouldn't possibly work. add_witness_commitment(block, nonce=1) block.vtx[0].wit = CTxWitness() # drop the nonce block.solve() self.nodes[0].submitblock(block.serialize().hex()) assert self.nodes[0].getbestblockhash() != block.hash # Now redo commitment with the standard nonce, but let cedicoind fill it in. add_witness_commitment(block, nonce=0) block.vtx[0].wit = CTxWitness() block.solve() self.nodes[0].submitblock(block.serialize().hex()) assert_equal(self.nodes[0].getbestblockhash(), block.hash) # This time, add a tx with non-empty witness, but don't supply # the commitment. block_2 = self.build_next_block() add_witness_commitment(block_2) block_2.solve() # Drop commitment and nonce -- submitblock should not fill in. block_2.vtx[0].vout.pop() block_2.vtx[0].wit = CTxWitness() self.nodes[0].submitblock(block_2.serialize().hex()) # Tip should not advance! assert self.nodes[0].getbestblockhash() != block_2.hash @subtest def test_extra_witness_data(self): """Test extra witness data in a transaction.""" block = self.build_next_block() witness_program = CScript([OP_DROP, OP_TRUE]) witness_hash = sha256(witness_program) script_pubkey = CScript([OP_0, witness_hash]) # First try extra witness data on a tx that doesn't require a witness tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue - 2000, script_pubkey)) tx.vout.append(CTxOut(1000, CScript([OP_TRUE]))) # non-witness output tx.wit.vtxinwit.append(CTxInWitness()) tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([])] tx.rehash() self.update_witness_block_with_transactions(block, [tx]) # Extra witness data should not be allowed. test_witness_block(self.nodes[0], self.test_node, block, accepted=False) # Try extra signature data. Ok if we're not spending a witness output. block.vtx[1].wit.vtxinwit = [] block.vtx[1].vin[0].scriptSig = CScript([OP_0]) block.vtx[1].rehash() add_witness_commitment(block) block.solve() test_witness_block(self.nodes[0], self.test_node, block, accepted=True) # Now try extra witness/signature data on an input that DOES require a # witness tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) # witness output tx2.vin.append(CTxIn(COutPoint(tx.sha256, 1), b"")) # non-witness tx2.vout.append(CTxOut(tx.vout[0].nValue, CScript([OP_TRUE]))) tx2.wit.vtxinwit.extend([CTxInWitness(), CTxInWitness()]) tx2.wit.vtxinwit[0].scriptWitness.stack = [CScript([CScriptNum(1)]), CScript([CScriptNum(1)]), witness_program] tx2.wit.vtxinwit[1].scriptWitness.stack = [CScript([OP_TRUE])] block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx2]) # This has extra witness data, so it should fail. test_witness_block(self.nodes[0], self.test_node, block, accepted=False) # Now get rid of the extra witness, but add extra scriptSig data tx2.vin[0].scriptSig = CScript([OP_TRUE]) tx2.vin[1].scriptSig = CScript([OP_TRUE]) tx2.wit.vtxinwit[0].scriptWitness.stack.pop(0) tx2.wit.vtxinwit[1].scriptWitness.stack = [] tx2.rehash() add_witness_commitment(block) block.solve() # This has extra signature data for a witness input, so it should fail. test_witness_block(self.nodes[0], self.test_node, block, accepted=False) # Now get rid of the extra scriptsig on the witness input, and verify # success (even with extra scriptsig data in the non-witness input) tx2.vin[0].scriptSig = b"" tx2.rehash() add_witness_commitment(block) block.solve() test_witness_block(self.nodes[0], self.test_node, block, accepted=True) # Update utxo for later tests self.utxo.pop(0) self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) @subtest def test_max_witness_push_length(self): """Test that witness stack can only allow up to 520 byte pushes.""" block = self.build_next_block() witness_program = CScript([OP_DROP, OP_TRUE]) witness_hash = sha256(witness_program) script_pubkey = CScript([OP_0, witness_hash]) tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue - 1000, script_pubkey)) tx.rehash() tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) tx2.vout.append(CTxOut(tx.vout[0].nValue - 1000, CScript([OP_TRUE]))) tx2.wit.vtxinwit.append(CTxInWitness()) # First try a 521-byte stack element tx2.wit.vtxinwit[0].scriptWitness.stack = [b'a' * (MAX_SCRIPT_ELEMENT_SIZE + 1), witness_program] tx2.rehash() self.update_witness_block_with_transactions(block, [tx, tx2]) test_witness_block(self.nodes[0], self.test_node, block, accepted=False) # Now reduce the length of the stack element tx2.wit.vtxinwit[0].scriptWitness.stack[0] = b'a' * (MAX_SCRIPT_ELEMENT_SIZE) add_witness_commitment(block) block.solve() test_witness_block(self.nodes[0], self.test_node, block, accepted=True) # Update the utxo for later tests self.utxo.pop() self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) @subtest def test_max_witness_program_length(self): """Test that witness outputs greater than 10kB can't be spent.""" MAX_PROGRAM_LENGTH = 10000 # This program is 19 max pushes (9937 bytes), then 64 more opcode-bytes. long_witness_program = CScript([b'a' * 520] * 19 + [OP_DROP] * 63 + [OP_TRUE]) assert len(long_witness_program) == MAX_PROGRAM_LENGTH + 1 long_witness_hash = sha256(long_witness_program) long_script_pubkey = CScript([OP_0, long_witness_hash]) block = self.build_next_block() tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue - 1000, long_script_pubkey)) tx.rehash() tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) tx2.vout.append(CTxOut(tx.vout[0].nValue - 1000, CScript([OP_TRUE]))) tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[0].scriptWitness.stack = [b'a'] * 44 + [long_witness_program] tx2.rehash() self.update_witness_block_with_transactions(block, [tx, tx2]) test_witness_block(self.nodes[0], self.test_node, block, accepted=False) # Try again with one less byte in the witness program witness_program = CScript([b'a' * 520] * 19 + [OP_DROP] * 62 + [OP_TRUE]) assert len(witness_program) == MAX_PROGRAM_LENGTH witness_hash = sha256(witness_program) script_pubkey = CScript([OP_0, witness_hash]) tx.vout[0] = CTxOut(tx.vout[0].nValue, script_pubkey) tx.rehash() tx2.vin[0].prevout.hash = tx.sha256 tx2.wit.vtxinwit[0].scriptWitness.stack = [b'a'] * 43 + [witness_program] tx2.rehash() block.vtx = [block.vtx[0]] self.update_witness_block_with_transactions(block, [tx, tx2]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) self.utxo.pop() self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) @subtest def test_witness_input_length(self): """Test that vin length must match vtxinwit length.""" witness_program = CScript([OP_DROP, OP_TRUE]) witness_hash = sha256(witness_program) script_pubkey = CScript([OP_0, witness_hash]) # Create a transaction that splits our utxo into many outputs tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) value = self.utxo[0].nValue for i in range(10): tx.vout.append(CTxOut(int(value / 10), script_pubkey)) tx.vout[0].nValue -= 1000 assert tx.vout[0].nValue >= 0 block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) # Try various ways to spend tx that should all break. # This "broken" transaction serializer will not normalize # the length of vtxinwit. class BrokenCTransaction(CTransaction): def serialize_with_witness(self): flags = 0 if not self.wit.is_null(): flags |= 1 r = b"" r += struct.pack("<i", self.nVersion) if flags: dummy = [] r += ser_vector(dummy) r += struct.pack("<B", flags) r += ser_vector(self.vin) r += ser_vector(self.vout) if flags & 1: r += self.wit.serialize() r += struct.pack("<I", self.nLockTime) return r tx2 = BrokenCTransaction() for i in range(10): tx2.vin.append(CTxIn(COutPoint(tx.sha256, i), b"")) tx2.vout.append(CTxOut(value - 3000, CScript([OP_TRUE]))) # First try using a too long vtxinwit for i in range(11): tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[i].scriptWitness.stack = [b'a', witness_program] block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx2]) test_witness_block(self.nodes[0], self.test_node, block, accepted=False) # Now try using a too short vtxinwit tx2.wit.vtxinwit.pop() tx2.wit.vtxinwit.pop() block.vtx = [block.vtx[0]] self.update_witness_block_with_transactions(block, [tx2]) test_witness_block(self.nodes[0], self.test_node, block, accepted=False) # Now make one of the intermediate witnesses be incorrect tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[-1].scriptWitness.stack = [b'a', witness_program] tx2.wit.vtxinwit[5].scriptWitness.stack = [witness_program] block.vtx = [block.vtx[0]] self.update_witness_block_with_transactions(block, [tx2]) test_witness_block(self.nodes[0], self.test_node, block, accepted=False) # Fix the broken witness and the block should be accepted. tx2.wit.vtxinwit[5].scriptWitness.stack = [b'a', witness_program] block.vtx = [block.vtx[0]] self.update_witness_block_with_transactions(block, [tx2]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) self.utxo.pop() self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) @subtest def test_tx_relay_after_segwit_activation(self): """Test transaction relay after segwit activation. After segwit activates, verify that mempool: - rejects transactions with unnecessary/extra witnesses - accepts transactions with valid witnesses and that witness transactions are relayed to non-upgraded peers.""" # Generate a transaction that doesn't require a witness, but send it # with a witness. Should be rejected because we can't use a witness # when spending a non-witness output. tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue - 1000, CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE]))) tx.wit.vtxinwit.append(CTxInWitness()) tx.wit.vtxinwit[0].scriptWitness.stack = [b'a'] tx.rehash() tx_hash = tx.sha256 # Verify that unnecessary witnesses are rejected. self.test_node.announce_tx_and_wait_for_getdata(tx) assert_equal(len(self.nodes[0].getrawmempool()), 0) test_transaction_acceptance(self.nodes[0], self.test_node, tx, with_witness=True, accepted=False) # Verify that removing the witness succeeds. self.test_node.announce_tx_and_wait_for_getdata(tx) test_transaction_acceptance(self.nodes[0], self.test_node, tx, with_witness=False, accepted=True) # Now try to add extra witness data to a valid witness tx. witness_program = CScript([OP_TRUE]) witness_hash = sha256(witness_program) script_pubkey = CScript([OP_0, witness_hash]) tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx_hash, 0), b"")) tx2.vout.append(CTxOut(tx.vout[0].nValue - 1000, script_pubkey)) tx2.rehash() tx3 = CTransaction() tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), b"")) tx3.wit.vtxinwit.append(CTxInWitness()) # Add too-large for IsStandard witness and check that it does not enter reject filter p2sh_program = CScript([OP_TRUE]) p2sh_pubkey = hash160(p2sh_program) witness_program2 = CScript([b'a' * 400000]) tx3.vout.append(CTxOut(tx2.vout[0].nValue - 1000, CScript([OP_HASH160, p2sh_pubkey, OP_EQUAL]))) tx3.wit.vtxinwit[0].scriptWitness.stack = [witness_program2] tx3.rehash() # Node will not be blinded to the transaction self.std_node.announce_tx_and_wait_for_getdata(tx3) test_transaction_acceptance(self.nodes[1], self.std_node, tx3, True, False, 'tx-size') self.std_node.announce_tx_and_wait_for_getdata(tx3) test_transaction_acceptance(self.nodes[1], self.std_node, tx3, True, False, 'tx-size') # Remove witness stuffing, instead add extra witness push on stack tx3.vout[0] = CTxOut(tx2.vout[0].nValue - 1000, CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE])) tx3.wit.vtxinwit[0].scriptWitness.stack = [CScript([CScriptNum(1)]), witness_program] tx3.rehash() test_transaction_acceptance(self.nodes[0], self.test_node, tx2, with_witness=True, accepted=True) test_transaction_acceptance(self.nodes[0], self.test_node, tx3, with_witness=True, accepted=False) # Get rid of the extra witness, and verify acceptance. tx3.wit.vtxinwit[0].scriptWitness.stack = [witness_program] # Also check that old_node gets a tx announcement, even though this is # a witness transaction. self.old_node.wait_for_inv([CInv(1, tx2.sha256)]) # wait until tx2 was inv'ed test_transaction_acceptance(self.nodes[0], self.test_node, tx3, with_witness=True, accepted=True) self.old_node.wait_for_inv([CInv(1, tx3.sha256)]) # Test that getrawtransaction returns correct witness information # hash, size, vsize raw_tx = self.nodes[0].getrawtransaction(tx3.hash, 1) assert_equal(int(raw_tx["hash"], 16), tx3.calc_sha256(True)) assert_equal(raw_tx["size"], len(tx3.serialize_with_witness())) weight = len(tx3.serialize_with_witness()) + 3 * len(tx3.serialize_without_witness()) vsize = math.ceil(weight / 4) assert_equal(raw_tx["vsize"], vsize) assert_equal(raw_tx["weight"], weight) assert_equal(len(raw_tx["vin"][0]["txinwitness"]), 1) assert_equal(raw_tx["vin"][0]["txinwitness"][0], witness_program.hex()) assert vsize != raw_tx["size"] # Cleanup: mine the transactions and update utxo for next test self.nodes[0].generate(1) assert_equal(len(self.nodes[0].getrawmempool()), 0) self.utxo.pop(0) self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue)) @subtest def test_segwit_versions(self): """Test validity of future segwit version transactions. Future segwit versions are non-standard to spend, but valid in blocks. Sending to future segwit versions is always allowed. Can run this before and after segwit activation.""" NUM_SEGWIT_VERSIONS = 17 # will test OP_0, OP1, ..., OP_16 if len(self.utxo) < NUM_SEGWIT_VERSIONS: tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) split_value = (self.utxo[0].nValue - 4000) // NUM_SEGWIT_VERSIONS for i in range(NUM_SEGWIT_VERSIONS): tx.vout.append(CTxOut(split_value, CScript([OP_TRUE]))) tx.rehash() block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) self.utxo.pop(0) for i in range(NUM_SEGWIT_VERSIONS): self.utxo.append(UTXO(tx.sha256, i, split_value)) self.sync_blocks() temp_utxo = [] tx = CTransaction() witness_program = CScript([OP_TRUE]) witness_hash = sha256(witness_program) assert_equal(len(self.nodes[1].getrawmempool()), 0) for version in list(range(OP_1, OP_16 + 1)) + [OP_0]: # First try to spend to a future version segwit script_pubkey. script_pubkey = CScript([CScriptOp(version), witness_hash]) tx.vin = [CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")] tx.vout = [CTxOut(self.utxo[0].nValue - 1000, script_pubkey)] tx.rehash() test_transaction_acceptance(self.nodes[1], self.std_node, tx, with_witness=True, accepted=False) test_transaction_acceptance(self.nodes[0], self.test_node, tx, with_witness=True, accepted=True) self.utxo.pop(0) temp_utxo.append(UTXO(tx.sha256, 0, tx.vout[0].nValue)) self.nodes[0].generate(1) # Mine all the transactions self.sync_blocks() assert len(self.nodes[0].getrawmempool()) == 0 # Finally, verify that version 0 -> version 1 transactions # are standard script_pubkey = CScript([CScriptOp(OP_1), witness_hash]) tx2 = CTransaction() tx2.vin = [CTxIn(COutPoint(tx.sha256, 0), b"")] tx2.vout = [CTxOut(tx.vout[0].nValue - 1000, script_pubkey)] tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[0].scriptWitness.stack = [witness_program] tx2.rehash() # Gets accepted to both policy-enforcing nodes and others. test_transaction_acceptance(self.nodes[0], self.test_node, tx2, with_witness=True, accepted=True) test_transaction_acceptance(self.nodes[1], self.std_node, tx2, with_witness=True, accepted=True) temp_utxo.pop() # last entry in temp_utxo was the output we just spent temp_utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) # Spend everything in temp_utxo back to an OP_TRUE output. tx3 = CTransaction() total_value = 0 for i in temp_utxo: tx3.vin.append(CTxIn(COutPoint(i.sha256, i.n), b"")) tx3.wit.vtxinwit.append(CTxInWitness()) total_value += i.nValue tx3.wit.vtxinwit[-1].scriptWitness.stack = [witness_program] tx3.vout.append(CTxOut(total_value - 1000, CScript([OP_TRUE]))) tx3.rehash() # Spending a higher version witness output is not allowed by policy, # even with fRequireStandard=false. test_transaction_acceptance(self.nodes[0], self.test_node, tx3, with_witness=True, accepted=False, reason="reserved for soft-fork upgrades") # Building a block with the transaction must be valid, however. block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx2, tx3]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) self.sync_blocks() # Add utxo to our list self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue)) @subtest def test_premature_coinbase_witness_spend(self): block = self.build_next_block() # Change the output of the block to be a witness output. witness_program = CScript([OP_TRUE]) witness_hash = sha256(witness_program) script_pubkey = CScript([OP_0, witness_hash]) block.vtx[0].vout[0].scriptPubKey = script_pubkey # This next line will rehash the coinbase and update the merkle # root, and solve. self.update_witness_block_with_transactions(block, []) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) spend_tx = CTransaction() spend_tx.vin = [CTxIn(COutPoint(block.vtx[0].sha256, 0), b"")] spend_tx.vout = [CTxOut(block.vtx[0].vout[0].nValue, witness_program)] spend_tx.wit.vtxinwit.append(CTxInWitness()) spend_tx.wit.vtxinwit[0].scriptWitness.stack = [witness_program] spend_tx.rehash() # Now test a premature spend. self.nodes[0].generate(98) self.sync_blocks() block2 = self.build_next_block() self.update_witness_block_with_transactions(block2, [spend_tx]) test_witness_block(self.nodes[0], self.test_node, block2, accepted=False) # Advancing one more block should allow the spend. self.nodes[0].generate(1) block2 = self.build_next_block() self.update_witness_block_with_transactions(block2, [spend_tx]) test_witness_block(self.nodes[0], self.test_node, block2, accepted=True) self.sync_blocks() @subtest def test_uncompressed_pubkey(self): """Test uncompressed pubkey validity in segwit transactions. Uncompressed pubkeys are no longer supported in default relay policy, but (for now) are still valid in blocks.""" # Segwit transactions using uncompressed pubkeys are not accepted # under default policy, but should still pass consensus. key = ECKey() key.generate(False) pubkey = key.get_pubkey().get_bytes() assert_equal(len(pubkey), 65) # This should be an uncompressed pubkey utxo = self.utxo.pop(0) # Test 1: P2WPKH # First create a P2WPKH output that uses an uncompressed pubkey pubkeyhash = hash160(pubkey) script_pkh = CScript([OP_0, pubkeyhash]) tx = CTransaction() tx.vin.append(CTxIn(COutPoint(utxo.sha256, utxo.n), b"")) tx.vout.append(CTxOut(utxo.nValue - 1000, script_pkh)) tx.rehash() # Confirm it in a block. block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) # Now try to spend it. Send it to a P2WSH output, which we'll # use in the next test. witness_program = CScript([pubkey, CScriptOp(OP_CHECKSIG)]) witness_hash = sha256(witness_program) script_wsh = CScript([OP_0, witness_hash]) tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) tx2.vout.append(CTxOut(tx.vout[0].nValue - 1000, script_wsh)) script = get_p2pkh_script(pubkeyhash) sig_hash = SegwitVersion1SignatureHash(script, tx2, 0, SIGHASH_ALL, tx.vout[0].nValue) signature = key.sign_ecdsa(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[0].scriptWitness.stack = [signature, pubkey] tx2.rehash() # Should fail policy test. test_transaction_acceptance(self.nodes[0], self.test_node, tx2, True, False, 'non-mandatory-script-verify-flag (Using non-compressed keys in segwit)') # But passes consensus. block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx2]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) # Test 2: P2WSH # Try to spend the P2WSH output created in last test. # Send it to a P2SH(P2WSH) output, which we'll use in the next test. p2sh_witness_hash = hash160(script_wsh) script_p2sh = CScript([OP_HASH160, p2sh_witness_hash, OP_EQUAL]) script_sig = CScript([script_wsh]) tx3 = CTransaction() tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), b"")) tx3.vout.append(CTxOut(tx2.vout[0].nValue - 1000, script_p2sh)) tx3.wit.vtxinwit.append(CTxInWitness()) sign_p2pk_witness_input(witness_program, tx3, 0, SIGHASH_ALL, tx2.vout[0].nValue, key) # Should fail policy test. test_transaction_acceptance(self.nodes[0], self.test_node, tx3, True, False, 'non-mandatory-script-verify-flag (Using non-compressed keys in segwit)') # But passes consensus. block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx3]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) # Test 3: P2SH(P2WSH) # Try to spend the P2SH output created in the last test. # Send it to a P2PKH output, which we'll use in the next test. script_pubkey = get_p2pkh_script(pubkeyhash) tx4 = CTransaction() tx4.vin.append(CTxIn(COutPoint(tx3.sha256, 0), script_sig)) tx4.vout.append(CTxOut(tx3.vout[0].nValue - 1000, script_pubkey)) tx4.wit.vtxinwit.append(CTxInWitness()) sign_p2pk_witness_input(witness_program, tx4, 0, SIGHASH_ALL, tx3.vout[0].nValue, key) # Should fail policy test. test_transaction_acceptance(self.nodes[0], self.test_node, tx4, True, False, 'non-mandatory-script-verify-flag (Using non-compressed keys in segwit)') block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx4]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) # Test 4: Uncompressed pubkeys should still be valid in non-segwit # transactions. tx5 = CTransaction() tx5.vin.append(CTxIn(COutPoint(tx4.sha256, 0), b"")) tx5.vout.append(CTxOut(tx4.vout[0].nValue - 1000, CScript([OP_TRUE]))) (sig_hash, err) = SignatureHash(script_pubkey, tx5, 0, SIGHASH_ALL) signature = key.sign_ecdsa(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL tx5.vin[0].scriptSig = CScript([signature, pubkey]) tx5.rehash() # Should pass policy and consensus. test_transaction_acceptance(self.nodes[0], self.test_node, tx5, True, True) block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx5]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) self.utxo.append(UTXO(tx5.sha256, 0, tx5.vout[0].nValue)) @subtest def test_signature_version_1(self): key = ECKey() key.generate() pubkey = key.get_pubkey().get_bytes() witness_program = CScript([pubkey, CScriptOp(OP_CHECKSIG)]) witness_hash = sha256(witness_program) script_pubkey = CScript([OP_0, witness_hash]) # First create a witness output for use in the tests. tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue - 1000, script_pubkey)) tx.rehash() test_transaction_acceptance(self.nodes[0], self.test_node, tx, with_witness=True, accepted=True) # Mine this transaction in preparation for following tests. block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) self.sync_blocks() self.utxo.pop(0) # Test each hashtype prev_utxo = UTXO(tx.sha256, 0, tx.vout[0].nValue) for sigflag in [0, SIGHASH_ANYONECANPAY]: for hashtype in [SIGHASH_ALL, SIGHASH_NONE, SIGHASH_SINGLE]: hashtype |= sigflag block = self.build_next_block() tx = CTransaction() tx.vin.append(CTxIn(COutPoint(prev_utxo.sha256, prev_utxo.n), b"")) tx.vout.append(CTxOut(prev_utxo.nValue - 1000, script_pubkey)) tx.wit.vtxinwit.append(CTxInWitness()) # Too-large input value sign_p2pk_witness_input(witness_program, tx, 0, hashtype, prev_utxo.nValue + 1, key) self.update_witness_block_with_transactions(block, [tx]) test_witness_block(self.nodes[0], self.test_node, block, accepted=False) # Too-small input value sign_p2pk_witness_input(witness_program, tx, 0, hashtype, prev_utxo.nValue - 1, key) block.vtx.pop() # remove last tx self.update_witness_block_with_transactions(block, [tx]) test_witness_block(self.nodes[0], self.test_node, block, accepted=False) # Now try correct value sign_p2pk_witness_input(witness_program, tx, 0, hashtype, prev_utxo.nValue, key) block.vtx.pop() self.update_witness_block_with_transactions(block, [tx]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) prev_utxo = UTXO(tx.sha256, 0, tx.vout[0].nValue) # Test combinations of signature hashes. # Split the utxo into a lot of outputs. # Randomly choose up to 10 to spend, sign with different hashtypes, and # output to a random number of outputs. Repeat NUM_SIGHASH_TESTS times. # Ensure that we've tested a situation where we use SIGHASH_SINGLE with # an input index > number of outputs. NUM_SIGHASH_TESTS = 500 temp_utxos = [] tx = CTransaction() tx.vin.append(CTxIn(COutPoint(prev_utxo.sha256, prev_utxo.n), b"")) split_value = prev_utxo.nValue // NUM_SIGHASH_TESTS for i in range(NUM_SIGHASH_TESTS): tx.vout.append(CTxOut(split_value, script_pubkey)) tx.wit.vtxinwit.append(CTxInWitness()) sign_p2pk_witness_input(witness_program, tx, 0, SIGHASH_ALL, prev_utxo.nValue, key) for i in range(NUM_SIGHASH_TESTS): temp_utxos.append(UTXO(tx.sha256, i, split_value)) block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) block = self.build_next_block() used_sighash_single_out_of_bounds = False for i in range(NUM_SIGHASH_TESTS): # Ping regularly to keep the connection alive if (not i % 100): self.test_node.sync_with_ping() # Choose random number of inputs to use. num_inputs = random.randint(1, 10) # Create a slight bias for producing more utxos num_outputs = random.randint(1, 11) random.shuffle(temp_utxos) assert len(temp_utxos) > num_inputs tx = CTransaction() total_value = 0 for i in range(num_inputs): tx.vin.append(CTxIn(COutPoint(temp_utxos[i].sha256, temp_utxos[i].n), b"")) tx.wit.vtxinwit.append(CTxInWitness()) total_value += temp_utxos[i].nValue split_value = total_value // num_outputs for i in range(num_outputs): tx.vout.append(CTxOut(split_value, script_pubkey)) for i in range(num_inputs): # Now try to sign each input, using a random hashtype. anyonecanpay = 0 if random.randint(0, 1): anyonecanpay = SIGHASH_ANYONECANPAY hashtype = random.randint(1, 3) | anyonecanpay sign_p2pk_witness_input(witness_program, tx, i, hashtype, temp_utxos[i].nValue, key) if (hashtype == SIGHASH_SINGLE and i >= num_outputs): used_sighash_single_out_of_bounds = True tx.rehash() for i in range(num_outputs): temp_utxos.append(UTXO(tx.sha256, i, split_value)) temp_utxos = temp_utxos[num_inputs:] block.vtx.append(tx) # Test the block periodically, if we're close to maxblocksize if (get_virtual_size(block) > MAX_BLOCK_BASE_SIZE - 1000): self.update_witness_block_with_transactions(block, []) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) block = self.build_next_block() if (not used_sighash_single_out_of_bounds): self.log.info("WARNING: this test run didn't attempt SIGHASH_SINGLE with out-of-bounds index value") # Test the transactions we've added to the block if (len(block.vtx) > 1): self.update_witness_block_with_transactions(block, []) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) # Now test witness version 0 P2PKH transactions pubkeyhash = hash160(pubkey) script_pkh = CScript([OP_0, pubkeyhash]) tx = CTransaction() tx.vin.append(CTxIn(COutPoint(temp_utxos[0].sha256, temp_utxos[0].n), b"")) tx.vout.append(CTxOut(temp_utxos[0].nValue, script_pkh)) tx.wit.vtxinwit.append(CTxInWitness()) sign_p2pk_witness_input(witness_program, tx, 0, SIGHASH_ALL, temp_utxos[0].nValue, key) tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) tx2.vout.append(CTxOut(tx.vout[0].nValue, CScript([OP_TRUE]))) script = get_p2pkh_script(pubkeyhash) sig_hash = SegwitVersion1SignatureHash(script, tx2, 0, SIGHASH_ALL, tx.vout[0].nValue) signature = key.sign_ecdsa(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL # Check that we can't have a scriptSig tx2.vin[0].scriptSig = CScript([signature, pubkey]) block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx, tx2]) test_witness_block(self.nodes[0], self.test_node, block, accepted=False) # Move the signature to the witness. block.vtx.pop() tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[0].scriptWitness.stack = [signature, pubkey] tx2.vin[0].scriptSig = b"" tx2.rehash() self.update_witness_block_with_transactions(block, [tx2]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) temp_utxos.pop(0) # Update self.utxos for later tests by creating two outputs # that consolidate all the coins in temp_utxos. output_value = sum(i.nValue for i in temp_utxos) // 2 tx = CTransaction() index = 0 # Just spend to our usual anyone-can-spend output tx.vout = [CTxOut(output_value, CScript([OP_TRUE]))] * 2 for i in temp_utxos: # Use SIGHASH_ALL|SIGHASH_ANYONECANPAY so we can build up # the signatures as we go. tx.vin.append(CTxIn(COutPoint(i.sha256, i.n), b"")) tx.wit.vtxinwit.append(CTxInWitness()) sign_p2pk_witness_input(witness_program, tx, index, SIGHASH_ALL | SIGHASH_ANYONECANPAY, i.nValue, key) index += 1 block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) for i in range(len(tx.vout)): self.utxo.append(UTXO(tx.sha256, i, tx.vout[i].nValue)) @subtest def test_non_standard_witness_blinding(self): """Test behavior of unnecessary witnesses in transactions does not blind the node for the transaction""" # Create a p2sh output -- this is so we can pass the standardness # rules (an anyone-can-spend OP_TRUE would be rejected, if not wrapped # in P2SH). p2sh_program = CScript([OP_TRUE]) p2sh_pubkey = hash160(p2sh_program) script_pubkey = CScript([OP_HASH160, p2sh_pubkey, OP_EQUAL]) # Now check that unnecessary witnesses can't be used to blind a node # to a transaction, eg by violating standardness checks. tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue - 1000, script_pubkey)) tx.rehash() test_transaction_acceptance(self.nodes[0], self.test_node, tx, False, True) self.nodes[0].generate(1) self.sync_blocks() # We'll add an unnecessary witness to this transaction that would cause # it to be non-standard, to test that violating policy with a witness # doesn't blind a node to a transaction. Transactions # rejected for having a witness shouldn't be added # to the rejection cache. tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), CScript([p2sh_program]))) tx2.vout.append(CTxOut(tx.vout[0].nValue - 1000, script_pubkey)) tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[0].scriptWitness.stack = [b'a' * 400] tx2.rehash() # This will be rejected due to a policy check: # No witness is allowed, since it is not a witness program but a p2sh program test_transaction_acceptance(self.nodes[1], self.std_node, tx2, True, False, 'bad-witness-nonstandard') # If we send without witness, it should be accepted. test_transaction_acceptance(self.nodes[1], self.std_node, tx2, False, True) # Now create a new anyone-can-spend utxo for the next test. tx3 = CTransaction() tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), CScript([p2sh_program]))) tx3.vout.append(CTxOut(tx2.vout[0].nValue - 1000, CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE]))) tx3.rehash() test_transaction_acceptance(self.nodes[0], self.test_node, tx2, False, True) test_transaction_acceptance(self.nodes[0], self.test_node, tx3, False, True) self.nodes[0].generate(1) self.sync_blocks() # Update our utxo list; we spent the first entry. self.utxo.pop(0) self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue)) @subtest def test_non_standard_witness(self): """Test detection of non-standard P2WSH witness""" pad = chr(1).encode('latin-1') # Create scripts for tests scripts = [] scripts.append(CScript([OP_DROP] * 100)) scripts.append(CScript([OP_DROP] * 99)) scripts.append(CScript([pad * 59] * 59 + [OP_DROP] * 60)) scripts.append(CScript([pad * 59] * 59 + [OP_DROP] * 61)) p2wsh_scripts = [] tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) # For each script, generate a pair of P2WSH and P2SH-P2WSH output. outputvalue = (self.utxo[0].nValue - 1000) // (len(scripts) * 2) for i in scripts: p2wsh = CScript([OP_0, sha256(i)]) p2sh = hash160(p2wsh) p2wsh_scripts.append(p2wsh) tx.vout.append(CTxOut(outputvalue, p2wsh)) tx.vout.append(CTxOut(outputvalue, CScript([OP_HASH160, p2sh, OP_EQUAL]))) tx.rehash() txid = tx.sha256 test_transaction_acceptance(self.nodes[0], self.test_node, tx, with_witness=False, accepted=True) self.nodes[0].generate(1) self.sync_blocks() # Creating transactions for tests p2wsh_txs = [] p2sh_txs = [] for i in range(len(scripts)): p2wsh_tx = CTransaction() p2wsh_tx.vin.append(CTxIn(COutPoint(txid, i * 2))) p2wsh_tx.vout.append(CTxOut(outputvalue - 5000, CScript([OP_0, hash160(hex_str_to_bytes(""))]))) p2wsh_tx.wit.vtxinwit.append(CTxInWitness()) p2wsh_tx.rehash() p2wsh_txs.append(p2wsh_tx) p2sh_tx = CTransaction() p2sh_tx.vin.append(CTxIn(COutPoint(txid, i * 2 + 1), CScript([p2wsh_scripts[i]]))) p2sh_tx.vout.append(CTxOut(outputvalue - 5000, CScript([OP_0, hash160(hex_str_to_bytes(""))]))) p2sh_tx.wit.vtxinwit.append(CTxInWitness()) p2sh_tx.rehash() p2sh_txs.append(p2sh_tx) # Testing native P2WSH # Witness stack size, excluding witnessScript, over 100 is non-standard p2wsh_txs[0].wit.vtxinwit[0].scriptWitness.stack = [pad] * 101 + [scripts[0]] test_transaction_acceptance(self.nodes[1], self.std_node, p2wsh_txs[0], True, False, 'bad-witness-nonstandard') # Non-standard nodes should accept test_transaction_acceptance(self.nodes[0], self.test_node, p2wsh_txs[0], True, True) # Stack element size over 80 bytes is non-standard p2wsh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 81] * 100 + [scripts[1]] test_transaction_acceptance(self.nodes[1], self.std_node, p2wsh_txs[1], True, False, 'bad-witness-nonstandard') # Non-standard nodes should accept test_transaction_acceptance(self.nodes[0], self.test_node, p2wsh_txs[1], True, True) # Standard nodes should accept if element size is not over 80 bytes p2wsh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 80] * 100 + [scripts[1]] test_transaction_acceptance(self.nodes[1], self.std_node, p2wsh_txs[1], True, True) # witnessScript size at 3600 bytes is standard p2wsh_txs[2].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, scripts[2]] test_transaction_acceptance(self.nodes[0], self.test_node, p2wsh_txs[2], True, True) test_transaction_acceptance(self.nodes[1], self.std_node, p2wsh_txs[2], True, True) # witnessScript size at 3601 bytes is non-standard p2wsh_txs[3].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, pad, scripts[3]] test_transaction_acceptance(self.nodes[1], self.std_node, p2wsh_txs[3], True, False, 'bad-witness-nonstandard') # Non-standard nodes should accept test_transaction_acceptance(self.nodes[0], self.test_node, p2wsh_txs[3], True, True) # Repeating the same tests with P2SH-P2WSH p2sh_txs[0].wit.vtxinwit[0].scriptWitness.stack = [pad] * 101 + [scripts[0]] test_transaction_acceptance(self.nodes[1], self.std_node, p2sh_txs[0], True, False, 'bad-witness-nonstandard') test_transaction_acceptance(self.nodes[0], self.test_node, p2sh_txs[0], True, True) p2sh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 81] * 100 + [scripts[1]] test_transaction_acceptance(self.nodes[1], self.std_node, p2sh_txs[1], True, False, 'bad-witness-nonstandard') test_transaction_acceptance(self.nodes[0], self.test_node, p2sh_txs[1], True, True) p2sh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 80] * 100 + [scripts[1]] test_transaction_acceptance(self.nodes[1], self.std_node, p2sh_txs[1], True, True) p2sh_txs[2].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, scripts[2]] test_transaction_acceptance(self.nodes[0], self.test_node, p2sh_txs[2], True, True) test_transaction_acceptance(self.nodes[1], self.std_node, p2sh_txs[2], True, True) p2sh_txs[3].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, pad, scripts[3]] test_transaction_acceptance(self.nodes[1], self.std_node, p2sh_txs[3], True, False, 'bad-witness-nonstandard') test_transaction_acceptance(self.nodes[0], self.test_node, p2sh_txs[3], True, True) self.nodes[0].generate(1) # Mine and clean up the mempool of non-standard node # Valid but non-standard transactions in a block should be accepted by standard node self.sync_blocks() assert_equal(len(self.nodes[0].getrawmempool()), 0) assert_equal(len(self.nodes[1].getrawmempool()), 0) self.utxo.pop(0) @subtest def test_upgrade_after_activation(self): """Test the behavior of starting up a segwit-aware node after the softfork has activated.""" # Restart with the new binary self.stop_node(2) self.start_node(2, extra_args=["-segwitheight={}".format(SEGWIT_HEIGHT)]) connect_nodes(self.nodes[0], 2) self.sync_blocks() # Make sure that this peer thinks segwit has activated. assert softfork_active(self.nodes[2], 'segwit') # Make sure this peer's blocks match those of node0. height = self.nodes[2].getblockcount() while height >= 0: block_hash = self.nodes[2].getblockhash(height) assert_equal(block_hash, self.nodes[0].getblockhash(height)) assert_equal(self.nodes[0].getblock(block_hash), self.nodes[2].getblock(block_hash)) height -= 1 @subtest def test_witness_sigops(self): """Test sigop counting is correct inside witnesses.""" # Keep this under MAX_OPS_PER_SCRIPT (201) witness_program = CScript([OP_TRUE, OP_IF, OP_TRUE, OP_ELSE] + [OP_CHECKMULTISIG] * 5 + [OP_CHECKSIG] * 193 + [OP_ENDIF]) witness_hash = sha256(witness_program) script_pubkey = CScript([OP_0, witness_hash]) sigops_per_script = 20 * 5 + 193 * 1 # We'll produce 2 extra outputs, one with a program that would take us # over max sig ops, and one with a program that would exactly reach max # sig ops outputs = (MAX_SIGOP_COST // sigops_per_script) + 2 extra_sigops_available = MAX_SIGOP_COST % sigops_per_script # We chose the number of checkmultisigs/checksigs to make this work: assert extra_sigops_available < 100 # steer clear of MAX_OPS_PER_SCRIPT # This script, when spent with the first # N(=MAX_SIGOP_COST//sigops_per_script) outputs of our transaction, # would push us just over the block sigop limit. witness_program_toomany = CScript([OP_TRUE, OP_IF, OP_TRUE, OP_ELSE] + [OP_CHECKSIG] * (extra_sigops_available + 1) + [OP_ENDIF]) witness_hash_toomany = sha256(witness_program_toomany) script_pubkey_toomany = CScript([OP_0, witness_hash_toomany]) # If we spend this script instead, we would exactly reach our sigop # limit (for witness sigops). witness_program_justright = CScript([OP_TRUE, OP_IF, OP_TRUE, OP_ELSE] + [OP_CHECKSIG] * (extra_sigops_available) + [OP_ENDIF]) witness_hash_justright = sha256(witness_program_justright) script_pubkey_justright = CScript([OP_0, witness_hash_justright]) # First split our available utxo into a bunch of outputs split_value = self.utxo[0].nValue // outputs tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) for i in range(outputs): tx.vout.append(CTxOut(split_value, script_pubkey)) tx.vout[-2].scriptPubKey = script_pubkey_toomany tx.vout[-1].scriptPubKey = script_pubkey_justright tx.rehash() block_1 = self.build_next_block() self.update_witness_block_with_transactions(block_1, [tx]) test_witness_block(self.nodes[0], self.test_node, block_1, accepted=True) tx2 = CTransaction() # If we try to spend the first n-1 outputs from tx, that should be # too many sigops. total_value = 0 for i in range(outputs - 1): tx2.vin.append(CTxIn(COutPoint(tx.sha256, i), b"")) tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[-1].scriptWitness.stack = [witness_program] total_value += tx.vout[i].nValue tx2.wit.vtxinwit[-1].scriptWitness.stack = [witness_program_toomany] tx2.vout.append(CTxOut(total_value, CScript([OP_TRUE]))) tx2.rehash() block_2 = self.build_next_block() self.update_witness_block_with_transactions(block_2, [tx2]) test_witness_block(self.nodes[0], self.test_node, block_2, accepted=False) # Try dropping the last input in tx2, and add an output that has # too many sigops (contributing to legacy sigop count). checksig_count = (extra_sigops_available // 4) + 1 script_pubkey_checksigs = CScript([OP_CHECKSIG] * checksig_count) tx2.vout.append(CTxOut(0, script_pubkey_checksigs)) tx2.vin.pop() tx2.wit.vtxinwit.pop() tx2.vout[0].nValue -= tx.vout[-2].nValue tx2.rehash() block_3 = self.build_next_block() self.update_witness_block_with_transactions(block_3, [tx2]) test_witness_block(self.nodes[0], self.test_node, block_3, accepted=False) # If we drop the last checksig in this output, the tx should succeed. block_4 = self.build_next_block() tx2.vout[-1].scriptPubKey = CScript([OP_CHECKSIG] * (checksig_count - 1)) tx2.rehash() self.update_witness_block_with_transactions(block_4, [tx2]) test_witness_block(self.nodes[0], self.test_node, block_4, accepted=True) # Reset the tip back down for the next test self.sync_blocks() for x in self.nodes: x.invalidateblock(block_4.hash) # Try replacing the last input of tx2 to be spending the last # output of tx block_5 = self.build_next_block() tx2.vout.pop() tx2.vin.append(CTxIn(COutPoint(tx.sha256, outputs - 1), b"")) tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[-1].scriptWitness.stack = [witness_program_justright] tx2.rehash() self.update_witness_block_with_transactions(block_5, [tx2]) test_witness_block(self.nodes[0], self.test_node, block_5, accepted=True) # TODO: test p2sh sigop counting def test_superfluous_witness(self): # Serialization of tx that puts witness flag to 3 always def serialize_with_bogus_witness(tx): flags = 3 r = b"" r += struct.pack("<i", tx.nVersion) if flags: dummy = [] r += ser_vector(dummy) r += struct.pack("<B", flags) r += ser_vector(tx.vin) r += ser_vector(tx.vout) if flags & 1: if (len(tx.wit.vtxinwit) != len(tx.vin)): # vtxinwit must have the same length as vin tx.wit.vtxinwit = tx.wit.vtxinwit[:len(tx.vin)] for i in range(len(tx.wit.vtxinwit), len(tx.vin)): tx.wit.vtxinwit.append(CTxInWitness()) r += tx.wit.serialize() r += struct.pack("<I", tx.nLockTime) return r class msg_bogus_tx(msg_tx): def serialize(self): return serialize_with_bogus_witness(self.tx) self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(address_type='bech32'), 5) self.nodes[0].generate(1) unspent = next(u for u in self.nodes[0].listunspent() if u['spendable'] and u['address'].startswith('bcrt')) raw = self.nodes[0].createrawtransaction([{"txid": unspent['txid'], "vout": unspent['vout']}], {self.nodes[0].getnewaddress(): 1}) tx = FromHex(CTransaction(), raw) assert_raises_rpc_error(-22, "TX decode failed", self.nodes[0].decoderawtransaction, serialize_with_bogus_witness(tx).hex()) with self.nodes[0].assert_debug_log(['Superfluous witness record']): self.nodes[0].p2p.send_message(msg_bogus_tx(tx)) self.nodes[0].p2p.sync_with_ping() raw = self.nodes[0].signrawtransactionwithwallet(raw) assert raw['complete'] raw = raw['hex'] tx = FromHex(CTransaction(), raw) assert_raises_rpc_error(-22, "TX decode failed", self.nodes[0].decoderawtransaction, serialize_with_bogus_witness(tx).hex()) with self.nodes[0].assert_debug_log(['Unknown transaction optional data']): self.nodes[0].p2p.send_message(msg_bogus_tx(tx)) self.nodes[0].p2p.sync_with_ping() if __name__ == '__main__': SegWitTest().main()
py
1a3821b26ef0ae55024ed8a2df0c698b20384ed6
from string import punctuation, digits import numpy as np import random # Part I #pragma: coderesponse template def get_order(n_samples): try: with open(str(n_samples) + '.txt') as fp: line = fp.readline() return list(map(int, line.split(','))) except FileNotFoundError: random.seed(1) indices = list(range(n_samples)) random.shuffle(indices) return indices #pragma: coderesponse end #pragma: coderesponse template def hinge_loss_single(feature_vector, label, theta, theta_0): """ Finds the hinge loss on a single data point given specific classification parameters. Args: feature_vector - A numpy array describing the given data point. label - A real valued number, the correct classification of the data point. theta - A numpy array describing the linear classifier. theta_0 - A real valued number representing the offset parameter. Returns: A real number representing the hinge loss associated with the given data point and parameters. """ # Your code here """ My solution: return np.maximum(0, 1 - label * (np.dot(feature_vector, theta) + theta_0)) """ # Instructor's solution: (same) y = theta @ feature_vector + theta_0 return max(0, 1 - y * label) #pragma: coderesponse end #pragma: coderesponse template def hinge_loss_full(feature_matrix, labels, theta, theta_0): """ Finds the total hinge loss on a set of data given specific classification parameters. Args: feature_matrix - A numpy matrix describing the given data. Each row represents a single data point. labels - A numpy array where the kth element of the array is the correct classification of the kth row of the feature matrix. theta - A numpy array describing the linear classifier. theta_0 - A real valued number representing the offset parameter. Returns: A real number representing the hinge loss associated with the given dataset and parameters. This number should be the average hinge loss across all of the points in the feature matrix. """ # Your code here """ My solution: k = len(feature_matrix) total = 0 for i in range(k): total += hinge_loss_single(feature_matrix[i], labels[i], theta, theta_0) return total / k """ # Instructor's solution: (same, though much cleaner) ys = feature_matrix @ theta + theta_0 loss = np.maximum(1 - ys * labels, np.zeros(len(labels))) return np.mean(loss) #pragma: coderesponse end #pragma: coderesponse template def perceptron_single_step_update( feature_vector, label, current_theta, current_theta_0): """ Properly updates the classification parameter, theta and theta_0, on a single step of the perceptron algorithm. Args: feature_vector - A numpy array describing a single data point. label - The correct classification of the feature vector. current_theta - The current theta being used by the perceptron algorithm before this update. current_theta_0 - The current theta_0 being used by the perceptron algorithm before this update. Returns: A tuple where the first element is a numpy array with the value of theta after the current update has completed and the second element is a real valued number with the value of theta_0 after the current updated has completed. """ # Your code here """ My solution: epsilon = 1e-9 if label * (np.dot(current_theta, feature_vector) + current_theta_0) \ <= epsilon: theta = current_theta + label * feature_vector theta_0 = current_theta_0 + label return theta, theta_0 else: return current_theta, current_theta_0 """ # Instructor's solution: (same) if label * (np.dot(current_theta, feature_vector) + current_theta_0) <= 1e-7: return (current_theta + label * feature_vector, current_theta_0 + label) return (current_theta, current_theta_0) #pragma: coderesponse end #pragma: coderesponse template def perceptron(feature_matrix, labels, T): """ Runs the full perceptron algorithm on a given set of data. Runs T iterations through the data set, there is no need to worry about stopping early. NOTE: Please use the previously implemented functions when applicable. Do not copy paste code from previous parts. NOTE: Iterate the data matrix by the orders returned by get_order(feature_matrix.shape[0]) Args: feature_matrix - A numpy matrix describing the given data. Each row represents a single data point. labels - A numpy array where the kth element of the array is the correct classification of the kth row of the feature matrix. T - An integer indicating how many times the perceptron algorithm should iterate through the feature matrix. Returns: A tuple where the first element is a numpy array with the value of theta, the linear classification parameter, after T iterations through the feature matrix and the second element is a real number with the value of theta_0, the offset classification parameter, after T iterations through the feature matrix. """ # Your code here """ My solution: n = len(feature_matrix[0]) theta = np.zeros(n) theta_0 = 0 for t in range(T): for i in get_order(feature_matrix.shape[0]): theta, theta_0 = perceptron_single_step_update(feature_matrix[i], labels[i], theta, theta_0) return theta, theta_0 """ # Instructor's solution: (same) (nsamples, nfeatures) = feature_matrix.shape theta = np.zeros(nfeatures) theta_0 = 0.0 for t in range(T): for i in get_order(nsamples): theta, theta_0 = perceptron_single_step_update( feature_matrix[i], labels[i], theta, theta_0) return (theta, theta_0) #pragma: coderesponse end #pragma: coderesponse template def average_perceptron(feature_matrix, labels, T): """ Runs the average perceptron algorithm on a given set of data. Runs T iterations through the data set, there is no need to worry about stopping early. NOTE: Please use the previously implemented functions when applicable. Do not copy paste code from previous parts. NOTE: Iterate the data matrix by the orders returned by get_order(feature_matrix.shape[0]) Args: feature_matrix - A numpy matrix describing the given data. Each row represents a single data point. labels - A numpy array where the kth element of the array is the correct classification of the kth row of the feature matrix. T - An integer indicating how many times the perceptron algorithm should iterate through the feature matrix. Returns: A tuple where the first element is a numpy array with the value of the average theta, the linear classification parameter, found after T iterations through the feature matrix and the second element is a real number with the value of the average theta_0, the offset classification parameter, found after T iterations through the feature matrix. Hint: It is difficult to keep a running average; however, it is simple to find a sum and divide. """ # Your code here """ My solution: n = len(feature_matrix[0]) k = len(get_order(feature_matrix.shape[0])) theta = np.zeros(n) theta_0 = 0 theta_sum = np.zeros(n) theta_0_sum = 0 for t in range(T): for i in get_order(feature_matrix.shape[0]): theta, theta_0 = perceptron_single_step_update(feature_matrix[i], labels[i], theta, theta_0) theta_sum += theta theta_0_sum += theta_0 return theta_sum/(k*T), theta_0_sum/(k*T) """ # Instructor's solution: (same) (nsamples, nfeatures) = feature_matrix.shape theta = np.zeros(nfeatures) theta_sum = np.zeros(nfeatures) theta_0 = 0.0 theta_0_sum = 0.0 for t in range(T): for i in get_order(nsamples): theta, theta_0 = perceptron_single_step_update( feature_matrix[i], labels[i], theta, theta_0) theta_sum += theta theta_0_sum += theta_0 return (theta_sum / (nsamples * T), theta_0_sum / (nsamples * T)) #pragma: coderesponse end #pragma: coderesponse template def pegasos_single_step_update( feature_vector, label, L, eta, current_theta, current_theta_0): """ Properly updates the classification parameter, theta and theta_0, on a single step of the Pegasos algorithm Args: feature_vector - A numpy array describing a single data point. label - The correct classification of the feature vector. L - The lamba value being used to update the parameters. eta - Learning rate to update parameters. current_theta - The current theta being used by the Pegasos algorithm before this update. current_theta_0 - The current theta_0 being used by the Pegasos algorithm before this update. Returns: A tuple where the first element is a numpy array with the value of theta after the current update has completed and the second element is a real valued number with the value of theta_0 after the current updated has completed. """ # Your code here """ My solution: epsilon = 1e-7 if label * (np.dot(current_theta, feature_vector) + current_theta_0) - 1 \ <= epsilon: theta = (1 - eta*L)*current_theta + eta*label*feature_vector theta_0 = current_theta_0 + eta*label else: theta = (1 - eta*L)*current_theta theta_0 = current_theta_0 return theta, theta_0 """ # Instructor's solution: (uses 0 instead of epsilon) mult = 1 - (eta * L) if label * (np.dot(feature_vector, current_theta) + current_theta_0) <= 1: return ((mult * current_theta) + (eta * label * feature_vector), (current_theta_0) + (eta * label)) return (mult * current_theta, current_theta_0) #pragma: coderesponse template def pegasos(feature_matrix, labels, T, L): """ Runs the Pegasos algorithm on a given set of data. Runs T iterations through the data set, there is no need to worry about stopping early. For each update, set learning rate = 1/sqrt(t), where t is a counter for the number of updates performed so far (between 1 and nT inclusive). NOTE: Please use the previously implemented functions when applicable. Do not copy paste code from previous parts. Args: feature_matrix - A numpy matrix describing the given data. Each row represents a single data point. labels - A numpy array where the kth element of the array is the correct classification of the kth row of the feature matrix. T - An integer indicating how many times the algorithm should iterate through the feature matrix. L - The lamba value being used to update the Pegasos algorithm parameters. Returns: A tuple where the first element is a numpy array with the value of the theta, the linear classification parameter, found after T iterations through the feature matrix and the second element is a real number with the value of the theta_0, the offset classification parameter, found after T iterations through the feature matrix. """ # Your code here """ My solution: n = len(feature_matrix[0]) theta = np.zeros(n) theta_0 = 0 time = 0 for t in range(T): for i in get_order(feature_matrix.shape[0]): time += 1 eta = 1 / np.sqrt(time) theta, theta_0 = pegasos_single_step_update(feature_matrix[i], labels[i], L, eta, theta, theta_0) return theta, theta_0 """ # Instructor's solution: (same) (nsamples, nfeatures) = feature_matrix.shape theta = np.zeros(nfeatures) theta_0 = 0 count = 0 for t in range(T): for i in get_order(nsamples): count += 1 eta = 1.0 / np.sqrt(count) (theta, theta_0) = pegasos_single_step_update(feature_matrix[i], labels[i], L, eta, theta, theta_0) return (theta, theta_0) #pragma: coderesponse end # Part II #pragma: coderesponse template def classify(feature_matrix, theta, theta_0): """ A classification function that uses theta and theta_0 to classify a set of data points. Args: feature_matrix - A numpy matrix describing the given data. Each row represents a single data point. theta - A numpy array describing the linear classifier. theta - A numpy array describing the linear classifier. theta_0 - A real valued number representing the offset parameter. Returns: A numpy array of 1s and -1s where the kth element of the array is the predicted classification of the kth row of the feature matrix using the given theta and theta_0. If a prediction is GREATER THAN zero, it should be considered a positive classification. """ # Your code here """ My solution: n = len(feature_matrix) predictions = np.zeros(n) for k in range(n): if (np.dot(theta, feature_matrix[k]) + theta_0) > 0: predictions[k] = 1 else: predictions[k] = -1 return predictions """ # Instructor's solution: (MUCH cleaner!) return (feature_matrix @ theta + theta_0 > 1e-7) * 2.0 - 1 #pragma: coderesponse end #pragma: coderesponse template def classifier_accuracy( classifier, train_feature_matrix, val_feature_matrix, train_labels, val_labels, **kwargs): """ Trains a linear classifier and computes accuracy. The classifier is trained on the train data. The classifier's accuracy on the train and validation data is then returned. Args: classifier - A classifier function that takes arguments (feature matrix, labels, **kwargs) and returns (theta, theta_0) train_feature_matrix - A numpy matrix describing the training data. Each row represents a single data point. val_feature_matrix - A numpy matrix describing the training data. Each row represents a single data point. train_labels - A numpy array where the kth element of the array is the correct classification of the kth row of the training feature matrix. val_labels - A numpy array where the kth element of the array is the correct classification of the kth row of the validation feature matrix. **kwargs - Additional named arguments to pass to the classifier (e.g. T or L) Returns: A tuple in which the first element is the (scalar) accuracy of the trained classifier on the training data and the second element is the accuracy of the trained classifier on the validation data. """ # Your code here """ My solution: theta, theta_0 = classifier(train_feature_matrix, train_labels, **kwargs) train_preds = classify(train_feature_matrix, theta, theta_0) train_accuracy = accuracy(train_preds, train_labels) val_preds = classify(val_feature_matrix, theta, theta_0) val_accuracy = accuracy(val_preds, val_labels) return train_accuracy, val_accuracy """ # Instructor's solution: (same) theta, theta_0 = classifier(train_feature_matrix, train_labels, **kwargs) train_predictions = classify(train_feature_matrix, theta, theta_0) val_predictions = classify(val_feature_matrix, theta, theta_0) train_accuracy = accuracy(train_predictions, train_labels) validation_accuracy = accuracy(val_predictions, val_labels) return (train_accuracy, validation_accuracy) #pragma: coderesponse end #pragma: coderesponse template def extract_words(input_string): """ Helper function for bag_of_words() Inputs a text string Returns a list of lowercase words in the string. Punctuation and digits are separated out into their own words. """ for c in punctuation + digits: input_string = input_string.replace(c, ' ' + c + ' ') return input_string.lower().split() #pragma: coderesponse end #pragma: coderesponse template def bag_of_words(texts): """ Inputs a list of string reviews Returns a dictionary of unique unigrams occurring over the input Feel free to change this code as guided by Problem 9 """ # Your code here dictionary = {} # maps word to unique index # stopwords = np.loadtxt("stopwords.txt", dtype="str") for text in texts: word_list = extract_words(text) for word in word_list: # if word in stopwords: # continue if word not in dictionary: dictionary[word] = len(dictionary) return dictionary #pragma: coderesponse end #pragma: coderesponse template def extract_bow_feature_vectors(reviews, dictionary): """ Inputs a list of string reviews Inputs the dictionary of words as given by bag_of_words Returns the bag-of-words feature matrix representation of the data. The returned matrix is of shape (n, m), where n is the number of reviews and m the total number of entries in the dictionary. Feel free to change this code as guided by Problem 9 """ # Your code here num_reviews = len(reviews) feature_matrix = np.zeros([num_reviews, len(dictionary)]) for i, text in enumerate(reviews): word_list = extract_words(text) for word in word_list: if word in dictionary: feature_matrix[i, dictionary[word]] = 1 # feature_matrix[i, dictionary[word]] += 1 return feature_matrix #pragma: coderesponse end #pragma: coderesponse template def accuracy(preds, targets): """ Given length-N vectors containing predicted and target labels, returns the percentage and number of correct predictions. """ return (preds == targets).mean() #pragma: coderesponse end
py
1a3822b2286b3c413066797943f523ff566c2e7d
from utils import read_data import numpy as np def test_mnist_images(): train_images = read_data.get_mnist_data(read_data.MNIST_TRAIN_IMAGES_URL) assert train_images.shape == (60000, 28, 28) test_images = read_data.get_mnist_data(read_data.MNIST_TEST_IMAGES_URL) assert test_images.shape == (10000, 28, 28) def test_mnist_labels(): train_labels = read_data.get_mnist_data(read_data.MNIST_TRAIN_LABELS_URL) assert train_labels.shape == (60000, ) test_labels = read_data.get_mnist_data(read_data.MNIST_TEST_LABELS_URL) assert test_labels.shape == (10000, )
py
1a3822b311aad35c06a2217b9b674914fe48c61b
from django.contrib import admin from django.contrib.auth import admin as auth_admin from django.contrib.auth import get_user_model from django_api.users.forms import UserChangeForm, UserCreationForm User = get_user_model() @admin.register(User) class UserAdmin(auth_admin.UserAdmin): form = UserChangeForm add_form = UserCreationForm fieldsets = (("User", {"fields": ("name",)}),) + auth_admin.UserAdmin.fieldsets list_display = ["username", "name", "is_superuser"] search_fields = ["name"]
py
1a3822bafe4b5a8d3aa60282f2c555002db9cd4d
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """ Reports builder for BIDS-Apps. Generalizes report generation across BIDS-Apps """ from pathlib import Path import re from itertools import compress from collections import defaultdict from pkg_resources import resource_filename as pkgrf from bids.layout import BIDSLayout, add_config_paths import jinja2 from nipype.utils.filemanip import copyfile # Add a new figures spec try: add_config_paths(figures=pkgrf("niworkflows", "data/nipreps.json")) except ValueError as e: if "Configuration 'figures' already exists" != str(e): raise PLURAL_SUFFIX = defaultdict(str("s").format, [("echo", "es")]) SVG_SNIPPET = [ """\ <object class="svg-reportlet" type="image/svg+xml" data="./{0}"> Problem loading figure {0}. If the link below works, please try \ reloading the report in your browser.</object> </div> <div class="elem-filename"> Get figure file: <a href="./{0}" target="_blank">{0}</a> </div> """, """\ <img class="svg-reportlet" src="./{0}" style="width: 100%" /> </div> <div class="elem-filename"> Get figure file: <a href="./{0}" target="_blank">{0}</a> </div> """, ] class Element(object): """Just a basic component of a report""" def __init__(self, name, title=None): self.name = name self.title = title class Reportlet(Element): """ A reportlet has title, description and a list of components with either an HTML fragment or a path to an SVG file, and possibly a caption. This is a factory class to generate Reportlets reusing the layout from a ``Report`` object. .. testsetup:: >>> cwd = os.getcwd() >>> os.chdir(tmpdir) >>> from pkg_resources import resource_filename >>> from shutil import copytree >>> from bids.layout import BIDSLayout >>> test_data_path = resource_filename('niworkflows', 'data/tests/work') >>> testdir = Path(tmpdir) >>> data_dir = copytree(test_data_path, str(testdir / 'work')) >>> out_figs = testdir / 'out' / 'fmriprep' >>> bl = BIDSLayout(str(testdir / 'work' / 'reportlets'), ... config='figures', validate=False) .. doctest:: >>> bl.get(subject='01', desc='reconall') # doctest: +ELLIPSIS [<BIDSFile filename='.../fmriprep/sub-01/figures/sub-01_desc-reconall_T1w.svg'>] >>> len(bl.get(subject='01', space='.*', regex_search=True)) 2 >>> r = Reportlet(bl, out_figs, config={ ... 'title': 'Some Title', 'bids': {'datatype': 'figures', 'desc': 'reconall'}, ... 'description': 'Some description'}) >>> r.name 'datatype-figures_desc-reconall' >>> r.components[0][0].startswith('<img') True >>> r = Reportlet(bl, out_figs, config={ ... 'title': 'Some Title', 'bids': {'datatype': 'figures', 'desc': 'reconall'}, ... 'description': 'Some description', 'static': False}) >>> r.name 'datatype-figures_desc-reconall' >>> r.components[0][0].startswith('<object') True >>> r = Reportlet(bl, out_figs, config={ ... 'title': 'Some Title', 'bids': {'datatype': 'figures', 'desc': 'summary'}, ... 'description': 'Some description'}) >>> r.components[0][0].startswith('<h3') True >>> r.components[0][1] is None True >>> r = Reportlet(bl, out_figs, config={ ... 'title': 'Some Title', ... 'bids': {'datatype': 'figures', 'space': '.*', 'regex_search': True}, ... 'caption': 'Some description {space}'}) >>> sorted(r.components)[0][1] 'Some description MNI152NLin2009cAsym' >>> sorted(r.components)[1][1] 'Some description MNI152NLin6Asym' >>> r = Reportlet(bl, out_figs, config={ ... 'title': 'Some Title', ... 'bids': {'datatype': 'fmap', 'space': '.*', 'regex_search': True}, ... 'caption': 'Some description {space}'}) >>> r.is_empty() True .. testcleanup:: >>> os.chdir(cwd) """ def __init__(self, layout, out_dir, config=None): if not config: raise RuntimeError("Reportlet must have a config object") # PY35: Sorted config dict for consistent behavior self.name = config.get( "name", "_".join("%s-%s" % i for i in sorted(config["bids"].items())) ) self.title = config.get("title") self.subtitle = config.get("subtitle") self.description = config.get("description") # Query the BIDS layout of reportlets files = layout.get(**config["bids"]) self.components = [] for bidsfile in files: src = Path(bidsfile.path) ext = "".join(src.suffixes) desc_text = config.get("caption") contents = None if ext == ".html": contents = src.read_text().strip() elif ext == ".svg": entities = dict(bidsfile.entities) if desc_text: desc_text = desc_text.format(**entities) try: html_anchor = src.relative_to(out_dir) except ValueError: html_anchor = src.relative_to(Path(layout.root).parent) dst = out_dir / html_anchor dst.parent.mkdir(parents=True, exist_ok=True) copyfile(src, dst, copy=True, use_hardlink=True) contents = SVG_SNIPPET[config.get("static", True)].format(html_anchor) # Our current implementations of dynamic reportlets do this themselves, # however I'll leave the code here since this is potentially something we # will want to transfer from every figure generator to this location. # The following code misses setting preserveAspecRatio="xMidYMid meet" # if not is_static: # # Remove height and width attributes from initial <svg> tag # svglines = out_file.read_text().splitlines() # expr = re.compile(r' (height|width)=["\'][0-9]+(\.[0-9]*)?[a-z]*["\']') # for l, line in enumerate(svglines[:6]): # if line.strip().startswith('<svg'): # newline = expr.sub('', line) # svglines[l] = newline # out_file.write_text('\n'.join(svglines)) # break if contents: self.components.append((contents, desc_text)) def is_empty(self): return len(self.components) == 0 class SubReport(Element): """SubReports are sections within a Report.""" def __init__(self, name, isnested=False, reportlets=None, title=""): self.name = name self.title = title self.reportlets = reportlets or [] self.isnested = isnested class Report: """ The full report object. This object maintains a BIDSLayout to index all reportlets. .. testsetup:: >>> cwd = os.getcwd() >>> os.chdir(tmpdir) >>> from pkg_resources import resource_filename >>> from shutil import copytree >>> from bids.layout import BIDSLayout >>> test_data_path = resource_filename('niworkflows', 'data/tests/work') >>> testdir = Path(tmpdir) >>> data_dir = copytree(test_data_path, str(testdir / 'work')) >>> out_figs = testdir / 'out' / 'fmriprep' .. doctest:: >>> robj = Report(testdir / 'out', 'madeoutuuid', subject_id='01', packagename='fmriprep', ... reportlets_dir=testdir / 'work' / 'reportlets') >>> robj.layout.get(subject='01', desc='reconall') # doctest: +ELLIPSIS [<BIDSFile filename='.../figures/sub-01_desc-reconall_T1w.svg'>] >>> robj.generate_report() 0 >>> len((testdir / 'out' / 'fmriprep' / 'sub-01.html').read_text()) 36693 .. testcleanup:: >>> os.chdir(cwd) """ def __init__( self, out_dir, run_uuid, config=None, out_filename="report.html", packagename=None, reportlets_dir=None, subject_id=None, ): self.root = Path(reportlets_dir or out_dir) # Initialize structuring elements self.sections = [] self.errors = [] self.out_dir = Path(out_dir) self.out_filename = out_filename self.run_uuid = run_uuid self.packagename = packagename self.subject_id = subject_id if subject_id is not None: self.subject_id = ( subject_id[4:] if subject_id.startswith("sub-") else subject_id ) self.out_filename = f"sub-{self.subject_id}.html" # Default template from niworkflows self.template_path = Path(pkgrf("niworkflows", "reports/report.tpl")) self._load_config(Path(config or pkgrf("niworkflows", "reports/default.yml"))) assert self.template_path.exists() def _load_config(self, config): from yaml import safe_load as load settings = load(config.read_text()) self.packagename = self.packagename or settings.get("package", None) if self.packagename is not None: self.root = self.root / self.packagename self.out_dir = self.out_dir / self.packagename if self.subject_id is not None: self.root = self.root / "sub-{}".format(self.subject_id) if "template_path" in settings: self.template_path = config.parent / settings["template_path"] self.index(settings["sections"]) def init_layout(self): self.layout = BIDSLayout(self.root, config="figures", validate=False) def index(self, config): """ Traverse the reports config definition and instantiate reportlets. This method also places figures in their final location. """ # Initialize a BIDS layout self.init_layout() for subrep_cfg in config: # First determine whether we need to split by some ordering # (ie. sessions / tasks / runs), which are separated by commas. orderings = [ s for s in subrep_cfg.get("ordering", "").strip().split(",") if s ] entities, list_combos = self._process_orderings(orderings, self.layout) if not list_combos: # E.g. this is an anatomical reportlet reportlets = [ Reportlet(self.layout, self.out_dir, config=cfg) for cfg in subrep_cfg["reportlets"] ] else: # Do not use dictionary for queries, as we need to preserve ordering # of ordering columns. reportlets = [] for c in list_combos: # do not display entities with the value None. c_filt = list(filter(None, c)) ent_filt = list(compress(entities, c)) # Set a common title for this particular combination c title = "Reports for: %s." % ", ".join( [ '%s <span class="bids-entity">%s</span>' % (ent_filt[i], c_filt[i]) for i in range(len(c_filt)) ] ) for cfg in subrep_cfg["reportlets"]: cfg["bids"].update({entities[i]: c[i] for i in range(len(c))}) rlet = Reportlet(self.layout, self.out_dir, config=cfg) if not rlet.is_empty(): rlet.title = title title = None reportlets.append(rlet) # Filter out empty reportlets reportlets = [r for r in reportlets if not r.is_empty()] if reportlets: sub_report = SubReport( subrep_cfg["name"], isnested=bool(list_combos), reportlets=reportlets, title=subrep_cfg.get("title"), ) self.sections.append(sub_report) # Populate errors section error_dir = ( self.out_dir / "sub-{}".format(self.subject_id) / "log" / self.run_uuid ) if error_dir.is_dir(): from ..utils.misc import read_crashfile self.errors = [read_crashfile(str(f)) for f in error_dir.glob("crash*.*")] def generate_report(self): """Once the Report has been indexed, the final HTML can be generated""" logs_path = self.out_dir / "logs" boilerplate = [] boiler_idx = 0 if (logs_path / "CITATION.html").exists(): text = ( re.compile("<body>(.*?)</body>", re.DOTALL | re.IGNORECASE) .findall((logs_path / "CITATION.html").read_text())[0] .strip() ) boilerplate.append( (boiler_idx, "HTML", f'<div class="boiler-html">{text}</div>') ) boiler_idx += 1 if (logs_path / "CITATION.md").exists(): text = (logs_path / "CITATION.md").read_text() boilerplate.append((boiler_idx, "Markdown", f"<pre>{text}</pre>\n")) boiler_idx += 1 if (logs_path / "CITATION.tex").exists(): text = ( re.compile( r"\\begin{document}(.*?)\\end{document}", re.DOTALL | re.IGNORECASE ) .findall((logs_path / "CITATION.tex").read_text())[0] .strip() ) boilerplate.append( ( boiler_idx, "LaTeX", f"""<pre>{text}</pre> <h3>Bibliography</h3> <pre>{Path(pkgrf(self.packagename, 'data/boilerplate.bib')).read_text()}</pre> """, ) ) boiler_idx += 1 env = jinja2.Environment( loader=jinja2.FileSystemLoader(searchpath=str(self.template_path.parent)), trim_blocks=True, lstrip_blocks=True, autoescape=False, ) report_tpl = env.get_template(self.template_path.name) report_render = report_tpl.render( sections=self.sections, errors=self.errors, boilerplate=boilerplate ) # Write out report self.out_dir.mkdir(parents=True, exist_ok=True) (self.out_dir / self.out_filename).write_text(report_render, encoding="UTF-8") return len(self.errors) @staticmethod def _process_orderings(orderings, layout): """ Generate relevant combinations of orderings with observed values. Arguments --------- orderings : :obj:`list` of :obj:`list` of :obj:`str` Sections prescribing an ordering to select across sessions, acquisitions, runs, etc. layout : :obj:`bids.layout.BIDSLayout` The BIDS layout Returns ------- entities: :obj:`list` of :obj:`str` The relevant orderings that had unique values value_combos: :obj:`list` of :obj:`tuple` Unique value combinations for the entities """ # get a set of all unique entity combinations all_value_combos = { tuple(bids_file.get_entities().get(k, None) for k in orderings) for bids_file in layout.get() } # remove the all None member if it exists none_member = tuple([None for k in orderings]) if none_member in all_value_combos: all_value_combos.remove(tuple([None for k in orderings])) # see what values exist for each entity unique_values = [ {value[idx] for value in all_value_combos} for idx in range(len(orderings)) ] # if all values are None for an entity, we do not want to keep that entity keep_idx = [ False if (len(val_set) == 1 and None in val_set) or not val_set else True for val_set in unique_values ] # the "kept" entities entities = list(compress(orderings, keep_idx)) # the "kept" value combinations value_combos = [ tuple(compress(value_combo, keep_idx)) for value_combo in all_value_combos ] # sort the value combinations alphabetically from the first entity to the last entity value_combos.sort( key=lambda entry: tuple( str(value) if value is not None else "0" for value in entry ) ) return entities, value_combos def run_reports( out_dir, subject_label, run_uuid, config=None, reportlets_dir=None, packagename=None, ): """ Run the reports. .. testsetup:: >>> cwd = os.getcwd() >>> os.chdir(tmpdir) >>> from pkg_resources import resource_filename >>> from shutil import copytree >>> test_data_path = resource_filename('niworkflows', 'data/tests/work') >>> testdir = Path(tmpdir) >>> data_dir = copytree(test_data_path, str(testdir / 'work')) >>> (testdir / 'fmriprep').mkdir(parents=True, exist_ok=True) .. doctest:: >>> run_reports(testdir / 'out', '01', 'madeoutuuid', packagename='fmriprep', ... reportlets_dir=testdir / 'work' / 'reportlets') 0 .. testcleanup:: >>> os.chdir(cwd) """ return Report( out_dir, run_uuid, config=config, subject_id=subject_label, packagename=packagename, reportlets_dir=reportlets_dir, ).generate_report() def generate_reports( subject_list, output_dir, run_uuid, config=None, work_dir=None, packagename=None ): """Execute run_reports on a list of subjects.""" reportlets_dir = None if work_dir is not None: reportlets_dir = Path(work_dir) / "reportlets" report_errors = [ run_reports( output_dir, subject_label, run_uuid, config=config, packagename=packagename, reportlets_dir=reportlets_dir, ) for subject_label in subject_list ] errno = sum(report_errors) if errno: import logging logger = logging.getLogger("cli") error_list = ", ".join( "%s (%d)" % (subid, err) for subid, err in zip(subject_list, report_errors) if err ) logger.error( "Preprocessing did not finish successfully. Errors occurred while processing " "data from participants: %s. Check the HTML reports for details.", error_list, ) return errno
py
1a38258c6c7d3349df3953b596cd4c509d31abf9
"""Test functions for the sparse.linalg._expm_multiply module """ from __future__ import division, print_function, absolute_import import numpy as np from numpy.testing import assert_allclose, assert_, assert_equal from scipy._lib._numpy_compat import suppress_warnings from scipy.sparse import SparseEfficiencyWarning import scipy.linalg from scipy.sparse.linalg._expm_multiply import (_theta, _compute_p_max, _onenormest_matrix_power, expm_multiply, _expm_multiply_simple, _expm_multiply_interval) def less_than_or_close(a, b): return np.allclose(a, b) or (a < b) class TestExpmActionSimple(object): """ These tests do not consider the case of multiple time steps in one call. """ def test_theta_monotonicity(self): pairs = sorted(_theta.items()) for (m_a, theta_a), (m_b, theta_b) in zip(pairs[:-1], pairs[1:]): assert_(theta_a < theta_b) def test_p_max_default(self): m_max = 55 expected_p_max = 8 observed_p_max = _compute_p_max(m_max) assert_equal(observed_p_max, expected_p_max) def test_p_max_range(self): for m_max in range(1, 55+1): p_max = _compute_p_max(m_max) assert_(p_max*(p_max - 1) <= m_max + 1) p_too_big = p_max + 1 assert_(p_too_big*(p_too_big - 1) > m_max + 1) def test_onenormest_matrix_power(self): np.random.seed(1234) n = 40 nsamples = 10 for i in range(nsamples): A = scipy.linalg.inv(np.random.randn(n, n)) for p in range(4): if not p: M = np.identity(n) else: M = np.dot(M, A) estimated = _onenormest_matrix_power(A, p) exact = np.linalg.norm(M, 1) assert_(less_than_or_close(estimated, exact)) assert_(less_than_or_close(exact, 3*estimated)) def test_expm_multiply(self): np.random.seed(1234) n = 40 k = 3 nsamples = 10 for i in range(nsamples): A = scipy.linalg.inv(np.random.randn(n, n)) B = np.random.randn(n, k) observed = expm_multiply(A, B) expected = np.dot(scipy.linalg.expm(A), B) assert_allclose(observed, expected) def test_matrix_vector_multiply(self): np.random.seed(1234) n = 40 nsamples = 10 for i in range(nsamples): A = scipy.linalg.inv(np.random.randn(n, n)) v = np.random.randn(n) observed = expm_multiply(A, v) expected = np.dot(scipy.linalg.expm(A), v) assert_allclose(observed, expected) def test_scaled_expm_multiply(self): np.random.seed(1234) n = 40 k = 3 nsamples = 10 for i in range(nsamples): for t in (0.2, 1.0, 1.5): with np.errstate(invalid='ignore'): A = scipy.linalg.inv(np.random.randn(n, n)) B = np.random.randn(n, k) observed = _expm_multiply_simple(A, B, t=t) expected = np.dot(scipy.linalg.expm(t*A), B) assert_allclose(observed, expected) def test_scaled_expm_multiply_single_timepoint(self): np.random.seed(1234) t = 0.1 n = 5 k = 2 A = np.random.randn(n, n) B = np.random.randn(n, k) observed = _expm_multiply_simple(A, B, t=t) expected = scipy.linalg.expm(t*A).dot(B) assert_allclose(observed, expected) def test_sparse_expm_multiply(self): np.random.seed(1234) n = 40 k = 3 nsamples = 10 for i in range(nsamples): A = scipy.sparse.rand(n, n, density=0.05) B = np.random.randn(n, k) observed = expm_multiply(A, B) with suppress_warnings() as sup: sup.filter(SparseEfficiencyWarning, "splu requires CSC matrix format") sup.filter(SparseEfficiencyWarning, "spsolve is more efficient when sparse b is in the CSC matrix format") expected = scipy.linalg.expm(A).dot(B) assert_allclose(observed, expected) def test_complex(self): A = np.array([ [1j, 1j], [0, 1j]], dtype=complex) B = np.array([1j, 1j]) observed = expm_multiply(A, B) expected = np.array([ 1j * np.exp(1j) + 1j * (1j*np.cos(1) - np.sin(1)), 1j * np.exp(1j)], dtype=complex) assert_allclose(observed, expected) class TestExpmActionInterval(object): def test_sparse_expm_multiply_interval(self): np.random.seed(1234) start = 0.1 stop = 3.2 n = 40 k = 3 endpoint = True for num in (14, 13, 2): A = scipy.sparse.rand(n, n, density=0.05) B = np.random.randn(n, k) v = np.random.randn(n) for target in (B, v): X = expm_multiply(A, target, start=start, stop=stop, num=num, endpoint=endpoint) samples = np.linspace(start=start, stop=stop, num=num, endpoint=endpoint) with suppress_warnings() as sup: sup.filter(SparseEfficiencyWarning, "splu requires CSC matrix format") sup.filter(SparseEfficiencyWarning, "spsolve is more efficient when sparse b is in the CSC matrix format") for solution, t in zip(X, samples): assert_allclose(solution, scipy.linalg.expm(t*A).dot(target)) def test_expm_multiply_interval_vector(self): np.random.seed(1234) start = 0.1 stop = 3.2 endpoint = True for num in (14, 13, 2): for n in (1, 2, 5, 20, 40): A = scipy.linalg.inv(np.random.randn(n, n)) v = np.random.randn(n) X = expm_multiply(A, v, start=start, stop=stop, num=num, endpoint=endpoint) samples = np.linspace(start=start, stop=stop, num=num, endpoint=endpoint) for solution, t in zip(X, samples): assert_allclose(solution, scipy.linalg.expm(t*A).dot(v)) def test_expm_multiply_interval_matrix(self): np.random.seed(1234) start = 0.1 stop = 3.2 endpoint = True for num in (14, 13, 2): for n in (1, 2, 5, 20, 40): for k in (1, 2): A = scipy.linalg.inv(np.random.randn(n, n)) B = np.random.randn(n, k) X = expm_multiply(A, B, start=start, stop=stop, num=num, endpoint=endpoint) samples = np.linspace(start=start, stop=stop, num=num, endpoint=endpoint) for solution, t in zip(X, samples): assert_allclose(solution, scipy.linalg.expm(t*A).dot(B)) def test_sparse_expm_multiply_interval_dtypes(self): # Test A & B int A = scipy.sparse.diags(np.arange(5),format='csr', dtype=int) B = np.ones(5, dtype=int) Aexpm = scipy.sparse.diags(np.exp(np.arange(5)),format='csr') assert_allclose(expm_multiply(A,B,0,1)[-1], Aexpm.dot(B)) # Test A complex, B int A = scipy.sparse.diags(-1j*np.arange(5),format='csr', dtype=complex) B = np.ones(5, dtype=int) Aexpm = scipy.sparse.diags(np.exp(-1j*np.arange(5)),format='csr') assert_allclose(expm_multiply(A,B,0,1)[-1], Aexpm.dot(B)) # Test A int, B complex A = scipy.sparse.diags(np.arange(5),format='csr', dtype=int) B = 1j*np.ones(5, dtype=complex) Aexpm = scipy.sparse.diags(np.exp(np.arange(5)),format='csr') assert_allclose(expm_multiply(A,B,0,1)[-1], Aexpm.dot(B)) def test_expm_multiply_interval_status_0(self): self._help_test_specific_expm_interval_status(0) def test_expm_multiply_interval_status_1(self): self._help_test_specific_expm_interval_status(1) def test_expm_multiply_interval_status_2(self): self._help_test_specific_expm_interval_status(2) def _help_test_specific_expm_interval_status(self, target_status): np.random.seed(1234) start = 0.1 stop = 3.2 num = 13 endpoint = True n = 5 k = 2 nrepeats = 10 nsuccesses = 0 for num in [14, 13, 2] * nrepeats: A = np.random.randn(n, n) B = np.random.randn(n, k) status = _expm_multiply_interval(A, B, start=start, stop=stop, num=num, endpoint=endpoint, status_only=True) if status == target_status: X, status = _expm_multiply_interval(A, B, start=start, stop=stop, num=num, endpoint=endpoint, status_only=False) assert_equal(X.shape, (num, n, k)) samples = np.linspace(start=start, stop=stop, num=num, endpoint=endpoint) for solution, t in zip(X, samples): assert_allclose(solution, scipy.linalg.expm(t*A).dot(B)) nsuccesses += 1 if not nsuccesses: msg = 'failed to find a status-' + str(target_status) + ' interval' raise Exception(msg)
py
1a3825edc6228f154b8a64d0497fc0593bc1b18c
import math import os import sys from random import choice from random import randint # --------------------------------------------------------------------------- # # Player Setup # class player: def __init__(self): self.name = "" self.lvl = 1 self.hp = 10 self.str = 5 self.dex = 5 self.drd = 5 self.exp = 0 my_player = player() # --------------------------------------------------------------------------- #
py
1a3826de00026389b16dc664916b06671b9d7e9c
from booster import app, db from datetime import datetime class News(db.Model): id = db.Column(db.Integer, primary_key=True) title = db.Column(db.String(256)) tease = db.Column(db.Text) body = db.Column(db.Text) created_at = db.Column(db.DateTime) updated_at = db.Column(db.DateTime) expiry = db.Column(db.DateTime) @staticmethod def get_expired(): return News.query.filter(News.expiry < datetime.now()).order_by(News.created_at).all() @staticmethod def get_current(): return News.query.filter(News.expiry >= datetime.now()).order_by(News.created_at).all() @property def expiry_time(self): return self.expiry.time() @property def expiry_date(self): return self.expiry.date()
py
1a3828086e94b14ce6884678bf9db297d4326eae
# coding: utf-8 # # Copyright 2022 :Barry-Thomas-Paul: Moss # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http: // www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Const Class # this is a auto generated file generated by Cheetah # Libre Office Version: 7.3 # Namespace: com.sun.star.document from enum import IntEnum from typing import TYPE_CHECKING from ooo.oenv.env_const import UNO_ENVIRONMENT, UNO_RUNTIME _DYNAMIC = False if (not TYPE_CHECKING) and UNO_RUNTIME and UNO_ENVIRONMENT: _DYNAMIC = True if not TYPE_CHECKING and _DYNAMIC: from com.sun.star.document import RedlineDisplayType as RedlineDisplayType if hasattr(RedlineDisplayType, '_constants') and isinstance(RedlineDisplayType._constants, dict): RedlineDisplayType._constants['__ooo_ns__'] = 'com.sun.star.document' RedlineDisplayType._constants['__ooo_full_ns__'] = 'com.sun.star.document.RedlineDisplayType' RedlineDisplayType._constants['__ooo_type_name__'] = 'const' def build_enum(): global RedlineDisplayTypeEnum ls = [f for f in dir(RedlineDisplayType) if not callable(getattr(RedlineDisplayType, f)) and not f.startswith('__')] _dict = {} for name in ls: _dict[name] = getattr(RedlineDisplayType, name) RedlineDisplayTypeEnum = IntEnum('RedlineDisplayTypeEnum', _dict) build_enum() else: from ...lo.document.redline_display_type import RedlineDisplayType as RedlineDisplayType class RedlineDisplayTypeEnum(IntEnum): """ Enum of Const Class RedlineDisplayType specifies which changes in a document are displayed. """ NONE = RedlineDisplayType.NONE """ no changes are displayed. """ INSERTED = RedlineDisplayType.INSERTED """ only inserted parts are displayed and attributed. """ INSERTED_AND_REMOVED = RedlineDisplayType.INSERTED_AND_REMOVED """ only inserted parts are displayed and attributed. """ REMOVED = RedlineDisplayType.REMOVED """ only removed parts are displayed and attributed. """ __all__ = ['RedlineDisplayType', 'RedlineDisplayTypeEnum']
py
1a3829e9f8ed05c1c1e8cda28dd2ea8d2d7b6bb5
############################################################################# ## ## Copyright (c) 2020 Riverbank Computing Limited <[email protected]> ## ## This file is part of PyQt5. ## ## This file may be used under the terms of the GNU General Public License ## version 3.0 as published by the Free Software Foundation and appearing in ## the file LICENSE included in the packaging of this file. Please review the ## following information to ensure the GNU General Public License version 3.0 ## requirements will be met: http://www.gnu.org/copyleft/gpl.html. ## ## If you do not wish to use this file under the terms of the GPL version 3.0 ## then you may purchase a commercial license. For more information contact ## [email protected]. ## ## This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE ## WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. ## ############################################################################# # If pluginType is MODULE, the plugin loader will call moduleInformation. The # variable MODULE is inserted into the local namespace by the plugin loader. pluginType = MODULE # moduleInformation() must return a tuple (module, widget_list). If "module" # is "A" and any widget from this module is used, the code generator will write # "import A". If "module" is "A[.B].C", the code generator will write # "from A[.B] import C". Each entry in "widget_list" must be unique. def moduleInformation(): return "PyQt5.QAxContainer", ("QAxWidget", )
py
1a382b120105eedc97fb1aec1879ca526b186747
from datetime import datetime from time import sleep from redis import StrictRedis from random import random from rediscache_decorator import Cache ### Comment this section if you don't have redis instance ### redis = StrictRedis(decode_responses=True) cache = Cache(redis) @cache.ttl(300) def pseudo_calc(): sleep(1) print("Computation in progress") return str(datetime.now()) for i in range(10): print(pseudo_calc()) @cache.ttl(123) def another(): return "hello" # Example: rediscache_decorator dict @cache.dict(60) def return_a_dict(*args, **kwargs): sleep(1) print("Computation in progress") return {"now": str(datetime.now())} for i in range(5): print(return_a_dict()) # Example: rediscache_decorator float number @cache.float(60) def return_a_float(*args, **kwargs): return random() for i in range(5): print(return_a_float())
py
1a382b48915587726c4bee11f87e7a536a01b358
import os # toolchains options ARCH='sparc-v8' CPU='bm3803' CROSS_TOOL='gcc' if CROSS_TOOL == 'gcc': PLATFORM = 'gcc' EXEC_PATH = r'C:\Users\97981\Downloads\bcc-2.1.1-gcc\bin' BUILD = 'debug' if PLATFORM == 'gcc': # toolchains PREFIX = 'sparc-gaisler-elf-' CC = PREFIX + 'gcc' CXX = PREFIX + 'g++' AS = PREFIX + 'gcc' AR = PREFIX + 'ar' LINK = PREFIX + 'gcc' TARGET_EXT = 'elf' SIZE = PREFIX + 'size' OBJDUMP = PREFIX + 'objdump' OBJCPY = PREFIX + 'objcopy' DEVICE = ' -mcpu=v8 -nostartfiles' #DEVICE = ' ' CFLAGS = DEVICE AFLAGS = ' -c' + DEVICE + ' -x assembler-with-cpp -D__ASSEMBLY__' LFLAGS = DEVICE + ' -Wl,-Map=rtthread-bm3803.map -T bm3803.lds -Ttext=0x40000000' CPATH = '' LPATH = '' if BUILD == 'debug': CFLAGS += ' -O0 -gdwarf-2 -Wall' AFLAGS += ' -gdwarf-2' else: CFLAGS += ' -O2 -Wall' POST_ACTION = OBJCPY + ' -O binary $TARGET rtthread.bin\n' +\ SIZE + ' $TARGET \n'
py
1a382b5c221cdee83bc29bb37aa65b0cbb157cd6
""" Only one, either a template, or render() can be specified: # PY2 - remove '+IGNORE_EXCEPTION_DETAIL' when dropping Python 2 support: >>> grok.testing.grok(__name__) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... zope.configuration.config.ConfigurationExecutionError:\ martian.error.GrokError: Multiple possible ways to render view\ <class 'grokcore.view.tests.base.view.eithertemplateorrender.CavePainting'>.\ It has both a 'render' method as well as an associated template. """ import grokcore.view as grok class Mammoth(grok.Context): pass class CavePainting(grok.View): def render(self): pass cavepainting = grok.PageTemplate("nothing")
py
1a382b7ca5c602723a16904551ce3664740eba2c
""" test duo_piano_midi.py """ import unittest from duo_piano_midi import DuoPiano from keyread import keyread # class TestKeyHitWait(unittest.TestCase): # def test_user_for_P_key(self): # self.assertTrue(keyhit('p')) # class TestKeyboardWait(unittest.TestCase): # def test_user_for_P_key_yn_false(self): # key = keyread("Press the P Key: And Press Enter...", yn=False) # self.assertEqual(key, "P") # def test_user_for_P_key_yn_false(self): # key = keyread("Press the P Key: And Press Enter...") # self.assertEqual(key, False) # def test_timeout(self): # key = keyread("Dont press anything for 5 seconds") # self.assertIsNone(key) class TestDuoPianoMidi(unittest.TestCase): name = "GENERAL:GENERAL MIDI 1" def find_in_list(self, str, ports): for port in ports: if str in port: # print (port) return True return False def test_duo_piano_out_port_aquire(self): duo_piano = DuoPiano() self.assertEqual(duo_piano.portsout, duo_piano.aquire_out_ports()) def test_duo_piano_in_port_aquire(self): duo_piano = DuoPiano() self.assertEqual(duo_piano.portsin, duo_piano.aquire_in_ports()) def test_duo_piano_in_port_recognised_portsin(self): duo_piano = DuoPiano() self.assertTrue(self.find_in_list(self.name, duo_piano.portsin)) def test_duo_piano_out_port_recognised_portsout(self): duo_piano = DuoPiano() self.assertTrue(self.find_in_list(self.name, duo_piano.portsout)) def test_duo_piano_in_port_recognised_aquire_in(self): duo_piano = DuoPiano() self.assertTrue(self.find_in_list(self.name, duo_piano.portsin)) def test_duo_piano_out_port_recognised_aquire_out(self): duo_piano = DuoPiano() self.assertTrue(self.find_in_list(self.name, duo_piano.portsout)) def test_recognised_in_port_and_open(self): """ Find one and only one (the first) DuoPiano IN MIDI port """ duo_piano = DuoPiano() din = duo_piano.get_duo_in() self.assertIsInstance(din, type(duo_piano.midiin)) def test_recognised_out_port_and_open(self): """ Find one and only one (the first) DuoPiano OUT MIDI port """ duo_piano = DuoPiano() dout = duo_piano.get_duo_out() self.assertIsInstance(dout, type(duo_piano.midiout)) class TestDuoPianoMidiOut(unittest.TestCase): # def test_middle_c_quiet_midi_channel_1(self): # duo_piano = DuoPiano() # duo_piano.strike_note(1, 60, 10, 0.25) # keyread("Did You hear that Quiet note:...? (yY/nN") # duo_piano.strike_note(1, 60, 100, 0.25) # keyread("Did You hear that Loud Note:...? (yY/nN") def test_middle_c_loud_midi_channel_1(self): duo_piano = DuoPiano() dout = duo_piano.get_duo_out() duo_piano.strike_note(1,60,10,.25) self.assertTrue(keyread("Did You hear a note ...? Press Enter if you did\n",yn=False, ret=True)) print('Press a note on the keyboard Ctrl-C to break out. . . \n') print(duo_piano.read_note()) if __name__ == "__main__": unittest.main()
py
1a382baa77f5b476479a8056d79916b2478a32a1
from django.conf.urls import include, url from .import views urlpatterns = [ url(r'^editoriales/$', views.EditorialesListView.as_view()), url(r'^editoriales/nuevo/$', views.CreateEditorialView.as_view()), url(r'^editoriales/delete/$', views.delete_editoriales_view), ]
py
1a382badb51f1604b9eabdd95a155f3a44f761db
list1 = [x*x for x in range(10)] print(list1) # list2 列表创建语句慎重执行,先注释 # list2 = [x*x for x in range(1000000000000000000000000)] generator1 = (x*x for x in range(1000000000000000000000000)) print(generator1) print(type(generator1)) generator2 = (x*x for x in range(3)) print(next(generator2)) print(next(generator2)) print(next(generator2)) # print(next(generator2)) generator3 = (x*x for x in range(5)) for index in generator3: print(index) def print_a(max): i = 0 while i < max: i += 1 yield i a = print_a(10) print(a) print(type(a)) print(next(a)) print(next(a)) print(next(a)) print(next(a)) print(a.__next__()) print(a.__next__()) def print_b(max): i = 0 while i < max: i += 1 args = yield i print('传入参数为:' + args) b = print_b(20) print(next(b)) print(b.send('Python')) def print_c(): while True: print('执行 A ') yield None def print_d(): while True: print('执行 B ') yield None c = print_c() d = print_d() while True: c.__next__() d.__next__()
py
1a382bb18f88d99738e9798ec16ff168c5ebf13a
from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import create_engine, MetaData from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from .common import app, db # The `framework.models.main_database` module`... def name_for_scalar_relationship(base, local_cls, referred_cls, constraint): name = referred_cls.__name__.lower() local_table = local_cls.__table__ if name in local_table.columns: newname = name + "_" return newname return name def name_for_collection_relationship(base, local_cls, referred_cls, constraint): name = referred_cls.__name__.lower() + '_collection' for c in referred_cls.__table__.columns: if c == name: name += "_" return name def classes(model_map): classes_found = {} with app.app_context(): engine = create_engine(app.config['SQLALCHEMY_DATABASE_URI']) # app.config['MAIN_DATABASE_URI']) metadata = MetaData(engine) session = Session(engine) metadata.reflect(bind=engine, only=model_map.keys()) #app.config['MAIN_DATABASE_MODEL_MAP'].keys()) Model = declarative_base(metadata=metadata, cls=(db.Model,), bind=engine) Base = automap_base(metadata=metadata, declarative_base=Model) Base.prepare( name_for_scalar_relationship=name_for_scalar_relationship, name_for_collection_relationship=name_for_collection_relationship ) for cls in Base.classes: cls.__table__.info = {'bind_key': 'main'} if cls.__table__.name in model_map: #app.config['MAIN_DATABASE_MODEL_MAP']: #globals()[app.config['MAIN_DATABASE_MODEL_MAP'][cls.__table__.name]] = cls classes_found[model_map[cls.__table__.name]] = cls return classes_found
py
1a382c136a7d69aed981369b6f2c3758faba4c11
# Copyright 2016 Ifwe Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .meta import Base, init, destroy from .apptype_access import ApptypeAccess from .app_deployment import AppDeployment from .app_hipchat_rooms import app_hipchat_rooms from .app_jmx_attribute import app_jmx_attribute from .app_packages import app_package from .asset import Asset from .cname import Cname from .datacenter import Datacenter from .default_spec import DefaultSpec from .deployment import Deployment from .environment import Environment from .ganglia import Ganglia from .hipchat import Hipchat from .host_deployment import HostDeployment from .host_interface import HostInterface from .host_ip import HostIp from .host_spec import HostSpec from .hw_chassis import HwChassis from .host import Host from .application import AppDefinition from .iloms import Ilom from .jmx_attribute import JmxAttribute from .ldap_group import LdapGroup from .lock import lock from .nag_apptypes_services import NagApptypesServices from .nag_check_commands import NagCheckCommand from .nag_command_arguments import NagCommandArgument from .nag_contact_groups import NagContactGroup from .nag_contacts import NagContact from .nag_contact_groups_members import nag_contact_groups_members from .nag_hosts_services import NagHostsServices from .nag_services_contact_groups import nag_services_contact_groups from .nag_services import NagService from .nag_services_arguments import NagServicesArguments from .nag_services_contacts import nag_services_contacts from .nag_time_periods import NagTimePeriod from .net_default_ip import NetDefaultIP from .net_default_map import NetDefaultMap from .net_default_trunk import net_default_trunk from .network_device import NetworkDevice from .ns_device import NsDevice from .ns_monitor import NsMonitor from .ns_service import NsService from .ns_service_bind import ns_service_bind from .ns_service_max import NsServiceMax from .ns_service_param import NsServiceParam from .ns_vip import NsVip from .ns_vip_binds import NsVipBinds from .ns_weight import NsWeight from .package_name import PackageName from .package import Package from .package_definition import PackageDefinition from .package_location import PackageLocation from .port import Port from .project_package import ProjectPackage from .project import Project from .service_event import ServiceEvent from .subnet import Subnet from .vlan import Vlan from .vm_info import VmInfo from .zone import Zone Application = AppDefinition __all__ = [ 'Base', 'init', 'destroy', 'ApptypeAccess', 'Application', 'AppDefinition', 'AppDeployment', 'app_hipchat_rooms', 'app_jmx_attribute', 'app_package', 'Asset', 'Cname', 'Datacenter', 'DefaultSpec', 'Deployment', 'Environment', 'Ganglia', 'Hipchat', 'HostDeployment', 'HostInterface', 'HostIp', 'HostSpec', 'Host', 'Ilom', 'JmxAttribute', 'LdapGroup', 'lock', 'NagApptypesServices', 'NagCheckCommand', 'NagCommandArgument', 'NagContactGroup', 'NagContact', 'nag_contact_groups_members', 'NagHostsServices', 'nag_services_contact_groups', 'NagService', 'NagServicesArguments', 'nag_services_contacts', 'NagTimePeriod', 'NetDefaultIP', 'NetDefaultMap', 'net_default_trunk', 'NetworkDevice', 'NsDevice', 'NsMonitor', 'NsService', 'ns_service_bind', 'NsServiceMax', 'NsServiceParam', 'NsVip', 'NsVipBinds', 'NsWeight', 'PackageName', 'Package', 'PackageDefinition', 'PackageLocation', 'Port', 'ProjectPackage', 'Project', 'ServiceEvent', 'Subnet', 'Vlan', 'VmInfo', 'Zone' ]
py
1a382c18542d864ca54977da555339283bbfcc4f
from collections import OrderedDict from django.forms import BoundField, CheckboxInput, CheckboxSelectMultiple, FileInput, RadioSelect from django.template.loader import get_template from django.utils.safestring import mark_safe from django_jinja import library from bootstrapform_jinja.config import BOOTSTRAP_COLUMN_COUNT @library.test def checkbox_field(field): """ Jinja test to check if a field is a checkbox """ return isinstance(field.field.widget, CheckboxInput) @library.test def multiple_checkbox_field(field): """ Jinja test to check if a field is a multiple value checkbox """ return isinstance(field.field.widget, CheckboxSelectMultiple) @library.test def radio_field(field): """ Jinja test to check if a field is a radio select """ return isinstance(field.field.widget, RadioSelect) def add_input_classes(field): """ Add form-control to class attribute of the widget of the given field. """ if not isinstance(field.field.widget, (CheckboxInput, CheckboxSelectMultiple, RadioSelect, FileInput)): attrs = field.field.widget.attrs attrs['class'] = attrs.get('class', '') + ' form-control' @library.filter def bootstrap(element): """ Render field, form or formset with bootstrap styles """ return render(element) @library.filter def bootstrap_inline(element): """ Render field, form or formset with bootstrap styles in single line """ return render(element, {'label': 'sr-only'}) @library.filter def bootstrap_horizontal(element, label_cols=None, max_columns=None): """ Render field, form or formset with bootstrap styles in horizontal layout """ if not label_cols: label_cols = ('col-sm-2', 'col-lg-2') if isinstance(label_cols, str): label_cols = label_cols.split() # ensure that label_cols includes only strings and doesn't have duplicates label_cols = tuple(OrderedDict.fromkeys(map(str, label_cols)).keys()) if not max_columns: max_columns = BOOTSTRAP_COLUMN_COUNT cls_value = [] cls_single_value = [] for cl in label_cols: base, sep, value_nb_cols = cl.rpartition('-') prefix = base + sep try: value_nb_cols = int(value_nb_cols) except ValueError: value_nb_cols = max_columns if value_nb_cols >= max_columns: split_class = prefix + str(max_columns) else: offset_class = prefix + 'offset-' + str(value_nb_cols) split_class = prefix + str(max_columns - value_nb_cols) cls_single_value.extend((split_class, offset_class)) cls_value.append(split_class) classes = { 'label': ' '.join(label_cols), 'value': ' '.join(cls_value), 'single_value': ' '.join(cls_single_value), } return render(element, classes) def render(element, markup_classes=None): """ Internal render function used by boostrap filters """ classes = {'label': '', 'value': '', 'single_value': ''} if markup_classes: classes.update(markup_classes) if isinstance(element, BoundField): # InputField add_input_classes(element) template = get_template('bootstrapform/field.jinja') context = {'field': element, 'form': element.form, 'classes': classes} elif getattr(element, 'management_form', None): # FormSet for form in element.forms: for field in form.visible_fields(): add_input_classes(field) template = get_template('bootstrapform/formset.jinja') context = {'formset': element, 'classes': classes} else: # Form for field in element.visible_fields(): add_input_classes(field) template = get_template('bootstrapform/form.jinja') context = {'form': element, 'classes': classes} return mark_safe(template.render(context)) @library.filter def bootstrap_classes(field): """ Filter that adds form-control to given input field """ add_input_classes(field) return mark_safe(field)
py
1a382d2a25e18fd464dc703eea9e24a08246f45e
import json from pathlib import Path def save_json(filepath, content, append=False, topcomment=None): """ Saves content to a json file :param filepath: path to a file (must include .json) :param content: dictionary of stuff to save """ fp = Path(filepath) if fp.suffix not in (".json"): raise ValueError(f"Filepath {fp} not valid should point to json file") with open(filepath, "w") as json_file: json.dump(content, json_file, indent=4) def load_json(filepath): """ Load a json file :param filepath: path to json file """ fp = Path(filepath) if not fp.exists(): raise ValueError("Unrecognized file path: {}".format(filepath)) with open(filepath) as f: data = json.load(f) return data
py
1a382d68de0f9ec54506be9a41354da8a49b6724
# This code is derived from https://github.com/esa/pykep/pull/127 # originally developed by Moritz v. Looz @mlooz . # It was modified following suggestions from Waldemar Martens @MartensWaldemar_gitlab # Solar orbiter is quite a challenge for state of the art optimizers, but # good solutions fulfilling the requirements can be found and an example is # shown in check_good_solution() # # See https://www.esa.int/Science_Exploration/Space_Science/Solar_Orbiter import math from math import cos, pi, sin, sqrt from fcmaes import retry, advretry from fcmaes.optimizer import logger, de_cma, single_objective, de, Bite_cpp import matplotlib.pyplot as plt import pygmo as pg from pykep import RAD2DEG, AU from solo_mgar_udp import solo_mgar_udp logger("solarorbiter.log") def read_solutions(fname): ys = [] xs = [] with open(fname) as csvfile: lines = csvfile.readlines() for line in lines: row = line.split(' ') if len(row) < 12: continue ys.append(float(row[0])) x = [] i = -1 while(True): xi = row[i] while not xi[-1].isdigit(): xi = xi[:-1] if not (xi[0].isdigit() or xi[0] == '-'): xi = xi[1:] x.insert(0, float(xi)) break x.insert(0, float(xi)) i -= 1 xs.append(x) return ys, xs def verify(ys, xs): for i in range(len(ys)): solo_mgar = solo_mgar_udp([7000, 8000]) y0 = ys[i] x = xs[i] if len(x) != 10: continue lambert_legs = [] resonances = [] solo_mgar._compute_dvs(x, lambert_legs, resonances) resos = [reso._resonance for reso in resonances] # assert resos0 == resos y = solo_mgar.fitness(x)[0] print(y0, y, y0-y) assert abs(y0 - y < 0.23) def check_good_solution(x): solo_mgar = solo_mgar_udp([7000, 8000]) prob = pg.problem(solo_mgar) print (str(prob.fitness(x))) solo_mgar.pretty(x) solo_mgar.plot(x) solo_mgar.plot_distance_and_flybys(x) def print_good_solutions(xs): from functools import reduce for i in range(len(xs)): solo_mgar = solo_mgar_udp([7000, 8000]) lambert_legs = [] resos = [] x = xs[i] rvt_outs, rvt_ins, rvt_pls, _, _ = solo_mgar._compute_dvs(x, lambert_legs, resos) #rvt_outs = [rvt.rotate(solo_mgar._rotation_axis, solo_mgar._theta) for rvt in rvt_outs] rvt_out = rvt_outs[-1].rotate(solo_mgar._rotation_axis, solo_mgar._theta) # rotate a, e, incl, _, _, _ = rvt_out.kepler() # orbit should be as polar as possible, but we do not care about prograde/retrograde corrected_inclination = abs(abs(incl) % pi - pi / 2) * RAD2DEG final_perhelion = a * (1 - e) / AU y = solo_mgar.fitness(x) resos = [str(resos[i]._resonance) for i in range(len(resos))] resos = reduce((lambda x, y: x + ',' + y), resos) print (str(i) + ' ' + str(incl*RAD2DEG) + ' ' + str(final_perhelion) + ' [' + str(y[0]), ', [' + resos + '], ' + str(x) + '],') def optimize(): solo_mgar = solo_mgar_udp([7000, 8000]) prob = pg.problem(solo_mgar) fprob = single_objective(prob) # logger().info('solar orbiter' + ' de -> cmaes c++ smart retry') # ret = advretry.minimize(fprob.fun, bounds=fprob.bounds, num_retries = 60000, # logger = logger(), optimizer=de_cma(1500)) logger().info('solar orbiter' + ' BiteOpt parallel retry') ret = retry.minimize(fprob.fun, bounds=fprob.bounds, num_retries = 32000, logger = logger(), optimizer=Bite_cpp(120000, M=6)) return ret def archipelago(): udp = solo_mgar_udp([7000, 8000]) #uda = pg.sga(gen = 6000) uda = pg.sade(memory=True,variant=1,gen=6000) # instantiate an unconnected archipelago for _ in range(1000): archi = pg.archipelago(t = pg.topologies.unconnected()) for _ in range(32): alg = pg.algorithm(uda) #alg.set_verbosity(1) prob = pg.problem(udp) pop = pg.population(prob, 20) isl = pg.island(algo=alg, pop=pop) archi.push_back(isl) archi.evolve() archi.wait_check() def optimize_pagmo(): solo_mgar = solo_mgar_udp([7000, 8000]) for i in range(6000): prob = pg.problem(solo_mgar) pop = pg.population(prob=prob, size=32) alg = pg.algorithm(pg.sade(memory=True,gen=1)) pop = alg.evolve(pop) print(i, pop.champion_f, solo_mgar.fitness(pop.champion_x)) if __name__ == '__main__': #optimize() #archipelago() ys, xs = read_solutions('data/solo_results.txt') #print_good_solutions(xs) #verify(ys, xs) check_good_solution(xs[0]) plt.show() pass
py
1a382de47cc603409e0aa658fc7e1712afc40722
from unittest.mock import ANY import pytest from reconcile.closedbox_endpoint_monitoring_base import ( queries, get_endpoints, parse_prober_url, fill_desired_state, ) from reconcile.blackbox_exporter_endpoint_monitoring import ( build_probe as blackbox_exporter_probe_builder, PROVIDER as BLACKBOX_EXPORTER_PROVIDER, ) from reconcile.signalfx_endpoint_monitoring import ( build_probe as signalfx_probe_builder, PROVIDER as SIGNALFX_PROVIDER, ) from reconcile.utils.openshift_resource import ResourceInventory from .fixtures import Fixtures fxt = Fixtures("closedbox_exporter_endpoint_monitoring") def get_endpoint_fixtures(path: str) -> dict: return fxt.get_anymarkup(path)["appInterface"]["apps"] def test_invalid_endpoints(mocker): query = mocker.patch.object(queries, "get_service_monitoring_endpoints") query.return_value = get_endpoint_fixtures("test_invalid_endpoints.yaml") endpoints = get_endpoints(BLACKBOX_EXPORTER_PROVIDER) assert len(endpoints) == 0 def test_blackbox_exporter_endpoint_loading(mocker): ep_query = mocker.patch.object(queries, "get_service_monitoring_endpoints") ep_query.return_value = get_endpoint_fixtures("test_endpoint.yaml") endpoints = get_endpoints(BLACKBOX_EXPORTER_PROVIDER) assert endpoints is not None assert len(endpoints) == 1 provider = list(endpoints.keys())[0] assert provider.provider == BLACKBOX_EXPORTER_PROVIDER provider_endpoints = endpoints.get(provider) assert provider_endpoints is not None assert len(provider_endpoints) == 1 assert len(provider_endpoints[0].monitoring) == 1 def test_parse_prober_url(): assert parse_prober_url("http://host:1234/path") == { "url": "host:1234", "scheme": "http", "path": "/path", } assert parse_prober_url("http://host") == {"url": "host", "scheme": "http"} def test_invalid_prober_url(): # scheme missing with pytest.raises(ValueError): parse_prober_url("host:1234/path") def test_blackbox_exporter_probe_building(mocker): ep_query = mocker.patch.object(queries, "get_service_monitoring_endpoints") ep_query.return_value = get_endpoint_fixtures("test_blackbox_probe_building.yaml") endpoints = get_endpoints(BLACKBOX_EXPORTER_PROVIDER) assert len(endpoints) == 1 provider = list(endpoints.keys())[0] provider_endpoints = endpoints.get(provider) assert provider_endpoints is not None probe_resource = blackbox_exporter_probe_builder(provider, provider_endpoints) assert probe_resource is not None # verify prober url decomposition spec = probe_resource.body.get("spec") assert spec.get("prober") == { "url": "exporterhost:9115", "scheme": "http", "path": "/probe", } # verify labels labels = spec["targets"]["staticConfig"]["labels"] assert labels.get("environment") == "staging" # verify timeout and interval assert spec["scrapeTimeout"] == provider.timeout assert spec["interval"] == provider.checkInterval # verify targets assert "https://test1.url" in spec["targets"]["staticConfig"]["static"] assert "https://test2.url" in spec["targets"]["staticConfig"]["static"] def test_signalfx_probe_building(mocker): ep_query = mocker.patch.object(queries, "get_service_monitoring_endpoints") ep_query.return_value = get_endpoint_fixtures("test_signalfx_probe_building.yaml") endpoints = get_endpoints(SIGNALFX_PROVIDER) assert len(endpoints) == 1 provider = list(endpoints.keys())[0] provider_endpoints = endpoints.get(provider) assert provider_endpoints is not None probe_resource = signalfx_probe_builder(provider, provider_endpoints) assert probe_resource is not None # verify prober url decomposition spec = probe_resource.body.get("spec") assert spec.get("prober") == { "url": "signalfxexporter:9091", "scheme": "http", "path": "/metrics/probe", } # verify labels labels = spec["targets"]["staticConfig"]["labels"] assert labels.get("environment") == "staging" # verify timeout and interval assert spec["scrapeTimeout"] == provider.timeout assert spec["interval"] == provider.checkInterval # verify targets assert "test_1" in spec["targets"]["staticConfig"]["static"] assert "test_2" in spec["targets"]["staticConfig"]["static"] # verify relabeling assert { "action": "replace", "regex": "^test_1$", "replacement": "https://test1.url", "sourceLabels": ["instance"], "targetLabel": "instance", } in spec["targets"]["staticConfig"]["relabelingConfigs"] assert { "action": "replace", "regex": "^test_2$", "replacement": "https://test2.url", "sourceLabels": ["instance"], "targetLabel": "instance", } in spec["targets"]["staticConfig"]["relabelingConfigs"] def test_blackbox_exporter_filling_desired_state(mocker): ep_query = mocker.patch.object(queries, "get_service_monitoring_endpoints") ep_query.return_value = get_endpoint_fixtures("test_endpoint.yaml") add_desired_mock = mocker.patch.object(ResourceInventory, "add_desired") endpoints = get_endpoints(BLACKBOX_EXPORTER_PROVIDER) provider = list(endpoints.keys())[0] probe = blackbox_exporter_probe_builder(provider, endpoints[provider]) assert probe is not None fill_desired_state(provider, probe, ResourceInventory()) assert add_desired_mock.call_count == 1 add_desired_mock.assert_called_with( cluster="app-sre-stage-01", namespace="openshift-customer-monitoring", resource_type="Probe", name="blackbox-exporter-http-2xx", value=ANY, ) def test_signalfx_filling_desired_state(mocker): ep_query = mocker.patch.object(queries, "get_service_monitoring_endpoints") ep_query.return_value = get_endpoint_fixtures("test_endpoint.yaml") add_desired_mock = mocker.patch.object(ResourceInventory, "add_desired") endpoints = get_endpoints(SIGNALFX_PROVIDER) provider = list(endpoints.keys())[0] probe = signalfx_probe_builder(provider, endpoints[provider]) assert probe is not None fill_desired_state(provider, probe, ResourceInventory()) assert add_desired_mock.call_count == 1 add_desired_mock.assert_called_with( cluster="app-sre-stage-01", namespace="openshift-customer-monitoring", resource_type="Probe", name="signalfx-exporter-http-2xx", value=ANY, ) def test_loading_multiple_providers_per_endpoint(mocker): ep_query = mocker.patch.object(queries, "get_service_monitoring_endpoints") ep_query.return_value = get_endpoint_fixtures( "test_multiple_providers_per_endpoint.yaml" ) endpoints = get_endpoints(BLACKBOX_EXPORTER_PROVIDER) assert len(endpoints) == 2 for provider, eps in endpoints.items(): assert provider.provider == BLACKBOX_EXPORTER_PROVIDER assert len(eps) == 2
py
1a382e8a5b1d5af0171cf4f19630de276ab66cf1
from ald.rtp import * from ald.core import * from ald.abp import * from ald.microrheology import *
py
1a382fab1dcb4942527154c0e779df8116c55005
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import collections import copy import functools import itertools import multiprocessing.pool import os import re import sys import time import weakref from absl.testing import parameterized import numpy from tensorflow.core.protobuf import config_pb2 from tensorflow.core.protobuf import rewriter_config_pb2 from tensorflow.python.autograph.core import ag_ctx from tensorflow.python.autograph.lang import directives from tensorflow.python.data.ops import dataset_ops from tensorflow.python.data.ops import iterator_ops from tensorflow.python.eager import backprop from tensorflow.python.eager import cancellation from tensorflow.python.eager import context from tensorflow.python.eager import def_function from tensorflow.python.eager import function from tensorflow.python.framework import composite_tensor from tensorflow.python.framework import config from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import func_graph from tensorflow.python.framework import function as tf_function from tensorflow.python.framework import indexed_slices from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_spec from tensorflow.python.framework import test_ops from tensorflow.python.framework import test_util from tensorflow.python.framework import type_spec from tensorflow.python.layers import convolutional from tensorflow.python.module import module from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import clip_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import functional_ops from tensorflow.python.ops import gen_functional_ops from tensorflow.python.ops import gen_random_ops from tensorflow.python.ops import gen_resource_variable_ops from tensorflow.python.ops import gen_sendrecv_ops from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import init_ops from tensorflow.python.ops import list_ops from tensorflow.python.ops import logging_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import script_ops from tensorflow.python.ops import string_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.ops.ragged import ragged_factory_ops from tensorflow.python.ops.ragged import ragged_tensor from tensorflow.python.ops.structured import structured_tensor from tensorflow.python.platform import test from tensorflow.python.saved_model.load import load from tensorflow.python.saved_model.save import save from tensorflow.python.training import training_ops from tensorflow.python.util import compat from tensorflow.python.util import nest from tensorflow.python.util import tf_decorator from tensorflow.python.util import tf_inspect try: import attr # pylint:disable=g-import-not-at-top except ImportError: attr = None def total_function_cache(defined): return defined._list_all_concrete_functions() # pylint: disable=protected-access def _example_indexed_slices_with_dense_shape(): return indexed_slices.IndexedSlices( constant_op.constant([1, 2]), constant_op.constant([0, 1]), constant_op.constant([2])) def _example_indexed_slices_without_dense_shape(): return indexed_slices.IndexedSlices( constant_op.constant([1, 2]), constant_op.constant([0, 1])) def _spec_for_value(value): """Returns the (nested) TypeSpec for a value.""" if nest.is_nested(value): return nest.map_structure(_spec_for_value, value) elif isinstance(value, (ops.Tensor, composite_tensor.CompositeTensor)): return type_spec.type_spec_from_value(value) else: return value # This dummy decorator imitates ordinary decorators utilizing tf_decorator. def dummy_tf_decorator(method): def wrapper(*args, **kwargs): return method(*args, **kwargs) return tf_decorator.make_decorator(method, wrapper) # TODO(mdan): Organize these tests. class FunctionTest(test.TestCase, parameterized.TestCase): def setUp(self): super(FunctionTest, self).setUp() cpus = config.list_physical_devices('CPU') # Set 4 virtual CPUs config.set_logical_device_configuration(cpus[0], [ context.LogicalDeviceConfiguration(), context.LogicalDeviceConfiguration(), context.LogicalDeviceConfiguration(), context.LogicalDeviceConfiguration() ]) def testBasic(self): matmul = def_function.function(math_ops.matmul) t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) sq = matmul(t, t, transpose_a=True) sq2 = matmul(sq, t, transpose_a=True) self.assertAllEqual(sq.numpy().reshape(-1), [10, 14, 14, 20]) self.assertAllEqual(sq2.numpy().reshape(-1), [52, 76, 74, 108]) def testPythonFunctionNotCallable(self): with self.assertRaisesRegex(TypeError, 'is not a callable object'): def_function.function(1) def testOnExitCallback(self): values = [] def append_1(): values.append(1) def append_2(): values.append(2) def g(x): old_values = list(values) ops.add_exit_callback_to_default_func_graph(append_1) self.assertEqual(old_values, values) return x + 1 tf_g = def_function.function(g) def f(x): old_values = list(values) ops.add_exit_callback_to_default_func_graph(append_2) self.assertEqual(old_values, values) return tf_g(x) tf_f = def_function.function(f) self.assertEmpty(values) tf_f(constant_op.constant(1.0)) self.assertEqual(values, [1, 2]) # Once for g, once for f. tf_f(constant_op.constant([1.0])) # force a retrace self.assertEqual(values, [1, 2, 1, 2]) # And again. def testCannotAddExitCallbackWhenNotInFunctionScope(self): with self.assertRaisesRegex(RuntimeError, 'when not building a function.'): ops.add_exit_callback_to_default_func_graph(lambda: None) def testVariable(self): v1 = variables.Variable(1.0) add = def_function.function(lambda x, v: x + v1 + v) v2 = variables.Variable(1.0) x = constant_op.constant(1.0) r = add(x, v2) self.assertEqual(3.0, self.evaluate(r)) def testVariableOnly(self): v = variables.Variable(1.0) add = def_function.function(lambda x: x.assign_add(1.0)) r1 = add(v) self.assertEqual(2.0, self.evaluate(r1)) c = constant_op.constant(1.0) with self.assertRaisesRegex(AttributeError, 'no attribute'): add(c) @test_util.disable_tfrt('Packed tensor is not supported in tfrt yet.') def testPackedVariable(self): with ops.device('/cpu:0'): v0_0 = resource_variable_ops.ResourceVariable(1.0) with ops.device('/cpu:1'): v0_1 = resource_variable_ops.ResourceVariable(2.0) v1_0 = resource_variable_ops.ResourceVariable(3.0) with ops.device('/cpu:2'): v1_1 = resource_variable_ops.ResourceVariable(4.0) packed_var_0 = ops.pack_eager_tensors([v0_0.handle, v0_1.handle]) packed_var_1 = ops.pack_eager_tensors([v1_0.handle, v1_1.handle]) # TODO(b/145922293): use ResourceVariable.assign_add and # ResourceVariable.read_value directly once we support packing multiple # ResourceVariable into one ResourceVariable. @def_function.function def read_var(): resource_variable_ops.assign_add_variable_op( packed_var_0, constant_op.constant(5.0)) resource_variable_ops.assign_add_variable_op( packed_var_1, constant_op.constant(6.0)) with ops.device('/cpu:0'): read0 = resource_variable_ops.read_variable_op( packed_var_0, dtype=dtypes.float32) with ops.device('/cpu:1'): read1 = resource_variable_ops.read_variable_op( packed_var_0, dtype=dtypes.float32) read2 = resource_variable_ops.read_variable_op( packed_var_1, dtype=dtypes.float32) with ops.device('/cpu:2'): read3 = resource_variable_ops.read_variable_op( packed_var_1, dtype=dtypes.float32) return read0, read1, read2, read3 arg_attrs = read_var.get_concrete_function().function_def.arg_attr self.assertLen(arg_attrs, 2) self.assertEqual(arg_attrs[0].attr['_composite_device'].s, compat.as_bytes(packed_var_0.device)) self.assertEqual(arg_attrs[1].attr['_composite_device'].s, compat.as_bytes(packed_var_1.device)) self.assertAllEqual(read_var(), (1 + 5, 2 + 5, 3 + 6, 4 + 6)) def testImplementsAttributeBasic(self): v = def_function.function( experimental_implements='func')(lambda x, y: x + y) with context.graph_mode(), self.cached_session(): a = array_ops.placeholder(dtypes.float32, ()) b = array_ops.placeholder(dtypes.float32, ()) v(a, b) gradients_impl.gradients(v(a, b), [a, b]) fdefs = ops.get_default_graph().as_graph_def().library.function self.assertLen(fdefs, 3) not_present = 0 present = 0 for f in fdefs: name = f.signature.name if 'forward' in name or 'backward' in name: not_present += 1 self.assertNotIn(function.IMPLEMENTS_ATTRIBUTE_NAME, f.attr, f) else: present += 1 self.assertEqual(f.attr[function.IMPLEMENTS_ATTRIBUTE_NAME].s, 'func'.encode('ascii'), f) self.assertEqual(not_present, 2, fdefs) self.assertEqual(present, 1, fdefs) def testImplementsAttributeAssertsOnSideInput(self): with context.graph_mode(), self.cached_session(): z = array_ops.zeros(0) v = def_function.function( experimental_implements='func')(lambda x, y: x + y + z) a = array_ops.ones((1,)) b = array_ops.ones((1,)) with self.assertRaisesRegex(AssertionError, 'variables are always captured'): v(a, b) functions = ops.get_default_graph().as_graph_def().library.function self.assertEmpty(functions) def testImplementsAttributeWorksWithGradientTape(self): add = lambda x, y: x + y ** 2 add = def_function.function(experimental_implements='MyFunc')(add) x = variables.Variable(3.0) y = variables.Variable(2.0) with backprop.GradientTape() as tape: g = add(x, y) dg_dy, dg_dx = tape.gradient(g, [y, x]) self.assertEqual(dg_dy.numpy(), 4.0) self.assertEqual(dg_dx.numpy(), 1.0) def testImplementsAttributeWorksOnVariables(self): with context.graph_mode(), self.cached_session(): v = def_function.function( experimental_implements='func')(lambda x, y: x + y) a = variables.Variable((1.0,)) b = variables.Variable((1.0,)) r1 = v(a, b) _ = v(a, a) functions = ops.get_default_graph().as_graph_def().library.function # Verify that we created only one function self.assertLen(functions, 1) # Verify that eval() reads the current values. a.initializer.run() b.initializer.run() self.assertEqual(r1.eval(), 2) a.assign_add([1]).eval() self.assertEqual(r1.eval(), 3) def testImplementsAttributeWorksOnConstants(self): with context.graph_mode(), self.cached_session(): v = def_function.function( experimental_implements='func')(lambda x, y: x + y) a = variables.Variable(1.0) r1 = v(a, 2.) r2 = v(2., a) functions = ops.get_default_graph().as_graph_def().library.function self.assertLen(functions, 1) self.assertLen(functions[0].signature.input_arg, 2) # Verify that eval() reads the current values. a.initializer.run() self.assertEqual(r1.eval(), 3) self.assertEqual(r2.eval(), 3) def testImplementsAttributeSpecializes(self): with context.graph_mode(), self.cached_session(): v = def_function.function( experimental_implements='func')(lambda x, y: x + y) a = variables.Variable(1.0) r1 = v(a, [2.]) r2 = v([2., 2], a) functions = ops.get_default_graph().as_graph_def().library.function self.assertLen(functions, 2) # Ensure that all parameters are still there and haven't been inlined! self.assertLen(functions[0].signature.input_arg, 2) self.assertLen(functions[1].signature.input_arg, 2) # Verify that eval() reads the current values. a.initializer.run() numpy.testing.assert_equal(r1.eval(), [3.]) numpy.testing.assert_equal(r2.eval(), [3., 3.]) def testImplementsWorksWithTensorSpec(self): v = def_function.function( experimental_implements='func')(lambda x, y: x + y) v = v.get_concrete_function( tensor_spec.TensorSpec(shape=None, dtype=dtypes.float32), tensor_spec.TensorSpec(shape=None, dtype=dtypes.float32)) x = v(1., 2.) self.assertEqual(x.numpy(), 3.) def testImplementsAttributeAsNameAttrList(self): implements_attr = ( 'name: "embedding_matmul" attr { key: "key1" value { i: 2 } ' '} attr { key: "key2" value { b: false } }') v = def_function.function( experimental_implements=implements_attr)(lambda x, y: x + y) with context.graph_mode(), self.cached_session(): a = array_ops.placeholder(dtypes.float32, ()) b = array_ops.placeholder(dtypes.float32, ()) v(a, b) gradients_impl.gradients(v(a, b), [a, b]) fdefs = ops.get_default_graph().as_graph_def().library.function self.assertLen(fdefs, 3) not_present = 0 present = 0 for f in fdefs: name = f.signature.name if 'forward' in name or 'backward' in name: not_present += 1 self.assertNotIn(function.IMPLEMENTS_ATTRIBUTE_NAME, f.attr, f) else: present += 1 attr_value = f.attr[function.IMPLEMENTS_ATTRIBUTE_NAME] self.assertIsNotNone(attr_value.func, f) self.assertEqual(attr_value.func.name, 'embedding_matmul') name_attrs = attr_value.func.attr self.assertLen(name_attrs, 2) self.assertEqual(not_present, 2, fdefs) self.assertEqual(present, 1, fdefs) def testExternalControlDependency(self): with ops.Graph().as_default(), self.test_session(): v = variables.Variable(1.0) v.initializer.run() op = v.assign_add(1.0) @function.defun def f(): with ops.control_dependencies([op]): return 1.0 self.evaluate(f()) self.assertAllEqual(self.evaluate(v), 2.0) def testInputShapeFunctionRelaxation(self): unknown_dim = [False] @function.defun(experimental_relax_shapes=True) def func(a): if a._shape_tuple()[0] is None: unknown_dim[0] = True return a + 1 func(constant_op.constant([])) self.assertFalse(unknown_dim[0]) self.assertLen(total_function_cache(func), 1) func(constant_op.constant([1.0])) self.assertFalse(unknown_dim[0]) self.assertLen(total_function_cache(func), 2) func(constant_op.constant([1.0, 2.0])) self.assertTrue(unknown_dim[0]) self.assertLen(total_function_cache(func), 2) def testInputShapeRelaxationOnInstanceMethod(self): # Test that experimental_relax_shapes is passed during # instance method bounding. unknown_dim = [False] class Foo(object): @def_function.function(experimental_relax_shapes=True) def func(self, a): if a._shape_tuple()[0] is None: unknown_dim[0] = True return a + 1 foo = Foo() foo.func(constant_op.constant([])) self.assertFalse(unknown_dim[0]) foo.func(constant_op.constant([1.0])) self.assertFalse(unknown_dim[0]) foo.func(constant_op.constant([1.0, 2.0])) self.assertTrue(unknown_dim[0]) def testInputShapeFunctionRelaxationWithRaggedTensors(self): traced_type_spec = [None] @def_function.function(experimental_relax_shapes=True) def func(x): traced_type_spec[0] = x._type_spec return x def check_trace(x, expected_trace): traced_type_spec[0] = None func(x) self.assertEqual(traced_type_spec[0], expected_trace) check_trace( # Initial call gets traced. ragged_factory_ops.constant([[1], [2, 3, 4]]), ragged_tensor.RaggedTensorSpec([2, None], dtypes.int32)) check_trace( # Input TypeSpec is the same -> no retrace. ragged_factory_ops.constant([[1, 2], [3, 4]]), None) check_trace( # Even if component tensor shapes change -> no retrace. ragged_factory_ops.constant([[1, 2], [3, 4, 5, 6]]), None) check_trace( # Different TypeSpec shape (nrows): retrace ragged_factory_ops.constant([[1], [2], [3]]), ragged_tensor.RaggedTensorSpec([3, None], dtypes.int32)) check_trace( # Different nrows again: relax & retrace ragged_factory_ops.constant([[1], [2], [3], [4]]), ragged_tensor.RaggedTensorSpec([None, None], dtypes.int32)) check_trace( # Different nrows yet again: not retrace ragged_factory_ops.constant([[1]]), None) check_trace( # Different ragged_rank: retrace ragged_factory_ops.constant([[[1]]]), ragged_tensor.RaggedTensorSpec([1, None, None], dtypes.int32)) check_trace( # Different ragged_rank again: retrace & relax ragged_factory_ops.constant([[[1]], [[2]]]), ragged_tensor.RaggedTensorSpec([None, None, None], dtypes.int32)) def testInputShapeFunctionRelaxationWithStructuredTensors(self): traced_type_spec = [None] @def_function.function(experimental_relax_shapes=True) def func(x): traced_type_spec[0] = x._type_spec return x def check_trace(x, expected_trace): traced_type_spec[0] = None func(x) self.assertEqual(traced_type_spec[0], expected_trace) # If we have TypeSpecs that differ in ways other than just their shape, # then retrace each time. check_trace( structured_tensor.StructuredTensor.from_pyval({'a': [1]}), structured_tensor.StructuredTensorSpec( [], {'a': tensor_spec.TensorSpec((1,), dtypes.int32)})) check_trace( structured_tensor.StructuredTensor.from_pyval({'b': [1]}), structured_tensor.StructuredTensorSpec( [], {'b': tensor_spec.TensorSpec((1,), dtypes.int32)})) check_trace( structured_tensor.StructuredTensor.from_pyval({'c': [1]}), structured_tensor.StructuredTensorSpec( [], {'c': tensor_spec.TensorSpec((1,), dtypes.int32)})) # But if we call again with only shape different, then do relax: check_trace( # retrace structured_tensor.StructuredTensor.from_pyval({'a': [1, 2]}), structured_tensor.StructuredTensorSpec( [], {'a': tensor_spec.TensorSpec((2,), dtypes.int32)})) check_trace( # relax & retrace structured_tensor.StructuredTensor.from_pyval({'a': [1, 2, 3]}), structured_tensor.StructuredTensorSpec( [], {'a': tensor_spec.TensorSpec((None,), dtypes.int32)})) check_trace( # use relaxed graph structured_tensor.StructuredTensor.from_pyval({'a': [1, 2, 3, 4]}), None) def testInputShapeFunctionRelaxationWithDatasetIterators(self): # For dataset iterators, the TypeSpec includes type information that's # not derivable from the component tensors. Make sure that the TypeSpec # shapes get relaxed as appropriate. traced_type_spec = [None] @def_function.function(experimental_relax_shapes=True) def func(x): traced_type_spec[0] = x._type_spec return x def check_trace(x, expected_trace): traced_type_spec[0] = None func(x) self.assertEqual(traced_type_spec[0], expected_trace) ds_1_2 = dataset_ops.DatasetV2.from_tensors(array_ops.zeros([1, 2])) ds_2_2 = dataset_ops.DatasetV2.from_tensors(array_ops.zeros([2, 2])) ds_3_2 = dataset_ops.DatasetV2.from_tensors(array_ops.zeros([3, 2])) ds_4_2 = dataset_ops.DatasetV2.from_tensors(array_ops.zeros([4, 2])) ds_2_1 = dataset_ops.DatasetV2.from_tensors(array_ops.zeros([2, 1])) check_trace( # shape=[1, 2]: retrace dataset_ops.make_one_shot_iterator(ds_1_2), iterator_ops.IteratorSpec( tensor_spec.TensorSpec([1, 2], dtypes.float32))) check_trace( # shape=[1, 2]: no retrace (use the [1, 2] graph) dataset_ops.make_one_shot_iterator(ds_1_2), None) check_trace( # shape=[2, 2]: retrace dataset_ops.make_one_shot_iterator(ds_2_2), iterator_ops.IteratorSpec( tensor_spec.TensorSpec([2, 2], dtypes.float32))) check_trace( # shape=[3, 2]: relax to [None, 2] and retrace dataset_ops.make_one_shot_iterator(ds_3_2), iterator_ops.IteratorSpec( tensor_spec.TensorSpec([None, 2], dtypes.float32))) check_trace( # shape=[4, 2]: no retrace (use the [None, 2] graph) dataset_ops.make_one_shot_iterator(ds_4_2), None) check_trace( # shape=[2, 1]: relax to [None, None] and retrace dataset_ops.make_one_shot_iterator(ds_2_1), iterator_ops.IteratorSpec( tensor_spec.TensorSpec([None, None], dtypes.float32))) def testCapturesVariables(self): a = variables.Variable(1.0, trainable=False) b = variables.Variable(1.0) cc = [None] @def_function.function def f(): c = cc[0] if c is None: c = cc[0] = variables.Variable(1.) return a + b + c + 1 cf = f.get_concrete_function() c = cc[0] captured_variables = {v.ref() for v in (a, b, c)} trainable_variables = {v.ref() for v in (b, c)} self.assertEqual({v.ref() for v in cf.variables}, captured_variables) self.assertEqual({v.ref() for v in cf.trainable_variables}, trainable_variables) self.assertEqual(cf.variables, cf.graph.variables) self.assertEqual(cf.trainable_variables, cf.graph.trainable_variables) def testNestedInputShapeFunctionRelaxation(self): unknown_dim = [False] @function.defun(experimental_relax_shapes=True) def func(a_, b_=None): del a_ # Only used to check which cache is used. self.assertEqual(b_[0]._shape_tuple(), ()) if b_[1]._shape_tuple()[0] is None: unknown_dim[0] = True return b_[0] + 1 a = 'hi' b0 = constant_op.constant(1.0) func(a, b_=[b0, constant_op.constant([])]) self.assertFalse(unknown_dim[0]) self.assertLen(total_function_cache(func), 1) func(a, b_=[b0, constant_op.constant([1.0])]) self.assertFalse(unknown_dim[0]) self.assertLen(total_function_cache(func), 2) func(a, b_=[b0, constant_op.constant([1.0, 1.0])]) self.assertTrue(unknown_dim[0]) self.assertLen(total_function_cache(func), 2) unknown_dim[0] = False # Now do the same except with a new a which is not a tensor; this should # change the cache key. a = 'bye' func(a, b_=[b0, constant_op.constant([])]) self.assertFalse(unknown_dim[0]) self.assertLen(total_function_cache(func), 3) # Since we already marked a cache miss for a function with the same # non-input signatures, here we will immediately start relaxing shapes. func(a, b_=[b0, constant_op.constant([1.0])]) self.assertTrue(unknown_dim[0]) self.assertLen(total_function_cache(func), 3) def testNestedShapeFunctionRelaxation(self): got_shape = [None] # The inner function will go through shape relaxation because the shapes it # receives will be [1], [2], [3], ... @def_function.function(experimental_relax_shapes=True) def bar(x_shape): got_shape[0] = x_shape._shape_tuple() return x_shape # The outer function will not go through shape relaxation because the shapes # it receives will be [1], [[1]], [[[1]]], ... @def_function.function(experimental_relax_shapes=True) def foo(ones): return bar(array_ops.shape(ones)) for rank in range(1, 6): x_shape = self.evaluate(foo(array_ops.ones([1] * rank))) self.assertAllEqual(x_shape, [1] * rank) if rank < 3: self.assertEqual(got_shape[0], (rank,)) else: self.assertEqual(got_shape[0], (None,)) def testNoHash(self): @def_function.function() def f(_): return 1.0 with self.assertRaisesRegex( errors.InvalidArgumentError, r'could not be represented through the generic tracing'): f(set([])) def testFuncName(self): @function.defun_with_attributes(attributes={'func_name': 'multiply'}) def add(x, y): _ = x * y return x + y @function.defun def add_2(x, y): _ = x * y return x + y self.assertEqual(add._name, 'multiply') self.assertEqual(add_2._name, 'add_2') def testBasicGraphMode(self): matmul = def_function.function(math_ops.matmul) @def_function.function def sq(a): return matmul(a, a) t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) out = sq(t) self.assertAllEqual(out, math_ops.matmul(t, t).numpy()) def testNestedInputsGraphMode(self): matmul = def_function.function(math_ops.matmul) pair = collections.namedtuple('pair', ['a', 'b']) @def_function.function def a_times_b(inputs): return matmul(inputs.a['a'], inputs.b['b']) t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) out = a_times_b(pair({'a': t}, {'b': t})) self.assertAllEqual(out, math_ops.matmul(t, t).numpy()) def testNestedOutputsGraphMode(self): matmul = def_function.function(math_ops.matmul) pair = collections.namedtuple('pair', ['a', 'b']) @def_function.function() def pairs_mul(pair_a, pair_b): return pair(matmul(pair_a.a, pair_b.a), matmul(pair_a.b, pair_b.b)) a = constant_op.constant([[1.0, 2.0], [1.0, 2.0]]) b = constant_op.constant([[3.0, 4.0], [3.0, 4.0]]) out = pairs_mul(pair(a, b), pair(b, a)) expected = pair(math_ops.matmul(a, b).numpy(), math_ops.matmul(b, a).numpy()) self.assertAllClose(out, expected) @parameterized.named_parameters( dict(testcase_name='Defun', function_decorator=function.defun), dict(testcase_name='DefFunction', function_decorator=def_function.function)) def testNestedFunctionGraphNotOutOfDate(self, function_decorator): @function_decorator def f(): return constant_op.constant(1.) class _Model(object): @function_decorator def g(self): self.f = f.get_concrete_function() model = _Model() model.g() concrete = model.f weak_g_graph = weakref.ref(model.g.get_concrete_function().graph) self.assertIs(weak_g_graph(), concrete.graph.outer_graph) weak_g = weakref.ref(model.g) del model self.assertIsNone(weak_g()) self.assertIsNone(weak_g_graph()) self.assertIsNotNone(concrete.graph.outer_graph) self.assertIs(ops.get_default_graph(), concrete.graph.outer_graph) def testGraphEagerIsolation(self): @function.defun def f(): self.v = variables.Variable(1.0) return self.v.read_value() self.assertAllEqual(f(), 1.0) with ops.Graph().as_default(): self.assertEqual(f().shape, ()) def testBasicGraphFunction(self): matmul = def_function.function(math_ops.matmul) @def_function.function def sq(a): return matmul(a, a) t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) sq_op = sq.get_concrete_function(t) self.assertEqual(sq_op.output_shapes, tensor_shape.TensorShape([2, 2])) out = sq_op(t) self.assertAllEqual(out, math_ops.matmul(t, t).numpy()) def testGetConcreteFunctionThreadSafety(self): @def_function.function def sq(): t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) return math_ops.matmul(t, t) concrete_functions = [] def thread_func(_): cf = sq.get_concrete_function() concrete_functions.append(cf) num_threads = 100 pool = multiprocessing.pool.ThreadPool(num_threads) _ = pool.map(thread_func, list(range(num_threads))) self.assertLen(set(concrete_functions), 1) def testGetConcreteFunctionThreadSafetyWithArgs(self): @def_function.function def add_100(*args): return math_ops.add_n(args) p = multiprocessing.pool.ThreadPool(2) args = (constant_op.constant(1.),) * 100 f1, f2 = p.map(add_100.get_concrete_function, [args] * 2) # I see about len(args) + max(0, len(args) - 3) arguments expected. f1(*args) del f2 def testInputSpecGraphFunction(self): matmul = def_function.function(math_ops.matmul) @def_function.function def sq(a): return matmul(a, a) sq_op = sq.get_concrete_function( tensor_spec.TensorSpec((None, None), dtypes.float32)) self.assertEqual([None, None], sq_op.output_shapes.as_list()) t1 = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) out1 = sq_op(t1) self.assertAllEqual(out1, math_ops.matmul(t1, t1).numpy()) t2 = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) out2 = sq_op(t2) self.assertAllEqual(out2, math_ops.matmul(t2, t2).numpy()) def testNestedInputSpecGraphFunction(self): matmul = def_function.function(math_ops.matmul) @def_function.function def sq(mats): ((a, b),) = mats return matmul(a, b) sq_op_autonamed = sq.get_concrete_function( [(tensor_spec.TensorSpec((None, None), dtypes.float32), tensor_spec.TensorSpec((None, None), dtypes.float32))]) self.assertEqual([None, None], sq_op_autonamed.output_shapes.as_list()) sq_op = sq.get_concrete_function( [(tensor_spec.TensorSpec((None, None), dtypes.float32, name='first_mat'), tensor_spec.TensorSpec((None, None), dtypes.float32, name='second_mat'))]) self.assertEqual([None, None], sq_op.output_shapes.as_list()) t1 = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) t2 = constant_op.constant([[1.4, 2.4], [3.4, 4.4]]) out = sq_op(first_mat=t1, second_mat=t2) self.assertAllEqual(out, math_ops.matmul(t1, t2).numpy()) self.assertAllEqual(sq_op_autonamed(t1, t2), math_ops.matmul(t1, t2).numpy()) def testExecutingStatelessDefunConcurrently(self): @def_function.function def stateless(x): return math_ops.multiply(2.0, x) pool = multiprocessing.pool.ThreadPool() inputs = [constant_op.constant(1.0 * x) for x in range(100)] outputs = [float(out) for out in pool.map(stateless, inputs)] expected = [float(2.0 * x) for x in inputs] self.assertSequenceEqual(outputs, expected) def testExecutingManyStatelessDefunsConcurrently(self): @def_function.function def stateless(x): del x return math_ops.multiply(2.0, 2.0) pool = multiprocessing.pool.ThreadPool() # `pool.map` below instantiates 100 functions, one for each object. objects = [object() for _ in range(100)] outputs = [float(out) for out in pool.map(stateless, objects)] expected = [4.0] * 100 self.assertSequenceEqual(outputs, expected) @test_util.disable_tfrt('b/169431085: This test is flaky on tfrt') def testExecutingStatefulDefunConcurrently(self): v = resource_variable_ops.ResourceVariable(1.0) @def_function.function def stateful(x): v.assign(x) pool = multiprocessing.pool.ThreadPool() inputs = [constant_op.constant(0.0)] * 100 pool.map(stateful, inputs) self.assertEqual(float(v.read_value()), 0.0) def testExecutingManyStatefulDefunsConcurrently(self): v = resource_variable_ops.ResourceVariable(1.0) @def_function.function def stateful(x): del x return v.assign(0.0) pool = multiprocessing.pool.ThreadPool() # `pool.map` below instantiates 100 functions, one for each object. pool.map(stateful, [object() for _ in range(100)]) self.assertEqual(float(v.read_value()), 0.0) def testShareRendezvous(self): # Disable grappler from inlining the functions. Note we run the send & recv # in graph mode since with eager mode the function should automatically be # inlined. context.context().set_optimizer_experimental_options( {'disable_meta_optimizer': True}) cpu = '/device:CPU:0' signature = [tensor_spec.TensorSpec([], dtypes.int32)] @def_function.function def send(): x = constant_op.constant(1) gen_sendrecv_ops.send(x, 'x', cpu, 0, cpu) return x send._shared_rendezvous = True # pylint: disable=protected-access @def_function.function(input_signature=signature) def send_body(n): send() return n - 1 @def_function.function def recv(): return gen_sendrecv_ops.recv(dtypes.int32, 'x', cpu, 0, cpu) recv._shared_rendezvous = True # pylint: disable=protected-access @def_function.function(input_signature=signature) def recv_body(n): recv() return n - 1 @def_function.function(input_signature=signature) def cond(n): return n > 0 # Instead of calling the send & recv functions directly we want to call them # through a functional while to ensure the rendezvous is shared across the # while boundary. @def_function.function def fn(n): functional_ops.While([n], cond.get_concrete_function(), send_body.get_concrete_function()) return functional_ops.While([n], cond.get_concrete_function(), recv_body.get_concrete_function()) # Use a graph context since functions will not be automatically inlined with context.graph_mode(), self.cached_session(): self.evaluate(fn(2)) def disabled_testRandomSeed(self): @def_function.function def f(): return random_ops.random_normal(()) random_seed.set_random_seed(1) x = f() self.assertNotEqual(x, f()) random_seed.set_random_seed(1) self.assertAllEqual(f(), x) def testNestedInputsGraphFunction(self): matmul = def_function.function(math_ops.matmul) pair = collections.namedtuple('pair', ['a', 'b']) @def_function.function def a_times_b(inputs): return matmul(inputs.a['a'], inputs.b['b']) t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) sq_op = a_times_b.get_concrete_function( pair(dict(a=tensor_spec.TensorSpec([2, 2], dtypes.float32, 'a')), dict(b=tensor_spec.TensorSpec([2, 2], dtypes.float32, 'b')))) self.assertEqual(sq_op.output_shapes, tensor_shape.TensorShape([2, 2])) out = sq_op(a=t, b=t) self.assertAllEqual(out, math_ops.matmul(t, t).numpy()) def testNestedOutputGraphFunction(self): matmul = def_function.function(math_ops.matmul) @def_function.function def sq(a): return (matmul(a, a), {'b': constant_op.constant(1.0)}) t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) sq_op = sq.get_concrete_function(t) self.assertEqual(sq_op.output_shapes, (tensor_shape.TensorShape([2, 2]), {'b': tensor_shape.TensorShape([])})) self.assertEqual(sq_op.output_dtypes, (dtypes.float32, {'b': dtypes.float32})) (a, b) = sq_op(t) self.assertAllEqual(a, math_ops.matmul(t, t).numpy()) self.assertAllEqual(b['b'].numpy(), 1.0) def testGraphFunctionNoneOutput(self): @def_function.function def fn(unused_a, unused_b): return None x = constant_op.constant(1) fn_op = fn.get_concrete_function(x, x) self.assertEqual(fn_op.output_dtypes, None) self.assertEqual(fn_op.output_shapes, None) self.assertAllEqual(fn_op(x, x), None) def testDefunNumpyArraysConvertedToTensors(self): def f(x): self.assertIsInstance(x, ops.Tensor) return x x = random_ops.random_uniform([2, 2]).numpy() defined = function.defun(f) defined(x) self.assertLen(total_function_cache(defined), 1) x = random_ops.random_uniform([2, 2]).numpy() defined(x) # A NumPy array with different values but the same shape and dtype # shouldn't trigger another function definition. self.assertLen(total_function_cache(defined), 1) np_ones = numpy.ones([], numpy.float32) np_zeros = numpy.zeros([], numpy.float32) tf_ones = array_ops.ones([]) tf_zeros = array_ops.zeros([]) # Test that the numpy array is properly an argument to the graph function. self.assertEqual(1., defined(np_ones).numpy()) self.assertLen(total_function_cache(defined), 2) self.assertEqual(0., defined(np_zeros).numpy()) self.assertEqual(1., defined(tf_ones).numpy()) self.assertEqual(0., defined(tf_zeros).numpy()) self.assertLen(total_function_cache(defined), 2) # Test that mutable inputs are supported. mutable = numpy.ones([], numpy.float32) self.assertEqual(1., defined(mutable).numpy()) mutable.fill(0) self.assertEqual(0., defined(mutable).numpy()) class MyNdarray(numpy.ndarray): pass # Test that the subclasses of ndarray are converted too. self.assertEqual(1., defined(np_ones.view(MyNdarray)).numpy()) self.assertEqual(0., defined(np_zeros.view(MyNdarray)).numpy()) # We should not have triggered any re-tracing of the python function. self.assertLen(total_function_cache(defined), 2) def testNumpyDtypeInputSupported(self): @function.defun def f(x, dtype): return constant_op.constant(dtype(x)) self.assertEqual(f(1, numpy.float32).numpy(), numpy.float32(1)) self.assertEqual(f(2, numpy.float32).numpy(), numpy.float32(2)) self.assertEqual(f(1, numpy.int32).numpy(), numpy.int32(1)) self.assertEqual(f(2, numpy.int32).numpy(), numpy.int32(2)) def testDefunNumpyArraysConvertedToTensorsInKwargs(self): def f(**kwargs): x = kwargs.pop('x') self.assertIsInstance(x, ops.Tensor) return x x = random_ops.random_uniform([2, 2]).numpy() defined = function.defun(f) defined(x=x) self.assertLen(total_function_cache(defined), 1) x = random_ops.random_uniform([2, 2]).numpy() defined(x=x) # A NumPy array with different values but the same shape and dtype # shouldn't trigger another function definition. self.assertLen(total_function_cache(defined), 1) # Test that the numpy array is properly an argument to the graph function. self.assertEqual(1., defined(x=numpy.ones([])).numpy()) self.assertEqual(0., defined(x=numpy.zeros([])).numpy()) self.assertEqual(1., defined(x=array_ops.ones([])).numpy()) self.assertEqual(0., defined(x=array_ops.zeros([])).numpy()) def testDefunCapturedInt32(self): x = constant_op.constant(1, dtype=dtypes.int32) @def_function.function def add_int32s(): return x + x self.assertEqual(2, int(add_int32s())) def testDefunReadVariable(self): v = resource_variable_ops.ResourceVariable(1.0) @def_function.function def f(): return v.read_value() self.assertEqual(1.0, float(f())) def testDefunAssignAddVariable(self): v = resource_variable_ops.ResourceVariable(1.0) x = constant_op.constant(2.0) @def_function.function def test_assign_add(): v.assign_add(x) return v.read_value() self.assertEqual(3.0, float(test_assign_add())) @test_util.run_in_graph_and_eager_modes def testTensorInitializationInFunctionRaisesError(self): @def_function.function def tensor_init(): with self.assertRaisesRegex(ValueError, 'could not be lifted out'): resource_variable_ops.ResourceVariable(constant_op.constant(2.0)) tensor_init() @test_util.run_in_graph_and_eager_modes def testCallableTensorInitializationInFunction(self): @def_function.function def tensor_init(): self.v = resource_variable_ops.ResourceVariable( lambda: constant_op.constant(2.0)) return self.v.read_value() value = tensor_init() if not context.executing_eagerly(): self.evaluate(variables.global_variables_initializer()) self.assertEqual(self.evaluate(value), 2.0) @test_util.also_run_as_tf_function def testInitScopeTensorInitializationInFunction(self): @def_function.function def tensor_init(): with ops.init_scope(): const = constant_op.constant(2.0) # Note: this variable bypasses tf.function's variable creation # requirements by bypassing variable_creator_scope by using # ResourceVariable instead of Variable. self.v = resource_variable_ops.ResourceVariable(const) return self.v.read_value() value = tensor_init() self.assertAllEqual(value, 2.0) @test_util.run_in_graph_and_eager_modes def testGetConcreteFunctionCreatesVariables(self): v_holder = [] @def_function.function def tensor_init(): if not v_holder: v_holder.append(variables.Variable(5.)) return v_holder[0].read_value() concrete = tensor_init.get_concrete_function() self.evaluate(variables.global_variables_initializer()) self.assertAllEqual(5., self.evaluate(concrete())) self.assertAllEqual(5., self.evaluate(tensor_init())) def testFuncGraphCaptureByValue(self): v = variables.Variable(1.0) def trivial_function(): return v.read_value() graph_function = function.Function( trivial_function, 'test', capture_by_value=True) self.assertAllEqual(graph_function(), 1.0) v.assign(2.0) self.assertAllEqual(graph_function(), 1.0) def testFuncGraphCaptureByValueNested(self): v = variables.Variable(1.0) def trivial_function(): return control_flow_ops.cond( array_ops.placeholder_with_default(True, ()), v.read_value, v.read_value) graph_function = function.Function( trivial_function, 'test', capture_by_value=True) self.assertAllEqual(graph_function(), 1.0) v.assign(2.0) self.assertAllEqual(graph_function(), 1.0) def testDefunShapeInferenceWithCapturedResourceVariable(self): v = resource_variable_ops.ResourceVariable([[1, 2], [3, 4]]) def f(): x = constant_op.constant([[1, 2], [3, 4]]) out = math_ops.matmul(v, x) self.assertEqual(out.shape, tensor_shape.TensorShape([2, 2])) # We do not return v directly since the tensor conversion function of # ResourceVariable returns the read value and not the resource itself. return v._handle compiled = def_function.function(f) var_handle = compiled() self.assertEqual(var_handle.dtype, dtypes.resource) self.assertEqual(var_handle.shape, tensor_shape.TensorShape([])) var_t = resource_variable_ops.read_variable_op(var_handle, dtype=v.dtype) self.assertEqual(var_t.shape, tensor_shape.TensorShape([2, 2])) def testShapeInferenceForMoreSpecificInput(self): def f(a): return array_ops.reshape(a, [-1, 3]) signature = [tensor_spec.TensorSpec(None, dtypes.float32)] compiled = def_function.function(f, input_signature=signature) @def_function.function def use_f(): inputs = array_ops.zeros([10, 10, 3]) self.assertAllEqual(f(inputs).shape, compiled(inputs).shape) use_f() def testFuncListAttr(self): @function.defun def test_function(val): def fn1(): return array_ops.ones([10]) fn2 = lambda: array_ops.ones([10]) * 2 def fn3(x=3): return array_ops.ones([10]) * x fn4 = functools.partial(fn3, x=4) fn5 = functools.partial(fn3, 5) return gen_functional_ops.case(val, [], [dtypes.float32], [function.defun(f).get_concrete_function() for f in (fn1, fn2, fn3, fn4, fn5)]) ones = array_ops.ones([10]) self.assertAllEqual([ones], test_function(0)) self.assertAllEqual([ones * 2], test_function(1)) self.assertAllEqual([ones * 3], test_function(2)) self.assertAllEqual([ones * 4], test_function(3)) self.assertAllEqual([ones * 5], test_function(4)) self.assertAllEqual([ones * 5], test_function(22)) # default branch @test_util.enable_control_flow_v2 def testVariableInLoopInFunction(self): @function.defun def test_function(): def loop_test(_): return False def loop_body(_): return variable_scope.get_variable('a', shape=()) return control_flow_ops.while_loop(loop_test, loop_body, [0.0]) self.assertEqual(test_function().shape, []) def testDefunShapeInferenceWithCapturedResourceVariableInGraphMode(self): with context.graph_mode(): v = resource_variable_ops.ResourceVariable([[1, 2], [3, 4]]) def f(): x = constant_op.constant([[1, 2], [3, 4]]) out = math_ops.matmul(v, x) self.assertEqual(out.shape, tensor_shape.TensorShape([2, 2])) # We do not return v directly since the tensor conversion function of # ResourceVariable returns the read value and not the resource itself. return v._handle compiled = def_function.function(f) var_handle = compiled() self.assertEqual(var_handle.dtype, dtypes.resource) self.assertEqual(var_handle.shape, tensor_shape.TensorShape([])) var_t = resource_variable_ops.read_variable_op(var_handle, dtype=v.dtype) self.assertEqual(var_t.shape, tensor_shape.TensorShape([2, 2])) def testDefunShapeInferenceWithCapturedVariableInGraphMode(self): with context.graph_mode(): v = variables.Variable([[1, 2], [3, 4]]) def f(): x = constant_op.constant([[1, 2], [3, 4]]) out = math_ops.matmul(v, x) self.assertEqual(out.shape, tensor_shape.TensorShape([2, 2])) # Check that shape inference works while creating the defun compiled = def_function.function(f) compiled() def testDefunShapeInferenceWithCapturedTensorListInGraphMode(self): with context.graph_mode(): tensor_list = list_ops.empty_tensor_list( element_dtype=dtypes.float32, element_shape=ops.convert_to_tensor([], dtype=dtypes.int32)) tensor_list = list_ops.tensor_list_push_back(tensor_list, constant_op.constant(1.0)) tensor_list = list_ops.tensor_list_push_back(tensor_list, constant_op.constant(2.0)) def f(): tl, value = list_ops.tensor_list_pop_back( tensor_list, element_dtype=dtypes.float32) self.assertEqual(value.shape, tensor_shape.TensorShape([])) return tl compiled = def_function.function(f) output_tensor_list = compiled() _, value = list_ops.tensor_list_pop_back( output_tensor_list, element_dtype=dtypes.float32) self.assertEqual(value.shape, tensor_shape.TensorShape([])) @test_util.run_in_graph_and_eager_modes def testDefunForcesResourceVariables(self): def variable_creator(): self.v = variables.Variable(0.0) return self.v.read_value() self.v = None defined = function.defun(variable_creator) defined() # Create the variable. self.assertIsInstance( self.v, resource_variable_ops.ResourceVariable) def testRunMetadata(self): @def_function.function def f(x): return x * x with ops.device('cpu:0'): context.enable_run_metadata() f(constant_op.constant(1.0)) run_metadata = context.export_run_metadata() context.disable_run_metadata() self.assertLen(run_metadata.partition_graphs, 1) def testGraphModeCaptureVariable(self): with context.graph_mode(), self.cached_session(): class HasAVar(object): def __init__(self): self.v = resource_variable_ops.ResourceVariable(1.0) def call(self): return self.v * 2 o = HasAVar() self.evaluate(variables.global_variables_initializer()) call = def_function.function(o.call) op = call() self.assertAllEqual(self.evaluate(op), 2.0) def testGraphModeManyFunctions(self): with ops.Graph().as_default(), self.cached_session(): @def_function.function def f(x): return x * x @def_function.function def g(x): return f(x) + 1 self.assertAllEqual(g(constant_op.constant(2.0)), 5.0) def testDict(self): @def_function.function def f(x): return {'name': x + 1} self.assertAllEqual(f(constant_op.constant(1.0))['name'], 2.0) def testWeakrefInputsRejected(self): @def_function.function def f(x): return x class Dummy: pass o = Dummy() wr = weakref.ref(o) with self.assertRaisesRegex(ValueError, 'weakref'): f(wr) def testTensorConversionWithDefun(self): @def_function.function def f(x): return math_ops.add(x, constant_op.constant(3)) self.assertAllEqual(5, f(constant_op.constant(2))) def testTensorConversionCall(self): @def_function.function def f(x): return math_ops.add(x, constant_op.constant(3)) @def_function.function def g(x): return f(f(x)) self.assertAllEqual(8, g(constant_op.constant(2))) def testCallShape(self): @def_function.function def f(x): return x + 1 @def_function.function def g(x): x = f(x) self.assertEqual(x.shape.as_list(), []) return None g(constant_op.constant(1.0)) def testNestedDefunWithNoOutputAndTapedInput(self): three = resource_variable_ops.ResourceVariable(3.0, name='v') @def_function.function def f(x): # This function intentionally takes a taped variable as input, # but does not return any values math_ops.add(x, three) @def_function.function def g(x): y = math_ops.add(x, three) f(y) g(three) def testGatherResourceWithDefun(self): with ops.device('cpu:0'): v = resource_variable_ops.ResourceVariable([0.0, 1.0, 2.0]) def sum_gather(): return math_ops.reduce_sum(array_ops.gather(v, [1, 2])) defined = def_function.function(sum_gather) self.assertAllEqual(sum_gather(), defined()) @parameterized.named_parameters([ ('IndexedSlicesWithDenseShape', _example_indexed_slices_with_dense_shape,), ('IndexedSlicesWithoutDenseShape', _example_indexed_slices_without_dense_shape,), ('RaggedTensorRaggedRank1', ragged_tensor.RaggedTensor.from_row_lengths, {'values': [1, 2, 3], 'row_lengths': [2, 0, 1]}), ('RaggedTensorRaggedRank2', ragged_tensor.RaggedTensor.from_nested_row_lengths, {'flat_values': [1, 2, 3], 'nested_row_lengths': [[1, 2], [2, 0, 1]]}), ('SparseTensor', sparse_tensor.SparseTensor, {'values': [1, 2, 3], 'indices': [[0], [8], [10]], 'dense_shape': [20]}), ]) # pyformat: disable def testReturnCompositeTensorWithDefun(self, factory_fn, factory_kwargs={}, input_signature=None): input_ct = factory_fn(**factory_kwargs) @def_function.function(input_signature=input_signature) def f(): return input_ct output_ct = f() self.assertIsInstance(output_ct, type(input_ct)) nest.assert_same_structure(input_ct, output_ct, expand_composites=True) input_flat = nest.flatten(input_ct, expand_composites=True) output_flat = nest.flatten(output_ct, expand_composites=True) for (input_component, output_component) in zip(input_flat, output_flat): self.assertAllEqual(input_component, output_component) @parameterized.named_parameters([ ('IndexedSlicesWithDenseShape', _example_indexed_slices_with_dense_shape,), ('IndexedSlicesWithoutDenseShape', _example_indexed_slices_without_dense_shape,), ('RaggedTensorRaggedRank1', ragged_tensor.RaggedTensor.from_row_lengths, {'values': [1, 2, 3], 'row_lengths': [2, 0, 1]}), ('RaggedTensorRaggedRank2', ragged_tensor.RaggedTensor.from_nested_row_lengths, {'flat_values': [1, 2, 3], 'nested_row_lengths': [[1, 2], [2, 0, 1]]}), ('SparseTensor', sparse_tensor.SparseTensor, {'values': [1, 2, 3], 'indices': [[0], [8], [10]], 'dense_shape': [20]}), ('RaggedTensorRaggedRank1WithSignature', ragged_tensor.RaggedTensor.from_row_lengths, {'values': [1, 2, 3], 'row_lengths': [2, 0, 1]}, [ragged_tensor.RaggedTensorSpec([None, None], dtypes.int32)]), ('RaggedTensorRaggedRank2WithSignature', ragged_tensor.RaggedTensor.from_nested_row_lengths, {'flat_values': [1, 2, 3], 'nested_row_lengths': [[1, 2], [2, 0, 1]]}, [ragged_tensor.RaggedTensorSpec([None, None, None], dtypes.int32)]), ('SparseTensorWithSignature', sparse_tensor.SparseTensor, {'values': [1, 2, 3], 'indices': [[0], [8], [10]], 'dense_shape': [20]}, [sparse_tensor.SparseTensorSpec([None], dtypes.int32)]), ]) # pyformat: disable def testCompositeAsArgumentTensorWithDefun(self, factory_fn, factory_kwargs={}, input_signature=None): input_ct = factory_fn(**factory_kwargs) @def_function.function(input_signature=input_signature) def f(x): return x output_ct = f(input_ct) self.assertIsInstance(output_ct, type(input_ct)) nest.assert_same_structure(input_ct, output_ct, expand_composites=True) input_flat = nest.flatten(input_ct, expand_composites=True) output_flat = nest.flatten(output_ct, expand_composites=True) for (input_component, output_component) in zip(input_flat, output_flat): self.assertAllEqual(input_component, output_component) def testTracedCompositeDiscardsShapeInfo(self): # SparseTensorSpec intentionally excludes info about the number of elements # that are in a sparse tensor (which is recorded as st.indices.shape[0] and # st.values.shape[0]). Similarly, RaggedTensorSpec intentionally excludes # info about the total number of values in a RaggedTensor (stored as # rt.values.shape[0]). This test checks that the placeholders created by # tf.function() properly mask this shape info. @def_function.function def f(rt, st): self.assertEqual(st.indices.shape.as_list()[:1], [None]) self.assertEqual(st.values.shape.as_list(), [None]) return (rt, st) rt = ragged_factory_ops.constant([[1, 2], [3]]) st = sparse_tensor.SparseTensor([[0]], [0], [10]) f(rt, st) @test_util.run_gpu_only def testFunctionOnDevice(self): x = constant_op.constant([1.]).gpu() f = def_function.function(math_ops.add) y = f(x, x).cpu() self.assertAllEqual(y, [2.]) @test_util.run_gpu_only @test_util.run_in_graph_and_eager_modes def testFunctionWithResourcesOnDifferentDevices(self): with ops.device('/cpu:0'): v_cpu = resource_variable_ops.ResourceVariable([0.0, 1.0, 2.0]) with ops.device('/gpu:0'): v_gpu = resource_variable_ops.ResourceVariable([0.0, 1.0, 2.0]) def sum_gather(): cpu_result = math_ops.reduce_sum(array_ops.gather(v_cpu, [1, 2])) gpu_result = math_ops.reduce_sum(array_ops.gather(v_gpu, [1, 2])) return cpu_result, gpu_result defined = function.defun(sum_gather) if not context.executing_eagerly(): self.evaluate(variables.global_variables_initializer()) expected = self.evaluate(sum_gather()) self.assertAllEqual(expected, self.evaluate(defined())) @test_util.run_gpu_only @test_util.run_in_graph_and_eager_modes def testOpInFunctionWithConflictingResourceInputs(self): with ops.device('/cpu:0'): v_cpu = resource_variable_ops.ResourceVariable( [0.0, 1.0, 2.0], name='cpu') v_also_cpu = resource_variable_ops.ResourceVariable( [0.0, 1.0, 2.0], name='also_cpu') with ops.device('/gpu:0'): v_gpu = resource_variable_ops.ResourceVariable( [0.0, 1.0, 2.0], name='gpu') @def_function.function def resource_apply_adam(): training_ops.resource_apply_adam( v_cpu.handle, v_gpu.handle, v_also_cpu.handle, 1.0, # beta1_power 1.0, # beta2_power 1.0, # learning_rate 1.0, # beta1 1.0, # beta2 1.0, # epsilon, [1.0, 1.0, 1.0], # grad False) # use_locking return None with self.assertRaisesRegex( errors.InvalidArgumentError, 'Cannot place the graph because a reference or resource edge connects ' 'colocation groups with incompatible assigned devices'): if not context.executing_eagerly(): self.evaluate(variables.global_variables_initializer()) self.evaluate(resource_apply_adam()) @test_util.run_gpu_only def testFunctionHandlesInputsOnDifferentDevices(self): # The Reshape op requires the shape tensor to be placed in host memory. reshape = def_function.function(array_ops.reshape) value = constant_op.constant([1., 2.]).gpu() shape = constant_op.constant([2, 1]) reshaped = reshape(value, shape).cpu() self.assertAllEqual(reshaped, [[1], [2]]) @test_util.run_gpu_only def testFunctionHandlesInputsPlacedOnTheWrongDeviceGracefully(self): # The Reshape op requires the shape tensor to be placed in host memory. reshape = def_function.function(array_ops.reshape) value = constant_op.constant([1., 2.]) shape = constant_op.constant([2, 1]).gpu() reshape(value, shape) # No error is raised def testNoneOutput(self): @def_function.function def my_function(_): return None self.assertAllEqual(my_function(1), None) def testNestedFunctions(self): # TensorFlow function (which is what would be used in TensorFlow graph # construction). @tf_function.Defun(dtypes.int32, dtypes.int32) def add(a, b): return math_ops.add(a, b) @def_function.function def add_one(x): return add(x, 1) self.assertAllEqual(3, add_one(constant_op.constant(2))) def testVariableCaptureInNestedFunctions(self): v = resource_variable_ops.ResourceVariable(1, dtype=dtypes.int32) @def_function.function def inner_read(): return v.read_value() @def_function.function def outer(): return inner_read() self.assertEqual(1, int(outer())) def testReturnCapturedEagerTensor(self): t = constant_op.constant(1) @def_function.function def read(): return t self.assertEqual(1, int(read())) def testReturnCapturedGraphTensor(self): with context.graph_mode(), self.cached_session(): t = constant_op.constant(1) @def_function.function def read(): return t self.assertEqual(1, int(self.evaluate(read()))) def testSequenceInputs(self): clip_by_global_norm = def_function.function(clip_ops.clip_by_global_norm) t_list = [constant_op.constant(1.0), constant_op.constant(2.0)] clipped_list, global_norm = clip_by_global_norm(t_list, constant_op.constant(.2)) for t in clipped_list: self.assertIsInstance(t, ops.Tensor) self.assertIsInstance(global_norm, ops.Tensor) def testNestedSequenceInputs(self): def my_op(inputs): a, b, c = inputs e, f = b g, h = e return [a + a, [tuple([f + f, g + g]), h + h], c + c], a + f + g + h + c my_eager_op = def_function.function(my_op) ret = my_eager_op([ constant_op.constant(1), [(constant_op.constant(2), constant_op.constant(3)), constant_op.constant(4)], constant_op.constant(5) ]) self.assertLen(ret, 2) self.assertAllEqual(ret[0][0], 2) self.assertAllEqual(ret[0][1][0][0], 8) self.assertAllEqual(ret[0][1][0][1], 4) self.assertIsInstance(ret[0][1][0], tuple) self.assertAllEqual(ret[0][1][1], 6) self.assertAllEqual(ret[0][2], 10) self.assertAllEqual(ret[1], 15) def testVariableNamesRespectNameScopesWithDefun(self): @def_function.function def create_variable(): with ops.name_scope('foo', skip_on_eager=False): v = resource_variable_ops.ResourceVariable(0.0, name='bar') self.assertEqual(v.name, 'foo/bar:0') create_variable() def testVariableNamesRespectNameScopesWithDefunInGraph(self): with context.graph_mode(): @def_function.function def create_variable(): with ops.name_scope('foo', skip_on_eager=False): v = resource_variable_ops.ResourceVariable([1.0, 2.0], name='bar') self.assertEqual(v.name, 'foo/bar:0') with ops.get_default_graph().as_default(): create_variable() @test_util.assert_no_new_pyobjects_executing_eagerly def testCallOptionsMemory(self): @function.defun def model(x): return x + constant_op.constant(1.) # This happens with a lot of option toggles, e.g. soft device placement context.context().function_call_options = None model(constant_op.constant(2.)) @test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True) def testLayerInDefun(self): conv = convolutional.Conv2D( filters=1, kernel_size=2, kernel_initializer=init_ops.ones_initializer(), bias_initializer=init_ops.zeros_initializer()) @function.defun def model(x): return conv(x) x = array_ops.ones([1, 2, 2, 1]) y = model(x) if not context.executing_eagerly(): self.evaluate(variables.global_variables_initializer()) self.assertAllClose([[[[4.0]]]], self.evaluate(y)) # Variable lifting is somewhat different between defun/tf.function, so testing # device placement on both makes sense. @parameterized.named_parameters( dict(testcase_name='Defun', function_decorator=function.defun), dict(testcase_name='DefFunction', function_decorator=def_function.function)) @test_util.run_in_graph_and_eager_modes def testVariablesPlacedOnOutsideDevice(self, function_decorator): class _Obj(object): def __init__(self): self.v = None @function_decorator def f(self): if self.v is None: self.v = variables.Variable(1.) return self.v + 1. has_device = _Obj() with ops.device('cpu:0'): has_device.f() self.assertIn('CPU', has_device.v.device) @test_util.run_in_graph_and_eager_modes def testMultipleDeviceCheck(self): def f(): with ops.device('cpu'): return test_ops.device_placement_op() func = function.defun(f) with ops.device('cpu:0'): output = self.evaluate(func()) self.assertIn(compat.as_bytes('CPU:0'), output) @test_util.run_in_graph_and_eager_modes def testDeviceAnnotationsRespected(self): def multi_device_fn(): with ops.device('/cpu:0'): s0 = test_ops.device_placement_op() with ops.device('/cpu:1'): s1 = test_ops.device_placement_op() with ops.device('/cpu:2'): s2 = test_ops.device_placement_op() s3 = test_ops.device_placement_op() return s0, s1, s2, s3 defined = function.defun(multi_device_fn) outputs = self.evaluate(defined()) self.assertLen(total_function_cache(defined), 1) self.assertIn(compat.as_bytes('CPU:0'), outputs[0]) self.assertIn(compat.as_bytes('CPU:1'), outputs[1]) self.assertIn(compat.as_bytes('CPU:2'), outputs[2]) with ops.device('/cpu:3'): outputs = self.evaluate(defined()) # All function definitions are agnostic to call site devices. self.assertLen(total_function_cache(defined), 1) self.assertIn(compat.as_bytes('CPU:0'), outputs[0]) self.assertIn(compat.as_bytes('CPU:1'), outputs[1]) self.assertIn(compat.as_bytes('CPU:2'), outputs[2]) self.assertIn(compat.as_bytes('CPU:3'), outputs[3]) with ops.device('/cpu:0'): outputs = self.evaluate(defined()) self.assertLen(total_function_cache(defined), 1) self.assertIn(compat.as_bytes('CPU:0'), outputs[0]) self.assertIn(compat.as_bytes('CPU:1'), outputs[1]) self.assertIn(compat.as_bytes('CPU:2'), outputs[2]) self.assertIn(compat.as_bytes('CPU:0'), outputs[3]) @test_util.run_in_graph_and_eager_modes def testCallingGraphFunctionOnDifferentDevice(self): def func(): return constant_op.constant(0) defined = def_function.function(func) with ops.device('cpu:0'): cpu_graph_function = defined.get_concrete_function() with ops.device('cpu:0'): self.assertEqual( self.evaluate(cpu_graph_function()), self.evaluate(func())) with ops.device('cpu:1'): self.assertEqual(0., self.evaluate(cpu_graph_function())) with ops.device(None): self.assertEqual(0., self.evaluate(cpu_graph_function())) default_graph_function = defined.get_concrete_function() self.assertEqual( self.evaluate(default_graph_function()), self.evaluate(func())) with ops.device('cpu:1'): self.assertEqual(0., self.evaluate(default_graph_function())) @test_util.run_gpu_only @test_util.run_in_graph_and_eager_modes def testColocateWithRespected(self): # TODO(b/113291792): Use multiple CPUs instead of a GPU. with ops.device('cpu:0'): x = array_ops.identity(1.0) with ops.device('gpu:0'): y = array_ops.identity(1.0) @def_function.function def foo(): return test_ops.device_placement_op() with ops.colocate_with(x): self.assertIn(compat.as_bytes('CPU:0'), self.evaluate(foo())) with ops.colocate_with(y): self.assertIn(compat.as_bytes('GPU:0'), self.evaluate(foo())) def testVariablesAreTracked(self): v = resource_variable_ops.ResourceVariable(1.0) def foo(x): return v * x defined = def_function.function(foo) x = constant_op.constant([1.0]) self.assertEqual(1., self.evaluate(defined(x))) v.assign(2.) x = constant_op.constant([1.0, 2.0]) self.assertAllEqual([2., 4.], self.evaluate(defined(x))) def testCacheObjectHashCollisions(self): class Foo(object): def __hash__(self): return 42 def func(foo): return constant_op.constant([id(foo)]) defined = function.defun(func) foo_1 = Foo() defined(foo_1) self.assertLen(total_function_cache(defined), 1) foo_2 = Foo() defined(foo_2) self.assertLen(total_function_cache(defined), 2) def testCacheTensorDtypeCollision(self): def func(t): return t + t defined = function.defun(func) t = constant_op.constant([[1.0]], dtype=dtypes.complex64) defined(t) self.assertLen(total_function_cache(defined), 1) t = constant_op.constant([[1.0]], dtype=dtypes.complex128) defined(t) self.assertLen(total_function_cache(defined), 2) def testCacheTensorShapeCollision(self): def func(t): return t + t defined = function.defun(func) t = constant_op.constant([[1.0]], dtype=dtypes.complex64) defined(t) self.assertLen(total_function_cache(defined), 1) t = constant_op.constant([1.0], dtype=dtypes.complex64) defined(t) self.assertLen(total_function_cache(defined), 2) def testCacheTensorShapeDtypeCollision(self): def func(t): return t + t defined = function.defun(func) t = constant_op.constant([[1.0]], dtype=dtypes.complex64) defined(t) self.assertLen(total_function_cache(defined), 1) t = constant_op.constant([1.0], dtype=dtypes.complex128) defined(t) self.assertLen(total_function_cache(defined), 2) def testCacheTensorUnknownShapesCollisionRelaxedShapes(self): def func(t): return t + t with context.graph_mode(), self.cached_session(): defined = function.defun(func, experimental_relax_shapes=True) p = array_ops.placeholder(dtype=dtypes.float32, shape=[]) defined(p) self.assertLen(total_function_cache(defined), 1) p = array_ops.placeholder(dtype=dtypes.float32, shape=[1]) defined(p) self.assertLen(total_function_cache(defined), 2) p = array_ops.placeholder(dtype=dtypes.float32, shape=[2]) defined(p) # Gradual shape relaxation is performed; and the common shape between # [1] and [2] is one containing unknown dimensions. self.assertLen(total_function_cache(defined), 2) # pylint: disable=protected-access self.assertLen(defined._function_cache.arg_relaxed_specs, 1) relaxed_specs = ( list(defined._function_cache.arg_relaxed_specs.values())[0]) self.assertLen(relaxed_specs, 1) relaxed_shape = relaxed_specs[0].shape # pylint: enable=protected-access self.assertEqual(relaxed_shape.rank, 1) self.assertEqual(tensor_shape.dimension_value(relaxed_shape[0]), None) t = constant_op.constant([1.0, 1.0, 1.0], dtype=dtypes.float32) defined(t) # Shape (3,) matches the relaxed shape TensorShape([None]) self.assertLen(total_function_cache(defined), 2) def testPythonFunctionWithDefaultArgs(self): def func(foo, bar=1, baz=2): del foo del bar del baz return defined = function.defun(func) defined(0, baz=20) self.assertLen(total_function_cache(defined), 1) defined(1) # bar=1, baz=2 self.assertLen(total_function_cache(defined), 2) # This matches the previous call. defined(foo=1) self.assertLen(total_function_cache(defined), 2) defined(1, 2, 3) self.assertLen(total_function_cache(defined), 3) # This matches the previous call. defined(1, bar=2, baz=3) self.assertLen(total_function_cache(defined), 3) # This matches the previous call. defined(1, baz=3, bar=2) self.assertLen(total_function_cache(defined), 3) def testDatasetIteratorCaching(self): def func(it1, it2): next(it1) next(it2) return 0 defined = function.defun(func) d = dataset_ops.DatasetV2.from_tensor_slices([1, 2, 3]) it1 = iter(d) it2 = iter(d) _ = defined(it1, it2) # The two iterators are different self.assertLen(total_function_cache(defined), 1) it3 = iter(d) it4 = iter(d) _ = defined(it3, it4) # The two iterators are different, should not retrace self.assertLen(total_function_cache(defined), 1) it5 = iter(d) _ = defined(it5, it5) # The two iterators are the same, should retrace self.assertLen(total_function_cache(defined), 2) it6 = iter(d) _ = defined(it6, it6) # The two iterators are the same, should not retrace self.assertLen(total_function_cache(defined), 2) def testFunctoolsPartialUnwrappedCorrectly(self): def full_function(a, b, c=3): return a, b, c partial = functools.partial(full_function, 1, c=4) a, b, c = partial(2) defined = function.defun(partial) func_a, func_b, func_c = defined(2) self.assertEqual(func_a.numpy(), a) self.assertEqual(func_b.numpy(), b) self.assertEqual(func_c.numpy(), c) def testInputSignatureWithMatchingInputs(self): def foo(a): self.assertEqual(a.shape, (2,)) return a signature = [tensor_spec.TensorSpec(shape=(2,), dtype=dtypes.float32)] defined = function.defun(foo, input_signature=signature) a = array_ops.ones([2]) self.assertAllEqual(a, defined(a)) self.assertLen(total_function_cache(defined), 1) self.assertAllEqual(a, defined.get_concrete_function()(a)) self.assertAllEqual(a, defined.get_concrete_function(a)(a)) self.assertAllEqual(a, defined.get_concrete_function( tensor_spec.TensorSpec((2,), dtype=dtypes.float32))(a)) self.assertLen(total_function_cache(defined), 1) def bar(a): self.assertEqual(a._shape_tuple(), (2, None)) return a signature = [tensor_spec.TensorSpec((2, None), dtypes.float32)] defined = function.defun(bar, input_signature=signature) a = array_ops.ones([2, 1]) out = defined(a) self.assertLen(total_function_cache(defined), 1) self.assertAllEqual(out, a) # Changing the second dimension shouldn't create a new function. b = array_ops.ones([2, 3]) out = defined(b) self.assertLen(total_function_cache(defined), 1) self.assertAllEqual(out, b) def testInputSignatureWithDictInPositionalArgs(self): @function.defun def f(*_args, **_kwargs): return None f(1, x=2) self.assertLen(total_function_cache(f), 1) f(1, x=2) self.assertLen(total_function_cache(f), 1) f(1, {'x': 2}) self.assertLen(total_function_cache(f), 2) def testInputSignatureWithCompatibleInputs(self): rank2_spec = tensor_spec.TensorSpec(shape=(None, None), dtype=dtypes.float32) @function.defun(input_signature=[rank2_spec]) def func(a): self.assertEqual([None, None], a.shape.as_list()) return array_ops.shape(a) self.assertAllEqual([3, 1], func([[0], [1.0], [1]])) self.assertAllEqual([2, 2], func(numpy.array([[1, 1], [2, 2]]))) with self.assertRaisesRegex(ValueError, 'incompatible'): func([0.0, 1.0, 2.0]) # Wrong shape. with self.assertRaisesRegex(ValueError, 'incompatible'): func([['wrong dtype']]) def testNestedInputSignatures(self): def expected_foo(a, b): return [a, b] @function.defun(input_signature=[ [tensor_spec.TensorSpec((2, None), dtypes.float32)] * 2, tensor_spec.TensorSpec((1,), dtypes.float32), ]) def foo(a, b): self.assertEqual(a[0]._shape_tuple(), (2, None)) self.assertEqual(a[1]._shape_tuple(), (2, None)) self.assertEqual(b._shape_tuple(), (1,)) return [a, b] a = array_ops.ones([2, 1]) b = array_ops.ones([1]) expected = expected_foo([a, a], b) out = foo([a, a], b) self.assertLen(total_function_cache(foo), 1) nest.assert_same_structure(out, expected) self.assertAllEqual(out[0][0], a) self.assertAllEqual(out[0][1], a) self.assertAllEqual(out[1], b) # Changing the unspecified dimensions shouldn't create a new function. a = array_ops.ones([2, 3]) b = array_ops.ones([2, 5]) c = array_ops.ones([1]) expected = expected_foo([a, b], c) out = foo([a, b], c) self.assertLen(total_function_cache(foo), 1) nest.assert_same_structure(out, expected) self.assertAllEqual(out[0][0], a) self.assertAllEqual(out[0][1], b) self.assertAllEqual(out[1], c) # Passing compatible inputs should work. a = a.numpy().tolist() b = b.numpy().tolist() c = c.numpy().tolist() out = foo([a, b], c) self.assertLen(total_function_cache(foo), 1) nest.assert_same_structure(out, expected) self.assertAllEqual(out[0][0], a) self.assertAllEqual(out[0][1], b) self.assertAllEqual(out[1], c) def testNestedInputSignaturesWithDict(self): def expected_bar(a): return a @function.defun(input_signature=[{ 'a': tensor_spec.TensorSpec((2, None), dtypes.float32), 'b': tensor_spec.TensorSpec((2, None), dtypes.float32), 'c': tensor_spec.TensorSpec((1,), dtypes.float32)}]) def bar(a): self.assertEqual(a['a']._shape_tuple(), (2, None)) self.assertEqual(a['b']._shape_tuple(), (2, None)) self.assertEqual(a['c']._shape_tuple(), (1,)) return a a = array_ops.ones([2, 3]) b = array_ops.ones([1]) inputs = {'a': a, 'b': a, 'c': b} expected = expected_bar(inputs) out = bar(inputs) nest.assert_same_structure(out, expected) self.assertAllEqual(out['a'], expected['a']) self.assertAllEqual(out['b'], expected['b']) self.assertAllEqual(out['c'], expected['c']) # Passing compatible inputs should work. a = a.numpy().tolist() b = b.numpy().tolist() inputs = {'a': a, 'b': a, 'c': b} out = bar(inputs) nest.assert_same_structure(out, expected) self.assertAllEqual(out['a'], expected['a']) self.assertAllEqual(out['b'], expected['b']) self.assertAllEqual(out['c'], expected['c']) def testInputSignatureMustBeSequenceOfTensorSpecs(self): def foo(a, b): del a del b # Signatures must consist exclusively of `TensorSpec` objects. signature = [(2, 3), tensor_spec.TensorSpec([2, 3], dtypes.float32)] with self.assertRaisesRegex(TypeError, 'input_signature.*nested sequence'): def_function.function(foo, input_signature=signature) # Signatures must be either lists or tuples on their outermost levels. signature = {'t1': tensor_spec.TensorSpec([], dtypes.float32)} with self.assertRaisesRegex( TypeError, 'input_signature must be either a ' 'tuple or a list.*'): function.defun(foo, input_signature=signature) @test_util.run_in_graph_and_eager_modes def testInputsIncompatibleWithSignatureRaisesError(self): def foo(a): return a signature = [tensor_spec.TensorSpec(shape=(2,), dtype=dtypes.float32)] defined = def_function.function(foo, input_signature=signature) # Invalid shapes. with self.assertRaisesRegex(ValueError, 'Python inputs incompatible.*'): defined(array_ops.ones([3])) with self.assertRaisesRegex(ValueError, 'Python inputs incompatible.*'): defined(array_ops.ones([2, 1])) # Wrong number of arguments. with self.assertRaisesRegex(TypeError, 'specifies 1 .* got 2'): defined(array_ops.ones([2]), array_ops.ones([2])) with self.assertRaisesRegex(ValueError, 'Structure of Python function inputs.*'): defined() with self.assertRaisesRegex(ValueError, 'inputs incompatible with input_signature'): defined.get_concrete_function( tensor_spec.TensorSpec(shape=(3,), dtype=dtypes.float32)) def testMismatchedConcreteSignatureRaisesError(self): @def_function.function def run_test(): @def_function.function def f(x): return x with self.assertRaisesRegex( TypeError, 'ConcreteFunction .* was constructed .* but was called'): f.get_concrete_function(1)(constant_op.constant(1)) with self.assertRaisesRegex(TypeError, r'f\(x\) expected .* but got .*'): f.get_concrete_function(constant_op.constant(1))(1) with self.assertRaisesRegex( TypeError, 'ConcreteFunction .* was constructed .* but was called'): f.get_concrete_function(1)(2) run_test() def testInputsIncompatibleWithNestedSignatureRaisesError(self): def foo(a, b): return [a, b] signature = [[tensor_spec.TensorSpec((1,), dtypes.float32)] * 2, [tensor_spec.TensorSpec((1,), dtypes.float32)] * 2] defined = function.defun(foo, input_signature=signature) a = array_ops.ones([1]) with self.assertRaisesRegex(ValueError, 'Structure of Python function inputs.*'): defined([a, a, a], [a]) with self.assertRaisesRegex(ValueError, 'Structure of Python function inputs.*'): defined([a], [a, a, a]) defined([a, a], [a, a]) def testUnderspecifiedInputSignature(self): @function.defun(input_signature=[ tensor_spec.TensorSpec([], dtypes.float32), ]) def foo(a, training=True): if training: return a else: return -1.0 * a x = constant_op.constant(1.0) with self.assertRaisesRegex( TypeError, 'got keyword argument `training` ' 'that was not included in input_signature'): foo(x, training=True) with self.assertRaisesRegex( TypeError, 'got keyword argument `training` ' 'that was not included in input_signature'): foo(x, training=False) self.assertAllEqual(x.numpy(), foo(x).numpy()) def testInputSignatureWithPartialFunction(self): def full_function(a, b, c=3.0): return a, b, c partial = functools.partial(full_function, 1, c=4) a, b, c = partial(2.0) signature = [tensor_spec.TensorSpec([], dtypes.float32)] defined = function.defun(partial, input_signature=signature) x = constant_op.constant(2.0) func_a, func_b, func_c = defined(x) self.assertEqual(func_a.numpy(), a) self.assertEqual(func_b.numpy(), b) self.assertEqual(func_c.numpy(), c) def testInputSignatureConversionWithDefaultArg(self): def foo(a, training=True): if training: return a else: return -1.0 * a signature = [ tensor_spec.TensorSpec([], dtypes.float32), tensor_spec.TensorSpec([], dtypes.bool), ] defined = def_function.function(foo, input_signature=signature) a = constant_op.constant(1.0) self.assertAllEqual(a.numpy(), defined(a)) self.assertAllEqual(a.numpy(), defined(a, training=True)) self.assertAllEqual(-a.numpy(), defined(a, training=False)) def testInputSignatureWithKeywordPositionalArgs(self): @function.defun(input_signature=[ tensor_spec.TensorSpec([], dtypes.float32), tensor_spec.TensorSpec([], dtypes.int64) ]) def foo(flt, integer): return flt, integer flt = constant_op.constant(1.0) integer = constant_op.constant(2, dtypes.int64) out1, out2 = foo(flt, integer) self.assertLen(total_function_cache(foo), 1) self.assertEqual(out1.numpy(), 1.0) self.assertEqual(out2.numpy(), 2) out1, out2 = foo(flt=flt, integer=integer) self.assertLen(total_function_cache(foo), 1) self.assertEqual(out1.numpy(), 1.0) self.assertEqual(out2.numpy(), 2) out1, out2 = foo(integer=integer, flt=flt) self.assertLen(total_function_cache(foo), 1) self.assertEqual(out1.numpy(), 1.0) self.assertEqual(out2.numpy(), 2) out1, out2 = foo(flt, integer=integer) self.assertLen(total_function_cache(foo), 1) self.assertEqual(out1.numpy(), 1.0) self.assertEqual(out2.numpy(), 2) def testInputSignatureWithKeywordArgs(self): def foo(a, b, **kwargs): del kwargs return a, b x = function.defun( foo, input_signature=[ tensor_spec.TensorSpec([], dtypes.float32), tensor_spec.TensorSpec([], dtypes.int32) ]).get_concrete_function() result = x(constant_op.constant(5.0), constant_op.constant(5)) self.assertAllEqual(result, [5.0, 5]) def testInputSignatureWithCompositeTensors(self): def f(rt): self.assertEqual(rt.values.shape.as_list(), [None]) self.assertEqual(rt.row_splits.shape.as_list(), [4]) return rt signature = [ragged_tensor.RaggedTensorSpec( shape=[3, None], dtype=dtypes.int32)] defined = function.defun(f, input_signature=signature) rt1 = ragged_factory_ops.constant([[1], [], [2, 3, 4]]) out1 = defined(rt1) self.assertLen(total_function_cache(defined), 1) self.assertAllEqual(out1.values, rt1.values) self.assertAllEqual(out1.row_splits, rt1.row_splits) # Changing the row lengths shouldn't create a new function. rt2 = ragged_factory_ops.constant([[1, 2], [3, 4], [5]]) out2 = defined(rt2) self.assertLen(total_function_cache(defined), 1) self.assertAllEqual(out2.values, rt2.values) self.assertAllEqual(out2.row_splits, rt2.row_splits) # Different number of rows rt3 = ragged_factory_ops.constant([[1, 2], [3, 4], [5], [6]]) with self.assertRaisesRegex(ValueError, 'incompatible'): defined(rt3) # Different dtype rt4 = ragged_factory_ops.constant([[1.0, 2.0], [], [3.0]]) with self.assertRaisesRegex(ValueError, 'Structure .* does not match'): defined(rt4) # Different rank rt5 = ragged_factory_ops.constant([[[1]], [[2]], [[3]]]) with self.assertRaisesRegex(ValueError, 'does not match'): defined(rt5) def testInputSignatureWithVariableArgs(self): def f(v): v.assign_add(1) signature = [ resource_variable_ops.VariableSpec(shape=[], dtype=dtypes.int32) ] defined = function.defun(f, input_signature=signature) v1 = variables.Variable(0) v2 = variables.Variable(0) defined(v1) self.assertEqual(v1.numpy(), 1) self.assertEqual(v2.numpy(), 0) defined(v=v2) self.assertEqual(v1.numpy(), 1) self.assertEqual(v2.numpy(), 1) def testInputSignatureWithKeywordOnlyArgs(self): def f(a, b, c=3, *, d=4): self.assertIsInstance(a, ops.Tensor) self.assertIsInstance(b, ops.Tensor) self.assertIsInstance(c, int) self.assertIsInstance(d, (int, ops.Tensor)) return a + b + c + d signature = [ tensor_spec.TensorSpec(shape=[], dtype=dtypes.int32), tensor_spec.TensorSpec(shape=[], dtype=dtypes.int32), ] defined = function.defun(f, input_signature=signature) self.assertEqual(defined(1, 2).numpy(), 10) defined = function.defun( functools.partial(f, c=4), input_signature=signature) self.assertEqual(defined(1, 2).numpy(), 11) defined = function.defun( functools.partial(f, d=5), input_signature=signature) self.assertEqual(defined(1, 2).numpy(), 11) defined = function.defun( functools.partial(f, d=array_ops.constant(5)), input_signature=signature) self.assertEqual(defined(1, 2).numpy(), 11) mod = module.Module() save(mod, '/tmp/kwonlyf', defined.get_concrete_function(*signature)) loaded = load('/tmp/kwonlyf') result = loaded.signatures['serving_default']( a=array_ops.constant(1), b=array_ops.constant(2)) self.assertEqual(result['output_0'].numpy(), 11) def testInputSignatureWithKeywordOnlyArgsNoDefaults(self): signature = [ tensor_spec.TensorSpec(shape=[], dtype=dtypes.int32), tensor_spec.TensorSpec(shape=[], dtype=dtypes.int32), ] def test_func(a, *, b): return a + b with self.assertRaisesRegex( ValueError, "keyword-only arguments must have default values.*'b'"): function.defun(test_func, input_signature=signature) test_func_lambda = lambda a, *, b: a + b with self.assertRaisesRegex( ValueError, "keyword-only arguments must have default values.*'b'"): function.defun(test_func_lambda, input_signature=signature) def testTensorKeywordArguments(self): def foo(a, b): del a return b defined = function.defun(foo) a = constant_op.constant(2.0) b = constant_op.constant([1.0, 2.0]) one = defined(a, b) self.assertLen(total_function_cache(defined), 1) two = defined(a=a, b=b) self.assertLen(total_function_cache(defined), 1) three = defined(b=b, a=a) self.assertLen(total_function_cache(defined), 1) four = defined(a, b=b) self.assertLen(total_function_cache(defined), 1) # The next call corresponds to a new input signature, hence # we expect another function to be defined. five = defined(b, a) self.assertLen(total_function_cache(defined), 2) six = defined(a=b, b=a) self.assertLen(total_function_cache(defined), 2) seven = defined(b=a, a=b) self.assertLen(total_function_cache(defined), 2) self.assertAllEqual(one, [1.0, 2.0]) self.assertAllEqual(two, [1.0, 2.0]) self.assertAllEqual(three, [1.0, 2.0]) self.assertAllEqual(four, [1.0, 2.0]) self.assertAllEqual(five, 2.0) self.assertAllEqual(six, 2.0) self.assertAllEqual(seven, 2.0) def testDefuningInstanceMethod(self): integer = constant_op.constant(2, dtypes.int64) class Foo(object): def one(self, tensor): return tensor @def_function.function def two(self, tensor, other=integer): return self.one(tensor), other foo = Foo() t = constant_op.constant(1.0) one, two = foo.two(t) self.assertEqual(one.numpy(), 1.0) self.assertEqual(two.numpy(), 2) def testDefuningInstanceMethodWithDefaultArgument(self): integer = constant_op.constant(2, dtypes.int64) class Foo(object): @def_function.function def func(self, other=integer): return other foo = Foo() self.assertEqual(foo.func().numpy(), int(integer)) def testPythonCallWithSideEffects(self): state = [] @def_function.function def side_effecting_function(): state.append(0) side_effecting_function() self.assertAllEqual(state, [0]) # The second invocation should call the graph function, which shouldn't # trigger the list append. side_effecting_function() self.assertAllEqual(state, [0]) # Whereas calling the python function directly should create a side-effect. side_effecting_function.python_function() self.assertAllEqual(state, [0, 0]) def testFunctionWithNestedFunctionCallAndSideEffects(self): v1 = variables.Variable(1.0) v2 = variables.Variable(1.0) @def_function.function def add_one(a): a.assign_add(1.0) # Grappler will inline calls to `add_one` into the function body, we check # that all side-effects were executed. @def_function.function def side_effecting_function(a, b): add_one(a) add_one(b) return a + b result = side_effecting_function(v1, v2) self.assertEqual(result.numpy(), 4.0) def testFunctionWithExtraAttributes(self): @function.defun_with_attributes(attributes={'experimental_1': 'value1', 'experimental_2': 2}) def matmul(x, y): return math_ops.matmul(x, y) def add(x, y): return math_ops.add(x, y) defun_add = function.defun_with_attributes( add, attributes={'experimental_3': True, 'experimental_4': 1.0}) with context.graph_mode(), self.cached_session(): with ops.get_default_graph().as_default(): t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) sq = matmul(t, t) double = defun_add(t, t) self.assertAllEqual(sq.eval().reshape(-1), [7, 10, 15, 22]) self.assertAllEqual(double.eval().reshape(-1), [2, 4, 6, 8]) graph = ops.get_default_graph() # pylint: disable=protected-access self.assertLen(graph._functions, 2) functions = list(graph._functions.values()) self.assertRegex(functions[0].definition.signature.name, '.*matmul.*') attrs = functions[0].definition.attr self.assertLen(attrs, 2) self.assertEqual(attrs['experimental_1'].s, b'value1') self.assertEqual(attrs['experimental_2'].i, 2) self.assertRegex(functions[1].definition.signature.name, '.*add.*') attrs = functions[1].definition.attr self.assertLen(attrs, 2) self.assertEqual(attrs['experimental_3'].b, True) self.assertEqual(attrs['experimental_4'].f, 1.0) # pylint: enable=protected-access def testFunctionWithInvalidAttribute(self): @function.defun_with_attributes(attributes={'experimental_1': ['value1']}) def add(x, y): return math_ops.add(x, y) with self.assertRaisesRegex(ValueError, 'Attribute experimental_1 must be .* Got .*'): with context.graph_mode(), self.cached_session(): with ops.get_default_graph().as_default(): t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) add(t, t) def testRegisterFunction(self): @function.defun def add(x, y): return math_ops.add(x, y) def matmul(x, y): return math_ops.matmul(x, y) defun_matmul = function.defun(matmul) with context.graph_mode(), self.cached_session(): with ops.get_default_graph().as_default(): t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) function.register(defun_matmul, t, t) function.register(add, t, t) graph = ops.get_default_graph() # pylint: disable=protected-access self.assertLen(graph._functions, 6) # two sets of functions, each of them are (inference, forward, backward) functions = list(graph._functions.values()) captured_function_names = [ f.definition.signature.name for f in functions ] expected_func_name_regex = [ '.*inference.*matmul.*', '.*forward.*matmul.*', '.*inference.*backward.*matmul.*', '.*inference.*add.*', '.*forward.*add.*', '.*inference.*backward.*add.*', ] for i in range(len(functions)): self.assertRegex(captured_function_names[i], expected_func_name_regex[i]) # Check the forward and backward function has the correct attributes. self.assertEqual( functions[1].definition.attr['backward_function_name'].s, functions[2].name) self.assertEqual( functions[2].definition.attr['forward_function_name'].s, functions[1].name) self.assertEqual( functions[4].definition.attr['backward_function_name'].s, functions[5].name) self.assertEqual( functions[5].definition.attr['forward_function_name'].s, functions[4].name) sq = defun_matmul(t, t) double = add(t, t) self.assertAllEqual(sq.eval().reshape(-1), [7, 10, 15, 22]) self.assertAllEqual(double.eval().reshape(-1), [2, 4, 6, 8]) # Make sure the pre registered function is used, and no other function # is added. self.assertLen(graph._functions, 6) functions = list(graph._functions.values()) for i in range(len(functions)): self.assertEqual(captured_function_names[i], functions[i].definition.signature.name) @parameterized.named_parameters( dict(testcase_name='Defun', function_decorator=function.defun), dict(testcase_name='DefFunction', function_decorator=def_function.function)) def testRegisterConcreteFunction(self, function_decorator): @function_decorator def py_add(x, y): return math_ops.add(x, y) py_add(array_ops.ones([]), array_ops.ones([])) add = py_add.get_concrete_function( tensor_spec.TensorSpec(None, dtypes.float32), tensor_spec.TensorSpec(None, dtypes.float32)) @function_decorator def py_composite(x, y): return x, add(x, y) py_composite(array_ops.ones([]), array_ops.ones([])) composite = py_composite.get_concrete_function( tensor_spec.TensorSpec(None, dtypes.float32), tensor_spec.TensorSpec(None, dtypes.float32)) with context.graph_mode(), self.cached_session(): with ops.get_default_graph().as_default(): t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) composite.add_to_graph() composite.add_gradient_functions_to_graph() graph = ops.get_default_graph() # pylint: disable=protected-access self.assertLen(graph._functions, 6) # two sets of functions, each of them are (inference, forward, backward) functions = list(graph._functions.values()) captured_function_names = [ f.definition.signature.name for f in functions ] expected_func_name_regex = [ '.*inference.*py_composite.*', '.*inference.*py_add.*', '.*forward.*py_composite.*', '.*forward.*py_add.*', '.*inference.*backward.*py_composite.*', '.*inference.*backward.*py_add.*', ] for expected, found in zip( expected_func_name_regex, captured_function_names): self.assertRegex(found, expected) composite_t, composite_double = composite(t, t) double = add(t, t) self.assertAllEqual([[2, 4], [6, 8]], self.evaluate(double)) self.assertAllEqual([[2, 4], [6, 8]], self.evaluate(composite_double)) self.assertAllEqual([[1, 2], [3, 4]], self.evaluate(composite_t)) # Make sure the pre registered function is used, and no other function # is added. self.assertLen(graph._functions, 6) @parameterized.named_parameters( dict(testcase_name='Defun', function_decorator=function.defun), dict(testcase_name='DefFunction', function_decorator=def_function.function)) def testEagerCaptures(self, function_decorator): with context.eager_mode(): large_tensor = array_ops.ones(shape=(256,)) self.assertGreater(256, func_graph._EAGER_CONST_THRESHOLD) small_tensor = array_ops.ones(shape=(4,)) self.assertLessEqual(4, func_graph._EAGER_CONST_THRESHOLD) v = resource_variable_ops.ResourceVariable(0.0) for captured, op_type in [(large_tensor, 'Placeholder'), (small_tensor, 'Const'), (v, 'Placeholder')]: @function_decorator def test_fn(): return captured + 1 # pylint: disable=cell-var-from-loop g = test_fn.get_concrete_function().graph internal_captures = g.internal_captures self.assertLen(internal_captures, 1) self.assertEqual(internal_captures[0].op.type, op_type) def testRegisterFunctionWithInputSignature(self): def matmul(x, y): return math_ops.matmul(x, y) defun_matmul = function.defun( matmul, input_signature=[ tensor_spec.TensorSpec(shape=(2, 2), dtype=dtypes.float32), tensor_spec.TensorSpec(shape=(2, 2), dtype=dtypes.float32) ]) with context.graph_mode(), self.cached_session(): with ops.get_default_graph().as_default(): t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) function.register(defun_matmul, t, t) graph = ops.get_default_graph() # pylint: disable=protected-access self.assertLen(graph._functions, 3) # Test register function with cache, note inputs are ignored. function.register(defun_matmul) graph = ops.get_default_graph() self.assertLen(graph._functions, 3) def testRegisterFunctionWithCache(self): def matmul(x, y): return math_ops.matmul(x, y) defun_matmul = function.defun(matmul) with context.graph_mode(), self.cached_session(): with ops.get_default_graph().as_default(): t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) t2 = constant_op.constant([[2.0, 3.0], [4.0, 5.0]]) function.register(defun_matmul, t, t) function.register(defun_matmul, t2, t2) graph = ops.get_default_graph() # Only one function is registered since the input param are in same type # pylint: disable=protected-access self.assertLen(graph._functions, 3) def testCallingFunctionWithDifferentVariables(self): @function.defun def foo(v): v.assign_add(1.0) return v.read_value() v = resource_variable_ops.ResourceVariable(0.0) graph_function = foo.get_concrete_function(v) self.assertLen(graph_function.inputs, 1) self.assertEmpty(graph_function.captured_inputs) self.assertEqual(float(graph_function(v)), 1.0) self.assertEqual(float(graph_function(v)), 2.0) w = resource_variable_ops.ResourceVariable(0.0) @function.defun def bar(v): del v return constant_op.constant(1.0) graph_function = bar.get_concrete_function(v) self.assertEqual(float(graph_function(v)), 1.0) self.assertEqual(float(graph_function(w)), 1.0) def testCallingFunctionWithNonTensorsFails(self): @function.defun def foo(x): return x graph_function = foo.get_concrete_function(constant_op.constant(1.0)) with self.assertRaises((TypeError, ValueError)): graph_function('Not a Tensor.') def testSwapImplementationWithGrapplerPlugin(self): # Set the min_graph_nodes to -1 since the graph in this test is too small, # and will be ignored by grappler if don't set this. rewrites = rewriter_config_pb2.RewriterConfig() rewrites.implementation_selector = rewriter_config_pb2.RewriterConfig.ON rewrites.min_graph_nodes = -1 graph_options = config_pb2.GraphOptions( rewrite_options=rewrites, build_cost_model=1) config_proto = config_pb2.ConfigProto(graph_options=graph_options) with context.graph_mode(), self.cached_session( config=config_proto, graph=ops.Graph(), use_gpu=True): @function.defun_with_attributes( attributes={ 'api_implements': 'random_boost', 'api_preferred_device': 'CPU' }) def cpu_boost(x): return math_ops.add(x, 2.0) @function.defun_with_attributes( attributes={ 'api_implements': 'random_boost', 'api_preferred_device': 'GPU' }) def gpu_boost(x): return math_ops.add(x, 4.0) x = constant_op.constant(1.0) function.register(cpu_boost, x) y = gpu_boost(x) y_value = self.evaluate(y) if test.is_gpu_available(): self.assertEqual(y_value, 5.0) else: # Grappler fallback to use the CPU impl even called with GPU function. self.assertEqual(y_value, 3.0) @test_util.disable_tfrt('b/174712583: TFRT doesn\'t support behavior ' 'equivalent to implementation_selector for function') def testSwapImplementationInEager(self): if not context.executing_eagerly(): self.skipTest('eager only') # testSharedRendezvous sets the disable_meta_optimizer flag to True # if that subtest runs before this one, then having that set to True # will cause this subtest to fail. To avoid that scenario, explicitly # set the disable_meta_optimizer flag to false here context.context().set_optimizer_experimental_options({ 'min_graph_nodes': -1, 'implementation_selector': True, 'disable_meta_optimizer': False }) @function.defun_with_attributes( attributes={'api_implements': 'foo', 'api_preferred_device': 'CPU'}) def on_cpu(x): return x + 2 @function.defun_with_attributes( attributes={'api_implements': 'foo', 'api_preferred_device': 'GPU'}) def on_gpu(x): return x + 4 @function.defun def run_on_cpu(t): function.register(on_cpu, t) with ops.device('CPU:0'): return on_gpu(t) # Expect to run the on_cpu branch, regardless whether gpu is available. self.assertEqual(run_on_cpu(constant_op.constant(1)).numpy(), 3) def testDefunFunctionSeparateGraphs(self): with context.graph_mode(): @function.defun def add(x): return x + 5 @function.defun def maybe_add(x, should_add): if should_add: return add(x) else: return x with ops.Graph().as_default(): x = constant_op.constant(11) maybe_add(x, True) self.assertLen(total_function_cache(maybe_add), 1) self.assertLen(total_function_cache(add), 1) maybe_add(x, False) self.assertLen(total_function_cache(maybe_add), 2) self.assertLen(total_function_cache(add), 1) with ops.Graph().as_default(): x = constant_op.constant(11) maybe_add(x, True) self.assertLen(total_function_cache(maybe_add), 3) self.assertLen(total_function_cache(add), 2) def testCacheKeyOverlappingShapes(self): @function.defun def defined(t): return t defined(array_ops.zeros([12, 1])) self.assertLen(total_function_cache(defined), 1) defined(array_ops.zeros([1, 21])) self.assertLen(total_function_cache(defined), 2) @function.defun def defined_again(t): return defined(t) defined_again.get_concrete_function(array_ops.zeros([12, 1])) self.assertLen(total_function_cache(defined_again), 1) defined_again.get_concrete_function(array_ops.zeros([1, 21])) self.assertLen(total_function_cache(defined_again), 2) def testCacheTensorSpecIdenticalToTensor(self): @function.defun def defined(t): return t z = array_ops.zeros([2, 2]) z_spec = tensor_spec.TensorSpec.from_tensor(z) self.assertIs( defined.get_concrete_function(z_spec), defined.get_concrete_function(z)) def testCacheKeyNestedLists(self): @function.defun def defined(l): return l a = constant_op.constant(1.) b = constant_op.constant(2.) c = constant_op.constant(3.) defined([[a], b, c]) self.assertLen(total_function_cache(defined), 1) defined([[a, b], c]) self.assertLen(total_function_cache(defined), 2) def testCacheKeyAttrsClass(self): if attr is None: self.skipTest('attr module is unavailable.') @attr.s class TestClass(object): a = attr.ib() b = attr.ib() @function.defun def defined(l): return l defined( TestClass( constant_op.constant(1.), [constant_op.constant(2.), constant_op.constant(3.)])) self.assertLen(total_function_cache(defined), 1) defined( TestClass( constant_op.constant(1.), [constant_op.constant(2.), constant_op.constant(3.)])) self.assertLen(total_function_cache(defined), 1) defined( TestClass([constant_op.constant(1.), constant_op.constant(2.)], constant_op.constant(3.))) self.assertLen(total_function_cache(defined), 2) def testDistinctVariablesNoRetracing(self): @function.defun def defined(a, b, c): return a + b + c x = resource_variable_ops.ResourceVariable(0.0) y = resource_variable_ops.ResourceVariable(0.0) z = resource_variable_ops.ResourceVariable(0.0) # We generate cache keys based on unique combinations of resource ids. defined(x, y, z) self.assertLen(total_function_cache(defined), 1) # Re-arranging arguments should not cause cache miss # because the three inputs are still distinct defined(z, y, x) self.assertLen(total_function_cache(defined), 1) def testRetracingOnDifferentVaribleCombinationPatterns(self): @function.defun def defined(a, b, c): return a + b + c x = resource_variable_ops.ResourceVariable(0.0) y = resource_variable_ops.ResourceVariable(0.0) z = resource_variable_ops.ResourceVariable(0.0) defined(x, y, z) self.assertLen(total_function_cache(defined), 1) # Retracing because the first two arguments are the same defined(x, x, z) self.assertLen(total_function_cache(defined), 2) # Replacing x with y does not cause cache miss # because the combination stays the same as (x, x, z) defined(y, y, z) self.assertLen(total_function_cache(defined), 2) # A different combination pattern causes cache miss defined(z, y, y) self.assertLen(total_function_cache(defined), 3) defined(z, y, y) self.assertLen(total_function_cache(defined), 3) def testDeepcopyVariableNoRetracing(self): @function.defun def defined(a, b, c): return a + b + c x = resource_variable_ops.ResourceVariable(0.0) y = resource_variable_ops.ResourceVariable(0.0) z = resource_variable_ops.ResourceVariable(0.0) defined(x, y, z) self.assertLen(total_function_cache(defined), 1) x_copy = copy.deepcopy(x) defined(x_copy, y, z) self.assertLen(total_function_cache(defined), 1) def _total_function_cache_def_func(self, defined): return defined._list_all_concrete_functions() # pylint: disable=protected-access def testVariableRetracingOnDtypeChanges(self): @def_function.function def defined(a, b): return a + b x1 = resource_variable_ops.ResourceVariable(0.0) x2 = resource_variable_ops.ResourceVariable(0.0) defined(x1, x2) self.assertLen(self._total_function_cache_def_func(defined), 1) # Should expect retracing for new dtypes y1 = resource_variable_ops.ResourceVariable(0) y2 = resource_variable_ops.ResourceVariable(1) defined(y1, y2) self.assertLen(self._total_function_cache_def_func(defined), 2) def testVariableRetracingDtypeShape(self): @def_function.function def defined(a, b): return a + b x1 = resource_variable_ops.ResourceVariable(0.0) x2 = resource_variable_ops.ResourceVariable(0.0) defined(x1, x2) self.assertLen(self._total_function_cache_def_func(defined), 1) y1 = resource_variable_ops.ResourceVariable([0.0, 1.0]) y2 = resource_variable_ops.ResourceVariable([0.0, 1.0]) defined(y1, y2) self.assertLen(self._total_function_cache_def_func(defined), 2) z1 = resource_variable_ops.ResourceVariable([[0.0, 1.0]]) z2 = resource_variable_ops.ResourceVariable([[0.0, 1.0]]) defined(z1, z2) self.assertLen(self._total_function_cache_def_func(defined), 3) def testDecoratedMethodInspect(self): class DefunnedMiniModel(object): @function.defun def call(self, inputs, training=True): pass m = DefunnedMiniModel() fullargspec = tf_inspect.getfullargspec(m.call) self.assertIn('training', fullargspec.args) def testFunctionModifiesInputList(self): # Tests on `list` methods that do in place modification, except `list.sort` # since it cannot even be "defunned" in the first place def get_list(): return [constant_op.constant(0.), constant_op.constant(1.)] expected_msg = '.*() should not modify' with self.assertRaisesRegex(ValueError, expected_msg): @def_function.function def append(l): l.append(constant_op.constant(0.)) append(get_list()) with self.assertRaisesRegex(ValueError, expected_msg): @def_function.function def extend(l): l.extend([constant_op.constant(0.)]) extend(get_list()) with self.assertRaisesRegex(ValueError, expected_msg): @def_function.function def insert(l): l.insert(0, constant_op.constant(0.)) insert(get_list()) with self.assertRaisesRegex(ValueError, expected_msg): @def_function.function def pop(l): l.pop() pop(get_list()) with self.assertRaisesRegex(ValueError, expected_msg): @def_function.function def reverse(l): l.reverse() reverse(get_list()) with self.assertRaisesRegex(ValueError, expected_msg): @def_function.function def remove(l): l.remove(l[0]) remove(get_list()) # `list.clear` is a method that is in Py3 but not Py2 if sys.version.startswith('3'): with self.assertRaisesRegex(ValueError, expected_msg): @def_function.function def clear(l): l.clear() clear(get_list()) # One last test for keyword arguments with self.assertRaisesRegex(ValueError, expected_msg): @def_function.function def kwdappend(**kwargs): l = kwargs['l'] l.append(constant_op.constant(0.)) kwdappend(l=get_list()) def testFunctionModifiesInputDict(self): def get_dict(): return {'t1': constant_op.constant(0.), 't2': constant_op.constant(1.)} expected_msg = '.* should not modify' with self.assertRaisesRegex(ValueError, expected_msg): @def_function.function def clear(m): m.clear() clear(get_dict()) with self.assertRaisesRegex(ValueError, expected_msg): @def_function.function def pop(m): m.pop('t1') pop(get_dict()) with self.assertRaisesRegex(ValueError, expected_msg): @def_function.function def popitem(m): m.popitem() popitem(get_dict()) with self.assertRaisesRegex(ValueError, expected_msg): @def_function.function def update(m): m.update({'t1': constant_op.constant(3.)}) update(get_dict()) with self.assertRaisesRegex(ValueError, expected_msg): @def_function.function def setdefault(m): m.setdefault('t3', constant_op.constant(3.)) setdefault(get_dict()) def testFunctionModifiesInputNest(self): with self.assertRaisesRegex(ValueError, 'modify.* should not modify'): @def_function.function def modify(n): n[0]['t1'].append(constant_op.constant(1.)) nested_input = [{ 't1': [constant_op.constant(0.), constant_op.constant(1.)], }, constant_op.constant(2.)] modify(nested_input) with self.assertRaisesRegex(ValueError, 'modify_same_flat.* should not modify'): # The flat list doesn't change whereas the true structure changes @def_function.function def modify_same_flat(n): n[0].append(n[1].pop(0)) nested_input = [[constant_op.constant(0.)], [constant_op.constant(1.), constant_op.constant(2.)]] modify_same_flat(nested_input) @test_util.disable_tfrt('b/173429686') def testExecutorType(self): @function.defun def add_five(x): return x + 5 self.assertEqual( 5, add_five(constant_op.constant(0, dtype=dtypes.int32)).numpy()) with self.assertRaisesRegex(errors.NotFoundError, 'NON_EXISTENT_EXECUTOR'): with context.function_executor_type('NON_EXISTENT_EXECUTOR'): add_five(constant_op.constant(0, dtype=dtypes.int32)) for executor_type in ('', 'DEFAULT', None): with context.function_executor_type(executor_type): self.assertAllEqual( 5, add_five(constant_op.constant(0, dtype=dtypes.int32)).numpy()) @test_util.assert_no_garbage_created def testReferenceCycles(self): fn = function.defun(lambda x: 2. * x) fn(constant_op.constant(4.0)) weak_fn = weakref.ref(fn) del fn # Tests that the weak reference we made to the function is now dead, which # means the object has been deleted. This should be true as long as the # function itself is not involved in a reference cycle. self.assertIs(None, weak_fn()) def testFunctionStackInErrorMessage(self): if context.executing_eagerly(): # TODO(b/122736651): Remove this skipTest once fixed. self.skipTest('Error interpolation is not working when function is ' 'invoked without PartitionedCallOp.') @def_function.function() def fn3(x): return x + 2 @def_function.function() def fn2(x): check_ops.assert_equal(fn3(x), 3) return 2 @def_function.function() def fn(x): return fn2(x) with self.assertRaises(errors.InvalidArgumentError) as cm: fn(2) e = cm.exception self.assertIn('fn -> fn2', e.message) self.assertIn('node assert_equal/Assert/Assert (defined at', e.message) self.assertNotIn('fn3', e.message) @test_util.run_gpu_only def testFunctionIsNotPinned(self): """Tests that functions aren't pinned to the CPU by the eager runtime.""" seed1, seed2 = 79, 25 shape = constant_op.constant([4, 7]) dtype = dtypes.float32 @def_function.function def func(): with ops.device('GPU:0'): return gen_random_ops.random_standard_normal( shape, dtype=dtype, seed=seed1, seed2=seed2) with ops.device('GPU:0'): x = func() self.assertRegex(x.device, 'GPU') @test_util.run_in_graph_and_eager_modes def testShapeCaching(self): @function.defun def func(x): return array_ops.shape(x) @function.defun( input_signature=[tensor_spec.TensorSpec([None, None], dtypes.float32)]) def calls_func(x): return func(x) self.assertAllEqual([1, 1], self.evaluate(func(array_ops.zeros([1, 1])))) self.assertAllEqual([2, 2], self.evaluate(func(array_ops.zeros([2, 2])))) self.assertAllEqual( [3, 3], self.evaluate(calls_func(array_ops.zeros([3, 3])))) def testLimitedRetracing(self): trace_count = [0] @function.defun def func(x): trace_count[0] += 1 return x for _ in range(50): func(constant_op.constant(3.)) func(constant_op.constant(4.)) func(constant_op.constant([[1., 2.]])) func(constant_op.constant([[]])) func(constant_op.constant([[3., 4.], [5., 6.]])) func(constant_op.constant([[3., 4.], [5., 6.], [7., 8.]])) # Tracing more than twice per input doesn't make sense. self.assertLess(trace_count[0], 13) def testLimitedRetracingWithCompositeTensors(self): trace_count = [0] @def_function.function def f(x): trace_count[0] += 1 return x for i in range(10): f(ragged_factory_ops.constant([[1, 2], [i]])) f(ragged_factory_ops.constant([[1, 2], [], [3, 4, 5]])) f(ragged_factory_ops.constant([[[1, 2], [3]], [[4, 5, 6]]])) self.assertEqual(trace_count[0], 3) def test_concrete_function_shape_mismatch(self): @def_function.function def f(argument_name): return argument_name + 1. f_concrete = f.get_concrete_function(constant_op.constant([1.])) # Calling a function from eager doesn't do any shape checking above what # kernels do while executing. self.assertAllEqual( [2., 3.], f_concrete(constant_op.constant([1., 2.])).numpy()) @def_function.function def g(): f_concrete(constant_op.constant([1., 2.])) with self.assertRaisesRegex(ValueError, 'argument_name'): g() @test_util.run_in_graph_and_eager_modes def test_shape_inference_with_symbolic_shapes(self): @def_function.function def _uses_symbolic_shapes(w, x, y): x = array_ops.identity(x, name='name_collision') x = array_ops.transpose(x, [1, 0, 2]) x_batch = array_ops.shape(x)[0] y_batch = array_ops.shape(y)[0] y *= w n = y_batch // x_batch return array_ops.reshape(y, [n, x_batch, -1]) conc = _uses_symbolic_shapes.get_concrete_function( tensor_spec.TensorSpec(None, dtypes.float32), tensor_spec.TensorSpec(None, dtypes.float32), tensor_spec.TensorSpec(None, dtypes.float32)) @def_function.function def _call_concrete(): c = constant_op.constant(1.) array_ops.identity(c, name='name_collision') output1 = conc(array_ops.ones([2]), array_ops.ones([5, 4, 2]), array_ops.ones([20, 2])) self.assertEqual([5, 4, 2], output1.shape) output2 = conc(array_ops.ones([3]), array_ops.ones([5, 4, 3]), array_ops.ones([40, 3])) self.assertEqual([10, 4, 3], output2.shape) return output1, output2 output1, output2 = _call_concrete() self.assertEqual((5, 4, 2), self.evaluate(output1).shape) self.assertEqual((10, 4, 3), self.evaluate(output2).shape) def testAutoGraphContext(self): @def_function.function def test_fn(): self.assertEqual( ag_ctx.control_status_ctx().status, ag_ctx.Status.ENABLED) prev_status = ag_ctx.control_status_ctx().status test_fn() self.assertEqual(ag_ctx.control_status_ctx().status, prev_status) @test_util.disable_tfrt('b/170435618') def testCancelBeforeFunctionExecution(self): if not context.executing_eagerly(): self.skipTest('eager only') q = data_flow_ops.FIFOQueue(1, dtypes.int32) @def_function.function def f(): return q.dequeue() c_mgr = cancellation.CancellationManager() cancelable_func = c_mgr.get_cancelable_function(f.get_concrete_function()) c_mgr.start_cancel() with self.assertRaises(errors.CancelledError): cancelable_func() @test_util.disable_tfrt('b/170435618') def testCancelBlockedFunctionExecution(self): if not context.executing_eagerly(): self.skipTest('eager only') q = data_flow_ops.FIFOQueue(1, dtypes.int32) @def_function.function def f(): return q.dequeue() c_mgr = cancellation.CancellationManager() cancelable_func = c_mgr.get_cancelable_function(f.get_concrete_function()) def cancel_thread(): time.sleep(0.5) c_mgr.start_cancel() t = self.checkedThread(cancel_thread) t.start() with self.assertRaises(errors.CancelledError): cancelable_func() t.join() @test_util.disable_tfrt('b/170435618') def testCancelAfterFunctionExecution(self): if not context.executing_eagerly(): self.skipTest('eager only') q = data_flow_ops.FIFOQueue(1, dtypes.int32) q.enqueue(37) @def_function.function def f(): return q.dequeue() c_mgr = cancellation.CancellationManager() cancelable_func = c_mgr.get_cancelable_function(f.get_concrete_function()) self.assertAllEqual(37, cancelable_func().numpy()) # Cancellation after the function executes is a no-op. c_mgr.start_cancel() def testAddFunctionCallback(self): functions = [] def function_callback(f, name, graph, inputs, outputs): del name, graph, inputs, outputs functions.append(f) @def_function.function def plus_one(x): return x + 1 try: function.add_function_callback(function_callback) x_float32 = numpy.array(3.0, dtype=numpy.float32) self.assertAllClose(plus_one(x_float32), 4.0) self.assertLen(functions, 1) # Function is already created. Executing it again should not invoke the # function callback. self.assertAllClose(plus_one(x_float32), 4.0) self.assertLen(functions, 1) # Signature change leads to a new Function being built. x_float64 = numpy.array(3.0, dtype=numpy.float64) self.assertAllClose(plus_one(x_float64), 4.0) self.assertLen(functions, 2) finally: function.clear_function_callbacks() def testFunctionCallbackAddOps(self): file_name = os.path.join(self.get_temp_dir(), 'test') def function_callback(f, name, graph, inputs, outputs): del f, name, inputs with graph.as_default(): printer = logging_ops.print_v2( 'hello', output_stream='file://' + file_name ) outputs[0].op._add_control_input(printer) @def_function.function def plus_one(x): return x + 1 self.addCleanup(function.clear_function_callbacks) function.add_function_callback(function_callback) x_float32 = numpy.array(3.0, dtype=numpy.float32) self.assertAllClose(plus_one(x_float32), 4.0) with open(file_name, 'r') as f: self.assertEqual(f.read().strip(), 'hello') def testRemoveFunctionCallback(self): functions_1 = [] def function_callback_1(f, name, graph, inputs, outputs): del name, graph, inputs, outputs functions_1.append(f) functions_2 = [] def function_callback_2(f, name, graph, inputs, outputs): del name, graph, inputs, outputs functions_2.append(f) @def_function.function def plus_one(x): return x + 1 try: function.add_function_callback(function_callback_1) function.add_function_callback(function_callback_2) self.assertAllClose(plus_one(numpy.array(3.0, dtype=numpy.float32)), 4.0) self.assertLen(functions_1, 1) self.assertLen(functions_2, 1) function.remove_function_callback(function_callback_1) # The 1st callback should not be invokved after remove_function_callback() # is called. self.assertAllClose(plus_one(numpy.array(3.0, dtype=numpy.float64)), 4.0) self.assertLen(functions_1, 1) self.assertLen(functions_2, 2) finally: function.clear_function_callbacks() def testClearFunctionCallbacks(self): function.add_function_callback(lambda f: None) function.add_function_callback(lambda f: None) self.assertLen(function._function_callbacks, 2) function.clear_function_callbacks() self.assertEmpty(function._function_callbacks) # pylint:disable=protected-access @test_util.run_in_graph_and_eager_modes def testConcreteFunctionWithNestedTensorInputs(self): @def_function.function def f(x, y): return (x['a'] + x['b'], y[0] + y[1]) a = constant_op.constant(1000) b = constant_op.constant(200) c = constant_op.constant(30) d = {'a': a, 'b': b} e = (c, 4) # Test different argument signatures when constructing the concrete func. for cf in [ f.get_concrete_function(d, e), f.get_concrete_function(d, y=e), f.get_concrete_function(y=e, x=d), f.get_concrete_function(_spec_for_value(d), _spec_for_value(e)), f.get_concrete_function(_spec_for_value(d), y=_spec_for_value(e)), f.get_concrete_function(y=_spec_for_value(e), x=_spec_for_value(d)) ]: # Test different calling conventions when calling the concrete func. for output in [ cf(d, e), # structured signature cf(d, y=e), # structured signature w/ kwarg cf(y=e, x=d), # structured signature w/ 2 kwargs cf(a, b, c), # flat signature cf(x=a, x_1=b, y=c) # flat signature w/ kwargs ]: self.assertIsInstance(output, tuple) self.assertLen(output, 2) self.assertAllEqual(output[0], 1200) self.assertAllEqual(output[1], 34) @test_util.run_in_graph_and_eager_modes def testConcreteFunctionWithNestedNonTensorInputs(self): @def_function.function def f(x, y): return (x['a'] + x['b'], y[0] + y[1]) a = {'a': constant_op.constant(1000), 'b': constant_op.constant(200)} b = (50, 3) for cf in [ # argument y is bound to non-Tensor value (50, 3). f.get_concrete_function(a, b), f.get_concrete_function(a, y=b), f.get_concrete_function(x=a, y=b) ]: for output in [cf(a), cf(x=a), cf(a, b), cf(x=a, y=b)]: self.assertAllEqual(output[0] + output[1], 1253) @test_util.run_in_graph_and_eager_modes def testConcreteFunctionWithNonTensorStringInputs(self): @def_function.function def f(x, y): return string_ops.string_join([x, y]) a = constant_op.constant('a') b = 'b' cf = f.get_concrete_function(a, b) for output in [cf(a), cf(x=a), cf(a, b), cf(x=a, y=b)]: self.assertAllEqual(output, b'ab') @test_util.run_in_graph_and_eager_modes def testConcreteFunctionWithBoundNestedNonTensorInputs(self): @def_function.function def f(x, y): return (x['a'] + x['b'], y[0] + y[1]) a = {'a': 3000, 'b': 200, 'c': 9000} b = (constant_op.constant(30), 4) for cf in [ # argument x is bound to non-tensor value `a` f.get_concrete_function(a, b), f.get_concrete_function(a, y=b), f.get_concrete_function(x=a, y=b) ]: for output in [cf(a, b), cf(a, y=b), cf(y=b), cf(x=a, y=b)]: self.assertAllEqual(output[0] + output[1], 3234) @test_util.run_in_graph_and_eager_modes def testConcreteFunctionWithAllBoundNestedNonTensorInputs(self): @def_function.function def f(x, y): return (x['a'] + x['b'], y[0] + y[1]) a = {'a': 5000, 'b': 500} b = (50, 5) cf = f.get_concrete_function(a, b) for output in [cf(), cf(a), cf(y=b)]: self.assertAllEqual(output[0] + output[1], 5555) @test_util.run_in_graph_and_eager_modes def testConcreteFunctionMethodWithVarargs(self): float32_scalar = tensor_spec.TensorSpec(shape=(), dtype=dtypes.float32) class MyModel(module.Module): @def_function.function(input_signature=[float32_scalar, float32_scalar]) def add(self, *arg): return math_ops.add(*arg) m = MyModel() cf = m.add.get_concrete_function() cf(-12.0, 3.0) @test_util.run_in_graph_and_eager_modes def testConcreteFunctionStructuredSignatureKeywordOrder(self): # Check that keyword-only arguments are sorted appropriately, so that they # feed the right tensor into each input. @def_function.function def g(**kwargs): return string_ops.reduce_join( string_ops.reduce_join( ops.convert_to_tensor(sorted(kwargs.items())), axis=1, separator='='), axis=0, separator=', ') s = constant_op.constant('s') g.get_concrete_function(q=s, a=s, p=s, r=s, v=s, m=s, l=s) self.assertAllEqual( g(m='a', r='b', v='c', q='d', l='e', a='f', p='g'), b'a=f, l=e, m=a, p=g, q=d, r=b, v=c') self.assertAllEqual( g(q='d', a='f', p='g', r='b', v='c', m='a', l='e'), b'a=f, l=e, m=a, p=g, q=d, r=b, v=c') self.assertAllEqual( g(a='f', l='e', m='a', p='g', q='d', r='b', v='c'), b'a=f, l=e, m=a, p=g, q=d, r=b, v=c') # pylint: disable=g-long-lambda @parameterized.named_parameters([ dict( testcase_name='MissingArg', conc_args=lambda: (1, constant_op.constant(2)), call_args=lambda: (1,), error=r'func\(x, y\) missing required arguments: y'), dict( testcase_name='MissingVararg', conc_args=lambda: (1, 2, constant_op.constant(1.0)), call_args=lambda: (1, 2), error=r'func\(x, y, <arg3>\) missing required arguments: <arg3>'), dict( testcase_name='ExtraPositionalArg', conc_args=lambda: (1, 2), call_args=lambda: (1, 2, 3), error=r'func\(x, y\) takes 2 .* got 3'), dict( testcase_name='MissingKeywordOnlyArg', conc_args=lambda: (1, 2), conc_kwargs=lambda: {'c': constant_op.constant(1.0)}, call_args=lambda: (1, 2), error=r'func\(x, y, \*, c\) missing required arguments: c'), dict( testcase_name='ExtraKeywordArg', conc_args=lambda: (1, 2), call_args=lambda: (1, 2), call_kwargs=lambda: {'c': constant_op.constant(1.0)}, error=r'func\(x, y\) got unexpected keyword arguments: c'), dict( testcase_name='ExpectedRaggedGotNest', conc_args=lambda: (ragged_factory_ops.constant([[1, 2], [3]]),), call_args=lambda: ({ 'a': constant_op.constant([1, 2, 3]) },), error=r'func\(x, y\): argument x had incorrect type\n' r' expected: RaggedTensor\n' r" got: {'a': (Eager)?Tensor}"), dict( testcase_name='WrongRaggedRank', conc_args=lambda: (ragged_factory_ops.constant([[1, 2], [3]]),), call_args=lambda: (ragged_factory_ops.constant([[[1]]]),), error=r'func\(x, y\): argument x had incorrect type\n'), dict( testcase_name='WrongRaggedDType', conc_args=lambda: (ragged_factory_ops.constant([[1]]),), call_args=lambda: (ragged_factory_ops.constant([[1.0]]),), error=r'func\(x, y\): argument x had incorrect type\n'), dict( testcase_name='ExpectedDictGotTensor', conc_args=lambda: ({ 'a': constant_op.constant(1), 'b': constant_op.constant(1) },), call_args=lambda: (constant_op.constant(1),), error=r'func\(x, y\): argument x had incorrect type\n'), dict( testcase_name='ExpectedTupleGotTensor', conc_args=lambda: ((constant_op.constant(1), constant_op.constant(2)),), call_args=lambda: (constant_op.constant(1),), error=r'func\(x, y\): argument x had incorrect type\n'), dict( testcase_name='WrongDType', conc_args=lambda: (constant_op.constant(1),), call_args=lambda: (constant_op.constant(1.0),), exception=(ValueError, errors.InvalidArgumentError, # on xla_gpu, we get InternalError instead. errors.InternalError)), dict( testcase_name='ExpectedTensorGotInt', conc_args=lambda: (constant_op.constant(1),), call_args=lambda: (5,), error=r'func\(x, y\) expected a Tensor in x, but got int value 5'), dict( testcase_name='ExpectedIntGotDifferentInt', conc_args=lambda: (5,), call_args=lambda: (8,), error=r'ConcreteFunction func\(x, y\) was constructed with int ' r'value 5 in x, but was called with int value 8'), dict( testcase_name='ExpectedIntGotTensor', conc_args=lambda: (5,), call_args=lambda: (constant_op.constant(6),), error=r'ConcreteFunction func\(x, y\) was constructed with int ' 'value 5 in x, but was called with (Eager)?Tensor value .*'), dict( testcase_name='TwoValuesForArgument', conc_args=lambda: (1, 2), call_args=lambda: (1, 2), call_kwargs=lambda: {'x': 3}, error=r"func\(x, y\) got two values for 'x'"), ]) # pylint: enable=g-long-lambda @test_util.run_in_graph_and_eager_modes def testConcreteFunctionStructuredSignatureError(self, conc_args=(), conc_kwargs=None, call_args=(), call_kwargs=None, error='.*', exception=TypeError): """Tests for errors in the structrued signature. Args: conc_args: Positional arguments used for get_concrete_function. conc_kwargs: Keyword arguments used for get_concrete_function. call_args: Positional arguments used to call the function. call_kwargs: Keyword arguments used to call the function. error: Expected exception message. exception: Expected exception type. """ conc_args = conc_args() if callable(conc_args) else conc_args conc_kwargs = conc_kwargs() if callable(conc_kwargs) else conc_kwargs or {} call_args = call_args() if callable(call_args) else call_args call_kwargs = call_kwargs() if callable(call_kwargs) else call_kwargs or {} self.assertIsInstance(conc_args, tuple) self.assertIsInstance(call_args, tuple) self.assertIsInstance(conc_kwargs, dict) self.assertIsInstance(call_kwargs, dict) @def_function.function def func(x, y=5, *varargs, **kwargs): # pylint: disable=keyword-arg-before-vararg del y, varargs, kwargs return x conc = func.get_concrete_function(*conc_args, **conc_kwargs) with self.assertRaisesRegex(exception, error): self.evaluate(conc(*call_args, **call_kwargs)) # pylint: disable=g-long-lambda @parameterized.named_parameters([ dict( testcase_name='MissingArg', conc_args=lambda: (constant_op.constant(1), constant_op.constant(2)), call_args=lambda: (constant_op.constant(1),), error=r'func\(x, y\) missing required arguments: y'), dict( testcase_name='TwoValuesForArg', conc_args=lambda: (constant_op.constant(1), constant_op.constant(2)), call_args=lambda: (constant_op.constant(1),), call_kwargs=lambda: { 'x': constant_op.constant(1), 'y': constant_op.constant(1) }, error=r"func\(x, y\) got two values for 'x'"), dict( testcase_name='ExtraPositionalArg', conc_args=lambda: (constant_op.constant(1), constant_op.constant(2)), call_args=lambda: (constant_op.constant(1), constant_op.constant(2), constant_op.constant(3)), error=r'func\(x, y\) takes 2 .* got 3'), dict( testcase_name='UnexpectedKeywordArg', conc_args=lambda: (constant_op.constant(1),), call_args=lambda: (constant_op.constant(1),), call_kwargs=lambda: {'c': constant_op.constant(1)}, error=r'func\(x\) got unexpected keyword arguments: c'), dict( testcase_name='MissingVararg', conc_args=lambda: (constant_op.constant(1), constant_op.constant(2), constant_op.constant(3)), call_args=lambda: (constant_op.constant(1), constant_op.constant(2)), error=r'func\(x, y, varargs_0\) missing required ' r'arguments: varargs_0'), dict( testcase_name='MissingKeywordArg', conc_args=lambda: (constant_op.constant(1), constant_op.constant(2)), conc_kwargs=lambda: {'c': constant_op.constant(1)}, call_args=lambda: (constant_op.constant(1), constant_op.constant(2)), error=r'func\(x, y, c\) missing required arguments: c'), dict( testcase_name='ExpectedTensorGotInt', conc_args=lambda: (constant_op.constant(1), constant_op.constant(2)), call_args=lambda: (5, constant_op.constant(2)), error=r'func\(x, y\): expected argument #0\(zero-based\) to be ' r'a Tensor; got int \(5\)'), dict( testcase_name='WrongDType', conc_args=lambda: (constant_op.constant(1),), call_args=lambda: (constant_op.constant(1.0),), exception=(ValueError, errors.InvalidArgumentError, # on xla_gpu, we get InternalError instead. errors.InternalError)), dict( testcase_name='MissingKeywordArgNestPiece', conc_args=lambda: (constant_op.constant(1), constant_op.constant(2)), conc_kwargs=lambda: {'c': ragged_factory_ops.constant([[1]])}, call_args=lambda: (constant_op.constant(1), constant_op.constant(2)), call_kwargs=lambda: {'c': constant_op.constant(1)}, error=r'func\(x, y, c, c_1\) missing required arguments: c_1'), ]) # pylint: enable=g-long-lambda @test_util.run_in_graph_and_eager_modes def testConcreteFunctionFlatSignatureError(self, conc_args=(), conc_kwargs=None, call_args=(), call_kwargs=None, error='.*', exception=TypeError): """Tests for errors in the flat signature. Args: conc_args: Positional arguments used for get_concrete_function. conc_kwargs: Keyword arguments used for get_concrete_function. call_args: Positional arguments used to call the function. call_kwargs: Keyword arguments used to call the function. error: Expected exception message. exception: Expected exception type. """ conc_args = conc_args() if callable(conc_args) else conc_args conc_kwargs = conc_kwargs() if callable(conc_kwargs) else conc_kwargs or {} call_args = call_args() if callable(call_args) else call_args call_kwargs = call_kwargs() if callable(call_kwargs) else call_kwargs or {} self.assertIsInstance(conc_args, tuple) self.assertIsInstance(call_args, tuple) self.assertIsInstance(conc_kwargs, dict) self.assertIsInstance(call_kwargs, dict) @def_function.function def func(x, y=5, *varargs, **kwargs): # pylint: disable=keyword-arg-before-vararg del y, varargs, kwargs return x conc = func.get_concrete_function(*conc_args, **conc_kwargs) # Remove _function_spec, to disable the structured signature. conc._set_function_spec(None) # pylint: disable=protected-access with self.assertRaisesRegex(exception, error): self.evaluate(conc(*call_args, **call_kwargs)) @test_util.run_in_graph_and_eager_modes def testConcreteFunctionAmbiguousSignature(self): # When both the flat & structured signatures are applicable, but they # give different results, we use the structured signature. Note: we expect # this to be extremely rare. @def_function.function def f(x, y): return x * 10 + y conc = f.get_concrete_function( x=tensor_spec.TensorSpec(None, dtypes.int32, name='y'), y=tensor_spec.TensorSpec(None, dtypes.int32, name='x')) result = conc(x=constant_op.constant(5), y=constant_op.constant(6)) self.assertAllEqual(result, 56) def testPrettyPrintedSignature(self): @def_function.function def func(x, kangaroo=None, octopus=7): del octopus, kangaroo return x scalar = constant_op.constant(5) vector = constant_op.constant([10, 10, 20]) ragged = ragged_factory_ops.constant([[10, 20], [40]]) c1 = func.get_concrete_function(scalar, vector) c1_summary = r'func\(x, kangaroo, octopus=7\)' c1_details = (r' Args:\n' r' x: int32 Tensor, shape=\(\)\n' r' kangaroo: int32 Tensor, shape=\(3,\)\n' r' Returns:\n' r' int32 Tensor, shape=\(\)') self.assertRegex(c1.pretty_printed_signature(verbose=False), c1_summary) self.assertRegex( c1.pretty_printed_signature(verbose=True), c1_summary + '\n' + c1_details) self.assertRegex( repr(c1), r'<ConcreteFunction func\(x, kangaroo, octopus=7\) at .*>') self.assertRegex( str(c1), 'ConcreteFunction {}\n{}'.format(c1_summary, c1_details)) c2 = func.get_concrete_function(scalar, ragged, 3) c2_summary = r'func\(x, kangaroo, octopus=3\)' c2_details = (r' Args:\n' r' x: int32 Tensor, shape=\(\)\n' r' kangaroo: RaggedTensorSpec\(.*\)\n' r' Returns:\n' r' int32 Tensor, shape=\(\)') self.assertRegex(c2.pretty_printed_signature(), c2_summary + '\n' + c2_details) c3 = func.get_concrete_function({'a': scalar, 'b': [ragged, ragged]}) c3_summary = r'func\(x, kangaroo=None, octopus=7\)' c3_details = (r' Args:\n' r" x: {'a': <1>, 'b': \[<2>, <3>\]}\n" r' <1>: int32 Tensor, shape=\(\)\n' r' <2>: RaggedTensorSpec\(.*\)\n' r' <3>: RaggedTensorSpec\(.*\)\n' r' Returns:\n' r" {'a': <1>, 'b': \[<2>, <3>\]}\n" r' <1>: int32 Tensor, shape=\(\)\n' r' <2>: RaggedTensorSpec\(.*\)\n' r' <3>: RaggedTensorSpec\(.*\)') # python 3.5 does not gurantee deterministic iteration of dict contents # which can lead mismatch on pretty_printed_signature output for "Args" if sys.version_info >= (3, 6): self.assertRegex(c3.pretty_printed_signature(), c3_summary + '\n' + c3_details) # pylint: disable=keyword-arg-before-vararg @def_function.function def func2(x, y=3, *args, **kwargs): return (x, y, args, kwargs) c4 = func2.get_concrete_function(scalar, 4, 5, a=scalar) c4_summary = 'func2(x, y=4, <arg3>=5, *, a)' self.assertEqual(c4.pretty_printed_signature(verbose=False), c4_summary) c5 = func2.get_concrete_function(8, vector) c5_summary = 'func2(x=8, y)' self.assertEqual(c5.pretty_printed_signature(verbose=False), c5_summary) def testPrettyPrintedExplicitSignatureWithKeywordArg(self): # b/159639913 @def_function.function(input_signature=[tensor_spec.TensorSpec(None)]) def fn(a, b=1): return a + b concrete_fn = fn.get_concrete_function() self.assertEqual(concrete_fn.pretty_printed_signature(False), 'fn(a)') self.assertEqual( concrete_fn.pretty_printed_signature(True), 'fn(a)\n' ' Args:\n' ' a: float32 Tensor, shape=<unknown>\n' ' Returns:\n' ' float32 Tensor, shape=<unknown>') def testPrettyPrintedSignatureLoadedNamedTuple(self): Point = collections.namedtuple('Point', ['x', 'y']) @def_function.function def fn(b, a): # pylint: disable=unused-argument return 1. b = Point( x=constant_op.constant(1., dtype=dtypes.float32), y=constant_op.constant(1., dtype=dtypes.float32)) a = Point( x=constant_op.constant(1, dtype=dtypes.int32), y=constant_op.constant(1, dtype=dtypes.int32)) mod = module.Module() f = fn.get_concrete_function(b, a) save(mod, '/tmp/f', signatures=f) loaded = load('/tmp/f') printed = loaded.signatures['serving_default'].pretty_printed_signature() self.assertIn('a: int32 Tensor, shape=()', printed) self.assertIn('a_1: int32 Tensor, shape=()', printed) self.assertIn('b: float32 Tensor, shape=()', printed) self.assertIn('b_1: float32 Tensor, shape=()', printed) @test_util.run_in_graph_and_eager_modes def testIndexedSlicesAsGradientsForConcreteFunctions(self): @def_function.function def summing_rnn(inputs): return math_ops.reduce_sum(inputs, axis=1) @def_function.function def gradients(inputs): with backprop.GradientTape() as tape: tape.watch(inputs) hidden = summing_rnn(inputs) hidden = array_ops.gather(hidden, constant_op.constant([0])) loss = math_ops.reduce_mean(hidden) return tape.gradient(loss, inputs) gradients(constant_op.constant([[[1.0], [2.0]]])) # No error is raised def testFollowTypeHintsTraceBasic(self): trace_count = [0] def func(x: ops.Tensor): trace_count[0] += 1 return x enabled = def_function.function(func, experimental_follow_type_hints=True) disabled = def_function.function(func, experimental_follow_type_hints=False) enabled(1) # Initial call gets traced enabled(2) enabled(3) self.assertEqual(trace_count[0], 1) trace_count = [0] disabled(1) disabled(2) # Retrace disabled(3) # Retrace self.assertEqual(trace_count[0], 3) def testFollowTypeHintsTraceWithArgs(self): trace_count = [0] def func(*args: ops.Tensor): trace_count[0] += 1 return args enabled = def_function.function(func, experimental_follow_type_hints=True) disabled = def_function.function(func, experimental_follow_type_hints=False) args = ( 'abc', 'def', ) * 20 args2 = ( 'def', 'abc', ) * 20 enabled(args) enabled(args2) self.assertEqual(trace_count[0], 1) trace_count = [0] disabled(args) disabled(args2) # Retrace self.assertEqual(trace_count[0], 2) def testFollowTypeHintsTraceWithKwargs(self): trace_count = [0] def func(t: ops.Tensor, **kwargs: ops.Tensor): del kwargs trace_count[0] += 1 return t enabled = def_function.function(func, experimental_follow_type_hints=True) disabled = def_function.function(func, experimental_follow_type_hints=False) enabled(1, x=1, y=1.0, z='one') enabled(2, x=2, y=2.0, z='two') self.assertEqual(trace_count[0], 1) trace_count = [0] disabled(1, x=1, y=1.0, z='one') disabled(2, x=2, y=2.0, z='two') # Retrace self.assertEqual(trace_count[0], 2) def testFollowTypeHintsTraceWithMultipleInputTypes(self): trace_count = [0] def func(t: ops.Tensor, *args: ops.Tensor, **kwargs: ops.Tensor): del args, kwargs trace_count[0] += 1 return t enabled = def_function.function(func, experimental_follow_type_hints=True) disabled = def_function.function(func, experimental_follow_type_hints=False) enabled(1, constant_op.constant(1), 'str', x=4.0) enabled(2, constant_op.constant(2), 'str2', x=5.0) self.assertEqual(trace_count[0], 1) trace_count = [0] disabled(1, constant_op.constant(1), 'str', x=4.0) disabled(2, constant_op.constant(2), 'str2', x=5.0) # Retrace self.assertEqual(trace_count[0], 2) def testFollowTypeHintsTraceWithOnlyArgNamed(self): trace_count = [0] def func(t: ops.Tensor, i: int = 1, **kwargs): # pylint: disable=bad-whitespace del i, kwargs trace_count[0] += 1 return t enabled = def_function.function(func, experimental_follow_type_hints=True) enabled(1, 3, x=4.0, y='str') enabled(2, 4, x=4.0, y='str') # Retrace self.assertEqual(trace_count[0], 2) def testFollowTypeHintsTraceWithNotAllNamed(self): trace_count = [0] def func(x, y: ops.Tensor, z: int): del y, z trace_count[0] += 1 return x enabled = def_function.function(func, experimental_follow_type_hints=True) enabled(1, 2, 3) enabled(1, 20, 3) # No retrace - change in ops.Tensor typed arg enabled(2, 2, 3) # Retrace - change in untyped arg enabled(2, 2, 4) # Retrace - change in typed arg self.assertEqual(trace_count[0], 3) def testFollowTypeHintsTraceWithOnlyArgsNamed(self): trace_count = [0] def func(x, y, *args: ops.Tensor): del y, args trace_count[0] += 1 return x enabled = def_function.function(func, experimental_follow_type_hints=True) enabled(1, 20, 3, 4, 5, 6) enabled(1, 20, 3, 4, 5, 60) # No retrace - change in *args enabled(1, 30, 7, 8, 9, 10) # Retrace - change in args self.assertEqual(trace_count[0], 2) def testFollowTypeHintsTraceWithOnlyKwargsNamed(self): trace_count = [0] def func(x, y, *args, **kwargs: ops.Tensor): del y, args, kwargs trace_count[0] += 1 return x enabled = def_function.function(func, experimental_follow_type_hints=True) enabled(1, 2, 3, 4, 5, 6, a=1.0, b=2.0, c=3.0) enabled( 1, 2, 3, 4, 5, 6, a=1.5, b=2.5, c=3.5) # No retrace - change in **kwargs enabled(100, 2, 3, 4, 5, 6, a=1.0, b=2.0, c=3.0) # Retrace - change in args enabled( 1, 2, 3, 4, 5, 100, a=1.0, b=2.0, c=3.0) # Retrace - change in *args self.assertEqual(trace_count[0], 3) def testFollowTypeHintsTraceWithArgsEquals(self): trace_count = [0] def func( x: ops.Tensor = 0, # pylint:disable=bad-whitespace y: int = 1, # pylint:disable=bad-whitespace **kwargs: ops.Tensor): del y, kwargs trace_count[0] += 1 return x enabled = def_function.function(func, experimental_follow_type_hints=True) enabled(x=1, y=2, z=3) enabled(x=1, y=3, z=3) # Retrace - change in args enabled(x=2, y=2, z=4) # No retrace - change in args and **kwargs enabled(x=2, y=2, z=4, u=5) # Retrace - change in **kwargs self.assertEqual(trace_count[0], 3) def testFollowTypeHintsWithTensorSpec(self): def func(x: ops.Tensor, y): return x + y v = def_function.function(experimental_follow_type_hints=True)(func) v = v.get_concrete_function( tensor_spec.TensorSpec(shape=None, dtype=dtypes.float32), 3) x = v(constant_op.constant(1.), 3) self.assertEqual(x.numpy(), 4.) def testFollowTypeHintsTraceWithKwArgsAndNoVarKws(self): trace_count = [0] def func(a: int, b: ops.Tensor, x: ops.Tensor = 0, y: int = 1): del a, b, y trace_count[0] += 1 return x enabled = def_function.function(func, experimental_follow_type_hints=True) enabled(0, 0, x=1, y=2) enabled(0, 0, x=2, y=2,) # No retrace, since only tensor changed self.assertEqual(trace_count[0], 1) # Pass args as keyword args. enabled(a=0, b=0, x=2, y=2,) # No retrace, args are the same self.assertEqual(trace_count[0], 1) enabled(a=1, b=0, x=2, y=2,) # Retrace, since non-tensor arg changed self.assertEqual(trace_count[0], 2) enabled(a=1, b=2, x=2, y=2) # No retrace, since only tensor changed self.assertEqual(trace_count[0], 2) trace_count[0] = 0 disabled = def_function.function(func, experimental_follow_type_hints=False) disabled(0, 0, x=1, y=2) disabled(0, 0, x=2, y=2,) # Retrace self.assertEqual(trace_count[0], 2) def testFollowTypeHintsTraceWithArgsEqualsTypedKwargs(self): trace_count = [0] def func(x, y, **kwargs: ops.Tensor): del y, kwargs trace_count[0] += 1 return x enabled = def_function.function(func, experimental_follow_type_hints=True) enabled(x=1, y=2, z=3) enabled(x=1, y=3, z=3) # Retrace enabled(x=1, y=2, z=4) # No retrace enabled(x=2, y=2, z=4) # Retrace enabled(x=2, y=2, z=4, u=5) # Retrace self.assertEqual(trace_count[0], 4) def testFollowTypeHintsTraceWithArgsEqualsTypedArgs(self): trace_count = [0] def func(x: ops.Tensor, y: int, **kwargs): del y, kwargs trace_count[0] += 1 return x enabled = def_function.function(func, experimental_follow_type_hints=True) enabled(x=1, y=2, z=3) enabled(x=1, y=3, z=3) # Retrace enabled(x=1, y=2, z=4) # Retrace enabled(x=2, y=2, z=3) # No retrace enabled(x=2, y=2, z=4, u=5) # Retrace self.assertEqual(trace_count[0], 4) def testFollowTypeHintsTraceWithKwOnlyArgsBasic(self): trace_count = [0] def func(*, a: ops.Tensor = None, b=1): # pylint: disable=bad-whitespace del b trace_count[0] += 1 return a enabled = def_function.function(func, experimental_follow_type_hints=True) enabled(a=1, b=2) enabled(a=2, b=2) # No retrace enabled(a=1, b=1) # Retrace self.assertEqual(trace_count[0], 2) def testFollowTypeHintsTraceWithArgsKwOnlyArgsKwargsAndTypedArg(self): trace_count = [0] def func(arg: ops.Tensor, *args, kwonly, **kwargs): del args, kwonly, kwargs trace_count[0] += 1 return arg enabled = def_function.function(func, experimental_follow_type_hints=True) enabled(1, 2, 3, 4, kwonly=5, kwarg1=6, kwarg2=7) enabled(100, 2, 3, 4, kwonly=5, kwarg1=6, kwarg2=7) # No retrace enabled(1000, 2, 3, 4, kwonly=5, kwarg1=6, kwarg2=7) # No retrace enabled(1, 20, 30, 40, kwonly=5, kwarg1=6, kwarg2=7) # Retrace enabled(1, 2, 3, 4, kwonly=50, kwarg1=6, kwarg2=7) # Retrace enabled(1, 2, 3, 4, kwonly=5, kwarg1=60, kwarg2=70) # Retrace self.assertEqual(trace_count[0], 4) def testFollowTypeHintsTraceWithArgsKwOnlyArgsKwargsAndTypedArgs(self): trace_count = [0] def func(arg, *args: ops.Tensor, kwonly, **kwargs): del args, kwonly, kwargs trace_count[0] += 1 return arg enabled = def_function.function(func, experimental_follow_type_hints=True) enabled(1, 2, 3, 4, kwonly=5, kwarg1=6, kwarg2=7) enabled(100, 2, 3, 4, kwonly=5, kwarg1=6, kwarg2=7) # Retrace enabled(1, 20, 30, 40, kwonly=5, kwarg1=6, kwarg2=7) # No retrace enabled(1, 200, 300, 400, kwonly=5, kwarg1=6, kwarg2=7) # No retrace enabled(1, 2, 3, 4, kwonly=50, kwarg1=6, kwarg2=7) # Retrace enabled(1, 2, 3, 4, kwonly=5, kwarg1=60, kwarg2=70) # Retrace self.assertEqual(trace_count[0], 4) def testFollowTypeHintsTraceWithArgsKwOnlyArgsKwargsAndTypedKwOnlyArg(self): trace_count = [0] def func(arg, *args, kwonly: ops.Tensor, **kwargs): del args, kwonly, kwargs trace_count[0] += 1 return arg enabled = def_function.function(func, experimental_follow_type_hints=True) enabled(1, 2, 3, 4, kwonly=5, kwarg1=6, kwarg2=7) enabled(100, 2, 3, 4, kwonly=5, kwarg1=6, kwarg2=7) # Retrace enabled(1, 20, 30, 40, kwonly=5, kwarg1=6, kwarg2=7) # Retrace enabled(1, 2, 3, 4, kwonly=50, kwarg1=6, kwarg2=7) # No retrace enabled(1, 2, 3, 4, kwonly=500, kwarg1=6, kwarg2=7) # No retrace enabled(1, 2, 3, 4, kwonly=5, kwarg1=60, kwarg2=70) # Retrace self.assertEqual(trace_count[0], 4) def testFollowTypeHintsTraceWithArgsKwOnlyArgsKwargsAndTypedKwargs(self): trace_count = [0] def func(arg, *args, kwonly, **kwargs: ops.Tensor): del args, kwonly, kwargs trace_count[0] += 1 return arg enabled = def_function.function(func, experimental_follow_type_hints=True) enabled(1, 2, 3, 4, kwonly=5, kwarg1=6, kwarg2=7) enabled(100, 2, 3, 4, kwonly=5, kwarg1=6, kwarg2=7) # Retrace enabled(1, 20, 30, 40, kwonly=5, kwarg1=6, kwarg2=7) # Retrace enabled(1, 2, 3, 4, kwonly=50, kwarg1=6, kwarg2=7) # Retrace enabled(1, 2, 3, 4, kwonly=5, kwarg1=60, kwarg2=70) # No retrace enabled(1, 2, 3, 4, kwonly=5, kwarg1=600, kwarg2=700) # No retrace self.assertEqual(trace_count[0], 4) def testWithExtraWrapper(self): class Foo(module.Module): def __init__(self): super().__init__() self.var = None @def_function.function @dummy_tf_decorator def add(self, x, y, z=1): if self.var is None: return x + y + z foo = Foo() self.assertEqual(foo.add(2, 3).numpy(), 6) @parameterized.parameters([(def_function.function, dummy_tf_decorator), (dummy_tf_decorator, def_function.function), (def_function.function, def_function.function)]) def testWithExtraWrapperRedundantArgs(self, decorator1, decorator2): class Foo(module.Module): def __init__(self): super().__init__() self.var = None @decorator1 @decorator2 def add1(self, x, y): if self.var is None: return x + y foo = Foo() with self.assertRaisesRegex(TypeError, 'got two values'): foo.add1(2, x=3) # pylint: disable=redundant-keyword-arg,no-value-for-parameter def testWithExtraWrapperMissingArgs(self): class Foo(module.Module): def __init__(self): super().__init__() self.var = None @def_function.function @dummy_tf_decorator def add1(self, x, y): if self.var is None: return x + y @def_function.function @dummy_tf_decorator def add2(self, x, y): if self.var is None: return x + y @def_function.function @def_function.function def add3(self, x, y): if self.var is None: return x + y foo = Foo() with self.assertRaisesRegex( TypeError, 'missing 1 required positional argument: \'y\''): foo.add1(2) # pylint: disable=no-value-for-parameter with self.assertRaisesRegex(TypeError, 'missing 1 required argument: x'): foo.add1(y=2) # pylint: disable=no-value-for-parameter with self.assertRaisesRegex( TypeError, 'missing 1 required positional argument: \'y\''): foo.add2(2) # pylint: disable=no-value-for-parameter with self.assertRaisesRegex(TypeError, 'missing 1 required argument: x'): foo.add2(y=2) # pylint: disable=no-value-for-parameter with self.assertRaisesRegex( TypeError, 'missing 1 required positional argument: \'y\''): foo.add3(2) # pylint: disable=no-value-for-parameter with self.assertRaisesRegex(TypeError, 'missing 1 required argument: x'): foo.add3(y=2) # pylint: disable=no-value-for-parameter def testMissingArgsTfFunctionedMethod(self): class A(object): def func(self, position_arg1, position_arg2): return position_arg1, position_arg2 @def_function.function def decorated_method(self, position_arg1, position_arg2): return position_arg1, position_arg2 a_instance = A() tf_method_pos = def_function.function(a_instance.func) with self.assertRaisesRegex( TypeError, '.* missing 1 required argument: position_arg1'): tf_method_pos(position_arg2='foo') # tf.function-decorated instance methods need to be tested because of # the __get__ method implementation. tf_func_decorated_method = def_function.function( a_instance.decorated_method) tf_func_decorated_method(position_arg1='foo', position_arg2='bar') with self.assertRaisesRegex( TypeError, '.* missing 1 required argument: position_arg1'): tf_func_decorated_method(position_arg2='bar') def testMissingArgsTfFunctionedObject(self): class A(object): def __call__(self, position_arg1, position_arg2): return position_arg1, position_arg2 a_instance = A() # A tf.function-decorated callable object needs to be tested because of # the special inspect results. tf_func_obj = def_function.function(a_instance) tf_func_obj(position_arg1=1, position_arg2=2) with self.assertRaisesRegex( TypeError, '.* missing 1 required argument: position_arg1'): tf_func_obj(position_arg2='bar') def testMissingArgsTfFunctionedFunctions(self): def func_pos(position_arg1, position_arg2): return position_arg1, position_arg2 def func_with_default(position_arg, named_arg=None): return position_arg, named_arg def func_pos_3args(position_arg1, position_arg2, position_arg3): return position_arg1, position_arg2, position_arg3 tf_func_pos = def_function.function(func_pos) with self.assertRaisesRegex( TypeError, '.* missing 1 required argument: position_arg1'): tf_func_pos(position_arg2='foo') tf_func_with_default = def_function.function(func_with_default) tf_func_with_default(position_arg='bar') with self.assertRaisesRegex(TypeError, '.* missing 1 required argument: position_arg'): tf_func_with_default(named_arg='foo') tf_func_pos_3args = def_function.function(func_pos_3args) with self.assertRaisesRegex( TypeError, '.* missing required arguments: position_arg1, position_arg3'): tf_func_pos_3args(position_arg2='foo') def testShapeInferencePropagateConstNestedStack(self): @def_function.function(input_signature=[ tensor_spec.TensorSpec((None, None), dtype=dtypes.int32), tensor_spec.TensorSpec((), dtype=dtypes.int32), ]) def f(x, s): old_shape = array_ops.shape(x) new_shape = array_ops.stack([old_shape[0], s], axis=0) y = array_ops.ones(shape=new_shape, dtype=dtypes.int32) return y @def_function.function(input_signature=[ tensor_spec.TensorSpec(shape=(3, 6), dtype=dtypes.int32) ]) def g(x): y = f(x, s=5) assert y.shape.as_list() == [3, 5], y.shape.as_list() return y self.assertAllEqual( g(array_ops.zeros([3, 6], dtype=dtypes.int32)), array_ops.ones([3, 5])) def testShapeInferencePropagateConstNestedUnstackStack(self): @def_function.function(input_signature=[ tensor_spec.TensorSpec((None, None), dtype=dtypes.int32), tensor_spec.TensorSpec((), dtype=dtypes.int32), ]) def f(x, s): s0, _ = array_ops.unstack(array_ops.shape(x), axis=0) new_shape = array_ops.stack([s0, s], axis=0) y = array_ops.ones(shape=new_shape, dtype=dtypes.int32) return y @def_function.function(input_signature=[ tensor_spec.TensorSpec(shape=(3, 6), dtype=dtypes.int32) ]) def g(x): y = f(x, s=5) assert y.shape.as_list() == [3, 5], y.shape.as_list() return y self.assertAllEqual( g(array_ops.zeros([3, 6], dtype=dtypes.int32)), array_ops.ones([3, 5])) def testShapeInferencePropagateConstNestedConcat(self): @def_function.function(input_signature=[ tensor_spec.TensorSpec((), dtype=dtypes.int32), tensor_spec.TensorSpec((), dtype=dtypes.int32), tensor_spec.TensorSpec((), dtype=dtypes.int32), ]) def f(d1, d2, d3): new_shape = array_ops.concat([[d1], [d2], [d3]], axis=-1) y = array_ops.ones(shape=new_shape, dtype=dtypes.int32) return y @def_function.function() def g(): y = f(1, 2, 3) assert y.shape.as_list() == [1, 2, 3], y.shape.as_list() return y self.assertAllEqual(g(), array_ops.ones([1, 2, 3])) def testShapeInferencePropagateConstDoubleNested(self): @def_function.function(input_signature=[ tensor_spec.TensorSpec((), dtype=dtypes.int32), tensor_spec.TensorSpec((), dtype=dtypes.int32), tensor_spec.TensorSpec((), dtype=dtypes.int32), ]) def f(d1, d2, d3): new_shape = array_ops.concat([[d1], [d2], [d3]], axis=-1) y = array_ops.ones(shape=new_shape, dtype=dtypes.int32) return y @def_function.function() def g(): y = def_function.function(f)(1, 2, 3) assert y.shape.as_list() == [1, 2, 3], y.shape.as_list() return y self.assertAllEqual(g(), array_ops.ones([1, 2, 3])) @test_util.run_v2_only def testControlDependencyAfterInline(self): v = variables.Variable(0.) @def_function.function def assign(): return v.assign(1.) @def_function.function def assign_add(): return v.assign_add(1.) @def_function.function def f(): check_ops.assert_equal_v2(assign(), 1.) check_ops.assert_equal_v2(assign_add(), 2.) # We don't have a way to inspect the inlined graph in Python, so we run it # multiple times to have more confidence the dependency is correct. for _ in range(30): f() @test_util.run_v2_only def testReadInFuncWriteOutside(self): # Run many times since we are testing for a potential race condition. for _ in range(30): # pylint: disable=cell-var-from-loop v = variables.Variable(1.) @def_function.function def add_one(): return v + 1. @def_function.function def get_v_plus_one(): v_plus_one = add_one() v.assign_add(2.0) return v_plus_one self.assertAllEqual(get_v_plus_one(), 2.0) def testOpExpandErrorMessage(self): @def_function.function def test_fn(): if array_ops.constant(False): return array_ops.constant(1) else: return script_ops.eager_py_func( func=lambda: array_ops.constant([2.]), inp=(), Tout=dtypes.int32) error_pattern = re.compile(r'Graph execution error.*func=lambda', re.DOTALL) with self.assertRaisesRegex(errors.InvalidArgumentError, error_pattern): test_fn() class MultiDeviceTest(test.TestCase, parameterized.TestCase): @test_util.run_gpu_only def testMultiDeviceOutput(self): """Tests that functions can produce outputs on multiple devices.""" @function.defun def func(a, b, transpose_a): with ops.device('/device:CPU:0'): m1 = math_ops.matmul(a, b, transpose_a=transpose_a) with ops.device('/device:GPU:0'): m2 = math_ops.matmul(a, b, transpose_a=transpose_a) return m1, m2 t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) m1, m2 = func(t, t, transpose_a=True) self.assertAllEqual(m1.numpy(), [[10, 14], [14, 20]]) self.assertRegex(m1.backing_device, 'CPU') self.assertAllEqual(m2.numpy(), [[10, 14], [14, 20]]) self.assertRegex(m2.backing_device, 'GPU') @test_util.run_gpu_only def testEmptyBody(self): @function.defun def func(a, b): return b, a with ops.device('/device:CPU:0'): a = array_ops.identity(3.0) with ops.device('/device:GPU:0'): b = array_ops.identity(5.0) m1, m2 = func(a, b) self.assertAllEqual(m1.numpy(), 5.0) self.assertRegex(m1.backing_device, 'GPU') self.assertAllEqual(m2.numpy(), 3.0) self.assertRegex(m2.backing_device, 'CPU') @test_util.run_gpu_only def testMultiDeviceInt32(self): """Tests that multi-device functions can take and output INT32s. When an INT32 device tensor is fed into a function, it is copied to CPU by the eager runtime. The function sees all INT32 inputs on CPU. We set allocator attribute 'on_host' for INT32 outputs. They can be partitioned into the GPU component function, but will be allocated on CPU nevertheless. There is experimental support for `ints_on_device` in FunctionLibraryRuntime now. We can try that. """ with ops.device('/device:CPU:0'): int_cpu = constant_op.constant(3, dtype=dtypes.int32) resource = resource_variable_ops.ResourceVariable(5, dtype=dtypes.int32) with ops.device('/device:GPU:0'): int_gpu = constant_op.constant(7, dtype=dtypes.int32) @function.defun def func(int_cpu, resource, int_gpu): with ops.device('/device:CPU:0'): m1 = int_cpu * resource + int_gpu with ops.device('/device:GPU:0'): # This computation will happen on GPU but m2 will be copied to CPU. m2 = int_gpu * resource + int_cpu + 1 return m1, m2 m1, m2 = func(int_cpu, resource, int_gpu) self.assertAllEqual(m1.numpy(), 22) self.assertRegex(m1.backing_device, 'CPU') self.assertAllEqual(m2.numpy(), 39) self.assertRegex(m2.backing_device, 'CPU') # flip arguments m1, m2 = func(int_gpu, resource, int_cpu) self.assertAllEqual(m1.numpy(), 38) self.assertRegex(m1.backing_device, 'CPU') self.assertAllEqual(m2.numpy(), 23) self.assertRegex(m2.backing_device, 'CPU') @test_util.run_gpu_only def testMultiDeviceColocateWith(self): """Tests that function's outputs respect colocation constraints.""" @function.defun def func(a, b): with ops.colocate_with(a): ra = 2 * a with ops.colocate_with(b): rb = 3 * b return ra, rb devices = ['/device:CPU:0', '/device:GPU:0'] for dev1, dev2 in itertools.product(devices, devices): with ops.device(dev1): a = array_ops.identity(1.0) with ops.device(dev2): b = array_ops.identity(10.0) ra, rb = func(a, b) self.assertEqual(ra.numpy(), 2.0) self.assertRegex(ra.backing_device, dev1) self.assertEqual(rb.numpy(), 30.0) self.assertRegex(rb.backing_device, dev2) @test_util.run_gpu_only def testMultiDeviceResources(self): with ops.device('/device:CPU:0'): c1 = resource_variable_ops.ResourceVariable(2.0) c2 = resource_variable_ops.ResourceVariable(7.0) with ops.device('/device:GPU:0'): g1 = resource_variable_ops.ResourceVariable(3.0) g2 = resource_variable_ops.ResourceVariable(5.0) @function.defun def func(resource1, resource2): with ops.device('/device:CPU:0'): result1 = resource1 * g2 with ops.device('/device:GPU:0'): result2 = resource2 * c2 return result1, result2 r1, r2 = func(c1, g1) self.assertEqual(r1.numpy(), 10.0) self.assertRegex(r1.backing_device, 'CPU') self.assertEqual(r2.numpy(), 21.0) self.assertRegex(r2.backing_device, 'GPU') # Call with flipped inputs. Check that we look at resource's # device and reinstantiates the function when inputs' devices change. r1, r2 = func(g1, c1) self.assertEqual(r1.numpy(), 15.0) self.assertRegex(r1.backing_device, 'CPU') self.assertEqual(r2.numpy(), 14.0) self.assertRegex(r2.backing_device, 'GPU') @test_util.run_gpu_only def testOutputResources(self): with ops.device('/device:CPU:0'): c1 = resource_variable_ops.ResourceVariable(2.0) with ops.device('/device:GPU:0'): g1 = resource_variable_ops.ResourceVariable(3.0) @function.defun def func(resource1, resource2): with ops.device('/device:CPU:0'): result1 = resource1 * 5 with ops.device('/device:GPU:0'): result2 = resource2 * 7 return result1, resource1.handle, result2, resource2.handle r1, res1, r2, res2 = func(c1, g1) self.assertEqual(r1.numpy(), 10.0) self.assertRegex(r1.backing_device, 'CPU') self.assertEqual(r2.numpy(), 21.0) self.assertRegex(r2.backing_device, 'GPU') def check_handle(handle, expected_value): self.assertRegex(handle.backing_device, 'CPU') tensor = gen_resource_variable_ops.read_variable_op( handle, dtypes.float32) self.assertEqual(tensor.numpy(), expected_value) # Check that handles returned from functions are on CPU and an op using # the resource handle is correctly placed on the device backing the # resource. check_handle(res1, 2.0) check_handle(res2, 3.0) # Call with flipped inputs to make sure the same the function is # reinstantiated and eager runtime does not mess up the device assignment # for ops consuming handles returned from defuns. r1, res1, r2, res2 = func(g1, c1) self.assertEqual(r1.numpy(), 15.0) self.assertRegex(r1.backing_device, 'CPU') self.assertEqual(r2.numpy(), 14.0) self.assertRegex(r2.backing_device, 'GPU') check_handle(res1, 3.0) check_handle(res2, 2.0) @test_util.run_gpu_only def testPassResourceThroughNestedFunctionCall(self): """Test passing GPU resource to noinline function call placed on CPU. PartitionedCallOp must not enforce any particular device assignment for the resource output. Inner function marked as `_nospecialize`, so Grappler would not prune unused function output. """ with ops.device('/device:GPU:0'): g1 = resource_variable_ops.ResourceVariable(3.0) @function.defun_with_attributes(attributes={ '_noinline': True, '_nospecialize': True }) def inner(resource1): return resource1 * 2, resource1.handle @function.defun def outer(resource1): with ops.device('/device:CPU:0'): r1, _ = inner(resource1) return r1 r1 = outer(g1) self.assertEqual(r1.numpy(), 6.0) self.assertRegex(r1.backing_device, 'CPU') @test_util.run_gpu_only def testReturnResourceFromNestedFunctionCall(self): """Test returning GPU resource from noinline function call placed on CPU. When inferring output devices for the return value, do not set a device for returns of DT_RESOURCE data type based on the device assignment of the node that produced that resource. As an example function call placed on CPU can return resources on GPU. """ with ops.device('/device:GPU:0'): g1 = resource_variable_ops.ResourceVariable(3.0) @function.defun_with_attributes(attributes={ '_noinline': True }) def inner(resource1): resource1.assign_add(2.0) return resource1 * 2, resource1.handle @function.defun def outer(resource1): with ops.device('/device:CPU:0'): r1, res1 = inner(resource1) return r1, res1 r1, res1 = outer(g1) self.assertEqual(r1.numpy(), 10.0) self.assertRegex(r1.backing_device, 'CPU') def check_handle(handle, expected_value): self.assertRegex(handle.backing_device, 'CPU') tensor = gen_resource_variable_ops.read_variable_op( handle, dtypes.float32) self.assertEqual(tensor.numpy(), expected_value) # Check that handles returned from functions are on CPU and an op using # the resource handle is correctly placed on the device backing the # resource. check_handle(res1, 5.0) @test_util.run_gpu_only def testComplexInputOutputDevicePattern(self): """Tests input/output mapping logic in partitioning.""" with ops.device('/device:CPU:0'): rc0 = resource_variable_ops.ResourceVariable(2.0) rc1 = resource_variable_ops.ResourceVariable(3.0) cc0 = array_ops.identity(5.0) cc1 = array_ops.identity(7.0) with ops.device('/device:GPU:0'): rg0 = resource_variable_ops.ResourceVariable(11.0) rg1 = resource_variable_ops.ResourceVariable(13.0) cg0 = array_ops.identity(17.0) cg1 = array_ops.identity(19.0) # Make sure tensors are on expected devices. for tensor in [cc0, cc1]: self.assertRegex(tensor.backing_device, 'CPU:0') for tensor in [cg0, cg1]: self.assertRegex(tensor.backing_device, 'GPU:0') @function.defun def func(rc0, cc0, cg0, rc1, cg1, rg0, rg1, cc1): with ops.device('/device:CPU:0'): m1 = rc0 * cg0 with ops.device('/device:GPU:0'): m2 = rg0 * cc0 with ops.device('/device:CPU:0'): r1 = 1000.0 * m2 + rc1 * cg1 with ops.device('/device:GPU:0'): r2 = 1000.0 * m1 + rg1 * cc1 return r1, r2, m2, m1 r1, r2, m2, m1 = func(rc0, cc0, cg0, rc1, cg1, rg0, rg1, cc1) self.assertRegex(m1.backing_device, 'CPU') self.assertRegex(r1.backing_device, 'CPU') self.assertRegex(m2.backing_device, 'GPU') self.assertRegex(r2.backing_device, 'GPU') self.assertEqual(m1.numpy(), 34.0) self.assertEqual(r1.numpy(), 55000.0 + 3.0 * 19.0) self.assertEqual(m2.numpy(), 55.0) self.assertEqual(r2.numpy(), 34000.0 + 13.0 * 7.0) @test_util.run_gpu_only def testArgumentPruning(self): """Tests functions taking unnecessary arguments.""" with ops.device('/device:CPU:0'): c1 = constant_op.constant(5.0) c2 = constant_op.constant(7.0) with ops.device('/device:GPU:0'): g1 = constant_op.constant(11.0) g2 = constant_op.constant(13.0) g3 = constant_op.constant(17.0) @function.defun def func(g1, g2, c1, g3, c2): # pylint: disable=unused-argument # arguments g1 and g2 are unused and can be pruned by grappler. return c1 * g3 * c2 result = func(g1, g2, c1, g3, c2) self.assertEqual(result.numpy(), 5.0 * 7.0 * 17.0) def testNestedCallWatchedVariables(self): v = variables.Variable(4.) @def_function.function def f(): return v ** 2. with backprop.GradientTape() as tape: f() self.assertEqual((v,), tape.watched_variables()) @def_function.function def g(): return f() with backprop.GradientTape() as tape: g() self.assertEqual((v,), tape.watched_variables()) # f() can rely on the variable being read during its trace. g() checks that # variables from a function which knows about them are recorded on the # tape. h() tests that functions forward knowledge of variables to callers. @def_function.function def h(): return g() with backprop.GradientTape() as tape: h() self.assertEqual((v,), tape.watched_variables()) def testReplaceCaptureWithDeferred(self): x = constant_op.constant(1.0) y = constant_op.constant(2.0) z = constant_op.constant(3.0) @def_function.function def fn(): a = x + y b = a + z return b concrete_fn = fn.get_concrete_function() self.assertAllEqual(concrete_fn(), 6.0) value = constant_op.constant(4.0) def closure(): return value concrete_fn.replace_capture_with_deferred_capture( concrete_fn.captured_inputs[1], closure, spec=tensor_spec.TensorSpec(shape=(), dtype=dtypes.float32), placeholder=concrete_fn.inputs[1]) self.assertAllEqual(concrete_fn(), 8.0) value = constant_op.constant(5.0) self.assertAllEqual(concrete_fn(), 9.0) def testRaiseReplaceCaptureWithDeferredTypeSpecMismatch(self): bool_captured_tensor = constant_op.constant(True) float_captured_tensor = constant_op.constant([3.], dtype=dtypes.float32) value = constant_op.constant([2.], dtype=dtypes.float32) @def_function.function def fn(): deferred_tensor = ops.get_default_graph().capture_call_time_value( lambda: value, tensor_spec.TensorSpec(shape=(1,), dtype=dtypes.float32)) if bool_captured_tensor: return deferred_tensor else: return deferred_tensor + float_captured_tensor concrete_fn = fn.get_concrete_function() self.assertAllEqual(concrete_fn(), [2.]) new_bool_captured_tensor = constant_op.constant(False) def bool_closure(): return new_bool_captured_tensor # Test raise if replacing a bool capture with a closure of output type # float32 new_float_captured_tensor = constant_op.constant([3.], dtype=dtypes.float32) def float_closure(): return new_float_captured_tensor with self.assertRaisesRegex(ValueError, 'Attempting to substitute closure with spec*'): concrete_fn.replace_capture_with_deferred_capture( bool_captured_tensor, float_closure, spec=tensor_spec.TensorSpec(shape=(1,), dtype=dtypes.float32)) # Test replace without a placeholder concrete_fn.replace_capture_with_deferred_capture( bool_captured_tensor, bool_closure, spec=tensor_spec.TensorSpec(shape=(), dtype=dtypes.bool)) self.assertAllEqual(concrete_fn(), [5.]) def testConcreteFunctionSetExternalCapture(self): captured_tensor = constant_op.constant([1.]) value = constant_op.constant([2.]) @def_function.function def fn(): deferred_tensor = ops.get_default_graph().capture_call_time_value( lambda: value, tensor_spec.TensorSpec(shape=(1,), dtype=dtypes.float32)) return deferred_tensor + captured_tensor cf = fn.get_concrete_function() self.assertLen(cf._captured_inputs, 2) self.assertEqual(list(map(callable, cf._captured_inputs)), [False, True]) self.assertAllEqual(cf(), [3.]) # Reset capture to a deferred one, reset deferred capture to a capture. cf.set_external_captures([cf._captured_inputs[1], cf._captured_inputs[0]]) value = constant_op.constant([3.]) self.assertAllEqual(cf(), [4.]) def testGraphReplaceCaptureAndSetExternalCapture(self): bool_captured_tensor = constant_op.constant(True) float_captured_tensor = constant_op.constant([3.], dtype=dtypes.float32) value = constant_op.constant([2.], dtype=dtypes.float32) @def_function.function def fn(): deferred_tensor = ops.get_default_graph().capture_call_time_value( lambda: value, tensor_spec.TensorSpec(shape=(1,), dtype=dtypes.float32)) if bool_captured_tensor: return deferred_tensor else: return deferred_tensor + float_captured_tensor concrete_fn = fn.get_concrete_function() self.assertAllEqual(concrete_fn(), [2.]) new_bool_captured_tensor = constant_op.constant(False) def closure(): return new_bool_captured_tensor concrete_fn.graph.replace_capture_with_deferred_capture( concrete_fn.captured_inputs[0], closure, spec=tensor_spec.TensorSpec(shape=(), dtype=dtypes.bool), placeholder=concrete_fn.inputs[1]) concrete_fn.set_external_captures([ closure, concrete_fn._captured_inputs[1], concrete_fn._captured_inputs[2] ]) self.assertAllEqual(concrete_fn(), [5.]) def testDeferredCapture(self): value = 1.0 @def_function.function def lazy_capture(x): y = ops.get_default_graph().capture_call_time_value( lambda: value, tensor_spec.TensorSpec(None)) return x + y self.assertAllEqual(lazy_capture(2.0), 3.0) # After changing the value of `value` the function call should return a # different result. value = 2.0 self.assertAllEqual(lazy_capture(2.0), 4.0) def testNestedDeferredCapture(self): value = 1.0 @def_function.function def inner(x): y = ops.get_default_graph().capture_call_time_value( lambda: value, tensor_spec.TensorSpec(None)) return x + y @def_function.function def outer(x): return inner(x) self.assertAllEqual(outer(2.0), 3.0) # After changing the value of `value` the function call should return a # different result. value = 2.0 self.assertAllEqual(outer(2.0), 4.0) def testNestedDeferredCaptureInTFWhileLoop(self): value = 1. @def_function.function def inner(x): y = ops.get_default_graph().capture_call_time_value( lambda: value, tensor_spec.TensorSpec(None)) return x + y @def_function.function def outer(): dummy = constant_op.constant(True) sums = constant_op.constant(0.) while dummy: directives.set_loop_options( shape_invariants=[(sums, tensor_shape.TensorShape(None))]) sums += inner(2.) dummy = constant_op.constant(False) return sums self.assertAllEqual(outer(), 3.) value = constant_op.constant(2.) self.assertAllEqual(outer(), 4.) value = constant_op.constant(3.) self.assertAllEqual(outer(), 5.) def testDeferredCaptureWithKey(self): value0 = 1.0 value1 = 2.0 @def_function.function def lazy_capture(x): w = ops.get_default_graph().capture_call_time_value( lambda: value0, tensor_spec.TensorSpec(None), key=0) y = ops.get_default_graph().capture_call_time_value( lambda: value1, tensor_spec.TensorSpec(None), key=1) def bad_closure(): raise ValueError('Should not run') z = ops.get_default_graph().capture_call_time_value( bad_closure, tensor_spec.TensorSpec(None), key=1) return x + y + w + z self.assertAllEqual(lazy_capture(2.0), 7.0) value0 = 2.0 value1 = 3.0 self.assertAllEqual(lazy_capture(2.0), 10.0) def testDeferredCaptureTypeError(self): value = constant_op.constant(1.0) @def_function.function def lazy_capture(x): y = ops.get_default_graph().capture_call_time_value( lambda: value, tensor_spec.TensorSpec(())) return x + y self.assertAllEqual(lazy_capture(2.0), 3.0) # dtype mismatch value = constant_op.constant(1) with self.assertRaisesRegex(ValueError, 'Value .* to a tensor with dtype'): lazy_capture(2.0) # shape mismatch value = constant_op.constant([1.0]) with self.assertRaisesRegex(ValueError, 'Value .* shape'): lazy_capture(2.0) def testDeferredCaptureReturnNestWithCompositeTensor(self): i_s = indexed_slices.IndexedSlices( constant_op.constant([1, 2]), constant_op.constant([0, 1], dtype=dtypes.int64), constant_op.constant([2])) r_t = ragged_factory_ops.constant([[[1, 2], [3]], [[4, 5, 6]]]) s_t = sparse_tensor.SparseTensor( values=[1, 2, 3], indices=[[0], [8], [10]], dense_shape=[20]) @def_function.function def lazy_capture(): y = ops.get_default_graph().capture_call_time_value( lambda: {'i': i_s, 't': (r_t, s_t)}, {'i': indexed_slices.IndexedSlicesSpec( dtype=dtypes.int32, dense_shape_dtype=dtypes.int32), 't': (ragged_tensor.RaggedTensorSpec([2, None, None], dtypes.int32), sparse_tensor.SparseTensorSpec([None], dtypes.int32))}) return y['i'], y['t'] i, (r, s) = lazy_capture() self.assertAllEqual(i_s.values, i.values) self.assertAllEqual(i_s.indices, i.indices) self.assertAllEqual(i_s.dense_shape, i.dense_shape) self.assertAllEqual(r_t, r) self.assertAllEqual(s_t.indices, s.indices) self.assertAllEqual(s_t.values, s.values) self.assertAllEqual(s_t.dense_shape, s.dense_shape) def testDeferredCaptureCompositeTensorSpecTypeMismatch(self): value = indexed_slices.IndexedSlices( constant_op.constant([1, 2]), constant_op.constant([0, 1], dtype=dtypes.int64)) @def_function.function def lazy_capture(): return ops.get_default_graph().capture_call_time_value( lambda: value, indexed_slices.IndexedSlicesSpec(dtype=dtypes.int32)) # Type matches spec. lazy_capture() # Extra dense shape component. value = indexed_slices.IndexedSlices( constant_op.constant([1, 2]), constant_op.constant([0, 1], dtype=dtypes.int64), constant_op.constant([2])) with self.assertRaises(ValueError): lazy_capture() # Index dtype mismatch int32 vs. int64. value = indexed_slices.IndexedSlices( constant_op.constant([1, 2]), constant_op.constant([0, 1])) with self.assertRaises(ValueError): lazy_capture() def testFunctoolsLruCache(self): self.skipTest( "b/194845243: inspect.getfullargspec doesn't unwrap Python decorators.") @def_function.function @functools.lru_cache(maxsize=2) def f(a): return 2 * a self.assertAllEqual(f(1), array_ops.constant(2)) if __name__ == '__main__': ops.enable_eager_execution() test.main()
py
1a382fd2cf667fb4b4de45d7cd6da7c28a33adeb
import numpy as np import networkx as nx import matplotlib.pyplot as plt import matplotlib import time import ot from scipy import linalg from scipy import sparse import gromovWassersteinAveraging as gwa import spectralGW as sgw from geodesicVisualization import * from GromovWassersteinGraphToolkit import * import json # Import Graph Partitioning Packages from infomap import Infomap # Load the S-GWL code import DataIO as DataIO import EvaluationMeasure as Eval import GromovWassersteinGraphToolkit as GwGt import pickle import warnings # Load modules for network partitioning experiments from networkx.algorithms.community import greedy_modularity_communities from networkx.algorithms.community.asyn_fluid import asyn_fluidc from networkx.algorithms.community.quality import performance, coverage, modularity from sklearn import metrics from scipy.cluster.hierarchy import dendrogram, linkage, cut_tree from scipy.signal import find_peaks """ Define some helper functions """ def graph_partition_gd2(cost_s, p_s, p_t,idx2node, ot_hyperpara, trans0=None): """ ** May 19, 2020: Gradient descent version of graph_partition Achieve a single graph partition via calculating Gromov-Wasserstein discrepancy between the target graph and proposed one Args: cost_s: (n_s, n_s) adjacency matrix of source graph p_s: (n_s, 1) the distribution of source nodes p_t: (n_t, 1) the distribution of target nodes idx2node: a dictionary {key = idx of row in cost, value = name of node} ot_hyperpara: a dictionary of hyperparameters Returns: sub_costs: a dictionary {key: cluster idx, value: sub cost matrices} sub_probs: a dictionary {key: cluster idx, value: sub distribution of nodes} sub_idx2nodes: a dictionary {key: cluster idx, value: a dictionary mapping indices to nodes' names trans: (n_s, n_t) the optimal transport """ cost_t = np.diag(p_t[:, 0]) cost_s = np.asarray(cost_s) # cost_t = 1 / (1 + cost_t) trans, log = gwa.gromov_wasserstein_asym_fixed_initialization(cost_s, cost_t, p_s.flatten(), p_t.flatten(), trans0) d_gw = log['gw_dist'] sub_costs, sub_probs, sub_idx2nodes = node_cluster_assignment(cost_s, trans, p_s, p_t, idx2node) return sub_costs, sub_probs, sub_idx2nodes, trans, d_gw def get_partition(coup): est_idx = np.argmax(coup, axis=1) num_clusters = np.max(est_idx) partition = [] for j in range(num_clusters+1): partition.append(set(np.argwhere(est_idx == j).T[0])) return partition """ Main Experiment """ num_trials = 10 num_nodes = 1000 clique_size = 150 p_in = 0.5 ps_out = [0.08, 0.10, 0.12, 0.15] ot_dict = {'loss_type': 'L2', # the key hyperparameters of GW distance 'ot_method': 'proximal', 'beta': 0.15, 'outer_iteration': 2 * num_nodes, # outer, inner iterations and error bound of optimal transport 'iter_bound': 1e-30, 'inner_iteration': 5, 'sk_bound': 1e-30, 'node_prior': 0.0001, 'max_iter': 1, # iteration and error bound for calcuating barycenter 'cost_bound': 1e-16, 'update_p': False, # optional updates of source distribution 'lr': 0, 'alpha': 0} # Range to search for optimal number of clusters over num_clusts = list(range(3,10)) train_times = [] specGW_avg_amis = [] specGW_avg_times = [] GWL_avg_amis = [] GWL_avg_times = [] infoMap_avg_amis = [] infoMap_avg_times = [] for pn in range(len(ps_out)): print('Starting p_out index = ',pn) ############################################## # Training specGW ############################################## G = nx.gaussian_random_partition_graph(n=num_nodes, s=clique_size, v=8, p_in=p_in, p_out=ps_out[pn], directed=True) p_s, cost_s, idx2node = DataIO.extract_graph_info(G) p_s = (p_s + 1) ** 0.01 p_s /= np.sum(p_s) start = time.time() t = 10 cost = sgw.directed_heat_kernel(G,t) modularities = [] for j in num_clusts: p_t = GwGt.estimate_target_distribution({0: p_s}, dim_t=j) sub_costs, sub_probs, sub_idx2nodes, coup, d_gw = graph_partition_gd2(cost, p_s, p_t, idx2node, ot_dict) partition = get_partition(coup) modularities.append(modularity(G,partition)) est_num_clust = num_clusts[np.argmax(modularities)] ts = np.linspace(5,15,10) modularities = [] for t in ts: cost = sgw.directed_heat_kernel(G,t) p_t = GwGt.estimate_target_distribution({0: p_s}, dim_t=est_num_clust) sub_costs, sub_probs, sub_idx2nodes, coup, d_gw = graph_partition_gd2(cost, p_s, p_t, idx2node, ot_dict) partition = get_partition(coup) modularities.append(modularity(G,partition)) est_t_value = ts[np.argmax(modularities)] end = time.time() training_time = end - start train_times.append(training_time) print('Time to Train:', training_time) print('Estimated Clusters:', est_num_clust) print('Estimated t value:', est_t_value) ############################################## # Main Experiment ############################################## gwl_amis = [] gwl_times = [] specGW_amis = [] specGW_times = [] infoMap_amis = [] infoMap_times = [] for j in range(num_trials): # Create Graph G = nx.gaussian_random_partition_graph(n=num_nodes, s=clique_size, v=5, p_in=p_in, p_out=ps_out[pn], directed=True) gt = np.zeros((num_nodes,)) for i in range(len(G.nodes)): gt[i] = G.nodes[i]['block'] num_partitions = int(np.max(gt) + 1) p_s, cost_s, idx2node = DataIO.extract_graph_info(G) p_s = (p_s + 1) ** 0.01 p_s /= np.sum(p_s) # Run SpecGW start = time.time() cost = sgw.directed_heat_kernel(G,est_t_value) p_t = GwGt.estimate_target_distribution({0: p_s}, dim_t=est_num_clust) sub_costs, sub_probs, sub_idx2nodes, coup, d_gw = graph_partition_gd2(cost, p_s, p_t, idx2node, ot_dict) est_idx = np.argmax(coup, axis=1) ami = metrics.adjusted_mutual_info_score(gt, est_idx, average_method='max') end = time.time() specGW_amis.append(ami) specGW_times.append(end - start) # print('SpecGW AMI:',ami,' Time:',end -start) # Run GWL start = time.time() sub_costs, sub_probs, sub_idx2nodes = GwGt.recursive_graph_partition(cost_s, p_s, idx2node, ot_dict, max_node_num=300) est_idx = np.zeros((num_nodes,)) for n_cluster in range(len(sub_idx2nodes)): for key in sub_idx2nodes[n_cluster].keys(): idx = sub_idx2nodes[n_cluster][key] est_idx[idx] = n_cluster ami = metrics.adjusted_mutual_info_score(gt, est_idx, average_method='max') end = time.time() gwl_amis.append(ami) gwl_times.append(end-start) # print('GWL AMI:',ami,' Time:',end -start) # Run InfoMap start = time.time() im = Infomap() for edge in G.edges: im.add_link(edge[0], edge[1]) # Run the Infomap search algorithm to find optimal modules im.run() # print(f"Found {im.num_top_modules} modules with Infomap") est_idx = np.zeros((num_nodes,)) for node in im.tree: if node.is_leaf: est_idx[node.node_id] = node.module_id ami = metrics.adjusted_mutual_info_score(gt, est_idx, average_method='max') end = time.time() infoMap_amis.append(ami) infoMap_times.append(end-start) # print('InfoMap AMI:',ami,' Time:',end -start) specGW_avg_amis.append(np.mean(specGW_amis)) specGW_avg_times.append(np.mean(specGW_times)) GWL_avg_amis.append(np.mean(gwl_amis)) GWL_avg_times.append(np.mean(gwl_times)) infoMap_avg_amis.append(np.mean(infoMap_amis)) infoMap_avg_times.append(np.mean(infoMap_times)) print('Average AMIs:') print('p_out','specGW','GWL','Infomap') for j in range(len(ps_out)): print(ps_out[j],np.round(specGW_avg_amis,3)[j],np.round(GWL_avg_amis,3)[j],np.round(infoMap_avg_amis,3)[j]) print('Average times:') print('p_out','specGW','GWL','Infomap') for j in range(len(ps_out)): print(ps_out[j],np.round(specGW_avg_times,2)[j],np.round(GWL_avg_times,2)[j],np.round(infoMap_avg_times,2)[j]) ## Store results ami_p_out = [] ami_specGW = [] ami_GWL = [] ami_Infomap = [] times_p_out = [] times_specGW = [] times_GWL = [] times_Infomap = [] for j in range(len(ps_out)): ami_p_out.append(ps_out[j]) ami_specGW.append(np.round(specGW_avg_amis,3)[j]) ami_GWL.append(np.round(GWL_avg_amis,3)[j]) ami_Infomap.append(np.round(infoMap_avg_amis,3)[j]) times_p_out.append(ps_out[j]) times_specGW.append(np.round(specGW_avg_times,2)[j]) times_GWL.append(np.round(GWL_avg_times,2)[j]) times_Infomap.append(np.round(infoMap_avg_times,2)[j]) res_ami = {}#pd.DataFrame() res_ami['p_out'] = ami_p_out res_ami['specGW'] = ami_specGW res_ami['GWL'] = ami_GWL res_ami['Infomap'] = ami_Infomap res_times = {}#pd.DataFrame() res_times['p_out'] = times_p_out res_times['specGW'] = times_specGW res_times['GWL'] = times_GWL res_times['Infomap'] = times_Infomap with open('res_randomGraphPartitioning.txt', 'w') as outfile: json.dump(['Average AMIs', res_ami, 'Average times', res_times], outfile,indent=0)
py
1a383005131ca9f629fd89021825b33e01db05a8
"""Miscellaneous utilities for images""" from functools import partial import mimetypes from wildebeest.util import find_files_with_extensions find_image_files = partial( find_files_with_extensions, extensions=[k for k, v in mimetypes.types_map.items() if v.startswith("image/")], ) """Find all image files in a directory"""
py
1a38304c354e5961c64df760461dd2bf8913cdae
#!/usr/bin/env python3 import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "portia_server.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
py
1a383090f9461be888866fb8a91ba8d464a436c3
import gzip import os import struct import tempfile import unittest from io import BytesIO, StringIO, TextIOWrapper from unittest import mock from django.core.files import File from django.core.files.base import ContentFile from django.core.files.move import file_move_safe from django.core.files.temp import NamedTemporaryFile from django.core.files.uploadedfile import ( InMemoryUploadedFile, SimpleUploadedFile, UploadedFile, ) try: from PIL import Image except ImportError: Image = None else: from django.core.files import images class FileTests(unittest.TestCase): def test_unicode_uploadedfile_name(self): uf = UploadedFile(name='¿Cómo?', content_type='text') self.assertIs(type(repr(uf)), str) def test_unicode_file_name(self): f = File(None, 'djángö') self.assertIs(type(repr(f)), str) def test_context_manager(self): orig_file = tempfile.TemporaryFile() base_file = File(orig_file) with base_file as f: self.assertIs(base_file, f) self.assertFalse(f.closed) self.assertTrue(f.closed) self.assertTrue(orig_file.closed) def test_open_resets_opened_file_to_start_and_returns_context_manager(self): file = File(BytesIO(b'content')) file.read() with file.open() as f: self.assertEqual(f.read(), b'content') def test_open_reopens_closed_file_and_returns_context_manager(self): temporary_file = tempfile.NamedTemporaryFile(delete=False) file = File(temporary_file) try: file.close() with file.open() as f: self.assertFalse(f.closed) finally: # remove temporary file os.unlink(file.name) def test_namedtemporaryfile_closes(self): """ The symbol django.core.files.NamedTemporaryFile is assigned as a different class on different operating systems. In any case, the result should minimally mock some of the API of tempfile.NamedTemporaryFile from the Python standard library. """ tempfile = NamedTemporaryFile() self.assertTrue(hasattr(tempfile, "closed")) self.assertFalse(tempfile.closed) tempfile.close() self.assertTrue(tempfile.closed) def test_file_mode(self): # Should not set mode to None if it is not present. # See #14681, stdlib gzip module crashes if mode is set to None file = SimpleUploadedFile("mode_test.txt", b"content") self.assertFalse(hasattr(file, 'mode')) gzip.GzipFile(fileobj=file) def test_file_iteration(self): """ File objects should yield lines when iterated over. Refs #22107. """ file = File(BytesIO(b'one\ntwo\nthree')) self.assertEqual(list(file), [b'one\n', b'two\n', b'three']) def test_file_iteration_windows_newlines(self): """ #8149 - File objects with \r\n line endings should yield lines when iterated over. """ f = File(BytesIO(b'one\r\ntwo\r\nthree')) self.assertEqual(list(f), [b'one\r\n', b'two\r\n', b'three']) def test_file_iteration_mac_newlines(self): """ #8149 - File objects with \r line endings should yield lines when iterated over. """ f = File(BytesIO(b'one\rtwo\rthree')) self.assertEqual(list(f), [b'one\r', b'two\r', b'three']) def test_file_iteration_mixed_newlines(self): f = File(BytesIO(b'one\rtwo\nthree\r\nfour')) self.assertEqual(list(f), [b'one\r', b'two\n', b'three\r\n', b'four']) def test_file_iteration_with_unix_newline_at_chunk_boundary(self): f = File(BytesIO(b'one\ntwo\nthree')) # Set chunk size to create a boundary after \n: # b'one\n... # ^ f.DEFAULT_CHUNK_SIZE = 4 self.assertEqual(list(f), [b'one\n', b'two\n', b'three']) def test_file_iteration_with_windows_newline_at_chunk_boundary(self): f = File(BytesIO(b'one\r\ntwo\r\nthree')) # Set chunk size to create a boundary between \r and \n: # b'one\r\n... # ^ f.DEFAULT_CHUNK_SIZE = 4 self.assertEqual(list(f), [b'one\r\n', b'two\r\n', b'three']) def test_file_iteration_with_mac_newline_at_chunk_boundary(self): f = File(BytesIO(b'one\rtwo\rthree')) # Set chunk size to create a boundary after \r: # b'one\r... # ^ f.DEFAULT_CHUNK_SIZE = 4 self.assertEqual(list(f), [b'one\r', b'two\r', b'three']) def test_file_iteration_with_text(self): f = File(StringIO('one\ntwo\nthree')) self.assertEqual(list(f), ['one\n', 'two\n', 'three']) def test_readable(self): with tempfile.TemporaryFile() as temp, File(temp, name='something.txt') as test_file: self.assertTrue(test_file.readable()) self.assertFalse(test_file.readable()) def test_writable(self): with tempfile.TemporaryFile() as temp, File(temp, name='something.txt') as test_file: self.assertTrue(test_file.writable()) self.assertFalse(test_file.writable()) with tempfile.TemporaryFile('rb') as temp, File(temp, name='something.txt') as test_file: self.assertFalse(test_file.writable()) def test_seekable(self): with tempfile.TemporaryFile() as temp, File(temp, name='something.txt') as test_file: self.assertTrue(test_file.seekable()) self.assertFalse(test_file.seekable()) def test_io_wrapper(self): content = "vive l'été\n" with tempfile.TemporaryFile() as temp, File(temp, name='something.txt') as test_file: test_file.write(content.encode()) test_file.seek(0) wrapper = TextIOWrapper(test_file, 'utf-8', newline='\n') self.assertEqual(wrapper.read(), content) wrapper.write(content) wrapper.seek(0) self.assertEqual(wrapper.read(), content * 2) test_file = wrapper.detach() test_file.seek(0) self.assertEqual(test_file.read(), (content * 2).encode()) class NoNameFileTestCase(unittest.TestCase): """ Other examples of unnamed files may be tempfile.SpooledTemporaryFile or urllib.urlopen() """ def test_noname_file_default_name(self): self.assertIsNone(File(BytesIO(b'A file with no name')).name) def test_noname_file_get_size(self): self.assertEqual(File(BytesIO(b'A file with no name')).size, 19) class ContentFileTestCase(unittest.TestCase): def test_content_file_default_name(self): self.assertIsNone(ContentFile(b"content").name) def test_content_file_custom_name(self): """ The constructor of ContentFile accepts 'name' (#16590). """ name = "I can have a name too!" self.assertEqual(ContentFile(b"content", name=name).name, name) def test_content_file_input_type(self): """ ContentFile can accept both bytes and strings and the retrieved content is of the same type. """ self.assertIsInstance(ContentFile(b"content").read(), bytes) self.assertIsInstance(ContentFile("español").read(), str) def test_open_resets_file_to_start_and_returns_context_manager(self): file = ContentFile(b'content') with file.open() as f: self.assertEqual(f.read(), b'content') with file.open() as f: self.assertEqual(f.read(), b'content') class InMemoryUploadedFileTests(unittest.TestCase): def test_open_resets_file_to_start_and_returns_context_manager(self): uf = InMemoryUploadedFile(StringIO('1'), '', 'test', 'text/plain', 1, 'utf8') uf.read() with uf.open() as f: self.assertEqual(f.read(), '1') class DimensionClosingBug(unittest.TestCase): """ get_image_dimensions() properly closes files (#8817) """ @unittest.skipUnless(Image, "Pillow not installed") def test_not_closing_of_files(self): """ Open files passed into get_image_dimensions() should stay opened. """ empty_io = BytesIO() try: images.get_image_dimensions(empty_io) finally: self.assertTrue(not empty_io.closed) @unittest.skipUnless(Image, "Pillow not installed") def test_closing_of_filenames(self): """ get_image_dimensions() called with a filename should closed the file. """ # We need to inject a modified open() builtin into the images module # that checks if the file was closed properly if the function is # called with a filename instead of an file object. # get_image_dimensions will call our catching_open instead of the # regular builtin one. class FileWrapper: _closed = [] def __init__(self, f): self.f = f def __getattr__(self, name): return getattr(self.f, name) def close(self): self._closed.append(True) self.f.close() def catching_open(*args): return FileWrapper(open(*args)) images.open = catching_open try: images.get_image_dimensions(os.path.join(os.path.dirname(__file__), "test1.png")) finally: del images.open self.assertTrue(FileWrapper._closed) class InconsistentGetImageDimensionsBug(unittest.TestCase): """ get_image_dimensions() works properly after various calls using a file handler (#11158) """ @unittest.skipUnless(Image, "Pillow not installed") def test_multiple_calls(self): """ Multiple calls of get_image_dimensions() should return the same size. """ img_path = os.path.join(os.path.dirname(__file__), "test.png") with open(img_path, 'rb') as fh: image = images.ImageFile(fh) image_pil = Image.open(fh) size_1 = images.get_image_dimensions(image) size_2 = images.get_image_dimensions(image) self.assertEqual(image_pil.size, size_1) self.assertEqual(size_1, size_2) @unittest.skipUnless(Image, "Pillow not installed") def test_bug_19457(self): """ Regression test for #19457 get_image_dimensions fails on some pngs, while Image.size is working good on them """ img_path = os.path.join(os.path.dirname(__file__), "magic.png") size = images.get_image_dimensions(img_path) with open(img_path, 'rb') as fh: self.assertEqual(size, Image.open(fh).size) @unittest.skipUnless(Image, "Pillow not installed") class GetImageDimensionsTests(unittest.TestCase): def test_invalid_image(self): """ get_image_dimensions() should return (None, None) for the dimensions of invalid images (#24441). brokenimg.png is not a valid image and it has been generated by: $ echo "123" > brokenimg.png """ img_path = os.path.join(os.path.dirname(__file__), "brokenimg.png") with open(img_path, 'rb') as fh: size = images.get_image_dimensions(fh) self.assertEqual(size, (None, None)) def test_valid_image(self): """ get_image_dimensions() should catch struct.error while feeding the PIL Image parser (#24544). Emulates the Parser feed error. Since the error is raised on every feed attempt, the resulting image size should be invalid: (None, None). """ img_path = os.path.join(os.path.dirname(__file__), "test.png") with mock.patch('PIL.ImageFile.Parser.feed', side_effect=struct.error): with open(img_path, 'rb') as fh: size = images.get_image_dimensions(fh) self.assertEqual(size, (None, None)) class FileMoveSafeTests(unittest.TestCase): def test_file_move_overwrite(self): handle_a, self.file_a = tempfile.mkstemp() handle_b, self.file_b = tempfile.mkstemp() # file_move_safe should raise an IOError exception if destination file exists and allow_overwrite is False with self.assertRaises(IOError): file_move_safe(self.file_a, self.file_b, allow_overwrite=False) # should allow it and continue on if allow_overwrite is True self.assertIsNone(file_move_safe(self.file_a, self.file_b, allow_overwrite=True)) os.close(handle_a) os.close(handle_b) class SpooledTempTests(unittest.TestCase): def test_in_memory_spooled_temp(self): with tempfile.SpooledTemporaryFile() as temp: temp.write(b"foo bar baz quux\n") django_file = File(temp, name="something.txt") self.assertEqual(django_file.size, 17) def test_written_spooled_temp(self): with tempfile.SpooledTemporaryFile(max_size=4) as temp: temp.write(b"foo bar baz quux\n") django_file = File(temp, name="something.txt") self.assertEqual(django_file.size, 17)
py
1a3830c5ff3d92b8f7658e4c9f21e7b31bd38dba
from commands import commands from socket import socket import json # All these "magic" variables come from reverse engineering the HS100 app, Kasa # We decompiled it and found their encryption function, then wrote this to try # to connect and manipulate a HS100, which it does! It appears they use no form # of authentication or fancy crypto algorithms for encryption # -85 in the Kasa app, but bytes are unsigned, # so 256 - 85 = 171 STARTING_BYTE = 171 # 4 hard coded null characters pad each string sent and received. STARTING_PAD = b"\0\0\0\0" # Revealed via netcat PORT = 9999 def encrypt(string): """Encrypts a string for transferring to an HS100, they use a simple autokey cipher padded by 4 null characters Args: string: a json string the HS100 should understand Returns: bytearray: a bytearray of encrypted bytes using the reversed engineered autokey cipher """ byte = STARTING_BYTE encrypted = bytearray(STARTING_PAD) for char in string: byte = byte ^ ord(char) encrypted.append(byte) return encrypted def decrypt(bytes): """Decrypts a bytes sent from an HS100 response Args: bytes: the raw bytes sent back from an HS100 to decrypt Returns: str: should be a JSON string if a valid command was sent prior to decyption, but could also be empty string if no response. Regardless it will now be decrypted """ # chop off the beginning with with padded nulls bytes = bytes[len(STARTING_PAD):] key = STARTING_BYTE decrypted = "" for byte in bytes: decrypted += chr(key ^ byte) key = byte return decrypted def query(host, command): """Simply given a host an a shorthand command alias, runs that command and returns the response from the HS100 Args: host: string of the valid hostname that is the location of the HS100 command: string that is a valid command to run, from commands.py Returns: str: the returned str from the HS100, empty string means an error """ if command not in commands: # make sure it is valid json try: json.loads(command) command_string = command except ValueError: raise Exception( "Command {} not known and is not valid JSON".format(command) ) else: # the command is a shorthand name, so look it up command_string = commands[command] tcp = socket() tcp.connect((host, PORT)) send = encrypt(command_string) tcp.send(send) # 4KB of data should be enough for any response data = tcp.recv(4096) # we are done with the query, now we need to parse it tcp.close() response = decrypt(data) return response
py
1a3830f06fd11d43b5c683b0f9a95332a16a4801
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Changing field 'Alert.text' db.alter_column('vaxapp_alert', 'text', self.gf('django.db.models.fields.CharField')(max_length=2, null=True)) def backwards(self, orm): # Changing field 'Alert.text' db.alter_column('vaxapp_alert', 'text', self.gf('django.db.models.fields.CharField')(max_length=160, null=True)) models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'vaxapp.alert': { 'Meta': {'object_name': 'Alert'}, 'analyzed': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'countrystock': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['vaxapp.CountryStock']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'reference_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'risk': ('django.db.models.fields.CharField', [], {'default': "'U'", 'max_length': '2', 'null': 'True', 'blank': 'True'}), 'status': ('django.db.models.fields.CharField', [], {'default': "'U'", 'max_length': '2', 'null': 'True', 'blank': 'True'}), 'text': ('django.db.models.fields.CharField', [], {'default': "'U'", 'max_length': '2', 'null': 'True', 'blank': 'True'}) }, 'vaxapp.country': { 'Meta': {'object_name': 'Country'}, 'iso2_code': ('django.db.models.fields.CharField', [], {'max_length': '2', 'primary_key': 'True'}), 'iso3_code': ('django.db.models.fields.CharField', [], {'max_length': '3', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '160', 'null': 'True', 'blank': 'True'}), 'name_fr': ('django.db.models.fields.CharField', [], {'max_length': '160', 'null': 'True', 'blank': 'True'}), 'numerical_code': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'printable_name': ('django.db.models.fields.CharField', [], {'max_length': '80'}) }, 'vaxapp.countrystock': { 'Meta': {'object_name': 'CountryStock'}, 'country': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['vaxapp.Country']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'vaccine': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['vaxapp.Vaccine']"}) }, 'vaxapp.countrystockstats': { 'Meta': {'object_name': 'CountryStockStats'}, 'actual_cons_rate': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'actual_cons_rate'", 'null': 'True', 'to': "orm['vaxapp.Dicty']"}), 'analyzed': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'annual_demand': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'annual_demand'", 'null': 'True', 'to': "orm['vaxapp.Dicty']"}), 'consumed_in_year': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'consumed_in_year'", 'null': 'True', 'to': "orm['vaxapp.Dicty']"}), 'countrystock': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['vaxapp.CountryStock']"}), 'days_of_stock': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'demand_for_period': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'doses_delivered_this_year': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'doses_on_orders': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'est_daily_cons': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nine_by_year': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'nine_by_year'", 'null': 'True', 'to': "orm['vaxapp.Dicty']"}), 'percent_coverage': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'reference_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'three_by_year': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'three_by_year'", 'null': 'True', 'to': "orm['vaxapp.Dicty']"}) }, 'vaxapp.dicty': { 'Meta': {'object_name': 'Dicty'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '160'}) }, 'vaxapp.document': { 'Meta': {'object_name': 'Document'}, 'date_created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.utcnow'}), 'date_exception': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'date_process_end': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'date_process_start': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'date_queued': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'date_stored': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'date_uploaded': ('django.db.models.fields.DateTimeField', [], {}), 'exception': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'local_document': ('django.db.models.fields.files.FileField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'remote_document': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'status': ('django.db.models.fields.CharField', [], {'default': "'U'", 'max_length': '1'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}), 'uuid': ('django.db.models.fields.CharField', [], {'max_length': '36'}) }, 'vaxapp.keyval': { 'Meta': {'object_name': 'KeyVal'}, 'dicty': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['vaxapp.Dicty']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '160'}), 'val': ('django.db.models.fields.CharField', [], {'max_length': '160', 'null': 'True', 'blank': 'True'}) }, 'vaxapp.userprofile': { 'Meta': {'object_name': 'UserProfile'}, 'country': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['vaxapp.Country']", 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}) }, 'vaxapp.vaccine': { 'Meta': {'object_name': 'Vaccine'}, 'abbr_en': ('django.db.models.fields.CharField', [], {'max_length': '30', 'null': 'True', 'blank': 'True'}), 'abbr_en_alt': ('django.db.models.fields.CharField', [], {'max_length': '30', 'null': 'True', 'blank': 'True'}), 'abbr_fr': ('django.db.models.fields.CharField', [], {'max_length': '30', 'null': 'True', 'blank': 'True'}), 'abbr_fr_alt': ('django.db.models.fields.CharField', [], {'max_length': '30', 'null': 'True', 'blank': 'True'}), 'group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['vaxapp.VaccineGroup']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '160', 'null': 'True', 'blank': 'True'}), 'slug': ('django.db.models.fields.CharField', [], {'max_length': '160', 'null': 'True', 'blank': 'True'}) }, 'vaxapp.vaccinegroup': { 'Meta': {'object_name': 'VaccineGroup'}, 'abbr_en': ('django.db.models.fields.CharField', [], {'max_length': '160', 'null': 'True', 'blank': 'True'}), 'abbr_fr': ('django.db.models.fields.CharField', [], {'max_length': '160', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) } } complete_apps = ['vaxapp']
py
1a383131e423d8d993b27c8bfcf0de4c37f147d1
# coding: utf-8 """ Feed API <p>The <strong>Feed API</strong> lets sellers upload input files, download reports and files including their status, filter reports using URI parameters, and retrieve customer service metrics task details.</p> # noqa: E501 OpenAPI spec version: v1.3.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class InventoryFilterCriteria(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'creation_date_range': 'DateRange', 'modified_date_range': 'DateRange', 'listing_format': 'str', 'listing_status': 'str' } attribute_map = { 'creation_date_range': 'creationDateRange', 'modified_date_range': 'modifiedDateRange', 'listing_format': 'listingFormat', 'listing_status': 'listingStatus' } def __init__(self, creation_date_range=None, modified_date_range=None, listing_format=None, listing_status=None): # noqa: E501 """InventoryFilterCriteria - a model defined in Swagger""" # noqa: E501 self._creation_date_range = None self._modified_date_range = None self._listing_format = None self._listing_status = None self.discriminator = None if creation_date_range is not None: self.creation_date_range = creation_date_range if modified_date_range is not None: self.modified_date_range = modified_date_range if listing_format is not None: self.listing_format = listing_format if listing_status is not None: self.listing_status = listing_status @property def creation_date_range(self): """Gets the creation_date_range of this InventoryFilterCriteria. # noqa: E501 :return: The creation_date_range of this InventoryFilterCriteria. # noqa: E501 :rtype: DateRange """ return self._creation_date_range @creation_date_range.setter def creation_date_range(self, creation_date_range): """Sets the creation_date_range of this InventoryFilterCriteria. :param creation_date_range: The creation_date_range of this InventoryFilterCriteria. # noqa: E501 :type: DateRange """ self._creation_date_range = creation_date_range @property def modified_date_range(self): """Gets the modified_date_range of this InventoryFilterCriteria. # noqa: E501 :return: The modified_date_range of this InventoryFilterCriteria. # noqa: E501 :rtype: DateRange """ return self._modified_date_range @modified_date_range.setter def modified_date_range(self, modified_date_range): """Sets the modified_date_range of this InventoryFilterCriteria. :param modified_date_range: The modified_date_range of this InventoryFilterCriteria. # noqa: E501 :type: DateRange """ self._modified_date_range = modified_date_range @property def listing_format(self): """Gets the listing_format of this InventoryFilterCriteria. # noqa: E501 The type of buying option for the order. Supports LMS_ACTIVE_INVENTORY_REPORT. For implementation help, refer to <a href='https://developer.ebay.com/api-docs/sell/feed/types/api:ListingFormatEnum'>eBay API documentation</a> # noqa: E501 :return: The listing_format of this InventoryFilterCriteria. # noqa: E501 :rtype: str """ return self._listing_format @listing_format.setter def listing_format(self, listing_format): """Sets the listing_format of this InventoryFilterCriteria. The type of buying option for the order. Supports LMS_ACTIVE_INVENTORY_REPORT. For implementation help, refer to <a href='https://developer.ebay.com/api-docs/sell/feed/types/api:ListingFormatEnum'>eBay API documentation</a> # noqa: E501 :param listing_format: The listing_format of this InventoryFilterCriteria. # noqa: E501 :type: str """ self._listing_format = listing_format @property def listing_status(self): """Gets the listing_status of this InventoryFilterCriteria. # noqa: E501 The status of the listing (whether the listing was unsold or is active). The UNSOLD value does not apply to LMS_ACTIVE_INVENTORY_REPORT feed types. For implementation help, refer to <a href='https://developer.ebay.com/api-docs/sell/feed/types/api:ListingStatusEnum'>eBay API documentation</a> # noqa: E501 :return: The listing_status of this InventoryFilterCriteria. # noqa: E501 :rtype: str """ return self._listing_status @listing_status.setter def listing_status(self, listing_status): """Sets the listing_status of this InventoryFilterCriteria. The status of the listing (whether the listing was unsold or is active). The UNSOLD value does not apply to LMS_ACTIVE_INVENTORY_REPORT feed types. For implementation help, refer to <a href='https://developer.ebay.com/api-docs/sell/feed/types/api:ListingStatusEnum'>eBay API documentation</a> # noqa: E501 :param listing_status: The listing_status of this InventoryFilterCriteria. # noqa: E501 :type: str """ self._listing_status = listing_status def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(InventoryFilterCriteria, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, InventoryFilterCriteria): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
py
1a38319f65043d7368c65c2d0d57a99a0256710b
from cassandra.cluster import Cluster from cassandra.auth import PlainTextAuthProvider from cassandra.query import SimpleStatement import sys # initializing variable defaults hostname="127.0.0.1" username="cassandra" password="cassandra" #check arguments for overrides hostname=sys.argv[1] username=sys.argv[2] password=sys.argv[3] keyspace=sys.argv[4] table=sys.argv[5] #key=sys.argv[6] #value=sys.argv[7] nodes = [] nodes.append(hostname) auth_provider = PlainTextAuthProvider(username=username, password=password) cluster = Cluster(nodes,auth_provider=auth_provider) session = cluster.connect() #strCQL = f"SELECT * FROM {keyspace}.{table} WHERE {key} = ?" strCQL = f"SELECT * FROM {keyspace}.{table}" print(strCQL) #statement = session.prepare(strCQL) statement = SimpleStatement(strCQL,fetch_size=100) #rows = session.execute(statement,value) rows = session.execute(statement) for row in rows: print(row)
py
1a3831e7d2d0887ef329235b18383f24fc6ddee3
# _*_ coding: utf-8 _*_ """ parse.py by xianhu """ import logging import multiprocessing from .base import TPEnum, BaseThread from ...utilities import CONFIG_ERROR_MESSAGE, check_url_legal, get_dict_buildin class ParseThread(BaseThread): """ class of ParseThread, as the subclass of BaseThread """ def __init__(self, name, worker, pool): """ constructor """ BaseThread.__init__(self, name, worker, pool) self._pool_multiprocssing = multiprocessing.Pool() return def working(self): """ procedure of parsing, auto running, and return True """ # ----1---- task_list = [self._pool.get_a_task(TPEnum.HTM_PARSE) for _ in range(max(1, self._pool.get_number_dict(TPEnum.HTM_PARSE_NOT)))] # ----2---- result_list = [self._pool_multiprocssing.apply_async(self._worker.working, args=task) for task in task_list] for index in range(len(task_list)): priority, url, keys, deep, content = task_list[index] parse_state, url_list, item = result_list[index].get(timeout=None) # ----3---- self._pool.accept_state_from_task(TPEnum.HTM_PARSE, parse_state, (priority, url, keys, deep, content)) # ----4---- if parse_state > 0: self._pool.update_number_dict(TPEnum.HTM_PARSE_SUCC, +1) for _url, _keys, _priority in filter(lambda x: check_url_legal(x[0]), url_list): self._pool.add_a_task(TPEnum.URL_FETCH, (_priority, _url, _keys, deep+1, 0)) if item: self._pool.add_a_task(TPEnum.ITEM_SAVE, (priority, url, keys, deep, item)) else: self._pool.update_number_dict(TPEnum.HTM_PARSE_FAIL, +1) logging.error("%s error: %s, %s", url_list[0], url_list[1], CONFIG_ERROR_MESSAGE % (priority, get_dict_buildin(keys), deep, url)) # ----5---- self._pool.finish_a_task(TPEnum.HTM_PARSE) # ----6---- return True
py
1a383365dde1b8508f3ab8dce672db29d3ae7c0c
from deco.sources import Dataset class Constant(Dataset): def __init__(self, parent): self.parent = parent def __iter__(self): yield self.parent def constant(parent): return Constant(parent) Dataset.constant = constant
py
1a38336bf99000d87a8cddf08eaef0f437909da9
from flask import Flask app = Flask(__name__) app.config.from_object('myproject.config') from myproject.views import index
py
1a3833ae0991b36ec1a15b80a97f3d29862392ae
X = 99 def f1(): global X X += 1 def f2(): print(X) f2() f1() print(X)
py
1a383662aee7141c9b3c07f0cdf7733e37133331
r""" Genomics operations """ import collections import os import re from functools import reduce from itertools import chain from operator import add from typing import Any, Callable, List, Mapping, Optional, Union import anndata import networkx as nx import numpy as np import pandas as pd import pybedtools from pybedtools import BedTool from pybedtools.cbedtools import Interval from .check import check_deps from .graph import compose_multigraph, reachable_vertices from .typehint import RandomState from .utils import ConstrainedDataFrame, logged, smart_tqdm, get_rs class Bed(ConstrainedDataFrame): r""" BED format data frame """ COLUMNS = pd.Index([ "chrom", "chromStart", "chromEnd", "name", "score", "strand", "thickStart", "thickEnd", "itemRgb", "blockCount", "blockSizes", "blockStarts" ]) @classmethod def rectify(cls, df: pd.DataFrame) -> pd.DataFrame: df = super(Bed, cls).rectify(df) COLUMNS = cls.COLUMNS.copy(deep=True) for item in COLUMNS: if item in df: if item in ("chromStart", "chromEnd"): df[item] = df[item].astype(int) else: df[item] = df[item].astype(str) elif item not in ("chrom", "chromStart", "chromEnd"): df[item] = "." else: raise ValueError(f"Required column {item} is missing!") return df.loc[:, COLUMNS] @classmethod def verify(cls, df: pd.DataFrame) -> None: super(Bed, cls).verify(df) if len(df.columns) != len(cls.COLUMNS) or np.any(df.columns != cls.COLUMNS): raise ValueError("Invalid BED format!") @classmethod def read_bed(cls, fname: os.PathLike) -> "Bed": r""" Read BED file Parameters ---------- fname BED file Returns ------- bed Loaded :class:`Bed` object """ COLUMNS = cls.COLUMNS.copy(deep=True) loaded = pd.read_csv(fname, sep="\t", header=None, comment="#") loaded.columns = COLUMNS[:loaded.shape[1]] return cls(loaded) def write_bed(self, fname: os.PathLike, ncols: Optional[int] = None) -> None: r""" Write BED file Parameters ---------- fname BED file ncols Number of columns to write (by default write all columns) """ if ncols and ncols < 3: raise ValueError("`ncols` must be larger than 3!") df = self.df.iloc[:, :ncols] if ncols else self df.to_csv(fname, sep="\t", header=False, index=False) def to_bedtool(self) -> pybedtools.BedTool: r""" Convert to a :class:`pybedtools.BedTool` object Returns ------- bedtool Converted :class:`pybedtools.BedTool` object """ return BedTool(Interval( row["chrom"], row["chromStart"], row["chromEnd"], name=row["name"], score=row["score"], strand=row["strand"] ) for _, row in self.iterrows()) def nucleotide_content(self, fasta: os.PathLike) -> pd.DataFrame: r""" Compute nucleotide content in the BED regions Parameters ---------- fasta Genomic sequence file in FASTA format Returns ------- nucleotide_stat Data frame containing nucleotide content statistics for each region """ result = self.to_bedtool().nucleotide_content(fi=os.fspath(fasta), s=True) # pylint: disable=unexpected-keyword-arg result = pd.DataFrame( np.stack([interval.fields[6:15] for interval in result]), columns=[ r"%AT", r"%GC", r"#A", r"#C", r"#G", r"#T", r"#N", r"#other", r"length" ] ).astype({ r"%AT": float, r"%GC": float, r"#A": int, r"#C": int, r"#G": int, r"#T": int, r"#N": int, r"#other": int, r"length": int }) pybedtools.cleanup() return result def strand_specific_start_site(self) -> "Bed": r""" Convert to strand-specific start sites of genomic features Returns ------- start_site_bed A new :class:`Bed` object, containing strand-specific start sites of the current :class:`Bed` object """ if set(self["strand"]) != set(["+", "-"]): raise ValueError("Not all features are strand specific!") df = pd.DataFrame(self, copy=True) pos_strand = df.query("strand == '+'").index neg_strand = df.query("strand == '-'").index df.loc[pos_strand, "chromEnd"] = df.loc[pos_strand, "chromStart"] + 1 df.loc[neg_strand, "chromStart"] = df.loc[neg_strand, "chromEnd"] - 1 return type(self)(df) def strand_specific_end_site(self) -> "Bed": r""" Convert to strand-specific end sites of genomic features Returns ------- end_site_bed A new :class:`Bed` object, containing strand-specific end sites of the current :class:`Bed` object """ if set(self["strand"]) != set(["+", "-"]): raise ValueError("Not all features are strand specific!") df = pd.DataFrame(self, copy=True) pos_strand = df.query("strand == '+'").index neg_strand = df.query("strand == '-'").index df.loc[pos_strand, "chromStart"] = df.loc[pos_strand, "chromEnd"] - 1 df.loc[neg_strand, "chromEnd"] = df.loc[neg_strand, "chromStart"] + 1 return type(self)(df) def expand( self, upstream: int, downstream: int, chr_len: Optional[Mapping[str, int]] = None ) -> "Bed": r""" Expand genomic features towards upstream and downstream Parameters ---------- upstream Number of bps to expand in the upstream direction downstream Number of bps to expand in the downstream direction chr_len Length of each chromosome Returns ------- expanded_bed A new :class:`Bed` object, containing expanded features of the current :class:`Bed` object Note ---- Starting position < 0 after expansion is always trimmed. Ending position exceeding chromosome length is trimed only if ``chr_len`` is specified. """ if upstream == downstream == 0: return self df = pd.DataFrame(self, copy=True) if upstream == downstream: # symmetric df["chromStart"] -= upstream df["chromEnd"] += downstream else: # asymmetric if set(df["strand"]) != set(["+", "-"]): raise ValueError("Not all features are strand specific!") pos_strand = df.query("strand == '+'").index neg_strand = df.query("strand == '-'").index if upstream: df.loc[pos_strand, "chromStart"] -= upstream df.loc[neg_strand, "chromEnd"] += upstream if downstream: df.loc[pos_strand, "chromEnd"] += downstream df.loc[neg_strand, "chromStart"] -= downstream df["chromStart"] = np.maximum(df["chromStart"], 0) if chr_len: chr_len = df["chrom"].map(chr_len) df["chromEnd"] = np.minimum(df["chromEnd"], chr_len) return type(self)(df) class Gtf(ConstrainedDataFrame): # gffutils is too slow r""" GTF format data frame """ COLUMNS = pd.Index([ "seqname", "source", "feature", "start", "end", "score", "strand", "frame", "attribute" ]) # Additional columns after "attribute" is allowed @classmethod def rectify(cls, df: pd.DataFrame) -> pd.DataFrame: df = super(Gtf, cls).rectify(df) COLUMNS = cls.COLUMNS.copy(deep=True) for item in COLUMNS: if item in df: if item in ("start", "end"): df[item] = df[item].astype(int) else: df[item] = df[item].astype(str) elif item not in ("seqname", "start", "end"): df[item] = "." else: raise ValueError(f"Required column {item} is missing!") return df.sort_index(axis=1, key=cls._column_key) @classmethod def _column_key(cls, x: pd.Index) -> np.ndarray: x = cls.COLUMNS.get_indexer(x) x[x < 0] = x.max() + 1 # Put additional columns after "attribute" return x @classmethod def verify(cls, df: pd.DataFrame) -> None: super(Gtf, cls).verify(df) if len(df.columns) < len(cls.COLUMNS) or \ np.any(df.columns[:len(cls.COLUMNS)] != cls.COLUMNS): raise ValueError("Invalid GTF format!") @classmethod def read_gtf(cls, fname: os.PathLike) -> "Gtf": r""" Read GTF file Parameters ---------- fname GTF file Returns ------- gtf Loaded :class:`Gtf` object """ COLUMNS = cls.COLUMNS.copy(deep=True) loaded = pd.read_csv(fname, sep="\t", header=None, comment="#") loaded.columns = COLUMNS[:loaded.shape[1]] return cls(loaded) def split_attribute(self) -> "Gtf": r""" Extract all attributes from the "attribute" column and append them to existing columns Returns ------- splitted Gtf with splitted attribute columns appended """ pattern = re.compile(r'([^\s]+) "([^"]+)";') splitted = pd.DataFrame.from_records(np.vectorize(lambda x: { key: val for key, val in pattern.findall(x) })(self["attribute"]), index=self.index) if set(self.COLUMNS).intersection(splitted.columns): self.logger.warning( "Splitted attribute names overlap standard GTF fields! " "The standard fields are overwritten!" ) return self.assign(**splitted) def to_bed(self, name: Optional[str] = None) -> Bed: r""" Convert GTF to BED format Parameters ---------- name Specify a column to be converted to the "name" column in bed format, otherwise the "name" column would be filled with "." Returns ------- bed Converted :class:`Bed` object """ bed_df = pd.DataFrame(self, copy=True).loc[ :, ("seqname", "start", "end", "score", "strand") ] bed_df.insert(3, "name", np.repeat( ".", len(bed_df) ) if name is None else self[name]) bed_df["start"] -= 1 # Convert to zero-based bed_df.columns = ( "chrom", "chromStart", "chromEnd", "name", "score", "strand" ) return Bed(bed_df) def interval_dist(x: Interval, y: Interval) -> int: r""" Compute distance and relative position between two bed intervals Parameters ---------- x First interval y Second interval Returns ------- dist Signed distance between ``x`` and ``y`` """ if x.chrom != y.chrom: return np.inf * (-1 if x.chrom < y.chrom else 1) if x.start < y.stop and y.start < x.stop: return 0 if x.stop <= y.start: return x.stop - y.start - 1 if y.stop <= x.start: return x.start - y.stop + 1 def window_graph( left: Union[Bed, str], right: Union[Bed, str], window_size: int, left_sorted: bool = False, right_sorted: bool = False, attr_fn: Optional[Callable[[Interval, Interval, float], Mapping[str, Any]]] = None ) -> nx.MultiDiGraph: r""" Construct a window graph between two sets of genomic features, where features pairs within a window size are connected. Parameters ---------- left First feature set, either a :class:`Bed` object or path to a bed file right Second feature set, either a :class:`Bed` object or path to a bed file window_size Window size (in bp) left_sorted Whether ``left`` is already sorted right_sorted Whether ``right`` is already sorted attr_fn Function to compute edge attributes for connected features, should accept the following three positional arguments: - l: left interval - r: right interval - d: signed distance between the intervals By default no edge attribute is created. Returns ------- graph Window graph """ check_deps("bedtools") if isinstance(left, Bed): pbar_total = len(left) left = left.to_bedtool() else: pbar_total = None left = pybedtools.BedTool(left) if not left_sorted: left = left.sort(stream=True) left = iter(left) # Resumable iterator if isinstance(right, Bed): right = right.to_bedtool() else: right = pybedtools.BedTool(right) if not right_sorted: right = right.sort(stream=True) right = iter(right) # Resumable iterator attr_fn = attr_fn or (lambda l, r, d: {}) if pbar_total is not None: left = smart_tqdm(left, total=pbar_total) graph = nx.MultiDiGraph() window = collections.OrderedDict() # Used as ordered set for l in left: for r in list(window.keys()): # Allow remove during iteration d = interval_dist(l, r) if -window_size <= d <= window_size: graph.add_edge(l.name, r.name, **attr_fn(l, r, d)) elif d > window_size: del window[r] else: # dist < -window_size break # No need to expand window else: for r in right: # Resume from last break d = interval_dist(l, r) if -window_size <= d <= window_size: graph.add_edge(l.name, r.name, **attr_fn(l, r, d)) elif d > window_size: continue window[r] = None # Placeholder if d < -window_size: break pybedtools.cleanup() return graph def dist_power_decay(x: int) -> float: r""" Distance-based power decay weight, computed as :math:`w = {\left( \frac {d + 1000} {1000} \right)} ^ {-0.75}` Parameters ---------- x Distance (in bp) Returns ------- weight Decaying weight """ return ((x + 1000) / 1000) ** (-0.75) @logged def rna_anchored_prior_graph( rna: anndata.AnnData, *others: anndata.AnnData, gene_region: str = "combined", promoter_len: int = 2000, extend_range: int = 0, extend_fn: Callable[[int], float] = dist_power_decay, signs: Optional[List[int]] = None, propagate_highly_variable: bool = True, corrupt_rate: float = 0.0, random_state: RandomState = None ) -> nx.MultiDiGraph: r""" Build prior regulatory graph anchored on RNA genes Parameters ---------- rna Anchor RNA dataset *others Other datasets gene_region Defines the genomic region of genes, must be one of ``{"gene_body", "promoter", "combined"}``. promoter_len Defines the length of gene promoters (bp upstream of TSS) extend_range Maximal extend distance beyond gene regions extend_fn Distance-decreasing weight function for the extended regions (by default :func:`dist_power_decay`) signs Sign of edges between RNA genes and features in each ``*others`` dataset, must have the same length as ``*others``. Signs must be one of ``{-1, 1}``. By default, all edges have positive signs of ``1``. propagate_highly_variable Whether to propagate highly variable genes to other datasets, datasets in ``*others`` would be modified in place. corrupt_rate **CAUTION: DO NOT USE**, only for evaluation purpose random_state **CAUTION: DO NOT USE**, only for evaluation purpose Returns ------- graph Prior regulatory graph Note ---- In this function, features in the same dataset can only connect to anchor genes via the same edge sign. For more flexibility, please construct the prior graph manually. """ signs = signs or [1] * len(others) if len(others) != len(signs): raise RuntimeError("Length of ``others`` and ``signs`` must match!") if set(signs).difference({-1, 1}): raise RuntimeError("``signs`` can only contain {-1, 1}!") rna_bed = Bed(rna.var.assign(name=rna.var_names)) other_beds = [Bed(other.var.assign(name=other.var_names)) for other in others] if gene_region == "promoter": rna_bed = rna_bed.strand_specific_start_site().expand(promoter_len, 0) elif gene_region == "combined": rna_bed = rna_bed.expand(promoter_len, 0) elif gene_region != "gene_body": raise ValueError("Unrecognized `gene_range`!") graphs = [window_graph( rna_bed, other_bed, window_size=extend_range, attr_fn=lambda l, r, d, s=sign: { "dist": abs(d), "weight": extend_fn(abs(d)), "sign": s } ) for other_bed, sign in zip(other_beds, signs)] graph = compose_multigraph(*graphs) corrupt_num = round(corrupt_rate * graph.number_of_edges()) if corrupt_num: rna_anchored_prior_graph.logger.warning("Corrupting prior graph!") rs = get_rs(random_state) rna_var_names = rna.var_names.tolist() other_var_names = reduce(add, [other.var_names.tolist() for other in others]) corrupt_remove = set(rs.choice(graph.number_of_edges(), corrupt_num, replace=False)) corrupt_remove = set(edge for i, edge in enumerate(graph.edges) if i in corrupt_remove) corrupt_add = [] while len(corrupt_add) < corrupt_num: corrupt_add += [ (u, v) for u, v in zip( rs.choice(rna_var_names, corrupt_num - len(corrupt_add)), rs.choice(other_var_names, corrupt_num - len(corrupt_add)) ) if not graph.has_edge(u, v) ] graph.add_edges_from([ (add[0], add[1], graph.edges[remove]) for add, remove in zip(corrupt_add, corrupt_remove) ]) graph.remove_edges_from(corrupt_remove) if propagate_highly_variable: hvg_reachable = reachable_vertices(graph, rna.var.query("highly_variable").index) for other in others: other.var["highly_variable"] = [ item in hvg_reachable for item in other.var_names ] graph = compose_multigraph(graph, graph.reverse()) all_features = set(chain.from_iterable( map(lambda x: x.var_names, [rna, *others]) )) for item in all_features: graph.add_edge(item, item, weight=1.0, sign=1) return graph def get_chr_len_from_fai(fai: os.PathLike) -> Mapping[str, int]: r""" Get chromosome length information from fasta index file Parameters ---------- fai Fasta index file Returns ------- chr_len Length of each chromosome """ return pd.read_table(fai, header=None, index_col=0)[1].to_dict() def ens_trim_version(x: str) -> str: r""" Trim version suffix from Ensembl ID Parameters ---------- x Ensembl ID Returns ------- trimmed Ensembl ID with version suffix trimmed """ return re.sub(r"\.[0-9_-]+$", "", x) # Aliases read_bed = Bed.read_bed read_gtf = Gtf.read_gtf
py
1a3836f7ebb6f8b648208725427588f29d772829
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright (C) 2017 Google # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # ---------------------------------------------------------------------------- # # *** AUTO GENERATED CODE *** AUTO GENERATED CODE *** # # ---------------------------------------------------------------------------- # # This file is automatically generated by Magic Modules and manual # changes will be clobbered when the file is regenerated. # # Please read more about how to change this file at # https://www.github.com/GoogleCloudPlatform/magic-modules # # ---------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function __metaclass__ = type ################################################################################ # Documentation ################################################################################ ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ["preview"], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: gcp_compute_global_forwarding_rule_info description: - Gather info for GCP GlobalForwardingRule short_description: Gather info for GCP GlobalForwardingRule author: Google Inc. (@googlecloudplatform) requirements: - python >= 2.6 - requests >= 2.18.4 - google-auth >= 1.3.0 options: filters: description: - A list of filter value pairs. Available filters are listed here U(https://cloud.google.com/sdk/gcloud/reference/topic/filters). - Each additional filter in the list will act be added as an AND condition (filter1 and filter2) . type: list elements: str project: description: - The Google Cloud Platform project to use. type: str auth_kind: description: - The type of credential used. type: str required: true choices: - application - machineaccount - serviceaccount service_account_contents: description: - The contents of a Service Account JSON file, either in a dictionary or as a JSON string that represents it. type: jsonarg service_account_file: description: - The path of a Service Account JSON file if serviceaccount is selected as type. type: path service_account_email: description: - An optional service account email address if machineaccount is selected and the user does not wish to use the default email. type: str scopes: description: - Array of scopes to be used type: list elements: str env_type: description: - Specifies which Ansible environment you're running this module within. - This should not be set unless you know what you're doing. - This only alters the User Agent string for any API requests. type: str notes: - for authentication, you can set service_account_file using the C(gcp_service_account_file) env variable. - for authentication, you can set service_account_contents using the C(GCP_SERVICE_ACCOUNT_CONTENTS) env variable. - For authentication, you can set service_account_email using the C(GCP_SERVICE_ACCOUNT_EMAIL) env variable. - For authentication, you can set auth_kind using the C(GCP_AUTH_KIND) env variable. - For authentication, you can set scopes using the C(GCP_SCOPES) env variable. - Environment variables values will only be used if the playbook values are not set. - The I(service_account_email) and I(service_account_file) options are mutually exclusive. ''' EXAMPLES = ''' - name: get info on a global forwarding rule gcp_compute_global_forwarding_rule_info: filters: - name = test_object project: test_project auth_kind: serviceaccount service_account_file: "/tmp/auth.pem" ''' RETURN = ''' resources: description: List of resources returned: always type: complex contains: creationTimestamp: description: - Creation timestamp in RFC3339 text format. returned: success type: str description: description: - An optional description of this resource. Provide this property when you create the resource. returned: success type: str id: description: - The unique identifier for the resource. returned: success type: int IPAddress: description: - The IP address that this forwarding rule is serving on behalf of. - Addresses are restricted based on the forwarding rule's load balancing scheme (EXTERNAL or INTERNAL) and scope (global or regional). - When the load balancing scheme is EXTERNAL, for global forwarding rules, the address must be a global IP, and for regional forwarding rules, the address must live in the same region as the forwarding rule. If this field is empty, an ephemeral IPv4 address from the same scope (global or regional) will be assigned. A regional forwarding rule supports IPv4 only. A global forwarding rule supports either IPv4 or IPv6. - When the load balancing scheme is INTERNAL, this can only be an RFC 1918 IP address belonging to the network/subnet configured for the forwarding rule. By default, if this field is empty, an ephemeral internal IP address will be automatically allocated from the IP range of the subnet or network configured for this forwarding rule. - 'An address can be specified either by a literal IP address or a URL reference to an existing Address resource. The following examples are all valid: * 100.1.2.3 * U(https://www.googleapis.com/compute/v1/projects/project/regions/region/addresses/address) * projects/project/regions/region/addresses/address * regions/region/addresses/address * global/addresses/address * address .' returned: success type: str IPProtocol: description: - The IP protocol to which this rule applies. When the load balancing scheme is INTERNAL_SELF_MANAGED, only TCP is valid. returned: success type: str ipVersion: description: - The IP Version that will be used by this global forwarding rule. returned: success type: str loadBalancingScheme: description: - This signifies what the GlobalForwardingRule will be used for. - 'The value of INTERNAL_SELF_MANAGED means that this will be used for Internal Global HTTP(S) LB. The value of EXTERNAL means that this will be used for External Global Load Balancing (HTTP(S) LB, External TCP/UDP LB, SSL Proxy) NOTE: Currently global forwarding rules cannot be used for INTERNAL load balancing.' returned: success type: str metadataFilters: description: - Opaque filter criteria used by Loadbalancer to restrict routing configuration to a limited set xDS compliant clients. In their xDS requests to Loadbalancer, xDS clients present node metadata. If a match takes place, the relevant routing configuration is made available to those proxies. - For each metadataFilter in this list, if its filterMatchCriteria is set to MATCH_ANY, at least one of the filterLabels must match the corresponding label provided in the metadata. If its filterMatchCriteria is set to MATCH_ALL, then all of its filterLabels must match with corresponding labels in the provided metadata. - metadataFilters specified here can be overridden by those specified in the UrlMap that this ForwardingRule references. - metadataFilters only applies to Loadbalancers that have their loadBalancingScheme set to INTERNAL_SELF_MANAGED. returned: success type: complex contains: filterMatchCriteria: description: - Specifies how individual filterLabel matches within the list of filterLabels contribute towards the overall metadataFilter match. - MATCH_ANY - At least one of the filterLabels must have a matching label in the provided metadata. - MATCH_ALL - All filterLabels must have matching labels in the provided metadata. returned: success type: str filterLabels: description: - The list of label value pairs that must match labels in the provided metadata based on filterMatchCriteria This list must not be empty and can have at the most 64 entries. returned: success type: complex contains: name: description: - Name of the metadata label. The length must be between 1 and 1024 characters, inclusive. returned: success type: str value: description: - The value that the label must match. The value has a maximum length of 1024 characters. returned: success type: str name: description: - Name of the resource; provided by the client when the resource is created. The name must be 1-63 characters long, and comply with RFC1035. Specifically, the name must be 1-63 characters long and match the regular expression `[a-z]([-a-z0-9]*[a-z0-9])?` which means the first character must be a lowercase letter, and all following characters must be a dash, lowercase letter, or digit, except the last character, which cannot be a dash. returned: success type: str network: description: - This field is not used for external load balancing. - For INTERNAL_SELF_MANAGED load balancing, this field identifies the network that the load balanced IP should belong to for this global forwarding rule. If this field is not specified, the default network will be used. returned: success type: dict portRange: description: - This field is used along with the target field for TargetHttpProxy, TargetHttpsProxy, TargetSslProxy, TargetTcpProxy, TargetVpnGateway, TargetPool, TargetInstance. - Applicable only when IPProtocol is TCP, UDP, or SCTP, only packets addressed to ports in the specified range will be forwarded to target. - Forwarding rules with the same [IPAddress, IPProtocol] pair must have disjoint port ranges. - 'Some types of forwarding target have constraints on the acceptable ports: * TargetHttpProxy: 80, 8080 * TargetHttpsProxy: 443 * TargetTcpProxy: 25, 43, 110, 143, 195, 443, 465, 587, 700, 993, 995, 1883, 5222 * TargetSslProxy: 25, 43, 110, 143, 195, 443, 465, 587, 700, 993, 995, 1883, 5222 * TargetVpnGateway: 500, 4500 .' returned: success type: str target: description: - The URL of the target resource to receive the matched traffic. - The forwarded traffic must be of a type appropriate to the target object. - For INTERNAL_SELF_MANAGED load balancing, only HTTP and HTTPS targets are valid. returned: success type: str ''' ################################################################################ # Imports ################################################################################ from ansible_collections.google.cloud.plugins.module_utils.gcp_utils import navigate_hash, GcpSession, GcpModule, GcpRequest import json ################################################################################ # Main ################################################################################ def main(): module = GcpModule(argument_spec=dict(filters=dict(type='list', elements='str'))) if not module.params['scopes']: module.params['scopes'] = ['https://www.googleapis.com/auth/compute'] return_value = {'resources': fetch_list(module, collection(module), query_options(module.params['filters']))} module.exit_json(**return_value) def collection(module): return "https://compute.googleapis.com/compute/v1/projects/{project}/global/forwardingRules".format(**module.params) def fetch_list(module, link, query): auth = GcpSession(module, 'compute') return auth.list(link, return_if_object, array_name='items', params={'filter': query}) def query_options(filters): if not filters: return '' if len(filters) == 1: return filters[0] else: queries = [] for f in filters: # For multiple queries, all queries should have () if f[0] != '(' and f[-1] != ')': queries.append("(%s)" % ''.join(f)) else: queries.append(f) return ' '.join(queries) def return_if_object(module, response): # If not found, return nothing. if response.status_code == 404: return None # If no content, return nothing. if response.status_code == 204: return None try: module.raise_for_status(response) result = response.json() except getattr(json.decoder, 'JSONDecodeError', ValueError) as inst: module.fail_json(msg="Invalid JSON response with error: %s" % inst) if navigate_hash(result, ['error', 'errors']): module.fail_json(msg=navigate_hash(result, ['error', 'errors'])) return result if __name__ == "__main__": main()
py
1a383827cc1d135c5917e605f2f2dd512dfd5fda
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import logging from typing import Any, Dict, Optional from flask import Request from marshmallow import ValidationError from superset import cache from superset.charts.commands.exceptions import ( ChartDataCacheLoadError, ChartDataQueryFailedError, ) from superset.charts.schemas import ChartDataQueryContextSchema from superset.commands.base import BaseCommand from superset.common.query_context import QueryContext from superset.exceptions import CacheLoadError from superset.extensions import async_query_manager from superset.tasks.async_queries import load_chart_data_into_cache logger = logging.getLogger(__name__) class ChartDataCommand(BaseCommand): def __init__(self) -> None: self._form_data: Dict[str, Any] self._query_context: QueryContext self._async_channel_id: str def run(self, **kwargs: Any) -> Dict[str, Any]: # caching is handled in query_context.get_df_payload # (also evals `force` property) cache_query_context = kwargs.get("cache", False) force_cached = kwargs.get("force_cached", False) try: payload = self._query_context.get_payload( cache_query_context=cache_query_context, force_cached=force_cached ) except CacheLoadError as exc: raise ChartDataCacheLoadError(exc.message) # TODO: QueryContext should support SIP-40 style errors for query in payload["queries"]: if query.get("error"): raise ChartDataQueryFailedError(f"Error: {query['error']}") return_value = { "query_context": self._query_context, "queries": payload["queries"], } if cache_query_context: return_value.update(cache_key=payload["cache_key"]) return return_value def run_async(self, user_id: Optional[str]) -> Dict[str, Any]: job_metadata = async_query_manager.init_job(self._async_channel_id, user_id) load_chart_data_into_cache.delay(job_metadata, self._form_data) return job_metadata def set_query_context(self, form_data: Dict[str, Any]) -> QueryContext: self._form_data = form_data try: self._query_context = ChartDataQueryContextSchema().load(self._form_data) except KeyError: raise ValidationError("Request is incorrect") except ValidationError as error: raise error return self._query_context def validate(self) -> None: self._query_context.raise_for_access() def validate_async_request(self, request: Request) -> None: jwt_data = async_query_manager.parse_jwt_from_request(request) self._async_channel_id = jwt_data["channel"] def load_query_context_from_cache( # pylint: disable=no-self-use self, cache_key: str ) -> Dict[str, Any]: cache_value = cache.get(cache_key) if not cache_value: raise ChartDataCacheLoadError("Cached data not found") return cache_value["data"]
py
1a38386d1155afe493637581ee27a5dbaba80e2a
# Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Default value constants exposed by core utilities.""" DEFAULT_REGISTRY = 'gcr.io' REGIONAL_REGISTRIES = ['us.gcr.io', 'eu.gcr.io', 'asia.gcr.io'] BUCKET_REGISTRIES = ['b.gcr.io', 'bucket.gcr.io'] APPENGINE_REGISTRY = 'appengine.gcr.io' SPECIALTY_REGISTRIES = BUCKET_REGISTRIES + [APPENGINE_REGISTRY] ALL_SUPPORTED_REGISTRIES = ([DEFAULT_REGISTRY] + REGIONAL_REGISTRIES + SPECIALTY_REGISTRIES) DEFAULT_DEVSHELL_IMAGE = (DEFAULT_REGISTRY + '/dev_con/cloud-dev-common:prod') METADATA_IMAGE = DEFAULT_REGISTRY + '/google_appengine/faux-metadata:latest'
py
1a383a7356061a22f0947aff00da811598148748
from os import path from splashgen import MetaTags, SplashSite, launch from splashgen.integrations import MailchimpSignup site = SplashSite(title="ZenWeb – Python Internal Web Apps", logo=path.join(path.dirname(__file__), "zenweb-logo.png"), theme="dark") site.headline = "Effortless internal tools for your backend services" site.subtext = """ Write simple code that plugs directly into your infrastructure, and let ZenWeb turn it into a web app that anyone on your team can use. Stop getting pinged every time an on-call engineer needs a script run, and start automating your domain expertise. """ site.meta = MetaTags(title=site.headline, description="Automate your domain expertise. Sign up to join our pilot program!", image="https://t3dmedia.s3.amazonaws.com/_notvideos/zwbg.png", canonical_url="https://zenweb.dev") site.call_to_action = MailchimpSignup( "http://eepurl.com/hw4od9", button_text="Join our pilot") launch(site)