ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a3d26bca3a5343a2950d0c053acd117a7910146
#!/usr/bin/env python # -*- coding: utf-8 -*- ############################################################################### # $Id$ # # Project: GDAL/OGR Test Suite # Purpose: Test HTTP Driver. # Author: Frank Warmerdam <[email protected]> # ############################################################################### # Copyright (c) 2007, Frank Warmerdam <[email protected]> # Copyright (c) 2009-2012, Even Rouault <even dot rouault at mines-paris dot org> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ############################################################################### import os import sys from osgeo import gdal from osgeo import ogr sys.path.append( '../pymod' ) import gdaltest ############################################################################### # Verify we have the driver. def http_1(): gdaltest.dods_drv = None try: drv = gdal.GetDriverByName( 'HTTP' ) except: drv = None if drv is None: return 'skip' try: gdaltest.dods_drv = gdal.GetDriverByName( 'DODS' ) if gdaltest.dods_drv is not None: gdaltest.dods_drv.Deregister() except: gdaltest.dods_drv = None tst = gdaltest.GDALTest( 'PNG','http://gdal.org/gdalicon.png', 1, 7617, filename_absolute = 1 ) ret = tst.testOpen() if ret == 'fail': conn = gdaltest.gdalurlopen('http://gdal.org/gdalicon.png') if conn is None: print('cannot open URL') return 'skip' conn.close() return ret ############################################################################### # Verify /vsicurl (subversion file listing) def http_2(): try: drv = gdal.GetDriverByName( 'HTTP' ) except: drv = None if drv is None: return 'skip' tst = gdaltest.GDALTest( 'GTiff','/vsicurl/http://svn.osgeo.org/gdal/trunk/autotest/gcore/data/byte.tif', 1, 4672, filename_absolute = 1 ) ret = tst.testOpen() if ret == 'fail': conn = gdaltest.gdalurlopen('http://svn.osgeo.org/gdal/trunk/autotest/gcore/data/byte.tif') if conn is None: print('cannot open URL') return 'skip' conn.close() return ret ############################################################################### # Verify /vsicurl (apache file listing) def http_3(): try: drv = gdal.GetDriverByName( 'HTTP' ) except: drv = None if drv is None: return 'skip' gdal.SetConfigOption('GDAL_HTTP_TIMEOUT', '5') ds = gdal.Open('/vsicurl/http://download.osgeo.org/gdal/data/ehdr/elggll.bil') gdal.SetConfigOption('GDAL_HTTP_TIMEOUT', None) if ds is None: conn = gdaltest.gdalurlopen('http://download.osgeo.org/gdal/data/ehdr/elggll.bil') if conn is None: print('cannot open URL') return 'skip' conn.close() return 'fail' return 'success' ############################################################################### # Verify /vsicurl (ftp) def http_4_old(): try: drv = gdal.GetDriverByName( 'HTTP' ) except: drv = None if drv is None: return 'skip' ds = gdal.Open('/vsicurl/ftp://ftp2.cits.rncan.gc.ca/pub/cantopo/250k_tif/MCR2010_01.tif') if ds is None: # Workaround unexplained failure on Tamas test machine. The test works fine with his # builds on other machines... # This heuristics might be fragile ! if "GDAL_DATA" in os.environ and os.environ["GDAL_DATA"].find("E:\\builds\\..\\sdk\\") == 0: return 'skip' conn = gdaltest.gdalurlopen('ftp://ftp2.cits.rncan.gc.ca/pub/cantopo/250k_tif/MCR2010_01.tif') if conn is None: print('cannot open URL') return 'skip' conn.close() return 'fail' filelist = ds.GetFileList() if filelist[0] != '/vsicurl/ftp://ftp2.cits.rncan.gc.ca/pub/cantopo/250k_tif/MCR2010_01.tif': print(filelist) return 'fail' return 'success' ############################################################################### # Verify /vsicurl (ftp) def http_4(): try: drv = gdal.GetDriverByName( 'HTTP' ) except: drv = None if drv is None: return 'skip' ds = gdal.Open('/vsicurl/ftp://download.osgeo.org/gdal/data/gtiff/utm.tif') if ds is None: conn = gdaltest.gdalurlopen('ftp://download.osgeo.org/gdal/data/gtiff/utm.tif', timeout = 4) if conn is None: print('cannot open URL') return 'skip' try: conn.read() except: print('cannot read') return 'skip' conn.close() if sys.platform == 'darwin' and gdal.GetConfigOption('TRAVIS', None) is not None: print("Fails on MacOSX Travis sometimes. Not sure why.") return 'skip' gdaltest.post_reason('fail') return 'fail' filelist = ds.GetFileList() if '/vsicurl/ftp://download.osgeo.org/gdal/data/gtiff/utm.tif' not in filelist: print(filelist) gdaltest.post_reason('fail') return 'fail' return 'success' ############################################################################### # Test HTTP driver with non VSIL driver def http_5(): try: drv = gdal.GetDriverByName( 'HTTP' ) except: drv = None if drv is None: return 'skip' ds = gdal.Open('http://svn.osgeo.org/gdal/trunk/autotest/gdrivers/data/s4103.blx') if ds is None: conn = gdaltest.gdalurlopen('http://svn.osgeo.org/gdal/trunk/autotest/gdrivers/data/s4103.blx') if conn is None: print('cannot open URL') return 'skip' try: conn.read() except: print('cannot read') return 'skip' conn.close() gdaltest.post_reason('fail') return 'fail' filename = ds.GetDescription() ds = None try: os.stat(filename) gdaltest.post_reason('file %s should have been removed' % filename) return 'fail' except: pass return 'success' ############################################################################### # Test HTTP driver with OGR driver def http_6(): try: drv = gdal.GetDriverByName( 'HTTP' ) except: drv = None if drv is None: return 'skip' ds = ogr.Open('http://svn.osgeo.org/gdal/trunk/autotest/ogr/data/test.jml') if ds is None: conn = gdaltest.gdalurlopen('http://svn.osgeo.org/gdal/trunk/autotest/ogr/data/test.jml') if conn is None: print('cannot open URL') return 'skip' try: conn.read() except: print('cannot read') return 'skip' conn.close() gdaltest.post_reason('fail') return 'fail' ds = None return 'success' ############################################################################### # def http_cleanup(): if gdaltest.dods_drv is not None: gdaltest.dods_drv.Register() gdaltest.dods_drv = None return 'success' gdaltest_list = [ http_1, http_2, http_3, #http_4_old, http_4, http_5, http_6, http_cleanup ] if __name__ == '__main__': gdaltest.setup_run( 'http' ) gdaltest.run_tests( gdaltest_list ) gdaltest.summarize()
py
1a3d26f460fcdbbfa9dbcec488d4c6aba8e1b78c
# terrascript/systemd/__init__.py # Automatically generated by tools/makecode.py () import warnings warnings.warn( "using the 'legacy layout' is deprecated", DeprecationWarning, stacklevel=2 ) import terrascript class systemd(terrascript.Provider): pass
py
1a3d287eeb6c2cb3070f1aa7157b006e9aa857f5
# Copyright (c) Facebook, Inc. and its affiliates. import torch from torch.nn import functional as F from detectron2.structures import Instances, ROIMasks # perhaps should rename to "resize_instance" def detector_postprocess( results: Instances, output_height: int, output_width: int, mask_threshold: float = 0.5 ): """ Resize the output instances. The input images are often resized when entering an object detector. As a result, we often need the outputs of the detector in a different resolution from its inputs. This function will resize the raw outputs of an R-CNN detector to produce outputs according to the desired output resolution. Args: results (Instances): the raw outputs from the detector. `results.image_size` contains the input image resolution the detector sees. This object might be modified in-place. output_height, output_width: the desired output resolution. Returns: Instances: the resized output from the model, based on the output resolution """ # Change to 'if is_tracing' after PT1.7 if isinstance(output_height, torch.Tensor): # Converts integer tensors to float temporaries to ensure true # division is performed when computing scale_x and scale_y. output_width_tmp = output_width.float() output_height_tmp = output_height.float() new_size = torch.stack([output_height, output_width]) else: new_size = (output_height, output_width) output_width_tmp = output_width output_height_tmp = output_height scale_x, scale_y = ( output_width_tmp / results.image_size[1], output_height_tmp / results.image_size[0], ) results = Instances(new_size, **results.get_fields()) if results.has("pred_boxes"): output_boxes = results.pred_boxes elif results.has("proposal_boxes"): output_boxes = results.proposal_boxes else: output_boxes = None assert output_boxes is not None, "Predictions must contain boxes!" output_boxes.scale(scale_x, scale_y) output_boxes.clip(results.image_size) results = results[output_boxes.nonempty()] if results.has("pred_masks"): if isinstance(results.pred_masks, ROIMasks): roi_masks = results.pred_masks else: # pred_masks is a tensor of shape (N, 1, M, M) roi_masks = ROIMasks(results.pred_masks[:, 0, :, :]) results.pred_masks = roi_masks.to_bitmasks( results.pred_boxes, output_height, output_width, mask_threshold ).tensor # TODO return ROIMasks/BitMask object in the future if results.has("pred_keypoints"): results.pred_keypoints[:, :, 0] *= scale_x results.pred_keypoints[:, :, 1] *= scale_y return results def sem_seg_postprocess(result, img_size, output_height, output_width): """ Return semantic segmentation predictions in the original resolution. The input images are often resized when entering semantic segmentor. Moreover, in same cases, they also padded inside segmentor to be divisible by maximum network stride. As a result, we often need the predictions of the segmentor in a different resolution from its inputs. Args: result (Tensor): semantic segmentation prediction logits. A tensor of shape (C, H, W), where C is the number of classes, and H, W are the height and width of the prediction. img_size (tuple): image size that segmentor is taking as input. output_height, output_width: the desired output resolution. Returns: semantic segmentation prediction (Tensor): A tensor of the shape (C, output_height, output_width) that contains per-pixel soft predictions. """ result = result[:, : img_size[0], : img_size[1]].expand(1, -1, -1, -1) result = F.interpolate( result, size=(output_height, output_width), mode="bilinear", align_corners=False )[0] return result
py
1a3d28abe4609b2d418f65cb5c8a72e40e333d4a
"""Platform to present any Tuya DP as a binary sensor.""" import logging from functools import partial import voluptuous as vol from homeassistant.components.binary_sensor import ( DEVICE_CLASSES_SCHEMA, DOMAIN, BinarySensorEntity, ) from homeassistant.const import CONF_DEVICE_CLASS from .common import LocalTuyaEntity, async_setup_entry _LOGGER = logging.getLogger(__name__) CONF_STATE_ON = "state_on" CONF_STATE_OFF = "state_off" def flow_schema(dps): """Return schema used in config flow.""" return { vol.Required(CONF_STATE_ON, default="True"): str, vol.Required(CONF_STATE_OFF, default="False"): str, vol.Optional(CONF_DEVICE_CLASS): DEVICE_CLASSES_SCHEMA, } class LocaltuyaBinarySensor(LocalTuyaEntity, BinarySensorEntity): """Representation of a Tuya binary sensor.""" def __init__( self, device, config_entry, sensorid, **kwargs, ): """Initialize the Tuya binary sensor.""" super().__init__(device, config_entry, sensorid, _LOGGER, **kwargs) self._is_on = False @property def is_on(self): """Return sensor state.""" return self._is_on @property def device_class(self): """Return the class of this device.""" return self._config.get(CONF_DEVICE_CLASS) def status_updated(self): """Device status was updated.""" state = str(self.dps(self._dp_id)).lower() if state == self._config[CONF_STATE_ON].lower(): self._is_on = True elif state == self._config[CONF_STATE_OFF].lower(): self._is_on = False else: self.warning( "State for entity %s did not match state patterns", self.entity_id ) async_setup_entry = partial( async_setup_entry, DOMAIN, LocaltuyaBinarySensor, flow_schema )
py
1a3d2996febf453676b0c4741fe0c0d3c8d23d71
# -*- coding: utf-8 -*- import argparse import os from pprint import pprint import subprocess import sys # input parser = argparse.ArgumentParser() parser.add_argument('-in', dest="INPUT_FILES", default="path/to/*.mp4", help="Input media file pattern") parser.add_argument('-width', dest="TARGET_WIDTH", default=640, type=int, help="Target width") parser.add_argument('-height', dest="TARGET_HEIGHT", default=360, type=int, help="Target height") parser.add_argument('-out', dest="OUTPUT_FILE", default="output/%s.mp4", help="Media output file pattern") a = parser.parse_args() from lib.io_utils import * makeDirectories([a.OUTPUT_FILE]) filenames = getFilenames(a.INPUT_FILES) for infile in filenames: basefn = getBasename(infile) command = ['ffmpeg', '-y', '-i', infile, '-vf', 'scale=%s:%s' % (a.TARGET_WIDTH, a.TARGET_HEIGHT), a.OUTPUT_FILE % basefn] print(" ".join(command)) finished = subprocess.check_call(command) print("Done.")
py
1a3d2acdaf5fc7a7ca8897e2ad18779290cad59f
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from nova.scheduler.filters import aggregate_instance_extra_specs as agg_specs from nova import test from nova.tests.unit.scheduler import fakes @mock.patch('nova.scheduler.filters.utils.aggregate_metadata_get_by_host') class TestAggregateInstanceExtraSpecsFilter(test.NoDBTestCase): def setUp(self): super(TestAggregateInstanceExtraSpecsFilter, self).setUp() self.filt_cls = agg_specs.AggregateInstanceExtraSpecsFilter() def test_aggregate_filter_passes_no_extra_specs(self, agg_mock): capabilities = {'opt1': 1, 'opt2': 2} filter_properties = {'context': mock.sentinel.ctx, 'instance_type': {'memory_mb': 1024}} host = fakes.FakeHostState('host1', 'node1', capabilities) self.assertTrue(self.filt_cls.host_passes(host, filter_properties)) self.assertFalse(agg_mock.called) def _do_test_aggregate_filter_extra_specs(self, especs, passes): filter_properties = {'context': mock.sentinel.ctx, 'instance_type': {'memory_mb': 1024, 'extra_specs': especs}} host = fakes.FakeHostState('host1', 'node1', {'free_ram_mb': 1024}) assertion = self.assertTrue if passes else self.assertFalse assertion(self.filt_cls.host_passes(host, filter_properties)) def test_aggregate_filter_passes_extra_specs_simple(self, agg_mock): agg_mock.return_value = {'opt1': '1', 'opt2': '2'} especs = { # Un-scoped extra spec 'opt1': '1', # Scoped extra spec that applies to this filter 'aggregate_instance_extra_specs:opt2': '2', # Scoped extra spec that does not apply to this filter 'trust:trusted_host': 'true', } self._do_test_aggregate_filter_extra_specs(especs, passes=True) def test_aggregate_filter_passes_with_key_same_as_scope(self, agg_mock): agg_mock.return_value = {'aggregate_instance_extra_specs': '1'} especs = { # Un-scoped extra spec, make sure we don't blow up if it # happens to match our scope. 'aggregate_instance_extra_specs': '1', } self._do_test_aggregate_filter_extra_specs(especs, passes=True) def test_aggregate_filter_fails_extra_specs_simple(self, agg_mock): agg_mock.return_value = {'opt1': '1', 'opt2': '2'} especs = { 'opt1': '1', 'opt2': '222', 'trust:trusted_host': 'true' } self._do_test_aggregate_filter_extra_specs(especs, passes=False)
py
1a3d2b61236e2af14f95cd093a700d23bd37cee5
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- VERSION = "21.1.0b1"
py
1a3d2bbc94dabdbabe8233411d4fd6899bde1904
from typing import Dict, Callable from optimade.models import ( DataType, ErrorResponse, StructureResource, ReferenceResource, ) from optimade.server.exceptions import POSSIBLE_ERRORS __all__ = ("ENTRY_INFO_SCHEMAS", "ERROR_RESPONSES", "retrieve_queryable_properties") ENTRY_INFO_SCHEMAS: Dict[str, Callable[[None], Dict]] = { "structures": StructureResource.schema, "references": ReferenceResource.schema, } """This dictionary is used to define the `/info/<entry_type>` endpoints.""" ERROR_RESPONSES: Dict[int, Dict] = { err.status_code: {"model": ErrorResponse, "description": err.title} for err in POSSIBLE_ERRORS } def retrieve_queryable_properties( schema: dict, queryable_properties: list = None, entry_type: str = None, ) -> dict: """Recursively loops through the schema of a pydantic model and resolves all references, returning a dictionary of all the OPTIMADE-queryable properties of that model. Parameters: schema: The schema of the pydantic model. queryable_properties: The list of properties to find in the schema. entry_type: An optional entry type for the model. Will be used to lookup schemas for any config-defined fields. Returns: A flat dictionary with properties as keys, containing the field description, unit, sortability, support level, queryability and type, where provided. """ properties = {} for name, value in schema["properties"].items(): if not queryable_properties or name in queryable_properties: if "$ref" in value: path = value["$ref"].split("/")[1:] sub_schema = schema.copy() while path: next_key = path.pop(0) sub_schema = sub_schema[next_key] sub_queryable_properties = sub_schema["properties"].keys() properties.update( retrieve_queryable_properties(sub_schema, sub_queryable_properties) ) else: properties[name] = {"description": value.get("description", "")} # Update schema with extension keys provided they are not None for key in [_ for _ in ("unit", "queryable", "support") if _ in value]: properties[name][key] = value[key] # All properties are sortable with the MongoDB backend. # While the result for sorting lists may not be as expected, they are still sorted. properties[name]["sortable"] = value.get("sortable", True) # Try to get OpenAPI-specific "format" if possible, else get "type"; a mandatory OpenAPI key. properties[name]["type"] = DataType.from_json_type( value.get("format", value.get("type")) ) # If specified, check the config for any additional well-described provider fields if entry_type: from optimade.server.config import CONFIG described_provider_fields = [ field for field in CONFIG.provider_fields.get(entry_type, {}) if isinstance(field, dict) ] for field in described_provider_fields: name = f"_{CONFIG.provider.prefix}_{field['name']}" properties[name] = {k: field[k] for k in field if k != "name"} properties[name]["sortable"] = field.get("sortable", True) return properties
py
1a3d2e7c0e81e381e7b09bc7f05a93f586b62d3c
from orbitkit import util extension = util.get_content_type_v1('pdf') print(extension)
py
1a3d2e9e0a05353f35efdc2676a339f220413c78
import sys sys.path.insert(0, '../') import tornado_dynamodb extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.viewcode', ] templates_path = ['_templates'] source_suffix = '.rst' master_doc = 'index' # General information about the project. project = 'tornado-dynamodb' copyright = '2015, Gavin M. Roy' author = 'Gavin M. Roy' release = tornado_dynamodb.__version__ version = '.'.join(release.split('.')[0:1]) language = None exclude_patterns = ['_build'] pygments_style = 'sphinx' todo_include_todos = True html_static_path = ['_static'] htmlhelp_basename = 'tornado-dynamodb' intersphinx_mapping = {'https://docs.python.org/': None, 'http://www.tornadoweb.org/en/stable/': None}
py
1a3d301f6aae04f573292bf992f8f8e105aa6bf6
k=int(input()) res="" for i in range(k): n,m = map(int, input().split()) res+=(str(1+m*(n-m))+"\n") print(res,end="")
py
1a3d309c69978f9535c54b84ec0d32aaecb80194
"""empty message Revision ID: aa989b9b2862 Revises: 7223a3ac4f30 Create Date: 2021-03-29 19:41:56.312406 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'aa989b9b2862' down_revision = '7223a3ac4f30' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('campaigns', sa.Column('created_at', sa.DateTime(), server_default=sa.text('now()'), nullable=False), sa.Column('updated_at', sa.DateTime(), server_default=sa.text('now()'), nullable=False), sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=50), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_table('events', sa.Column('created_at', sa.DateTime(), server_default=sa.text('now()'), nullable=False), sa.Column('updated_at', sa.DateTime(), server_default=sa.text('now()'), nullable=False), sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=50), nullable=True), sa.Column('type', sa.String(length=50), nullable=True), sa.Column('campaign_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['campaign_id'], ['campaigns.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_table('events_users', sa.Column('event_id', sa.Integer(), nullable=False), sa.Column('user_id', sa.Integer(), nullable=False), sa.ForeignKeyConstraint(['event_id'], ['events.id'], ), sa.ForeignKeyConstraint(['user_id'], ['user.id'], ), sa.PrimaryKeyConstraint('event_id', 'user_id') ) op.create_table('phone_bank_events', sa.Column('id', sa.Integer(), nullable=False), sa.ForeignKeyConstraint(['id'], ['events.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_table('phone_bank_tenants', sa.Column('phone_bank_event_id', sa.Integer(), nullable=False), sa.Column('defendant_id', sa.Integer(), nullable=False), sa.ForeignKeyConstraint(['defendant_id'], ['defendants.id'], ), sa.ForeignKeyConstraint(['phone_bank_event_id'], ['phone_bank_events.id'], ), sa.PrimaryKeyConstraint('phone_bank_event_id', 'defendant_id') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('phone_bank_tenants') op.drop_table('phone_bank_events') op.drop_table('events_users') op.drop_table('events') op.drop_table('campaigns') # ### end Alembic commands ###
py
1a3d31642fc373633e5ce70413c2ec0f2a46a9c6
from setuptools import setup install_requires = [ r.strip() for r in open('requirements.txt') if r.strip() and not r.strip().startswith('#') ] setup( name="aiokafka_rpc", version="1.3.1.3", author='Kostiantyn Andrusenko', author_email='[email protected]', description=("RPC over Apache Kafka for Python using asyncio"), license="Apache Software License", keywords="aiokafka_rpc", url="https://github.com/fabregas/aiokafka_rpc", packages=["aiokafka_rpc"], install_requires=install_requires, classifiers=[ "Development Status :: 5 - Production/Stable", "Topic :: Software Development :: Libraries", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3" ], )
py
1a3d323009e2c7937aba2071620a813e662cfec4
import os from pprint import pprint import torch import torch.optim as optim from torch import nn import passport_generator from dataset import prepare_dataset, prepare_wm from experiments.base import Experiment from experiments.trainer import Trainer, Tester from experiments.trainer_private import TesterPrivate from experiments.utils import construct_passport_kwargs, load_passport_model_to_normal_model, \ load_normal_model_to_passport_model, load_normal_model_to_normal_model from models.alexnet_normal import AlexNetNormal from models.alexnet_passport import AlexNetPassport from models.resnet_normal import ResNet18, ResNet9 from models.resnet_passport import ResNet18Passport, ResNet9Passport class ClassificationExperiment(Experiment): def __init__(self, args): super().__init__(args) self.in_channels = 1 if self.dataset == 'mnist' else 3 self.num_classes = { 'cifar10': 10, 'cifar100': 100, 'caltech-101': 101, 'caltech-256': 256, 'imagenet1000': 1000 }[self.dataset] self.train_data, self.valid_data = prepare_dataset(self.args) self.wm_data = None if self.use_trigger_as_passport: self.passport_data = prepare_wm('data/trigger_set/pics', crop=self.imgcrop) else: self.passport_data = self.valid_data if self.train_backdoor: self.wm_data = prepare_wm('data/trigger_set/pics', crop=self.imgcrop) self.construct_model() optimizer = optim.SGD(self.model.parameters(), lr=self.lr, momentum=0.9, weight_decay=0.0001) if len(self.lr_config[self.lr_config['type']]) != 0: # if no specify steps, then scheduler = None scheduler = optim.lr_scheduler.MultiStepLR(optimizer, self.lr_config[self.lr_config['type']], self.lr_config['gamma']) else: scheduler = None self.trainer = Trainer(self.model, optimizer, scheduler, self.device) if self.is_tl: self.finetune_load() else: self.makedirs_or_load() def construct_model(self): print('Construct Model') def setup_keys(): if self.key_type != 'random': pretrained_from_torch = self.pretrained_path is None if self.arch == 'alexnet': norm_type = 'none' if pretrained_from_torch else self.norm_type pretrained_model = AlexNetNormal(self.in_channels, self.num_classes, norm_type=norm_type, pretrained=pretrained_from_torch) else: ResNetClass = ResNet18 if self.arch == 'resnet' else ResNet9 norm_type = 'bn' if pretrained_from_torch else self.norm_type pretrained_model = ResNetClass(num_classes=self.num_classes, norm_type=norm_type, pretrained=pretrained_from_torch) if not pretrained_from_torch: print('Loading pretrained from self-trained model') pretrained_model.load_state_dict(torch.load(self.pretrained_path)) else: print('Loading pretrained from torch-pretrained model') pretrained_model = pretrained_model.to(self.device) self.setup_keys(pretrained_model) def load_pretrained(): if self.pretrained_path is not None: sd = torch.load(self.pretrained_path) model.load_state_dict(sd) if self.train_passport: passport_kwargs, plkeys = construct_passport_kwargs(self, True) self.passport_kwargs = passport_kwargs self.plkeys = plkeys self.is_baseline = False print('Loading arch: ' + self.arch) if self.arch == 'alexnet': model = AlexNetPassport(self.in_channels, self.num_classes, passport_kwargs) else: ResNetPassportClass = ResNet18Passport if self.arch == 'resnet' else ResNet9Passport model = ResNetPassportClass(num_classes=self.num_classes, passport_kwargs=passport_kwargs) self.model = model.to(self.device) setup_keys() else: # train normally or train backdoor print('Loading arch: ' + self.arch) self.is_baseline = True if self.arch == 'alexnet': model = AlexNetNormal(self.in_channels, self.num_classes, self.norm_type) else: ResNetClass = ResNet18 if self.arch == 'resnet' else ResNet9 model = ResNetClass(num_classes=self.num_classes, norm_type=self.norm_type) load_pretrained() self.model = model.to(self.device) pprint(self.model) def setup_keys(self, pretrained_model): if self.key_type != 'random': n = 1 if self.key_type == 'image' else 20 # any number will do key_x, x_inds = passport_generator.get_key(self.passport_data, n) key_x = key_x.to(self.device) key_y, y_inds = passport_generator.get_key(self.passport_data, n) key_y = key_y.to(self.device) passport_generator.set_key(pretrained_model, self.model, key_x, key_y) def transfer_learning(self): if not self.is_tl: raise Exception('Please run with --transfer-learning') is_imagenet = self.num_classes == 1000 self.num_classes = { 'cifar10': 10, 'cifar100': 100, 'caltech-101': 101, 'caltech-256': 256, 'imagenet1000': 1000 }[self.tl_dataset] ##### load clone model ##### print('Loading clone model') if self.arch == 'alexnet': tl_model = AlexNetNormal(self.in_channels, self.num_classes, self.norm_type, imagenet=is_imagenet) else: tl_model = ResNet18(num_classes=self.num_classes, norm_type=self.norm_type, imagenet=is_imagenet) ##### load / reset weights of passport layers for clone model ##### tl_model.to(self.device) if self.is_baseline: # baseline load_normal_model_to_normal_model(self.arch, tl_model, self.model) else: load_passport_model_to_normal_model(self.arch, self.plkeys, self.model, tl_model) print(tl_model) print('Loaded clone model') ##### dataset is created at constructor ##### ##### tl scheme setup ##### if self.tl_scheme == 'rtal': # rtal = reset last layer + train all layer # ftal = train all layer try: if isinstance(tl_model.classifier, nn.Sequential): tl_model.classifier[-1].reset_parameters() else: tl_model.classifier.reset_parameters() except: tl_model.linear.reset_parameters() ##### optimizer setup ##### optimizer = optim.SGD(tl_model.parameters(), lr=self.lr, momentum=0.9, weight_decay=0.0005) if len(self.lr_config[self.lr_config['type']]) != 0: # if no specify steps, then scheduler = None scheduler = optim.lr_scheduler.MultiStepLR(optimizer, self.lr_config[self.lr_config['type']], self.lr_config['gamma']) else: scheduler = None ##### training is on finetune model self.trainer = Trainer(tl_model, optimizer, scheduler, self.device) ##### tester is on original model tester = Tester(self.model, self.device) tester_passport = TesterPrivate(self.model, self.device) history_file = os.path.join(self.logdir, 'history.csv') first = True best_acc = 0 for ep in range(1, self.epochs + 1): ##### transfer learning on new tasks ##### train_metrics = self.trainer.train(ep, self.train_data) valid_metrics = self.trainer.test(self.valid_data) ##### load transfer learning weights from clone model ##### if self.is_baseline: load_normal_model_to_normal_model(self.arch, self.model, tl_model) else: load_normal_model_to_passport_model(self.arch, self.plkeys, self.model, tl_model) tl_model.to(self.device) self.model.to(self.device) ##### check if using weight of finetuned model is still able to detect trigger set watermark ##### wm_metrics = {} if self.train_backdoor: wm_metrics = tester.test(self.wm_data, 'WM Result') ##### check if using weight of finetuend model is still able to extract signature correctly ##### if not self.is_baseline and self.train_passport: res = tester_passport.test_signature() for key in res: wm_metrics['passport_' + key] = res[key] ##### store results ##### metrics = {} for key in train_metrics: metrics[f'train_{key}'] = train_metrics[key] for key in valid_metrics: metrics[f'valid_{key}'] = valid_metrics[key] for key in wm_metrics: metrics[f'old_wm_{key}'] = wm_metrics[key] self.append_history(history_file, metrics, first) first = False if self.save_interval and ep % self.save_interval == 0: self.save_model(f'epoch-{ep}.pth') self.save_model(f'tl-epoch-{ep}.pth', tl_model) if best_acc < metrics['valid_acc']: print(f'Found best at epoch {ep}\n') best_acc = metrics['valid_acc'] self.save_model('best.pth') self.save_model('tl-best.pth', tl_model) self.save_last_model() def training(self): best_acc = float('-inf') history_file = os.path.join(self.logdir, 'history.csv') first = True if self.save_interval > 0: self.save_model('epoch-0.pth') print('Start training') for ep in range(1, self.epochs + 1): train_metrics = self.trainer.train(ep, self.train_data, self.wm_data) print(f'Sign Detection Accuracy: {train_metrics["sign_acc"] * 100:6.4f}') valid_metrics = self.trainer.test(self.valid_data, 'Testing Result') wm_metrics = {} if self.train_backdoor: wm_metrics = self.trainer.test(self.wm_data, 'WM Result') metrics = {} for key in train_metrics: metrics[f'train_{key}'] = train_metrics[key] for key in valid_metrics: metrics[f'valid_{key}'] = valid_metrics[key] for key in wm_metrics: metrics[f'wm_{key}'] = wm_metrics[key] self.append_history(history_file, metrics, first) first = False if self.save_interval and ep % self.save_interval == 0: self.save_model(f'epoch-{ep}.pth') if best_acc < metrics['valid_acc']: print(f'Found best at epoch {ep}\n') best_acc = metrics['valid_acc'] self.save_model('best.pth') self.save_last_model() def evaluate(self): self.trainer.test(self.valid_data)
py
1a3d329c996084e794b30e69053cedd414e5211d
# -*- coding: utf-8 -*- # Copyright (c) 2018, SELCO Foundation and Contributors # See license.txt from __future__ import unicode_literals import frappe import unittest class TestWho(unittest.TestCase): pass
py
1a3d32e256c16e744520c1a50665416f5d288f93
import base64 import datetime import json import logging import os import time from functools import reduce import cv2 import gevent import numpy as np from flask import (Blueprint, Flask, Response, current_app, jsonify, make_response, request) from flask_sockets import Sockets from peewee import SqliteDatabase, operator, fn, DoesNotExist from playhouse.shortcuts import model_to_dict from frigate.const import CLIPS_DIR, RECORD_DIR from frigate.models import Event from frigate.stats import stats_snapshot from frigate.util import calculate_region from frigate.version import VERSION logger = logging.getLogger(__name__) bp = Blueprint('frigate', __name__) ws = Blueprint('ws', __name__) class MqttBackend(): """Interface for registering and updating WebSocket clients.""" def __init__(self, mqtt_client, topic_prefix): self.clients = list() self.mqtt_client = mqtt_client self.topic_prefix = topic_prefix def register(self, client): """Register a WebSocket connection for Mqtt updates.""" self.clients.append(client) def publish(self, message): try: json_message = json.loads(message) json_message = { 'topic': f"{self.topic_prefix}/{json_message['topic']}", 'payload': json_message['payload'], 'retain': json_message.get('retain', False) } except: logger.warning("Unable to parse websocket message as valid json.") return logger.debug(f"Publishing mqtt message from websockets at {json_message['topic']}.") self.mqtt_client.publish(json_message['topic'], json_message['payload'], retain=json_message['retain']) def run(self): def send(client, userdata, message): """Sends mqtt messages to clients.""" try: logger.debug(f"Received mqtt message on {message.topic}.") ws_message = json.dumps({ 'topic': message.topic.replace(f"{self.topic_prefix}/",""), 'payload': message.payload.decode() }) except: # if the payload can't be decoded don't relay to clients logger.debug(f"MQTT payload for {message.topic} wasn't text. Skipping...") return for client in self.clients: try: client.send(ws_message) except: logger.debug("Removing websocket client due to a closed connection.") self.clients.remove(client) self.mqtt_client.message_callback_add(f"{self.topic_prefix}/#", send) def start(self): """Maintains mqtt subscription in the background.""" gevent.spawn(self.run) def create_app(frigate_config, database: SqliteDatabase, stats_tracking, detected_frames_processor, mqtt_client): app = Flask(__name__) sockets = Sockets(app) @app.before_request def _db_connect(): database.connect() @app.teardown_request def _db_close(exc): if not database.is_closed(): database.close() app.frigate_config = frigate_config app.stats_tracking = stats_tracking app.detected_frames_processor = detected_frames_processor app.register_blueprint(bp) sockets.register_blueprint(ws) app.mqtt_backend = MqttBackend(mqtt_client, frigate_config.mqtt.topic_prefix) app.mqtt_backend.start() return app @bp.route('/') def is_healthy(): return "Frigate is running. Alive and healthy!" @bp.route('/events/summary') def events_summary(): has_clip = request.args.get('has_clip', type=int) has_snapshot = request.args.get('has_snapshot', type=int) clauses = [] if not has_clip is None: clauses.append((Event.has_clip == has_clip)) if not has_snapshot is None: clauses.append((Event.has_snapshot == has_snapshot)) if len(clauses) == 0: clauses.append((1 == 1)) groups = ( Event .select( Event.camera, Event.label, fn.strftime('%Y-%m-%d', fn.datetime(Event.start_time, 'unixepoch', 'localtime')).alias('day'), Event.zones, fn.COUNT(Event.id).alias('count') ) .where(reduce(operator.and_, clauses)) .group_by( Event.camera, Event.label, fn.strftime('%Y-%m-%d', fn.datetime(Event.start_time, 'unixepoch', 'localtime')), Event.zones ) ) return jsonify([e for e in groups.dicts()]) @bp.route('/events/<id>') def event(id): try: return model_to_dict(Event.get(Event.id == id)) except DoesNotExist: return "Event not found", 404 @bp.route('/events/<id>/thumbnail.jpg') def event_thumbnail(id): format = request.args.get('format', 'ios') thumbnail_bytes = None try: event = Event.get(Event.id == id) thumbnail_bytes = base64.b64decode(event.thumbnail) except DoesNotExist: # see if the object is currently being tracked try: for camera_state in current_app.detected_frames_processor.camera_states.values(): if id in camera_state.tracked_objects: tracked_obj = camera_state.tracked_objects.get(id) if not tracked_obj is None: thumbnail_bytes = tracked_obj.get_thumbnail() except: return "Event not found", 404 if thumbnail_bytes is None: return "Event not found", 404 # android notifications prefer a 2:1 ratio if format == 'android': jpg_as_np = np.frombuffer(thumbnail_bytes, dtype=np.uint8) img = cv2.imdecode(jpg_as_np, flags=1) thumbnail = cv2.copyMakeBorder(img, 0, 0, int(img.shape[1]*0.5), int(img.shape[1]*0.5), cv2.BORDER_CONSTANT, (0,0,0)) ret, jpg = cv2.imencode('.jpg', thumbnail, [int(cv2.IMWRITE_JPEG_QUALITY), 70]) thumbnail_bytes = jpg.tobytes() response = make_response(thumbnail_bytes) response.headers['Content-Type'] = 'image/jpg' return response @bp.route('/events/<id>/snapshot.jpg') def event_snapshot(id): jpg_bytes = None try: event = Event.get(Event.id == id) if not event.has_snapshot: return "Snapshot not available", 404 # read snapshot from disk with open(os.path.join(CLIPS_DIR, f"{event.camera}-{id}.jpg"), 'rb') as image_file: jpg_bytes = image_file.read() except DoesNotExist: # see if the object is currently being tracked try: for camera_state in current_app.detected_frames_processor.camera_states.values(): if id in camera_state.tracked_objects: tracked_obj = camera_state.tracked_objects.get(id) if not tracked_obj is None: jpg_bytes = tracked_obj.get_jpg_bytes( timestamp=request.args.get('timestamp', type=int), bounding_box=request.args.get('bbox', type=int), crop=request.args.get('crop', type=int), height=request.args.get('h', type=int) ) except: return "Event not found", 404 except: return "Event not found", 404 response = make_response(jpg_bytes) response.headers['Content-Type'] = 'image/jpg' return response @bp.route('/events') def events(): limit = request.args.get('limit', 100) camera = request.args.get('camera') label = request.args.get('label') zone = request.args.get('zone') after = request.args.get('after', type=float) before = request.args.get('before', type=float) has_clip = request.args.get('has_clip', type=int) has_snapshot = request.args.get('has_snapshot', type=int) include_thumbnails = request.args.get('include_thumbnails', default=1, type=int) clauses = [] excluded_fields = [] if camera: clauses.append((Event.camera == camera)) if label: clauses.append((Event.label == label)) if zone: clauses.append((Event.zones.cast('text') % f"*\"{zone}\"*")) if after: clauses.append((Event.start_time >= after)) if before: clauses.append((Event.start_time <= before)) if not has_clip is None: clauses.append((Event.has_clip == has_clip)) if not has_snapshot is None: clauses.append((Event.has_snapshot == has_snapshot)) if not include_thumbnails: excluded_fields.append(Event.thumbnail) if len(clauses) == 0: clauses.append((1 == 1)) events = (Event.select() .where(reduce(operator.and_, clauses)) .order_by(Event.start_time.desc()) .limit(limit)) return jsonify([model_to_dict(e, exclude=excluded_fields) for e in events]) @bp.route('/config') def config(): return jsonify(current_app.frigate_config.to_dict()) @bp.route('/version') def version(): return VERSION @bp.route('/stats') def stats(): stats = stats_snapshot(current_app.stats_tracking) return jsonify(stats) @bp.route('/<camera_name>/<label>/best.jpg') def best(camera_name, label): if camera_name in current_app.frigate_config.cameras: best_object = current_app.detected_frames_processor.get_best(camera_name, label) best_frame = best_object.get('frame') if best_frame is None: best_frame = np.zeros((720,1280,3), np.uint8) else: best_frame = cv2.cvtColor(best_frame, cv2.COLOR_YUV2BGR_I420) crop = bool(request.args.get('crop', 0, type=int)) if crop: box = best_object.get('box', (0,0,300,300)) region = calculate_region(best_frame.shape, box[0], box[1], box[2], box[3], 1.1) best_frame = best_frame[region[1]:region[3], region[0]:region[2]] height = int(request.args.get('h', str(best_frame.shape[0]))) width = int(height*best_frame.shape[1]/best_frame.shape[0]) best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA) ret, jpg = cv2.imencode('.jpg', best_frame, [int(cv2.IMWRITE_JPEG_QUALITY), 70]) response = make_response(jpg.tobytes()) response.headers['Content-Type'] = 'image/jpg' return response else: return "Camera named {} not found".format(camera_name), 404 @bp.route('/<camera_name>') def mjpeg_feed(camera_name): fps = int(request.args.get('fps', '3')) height = int(request.args.get('h', '360')) draw_options = { 'bounding_boxes': request.args.get('bbox', type=int), 'timestamp': request.args.get('timestamp', type=int), 'zones': request.args.get('zones', type=int), 'mask': request.args.get('mask', type=int), 'motion_boxes': request.args.get('motion', type=int), 'regions': request.args.get('regions', type=int), } if camera_name in current_app.frigate_config.cameras: # return a multipart response return Response(imagestream(current_app.detected_frames_processor, camera_name, fps, height, draw_options), mimetype='multipart/x-mixed-replace; boundary=frame') else: return "Camera named {} not found".format(camera_name), 404 @bp.route('/<camera_name>/latest.jpg') def latest_frame(camera_name): draw_options = { 'bounding_boxes': request.args.get('bbox', type=int), 'timestamp': request.args.get('timestamp', type=int), 'zones': request.args.get('zones', type=int), 'mask': request.args.get('mask', type=int), 'motion_boxes': request.args.get('motion', type=int), 'regions': request.args.get('regions', type=int), } if camera_name in current_app.frigate_config.cameras: # max out at specified FPS frame = current_app.detected_frames_processor.get_current_frame(camera_name, draw_options) if frame is None: frame = np.zeros((720,1280,3), np.uint8) height = int(request.args.get('h', str(frame.shape[0]))) width = int(height*frame.shape[1]/frame.shape[0]) frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_AREA) ret, jpg = cv2.imencode('.jpg', frame, [int(cv2.IMWRITE_JPEG_QUALITY), 70]) response = make_response(jpg.tobytes()) response.headers['Content-Type'] = 'image/jpg' return response else: return "Camera named {} not found".format(camera_name), 404 @bp.route('/recordings/<camera_name>') def list_recordings(camera_name): levels = 3 outFiles = [] outDirs = [] for subdir, dirs, files, curLevel in dirwalklevel(RECORD_DIR, level=levels): if curLevel == levels: for file in files: if pathBelongsToCamera(camera_name, subdir, file): outFiles.append(sanitiseRecordingPath(subdir, file)) for dir in dirs: if pathBelongsToCamera(camera_name, subdir, dir): outDirs.append(sanitiseRecordingPath(subdir, dir)) return jsonify({ "files": outFiles, "directories": outDirs }) @bp.route('/recordings/<year_month>/<day>/<hour>/<camera_name>') def list_recording_files(year_month, day, hour, camera_name): outFiles = [] try: levels = 1 pathParts = [RECORD_DIR, year_month, day, hour] recPath = os.path.join(*pathParts) for subdir, dirs, files, curLevel in dirwalklevel(recPath, level=levels): if curLevel == levels: for file in files: if pathBelongsToCamera(camera_name, subdir, file): outFiles.append(sanitiseRecordingPath(subdir, file)) except Exception as e: print(e) return jsonify({ "files": outFiles }) def dirwalklevel(some_dir, level=1): some_dir = some_dir.rstrip(os.path.sep) assert os.path.isdir(some_dir) num_sep = some_dir.count(os.path.sep) for root, dirs, files in os.walk(some_dir): num_sep_this = root.count(os.path.sep) curLevel = (num_sep_this - num_sep) yield root, dirs, files, curLevel if num_sep + level <= num_sep_this: del dirs[:] def pathBelongsToCamera(camera_name, subdir, file): return camera_name == "all" or camera_name in file or camera_name in subdir def sanitiseRecordingPath(subdir, file): return os.path.join(subdir, file).replace(RECORD_DIR, "") def imagestream(detected_frames_processor, camera_name, fps, height, draw_options): while True: # max out at specified FPS gevent.sleep(1/fps) frame = detected_frames_processor.get_current_frame(camera_name, draw_options) if frame is None: frame = np.zeros((height,int(height*16/9),3), np.uint8) width = int(height*frame.shape[1]/frame.shape[0]) frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_LINEAR) ret, jpg = cv2.imencode('.jpg', frame, [int(cv2.IMWRITE_JPEG_QUALITY), 70]) yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n') @ws.route('/ws') def echo_socket(socket): current_app.mqtt_backend.register(socket) while not socket.closed: # Sleep to prevent *constant* context-switches. gevent.sleep(0.1) message = socket.receive() if message: current_app.mqtt_backend.publish(message)
py
1a3d33dbfaefe663788d3cc1f7ed257dc54a2b82
from __future__ import annotations from typing import TYPE_CHECKING if TYPE_CHECKING: from engine import Engine from Entities.entity import Entity from Map.game_map import GameMap class BaseComponent: parent: Entity # Owning entity instance. @property def gamemap(self) -> GameMap: return self.parent.gamemap @property def engine(self) -> Engine: return self.gamemap.engine
py
1a3d340a27b597e441d73376af769b2472db157f
# Copyright (c) 2017-2021, Mudita Sp. z.o.o. All rights reserved. # For licensing, see https://github.com/mudita/MuditaOS/LICENSE.md import time import pytest from harness.interface.defs import key_codes @pytest.mark.rt1051 @pytest.mark.usefixtures("phone_unlocked") def test_search_sms(harness, sms_text, phone_number): body = {"category": "message", "messageBody": sms_text, "phoneNumber": str(phone_number)} messages = harness.endpoint_request("messages", "get", body)["body"] assert len(messages) != 0
py
1a3d344907d2d42b74b864820e8e129d3655769b
import pyredner import torch # Test the sample pixel center flag pyredner.set_use_gpu(torch.cuda.is_available()) objects = pyredner.load_obj('scenes/teapot.obj', return_objects=True) camera = pyredner.automatic_camera_placement(objects, resolution=(128, 128)) scene = pyredner.Scene(camera = camera, objects = objects) img = pyredner.render_albedo(scene, sample_pixel_center = True) pyredner.imwrite(img.cpu(), 'results/test_sample_pixel_center/img_no_aa.exr') img = pyredner.render_albedo(scene, sample_pixel_center = False) pyredner.imwrite(img.cpu(), 'results/test_sample_pixel_center/img_with_aa.exr')
py
1a3d34c49f6e120d061ed09f7df651c3989a97de
# -*- coding: utf-8 -*- """ Installs and configures puppet """ import sys import logging import os import platform import time from packstack.installer import utils from packstack.installer import basedefs, output_messages from packstack.installer.exceptions import ScriptRuntimeError, PuppetError from packstack.modules.common import filtered_hosts from packstack.modules.ospluginutils import manifestfiles from packstack.modules.puppet import scan_logfile, validate_logfile #------------------ oVirt installer initialization ------------------ PLUGIN_NAME = "Puppet" PLUGIN_NAME_COLORED = utils.color_text(PLUGIN_NAME, 'blue') PUPPET_DIR = os.environ.get('PACKSTACK_PUPPETDIR', '/usr/share/openstack-puppet/') MODULE_DIR = os.path.join(PUPPET_DIR, 'modules') def initConfig(controller): group = {"GROUP_NAME": "PUPPET", "DESCRIPTION": "Puppet Config parameters", "PRE_CONDITION": lambda x: 'yes', "PRE_CONDITION_MATCH": "yes", "POST_CONDITION": False, "POST_CONDITION_MATCH": True} controller.addGroup(group, []) def initSequences(controller): puppetpresteps = [ {'title': 'Clean Up', 'functions': [run_cleanup]}, ] controller.insertSequence("Clean Up", [], [], puppetpresteps, index=0) puppetsteps = [ {'title': 'Installing Dependencies', 'functions': [install_deps]}, {'title': 'Copying Puppet modules and manifests', 'functions': [copy_puppet_modules]}, {'title': 'Applying Puppet manifests', 'functions': [apply_puppet_manifest]}, {'title': 'Finalizing', 'functions': [finalize]} ] controller.addSequence("Puppet", [], [], puppetsteps) #------------------------- helper functions ------------------------- def wait_for_puppet(currently_running, messages): log_len = 0 twirl = ["-", "\\", "|", "/"] while currently_running: for hostname, finished_logfile in currently_running: log_file = os.path.splitext(os.path.basename(finished_logfile))[0] space_len = basedefs.SPACE_LEN - len(log_file) if len(log_file) > log_len: log_len = len(log_file) if hasattr(sys.stdout, "isatty") and sys.stdout.isatty(): twirl = twirl[-1:] + twirl[:-1] sys.stdout.write(("\rTesting if puppet apply is finished: %s" % log_file).ljust(40 + log_len)) sys.stdout.write("[ %s ]" % twirl[0]) sys.stdout.flush() try: # Once a remote puppet run has finished, we retrieve the log # file and check it for errors local_server = utils.ScriptRunner() log = os.path.join(basedefs.PUPPET_MANIFEST_DIR, os.path.basename(finished_logfile)) log = log.replace(".finished", ".log") local_server.append('scp -o StrictHostKeyChecking=no ' '-o UserKnownHostsFile=/dev/null ' 'root@%s:%s %s' % (hostname, finished_logfile, log)) # To not pollute logs we turn of logging of command execution local_server.execute(log=False) # If we got to this point the puppet apply has finished currently_running.remove((hostname, finished_logfile)) # clean off the last "testing apply" msg if hasattr(sys.stdout, "isatty") and sys.stdout.isatty(): sys.stdout.write(("\r").ljust(45 + log_len)) except ScriptRuntimeError: # the test raises an exception if the file doesn't exist yet # TO-DO: We need to start testing 'e' for unexpected exceptions time.sleep(3) continue # check log file for relevant notices messages.extend(scan_logfile(log)) # check the log file for errors sys.stdout.write('\r') try: validate_logfile(log) state = utils.state_message('%s:' % log_file, 'DONE', 'green') sys.stdout.write('%s\n' % state) sys.stdout.flush() except PuppetError: state = utils.state_message('%s:' % log_file, 'ERROR', 'red') sys.stdout.write('%s\n' % state) sys.stdout.flush() raise #-------------------------- step functions -------------------------- def run_cleanup(config, messages): localserver = utils.ScriptRunner() localserver.append("rm -rf %s/*pp" % basedefs.PUPPET_MANIFEST_DIR) localserver.execute() def install_deps(config, messages): deps = ["puppet", "openssh-clients", "tar", "nc"] modules_pkg = 'openstack-puppet-modules' local = utils.ScriptRunner() local.append('rpm -q --requires %s | egrep -v "^(rpmlib|\/|perl)"' % modules_pkg) # This can fail if there are no dependencies other than those # filtered out by the egrep expression. rc, modules_deps = local.execute(can_fail=False) # Modules package might not be installed if we are running from source. # In this case we assume user knows what (s)he's doing and we don't # install modules dependencies if ('%s is not installed' % modules_pkg) not in modules_deps: modules_deps = [i.strip() for i in modules_deps.split() if i.strip()] deps.extend(modules_deps) for hostname in filtered_hosts(config): server = utils.ScriptRunner(hostname) packages = ' '.join(deps) server.append("yum install -y %s" % packages) server.append("yum update -y %s" % packages) # yum does not fail if one of the packages is missing for package in deps: server.append("rpm -q --whatprovides %s" % (package)) server.execute() def copy_puppet_modules(config, messages): os_modules = ' '.join(('apache', 'ceilometer', 'certmonger', 'cinder', 'concat', 'firewall', 'glance', 'heat', 'horizon', 'inifile', 'keystone', 'memcached', 'mongodb', 'mysql', 'neutron', 'nova', 'nssdb', 'openstack', 'packstack', 'qpid', 'rabbitmq', 'remote', 'rsync', 'ssh', 'stdlib', 'swift', 'sysctl', 'tempest', 'vcsrepo', 'vlan', 'vswitch', 'xinetd', 'openstacklib')) # write puppet manifest to disk manifestfiles.writeManifests() server = utils.ScriptRunner() for hostname in filtered_hosts(config): host_dir = config['HOST_DETAILS'][hostname]['tmpdir'] # copy Packstack manifests server.append("cd %s/puppet" % basedefs.DIR_PROJECT_DIR) server.append("cd %s" % basedefs.PUPPET_MANIFEST_DIR) server.append("tar --dereference -cpzf - ../manifests | " "ssh -o StrictHostKeyChecking=no " "-o UserKnownHostsFile=/dev/null " "root@%s tar -C %s -xpzf -" % (hostname, host_dir)) # copy resources resources = config.get('RESOURCES', {}) for path, localname in resources.get(hostname, []): server.append("scp -o StrictHostKeyChecking=no " "-o UserKnownHostsFile=/dev/null " "%s root@%s:%s/resources/%s" % (path, hostname, host_dir, localname)) # copy Puppet modules required by Packstack server.append("cd %s" % MODULE_DIR) server.append("tar --dereference -cpzf - %s | " "ssh -o StrictHostKeyChecking=no " "-o UserKnownHostsFile=/dev/null " "root@%s tar -C %s -xpzf -" % (os_modules, hostname, os.path.join(host_dir, 'modules'))) server.execute() def apply_puppet_manifest(config, messages): if config.get("DRY_RUN"): return currently_running = [] lastmarker = None loglevel = '' logcmd = False if logging.root.level <= logging.DEBUG: loglevel = '--debug' logcmd = True for manifest, marker in manifestfiles.getFiles(): # if the marker has changed then we don't want to proceed until # all of the previous puppet runs have finished if lastmarker is not None and lastmarker != marker: wait_for_puppet(currently_running, messages) lastmarker = marker for hostname in filtered_hosts(config): if "%s_" % hostname not in manifest: continue host_dir = config['HOST_DETAILS'][hostname]['tmpdir'] print "Applying %s" % manifest server = utils.ScriptRunner(hostname) man_path = os.path.join(config['HOST_DETAILS'][hostname]['tmpdir'], basedefs.PUPPET_MANIFEST_RELATIVE, manifest) running_logfile = "%s.running" % man_path finished_logfile = "%s.finished" % man_path currently_running.append((hostname, finished_logfile)) server.append("touch %s" % running_logfile) server.append("chmod 600 %s" % running_logfile) server.append("export PACKSTACK_VAR_DIR=%s" % host_dir) cmd = ("( flock %s/ps.lock " "puppet apply %s --modulepath %s/modules %s > %s " "2>&1 < /dev/null ; " "mv %s %s ) > /dev/null 2>&1 < /dev/null &" % (host_dir, loglevel, host_dir, man_path, running_logfile, running_logfile, finished_logfile)) server.append(cmd) server.execute(log=logcmd) # wait for outstanding puppet runs befor exiting wait_for_puppet(currently_running, messages) def finalize(config, messages): for hostname in filtered_hosts(config): server = utils.ScriptRunner(hostname) server.append("installed=$(rpm -q kernel --last | head -n1 | " "sed 's/kernel-\([a-z0-9\.\_\-]*\).*/\\1/g')") server.append("loaded=$(uname -r | head -n1)") server.append('[ "$loaded" == "$installed" ]') try: rc, out = server.execute() except ScriptRuntimeError: messages.append('Because of the kernel update the host %s ' 'requires reboot.' % hostname)
py
1a3d34ca6ebee9c05ab9d6c104495d5579af1bec
import unittest import json import yaml import src.macro from mock import MagicMock class TestVPCBuilderTransitGatewaySetup(unittest.TestCase): identifier = "TEST" def setUp(self): self.maxDiff = None class TestVPCBuilderTransitGateway(TestVPCBuilderTransitGatewaySetup): def test_base_transitgw_object(self): resources = {} outputs = {} properties = yaml.load("""\ CIDR: 172.16.0.0/20 Details: {VPCName: PRIVATEEGRESSVPC, VPCDesc: Private Egress VPC, Region: ap-southeast-2, IPv6: True} Tags: {Template: VPC for private endpoints egress only, "info:environment": Staging, "info:owner": Versent} DHCP: {Name: DhcpOptions, DNSServers: 172.16.0.2, NTPServers: 169.254.169.123, NTBType: 2} TransitGateways: Test1: TransitGatewayId: tgw-01234567890123456 Tags: {Name: PRIVATE-EGRESS-VPC-TGW1, Purpose: Gateway Attach 1} Subnets: - Internal1 - Internal2 - Internal3 Test2: TransitGatewayId: tgw-98765432109876543 Tags: {Name: PRIVATE-EGRESS-VPC-TGW2, Purpose: Gateway Attach 2} Subnets: - Internal1 - Internal2 - Internal3 RouteTables: InternalRT1: - RouteName: Internal1 RouteCIDR: 10.0.0.0/8 - RouteName: Internal2 RouteCIDR: 192.168.0.0/16 InternalRT2: - RouteName: Internal1 RouteCIDR: 10.0.0.0/8 - RouteName: Internal2 RouteCIDR: 192.168.0.0/16 InternalRT3: - RouteName: Internal1 RouteCIDR: 10.0.0.0/8 - RouteName: Internal2 RouteCIDR: 192.168.0.0/16 """, Loader=yaml.FullLoader) expected = { 'Test2TransitGWAttach': { 'Type': 'AWS::EC2::TransitGatewayAttachment', 'Properties': { 'SubnetIds': [{ 'Ref': 'Internal1' }, { 'Ref': 'Internal2' }, { 'Ref': 'Internal3' }], 'VpcId': { 'Ref': 'PRIVATEEGRESSVPC' }, 'TransitGatewayId': 'tgw-98765432109876543', 'Tags': [ { 'Value': 'PRIVATE-EGRESS-VPC-TGW2', 'Key': 'Name' }, { 'Value': 'Gateway Attach 2', 'Key': 'Purpose' }, { "Key": "Template", "Value": "VPC for private endpoints egress only" }, { "Key": "info:environment", "Value": "Staging" }, { "Key": "info:owner", "Value": "Versent" } ] } }, "Test2InternalRT1Internal1": { "Type": "AWS::EC2::Route", "Properties": { "DestinationCidrBlock": "10.0.0.0/8", "TransitGatewayId": "tgw-98765432109876543", "RouteTableId": { "Ref": "InternalRT1" } }, "DependsOn": [ "Test2TransitGWAttach" ] }, "Test2InternalRT1Internal2": { "Type": "AWS::EC2::Route", "Properties": { "DestinationCidrBlock": "192.168.0.0/16", "TransitGatewayId": "tgw-98765432109876543", "RouteTableId": { "Ref": "InternalRT1" } }, "DependsOn": [ "Test2TransitGWAttach" ] }, "Test2InternalRT2Internal1": { "Type": "AWS::EC2::Route", "Properties": { "DestinationCidrBlock": "10.0.0.0/8", "TransitGatewayId": "tgw-98765432109876543", "RouteTableId": { "Ref": "InternalRT2" } }, "DependsOn": [ "Test2TransitGWAttach" ] }, "Test2InternalRT2Internal2": { "Type": "AWS::EC2::Route", "Properties": { "DestinationCidrBlock": "192.168.0.0/16", "TransitGatewayId": "tgw-98765432109876543", "RouteTableId": { "Ref": "InternalRT2" } }, "DependsOn": [ "Test2TransitGWAttach" ] }, "Test2InternalRT3Internal1": { "Type": "AWS::EC2::Route", "Properties": { "DestinationCidrBlock": "10.0.0.0/8", "TransitGatewayId": "tgw-98765432109876543", "RouteTableId": { "Ref": "InternalRT3" } }, "DependsOn": [ "Test2TransitGWAttach" ] }, "Test2InternalRT3Internal2": { "Type": "AWS::EC2::Route", "Properties": { "DestinationCidrBlock": "192.168.0.0/16", "TransitGatewayId": "tgw-98765432109876543", "RouteTableId": { "Ref": "InternalRT3" } }, "DependsOn": [ "Test2TransitGWAttach" ] }, 'Test1TransitGWAttach': { 'Type': 'AWS::EC2::TransitGatewayAttachment', 'Properties': { 'SubnetIds': [{ 'Ref': 'Internal1' }, { 'Ref': 'Internal2' }, { 'Ref': 'Internal3' }], 'VpcId': { 'Ref': 'PRIVATEEGRESSVPC' }, 'TransitGatewayId': 'tgw-01234567890123456', 'Tags': [ { 'Value': 'PRIVATE-EGRESS-VPC-TGW1', 'Key': 'Name' }, { 'Value': 'Gateway Attach 1', 'Key': 'Purpose' }, { "Key": "Template", "Value": "VPC for private endpoints egress only" }, { "Key": "info:environment", "Value": "Staging" }, { "Key": "info:owner", "Value": "Versent" } ] } } } actual, outputs = src.macro.buildTransitGateways(properties, resources, outputs, parameters={}) print(json.dumps(actual)) print(json.dumps(expected)) self.assertEquals(expected, actual)
py
1a3d351e86f4fd17a417ee415db39c64183d34cd
"""sync Revision ID: bb8e91317dc Revises: 292886e35ea7 Create Date: 2015-10-07 08:47:01.661978 """ # revision identifiers, used by Alembic. revision = 'bb8e91317dc' down_revision = '292886e35ea7' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_index('date_code_ix', table_name='committee_question') op.create_unique_constraint('date_code_ix', 'committee_question', ['date', 'code']) op.drop_index('date_deputy_president_number_ix', table_name='committee_question') op.create_unique_constraint('date_deputy_president_number_ix', 'committee_question', ['date', 'house_id', 'deputy_president_number']) op.drop_index('date_oral_number_ix', table_name='committee_question') op.create_unique_constraint('date_oral_number_ix', 'committee_question', ['date', 'house_id', 'oral_number']) op.drop_index('date_president_number_ix', table_name='committee_question') op.create_unique_constraint('date_president_number_ix', 'committee_question', ['date', 'house_id', 'president_number']) op.drop_index('date_written_number_ix', table_name='committee_question') op.create_unique_constraint('date_written_number_ix', 'committee_question', ['date', 'house_id', 'written_number']) op.drop_constraint(u'committee_question_minister_id_fkey', 'committee_question', type_='foreignkey') op.create_foreign_key(None, 'committee_question', 'minister', ['minister_id'], ['id'], ondelete='SET NULL') op.drop_constraint(u'daily_schedule_file_join_file_id_fkey', 'daily_schedule_file_join', type_='foreignkey') op.drop_constraint(u'daily_schedule_file_join_daily_schedule_id_fkey', 'daily_schedule_file_join', type_='foreignkey') op.create_foreign_key(None, 'daily_schedule_file_join', 'daily_schedule', ['daily_schedule_id'], ['id'], ondelete='CASCADE') op.create_foreign_key(None, 'daily_schedule_file_join', 'file', ['file_id'], ['id'], ondelete='CASCADE') op.drop_constraint(u'gazette_file_join_gazette_id_fkey', 'gazette_file_join', type_='foreignkey') op.drop_constraint(u'gazette_file_join_file_id_fkey', 'gazette_file_join', type_='foreignkey') op.create_foreign_key(None, 'gazette_file_join', 'file', ['file_id'], ['id'], ondelete='CASCADE') op.create_foreign_key(None, 'gazette_file_join', 'gazette', ['gazette_id'], ['id'], ondelete='CASCADE') op.drop_constraint(u'policy_document_file_join_policy_document_id_fkey', 'policy_document_file_join', type_='foreignkey') op.drop_constraint(u'policy_document_file_join_file_id_fkey', 'policy_document_file_join', type_='foreignkey') op.create_foreign_key(None, 'policy_document_file_join', 'file', ['file_id'], ['id'], ondelete='CASCADE') op.create_foreign_key(None, 'policy_document_file_join', 'policy_document', ['policy_document_id'], ['id'], ondelete='CASCADE') op.drop_constraint(u'question_reply_minister_id_fkey', 'question_reply', type_='foreignkey') op.create_foreign_key(None, 'question_reply', 'minister', ['minister_id'], ['id'], ondelete='SET NULL') op.drop_constraint(u'tabled_committee_report_file_join_file_id_fkey', 'tabled_committee_report_file_join', type_='foreignkey') op.drop_constraint(u'tabled_committee_report_file_jo_tabled_committee_report_id_fkey', 'tabled_committee_report_file_join', type_='foreignkey') op.create_foreign_key(None, 'tabled_committee_report_file_join', 'file', ['file_id'], ['id'], ondelete='CASCADE') op.create_foreign_key(None, 'tabled_committee_report_file_join', 'tabled_committee_report', ['tabled_committee_report_id'], ['id'], ondelete='CASCADE') op.drop_constraint(u'user_email_key', 'user', type_='unique') ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.create_unique_constraint(u'user_email_key', 'user', ['email']) op.drop_constraint(None, 'tabled_committee_report_file_join', type_='foreignkey') op.drop_constraint(None, 'tabled_committee_report_file_join', type_='foreignkey') op.create_foreign_key(u'tabled_committee_report_file_jo_tabled_committee_report_id_fkey', 'tabled_committee_report_file_join', 'tabled_committee_report', ['tabled_committee_report_id'], ['id']) op.create_foreign_key(u'tabled_committee_report_file_join_file_id_fkey', 'tabled_committee_report_file_join', 'file', ['file_id'], ['id']) op.drop_constraint(None, 'question_reply', type_='foreignkey') op.create_foreign_key(u'question_reply_minister_id_fkey', 'question_reply', 'minister', ['minister_id'], ['id']) op.drop_constraint(None, 'policy_document_file_join', type_='foreignkey') op.drop_constraint(None, 'policy_document_file_join', type_='foreignkey') op.create_foreign_key(u'policy_document_file_join_file_id_fkey', 'policy_document_file_join', 'file', ['file_id'], ['id']) op.create_foreign_key(u'policy_document_file_join_policy_document_id_fkey', 'policy_document_file_join', 'policy_document', ['policy_document_id'], ['id']) op.drop_constraint(None, 'gazette_file_join', type_='foreignkey') op.drop_constraint(None, 'gazette_file_join', type_='foreignkey') op.create_foreign_key(u'gazette_file_join_file_id_fkey', 'gazette_file_join', 'file', ['file_id'], ['id']) op.create_foreign_key(u'gazette_file_join_gazette_id_fkey', 'gazette_file_join', 'gazette', ['gazette_id'], ['id']) op.drop_constraint(None, 'daily_schedule_file_join', type_='foreignkey') op.drop_constraint(None, 'daily_schedule_file_join', type_='foreignkey') op.create_foreign_key(u'daily_schedule_file_join_daily_schedule_id_fkey', 'daily_schedule_file_join', 'daily_schedule', ['daily_schedule_id'], ['id']) op.create_foreign_key(u'daily_schedule_file_join_file_id_fkey', 'daily_schedule_file_join', 'file', ['file_id'], ['id']) op.drop_constraint(None, 'committee_question', type_='foreignkey') op.create_foreign_key(u'committee_question_minister_id_fkey', 'committee_question', 'minister', ['minister_id'], ['id']) op.drop_constraint('date_written_number_ix', 'committee_question', type_='unique') op.create_index('date_written_number_ix', 'committee_question', ['date', 'house_id', 'written_number'], unique=True) op.drop_constraint('date_president_number_ix', 'committee_question', type_='unique') op.create_index('date_president_number_ix', 'committee_question', ['date', 'house_id', 'president_number'], unique=True) op.drop_constraint('date_oral_number_ix', 'committee_question', type_='unique') op.create_index('date_oral_number_ix', 'committee_question', ['date', 'house_id', 'oral_number'], unique=True) op.drop_constraint('date_deputy_president_number_ix', 'committee_question', type_='unique') op.create_index('date_deputy_president_number_ix', 'committee_question', ['date', 'house_id', 'deputy_president_number'], unique=True) op.drop_constraint('date_code_ix', 'committee_question', type_='unique') op.create_index('date_code_ix', 'committee_question', ['date', 'code'], unique=True) ### end Alembic commands ###
py
1a3d35612d9dcaa2f8a39d952dfb7b8dcb420e76
# pylint: skip-file def main(): ''' ansible git module for committing ''' module = AnsibleModule( argument_spec=dict( state=dict(default='present', type='str', choices=['present']), msg=dict(default=None, required=True, type='str'), path=dict(default=None, required=True, type='str'), author=dict(default=None, required=False, type='str'), commit_files=dict(default=None, required=False, type='list'), ), supports_check_mode=False, ) git = GitCommit(module.params['msg'], module.params['path'], module.params['commit_files'], module.params['author'], ) state = module.params['state'] if state == 'present': results = git.commit() if results['returncode'] != 0: module.fail_json(msg=results) if results.has_key('no_commits'): module.exit_json(changed=False, results=results, state="present") module.exit_json(changed=True, results=results, state="present") module.exit_json(failed=True, changed=False, results='Unknown state passed. %s' % state, state="unknown") # pylint: disable=redefined-builtin, unused-wildcard-import, wildcard-import, locally-disabled # import module snippets. This are required if __name__ == '__main__': from ansible.module_utils.basic import * main()
py
1a3d35f0f066d34db8b98ca9d903427a5cddf7c7
from __future__ import absolute_import from fobi.base import form_element_plugin_registry from .base import ContentTextPlugin __title__ = 'fobi.contrib.plugins.form_elements.content.content_text.' \ 'fobi_form_elements' __author__ = 'Artur Barseghyan <[email protected]>' __copyright__ = '2014-2017 Artur Barseghyan' __license__ = 'GPL 2.0/LGPL 2.1' __all__ = ('ContentTextPlugin',) form_element_plugin_registry.register(ContentTextPlugin)
py
1a3d36a21d4b5875c632c273b52df6e1a8777d5b
import spacy from spacy.lemmatizer import Lemmatizer from spacy.lang.en import LEMMA_INDEX, LEMMA_EXC, LEMMA_RULES import random import swda import string class feature_extractor(object): def __init__(self): self.nlp = spacy.load('en_core_web_sm', disable = ['ner', 'textcat']) self.lemmatizer = spacy.lemmatizer.Lemmatizer(LEMMA_INDEX, LEMMA_EXC, LEMMA_RULES) def find_features(self, utterance, n = 9, is_previous_speaker = None, previous_da = None): features = {} doc = self.nlp(utterance) lemmatized = [self.lemmatizer(token.text, token.pos_)[0] for token in doc] features['is_question'] = ('?' in [token.text for token in doc]) #question mark for i in range(n): #first n tokens try: features['word'+str(i+1)] = lemmatized[i] except IndexError: features['word'+str(i+1)] = '' for i in range(n): #first n pos-tags try: features['word'+str(i+1)+'_pos_tag'] = doc[i].pos_ except IndexError: features['word'+str(i+1)+'_pos_tag'] = '' if is_previous_speaker != None: #previous speaker features['is_previous_speaker'] = is_previous_speaker else: features['is_previous_speaker'] = '' if previous_da: #previous dialogue act features['previous_da'] = previous_da else: features['previous_da'] = '' try: #predicate verb predicate, predicate_pos = [(token.text, token.pos_) for token in doc if token.dep_ == 'ROOT'][0] features['predicate'] = self.lemmatizer(predicate, predicate_pos)[0] except IndexError: features['predicate'] = '' try: #subject subject, subject_pos = [(token.text, token.pos_) for token in doc if (token.dep_ == 'nsubj') or (token.dep_ == 'nsubjpass') or (token.dep_ == 'csubj')][0] features['subject'] = self.lemmatizer(subject, subject_pos)[0] except IndexError: features['subject'] = '' try: #object object, object_pos = [(token.text, token.pos_) for token in doc if (token.dep_ == 'iobj') or (token.dep_ == 'obj') or (token.dep_ == 'dobj') or (token.dep_ == 'pobj')][0] features['object'] = self.lemmatizer(object, object_pos)[0] except IndexError: features['object'] = '' return features def create_featuresets(self, max_transcripts = 20, n = 9): corpus = swda.CorpusReader('swda') utterances = [] i = 1 for trans in corpus.iter_transcripts(display_progress = True): if i > max_transcripts: break previous_tag = None previous_caller = None for utt in trans.utterances: if utt.act_tag not in ('x', 't3', '%', '+'): #discard non-verbal, uninterpretable and third-party talk da:s as well as continued sentences try: previous_tag = utterances[-1][1] previous_caller = utterances[-1][2] except IndexError: pass utterances.append((self.clean_utterance(utt.text), utt.act_tag, utt.caller, previous_tag, previous_caller)) i += 1 print('\nProcessing {} utterances... this will take some time.'.format(str(len(utterances)))) random.shuffle(utterances) featuresets = [(self.find_features(text, n, is_previous_speaker = (caller == previous_caller), previous_da = previous_tag), tag) for (text, tag, caller, previous_tag, previous_caller) in utterances] return featuresets def clean_utterance(self, utterance): ttable = dict((ord(char), None) for char in string.punctuation) for key in '?!.,': if ord(key) in ttable: del ttable[ord(key)] for key in 'CDEFG': ttable[ord(key)] = None utterance = (utterance.translate(ttable)).replace(' ', ' ') if utterance[0] == ' ': utterance = utterance[1:] return utterance
py
1a3d36c39da8aae9a072302d46ab107bbf09198c
import unittest from unittest.mock import Mock from rastervision.augmentor import (Augmentor, AugmentorConfig, AugmentorConfigBuilder) from rastervision.protos.augmentor_pb2 import AugmentorConfig as AugmentorConfigMsg from tests.mock import SupressDeepCopyMixin MOCK_AUGMENTOR = 'MOCK_AUGMENTOR' class MockAugmentor(Augmentor): def __init__(self): self.mock = Mock() self.mock.process.return_value = None def process(self, training_data, tmp_dir): result = self.mock.process(training_data, tmp_dir) if result is None: return training_data else: return result class MockAugmentorConfig(SupressDeepCopyMixin, AugmentorConfig): def __init__(self): super().__init__(MOCK_AUGMENTOR) self.mock = Mock() self.mock.to_proto.return_value = None self.mock.create_augmentor.return_value = None self.mock.update_for_command.return_value = None def to_proto(self): result = self.mock.to_proto() if result is None: return AugmentorConfigMsg( augmentor_type=self.augmentor_type, custom_config={}) else: return result def create_augmentor(self): result = self.mock.create_augmentor() if result is None: return MockAugmentor() else: return result def update_for_command(self, command_type, experiment_config, context=None): super().update_for_command(command_type, experiment_config, context) self.mock.update_for_command(command_type, experiment_config, context) def report_io(self, command_type, io_def): self.mock.report_io(command_type, io_def) class MockAugmentorConfigBuilder(SupressDeepCopyMixin, AugmentorConfigBuilder): def __init__(self, prev=None): super().__init__(MockAugmentorConfig, {}) self.mock = Mock() self.mock.from_proto = None def from_proto(self, msg): result = self.mock.from_proto(msg) if result is None: return self else: return result if __name__ == '__main__': unittest.main()
py
1a3d36e577cefc8319b1114227c8c3312f6fb6bd
import cPickle as pickle import os from config.config import config from dic import parse, Info from query import topK_query, wildcard_query, load_and_calc if __name__ == "__main__": if not os.path.exists(config.TIERED_INDEX_FILE) or not os.path.exists(config.ID_HTML_FILE): info, id_html = parse() tiered_index_file = open(config.TIERED_INDEX_FILE, 'w') pickle.dump(info, tiered_index_file, config.PICKLE_PROTOCOL) id_html_file = open(config.ID_HTML_FILE, 'w') pickle.dump(id_html, id_html_file, config.PICKLE_PROTOCOL) pkl_file = open(config.TIERED_INDEX_FILE, 'r') info = pickle.load(pkl_file) index, voc, entries = load_and_calc(info) pkl_file = open(config.ID_HTML_FILE, 'r') id_html = pickle.load(pkl_file) print '------------------------- top k --------------------------------' result = topK_query(index, voc, entries, 'board beverage operations') html = [] for item in result: print item, id_html[item[0]] print '------------------------- top k --------------------------------' print '------------------------- wild --------------------------------' result = wildcard_query(index, voc, entries, 'board beverage opera*') html = [] for item in result: print item, id_html[item[0]] print '------------------------- wild --------------------------------'
py
1a3d370dd53ad563491d5299db34f1cf8fc29a6d
# Copyright 2012 Nebula, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import json from django import http from django.utils.encoding import force_text from django.utils.safestring import mark_safe from horizon import messages from horizon import middleware from horizon.test import helpers as test class MessageTests(test.TestCase): def test_middleware_header(self): req = self.request string = "Giant ants are attacking San Francisco!" expected = ["error", force_text(string), ""] self.assertIn("async_messages", req.horizon) self.assertItemsEqual(req.horizon['async_messages'], []) req.META['HTTP_X_REQUESTED_WITH'] = 'XMLHttpRequest' messages.error(req, string) self.assertItemsEqual(req.horizon['async_messages'], [expected]) res = http.HttpResponse() res = middleware.HorizonMiddleware('dummy_get_response') \ ._process_response(req, res) self.assertEqual(json.dumps([expected]), res['X-Horizon-Messages']) def test_error_message(self): req = self.request string = mark_safe("We are now safe from ants! Go <a>here</a>!") expected = ["error", force_text(string), " safe"] self.assertIn("async_messages", req.horizon) self.assertItemsEqual(req.horizon['async_messages'], []) req.META['HTTP_X_REQUESTED_WITH'] = 'XMLHttpRequest' messages.error(req, string) self.assertItemsEqual(req.horizon['async_messages'], [expected]) res = http.HttpResponse() res = middleware.HorizonMiddleware('dummy_get_response') \ ._process_response(req, res) self.assertEqual(json.dumps([expected]), res['X-Horizon-Messages'])
py
1a3d3735c83fc250b1058e179cfdc16408ef886a
import logging import pytest from dvc.exceptions import ( NoMetricsFoundError, NoMetricsParsedError, OverlappingOutputPathsError, ) from dvc.path_info import PathInfo from dvc.utils.fs import remove from dvc.utils.serialize import dump_yaml, modify_yaml from tests.func.metrics.utils import _write_json @pytest.mark.parametrize( "diff, metric_value", ( ( lambda repo, target, rev: repo.metrics.diff( targets=[target], a_rev=rev ), {"m": 1}, ), ( lambda repo, target, rev: repo.plots.diff( targets=[target], revs=[rev] ), [{"m": 1}, {"m": 2}], ), ), ) def test_diff_no_file_on_target_rev( tmp_dir, scm, dvc, caplog, diff, metric_value ): with tmp_dir.branch("new_branch", new=True): _write_json(tmp_dir, metric_value, "metric.json") with caplog.at_level(logging.WARNING, "dvc"): diff(dvc, "metric.json", "master") assert "'metric.json' was not found at: 'master'." in caplog.text @pytest.mark.parametrize( "show, malformed_metric", ( (lambda repo, target: repo.metrics.show(targets=[target]), '{"m": 1'), ( lambda repo, target: repo.plots.show(targets=[target]), '[{"m": 1}, {"m": 2}', ), ), ) def test_show_malformed_metric( tmp_dir, scm, dvc, caplog, show, malformed_metric ): tmp_dir.gen("metric.json", malformed_metric) with pytest.raises(NoMetricsParsedError): show(dvc, "metric.json") @pytest.mark.parametrize( "show", (lambda repo: repo.metrics.show(), lambda repo: repo.plots.show(),), ) def test_show_no_metrics_files(tmp_dir, dvc, caplog, show): with pytest.raises(NoMetricsFoundError): show(dvc) @pytest.mark.parametrize("clear_before_run", [True, False]) @pytest.mark.parametrize("typ", ["metrics", "plots"]) def test_metrics_show_overlap( tmp_dir, dvc, run_copy_metrics, clear_before_run, typ ): data_dir = PathInfo("data") (tmp_dir / data_dir).mkdir() outs = {typ: [str(data_dir / "m1.yaml")]} dump_yaml(data_dir / "m1_temp.yaml", {"a": {"b": {"c": 2, "d": 1}}}) run_copy_metrics( str(data_dir / "m1_temp.yaml"), str(data_dir / "m1.yaml"), single_stage=False, commit=f"add m1 {typ}", name="cp-m1", **outs, ) with modify_yaml("dvc.yaml") as d: # trying to make an output overlaps error d["stages"]["corrupted-stage"] = { "cmd": "mkdir data", "outs": ["data"], } # running by clearing and not clearing stuffs # so as it works even for optimized cases if clear_before_run: remove(data_dir) remove(dvc.cache.local.cache_dir) dvc._reset() show = dvc.metrics.show if typ == "metrics" else dvc.plots.show with pytest.raises(OverlappingOutputPathsError): show()
py
1a3d3790196706b7b2a5f7e941a83c5f83c3e3a8
"""Tests for lr_scheduler.py""" from distutils.version import LooseVersion from unittest.mock import Mock import numpy as np import pytest import torch from sklearn.base import clone from torch.optim import SGD from torch.optim.lr_scheduler import CosineAnnealingLR from torch.optim.lr_scheduler import ExponentialLR from torch.optim.lr_scheduler import LambdaLR from torch.optim.lr_scheduler import MultiStepLR from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.optim.lr_scheduler import StepLR from torch.optim.lr_scheduler import CyclicLR as TorchCyclicLR from skorch import NeuralNetClassifier from skorch.callbacks.lr_scheduler import WarmRestartLR, LRScheduler @pytest.mark.filterwarnings("ignore::DeprecationWarning") class TestLRCallbacks: @pytest.mark.parametrize('policy', [StepLR, 'StepLR']) def test_simulate_lrs_epoch_step(self, policy): lr_sch = LRScheduler(policy, step_size=2) lrs = lr_sch.simulate(6, 1) expected = np.array([1.0, 1.0, 0.1, 0.1, 0.01, 0.01]) assert np.allclose(expected, lrs) @pytest.mark.parametrize('policy', [TorchCyclicLR]) def test_simulate_lrs_batch_step(self, policy): lr_sch = LRScheduler( policy, base_lr=1, max_lr=5, step_size_up=4, step_every='batch') lrs = lr_sch.simulate(11, 1) expected = np.array([1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3]) assert np.allclose(expected, lrs) @pytest.mark.parametrize('policy, instance, kwargs', [ ('LambdaLR', LambdaLR, {'lr_lambda': (lambda x: 1e-1)}), ('StepLR', StepLR, {'step_size': 30}), ('MultiStepLR', MultiStepLR, {'milestones': [30, 90]}), ('ExponentialLR', ExponentialLR, {'gamma': 0.1}), ('ReduceLROnPlateau', ReduceLROnPlateau, {}), ('WarmRestartLR', WarmRestartLR, {}), ('CosineAnnealingLR', CosineAnnealingLR, {'T_max': 5, 'eta_min': 1e-3}), (WarmRestartLR, WarmRestartLR, {}), ]) def test_lr_callback_init_policies( self, classifier_module, classifier_data, policy, instance, kwargs, ): X, y = classifier_data lr_policy = LRScheduler(policy, **kwargs) net = NeuralNetClassifier( classifier_module, max_epochs=2, callbacks=[lr_policy] ) net.fit(X, y) assert any(list(map( lambda x: isinstance( getattr(x[1], 'lr_scheduler_', None), instance), net.callbacks_ ))) @pytest.mark.parametrize('policy, kwargs', [ ('LambdaLR', {'lr_lambda': (lambda x: 1e-1)}), ('StepLR', {'step_size': 30}), ('MultiStepLR', {'milestones': [30, 90]}), ('ExponentialLR', {'gamma': 0.1}), ('ReduceLROnPlateau', {}), ('WarmRestartLR', {}), ('CosineAnnealingLR', {'T_max': 3}), ]) def test_lr_callback_steps_correctly( self, classifier_module, classifier_data, policy, kwargs, ): max_epochs = 2 X, y = classifier_data lr_policy = LRScheduler(policy, **kwargs) net = NeuralNetClassifier( classifier_module(), max_epochs=max_epochs, batch_size=16, callbacks=[lr_policy], ) net.fit(X, y) # pylint: disable=protected-access assert lr_policy.lr_scheduler_.last_epoch == max_epochs @pytest.mark.parametrize('policy, kwargs', [ (TorchCyclicLR, {'base_lr': 1e-3, 'max_lr': 6e-3, 'step_every': 'batch'}), ]) def test_lr_callback_batch_steps_correctly( self, classifier_module, classifier_data, policy, kwargs, ): batch_size = 100 max_epochs = 2 X, y = classifier_data num_examples = len(X) lr_policy = LRScheduler(policy, **kwargs) net = NeuralNetClassifier(classifier_module(), max_epochs=max_epochs, batch_size=batch_size, callbacks=[lr_policy]) net.fit(X, y) total_iterations_per_epoch = num_examples / batch_size # 80% of sample used for training by default total_training_iterations_per_epoch = 0.8 * total_iterations_per_epoch expected = int(total_training_iterations_per_epoch * max_epochs) # pylint: disable=protected-access assert lr_policy.batch_idx_ == expected @pytest.mark.parametrize('policy, kwargs', [ (TorchCyclicLR, {'base_lr': 1e-3, 'max_lr': 6e-3, 'step_every': 'batch'}), ]) def test_lr_callback_batch_steps_correctly_fallback( self, classifier_module, classifier_data, policy, kwargs, ): batch_size = 100 max_epochs = 2 X, y = classifier_data num_examples = len(X) lr_policy = LRScheduler(policy, **kwargs) net = NeuralNetClassifier(classifier_module(), max_epochs=max_epochs, batch_size=batch_size, callbacks=[lr_policy]) net.fit(X, y) # Removes batch count information in the last two epochs for i in range(max_epochs): del net.history[i]["train_batch_count"] del net.history[i]["valid_batch_count"] net.partial_fit(X, y) total_iterations_per_epoch = num_examples / batch_size # batch_counts were removed thus the total iterations of the last # epoch is used total_iterations_fit_run = total_iterations_per_epoch * max_epochs # 80% of sample used for training by default total_iterations_partial_fit_run = ( 0.8 * total_iterations_per_epoch * max_epochs) # called fit AND partial_fit total_iterations = (total_iterations_fit_run + total_iterations_partial_fit_run) # Failback to using both valid and training batches counts on # second run expected = int(total_iterations) # pylint: disable=protected-access assert lr_policy.batch_idx_ == expected def test_lr_scheduler_cloneable(self): # reproduces bug #271 scheduler = LRScheduler(WarmRestartLR, base_lr=123) clone(scheduler) # does not raise def test_lr_scheduler_set_params(self, classifier_module, classifier_data): scheduler = LRScheduler( TorchCyclicLR, base_lr=123, max_lr=999, step_every='batch') net = NeuralNetClassifier( classifier_module, max_epochs=0, callbacks=[('scheduler', scheduler)], ) net.set_params(callbacks__scheduler__base_lr=456) net.fit(*classifier_data) # we need to trigger on_train_begin assert net.callbacks[0][1].lr_scheduler_.base_lrs[0] == 456 @pytest.mark.parametrize('policy,kwargs', [ (StepLR, {'gamma': 0.9, 'step_size': 1}) ]) @pytest.mark.skipif( LooseVersion(torch.__version__) < '1.4', reason="Feature isn't supported with this torch version." ) def test_lr_scheduler_record_epoch_step(self, classifier_module, classifier_data, policy, kwargs): epochs = 3 scheduler = LRScheduler(policy, **kwargs) lrs = scheduler.simulate(epochs, initial_lr=123.) net = NeuralNetClassifier( classifier_module, max_epochs=epochs, lr=123., callbacks=[('scheduler', scheduler)] ) net.fit(*classifier_data) assert np.all(net.history[:, 'event_lr'] == lrs) @pytest.mark.skipif( LooseVersion(torch.__version__) < '1.4', reason="Feature isn't supported with this torch version." ) def test_lr_scheduler_record_batch_step(self, classifier_module, classifier_data): X, y = classifier_data batch_size = 128 scheduler = LRScheduler( TorchCyclicLR, base_lr=1, max_lr=5, step_size_up=4, step_every='batch' ) net = NeuralNetClassifier( classifier_module, max_epochs=1, lr=123., batch_size=batch_size, callbacks=[('scheduler', scheduler)] ) net.fit(X, y) new_lrs = scheduler.simulate( net.history[-1, 'train_batch_count'], initial_lr=123., ) assert np.all(net.history[-1, 'batches', :, 'event_lr'] == new_lrs) def test_cyclic_lr_with_epoch_step_warning(self, classifier_module, classifier_data): msg = ("The LRScheduler now makes a step every epoch by default. " "To have the cyclic lr scheduler update " "every batch set step_every='batch'") with pytest.warns(FutureWarning, match=msg) as record: scheduler = LRScheduler( TorchCyclicLR, base_lr=123, max_lr=999) net = NeuralNetClassifier( classifier_module, max_epochs=0, callbacks=[('scheduler', scheduler)], ) net.initialize() assert len(record) == 1 class TestReduceLROnPlateau: def get_net_with_mock( self, classifier_data, classifier_module, monitor='train_loss'): """Returns a net with a mocked lr policy that allows to check what it's step method was called with. """ X, y = classifier_data net = NeuralNetClassifier( classifier_module, callbacks=[ ('scheduler', LRScheduler(ReduceLROnPlateau, monitor=monitor)), ], max_epochs=1, ).fit(X, y) # mock the policy policy = dict(net.callbacks_)['scheduler'].lr_scheduler_ mock_step = Mock(side_effect=policy.step) policy.step = mock_step # make sure that mocked policy is set scheduler = dict(net.callbacks_)['scheduler'] # pylint: disable=protected-access scheduler._get_scheduler = lambda *args, **kwargs: policy net.partial_fit(X, y) return net, mock_step @pytest.mark.parametrize('monitor', ['train_loss', 'valid_loss', 'epoch']) def test_reduce_lr_monitor_with_string( self, monitor, classifier_data, classifier_module): # step should be called with the 2nd to last value from that # history entry net, mock_step = self.get_net_with_mock( classifier_data, classifier_module, monitor=monitor) score = mock_step.call_args_list[0][0][0] np.isclose(score, net.history[-2, monitor]) def test_reduce_lr_monitor_with_callable( self, classifier_data, classifier_module): # step should always be called with the return value from the # callable, 55 _, mock_step = self.get_net_with_mock( classifier_data, classifier_module, monitor=lambda x: 55) score = mock_step.call_args_list[0][0][0] assert score == 55 @pytest.mark.parametrize('mode,score', [ ('min', np.inf), ('max', -np.inf) ]) def test_reduce_lr_monitor_max( self, classifier_data, classifier_module, mode, score): X, y = classifier_data net = NeuralNetClassifier( classifier_module, callbacks=[ ('scheduler', LRScheduler( ReduceLROnPlateau, monitor='train_loss', mode=mode)), ], max_epochs=1, ) net.fit(X, y) policy = dict(net.callbacks_)['scheduler'].lr_scheduler_ assert policy.best == score class TestWarmRestartLR(): def assert_lr_correct( self, optimizer, targets, epochs, min_lr, max_lr, base_period, period_mult): """Test that learning rate was set correctly.""" targets = [targets] if len(optimizer.param_groups) == 1 else targets scheduler = WarmRestartLR( optimizer, min_lr, max_lr, base_period, period_mult ) for epoch in range(epochs): optimizer.step() # suppress warning about .step call order scheduler.step(epoch) for param_group, target in zip(optimizer.param_groups, targets): assert param_group['lr'] == pytest.approx(target[epoch]) def _single_period_targets(self, epochs, min_lr, max_lr, period): targets = 1 + np.cos(np.arange(epochs) * np.pi / period) targets = min_lr + 0.5 * (max_lr - min_lr) * targets return targets.tolist() # pylint: disable=missing-docstring def _multi_period_targets( self, epochs, min_lr, max_lr, base_period, period_mult): remaining_epochs = epochs current_period = base_period targets = list() while remaining_epochs > 0: period_epochs = min(remaining_epochs, current_period + 1) remaining_epochs -= period_epochs targets += self._single_period_targets( period_epochs, min_lr, max_lr, current_period ) current_period = current_period * period_mult return targets @pytest.fixture() def init_optimizer(self, classifier_module): return SGD(classifier_module().parameters(), lr=0.05) def test_raise_incompatible_len_on_min_lr_err(self, init_optimizer): with pytest.raises(ValueError) as excinfo: WarmRestartLR(init_optimizer, min_lr=[1e-1, 1e-2]) assert 'min_lr' in str(excinfo.value) def test_raise_incompatible_len_on_max_lr_err(self, init_optimizer): with pytest.raises(ValueError) as excinfo: WarmRestartLR(init_optimizer, max_lr=[1e-1, 1e-2]) assert 'max_lr' in str(excinfo.value) def test_single_period(self, init_optimizer): optimizer = init_optimizer epochs = 3 min_lr = 5e-5 max_lr = 5e-2 base_period = 3 period_mult = 1 targets = self._single_period_targets( epochs, min_lr, max_lr, base_period) self.assert_lr_correct( optimizer, targets, epochs, min_lr, max_lr, base_period, period_mult ) def test_multi_period_with_restart(self, init_optimizer): optimizer = init_optimizer epochs = 9 min_lr = 5e-5 max_lr = 5e-2 base_period = 2 period_mult = 2 targets = self._multi_period_targets( epochs, min_lr, max_lr, base_period, period_mult ) self.assert_lr_correct( optimizer, targets, epochs, min_lr, max_lr, base_period, period_mult ) def test_restarts_with_multiple_groups(self, classifier_module): classifier = classifier_module() optimizer = SGD( [ {'params': classifier.sequential[0].parameters(), 'lr': 1e-3}, {'params': classifier.sequential[1].parameters(), 'lr': 1e-2}, {'params': classifier.sequential[2].parameters(), 'lr': 1e-1}, ] ) epochs = 9 min_lr_group = [1e-5, 1e-4, 1e-3] max_lr_group = [1e-3, 1e-2, 1e-1] base_period = 2 period_mult = 2 targets = list() for min_lr, max_lr in zip(min_lr_group, max_lr_group): targets.append( self._multi_period_targets( epochs, min_lr, max_lr, base_period, period_mult ) ) self.assert_lr_correct( optimizer, targets, epochs, min_lr_group, max_lr_group, base_period, period_mult )
py
1a3d381f77b67ffb06deb1be2b3a402e1ad3af9e
import os import sys import re def terminal(cmd): return os.popen(cmd).read() def run(clauses, literals, num_vars): terminal(f'python3 gen_random_SAT.py {clauses} {literals} {num_vars}') output = terminal('./kissat_gb/build/kissat random_SAT.cnf | grep process-time:') match = re.match('c process-time:\s+[^\s]+\s+([0-9\.]+)', output) t1 = float(match.group(1)) t2 = 1000 return (t1, t2) def header(): line = 'Clauses,' line += 'Literals per clause,' line += 'Variables,' line += 'KISSAT_GB Time (s),' line += 'BRUTE_FORCE Time (s),' return line def log(clauses, literals, num_vars, t1, t2): line = str(clauses) + ',' line += str(literals) + ',' line += str(num_vars) + ',' line += str(t1) + ',' line += str(t2) + ',' return line output = open('experiment_output.csv', 'w') output.write(header() + '\n') total_clauses = 1000 total_literals = 1000 total_variables = 1000 step = 100 count = 0 num_samples = (total_clauses / step) * (total_literals / step) * (total_variables / step) for clauses in range(step, total_clauses, step): for literals in range(step, total_literals, step): for num_vars in range(step, total_variables, step): if(count % 10 == 0): print(f'Progress: {count / num_samples}') count += 1 (t1, t2) = run(clauses, literals, num_vars) output.write(log(clauses, literals, num_vars, t1, t2) + '\n') output.close() print('SUCCESS!')
py
1a3d3888354fdc55f2332b14c7e49bc3f837bc81
""" To understand why this file is here, please read: http://cookiecutter-django.readthedocs.io/en/latest/faq.html#why-is-there-a-django-contrib-sites-directory-in-cookiecutter-django """ from django.conf import settings from django.db import migrations def update_site_forward(apps, schema_editor): """Set site domain and name.""" Site = apps.get_model("sites", "Site") Site.objects.update_or_create( id=settings.SITE_ID, defaults={ "domain": "apros.com", "name": "V2X_Solution", }, ) def update_site_backward(apps, schema_editor): """Revert site domain and name to default.""" Site = apps.get_model("sites", "Site") Site.objects.update_or_create( id=settings.SITE_ID, defaults={"domain": "example.com", "name": "example.com"} ) class Migration(migrations.Migration): dependencies = [("sites", "0002_alter_domain_unique")] operations = [migrations.RunPython(update_site_forward, update_site_backward)]
py
1a3d38fd49dc33bead1b0c4e8d91741254ef4a2f
# -*- coding: utf-8 -*- class Singleton(type): def __init__(cls, name, bases, attrs, **kwargs): super().__init__(name, bases, attrs) cls._instance = None def __call__(cls, *args, **kwargs): if cls._instance is None: cls._instance = super().__call__(*args, **kwargs) return cls._instance
py
1a3d39a53f9fef4d400f714095f57b08c4040890
""" Leetcode 111. Minimum Depth of Binary Tree Here things are bit complicated than max depth. In a root with atleast one right and left, the max depth logic will work. But consider the case. 2 3 4 5 2 3 4 5 6 My idea: the actual base case is not node is None. The correct one is, root.left and root.right are None, then thats the leaf node. So base cases changes accordingly. """ # Definition for a binary tree node. class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right from typing import Optional class Solution: def minDepth(self, root: Optional[TreeNode]) -> int: def dfs(root): if root.left is None and root.right is None: return 1 elif root.left is None: return 1 + dfs(root.right) elif root.right is None: return 1 + dfs(root.left) else: return 1 + min(dfs(root.left), dfs(root.right)) if root is None: return 0 min_depth = dfs(root) return min_depth
py
1a3d3ad763df2ddb6a0aed80ac681a04ca517bc4
"""This is complete MIME handling package, provides fast parser and models for handling mime. Rationale -------- * Standard python parser is slow at parsing big messages, it takes ~1 second and a couple of millions of ops to parse 11MB message. * Not very memory efficient, as it splits the message into array of lines, and joins them after the parsing. * Does not preserve the original encodings when altering the message. The new parser is: * Fast, it takes ~50 millisecond and ~2K operations to parse 11 MB message. * Memory efficient, as it stores the message in one string. * Tracks changes and returns unchanged parts unchanged upon serialization. * Converts headers to unicode, detects and preserves encodings when possible. Parser drawbacks: * Parser is strict, when the MIME is broken, raises MimeError and does not attempt to fix anything except simple errors (like mistyped charsets) Alternatives: If you still need to process the broken MIME, use flanker.mime.fallback.FallbackMessage that relies on python parser in terms of fixing the broken MIME and forces broken encodings in bodies and headers, but beware that it can loose some information because of broken or unknown encodings. Examples ------- >> from flanker import mime >> msg = mime.from_string(message_string) # unicode multi-value dictionary with headers msg.headers # useful content_type member with predicates: msg.content_type.is_multipart() msg.content_type.is_singlepart() msg.content_type.is_message_container() #decoded body of the message if msg.content_type.is_singlepart(): msg.body # parts if message is multipart if msg.content_type.is_multipart(): msg.parts # enclosed message if msg.content_type.is_message_container(): msg.enclosed read more in package details. """ from flanker.mime.message.errors import DecodingError, EncodingError, MimeError from flanker.mime import create from flanker.mime.create import from_string from flanker.mime.message.fallback.create import from_string as recover from flanker.mime.message.utils import python_message_to_string from flanker.mime.message.headers.parametrized import fix_content_type
py
1a3d3c72bac9f50df90aed592b5176e61a8fcb49
import unittest from typing import Any, List from hstest.check_result import CheckResult from hstest.stage_test import StageTest from hstest.test_case import TestCase class TestCustomChecker(StageTest): def generate(self) -> List[TestCase]: return [ TestCase( attach='4\n-in\n123\nout\n234\n', args=['-in', '123', 'out', '234'], check_function=self.custom_check ), ] def custom_check(self, reply: str, attach: Any) -> CheckResult: return CheckResult(reply == attach, '') class Test(unittest.TestCase): def test(self): status, feedback = TestCustomChecker( 'tests.outcomes.test_custom_checker.program' ).run_tests() self.assertEqual('test OK', feedback) self.assertEqual(status, 0)
py
1a3d3c7dbb1356b622805d730ce1a6e431857679
name = 'abaqus2dyna' from ._version import get_versions __version__ = get_versions()['version'] del get_versions
py
1a3d3ccc1a04dfd264aba446740b7a32b3ff5c84
#!/usr/bin/env python3 # # This script is used to run the yaml test cases for morphology & morphophonology # tests. # # License: CC0 (see LICENSE) from subprocess import Popen, PIPE from argparse import ArgumentParser from io import StringIO from collections import OrderedDict, namedtuple import os import os.path import re import shlex import shutil import sys import yaml TestCase = namedtuple("TestCase", ['input', 'outputs']) # SUPPORT FUNCTIONS def string_to_list(data): if isinstance(data, bytes): return [data.decode('utf-8')] elif isinstance(data, str): return [data] else: return data def invert_dict(data): tmp = OrderedDict() for key, val in data.items(): for v in string_to_list(val): d = tmp.setdefault(v, []) if key not in d: d.append(key) return tmp COLORS = { "red": "\033[1;31m", "green": "\033[0;32m", "orange": "\033[0;33m", "yellow": "\033[1;33m", "blue": "\033[0;34m", "light_blue": "\033[0;36m", "reset": "\033[m" } def colourise(string, *args, **kwargs): kwargs.update(COLORS) return string.format(*args, **kwargs) def check_path_exists(program): out = shutil.which(program) if out is None: raise EnvironmentError("Cannot find `%s`. Check $PATH." % program) return out # SUPPORT CLASSES class LookupError(Exception): pass # Courtesy of https://gist.github.com/844388. Thanks! class _OrderedDictYAMLLoader(yaml.Loader): """A YAML loader that loads mappings into ordered dictionaries.""" def __init__(self, *args, **kwargs): yaml.Loader.__init__(self, *args, **kwargs) self.add_constructor('tag:yaml.org,2002:map', type(self).construct_yaml_map) self.add_constructor('tag:yaml.org,2002:omap', type(self).construct_yaml_map) def construct_yaml_map(self, node): data = OrderedDict() yield data value = self.construct_mapping(node) data.update(value) def construct_mapping(self, node, deep=False): if isinstance(node, yaml.MappingNode): self.flatten_mapping(node) else: raise yaml.constructor.ConstructorError(None, None, 'expected a mapping node, but found %s' % node.id, node.start_mark) mapping = OrderedDict() for key_node, value_node in node.value: key = self.construct_object(key_node, deep=deep) try: hash(key) except TypeError as exc: raise yaml.constructor.ConstructorError('while constructing a mapping', node.start_mark, 'found unacceptable key (%s)' % exc, key_node.start_mark) value = self.construct_object(value_node, deep=deep) mapping[key] = value return mapping def yaml_load_ordered(f): return yaml.load(f, _OrderedDictYAMLLoader) class TestFile: def __init__(self, data, system="hfst"): self.data = data self._system = system @property def surface_tests(self): tests = OrderedDict() for title, cases in self.data['Tests'].items(): new_cases = [] for surface, lexical in cases.items(): new_cases.append(TestCase(input=surface, outputs=string_to_list(lexical))) tests[title] = new_cases return tests @property def lexical_tests(self): tests = OrderedDict() for title, cases in self.data['Tests'].items(): new_cases = [] for lexical, surface in invert_dict(cases).items(): new_cases.append(TestCase(input=lexical, outputs=string_to_list(surface))) tests[title] = new_cases return tests @property def gen(self): return self.data.get("Config", {}).get(self._system, {}).get("Gen", None) @property def morph(self): return self.data.get("Config", {}).get(self._system, {}).get("Morph", None) @property def app(self): a = self.data.get("Config", {}).get(self._system, {}).get("App", None) if a is None: if self._system == "hfst": return ['hfst-lookup'] elif self._system == "xerox": return ["lookup", "-flags", "mbTT"] else: raise Exception("Unknown system: '%s'" % self._system) return a class MorphTest: class AllOutput(): def __init__(self, args): self._io = StringIO() self.args = args def __str__(self): return self._io.getvalue() def write(self, data): self._io.write(data) def info(self, data): self.write(data) def title(self, *args): pass def success(self, *args): pass def failure(self, *args): pass def result(self, *args): pass def final_result(self, hfst): self.write(colourise("Total passes: {green}{passes}{reset}, " + "Total fails: {red}{fails}{reset}, " + "Total: {light_blue}{total}{reset}\n", passes=hfst.passes, fails=hfst.fails, total=hfst.fails+hfst.passes )) class NormalOutput(AllOutput): def title(self, text): self.write(colourise("{light_blue}-" * len(text) + '\n')) self.write(text + '\n') self.write(colourise("-" * len(text) + '{reset}\n')) def success(self, case, total, left, right): x = colourise(("[{light_blue}{case:>%d}/{total}{reset}][{green}PASS{reset}] " + "{left} {blue}=>{reset} {right}\n") % len(str(total)), left=left, right=right, case=case, total=total) self.write(x) def failure(self, case, total, left, right, errlist): x = colourise(("[{light_blue}{case:>%d}/{total}{reset}][{red}FAIL{reset}] " + "{left} {blue}=>{reset} {right}: {errlist}\n") % len(str(total)), left=left, right=right, case=case, total=total, errlist=", ".join(errlist)) self.write(x) def result(self, title, test, counts): p = counts["Pass"] f = counts["Fail"] text = colourise("\nTest {n} - Passes: {green}{passes}{reset}, " + "Fails: {red}{fails}{reset}, " + "Total: {light_blue}{total}{reset}\n", n=test, passes=p, fails=f, total=p+f) self.write(text) class CompactOutput(AllOutput): def result(self, title, test, counts): p = counts["Pass"] f = counts["Fail"] out = "%s %d/%d/%d" % (title, p, f, p+f) if counts["Fail"] > 0: if not self.args.hide_fail: self.write(colourise("[{red}FAIL{reset}] {}\n", out)) elif not self.args.hide_pass: self.write(colourise("[{green}PASS{reset}] {}\n", out)) class TerseOutput(AllOutput): def success(self, case, total, l, r): self.write(colourise("{green}.{reset}")) def failure(self, case, total, form, err, errlist): self.write(colourise("{red}!{reset}")) def result(self, title, test, counts): self.write('\n') def final_result(self, counts): if counts.fails > 0: self.write(colourise("{red}FAIL{reset}\n")) else: self.write(colourise("{green}PASS{reset}\n")) class FinalOutput(AllOutput): def final_result(self, counts): p = counts.passes f = counts.fails self.write("%d/%d/%d " % (p, f, p+f)) class NoOutput(AllOutput): def final_result(self, *args): pass def __init__(self, args): self.args = args # TODO: check for null case self.fails = 0 self.passes = 0 self.count = OrderedDict() self.load_config(self.args.test_file) def run(self): #timing_begin = time.time() self.run_tests(self.args.test) #self.timer = time.time() - timing_begin if self.fails > 0: return 1 else: return 0 def load_config(self, fn): args = self.args if fn.endswith('lexc'): self.config = TestFile(parse_lexc_trans(open(fn), args.gen, args.morph, args.app, args.transducer, args.section), args.section) else: self.config = TestFile(yaml_load_ordered(open(fn)), args.section) d = os.path.dirname(fn) if d: os.chdir(os.path.dirname(fn)) # we've loaded the test file, now let all paths be # relative to that file config = self.config app = args.app or config.app if isinstance(app, str): app = app.split(" ") self.program = string_to_list(app) check_path_exists(self.program[0]) self.gen = args.gen or config.gen self.morph = args.morph or config.morph if args.surface: self.gen = None if args.lexical: self.morph = None if self.gen == self.morph == None: raise AttributeError("One of Gen or Morph must be configured.") for i in (self.gen, self.morph): if i and not os.path.isfile(i): raise IOError("File %s does not exist." % i) if args.silent: self.out = MorphTest.NoOutput(args) else: self.out = { "normal": MorphTest.NormalOutput, "terse": MorphTest.TerseOutput, "compact": MorphTest.CompactOutput, "silent": MorphTest.NoOutput, "final": MorphTest.FinalOutput }.get(args.output, lambda x: None)(args) if self.out is None: raise AttributeError("Invalid output mode supplied: %s" % args.output) if args.verbose: self.out.info("`%s` will be used for parsing dictionaries.\n" % self.program[0]) if not args.colour: for key in list(COLORS.keys()): COLORS[key] = "" def run_tests(self, single_test=None): args = self.args config = self.config if args.surface == args.lexical == False: args.surface = args.lexical = True if single_test is not None: self.parse_fsts(single_test) if args.lexical: self.run_test(single_test, True) if args.surface: self.run_test(single_test, False) else: self.parse_fsts() if args.lexical: for t in config.lexical_tests: self.run_test(t, True) if args.surface: for t in config.surface_tests: self.run_test(t, False) self.out.final_result(self) def parse_fsts(self, key=None): args = self.args self.results = {"gen": {}, "morph": {}} def parser(self, d, f, tests): # TODO: handle ~ in file parser if key is not None: keys = [x.lstrip("~") for x in tests[key]] else: keys = [x[0].lstrip("~") for vals in tests.values() for x in vals] app = Popen(self.program + [f], stdin=PIPE, stdout=PIPE, stderr=PIPE, close_fds=True) args = '\n'.join(keys) + '\n' res, err = app.communicate(args.encode('utf-8')) res = res.decode('utf-8').split('\n\n') err = err.decode('utf-8').strip() if app.returncode != 0: self.results['err'] = "\n".join( [i for i in [res[0], err, "(Error code: %s)" % app.returncode] if i != ''] ) else: self.results[d] = self.parse_fst_output(res) if args.lexical: parser(self, "gen", self.gen, self.config.surface_tests) if self.args.verbose: self.out.info("Generating...\n") if args.surface: parser(self, "morph", self.morph, self.config.lexical_tests) if self.args.verbose: self.out.info("Morphing...\n") if self.args.verbose: self.out.info("Done!\n") def get_forms(self, test, forms): if test.startswith('~'): test = test.lstrip("~") detested = set() expected = set() for i in forms: if i.startswith('~'): expected.add(i.lstrip('~')) else: detested.add(i) else: detested = set([i.lstrip('~') for i in forms if i.startswith('~')]) expected = set([i.lstrip('~') for i in forms if not i.startswith('~')]) return test, detested, expected def run_test(self, data, is_lexical): if is_lexical: desc = "Lexical/Generation" f = "gen" tests = self.config.surface_tests[data] else: #surface desc = "Surface/Analysis" f = "morph" tests = self.config.lexical_tests[data] res = self.results[f] if self.results.get('err'): raise LookupError('`%s` had an error:\n%s' % (self.program, self.results['err'])) c = len(self.count) d = "%s (%s)" % (data, desc) title = "Test %d: %s" % (c, d) self.out.title(title) self.count[d] = {"Pass": 0, "Fail": 0} caseslen = len(tests) for n, testcase in enumerate(tests): n += 1 # off by one annoyance test = testcase.input forms = testcase.outputs actual_results = set(res[test.lstrip("~")]) test, detested_results, expected_results = self.get_forms(test, forms) missing = set() invalid = set() success = set() detested = set() missing_detested = set() for form in expected_results: if not form in actual_results: missing.add(form) for form in detested_results: if form in actual_results: detested.add(form) actual_results.remove(form) else: missing_detested.add(form) for form in actual_results: if not form in expected_results: invalid.add(form) if len(expected_results) > 0: for form in actual_results: if not form in (missing | invalid | detested): passed = True success.add(form) self.count[d]["Pass"] += 1 if not self.args.hide_pass: self.out.success(n, caseslen, test, form) for form in missing_detested: success.add(form) self.count[d]["Pass"] += 1 if not self.args.hide_pass: self.out.success(n, caseslen, test, "<No '%s' %s>" % (form, desc.lower())) else: if len(invalid) == 1 and list(invalid)[0].endswith("+?"): invalid = set() self.count[d]["Pass"] += 1 if not self.args.hide_pass: self.out.success(n, caseslen, test, "<No %s>" % desc.lower()) if len(missing) > 0: if not self.args.hide_fail: self.out.failure(n, caseslen, test, "Missing results", missing) #self.count[d]["Fail"] += len(missing) if len(invalid) > 0: if not is_lexical and self.args.ignore_analyses: invalid = set() # hide this for the final check elif not self.args.hide_fail: self.out.failure(n, caseslen, test, "Unexpected results", invalid) #self.count[d]["Fail"] += len(invalid) if len(detested) > 0: if self.args.colour: msg = colourise("{red}BROKEN!{reset}") else: msg = "BROKEN!" if not self.args.hide_fail: self.out.failure(n, caseslen, test, msg + " Negative results", detested) #self.count[d]["Fail"] += len(detested) if len(detested) + len(missing) + len(invalid) > 0: self.count[d]["Fail"] += 1 self.out.result(title, c, self.count[d]) self.passes += self.count[d]["Pass"] self.fails += self.count[d]["Fail"] def parse_fst_output(self, fst): parsed = {} for item in fst: res = item.replace('\r\n','\n').replace('\r','\n').split('\n') for i in res: if i.strip() != '': results = re.split(r'\t+', i) key = results[0].strip() if not key in parsed: parsed[key] = set() # This test is needed because xfst's lookup # sometimes output strings like # bearkoe\tbearkoe\t+N+Sg+Nom, instead of the expected # bearkoe\tbearkoe+N+Sg+Nom if len(results) > 2 and results[2][0] == '+': parsed[key].add(results[1].strip() + results[2].strip()) else: parsed[key].add(results[1].strip()) return parsed def __str__(self): return str(self.out) # Debug regex at: https://debuggex.com # Visualisation of the TEST_RE regex: # https://debuggex.com/i/kURzt7XS3t83-dvT.png # Link to debuggex page with this regex: # https://debuggex.com/r/kURzt7XS3t83-dvT def parse_lexc(f, fallback=None): HEADER_RE = re.compile(r'^\!\!€([^\s.:]+)(?:.[^\s:]+)?:\s*([^#]+)\s*#?') TEST_RE = re.compile(r'^\!\!([€\$])\s+(\S.*):\s+(\S+|\S.*\S)(\s*$|\s+[#!])') POS = "€" NEG = "$" output = {} trans = None test = None if isinstance(f, str): f = StringIO(f) lines = f.readlines() for line in lines: if line.startswith("LEXICON"): test = line.split(" ", 1)[-1] if fallback is not None: trans = fallback elif line.startswith("!!"): match = HEADER_RE.match(line) if match: trans = match.group(1) test = match.group(2).strip() if output.get(trans) is None: output[trans] = OrderedDict() if output[trans].get(test) is None: output[trans][test] = OrderedDict() continue match = TEST_RE.match(line) if test is None or trans is None: continue if TEST_RE.match(line): test_type = match.group(1).strip() left = match.group(3).strip() right = match.group(2).strip() if test_type == NEG: right = "~" + right if output[trans][test].get(left) is None: output[trans][test][left] = [] output[trans][test][left].append(right) return dict(output) def parse_lexc_trans(f, gen=None, morph=None, app=None, fallback=None, lookup="hfst"): trans = None if gen is not None: trans = gen.rsplit('.', 1)[0].split('-', 1)[1] elif morph is not None: trans = morph.rsplit('.', 1)[0].split('-', 1)[1] elif fallback is not None: trans = fallback if trans is None or trans == "": raise AttributeError("Could not guess which transducer to use.") lexc = parse_lexc(f, fallback)[trans] if app is None: app = ["hfst-lookup"] if lookup == "hfst" else ["lookup", "-flags", "mbTT"] config = {lookup: {"Gen": gen, "Morph": morph, "App": string_to_list(app)}} return {"Config": config, "Tests": lexc} def lexc_to_yaml_string(data): out = StringIO() out.write("Tests:\n") for trans, tests in data.items(): for test, lines in tests.items(): out.write(" %s:\n" % test) for left, rights in lines.items(): if len(rights) == 1: out.write(" %s: %s\n" % (left, rights[0])) elif len(rights) > 1: out.write(" %s: [%s]\n" % (left, ", ".join(rights))) return out.getvalue() class UI(ArgumentParser): def __init__(self): ArgumentParser.__init__(self) self.description="""Test morphological transducers for consistency.""" self.epilog="Will run all tests in the test_file by default." self.add_argument("-c", "--colour", dest="colour", action="store_true", help="Colours the output") self.add_argument("-o", "--output", dest="output", default="normal", help="Desired output style: normal, compact, terse, final (Default: normal)") self.add_argument("-q", "--silent", dest="silent", action="store_true", help="Hide all output; exit code only") self.add_argument("-i", "--ignore-extra-analyses", dest="ignore_analyses", action="store_true", help="""Ignore extra analyses when there are more than expected, will PASS if the expected one is found.""") self.add_argument("-s", "--surface", dest="surface", action="store_true", help="Surface input/analysis tests only") self.add_argument("-l", "--lexical", dest="lexical", action="store_true", help="Lexical input/generation tests only") self.add_argument("-f", "--hide-fails", dest="hide_fail", action="store_true", help="Suppresses fails to make finding passes easier") self.add_argument("-p", "--hide-passes", dest="hide_pass", action="store_true", help="Suppresses passes to make finding fails easier") self.add_argument("-S", "--section", default="hfst", dest="section", nargs='?', required=False, help="The section to be used for testing (default is `hfst`)") self.add_argument("-t", "--test", dest="test", nargs='?', required=False, help="""Which test to run (Default: all). TEST = test ID, e.g. 'Noun - g\u00E5etie' (remember quotes if the ID contains spaces)""") self.add_argument("-F", "--fallback", dest="transducer", nargs='?', required=False, help="""Which fallback transducer to use (ignored, use --gen and --morph).""") self.add_argument("-v", "--verbose", dest="verbose", action="store_true", help="More verbose output.") self.add_argument("--app", dest="app", nargs='?', required=False, help="Override application used for test") self.add_argument("--gen", dest="gen", nargs='?', required=False, help="Override generation transducer used for test") self.add_argument("--morph", dest="morph", nargs='?', required=False, help="Override morph transducer used for test") self.add_argument("test_file", help="YAML file with test rules") self.test = MorphTest(self.parse_args()) def start(self): ret = self.test.run() sys.stdout.write(str(self.test)) sys.exit(ret) def main(): try: ui = UI() ui.start() except KeyboardInterrupt: sys.exit(130) #except Exception as e: # print("Error: %r" % e) # sys.exit(1) if __name__ == "__main__": main()
py
1a3d3da2b92472919c825f58389fda91ab32e3f0
# Copyright 2015 Google, Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import backoff from google.cloud import datastore import pytest import snippets PROJECT = os.environ["GOOGLE_CLOUD_PROJECT"] class CleanupClient(datastore.Client): def __init__(self, *args, **kwargs): super(CleanupClient, self).__init__(*args, **kwargs) self.entities_to_delete = [] self.keys_to_delete = [] def cleanup(self): with self.batch(): self.delete_multi( list(set([x.key for x in self.entities_to_delete])) + list(set(self.keys_to_delete)) ) @pytest.yield_fixture def client(): client = CleanupClient(PROJECT) yield client client.cleanup() @pytest.mark.flaky class TestDatastoreSnippets: # These tests mostly just test the absence of exceptions. def test_incomplete_key(self, client): assert snippets.incomplete_key(client) def test_named_key(self, client): assert snippets.named_key(client) def test_key_with_parent(self, client): assert snippets.key_with_parent(client) def test_key_with_multilevel_parent(self, client): assert snippets.key_with_multilevel_parent(client) def test_basic_entity(self, client): assert snippets.basic_entity(client) def test_entity_with_parent(self, client): assert snippets.entity_with_parent(client) def test_properties(self, client): assert snippets.properties(client) def test_array_value(self, client): assert snippets.array_value(client) def test_upsert(self, client): task = snippets.upsert(client) client.entities_to_delete.append(task) assert task def test_insert(self, client): task = snippets.insert(client) client.entities_to_delete.append(task) assert task def test_update(self, client): task = snippets.insert(client) client.entities_to_delete.append(task) assert task def test_lookup(self, client): task = snippets.lookup(client) client.entities_to_delete.append(task) assert task def test_delete(self, client): snippets.delete(client) def test_batch_upsert(self, client): tasks = snippets.batch_upsert(client) client.entities_to_delete.extend(tasks) assert tasks def test_batch_lookup(self, client): tasks = snippets.batch_lookup(client) client.entities_to_delete.extend(tasks) assert tasks def test_batch_delete(self, client): snippets.batch_delete(client) @backoff.on_exception(backoff.expo, AssertionError, max_time=240) def test_unindexed_property_query(self, client): tasks = snippets.unindexed_property_query(client) client.entities_to_delete.extend(tasks) assert tasks @backoff.on_exception(backoff.expo, AssertionError, max_time=240) def test_basic_query(self, client): tasks = snippets.basic_query(client) client.entities_to_delete.extend(tasks) assert tasks @backoff.on_exception(backoff.expo, AssertionError, max_time=240) def test_projection_query(self, client): priorities, percents = snippets.projection_query(client) client.entities_to_delete.extend(client.query(kind="Task").fetch()) assert priorities assert percents def test_ancestor_query(self, client): tasks = snippets.ancestor_query(client) client.entities_to_delete.extend(tasks) assert tasks def test_run_query(self, client): snippets.run_query(client) def test_cursor_paging(self, client): for n in range(6): client.entities_to_delete.append(snippets.insert(client)) @backoff.on_exception(backoff.expo, AssertionError, max_time=240) def run_sample(): results = snippets.cursor_paging(client) page_one, cursor_one, page_two, cursor_two = results assert len(page_one) == 5 assert len(page_two) assert cursor_one run_sample() @backoff.on_exception(backoff.expo, AssertionError, max_time=240) def test_property_filter(self, client): tasks = snippets.property_filter(client) client.entities_to_delete.extend(tasks) assert tasks @backoff.on_exception(backoff.expo, AssertionError, max_time=240) def test_composite_filter(self, client): tasks = snippets.composite_filter(client) client.entities_to_delete.extend(tasks) assert tasks @backoff.on_exception(backoff.expo, AssertionError, max_time=240) def test_key_filter(self, client): tasks = snippets.key_filter(client) client.entities_to_delete.extend(tasks) assert tasks @backoff.on_exception(backoff.expo, AssertionError, max_time=240) def test_ascending_sort(self, client): tasks = snippets.ascending_sort(client) client.entities_to_delete.extend(tasks) assert tasks @backoff.on_exception(backoff.expo, AssertionError, max_time=240) def test_descending_sort(self, client): tasks = snippets.descending_sort(client) client.entities_to_delete.extend(tasks) assert tasks @backoff.on_exception(backoff.expo, AssertionError, max_time=240) def test_multi_sort(self, client): tasks = snippets.multi_sort(client) client.entities_to_delete.extend(tasks) assert tasks @backoff.on_exception(backoff.expo, AssertionError, max_time=240) def test_keys_only_query(self, client): keys = snippets.keys_only_query(client) client.entities_to_delete.extend(client.query(kind="Task").fetch()) assert keys @backoff.on_exception(backoff.expo, AssertionError, max_time=240) def test_distinct_on_query(self, client): tasks = snippets.distinct_on_query(client) client.entities_to_delete.extend(tasks) assert tasks def test_kindless_query(self, client): tasks = snippets.kindless_query(client) assert tasks def test_inequality_range(self, client): snippets.inequality_range(client) def test_inequality_invalid(self, client): snippets.inequality_invalid(client) def test_equal_and_inequality_range(self, client): snippets.equal_and_inequality_range(client) def test_inequality_sort(self, client): snippets.inequality_sort(client) def test_inequality_sort_invalid_not_same(self, client): snippets.inequality_sort_invalid_not_same(client) def test_inequality_sort_invalid_not_first(self, client): snippets.inequality_sort_invalid_not_first(client) def test_array_value_inequality_range(self, client): snippets.array_value_inequality_range(client) def test_array_value_equality(self, client): snippets.array_value_equality(client) def test_exploding_properties(self, client): task = snippets.exploding_properties(client) assert task def test_transactional_update(self, client): keys = snippets.transactional_update(client) client.keys_to_delete.extend(keys) def test_transactional_get_or_create(self, client): task = snippets.transactional_get_or_create(client) client.entities_to_delete.append(task) assert task def transactional_single_entity_group_read_only(self, client): task_list, tasks_in_list = snippets.transactional_single_entity_group_read_only( client ) client.entities_to_delete.append(task_list) client.entities_to_delete.extend(tasks_in_list) assert task_list assert tasks_in_list @backoff.on_exception(backoff.expo, AssertionError, max_time=240) def test_namespace_run_query(self, client): all_namespaces, filtered_namespaces = snippets.namespace_run_query(client) assert all_namespaces assert filtered_namespaces assert "google" in filtered_namespaces @backoff.on_exception(backoff.expo, AssertionError, max_time=240) def test_kind_run_query(self, client): kinds = snippets.kind_run_query(client) client.entities_to_delete.extend(client.query(kind="Task").fetch()) assert kinds assert "Task" in kinds @backoff.on_exception(backoff.expo, AssertionError, max_time=240) def test_property_run_query(self, client): kinds = snippets.property_run_query(client) client.entities_to_delete.extend(client.query(kind="Task").fetch()) assert kinds assert "Task" in kinds @backoff.on_exception(backoff.expo, AssertionError, max_time=240) def test_property_by_kind_run_query(self, client): reprs = snippets.property_by_kind_run_query(client) client.entities_to_delete.extend(client.query(kind="Task").fetch()) assert reprs @backoff.on_exception(backoff.expo, AssertionError, max_time=240) def test_index_merge_queries(self, client): snippets.index_merge_queries(client)
py
1a3d3f0be186330179eda0b20a86f22c484d60d3
from warnings import warn from django.conf import settings from wagtail.utils.deprecation import RemovedInWagtail50Warning def get_admin_base_url(context=None): """ Gets the base URL for the wagtail admin site. This is set in `settings.WAGTAILADMIN_BASE_URL`, which was previously `settings.BASE_URL`. If setting is omitted and this is called in a request context, falls back to `request.site.root_url` or next the host_name of the request. """ admin_base_url = getattr(settings, "WAGTAILADMIN_BASE_URL", None) if admin_base_url is None and hasattr(settings, "BASE_URL"): warn( "settings.BASE_URL has been renamed to settings.WAGTAILADMIN_BASE_URL", category=RemovedInWagtail50Warning, ) admin_base_url = settings.BASE_URL if admin_base_url is None and context is not None: request = context["request"] admin_base_url = getattr(request.site, "root_url", None) if admin_base_url is None: admin_base_url = request.get_host() secure_prefix = "http" if request.is_secure(): secure_prefix = "https" admin_base_url = secure_prefix + "://" + admin_base_url return admin_base_url
py
1a3d3f89a9dd9ee81df8718ff222bb64af9245c0
# User-User Similarity computation on pySpark import sys from itertools import combinations import numpy as np import pdb from pyspark import SparkContext def parseVector(line): ''' Parse each line of the specified data file, assuming a "|" delimiter. Converts each rating to a float ''' line = line.split("|") return line[1],(line[0],float(line[2])) def keyOnUserPair(item_id,user_and_rating_pair): ''' Convert each item and co_rating user pairs to a new vector keyed on the user pair ids, with the co_ratings as their value. ''' (user1_with_rating,user2_with_rating) = user_and_rating_pair user1_id,user2_id = user1_with_rating[0],user2_with_rating[0] user1_rating,user2_rating = user1_with_rating[1],user2_with_rating[1] return (user1_id,user2_id),(user1_rating,user2_rating) def calcSim(user_pair,rating_pairs): ''' For each user-user pair, return the specified similarity measure, along with co_raters_count. ''' sum_xx, sum_xy, sum_yy, sum_x, sum_y, n = (0.0, 0.0, 0.0, 0.0, 0.0, 0) for rating_pair in rating_pairs: sum_xx += np.float(rating_pair[0]) * np.float(rating_pair[0]) sum_yy += np.float(rating_pair[1]) * np.float(rating_pair[1]) sum_xy += np.float(rating_pair[0]) * np.float(rating_pair[1]) # sum_y += rt[1] # sum_x += rt[0] n += 1 cos_sim = cosine(sum_xy,np.sqrt(sum_xx),np.sqrt(sum_yy)) return user_pair, (cos_sim,n) def cosine(dot_product,rating_norm_squared,rating2_norm_squared): ''' The cosine between two vectors A, B dotProduct(A, B) / (norm(A) * norm(B)) ''' numerator = dot_product denominator = rating_norm_squared * rating2_norm_squared return (numerator / (float(denominator))) if denominator else 0.0 if __name__ == "__main__": if len(sys.argv) < 3: print >> sys.stderr, \ "Usage: PythonUserCF <master> <file>" exit(-1) sc = SparkContext(sys.argv[1], "PythonUserCF") lines = sc.textFile(sys.argv[2]) ''' Parse the vector with item_id as the key: item_id -> (user_id,rating) ''' item_user = lines.map(parseVector).cache() ''' Get co_rating users by joining on item_id: item_id -> ((user_1,rating),(user2,rating)) ''' item_user_pairs = item_user.join(item_user) ''' Key each item_user_pair on the user_pair and get rid of non-unique user pairs, then aggregate all co-rating pairs: (user1_id,user2_id) -> [(rating1,rating2), (rating1,rating2), (rating1,rating2), ...] ''' user_item_rating_pairs = item_user_pairs.map( lambda p: keyOnUserPair(p[0],p[1])).filter( lambda p: p[0][0] != p[0][1]).groupByKey() ''' Calculate the cosine similarity for each user pair: (user1,user2) -> (similarity,co_raters_count) ''' user_pair_sims = user_item_rating_pairs.map( lambda p: calcSim(p[0],p[1])) for p in user_pair_sims.collect(): print p
py
1a3d3faa01eab6ad675070a227c223ad3d753b6d
# -*- coding: utf-8 -*- """ Class definition of YOLO_v3 style detection model on image and video """ import colorsys import os from timeit import default_timer as timer import numpy as np from keras import backend as K from keras.models import load_model from keras.layers import Input from PIL import Image, ImageFont, ImageDraw from yolo3.model import yolo_eval, yolo_body, tiny_yolo_body from yolo3.utils import letterbox_image import os from keras.utils import multi_gpu_model class YOLO(object): _defaults = { "model_path": 'model_data/trained_weights_stage_1.h5', "anchors_path": 'model_data/yolo_anchors.txt', "classes_path": 'model_data/AND_classes.txt', "score" : 0.3, "iou" : 0.45, "model_image_size" : (416, 416), "gpu_num" : 1, } @classmethod def get_defaults(cls, n): if n in cls._defaults: return cls._defaults[n] else: return "Unrecognized attribute name '" + n + "'" def __init__(self, **kwargs): self.__dict__.update(self._defaults) # set up default values self.__dict__.update(kwargs) # and update with user overrides self.class_names = self._get_class() self.anchors = self._get_anchors() self.sess = K.get_session() self.boxes, self.scores, self.classes = self.generate() def _get_class(self): classes_path = os.path.expanduser(self.classes_path) with open(classes_path) as f: class_names = f.readlines() class_names = [c.strip() for c in class_names] return class_names def _get_anchors(self): anchors_path = os.path.expanduser(self.anchors_path) with open(anchors_path) as f: anchors = f.readline() anchors = [float(x) for x in anchors.split(',')] return np.array(anchors).reshape(-1, 2) def generate(self): model_path = os.path.expanduser(self.model_path) assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.' # Load model, or construct model and load weights. num_anchors = len(self.anchors) num_classes = len(self.class_names) is_tiny_version = num_anchors==6 # default setting try: self.yolo_model = load_model(model_path, compile=False) except: self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \ if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes) self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match else: assert self.yolo_model.layers[-1].output_shape[-1] == \ num_anchors/len(self.yolo_model.output) * (num_classes + 5), \ 'Mismatch between model and given anchor and class sizes' print('{} model, anchors, and classes loaded.'.format(model_path)) # Generate colors for drawing bounding boxes. hsv_tuples = [(x / len(self.class_names), 1., 1.) for x in range(len(self.class_names))] self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) self.colors = list( map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors)) np.random.seed(10101) # Fixed seed for consistent colors across runs. np.random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes. np.random.seed(None) # Reset seed to default. # Generate output tensor targets for filtered bounding boxes. self.input_image_shape = K.placeholder(shape=(2, )) if self.gpu_num>=2: self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num) boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors, len(self.class_names), self.input_image_shape, score_threshold=self.score, iou_threshold=self.iou) return boxes, scores, classes def detect_image(self, image): start = timer() if self.model_image_size != (None, None): assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required' assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required' boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size))) else: new_image_size = (image.width - (image.width % 32), image.height - (image.height % 32)) boxed_image = letterbox_image(image, new_image_size) image_data = np.array(boxed_image, dtype='float32') print(image_data.shape) image_data /= 255. image_data = np.expand_dims(image_data, 0) # Add batch dimension. out_boxes, out_scores, out_classes = self.sess.run( [self.boxes, self.scores, self.classes], feed_dict={ self.yolo_model.input: image_data, self.input_image_shape: [image.size[1], image.size[0]], K.learning_phase(): 0 }) print('Found {} boxes for {}'.format(len(out_boxes), 'img')) font = ImageFont.truetype(font='font/FiraMono-Medium.otf', size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32')) thickness = (image.size[0] + image.size[1]) // 300 for i, c in reversed(list(enumerate(out_classes))): predicted_class = self.class_names[c] box = out_boxes[i] score = out_scores[i] label = '{} {:.2f}'.format(predicted_class, score) draw = ImageDraw.Draw(image) label_size = draw.textsize(label, font) top, left, bottom, right = box top = max(0, np.floor(top + 0.5).astype('int32')) left = max(0, np.floor(left + 0.5).astype('int32')) bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32')) right = min(image.size[0], np.floor(right + 0.5).astype('int32')) print(label, (left, top), (right, bottom)) if top - label_size[1] >= 0: text_origin = np.array([left, top - label_size[1]]) else: text_origin = np.array([left, top + 1]) # My kingdom for a good redistributable image drawing library. for i in range(thickness): draw.rectangle( [left + i, top + i, right - i, bottom - i], outline=(255)) draw.rectangle( [tuple(text_origin), tuple(text_origin + label_size)], fill=None) draw.text(text_origin, label, fill=(0), font=font) del draw end = timer() print(end - start) return image def close_session(self): self.sess.close() def detect_video(yolo, video_path, output_path=""): import cv2 vid = cv2.VideoCapture(video_path) if not vid.isOpened(): raise IOError("Couldn't open webcam or video") video_FourCC = int(vid.get(cv2.CAP_PROP_FOURCC)) video_fps = vid.get(cv2.CAP_PROP_FPS) video_size = (int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)), int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))) isOutput = True if output_path != "" else False if isOutput: print("!!! TYPE:", type(output_path), type(video_FourCC), type(video_fps), type(video_size)) out = cv2.VideoWriter(output_path, video_FourCC, video_fps, video_size) accum_time = 0 curr_fps = 0 fps = "FPS: ??" prev_time = timer() while True: return_value, frame = vid.read() image = Image.fromarray(frame) image = yolo.detect_image(image) result = np.asarray(image) curr_time = timer() exec_time = curr_time - prev_time prev_time = curr_time accum_time = accum_time + exec_time curr_fps = curr_fps + 1 if accum_time > 1: accum_time = accum_time - 1 fps = "FPS: " + str(curr_fps) curr_fps = 0 cv2.putText(result, text=fps, org=(3, 15), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.50, color=(255, 0, 0), thickness=2) cv2.namedWindow("result", cv2.WINDOW_NORMAL) cv2.imshow("result", result) if isOutput: out.write(result) if cv2.waitKey(1) & 0xFF == ord('q'): break yolo.close_session()
py
1a3d3fb16fdd3d66937bc1dc1757f531ece91d3d
from typing import ( TYPE_CHECKING, Any, Callable, Collection, Type, ) from requests.exceptions import ( ConnectionError, HTTPError, Timeout, TooManyRedirects, ) from web3.types import ( RPCEndpoint, RPCResponse, ) if TYPE_CHECKING: from web3 import Web3 # noqa: F401 whitelist = [ 'admin', 'shh', 'miner', 'net', 'txpool' 'testing', 'evm', 'eth_protocolVersion', 'eth_syncing', 'eth_coinbase', 'eth_mining', 'eth_hashrate', 'eth_gasPrice', 'eth_accounts', 'eth_blockNumber', 'eth_getBalance', 'eth_getStorageAt', 'eth_getProof', 'eth_getCode', 'eth_getBlockByNumber', 'eth_getBlockByHash', 'eth_getBlockTransactionCountByNumber', 'eth_getBlockTransactionCountByHash', 'eth_getUncleCountByBlockNumber', 'eth_getUncleCountByBlockHash', 'eth_getTransactionByHash', 'eth_getTransactionByBlockHashAndIndex', 'eth_getTransactionByBlockNumberAndIndex', 'eth_getTransactionReceipt', 'eth_getTransactionCount', 'eth_call', 'eth_estimateGas', 'eth_newBlockFilter', 'eth_newPendingTransactionFilter', 'eth_newFilter', 'eth_getFilterChanges', 'eth_getFilterLogs', 'eth_getLogs', 'eth_uninstallFilter', 'eth_getCompilers', 'eth_getWork', 'eth_sign', 'eth_signTypedData', 'eth_sendRawTransaction', 'personal_importRawKey', 'personal_newAccount', 'personal_listAccounts', 'personal_lockAccount', 'personal_unlockAccount', 'personal_ecRecover', 'personal_sign', 'personal_signTypedData', ] def check_if_retry_on_failure(method: RPCEndpoint) -> bool: root = method.split('_')[0] if root in whitelist: return True elif method in whitelist: return True else: return False def exception_retry_middleware( make_request: Callable[[RPCEndpoint, Any], RPCResponse], web3: "Web3", errors: Collection[Type[BaseException]], retries: int=5, ) -> Callable[[RPCEndpoint, Any], RPCResponse]: """ Creates middleware that retries failed HTTP requests. Is a default middleware for HTTPProvider. """ def middleware(method: RPCEndpoint, params: Any) -> RPCResponse: if check_if_retry_on_failure(method): for i in range(retries): try: return make_request(method, params) # https://github.com/python/mypy/issues/5349 except errors: # type: ignore if i < retries - 1: continue else: raise return None else: return make_request(method, params) return middleware def http_retry_request_middleware( make_request: Callable[[RPCEndpoint, Any], Any], web3: "Web3" ) -> Callable[[RPCEndpoint, Any], Any]: return exception_retry_middleware( make_request, web3, (ConnectionError, HTTPError, Timeout, TooManyRedirects) )
py
1a3d40262073396a0fea22a497f4de1ee7ed0217
def hexal_to_decimal(s): """ s in form 0X< hexal digits> returns int in decimal""" s = s[2:] s = s[::-1] s = list(s) for i, e in enumerate(s): if s[i] == "A": s[i] = "10" if s[i] == "B": s[i] = "11" if s[i] == "C": s[i] = "12" if s[i] == "D": s[i] = "13" if s[i] == "E": s[i] = "14" if s[i] == "F": s[i] = "15" sum = 0 for i, e in enumerate(s): sum += (16 ** i) * int(e) return sum def octal_to_decimal(s): """s in form 0X<octal digits> returns int in decimal""" s = s[1:] s = s[::-1] # reverse sum = 0 for i, e in enumerate(s): sum += (8 ** i) * int(e) return sum print(hexal_to_decimal("0XCC")) print(octal_to_decimal("010"))
py
1a3d44621b6c37af173d96dc8cf51e718108a865
from random import randint print('{} DESAFIO 28 {}'.format('='*10, '='*10)) aleat = randint(0, 5) n = int(input("""Hey, hey, hey! Para meu jogo vencer, advinhe que número de 0 a 5 pensei!""")) if n == aleat: print('ACERTOU MIZARÁVI! VOCÊ VENCEU!') else: print('ERROOW BIXOO! ERA {}!'.format(aleat))
py
1a3d449a1a1be812ff70408da740ca0bc9898c60
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class NetworkWatchersOperations(object): """NetworkWatchersOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_03_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def create_or_update( self, resource_group_name, # type: str network_watcher_name, # type: str parameters, # type: "models.NetworkWatcher" **kwargs # type: Any ): # type: (...) -> "models.NetworkWatcher" """Creates or updates a network watcher in the specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_watcher_name: The name of the network watcher. :type network_watcher_name: str :param parameters: Parameters that define the network watcher resource. :type parameters: ~azure.mgmt.network.v2020_03_01.models.NetworkWatcher :keyword callable cls: A custom type or function that will be passed the direct response :return: NetworkWatcher, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_03_01.models.NetworkWatcher :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.NetworkWatcher"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.create_or_update.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'NetworkWatcher') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('NetworkWatcher', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('NetworkWatcher', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}'} # type: ignore def get( self, resource_group_name, # type: str network_watcher_name, # type: str **kwargs # type: Any ): # type: (...) -> "models.NetworkWatcher" """Gets the specified network watcher by resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_watcher_name: The name of the network watcher. :type network_watcher_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: NetworkWatcher, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_03_01.models.NetworkWatcher :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.NetworkWatcher"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('NetworkWatcher', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}'} # type: ignore def _delete_initial( self, resource_group_name, # type: str network_watcher_name, # type: str **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}'} # type: ignore def begin_delete( self, resource_group_name, # type: str network_watcher_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Deletes the specified network watcher resource. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_watcher_name: The name of the network watcher. :type network_watcher_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._delete_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}'} # type: ignore def update_tags( self, resource_group_name, # type: str network_watcher_name, # type: str parameters, # type: "models.TagsObject" **kwargs # type: Any ): # type: (...) -> "models.NetworkWatcher" """Updates a network watcher tags. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_watcher_name: The name of the network watcher. :type network_watcher_name: str :param parameters: Parameters supplied to update network watcher tags. :type parameters: ~azure.mgmt.network.v2020_03_01.models.TagsObject :keyword callable cls: A custom type or function that will be passed the direct response :return: NetworkWatcher, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_03_01.models.NetworkWatcher :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.NetworkWatcher"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update_tags.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'TagsObject') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('NetworkWatcher', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized update_tags.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}'} # type: ignore def list( self, resource_group_name, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["models.NetworkWatcherListResult"] """Gets all network watchers by resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either NetworkWatcherListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.network.v2020_03_01.models.NetworkWatcherListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.NetworkWatcherListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('NetworkWatcherListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(models.ErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers'} # type: ignore def list_all( self, **kwargs # type: Any ): # type: (...) -> Iterable["models.NetworkWatcherListResult"] """Gets all network watchers by subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either NetworkWatcherListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.network.v2020_03_01.models.NetworkWatcherListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.NetworkWatcherListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_all.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('NetworkWatcherListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(models.ErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_all.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/networkWatchers'} # type: ignore def get_topology( self, resource_group_name, # type: str network_watcher_name, # type: str parameters, # type: "models.TopologyParameters" **kwargs # type: Any ): # type: (...) -> "models.Topology" """Gets the current network topology by resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_watcher_name: The name of the network watcher. :type network_watcher_name: str :param parameters: Parameters that define the representation of topology. :type parameters: ~azure.mgmt.network.v2020_03_01.models.TopologyParameters :keyword callable cls: A custom type or function that will be passed the direct response :return: Topology, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_03_01.models.Topology :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.Topology"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.get_topology.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'TopologyParameters') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('Topology', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_topology.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/topology'} # type: ignore def _verify_ip_flow_initial( self, resource_group_name, # type: str network_watcher_name, # type: str parameters, # type: "models.VerificationIPFlowParameters" **kwargs # type: Any ): # type: (...) -> "models.VerificationIPFlowResult" cls = kwargs.pop('cls', None) # type: ClsType["models.VerificationIPFlowResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._verify_ip_flow_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'VerificationIPFlowParameters') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('VerificationIPFlowResult', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('VerificationIPFlowResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _verify_ip_flow_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/ipFlowVerify'} # type: ignore def begin_verify_ip_flow( self, resource_group_name, # type: str network_watcher_name, # type: str parameters, # type: "models.VerificationIPFlowParameters" **kwargs # type: Any ): # type: (...) -> LROPoller["models.VerificationIPFlowResult"] """Verify IP flow from the specified VM to a location given the currently configured NSG rules. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_watcher_name: The name of the network watcher. :type network_watcher_name: str :param parameters: Parameters that define the IP flow to be verified. :type parameters: ~azure.mgmt.network.v2020_03_01.models.VerificationIPFlowParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either VerificationIPFlowResult or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2020_03_01.models.VerificationIPFlowResult] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.VerificationIPFlowResult"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._verify_ip_flow_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('VerificationIPFlowResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_verify_ip_flow.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/ipFlowVerify'} # type: ignore def _get_next_hop_initial( self, resource_group_name, # type: str network_watcher_name, # type: str parameters, # type: "models.NextHopParameters" **kwargs # type: Any ): # type: (...) -> "models.NextHopResult" cls = kwargs.pop('cls', None) # type: ClsType["models.NextHopResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._get_next_hop_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'NextHopParameters') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('NextHopResult', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('NextHopResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _get_next_hop_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/nextHop'} # type: ignore def begin_get_next_hop( self, resource_group_name, # type: str network_watcher_name, # type: str parameters, # type: "models.NextHopParameters" **kwargs # type: Any ): # type: (...) -> LROPoller["models.NextHopResult"] """Gets the next hop from the specified VM. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_watcher_name: The name of the network watcher. :type network_watcher_name: str :param parameters: Parameters that define the source and destination endpoint. :type parameters: ~azure.mgmt.network.v2020_03_01.models.NextHopParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either NextHopResult or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2020_03_01.models.NextHopResult] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.NextHopResult"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._get_next_hop_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('NextHopResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_get_next_hop.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/nextHop'} # type: ignore def _get_vm_security_rules_initial( self, resource_group_name, # type: str network_watcher_name, # type: str parameters, # type: "models.SecurityGroupViewParameters" **kwargs # type: Any ): # type: (...) -> "models.SecurityGroupViewResult" cls = kwargs.pop('cls', None) # type: ClsType["models.SecurityGroupViewResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._get_vm_security_rules_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'SecurityGroupViewParameters') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('SecurityGroupViewResult', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('SecurityGroupViewResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _get_vm_security_rules_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/securityGroupView'} # type: ignore def begin_get_vm_security_rules( self, resource_group_name, # type: str network_watcher_name, # type: str parameters, # type: "models.SecurityGroupViewParameters" **kwargs # type: Any ): # type: (...) -> LROPoller["models.SecurityGroupViewResult"] """Gets the configured and effective security group rules on the specified VM. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_watcher_name: The name of the network watcher. :type network_watcher_name: str :param parameters: Parameters that define the VM to check security groups for. :type parameters: ~azure.mgmt.network.v2020_03_01.models.SecurityGroupViewParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either SecurityGroupViewResult or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2020_03_01.models.SecurityGroupViewResult] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.SecurityGroupViewResult"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._get_vm_security_rules_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('SecurityGroupViewResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_get_vm_security_rules.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/securityGroupView'} # type: ignore def _get_troubleshooting_initial( self, resource_group_name, # type: str network_watcher_name, # type: str parameters, # type: "models.TroubleshootingParameters" **kwargs # type: Any ): # type: (...) -> "models.TroubleshootingResult" cls = kwargs.pop('cls', None) # type: ClsType["models.TroubleshootingResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._get_troubleshooting_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'TroubleshootingParameters') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('TroubleshootingResult', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('TroubleshootingResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _get_troubleshooting_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/troubleshoot'} # type: ignore def begin_get_troubleshooting( self, resource_group_name, # type: str network_watcher_name, # type: str parameters, # type: "models.TroubleshootingParameters" **kwargs # type: Any ): # type: (...) -> LROPoller["models.TroubleshootingResult"] """Initiate troubleshooting on a specified resource. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_watcher_name: The name of the network watcher resource. :type network_watcher_name: str :param parameters: Parameters that define the resource to troubleshoot. :type parameters: ~azure.mgmt.network.v2020_03_01.models.TroubleshootingParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either TroubleshootingResult or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2020_03_01.models.TroubleshootingResult] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.TroubleshootingResult"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._get_troubleshooting_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('TroubleshootingResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_get_troubleshooting.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/troubleshoot'} # type: ignore def _get_troubleshooting_result_initial( self, resource_group_name, # type: str network_watcher_name, # type: str parameters, # type: "models.QueryTroubleshootingParameters" **kwargs # type: Any ): # type: (...) -> "models.TroubleshootingResult" cls = kwargs.pop('cls', None) # type: ClsType["models.TroubleshootingResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._get_troubleshooting_result_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'QueryTroubleshootingParameters') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('TroubleshootingResult', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('TroubleshootingResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _get_troubleshooting_result_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/queryTroubleshootResult'} # type: ignore def begin_get_troubleshooting_result( self, resource_group_name, # type: str network_watcher_name, # type: str parameters, # type: "models.QueryTroubleshootingParameters" **kwargs # type: Any ): # type: (...) -> LROPoller["models.TroubleshootingResult"] """Get the last completed troubleshooting result on a specified resource. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_watcher_name: The name of the network watcher resource. :type network_watcher_name: str :param parameters: Parameters that define the resource to query the troubleshooting result. :type parameters: ~azure.mgmt.network.v2020_03_01.models.QueryTroubleshootingParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either TroubleshootingResult or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2020_03_01.models.TroubleshootingResult] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.TroubleshootingResult"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._get_troubleshooting_result_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('TroubleshootingResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_get_troubleshooting_result.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/queryTroubleshootResult'} # type: ignore def _set_flow_log_configuration_initial( self, resource_group_name, # type: str network_watcher_name, # type: str parameters, # type: "models.FlowLogInformation" **kwargs # type: Any ): # type: (...) -> "models.FlowLogInformation" cls = kwargs.pop('cls', None) # type: ClsType["models.FlowLogInformation"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._set_flow_log_configuration_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'FlowLogInformation') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('FlowLogInformation', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('FlowLogInformation', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _set_flow_log_configuration_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/configureFlowLog'} # type: ignore def begin_set_flow_log_configuration( self, resource_group_name, # type: str network_watcher_name, # type: str parameters, # type: "models.FlowLogInformation" **kwargs # type: Any ): # type: (...) -> LROPoller["models.FlowLogInformation"] """Configures flow log and traffic analytics (optional) on a specified resource. :param resource_group_name: The name of the network watcher resource group. :type resource_group_name: str :param network_watcher_name: The name of the network watcher resource. :type network_watcher_name: str :param parameters: Parameters that define the configuration of flow log. :type parameters: ~azure.mgmt.network.v2020_03_01.models.FlowLogInformation :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either FlowLogInformation or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2020_03_01.models.FlowLogInformation] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.FlowLogInformation"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._set_flow_log_configuration_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('FlowLogInformation', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_set_flow_log_configuration.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/configureFlowLog'} # type: ignore def _get_flow_log_status_initial( self, resource_group_name, # type: str network_watcher_name, # type: str parameters, # type: "models.FlowLogStatusParameters" **kwargs # type: Any ): # type: (...) -> "models.FlowLogInformation" cls = kwargs.pop('cls', None) # type: ClsType["models.FlowLogInformation"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._get_flow_log_status_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'FlowLogStatusParameters') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('FlowLogInformation', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('FlowLogInformation', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _get_flow_log_status_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/queryFlowLogStatus'} # type: ignore def begin_get_flow_log_status( self, resource_group_name, # type: str network_watcher_name, # type: str parameters, # type: "models.FlowLogStatusParameters" **kwargs # type: Any ): # type: (...) -> LROPoller["models.FlowLogInformation"] """Queries status of flow log and traffic analytics (optional) on a specified resource. :param resource_group_name: The name of the network watcher resource group. :type resource_group_name: str :param network_watcher_name: The name of the network watcher resource. :type network_watcher_name: str :param parameters: Parameters that define a resource to query flow log and traffic analytics (optional) status. :type parameters: ~azure.mgmt.network.v2020_03_01.models.FlowLogStatusParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either FlowLogInformation or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2020_03_01.models.FlowLogInformation] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.FlowLogInformation"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._get_flow_log_status_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('FlowLogInformation', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_get_flow_log_status.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/queryFlowLogStatus'} # type: ignore def _check_connectivity_initial( self, resource_group_name, # type: str network_watcher_name, # type: str parameters, # type: "models.ConnectivityParameters" **kwargs # type: Any ): # type: (...) -> "models.ConnectivityInformation" cls = kwargs.pop('cls', None) # type: ClsType["models.ConnectivityInformation"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._check_connectivity_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'ConnectivityParameters') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('ConnectivityInformation', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('ConnectivityInformation', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _check_connectivity_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectivityCheck'} # type: ignore def begin_check_connectivity( self, resource_group_name, # type: str network_watcher_name, # type: str parameters, # type: "models.ConnectivityParameters" **kwargs # type: Any ): # type: (...) -> LROPoller["models.ConnectivityInformation"] """Verifies the possibility of establishing a direct TCP connection from a virtual machine to a given endpoint including another VM or an arbitrary remote server. :param resource_group_name: The name of the network watcher resource group. :type resource_group_name: str :param network_watcher_name: The name of the network watcher resource. :type network_watcher_name: str :param parameters: Parameters that determine how the connectivity check will be performed. :type parameters: ~azure.mgmt.network.v2020_03_01.models.ConnectivityParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ConnectivityInformation or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2020_03_01.models.ConnectivityInformation] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.ConnectivityInformation"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._check_connectivity_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ConnectivityInformation', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_check_connectivity.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectivityCheck'} # type: ignore def _get_azure_reachability_report_initial( self, resource_group_name, # type: str network_watcher_name, # type: str parameters, # type: "models.AzureReachabilityReportParameters" **kwargs # type: Any ): # type: (...) -> "models.AzureReachabilityReport" cls = kwargs.pop('cls', None) # type: ClsType["models.AzureReachabilityReport"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._get_azure_reachability_report_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'AzureReachabilityReportParameters') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('AzureReachabilityReport', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('AzureReachabilityReport', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _get_azure_reachability_report_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/azureReachabilityReport'} # type: ignore def begin_get_azure_reachability_report( self, resource_group_name, # type: str network_watcher_name, # type: str parameters, # type: "models.AzureReachabilityReportParameters" **kwargs # type: Any ): # type: (...) -> LROPoller["models.AzureReachabilityReport"] """NOTE: This feature is currently in preview and still being tested for stability. Gets the relative latency score for internet service providers from a specified location to Azure regions. :param resource_group_name: The name of the network watcher resource group. :type resource_group_name: str :param network_watcher_name: The name of the network watcher resource. :type network_watcher_name: str :param parameters: Parameters that determine Azure reachability report configuration. :type parameters: ~azure.mgmt.network.v2020_03_01.models.AzureReachabilityReportParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either AzureReachabilityReport or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2020_03_01.models.AzureReachabilityReport] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.AzureReachabilityReport"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._get_azure_reachability_report_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('AzureReachabilityReport', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_get_azure_reachability_report.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/azureReachabilityReport'} # type: ignore def _list_available_providers_initial( self, resource_group_name, # type: str network_watcher_name, # type: str parameters, # type: "models.AvailableProvidersListParameters" **kwargs # type: Any ): # type: (...) -> "models.AvailableProvidersList" cls = kwargs.pop('cls', None) # type: ClsType["models.AvailableProvidersList"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._list_available_providers_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'AvailableProvidersListParameters') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('AvailableProvidersList', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('AvailableProvidersList', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _list_available_providers_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/availableProvidersList'} # type: ignore def begin_list_available_providers( self, resource_group_name, # type: str network_watcher_name, # type: str parameters, # type: "models.AvailableProvidersListParameters" **kwargs # type: Any ): # type: (...) -> LROPoller["models.AvailableProvidersList"] """NOTE: This feature is currently in preview and still being tested for stability. Lists all available internet service providers for a specified Azure region. :param resource_group_name: The name of the network watcher resource group. :type resource_group_name: str :param network_watcher_name: The name of the network watcher resource. :type network_watcher_name: str :param parameters: Parameters that scope the list of available providers. :type parameters: ~azure.mgmt.network.v2020_03_01.models.AvailableProvidersListParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either AvailableProvidersList or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2020_03_01.models.AvailableProvidersList] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.AvailableProvidersList"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._list_available_providers_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('AvailableProvidersList', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_list_available_providers.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/availableProvidersList'} # type: ignore def _get_network_configuration_diagnostic_initial( self, resource_group_name, # type: str network_watcher_name, # type: str parameters, # type: "models.NetworkConfigurationDiagnosticParameters" **kwargs # type: Any ): # type: (...) -> "models.NetworkConfigurationDiagnosticResponse" cls = kwargs.pop('cls', None) # type: ClsType["models.NetworkConfigurationDiagnosticResponse"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._get_network_configuration_diagnostic_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'NetworkConfigurationDiagnosticParameters') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('NetworkConfigurationDiagnosticResponse', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('NetworkConfigurationDiagnosticResponse', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _get_network_configuration_diagnostic_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/networkConfigurationDiagnostic'} # type: ignore def begin_get_network_configuration_diagnostic( self, resource_group_name, # type: str network_watcher_name, # type: str parameters, # type: "models.NetworkConfigurationDiagnosticParameters" **kwargs # type: Any ): # type: (...) -> LROPoller["models.NetworkConfigurationDiagnosticResponse"] """Gets Network Configuration Diagnostic data to help customers understand and debug network behavior. It provides detailed information on what security rules were applied to a specified traffic flow and the result of evaluating these rules. Customers must provide details of a flow like source, destination, protocol, etc. The API returns whether traffic was allowed or denied, the rules evaluated for the specified flow and the evaluation results. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_watcher_name: The name of the network watcher. :type network_watcher_name: str :param parameters: Parameters to get network configuration diagnostic. :type parameters: ~azure.mgmt.network.v2020_03_01.models.NetworkConfigurationDiagnosticParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either NetworkConfigurationDiagnosticResponse or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2020_03_01.models.NetworkConfigurationDiagnosticResponse] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.NetworkConfigurationDiagnosticResponse"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._get_network_configuration_diagnostic_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('NetworkConfigurationDiagnosticResponse', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_get_network_configuration_diagnostic.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/networkConfigurationDiagnostic'} # type: ignore
py
1a3d45332984821fb926ea89faaecddbb17fd92e
''' Created on Aug 7, 2017 @author: duncan ''' import sqlite3 as lite from utils.DBUtils import dbConnection class Keyword(): ''' Keyword class ''' def __init__(self): ''' Constructor ''' def fetch_all_key_words(self): dbUtil = dbConnection() cur = dbUtil.get_cursor() cur.execute("select keyword_id,keyword from keyword") key_word_list = {} keywords = cur.fetchall() for keyword in keywords: key_word_list[keyword[0]] = keyword[1] dbUtil.close_db_connection() return key_word_list def update_keyword(self, keyword, keyword_id): dbUtil = dbConnection() cur = dbUtil.get_cursor() try: cur.execute("update keyword set keyword=? where keyword_id=?", (keyword, keyword_id)) dbUtil.commit() except lite.IntegrityError: return ("Keyword already exists", 501) return "Keyword Updated Successfully" def delete_keyword(self, keyword_id): dbUtil = dbConnection() cur = dbUtil.get_cursor() cur.execute("delete from keyword where keyword_id=?", (keyword_id)) dbUtil.commit() return "Keyword Deleted Successfully" def add_keyword(self, keyword): dbUtil = dbConnection() cur = dbUtil.get_cursor() try: cur.execute("insert into keyword(keyword) values(?)", (keyword,)) dbUtil.commit() except lite.IntegrityError: return ("Keyword already exists", 501) return "Keyword created Successfully" class Subscription(): def __init__(self): ''' Constructor ''' def add_subscription(self, subscription): sql_isert_user_mail = "insert into subscriber(email) values(?)" sql_fetch_email_id = "select subscriber_id from subscriber where email=?" sql_increment_group_id="insert into group_id_sequence values(null)" sql_insert_subscription = '''insert into subscription(subscriber_id,site_id,keyword_id,page_limit,minimum_alert,subscription_group_id) values(?,?,?,1,1,?) ''' dbUtil = dbConnection() cur = dbUtil.get_cursor() email = subscription.subscriber.subscriber_email generated_group_id=None try: try: cur.execute(sql_isert_user_mail, (email,) ) except Exception,e: print("Email already exists") cur.execute(sql_increment_group_id) dbUtil.commit() generated_group_id=cur.lastrowid cur.execute(sql_fetch_email_id, (email,)) mailId = cur.fetchone() s=None k=None for site in subscription.site: s=site for keyword in subscription.keyword: k=keyword cur.execute(sql_insert_subscription, (mailId[0], site, keyword,generated_group_id)) dbUtil.commit() return ("Subscription saved successfully") except lite.IntegrityError: dbUtil.rollback() sql_fetch_site = "select name from site where site_id=?" cur.execute(sql_fetch_site, (s,)) st = cur.fetchone() sqlFetchKeyword = "select keyword from keyword where keyword_id=?" cur.execute(sqlFetchKeyword, (k,)) ky = cur.fetchone() return ("The entry, site: %s - Keyword: %s, exists" %(st[0],ky[0]), 501) ''' Fetches all Subscribers in the database and returns a dictionary of Subscibers ''' def fetch_all_subscribers(self): dbUtil = dbConnection() cur = dbUtil.get_cursor() subscriber_dict = {} cur.execute("select * from subscriber") subscibers = cur.fetchall() cur.execute("select * from site_keyword") subscriptions = cur.fetchall() for subsc in subscibers: # Create a map of each subscriber and their subscription details(stats) subscriber = {} subscriber['email'] = subsc[1] siteKeywordMap = {} sitesId = [] unique_sites_id = set() key_words_id = [] for sub in subscriptions: # Get all sites and keywords subscriber is subscribed to if sub[1] == subsc[0]: sitesId.append(sub[1]) if(sub[1] != None and sub[1] != ""): unique_sites_id.add(sub[1]) if(sub[2] != None and sub[2] != ""): key_words_id.append(sub[2]) for x in unique_sites_id: # map keywords per site the subscriber is subscribed to kWords = [] for y in range(0, len(key_words_id)): if sitesId[y] == x: kWords.append(key_words_id[y]) siteKeywordMap[x] = kWords subscriber['subs'] = siteKeywordMap subscriber['totalSites'] = len(unique_sites_id) subscriber['totalKeywords'] = len(key_words_id) subscriber_dict[subsc[0]] = subscriber dbUtil.close_db_connection() return subscriber_dict def fetch_raw_subscriptions(self): dbUtil = dbConnection() cur = dbUtil.get_cursor() cur.execute('''select * from subscription s inner join keyword k on k.keyword_id= s.keyword_id inner join site site on site.site_id=s.site_id inner join subscriber subsc on subsc.subscriber_id=s.subscriber_id''') subscriptions = cur.fetchall() return subscriptions def fetch_all_subscriptions(self): subscriptions_list=[] subscriber_map={} site_id_name={} subscriber_id_mail={} keyword_id_name={} dbUtil = dbConnection() cur = dbUtil.get_cursor() cur.execute('''select * from subscription s inner join keyword k on k.keyword_id= s.keyword_id inner join site site on site.site_id=s.site_id inner join subscriber subsc on subsc.subscriber_id=s.subscriber_id''') subscriptions = cur.fetchall() for subsc in subscriptions: try: subscriber_group_map=subscriber_map[subsc[0]] try: site_map=subscriber_group_map[subsc[5]] try: keyword_list=site_map[subsc[1]] keyword_list.append(subsc[2]) except KeyError,e: site_map[subsc[1]]=[] keyword_list=site_map[subsc[1]] keyword_list.append(subsc[2]) except KeyError,e: subscriber_group_map[subsc[5]]={} site_map=subscriber_group_map[subsc[5]] site_map[subsc[1]]=[] keyword_list=site_map[subsc[1]] keyword_list.append(subsc[2]) except KeyError,e: subscriber_map[subsc[0]]={} subscriber_group_map=subscriber_map[subsc[0]] subscriber_group_map[subsc[5]]={} site_map=subscriber_group_map[subsc[5]] site_map[subsc[1]]=[] keyword_list=site_map[subsc[1]] keyword_list.append(subsc[2]) site_id_name[subsc[8]]=subsc[9] keyword_id_name[subsc[6]]=subsc[7] subscriber_id_mail[subsc[14]]=subsc[15] subscriptions_list.append(subscriber_map) subscriptions_list.append(site_id_name) subscriptions_list.append(keyword_id_name) subscriptions_list.append(subscriber_id_mail) print(subscriptions_list) return subscriptions_list def delete_subscription(self, subscriber_group_id,subscriber_id=None, group_id=None): if(subscriber_id==None or group_id==None): subscriber_groupid=subscriber_group_id.split("-") subscriber_id=subscriber_groupid[0] group_id=subscriber_groupid[1] try: dbUtil = dbConnection() cur = dbUtil.get_cursor() cur.execute("delete from subscription where subscriber_id=? and subscription_group_id=?", (subscriber_id,group_id)) dbUtil.commit() except lite.IntegrityError: dbUtil.rollback() return ("Failed to delete subscription", 501) return "Keyword Deleted Successfully" def update_subscription(self, subscription): sql_select_subscription="Select * from subscription where subscriber_id=? and site_id=? and keyword_id=? and subscription_group_id is not ?" sql_fetch_email_id = "select subscriber_id from subscriber where email=?" email = subscription.subscriber.subscriber_email dbUtil = dbConnection() cur = dbUtil.get_cursor() cur.execute(sql_fetch_email_id, (email,)) mailId = cur.fetchone() for site in subscription.site: s=site for keyword in subscription.keyword: k=keyword cur.execute(sql_select_subscription, (mailId[0], site, keyword, subscription.subscription_group_id)) subscript = cur.fetchone() if(subscript!=None): sqlFetchSite = "select name from site where site_id=?" cur.execute(sqlFetchSite, (s,)) st = cur.fetchone() sqlFetchKeyword = "select keyword from keyword where keyword_id=?" cur.execute(sqlFetchKeyword, (k,)) ky = cur.fetchone() return ("The entry, site: %s - Keyword: %s, exists" %(st[0],ky[0]), 501) self.delete_subscription(subscriber_group_id=None,subscriber_id=subscription.subscriber.subscriber_id,group_id=subscription.subscription_group_id) self.add_subscription(subscription) return "Subscription updated Successfully" class Site(): def __init__(self): ''' Constructor ''' def fetch_all_sites(self): dbUtil = dbConnection() cur = dbUtil.get_cursor() cur.execute("select site_id,name,alias from site") site_list = {} sites = cur.fetchall() for site in sites: if len(str(site[2]).strip()) != 0 and site[2] is not None: site_list[site[0]] = site[2] else: site_list[site[0]] = site[1] if(len(site_list) == 0): site_list[0] = "There are no sites being scrapped" dbUtil.close_db_connection() return site_list def update_site(self, new_name=None, site_id=None): if new_name == None or site_id == None: return ("No keyword selected", 501) else: dbUtil = dbConnection() cur = dbUtil.get_cursor() try: cur.execute("update site set alias=? where site_id=?", (new_name, site_id)) dbUtil.commit() except lite.IntegrityError: return ("Name already exists", 501) return "Name Updated Successfully" class Settings(): def fetch_all_settings(self): dbUtil = dbConnection() cur = dbUtil.get_cursor() cur.execute('''select * from subscription inner join site on subscription.site_id=site.site_id inner join keyword on keyword.keyword_id=subscription.keyword_id inner join subscriber on subscription.subscriber_id = subscriber.subscriber_id;''') setting_list = [] settings = cur.fetchall() for setting in settings: setting_list.append(setting) dbUtil.close_db_connection() return setting_list def update_setting(self,subscription): sql_setting="update subscription set page_limit=?,minimum_alert=? where subscriber_id=? and site_id=? and keyword_id=?" dbUtil = dbConnection() cur = dbUtil.get_cursor() try: cur.execute(sql_setting, (subscription.page_limit,subscription.minimum_alert,subscription.subscriber,subscription.site,subscription.keyword)) dbUtil.commit() except Exception,e: return ("Failed to update setting", 501) return self.fetch_all_settings() class Job: def __init__(self): '''pass'''
py
1a3d4616ff9d328f70d202bcda66cceffa90ee92
from six import string_types import numpy as np import os import h5py from bmtk.simulator.core.io_tools import io from .simulation_config import SimulationConfig from bmtk.simulator.core.node_sets import NodeSet, NodeSetAll from bmtk.simulator.core import sonata_reader class SimNetwork(object): def __init__(self): self._components = {} self._io = io self._node_adaptors = {} self._edge_adaptors = {} self._register_adaptors() self._node_populations = {} self._node_sets = {} self._edge_populations = [] self._gap_juncs = {} @property def io(self): return self._io @property def node_populations(self): return self._node_populations.values() @property def recurrent_edges(self): return [ep for ep in self._edge_populations if ep.recurrent_connections] @property def py_function_caches(self): return None def _register_adaptors(self): self._node_adaptors['sonata'] = sonata_reader.NodeAdaptor self._edge_adaptors['sonata'] = sonata_reader.EdgeAdaptor def get_node_adaptor(self, name): return self._node_adaptors[name] def get_edge_adaptor(self, name): return self._edge_adaptors[name] def add_component(self, name, path): self._components[name] = path def get_component(self, name): if name not in self._components: self.io.log_exception('No network component set with name {}'.format(name)) else: return self._components[name] def has_component(self, name): return name in self._components def get_node_population(self, name): return self._node_populations[name] def get_node_populations(self): return self._node_populations.values() def add_node_set(self, name, node_set): self._node_sets[name] = node_set def get_node_set(self, node_set): if isinstance(node_set, string_types) and node_set in self._node_sets: return self._node_sets[node_set] elif isinstance(node_set, (dict, list)): return NodeSet(node_set, self) else: self.io.log_exception('Unable to load or find node_set "{}"'.format(node_set)) def add_nodes(self, node_population): pop_name = node_population.name if pop_name in self._node_populations: # Make sure their aren't any collisions self.io.log_exception('There are multiple node populations with name {}.'.format(pop_name)) node_population.initialize(self) self._node_populations[pop_name] = node_population if node_population.mixed_nodes: # We'll allow a population to have virtual and non-virtual nodes but it is not ideal self.io.log_warning(('Node population {} contains both virtual and non-virtual nodes which can cause ' + 'memory and build-time inefficency. Consider separating virtual nodes into their ' + 'own population').format(pop_name)) # Used in inputs/reports when needed to get all gids belonging to a node population self._node_sets[pop_name] = NodeSet({'population': pop_name}, self) def node_properties(self, populations=None): if populations is None: selected_pops = self.node_populations elif isinstance(populations, string_types): selected_pops = [pop for pop in self.node_populations if pop.name == populations] else: selected_pops = [pop for pop in self.node_populations if pop.name in populations] all_nodes_df = None for node_pop in selected_pops: node_pop_df = node_pop.nodes_df() if 'population' not in node_pop_df: node_pop_df['population'] = node_pop.name node_pop_df = node_pop_df.set_index(['population', node_pop_df.index.astype(dtype=np.uint64)]) if all_nodes_df is None: all_nodes_df = node_pop_df else: all_nodes_df = all_nodes_df.append(node_pop_df) return all_nodes_df def get_node_groups(self, populations=None): if populations is None: selected_pops = self.node_populations elif isinstance(populations, string_types): selected_pops = [pop for pop in self.node_populations if pop.name == populations] else: selected_pops = [pop for pop in self.node_populations if pop.name in populations] all_nodes_df = None for node_pop in selected_pops: node_pop_df = node_pop.nodes_df(index_by_id=False) if 'population' not in node_pop_df: node_pop_df['population'] = node_pop.name if all_nodes_df is None: all_nodes_df = node_pop_df else: all_nodes_df = all_nodes_df.append(node_pop_df, sort=False) return all_nodes_df def get_node_sets(self, populations=None, groupby=None, **filterby): selected_nodes_df = self.node_properties(populations) for k, v in filterby: if isinstance(v, (np.ndarray, list, tuple)): selected_nodes_df = selected_nodes_df[selected_nodes_df[k].isin(v)] else: selected_nodes_df = selected_nodes_df[selected_nodes_df[k].isin(v)] if groupby is not None: return {k: v.tolist() for k, v in selected_nodes_df.groupby(groupby).groups.items()} else: return selected_nodes_df.index.tolist() def add_edges(self, edge_population): edge_population.initialize(self) pop_name = edge_population.name # Check that source_population exists src_pop_name = edge_population.source_nodes if src_pop_name not in self._node_populations: self.io.log_exception('Source node population {} not found. Please update {} edges'.format(src_pop_name, pop_name)) # Check that the target population exists and contains non-virtual nodes (we cannot synapse onto virt nodes) trg_pop_name = edge_population.target_nodes if trg_pop_name not in self._node_populations or self._node_populations[trg_pop_name].virtual_nodes_only: self.io.log_exception(('Node population {} does not exists (or consists of only virtual nodes). ' + '{} edges cannot create connections.').format(trg_pop_name, pop_name)) edge_population.set_connection_type(src_pop=self._node_populations[src_pop_name], trg_pop = self._node_populations[trg_pop_name]) self._edge_populations.append(edge_population) def load_gap_junc_files(self, gj_dic): for p in gj_dic: path = p['gap_juncs_file'] f_name = os.path.basename(path) network = f_name[:f_name.find("_gap_juncs.h5")] self._gap_juncs[network] = {} with h5py.File(path, 'r') as f: for key in ['source_ids', 'target_ids', 'src_gap_ids', 'trg_gap_ids']: self._gap_juncs[network][key] = f[key][()] def build(self): self.build_nodes() self.build_recurrent_edges() def build_nodes(self): raise NotImplementedError() def build_recurrent_edges(self, **opts): raise NotImplementedError() def build_virtual_connections(self): raise NotImplementedError() @classmethod def from_config(cls, conf, **properties): """Generates a graph structure from a json config file or dictionary. :param conf: name of json config file, or a dictionary with config parameters :param properties: optional properties. :return: A graph object of type cls """ network = cls(**properties) # The simulation run script should create a config-dict since it's likely to vary based on the simulator engine, # however in the case the user doesn't we will try a generic conversion from dict/json to ConfigDict if isinstance(conf, SimulationConfig): config = conf else: try: config = SimulationConfig.load(conf) except Exception as e: network.io.log_exception('Could not convert {} (type "{}") to json.'.format(conf, type(conf))) if not config.with_networks: network.io.log_exception('Could not find any network files. Unable to build network.') # TODO: These are simulator specific network.spike_threshold = config.spike_threshold network.dL = config.dL # load components for name, value in config.components.items(): network.add_component(name, value) # load nodes gid_map = config.gid_mappings node_adaptor = network.get_node_adaptor('sonata') for node_dict in config.nodes: nodes = sonata_reader.load_nodes(node_dict['nodes_file'], node_dict['node_types_file'], gid_map, adaptor=node_adaptor) for node_pop in nodes: network.add_nodes(node_pop) # TODO: Raise a warning if more than one internal population and no gids (node_id collision) # load edges edge_adaptor = network.get_edge_adaptor('sonata') for edge_dict in config.edges: if not edge_dict.get('enabled', True): continue edges = sonata_reader.load_edges(edge_dict['edges_file'], edge_dict['edge_types_file'], adaptor=edge_adaptor) for edge_pop in edges: network.add_edges(edge_pop) network.load_gap_junc_files(config.gap_juncs) # Add nodeset section network.add_node_set('all', NodeSetAll(network)) for ns_name, ns_filter in config.node_sets.items(): network.add_node_set(ns_name, NodeSet(ns_filter, network)) return network @classmethod def from_manifest(cls, manifest_json): # TODO: Add adaptors to build a simulation network from model files downloaded celltypes.brain-map.org raise NotImplementedError() @classmethod def from_builder(cls, network): # TODO: Add adaptors to build a simulation network from a bmtk.builder Network object raise NotImplementedError()
py
1a3d481c9db946c2fd1ec4e877129de9244cd240
import re from pygments import highlight from pygments.formatters.html import HtmlFormatter from pygments.lexers import data from yapf.yapflib.yapf_api import FormatCode from ..core import format_json from ..model.app_data import ExchangeRequest, ExchangeResponse, ApiCall, HttpExchange internal_var_selector = re.compile(r"\$\{(\w+)\}") def highlight_format_json(plain_text, formatter=HtmlFormatter()): if not plain_text: return "" return highlight(format_json(plain_text), data.JsonLexer(), formatter) def api_request_body_highlighted(api_call: ApiCall): return highlight_format_json(api_call.http_request_body) def request_body_highlighted(http_request: ExchangeRequest): return highlight_format_json(http_request.request_body) def response_body_highlighted(http_response: ExchangeResponse): return highlight_format_json(http_response.response_body) def encode_json_string(json_string): return json_string.replace('"', '\\"') def get_base_url(api_call: ApiCall): return api_call.http_url def get_function_name(api_call: ApiCall): norm_title = api_call.title.lower().strip() rgx = r"[^a-zA-Z]" return re.sub(rgx, "", norm_title) def dict_formatter(dict_items, form, splitter=","): return splitter.join([form.format(**locals()) for k, v in dict_items]) def extract_uri(url, servers): matched_server = next( (server for server in servers if url.startswith(server)), None ) if matched_server: return url.replace(matched_server, "") return url def to_curl(api_call: ApiCall, exchange: HttpExchange, compressed=False, verify=True): if api_call: http_method = api_call.http_method http_url = api_call.http_url req_headers = api_call.enabled_headers() req_qp = api_call.enabled_query_params() req_body = api_call.request_body_without_comments() if exchange.response.http_status_code != 0: http_method = exchange.request.http_method http_url = exchange.request.http_url req_qp = exchange.request.query_params req_headers = exchange.request.headers req_body = exchange.request.request_body elif not api_call: raise ValueError( "Unable to make curl request as api_call is null and exchange response is {}".format( exchange.response ) ) if req_qp: http_url = http_url + "?" + "&".join([f"{k}={v}" for k, v in req_qp.items()]) parts = [("curl", None), ("-X", http_method)] for k, v in sorted(req_headers.items()): parts += [("-H", "{0}: {1}".format(k, v))] if req_body: body = req_body if isinstance(body, bytes): body = body.decode("utf-8") parts += [("-d", body)] if compressed: parts += [("--compressed", None)] if not verify: parts += [("--insecure", None)] parts += [(None, http_url)] flat_parts = [] for k, v in parts: if k: flat_parts.append(k) if v: flat_parts.append("'{0}'".format(v)) return " ".join(flat_parts) def format_python_code(unformatted_code): return FormatCode(unformatted_code, style_config="pep8")
py
1a3d490e7079434fcefe77357e7dd4139e303a23
# Copyright 2021 Chuwei Chen [email protected] # Copyright 2021 Zhaozhong Qi [email protected] # ===========START OF STUDENT'S CODE================ "2021FALL EC602 HW5" def left_rotate(string, num): "left rotate a string by num (CounterClockwise)" return string[num:] + string[:num] def right_rotate(string, num): "right rotate a string by num (Clockwise)" return string[-num:] + string[:-num] def linear(orig: str, modified: str) -> bool: "Check if one arrangement is linear, i.e. barriers at the ends" orig = list(orig) modified = list(modified) for i in orig: if abs(orig.index(i) - modified.index(i)) > 1: return False return True def valid(orig: str, modified: str) -> bool: "Check if one arrangement is valid, i.e. follow the Wedding seating rules" orig = list(orig) modified = list(modified) for i in orig: index_diff = abs(orig.index(i) - modified.index(i)) if index_diff > 1 and index_diff != (len(orig) - 1): return False return True def find_linears(guests: str) -> list: "Find all the linear arranges for the given str" # If only one or empty guests, return it or None if len(guests) == 1: return [guests[0]] if len(guests) == 0: return None # Initialize some data structures linear_list = [guests[0]] # From left to right, iterate through them cumulatively, # i.e. 'a ab abc abcd' for i in range(1, len(guests)): buffer = [] orig = guests[0:i] + guests[i] # Linear_list contains all prev. linear arranges for j in linear_list: new_arranges = add_person(j, guests[i]) # Get rid of non-linear arranges. for k in new_arranges: if linear(orig, k): buffer.append(k) linear_list = list(set(buffer)) return sorted(linear_list) def add_person(orig: str, adder: str) -> list: "Based on the original arrangement, \ return all new arranges when a new person seats in" # 1. stay one = orig + adder # 2. swap w/ tail two = list(one) two[len(two)-1], two[len(two)-2] = two[len(two)-2], two[len(two)-1] two = "".join(two) # 3. swap w/ head thr = list(one) thr[len(thr)-1], thr[0] = thr[0], thr[len(thr)-1] thr = "".join(thr) # 4. swap w/ head & cw rotate four = list(one) four = right_rotate(four, 1) four = "".join(four) # 5. swap w/ tail & ccw rotate five = list(one) five = left_rotate(five, 1) five = "".join(five) ans = [one, two, thr, four, five] return ans def divide_str(guests: str, bars: list) -> list: "Divide a string up between barriers" divided = [] for i, val in enumerate(bars): if i != len(bars) - 1: divided.append(guests[val:bars[i+1]]) else: divided.append(guests[val:]+guests[:bars[0]]) return divided def countem(upper_limit: list, values: list): "Return all the permutations" current = [0] * len(upper_limit) while True: temp_string = "" for i, val in enumerate(current): temp_string = temp_string + values[i][val] yield temp_string j = 0 current[j] += 1 while current[j] == upper_limit[j]: current[j] = 0 j += 1 if j == len(upper_limit): return current[j] += 1 class Wedding: "The assignment: wedding class" def __init__(self): pass def shuffle(self, guests: str) -> list: "Return all possible seating arrangements" # If only one or empty guests, return it or None if len(guests) == 1: return [guests[0]] if len(guests) == 0: return None arranges = [] # Find prev. linear arranges linear_list = find_linears(guests[0:len(guests)-1]) # For each prev. linear arranges, add the last person for j in linear_list: new_arranges = add_person(j, guests[len(guests)-1]) # Get rid of invalid arranges. for k in new_arranges: if valid(guests, k): arranges.append(k) return sorted(list(set(arranges))) def barriers(self, guests: str, bars: list) -> list: "Return all possible seating arrangements w/ barriers" # Initialize some data structures arranges = [] divided_linear = [] permutations = [] upper_limit = [] # Divide guests up and find their linears divided = divide_str(guests, bars) for i in divided: divided_linear.append(find_linears(i)) # Find upper limit (len of each element) of divided_linear for i in divided_linear: upper_limit.append(len(i)) # Find permutations in divided_linear for i in countem(upper_limit, divided_linear): permutations.append(i) # Format adjusting for i in permutations: i = right_rotate(i, bars[0]) offset = 0 for j in bars: i = i[:j+offset] + '|' + i[j+offset:] offset += 1 arranges.append(i) return arranges # ===========END OF STUDENT'S CODE================ def show_result(v, partial=False, ind=None): v.sort() if not partial: print("", len(v), "\n".join(v), sep="\n") else: print("", len(v), v[ind], sep="\n") def standard_tests(): standard = Wedding() res = standard.shuffle("abc") show_result(res) res = standard.shuffle("WXYZ") show_result(res) res = standard.barriers("xyz", [0]) show_result(res) res = standard.shuffle("abc") show_result(res) res = standard.shuffle("abcdefXY") show_result(res) res = standard.barriers("abcDEFxyz", [2, 5, 7]) show_result(res) res = standard.barriers("ABCDef", [4]) show_result(res) res = standard.barriers("bgywqa", [0, 1, 2, 4, 5]) show_result(res) res = standard.barriers("n", [0]) show_result(res) res = standard.shuffle("hi") show_result(res) def main(): print("""Type quit to exit. Commands: tests s guests b guests n barriers sp guests ind bp guests n barriers ind """) w = Wedding() while True: asktype = input().split() if asktype[0] == "quit": break elif asktype[0] == "tests": standard_tests() elif asktype[0] == "s": guests = asktype[1] r = w.shuffle(guests) show_result(r) elif asktype[0] == "b": guests, nbar, bars = asktype[1], asktype[2], asktype[3:] r = w.barriers(guests, [int(x) for x in bars]) show_result(r) elif asktype[0] == "sp": guests, ind = asktype[1:] r = w.shuffle(guests) show_result(r, True, int(ind)) elif asktype[0] == "bp": guests, nbar, bars, ind = asktype[1], \ asktype[2], asktype[3:-1], asktype[-1] r = w.barriers(guests, [int(x) for x in bars]) show_result(r, True, int(ind)) if __name__ == '__main__': main()
py
1a3d494859357e7c1b217ba92bf80e72cf545a41
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import pytest from backend.dashboard.examples.utils import load_demo_manifest from backend.tests.conftest import TEST_NAMESPACE from backend.tests.dashboard.conftest import DASHBOARD_API_URL_COMMON_PREFIX as DAU_PREFIX from backend.utils.basic import getitems pytestmark = pytest.mark.django_db class TestIngress: """ 测试 Ingress 相关接口 """ manifest = load_demo_manifest('networks/simple_ingress') create_url = f'{DAU_PREFIX}/networks/ingresses/' list_url = f'{DAU_PREFIX}/namespaces/{TEST_NAMESPACE}/networks/ingresses/' inst_url = f"{list_url}{getitems(manifest, 'metadata.name')}/" def test_create(self, api_client): """ 测试创建资源接口 """ response = api_client.post(self.create_url, data={'manifest': self.manifest}) assert response.json()['code'] == 0 def test_list(self, api_client): """ 测试获取资源列表接口 """ response = api_client.get(self.list_url) assert response.json()['code'] == 0 assert response.data['manifest']['kind'] == 'IngressList' def test_update(self, api_client): """ 测试更新资源接口 """ self.manifest['metadata']['annotations'] = {'t_key': 't_val'} response = api_client.put(self.inst_url, data={'manifest': self.manifest}) assert response.json()['code'] == 0 def test_retrieve(self, api_client): """ 测试获取单个资源接口 """ response = api_client.get(self.inst_url) assert response.json()['code'] == 0 assert response.data['manifest']['kind'] == 'Ingress' assert getitems(response.data, 'manifest.metadata.annotations.t_key') == 't_val' def test_destroy(self, api_client): """ 测试删除单个资源 """ response = api_client.delete(self.inst_url) assert response.json()['code'] == 0
py
1a3d49a20328928d951ee98ece97e26798d977b4
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TPU Strategy.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import atexit import collections import contextlib import copy import weakref from absl import logging import numpy as np from tensorflow.compiler.xla.experimental.xla_sharding import xla_sharding from tensorflow.python.autograph.core import ag_ctx as autograph_ctx from tensorflow.python.autograph.impl import api as autograph from tensorflow.python.distribute import cross_device_ops as cross_device_ops_lib from tensorflow.python.distribute import device_util from tensorflow.python.distribute import distribute_lib from tensorflow.python.distribute import distribute_utils from tensorflow.python.distribute import input_lib from tensorflow.python.distribute import numpy_dataset from tensorflow.python.distribute import reduce_util from tensorflow.python.distribute import tpu_values from tensorflow.python.distribute import values from tensorflow.python.distribute.cluster_resolver import TPUClusterResolver from tensorflow.python.eager import context from tensorflow.python.eager import def_function from tensorflow.python.eager import function from tensorflow.python.framework import constant_op from tensorflow.python.framework import device_spec from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops.ragged import ragged_tensor from tensorflow.python.tpu import device_assignment as device_assignment_lib # pylint: disable=unused-import from tensorflow.python.tpu import tpu from tensorflow.python.tpu import tpu_strategy_util from tensorflow.python.tpu import training_loop from tensorflow.python.tpu.ops import tpu_ops from tensorflow.python.util import deprecation from tensorflow.python.util import nest from tensorflow.python.util.tf_export import tf_export _XLA_OP_BY_OP_INPUTS_LIMIT = 200 @contextlib.contextmanager def maybe_init_scope(): if ops.executing_eagerly_outside_functions(): yield else: with ops.init_scope(): yield def validate_run_function(fn): """Validate the function passed into strategy.run.""" # We allow three types of functions/objects passed into TPUStrategy # run in eager mode: # 1. a user annotated tf.function # 2. a ConcreteFunction, this is mostly what you get from loading a saved # model. # 3. a callable object and the `__call__` method itself is a tf.function. # # Otherwise we return an error, because we don't support eagerly running # run in TPUStrategy. if context.executing_eagerly() \ and not isinstance(fn, def_function.Function) \ and not isinstance(fn, function.ConcreteFunction) \ and not (callable(fn) and isinstance(fn.__call__, def_function.Function)): raise NotImplementedError( "TPUStrategy.run(fn, ...) does not support pure eager " "execution. please make sure the function passed into " "`strategy.run` is a `tf.function` or " "`strategy.run` is called inside a `tf.function` if " "eager behavior is enabled.") @tf_export("distribute.TPUStrategy", v1=[]) class TPUStrategyV2(distribute_lib.Strategy): """Synchronous training on TPUs and TPU Pods. To construct a TPUStrategy object, you need to run the initialization code as below: >>> resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='') >>> tf.config.experimental_connect_to_cluster(resolver) >>> tf.tpu.experimental.initialize_tpu_system(resolver) >>> strategy = tf.distribute.TPUStrategy(resolver) While using distribution strategies, the variables created within the strategy's scope will be replicated across all the replicas and can be kept in sync using all-reduce algorithms. To run TF2 programs on TPUs, you can either use `.compile` and `.fit` APIs in `tf.keras` with TPUStrategy, or write your own customized training loop by calling `strategy.run` directly. Note that TPUStrategy doesn't support pure eager execution, so please make sure the function passed into `strategy.run` is a `tf.function` or `strategy.run` is called inside a `tf.function` if eager behavior is enabled. See more details in https://www.tensorflow.org/guide/tpu. `distribute_datasets_from_function` and `experimental_distribute_dataset` APIs can be used to distribute the dataset across the TPU workers when writing your own training loop. If you are using `fit` and `compile` methods available in `tf.keras.Model`, then Keras will handle the distribution for you. An example of writing customized training loop on TPUs: >>> with strategy.scope(): ... model = tf.keras.Sequential([ ... tf.keras.layers.Dense(2, input_shape=(5,)), ... ]) ... optimizer = tf.keras.optimizers.SGD(learning_rate=0.1) >>> def dataset_fn(ctx): ... x = np.random.random((2, 5)).astype(np.float32) ... y = np.random.randint(2, size=(2, 1)) ... dataset = tf.data.Dataset.from_tensor_slices((x, y)) ... return dataset.repeat().batch(1, drop_remainder=True) >>> dist_dataset = strategy.distribute_datasets_from_function( ... dataset_fn) >>> iterator = iter(dist_dataset) >>> @tf.function() ... def train_step(iterator): ... ... def step_fn(inputs): ... features, labels = inputs ... with tf.GradientTape() as tape: ... logits = model(features, training=True) ... loss = tf.keras.losses.sparse_categorical_crossentropy( ... labels, logits) ... ... grads = tape.gradient(loss, model.trainable_variables) ... optimizer.apply_gradients(zip(grads, model.trainable_variables)) ... ... strategy.run(step_fn, args=(next(iterator),)) >>> train_step(iterator) For the advanced use cases like model parallelism, you can set `experimental_device_assignment` argument when creating TPUStrategy to specify number of replicas and number of logical devices. Below is an example to initialize TPU system with 2 logical devices and 1 replica. >>> resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='') >>> tf.config.experimental_connect_to_cluster(resolver) >>> topology = tf.tpu.experimental.initialize_tpu_system(resolver) >>> device_assignment = tf.tpu.experimental.DeviceAssignment.build( ... topology, ... computation_shape=[1, 1, 1, 2], ... num_replicas=1) >>> strategy = tf.distribute.TPUStrategy( ... resolver, experimental_device_assignment=device_assignment) Then you can run a `tf.add` operation only on logical device 0. >>> @tf.function() ... def step_fn(inputs): ... features, _ = inputs ... output = tf.add(features, features) ... ... # Add operation will be executed on logical device 0. ... output = strategy.experimental_assign_to_logical_device(output, 0) ... return output >>> dist_dataset = strategy.distribute_datasets_from_function( ... dataset_fn) >>> iterator = iter(dist_dataset) >>> strategy.run(step_fn, args=(next(iterator),)) """ def __init__(self, tpu_cluster_resolver=None, experimental_device_assignment=None): """Synchronous training in TPU donuts or Pods. Args: tpu_cluster_resolver: A tf.distribute.cluster_resolver.TPUClusterResolver, which provides information about the TPU cluster. If None, it will assume running on a local TPU worker. experimental_device_assignment: Optional `tf.tpu.experimental.DeviceAssignment` to specify the placement of replicas on the TPU cluster. """ super(TPUStrategyV2, self).__init__(TPUExtended( self, tpu_cluster_resolver, device_assignment=experimental_device_assignment)) distribute_lib.distribution_strategy_gauge.get_cell("V2").set("TPUStrategy") distribute_lib.distribution_strategy_replica_gauge.get_cell( "num_workers").set(self.extended.num_hosts) distribute_lib.distribution_strategy_replica_gauge.get_cell( "num_replicas_per_worker").set(self.extended.num_replicas_per_host) # Packed variable is used to reduce the overhead of function execution. # For a DistributedVariable, only one variable handle is captured into a # function graph. It's only supported in eager mode. self._enable_packed_variable_in_eager_mode = True def run(self, fn, args=(), kwargs=None, options=None): """Run the computation defined by `fn` on each TPU replica. Executes ops specified by `fn` on each replica. If `args` or `kwargs` have `tf.distribute.DistributedValues`, such as those produced by a `tf.distribute.DistributedDataset` from `tf.distribute.Strategy.experimental_distribute_dataset` or `tf.distribute.Strategy.distribute_datasets_from_function`, when `fn` is executed on a particular replica, it will be executed with the component of `tf.distribute.DistributedValues` that correspond to that replica. `fn` may call `tf.distribute.get_replica_context()` to access members such as `all_reduce`. All arguments in `args` or `kwargs` should either be nest of tensors or `tf.distribute.DistributedValues` containing tensors or composite tensors. Example usage: >>> resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='') >>> tf.config.experimental_connect_to_cluster(resolver) >>> tf.tpu.experimental.initialize_tpu_system(resolver) >>> strategy = tf.distribute.TPUStrategy(resolver) >>> @tf.function ... def run(): ... def value_fn(value_context): ... return value_context.num_replicas_in_sync ... distributed_values = ( ... strategy.experimental_distribute_values_from_function(value_fn)) ... def replica_fn(input): ... return input * 2 ... return strategy.run(replica_fn, args=(distributed_values,)) >>> result = run() Args: fn: The function to run. The output must be a `tf.nest` of `Tensor`s. args: (Optional) Positional arguments to `fn`. kwargs: (Optional) Keyword arguments to `fn`. options: (Optional) An instance of `tf.distribute.RunOptions` specifying the options to run `fn`. Returns: Merged return value of `fn` across replicas. The structure of the return value is the same as the return value from `fn`. Each element in the structure can either be `tf.distribute.DistributedValues`, `Tensor` objects, or `Tensor`s (for example, if running on a single replica). """ validate_run_function(fn) # Note: the target function is converted to graph even when in Eager mode, # so autograph is on by default here. fn = autograph.tf_convert(fn, autograph_ctx.control_status_ctx()) options = options or distribute_lib.RunOptions() return self.extended.tpu_run(fn, args, kwargs, options) def experimental_assign_to_logical_device(self, tensor, logical_device_id): """Adds annotation that `tensor` will be assigned to a logical device. This adds an annotation to `tensor` specifying that operations on `tensor` will be invoked on logical core device id `logical_device_id`. When model parallelism is used, the default behavior is that all ops are placed on zero-th logical device. ```python # Initializing TPU system with 2 logical devices and 4 replicas. resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='') tf.config.experimental_connect_to_cluster(resolver) topology = tf.tpu.experimental.initialize_tpu_system(resolver) device_assignment = tf.tpu.experimental.DeviceAssignment.build( topology, computation_shape=[1, 1, 1, 2], num_replicas=4) strategy = tf.distribute.TPUStrategy( resolver, experimental_device_assignment=device_assignment) iterator = iter(inputs) @tf.function() def step_fn(inputs): output = tf.add(inputs, inputs) # Add operation will be executed on logical device 0. output = strategy.experimental_assign_to_logical_device(output, 0) return output strategy.run(step_fn, args=(next(iterator),)) ``` Args: tensor: Input tensor to annotate. logical_device_id: Id of the logical core to which the tensor will be assigned. Raises: ValueError: The logical device id presented is not consistent with total number of partitions specified by the device assignment. Returns: Annotated tensor with identical value as `tensor`. """ num_logical_devices_per_replica = self.extended._tpu_devices.shape[1] # pylint: disable=protected-access if (logical_device_id < 0 or logical_device_id >= num_logical_devices_per_replica): raise ValueError("`logical_core_id` to assign must be lower then total " "number of logical devices per replica. Received " "logical device id {} but there are only total of {} " "logical devices in replica.".format( logical_device_id, num_logical_devices_per_replica)) return xla_sharding.assign_device( tensor, logical_device_id, use_sharding_op=True) def experimental_split_to_logical_devices(self, tensor, partition_dimensions): """Adds annotation that `tensor` will be split across logical devices. This adds an annotation to tensor `tensor` specifying that operations on `tensor` will be be split among multiple logical devices. Tensor `tensor` will be split across dimensions specified by `partition_dimensions`. The dimensions of `tensor` must be divisible by corresponding value in `partition_dimensions`. For example, for system with 8 logical devices, if `tensor` is an image tensor with shape (batch_size, width, height, channel) and `partition_dimensions` is [1, 2, 4, 1], then `tensor` will be split 2 in width dimension and 4 way in height dimension and the split tensor values will be fed into 8 logical devices. ```python # Initializing TPU system with 8 logical devices and 1 replica. resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='') tf.config.experimental_connect_to_cluster(resolver) topology = tf.tpu.experimental.initialize_tpu_system(resolver) device_assignment = tf.tpu.experimental.DeviceAssignment.build( topology, computation_shape=[1, 2, 2, 2], num_replicas=1) strategy = tf.distribute.TPUStrategy( resolver, experimental_device_assignment=device_assignment) iterator = iter(inputs) @tf.function() def step_fn(inputs): inputs = strategy.experimental_split_to_logical_devices( inputs, [1, 2, 4, 1]) # model() function will be executed on 8 logical devices with `inputs` # split 2 * 4 ways. output = model(inputs) return output strategy.run(step_fn, args=(next(iterator),)) ``` Args: tensor: Input tensor to annotate. partition_dimensions: An unnested list of integers with the size equal to rank of `tensor` specifying how `tensor` will be partitioned. The product of all elements in `partition_dimensions` must be equal to the total number of logical devices per replica. Raises: ValueError: 1) If the size of partition_dimensions does not equal to rank of `tensor` or 2) if product of elements of `partition_dimensions` does not match the number of logical devices per replica defined by the implementing DistributionStrategy's device specification or 3) if a known size of `tensor` is not divisible by corresponding value in `partition_dimensions`. Returns: Annotated tensor with identical value as `tensor`. """ num_logical_devices_per_replica = self.extended._tpu_devices.shape[1] # pylint: disable=protected-access num_partition_splits = np.prod(partition_dimensions) input_shape = tensor.shape tensor_rank = len(input_shape) if tensor_rank != len(partition_dimensions): raise ValueError("Length of `partition_dimensions` ({}) must be " "equal to the rank of `x` ({}).".format( len(partition_dimensions), tensor_rank)) for dim_index, dim_size in enumerate(input_shape): if dim_size is None: continue split_size = partition_dimensions[dim_index] if dim_size % split_size != 0: raise ValueError("Tensor shape at dimension ({}) must be " "divisible by corresponding value specified " "by `partition_dimensions` ({}).".format( dim_index, split_size)) if num_partition_splits != num_logical_devices_per_replica: raise ValueError("Number of logical devices ({}) does not match the " "number of partition splits specified ({}).".format( num_logical_devices_per_replica, num_partition_splits)) tile_assignment = np.arange(num_partition_splits).reshape( partition_dimensions) return xla_sharding.tile(tensor, tile_assignment, use_sharding_op=True) def experimental_replicate_to_logical_devices(self, tensor): """Adds annotation that `tensor` will be replicated to all logical devices. This adds an annotation to tensor `tensor` specifying that operations on `tensor` will be invoked on all logical devices. ```python # Initializing TPU system with 2 logical devices and 4 replicas. resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='') tf.config.experimental_connect_to_cluster(resolver) topology = tf.tpu.experimental.initialize_tpu_system(resolver) device_assignment = tf.tpu.experimental.DeviceAssignment.build( topology, computation_shape=[1, 1, 1, 2], num_replicas=4) strategy = tf.distribute.TPUStrategy( resolver, experimental_device_assignment=device_assignment) iterator = iter(inputs) @tf.function() def step_fn(inputs): images, labels = inputs images = strategy.experimental_split_to_logical_devices( inputs, [1, 2, 4, 1]) # model() function will be executed on 8 logical devices with `inputs` # split 2 * 4 ways. output = model(inputs) # For loss calculation, all logical devices share the same logits # and labels. labels = strategy.experimental_replicate_to_logical_devices(labels) output = strategy.experimental_replicate_to_logical_devices(output) loss = loss_fn(labels, output) return loss strategy.run(step_fn, args=(next(iterator),)) ``` Args: tensor: Input tensor to annotate. Returns: Annotated tensor with identical value as `tensor`. """ return xla_sharding.replicate(tensor, use_sharding_op=True) @tf_export("distribute.experimental.TPUStrategy", v1=[]) @deprecation.deprecated_endpoints("distribute.experimental.TPUStrategy") class TPUStrategy(distribute_lib.Strategy): """Synchronous training on TPUs and TPU Pods. To construct a TPUStrategy object, you need to run the initialization code as below: >>> resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='') >>> tf.config.experimental_connect_to_cluster(resolver) >>> tf.tpu.experimental.initialize_tpu_system(resolver) >>> strategy = tf.distribute.experimental.TPUStrategy(resolver) While using distribution strategies, the variables created within the strategy's scope will be replicated across all the replicas and can be kept in sync using all-reduce algorithms. To run TF2 programs on TPUs, you can either use `.compile` and `.fit` APIs in `tf.keras` with TPUStrategy, or write your own customized training loop by calling `strategy.run` directly. Note that TPUStrategy doesn't support pure eager execution, so please make sure the function passed into `strategy.run` is a `tf.function` or `strategy.run` is called inside a `tf.function` if eager behavior is enabled. """ def __init__(self, tpu_cluster_resolver=None, device_assignment=None): """Synchronous training in TPU donuts or Pods. Args: tpu_cluster_resolver: A tf.distribute.cluster_resolver.TPUClusterResolver, which provides information about the TPU cluster. device_assignment: Optional `tf.tpu.experimental.DeviceAssignment` to specify the placement of replicas on the TPU cluster. """ logging.warning( "`tf.distribute.experimental.TPUStrategy` is deprecated, please use " " the non experimental symbol `tf.distribute.TPUStrategy` instead.") super(TPUStrategy, self).__init__(TPUExtended( self, tpu_cluster_resolver, device_assignment=device_assignment)) distribute_lib.distribution_strategy_gauge.get_cell("V2").set("TPUStrategy") distribute_lib.distribution_strategy_replica_gauge.get_cell( "num_workers").set(self.extended.num_hosts) distribute_lib.distribution_strategy_replica_gauge.get_cell( "num_replicas_per_worker").set(self.extended.num_replicas_per_host) # Packed variable is used to reduce the overhead of function execution. # For a DistributedVariable, only one variable handle is captured into a # function graph. It's only supported in eager mode. self._enable_packed_variable_in_eager_mode = True # TODO(cjfj): Modify `_call_for_each_replica` in `TPUExtended` such that this # can use the default implementation. # This implementation runs a single step. It does not use infeed or outfeed. def run(self, fn, args=(), kwargs=None, options=None): """See base class.""" validate_run_function(fn) # Note: the target function is converted to graph even when in Eager mode, # so autograph is on by default here. fn = autograph.tf_convert(fn, autograph_ctx.control_status_ctx()) options = options or distribute_lib.RunOptions() return self.extended.tpu_run(fn, args, kwargs, options) @property def cluster_resolver(self): """Returns the cluster resolver associated with this strategy. `tf.distribute.experimental.TPUStrategy` provides the associated `tf.distribute.cluster_resolver.ClusterResolver`. If the user provides one in `__init__`, that instance is returned; if the user does not, a default `tf.distribute.cluster_resolver.TPUClusterResolver` is provided. """ return self.extended._tpu_cluster_resolver # pylint: disable=protected-access @tf_export(v1=["distribute.experimental.TPUStrategy"]) class TPUStrategyV1(distribute_lib.StrategyV1): """TPU distribution strategy implementation.""" def __init__(self, tpu_cluster_resolver=None, steps_per_run=None, device_assignment=None): """Initializes the TPUStrategy object. Args: tpu_cluster_resolver: A tf.distribute.cluster_resolver.TPUClusterResolver, which provides information about the TPU cluster. steps_per_run: Number of steps to run on device before returning to the host. Note that this can have side-effects on performance, hooks, metrics, summaries etc. This parameter is only used when Distribution Strategy is used with estimator or keras. device_assignment: Optional `tf.tpu.experimental.DeviceAssignment` to specify the placement of replicas on the TPU cluster. Currently only supports the usecase of using a single core within a TPU cluster. """ super(TPUStrategyV1, self).__init__(TPUExtended( self, tpu_cluster_resolver, steps_per_run, device_assignment)) distribute_lib.distribution_strategy_gauge.get_cell("V1").set("TPUStrategy") distribute_lib.distribution_strategy_replica_gauge.get_cell( "num_workers").set(self.extended.num_hosts) distribute_lib.distribution_strategy_replica_gauge.get_cell( "num_replicas_per_worker").set(self.extended.num_replicas_per_host) # Packed variable is used to reduce the overhead of function execution. # For a DistributedVariable, only one variable handle is captured into a # function graph. It's only supported in eager mode. self._enable_packed_variable_in_eager_mode = True @property def steps_per_run(self): """DEPRECATED: use .extended.steps_per_run instead.""" return self._extended.steps_per_run # TODO(cjfj): Modify `_call_for_each_replica` in `TPUExtended` such that this # can use the default implementation. # This implementation runs a single step. It does not use infeed or outfeed. def run(self, fn, args=(), kwargs=None, options=None): """Run `fn` on each replica, with the given arguments. Executes ops specified by `fn` on each replica. If `args` or `kwargs` have "per-replica" values, such as those produced by a "distributed `Dataset`", when `fn` is executed on a particular replica, it will be executed with the component of those "per-replica" values that correspond to that replica. `fn` may call `tf.distribute.get_replica_context()` to access members such as `all_reduce`. All arguments in `args` or `kwargs` should either be nest of tensors or per-replica objects containing tensors or composite tensors. Users can pass strategy specific options to `options` argument. An example to enable bucketizing dynamic shapes in `TPUStrategy.run` is: >>> resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='') >>> tf.config.experimental_connect_to_cluster(resolver) >>> tf.tpu.experimental.initialize_tpu_system(resolver) >>> strategy = tf.distribute.experimental.TPUStrategy(resolver) >>> options = tf.distribute.RunOptions( ... experimental_bucketizing_dynamic_shape=True) >>> dataset = tf.data.Dataset.range( ... strategy.num_replicas_in_sync, output_type=dtypes.float32).batch( ... strategy.num_replicas_in_sync, drop_remainder=True) >>> input_iterator = iter(strategy.experimental_distribute_dataset(dataset)) >>> @tf.function() ... def step_fn(inputs): ... output = tf.reduce_sum(inputs) ... return output >>> strategy.run(step_fn, args=(next(input_iterator),), options=options) Args: fn: The function to run. The output must be a `tf.nest` of `Tensor`s. args: (Optional) Positional arguments to `fn`. kwargs: (Optional) Keyword arguments to `fn`. options: (Optional) An instance of `tf.distribute.RunOptions` specifying the options to run `fn`. Returns: Merged return value of `fn` across replicas. The structure of the return value is the same as the return value from `fn`. Each element in the structure can either be "per-replica" `Tensor` objects or `Tensor`s (for example, if running on a single replica). """ validate_run_function(fn) fn = autograph.tf_convert(fn, autograph_ctx.control_status_ctx()) options = options or distribute_lib.RunOptions() return self.extended.tpu_run(fn, args, kwargs, options) # TODO(josh11b): Switch to V2 when we no longer need to support tf.compat.v1. class TPUExtended(distribute_lib.StrategyExtendedV1): """Implementation of TPUStrategy.""" def __init__(self, container_strategy, tpu_cluster_resolver=None, steps_per_run=None, device_assignment=None): super(TPUExtended, self).__init__(container_strategy) if tpu_cluster_resolver is None: tpu_cluster_resolver = TPUClusterResolver("") if steps_per_run is None: # TODO(frankchn): Warn when we are being used by DS/Keras and this is # not specified. steps_per_run = 1 # `self._tpu_function_cache` is a dict of `tf.function`s, thus if a # `tf.function` is passed into `strategy.run` in eager mode, the # `tf.function` won't get retraced. self._tpu_function_cache = weakref.WeakKeyDictionary() self._tpu_cluster_resolver = tpu_cluster_resolver self._tpu_metadata = self._tpu_cluster_resolver.get_tpu_system_metadata() self._device_assignment = device_assignment tpu_devices_flat = [ d.name for d in self._tpu_metadata.devices if "device:TPU:" in d.name] # `self._tpu_devices` is a two-dimensional NumPy array of strings. It is # indexed using `[replica_id][logical_device_id]`. if device_assignment is None: self._tpu_devices = np.array( [[d] for d in tpu_devices_flat], dtype=object) else: job_name = device_spec.DeviceSpecV2.from_string(tpu_devices_flat[0]).job tpu_devices = [] for replica_id in range(device_assignment.num_replicas): replica_devices = [] for logical_core in range(device_assignment.num_cores_per_replica): replica_devices.append( device_util.canonicalize( device_assignment.tpu_device( replica=replica_id, logical_core=logical_core, job=job_name))) tpu_devices.append(replica_devices) self._tpu_devices = np.array(tpu_devices, dtype=object) self._host_device = device_util.get_host_for_device(self._tpu_devices[0][0]) # Preload the data onto the TPUs. Currently we always preload onto logical # device 0 for each replica. # TODO(cjfj): Create `InputWorkers` lazily, allowing users to place the # input onto a different logical device? self._device_input_worker_devices = collections.OrderedDict() self._host_input_worker_devices = collections.OrderedDict() for tpu_device in self._tpu_devices[:, 0]: host_device = device_util.get_host_for_device(tpu_device) self._device_input_worker_devices.setdefault(host_device, []) self._device_input_worker_devices[host_device].append(tpu_device) self._host_input_worker_devices.setdefault(host_device, []) self._host_input_worker_devices[host_device].append(host_device) # TODO(sourabhbajaj): Remove this once performance of running one step # at a time is comparable to multiple steps. self.steps_per_run = steps_per_run self._require_static_shapes = True self.experimental_enable_get_next_as_optional = True self._logical_device_stack = [0] if context.executing_eagerly(): # In async remote eager, we want to sync the executors before exiting the # program. def async_wait(): if context.context()._context_handle is not None: # pylint: disable=protected-access context.async_wait() atexit.register(async_wait) # Flag to turn on VariablePolicy self._use_var_policy = False def _validate_colocate_with_variable(self, colocate_with_variable): distribute_utils. validate_colocate(colocate_with_variable, self) def _make_dataset_iterator(self, dataset): """Make iterators for each of the TPU hosts.""" input_workers = input_lib.InputWorkers( tuple(self._device_input_worker_devices.items())) return input_lib.DatasetIterator( dataset, input_workers, self._container_strategy(), split_batch_by=self._num_replicas_in_sync) def _make_input_fn_iterator( self, input_fn, replication_mode=distribute_lib.InputReplicationMode.PER_WORKER): input_contexts = [] input_workers = input_lib.InputWorkers( tuple(self._device_input_worker_devices.items())) num_workers = input_workers.num_workers for i in range(num_workers): input_contexts.append(distribute_lib.InputContext( num_input_pipelines=num_workers, input_pipeline_id=i, num_replicas_in_sync=self._num_replicas_in_sync)) return input_lib.InputFunctionIterator( input_fn, input_workers, input_contexts, self._container_strategy()) def _experimental_make_numpy_dataset(self, numpy_input, session): return numpy_dataset.one_host_numpy_dataset( numpy_input, numpy_dataset.SingleDevice(self._host_device), session) def _get_input_workers(self, options): if not options or options.experimental_prefetch_to_device: return input_lib.InputWorkers( tuple(self._device_input_worker_devices.items())) else: return input_lib.InputWorkers( tuple(self._host_input_worker_devices.items())) def _check_spec(self, element_spec): if isinstance(element_spec, values.PerReplicaSpec): element_spec = element_spec._component_specs # pylint: disable=protected-access specs = nest.flatten_with_joined_string_paths(element_spec) for path, spec in specs: if isinstance(spec, (sparse_tensor.SparseTensorSpec, ragged_tensor.RaggedTensorSpec)): raise ValueError( "Found tensor {} with spec {}. TPUStrategy does not support " "distributed datasets with device prefetch when using sparse or " "ragged tensors. If you indend to use sparse or ragged tensors, " "please pass a tf.distribute.InputOptions object with " "experimental_prefetch_to_device set to False to your dataset " "distribution function.".format(path, type(spec))) def _experimental_distribute_dataset(self, dataset, options): if options is None or options.experimental_prefetch_to_device: self._check_spec(dataset.element_spec) return input_lib.get_distributed_dataset( dataset, self._get_input_workers(options), self._container_strategy(), split_batch_by=self._num_replicas_in_sync) def _distribute_datasets_from_function(self, dataset_fn, options): input_workers = self._get_input_workers(options) input_contexts = [] num_workers = input_workers.num_workers for i in range(num_workers): input_contexts.append(distribute_lib.InputContext( num_input_pipelines=num_workers, input_pipeline_id=i, num_replicas_in_sync=self._num_replicas_in_sync)) distributed_dataset = input_lib.get_distributed_datasets_from_function( dataset_fn, input_workers, input_contexts, self._container_strategy()) # We can only check after the dataset_fn is called. if options is None or options.experimental_prefetch_to_device: self._check_spec(distributed_dataset.element_spec) return distributed_dataset def _experimental_distribute_values_from_function(self, value_fn): per_replica_values = [] for replica_id in range(self._num_replicas_in_sync): per_replica_values.append( value_fn(distribute_lib.ValueContext(replica_id, self._num_replicas_in_sync))) return distribute_utils.regroup(per_replica_values, always_wrap=True) # TODO(priyag): Deal with OutOfRange errors once b/111349762 is fixed. # TODO(sourabhbajaj): Remove the initial_loop_values parameter when we have # a mechanism to infer the outputs of `fn`. Pending b/110550782. def _experimental_run_steps_on_iterator( self, fn, multi_worker_iterator, iterations, initial_loop_values=None): # Wrap `fn` for repeat. if initial_loop_values is None: initial_loop_values = {} initial_loop_values = nest.flatten(initial_loop_values) ctx = input_lib.MultiStepContext() def run_fn(inputs): """Single step on the TPU device.""" fn_result = fn(ctx, inputs) flat_last_step_outputs = nest.flatten(ctx.last_step_outputs) if flat_last_step_outputs: with ops.control_dependencies([fn_result]): return [array_ops.identity(f) for f in flat_last_step_outputs] else: return fn_result # We capture the control_flow_context at this point, before we run `fn` # inside a while_loop and TPU replicate context. This is useful in cases # where we might need to exit these contexts and get back to the outer # context to do some things, for e.g. create an op which should be # evaluated only once at the end of the loop on the host. One such usage # is in creating metrics' value op. self._outer_control_flow_context = ( ops.get_default_graph()._get_control_flow_context()) # pylint: disable=protected-access def rewrite_fn(*args): """The rewritten step fn running on TPU.""" del args per_replica_inputs = multi_worker_iterator.get_next() replicate_inputs = [] for replica_id in range(self._num_replicas_in_sync): select_replica = lambda x: distribute_utils.select_replica( # pylint: disable=g-long-lambda replica_id, x) # pylint: disable=cell-var-from-loop replicate_inputs.append((nest.map_structure( select_replica, per_replica_inputs),)) replicate_outputs = tpu.replicate( run_fn, replicate_inputs, device_assignment=self._device_assignment, xla_options=tpu.XLAOptions(use_spmd_for_xla_partitioning=False)) # If run_fn has tensor outputs, tpu.replicate returns a list of list. We # will flatten it in this case. If run_fn has no tensor outputs, # tpu.replicate returns a list of no_ops, we will keep the output as it # is. if isinstance(replicate_outputs[0], list): replicate_outputs = nest.flatten(replicate_outputs) return replicate_outputs # TODO(sourabhbajaj): The input to while loop should be based on the # output type of the step_fn assert isinstance(initial_loop_values, list) initial_loop_values = initial_loop_values * self._num_replicas_in_sync # Put the while loop op on TPU host 0. with ops.device(self._host_device): if self.steps_per_run == 1: replicate_outputs = rewrite_fn() else: replicate_outputs = training_loop.repeat(iterations, rewrite_fn, initial_loop_values) del self._outer_control_flow_context ctx.run_op = control_flow_ops.group(replicate_outputs) if isinstance(replicate_outputs, list): # Filter out any ops from the outputs, typically this would be the case # when there were no tensor outputs. last_step_tensor_outputs = [ x for x in replicate_outputs if not isinstance(x, ops.Operation) ] # Outputs are currently of the structure (flattened) # [output0_device0, output1_device0, output2_device0, # output0_device1, output1_device1, output2_device1, # ...] # Convert this to the following structure instead: (grouped by output) # [[output0_device0, output0_device1], # [output1_device0, output1_device1], # [output2_device0, output2_device1]] output_num = len(last_step_tensor_outputs) // self._num_replicas_in_sync last_step_tensor_outputs = [ last_step_tensor_outputs[i::output_num] for i in range(output_num) ] else: # no tensors returned. last_step_tensor_outputs = [] _set_last_step_outputs(ctx, last_step_tensor_outputs) return ctx def _call_for_each_replica(self, fn, args, kwargs): # TODO(jhseu): Consider making it so call_for_each_replica implies that # we're in a tpu.rewrite(), and update TPUMirroredVariable accordingly. with _TPUReplicaContext(self._container_strategy()): return fn(*args, **kwargs) @contextlib.contextmanager def experimental_logical_device(self, logical_device_id): """Places variables and ops on the specified logical device.""" num_logical_devices_per_replica = self._tpu_devices.shape[1] if logical_device_id >= num_logical_devices_per_replica: raise ValueError( "`logical_device_id` not in range (was {}, but there are only {} " "logical devices per replica).".format( logical_device_id, num_logical_devices_per_replica)) self._logical_device_stack.append(logical_device_id) try: if tpu_values.enclosing_tpu_context() is None: yield else: with ops.device(tpu.core(logical_device_id)): yield finally: self._logical_device_stack.pop() def _experimental_initialize_system(self): """Experimental method added to be used by Estimator. This is a private method only to be used by Estimator. Other frameworks should directly be calling `tf.tpu.experimental.initialize_tpu_system` """ tpu_strategy_util.initialize_tpu_system(self._tpu_cluster_resolver) def _create_variable(self, next_creator, **kwargs): """Create a TPUMirroredVariable. See `DistributionStrategy.scope`.""" if kwargs.pop("skip_mirrored_creator", False): return next_creator(**kwargs) colocate_with = kwargs.pop("colocate_with", None) if colocate_with is None: devices = self._tpu_devices[:, self._logical_device_stack[-1]] elif isinstance(colocate_with, numpy_dataset.SingleDevice): with ops.device(colocate_with.device): return next_creator(**kwargs) else: devices = colocate_with._devices # pylint: disable=protected-access def _real_mirrored_creator(**kwargs): # pylint: disable=g-missing-docstring initial_value = None value_list = [] for i, d in enumerate(devices): with ops.device(d): if i == 0: initial_value = kwargs["initial_value"] # Note: some v1 code expects variable initializer creation to happen # inside a init_scope. with maybe_init_scope(): initial_value = initial_value() if callable( initial_value) else initial_value if i > 0: # Give replicas meaningful distinct names: var0name = value_list[0].name.split(":")[0] # We append a / to variable names created on replicas with id > 0 to # ensure that we ignore the name scope and instead use the given # name as the absolute name of the variable. kwargs["name"] = "%s/replica_%d/" % (var0name, i) kwargs["initial_value"] = initial_value with context.device_policy(context.DEVICE_PLACEMENT_SILENT): v = next_creator(**kwargs) assert not isinstance(v, tpu_values.TPUMirroredVariable) value_list.append(v) return value_list return distribute_utils.create_mirrored_variable( self._container_strategy(), _real_mirrored_creator, distribute_utils.TPU_VARIABLE_CLASS_MAPPING, distribute_utils.TPU_VARIABLE_POLICY_MAPPING, **kwargs) def _reduce_to(self, reduce_op, value, destinations, experimental_hints): if (isinstance(value, values.DistributedValues) or tensor_util.is_tensor(value) ) and tpu_values.enclosing_tpu_context() is not None: if reduce_op == reduce_util.ReduceOp.MEAN: # TODO(jhseu): Revisit once we support model-parallelism. value *= (1. / self._num_replicas_in_sync) elif reduce_op != reduce_util.ReduceOp.SUM: raise NotImplementedError( "Currently only support sum & mean in TPUStrategy.") return tpu_ops.cross_replica_sum(value) if not isinstance(value, values.DistributedValues): # This function handles reducing values that are not PerReplica or # Mirrored values. For example, the same value could be present on all # replicas in which case `value` would be a single value or value could # be 0. return cross_device_ops_lib.reduce_non_distributed_value( reduce_op, value, destinations, self._num_replicas_in_sync) value_list = value.values # pylint: disable=protected-access if isinstance( value, values.DistributedVariable) and value._packed_variable is not None: value_list = tuple( value._packed_variable.on_device(d) for d in value._packed_variable.devices) # pylint: enable=protected-access # Currently XLA op by op mode has a limit for the number of inputs for a # single op, thus we break one `add_n` op into a group of `add_n` ops to # work around the constraint. # TODO(cjfj): Detect when it is possible to use `cross_replica_sum`. if len(value.values) <= _XLA_OP_BY_OP_INPUTS_LIMIT: output = math_ops.add_n(value_list) else: output = array_ops.zeros_like(value_list[0], dtype=value_list[0].dtype) for i in range(0, len(value_list), _XLA_OP_BY_OP_INPUTS_LIMIT): output += math_ops.add_n(value_list[i:i + _XLA_OP_BY_OP_INPUTS_LIMIT]) if reduce_op == reduce_util.ReduceOp.MEAN: output *= (1. / len(value_list)) devices = cross_device_ops_lib.get_devices_from(destinations) if len(devices) == 1: # If necessary, copy to requested destination. dest_canonical = device_util.canonicalize(devices[0]) host_canonical = device_util.canonicalize(self._host_device) if dest_canonical != host_canonical: with ops.device(dest_canonical): output = array_ops.identity(output) else: output = cross_device_ops_lib.simple_broadcast(output, destinations) return output def _update(self, var, fn, args, kwargs, group): assert isinstance(var, tpu_values.TPUVariableMixin) or isinstance( var, resource_variable_ops.BaseResourceVariable) if tpu_values.enclosing_tpu_context() is not None: if group: return fn(var, *args, **kwargs) else: return (fn(var, *args, **kwargs),) # Otherwise, we revert to MirroredStrategy behavior and update the variable # on each replica directly. updates = [] values_and_devices = [] packed_var = var._packed_variable # pylint: disable=protected-access if packed_var is not None: for device in packed_var.devices: values_and_devices.append((packed_var, device)) else: for value in var.values: values_and_devices.append((value, value.device)) for i, value_and_device in enumerate(values_and_devices): value = value_and_device[0] device = value_and_device[1] name = "update_%d" % i with ops.device(device), \ distribute_lib.UpdateContext(i), \ ops.name_scope(name): # If args and kwargs are not mirrored, the value is returned as is. updates.append( fn(value, *distribute_utils.select_replica_mirrored(i, args), **distribute_utils.select_replica_mirrored(i, kwargs))) return distribute_utils.update_regroup(self, updates, group) def read_var(self, var): assert isinstance(var, tpu_values.TPUVariableMixin) or isinstance( var, resource_variable_ops.BaseResourceVariable) return var.read_value() def _local_results(self, val): if isinstance(val, values.DistributedValues): return val.values return (val,) def value_container(self, value): return value def _broadcast_to(self, tensor, destinations): del destinations # This is both a fast path for Python constants, and a way to delay # converting Python values to a tensor until we know what type it # should be converted to. Otherwise we have trouble with: # global_step.assign_add(1) # since the `1` gets broadcast as an int32 but global_step is int64. if isinstance(tensor, (float, int)): return tensor if tpu_values.enclosing_tpu_context() is not None: broadcast_tensor = [tensor for _ in range(self._num_replicas_in_sync)] result = tpu_ops.all_to_all( broadcast_tensor, concat_dimension=0, split_dimension=0, split_count=self._num_replicas_in_sync) # This uses the broadcasted value from the first replica because the only # caller of this is for ONLY_FIRST_REPLICA variables aggregation. return result[0] return tensor @property def num_hosts(self): if self._device_assignment is None: return self._tpu_metadata.num_hosts return len(set([self._device_assignment.host_device(r) for r in range(self._device_assignment.num_replicas)])) @property def num_replicas_per_host(self): if self._device_assignment is None: return self._tpu_metadata.num_of_cores_per_host # TODO(sourabhbajaj): Remove this method we use inputs and remove infeed # as the computation of num_replicas_per_host is not a constant # when using device_assignment. This is a temporary workaround to support # StatefulRNN as everything is 1 in that case. # This method needs to take host_id as input for correct computation. max_models_per_host = (self._tpu_metadata.num_of_cores_per_host // self._device_assignment.num_cores_per_replica) return min(self._device_assignment.num_replicas, max_models_per_host) @property def _num_replicas_in_sync(self): if self._device_assignment is None: return self._tpu_metadata.num_cores return self._device_assignment.num_replicas @property def experimental_between_graph(self): return False @property def experimental_should_init(self): return True @property def should_checkpoint(self): return True @property def should_save_summary(self): return True @property def worker_devices(self): return tuple(self._tpu_devices[:, self._logical_device_stack[-1]]) @property def parameter_devices(self): return self.worker_devices def non_slot_devices(self, var_list): return self._host_device def _update_non_slot(self, colocate_with, fn, args, kwargs, group): del colocate_with with ops.device(self._host_device), distribute_lib.UpdateContext(None): result = fn(*args, **kwargs) if group: return result else: return nest.map_structure(self._local_results, result) def _configure(self, session_config=None, cluster_spec=None, task_type=None, task_id=None): del cluster_spec, task_type, task_id if session_config: session_config.CopyFrom(self._update_config_proto(session_config)) def _update_config_proto(self, config_proto): updated_config = copy.deepcopy(config_proto) updated_config.isolate_session_state = True cluster_spec = self._tpu_cluster_resolver.cluster_spec() if cluster_spec: updated_config.cluster_def.CopyFrom(cluster_spec.as_cluster_def()) return updated_config # TODO(priyag): Delete this once all strategies use global batch size. @property def _global_batch_size(self): """`make_dataset_iterator` and `make_numpy_iterator` use global batch size. `make_input_fn_iterator` assumes per-replica batching. Returns: Boolean. """ return True def tpu_run(self, fn, args, kwargs, options=None): func = self._tpu_function_creator(fn, options) return func(args, kwargs) def _tpu_function_creator(self, fn, options): if context.executing_eagerly() and fn in self._tpu_function_cache: return self._tpu_function_cache[fn] strategy = self._container_strategy() def tpu_function(args, kwargs): """TF Function used to replicate the user computation.""" if kwargs is None: kwargs = {} # Remove None at the end of args as they are not replicatable # If there are None in the middle we can't do anything about it # so let those cases fail. # For example when Keras model predict is used they pass the targets as # None. We want to handle it here so all client libraries don't have to # do this as other strategies can handle None values better. while args and args[-1] is None: args = args[:-1] # Used to re-structure flattened output tensors from `tpu.replicate()` # into a structured format. result = [[]] def replicated_fn(replica_id, replica_args, replica_kwargs): """Wraps user function to provide replica ID and `Tensor` inputs.""" with _TPUReplicaContext(strategy, replica_id_in_sync_group=replica_id): result[0] = fn(*replica_args, **replica_kwargs) return result[0] replicate_inputs = [] # By replica. for i in range(strategy.num_replicas_in_sync): replicate_inputs.append( [constant_op.constant(i, dtype=dtypes.int32), distribute_utils.select_replica(i, args), distribute_utils.select_replica(i, kwargs)]) # Construct and pass `maximum_shapes` so that we could support dynamic # shapes using dynamic padder. if options.experimental_enable_dynamic_batch_size and replicate_inputs: maximum_shapes = [] flattened_list = nest.flatten(replicate_inputs[0]) for input_tensor in flattened_list: if tensor_util.is_tensor(input_tensor): rank = input_tensor.shape.rank else: rank = np.ndim(input_tensor) maximum_shape = tensor_shape.TensorShape([None] * rank) maximum_shapes.append(maximum_shape) maximum_shapes = nest.pack_sequence_as(replicate_inputs[0], maximum_shapes) else: maximum_shapes = None if options.experimental_bucketizing_dynamic_shape: padding_spec = tpu.PaddingSpec.POWER_OF_TWO else: padding_spec = None with strategy.scope(): replicate_outputs = tpu.replicate( replicated_fn, replicate_inputs, device_assignment=self._device_assignment, maximum_shapes=maximum_shapes, padding_spec=padding_spec, xla_options=tpu.XLAOptions(use_spmd_for_xla_partitioning=False)) # Remove all no ops that may have been added during 'tpu.replicate()' if isinstance(result[0], list): result[0] = [ output for output in result[0] if not isinstance( output, ops.Operation) ] # Workaround for `tpu.replicate` behaviour when single `Tensor` returned. if result[0] is None or isinstance(result[0], ops.Operation): replicate_outputs = [None] * len(replicate_outputs) else: replicate_outputs = [ nest.pack_sequence_as(result[0], nest.flatten(replica_output)) for replica_output in replicate_outputs ] return distribute_utils.regroup(replicate_outputs) if context.executing_eagerly(): tpu_function = def_function.function(tpu_function) self._tpu_function_cache[fn] = tpu_function return tpu_function def _in_multi_worker_mode(self): """Whether this strategy indicates working in multi-worker settings.""" # TPUStrategy has different distributed training structure that the whole # cluster should be treated as single worker from higher-level (e.g. Keras) # library's point of view. # TODO(rchao): Revisit this as we design a fault-tolerance solution for # TPUStrategy. return False class _TPUReplicaContext(distribute_lib.ReplicaContext): """Replication Context class for TPU Strategy.""" # TODO(sourabhbajaj): Call for each replica should be updating this. # TODO(b/118385803): Always properly initialize replica_id. def __init__(self, strategy, replica_id_in_sync_group=0): distribute_lib.ReplicaContext.__init__( self, strategy, replica_id_in_sync_group=replica_id_in_sync_group) @property def devices(self): distribute_lib.require_replica_context(self) ds = self._strategy replica_id = tensor_util.constant_value(self.replica_id_in_sync_group) if replica_id is None: # Non-constant `Tensor` inside `tpu.replicate`. # TODO(cjfj): Return other devices when model parallelism is supported. return (tpu.core(0),) else: return (ds.extended.worker_devices[replica_id],) def experimental_logical_device(self, logical_device_id): """Places variables and ops on the specified logical device.""" return self.strategy.extended.experimental_logical_device(logical_device_id) def _set_last_step_outputs(ctx, last_step_tensor_outputs): """Sets the last step outputs on the given context.""" # Convert replicate_outputs to the original dict structure of # last_step_outputs. last_step_tensor_outputs_dict = nest.pack_sequence_as( ctx.last_step_outputs, last_step_tensor_outputs) for name, reduce_op in ctx._last_step_outputs_reduce_ops.items(): # pylint: disable=protected-access output = last_step_tensor_outputs_dict[name] # For outputs that aren't reduced, return a PerReplica of all values. Else # take the first value from the list as each value should be the same. if reduce_op is None: last_step_tensor_outputs_dict[name] = values.PerReplica(output) else: # TODO(priyag): Should this return the element or a list with 1 element last_step_tensor_outputs_dict[name] = output[0] ctx._set_last_step_outputs(last_step_tensor_outputs_dict) # pylint: disable=protected-access
py
1a3d4a3ab6f500cf043bcde9dae0348772d388b1
config = { "interfaces": { "google.ads.googleads.v1.services.FeedPlaceholderViewService": { "retry_codes": { "idempotent": ["DEADLINE_EXCEEDED", "UNAVAILABLE"], "non_idempotent": [] }, "retry_params": { "default": { "initial_retry_delay_millis": 100, "retry_delay_multiplier": 1.3, "max_retry_delay_millis": 60000, "initial_rpc_timeout_millis": 20000, "rpc_timeout_multiplier": 1.0, "max_rpc_timeout_millis": 20000, "total_timeout_millis": 600000 } }, "methods": { "GetFeedPlaceholderView": { "timeout_millis": 60000, "retry_codes_name": "idempotent", "retry_params_name": "default" } } } } }
py
1a3d4a670a0861e236d7253c60e2b6f0cf71e6cb
import os import io import numpy as np import librosa import soundfile as sf import tensorflow as tf from scipy.signal import butter, lfilter from scipy import signal import copy def read_raw_audio(audio, sample_rate=16000): if isinstance(audio, str): wave, _ = librosa.load(os.path.expanduser(audio), sr=sample_rate) elif isinstance(audio, bytes): wave, sr = sf.read(io.BytesIO(audio)) wave = np.asfortranarray(wave) if sr != sample_rate: wave = librosa.resample(wave, sr, sample_rate) elif isinstance(audio, np.ndarray): return audio else: raise ValueError("input audio must be either a path or bytes") return wave def normalize_audio_feature(audio_feature: np.ndarray, per_feature=False): """ Mean and variance normalization """ axis = 0 if per_feature else None mean = np.mean(audio_feature, axis=axis) std_dev = np.std(audio_feature, axis=axis) + 1e-9 normalized = (audio_feature - mean) / std_dev return normalized def normalize_signal(signal: np.ndarray): """ Normailize signal to [-1, 1] range """ gain = 1.0 / (np.max(np.abs(signal)) + 1e-9) return signal * gain class SpeechFeaturizer: def __init__(self, speech_config: dict): # Samples self.speech_config=speech_config self.sample_rate = speech_config["sample_rate"] self.hop_size = int(self.sample_rate * (speech_config["hop_size"])) self.win_size = int(self.sample_rate * (speech_config["win_size"])) # Features self.num_mels = speech_config["num_mels"] self.preemphasis = speech_config["preemphasis"] # Normalization def smooth_energe(self,wav, sr): factor = 5 cutoff = 20 nyq = 0.5 * sr order = 3 # set low-pass filter order normal_cutoff = cutoff / nyq b, a = butter(order, normal_cutoff, btype='low', analog=False) envelop = lfilter(b, a, abs(wav)) # filter low frequency part as signal's envelop envelop = envelop / np.abs(envelop).max() envelop = envelop * factor + 1 wav = np.divide(wav, envelop) wav /= np.abs(wav).max() return wav def load_wav(self,path): wav=read_raw_audio(path,self.sample_rate) wav=librosa.effects.preemphasis(wav) wav=self.smooth_energe(wav,self.sample_rate) wav=librosa.effects.trim(wav,top_db=20)[0] return wav def pad_signal(self,wavs,max_length): wavs = tf.keras.preprocessing.sequence.pad_sequences(wavs, max_length, 'float32', 'post', 'post') return wavs def melspectrogram(self,wav): D = librosa.stft(y=wav, n_fft=self.speech_config['n_fft'], hop_length=self.hop_size, win_length=self.win_size) assert self.speech_config['fmax'] <= self.sample_rate // 2 mel_basis= librosa.filters.mel(self.sample_rate, self.speech_config['n_fft'], n_mels=self.num_mels , fmin=self.speech_config['fmin'], fmax=self.speech_config['fmax']) D= np.dot(mel_basis, np.abs(D)) min_level = np.exp(self.speech_config['min_level_db'] / 20 * np.log(10)) D= 20 * np.log10(np.maximum(min_level, D)) S = D - self.speech_config['ref_level_db'] S=np.clip((2 * self.speech_config['max_abs_value']) * ( (S - self.speech_config['min_level_db']) / (-self.speech_config['min_level_db'])) - self.speech_config['max_abs_value'], -self.speech_config['max_abs_value'], self.speech_config['max_abs_value']) return S.T def preemphasis(self,wav): return np.append(wav[0], wav[1:] - 0.97 * wav[:-1]) def inv_preemphasis(self,wav): return signal.lfilter([1], [1, -0.97], wav) def inv_mel_spectrogram(self,mel_spectrogram): '''Converts mel spectrogram to waveform using librosa''' mel_spectrogram *= self.speech_config['power'] D=(((np.clip(mel_spectrogram, -self.speech_config['max_abs_value'], self.speech_config['max_abs_value']) + self.speech_config['max_abs_value']) * -self.speech_config['min_level_db'] / ( 2 * self.speech_config['max_abs_value']))+ self.speech_config['min_level_db']) D=np.power(10.0, (D) * 0.05) mel_basis = librosa.filters.mel(self.sample_rate, self.speech_config['n_fft'], n_mels=self.num_mels , fmin=self.speech_config['fmin'], fmax=self.speech_config['fmax']) _inv_mel_basis = np.linalg.pinv(mel_basis) S= np.maximum(1e-10, np.dot(_inv_mel_basis, D)) spectro = copy.deepcopy(S) for i in range(self.speech_config['griffin_lim_iters']): estimated_wav = librosa.istft(spectro, hop_length=self.hop_size, win_length=self.win_size) est_stft = librosa.stft(y=estimated_wav, n_fft=self.speech_config['n_fft'], hop_length=self.hop_size, win_length=self.win_size) phase = est_stft / np.maximum(1e-8, np.abs(est_stft)) spectro = S * phase estimated_wav = librosa.istft(spectro, hop_length=self.hop_size, win_length=self.win_size) result = np.real(estimated_wav) return self.inv_preemphasis(result) def _compute_pitch_feature(self, signal: np.ndarray) -> np.ndarray: pitches, _ = librosa.core.piptrack( y=signal, sr=self.sample_rate, n_fft=self.speech_config['n_fft'], hop_length=self.hop_size, fmin=0, fmax=int(self.sample_rate / 2), win_length=self.win_size, center=True ) pitches = pitches.T assert self.num_mels <= self.speech_config['n_fft'] // 2 + 1, \ "num_features for spectrogram should \ be <= (sample_rate * window_size // 2 + 1)" return pitches[:, :self.num_mels]
py
1a3d4ac8f4476868e0b79d99126c4d53324fb088
import cv2 as cv import os i = 1 def capture(file, interval=450): cap = cv.VideoCapture(file) length = int(cap.get(cv.CAP_PROP_FRAME_COUNT)) global i j = 0 while (cap.isOpened() and j < length): cap.set(1, j) ret, frame = cap.read() if ret == False: break cv.imwrite("./trainingDataPreprocessing/img_y/" + "{:04d}".format(i) + ".png", frame) i += 1 j += interval cap.release() cv.destroyAllWindows() for dirpath, dirnames, files in os.walk('./trainingDataPreprocessing/vid', topdown=False): for file_name in files: capture("./trainingDataPreprocessing/vid/" + file_name)
py
1a3d4d8d05fffbb77b22a5058c547324d964387a
from chatnoir_api import Index DEFAULT_START = 0 DEFAULT_SIZE = 10 DEFAULT_SLOP = 0 DEFAULT_INDEX = { Index.ClueWeb09, Index.ClueWeb12, Index.CommonCrawl1511, } DEFAULT_MINIMAL = False DEFAULT_EXPLAIN = False DEFAULT_RETRIES = 5 DEFAULT_BACKOFF_SECONDS = 1
py
1a3d4e2e455afad0ca70fa25ffae383005d145d6
# coding: utf-8 """Constants used by Home Assistant components.""" MAJOR_VERSION = 0 MINOR_VERSION = 88 PATCH_VERSION = '0.dev0' __short_version__ = '{}.{}'.format(MAJOR_VERSION, MINOR_VERSION) __version__ = '{}.{}'.format(__short_version__, PATCH_VERSION) REQUIRED_PYTHON_VER = (3, 5, 3) # Format for platform files PLATFORM_FORMAT = '{platform}.{domain}' # Can be used to specify a catch all when registering state or event listeners. MATCH_ALL = '*' # Entity target all constant ENTITY_MATCH_ALL = 'all' # If no name is specified DEVICE_DEFAULT_NAME = 'Unnamed Device' # Sun events SUN_EVENT_SUNSET = 'sunset' SUN_EVENT_SUNRISE = 'sunrise' # #### CONFIG #### CONF_ABOVE = 'above' CONF_ACCESS_TOKEN = 'access_token' CONF_ADDRESS = 'address' CONF_AFTER = 'after' CONF_ALIAS = 'alias' CONF_API_KEY = 'api_key' CONF_API_VERSION = 'api_version' CONF_AT = 'at' CONF_AUTHENTICATION = 'authentication' CONF_AUTH_MFA_MODULES = 'auth_mfa_modules' CONF_AUTH_PROVIDERS = 'auth_providers' CONF_BASE = 'base' CONF_BEFORE = 'before' CONF_BELOW = 'below' CONF_BINARY_SENSORS = 'binary_sensors' CONF_BLACKLIST = 'blacklist' CONF_BRIGHTNESS = 'brightness' CONF_CODE = 'code' CONF_COLOR_TEMP = 'color_temp' CONF_COMMAND = 'command' CONF_COMMAND_CLOSE = 'command_close' CONF_COMMAND_OFF = 'command_off' CONF_COMMAND_ON = 'command_on' CONF_COMMAND_OPEN = 'command_open' CONF_COMMAND_STATE = 'command_state' CONF_COMMAND_STOP = 'command_stop' CONF_CONDITION = 'condition' CONF_COVERS = 'covers' CONF_CURRENCY = 'currency' CONF_CUSTOMIZE = 'customize' CONF_CUSTOMIZE_DOMAIN = 'customize_domain' CONF_CUSTOMIZE_GLOB = 'customize_glob' CONF_DELAY_TIME = 'delay_time' CONF_DEVICE = 'device' CONF_DEVICE_CLASS = 'device_class' CONF_DEVICES = 'devices' CONF_DISARM_AFTER_TRIGGER = 'disarm_after_trigger' CONF_DISCOVERY = 'discovery' CONF_DISKS = 'disks' CONF_DISPLAY_CURRENCY = 'display_currency' CONF_DISPLAY_OPTIONS = 'display_options' CONF_DOMAIN = 'domain' CONF_DOMAINS = 'domains' CONF_EFFECT = 'effect' CONF_ELEVATION = 'elevation' CONF_EMAIL = 'email' CONF_ENTITIES = 'entities' CONF_ENTITY_ID = 'entity_id' CONF_ENTITY_NAMESPACE = 'entity_namespace' CONF_ENTITY_PICTURE_TEMPLATE = 'entity_picture_template' CONF_EVENT = 'event' CONF_EXCLUDE = 'exclude' CONF_FILE_PATH = 'file_path' CONF_FILENAME = 'filename' CONF_FOR = 'for' CONF_FORCE_UPDATE = 'force_update' CONF_FRIENDLY_NAME = 'friendly_name' CONF_FRIENDLY_NAME_TEMPLATE = 'friendly_name_template' CONF_HEADERS = 'headers' CONF_HOST = 'host' CONF_HOSTS = 'hosts' CONF_HS = 'hs' CONF_ICON = 'icon' CONF_ICON_TEMPLATE = 'icon_template' CONF_INCLUDE = 'include' CONF_ID = 'id' CONF_IP_ADDRESS = 'ip_address' CONF_LATITUDE = 'latitude' CONF_LONGITUDE = 'longitude' CONF_LIGHTS = 'lights' CONF_MAC = 'mac' CONF_METHOD = 'method' CONF_MAXIMUM = 'maximum' CONF_MINIMUM = 'minimum' CONF_MODE = 'mode' CONF_MONITORED_CONDITIONS = 'monitored_conditions' CONF_MONITORED_VARIABLES = 'monitored_variables' CONF_NAME = 'name' CONF_OFFSET = 'offset' CONF_OPTIMISTIC = 'optimistic' CONF_PACKAGES = 'packages' CONF_PASSWORD = 'password' CONF_PATH = 'path' CONF_PAYLOAD = 'payload' CONF_PAYLOAD_OFF = 'payload_off' CONF_PAYLOAD_ON = 'payload_on' CONF_PENDING_TIME = 'pending_time' CONF_PIN = 'pin' CONF_PLATFORM = 'platform' CONF_PORT = 'port' CONF_PREFIX = 'prefix' CONF_PROFILE_NAME = 'profile_name' CONF_PROTOCOL = 'protocol' CONF_PROXY_SSL = 'proxy_ssl' CONF_QUOTE = 'quote' CONF_RADIUS = 'radius' CONF_RECIPIENT = 'recipient' CONF_REGION = 'region' CONF_RESOURCE = 'resource' CONF_RESOURCES = 'resources' CONF_RGB = 'rgb' CONF_ROOM = 'room' CONF_SCAN_INTERVAL = 'scan_interval' CONF_SENDER = 'sender' CONF_SENSOR_TYPE = 'sensor_type' CONF_SENSORS = 'sensors' CONF_SHOW_ON_MAP = 'show_on_map' CONF_SLAVE = 'slave' CONF_SOURCE = 'source' CONF_SSL = 'ssl' CONF_STATE = 'state' CONF_STATE_TEMPLATE = 'state_template' CONF_STRUCTURE = 'structure' CONF_SWITCHES = 'switches' CONF_TEMPERATURE_UNIT = 'temperature_unit' CONF_TIME_ZONE = 'time_zone' CONF_TIMEOUT = 'timeout' CONF_TOKEN = 'token' CONF_TRIGGER_TIME = 'trigger_time' CONF_TTL = 'ttl' CONF_TYPE = 'type' CONF_UNIT_OF_MEASUREMENT = 'unit_of_measurement' CONF_UNIT_SYSTEM = 'unit_system' CONF_UPDATE_INTERVAL = 'update_interval' CONF_URL = 'url' CONF_USERNAME = 'username' CONF_VALUE_TEMPLATE = 'value_template' CONF_VERIFY_SSL = 'verify_ssl' CONF_WEBHOOK_ID = 'webhook_id' CONF_WEEKDAY = 'weekday' CONF_WHITELIST = 'whitelist' CONF_WHITELIST_EXTERNAL_DIRS = 'whitelist_external_dirs' CONF_WHITE_VALUE = 'white_value' CONF_XY = 'xy' CONF_ZONE = 'zone' # #### EVENTS #### EVENT_HOMEASSISTANT_START = 'homeassistant_start' EVENT_HOMEASSISTANT_STOP = 'homeassistant_stop' EVENT_HOMEASSISTANT_CLOSE = 'homeassistant_close' EVENT_STATE_CHANGED = 'state_changed' EVENT_TIME_CHANGED = 'time_changed' EVENT_CALL_SERVICE = 'call_service' EVENT_PLATFORM_DISCOVERED = 'platform_discovered' EVENT_COMPONENT_LOADED = 'component_loaded' EVENT_SERVICE_REGISTERED = 'service_registered' EVENT_SERVICE_REMOVED = 'service_removed' EVENT_LOGBOOK_ENTRY = 'logbook_entry' EVENT_THEMES_UPDATED = 'themes_updated' EVENT_TIMER_OUT_OF_SYNC = 'timer_out_of_sync' EVENT_AUTOMATION_TRIGGERED = 'automation_triggered' EVENT_SCRIPT_STARTED = 'script_started' # #### DEVICE CLASSES #### DEVICE_CLASS_BATTERY = 'battery' DEVICE_CLASS_HUMIDITY = 'humidity' DEVICE_CLASS_ILLUMINANCE = 'illuminance' DEVICE_CLASS_TEMPERATURE = 'temperature' DEVICE_CLASS_TIMESTAMP = 'timestamp' DEVICE_CLASS_PRESSURE = 'pressure' # #### STATES #### STATE_ON = 'on' STATE_OFF = 'off' STATE_HOME = 'home' STATE_NOT_HOME = 'not_home' STATE_UNKNOWN = 'unknown' STATE_OPEN = 'open' STATE_OPENING = 'opening' STATE_CLOSED = 'closed' STATE_CLOSING = 'closing' STATE_PLAYING = 'playing' STATE_PAUSED = 'paused' STATE_IDLE = 'idle' STATE_STANDBY = 'standby' STATE_ALARM_DISARMED = 'disarmed' STATE_ALARM_ARMED_HOME = 'armed_home' STATE_ALARM_ARMED_AWAY = 'armed_away' STATE_ALARM_ARMED_NIGHT = 'armed_night' STATE_ALARM_ARMED_CUSTOM_BYPASS = 'armed_custom_bypass' STATE_ALARM_PENDING = 'pending' STATE_ALARM_ARMING = 'arming' STATE_ALARM_DISARMING = 'disarming' STATE_ALARM_TRIGGERED = 'triggered' STATE_LOCKED = 'locked' STATE_UNLOCKED = 'unlocked' STATE_UNAVAILABLE = 'unavailable' STATE_OK = 'ok' STATE_PROBLEM = 'problem' # #### STATE AND EVENT ATTRIBUTES #### # Attribution ATTR_ATTRIBUTION = 'attribution' # Credentials ATTR_CREDENTIALS = 'credentials' # Contains time-related attributes ATTR_NOW = 'now' ATTR_DATE = 'date' ATTR_TIME = 'time' ATTR_SECONDS = 'seconds' # Contains domain, service for a SERVICE_CALL event ATTR_DOMAIN = 'domain' ATTR_SERVICE = 'service' ATTR_SERVICE_DATA = 'service_data' # IDs ATTR_ID = 'id' # Name ATTR_NAME = 'name' # Contains one string or a list of strings, each being an entity id ATTR_ENTITY_ID = 'entity_id' # String with a friendly name for the entity ATTR_FRIENDLY_NAME = 'friendly_name' # A picture to represent entity ATTR_ENTITY_PICTURE = 'entity_picture' # Icon to use in the frontend ATTR_ICON = 'icon' # The unit of measurement if applicable ATTR_UNIT_OF_MEASUREMENT = 'unit_of_measurement' CONF_UNIT_SYSTEM_METRIC = 'metric' # type: str CONF_UNIT_SYSTEM_IMPERIAL = 'imperial' # type: str # Electrical attributes ATTR_VOLTAGE = 'voltage' # Contains the information that is discovered ATTR_DISCOVERED = 'discovered' # Location of the device/sensor ATTR_LOCATION = 'location' ATTR_BATTERY_CHARGING = 'battery_charging' ATTR_BATTERY_LEVEL = 'battery_level' ATTR_WAKEUP = 'wake_up_interval' # For devices which support a code attribute ATTR_CODE = 'code' ATTR_CODE_FORMAT = 'code_format' # For calling a device specific command ATTR_COMMAND = 'command' # For devices which support an armed state ATTR_ARMED = 'device_armed' # For devices which support a locked state ATTR_LOCKED = 'locked' # For sensors that support 'tripping', eg. motion and door sensors ATTR_TRIPPED = 'device_tripped' # For sensors that support 'tripping' this holds the most recent # time the device was tripped ATTR_LAST_TRIP_TIME = 'last_tripped_time' # For all entity's, this hold whether or not it should be hidden ATTR_HIDDEN = 'hidden' # Location of the entity ATTR_LATITUDE = 'latitude' ATTR_LONGITUDE = 'longitude' # Accuracy of location in meters ATTR_GPS_ACCURACY = 'gps_accuracy' # If state is assumed ATTR_ASSUMED_STATE = 'assumed_state' ATTR_STATE = 'state' ATTR_OPTION = 'option' # Bitfield of supported component features for the entity ATTR_SUPPORTED_FEATURES = 'supported_features' # Class of device within its domain ATTR_DEVICE_CLASS = 'device_class' # Temperature attribute ATTR_TEMPERATURE = 'temperature' # #### UNITS OF MEASUREMENT #### # Temperature units TEMP_CELSIUS = '°C' TEMP_FAHRENHEIT = '°F' # Length units LENGTH_CENTIMETERS = 'cm' # type: str LENGTH_METERS = 'm' # type: str LENGTH_KILOMETERS = 'km' # type: str LENGTH_INCHES = 'in' # type: str LENGTH_FEET = 'ft' # type: str LENGTH_YARD = 'yd' # type: str LENGTH_MILES = 'mi' # type: str # Volume units VOLUME_LITERS = 'L' # type: str VOLUME_MILLILITERS = 'mL' # type: str VOLUME_GALLONS = 'gal' # type: str VOLUME_FLUID_OUNCE = 'fl. oz.' # type: str # Mass units MASS_GRAMS = 'g' # type: str MASS_KILOGRAMS = 'kg' # type: str MASS_OUNCES = 'oz' # type: str MASS_POUNDS = 'lb' # type: str # UV Index units UNIT_UV_INDEX = 'UV index' # type: str # #### SERVICES #### SERVICE_HOMEASSISTANT_STOP = 'stop' SERVICE_HOMEASSISTANT_RESTART = 'restart' SERVICE_TURN_ON = 'turn_on' SERVICE_TURN_OFF = 'turn_off' SERVICE_TOGGLE = 'toggle' SERVICE_RELOAD = 'reload' SERVICE_VOLUME_UP = 'volume_up' SERVICE_VOLUME_DOWN = 'volume_down' SERVICE_VOLUME_MUTE = 'volume_mute' SERVICE_VOLUME_SET = 'volume_set' SERVICE_MEDIA_PLAY_PAUSE = 'media_play_pause' SERVICE_MEDIA_PLAY = 'media_play' SERVICE_MEDIA_PAUSE = 'media_pause' SERVICE_MEDIA_STOP = 'media_stop' SERVICE_MEDIA_NEXT_TRACK = 'media_next_track' SERVICE_MEDIA_PREVIOUS_TRACK = 'media_previous_track' SERVICE_MEDIA_SEEK = 'media_seek' SERVICE_SHUFFLE_SET = 'shuffle_set' SERVICE_ALARM_DISARM = 'alarm_disarm' SERVICE_ALARM_ARM_HOME = 'alarm_arm_home' SERVICE_ALARM_ARM_AWAY = 'alarm_arm_away' SERVICE_ALARM_ARM_NIGHT = 'alarm_arm_night' SERVICE_ALARM_ARM_CUSTOM_BYPASS = 'alarm_arm_custom_bypass' SERVICE_ALARM_TRIGGER = 'alarm_trigger' SERVICE_LOCK = 'lock' SERVICE_UNLOCK = 'unlock' SERVICE_OPEN = 'open' SERVICE_CLOSE = 'close' SERVICE_CLOSE_COVER = 'close_cover' SERVICE_CLOSE_COVER_TILT = 'close_cover_tilt' SERVICE_OPEN_COVER = 'open_cover' SERVICE_OPEN_COVER_TILT = 'open_cover_tilt' SERVICE_SET_COVER_POSITION = 'set_cover_position' SERVICE_SET_COVER_TILT_POSITION = 'set_cover_tilt_position' SERVICE_STOP_COVER = 'stop_cover' SERVICE_STOP_COVER_TILT = 'stop_cover_tilt' SERVICE_SELECT_OPTION = 'select_option' # #### API / REMOTE #### SERVER_PORT = 8123 URL_ROOT = '/' URL_API = '/api/' URL_API_STREAM = '/api/stream' URL_API_CONFIG = '/api/config' URL_API_DISCOVERY_INFO = '/api/discovery_info' URL_API_STATES = '/api/states' URL_API_STATES_ENTITY = '/api/states/{}' URL_API_EVENTS = '/api/events' URL_API_EVENTS_EVENT = '/api/events/{}' URL_API_SERVICES = '/api/services' URL_API_SERVICES_SERVICE = '/api/services/{}/{}' URL_API_COMPONENTS = '/api/components' URL_API_ERROR_LOG = '/api/error_log' URL_API_LOG_OUT = '/api/log_out' URL_API_TEMPLATE = '/api/template' HTTP_OK = 200 HTTP_CREATED = 201 HTTP_MOVED_PERMANENTLY = 301 HTTP_BAD_REQUEST = 400 HTTP_UNAUTHORIZED = 401 HTTP_NOT_FOUND = 404 HTTP_METHOD_NOT_ALLOWED = 405 HTTP_UNPROCESSABLE_ENTITY = 422 HTTP_TOO_MANY_REQUESTS = 429 HTTP_INTERNAL_SERVER_ERROR = 500 HTTP_SERVICE_UNAVAILABLE = 503 HTTP_BASIC_AUTHENTICATION = 'basic' HTTP_DIGEST_AUTHENTICATION = 'digest' HTTP_HEADER_HA_AUTH = 'X-HA-access' HTTP_HEADER_X_REQUESTED_WITH = 'X-Requested-With' CONTENT_TYPE_JSON = 'application/json' CONTENT_TYPE_MULTIPART = 'multipart/x-mixed-replace; boundary={}' CONTENT_TYPE_TEXT_PLAIN = 'text/plain' # The exit code to send to request a restart RESTART_EXIT_CODE = 100 UNIT_NOT_RECOGNIZED_TEMPLATE = '{} is not a recognized {} unit.' # type: str LENGTH = 'length' # type: str MASS = 'mass' # type: str VOLUME = 'volume' # type: str TEMPERATURE = 'temperature' # type: str SPEED_MS = 'speed_ms' # type: str ILLUMINANCE = 'illuminance' # type: str WEEKDAYS = ['mon', 'tue', 'wed', 'thu', 'fri', 'sat', 'sun'] # The degree of precision for platforms PRECISION_WHOLE = 1 PRECISION_HALVES = 0.5 PRECISION_TENTHS = 0.1 # Static list of entities that will never be exposed to # cloud, alexa, or google_home components CLOUD_NEVER_EXPOSED_ENTITIES = ['group.all_locks']
py
1a3d4ec23be43724cbb4574ad05cbe47849b4530
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Keras index lookup preprocessing layer.""" # pylint: disable=g-classes-have-attributes # pylint: disable=g-direct-tensorflow-import import collections from keras import backend from keras.engine import base_layer_utils from keras.engine import base_preprocessing_layer from keras.layers.preprocessing import preprocessing_utils as utils from keras.saving.saved_model import layer_serialization from keras.utils import layer_utils from keras.utils import tf_utils import numpy as np import tensorflow.compat.v2 as tf from tensorflow.python.platform import tf_logging as logging INT = utils.INT MULTI_HOT = utils.MULTI_HOT ONE_HOT = utils.ONE_HOT COUNT = utils.COUNT TF_IDF = utils.TF_IDF _VOCAB_NAME = "vocab" _IDF_WEIGHTS_NAME = "idf_weights" class NullInitializer(tf.lookup.KeyValueTensorInitializer): """A placeholder initializer for restoring this layer from a SavedModel.""" def __init__(self, key_dtype, value_dtype): """Construct a table initializer object. Args: key_dtype: Type of the table keys. value_dtype: Type of the table values. """ self._key_dtype = key_dtype self._value_dtype = value_dtype @property def key_dtype(self): """The expected table key dtype.""" return self._key_dtype @property def value_dtype(self): """The expected table value dtype.""" return self._value_dtype def initialize(self, table): """Returns the table initialization op.""" pass class VocabWeightHandler(base_layer_utils.TrackableWeightHandler): """Adds the vocabulary as a layer weight during serialization.""" def __init__(self, lookup_layer): self._layer = lookup_layer self._dtype = lookup_layer.vocabulary_dtype self._distribute_strategy = tf.distribute.get_strategy() @property def num_tensors(self): return 1 def set_weights(self, weights): tokens = tf.convert_to_tensor(weights[0], self._dtype) self._layer.lookup_table = self._layer._lookup_table_from_tokens(tokens) # pylint: disable=protected-access def get_tensors(self): # Just save the non-config part of the vocab (no special tokens). tokens = self._layer.get_vocabulary(include_special_tokens=False) tokens = tf.convert_to_tensor(tokens, self._dtype) return [tokens] class IndexLookup(base_preprocessing_layer.PreprocessingLayer): """Maps values from a vocabulary to integer indices. This layer translates a set of arbitrary hashables into an integer output via a table-based lookup, with optional out-of-vocabulary handling. This is the basis layer for both IntegerLookup and StringLookup; it holds the common logic but is not intended to be exported as part of the Keras API. Args: max_tokens: The maximum size of the vocabulary for this layer. If None, there is no cap on the size of the vocabulary. Note that this size includes the OOV and mask tokens. num_oov_indices: The number of out-of-vocabulary tokens to use. If this value is more than 1, OOV inputs are hashed to determine their OOV value. If this value is 0, OOV inputs will cause an error when calling the layer. mask_token: A token that represents masked inputs. When `output_mode` is `"int"`, the token is included in vocabulary and mapped to index 0. In other output modes, the token will not appear in the vocabulary and instances of the mask token in the input will be dropped. If set to None, no mask term will be added. oov_token: Only used when `invert` is True. The token to return for OOV indices. vocabulary: Optional. Either an array or a string path to a text file. If passing an array, can pass a tuple, list, 1D numpy array, or 1D tensor containing the vocbulary terms. If passing a file path, the file should contain one line per term in the vocabulary. If this argument is set, there is no need to `adapt` the layer. vocabulary_dtype: The dtype of the vocabulary terms. For example, `"int64"` or `"string"`. idf_weights: Only valid when `output_mode` is `"tf_idf"`. A tuple, list, 1D numpy array, or 1D tensor or the same length as the vocabulary, containing the floating point inverse document frequency weights, which will be multiplied by per sample term counts for the final `tf_idf` weight. If the `vocabulary` argument is set, and `output_mode` is `"tf_idf"`, this argument must be supplied. invert: Only valid when `output_mode` is `"int"`. If True, this layer will map indices to vocabulary items instead of mapping vocabulary items to indices. Default to False. output_mode: Specification for the output of the layer. Defaults to `"int"`. Values can be `"int"`, `"one_hot"`, `"multi_hot"`, `"count"`, or `"tf_idf"` configuring the layer as follows: - `"int"`: Return the raw integer indices of the input tokens. - `"one_hot"`: Encodes each individual element in the input into an array the same size as the vocabulary, containing a 1 at the element index. If the last dimension is size 1, will encode on that dimension. If the last dimension is not size 1, will append a new dimension for the encoded output. - `"multi_hot"`: Encodes each sample in the input into a single array the same size as the vocabulary, containing a 1 for each vocabulary term present in the sample. Treats the last dimension as the sample dimension, if input shape is (..., sample_length), output shape will be (..., num_tokens). - `"count"`: As `"multi_hot"`, but the int array contains a count of the number of times the token at that index appeared in the sample. - `"tf_idf"`: As `"multi_hot"`, but the TF-IDF algorithm is applied to find the value in each token slot. pad_to_max_tokens: Only valid when `output_mode` is `"multi_hot"`, `"count"`, or `"tf_idf"`. If True, the output will have its feature axis padded to `max_tokens` even if the number of unique tokens in the vocabulary is less than max_tokens, resulting in a tensor of shape [batch_size, max_tokens] regardless of vocabulary size. Defaults to False. sparse: Boolean. Only applicable to `"one_hot"`, `"multi_hot"`, `"count"` and `"tf-idf"` output modes. If True, returns a `SparseTensor` instead of a dense `Tensor`. Defaults to False. """ def __init__(self, max_tokens, num_oov_indices, mask_token, oov_token, vocabulary_dtype, vocabulary=None, idf_weights=None, invert=False, output_mode="int", sparse=False, pad_to_max_tokens=False, **kwargs): # If max_tokens is set, the value must be greater than 1 - otherwise we # are creating a 0-element vocab, which doesn't make sense. if max_tokens is not None and max_tokens <= 1: raise ValueError(f"If set, `max_tokens` must be greater than 1. " f"Received: max_tokens={max_tokens}") if pad_to_max_tokens and max_tokens is None: raise ValueError(f"If pad_to_max_tokens is True, must set `max_tokens`. " f"Received: max_tokens={max_tokens}") if num_oov_indices < 0: raise ValueError(f"`num_oov_indices` must be greater than or equal to 0. " f"Received: num_oov_indices={num_oov_indices}") # Support deprecated names for output_modes. if output_mode == "binary": output_mode = MULTI_HOT if output_mode == "tf-idf": output_mode = TF_IDF # 'output_mode' must be one of (INT, ONE_HOT, MULTI_HOT, COUNT, TF_IDF) layer_utils.validate_string_arg( output_mode, allowable_strings=(INT, ONE_HOT, MULTI_HOT, COUNT, TF_IDF), layer_name=self.__class__.__name__, arg_name="output_mode") if invert and output_mode != INT: raise ValueError(f"`output_mode` must be `'int'` when `invert` is true. " f"Received: output_mode={output_mode}") if sparse and output_mode == INT: raise ValueError(f"`sparse` may only be true if `output_mode` is " f"`'one_hot'`, `'multi_hot'`, `'count'` or `'tf_idf'`. " f"Received: sparse={sparse} and " f"output_mode={output_mode}") if idf_weights is not None and output_mode != TF_IDF: raise ValueError(f"`idf_weights` should only be set if `output_mode` is " f"`'tf_idf'`. Received: idf_weights={idf_weights} and " f"output_mode={output_mode}") self.invert = invert self.max_tokens = max_tokens self.num_oov_indices = num_oov_indices self.mask_token = mask_token self.oov_token = oov_token self.output_mode = output_mode self.sparse = sparse self.pad_to_max_tokens = pad_to_max_tokens self.vocabulary_dtype = vocabulary_dtype self._frozen_vocab_size = None self.input_vocabulary = vocabulary self.input_idf_weights = idf_weights # VocabularySavedModelSaver will clear the config vocabulary to restore the # lookup table ops directly. We persist this hidden option to persist the # fact that we have have a non-adaptable layer with a manually set vocab. self._has_input_vocabulary = kwargs.pop("has_input_vocabulary", (vocabulary is not None)) # Drop deprecated config options. kwargs.pop("vocabulary_size", None) kwargs.pop("has_static_table", None) # By default, output int64 when output_mode='int' and floats otherwise. if "dtype" not in kwargs: kwargs["dtype"] = tf.int64 if output_mode == INT else backend.floatx() super().__init__(**kwargs) # Check dtype only after base layer parses it; dtype parsing is complex. if output_mode == INT and not tf.as_dtype(self.compute_dtype).is_integer: input_dtype = kwargs["dtype"] raise ValueError("When `output_mode='int'`, `dtype` should be an integer " f"type. Received: dtype={input_dtype}") if invert: self._key_dtype = self.dtype if output_mode == INT else tf.int64 self._value_dtype = tf.as_dtype(self.vocabulary_dtype) mask_key = 0 mask_value = mask_token self._default_value = self.oov_token else: self._key_dtype = tf.as_dtype(self.vocabulary_dtype) self._value_dtype = self.dtype if output_mode == INT else tf.int64 mask_key = mask_token # Masks should map to 0 for int output and be dropped otherwise. Max ints # will be dropped from the bincount op. mask_value = 0 if self.output_mode == INT else self._value_dtype.max if self.num_oov_indices == 0: # If there are no OOV indices, we map OOV tokens to -1 and error out # during call if we find a negative index. self._default_value = -1 elif self.num_oov_indices == 1: # If there is only one OOV index, we can set that index as the default # value of the index_lookup table. self._default_value = self._oov_start_index() else: # If we hav multiple OOV values, we need to do a further hashing step; # to make this easier, we set the OOV value to -1. (This lets us do a # vectorized add and cast to boolean to determine locations where we # need to do extra hashing.) self._default_value = -1 if self.mask_token is not None: self._mask_key = tf.convert_to_tensor(mask_key, self._key_dtype) self._mask_value = tf.convert_to_tensor(mask_value, self._value_dtype) if self.output_mode == TF_IDF: self.idf_weights = tf.Variable( [0] * self._token_start_index(), shape=(None,), dtype=self.compute_dtype, trainable=False) self.idf_weights_const = self.idf_weights.value() if vocabulary is not None: self.set_vocabulary(vocabulary, idf_weights) else: # When restoring from a keras SavedModel, the loading code will expect to # find and restore a lookup_table attribute on the layer. This table needs # to be uninitialized as a StaticHashTable cannot be initialized twice. self.lookup_table = self._uninitialized_lookup_table() # Only set up adapt state if we did not recieve a vocab on construction. if not self._has_input_vocabulary: # Add a custom weight handler to return the layers vocab as it's weight. self._add_trackable(VocabWeightHandler(self), False) # Set adapt state. self.token_counts = tf.lookup.experimental.MutableHashTable( key_dtype=vocabulary_dtype, value_dtype=tf.int64, default_value=0) if self.output_mode == TF_IDF: self.token_document_counts = tf.lookup.experimental.MutableHashTable( key_dtype=vocabulary_dtype, value_dtype=tf.int64, default_value=0) self.num_documents = tf.Variable(0, dtype=tf.int64, trainable=False) def compute_output_shape(self, input_shape): if self.output_mode == INT: return input_shape depth = ( self.max_tokens if self.pad_to_max_tokens else self._frozen_vocab_size) return tf.TensorShape([input_shape[0], depth]) def compute_output_signature(self, input_spec): output_shape = self.compute_output_shape(input_spec.shape.as_list()) output_dtype = self.vocabulary_dtype if self.invert else self.compute_dtype return tf.TensorSpec(shape=output_shape, dtype=output_dtype) def get_vocabulary(self, include_special_tokens=True): """Returns the current vocabulary of the layer. Args: include_special_tokens: If True, the returned vocabulary will include mask and OOV tokens, and a term's index in the vocabulary will equal the term's index when calling the layer. If False, the returned vocabulary will not include any mask or OOV tokens. """ # The lookup table data will not be sorted, so we will create a inverted # lookup here, and use that to lookup a range of indices [0, vocab_size). if self.lookup_table.size() == 0: vocab, indices = [], [] else: keys, values = self.lookup_table.export() vocab, indices = (values, keys) if self.invert else (keys, values) vocab, indices = (self._tensor_vocab_to_numpy(vocab), indices.numpy()) lookup = collections.defaultdict(lambda: self.oov_token, zip(indices, vocab)) vocab = [lookup[x] for x in range(self.vocabulary_size())] if self.mask_token is not None and self.output_mode == INT: vocab[0] = self.mask_token if not include_special_tokens: vocab = vocab[self._token_start_index():] return vocab def vocabulary_size(self): """Gets the current size of the layer's vocabulary. Returns: The integer size of the voculary, including optional mask and oov indices. """ return int(self.lookup_table.size().numpy()) + self._token_start_index() def vocab_size(self): logging.warning("vocab_size is deprecated, please use vocabulary_size.") return self.vocabulary_size() def get_config(self): config = { "invert": self.invert, "max_tokens": self.max_tokens, "num_oov_indices": self.num_oov_indices, "oov_token": self.oov_token, "mask_token": self.mask_token, "output_mode": self.output_mode, "pad_to_max_tokens": self.pad_to_max_tokens, "vocabulary": utils.listify_tensors(self.input_vocabulary), "vocabulary_dtype": self.vocabulary_dtype, "idf_weights": utils.listify_tensors(self.input_idf_weights), } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) def set_vocabulary(self, vocabulary, idf_weights=None): """Sets vocabulary (and optionally document frequency) data for this layer. This method sets the vocabulary and idf weights for this layer directly, instead of analyzing a dataset through `adapt`. It should be used whenever the vocab (and optionally document frequency) information is already known. If vocabulary data is already present in the layer, this method will replace it. Args: vocabulary: Either an array or a string path to a text file. If passing an array, can pass a tuple, list, 1D numpy array, or 1D tensor containing the vocbulary terms. If passing a file path, the file should contain one line per term in the vocabulary. idf_weights: A tuple, list, 1D numpy array, or 1D tensor of inverse document frequency weights with equal length to vocabulary. Must be set if `output_mode` is `"tf_idf"`. Should not be set otherwise. Raises: ValueError: If there are too many inputs, the inputs do not match, or input data is missing. RuntimeError: If the vocabulary cannot be set when this function is called. This happens when `"multi_hot"`, `"count"`, and `"tf_idf"` modes, if `pad_to_max_tokens` is False and the layer itself has already been called. RuntimeError: If a tensor vocabulary is passed outside of eager execution. """ if self.output_mode != TF_IDF and idf_weights is not None: raise ValueError(f"`idf_weights` should only be set if output_mode is " f"`'tf_idf'`. Received: output_mode={self.output_mode} " f"and idf_weights={idf_weights}") if isinstance(vocabulary, str): if not tf.io.gfile.exists(vocabulary): raise ValueError( "Vocabulary file {} does not exist.".format(vocabulary)) if self.output_mode == TF_IDF: raise ValueError("output_mode `'tf_idf'` does not support loading a " "vocabulary from file.") self.lookup_table = self._lookup_table_from_file(vocabulary) return if not tf.executing_eagerly() and (tf.is_tensor(vocabulary) or tf.is_tensor(idf_weights)): raise RuntimeError( "Cannot set a tensor vocabulary on {} layer {} when not executing " "eagerly. Create this layer or call `set_vocabulary` outside of " "any `tf.function`s and with eager execution enabled.".format( self.__class__.__name__, self.name)) # TODO(mattdangerw): for better performance we should rewrite this entire # function to operate on tensors and convert vocabulary to a tensor here. if tf.is_tensor(vocabulary): vocabulary = self._tensor_vocab_to_numpy(vocabulary) elif isinstance(vocabulary, (list, tuple)): vocabulary = np.array(vocabulary) if tf.is_tensor(idf_weights): idf_weights = idf_weights.numpy() elif isinstance(idf_weights, (list, tuple)): idf_weights = np.array(idf_weights) if vocabulary.size == 0: raise ValueError( "Cannot set an empty vocabulary, you passed {}.".format(vocabulary)) oov_start = self._oov_start_index() token_start = self._token_start_index() special_tokens = ( [self.mask_token] * oov_start + [self.oov_token] * self.num_oov_indices) found_special_tokens = np.array_equal( special_tokens, vocabulary[:token_start]) if found_special_tokens: tokens = vocabulary[token_start:] else: tokens = vocabulary repeated_tokens = self._find_repeated_tokens(tokens) if repeated_tokens: raise ValueError("The passed vocabulary has at least one repeated " "term. Please uniquify your dataset. The repeated terms " "are {}".format(repeated_tokens)) if self.mask_token is not None and self.mask_token in tokens: mask_index = np.argwhere(vocabulary == self.mask_token)[-1] raise ValueError( "Found reserved mask token at unexpected location in `vocabulary`. " "Note that passed `vocabulary` does not need to include the OOV and " "mask tokens. Either remove all mask and OOV tokens, or include them " "only at the start of the vocabulary in precisely this order: " f"{special_tokens}. Received: mask_token={self.mask_token} at " f"vocabulary index {mask_index}") # Only error out for oov_token when invert=True. When invert=False, # oov_token is unused during lookup. if self.oov_token is not None and self.invert and self.oov_token in tokens: oov_index = np.argwhere(vocabulary == self.oov_token)[-1] raise ValueError( "Found reserved OOV token at unexpected location in `vocabulary`. " "Note that passed `vocabulary` does not need to include the OOV and " "mask tokens. Either remove all mask and OOV tokens, or include them " "only at the start of the vocabulary in precisely this order: " f"{special_tokens}. Received: oov_token={self.oov_token} at " f"vocabulary index {oov_index}") new_vocab_size = token_start + len(tokens) if self.max_tokens is not None and (new_vocab_size > self.max_tokens): raise ValueError( "Attempted to set a vocabulary larger than the maximum vocab size. " "Passed vocab size is {}, max vocab size is {}.".format( new_vocab_size, self.max_tokens)) self.lookup_table = self._lookup_table_from_tokens(tokens) if self.output_mode == TF_IDF: if idf_weights is None: raise ValueError("`idf_weights` must be set if output_mode is TF_IDF") if len(vocabulary) != len(idf_weights): raise ValueError("`idf_weights` must be the same length as vocabulary. " "len(idf_weights) is {}, len(vocabulary) is {}".format( len(vocabulary), len(idf_weights))) idf_weights = self._convert_to_ndarray(idf_weights) if idf_weights.ndim != 1: raise ValueError( "TF-IDF data must be a 1-index array, but received {}".format( type(idf_weights))) # If the passed vocabulary has no special tokens, we need to pad the front # of idf_weights. We don't have real document frequencies for these tokens # so we will use an average of all idf_weights passed in as a reasonable # default. if found_special_tokens: front_padding = 0 front_padding_value = 0 else: front_padding = token_start front_padding_value = np.average(idf_weights) # If pad_to_max_tokens is true, and max_tokens is greater than our total # vocab size, we need to pad the back of idf_weights with zeros as well. back_padding_value = 0 if self.pad_to_max_tokens and self.max_tokens is not None: back_padding = self.max_tokens - front_padding - len(idf_weights) else: back_padding = 0 weights = np.pad( idf_weights, (front_padding, back_padding), "constant", constant_values=(front_padding_value, back_padding_value)) weights = tf.convert_to_tensor(weights, dtype=backend.floatx()) self.idf_weights.assign(weights) self.idf_weights_const = self.idf_weights.value() def update_state(self, data): if self._has_input_vocabulary: raise ValueError( "Cannot adapt {} layer after setting a static vocabulary via init " "argument or `set_vocabulary`.".format(self.__class__.__name__)) data = self._standardize_inputs(data, self.vocabulary_dtype) if data.shape.rank == 0: data = tf.expand_dims(data, -1) if data.shape.rank == 1: data = tf.expand_dims(data, -1) tokens, counts = self._num_tokens(data) self.token_counts.insert(tokens, counts + self.token_counts.lookup(tokens)) if self.output_mode == TF_IDF: # Dedupe each row of our dataset. deduped_doc_data = tf.map_fn(lambda x: tf.unique(x)[0], data) # Flatten and count tokens. tokens, doc_counts = self._num_tokens(deduped_doc_data) self.token_document_counts.insert( tokens, doc_counts + self.token_document_counts.lookup(tokens)) if tf_utils.is_ragged(data): self.num_documents.assign_add(data.nrows()) else: self.num_documents.assign_add(tf.shape(data, out_type=tf.int64)[0]) def finalize_state(self): if self._has_input_vocabulary or tf.equal(self.token_counts.size(), 0): # Finalize idf_weights to a const for call even if we don't need to # compute a new vocabulary. if self.output_mode == TF_IDF: self.idf_weights_const = self.idf_weights.value() return # Remove special tokens from our counts. if self.mask_token is not None: self.token_counts.remove( tf.convert_to_tensor([self.mask_token], self.vocabulary_dtype)) if self.oov_token is not None: self.token_counts.remove( tf.convert_to_tensor([self.oov_token], self.vocabulary_dtype)) tokens, counts = self.token_counts.export() # To keep vocabs deterministic, we sort our tokens by count and break ties # by sorting the tokens themselves. Tensorflow has no ops for sorting # strings, so we need to use numpy for the sort. sorted_indices = np.lexsort((tokens.numpy(), counts.numpy()))[::-1] token_start = self._token_start_index() if self.max_tokens: max_learned_tokens = self.max_tokens - token_start sorted_indices = sorted_indices[:max_learned_tokens] tokens = tf.gather(tokens, sorted_indices) self.lookup_table = self._lookup_table_from_tokens(tokens) if self.output_mode == TF_IDF: token_document_counts = self.token_document_counts.lookup(tokens) idf_weights = self._inverse_document_frequency(token_document_counts, self.num_documents) idf_weights = tf.cast(idf_weights, backend.floatx()) # Pad the front of idf_weights with the average idf weight for OOV tokens. # We cannot compute the real idf weight of OOV in a single pass. idf_weights = tf.pad( idf_weights, [[self._token_start_index(), 0]], constant_values=tf.reduce_mean(idf_weights)) self.idf_weights.assign(idf_weights) self.idf_weights_const = self.idf_weights.value() # We call this here to save memory, now that we've built our vocabulary, we # don't want to keep every token we've seen in separate lookup tables. self.reset_state() def reset_state(self): # pylint: disable=method-hidden if self._has_input_vocabulary: return self.token_counts.remove(self.token_counts.export()[0]) if self.output_mode == TF_IDF: self.token_document_counts.remove(self.token_document_counts.export()[0]) self.num_documents.assign(0) def call(self, inputs): self._maybe_freeze_vocab_size() inputs = self._standardize_inputs(inputs, self._key_dtype) original_shape = inputs.shape # Some ops will not handle scalar input, so uprank to rank 1. if inputs.shape.rank == 0: inputs = self._expand_dims(inputs, -1) if tf_utils.is_sparse(inputs): lookups = tf.SparseTensor(inputs.indices, self._lookup_dense(inputs.values), inputs.dense_shape) elif tf_utils.is_ragged(inputs): lookups = tf.ragged.map_flat_values(self._lookup_dense, inputs) else: lookups = self._lookup_dense(inputs) if self.output_mode == INT: # If we received a scalar input, downrank back to a scalar. if original_shape.rank == 0: lookups = tf.squeeze(lookups, -1) return lookups depth = ( self.max_tokens if self.pad_to_max_tokens else self._frozen_vocab_size) idf_weights = self.idf_weights_const if self.output_mode == TF_IDF else None return utils.encode_categorical_inputs( lookups, output_mode=self.output_mode, depth=depth, dtype=self.compute_dtype, sparse=self.sparse, idf_weights=idf_weights) def _lookup_dense(self, inputs): """Lookup table values for a dense Tensor, handling masking and OOV.""" # When executing eagerly and tracing keras.Inputs, do not call lookup. This # is critical for restoring SavedModel, which will first trace layer.call # and then attempt to restore the table. We need the table to be unitialized # for the restore to work, but calling the table unitialized would error. if tf.executing_eagerly() and backend.is_keras_tensor(inputs): lookups = tf.zeros_like(inputs, dtype=self._value_dtype) else: lookups = self.lookup_table.lookup(inputs) if self.mask_token is not None: mask_locations = tf.equal(inputs, self._mask_key) lookups = tf.where(mask_locations, self._mask_value, lookups) if self.invert: return lookups lookup_checks = [] if self.num_oov_indices == 0: # If we have zero oov indices, we need to check for oov inputs. oov_indices = tf.where(tf.equal(lookups, -1)) oov_inputs = tf.gather_nd(inputs, oov_indices) msg = tf.strings.format( "When `num_oov_indices=0` all inputs should be in vocabulary, " "found OOV values {}, consider setting `num_oov_indices=1`.", (oov_inputs,)) assertion = tf.Assert(tf.equal(tf.size(oov_indices), 0), [msg]) lookup_checks.append(assertion) elif self.num_oov_indices > 1: # If we have multiple oov indices, we need a further hashing step. if self._key_dtype.is_integer: oov_indices = tf.math.floormod(inputs, self.num_oov_indices) else: oov_indices = tf.strings.to_hash_bucket_fast( inputs, num_buckets=self.num_oov_indices) oov_indices = oov_indices + self._oov_start_index() oov_locations = tf.equal(lookups, self._default_value) lookups = tf.where(oov_locations, oov_indices, lookups) with tf.control_dependencies(lookup_checks): return tf.identity(lookups) def _uninitialized_lookup_table(self): with tf.init_scope(): initializer = NullInitializer(self._key_dtype, self._value_dtype) return tf.lookup.StaticHashTable(initializer, self._default_value) def _lookup_table_from_tokens(self, tokens): with tf.init_scope(): token_start = self._token_start_index() token_end = token_start + tf.size(tokens) indices_dtype = self._key_dtype if self.invert else self._value_dtype indices = tf.range(token_start, token_end, dtype=indices_dtype) keys, values = (indices, tokens) if self.invert else (tokens, indices) initializer = tf.lookup.KeyValueTensorInitializer(keys, values, self._key_dtype, self._value_dtype) return tf.lookup.StaticHashTable(initializer, self._default_value) def _lookup_table_from_file(self, filename): if self.invert: key_index = tf.lookup.TextFileIndex.LINE_NUMBER value_index = tf.lookup.TextFileIndex.WHOLE_LINE else: key_index = tf.lookup.TextFileIndex.WHOLE_LINE value_index = tf.lookup.TextFileIndex.LINE_NUMBER with tf.init_scope(): initializer = tf.lookup.TextFileInitializer( filename=filename, key_dtype=self._key_dtype, key_index=key_index, value_dtype=self._value_dtype, value_index=value_index, value_index_offset=self._token_start_index()) return tf.lookup.StaticHashTable(initializer, self._default_value) def _standardize_inputs(self, inputs, dtype): if not isinstance(inputs, (tf.Tensor, tf.RaggedTensor, tf.SparseTensor)): inputs = tf.convert_to_tensor(inputs, dtype) elif inputs.dtype != dtype: inputs = tf.cast(inputs, dtype) return inputs def _convert_to_ndarray(self, x): return np.array(x) if isinstance(x, (list, tuple)) else x def _expand_dims(self, inputs, axis): if tf_utils.is_sparse(inputs): return tf.sparse.expand_dims(inputs, axis) else: return tf.expand_dims(inputs, axis) def _oov_start_index(self): return 1 if self.mask_token is not None and self.output_mode == INT else 0 def _token_start_index(self): return self._oov_start_index() + self.num_oov_indices def _maybe_freeze_vocab_size(self): if self.output_mode == INT or self.pad_to_max_tokens: return with tf.init_scope(): if not tf.executing_eagerly(): raise RuntimeError( "When using `output_mode={}` eager execution must be enabled." .format(self.output_mode)) new_vocab_size = self.vocabulary_size() if new_vocab_size == self._token_start_index(): raise RuntimeError( "When using `output_mode={}` and `pad_to_max_tokens=False`, you " "must set the layer's vocabulary before calling it. Either pass " "a `vocabulary` argument to the layer, or call `adapt` with some " "sample data.".format(self.output_mode)) elif (self._frozen_vocab_size is not None and new_vocab_size != self._frozen_vocab_size): raise RuntimeError( "When using `output_mode={}` and `pad_to_max_tokens=False`, the " "vocabulary size cannot be changed after the layer is called. " "Vocab size is {}, new vocab size is {}".format( self.output_mode, self._frozen_vocab_size, new_vocab_size)) self._frozen_vocab_size = new_vocab_size def _find_repeated_tokens(self, vocabulary): """Return all repeated tokens in a vocabulary.""" vocabulary_set = set(vocabulary) if len(vocabulary) != len(vocabulary_set): return [ item for item, count in collections.Counter(vocabulary).items() if count > 1 ] else: return [] def _num_tokens(self, data): """Count the number of tokens in a ragged, sparse or dense tensor.""" if tf_utils.is_sparse(data): flat_values = data.values elif tf_utils.is_ragged(data): flat_values = data.flat_values else: flat_values = tf.reshape(data, [-1]) tokens, _, counts = tf.unique_with_counts(flat_values, out_idx=tf.int64) return tokens, counts def _inverse_document_frequency(self, token_document_counts, num_documents): """Computes the inverse-document-frequency (IDF) component of "tf_idf". Uses the default weighting scheme described in https://en.wikipedia.org/wiki/Tf%E2%80%93idf. Args: token_document_counts: An array of the # of documents each token appears in. num_documents: An int representing the total number of documents Returns: An array of "inverse document frequency" weights. """ return tf.math.log(1 + num_documents / (1 + token_document_counts)) @property def _trackable_saved_model_saver(self): return layer_serialization.VocabularySavedModelSaver(self) # Override points for IntegerLookup and StringLookup. def _tensor_vocab_to_numpy(self, vocabulary): """Converts a tensor vocabulary to a numpy vocabulary.""" return vocabulary.numpy()
py
1a3d4f9aad1a7e2bfd4ab27154bc12cb5fe83230
import argparse import getpass import os import sys from .api import notebook_to_page def main(argv=None): """Command line interface.""" parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter, description='Converts Jupyter Notebooks to Atlassian Confluence pages using nbconvert', epilog="Collects credentials from the following locations:\n" "1. CONFLUENCE_USERNAME and CONFLUENCE_PASSWORD environment variables\n" "2. ~/.nbconflux file in the format username:password\n" "3. User prompts") parser.add_argument('notebook', type=str, help='Path to local notebook (ipynb)') parser.add_argument('url', type=str, help='URL of Confluence page to update') parser.add_argument('--exclude-toc', action='store_true', help='Do not generate a table of contents') parser.add_argument('--exclude-ipynb', action='store_true', help='Do not attach the notebook to the page') parser.add_argument('--exclude-style', action='store_true', help='Do not include the Jupyter base stylesheet') parser.add_argument('--include-mathjax', action='store_true', help='Enable MathJax on the page') parser.add_argument('--extra-labels', nargs='+', type=str, help='Additional labels to add to the page') args = parser.parse_args(argv or sys.argv[1:]) username = os.getenv('CONFLUENCE_USERNAME') password = os.getenv('CONFLUENCE_PASSWORD') cfg = os.path.expanduser('~/.nbconflux') # Prefer credentials in environment variables if username and password: print('Using credentials for {} from environment variables'.format(username)) elif os.path.isfile(cfg): # Fallback on credentials in a well known file location with open(cfg) as f: segs = f.read().strip().split(':', 1) if len(segs) == 2: username = segs[0] password = segs[1] print('Using credentials for {} from configuration file'.format(username)) # Prompt the user for missing credentials if username is None: current = getpass.getuser() current = current[2:] if current.startswith('p-') else current username = input('Confluence username ({}): '.format(current)) # Use the current username if the user doesn't enter anything if not username.strip(): username = current if password is None: password = getpass.getpass('Confluence password: ') notebook_path_css = os.getenv('NBCONFLUX_NOTEBOOK_CSS', None) notebook_to_page(args.notebook, args.url, username, password, generate_toc=not args.exclude_toc, attach_ipynb=not args.exclude_ipynb, enable_style=not args.exclude_style, enable_mathjax=args.include_mathjax, extra_labels=args.extra_labels, notebook_css=notebook_path_css) if __name__ == '__main__': main()
py
1a3d4fa983137e14c85d3689ccb98a3cfa4a10cc
import unittest import os import sys import json from lib.commander import find_process, kill_process from lib.multipass import _aliases, patch_compose from lib.config import _reset, HOME from tests.test_helpers.common import backup_config, restore_config import subprocess from sarge import run as sarge_run, Capture currentdir = os.path.dirname(os.path.realpath(__file__)) parentdir = os.path.dirname(currentdir) sys.path.append(parentdir) vm_name = "feature-test" multipass_bin_path = f"{HOME}/Library/Application Support/multipass/bin" docker_cmd = f"{multipass_bin_path}/docker" docker_compose_cmd = f"{multipass_bin_path}/docker-compose" def run(cmd): process = sarge_run(" ".join(cmd), shell=True, stdout=Capture(), stderr=Capture()) return process.stdout.read().decode("utf-8"), process.stderr.read().decode("utf-8") def list_vm(): vm, err = run(["multipass", "list", "--format", "json"]) return json.loads(vm) def find_vm(name): list = list_vm()["list"] for vm in list: if name == vm["name"]: return True def vm_info(): vm, err = run(["multipass", "info", vm_name, "--format", "json"]) return json.loads(vm) def kill_background_listen(): pids = find_process("background listen") for pid in pids: kill_process(int(pid)) def restore_alias(): name = "dockipass" if find_vm(name): for alias in _aliases: run(["multipass", "alias", f"{name}:{alias}", alias]) patch_compose() def remove_alias(): name = "dockipass" if find_vm(name): for alias in _aliases: run(["multipass", "unalias", alias]) class Feature_Test_Dockipass(unittest.TestCase): @classmethod def tearDownClass(self): restore_config() kill_background_listen() run(["multipass", "delete", vm_name]) run(["multipass", "purge"]) restore_alias() subprocess.run(["./dockipass.py", "listen", "start"]) @classmethod def setUpClass(self): backup_config() remove_alias() _reset() def test_1launch(self): launch_cmd = ["./dockipass.py", "launch", vm_name] run(launch_cmd) info = vm_info() self.assertEqual(len(info["errors"]), 0) self.assertIn(vm_name, info["info"]) info = info["info"][vm_name] self.assertEqual(info["state"], "Running") self.assertEqual(info["image_release"], "20.04 LTS") self.assertIn("/Users", info["mounts"]) # Aliases should have been setup for docker and docker-compose aliases = os.listdir(multipass_bin_path) self.assertListEqual(aliases, ["docker", "docker-compose"]) # Docker compose alias should have file added to it with open(docker_compose_cmd, "r") as file: output = file.read() self.assertIn( '"/Library/Application Support/com.canonical.multipass/bin/multipass" docker-compose -- $arguments', output.split("\n")) # Check for bind pids = find_process("background listen") self.assertEqual(len(pids), 1) def test_2stop(self): run(["./dockipass.py", "stop"]) # The containter have been stopped info = vm_info()["info"][vm_name] self.assertEqual(info["state"], "Stopped") # Check for bind removed pids = find_process("background listen") self.assertEqual(len(pids), 0) def test_3start(self): run(["./dockipass.py", "start"]) # The containter is running info = vm_info()["info"][vm_name] self.assertEqual(info["state"], "Running") # Check for bind removed pids = find_process("background listen") self.assertEqual(len(pids), 1) def test_4restart(self): run(["./dockipass.py", "restart"]) # The containter is running info = vm_info()["info"][vm_name] self.assertEqual(info["state"], "Running") # Check for bind pids = find_process("background listen") self.assertEqual(len(pids), 1) def test_5listen(self): kill_background_listen() pids = find_process("background listen") self.assertEqual(len(pids), 0) subprocess.run([docker_cmd, "run", "--name", "testcontainer", "-p", "8081:80", "-d", "nginxdemos/hello"], stdout=subprocess.PIPE) subprocess.run(["./dockipass.py", "listen", "start"]) pids = find_process("socat") self.assertEqual(len(pids), 1) def test_6dockercompose(self): process = subprocess.run( [docker_compose_cmd, "ps"], cwd=f"{parentdir}/data", stdout=subprocess.PIPE, stderr=subprocess.PIPE) self.assertEqual(process.stderr.decode("utf-8"), "") self.assertNotEqual(process.stdout.decode("utf-8"), "") def test_7dockerbuildx(self): process = subprocess.run( [docker_cmd, "buildx"], stdout=subprocess.PIPE, stderr=subprocess.PIPE) self.assertEqual(process.stderr.decode("utf-8"), "") self.assertIn("Usage: docker buildx [OPTIONS] COMMAND", process.stdout.decode( "utf-8").split("\n")) def test_8status(self): status, err = run(["./dockipass.py", "status"]) self.assertEqual(err, "") self.assertIn("VM Name:\t feature-test\n", status) self.assertIn("State:\t\t Running\n", status) self.assertIn("Mounts setup:\t True\n", status) self.assertIn("Aliases setup:\t True\n", status) self.assertIn("Listening:\t True\n", status) self.assertIn("Forwarded:\t 8081\n", status) def test_9delete(self): run(["./dockipass.py", "delete"]) # Stopped background process pids = find_process("background listen") self.assertEqual(len(pids), 0) # Stopped all socat processes pids = find_process("socat") self.assertEqual(len(pids), 0) # VM no longer exists list = list_vm()["list"] for vm in list: self.assertNotIn(vm_name, vm["name"])
py
1a3d5069179633101b8852969fba83bf0187268c
""" 1249. Minimum Remove to Make Valid Parentheses Given a string s of '(' , ')' and lowercase English characters. Your task is to remove the minimum number of parentheses ( '(' or ')', in any positions ) so that the resulting parentheses string is valid and return any valid string. Formally, a parentheses string is valid if and only if: It is the empty string, contains only lowercase characters, or It can be written as AB (A concatenated with B), where A and B are valid strings, or It can be written as (A), where A is a valid string. Example 1: Input: s = "lee(t(c)o)de)" Output: "lee(t(c)o)de" Explanation: "lee(t(co)de)" , "lee(t(c)ode)" would also be accepted. Example 2: Input: s = "a)b(c)d" Output: "ab(c)d" Example 3: Input: s = "))((" Output: "" Explanation: An empty string is also valid. Example 4: Input: s = "(a(b(c)d)" Output: "a(b(c)d)" Constraints: 1 <= s.length <= 10^5 s[i] is one of '(' , ')' and lowercase English letters. """ class Solution: def minRemoveToMakeValid(self, s: str) -> str: stack, i, invalids = [], 0, set() while i < len(s): if s[i] in ['(', ')']: invalids.add(i) if s[i] == '(': stack.append(i) else: if stack: invalids.remove(stack.pop()) invalids.remove(i) i += 1 res = [] for i in range(len(s)): if i not in invalids: res.append(s[i]) return ''.join(res) class Solution: def minRemoveToMakeValid(self, s: str) -> str: right = s.count(')') left = 0 result = "" for item in s: if item == '(': if right == 0: continue else: left += 1 right -= 1 if item == ')': if left == 0: right -= 1 continue else: left -= 1 result += item return result
py
1a3d52b64c0878dac1f403a055685558499ce084
#!/usr/bin/env python import sys, time import numpy as np import pickle as pickle from pandas import DataFrame from pandas import read_pickle from pandas import get_dummies import statsmodels.formula.api as sm from sklearn.externals import joblib from djeval import * def fix_colname(cn): return cn.translate(None, ' ()[],') msg("Hi, reading yy_df.") yy_df = read_pickle(sys.argv[1]) colnames = list(yy_df.columns.values) colnames = [fix_colname(cn) for cn in colnames] yy_df.columns = colnames msg("Getting subset ready.") # TODO save the dummies along with yy_df categorical_features = ['opening_feature'] dummies = get_dummies(yy_df[categorical_features]) elorange_cols = [x for x in list(yy_df.columns.values) if x.startswith('elochunk_')] elorange_cols.extend([x for x in list(yy_df.columns.values) if x.startswith('opponent_elochunk_')]) # TODO save the moveelo_features along with yy_df moveelo_features = [("moveelo_" + x) for x in ['mean', 'median', '25', '10', 'min', 'max', 'stdev']] new_depth_cols = ['mean_num_bestmoves', 'mean_num_bestmove_changes', 'mean_bestmove_depths_agreeing', 'mean_deepest_change', 'mean_deepest_change_ratio'] stdev_cols = ['stdeverror', 'opponent_stdeverror', 'stdevpos'] train = yy_df[yy_df.meanerror.notnull() & yy_df.elo.notnull()] # lets look at in sample first validating = False if validating: train = train[train['gamenum'] % 2 == 0] formula_rhs = "side + nmerror + gameoutcome + drawn_game + gamelength + meanecho" formula_rhs = formula_rhs + " + opponent_nmerror + opponent_noblunders" formula_rhs = formula_rhs + " + min_nmerror + early_lead" formula_rhs = formula_rhs + " + q_error_one + q_error_two" formula_rhs = formula_rhs + " + opponent_q_error_one" formula_rhs = formula_rhs + " + mean_depth_clipped + mean_seldepth" formula_rhs = formula_rhs + " + mean_depths_ar + mean_deepest_ar" formula_rhs = formula_rhs + " + opponent_mean_depths_ar + opponent_mean_deepest_ar" formula_rhs = formula_rhs + " + pct_sanemoves" formula_rhs = formula_rhs + " + " + " + ".join(dummies.columns.values) formula_rhs = formula_rhs + " + moveelo_weighted" formula_rhs = formula_rhs + " + " + " + ".join(new_depth_cols) formula_rhs = formula_rhs + " + " + " + ".join(stdev_cols) # do these really not help?! formula_rhs = formula_rhs + " + " + " + ".join(elorange_cols) # Never mind these, they didnt help much #formula_rhs = formula_rhs + " + " + " + ".join(moveelo_features) formula = "elo ~ " + formula_rhs msg("Fitting!") ols = sm.ols(formula=formula, data=train).fit() print(ols.summary()) msg("Making predictions for all playergames") yy_df['ols_prediction'] = ols.predict(yy_df) yy_df['ols_error'] = (yy_df['ols_prediction'] - yy_df['elo']).abs() yy_df['training'] = (yy_df['gamenum'] % 2 == 0) insample_scores = yy_df.groupby('training')['ols_error'].agg({'mean' : np.mean, 'median' : np.median, 'stdev': np.std}) print(insample_scores) msg("Writing yy_df back out with ols predictions inside") yy_df.to_pickle(sys.argv[1])
py
1a3d5344c57e9c94f4f4976c3d6db8b8bf0cac69
print('='*30) print(' ANALISANDO VALORES') print('='*30) op = 0 while op!= 5: n1 = float(input('Digite o 1º valor: ')) n2 = float(input('Digite o 2º valor: ')) op = int(input('''[1] SOMAR \n[2] MULTIPLICAR \n[3] MAIOR \n[4] NOVOS NÚMEROS \n[5] SAIR \nOpção desejada: ''')) if op == 4: while op == 4: n1 = float(input('Digite o 1º valor: ')) n2 = float(input('Digite o 2º valor: ')) op = int(input('Escolha uma nova opção')) print('') while op < 1 or op > 5: op = int(input('Escolha uma opção válida: ')) if op == 1: print(f'A soma entre os valores {n1} e {n2} é {n1+n2}') if op == 2: print(f'A multiplicação entre os valores {n1} e {n2} é {n1 * n2}') if op == 3: if n1 == n2: print('Os números digitados são iguais') else: if n1 > n2: print(f'O número maior é {n1}') else: print(f'O número maior é {n2}') print('')
py
1a3d53742f5b1634209ae17a12b33609e92b7359
class BuyProductException(Exception): """ Signal the problem with buying product """ pass class WrongProductIdException(BuyProductException): """ Signal that choosen product id is wrong """ pass class NoProductIdException(BuyProductException): """ Signal that product id was not choosen """ pass class ProductNotAvailableException(BuyProductException): """ Signal the product is not available """ pass class NotEnoughMoneyException(BuyProductException): """ Signal that there is not enough money added to buy product """ pass class CantGiveTheChangeException(Exception): """ Signal that automat cant give the change """ pass class WrongNominalException(Exception): """ Signal that you cant create coin with such nominal """ pass
py
1a3d53a701ec0fa2d89959f885bb788a87582a87
from .base_entity import BaseEntity from psutil import net_io_counters, net_connections class Network(BaseEntity): """ A simple object to return network usage """ @property def get_usage(self): return self.__get_net_usage() def __get_net_usage(self): n = net_io_counters() nc = net_connections(kind='all') ret = { "bytes_sent": n.bytes_sent, "bytes_recv": n.bytes_recv, "packets_sent": n.packets_sent, "packets_recv": n.packets_recv, "dropin": n.dropin, "dropout": n.dropout, "errin": n.errin, "errout": n.errout, "num_connections": len(nc), } return ret
py
1a3d53e8bad019648d5e5932dc351876c08d9eff
from django.db import models from core import models as core_models class Review(core_models.TimeStampedModel): """ Review Model Defination """ review = models.TextField() accuracy = models.IntegerField() communication = models.IntegerField() location = models.IntegerField() cleanliness = models.IntegerField() check_in = models.IntegerField() value = models.IntegerField() user = models.ForeignKey("users.User", on_delete=models.CASCADE) room = models.ForeignKey("rooms.Room", on_delete=models.CASCADE) def __str__(self): # return self.room.name return self.review
py
1a3d53fa4c76ae58abb1322dab6da19d18b4ba98
from datadog import initialize, api from datadog.api.constants import CheckStatus options = {'api_key': '<YOUR_API_KEY>', 'app_key': '<YOUR_APP_KEY>'} initialize(**options) check = 'app.ok' host = 'app1' status = CheckStatus.OK # equals 0 api.ServiceCheck.check(check=check, host_name=host, status=status, message='Response: 200 OK')
py
1a3d553c7de78101f351842b62e9c85a295e2f6f
#!/usr/bin/env python # # tournament.py -- implementation of a Swiss-system tournament # # Allows recording of tied matches. # Matches opponents of relative standings. # Pairs players in unique matches. # # TODO: implement match byes # TODO: implement pairing for odd number of players # TODO: implement Opponent match win tie breaker algorithm # TODO: implement tournament tracking # import psycopg2 def connect(): """Connect to the PostgreSQL database. Returns a database connection.""" return psycopg2.connect("dbname=tournament") def deleteMatches(): """Remove all the match records from the database.""" dbh = connect() sth = dbh.cursor() sth.execute("TRUNCATE TABLE matches") dbh.commit() dbh.close() def deletePlayers(): """Remove all the player records from the database.""" dbh = connect() sth = dbh.cursor() sth.execute("TRUNCATE TABLE players CASCADE") dbh.commit() dbh.close() def countPlayers(): """Returns the number of players currently registered.""" dbh = connect() sth = dbh.cursor() sth.execute("SELECT count(players) FROM players") result = sth.fetchone() dbh.commit() dbh.close() return result[0] def registerPlayer(name): """Adds a player to the tournament database. The database assigns a unique serial id number for the player. (This should be handled by your SQL database schema, not in your Python code.) Args: name: the player's full name (need not be unique). """ dbh = connect() sth = dbh.cursor() query = "INSERT INTO players (name) VALUES (%s)" values = [name] sth.execute(query, values) dbh.commit() dbh.close() def playerStandings(): """Returns a list of the players and their win records, sorted by wins. The first entry in the list should be the player in first place, or a player tied for first place if there is currently a tie. Returns: A list of tuples, each of which contains (id, name, wins, matches): id: the player's unique id (assigned by the database) name: the player's full name (as registered) wins: the number of matches the player has won matches: the number of matches the player has played """ dbh = connect() sth = dbh.cursor() query = ''' SELECT * FROM standings ''' sth.execute(query) result = sth.fetchall() dbh.commit() dbh.close() return result def reportMatch(winner, challenger, tied=None): """Records the outcome of a single match between two players. Args: winner: the id number of the player who won challenger: the id number of the player who lost """ dbh = connect() sth = dbh.cursor() query = "INSERT INTO matches (winner_id, challenger_id, tie) VALUES (%s, %s, %s)" values = [winner, challenger, tied] sth.execute(query, values) dbh.commit() dbh.close() def getPlayerOpponents(): """Returns list of opponents for all players Returns: A list of tuples, each of which contains (id, list) id: player's unique id list: list of opponent id """ dbh = connect() sth = dbh.cursor() query = ''' SELECT opponents.id, array_agg(challenger_id) AS challenger_id_list FROM opponents GROUP BY opponents.id ''' sth.execute(query) result = sth.fetchall() dbh.commit() dbh.close() return result def getStandingGroups(): """Returns a list of standings grouped by win, tie, loss Assuming standings are provided ordered by (win, match, tie), each standings group contains players with equivalent standings Returns: A list of sets of tuples, each of which contains (id, name) id: player's unique ID name: player's name """ standings = playerStandings() standings_groups = [] group = set() # set initial standings (win, match, tie) = standings[0][2:5] for player in standings: # test if player standings does not match current standings if ((win, match, tie) != player[2:5]): # append current player group to the standings group standings_groups.append(group.copy()) # set new standings (win, match, tie) = player[2:5] # reset group group.clear() # add (player id, player name) to group of players group.add(player[0:2]) # add last group to standings_groups standings_groups.append(group.copy()) return standings_groups def swissPairings(): """Returns a list of pairs of players for the next round of a match. Assuming that there are an even number of players registered, each player appears exactly once in the pairings. Each player is paired with another player with an equal or nearly-equal win record, that is, a player adjacent to him or her in the standings. Returns: A list of tuples, each of which contains (id1, name1, id2, name2) id1: the first player's unique id name1: the first player's name id2: the second player's unique id name2: the second player's name """ # reduce opponents to a dictionary of player_id and the set of their # previously played opponent_id opponents = {} for (id, cid_list) in getPlayerOpponents(): opponents[id] = set(cid_list) standings_groups = getStandingGroups() pending_players = set() pending_players.update(set(standings_groups.pop(0))) pairs = [] player = None challenger = None while len(pending_players) > 0: player = pending_players.pop() # if no more pending players add players from next group if len(pending_players) == 0 and len(standings_groups) > 0: pending_players.update(set(standings_groups.pop(0))) challenger = pending_players.pop() if len(pending_players) == 0 and len(standings_groups) > 0: pending_players.update(set(standings_groups.pop(0))) if challenger[0] in opponents[player[0]]: new_challenger = pending_players.pop() pending_players.add(challenger) challenger = new_challenger pairs.append((player[0], player[1], challenger[0], challenger[1])) return pairs
py
1a3d5563f0435b7a32fb0a7215dac8794470c63a
# # ARCADIA Mocks # # Copyright (C) 2017 SINTEF Digital # All rights reserved. # # This software may be modified and distributed under the terms # of the MIT license. See the LICENSE file for details. # from requests import Request, Session from requests.exceptions import ConnectionError from time import sleep from arcadiamock.adapters import XMLParser, XMLPrinter class Client(object): DEFAULT_HOST_NAME = "localhost" DEFAULT_PORT = 5000 def __init__(self, hostname=None, port=None): self._hostname = hostname or self.DEFAULT_HOST_NAME self._port = port or self.DEFAULT_PORT self._headers = { "accept": "application/xml" } self._parse = XMLParser() self._formatter = XMLPrinter() def register_service_graph(self, service_graph): xml = service_graph.accept(self._formatter) response = self._fetch(resource=self._url_of("/register"), method="POST", payload=xml.as_text()) response.raise_for_status() def component_with_CNID(self, cnid): resource = "/components/{0}".format(cnid) url = self._url_of(resource) response = self._fetch(url) return self._parse.component_from(response.text) def service_graphs(self): response = self._fetch(self._url_of("/service_graphs")) return self._parse.service_graphs_from(response.text) def components(self): response = self._fetch(self._url_of("/components")) return self._parse.components_from(response.text) def register_component(self, component): xml = component.accept(self._formatter) response = self._fetch(resource=self._url_of("/register_component"), method="POST", payload=xml.as_text()) response.raise_for_status() def about(self): response = self._fetch(self._url_of("/about")) return self._parse.about_from(response.text) def _url_of(self, page): return self._base_url + page @property def _base_url(self): URL = "http://{hostname}:{port}" return URL.format( hostname=self._hostname, port=self._port) def _fetch(self, resource, method="GET", payload=None): attempt = self.MAX_ATTEMPTS while attempt >= 0: try: attempt -= 1 request = Request(method, resource, headers=self._headers, data=payload) return Session().send(request.prepare()) except ConnectionError: sleep(self.DELAY) message = self.ERROR_CANNOT_GET_PAGE.format(page=page, attempts=self.MAX_ATTEMPTS) raise RuntimeError(message) MAX_ATTEMPTS = 3 DELAY = 5 ERROR_CANNOT_GET_PAGE = "Cannot access '{page}' ({attempts} attempts)."
py
1a3d559adcc51b7949394d94bf035c4219239054
""" The MIT License (MIT) Copyright (c) 2020-Current Skelmis Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from antispam.abc import Cache class RedisCache(Cache): """Not implemented lol""" def __init__(self, handler): # pragma: no cover self.handler = handler raise NotImplementedError
py
1a3d55fae997e8de04e5017155c134b7b3415897
# --------------------------- # Alexander Camuto, Matthew Willetts -- 2019 # The University of Oxford, The Alan Turing Institute # contact: [email protected], [email protected] # --------------------------- """Functions to preprocess SVHN data """ import numpy as np import tensorflow as tf import os import sys import shutil import zipfile import scipy.misc import scipy.io as sio import pickle as Pkl import gzip, tarfile import re, string, fnmatch import urllib.request def data_generator_train(x, y, batch_size): """ Generates an infinite sequence of data Args: x: training data y: training labels batch_size: batch size to yield Yields: tuples of x,y pairs each of size batch_size """ num = x.shape[0] while True: # --- Randomly select batch_size elements from the training set idx = np.random.choice(list(range(num)), batch_size, replace=False) # idx = np.random.randint(0, num, batch_size) x_batch = x[idx] y_batch = y[idx] # --- Now yield yield (x_batch, y_batch) def data_generator_eval(x, y, batch_size): """ Generates an infinite sequence of test data Args: x: test data y: test labels batch_size: batch size to yield Yields: tuples of x,y pairs each of size batch_size """ num = x.shape[0] n_batches = int(num / batch_size) for i in range(n_batches): idx = list(range(i * batch_size, (i + 1) * batch_size)) x_batch = x[idx] y_batch = y[idx] yield (x_batch, y_batch) def build_input_fns(params, extra=False): """Builds an Iterator switching between train and heldout data.""" x_train, y_train, x_test, y_test = load_svhn(dataset=params["data_dir"], extra=extra) # # x_train, y_train = x_train[:params["B"]], y_train[:params[ # "batch_size"]] def gen_train(): return data_generator_train(x_train, y_train, params["B"]) def gen_eval(): return data_generator_eval(x_test, y_test, params["B"]) def train_input_fn(): # Build an iterator over training batches. dataset = tf.data.Dataset.from_generator( gen_train, (tf.float32, tf.int32), (tf.TensorShape([params["B"], 32, 32, 3 ]), tf.TensorShape([params["B"], 10]))) dataset = dataset.prefetch(1) return dataset.make_one_shot_iterator().get_next() def eval_input_fn(): # Build an iterator over training batches. dataset = tf.data.Dataset.from_generator( gen_eval, (tf.float32, tf.int32), (tf.TensorShape([params["B"], 32, 32, 3 ]), tf.TensorShape([params["B"], 10]))) dataset = dataset.prefetch(1) return dataset.make_one_shot_iterator().get_next() # Build an iterator over the heldout set. return train_input_fn, eval_input_fn, x_train.shape[0] def _get_datafolder_path(): full_path = os.path.abspath('.') path = full_path + '/data' return path def _unpickle(f): import cPickle fo = open(f, 'rb') d = Pkl.load(fo) fo.close() return d def load_svhn(dataset=_get_datafolder_path() + '/svhn/', normalize=True, dequantify=True, extra=False): ''' :param dataset: :param normalize: :param dequantify: Add uniform noise to dequantify the data following Uria et. al 2013 "RNADE: The real-valued neural autoregressive density-estimator" :param extra: include extra svhn samples :return: ''' if not os.path.isfile(dataset + 'svhn_train.pkl'): datasetfolder = os.path.dirname(dataset + 'svhn_train.pkl') if not os.path.exists(datasetfolder): os.makedirs(datasetfolder) _download_svhn(dataset, extra=False) with open(dataset + 'svhn_train.pkl', 'rb') as f: train_x, train_y = Pkl.load(f) with open(dataset + 'svhn_test.pkl', 'rb') as f: test_x, test_y = Pkl.load(f) if extra: if not os.path.isfile(dataset + 'svhn_extra.pkl'): datasetfolder = os.path.dirname(dataset + 'svhn_train.pkl') if not os.path.exists(datasetfolder): os.makedirs(datasetfolder) _download_svhn(dataset, extra=True) with open(dataset + 'svhn_extra.pkl', 'rb') as f: extra_x, extra_y = Pkl.load(f) train_x = np.concatenate([train_x, extra_x]) train_y = np.concatenate([train_y, extra_y]) train_x = train_x.astype('float32') test_x = test_x.astype('float32') train_y = tf.keras.utils.to_categorical(train_y.astype('int32'), 10) test_y = tf.keras.utils.to_categorical(test_y.astype('int32'), 10) if dequantify: train_x += np.random.uniform(0, 1, size=train_x.shape).astype('float32') test_x += np.random.uniform(0, 1, size=test_x.shape).astype('float32') if normalize: normalizer = train_x.max().astype('float32') train_x = train_x / normalizer test_x = test_x / normalizer return train_x, train_y, test_x, test_y def _download_svhn(dataset, extra): """ Download the SVHN dataset """ from scipy.io import loadmat print('Downloading data from http://ufldl.stanford.edu/housenumbers/, ' \ 'this may take a while...') if extra: print("Downloading extra data...") urllib.request.urlretrieve( 'http://ufldl.stanford.edu/housenumbers/extra_32x32.mat', dataset + 'extra_32x32.mat') extra = loadmat(dataset + 'extra_32x32.mat') extra_x = extra['X'].swapaxes(2, 3).swapaxes(1, 2).swapaxes(0, 1) extra_y = extra['y'].reshape((-1)) - 1 print("Saving extra data") with open(dataset + 'svhn_extra.pkl', 'wb') as f: Pkl.dump([extra_x, extra_y], f, protocol=Pkl.HIGHEST_PROTOCOL) os.remove(dataset + 'extra_32x32.mat') else: print("Downloading train data...") urllib.request.urlretrieve( 'http://ufldl.stanford.edu/housenumbers/train_32x32.mat', dataset + 'train_32x32.mat') print("Downloading test data...") urllib.request.urlretrieve( 'http://ufldl.stanford.edu/housenumbers/test_32x32.mat', dataset + 'test_32x32.mat') train = loadmat(dataset + 'train_32x32.mat') train_x = train['X'].swapaxes(2, 3).swapaxes(1, 2).swapaxes(0, 1) train_y = train['y'].reshape((-1)) - 1 test = loadmat(dataset + 'test_32x32.mat') test_x = test['X'].swapaxes(2, 3).swapaxes(1, 2).swapaxes(0, 1) test_y = test['y'].reshape((-1)) - 1 print("Saving train data") with open(dataset + 'svhn_train.pkl', 'wb') as f: Pkl.dump([train_x, train_y], f, protocol=Pkl.HIGHEST_PROTOCOL) print("Saving test data") with open(dataset + 'svhn_test.pkl', 'wb') as f: Pkl.dump([test_x, test_y], f, protocol=Pkl.HIGHEST_PROTOCOL) os.remove(dataset + 'train_32x32.mat') os.remove(dataset + 'test_32x32.mat')
py
1a3d5671ddc0210598d9b55007d4db885c864af7
# Write results to this file OUTFILE = 'runs/10KB/src2-tgt1/seq-nobro-iter06000.result.csv' # Source computers for the requests SOURCE = ['10.0.0.1', '10.0.0.3'] # Should Bro be enabled on the source machines? SOURCE_BRO = [False, False] # Target machines for the requests (aka server) TARGET = ['10.0.0.2'] # Should Bro be enabled on the target machines? TARGET_BRO = [False] # Connection mode (par = parallel, seq = sequential) MODE = 'seq' # Number of evaluation repetitions to run EPOCHS = 100 # Number of iterations to be run in each evaluation repetition ITER = 6000 # Size of the file to be downloaded from target (in Bytes * 10^SIZE) SIZE = 4
py
1a3d56aa32f2fbc735f9eda7a097dcc9169800ab
""" sentry.search_indexes ~~~~~~~~~~~~~~~~~~~~~ :copyright: (c) 2010 by the Sentry Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ import haystack from haystack.indexes import * from haystack.sites import SearchSite from sentry.conf import settings from sentry.utils import to_unicode from sentry.models import GroupedMessage if settings.SEARCH_ENGINE: # Ensure we stop here if we havent configure Sentry to work under haystack backend = haystack.load_backend(settings.SEARCH_ENGINE) class SentrySearchSite(SearchSite): pass site = SentrySearchSite() site.backend = backend.SearchBackend(site, **settings.SEARCH_OPTIONS) class GroupedMessageIndex(RealTimeSearchIndex): text = CharField(document=True, stored=False) status = IntegerField(model_attr='status', stored=False, null=True) level = IntegerField(model_attr='level', stored=False, null=True) logger = CharField(model_attr='logger', stored=False, null=True) server = MultiValueField(stored=False, null=True) url = MultiValueField(stored=False, null=True) site = MultiValueField(stored=False, null=True) first_seen = DateTimeField(model_attr='first_seen', stored=False) last_seen = DateTimeField(model_attr='last_seen', stored=False) # def get_queryset(self): # """Used when the entire index for model is updated.""" # return GroupedMessage.objects.all() def get_updated_field(self): return 'last_seen' def get_content_field(self): return 'text' def prepare_text(self, instance): chunks = [instance.message, instance.class_name, instance.traceback, instance.view] chunks.extend(self.prepare_url(instance)) return '\n'.join(map(to_unicode, filter(None, chunks))) def prepare_server(self, instance): return [to_unicode(s[0]) for s in instance.unique_servers] def prepare_site(self, instance): return [to_unicode(s[0]) for s in instance.unique_sites] def prepare_url(self, instance): return [to_unicode(s[0]) for s in instance.unique_urls] site.register(GroupedMessage, GroupedMessageIndex)
py
1a3d574244ceda857be031c6a0105df0e1c40e90
from typing import List from unified_message_relay.Core.UMRType import ChatAttribute from unified_message_relay.Core.UMRCommand import register_command, quick_reply @register_command(cmd='echo', description='reply every word you sent') async def command(chat_attrs: ChatAttribute, args: List): """ Prototype of command :param chat_attrs: :param args: :return: """ if not args: # args should not be empty return await quick_reply(chat_attrs, ' '.join(args))
py
1a3d57bf140ddd12966e187e02a65ac89b2741e9
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License from .common import DistributedOperatorImplContainer from .common import DistributedOperatorImpl from .common import register_distributed_operator_impl_container from .common import register_distributed_operator_impl, is_parameter_related from ..utils import is_dim_shard from ..utils import is_dim_replicate from ..utils import is_valid_list_index from ..utils import compute_compatible_dim_mapping from ..utils import compute_compatible_dims_mapping from ..utils import compute_compatible_and_update_dim_mapping from ..utils import set_dist_op_desc_original_id from ..dist_attribute import OperatorDistributedAttribute from paddle.fluid import core, unique_name from paddle.fluid.framework import in_dygraph_mode from paddle.fluid.framework import Program, Parameter, Variable, program_guard from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY from ..process_group import new_process_group from ..utils import _get_comm_group, _get_corresponding_rank class DistributedDefault(DistributedOperatorImplContainer): def __init__(self, name): super(DistributedDefault, self).__init__() self._name = name register_distributed_operator_impl_container("default", DistributedDefault("default")) # Replicated Default class DistributedDefaultImpl0(DistributedOperatorImpl): def __init__(self, name): super(DistributedDefaultImpl0, self).__init__() self._name = name self._forward_implemented = True self._backward_implemented = True def is_input_compatible(self, dist_op): raise NotImplementedError("Please Implement this method.") def is_output_compatible(self, dist_op): raise NotImplementedError("Please Implement this method.") def update_dims_mapping(self, dist_op): raise NotImplementedError("Please Implement this method.") @staticmethod def forward(ctx, *args, **kwargs): dist_op_context = ctx.dist_op_context main_block = dist_op_context.get_dst_main_program().global_block() startup_block = dist_op_context.get_dst_startup_program().global_block() src_op = dist_op_context.get_cur_src_op() rank_id = dist_op_context.get_rank_id() # check validation of inputs / outputs for input_name in src_op.desc.input_names(): assert input_name in kwargs, "input [{}] is not given".format( input_name) assert len(kwargs[input_name]) == len( src_op.desc.input(input_name) ), "number of tensor for input [{}] is not match".format(input_name) for output_name in src_op.desc.output_names(): assert output_name in kwargs, "input [{}] is not given".format( output_name) assert len(kwargs[output_name]) == len( src_op.desc.output(output_name) ), "number of tensor for input [{}] is not match".format( output_name) # replicate op in dist program dist_op_desc = main_block.desc.append_op() dist_op_desc.copy_from(src_op.desc) set_dist_op_desc_original_id(dist_op_desc, src_op.desc, ctx) for input_name in src_op.desc.input_names(): dist_op_desc.set_input(input_name, kwargs[input_name]) for output_name in src_op.desc.output_names(): dist_op_desc.set_output(output_name, kwargs[output_name]) main_block._sync_with_cpp() # param initialization sync for varname in dist_op_desc.input_arg_names(): if startup_block.has_var(varname) and startup_block.var( varname ).is_parameter and varname not in dist_op_context.already_init_sync_vars: dist_op_context.already_init_sync_vars.add(varname) param = startup_block.var(varname) param_dist_attr = ctx.get_tensor_dist_attr_for_program(param) process_mesh = param_dist_attr.process_mesh dims_mapping = param_dist_attr.dims_mapping # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism if rank_id not in process_mesh.processes: rank_id = _get_corresponding_rank(ctx, process_mesh, rank_id) # NOTE all not splited axis should be presented in mesh for axis, size in enumerate(process_mesh.topology): if size <= 1 or axis in dims_mapping: pass else: group_ranks = _get_comm_group(process_mesh.processes, process_mesh.topology, axis, rank_id) sync_group = new_process_group(group_ranks) new_op = startup_block.append_op( type='c_broadcast', inputs={'X': param}, outputs={'Out': param}, attrs={ 'ring_id': sync_group.id, 'root': 0, 'use_calc_stream': True, OP_ROLE_KEY: OpRole.Forward }) # set distributed attribute op_attr = OperatorDistributedAttribute() op_attr.process_mesh = process_mesh op_attr.set_output_dims_mapping(param.name, dims_mapping) op_attr.set_input_dims_mapping(param.name, dims_mapping) ctx.set_op_dist_attr_for_program(new_op, op_attr) startup_block._sync_with_cpp() @staticmethod def backward(ctx, *args, **kwargs): # by now the backward function only insert the gradient allreduce for dist op itself dist_op_context = ctx.dist_op_context main_block = dist_op_context.get_dst_main_program().global_block() backward_op = dist_op_context.get_cur_src_op() dist_attr = ctx.get_op_dist_attr_for_program(backward_op) assert dist_attr is not None, "backward op [{}] don't have dist attribute !".format( str(backward_op)) rank_id = dist_op_context.get_rank_id() # check validation of inputs / outputs for input_name in backward_op.desc.input_names(): assert input_name in kwargs, "input [{}] is not given".format( input_name) assert len(kwargs[input_name]) == len( backward_op.desc.input(input_name) ), "number of tensor for input [{}] is not match".format(input_name) for output_name in backward_op.desc.output_names(): assert output_name in kwargs, "input [{}] is not given".format( output_name) assert len(kwargs[output_name]) == len( backward_op.desc.output(output_name) ), "number of tensor for input [{}] is not match".format( output_name) # replicate op in dist program dist_op_desc = main_block.desc.append_op() dist_op_desc.copy_from(backward_op.desc) # Refer to the related dist op set_dist_op_desc_original_id(dist_op_desc, backward_op.desc, ctx) for input_name in backward_op.desc.input_names(): dist_op_desc.set_input(input_name, kwargs[input_name]) for output_name in backward_op.desc.output_names(): dist_op_desc.set_output(output_name, kwargs[output_name]) main_block._sync_with_cpp() # check if need gradient allreduce # if there is a non-gradient & non-parameter input and its batch dimension is splited, # we need insert gradient allreduce for the gradient of parameter in its output need_gradient_allreduce = False for input_name in backward_op.desc.input_names(): for varname in backward_op.desc.input(input_name): if "@GRAD" not in varname and not is_parameter_related( varname, main_block): # NOTE input var's dim_mapping of backward op should be the same with input var instead of corresponding varname of forward op process_mesh = dist_attr.process_mesh var_dim_mapping = dist_attr.get_input_dims_mapping(varname) # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism if rank_id not in process_mesh.processes: rank_id = _get_corresponding_rank(ctx, process_mesh, rank_id) mesh_shape = process_mesh.topology batch_size_axis = var_dim_mapping[0] if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1: need_gradient_allreduce = True group_ranks = _get_comm_group(process_mesh.processes, process_mesh.topology, batch_size_axis, rank_id) dp_degree = len(group_ranks) dp_group = new_process_group(group_ranks) break if need_gradient_allreduce: allreduce_vars = [] for input_name in backward_op.desc.input_names(): for varname in backward_op.desc.input(input_name): if "@GRAD" not in varname and is_parameter_related( varname, main_block): assert len( backward_op.desc.input(input_name) ) == 1, "parameter input to grad op should be length 1, but got [{}]".format( backward_op.desc.input(input_name)) assert varname + "@GRAD" in backward_op.desc.output_arg_names( ), "parameter's grad [{}] not found in the grad op's output".format( varname + "@GRAD") assert len( backward_op.desc.output(input_name + "@GRAD") ) == 1, "parameter grad of grad op should be length 1, but got [{}]".format( backward_op.desc.output(input_name + "@GRAD")) allreduce_vars.append( backward_op.desc.output(input_name + "@GRAD")[0]) if len(allreduce_vars) > 0: for varname in allreduce_vars: grad_var = main_block.var(varname) allreduce_op = main_block.append_op( type='c_allreduce_sum', inputs={'X': [grad_var]}, outputs={'Out': [grad_var]}, attrs={ 'ring_id': dp_group.id, 'use_calc_stream': True, OP_ROLE_KEY: OpRole.Backward }) scale_op = main_block.append_op( type='scale', inputs={'X': grad_var}, outputs={'Out': grad_var}, attrs={ 'scale': 1.0 / dp_degree, OP_ROLE_KEY: OpRole.Backward }) dims_mapping = ctx.get_tensor_dist_attr_for_program( grad_var).dims_mapping process_mesh = dist_attr.process_mesh for op in [allreduce_op, scale_op]: op_attr = OperatorDistributedAttribute() op_attr.process_mesh = process_mesh op_attr.set_output_dims_mapping(grad_var.name, dims_mapping) op_attr.set_input_dims_mapping(grad_var.name, dims_mapping) ctx.set_op_dist_attr_for_program(op, op_attr) main_block._sync_with_cpp() register_distributed_operator_impl( "default", DistributedDefaultImpl0("replicate_parallel"))
py
1a3d58f84d4056a1a8d51ee22a6bc740357a6f05
# coding=utf-8 # Copyright 2020 The Trax Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization class for model Reformer.""" import os from shutil import copyfile from typing import Optional, Tuple from ...file_utils import is_sentencepiece_available from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if is_sentencepiece_available(): from .tokenization_reformer import ReformerTokenizer else: ReformerTokenizer = None logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" #################################################### # Mapping from the keyword arguments names of Tokenizer `__init__` # to file names for serializing Tokenizer instances #################################################### VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} #################################################### # Mapping from the keyword arguments names of Tokenizer `__init__` # to pretrained vocabulary URL for all the model ids. #################################################### PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "google/reformer-crime-and-punishment": "https://cdn.huggingface.co/google/reformer-crime-and-punishment/spiece.model" }, "tokenizer_file": { "google/reformer-crime-and-punishment": "https://cdn.huggingface.co/google/reformer-crime-and-punishment/tokenizer.json" }, } #################################################### # Mapping from model ids to max length of inputs #################################################### PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "google/reformer-crime-and-punishment": 524288, } class ReformerTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" Reformer tokenizer (backed by HuggingFace's `tokenizers` library). Based on `SentencePiece <https://github.com/google/sentencepiece>`__ . This tokenizer inherits from :class:`~transformers.PreTrainedTokenizerFast` which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (:obj:`str`): `SentencePiece <https://github.com/google/sentencepiece>`__ file (generally has a `.spm` extension) that contains the vocabulary necessary to instantiate a tokenizer. eos_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`): The end of sequence token. .. note:: When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the :obj:`sep_token`. unk_token (:obj:`str`, `optional`, defaults to :obj:`"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (:obj:`str`, `optional`, defaults to :obj:`"<pad>"`): The token used for padding, for example when batching sequences of different lengths. additional_special_tokens (:obj:`List[str]`, `optional`): Additional special tokens used by the tokenizer. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["attention_mask"] slow_tokenizer_class = ReformerTokenizer def __init__( self, vocab_file, tokenizer_file=None, eos_token="</s>", unk_token="<unk>", additional_special_tokens=[], **kwargs ): super().__init__( vocab_file, tokenizer_file=tokenizer_file, eos_token=eos_token, unk_token=unk_token, additional_special_tokens=additional_special_tokens, **kwargs, ) self.vocab_file = vocab_file def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
py
1a3d5b6cc1c528b07b113484d101546fc98f05ed
import signal class TimeoutException(Exception): pass def timeout(signum, frame): raise TimeoutException def register_signal(): signal.signal(signal.SIGALRM, timeout) def signal_ttl(allowed_time_to_process): signal.alarm(allowed_time_to_process) def reset_signal(): signal.alarm(0)
py
1a3d5e24f3ebcc2cc2e7505f2ef554b522193d39
import numpy as np import scipy.io as sio import xarray as xr import pkg_resources from .nortek import read_nortek from .nortek2 import read_signature from .rdi import read_rdi from .base import _create_dataset from ..rotate.base import _set_coords from ..time import epoch2date, date2epoch, date2matlab, matlab2date # time variables stored as data variables (as opposed to coordinates) t_additional = ['hdwtime_gps', ] def read(fname, userdata=True, nens=None): """Read a binary Nortek (e.g., .VEC, .wpr, .ad2cp, etc.) or RDI (.000, .PD0, .ENX, etc.) data file. Parameters ---------- filename : string Filename of instrument file to read. userdata : True, False, or string of userdata.json filename (default ``True``) Whether to read the '<base-filename>.userdata.json' file. nens : None (default: read entire file), int, or 2-element tuple (start, stop) Number of pings or ensembles to read from the file Returns ------- ds : xarray.Dataset An xarray dataset from instrument datafile. """ # Loop over binary readers until we find one that works. for func in [read_nortek, read_signature, read_rdi]: try: ds = func(fname, userdata=userdata, nens=nens) except: continue else: return ds raise Exception( "Unable to find a suitable reader for file {}.".format(fname)) def read_example(name, **kwargs): """Read an ADCP or ADV datafile from the examples directory. Parameters ---------- name : str A few available files: AWAC_test01.wpr BenchFile01.ad2cp RDI_test01.000 burst_mode01.VEC vector_data01.VEC vector_data_imu01.VEC winriver01.PD0 winriver02.PD0 Returns ------- ds : xarray.Dataset An xarray dataset from the binary instrument data. """ filename = pkg_resources.resource_filename( 'dolfyn', 'example_data/' + name) return read(filename, **kwargs) def save(dataset, filename): """Save xarray dataset as netCDF (.nc). Parameters ---------- dataset : xarray.Dataset filename : str Filename and/or path with the '.nc' extension Notes ----- Drops 'config' lines. """ if '.' in filename: assert filename.endswith('nc'), 'File extension must be of the type nc' else: filename += '.nc' # Dropping the detailed configuration stats because netcdf can't save it for key in list(dataset.attrs.keys()): if 'config' in key: dataset.attrs.pop(key) # Handling complex values for netCDF4 dataset.attrs['complex_vars'] = [] for var in dataset.data_vars: if np.iscomplexobj(dataset[var]): dataset[var+'_real'] = dataset[var].real dataset[var+'_imag'] = dataset[var].imag dataset = dataset.drop(var) dataset.attrs['complex_vars'].append(var) # Keeping time in raw file's time instance, unaware of timezone t_list = [t for t in dataset.coords if 'time' in t] for ky in t_list: dt = epoch2date(dataset[ky]) dataset = dataset.assign_coords({ky: dt}) t_data = [t for t in dataset.data_vars if t in t_additional] for ky in t_data: dt = epoch2date(dataset[ky]) dataset = dataset.drop_vars(ky) # must do b/c of netcdf encoding error dataset[ky] = xr.DataArray(dt, coords={'time_gps': dataset.time_gps}) dataset.to_netcdf(filename, format='NETCDF4', engine='netcdf4') def load(filename): """Load xarray dataset from netCDF (.nc) Parameters ---------- filename : str Filename and/or path with the '.nc' extension Returns ------- ds : xarray.Dataset An xarray dataset from the binary instrument data. """ if '.' in filename: assert filename.endswith('nc'), 'File extension must be of the type nc' else: filename += '.nc' ds = xr.load_dataset(filename, engine='netcdf4') # Single item lists were saved as 'int' or 'str' if hasattr(ds, 'rotate_vars') and len(ds.rotate_vars[0]) == 1: ds.attrs['rotate_vars'] = [ds.rotate_vars] # Python lists were saved as numpy arrays if hasattr(ds, 'rotate_vars') and type(ds.rotate_vars) is not list: ds.attrs['rotate_vars'] = list(ds.rotate_vars) # Rejoin complex numbers if hasattr(ds, 'complex_vars') and len(ds.complex_vars): if len(ds.complex_vars[0]) == 1: ds.attrs['complex_vars'] = [ds.complex_vars] for var in ds.complex_vars: ds[var] = ds[var+'_real'] + ds[var+'_imag'] * 1j ds = ds.drop_vars([var+'_real', var+'_imag']) ds.attrs.pop('complex_vars') # Reload raw file's time instance since the timezone is unknown t_list = [t for t in ds.coords if 'time' in t] for ky in t_list: dt = ds[ky].values.astype('datetime64[us]').tolist() ds = ds.assign_coords({ky: date2epoch(dt)}) ds[ky].attrs['description'] = 'seconds since 1970-01-01 00:00:00' # Time data variables t_data = [t for t in ds.data_vars if t in t_additional] for ky in t_data: dt = ds[ky].values.astype('datetime64[us]').tolist() ds[ky].data = date2epoch(dt) ds[ky].attrs['description'] = 'seconds since 1970-01-01 00:00:00' return ds def save_mat(dataset, filename, datenum=True): """Save xarray dataset as a MATLAB (.mat) file Parameters ---------- dataset : xarray.Dataset Data to save filename : str Filename and/or path with the '.mat' extension datenum : bool Converts epoch time into MATLAB datenum Notes ----- The xarray data format is saved as a MATLAB structure with the fields 'vars, coords, config, units' See Also -------- scipy.io.savemat() """ if '.' in filename: assert filename.endswith( 'mat'), 'File extension must be of the type mat' else: filename += '.mat' # Convert from epoch time to datenum if datenum: t_list = [t for t in dataset.coords if 'time' in t] for ky in t_list: dt = date2matlab(epoch2date(dataset[ky])) dataset = dataset.assign_coords({ky: dt}) t_data = [t for t in dataset.data_vars if t in t_additional] for ky in t_data: dt = date2matlab(epoch2date(dataset[ky])) dataset[ky].data = dt # Save xarray structure with more descriptive structure names matfile = {'vars': {}, 'coords': {}, 'config': {}, 'units': {}} for key in dataset.data_vars: matfile['vars'][key] = dataset[key].values if hasattr(dataset[key], 'units'): matfile['units'][key] = dataset[key].units for key in dataset.coords: matfile['coords'][key] = dataset[key].values matfile['config'] = dataset.attrs sio.savemat(filename, matfile) def load_mat(filename, datenum=True): """Load xarray dataset from MATLAB (.mat) file, complimentary to `save_mat()` A .mat file must contain the fields: {vars, coords, config, units}, where 'coords' contain the dimensions of all variables in 'vars'. Parameters ---------- filename : str Filename and/or path with the '.mat' extension datenum : bool Converts MATLAB datenum into epoch time Returns ------- ds : xarray.Dataset An xarray dataset from the binary instrument data. See Also -------- scipy.io.loadmat() """ if '.' in filename: assert filename.endswith( 'mat'), 'File extension must be of the type mat' else: filename += '.mat' data = sio.loadmat(filename, struct_as_record=False, squeeze_me=True) ds_dict = {'vars': {}, 'coords': {}, 'config': {}, 'units': {}} for nm in ds_dict: key_list = data[nm]._fieldnames for ky in key_list: ds_dict[nm][ky] = getattr(data[nm], ky) ds_dict['data_vars'] = ds_dict.pop('vars') ds_dict['attrs'] = ds_dict.pop('config') # Recreate dataset ds = _create_dataset(ds_dict) ds = _set_coords(ds, ds.coord_sys) # Convert datenum time back into epoch time if datenum: t_list = [t for t in ds.coords if 'time' in t] for ky in t_list: dt = date2epoch(matlab2date(ds[ky].values)) ds = ds.assign_coords({ky: dt}) ds[ky].attrs['description'] = 'seconds since 1970-01-01 00:00:00' t_data = [t for t in ds.data_vars if t in t_additional] for ky in t_data: dt = date2epoch(matlab2date(ds[ky].values)) ds[ky].data = dt ds[ky].attrs['description'] = 'seconds since 1970-01-01 00:00:00' # Restore 'rotate vars" to a proper list if hasattr(ds, 'rotate_vars') and len(ds.rotate_vars[0]) == 1: ds.attrs['rotate_vars'] = [ds.rotate_vars] else: ds.attrs['rotate_vars'] = [x.strip(' ') for x in list(ds.rotate_vars)] return ds
py
1a3d5eadc53297bccb691e57da773b5a0b1a325a
from .BaseTestCase import BaseTestCase from .CliTest import CliTest from . import Crawler from . import Template from . import Task from . import TaskReporter from . import TaskWrapper from . import TaskHolder from . import examples
py
1a3d5f5205557fece433e03717453b5e4d1240f6
# -*- coding: utf-8 -*- """ Helpers for downloading data The :func:`download` function access the network and requests the content at a specific url using :mod:`urllib` or :mod:`urllib2`. You can either specify where the data goes or download it to the default location in ubelt cache. Either way this function returns the location of the downloaded data. You can also specify the expected hash in order to check the validity of the data. By default downloading is verbose. The :func:`grabdata` function is almost identitcal to :func:`download`, but it checks if the data already exists in the download location, and only downloads if it needs to. """ from __future__ import (absolute_import, division, print_function, unicode_literals) from os.path import basename, join, exists import six import os __all__ = ['download', 'grabdata'] def download(url, fpath=None, hash_prefix=None, hasher='sha512', chunksize=8192, verbose=1): """ Downloads a url to a file on disk. If unspecified the location and name of the file is chosen automatically. A hash_prefix can be specified to verify the integrity of the downloaded data. This function will download the data every time its called. For cached downloading see `grabdata`. Args: url (str): The url to download. fpath (PathLike | io.BytesIOtringIO): The path to download to. Defaults to basename of url and ubelt's application cache. If this is a io.BytesIO object then information is directly written to this object (note this prevents the use of temporary files). hash_prefix (None | str): If specified, download will retry / error if the file hash does not match this value. Defaults to None. hasher (str | Hasher): If hash_prefix is specified, this indicates the hashing algorithm to apply to the file. Defaults to sha512. chunksize (int, default=2 ** 13): Download chunksize. verbose (int, default=1): Verbosity level 0 or 1. Returns: PathLike: fpath - path to the downloaded file. Raises: URLError - if there is problem downloading the url RuntimeError - if the hash does not match the hash_prefix Notes: Based largely on code in pytorch [4]_ with modifications influenced by other resources [1]_ [2]_ [3]_. References: .. [1] http://blog.moleculea.com/2012/10/04/urlretrieve-progres-indicator/ .. [2] http://stackoverflow.com/questions/15644964/python-progress-bar-and-downloads .. [3] http://stackoverflow.com/questions/16694907/how-to-download-large-file-in-python-with-requests-py .. [4] https://github.com/pytorch/pytorch/blob/2787f1d8edbd4aadd4a8680d204341a1d7112e2d/torch/hub.py#L347 TODO: - [ ] fine-grained control of progress Example: >>> # xdoctest: +REQUIRES(--network) >>> from ubelt.util_download import * # NOQA >>> url = 'http://i.imgur.com/rqwaDag.png' >>> fpath = download(url) >>> print(basename(fpath)) rqwaDag.png Example: >>> # xdoctest: +REQUIRES(--network) >>> import ubelt as ub >>> import io >>> url = 'http://i.imgur.com/rqwaDag.png' >>> file = io.BytesIO() >>> fpath = download(url, file) >>> file.seek(0) >>> data = file.read() >>> assert ub.hash_data(data, hasher='sha1').startswith('f79ea24571') Example: >>> # xdoctest: +REQUIRES(--network) >>> url = 'http://i.imgur.com/rqwaDag.png' >>> fpath = download(url, hasher='sha1', hash_prefix='f79ea24571da6ddd2ba12e3d57b515249ecb8a35') Downloading url='http://i.imgur.com/rqwaDag.png' to fpath=...rqwaDag.png ... ...1233/1233... rate=... Hz, eta=..., total=..., wall=... Example: >>> # xdoctest: +REQUIRES(--network) >>> # test download from girder >>> import pytest >>> import ubelt as ub >>> url = 'https://data.kitware.com/api/v1/item/5b4039308d777f2e6225994c/download' >>> ub.download(url, hasher='sha512', hash_prefix='c98a46cb31205cf') >>> with pytest.raises(RuntimeError): >>> ub.download(url, hasher='sha512', hash_prefix='BAD_HASH') """ from ubelt import ProgIter as Progress from ubelt import ensure_app_cache_dir import shutil import tempfile import hashlib if six.PY2: # nocover from urllib2 import urlopen # NOQA else: from urllib.request import urlopen # NOQA if fpath is None: dpath = ensure_app_cache_dir('ubelt') fname = basename(url) fpath = join(dpath, fname) _dst_is_io_object = hasattr(fpath, 'write') if verbose: if _dst_is_io_object: print('Downloading url=%r to IO object' % (url,)) else: print('Downloading url=%r to fpath=%r' % (url, fpath)) urldata = urlopen(url) meta = urldata.info() try: if hasattr(meta, 'getheaders'): # nocover file_size = int(meta.getheaders("Content-Length")[0]) else: file_size = int(meta.get_all("Content-Length")[0]) except Exception: # nocover # sometimes the url does not contain content length metadata # TODO: find a public URL that exemplifies this or figure out how to # mock it locally. file_size = None if hash_prefix: if isinstance(hasher, six.string_types): if hasher == 'sha1': hasher = hashlib.sha1() elif hasher == 'sha512': hasher = hashlib.sha512() else: raise KeyError(hasher) if _dst_is_io_object: _file_write = fpath.write else: tmp = tempfile.NamedTemporaryFile(delete=False) _file_write = tmp.write # possible optimization (have not tested or timed) _urldata_read = urldata.read try: with Progress(total=file_size, disable=not verbose) as pbar: _pbar_update = pbar.update def _critical_loop(): # Initialize the buffer to a non-empty object buffer = ' ' if hash_prefix: _hasher_update = hasher.update while buffer: buffer = _urldata_read(chunksize) _file_write(buffer) _hasher_update(buffer) _pbar_update(len(buffer)) else: # Same code as above, just without the hasher update. # (tight loop optimization: remove in-loop conditional) while buffer: buffer = _urldata_read(chunksize) _file_write(buffer) _pbar_update(len(buffer)) _critical_loop() if not _dst_is_io_object: tmp.close() # We keep a potentially corrupted file if the hash doesn't match. # It could be the case that the user simply specified the wrong # hash_prefix. shutil.move(tmp.name, fpath) if hash_prefix: got = hasher.hexdigest() if got[:len(hash_prefix)] != hash_prefix: print('hash_prefix = {!r}'.format(hash_prefix)) print('got = {!r}'.format(got)) if _dst_is_io_object: raise RuntimeError( 'invalid hash value ' '(expected "{}", got "{}")'.format(hash_prefix, got)) else: raise RuntimeError( 'invalid hash value for fpath={!r} ' '(expected "{}", got "{}")'.format( fpath, hash_prefix, got)) finally: if not _dst_is_io_object: # nocover tmp.close() # If for some reason the move failed, delete the temporary file if exists(tmp.name): os.remove(tmp.name) return fpath def grabdata(url, fpath=None, dpath=None, fname=None, redo=False, verbose=1, appname=None, hash_prefix=None, hasher='sha512', **download_kw): """ Downloads a file, caches it, and returns its local path. If unspecified the location and name of the file is chosen automatically. A hash_prefix can be specified to verify the integrity of the downloaded data. Args: url (str): url to the file to download fpath (PathLike): The full path to download the file to. If unspecified, the arguments `dpath` and `fname` are used to determine this. dpath (PathLike): where to download the file. If unspecified `appname` is used to determine this. Mutually exclusive with fpath. fname (str): What to name the downloaded file. Defaults to the url basename. Mutually exclusive with fpath. redo (bool, default=False): if True forces redownload of the file verbose (bool, default=True): verbosity flag appname (str): set dpath to `ub.get_app_cache_dir(appname)`. Mutually exclusive with dpath and fpath. hash_prefix (None | str): If specified, grabdata verifies that this matches the hash of the file, and then saves the hash in a adjacent file to certify that the download was successful. Defaults to None. hasher (str | Hasher): If hash_prefix is specified, this indicates the hashing algorithm to apply to the file. Defaults to sha512. **download_kw: additional kwargs to pass to ub.download Returns: PathLike: fpath - path to downloaded or cached file. Example: >>> # xdoctest: +REQUIRES(--network) >>> import ubelt as ub >>> url = 'http://i.imgur.com/rqwaDag.png' >>> fpath = ub.grabdata(url, fname='mario.png') >>> result = basename(fpath) >>> print(result) mario.png Example: >>> # xdoctest: +REQUIRES(--network) >>> import ubelt as ub >>> fname = 'foo.bar' >>> url = 'http://i.imgur.com/rqwaDag.png' >>> prefix1 = '944389a39dfb8fa9' >>> fpath = ub.grabdata(url, fname=fname, hash_prefix=prefix1) >>> stamp_fpath = fpath + '.hash' >>> assert ub.readfrom(stamp_fpath) == prefix1 >>> # Check that the download doesn't happen again >>> fpath = ub.grabdata(url, fname=fname, hash_prefix=prefix1) >>> # todo: check file timestamps have not changed >>> # >>> # Check redo works with hash >>> fpath = ub.grabdata(url, fname=fname, hash_prefix=prefix1, redo=True) >>> # todo: check file timestamps have changed >>> # >>> # Check that a redownload occurs when the stamp is changed >>> open(stamp_fpath, 'w').write('corrupt-stamp') >>> fpath = ub.grabdata(url, fname=fname, hash_prefix=prefix1) >>> assert ub.readfrom(stamp_fpath) == prefix1 >>> # >>> # Check that a redownload occurs when the stamp is removed >>> ub.delete(stamp_fpath) >>> open(fpath, 'w').write('corrupt-data') >>> assert not ub.hash_file(fpath, base='hex', hasher='sha512').startswith(prefix1) >>> fpath = ub.grabdata(url, fname=fname, hash_prefix=prefix1) >>> assert ub.hash_file(fpath, base='hex', hasher='sha512').startswith(prefix1) >>> # >>> # Check that requesting new data causes redownload >>> url2 = 'https://data.kitware.com/api/v1/item/5b4039308d777f2e6225994c/download' >>> prefix2 = 'c98a46cb31205cf' >>> fpath = ub.grabdata(url2, fname=fname, hash_prefix=prefix2) >>> assert ub.readfrom(stamp_fpath) == prefix2 """ from ubelt.util_platform import ensure_app_cache_dir if appname and dpath: raise ValueError('Cannot specify appname with dpath') if fpath and (dpath or fname or appname): raise ValueError('Cannot specify fpath with dpath or fname') if fpath is None: if dpath is None: appname = appname or 'ubelt' dpath = ensure_app_cache_dir(appname) if fname is None: fname = basename(url) fpath = join(dpath, fname) # note that needs_download is never set to false after it becomes true # this is the key to working through the logic of the following checks needs_download = redo if not exists(fpath): # always download if we are missing the file needs_download = True if hash_prefix: stamp_fpath, needs_download = _check_hash_stamp( fpath, hash_prefix, hasher, verbose, needs_download) if needs_download: fpath = download(url, fpath, verbose=verbose, hash_prefix=hash_prefix, hasher=hasher, **download_kw) if hash_prefix: # If the file successfully downloaded then the hashes match. # write out the expected prefix so we can check it later with open(stamp_fpath, 'w') as file: file.write(hash_prefix) else: if verbose >= 2: print('Already have file %s' % fpath) return fpath def _check_hash_stamp(fpath, hash_prefix, hasher, verbose, needs_download=False): stamp_fpath = fpath + '.hash' # Force a re-download if the hash file does not exist or it does # not match the expected hash if exists(stamp_fpath): with open(stamp_fpath, 'r') as file: hashstr = file.read() if not hashstr.startswith(hash_prefix): if verbose: # pragma: nobranch print('invalid hash value (expected "{}", got "{}")'.format( hash_prefix, hashstr)) needs_download = True elif exists(fpath): # If the file exists, but the hash doesnt exist, simply compute the # hash of the existing file instead of redownloading it. # Redownload if this fails. from ubelt import util_hash hashstr = util_hash.hash_file(fpath, hasher=hasher) if hashstr.startswith(hash_prefix): # Write the missing stamp file if it matches with open(stamp_fpath, 'w') as file: file.write(hash_prefix) else: if verbose: # pragma: nobranch print('invalid hash value (expected "{}", got "{}")'.format( hash_prefix, hashstr)) needs_download = True else: needs_download = True return stamp_fpath, needs_download
py
1a3d5fc6db2f2707aacb1a4e432cc60e40f9b584
#!/usr/bin/env python # -*- coding: utf-8 -*- import copy import importlib import logging import re import six from saml2_tophat import saml from saml2_tophat import xmlenc from saml2_tophat.attribute_converter import from_local, ac_factory from saml2_tophat.attribute_converter import get_local_name from saml2_tophat.s_utils import assertion_factory from saml2_tophat.s_utils import factory from saml2_tophat.s_utils import sid from saml2_tophat.s_utils import MissingValue from saml2_tophat.saml import NAME_FORMAT_URI from saml2_tophat.time_util import instant from saml2_tophat.time_util import in_a_while logger = logging.getLogger(__name__) def _filter_values(vals, vlist=None, must=False): """ Removes values from *vals* that does not appear in vlist :param vals: The values that are to be filtered :param vlist: required or optional value :param must: Whether the allowed values must appear :return: The set of values after filtering """ if not vlist: # No value specified equals any value return vals if isinstance(vlist, six.string_types): vlist = [vlist] res = [] for val in vlist: if val in vals: res.append(val) if must: if res: return res else: raise MissingValue("Required attribute value missing") else: return res def _match(attr, ava): if attr in ava: return attr _la = attr.lower() if _la in ava: return _la for _at in ava.keys(): if _at.lower() == _la: return _at return None def filter_on_attributes(ava, required=None, optional=None, acs=None, fail_on_unfulfilled_requirements=True): """ Filter :param ava: An attribute value assertion as a dictionary :param required: list of RequestedAttribute instances defined to be required :param optional: list of RequestedAttribute instances defined to be optional :param fail_on_unfulfilled_requirements: If required attributes are missing fail or fail not depending on this parameter. :return: The modified attribute value assertion """ def _match_attr_name(attr, ava): local_name = None for a in ['name_format', 'friendly_name']: _val = attr.get(a) if _val: if a == 'name_format': local_name = get_local_name(acs, attr['name'], _val) else: local_name = _val break if local_name: _fn = _match(local_name, ava) else: _fn = None if not _fn: # In the unlikely case that someone has provided us with # URIs as attribute names _fn = _match(attr["name"], ava) return _fn def _apply_attr_value_restrictions(attr, res, must=False): try: values = [av["text"] for av in attr["attribute_value"]] except KeyError: values = [] try: res[_fn].extend(_filter_values(ava[_fn], values)) except KeyError: res[_fn] = _filter_values(ava[_fn], values) return _filter_values(ava[_fn], values, must) res = {} if required is None: required = [] for attr in required: _fn = _match_attr_name(attr, ava) if _fn: _apply_attr_value_restrictions(attr, res, True) elif fail_on_unfulfilled_requirements: desc = "Required attribute missing: '%s'" % (attr["name"]) raise MissingValue(desc) if optional is None: optional = [] for attr in optional: _fn = _match_attr_name(attr, ava) if _fn: _apply_attr_value_restrictions(attr, res, False) return res def filter_on_demands(ava, required=None, optional=None): """ Never return more than is needed. Filters out everything the server is prepared to return but the receiver doesn't ask for :param ava: Attribute value assertion as a dictionary :param required: Required attributes :param optional: Optional attributes :return: The possibly reduced assertion """ # Is all what's required there: if required is None: required = {} lava = dict([(k.lower(), k) for k in ava.keys()]) for attr, vals in required.items(): attr = attr.lower() if attr in lava: if vals: for val in vals: if val not in ava[lava[attr]]: raise MissingValue( "Required attribute value missing: %s,%s" % (attr, val)) else: raise MissingValue("Required attribute missing: %s" % (attr,)) if optional is None: optional = {} oka = [k.lower() for k in required.keys()] oka.extend([k.lower() for k in optional.keys()]) # OK, so I can imaging releasing values that are not absolutely necessary # but not attributes that are not asked for. for attr in lava.keys(): if attr not in oka: del ava[lava[attr]] return ava def filter_on_wire_representation(ava, acs, required=None, optional=None): """ :param ava: A dictionary with attributes and values :param acs: List of tuples (Attribute Converter name, Attribute Converter instance) :param required: A list of saml.Attributes :param optional: A list of saml.Attributes :return: Dictionary of expected/wanted attributes and values """ acsdic = dict([(ac.name_format, ac) for ac in acs]) if required is None: required = [] if optional is None: optional = [] res = {} for attr, val in ava.items(): done = False for req in required: try: _name = acsdic[req.name_format]._to[attr] if _name == req.name: res[attr] = val done = True except KeyError: pass if done: continue for opt in optional: try: _name = acsdic[opt.name_format]._to[attr] if _name == opt.name: res[attr] = val break except KeyError: pass return res def filter_attribute_value_assertions(ava, attribute_restrictions=None): """ Will weed out attribute values and values according to the rules defined in the attribute restrictions. If filtering results in an attribute without values, then the attribute is removed from the assertion. :param ava: The incoming attribute value assertion (dictionary) :param attribute_restrictions: The rules that govern which attributes and values that are allowed. (dictionary) :return: The modified attribute value assertion """ if not attribute_restrictions: return ava for attr, vals in list(ava.items()): _attr = attr.lower() try: _rests = attribute_restrictions[_attr] except KeyError: del ava[attr] else: if _rests is None: continue if isinstance(vals, six.string_types): vals = [vals] rvals = [] for restr in _rests: for val in vals: if restr.match(val): rvals.append(val) if rvals: ava[attr] = list(set(rvals)) else: del ava[attr] return ava def restriction_from_attribute_spec(attributes): restr = {} for attribute in attributes: restr[attribute.name] = {} for val in attribute.attribute_value: if not val.text: restr[attribute.name] = None break else: restr[attribute.name] = re.compile(val.text) return restr def post_entity_categories(maps, **kwargs): restrictions = {} try: required = [d['friendly_name'].lower() for d in kwargs['required']] except (KeyError, TypeError): required = [] if kwargs["mds"]: if "sp_entity_id" in kwargs: ecs = kwargs["mds"].entity_categories(kwargs["sp_entity_id"]) for ec_map in maps: for key, (atlist, only_required) in ec_map.items(): if key == "": # always released attrs = atlist elif isinstance(key, tuple): if only_required: attrs = [a for a in atlist if a in required] else: attrs = atlist for _key in key: try: assert _key in ecs except AssertionError: attrs = [] break elif key in ecs: if only_required: attrs = [a for a in atlist if a in required] else: attrs = atlist else: attrs = [] for attr in attrs: restrictions[attr] = None else: for ec_map in maps: for attr in ec_map[""]: restrictions[attr] = None return restrictions class Policy(object): """ handles restrictions on assertions """ def __init__(self, restrictions=None): if restrictions: self.compile(restrictions) else: self._restrictions = None self.acs = [] def compile(self, restrictions): """ This is only for IdPs or AAs, and it's about limiting what is returned to the SP. In the configuration file, restrictions on which values that can be returned are specified with the help of regular expressions. This function goes through and pre-compiles the regular expressions. :param restrictions: :return: The assertion with the string specification replaced with a compiled regular expression. """ self._restrictions = copy.deepcopy(restrictions) for who, spec in self._restrictions.items(): if spec is None: continue try: items = spec["entity_categories"] except KeyError: pass else: ecs = [] for cat in items: _mod = importlib.import_module( "saml2_tophat.entity_category.%s" % cat) _ec = {} for key, items in _mod.RELEASE.items(): alist = [k.lower() for k in items] try: _only_required = _mod.ONLY_REQUIRED[key] except (AttributeError, KeyError): _only_required = False _ec[key] = (alist, _only_required) ecs.append(_ec) spec["entity_categories"] = ecs try: restr = spec["attribute_restrictions"] except KeyError: continue if restr is None: continue _are = {} for key, values in restr.items(): if not values: _are[key.lower()] = None continue _are[key.lower()] = [re.compile(value) for value in values] spec["attribute_restrictions"] = _are logger.debug("policy restrictions: %s", self._restrictions) return self._restrictions def get(self, attribute, sp_entity_id, default=None, post_func=None, **kwargs): """ :param attribute: :param sp_entity_id: :param default: :param post_func: :return: """ if not self._restrictions: return default try: try: val = self._restrictions[sp_entity_id][attribute] except KeyError: try: val = self._restrictions["default"][attribute] except KeyError: val = None except KeyError: val = None if val is None: return default elif post_func: return post_func(val, sp_entity_id=sp_entity_id, **kwargs) else: return val def get_nameid_format(self, sp_entity_id): """ Get the NameIDFormat to used for the entity id :param: The SP entity ID :retur: The format """ return self.get("nameid_format", sp_entity_id, saml.NAMEID_FORMAT_TRANSIENT) def get_name_form(self, sp_entity_id): """ Get the NameFormat to used for the entity id :param: The SP entity ID :retur: The format """ return self.get("name_form", sp_entity_id, NAME_FORMAT_URI) def get_lifetime(self, sp_entity_id): """ The lifetime of the assertion :param sp_entity_id: The SP entity ID :param: lifetime as a dictionary """ # default is a hour return self.get("lifetime", sp_entity_id, {"hours": 1}) def get_attribute_restrictions(self, sp_entity_id): """ Return the attribute restriction for SP that want the information :param sp_entity_id: The SP entity ID :return: The restrictions """ return self.get("attribute_restrictions", sp_entity_id) def get_fail_on_missing_requested(self, sp_entity_id): """ Return the whether the IdP should should fail if the SPs requested attributes could not be found. :param sp_entity_id: The SP entity ID :return: The restrictions """ return self.get("fail_on_missing_requested", sp_entity_id, True) def entity_category_attributes(self, ec): if not self._restrictions: return None ec_maps = self._restrictions["default"]["entity_categories"] for ec_map in ec_maps: try: return ec_map[ec] except KeyError: pass return [] def get_entity_categories(self, sp_entity_id, mds, required): """ :param sp_entity_id: :param mds: MetadataStore instance :return: A dictionary with restrictions """ kwargs = {"mds": mds, 'required': required} return self.get("entity_categories", sp_entity_id, default={}, post_func=post_entity_categories, **kwargs) def not_on_or_after(self, sp_entity_id): """ When the assertion stops being valid, should not be used after this time. :param sp_entity_id: The SP entity ID :return: String representation of the time """ return in_a_while(**self.get_lifetime(sp_entity_id)) def filter(self, ava, sp_entity_id, mdstore, required=None, optional=None): """ What attribute and attribute values returns depends on what the SP has said it wants in the request or in the metadata file and what the IdP/AA wants to release. An assumption is that what the SP asks for overrides whatever is in the metadata. But of course the IdP never releases anything it doesn't want to. :param ava: The information about the subject as a dictionary :param sp_entity_id: The entity ID of the SP :param mdstore: A Metadata store :param required: Attributes that the SP requires in the assertion :param optional: Attributes that the SP regards as optional :return: A possibly modified AVA """ _ava = None if not self.acs: # acs MUST have a value, fall back to default. self.acs = ac_factory() _rest = self.get_entity_categories(sp_entity_id, mdstore, required) if _rest: _ava = filter_attribute_value_assertions(ava.copy(), _rest) elif required or optional: logger.debug("required: %s, optional: %s", required, optional) _ava = filter_on_attributes( ava.copy(), required, optional, self.acs, self.get_fail_on_missing_requested(sp_entity_id)) _rest = self.get_attribute_restrictions(sp_entity_id) if _rest: if _ava is None: _ava = ava.copy() _ava = filter_attribute_value_assertions(_ava, _rest) elif _ava is None: _ava = ava.copy() if _ava is None: return {} else: return _ava def restrict(self, ava, sp_entity_id, metadata=None): """ Identity attribute names are expected to be expressed in the local lingo (== friendlyName) :return: A filtered ava according to the IdPs/AAs rules and the list of required/optional attributes according to the SP. If the requirements can't be met an exception is raised. """ if metadata: spec = metadata.attribute_requirement(sp_entity_id) if spec: return self.filter(ava, sp_entity_id, metadata, spec["required"], spec["optional"]) return self.filter(ava, sp_entity_id, metadata, [], []) def conditions(self, sp_entity_id): """ Return a saml.Condition instance :param sp_entity_id: The SP entity ID :return: A saml.Condition instance """ return factory(saml.Conditions, not_before=instant(), # How long might depend on who's getting it not_on_or_after=self.not_on_or_after(sp_entity_id), audience_restriction=[factory( saml.AudienceRestriction, audience=[factory(saml.Audience, text=sp_entity_id)])]) def get_sign(self, sp_entity_id): """ Possible choices "sign": ["response", "assertion", "on_demand"] :param sp_entity_id: :return: """ return self.get("sign", sp_entity_id, []) class EntityCategories(object): pass def _authn_context_class_ref(authn_class, authn_auth=None): """ Construct the authn context with a authn context class reference :param authn_class: The authn context class reference :param authn_auth: Authenticating Authority :return: An AuthnContext instance """ cntx_class = factory(saml.AuthnContextClassRef, text=authn_class) if authn_auth: return factory(saml.AuthnContext, authn_context_class_ref=cntx_class, authenticating_authority=factory( saml.AuthenticatingAuthority, text=authn_auth)) else: return factory(saml.AuthnContext, authn_context_class_ref=cntx_class) def _authn_context_decl(decl, authn_auth=None): """ Construct the authn context with a authn context declaration :param decl: The authn context declaration :param authn_auth: Authenticating Authority :return: An AuthnContext instance """ return factory(saml.AuthnContext, authn_context_decl=decl, authenticating_authority=factory( saml.AuthenticatingAuthority, text=authn_auth)) def _authn_context_decl_ref(decl_ref, authn_auth=None): """ Construct the authn context with a authn context declaration reference :param decl_ref: The authn context declaration reference :param authn_auth: Authenticating Authority :return: An AuthnContext instance """ return factory(saml.AuthnContext, authn_context_decl_ref=decl_ref, authenticating_authority=factory( saml.AuthenticatingAuthority, text=authn_auth)) def authn_statement(authn_class=None, authn_auth=None, authn_decl=None, authn_decl_ref=None, authn_instant="", subject_locality="", session_not_on_or_after=None): """ Construct the AuthnStatement :param authn_class: Authentication Context Class reference :param authn_auth: Authenticating Authority :param authn_decl: Authentication Context Declaration :param authn_decl_ref: Authentication Context Declaration reference :param authn_instant: When the Authentication was performed. Assumed to be seconds since the Epoch. :param subject_locality: Specifies the DNS domain name and IP address for the system from which the assertion subject was apparently authenticated. :return: An AuthnContext instance """ if authn_instant: _instant = instant(time_stamp=authn_instant) else: _instant = instant() if authn_class: res = factory( saml.AuthnStatement, authn_instant=_instant, session_index=sid(), session_not_on_or_after=session_not_on_or_after, authn_context=_authn_context_class_ref( authn_class, authn_auth)) elif authn_decl: res = factory( saml.AuthnStatement, authn_instant=_instant, session_index=sid(), session_not_on_or_after=session_not_on_or_after, authn_context=_authn_context_decl(authn_decl, authn_auth)) elif authn_decl_ref: res = factory( saml.AuthnStatement, authn_instant=_instant, session_index=sid(), session_not_on_or_after=session_not_on_or_after, authn_context=_authn_context_decl_ref(authn_decl_ref, authn_auth)) else: res = factory( saml.AuthnStatement, authn_instant=_instant, session_index=sid(), session_not_on_or_after=session_not_on_or_after) if subject_locality: res.subject_locality = saml.SubjectLocality(text=subject_locality) return res def do_subject_confirmation(policy, sp_entity_id, key_info=None, **treeargs): """ :param policy: Policy instance :param sp_entity_id: The entityid of the SP :param subject_confirmation_method: How was the subject confirmed :param address: The network address/location from which an attesting entity can present the assertion. :param key_info: Information of the key used to confirm the subject :param in_response_to: The ID of a SAML protocol message in response to which an attesting entity can present the assertion. :param recipient: A URI specifying the entity or location to which an attesting entity can present the assertion. :param not_before: A time instant before which the subject cannot be confirmed. The time value MUST be encoded in UTC. :return: """ _sc = factory(saml.SubjectConfirmation, **treeargs) _scd = _sc.subject_confirmation_data _scd.not_on_or_after = policy.not_on_or_after(sp_entity_id) if _sc.method == saml.SCM_HOLDER_OF_KEY: _scd.add_extension_element(key_info) return _sc def do_subject(policy, sp_entity_id, name_id, **farg): # specs = farg['subject_confirmation'] if isinstance(specs, list): res = [do_subject_confirmation(policy, sp_entity_id, **s) for s in specs] else: res = [do_subject_confirmation(policy, sp_entity_id, **specs)] return factory(saml.Subject, name_id=name_id, subject_confirmation=res) class Assertion(dict): """ Handles assertions about subjects """ def __init__(self, dic=None): dict.__init__(self, dic) self.acs = [] def construct(self, sp_entity_id, attrconvs, policy, issuer, farg, authn_class=None, authn_auth=None, authn_decl=None, encrypt=None, sec_context=None, authn_decl_ref=None, authn_instant="", subject_locality="", authn_statem=None, name_id=None, session_not_on_or_after=None): """ Construct the Assertion :param sp_entity_id: The entityid of the SP :param in_response_to: An identifier of the message, this message is a response to :param name_id: An NameID instance :param attrconvs: AttributeConverters :param policy: The policy that should be adhered to when replying :param issuer: Who is issuing the statement :param authn_class: The authentication class :param authn_auth: The authentication instance :param authn_decl: An Authentication Context declaration :param encrypt: Whether to encrypt parts or all of the Assertion :param sec_context: The security context used when encrypting :param authn_decl_ref: An Authentication Context declaration reference :param authn_instant: When the Authentication was performed :param subject_locality: Specifies the DNS domain name and IP address for the system from which the assertion subject was apparently authenticated. :param authn_statem: A AuthnStatement instance :return: An Assertion instance """ if policy: _name_format = policy.get_name_form(sp_entity_id) else: _name_format = NAME_FORMAT_URI attr_statement = saml.AttributeStatement(attribute=from_local( attrconvs, self, _name_format)) if encrypt == "attributes": for attr in attr_statement.attribute: enc = sec_context.encrypt(text="%s" % attr) encd = xmlenc.encrypted_data_from_string(enc) encattr = saml.EncryptedAttribute(encrypted_data=encd) attr_statement.encrypted_attribute.append(encattr) attr_statement.attribute = [] # start using now and for some time conds = policy.conditions(sp_entity_id) if authn_statem: _authn_statement = authn_statem elif authn_auth or authn_class or authn_decl or authn_decl_ref: _authn_statement = authn_statement(authn_class, authn_auth, authn_decl, authn_decl_ref, authn_instant, subject_locality, session_not_on_or_after=session_not_on_or_after) else: _authn_statement = None subject = do_subject(policy, sp_entity_id, name_id, **farg['subject']) _ass = assertion_factory(issuer=issuer, conditions=conds, subject=subject) if _authn_statement: _ass.authn_statement = [_authn_statement] if not attr_statement.empty(): _ass.attribute_statement = [attr_statement] return _ass def apply_policy(self, sp_entity_id, policy, metadata=None): """ Apply policy to the assertion I'm representing :param sp_entity_id: The SP entity ID :param policy: The policy :param metadata: Metadata to use :return: The resulting AVA after the policy is applied """ policy.acs = self.acs ava = policy.restrict(self, sp_entity_id, metadata) for key, val in list(self.items()): if key in ava: self[key] = ava[key] else: del self[key] return ava
gyp
1a3d6008b734e3a754339cfc726576fe125a6d22
{ "targets": [ { "target_name": "nodespotify", "sources": [ "src/node-spotify.cc", "src/audio/audio.c", "src/callbacks/PlaylistCallbacksHolder.cc", "src/callbacks/SessionCallbacks.cc", "src/callbacks/SearchCallbacks.cc", "src/callbacks/AlbumBrowseCallbacks.cc", "src/callbacks/ArtistBrowseCallbacks.cc", "src/callbacks/PlaylistContainerCallbacksHolder.cc", "src/utils/ImageUtils.cc", "src/utils/V8Utils.cc", "src/objects/spotify/Track.cc", "src/objects/spotify/Artist.cc", "src/objects/spotify/Playlist.cc", "src/objects/spotify/PlaylistContainer.cc", "src/objects/spotify/Album.cc", "src/objects/spotify/Search.cc", "src/objects/spotify/Spotify.cc", "src/objects/spotify/Player.cc", "src/objects/spotify/PlaylistFolder.cc", "src/objects/spotify/User.cc", "src/objects/spotify/TrackExtended.cc", "src/objects/node/NodeTrack.cc", "src/objects/node/NodeArtist.cc", "src/objects/node/NodePlaylist.cc", "src/objects/node/NodeAlbum.cc", "src/objects/node/NodePlayer.cc", "src/objects/node/NodeSearch.cc", "src/objects/node/NodeSpotify.cc", "src/objects/node/NodePlaylistFolder.cc", "src/objects/node/NodePlaylistContainer.cc", "src/objects/node/NodeUser.cc", "src/objects/node/NodeTrackExtended.cc" ], "link_settings" : { "libraries": ["-framework OpenAL -framework libspotify"] }, "copies": [ { "destination": "<(PRODUCT_DIR)", "files": ["src/spotify.js", "src/metadataUpdater.js"] } ], "conditions": [ ["OS=='mac'", { "xcode_settings": { "OTHER_CPLUSPLUSFLAGS" : ["-std=c++11", "-stdlib=libc++"], "GCC_ENABLE_CPP_EXCEPTIONS": 'YES', "MACOSX_DEPLOYMENT_TARGET" : "10.8" }, "sources": ["src/audio/openal-audio.c"], "defines": ["OS_OSX"], "link_settings" : { "libraries" : ["-framework", "OpenAL"] } }], ["OS=='linux'", { "sources": ["src/audio/alsa-audio.c"], "cflags": ["-I/usr/include/alsa"], "cflags_cc": [ "-std=c++11", "-fexceptions" ], "defines": ["OS_LINUX"], "link_settings" : { "libraries" : ["-lasound"] } }] ] } ] }
py
1a3d6216a762a4e5b2e0262f2efdc05e795d1c0f
from __future__ import absolute_import import unittest import yaml from attrdict import AttrDict from pyswitch.device import Device class InterfaceISISTestCase(unittest.TestCase): def __init__(self, *args, **kwargs): super(InterfaceISISTestCase, self).__init__(*args, **kwargs) with open('config.yaml') as fileobj: cfg = AttrDict(yaml.safe_load(fileobj)) switch = cfg.InterfaceISISTestCase.switch self.switch_ip = switch.ip self.switch_username = switch.username self.switch_pasword = switch.password self.intf_name = str(switch.intf_name) self.intf_type = str(switch.intf_type) self.conn = (self.switch_ip, '22') self.auth = (self.switch_username, self.switch_pasword) def setUp(self): with Device(conn=self.conn, auth=self.auth) as dev: dev.services.isis() op = dev.services.isis(get=True) self.assertEqual(op) dev.isis.address_family_ipv4_unicast() op = dev.isis.address_family_ipv4_unicast(get=True) self.assertEqual(op) dev.isis.log_adjacency() op = dev.isis.log_adjacency(get=True) self.assertEqual(op) dev.isis.net_address(net='49.0001.0100.1001.0006.00') op = dev.isis.net_address(get=True) self.assertEqual(op) def tearDown(self): with Device(conn=self.conn, auth=self.auth) as dev: dev.services.isis(enable=False) dev.isis.address_family_ipv4_unicast(delete=True) dev.isis.log_adjacency(delete=True) dev.isis.net_address(delete=True) def test_enable_isis_on_intf(self): with Device(conn=self.conn, auth=self.auth) as dev: dev.interface.ip_router_isis( intf_type='loopback', intf_name='11') op = dev.interface.ip_ospf( intf_type='loopback', intf_name='11', get=True) self.assertEqual(op) dev.interface.ip_ospf( intf_type='loopback', intf_name='11', delete=True)
py
1a3d63d580c0f77b49f6abb364954eedf12d97df
# -*- coding: utf-8 -*- ''' ===================================================================================== Copyright (c) 2016 Université de Lorraine & Luleå tekniska universitet Author: Luca Di Stasio <[email protected]> <[email protected]> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ===================================================================================== DESCRIPTION Tested with Python 2.7 Anaconda 2.4.1 (64-bit) distribution in Windows 10. ''' from numpy import * E1 = 3e4 E2 = 3e4 E3 = 5e5 nu12 =0.45 nu13 =(E1/E3)*0.2 nu23 =(E2/E3)*0.2 ''' E1 = 134.6287e3 E2 = 9.4757e3 E3 = 9.4757e3 nu12 =0.2883 nu13 =0.2883 nu23 =0.3969 ''' ''' E1 = 5e5 E2 = 3e4 E3 = 3e4 nu12 =0.2 nu13 =0.2 nu23 =0.45 ''' if abs(nu12)<sqrt(E1/E2): print 'TEST 1 --- abs(nu12)<sqrt(E1/E2) --- PASSED' else: print 'TEST 1 --- abs(nu12)<sqrt(E1/E2) --- FAILED' if abs(nu13)<sqrt(E1/E3): print 'TEST 2 --- abs(nu13)<sqrt(E1/E3) --- PASSED' else: print 'TEST 2 --- abs(nu13)<sqrt(E1/E3) --- FAILED' if abs(nu23)<sqrt(E2/E3): print 'TEST 3 --- abs(nu23)<sqrt(E2/E3) --- PASSED' else: print 'TEST 3 --- abs(nu23)<sqrt(E2/E3) --- FAILED' if 1-(E2/E1)*pow(nu12,2)-(E3/E2)*pow(nu23,2)-(E3/E1)*pow(nu13,2)-2*nu13*(E3/E2)*nu23*(E2/E1)*nu12>0: print 'TEST 4 --- 1-nu12nu21-nu23nu32-nu31nu13-nu21nu32nu13>0 --- PASSED' else: print 'TEST 4 --- 1-nu12nu21-nu23nu32-nu31nu13-nu21nu32nu13>0 --- FAILED' print ' LHS = ' + str(1-(E2/E1)*pow(nu12,2)-(E3/E2)*pow(nu23,2)-(E3/E1)*pow(nu13,2)-2*nu13*(E3/E2)*nu23*(E2/E1)*nu12)
py
1a3d640d7f6d2ee3faab75944d8c557787ff7677
#!/usr/bin/env python # encoding: utf8 # # Copyright © BJ Cardon <bj dot car dot don at gmail dot com>, # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the owner nor the names of its contributors may be # used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # from django.conf.urls.defaults import patterns, include, url urlpatterns = patterns('', url(r'^hello_world/','core.views.hello_world_service'), )
py
1a3d64313bec36c4c68799df1179be18f0e79633
# Generated by Django 2.2.10 on 2020-09-14 08:41 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("career", "0020_auto_20200905_2352"), ] operations = [ migrations.AddField( model_name="joblisting", name="is_summerjob_marathon", field=models.BooleanField(default=False, verbose_name="sommerjobbmaraton"), ), migrations.AddField( model_name="joblisting", name="video_url", field=models.URLField(blank=True, null=True, verbose_name="video"), ), ]
py
1a3d64cc304734bfe1c2e0dcbaa7584875128f51
from django.db import models from academic.models import Department from administration.models import Designation from address.models import District, Upazilla, Union class AddressInfo(models.Model): district = models.ForeignKey(District, on_delete=models.CASCADE, null=True) upazilla = models.ForeignKey(Upazilla, on_delete=models.CASCADE, null=True) union = models.ForeignKey(Union, on_delete=models.CASCADE, null=True) """class EducationInfo(models.Model): name_of_exam = models.CharField(max_length=100) institute = models.CharField(max_length=255) group = models.CharField(max_length=100) grade = models.CharField(max_length=45) board = models.CharField(max_length=45) passing_year = models.IntegerField() def __str__(self): return self.name_of_exam class TrainingInfo(models.Model): training_name = models.CharField(max_length=100) year = models.IntegerField() duration = models.IntegerField() place = models.CharField(max_length=100) def __str__(self): return self.training_name class JobInfo(models.Model): category_choice = ( ('bcs', 'BCS'), ('nationalized', 'Nationalized'), ('10% quota', '10% quota'), ('non govt.', 'Non Govt.') ) category = models.CharField(choices=category_choice, max_length=45) joning_date = models.DateField() institute_name = models.CharField(max_length=100) job_designation = models.ForeignKey(Designation, on_delete=models.CASCADE) department = models.ForeignKey(Department, on_delete=models.CASCADE) scale = models.IntegerField() grade_of_post = models.CharField(max_length=45) first_time_scale_due_year = models.IntegerField() second_time_scale_due_year = models.IntegerField() promotion_due_year = models.IntegerField() recreation_leave_due_year = models.IntegerField() expected_retirement_year = models.IntegerField() def __str__(self): return self.institute_name class ExperienceInfo(models.Model): institute_name = models.CharField(max_length=100) designation = models.CharField(max_length=45) trainer = models.CharField(max_length=45) def __str__(self): return self.institute_name""" class PersonalInfo(models.Model): name = models.CharField(max_length=45) photo = models.ImageField() #start date date_of_birth = models.DateField() place_of_birth = models.DateField() nationality_choice = ( ('Bangladeshi', 'Bangladeshi'), ('Others', 'Others') ) nationality = models.CharField(max_length=45, choices=nationality_choice) religion_choice = ( ('Islam', 'Islam'), ('Hinduism', 'Hinduism'), ('Buddhism', 'Buddhism'), ('Christianity', 'Christianity'), ('Others', 'Others') ) religion = models.CharField(max_length=45, choices=religion_choice) gender_choice = ( ('male', 'Male'), ('female', 'Female'), ('other', 'Other') ) gender = models.CharField(choices=gender_choice, max_length=10) blood_group_choice = ( ('a+', 'A+'), ('o+', 'O+'), ('b+', 'B+'), ('ab+', 'AB+'), ('a-', 'A-'), ('o-', 'O-'), ('b-', 'B-'), ('ab-', 'AB-') ) blood_group = models.CharField(choices=blood_group_choice, max_length=5) e_tin = models.IntegerField(unique=True) nid = models.IntegerField(unique=True) driving_license_passport = models.IntegerField(unique=True) phone_no = models.CharField(max_length=11, unique=True) email = models.CharField(max_length=255, unique=True) father_name = models.CharField(max_length=45) mother_name = models.CharField(max_length=45) marital_status_choice = ( ('married', 'Married'), ('widowed', 'Widowed'), ('separated', 'Separated'), ('divorced', 'Divorced'), ('single', 'Single') ) marital_status = models.CharField(choices=marital_status_choice, max_length=10) address = models.ForeignKey(AddressInfo, on_delete=models.CASCADE, null=True) #education = models.ForeignKey(EducationInfo, on_delete=models.CASCADE, null=True) #training = models.ForeignKey(TrainingInfo, on_delete=models.CASCADE, null=True) #job = models.ForeignKey(JobInfo, on_delete=models.CASCADE, null=True) #experience = models.ForeignKey(ExperienceInfo, on_delete=models.CASCADE, null=True) is_delete = models.BooleanField(default=False) date = models.DateTimeField(auto_now_add=True) def __str__(self): return self.name
py
1a3d654bfb71f7ec121816de489887153093da60
# Copyright (c) 2017 Niklas Rosenstein # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from datetime import datetime, timezone, timedelta from collections import namedtuple import errno import os import time import sys if 'require' in globals(): git = require('./git') else: from . import git BRANCH = 'worklog' now = datetime.now time_fmt = '%d/%b/%Y:%H:%M:%S %z' CheckinData = namedtuple('CheckinData', 'name time') CheckoutData = namedtuple('CheckoutData', 'name begin end interval message') Log = namedtuple('Log', 'begin end message') def makedirs(path): if not os.path.isdir(path): os.makedirs(path) def now(): tz = timezone(timedelta(hours=-time.timezone/3600)) return datetime.now().replace(tzinfo=tz) def strftime(time, fmt=None): return time.strftime(fmt or time_fmt) def strptime(value, fmt=None): return datetime.strptime(value, fmt or time_fmt) def splittimedelta(tdelta, components='DHMS'): l = {'D': 86400, 'H': 3600, 'M': 60, 'S': 1} r = [] rem = int(tdelta.total_seconds()) for k in components: d, rem = divmod(rem, l[k]) r.append(d) return r def strftimedelta(tdelta, components='DHMS'): parts = [] for i, val in enumerate(splittimedelta(tdelta, components)): if val > 0: parts.append('{}{}'.format(val, components[i].lower())) return ', '.join(parts) def parse_time(value, dt=None): """ Parses a time string in multiple possible variants and otherwise applies the defaults from *dt*. If *dt* is not specified, the result of #now() is used. """ # Intentionally leaving out microseconds. fields = ['year', 'month', 'day', 'hour', 'minute', 'second', 'tzinfo'] formats = [ (time_fmt, []), ('%H:%M', ['hour', 'minute']), ('%H:%M:%S', ['hour', 'minute', 'second']), ('%H-%M', ['hour', 'minute']), ('%H-%M-%S', ['hour', 'minute', 'second']), ('%d/%H:%M', ['day', 'hour', 'minute']), ('%d/%H:%M:%S', ['day', 'hour', 'minute', 'second']), ('%d', ['day', '#0daytime']), ('%d/%b', ['day', 'month', '#0daytime']), ('%m/%d/%H:%M', ['month', 'day', 'hour', 'minute']), ('%m/%d/%H:%M:%S', ['month', 'day', 'hour', 'minute', 'second']), ] for fmt, filled_fields in formats: try: result = datetime.strptime(value, fmt) break except ValueError: pass else: raise ValueError('invalid time string: {!r}'.format(value)) # Update the values that haven't been parsed. if dt is None: dt = now() kwargs = {k: getattr(dt, k) for k in fields if k not in filled_fields} if '#0daytime' in filled_fields: kwargs['hour'] = 0 kwargs['minute'] = 0 kwargs['second'] = 0 return result.replace(**kwargs) def parse_sheet(data): """ Parses a timetable sheet and returns a list of #Log entries. """ result = [] for line in data.split('\n'): cols = line.split('\t', 3) cols[0] = strptime(cols[0]) cols[1] = strptime(cols[1]) result.append(Log(*cols)) return result class NoCheckinAvailable(Exception): pass def get_checkin_file(fatal=True): return os.path.join(git.dir(fatal=fatal), 'worklog', 'checkin') def get_commit_repo_and_branch(): # Check if we should check-in to a different repository. target_repo = git.config('worklog.repository') if target_repo: if not os.path.isdir(target_repo): print('fatal: worklog.repository={}'.format(target_repo), file=sys.stderr) print(' the specified directory does not exist.') sys.exit(128) target_branch = git.config('worklog.project') if not target_branch: print('fatal: worklog.repository is set but worklog.project is not', file=sys.stderr) print(' please do `git config worklog.project <projectname>` first', file=sys.stderr) sys.exit(128) else: target_branch = git.config('worklog.branch') or BRANCH return target_repo or None, target_branch def set_checkin(name, time=None): time = time or now() filename = get_checkin_file() makedirs(os.path.dirname(filename)) with open(filename, 'w') as fp: fp.write('{}\n{}\n'.format(name, strftime(time))) return CheckinData(name, time) def get_checkin(): filename = get_checkin_file() if not os.path.isfile(filename): raise NoCheckinAvailable(filename) with open(filename) as fp: name = fp.readline().rstrip() time = fp.readline().rstrip() time = strptime(time) if not name or fp.read().strip(): raise ValueError('invalid check-in file at {!r}'.format(filename)) return CheckinData(name, time) def rem_checkin(): filename = get_checkin_file() try: os.remove(filename) except OSError as exc: if exc.errno != errno.ENOENT: raise def add_checkout(name, begin, end, message=None): interval = end - begin if not message: message = 'Checkout ' + str(interval) repo, branch = get_commit_repo_and_branch() # Read the contents of the timetable file for this user. filename = name + '.tsv' try: contents = git.show('{}:{}'.format(branch, filename), cwd=repo) except git.DoesNotExist: contents = '' # Add an entry to the file. if not contents.endswith('\n'): contents += '\n' contents += '{}\t{}\t{}\n'.format(strftime(begin), strftime(end), message or '') # Create a commit to add the line to the timetable. commit = git.Commit() commit.head(branch, message) commit.add_file_contents(contents, filename) git.fast_import(commit.getvalue(), date_format='raw', quiet=True, cwd=repo) return CheckoutData(name, begin, end, interval, message)
py
1a3d65a5bb45ed53b128bd8f2886bcdd5093097d
import datetime import time import pytz import pandas as pd import json import urllib.request import requests from tzwhere import tzwhere from darksky import forecast import numpy as np from helpers import okta_to_percent, granularity_to_freq def get_temperature_cloudcover(start_time=None, end_time=None, granularity=None,latitude=None, longitude=None, source='weather_underground', timezone='US/Eastern', darksky_api_key=None): if (source == 'weather_underground' or darksky_api_key == None): # create a pandas datetimeindex df = pd.date_range(start_time - datetime.timedelta(days=1), end_time , freq='D') print(df) # convert it into a simple dataframe and rename the column df = df.to_frame(index=False) df.columns = ['time'] # convert it into required format for weather underground df['time'] = df['time'].dt.strftime('%Y%m%d') temp_cloud_df = pd.DataFrame() for _ , row in df.iterrows(): # print(row['time']) try: url = "https://api.weather.com/v1/geocode/{}/{}/observations/historical.json?apiKey=6532d6454b8aa370768e63d6ba5a832e&startDate={}&endDate={}&units=e".format(latitude, longitude, row['time'], row['time']) data = urllib.request.urlopen(url).read() output = json.loads(data) output= pd.DataFrame(output['observations']) output = output[['valid_time_gmt', 'temp', 'clds', 'wx_phrase']] output.columns = ['time', 'temperature', 'clds', 'wx_phrase'] temp_cloud_df = temp_cloud_df.append(output, ignore_index=True) except urllib.error.HTTPError as e: # print(e) pass # time.sleep(0.01) # convert to datetime and set the correct timezone temp_cloud_df['time_s'] = temp_cloud_df['time'] temp_cloud_df['time'] = pd.to_datetime(temp_cloud_df['time'],unit='s').dt.tz_localize('utc').dt.tz_convert(timezone) # temp_cloud_df['time'] = temp_cloud_df['time'].dt.round("H") # resample the data to desired granularity temp_cloud_df = temp_cloud_df.set_index(temp_cloud_df['time']) temp_cloud_df = temp_cloud_df.resample(granularity_to_freq(granularity)).ffill() temp_cloud_df = temp_cloud_df[['temperature', 'clds']] temp_cloud_df = temp_cloud_df.reset_index() # chnage to C from F temp_cloud_df['temperature'] = (temp_cloud_df['temperature'] - 32) * 5/9 # cloud okta code to percent temp_cloud_df['clouds'] = pd.to_numeric(temp_cloud_df['clds'].apply(lambda x: okta_to_percent(x))) # keep only relevant columns temp_cloud_df = temp_cloud_df[['time', 'temperature', 'clouds', 'clds']] ######################### future release ############################ # # create a pandas datetimeindex # df = pd.date_range(start_time, end_time, freq=granularity_to_freq(granularity), tz=timezone) # # convert it into a simple dataframe and rename the column # df = df.to_frame(index=False) # df.columns = ['time'] # # combine both df and temperature_df # temp_cloud_df = df.join(temp_cloud_df.set_index('time'), on='time') #################################################################### # temp_cloud_df['time'] = temp_cloud_df['time'].dt.tz_localize('utc').dt.tz_convert(timezone) temp_cloud_df['time'] = temp_cloud_df['time'].dt.tz_localize(None) # print(temp_cloud_df) elif (source == 'darksky' and darksky_api_key != None): time = [] temperature = [] cloudcover = [] summary = [] # localizing the datetime based on the timezone start: datetime.datetime = timezone.localize(start_time) end: datetime.datetime = timezone.localize(end_time) while start <= end: day = int(start.timestamp()) start = start + datetime.timedelta(days=1) response = urllib.request.urlopen('https://api.darksky.net/forecast/{}/{},{},{}?exclude=currently,daily,flags'.format(darksky_api_key, latitude, longitude, day)).read() output = json.loads(response)['hourly']['data'] for item in output: time.append(item['time']) temperature.append(item['temperature']) cloudcover.append(item['cloudCover']) summary.append(item['summary']) temp_cloud_df = pd.DataFrame({'time':time, 'temperature':temperature,'clouds':cloudcover,'clds':summary}) temp_cloud_df['time'] = pd.to_datetime(temp_cloud_df['time'], unit='s').dt.tz_localize('utc').dt.tz_convert(timezone).dt.tz_localize(None) temp_cloud_df['temperature'] = (temp_cloud_df['temperature'] - 32) * 5/9 else: print('Sorry, {} source has not been implemented yet.'.format(source)) return temp_cloud_df
py
1a3d66e7812eb1f9cd22d2825f89eda7d92aa7e6
# ======================================================================== # Copyright (C) 2019 The MITRE Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ======================================================================== # This file contains the implementation for Grover's algorithm. # It's an intriguing approach at "reversing a function" - essentially # if you have a function f(x) = y, Grover's algorithm figures out # x given f and y. If you're interested in trying all possible inputs of a # fixed search space (like, say, finding the password for for an encrypted # file or something), Grover can do it in O(√N) steps instead of brute # force searching the entire space (which is O(N)). from projectq import MainEngine from projectq.ops import * from projectq.meta import Dagger, Control from utility import reset from oracle_utility import run_flip_marker_as_phase_marker import oracles def grover_iteration(oracle, qubits, oracle_args): """ Runs a single iteration of the main loop in Grover's algorithm, which is the oracle followed by the diffusion operator. Parameters: oracle (function): The oracle that flags the correct answer to the problem being solved (essentially, this should just implement the function as a quantum program) qubits (Qureg): The register to run the oracle on oracle_args (anything): An oracle-specific argument object to pass to the oracle during execution """ # Run the oracle on the input to see if it was a correct result run_flip_marker_as_phase_marker(oracle, qubits, oracle_args) # Run the diffusion operator All(H) | qubits run_flip_marker_as_phase_marker(oracles.check_if_all_zeros, qubits, None) All(H) | qubits def grover_search(oracle, qubits, oracle_args): """ Runs Grover's algorithm on the provided oracle, turning the input into a superposition where the correct answer's state has a very large amplitude relative to all of the other states. Parameters: oracle (function): The oracle that flags the correct answer to the problem being solved (essentially, this should just implement the function as a quantum program) qubits (Qureg): The register to run the oracle on oracle_args (anything): An oracle-specific argument object to pass to the oracle during execution """ # Run the algorithm for √N iterations. All(H) | qubits iterations = round(2 ** (len(qubits) / 2)) for i in range(0, iterations): grover_iteration(oracle, qubits, oracle_args) def run_grover_search(number_of_qubits, oracle, oracle_args): """ Uses Grover's quantum search to find the single answer to a problem with high probability. Parameters: number_of_qubits (int): The number of qubits that the oracle expects (the number of qubits that the answer will contain) oracle (function): The oracle that flags the correct answer to the problem being solved (essentially, this should just implement the function as a quantum program) oracle_args (anything): An oracle-specific argument object to pass to the oracle during execution Returns: A list[int] that represents the discovered answer as a bit string """ # Build the engine and run the search engine = MainEngine() qubits = engine.allocate_qureg(number_of_qubits) grover_search(oracle, qubits, oracle_args) # Measure the potential solution and return it solution = [] for qubit in qubits: Measure | qubit solution += [int(qubit)] return solution
py
1a3d67b371f4e45a4ce8a27db7770b73b1c1f751
import pathlib import pygubu import threading import globals from book_generator import BookMetaData PROJECT_PATH = pathlib.Path(__file__).parent PROJECT_UI = PROJECT_PATH / "main_gui.ui" class MainWindow: def __init__(self, master=None): # 1: Create a builder and setup resources path (if you have images) self.builder = builder = pygubu.Builder() builder.add_resource_path(PROJECT_PATH) # 2: Load an ui file builder.add_from_file(PROJECT_UI) # 3: Create the mainwindow self.mainwindow = builder.get_object('main_gui', master) # 4: Connect callbacks builder.connect_callbacks(self) self.languageDict = globals.LANGUAGE_ALIASES self.setDefaults() self.outputMessage = self.builder.get_variable('outputMessage').get() def run(self): self.mainwindow.mainloop() def setGenerateButtonAction(self, action): self.generateAction = action def generate(self): actionThread = threading.Thread(target=self.generateAction) actionThread.start() def getFilePathA(self): return self.builder.get_variable('filePathA').get() def getFilePathB(self): return self.builder.get_variable('filePathB').get() def getTestRunEnabled(self): return self.builder.get_variable('testCheckbox').get() def getOutputFilePath(self): return self.builder.get_variable('outputFilepath').get() def getOutputMetaData(self): title = self.builder.get_object('outputTitle').get() author = self.builder.get_object('outputAuthor').get() return BookMetaData(title=title, author=author, language=self.getLanguageA()) def getLanguageA(self): return self.languageDict[self.builder.get_variable('languageA').get()] def getLanguageB(self): return self.languageDict[self.builder.get_variable('languageB').get()] def getPairingThreshold(self): return self.builder.get_variable('pairingThreshold').get() def addOutputMessage(self, message): currentMessage = self.builder.get_variable('outputMessage').get() newMessage = currentMessage + "\n" + message self.outputMessage = newMessage return self.builder.get_variable('outputMessage').set(newMessage) def printProgress(self, currentIndex, maxIndex): newMessage = self.outputMessage + f"\n({currentIndex}/{maxIndex})" return self.builder.get_variable('outputMessage').set(newMessage) def setDefaults(self): self.builder.get_variable('languageA').set("English") self.builder.get_variable('languageB').set("German") self.builder.get_variable('filePathA').set("example_books/german/siddhartha_hesse.txt") self.builder.get_variable('filePathB').set("example_books/english/siddhartha_hesse.txt") # example_books/hungarian/amok_zweig.rtf # self.builder.get_variable('languageA').set("German") # self.builder.get_variable('languageB').set("Hungarian(Experimental)") # self.builder.get_variable('filePathA').set( # "example_books/german/amok_zweig.txt") # example_books/german/siddhartha_hesse.txt # self.builder.get_variable('filePathB').set( # "example_books/hungarian/amok_zweig.rtf") # self.builder.get_variable('filePathB').set("") # example_books/hungarian/amok_zweig.rtf self.builder.get_variable('outputExtension').set("EPUB") self.builder.get_variable('outputFilepath').set("test.epub")
py
1a3d68585b6a6844369b3622e28fa30faff122b9
import fnmatch import functools from collections import OrderedDict from datetime import datetime import pytest from django.db.models import F from django.utils import timezone from pontoon.base.models import TranslatedResource, Translation from pontoon.tags.models import Tag from .site import _factory def tag_factory(): def instance_attrs(instance, i): if not instance.slug: instance.slug = "factorytag%s" % i if not instance.name: instance.name = "Factory Tag %s" % i return functools.partial( _factory, Model=Tag, instance_attrs=instance_attrs ) def _assert_tags(expected, data): assert len(expected) == len(data) results = dict((d['slug'], d) for d in data) attrs = [ "pk", "name", # "last_change", "total_strings", "approved_strings", "unreviewed_strings", "fuzzy_strings", ] for slug, stats in results.items(): _exp = expected[slug] for attr in attrs: assert _exp[attr] == stats[attr] @pytest.fixture def assert_tags(): """This fixture provides a function for comparing calculated tag stats against those provided by the tags tool """ return _assert_tags def _calculate_resource_tags(**kwargs): # returns the tags associated with a given resource, filters # on priority if given priority = kwargs.get("priority", None) resource_tags = {} tags_through = Tag.resources.through.objects.values_list( "resource", "tag", "tag__slug", "tag__name", ) if priority is not None: if priority is True: tags_through = tags_through.exclude(tag__priority__isnull=True) elif priority is False: tags_through = tags_through.exclude(tag__priority__isnull=False) else: tags_through = tags_through.filter(tag__priority=priority) for resource, tag, _slug, name in tags_through.iterator(): resource_tags[resource] = ( resource_tags.get(resource, []) + [(tag, _slug, name)] ) return resource_tags def _tag_iterator(things, **kwargs): # for given qs.values() (`things`) and **kwargs to filter on, this will # find and iterate matching tags. # `things` can be either translations or translated_resources, but # they must have their `locale`, `project`, `resource` and # `resource.path` denormalized where required. locales = list(l.id for l in kwargs.get("locales", [])) projects = list(p.id for p in kwargs.get("projects", [])) slug = kwargs.get("slug", None) path = kwargs.get("path", None) resource_tags = _calculate_resource_tags(**kwargs) for thing in things.iterator(): if locales and thing["locale"] not in locales: continue if projects and thing["project"] not in projects: continue if path and not fnmatch.fnmatch(thing['path'], path): continue for tag in resource_tags.get(thing['resource'], []): __, _slug, __ = tag if slug and not fnmatch.fnmatch(_slug, slug): continue yield thing, tag def _calculate_tags(**kwargs): # calculate what the stats per-tag with given **kwargs should be # the long-hand way trs = TranslatedResource.objects.all() attrs = [ "approved_strings", "unreviewed_strings", "fuzzy_strings", ] totals = {} resource_attrs = [ "resource", "locale", "latest_translation__date", ] annotations = dict( total_strings=F('resource__total_strings'), project=F('resource__project'), path=F('resource__path'), ) # this is a `values` of translated resources, with the project, path # and total_strings denormalized to project/path/total_strings. qs = trs.values(*resource_attrs + attrs).annotate(**annotations) translated_resource_tags = _tag_iterator(qs, **kwargs) attrs = ['total_strings'] + attrs # iterate through associated tags for all matching translated resources for tr, (_pk, _slug, _name) in translated_resource_tags: if kwargs.get('groupby'): key = tr[kwargs['groupby']] else: key = _slug if key not in totals: # create a totals[tag] with zeros for this tag totals[key] = dict((attr, 0) for attr in attrs) totals[key].update(dict(name=_name, pk=_pk, last_change=None)) for attr in attrs: # add the total for this translated resource to the tags total totals[key][attr] += tr[attr] return totals @pytest.fixture def calculate_tags(): """This fixture provides a function for calculating the tags and their expected stats etc currently in the database, after filtering for provided **kwargs """ return _calculate_tags def _calculate_tags_latest(**kwargs): # calculate what the latest events per-tag with given **kwargs should be # the long-hand way translations = Translation.objects.all() latest_dates = {} translation_attrs = [ "pk", "date", "locale", ] annotations = dict( resource=F('entity__resource'), path=F('entity__resource__path'), project=F('entity__resource__project'), ) # this is a `values` of translations, with the resource, path and project # denormalized to resource/path/project. qs = translations.values(*translation_attrs).annotate(**annotations) translation_tags = _tag_iterator(qs, **kwargs) # iterate through associated tags for all matching translations for translation, (tag, __, __) in translation_tags: if kwargs.get('groupby'): key = translation[kwargs['groupby']] else: key = tag # get the current latest for this tag _pk, _date = latest_dates.get( key, (None, timezone.make_aware(datetime.min)) ) if translation['date'] > _date: # set this translation if its newer than the current latest # for this tag latest_dates[key] = (translation['pk'], translation['date']) return latest_dates @pytest.fixture def calculate_tags_latest(): """This fixture provides a function for calculating the tags and their expected latest changes currently in the database, after filtering for provided **kwargs """ return _calculate_tags_latest @pytest.fixture def tag_matrix(site_matrix): """This provides the `site_matrix` fixture but with added tags. This fixture can be used in conjunction with the `calculate_tags` fixture to test for tags using kwargs from the parametrized `tag_test_kwargs` fixture """ factories = site_matrix['factories'] factories['tag'] = tag_factory() # this creates 113 tags # every 20th tag gets no priority # the others get between 0-5 tags = factories['tag']( args=[ { 'priority': ( None if not i or not (i % 20) else int(i / 20) ) } for i in range(0, 113) ] ) # associate tags with resources for i, resource in enumerate(site_matrix['resources']): x = 0 indeces = [] # this distributes the tags amongst resources in # a fairly arbitrary fashion # every resource gets the tag with index of 0 while True: idx = x * (i + 1) if idx >= len(tags): break indeces.append(idx) x = x + 1 # add tags to the resource's tag_set resource.tag_set.add(*[tags[n] for n in indeces]) site_matrix['tags'] = tags return site_matrix _tag_kwargs = OrderedDict( (('empty', dict()), ('project0_match', dict(projects=[0])), ('project1_match', dict(projects=[1])), ('locale_match', dict(locales=[0])), ('locale_and_project_match', dict(locales=[0], projects=[0])), ('locales_and_projects_match', dict(projects=[1, 2], locales=[0, 1])), ('priority_match', dict(priority=3)), ('priority_true_match', dict(priority=True)), ('priority_false_match', dict(priority=False)), ('path_no_match', dict(path="NOPATHSHERE")), ('path_match', dict(path=11)), ('path_glob', dict(path="resource[5-9]*")), ('slug_no_match', dict(slug="NOSLUGSHERE")), ('slug_exact', dict(slug=23)), ('slug_glob', dict(slug="factory*7")), ('party_glob', dict(path="resource[1]*", projects=[0, 2], locales=[1, 2], slug="factory*[2-5]")))) @pytest.fixture(params=_tag_kwargs) def tag_test_kwargs(request, tag_matrix): """This is a parametrized fixture that provides a range of possible **kwargs for testing the TagsTool against tags in the `tag_matrix` fixture. If a parameter values for `path` is an `int` its mangled to the `path` of the `resource` (in the site_matrix) with the corresponding index. If a `slug` is an `int` its likewise mangled to the `tag`.`slug` with a corresponding index. `projects` and `locales` are similarly mangled to the corresponding projects/locales in the site_matrix. Parameters that are suffixed with `_match` expect at least 1 result to be returned. Parameters suffixed with `_exact` expect exactly 1 result. Parameters suffixed with `_glob` expect more than 1 result. Finally, parameters suffixed with `_no_match` expect 0 results. """ kwargs = _tag_kwargs.get(request.param).copy() if kwargs.get("path"): if isinstance(kwargs['path'], int): kwargs['path'] = tag_matrix['resources'][kwargs['path']].path if kwargs.get("slug"): if isinstance(kwargs['slug'], int): kwargs["slug"] = tag_matrix['tags'][kwargs['slug']].slug for k in ['projects', 'locales']: if kwargs.get(k): kwargs[k] = [ tag_matrix[k][i] for i in kwargs[k]] return request.param, kwargs _tag_data_init_kwargs = OrderedDict( (('no_args', dict(annotations=None, groupby=None, locales=None, path=None, priority=None, projects=None, slug=None)), ('args', dict(annotations=1, groupby=2, locales=3, path=4, priority=5, projects=6, slug=7)))) @pytest.fixture(params=_tag_data_init_kwargs) def tag_data_init_kwargs(request): """This is a parametrized fixture that provides 2 sets of possible **kwargs to instantiate the TagsDataTools with The first set of kwargs, are all set to `None` and the second contain numeric values for testing against """ return _tag_data_init_kwargs.get(request.param).copy() _tag_init_kwargs = OrderedDict( (('no_args', dict(locales=None, path=None, priority=None, projects=None, slug=None)), ('args', dict(locales=1, path=2, priority=3, projects=4, slug=5)))) @pytest.fixture(params=_tag_init_kwargs) def tag_init_kwargs(request): """This is a parametrized fixture that provides 2 sets of possible **kwargs to instantiate the TagsTool with The first set of kwargs, are all set to `None` and the second contain numeric values for testing against """ return _tag_init_kwargs.get(request.param).copy()
py
1a3d68cbe0c3a19ef72afe7fa8204eb613b6f864
from threading import Thread from time import sleep from tkinter import * def main(): global left_timer, right_timer while True: sleep(1) if flag: left_timer = left_timer - 1 m = int(left_timer / 60) s = left_timer % 60 left['text'] = '{:02d}:{:02d}'.format(m, s) else: right_timer = right_timer - 1 m = int(right_timer / 60) s = right_timer % 60 right['text'] = '{:02d}:{:02d}'.format(m, s) def s(): t = Thread(target=main) t.start() def stopl(): global flag flag = False def stopr(): global flag flag = True root = Tk() # variables ########################## left_timer = 1200 right_timer = 1200 flag = True ###################################### # Label ############################## l1 = Label(root, text='Left Player', font=('times', 20, 'italic')) l1.grid(row=0, column=0) l2 = Label(root, text='Right Player', font=('times', 20, 'italic')) l2.grid(row=0, column=1) ###################################### # Timer Label ######################## left = Label(root, text='20:00', font=('courier', 20)) left.grid(row=1, column=0) right = Label(root, text='20:00', font=('courier', 20)) right.grid(row=1, column=1) ###################################### # Button ############################# b1 = Button(root, text='Stop', command=stopl, font=('courier', 20)) b1.grid(row=2, column=0) b2 = Button(root, command=stopr, text='Stop', font=('courier', 20)) b2.grid(row=2, column=1) b3 = Button(root, text='Start', command=s, font=('courier', 20)) b3.grid(row=3, column=0) ###################################### root.mainloop()
py
1a3d6a130a3e4951df4aeade2a3680a191621269
from builtins import range from builtins import object import numpy as np from past.builtins import xrange class KNearestNeighbor(object): """ a kNN classifier with L2 distance """ def __init__(self): pass def train(self, X, y): """ Train the classifier. For k-nearest neighbors this is just memorizing the training data. Inputs: - X: A numpy array of shape (num_train, D) containing the training data consisting of num_train samples each of dimension D. - y: A numpy array of shape (N,) containing the training labels, where y[i] is the label for X[i]. """ self.X_train = X self.y_train = y def predict(self, X, k=1, num_loops=0): """ Predict labels for test data using this classifier. Inputs: - X: A numpy array of shape (num_test, D) containing test data consisting of num_test samples each of dimension D. - k: The number of nearest neighbors that vote for the predicted labels. - num_loops: Determines which implementation to use to compute distances between training points and testing points. Returns: - y: A numpy array of shape (num_test,) containing predicted labels for the test data, where y[i] is the predicted label for the test point X[i]. """ if num_loops == 0: dists = self.compute_distances_no_loops(X) elif num_loops == 1: dists = self.compute_distances_one_loop(X) elif num_loops == 2: dists = self.compute_distances_two_loops(X) else: raise ValueError('Invalid value %d for num_loops' % num_loops) return self.predict_labels(dists, k=k) def compute_distances_two_loops(self, X): """ Compute the distance between each test point in X and each training point in self.X_train using a nested loop over both the training data and the test data. Inputs: - X: A numpy array of shape (num_test, D) containing test data. Returns: - dists: A numpy array of shape (num_test, num_train) where dists[i, j] is the Euclidean distance between the ith test point and the jth training point. """ num_test = X.shape[0] num_train = self.X_train.shape[0] dists = np.zeros((num_test, num_train)) for i in range(num_test): for j in range(num_train): ##################################################################### # TODO: # # Compute the l2 distance between the ith test point and the jth # # training point, and store the result in dists[i, j]. You should # # not use a loop over dimension, nor use np.linalg.norm(). # ##################################################################### # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** dists[i, j] = np.sqrt(np.sum(np.square(self.X_train[j, :]-X[i, :]))); pass # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** return dists def compute_distances_one_loop(self, X): """ Compute the distance between each test point in X and each training point in self.X_train using a single loop over the test data. Input / Output: Same as compute_distances_two_loops """ num_test = X.shape[0] num_train = self.X_train.shape[0] dists = np.zeros((num_test, num_train)) for i in range(num_test): ####################################################################### # TODO: # # Compute the l2 distance between the ith test point and all training # # points, and store the result in dists[i, :]. # # Do not use np.linalg.norm(). # ####################################################################### # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** dists[i, :]=np.sqrt(np.sum(np.square(self.X_train-X[i, :]), axis=1)); pass # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** return dists def compute_distances_no_loops(self, X): """ Compute the distance between each test point in X and each training point in self.X_train using no explicit loops. Input / Output: Same as compute_distances_two_loops """ num_test = X.shape[0] num_train = self.X_train.shape[0] dists = np.zeros((num_test, num_train)) ######################################################################### # TODO: # # Compute the l2 distance between all test points and all training # # points without using any explicit loops, and store the result in # # dists. # # # # You should implement this function using only basic array operations; # # in particular you should not use functions from scipy, # # nor use np.linalg.norm(). # # # # HINT: Try to formulate the l2 distance using matrix multiplication # # and two broadcast sums. # ######################################################################### # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** ab = np.dot(self.X_train,X.T) a2 = np.sum(np.square(self.X_train), axis=1) a2 = a2.reshape(a2.size,1) b2 = np.sum(np.square(X), axis=1) b2 = b2.reshape(1, b2.size) dists = np.sqrt((-2*ab+a2+b2).T) pass # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** return dists def predict_labels(self, dists, k=1): """ Given a matrix of distances between test points and training points, predict a label for each test point. Inputs: - dists: A numpy array of shape (num_test, num_train) where dists[i, j] gives the distance betwen the ith test point and the jth training point. Returns: - y: A numpy array of shape (num_test,) containing predicted labels for the test data, where y[i] is the predicted label for the test point X[i]. """ num_test = dists.shape[0] y_pred = np.zeros(num_test) for i in range(num_test): # A list of length k storing the labels of the k nearest neighbors to # the ith test point. closest_y = [] ######################################################################### # TODO: # # Use the distance matrix to find the k nearest neighbors of the ith # # testing point, and use self.y_train to find the labels of these # # neighbors. Store these labels in closest_y. # # Hint: Look up the function numpy.argsort. # ######################################################################### # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** sortArray=np.argsort(dists[i, :]) for j in range(k): closest_y.append(self.y_train[sortArray[j]]) pass # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** ######################################################################### # TODO: # # Now that you have found the labels of the k nearest neighbors, you # # need to find the most common label in the list closest_y of labels. # # Store this label in y_pred[i]. Break ties by choosing the smaller # # label. # ######################################################################### # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** y_pred[i]= np.argmax(np.bincount(closest_y)) pass # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** return y_pred
py
1a3d6b0be4bda8a3c7a1198000e38492b255e862
"""combine_tables Revision ID: 2195e3e2a9ce Revises: ed6021c67b9f Create Date: 2019-10-31 10:40:36.829434 """ from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql from geoalchemy2.types import Geometry # revision identifiers, used by Alembic. revision = '2195e3e2a9ce' down_revision = 'ed6021c67b9f' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('text_with_suggestions', sa.Column('id', sa.Integer(), nullable=False), sa.Column('map_search_id', sa.Integer(), nullable=True), sa.Column('text_typed', sa.Text(), nullable=False), sa.Column('suggestion_choosen', sa.Text(), nullable=True), sa.ForeignKeyConstraint(['map_search_id'], ['map_search.id'], ), sa.PrimaryKeyConstraint('id') ) op.drop_constraint('click_bbox_id_fkey', 'click', type_='foreignkey') op.drop_constraint('pan_new_bbox_id_fkey', 'pan', type_='foreignkey') op.drop_constraint('pan_old_bbox_id_fkey', 'pan', type_='foreignkey') op.drop_constraint('zoom_in_out_new_bbox_id_fkey', 'zoom_in_out', type_='foreignkey') op.drop_constraint('zoom_in_out_old_bbox_id_fkey', 'zoom_in_out', type_='foreignkey') op.drop_constraint('suggestions_text_with_suggestion_id_fkey', 'suggestions', type_='foreignkey') op.drop_constraint('zoom_in_out_map_interaction_type_id_fkey', 'zoom_in_out', type_='foreignkey') op.drop_constraint('spatial_bookmark_geocoord_id_fkey', 'spatial_bookmark', type_='foreignkey') op.drop_constraint('user_position_geocoord_id_fkey', 'user_position', type_='foreignkey') # op.drop_constraint('map_interaction_geocoord_id_fkey', 'map_interaction', type_='foreignkey') op.drop_constraint('map_search_bbox_id_fkey', 'map_search', type_='foreignkey') op.drop_column('map_search', 'bbox_id') # op.add_column('routing', sa.Column('end_routing_interface_send_request_or_interface_closed_time_stamp', sa.DateTime(), nullable=False)) op.drop_constraint('routing_origin_text_box_history_id_fkey', 'routing', type_='foreignkey') op.drop_constraint('routing_destination_text_box_history_id_fkey', 'routing', type_='foreignkey') # op.create_foreign_key('origin_text_bbox_fk', 'routing', 'text_with_suggestions', ['origin_text_box_history_id'], ['id']) # op.create_foreign_key('dest_text_bbox_fk', 'routing', 'text_with_suggestions', ['destination_text_box_history_id'], ['id']) # op.drop_column('routing', 'end_routing_interface_send_request_or_interface_closed_time_sta') op.drop_table('text_with_suggestion') op.drop_table('bbox') op.drop_table('pan') op.drop_table('click') op.drop_table('zoom_in_out') op.drop_constraint('map_interaction_geocoord_id_fkey', 'map_interaction', type_='foreignkey') op.drop_column('map_interaction', 'geocoord_id') op.drop_index('idx_geocoordinate_with_time_stamp_geom', table_name='geocoordinate_with_time_stamp') op.drop_table('geocoordinate_with_time_stamp') op.drop_table('map_interaction_type') op.add_column('map_interaction', sa.Column('click_time_stamp', sa.DateTime())) op.add_column('map_interaction', sa.Column('geom', Geometry(geometry_type='POINT', srid=4326), nullable=False)) op.add_column('map_interaction', sa.Column('is_click_interaction', sa.Boolean(), nullable=True)) op.add_column('map_interaction', sa.Column('is_pan_interaction', sa.Boolean(), nullable=True)) op.add_column('map_interaction', sa.Column('is_zoom_in_interaction', sa.Boolean(), nullable=True)) op.add_column('map_interaction', sa.Column('is_zoom_out_interaction', sa.Boolean(), nullable=True)) op.add_column('map_interaction', sa.Column('new_bbox_geom', Geometry(geometry_type='POLYGON', srid=4326))) op.add_column('map_interaction', sa.Column('new_bbox_time_stamp', sa.DateTime())) op.add_column('map_interaction', sa.Column('new_zoom_level', sa.Integer())) op.add_column('map_interaction', sa.Column('old_bbox_geom', Geometry(geometry_type='POLYGON', srid=4326))) op.add_column('map_interaction', sa.Column('old_bbox_time_stamp', sa.DateTime())) op.add_column('map_interaction', sa.Column('old_zoom_level', sa.Integer())) op.add_column('map_interaction', sa.Column('time_stamp', sa.DateTime(), nullable=False)) op.add_column('map_interaction', sa.Column('where_clicked_geom', Geometry(geometry_type='POINT', srid=4326))) op.add_column('map_search', sa.Column('bbox_geom', Geometry(geometry_type='POLYGON', srid=4326), nullable=False)) op.add_column('map_search', sa.Column('bbox_time_stamp', sa.DateTime(), nullable=False)) op.add_column('spatial_bookmark', sa.Column('geom', Geometry(geometry_type='POINT', srid=4326), nullable=False)) op.add_column('spatial_bookmark', sa.Column('time_stamp', sa.DateTime(), nullable=False)) # op.drop_constraint('spatial_bookmark_geocoord_id_fkey', 'spatial_bookmark', type_='foreignkey') op.drop_column('spatial_bookmark', 'geocoord_id') op.add_column('suggestions', sa.Column('text_with_suggestions_id', sa.Integer(), nullable=True)) # op.drop_constraint('suggestions_text_with_suggestion_id_fkey', 'suggestions', type_='foreignkey') op.create_foreign_key('text_with_suggestion_fk', 'suggestions', 'text_with_suggestions', ['text_with_suggestions_id'], ['id']) op.drop_column('suggestions', 'text_with_suggestion_id') op.add_column('user_position', sa.Column('geom', Geometry(geometry_type='POINT', srid=4326), nullable=False)) op.add_column('user_position', sa.Column('time_stamp', sa.DateTime(), nullable=False)) # op.drop_constraint('user_position_geocoord_id_fkey', 'user_position', type_='foreignkey') op.drop_column('user_position', 'geocoord_id') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('geocoordinate_with_time_stamp', sa.Column('id', sa.INTEGER(), server_default=sa.text("nextval('geocoordinate_with_time_stamp_id_seq'::regclass)"), autoincrement=True, nullable=False), sa.Column('time_stamp', postgresql.TIMESTAMP(), autoincrement=False, nullable=False), sa.Column('geom', Geometry(geometry_type='POINT', srid=4326), autoincrement=False, nullable=False), sa.PrimaryKeyConstraint('id', name='geocoordinate_with_time_stamp_pkey'), postgresql_ignore_search_path=False ) op.create_table('bbox', sa.Column('id', sa.INTEGER(), autoincrement=True, nullable=False), sa.Column('upper_left_coordinate_id', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('lower_right_coordinate_id', sa.INTEGER(), autoincrement=False, nullable=True), sa.ForeignKeyConstraint(['lower_right_coordinate_id'], ['geocoordinate_with_time_stamp.id'], name='bbox_lower_right_coordinate_id_fkey'), sa.ForeignKeyConstraint(['upper_left_coordinate_id'], ['geocoordinate_with_time_stamp.id'], name='bbox_upper_left_coordinate_id_fkey'), sa.PrimaryKeyConstraint('id', name='bbox_pkey') ) op.create_table('map_interaction_type', sa.Column('id', sa.INTEGER(), server_default=sa.text("nextval('map_interaction_type_id_seq'::regclass)"), autoincrement=True, nullable=False), sa.Column('map_interaction_id', sa.INTEGER(), autoincrement=False, nullable=True), sa.ForeignKeyConstraint(['map_interaction_id'], ['map_interaction.id'], name='map_interaction_type_map_interaction_id_fkey'), sa.PrimaryKeyConstraint('id', name='map_interaction_type_pkey'), postgresql_ignore_search_path=False ) op.create_table('zoom_in_out', sa.Column('id', sa.INTEGER(), autoincrement=True, nullable=False), sa.Column('map_interaction_type_id', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('old_zoom_level', sa.INTEGER(), autoincrement=False, nullable=False), sa.Column('new_zoom_level', sa.INTEGER(), autoincrement=False, nullable=False), sa.Column('old_bbox_id', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('new_bbox_id', sa.INTEGER(), autoincrement=False, nullable=True), sa.ForeignKeyConstraint(['map_interaction_type_id'], ['map_interaction_type.id'], name='zoom_in_out_map_interaction_type_id_fkey'), sa.ForeignKeyConstraint(['new_bbox_id'], ['bbox.id'], name='zoom_in_out_new_bbox_id_fkey'), sa.ForeignKeyConstraint(['old_bbox_id'], ['bbox.id'], name='zoom_in_out_old_bbox_id_fkey'), sa.PrimaryKeyConstraint('id', name='zoom_in_out_pkey') ) op.create_table('text_with_suggestion', sa.Column('id', sa.INTEGER(), autoincrement=True, nullable=False), sa.Column('map_search_id', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('text_typed', sa.TEXT(), autoincrement=False, nullable=False), sa.Column('suggestion_choosen', sa.TEXT(), autoincrement=False, nullable=True), sa.ForeignKeyConstraint(['map_search_id'], ['map_search.id'], name='text_with_suggestion_map_search_id_fkey'), sa.PrimaryKeyConstraint('id', name='text_with_suggestion_pkey') ) op.create_table('click', sa.Column('id', sa.INTEGER(), autoincrement=True, nullable=False), sa.Column('map_interaction_type_id', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('where_clicked_id', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('bbox_id', sa.INTEGER(), autoincrement=False, nullable=True), sa.ForeignKeyConstraint(['bbox_id'], ['bbox.id'], name='click_bbox_id_fkey'), sa.ForeignKeyConstraint(['map_interaction_type_id'], ['map_interaction_type.id'], name='click_map_interaction_type_id_fkey'), sa.ForeignKeyConstraint(['where_clicked_id'], ['geocoordinate_with_time_stamp.id'], name='click_where_clicked_id_fkey'), sa.PrimaryKeyConstraint('id', name='click_pkey') ) op.create_table('pan', sa.Column('id', sa.INTEGER(), autoincrement=True, nullable=False), sa.Column('map_interaction_type_id', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('old_bbox_id', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('new_bbox_id', sa.INTEGER(), autoincrement=False, nullable=True), sa.ForeignKeyConstraint(['map_interaction_type_id'], ['map_interaction_type.id'], name='pan_map_interaction_type_id_fkey'), sa.ForeignKeyConstraint(['new_bbox_id'], ['bbox.id'], name='pan_new_bbox_id_fkey'), sa.ForeignKeyConstraint(['old_bbox_id'], ['bbox.id'], name='pan_old_bbox_id_fkey'), sa.PrimaryKeyConstraint('id', name='pan_pkey') ) op.drop_constraint('text_with_suggestion_fk', 'suggestions', type_='foreignkey') op.drop_table('text_with_suggestions') op.add_column('user_position', sa.Column('geocoord_id', sa.INTEGER(), autoincrement=False, nullable=True)) op.create_foreign_key('user_position_geocoord_id_fkey', 'user_position', 'geocoordinate_with_time_stamp', ['geocoord_id'], ['id']) op.drop_column('user_position', 'time_stamp') op.drop_column('user_position', 'geom') op.add_column('suggestions', sa.Column('text_with_suggestion_id', sa.INTEGER(), autoincrement=False, nullable=True)) op.create_foreign_key('suggestions_text_with_suggestion_id_fkey', 'suggestions', 'text_with_suggestion', ['text_with_suggestion_id'], ['id']) op.drop_column('suggestions', 'text_with_suggestions_id') op.add_column('spatial_bookmark', sa.Column('geocoord_id', sa.INTEGER(), autoincrement=False, nullable=True)) op.create_foreign_key('spatial_bookmark_geocoord_id_fkey', 'spatial_bookmark', 'geocoordinate_with_time_stamp', ['geocoord_id'], ['id']) op.drop_column('spatial_bookmark', 'time_stamp') op.drop_column('spatial_bookmark', 'geom') # op.drop_constraint('origin_text_bbox_fk', 'routing', type_='foreignkey') # op.drop_constraint('dest_text_bbox_fk', 'routing', type_='foreignkey') op.create_foreign_key('routing_origin_text_box_history_id_fkey', 'routing', 'text_with_suggestion', ['origin_text_box_history_id'], ['id']) op.create_foreign_key('routing_destination_text_box_history_id_fkey', 'routing', 'text_with_suggestion', ['destination_text_box_history_id'], ['id']) op.add_column('map_search', sa.Column('bbox_id', sa.INTEGER(), autoincrement=False, nullable=True)) op.create_foreign_key('map_search_bbox_id_fkey', 'map_search', 'bbox', ['bbox_id'], ['id']) op.drop_column('map_search', 'bbox_time_stamp') op.drop_column('map_search', 'bbox_geom') op.add_column('map_interaction', sa.Column('geocoord_id', sa.INTEGER(), autoincrement=False, nullable=True)) op.create_foreign_key('map_interaction_geocoord_id_fkey', 'map_interaction', 'geocoordinate_with_time_stamp', ['geocoord_id'], ['id']) op.drop_column('map_interaction', 'where_clicked_geom') op.drop_column('map_interaction', 'time_stamp') op.drop_column('map_interaction', 'old_zoom_level') op.drop_column('map_interaction', 'old_bbox_time_stamp') op.drop_column('map_interaction', 'old_bbox_geom') op.drop_column('map_interaction', 'new_zoom_level') op.drop_column('map_interaction', 'new_bbox_time_stamp') op.drop_column('map_interaction', 'new_bbox_geom') op.drop_column('map_interaction', 'is_zoom_out_interaction') op.drop_column('map_interaction', 'is_zoom_in_interaction') op.drop_column('map_interaction', 'is_pan_interaction') op.drop_column('map_interaction', 'is_click_interaction') op.drop_column('map_interaction', 'geom') op.drop_column('map_interaction', 'click_time_stamp') # op.create_index('idx_geocoordinate_with_time_stamp_geom', 'geocoordinate_with_time_stamp', ['geom'], unique=False) # ### end Alembic commands ###
py
1a3d6b3401716c7d8e9520ab0d20ba900d03bbb5
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT license. """Unit Tests for internal methods.""" from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os import unittest from collections import namedtuple import graphviz as gv import numpy as np from onnx import TensorProto from onnx import helper, numpy_helper import tensorflow as tf from tf2onnx import utils from tf2onnx.graph_matcher import OpTypePattern, GraphMatcher from tf2onnx.graph import GraphUtil from common import unittest_main # pylint: disable=missing-docstring def onnx_to_graphviz(g): """Onnx graph as dot string.""" g2 = gv.Digraph() for node in g.get_nodes(): kwarg = {} attr = node.attr if "shape" in attr: kwarg["shape"] = str(attr["shape"].ints) if "broadcast" in attr: kwarg["broadcast"] = str(attr["broadcast"].i) g2.node(node.name, op_type=node.type, **kwarg) for node in g.get_nodes(): for i in node.input: if i: g2.edge(i, node.name) return " ".join(g2.source.split()) def onnx_pretty(g, args=None): """Onnx graph pretty print.""" graph_proto = g.make_model("converted from {}".format(args.input)) return helper.printable_graph(graph_proto.graph) class Tf2OnnxInternalTests(unittest.TestCase): def setUp(self): """Setup test.""" # suppress log info of tensorflow so that result of test can be seen much easier os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' tf.logging.set_verbosity(tf.logging.WARN) utils.INTERNAL_NAME = 1 arg = namedtuple("Arg", "input inputs outputs verbose") self._args0 = arg(input="test", inputs=[], outputs=["output:0"], verbose=False) self._args1 = arg(input="test", inputs=["input:0"], outputs=["output:0"], verbose=False) self._args2 = arg(input="test", inputs=["input1:0", "input2:0"], outputs=["output:0"], verbose=False) self._args3 = arg(input="test", inputs=["input1:0", "input2:0", "prob:0"], outputs=["output:0"], verbose=False) self._args4 = arg(input="test", inputs=["input1:0", "input2:0"], outputs=["output1:0", "output2:0"], verbose=False) @staticmethod def sample_net(): n1 = helper.make_node("Abs", ["input"], ["n1:0"], name="n1") n2 = helper.make_node("Abs", ["n1:0"], ["n2:0"], name="n2") n3 = helper.make_node("Abs", ["n1:0"], ["n3:0"], name="n3") n4 = helper.make_node("Add", ["n2:0", "n3:0"], ["n4:0"], name="n4") n5 = helper.make_node("Abs", ["n4:0"], ["n5:0"], name="n5") n6 = helper.make_node("Identity", ["n5:0"], ["n6:0"], name="n6") graph_proto = helper.make_graph( nodes=[n1, n2, n3, n4, n5, n6], name="test", inputs=[helper.make_tensor_value_info("input", TensorProto.FLOAT, [2, 2])], outputs=[helper.make_tensor_value_info("n5:0", TensorProto.FLOAT, [2, 2])], initializer=[] ) return graph_proto def test_insert_node1(self): graph_proto = self.sample_net() g = GraphUtil.create_graph_from_onnx_graph(graph_proto) n2 = g.get_node_by_name("n2") g.insert_new_node_on_input(n2, "Abs", "n1:0", name="n7") ops = g.get_nodes() g.topological_sort(ops) result = onnx_to_graphviz(g) expected = 'digraph { Placeholder__4 [op_type=Placeholder] ' \ 'n1 [op_type=Abs] n7 [op_type=Abs] n2 [op_type=Abs] n3 [op_type=Abs] ' \ 'n4 [op_type=Add] n5 [op_type=Abs] n5_graph_outputs_Identity__3 [op_type=Identity] ' \ 'n6 [op_type=Identity] input -> n1 n1:0 -> n7 n7:0 -> n2 n1:0 -> n3 ' \ 'n2:0 -> n4 n3:0 -> n4 n4:0 -> n5 n5_raw_output___2:0 -> n5_graph_outputs_Identity__3 ' \ 'n5_raw_output___2:0 -> n6 }' self.assertEqual(expected, result) def test_insert_node2(self): graph_proto = self.sample_net() g = GraphUtil.create_graph_from_onnx_graph(graph_proto) g.insert_new_node_on_output("Abs", "n1:0", name="n7") ops = g.get_nodes() g.topological_sort(ops) result = onnx_to_graphviz(g) expected = 'digraph { Placeholder__4 [op_type=Placeholder] n1 [op_type=Abs] n7 [op_type=Abs] ' \ 'n3 [op_type=Abs] n2 [op_type=Abs] n4 [op_type=Add] n5 [op_type=Abs] ' \ 'n5_graph_outputs_Identity__3 [op_type=Identity] n6 [op_type=Identity] ' \ 'input -> n1 n1:0 -> n7 n7:0 -> n3 n7:0 -> n2 n2:0 -> n4 n3:0 -> n4 ' \ 'n4:0 -> n5 n5_raw_output___2:0 -> n5_graph_outputs_Identity__3 n5_raw_output___2:0 -> n6 }' self.assertEqual(expected, result) def test_remove_input(self): graph_proto = self.sample_net() g = GraphUtil.create_graph_from_onnx_graph(graph_proto) n4 = g.get_node_by_name("n4") g.remove_input(n4, n4.input[1]) ops = g.get_nodes() g.topological_sort(ops) result = onnx_to_graphviz(g) expected = 'digraph { Placeholder__4 [op_type=Placeholder] n1 [op_type=Abs] n3 [op_type=Abs] ' \ 'n2 [op_type=Abs] n4 [op_type=Add] n5 [op_type=Abs] ' \ 'n5_graph_outputs_Identity__3 [op_type=Identity] n6 [op_type=Identity] ' \ 'input -> n1 n1:0 -> n3 n1:0 -> n2 n2:0 -> n4 n4:0 -> n5 ' \ 'n5_raw_output___2:0 -> n5_graph_outputs_Identity__3 n5_raw_output___2:0 -> n6 }' self.assertEqual(expected, result) def test_rewrite_subgraph(self): graph_proto = self.sample_net() g = GraphUtil.create_graph_from_onnx_graph(graph_proto) pattern = \ OpTypePattern('Abs', name='output', inputs=[ OpTypePattern('Add', name='input') ]) ops = g.get_nodes() matcher = GraphMatcher(pattern) match_results = list(matcher.match_ops(ops)) for match in match_results: input_node = match.get_op('input') output_node = match.get_op('output') op_name = utils.make_name("ReplacedOp") out_name = utils.port_name(op_name) new_node = g.make_node("Sub", inputs=input_node.input, outputs=[out_name], name=op_name) g.replace_all_inputs(ops, output_node.output[0], new_node.output[0]) for n in set(match.get_nodes()): g.remove_node(n.name) g.topological_sort(ops) result = onnx_to_graphviz(g) expected = 'digraph { Placeholder__4 [op_type=Placeholder] n1 [op_type=Abs] ' \ 'n3 [op_type=Abs] n2 [op_type=Abs] ReplacedOp__5 [op_type=Sub] ' \ 'n5_graph_outputs_Identity__3 [op_type=Identity] n6 [op_type=Identity] ' \ 'input -> n1 n1:0 -> n3 n1:0 -> n2 n2:0 -> ReplacedOp__5 ' \ 'n3:0 -> ReplacedOp__5 ReplacedOp__5:0 -> n5_graph_outputs_Identity__3 ' \ 'ReplacedOp__5:0 -> n6 }' self.assertEqual(expected, result) def test_match_flipped(self): n1 = helper.make_node("Sub", ["i1", "i1"], ["n1:0"], name="n1") n2 = helper.make_node("Add", ["i2", "i2"], ["n2:0"], name="n2") n3 = helper.make_node("Mul", ["n1:0", "n2:0"], ["n3:0"], name="n3") graph_proto = helper.make_graph( nodes=[n1, n2, n3], name="test", inputs=[helper.make_tensor_value_info("i1", TensorProto.FLOAT, [2, 2]), helper.make_tensor_value_info("i2", TensorProto.FLOAT, [2, 2])], outputs=[helper.make_tensor_value_info("n2:0", TensorProto.FLOAT, [2, 2])], initializer=[] ) g = GraphUtil.create_graph_from_onnx_graph(graph_proto) pattern = OpTypePattern('Mul', inputs=[ OpTypePattern('Add'), OpTypePattern('Sub') ]) ops = g.get_nodes() matcher = GraphMatcher(pattern, allow_reorder=True) match_results = list(matcher.match_ops(ops)) self.assertEqual(1, len(match_results)) def test_cmdarg_parse(self): arg = "input/V-1_2:0,input/X:0[1,2,3],Y:1[4,5],Z:3,A:1,B" expected_inputs = ['input/V-1_2:0', 'input/X:0', 'Y:1', 'Z:3', 'A:1', 'B'] expected_shape = {'Y:1': [4, 5], 'input/X:0': [1, 2, 3]} inputs, shape_override = utils.split_nodename_and_shape(arg) self.assertEqual(expected_inputs, inputs) self.assertEqual(expected_shape, shape_override) def test_shape_utils(self): self.assertEqual(utils.merge_shapes(None, None), None) self.assertEqual(utils.merge_shapes([], None), []) self.assertEqual(utils.merge_shapes(None, [1, 2, 3]), [1, 2, 3]) self.assertEqual(utils.merge_shapes([1, 3], [None, 3]), [1, 3]) self.assertEqual(utils.merge_shapes([1, None, 3], (-1, 2, "unk")), [1, 2, 3]) self.assertTrue(utils.are_shapes_compatible(None, [])) self.assertTrue(utils.are_shapes_compatible([1, None, 3], (-1, 2, "unk"))) self.assertFalse(utils.are_shapes_compatible([1, 2, 3], (2, 3))) self.assertFalse(utils.are_shapes_compatible([1, 2, 3], (4, 5, 6))) self.assertTrue(utils.are_shapes_equal(None, None)) self.assertFalse(utils.are_shapes_equal(None, [])) self.assertTrue(utils.are_shapes_equal([1, 2, 3], (1, 2, 3))) def test_data_format(self): n1 = helper.make_node("Conv", ["X", "W"], ["Y"], name="n1", data_format="NHWC") graph_proto = helper.make_graph( nodes=[n1], name="test", inputs=[helper.make_tensor_value_info("X", TensorProto.FLOAT, [2, 2]), helper.make_tensor_value_info("W", TensorProto.FLOAT, [2, 2])], outputs=[helper.make_tensor_value_info("Y", TensorProto.FLOAT, [2, 2])], initializer=[] ) g = GraphUtil.create_graph_from_onnx_graph(graph_proto) n = g.get_node_by_name("n1") self.assertEqual(n.data_format, "NHWC") self.assertTrue(n.is_nhwc()) def test_node_attr_onnx(self): n1 = helper.make_node("Conv", ["X", "W"], ["Y"], name="n1", my_attr="my_attr") graph_proto = helper.make_graph( nodes=[n1], name="test", inputs=[helper.make_tensor_value_info("X", TensorProto.FLOAT, [2, 2]), helper.make_tensor_value_info("W", TensorProto.FLOAT, [2, 2])], outputs=[helper.make_tensor_value_info("Y", TensorProto.FLOAT, [2, 2])], initializer=[] ) g = GraphUtil.create_graph_from_onnx_graph(graph_proto) n1 = g.get_node_by_name("n1") self.assertTrue("my_attr" in n1.attr) self.assertTrue("my_attr" not in n1.attr_onnx) n1 = helper.make_node("Conv", ["X", "W"], ["Y"], name="n1", domain="my_domain", my_attr="my_attr") graph_proto = helper.make_graph( nodes=[n1], name="test", inputs=[helper.make_tensor_value_info("X", TensorProto.FLOAT, [2, 2]), helper.make_tensor_value_info("W", TensorProto.FLOAT, [2, 2])], outputs=[helper.make_tensor_value_info("Y", TensorProto.FLOAT, [2, 2])], initializer=[] ) g = GraphUtil.create_graph_from_onnx_graph(graph_proto) n1 = g.get_node_by_name("n1") self.assertTrue("my_attr" in n1.attr) self.assertTrue("my_attr" in n1.attr_onnx) def test_tensor_data(self): tensors = { "empty_tensor": np.array([], dtype=np.float32), "multi_dim_empty_tensor": np.array([[], []], dtype=np.float32), "scalar": np.array(1., dtype=np.float32), "one_item_array": np.array([1.], dtype=np.float32), "normal_array": np.array([[1., 2.], [2., 3.]], dtype=np.float32) } tf.reset_default_graph() with tf.Session() as sess: for n, data in tensors.items(): tf.constant(data, dtype=tf.float32, name=n) for tf_node in sess.graph.get_operations(): name = tf_node.name self.assertTrue(name in tensors.keys()) self.assertTrue("value" in tf_node.node_def.attr) # convert to onnx tensor value tensor_value = utils.tf_to_onnx_tensor( utils.get_tf_node_attr(tf_node, "value"), name=utils.port_name(tf_node.name) ) attr = helper.make_attribute("value", tensor_value) # same as node.get_tensor_value(is_list=False) actual = numpy_helper.to_array(helper.get_attribute_value(attr)) expected = tensors[name] self.assertTrue(np.array_equal(expected, actual)) if __name__ == '__main__': unittest_main()
py
1a3d6b959e9b74e9eb25246b883d3a1c51408408
# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import io import json import sys import time import typing from pickle import dumps as p_dumps, loads as p_loads import pika # noinspection PyPackageRequirements from pyspark import SparkContext, RDD from fate_arch.common import conf_utils, file_utils from fate_arch.abc import FederationABC, GarbageCollectionABC from fate_arch.common import Party from fate_arch.common.log import getLogger from fate_arch.computing.spark import get_storage_level, Table from fate_arch.computing.spark._materialize import materialize from fate_arch.federation.rabbitmq._mq_channel import MQChannel from fate_arch.federation.rabbitmq._rabbit_manager import RabbitManager LOGGER = getLogger() # default message max size in bytes = 1MB DEFAULT_MESSAGE_MAX_SIZE = 1048576 NAME_DTYPE_TAG = "<dtype>" _SPLIT_ = "^" # Datastream is a wraper of StringIO, it receives kv pairs and dump it to json string class Datastream(object): def __init__(self): self._string = io.StringIO() self._string.write("[") def get_size(self): return sys.getsizeof(self._string.getvalue()) def get_data(self): self._string.write("]") return self._string.getvalue() def append(self, kv: dict): # add ',' if not the first element if self._string.getvalue() != "[": self._string.write(",") json.dump(kv, self._string) def clear(self): self._string.close() self.__init__() class FederationDataType(object): OBJECT = "obj" TABLE = "Table" class MQ(object): def __init__(self, host, port, union_name, policy_id, route_table): self.host = host self.port = port self.union_name = union_name self.policy_id = policy_id self.route_table = route_table def __str__(self): return ( f"MQ(host={self.host}, port={self.port}, union_name={self.union_name}, " f"policy_id={self.policy_id}, route_table={self.route_table})" ) def __repr__(self): return self.__str__() class _QueueNames(object): def __init__(self, vhost, send, receive): self.vhost = vhost # self.union = union self.send = send self.receive = receive _remote_history = set() def _remote_tag_not_duplicate(name, tag, parties): for party in parties: if (name, tag, party) in _remote_history: return False _remote_history.add((name, tag, party)) return True _get_history = set() def _get_tag_not_duplicate(name, tag, party): if (name, tag, party) in _get_history: return False _get_history.add((name, tag, party)) return True class Federation(FederationABC): @staticmethod def from_conf( federation_session_id: str, party: Party, runtime_conf: dict, rabbitmq_config: dict, ): LOGGER.debug(f"rabbitmq_config: {rabbitmq_config}") host = rabbitmq_config.get("host") port = rabbitmq_config.get("port") mng_port = rabbitmq_config.get("mng_port") base_user = rabbitmq_config.get("user") base_password = rabbitmq_config.get("password") federation_info = runtime_conf.get("job_parameters", {}).get( "federation_info", {} ) union_name = federation_info.get("union_name") policy_id = federation_info.get("policy_id") rabbitmq_run = runtime_conf.get("job_parameters", {}).get("rabbitmq_run", {}) LOGGER.debug(f"rabbitmq_run: {rabbitmq_run}") max_message_size = rabbitmq_run.get( "max_message_size", DEFAULT_MESSAGE_MAX_SIZE ) LOGGER.debug(f"set max message size to {max_message_size} Bytes") rabbit_manager = RabbitManager( base_user, base_password, f"{host}:{mng_port}", rabbitmq_run ) rabbit_manager.create_user(union_name, policy_id) route_table_path = rabbitmq_config.get("route_table") if route_table_path is None: route_table_path = "conf/rabbitmq_route_table.yaml" route_table = file_utils.load_yaml_conf(conf_path=route_table_path) mq = MQ(host, port, union_name, policy_id, route_table) return Federation( federation_session_id, party, mq, rabbit_manager, max_message_size ) def __init__( self, session_id, party: Party, mq: MQ, rabbit_manager: RabbitManager, max_message_size, ): self._session_id = session_id self._party = party self._mq = mq self._rabbit_manager = rabbit_manager self._queue_map: typing.MutableMapping[_QueueKey, _QueueNames] = {} self._channels_map: typing.MutableMapping[_QueueKey, MQChannel] = {} self._vhost_set = set() self._name_dtype_map = {} self._message_cache = {} self._max_message_size = max_message_size def __getstate__(self): pass def get( self, name: str, tag: str, parties: typing.List[Party], gc: GarbageCollectionABC ) -> typing.List: log_str = f"[rabbitmq.get](name={name}, tag={tag}, parties={parties})" LOGGER.debug(f"[{log_str}]start to get") # for party in parties: # if not _get_tag_not_duplicate(name, tag, party): # raise ValueError(f"[{log_str}]get from {party} with duplicate tag") _name_dtype_keys = [ _SPLIT_.join([party.role, party.party_id, name, tag, "get"]) for party in parties ] if _name_dtype_keys[0] not in self._name_dtype_map: mq_names = self._get_mq_names(parties, dtype=NAME_DTYPE_TAG) channel_infos = self._get_channels(mq_names=mq_names) rtn_dtype = [] for i, info in enumerate(channel_infos): obj = self._receive_obj( info, name, tag=_SPLIT_.join([tag, NAME_DTYPE_TAG]) ) rtn_dtype.append(obj) LOGGER.debug( f"[rabbitmq.get] _name_dtype_keys: {_name_dtype_keys}, dtype: {obj}" ) for k in _name_dtype_keys: if k not in self._name_dtype_map: self._name_dtype_map[k] = rtn_dtype[0] rtn_dtype = self._name_dtype_map[_name_dtype_keys[0]] rtn = [] dtype = rtn_dtype.get("dtype", None) partitions = rtn_dtype.get("partitions", None) if dtype == FederationDataType.TABLE: mq_names = self._get_mq_names(parties, name, partitions=partitions) for i in range(len(mq_names)): party = parties[i] role = party.role party_id = party.party_id party_mq_names = mq_names[i] receive_func = self._get_partition_receive_func( name, tag, party_id, role, party_mq_names, mq=self._mq, connection_conf=self._rabbit_manager.runtime_config.get( "connection", {} ), ) sc = SparkContext.getOrCreate() rdd = sc.parallelize(range(partitions), partitions) rdd = rdd.mapPartitionsWithIndex(receive_func) rdd = materialize(rdd) table = Table(rdd) rtn.append(table) # add gc gc.add_gc_action(tag, table, "__del__", {}) LOGGER.debug( f"[{log_str}]received rdd({i + 1}/{len(parties)}), party: {parties[i]} " ) else: mq_names = self._get_mq_names(parties, name) channel_infos = self._get_channels(mq_names=mq_names) for i, info in enumerate(channel_infos): obj = self._receive_obj(info, name, tag) LOGGER.debug( f"[{log_str}]received obj({i + 1}/{len(parties)}), party: {parties[i]} " ) rtn.append(obj) LOGGER.debug(f"[{log_str}]finish to get") return rtn def remote( self, v, name: str, tag: str, parties: typing.List[Party], gc: GarbageCollectionABC, ) -> typing.NoReturn: log_str = f"[rabbitmq.remote](name={name}, tag={tag}, parties={parties})" # if not _remote_tag_not_duplicate(name, tag, parties): # raise ValueError(f"[{log_str}]remote to {parties} with duplicate tag") _name_dtype_keys = [ _SPLIT_.join([party.role, party.party_id, name, tag, "remote"]) for party in parties ] if _name_dtype_keys[0] not in self._name_dtype_map: mq_names = self._get_mq_names(parties, dtype=NAME_DTYPE_TAG) channel_infos = self._get_channels(mq_names=mq_names) if isinstance(v, Table): body = {"dtype": FederationDataType.TABLE, "partitions": v.partitions} else: body = {"dtype": FederationDataType.OBJECT} LOGGER.debug( f"[rabbitmq.remote] _name_dtype_keys: {_name_dtype_keys}, dtype: {body}" ) self._send_obj( name=name, tag=_SPLIT_.join([tag, NAME_DTYPE_TAG]), data=p_dumps(body), channel_infos=channel_infos, ) for k in _name_dtype_keys: if k not in self._name_dtype_map: self._name_dtype_map[k] = body if isinstance(v, Table): total_size = v.count() partitions = v.partitions LOGGER.debug( f"[{log_str}]start to remote RDD, total_size={total_size}, partitions={partitions}" ) mq_names = self._get_mq_names(parties, name, partitions=partitions) # add gc gc.add_gc_action(tag, v, "__del__", {}) send_func = self._get_partition_send_func( name, tag, partitions, mq_names, mq=self._mq, maximun_message_size=self._max_message_size, connection_conf=self._rabbit_manager.runtime_config.get( "connection", {} ), ) # noinspection PyProtectedMember v._rdd.mapPartitionsWithIndex(send_func).count() else: LOGGER.debug(f"[{log_str}]start to remote obj") mq_names = self._get_mq_names(parties, name) channel_infos = self._get_channels(mq_names=mq_names) self._send_obj( name=name, tag=tag, data=p_dumps(v), channel_infos=channel_infos ) LOGGER.debug(f"[{log_str}]finish to remote") def cleanup(self, parties): LOGGER.debug("[rabbitmq.cleanup]start to cleanup...") for party in parties: vhost = self._get_vhost(party) LOGGER.debug(f"[rabbitmq.cleanup]start to cleanup vhost {vhost}...") self._rabbit_manager.clean(vhost) LOGGER.debug(f"[rabbitmq.cleanup]cleanup vhost {vhost} done") if self._mq.union_name: LOGGER.debug(f"[rabbitmq.cleanup]clean user {self._mq.union_name}.") self._rabbit_manager.delete_user(user=self._mq.union_name) def _get_vhost(self, party): low, high = ( (self._party, party) if self._party < party else (party, self._party) ) vhost = ( f"{self._session_id}-{low.role}-{low.party_id}-{high.role}-{high.party_id}" ) return vhost def _get_mq_names( self, parties: typing.List[Party], name=None, partitions=None, dtype=None ) -> typing.List: mq_names = [ self._get_or_create_queue(party, name, partitions, dtype) for party in parties ] return mq_names def _get_or_create_queue( self, party: Party, name=None, partitions=None, dtype=None ) -> typing.Tuple: queue_key_list = [] queue_infos = [] if dtype is not None: queue_key = _SPLIT_.join([party.role, party.party_id, dtype, dtype]) queue_key_list.append(queue_key) else: if partitions is not None: for i in range(partitions): queue_key = _SPLIT_.join([party.role, party.party_id, name, str(i)]) queue_key_list.append(queue_key) elif name is not None: queue_key = _SPLIT_.join([party.role, party.party_id, name]) queue_key_list.append(queue_key) else: queue_key = _SPLIT_.join([party.role, party.party_id]) queue_key_list.append(queue_key) for queue_key in queue_key_list: if queue_key not in self._queue_map: LOGGER.debug( f"[rabbitmq.get_or_create_queue]queue: {queue_key} for party:{party} not found, start to create" ) # gen names vhost_name = self._get_vhost(party) queue_key_splits = queue_key.split(_SPLIT_) queue_suffix = "-".join(queue_key_splits[2:]) send_queue_name = f"send-{self._session_id}-{self._party.role}-{self._party.party_id}-{party.role}-{party.party_id}-{queue_suffix}" receive_queue_name = f"receive-{self._session_id}-{party.role}-{party.party_id}-{self._party.role}-{self._party.party_id}-{queue_suffix}" queue_names = _QueueNames( vhost_name, send_queue_name, receive_queue_name ) # initial vhost if queue_names.vhost not in self._vhost_set: self._rabbit_manager.create_vhost(queue_names.vhost) self._rabbit_manager.add_user_to_vhost( self._mq.union_name, queue_names.vhost ) self._vhost_set.add(queue_names.vhost) # initial send queue, the name is send-${vhost} self._rabbit_manager.create_queue(queue_names.vhost, queue_names.send) # initial receive queue, the name is receive-${vhost} self._rabbit_manager.create_queue( queue_names.vhost, queue_names.receive ) upstream_uri = self._upstream_uri(party_id=party.party_id) self._rabbit_manager.federate_queue( upstream_host=upstream_uri, vhost=queue_names.vhost, send_queue_name=queue_names.send, receive_queue_name=queue_names.receive, ) self._queue_map[queue_key] = queue_names # TODO: check federated queue status LOGGER.debug( f"[rabbitmq.get_or_create_queue]queue for queue_key: {queue_key}, party:{party} created" ) queue_names = self._queue_map[queue_key] queue_infos.append((queue_key, queue_names)) return queue_infos def _upstream_uri(self, party_id): host = self._mq.route_table.get(int(party_id)).get("host") port = self._mq.route_table.get(int(party_id)).get("port") upstream_uri = ( f"amqp://{self._mq.union_name}:{self._mq.policy_id}@{host}:{port}" ) return upstream_uri def _get_channel( self, mq, queue_names: _QueueNames, party_id, role, connection_conf: dict ): return MQChannel( host=mq.host, port=mq.port, user=mq.union_name, password=mq.policy_id, vhost=queue_names.vhost, send_queue_name=queue_names.send, receive_queue_name=queue_names.receive, party_id=party_id, role=role, extra_args=connection_conf, ) def _get_channels(self, mq_names): channel_infos = [] for e in mq_names: for queue_key, queue_names in e: queue_key_splits = queue_key.split(_SPLIT_) role = queue_key_splits[0] party_id = queue_key_splits[1] info = self._channels_map.get(queue_key) if info is None: info = self._get_channel( self._mq, queue_names, party_id=party_id, role=role, connection_conf=self._rabbit_manager.runtime_config.get( "connection", {} ), ) self._channels_map[queue_key] = info channel_infos.append(info) return channel_infos # can't pickle _thread.lock objects def _get_channels_index(self, index, mq_names, mq, connection_conf: dict): channel_infos = [] for e in mq_names: queue_key, queue_names = e[index] queue_key_splits = queue_key.split(_SPLIT_) role = queue_key_splits[0] party_id = queue_key_splits[1] info = self._get_channel( mq, queue_names, party_id=party_id, role=role, connection_conf=connection_conf, ) channel_infos.append(info) return channel_infos def _send_obj(self, name, tag, data, channel_infos): for info in channel_infos: properties = pika.BasicProperties( content_type="text/plain", app_id=info.party_id, message_id=name, correlation_id=tag, delivery_mode=1, ) LOGGER.debug(f"[rabbitmq._send_obj]properties:{properties}.") info.basic_publish(body=data, properties=properties) def _get_message_cache_key(self, name, tag, party_id, role): cache_key = _SPLIT_.join([name, tag, str(party_id), role]) return cache_key def _receive_obj(self, channel_info, name, tag): party_id = channel_info._party_id role = channel_info._role wish_cache_key = self._get_message_cache_key(name, tag, party_id, role) if wish_cache_key in self._message_cache: return self._message_cache[wish_cache_key] for method, properties, body in channel_info.consume(): LOGGER.debug( f"[rabbitmq._receive_obj] method: {method}, properties: {properties}." ) if properties.message_id != name or properties.correlation_id != tag: # todo: fix this LOGGER.warning( f"[rabbitmq._receive_obj] require {name}.{tag}, got {properties.message_id}.{properties.correlation_id}" ) cache_key = self._get_message_cache_key( properties.message_id, properties.correlation_id, party_id, role ) # object if properties.content_type == "text/plain": self._message_cache[cache_key] = p_loads(body) channel_info.basic_ack(delivery_tag=method.delivery_tag) if cache_key == wish_cache_key: channel_info.cancel() LOGGER.debug( f"[rabbitmq._receive_obj] cache_key: {cache_key}, obj: {self._message_cache[cache_key]}" ) return self._message_cache[cache_key] else: raise ValueError( f"[rabbitmq._receive_obj] properties.content_type is {properties.content_type}, but must be text/plain" ) def _send_kv( self, name, tag, data, channel_infos, partition_size, partitions, message_key ): headers = { "partition_size": partition_size, "partitions": partitions, "message_key": message_key, } for info in channel_infos: properties = pika.BasicProperties( content_type="application/json", app_id=info.party_id, message_id=name, correlation_id=tag, headers=headers, delivery_mode=1, ) print(f"[rabbitmq._send_kv]info: {info}, properties: {properties}.") info.basic_publish(body=data, properties=properties) def _get_partition_send_func( self, name, tag, partitions, mq_names, mq, maximun_message_size, connection_conf: dict, ): def _fn(index, kvs): return self._partition_send( index, kvs, name, tag, partitions, mq_names, mq, maximun_message_size, connection_conf, ) return _fn def _partition_send( self, index, kvs, name, tag, partitions, mq_names, mq, maximun_message_size, connection_conf: dict, ): channel_infos = self._get_channels_index( index=index, mq_names=mq_names, mq=mq, connection_conf=connection_conf ) datastream = Datastream() base_message_key = str(index) message_key_idx = 0 count = 0 for k, v in kvs: count += 1 el = {"k": p_dumps(k).hex(), "v": p_dumps(v).hex()} # roughly caculate the size of package to avoid serialization ;) if ( datastream.get_size() + sys.getsizeof(el["k"]) + sys.getsizeof(el["v"]) >= maximun_message_size ): print( f"[rabbitmq._partition_send]The size of message is: {datastream.get_size()}" ) message_key_idx += 1 message_key = base_message_key + "_" + str(message_key_idx) self._send_kv( name=name, tag=tag, data=datastream.get_data(), channel_infos=channel_infos, partition_size=-1, partitions=partitions, message_key=message_key, ) datastream.clear() datastream.append(el) message_key_idx += 1 message_key = _SPLIT_.join([base_message_key, str(message_key_idx)]) self._send_kv( name=name, tag=tag, data=datastream.get_data(), channel_infos=channel_infos, partition_size=count, partitions=partitions, message_key=message_key, ) return [1] def _get_partition_receive_func( self, name, tag, party_id, role, party_mq_names, mq, connection_conf: dict ): def _fn(index, kvs): return self._partition_receive( index, kvs, name, tag, party_id, role, party_mq_names, mq, connection_conf, ) return _fn def _partition_receive( self, index, kvs, name, tag, party_id, role, party_mq_names, mq, connection_conf: dict, ): queue_names = party_mq_names[index][1] channel_info = self._get_channel( mq, queue_names, party_id, role, connection_conf ) message_key_cache = set() count = 0 partition_size = -1 all_data = [] for method, properties, body in channel_info.consume(): print( f"[rabbitmq._partition_receive] method: {method}, properties: {properties}." ) if properties.message_id != name or properties.correlation_id != tag: # todo: fix this channel_info.basic_ack(delivery_tag=method.delivery_tag) print( f"[rabbitmq._partition_receive]: require {name}.{tag}, got {properties.message_id}.{properties.correlation_id}" ) continue if properties.content_type == "application/json": message_key = properties.headers["message_key"] if message_key in message_key_cache: print( f"[rabbitmq._partition_receive] message_key : {message_key} is duplicated" ) channel_info.basic_ack(delivery_tag=method.delivery_tag) continue message_key_cache.add(message_key) if properties.headers["partition_size"] >= 0: partition_size = properties.headers["partition_size"] data = json.loads(body) data_iter = ( (p_loads(bytes.fromhex(el["k"])), p_loads(bytes.fromhex(el["v"]))) for el in data ) count += len(data) print(f"[rabbitmq._partition_receive] count: {count}") all_data.extend(data_iter) channel_info.basic_ack(delivery_tag=method.delivery_tag) if count == partition_size: channel_info.cancel() return all_data else: ValueError( f"[rabbitmq._partition_receive]properties.content_type is {properties.content_type}, but must be application/json" )
py
1a3d6bf2f30de43719b93e0a326c9f8caadcae55
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import argparse import h5py import json import os import scipy.misc import sys import cityscapesscripts.evaluation.instances2dict_with_polygons as cs import utils.segms as segms_util import utils.boxes as bboxs_util def parse_args(): parser = argparse.ArgumentParser(description='Convert dataset') parser.add_argument( '--dataset', help="cocostuff, cityscapes", default=None, type=str) parser.add_argument( '--outdir', help="output dir for json files", default=None, type=str) parser.add_argument( '--datadir', help="data dir for annotations to be converted", default=None, type=str) if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def convert_coco_stuff_mat(data_dir, out_dir): """Convert to png and save json with path. This currently only contains the segmentation labels for objects+stuff in cocostuff - if we need to combine with other labels from original COCO that will be a TODO.""" sets = ['train', 'val'] categories = [] json_name = 'coco_stuff_%s.json' ann_dict = {} for data_set in sets: file_list = os.path.join(data_dir, '%s.txt') images = [] with open(file_list % data_set) as f: for img_id, img_name in enumerate(f): img_name = img_name.replace('coco', 'COCO').strip('\n') image = {} mat_file = os.path.join( data_dir, 'annotations/%s.mat' % img_name) data = h5py.File(mat_file, 'r') labelMap = data.get('S') if len(categories) == 0: labelNames = data.get('names') for idx, n in enumerate(labelNames): categories.append( {"id": idx, "name": ''.join(chr(i) for i in data[ n[0]])}) ann_dict['categories'] = categories scipy.misc.imsave( os.path.join(data_dir, img_name + '.png'), labelMap) image['width'] = labelMap.shape[0] image['height'] = labelMap.shape[1] image['file_name'] = img_name image['seg_file_name'] = img_name image['id'] = img_id images.append(image) ann_dict['images'] = images print("Num images: %s" % len(images)) with open(os.path.join(out_dir, json_name % data_set), 'wb') as outfile: outfile.write(json.dumps(ann_dict)) # for Cityscapes def getLabelID(self, instID): if (instID < 1000): return instID else: return int(instID / 1000) def convert_cityscapes_instance_only( data_dir, out_dir): """Convert from cityscapes format to COCO instance seg format - polygons""" sets = [ 'gtFine_val', # 'gtFine_train', # 'gtFine_test', # 'gtCoarse_train', # 'gtCoarse_val', # 'gtCoarse_train_extra' ] ann_dirs = [ 'gtFine_trainvaltest/gtFine/val', # 'gtFine_trainvaltest/gtFine/train', # 'gtFine_trainvaltest/gtFine/test', # 'gtCoarse/train', # 'gtCoarse/train_extra', # 'gtCoarse/val' ] json_name = 'instancesonly_filtered_%s.json' ends_in = '%s_polygons.json' img_id = 0 ann_id = 0 cat_id = 1 category_dict = {} category_instancesonly = [ 'person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', 'bicycle', ] for data_set, ann_dir in zip(sets, ann_dirs): print('Starting %s' % data_set) ann_dict = {} images = [] annotations = [] ann_dir = os.path.join(data_dir, ann_dir) for root, _, files in os.walk(ann_dir): for filename in files: if filename.endswith(ends_in % data_set.split('_')[0]): if len(images) % 50 == 0: print("Processed %s images, %s annotations" % ( len(images), len(annotations))) json_ann = json.load(open(os.path.join(root, filename))) image = {} image['id'] = img_id img_id += 1 image['width'] = json_ann['imgWidth'] image['height'] = json_ann['imgHeight'] image['file_name'] = filename[:-len( ends_in % data_set.split('_')[0])] + 'leftImg8bit.png' image['seg_file_name'] = filename[:-len( ends_in % data_set.split('_')[0])] + \ '%s_instanceIds.png' % data_set.split('_')[0] images.append(image) fullname = os.path.join(root, image['seg_file_name']) objects = cs.instances2dict_with_polygons( [fullname], verbose=False)[fullname] for object_cls in objects: if object_cls not in category_instancesonly: continue # skip non-instance categories for obj in objects[object_cls]: if obj['contours'] == []: print('Warning: empty contours.') continue # skip non-instance categories len_p = [len(p) for p in obj['contours']] if min(len_p) <= 4: print('Warning: invalid contours.') continue # skip non-instance categories ann = {} ann['id'] = ann_id ann_id += 1 ann['image_id'] = image['id'] ann['segmentation'] = obj['contours'] if object_cls not in category_dict: category_dict[object_cls] = cat_id cat_id += 1 ann['category_id'] = category_dict[object_cls] ann['iscrowd'] = 0 ann['area'] = obj['pixelCount'] ann['bbox'] = bboxs_util.xyxy_to_xywh( segms_util.polys_to_boxes( [ann['segmentation']])).tolist()[0] annotations.append(ann) ann_dict['images'] = images categories = [{"id": category_dict[name], "name": name} for name in category_dict] ann_dict['categories'] = categories ann_dict['annotations'] = annotations print("Num categories: %s" % len(categories)) print("Num images: %s" % len(images)) print("Num annotations: %s" % len(annotations)) with open(os.path.join(out_dir, json_name % data_set), 'wb') as outfile: outfile.write(json.dumps(ann_dict)) if __name__ == '__main__': args = parse_args() if args.dataset == "cityscapes_instance_only": convert_cityscapes_instance_only(args.datadir, args.outdir) elif args.dataset == "cocostuff": convert_coco_stuff_mat(args.datadir, args.outdir) else: print("Dataset not supported: %s" % args.dataset)
py
1a3d6c9219145d89b33541ab96fb25a0dce41047
import json from web3 import Web3 from config import NUM_TRANSACTIONS from config import DEADBEEF from config import SHARD_IDS web3 = Web3() alice_key = '0x4c0883a69102937d6231471b5dbb6204fe5129617082792ae468d01a3f362318' alice_address = web3.eth.account.privateKeyToAccount(alice_key).address.lower()[2:] abi = json.loads('[{"constant":false,"inputs":[{"name":"_shard_ID","type":"uint256"},{"name":"_sendGas","type":"uint256"},{"name":"_sendToAddress","type":"address"},{"name":"_data","type":"bytes"}],"name":"send","outputs":[],"payable":true,"stateMutability":"payable","type":"function"},{"anonymous":false,"inputs":[{"indexed":true,"name":"shard_ID","type":"uint256"},{"indexed":false,"name":"sendGas","type":"uint256"},{"indexed":false,"name":"sendFromAddress","type":"address"},{"indexed":true,"name":"sendToAddress","type":"address"},{"indexed":false,"name":"value","type":"uint256"},{"indexed":false,"name":"data","type":"bytes"},{"indexed":true,"name":"base","type":"uint256"},{"indexed":false,"name":"TTL","type":"uint256"}],"name":"SentMessage","type":"event"}]') contract = web3.eth.contract(address='0x000000000000000000000000000000000000002A', abi=abi) def format_transaction(tx, signed): if isinstance(tx["data"], bytes): data = tx["data"].hex() else: data = tx["data"] return { "gas": hex(tx["gas"]), "gasPrice": tx["gasPrice"], "hash": signed["hash"].hex(), "input": data, "nonce": tx["nonce"], "r": hex(signed["r"]), "s": hex(signed["s"]), "v": hex(signed["v"]), "to": tx["to"], "value": hex(tx["value"]), } # Alice sends cross shard transactions def gen_cross_shard_tx(nonce, shard_ID): cross_shard_tx = contract.functions.send(shard_ID, 300000, DEADBEEF, bytes(0)).buildTransaction({ "gas": 3000000, "gasPrice": "0x2", "nonce": hex(nonce), "value": 1}) cross_shard_tx_signed = web3.eth.account.signTransaction(cross_shard_tx, alice_key) cross_shard_tx_formatted = format_transaction(cross_shard_tx, cross_shard_tx_signed) return cross_shard_tx_formatted ''' # Bob sends simple transfers between account in the same shard def gen_in_shard_tx(nonce): private_key_bob = '0x5c0883a69102937d6231471b5dbb6204fe5129617082792ae468d01a3f362318' address_bob = web3.eth.account.privateKeyToAccount(private_key_bob).address.lower()[2:] in_shard_tx = { "gas": 3000000, "gasPrice": "0x2", "nonce": "0x0", # we will need to overwrite this by getting the nonce from the state "to": "0x000000000000000000000000000000000000002F", "value": 20, "data": "0x", } in_shard_tx_signed = web3.eth.account.signTransaction(in_shard_tx, private_key_bob) in_shard_tx_formatted = format_transaction(in_shard_tx, in_shard_tx_signed) return in_shard_tx_formatted def gen_payloads(): private_key_alice = '0x4c0883a69102937d6231471b5dbb6204fe5129617082792ae468d01a3f362318' address_alice = web3.eth.account.privateKeyToAccount(private_key_alice).address.lower()[2:] payloadA = { "fromAddress": address_alice, "toAddress": "0x000000000000000000000000000000000000002A", "value": 100, "data": cross_shard_tx["data"] } # MessagePayload(address_alice, "0x000000000000000000000000000000000000002A", 100, cross_shard_tx["data"]) tx = [] for x in range(0, 100): tx.append(payloadA) return tx ''' def gen_alice_and_bob_tx(dest_shards = None): tx = [] if dest_shards is None: for x in range(0, NUM_TRANSACTIONS): tx.append(gen_cross_shard_tx(x, SHARD_IDS[x%len(SHARD_IDS)])) else: for x in range(0, NUM_TRANSACTIONS): tx.append(gen_cross_shard_tx(x, dest_shards[x % len(dest_shards)])) return tx
py
1a3d6cab3ab6c0b7620671b2953656007fb21caf
#!/usr/bin/env python import os import sys import django from django.conf import settings from django.test.utils import get_runner from django_mfa import totp if __name__ == "__main__": BASE_DIR = os.path.dirname(os.path.abspath(__file__)) settings.configure( DATABASES={ 'default': { 'ENGINE': 'django.db.backends.sqlite3', } }, INSTALLED_APPS=( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.staticfiles', 'django_mfa', ), MIDDLEWARE_CLASSES=( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', ), ROOT_URLCONF='django_mfa.urls', STATIC_URL='/static/', TEMPLATES=[ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'django_mfa/templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ], ) django.setup() TestRunner = get_runner(settings) test_runner = TestRunner() failures = test_runner.run_tests(["django_mfa"]) sys.exit(bool(failures))