ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a3df64a3fc1a38fc7d04b10552dc5b80be4ec64
#!/usr/bin/python # -*- coding: utf-8 -*- # (c) 2017, Ansible by Red Hat, inc # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'network'} DOCUMENTATION = """ --- module: net_lldp_interface version_added: "2.4" author: "Ganesh Nalawade (@ganeshrn)" short_description: Manage LLDP interfaces configuration on network devices description: - This module provides declarative management of LLDP interfaces configuration on network devices. options: name: description: - Name of the interface LLDP should be configured on. aggregate: description: List of interfaces LLDP should be configured on. purge: description: - Purge interfaces not defined in the aggregate parameter. default: no state: description: - State of the LLDP configuration. default: present choices: ['present', 'absent', 'enabled', 'disabled'] """ EXAMPLES = """ - name: Configure LLDP on specific interfaces net_lldp_interface: name: eth1 state: present - name: Disable LLDP on specific interfaces net_lldp_interface: name: eth1 state: disabled - name: Enable LLDP on specific interfaces net_lldp_interface: name: eth1 state: enabled - name: Delete LLDP on specific interfaces net_lldp_interface: name: eth1 state: absent - name: Create aggregate of LLDP interface configurations net_lldp_interface: aggregate: - { name: eth1 } - { name: eth2 } state: present - name: Delete aggregate of LLDP interface configurations net_lldp_interface: aggregate: - { name: eth1 } - { name: eth2 } state: absent """ RETURN = """ commands: description: The list of configuration mode commands to send to the device returned: always, except for the platforms that use Netconf transport to manage the device. type: list sample: - set service lldp eth1 disable """
py
1a3df65ffbb0e9d32c57ca17a2f4ba23547fb7ea
import unittest from python.src.neurons.receive_all_neuron import ReceiveAllNeuron from python.src.neurons.activation_functions.activation_function import ( ActivationFunction) class ReceiveAllNeuronTest(unittest.TestCase): def test_connectTo(self): sender = ReceiveAllNeuron(self.simple_activation()) receiver = ReceiveAllNeuron(self.simple_activation()) sender.connect_to(receiver) self.assertEqual(len(sender.out_connections), 1) self.assertEqual(len(receiver.in_connections), 1) self.assertSetEqual(sender.out_connections, receiver.in_connections) def test_removeConnection(self): sender = ReceiveAllNeuron(self.simple_activation()) receiver = ReceiveAllNeuron(self.simple_activation()) connection = sender.connect_to(receiver) connection.disconnect() self.assertEqual(len(sender.out_connections), 0) self.assertEqual(len(receiver.in_connections), 0) self.assertSetEqual(sender.out_connections, receiver.in_connections) def test_wait_for_all_signals(self): sender_1 = ReceiveAllNeuron(self.simple_activation()) sender_2 = ReceiveAllNeuron(self.simple_activation()) receiver = ReceiveAllNeuron(self.simple_activation()) sender_1.connect_to(receiver) sender_2.connect_to(receiver) sender_1.receive_signal(2.0) self.assertEqual(receiver.output, 0.0) self.assertFalse(receiver.allSignalsReceived()) sender_2.receive_signal(3.0) self.assertEqual(receiver.output, 5.0) self.assertTrue(receiver.allSignalsReceived()) sender_1.reset() sender_2.reset() receiver.reset() self.assertEqual(sender_1.output, 0.0) self.assertEqual(sender_2.output, 0.0) self.assertEqual(receiver.output, 0.0) self.assertFalse(receiver.allSignalsReceived()) def test_connection(self): sender = ReceiveAllNeuron(self.simple_activation()) receiver = ReceiveAllNeuron(self.simple_activation()) connection = sender.connect_to(receiver) self.assertEqual(connection.sender, sender) self.assertEqual(connection.receiver, receiver) self.assertEqual(connection.weight, 1.0) self.assertEqual(connection.signal_sent, 0.0) self.assertEqual(connection.signal_received, 0.0) connection.weight = 0.5 sender.receive_signal(7.4) self.assertEqual(connection.weight, 0.5) self.assertEqual(connection.signal_sent, 3.7) self.assertEqual(connection.signal_received, 7.4) def test_sigmoid_activation(self): neuron = ReceiveAllNeuron() neuron.receive_signal(-0.607) self.assertAlmostEqual(neuron.output, 0.3527438) def simple_activation(self): return ActivationFunction(lambda x: x, lambda x: 1) if __name__ == '__main__': unittest.main()
py
1a3df71d3e54d862cf04af00c81973f2c2b3907c
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Convert caffe mean """ import argparse import numpy as np import mxnet as mx import caffe_parser def convert_mean(binaryproto_fname, output=None): """Convert caffe mean Parameters ---------- binaryproto_fname : str Filename of the mean output : str, optional Save the mean into mxnet's format Returns ------- NDArray Mean in ndarray """ mean_blob = caffe_parser.caffe_pb2.BlobProto() with open(binaryproto_fname, 'rb') as f: mean_blob.ParseFromString(f.read()) img_mean_np = np.array(mean_blob.data) img_mean_np = img_mean_np.reshape( mean_blob.channels, mean_blob.height, mean_blob.width ) # swap channels from Caffe BGR to RGB img_mean_np[[0, 2], :, :] = img_mean_np[[2, 0], :, :] nd = mx.nd.array(img_mean_np) if output is not None: mx.nd.save(output, {"mean_image": nd}) return nd def main(): parser = argparse.ArgumentParser(description='Convert caffe mean') parser.add_argument('binaryproto_fname', help='Filename of the mean') parser.add_argument('output', help='The name of the output file') args = parser.parse_args() convert_mean(args.binaryproto_fname, args.output) if __name__ == '__main__': main()
py
1a3df863ad541e9848c2e69d9c5f9cce5c24481a
"""Job Adapter Template File IMPORTANT: NOT A FUNCTIONAL ADAPTER. FUNCTIONS MUST BE IMPLEMENTED Notes: - Each of the functions defined below must return a json serializable object, json_response, or valid HttpResponse object - A json_response creates an HttpResponse object given parameters: - content: string with the contents of the response - status: string with the status of the response - status_code: HTTP status code - error: string with the error message if there is one """ from common.response import json_response import logging import re logger = logging.getLogger("newt." + __name__) def get_machines(request): """Returns the available machines that jobs can run on Keyword arguments: request - Django HttpRequest """ pass def view_queue(request, machine_name): """Returns the current state of the queue in a list Keyword arguments: request -- Django HttpRequest machine_name -- name of the machine """ pass def submit_job(request, machine_name): """Submits a job to the queue Keyword arguments: request -- Django HttpRequest machine_name -- name of the machine """ pass def get_info(request, machine_name, job_id): """Gets the information of a job, given the id Keyword arguments: request -- Django HttpRequest machine_name -- name of the machine job_id -- the job id """ pass def delete_job(request, machine_name, job_id): """Gets the information of a job, given the id Keyword arguments: request -- Django HttpRequest machine_name -- name of the machine job_id -- the job id """ pass """A tuple list in the form of: ( (compiled_regex_exp, associated_function, request_required), ... ) Note: The compiled_regex_exp must have named groups corresponding to the arguments of the associated_function Note: if request_required is True, the associated_function must have request as the first argument Example: patterns = ( (re.compile(r'/usage/(?P<path>.+)$'), get_usage, False), (re.compile(r'/image/(?P<query>.+)$'), get_image, False), (re.compile(r'/(?P<path>.+)$'), get_resource, False), ) """ patterns = ( ) def extras_router(request, query): """Maps a query to a function if the pattern matches and returns result Keyword arguments: request -- Django HttpRequest query -- the query to be matched against """ for pattern, func, req in patterns: match = pattern.match(query) if match and req: return func(request, **match.groupdict()) elif match: return func(**match.groupdict()) # Returns an Unimplemented response if no pattern matches return json_response(status="Unimplemented", status_code=501, error="", content="query: %s" % query)
py
1a3df8d8455e00bbdcf702f0363b3b7fd6ce371c
import scapy.all as scapy import sys #Send 10 VLAN paclkets. With data = "Test" eth_src = "00:00:00:00:00:01" #Host 1 eth_dst = "00:00:00:00:00:02" #Host 2 eth_type = 0x8100 #VLAN data = "Test" #Data to send total_packets = 10 #Number of packets to send l2packet = scapy.Ether(type=eth_type,src=eth_src,dst=eth_dst)/data #Creates a L2 ethernet packet, and adds data to the header. scapy.sendp(l2packet,count=total_packets)
py
1a3df8ef7689d67d36cdff0ea7d5254b885ab853
def f(*args): nargs = len(args) print(nargs, args) if __name__ == '__main__': import dis dis.show_code(f)
py
1a3dfc2105c4c8a70ca1c7bb32e9c69f69467ee6
# Copyright 2008-2015 Nokia Networks # Copyright 2016- Robot Framework Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from datetime import datetime import wx from wx import Colour from wx.adv import HyperlinkCtrl, EVT_HYPERLINK from .preferences_dialogs import PreferencesPanel from ..widgets import RIDEDialog, HtmlWindow class ExcludePreferences(PreferencesPanel): location = ('Excludes') title = 'Excludes' def __init__(self, settings, *args, **kwargs): super(ExcludePreferences, self).__init__(*args, **kwargs) self._settings = settings self._general_settings = self._settings['General'] self.font = self.GetFont() self.font.SetFaceName(self._general_settings['font face']) self.font.SetPointSize(self._general_settings['font size']) self.SetFont(self.font) self.SetBackgroundColour(Colour(self._general_settings['background'])) self.color_secondary_background = Colour(self._general_settings['secondary background']) self.SetForegroundColour(Colour(self._general_settings['foreground'])) self.color_secondary_foreground = Colour(self._general_settings['secondary foreground']) self._create_sizer() def _create_sizer(self): sizer = wx.BoxSizer(orient=wx.VERTICAL) self._add_help_dialog(sizer) self._add_text_box(sizer) self._add_button_and_status(sizer) self.SetSizer(sizer) def _add_help_dialog(self, sizer): need_help = HyperlinkCtrl(self, wx.ID_ANY, '', 'Need help?') need_help.SetBackgroundColour(Colour(self.color_secondary_background)) need_help.SetForegroundColour(Colour(self.color_secondary_foreground)) sizer.Add(need_help) self.Bind(EVT_HYPERLINK, self.OnHelp) def _add_text_box(self, sizer): self._text_box = wx.TextCtrl(self, style=wx.TE_MULTILINE|wx.TE_NOHIDESEL, size=wx.Size(570, 100), value=self._settings.excludes.get_excludes()) self._text_box.SetBackgroundColour(Colour(self.color_secondary_background)) self._text_box.SetForegroundColour(Colour(self.color_secondary_foreground)) sizer.Add(self._text_box, proportion=wx.EXPAND) def _add_button_and_status(self, sizer): # DEBUG wxPhoenix status_and_button_sizer = wx.GridSizer(rows=1, cols=2, vgap=10, hgap=10) save_button = wx.Button(self, id=wx.ID_SAVE) save_button.SetBackgroundColour(Colour(self.color_secondary_background)) save_button.SetForegroundColour(Colour(self.color_secondary_foreground)) status_and_button_sizer.Add(save_button) self.Bind(wx.EVT_BUTTON, self.OnSave) self._status_label = wx.StaticText(self) status_and_button_sizer.Add(self._status_label) sizer.Add(status_and_button_sizer) def OnSave(self, event): text = self._text_box.GetValue() self._settings.excludes.write_excludes(set(text.split('\n'))) save_label = 'Saved at %s. Reload the project for changes to take an effect.' %\ datetime.now().strftime('%H:%M:%S') self._status_label.SetLabel(save_label) def OnHelp(self, event): dialog = ExcludeHelpDialog() dialog.Show() class ExcludeHelpDialog(RIDEDialog): help = """<font size="5"> <h1>Excludes</h1> <p> Paths to excludes are described in the text box, one exclude per row. These excludes are saved in a file which is located at $HOME/.robotframework/ride/excludes on POSIX-systems and %APPDATA%\\RobotFramework\\ride\\excludes on Windows. </p> <p> You can edit excludes yourself using either the text box or editing the file with an editor. After hitting "Save", close the Preferences window and reload the project to make the edited exludes to take effect. You can reload the project by selecting "File" from the main menu bar and then selecting your project from the list in view. </p> <h2>Patterns in paths</h2> <p> RIDE supports defining excludes with absolute paths. You can achieve relative paths with path patterns which are also supported. </p> <p> The following shell-style wildcards are supported: <table width="100%" border="1"> <thead> <th><b>Pattern</b></th> <th><b>Meaning</b></th> <th><b>Examples</b></th> </thead> <tbody> <tr> <td valign="top" align="center">*</td> <td valign="top" align="center">matches everything</td> <td valign="top" align="left"> Pattern /foo/*/quu matches: <ul> <li>/foo/bar/quu</li> <li>/foo/corge/quu</li> <li><i>etc.</i></li> </ul> </td> </tr> <tr> <td valign="top" align="center">?</td> <td valign="top" align="center">matches any single character</td> <td valign="top" align="left"> Pattern C:\MyProject\?oo matches: <ul> <li>C:\MyProject\\foo</li> <li>C:\MyProject\\boo</li> <li><i>etc.</i></li> </ul> </td> </tr> <tr> <td valign="top" align="center">[seq]</td> <td valign="top" align="center">matches any character in <i>seq</i></td> <td valign="top" align="left"> Pattern C:\MyProject\[bf]oo matches: <ul> <li>C:\MyProject\\foo</li> <li>C:\MyProject\\boo</li> <li><i>and nothing else</i></li> </ul> </td> </tr> <tr> <td valign="top" align="center">[!seq]</td> <td valign="top" align="center">matches any character not in <i>seq</i></td> <td valign="top" align="left"> Pattern /foo/[!q]uu matches: <ul> <li>/foo/zuu</li> <li><i>etc.</i></li> </ul> But does not match: <ul> <li>/foo/quu</li> </ul> </td> </tr> </tbody> </table> </p> </font>""" def __init__(self): RIDEDialog.__init__(self, title='Help: excludes') # set Left to Right direction (while we don't have localization) self.SetLayoutDirection(wx.Layout_LeftToRight) sizer = wx.BoxSizer(wx.VERTICAL) sizer.Add(HtmlWindow(self, (800, 600), self.help), 1, flag=wx.EXPAND) self.SetSizerAndFit(sizer) def OnKey(self, *args): pass def close(self): self.Destroy()
py
1a3dfc5a8c1eda1ac8a5c81b84190c4fd05a6916
import pygame as pg import gym_gvgai as gvg class Game: def __init__(self, game, lvl): self.env = gvg.make('gvgai-' + game + '-' + lvl + '-v0') self.stateObs = self.env.reset() size = (len(self.stateObs), len(self.stateObs[0])) self.transpose = size[0] < size[1] if self.transpose: self.size = (size[1]*2, size[0]*2) else: self.size = (size[0]*2, size[1]*2) self.done = False self.score = 0 self.frame = 0 self.nAction = self.env.action_space.n def start(self, agent, maxT=1000, printLog=True, visualized=True, fps=10): if visualized: clk = pg.time.Clock() screen = pg.display.set_mode(self.size) for i in range(maxT): clk.tick(fps) for event in pg.event.get(): if event.type == pg.QUIT: pg.quit() self.update(agent, printLog) self.draw(screen) pg.display.flip() if self.done: print('---------------------------\nFinish. Final score = %d' % self.score) return else: for i in range(maxT): self.update(agent, printLog) if self.done: print('---------------------------\nFinish. Final score = %d' % self.score) return def humanPlay(self): print('Use direction keys to move, z key to take other actions(if exist in this game).') screen = pg.display.set_mode(self.size) while not self.done: evt = pg.event.wait() if evt.type == pg.QUIT: pg.quit() self.done = True elif evt.type == 3: self.playerAct(self.parseKey(evt)) if self.done: print('---------------------------\nFinish. Final score = %d' % self.score) return self.draw(screen) pg.display.flip() def parseKey(self, evt): if evt.key == pg.K_z: if self.nAction > 5: return 1 else: return 0 if evt.key == pg.K_x: if self.nAction > 6: return 2 else: return 0 elif evt.key == pg.K_UP: return self.nAction-1 elif evt.key == pg.K_DOWN: return self.nAction-2 elif evt.key == pg.K_RIGHT: return self.nAction - 3 elif evt.key == pg.K_LEFT: return self.nAction - 4 else: return 0 def playerAct(self, actionID): self.stateObs, reward, self.done, debug = self.env.step(actionID) self.score += reward self.frame += 1 print('frame%d, action:%d, reward:%d, score:%d' % (self.frame, actionID, reward, self.score)) def update(self, agent, printLog=True): action_id = agent.act(self.stateObs, self.env.action_space) self.stateObs, reward, self.done, debug = self.env.step(action_id) self.score += reward self.frame += 1 if printLog: print('frame%d, action:%d, reward:%d, score:%d' % (self.frame, action_id, reward, self.score)) def draw(self, screen): buffer = pg.pixelcopy.make_surface(self.stateObs[:, :, :3]) pa = pg.PixelArray(buffer) if self.transpose: pa = pa.transpose() screen.blit(pg.transform.scale(pa.make_surface(), self.size), (0, 0))
py
1a3dfc6e683aee1b15f7905e812a88d7105d4c3a
import collections import copy from builtins import range from typing import Union import numpy as np from speclite.filters import FilterResponse, FilterSequence from threeML.plugins.XYLike import XYLike from threeML.utils.photometry import FilterSet, PhotometericObservation __instrument_name = "Generic photometric data" class BandNode(object): def __init__(self, name, index, value, mask): """ Container class that allows for the shutting on and off of bands """ self._name = name self._index = index self._mask = mask self._value = value self._on = True def _set_on(self, value=True): self._on = value self._mask[self._index] = self._on def _get_on(self): return self._on on = property(_get_on, _set_on, doc="Turn on or off the band. Use booleans, like: 'p.on = True' " " or 'p.on = False'. ") # Define property "fix" def _set_off(self, value=True): self._on = (not value) self._mask[self._index] = self._on def _get_off(self): return not self._on off = property(_get_off, _set_off, doc="Turn on or off the band. Use booleans, like: 'p.off = True' " " or 'p.off = False'. ") def __repr__(self): return f"on: {self._on}\nvalue: {self._value}" class PhotometryLike(XYLike): def __init__(self, name: str, filters: Union[FilterSequence, FilterResponse], observation: PhotometericObservation): """ The photometry plugin is desinged to fit optical/IR/UV photometric data from a given filter system. Filters are given in the form a speclite (http://speclite.readthedocs.io) FitlerResponse or FilterSequence objects. 3ML contains a vast number of filters via the SVO VO service: http://svo2.cab.inta-csic.es/svo/theory/fps/ and can be accessed via: from threeML.utils.photometry import get_photometric_filter_library filter_lib = get_photometric_filter_library() Bands can be turned on and off by setting plugin.band_<band name>.on = False/True plugin.band_<band name>.off = False/True :param name: plugin name :param filters: speclite filters :param observation: A PhotometricObservation instance """ assert isinstance( observation, PhotometericObservation), "Observation must be PhotometricObservation" # convert names so that only the filters are present # speclite uses '-' to separate instrument and filter if isinstance(filters, FilterSequence): # we have a filter sequence names = [fname.split("-")[1] for fname in filters.names] elif isinstance(filters, FilterResponse): # we have a filter response names = [filters.name.split("-")[1]] filters = FilterSequence([filters]) else: RuntimeError( "filters must be A FilterResponse or a FilterSequence") # since we may only have a few of the filters in use # we will mask the filters not needed. The will stay fixed # during the life of the plugin assert observation.is_compatible_with_filter_set( filters), "The data and filters are not congruent" mask = observation.get_mask_from_filter_sequence(filters) assert mask.sum() > 0, "There are no data in this observation!" # create a filter set and use only the bands that were specified self._filter_set = FilterSet(filters, mask) self._magnitudes = np.zeros(self._filter_set.n_bands) self._magnitude_errors = np.zeros(self._filter_set.n_bands) # we want to fill the magnitudes in the same order as the # the filters for i, band in enumerate(self._filter_set.filter_names): self._magnitudes[i] = observation[band][0] self._magnitude_errors[i] = observation[band][1] self._observation = observation # pass thru to XYLike super(PhotometryLike, self).__init__( name=name, x=self._filter_set.effective_wavelength, # dummy x values y=self._magnitudes, yerr=self._magnitude_errors, poisson_data=False, ) # now set up the mask zetting for i, band in enumerate(self._filter_set.filter_names): node = BandNode(band, i, (self._magnitudes[i], self._magnitude_errors[i]), self._mask) setattr(self, f"band_{band}", node) @classmethod def from_kwargs(cls, name, filters, **kwargs): """ Example: grond = PhotometryLike.from_kwargs('GROND', filters=threeML_filter_library.ESO.GROND, g=(20.93,.23), r=(20.6,0.12), i=(20.4,.07), z=(20.3,.04), J=(20.0,.03), H=(19.8,.03), K=(19.7,.04)) Magnitudes and errors are entered as keyword arguments where the key is the filter name and the argument is a tuple containing the data. You can exclude data for individual filters and they will be ignored during the fit. NOTE: PhotometryLike expects apparent AB magnitudes. Please calibrate your data to this system :param name: plugin name :param filters: speclite filters :param kwargs: keyword args of band name and tuple(mag, mag error) """ return cls(name, filters, PhotometericObservation.from_kwargs(**kwargs)) @classmethod def from_file(cls, name: str, filters: Union[FilterResponse, FilterSequence], file_name: str): """ Create the a PhotometryLike plugin from a saved HDF5 data file :param name: plugin name :param filters: speclite filters :param file_name: name of the observation file """ return cls(name, filters, PhotometericObservation.from_hdf5(file_name)) @property def magnitudes(self): return self._magnitudes @property def magnitude_errors(self): return self._magnitude_errors def set_model(self, likelihood_model): """ set the likelihood model :param likelihood_model: :return: """ super(PhotometryLike, self).set_model(likelihood_model) n_point_sources = self._likelihood_model.get_number_of_point_sources() # sum up the differential def differential_flux(energies): fluxes = self._likelihood_model.get_point_source_fluxes( 0, energies, tag=self._tag ) # If we have only one point source, this will never be executed for i in range(1, n_point_sources): fluxes += self._likelihood_model.get_point_source_fluxes( i, energies, tag=self._tag ) return fluxes self._filter_set.set_model(differential_flux) def _get_total_expectation(self): return self._filter_set.ab_magnitudes() def display_filters(self): """ display the filter transmission curves :return: """ return self._filter_set.plot_filters() def _new_plugin(self, name, x, y, yerr): """ construct a new PhotometryLike plugin. allows for returning a new plugin from simulated data set while customizing the constructor further down the inheritance tree :param name: new name :param x: new x :param y: new y :param yerr: new yerr :return: new XYLike """ bands = collections.OrderedDict() for i, band in enumerate(self._filter_set.filter_names): bands[band] = (y[i], yerr[i]) new_photo = PhotometryLike( name, filters=self._filter_set.speclite_filters, **bands ) # apply the current mask new_photo._mask = copy.copy(self._mask) return new_photo
py
1a3dfca9899d41fc6c20840f9dd98454e3c9c785
"""Python wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit. Original C++ source file: training_ops.cc """ import collections as _collections import six as _six from tensorflow.python import pywrap_tensorflow as _pywrap_tensorflow from tensorflow.python.eager import context as _context from tensorflow.python.eager import core as _core from tensorflow.python.eager import execute as _execute from tensorflow.python.framework import dtypes as _dtypes from tensorflow.python.framework import errors as _errors from tensorflow.python.framework import tensor_shape as _tensor_shape from tensorflow.core.framework import op_def_pb2 as _op_def_pb2 # Needed to trigger the call to _set_call_cpp_shape_fn. from tensorflow.python.framework import common_shapes as _common_shapes from tensorflow.python.framework import op_def_registry as _op_def_registry from tensorflow.python.framework import ops as _ops from tensorflow.python.framework import op_def_library as _op_def_library from tensorflow.python.util.deprecation import deprecated_endpoints from tensorflow.python.util import dispatch as _dispatch from tensorflow.python.util.tf_export import tf_export from tensorflow.python.util.tf_export import kwarg_only as _kwarg_only from tensorflow.tools.docs import doc_controls as _doc_controls _hard_routing_function_outputs = ["path_probability", "path"] _HardRoutingFunctionOutput = _collections.namedtuple( "HardRoutingFunction", _hard_routing_function_outputs) @_dispatch.add_dispatch_list @tf_export('hard_routing_function') def hard_routing_function(input_data, tree_parameters, tree_biases, max_nodes, tree_depth, name=None): r""" Chooses a single path for each instance in `input_data` and returns the leaf the probability of the path and the path taken. tree_depth: The depth of the decision tree. input_data: The training batch's features as a 2-d tensor; `input_data[i][j]` gives the j-th feature of the i-th input. tree_parameters: `tree_parameters[i]` gives the weight of the logistic regression model that translates from node features to probabilities. tree_biases: `tree_biases[i]` gives the bias of the logistic regression model that translates from node features to probabilities. path_probability: `path_probability[i]` gives the probability of reaching each node in `path[i]`. path: `path[i][j]` gives the jth node in the path taken by the ith data instance. Args: input_data: A `Tensor` of type `float32`. tree_parameters: A `Tensor` of type `float32`. tree_biases: A `Tensor` of type `float32`. max_nodes: An `int`. tree_depth: An `int`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (path_probability, path). path_probability: A `Tensor` of type `float32`. path: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "HardRoutingFunction", name, _ctx._post_execution_callbacks, input_data, tree_parameters, tree_biases, "max_nodes", max_nodes, "tree_depth", tree_depth) _result = _HardRoutingFunctionOutput._make(_result) return _result except _core._FallbackException: try: return hard_routing_function_eager_fallback( input_data, tree_parameters, tree_biases, max_nodes=max_nodes, tree_depth=tree_depth, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): result = _dispatch.dispatch( hard_routing_function, input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, max_nodes=max_nodes, tree_depth=tree_depth, name=name) if result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return result raise except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. max_nodes = _execute.make_int(max_nodes, "max_nodes") tree_depth = _execute.make_int(tree_depth, "tree_depth") try: _, _, _op = _op_def_lib._apply_op_helper( "HardRoutingFunction", input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, max_nodes=max_nodes, tree_depth=tree_depth, name=name) except (TypeError, ValueError): result = _dispatch.dispatch( hard_routing_function, input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, max_nodes=max_nodes, tree_depth=tree_depth, name=name) if result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return result raise _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("max_nodes", _op.get_attr("max_nodes"), "tree_depth", _op.get_attr("tree_depth")) _execute.record_gradient( "HardRoutingFunction", _inputs_flat, _attrs, _result, name) _result = _HardRoutingFunctionOutput._make(_result) return _result def HardRoutingFunction(input_data, tree_parameters, tree_biases, max_nodes, tree_depth, name=None): return hard_routing_function(input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, max_nodes=max_nodes, tree_depth=tree_depth, name=name) HardRoutingFunction.__doc__ = hard_routing_function.__doc__ HardRoutingFunction = _doc_controls.do_not_generate_docs(_kwarg_only(HardRoutingFunction)) tf_export("raw_ops.HardRoutingFunction")(HardRoutingFunction) def hard_routing_function_eager_fallback(input_data, tree_parameters, tree_biases, max_nodes, tree_depth, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function hard_routing_function """ _ctx = ctx if ctx else _context.context() max_nodes = _execute.make_int(max_nodes, "max_nodes") tree_depth = _execute.make_int(tree_depth, "tree_depth") input_data = _ops.convert_to_tensor(input_data, _dtypes.float32) tree_parameters = _ops.convert_to_tensor(tree_parameters, _dtypes.float32) tree_biases = _ops.convert_to_tensor(tree_biases, _dtypes.float32) _inputs_flat = [input_data, tree_parameters, tree_biases] _attrs = ("max_nodes", max_nodes, "tree_depth", tree_depth) _result = _execute.execute(b"HardRoutingFunction", 2, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "HardRoutingFunction", _inputs_flat, _attrs, _result, name) _result = _HardRoutingFunctionOutput._make(_result) return _result _ops.RegisterShape("HardRoutingFunction")(None) _k_feature_gradient_outputs = ["routing_gradient", "data_gradient", "weight_gradient"] _KFeatureGradientOutput = _collections.namedtuple( "KFeatureGradient", _k_feature_gradient_outputs) @_dispatch.add_dispatch_list @tf_export('k_feature_gradient') def k_feature_gradient(input_data, tree_parameters, tree_biases, routes, layer_num, random_seed, name=None): r""" Computes the derivative of the routing loss with respect to each decision node. Each decision node is constrained to make a decision based on only k features. layer_num: The layer number of this tree. random_seed: The base random seed. input_data: The training batch's features as a 2-d tensor; `input_data[i][j]` gives the j-th feature of the i-th input. tree_parameters: `tree_parameters[i]` gives the weight of the logistic regression model that translates from node features to probabilities. tree_biases: `tree_biases[i]` gives the bias of the logistic regression model that translates from node features to probabilities. routes: The routes computed by routing_function_op. routing_gradient: `routing_gradient` provides du / df, where u is the routing function and f is the (vector of) decision functions. A decision function f_i computes the routing decision at node i. data_gradient: `data_gradient` provides df / dx, where f is the (vector of) decision functions and x is a batch of data. weights_gradient: `weights_gradient` provides df / dw, where f is the (vector of) decision functions and w is the matrix of parameters that determine how instances are routed through a tree. f_i, the decision function at node i, is parameterized by t_i (parameters) and b_i (bias) and takes data x as input. This op is called in training_ops.py to compute du / df, and we use that to compute du / dx = du / df * df / dx, du / dt = du / df * df / dt, and du / db = du / df * df / db. Args: input_data: A `Tensor` of type `float32`. tree_parameters: A `Tensor` of type `float32`. tree_biases: A `Tensor` of type `float32`. routes: A `Tensor` of type `float32`. layer_num: An `int`. random_seed: An `int`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (routing_gradient, data_gradient, weight_gradient). routing_gradient: A `Tensor` of type `float32`. data_gradient: A `Tensor` of type `float32`. weight_gradient: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "KFeatureGradient", name, _ctx._post_execution_callbacks, input_data, tree_parameters, tree_biases, routes, "layer_num", layer_num, "random_seed", random_seed) _result = _KFeatureGradientOutput._make(_result) return _result except _core._FallbackException: try: return k_feature_gradient_eager_fallback( input_data, tree_parameters, tree_biases, routes, layer_num=layer_num, random_seed=random_seed, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): result = _dispatch.dispatch( k_feature_gradient, input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, routes=routes, layer_num=layer_num, random_seed=random_seed, name=name) if result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return result raise except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. layer_num = _execute.make_int(layer_num, "layer_num") random_seed = _execute.make_int(random_seed, "random_seed") try: _, _, _op = _op_def_lib._apply_op_helper( "KFeatureGradient", input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, routes=routes, layer_num=layer_num, random_seed=random_seed, name=name) except (TypeError, ValueError): result = _dispatch.dispatch( k_feature_gradient, input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, routes=routes, layer_num=layer_num, random_seed=random_seed, name=name) if result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return result raise _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("layer_num", _op.get_attr("layer_num"), "random_seed", _op.get_attr("random_seed")) _execute.record_gradient( "KFeatureGradient", _inputs_flat, _attrs, _result, name) _result = _KFeatureGradientOutput._make(_result) return _result def KFeatureGradient(input_data, tree_parameters, tree_biases, routes, layer_num, random_seed, name=None): return k_feature_gradient(input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, routes=routes, layer_num=layer_num, random_seed=random_seed, name=name) KFeatureGradient.__doc__ = k_feature_gradient.__doc__ KFeatureGradient = _doc_controls.do_not_generate_docs(_kwarg_only(KFeatureGradient)) tf_export("raw_ops.KFeatureGradient")(KFeatureGradient) def k_feature_gradient_eager_fallback(input_data, tree_parameters, tree_biases, routes, layer_num, random_seed, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function k_feature_gradient """ _ctx = ctx if ctx else _context.context() layer_num = _execute.make_int(layer_num, "layer_num") random_seed = _execute.make_int(random_seed, "random_seed") input_data = _ops.convert_to_tensor(input_data, _dtypes.float32) tree_parameters = _ops.convert_to_tensor(tree_parameters, _dtypes.float32) tree_biases = _ops.convert_to_tensor(tree_biases, _dtypes.float32) routes = _ops.convert_to_tensor(routes, _dtypes.float32) _inputs_flat = [input_data, tree_parameters, tree_biases, routes] _attrs = ("layer_num", layer_num, "random_seed", random_seed) _result = _execute.execute(b"KFeatureGradient", 3, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "KFeatureGradient", _inputs_flat, _attrs, _result, name) _result = _KFeatureGradientOutput._make(_result) return _result _ops.RegisterShape("KFeatureGradient")(None) @_dispatch.add_dispatch_list @tf_export('k_feature_routing_function') def k_feature_routing_function(input_data, tree_parameters, tree_biases, layer_num, max_nodes, num_features_per_node, random_seed, name=None): r""" Returns the probability that each input will reach each leaf node. Each decision is made based on k features. layer_num: The layer number of this tree. max_nodes: The number of nodes in the tree. num_features_per_node: The number of features each node can use to make a decision. random_seed: The base random seed. input_data: The training batch's features as a 2-d tensor; `input_data[i][j]` gives the j-th feature of the i-th input. tree_parameters: `tree_parameters[i]` gives the weight of the logistic regression model that translates from node features to probabilities. tree_biases: `tree_biases[i]` gives the bias of the logistic regression model that translates from node features to probabilities. tree_features: `tree_features[i]` gives the decision feature for node i. probabilities: `probabilities[i][j]` is the probability that input i will reach node j. Args: input_data: A `Tensor` of type `float32`. tree_parameters: A `Tensor` of type `float32`. tree_biases: A `Tensor` of type `float32`. layer_num: An `int`. max_nodes: An `int`. num_features_per_node: An `int`. random_seed: An `int`. name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "KFeatureRoutingFunction", name, _ctx._post_execution_callbacks, input_data, tree_parameters, tree_biases, "layer_num", layer_num, "max_nodes", max_nodes, "num_features_per_node", num_features_per_node, "random_seed", random_seed) return _result except _core._FallbackException: try: return k_feature_routing_function_eager_fallback( input_data, tree_parameters, tree_biases, layer_num=layer_num, max_nodes=max_nodes, num_features_per_node=num_features_per_node, random_seed=random_seed, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): result = _dispatch.dispatch( k_feature_routing_function, input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, layer_num=layer_num, max_nodes=max_nodes, num_features_per_node=num_features_per_node, random_seed=random_seed, name=name) if result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return result raise except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. layer_num = _execute.make_int(layer_num, "layer_num") max_nodes = _execute.make_int(max_nodes, "max_nodes") num_features_per_node = _execute.make_int(num_features_per_node, "num_features_per_node") random_seed = _execute.make_int(random_seed, "random_seed") try: _, _, _op = _op_def_lib._apply_op_helper( "KFeatureRoutingFunction", input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, layer_num=layer_num, max_nodes=max_nodes, num_features_per_node=num_features_per_node, random_seed=random_seed, name=name) except (TypeError, ValueError): result = _dispatch.dispatch( k_feature_routing_function, input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, layer_num=layer_num, max_nodes=max_nodes, num_features_per_node=num_features_per_node, random_seed=random_seed, name=name) if result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return result raise _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("layer_num", _op.get_attr("layer_num"), "max_nodes", _op.get_attr("max_nodes"), "num_features_per_node", _op.get_attr("num_features_per_node"), "random_seed", _op.get_attr("random_seed")) _execute.record_gradient( "KFeatureRoutingFunction", _inputs_flat, _attrs, _result, name) _result, = _result return _result def KFeatureRoutingFunction(input_data, tree_parameters, tree_biases, layer_num, max_nodes, num_features_per_node, random_seed, name=None): return k_feature_routing_function(input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, layer_num=layer_num, max_nodes=max_nodes, num_features_per_node=num_features_per_node, random_seed=random_seed, name=name) KFeatureRoutingFunction.__doc__ = k_feature_routing_function.__doc__ KFeatureRoutingFunction = _doc_controls.do_not_generate_docs(_kwarg_only(KFeatureRoutingFunction)) tf_export("raw_ops.KFeatureRoutingFunction")(KFeatureRoutingFunction) def k_feature_routing_function_eager_fallback(input_data, tree_parameters, tree_biases, layer_num, max_nodes, num_features_per_node, random_seed, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function k_feature_routing_function """ _ctx = ctx if ctx else _context.context() layer_num = _execute.make_int(layer_num, "layer_num") max_nodes = _execute.make_int(max_nodes, "max_nodes") num_features_per_node = _execute.make_int(num_features_per_node, "num_features_per_node") random_seed = _execute.make_int(random_seed, "random_seed") input_data = _ops.convert_to_tensor(input_data, _dtypes.float32) tree_parameters = _ops.convert_to_tensor(tree_parameters, _dtypes.float32) tree_biases = _ops.convert_to_tensor(tree_biases, _dtypes.float32) _inputs_flat = [input_data, tree_parameters, tree_biases] _attrs = ("layer_num", layer_num, "max_nodes", max_nodes, "num_features_per_node", num_features_per_node, "random_seed", random_seed) _result = _execute.execute(b"KFeatureRoutingFunction", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "KFeatureRoutingFunction", _inputs_flat, _attrs, _result, name) _result, = _result return _result _ops.RegisterShape("KFeatureRoutingFunction")(None) @_dispatch.add_dispatch_list @tf_export('routing_function') def routing_function(input_data, tree_parameters, tree_biases, max_nodes, name=None): r""" Returns the probability that each input will reach each leaf node. max_nodes: The number of nodes in the tree. input_data: The training batch's features as a 2-d tensor; `input_data[i][j]` gives the j-th feature of the i-th input. tree_parameters: `tree_parameters[i]` gives the weight of the logistic regression model that translates from node features to probabilities. tree_biases: `tree_biases[i]` gives the bias of the logistic regression model that translates from node features to probabilities. probabilities: `probabilities[i][j]` is the probability that input i will reach node j. Args: input_data: A `Tensor` of type `float32`. tree_parameters: A `Tensor` of type `float32`. tree_biases: A `Tensor` of type `float32`. max_nodes: An `int`. name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "RoutingFunction", name, _ctx._post_execution_callbacks, input_data, tree_parameters, tree_biases, "max_nodes", max_nodes) return _result except _core._FallbackException: try: return routing_function_eager_fallback( input_data, tree_parameters, tree_biases, max_nodes=max_nodes, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): result = _dispatch.dispatch( routing_function, input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, max_nodes=max_nodes, name=name) if result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return result raise except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. max_nodes = _execute.make_int(max_nodes, "max_nodes") try: _, _, _op = _op_def_lib._apply_op_helper( "RoutingFunction", input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, max_nodes=max_nodes, name=name) except (TypeError, ValueError): result = _dispatch.dispatch( routing_function, input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, max_nodes=max_nodes, name=name) if result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return result raise _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("max_nodes", _op.get_attr("max_nodes")) _execute.record_gradient( "RoutingFunction", _inputs_flat, _attrs, _result, name) _result, = _result return _result def RoutingFunction(input_data, tree_parameters, tree_biases, max_nodes, name=None): return routing_function(input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, max_nodes=max_nodes, name=name) RoutingFunction.__doc__ = routing_function.__doc__ RoutingFunction = _doc_controls.do_not_generate_docs(_kwarg_only(RoutingFunction)) tf_export("raw_ops.RoutingFunction")(RoutingFunction) def routing_function_eager_fallback(input_data, tree_parameters, tree_biases, max_nodes, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function routing_function """ _ctx = ctx if ctx else _context.context() max_nodes = _execute.make_int(max_nodes, "max_nodes") input_data = _ops.convert_to_tensor(input_data, _dtypes.float32) tree_parameters = _ops.convert_to_tensor(tree_parameters, _dtypes.float32) tree_biases = _ops.convert_to_tensor(tree_biases, _dtypes.float32) _inputs_flat = [input_data, tree_parameters, tree_biases] _attrs = ("max_nodes", max_nodes) _result = _execute.execute(b"RoutingFunction", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "RoutingFunction", _inputs_flat, _attrs, _result, name) _result, = _result return _result _ops.RegisterShape("RoutingFunction")(None) @_dispatch.add_dispatch_list @tf_export('routing_gradient') def routing_gradient(input_data, tree_parameters, tree_biases, routes, max_nodes, name=None): r""" Computes the derivative of the routing loss with respect to each decision node. max_nodes: The number of nodes in the tree. tree_parameters: `tree_parameters[i]` gives the weight of the logistic regression model that translates from node features to probabilities. tree_biases: `tree_biases[i]` gives the bias of the logistic regression model that translates from node features to probabilities. routes: The routes computed by routing_function_op. routing_gradient: `routing_gradient` provides du / df, where u is the routing function and f is the (vector of) decision functions. A decision function f_i computes the routing decision at node i. f_i is parameterized by t_i (parameters) and b_i (bias) and takes data x as input. This op is called in training_ops.py to compute du / df, and we use that to compute du / dx = du / df * df / dx, du / dt = du / df * df / dt, and du / db = du / df * df / db. Args: input_data: A `Tensor` of type `float32`. tree_parameters: A `Tensor` of type `float32`. tree_biases: A `Tensor` of type `float32`. routes: A `Tensor` of type `float32`. max_nodes: An `int`. name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "RoutingGradient", name, _ctx._post_execution_callbacks, input_data, tree_parameters, tree_biases, routes, "max_nodes", max_nodes) return _result except _core._FallbackException: try: return routing_gradient_eager_fallback( input_data, tree_parameters, tree_biases, routes, max_nodes=max_nodes, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): result = _dispatch.dispatch( routing_gradient, input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, routes=routes, max_nodes=max_nodes, name=name) if result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return result raise except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. max_nodes = _execute.make_int(max_nodes, "max_nodes") try: _, _, _op = _op_def_lib._apply_op_helper( "RoutingGradient", input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, routes=routes, max_nodes=max_nodes, name=name) except (TypeError, ValueError): result = _dispatch.dispatch( routing_gradient, input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, routes=routes, max_nodes=max_nodes, name=name) if result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return result raise _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("max_nodes", _op.get_attr("max_nodes")) _execute.record_gradient( "RoutingGradient", _inputs_flat, _attrs, _result, name) _result, = _result return _result def RoutingGradient(input_data, tree_parameters, tree_biases, routes, max_nodes, name=None): return routing_gradient(input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, routes=routes, max_nodes=max_nodes, name=name) RoutingGradient.__doc__ = routing_gradient.__doc__ RoutingGradient = _doc_controls.do_not_generate_docs(_kwarg_only(RoutingGradient)) tf_export("raw_ops.RoutingGradient")(RoutingGradient) def routing_gradient_eager_fallback(input_data, tree_parameters, tree_biases, routes, max_nodes, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function routing_gradient """ _ctx = ctx if ctx else _context.context() max_nodes = _execute.make_int(max_nodes, "max_nodes") input_data = _ops.convert_to_tensor(input_data, _dtypes.float32) tree_parameters = _ops.convert_to_tensor(tree_parameters, _dtypes.float32) tree_biases = _ops.convert_to_tensor(tree_biases, _dtypes.float32) routes = _ops.convert_to_tensor(routes, _dtypes.float32) _inputs_flat = [input_data, tree_parameters, tree_biases, routes] _attrs = ("max_nodes", max_nodes) _result = _execute.execute(b"RoutingGradient", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "RoutingGradient", _inputs_flat, _attrs, _result, name) _result, = _result return _result _ops.RegisterShape("RoutingGradient")(None) _stochastic_hard_routing_function_outputs = ["path_probability", "path"] _StochasticHardRoutingFunctionOutput = _collections.namedtuple( "StochasticHardRoutingFunction", _stochastic_hard_routing_function_outputs) @_dispatch.add_dispatch_list @tf_export('stochastic_hard_routing_function') def stochastic_hard_routing_function(input_data, tree_parameters, tree_biases, tree_depth, random_seed, name=None): r""" Samples a path for each instance in `input_data` and returns the probability of the path and the path taken. tree_depth: The depth of the decision tree. random_seed: The base random seed. input_data: The training batch's features as a 2-d tensor; `input_data[i][j]` gives the j-th feature of the i-th input. tree_parameters: `tree_parameters[i]` gives the weight of the logistic regression model that translates from node features to probabilities. tree_biases: `tree_biases[i]` gives the bias of the logistic regression model that translates from node features to probabilities. path_probability: `path_probability[i]` gives the probability of reaching each node in `path[i]`. path: `path[i][j]` gives the jth node in the path taken by the ith data instance. Args: input_data: A `Tensor` of type `float32`. tree_parameters: A `Tensor` of type `float32`. tree_biases: A `Tensor` of type `float32`. tree_depth: An `int`. random_seed: An `int`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (path_probability, path). path_probability: A `Tensor` of type `float32`. path: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "StochasticHardRoutingFunction", name, _ctx._post_execution_callbacks, input_data, tree_parameters, tree_biases, "tree_depth", tree_depth, "random_seed", random_seed) _result = _StochasticHardRoutingFunctionOutput._make(_result) return _result except _core._FallbackException: try: return stochastic_hard_routing_function_eager_fallback( input_data, tree_parameters, tree_biases, tree_depth=tree_depth, random_seed=random_seed, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): result = _dispatch.dispatch( stochastic_hard_routing_function, input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, tree_depth=tree_depth, random_seed=random_seed, name=name) if result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return result raise except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. tree_depth = _execute.make_int(tree_depth, "tree_depth") random_seed = _execute.make_int(random_seed, "random_seed") try: _, _, _op = _op_def_lib._apply_op_helper( "StochasticHardRoutingFunction", input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, tree_depth=tree_depth, random_seed=random_seed, name=name) except (TypeError, ValueError): result = _dispatch.dispatch( stochastic_hard_routing_function, input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, tree_depth=tree_depth, random_seed=random_seed, name=name) if result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return result raise _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("tree_depth", _op.get_attr("tree_depth"), "random_seed", _op.get_attr("random_seed")) _execute.record_gradient( "StochasticHardRoutingFunction", _inputs_flat, _attrs, _result, name) _result = _StochasticHardRoutingFunctionOutput._make(_result) return _result def StochasticHardRoutingFunction(input_data, tree_parameters, tree_biases, tree_depth, random_seed, name=None): return stochastic_hard_routing_function(input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, tree_depth=tree_depth, random_seed=random_seed, name=name) StochasticHardRoutingFunction.__doc__ = stochastic_hard_routing_function.__doc__ StochasticHardRoutingFunction = _doc_controls.do_not_generate_docs(_kwarg_only(StochasticHardRoutingFunction)) tf_export("raw_ops.StochasticHardRoutingFunction")(StochasticHardRoutingFunction) def stochastic_hard_routing_function_eager_fallback(input_data, tree_parameters, tree_biases, tree_depth, random_seed, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function stochastic_hard_routing_function """ _ctx = ctx if ctx else _context.context() tree_depth = _execute.make_int(tree_depth, "tree_depth") random_seed = _execute.make_int(random_seed, "random_seed") input_data = _ops.convert_to_tensor(input_data, _dtypes.float32) tree_parameters = _ops.convert_to_tensor(tree_parameters, _dtypes.float32) tree_biases = _ops.convert_to_tensor(tree_biases, _dtypes.float32) _inputs_flat = [input_data, tree_parameters, tree_biases] _attrs = ("tree_depth", tree_depth, "random_seed", random_seed) _result = _execute.execute(b"StochasticHardRoutingFunction", 2, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "StochasticHardRoutingFunction", _inputs_flat, _attrs, _result, name) _result = _StochasticHardRoutingFunctionOutput._make(_result) return _result _ops.RegisterShape("StochasticHardRoutingFunction")(None) _stochastic_hard_routing_gradient_outputs = ["routing_gradient", "data_gradient", "parameter_gradient", "bias_gradient"] _StochasticHardRoutingGradientOutput = _collections.namedtuple( "StochasticHardRoutingGradient", _stochastic_hard_routing_gradient_outputs) @_dispatch.add_dispatch_list @tf_export('stochastic_hard_routing_gradient') def stochastic_hard_routing_gradient(input_data, tree_parameters, tree_biases, path_probability, path, tree_depth, name=None): r""" Computes the derivative of the routing loss with respect to each decision node. tree_depth: The depth of the decision tree. input_data: The training batch's features as a 2-d tensor; `input_data[i][j]` gives the j-th feature of the i-th input tree_parameters: `tree_parameters[i]` gives the weight of the logistic regression model that translates from node features to probabilities. tree_biases: `tree_biases[i]` gives the bias of the logistic regression model that translates from node features to probabilities. path_probability: `path_probability[i]` gives the probability of reaching each node in `path[i]`. path: `path[i][j]` gives the jth node in the path taken by the ith data instance. routing_gradient: `routing_gradient` provides du / df, where u is the routing function and f is the (vector of) decision functions. A decision function f_i computes the routing decision at node i. data_gradient: `data_gradient` provides df / dx, where f is the (vector of) decision functions and x is a batch of data. parameter_gradient: `parameter_gradient` provides df / dw, where f is the (vector of) decision functions and w is the matrix of parameters that determine how instances are routed through a tree. bias_gradient: `bias_gradient` provides df / db, where f is the (vector of) decision functions and b is the vector of bias parameters that determine how instances are routed through a tree. f_i is parameterized by t_i (parameters) and b_i (bias) and takes data x as input. This op is called in training_ops.py to compute du / df, and we use that to compute du / dx = du / df * df / dx, du / dt = du / df * df / dt, and du / db = du / df * df / db. Args: input_data: A `Tensor` of type `float32`. tree_parameters: A `Tensor` of type `float32`. tree_biases: A `Tensor` of type `float32`. path_probability: A `Tensor` of type `float32`. path: A `Tensor` of type `int32`. tree_depth: An `int`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (routing_gradient, data_gradient, parameter_gradient, bias_gradient). routing_gradient: A `Tensor` of type `float32`. data_gradient: A `Tensor` of type `float32`. parameter_gradient: A `Tensor` of type `float32`. bias_gradient: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "StochasticHardRoutingGradient", name, _ctx._post_execution_callbacks, input_data, tree_parameters, tree_biases, path_probability, path, "tree_depth", tree_depth) _result = _StochasticHardRoutingGradientOutput._make(_result) return _result except _core._FallbackException: try: return stochastic_hard_routing_gradient_eager_fallback( input_data, tree_parameters, tree_biases, path_probability, path, tree_depth=tree_depth, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): result = _dispatch.dispatch( stochastic_hard_routing_gradient, input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, path_probability=path_probability, path=path, tree_depth=tree_depth, name=name) if result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return result raise except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. tree_depth = _execute.make_int(tree_depth, "tree_depth") try: _, _, _op = _op_def_lib._apply_op_helper( "StochasticHardRoutingGradient", input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, path_probability=path_probability, path=path, tree_depth=tree_depth, name=name) except (TypeError, ValueError): result = _dispatch.dispatch( stochastic_hard_routing_gradient, input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, path_probability=path_probability, path=path, tree_depth=tree_depth, name=name) if result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return result raise _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("tree_depth", _op.get_attr("tree_depth")) _execute.record_gradient( "StochasticHardRoutingGradient", _inputs_flat, _attrs, _result, name) _result = _StochasticHardRoutingGradientOutput._make(_result) return _result def StochasticHardRoutingGradient(input_data, tree_parameters, tree_biases, path_probability, path, tree_depth, name=None): return stochastic_hard_routing_gradient(input_data=input_data, tree_parameters=tree_parameters, tree_biases=tree_biases, path_probability=path_probability, path=path, tree_depth=tree_depth, name=name) StochasticHardRoutingGradient.__doc__ = stochastic_hard_routing_gradient.__doc__ StochasticHardRoutingGradient = _doc_controls.do_not_generate_docs(_kwarg_only(StochasticHardRoutingGradient)) tf_export("raw_ops.StochasticHardRoutingGradient")(StochasticHardRoutingGradient) def stochastic_hard_routing_gradient_eager_fallback(input_data, tree_parameters, tree_biases, path_probability, path, tree_depth, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function stochastic_hard_routing_gradient """ _ctx = ctx if ctx else _context.context() tree_depth = _execute.make_int(tree_depth, "tree_depth") input_data = _ops.convert_to_tensor(input_data, _dtypes.float32) tree_parameters = _ops.convert_to_tensor(tree_parameters, _dtypes.float32) tree_biases = _ops.convert_to_tensor(tree_biases, _dtypes.float32) path_probability = _ops.convert_to_tensor(path_probability, _dtypes.float32) path = _ops.convert_to_tensor(path, _dtypes.int32) _inputs_flat = [input_data, tree_parameters, tree_biases, path_probability, path] _attrs = ("tree_depth", tree_depth) _result = _execute.execute(b"StochasticHardRoutingGradient", 4, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "StochasticHardRoutingGradient", _inputs_flat, _attrs, _result, name) _result = _StochasticHardRoutingGradientOutput._make(_result) return _result _ops.RegisterShape("StochasticHardRoutingGradient")(None) @_dispatch.add_dispatch_list @tf_export('unpack_path') def unpack_path(path, path_values, name=None): r""" Takes a batch of paths through a tree and a batch of values along those paths and returns a batch_size by num_nodes encoding of the path values. path: `path[i][j]` gives the jth node in the path taken by the ith data instance. path_values: `path_values[i][j]` gives the value associated with node j in the path defined by the ith instance unpacked_paths: `unpacked_paths[i][path[i][k]]` is path_values[i][k] for k in [0, tree_depth). All other elements of unpacked_paths are zero. Args: path: A `Tensor` of type `int32`. path_values: A `Tensor` of type `float32`. name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "UnpackPath", name, _ctx._post_execution_callbacks, path, path_values) return _result except _core._FallbackException: try: return unpack_path_eager_fallback( path, path_values, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): result = _dispatch.dispatch( unpack_path, path=path, path_values=path_values, name=name) if result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return result raise except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. try: _, _, _op = _op_def_lib._apply_op_helper( "UnpackPath", path=path, path_values=path_values, name=name) except (TypeError, ValueError): result = _dispatch.dispatch( unpack_path, path=path, path_values=path_values, name=name) if result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return result raise _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = None _execute.record_gradient( "UnpackPath", _inputs_flat, _attrs, _result, name) _result, = _result return _result def UnpackPath(path, path_values, name=None): return unpack_path(path=path, path_values=path_values, name=name) UnpackPath.__doc__ = unpack_path.__doc__ UnpackPath = _doc_controls.do_not_generate_docs(_kwarg_only(UnpackPath)) tf_export("raw_ops.UnpackPath")(UnpackPath) def unpack_path_eager_fallback(path, path_values, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function unpack_path """ _ctx = ctx if ctx else _context.context() path = _ops.convert_to_tensor(path, _dtypes.int32) path_values = _ops.convert_to_tensor(path_values, _dtypes.float32) _inputs_flat = [path, path_values] _attrs = None _result = _execute.execute(b"UnpackPath", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "UnpackPath", _inputs_flat, _attrs, _result, name) _result, = _result return _result _ops.RegisterShape("UnpackPath")(None) def _InitOpDefLibrary(op_list_proto_bytes): op_list = _op_def_pb2.OpList() op_list.ParseFromString(op_list_proto_bytes) _op_def_registry.register_op_list(op_list) op_def_lib = _op_def_library.OpDefLibrary() op_def_lib.add_op_list(op_list) return op_def_lib # op { # name: "HardRoutingFunction" # input_arg { # name: "input_data" # type: DT_FLOAT # } # input_arg { # name: "tree_parameters" # type: DT_FLOAT # } # input_arg { # name: "tree_biases" # type: DT_FLOAT # } # output_arg { # name: "path_probability" # type: DT_FLOAT # } # output_arg { # name: "path" # type: DT_INT32 # } # attr { # name: "max_nodes" # type: "int" # } # attr { # name: "tree_depth" # type: "int" # } # } # op { # name: "KFeatureGradient" # input_arg { # name: "input_data" # type: DT_FLOAT # } # input_arg { # name: "tree_parameters" # type: DT_FLOAT # } # input_arg { # name: "tree_biases" # type: DT_FLOAT # } # input_arg { # name: "routes" # type: DT_FLOAT # } # output_arg { # name: "routing_gradient" # type: DT_FLOAT # } # output_arg { # name: "data_gradient" # type: DT_FLOAT # } # output_arg { # name: "weight_gradient" # type: DT_FLOAT # } # attr { # name: "layer_num" # type: "int" # } # attr { # name: "random_seed" # type: "int" # } # } # op { # name: "KFeatureRoutingFunction" # input_arg { # name: "input_data" # type: DT_FLOAT # } # input_arg { # name: "tree_parameters" # type: DT_FLOAT # } # input_arg { # name: "tree_biases" # type: DT_FLOAT # } # output_arg { # name: "probabilities" # type: DT_FLOAT # } # attr { # name: "layer_num" # type: "int" # } # attr { # name: "max_nodes" # type: "int" # } # attr { # name: "num_features_per_node" # type: "int" # } # attr { # name: "random_seed" # type: "int" # } # } # op { # name: "RoutingFunction" # input_arg { # name: "input_data" # type: DT_FLOAT # } # input_arg { # name: "tree_parameters" # type: DT_FLOAT # } # input_arg { # name: "tree_biases" # type: DT_FLOAT # } # output_arg { # name: "probabilities" # type: DT_FLOAT # } # attr { # name: "max_nodes" # type: "int" # } # } # op { # name: "RoutingGradient" # input_arg { # name: "input_data" # type: DT_FLOAT # } # input_arg { # name: "tree_parameters" # type: DT_FLOAT # } # input_arg { # name: "tree_biases" # type: DT_FLOAT # } # input_arg { # name: "routes" # type: DT_FLOAT # } # output_arg { # name: "routing_gradient" # type: DT_FLOAT # } # attr { # name: "max_nodes" # type: "int" # } # } # op { # name: "StochasticHardRoutingFunction" # input_arg { # name: "input_data" # type: DT_FLOAT # } # input_arg { # name: "tree_parameters" # type: DT_FLOAT # } # input_arg { # name: "tree_biases" # type: DT_FLOAT # } # output_arg { # name: "path_probability" # type: DT_FLOAT # } # output_arg { # name: "path" # type: DT_INT32 # } # attr { # name: "tree_depth" # type: "int" # } # attr { # name: "random_seed" # type: "int" # } # } # op { # name: "StochasticHardRoutingGradient" # input_arg { # name: "input_data" # type: DT_FLOAT # } # input_arg { # name: "tree_parameters" # type: DT_FLOAT # } # input_arg { # name: "tree_biases" # type: DT_FLOAT # } # input_arg { # name: "path_probability" # type: DT_FLOAT # } # input_arg { # name: "path" # type: DT_INT32 # } # output_arg { # name: "routing_gradient" # type: DT_FLOAT # } # output_arg { # name: "data_gradient" # type: DT_FLOAT # } # output_arg { # name: "parameter_gradient" # type: DT_FLOAT # } # output_arg { # name: "bias_gradient" # type: DT_FLOAT # } # attr { # name: "tree_depth" # type: "int" # } # } # op { # name: "UnpackPath" # input_arg { # name: "path" # type: DT_INT32 # } # input_arg { # name: "path_values" # type: DT_FLOAT # } # output_arg { # name: "unpacked_path" # type: DT_FLOAT # } # } _op_def_lib = _InitOpDefLibrary(b"\n\220\001\n\023HardRoutingFunction\022\016\n\ninput_data\030\001\022\023\n\017tree_parameters\030\001\022\017\n\013tree_biases\030\001\032\024\n\020path_probability\030\001\032\010\n\004path\030\003\"\020\n\tmax_nodes\022\003int\"\021\n\ntree_depth\022\003int\n\270\001\n\020KFeatureGradient\022\016\n\ninput_data\030\001\022\023\n\017tree_parameters\030\001\022\017\n\013tree_biases\030\001\022\n\n\006routes\030\001\032\024\n\020routing_gradient\030\001\032\021\n\rdata_gradient\030\001\032\023\n\017weight_gradient\030\001\"\020\n\tlayer_num\022\003int\"\022\n\013random_seed\022\003int\n\270\001\n\027KFeatureRoutingFunction\022\016\n\ninput_data\030\001\022\023\n\017tree_parameters\030\001\022\017\n\013tree_biases\030\001\032\021\n\rprobabilities\030\001\"\020\n\tlayer_num\022\003int\"\020\n\tmax_nodes\022\003int\"\034\n\025num_features_per_node\022\003int\"\022\n\013random_seed\022\003int\nl\n\017RoutingFunction\022\016\n\ninput_data\030\001\022\023\n\017tree_parameters\030\001\022\017\n\013tree_biases\030\001\032\021\n\rprobabilities\030\001\"\020\n\tmax_nodes\022\003int\n{\n\017RoutingGradient\022\016\n\ninput_data\030\001\022\023\n\017tree_parameters\030\001\022\017\n\013tree_biases\030\001\022\n\n\006routes\030\001\032\024\n\020routing_gradient\030\001\"\020\n\tmax_nodes\022\003int\n\234\001\n\035StochasticHardRoutingFunction\022\016\n\ninput_data\030\001\022\023\n\017tree_parameters\030\001\022\017\n\013tree_biases\030\001\032\024\n\020path_probability\030\001\032\010\n\004path\030\003\"\021\n\ntree_depth\022\003int\"\022\n\013random_seed\022\003int\n\334\001\n\035StochasticHardRoutingGradient\022\016\n\ninput_data\030\001\022\023\n\017tree_parameters\030\001\022\017\n\013tree_biases\030\001\022\024\n\020path_probability\030\001\022\010\n\004path\030\003\032\024\n\020routing_gradient\030\001\032\021\n\rdata_gradient\030\001\032\026\n\022parameter_gradient\030\001\032\021\n\rbias_gradient\030\001\"\021\n\ntree_depth\022\003int\n:\n\nUnpackPath\022\010\n\004path\030\003\022\017\n\013path_values\030\001\032\021\n\runpacked_path\030\001")
py
1a3dfdac2f9cc67c025006a2a480d01f2d5016fc
# # This file is part of pretix (Community Edition). # # Copyright (C) 2014-2020 Raphael Michel and contributors # Copyright (C) 2020-2021 rami.io GmbH and contributors # # This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General # Public License as published by the Free Software Foundation in version 3 of the License. # # ADDITIONAL TERMS APPLY: Pursuant to Section 7 of the GNU Affero General Public License, additional terms are # applicable granting you additional permissions and placing additional restrictions on your usage of this software. # Please refer to the pretix LICENSE file to obtain the full terms applicable to this work. If you did not receive # this file, see <https://pretix.eu/about/en/license>. # # This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied # warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more # details. # # You should have received a copy of the GNU Affero General Public License along with this program. If not, see # <https://www.gnu.org/licenses/>. # import copy import json from collections import defaultdict from django.dispatch import receiver from django.template.loader import get_template from django.urls import resolve, reverse from django.utils.html import escape from django.utils.translation import gettext_lazy as _ from pretix.base.models import Event, Order from pretix.base.signals import ( event_copy_data, item_copy_data, logentry_display, logentry_object_link, register_data_exporters, ) from pretix.control.signals import ( item_forms, nav_event, order_info, order_position_buttons, ) from pretix.plugins.badges.forms import BadgeItemForm from pretix.plugins.badges.models import BadgeItem, BadgeLayout @receiver(nav_event, dispatch_uid="badges_nav") def control_nav_import(sender, request=None, **kwargs): url = resolve(request.path_info) p = ( request.user.has_event_permission(request.organizer, request.event, 'can_change_settings', request) or request.user.has_event_permission(request.organizer, request.event, 'can_view_orders', request) ) if not p: return [] return [ { 'label': _('Badges'), 'url': reverse('plugins:badges:index', kwargs={ 'event': request.event.slug, 'organizer': request.event.organizer.slug, }), 'active': url.namespace == 'plugins:badges', 'icon': 'id-card', } ] @receiver(item_forms, dispatch_uid="badges_item_forms") def control_item_forms(sender, request, item, **kwargs): try: inst = BadgeItem.objects.get(item=item) except BadgeItem.DoesNotExist: inst = BadgeItem(item=item) return BadgeItemForm( instance=inst, event=sender, data=(request.POST if request.method == "POST" else None), prefix="badgeitem" ) @receiver(item_copy_data, dispatch_uid="badges_item_copy") def copy_item(sender, source, target, **kwargs): try: inst = BadgeItem.objects.get(item=source) BadgeItem.objects.create(item=target, layout=inst.layout) except BadgeItem.DoesNotExist: pass @receiver(signal=event_copy_data, dispatch_uid="badges_copy_data") def event_copy_data_receiver(sender, other, question_map, item_map, **kwargs): layout_map = {} for bl in other.badge_layouts.all(): oldid = bl.pk bl = copy.copy(bl) bl.pk = None bl.event = sender layout = json.loads(bl.layout) for o in layout: if o['type'] == 'textarea': if o['content'].startswith('question_'): newq = question_map.get(int(o['content'][9:])) if newq: o['content'] = 'question_{}'.format(newq.pk) bl.save() if bl.background and bl.background.name: bl.background.save('background.pdf', bl.background) layout_map[oldid] = bl for bi in BadgeItem.objects.filter(item__event=other): BadgeItem.objects.create(item=item_map.get(bi.item_id), layout=layout_map.get(bi.layout_id)) @receiver(register_data_exporters, dispatch_uid="badges_export_all") def register_pdf(sender, **kwargs): from .exporters import BadgeExporter return BadgeExporter def _cached_rendermap(event): if hasattr(event, '_cached_renderermap'): return event._cached_renderermap renderermap = { bi.item_id: bi.layout_id for bi in BadgeItem.objects.select_related('layout').filter(item__event=event) } try: default_renderer = event.badge_layouts.get(default=True).pk except BadgeLayout.DoesNotExist: default_renderer = None event._cached_renderermap = defaultdict(lambda: default_renderer) event._cached_renderermap.update(renderermap) return event._cached_renderermap @receiver(order_position_buttons, dispatch_uid="badges_control_order_buttons") def control_order_position_info(sender: Event, position, request, order: Order, **kwargs): if _cached_rendermap(sender)[position.item_id] is None: return '' template = get_template('pretixplugins/badges/control_order_position_buttons.html') ctx = { 'order': order, 'request': request, 'event': sender, 'position': position } return template.render(ctx, request=request).strip() @receiver(order_info, dispatch_uid="badges_control_order_info") def control_order_info(sender: Event, request, order: Order, **kwargs): cm = _cached_rendermap(sender) if all(cm[p.item_id] is None for p in order.positions.all()): return '' template = get_template('pretixplugins/badges/control_order_info.html') ctx = { 'order': order, 'request': request, 'event': sender, } return template.render(ctx, request=request) @receiver(signal=logentry_display, dispatch_uid="badges_logentry_display") def badges_logentry_display(sender, logentry, **kwargs): if not logentry.action_type.startswith('pretix.plugins.badges'): return plains = { 'pretix.plugins.badges.layout.added': _('Badge layout created.'), 'pretix.plugins.badges.layout.deleted': _('Badge layout deleted.'), 'pretix.plugins.badges.layout.changed': _('Badge layout changed.'), } if logentry.action_type in plains: return plains[logentry.action_type] @receiver(signal=logentry_object_link, dispatch_uid="badges_logentry_object_link") def badges_logentry_object_link(sender, logentry, **kwargs): if not logentry.action_type.startswith('pretix.plugins.badges.layout') or not isinstance(logentry.content_object, BadgeLayout): return a_text = _('Badge layout {val}') a_map = { 'href': reverse('plugins:badges:edit', kwargs={ 'event': sender.slug, 'organizer': sender.organizer.slug, 'layout': logentry.content_object.id }), 'val': escape(logentry.content_object.name), } a_map['val'] = '<a href="{href}">{val}</a>'.format_map(a_map) return a_text.format_map(a_map)
py
1a3dfe083fe37d61aa98e57733681fcc46273461
import numpy as np import pandas as pd import matplotlib.pyplot as plt import os import glob import salem from combine2d.core.utils import NonRGIGlacierDirectory from combine2d.core.test_cases import Borden, Giluwe from combine2d.core.arithmetics import RMSE, mean_BIAS, percentiles from combine2d.core.data_logging import load_pickle from combine2d.sandbox.quick_n_dirty_eval.experiment_naming_engine import \ get_experiment_group, get_experiment_subgroup from oggm import cfg; cfg.initialize() basedir = '/home/philipp/final' outputdir = '/home/philipp/final' case = Giluwe gdir = NonRGIGlacierDirectory(case, basedir) ref_ice_mask = np.load(gdir.get_filepath('ref_ice_mask')) true_bed = salem.GeoTiff(gdir.get_filepath('dem')).get_vardata() true_surf = salem.GeoTiff(gdir.get_filepath('ref_dem')).get_vardata() filepaths = glob.glob(os.path.join(gdir.dir, '*', 'data_logger.pkl')) filepaths = sorted(filepaths) columns = [ 'experiment', 'experimentgroup', 'experimentsubgroup', 'subgroupindex', 'optimizedbed', 'optimizedsurf', 'optimizedicethick', 'firstguess', 'beds', 'surfs', 'costs', 'cterms', 'optimizedbederror', 'optimizedsurferror', 'optimizedbedrmse', 'optimizedsurfrmse', 'optimizedbedbias', 'optimizedsurfbias', 'firstguessrmse', 'firstguessbias', 'firstguess_5_percentile', 'firstguess_25_percentile', 'firstguess_75_percentile', 'firstguess_95_percentile', 'surfacenoise', 'surfacenoisermse', 'surfacenoisebias', 'surfacenoise_5_percentile', 'surfacenoise_25_percentile', 'surfacenoise_75_percentile', 'surfacenoise_95_percentile', 'bedmeasurements', 'bedmeasurementsrmse', 'bedmeasurementsbias', 'iterations', 'R', 'dV', 'warning', 'dir_path' ] df = pd.DataFrame(columns=columns) for path in filepaths: dl = load_pickle(path) inv_subdir = os.path.split(path)[0] inv_settings = load_pickle(os.path.join(gdir.dir, inv_subdir, 'inversion_settings.pkl')) experiment = inv_settings['inversion_subdir'] surface_noise = np.zeros(true_bed.shape) if os.path.exists(os.path.join(gdir.dir, inv_subdir, 'dem_noise.npy')): surface_noise = np.load(os.path.join(gdir.dir, inv_subdir, 'dem_noise.npy')) bed_measurements = np.ma.masked_all(true_bed.shape) if os.path.exists(os.path.join(gdir.dir, inv_subdir, 'bed_measurements.pkl')): bed_measurements = np.load(os.path.join(gdir.dir, inv_subdir, 'bed_measurements.pkl')) warning_found = False # first_guessed_bed_noise = np.load(os.path.join(gdir.dir, inv_subdir, # 'first_guessed_bed_noise.npy')) if os.path.exists(os.path.join(gdir.dir, inv_subdir, 'warning.txt')): warning_found = True if len(dl.step_indices) > 0: final_bed = dl.beds[-1] final_surf = dl.surfs[-1] final_it = dl.surfs[-1] - dl.beds[-1] bed_rmse = RMSE(dl.beds[-1], true_bed, ref_ice_mask) bed_bias = mean_BIAS(dl.beds[-1], true_bed, ref_ice_mask) bed_error = final_bed - true_bed surf_rmse = RMSE(dl.surfs[-1], true_surf, ref_ice_mask) surf_bias = mean_BIAS(dl.surfs[-1], true_surf, ref_ice_mask) surf_error = final_surf - true_surf dV = (((dl.surfs[-1] - dl.beds[-1]).sum()) - (true_surf - true_bed).sum()) / (true_surf - true_bed).sum() else: final_bed = np.ma.masked_all(true_bed.shape) final_surf = np.ma.masked_all(true_bed.shape) final_it = np.ma.masked_all(true_bed.shape) bed_error = np.ma.masked_all(true_bed.shape) bed_rmse = np.nan bed_bias = np.nan surf_error = np.ma.masked_all(true_bed.shape) surf_rmse = np.nan surf_bias = np.nan dV = np.nan first_guess_percentiles = percentiles(dl.first_guessed_bed, true_bed, ref_ice_mask) surface_noise_percentiles = percentiles(surface_noise, 0, ref_ice_mask) new_row = { 'experiment': experiment, 'experimentgroup': get_experiment_group(experiment), 'experimentsubgroup': get_experiment_subgroup(experiment), 'subgroupindex': '', 'optimizedbed': final_bed, 'optimizedsurf': final_surf, 'optimizedicethick': final_it, 'firstguess': dl.first_guessed_bed, # 'beds': dl.beds, # 'surfs': dl.surfs, # 'costs': dl.costs, # 'cterms': dl.c_terms, 'optimizedbederror': bed_error, 'optimizedbedrmse': bed_rmse, 'optimizedbedbias': bed_bias, 'optimizedsurferror': surf_error, 'optimizedsurfrmse': surf_rmse, 'optimizedsurfbias': surf_rmse, 'firstguessrmse': RMSE(dl.first_guessed_bed, true_bed, ref_ice_mask), 'firstguessbias': mean_BIAS(dl.first_guessed_bed, true_bed, ref_ice_mask), 'firstguess_5_percentile': first_guess_percentiles[0], 'firstguess_25_percentile': first_guess_percentiles[1], 'firstguess_75_percentile': first_guess_percentiles[-2], 'firstguess_95_percentile': first_guess_percentiles[-1], 'surfacenoise': surface_noise, 'surfacenoisermse': RMSE(surface_noise, 0, ref_ice_mask), 'surfacenoisebias': mean_BIAS(surface_noise, 0, ref_ice_mask), 'surfacenoise_5_percentile': surface_noise_percentiles[0], 'surfacenoise_25_percentile': surface_noise_percentiles[1], 'surfacenoise_75_percentile': surface_noise_percentiles[-2], 'surfacenoise_95_percentile': surface_noise_percentiles[-1], 'bedmeasurements': bed_measurements, 'bedmeasurementsrmse': RMSE(bed_measurements, 0, ref_ice_mask), 'bedmeasurementsbias': mean_BIAS(bed_measurements, 0, ref_ice_mask), 'iterations': len(dl.step_indices), 'dx': case.dx, 'dV': dV, 'warning': warning_found, 'dir_path': inv_subdir } if new_row['experimentgroup'] == 'fg rmse': new_row['subgroupindex'] = new_row['firstguessrmse'] elif new_row['experimentgroup'] == 'fg bias': new_row['subgroupindex'] = new_row['firstguessbias'] elif new_row['experimentgroup'] == 'promised land': new_row['subgroupindex'] = new_row['surfacenoisermse'] elif new_row['experimentgroup'] == 'bed measurements': new_row['subgroupindex'] = new_row['bedmeasurementsrmse'] # df_row = pd.DataFrame(new_row) df = df.append(new_row, ignore_index=True) df = df.sort_values(['experimentgroup', 'experimentsubgroup', 'subgroupindex', 'experiment']) df.to_pickle(os.path.join(basedir, '{:s} dataframe.pkl'.format(case.name))) # store = pd.HDFStore(os.path.join(basedir, # '{:s} dataframe.h5'.format(case.name))) # store['df'] = df # store.close() cols_to_drop = [ 'optimizedbed', 'optimizedsurf', 'optimizedicethick', 'firstguess', 'beds', 'surfs', 'costs', 'cterms', 'optimizedbederror', 'optimizedsurferror', 'surfacenoise', 'bedmeasurements' ] small_df = df.copy() small_df.drop(cols_to_drop, inplace=True, axis=1) small_df = small_df.to_csv( os.path.join(basedir, '{:s} dataframe small.csv'.format(case.name))) print('end') fig, ax = plt.subplots() sdf = df.loc[df['experimentsubgroup'] == 'fg bias'] sdf.plot('subgroupindex', 'optimizedbedrmse', ax=ax) sdf.plot('subgroupindex', 'firstguessrmse', ax=ax) plt.show() fig, ax = plt.subplots() sdf = df.loc[df['experimentgroup'] == 'fg rmse'] for key, grp in sdf.groupby(['experimentsubgroup']): grp.plot('subgroupindex', 'optimizedbedrmse', ax=ax, label='optimized ' + str(key)) grp.plot('subgroupindex', 'firstguessrmse', ax=ax, label='fg rmse ' + str( key)) grp.plot('subgroupindex', 'firstguessbias', ax=ax, label='fg bias ' + str( key)) plt.show()
py
1a3dfe623a0775d26de7853fcc7325146c75d724
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # Copyright (C) 2020-2021 LuaVela Authors. See Copyright Notice in COPYRIGHT # Copyright (C) 2015-2020 IPONWEB Ltd. See Copyright Notice in COPYRIGHT # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config import os # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- Project information ----------------------------------------------------- project = u'Documentation' copyright = u'2015-2019 IPONWEB Ltd.' author = u'uJIT team' # The short X.Y version version = u'' # The full version, including alpha/beta/rc tags release = u'' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ ] if tags.has('use_confluencebuilder'): extensions.append('sphinxcontrib.confluencebuilder') # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst'] # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [ ] # Single sourcing rst_epilog = ''' .. |PROJECT| replace:: LuaVela .. |PRJ_INT| replace:: uJIT .. |CLI_BIN| replace:: ujit ''' # The name of the Pygments (syntax highlighting) style to use. pygments_style = None # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". # html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'Documentationdoc' # -- Options for LaTeX output ------------------------------------------------ # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'uJIT documentation', u'Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'Documentation', u'Documentation', author, 'uJIT', 'Implementation of Lua 5.1, originally a fork of LuaJIT', 'Miscellaneous'), ] # -- Extension configuration ------------------------------------------------- confluence_publish = True confluence_page_hierarchy = True confluence_server_user = os.getenv("CONFLUENCE_USERNAME", "") confluence_server_pass = os.getenv("CONFLUENCE_PASSWORD", "")
py
1a3dfed622eafb365936b6b6807a37844faa017c
#!/usr/bin/env python """ requests_cache ~~~~~~~~~~~~~~ Transparent cache for ``requests`` library with persistence and async support Just write:: import requests_cache requests_cache.install_cache() And requests to resources will be cached for faster repeated access:: import requests for i in range(10): r = requests.get('http://httpbin.org/delay/5') # will took approximately 5 seconds instead 50 :copyright: (c) 2012 by Roman Haritonov. :license: BSD, see LICENSE for more details. """ __docformat__ = 'restructuredtext' __version__ = '0.5.2' from .core import ( CachedSession, clear, disabled, enabled, get_cache, install_cache, remove_expired_responses, uninstall_cache, )
py
1a3dff19d61861e63757aaf2e68be40d12a39c15
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Provide base classes that define what is an adversarial for object detection models.""" import math from .base import Criterion import numpy as np class TargetClassMiss(Criterion): """ Defines adversarials as images for which the target class is not in the detection result. """ def __init__(self, target_class): super(TargetClassMiss, self).__init__() self._target_class = target_class def target_class(self): """Return target class.""" return self._target_class def name(self): """Return ctiterion name.""" return 'TargetClassMiss' def is_adversarial(self, predictions, annotation): """Decides if predictions for an image are adversarial.""" if predictions is None: return True return self._target_class not in predictions['classes'] class RegionalTargetClassMiss(Criterion): """Defines adversarials as images for which the target class in target region is not in the detection result. """ def __init__(self, target_class, target_region): super(RegionalTargetClassMiss, self).__init__() self._target_class = target_class self._target_retion = np.array(target_region).astype(int) def target_class(self): """Return target class.""" return self._target_class def target_region(self): """Return target region.""" return self._target_retion def name(self): """Return ctiterion name.""" return 'RegionalTargetClassMiss' def is_adversarial(self, predictions, annotation): """Decides if predictions for an image are adversarial.""" if predictions is None: return True bbox_list = predictions['boxes'] class_list = predictions['classes'] for bbox_pred, cls_pred in zip(bbox_list, class_list): iou = self._get_IoU(bbox_pred, self._target_retion) if iou > 0 and cls_pred == self._target_class: return False return True @staticmethod def _get_IoU(bbox1, bbox2): bi = [max(bbox1[0], bbox2[0]), max(bbox1[1], bbox2[1]), min(bbox1[2], bbox2[2]), min(bbox1[3], bbox2[3])] ih = bi[2] - bi[0] + 1 iw = bi[3] - bi[1] + 1 if iw > 0 and ih > 0: # compute overlap (IoU) = area of intersection / area of union ua = (bbox1[2] - bbox1[0] + 1) * (bbox1[3] - bbox1[1] + 1) + \ (bbox2[2] - bbox2[0] + 1) * \ (bbox2[3] - bbox2[1] + 1) - iw * ih ov = iw * ih / ua return ov else: return 0.0 class TargetClassMissGoogle(Criterion): """Defines adversarials as images for which the target class is not in the Google object detection result. """ def __init__(self, target_class): super(TargetClassMissGoogle, self).__init__() self._target_class = target_class def target_class(self): """Return target class.""" return self._target_class def name(self): """Return ctiterion name.""" return '{}-{}'.format( self.__class__.__name__, self.target_class()) def is_adversarial(self, predictions): """Decides if predictions for an image are adversarial.""" if predictions is None: return True assert isinstance(predictions, list), 'Predictions should be list.' for pred in predictions: if pred['name'].lower() == self._target_class.lower(): return False return True class WeightedAP(Criterion): """Defines adversarials as weighted AP value larger than given threshold. """ _defaults = { "alpha": 0.001, "lambda_tp_area": 0, "lambda_tp_dis": 0, "lambda_tp_cs": 0, "lambda_tp_cls": 1, "lambda_fp_area": 0.1, "lambda_fp_cs": 0, 'lambda_fn_area': 0.1, 'lambda_fn_cs': 0, 'a_set': [1, 1, 1, 0.1], 'MINOVERLAP': 0.5, } @classmethod def get_defaults(cls, n): """Return default value of n. Parameters ---------- n : str Key of the defalut dictionary. """ if n in cls._defaults: return cls._defaults[n] else: return "Unrecognized attribute name '" + n + "'" def __init__(self, Height, Width, distance_th, print_f=False): self.__dict__.update(self._defaults) # set up default values self.Height = float(Height) self.Width = float(Width) self.th_is_adv = distance_th self.print_f = print_f self.a_tp = self.a_set[0] self.a_fp = self.a_set[1] self.a_fn = self.a_set[2] self.a_er = self.a_set[3] def name(self): """Return ctiterion name.""" return 'WeightedAP' def is_adversarial(self, predictions, annotation): """Decides if predictions for an image are adversarial.""" if predictions is None: return None return self.distance_score(annotation, predictions) > self.th_is_adv def _get_bb_area(self, bbox): return (bbox[2] - bbox[0] + 1) * (bbox[3] - bbox[1] + 1) def _get_IoU(self, obj_1, obj_2): bb = obj_1["bbox"] bbgt = obj_2["bbox"] bi = [max(bb[0], bbgt[0]), max(bb[1], bbgt[1]), min(bb[2], bbgt[2]), min(bb[3], bbgt[3])] iw = bi[2] - bi[0] + 1 ih = bi[3] - bi[1] + 1 if iw > 0 and ih > 0: # compute overlap (IoU) = area of intersection / area of union ua = (bb[2] - bb[0] + 1) * (bb[3] - bb[1] + 1) + \ (bbgt[2] - bbgt[0] + 1) * (bbgt[3] - bbgt[1] + 1) - iw * ih ov = iw * ih / ua return ov else: return 0.0 def _find_by_idx(self, idx, source_dic_list): for temp_obj in source_dic_list: if temp_obj['index'] == idx: return temp_obj return {} def _get_largest_bb_area(self, obj_list): temp_max = 1 for temp_obj in obj_list: bb = temp_obj['bbox'] bb_area = self._get_bb_area(bb) if bb_area > temp_max: temp_max = bb_area return temp_max def _get_total_bb_area(self, obj_list): total_area = 1 for temp_obj in obj_list: bb = temp_obj['bbox'] bb_area = self._get_bb_area(bb) total_area += bb_area return total_area def _get_largest_bb_edge(self, obj_list): temp_max = -1 for temp_obj in obj_list: bb = temp_obj['bbox'] if abs(bb[2] - bb[0]) > temp_max: temp_max = abs(bb[2] - bb[0]) if abs(bb[3] - bb[1]) > temp_max: temp_max = abs(bb[3] - bb[1]) return temp_max def _sort_by_conf(self, ori_list, source_dic_list): tup_list = [] if len(ori_list) <= 1: return ori_list for temp in ori_list: temp_obj = self._find_by_idx(temp, source_dic_list) if not temp_obj: raise ValueError('object cannot be found by index.') tup_list.append((temp_obj['index'], temp_obj['confident_score'])) tup_list.sort(key=lambda tup: tup[1]) return [x[0] for x in tup_list] def _sort_match_dic(self, ori_index_dic, source_dic_list): sorted_dic = {} for temp_key in ori_index_dic.keys(): temp_list = ori_index_dic[temp_key] if len(temp_list) <= 1: sorted_dic[temp_key] = temp_list else: sorted_dic[temp_key] = self._sort_by_conf( temp_list, source_dic_list) return sorted_dic def _get_fn_list(self, tp_match_dic, source_list): dst_list = [] for temp_source in source_list: flag_found = False for temp_idx_pair in tp_match_dic.keys(): if (temp_source['index'] in tp_match_dic[temp_idx_pair]): flag_found = True if not flag_found: dst_list.append(temp_source) return dst_list def _get_bb_distance(self, bb1, bb2): c1 = [0.5 * (bb1[2] + bb1[0]), 0.5 * (bb1[3] + bb1[1])] c2 = [0.5 * (bb2[2] + bb2[0]), 0.5 * (bb2[3] + bb2[1])] return math.sqrt((c1[0] - c2[0]) ** 2 + (c1[1] - c2[1]) ** 2) def distance_score(self, gt_dic, pd_dic): """Compute metric distance between given two detection results. Parameters ---------- gt_dic : dict The ground truth annotation which contains: scores, boxes and classes. pd_dic : dict The target output form detector which contains: scores, boxes and classes. """ gt_list = self._dic2list(gt_dic) pd_list = self._dic2list(pd_dic) return self._compute_score(gt_list, pd_list) def _dic2list(self, dic): res_list = [] for idx, key in enumerate(dic.keys()): if idx == 0: for sub_idx in range(len(dic[key])): res_list.append({'index': sub_idx}) if key == 'scores': temp_name = 'confident_score' elif key == 'boxes': temp_name = 'bbox' elif key == 'classes': temp_name = 'class_name' else: raise ValueError('Invalid key.') for sub_idx, temp_obj in enumerate(dic[key]): if temp_name is 'bbox': temp_obj = [ temp_obj[1], temp_obj[0], temp_obj[3], temp_obj[2]] res_list[sub_idx][temp_name] = temp_obj return res_list def _compute_score(self, gt_obj_list, pd_obj_list): ''' Notes ----- compute metirc distance score for two results from object detection. input: pd_obj_list: object list of prediction gt_obj_list: object list of ground gruth obj = { 'class_name' : 'car' 'bbox' : '634 663 787 913' string of [left, up, right, down] splited by ' ' 'confident score' : 0.9918241 'index' : 0 } ''' tp_match_dic = {} # {pd_idx : [gt_idx1, gt_idx2...]} for pd_obj in pd_obj_list: tp_match_dic[pd_obj['index']] = [] for gt_obj in gt_obj_list: IoU = self._get_IoU(pd_obj, gt_obj) # and gt_obj['class_name'] == pd_obj['class_name']: if IoU >= self.MINOVERLAP: tp_match_dic[pd_obj['index']].append(gt_obj['index']) tp_match_dic = self._sort_match_dic(tp_match_dic, gt_obj_list) tp_pair = [] fp_pd = [] for temp_idx in tp_match_dic.keys(): if not tp_match_dic[temp_idx]: fp_pd.append(self._find_by_idx(temp_idx, pd_obj_list)) else: tp_pair.append( (self._find_by_idx( temp_idx, pd_obj_list), self._find_by_idx( tp_match_dic[temp_idx][0], gt_obj_list))) fn_gt = self._get_fn_list(tp_match_dic, gt_obj_list) self.largest_area_gt = self._get_largest_bb_area(gt_obj_list) self.largest_edge_gt = self._get_largest_bb_edge(gt_obj_list) self.total_area_gt = self._get_total_bb_area(gt_obj_list) self.total_area_pd = self._get_total_bb_area(pd_obj_list) cum_tp_penal = 0.0 for temp_tp_pair in tp_pair: results = self._tp_panelize(temp_tp_pair) distance = results['distance'] area_dif = results['area_dif'] cs_dif = results['cs_dif'] class_dif = results['class_dif'] temp_tp_penal = self.lambda_tp_dis * distance + self.lambda_tp_area * area_dif \ + self.lambda_tp_cs * cs_dif + self.lambda_tp_cls * class_dif cum_tp_penal += temp_tp_penal if self.print_f: print('cum tp: ', cum_tp_penal) if len(tp_pair) > 1: cum_tp_penal /= len(tp_pair) cum_fp_penal = 0.0 for temp_fp_pd in fp_pd: area, cs = self._fp_fn_panelize(temp_fp_pd) drop_func_out = self._factor_func( self.total_area_pd / (self.Height * self.Width)) temp_fp_panel = self.lambda_fp_area * drop_func_out * \ area / self.total_area_pd + self.lambda_fp_cs * cs cum_fp_penal += temp_fp_panel if self.print_f: print('cum fp: ', cum_fp_penal) if len(fp_pd) > 1: cum_fp_penal /= len(fp_pd) cum_fn_penal = 0.0 for temp_fn_gt in fn_gt: area, cs = self._fp_fn_panelize(temp_fn_gt) drop_func_out = self._factor_func( self.total_area_gt / (self.Height * self.Width)) temp_fn_panel = self.lambda_fn_area * drop_func_out * \ area / self.total_area_gt + self.lambda_fn_cs * cs cum_fn_penal += temp_fn_panel if self.print_f: print('cum fn: ', cum_fn_penal) if len(fn_gt) > 1: cum_fn_penal /= len(fn_gt) if (len(tp_pair) + len(fp_pd) + len(fn_gt)) == 0: err_panel = 0 else: err_panel = float((len(fp_pd) + len(fn_gt))) / \ (len(tp_pair) + len(fp_pd) + len(fn_gt)) if self.print_f: print('tp: ', len(tp_pair), ' cum_tp_penal: ', cum_tp_penal) print('fp: ', len(fp_pd), ' cum_fp_penal: ', cum_fp_penal) print('fn: ', len(fn_gt), ' cum_fn_penal: ', cum_fn_penal) print( 'total num: ', len(tp_pair) + len(fp_pd) + len(fn_gt), ' err_panel: ', err_panel) score_final = (self.a_tp * cum_tp_penal + self.a_fp * cum_fp_penal + self.a_fn * cum_fn_penal + self.a_er * err_panel) \ / (self.a_tp + self.a_fp + self.a_fn + self.a_er) return score_final def _factor_func(self, x): x = float(x) if x != 0: return x / (x + self.alpha) return x def _tp_panelize(self, obj_pair): bb0 = obj_pair[0]['bbox'] bb1 = obj_pair[1]['bbox'] distance = self._get_bb_distance(bb0, bb1) area0 = self._get_bb_area(bb0) area1 = self._get_bb_area(bb1) area_dif = abs(area0 - area1) cs_dif = abs( float( obj_pair[0]['confident_score']) - float( obj_pair[1]['confident_score'])) class_dif = 0 if obj_pair[0]['class_name'] != obj_pair[1]['class_name']: class_dif = 1 return {'distance': distance, 'area_dif': area_dif, 'cs_dif': cs_dif, 'class_dif': class_dif} def _fp_fn_panelize(self, obj): bb = obj['bbox'] area = self._get_bb_area(bb) cs = float(obj['confident_score']) return area, cs
py
1a3dff52e8e3a6b3d9b94b80a0747e2762374f35
"""Define report loader class.""" import re import os import bioc import pandas as pd from negbio.pipeline import text2bioc, ssplit, section_split from tqdm import tqdm from constants import * class Loader(object): """Report impression loader.""" def __init__(self, reports_path, extract_impression=False, extension='txt'): self.reports_path = reports_path self.extract_impression = extract_impression self.punctuation_spacer = str.maketrans({key: f"{key} " for key in ".,"}) self.splitter = ssplit.NegBioSSplitter(newline=False) self.extension = extension if os.path.isdir(reports_path): # load in all radiology reports in a folder self.load_files() else: # load in a single CSV file with all radiology reports self.load_csv() self.prep_collection() def load_files(self): """Load and clean many reports stored in a folder""" files = os.listdir(self.reports_path) files = [f for f in files if f.endswith(self.extension)] assert len(files) > 0,\ ('Folder with reports must contain at ' f'least one ".{self.extension}" file') files.sort() # if args.verbose: files = tqdm(files) print('Collecting reports from files...') # assume one report per file self.reports = list() self.index = list() for f in tqdm(files, total=len(files)): with open(self.reports_path / f, 'r') as fp: self.reports.append(''.join(fp.readlines())) self.index.append(f) def load_csv(self): """Load and clean the reports.""" reports = pd.read_csv(self.reports_path, header=None) # allow users to input # (1) single column CSV or reports # (2) two columns; first is the index, second is the report assert reports.shape[1] <= 2,\ ('A one or two column CSV with no header is expected as input.') if reports.shape[1] == 1: reports = reports.iloc[:, 0].tolist() index = None else: # reports shape must be 2 index = reports.iloc[:, 0].tolist() reports = reports.iloc[:, 1].tolist() self.index = index self.reports = ['' if type(x) is not str else x for x in reports] def prep_collection(self): """Apply splitter and create bioc collection""" collection = bioc.BioCCollection() for i, report in enumerate(self.reports): clean_report = self.clean(report) document = text2bioc.text2document(str(i), clean_report) if self.extract_impression: document = section_split.split_document(document) self.extract_impression_from_passages(document) split_document = self.splitter.split_doc(document) assert len(split_document.passages) == 1,\ ('Each document must have a single passage, ' + 'the Impression section.') collection.add_document(split_document) self.collection = collection def extract_impression_from_passages(self, document): """Extract the Impression section from a Bioc Document.""" impression_passages = [] for i, passage in enumerate(document.passages): if 'title' in passage.infons: if passage.infons['title'] == 'impression': next_passage = document.passages[i+1] assert 'title' not in next_passage.infons,\ "Document contains empty impression section." impression_passages.append(next_passage) assert len(impression_passages) <= 1,\ (f"The document contains {len(document.passages)} impression " + "passages.") assert len(impression_passages) >= 1,\ "The document contains no explicit impression passage." document.passages = impression_passages def clean(self, report): """Clean the report text.""" lower_report = report.lower() # Change `and/or` to `or`. corrected_report = re.sub('and/or', 'or', lower_report) # Change any `XXX/YYY` to `XXX or YYY`. corrected_report = re.sub('(?<=[a-zA-Z])/(?=[a-zA-Z])', ' or ', corrected_report) # Clean double periods clean_report = corrected_report.replace("..", ".") # Insert space after commas and periods. clean_report = clean_report.translate(self.punctuation_spacer) # Convert any multi white spaces to single white spaces. clean_report = ' '.join(clean_report.split()) # Remove empty sentences clean_report = re.sub(r'\.\s+\.', '.', clean_report) return clean_report
py
1a3e0021d3184dc4b723a83e704013591df656a4
# Copyright 2018 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .blueprint import product_catalog_page
py
1a3e015fa54c182a2d5300a48cf1dec06bba1ad9
class Complex: def __init__(self, realpart, imagpart): self.r = realpart self.i = imagpart def add(self, addend): return Complex(self.r + addend.r, self.i + addend.i) def subtract(self, subtrahend): return Complex(self.r - subtrahend.r, self.i - subtrahend.i) def multiply(self, multiplicand): return Complex((self.r * multiplicand.r) - (self.i * multiplicand.i), (self.r * multiplicand.i) + (self.i * multiplicand.r)) def divide(self, divisor): return Complex(((self.r * divisor.r) + (self.i * divisor.i)) / ((divisor.r)**2 + (divisor.i)**2), ((self.i * divisor.r) - (self.r * divisor.i)) / ((divisor.r)**2 + (divisor.i)**2)) a = Complex(3.0, -4.5) b = Complex(4.0, -9) x = a.add(b) y = a.subtract(b) z = a.multiply(b) w = a.divide(b) print('sum:', x.r, '+', str(x.i) + 'i', '\ndifference:', y.r, '+', str(y.i) + 'i', '\nproduct:', z.r, '+', str(z.i) + 'i', '\nquotient:', w.r, '+', str(w.i) + 'i')
py
1a3e01c470e11bfec622a5369f9b565b91a36864
import datetime import pytest import responses from dagster import Failure, build_init_resource_context from dagster_fivetran import FivetranOutput, fivetran_resource from .utils import ( DEFAULT_CONNECTOR_ID, get_complex_sample_connector_schema_config, get_sample_connector_response, get_sample_sync_response, get_sample_update_response, ) def test_get_connector_details(): ft_resource = fivetran_resource( build_init_resource_context( config={ "api_key": "some_key", "api_secret": "some_secret", } ) ) with responses.RequestsMock() as rsps: rsps.add( rsps.GET, f"{ft_resource.api_base_url}{DEFAULT_CONNECTOR_ID}", json=get_sample_connector_response(), ) assert ( ft_resource.get_connector_details(DEFAULT_CONNECTOR_ID) == get_sample_connector_response()["data"] ) @pytest.mark.parametrize("max_retries,n_flakes", [(0, 0), (1, 2), (5, 7), (7, 5), (4, 4)]) def test_get_connector_details_flake(max_retries, n_flakes): ft_resource = fivetran_resource( build_init_resource_context( config={ "api_key": "some_key", "api_secret": "some_secret", "request_max_retries": max_retries, "request_retry_delay": 0, } ) ) def _mock_interaction(): with responses.RequestsMock() as rsps: # first n requests fail for _ in range(n_flakes): rsps.add( rsps.GET, f"{ft_resource.api_base_url}{DEFAULT_CONNECTOR_ID}", status=500, ) rsps.add( rsps.GET, f"{ft_resource.api_base_url}{DEFAULT_CONNECTOR_ID}", json=get_sample_connector_response(), ) return ft_resource.get_connector_details(DEFAULT_CONNECTOR_ID) if n_flakes > max_retries: with pytest.raises(Failure, match="Exceeded max number of retries."): _mock_interaction() else: assert _mock_interaction() == get_sample_connector_response()["data"] @pytest.mark.parametrize( "data,expected", [ ( {"succeeded_at": "2021-01-01T01:00:00.0Z", "failed_at": None}, (datetime.datetime(2021, 1, 1, 1, 0, tzinfo=datetime.timezone.utc), True, "scheduled"), ), ( {"succeeded_at": None, "failed_at": "2021-01-01T01:00:00.0Z"}, ( datetime.datetime(2021, 1, 1, 1, 0, tzinfo=datetime.timezone.utc), False, "scheduled", ), ), ( { "succeeded_at": "2021-01-01T01:00:00.0Z", "failed_at": None, "status": {"sync_state": "foo"}, }, (datetime.datetime(2021, 1, 1, 1, 0, tzinfo=datetime.timezone.utc), True, "foo"), ), ( {"succeeded_at": "2021-01-01T02:00:00.00Z", "failed_at": "2021-01-01T01:00:00.0Z"}, (datetime.datetime(2021, 1, 1, 2, 0, tzinfo=datetime.timezone.utc), True, "scheduled"), ), ( {"succeeded_at": "2021-01-01T01:00:00.0Z", "failed_at": "2021-01-01T02:00:00.00Z"}, ( datetime.datetime(2021, 1, 1, 2, 0, tzinfo=datetime.timezone.utc), False, "scheduled", ), ), ], ) def test_get_connector_sync_status(data, expected): ft_resource = fivetran_resource( build_init_resource_context( config={ "api_key": "some_key", "api_secret": "some_secret", } ) ) with responses.RequestsMock() as rsps: rsps.add( rsps.GET, f"{ft_resource.api_base_url}{DEFAULT_CONNECTOR_ID}", json=get_sample_connector_response(data=data), ) assert ft_resource.get_connector_sync_status(DEFAULT_CONNECTOR_ID) == expected @pytest.mark.parametrize( "n_polls, succeed_at_end", [(0, True), (0, False), (4, True), (4, False), (30, True)], ) def test_sync_and_poll(n_polls, succeed_at_end): ft_resource = fivetran_resource( build_init_resource_context( config={ "api_key": "some_key", "api_secret": "some_secret", } ) ) api_prefix = f"{ft_resource.api_base_url}{DEFAULT_CONNECTOR_ID}" final_data = ( {"succeeded_at": "2021-01-01T02:00:00.0Z"} if succeed_at_end else {"failed_at": "2021-01-01T02:00:00.0Z"} ) def _mock_interaction(): with responses.RequestsMock() as rsps: rsps.add( rsps.GET, f"{ft_resource.api_base_url}{DEFAULT_CONNECTOR_ID}/schemas", json=get_complex_sample_connector_schema_config(), ) rsps.add(rsps.PATCH, api_prefix, json=get_sample_update_response()) rsps.add(rsps.POST, f"{api_prefix}/force", json=get_sample_sync_response()) # initial state rsps.add(rsps.GET, api_prefix, json=get_sample_connector_response()) # n polls before updating for _ in range(n_polls): rsps.add(rsps.GET, api_prefix, json=get_sample_connector_response()) # final state will be updated rsps.add(rsps.GET, api_prefix, json=get_sample_connector_response(data=final_data)) return ft_resource.sync_and_poll(DEFAULT_CONNECTOR_ID, poll_interval=0.1) if succeed_at_end: assert _mock_interaction() == FivetranOutput( connector_details=get_sample_connector_response(data=final_data)["data"], schema_config=get_complex_sample_connector_schema_config()["data"], ) else: with pytest.raises(Failure, match="failed!"): _mock_interaction() def test_sync_and_poll_timeout(): ft_resource = fivetran_resource( build_init_resource_context( config={ "api_key": "some_key", "api_secret": "some_secret", } ) ) with pytest.raises(Failure, match="timed out"): with responses.RequestsMock() as rsps: rsps.add( rsps.GET, f"{ft_resource.api_base_url}{DEFAULT_CONNECTOR_ID}/schemas", json=get_complex_sample_connector_schema_config(), ) rsps.add( rsps.GET, f"{ft_resource.api_base_url}{DEFAULT_CONNECTOR_ID}", json=get_sample_connector_response(), ) rsps.add( rsps.PATCH, f"{ft_resource.api_base_url}{DEFAULT_CONNECTOR_ID}", json=get_sample_update_response(), ) rsps.add( rsps.POST, f"{ft_resource.api_base_url}{DEFAULT_CONNECTOR_ID}/force", json=get_sample_sync_response(), ) ft_resource.sync_and_poll(DEFAULT_CONNECTOR_ID, poll_interval=1, poll_timeout=2) @pytest.mark.parametrize( "data,match", [ ({"paused": True}, "paused"), ({"status": {"setup_state": "foo"}}, "setup"), ], ) def test_sync_and_poll_invalid(data, match): ft_resource = fivetran_resource( build_init_resource_context( config={ "api_key": "some_key", "api_secret": "some_secret", } ) ) with pytest.raises(Failure, match=match): with responses.RequestsMock() as rsps: rsps.add( rsps.GET, f"{ft_resource.api_base_url}{DEFAULT_CONNECTOR_ID}/schemas", json=get_complex_sample_connector_schema_config(), ) rsps.add( rsps.GET, f"{ft_resource.api_base_url}{DEFAULT_CONNECTOR_ID}", json=get_sample_connector_response(data=data), ) rsps.add( rsps.PATCH, f"{ft_resource.api_base_url}{DEFAULT_CONNECTOR_ID}", json=get_sample_update_response(), ) rsps.add( rsps.POST, f"{ft_resource.api_base_url}{DEFAULT_CONNECTOR_ID}/force", json=get_sample_sync_response(), ) ft_resource.sync_and_poll(DEFAULT_CONNECTOR_ID, poll_interval=0.1)
py
1a3e01d72a710931aab79f898a7b1e0216e28922
''' Kivy standard library imports ''' import kivy from kivy.config import Config #kivy.config.Config.set('graphics','resizable', False) #config needs to be set before kivy.app is imported Config.set('graphics', 'fullscreen', 'auto') from kivy.app import App from time import time from os.path import dirname, join from kivy.lang import Builder from kivy.properties import NumericProperty,StringProperty,BooleanProperty from kivy.properties import ListProperty,ReferenceListProperty,ObjectProperty from kivy.animation import Animation from kivy.uix.screenmanager import Screen from kivy.core.window import Window from kivy.uix.widget import Widget from kivy.uix.bubble import Bubble from kivy.uix.gridlayout import GridLayout from kivy.uix.boxlayout import BoxLayout from kivy.uix.floatlayout import FloatLayout from kivy.uix.label import Label from kivy.uix.popup import Popup from kivy.uix.button import Button from kivy.uix.rst import RstDocument from kivy.clock import Clock, mainthread from kivy.uix.videoplayer import VideoPlayer ''' Project imports ''' from data.DatabaseThread import * from data.StepperControl import * from data.ServoControl import * from data.libs.MyKnob import * from data.libs.garden.mapview import *
py
1a3e021cca6948c00871617f5f9eb6ed935ce1ab
from django.conf.urls import url from django.urls import path, include from public import views urlpatterns = []
py
1a3e02e7cf5bbffd98f08b92ba502ed7e25ef572
__author__ = 'jlegind' from urllib import parse, request import requests import json import collections import csv class SearchAPI(object): def __init__(self, url, read_path, write_path, suffix='', separator='\t'): """ :param url: JSON api url :param read_path: File that contains the search params :param write_path: Output file :param suffix: If the url has a suffix like /verbatim after the params this can be tagged on """ self.wp = write_path self.file = open(read_path, mode='r', encoding='utf-8-sig') self.write_file = open(write_path, mode='w', encoding='utf-8') self.url = url self.suffix = suffix self.appended = '' self.separator = separator def take_parameters(self, *args, **kwargs): """ :param args: The JSON values you want returned :param kwargs: The API search term[key] in the API call, and position[value] in the read_file (tab separated columns) """ line = self.file.readline() while line: new_url = self.url to_paging_params = [] split_line = line.split(self.separator) if kwargs: print(kwargs) for k, v in kwargs.items(): print('this is k in kwargs:', k) kw = split_line[kwargs[k]].strip() print('value ? ', v) new_url += k+'='+parse.quote_plus(kw)+'&' to_paging_params.append(kw) else: vl = split_line[0].strip() new_url += vl print(vl+" prrr---") self.appended = vl to_paging_params.append(vl) self.pagination(new_url.strip('&')+self.suffix, to_paging_params, args) line = self.file.readline() def searching_gbif_api(self, url): ''' Just get the GBIF api search result ''' rson = requests.get(url) rson = rson.json() return rson def filter_api_response(self, response, fields): ''' response = json response from api fields = A list of fields to parse for ''' resp_dict = dict.fromkeys(fields) for j in fields: resp_dict[j] = response[j] return resp_dict def make_search_name(self, positions): ''' assumes multiple columns and composes a name from these in order of positions param: positions = a LIST of column positions in a csv/text file ''' line = self.file.readline() while line: rowlist = line.split(self.separator) # res = [name for name in rowlist] name = [rowlist[e] for e in positions] stripped_name = [j.rstrip() for j in name] stripped_name = ' '.join(stripped_name) print('stripped name: ', stripped_name) line = self.file.readline() search_url = self.url+stripped_name yield search_url def pagination(self, url, terms, keys, offset=None, appended=''): """ :param url: Takes the url with the search term and value added :param terms: A list of search values :param keys: A list of JSON keys that you want the value for :param offset: Used to increment paging """ #print(url) if not terms or offset == None: print('Absolute no_param') new_url = url else: new_url = url+'&offset='+str(offset)+'&limit=100' print(new_url) try: response = request.urlopen(new_url) r = response.read() decoded_json = json.loads(r.decode('utf-8')) print('debug1') end_of_records = None try: results = decoded_json['results'] end_of_records = decoded_json['endOfRecords'] except KeyError: print('keyError !!!!!!!') results = decoded_json #print(results) if end_of_records is False: print('False') for j in results: self.parse_json(j, keys, terms) offset += 100 self.pagination(url, terms, keys, offset=offset) else: print('debug2') try: for j in results: #print('debug3') self.parse_json(j, keys, terms) except: #print('8888debuggg') self.parse_json(results, keys, terms) except Exception as err: print(err, 'err') print(type(err)) #Below is NOT TESTED outside a plain non-JSON result (like the count API call) self.write_output(decoded_json) def write_output(self, input_to_file): #print('debug5') if isinstance(input_to_file, collections.Iterable): output = '\t'.join(str(e) for e in input_to_file) else: output = input_to_file #output string is created from the input_to_file list. Integers are cast to str #print(output) self.write_file.write(str(output)+'\t'+self.appended+'\n') def parse_json(self, json_element, keys, terms): list_output = [] #print('debug4') for k in keys: try: list_output.append(json_element[k]) except KeyError: #print('keyerror---') list_output.append('NULL') #print('debug3', terms) [list_output.append(i) for i in terms] #print('debug4', list_output) self.write_output(list_output) def main(): #my_api = SearchAPI('http://api.gbif.org/v1/species/', 'G:/GIASIP/export/nubkeys.txt', 'G:/GIASIP/export/GISDnubtaxonomy_test.txt') """my_api.take_parameters("key", "nubKey", "taxonID", "kingdom", "phylum", "order", "family", "genus", "species", "kingdomKey", "phylumKey", "classKey", "orderKey", "familyKey", "genusKey", "speciesKey", "datasetKey", "parentKey", "parent", "acceptedKey", "accepted", "scientificName", "canonicalName", "authorship", "nameType", "rank", "origin", "taxonomicStatus", "nomenclaturalStatus", "accordingTo", "numDescendants", "synonym", "class", "publishedIn", "references", no_param=0) """ # my_api = SearchAPI('http://api.gbif.org/v1/species/', 'G:/GIASIP/export/GISDnubtaxonomy_unique.txt', 'G:/GIASIP/export/no_param_test.txt', suffix="/distributions?") # my_api.take_parameters("locationId", "locality", "country", "status", "establishmentMeans", "sourceTaxonKey") # my_api = SearchAPI('http://api.gbif.org/v1/species/', 'C:/Users/jlegind/Dropbox/GIASIP/taxon_keys.txt', 'C:/Users/jlegind/Dropbox/GIASIP/export/GISDvernacularnames2.txt', suffix="/vernacularNames?") # my_api.take_parameters("vernacularName", "language", "sourceTaxonKey", "preferred") # # my_api = SearchAPI('http://api.gbif.org/v1/species/match?kingdom=Animalia&', 'G:/Custom exports/Imanol/names.txt', 'G:/Custom exports/Imanol/interpreted_names.txt', separator=';') # my_api.take_parameters("usageKey", # "scientificName", "rank", # name=0) my_api = SearchAPI('http://api.gbif.org/v1/species/match?kingdom=Animalia&name=', 'H:/into_api/atomized_fish_list.txt', 'H:/output_api/interpreted_names_fish.txt') # #separator = tab # my_api.take_parameters("usageKey", # "scientificName", "kingdom", "phylum", "class", "order", "family", "genus", "rank", "status", "confidence", # genus=0, name=1) res = my_api.make_search_name([0,1,2]) with open('H:/output_api/interpreted_names_fish.txt', 'w+', newline='') as wfile: field_list = ["usageKey", "acceptedUsageKey", "scientificName", "kingdom", "phylum", "class", "order", "family", "genus", "rank", "status", "confidence"] writer = csv.DictWriter(wfile, fieldnames=field_list, delimiter='\t') writer.writeheader() for j in res: print('name url == ', j) try: reply = my_api.searching_gbif_api(j) res = my_api.filter_api_response(reply, field_list) print('return dict === ', res) writer.writerow(res) except: print('ERROR') # # my_api.pagination(j, ["usageKey", # "scientificName", "kingdom", "phylum", "class", "order", "family", "genus", "rank", "status", "confidence"], ) # name_list.append(j) # my_api = SearchAPI('http://api.gbif.org/v1/dataset/', 'G:/Custom exports/dataset_list.csv', 'G:/Custom exports/lic_datasets.txt') # my_api.take_parameters("key", "title", "type") # my_api.take_parameters("key", "title", identifier=0) # my_api = SearchAPI('http://api.gbif.org/v1/occurrence/count?datasetKey=', 'G:/Deletion/deleted_datasets/datasetkeys.csv', 'G:/Custom exports/del_counts.txt') # my_api.take_parameters(None) # UGLY HACK line 49 offset=None , must be 0 if __name__ == '__main__': main()
py
1a3e03c9dd2917b7d5b80535b21f940b51af1831
from __future__ import unicode_literals import click import six from ..aliases import aliases_database from .base import cli @cli.command(name='clean-aliases', short_help="Remove aliases mapping to closed or inexistent " "activities.") @click.option('-y', '--yes', 'force_yes', is_flag=True, help="Don't ask confirmation.") @click.pass_context def clean_aliases(ctx, force_yes): """ Removes aliases from your config file that point to inactive projects. """ inactive_aliases = [] for (alias, mapping) in six.iteritems(aliases_database): # Ignore local aliases if mapping.mapping is None: continue project = ctx.obj['projects_db'].get(mapping.mapping[0], mapping.backend) if (project is None or not project.is_active() or (mapping.mapping[1] is not None and project.get_activity(mapping.mapping[1]) is None)): inactive_aliases.append(((alias, mapping), project)) if not inactive_aliases: ctx.obj['view'].msg("No inactive aliases found.") return if not force_yes: confirm = ctx.obj['view'].clean_inactive_aliases(inactive_aliases) if force_yes or confirm: ctx.obj['settings'].remove_aliases( [item[0] for item in inactive_aliases] ) ctx.obj['settings'].write_config() ctx.obj['view'].msg("%d inactive aliases have been successfully" " cleaned." % len(inactive_aliases))
py
1a3e042a5a6e071890e01be803044e368adaba5b
import glob import os from typing import List from torch import sigmoid import matplotlib.pyplot as plt import seaborn as sn import torch import wandb from pytorch_lightning import Callback, Trainer from pytorch_lightning.loggers import LoggerCollection, WandbLogger from sklearn import metrics from sklearn.metrics import f1_score, precision_score, recall_score def get_wandb_logger(trainer: Trainer) -> WandbLogger: """Safely get Weights&Biases logger from Trainer.""" if isinstance(trainer.logger, WandbLogger): return trainer.logger if isinstance(trainer.logger, LoggerCollection): for logger in trainer.logger: if isinstance(logger, WandbLogger): return logger raise Exception( "You are using wandb related callback, but WandbLogger was not found for some reason..." ) class WatchModelWithWandb(Callback): """Make WandbLogger watch model at the beginning of the run.""" def __init__(self, log: str = "gradients", log_freq: int = 100): self.log = log self.log_freq = log_freq def on_train_start(self, trainer, pl_module): logger = get_wandb_logger(trainer=trainer) logger.watch(model=trainer.model, log=self.log, log_freq=self.log_freq) class UploadCodeToWandbAsArtifact(Callback): """Upload all *.py files to wandb as an artifact, at the beginning of the run.""" def __init__(self, code_dir: str): self.code_dir = code_dir def on_train_start(self, trainer, pl_module): logger = get_wandb_logger(trainer=trainer) experiment = logger.experiment code = wandb.Artifact("project-source", type="code") for path in glob.glob(os.path.join(self.code_dir, "**/*.py"), recursive=True): code.add_file(path) experiment.use_artifact(code) class UploadCheckpointsToWandbAsArtifact(Callback): """Upload checkpoints to wandb as an artifact, at the end of run.""" def __init__(self, ckpt_dir: str = "checkpoints/", upload_best_only: bool = False): self.ckpt_dir = ckpt_dir self.upload_best_only = upload_best_only def on_train_end(self, trainer, pl_module): logger = get_wandb_logger(trainer=trainer) experiment = logger.experiment ckpts = wandb.Artifact("experiment-ckpts", type="checkpoints") if self.upload_best_only: ckpts.add_file(trainer.checkpoint_callback.best_model_path) else: for path in glob.glob(os.path.join(self.ckpt_dir, "**/*.ckpt"), recursive=True): ckpts.add_file(path) experiment.use_artifact(ckpts) class LogConfusionMatrixToWandb(Callback): """Generate confusion matrix every epoch and send it to wandb. Expects validation step to return predictions and targets. """ def __init__(self): self.preds = [] self.targets = [] self.ready = True def on_sanity_check_start(self, trainer, pl_module) -> None: self.ready = False def on_sanity_check_end(self, trainer, pl_module): """Start executing this callback only after all validation sanity checks end.""" self.ready = True def on_validation_batch_end( self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx ): """Gather data from single batch.""" if self.ready: self.preds.append(outputs["preds"]) self.targets.append(outputs["targets"]) def on_validation_epoch_end(self, trainer, pl_module): """Generate confusion matrix.""" if self.ready: logger = get_wandb_logger(trainer) experiment = logger.experiment preds = torch.cat(self.preds).cpu().numpy() targets = torch.cat(self.targets).cpu().numpy() confusion_matrix = metrics.confusion_matrix(y_true=targets, y_pred=preds) # set figure size plt.figure(figsize=(14, 8)) # set labels size sn.set(font_scale=1.4) # set font size sn.heatmap(confusion_matrix, annot=True, annot_kws={"size": 8}, fmt="g") # names should be uniqe or else charts from different experiments in wandb will overlap experiment.log({f"confusion_matrix/{experiment.name}": wandb.Image(plt)}, commit=False) # according to wandb docs this should also work but it crashes # experiment.log(f{"confusion_matrix/{experiment.name}": plt}) # reset plot plt.clf() self.preds.clear() self.targets.clear() class LogF1PrecRecHeatmapToWandb(Callback): """Generate f1, precision, recall heatmap every epoch and send it to wandb. Expects validation step to return predictions and targets. """ def __init__(self, class_names: List[str] = None): self.preds = [] self.targets = [] self.ready = True def on_sanity_check_start(self, trainer, pl_module): self.ready = False def on_sanity_check_end(self, trainer, pl_module): """Start executing this callback only after all validation sanity checks end.""" self.ready = True def on_validation_batch_end( self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx ): """Gather data from single batch.""" if self.ready: self.preds.append(outputs["preds"]) self.targets.append(outputs["targets"]) def on_validation_epoch_end(self, trainer, pl_module): """Generate f1, precision and recall heatmap.""" if self.ready: logger = get_wandb_logger(trainer=trainer) experiment = logger.experiment preds = torch.cat(self.preds).cpu().numpy() targets = torch.cat(self.targets).cpu().numpy() f1 = f1_score(preds, targets, average=None) r = recall_score(preds, targets, average=None) p = precision_score(preds, targets, average=None) data = [f1, p, r] # set figure size plt.figure(figsize=(14, 3)) # set labels size sn.set(font_scale=1.2) # set font size sn.heatmap( data, annot=True, annot_kws={"size": 10}, fmt=".3f", yticklabels=["F1", "Precision", "Recall"], ) # names should be uniqe or else charts from different experiments in wandb will overlap experiment.log({f"f1_p_r_heatmap/{experiment.name}": wandb.Image(plt)}, commit=False) # reset plot plt.clf() self.preds.clear() self.targets.clear() class ImagePredictionLogger(Callback): """Logs a validation batch and their predictions to wandb. Example adapted from: https://wandb.ai/wandb/wandb-lightning/reports/Image-Classification-using-PyTorch-Lightning--VmlldzoyODk1NzY """ def __init__(self, num_samples: int = 8): super().__init__() self.num_samples = num_samples self.ready = True def on_sanity_check_start(self, trainer, pl_module): self.ready = False def on_sanity_check_end(self, trainer, pl_module): """Start executing this callback only after all validation sanity checks end.""" self.ready = True def on_validation_epoch_end(self, trainer, pl_module): if self.ready: logger = get_wandb_logger(trainer=trainer) experiment = logger.experiment # get a validation batch from the validation dat loader val_samples = next(iter(trainer.datamodule.val_dataloader())) val_imgs, val_labels = val_samples # run the batch through the network val_imgs = val_imgs.to(device=pl_module.device) logits = pl_module(val_imgs) # preds = torch.argmax(logits, axis=-1) preds = sigmoid(logits).squeeze() preds[preds>=0.5]=1 preds[preds<0.5]=0 # log the images as wandb Image experiment.log( { f"Images/{experiment.name}": [ wandb.Image(x, caption=f"Pred:{pred}, Label:{y}") for x, pred, y in zip( val_imgs[: self.num_samples], preds[: self.num_samples], val_labels[: self.num_samples], ) ] } )
py
1a3e077184cee17fc382d62a04bde8688a17ebb7
# -*- coding: utf-8 -*- import wtforms from flask import render_template, request, Markup, abort, flash, redirect, escape, url_for, make_response from .. import b__ as __ from .form import Form from .fields import SubmitField class ConfirmDeleteForm(Form): """ Confirm a delete operation """ # The labels on these widgets are not used. See delete.html. delete = SubmitField(__(u"Delete")) cancel = SubmitField(__(u"Cancel")) def render_form(form, title, message='', formid='form', submit=__(u"Submit"), cancel_url=None, ajax=False): multipart = False for field in form: if isinstance(field.widget, wtforms.widgets.FileInput): multipart = True if form.errors: code = 200 # 400 else: code = 200 if request.is_xhr and ajax: return make_response(render_template('baseframe/ajaxform.html', form=form, title=title, message=message, formid=formid, submit=submit, cancel_url=cancel_url, multipart=multipart), code) else: return make_response(render_template('baseframe/autoform.html', form=form, title=title, message=message, formid=formid, submit=submit, cancel_url=cancel_url, ajax=ajax, multipart=multipart), code) def render_message(title, message, code=200): if request.is_xhr: return make_response(Markup("<p>%s</p>" % escape(message)), code) else: return make_response(render_template('baseframe/message.html', title=title, message=message), code) def render_redirect(url, code=302): if request.is_xhr: return make_response(render_template('baseframe/redirect.html', url=url)) else: return redirect(url, code=code) def render_delete_sqla(obj, db, title, message, success=u'', next=None, cancel_url=None): if not obj: abort(404) form = ConfirmDeleteForm() if request.method in ('POST', 'DELETE') and form.validate(): if 'delete' in request.form or request.method == 'DELETE': db.session.delete(obj) db.session.commit() if success: flash(success, 'success') return render_redirect(next or url_for('index'), code=303) else: return render_redirect(cancel_url or next or url_for('index'), code=303) return make_response(render_template('baseframe/delete.html', form=form, title=title, message=message))
py
1a3e098720c4ef9b00839f13c72edff551e21a5c
import math import pytest from click.testing import CliRunner from r2b2.athena import Athena from r2b2.cli import cli from r2b2.contest import Contest from r2b2.contest import ContestType from r2b2.minerva import Minerva from r2b2.tests import util as util default_contest = util.generate_contest(10000) def test_simple_athena(): simple_athena = Athena(.1, 2**31 - 1, .1, default_contest) assert simple_athena.alpha == .1 assert simple_athena.beta == 0.0 assert simple_athena.delta == 2**31 - 1 assert simple_athena.max_fraction_to_draw == .1 assert len(simple_athena.rounds) == 0 assert len(simple_athena.sub_audits['a-b'].min_winner_ballots) == 0 assert simple_athena.get_risk_level() is None def test_athena_minerva_paper(): contest = Contest(100000, {'A': 75000, 'B': 25000}, 1, ['A'], ContestType.MAJORITY) athena = Athena(.1, 1, .1, contest) minerva = Minerva(.1, .1, contest) athena.compute_min_winner_ballots(athena.sub_audits['A-B'], [50]) minerva.compute_min_winner_ballots(minerva.sub_audits['A-B'], [50]) # From Athena paper assert athena.sub_audits['A-B'].min_winner_ballots == [32] assert minerva.sub_audits['A-B'].min_winner_ballots == [31] def test_athena_execute_round(): contest = Contest(100000, {'A': 75000, 'B': 25000}, 1, ['A'], ContestType.MAJORITY) athena = Athena(.1, 1, .1, contest) assert not athena.execute_round(50, {'A': 31, 'B': 19}) assert not athena.stopped assert athena.sample_ballots['A'] == [31] assert athena.sample_ballots['B'] == [19] assert not athena.sub_audits['A-B'].stopped assert athena.rounds == [50] assert athena.execute_round(100, {'A': 70, 'B': 30}) assert athena.stopped assert athena.sample_ballots['A'] == [31, 70] assert athena.sample_ballots['B'] == [19, 30] assert athena.sub_audits['A-B'].stopped assert athena.rounds == [50, 100] assert athena.get_risk_level() < 0.1 def test_interactive_athena(): runner = CliRunner() user_in = 'athena\n0.1\n0.1\n100000\n2\nA\n75000\nB\n25000\n1\nA\nMAJORITY\ny\n1\ny\nn\n50\n31\n19\nn\nn\n100\n70\n30\n' result = runner.invoke(cli, 'interactive', input=user_in) output_file = open('src/r2b2/tests/data/cli_test_expected_out_interactive_athena.txt', 'r') expected_out = output_file.read() assert result.output == expected_out output_file.close() def test_bulk_athena(): # Same as Minerva (that is, delta = infinity) # Ballot-by-ballot Minerva should yield identical stopping rules to BRAVO. contest = Contest(100000, {'A': 60000, 'B': 40000}, 1, ['A'], ContestType.MAJORITY) athena = Athena(.1, 2**31 - 1, .01, contest) athena.compute_all_min_winner_ballots(athena.sub_audits['A-B']) # p0 not hardcoded as .5 for scalability with odd total contest ballots. p0 = (athena.contest.contest_ballots // 2) / athena.contest.contest_ballots log_winner_multiplier = math.log(athena.sub_audits['A-B'].sub_contest.winner_prop / p0) log_loser_multiplier = math.log((1 - athena.sub_audits['A-B'].sub_contest.winner_prop) / p0) log_rhs = math.log(1 / athena.alpha) for i in range(len(athena.rounds)): n = athena.rounds[i] kmin = athena.sub_audits['A-B'].min_winner_ballots[i] # Assert this kmin satisfies ratio, but a kmin one less does not. assert kmin * log_winner_multiplier + (n - kmin) * log_loser_multiplier > log_rhs assert (kmin - 1) * log_winner_multiplier + (n - kmin + 1) * log_loser_multiplier <= log_rhs def test_athena_next_sample_size(): # TODO: Create tests for ahtena next sample size simple_athena = Athena(0.1, 1, 0.1, default_contest) simple_athena.next_sample_size() pass def test_exceptions(): contest = Contest(100000, {'A': 60000, 'B': 40000}, 1, ['A'], ContestType.MAJORITY) with pytest.raises(ValueError): Athena(.1, 0, .1, contest) athena = Athena(.1, 1, .1, contest) with pytest.raises(Exception): athena.stopping_condition_pairwise('A-B') athena.rounds.append(10) with pytest.raises(ValueError): athena.stopping_condition_pairwise('X') athena.rounds = [] with pytest.raises(ValueError): athena.compute_min_winner_ballots(athena.sub_audits['A-B'], []) with pytest.raises(ValueError): athena.compute_min_winner_ballots(athena.sub_audits['A-B'], [0]) with pytest.raises(ValueError): athena.compute_min_winner_ballots(athena.sub_audits['A-B'], [1, 2]) with pytest.raises(ValueError): athena.compute_min_winner_ballots(athena.sub_audits['A-B'], [20, 20]) with pytest.raises(ValueError): athena.compute_min_winner_ballots(athena.sub_audits['A-B'], [20, 19]) with pytest.raises(ValueError): athena.compute_min_winner_ballots(athena.sub_audits['A-B'], [10001]) athena.compute_min_winner_ballots(athena.sub_audits['A-B'], [20]) with pytest.raises(ValueError): athena.compute_min_winner_ballots(athena.sub_audits['A-B'], [20]) with pytest.raises(ValueError): athena.compute_min_winner_ballots(athena.sub_audits['A-B'], [19]) with pytest.raises(ValueError): athena.compute_min_winner_ballots(athena.sub_audits['A-B'], [10001]) contest2 = Contest(100, {'A': 60, 'B': 30}, 1, ['A'], ContestType.MAJORITY) athena2 = Athena(0.1, 1, 1.0, contest2) with pytest.raises(ValueError): athena2.compute_min_winner_ballots(athena2.sub_audits['A-B'], [91]) athena2.rounds.append(10) with pytest.raises(Exception): athena2.compute_all_min_winner_ballots(athena2.sub_audits['A-B']) athena2.rounds = [] with pytest.raises(ValueError): athena2.compute_all_min_winner_ballots(athena2.sub_audits['A-B'], 0) with pytest.raises(ValueError): athena2.compute_all_min_winner_ballots(athena2.sub_audits['A-B'], 200) with pytest.raises(ValueError): athena2.compute_all_min_winner_ballots(athena2.sub_audits['A-B'], 0)
py
1a3e09c4dc43af8e90455b4da68e59f34337d57f
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import tensorflow.contrib.slim as slim import tensorflow.contrib.slim.nets as nets from utils.image_precess import * import numpy as np import cv2 import json def get_image(img_dir, img_name): # cv2 default (H, W) return preprocess_input(img_2_array(cv2.resize(cv2.imread(img_dir + img_name), (80, 240)))) def get_feature(img_name): img_dir = '/home/ubuntu/media/File/1Various/Person_reid_dataset/DukeMTMC-reID/bounding_box_train/' with tf.name_scope('input'): image_input = tf.placeholder(tf.float32, [None, 240, 80, 3], name='img_input', ) with slim.arg_scope(nets.resnet_v1.resnet_arg_scope()): feature, _ = nets.resnet_v1.resnet_v1_50(image_input, is_training=False, global_pool=False, reuse=tf.AUTO_REUSE) sess = tf.Session() saver = tf.train.Saver() saver.restore(sess, './model_1_3_49950.ckpt') img_array = get_image(img_dir, img_name) print(img_name) _feature = sess.run(feature, feed_dict={image_input: np.reshape(img_array, [1, 240, 80, 3])}) sess.close() return _feature if __name__ == '__main__': feature = get_feature('0001_c2_f0046182.jpg') # (1, 8, 3, 2048) print(feature.shape)
py
1a3e0b2dd89d713c1c5f9cf014d9c1a63ff0a760
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """DQN net""" import mindspore.nn as nn import mindspore.ops as ops class DQN(nn. Cell): def __init__(self, input_size, hidden_size, output_size): super(DQN, self).__init__() self.linear1 = nn.Dense(input_size, hidden_size) self.linear2 = nn.Dense(hidden_size, output_size) self.relu = nn.ReLU() def construct(self, x): x = self.relu(self.linear1(x)) return self.linear2(x) class WithLossCell(nn.Cell): """ network with loss function """ def __init__(self, backbone, loss_fn): super(WithLossCell, self).__init__(auto_prefix=False) self._backbone = backbone self._loss_fn = loss_fn self.gather = ops.GatherD() def construct(self, x, act, label): out = self._backbone(x) out = self.gather(out, 1, act) loss = self._loss_fn(out, label) return loss
py
1a3e0ba952a9181d8c2c91e9be7ac6761f40e9a5
import os import sys import importlib # Setting the correct config file config_path = ".".join(["models", sys.argv[1]]) + "." if len(sys.argv) >= 2 else "" config = importlib.import_module(config_path + "config") output_FF_layers = [100, 2] #[4000, 1000, 100, 1] #[200, 200, 100, 100, 1] cur_work_dir = os.getcwd() d_model = 8 attention_heads = 4 attention_dropout = 0.0 n_layers = 1 add_seq_cnn = True add_parallel_cnn = False k_dim = 10 cnn_dropout = 0.2 attention_norm = False attention_layer_norm = False n_feature_dim = config.embedding_vec_dim analysis = None #'deepCrispr' oversample = False #(should always be 1) data_folder = os.path.join(cur_work_dir, 'datas_OTcpf1') if not os.path.exists(data_folder): print("Create {0} directory".format(data_folder)) os.mkdir(data_folder)
py
1a3e0bb7efd90e9847f7990b89e890dd00c06412
import os import pandas as pd import helpers.hgit as hgit import helpers.hio as hio import helpers.hsystem as hsysinte import helpers.hunit_test as hunitest class TestCsvToPq(hunitest.TestCase): def test_csv_to_pq_script(self) -> None: """ Test that generated parquet dataset is correct. """ # Generate the files. self._generate_example_csv_files() pq_dir_path = os.path.join(self.get_scratch_space(), "pq_dir") # Run command. exec_path = os.path.join( hgit.get_amp_abs_path(), "im_v2/common/data/transform/convert_csv_to_pq.py" ) cmd = [ exec_path, f"--src_dir {self.csv_dir_path}", f"--dst_dir {pq_dir_path}", "--datetime_col timestamp", "--asset_col currency_pair", ] cmd = " ".join(cmd) hsysinte.system(cmd) include_file_content = True dir_signature = hunitest.get_dir_signature( pq_dir_path, include_file_content ) self.check_string(dir_signature, purify_text=True) def _generate_example_csv_files(self) -> None: """ Create CSV files in scratch directory. """ test_dir = self.get_scratch_space() self.csv_dir_path = os.path.join(test_dir, "csv_dir") hio.create_dir(self.csv_dir_path, False) d1 = { "timestamp": [1638646800000, 1638646860000, 1638646960000], "open": [49317.68, 49330.63, 49320.31], "high": [49346.95, 49400.98, 49500.75], "volume": [23.13681, 61.99752, 79.92761], "low": [49315.45, 49322.78, 49325.23], "close": [49330.63, 49325.23, 49328.23], "currency_pair": ["BTC_USDT", "ETH_USDT", "BTC_USDT"], "created_at": [ "2021-12-07 13:01:20.183463+00:00", "2021-12-07 13:01:20.183463+00:00", "2021-12-07 13:01:20.183463+00:00", ], "exchange_id": ["binance", "binance", "binance"], } d2 = { "timestamp": [1638656800000, 1638676860000, 1638656960000], "open": [49318.68, 49331.63, 49321.31], "high": [49446.95, 49500.98, 49600.75], "volume": [24.13681, 62.99752, 80.92761], "low": [49325.45, 49323.78, 49326.23], "close": [49340.63, 49335.23, 49428.23], "currency_pair": ["BTC_USDT", "ETH_USDT", "BTC_USDT"], "created_at": [ "2021-12-07 13:01:20.183463+00:00", "2021-12-07 13:01:20.183463+00:00", "2021-12-07 13:01:20.183463+00:00", ], "exchange_id": ["binance", "binance", "binance"], } df1 = pd.DataFrame(data=d1) df1.to_csv(os.path.join(self.csv_dir_path, "test1.csv"), index=False) df2 = pd.DataFrame(data=d2) df2.to_csv(os.path.join(self.csv_dir_path, "test2.csv"), index=False)
py
1a3e0f2127483dd2792f54d5a7cfd0f4ca4b2f95
from typing import List from ravendb.documents.session.tokens.query_tokens.query_token import QueryToken import ravendb.documents.session.tokens.query_tokens.definitions as tokens class DocumentQueryHelper: @staticmethod def add_space_if_needed(previous_token: QueryToken, current_token: QueryToken, writer: List[str]) -> None: if previous_token is None: return if isinstance(previous_token, tokens.OpenSubclauseToken) or isinstance( current_token, (tokens.CloseSubclauseToken, tokens.IntersectMarkerToken) ): return writer.append(" ")
py
1a3e0f36c12af2a57c946303b5735aacd785e214
from .cdm_argument_value import CdmArgumentValue from .cdm_corpus_context import CdmCorpusContext from .cdm_argument_def import CdmArgumentDefinition from .cdm_attribute_context import CdmAttributeContext from .cdm_attribute_context_ref import CdmAttributeContextReference from .cdm_attribute_def import CdmAttribute from .cdm_attribute_group_def import CdmAttributeGroupDefinition from .cdm_attribute_group_ref import CdmAttributeGroupReference from .cdm_attribute_item import CdmAttributeItem from .cdm_attribute_ref import CdmAttributeReference from .cdm_attribute_resolution_guidance_def import CdmAttributeResolutionGuidanceDefinition, CdmAttributeResolutionGuidance_EntityByReference, \ CdmAttributeResolutionGuidance_Expansion, CdmAttributeResolutionGuidance_SelectsSubAttribute from .cdm_collection import CdmCollection from .cdm_constant_entity_def import CdmConstantEntityDefinition from .cdm_container_def import CdmContainerDefinition from .cdm_corpus_def import CdmCorpusDefinition from .cdm_data_partition_def import CdmDataPartitionDefinition from .cdm_data_partition_pattern_def import CdmDataPartitionPatternDefinition from .cdm_data_type_def import CdmDataTypeDefinition from .cdm_data_type_ref import CdmDataTypeReference from .cdm_document_def import CdmDocumentDefinition from .cdm_e2e_relationship import CdmE2ERelationship from .cdm_entity_attribute_def import CdmEntityAttributeDefinition from .cdm_entity_declaration_def import CdmEntityDeclarationDefinition from .cdm_entity_def import CdmEntityDefinition from .cdm_entity_ref import CdmEntityReference from .cdm_file_status import CdmFileStatus from .cdm_folder_def import CdmFolderDefinition from .cdm_import import CdmImport from .cdm_local_entity_declaration_def import CdmLocalEntityDeclarationDefinition from .cdm_manifest_def import CdmManifestDefinition from .cdm_manifest_declaration_def import CdmManifestDeclarationDefinition from .cdm_object import CdmObject from .cdm_object_def import CdmObjectDefinition from .cdm_object_ref import CdmObjectReference from .cdm_parameter_def import CdmParameterDefinition from .cdm_purpose_def import CdmPurposeDefinition from .cdm_purpose_ref import CdmPurposeReference from .cdm_referenced_entity_declaration_def import CdmReferencedEntityDeclarationDefinition from .cdm_references_entities import CdmReferencesEntities from .cdm_trait_collection import CdmTraitCollection from .cdm_trait_def import CdmTraitDefinition from .cdm_trait_ref import CdmTraitReference from .cdm_type_attribute_def import CdmTypeAttributeDefinition __all__ = [ 'CdmArgumentValue', 'CdmArgumentDefinition', 'CdmAttributeContext', 'CdmAttributeContextReference', 'CdmAttribute', 'CdmAttributeGroupDefinition', 'CdmAttributeGroupReference', 'CdmAttributeItem', 'CdmAttributeReference', 'CdmAttributeResolutionGuidanceDefinition', 'CdmAttributeResolutionGuidance_EntityByReference', 'CdmAttributeResolutionGuidance_Expansion', 'CdmAttributeResolutionGuidance_SelectsSubAttribute', 'CdmCollection', 'CdmConstantEntityDefinition', 'CdmContainerDefinition', 'CdmCorpusDefinition', 'CdmDataPartitionDefinition', 'CdmDataPartitionPatternDefinition', 'CdmDataTypeDefinition', 'CdmDataTypeReference', 'CdmDocumentDefinition', 'CdmE2ERelationship', 'CdmEntityAttributeDefinition', 'CdmEntityDeclarationDefinition', 'CdmEntityDefinition', 'CdmEntityReference', 'CdmFileStatus', 'CdmFolderDefinition', 'CdmImport', 'CdmLocalEntityDeclarationDefinition', 'CdmManifestDefinition', 'CdmManifestDeclarationDefinition', 'CdmObject', 'CdmObjectDefinition', 'CdmObjectReference', 'CdmParameterDefinition', 'CdmPurposeDefinition', 'CdmPurposeReference', 'CdmReferencedEntityDeclarationDefinition', 'CdmReferencesEntities', 'CdmTraitCollection', 'CdmTraitDefinition', 'CdmTraitReference', 'CdmTypeAttributeDefinition' ]
py
1a3e1049a9e19f23b77ad2606ff31679c37ca059
""" WSGI config for fnf_34280 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'fnf_34280.settings') application = get_wsgi_application()
py
1a3e110756e853bd187b939f7a54a8f359f96ee4
import sys import os.path from PyQt5 import QtWidgets, uic from PyQt5.QtCore import QThread, pyqtSlot from mychat_client.client import User from mychat_client.handlers import GuiReceiver try: addr = sys.argv[1] except IndexError: addr = 'localhost' try: port = int(sys.argv[2]) except IndexError: port = 7777 except ValueError: print('Порт должен быть целым числом') sys.exit(0) try: name = sys.argv[3] print(name) except IndexError: login = input('Login: ') name = login paths = sys.path b = '' for i in paths: if i.endswith('site-packages'): b = i form_path = b + '\mychat_client\sv_main.ui' app = QtWidgets.QApplication(sys.argv) window = uic.loadUi(form_path) client = User(name, addr, port) client.connect() listener = GuiReceiver(client.sock, client.request_queue) @pyqtSlot(str) def update_chat(data): try: msg = data window.listWidgetMessages.addItem(msg) except Exception as e: print(e) listener.gotData.connect(update_chat) th = QThread() listener.moveToThread(th) th.started.connect(listener.poll) th.start() contact_list = client.get_contacts() def load_contacts(contacts): window.listWidgetContacts.clear() for contact in contacts: window.listWidgetContacts.addItem(contact) load_contacts(contact_list) def add_contact(): try: username = window.textEditUsername.toPlainText() if username: client.add_contact(username) window.listWidgetContacts.addItem(username) except Exception as e: print(e) window.pushButtonAddContact.clicked.connect(add_contact) def del_contact(): try: current_item = window.listWidgetContacts.currentItem() username = current_item.text() client.del_contact(username) current_item = window.listWidgetContactstake.Item(window.listWidgetContacts.row(current_item)) del current_item except Exception as e: print(e) def send_message(): text = window.textEditMessage.toPlainText() if text: selected_index = window.listWidgetContacts.currentIndex() user_name = selected_index.data() client.send_message(user_name, text) msg = '{:>30}: {}'.format(name, text) window.listWidgetMessages.addItem(msg) window.textEditMessage.clear() window.pushButtonDelContact.clicked.connect(del_contact) window.pushButtonSend.clicked.connect(send_message) # window.show() # sys.exit(app.exec_()) def main(): window.show() sys.exit(app.exec_()) if __name__ == "__main__": main()
py
1a3e114af70473d19d01035c4a37d635e246e6d3
import torch.nn as nn import torch.nn.functional as F from layers import GraphSN import torch class GNN(torch.nn.Module): def __init__(self, input_dim, hidden_dim, output_dim, n_layers, batchnorm_dim, dropout_1, dropout_2): super().__init__() self.dropout = dropout_1 self.convs = nn.ModuleList() self.convs.append(GraphSN(input_dim, hidden_dim, batchnorm_dim, dropout_2)) for _ in range(n_layers-1): self.convs.append(GraphSN(hidden_dim, hidden_dim, batchnorm_dim, dropout_2)) # In order to perform graph classification, each hidden state # [batch x nodes x hidden_dim] is concatenated, resulting in # [batch x nodes x input_dim+hidden_dim*(n_layers)], then aggregated # along nodes dimension, without keeping that dimension: # [batch x input_dim+hidden_dim*(n_layers)]. #self.out_proj = nn.Linear(input_dim+hidden_dim*(n_layers), output_dim) self.out_proj = nn.Linear((input_dim+hidden_dim*(n_layers)), output_dim) def forward(self, data): X, A = data[:2] hidden_states = [X] for layer in self.convs: X = F.dropout(layer(A, X), self.dropout) hidden_states.append(X) X = torch.cat(hidden_states, dim=2).sum(dim=1) X = self.out_proj(X) return X
py
1a3e114f33ca10911c5e80abc84e78ef809eb76a
# -*- coding: utf-8 -*- """ Created on Wed Jul 21 11:52:27 2021 @author: user24 """ class Person(): def __init__(self, name): # __ means that the att is protected, can only be accessed and changed # by the class itself self.__name = name # This method can access and edit the protected __name def who(self): print(self.__name + "です。") # インスタンス生成 「インスタンスを作る」
py
1a3e11db590f05e7735ef04b3f35204914d267f0
# create heatmaps of players in a frame # this generates a 2 x num_fames x num_features numpy matrix # channel 1: the number of bounding boxes in in each X interval - (if the screen is split up into num_features intervals x-wise) - this will indicate grouping of players # channel 2: the average size of these boxes in each X interval (this will indicate if it is a headshot and possibly also perspective) # the input is a pickle file for each video clip with bounding boxes of each player from config import * from pipe import * import mPyPl as mp from mpyplx import * import numpy as np import pickle image_width = 1280 num_features = 100 px_per_feature = image_width/num_features def get_bbox_width(bbox): """Return the width of the bounding box :param bbox: the player bounding box [top_left x, top_left y, bottom_left x, bottom_left y] :return: the width of the bouding box #>>> get_bbox_width([23,12,35,20]) #12 """ return (bbox[2] - bbox[0]) def get_bbox_center(bbox): """Return the center of the bounding box :param bbox: the player bounding box [top_left x, top_left y, bottom_left x, bottom_left y] :return: the center x, y of the bounding box #>>> get_bbox_center([23,12,35,20]) #(29.0, 16.0) """ return ((bbox[2]-bbox[0])/2+bbox[0], (bbox[3]-bbox[1])/2+bbox[1]) def generate_heatmap_for_frame(bboxes): """ :param bboxes: the player bounding boxes for the frame :return: a histogram of number of players in each x-section of the image, and the average width of the boxes in that section """ heatmap = np.zeros(num_features) total_widths = np.zeros(num_features) for bbox in bboxes: bbox_width = get_bbox_width(bbox) bbox_center = get_bbox_center(bbox) f_index = int(bbox_center[0]/px_per_feature) heatmap[f_index] += 1 total_widths[f_index] += bbox_width avg_width = np.divide(total_widths, heatmap, out=np.zeros_like(total_widths), where=heatmap!=0) return (heatmap, avg_width) def calcheatmap(x, nfn): pickle_name = x['filename'] print("Creating player heatmaps for {}".format(pickle_name)) with open(pickle_name, 'rb') as f: frames = pickle.load(f) num_frames = len(frames) heatmaps = np.zeros((num_frames, num_features)) avg_widths = np.zeros((num_frames, num_features)) for i, frame in enumerate(frames): (heatmap, avg_width) = generate_heatmap_for_frame(frame) heatmaps[i] = heatmap avg_widths[i] = avg_width f = np.concatenate((heatmaps, avg_widths)).reshape(2, num_frames, num_features) np.save(nfn, f) def arrcalcheatmap(frames): num_frames = len(frames) heatmaps = np.zeros((num_frames, num_features)) avg_widths = np.zeros((num_frames, num_features)) for i, frame in enumerate(frames): (heatmap, avg_width) = generate_heatmap_for_frame(frame) heatmaps[i] = heatmap avg_widths[i] = avg_width f = np.concatenate((heatmaps, avg_widths)).reshape(2, num_frames, num_features) return f if __name__ == "__main__": (mp.get_datastream(data_dir, ext=".boxes.pickle") | cachecomputex(".boxes.pickle", ".heatmaps.npy", calcheatmap, lambda x, nx: print("Skipping {}".format(x))) | execute )
py
1a3e12894dc8d26f7ead2c238f2ab797f6ce3a39
import configparser import logging import os import warnings _logger = logging.getLogger(__name__) FILENAME = "jolly_brancher.ini" # CONFIG VARS KEYS_AND_PROMPTS = [ ["auth_email", "your login email for Atlassian"], ["base_url", "the base URL for Atlassian (e.g., https://cirrusv2x.atlassian.net)"], [ "token", "your Atlassian API token which can be generated here (https://id.atlassian.com/manage-profile/security/api-tokens)", ], ] CONFIG_DIR = os.path.expanduser("~/.config") CONFIG_FILENAME = os.path.join(CONFIG_DIR, FILENAME) JIRA_SECTION_NAME = "jira" GIT_SECTION_NAME = "git" def config_setup(): config = configparser.ConfigParser() if not os.path.exists(CONFIG_DIR): os.mkdir(CONFIG_DIR) if os.path.exists(CONFIG_FILENAME): config.read(CONFIG_FILENAME) for key, input_prompt in KEYS_AND_PROMPTS: if ( key not in config[JIRA_SECTION_NAME] or config[JIRA_SECTION_NAME][key] == "" ): # check all entries are present and populated config[JIRA_SECTION_NAME][key] = input(f"Please enter {input_prompt}: ") else: warnings.warn(f"~/.config/{FILENAME} does not exist. Creating the file now...") config[JIRA_SECTION_NAME] = { key: input(f"Please enter {input_prompt}: ") for key, input_prompt in KEYS_AND_PROMPTS } # ask for input and set all entries with open(CONFIG_FILENAME, "w") as configfile: config.write(configfile) def fetch_config(): config_setup() config = configparser.ConfigParser() config.read(CONFIG_FILENAME) default_config = config[JIRA_SECTION_NAME] git_config = config[GIT_SECTION_NAME] DEFAULT_BRANCH_FORMAT = "{issue_type}/{ticket}-{summary}" return ( git_config["repo_root"], default_config["token"], default_config["base_url"], default_config["auth_email"], default_config.get("branch_format", DEFAULT_BRANCH_FORMAT), git_config["pat"], git_config["forge_root"], )
py
1a3e131b0b03f7b3b49ceaf33ba00a40373fa34d
#!/usr/bin/env python # Copyright (c) 2013-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from __future__ import division,print_function,unicode_literals import biplist from ds_store import DSStore from mac_alias import Alias import sys output_file = sys.argv[1] package_name_ns = sys.argv[2] ds = DSStore.open(output_file, 'w+') ds['.']['bwsp'] = { 'ShowStatusBar': False, 'WindowBounds': b'{{300, 280}, {500, 343}}', 'ContainerShowSidebar': False, 'SidebarWidth': 0, 'ShowTabView': False, 'PreviewPaneVisibility': False, 'ShowToolbar': False, 'ShowSidebar': False, 'ShowPathbar': True } icvp = { 'gridOffsetX': 0.0, 'textSize': 12.0, 'viewOptionsVersion': 1, 'backgroundImageAlias': b'\x00\x00\x00\x00\x02\x1e\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd1\x94\\\xb0H+\x00\x05\x00\x00\x00\x98\x0fbackground.tiff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\xd19\xb0\xf8\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\x00\x00\r\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0b.background\x00\x00\x10\x00\x08\x00\x00\xd1\x94\\\xb0\x00\x00\x00\x11\x00\x08\x00\x00\xd19\xb0\xf8\x00\x00\x00\x01\x00\x04\x00\x00\x00\x98\x00\x0e\x00 \x00\x0f\x00b\x00a\x00c\x00k\x00g\x00r\x00o\x00u\x00n\x00d\x00.\x00t\x00i\x00f\x00f\x00\x0f\x00\x02\x00\x00\x00\x12\x00\x1c/.background/background.tiff\x00\x14\x01\x06\x00\x00\x00\x00\x01\x06\x00\x02\x00\x00\x0cMacintosh HD\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xce\x97\xab\xc3H+\x00\x00\x01\x88[\x88\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02u\xab\x8d\xd1\x94\\\xb0devrddsk\xff\xff\xff\xff\x00\x00\t \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x07bitcoin\x00\x00\x10\x00\x08\x00\x00\xce\x97\xab\xc3\x00\x00\x00\x11\x00\x08\x00\x00\xd1\x94\\\xb0\x00\x00\x00\x01\x00\x14\x01\x88[\x88\x00\x16\xa9\t\x00\x08\xfaR\x00\x08\xfaQ\x00\x02d\x8e\x00\x0e\x00\x02\x00\x00\x00\x0f\x00\x1a\x00\x0c\x00M\x00a\x00c\x00i\x00n\x00t\x00o\x00s\x00h\x00 \x00H\x00D\x00\x13\x00\x01/\x00\x00\x15\x00\x02\x00\x14\xff\xff\x00\x00\xff\xff\x00\x00', 'backgroundColorBlue': 1.0, 'iconSize': 96.0, 'backgroundColorGreen': 1.0, 'arrangeBy': 'none', 'showIconPreview': True, 'gridSpacing': 100.0, 'gridOffsetY': 0.0, 'showItemInfo': False, 'labelOnBottom': True, 'backgroundType': 2, 'backgroundColorRed': 1.0 } alias = Alias.from_bytes(icvp['backgroundImageAlias']) alias.volume.name = package_name_ns alias.volume.posix_path = '/Volumes/' + package_name_ns alias.volume.disk_image_alias.target.filename = package_name_ns + '.temp.dmg' alias.volume.disk_image_alias.target.carbon_path = 'Macintosh HD:Users:\x00bitcoinuser:\x00Documents:\x00bitcoin:\x00bitcoin:\x00' + package_name_ns + '.temp.dmg' alias.volume.disk_image_alias.target.posix_path = 'Users/bitcoinuser/Documents/bitcoin/bitcoin/' + package_name_ns + '.temp.dmg' alias.target.carbon_path = package_name_ns + ':.background:\x00background.tiff' icvp['backgroundImageAlias'] = biplist.Data(alias.to_bytes()) ds['.']['icvp'] = icvp ds['.']['vSrn'] = ('long', 1) ds['Applications']['Iloc'] = (370, 156) ds['ZARHEXCASH-Qt.app']['Iloc'] = (128, 156) ds.flush() ds.close()
py
1a3e138a5f430cb38676c0168391298ca882655c
if __name__ == '__main__': import numpy as np import pandas as pd import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore") plt.style.use('ja') data_dir = '../IceCubeData/' mp = 1.0 nu_mass = 0.15 filename = 'mp' + str(mp) + 'mnu' + str(nu_mass) + '.csv' data = pd.read_csv(data_dir + 'complex/' + filename, index_col=0) print('--- Opened ' + data_dir + 'complex/' + filename + ' ---') gmin_arr1 = data['gmin_arr'] mn_arr1 = data['mn_arr'] mp = 0.5 nu_mass = 0.1 filename = 'mp' + str(mp) + 'mnu' + str(nu_mass) + '.csv' data = pd.read_csv(data_dir + 'complex/' + filename, index_col=0) print('--- Opened ' + data_dir + 'complex/' + filename + ' ---') gmin_arr2 = data['gmin_arr'] mn_arr2 = data['mn_arr'] mp = 0.5 nu_mass = 0.05 filename = 'mp' + str(mp) + 'mnu' + str(nu_mass) + '.csv' data = pd.read_csv(data_dir + 'complex/' + filename, index_col=0) print('--- Opened ' + data_dir + 'complex/' + filename + ' ---') gmin_arr3 = data['gmin_arr'] mn_arr3 = data['mn_arr'] mn_max = 12.0 # MeV g_min = -5.0 g_max = -1.0 axis_min = -4.0 axis_max = -1.0 plt.figure() plt.rcParams.update({'font.size': 22}) plt.plot([mp, mp], [np.power(10.0, -4), np.power(10.0, -2)], c='k', linewidth=1.0) plt.plot([mp, 10.0], [np.power(10.0, -2), np.power(10.0, -2)], c='k', linewidth=1.0) plt.plot([10.0, 10.0], [np.power(10.0, -2), np.power(10.0, -4)], c='k', linewidth=1.0) plt.semilogy(mn_arr1, gmin_arr1, linewidth=1.0, linestyle='-', marker='', markersize=0.0, markerfacecolor='r', alpha = 1.0, markeredgewidth=0.0) upper_limit1 = np.empty(len(gmin_arr1)) upper_limit1.fill(np.power(10.0, g_max)) plt.fill_between(mn_arr1, gmin_arr1, upper_limit1, alpha=0.2, edgecolor='r', facecolor='k', linewidth=2.0) style = dict(size=15, color='r') plt.text(6.0, np.power(10.0, -2.6), r'$m_\nu = 0.15 \, \mathrm{eV}$', **style) plt.semilogy(mn_arr2, gmin_arr2, linewidth=1.0, linestyle='-', marker='', markersize=0.0, markerfacecolor='b', alpha = 1.0, markeredgewidth=0.0) upper_limit2 = np.empty(len(gmin_arr2)) upper_limit2.fill(np.power(10.0, g_max)) plt.fill_between(mn_arr2, gmin_arr2, upper_limit2, alpha=0.2, edgecolor='b', facecolor='k', linewidth=0.0) style = dict(size=15, color='b') plt.text(6.0, np.power(10.0, -2.9), r'$m_\nu = 0.10 \, \mathrm{eV}$', **style) plt.semilogy(mn_arr3, gmin_arr3, linewidth=1.0, linestyle='-', marker='', markersize=0.0, markerfacecolor='g', alpha = 1.0, markeredgewidth=0.0) upper_limit3 = np.empty(len(gmin_arr3)) upper_limit3.fill(np.power(10.0, g_max)) plt.fill_between(mn_arr3, gmin_arr3, upper_limit3, alpha=0.2, edgecolor='g', facecolor='k', linewidth=0.0) style = dict(size=15, color='g') plt.text(6.0, np.power(10.0, -3.2), r'$m_\nu = 0.05 \, \mathrm{eV}$', **style) plt.fill_between([10.0, mn_max], [np.power(10.0, g_min), np.power(10.0, g_min)], [np.power(10.0, g_max), np.power(10.0, g_max)], alpha=0.1, edgecolor='k', facecolor='k', linewidth=0.0) plt.fill_between([0.0, mp], [np.power(10.0, g_min), np.power(10.0, g_min)], [np.power(10.0, g_max), np.power(10.0, g_max)], alpha=0.1, edgecolor='k', facecolor='k', linewidth=0.0) # plt.fill_betweenx([np.power(10.0, -5), 3*np.power(10.0,-4)], [mp, mp], [10.0, 10.0], alpha=0.1, edgecolor='k', facecolor='k', linewidth=0.0) plt.fill_betweenx([np.power(10.0, -2), np.power(10.0, g_max)], [mp, mp], [10.0, 10.0], alpha=0.1, edgecolor='k', facecolor='k', linewidth=0.0) style = dict(size=15, color='k') plt.text(6.0, np.power(10.0, -3.5), r'$K^+$ decay constraint', **style) axes = plt.axis() plt.axis([0.0, mn_max, np.power(10.0, axis_min), np.power(10.0, axis_max)]) plt.xlabel(r'$m_N / \mathrm{MeV}$') plt.ylabel(r'$g_\mu$') #plt.savefig('/Users/james/allMyStuff/Neutrinos/Constraints/plots/constraints[{},{}].pdf'.format(mp, nu_mass)) plt.savefig('/Users/james/allMyStuff/Neutrinos/Constraints/plots/constraints[mp{}].pdf'.format(mp, nu_mass)) print('--- Saved constraints[mp{}].pdf ---'.format(mp, nu_mass))
py
1a3e151d5502992e88684cfd020c7d17455c517c
""" Spin up an instance, run a single command, spin it down :-) Usage: run.py [options] -- <COMMAND> ... run.py [options] <COMMAND> ... Options: --type TYPE type, eg ng0 for bfboost, or ngd3 for dual Titan X [default: ng0] --image IMAGE image [default: s1] """ from __future__ import print_function import sys import yaml import json import requests import time from docopt import docopt from util.logtailer import LogTailer api_url = 'https://api.jarvice.com/jarvice' args = docopt(__doc__) instancetype = args['--type'] image = args['--image'] command = args['<COMMAND>'] print('command', command) with open('nimbix.yaml', 'r') as f: config = yaml.load(f) username = config['username'] apikey = config['apikey'] launch_data = { "machine": { "nodes": "1", "type": instancetype }, "variables": { "FOO": "BAR" }, "vault": { "readonly": False, "force": False, "name": "drop.jarvice.com" }, "user": { "username": username, "apikey": apikey }, "nae": { "force": False, "name": image, # "geometry": "1904x881", "command": " ".join(command), "ephemeral": False, "staging": True, "interactive": False } } res = requests.post('%s/submit' % api_url, json=launch_data) assert res.status_code == 200 res = json.loads(res.content.decode('utf-8')) jobnumber = res['number'] print('jobnumber %s' % jobnumber) logtailer = LogTailer(username=username, apikey=apikey, jobnumber=jobnumber) while True: res = requests.get('%s/status?username=%s&apikey=%s&number=%s' % (api_url, username, apikey, jobnumber)) assert res.status_code == 200 res = json.loads(res.content.decode('utf-8')) status = res[str(jobnumber)]['job_status'] logtailer.updateFromTail() if 'COMPLETED' in status: break time.sleep(1) logtailer.updateFromOutput() res = requests.get('%s/status?username=%s&apikey=%s&number=%s' % (api_url, username, apikey, jobnumber)) assert res.status_code == 200 res = json.loads(res.content.decode('utf-8')) print('wall time %s' % res[str(jobnumber)]['job_walltime'])
py
1a3e152b6161b26658f9806629887d77b6911f72
from __future__ import print_function, division from sympy.core import S, C from sympy.core.compatibility import u from sympy.core.exprtools import factor_terms from sympy.core.function import (Function, Derivative, ArgumentIndexError, AppliedUndef) from sympy.core.logic import fuzzy_not from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.piecewise import Piecewise from sympy.core import Add, Mul from sympy.core.relational import Eq from sympy.functions.elementary.trigonometric import atan, atan2 ############################################################################### ######################### REAL and IMAGINARY PARTS ############################ ############################################################################### class re(Function): """Returns real part of expression. This function performs only elementary analysis and so it will fail to decompose properly more complicated expressions. If completely simplified result is needed then use Basic.as_real_imag() or perform complex expansion on instance of this function. >>> from sympy import re, im, I, E >>> from sympy.abc import x, y >>> re(2*E) 2*E >>> re(2*I + 17) 17 >>> re(2*I) 0 >>> re(im(x) + x*I + 2) 2 See Also ======== im """ is_real = True unbranched = True # implicitely works on the projection to C @classmethod def eval(cls, arg): if arg is S.NaN: return S.NaN elif arg.is_real: return arg elif arg.is_imaginary or (S.ImaginaryUnit*arg).is_real: return S.Zero elif arg.is_Function and arg.func is conjugate: return re(arg.args[0]) else: included, reverted, excluded = [], [], [] args = Add.make_args(arg) for term in args: coeff = term.as_coefficient(S.ImaginaryUnit) if coeff is not None: if not coeff.is_real: reverted.append(coeff) elif not term.has(S.ImaginaryUnit) and term.is_real: excluded.append(term) else: # Try to do some advanced expansion. If # impossible, don't try to do re(arg) again # (because this is what we are trying to do now). real_imag = term.as_real_imag(ignore=arg) if real_imag: excluded.append(real_imag[0]) else: included.append(term) if len(args) != len(included): a, b, c = map(lambda xs: Add(*xs), [included, reverted, excluded]) return cls(a) - im(b) + c def as_real_imag(self, deep=True, **hints): """ Returns the real number with a zero complex part. """ return (self, S.Zero) def _eval_derivative(self, x): if x.is_real or self.args[0].is_real: return re(Derivative(self.args[0], x, evaluate=True)) if x.is_imaginary or self.args[0].is_imaginary: return -S.ImaginaryUnit \ * im(Derivative(self.args[0], x, evaluate=True)) def _eval_rewrite_as_im(self, arg): return self.args[0] - im(self.args[0]) def _eval_is_algebraic(self): return self.args[0].is_algebraic def _sage_(self): import sage.all as sage return sage.real_part(self.args[0]._sage_()) class im(Function): """ Returns imaginary part of expression. This function performs only elementary analysis and so it will fail to decompose properly more complicated expressions. If completely simplified result is needed then use Basic.as_real_imag() or perform complex expansion on instance of this function. Examples ======== >>> from sympy import re, im, E, I >>> from sympy.abc import x, y >>> im(2*E) 0 >>> re(2*I + 17) 17 >>> im(x*I) re(x) >>> im(re(x) + y) im(y) See Also ======== re """ is_real = True unbranched = True # implicitely works on the projection to C @classmethod def eval(cls, arg): if arg is S.NaN: return S.NaN elif arg.is_real: return S.Zero elif arg.is_imaginary or (S.ImaginaryUnit*arg).is_real: return -S.ImaginaryUnit * arg elif arg.is_Function and arg.func is conjugate: return -im(arg.args[0]) else: included, reverted, excluded = [], [], [] args = Add.make_args(arg) for term in args: coeff = term.as_coefficient(S.ImaginaryUnit) if coeff is not None: if not coeff.is_real: reverted.append(coeff) else: excluded.append(coeff) elif term.has(S.ImaginaryUnit) or not term.is_real: # Try to do some advanced expansion. If # impossible, don't try to do im(arg) again # (because this is what we are trying to do now). real_imag = term.as_real_imag(ignore=arg) if real_imag: excluded.append(real_imag[1]) else: included.append(term) if len(args) != len(included): a, b, c = map(lambda xs: Add(*xs), [included, reverted, excluded]) return cls(a) + re(b) + c def as_real_imag(self, deep=True, **hints): """ Return the imaginary part with a zero real part. Examples ======== >>> from sympy.functions import im >>> from sympy import I >>> im(2 + 3*I).as_real_imag() (3, 0) """ return (self, S.Zero) def _eval_derivative(self, x): if x.is_real or self.args[0].is_real: return im(Derivative(self.args[0], x, evaluate=True)) if x.is_imaginary or self.args[0].is_imaginary: return -S.ImaginaryUnit \ * re(Derivative(self.args[0], x, evaluate=True)) def _sage_(self): import sage.all as sage return sage.imag_part(self.args[0]._sage_()) def _eval_rewrite_as_re(self, arg): return self.args[0] - re(self.args[0]) def _eval_is_algebraic(self): return self.args[0].is_algebraic ############################################################################### ############### SIGN, ABSOLUTE VALUE, ARGUMENT and CONJUGATION ################ ############################################################################### class sign(Function): """ Returns the complex sign of an expression: If the expresssion is real the sign will be: * 1 if expression is positive * 0 if expression is equal to zero * -1 if expression is negative If the expresssion is imaginary the sign will be: * I if im(expression) is positive * -I if im(expression) is negative Otherwise an unevaluated expression will be returned. When evaluated, the result (in general) will be ``cos(arg(expr)) + I*sin(arg(expr))``. Examples ======== >>> from sympy.functions import sign >>> from sympy.core.numbers import I >>> sign(-1) -1 >>> sign(0) 0 >>> sign(-3*I) -I >>> sign(1 + I) sign(1 + I) >>> _.evalf() 0.707106781186548 + 0.707106781186548*I See Also ======== Abs, conjugate """ is_finite = True is_complex = True def doit(self): if self.args[0].is_nonzero: return self.args[0] / Abs(self.args[0]) return self @classmethod def eval(cls, arg): # handle what we can if arg.is_Mul: c, args = arg.as_coeff_mul() unk = [] s = sign(c) for a in args: if a.is_negative: s = -s elif a.is_positive: pass else: ai = im(a) if a.is_imaginary and ai.is_comparable: # i.e. a = I*real s *= S.ImaginaryUnit if ai.is_negative: # can't use sign(ai) here since ai might not be # a Number s = -s else: unk.append(a) if c is S.One and len(unk) == len(args): return None return s * cls(arg._new_rawargs(*unk)) if arg is S.NaN: return S.NaN if arg.is_zero: # it may be an Expr that is zero return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if arg.is_Function: if arg.func is sign: return arg if arg.is_imaginary: if arg.is_Pow and arg.exp is S.Half: # we catch this because non-trivial sqrt args are not expanded # e.g. sqrt(1-sqrt(2)) --x--> to I*sqrt(sqrt(2) - 1) return S.ImaginaryUnit arg2 = -S.ImaginaryUnit * arg if arg2.is_positive: return S.ImaginaryUnit if arg2.is_negative: return -S.ImaginaryUnit def _eval_Abs(self): if self.args[0].is_nonzero: return S.One def _eval_conjugate(self): return sign(conjugate(self.args[0])) def _eval_derivative(self, x): if self.args[0].is_real: from sympy.functions.special.delta_functions import DiracDelta return 2 * Derivative(self.args[0], x, evaluate=True) \ * DiracDelta(self.args[0]) elif self.args[0].is_imaginary: from sympy.functions.special.delta_functions import DiracDelta return 2 * Derivative(self.args[0], x, evaluate=True) \ * DiracDelta(-S.ImaginaryUnit * self.args[0]) def _eval_is_nonnegative(self): if self.args[0].is_nonnegative: return True def _eval_is_nonpositive(self): if self.args[0].is_nonpositive: return True def _eval_is_imaginary(self): return self.args[0].is_imaginary def _eval_is_integer(self): return self.args[0].is_real def _eval_is_zero(self): return self.args[0].is_zero def _eval_power(self, other): if ( self.args[0].is_real and self.args[0].is_nonzero and other.is_integer and other.is_even ): return S.One def _sage_(self): import sage.all as sage return sage.sgn(self.args[0]._sage_()) def _eval_rewrite_as_Piecewise(self, arg): if arg.is_real: return Piecewise((1, arg > 0), (-1, arg < 0), (0, True)) def _eval_rewrite_as_Heaviside(self, arg): if arg.is_real: return C.Heaviside(arg)*2-1 def _eval_simplify(self, ratio, measure): return self.func(self.args[0].factor()) class Abs(Function): """ Return the absolute value of the argument. This is an extension of the built-in function abs() to accept symbolic values. If you pass a SymPy expression to the built-in abs(), it will pass it automatically to Abs(). Examples ======== >>> from sympy import Abs, Symbol, S >>> Abs(-1) 1 >>> x = Symbol('x', real=True) >>> Abs(-x) Abs(x) >>> Abs(x**2) x**2 >>> abs(-x) # The Python built-in Abs(x) Note that the Python built-in will return either an Expr or int depending on the argument:: >>> type(abs(-1)) <... 'int'> >>> type(abs(S.NegativeOne)) <class 'sympy.core.numbers.One'> Abs will always return a sympy object. See Also ======== sign, conjugate """ is_real = True is_negative = False unbranched = True def fdiff(self, argindex=1): """ Get the first derivative of the argument to Abs(). Examples ======== >>> from sympy.abc import x >>> from sympy.functions import Abs >>> Abs(-x).fdiff() sign(x) """ if argindex == 1: return sign(self.args[0]) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy.simplify.simplify import signsimp if hasattr(arg, '_eval_Abs'): obj = arg._eval_Abs() if obj is not None: return obj if not isinstance(arg, C.Expr): raise TypeError("Bad argument type for Abs(): %s" % type(arg)) # handle what we can arg = signsimp(arg, evaluate=False) if arg.is_Mul: known = [] unk = [] for t in arg.args: tnew = cls(t) if tnew.func is cls: unk.append(tnew.args[0]) else: known.append(tnew) known = Mul(*known) unk = cls(Mul(*unk), evaluate=False) if unk else S.One return known*unk if arg is S.NaN: return S.NaN if arg.is_Pow: base, exponent = arg.as_base_exp() if base.is_real: if exponent.is_integer: if exponent.is_even: return arg if base is S.NegativeOne: return S.One if base.func is cls and exponent is S.NegativeOne: return arg return Abs(base)**exponent if base.is_positive == True: return base**re(exponent) return (-base)**re(exponent)*C.exp(-S.Pi*im(exponent)) if isinstance(arg, C.exp): return C.exp(re(arg.args[0])) if arg.is_zero: # it may be an Expr that is zero return S.Zero if arg.is_nonnegative: return arg if arg.is_nonpositive: return -arg if arg.is_imaginary: arg2 = -S.ImaginaryUnit * arg if arg2.is_nonnegative: return arg2 if arg.is_Add: if arg.has(S.Infinity, S.NegativeInfinity): if any(a.is_infinite for a in arg.as_real_imag()): return S.Infinity if arg.is_real is None and arg.is_imaginary is None: if all(a.is_real or a.is_imaginary or (S.ImaginaryUnit*a).is_real for a in arg.args): from sympy import expand_mul return sqrt(expand_mul(arg*arg.conjugate())) if arg.is_real is False and arg.is_imaginary is False: from sympy import expand_mul return sqrt(expand_mul(arg*arg.conjugate())) def _eval_is_integer(self): if self.args[0].is_real: return self.args[0].is_integer def _eval_is_nonzero(self): return self._args[0].is_nonzero def _eval_is_positive(self): return self.is_nonzero def _eval_is_rational(self): if self.args[0].is_real: return self.args[0].is_rational def _eval_is_even(self): if self.args[0].is_real: return self.args[0].is_even def _eval_is_odd(self): if self.args[0].is_real: return self.args[0].is_odd def _eval_is_algebraic(self): return self.args[0].is_algebraic def _eval_power(self, exponent): if self.args[0].is_real and exponent.is_integer: if exponent.is_even: return self.args[0]**exponent elif exponent is not S.NegativeOne and exponent.is_Integer: return self.args[0]**(exponent - 1)*self return def _eval_nseries(self, x, n, logx): direction = self.args[0].leadterm(x)[0] s = self.args[0]._eval_nseries(x, n=n, logx=logx) when = Eq(direction, 0) return Piecewise( ((s.subs(direction, 0)), when), (sign(direction)*s, True), ) def _sage_(self): import sage.all as sage return sage.abs_symbolic(self.args[0]._sage_()) def _eval_derivative(self, x): if self.args[0].is_real or self.args[0].is_imaginary: return Derivative(self.args[0], x, evaluate=True) \ * sign(conjugate(self.args[0])) return (re(self.args[0]) * Derivative(re(self.args[0]), x, evaluate=True) + im(self.args[0]) * Derivative(im(self.args[0]), x, evaluate=True)) / Abs(self.args[0]) def _eval_rewrite_as_Heaviside(self, arg): # Note this only holds for real arg (since Heaviside is not defined # for complex arguments). if arg.is_real: return arg*(C.Heaviside(arg) - C.Heaviside(-arg)) def _eval_rewrite_as_Piecewise(self, arg): if arg.is_real: return Piecewise((arg, arg >= 0), (-arg, True)) def _eval_rewrite_as_sign(self, arg): return arg/C.sign(arg) class arg(Function): """Returns the argument (in radians) of a complex number""" is_real = True is_finite = True @classmethod def eval(cls, arg): if not arg.is_Atom: c, arg_ = factor_terms(arg).as_coeff_Mul() if arg_.is_Mul: arg_ = Mul(*[a if (sign(a) not in (-1, 1)) else sign(a) for a in arg_.args]) arg_ = sign(c)*arg_ else: arg_ = arg x, y = re(arg_), im(arg_) rv = C.atan2(y, x) if rv.is_number and not rv.atoms(AppliedUndef): return rv if arg_ != arg: return cls(arg_, evaluate=False) def _eval_derivative(self, t): x, y = re(self.args[0]), im(self.args[0]) return (x * Derivative(y, t, evaluate=True) - y * Derivative(x, t, evaluate=True)) / (x**2 + y**2) def _eval_rewrite_as_atan2(self, arg): x, y = re(self.args[0]), im(self.args[0]) return atan2(y, x) class conjugate(Function): """ Changes the sign of the imaginary part of a complex number. Examples ======== >>> from sympy import conjugate, I >>> conjugate(1 + I) 1 - I See Also ======== sign, Abs """ @classmethod def eval(cls, arg): obj = arg._eval_conjugate() if obj is not None: return obj def _eval_Abs(self): return Abs(self.args[0], evaluate=True) def _eval_adjoint(self): return transpose(self.args[0]) def _eval_conjugate(self): return self.args[0] def _eval_derivative(self, x): if x.is_real: return conjugate(Derivative(self.args[0], x, evaluate=True)) elif x.is_imaginary: return -conjugate(Derivative(self.args[0], x, evaluate=True)) def _eval_transpose(self): return adjoint(self.args[0]) def _eval_is_algebraic(self): return self.args[0].is_algebraic class transpose(Function): """ Linear map transposition. """ @classmethod def eval(cls, arg): obj = arg._eval_transpose() if obj is not None: return obj def _eval_adjoint(self): return conjugate(self.args[0]) def _eval_conjugate(self): return adjoint(self.args[0]) def _eval_transpose(self): return self.args[0] class adjoint(Function): """ Conjugate transpose or Hermite conjugation. """ @classmethod def eval(cls, arg): obj = arg._eval_adjoint() if obj is not None: return obj obj = arg._eval_transpose() if obj is not None: return conjugate(obj) def _eval_adjoint(self): return self.args[0] def _eval_conjugate(self): return transpose(self.args[0]) def _eval_transpose(self): return conjugate(self.args[0]) def _latex(self, printer, exp=None, *args): arg = printer._print(self.args[0]) tex = r'%s^{\dag}' % arg if exp: tex = r'\left(%s\right)^{%s}' % (tex, printer._print(exp)) return tex def _pretty(self, printer, *args): from sympy.printing.pretty.stringpict import prettyForm pform = printer._print(self.args[0], *args) if printer._use_unicode: pform = pform**prettyForm(u('\N{DAGGER}')) else: pform = pform**prettyForm('+') return pform ############################################################################### ############### HANDLING OF POLAR NUMBERS ##################################### ############################################################################### class polar_lift(Function): """ Lift argument to the Riemann surface of the logarithm, using the standard branch. >>> from sympy import Symbol, polar_lift, I >>> p = Symbol('p', polar=True) >>> x = Symbol('x') >>> polar_lift(4) 4*exp_polar(0) >>> polar_lift(-4) 4*exp_polar(I*pi) >>> polar_lift(-I) exp_polar(-I*pi/2) >>> polar_lift(I + 2) polar_lift(2 + I) >>> polar_lift(4*x) 4*polar_lift(x) >>> polar_lift(4*p) 4*p See Also ======== sympy.functions.elementary.exponential.exp_polar periodic_argument """ is_polar = True is_comparable = False # Cannot be evalf'd. @classmethod def eval(cls, arg): from sympy import exp_polar, pi, I, arg as argument if arg.is_number: ar = argument(arg) #if not ar.has(argument) and not ar.has(atan): if ar in (0, pi/2, -pi/2, pi): return exp_polar(I*ar)*abs(arg) if arg.is_Mul: args = arg.args else: args = [arg] included = [] excluded = [] positive = [] for arg in args: if arg.is_polar: included += [arg] elif arg.is_positive: positive += [arg] else: excluded += [arg] if len(excluded) < len(args): if excluded: return Mul(*(included + positive))*polar_lift(Mul(*excluded)) elif included: return Mul(*(included + positive)) else: return Mul(*positive)*exp_polar(0) def _eval_evalf(self, prec): """ Careful! any evalf of polar numbers is flaky """ return self.args[0]._eval_evalf(prec) def _eval_Abs(self): return Abs(self.args[0], evaluate=True) class periodic_argument(Function): """ Represent the argument on a quotient of the Riemann surface of the logarithm. That is, given a period P, always return a value in (-P/2, P/2], by using exp(P*I) == 1. >>> from sympy import exp, exp_polar, periodic_argument, unbranched_argument >>> from sympy import I, pi >>> unbranched_argument(exp(5*I*pi)) pi >>> unbranched_argument(exp_polar(5*I*pi)) 5*pi >>> periodic_argument(exp_polar(5*I*pi), 2*pi) pi >>> periodic_argument(exp_polar(5*I*pi), 3*pi) -pi >>> periodic_argument(exp_polar(5*I*pi), pi) 0 See Also ======== sympy.functions.elementary.exponential.exp_polar polar_lift : Lift argument to the Riemann surface of the logarithm principal_branch """ @classmethod def _getunbranched(cls, ar): from sympy import exp_polar, log, polar_lift if ar.is_Mul: args = ar.args else: args = [ar] unbranched = 0 for a in args: if not a.is_polar: unbranched += arg(a) elif a.func is exp_polar: unbranched += a.exp.as_real_imag()[1] elif a.is_Pow: re, im = a.exp.as_real_imag() unbranched += re*unbranched_argument( a.base) + im*log(abs(a.base)) elif a.func is polar_lift: unbranched += arg(a.args[0]) else: return None return unbranched @classmethod def eval(cls, ar, period): # Our strategy is to evaluate the argument on the Riemann surface of the # logarithm, and then reduce. # NOTE evidently this means it is a rather bad idea to use this with # period != 2*pi and non-polar numbers. from sympy import ceiling, oo, atan2, atan, polar_lift, pi, Mul if not period.is_positive: return None if period == oo and isinstance(ar, principal_branch): return periodic_argument(*ar.args) if ar.func is polar_lift and period >= 2*pi: return periodic_argument(ar.args[0], period) if ar.is_Mul: newargs = [x for x in ar.args if not x.is_positive] if len(newargs) != len(ar.args): return periodic_argument(Mul(*newargs), period) unbranched = cls._getunbranched(ar) if unbranched is None: return None if unbranched.has(periodic_argument, atan2, arg, atan): return None if period == oo: return unbranched if period != oo: n = ceiling(unbranched/period - S(1)/2)*period if not n.has(ceiling): return unbranched - n def _eval_evalf(self, prec): from sympy import ceiling, oo z, period = self.args if period == oo: unbranched = periodic_argument._getunbranched(z) if unbranched is None: return self return unbranched._eval_evalf(prec) ub = periodic_argument(z, oo)._eval_evalf(prec) return (ub - ceiling(ub/period - S(1)/2)*period)._eval_evalf(prec) def unbranched_argument(arg): from sympy import oo return periodic_argument(arg, oo) class principal_branch(Function): """ Represent a polar number reduced to its principal branch on a quotient of the Riemann surface of the logarithm. This is a function of two arguments. The first argument is a polar number `z`, and the second one a positive real number of infinity, `p`. The result is "z mod exp_polar(I*p)". >>> from sympy import exp_polar, principal_branch, oo, I, pi >>> from sympy.abc import z >>> principal_branch(z, oo) z >>> principal_branch(exp_polar(2*pi*I)*3, 2*pi) 3*exp_polar(0) >>> principal_branch(exp_polar(2*pi*I)*3*z, 2*pi) 3*principal_branch(z, 2*pi) See Also ======== sympy.functions.elementary.exponential.exp_polar polar_lift : Lift argument to the Riemann surface of the logarithm periodic_argument """ is_polar = True is_comparable = False # cannot always be evalf'd @classmethod def eval(self, x, period): from sympy import oo, exp_polar, I, Mul, polar_lift, Symbol if isinstance(x, polar_lift): return principal_branch(x.args[0], period) if period == oo: return x ub = periodic_argument(x, oo) barg = periodic_argument(x, period) if ub != barg and not ub.has(periodic_argument) \ and not barg.has(periodic_argument): pl = polar_lift(x) def mr(expr): if not isinstance(expr, Symbol): return polar_lift(expr) return expr pl = pl.replace(polar_lift, mr) if not pl.has(polar_lift): res = exp_polar(I*(barg - ub))*pl if not res.is_polar and not res.has(exp_polar): res *= exp_polar(0) return res if not x.free_symbols: c, m = x, () else: c, m = x.as_coeff_mul(*x.free_symbols) others = [] for y in m: if y.is_positive: c *= y else: others += [y] m = tuple(others) arg = periodic_argument(c, period) if arg.has(periodic_argument): return None if arg.is_number and (unbranched_argument(c) != arg or (arg == 0 and m != () and c != 1)): if arg == 0: return abs(c)*principal_branch(Mul(*m), period) return principal_branch(exp_polar(I*arg)*Mul(*m), period)*abs(c) if arg.is_number and ((abs(arg) < period/2) == True or arg == period/2) \ and m == (): return exp_polar(arg*I)*abs(c) def _eval_evalf(self, prec): from sympy import exp, pi, I z, period = self.args p = periodic_argument(z, period)._eval_evalf(prec) if abs(p) > pi or p == -pi: return self # Cannot evalf for this argument. return (abs(z)*exp(I*p))._eval_evalf(prec) # /cyclic/ from sympy.core import basic as _ _.abs_ = Abs del _
py
1a3e153b35e68ed10c9ed6eeb5e4138c70900889
"""This module contains nodes for spectral analysis with Timeflux.""" import numpy as np import pandas as pd import xarray as xr from scipy.signal import welch from scipy.fft import fftfreq, rfftfreq, fft, rfft from timeflux.core.node import Node class FFT(Node): """Compute the one-dimensional discrete Fourier Transform for each column using the Fast Fourier Tranform algorithm. Attributes: i (Port): default input, expects DataFrame. o (Port): default output, provides DataArray. Example: In this exemple, we simulate a white noise and we apply FFT: * ``fs`` = `10.0` * ``nfft`` = `5` * ``return_onesided`` = `False` self.i.data:: A B C 2017-12-31 23:59:59.998745401 0.185133 0.541901 0.872946 2018-01-01 00:00:00.104507143 0.732225 0.806561 0.658783 2018-01-01 00:00:00.202319939 0.692277 0.849196 0.249668 2018-01-01 00:00:00.300986584 0.489425 0.221209 0.987668 2018-01-01 00:00:00.396560186 0.944059 0.039427 0.705575 self.o.data:: xarray.DataArray (times: 1, freqs: 5, space: 3) array([[[ 3.043119+0.j , 2.458294+0.j , 3.47464 +0.j ], [-0.252884+0.082233j, -0.06265 -1.098709j, 0.29353 +0.478287j], [-0.805843+0.317437j, 0.188256+0.146341j, 0.151515-0.674376j], [-0.805843-0.317437j, 0.188256-0.146341j, 0.151515+0.674376j], [-0.252884-0.082233j, -0.06265 +1.098709j, 0.29353 -0.478287j]]]) Coordinates: * times (times) datetime64[ns] 2018-01-01T00:00:00.396560186 * freqs (freqs) float64 0.0 2.0 4.0 -4.0 -2.0 * space (space) object 'A' 'B' 'C' Notes: This node should be used after a buffer. References: * `scipy.fft <https://docs.scipy.org/doc/scipy/reference/fft.html>`_ """ def __init__(self, fs=1.0, nfft=None, return_onesided=True): """ Args: fs (float): Nominal sampling rate of the input data. nfft (int|None): Length of the Fourier transform. Default: length of the chunk. return_onesided (bool): If `True`, return a one-sided spectrum for real data. If `False` return a two-sided spectrum. (Note that for complex data, a two-sided spectrum is always returned.) Default: `True`. """ self._fs = fs self._nfft = nfft if return_onesided: self._sides = "onesided" else: self._sides = "twosided" if self._nfft is not None: self._set_freqs() def _check_nfft(self): # Check validity of nfft at first chunk if self._nfft is None: self.logger.debug("nfft := length of the chunk ") self._nfft = self.i.data.shape[0] self._set_freqs() elif self._nfft < self.i.data.shape[0]: raise ValueError("nfft must be greater than or equal to length of chunk.") else: self._nfft = int(self._nfft) def _set_freqs(self): # Set freqs indexes if self._sides == "onesided": self._freqs = rfftfreq(self._nfft, 1 / self._fs) else: self._freqs = fftfreq(self._nfft, 1 / self._fs) def update(self): # copy the meta self.o = self.i # When we have not received data, there is nothing to do if not self.i.ready(): return # At this point, we are sure that we have some data to process self._check_nfft() self.o.data = self.i.data if self._sides == "twosided": func = fft else: self.o.data = self.o.data.apply(lambda x: x.real) func = rfft values = func(self.o.data.values.T, n=self._nfft).T self.o.data = xr.DataArray( np.stack([values], 0), coords=[[self.o.data.index[-1]], self._freqs, self.o.data.columns], dims=["time", "freq", "space"], ) class Welch(Node): """Estimate power spectral density using Welch’s method. Attributes: i (Port): default input, expects DataFrame. o (Port): default output, provides DataArray with dimensions (time, freq, space). Example: In this exemple, we simulate data with noisy sinus on three sensors (columns `a`, `b`, `c`): * ``fs`` = `100.0` * ``nfft`` = `24` node.i.data:: \s a b c 1970-01-01 00:00:00.000 -0.233920 -0.343296 0.157988 1970-01-01 00:00:00.010 0.460353 0.777296 0.957201 1970-01-01 00:00:00.020 0.768459 1.234923 1.942190 1970-01-01 00:00:00.030 1.255393 1.782445 2.326175 ... ... ... ... 1970-01-01 00:00:01.190 1.185759 2.603828 3.315607 node.o.data:: <xarray.DataArray (time: 1, freq: 13, space: 3)> array([[[2.823924e-02, 1.087382e-01, 1.153163e-01], [1.703466e-01, 6.048703e-01, 6.310628e-01], ... ... ... [9.989429e-04, 8.519226e-04, 7.769918e-04], [1.239551e-03, 7.412518e-04, 9.863335e-04], [5.382880e-04, 4.999334e-04, 4.702757e-04]]]) Coordinates: * time (time) datetime64[ns] 1970-01-01T00:00:01.190000 * freq (freq) float64 0.0 4.167 8.333 12.5 16.67 ... 37.5 41.67 45.83 50.0 * space (space) object 'a' 'b' 'c' Notes: This node should be used after a Window with the appropriate length, with regard to the parameters `noverlap`, `nperseg` and `nfft`. It should be noted that a pipeline such as {LargeWindow-Welch} is in fact equivalent to a pipeline {SmallWindow-FFT-LargeWindow-Average} with SmallWindow 's parameters `length` and `step` respectively equivalent to `nperseg` and `step` and with FFT node with same kwargs. """ def __init__(self, rate=None, closed="right", **kwargs): """ Args: rate (float|None): Nominal sampling rate of the input data. If `None`, the rate will be taken from the input meta/ closed (str): Make the index closed on the `right`, `left` or `center`. kwargs: Keyword arguments to pass to scipy.signal.welch function. You can specify: window, nperseg, noverlap, nfft, detrend, return_onesided and scaling. """ self._rate = rate self._closed = closed self._kwargs = kwargs self._set_default() def _set_default(self): # We set the default params if they are not specifies in kwargs in order to check that they are valid, in respect of the length and sampling of the input data. if "nperseg" not in self._kwargs.keys(): self._kwargs["nperseg"] = 256 self.logger.debug("nperseg := 256") if "nfft" not in self._kwargs.keys(): self._kwargs["nfft"] = self._kwargs["nperseg"] self.logger.debug( "nfft := nperseg := {nperseg}".format(nperseg=self._kwargs["nperseg"]) ) if "noverlap" not in self._kwargs.keys(): self._kwargs["noverlap"] = self._kwargs["nperseg"] // 2 self.logger.debug( "noverlap := nperseg/2 := {noverlap}".format( noverlap=self._kwargs["noverlap"] ) ) def _check_nfft(self): # Check validity of nfft at first chun if not all( i <= len(self.i.data) for i in [self._kwargs[k] for k in ["nfft", "nperseg", "noverlap"]] ): raise ValueError( "nfft, noverlap and nperseg must be greater than or equal to length of chunk." ) else: self._kwargs.update( { keyword: int(self._kwargs[keyword]) for keyword in ["nfft", "nperseg", "noverlap"] } ) def update(self): # copy the meta self.o = self.i # When we have not received data, there is nothing to do if not self.i.ready(): return # Check rate if self._rate: rate = self._rate elif "rate" in self.i.meta: rate = self.i.meta["rate"] else: raise ValueError( "The rate was neither explicitely defined nor found in the stream meta." ) # At this point, we are sure that we have some data to process # apply welch on the data: self._check_nfft() f, Pxx = welch(x=self.i.data, fs=rate, **self._kwargs, axis=0) if self._closed == "left": time = self.i.data.index[-1] elif self._closed == "center": def middle(a): return int(np.ceil(len(a) / 2)) - 1 time = self.i.data.index[middle(self.i.data)] else: # right time = self.i.data.index[-1] # f is the frequency axis and Pxx the average power of shape (Nfreqs x Nchanels) # we reshape Pxx to fit the ('time' x 'freq' x 'space') dimensions self.o.data = xr.DataArray( np.stack([Pxx], 0), coords=[[time], f, self.i.data.columns], dims=["time", "frequency", "space"], ) class Bands(Node): """Averages the XArray values over freq dimension according to the frequencies bands given in arguments. This node selects a subset of values over the chosen dimensions, averages them along this axis and convert the result into a flat dataframe. This node will output as many ports bands as given bands, with their respective name as suffix. Attributes: i (Port): default output, provides DataArray with 3 dimensions (time, freq, space). o (Port): Default output, provides DataFrame. o_* (Port): Dynamic outputs, provide DataFrame. """ def __init__(self, bands=None, relative=False): """ Args: bands (dict): Define the band to extract given its name and its range. An output port will be created with the given names as suffix. """ bands = bands or { "delta": [1, 4], "theta": [4, 8], "alpha": [8, 12], "beta": [12, 30], } self._relative = relative self._bands = [] for band_name, band_range in bands.items(): self._bands.append( dict( port=getattr(self, "o_" + band_name), slice=slice(band_range[0], band_range[1]), meta={"bands": {"range": band_range, "relative": relative}}, ) ) def update(self): # When we have not received data, there is nothing to do if not self.i.ready(): return # At this point, we are sure that we have some data to process for band in self._bands: # 1. select the Xarray on freq axis in the range, 2. average along freq axis band_power = ( self.i.data.loc[{"frequency": band["slice"]}].sum("frequency").values ) # todo: sum if self._relative: tot_power = self.i.data.sum("frequency").values tot_power[tot_power == 0.0] = 1 band_power /= tot_power band["port"].data = pd.DataFrame( columns=self.i.data.space.values, index=self.i.data.time.values, data=band_power, ) band["port"].meta = {**(self.i.meta or {}), **band["meta"]}
py
1a3e16044456ac0c554c72b0613284869fc23af7
import os, glob, pickle, time, gc, copy def pickle_save(path, df): with open(path, 'wb') as f: pickle.dump(df, f) def pickle_load(path): with open(path, 'rb') as f: df = pickle.load(f) return df def ri(df): return df.reset_index(drop=True)
py
1a3e1742ed8dc5d7afe60c4f892caceeffec07bd
# Copyright 2016 Medical Research Council Harwell. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # # @author James Brown <[email protected]> import subprocess as sp import numpy as np import re from tempfile import NamedTemporaryFile minc_dtypes = {'unsigned': {'byte': np.uint8, 'short': np.uint16, 'float': np.float32}, 'signed': {'byte': np.int8, 'short': np.int16, 'float': np.float32}} def minc_to_numpy(minc_file): info = minc_info(minc_file) if not info: return False mrsg = MincRawSliceGenerator(minc_file, info) vol = mrsg.volume return vol def mincstats_to_numpy(minc_file): info = minc_info(minc_file) if not info: return False info['dtype'] = 'float' # have to force it, because mincinfo is hopeless info['np_dtype'] = np.float32 mrsg = MincRawSliceGenerator(minc_file, info) vol = mrsg.volume return vol class SliceGenerator(object): def __init__(self, recon): self.recon = recon self.slice_index = 0 def slices(self): """The slices method should yield xy image slices from a memory mapped numpy array.""" raise NotImplementedError("Ths method needs overriding") def dtype(self): """The dtype method should return the datatype of the memory mapped numpy array""" raise NotImplementedError("Ths method needs overriding") def shape(self): """The shape method should return the shape of the memory mapped numpy array in x, y, z order.""" raise NotImplementedError("Ths method needs overriding") class MincRawSliceGenerator(SliceGenerator): """The MincRawSliceGenerator class extends SliceGenerator, yielding slices from a single MINC (Medical Image NetCDF) file, having been dumped to a temporary raw file via minctoraw. mincinfo is used to determine the file type/dimensions """ def __init__(self, recon, info): """The constructor takes a recon path as an argument, and dumps the MINC file to a temporary raw file. The raw file is then memory mapped using numpy, from which slices are yielded. :param recon: a path to a MINC file. """ super(MincRawSliceGenerator, self).__init__(recon) self.ext = 'mnc' tmp_file = NamedTemporaryFile() # TemporaryFile() seems not to work with Python3.4 sp.call(['mincextract', '-{}'.format(info['dtype']), '-{}'.format(info['sign']), recon], stdout=tmp_file) self.volume = np.fromfile(tmp_file.name, dtype=info['np_dtype']).reshape(info['shape']) def slices(self, start=0): """Slices are yielded one slice at a time from the memory mapped numpy array """ try: for i in range(self.volume.shape[0]): yield self.volume[i, :, :] except Exception: raise CorruptReconError("Error yielding slices from MINC file") def dtype(self): """Overrides the superclass to return the data type of the MINC file i.e. 8 bit/16 bit. """ return self.volume.dtype def shape(self): """Overrides the superclass to return the shape of the MINC file. """ return self.volume.shape[::-1] def minc_info(recon): try: info = sp.check_output(['mincinfo', recon], universal_newlines=True) except OSError as e: raise OSError("Minc tools not installed\n{}".format(e)) #info = str(info) info_dict = {} dims = [] for line in info.splitlines(): if 'image:' in line: # strip non alphanumeric characters # Get range min_max = re.findall('\d+ to \d+', line)[0] info_dict['min'], info_dict['max'] = int(min_max.split()[0]), int(min_max.split()[2]) regex = re.compile('[^a-zA-Z]') info_dict['sign'] = regex.sub('', line.split()[1]) info_dict['dtype'] = regex.sub('', line.split()[2]) try: info_dict['np_dtype'] = minc_dtypes[info_dict['sign']][info_dict['dtype']] except KeyError: return None elif 'dimensions' not in line and any(space in line for space in ['xspace', 'yspace', 'zspace']): spacing = line.split() dims.append(int(spacing[1])) info_dict['voxel_size'] = float(spacing[2]) * 1000 # in microns info_dict['shape'] = tuple(dims) # zspace, yspace, xspace return info_dict class ReconFormatError(Exception): def __init__(self, message): self.message = message def __str__(self): return repr(self.message) class CorruptReconError(Exception): def __init__(self, message): self.message = message def __str__(self): return repr(self.message)
py
1a3e17c46a53588419b30cd3c37d4b75354321b6
# Copyright 2012 Red Hat, Inc. # Copyright 2013 IBM Corp. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ gettext for openstack-common modules. Usual usage in an openstack.common module: from bricks.openstack.common.gettextutils import _ """ import copy import functools import gettext import locale from logging import handlers import os import re from babel import localedata import six _localedir = os.environ.get('bricks'.upper() + '_LOCALEDIR') _t = gettext.translation('bricks', localedir=_localedir, fallback=True) # We use separate translation catalogs for each log level, so set up a # mapping between the log level name and the translator. The domain # for the log level is project_name + "-log-" + log_level so messages # for each level end up in their own catalog. _t_log_levels = dict( (level, gettext.translation('bricks' + '-log-' + level, localedir=_localedir, fallback=True)) for level in ['info', 'warning', 'error', 'critical'] ) _AVAILABLE_LANGUAGES = {} USE_LAZY = False def enable_lazy(): """Convenience function for configuring _() to use lazy gettext Call this at the start of execution to enable the gettextutils._ function to use lazy gettext functionality. This is useful if your project is importing _ directly instead of using the gettextutils.install() way of importing the _ function. """ global USE_LAZY USE_LAZY = True def _(msg): if USE_LAZY: return Message(msg, domain='bricks') else: if six.PY3: return _t.gettext(msg) return _t.ugettext(msg) def _log_translation(msg, level): """Build a single translation of a log message """ if USE_LAZY: return Message(msg, domain='bricks' + '-log-' + level) else: translator = _t_log_levels[level] if six.PY3: return translator.gettext(msg) return translator.ugettext(msg) # Translators for log levels. # # The abbreviated names are meant to reflect the usual use of a short # name like '_'. The "L" is for "log" and the other letter comes from # the level. _LI = functools.partial(_log_translation, level='info') _LW = functools.partial(_log_translation, level='warning') _LE = functools.partial(_log_translation, level='error') _LC = functools.partial(_log_translation, level='critical') def install(domain, lazy=False): """Install a _() function using the given translation domain. Given a translation domain, install a _() function using gettext's install() function. The main difference from gettext.install() is that we allow overriding the default localedir (e.g. /usr/share/locale) using a translation-domain-specific environment variable (e.g. NOVA_LOCALEDIR). :param domain: the translation domain :param lazy: indicates whether or not to install the lazy _() function. The lazy _() introduces a way to do deferred translation of messages by installing a _ that builds Message objects, instead of strings, which can then be lazily translated into any available locale. """ if lazy: # NOTE(mrodden): Lazy gettext functionality. # # The following introduces a deferred way to do translations on # messages in OpenStack. We override the standard _() function # and % (format string) operation to build Message objects that can # later be translated when we have more information. def _lazy_gettext(msg): """Create and return a Message object. Lazy gettext function for a given domain, it is a factory method for a project/module to get a lazy gettext function for its own translation domain (i.e. nova, glance, cinder, etc.) Message encapsulates a string so that we can translate it later when needed. """ return Message(msg, domain=domain) from six import moves moves.builtins.__dict__['_'] = _lazy_gettext else: localedir = '%s_LOCALEDIR' % domain.upper() if six.PY3: gettext.install(domain, localedir=os.environ.get(localedir)) else: gettext.install(domain, localedir=os.environ.get(localedir), unicode=True) class Message(six.text_type): """A Message object is a unicode object that can be translated. Translation of Message is done explicitly using the translate() method. For all non-translation intents and purposes, a Message is simply unicode, and can be treated as such. """ def __new__(cls, msgid, msgtext=None, params=None, domain='bricks', *args): """Create a new Message object. In order for translation to work gettext requires a message ID, this msgid will be used as the base unicode text. It is also possible for the msgid and the base unicode text to be different by passing the msgtext parameter. """ # If the base msgtext is not given, we use the default translation # of the msgid (which is in English) just in case the system locale is # not English, so that the base text will be in that locale by default. if not msgtext: msgtext = Message._translate_msgid(msgid, domain) # We want to initialize the parent unicode with the actual object that # would have been plain unicode if 'Message' was not enabled. msg = super(Message, cls).__new__(cls, msgtext) msg.msgid = msgid msg.domain = domain msg.params = params return msg def translate(self, desired_locale=None): """Translate this message to the desired locale. :param desired_locale: The desired locale to translate the message to, if no locale is provided the message will be translated to the system's default locale. :returns: the translated message in unicode """ translated_message = Message._translate_msgid(self.msgid, self.domain, desired_locale) if self.params is None: # No need for more translation return translated_message # This Message object may have been formatted with one or more # Message objects as substitution arguments, given either as a single # argument, part of a tuple, or as one or more values in a dictionary. # When translating this Message we need to translate those Messages too translated_params = _translate_args(self.params, desired_locale) translated_message = translated_message % translated_params return translated_message @staticmethod def _translate_msgid(msgid, domain, desired_locale=None): if not desired_locale: system_locale = locale.getdefaultlocale() # If the system locale is not available to the runtime use English if not system_locale[0]: desired_locale = 'en_US' else: desired_locale = system_locale[0] locale_dir = os.environ.get(domain.upper() + '_LOCALEDIR') lang = gettext.translation(domain, localedir=locale_dir, languages=[desired_locale], fallback=True) if six.PY3: translator = lang.gettext else: translator = lang.ugettext translated_message = translator(msgid) return translated_message def __mod__(self, other): # When we mod a Message we want the actual operation to be performed # by the parent class (i.e. unicode()), the only thing we do here is # save the original msgid and the parameters in case of a translation params = self._sanitize_mod_params(other) unicode_mod = super(Message, self).__mod__(params) modded = Message(self.msgid, msgtext=unicode_mod, params=params, domain=self.domain) return modded def _sanitize_mod_params(self, other): """Sanitize the object being modded with this Message. - Add support for modding 'None' so translation supports it - Trim the modded object, which can be a large dictionary, to only those keys that would actually be used in a translation - Snapshot the object being modded, in case the message is translated, it will be used as it was when the Message was created """ if other is None: params = (other,) elif isinstance(other, dict): params = self._trim_dictionary_parameters(other) else: params = self._copy_param(other) return params def _trim_dictionary_parameters(self, dict_param): """Return a dict that only has matching entries in the msgid.""" # NOTE(luisg): Here we trim down the dictionary passed as parameters # to avoid carrying a lot of unnecessary weight around in the message # object, for example if someone passes in Message() % locals() but # only some params are used, and additionally we prevent errors for # non-deepcopyable objects by unicoding() them. # Look for %(param) keys in msgid; # Skip %% and deal with the case where % is first character on the line keys = re.findall('(?:[^%]|^)?%\((\w*)\)[a-z]', self.msgid) # If we don't find any %(param) keys but have a %s if not keys and re.findall('(?:[^%]|^)%[a-z]', self.msgid): # Apparently the full dictionary is the parameter params = self._copy_param(dict_param) else: params = {} # Save our existing parameters as defaults to protect # ourselves from losing values if we are called through an # (erroneous) chain that builds a valid Message with # arguments, and then does something like "msg % kwds" # where kwds is an empty dictionary. src = {} if isinstance(self.params, dict): src.update(self.params) src.update(dict_param) for key in keys: params[key] = self._copy_param(src[key]) return params def _copy_param(self, param): try: return copy.deepcopy(param) except TypeError: # Fallback to casting to unicode this will handle the # python code-like objects that can't be deep-copied return six.text_type(param) def __add__(self, other): msg = _('Message objects do not support addition.') raise TypeError(msg) def __radd__(self, other): return self.__add__(other) def __str__(self): # NOTE(luisg): Logging in python 2.6 tries to str() log records, # and it expects specifically a UnicodeError in order to proceed. msg = _('Message objects do not support str() because they may ' 'contain non-ascii characters. ' 'Please use unicode() or translate() instead.') raise UnicodeError(msg) def get_available_languages(domain): """Lists the available languages for the given translation domain. :param domain: the domain to get languages for """ if domain in _AVAILABLE_LANGUAGES: return copy.copy(_AVAILABLE_LANGUAGES[domain]) localedir = '%s_LOCALEDIR' % domain.upper() find = lambda x: gettext.find(domain, localedir=os.environ.get(localedir), languages=[x]) # NOTE(mrodden): en_US should always be available (and first in case # order matters) since our in-line message strings are en_US language_list = ['en_US'] # NOTE(luisg): Babel <1.0 used a function called list(), which was # renamed to locale_identifiers() in >=1.0, the requirements master list # requires >=0.9.6, uncapped, so defensively work with both. We can remove # this check when the master list updates to >=1.0, and update all projects list_identifiers = (getattr(localedata, 'list', None) or getattr(localedata, 'locale_identifiers')) locale_identifiers = list_identifiers() for i in locale_identifiers: if find(i) is not None: language_list.append(i) # NOTE(luisg): Babel>=1.0,<1.3 has a bug where some OpenStack supported # locales (e.g. 'zh_CN', and 'zh_TW') aren't supported even though they # are perfectly legitimate locales: # https://github.com/mitsuhiko/babel/issues/37 # In Babel 1.3 they fixed the bug and they support these locales, but # they are still not explicitly "listed" by locale_identifiers(). # That is why we add the locales here explicitly if necessary so that # they are listed as supported. aliases = {'zh': 'zh_CN', 'zh_Hant_HK': 'zh_HK', 'zh_Hant': 'zh_TW', 'fil': 'tl_PH'} for (locale, alias) in six.iteritems(aliases): if locale in language_list and alias not in language_list: language_list.append(alias) _AVAILABLE_LANGUAGES[domain] = language_list return copy.copy(language_list) def translate(obj, desired_locale=None): """Gets the translated unicode representation of the given object. If the object is not translatable it is returned as-is. If the locale is None the object is translated to the system locale. :param obj: the object to translate :param desired_locale: the locale to translate the message to, if None the default system locale will be used :returns: the translated object in unicode, or the original object if it could not be translated """ message = obj if not isinstance(message, Message): # If the object to translate is not already translatable, # let's first get its unicode representation message = six.text_type(obj) if isinstance(message, Message): # Even after unicoding() we still need to check if we are # running with translatable unicode before translating return message.translate(desired_locale) return obj def _translate_args(args, desired_locale=None): """Translates all the translatable elements of the given arguments object. This method is used for translating the translatable values in method arguments which include values of tuples or dictionaries. If the object is not a tuple or a dictionary the object itself is translated if it is translatable. If the locale is None the object is translated to the system locale. :param args: the args to translate :param desired_locale: the locale to translate the args to, if None the default system locale will be used :returns: a new args object with the translated contents of the original """ if isinstance(args, tuple): return tuple(translate(v, desired_locale) for v in args) if isinstance(args, dict): translated_dict = {} for (k, v) in six.iteritems(args): translated_v = translate(v, desired_locale) translated_dict[k] = translated_v return translated_dict return translate(args, desired_locale) class TranslationHandler(handlers.MemoryHandler): """Handler that translates records before logging them. The TranslationHandler takes a locale and a target logging.Handler object to forward LogRecord objects to after translating them. This handler depends on Message objects being logged, instead of regular strings. The handler can be configured declaratively in the logging.conf as follows: [handlers] keys = translatedlog, translator [handler_translatedlog] class = handlers.WatchedFileHandler args = ('/var/log/api-localized.log',) formatter = context [handler_translator] class = openstack.common.log.TranslationHandler target = translatedlog args = ('zh_CN',) If the specified locale is not available in the system, the handler will log in the default locale. """ def __init__(self, locale=None, target=None): """Initialize a TranslationHandler :param locale: locale to use for translating messages :param target: logging.Handler object to forward LogRecord objects to after translation """ # NOTE(luisg): In order to allow this handler to be a wrapper for # other handlers, such as a FileHandler, and still be able to # configure it using logging.conf, this handler has to extend # MemoryHandler because only the MemoryHandlers' logging.conf # parsing is implemented such that it accepts a target handler. handlers.MemoryHandler.__init__(self, capacity=0, target=target) self.locale = locale def setFormatter(self, fmt): self.target.setFormatter(fmt) def emit(self, record): # We save the message from the original record to restore it # after translation, so other handlers are not affected by this original_msg = record.msg original_args = record.args try: self._translate_and_log_record(record) finally: record.msg = original_msg record.args = original_args def _translate_and_log_record(self, record): record.msg = translate(record.msg, self.locale) # In addition to translating the message, we also need to translate # arguments that were passed to the log method that were not part # of the main message e.g., log.info(_('Some message %s'), this_one)) record.args = _translate_args(record.args, self.locale) self.target.emit(record)
py
1a3e17c5eb334837f4aff79c912ae586459a5f78
import KratosMultiphysics import KratosMultiphysics.StructuralMechanicsApplication as StructuralMechanicsApplication import KratosMultiphysics.KratosUnittest as KratosUnittest from math import sqrt, sin, cos, pi, exp, atan class TestComputeCenterOfGravity(KratosUnittest.TestCase): # muting the output KratosMultiphysics.Logger.GetDefaultOutput().SetSeverity(KratosMultiphysics.Logger.Severity.WARNING) def _apply_beam_material_properties(self,mp,dim): #define properties mp.GetProperties()[0].SetValue(KratosMultiphysics.YOUNG_MODULUS,210e9) mp.GetProperties()[0].SetValue(KratosMultiphysics.DENSITY,7850) mp.GetProperties()[0].SetValue(StructuralMechanicsApplication.CROSS_AREA,0.01) mp.GetProperties()[0].SetValue(KratosMultiphysics.POISSON_RATIO,0.30) mp.GetProperties()[0].SetValue(StructuralMechanicsApplication.TORSIONAL_INERTIA,0.00001) mp.GetProperties()[0].SetValue(StructuralMechanicsApplication.I22,0.00001) mp.GetProperties()[0].SetValue(StructuralMechanicsApplication.I33,0.00001) cl = StructuralMechanicsApplication.LinearElastic3DLaw() mp.GetProperties()[0].SetValue(KratosMultiphysics.CONSTITUTIVE_LAW,cl) def _apply_shell_material_properties(self,mp): #define properties mp.GetProperties()[1].SetValue(KratosMultiphysics.YOUNG_MODULUS,100e3) mp.GetProperties()[1].SetValue(KratosMultiphysics.POISSON_RATIO,0.3) mp.GetProperties()[1].SetValue(KratosMultiphysics.THICKNESS,1.0) mp.GetProperties()[1].SetValue(KratosMultiphysics.DENSITY,1.0) cl = StructuralMechanicsApplication.LinearElasticPlaneStress2DLaw() mp.GetProperties()[1].SetValue(KratosMultiphysics.CONSTITUTIVE_LAW,cl) def _apply_orthotropic_shell_material_properties(self,mp): #define properties # we specify only the properties we need (others are youngs modulus etc) num_plies = 3 orthotropic_props = KratosMultiphysics.Matrix(num_plies,16) for row in range(num_plies): for col in range(16): orthotropic_props[row,col] = 0.0 # Orthotropic mechanical moduli orthotropic_props[0,0] = 0.005 # lamina thickness orthotropic_props[0,2] = 2200 # density orthotropic_props[1,0] = 0.01 # lamina thickness orthotropic_props[1,2] = 1475 # density orthotropic_props[2,0] = 0.015 # lamina thickness orthotropic_props[2,2] = 520 # density mp.GetProperties()[1].SetValue(StructuralMechanicsApplication.SHELL_ORTHOTROPIC_LAYERS,orthotropic_props) cl = StructuralMechanicsApplication.LinearElasticOrthotropic2DLaw() mp.GetProperties()[1].SetValue(KratosMultiphysics.CONSTITUTIVE_LAW,cl) def _apply_solid_material_properties(self,mp): #define properties mp.GetProperties()[1].SetValue(KratosMultiphysics.YOUNG_MODULUS,100e3) mp.GetProperties()[1].SetValue(KratosMultiphysics.POISSON_RATIO,0.3) mp.GetProperties()[1].SetValue(KratosMultiphysics.THICKNESS,1.0) mp.GetProperties()[1].SetValue(KratosMultiphysics.DENSITY,1.0) cl = StructuralMechanicsApplication.LinearElasticPlaneStrain2DLaw() mp.GetProperties()[1].SetValue(KratosMultiphysics.CONSTITUTIVE_LAW,cl) def _create_shell_nodes(self,mp): mp.CreateNewNode(1, -0.5, - 0.45, 0.1) mp.CreateNewNode(2, 0.7, -0.5, 0.2) mp.CreateNewNode(3, 0.55, 0.6, 0.15) mp.CreateNewNode(4, -0.48, 0.65, 0.0) mp.CreateNewNode(5, 0.02, -0.01, -0.15) def _create_shell_elements(self,mp,element_name = "ShellThinElementCorotational3D3N"): mp.CreateNewElement(element_name, 1, [1,2,5], mp.GetProperties()[1]) mp.CreateNewElement(element_name, 2, [2,3,5], mp.GetProperties()[1]) mp.CreateNewElement(element_name, 3, [3,4,5], mp.GetProperties()[1]) mp.CreateNewElement(element_name, 4, [4,1,5], mp.GetProperties()[1]) def test_nodal_cog(self): dim = 3 nr_nodes = 4 current_model = KratosMultiphysics.Model() mp = current_model.CreateModelPart("structural_part_nodal_masses") mp.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] = dim #create nodes dx = 1.2 for i in range(nr_nodes): mp.CreateNewNode(i+1,i*dx,0.00,0.00) #add dofs #create Element elem1 = mp.CreateNewElement("NodalConcentratedElement2D1N", 1, [1], mp.GetProperties()[0]) elem2 = mp.CreateNewElement("NodalConcentratedElement2D1N", 2, [2], mp.GetProperties()[0]) elem3 = mp.CreateNewElement("NodalConcentratedElement3D1N", 3, [3], mp.GetProperties()[0]) elem4 = mp.CreateNewElement("NodalConcentratedElement3D1N", 4, [4], mp.GetProperties()[0]) elem1.SetValue(KratosMultiphysics.NODAL_MASS,21.234) elem2.SetValue(KratosMultiphysics.NODAL_MASS,5.234) elem3.SetValue(KratosMultiphysics.NODAL_MASS,112.234) elem4.SetValue(KratosMultiphysics.NODAL_MASS,78.234) cog_process = StructuralMechanicsApplication.ComputeCenterOfGravityProcess(mp) cog_process.Execute() center_of_gravity = mp.ProcessInfo[StructuralMechanicsApplication.CENTER_OF_GRAVITY] self.assertAlmostEqual(2.5688903639, center_of_gravity[0]) self.assertAlmostEqual(0.0, center_of_gravity[1]) self.assertAlmostEqual(0.0, center_of_gravity[2]) def test_beam_cog(self): dim = 3 nr_nodes = 11 nr_elements = nr_nodes-1 current_model = KratosMultiphysics.Model() mp = current_model.CreateModelPart("structural_part_beams") mp.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] = dim self._apply_beam_material_properties(mp,dim) #create nodes dx = 1.20 / nr_elements for i in range(nr_nodes): mp.CreateNewNode(i+1,i*dx,0.00,0.00) #add dofs #create Element for i in range(nr_elements): elem = mp.CreateNewElement("CrLinearBeamElement3D2N", i+1, [i+1,i+2], mp.GetProperties()[0]) cog_process = StructuralMechanicsApplication.ComputeCenterOfGravityProcess(mp) cog_process.Execute() center_of_gravity = mp.ProcessInfo[StructuralMechanicsApplication.CENTER_OF_GRAVITY] self.assertAlmostEqual(0.6, center_of_gravity[0]) self.assertAlmostEqual(0.0, center_of_gravity[1]) self.assertAlmostEqual(0.0, center_of_gravity[2]) def test_shell_cog(self): dim = 3 current_model = KratosMultiphysics.Model() mp = current_model.CreateModelPart("structural_part_shells") mp.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] = dim mp.SetBufferSize(2) self._apply_shell_material_properties(mp) self._create_shell_nodes(mp) self._create_shell_elements(mp) cog_process = StructuralMechanicsApplication.ComputeCenterOfGravityProcess(mp) cog_process.Execute() center_of_gravity = mp.ProcessInfo[StructuralMechanicsApplication.CENTER_OF_GRAVITY] self.assertAlmostEqual(0.0723057, center_of_gravity[0]) self.assertAlmostEqual(0.0517395, center_of_gravity[1]) self.assertAlmostEqual(0.0269436, center_of_gravity[2]) def test_orthotropic_shell_cog(self): dim = 3 current_model = KratosMultiphysics.Model() mp = current_model.CreateModelPart("structural_part_orthotropic_shells") mp.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] = dim mp.SetBufferSize(2) self._apply_orthotropic_shell_material_properties(mp) self._create_shell_nodes(mp) self._create_shell_elements(mp) cog_process = StructuralMechanicsApplication.ComputeCenterOfGravityProcess(mp) cog_process.Execute() center_of_gravity = mp.ProcessInfo[StructuralMechanicsApplication.CENTER_OF_GRAVITY] self.assertAlmostEqual(0.0723057, center_of_gravity[0]) self.assertAlmostEqual(0.0517395, center_of_gravity[1]) self.assertAlmostEqual(0.0269436, center_of_gravity[2]) def test_solid_cog(self): dim = 2 current_model = KratosMultiphysics.Model() mp = current_model.CreateModelPart("structural_part_solids") mp.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] = dim mp.SetBufferSize(2) self._apply_solid_material_properties(mp) #create nodes mp.CreateNewNode(1,0.5,0.5,0.0) mp.CreateNewNode(2,0.7,0.2,0.0) mp.CreateNewNode(3,0.9,0.8,0.0) mp.CreateNewNode(4,0.3,0.7,0.0) mp.CreateNewNode(5,0.6,0.6,0.0) #create Element mp.CreateNewElement("TotalLagrangianElement2D3N", 1, [1,2,5], mp.GetProperties()[1]) mp.CreateNewElement("TotalLagrangianElement2D3N", 2, [2,3,5], mp.GetProperties()[1]) mp.CreateNewElement("TotalLagrangianElement2D3N", 3, [3,4,5], mp.GetProperties()[1]) mp.CreateNewElement("TotalLagrangianElement2D3N", 4, [4,1,5], mp.GetProperties()[1]) cog_process = StructuralMechanicsApplication.ComputeCenterOfGravityProcess(mp) cog_process.Execute() center_of_gravity = mp.ProcessInfo[StructuralMechanicsApplication.CENTER_OF_GRAVITY] self.assertAlmostEqual(0.6416666667, center_of_gravity[0]) self.assertAlmostEqual(0.5729166667, center_of_gravity[1]) self.assertAlmostEqual(0.0, center_of_gravity[2]) if __name__ == '__main__': KratosUnittest.main()
py
1a3e187321f265b4722e0cc563240c008f62ed35
#!/usr/bin/env python # -*- coding: utf-8 -*- ############################################################################### # Copyright 2013 Kitware Inc. # # Licensed under the Apache License, Version 2.0 ( the "License" ); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### import itertools import re import threading import uuid import requests from ..describe import Description, autoDescribeRoute from ..rest import Resource, rawResponse from bson.objectid import ObjectId from girderformindlogger.constants import AccessType, SortDir, TokenScope, \ DEFINED_INFORMANTS, REPROLIB_CANONICAL, SPECIAL_SUBJECTS, USER_ROLES from girderformindlogger.api import access from girderformindlogger.exceptions import AccessException, ValidationException from girderformindlogger.models.activity import Activity as ActivityModel from girderformindlogger.models.applet import Applet as AppletModel from girderformindlogger.models.collection import Collection as CollectionModel from girderformindlogger.models.folder import Folder as FolderModel from girderformindlogger.models.group import Group as GroupModel from girderformindlogger.models.item import Item as ItemModel from girderformindlogger.models.protocol import Protocol as ProtocolModel from girderformindlogger.models.roles import getCanonicalUser, getUserCipher from girderformindlogger.models.user import User as UserModel from girderformindlogger.utility import config, jsonld_expander from pyld import jsonld USER_ROLE_KEYS = USER_ROLES.keys() class Applet(Resource): def __init__(self): super(Applet, self).__init__() self.resourceName = 'applet' self._model = AppletModel() self.route('GET', (':id',), self.getApplet) self.route('GET', (':id', 'data'), self.getAppletData) self.route('GET', (':id', 'groups'), self.getAppletGroups) self.route('POST', (), self.createApplet) self.route('PUT', (':id', 'informant'), self.updateInformant) self.route('PUT', (':id', 'assign'), self.assignGroup) self.route('PUT', (':id', 'constraints'), self.setConstraints) self.route('PUT', (':id', 'schedule'), self.setSchedule) self.route('POST', (':id', 'invite'), self.invite) self.route('GET', (':id', 'roles'), self.getAppletRoles) self.route('GET', (':id', 'users'), self.getAppletUsers) self.route('DELETE', (':id',), self.deactivateApplet) @access.user(scope=TokenScope.DATA_OWN) @autoDescribeRoute( Description('Get userlist, groups & statuses.') .modelParam( 'id', model=FolderModel, level=AccessType.ADMIN, destName='applet' ) ) def getAppletUsers(self, applet): thisUser=self.getCurrentUser() if AppletModel().isCoordinator(applet['_id'], thisUser): return(AppletModel().getAppletUsers(applet, thisUser, force=True)) else: raise AccessException( "Only coordinators and managers can see user lists." ) @access.user(scope=TokenScope.DATA_WRITE) @autoDescribeRoute( Description('Assign a group to a role in an applet.') .deprecated() .responseClass('Folder') .modelParam('id', model=FolderModel, level=AccessType.READ) .param( 'group', 'ID of the group to assign.', required=True, strip=True ) .param( 'role', 'Role to invite this user to. One of ' + str(USER_ROLE_KEYS), default='user', required=False, strip=True ) .jsonParam( 'subject', 'Requires a JSON Object in the form \n```' '{' ' "groups": {' ' "«relationship»": []' ' },' ' "users": {' ' "«relationship»": []' ' }' '}' '``` \n For \'user\' or \'reviewer\' assignments, specify ' 'group-level relationships, filling in \'«relationship»\' with a ' 'JSON-ld key semantically defined in in your context, and IDs in ' 'the value Arrays (either applet-specific or canonical IDs in the ' 'case of users; applet-specific IDs will be stored either way).', paramType='form', required=False, requireObject=True ) .errorResponse('ID was invalid.') .errorResponse('Write access was denied for the folder or its new parent object.', 403) ) def assignGroup(self, folder, group, role, subject): applet = folder if role not in USER_ROLE_KEYS: raise ValidationException( 'Invalid role.', 'role' ) thisUser=self.getCurrentUser() group=GroupModel().load(group, level=AccessType.WRITE, user=thisUser) return( AppletModel().setGroupRole( applet, group, role, currentUser=thisUser, force=False, subject=subject ) ) @access.user(scope=TokenScope.DATA_WRITE) @autoDescribeRoute( Description('Create an applet.') .param( 'protocolUrl', 'URL of Activity Set from which to create applet', required=False ) .param( 'name', 'Name to give the applet. The Protocol\'s name will be used if ' 'this parameter is not provided.', required=False ) .param( 'informant', ' '.join([ 'Relationship from informant to individual of interest.', 'Currently handled informant relationships are', str([r for r in DEFINED_INFORMANTS.keys()]) ]), required=False ) .errorResponse('Write access was denied for this applet.', 403) ) def createApplet(self, protocolUrl=None, name=None, informant=None): thisUser = self.getCurrentUser() thread = threading.Thread( target=AppletModel().createAppletFromUrl, kwargs={ 'name': name, 'protocolUrl': protocolUrl, 'user': thisUser, 'constraints': { 'informantRelationship': informant } if informant is not None else None } ) thread.start() return({ "message": "The applet is being created. Please check back in " "several mintutes to see it. If you have an email " "address associated with your account, you will receive " "an email when your applet is ready." }) @access.user(scope=TokenScope.DATA_WRITE) @autoDescribeRoute( Description('Get all data you are authorized to see for an applet.') .param( 'id', 'ID of the applet for which to fetch data', required=True ) .param( 'format', 'JSON or CSV', required=False ) .errorResponse('Write access was denied for this applet.', 403) ) def getAppletData(self, id, format='json'): import pandas as pd from datetime import datetime from ..rest import setContentDisposition, setRawResponse, setResponseHeader format = ('json' if format is None else format).lower() thisUser = self.getCurrentUser() data = AppletModel().getResponseData(id, thisUser) setContentDisposition("{}-{}.{}".format( str(id), datetime.now().isoformat(), format )) if format=='csv': setRawResponse() setResponseHeader('Content-Type', 'text/{}'.format(format)) csv = pd.DataFrame(data).to_csv(index=False) return(csv) setResponseHeader('Content-Type', 'application/{}'.format(format)) return(data) @access.user(scope=TokenScope.DATA_WRITE) @autoDescribeRoute( Description('(managers only) Update the informant of an applet.') .modelParam( 'id', model=AppletModel, description='ID of the applet to update', destName='applet', force=True, required=True ) .param( 'informant', ' '.join([ 'Relationship from informant to individual of interest.', 'Currently handled informant relationships are', str([r for r in DEFINED_INFORMANTS.keys()]) ]), required=True ) .errorResponse('Write access was denied for this applet.', 403) ) def updateInformant(self, applet, informant): user = self.getCurrentUser() if not AppletModel().isManager(applet['_id'], user): raise AccessException( "Only managers can update informant relationship" ) AppletModel().updateRelationship(applet, informant) return( jsonld_expander.formatLdObject( applet, 'applet', user, refreshCache=False ) ) @access.user(scope=TokenScope.DATA_WRITE) @autoDescribeRoute( Description('Deactivate an applet by ID.') .modelParam('id', model=AppletModel, level=AccessType.WRITE) .errorResponse('Invalid applet ID.') .errorResponse('Write access was denied for this applet.', 403) ) def deactivateApplet(self, folder): applet = folder user = Applet().getCurrentUser() applet['meta']['applet']['deleted'] = True applet = AppletModel().setMetadata(applet, applet.get('meta'), user) if applet.get('meta', {}).get('applet', {}).get('deleted')==True: message = 'Successfully deactivated applet {} ({}).'.format( AppletModel().preferredName(applet), applet.get('_id') ) thread = threading.Thread( target=AppletModel().updateUserCacheAllUsersAllRoles, args=(applet, user) ) thread.start() else: message = 'Could not deactivate applet {} ({}).'.format( AppletModel().preferredName(applet), applet.get('_id') ) Description().errorResponse(message, 403) return(message) @access.user(scope=TokenScope.DATA_READ) @autoDescribeRoute( Description('Get an applet by ID.') .modelParam( 'id', model=AppletModel, level=AccessType.READ, destName='applet' ) .param( 'refreshCache', 'Reparse JSON-LD', required=False, dataType='boolean' ) .errorResponse('Invalid applet ID.') .errorResponse('Read access was denied for this applet.', 403) ) def getApplet(self, applet, refreshCache=False): user = self.getCurrentUser() if refreshCache: thread = threading.Thread( target=jsonld_expander.formatLdObject, args=(applet, 'applet', user), kwargs={'refreshCache': refreshCache} ) thread.start() return({ "message": "The applet is being refreshed. Please check back " "in several mintutes to see it." }) return( jsonld_expander.formatLdObject( applet, 'applet', user, refreshCache=refreshCache ) ) @access.user(scope=TokenScope.DATA_READ) @autoDescribeRoute( Description('Get associated groups for a given role and applet ID.') .modelParam('id', 'ID of the Applet.', model=AppletModel, level=AccessType.READ) .param( 'role', 'One of ' + str(set(USER_ROLE_KEYS)), default='user', required=False, strip=True ) .errorResponse('Invalid applet ID.') .errorResponse('Read access was denied for this applet.', 403) ) def getAppletGroups(self, folder, role): applet = folder user = self.getCurrentUser() groups = [ group for group in AppletModel( ).getAppletGroups(applet).get(role) if ObjectId(group) in [ *user.get('groups', []), *user.get('formerGroups', []), *[invite['groupId'] for invite in [ *user.get('groupInvites', []), *user.get('declinedInvites', []) ]] ] ] return( groups ) @access.user(scope=TokenScope.DATA_WRITE) @autoDescribeRoute( Description('Get roles for an applet by ID.') .modelParam( 'id', model=AppletModel, level=AccessType.WRITE, description='ID of the Applet.' ) .errorResponse('Invalid applet ID.') .errorResponse('Write access was denied for this applet.', 403) .notes('Only users with write access can see roles.') ) def getAppletRoles(self, folder): applet = folder user = Applet().getCurrentUser() return(AppletModel().getFullRolesList(applet)) @access.user(scope=TokenScope.DATA_WRITE) @autoDescribeRoute( Description('Invite a user to a role in an applet.') .modelParam( 'id', model=AppletModel, level=AccessType.READ, destName='applet' ) .param( 'role', 'Role to invite this user to. One of ' + str(set(USER_ROLE_KEYS)), default='user', required=False, strip=True ) .param( 'idCode', 'ID code for data reporting. One will be generated if none is ' 'provided.', required=False, strip=True ) .jsonParam( 'profile', 'Optional, coordinator-defined user profile information, eg, ' '`displayName`, `email`', required=False, paramType='form' ) .errorResponse('ID was invalid.') .errorResponse('Write access was denied for the folder or its new parent object.', 403) ) def invite(self, applet, role="user", idCode=None, profile=None): from girderformindlogger.models.invitation import Invitation from girderformindlogger.models.profile import Profile user = self.getCurrentUser() try: if role not in USER_ROLE_KEYS: raise ValidationException( 'Invalid role.', 'role' ) invitation = Invitation().createInvitation( applet=applet, coordinator=user, role=role, profile=profile, idCode=idCode ) return(Profile().displayProfileFields(invitation, user)) except: import sys, traceback print(sys.exc_info()) @access.user(scope=TokenScope.DATA_WRITE) @autoDescribeRoute( Description('Deprecated. Do not use') .modelParam('id', model=AppletModel, level=AccessType.READ) .param( 'activity', 'Deprecated. Do not use.' 'schedule.', required=False ) .jsonParam( 'schedule', 'Deprecated. Do not use.', paramType='form', required=False ) .errorResponse('Invalid applet ID.') .errorResponse('Read access was denied for this applet.', 403) .deprecated() ) def setConstraints(self, folder, activity, schedule, **kwargs): thisUser = self.getCurrentUser() applet = jsonld_expander.formatLdObject( _setConstraints(folder, activity, schedule, thisUser), 'applet', thisUser, refreshCache=True ) thread = threading.Thread( target=AppletModel().updateUserCacheAllUsersAllRoles, args=(applet, thisUser) ) thread.start() return(applet) @access.user(scope=TokenScope.DATA_WRITE) @autoDescribeRoute( Description('Set or update schedule information for an applet.') .modelParam( 'id', model=AppletModel, level=AccessType.READ, destName='applet' ) .jsonParam( 'schedule', 'A JSON object containing schedule information for an applet', paramType='form', required=False ) .errorResponse('Invalid applet ID.') .errorResponse('Read access was denied for this applet.', 403) ) def setSchedule(self, applet, schedule, **kwargs): thisUser = self.getCurrentUser() if not AppletModel().isCoordinator(applet['_id'], thisUser): raise AccessException( "Only coordinators and managers can update applet schedules." ) appletMeta = applet['meta'] if 'meta' in applet else {'applet': {}} if 'applet' not in appletMeta: appletMeta['applet'] = {} appletMeta['applet']['schedule'] = schedule AppletModel().setMetadata(applet, appletMeta) thread = threading.Thread( target=AppletModel().updateUserCacheAllUsersAllRoles, args=(applet, thisUser) ) thread.start() return(appletMeta) def authorizeReviewer(applet, reviewer, user): thisUser = Applet().getCurrentUser() user = UserModel().load( user, level=AccessType.NONE, user=thisUser ) try: applet = FolderModel().load( applet, level=AccessType.READ, user=thisUser ) responsesCollection = FolderModel().createFolder( parent=user, name='Responses', parentType='user', public=False, creator=thisUser, reuseExisting=True ) thisApplet = list(FolderModel().childFolders( parent=responsesCollection, parentType='folder', user=thisUser, filters={ 'meta.applet.@id': str(applet['_id']) } )) thisApplet = thisApplet[0] if len( thisApplet ) else FolderModel().setMetadata( FolderModel().createFolder( parent=responsesCollection, name=FolderModel().preferredName(applet), parentType='folder', public=False, creator=thisUser, allowRename=True, reuseExisting=False ), { 'applet': { '@id': str(applet['_id']) } } ) accessList = thisApplet['access'] accessList['users'].append({ "id": reviewer, "level": AccessType.READ }) thisApplet = FolderModel().setAccessList( thisApplet, accessList, save=True, recurse=True, user=thisUser ) except: thisApplet = None return(thisApplet) def authorizeReviewers(assignment): assignment = assignment.get('meta', assignment) thisUser = Applet().getCurrentUser() allUsers = [] reviewAll = [] members = assignment.get('members', []) applet = assignment.get('applet').get('@id') for member in [member for member in members if 'roles' in member]: try: if member['roles']['user']: allUsers.append(getCanonicalUser(member.get("@id"))) except: pass if 'reviewer' in member['roles']: if "ALL" in member['roles']['reviewer']: reviewAll.append(getCanonicalUser(member.get("@id"))) for user in [ user for user in member['roles'][ 'reviewer' ] if user not in SPECIAL_SUBJECTS ]: authorizeReviewer( assignment.get('applet').get('@id'), getCanonicalUser(member.get('@id')), getCanonicalUser(user) ) for reviewer in reviewAll: [authorizeReviewer( assignment.get('applet').get('@id'), reviewer, user ) for user in allUsers] return(None) def _invite(applet, user, role, rsvp, subject): """ Helper function to invite a user to an applet. :param applet: Applet to invite user to :type applet: AppletModel :param user: ID (canonical or applet-specific) or email address of user to invite :type user: string :param role: Role to invite user to :type role: string :param rsvp: Require user acceptance? :type rsvp: boolean :param subject: Subject about 'user' role can inform or about which 'reviewer' role can review :type subject: string or literal :returns: New assignment (dictionary) """ if role not in USER_ROLE_KEYS: raise ValidationException( 'Invalid role.', 'role' ) thisUser = Applet().getCurrentUser() user = user if user else str(thisUser['_id']) if bool(rsvp): groupName = { 'title': '{} {}s'.format( str(applet.get('_id')), role ) } groupName['lower'] = groupName.get('title', '').lower() group = GroupModel().findOne(query={'lowerName': groupName['lower']}) if not group or group is None: group = GroupModel().createGroup( name=groupName['title'], creator=thisUser, public=bool(role in ['manager', 'reviewer']) ) try: assignments = CollectionModel().createCollection( name="Assignments", public=True, reuseExisting=True ) assignmentType = 'collection' except AccessException: assignments, assignmentType = selfAssignment() appletAssignment = list(FolderModel().childFolders( parent=assignments, parentType=assignmentType, user=thisUser, filters={ 'meta.applet.@id': str(applet['_id']) if '_id' in applet else None } )) appletAssignment = appletAssignment[0] if len( appletAssignment ) else FolderModel().setMetadata( FolderModel().createFolder( parent=assignments, name=FolderModel().preferredName(applet), parentType=assignmentType, public=False, creator=thisUser, allowRename=True, reuseExisting=False ), { 'applet': { '@id': str(applet['_id']) if '_id' in applet else None } } ) meta = appletAssignment.get('meta', {}) members = meta.get('members', []) if meta.get( 'members' ) is not None else [] cUser = getUserCipher(appletAssignment, user) subject = subject.upper() if subject is not None and subject.upper( ) in SPECIAL_SUBJECTS else getUserCipher( appletAssignment, str(thisUser['_id']) if subject is None else subject ) thisAppletAssignment = { '@id': str(cUser), 'roles': { role: True if role not in [ 'reviewer', 'user' ] else [ subject ] } } for i, u in enumerate(members): if '@id' in u and u["@id"]==str(cUser): thisAppletAssignment = members.pop(i) if 'roles' not in thisAppletAssignment: thisAppletAssignment['roles'] = {} thisAppletAssignment['roles'][ role ] = True if role not in [ 'reviewer', 'user' ] else [ subject ] if ( subject in SPECIAL_SUBJECTS ) or ( 'reviewer' not in thisAppletAssignment[ 'roles' ] ) else list(set( thisAppletAssignment['roles']['reviewer'] + [subject] ).difference(set( SPECIAL_SUBJECTS ))) if "ALL" not in thisAppletAssignment['roles'][ 'reviewer' ] else ["ALL"] members.append(thisAppletAssignment) meta['members'] = members appletAssignment = FolderModel().setMetadata(appletAssignment, meta) authorizeReviewers(appletAssignment) return(appletAssignment) def selfAssignment(): thisUser = Applet().getCurrentUser() assignmentsFolder = FolderModel().createFolder( parent=thisUser, parentType='user', name='Assignments', creator=thisUser, public=False, reuseExisting=True ) return(( assignmentsFolder, 'folder' )) def _setConstraints(applet, activity, schedule, user, refreshCache=False): """ Helper function for method recursion. :param applet: applet Object :type applet: dict :param activity: Activity ID :type activity: str, list, or None :param schedule: schedule data :type schedule: dict, list, or None :param user: user making the call :type user: dict :returns: updated applet Object """ if activity is None: if schedule is not None: appletMeta = applet.get('meta', {}) appletMeta['applet']['schedule'] = schedule applet = AppletModel().setMetadata(applet, appletMeta) return(applet) if isinstance(activity, str) and activity.startswith('['): try: activity = [ activity_.replace( "'", "" ).replace( '"', '' ).strip() for activity_ in activity[1:-1].split(',') ] except (TypeError, AttributeError) as e: print(e) if isinstance(activity, list): for activity_ in activity: applet = _setConstraints( applet, activity_, schedule, user ) return(applet) try: activityLoaded = ActivityModel().getFromUrl( activity, 'activity', thisUser, refreshCache )[0] except: activityLoaded = ActivityModel().load( activity, AccessType.WRITE, user ) try: activityMeta = activityLoaded['meta'].get('activity') except AttributeError: raise ValidationException( 'Invalid activity.', 'activity' ) activityKey = activityMeta.get( 'url', activityMeta.get( '@id', activityLoaded.get( '_id' ) ) ) if activityKey is None: raise ValidationException( 'Invalid activity.', 'activity' ) else: activityKey = jsonld_expander.reprolibPrefix(activityKey) protocolExpanded = jsonld_expander.formatLdObject( applet, 'applet', user ).get('applet', {}) protocolOrder = protocolExpanded.get('ui', {}).get('order', []) framedActivityKeys = [ protocolOrder[i] for i, v in enumerate( protocolExpanded.get( "reprolib:terms/order" )[0].get( "@list" ) ) if jsonld_expander.reprolibPrefix(v.get("@id"))==activityKey ] if schedule is not None: appletMeta = applet.get('meta', {}) scheduleInApplet = appletMeta.get('applet', {}).get('schedule', {}) for k in framedActivityKeys: scheduleInApplet[k] = schedule appletMeta['applet']['schedule'] = scheduleInApplet applet = AppletModel().setMetadata(applet, appletMeta) return(applet)
py
1a3e189f52a1cd5da5f4170d552cede4d9d0b6da
from transformers import AutoTokenizer, AutoModelWithLMHead import numpy as np from pathlib import Path import json import joblib def model_fn(model_dir): tokenizer = AutoTokenizer.from_pretrained("distilgpt2", cache_dir=model_dir) model = AutoModelWithLMHead.from_pretrained("distilgpt2", cache_dir=model_dir) model_assets = { "tokenizer": tokenizer, "model": model } return model_assets def input_fn(request_body_str, request_content_type): assert ( request_content_type == "application/json" ), "content_type must be 'application/json'" request_body = json.loads(request_body_str) return request_body def get_parameter(request_body, parameter_name, default): parameter = default if 'parameters' in request_body: if parameter_name in request_body['parameters']: parameter = request_body['parameters'][parameter_name] return parameter def predict_fn(request_body, model_assets): input_text = request_body["text"] tokenizer = model_assets['tokenizer'] model = model_assets['model'] input_ids = tokenizer.encode(input_text, return_tensors='pt') sample_output = model.generate( input_ids, do_sample=True, min_length=get_parameter(request_body, 'min_length', 25), max_length=get_parameter(request_body, 'max_length', 100), top_k=0, temperature=get_parameter(request_body, 'temperature', 100) ) output_text = tokenizer.decode(sample_output[0], skip_special_tokens=True) return {"text": output_text} def output_fn(prediction, response_content_type): assert ( response_content_type == "application/json" ), "accept must be 'application/json'" response_body_str = json.dumps(prediction) return response_body_str
py
1a3e19bce84a9e6a8abbe394c49bf4e961f0d43e
from django.conf.urls import include, url from .manga import MANGA from .chapter import CHAPTER urlpatterns = [ url(r'^', include(MANGA)), url(r'^', include(CHAPTER)), ]
py
1a3e1a5f562fef8b599ecb25e3e6790f7fdf7312
# Boilerplate Lambda function pulled from AWS import json def handler(event, context): return { 'statusCode': 200, 'body': json.dumps('Hello from Architect Sandbox running python3.6!') }
py
1a3e1b928cfc07d6e763cf52f5e4566809ce1afc
#!/usr/bin/env python """ /proc/thedir """ from slashproc_parser.basic_parser import BasicSPParser class TheParser(BasicSPParser): THEDIR = "/proc/thedir" def __init__(self): super(TheParser, self).__init__(self) @staticmethod def get_groups(): """ REMOVE THIS DOCSTRING AND CREATE ONE APPROPIATE TO THE PARSER Ensure first group is the parser name and its parent is ['root'] Ensure group labels are unique if there are multiple then subscript with number etc... Ensure each group has a parent, and parents is a list :rtype: dict """ groups = { 'theparser': {'label': "Formatted Long Parser Label", 'desc': "Description of the parser", 'parents': ['root']}, 'group1': {'label': 'The first group', 'parents': ['theparser']}, 'group2': {'label': 'The second group', 'parents': ['group1'], 'desc': "Desc recommended but not necessary"} } return groups @staticmethod def get_vars(): """ REMOVE THIS DOCSTRING AND CREATE ONE APPROPIATE TO THE PARSER Ensure var labels are all lower case, contain underscores (not dash) and the following chars are not permitted "()[]/\ " Ensure every var has a unit where appropriate :rtype: dict """ vars = { 'var1': {'label': 'The first Variable'}, 'var2': {'label': 'The Second Variable', 'unit': 'kB', 'desc': 'Description recommended but not necessary'} } return vars @staticmethod def get_data(): """ REMOVE THIS DOCSTRING AND CREATE ONE APPROPIATE TO THE PARSER Ensure first group is the parser name Ensure return adheres to the groups structure Ensure all groups are present in the groups dict Ensure all vars adhere to the var format Ensure all vars are present in the vars dict Ensure every value is a string :rtype: dict """ data = {'theparser': { 'group1': { 'group2': {'var1': 'val1', 'var2': 'val2'}, } } } return data if __name__ == "__main__": c = TheParser() c.test_parse()
py
1a3e1c2ac07a09e4ff5ec962e939347d31704903
from django.db import models # Create your models here. class Day(models.Model): account = models.CharField(max_length=255) member = models.CharField(max_length=255) date = models.DateField() meal = models.CharField(max_length=255) whoiscooking = models.CharField(max_length=255,blank=True) ingredient = models.CharField(max_length=255,blank=True) created = models.DateTimeField(auto_now_add=True) ingredient_there = models.BooleanField()
py
1a3e1caafaa37238d678502e342a8a8cc07ba18d
# -*- coding: utf-8 -* #!/usr/bin/python from dealctrl import * class deal_7_com(dealctrl): def __init__(self,con): dealctrl.__init__(self,con) def run(self): userid=int(self.recvdic['userid']) aid=int(self.recvdic['aid']) content=self.recvdic['content'] sql=("INSERT INTO `activity_comment` (`aid`,`userid`,`content`,`commenttime`) VALUES (%d,%d,'%s',%d)" % (aid,userid,content,self.now)) self.log.write("sql: %s\n" % sql) self.db.execute(sql) cid=self.db.insert_id() senddic={ 'type':'7_com_r', 'reply':1, 'cid':cid } self.sendmessage(senddic) return 1
py
1a3e1defc0e5499227a364704d4b20d61e629927
from __future__ import print_function import torch import torch.nn as nn import numpy as np import scipy import numbers import random from matplotlib import colors import matplotlib.patches as mpatches from statsmodels.nonparametric.kde import KDEUnivariate from PIL import ImageFilter from kornia import augmentation as augs from kornia import filters, color def adjust_learning_rate(epoch, opt, optimizer): """Sets the learning rate to the initial LR decayed by 0.2 every steep step""" steps = np.sum(epoch > np.asarray(opt.lr_decay_epochs)) if steps > 0: new_lr = opt.learning_rate * (opt.lr_decay_rate ** steps) for param_group in optimizer.param_groups: param_group['lr'] = new_lr class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res def convert_to_np(tensor): # convert pytorch tensors to numpy arrays if not isinstance(tensor, np.ndarray): tensor = tensor.cpu().numpy() return tensor def labels_to_dfc(tensor, no_savanna): """ INPUT: Classes encoded in the training scheme (0-9 if savanna is a valid label or 0-8 if not). Invalid labels are marked by 255 and will not be changed. OUTPUT: Classes encoded in the DFC2020 scheme (1-10, and 255 for invalid). """ # transform to numpy array tensor = convert_to_np(tensor) # copy the original input out = np.copy(tensor) # shift labels if there is no savanna class if no_savanna: for i in range(2, 9): out[tensor == i] = i + 1 else: pass # transform from zero-based labels to 1-10 out[tensor != 255] += 1 # make sure the mask is intact and return transformed labels assert np.all((tensor == 255) == (out == 255)) return out def display_input_batch(tensor, display_indices=0, brightness_factor=3): # extract display channels tensor = tensor[:, display_indices, :, :] # restore NCHW tensor shape if single channel image if len(tensor.shape) == 3: tensor = tensor.unsqueeze(1) # scale image tensor = torch.clamp((tensor * brightness_factor), 0, 1) return tensor def display_label_batch(tensor, no_savanna=False): # get predictions if input is one-hot encoded if len(tensor.shape) == 4: tensor = tensor.max(1)[1] # convert train labels to DFC2020 class scheme tensor = labels_to_dfc(tensor, no_savanna) # colorize labels cmap = mycmap() imgs = [] for s in range(tensor.shape[0]): im = (tensor[s, :, :] - 1) / 10 im = cmap(im)[:, :, 0:3] im = np.rollaxis(im, 2, 0) imgs.append(im) tensor = np.array(imgs) return tensor def classnames(): return ["Forest", "Shrubland", "Savanna", "Grassland", "Wetlands", "Croplands", "Urban/Built-up", "Snow/Ice", "Barren", "Water"] def mycmap(): cmap = colors.ListedColormap(['#009900', '#c6b044', '#fbff13', '#b6ff05', '#27ff87', '#c24f44', '#a5a5a5', '#69fff8', '#f9ffa4', '#1c0dff', '#ffffff']) return cmap def mypatches(): patches = [] for counter, name in enumerate(classnames()): patches.append(mpatches.Patch(color=mycmap().colors[counter], label=name)) return patches ## tensor operation def _is_tensor_video_clip(clip): if not torch.is_tensor(clip): raise TypeError("clip should be Tesnor. Got %s" % type(clip)) if not clip.ndimension() == 4: raise ValueError("clip should be 4D. Got %dD" % clip.dim()) return True def crop(clip, i, j, h, w): """ Args: clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W) """ assert len(clip.size()) == 4, "clip should be a 4D tensor" return clip[..., i:i + h, j:j + w] def center_crop(clip, crop_size): assert _is_tensor_video_clip(clip), "clip should be a 4D torch.tensor" h, w = clip.size(-2), clip.size(-1) th, tw = crop_size, crop_size assert h >= th and w >= tw, "height and width must be no smaller than crop_size" i = int(round((h - th) / 2.0)) j = int(round((w - tw) / 2.0)) return crop(clip, i, j, th, tw) class CenterCropVideo(object): def __init__(self, size): if isinstance(size, numbers.Number): self.size = (int(size), int(size)) else: self.size = size def __call__(self, clip): """ Args: clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W) Returns: torch.tensor: central cropping of video clip. Size is (C, T, size, size) """ return center_crop(clip, self.size) def __repr__(self): return self.__class__.__name__ + '(size={0})'.format(self.size) def ztz(x, y): """ Compute the inner product between datapoints from corresponding patches of data organized in batches. Since x and y are data between the range [-1,1], it is normalized to be between the range [0,1] using max_norm. Input:x - float, array of [batch_size, patch_size, patch_size, num_channels], Batch of patches from data domain x. y - float, array of [batch_size, patch_size, patch_size, num_channels], Batch of patches from data domain y. Output: ztz - float, array of [batch_size, patch_size^2, patch_size^2], Inner product """ max_norm = x.shape[-1] flat_shape = [x.shape[0], x.shape[1] ** 2, -1] x = torch.reshape(x, flat_shape) y = torch.reshape(y, flat_shape) #ztz = (tf.keras.backend.batch_dot(y, x, -1) + max_norm) / (2 * max_norm) ?? ztz = (torch.bmm(x, y.permute(0, 2, 1)) + max_norm)/ (2 * max_norm) return ztz def affinity(x): """ Compute the affinity matrices of the patches of contained in a batch. It first computes the distances between the datapoints within a patch. Then it finds the suitable kernel width for each patch. Finally, applies the RBF. Input: x - float, array of [batch_size, patch_size, patch_size, num_channels], Batch of patches from data domain x. Output: A - float, array of [batch_size, patch_size^2, patch_size^2], Affinity matrix """ _, h, w, c = x.shape x_1 = torch.unsqueeze(torch.reshape(x, [-1, h * w, c]), 2) x_2 = torch.unsqueeze(torch.reshape(x, [-1, h * w, c]), 1) A = torch.norm(x_1 - x_2, dim=-1) krnl_width, _ = torch.topk(A, k=A.shape[-1]) krnl_width = torch.mean(krnl_width[:, :, (h * w) // 4], 1) krnl_width = torch.reshape(krnl_width, (-1, 1, 1)) krnl_width = torch.where(torch.eq(krnl_width, torch.zeros_like(krnl_width)), torch.ones_like(krnl_width), krnl_width) A = torch.exp(-(torch.div(A, krnl_width) ** 2)) return A def Degree_matrix(x, y): """ Compute the degree matrix starting from corresponding patches of data organized in batches. It first computes the affinity matrices of the two batches and then it computes the norm of the difference between the rows of Ax and the rows of Ay. Then it is normalized. Input: x - float, array of [batch_size, patch_size, patch_size, num_channels_x], Batch of patches from data domain x. y - float, array of [batch_size, patch_size, patch_size, num_channels_y], Batch of patches from data domain y. Output: D - float, array of [batch_size, patch_size^2, patch_size^2], Degree matrix """ ax = affinity(x) ay = affinity(y) D = torch.norm(torch.unsqueeze(ax, 1) - torch.unsqueeze(ay, 2), 2, -1) D = (D - torch.min(D)) / (torch.max(D) - torch.min(D)) return D #CVA def cva(X, Y): diff = X - Y diff_s = (diff**2).sum(axis=-1) return torch.sqrt(diff_s) def SFA(X, Y): ''' see http://sigma.whu.edu.cn/data/res/files/SFACode.zip ''' norm_flag = True m, n = np.shape(X) meanX = np.mean(X, axis=0) meanY = np.mean(Y, axis=0) stdX = np.std(X, axis=0) stdY = np.std(Y, axis=0) Xc = (X - meanX) / stdX Yc = (Y - meanY) / stdY Xc = Xc.T Yc = Yc.T A = np.matmul((Xc-Yc), (Xc-Yc).T)/m B = (np.matmul(Yc, Yc.T)+np.matmul(Yc, Yc.T))/2/m D, V = scipy.linalg.eig(A, B) # V is column wise D = D.real #idx = D.argsort() #D = D[idx] if norm_flag is True: aux1 = np.matmul(np.matmul(V.T, B), V) aux2 = 1/np.sqrt(np.diag(aux1)) V = V * aux2 #V = V[:,0:3] X_trans = np.matmul(V.T, Xc).T Y_trans = np.matmul(V.T, Yc).T return X_trans, Y_trans # split whole image to patches def patchize(img: torch.Tensor, patch_size, unfold_stride) -> torch.Tensor: """ img.shape B : batch size C : channels of image (same to patches.shape[1]) iH : height of image iW : width of image pH : height of patch pW : width of patch V : values in a patch (pH * pW * C) """ B, C, iH, iW = img.shape pH = patch_size pW = patch_size unfold = nn.Unfold(kernel_size=(pH, pW), stride=unfold_stride) patches = unfold(img) # (B, V, P) patches = patches.permute(0, 2, 1).contiguous() # (B, P, V) patches = patches.view(-1, C, pH, pW) # (P, C, pH, pW) return patches #thresholding methods def kde_statsmodels_u(x, x_grid, bandwidth, **kwargs): kde = KDEUnivariate(x) kde.fit(bw=bandwidth, **kwargs) return kde.evaluate(x_grid) #Rosin def rosin(heatmap): heatmap_list = heatmap.flatten().tolist() f_heatmap = np.array(heatmap_list) new_data = f_heatmap - np.min(f_heatmap) print(np.min(new_data)) # declare kernel estimation parameters bandwidth = 0.06 # estimate kernel x_grid = np.linspace(0, np.max(new_data), 90) # x-coordinates for data points in the kernel kernel = kde_statsmodels_u(new_data, x_grid, bandwidth) # get kernel # get the index of the kernal peak maxIndex = np.argmax(kernel) # Assign percent below the max kernel value for the 'zero' peak i.e. a value of 2 = 2% the maximum value maxPercent = 1 # assign x and y coords for peak-to-base line x1 = x_grid[maxIndex] y1 = kernel[maxIndex] # find all local minima in the kernel local_mins = np.where(np.r_[True, kernel[1:] < kernel[:-1]] & np.r_[kernel[:-1] < kernel[1:], True]) local_mins = local_mins[0] # un 'tuple' local mins # filter for points below a certain kernel max local_mins = local_mins[(np.where(kernel[local_mins] < (y1 / (100 / maxPercent))))] # get local minima beyond the peak local_mins = local_mins[(np.where(local_mins > maxIndex))] # get local minima that meet percent max threshold x2_index = local_mins[0] # find minumum beyond peak of kernel x2 = x_grid[x2_index] # index to local min beyond kernel peak y2 = kernel[x2_index] # calculate line slope and get perpendicular line slope = (y2 - y1) / (x2 - x1) # find y_intercept for line y_int = y1 - (slope * x1) slopeTan = -1 / slope # perpendicular line slope # allocate lists for x-y coordinates and distance values dist = list() # save x-y coords of intersect points yii = list() xii = list() # iterate and generate perpendicular lines for i in range(maxIndex + 1, x2_index): # find intersection point between lines # determine equation of the perpendicular line based on current bin coordinate xt1 = x_grid[i] yt1 = kernel[i] y_int_tan = yt1 - (slopeTan * xt1) # calculate intersection point between lines b1 = y_int b2 = y_int_tan m1 = slope m2 = slopeTan # y = mx + b # Set both lines equal to find the intersection point in the x direction, y1=y2, x1=x2 # y1 = m1 * x + b1, y2 = m2 * x + b2 # if y1 == y2... # m1 * x + b1 = m2 * x + b2 # m1 * x - m2 * x = b2 - b1 # x * (m1 - m2) = b2 - b1 # x = (b2 - b1) / (m1 - m2) xi = (b2 - b1) / (m1 - m2) # Now solve for y -- use either line, because they are equal here # y = mx + b yi = m1 * xi + b1 # assert that the new line generated is equal or very close to the correct perpendicular value of the max deviation line assert ((m2 - m2 * .01) < ((yi - y_int_tan) / (xi - 0)) < ( m2 + m2 * .01)) # an error will throw if this statement is false # save x-y coordinates of the point yii.append(yi) xii.append(xi) # get euclidean distance between kernel coordinate and intersect point euc = np.sqrt((xi - xt1) ** 2 + (yi - yt1) ** 2) # store the euclidean distance dist.append(euc) # get kernel point with the maximum distance from the Rosin line # remeber, we started at maxIndex+1, so the index of the optimalPoint in the kernel array will be maxIndex+1 # + the index in the 'dist' array optimalPoint = np.argmax(dist) + maxIndex + 1 # plot the optimal point over the kernel with Rosin line we plotted before threshold = x_grid[optimalPoint] final_threhold = threshold + np.min(f_heatmap) #return heatmap < final_threhold return final_threhold class GaussianBlur(object): """Gaussian blur augmentation in SimCLR https://arxiv.org/abs/2002.05709""" def __init__(self, sigma=[0.1, 2.0]): self.sigma = sigma def __call__(self, x): sigma = random.uniform(self.sigma[0], self.sigma[1]) x = x.filter(ImageFilter.GaussianBlur(radius=sigma)) return x def default(val, def_val): return def_val if val is None else val # augmentation utils class RandomApply(nn.Module): def __init__(self, fn, p): super().__init__() self.fn = fn self.p = p def forward(self, x): if random.random() > self.p: return x return self.fn(x) # default SimCLR augmentation image_size = 256 DEFAULT_AUG = nn.Sequential( RandomApply(augs.ColorJitter(0.8, 0.8, 0.8, 0.2), p=0.8), augs.RandomGrayscale(p=0.2), augs.RandomHorizontalFlip(), RandomApply(filters.GaussianBlur2d((3, 3), (1.5, 1.5)), p=0.1), augs.RandomResizedCrop((image_size, image_size))) #color.Normalize(mean=torch.tensor([0.485, 0.456, 0.406]), std=torch.tensor([0.229, 0.224, 0.225]))) if __name__ == '__main__': meter = AverageMeter()
py
1a3e1e00be991e8ed3dee61a89a340126a6e98f5
import datetime def now() -> str: return datetime.datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%S.%f") + "Z"
py
1a3e2092af1917a52840a21cafd2614caef31865
from django.db import migrations, transaction class Migration(migrations.Migration): dependencies = [ ('msgboard', '0001_initial'), ] def generate_data(apps, schema_editor): from msgboard.models import Message test_data = [ ('Test User1', 'A simple test message'), ('Test User2', 'Another simple test message'), ] with transaction.atomic(): for author, text in test_data: Message(author=author, text=text).save() operations = [ migrations.RunPython(generate_data), ]
py
1a3e21e4f00e65c9eb9b63909fd6702d481df1ea
''' File: team_net.py Author: Thomas Kost Date: 23 March 2022 @breif nerual net for predicting march maddness outcomes given team scores '''
py
1a3e227155fbfe97d69928181d78ebd75d276c58
import os import copy import tempfile import atexit import shutil import yaml from pmd_beamphysics import ParticleGroup from abc import ABC, abstractmethod from . import tools class Base(ABC): """ Base Interface for LUME-compatible code. Parameters ---------- input_file : str, optional The input file to be used, by default None initial_particles : dict, optional Initial Particle metadata to be used, by default None verbose : bool, optional Whether or not to produce verbose output, by default False timeout : float, optional The timeout in seconds to be used, by default None """ def __init__( self, input_file=None, *, initial_particles=None, verbose=False, timeout=None, **kwargs): self._input_file = input_file self._initial_particles = initial_particles self._input = None self._output = None # Execution self._timeout = timeout # Logging self._verbose = verbose # State self._configured = False self._finished = False self._error = False @property def input(self): """ Input data as a dictionary """ return self._input @input.setter def input(self, input): self._input = input @property def output(self): """ require openPMD standard, in the future we can add more methods for libs such as pandas Dataframes, xarray DataArrays and Dask Arrays. """ return self._output @output.setter def output(self, output): self._output = output @property def initial_particles(self): """ Initial Particles """ return self._initial_particles @initial_particles.setter def initial_particles(self, initial_particles): self._initial_particles = initial_particles @abstractmethod def configure(self): """ Configure and set up for run. """ raise NotImplementedError @abstractmethod def run(self): """ Execute the code. """ raise NotImplementedError @property def verbose(self): """ Read or configure the verbose flag. """ return self._verbose @verbose.setter def verbose(self, verbose): self._verbose = verbose @property def timeout(self): """ Read or configure the timeout in seconds. """ return self._timeout @timeout.setter def timeout(self, timeout): self._timeout = timeout @property def configured(self): """ Get or set the configured flag state. """ return self._configured @configured.setter def configured(self, configured): self._configured = configured @property def finished(self): """ Get or set the finished flag state. """ return self._finished @finished.setter def finished(self, finished): self._finished = finished @property def error(self): """ Get or set the error flag state. """ return self._error @error.setter def error(self, error): self._error = error @property def input_file(self): """ Get or set the input file to be processed. """ return self._input_file @input_file.setter def input_file(self, input_file): """dictionary with parameters?""" self._input_file = input_file def fingerprint(self): """ Data fingerprint (hash) using the input parameters. Returns ------- fingerprint : str The hash for this object based on the input parameters. """ return tools.fingerprint(self.input) def copy(self): """ Returns a deep copy of this object. If a tempdir is being used, will clear this and deconfigure. """ other = copy.deepcopy(self) other.reset() return other def reset(self): """ Reset this object to its initial state. """ pass def vprint(self, *args, **kwargs): # Verbose print if self._verbose: print(*args, **kwargs) @classmethod def from_yaml(cls, yaml_file): """ Returns an Impact object instantiated from a YAML config file Will load intial_particles from an h5 file. """ # Try file if os.path.exists(tools.full_path(yaml_file)): yaml_file = tools.full_path(yaml_file) config = yaml.safe_load(open(yaml_file)) # The input file might be relative to the yaml file if 'input_file' in config: f = os.path.expandvars(config['input_file']) if not os.path.isabs(f): # Get the yaml file root root, _ = os.path.split(tools.full_path(yaml_file)) config['input_file'] = os.path.join(root, f) else: # Try raw string config = yaml.safe_load(yaml_file) # Form ParticleGroup from file if 'initial_particles' in config: f = config['initial_particles'] if not os.path.isabs(f): root, _ = os.path.split(tools.full_path(yaml_file)) f = os.path.join(root, f) config['initial_particles'] = ParticleGroup(f) return cls(**config) class CommandWrapper(Base): """ Interface for LUME-compatible code. Parameters ---------- input_file : str, optional The input file to be used, by default None initial_particles : dict, optional Initial Particle metadata to be used, by default None command : str, optional The command to be executed by this wrapper. E.g. ImpactTexe If not specified, the class attribute `COMMAND` is used, by default None command_mpi : str, optional The command to be executed by this wrapper when using MPI. E.g. ImpactTexe-mpi If not specified, the class attribute `COMMAND_MPI` is used, by default None use_mpi : bool, optional Whether or not to use MPI when running this code, by default False mpi_run : str, optional The command syntax to invoke mpirun. If not specified, the class attribute `MPI_RUN` is used. This is expected to be a formated string taking as parameters the number of processors (nproc) and the command to be executed (command_mpi), by default None use_temp_dir : bool, optional Whether or not to use a temporary directory to run the process, by default True workdir : str, optional The work directory to be used, by default None verbose : bool, optional Whether or not to produce verbose output, by default False timeout : float, optional The timeout in seconds to be used, by default None """ COMMAND = "" COMMAND_MPI = "" MPI_RUN = "mpirun -n {nproc} {command_mpi}" def __init__( self, input_file=None, *, initial_particles=None, command=None, command_mpi=None, use_mpi=False, mpi_run="", use_temp_dir=True, workdir=None, verbose=False, timeout=None): super().__init__( input_file=input_file, initial_particles=initial_particles, verbose=verbose, timeout=timeout ) # Execution self._command = command or self.COMMAND self._command_mpi = command_mpi or self.COMMAND_MPI self._use_mpi = use_mpi self._mpi_run = mpi_run or self.MPI_RUN self._tempdir = None self._use_temp_dir = use_temp_dir self._workdir = workdir self._base_path = None @property def use_mpi(self): """ Whether or not MPI should be used if supported. """ return self._use_mpi @use_mpi.setter def use_mpi(self, use_mpi): self._use_mpi = use_mpi @property def mpi_run(self): """ The command syntax to invoke mpirun. If not specified, the class attribute `MPI_RUN` is used. This is expected to be a formated string taking as parameters the number of processors (nproc) and the command to be executed (command_mpi). """ return self._mpi_run @mpi_run.setter def mpi_run(self, mpi_run): self._mpi_run = mpi_run @property def path(self): """ The base path used by the code to manipulate files. """ return self._base_path @path.setter def path(self, path): self._base_path = path @property def use_temp_dir(self): """ Whether or not the code is using temporary dir to run. Returns ------- bool """ return self._use_temp_dir @property def command(self): """ Get or set the command to be executed. Defaults to `COMMAND`. """ return self._command @command.setter def command(self, command): cmd = command if command: cmd = tools.full_path(command) assert os.path.exists(cmd), 'ERROR: Command does not exist:' + command self._command = cmd @property def command_mpi(self): """ Get or set the command to be executed when running with MPI. Defaults to `COMMAND_MPI`. """ return self._command_mpi @command_mpi.setter def command_mpi(self, command_mpi): cmd = command_mpi if command_mpi: cmd = tools.full_path(command_mpi) assert os.path.exists(cmd), 'ERROR: Command does not exist:' + command_mpi self._command_mpi = cmd def get_run_script(self, write_to_path=True): """ Assembles the run script. Optionally writes a file 'run' with this line to path. This expect to run with .path as the cwd. Parameters ---------- write_to_path : bool Whether or not to write the script to the path. Returns ------- runscript : str The script to run the command. """ _, infile = os.path.split(self.input_file) # Expect to run locally. Astra has problems with long paths. runscript = [self.command, infile] if write_to_path: with open(os.path.join(self.path, 'run'), 'w') as f: f.write(' '.join(runscript)) return runscript @abstractmethod def archive(self, h5=None): """ Dump inputs and outputs into HDF5 file. Parameters ---------- h5 : str or h5py.File The filename or handle to HDF5 file in which to write the information. If not in informed, a new file is generated. Returns ------- h5 : h5py.File Handle to the HDF5 file. """ raise NotImplementedError @classmethod def from_archive(cls, archive_h5): """ Class method to return a new instance via restore of an archive file. Parameters ---------- archive_h5 : str or h5py.File The filename or handle to HDF5 file in which to write the information. Returns ------- c : object An instance of the class with information from the archive file. """ c = cls() c.load_archive(archive_h5) return c @abstractmethod def plot(self, y=[], x=None, xlim=None, ylim=None, ylim2=None, y2=[], nice=True, include_layout=True, include_labels=False, include_particles=True, include_legend=True, return_figure=False): """ Plots output multiple keys. Parameters ---------- y : list List of keys to be displayed on the Y axis x : str Key to be displayed as X axis xlim : list Limits for the X axis ylim : list Limits for the Y axis ylim2 : list Limits for the secondary Y axis y2 : list List of keys to be displayed on the secondary Y axis nice : bool Whether or not a nice SI prefix and scaling will be used to make the numbers reasonably sized. Default: True include_layout : bool Whether or not to include a layout plot at the bottom. Default: True include_labels : bool Whether or not the layout will include element labels. Default: False include_particles : bool Whether or not to plot the particle statistics as dots. Default: True include_legend : bool Whether or not the plot should include the legend. Default: True return_figure : bool Whether or not to return the figure object for further manipulation. Default: True kwargs : dict Extra arguments can be passed to the specific plotting function. Returns ------- fig : matplotlib.pyplot.figure.Figure The plot figure for further customizations or `None` if `return_figure` is set to False. """ raise NotImplementedError @abstractmethod def write_input(self, input_filename): """ Write the input parameters into the file. Parameters ---------- input_filename : str The file in which to write the input parameters """ raise NotImplementedError @abstractmethod def input_parser(self, path): """ Invoke the specialized input parser and returns the input dictionary. Parameters ---------- path : str Path to the input file Returns ------- input : dict The input dictionary """ raise NotImplementedError def load_input(self, input_filepath, **kwargs): """ Invoke the `input_parser` with the given input file path as argument. This method sets the input property to the contents of the input file after the parser. Parameters ---------- input_filepath : str The input file path kwargs : dict Support for extra arguments. """ f = tools.full_path(input_filepath) self.original_path, self.original_input_file = os.path.split(f) # Get original path, filename self.input = self.input_parser(f) @abstractmethod def load_output(self, **kwargs): """ Reads and load into `.output` the outputs generated by the code. """ raise NotImplementedError @abstractmethod def load_archive(self, h5, configure=True): """ Loads input and output from archived h5 file. Parameters ---------- h5 : str or h5py.File The filename or handle on h5py.File from which to load input and output data configure : bool, optional Whether or not to invoke the configure method after loading, by default True """ raise NotImplementedError def reset(self): """ Reset this object to its initial state. """ super().reset() # Clear this if self._use_temp_dir: self._base_path = None self._configured = False def setup_workdir(self, workdir, cleanup=True): """ Set up the work directory if `use_temp_dir` is set. Parameters ---------- workdir : str The directory name. cleanup : bool Whether or not to remove the directory at exit. Defaults to True. """ # Set paths if self._use_temp_dir: # Need to attach this to the object. Otherwise it will go out of scope. self._tempdir = tempfile.TemporaryDirectory(dir=workdir) self._base_path = self._tempdir.name if cleanup: atexit.register(self._cleanup_workdir) else: # Work in place self._base_path = self.original_path def _cleanup_workdir(self): if self._tempdir: try: self._tempdir.cleanup() except OSError: shutil.rmtree(self._tempdir.name, ignore_errors=True)
py
1a3e22a833baea90ccc575365704e1443a6057e0
import _plotly_utils.basevalidators class SizesrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__( self, plotly_name='sizesrc', parent_name='funnelarea.textfont', **kwargs ): super(SizesrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop('edit_type', 'none'), role=kwargs.pop('role', 'info'), **kwargs ) import _plotly_utils.basevalidators class SizeValidator(_plotly_utils.basevalidators.NumberValidator): def __init__( self, plotly_name='size', parent_name='funnelarea.textfont', **kwargs ): super(SizeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, array_ok=kwargs.pop('array_ok', True), edit_type=kwargs.pop('edit_type', 'plot'), min=kwargs.pop('min', 1), role=kwargs.pop('role', 'style'), **kwargs ) import _plotly_utils.basevalidators class FamilysrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__( self, plotly_name='familysrc', parent_name='funnelarea.textfont', **kwargs ): super(FamilysrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop('edit_type', 'none'), role=kwargs.pop('role', 'info'), **kwargs ) import _plotly_utils.basevalidators class FamilyValidator(_plotly_utils.basevalidators.StringValidator): def __init__( self, plotly_name='family', parent_name='funnelarea.textfont', **kwargs ): super(FamilyValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, array_ok=kwargs.pop('array_ok', True), edit_type=kwargs.pop('edit_type', 'plot'), no_blank=kwargs.pop('no_blank', True), role=kwargs.pop('role', 'style'), strict=kwargs.pop('strict', True), **kwargs ) import _plotly_utils.basevalidators class ColorsrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__( self, plotly_name='colorsrc', parent_name='funnelarea.textfont', **kwargs ): super(ColorsrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop('edit_type', 'none'), role=kwargs.pop('role', 'info'), **kwargs ) import _plotly_utils.basevalidators class ColorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__( self, plotly_name='color', parent_name='funnelarea.textfont', **kwargs ): super(ColorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, array_ok=kwargs.pop('array_ok', True), edit_type=kwargs.pop('edit_type', 'plot'), role=kwargs.pop('role', 'style'), **kwargs )
py
1a3e230ac003b6e0d99f66523bbc1b85b61dc8b9
# Generated by Django 2.1.4 on 2019-01-06 12:37 from django.conf import settings from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('mainapp', '0019_auto_20181227_1534'), ] operations = [ migrations.RenameModel( old_name='HistoricalOrganizationMembership', new_name='HistoricalMembership', ), migrations.RenameModel( old_name='OrganizationMembership', new_name='Membership', ), migrations.AlterModelOptions( name='historicalmembership', options={'get_latest_by': 'history_date', 'ordering': ('-history_date', '-history_id'), 'verbose_name': 'historical membership'}, ), migrations.RemoveIndex( model_name='paper', name='mainapp_pap_sort_da_a4a03b_idx', ), migrations.RenameField( model_name='agendaitem', old_name='title', new_name='name', ), migrations.RenameField( model_name='file', old_name='displayed_filename', new_name='filename', ), migrations.RenameField( model_name='historicalagendaitem', old_name='title', new_name='name', ), migrations.RenameField( model_name='historicalfile', old_name='displayed_filename', new_name='filename', ), migrations.RenameField( model_name='historicallocation', old_name='postalCode', new_name='postal_code', ), migrations.RenameField( model_name='historicallocation', old_name='streetAddress', new_name='street_address', ), migrations.RenameField( model_name='location', old_name='postalCode', new_name='postal_code', ), migrations.RenameField( model_name='location', old_name='streetAddress', new_name='street_address', ), migrations.RemoveField( model_name='consultation', name='title', ), migrations.RemoveField( model_name='historicalconsultation', name='title', ), migrations.RemoveField( model_name='historicallocation', name='short_description', ), migrations.RemoveField( model_name='historicalpaper', name='description', ), migrations.RemoveField( model_name='location', name='bodies', ), migrations.RemoveField( model_name='location', name='short_description', ), migrations.RemoveField( model_name='paper', name='description', ), migrations.AddField( model_name='body', name='ags', field=models.CharField(blank=True, max_length=8, null=True), ), migrations.AddField( model_name='historicalbody', name='ags', field=models.CharField(blank=True, max_length=8, null=True), ), migrations.AlterField( model_name='file', name='filesize', field=models.IntegerField(blank=True, null=True), ), migrations.AlterField( model_name='file', name='sort_date', field=models.DateTimeField(default=django.utils.timezone.now), ), migrations.AlterField( model_name='historicalfile', name='filesize', field=models.IntegerField(blank=True, null=True), ), migrations.AlterField( model_name='historicalfile', name='sort_date', field=models.DateTimeField(default=django.utils.timezone.now), ), migrations.AlterField( model_name='historicalpaper', name='sort_date', field=models.DateTimeField(default=django.utils.timezone.now), ), migrations.AlterField( model_name='paper', name='sort_date', field=models.DateTimeField(default=django.utils.timezone.now), ), ]
py
1a3e2319c3a2aabb82aa4a4dd1153d44b6ac6482
# Copyright (C) 2016 Hewlett Packard Enterprise Development LP # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # Third party imports import yaml from tornado.log import app_log # Local imports from opsrest.settings import settings from opsrest.constants import (PASSWD_SRV_SOCK_TYPE_KEY, PASSWD_SRV_PUB_TYPE_KEY) class PasswordServerConfig(object): __instance = None def __new__(cls): if not hasattr(cls, 'instance'): cls.instance = super(PasswordServerConfig, cls).__new__(cls) return cls.instance def __init__(self): self.sock_fd = '' self.pub_key_loc = '' self.__get_passwd_srv_files_location__() def __get_passwd_srv_files_location__(self): try: passwd_srv_yaml = \ open(settings['passwd_srv_yaml'], "r") passwd_srv_files = yaml.load_all(passwd_srv_yaml) for file in passwd_srv_files: for k, v in file.items(): passwd_srv_list = v for element in passwd_srv_list: if element['type'] == PASSWD_SRV_SOCK_TYPE_KEY: self.sock_fd = element['path'] if element['type'] == PASSWD_SRV_PUB_TYPE_KEY: self.pub_key_loc = element['path'] passwd_srv_yaml.close() except IOError as e: app_log.debug("Failed to open Password Server YAML file: %s" % e)
py
1a3e23dcd67e2d76aba7691ef9c0da82e34621ad
""" Author: Andreas Rössler """ import os import argparse import torch import pretrainedmodels import torch.nn as nn import torch.nn.functional as F from xception import xception import math import torchvision def return_pytorch04_xception(init_checkpoint=None): # Raises warning "src not broadcastable to dst" but thats fine model = xception(pretrained=False) if init_checkpoint is not None: # Load model in torch 0.4+ model.fc = model.last_linear del model.last_linear state_dict = torch.load( init_checkpoint) for name, weights in state_dict.items(): if 'pointwise' in name: state_dict[name] = weights.unsqueeze(-1).unsqueeze(-1) model.load_state_dict(state_dict) model.last_linear = model.fc del model.fc return model class TransferModel(nn.Module): """ Simple transfer learning model that takes an imagenet pretrained model with a fc layer as base model and retrains a new fc layer for num_out_classes """ def __init__(self, modelchoice, num_out_classes=2, dropout=0.0, init_checkpoint=None): super(TransferModel, self).__init__() self.modelchoice = modelchoice if modelchoice == 'xception': self.model = return_pytorch04_xception(init_checkpoint) # Replace fc num_ftrs = self.model.last_linear.in_features if not dropout: self.model.last_linear = nn.Linear(num_ftrs, num_out_classes) else: print('Using dropout', dropout) self.model.last_linear = nn.Sequential( nn.Dropout(p=dropout), nn.Linear(num_ftrs, num_out_classes) ) elif modelchoice == 'resnet50' or modelchoice == 'resnet18': if modelchoice == 'resnet50': self.model = torchvision.models.resnet50(pretrained=True) if modelchoice == 'resnet18': self.model = torchvision.models.resnet18(pretrained=True) # Replace fc num_ftrs = self.model.fc.in_features if not dropout: self.model.fc = nn.Linear(num_ftrs, num_out_classes) else: self.model.fc = nn.Sequential( nn.Dropout(p=dropout), nn.Linear(num_ftrs, num_out_classes) ) else: raise Exception('Choose valid model, e.g. resnet50') def set_trainable_up_to(self, boolean, layername="Conv2d_4a_3x3"): """ Freezes all layers below a specific layer and sets the following layers to true if boolean else only the fully connected final layer :param boolean: :param layername: depends on network, for inception e.g. Conv2d_4a_3x3 :return: """ # Stage-1: freeze all the layers if layername is None: for i, param in self.model.named_parameters(): param.requires_grad = True return else: for i, param in self.model.named_parameters(): param.requires_grad = False if boolean: # Make all layers following the layername layer trainable ct = [] found = False for name, child in self.model.named_children(): if layername in ct: found = True for params in child.parameters(): params.requires_grad = True ct.append(name) if not found: raise Exception('Layer not found, cant finetune!'.format( layername)) else: if self.modelchoice == 'xception': # Make fc trainable for param in self.model.last_linear.parameters(): param.requires_grad = True else: # Make fc trainable for param in self.model.fc.parameters(): param.requires_grad = True def forward(self, x): x = self.model(x) return x def model_selection(modelname, num_out_classes, dropout=None, init_checkpoint=None): """ :param modelname: :return: model, image size, pretraining<yes/no>, input_list """ if modelname == 'xception': return TransferModel(modelchoice='xception', num_out_classes=num_out_classes, init_checkpoint=init_checkpoint), 299, \ True, ['image'], None elif modelname == 'resnet18': return TransferModel(modelchoice='resnet18', dropout=dropout, num_out_classes=num_out_classes), \ 224, True, ['image'], None else: raise NotImplementedError(modelname)
py
1a3e240209b80959b1dff4267af0b6aa7e701835
#!/Users/wafflecake/PycharmProjects/coffee/venv/bin/python from django.core import management if __name__ == "__main__": management.execute_from_command_line()
py
1a3e2506f9910819ddc1eb4222619fa09df838f5
from math import ceil # 入力 N, A, B = map(int, input().split()) h = [int(input()) for _ in range(N)] # 二分法により解を求める def bis(p, ok, ng): mid = (ok + ng) // 2 return ( ok if abs(ok - ng) == 1 else bis(p, mid, ng) if p(mid) else bis(p, ok, mid) ) ans = bis( lambda k: sum(max(0, ceil((x - k * B) / (A - B))) for x in h) <= k, 10**10, 0 ) # 出力 print(ans)
py
1a3e254a25ae202fbaf33d140ef558f74b460efd
# coding: utf-8 """ Files Upload and manage files. # noqa: E501 The version of the OpenAPI document: v3 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import copy import logging import multiprocessing import sys import urllib3 import six from six.moves import http_client as httplib class Configuration(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. :param host: Base url :param api_key: Dict to store API key(s). Each entry in the dict specifies an API key. The dict key is the name of the security scheme in the OAS specification. The dict value is the API key secret. :param api_key_prefix: Dict to store API prefix (e.g. Bearer) The dict key is the name of the security scheme in the OAS specification. The dict value is an API key prefix when generating the auth data. :param username: Username for HTTP basic authentication :param password: Password for HTTP basic authentication :param discard_unknown_keys: Boolean value indicating whether to discard unknown properties. A server may send a response that includes additional properties that are not known by the client in the following scenarios: 1. The OpenAPI document is incomplete, i.e. it does not match the server implementation. 2. The client was generated using an older version of the OpenAPI document and the server has been upgraded since then. If a schema in the OpenAPI document defines the additionalProperties attribute, then all undeclared properties received by the server are injected into the additional properties map. In that case, there are undeclared properties, and nothing to discard. :Example: API Key Authentication Example. Given the following security scheme in the OpenAPI specification: components: securitySchemes: cookieAuth: # name for the security scheme type: apiKey in: cookie name: JSESSIONID # cookie name You can programmatically set the cookie: conf = hubspot.files.files.Configuration( api_key={'cookieAuth': 'abc123'} api_key_prefix={'cookieAuth': 'JSESSIONID'} ) The following cookie will be added to the HTTP request: Cookie: JSESSIONID abc123 """ _default = None def __init__( self, host="https://api.hubapi.com", api_key=None, api_key_prefix=None, username=None, password=None, discard_unknown_keys=False, ): """Constructor""" self.host = host """Default Base url """ self.temp_folder_path = None """Temp file folder for downloading files """ # Authentication Settings self.api_key = {} if api_key: self.api_key = api_key """dict to store API key(s) """ self.api_key_prefix = {} if api_key_prefix: self.api_key_prefix = api_key_prefix """dict to store API prefix (e.g. Bearer) """ self.refresh_api_key_hook = None """function hook to refresh API key if expired """ self.username = username """Username for HTTP basic authentication """ self.password = password """Password for HTTP basic authentication """ self.discard_unknown_keys = discard_unknown_keys self.access_token = None """access token for OAuth/Bearer """ self.logger = {} """Logging Settings """ self.logger["package_logger"] = logging.getLogger("hubspot.files.files") self.logger["urllib3_logger"] = logging.getLogger("urllib3") self.logger_format = "%(asctime)s %(levelname)s %(message)s" """Log format """ self.logger_stream_handler = None """Log stream handler """ self.logger_file_handler = None """Log file handler """ self.logger_file = None """Debug file location """ self.debug = False """Debug switch """ self.verify_ssl = True """SSL/TLS verification Set this to false to skip verifying SSL certificate when calling API from https server. """ self.ssl_ca_cert = None """Set this to customize the certificate file to verify the peer. """ self.cert_file = None """client certificate file """ self.key_file = None """client key file """ self.assert_hostname = None """Set this to True/False to enable/disable SSL hostname verification. """ self.connection_pool_maxsize = multiprocessing.cpu_count() * 5 """urllib3 connection pool's maximum number of connections saved per pool. urllib3 uses 1 connection as default value, but this is not the best value when you are making a lot of possibly parallel requests to the same host, which is often the case here. cpu_count * 5 is used as default value to increase performance. """ self.proxy = None """Proxy URL """ self.proxy_headers = None """Proxy headers """ self.safe_chars_for_path_param = "" """Safe chars for path_param """ self.retries = None """Adding retries to override urllib3 default value 3 """ # Disable client side validation self.client_side_validation = False def __deepcopy__(self, memo): cls = self.__class__ result = cls.__new__(cls) memo[id(self)] = result for k, v in self.__dict__.items(): if k not in ("logger", "logger_file_handler"): setattr(result, k, copy.deepcopy(v, memo)) # shallow copy of loggers result.logger = copy.copy(self.logger) # use setters to configure loggers result.logger_file = self.logger_file result.debug = self.debug return result def __setattr__(self, name, value): object.__setattr__(self, name, value) @classmethod def set_default(cls, default): """Set default instance of configuration. It stores default configuration, which can be returned by get_default_copy method. :param default: object of Configuration """ cls._default = copy.deepcopy(default) @classmethod def get_default_copy(cls): """Return new instance of configuration. This method returns newly created, based on default constructor, object of Configuration class or returns a copy of default configuration passed by the set_default method. :return: The configuration object. """ if cls._default is not None: return copy.deepcopy(cls._default) return Configuration() @property def logger_file(self): """The logger file. If the logger_file is None, then add stream handler and remove file handler. Otherwise, add file handler and remove stream handler. :param value: The logger_file path. :type: str """ return self.__logger_file @logger_file.setter def logger_file(self, value): """The logger file. If the logger_file is None, then add stream handler and remove file handler. Otherwise, add file handler and remove stream handler. :param value: The logger_file path. :type: str """ self.__logger_file = value if self.__logger_file: # If set logging file, # then add file handler and remove stream handler. self.logger_file_handler = logging.FileHandler(self.__logger_file) self.logger_file_handler.setFormatter(self.logger_formatter) for _, logger in six.iteritems(self.logger): logger.addHandler(self.logger_file_handler) @property def debug(self): """Debug status :param value: The debug status, True or False. :type: bool """ return self.__debug @debug.setter def debug(self, value): """Debug status :param value: The debug status, True or False. :type: bool """ self.__debug = value if self.__debug: # if debug status is True, turn on debug logging for _, logger in six.iteritems(self.logger): logger.setLevel(logging.DEBUG) # turn on httplib debug httplib.HTTPConnection.debuglevel = 1 else: # if debug status is False, turn off debug logging, # setting log level to default `logging.WARNING` for _, logger in six.iteritems(self.logger): logger.setLevel(logging.WARNING) # turn off httplib debug httplib.HTTPConnection.debuglevel = 0 @property def logger_format(self): """The logger format. The logger_formatter will be updated when sets logger_format. :param value: The format string. :type: str """ return self.__logger_format @logger_format.setter def logger_format(self, value): """The logger format. The logger_formatter will be updated when sets logger_format. :param value: The format string. :type: str """ self.__logger_format = value self.logger_formatter = logging.Formatter(self.__logger_format) def get_api_key_with_prefix(self, identifier): """Gets API key (with prefix if set). :param identifier: The identifier of apiKey. :return: The token for api key authentication. """ if self.refresh_api_key_hook is not None: self.refresh_api_key_hook(self) key = self.api_key.get(identifier) if key: prefix = self.api_key_prefix.get(identifier) if prefix: return "%s %s" % (prefix, key) else: return key def get_basic_auth_token(self): """Gets HTTP basic authentication header (string). :return: The token for basic HTTP authentication. """ username = "" if self.username is not None: username = self.username password = "" if self.password is not None: password = self.password return urllib3.util.make_headers(basic_auth=username + ":" + password).get( "authorization" ) def auth_settings(self): """Gets Auth Settings dict for api client. :return: The Auth Settings information dict. """ auth = {} if "hapikey" in self.api_key: auth["hapikey"] = { "type": "api_key", "in": "query", "key": "hapikey", "value": self.get_api_key_with_prefix("hapikey"), } if self.access_token is not None: auth["oauth2"] = { "type": "oauth2", "in": "header", "key": "Authorization", "value": "Bearer " + self.access_token, } return auth def to_debug_report(self): """Gets the essential information for debugging. :return: The report for debugging. """ return ( "Python SDK Debug Report:\n" "OS: {env}\n" "Python Version: {pyversion}\n" "Version of the API: v3\n" "SDK Package Version: 1.0.0".format(env=sys.platform, pyversion=sys.version) ) def get_host_settings(self): """Gets an array of host settings :return: An array of host settings """ return [ { "url": "https://api.hubapi.com/", "description": "No description provided", } ] def get_host_from_settings(self, index, variables=None): """Gets host URL based on the index and variables :param index: array index of the host settings :param variables: hash of variable and the corresponding value :return: URL based on host settings """ variables = {} if variables is None else variables servers = self.get_host_settings() try: server = servers[index] except IndexError: raise ValueError( "Invalid index {0} when selecting the host settings. " "Must be less than {1}".format(index, len(servers)) ) url = server["url"] # go through variables and replace placeholders for variable_name, variable in server["variables"].items(): used_value = variables.get(variable_name, variable["default_value"]) if "enum_values" in variable and used_value not in variable["enum_values"]: raise ValueError( "The variable `{0}` in the host URL has invalid value " "{1}. Must be {2}.".format( variable_name, variables[variable_name], variable["enum_values"] ) ) url = url.replace("{" + variable_name + "}", used_value) return url
py
1a3e265f1638d52745533d81e8c4dff9afe14995
#!/usr/bin/env python # -*- coding: utf8 -*- # ***************************************************************** # ** PTS -- Python Toolkit for working with SKIRT ** # ** © Astronomical Observatory, Ghent University ** # ***************************************************************** ## \package pts.modeling.fitting.modelgenerators.grid Contains the GridModelGenerator class. # ----------------------------------------------------------------- # Ensure Python 3 compatibility from __future__ import absolute_import, division, print_function # Import the relevant PTS classes and modules from ....core.tools.logging import log from .generator import ModelGenerator # ----------------------------------------------------------------- class GridModelGenerator(ModelGenerator): """ This class... """ def __init__(self): """ The constructor ... :return: """ # Call the constructor of the base class super(GridModelGenerator, self).__init__() # -- Attributes -- # ----------------------------------------------------------------- def setup(self): """ This function ... :return: """ pass # -----------------------------------------------------------------
py
1a3e2772c2d9db914cd843f7632cbe6d57cae75e
import requests as req import json from django.http import HttpResponseRedirect from django.urls import reverse from django.conf.urls import url from django.conf import settings from django.core.mail import send_mail client_id = settings.FENIX_CLIENT_ID clientSecret = settings.FENIX_CLIENT_SECRET redirect_uri = settings.URL_HOST + settings.FENIX_REDIRECT_URL_PATH # Note, make sure that you exported the URL_HOST variable, otherwise localhost will be the default print("*SETUP* redirect_url:" + str(redirect_uri)) # debug fenixLoginpage = settings.FENIX_LOGIN fenixacesstokenpage = settings.FENIX_URL_TOKEN RequestPage = fenixLoginpage % (client_id, redirect_uri) def login_fenix_oauth(request): from helios_auth.views import after # if dajngo is set sync, the import must be inside because with the aspps are not loaded yet from helios_auth import url_names code = request.GET.get('code') # registration code used to obtain the access token payload = {'client_id': client_id, 'client_secret': clientSecret, 'redirect_uri' : redirect_uri, 'code' : code, 'grant_type': 'authorization_code'} response = req.post(fenixacesstokenpage, params = payload) if(response.status_code == 200): r_token = response.json() params = {'access_token': r_token['access_token']} #print("login_fenix_0auth() - OUATH PARAMS",params) # debug request.session['access_token_fenix'] =r_token['access_token'] # save token request.session['auth_system_name']='fenix' return HttpResponseRedirect(reverse(url_names.AUTH_AFTER)) else: print("login_fenix_0auth() - OAUTH FAILED") def get_auth_url(request, redirect_url = None): # the app redirects the user to the FENIX login page return RequestPage def get_user_info_after_auth(request): token = request.session['access_token_fenix'] # token saved in the current session params = {'access_token': token} resp = req.get("https://fenix.tecnico.ulisboa.pt/api/fenix/v1/person", params = params) #print("\n\n", "get_user_info_after_auth() - FENIX RESPONSE", resp.json()["username"]) r_info = resp.json() # user data from Fenix del request.session['access_token_fenix'] obj = {'type': 'fenix', 'user_id' : json.dumps(r_info["username"]),'name':r_info["name"],'info':{'email': r_info["email"]}, 'token': None} return obj def send_message(user_id, name, user_info, subject, body): #send email to google users. user_id is the email for google. send_mail(subject, body, settings.SERVER_EMAIL, ["%s <%s>" % (name, user_id)], fail_silently=False) # # Election Creation # def can_create_election(user_id, user_info): return True FENIX_LOGIN = 'auth@fenix@login' #^ matches the start of the string. this urlpattern must be include at urls.py urlpatterns = [ url(r'^fenix/login', login_fenix_oauth, name=FENIX_LOGIN), ]
py
1a3e278472c0fc9eb6b9de6b5a4c9515b9e8ccdb
# -*- coding: utf-8 -*- # Copyright 2015 OpenMarket Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ._base import Config class PasswordConfig(Config): """Password login configuration """ def read_config(self, config): password_config = config.get("password_config", {}) self.password_enabled = password_config.get("enabled", True) def default_config(self, config_dir_path, server_name, **kwargs): return """ # Enable password for login. password_config: enabled: true """
py
1a3e27da4898817d7f6e2d491b9711b21b749faa
# coding: utf-8 """ Translator Knowledge Beacon Aggregator API This is the Translator Knowledge Beacon Aggregator web service application programming interface (API) that provides integrated access to a pool of knowledge sources publishing concepts and relations through the Translator Knowledge Beacon API. This API is similar to that of the latter mentioned API with the addition of some extra informative endpoints plus session identifier and beacon indices. These latter identifiers are locally assigned numeric indices provided to track the use of specific registered beacons within the aggregator API itself. # noqa: E501 OpenAPI spec version: 1.1.1 Contact: [email protected] Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class ClientStatementsQueryBeaconStatus(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'beacon': 'int', 'count': 'int', 'status': 'int' } attribute_map = { 'beacon': 'beacon', 'count': 'count', 'status': 'status' } def __init__(self, beacon=None, count=None, status=None): # noqa: E501 """ClientStatementsQueryBeaconStatus - a model defined in OpenAPI""" # noqa: E501 self._beacon = None self._count = None self._status = None self.discriminator = None if beacon is not None: self.beacon = beacon if count is not None: self.count = count if status is not None: self.status = status @property def beacon(self): """Gets the beacon of this ClientStatementsQueryBeaconStatus. # noqa: E501 Index number of beacon providing these statements # noqa: E501 :return: The beacon of this ClientStatementsQueryBeaconStatus. # noqa: E501 :rtype: int """ return self._beacon @beacon.setter def beacon(self, beacon): """Sets the beacon of this ClientStatementsQueryBeaconStatus. Index number of beacon providing these statements # noqa: E501 :param beacon: The beacon of this ClientStatementsQueryBeaconStatus. # noqa: E501 :type: int """ self._beacon = beacon @property def count(self): """Gets the count of this ClientStatementsQueryBeaconStatus. # noqa: E501 When a 200 status code is returned, this integer designates the number of statements matched by the query for the given beacon. # noqa: E501 :return: The count of this ClientStatementsQueryBeaconStatus. # noqa: E501 :rtype: int """ return self._count @count.setter def count(self, count): """Sets the count of this ClientStatementsQueryBeaconStatus. When a 200 status code is returned, this integer designates the number of statements matched by the query for the given beacon. # noqa: E501 :param count: The count of this ClientStatementsQueryBeaconStatus. # noqa: E501 :type: int """ self._count = count @property def status(self): """Gets the status of this ClientStatementsQueryBeaconStatus. # noqa: E501 Http code status of beacon API - 200 means 'data ready', 102 means 'query in progress', other codes (e.g. 500) are server errors. Once a beacon has a '200' success code, then the /statements/data endpoint may be used to retrieve it. # noqa: E501 :return: The status of this ClientStatementsQueryBeaconStatus. # noqa: E501 :rtype: int """ return self._status @status.setter def status(self, status): """Sets the status of this ClientStatementsQueryBeaconStatus. Http code status of beacon API - 200 means 'data ready', 102 means 'query in progress', other codes (e.g. 500) are server errors. Once a beacon has a '200' success code, then the /statements/data endpoint may be used to retrieve it. # noqa: E501 :param status: The status of this ClientStatementsQueryBeaconStatus. # noqa: E501 :type: int """ self._status = status def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ClientStatementsQueryBeaconStatus): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
py
1a3e28e34be37c8b4b981a7f9bd30843f8bfb753
# Copyright 2021 Sony Group Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Dict, Sequence, Union import nnabla as nn from nnabla_rl.environments.environment_info import EnvironmentInfo from nnabla_rl.model_trainers.model_trainer import TrainingVariables, rnn_support from nnabla_rl.model_trainers.q_value.quantile_distribution_function_trainer import ( QuantileDistributionFunctionTrainer, QuantileDistributionFunctionTrainerConfig) from nnabla_rl.models import QuantileDistributionFunction from nnabla_rl.utils.misc import create_variables @dataclass class QRDQNQTrainerConfig(QuantileDistributionFunctionTrainerConfig): pass class QRDQNQTrainer(QuantileDistributionFunctionTrainer): # type declarations to type check with mypy # NOTE: declared variables are instance variable and NOT class variable, unless it is marked with ClassVar # See https://mypy.readthedocs.io/en/stable/class_basics.html for details _target_function: QuantileDistributionFunction _prev_target_rnn_states: Dict[str, Dict[str, nn.Variable]] def __init__(self, train_functions: Union[QuantileDistributionFunction, Sequence[QuantileDistributionFunction]], solvers: Dict[str, nn.solver.Solver], target_function: QuantileDistributionFunction, env_info: EnvironmentInfo, config: QRDQNQTrainerConfig = QRDQNQTrainerConfig()): self._target_function = target_function self._prev_target_rnn_states = {} super(QRDQNQTrainer, self).__init__(train_functions, solvers, env_info, config) def support_rnn(self) -> bool: return True def _compute_target(self, training_variables: TrainingVariables, **kwargs) -> nn.Variable: gamma = training_variables.gamma reward = training_variables.reward non_terminal = training_variables.non_terminal s_next = training_variables.s_next prev_rnn_states = self._prev_target_rnn_states train_rnn_states = training_variables.rnn_states with rnn_support(self._target_function, prev_rnn_states, train_rnn_states, training_variables, self._config): theta_j = self._target_function.max_q_quantiles(s_next) Ttheta_j = reward + non_terminal * gamma * theta_j return Ttheta_j def _setup_training_variables(self, batch_size: int) -> TrainingVariables: training_variables = super()._setup_training_variables(batch_size) rnn_states = {} if self._target_function.is_recurrent(): shapes = self._target_function.internal_state_shapes() rnn_state_variables = create_variables(batch_size, shapes) rnn_states[self._target_function.scope_name] = rnn_state_variables training_variables.rnn_states.update(rnn_states) return training_variables
py
1a3e2c15f26e98409c62bc0910ed6565f3721e42
""" Contains a class for logic of the Subjects. """ import os import logging import json import pkg_resources import mne import meggie.utilities.filemanager as filemanager from meggie.mainwindow.dynamic import find_all_datatype_specs class Subject: """ The class for holding subject-specific information and subject-specific data. Parameters ---------- experiment : meggie.experiment.Experiment The experiment to which the subject is created. name : str Name of the subject. raw_fname : str Path to the subject data. uid : str A unique identifier to differentiate between subjects that have same name. ica_applied : bool Whether ICA has been applied (at least once) to this data. rereferenced : bool Whether the data has been rereferenced (at least once). """ def __init__(self, experiment, name, raw_fname, uid, ica_applied=False, rereferenced=False): self.name = name self.raw_fname = raw_fname self.uid = uid self._raw = None self.ica_applied = ica_applied self.rereferenced = rereferenced self.path = os.path.join(experiment.path, name) datatype_specs = find_all_datatype_specs() for source, package, datatype_spec in datatype_specs.values(): datatype = datatype_spec['id'] dir_ = datatype_spec['dir'] setattr(self, datatype, dict()) setattr(self, datatype + '_directory', os.path.join(self.path, dir_)) def add(self, dataobject, datatype): """ Adds a dataobject of type datatype to the subject. Parameters ---------- dataobject : instance of a datatype A data object. datatype : str Name of the datatype. """ container = getattr(self, datatype) name = dataobject.name container[name] = dataobject def remove(self, name, datatype): """ Removes a dataobject by name from the subject. Parameters ---------- name : str Name of the data object. datatype : str Name of the datatype. """ container = getattr(self, datatype) dataobject = container.pop(name, None) try: dataobject.delete_content() except Exception as exc: logging.getLogger('ui_logger').exception('') raise IOError('Could not delete ' + str(datatype) + ' from folders') @property def raw_path(self): """ Returns the raw path.""" path = os.path.join(self.path, self.raw_fname) return path def get_raw(self, preload=True, verbose='warning'): """ Gets the raw object for the subject. Reads from the file system if not in the memory already. Parameters ---------- preload : bool Whether to read the data or only the metadata. verbose : str Verbose level of read_raw. Returns ------- mne.io.Raw The raw object. """ if self._raw is not None: if preload: self._raw.load_data() return self._raw else: try: raw = filemanager.open_raw(self.raw_path, preload=preload, verbose=verbose) except OSError: raise IOError("Could not find the raw file.") self._raw = raw return raw def save(self): """ Saves the data to the existing path. """ try: filemanager.save_raw(self._raw, self.raw_path) except Exception as exc: raise Exception("Could not save the raw file. Please ensure " "that the entire experiment folder has " "write permissions.") def release_memory(self): """ Releases data from the memory. """ if self._raw is not None: self._raw = None @property def has_eeg(self): """ Checks if the raw has eeg data present """ raw = self.get_raw(preload=False) channels = mne.pick_types(raw.info, eeg=True, meg=False) if len(channels) == 0: return False return True @property def sss_applied(self): """Checks if sss applied. """ try: raw = self.get_raw() for item in raw.info['proc_history']: if 'maxfilter' in item.get('creator', []): return True except Exception as exc: return False return False def ensure_folders(self): """ When called, checks that the subject folder with all datatype folders exist and if not, creates them. """ paths = [] datatype_specs = find_all_datatype_specs() for source, package, datatype_spec in datatype_specs.values(): datatype = datatype_spec['id'] path = getattr(self, datatype + '_directory') paths.append(path) try: filemanager.ensure_folders( [self.path] + paths) except OSError: raise OSError("Couldn't create all the necessary folders. " "Please ensure that the experiment folder " "has write permissions everywhere.")
py
1a3e2d00fe06d72f8b178454af710b65c040bfcb
# Copyright (c) 2011 OpenStack Foundation. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import abc import mock from oslo_config import cfg from oslo_log import log as logging from oslo_serialization import jsonutils from oslo_service import wsgi as base_wsgi import routes import six import webob import webob.exc as webexc import webtest import neutron from neutron.api import extensions from neutron.api.v2 import attributes from neutron.common import config from neutron.common import exceptions from neutron import manager from neutron.plugins.common import constants from neutron import quota from neutron.tests import base from neutron.tests.unit.api.v2 import test_base from neutron.tests.unit import extension_stubs as ext_stubs import neutron.tests.unit.extensions from neutron.tests.unit.extensions import extendedattribute as extattr from neutron.tests.unit import testlib_api from neutron import wsgi LOG = logging.getLogger(__name__) _uuid = test_base._uuid _get_path = test_base._get_path extensions_path = ':'.join(neutron.tests.unit.extensions.__path__) class ExtensionsTestApp(base_wsgi.Router): def __init__(self, options=None): options = options or {} mapper = routes.Mapper() controller = ext_stubs.StubBaseAppController() mapper.resource("dummy_resource", "/dummy_resources", controller=controller) super(ExtensionsTestApp, self).__init__(mapper) class FakePluginWithExtension(object): """A fake plugin used only for extension testing in this file.""" supported_extension_aliases = ["FOXNSOX"] def method_to_support_foxnsox_extension(self, context): self._log("method_to_support_foxnsox_extension", context) class ExtensionPathTest(base.BaseTestCase): def setUp(self): self.base_path = extensions.get_extensions_path() super(ExtensionPathTest, self).setUp() def test_get_extensions_path_with_plugins(self): path = extensions.get_extensions_path( {constants.CORE: FakePluginWithExtension()}) self.assertEqual(path, '%s:neutron/tests/unit/extensions' % self.base_path) def test_get_extensions_path_no_extensions(self): # Reset to default value, as it's overridden by base class cfg.CONF.set_override('api_extensions_path', '') path = extensions.get_extensions_path() self.assertEqual(path, self.base_path) def test_get_extensions_path_single_extension(self): cfg.CONF.set_override('api_extensions_path', 'path1') path = extensions.get_extensions_path() self.assertEqual(path, '%s:path1' % self.base_path) def test_get_extensions_path_multiple_extensions(self): cfg.CONF.set_override('api_extensions_path', 'path1:path2') path = extensions.get_extensions_path() self.assertEqual(path, '%s:path1:path2' % self.base_path) def test_get_extensions_path_duplicate_extensions(self): cfg.CONF.set_override('api_extensions_path', 'path1:path1') path = extensions.get_extensions_path() self.assertEqual(path, '%s:path1' % self.base_path) class PluginInterfaceTest(base.BaseTestCase): def test_issubclass_hook(self): class A(object): def f(self): pass class B(extensions.PluginInterface): @abc.abstractmethod def f(self): pass self.assertTrue(issubclass(A, B)) def test_issubclass_hook_class_without_abstract_methods(self): class A(object): def f(self): pass class B(extensions.PluginInterface): def f(self): pass self.assertFalse(issubclass(A, B)) def test_issubclass_hook_not_all_methods_implemented(self): class A(object): def f(self): pass class B(extensions.PluginInterface): @abc.abstractmethod def f(self): pass @abc.abstractmethod def g(self): pass self.assertFalse(issubclass(A, B)) class ResourceExtensionTest(base.BaseTestCase): class ResourceExtensionController(wsgi.Controller): def index(self, request): return "resource index" def show(self, request, id): return {'data': {'id': id}} def notimplemented_function(self, request, id): return webob.exc.HTTPNotImplemented() def custom_member_action(self, request, id): return {'member_action': 'value'} def custom_collection_action(self, request, **kwargs): return {'collection': 'value'} class DummySvcPlugin(wsgi.Controller): def get_plugin_type(self): return constants.DUMMY def index(self, request, **kwargs): return "resource index" def custom_member_action(self, request, **kwargs): return {'member_action': 'value'} def collection_action(self, request, **kwargs): return {'collection': 'value'} def show(self, request, id): return {'data': {'id': id}} def test_exceptions_notimplemented(self): controller = self.ResourceExtensionController() member = {'notimplemented_function': "GET"} res_ext = extensions.ResourceExtension('tweedles', controller, member_actions=member) test_app = _setup_extensions_test_app(SimpleExtensionManager(res_ext)) # Ideally we would check for a 501 code here but webtest doesn't take # anything that is below 200 or above 400 so we can't actually check # it. It throws webtest.AppError instead. try: test_app.get("/tweedles/some_id/notimplemented_function") # Shouldn't be reached self.assertTrue(False) except webtest.AppError as e: self.assertIn('501', str(e)) def test_resource_can_be_added_as_extension(self): res_ext = extensions.ResourceExtension( 'tweedles', self.ResourceExtensionController()) test_app = _setup_extensions_test_app(SimpleExtensionManager(res_ext)) index_response = test_app.get("/tweedles") self.assertEqual(200, index_response.status_int) self.assertEqual(b"resource index", index_response.body) show_response = test_app.get("/tweedles/25266") self.assertEqual({'data': {'id': "25266"}}, show_response.json) def test_resource_gets_prefix_of_plugin(self): class DummySvcPlugin(wsgi.Controller): def index(self, request): return "" def get_plugin_type(self): return constants.DUMMY res_ext = extensions.ResourceExtension( 'tweedles', DummySvcPlugin(), path_prefix="/dummy_svc") test_app = _setup_extensions_test_app(SimpleExtensionManager(res_ext)) index_response = test_app.get("/dummy_svc/tweedles") self.assertEqual(200, index_response.status_int) def test_resource_extension_with_custom_member_action(self): controller = self.ResourceExtensionController() member = {'custom_member_action': "GET"} res_ext = extensions.ResourceExtension('tweedles', controller, member_actions=member) test_app = _setup_extensions_test_app(SimpleExtensionManager(res_ext)) response = test_app.get("/tweedles/some_id/custom_member_action") self.assertEqual(200, response.status_int) self.assertEqual(jsonutils.loads(response.body)['member_action'], "value") def test_resource_ext_with_custom_member_action_gets_plugin_prefix(self): controller = self.DummySvcPlugin() member = {'custom_member_action': "GET"} collections = {'collection_action': "GET"} res_ext = extensions.ResourceExtension('tweedles', controller, path_prefix="/dummy_svc", member_actions=member, collection_actions=collections) test_app = _setup_extensions_test_app(SimpleExtensionManager(res_ext)) response = test_app.get("/dummy_svc/tweedles/1/custom_member_action") self.assertEqual(200, response.status_int) self.assertEqual(jsonutils.loads(response.body)['member_action'], "value") response = test_app.get("/dummy_svc/tweedles/collection_action") self.assertEqual(200, response.status_int) self.assertEqual(jsonutils.loads(response.body)['collection'], "value") def test_plugin_prefix_with_parent_resource(self): controller = self.DummySvcPlugin() parent = dict(member_name="tenant", collection_name="tenants") member = {'custom_member_action': "GET"} collections = {'collection_action': "GET"} res_ext = extensions.ResourceExtension('tweedles', controller, parent, path_prefix="/dummy_svc", member_actions=member, collection_actions=collections) test_app = _setup_extensions_test_app(SimpleExtensionManager(res_ext)) index_response = test_app.get("/dummy_svc/tenants/1/tweedles") self.assertEqual(200, index_response.status_int) response = test_app.get("/dummy_svc/tenants/1/" "tweedles/1/custom_member_action") self.assertEqual(200, response.status_int) self.assertEqual(jsonutils.loads(response.body)['member_action'], "value") response = test_app.get("/dummy_svc/tenants/2/" "tweedles/collection_action") self.assertEqual(200, response.status_int) self.assertEqual(jsonutils.loads(response.body)['collection'], "value") def test_resource_extension_for_get_custom_collection_action(self): controller = self.ResourceExtensionController() collections = {'custom_collection_action': "GET"} res_ext = extensions.ResourceExtension('tweedles', controller, collection_actions=collections) test_app = _setup_extensions_test_app(SimpleExtensionManager(res_ext)) response = test_app.get("/tweedles/custom_collection_action") self.assertEqual(200, response.status_int) LOG.debug(jsonutils.loads(response.body)) self.assertEqual(jsonutils.loads(response.body)['collection'], "value") def test_resource_extension_for_put_custom_collection_action(self): controller = self.ResourceExtensionController() collections = {'custom_collection_action': "PUT"} res_ext = extensions.ResourceExtension('tweedles', controller, collection_actions=collections) test_app = _setup_extensions_test_app(SimpleExtensionManager(res_ext)) response = test_app.put("/tweedles/custom_collection_action") self.assertEqual(200, response.status_int) self.assertEqual(jsonutils.loads(response.body)['collection'], 'value') def test_resource_extension_for_post_custom_collection_action(self): controller = self.ResourceExtensionController() collections = {'custom_collection_action': "POST"} res_ext = extensions.ResourceExtension('tweedles', controller, collection_actions=collections) test_app = _setup_extensions_test_app(SimpleExtensionManager(res_ext)) response = test_app.post("/tweedles/custom_collection_action") self.assertEqual(200, response.status_int) self.assertEqual(jsonutils.loads(response.body)['collection'], 'value') def test_resource_extension_for_delete_custom_collection_action(self): controller = self.ResourceExtensionController() collections = {'custom_collection_action': "DELETE"} res_ext = extensions.ResourceExtension('tweedles', controller, collection_actions=collections) test_app = _setup_extensions_test_app(SimpleExtensionManager(res_ext)) response = test_app.delete("/tweedles/custom_collection_action") self.assertEqual(200, response.status_int) self.assertEqual(jsonutils.loads(response.body)['collection'], 'value') def test_resource_ext_for_formatted_req_on_custom_collection_action(self): controller = self.ResourceExtensionController() collections = {'custom_collection_action': "GET"} res_ext = extensions.ResourceExtension('tweedles', controller, collection_actions=collections) test_app = _setup_extensions_test_app(SimpleExtensionManager(res_ext)) response = test_app.get("/tweedles/custom_collection_action.json") self.assertEqual(200, response.status_int) self.assertEqual(jsonutils.loads(response.body)['collection'], "value") def test_resource_ext_for_nested_resource_custom_collection_action(self): controller = self.ResourceExtensionController() collections = {'custom_collection_action': "GET"} parent = dict(collection_name='beetles', member_name='beetle') res_ext = extensions.ResourceExtension('tweedles', controller, collection_actions=collections, parent=parent) test_app = _setup_extensions_test_app(SimpleExtensionManager(res_ext)) response = test_app.get("/beetles/beetle_id" "/tweedles/custom_collection_action") self.assertEqual(200, response.status_int) self.assertEqual(jsonutils.loads(response.body)['collection'], "value") def test_resource_extension_with_custom_member_action_and_attr_map(self): controller = self.ResourceExtensionController() member = {'custom_member_action': "GET"} params = { 'tweedles': { 'id': {'allow_post': False, 'allow_put': False, 'validate': {'type:uuid': None}, 'is_visible': True}, 'name': {'allow_post': True, 'allow_put': True, 'validate': {'type:string': None}, 'default': '', 'is_visible': True}, } } res_ext = extensions.ResourceExtension('tweedles', controller, member_actions=member, attr_map=params) test_app = _setup_extensions_test_app(SimpleExtensionManager(res_ext)) response = test_app.get("/tweedles/some_id/custom_member_action") self.assertEqual(200, response.status_int) self.assertEqual(jsonutils.loads(response.body)['member_action'], "value") def test_returns_404_for_non_existent_extension(self): test_app = _setup_extensions_test_app(SimpleExtensionManager(None)) response = test_app.get("/non_extistant_extension", status='*') self.assertEqual(404, response.status_int) class ActionExtensionTest(base.BaseTestCase): def setUp(self): super(ActionExtensionTest, self).setUp() self.extension_app = _setup_extensions_test_app() def test_extended_action_for_adding_extra_data(self): action_name = 'FOXNSOX:add_tweedle' action_params = dict(name='Beetle') req_body = jsonutils.dumps({action_name: action_params}) response = self.extension_app.post('/dummy_resources/1/action', req_body, content_type='application/json') self.assertEqual(b"Tweedle Beetle Added.", response.body) def test_extended_action_for_deleting_extra_data(self): action_name = 'FOXNSOX:delete_tweedle' action_params = dict(name='Bailey') req_body = jsonutils.dumps({action_name: action_params}) response = self.extension_app.post("/dummy_resources/1/action", req_body, content_type='application/json') self.assertEqual(b"Tweedle Bailey Deleted.", response.body) def test_returns_404_for_non_existent_action(self): non_existent_action = 'blah_action' action_params = dict(name="test") req_body = jsonutils.dumps({non_existent_action: action_params}) response = self.extension_app.post("/dummy_resources/1/action", req_body, content_type='application/json', status='*') self.assertEqual(404, response.status_int) def test_returns_404_for_non_existent_resource(self): action_name = 'add_tweedle' action_params = dict(name='Beetle') req_body = jsonutils.dumps({action_name: action_params}) response = self.extension_app.post("/asdf/1/action", req_body, content_type='application/json', status='*') self.assertEqual(404, response.status_int) class RequestExtensionTest(base.BaseTestCase): def test_headers_can_be_extended(self): def extend_headers(req, res): assert req.headers['X-NEW-REQUEST-HEADER'] == "sox" res.headers['X-NEW-RESPONSE-HEADER'] = "response_header_data" return res app = self._setup_app_with_request_handler(extend_headers, 'GET') response = app.get("/dummy_resources/1", headers={'X-NEW-REQUEST-HEADER': "sox"}) self.assertEqual(response.headers['X-NEW-RESPONSE-HEADER'], "response_header_data") def test_extend_get_resource_response(self): def extend_response_data(req, res): data = jsonutils.loads(res.body) data['FOXNSOX:extended_key'] = req.GET.get('extended_key') res.body = jsonutils.dumps(data).encode('utf-8') return res app = self._setup_app_with_request_handler(extend_response_data, 'GET') response = app.get("/dummy_resources/1?extended_key=extended_data") self.assertEqual(200, response.status_int) response_data = jsonutils.loads(response.body) self.assertEqual('extended_data', response_data['FOXNSOX:extended_key']) self.assertEqual('knox', response_data['fort']) def test_get_resources(self): app = _setup_extensions_test_app() response = app.get("/dummy_resources/1?chewing=newblue") response_data = jsonutils.loads(response.body) self.assertEqual('newblue', response_data['FOXNSOX:googoose']) self.assertEqual("Pig Bands!", response_data['FOXNSOX:big_bands']) def test_edit_previously_uneditable_field(self): def _update_handler(req, res): data = jsonutils.loads(res.body) data['uneditable'] = req.params['uneditable'] res.body = jsonutils.dumps(data).encode('utf-8') return res base_app = webtest.TestApp(setup_base_app(self)) response = base_app.put("/dummy_resources/1", {'uneditable': "new_value"}) self.assertEqual(response.json['uneditable'], "original_value") ext_app = self._setup_app_with_request_handler(_update_handler, 'PUT') ext_response = ext_app.put("/dummy_resources/1", {'uneditable': "new_value"}) self.assertEqual(ext_response.json['uneditable'], "new_value") def _setup_app_with_request_handler(self, handler, verb): req_ext = extensions.RequestExtension(verb, '/dummy_resources/:(id)', handler) manager = SimpleExtensionManager(None, None, req_ext) return _setup_extensions_test_app(manager) class ExtensionManagerTest(base.BaseTestCase): def test_missing_required_extensions_raise_error(self): ext_mgr = extensions.ExtensionManager('') attr_map = {} ext_mgr.add_extension(ext_stubs.StubExtensionWithReqs('foo_alias')) self.assertRaises(exceptions.ExtensionsNotFound, ext_mgr.extend_resources, "2.0", attr_map) def test_missing_required_extensions_gracefully_error(self): ext_mgr = extensions.ExtensionManager('') attr_map = {} default_ext = list(constants.DEFAULT_SERVICE_PLUGINS.values())[0] ext_mgr.add_extension(ext_stubs.StubExtensionWithReqs(default_ext)) ext_mgr.extend_resources("2.0", attr_map) self.assertIn(default_ext, ext_mgr.extensions) def test_invalid_extensions_are_not_registered(self): class InvalidExtension(object): """Invalid extension. This Extension doesn't implement extension methods : get_name, get_description and get_updated """ def get_alias(self): return "invalid_extension" ext_mgr = extensions.ExtensionManager('') ext_mgr.add_extension(InvalidExtension()) ext_mgr.add_extension(ext_stubs.StubExtension("valid_extension")) self.assertIn('valid_extension', ext_mgr.extensions) self.assertNotIn('invalid_extension', ext_mgr.extensions) def test_assignment_of_attr_map(self): """Unit test for bug 1443342 In this bug, an extension that extended multiple resources with the same dict would cause future extensions to inadvertently modify the resources of all of the resources since they were referencing the same dictionary. """ class MultiResourceExtension(ext_stubs.StubExtension): """Generated Extended Resources. This extension's extended resource will assign to more than one resource. """ def get_extended_resources(self, version): EXTENDED_TIMESTAMP = { 'created_at': {'allow_post': False, 'allow_put': False, 'is_visible': True}} EXTENDED_RESOURCES = ["ext1", "ext2"] attrs = {} for resources in EXTENDED_RESOURCES: attrs[resources] = EXTENDED_TIMESTAMP return attrs class AttrExtension(ext_stubs.StubExtension): def get_extended_resources(self, version): attrs = { self.alias: { '%s-attr' % self.alias: {'allow_post': False, 'allow_put': False, 'is_visible': True}}} return attrs ext_mgr = extensions.ExtensionManager('') attr_map = {} ext_mgr.add_extension(MultiResourceExtension('timestamp')) ext_mgr.extend_resources("2.0", attr_map) ext_mgr.add_extension(AttrExtension("ext1")) ext_mgr.add_extension(AttrExtension("ext2")) ext_mgr.extend_resources("2.0", attr_map) self.assertIn('created_at', attr_map['ext2']) self.assertIn('created_at', attr_map['ext1']) # now we need to make sure the attrextensions didn't leak across self.assertNotIn('ext1-attr', attr_map['ext2']) self.assertNotIn('ext2-attr', attr_map['ext1']) class PluginAwareExtensionManagerTest(base.BaseTestCase): def test_unsupported_extensions_are_not_loaded(self): stub_plugin = ext_stubs.StubPlugin(supported_extensions=["e1", "e3"]) plugin_info = {constants.CORE: stub_plugin} with mock.patch("neutron.api.extensions.PluginAwareExtensionManager." "check_if_plugin_extensions_loaded"): ext_mgr = extensions.PluginAwareExtensionManager('', plugin_info) ext_mgr.add_extension(ext_stubs.StubExtension("e1")) ext_mgr.add_extension(ext_stubs.StubExtension("e2")) ext_mgr.add_extension(ext_stubs.StubExtension("e3")) self.assertIn("e1", ext_mgr.extensions) self.assertNotIn("e2", ext_mgr.extensions) self.assertIn("e3", ext_mgr.extensions) def test_extensions_are_not_loaded_for_plugins_unaware_of_extensions(self): class ExtensionUnawarePlugin(object): """This plugin does not implement supports_extension method. Extensions will not be loaded when this plugin is used. """ pass plugin_info = {constants.CORE: ExtensionUnawarePlugin()} ext_mgr = extensions.PluginAwareExtensionManager('', plugin_info) ext_mgr.add_extension(ext_stubs.StubExtension("e1")) self.assertNotIn("e1", ext_mgr.extensions) def test_extensions_not_loaded_for_plugin_without_expected_interface(self): class PluginWithoutExpectedIface(object): """Does not implement get_foo method as expected by extension.""" supported_extension_aliases = ["supported_extension"] plugin_info = {constants.CORE: PluginWithoutExpectedIface()} with mock.patch("neutron.api.extensions.PluginAwareExtensionManager." "check_if_plugin_extensions_loaded"): ext_mgr = extensions.PluginAwareExtensionManager('', plugin_info) ext_mgr.add_extension(ext_stubs.ExtensionExpectingPluginInterface( "supported_extension")) self.assertNotIn("e1", ext_mgr.extensions) def test_extensions_are_loaded_for_plugin_with_expected_interface(self): class PluginWithExpectedInterface(object): """Implements get_foo method as expected by extension.""" supported_extension_aliases = ["supported_extension"] def get_foo(self, bar=None): pass plugin_info = {constants.CORE: PluginWithExpectedInterface()} with mock.patch("neutron.api.extensions.PluginAwareExtensionManager." "check_if_plugin_extensions_loaded"): ext_mgr = extensions.PluginAwareExtensionManager('', plugin_info) ext_mgr.add_extension(ext_stubs.ExtensionExpectingPluginInterface( "supported_extension")) self.assertIn("supported_extension", ext_mgr.extensions) def test_extensions_expecting_neutron_plugin_interface_are_loaded(self): class ExtensionForQuamtumPluginInterface(ext_stubs.StubExtension): """This Extension does not implement get_plugin_interface method. This will work with any plugin implementing NeutronPluginBase """ pass stub_plugin = ext_stubs.StubPlugin(supported_extensions=["e1"]) plugin_info = {constants.CORE: stub_plugin} with mock.patch("neutron.api.extensions.PluginAwareExtensionManager." "check_if_plugin_extensions_loaded"): ext_mgr = extensions.PluginAwareExtensionManager('', plugin_info) ext_mgr.add_extension(ExtensionForQuamtumPluginInterface("e1")) self.assertIn("e1", ext_mgr.extensions) def test_extensions_without_need_for__plugin_interface_are_loaded(self): class ExtensionWithNoNeedForPluginInterface(ext_stubs.StubExtension): """This Extension does not need any plugin interface. This will work with any plugin implementing NeutronPluginBase """ def get_plugin_interface(self): return None stub_plugin = ext_stubs.StubPlugin(supported_extensions=["e1"]) plugin_info = {constants.CORE: stub_plugin} with mock.patch("neutron.api.extensions.PluginAwareExtensionManager." "check_if_plugin_extensions_loaded"): ext_mgr = extensions.PluginAwareExtensionManager('', plugin_info) ext_mgr.add_extension(ExtensionWithNoNeedForPluginInterface("e1")) self.assertIn("e1", ext_mgr.extensions) def test_extension_loaded_for_non_core_plugin(self): class NonCorePluginExtenstion(ext_stubs.StubExtension): def get_plugin_interface(self): return None stub_plugin = ext_stubs.StubPlugin(supported_extensions=["e1"]) plugin_info = {constants.DUMMY: stub_plugin} with mock.patch("neutron.api.extensions.PluginAwareExtensionManager." "check_if_plugin_extensions_loaded"): ext_mgr = extensions.PluginAwareExtensionManager('', plugin_info) ext_mgr.add_extension(NonCorePluginExtenstion("e1")) self.assertIn("e1", ext_mgr.extensions) def test_unloaded_supported_extensions_raises_exception(self): stub_plugin = ext_stubs.StubPlugin( supported_extensions=["unloaded_extension"]) plugin_info = {constants.CORE: stub_plugin} self.assertRaises(exceptions.ExtensionsNotFound, extensions.PluginAwareExtensionManager, '', plugin_info) class ExtensionControllerTest(testlib_api.WebTestCase): def setUp(self): super(ExtensionControllerTest, self).setUp() self.test_app = _setup_extensions_test_app() def test_index_gets_all_registerd_extensions(self): response = self.test_app.get("/extensions." + self.fmt) res_body = self.deserialize(response) foxnsox = res_body["extensions"][0] self.assertEqual(foxnsox["alias"], "FOXNSOX") def test_extension_can_be_accessed_by_alias(self): response = self.test_app.get("/extensions/FOXNSOX." + self.fmt) foxnsox_extension = self.deserialize(response) foxnsox_extension = foxnsox_extension['extension'] self.assertEqual(foxnsox_extension["alias"], "FOXNSOX") def test_show_returns_not_found_for_non_existent_extension(self): response = self.test_app.get("/extensions/non_existent" + self.fmt, status="*") self.assertEqual(response.status_int, 404) def app_factory(global_conf, **local_conf): conf = global_conf.copy() conf.update(local_conf) return ExtensionsTestApp(conf) def setup_base_app(test): base.BaseTestCase.config_parse() app = config.load_paste_app('extensions_test_app') return app def setup_extensions_middleware(extension_manager=None): extension_manager = (extension_manager or extensions.PluginAwareExtensionManager( extensions_path, {constants.CORE: FakePluginWithExtension()})) base.BaseTestCase.config_parse() app = config.load_paste_app('extensions_test_app') return extensions.ExtensionMiddleware(app, ext_mgr=extension_manager) def _setup_extensions_test_app(extension_manager=None): return webtest.TestApp(setup_extensions_middleware(extension_manager)) class SimpleExtensionManager(object): def __init__(self, resource_ext=None, action_ext=None, request_ext=None): self.resource_ext = resource_ext self.action_ext = action_ext self.request_ext = request_ext def get_resources(self): resource_exts = [] if self.resource_ext: resource_exts.append(self.resource_ext) return resource_exts def get_actions(self): action_exts = [] if self.action_ext: action_exts.append(self.action_ext) return action_exts def get_request_extensions(self): request_extensions = [] if self.request_ext: request_extensions.append(self.request_ext) return request_extensions class ExtensionExtendedAttributeTestPlugin(object): supported_extension_aliases = [ 'ext-obj-test', "extended-ext-attr" ] def __init__(self, configfile=None): super(ExtensionExtendedAttributeTestPlugin, self) self.objs = [] self.objh = {} def create_ext_test_resource(self, context, ext_test_resource): obj = ext_test_resource['ext_test_resource'] id = _uuid() obj['id'] = id self.objs.append(obj) self.objh.update({id: obj}) return obj def get_ext_test_resources(self, context, filters=None, fields=None): return self.objs def get_ext_test_resource(self, context, id, fields=None): return self.objh[id] class ExtensionExtendedAttributeTestCase(base.BaseTestCase): def setUp(self): super(ExtensionExtendedAttributeTestCase, self).setUp() plugin = ( "neutron.tests.unit.api.test_extensions." "ExtensionExtendedAttributeTestPlugin" ) # point config file to: neutron/tests/etc/neutron.conf self.config_parse() self.setup_coreplugin(plugin) ext_mgr = extensions.PluginAwareExtensionManager( extensions_path, {constants.CORE: ExtensionExtendedAttributeTestPlugin()} ) ext_mgr.extend_resources("2.0", {}) extensions.PluginAwareExtensionManager._instance = ext_mgr app = config.load_paste_app('extensions_test_app') self._api = extensions.ExtensionMiddleware(app, ext_mgr=ext_mgr) self._tenant_id = "8c70909f-b081-452d-872b-df48e6c355d1" # Save the global RESOURCE_ATTRIBUTE_MAP self.saved_attr_map = {} for res, attrs in six.iteritems(attributes.RESOURCE_ATTRIBUTE_MAP): self.saved_attr_map[res] = attrs.copy() # Add the resources to the global attribute map # This is done here as the setup process won't # initialize the main API router which extends # the global attribute map attributes.RESOURCE_ATTRIBUTE_MAP.update( extattr.EXTENDED_ATTRIBUTES_2_0) self.agentscheduler_dbMinxin = manager.NeutronManager.get_plugin() self.addCleanup(self.restore_attribute_map) quota.QUOTAS._driver = None cfg.CONF.set_override('quota_driver', 'neutron.quota.ConfDriver', group='QUOTAS') def restore_attribute_map(self): # Restore the original RESOURCE_ATTRIBUTE_MAP attributes.RESOURCE_ATTRIBUTE_MAP = self.saved_attr_map def _do_request(self, method, path, data=None, params=None, action=None): content_type = 'application/json' body = None if data is not None: # empty dict is valid body = wsgi.Serializer().serialize(data, content_type) req = testlib_api.create_request( path, body, content_type, method, query_string=params) res = req.get_response(self._api) if res.status_code >= 400: raise webexc.HTTPClientError(detail=res.body, code=res.status_code) if res.status_code != webexc.HTTPNoContent.code: return res.json def _ext_test_resource_create(self, attr=None): data = { "ext_test_resource": { "tenant_id": self._tenant_id, "name": "test", extattr.EXTENDED_ATTRIBUTE: attr } } res = self._do_request('POST', _get_path('ext_test_resources'), data) return res['ext_test_resource'] def test_ext_test_resource_create(self): ext_test_resource = self._ext_test_resource_create() attr = _uuid() ext_test_resource = self._ext_test_resource_create(attr) self.assertEqual(ext_test_resource[extattr.EXTENDED_ATTRIBUTE], attr) def test_ext_test_resource_get(self): attr = _uuid() obj = self._ext_test_resource_create(attr) obj_id = obj['id'] res = self._do_request('GET', _get_path( 'ext_test_resources/{0}'.format(obj_id))) obj2 = res['ext_test_resource'] self.assertEqual(obj2[extattr.EXTENDED_ATTRIBUTE], attr)
py
1a3e2dfc6372d5548c2e22c43dc286b22cc780cb
"""Tests for Euclidean algorithms, GCDs, LCMs and polynomial remainder sequences. """ from sympy.polys.rings import ring from sympy.polys.domains import ZZ, QQ, RR from sympy.core.compatibility import range from sympy.polys.specialpolys import ( f_polys, dmp_fateman_poly_F_1, dmp_fateman_poly_F_2, dmp_fateman_poly_F_3) f_0, f_1, f_2, f_3, f_4, f_5, f_6 = f_polys() def test_dup_gcdex(): R, x = ring("x", QQ) f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15 g = x**3 + x**2 - 4*x - 4 s = -QQ(1,5)*x + QQ(3,5) t = QQ(1,5)*x**2 - QQ(6,5)*x + 2 h = x + 1 assert R.dup_half_gcdex(f, g) == (s, h) assert R.dup_gcdex(f, g) == (s, t, h) f = x**4 + 4*x**3 - x + 1 g = x**3 - x + 1 s, t, h = R.dup_gcdex(f, g) S, T, H = R.dup_gcdex(g, f) assert R.dup_add(R.dup_mul(s, f), R.dup_mul(t, g)) == h assert R.dup_add(R.dup_mul(S, g), R.dup_mul(T, f)) == H f = 2*x g = x**2 - 16 s = QQ(1,32)*x t = -QQ(1,16) h = 1 assert R.dup_half_gcdex(f, g) == (s, h) assert R.dup_gcdex(f, g) == (s, t, h) def test_dup_invert(): R, x = ring("x", QQ) assert R.dup_invert(2*x, x**2 - 16) == QQ(1,32)*x def test_dup_euclidean_prs(): R, x = ring("x", QQ) f = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5 g = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21 assert R.dup_euclidean_prs(f, g) == [ f, g, -QQ(5,9)*x**4 + QQ(1,9)*x**2 - QQ(1,3), -QQ(117,25)*x**2 - 9*x + QQ(441,25), QQ(233150,19773)*x - QQ(102500,6591), -QQ(1288744821,543589225)] def test_dup_primitive_prs(): R, x = ring("x", ZZ) f = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5 g = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21 assert R.dup_primitive_prs(f, g) == [ f, g, -5*x**4 + x**2 - 3, 13*x**2 + 25*x - 49, 4663*x - 6150, 1] def test_dup_subresultants(): R, x = ring("x", ZZ) assert R.dup_resultant(0, 0) == 0 assert R.dup_resultant(1, 0) == 0 assert R.dup_resultant(0, 1) == 0 f = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5 g = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21 a = 15*x**4 - 3*x**2 + 9 b = 65*x**2 + 125*x - 245 c = 9326*x - 12300 d = 260708 assert R.dup_subresultants(f, g) == [f, g, a, b, c, d] assert R.dup_resultant(f, g) == R.dup_LC(d) f = x**2 - 2*x + 1 g = x**2 - 1 a = 2*x - 2 assert R.dup_subresultants(f, g) == [f, g, a] assert R.dup_resultant(f, g) == 0 f = x**2 + 1 g = x**2 - 1 a = -2 assert R.dup_subresultants(f, g) == [f, g, a] assert R.dup_resultant(f, g) == 4 f = x**2 - 1 g = x**3 - x**2 + 2 assert R.dup_resultant(f, g) == 0 f = 3*x**3 - x g = 5*x**2 + 1 assert R.dup_resultant(f, g) == 64 f = x**2 - 2*x + 7 g = x**3 - x + 5 assert R.dup_resultant(f, g) == 265 f = x**3 - 6*x**2 + 11*x - 6 g = x**3 - 15*x**2 + 74*x - 120 assert R.dup_resultant(f, g) == -8640 f = x**3 - 6*x**2 + 11*x - 6 g = x**3 - 10*x**2 + 29*x - 20 assert R.dup_resultant(f, g) == 0 f = x**3 - 1 g = x**3 + 2*x**2 + 2*x - 1 assert R.dup_resultant(f, g) == 16 f = x**8 - 2 g = x - 1 assert R.dup_resultant(f, g) == -1 def test_dmp_subresultants(): R, x, y = ring("x,y", ZZ) assert R.dmp_resultant(0, 0) == 0 assert R.dmp_prs_resultant(0, 0)[0] == 0 assert R.dmp_zz_collins_resultant(0, 0) == 0 assert R.dmp_qq_collins_resultant(0, 0) == 0 assert R.dmp_resultant(1, 0) == 0 assert R.dmp_resultant(1, 0) == 0 assert R.dmp_resultant(1, 0) == 0 assert R.dmp_resultant(0, 1) == 0 assert R.dmp_prs_resultant(0, 1)[0] == 0 assert R.dmp_zz_collins_resultant(0, 1) == 0 assert R.dmp_qq_collins_resultant(0, 1) == 0 f = 3*x**2*y - y**3 - 4 g = x**2 + x*y**3 - 9 a = 3*x*y**4 + y**3 - 27*y + 4 b = -3*y**10 - 12*y**7 + y**6 - 54*y**4 + 8*y**3 + 729*y**2 - 216*y + 16 r = R.dmp_LC(b) assert R.dmp_subresultants(f, g) == [f, g, a, b] assert R.dmp_resultant(f, g) == r assert R.dmp_prs_resultant(f, g)[0] == r assert R.dmp_zz_collins_resultant(f, g) == r assert R.dmp_qq_collins_resultant(f, g) == r f = -x**3 + 5 g = 3*x**2*y + x**2 a = 45*y**2 + 30*y + 5 b = 675*y**3 + 675*y**2 + 225*y + 25 r = R.dmp_LC(b) assert R.dmp_subresultants(f, g) == [f, g, a] assert R.dmp_resultant(f, g) == r assert R.dmp_prs_resultant(f, g)[0] == r assert R.dmp_zz_collins_resultant(f, g) == r assert R.dmp_qq_collins_resultant(f, g) == r R, x, y, z, u, v = ring("x,y,z,u,v", ZZ) f = 6*x**2 - 3*x*y - 2*x*z + y*z g = x**2 - x*u - x*v + u*v r = y**2*z**2 - 3*y**2*z*u - 3*y**2*z*v + 9*y**2*u*v - 2*y*z**2*u \ - 2*y*z**2*v + 6*y*z*u**2 + 12*y*z*u*v + 6*y*z*v**2 - 18*y*u**2*v \ - 18*y*u*v**2 + 4*z**2*u*v - 12*z*u**2*v - 12*z*u*v**2 + 36*u**2*v**2 assert R.dmp_zz_collins_resultant(f, g) == r.drop(x) R, x, y, z, u, v = ring("x,y,z,u,v", QQ) f = x**2 - QQ(1,2)*x*y - QQ(1,3)*x*z + QQ(1,6)*y*z g = x**2 - x*u - x*v + u*v r = QQ(1,36)*y**2*z**2 - QQ(1,12)*y**2*z*u - QQ(1,12)*y**2*z*v + QQ(1,4)*y**2*u*v \ - QQ(1,18)*y*z**2*u - QQ(1,18)*y*z**2*v + QQ(1,6)*y*z*u**2 + QQ(1,3)*y*z*u*v \ + QQ(1,6)*y*z*v**2 - QQ(1,2)*y*u**2*v - QQ(1,2)*y*u*v**2 + QQ(1,9)*z**2*u*v \ - QQ(1,3)*z*u**2*v - QQ(1,3)*z*u*v**2 + u**2*v**2 assert R.dmp_qq_collins_resultant(f, g) == r.drop(x) Rt, t = ring("t", ZZ) Rx, x = ring("x", Rt) f = x**6 - 5*x**4 + 5*x**2 + 4 g = -6*t*x**5 + x**4 + 20*t*x**3 - 3*x**2 - 10*t*x + 6 assert Rx.dup_resultant(f, g) == 2930944*t**6 + 2198208*t**4 + 549552*t**2 + 45796 def test_dup_discriminant(): R, x = ring("x", ZZ) assert R.dup_discriminant(0) == 0 assert R.dup_discriminant(x) == 1 assert R.dup_discriminant(x**3 + 3*x**2 + 9*x - 13) == -11664 assert R.dup_discriminant(5*x**5 + x**3 + 2) == 31252160 assert R.dup_discriminant(x**4 + 2*x**3 + 6*x**2 - 22*x + 13) == 0 assert R.dup_discriminant(12*x**7 + 15*x**4 + 30*x**3 + x**2 + 1) == -220289699947514112 def test_dmp_discriminant(): R, x = ring("x", ZZ) assert R.dmp_discriminant(0) == 0 R, x, y = ring("x,y", ZZ) assert R.dmp_discriminant(0) == 0 assert R.dmp_discriminant(y) == 0 assert R.dmp_discriminant(x**3 + 3*x**2 + 9*x - 13) == -11664 assert R.dmp_discriminant(5*x**5 + x**3 + 2) == 31252160 assert R.dmp_discriminant(x**4 + 2*x**3 + 6*x**2 - 22*x + 13) == 0 assert R.dmp_discriminant(12*x**7 + 15*x**4 + 30*x**3 + x**2 + 1) == -220289699947514112 assert R.dmp_discriminant(x**2*y + 2*y) == (-8*y**2).drop(x) assert R.dmp_discriminant(x*y**2 + 2*x) == 1 R, x, y, z = ring("x,y,z", ZZ) assert R.dmp_discriminant(x*y + z) == 1 R, x, y, z, u = ring("x,y,z,u", ZZ) assert R.dmp_discriminant(x**2*y + x*z + u) == (-4*y*u + z**2).drop(x) R, x, y, z, u, v = ring("x,y,z,u,v", ZZ) assert R.dmp_discriminant(x**3*y + x**2*z + x*u + v) == \ (-27*y**2*v**2 + 18*y*z*u*v - 4*y*u**3 - 4*z**3*v + z**2*u**2).drop(x) def test_dup_gcd(): R, x = ring("x", ZZ) f, g = 0, 0 assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (0, 0, 0) f, g = 2, 0 assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (2, 1, 0) f, g = -2, 0 assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (2, -1, 0) f, g = 0, -2 assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (2, 0, -1) f, g = 0, 2*x + 4 assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (2*x + 4, 0, 1) f, g = 2*x + 4, 0 assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (2*x + 4, 1, 0) f, g = 2, 2 assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (2, 1, 1) f, g = -2, 2 assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (2, -1, 1) f, g = 2, -2 assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (2, 1, -1) f, g = -2, -2 assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (2, -1, -1) f, g = x**2 + 2*x + 1, 1 assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (1, x**2 + 2*x + 1, 1) f, g = x**2 + 2*x + 1, 2 assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (1, x**2 + 2*x + 1, 2) f, g = 2*x**2 + 4*x + 2, 2 assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (2, x**2 + 2*x + 1, 1) f, g = 2, 2*x**2 + 4*x + 2 assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (2, 1, x**2 + 2*x + 1) f, g = 2*x**2 + 4*x + 2, x + 1 assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (x + 1, 2*x + 2, 1) f, g = x + 1, 2*x**2 + 4*x + 2 assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (x + 1, 1, 2*x + 2) f, g = x - 31, x assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (1, f, g) f = x**4 + 8*x**3 + 21*x**2 + 22*x + 8 g = x**3 + 6*x**2 + 11*x + 6 h = x**2 + 3*x + 2 cff = x**2 + 5*x + 4 cfg = x + 3 assert R.dup_zz_heu_gcd(f, g) == (h, cff, cfg) assert R.dup_rr_prs_gcd(f, g) == (h, cff, cfg) f = x**4 - 4 g = x**4 + 4*x**2 + 4 h = x**2 + 2 cff = x**2 - 2 cfg = x**2 + 2 assert R.dup_zz_heu_gcd(f, g) == (h, cff, cfg) assert R.dup_rr_prs_gcd(f, g) == (h, cff, cfg) f = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5 g = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21 h = 1 cff = f cfg = g assert R.dup_zz_heu_gcd(f, g) == (h, cff, cfg) assert R.dup_rr_prs_gcd(f, g) == (h, cff, cfg) R, x = ring("x", QQ) f = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5 g = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21 h = 1 cff = f cfg = g assert R.dup_qq_heu_gcd(f, g) == (h, cff, cfg) assert R.dup_ff_prs_gcd(f, g) == (h, cff, cfg) R, x = ring("x", ZZ) f = - 352518131239247345597970242177235495263669787845475025293906825864749649589178600387510272*x**49 \ + 46818041807522713962450042363465092040687472354933295397472942006618953623327997952*x**42 \ + 378182690892293941192071663536490788434899030680411695933646320291525827756032*x**35 \ + 112806468807371824947796775491032386836656074179286744191026149539708928*x**28 \ - 12278371209708240950316872681744825481125965781519138077173235712*x**21 \ + 289127344604779611146960547954288113529690984687482920704*x**14 \ + 19007977035740498977629742919480623972236450681*x**7 \ + 311973482284542371301330321821976049 g = 365431878023781158602430064717380211405897160759702125019136*x**21 \ + 197599133478719444145775798221171663643171734081650688*x**14 \ - 9504116979659010018253915765478924103928886144*x**7 \ - 311973482284542371301330321821976049 assert R.dup_zz_heu_gcd(f, R.dup_diff(f, 1))[0] == g assert R.dup_rr_prs_gcd(f, R.dup_diff(f, 1))[0] == g R, x = ring("x", QQ) f = QQ(1,2)*x**2 + x + QQ(1,2) g = QQ(1,2)*x + QQ(1,2) h = x + 1 assert R.dup_qq_heu_gcd(f, g) == (h, g, QQ(1,2)) assert R.dup_ff_prs_gcd(f, g) == (h, g, QQ(1,2)) R, x = ring("x", ZZ) f = 1317378933230047068160*x + 2945748836994210856960 g = 120352542776360960*x + 269116466014453760 h = 120352542776360960*x + 269116466014453760 cff = 10946 cfg = 1 assert R.dup_zz_heu_gcd(f, g) == (h, cff, cfg) def test_dmp_gcd(): R, x, y = ring("x,y", ZZ) f, g = 0, 0 assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (0, 0, 0) f, g = 2, 0 assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (2, 1, 0) f, g = -2, 0 assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (2, -1, 0) f, g = 0, -2 assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (2, 0, -1) f, g = 0, 2*x + 4 assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (2*x + 4, 0, 1) f, g = 2*x + 4, 0 assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (2*x + 4, 1, 0) f, g = 2, 2 assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (2, 1, 1) f, g = -2, 2 assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (2, -1, 1) f, g = 2, -2 assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (2, 1, -1) f, g = -2, -2 assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (2, -1, -1) f, g = x**2 + 2*x + 1, 1 assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (1, x**2 + 2*x + 1, 1) f, g = x**2 + 2*x + 1, 2 assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (1, x**2 + 2*x + 1, 2) f, g = 2*x**2 + 4*x + 2, 2 assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (2, x**2 + 2*x + 1, 1) f, g = 2, 2*x**2 + 4*x + 2 assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (2, 1, x**2 + 2*x + 1) f, g = 2*x**2 + 4*x + 2, x + 1 assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (x + 1, 2*x + 2, 1) f, g = x + 1, 2*x**2 + 4*x + 2 assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (x + 1, 1, 2*x + 2) R, x, y, z, u = ring("x,y,z,u", ZZ) f, g = u**2 + 2*u + 1, 2*u + 2 assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (u + 1, u + 1, 2) f, g = z**2*u**2 + 2*z**2*u + z**2 + z*u + z, u**2 + 2*u + 1 h, cff, cfg = u + 1, z**2*u + z**2 + z, u + 1 assert R.dmp_zz_heu_gcd(f, g) == (h, cff, cfg) assert R.dmp_rr_prs_gcd(f, g) == (h, cff, cfg) assert R.dmp_zz_heu_gcd(g, f) == (h, cfg, cff) assert R.dmp_rr_prs_gcd(g, f) == (h, cfg, cff) R, x, y, z = ring("x,y,z", ZZ) f, g, h = map(R.from_dense, dmp_fateman_poly_F_1(2, ZZ)) H, cff, cfg = R.dmp_zz_heu_gcd(f, g) assert H == h and R.dmp_mul(H, cff) == f \ and R.dmp_mul(H, cfg) == g H, cff, cfg = R.dmp_rr_prs_gcd(f, g) assert H == h and R.dmp_mul(H, cff) == f \ and R.dmp_mul(H, cfg) == g R, x, y, z, u, v = ring("x,y,z,u,v", ZZ) f, g, h = map(R.from_dense, dmp_fateman_poly_F_1(4, ZZ)) H, cff, cfg = R.dmp_zz_heu_gcd(f, g) assert H == h and R.dmp_mul(H, cff) == f \ and R.dmp_mul(H, cfg) == g R, x, y, z, u, v, a, b = ring("x,y,z,u,v,a,b", ZZ) f, g, h = map(R.from_dense, dmp_fateman_poly_F_1(6, ZZ)) H, cff, cfg = R.dmp_zz_heu_gcd(f, g) assert H == h and R.dmp_mul(H, cff) == f \ and R.dmp_mul(H, cfg) == g R, x, y, z, u, v, a, b, c, d = ring("x,y,z,u,v,a,b,c,d", ZZ) f, g, h = map(R.from_dense, dmp_fateman_poly_F_1(8, ZZ)) H, cff, cfg = R.dmp_zz_heu_gcd(f, g) assert H == h and R.dmp_mul(H, cff) == f \ and R.dmp_mul(H, cfg) == g R, x, y, z = ring("x,y,z", ZZ) f, g, h = map(R.from_dense, dmp_fateman_poly_F_2(2, ZZ)) H, cff, cfg = R.dmp_zz_heu_gcd(f, g) assert H == h and R.dmp_mul(H, cff) == f \ and R.dmp_mul(H, cfg) == g H, cff, cfg = R.dmp_rr_prs_gcd(f, g) assert H == h and R.dmp_mul(H, cff) == f \ and R.dmp_mul(H, cfg) == g f, g, h = map(R.from_dense, dmp_fateman_poly_F_3(2, ZZ)) H, cff, cfg = R.dmp_zz_heu_gcd(f, g) assert H == h and R.dmp_mul(H, cff) == f \ and R.dmp_mul(H, cfg) == g H, cff, cfg = R.dmp_rr_prs_gcd(f, g) assert H == h and R.dmp_mul(H, cff) == f \ and R.dmp_mul(H, cfg) == g R, x, y, z, u, v = ring("x,y,z,u,v", ZZ) f, g, h = map(R.from_dense, dmp_fateman_poly_F_3(4, ZZ)) H, cff, cfg = R.dmp_inner_gcd(f, g) assert H == h and R.dmp_mul(H, cff) == f \ and R.dmp_mul(H, cfg) == g R, x, y = ring("x,y", QQ) f = QQ(1,2)*x**2 + x + QQ(1,2) g = QQ(1,2)*x + QQ(1,2) h = x + 1 assert R.dmp_qq_heu_gcd(f, g) == (h, g, QQ(1,2)) assert R.dmp_ff_prs_gcd(f, g) == (h, g, QQ(1,2)) R, x, y = ring("x,y", RR) f = 2.1*x*y**2 - 2.2*x*y + 2.1*x g = 1.0*x**3 assert R.dmp_ff_prs_gcd(f, g) == \ (1.0*x, 2.1*y**2 - 2.2*y + 2.1, 1.0*x**2) def test_dup_lcm(): R, x = ring("x", ZZ) assert R.dup_lcm(2, 6) == 6 assert R.dup_lcm(2*x**3, 6*x) == 6*x**3 assert R.dup_lcm(2*x**3, 3*x) == 6*x**3 assert R.dup_lcm(x**2 + x, x) == x**2 + x assert R.dup_lcm(x**2 + x, 2*x) == 2*x**2 + 2*x assert R.dup_lcm(x**2 + 2*x, x) == x**2 + 2*x assert R.dup_lcm(2*x**2 + x, x) == 2*x**2 + x assert R.dup_lcm(2*x**2 + x, 2*x) == 4*x**2 + 2*x def test_dmp_lcm(): R, x, y = ring("x,y", ZZ) assert R.dmp_lcm(2, 6) == 6 assert R.dmp_lcm(x, y) == x*y assert R.dmp_lcm(2*x**3, 6*x*y**2) == 6*x**3*y**2 assert R.dmp_lcm(2*x**3, 3*x*y**2) == 6*x**3*y**2 assert R.dmp_lcm(x**2*y, x*y**2) == x**2*y**2 f = 2*x*y**5 - 3*x*y**4 - 2*x*y**3 + 3*x*y**2 g = y**5 - 2*y**3 + y h = 2*x*y**7 - 3*x*y**6 - 4*x*y**5 + 6*x*y**4 + 2*x*y**3 - 3*x*y**2 assert R.dmp_lcm(f, g) == h f = x**3 - 3*x**2*y - 9*x*y**2 - 5*y**3 g = x**4 + 6*x**3*y + 12*x**2*y**2 + 10*x*y**3 + 3*y**4 h = x**5 + x**4*y - 18*x**3*y**2 - 50*x**2*y**3 - 47*x*y**4 - 15*y**5 assert R.dmp_lcm(f, g) == h def test_dmp_content(): R, x,y = ring("x,y", ZZ) assert R.dmp_content(-2) == 2 f, g, F = 3*y**2 + 2*y + 1, 1, 0 for i in range(0, 5): g *= f F += x**i*g assert R.dmp_content(F) == f.drop(x) R, x,y,z = ring("x,y,z", ZZ) assert R.dmp_content(f_4) == 1 assert R.dmp_content(f_5) == 1 R, x,y,z,t = ring("x,y,z,t", ZZ) assert R.dmp_content(f_6) == 1 def test_dmp_primitive(): R, x,y = ring("x,y", ZZ) assert R.dmp_primitive(0) == (0, 0) assert R.dmp_primitive(1) == (1, 1) f, g, F = 3*y**2 + 2*y + 1, 1, 0 for i in range(0, 5): g *= f F += x**i*g assert R.dmp_primitive(F) == (f.drop(x), F / f) R, x,y,z = ring("x,y,z", ZZ) cont, f = R.dmp_primitive(f_4) assert cont == 1 and f == f_4 cont, f = R.dmp_primitive(f_5) assert cont == 1 and f == f_5 R, x,y,z,t = ring("x,y,z,t", ZZ) cont, f = R.dmp_primitive(f_6) assert cont == 1 and f == f_6 def test_dup_cancel(): R, x = ring("x", ZZ) f = 2*x**2 - 2 g = x**2 - 2*x + 1 p = 2*x + 2 q = x - 1 assert R.dup_cancel(f, g) == (p, q) assert R.dup_cancel(f, g, include=False) == (1, 1, p, q) f = -x - 2 g = 3*x - 4 F = x + 2 G = -3*x + 4 assert R.dup_cancel(f, g) == (f, g) assert R.dup_cancel(F, G) == (f, g) assert R.dup_cancel(0, 0) == (0, 0) assert R.dup_cancel(0, 0, include=False) == (1, 1, 0, 0) assert R.dup_cancel(x, 0) == (1, 0) assert R.dup_cancel(x, 0, include=False) == (1, 1, 1, 0) assert R.dup_cancel(0, x) == (0, 1) assert R.dup_cancel(0, x, include=False) == (1, 1, 0, 1) f = 0 g = x one = 1 assert R.dup_cancel(f, g, include=True) == (f, one) def test_dmp_cancel(): R, x, y = ring("x,y", ZZ) f = 2*x**2 - 2 g = x**2 - 2*x + 1 p = 2*x + 2 q = x - 1 assert R.dmp_cancel(f, g) == (p, q) assert R.dmp_cancel(f, g, include=False) == (1, 1, p, q) assert R.dmp_cancel(0, 0) == (0, 0) assert R.dmp_cancel(0, 0, include=False) == (1, 1, 0, 0) assert R.dmp_cancel(y, 0) == (1, 0) assert R.dmp_cancel(y, 0, include=False) == (1, 1, 1, 0) assert R.dmp_cancel(0, y) == (0, 1) assert R.dmp_cancel(0, y, include=False) == (1, 1, 0, 1)
gyp
1a3e2efe6f6a62802b4bbdaaff6d6e785dcc6326
# Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # This is all.gyp file for Android to prevent breakage in Android and other # platform; It will be churning a lot in the short term and eventually be merged # into all.gyp. { 'variables': { # A hook that can be overridden in other repositories to add additional # compilation targets to 'All' 'android_app_targets%': [], }, 'targets': [ { 'target_name': 'All', 'type': 'none', 'dependencies': [ '../content/content.gyp:content_shell_apk', '<@(android_app_targets)', 'android_builder_tests', '../android_webview/android_webview.gyp:android_webview_apk', '../chrome/chrome.gyp:chromium_testshell', # TODO(nyquist) This should instead by a target for sync when all of # the sync-related code for Android has been upstreamed. # See http://crbug.com/159203 '../third_party/cacheinvalidation/cacheinvalidation.gyp:cacheinvalidation_javalib', ], }, # target_name: All { # The current list of tests for android. This is temporary # until the full set supported. If adding a new test here, # please also add it to build/android/run_tests.py, else the # test is not run. # # WARNING: # Do not add targets here without communicating the implications # on tryserver triggers and load. Discuss with jrg please. 'target_name': 'android_builder_tests', 'type': 'none', 'dependencies': [ '../android_webview/android_webview.gyp:android_webview_unittests', '../base/android/jni_generator/jni_generator.gyp:jni_generator_tests', '../base/base.gyp:base_unittests', '../build/android/tests/multiple_proguards/multiple_proguards.gyp:multiple_proguards_test_apk', '../cc/cc_tests.gyp:cc_perftests_apk', '../cc/cc_tests.gyp:cc_unittests', '../chrome/chrome.gyp:unit_tests', '../components/components.gyp:components_unittests', '../content/content.gyp:content_browsertests', '../content/content.gyp:content_shell_test_apk', '../content/content.gyp:content_unittests', '../gpu/gpu.gyp:gl_tests', '../gpu/gpu.gyp:gpu_unittests', '../ipc/ipc.gyp:ipc_tests', '../media/media.gyp:media_unittests', '../net/net.gyp:net_unittests', '../sandbox/sandbox.gyp:sandbox_linux_unittests', '../sql/sql.gyp:sql_unittests', '../sync/sync.gyp:sync_unit_tests', '../third_party/WebKit/Source/WebKit/chromium/All.gyp:*', '../tools/android/android_tools.gyp:android_tools', '../tools/android/device_stats_monitor/device_stats_monitor.gyp:device_stats_monitor', '../tools/android/findbugs_plugin/findbugs_plugin.gyp:findbugs_plugin_test', '../ui/ui.gyp:ui_unittests', # Required by ui_unittests. # TODO(wangxianzhu): It'd better let ui_unittests depend on it, but # this would cause circular gyp dependency which needs refactoring the # gyps to resolve. '../chrome/chrome_resources.gyp:packed_resources', ], 'conditions': [ ['linux_breakpad==1', { 'dependencies': [ '../breakpad/breakpad.gyp:breakpad_unittests', # Also compile the tools needed to deal with minidumps, they are # needed to run minidump tests upstream. '../breakpad/breakpad.gyp:dump_syms#host', '../breakpad/breakpad.gyp:symupload#host', '../breakpad/breakpad.gyp:minidump_dump#host', '../breakpad/breakpad.gyp:minidump_stackwalk#host' ], }], ['"<(gtest_target_type)"=="shared_library"', { 'dependencies': [ # Unit test bundles packaged as an apk. '../android_webview/android_webview.gyp:android_webview_unittests_apk', '../base/base.gyp:base_unittests_apk', '../cc/cc_tests.gyp:cc_unittests_apk', '../chrome/chrome.gyp:unit_tests_apk', '../components/components.gyp:components_unittests_apk', '../content/content.gyp:content_browsertests_apk', '../content/content.gyp:content_unittests_apk', '../gpu/gpu.gyp:gl_tests_apk', '../gpu/gpu.gyp:gpu_unittests_apk', '../ipc/ipc.gyp:ipc_tests_apk', '../media/media.gyp:media_unittests_apk', '../net/net.gyp:net_unittests_apk', '../sandbox/sandbox.gyp:sandbox_linux_jni_unittests_apk', '../sql/sql.gyp:sql_unittests_apk', '../sync/sync.gyp:sync_unit_tests_apk', '../ui/ui.gyp:ui_unittests_apk', '../android_webview/android_webview.gyp:android_webview_test_apk', '../chrome/chrome.gyp:chromium_testshell_test_apk', '../webkit/compositor_bindings/compositor_bindings_tests.gyp:webkit_compositor_bindings_unittests_apk' ], }], ], }, { # Experimental / in-progress targets that are expected to fail # but we still try to compile them on bots (turning the stage # orange, not red). 'target_name': 'android_experimental', 'type': 'none', 'dependencies': [ ], }, { # In-progress targets that are expected to fail and are NOT run # on any bot. 'target_name': 'android_in_progress', 'type': 'none', 'dependencies': [ ], }, ], # targets }
py
1a3e2f08bbef6a5c29da8a267dd61d4a3225cda1
# encoding: utf-8 """ Gherkin step implementations for chart features. """ from __future__ import absolute_import, print_function import hashlib from itertools import islice from behave import given, then, when from pptx import Presentation from pptx.chart.chart import Legend from pptx.chart.data import ( BubbleChartData, CategoryChartData, ChartData, XyChartData ) from pptx.enum.chart import XL_CHART_TYPE from pptx.parts.embeddedpackage import EmbeddedXlsxPart from pptx.util import Inches from helpers import count, test_pptx # given =================================================== @given('a chart') def given_a_chart(context): prs = Presentation(test_pptx('shp-common-props')) sld = prs.slides[0] context.chart = sld.shapes[6].chart @given('a chart having {a_or_no} title') def given_a_chart_having_a_or_no_title(context, a_or_no): shape_idx = {'no': 0, 'a': 1}[a_or_no] prs = Presentation(test_pptx('cht-chart-props')) context.chart = prs.slides[0].shapes[shape_idx].chart @given('a chart {having_or_not} a legend') def given_a_chart_having_or_not_a_legend(context, having_or_not): slide_idx = { 'having': 0, 'not having': 1, }[having_or_not] prs = Presentation(test_pptx('cht-legend')) context.chart = prs.slides[slide_idx].shapes[0].chart @given('a chart of size and type {spec}') def given_a_chart_of_size_and_type_spec(context, spec): slide_idx = { '2x2 Clustered Bar': 0, '2x2 100% Stacked Bar': 1, '2x2 Clustered Column': 2, '4x3 Line': 3, '3x1 Pie': 4, '3x2 XY': 5, '3x2 Bubble': 6, }[spec] prs = Presentation(test_pptx('cht-replace-data')) chart = prs.slides[slide_idx].shapes[0].chart context.chart = chart context.xlsx_sha1 = hashlib.sha1( chart._workbook.xlsx_part.blob ).hexdigest() @given('a chart of type {chart_type}') def given_a_chart_of_type_chart_type(context, chart_type): slide_idx, shape_idx = { 'Area': (0, 0), 'Stacked Area': (0, 1), '100% Stacked Area': (0, 2), '3-D Area': (0, 3), '3-D Stacked Area': (0, 4), '3-D 100% Stacked Area': (0, 5), 'Clustered Bar': (1, 0), 'Stacked Bar': (1, 1), '100% Stacked Bar': (1, 2), 'Clustered Column': (1, 3), 'Stacked Column': (1, 4), '100% Stacked Column': (1, 5), 'Line': (2, 0), 'Stacked Line': (2, 1), '100% Stacked Line': (2, 2), 'Marked Line': (2, 3), 'Stacked Marked Line': (2, 4), '100% Stacked Marked Line': (2, 5), 'Pie': (3, 0), 'Exploded Pie': (3, 1), 'XY (Scatter)': (4, 0), 'XY Lines': (4, 1), 'XY Lines No Markers': (4, 2), 'XY Smooth Lines': (4, 3), 'XY Smooth No Markers': (4, 4), 'Bubble': (5, 0), '3D-Bubble': (5, 1), 'Radar': (6, 0), 'Marked Radar': (6, 1), 'Filled Radar': (6, 2), 'Line (with date categories)': (7, 0), }[chart_type] prs = Presentation(test_pptx('cht-chart-type')) context.chart = prs.slides[slide_idx].shapes[shape_idx].chart @given('a chart title') def given_a_chart_title(context): prs = Presentation(test_pptx('cht-chart-props')) context.chart_title = prs.slides[0].shapes[1].chart.chart_title @given('a chart title having {a_or_no} text frame') def given_a_chart_title_having_a_or_no_text_frame(context, a_or_no): prs = Presentation(test_pptx('cht-chart-props')) shape_idx = {'no': 0, 'a': 1}[a_or_no] context.chart_title = prs.slides[1].shapes[shape_idx].chart.chart_title # when ==================================================== @when('I add a Clustered bar chart with multi-level categories') def when_I_add_a_clustered_bar_chart_with_multi_level_categories(context): chart_type = XL_CHART_TYPE.BAR_CLUSTERED chart_data = CategoryChartData() WEST = chart_data.add_category('WEST') WEST.add_sub_category('SF') WEST.add_sub_category('LA') EAST = chart_data.add_category('EAST') EAST.add_sub_category('NY') EAST.add_sub_category('NJ') chart_data.add_series('Series 1', (1, 2, None, 4)) chart_data.add_series('Series 2', (5, None, 7, 8)) context.chart = context.slide.shapes.add_chart( chart_type, Inches(1), Inches(1), Inches(8), Inches(5), chart_data ).chart @when('I add a {kind} chart with {cats} categories and {sers} series') def when_I_add_a_chart_with_categories_and_series(context, kind, cats, sers): chart_type = { 'Area': XL_CHART_TYPE.AREA, 'Stacked Area': XL_CHART_TYPE.AREA_STACKED, '100% Stacked Area': XL_CHART_TYPE.AREA_STACKED_100, 'Clustered Bar': XL_CHART_TYPE.BAR_CLUSTERED, 'Stacked Bar': XL_CHART_TYPE.BAR_STACKED, '100% Stacked Bar': XL_CHART_TYPE.BAR_STACKED_100, 'Clustered Column': XL_CHART_TYPE.COLUMN_CLUSTERED, 'Stacked Column': XL_CHART_TYPE.COLUMN_STACKED, '100% Stacked Column': XL_CHART_TYPE.COLUMN_STACKED_100, 'Doughnut': XL_CHART_TYPE.DOUGHNUT, 'Exploded Doughnut': XL_CHART_TYPE.DOUGHNUT_EXPLODED, 'Line': XL_CHART_TYPE.LINE, 'Line with Markers': XL_CHART_TYPE.LINE_MARKERS, 'Line Markers Stacked': XL_CHART_TYPE.LINE_MARKERS_STACKED, '100% Line Markers Stacked': XL_CHART_TYPE.LINE_MARKERS_STACKED_100, 'Line Stacked': XL_CHART_TYPE.LINE_STACKED, '100% Line Stacked': XL_CHART_TYPE.LINE_STACKED_100, 'Pie': XL_CHART_TYPE.PIE, 'Exploded Pie': XL_CHART_TYPE.PIE_EXPLODED, 'Radar': XL_CHART_TYPE.RADAR, 'Filled Radar': XL_CHART_TYPE.RADAR_FILLED, 'Radar with markers': XL_CHART_TYPE.RADAR_MARKERS, }[kind] category_count, series_count = int(cats), int(sers) category_source = ('Foo', 'Bar', 'Baz', 'Boo', 'Far', 'Faz') series_value_source = count(1.1, 1.1) chart_data = CategoryChartData() chart_data.categories = category_source[:category_count] for idx in range(series_count): series_title = 'Series %d' % (idx+1) series_values = tuple(islice(series_value_source, category_count)) chart_data.add_series(series_title, series_values) context.chart = context.slide.shapes.add_chart( chart_type, Inches(1), Inches(1), Inches(8), Inches(5), chart_data ).chart @when('I add a {bubble_type} chart having 2 series of 3 points each') def when_I_add_a_bubble_chart_having_2_series_of_3_pts(context, bubble_type): chart_type = getattr(XL_CHART_TYPE, bubble_type) data = ( ('Series 1', ((-0.1, 0.5, 1.0), (16.2, 0.0, 2.0), (8.0, -0.2, 3.0))), ('Series 2', ((12.4, 0.8, 4.0), (-7.5, 0.5, 5.0), (5.1, -0.5, 6.0))), ) chart_data = BubbleChartData() for series_data in data: series_label, points = series_data series = chart_data.add_series(series_label) for point in points: x, y, size = point series.add_data_point(x, y, size) context.chart = context.slide.shapes.add_chart( chart_type, Inches(1), Inches(1), Inches(8), Inches(5), chart_data ).chart @when('I assign {value} to chart.has_legend') def when_I_assign_value_to_chart_has_legend(context, value): new_value = { 'True': True, 'False': False, }[value] context.chart.has_legend = new_value @when('I assign {value} to chart.has_title') def when_I_assign_value_to_chart_has_title(context, value): context.chart.has_title = {'True': True, 'False': False}[value] @when('I assign {value} to chart_title.has_text_frame') def when_I_assign_value_to_chart_title_has_text_frame(context, value): context.chart_title.has_text_frame = { 'True': True, 'False': False }[value] @when('I replace its data with {cats} categories and {sers} series') def when_I_replace_its_data_with_categories_and_series(context, cats, sers): category_count, series_count = int(cats), int(sers) category_source = ('Foo', 'Bar', 'Baz', 'Boo', 'Far', 'Faz') series_value_source = count(1.1, 1.1) chart_data = ChartData() chart_data.categories = category_source[:category_count] for idx in range(series_count): series_title = 'New Series %d' % (idx+1) series_values = tuple(islice(series_value_source, category_count)) chart_data.add_series(series_title, series_values) context.chart.replace_data(chart_data) @when('I replace its data with 3 series of 3 bubble points each') def when_I_replace_its_data_with_3_series_of_three_bubble_pts_each(context): chart_data = BubbleChartData() for idx in range(3): series_title = 'New Series %d' % (idx+1) series = chart_data.add_series(series_title) for jdx in range(3): x, y, size = idx * 3 + jdx, idx * 2 + jdx, idx + jdx series.add_data_point(x, y, size) context.chart.replace_data(chart_data) @when('I replace its data with 3 series of 3 points each') def when_I_replace_its_data_with_3_series_of_three_points_each(context): chart_data = XyChartData() x = y = 0 for idx in range(3): series_title = 'New Series %d' % (idx+1) series = chart_data.add_series(series_title) for jdx in range(3): x, y = idx * 3 + jdx, idx * 2 + jdx series.add_data_point(x, y) context.chart.replace_data(chart_data) # then ==================================================== @then('chart.category_axis is a {cls_name} object') def then_chart_category_axis_is_a_cls_name_object(context, cls_name): category_axis = context.chart.category_axis type_name = type(category_axis).__name__ assert type_name == cls_name, 'got %s' % type_name @then('chart.chart_title is a ChartTitle object') def then_chart_chart_title_is_a_ChartTitle_object(context): class_name = type(context.chart.chart_title).__name__ assert class_name == 'ChartTitle', 'got %s' % class_name @then('chart.chart_type is {enum_member}') def then_chart_chart_type_is_value(context, enum_member): expected_value = getattr(XL_CHART_TYPE, enum_member) chart = context.chart assert chart.chart_type is expected_value, 'got %s' % chart.chart_type @then('chart.has_legend is {value}') def then_chart_has_legend_is_value(context, value): expected_value = { 'True': True, 'False': False, }[value] chart = context.chart assert chart.has_legend is expected_value @then('chart.has_title is {value}') def then_chart_has_title_is_value(context, value): chart = context.chart actual_value = chart.has_title expected_value = {'True': True, 'False': False}[value] assert actual_value is expected_value, 'got %s' % actual_value @then('chart.legend is a legend object') def then_chart_legend_is_a_legend_object(context): chart = context.chart assert isinstance(chart.legend, Legend) @then('chart.series is a SeriesCollection object') def then_chart_series_is_a_SeriesCollection_object(context): type_name = type(context.chart.series).__name__ assert type_name == 'SeriesCollection', 'got %s' % type_name @then('chart.value_axis is a ValueAxis object') def then_chart_value_axis_is_a_ValueAxis_object(context): value_axis = context.chart.value_axis assert type(value_axis).__name__ == 'ValueAxis' @then('chart_title.format is a ChartFormat object') def then_chart_title_format_is_a_ChartFormat_object(context): class_name = type(context.chart_title.format).__name__ assert class_name == 'ChartFormat', 'got %s' % class_name @then('chart_title.format.fill is a FillFormat object') def then_chart_title_format_fill_is_a_FillFormat_object(context): class_name = type(context.chart_title.format.fill).__name__ assert class_name == 'FillFormat', 'got %s' % class_name @then('chart_title.format.line is a LineFormat object') def then_chart_title_format_line_is_a_LineFormat_object(context): class_name = type(context.chart_title.format.line).__name__ assert class_name == 'LineFormat', 'got %s' % class_name @then('chart_title.has_text_frame is {value}') def then_chart_title_has_text_frame_is_value(context, value): actual_value = context.chart_title.has_text_frame expected_value = {'True': True, 'False': False}[value] assert actual_value is expected_value, 'got %s' % actual_value @then('chart_title.text_frame is a TextFrame object') def then_chart_title_text_frame_is_a_TextFrame_object(context): class_name = type(context.chart_title.text_frame).__name__ assert class_name == 'TextFrame', 'got %s' % class_name @then('each series has a new name') def then_each_series_has_a_new_name(context): for series in context.chart.plots[0].series: assert series.name.startswith('New ') @then('each series has {count} values') def then_each_series_has_count_values(context, count): expected_count = int(count) for series in context.chart.plots[0].series: actual_value_count = len(series.values) assert actual_value_count == expected_count @then('len(chart.series) is {count}') def then_len_chart_series_is_count(context, count): expected_count = int(count) assert len(context.chart.series) == expected_count @then('the chart has an Excel data worksheet') def then_the_chart_has_an_Excel_data_worksheet(context): xlsx_part = context.chart._workbook.xlsx_part assert isinstance(xlsx_part, EmbeddedXlsxPart) @then('the chart has new chart data') def then_the_chart_has_new_chart_data(context): orig_xlsx_sha1 = context.xlsx_sha1 new_xlsx_sha1 = hashlib.sha1( context.chart._workbook.xlsx_part.blob ).hexdigest() assert new_xlsx_sha1 != orig_xlsx_sha1
py
1a3e2fcb016feb40e928ebd6f8291925b5ad74ca
from django_evolution.mutations import AddField from django.db import models MUTATIONS = [ AddField('Group', 'email_list_only', models.BooleanField, initial=True) ]
py
1a3e306f40fa6f75d28bd794473f5425304265cc
from django.conf import settings from django.core.urlresolvers import reverse from django.db import models from django.utils.encoding import python_2_unicode_compatible @python_2_unicode_compatible # needed to support Python 2 class Battle(models.Model): battle_name = models.CharField(max_length=100) hashtag1 = models.CharField(max_length=500) hashtag1_typos = models.CharField(null=True, max_length=100, blank=True) hashtag2 = models.CharField(max_length=500) hashtag2_typos = models.CharField(null=True, max_length=100, blank=True) started_at = models.CharField(max_length=100) ended_at = models.CharField(max_length=100) winner = models.CharField(null=True, max_length=500, blank=True) status = models.CharField(max_length=100) user = models.ForeignKey(settings.AUTH_USER_MODEL, related_name="+") def __unicode__(self): return self.battle_name def __str__(self): return str(self.battle_name) def get_absolute_url(self): return reverse('battle:battle_edit', kwargs={'pk': self.pk})
py
1a3e30e1692e46348c94ac7bc556a1f22d55afd5
from flask_session import Session from flask_sqlalchemy import SQLAlchemy from flask_migrate import Migrate from flask_bootstrap import Bootstrap from flask_debugtoolbar import DebugToolbarExtension from flask_caching import Cache from myapp.settings import CACHES from flask_restful import Api api = Api() db = SQLAlchemy() bs = Bootstrap() cache = Cache(config=CACHES.get("default")) def init_ext(app): # 实例化 se = Session() # 绑定app se.init_app(app) # db绑定 db.init_app(app) # 实例化migrate migrate = Migrate(app=app,db=db) bs.init_app(app) toolbar = DebugToolbarExtension() toolbar.init_app(app) cache.init_app(app) api.init_app(app)
py
1a3e316d3591f1b6b664ca235d18d450b6bd45f3
# This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTIBILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. ''' bl_info = { 'name': 'Pivot Transform', #"description": "This is a test version of the addon. Write in the discord channel(link below) about the errors." "author": "Max Derksen", 'version': (1, 4, 4), 'blender': (2, 81, 0), 'location': 'VIEW 3D > N-Panel > Pivot Point Popover', #"warning": "This is a test version of the addon. Write in the discord channel(link below) about the errors.", "support": "COMMUNITY", 'category': 'Object', } ''' import bpy import re import bmesh import mathutils from mathutils import Matrix, Vector from bpy.types import Operator from bpy.props import IntProperty, FloatProperty #Bounding Box #========================================================================PIVOT TRANSFORM TOOL IN EDIT MODE storeGT = False storeGR = False storeGS = False class PIVOT_OT_transform_on_N(Operator): bl_idname = "pivot.transform_on_n" bl_label = "Transform" bl_description = "Start Pivot Transformation" bl_options = {'REGISTER', 'UNDO', 'INTERNAL'} def execute(self, context): if context.scene.tool_settings.use_transform_data_origin == False: props_pivot = context.preferences.addons[__name__.split(".")[0]].preferences global storeGT global storeGR global storeGS storeGT = context.space_data.show_gizmo_object_translate storeGR = context.space_data.show_gizmo_object_rotate storeGS = context.space_data.show_gizmo_object_scale #if props_pivot.gizmo_preselect == True: #context.space_data.show_gizmo_object_translate = props_pivot.move_giz #context.space_data.show_gizmo_object_rotate = props_pivot.rotate_giz #context.space_data.show_gizmo_object_scale = props_pivot.scale_giz if context.mode != 'OBJECT': bpy.ops.object.mode_set(mode='OBJECT') context.scene.tool_settings.use_transform_data_origin = True return{'FINISHED'} else: return{'CANCELLED'} class PIVOT_OT_transform_off_N(Operator): bl_idname = "pivot.transform_off_n" bl_label = "Apply" bl_description = "Apply Pivot Transformation" bl_options = {'REGISTER', 'UNDO', 'INTERNAL'} def execute(self, context): if context.scene.tool_settings.use_transform_data_origin == True: global storeGT global storeGR global storeGS context.space_data.show_gizmo_object_translate = storeGT context.space_data.show_gizmo_object_rotate = storeGR context.space_data.show_gizmo_object_scale = storeGS if context.mode != 'OBJECT': bpy.ops.object.mode_set(mode='OBJECT') context.scene.tool_settings.use_transform_data_origin = False return{'FINISHED'} else: return{'CANCELLED'} import bgl import gpu from gpu_extras.batch import batch_for_shader def ob_add(self, context, obj): """ bpy.ops.mesh.primitive_cube_add(enter_editmode=True, align='WORLD', location=(0, 0, 0)) bbox = context.active_object bbox.matrix_world = self.obj.matrix_world bm = bmesh.from_edit_mesh(bbox.data) bm.verts.ensure_lookup_table() bm.verts.index_update() for i, vert in enumerate(ob_bbox): bm.verts[i].co = (vert[0], vert[1], vert[2]) #bm.to_mesh(me) bpy.ops.mesh.select_all(action='DESELECT') """ ob_bbox = obj.bound_box me = bpy.data.meshes.new('PivotBBox') bbox = bpy.data.objects.new('PivotBBox', me) bbox.matrix_world = obj.matrix_world context.collection.objects.link(bbox) bm = bmesh.new() bm.from_mesh(me) for vert in ob_bbox: bm.verts.new(vert[:]) vertex=[] for v in bm.verts: vertex.append(v) bm.faces.new((vertex[0], vertex[1], vertex[2], vertex[3])) bm.faces.new((vertex[3], vertex[2], vertex[6], vertex[7])) bm.faces.new((vertex[3], vertex[7], vertex[4], vertex[0])) bm.faces.new((vertex[4], vertex[5], vertex[6], vertex[7])) bm.faces.new((vertex[2], vertex[1], vertex[5], vertex[6])) bm.faces.new((vertex[0], vertex[4], vertex[5], vertex[1])) bm.to_mesh(me) bpy.ops.object.select_all(action='DESELECT') bbox.select_set(state=True) context.view_layer.objects.active = bbox context.object.display_type = 'WIRE' bpy.ops.object.mode_set(mode='EDIT') context.tool_settings.mesh_select_mode = (True, True, True) obj.select_set(state=True) class PIVOT_OT_bounding_box_N(Operator): bl_idname = "pivot.bounding_box_n" bl_label = "Pivot To Bounding Box" bl_description = "Apply Transformation" bl_options = {'REGISTER', 'UNDO', 'INTERNAL'} @classmethod def poll(cls, context): return context.active_object is not None def __init__(self): self.obj = None self.select_mode = tuple() @staticmethod def draw_mesh(self, context): shader = gpu.shader.from_builtin('3D_SMOOTH_COLOR') theme = bpy.context.preferences.themes['Default'] vertex_size = theme.view_3d.vertex_size bgl.glEnable(bgl.GL_BLEND) bgl.glLineWidth(3) bgl.glPointSize(vertex_size + 4) bgl.glEnable(bgl.GL_DEPTH_TEST) bgl.glEnable(bgl.GL_LINE_SMOOTH) bgl.glEnable(bgl.GL_CULL_FACE) bgl.glCullFace(bgl.GL_BACK) bgl.glDepthRange(0, 0.9999) bgl.glDepthMask(False) shader.bind() bbox = context.active_object mesh = bmesh.from_edit_mesh(bbox.data) vertex_co = [bbox.matrix_world @ v.co for v in mesh.verts] vertex_all = [] for e in mesh.edges: v1 = bbox.matrix_world @ e.verts[0].co v2 = bbox.matrix_world @ e.verts[1].co vCo = (v1 + v2) / 2 vertex_all.append(vCo) for f in mesh.faces: vCo = bbox.matrix_world @ f.calc_center_bounds() vertex_all.append(vCo) for v in vertex_co: vertex_all.append(v) edge_keys = bbox.data.edge_keys loop_triangles = mesh.calc_loop_triangles() faces_indices = [[loop.vert.index for loop in looptris] for looptris in loop_triangles] face_col = [(0.2, 0.2, 0.2, 0.6) for _ in range(len(vertex_co))] edge_col = [(0.1, 0.1, 0.1, 1.0) for _ in range(len(vertex_co))] vert_col = [(0.1, 0.4, 1.0, 1.0) for _ in range(len(vertex_all))] FACES = batch_for_shader(shader, 'TRIS', {"pos": vertex_co, "color": face_col}, indices=faces_indices) EDGES = batch_for_shader(shader, 'LINES', {"pos": vertex_co, "color": edge_col}, indices=edge_keys) VERTS = batch_for_shader(shader, 'POINTS', {"pos": vertex_all, "color": vert_col}) FACES.draw(shader) EDGES.draw(shader) VERTS.draw(shader) bgl.glDepthRange(0, 1) bgl.glDisable(bgl.GL_LINE_SMOOTH) bgl.glDisable(bgl.GL_DEPTH_TEST) bgl.glDisable(bgl.GL_CULL_FACE) bgl.glLineWidth(1) bgl.glPointSize(vertex_size) bgl.glDisable(bgl.GL_BLEND) def modal(self, context, event): props_pivot = context.preferences.addons[__name__.split(".")[0]].preferences if context.area: if context.area.type == 'VIEW_3D': #context.area.tag_redraw() # Selected Object(EDIT_MODE) bbox = context.active_object me = bmesh.from_edit_mesh(bbox.data) # select items verts_sel = [] verts_sel.extend([v for v in me.verts if v.select]) if len(verts_sel) >= 1: #bpy.ops.pivot.alignface() cursor_pos = context.scene.cursor.location.copy() bpy.ops.view3d.snap_cursor_to_selected() context.tool_settings.mesh_select_mode = self.select_mode bpy.ops.object.mode_set(mode='OBJECT') bpy.ops.object.origin_set(type='ORIGIN_CURSOR', center='MEDIAN') bpy.context.collection.objects.unlink(bbox) bpy.ops.object.delete({"selected_objects": [bbox]}) context.view_layer.objects.active = self.obj context.scene.cursor.location = cursor_pos bpy.types.SpaceView3D.draw_handler_remove(self._bb_mesh_draw, 'WINDOW') #props_pivot.bbox_run = False return {'FINISHED'} if not event.type in {'RIGHTMOUSE', 'MIDLEMOUSE', 'LEFTMOUSE'} and event.value == 'PRESS': #props_pivot.bbox_run = False context.tool_settings.mesh_select_mode = self.select_mode bpy.ops.object.mode_set(mode='OBJECT') bpy.context.collection.objects.unlink(bbox) bpy.ops.object.delete({"selected_objects": [bbox]}) context.view_layer.objects.active = self.obj bpy.types.SpaceView3D.draw_handler_remove(self._bb_mesh_draw, 'WINDOW') return {'CANCELLED'} else: #props_pivot.bbox_run = False bpy.types.SpaceView3D.draw_handler_remove(self._bb_mesh_draw, 'WINDOW') return {'FINISHED'} return {'PASS_THROUGH'} def invoke(self, context, event): if context.mode != 'OBJECT': bpy.ops.object.mode_set(mode='OBJECT') props_pivot = context.preferences.addons[__name__.split(".")[0]].preferences #props_pivot.bbox_run = True self.select_mode = context.tool_settings.mesh_select_mode[:] self.obj = context.active_object ob_add(self, context, self.obj) if context.area.type == 'VIEW_3D': args = (self, context) self._bb_mesh_draw= bpy.types.SpaceView3D.draw_handler_add(self.draw_mesh, args, 'WINDOW', 'POST_VIEW') context.window_manager.modal_handler_add(self) return {'RUNNING_MODAL'} classes = [ PIVOT_OT_transform_on_N, PIVOT_OT_transform_off_N, PIVOT_OT_bounding_box_N, ] def register(): global storeGT global storeGR global storeGS for cls in classes: bpy.utils.register_class(cls) def unregister(): for cls in classes: bpy.utils.unregister_class(cls)
py
1a3e319bd294632bd0c8f2a6d83f7630e38f2853
# Copyright 2016 Rackspace # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from oslo_utils import uuidutils from octavia.controller.worker.tasks import lifecycle_tasks import octavia.tests.unit.base as base class TestLifecycleTasks(base.TestCase): def setUp(self): self.AMPHORA = mock.MagicMock() self.AMPHORA_ID = uuidutils.generate_uuid() self.AMPHORA.id = self.AMPHORA_ID self.HEALTH_MON = mock.MagicMock() self.HEALTH_MON_ID = uuidutils.generate_uuid() self.HEALTH_MON.pool_id = self.HEALTH_MON_ID self.L7POLICY = mock.MagicMock() self.L7POLICY_ID = uuidutils.generate_uuid() self.L7POLICY.id = self.L7POLICY_ID self.L7RULE = mock.MagicMock() self.L7RULE_ID = uuidutils.generate_uuid() self.L7RULE.id = self.L7RULE_ID self.LISTENER = mock.MagicMock() self.LISTENER_ID = uuidutils.generate_uuid() self.LISTENER.id = self.LISTENER_ID self.LISTENERS = [self.LISTENER] self.LOADBALANCER = mock.MagicMock() self.LOADBALANCER_ID = uuidutils.generate_uuid() self.LOADBALANCER.id = self.LOADBALANCER_ID self.LISTENER.load_balancer = self.LOADBALANCER self.MEMBER = mock.MagicMock() self.MEMBER_ID = uuidutils.generate_uuid() self.MEMBER.id = self.MEMBER_ID self.MEMBERS = [self.MEMBER] self.POOL = mock.MagicMock() self.POOL_ID = uuidutils.generate_uuid() self.POOL.id = self.POOL_ID super(TestLifecycleTasks, self).setUp() @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'unmark_amphora_health_busy') @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_amphora_status_error') def test_AmphoraIDToErrorOnRevertTask(self, mock_amp_status_error, mock_amp_health_busy): amp_id_to_error_on_revert = (lifecycle_tasks. AmphoraIDToErrorOnRevertTask()) # Execute amp_id_to_error_on_revert.execute(self.AMPHORA_ID) self.assertFalse(mock_amp_status_error.called) # Revert amp_id_to_error_on_revert.revert(self.AMPHORA_ID) mock_amp_status_error.assert_called_once_with(self.AMPHORA_ID) self.assertFalse(mock_amp_health_busy.called) @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'unmark_amphora_health_busy') @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_amphora_status_error') def test_AmphoraToErrorOnRevertTask(self, mock_amp_status_error, mock_amp_health_busy): amp_to_error_on_revert = lifecycle_tasks.AmphoraToErrorOnRevertTask() # Execute amp_to_error_on_revert.execute(self.AMPHORA) self.assertFalse(mock_amp_status_error.called) # Revert amp_to_error_on_revert.revert(self.AMPHORA) mock_amp_status_error.assert_called_once_with(self.AMPHORA_ID) self.assertFalse(mock_amp_health_busy.called) @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_health_mon_prov_status_error') @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_loadbalancer_prov_status_active') @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_listener_prov_status_active') def test_HealthMonitorToErrorOnRevertTask( self, mock_listener_prov_status_active, mock_loadbalancer_prov_status_active, mock_health_mon_prov_status_error): health_mon_to_error_on_revert = (lifecycle_tasks. HealthMonitorToErrorOnRevertTask()) # Execute health_mon_to_error_on_revert.execute(self.HEALTH_MON, self.LISTENERS, self.LOADBALANCER) self.assertFalse(mock_health_mon_prov_status_error.called) # Revert health_mon_to_error_on_revert.revert(self.HEALTH_MON, self.LISTENERS, self.LOADBALANCER) mock_health_mon_prov_status_error.assert_called_once_with( self.HEALTH_MON_ID) mock_loadbalancer_prov_status_active.assert_called_once_with( self.LOADBALANCER_ID) mock_listener_prov_status_active.assert_called_once_with( self.LISTENER_ID) @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_l7policy_prov_status_error') @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_loadbalancer_prov_status_active') @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_listener_prov_status_active') def test_L7PolicyToErrorOnRevertTask( self, mock_listener_prov_status_active, mock_loadbalancer_prov_status_active, mock_l7policy_prov_status_error): l7policy_to_error_on_revert = (lifecycle_tasks. L7PolicyToErrorOnRevertTask()) # Execute l7policy_to_error_on_revert.execute(self.L7POLICY, self.LISTENERS, self.LOADBALANCER) self.assertFalse(mock_l7policy_prov_status_error.called) # Revert l7policy_to_error_on_revert.revert(self.L7POLICY, self.LISTENERS, self.LOADBALANCER) mock_l7policy_prov_status_error.assert_called_once_with( self.L7POLICY_ID) mock_loadbalancer_prov_status_active.assert_called_once_with( self.LOADBALANCER_ID) mock_listener_prov_status_active.assert_called_once_with( self.LISTENER_ID) @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_l7rule_prov_status_error') @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_loadbalancer_prov_status_active') @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_listener_prov_status_active') def test_L7RuleToErrorOnRevertTask( self, mock_listener_prov_status_active, mock_loadbalancer_prov_status_active, mock_l7rule_prov_status_error): l7rule_to_error_on_revert = (lifecycle_tasks. L7RuleToErrorOnRevertTask()) # Execute l7rule_to_error_on_revert.execute(self.L7RULE, self.LISTENERS, self.LOADBALANCER) self.assertFalse(mock_l7rule_prov_status_error.called) # Revert l7rule_to_error_on_revert.revert(self.L7RULE, self.LISTENERS, self.LOADBALANCER) mock_l7rule_prov_status_error.assert_called_once_with( self.L7RULE_ID) mock_loadbalancer_prov_status_active.assert_called_once_with( self.LOADBALANCER_ID) mock_listener_prov_status_active.assert_called_once_with( self.LISTENER_ID) @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_loadbalancer_prov_status_active') @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_listener_prov_status_error') def test_ListenerToErrorOnRevertTask( self, mock_listener_prov_status_error, mock_loadbalancer_prov_status_active): listener_to_error_on_revert = (lifecycle_tasks. ListenerToErrorOnRevertTask()) # Execute listener_to_error_on_revert.execute(self.LISTENER) self.assertFalse(mock_listener_prov_status_error.called) # Revert listener_to_error_on_revert.revert(self.LISTENER) mock_listener_prov_status_error.assert_called_once_with( self.LISTENER_ID) mock_loadbalancer_prov_status_active.assert_called_once_with( self.LOADBALANCER_ID) @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_loadbalancer_prov_status_active') @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_listener_prov_status_error') def test_ListenersToErrorOnRevertTask( self, mock_listener_prov_status_error, mock_loadbalancer_prov_status_active): listeners_to_error_on_revert = (lifecycle_tasks. ListenersToErrorOnRevertTask()) # Execute listeners_to_error_on_revert.execute(self.LISTENERS, self.LOADBALANCER) self.assertFalse(mock_listener_prov_status_error.called) # Revert listeners_to_error_on_revert.revert(self.LISTENERS, self.LOADBALANCER) mock_listener_prov_status_error.assert_called_once_with( self.LISTENER_ID) mock_loadbalancer_prov_status_active.assert_called_once_with( self.LOADBALANCER_ID) @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_loadbalancer_prov_status_error') def test_LoadBalancerIDToErrorOnRevertTask( self, mock_loadbalancer_prov_status_error): loadbalancer_id_to_error_on_revert = ( lifecycle_tasks.LoadBalancerIDToErrorOnRevertTask()) # Execute loadbalancer_id_to_error_on_revert.execute(self.LOADBALANCER_ID) self.assertFalse(mock_loadbalancer_prov_status_error.called) # Revert loadbalancer_id_to_error_on_revert.revert(self.LOADBALANCER_ID) mock_loadbalancer_prov_status_error.assert_called_once_with( self.LOADBALANCER_ID) @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_loadbalancer_prov_status_error') def test_LoadBalancerToErrorOnRevertTask( self, mock_loadbalancer_prov_status_error): loadbalancer_to_error_on_revert = ( lifecycle_tasks.LoadBalancerToErrorOnRevertTask()) # Execute loadbalancer_to_error_on_revert.execute(self.LOADBALANCER) self.assertFalse(mock_loadbalancer_prov_status_error.called) # Revert loadbalancer_to_error_on_revert.revert(self.LOADBALANCER) mock_loadbalancer_prov_status_error.assert_called_once_with( self.LOADBALANCER_ID) @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_member_prov_status_error') @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_loadbalancer_prov_status_active') @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_listener_prov_status_active') @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_pool_prov_status_active') def test_MemberToErrorOnRevertTask( self, mock_pool_prov_status_active, mock_listener_prov_status_active, mock_loadbalancer_prov_status_active, mock_member_prov_status_error): member_to_error_on_revert = lifecycle_tasks.MemberToErrorOnRevertTask() # Execute member_to_error_on_revert.execute(self.MEMBER, self.LISTENERS, self.LOADBALANCER, self.POOL) self.assertFalse(mock_member_prov_status_error.called) # Revert member_to_error_on_revert.revert(self.MEMBER, self.LISTENERS, self.LOADBALANCER, self.POOL) mock_member_prov_status_error.assert_called_once_with( self.MEMBER_ID) mock_loadbalancer_prov_status_active.assert_called_once_with( self.LOADBALANCER_ID) mock_listener_prov_status_active.assert_called_once_with( self.LISTENER_ID) mock_pool_prov_status_active.assert_called_once_with( self.POOL_ID) @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_member_prov_status_error') @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_loadbalancer_prov_status_active') @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_listener_prov_status_active') @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_pool_prov_status_active') def test_MembersToErrorOnRevertTask( self, mock_pool_prov_status_active, mock_listener_prov_status_active, mock_loadbalancer_prov_status_active, mock_member_prov_status_error): members_to_error_on_revert = ( lifecycle_tasks.MembersToErrorOnRevertTask()) # Execute members_to_error_on_revert.execute(self.MEMBERS, self.LISTENERS, self.LOADBALANCER, self.POOL) self.assertFalse(mock_member_prov_status_error.called) # Revert members_to_error_on_revert.revert(self.MEMBERS, self.LISTENERS, self.LOADBALANCER, self.POOL) mock_member_prov_status_error.assert_called_once_with( self.MEMBER_ID) mock_loadbalancer_prov_status_active.assert_called_once_with( self.LOADBALANCER_ID) mock_listener_prov_status_active.assert_called_once_with( self.LISTENER_ID) mock_pool_prov_status_active.assert_called_once_with( self.POOL_ID) @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_pool_prov_status_error') @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_loadbalancer_prov_status_active') @mock.patch('octavia.controller.worker.task_utils.TaskUtils.' 'mark_listener_prov_status_active') def test_PoolToErrorOnRevertTask( self, mock_listener_prov_status_active, mock_loadbalancer_prov_status_active, mock_pool_prov_status_error): pool_to_error_on_revert = lifecycle_tasks.PoolToErrorOnRevertTask() # Execute pool_to_error_on_revert.execute(self.POOL, self.LISTENERS, self.LOADBALANCER) self.assertFalse(mock_pool_prov_status_error.called) # Revert pool_to_error_on_revert.revert(self.POOL, self.LISTENERS, self.LOADBALANCER) mock_pool_prov_status_error.assert_called_once_with( self.POOL_ID) mock_loadbalancer_prov_status_active.assert_called_once_with( self.LOADBALANCER_ID) mock_listener_prov_status_active.assert_called_once_with( self.LISTENER_ID)
py
1a3e32c0f754f69c764470c3ee6d6dad219f64e9
## Alarm Server ## Supporting Envisalink 2DS/3 ## ## This code is under the terms of the GPL v3 license. evl_Commands = { 'KeepAlive' : '000', 'StatusReport' : '001', 'DumpZoneTimers' : '008', 'PartitionKeypress' : '071', 'Disarm' : '040', 'ArmStay' : '031', 'ArmAway' : '030', 'ArmMax' : '032', 'Login' : '005', 'Panic' : '060', 'SendCode' : '200', 'CommandOutput' : '020', 'SetTime' : '010' } evl_PanicTypes = { 'Fire' : '1', 'Ambulance' : '2', 'Police' : '3' } evl_ArmModes = { '0' : {'name' : 'Arm Away', 'status':{'armed_away': True, 'armed_zero_entry_delay': False, 'alpha':'Arm Away', 'exit_delay':False, 'entry_delay': False }}, '1' : {'name' : 'Arm Stay', 'status':{'armed_stay': True, 'armed_zero_entry_delay': False, 'alpha':'Arm Stay', 'exit_delay':False, 'entry_delay': False }}, '2' : {'name' : 'Arm Zero Entry Away', 'status':{'armed_away': True, 'armed_zero_entry_delay': True, 'alpha':'Arm Zero Entry Away', 'exit_delay':False, 'entry_delay': False }}, '3' : {'name' : 'Arm Zero Entry Stay', 'status':{'armed_stay': True, 'armed_zero_entry_delay': True, 'alpha':'Arm Zero Entry Stay', 'exit_delay':False, 'entry_delay': False }} } evl_ResponseTypes = { '505' : {'name':'Login Prompt', 'handler':'login'}, '615' : {'name':'Envisalink Zone Timer Dump', 'handler':'zone_timer_dump'}, '500' : {'name':'Poll', 'handler':'poll_response'}, '501' : {'name':'Checksum', 'handler':'command_response_error'}, '900' : {'name':'EnterCode', 'handler':'send_code'}, '912' : {'name':'PGMEnterCode', 'handler':'send_code'}, #ZONE UPDATES '601' : {'name':'Zone Alarm', 'handler':'zone_state_change', 'status':{'alarm' : True}}, '602' : {'name':'Zone Alarm Restore', 'handler':'zone_state_change', 'status':{'alarm' : False}}, '603' : {'name':'Zone Tamper', 'handler':'zone_state_change', 'status':{'tamper' : True}}, '604' : {'name':'Zone Tamper Restore', 'handler':'zone_state_change', 'status':{'tamper' : False}}, '605' : {'name':'Zone Fault', 'handler':'zone_state_change', 'status':{'fault' : True}}, '606' : {'name':'Zone Fault Restore', 'handler':'zone_state_change', 'status':{'fault' : False}}, '609' : {'name':'Zone Open', 'handler':'zone_state_change', 'status':{'open' : True}}, '610' : {'name':'Zone Restored', 'handler':'zone_state_change', 'status':{'open' : False}}, #PARTITION UPDATES '650' : {'name':'Ready', 'handler':'partition_state_change', 'status':{'ready' : True, 'alpha' : 'Ready'}}, '651' : {'name':'Not Ready', 'handler':'partition_state_change', 'status':{'ready' : False, 'alpha' : 'Not Ready'}}, '652' : {'name':'Armed', 'handler':'partition_state_change'}, '653' : {'name':'Ready - Force Arming Enabled', 'handler':'partition_state_change', 'status':{'ready': True, 'alpha' : 'Ready - Force Arm'}}, '654' : {'name':'Alarm', 'handler':'partition_state_change', 'status':{'alarm' : True, 'alpha' : 'Alarm'}}, '655' : {'name':'Disarmed', 'handler':'partition_state_change', 'status' : {'alarm' : False, 'armed_stay' : False, 'armed_zero_entry_delay': False, 'armed_away' : False, 'exit_delay' : False, 'entry_delay' : False, 'alpha' : 'Disarmed'}}, '656' : {'name':'Exit Delay in Progress', 'handler':'partition_state_change', 'status':{'exit_delay' : True, 'alpha' : 'Exit Delay In Progress'}}, '657' : {'name':'Entry Delay in Progress', 'handler':'partition_state_change', 'status':{'entry_delay' : True, 'alpha' : 'Entry Delay in Progress'}}, '663' : {'name':'ChimeOn', 'handler':'partition_state_change', 'status': {'chime': True}}, '664' : {'name':'ChimeOff', 'handler':'partition_state_change', 'status': {'chime': False}}, '673' : {'name':'Busy', 'handler':'partition_state_change', 'status': {'alpha': 'Busy'}}, '700' : {'name':'Armed by user', 'handler':'partition_state_change', 'status':{}}, '750' : {'name':'Disarmed by user', 'handler':'partition_state_change', 'status' : {'alarm' : False, 'armed_stay' : False, 'armed_away' : False, 'armed_zero_entry_delay': False, 'exit_delay' : False, 'entry_delay' : False, 'alpha' : 'Disarmed'}}, '751' : {'name':'Disarmed special', 'handler':'partition_state_change', 'status' : {'alarm' : False, 'armed_stay' : False, 'armed_away' : False, 'armed_zero_entry_delay': False, 'exit_delay' : False, 'entry_delay' : False, 'alpha' : 'Disarmed'}}, '840' : {'name':'Trouble LED', 'handler':'partition_state_change', 'status':{'trouble' : True}}, '841' : {'name':'Trouble Clear', 'handler':'partition_state_change', 'status':{'trouble' : False, 'ac_present': True}}, #GENERAL UPDATES '621' : {'name':'FireAlarmButton', 'handler':'keypad_update', 'status':{'fire' : True, 'alarm': True, 'alpha' : 'Fire Alarm'}}, '622' : {'name':'FireAlarmButtonOff', 'handler':'keypad_update', 'status':{'fire' : False, 'alarm': False, 'alpha' : 'Fire Alarm Cleared'}}, '623' : {'name':'AuxAlarmButton', 'handler':'keypad_update', 'status':{'alarm': True, 'alpha' : 'Aux Alarm'}}, '624' : {'name':'AuxAlarmButtonOff', 'handler':'keypad_update', 'status':{'alarm': False, 'alpha' : 'Aux Alarm Cleared'}}, '625' : {'name':'PanicAlarmButton', 'handler':'keypad_update', 'status':{'alarm': True, 'alpha' : 'Panic Alarm'}}, '626' : {'name':'PanicAlarmButtonOff', 'handler':'keypad_update', 'status':{'alarm': False, 'alpha' : 'Panic Alarm Cleared'}}, '631' : {'name':'SmokeAlarmButton', 'handler':'keypad_update', 'status':{'alarm': True, 'alpha' : 'Smoke Alarm'}}, '632' : {'name':'SmokeAlarmButtonOff', 'handler':'keypad_update', 'status':{'alarm': False, 'alpha' : 'Smoke Alarm Cleared'}}, '800' : {'name':'LowBatTrouble', 'handler':'keypad_update', 'status':{'bat_trouble': True, 'alpha' : 'Low Battery'}}, '801' : {'name':'LowBatTroubleOff', 'handler':'keypad_update', 'status':{'bat_trouble': False, 'alpha' : 'Low Battery Cleared'}}, '802' : {'name':'ACTrouble', 'handler':'keypad_update', 'status':{'ac_present': False, 'alpha' : 'AC Power Lost'}}, '803' : {'name':'ACTroubleOff', 'handler':'keypad_update', 'status':{'ac_present': True, 'alpha' : 'AC Power Restored'}}, '829' : {'name':'SystemTamper', 'handler':'keypad_update', 'status':{'alpha' : 'System tamper'}}, '830' : {'name':'SystemTamperOff', 'handler':'keypad_update', 'status':{'alpha' : 'System tamper Restored'}}, '849' : {'name':'TroubleVerbose', 'handler':'keypad_update', 'status':None} } evl_verboseTrouble = { 0 : 'Service is Required', 1 : 'AC Power Lost', 2 : 'Telephone Line Fault', 3 : 'Failure to communicate', 4 : 'Zone/Sensor Fault', 5 : 'Zone/Sensor Tamper', 6 : 'Zone/Sensor Low Battery', 7 : 'Loss of time' }
py
1a3e32cf80e82d30cbdcdff0d4ce1ec34000b3f2
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- from ..common._container import SklearnModelContainer from ..common._topology import * # Pipeline from sklearn import pipeline # Linear classifiers from sklearn.linear_model import LogisticRegression from sklearn.linear_model import SGDClassifier from sklearn.svm import LinearSVC # Linear regressors from sklearn.linear_model import ElasticNet from sklearn.linear_model import LassoLars from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.linear_model import SGDRegressor from sklearn.svm import LinearSVR # Tree-based models from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeRegressor # Support vector machines from sklearn.svm import SVC, SVR, NuSVC, NuSVR # K-nearest neighbors from sklearn.neighbors import KNeighborsRegressor # Naive Bayes from sklearn.naive_bayes import BernoulliNB from sklearn.naive_bayes import MultinomialNB # Operators for preprocessing and feature engineering from sklearn.decomposition import PCA from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction import DictVectorizer from sklearn.preprocessing import Binarizer from sklearn.preprocessing import Imputer from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import Normalizer from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import RobustScaler from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import MaxAbsScaler from lightgbm import LGBMClassifier, LGBMRegressor # In most cases, scikit-learn operator produces only one output. However, each classifier has basically two outputs; # one is the predicted label and the other one is the probabilities of all possible labels. Here is a list of supported # scikit-learn classifiers. In the parsing stage, we produce two outputs for objects included in the following list and # one output for everything not in the list. sklearn_classifier_list = [LogisticRegression, SGDClassifier, LinearSVC, SVC, NuSVC, GradientBoostingClassifier, RandomForestClassifier, DecisionTreeClassifier, ExtraTreesClassifier, LGBMClassifier, BernoulliNB, MultinomialNB] # Associate scikit-learn types with our operator names. If two scikit-learn models share a single name, it means their # are equivalent in terms of conversion. sklearn_operator_name_map = {RobustScaler: 'SklearnRobustScaler', StandardScaler: 'SklearnScaler', LogisticRegression: 'SklearnLinearClassifier', SGDClassifier: 'SklearnLinearClassifier', LinearSVC: 'SklearnLinearSVC', OneHotEncoder: 'SklearnOneHotEncoder', DictVectorizer: 'SklearnDictVectorizer', Imputer: 'SklearnImputer', LabelEncoder: 'SklearnLabelEncoder', SVC: 'SklearnSVC', NuSVC: 'SklearnSVC', SVR: 'SklearnSVR', NuSVR: 'SklearnSVR', LinearSVR: 'SklearnLinearSVR', ElasticNet: 'SklearnElasticNetRegressor', LinearRegression: 'SklearnLinearRegressor', LassoLars: 'SklearnLassoLars', Ridge: 'SklearnRidge', SGDRegressor: 'SklearnLinearRegressor', Normalizer: 'SklearnNormalizer', DecisionTreeClassifier: 'SklearnDecisionTreeClassifier', DecisionTreeRegressor: 'SklearnDecisionTreeRegressor', RandomForestClassifier: 'SklearnRandomForestClassifier', RandomForestRegressor: 'SklearnRandomForestRegressor', ExtraTreesClassifier: 'SklearnExtraTreesClassifier', ExtraTreesRegressor: 'SklearnExtraTreesRegressor', GradientBoostingClassifier: 'SklearnGradientBoostingClassifier', GradientBoostingRegressor: 'SklearnGradientBoostingRegressor', KNeighborsRegressor: 'SklearnKNeighborsRegressor', MultinomialNB: 'SklearnMultinomialNB', BernoulliNB: 'SklearnBernoulliNB', Binarizer: 'SklearnBinarizer', LGBMClassifier: 'LgbmClassifier', LGBMRegressor: 'LgbmRegressor', PCA: 'SklearnPCA', TruncatedSVD: 'SklearnTruncatedSVD', MinMaxScaler: 'SklearnMinMaxScaler', MaxAbsScaler: 'SklearnMaxAbsScaler'} def _get_sklearn_operator_name(model_type): ''' Get operator name of the input argument :param model_type: A scikit-learn object (e.g., SGDClassifier and Binarizer) :return: A string which stands for the type of the input model in our conversion framework ''' if model_type not in sklearn_operator_name_map: print(sklearn_operator_name_map) raise ValueError('No proper operator name found for %s' % model_type) return sklearn_operator_name_map[model_type] def _parse_sklearn_simple_model(scope, model, inputs): ''' This function handles all non-pipeline models. :param scope: Scope object :param model: A scikit-learn object (e.g., OneHotEncoder and LogisticRegression) :param inputs: A list of variables :return: A list of output variables which will be passed to next stage ''' print('simple model: %s ' % type(model)) this_operator = scope.declare_local_operator(_get_sklearn_operator_name(type(model)), model) this_operator.inputs = inputs if type(model) in sklearn_classifier_list: # For classifiers, we may have two outputs, one for label and the other one for probabilities of all classes. # Notice that their types here are not necessarily correct and they will be fixed in shape inference phase label_variable = scope.declare_local_variable('label', FloatTensorType()) probability_map_variable = scope.declare_local_variable('probabilities', FloatTensorType()) this_operator.outputs.append(label_variable) this_operator.outputs.append(probability_map_variable) else: # We assume that all scikit-learn operator can only produce a single float tensor. variable = scope.declare_local_variable('variable', FloatTensorType()) this_operator.outputs.append(variable) return this_operator.outputs def _parse_sklearn_pipeline(scope, model, inputs): ''' The basic ideas of scikit-learn parsing: 1. Sequentially go though all stages defined in the considered scikit-learn pipeline 2. The output variables of one stage will be fed into its next stage as the inputs. :param scope: Scope object defined in _topology.py :param model: scikit-learn pipeline object :param inputs: A list of Variable objects :return: A list of output variables produced by the input pipeline ''' print('pipeline: %s ' % type(model)) for step in model.steps: inputs = _parse_sklearn(scope, step[1], inputs) return inputs def _parse_sklearn(scope, model, inputs): ''' This is a delegate function. It doesn't nothing but invoke the correct parsing function according to the input model's type. :param scope: Scope object :param model: A scikit-learn object (e.g., OneHotEncoder and LogisticRegression) :param inputs: A list of variables :return: The output variables produced by the input model ''' if isinstance(model, pipeline.Pipeline): return _parse_sklearn_pipeline(scope, model, inputs) else: return _parse_sklearn_simple_model(scope, model, inputs) def parse_sklearn(model, initial_types=None, targeted_onnx=onnx.__version__, custom_conversion_functions=None, custom_shape_calculators=None): # Put scikit-learn object into an abstract container so that our framework can work seamlessly on models created # with different machine learning tools. raw_model_container = SklearnModelContainer(model) # Declare a computational graph. It will become a representation of the input scikit-learn model after parsing. topology = Topology(raw_model_container, initial_types=initial_types, targeted_onnx=targeted_onnx, custom_conversion_functions = custom_conversion_functions, custom_shape_calculators = custom_shape_calculators) # Declare an object to provide variables' and operators' naming mechanism. In contrast to CoreML, one global scope # is enough for parsing scikit-learn models. scope = topology.declare_scope('__root__') # Declare input variables. They should be the inputs of the scikit-learn model you want to convert into ONNX inputs = [] for var_name, initial_type in initial_types: inputs.append(scope.declare_local_variable(var_name, initial_type)) # The object raw_model_container is a part of the topology we're going to return. We use it to store the inputs of # the scikit-learn's computational graph. for variable in inputs: raw_model_container.add_input(variable) # Parse the input scikit-learn model as a Topology object. outputs = _parse_sklearn(scope, model, inputs) # THe object raw_model_container is a part of the topology we're going to return. We use it to store the outputs of # the scikit-learn's computational graph. for variable in outputs: raw_model_container.add_output(variable) return topology
py
1a3e3317054907d1384882a7b4035d0f2593b6ee
#!/usr/bin/env python # coding: utf-8 #takes as input a csv or tsv file, and a evalue cutoff, loads the data in pandas and fiters the dataframe by this value. #writes a clean csv/tsv file. If imported as library is able to take as input a pandas df and return a clean pandas df import pandas as pd from sys import argv def loadData(file): if file.endswith(".csv"): df = pd.read_csv(file, sep=',', header=None) elif file.endswith(".tsv"): df = pd.read_csv(file, sep='\t', header=None) df.columns = ["node1","qstart","qend","qlen","qseq","node2","eval","pident","bitscore","sstart","send","slen","length","sseq"] df = df.drop(columns=["qend","qstart","qlen","qseq","pident","bitscore","sstart","send","slen","length","sseq"]) print(df) return df def filterevalue(df,eval): print(f"## FILTER BY EVALUE {eval}") to_drop = [] for i in range(len(df)): evalu = df.iloc[i]['eval'] ''' if the evalue of the result is above the indicated one then it is dropped ''' if float(evalu) > float(eval): to_drop.append(i) df = df.drop(df.index[to_drop]) print("Lenght of the dataframe after FILTER BY EVALUE: " + str(len(df))) if len(df) == 0: print("ERROR: Lenght of the dataframe = 0 - I can't generate the gephi/cytoscape network") exit() print('------------------------------') return df if __name__ == "__main__": if not argv[1] or not argv[0]: """ This script takes as input a csv/tsv file and a evalue value. Please run it in this format: python3 filterbyevalue.py [file] [evalue] Example: python3 filterbyevalue.py myfile.csv 1e-10 """ exit() file = argv[1] file_name = file.split(".")[0] evalue = float(argv[2]) df = loadData(file) result = filterevalue(df,evalue) df.to_csv(f'{file_name}_filtered_{str(evalue)}.csv', index = False)
py
1a3e339f602593a304d90f5d3f30b231dd728f03
import os from flask import Flask, jsonify, request, abort from components import CardsView, Card, CardHeader app = Flask(__name__) @app.route("/", methods=['POST']) def index(): # process payload from archy payload = request.json.get('payload', {}) args = payload.get('args', {}) links = [{ 'address': '/list' }] viewProps = {'links': links} view = CardsView(viewProps, Card({}, CardHeader({ 'title': 'Card Title 1', 'subtitle': 'card subtitle', })), Card({}, CardHeader({ 'title': 'Card Title 2', 'subtitle': 'card subtitle', })), ) return jsonify(**view.to_dict()) if __name__ == '__main__': port = int(os.environ.get('PORT', 3000)) app.run(host='0.0.0.0', port=port)
py
1a3e36b2076efe5f59566b49945802b8e118a422
#!/usr/bin/env python3 import shutil import iterm2 async def main(connection): component = iterm2.StatusBarComponent( short_description="RootVolume Usage", detailed_description="Show Root Volume Usage", knobs=[], exemplar="[RootVolume Usage]", update_cadence=30, identifier="koh-sh.iterm2-statusbar-scripts.rootvolume" ) @iterm2.StatusBarRPC async def showrootvolume(knobs): rootusage = shutil.disk_usage('/') lst = [round(x / 1024 / 1024 / 1024) for x in rootusage] return ("RootVolume: {}/{} GB ({}%)".format(lst[1], lst[0], (round(lst[1] / lst[0] * 100)))) await component.async_register(connection, showrootvolume) iterm2.run_forever(main)
py
1a3e3838ee0a5836556a81f2d15304ceb2bebdc2
#!/usr/bin/python3 # -*- coding:utf-8 -*- # Project: http://plankton-toolbox.org # Copyright (c) 2010-2018 SMHI, Swedish Meteorological and Hydrological Institute # License: MIT License (see LICENSE.txt or http://opensource.org/licenses/mit). import codecs import toolbox_utils import plankton_core class ImportSharkWeb(plankton_core.DataImportPreparedBase): """ Class for parsing sharkweb text files. """ def __init__(self): """ """ # Initialize parent. super(ImportSharkWeb, self).__init__() # Information needed for parsing. List of lists with: # Column 0: node level. # Column 1: internal key. # Column 2: view format. # Column 3: source file column name. Multiple alternatives should be separated by '<or>'. TODO: '<or>' not implemented. # Column 4: export column name. None = not used, empty string ('') = same as column 1 (internal key). self._parsing_info = [ ['visit', 'visit_year', 'integer', 'visit_year', ''], ['visit', 'sample_date', 'date', 'sample_date', ''], ['visit', 'visit_month', 'integer', '', ''], # Calculate. Code below. ['visit', 'station_name', 'text', 'station_name', ''], ['visit', 'sample_latitude_dd', 'float', 'sample_latitude_dd', ''], ['visit', 'sample_longitude_dd', 'float', 'sample_longitude_dd', ''], ['visit', 'water_depth_m', 'float', 'water_depth_m', ''], # ['sample', 'sample_id', 'text', 'sample_id', ''], ['sample', 'sample_min_depth_m', 'float', 'sample_min_depth_m', ''], ['sample', 'sample_max_depth_m', 'float', 'sample_max_depth_m', ''], # ['variable', 'scientific_name', 'text', 'scientific_name', ''], ['variable', 'species_flag_code', 'text', 'species_flag_code', ''], ['variable', 'size_class', 'text', 'size_class', ''], ['variable', 'trophic_type', 'text', 'trophic_type_code', ''], # ['variable', 'parameter', 'text', 'parameter', ''], ['variable', 'value', 'float', 'value', ''], ['variable', 'unit', 'text', 'unit', ''], # ['variable', 'plankton_group', 'text', '', ''], # Calculate. Code below. ['variable', 'taxon_kingdom', 'text', 'taxon_kingdom', ''], ['variable', 'taxon_phylum', 'text', 'taxon_phylum', ''], ['variable', 'taxon_class', 'text', 'taxon_class', ''], ['variable', 'taxon_order', 'text', 'taxon_order', ''], ['variable', 'taxon_family', 'text', 'taxon_family', ''], ['variable', 'taxon_genus', 'text', 'taxon_genus', ''], ['variable', 'taxon_hierarchy', 'text', 'taxon_hierarchy', ''], # ['variable', 'sampling_laboratory', 'text', 'sampling_laboratory_name_sv', ''], ['variable', 'analytical_laboratory', 'text', 'analytical_laboratory_name_sv', ''], ['variable', 'analysis_date', 'text', 'analysis_date', ''], ['variable', 'analysed_by', 'text', 'analysed_by', ''], ] # Keys: self._visit_key_fields = ['sample_date', 'station_name'] self._sample_key_fields = ['sample_date', 'station_name', 'sample_id', 'sample_min_depth_m', 'sample_max_depth_m', 'sample_id'] # self.clear() # def clear(self): """ """ self._header = [] self._rows = [] def read_file(self, file_name = None): """ """ if file_name == None: raise UserWarning('File name is missing.') input_file = None try: ### txtencode = toolbox_settings.ToolboxSettings().getValue('General:Character encoding, txt-files', 'cp1252') txtencode = 'cp1252' input_file = codecs.open(file_name, mode = 'r', encoding = txtencode) # Read data header. Same header used for data and aggregated data. separator = '\t' # Use ',' as default item separator. first_row = input_file.readline() if ';' in first_row: separator = ';' # Use ';' as item separator. # self._header = [] for headeritem in first_row.split(separator): item = headeritem.strip() self._header.append(item) # Read data rows. Continue until empty line occurs. self._rows = [] for row in input_file.readlines(): rowitems = [] for item in row.split(separator): rowitems.append(item.strip()) self._rows.append(rowitems) # except (IOError, OSError): raise finally: if input_file: input_file.close() def create_tree_dataset(self, dataset, update_trophic_type): """ """ try: # Base class must know header for _asText(), etc. # self._set_header(self._header) # Iterate over rows in imported_table. for row in self._rows: row_dict = dict(zip(self._header, row)) # Get or create nodes. currentvisit = None currentsample = None currentvariable = None # Check if visit exists. Create or reuse. keystring = '' delimiter = '' for key_field in self._visit_key_fields: keystring += delimiter + row_dict.get(key_field, '') delimiter = '<+>' # currentvisit = dataset.get_visit_lookup(keystring) if not currentvisit: currentvisit = plankton_core.VisitNode() dataset.add_child(currentvisit) currentvisit.set_id_string(keystring) # Check if sample exists. Create or reuse. keystring = '' delimiter = '' for key_field in self._sample_key_fields: keystring += delimiter + row_dict.get(key_field, '') delimiter = '<+>' # currentsample = dataset.get_sample_lookup(keystring) if not currentsample: currentsample = plankton_core.SampleNode() currentvisit.add_child(currentsample) currentsample.set_id_string(keystring) # Add all variables in row. currentvariable = plankton_core.VariableNode() currentsample.add_child(currentvariable) # === Parse row and add fields on nodes. === for parsinginforow in self._parsing_info: # value = row_dict.get(parsinginforow[3], '') # Fix float. if parsinginforow[2] == 'float': value = value.replace(',', '.') # Calculate some values. if parsinginforow[1] == 'visit_month': try: value = row_dict.get('sample_date', '') value = value[5:7] except: pass if parsinginforow[1] == 'plankton_group': try: value = row_dict.get('scientific_name', '') value = plankton_core.Species().get_plankton_group_from_taxon_name(value) except: pass if parsinginforow[1] == 'analysed_by': try: if not value: value = row_dict.get('taxonomist', '') except: pass if parsinginforow[1] == 'trophic_type': # Update trophic_type. if parsinginforow[1] == 'trophic_type': if update_trophic_type: scientific_name = row_dict.get('scientific_name', '') size_class = row_dict.get('size_class', '') trophic_type = plankton_core.Species().get_bvol_value(scientific_name, size_class, 'trophic_type') if trophic_type: value = trophic_type # Use existing if not in local list. # Replace empty with NS=Not specified. if not value: value = 'NS' # Add at right level. if parsinginforow[0] == 'visit': currentvisit.add_data(parsinginforow[1], value) # if parsinginforow[0] == 'sample': currentsample.add_data(parsinginforow[1], value) # if parsinginforow[0] == 'variable': currentvariable.add_data(parsinginforow[1], value) # except Exception as e: toolbox_utils.Logging().warning('Failed to parse dataset: %s' % (e.args[0]))
py
1a3e392ca536c1e4bb5dc1faf8f9ad942a4d2aaa
# coding: utf-8 from __future__ import absolute_import from datetime import date, datetime # noqa: F401 from typing import List, Dict # noqa: F401 from openapi_server.models.base_model_ import Model from openapi_server import util class UnlabeledLoadStatistics(Model): """NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech). Do not edit the class manually. """ def __init__(self, _class=None): # noqa: E501 """UnlabeledLoadStatistics - a model defined in OpenAPI :param _class: The _class of this UnlabeledLoadStatistics. # noqa: E501 :type _class: str """ self.openapi_types = { '_class': str } self.attribute_map = { '_class': '_class' } self.__class = _class @classmethod def from_dict(cls, dikt) -> 'UnlabeledLoadStatistics': """Returns the dict as a model :param dikt: A dict. :type: dict :return: The UnlabeledLoadStatistics of this UnlabeledLoadStatistics. # noqa: E501 :rtype: UnlabeledLoadStatistics """ return util.deserialize_model(dikt, cls) @property def _class(self): """Gets the _class of this UnlabeledLoadStatistics. :return: The _class of this UnlabeledLoadStatistics. :rtype: str """ return self.__class @_class.setter def _class(self, _class): """Sets the _class of this UnlabeledLoadStatistics. :param _class: The _class of this UnlabeledLoadStatistics. :type _class: str """ self.__class = _class
py
1a3e39e2ea67bc0f4701930b86b291dd14921349
import os def list_images(folder_path): return [img_name for img_name in os.listdir(folder_path) if os.path.splitext(img_name)[1] in ['.jpg', '.JPG', '.png']] def list_subfolders(folder_path, full_paths: bool = False): return [subfolder for subfolder in os.listdir(folder_path) if os.path.isdir(os.path.join(folder_path, subfolder))]
py
1a3e3a6a695a3eb2566f668aafc8549ca6d367d4
# Begin: Python 2/3 compatibility header small # Get Python 3 functionality: from __future__ import\ absolute_import, print_function, division, unicode_literals from future.utils import raise_with_traceback, raise_from # catch exception with: except Exception as e from builtins import range, map, zip, filter from io import open import six # End: Python 2/3 compatability header small import contextlib import lasagne.layers import lasagne.nonlinearities from lasagne.nonlinearities import rectify import theano.tensor as T @contextlib.contextmanager def ignore_sigmoids(layer): if(hasattr(layer,'nonlinearity') and layer.nonlinearity in [lasagne.nonlinearities.softmax, lasagne.nonlinearities.sigmoid]): print("Removing the sigmoids from output for the explanation approach.") nonlinearity = layer.nonlinearity layer.nonlinearity = lambda x: x try: yield layer finally: layer.nonlinearity = nonlinearity else: yield layer def remove_sigmoids(layer): if(hasattr(layer,'nonlinearity') and layer.nonlinearity in [lasagne.nonlinearities.softmax, lasagne.nonlinearities.sigmoid]): layer.nonlinearity = lambda x: x class GuidedReLU(lasagne.layers.MergeLayer): """ A layer with two input streams of which the first will be passed on as long as the second is not 0. If the second input stream is not None, then it will be passed on instead. """ def __init__(self, input_layer, other_layer): super(GuidedReLU, self).__init__([input_layer, other_layer]) def get_output_shape_for(self, input_shapes): return input_shapes[0] def get_output_for(self, inputs, **kwargs): in1, in2 = inputs out = T.switch(T.gt(in2, 0.), in1, 0.) return out class OppositeGuidedRelu(lasagne.layers.MergeLayer): """ A layer with two input streams of which the first will be passed on as long as the second is 0. If the second input stream is not None, then it will be passed on instead. """ def __init__(self, input_layer, other_layer): super(OppositeGuidedRelu, self).__init__([input_layer, other_layer]) def get_output_shape_for(self, input_shapes): return input_shapes[0] def get_output_for(self, inputs, **kwargs): in1, in2 = inputs out = T.switch(T.gt(in2, 0.), 0., in1) return out def has_ReLU(layer): relus = [lasagne.nonlinearities.rectify, T.nnet.relu] return (hasattr(layer, 'nonlinearity') and layer.nonlinearity in relus) def get_rectifier_copy_layer(input_layer, rectifier_layer): if has_ReLU(rectifier_layer): return GuidedReLU(input_layer, rectifier_layer) return input_layer def get_rectifier_opposite_layer(input_layer, rectifier_layer): if has_ReLU(rectifier_layer): return OppositeGuidedRelu(input_layer, rectifier_layer) return None def get_rectifier_layer(input_layer, rectifier_layer): if has_ReLU(rectifier_layer): return lasagne.layers.NonlinearityLayer(input_layer, nonlinearity=rectify) return input_layer
py
1a3e3a785ead2a9ee4f94a84fe5ca88be975928c
#------------------------------------------------------------------------------- # # Project: EOxServer <http://eoxserver.org> # Authors: Fabian Schindler <[email protected]> # #------------------------------------------------------------------------------- # Copyright (C) 2011 EOX IT Services GmbH # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies of this Software or works derived from this Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. #------------------------------------------------------------------------------- from eoxserver.core import Component, implements from eoxserver.services.ows.interfaces import ( ServiceHandlerInterface, GetServiceHandlerInterface ) from eoxserver.services.ows.wms.basehandlers import ( WMSGetCapabilitiesHandlerBase ) class WMS13GetCapabilitiesHandler(WMSGetCapabilitiesHandlerBase, Component): implements(ServiceHandlerInterface) implements(GetServiceHandlerInterface) versions = ("1.3", "1.3.0",)
py
1a3e3ecbb5e49feea7712a6ac0ee79447f1116ac
# -*- coding: utf-8 -*- # # s3fields unit tests # # To run this script use: # python web2py.py -S eden -M -R applications/eden/modules/unit_tests/s3/s3fields.py # import unittest from gluon.languages import lazyT from gluon.dal import Query from s3.s3fields import * # ============================================================================= class S3RepresentTests(unittest.TestCase): # ------------------------------------------------------------------------- def setUp(self): T = current.T self.test_opts = { 1: "Test1", 2: "Test2", 3: "Test3" } current.auth.override = True s3db = current.s3db otable = s3db.org_organisation org1 = Storage(name="Represent Test Organisation1") org1_id = otable.insert(**org1) org1.update(id=org1_id) s3db.update_super(otable, org1) org2 = Storage(name="Represent Test Organisation2") org2_id = otable.insert(**org2) org2.update(id=org2_id) s3db.update_super(otable, org2) self.id1 = org1_id self.id2 = org2_id self.name1 = org1.name self.name2 = org2.name # ------------------------------------------------------------------------- def testSetup(self): """ Check lazy setup method """ # Check for options r = S3Represent(options=self.test_opts) self.assertFalse(r.setup) r._setup() self.assertTrue(r.setup) self.assertEqual(r.tablename, None) self.assertEqual(r.options, self.test_opts) # Check for lookups r = S3Represent(lookup="org_organisation") self.assertFalse(r.setup) self.assertEqual(r.options, None) self.assertEqual(r.tablename, "org_organisation") self.assertEqual(r.key, None) self.assertEqual(r.fields, None) self.assertEqual(r.labels, None) self.assertEqual(r.table, None) r._setup() self.assertTrue(r.setup) self.assertEqual(r.options, None) self.assertEqual(r.tablename, "org_organisation") self.assertEqual(r.key, "id") self.assertEqual(r.fields, ["name"]) self.assertEqual(r.labels, None) self.assertEqual(r.table, current.db.org_organisation) # ------------------------------------------------------------------------- def testOptions(self): """ Test option field representation """ r = S3Represent(options=self.test_opts, none="NONE") # Standard variants self.assertEqual(r(1), "Test1") self.assertEqual(r.multiple([1,2,3]), "Test1, Test2, Test3") self.assertEqual(r.bulk([1,2,3]), { 1: "Test1", 2: "Test2", 3: "Test3", None: "NONE", } ) # list:type r = S3Represent(options=self.test_opts, none="NONE", multiple=True) # Should work with both, single value and list self.assertEqual(r(1), "Test1") self.assertEqual(r([1,2]), "Test1, Test2") # Multiple does always expect list of lists self.assertRaises(ValueError, r.multiple, [1,2,3]) # Check multiple with list:type result = r.multiple([[1,2]]).split(", ") self.assertTrue("Test1" in result) self.assertTrue("Test2" in result) self.assertEqual(len(result), 2) # Check that multiple with list:type de-duplicates properly result = r.multiple([[1,2], [2,3]]).split(", ") self.assertTrue("Test1" in result) self.assertTrue("Test2" in result) self.assertTrue("Test3" in result) self.assertEqual(len(result), 3) # Check bulk with list:type result = r.bulk([[1,2], [2,3]]) self.assertEqual(len(result), 4) self.assertTrue(1 in result) self.assertEqual(result[1], "Test1") self.assertTrue(2 in result) self.assertEqual(result[2], "Test2") self.assertTrue(3 in result) self.assertEqual(result[3], "Test3") self.assertTrue(None in result) self.assertEqual(result[None], "NONE") # ------------------------------------------------------------------------- def testForeignKeys(self): """ Test foreign key lookup representation """ r = S3Represent(lookup="org_organisation") # Check lookup value by value self.assertEqual(r(self.id1), self.name1) self.assertEqual(r(self.id2), self.name2) self.assertEqual(r.queries, 2) # Check lookup of multiple values self.assertEqual(r.multiple([self.id1, self.id2]), "%s, %s" % (self.name1, self.name2)) # Should not have needed any additional queries self.assertEqual(r.queries, 2) # Check bulk lookup result = r.bulk([self.id1, self.id2]) self.assertTrue(len(result), 3) self.assertEqual(result[self.id1], self.name1) self.assertEqual(result[self.id2], self.name2) self.assertTrue(None in result) # Should still not have needed any additional queries self.assertEqual(r.queries, 2) # Check that only one query is used for multiple values r = S3Represent(lookup="org_organisation") result = r.bulk([self.id1, self.id2]) self.assertTrue(len(result), 3) self.assertEqual(r.queries, 1) # Check translation r = S3Represent(lookup="org_organisation", translate=True) result = r(self.id1) self.assertTrue(isinstance(result, lazyT)) self.assertEqual(result, current.T(self.name1)) def testRowsPrecedence(self): # Check that rows get preferred over values r = S3Represent(lookup="org_organisation") otable = current.s3db.org_organisation org1 = otable[self.id1] org2 = otable[self.id2] # Test single value self.assertEqual(r(None, row=org1), self.name1) self.assertEqual(r(self.id2, row=org1), self.name1) # Test multiple result = r.multiple(None, rows=[org1, org2]) self.assertTrue(isinstance(result, basestring)) self.assertTrue(", " in result) result = result.split(", ") self.assertEqual(len(result), 2) self.assertTrue(self.name1 in result) self.assertTrue(self.name2 in result) result = r.multiple([self.id1], rows=[org1, org2]) self.assertTrue(isinstance(result, basestring)) self.assertTrue(", " in result) result = result.split(", ") self.assertEqual(len(result), 2) self.assertTrue(self.name1 in result) self.assertTrue(self.name2 in result) # Test bulk result = r.bulk(None, rows=[org1, org2]) self.assertTrue(len(result), 3) self.assertEqual(result[self.id1], self.name1) self.assertEqual(result[self.id2], self.name2) self.assertTrue(None in result) result = r.bulk([self.id1], rows=[org1, org2]) self.assertTrue(len(result), 3) self.assertEqual(result[self.id1], self.name1) self.assertEqual(result[self.id2], self.name2) self.assertTrue(None in result) # ------------------------------------------------------------------------- def testListReference(self): """ Test Foreign Key Representation in list:reference types """ r = S3Represent(lookup="org_organisation", multiple=True, #linkto=URL(c="org", f="organisation", args=["[id]"]), show_link=True) a = current.request.application # Single value gives a single result result = r(self.id1) self.assertTrue(isinstance(result, DIV)) self.assertEqual(len(result), 1) self.assertTrue(isinstance(result[0], A)) self.assertEqual(result[0].attributes["_href"], "/%s/org/organisation/%s" % (a, self.id1)) self.assertEqual(result[0].components[0], "Represent Test Organisation1") # Test with show_link=False result = r(self.id1, show_link=False) self.assertEqual(result, self.name1) # List value gives a comma-separated list result = r([self.id1, self.id2], show_link=False).split(", ") self.assertEqual(len(result), 2) self.assertTrue(self.name1 in result) self.assertTrue(self.name2 in result) values = [[self.id1, self.id2], [self.id2], [None, self.id1]] # Multiple lists give a comma-separated list of unique values result = r.multiple(values, show_link=False).split(", ") self.assertEqual(len(result), 3) self.assertTrue(self.name1 in result) self.assertTrue(self.name2 in result) self.assertTrue(current.messages.NONE in result) # Bulk representation gives a dict of all unique values result = r.bulk(values, show_link=False) self.assertTrue(isinstance(result, dict)) self.assertEqual(len(result), 3) self.assertEqual(result[self.id1], self.name1) self.assertEqual(result[self.id2], self.name2) self.assertTrue(None in result) # Test render_list method repr1 = r.render_list(values[0], result, show_link=False) self.assertEqual(repr1, ", ".join([self.name1, self.name2])) repr2 = r.render_list(values[1], result, show_link=False) self.assertEqual(repr2, self.name2) # Test render_list with show_link result = r.bulk(values) repr1 = r.render_list(values[0], result) self.assertTrue(isinstance(repr1, DIV)) self.assertEqual(len(repr1), 3) self.assertTrue(isinstance(repr1[0], A)) self.assertEqual(repr1[0].attributes["_href"], "/%s/org/organisation/%s" % (a, self.id1)) self.assertEqual(repr1[0].components[0], "Represent Test Organisation1") self.assertEqual(repr1[1], ", ") self.assertTrue(isinstance(repr1[2], A)) self.assertEqual(repr1[2].attributes["_href"], "/%s/org/organisation/%s" % (a, self.id2)) self.assertEqual(repr1[2].components[0], "Represent Test Organisation2") # Check NONE-option repr2 = r.render_list(values[2], result) self.assertTrue(isinstance(repr2, DIV)) self.assertEqual(len(repr2), 3) self.assertEqual(str(repr2[0]), str(current.messages.NONE)) # Check representation of None and empty lists self.assertEqual(r(None, show_link=False), str(current.messages.NONE)) self.assertEqual(r([]), str(current.messages.NONE)) self.assertEqual(r.multiple([None], show_link=False), str(current.messages.NONE)) self.assertEqual(r.multiple([[]], show_link=False), str(current.messages.NONE)) # All that should have taken exactly 2 queries! self.assertEqual(r.queries, 2) # ------------------------------------------------------------------------- def tearDown(self): current.db.rollback() current.auth.override = False # ============================================================================= class S3ExtractLazyFKRepresentationTests(unittest.TestCase): """ Test lazy representation of foreign keys in datatables """ tablename = "export_lazy_fk_represent" # ------------------------------------------------------------------------- @classmethod def setUpClass(cls): db = current.db db.define_table(cls.tablename, Field("location_id", "reference gis_location"), Field("organisation_id", "reference org_organisation"), Field("facility_type_id", "list:reference org_facility_type"), *s3_meta_fields()) # ------------------------------------------------------------------------- def setUp(self): tablename = self.tablename s3db = current.s3db table = s3db[tablename] s3db.add_components("org_organisation", **{tablename: {"name": "test", "joinby": "organisation_id", }, } ) current.auth.override = True # Create locations locations = (Storage(name="FK Represent TestLocation 1"), Storage(name="FK Represent TestLocation 2")) ltable = s3db.gis_location for i in xrange(len(locations)): location = locations[i] location_id = ltable.insert(**location) location["id"] = location_id self.locations = locations # Create facility types fac_types = (Storage(name="FK Represent TestFacType P"), Storage(name="FK Represent TestFacType Q"), Storage(name="FK Represent TestFacType R")) ttable = s3db.org_facility_type for i in xrange(len(fac_types)): fac_type = fac_types[i] fac_type_id = ttable.insert(**fac_type) fac_type["id"] = fac_type_id self.fac_types = fac_types # Create organisation org = Storage(name="FK Represent TestOrg A") otable = s3db.org_organisation org_id = otable.insert(**org) org["id"] = org_id s3db.update_super(otable, org) self.org = org # Create test records facs = (Storage(organisation_id=org.id, facility_type_id=[fac_types[0].id, fac_types[1].id], location_id=locations[0].id), Storage(organisation_id=org.id, facility_type_id=[fac_types[1].id, fac_types[2].id], location_id=locations[1].id)) for i in xrange(len(facs)): fac = facs[i] fac_id = table.insert(**fac) fac["id"] = fac_id self.facs = facs # ------------------------------------------------------------------------- def testRepresentReferenceSingleNoLinkto(self): """ Test Representation of reference, single value, without linkto """ s3db = current.s3db tablename = self.tablename fname = "%s.organisation_id" % tablename fac = self.facs[0] resource = s3db.resource(tablename, id=fac.id) renderer = S3Represent(lookup="org_organisation") table = resource.table table.organisation_id.represent = renderer data = resource.select(["id", "organisation_id"], limit=None, represent=True) result = data["rows"] self.assertEqual(renderer.queries, 1) self.assertTrue(isinstance(result, list)) self.assertEqual(len(result), 1) output = result[0] self.assertTrue(isinstance(output, Storage)) self.assertTrue(fname in output) self.assertEqual(output[fname], self.org.name) # ------------------------------------------------------------------------- def testRepresentReferenceSingleLinktoOn(self): """ Test Representation of reference, single value, with linkto """ s3db = current.s3db tablename = self.tablename fname = "%s.organisation_id" % tablename fac = self.facs[0] resource = s3db.resource(tablename, id=fac.id) renderer = S3Represent(lookup="org_organisation", #linkto=URL(c="org", f="organisation", args=["[id]"]), show_link=True) table = resource.table table.organisation_id.represent = renderer data = resource.select(["id", "organisation_id"], limit=None, represent=True) result = data["rows"] self.assertEqual(renderer.queries, 1) self.assertTrue(isinstance(result, list)) self.assertEqual(len(result), 1) output = result[0] self.assertTrue(isinstance(output, Storage)) self.assertTrue(fname in output) representation = output[fname] self.assertTrue(isinstance(representation, A)) self.assertEqual(representation.attributes["_href"], "/%s/org/organisation/%s" % (current.request.application, self.org.id)) self.assertEqual(representation.components[0], self.org.name) # ------------------------------------------------------------------------- def testRepresentReferenceSingleLinktoOff(self): """ Test Representation of reference, single value, with linkto + show_link=False """ s3db = current.s3db tablename = self.tablename fname = "%s.organisation_id" % tablename fac = self.facs[0] resource = s3db.resource(tablename, id=fac.id) renderer = S3Represent(lookup="org_organisation", linkto=URL(c="org", f="organisation", args=["[id]"])) table = resource.table table.organisation_id.represent = renderer data = resource.select(["id", "organisation_id"], limit=None, represent=True, show_links=False) result = data["rows"] self.assertEqual(renderer.queries, 1) self.assertTrue(isinstance(result, list)) self.assertEqual(len(result), 1) output = result[0] self.assertTrue(isinstance(output, Storage)) self.assertTrue(fname in output) self.assertEqual(output[fname], self.org.name) # ------------------------------------------------------------------------- def testRepresentReferenceMultipleNoLinkto(self): """ Test Representation of reference, multiple values, without linkto """ s3db = current.s3db tablename = self.tablename fname = "%s.location_id" % tablename ftable = current.db[tablename] renderer = S3Represent(lookup="gis_location") ftable.location_id.represent = renderer resource = s3db.resource("org_organisation", id=self.org.id) data = resource.select(["id", "test.location_id"], limit=None, represent=True) result = data["rows"] self.assertEqual(renderer.queries, 1) self.assertTrue(len(result), 1) output = result[0] self.assertTrue(fname in output) names = output[fname].split(", ") self.assertEqual(len(names), 2) self.assertTrue(self.locations[0].name in names) self.assertTrue(self.locations[1].name in names) # ------------------------------------------------------------------------- def testRepresentReferenceMultipleLinktoOn(self): """ Test Representation of reference, multiple values, with linkto """ s3db = current.s3db tablename = self.tablename fname = "%s.location_id" % tablename ftable = current.db[tablename] renderer = S3Represent(lookup="gis_location", #linkto=URL(c="gis", f="location", args=["[id]"]), show_link=True) ftable.location_id.represent = renderer resource = s3db.resource("org_organisation", id=self.org.id) data = resource.select(["id", "name", "test.location_id"], limit=None, represent=True) result = data["rows"] self.assertEqual(renderer.queries, 1) self.assertTrue(len(result), 1) output = result[0] self.assertTrue(fname in output) names = output[fname] self.assertTrue(isinstance(names, DIV)) from lxml import etree tree = etree.fromstring("<div>%s</div>" % names) links = tree.findall("a") self.assertEqual(len(links), 2) appname = current.request.application a = lambda location: (location.name, "/%s/gis/location/%s" % (appname, location.id)) types = dict(a(location) for location in self.locations) for link in links: name = link.text self.assertTrue(name in types) self.assertEqual(link.get("href", None), types[name]) # ------------------------------------------------------------------------- def testRepresentReferenceMultipleLinktoOff(self): """ Test Representation of reference, multiple values, with linkto + show_link=False """ s3db = current.s3db tablename = self.tablename fname = "%s.location_id" % tablename ftable = current.db[tablename] renderer = S3Represent(lookup="gis_location", linkto=URL(c="gis", f="location", args=["[id]"])) ftable.location_id.represent = renderer resource = s3db.resource("org_organisation", id=self.org.id) data = resource.select(["id", "name", "test.location_id"], limit=None, represent=True, show_links=False) result = data["rows"] self.assertEqual(renderer.queries, 1) self.assertTrue(len(result), 1) output = result[0] self.assertTrue(fname in output) names = output[fname].split(", ") self.assertEqual(len(names), 2) self.assertTrue(self.locations[0].name in names) self.assertTrue(self.locations[1].name in names) # ------------------------------------------------------------------------- def testRepresentListReferenceSingleNoLinkto(self): """ Test Representation of list:reference, single value, without linkto """ s3db = current.s3db tablename = self.tablename fname = "%s.facility_type_id" % tablename fac = self.facs[0] resource = s3db.resource(tablename, id=fac.id) renderer = S3Represent(lookup="org_facility_type", multiple=True) table = resource.table table.facility_type_id.represent = renderer data = resource.select(["id", "facility_type_id"], limit=None, represent=True) result = data["rows"] self.assertEqual(renderer.queries, 1) self.assertTrue(isinstance(result, list)) self.assertEqual(len(result), 1) output = result[0] self.assertTrue(isinstance(output, Storage)) self.assertTrue(fname in output) representation = output[fname].split(", ") self.assertEqual(len(representation), 2) self.assertTrue(self.fac_types[0].name in representation) self.assertTrue(self.fac_types[1].name in representation) # ------------------------------------------------------------------------- def testRepresentListReferenceSingleLinktoOn(self): """ Test Representation of list:reference, single value, with linkto """ s3db = current.s3db tablename = self.tablename fname = "%s.facility_type_id" % tablename fac = self.facs[0] resource = s3db.resource(tablename, id=fac.id) renderer = S3Represent(lookup="org_facility_type", multiple=True, #linkto=URL(c="org", f="facility_type", args=["[id]"]), show_link=True) table = resource.table table.facility_type_id.represent = renderer data = resource.select(["id", "facility_type_id"], limit=None, represent=True) result = data["rows"] self.assertEqual(renderer.queries, 1) self.assertTrue(isinstance(result, list)) self.assertEqual(len(result), 1) output = result[0] self.assertTrue(isinstance(output, Storage)) self.assertTrue(fname in output) names = output[fname] self.assertTrue(isinstance(names, DIV)) from lxml import etree tree = etree.fromstring("<div>%s</div>" % names) links = tree.findall("a") self.assertEqual(len(links), 2) appname = current.request.application a = lambda fac_type: (fac_type.name, "/%s/org/facility_type/%s" % (appname, fac_type.id)) types = dict(a(fac_type) for fac_type in self.fac_types) for link in links: name = link.text self.assertTrue(name in types) self.assertEqual(link.get("href", None), types[name]) # ------------------------------------------------------------------------- def testRepresentListReferenceSingleLinktoOff(self): """ Test Representation of list:reference, single value, with linkto + show_link=False """ s3db = current.s3db tablename = self.tablename fname = "%s.facility_type_id" % tablename fac = self.facs[0] resource = s3db.resource(tablename, id=fac.id) renderer = S3Represent(lookup="org_facility_type", multiple=True, linkto=URL(c="org", f="facility_type", args=["[id]"])) table = resource.table table.facility_type_id.represent = renderer data = resource.select(["id", "facility_type_id"], limit=None, represent=True, show_links=False) result = data["rows"] self.assertEqual(renderer.queries, 1) self.assertTrue(isinstance(result, list)) self.assertEqual(len(result), 1) output = result[0] self.assertTrue(isinstance(output, Storage)) self.assertTrue(fname in output) representation = output[fname].split(", ") self.assertEqual(len(representation), 2) self.assertTrue(self.fac_types[0].name in representation) self.assertTrue(self.fac_types[1].name in representation) # ------------------------------------------------------------------------- def testRepresentListReferenceMultipleNoLinkto(self): """ Test Representation of list:reference, multiple values, without linkto """ s3db = current.s3db tablename = self.tablename fname = "%s.location_id" % tablename ftable = current.db[tablename] renderer = S3Represent(lookup="gis_location", linkto=URL(c="gis", f="location", args=["[id]"])) ftable.location_id.represent = renderer resource = s3db.resource("org_organisation", id=self.org.id) data = resource.select(["id", "name", "test.location_id"], limit=None, represent=True, show_links=False) result = data["rows"] self.assertEqual(renderer.queries, 1) self.assertTrue(len(result), 1) output = result[0] self.assertTrue(fname in output) names = output[fname].split(", ") self.assertEqual(len(names), 2) self.assertTrue(self.locations[0].name in names) self.assertTrue(self.locations[1].name in names) # ------------------------------------------------------------------------- def testRepresentListReferenceSingleNoLinkto(self): """ Test Representation of list:reference, single value, without linkto """ s3db = current.s3db tablename = self.tablename fname = "%s.facility_type_id" % tablename ftable = current.db[tablename] renderer = S3Represent(lookup="org_facility_type", multiple=True) ftable.facility_type_id.represent = renderer org = self.org resource = s3db.resource("org_organisation", id=org.id) data = resource.select(["id", "test.facility_type_id"], limit=None, represent=True) result = data["rows"] self.assertEqual(renderer.queries, 1) self.assertTrue(isinstance(result, list)) self.assertEqual(len(result), 1) output = result[0] self.assertTrue(isinstance(output, Storage)) self.assertTrue(fname in output) representation = output[fname].split(", ") self.assertEqual(len(representation), 3) self.assertTrue(self.fac_types[0].name in representation) self.assertTrue(self.fac_types[1].name in representation) self.assertTrue(self.fac_types[2].name in representation) # ------------------------------------------------------------------------- def testRepresentListReferenceMultipleLinktoOn(self): """ Test Representation of list:reference, multiple values, with linkto """ s3db = current.s3db s3db = current.s3db tablename = self.tablename fname = "%s.facility_type_id" % tablename ftable = current.db[tablename] renderer = S3Represent(lookup="org_facility_type", multiple=True, #linkto=URL(c="org", f="facility_type", args=["[id]"]), show_link=True) ftable.facility_type_id.represent = renderer org = self.org resource = s3db.resource("org_organisation", id=org.id) data = resource.select(["id", "test.facility_type_id"], limit=None, represent=True) result = data["rows"] self.assertEqual(renderer.queries, 1) self.assertTrue(isinstance(result, list)) self.assertEqual(len(result), 1) output = result[0] self.assertTrue(isinstance(output, Storage)) self.assertTrue(fname in output) names = output[fname] self.assertTrue(isinstance(names, DIV)) from lxml import etree tree = etree.fromstring("<div>%s</div>" % names) links = tree.findall("a") self.assertEqual(len(links), 3) appname = current.request.application a = lambda fac_type: (fac_type.name, "/%s/org/facility_type/%s" % (appname, fac_type.id)) types = dict(a(fac_type) for fac_type in self.fac_types) for link in links: name = link.text self.assertTrue(name in types) self.assertEqual(link.get("href", None), types[name]) # ------------------------------------------------------------------------- def testRepresentListReferenceMultipleLinktoOff(self): s3db = current.s3db tablename = self.tablename fname = "%s.facility_type_id" % tablename ftable = current.db[tablename] renderer = S3Represent(lookup="org_facility_type", multiple=True, linkto=URL(c="org", f="facility_type", args=["[id]"])) ftable.facility_type_id.represent = renderer org = self.org resource = s3db.resource("org_organisation", id=org.id) data = resource.select(["id", "test.facility_type_id"], limit=None, represent=True, show_links=False) result = data["rows"] self.assertEqual(renderer.queries, 1) self.assertTrue(isinstance(result, list)) self.assertEqual(len(result), 1) output = result[0] self.assertTrue(isinstance(output, Storage)) self.assertTrue(fname in output) representation = output[fname].split(", ") self.assertEqual(len(representation), 3) self.assertTrue(self.fac_types[0].name in representation) self.assertTrue(self.fac_types[1].name in representation) self.assertTrue(self.fac_types[2].name in representation) # ------------------------------------------------------------------------- def tearDown(self): del current.model.components["org_organisation"]["test"] current.db.rollback() current.auth.override = False # ------------------------------------------------------------------------- @classmethod def tearDownClass(cls): try: current.db[cls.tablename].drop() except: pass #============================================================================= class S3ExportLazyFKRepresentationTests(unittest.TestCase): """ Test lazy representations of foreign keys in exports """ # ------------------------------------------------------------------------- def setUp(self): self.tablename = tablename = "export_lazy_fk_represent" db = current.db db.define_table(tablename, Field("location_id", "reference gis_location"), Field("organisation_id", "reference org_organisation"), Field("facility_type_id", "list:reference org_facility_type"), *s3_meta_fields()) current.auth.override = True s3db = current.s3db # Create locations locations = (Storage(name="FK Represent TestLocation 1"), Storage(name="FK Represent TestLocation 2")) ltable = s3db.gis_location for i in xrange(len(locations)): location = locations[i] location_id = ltable.insert(**location) location["id"] = location_id self.locations = Storage([(l.id, l) for l in locations]) # Create facility types fac_types = (Storage(name="FK Represent TestFacType P"), Storage(name="FK Represent TestFacType Q"), Storage(name="FK Represent TestFacType R")) ttable = s3db.org_facility_type for i in xrange(len(fac_types)): fac_type = fac_types[i] fac_type_id = ttable.insert(**fac_type) fac_type["id"] = fac_type_id self.fac_types = Storage([(t.id, t) for t in fac_types]) # Create organisation org = Storage(name="FK Represent TestOrg B") otable = s3db.org_organisation org_id = otable.insert(**org) org["id"] = org_id s3db.update_super(otable, org) self.org = org # Create test records facs = (Storage(organisation_id=org.id, facility_type_id=[fac_types[0].id, fac_types[1].id], location_id=locations[0].id), Storage(organisation_id=org.id, facility_type_id=[fac_types[1].id, fac_types[2].id], location_id=locations[1].id)) for i in xrange(len(facs)): fac = facs[i] fac_id = db[tablename].insert(**fac) fac["id"] = fac_id self.facs = facs # ------------------------------------------------------------------------- def testRepresentReferenceSingleNoLinkto(self): """ Test Representation of reference, single value, without linkto """ s3db = current.s3db resource = s3db.resource(self.tablename, id=[fac.id for fac in self.facs]) table = resource.table # Attach lazy renderers org_id_renderer = S3Represent(lookup="org_organisation") table.organisation_id.represent = org_id_renderer fac_type_renderer = S3Represent(lookup="org_facility_type", multiple=True) table.facility_type_id.represent = fac_type_renderer loc_id_renderer = S3Represent(lookup="gis_location", linkto=URL(c="gis", f="location", args=["[id]"])) table.location_id.represent = loc_id_renderer # Export with IDs current.xml.show_ids = True tree = resource.export_tree(dereference=False) root = tree.getroot() locations = self.locations fac_types = self.fac_types org = self.org # Check correct representation in exports for fac in self.facs: # Find the element elem = root.findall("resource[@id='%s']" % fac.id) elem = elem[0] if len(elem) else None self.assertNotEqual(elem, None) find = lambda name: elem.findall("reference[@field='%s']" % name) organisation_id = find("organisation_id") organisation_id = organisation_id[0] \ if len(organisation_id) else None self.assertNotEqual(organisation_id, None) self.assertEqual(organisation_id.text, org.name) location_id = find("location_id") location_id = location_id[0] \ if len(location_id) else None self.assertNotEqual(location_id, None) location = locations[fac.location_id] self.assertEqual(location_id.text, location.name) facility_type_id = find("facility_type_id") facility_type_id = facility_type_id[0] \ if len(facility_type_id) else None self.assertNotEqual(facility_type_id, None) ftypes = ", ".join([fac_types[i].name for i in fac.facility_type_id]) self.assertEqual(facility_type_id.text, ftypes) # Check that only 1 query per renderer was needed for the export self.assertEqual(org_id_renderer.queries, 1) self.assertEqual(fac_type_renderer.queries, 1) self.assertEqual(loc_id_renderer.queries, 1) # ------------------------------------------------------------------------- def tearDown(self): db = current.db db.rollback() current.auth.override = False try: db[self.tablename].drop() except: pass # ============================================================================= class S3ReusableFieldTests(unittest.TestCase): """ Test multiple named widgets in reusable fields """ # ------------------------------------------------------------------------- def widget1(self): """ Dummy widget """ pass def widget2(self): """ Dummy widget """ pass def widget3(self): """ Dummy widget """ pass # ------------------------------------------------------------------------- def testWidgetOverrideWithoutDefault(self): """ Test setting the widget in the instance (no default) """ rf = S3ReusableField("test", "integer") # Default None field = rf() self.assertEqual(field.widget, None) # Widget-parameter overrides default field = rf(widget=self.widget1) self.assertEqual(field.widget, self.widget1) # ------------------------------------------------------------------------- def testWidgetOverrideWithDefault(self): """ Test overriding the default widget in the instance """ rf = S3ReusableField("test", "integer", widget=self.widget1) # Default widget field = rf() self.assertEqual(field.widget, self.widget1) # Widget-parameter overrides default field = rf(widget=self.widget2) self.assertEqual(field.widget, self.widget2) # ------------------------------------------------------------------------- def testSingleWidget(self): """ Test using widget set with single widget """ rf = S3ReusableField("test", "integer", widgets=self.widget1) # Default field = rf() self.assertEqual(field.widget, self.widget1) # Deliberate default field = rf(widget="default") self.assertEqual(field.widget, self.widget1) # Override field = rf(widget=self.widget2) self.assertEqual(field.widget, self.widget2) # Undefined widget self.assertRaises(NameError, rf, widget="alternative") # ------------------------------------------------------------------------- def testMultipleWidgets(self): """ Test using widget set with multiple widgets """ rf = S3ReusableField("test", "integer", widgets={"default": self.widget1, "alternative": self.widget2, }, ) # Using default from set field = rf() self.assertEqual(field.widget, self.widget1) # Deliberate default field = rf(widget="default") self.assertEqual(field.widget, self.widget1) # Other choice field = rf(widget="alternative") self.assertEqual(field.widget, self.widget2) # Override field = rf(widget=self.widget3) self.assertEqual(field.widget, self.widget3) # Undefined widget self.assertRaises(NameError, rf, widget="other") # ------------------------------------------------------------------------- def testMultipleWidgetsWithDefault(self): """ Test using widget set with multiple widgets and override default """ rf = S3ReusableField("test", "integer", widgets={"default": self.widget1, "alternative": self.widget2, }, widget=self.widget3, ) # "widget"-setting overrides "default" field = rf() self.assertEqual(field.widget, self.widget3) # "widget"-setting overrides "default" field = rf(widget="default") self.assertEqual(field.widget, self.widget3) # Other alternatives still available field = rf(widget="alternative") self.assertEqual(field.widget, self.widget2) # And can still override field = rf(widget=self.widget1) self.assertEqual(field.widget, self.widget1) # Undefined widget self.assertRaises(NameError, rf, widget="other") # ------------------------------------------------------------------------- def testFallbackWithDefault(self): """ Test fallback to default widget """ rf = S3ReusableField("test", "integer", widget=self.widget1, widgets={"alternative": self.widget2}, ) # Standard fallback field = rf() self.assertEqual(field.widget, self.widget1) # Deliberate default field = rf(widget="default") self.assertEqual(field.widget, self.widget1) # Alternative field = rf(widget="alternative") self.assertEqual(field.widget, self.widget2) # Override field = rf(widget=self.widget1) self.assertEqual(field.widget, self.widget1) # Undefined widget self.assertRaises(NameError, rf, widget="other") # ------------------------------------------------------------------------- def testExplicitNone(self): """ Test explicit None-widget in instance """ rf = S3ReusableField("test", "integer", widgets={"default": self.widget1, "alternative": self.widget2, }, widget=self.widget3, ) # Standard fallback field = rf(widget=None) self.assertEqual(field.widget, None) # ------------------------------------------------------------------------- def testFallbackWithoutDefault(self): """ Test fallback to None """ rf = S3ReusableField("test", "integer", widgets={"alternative": self.widget2}, ) # Standard fallback field = rf() self.assertEqual(field.widget, None) # Deliberate default field = rf(widget="default") self.assertEqual(field.widget, None) # Alternative field = rf(widget="alternative") self.assertEqual(field.widget, self.widget2) # Override field = rf(widget=self.widget1) self.assertEqual(field.widget, self.widget1) # Undefined widget self.assertRaises(NameError, rf, widget="other") # ------------------------------------------------------------------------- def testFallbackWithoutWidgets(self): """ Test fallback to None """ rf = S3ReusableField("test", "integer") # Standard fallback field = rf() self.assertEqual(field.widget, None) # Deliberate default field = rf(widget="default") self.assertEqual(field.widget, None) # Alternative self.assertRaises(NameError, rf, widget="alternative") # Override field = rf(widget=self.widget1) self.assertEqual(field.widget, self.widget1) # Undefined widget self.assertRaises(NameError, rf, widget="other") # ============================================================================= def run_suite(*test_classes): """ Run the test suite """ loader = unittest.TestLoader() suite = unittest.TestSuite() for test_class in test_classes: tests = loader.loadTestsFromTestCase(test_class) suite.addTests(tests) if suite is not None: unittest.TextTestRunner(verbosity=2).run(suite) return if __name__ == "__main__": run_suite( S3RepresentTests, S3ExtractLazyFKRepresentationTests, S3ExportLazyFKRepresentationTests, S3ReusableFieldTests, ) # END ========================================================================
py
1a3e3f50b02ec84e5ef6d0ff057c16ba5a38ca22
# -*- coding: utf-8 -*- """ sentence, word, morph, ... __author__ = 'Jamie ([email protected])' __copyright__ = 'Copyright (C) 2019-, Kakao Corp. All rights reserved.' """ ########### # imports # ########### import logging import re from typing import List, Tuple MAX_LEN = 64 ######### # types # ######### class Sentence: """ raw sentence """ def __init__(self, raw: str): """ :param raw: raw sentence """ self.words = raw.split() class PosMorph: """ morpheme """ def __init__(self, morph: str, pos_tag: str = 'O', beg: int = -1, end: int = -1): ''' 각 음절마다 'O' Tag와 begin과 end 초기화 Args: morph: 음절 Example: morph 저 pos_tag NP beg 0 end 1 morph 는 pos_tag JX beg 1 end 2 morph 일 pos_tag NNG beg 0 end 1 morph 아 pos_tag NNG beg 0 end 1 morph 을 pos_tag JKO beg 2 end 3 morph 사 pos_tag NNG beg 0 end 1 morph 합 pos_tag XSV beg 2 end 3 morph 니 pos_tag EF beg 3 end 4 morph . pos_tag SF beg 5 end 6 ''' self.morph = morph self.pos_tag = pos_tag self.beg = beg self.end = end def __str__(self): return '{}/{}'.format(self.morph, self.pos_tag) def __len__(self): return self.end - self.beg class PosWord: """ part-of-speech tagged word """ def __init__(self, raw: str): """ Args: raw: raw word """ self.raw = raw self.tags = [] # output tags for each character self.res_chrs = raw # 원형 복원된 형태소들의 음절들을 합친 것 def __str__(self): return '{}\t{}'.format(self.raw, ' '.join([str(x) for x in self.pos_tagged_morphs])) def for_pretrain(self) -> str: """ pre-training을 위한 출력 Returns: pre-training을 위한 문장 """ morph_strs = [] morph = '' prev_tag = '' for char, iob_tag in zip(self.raw, self.tags): try: iob_tag, _ = iob_tag.split(':', 1) except ValueError: pass try: iob, tag = iob_tag.split('-') except ValueError as val_err: logging.error('raw: %s', self.raw) logging.error('tags: %s', self.tags) logging.error('iob_tag: %s', iob_tag) raise val_err if iob == 'B': if morph: morph_strs.append('%s/%s' % (re.sub(r'\d', '0', morph), prev_tag)) morph = char prev_tag = tag elif iob == 'I': if prev_tag == tag: morph += char else: if morph: morph_strs.append('%s/%s' % (re.sub(r'\d', '0', morph), prev_tag)) morph = char prev_tag = tag if morph: morph_strs.append('%s/%s' % (re.sub(r'\d', '0', morph), prev_tag)) return ' '.join(morph_strs) def __eq__(self, other: 'PosWord'): """ 어절의 형태소 분석 결과가 일치할 경우 같다고 간주한다. (평가 프로그램에서 어절 단위 일치 여부 판단 시 사용) Args: other: other object """ return self.res_chrs == other.res_chrs and self.res_tags == other.res_tags def set_pos_result(self, tags: List[str], restore_dic: dict = None): """ 외부에서 생성된 PosWord객체의 정보를 현재 인스턴스에 설정합니다. Args: tags: 파일로 부터 읽은 형태소 태그(음절단위) restore_dic: 원형 복원 사전 """ if not restore_dic: tags = [x.split(':', 1)[0] for x in tags] self.tags = tags # print(self.raw) # print(len(self.raw)) # print(self.tags) # print(len(self.tags)) # assert len(self.raw) == len(self.tags) # 음절수와 태그수는 동일해야 한다. self.pos_tagged_morphs = self._make_pos_morphs(restore_dic) def _make_pos_morphs(self, restore_dic: dict = None): """ 형태소 태그리스트를 대상으로 B/I 로 병합되는 위치를 구합니다. Args: restore_dic: 원형 복원 사전 Returns: pos_morphs: 단어/Tag을 담은 List Ex. 기억/NNG """ if not self.tags: return [] self._restore(restore_dic) pos_morphs = [] for beg, (lex, iob_tag) in enumerate(zip(self.res_chrs, self.res_tags)): try: iob, pos_tag = iob_tag.rsplit('-', 1) except ValueError as val_err: logging.error('invalid char/tag: %s/%s in [%s] %s', lex, iob_tag, self.res_chrs, self.res_tags) raise val_err if iob == 'B' or not pos_morphs or pos_morphs[-1].pos_tag != pos_tag: pos_morphs.append(PosMorph(lex, pos_tag, beg, beg+1)) elif iob == 'I': if pos_morphs[-1].pos_tag == pos_tag: pos_morphs[-1].morph += lex pos_morphs[-1].end += len(lex) else: logging.debug('tag is different between B and I: %s vs %s', pos_morphs[-1].pos_tag, pos_tag) pos_morphs.append(PosMorph(lex, pos_tag, beg, beg+1)) else: raise ValueError('invalid IOB tag: {}/{} in [{}] {}'.format \ (lex, iob_tag, self.res_chrs, self.res_tags)) return pos_morphs def _restore(self, restore_dic: dict): """ 원형 복원 사전을 이용하여 형태소의 원형을 복원한다. Args: restore_dic: 원형 복원 사전 """ if not restore_dic: self.res_chrs = self.raw self.res_tags = self.tags return res_chrs = [] self.res_tags = [] for char, tag in zip(self.raw, self.tags): if ':' in tag: key = '{}/{}'.format(char, tag) if key in restore_dic: for char_tag in restore_dic[key].split(): res_chr, res_tag = char_tag.rsplit('/', 1) res_chrs.append(res_chr) self.res_tags.append(res_tag) continue else: logging.debug('mapping not found: %s/%s', char, tag) tag, _ = tag.split(':', 1) res_chrs.append(char) self.res_tags.append(tag) self.res_chrs = ''.join(res_chrs) class PosSentence(Sentence): """ part-of-speech tagged sentence """ def __init__(self, raw: str): """ Args: raw: raw sentence """ super().__init__(raw) self.pos_tagged_words = [] # list of PosWord def __str__(self): return '\n'.join([str(pos_word) for pos_word in self.pos_tagged_words]) def get_beg_end_list(self) -> Tuple[List[int], List[int]]: """ 모든 형태소의 시작위치를 담는 리스트와, 끝 위치를 담는 리스트를 구합니다. Returns: list of begin positions list of end positions """ begs = [] ends = [] for word in self.pos_tagged_words: for morph in word.pos_tagged_morphs: begs.append(morph.beg) ends.append(morph.end) return begs, ends def set_raw_by_words(self): """ Sentence 객체의 'words' 멤버를 PosWords 객체의 raw를 이용하여 채운다. """ self.words = [pos_word.raw for pos_word in self.pos_tagged_words] # Example: # words: ['저는', '일요일', '아침을', '사랑합니다.'] def init_pos_tags(self): """ PosWord 객체를 생성하고 태그를 'O'로 세팅한다. """ if self.pos_tagged_words: raise RuntimeError('PoS tagged words are already initialized') for word in self.words: # 각word를 PosWord Class에게 전달 self.pos_tagged_words.append(PosWord(word)) print('pos_tagged_words', self.pos_tagged_words) def set_pos_result(self, tags: List[str], restore_dic: dict = None): """ 문장 전체에 대한 형태소 태그 출력 레이블 정보를 세팅하고 형태소를 복원한다. Args: tags: 문장 전체 태그 출력 레이블 정보 restore_dic: 원형 복원 사전 """ total_char_num = 0 for pos_word in self.pos_tagged_words: pos_word.set_pos_result(tags[total_char_num:total_char_num + len(pos_word.raw)], restore_dic) total_char_num += len(pos_word.raw) # PAD한 char만큼 길이 변경 total_char_num = len(tags) assert total_char_num == len(tags) def get_sequence(self, morph: bool = True, tag: bool = True, simple: bool = False) -> List[str]: """ 태그를 포함한 형태소 문자열을 생성하여 리턴합니다. Args: morph: 형태소 출력 tag: 태그 표시 방법 simple: tag를 1byte만 출력 Returns: 문자열의 리스트 """ sequence = [] for word in self.pos_tagged_words: for pos_morph in word.pos_tagged_morphs: morphs = [] if morph: morphs.append(pos_morph.morph) if tag: morphs.append(pos_morph.pos_tag if not simple else pos_morph.pos_tag[0]) sequence.append('/'.join(morphs)) return sequence def get_all_morphs(self) -> List[str]: """ 문장을 구성하는 모든 PosMorph의 리스트를 리턴합니다. Returns: 모든 형태소 리스트 """ return [morph for word in self.pos_tagged_words for morph in word.pos_tagged_morphs]
py
1a3e4027305147b3af09d1b3b43aae8cf1cba704
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Phase estimation for the spectrum of a Hamiltonian""" from typing import Optional, Union from qiskit import QuantumCircuit from qiskit.utils import QuantumInstance from qiskit.opflow import (EvolutionBase, PauliTrotterEvolution, OperatorBase, SummedOp, PauliOp, MatrixOp, PauliSumOp, StateFn) from qiskit.providers import BaseBackend from .phase_estimation import PhaseEstimation from .hamiltonian_phase_estimation_result import HamiltonianPhaseEstimationResult from .phase_estimation_scale import PhaseEstimationScale class HamiltonianPhaseEstimation: r"""Run the Quantum Phase Estimation algorithm to find the eigenvalues of a Hermitian operator. This class is nearly the same as :class:`~qiskit.algorithms.PhaseEstimation`, differing only in that the input in that class is a unitary operator, whereas here the input is a Hermitian operator from which a unitary will be obtained by scaling and exponentiating. The scaling is performed in order to prevent the phases from wrapping around :math:`2\pi`. The problem of estimating eigenvalues :math:`\lambda_j` of the Hermitian operator :math:`H` is solved by running a circuit representing .. math:: \exp(i b H) |\psi\rangle = \sum_j \exp(i b \lambda_j) c_j |\lambda_j\rangle, where the input state is .. math:: |\psi\rangle = \sum_j c_j |\lambda_j\rangle, and :math:`\lambda_j` are the eigenvalues of :math:`H`. Here, :math:`b` is a scaling factor sufficiently large to map positive :math:`\lambda` to :math:`[0,\pi)` and negative :math:`\lambda` to :math:`[\pi,2\pi)`. Each time the circuit is run, one measures a phase corresponding to :math:`lambda_j` with probability :math:`|c_j|^2`. If :math:`H` is a Pauli sum, the bound :math:`b` is computed from the sum of the absolute values of the coefficients of the terms. There is no way to reliably recover eigenvalues from phases very near the endpoints of these intervals. Because of this you should be aware that for degenerate cases, such as :math:`H=Z`, the eigenvalues :math:`\pm 1` will be mapped to the same phase, :math:`\pi`, and so cannot be distinguished. In this case, you need to specify a larger bound as an argument to the method ``estimate``. This class uses and works together with :class:`~qiskit.algorithms.PhaseEstimationScale` to manage scaling the Hamiltonian and the phases that are obtained by the QPE algorithm. This includes setting, or computing, a bound on the eigenvalues of the operator, using this bound to obtain a scale factor, scaling the operator, and shifting and scaling the measured phases to recover the eigenvalues. Note that, although we speak of "evolving" the state according the the Hamiltonian, in the present algorithm, we are not actually considering time evolution. Rather, the role of time is played by the scaling factor, which is chosen to best extract the eigenvalues of the Hamiltonian. A few of the ideas in the algorithm may be found in Ref. [1]. **Reference:** [1]: Quantum phase estimation of multiple eigenvalues for small-scale (noisy) experiments T.E. O'Brien, B. Tarasinski, B.M. Terhal `arXiv:1809.09697 <https://arxiv.org/abs/1809.09697>`_ """ def __init__(self, num_evaluation_qubits: int, quantum_instance: Optional[Union[QuantumInstance, BaseBackend]] = None) -> None: """ Args: num_evaluation_qubits: The number of qubits used in estimating the phase. The phase will be estimated as a binary string with this many bits. quantum_instance: The quantum instance on which the circuit will be run. """ self._phase_estimation = PhaseEstimation( num_evaluation_qubits=num_evaluation_qubits, quantum_instance=quantum_instance) def _get_scale(self, hamiltonian, bound=None) -> None: if bound is None: return PhaseEstimationScale.from_pauli_sum(hamiltonian) return PhaseEstimationScale(bound) def _get_unitary(self, hamiltonian, pe_scale, evolution) -> QuantumCircuit: """Evolve the Hamiltonian to obtain a unitary. Apply the scaling to the Hamiltonian that has been computed from an eigenvalue bound and compute the unitary by applying the evolution object. """ # scale so that phase does not wrap. scaled_hamiltonian = -pe_scale.scale * hamiltonian unitary = evolution.convert(scaled_hamiltonian.exp_i()) if not isinstance(unitary, QuantumCircuit): unitary_circuit = unitary.to_circuit() else: unitary_circuit = unitary # Decomposing twice allows some 1Q Hamiltonians to give correct results # when using MatrixEvolution(), that otherwise would give incorrect results. # It does not break any others that we tested. return unitary_circuit.decompose().decompose() # pylint: disable=arguments-differ def estimate(self, hamiltonian: OperatorBase, state_preparation: Optional[StateFn] = None, evolution: Optional[EvolutionBase] = None, bound: Optional[float] = None) -> HamiltonianPhaseEstimationResult: """Run the Hamiltonian phase estimation algorithm. Args: hamiltonian: A Hermitian operator. state_preparation: The ``StateFn`` to be prepared, whose eigenphase will be measured. If this parameter is omitted, no preparation circuit will be run and input state will be the all-zero state in the computational basis. evolution: An evolution converter that generates a unitary from ``hamiltonian``. If ``None``, then the default ``PauliTrotterEvolution`` is used. bound: An upper bound on the absolute value of the eigenvalues of ``hamiltonian``. If omitted, then ``hamiltonian`` must be a Pauli sum, or a ``PauliOp``, in which case a bound will be computed. If ``hamiltonian`` is a ``MatrixOp``, then ``bound`` may not be ``None``. The tighter the bound, the higher the resolution of computed phases. Returns: HamiltonianPhaseEstimationResult instance containing the result of the estimation and diagnostic information. Raises: ValueError: If ``bound`` is ``None`` and ``hamiltonian`` is not a Pauli sum, i.e. a ``PauliSumOp`` or a ``SummedOp`` whose terms are of type ``PauliOp``. TypeError: If ``evolution`` is not of type ``EvolutionBase``. """ if evolution is None: evolution = PauliTrotterEvolution() elif not isinstance(evolution, EvolutionBase): raise TypeError(f'Expecting type EvolutionBase, got {type(evolution)}') if isinstance(hamiltonian, PauliSumOp): hamiltonian = hamiltonian.to_pauli_op() elif isinstance(hamiltonian, PauliOp): hamiltonian = SummedOp([hamiltonian]) if isinstance(hamiltonian, SummedOp): # remove identitiy terms # The term propto the identity is removed from hamiltonian. # This is done for three reasons: # 1. Work around an unknown bug that otherwise causes the energies to be wrong in some # cases. # 2. Allow working with a simpler Hamiltonian, one with fewer terms. # 3. Tighten the bound on the eigenvalues so that the spectrum is better resolved, i.e. # occupies more of the range of values representable by the qubit register. # The coefficient of this term will be added to the eigenvalues. id_coefficient, hamiltonian_no_id = _remove_identity(hamiltonian) # get the rescaling object pe_scale = self._get_scale(hamiltonian_no_id, bound) # get the unitary unitary = self._get_unitary(hamiltonian_no_id, pe_scale, evolution) elif isinstance(hamiltonian, MatrixOp): if bound is None: raise ValueError('bound must be specified if Hermitian operator is MatrixOp') # Do not subtract an identity term from the matrix, so do not compensate. id_coefficient = 0.0 pe_scale = self._get_scale(hamiltonian, bound) unitary = self._get_unitary(hamiltonian, pe_scale, evolution) else: raise TypeError(f'Hermitian operator of type {type(hamiltonian)} not supported.') if state_preparation is not None: state_preparation = state_preparation.to_circuit_op().to_circuit() # run phase estimation phase_estimation_result = self._phase_estimation.estimate( unitary=unitary, state_preparation=state_preparation) return HamiltonianPhaseEstimationResult( phase_estimation_result=phase_estimation_result, id_coefficient=id_coefficient, phase_estimation_scale=pe_scale) def _remove_identity(pauli_sum): """Remove any identity operators from `pauli_sum`. Return the sum of the coefficients of the identities and the new operator. """ idcoeff = 0.0 ops = [] for op in pauli_sum: p = op.primitive if p.x.any() or p.z.any(): ops.append(op) else: idcoeff += op.coeff return idcoeff, SummedOp(ops)
py
1a3e420a3a87429ef11679f5e562596748869090
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._enums import * from ._inputs import * __all__ = ['Job'] class Job(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, account_name: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, input: Optional[pulumi.Input[Union[pulumi.InputType['JobInputAssetArgs'], pulumi.InputType['JobInputClipArgs'], pulumi.InputType['JobInputHttpArgs'], pulumi.InputType['JobInputsArgs']]]] = None, job_name: Optional[pulumi.Input[str]] = None, outputs: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['JobOutputAssetArgs']]]]] = None, priority: Optional[pulumi.Input[Union[str, 'Priority']]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, transform_name: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): """ A Job resource type. The progress and state can be obtained by polling a Job or subscribing to events using EventGrid. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] account_name: The Media Services account name. :param pulumi.Input[str] description: Optional customer supplied description of the Job. :param pulumi.Input[Union[pulumi.InputType['JobInputAssetArgs'], pulumi.InputType['JobInputClipArgs'], pulumi.InputType['JobInputHttpArgs'], pulumi.InputType['JobInputsArgs']]] input: The inputs for the Job. :param pulumi.Input[str] job_name: The Job name. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['JobOutputAssetArgs']]]] outputs: The outputs for the Job. :param pulumi.Input[Union[str, 'Priority']] priority: Priority with which the job should be processed. Higher priority jobs are processed before lower priority jobs. If not set, the default is normal. :param pulumi.Input[str] resource_group_name: The name of the resource group within the Azure subscription. :param pulumi.Input[str] transform_name: The Transform name. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() if account_name is None and not opts.urn: raise TypeError("Missing required property 'account_name'") __props__['account_name'] = account_name __props__['description'] = description if input is None and not opts.urn: raise TypeError("Missing required property 'input'") __props__['input'] = input __props__['job_name'] = job_name if outputs is None and not opts.urn: raise TypeError("Missing required property 'outputs'") __props__['outputs'] = outputs __props__['priority'] = priority if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name if transform_name is None and not opts.urn: raise TypeError("Missing required property 'transform_name'") __props__['transform_name'] = transform_name __props__['created'] = None __props__['last_modified'] = None __props__['name'] = None __props__['state'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:media/v20180330preview:Job"), pulumi.Alias(type_="azure-native:media:Job"), pulumi.Alias(type_="azure-nextgen:media:Job"), pulumi.Alias(type_="azure-native:media/latest:Job"), pulumi.Alias(type_="azure-nextgen:media/latest:Job"), pulumi.Alias(type_="azure-native:media/v20180601preview:Job"), pulumi.Alias(type_="azure-nextgen:media/v20180601preview:Job"), pulumi.Alias(type_="azure-native:media/v20180701:Job"), pulumi.Alias(type_="azure-nextgen:media/v20180701:Job"), pulumi.Alias(type_="azure-native:media/v20200501:Job"), pulumi.Alias(type_="azure-nextgen:media/v20200501:Job")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(Job, __self__).__init__( 'azure-native:media/v20180330preview:Job', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'Job': """ Get an existing Job resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["created"] = None __props__["description"] = None __props__["input"] = None __props__["last_modified"] = None __props__["name"] = None __props__["outputs"] = None __props__["priority"] = None __props__["state"] = None __props__["type"] = None return Job(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def created(self) -> pulumi.Output[str]: """ The UTC date and time when the Job was created, in 'YYYY-MM-DDThh:mm:ssZ' format. """ return pulumi.get(self, "created") @property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: """ Optional customer supplied description of the Job. """ return pulumi.get(self, "description") @property @pulumi.getter def input(self) -> pulumi.Output[Any]: """ The inputs for the Job. """ return pulumi.get(self, "input") @property @pulumi.getter(name="lastModified") def last_modified(self) -> pulumi.Output[str]: """ The UTC date and time when the Job was last updated, in 'YYYY-MM-DDThh:mm:ssZ' format. """ return pulumi.get(self, "last_modified") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the resource. """ return pulumi.get(self, "name") @property @pulumi.getter def outputs(self) -> pulumi.Output[Sequence['outputs.JobOutputAssetResponse']]: """ The outputs for the Job. """ return pulumi.get(self, "outputs") @property @pulumi.getter def priority(self) -> pulumi.Output[Optional[str]]: """ Priority with which the job should be processed. Higher priority jobs are processed before lower priority jobs. If not set, the default is normal. """ return pulumi.get(self, "priority") @property @pulumi.getter def state(self) -> pulumi.Output[str]: """ The current state of the job. """ return pulumi.get(self, "state") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ The type of the resource. """ return pulumi.get(self, "type") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
py
1a3e427ed7792b362f149c35b23197880c619577
def helloworld(): print 'hello, world!' print 'this is my first module'
py
1a3e429dfded27b8f07e7400ddd234557f9bd8f5
""" Galaxy Metadata """ import copy import json import logging import os import shutil import sys import tempfile import weakref from collections import OrderedDict from collections.abc import Mapping from os.path import abspath from typing import Any, Iterator, Optional, TYPE_CHECKING, Union from sqlalchemy.orm import object_session from sqlalchemy.orm.attributes import flag_modified import galaxy.model from galaxy.model.scoped_session import galaxy_scoped_session from galaxy.security.object_wrapper import sanitize_lists_to_string from galaxy.util import ( form_builder, listify, string_as_bool, stringify_dictionary_keys, unicodify, ) from galaxy.util.json import safe_dumps if TYPE_CHECKING: from galaxy.model import DatasetInstance from galaxy.model.none_like import NoneDataset from galaxy.model.store import SessionlessContext log = logging.getLogger(__name__) STATEMENTS = "__galaxy_statements__" # this is the name of the property in a Datatype class where new metadata spec element Statements are stored class Statement: """ This class inserts its target into a list in the surrounding class. the data.Data class has a metaclass which executes these statements. This is how we shove the metadata element spec into the class. """ def __init__(self, target): self.target = target def __call__(self, *args, **kwargs): # get the locals dictionary of the frame object one down in the call stack (i.e. the Datatype class calling MetadataElement) class_locals = sys._getframe(1).f_locals # get and set '__galaxy_statements__' to an empty list if not in locals dict statements = class_locals.setdefault(STATEMENTS, []) # add Statement containing info to populate a MetadataElementSpec statements.append((self, args, kwargs)) @classmethod def process(cls, element): for statement, args, kwargs in getattr(element, STATEMENTS, []): statement.target(element, *args, **kwargs) # statement.target is MetadataElementSpec, element is a Datatype class class MetadataCollection(Mapping): """ MetadataCollection is not a collection at all, but rather a proxy to the real metadata which is stored as a Dictionary. This class handles processing the metadata elements when they are set and retrieved, returning default values in cases when metadata is not set. """ def __init__(self, parent: Union["DatasetInstance", "NoneDataset"], session: Optional[Union[galaxy_scoped_session, 'SessionlessContext']] = None) -> None: self.parent = parent self._session = session # initialize dict if needed if self.parent._metadata is None: self.parent._metadata = {} def get_parent(self): if "_parent" in self.__dict__: return self.__dict__["_parent"]() return None def set_parent(self, parent): # use weakref to prevent a circular reference interfering with garbage # collection: hda/lda (parent) <--> MetadataCollection (self) ; needs to be # hashable, so cannot use proxy. self.__dict__["_parent"] = weakref.ref(parent) parent = property(get_parent, set_parent) @property def spec(self): return self.parent.datatype.metadata_spec def _object_session(self, item): return self._session if self._session else object_session(item) def __iter__(self) -> Iterator[Any]: yield from self.spec.keys() def __getitem__(self, key): try: self.__getattribute__(key) except AttributeError: try: return self.__getattr__(key) except Exception: raise KeyError # `key` is an attribute of this instance, not some metadata: raise # KeyError to prevent e.g. `'items' in dataset.metadata` from returning # True # Not doing this would also break Cheetah's NameMapper._valueForName() # since dataset.metadata['items'] would be None raise KeyError def __len__(self): return len(self.spec) def __str__(self): return dict(self.items()).__str__() def __bool__(self): return bool(self.parent._metadata) __nonzero__ = __bool__ def __getattr__(self, name): if name in self.spec: if name in self.parent._metadata: return self.spec[name].wrap(self.parent._metadata[name], self._object_session(self.parent)) return self.spec[name].wrap(self.spec[name].default, self._object_session(self.parent)) if name in self.parent._metadata: return self.parent._metadata[name] # Instead of raising an AttributeError for non-existing metadata, we return None return None def __setattr__(self, name, value): if name == "parent": return self.set_parent(value) elif name == '_session': super().__setattr__(name, value) else: if name in self.spec: self.parent._metadata[name] = self.spec[name].unwrap(value) else: self.parent._metadata[name] = value flag_modified(self.parent, '_metadata') def remove_key(self, name): if name in self.parent._metadata: del self.parent._metadata[name] else: log.info(f"Attempted to delete invalid key '{name}' from MetadataCollection") def element_is_set(self, name) -> bool: """ check if the meta data with the given name is set, i.e. - if the such a metadata actually exists and - if its value differs from no_value :param name: the name of the metadata element :returns: True if the value differes from the no_value False if its equal of if no metadata with the name is specified """ try: meta_val = self[name] except KeyError: log.debug(f"no metadata with name {name} found") return False meta_spec = self.parent.metadata.spec[name] return meta_val != meta_spec.no_value def get_metadata_parameter(self, name, **kwd): if name in self.spec: field = self.spec[name].param.get_field(getattr(self, name), self, None, **kwd) field.value = getattr(self, name) return field def make_dict_copy(self, to_copy): """Makes a deep copy of input iterable to_copy according to self.spec""" rval = {} for key, value in to_copy.items(): if key in self.spec: rval[key] = self.spec[key].param.make_copy(value, target_context=self, source_context=to_copy) return rval @property def requires_dataset_id(self): for key in self.spec: if isinstance(self.spec[key].param, FileParameter): return True return False def from_JSON_dict(self, filename=None, path_rewriter=None, json_dict=None): dataset = self.parent if filename is not None: log.debug(f'loading metadata from file for: {dataset.__class__.__name__} {dataset.id}') with open(filename) as fh: JSONified_dict = json.load(fh) elif json_dict is not None: log.debug(f'loading metadata from dict for: {dataset.__class__.__name__} {dataset.id}') if isinstance(json_dict, str): JSONified_dict = json.loads(json_dict) elif isinstance(json_dict, dict): JSONified_dict = json_dict else: raise ValueError(f"json_dict must be either a dictionary or a string, got {type(json_dict)}.") else: raise ValueError("You must provide either a filename or a json_dict") # We build a dictionary for metadata name / value pairs # because when we copy MetadataTempFile objects we flush the datasets' # session, but only include the newly created MetadataFile object. # If we were to set the metadata elements in the first for loop we'd # lose all previously set metadata elements metadata_name_value = {} for name, spec in self.spec.items(): if name in JSONified_dict: from_ext_kwds = {} external_value = JSONified_dict[name] param = spec.param if isinstance(param, FileParameter): from_ext_kwds['path_rewriter'] = path_rewriter value = param.from_external_value(external_value, dataset, **from_ext_kwds) metadata_name_value[name] = value elif name in dataset._metadata: # if the metadata value is not found in our externally set metadata but it has a value in the 'old' # metadata associated with our dataset, we'll delete it from our dataset's metadata dict del dataset._metadata[name] for name, value in metadata_name_value.items(): dataset._metadata[name] = value if '__extension__' in JSONified_dict: dataset.extension = JSONified_dict['__extension__'] if '__validated_state__' in JSONified_dict: dataset.validated_state = JSONified_dict['__validated_state__'] if '__validated_state_message__' in JSONified_dict: dataset.validated_state_message = JSONified_dict['__validated_state_message__'] flag_modified(dataset, '_metadata') def to_JSON_dict(self, filename=None): meta_dict = {} dataset_meta_dict = self.parent._metadata for name, spec in self.spec.items(): if name in dataset_meta_dict: meta_dict[name] = spec.param.to_external_value(dataset_meta_dict[name]) if '__extension__' in dataset_meta_dict: meta_dict['__extension__'] = dataset_meta_dict['__extension__'] if '__validated_state__' in dataset_meta_dict: meta_dict['__validated_state__'] = dataset_meta_dict['__validated_state__'] if '__validated_state_message__' in dataset_meta_dict: meta_dict['__validated_state_message__'] = dataset_meta_dict['__validated_state_message__'] try: encoded_meta_dict = galaxy.model.custom_types.json_encoder.encode(meta_dict) except Exception as e: raise Exception(f"Failed encoding metadata dictionary: {meta_dict}") from e if filename is None: return encoded_meta_dict with open(filename, 'wt+') as fh: fh.write(encoded_meta_dict) def __getstate__(self): # cannot pickle a weakref item (self._parent), when # data._metadata_collection is None, it will be recreated on demand return None class MetadataSpecCollection(OrderedDict): """ A simple extension of OrderedDict which allows cleaner access to items and allows the values to be iterated over directly as if it were a list. append() is also implemented for simplicity and does not "append". """ def __init__(self, *args, **kwds): super().__init__(*args, **kwds) def append(self, item): self[item.name] = item def __getattr__(self, name): if name not in self: raise AttributeError return self.get(name) def __repr__(self): # force elements to draw with __str__ for sphinx-apidoc return ', '.join(item.__str__() for item in self.values()) class MetadataParameter: def __init__(self, spec): self.spec = spec def get_field(self, value=None, context=None, other_values=None, **kwd): context = context or {} other_values = other_values or {} return form_builder.TextField(self.spec.name, value=value) def to_string(self, value): return str(value) def to_safe_string(self, value): return sanitize_lists_to_string(self.to_string(value)) def make_copy(self, value, target_context: MetadataCollection, source_context): return copy.deepcopy(value) @classmethod def marshal(cls, value): """ This method should/can be overridden to convert the incoming value to whatever type it is supposed to be. """ return value def validate(self, value): """ Throw an exception if the value is invalid. """ def unwrap(self, form_value): """ Turns a value into its storable form. """ value = self.marshal(form_value) self.validate(value) return value def wrap(self, value, session): """ Turns a value into its usable form. """ return value def from_external_value(self, value, parent): """ Turns a value read from an external dict into its value to be pushed directly into the metadata dict. """ return value def to_external_value(self, value): """ Turns a value read from a metadata into its value to be pushed directly into the external dict. """ return value class MetadataElementSpec: """ Defines a metadata element and adds it to the metadata_spec (which is a MetadataSpecCollection) of datatype. """ def __init__(self, datatype, name=None, desc=None, param=MetadataParameter, default=None, no_value=None, visible=True, set_in_upload=False, **kwargs): self.name = name self.desc = desc or name self.default = default self.no_value = no_value self.visible = visible self.set_in_upload = set_in_upload # Catch-all, allows for extra attributes to be set self.__dict__.update(kwargs) # set up param last, as it uses values set above self.param = param(self) # add spec element to the spec datatype.metadata_spec.append(self) def get(self, name, default=None): return self.__dict__.get(name, default) def wrap(self, value, session): """ Turns a stored value into its usable form. """ return self.param.wrap(value, session) def unwrap(self, value): """ Turns an incoming value into its storable form. """ return self.param.unwrap(value) def __str__(self): # TODO??: assuming param is the class of this MetadataElementSpec - add the plain class name for that spec_dict = dict(param_class=self.param.__class__.__name__) spec_dict.update(self.__dict__) return ("{name} ({param_class}): {desc}, defaults to '{default}'".format(**spec_dict)) # create a statement class that, when called, # will add a new MetadataElementSpec to a class's metadata_spec MetadataElement = Statement(MetadataElementSpec) """ MetadataParameter sub-classes. """ class SelectParameter(MetadataParameter): def __init__(self, spec): MetadataParameter.__init__(self, spec) self.values = self.spec.get("values") self.multiple = string_as_bool(self.spec.get("multiple")) def to_string(self, value): if value in [None, []]: return str(self.spec.no_value) if not isinstance(value, list): value = [value] return ",".join(map(str, value)) def get_field(self, value=None, context=None, other_values=None, values=None, **kwd): context = context or {} other_values = other_values or {} field = form_builder.SelectField(self.spec.name, multiple=self.multiple, display=self.spec.get("display")) if self.values: value_list = self.values elif values: value_list = values elif value: value_list = [(v, v) for v in listify(value)] else: value_list = [] for val, label in value_list: try: if (self.multiple and val in value) or (not self.multiple and val == value): field.add_option(label, val, selected=True) else: field.add_option(label, val, selected=False) except TypeError: field.add_option(val, label, selected=False) return field def wrap(self, value, session): # do we really need this (wasteful)? - yes because we are not sure that # all existing selects have been stored previously as lists. Also this # will handle the case where defaults/no_values are specified and are # single non-list values. value = self.marshal(value) if self.multiple: return value elif value: return value[0] # single select, only return the first value return None @classmethod def marshal(cls, value): # Store select as list, even if single item if value is None: return [] if not isinstance(value, list): return [value] return value class DBKeyParameter(SelectParameter): def get_field(self, value=None, context=None, other_values=None, values=None, **kwd): context = context or {} other_values = other_values or {} try: values = kwd['trans'].app.genome_builds.get_genome_build_names(kwd['trans']) except KeyError: pass return super().get_field(value, context, other_values, values, **kwd) class RangeParameter(SelectParameter): def __init__(self, spec): SelectParameter.__init__(self, spec) # The spec must be set with min and max values self.min = spec.get("min") or 1 self.max = spec.get("max") or 1 self.step = self.spec.get("step") or 1 def get_field(self, value=None, context=None, other_values=None, values=None, **kwd): context = context or {} other_values = other_values or {} if values is None: values = list(zip(range(self.min, self.max, self.step), range(self.min, self.max, self.step))) return SelectParameter.get_field(self, value=value, context=context, other_values=other_values, values=values, **kwd) @classmethod def marshal(cls, value): value = SelectParameter.marshal(value) values = [int(x) for x in value] return values class ColumnParameter(RangeParameter): def get_field(self, value=None, context=None, other_values=None, values=None, **kwd): context = context or {} other_values = other_values or {} if values is None and context: column_range = range(1, (context.columns or 0) + 1, 1) values = list(zip(column_range, column_range)) return RangeParameter.get_field(self, value=value, context=context, other_values=other_values, values=values, **kwd) class ColumnTypesParameter(MetadataParameter): def to_string(self, value): return ",".join(map(str, value)) class ListParameter(MetadataParameter): def to_string(self, value): return ",".join(str(x) for x in value) class DictParameter(MetadataParameter): def to_string(self, value): return json.dumps(value) def to_safe_string(self, value): # We do not sanitize json dicts return safe_dumps(value) class PythonObjectParameter(MetadataParameter): def to_string(self, value): if not value: return self.spec._to_string(self.spec.no_value) return self.spec._to_string(value) def get_field(self, value=None, context=None, other_values=None, **kwd): context = context or {} other_values = other_values or {} return form_builder.TextField(self.spec.name, value=self._to_string(value)) @classmethod def marshal(cls, value): return value class FileParameter(MetadataParameter): def to_string(self, value): if not value: return str(self.spec.no_value) return value.file_name def to_safe_string(self, value): # We do not sanitize file names return self.to_string(value) def get_field(self, value=None, context=None, other_values=None, **kwd): context = context or {} other_values = other_values or {} return form_builder.TextField(self.spec.name, value=str(value.id)) def wrap(self, value, session): if value is None: return None if isinstance(value, galaxy.model.MetadataFile) or isinstance(value, MetadataTempFile): return value if isinstance(value, int): return session.query(galaxy.model.MetadataFile).get(value) else: return session.query(galaxy.model.MetadataFile).filter_by(uuid=value).one() def make_copy(self, value, target_context: MetadataCollection, source_context): session = target_context._object_session(target_context.parent) value = self.wrap(value, session=session) target_dataset = target_context.parent.dataset if value and target_dataset.object_store.exists(target_dataset): # Only copy MetadataFile if the target dataset has been created in an object store. # All current datatypes re-generate MetadataFile objects when setting metadata, # so this would ultimately get overwritten anyway. new_value = galaxy.model.MetadataFile(dataset=target_context.parent, name=self.spec.name) session.add(new_value) try: shutil.copy(value.file_name, new_value.file_name) except AssertionError: session(target_context.parent).flush() shutil.copy(value.file_name, new_value.file_name) return self.unwrap(new_value) return None @classmethod def marshal(cls, value): if isinstance(value, galaxy.model.MetadataFile): # We want to push value.id to the database, but need to skip this when no session is available, # as in extended_metadata mode, so there we just accept MetadataFile. # We will only serialize MetadataFile in this mode and not push to the database, so this is OK. value = value.id or value if not isinstance(value, int) and object_session(value): value = str(value.uuid) return value def from_external_value(self, value, parent, path_rewriter=None): """ Turns a value read from a external dict into its value to be pushed directly into the metadata dict. """ if MetadataTempFile.is_JSONified_value(value): value = MetadataTempFile.from_JSON(value) if isinstance(value, MetadataTempFile): mf = parent.metadata.get(self.spec.name, None) if mf is None: mf = self.new_file(dataset=parent, **value.kwds) # Ensure the metadata file gets updated with content file_name = value.file_name if path_rewriter: # Job may have run with a different (non-local) tmp/working # directory. Correct. file_name = path_rewriter(file_name) parent.dataset.object_store.update_from_file(mf, file_name=file_name, extra_dir='_metadata_files', extra_dir_at_root=True, alt_name=os.path.basename(mf.file_name)) os.unlink(file_name) value = mf.id return value def to_external_value(self, value): """ Turns a value read from a metadata into its value to be pushed directly into the external dict. """ if isinstance(value, galaxy.model.MetadataFile): value = value.id elif isinstance(value, MetadataTempFile): value = MetadataTempFile.to_JSON(value) return value def new_file(self, dataset=None, **kwds): # If there is a place to store the file (i.e. an object_store has been bound to # Dataset) then use a MetadataFile and assume it is accessible. Otherwise use # a MetadataTempFile. if getattr(dataset.dataset, "object_store", False): mf = galaxy.model.MetadataFile(name=self.spec.name, dataset=dataset, **kwds) sa_session = object_session(dataset) if sa_session: sa_session.add(mf) sa_session.flush() # flush to assign id return mf else: # we need to make a tmp file that is accessable to the head node, # we will be copying its contents into the MetadataFile objects filename after restoring from JSON # we do not include 'dataset' in the kwds passed, as from_JSON_value() will handle this for us return MetadataTempFile(**kwds) # This class is used when a database file connection is not available class MetadataTempFile: tmp_dir = 'database/tmp' # this should be overwritten as necessary in calling scripts def __init__(self, **kwds): self.kwds = kwds self._filename = None @property def file_name(self): if self._filename is None: # we need to create a tmp file, accessable across all nodes/heads, save the name, and return it self._filename = abspath(tempfile.NamedTemporaryFile(dir=self.tmp_dir, prefix="metadata_temp_file_").name) open(self._filename, 'wb+') # create an empty file, so it can't be reused using tempfile return self._filename def to_JSON(self): return {'__class__': self.__class__.__name__, 'filename': self.file_name, 'kwds': self.kwds} @classmethod def from_JSON(cls, json_dict): # need to ensure our keywords are not unicode rval = cls(**stringify_dictionary_keys(json_dict['kwds'])) rval._filename = json_dict['filename'] return rval @classmethod def is_JSONified_value(cls, value): return (isinstance(value, dict) and value.get('__class__', None) == cls.__name__) @classmethod def cleanup_from_JSON_dict_filename(cls, filename): try: with open(filename) as fh: for value in json.load(fh).values(): if cls.is_JSONified_value(value): value = cls.from_JSON(value) if isinstance(value, cls) and os.path.exists(value.file_name): log.debug('Cleaning up abandoned MetadataTempFile file: %s', value.file_name) os.unlink(value.file_name) except Exception as e: log.debug('Failed to cleanup MetadataTempFile temp files from %s: %s', filename, unicodify(e)) __all__ = ( "Statement", "MetadataElement", "MetadataCollection", "MetadataSpecCollection", "MetadataParameter", "MetadataElementSpec", "SelectParameter", "DBKeyParameter", "RangeParameter", "ColumnParameter", "ColumnTypesParameter", "ListParameter", "DictParameter", "PythonObjectParameter", "FileParameter", "MetadataTempFile", )
py
1a3e43bfc71768043d20f0ba5df7bb836f3cff14
#!/usr/bin/python import os, sys from django.core.management import execute_manager sys.path.insert(0, os.path.abspath('./../../')) try: import settings # Assumed to be in the same directory. except ImportError: import sys sys.stderr.write("Error: Can't find the file 'settings.py' in the directory containing %r. It appears you've customized things.\nYou'll have to run django-admin.py, passing it your settings module.\n(If the file settings.py does indeed exist, it's causing an ImportError somehow.)\n" % __file__) sys.exit(1) if __name__ == "__main__": execute_manager(settings)
py
1a3e43f2c938656700d98ea9a304c121dcd31fde
#!/usr/bin/python from ansible.module_utils.opsmanager import ansible_setup if __name__ == '__main__': module, opsmanager = ansible_setup() group = opsmanager.get_group_by_name(module.params['cluster']) response = opsmanager.delete_maintenance(group) module.exit_json(changed=False, meta=response)
py
1a3e450c89b842bc118c069cf5f2ecef94c435ab
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2017-12-15 06:38 from __future__ import unicode_literals from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('todolist_rest', '0004_auto_20171215_1437'), ] operations = [ migrations.AlterField( model_name='todo', name='expire_date', field=models.DateField(default=django.utils.timezone.now), ), ]