ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
7df6f2d8d268e5387c0c7bf9dc8a31d906fbc9f8
# oxAuth is available under the MIT License (2008). See http://opensource.org/licenses/MIT for full text. # Copyright (c) 2019, Gluu # # Author: Jose Gonzalez from java.util import Collections, HashMap, HashSet, ArrayList, Arrays, Date from java.nio.charset import Charset from org.apache.http.params import CoreConnectionPNames from org.oxauth.persistence.model.configuration import GluuConfiguration from org.gluu.oxauth.security import Identity from org.gluu.oxauth.service import AuthenticationService, UserService, EncryptionService, AppInitializer from org.gluu.oxauth.service.custom import CustomScriptService from org.gluu.oxauth.service.net import HttpService from org.gluu.oxauth.util import ServerUtil from org.gluu.model import SimpleCustomProperty from org.gluu.model.casa import ApplicationConfiguration from org.gluu.model.custom.script import CustomScriptType from org.gluu.model.custom.script.type.auth import PersonAuthenticationType from org.gluu.service.cdi.util import CdiUtil from org.gluu.util import StringHelper try: import json except ImportError: import simplejson as json import sys class PersonAuthentication(PersonAuthenticationType): def __init__(self, currentTimeMillis): self.currentTimeMillis = currentTimeMillis self.ACR_SG = "super_gluu" self.ACR_SMS = "twilio_sms" self.ACR_OTP = "otp" self.ACR_U2F = "u2f" self.modulePrefix = "casa-external_" def init(self, configurationAttributes): print "Casa. init called" self.authenticators = {} self.uid_attr = self.getLocalPrimaryKey() custScriptService = CdiUtil.bean(CustomScriptService) self.scriptsList = custScriptService.findCustomScripts(Collections.singletonList(CustomScriptType.PERSON_AUTHENTICATION), "oxConfigurationProperty", "displayName", "oxEnabled", "oxLevel") dynamicMethods = self.computeMethods(self.scriptsList) if len(dynamicMethods) > 0: print "Casa. init. Loading scripts for dynamic modules: %s" % dynamicMethods for acr in dynamicMethods: moduleName = self.modulePrefix + acr try: external = __import__(moduleName, globals(), locals(), ["PersonAuthentication"], -1) module = external.PersonAuthentication(self.currentTimeMillis) print "Casa. init. Got dynamic module for acr %s" % acr configAttrs = self.getConfigurationAttributes(acr, self.scriptsList) if acr == self.ACR_U2F: u2f_application_id = configurationAttributes.get("u2f_app_id").getValue2() configAttrs.put("u2f_application_id", SimpleCustomProperty("u2f_application_id", u2f_application_id)) elif acr == self.ACR_SG: application_id = configurationAttributes.get("supergluu_app_id").getValue2() configAttrs.put("application_id", SimpleCustomProperty("application_id", application_id)) if module.init(configAttrs): module.configAttrs = configAttrs self.authenticators[acr] = module else: print "Casa. init. Call to init in module '%s' returned False" % moduleName except: print "Casa. init. Failed to load module %s" % moduleName print "Exception: ", sys.exc_info()[1] mobile_methods = configurationAttributes.get("mobile_methods") self.mobile_methods = [] if mobile_methods == None else StringHelper.split(mobile_methods.getValue2(), ",") print "Casa. init. Initialized successfully" return True def destroy(self, configurationAttributes): print "Casa. Destroyed called" return True def getApiVersion(self): return 2 def isValidAuthenticationMethod(self, usageType, configurationAttributes): print "Casa. isValidAuthenticationMethod called" return True def getAlternativeAuthenticationMethod(self, usageType, configurationAttributes): return None def authenticate(self, configurationAttributes, requestParameters, step): print "Casa. authenticate %s" % str(step) userService = CdiUtil.bean(UserService) authenticationService = CdiUtil.bean(AuthenticationService) identity = CdiUtil.bean(Identity) if step == 1: credentials = identity.getCredentials() user_name = credentials.getUsername() user_password = credentials.getPassword() if StringHelper.isNotEmptyString(user_name) and StringHelper.isNotEmptyString(user_password): foundUser = userService.getUserByAttribute(self.uid_attr, user_name) #foundUser = userService.getUser(user_name) if foundUser == None: print "Casa. authenticate for step 1. Unknown username" else: platform_data = self.parsePlatformData(requestParameters) mfaOff = foundUser.getAttribute("oxPreferredMethod") == None logged_in = False if mfaOff: logged_in = authenticationService.authenticate(user_name, user_password) else: acr = self.getSuitableAcr(foundUser, platform_data) if acr != None: module = self.authenticators[acr] logged_in = module.authenticate(module.configAttrs, requestParameters, step) if logged_in: foundUser = authenticationService.getAuthenticatedUser() if foundUser == None: print "Casa. authenticate for step 1. Cannot retrieve logged user" else: if mfaOff: identity.setWorkingParameter("skip2FA", True) else: #Determine whether to skip 2FA based on policy defined (global or user custom) skip2FA = self.determineSkip2FA(userService, identity, foundUser, platform_data) identity.setWorkingParameter("skip2FA", skip2FA) identity.setWorkingParameter("ACR", acr) return True else: print "Casa. authenticate for step 1 was not successful" return False else: user = authenticationService.getAuthenticatedUser() if user == None: print "Casa. authenticate for step 2. Cannot retrieve logged user" return False #see casa.xhtml alter = ServerUtil.getFirstValue(requestParameters, "alternativeMethod") if alter != None: #bypass the rest of this step if an alternative method was provided. Current step will be retried (see getNextStep) self.simulateFirstStep(requestParameters, alter) return True session_attributes = identity.getSessionId().getSessionAttributes() acr = session_attributes.get("ACR") #this working parameter is used in casa.xhtml identity.setWorkingParameter("methods", ArrayList(self.getAvailMethodsUser(user, acr))) success = False if acr in self.authenticators: module = self.authenticators[acr] success = module.authenticate(module.configAttrs, requestParameters, step) #Update the list of trusted devices if 2fa passed if success: print "Casa. authenticate. 2FA authentication was successful" tdi = session_attributes.get("trustedDevicesInfo") if tdi == None: print "Casa. authenticate. List of user's trusted devices was not updated" else: user.setAttribute("oxTrustedDevicesInfo", tdi) userService.updateUser(user) else: print "Casa. authenticate. 2FA authentication failed" return success return False def prepareForStep(self, configurationAttributes, requestParameters, step): print "Casa. prepareForStep %s" % str(step) if step == 1: return True else: identity = CdiUtil.bean(Identity) session_attributes = identity.getSessionId().getSessionAttributes() authenticationService = CdiUtil.bean(AuthenticationService) user = authenticationService.getAuthenticatedUser() if user == None: print "Casa. prepareForStep. Cannot retrieve logged user" return False acr = session_attributes.get("ACR") print "Casa. prepareForStep. ACR = %s" % acr identity.setWorkingParameter("methods", ArrayList(self.getAvailMethodsUser(user, acr))) if acr in self.authenticators: module = self.authenticators[acr] return module.prepareForStep(module.configAttrs, requestParameters, step) else: return False def getExtraParametersForStep(self, configurationAttributes, step): print "Casa. getExtraParametersForStep %s" % str(step) if step > 1: list = ArrayList() acr = CdiUtil.bean(Identity).getWorkingParameter("ACR") if acr in self.authenticators: module = self.authenticators[acr] params = module.getExtraParametersForStep(module.configAttrs, step) if params != None: list.addAll(params) list.addAll(Arrays.asList("ACR", "methods", "trustedDevicesInfo")) print "extras are %s" % list return list return None def getCountAuthenticationSteps(self, configurationAttributes): print "Casa. getCountAuthenticationSteps called" if CdiUtil.bean(Identity).getWorkingParameter("skip2FA"): return 1 acr = CdiUtil.bean(Identity).getWorkingParameter("ACR") if acr in self.authenticators: module = self.authenticators[acr] return module.getCountAuthenticationSteps(module.configAttrs) else: return 2 print "Casa. getCountAuthenticationSteps. Could not determine the step count for acr %s" % acr def getPageForStep(self, configurationAttributes, step): print "Casa. getPageForStep called %s" % str(step) if step > 1: acr = CdiUtil.bean(Identity).getWorkingParameter("ACR") if acr in self.authenticators: module = self.authenticators[acr] page = module.getPageForStep(module.configAttrs, step) else: page=None return page return "" def getNextStep(self, configurationAttributes, requestParameters, step): print "Casa. getNextStep called %s" % str(step) if step > 1: acr = ServerUtil.getFirstValue(requestParameters, "alternativeMethod") if acr != None: print "Casa. getNextStep. Use alternative method %s" % acr CdiUtil.bean(Identity).setWorkingParameter("ACR", acr) #retry step with different acr return 2 return -1 def logout(self, configurationAttributes, requestParameters): print "Casa. logout called" return True # Miscelaneous def getLocalPrimaryKey(self): entryManager = CdiUtil.bean(AppInitializer).createPersistenceEntryManager() config = GluuConfiguration() config = entryManager.find(config.getClass(), "ou=configuration,o=gluu") #Pick (one) attribute where user id is stored (e.g. uid/mail) uid_attr = config.getOxIDPAuthentication().get(0).getConfig().getPrimaryKey() print "Casa. init. uid attribute is '%s'" % uid_attr return uid_attr def getSettings(self): entryManager = CdiUtil.bean(AppInitializer).createPersistenceEntryManager() config = ApplicationConfiguration() config = entryManager.find(config.getClass(), "ou=casa,ou=configuration,o=gluu") settings = None try: settings = json.loads(config.getSettings()) except: print "Casa. getSettings. Failed to parse casa settings from DB" return settings def computeMethods(self, scriptList): methods = [] mapping = {} cmConfigs = self.getSettings() if cmConfigs != None and 'acr_plugin_mapping' in cmConfigs: mapping = cmConfigs['acr_plugin_mapping'] for m in mapping: for customScript in scriptList: if customScript.getName() == m and customScript.isEnabled(): methods.append(m) print "Casa. computeMethods. %s" % methods return methods def getConfigurationAttributes(self, acr, scriptsList): configMap = HashMap() for customScript in scriptsList: if customScript.getName() == acr and customScript.isEnabled(): for prop in customScript.getConfigurationProperties(): configMap.put(prop.getValue1(), SimpleCustomProperty(prop.getValue1(), prop.getValue2())) print "Casa. getConfigurationAttributes. %d configuration properties were found for %s" % (configMap.size(), acr) return configMap def getAvailMethodsUser(self, user, skip=None): methods = HashSet() for method in self.authenticators: try: module = self.authenticators[method] if module.hasEnrollments(module.configAttrs, user): methods.add(method) except: print "Casa. getAvailMethodsUser. hasEnrollments call could not be issued for %s module" % method try: if skip != None: # skip is guaranteed to be a member of methods (if hasEnrollments routines are properly implemented). # A call to remove strangely crashes when skip is absent methods.remove(skip) except: print "Casa. getAvailMethodsUser. methods list does not contain %s" % skip print "Casa. getAvailMethodsUser %s" % methods.toString() return methods def simulateFirstStep(self, requestParameters, acr): #To simulate 1st step, there is no need to call: # getPageforstep (no need as user/pwd won't be shown again) # isValidAuthenticationMethod (by restriction, it returns True) # prepareForStep (by restriction, it returns True) # getExtraParametersForStep (by restriction, it returns None) print "Casa. simulateFirstStep. Calling authenticate (step 1) for %s module" % acr if acr in self.authenticators: module = self.authenticators[acr] auth = module.authenticate(module.configAttrs, requestParameters, 1) print "Casa. simulateFirstStep. returned value was %s" % auth # 2FA policy enforcement def parsePlatformData(self, requestParameters): try: #Find device info passed in HTTP request params (see index.xhtml) platform = ServerUtil.getFirstValue(requestParameters, "loginForm:platform") deviceInf = json.loads(platform) except: print "Casa. parsePlatformData. Error parsing platform data" deviceInf = None return deviceInf def getSuitableAcr(self, user, deviceInf): onMobile = deviceInf != None and 'isMobile' in deviceInf and deviceInf['isMobile'] id = user.getUserId() strongest = -1 acr = None user_methods = self.getAvailMethodsUser(user) for s in self.scriptsList: name = s.getName() if user_methods.contains(name) and name in self.authenticators and s.getLevel() > strongest and (not onMobile or name in self.mobile_methods): acr = name strongest = s.getLevel() print "Casa. getSuitableAcr. On mobile = %s" % onMobile if acr == None and onMobile: print "Casa. getSuitableAcr. No mobile-friendly authentication method available for user %s" % id # user_methods is not empty when this function is called, so just pick any acr = user_methods.get(0) print "Casa. getSuitableAcr. %s was selected for user %s" % (acr, id) return acr def determineSkip2FA(self, userService, identity, foundUser, deviceInf): cmConfigs = self.getSettings() if cmConfigs == None: print "Casa. determineSkip2FA. Failed to read policy_2fa" return False missing = False if not 'plugins_settings' in cmConfigs: missing = True elif not 'strong-authn-settings' in cmConfigs['plugins_settings']: missing = True else: cmConfigs = cmConfigs['plugins_settings']['strong-authn-settings'] policy2FA = 'EVERY_LOGIN' if not missing and 'policy_2fa' in cmConfigs: policy2FA = ','.join(cmConfigs['policy_2fa']) print "Casa. determineSkip2FA with general policy %s" % policy2FA policy2FA += ',' skip2FA = False if 'CUSTOM,' in policy2FA: #read setting from user profile policy = foundUser.getAttribute("oxStrongAuthPolicy") if policy == None: policy = 'EVERY_LOGIN,' else: policy = policy.upper() + ',' print "Casa. determineSkip2FA. Using user's enforcement policy %s" % policy else: #If it's not custom, then apply the global setting admin defined policy = policy2FA if not 'EVERY_LOGIN,' in policy: locationCriterion = 'LOCATION_UNKNOWN,' in policy deviceCriterion = 'DEVICE_UNKNOWN,' in policy if locationCriterion or deviceCriterion: if deviceInf == None: print "Casa. determineSkip2FA. No user device data. Forcing 2FA to take place..." else: skip2FA = self.process2FAPolicy(identity, foundUser, deviceInf, locationCriterion, deviceCriterion) if skip2FA: print "Casa. determineSkip2FA. Second factor is skipped" #Update attribute if authentication will not have second step devInf = identity.getWorkingParameter("trustedDevicesInfo") if devInf != None: foundUser.setAttribute("oxTrustedDevicesInfo", devInf) userService.updateUser(foundUser) else: print "Casa. determineSkip2FA. Unknown %s policy: cannot skip 2FA" % policy return skip2FA def process2FAPolicy(self, identity, foundUser, deviceInf, locationCriterion, deviceCriterion): skip2FA = False #Retrieve user's devices info devicesInfo = foundUser.getAttribute("oxTrustedDevicesInfo") #do geolocation geodata = self.getGeolocation(identity) if geodata == None: print "Casa. process2FAPolicy: Geolocation data not obtained. 2FA skipping based on location cannot take place" try: encService = CdiUtil.bean(EncryptionService) if devicesInfo == None: print "Casa. process2FAPolicy: There are no trusted devices for user yet" #Simulate empty list devicesInfo = "[]" else: devicesInfo = encService.decrypt(devicesInfo) devicesInfo = json.loads(devicesInfo) partialMatch = False idx = 0 #Try to find a match for device only for device in devicesInfo: partialMatch = device['browser']['name']==deviceInf['name'] and device['os']['version']==deviceInf['os']['version'] and device['os']['family']==deviceInf['os']['family'] if partialMatch: break idx+=1 matchFound = False #At least one of locationCriterion or deviceCriterion is True if locationCriterion and not deviceCriterion: #this check makes sense if there is city data only if geodata!=None: for device in devicesInfo: #Search all registered cities that are found in trusted devices for origin in device['origins']: matchFound = matchFound or origin['city']==geodata['city'] elif partialMatch: #In this branch deviceCriterion is True if not locationCriterion: matchFound = True elif geodata!=None: for origin in devicesInfo[idx]['origins']: matchFound = matchFound or origin['city']==geodata['city'] skip2FA = matchFound now = Date().getTime() #Update attribute oxTrustedDevicesInfo accordingly if partialMatch: #Update an existing record (update timestamp in city, or else add it) if geodata != None: partialMatch = False idxCity = 0 for origin in devicesInfo[idx]['origins']: partialMatch = origin['city']==geodata['city'] if partialMatch: break; idxCity+=1 if partialMatch: devicesInfo[idx]['origins'][idxCity]['timestamp'] = now else: devicesInfo[idx]['origins'].append({"city": geodata['city'], "country": geodata['country'], "timestamp": now}) else: #Create a new entry browser = {"name": deviceInf['name'], "version": deviceInf['version']} os = {"family": deviceInf['os']['family'], "version": deviceInf['os']['version']} if geodata == None: origins = [] else: origins = [{"city": geodata['city'], "country": geodata['country'], "timestamp": now}] obj = {"browser": browser, "os": os, "addedOn": now, "origins": origins} devicesInfo.append(obj) enc = json.dumps(devicesInfo, separators=(',',':')) enc = encService.encrypt(enc) identity.setWorkingParameter("trustedDevicesInfo", enc) except: print "Casa. process2FAPolicy. Error!", sys.exc_info()[1] return skip2FA def getGeolocation(self, identity): session_attributes = identity.getSessionId().getSessionAttributes() if session_attributes.containsKey("remote_ip"): remote_ip = session_attributes.get("remote_ip") if StringHelper.isNotEmpty(remote_ip): httpService = CdiUtil.bean(HttpService) http_client = httpService.getHttpsClient() http_client_params = http_client.getParams() http_client_params.setIntParameter(CoreConnectionPNames.CONNECTION_TIMEOUT, 4 * 1000) geolocation_service_url = "http://ip-api.com/json/%s?fields=country,city,status,message" % remote_ip geolocation_service_headers = { "Accept" : "application/json" } try: http_service_response = httpService.executeGet(http_client, geolocation_service_url, geolocation_service_headers) http_response = http_service_response.getHttpResponse() except: print "Casa. Determine remote location. Exception: ", sys.exc_info()[1] return None try: if not httpService.isResponseStastusCodeOk(http_response): print "Casa. Determine remote location. Get non 200 OK response from server:", str(http_response.getStatusLine().getStatusCode()) httpService.consume(http_response) return None response_bytes = httpService.getResponseContent(http_response) response_string = httpService.convertEntityToString(response_bytes, Charset.forName("UTF-8")) httpService.consume(http_response) finally: http_service_response.closeConnection() if response_string == None: print "Casa. Determine remote location. Get empty response from location server" return None response = json.loads(response_string) if not StringHelper.equalsIgnoreCase(response['status'], "success"): print "Casa. Determine remote location. Get response with status: '%s'" % response['status'] return None return response return None
py
7df6f4ce2ed2cb871b8c1967f11700413e065e95
"""Service calls related dependencies for LCN component.""" import pypck import voluptuous as vol from homeassistant.const import ( CONF_ADDRESS, CONF_BRIGHTNESS, CONF_HOST, CONF_STATE, CONF_UNIT_OF_MEASUREMENT, TIME_SECONDS, ) import homeassistant.helpers.config_validation as cv from homeassistant.helpers.typing import HomeAssistantType, ServiceCallType from .const import ( CONF_KEYS, CONF_LED, CONF_OUTPUT, CONF_PCK, CONF_RELVARREF, CONF_ROW, CONF_SETPOINT, CONF_TABLE, CONF_TEXT, CONF_TIME, CONF_TIME_UNIT, CONF_TRANSITION, CONF_VALUE, CONF_VARIABLE, DOMAIN, LED_PORTS, LED_STATUS, OUTPUT_PORTS, RELVARREF, SENDKEYCOMMANDS, SETPOINTS, THRESHOLDS, TIME_UNITS, VAR_UNITS, VARIABLES, ) from .helpers import ( DeviceConnectionType, get_device_connection, is_address, is_states_string, ) class LcnServiceCall: """Parent class for all LCN service calls.""" schema = vol.Schema({vol.Required(CONF_ADDRESS): is_address}) def __init__(self, hass: HomeAssistantType) -> None: """Initialize service call.""" self.hass = hass def get_device_connection(self, service: ServiceCallType) -> DeviceConnectionType: """Get address connection object.""" address, host_name = service.data[CONF_ADDRESS] for config_entry in self.hass.config_entries.async_entries(DOMAIN): if config_entry.data[CONF_HOST] == host_name: device_connection = get_device_connection( self.hass, address, config_entry ) if device_connection is None: raise ValueError("Wrong address.") return device_connection raise ValueError("Invalid host name.") async def async_call_service(self, service: ServiceCallType) -> None: """Execute service call.""" raise NotImplementedError class OutputAbs(LcnServiceCall): """Set absolute brightness of output port in percent.""" schema = LcnServiceCall.schema.extend( { vol.Required(CONF_OUTPUT): vol.All(vol.Upper, vol.In(OUTPUT_PORTS)), vol.Required(CONF_BRIGHTNESS): vol.All( vol.Coerce(int), vol.Range(min=0, max=100) ), vol.Optional(CONF_TRANSITION, default=0): vol.All( vol.Coerce(float), vol.Range(min=0.0, max=486.0) ), } ) async def async_call_service(self, service: ServiceCallType) -> None: """Execute service call.""" output = pypck.lcn_defs.OutputPort[service.data[CONF_OUTPUT]] brightness = service.data[CONF_BRIGHTNESS] transition = pypck.lcn_defs.time_to_ramp_value( service.data[CONF_TRANSITION] * 1000 ) device_connection = self.get_device_connection(service) await device_connection.dim_output(output.value, brightness, transition) class OutputRel(LcnServiceCall): """Set relative brightness of output port in percent.""" schema = LcnServiceCall.schema.extend( { vol.Required(CONF_OUTPUT): vol.All(vol.Upper, vol.In(OUTPUT_PORTS)), vol.Required(CONF_BRIGHTNESS): vol.All( vol.Coerce(int), vol.Range(min=-100, max=100) ), } ) async def async_call_service(self, service: ServiceCallType) -> None: """Execute service call.""" output = pypck.lcn_defs.OutputPort[service.data[CONF_OUTPUT]] brightness = service.data[CONF_BRIGHTNESS] device_connection = self.get_device_connection(service) await device_connection.rel_output(output.value, brightness) class OutputToggle(LcnServiceCall): """Toggle output port.""" schema = LcnServiceCall.schema.extend( { vol.Required(CONF_OUTPUT): vol.All(vol.Upper, vol.In(OUTPUT_PORTS)), vol.Optional(CONF_TRANSITION, default=0): vol.All( vol.Coerce(float), vol.Range(min=0.0, max=486.0) ), } ) async def async_call_service(self, service: ServiceCallType) -> None: """Execute service call.""" output = pypck.lcn_defs.OutputPort[service.data[CONF_OUTPUT]] transition = pypck.lcn_defs.time_to_ramp_value( service.data[CONF_TRANSITION] * 1000 ) device_connection = self.get_device_connection(service) await device_connection.toggle_output(output.value, transition) class Relays(LcnServiceCall): """Set the relays status.""" schema = LcnServiceCall.schema.extend({vol.Required(CONF_STATE): is_states_string}) async def async_call_service(self, service: ServiceCallType) -> None: """Execute service call.""" states = [ pypck.lcn_defs.RelayStateModifier[state] for state in service.data[CONF_STATE] ] device_connection = self.get_device_connection(service) await device_connection.control_relays(states) class Led(LcnServiceCall): """Set the led state.""" schema = LcnServiceCall.schema.extend( { vol.Required(CONF_LED): vol.All(vol.Upper, vol.In(LED_PORTS)), vol.Required(CONF_STATE): vol.All(vol.Upper, vol.In(LED_STATUS)), } ) async def async_call_service(self, service: ServiceCallType) -> None: """Execute service call.""" led = pypck.lcn_defs.LedPort[service.data[CONF_LED]] led_state = pypck.lcn_defs.LedStatus[service.data[CONF_STATE]] device_connection = self.get_device_connection(service) await device_connection.control_led(led, led_state) class VarAbs(LcnServiceCall): """Set absolute value of a variable or setpoint. Variable has to be set as counter! Regulator setpoints can also be set using R1VARSETPOINT, R2VARSETPOINT. """ schema = LcnServiceCall.schema.extend( { vol.Required(CONF_VARIABLE): vol.All( vol.Upper, vol.In(VARIABLES + SETPOINTS) ), vol.Optional(CONF_VALUE, default=0): cv.positive_int, vol.Optional(CONF_UNIT_OF_MEASUREMENT, default="native"): vol.All( vol.Upper, vol.In(VAR_UNITS) ), } ) async def async_call_service(self, service: ServiceCallType) -> None: """Execute service call.""" var = pypck.lcn_defs.Var[service.data[CONF_VARIABLE]] value = service.data[CONF_VALUE] unit = pypck.lcn_defs.VarUnit.parse(service.data[CONF_UNIT_OF_MEASUREMENT]) device_connection = self.get_device_connection(service) await device_connection.var_abs(var, value, unit) class VarReset(LcnServiceCall): """Reset value of variable or setpoint.""" schema = LcnServiceCall.schema.extend( {vol.Required(CONF_VARIABLE): vol.All(vol.Upper, vol.In(VARIABLES + SETPOINTS))} ) async def async_call_service(self, service: ServiceCallType) -> None: """Execute service call.""" var = pypck.lcn_defs.Var[service.data[CONF_VARIABLE]] device_connection = self.get_device_connection(service) await device_connection.var_reset(var) class VarRel(LcnServiceCall): """Shift value of a variable, setpoint or threshold.""" schema = LcnServiceCall.schema.extend( { vol.Required(CONF_VARIABLE): vol.All( vol.Upper, vol.In(VARIABLES + SETPOINTS + THRESHOLDS) ), vol.Optional(CONF_VALUE, default=0): int, vol.Optional(CONF_UNIT_OF_MEASUREMENT, default="native"): vol.All( vol.Upper, vol.In(VAR_UNITS) ), vol.Optional(CONF_RELVARREF, default="current"): vol.All( vol.Upper, vol.In(RELVARREF) ), } ) async def async_call_service(self, service: ServiceCallType) -> None: """Execute service call.""" var = pypck.lcn_defs.Var[service.data[CONF_VARIABLE]] value = service.data[CONF_VALUE] unit = pypck.lcn_defs.VarUnit.parse(service.data[CONF_UNIT_OF_MEASUREMENT]) value_ref = pypck.lcn_defs.RelVarRef[service.data[CONF_RELVARREF]] device_connection = self.get_device_connection(service) await device_connection.var_rel(var, value, unit, value_ref) class LockRegulator(LcnServiceCall): """Locks a regulator setpoint.""" schema = LcnServiceCall.schema.extend( { vol.Required(CONF_SETPOINT): vol.All(vol.Upper, vol.In(SETPOINTS)), vol.Optional(CONF_STATE, default=False): bool, } ) async def async_call_service(self, service: ServiceCallType) -> None: """Execute service call.""" setpoint = pypck.lcn_defs.Var[service.data[CONF_SETPOINT]] state = service.data[CONF_STATE] reg_id = pypck.lcn_defs.Var.to_set_point_id(setpoint) device_connection = self.get_device_connection(service) await device_connection.lock_regulator(reg_id, state) class SendKeys(LcnServiceCall): """Sends keys (which executes bound commands).""" schema = LcnServiceCall.schema.extend( { vol.Required(CONF_KEYS): vol.All( vol.Upper, cv.matches_regex(r"^([A-D][1-8])+$") ), vol.Optional(CONF_STATE, default="hit"): vol.All( vol.Upper, vol.In(SENDKEYCOMMANDS) ), vol.Optional(CONF_TIME, default=0): cv.positive_int, vol.Optional(CONF_TIME_UNIT, default=TIME_SECONDS): vol.All( vol.Upper, vol.In(TIME_UNITS) ), } ) async def async_call_service(self, service: ServiceCallType) -> None: """Execute service call.""" device_connection = self.get_device_connection(service) keys = [[False] * 8 for i in range(4)] key_strings = zip(service.data[CONF_KEYS][::2], service.data[CONF_KEYS][1::2]) for table, key in key_strings: table_id = ord(table) - 65 key_id = int(key) - 1 keys[table_id][key_id] = True delay_time = service.data[CONF_TIME] if delay_time != 0: hit = pypck.lcn_defs.SendKeyCommand.HIT if pypck.lcn_defs.SendKeyCommand[service.data[CONF_STATE]] != hit: raise ValueError( "Only hit command is allowed when sending deferred keys." ) delay_unit = pypck.lcn_defs.TimeUnit.parse(service.data[CONF_TIME_UNIT]) await device_connection.send_keys_hit_deferred(keys, delay_time, delay_unit) else: state = pypck.lcn_defs.SendKeyCommand[service.data[CONF_STATE]] await device_connection.send_keys(keys, state) class LockKeys(LcnServiceCall): """Lock keys.""" schema = LcnServiceCall.schema.extend( { vol.Optional(CONF_TABLE, default="a"): vol.All( vol.Upper, cv.matches_regex(r"^[A-D]$") ), vol.Required(CONF_STATE): is_states_string, vol.Optional(CONF_TIME, default=0): cv.positive_int, vol.Optional(CONF_TIME_UNIT, default=TIME_SECONDS): vol.All( vol.Upper, vol.In(TIME_UNITS) ), } ) async def async_call_service(self, service: ServiceCallType) -> None: """Execute service call.""" device_connection = self.get_device_connection(service) states = [ pypck.lcn_defs.KeyLockStateModifier[state] for state in service.data[CONF_STATE] ] table_id = ord(service.data[CONF_TABLE]) - 65 delay_time = service.data[CONF_TIME] if delay_time != 0: if table_id != 0: raise ValueError( "Only table A is allowed when locking keys for a specific time." ) delay_unit = pypck.lcn_defs.TimeUnit.parse(service.data[CONF_TIME_UNIT]) await device_connection.lock_keys_tab_a_temporary( delay_time, delay_unit, states ) else: await device_connection.lock_keys(table_id, states) handler = device_connection.status_requests_handler await handler.request_status_locked_keys_timeout() class DynText(LcnServiceCall): """Send dynamic text to LCN-GTxD displays.""" schema = LcnServiceCall.schema.extend( { vol.Required(CONF_ROW): vol.All(int, vol.Range(min=1, max=4)), vol.Required(CONF_TEXT): vol.All(str, vol.Length(max=60)), } ) async def async_call_service(self, service: ServiceCallType) -> None: """Execute service call.""" row_id = service.data[CONF_ROW] - 1 text = service.data[CONF_TEXT] device_connection = self.get_device_connection(service) await device_connection.dyn_text(row_id, text) class Pck(LcnServiceCall): """Send arbitrary PCK command.""" schema = LcnServiceCall.schema.extend({vol.Required(CONF_PCK): str}) async def async_call_service(self, service: ServiceCallType) -> None: """Execute service call.""" pck = service.data[CONF_PCK] device_connection = self.get_device_connection(service) await device_connection.pck(pck) SERVICES = ( ("output_abs", OutputAbs), ("output_rel", OutputRel), ("output_toggle", OutputToggle), ("relays", Relays), ("var_abs", VarAbs), ("var_reset", VarReset), ("var_rel", VarRel), ("lock_regulator", LockRegulator), ("led", Led), ("send_keys", SendKeys), ("lock_keys", LockKeys), ("dyn_text", DynText), ("pck", Pck), )
py
7df6f5c4443dd80238d0eb5a905cd3fce4e8ee5b
class Pedido(object): def __init__(self, nome, endereco, observacoes): self.nome = nome self.endereco = endereco self.observacoes = observacoes
py
7df6f7b75c7b13581d4d10d7cf4117d43363a2b5
import json import os.path import glob as glob import numpy as np import jsonlines from tabulate import tabulate import re from tqdm import tqdm import sqlite3 import editdistance from collections import defaultdict import pprint from itertools import product from copy import deepcopy def set_seed(val): np.random.seed(val) set_seed(42) timepat = re.compile("\d{1,2}[:]\d{1,2}") pricepat = re.compile("\d{1,3}[.]\d{1,2}") fin = open("mapping.pair","r") replacements = [] for line in fin.readlines(): tok_from, tok_to = line.replace('\n', '').split('\t') replacements.append((' ' + tok_from + ' ', ' ' + tok_to + ' ')) def insertSpace(token, text): sidx = 0 while True: sidx = text.find(token, sidx) if sidx == -1: break if sidx + 1 < len(text) and re.match('[0-9]', text[sidx - 1]) and \ re.match('[0-9]', text[sidx + 1]): sidx += 1 continue if text[sidx - 1] != ' ': text = text[:sidx] + ' ' + text[sidx:] sidx += 1 if sidx + len(token) < len(text) and text[sidx + len(token)] != ' ': text = text[:sidx + 1] + ' ' + text[sidx + 1:] sidx += 1 return text def normalize(text): # lower case every word text = text.lower() # replace white spaces in front and end text = re.sub(r'^\s*|\s*$', '', text) # hotel domain pfb30 text = re.sub(r"b&b", "bed and breakfast", text) text = re.sub(r"b and b", "bed and breakfast", text) text = re.sub(r"gueshouses", "guesthouse", text) text = re.sub(r"guest house", "guesthouse", text) text = re.sub(r"rosas bed and breakfast", "rosa s bed and breakfast", text) text = re.sub(r"el shaddia guesthouse", "el shaddai", text) # normalize phone number ms = re.findall('\(?(\d{3})\)?[-.\s]?(\d{3})[-.\s]?(\d{4,5})', text) if ms: sidx = 0 for m in ms: sidx = text.find(m[0], sidx) if text[sidx - 1] == '(': sidx -= 1 eidx = text.find(m[-1], sidx) + len(m[-1]) text = text.replace(text[sidx:eidx], ''.join(m)) # normalize postcode ms = re.findall('([a-z]{1}[\. ]?[a-z]{1}[\. ]?\d{1,2}[, ]+\d{1}[\. ]?[a-z]{1}[\. ]?[a-z]{1}|[a-z]{2}\d{2}[a-z]{2})', text) if ms: sidx = 0 for m in ms: sidx = text.find(m, sidx) eidx = sidx + len(m) text = text[:sidx] + re.sub('[,\. ]', '', m) + text[eidx:] # weird unicode bug text = re.sub(u"(\u2018|\u2019)", "'", text) # replace time and and price # text = re.sub(timepat, ' [value_time] ', text) # text = re.sub(pricepat, ' [value_price] ', text) #text = re.sub(pricepat2, '[value_price]', text) # replace st. text = text.replace(';', ',') text = re.sub('$\/', '', text) text = text.replace('/', ' and ') # replace other special characters text = text.replace('-', ' ') text = re.sub('[\":\<>@\(\)]', '', text) # insert white space before and after tokens: for token in ['?', '.', ',', '!']: text = insertSpace(token, text) # insert white space for 's text = insertSpace('\'s', text) # replace it's, does't, you'd ... etc text = re.sub('^\'', '', text) text = re.sub('\'$', '', text) text = re.sub('\'\s', ' ', text) text = re.sub('\s\'', ' ', text) for fromx, tox in replacements: text = ' ' + text + ' ' text = text.replace(fromx, tox)[1:-1] # remove multiple spaces text = re.sub(' +', ' ', text) # concatenate numbers tmp = text tokens = text.split() i = 1 while i < len(tokens): if re.match(u'^\d+$', tokens[i]) and \ re.match(u'\d+$', tokens[i - 1]): tokens[i - 1] += tokens[i] del tokens[i] else: i += 1 text = ' '.join(tokens) return text def get_splits(data,test_split,val_split): train = {} valid = {} test = {} for k, v in data.items(): if(k in test_split): test[k] = v elif(k in val_split): valid[k] = v else: train[k] = v return train, valid, test def substringSieve(string_list): string_list.sort(key=lambda s: len(s), reverse=True) out = [] for s in string_list: if not any([s in o for o in out]): out.append(s) return out def to_query(domain, dic, reqt): if reqt: q = f"SELECT {','.join(reqt)} FROM {domain} where" else: q = f"SELECT * FROM {domain} where" for k,v in dic.items(): if v == "swimmingpool": v = "swimming pool" if v == "nightclub": v = "night club" if v == "the golden curry": v = "golden curry" if v == "mutliple sports": v = "multiple sports" if v == "the cambridge chop house": v = "cambridge chop house" if v == "the fitzwilliam museum": v = "fitzwilliam museum" if v == "the good luck chinese food takeaway": v = "good luck chinese food takeaway" if v == "the cherry hinton village centre": v = "cherry hinton village centre" if v == "the copper kettle": v = "copper kettle" if v == "pizza express Fen Ditton": v = "pizza express" if v == "shiraz restaurant": v = "shiraz" if v == "christ's college": v = "christ college" if v == "good luck chinese food takeaway": v = "chinese" if k == 'leaveAt': hour, minute = v.split(":") v = int(hour)*60 + int(minute) q += f' {k}>{v} and' elif k == 'arriveBy': hour, minute = v.split(":") v = int(hour)*60 + int(minute) q += f' {k}<{v} and' else: q += f' {k}="{v}" and' q = q[:-3] ## this just to remove the last AND from the query return q def convert_time_int_to_time(all_rows,clmn):#leaveAt_id,arriveBy_id): leaveAt_id = -1 arriveBy_id = -1 if('leaveAt' in clmn): leaveAt_id = clmn.index('leaveAt') if('arriveBy' in clmn): arriveBy_id = clmn.index('arriveBy') if(leaveAt_id!= -1): for i in range(len(all_rows)): all_rows[i] = list(all_rows[i]) time = int(all_rows[i][leaveAt_id]) mins=int(time%60) hours=int(time/60) if(len(str(hours)))==1: hours = "0"+str(hours) if(len(str(mins)))==1: mins = "0"+str(mins) all_rows[i][leaveAt_id] = str(hours)+str(mins) if(arriveBy_id!= -1): for i in range(len(all_rows)): all_rows[i] = list(all_rows[i]) time = int(all_rows[i][arriveBy_id]) mins=int(time%60) hours=int(time/60) if(len(str(hours)))==1: hours = "0"+str(hours) if(len(str(mins)))==1: mins = "0"+str(mins) all_rows[i][arriveBy_id] = str(hours)+str(mins) return all_rows def get_entity_by_type(info,clmn,post_fix="-info"): ### get goal information query = to_query("train", info, clmn) database.execute(query) all_rows = database.fetchall() all_rows = convert_time_int_to_time(all_rows,clmn) entity_by_type = {c+post_fix:set() for c in clmn} for rows in all_rows: for i,c in enumerate(clmn): entity_by_type[c+post_fix].add(rows[i]) # entity_by_type["number_of_options"] = [len(all_rows)] return entity_by_type def parse_results(dic_data,semi,domain): book_query = str(domain) if(domain == "taxi"): for k, t in semi.items(): if k in ["leaveAt","destination","departure","arriveBy"]: book_query += f" {k} = '{normalize(t)}'" if(domain == "hotel"): if dic_data["day"]== "" or dic_data["stay"]== "" or dic_data["people"]== "": return None,None results = None if(len(dic_data['booked'])>0): if(domain == "train" and 'trainID' in dic_data['booked'][0]): book_query += f" trainID = '{normalize(dic_data['booked'][0]['trainID'])}'" results = dic_data['booked'][0]['reference'] elif(domain != "taxi" and 'name' in dic_data['booked'][0]): book_query += f" name = '{normalize(dic_data['booked'][0]['name'])}'" results = dic_data['booked'][0]['reference'] else: results = dic_data['booked'][0] elif(domain == "hotel" and semi['name']!="not mentioned"): book_query += f" name = '{normalize(semi['name'])}'" for k, t in dic_data.items(): if(k != 'booked'): book_query += f" {k} = '{normalize(t)}'" return book_query, results def check_metadata(dic, state): for d,v in dic.items(): if(state[d]==0 or state[d]!= v['book']['booked']): if(len(v['book']['booked'])>0): state[d] = v['book']['booked'] return parse_results(v['book'],v['semi'],d), state for k, v1 in v['book'].items(): if(k != 'booked' and v1 != ""): return parse_results(v['book'],v['semi'],d), state return (None, None), state def get_booking_query(text): domain = {"global":set(),"train":[],"attraction":[],"hotel":[],"restaurant":[],"taxi":[], "police":[],"hospital":[],"generic":[]} domain[text.split()[0]] = re.findall(r"'(.*?)'", text) return domain def delexer(turns,dictionary,entity_info): text_delex = normalize(turns['text']) ### first serch using SPEECH ACT for k,v in turns['dialog_act'].items(): for [att,val] in v: if( (att not in ["none","Ref","People","Ticket"] and val not in ["-","?"]) or (k=="Train-Inform" and att=="Ticket") ): if(att in ["Leave","Arrive"]): if( normalize(val).isdecimal() and len(normalize(val))==4): dictionary[att.lower()].append(normalize(val)) elif(att=="Ticket"): dictionary[att.lower()].append(normalize(val).replace(" each","").replace(" per person","")) else: dictionary[att.lower()].append(normalize(val)) if("street" in val.lower()): dictionary[att.lower()].append(normalize(val).replace(" street","")) for k,v in entity_info.items(): for val in v: if(type(val)==int and str(val) in text_delex): dictionary[k].append(str(val)) else: if(normalize(val) in text_delex): dictionary[k].append(normalize(val)) elif("street" in val.lower() and normalize(val).replace(" street","") in text_delex): dictionary[k].append(normalize(val).replace(" street","")) turns['text'] = turns['text'].replace(normalize(val).replace(" street",""),normalize(val)) return text_delex def query_TRAINID_and_filter(entity_correct_train,r_delex_dictionary): # 'duration-correct', 'leaveAt-correct'] if "leaveAt-info" in r_delex_dictionary or "leave" in r_delex_dictionary: if entity_correct_train['leaveAt-correct'] not in r_delex_dictionary.get("leaveAt-info",[]) and entity_correct_train['leaveAt-correct'] not in r_delex_dictionary.get("leave",[]): del entity_correct_train['leaveAt-correct'] else: if(entity_correct_train['leaveAt-correct'] in r_delex_dictionary.get("leaveAt-info",[])): del r_delex_dictionary["leaveAt-info"][r_delex_dictionary["leaveAt-info"].index(entity_correct_train['leaveAt-correct'])] if(entity_correct_train['leaveAt-correct'] in r_delex_dictionary.get("leave",[])): del r_delex_dictionary["leave"][r_delex_dictionary["leave"].index(entity_correct_train['leaveAt-correct'])] else: del entity_correct_train['leaveAt-correct'] if "arriveBy-info" in r_delex_dictionary or "arrive" in r_delex_dictionary: if entity_correct_train['arriveBy-correct'] not in r_delex_dictionary.get("arriveBy-info",[]) and entity_correct_train['arriveBy-correct'] not in r_delex_dictionary.get("arrive",[]): del entity_correct_train['arriveBy-correct'] else: if(entity_correct_train['arriveBy-correct'] in r_delex_dictionary.get("arriveBy-info",[])): del r_delex_dictionary["arriveBy-info"][r_delex_dictionary["arriveBy-info"].index(entity_correct_train['arriveBy-correct'])] if(entity_correct_train['arriveBy-correct'] in r_delex_dictionary.get("arrive",[])): del r_delex_dictionary["arrive"][r_delex_dictionary["arrive"].index(entity_correct_train['arriveBy-correct'])] else: del entity_correct_train['arriveBy-correct'] if "day-info" in r_delex_dictionary or "day" in r_delex_dictionary: if entity_correct_train['day-correct'] not in r_delex_dictionary.get("day-info",[]) and entity_correct_train['day-correct'] not in r_delex_dictionary.get("day",[]): del entity_correct_train['day-correct'] else: if(entity_correct_train['day-correct'] in r_delex_dictionary.get("day-info",[])): del r_delex_dictionary["day-info"][r_delex_dictionary["day-info"].index(entity_correct_train['day-correct'])] if(entity_correct_train['day-correct'] in r_delex_dictionary.get("day",[])): del r_delex_dictionary["day"][r_delex_dictionary["day"].index(entity_correct_train['day-correct'])] else: del entity_correct_train['day-correct'] if "departure-info" in r_delex_dictionary or "depart" in r_delex_dictionary: if entity_correct_train['departure-correct'] not in r_delex_dictionary.get("departure-info",[]) and entity_correct_train['departure-correct'] not in r_delex_dictionary.get("depart",[]): del entity_correct_train['departure-correct'] else: if(entity_correct_train['departure-correct'] in r_delex_dictionary.get("departure-info",[])): del r_delex_dictionary["departure-info"][r_delex_dictionary["departure-info"].index(entity_correct_train['departure-correct'])] if(entity_correct_train['departure-correct'] in r_delex_dictionary.get("depart",[])): del r_delex_dictionary["depart"][r_delex_dictionary["depart"].index(entity_correct_train['departure-correct'])] else: del entity_correct_train['departure-correct'] if "destination-info" in r_delex_dictionary or "dest" in r_delex_dictionary: if entity_correct_train['destination-correct'] not in r_delex_dictionary.get("destination-info",[]) and entity_correct_train['destination-correct'] not in r_delex_dictionary.get("dest",[]): del entity_correct_train['destination-correct'] else: if(entity_correct_train['destination-correct'] in r_delex_dictionary.get("destination-info",[])): del r_delex_dictionary["destination-info"][r_delex_dictionary["destination-info"].index(entity_correct_train['destination-correct'])] if(entity_correct_train['destination-correct'] in r_delex_dictionary.get("dest",[])): del r_delex_dictionary["dest"][r_delex_dictionary["dest"].index(entity_correct_train['destination-correct'])] else: del entity_correct_train['destination-correct'] if "ticket" in r_delex_dictionary: if entity_correct_train['price-correct'] not in r_delex_dictionary["ticket"]: del entity_correct_train['price-correct'] else: del r_delex_dictionary["ticket"][r_delex_dictionary["ticket"].index(entity_correct_train['price-correct'])] else: del entity_correct_train['price-correct'] if "time" in r_delex_dictionary: if entity_correct_train['duration-correct'] not in r_delex_dictionary["time"]: del entity_correct_train['duration-correct'] else: del r_delex_dictionary["time"][r_delex_dictionary["time"].index(entity_correct_train['duration-correct'])] else: del entity_correct_train['duration-correct'] if entity_correct_train['trainID-correct'] not in r_delex_dictionary["id"]: del entity_correct_train['trainID-correct'] else: del r_delex_dictionary["id"][r_delex_dictionary["id"].index(entity_correct_train['trainID-correct'])] r_delex_dictionary = {k:v for k,v in r_delex_dictionary.items() if len(v)>0} return entity_correct_train,r_delex_dictionary def get_name_hotel(conv,dict_delex): for conv_turn in reversed(conv): if "name" in dict_delex.keys(): for ids_v, v in enumerate(r_delex_dictionary["name"]): if(v in conv_turn["text"]): return v, ids_v if(v.replace("the ","") in conv_turn["text"]): return v, ids_v return None, None def get_trainID_train(conv,dict_delex): for conv_turn in reversed(conv): if "id" in dict_delex.keys(): for ids_v, v in enumerate(r_delex_dictionary["id"]): if(v in conv_turn["text"]): return v, ids_v if(v in conv_turn["text"]): return v, ids_v return None, None def get_start_end_ACT(ACT): dic = {} mapper = {"one":1,"two":2,"three":3,"3-star":3,"four":4,"five":5} for span in ACT: if(span[1]=="Stars"): if(span[2] in mapper.keys()): dic[mapper[span[2]]] = [span[3],span[4]] else: dic[span[2]] = [span[3],span[4]] return dic pp = pprint.PrettyPrinter(indent=4) conn = sqlite3.connect('MWOZ.db') database = conn.cursor() all_arriveBy = [r[0] for r in database.execute("SELECT DISTINCT arriveBy FROM train").fetchall()] all_day = [r[0] for r in database.execute("SELECT DISTINCT day FROM train").fetchall()] all_departure = [r[0] for r in database.execute("SELECT DISTINCT departure FROM train").fetchall()] all_destination = [r[0] for r in database.execute("SELECT DISTINCT destination FROM train").fetchall()] all_leaveAt = [r[0] for r in database.execute("SELECT DISTINCT leaveAt FROM train").fetchall()] all_trainID = [r[0] for r in database.execute("SELECT DISTINCT trainID FROM train").fetchall()] dialogue_mwoz = json.load(open("MultiWOZ_2.1/data.json")) test_split = open("MultiWOZ_2.1/testListFile.txt","r").read() val_split = open("MultiWOZ_2.1/valListFile.txt","r").read() train, valid, test = get_splits(dialogue_mwoz,test_split,val_split) split_by_single_and_domain = json.load(open("dialogue_by_domain.json")) all_arriveBy_choice = [] all_leaveAt_choice = [] for k, dial in train.items(): if(k.lower() in split_by_single_and_domain["train_single"]): goal = dial["goal"]['train']['info'] if('leaveAt' in goal): all_leaveAt_choice.append(goal['leaveAt']) if('arriveBy' in goal): all_arriveBy_choice.append(goal['arriveBy']) all_arriveBy_choice = list(set(all_arriveBy_choice)) all_leaveAt_choice = list(set(all_leaveAt_choice)) all_arriveBy_choice.sort() all_leaveAt_choice.sort() # print(all_leaveAt_choice) def generate_all_query(r_delex_dictionary, entity_correct_train,info): contrains = [all_day,all_departure,all_destination,[None]] name = ['day','departure','destination'] if('leaveAt' in info): contrains[3] = all_leaveAt_choice name.append('leaveAt') elif('arriveBy' in info): contrains[3] = all_arriveBy_choice name.append('arriveBy') clmn = [k.replace("-correct","")for k in entity_correct_train.keys()] lexicalized = [] all_combo = list(product(*contrains)) all_combo.sort() index = np.random.choice(len(all_combo), 500).tolist() list_combo = [ all_combo[indx] for indx in index ] for combo in list_combo: query = {name[i_c]:c for i_c, c in enumerate(combo)} database.execute(to_query("train", query, clmn)) all_rows = database.fetchall() if(len(all_rows)>0): choice = str(len(all_rows)) if('leaveAt' in entity_correct_train.keys()): min_time = min([int(row[clmn.index("leaveAt")]) for row in all_rows]) all_rows = [ row for row in all_rows if int(row[clmn.index("leaveAt")])== min_time ] if('arriveBy' in entity_correct_train.keys()): max_time = max([int(row[clmn.index("arriveBy")]) for row in all_rows]) all_rows = [ row for row in all_rows if int(row[clmn.index("arriveBy")])== max_time ] all_rows = convert_time_int_to_time(all_rows.copy(),clmn) for row in all_rows: results_correct = entity_correct_train.copy() r_dictionary = r_delex_dictionary.copy() for k in results_correct.keys(): results_correct[k] = row[clmn.index(k.replace("-correct",""))] if("choice" in r_dictionary): r_dictionary["choice"] = choice if('leave' in r_dictionary): r_dictionary["leave"] = normalize(combo[-1]) elif('arrive' in r_dictionary): r_dictionary["arrive"] = normalize(combo[-1]) lexicalized.append([results_correct,r_dictionary]) return lexicalized clmn_train = ["trainID",'day','departure','destination','leaveAt'] cnt_single_entity_templates = [] al = 0 good = 0 count_flag = 0 data = [] skip1, skip2, skip3, skip4 = 0,0,0,0 for i, (k, dial) in enumerate(train.items()): if(k.lower() in split_by_single_and_domain["train_single"]): id_dialogue = k.lower() goal = dial["goal"]['train'] # pp.pprint(goal) dictionary = defaultdict(list) if("trainID" in goal['info']): dictionary["trainID"].append(normalize(goal['info']["trainID"])) entity_info = get_entity_by_type(goal['info'],list(goal['info'].keys())) conversation = [] train_ID_BOOKED = "" state = {"train":0,"attraction":0,"hotel":0,"restaurant":0,"hospital":0,"police":0,"taxi":0,"bus":0} span_info_list = [] for turns in dial["log"]: if(turns['metadata']): text_delex = delexer(turns,dictionary,entity_info) (book, results), state = check_metadata(turns['metadata'],state) if(book): entities_by_domain_book = get_booking_query(book) book_delex = book conversation.append({"entities":entities_by_domain_book,"spk":"SYS-API","text":book,"text_delex":book_delex}) span_info_list.append(turns["span_info"]) dom_API = book.split()[0] ## first token is the API domain train_ID_BOOKED = book.split()[3].replace("'", "") ## THIS IS A SIMULATION OF AN API RESULTS if("dialog_act" in turns and dom_API == "train" and "Train-OfferBooked" in turns["dialog_act"]): for elem_ in turns["dialog_act"]["Train-OfferBooked"]: if(elem_[0]=="Ticket" and elem_[1] != "None"): results = str(results) results += " "+ str(elem_[1]) conversation.append({"spk":"API","text":str(results).lower(),"text_delex":str(results).lower()}) span_info_list.append(turns["span_info"]) conversation.append({"spk":"SYS","text":normalize(turns['text']),"text_delex":text_delex,"span_info": turns["span_info"]}) span_info_list.append(turns["span_info"]) else: text_delex = delexer(turns,dictionary,entity_info) conversation.append({"spk":"USR","text":normalize(turns['text']),"text_delex":text_delex,"span_info": turns["span_info"]}) span_info_list.append(turns["span_info"]) # for conv_turn in conversation: # print(f"{conv_turn['spk']} >>> {conv_turn['text']}") r_delex_dictionary = {} len_r_DICT = {} # if(i == 487): # print(dictionary.items()) for key, d in dictionary.items(): r_delex_dictionary[key] = list(set(substringSieve(d))) r_delex_dictionary[key].sort() len_r_DICT[key] = len(r_delex_dictionary[key]) r_delex_dictionary[key].sort() al += 1 train_id, idx_id = get_trainID_train(conversation,r_delex_dictionary) # print(train_id,idx_id) if(train_id==None or (train_id[0]!="t" and train_id[1]!="r") or train_id[2]==" " or len(train_id)!=6): skip1+=1 continue # print(">", train_id.lower()) if(train_ID_BOOKED!=""): if train_ID_BOOKED.lower()!=train_id.lower(): skip2+=1 continue # input() entity_correct_train = get_entity_by_type({"trainID":train_id.upper()},["arriveBy","day","departure","destination","duration","leaveAt","price","trainID"],"-correct") new_entity = {} for k,v in entity_correct_train.items(): v = list(v) v.sort() new_entity[k] = v[0].lower() entity_correct_train = new_entity entity_correct_train, r_delex_dictionary = query_TRAINID_and_filter(entity_correct_train,r_delex_dictionary) total_lexer = {**{k:[v] for k,v in entity_correct_train.items()}, **r_delex_dictionary} if(len(r_delex_dictionary.keys())>2): skip3+=1 continue if("leaveAt-correct" not in entity_correct_train.keys() and "arriveBy-correct" not in entity_correct_train.keys()): skip4+=1 continue flag = True if("leave" in r_delex_dictionary and "choice" in r_delex_dictionary and "leaveAt" in goal['info']): flag = False if("arrive" in r_delex_dictionary and "choice" in r_delex_dictionary and "arriveBy" in goal['info']): flag = False if("leave" in r_delex_dictionary and len(r_delex_dictionary.keys())==1 and "leaveAt" in goal['info']): flag = False if("arrive" in r_delex_dictionary and len(r_delex_dictionary.keys())==1 and "arriveBy" in goal['info']): flag = False count_flag += 1 if(flag): continue good += 1 # print(entity_correct_train) # print(r_delex_dictionary) # r_delex_dictionary = {k:[v] for k,v in entity_correct_train.items()} lexicalized = generate_all_query(r_delex_dictionary, entity_correct_train, goal['info']) lexicalized = [{**{k:[v] for k,v in l[0].items()}, **l[1]} for l in lexicalized] # lexicalized = [] # pp.pprint(total_lexer) # print() # print(len(conversation), len(span_info_list)) rdelex_conv = [] flag = True for i, conv_turn in enumerate(conversation): text_rdelex = conv_turn["text"] if conv_turn["spk"] in ["USR","SYS"]: if "trainID-correct" in total_lexer.keys(): for ids_v, v in enumerate(total_lexer["trainID-correct"]): text_rdelex = text_rdelex.replace(v,f"[trainID-correct_{ids_v}]") text_rdelex = text_rdelex.replace(v.replace("the ",""),f"[trainID-correct_{ids_v}]") for ty,val in total_lexer.items(): if(ty != "choice"): for ids_v, v in enumerate(sorted(val, reverse=True, key=lambda item: len(item))): text_rdelex = text_rdelex.replace(v,f"[{ty}_{ids_v}]") if "choice" in total_lexer.keys(): # print(">>>", span_info_list[i]) for info in span_info_list[i]: if info[1] == "Choice": # print(text_rdelex) start_span, end_span = info[3], info[4] value = info[4] words = text_rdelex.split() for t in range(len(words)): if t == start_span: words[t] = '[choice_0]' elif t > start_span and t <= end_span: words[t] = '' # print(">before:" , text_rdelex) text_rdelex = ' '.join(words) # print(">after: ",text_rdelex) if("cambridge towninfo centre" not in text_rdelex and "towninfo centre" not in text_rdelex and "cambridge" not in text_rdelex): # all_arriveBy # all_day # all_leaveAt for day in all_day: if(day in text_rdelex): # print(day,text_rdelex) flag = False continue for lat in all_leaveAt: if(" "+str(lat) in text_rdelex): # print(lat,text_rdelex) flag = False continue for arb in all_arriveBy: if(" "+str(arb) in text_rdelex): # print(arb,text_rdelex) flag = False continue for dest in all_destination: if(" "+dest in text_rdelex): # print(dest,text_rdelex) flag = False continue for dpt in all_departure: if(" "+dpt in text_rdelex): # print(dpt,text_rdelex) flag = False continue for id_tr in all_trainID: if(id_tr in text_rdelex): # print(id_tr,text_rdelex) flag = False continue rdelex_conv.append({"spk":conv_turn["spk"],"text":conv_turn["text"],"text_rdelex":text_rdelex}) elif conv_turn["spk"] in ["SYS-API"]: if "trainID-correct" in total_lexer.keys(): for ids_v, v in enumerate(total_lexer["trainID-correct"]): text_rdelex = text_rdelex.replace(v,f"[trainID-correct_{ids_v}]") text_rdelex = text_rdelex.replace(v.replace("the ",""),f"[trainID-correct_{ids_v}]") for id_tr in all_trainID: if(id_tr in text_rdelex): # print(id_tr,text_rdelex) flag = False continue rdelex_conv.append({"spk":conv_turn["spk"],"text":conv_turn["text"],"text_rdelex":text_rdelex}) else: rdelex_conv.append({"spk":conv_turn["spk"],"text":conv_turn["text"],"text_rdelex":text_rdelex}) if(flag): data.append({"id":id_dialogue,"conv":rdelex_conv, "lexer":lexicalized, "dict_original":total_lexer}) # for conv_turn in rdelex_conv: # print(f"{conv_turn['spk']} >>> {conv_turn['text_rdelex']}") # print() # print() # print() # input() with open('MultiWOZ_2.1/TRAIN_SINGLE_TEMPLATE.json', 'w') as fp: json.dump(data, fp, indent=4) print(good, count_flag, skip1, skip2, skip3, skip4) print(len(data)) print(good) print(al) print(good/float(al))
py
7df6f7e349779fb9a171dbd9eb4836e56b694c44
# Copyright 2022 Quantapix Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= import re import tensorflow as tf import torch from argparse import ArgumentParser from os.path import abspath from transformers.utils import logging from ..config.bert import PreTrained from ...models.bert import Model logging.set_verbosity_info() log = logging.get_logger(__name__) def load_src_weights(model, src_path, config): src_path = abspath(src_path) log.info(f"Loading from: {src_path}") xs = tf.train.list_variables(src_path) ns, ws = _load_weights(xs, src_path) for n in ns: ss = n.split("/") p = model trace = [] for s in ss: if s == ".ATTRIBUTES": break if s.startswith("layer_with_weights"): layer_num = int(s.split("-")[-1]) if layer_num <= 2: continue elif layer_num == 3: trace.extend(["embeddings", "LayerNorm"]) p = getattr(p, "embeddings") p = getattr(p, "LayerNorm") elif layer_num > 3 and layer_num < config.n_lays + 4: trace.extend(["encoder", "layer", str(layer_num - 4)]) p = getattr(p, "encoder") p = getattr(p, "layer") p = p[layer_num - 4] elif layer_num == config.n_lays + 4: trace.extend(["pooler", "dense"]) p = getattr(p, "pooler") p = getattr(p, "dense") elif s == "embeddings": trace.append("embeddings") p = getattr(p, "embeddings") if layer_num == 0: trace.append("tok_embed") p = getattr(p, "tok_embed") elif layer_num == 1: trace.append("pos_embed") p = getattr(p, "pos_embed") elif layer_num == 2: trace.append("token_type_embeddings") p = getattr(p, "token_type_embeddings") else: raise ValueError("Unknown embedding layer with name {full_name}") trace.append("weight") p = getattr(p, "weight") elif s == "_attention_layer": trace.extend(["attention", "self"]) p = getattr(p, "attention") p = getattr(p, "self") elif s == "_attention_layer_norm": trace.extend(["attention", "output", "LayerNorm"]) p = getattr(p, "attention") p = getattr(p, "output") p = getattr(p, "LayerNorm") elif s == "_attention_output_dense": trace.extend(["attention", "output", "dense"]) p = getattr(p, "attention") p = getattr(p, "output") p = getattr(p, "dense") elif s == "_output_dense": trace.extend(["output", "dense"]) p = getattr(p, "output") p = getattr(p, "dense") elif s == "_output_layer_norm": trace.extend(["output", "LayerNorm"]) p = getattr(p, "output") p = getattr(p, "LayerNorm") elif s == "_key_dense": trace.append("key") p = getattr(p, "key") elif s == "_query_dense": trace.append("query") p = getattr(p, "query") elif s == "_value_dense": trace.append("value") p = getattr(p, "value") elif s == "_intermediate_dense": trace.extend(["intermediate", "dense"]) p = getattr(p, "intermediate") p = getattr(p, "dense") elif s == "_output_layer_norm": trace.append("output") p = getattr(p, "output") elif s in ["bias", "beta"]: trace.append("bias") p = getattr(p, "bias") elif s in ["kernel", "gamma"]: trace.append("weight") p = getattr(p, "weight") else: log.warning(f"Ignored {s}") trace = ".".join(trace) w = ws[n] if re.match(r"(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)", trace) or re.match( r"(\S+)\.attention\.output\.dense\.weight", trace ): w = w.reshape(p.data.shape) if "kernel" in n: w = w.transpose() assert p.shape == w.shape p.data = torch.from_numpy(w) return model def _load_weights(xs, src_path): ns = [] ws = [] ds = [] for n, _ in xs: ss = n.split("/") if n == "_CHECKPOINTABLE_OBJECT_GRAPH" or ss[0] in [ "global_step", "save_counter", ]: log.info(f"Skipping non-model layer {n}") continue if "optimizer" in n: log.info(f"Skipping optimization layer {n}") continue if ss[0] == "model": ss = ss[1:] d = 0 for s in ss: if s.startswith("layer_with_weights"): d += 1 else: break ds.append(d) ns.append("/".join(ss)) ws[n] = tf.train.load_variable(src_path, n) log.info(f"Read {len(ws):,} layers") if len(set(ds)) != 1: raise ValueError(f"Found layers with different depths (layer depth {list(set(ds))})") ds = list(set(ds))[0] if ds != 1: raise ValueError("Found more than just the embedding/encoder layers") return ns, ws def to_pytorch(src_path, cfg_path, save_path): cfg = PreTrained.from_json_file(cfg_path) print(f"Building from config: {cfg}") m = Model(cfg) load_src_weights(m, src_path, cfg) print(f"Saving to: {save_path}") torch.save(m.state_dict(), save_path) if __name__ == "__main__": x = ArgumentParser() x.add_argument("--src_path", type=str, required=True) x.add_argument("--cfg_path", type=str, required=True) x.add_argument("--save_path", type=str, required=True) y = x.parse_args() to_pytorch(y.src_path, y.cfg_path, y.save_path)
py
7df6f91947609247ac42adca68c7ac83c7094f22
import os from bs4 import BeautifulSoup from aws_allowlister.shared.utils import chomp, chomp_keep_single_spaces from aws_allowlister.database.raw_scraping_data import RawScrapingData from aws_allowlister.scrapers.aws_docs import get_aws_html from aws_allowlister.scrapers.common import get_table_ids, clean_status_cell, clean_sdks, get_service_name from sqlalchemy.orm.session import Session def scrape_standard_table(db_session: Session, link: str, destination_folder: str, file_name: str, download: bool = True): results = [] html_file_path = os.path.join(destination_folder, file_name) if download: if os.path.exists(html_file_path): os.remove(html_file_path) get_aws_html(link, html_file_path) raw_scraping_data = RawScrapingData() with open(html_file_path, "r") as f: soup = BeautifulSoup(f.read(), "html.parser") table_ids = get_table_ids(this_soup=soup) # these_results = [] for this_table_id in table_ids: table = soup.find(id=this_table_id) # Get the standard name based on the "tab" name tab = table.contents[1] standard_name = chomp_keep_single_spaces(str(tab.contents[0])) # Skip certain cases based on inconsistent formatting exclusions = ["FedRAMP", "DoD CC SRG", "HIPAA BAA", "MTCS", "HITRUST CSF"] if standard_name in exclusions: continue print(f"Scraping table for {standard_name}") rows = table.find_all("tr") if len(rows) == 0: continue # Scrape it for row in rows: cells = row.find_all("td") # Skip the first row, the rest are the same if len(cells) == 0 or len(cells) == 1: continue # Cell 0: Service name this_service_name = get_service_name(cells) # Cell 1: SDKs # For the HIPAA BAA compliance standard, there are only two columns 🙄 smh at inconsistency these_sdks = clean_sdks(cells) # Cell 2: Status cell # This will contain a checkmark (✓). Let's just mark as true if it is non-empty this_status, this_status_cell_contents = clean_status_cell(cells) result = dict( service_name=this_service_name, sdks=these_sdks, status=this_status, status_text=this_status_cell_contents, ) for sdk in these_sdks: raw_scraping_data.add_entry_to_database( db_session=db_session, compliance_standard_name=standard_name, sdk=sdk, service_name=this_service_name, ) results.append(result) return results
py
7df6f92a7a77baf957d2a6a54a3c8448c5cdddbb
from card import create_image, GameCards import cmd2 as cmd import rule import user INIT_MONEY = 1000 INIT_NUM_USER_CARDS = 10 INIT_NUM_BADAK_CARDS = 8 NUM_USERS = 2 class GsGame: def __init__(self, num_users, play_order_list): self.current_player = 0 self.play_order = play_order_list self.gs_users = [] self.num_users = num_users for i in range(num_users): self.gs_users.append(user.User(i)) def prepare_game(self, gs_cards, num_user_cards, num_badak_cards): self.badak_cards = gs_cards.get_cards_in_random(num_badak_cards) for i in range(self.num_users): user_cards = gs_cards.get_cards_in_random(num_user_cards) self.gs_users[i].set_cards(user_cards) def start(self): winner = -1 self.current_player = self.get_first_player_number() for _ in range(NUM_USERS): player = self.get_next_player() num_of_4cards = len(rule.check_4cards(player.cards_in_hand)) player.score = 7*num_of_4cards if num_of_4cards > 0: rule.decide_go_stop(player) while True: # TODO add cmd2 console here pass # self.gs_users[self.current_player].select_card() return winner def get_first_player_number(self): # TODO: replace 0 to winner return 0 def get_next_player(self): i = self.current_player self.current_player += 1 return self.gs_users[i] def gostop(num_users, play_order_list, money_list): gs_id = 0 gs_game = GsGame(NUM_USERS, play_order_list) while True: gs_cards = GameCards() gs_game.prepare_game(gs_cards, INIT_NUM_USER_CARDS, INIT_NUM_BADAK_CARDS) # TODO # - check if any card set has all 4 set cards. # - money_list print(len(gs_cards)) create_image(sorted(gs_game.badak_cards), image_name="../html/badak.png", overlap=0) create_image(sorted(gs_game.gs_users[gs_id].cards_in_hand), image_name="../html/user_in_hand.png", number=True) for i in range(NUM_USERS): create_image(sorted(gs_game.gs_users[i].cards_earned), image_name=f"../html/cards_earned{i}.png", number=True, overlap=0) gs_game.start() break if __name__ == '__main__': play_order_list = [] for i in range(NUM_USERS): play_order_list.append(i) gostop(NUM_USERS, play_order_list, [INIT_MONEY]*NUM_USERS)
py
7df6f9434420f9176f01ab4c1c7129a5eb01f05b
from flask import (Flask, render_template, request, redirect, url_for, make_response, flash, jsonify) app = Flask(__name__) from sqlalchemy import create_engine, asc, desc from sqlalchemy.orm import sessionmaker from database_setup import Base, Category, Item, User from flask import session as login_session import random import string import json import httplib2 import requests from oauth2client.client import flow_from_clientsecrets, FlowExchangeError CLIENT_ID = json.loads( open('client_secrets.json', 'r').read())['web']['client_id'] APPLICATION_NAME = "Restaurant Menu Application" engine = create_engine('sqlite:///catalog.db') Base.metadata.bind = engine DBSession = sessionmaker(bind=engine) session = DBSession() def create_user(login_session): new_user = User(name=login_session['username'], email=login_session['email'], picture=login_session['picture']) session.add(new_user) session.commit() user = session.query(User).filter_by(email=login_session['email']).one() return user.id def get_user_info(user_id): user = session.query(User).filter_by(id=user_id).one() return user def get_user_ID(email): try: user = session.query(User).filter_by(email=email).one() return user.id except Exception: return None def get_user_from_session(login_session): if 'email' in login_session: return get_user_info(get_user_ID(login_session['email'])) return None @app.route("/") def list_latest(): categories = session.query(Category).order_by(asc(Category.name)) title_items = 'Latest Items' items = session.query(Item).order_by(desc(Item.time_created)) user = get_user_from_session(login_session) return render_template('categories.html', categories=categories, title_items=title_items, items=items, user=user) @app.route('/login') def show_login(): state = ''.join(random.choice(string.ascii_uppercase + string.digits) for x in xrange(32)) login_session['state'] = state return render_template('login.html', STATE=state) @app.route('/gconnect', methods=['POST']) def gconnect(): # Validate state token if request.args.get('state') != login_session['state']: response = make_response(json.dumps('Invalid state parameter.'), 401) response.headers['Content-Type'] = 'application/json' return response # Obtain authorization code code = request.data try: # Upgrade the authorization code into a credentials object oauth_flow = flow_from_clientsecrets('client_secrets.json', scope='') oauth_flow.redirect_uri = 'postmessage' credentials = oauth_flow.step2_exchange(code) except FlowExchangeError: response = make_response( json.dumps('Failed to upgrade the authorization code.'), 401) response.headers['Content-Type'] = 'application/json' return response # Check that the access token is valid. access_token = credentials.access_token url = ('https://www.googleapis.com/oauth2/v1/tokeninfo?access_token=%s' % access_token) h = httplib2.Http() result = json.loads(h.request(url, 'GET')[1]) # If there was an error in the access token info, abort. if result.get('error') is not None: response = make_response(json.dumps(result.get('error')), 500) response.headers['Content-Type'] = 'application/json' return response # Verify that the access token is used for the intended user. gplus_id = credentials.id_token['sub'] if result['user_id'] != gplus_id: response = make_response( json.dumps("Token's user ID doesn't match given user ID."), 401) response.headers['Content-Type'] = 'application/json' return response # Verify that the access token is valid for this app. if result['issued_to'] != CLIENT_ID: response = make_response( json.dumps("Token's client ID does not match app's."), 401) print "Token's client ID does not match app's." response.headers['Content-Type'] = 'application/json' return response stored_access_token = login_session.get('access_token') stored_gplus_id = login_session.get('gplus_id') if stored_access_token is not None and gplus_id == stored_gplus_id: response = make_response(json.dumps('Current user is already' + ' connected.'), 200) response.headers['Content-Type'] = 'application/json' return response # Store the access token in the session for later use. login_session['access_token'] = credentials.access_token login_session['gplus_id'] = gplus_id # Get user info userinfo_url = "https://www.googleapis.com/oauth2/v1/userinfo" params = {'access_token': credentials.access_token, 'alt': 'json'} answer = requests.get(userinfo_url, params=params) data = answer.json() login_session['username'] = data['name'] login_session['picture'] = data['picture'] login_session['email'] = data['email'] user_id = get_user_ID(login_session['email']) if not user_id: user_id = create_user(login_session) login_session['user_id'] = user_id output = '' output += '<h1>Welcome, ' output += login_session['username'] output += '!</h1>' output += '<img src="' output += login_session['picture'] output += (' " style = "width: 300px; height: 300px;border-radius:' + ' 150px;-webkit-border-radius: 150px;-moz-border-radius:' + ' 150px;"> ') flash("you are now logged in as %s" % login_session['username']) print "done!" return output @app.route('/gdisconnect') def gdisconnect(): access_token = login_session['access_token'] print 'In gdisconnect access token is %s', access_token print 'User name is: ' print login_session['username'] if access_token is None: print 'Access Token is None' response = make_response(json.dumps( 'Current user not connected.'), 401) response.headers['Content-Type'] = 'application/json' return response url = ('https://accounts.google.com/o/oauth2/revoke?token=%s' % login_session['access_token']) h = httplib2.Http() result = h.request(url, 'GET')[0] print 'result is ' print result if result['status'] == '200': del login_session['access_token'] del login_session['gplus_id'] del login_session['username'] del login_session['email'] del login_session['picture'] del login_session['user_id'] flash('Successfully disconnected.') return redirect(url_for('list_latest')) else: response = make_response(json.dumps( 'Failed to revoke token for given user.', 400)) response.headers['Content-Type'] = 'application/json' return response @app.route("/new", methods=['GET', 'POST']) def new_item(): if 'username' not in login_session: return redirect('/login') if request.method == 'GET': user = get_user_from_session(login_session) categories = session.query(Category).order_by(asc(Category.name)) return render_template('newitem.html', categories=categories, user=user) if request.method == 'POST': item = Item(name=request.form['name'], description=request.form['description'], category_id=int(request.form['category']), user_id=login_session['user_id']) session.add(item) session.commit() flash('Item add successfully') return redirect(url_for('list_latest')) @app.route("/catalog/item/<int:item_id>") def item_details(item_id): item = session.query(Item).filter_by(id=item_id).one() user = get_user_from_session(login_session) return render_template('itemdetails.html', item=item, user=user) @app.route("/catalog/<int:category_id>") def items_category(category_id): categories = session.query(Category).order_by(asc(Category.name)) items = session.query(Item).filter_by(category_id=category_id) category = session.query(Category).filter_by(id=category_id).one() user = get_user_from_session(login_session) return render_template('categories.html', title_items=category.name, items=items, categories=categories, user=user) @app.route("/delete/item/<int:item_id>", methods=['GET', 'POST']) def delete_item(item_id): if 'username' not in login_session: return redirect('/login') item = session.query(Item).filter_by(id=item_id).one() if login_session['email'] != item.user.email: return 'You cannot delete a item that isn\'t yours ' if request.method == 'GET': user = get_user_from_session(login_session) return render_template('deleteitem.html', item=item, user=user) if request.method == 'POST': session.delete(item) session.commit() flash('Item delete successfully') return redirect(url_for('list_latest')) @app.route("/edit/item/<int:item_id>", methods=['GET', 'POST']) def edit_item(item_id): if 'username' not in login_session: return redirect('/login') item = session.query(Item).filter_by(id=item_id).one() if login_session['email'] != item.user.email: return 'You cannot edit a item that isn\'t yours ' if request.method == 'GET': user = get_user_from_session(login_session) categories = session.query(Category).order_by(asc(Category.name)) return render_template('edititem.html', item=item, categories=categories, user=user) if request.method == 'POST': item.name = request.form['name'] item.description = request.form['description'] item.category_id = request.form['category'] session.add(item) session.commit() flash('Item edited successfully') return redirect(url_for('item_details', item_id=item.id)) @app.route("/categories/JSON") def categories_json(): categories = session.query(Category).order_by(asc(Category.name)) return jsonify(Categories=[category.serialize for category in categories]) @app.route("/catalog/<int:category_id>/JSON") def items_category_json(category_id): items = session.query(Item).filter_by(category_id=category_id) return jsonify(Items=[item.serialize for item in items]) @app.route("/catalog/item/<int:item_id>/JSON") def item_details_json(item_id): item = session.query(Item).filter_by(id=item_id).one() return jsonify(Item=item.serialize) if __name__ == "__main__": app.secret_key = 'SUPER_SECRET_KEY' app.debug = True app.run(host='0.0.0.0', port=5000)
py
7df6f97fc53ccecd10d1f92d4555190d168681e9
import os,sys,glob,subprocess, urllib2, tarfile, shutil, platform failures = [] def get_options(): import os, os.path from optparse import OptionParser parser = OptionParser() parser.add_option("-f", "--force", dest="force", help="reinstall even existing plugins", action="store_true", default=False) (options, args) = parser.parse_args() return options, args def install_url(f, url, subdir=None, plugin=True, force=False): print "install url: package=", f, "url= ", url if os.path.exists(f): if force: shutil.rmtree(f) else: print "Path exists: ", f return; response = urllib2.urlopen(url) thetarfile = tarfile.open(fileobj=response, mode="r|gz") thetarfile.extractall() dirname = glob.glob("*%s*" % (f)) curdir = os.getcwd() dirname = dirname[0] os.rename(dirname, f) # potential bug if something exists/not empty? if (subdir == None): os.chdir(f) else: os.chdir(subdir) res = 0 try: if (plugin): res = subprocess.call(["plugin", "install"]) else: if platform.system() == 'Windows': res = subprocess.call(["python", "setup.py", "config", "--compiler=mingw32", "build", "--compiler=mingw32", "install"]) else: res = subprocess.call(["python","setup.py","install"]) print "subprocess returned ", res except: print "plugin %s FAILED to install correctly" % f failures.append(f) if res != 0: print "plugin %s FAILED to install correctly" % f if (dirname not in failures): failures.append(f) os.chdir(curdir) options, args = get_options() #files = ["Turbine_CostsSE", "CommonSE", "Plant_CostsSE", "Plant_FinanceSE", "Plant_EnergySE"] files = ["Turbine_CostsSE", "CommonSE", "Plant_CostsSE", "Plant_FinanceSE", "Plant_EnergySE", "AeroelasticSE", "AirfoilPreppy", "CCBlade", "DriveSE", "DriveWPACT", "NREL_CSM", "RotorSE", "TowerSE", "pyFrame3DD", "JacketSE", "akima", "pBEAM"] #files = ["pBEAM"] wis = "http://github.com/WISDEM/" subdir = "plugins" # install pandas and algopy subprocess.call(["easy_install", "pandas"]) subprocess.call(["easy_install", "algopy"]) subprocess.call(["easy_install", "zope.interface"]) subprocess.call(["easy_install", "sphinx"]) subprocess.call(["easy_install", "xlrd"]) subprocess.call(["easy_install", "pyopt"]) if platform.system() == 'Windows': subprocess.call(["easy_install", "py2exe"]) subprocess.call(["easy_install", "pyzmq"]) subprocess.call(["easy_install", "sphinxcontrib-bibtex"]) subprocess.call(["easy_install", "sphinxcontrib-napoleon"]) #subprocess.call(["easy_install", "sphinxcontrib-zopeext"]) subprocess.call(["easy_install", "numpydoc"]) subprocess.call(["easy_install", "ipython"]) subprocess.call(["easy_install", "python-dateutil"]) # make plug in dir and cd to it: rootdir = os.getcwd() if not os.path.exists(subdir): os.mkdir(subdir) os.chdir(subdir) # install fused wind f = "fusedwind" #subdir = os.path.join(f,f) # fusedwind is nested!... not anymore, I guess subdir = f url = "http://github.com/FUSED-Wind/fusedwind/tarball/develop" ## note, develop branch install_url(f,url,force=options.force) # download and install all the necessary WISDEM plugins for f in files: url = "%s%s/tarball/0.1" % (wis, f) install_url(f, url,force=options.force) # finally install WISDEM itself os.chdir(rootdir) os.system("plugin install") # summary print print print "Attempted to install WISDEM and its sub-plugins: ", files print "Failed to install: ", failures
py
7df6f9d3d50a3f0a457f75e4465ce663027feb12
import unittest import numpy as np from numpy.core.fromnumeric import size import paddle import interpretdl as it from interpretdl.common.file_utils import * from interpretdl.common.paddle_utils import FeatureExtractor from tests.utils import assert_arrays_almost_equal class TestFileUtils(unittest.TestCase): def test_file_utils(self): download_and_decompress("https://bj.bcebos.com/paddlex/interpret/pre_models.tar.gz") assert md5check('pre_models.tar.gz', '9375cab3b7200365b01b1dd2bc025935') assert md5check('pre_models.tar.gz', 'aaa') is False os.remove('pre_models.tar.gz') def test_mv(self): os.makedirs('tmp/s1') os.makedirs('tmp/s2') move_and_merge_tree('tmp', 'tmp') shutil.rmtree('tmp') class TestPaddleUtils(unittest.TestCase): def test_feature_extractor(self): fe = FeatureExtractor() paddle.enable_static() fe.session_prepare() paddle.disable_static() shutil.rmtree('pre_models') if __name__ == '__main__': unittest.main()
py
7df6fa31df11802056fd91caf97e3f8e5851efca
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License """A JIT-compatible library for QDWH-based polar decomposition. QDWH is short for QR-based dynamically weighted Halley iteration. The Halley iteration implemented through QR decmopositions does not require matrix inversion. This is desirable for multicore and heterogeneous computing systems. Reference: Nakatsukasa, Yuji, Zhaojun Bai, and François Gygi. "Optimizing Halley's iteration for computing the matrix polar decomposition." SIAM Journal on Matrix Analysis and Applications 31, no. 5 (2010): 2700-2720. https://epubs.siam.org/doi/abs/10.1137/090774999 """ import functools import jax from jax import core import jax.numpy as jnp from jax._src.lax import linalg as lax_linalg def _use_qr(u, params): """Uses QR decomposition.""" a, b, c = params m, n = u.shape y = jnp.concatenate([jnp.sqrt(c) * u, jnp.eye(n, dtype=jnp.dtype(u))]) q, _ = lax_linalg.qr(y, full_matrices=False) q1 = q[:m, :] q2 = (q[m:, :]).T.conj() e = b / c u = (e * u + (a - e) / jnp.sqrt(c) * jnp.einsum('ij,jk->ik', q1, q2)) return u def _use_cholesky(u, params): """Uses Cholesky decomposition.""" a, b, c = params _, n = u.shape x = c * (u.T.conj() @ u) + jnp.eye(n, dtype=jnp.dtype(u)) # `y` is lower triangular. y = lax_linalg.cholesky(x, symmetrize_input=False) z = lax_linalg.triangular_solve( y, u.T, left_side=True, lower=True, conjugate_a=True).conj() z = lax_linalg.triangular_solve(y, z, left_side=True, lower=True, transpose_a=True, conjugate_a=True).T.conj() e = b / c u = e * u + (a - e) * z return u @functools.partial(jax.jit, static_argnums=(1, 2, 3)) def _qdwh(x, is_symmetric, max_iterations): """QR-based dynamically weighted Halley iteration for polar decomposition.""" # Estimates `alpha` and `beta = alpha * l`, where `alpha` is an estimate of # norm(x, 2) such that `alpha >= norm(x, 2)` and `beta` is a lower bound for # the smallest singular value of x. eps = jnp.finfo(x.dtype).eps alpha = jnp.sqrt(jnp.linalg.norm(x, ord=1) * jnp.linalg.norm(x, ord=jnp.inf)) l = eps u = x / alpha # Iteration tolerances. tol_l = 10.0 * eps / 2.0 tol_norm = jnp.cbrt(tol_l) def cond_fun(state): _, _, _, is_unconverged, is_not_max_iteration = state return jnp.logical_and(is_unconverged, is_not_max_iteration) def body_fun(state): u, l, iter_idx, _, _ = state u_prev = u # Computes parameters. l2 = l**2 dd = jnp.cbrt(4.0 * (1.0 / l2 - 1.0) / l2) sqd = jnp.sqrt(1.0 + dd) a = (sqd + jnp.sqrt(8.0 - 4.0 * dd + 8.0 * (2.0 - l2) / (l2 * sqd)) / 2) a = jnp.real(a) b = (a - 1.0)**2 / 4.0 c = a + b - 1.0 # Updates l. l = l * (a + b * l2) / (1.0 + c * l2) # Uses QR or Cholesky decomposition. def true_fn(u): return _use_qr(u, params=(a, b, c)) def false_fn(u): return _use_cholesky(u, params=(a, b, c)) u = jax.lax.cond(c > 100, true_fn, false_fn, operand=(u)) if is_symmetric: u = (u + u.T.conj()) / 2.0 # Checks convergence. iterating_l = jnp.abs(1.0 - l) > tol_l iterating_u = jnp.linalg.norm((u-u_prev)) > tol_norm is_unconverged = jnp.logical_or(iterating_l, iterating_u) is_not_max_iteration = iter_idx < max_iterations return u, l, iter_idx + 1, is_unconverged, is_not_max_iteration iter_idx = 1 is_unconverged = True is_not_max_iteration = True u, _, num_iters, is_unconverged, _ = jax.lax.while_loop( cond_fun=cond_fun, body_fun=body_fun, init_val=(u, l, iter_idx, is_unconverged, is_not_max_iteration)) # Applies Newton-Schulz refinement for better accuracy. u = 1.5 * u - 0.5 * u @ (u.T.conj() @ u) h = u.T.conj() @ x h = (h + h.T.conj()) / 2.0 # Converged within the maximum number of iterations. is_converged = jnp.logical_not(is_unconverged) return u, h, num_iters - 1, is_converged # TODO: Add pivoting. def qdwh(x, is_symmetric, max_iterations=10): """QR-based dynamically weighted Halley iteration for polar decomposition. Args: x: A full-rank matrix of shape `m x n` with `m >= n`. is_symmetric: True if `x` is symmetric. max_iterations: The predefined maximum number of iterations. Returns: A four-tuple of (u, h, num_iters, is_converged) containing the polar decomposition of `x = u * h`, the number of iterations to compute `u`, and `is_converged`, whose value is `True` when the convergence is achieved within the maximum number of iterations. """ m, n = x.shape if m < n: raise ValueError('The input matrix of shape m x n must have m >= n.') max_iterations = core.concrete_or_error( int, max_iterations, 'The `max_iterations` argument must be statically ' 'specified to use `qdwh` within JAX transformations.') is_symmetric = core.concrete_or_error( bool, is_symmetric, 'The `is_symmetric` argument must be statically ' 'specified to use `qdwh` within JAX transformations.') if is_symmetric: eps = jnp.finfo(x.dtype).eps tol = 50.0 * eps relative_diff = jnp.linalg.norm(x - x.T.conj()) / jnp.linalg.norm(x) if relative_diff > tol: raise ValueError('The input `x` is NOT symmetric because ' '`norm(x-x.H) / norm(x)` is {}, which is greater than ' 'the tolerance {}.'.format(relative_diff, tol)) with jax.default_matmul_precision('float32'): u, h, num_iters, is_converged = _qdwh(x, is_symmetric, max_iterations) return u, h, num_iters, is_converged
py
7df6fbd2a6628ea05912a50d11bafb40809321dd
#! /usr/bin/env python # # Copyright (C) 2011-2014 Alexandre Gramfort # Michael Waskom # Scott Burns # Martin Luessi # Eric Larson import os from setuptools import setup descr = """PySurfer: cortical surface visualization using Python.""" # deal with MPL sandbox violations during easy_install os.environ['MPLCONFIGDIR'] = '.' # get the version, don't import surfer here so setup works on headless systems version = None with open(os.path.join('surfer', '__init__.py'), 'r') as fid: for line in (line.strip() for line in fid): if line.startswith('__version__'): version = line.split('=')[1].strip().strip('"') break if version is None: raise RuntimeError('Could not determine version') DISTNAME = 'pysurfer' DESCRIPTION = descr LONG_DESCRIPTION = descr MAINTAINER = 'Michael Waskom' MAINTAINER_EMAIL = '[email protected]' URL = 'http://pysurfer.github.com' LICENSE = 'BSD (3-clause)' DOWNLOAD_URL = 'https://github.com/nipy/PySurfer' VERSION = version if __name__ == "__main__": if os.path.exists('MANIFEST'): os.remove('MANIFEST') setup(name=DISTNAME, maintainer=MAINTAINER, include_package_data=True, maintainer_email=MAINTAINER_EMAIL, description=DESCRIPTION, license=LICENSE, url=URL, version=VERSION, download_url=DOWNLOAD_URL, long_description=LONG_DESCRIPTION, zip_safe=False, # the package can run out of an .egg file classifiers=['Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'License :: OSI Approved', 'Programming Language :: Python', 'Topic :: Software Development', 'Topic :: Scientific/Engineering', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', 'Operating System :: Unix', 'Operating System :: MacOS' ], platforms='any', packages=['surfer', 'surfer.tests'], scripts=['bin/pysurfer'], install_requires=['numpy', 'scipy', 'matplotlib', 'nibabel >= 1.2', 'mayavi'], extras_require={'save_movie': ['imageio >= 1.5']}, )
py
7df6fc21705d89ba3c3f650c52e8509923b027b8
n = int(input()) powers_odd = [] powers_even = [] amount = 0 for i in range(1, n + 1): if i % 2: powers_odd.append(i) amount += pow(i, sum(powers_odd)) else: powers_even.append(i) amount += pow(i, sum(powers_even)) print(amount)
py
7df6fc329a7a16d7863bd4c0b19cf035d5be8d6b
# -*- coding: utf-8 -*- from datetime import timedelta import uuid from django.contrib.auth.models import User from django.db import models from django.utils import timezone from django.utils.translation import ugettext_lazy as _ from userprofiles.settings import up_settings def generate_token(): return str(uuid.uuid4()) def generate_confirm_expire_date(): return timezone.now() + timedelta(days=up_settings.EMAIL_VERIFICATION_DAYS) class EmailVerification(models.Model): user = models.ForeignKey(User, verbose_name=_('User'), blank=False) old_email = models.EmailField(_('Old e-mail address')) new_email = models.EmailField(_('New e-mail address')) token = models.CharField(_('Token'), max_length=40, default=generate_token) code = models.CharField(_('Code'), max_length=40, default=generate_token) is_approved = models.BooleanField(_('Approved'), default=False) is_expired = models.BooleanField(_('Expired'), default=False) expiration_date = models.DateTimeField(_('Expiration date'), default=generate_confirm_expire_date) def __unicode__(self): return '%s - %s/%s' % (self.user, self.old_email, self.new_email) def save(self, *args, **kwargs): if self.is_approved: EmailVerification.objects.filter( user=self.user, is_approved=False).update(is_expired=True) self.is_expired = True if self.user.email == self.old_email: self.user.email = self.new_email self.user.save() return super(EmailVerification, self).save(*args, **kwargs) class Meta: app_label = 'userprofiles' verbose_name = _('E-mail verification') verbose_name_plural = _('E-mail verifications')
py
7df6fcc97db1126438b2c4b14155c93bd83df0f3
import djcelery import os from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'z&+kudpyz-5jt9qv%2u5a=c*t&-*6nx!k%x=mcs32xr+@w=4fj' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', # Custom 'schedule', # Third party 'corsheaders', 'djcelery', 'rest_framework', ] MIDDLEWARE = [ 'corsheaders.middleware.CorsMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'scale.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, "templates"), os.path.dirname(os.path.join(BASE_DIR, "templates"))], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'scale.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': ( 'rest_framework.authentication.SessionAuthentication', 'rest_framework.authentication.TokenAuthentication', ), 'DEFAULT_PERMISSION_CLASSES': ( # 'rest_framework.permissions.IsAuthenticated', ), 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.PageNumberPagination', 'PAGE_SIZE': 50 } CORS_ORIGIN_WHITELIST = ( 'http://localhost:3000', ) # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static') MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') # Celery setting djcelery.setup_loader() BROKER_URL = 'amqp://paradox:paradox@[email protected]:5672//' CELERY_ACCEPT_CONTENT = ['json'] CELERY_TASK_SERIALIZER = 'json' CELERY_RESULT_SERIALIZER = 'json' CELERY_TIMEZONE = 'Asia/Katmandu' CELERY_IMPORTS = ('schedule.tasks',) # Sending Email EMAIL_USE_TLS = True EMAIL_HOST = 'smtp.gmail.com' EMAIL_HOST_USER = os.environ.get('EMAIL_HOST_USER') EMAIL_HOST_PASSWORD = os.environ.get('EMAIL_HOST_PASSWORD') DEFAULT_FROM_EMAIL = EMAIL_HOST_USER SERVER_EMAIL = EMAIL_HOST_USER EMAIL_PORT = 587 EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'
py
7df6fe139840a881cb620d132565cdb2b4b28d98
from unittest.mock import patch, MagicMock from django.core.files.uploadedfile import SimpleUploadedFile from django.http import HttpRequest from django.test import TestCase from civil_registry.models import Citizen from civil_registry.tests.factories import CitizenFactory from libya_elections.utils import refresh_model, get_permission_object_by_name from libya_site.tests.factories import UserFactory from register.tests.factories import RegistrationCenterFactory from ..forms import ChangesetForm from ..models import Changeset, APPROVE_CHANGESET_PERMISSION from ..tests.factories import ChangesetFactory class ChangesetFormTest(TestCase): def setUp(self): self.center1 = RegistrationCenterFactory() self.center2 = RegistrationCenterFactory() self.center3 = RegistrationCenterFactory() self.data = { 'name': 'My Changeset', 'change': str(Changeset.CHANGE_CENTER), 'how_to_select': str(Changeset.SELECT_CENTERS), # django-selectable appends "_1" to the field name for the form name that # has the actual data submitted: 'selected_centers_1': [str(self.center1.pk), str(self.center2.pk)], 'target_center_1': str(self.center3.pk), 'justification': 'Just because', } def test_create_changeset(self): # We can create a changeset mock_request = MagicMock(user=UserFactory()) form = ChangesetForm(data=self.data, request=mock_request) self.assertTrue(form.is_valid(), msg=str(form.errors)) changeset = form.save() changeset = refresh_model(changeset) self.assertEqual(Changeset.CHANGE_CENTER, changeset.change) self.assertEqual(Changeset.SELECT_CENTERS, changeset.how_to_select) self.assertIn(self.center1, changeset.selected_centers.all()) self.assertIn(self.center2, changeset.selected_centers.all()) def test_cannot_move_to_same_center(self): # We prevent moving from a center to the same center self.data['target_center_1'] = str(self.center1.pk) form = ChangesetForm(data=self.data, request=MagicMock()) self.assertFalse(form.is_valid()) self.assertIn('target_center', form.errors) def test_select_center_must_specify_selected_centers(self): # If how_to_select is SELECT_CENTERS, you have to specify some del self.data['selected_centers_1'] form = ChangesetForm(data=self.data, request=MagicMock()) self.assertFalse(form.is_valid()) self.assertIn('selected_centers', form.errors) def test_change_center_must_specify_target_center(self): # If changing centers, must give a target del self.data['target_center_1'] form = ChangesetForm(data=self.data, request=MagicMock()) self.assertFalse(form.is_valid()) self.assertIn('target_center', form.errors) def test_select_other_changeset_requires_other_changeset(self): # If how_to_select is SELECT_OTHER_CHANGESET, you have to give another changeset data = self.data data['how_to_select'] = str(Changeset.SELECT_OTHER_CHANGESET) form = ChangesetForm(data=self.data, request=MagicMock()) self.assertFalse(form.is_valid()) self.assertIn('other_changeset', form.errors) def test_rollback_requires_other_changeset(self): # Rollback always requires another changeset data = self.data data['change'] = str(Changeset.CHANGE_ROLLBACK) form = ChangesetForm(data=self.data, request=MagicMock()) self.assertFalse(form.is_valid()) self.assertIn('other_changeset', form.errors) def test_rollback_other_changeset_must_not_have_failed(self): # You can't rollback a failed changeset data = self.data data['change'] = str(Changeset.CHANGE_ROLLBACK) changeset2 = ChangesetFactory(status=Changeset.STATUS_FAILED) data['other_changeset'] = str(changeset2.pk) form = ChangesetForm(data=self.data, request=MagicMock()) self.assertFalse(form.is_valid()) self.assertIn('other_changeset', form.errors) def test_rollback_other_changeset_can_be_partially_successful(self): # You can rollback a partially successful changeset data = self.data data['change'] = str(Changeset.CHANGE_ROLLBACK) changeset2 = ChangesetFactory(status=Changeset.STATUS_PARTIALLY_SUCCESSFUL) data['other_changeset'] = str(changeset2.pk) data['how_to_select'] = str(Changeset.SELECT_OTHER_CHANGESET) form = ChangesetForm(data=self.data, request=MagicMock()) self.assertTrue(form.is_valid(), msg=form.errors) def test_select_uploaded_nids_requires_uploaded_file(self): # If how_to_select is upload NIDs, you must upload a file data = self.data data['how_to_select'] = str(Changeset.SELECT_UPLOADED_NIDS) form = ChangesetForm(data=data, files={}, request=MagicMock()) self.assertFalse(form.is_valid()) self.assertIn('upload_file', form.errors) def test_max_upload_errors(self): # We stop reporting upload errors beyond MAX_ERRORS data = self.data data['how_to_select'] = str(Changeset.SELECT_UPLOADED_NIDS) filebytes = b"1\n2\n3\n4\n" upload_file = SimpleUploadedFile('my_filename', filebytes) form = ChangesetForm(data=data, files={'upload_file': upload_file}, request=MagicMock()) with patch('changesets.forms.MAX_ERRORS', 1): self.assertFalse(form.is_valid()) self.assertIn('upload_file', form.errors) self.assertIn('Stopping', str(form.errors)) def test_upload_file(self): # We can successfully upload a file of NIDs and look up the citizens # and blank lines are okay data = self.data data['how_to_select'] = str(Changeset.SELECT_UPLOADED_NIDS) citizen1 = CitizenFactory() citizen2 = CitizenFactory() filebytes = "{nid1}\n\n{nid2}\n".format(nid1=citizen1.national_id, nid2=citizen2.national_id).encode() upload_file = SimpleUploadedFile('my_filename', filebytes) mock_request = MagicMock(user=UserFactory()) form = ChangesetForm(data=data, files={'upload_file': upload_file}, request=mock_request) self.assertTrue(form.is_valid(), msg=str(form.errors)) changeset = form.save() self.assertIn(citizen1, changeset.selected_citizens.all()) self.assertIn(citizen2, changeset.selected_citizens.all()) def test_upload_file_not_number(self): # We catch non-numbers in the upload file data = self.data data['how_to_select'] = str(Changeset.SELECT_UPLOADED_NIDS) citizen1 = CitizenFactory() citizen2 = CitizenFactory() nid1 = str(citizen1.national_id) nid1 = nid1[0] + '.' + nid1[2:] filebytes = "{nid1}\n{nid2}\n".format(nid1=nid1, nid2=citizen2.national_id).encode() upload_file = SimpleUploadedFile('my_filename', filebytes) form = ChangesetForm(data=data, files={'upload_file': upload_file}, request=MagicMock()) self.assertFalse(form.is_valid()) self.assertIn('upload_file', form.errors) def test_upload_file_invalid_nid(self): # We catch invalid NIDs in the upload file data = self.data data['how_to_select'] = str(Changeset.SELECT_UPLOADED_NIDS) citizen1 = CitizenFactory() citizen2 = CitizenFactory() nid1 = str(citizen1.national_id) nid1 = '3' + nid1[1:] filebytes = "{nid1}\n{nid2}\n".format(nid1=nid1, nid2=citizen2.national_id).encode() upload_file = SimpleUploadedFile('my_filename', filebytes) form = ChangesetForm(data=data, files={'upload_file': upload_file}, request=MagicMock()) self.assertFalse(form.is_valid()) self.assertIn('upload_file', form.errors) def test_upload_file_no_such_citizen(self): # We catch non-existent citizens in the upload file data = self.data data['how_to_select'] = str(Changeset.SELECT_UPLOADED_NIDS) citizen1 = CitizenFactory() citizen2 = CitizenFactory() filebytes = "{nid1}\n{nid2}\n".format(nid1=citizen1.national_id + 27, nid2=citizen2.national_id).encode() upload_file = SimpleUploadedFile('my_filename', filebytes) with patch('changesets.forms.get_citizen_by_national_id') as mock_get_citizen: mock_get_citizen.return_value = None # No such citizen form = ChangesetForm(data=data, files={'upload_file': upload_file}, request=MagicMock()) self.assertFalse(form.is_valid()) self.assertIn('upload_file', form.errors) def test_upload_file_might_have_to_lookup_citizen(self): # Upload file can have a citizen we don't have a Citizen record for yet # (e.g. if we're blocking a citizen who hasn't tried to register) data = self.data data['how_to_select'] = str(Changeset.SELECT_UPLOADED_NIDS) nid1 = "199999999999" filebytes = "{nid1}\n".format(nid1=nid1).encode() upload_file = SimpleUploadedFile('my_filename', filebytes) with patch('changesets.forms.get_citizen_by_national_id') as mock_get_citizen: # Make a Citizen but don't save it in the database, so the form validation # won't initially find it citizen = Citizen(national_id=nid1) mock_get_citizen.return_value = citizen form = ChangesetForm(data=data, files={'upload_file': upload_file}, request=MagicMock()) self.assertTrue(form.is_valid()) def test_upload_file_invalid_line(self): # We notice a file with too short a line data = self.data data['how_to_select'] = str(Changeset.SELECT_UPLOADED_NIDS) citizen1 = CitizenFactory() citizen2 = CitizenFactory() filebytes = "1{nid1}\n{nid2}\n".format(nid1=citizen1.national_id, nid2=citizen2.national_id).encode() upload_file = SimpleUploadedFile('my_filename', filebytes) form = ChangesetForm(data=data, files={'upload_file': upload_file}, request=MagicMock()) self.assertFalse(form.is_valid()) self.assertIn('upload_file', form.errors) def test_upload_file_empty(self): # We don't allow an empty file data = self.data data['how_to_select'] = str(Changeset.SELECT_UPLOADED_NIDS) filebytes = b"" upload_file = SimpleUploadedFile('my_filename', filebytes) form = ChangesetForm(data=data, files={'upload_file': upload_file}, request=MagicMock()) self.assertFalse(form.is_valid()) self.assertIn('upload_file', form.errors) self.assertIn("The submitted file is empty.", str(form.errors)) def test_approval_warning_checkbox(self): # If the changeset has approvals, we include the approval warning checkbox # If not, we don't. # New changeset form = ChangesetForm(data=self.data, request=MagicMock()) self.assertNotIn('okay_to_remove_approvals', form.fields) # Existing changeset without approvals changeset = ChangesetFactory() form = ChangesetForm(instance=changeset, data=self.data, request=MagicMock()) self.assertNotIn('okay_to_remove_approvals', form.fields) # Approvals self.approver = UserFactory() self.approver.user_permissions.add( get_permission_object_by_name(APPROVE_CHANGESET_PERMISSION)) changeset.approve(self.approver) form = ChangesetForm(instance=changeset, data=self.data, request=MagicMock()) self.assertIn('okay_to_remove_approvals', form.fields) # And we must check it self.assertFalse(form.is_valid()) self.assertIn('okay_to_remove_approvals', form.errors) # If we save, it removes the approvals self.data['okay_to_remove_approvals'] = True mock_request = MagicMock() mock_request.__class__ = HttpRequest form = ChangesetForm(instance=changeset, data=self.data, request=mock_request) self.assertTrue(form.is_valid(), form.errors) changeset = form.save() self.assertEqual(0, changeset.number_of_approvals)
py
7df6fe1ea2b65847f447c2f9cd2b5b13e71d4aef
# # This source file is part of the EdgeDB open source project. # # Copyright 2015-present MagicStack Inc. and the EdgeDB authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import annotations import functools import typing from edb.schema import name as sn from edb.schema import objects as so from edb.edgeql import ast as qlast class Type: def __init__(self, name): self.name = name def get_name(self, schema): return self.name class ObjectType(Type): def __init__(self, name): super().__init__(name) self.pointers = {} def is_pointer(self): return False def getptr(self, schema, name): return self.pointers.get(name) class UnionType: def __init__(self, types): self.types = types class Pointer: def __init__(self, name, *, source=None, target=None): self.name = name self.source = source self.target = target self.pointers = {} def is_pointer(self): return True def getptr(self, schema, name): return self.pointers.get(name) def get_target(self, schema): return self.target def get_name(self, schema): return self.name def trace_refs( qltree: qlast.Base, *, schema, source: typing.Optional[sn.Name] = None, subject: typing.Optional[sn.Name] = None, path_prefix: typing.Optional[sn.Name] = None, module: typing.Optional[str] = None, objects: typing.Dict[str, object], ) -> typing.FrozenSet[sn.Name]: """Return a list of schema item names used in an expression.""" ctx = TracerContext(schema, module, objects, source, subject, path_prefix) trace(qltree, ctx=ctx) return frozenset(ctx.refs) class TracerContext: def __init__(self, schema, module, objects, source, subject, path_prefix): self.schema = schema self.refs = set() self.module = module self.objects = objects self.source = source self.subject = subject self.path_prefix = path_prefix def get_ref_name(self, ref: qlast.ObjectRef) -> sn.Name: if ref.module: return sn.Name(module=ref.module, name=ref.name) elif f'{self.module}::{ref.name}' in self.objects: return sn.Name(module=self.module, name=ref.name) else: return sn.Name(module="std", name=ref.name) @functools.singledispatch def trace(node: qlast.Base, *, ctx: TracerContext) -> typing.Optional[so.Object]: raise NotImplementedError(f"do not know how to trace {node!r}") @trace.register def trace_none(node: type(None), *, ctx: TracerContext) -> None: pass @trace.register def trace_Constant(node: qlast.BaseConstant, *, ctx: TracerContext) -> None: pass @trace.register def trace_Array(node: qlast.Array, *, ctx: TracerContext) -> None: for el in node.elements: trace(el, ctx=ctx) @trace.register def trace_Set(node: qlast.Set, *, ctx: TracerContext) -> None: for el in node.elements: trace(el, ctx=ctx) @trace.register def trace_Tuple(node: qlast.Tuple, *, ctx: TracerContext) -> None: for el in node.elements: trace(el, ctx=ctx) @trace.register def trace_NamedTuple(node: qlast.NamedTuple, *, ctx: TracerContext) -> None: for el in node.elements: trace(el.val, ctx=ctx) @trace.register def trace_BinOp(node: qlast.BinOp, *, ctx: TracerContext) -> None: trace(node.left, ctx=ctx) trace(node.right, ctx=ctx) @trace.register def trace_UnaryOp(node: qlast.UnaryOp, *, ctx: TracerContext) -> None: trace(node.operand, ctx=ctx) @trace.register def trace_Detached(node: qlast.DetachedExpr, *, ctx: TracerContext) -> None: trace(node.expr, ctx=ctx) @trace.register def trace_TypeCast(node: qlast.TypeCast, *, ctx: TracerContext) -> None: trace(node.expr, ctx=ctx) if not node.type.subtypes: ctx.refs.add(ctx.get_ref_name(node.type.maintype)) @trace.register def trace_IsOp(node: qlast.IsOp, *, ctx: TracerContext) -> None: trace(node.left, ctx=ctx) if not node.right.subtypes: ctx.refs.add(ctx.get_ref_name(node.right.maintype)) @trace.register def trace_Introspect(node: qlast.Introspect, *, ctx: TracerContext) -> None: if not node.type.subtypes: ctx.refs.add(ctx.get_ref_name(node.type.maintype)) @trace.register def trace_FunctionCall(node: qlast.FunctionCall, *, ctx: TracerContext) -> None: for arg in node.args: trace(arg, ctx=ctx) for arg in node.kwargs.values(): trace(arg, ctx=ctx) @trace.register def trace_Indirection(node: qlast.Indirection, *, ctx: TracerContext) -> None: for indirection in node.indirection: trace(indirection, ctx=ctx) trace(node.arg, ctx=ctx) @trace.register def trace_Index(node: qlast.Index, *, ctx: TracerContext) -> None: trace(node.index, ctx=ctx) @trace.register def trace_Slice(node: qlast.Slice, *, ctx: TracerContext) -> None: trace(node.start, ctx=ctx) trace(node.stop, ctx=ctx) @trace.register def trace_Path(node: qlast.Path, *, ctx: TracerContext) -> typing.Optional[so.Object]: tip = None ptr = None plen = len(node.steps) for i, step in enumerate(node.steps): if isinstance(step, qlast.ObjectRef): refname = ctx.get_ref_name(step) if refname in ctx.objects: ctx.refs.add(refname) tip = ctx.objects[refname] else: tip = ctx.schema.get(refname) elif isinstance(step, qlast.Ptr): if i == 0: # Abbreviated path. if ctx.path_prefix in ctx.objects: tip = ctx.objects[ctx.path_prefix] else: # We can't reason about this path. return if step.type == 'property': lprop = ptr.getptr(ctx.schema, step.ptr.name) if lprop is None: # Invalid link property reference, bail. return if isinstance(lprop, Pointer): ctx.refs.add(f'{lprop.source}@{step.ptr.name}') else: if step.direction == '<': if plen > i + 1 and isinstance(node.steps[i + 1], qlast.TypeIndirection): # A reverse link traversal with a type filter, # process it on the next step. pass else: # otherwise we cannot say anything about the target, # so bail. return else: if tip is None: # We can't reason about this path. return ptr = tip.getptr(ctx.schema, step.ptr.name) if ptr is None: # Invalid pointer reference, bail. return if ptr.source == tip: tip_name = tip.get_name(ctx.schema) ctx.refs.add(f'{tip_name}@{step.ptr.name}') tip = ptr.get_target(ctx.schema) elif isinstance(step, qlast.TypeIndirection): tip = _resolve_type_expr(step.type, ctx=ctx) prev_step = node.steps[i - 1] if prev_step.direction == '<': ptr = tip.getptr(ctx.schema, prev_step.ptr.name) if ptr is None: # Invalid pointer reference, bail. return if isinstance(tip, Type): tip_name = tip.get_name(ctx.schema) ctx.refs.add(f'{tip_name}@{prev_step.ptr.name}') tip = ptr.get_target(ctx.schema) else: tr = trace(step, ctx=ctx) if tr is not None: tip = tr if isinstance(tip, Pointer): ptr = tip return tip @trace.register def trace_Source(node: qlast.Source, *, ctx: TracerContext) -> so.Object: return ctx.objects[ctx.source] @trace.register def trace_Subject(node: qlast.Subject, *, ctx: TracerContext) -> typing.Optional[so.Object]: # Apparently for some paths (of length 1) ctx.subject may be None. if ctx.subject is not None: return ctx.objects[ctx.subject] def _resolve_type_expr( texpr: qlast.TypeExpr, *, ctx: TracerContext ) -> typing.Union[so.Object, UnionType]: if isinstance(texpr, qlast.TypeName): if texpr.subtypes: return Type(name=texpr.maintype.name) else: refname = ctx.get_ref_name(texpr.maintype) obj = ctx.objects.get(refname) if obj is None: obj = ctx.schema.get(refname) else: ctx.refs.add(refname) return obj elif isinstance(texpr, qlast.TypeOp): if texpr.op == '|': return UnionType([ _resolve_type_expr(texpr.left, ctx=ctx), _resolve_type_expr(texpr.right, ctx=ctx), ]) else: raise NotImplementedError( f'unsupported type operation: {texpr.op}') else: raise NotImplementedError( f'unsupported type expression: {texpr!r}' ) @trace.register def trace_TypeIndirection(node: qlast.TypeIndirection, *, ctx: TracerContext) -> None: trace(node.type, ctx=ctx) @trace.register def trace_TypeOf(node: qlast.TypeOf, *, ctx: TracerContext) -> None: trace(node.expr, ctx=ctx) @trace.register def trace_TypeName(node: qlast.TypeName, *, ctx: TracerContext) -> None: if node.subtypes: for st in node.subtypes: trace(st, ctx=ctx) else: fq_name = node.maintype.name if node.maintype.module: fq_name = f'{node.maintype.module}::{fq_name}' ctx.refs.add(fq_name) @trace.register def trace_TypeOp(node: qlast.TypeOp, *, ctx: TracerContext) -> None: trace(node.left, ctx=ctx) trace(node.right, ctx=ctx) @trace.register def trace_IfElse(node: qlast.IfElse, *, ctx: TracerContext) -> None: trace(node.if_expr, ctx=ctx) trace(node.else_expr, ctx=ctx) trace(node.condition, ctx=ctx) @trace.register def trace_Shape(node: qlast.Shape, *, ctx: TracerContext) -> None: if isinstance(node.expr, qlast.Path): tip = trace(node.expr, ctx=ctx) orig_prefix = ctx.path_prefix if tip is not None: ctx.path_prefix = tip.get_name(ctx.schema) else: ctx.path_prefix = None else: trace(node.expr, ctx=ctx) for element in node.elements: trace(element, ctx=ctx) if isinstance(node.expr, qlast.Path): ctx.path_prefix = orig_prefix @trace.register def trace_ShapeElement(node: qlast.ShapeElement, *, ctx: TracerContext) -> None: trace(node.expr, ctx=ctx) for element in node.elements: trace(element, ctx=ctx) trace(node.where, ctx=ctx) for element in node.orderby: trace(element, ctx=ctx) trace(node.offset, ctx=ctx) trace(node.limit, ctx=ctx) trace(node.compexpr, ctx=ctx) @trace.register def trace_Select(node: qlast.SelectQuery, *, ctx: TracerContext) -> None: for alias in node.aliases: if isinstance(alias, qlast.AliasedExpr): trace(alias.expr, ctx=ctx) trace(node.result, ctx=ctx) if node.where is not None: trace(node.where, ctx=ctx) if node.orderby: for expr in node.orderby: trace(expr, ctx=ctx) if node.offset is not None: trace(node.offset, ctx=ctx) if node.limit is not None: trace(node.limit, ctx=ctx) @trace.register def trace_SortExpr(node: qlast.SortExpr, *, ctx: TracerContext) -> None: trace(node.path, ctx=ctx) @trace.register def trace_InsertQuery(node: qlast.InsertQuery, *, ctx: TracerContext) -> None: for alias in node.aliases: if isinstance(alias, qlast.AliasedExpr): trace(alias.expr, ctx=ctx) trace(node.subject, ctx=ctx) for element in node.shape: trace(element, ctx=ctx) @trace.register def trace_UpdateQuery(node: qlast.UpdateQuery, *, ctx: TracerContext) -> None: for alias in node.aliases: if isinstance(alias, qlast.AliasedExpr): trace(alias.expr, ctx=ctx) trace(node.subject, ctx=ctx) for element in node.shape: trace(element, ctx=ctx) trace(node.where, ctx=ctx) @trace.register def trace_DeleteQuery(node: qlast.DeleteQuery, *, ctx: TracerContext) -> None: for alias in node.aliases: if isinstance(alias, qlast.AliasedExpr): trace(alias.expr, ctx=ctx) trace(node.subject, ctx=ctx) if node.where is not None: trace(node.where, ctx=ctx) if node.orderby: for expr in node.orderby: trace(expr, ctx=ctx) if node.offset is not None: trace(node.offset, ctx=ctx) if node.limit is not None: trace(node.limit, ctx=ctx) @trace.register def trace_DescribeStmt( node: qlast.DescribeStmt, *, ctx: TracerContext, ) -> None: if node.object: fq_name = node.object.name if node.object.module: fq_name = f'{node.object.module}::{fq_name}' ctx.refs.add(fq_name)
py
7df6fe223ce5fc4ef421db799cd95e8110f0d7d1
import asyncio import asyncpg import functools import json import logging import os import random import subprocess from timeit import default_timer from aiohttp import ( web, ClientSession, ClientRequest, ClientResponse, ClientError, ClientTimeout, ) from .utils import flatten, log_json, log_msg, log_timer, output_reader LOGGER = logging.getLogger(__name__) DEFAULT_POSTGRES = bool(os.getenv("POSTGRES")) DEFAULT_INTERNAL_HOST = "127.0.0.1" DEFAULT_EXTERNAL_HOST = "localhost" DEFAULT_BIN_PATH = "../bin" DEFAULT_PYTHON_PATH = ".." START_TIMEOUT = float(os.getenv("START_TIMEOUT", 30.0)) RUN_MODE = os.getenv("RUNMODE") GENESIS_URL = os.getenv("GENESIS_URL") LEDGER_URL = os.getenv("LEDGER_URL") if RUN_MODE == "docker": DEFAULT_INTERNAL_HOST = os.getenv("DOCKERHOST") or "host.docker.internal" DEFAULT_EXTERNAL_HOST = DEFAULT_INTERNAL_HOST DEFAULT_BIN_PATH = "./bin" DEFAULT_PYTHON_PATH = "." elif RUN_MODE == "pwd": # DEFAULT_INTERNAL_HOST = DEFAULT_EXTERNAL_HOST = os.getenv("DOCKERHOST") or "host.docker.internal" DEFAULT_BIN_PATH = "./bin" DEFAULT_PYTHON_PATH = "." async def default_genesis_txns(): genesis = None try: if GENESIS_URL: async with ClientSession() as session: async with session.get(GENESIS_URL) as resp: genesis = await resp.text() elif RUN_MODE == "docker": async with ClientSession() as session: async with session.get( f"http://{DEFAULT_EXTERNAL_HOST}:9000/genesis" ) as resp: genesis = await resp.text() else: with open("local-genesis.txt", "r") as genesis_file: genesis = genesis_file.read() except Exception: LOGGER.exception("Error loading genesis transactions:") return genesis class DemoAgent: def __init__( self, ident: str, http_port: int, admin_port: int, internal_host: str = None, external_host: str = None, genesis_data: str = None, seed: str = "random", label: str = None, color: str = None, prefix: str = None, timing: bool = False, timing_log: str = None, postgres: bool = None, extra_args=None, **params, ): self.ident = ident self.http_port = http_port self.admin_port = admin_port self.internal_host = internal_host or DEFAULT_INTERNAL_HOST self.external_host = external_host or DEFAULT_EXTERNAL_HOST self.genesis_data = genesis_data self.label = label or ident self.color = color self.prefix = prefix self.timing = timing self.timing_log = timing_log self.postgres = DEFAULT_POSTGRES if postgres is None else postgres self.extra_args = extra_args if RUN_MODE == "pwd": self.endpoint = f"http://{self.external_host}".replace( "{PORT}", str(http_port) ) else: self.endpoint = f"http://{self.external_host}:{http_port}" self.admin_url = f"http://{self.internal_host}:{admin_port}" self.webhook_port = None self.webhook_url = None self.webhook_site = None self.params = params self.proc = None self.client_session: ClientSession = ClientSession() rand_name = str(random.randint(100_000, 999_999)) self.seed = ( ("my_seed_000000000000000000000000" + rand_name)[-32:] if seed == "random" else seed ) self.storage_type = params.get("storage_type") self.wallet_type = params.get("wallet_type", "indy") self.wallet_name = ( params.get("wallet_name") or self.ident.lower().replace(" ", "") + rand_name ) self.wallet_key = params.get("wallet_key") or self.ident + rand_name self.did = None self.wallet_stats = [] async def register_schema_and_creddef(self, schema_name, version, schema_attrs): # Create a schema schema_body = { "schema_name": schema_name, "schema_version": version, "attributes": schema_attrs, } schema_response = await self.admin_POST("/schemas", schema_body) # log_json(json.dumps(schema_response), label="Schema:") schema_id = schema_response["schema_id"] log_msg("Schema ID:", schema_id) # Create a cred def for the schema credential_definition_body = {"schema_id": schema_id} credential_definition_response = await self.admin_POST( "/credential-definitions", credential_definition_body ) credential_definition_id = credential_definition_response[ "credential_definition_id" ] log_msg("Cred def ID:", credential_definition_id) return (schema_id, credential_definition_id) def get_agent_args(self): result = [ ("--endpoint", self.endpoint), ("--label", self.label), "--auto-ping-connection", "--auto-respond-messages", ("--inbound-transport", "http", "0.0.0.0", str(self.http_port)), ("--outbound-transport", "http"), ("--admin", "0.0.0.0", str(self.admin_port)), "--admin-insecure-mode", ("--wallet-type", self.wallet_type), ("--wallet-name", self.wallet_name), ("--wallet-key", self.wallet_key), ] if self.genesis_data: result.append(("--genesis-transactions", self.genesis_data)) if self.seed: result.append(("--seed", self.seed)) if self.storage_type: result.append(("--storage-type", self.storage_type)) if self.timing: result.append("--timing") if self.timing_log: result.append(("--timing-log", self.timing_log)) if self.postgres: result.extend( [ ("--wallet-storage-type", "postgres_storage"), ("--wallet-storage-config", json.dumps(self.postgres_config)), ("--wallet-storage-creds", json.dumps(self.postgres_creds)), ] ) if self.webhook_url: result.append(("--webhook-url", self.webhook_url)) if self.extra_args: result.extend(self.extra_args) return result @property def prefix_str(self): if self.prefix: return f"{self.prefix:10s} |" async def register_did(self, ledger_url: str = None, alias: str = None): self.log(f"Registering {self.ident} with seed {self.seed}") if not ledger_url: ledger_url = LEDGER_URL if not ledger_url: ledger_url = f"http://{self.external_host}:9000" data = {"alias": alias or self.ident, "seed": self.seed, "role": "TRUST_ANCHOR"} async with self.client_session.post( ledger_url + "/register", json=data ) as resp: if resp.status != 200: raise Exception(f"Error registering DID, response code {resp.status}") nym_info = await resp.json() self.did = nym_info["did"] self.log(f"Got DID: {self.did}") def handle_output(self, *output, source: str = None, **kwargs): end = "" if source else "\n" if source == "stderr": color = "fg:ansired" elif not source: color = self.color or "fg:ansiblue" else: color = None log_msg(*output, color=color, prefix=self.prefix_str, end=end, **kwargs) def log(self, *msg, **kwargs): self.handle_output(*msg, **kwargs) def log_json(self, data, label: str = None, **kwargs): log_json(data, label=label, prefix=self.prefix_str, **kwargs) def log_timer(self, label: str, show: bool = True, **kwargs): return log_timer(label, show, logger=self.log, **kwargs) def _process(self, args, env, loop): proc = subprocess.Popen( args, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env, encoding="utf-8", ) loop.run_in_executor( None, output_reader, proc.stdout, functools.partial(self.handle_output, source="stdout"), ) loop.run_in_executor( None, output_reader, proc.stderr, functools.partial(self.handle_output, source="stderr"), ) return proc def get_process_args(self, bin_path: str = None): cmd_path = "aca-py" if bin_path is None: bin_path = DEFAULT_BIN_PATH if bin_path: cmd_path = os.path.join(bin_path, cmd_path) return list(flatten((["python3", cmd_path, "start"], self.get_agent_args()))) async def start_process( self, python_path: str = None, bin_path: str = None, wait: bool = True ): my_env = os.environ.copy() python_path = DEFAULT_PYTHON_PATH if python_path is None else python_path if python_path: my_env["PYTHONPATH"] = python_path agent_args = self.get_process_args(bin_path) # start agent sub-process loop = asyncio.get_event_loop() self.proc = await loop.run_in_executor( None, self._process, agent_args, my_env, loop ) if wait: await asyncio.sleep(1.0) await self.detect_process() def _terminate(self): if self.proc and self.proc.poll() is None: self.proc.terminate() try: self.proc.wait(timeout=0.5) self.log(f"Exited with return code {self.proc.returncode}") except subprocess.TimeoutExpired: msg = "Process did not terminate in time" self.log(msg) raise Exception(msg) async def terminate(self): loop = asyncio.get_event_loop() if self.proc: await loop.run_in_executor(None, self._terminate) await self.client_session.close() if self.webhook_site: await self.webhook_site.stop() async def listen_webhooks(self, webhook_port): self.webhook_port = webhook_port if RUN_MODE == "pwd": self.webhook_url = f"http://localhost:{str(webhook_port)}/webhooks" else: self.webhook_url = ( f"http://{self.external_host}:{str(webhook_port)}/webhooks" ) app = web.Application() app.add_routes([web.post("/webhooks/topic/{topic}/", self._receive_webhook)]) runner = web.AppRunner(app) await runner.setup() self.webhook_site = web.TCPSite(runner, "0.0.0.0", webhook_port) await self.webhook_site.start() async def _receive_webhook(self, request: ClientRequest): topic = request.match_info["topic"] payload = await request.json() await self.handle_webhook(topic, payload) return web.Response(text="") async def handle_webhook(self, topic: str, payload): if topic != "webhook": # would recurse handler = f"handle_{topic}" method = getattr(self, handler, None) if method: await method(payload) else: log_msg( f"Error: agent {self.ident} " f"has no method {handler} " f"to handle webhook on topic {topic}" ) async def admin_request( self, method, path, data=None, text=False, params=None ) -> ClientResponse: params = {k: v for (k, v) in (params or {}).items() if v is not None} async with self.client_session.request( method, self.admin_url + path, json=data, params=params ) as resp: resp.raise_for_status() resp_text = await resp.text() if not resp_text and not text: return None if not text: try: return json.loads(resp_text) except json.JSONDecodeError as e: raise Exception(f"Error decoding JSON: {resp_text}") from e return resp_text async def admin_GET(self, path, text=False, params=None) -> ClientResponse: try: return await self.admin_request("GET", path, None, text, params) except ClientError as e: self.log(f"Error during GET {path}: {str(e)}") raise async def admin_POST( self, path, data=None, text=False, params=None ) -> ClientResponse: try: return await self.admin_request("POST", path, data, text, params) except ClientError as e: self.log(f"Error during POST {path}: {str(e)}") raise async def detect_process(self): async def fetch_status(url: str, timeout: float): text = None start = default_timer() async with ClientSession(timeout=ClientTimeout(total=3.0)) as session: while default_timer() - start < timeout: try: async with session.get(url) as resp: if resp.status == 200: text = await resp.text() break except (ClientError, asyncio.TimeoutError): pass await asyncio.sleep(0.5) return text status_url = self.admin_url + "/status" status_text = await fetch_status(status_url, START_TIMEOUT) if not status_text: raise Exception( "Timed out waiting for agent process to start. " + f"Admin URL: {status_url}" ) ok = False try: status = json.loads(status_text) ok = isinstance(status, dict) and "version" in status except json.JSONDecodeError: pass if not ok: raise Exception( f"Unexpected response from agent process. Admin URL: {status_url}" ) async def fetch_timing(self): status = await self.admin_GET("/status") return status.get("timing") def format_timing(self, timing: dict) -> dict: result = [] for name, count in timing["count"].items(): result.append( ( name[:35], count, timing["total"][name], timing["avg"][name], timing["min"][name], timing["max"][name], ) ) result.sort(key=lambda row: row[2], reverse=True) yield "{:35} | {:>12} {:>12} {:>10} {:>10} {:>10}".format( "", "count", "total", "avg", "min", "max" ) yield "=" * 96 yield from ( "{:35} | {:12d} {:12.3f} {:10.3f} {:10.3f} {:10.3f}".format(*row) for row in result ) yield "" async def reset_timing(self): await self.admin_POST("/status/reset", text=True) @property def postgres_config(self): return { "url": f"{self.internal_host}:5432", "tls": "None", "max_connections": 5, "min_idle_time": 0, "connection_timeout": 10, } @property def postgres_creds(self): return { "account": "postgres", "password": "mysecretpassword", "admin_account": "postgres", "admin_password": "mysecretpassword", } async def collect_postgres_stats(self, ident: str, vacuum_full: bool = True): creds = self.postgres_creds conn = await asyncpg.connect( host=self.internal_host, port="5432", user=creds["admin_account"], password=creds["admin_password"], database=self.wallet_name, ) tables = ("items", "tags_encrypted", "tags_plaintext") for t in tables: await conn.execute(f"VACUUM FULL {t}" if vacuum_full else f"VACUUM {t}") sizes = await conn.fetch( """ SELECT relname AS "relation", pg_size_pretty(pg_total_relation_size(C.oid)) AS "total_size" FROM pg_class C LEFT JOIN pg_namespace N ON (N.oid = C.relnamespace) WHERE nspname = 'public' ORDER BY pg_total_relation_size(C.oid) DESC; """ ) results = {k: [0, "0B"] for k in tables} for row in sizes: if row["relation"] in results: results[row["relation"]][1] = row["total_size"].replace(" ", "") for t in tables: row = await conn.fetchrow(f"""SELECT COUNT(*) AS "count" FROM {t}""") results[t][0] = row["count"] self.wallet_stats.append((ident, results)) await conn.close() def format_postgres_stats(self): if not self.wallet_stats: return yield "{:30} | {:>17} | {:>17} | {:>17}".format( f"{self.wallet_name} DB", "items", "tags_encrypted", "tags_plaintext" ) yield "=" * 90 for ident, stats in self.wallet_stats: yield "{:30} | {:8d} {:>8} | {:8d} {:>8} | {:8d} {:>8}".format( ident, stats["items"][0], stats["items"][1], stats["tags_encrypted"][0], stats["tags_encrypted"][1], stats["tags_plaintext"][0], stats["tags_plaintext"][1], ) yield "" def reset_postgres_stats(self): self.wallet_stats.clear()
py
7df6fe8a527db90d00acb2b8654afb09b9d47fe1
from services.proto import database_pb2 from services.proto import mdc_pb2 def md_to_html(md, body): convert_req = mdc_pb2.MDRequest(md_body=body) res = md.MarkdownToHTML(convert_req) return res.html_body def convert_to_tags_string(tags_array): # Using | to separate tags. So url encode | character in tags tags_array = [x.replace("|", "%7C") for x in tags_array] return "|".join(tags_array) def get_article(logger, db, global_id=None, ap_id=None): """ Retrieve a single PostEntry from the database. Returns None on error. """ logger.info("Getting article global_id: %s, ap_id: %s", global_id, ap_id) resp = db.Posts(database_pb2.PostsRequest( request_type=database_pb2.PostsRequest.FIND, match=database_pb2.PostsEntry( global_id=global_id, ap_id=ap_id, ) )) if resp.result_type != database_pb2.PostsResponse.OK: logger.error("Error getting article: %s", resp.error) return None elif len(resp.results) == 0: logger.error("Could not find article") return None return resp.results[0] def delete_article(logger, db, global_id=None, ap_id=None): """ Deletes an article from the database safely (removing all references). Returns True on success and False on error. """ logger.info("Deleting post global_id: %s, ap_id: %s", global_id, ap_id) resp = db.SafeRemovePost(database_pb2.PostsEntry( global_id=global_id, ap_id=ap_id, )) if resp.result_type != database_pb2.PostsResponse.OK: logger.error("Error deleting from DB: %s", resp.error) return False return True def get_sharers_of_article(logger, db, global_id): logger.info("Getting sharers of article %d", global_id) resp = db.GetSharersOfPost(database_pb2.SharesEntry( global_id=global_id, )) if resp.result_type != database_pb2.SharesResponse.OK: logger.error("Error getting sharers: %s", resp.error) return None return list(e.sharer_id for e in resp.results)
py
7df6fed7b45aa7cfaef3020894f9bdabe0b13006
# # Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy of this # software and associated documentation files (the "Software"), to deal in the Software # without restriction, including without limitation the rights to use, copy, modify, # merge, publish, distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A # PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # import logging import json import bibot_helpers as helpers logger = logging.getLogger() logger.setLevel(logging.DEBUG) def lambda_handler(event, context): logger.debug('<<BIBot>> Lex event info = ' + json.dumps(event)) session_attributes = event['sessionAttributes'] if session_attributes is None: session_attributes = {} logger.debug('<<BIBot>> lambda_handler: session_attributes = ' + json.dumps(session_attributes)) return hello_intent_handler(event, session_attributes) def hello_intent_handler(intent_request, session_attributes): session_attributes['resetCount'] = '0' session_attributes['finishedCount'] = '0' # don't alter session_attributes['lastIntent'], let BIBot remember the last used intent askCount = helpers.increment_counter(session_attributes, 'greetingCount') # build response string if askCount == 1: response_string = "Hello! How can I help?" elif askCount == 2: response_string = "I'm here" elif askCount == 3: response_string = "I'm listening" elif askCount == 4: response_string = "Yes?" elif askCount == 5: response_string = "Really?" else: response_string = 'Ok' return helpers.close(session_attributes, 'Fulfilled', {'contentType': 'PlainText','content': response_string})
py
7df6feeb09f4e9a9fe66fc79aba26380c229c9d5
from GifFinder import GifFinder gif_finder = GifFinder(word_vector_datafile = '../Data/WordVectors/word_dict.pkl') test_phrase = 'party' search_result_inds = gif_finder.FindGif(test_phrase) print('Sample search query: ' + test_phrase) for i in range(min(3, len(search_result_inds))): print('option ' + str(i + 1) + ': ' + gif_finder.gif_titles[search_result_inds[i]]) print('try another search query') while True: phrase = input() search_result_inds = gif_finder.FindGif(phrase) for i in range(min(3, len(search_result_inds))): print('option ' + str(i + 1) + ': ' + gif_finder.gif_titles[search_result_inds[i]])
py
7df700106ecd55ed250ed503be57d9747edbf9db
def detectCapitalUse(self, word): return word.isupper() or word.islower() or word.istitle() return word in [word.upper(), word.lower(), word.capitalize()]
py
7df7006b9fe82963c36bfcabbca251aca0137385
import gensim import sys from gensim import models import itertools from gensim import utils class DoubleTaggedLineDocument(object): def __init__(self, corpaFile, messagesFile): self.source = corpaFile self.messageReader = MessageReader(messagesFile) def processFile(self): try: self.source.seek(0) for item_no, line in enumerate(self.source): yield models.doc2vec.TaggedDocument(utils.to_unicode(line).split(), [item_no]) except AttributeError: with utils.smart_open(self.source) as fin: for item_no, line in enumerate(fin): yield models.doc2vec.TaggedDocument(utils.to_unicode(line).split(), [item_no]) def __iter__(self): return itertools.chain(self.messageReader.processFile(),self.processFile()) class MessageReader(): def __init__(self, messageFile): self.messageFile = messageFile def method_name(self, line): splitted = utils.to_unicode(line).split() return models.doc2vec.TaggedDocument(splitted[3:], splitted[:3]) def processFile(self): try: self.source.seek(0) for item_no, line in enumerate(self.messageFile): yield self.method_name(line) except AttributeError: with utils.smart_open(self.messageFile) as fin: for item_no, line in enumerate(fin): yield self.method_name(line) def __iter__(self): return self.processFile() wordVecSize = int(sys.argv[3]) sentences = DoubleTaggedLineDocument(sys.argv[1],sys.argv[2]) messages = list(sentences.messageReader) count = len(messages) model = models.doc2vec.Doc2Vec(sentences,size = wordVecSize) docvecs = list(model.docvecs)[:count] for idx,element in enumerate(docvecs): print u'{0} {1}'.format(' '.join(messages[idx].tags),' '.join(str(x) for x in element))
py
7df70104b4bb27d2f273a46fe6137b4b1a146618
from copy import deepcopy class SecureList(): def __init__(self, l): self.list=[i for i in l] def __getitem__(self, index): temp=self.list[index] self.list.pop(index) return temp def __str__(self): temp=deepcopy(self.list) self.list.clear() return "["+", ".join(str(i) for i in temp)+"]" def __len__(self): return len(self.list) def __repr__(self): temp=deepcopy(self.list) self.list.clear() return str(temp)
py
7df702d0084b530bf9d1a07ee20d068615deec01
# coding: utf-8 from __future__ import absolute_import, unicode_literals from functools import wraps __all__ = list(map(str, ['ChainMap'])) # pylint:disable=unused-import try: from collections import ChainMap except ImportError: from chainmap import ChainMap as _ChainMap # Make sure that `ChainMap` is a new-style class. @wraps(_ChainMap, updated=()) class ChainMap(_ChainMap, object): __slots__ = ()
py
7df7037ac7b92f10a02c7818b5a6f2fd9cd10ea7
from celery import task @task(name='astral.settings') def settings(holder): return holder @task(name='astral.mixes') def mixes(holder): return None
py
7df7046e8d3333312902cc8e723192420931b320
""" Copyright 2021-present Airbnb, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import datetime import bcrypt from sqlalchemy import func from flask_restx import Namespace, fields from backend import app from backend.app.shared import client class User(app.db.Model): username = app.db.Column(app.db.VARCHAR( 255), primary_key=True, nullable=False) password = app.db.Column(app.db.VARCHAR(255), nullable=False) role = app.db.Column(app.db.VARCHAR(255), nullable=False) timestamp = app.db.Column(app.db.DateTime, server_default=func.now()) def __init__(self, username, password, role): self.username = username password_hash = bcrypt.hashpw( password.encode('utf8'), bcrypt.gensalt(14)) # Decode Hash to Prevent Encoding Twice (POSTGRESQL Encodes By Default) self.password = password_hash.decode('utf8') self.registered_on = datetime.datetime.now() self.role = role REGION = os.environ['AWS_DEFAULT_REGION'] PREFIX = os.environ['PREFIX'] # SM_CLIENT = SecretsManager(REGION) PRIVATE_KEY = client.get_secret(f'{PREFIX}/otter/private_key', region=REGION) PUBLIC_KEY = client.get_secret(f'{PREFIX}/otter/public_key', region=REGION) rbac = ['ADMIN', 'DEVELOPER', 'PRIVILEGED'] admin_permissions = ['ADMIN'] privileged_permissions = ['ADMIN', 'PRIVILEGED'] developer_permissions = ['ADMIN', 'PRIVILEGED', 'DEVELOPER'] # ADMIN: Create Users/Delete Users/List Users # PRIVILEGED: Delete Assets/Create Assets/Update Assets # DEVELOPER: Get Assets/Rotate Certificate # Admin Namespace admin_namespace = Namespace('admin', description='Admin Operations') # Authentication Parser authentication_parser = admin_namespace.parser() authentication_parser.add_argument( 'Authorization', location='headers', required=True, type=str, help='Bearer Access Token') # Database Object user_model = admin_namespace.model( 'user_object', { 'username': fields.String(), 'role': fields.String(), 'timestamp': fields.DateTime() } ) # Login Response user_token = admin_namespace.model( 'token', { 'token': fields.String(description='JSON Web Token') } ) # User Creation Object create_user = admin_namespace.model( 'create_user', { 'username': fields.String(description='Username', required=True), 'password': fields.String(description='Password', required=True), 'role': fields.String(description='[ADMIN, DEVELOPER, PRIVILEGED]', required=True) } ) # API Namespace api_namespace = Namespace('api', description='API Operations') # Asset Object asset_output = api_namespace.model( 'asset_object', { 'system_name': fields.String(), 'common_name': fields.String(), 'certificate_authority': fields.String(), 'certificate_expiration': fields.String(), 'data_center': fields.String(), 'device_model': fields.String(), 'host_platform': fields.String(), 'ip_address': fields.String(), 'os_version': fields.String(), 'origin': fields.String(), 'subject_alternative_name': fields.List(fields.String()) } ) asset_input = api_namespace.model( 'asset_input', { 'system_name': fields.String(), 'common_name': fields.String(), 'certificate_authority': fields.String(), 'data_center': fields.String(), 'device_model': fields.String(), 'host_platform': fields.String(), 'ip_address': fields.String(), 'os_version': fields.String(), 'subject_alternative_name': fields.List(fields.String()), } ) # User Namespace user_namespace = Namespace('user', description='User Operations') # User Login Body user_login = admin_namespace.model( 'user_login', { 'username': fields.String(description='Username', required=True), 'password': fields.String(description='User Password', required=True), } ) # User Update Password user_credentials = admin_namespace.model( 'user_credentials', { 'username': fields.String(description='Username', required=True), 'password': fields.String(description='Current User Password', required=True), 'updated_password': fields.String(description='Updated User Password', required=True) } )
py
7df704c37d8a2eae804fa645b978bdf724cdb258
''' Created on Oct 8, 2012 @author: Shunping Huang ''' from lapels import cigarutils from lapels import cigarbuilder from lapels.regionutils import makeReadRegion import unittest class TestCigarBuilder(unittest.TestCase): def test0(self): regions = [] add = regions.append ## an inserted I_1 before any M_1 add(makeReadRegion(1, '2I', -1, -2)) add(makeReadRegion(0, '4M', 0, 3)) ## an inserted I_1 after an M_1 add(makeReadRegion(1, '2I', -1, -1)) ## an inserted I_1 after an inserted I_1 add(makeReadRegion(1, '3I', -1, -1)) ## a gap add(makeReadRegion(0, '1M', 5, 5)) ## an inserted I_1 after a match I_1 add(makeReadRegion(1, '4I', 6, 5)) ## a gap here add(makeReadRegion(0, '2M', 7, 8)) ## an M_1 that is an insertion add(makeReadRegion(0, '2I', 9, 8)) add(makeReadRegion(1, '3I', 9, 8)) ## an M_1 that is an insertion add(makeReadRegion(0, '4I', 9, 8)) add(makeReadRegion(1, '5I', 9, 8)) ## a gap here add(makeReadRegion(0, '5M', 10, 14)) cb = cigarbuilder.CigarBuilder() cigar = cb.build(regions) print(cigar) self.assertEqual(cigar, [(1, 2), (0, 4), (1, 2), (1, 3), (2, 1), (0, 1), (1, 4), (2, 1), (0, 2), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (0, 5)]) self.assertEqual(cigarutils.toString(cigar), '2I,4M,2I,3I,1D,1M,4I,1D,2M,2I,3I,4I,5I,1D,5M') def test1(self): regions = [] add = regions.append ## an inserted I_1 before any M_1 add(makeReadRegion(1, '2I', -1, -2)) add(makeReadRegion(0, '4M', 0, 3)) ## an inserted I_1 after an M_1 add(makeReadRegion(1, '2I', -1, -1)) ## an inserted I_1 after an inserted I_1 add(makeReadRegion(1, '3I', -1, -1)) ## a gap ## add(makeReadRegion(1, '1M', 5, 5)) ## an inserted I_1 after a match I_1 add(makeReadRegion(1, '4I', 6, 5)) ## a gap here add(makeReadRegion(0, '2M', 7, 8)) ## an M_1 that is an insertion add(makeReadRegion(0, '2I', 9, 8)) add(makeReadRegion(1, '3I', 9, 8)) ## an M_1 that is an insertion add(makeReadRegion(0, '4I', 9, 8)) add(makeReadRegion(1, '5I', 9, 8)) ## a gap here add(makeReadRegion(0, '5M', 10, 14)) cb = cigarbuilder.CigarBuilder() cigar = cb.build(regions) print(cigar) self.assertEqual(cigar, [(1, 2), (0, 4), (1, 2), (1, 3), (2, 1), (1, 5), (2, 1), (0, 2), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (0, 5)]) self.assertEqual(cigarutils.toString(cigar), '2I,4M,2I,3I,1D,1M,4I,1D,2M,2I,3I,4I,5I,1D,5M') # def test2(self): # regions = [] # add = regions.append # add(makeReadRegion(1, '1I', -1, -2)) # add(makeReadRegion(2, '10I', 5, 4)) ## D_1 of I_0 # add(makeReadRegion(1, '2I', 5, 4)) # add(makeReadRegion(1, '3I', 5, 4)) # add(makeReadRegion(2, '20I', 5, 4,)) ## D_1 of I_0 # add(makeReadRegion(1, '4I', 5, 4 )) # add(makeReadRegion(1, '4I', 7, 6 )) # cb = cigarbuilder.CigarBuilder() # cigar = cb.build(regions) # self.assertEqual(cigar, [(1, 1), (1, 2), (1, 3), (1, 4), (1, 20), (2, 2), (1, 4)]) # def test3(self): # regions = [] # add = regions.append # add(makeReadRegion(0, '25M', 10, 34)) # add(makeReadRegion(1, '1I', 35, 34)) # add(makeReadRegion(3, '1N', 35, 35)) # add(makeReadRegion(0, '74M', 36, 109)) # cb = cigarbuilder.CigarBuilder() # cigar = cb.build(regions) # self.assertEqual(cigarutils.simplify(cigar),[(0, 25), (1, 1), (3, 1), (0, 74)]) # def test4(self): # regions = [] # add = regions.append # add(makeReadRegion(0, '25M', 10, 34)) # add(makeReadRegion(1, '1M,1I', 35, 35)) # add(makeReadRegion(3, '1N', 35, 35)) # add(makeReadRegion(0, '74M', 36, 109)) # cb = cigarbuilder.CigarBuilder() # cigar = cb.build(regions) # self.assertEqual(cigarutils.simplify(cigar),[(0,26),(1,1),(0,74)]) # def test5(self): # regions = [] # add = regions.append # add(makeReadRegion(0, '25M', 10, 34)) # add(makeReadRegion(3, '1N', 35, 35)) # add(makeReadRegion(1, '1M,1I', 35, 35)) # add(makeReadRegion(0, '74M', 36, 109)) # cb = cigarbuilder.CigarBuilder() # cigar = cb.build(regions) # self.assertEqual(cigarutils.simplify(cigar),[(0,26),(1,1),(0,74)]) if __name__ == '__main__': unittest.main()
py
7df705981bd4f013ce2613d37e88dd70fbf3d653
import fnmatch import os def custom_import_module(full_config_path): """ Import and execute a python file as a module. Useful for import the experiment module and the analysis module. Args: full_config_path: Full path to the python file. Returns: The python file as a module """ import importlib.util spec = importlib.util.spec_from_file_location("mod", full_config_path) mod = importlib.util.module_from_spec(spec) spec.loader.exec_module(mod) return mod def checkpoint_from_trained_directory(full_trained_directory, checkpoint_desired): """ Return the checkpoint directory to load the policy. If checkpoint_desired is specified and found, then return that policy. Otherwise, return the last policy. """ checkpoint_dirs = find_dirs_in_dir('checkpoint*', full_trained_directory) # Try to load the desired checkpoint if checkpoint_desired is not None: # checkpoint specified for checkpoint in checkpoint_dirs: if checkpoint_desired == int(checkpoint.split('/')[-1].split('_')[-1]): return checkpoint, checkpoint_desired import warnings warnings.warn( f'Could not find checkpoint_{checkpoint_desired}. Attempting to load the last ' 'checkpoint.' ) # Load the last checkpoint max_checkpoint = None max_checkpoint_value = 0 for checkpoint in checkpoint_dirs: checkpoint_value = int(checkpoint.split('/')[-1].split('_')[-1]) if checkpoint_value > max_checkpoint_value: max_checkpoint_value = checkpoint_value max_checkpoint = checkpoint if max_checkpoint is None: raise FileNotFoundError("Did not find a checkpoint file in the given directory.") return max_checkpoint, max_checkpoint_value def find_dirs_in_dir(pattern, path): """ Traverse the path looking for directories that match the pattern. Return: list of paths that match """ result = [] for root, dirs, files in os.walk(path): for name in dirs: if fnmatch.fnmatch(name, pattern): result.append(os.path.join(root, name)) return result
py
7df70609332e071ba97fbfb8589b51dc20ae0157
# Generated by Django 3.0.4 on 2020-04-29 10:12 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('SmartNewsApp', '0002_comment'), ] operations = [ migrations.AddField( model_name='comment', name='user', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), ]
py
7df707b2034b88c607cc2818f6c37c1fa1db9d2e
"""Supports loading :class:`.Submission` directly from classic data.""" import copy from itertools import groupby from operator import attrgetter from typing import List, Optional, Iterable, Dict from arxiv.base import logging from arxiv.license import LICENSES from ... import domain from . import models from .patch import patch_withdrawal, patch_jref, patch_cross, patch_hold logger = logging.getLogger(__name__) logger.propagate = False def load(rows: Iterable[models.Submission]) -> Optional[domain.Submission]: """ Load a submission entirely from its classic database rows. Parameters ---------- rows : list Items are :class:`.models.Submission` rows loaded from the classic database belonging to a single arXiv e-print/submission group. Returns ------- :class:`.domain.Submission` or ``None`` Aggregated submission object (with ``.versions``). If there is no representation (e.g. all rows are deleted), returns ``None``. """ versions: List[domain.Submission] = [] submission_id: Optional[int] = None # We want to work within versions, and (secondarily) in order of creation # time. rows = sorted(rows, key=lambda o: o.version) logger.debug('Load from rows %s', [r.submission_id for r in rows]) for version, version_rows in groupby(rows, key=attrgetter('version')): # Creation time isn't all that precise in the classic database, so # we'll use submission ID instead. these_version_rows = sorted([v for v in version_rows], key=lambda o: o.submission_id) logger.debug('Version %s: %s', version, version_rows) # We use the original ID to track the entire lifecycle of the # submission in NG. if version == 1: submission_id = these_version_rows[0].submission_id logger.debug('Submission ID: %s', submission_id) # Find the creation row. There may be some false starts that have been # deleted, so we need to advance to the first non-deleted 'new' or # 'replacement' row. version_submission: Optional[domain.Submission] = None while version_submission is None: try: row = these_version_rows.pop(0) except IndexError: break if row.is_new_version() and \ (row.type == row.NEW_SUBMISSION or not row.is_deleted()): # Get the initial state of the version. version_submission = to_submission(row, submission_id) logger.debug('Got initial state: %s', version_submission) if version_submission is None: logger.debug('Nothing to work with for this version') continue # If this is not the first version, carry forward any requests. if len(versions) > 0: logger.debug('Bring user_requests forward from last version') version_submission.user_requests.update(versions[-1].user_requests) for row in these_version_rows: # Remaining rows, since we popped the others. # We are treating JREF submissions as though there is no approval # process; so we can just ignore deleted JREF rows. if row.is_jref() and not row.is_deleted(): # This should update doi, journal_ref, report_num. version_submission = patch_jref(version_submission, row) # For withdrawals and cross-lists, we want to get data from # deleted rows since we keep track of all requests in the NG # submission. elif row.is_withdrawal(): # This should update the reason_for_withdrawal (if applied), # and add a WithdrawalRequest to user_requests. version_submission = patch_withdrawal(version_submission, row) elif row.is_crosslist(): # This should update the secondary classifications (if applied) # and add a CrossListClassificationRequest to user_requests. version_submission = patch_cross(version_submission, row) # We want hold information represented as a Hold on the submission # object, not just the status. if version_submission.is_on_hold: version_submission = patch_hold(version_submission, row) versions.append(version_submission) if not versions: return None submission = copy.deepcopy(versions[-1]) submission.versions = [ver for ver in versions if ver and ver.is_announced] return submission def to_submission(row: models.Submission, submission_id: Optional[int] = None) -> domain.Submission: """ Generate a representation of submission state from a DB instance. Parameters ---------- row : :class:`.models.Submission` Database row representing a :class:`.domain.submission.Submission`. submission_id : int or None If provided the database value is overridden when setting :attr:`domain.Submission.submission_id`. Returns ------- :class:`.domain.submission.Submission` """ status = status_from_classic(row.status) primary = row.primary_classification if row.submitter is None: submitter = domain.User(native_id=row.submitter_id, email=row.submitter_email) else: submitter = row.get_submitter() if submission_id is None: submission_id = row.submission_id license: Optional[domain.License] = None if row.license: label = LICENSES[row.license]['label'] license = domain.License(uri=row.license, name=label) primary_clsn: Optional[domain.Classification] = None if primary and primary.category: _category = domain.Category(primary.category) primary_clsn = domain.Classification(category=_category) secondary_clsn = [ domain.Classification(category=domain.Category(db_cat.category)) for db_cat in row.categories if not db_cat.is_primary ] content: Optional[domain.SubmissionContent] = None if row.package: if row.package.startswith('fm://'): identifier, checksum = row.package.split('://', 1)[1].split('@', 1) else: identifier = row.package checksum = "" source_format = domain.SubmissionContent.Format(row.source_format) content = domain.SubmissionContent(identifier=identifier, compressed_size=0, uncompressed_size=row.source_size, checksum=checksum, source_format=source_format) assert status is not None submission = domain.Submission( submission_id=submission_id, creator=submitter, owner=submitter, status=status, created=row.get_created(), updated=row.get_updated(), source_content=content, submitter_is_author=bool(row.is_author), submitter_accepts_policy=bool(row.agree_policy), submitter_contact_verified=bool(row.userinfo), is_source_processed=not bool(row.must_process), submitter_confirmed_preview=bool(row.viewed), metadata=domain.SubmissionMetadata(title=row.title, abstract=row.abstract, comments=row.comments, report_num=row.report_num, doi=row.doi, msc_class=row.msc_class, acm_class=row.acm_class, journal_ref=row.journal_ref), license=license, primary_classification=primary_clsn, secondary_classification=secondary_clsn, arxiv_id=row.doc_paper_id, version=row.version ) if row.sticky_status == row.ON_HOLD or row.status == row.ON_HOLD: submission = patch_hold(submission, row) elif row.is_withdrawal(): submission = patch_withdrawal(submission, row) elif row.is_crosslist(): submission = patch_cross(submission, row) return submission def status_from_classic(classic_status: int) -> Optional[str]: """Map classic status codes to domain submission status.""" return STATUS_MAP.get(classic_status) # Map classic status to Submission domain status. STATUS_MAP: Dict[int, str] = { models.Submission.NOT_SUBMITTED: domain.Submission.WORKING, models.Submission.SUBMITTED: domain.Submission.SUBMITTED, models.Submission.ON_HOLD: domain.Submission.SUBMITTED, models.Submission.NEXT_PUBLISH_DAY: domain.Submission.SCHEDULED, models.Submission.PROCESSING: domain.Submission.SCHEDULED, models.Submission.PROCESSING_SUBMISSION: domain.Submission.SCHEDULED, models.Submission.NEEDS_EMAIL: domain.Submission.SCHEDULED, models.Submission.ANNOUNCED: domain.Submission.ANNOUNCED, models.Submission.DELETED_ANNOUNCED: domain.Submission.ANNOUNCED, models.Submission.USER_DELETED: domain.Submission.DELETED, models.Submission.DELETED_EXPIRED: domain.Submission.DELETED, models.Submission.DELETED_ON_HOLD: domain.Submission.DELETED, models.Submission.DELETED_PROCESSING: domain.Submission.DELETED, models.Submission.DELETED_REMOVED: domain.Submission.DELETED, models.Submission.DELETED_USER_EXPIRED: domain.Submission.DELETED, models.Submission.ERROR_STATE: domain.Submission.ERROR }
py
7df707f2f07a8f107a953752e6af14b1d04475dc
import hashlib # Floyd's algorithm (https://en.wikipedia.org/wiki/Cycle_detection) # We want to find collisions between two strings that begin with this prefix. my_prefix = '\x41\x61\x99' # Get the first x bytes of the double md5 hash value def hash_function(message, x=14, prefix='\x41\x61\x99', debug=False): temp_hash = hashlib.md5(hashlib.md5(prefix + message).digest()).digest() if debug is True: print(message, x, prefix, temp_hash) return temp_hash[:x] def hash_function2(message, x=14, prefix='\x41\x61\x99', debug=False): temp_hash = hashlib.md5(hashlib.md5(prefix + message).digest()).hexdigest() if debug is True: print(message, x, prefix, temp_hash) return temp_hash[:x] def floyd(x, initial): # Set a few temp values to zero or none x0 = initial m0 = None m1 = None # Start tortoise = hash_function(x0, x, my_prefix) hare = hash_function(tortoise, x, my_prefix) # First loop until our hashes are equal while tortoise != hare: tortoise = hash_function(tortoise, x, my_prefix) hare = hash_function(hash_function(hare, x, my_prefix), x, my_prefix) # Set pointer to initial value tortoise = x0 # Secound loop while tortoise != hare: m0 = tortoise tortoise = hash_function(tortoise, x, my_prefix) hare = hash_function(hare, x, my_prefix) # Loop many times until get second value hare = hash_function(tortoise, x, my_prefix) while tortoise != hare: m1 = hare hare = hash_function(hare, x, my_prefix) # Save results to the file save_results(m0, m1, hash_function(m0, x, my_prefix), hash_function2(m0, x*2, my_prefix)) def save_results(m0, m1, hash1, hash2): """Save results to file.""" with open("message0.bin", "wb") as file: # Save first message: file.write(my_prefix + m0) with open("message1.bin", "wb") as file: # Save second message: file.write(my_prefix + m1) with open("hash_1.bin", "wb") as file: # Save bianry hash of messages: file.write(hash1) with open("hash_2.txt", "w") as file: # Save of messages: file.write("Message 1:\n") file.write(my_prefix + m0) file.write("\n\nMessage 2:\n") file.write(my_prefix + m1) file.write("\n\nHash:\n") file.write(hash2) # Execute floyd funtion with initial value floyd(x=7, initial="123hsdshd9fh933") """ 0x416199 -> 4284825 Message A: 42848253cf02b27a4a781 Message B: 42848259dd4879a8d98bb They both hash to: 0a05085732df91 """
py
7df708af4cec495aa7b279500687e6de3fb7663e
import numpy as np from .common import run_monitored, set_mem_rlimit, Benchmark, safe_import with safe_import(): from scipy.stats import spearmanr with safe_import(): import scipy.interpolate as interpolate class Leaks(Benchmark): unit = "relative increase with repeats" def track_leaks(self): set_mem_rlimit() # Setup temp file, make it fit in memory repeats = [2, 5, 10, 50, 200] peak_mems = [] for repeat in repeats: code = """ import numpy as np from scipy.interpolate import griddata def func(x, y): return x*(1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2 grid_x, grid_y = np.mgrid[0:1:100j, 0:1:200j] points = np.random.rand(1000, 2) values = func(points[:,0], points[:,1]) for t in range(%(repeat)d): for method in ['nearest', 'linear', 'cubic']: griddata(points, values, (grid_x, grid_y), method=method) """ % dict(repeat=repeat) _, peak_mem = run_monitored(code) peak_mems.append(peak_mem) corr, p = spearmanr(repeats, peak_mems) if p < 0.05: print("*"*79) print("PROBABLE MEMORY LEAK") print("*"*79) else: print("PROBABLY NO MEMORY LEAK") return max(peak_mems) / min(peak_mems) class BenchPPoly(Benchmark): def setup(self): np.random.seed(1234) m, k = 55, 3 x = np.sort(np.random.random(m+1)) c = np.random.random((3, m)) self.pp = interpolate.PPoly(c, x) npts = 100 self.xp = np.linspace(0, 1, npts) def time_evaluation(self): self.pp(self.xp) class GridData(Benchmark): param_names = ['n_grids', 'method'] params = [ [10j, 100j, 1000j], ['nearest', 'linear', 'cubic'] ] def setup(self, n_grids, method): self.func = lambda x, y: x*(1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2 self.grid_x, self.grid_y = np.mgrid[0:1:n_grids, 0:1:n_grids] self.points = np.random.rand(1000, 2) self.values = self.func(self.points[:, 0], self.points[:, 1]) def time_evaluation(self, n_grids, method): interpolate.griddata(self.points, self.values, (self.grid_x, self.grid_y), method=method) class Interpolate1d(Benchmark): param_names = ['n_samples', 'method'] params = [ [10, 50, 100, 1000, 10000], ['linear', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic'], ] def setup(self, n_samples, method): self.x = np.arange(n_samples) self.y = np.exp(-self.x/3.0) self.interpolator = interpolate.interp1d(self.x, self.y, kind=method) self.xp = np.linspace(self.x[0], self.x[-1], 4*n_samples) def time_interpolate(self, n_samples, method): """Time the construction overhead.""" interpolate.interp1d(self.x, self.y, kind=method) def time_interpolate_eval(self, n_samples, method): """Time the evaluation.""" self.interpolator(self.xp) class Interpolate2d(Benchmark): param_names = ['n_samples', 'method'] params = [ [10, 50, 100], ['linear', 'cubic', 'quintic'], ] def setup(self, n_samples, method): r_samples = n_samples / 2. self.x = np.arange(-r_samples, r_samples, 0.25) self.y = np.arange(-r_samples, r_samples, 0.25) self.xx, self.yy = np.meshgrid(self.x, self.y) self.z = np.sin(self.xx**2+self.yy**2) def time_interpolate(self, n_samples, method): interpolate.interp2d(self.x, self.y, self.z, kind=method) class Rbf(Benchmark): param_names = ['n_samples', 'function'] params = [ [10, 50, 100], ['multiquadric', 'inverse', 'gaussian', 'linear', 'cubic', 'quintic', 'thin_plate'] ] def setup(self, n_samples, function): self.x = np.arange(n_samples) self.y = np.sin(self.x) r_samples = n_samples / 2. self.X = np.arange(-r_samples, r_samples, 0.25) self.Y = np.arange(-r_samples, r_samples, 0.25) self.z = np.exp(-self.X**2-self.Y**2) def time_rbf_1d(self, n_samples, function): interpolate.Rbf(self.x, self.y, function=function) def time_rbf_2d(self, n_samples, function): interpolate.Rbf(self.X, self.Y, self.z, function=function) class RBFInterpolator(Benchmark): param_names = ['neighbors', 'n_samples', 'kernel'] params = [ [None, 50], [10, 100, 1000], ['linear', 'thin_plate_spline', 'cubic', 'quintic', 'multiquadric', 'inverse_multiquadric', 'inverse_quadratic', 'gaussian'] ] def setup(self, neighbors, n_samples, kernel): rng = np.random.RandomState(0) self.y = rng.uniform(-1, 1, (n_samples, 2)) self.x = rng.uniform(-1, 1, (n_samples, 2)) self.d = np.sum(self.y, axis=1)*np.exp(-6*np.sum(self.y**2, axis=1)) def time_rbf_interpolator(self, neighbors, n_samples, kernel): interp = interpolate.RBFInterpolator( self.y, self.d, neighbors=neighbors, epsilon=5.0, kernel=kernel ) interp(self.x) class UnivariateSpline(Benchmark): param_names = ['n_samples', 'degree'] params = [ [10, 50, 100], [3, 4, 5] ] def setup(self, n_samples, degree): r_samples = n_samples / 2. self.x = np.arange(-r_samples, r_samples, 0.25) self.y = np.exp(-self.x**2) + 0.1 * np.random.randn(*self.x.shape) def time_univariate_spline(self, n_samples, degree): interpolate.UnivariateSpline(self.x, self.y, k=degree) class BivariateSpline(Benchmark): """ Author: josef-pktd and scipy mailinglist example 'http://scipy-user.10969.n7.nabble.com/BivariateSpline-examples\ -and-my-crashing-python-td14801.html' """ param_names = ['n_samples'] params = [ [10, 20, 30] ] def setup(self, n_samples): x = np.arange(0, n_samples, 0.5) y = np.arange(0, n_samples, 0.5) x, y = np.meshgrid(x, y) x = x.ravel() y = y.ravel() xmin = x.min()-1 xmax = x.max()+1 ymin = y.min()-1 ymax = y.max()+1 s = 1.1 self.yknots = np.linspace(ymin+s, ymax-s, 10) self.xknots = np.linspace(xmin+s, xmax-s, 10) self.z = np.sin(x) + 0.1*np.random.normal(size=x.shape) self.x = x self.y = y def time_smooth_bivariate_spline(self, n_samples): interpolate.SmoothBivariateSpline(self.x, self.y, self.z) def time_lsq_bivariate_spline(self, n_samples): interpolate.LSQBivariateSpline(self.x, self.y, self.z, self.xknots.flat, self.yknots.flat) class Interpolate(Benchmark): """ Linear Interpolate in scipy and numpy """ param_names = ['n_samples', 'module'] params = [ [10, 50, 100], ['numpy', 'scipy'] ] def setup(self, n_samples, module): self.x = np.arange(n_samples) self.y = np.exp(-self.x/3.0) self.z = np.random.normal(size=self.x.shape) def time_interpolate(self, n_samples, module): if module == 'scipy': interpolate.interp1d(self.x, self.y, kind="linear") else: np.interp(self.z, self.x, self.y)
py
7df708e5ae422d91e0f2697878f0bffaa90f6a77
#!/usr/bin/env python3 # # MIT License # # Copyright (c) 2018 David Tellenbach <[email protected]> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # For parsing cli arguments import argparse # For parsing JSON files import json # Plotting library import matplotlib as plt plt.use('Agg') import matplotlib.pyplot as pyplot # To access more matplotlib functionality, i.e., default calculated figure # size from pylab import rcParams _version = 0.2 def getVersion(parser): '''Print program name, description and current version''' return "{} - {} - Version {}".format(parser.prog, parser.description, _version) class PlottingConfiguration: '''Configuration of the benchmark plot''' def __init__(self, args): self.inputFile = args.inputFile self.outputFile = args.outputFile self.plotTitle = args.plotTitle self.timeUnit = args.timeUnit self.xValue = args.xValue self.yValue = args.yValue if args.xLabel is None: self.xLabel = args.xValue else: self.xLabel = args.xLabel if args.yLabel is None: self.yLabel = "Time in {}".format(args.timeUnit) else: self.yLabel = args.yLabel self.xTickBegin = args.xTickBegin self.xTickEnd = args.xTickEnd self.xTickStep = args.xTickStep self.benchmarkDescription = args.benchmarkDescription self.xSize = args.xSize self.ySize = args.ySize self.dpi = args.dpi def convertTimeUnit(value, src, dest): '''Convert time units''' # This function is necessary since popular libraries like datatime cannot # handle nanoseconds if src == dest: return value if src == "ns": if dest == "us": return value / 1000 if dest == "ms": return value / 1000000 elif src == "us": if dest == "ns": return value * 1000 if dest == "ms": return value / 1000 elif src == "ms": if dest == "ns": return value * 1000000 if dest == "us": return value * 10000 def parseJSON(configuration): '''Parses JSON file containing benchmark results''' with open(configuration.inputFile) as fd: data = json.load(fd) ret = [] for bench in data["benchmarks"]: # Convert time units if necessary if bench["time_unit"] != configuration.timeUnit: bench[configuration.yValue] = convertTimeUnit(bench[configuration.yValue], bench["time_unit"], configuration.timeUnit) ret.append((bench["benchmark_visualizer_group"], bench[configuration.xValue], bench[configuration.yValue], configuration.timeUnit)) return ret def plot(data, configuration): benchmarkDict = dict() for bench in data: # If no list for this benchmark (group) exist, we create one if bench[0] not in benchmarkDict: benchmarkDict.update({bench[0]: ([], [])}) # Append x value if necessary if bench[1] not in benchmarkDict[bench[0]][0]: benchmarkDict[bench[0]][0].append(bench[1]) # Append y value benchmarkDict[bench[0]][1].append(bench[2]) # Use passed arguments if possible, otherwise use automatically calculated # figure size if configuration.xSize is None and configuration.xSize is None: pyplot.figure(dpi=configuration.dpi) elif configuration.xSize is None: pyplot.figure(figsize=(rcParams['figure.figsize'][0], float(configuration.ySize)), dpi=configuration.dpi) elif configuration.ySize is None: pyplot.figure(figsize=(float(configuration.xSize), rcParams['figure.figsize'][1]), dpi=configuration.dpi) else: pyplot.figure(figsize=(float(configuration.xSize), float(configuration.ySize)), dpi=configuration.dpi) for key, value in benchmarkDict.items(): # Add plotting data pyplot.plot(value[0], value[1], marker='o', label=configuration.benchmarkDescription[int(key)]) pyplot.title(configuration.plotTitle) pyplot.ylabel(configuration.yLabel) pyplot.xlabel(configuration.xLabel) pyplot.legend() pyplot.grid() # If no end for the x values is set, just take the maximum of them if configuration.xTickEnd == -1: for key, val in benchmarkDict.items(): if max(val[0]) > configuration.xTickEnd: configuration.xTickEnd = max(val[0]) if configuration.xTickStep != "auto": pyplot.xticks(range(int(configuration.xTickBegin), int(configuration.xTickEnd)+1, int(configuration.xTickStep))) pyplot.savefig(configuration.outputFile, bbox_inches='tight') def main(): # Parse command line arguments parser = argparse.ArgumentParser(description = "Visualize Google Benchmark.", prog = "Benchmark Visualizer") parser.add_argument("--version", "-v", version = getVersion(parser), action = "version") parser.add_argument("--input_file", "-i", metavar = "FILE", help = "Path to JSON file with benchmark results", dest = "inputFile", required = True) parser.add_argument("--output_file", "-o", metavar = "FILE", help = "Path to file where the image of the diagram will " "be stored.", dest = "outputFile", required = True) parser.add_argument("--title", metavar = "TITLE", help = "Diagram title", dest = "plotTitle", default = "Benchmark Results") parser.add_argument("--time_unit", choices = ["ns", "us", "ms"], help = "Time unit for measured durations", dest = "timeUnit", default = "ns") parser.add_argument("--x_label", metavar = "X_LABEL", dest = "xLabel", help = "Label on the x axis") parser.add_argument("--y_label", metavar = "Y_LABEL", dest = "yLabel", help = "Lable on the y axis") parser.add_argument("--x_value", "-x", metavar = "X_VALUE", dest = "xValue", help = "Name of the counter that stores the x value", required = True) parser.add_argument("--y_value", "-y", choices = ["real_time", "cpu_time"], metavar = "y_VALUE", dest = "yValue", help = "Name of the y value that will be considered", default = "real_time") parser.add_argument("--x_tick_begin", metavar = "VALUE", help = "Set the begin of the x ticks manually", dest = "xTickBegin", default = 0) parser.add_argument("--x_tick_end", metavar = "VALUE", help = "Set the end of the x ticks manually", dest = "xTickEnd", default = -1) parser.add_argument("--x_tick_step", metavar = "VALUE", help = "Set the steps of the x ticks manually", dest = "xTickStep", default = "auto") parser.add_argument("--benchmark_description", "-d", metavar = "DESC", nargs='*', help = "Description of benchmarks", dest = "benchmarkDescription", required = True) parser.add_argument("--x_size", metavar = "VALUE", help = "The horizontal size of the produced plot in inches", dest = "xSize") parser.add_argument("--y_size", metavar = "VALUE", help = "The vertical size of the produced plot in inches", dest = "ySize") parser.add_argument("--dpi", type=int, metavar = "VALUE", help = "DPI of the produced plot", dest = "dpi", default = None) args = parser.parse_args() configuration = PlottingConfiguration(args) data = parseJSON(configuration) plot(data, configuration) if __name__ == "__main__": main()
py
7df708e70369272e08b462b4dfac771bc9bb6c16
import stravalib from stravalib.client import Client from configparser import SafeConfigParser import json import os config = SafeConfigParser() config.read('config.yaml') client = Client() client.access_token = config.get('strava', 'Bearer') def update_strava_archive(): ''' update local archive -- strava has api limits so better to grab once and store ''' try: with open('outputfile','r') as fin: running_data = json.load(fin) except FileNotFoundError: running_data = {} activities = client.get_activities(after = "2012-01-01T00:00:00Z") activity_data = [] for activity in activities: if(f'{activity.id}' not in running_data): # saved as string print(f'{activity.id} ---') activity_stream = client.get_activity_streams(activity.id, types=['latlng','distance']) running_data[activity.id] = activity_stream['latlng'].data with open('outputfile','w') as fout: json.dump(running_data, fout, indent=0) if __name__ == "__name__": update_strava_archive()
py
7df709c4ef289ccf2a7296cf0322aac9509f93f7
''' scans ===== The following methods allow for interaction into the Tenable.io :devportal:`scans <scans>` API endpoints. Methods available on ``tio.scans``: .. rst-class:: hide-signature .. autoclass:: ScansAPI .. automethod:: attachment .. automethod:: configure .. automethod:: copy .. automethod:: create .. automethod:: delete .. automethod:: delete_history .. automethod:: details .. automethod:: export .. automethod:: history .. automethod:: host_details .. automethod:: import_scan .. automethod:: info .. automethod:: launch .. automethod:: list .. automethod:: pause .. automethod:: plugin_output .. automethod:: results .. automethod:: resume .. automethod:: schedule .. automethod:: set_read_status .. automethod:: status .. automethod:: stop .. automethod:: timezones ''' from .base import TIOEndpoint, TIOIterator from tenable.utils import dict_merge, policy_settings from tenable.errors import UnexpectedValueError, FileDownloadError from datetime import datetime, timedelta from io import BytesIO import time class ScanHistoryIterator(TIOIterator): ''' The agents iterator provides a scalable way to work through scan history result sets of any size. The iterator will walk through each page of data, returning one record at a time. If it reaches the end of a page of records, then it will request the next page of information and then continue to return records from the next page (and the next, and the next) until the counter reaches the total number of records that the API has reported. Attributes: count (int): The current number of records that have been returned page (list): The current page of data being walked through. pages will be cycled through as the iterator requests more information from the API. page_count (int): The number of record returned from the current page. total (int): The total number of records that exist for the current request. ''' pass class ScansAPI(TIOEndpoint): def _block_while_running(self, scan_id, sleeper=5): ''' A simple function to block while the scan_id specified is still in a running state. ''' running = True while running: status = self.results(scan_id)['info']['status'] if status[-2:].lower() == 'ed': running = False if running: time.sleep(sleeper) def _create_scan_document(self, kw): ''' Takes the key-worded arguments and will provide a scan settings document based on the values inputted. Args: kw (dict): The keyword dict passed from the user Returns: :obj:`dict`: The resulting scan document based on the kw provided. ''' scan = { 'settings': dict(), } # If a template is specified, then we will pull the listing of available # templates and set the policy UUID to match the template name given. if 'template' in kw: templates = self._api.policies.templates() scan['uuid'] = templates[self._check( 'template', kw['template'], str, default='basic', choices=list(templates.keys()) )] del(kw['template']) # If a policy UUID is sent, then we will set the scan template UUID to # be the UUID that was specified. if 'policy' in kw: policies = self._api.policies.list() match = False # Here we are going to iterate over each policy in the list, looking # to see if we see a match in either the name or the id. If we do # find a match, then we will use the first one that matches, pull # the editor config, and then use the policy id and scan policy # template uuid. for item in policies: if kw['policy'] in [item['name'], item['id']] and not match: policy_tmpl = self._api.editor.details('scan/policy', item['id']) scan['uuid'] = policy_tmpl['uuid'] scan['settings']['policy_id'] = item['id'] match = True # if no match was discovered, then raise an invalid warning. if not match: raise UnexpectedValueError('policy setting is invalid.') del(kw['policy']) # if the scanner attribute was set, then we will attempt to figure out # what scanner to use. if 'scanner' in kw: scanners = self._api.scanners.allowed_scanners() # We will want to attempt to enumerate the scanner list and if # we see a name match, replace the scanner name with the UUID # of the scanner instead. for item in scanners: if item['name'] == kw['scanner']: kw['scanner'] = item['id'] # we will always want to attempt to use the UUID first as it's # the cheapest check that we can run. scan['settings']['scanner_id'] = self._check( 'scanner', kw['scanner'], 'scanner-uuid', choices=[s['id'] for s in scanners]) del(kw['scanner']) # If the targets parameter is specified, then we will need to convert # the list of targets to a comma-delimited string and then set the # text_targets parameter with the result. if 'targets' in kw: scan['settings']['text_targets'] = ','.join(self._check( 'targets', kw['targets'], list)) del(kw['targets']) # For credentials, we will simply push the dictionary as-is into the # the credentials.add sub-document. if 'credentials' in kw: scan['credentials'] = {'add': dict()} scan['credentials']['add'] = self._check( 'credentials', kw['credentials'], dict) del(kw['credentials']) # Just like with credentials, we will push the dictionary as-is into the # correct sub-document of the scan definition. if 'compliance' in kw: scan['audits'] = self._check('compliance', kw['compliance'], dict) del(kw['compliance']) if 'plugins' in kw: scan['plugins'] = self._check('plugins', kw['plugins'], dict) del(kw['plugins']) # any other remaining keyword arguments will be passed into the settings # sub-document. The bulk of the data should go here... scan['settings'] = dict_merge(scan['settings'], kw) return scan def attachment(self, scan_id, attachment_id, key, fobj=None): ''' Retrieve an attachment associated to a scan. :devportal:`scans: attachments <scans-attachments>` Args: scan_id (int): The unique identifier for the scan. attachment_id (int): The unique identifier for the attachement key (str): The attachement access token. fobj (FileObject, optional): a file-like object you wish for the attachement to be written to. If none is specified, a BytesIO object will be returned with the contents of the attachment. Returns: :obj:`FileObject`: A file-like object with the attachement written into it. Examples: >>> with open('example.file', 'wb') as fobj: ... tio.scans.attachement(1, 1, 'abc', fobj) ''' if not fobj: # if no file-like object is specified, then assign a BytesIO object # to the variable. fobj = BytesIO() # Make the HTTP call and stream the data into the file object. resp = self._api.get('scans/{}/attachments/{}'.format( scan_id, attachment_id ), params={'key': self._check('key', key, str)}, stream=True) for chunk in resp.iter_content(chunk_size=1024): if chunk: fobj.write(chunk) fobj.seek(0) resp.close() # Return the file object to the caller. return fobj def configure(self, id, **kw): ''' Overwrite the parameters specified on top of the existing scan record. :devportal:`scans: configure <scans-configure>` Args: id (int): The unique identifier for the scan. template (str, optional): The scan policy template to use. If no template is specified then the default of `basic` will be used. policy (int, optional): The id or title of the scan policy to use (if not using one of the pre-defined templates). Specifying a a policy id will override the the template parameter. targets (list, optional): If defined, then a list of targets can be specified and will be formatted to an appropriate text_target attribute. credentials (dict, optional): A list of credentials to use. compliance (dict, optional): A list of compliance audiots to use. scanner (str, optional): Define the scanner or scanner group uuid or name. **kw (dict, optional): The various parameters that can be passed to the scan creation API. Examples would be `name`, `email`, `scanner_id`, etc. For more detailed information, please refer to the API documentation linked above. Further, any keyword arguments passed that are not explicitly documented will be automatically appended to the settings document. There is no need to pass settings directly. Returns: :obj:`dict`: The scan resource record. Examples: >>> tio.scans.configure(1, name='New Scan Name') ''' # We will get the current scan record, generate the new parameters in # the correct format, and then merge them together to create the new # :func:`~.tenable.tenable_io.ScansAPI.details` method, however is not # scan record that we will be pushing to the API. current = self.details(id) updated = self._create_scan_document(kw) scan = dict_merge(current, updated) # Performing the actual call to the API with the updated scan record. return self._api.put('scans/{}'.format(id), json=scan).json() def copy(self, scan_id, folder_id=None, name=None): ''' Duplicates a scan and returns the details of the copy. :devportal:`scans: copy <scans-copy>` Args: scan_id (int): The unique identifier for the scan. folder_id (int, optional): The unique identifier for the folder. name (str, optional): The name for the copied scan. Returns: :obj:`dict`: The scan resource record for the copied scan. Examples: >>> new_scan = tio.scans.copy(1, 'New Scan Name') ''' # Construct the request payload. payload = dict() if folder_id: payload['folder_id'] = self._check('folder_id', folder_id, int) if name: payload['name'] = self._check('name', name, str) # make the call and return the resulting JSON document to the caller. return self._api.post('scans/{}/copy'.format(scan_id), json=payload).json() def create(self, **kw): ''' Create a new scan. :devportal:`scans: create <scans-create>` Args: name (str): The name of the scan to create. template (str, optional): The scan policy template to use. If no template is specified then the default of `basic` will be used. policy (int, optional): The id or title of the scan policy to use (if not using one of the pre-defined templates). Specifying a a policy id will override the the template parameter. targets (list, optional): If defined, then a list of targets can be specified and will be formatted to an appropriate text_target attribute. credentials (dict, optional): A list of credentials to use. compliance (dict, optional): A list of compliance audits to use. scanner (str, optional): Define the scanner or scanner group uuid or name. **kw (dict, optional): The various parameters that can be passed to the scan creation API. Examples would be `name`, `email`, `scanner_id`, etc. For more detailed information, please refer to the API documentation linked above. Further, any keyword arguments passed that are not explicitly documented will be automatically appended to the settings document. There is no need to pass settings directly. Returns: :obj:`dict`: The scan resource record of the newly created scan. Examples: Create an un-credentialed basic scan: >>> scan = tio.scans.create( ... name='Example Scan', ... targets=['127.0.0.1']) Creating a scan with a set of managed credentials: >>> scan = tio.scans.create( ... name='Example Managed Cred Scan', ... targets=['127.0.0.1'], ... credentials={'Host': {'SSH': [{'id': 'CREDENTIAL-UUID'}]}} Creating a scan with a set of embedded credentials: >>> scan = tio.scans.create( ... name='Example Embedded Cred Scan', ... targets=['127.0.0.1'], ... credentials={'Host': {'Windows': [{ ... 'domain': '', ... 'username': 'Administrator', ... 'password': 'sekretsquirrel', ... 'auth_method': 'Password' ... }]}} ... ) For further information on credentials, what settings to use, etc, refer to `this doc <https://developer.tenable.com/docs/determine-settings-for-credential-type>`_ on the developer portal. ''' if 'template' not in kw: kw['template'] = 'basic' scan = self._create_scan_document(kw) # Run the API call and return the result to the caller. return self._api.post('scans', json=scan).json()['scan'] def delete(self, scan_id): ''' Remove a scan. :devportal:`scans: delete <scans-delete>` Args: scan_id (int or uuid): The unique identifier for the scan. Returns: :obj:`None`: The scan was successfully deleted. Examples: >>> tio.scans.delete(1) ''' self._api.delete('scans/{}'.format(scan_id)) def history(self, id, limit=None, offset=None, pages=None, sort=None): ''' Get the scan history of a given scan from Tenable.io. :devportal:`scans: history <scans-history>` Args: id (int or uuid): The unique identifier for the scan. limit (int, optional): The number of records to retrieve. Default is 50 offset (int, optional): The starting record to retrieve. Default is 0. sort (tuple, optional): A tuple of tuples identifying the the field and sort order of the field. Returns: :obj:`ScanHistoryIterator`: An iterator that handles the page management of the requested records. Examples: >>> for history in tio.scans.history(1): ... pprint(history) ''' query = dict() if sort and self._check('sort', sort, tuple): query['sort'] = ','.join(['{}:{}'.format( self._check('sort_field', i[0], str), self._check('sort_direction', i[1], str, choices=['asc', 'desc']) ) for i in sort]) return ScanHistoryIterator(self._api, _limit=limit if limit else 50, _offset=offset if offset else 0, _pages_total=pages, _query=query, _path='scans/{}/history'.format(id), _resource='history' ) def delete_history(self, scan_id, history_id): ''' Remove an instance of a scan from a scan history. :devportal:`scans: delete-history <scans-delete-history>` Args: scan_id (int or uuid): The unique identifier for the scan. history_id (int or uuid): The unique identifier for the instance of the scan. Returns: :obj:`None`: Scan history successfully deleted. Examples: >>> tio.scans.delete_history(1, 1) ''' self._api.delete('scans/{}/history/{}'.format( scan_id, history_id)) def details(self, scan_id): ''' Calls the editor API and parses the scan config details to return a document that closely matches what the API expects to be POSTed or PUTed via the create and configure methods. The compliance audits and credentials are populated into the 'current' sub-document for the relevant resources. .. important:: Please note that the details method is reverse-engineered from the responses from the editor API, and while we are reasonably sure that the response should align almost exactly to what the API expects to be pushed to it, this method by very nature of what it's doing isn't guaranteed to always work. .. note:: If you're looking for the results of the most recent scan, and what matches to the ``GET /scans/{id}`` call, then take a look at the results method. Args: scan_id (int or uuid): The unique identifier for the scan. Returns: :obj:`dict`: The scan configuration resource. Examples: >>> scan = tio.scans.details(1) >>> pprint(scan) ''' return self._api.editor.details('scan', scan_id) def results(self, scan_id, history_id=None, history_uuid=None): ''' Return the scan results from either the latest scan or a specific scan instance in the history. :devportal:`scans: details <scans-details>` Args: scan_id (int or uuid): The unique identifier for the scan. history_id (int, optional): The unique identifier for the instance of the scan. history_uuid (uuid, optional): The UUID for the instance of the scan. Returns: :obj:`dict`: The scan result dictionary. Examples: Retrieve the latest results: >>> results = tio.scans.results(1) Retrieve a specific instance of the result set: >>> results = tio.scans.results(1, 1) ''' params = dict() if history_id: params['history_id'] = self._check('history_id', history_id, int) if history_uuid: params['history_uuid'] = self._check( 'history_uuid', history_uuid, 'scanner-uuid') return self._api.get('scans/{}'.format( scan_id), params=params).json() def export(self, scan_id, *filters, **kw): ''' Export the scan report. :devportal:`scans: export <scans-export-request>` Args: scan_id (int or uuid): The unique identifier of the scan. *filters (tuple, optional): A list of tuples detailing the filters that wish to be applied the response data. Each tuple is constructed as ('filter', 'operator', 'value') and would look like the following example: `('plugin.id', 'eq', '19506')`. For a complete list of the available filters and options, please refer to the API documentation linked above. history_id (int, optional): The unique identifier for the instance of the scan. history_uuid (uuid, optional): The UUID for the instance of the scan. format (str, optional): What format would you like the resulting data to be in. The default would be nessus output. Available options are `nessus`, `csv`, `html`, `pdf`, `db`. Default is `nessus`. password (str, optional): If the export format is `db`, then what is the password used to encrypt the NessusDB file. This is a require parameter for NessusDB exports. chapters (list, optional): A list of the chapters to write for the report. The chapters list is only required for PDF and HTML exports. Available chapters are `vuln_hosts_summary`, `vuln_by_host`, `compliance_exec`, `remediations`, `vuln_by_plugin`, and `compliance`. List order will denote output order. Default is `vuln_by_host`. filter_type (str, optional): Are the filters exclusive (this AND this AND this) or inclusive (this OR this OR this). Valid values are `and` and `or`. The default setting is `and`. scan_type (str, optional): This parameter is required only when using the API with Web Application Scanning. Available option is 'web-app'. fobj (FileObject, optional): The file-like object to be returned with the exported data. If no object is specified, a BytesIO object is returned with the data. While this is an optional parameter, it is highly recommended to use this parameter as exported files can be quite large, and BytesIO objects are stored in memory, not on disk. Returns: :obj:`FileObject`: The file-like object of the requested export. Examples: Export the full report of the latest instance of the scan: >>> with open('example.nessus', 'wb') as reportobj: ... tio.scans.export(1, fobj=reportobj) Export a specific instance of the scan: >>> with open('example.nessus', 'wb') as reportobj: ... tio.scans.export(1, history_id=1, fobj=reportobj) ''' # initiate the payload and parameters dictionaries. We are also # checking to see if the filters were passed as a keyword argument # instead of as an argument list. As this seems to be a common # issue, we should be supporting this methodology. filters = self._check('filters', kw.get('filters', filters), (list, tuple)) payload = self._parse_filters(filters, self._api.filters.scan_filters(), rtype='sjson') params = dict() dl_params = dict() if 'history_id' in kw: params['history_id'] = self._check( 'history_id', kw['history_id'], int) if kw.get('history_uuid'): params['history_uuid'] = self._check( 'history_uuid', kw['history_uuid'], 'scanner-uuid') # Enable exporting of Web Application scans. if 'scan_type' in kw: dl_params['type'] = params['type'] = self._check( 'type', kw['scan_type'], str, choices=['web-app']) if 'password' in kw: payload['password'] = self._check('password', kw['password'], str) payload['format'] = self._check('format', kw['format'] if 'format' in kw else None, str, choices=['nessus', 'html', 'pdf', 'csv', 'db'], default='nessus') # The chapters are sent to us in a list, and we need to collapse that # down to a comma-delimited string. payload['chapters'] = ';'.join( self._check('chapters', kw['chapters'] if 'chapters' in kw else None, list, choices=['vuln_hosts_summary', 'vuln_by_host', 'vuln_by_plugin', 'compliance_exec', 'compliance', 'remediations'], default=['vuln_by_host'])) if 'filter_type' in kw: payload['filter.search_type'] = self._check( 'filter_type', kw['filter_type'], str, choices=['and', 'or']) # Now we need to set the FileObject. If one was passed to us, then lets # just use that, otherwise we will need to instantiate a BytesIO object # to push the data into. if 'fobj' in kw: fobj = kw['fobj'] else: fobj = BytesIO() # The first thing that we need to do is make the request and get the # File id for the job. fid = self._api.post('scans/{}/export'.format(scan_id), params=params, json=payload).json()['file'] self._api._log.debug('Initiated scan export {}'.format(fid)) # Next we will wait for the status of the export request to become # ready. status = self._wait_for_download( 'scans/{}/export/{}/status'.format(scan_id, fid), 'scans', scan_id, fid, params=dl_params) # Now that the status has reported back as "ready", we can actually # download the file. resp = self._api.get('scans/{}/export/{}/download'.format( scan_id, fid), params=dl_params, stream=True) # Lets stream the file into the file-like object... for chunk in resp.iter_content(chunk_size=1024): if chunk: fobj.write(chunk) fobj.seek(0) resp.close() # Lastly lets return the FileObject to the caller. return fobj def host_details(self, scan_id, host_id, history_id=None, history_uuid=None): ''' Retrieve the host details from a specific scan. :devportal:`scans: host-details <scans-host-details>` Args: scan_id (int): The unique identifier for the scan. host_id (int): The unique identifier for the host within the scan. history_id (int, optional): The unique identifier for the instance of the scan. history_uuid (str, optional): The unique identifier for the scan instance. Returns: :obj:`dict`: The information related to the host requested. Examples: >>> host = tio.scans.host_details(1, 1) ''' params = dict() if history_id: params['history_id'] = self._check('history_id', history_id, int) if history_uuid: params['history_uuid'] = self._check( 'history_uuid', history_uuid, 'scanner-uuid') return self._api.get('scans/{}/hosts/{}'.format( scan_id, self._check('host_id', host_id, int)), params=params).json() def import_scan(self, fobj, folder_id=None, password=None, aggregate=None): ''' Import a scan report into Tenable.io. :devportal:`scans: import <scans-import>` Args: fobj (FileObject): The File-like object of the scan to import. folder_id (int, optional): The unique identifier for the folder to place the scan into. password (str, optional): The password needed to decrypt the file. This is only necessary for NessusDB files uploaded. aggregate (bool, optional): should the Nessus report be aggregated into the aggregate results? The default is True. Returns: :obj:`dict`: The scan resource record for the imported scan. Examples: Import a .nessusv2 report: >>> with open('example.nessus', 'rb') as reportobj: ... tio.scans.import(reportobj) Import a NessusDB report. >>> with open('example.db', 'rb') as reportobj: ... tio.scans.import(reportobj, password='sekret') ''' # First lets verify that the folder_id and password are typed correctly # before initiating any uploads. payload = dict() if folder_id: payload['folder_id'] = self._check('folder_id', folder_id, int) if password: payload['password'] = self._check('password', password, str) if aggregate == None: aggregate = True # Upload the file to the Tenable.io and store the resulting filename in # the payload. payload['file'] = self._api.files.upload(fobj) # make the call to Tenable.io to import and then return the result to # the caller. return self._api.post('scans/import', json=payload, params={ 'include_aggregate': int(aggregate)}).json() def launch(self, scan_id, targets=None): ''' Launches a scan. :devportal:`scans: launch <scans-launch>` Args: scan_id (int or uuid): The unique identifier for the scan. targets (list, optional): A list of targets to be scanned instead of the default targets in the scan. Response: :obj:`str`: The uuid of the scan instance (history). Examples: Launch the scan with the configured targets: >>> tio.scans.launch(1) Launch the scan with some custom targets: >>> tio.scans.launch(1, targets=['127.0.0.1']) ''' payload = dict() if targets: payload['alt_targets'] = self._check('targets', targets, list) return self._api.post('scans/{}/launch'.format( scan_id), json=payload).json()['scan_uuid'] def list(self, folder_id=None, last_modified=None): ''' Retrieve the list of configured scans. :devportal:`scans: list <scans-list>` Args: folder_id (int, optional): Only return scans within this folder. last_modified (datetime, optional): Only return scans that have been modified since the time specified. Returns: :obj:`list`: A list containing the list of scan resource records. Examples: >>> for scan in tio.scans.list(): ... pprint(scan) ''' params = dict() if folder_id: params['folder_id'] = self._check('folder_id', folder_id, int) if last_modified: # for the last_modified datetime attribute, we will want to convert # that into a timestamp integer before passing it to the API. params['last_modification_date'] = int(time.mktime(self._check( 'last_modified', last_modified, datetime).timetuple())) return self._api.get('scans', params=params).json()['scans'] def pause(self, scan_id, block=False): ''' Pauses a running scan. :devportal:`scans: pause <scans-pause>` Args: scan_id (int or uuid): The unique identifier fo the scan to pause. block (bool, optional): Block until the scan is actually paused. Default is False. Returns: :obj:`None`: The scan was successfully requested to be paused. Examples: >>> tio.scans.pause(1) ''' self._api.post('scans/{}/pause'.format(scan_id), json={}) if block: self._block_while_running(scan_id) def plugin_output(self, scan_id, host_id, plugin_id, history_id=None, history_uuid=None): ''' Retrieve the plugin output for a specific instance of a vulnerability on a host. :devportal:`scans: plugin-output <scans-plugin-output>` Args: scan_id (int or uuid): The unique identifier of the scan. host_id (int): The unique identifier of the scanned host. plugin_id (int): The plugin id. history_id (int, optional): The unique identifier of the scan instance. Returns: :obj:`dict`: The plugin resource record for that plugin on that host. Examples: >>> output = tio.scans.plugin_output(1, 1, 1) >>> pprint(output) ''' params = dict() if history_id: params['history_id'] = self._check('history_id', history_id, int) if history_uuid: params['history_uuid'] = self._check('history_uuid', history_uuid, 'uuid') return self._api.get('scans/{}/hosts/{}/plugins/{}'.format( scan_id, self._check('host_id', host_id, int), self._check('plugin_id', plugin_id, int)), params=params).json() def set_read_status(self, scan_id, read_status): ''' Sets the read status of the scan. This is generally used to toggle the unread status of the scan within the UI. :devportal:`scans: read-status <scans-read-status>` Args: scan_id (int or uuid): The unique identifier for the scan. read_status (bool): Is the scan in a read or unread state? True would denote read, whereas False is unread. Returns: :obj:`None`: The status of the scan was updated. Examples: Set a scan to unread: >>> tio.scans.set_read_status(1, False) ''' self._api.put('scans/{}/status'.format(scan_id), json={ 'read': self._check('read_status', read_status, bool) }) def resume(self, scan_id): ''' Resume a paused scan. :devportal:`scans: resume <scans-resume>` Args: scan_id (int or uuid): The unique identifier for the scan. Returns: :obj:`None`: The scan was successfully requested to resume. Examples: >>> tio.scans.resume(1) ''' self._api.post('scans/{}/resume'.format(scan_id)) def schedule(self, scan_id, enabled): ''' Enables or disables the scan schedule. :devportal:`scans: schedule <scans-schedule>` Args: scan_id (int): The unique identifier for the scan. enabled (bool): Enables or Disables the scan scheduling. Returns: :obj:`dict`: The schedule resource record for the scan. Examples: Enable a scan schedule: >>> tio.scans.schedule(1, True) ''' return self._api.put('scans/{}/schedule'.format(scan_id), json={ 'enabled': self._check('enabled', enabled, bool)}).json() def stop(self, scan_id, block=False): ''' Stop a running scan. :devportal:`scans: stop <scans-stop>` Args: scan_id (int): The unique identifier for the scan. block (bool, optional): Block until the scan is actually stopped. Default is False. Returns: :obj:`None`: The scan was successfully requested to stop. Examples: Stop the scan asynchronously: >>> tio.scans.stop(1) Stop the scan and wait for the scan to stop: >>> tio.scans.stop(1, True) ''' self._api.post('scans/{}/stop'.format(scan_id)) if block: self._block_while_running(scan_id) def status(self, scan_id): ''' Get the status of the latest instance of the scan. :devportal:`scans: get-latest-status <scans-get-latest-status>` Args: scan_id (int or uuid): The unique identifier for the scan. Returns: :obj:`str`: The current status of the last instance. Examples: >>> tio.scans.status(1) u'completed' ''' return self._api.get('scans/{}/latest-status'.format(scan_id)).json()['status'] def timezones(self): ''' Retrieves the list of timezones. :devportal:`scans: timezones <scans-timezones>` Returns: :obj:`list`: List of allowed timezone strings accepted by Tenable.IO Examples: >>> for item in tio.scans.timezones(): ... pprint(item) ''' resp = self._api.get('scans/timezones').json()['timezones'] return [i['value'] for i in resp] def info(self, scan_id, history_uuid): ''' Retrieves information about the status of the specified instance of the scan. :devportal:`scan: get-scan-history <scans-history-by-scan-id>` Args: scan_id (int or uuid): The unique identifier for the scan. history_uuid (str): The unique identifier for the scan instance. Returns: :obj:`dict`: The metadata about the scan instance specified. Examples: >>> info = tio.scans.info(1, 'BA0ED610-C27B-4096-A8F4-3189279AFFE7') ''' return self._api.get('scans/{}/history/{}'.format( scan_id, self._check('history_uuid', history_uuid, 'scanner-uuid'))).json()
py
7df709d5b7628f6c2d09517262be3b54c199d477
"""Simultaneous unit, coverage, and timing testing for python 3 modules.""" # standard library import argparse import ast import importlib import inspect import json import math import os import re import sys import time import unittest class CodeTracer(ast.NodeTransformer): """Traces, compiles, and executes an abstract syntax tree.""" __INJECT_NAME = '__code_tracer__' @staticmethod def from_source_file(filename): """Create a CodeTracer for the given source file.""" # read the file, parse the AST, and return a tracer with open(filename) as f: src = f.read() tree = ast.parse(src) return CodeTracer(tree, filename) def __init__(self, tree, filename): # a list of all statements in the injected module self.nodes = [] self.original_tree = tree self.filename = filename def run(self): """Trace, compile, and execute the AST, and return global variables.""" # inject code tracing calls into the AST tree = self.visit(self.original_tree) ast.fix_missing_locations(tree) # execute the new AST, and keep track of global variables it creates global_vars = {CodeTracer.__INJECT_NAME: self} exec(compile(tree, self.filename, 'exec'), global_vars) # return the global variables return global_vars def get_coverage(self): """ Return code coverage as a list of execution counts and other metadata for each statement. Each item in the list is a dict containing the following keys: - executions: the number of times the statement was executed - line: the line number of the statement (1-indexed) - column: the column number of the statement (0-indexed) - is_string: a boolean indicating whether the statement was a string The list is sorted by line number. """ # function to determine whether a given node is a string (e.g. a docstring) def is_string(node): return isinstance(node, ast.Expr) and isinstance(node.value, ast.Str) # iterate over all nodes coverage = [] for node_info in self.nodes: node = node_info['node'] # coverage result for the current node coverage.append({ 'executions': node_info['counter'], 'time': node_info['time'], 'line': node.lineno, 'column': node.col_offset, 'is_string': is_string(node), }) # return sorted coverage results return sorted(coverage, key=lambda row: row['line']) def execute_node1(self, node_id): """Increment the execution counter, and start timing the given node.""" self.nodes[node_id]['counter'] += 1 self.nodes[node_id]['time'] -= time.time() def execute_node2(self, node_id): """Stop timing the given node.""" self.nodes[node_id]['time'] += time.time() def generic_visit(self, node): """ Visit an AST node and add tracing if it's a statement. This method shouldn't be called directly. It is called by the super class when the `run` method of this class is called. """ # let the super class visit this node first super().generic_visit(node) # only trace statements if not isinstance(node, ast.stmt): return node # a unique identifier and initial data for this node node_id = len(self.nodes) self.nodes.append({ 'node': node, 'counter': 0, 'time': 0, }) # tracing is done by calling "execute_node" of this class func1 = ast.Attribute( value=ast.Name(id=CodeTracer.__INJECT_NAME, ctx=ast.Load()), attr='execute_node1', ctx=ast.Load() ) func2 = ast.Attribute( value=ast.Name(id=CodeTracer.__INJECT_NAME, ctx=ast.Load()), attr='execute_node2', ctx=ast.Load() ) # the argument to the tracing function is the unique node identifier args = [ast.Num(n=node_id)] # the tracer will be executed whenever the statement is executed tracer1 = ast.Expr(value=ast.Call(func=func1, args=args, keywords=[])) tracer2 = ast.Expr(value=ast.Call(func=func2, args=args, keywords=[])) # spoof location information for the generated node ast.copy_location(tracer1, node) ast.copy_location(tracer2, node) # inject tracers in a try-finally construct around this node wrapper = ast.Try(body=[node], handlers=[], orelse=[], finalbody=[tracer2]) return [tracer1, wrapper] class TestResult(unittest.TextTestResult): """An implementation of python's unittest.TestResult class.""" ERROR = -2 FAIL = -1 SKIP = 0 PASS = 1 def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # keep a list of passed tests self.successes = [] # record the result of all tests self.results = {} def __set_result(self, test, skip, error, fail, tb): """ Set the result of the test. The result is one of these integers: PASS, SKIP, FAIL, or ERROR. """ # derive a friendly name match = re.match('^(\\S+)\\s+\\(\\S+?\\.(\\S+)\\)$', str(test)) if match is None: raise Exception('unrocognized test name: "%s"' % test) name = '%s.%s' % (match.group(2), match.group(1)) # set (or update) the result if skip: self.results[name] = TestResult.SKIP elif error: self.results[name] = TestResult.ERROR elif fail: self.results[name] = TestResult.FAIL else: # don't overwrite an earlier result (e.g. of a failed subtest) if self.results.get(name, None) is None: self.results[name] = TestResult.PASS def addError(self, test, err): super().addError(test, err) self.__set_result(test, False, True, False, err[-1]) def addFailure(self, test, err): super().addFailure(test, err) self.__set_result(test, False, False, True, err[-1]) def addSuccess(self, test): super().addSuccess(test) self.successes.append(test) self.__set_result(test, False, False, False, None) def addSkip(self, test, reason): super().addSkip(test, reason) self.__set_result(test, True, False, False, None) def addExpectedFailure(self, test, err): super().addExpectedFailure(test, err) self.__set_result(test, False, False, False, err[-1]) def addUnexpectedSuccess(self, test): super().addUnexpectedSuccess(test) self.__set_result(test, False, False, True, None) def addSubTest(self, test, subtest, outcome): super().addSubTest(test, subtest, outcome) # a failed or errored subtest fails or errors the whole test fail = outcome is not None tb = outcome[-1] if fail else None self.__set_result(test, False, False, fail, tb) class Styler: """Helper class for producing stylized terminal output.""" green, gray, red = 32, 37, 31 def __init__(self, json_only=False, use_colors=False, show_source=False): self.__json_only = json_only self.__use_colors = use_colors self.__show_source = show_source def colorize(self, txt, color): """Color the given string.""" if self.__use_colors: return '\x1b[0;%d;40m%s\x1b[0m' % (color, txt) else: return txt def emit(self, txt, is_source=False): """Print the given string, conditional on export settings.""" if not self.__json_only and (not is_source or self.__show_source): print(txt) def run_tests(filename, output=sys.stdout): """Run all tests in the given file and return unit and coverage resuls.""" # get the module name from the filename path, ext = filename[:-3], filename[-3:] if ext != '.py': raise Exception('not a *.py file: ' + str(filename)) module_name = path.replace(os.path.sep, '.') # needed when the file is in a subdirectory sys.path.append(os.getcwd()) # import the module and determine the test target module = importlib.import_module(module_name) target_module = getattr(module, '__test_target__', None) if target_module is None: message = ( 'Warning: ' '%s missing attribute __test_target__. ' 'Coverage will not be tracked.' ) print(message % module_name, file=output) target_file = None else: target_file = target_module.replace('.', os.path.sep) + '.py' if target_file: # trace execution while loading the target file tracer = CodeTracer.from_source_file(target_file) global_vars = tracer.run() # make the target's globals available to the test module for key in global_vars: if key[:2] != '__': setattr(module, key, global_vars[key]) # load and run unit tests tests = unittest.defaultTestLoader.loadTestsFromModule(module) runner = unittest.TextTestRunner( stream=output, verbosity=2, resultclass=TestResult ) unit_info = runner.run(tests) if target_file: coverage_results = tracer.get_coverage() else: coverage_results = None # return unit and coverage results return { 'unit': unit_info.results, 'coverage': coverage_results, 'target_module': target_module, 'target_file': target_file, } def find_tests(location, regex, terminal): """Find files containing unit tests.""" if not os.path.exists(location): return [] elif os.path.isdir(location): pattern = re.compile(regex) file_set = set() for dir_, dirs, files in os.walk(location): for f in files: if pattern.match(f): file_set.add(os.path.join(dir_, f)) if terminal: break return sorted(file_set) else: return [location] return tests_files def analyze_results(results, styler=None): """ Extract a useful set of information from the results of a single unit test. """ if styler is None: styler = Styler(json_only=True) # unit results export = { 'target_file': results['target_file'], 'target_module': results['target_module'], 'unit': { 'tests': {}, 'summary': {}, }, 'coverage': { 'lines': [], 'hit_counts': {}, 'summary': {}, }, } styler.emit('=' * 70) styler.emit('Test results for:') styler.emit(' %s (%s)' % (results['target_module'], results['target_file'])) styler.emit('Unit:') test_bins = {-2: 0, -1: 0, 0: 0, 1: 0} for name in sorted(results['unit'].keys()): result = results['unit'][name] test_bins[result] += 1 txt, color = { -2: ('error', Styler.red), -1: ('fail', Styler.red), 0: ('skip', Styler.gray), 1: ('pass', Styler.green), }[result] export['unit']['tests'][name] = txt styler.emit(' %s: %s' % (name, styler.colorize(txt, color))) export['unit']['summary'] = { 'total': len(results['unit']), 'error': test_bins[-2], 'fail': test_bins[-1], 'skip': test_bins[0], 'pass': test_bins[1], } def fmt(num, goodness): if goodness > 0 and num > 0: color = Styler.green elif goodness < 0 and num > 0: color = Styler.red else: color = Styler.gray return styler.colorize(str(num), color) styler.emit(' error: %s' % fmt(test_bins[-2], -1)) styler.emit(' fail: %s' % fmt(test_bins[-1], -1)) styler.emit(' skip: %s' % fmt(test_bins[0], 0)) styler.emit(' pass: %s' % fmt(test_bins[1], 1)) if not results['target_file']: # coverage was not computed, return test outcomes only return export # coverage results styler.emit('Coverage:') def print_line(line, txt, hits, time, required): export['coverage']['lines'].append({ 'line': line, 'hits': hits, 'time': time, 'required': required, }) def format_duration(d): if d < 1e-3: # less than a millisecond, hide to reduce noise return '' elif d < 10: # millisecond precision for times up to 10 seconds return '%.0f ms' % (d * 1e3) else: return '%.0f sec' % d if required: args = ( '%dx' % hits, format_duration(time / max(hits, 1)), format_duration(time), ) cov = '%-10s %-10s %-10s' % args else: cov = '' if not required: color = Styler.gray elif hits > 0: color = Styler.green else: color = Styler.red txt = styler.colorize('%-80s' % txt, color) styler.emit(' %4d %s %s' % (line, txt, cov), is_source=True) if required and time < 0: raise Exception('time travel detected') with open(results['target_file']) as f: src = [(i, line) for (i, line) in enumerate(f.readlines())] hit_bins = {0: 0} for row in results['coverage']: while len(src) > 0 and src[0][0] < row['line'] - 1: line, hits, time = src[0][0] + 1, 0, 0 txt, src = src[0][1][:-1], src[1:] print_line(line, txt, hits, time, False) line, hits, time = row['line'], row['executions'], row['time'] txt, src = src[0][1][:-1], src[1:] required = not row['is_string'] print_line(line, txt, hits, time, required) if required: if hits not in hit_bins: hit_bins[hits] = 1 else: hit_bins[hits] += 1 while len(src) > 0: line, hits, time = src[0][0] + 1, 0, 0 txt, src = src[0][1][:-1], src[1:] print_line(line, txt, hits, time, False) for hits in sorted(hit_bins.keys()): num = hit_bins[hits] if hits == 0 and num > 0: color = Styler.red elif hits > 0 and num > 0: color = Styler.green else: color = Styler.gray num_str = styler.colorize(str(num), color) export['coverage']['hit_counts'][hits] = num styler.emit(' %dx: %s' % (hits, num_str)) total_lines = sum(hit_bins.values()) lines_hit = total_lines - hit_bins[0] export['coverage']['summary'] = { 'total_lines': total_lines, 'hit_lines': lines_hit, 'missed_lines': (total_lines - lines_hit), 'percent': lines_hit / max(total_lines, 1), } styler.emit(' overall: %d%%' % math.floor(100 * lines_hit / total_lines)) # return results return export def run_test_sets(location, pattern, terminal, show_json, color, full): """ Run all test sets and print results to standard output. location (str): the path in which to search for unit tests pattern (str): regular expression for matching unit test filenames terminal (bool): whether the search should end with the given location (non-recursive) show_json (bool): whether to show JSON or human-readable output color (bool): whether human-readable output should be colorized full (bool): whether human-readable test target source code should be shown """ # run unit and coverage tests styler = Styler( json_only=show_json, use_colors=color, show_source=full ) test_files = find_tests(location, pattern, terminal) if not test_files: raise Exception('no tests found') tests_by_outcome = { 'pass': [], 'skip': [], 'fail': [], 'error': [], } def all_pass_or_skip(): no_fail = not tests_by_outcome['fail'] no_error = not tests_by_outcome['error'] return no_fail and no_error if show_json: # suppress other output all_results = [] with open(os.devnull, 'w') as output: for filename in test_files: test_outcomes = run_tests(filename, output) test_results = analyze_results(test_outcomes, styler) all_results.append(test_results) for test_name, test_outcome in test_results['unit']['tests'].items(): tests_by_outcome[test_outcome].append(test_name) print(json.dumps(all_results)) else: # use default output num_tests = 0 total_lines = hit_lines = 0 for filename in test_files: test_results = analyze_results(run_tests(filename), styler) if len(test_results['unit']) > 0: unit_stats = test_results['unit']['summary'] coverage_stats = test_results['coverage']['summary'] for test_name, test_outcome in test_results['unit']['tests'].items(): tests_by_outcome[test_outcome].append(test_name) num_tests += unit_stats['total'] if coverage_stats: total_lines += coverage_stats['total_lines'] hit_lines += coverage_stats['hit_lines'] if total_lines == 0: coverage = 0 else: coverage = hit_lines / total_lines percent = math.floor(coverage * 100) if total_lines: args = (percent, hit_lines, total_lines) coverage_str = ' %d%% (%d/%d) coverage.' % args else: coverage_str = ' [coverage unavailable]' all_ok = all_pass_or_skip() if color: if all_ok: icon = '✔ ' else: icon = '✘ ' else: icon = '' if all_ok: num_pass = len(tests_by_outcome['pass']) if tests_by_outcome['skip']: skip_str = ' (%s skipped)' % len(tests_by_outcome['skip']) else: skip_str = '' args = (icon, num_pass, skip_str, coverage_str) result = '%sAll %d tests passed!%s%s' % args txt = styler.colorize(result, Styler.green) else: result = '%sSome tests did not pass.%s' % (icon, coverage_str) txt = styler.colorize(result, Styler.red) def print_status(label, outcome): if not tests_by_outcome[outcome]: return print('%s:' % label) for name in tests_by_outcome[outcome]: print(' - %s' % name) print_status('skipped', 'skip') print_status('failed', 'fail') print_status('broken', 'error') styler.emit(txt) return all_pass_or_skip() def get_argument_parser(): """Set up command line arguments and usage.""" parser = argparse.ArgumentParser() parser.add_argument( 'location', type=str, help='file or directory containing unit tests' ) parser.add_argument( '--pattern', '-p', default='^(test_.*|.*_test)\\.py$', type=str, help='filename regex for test discovery' ) parser.add_argument( '--terminal', '-t', default=False, action='store_true', help='do not search for tests recursively' ) parser.add_argument( '--json', '--j', default=False, action='store_true', help='print results in JSON format' ) parser.add_argument( '--color', '-c', default=False, action='store_true', help='colorize results' ) parser.add_argument( '--full', '--f', default=False, action='store_true', help='show coverage for each line' ) parser.add_argument( '--use-exit-code', default=False, action='store_true', help='use exit code to indicate non-passing tests' ) return parser def main(): """Run this script from the command line.""" args = get_argument_parser().parse_args() all_pass = run_test_sets( args.location, args.pattern, args.terminal, args.json, args.color, args.full) if args.use_exit_code and not all_pass: sys.exit(1) if __name__ == '__main__': main()
py
7df70a8f41c5f8e8da761666cb99db9010a5c6ef
import time import dataset import imagenet import coco from dataclasses import dataclass # pylint: disable=missing-docstring # the datasets we support SUPPORTED_DATASETS = { "imagenet": (imagenet.Imagenet, dataset.pre_process_vgg, dataset.PostProcessCommon(offset=-1), {"image_size": [224, 224, 3]}), "imagenet_mobilenet": (imagenet.Imagenet, dataset.pre_process_mobilenet, dataset.PostProcessArgMax(offset=-1), {"image_size": [224, 224, 3]}), "imagenet_pytorch": (imagenet.Imagenet, dataset.pre_process_imagenet_pytorch, dataset.PostProcessArgMax(offset=0), {"image_size": [224, 224, 3]}), "coco-300": (coco.Coco, dataset.pre_process_coco_mobilenet, coco.PostProcessCoco(), {"image_size": [300, 300, 3]}), "coco-300-pt": (coco.Coco, dataset.pre_process_coco_pt_mobilenet, coco.PostProcessCocoPt(False,0.3), {"image_size": [300, 300, 3]}), "coco-1200": (coco.Coco, dataset.pre_process_coco_resnet34, coco.PostProcessCoco(), {"image_size": [1200, 1200, 3]}), "coco-1200-onnx": (coco.Coco, dataset.pre_process_coco_resnet34, coco.PostProcessCocoOnnx(), {"image_size": [1200, 1200, 3]}), "coco-1200-pt": (coco.Coco, dataset.pre_process_coco_resnet34, coco.PostProcessCocoPt(True,0.05), {"image_size": [1200, 1200, 3],"use_label_map": True}), "coco-1200-tf": (coco.Coco, dataset.pre_process_coco_resnet34, coco.PostProcessCocoTf(), {"image_size": [1200, 1200, 3],"use_label_map": False}), } # pre-defined command line options so simplify things. They are used as defaults and can be # overwritten from command line SUPPORTED_PROFILES = { "defaults": { "dataset": "imagenet", "backend": "tensorflow", "cache": 0, "max-batchsize": 32, }, # resnet "resnet50-tf": { "inputs": "input_tensor:0", "outputs": "ArgMax:0", "dataset": "imagenet", "backend": "tensorflow", "model-name": "resnet50", "in_dtypes": "float32", }, "resnet50-onnxruntime": { "dataset": "imagenet", "outputs": "ArgMax:0", "backend": "onnxruntime", "model-name": "resnet50", }, # mobilenet "mobilenet-tf": { "inputs": "input:0", "outputs": "MobilenetV1/Predictions/Reshape_1:0", "dataset": "imagenet_mobilenet", "backend": "tensorflow", "model-name": "mobilenet", }, "mobilenet-onnxruntime": { "dataset": "imagenet_mobilenet", "outputs": "MobilenetV1/Predictions/Reshape_1:0", "backend": "onnxruntime", "model-name": "mobilenet", }, # ssd-mobilenet "ssd-mobilenet-tf": { "inputs": "image_tensor:0", "outputs": "num_detections:0,detection_boxes:0,detection_scores:0,detection_classes:0", "dataset": "coco-300", "backend": "tensorflow", "model-name": "ssd-mobilenet", "in_dtypes": "uint8", }, "ssd-mobilenet-pytorch-native": { "inputs": "image", "outputs": "bboxes,labels,scores", "dataset": "coco-300-pt", "backend": "pytorch-native", "model-name": "ssd-mobilenet", }, "ssd-mobilenet-pytorch": { "dataset": "coco-300", "outputs": "num_detections:0,detection_boxes:0,detection_scores:0,detection_classes:0", "backend": "pytorch", "data-format": "NHWC", "model-name": "ssd-mobilenet", }, "ssd-mobilenet-onnxruntime": { "dataset": "coco-300", "outputs": "num_detections:0,detection_boxes:0,detection_scores:0,detection_classes:0", "backend": "onnxruntime", "data-format": "NHWC", "model-name": "ssd-mobilenet", }, # ssd-resnet34 "ssd-resnet34-tf": { "inputs": "image:0", "outputs": "detection_bboxes:0,detection_classes:0,detection_scores:0", "dataset": "coco-1200-tf", "backend": "tensorflow", "data-format": "NCHW", "model-name": "ssd-resnet34", "in_dtypes": "float32", }, "ssd-resnet34-pytorch": { "inputs": "image", "outputs": "bboxes,labels,scores", "dataset": "coco-1200-pt", "backend": "pytorch-native", "model-name": "ssd-resnet34", }, "ssd-resnet34-onnxruntime": { "dataset": "coco-1200-onnx", "inputs": "image", "outputs": "bboxes,labels,scores", "backend": "onnxruntime", "data-format": "NCHW", "max-batchsize": 1, "model-name": "ssd-resnet34", }, "ssd-resnet34-onnxruntime-tf": { "dataset": "coco-1200-tf", "inputs": "image:0", "outputs": "detection_bboxes:0,detection_classes:0,detection_scores:0", "backend": "onnxruntime", "data-format": "NHWC", "model-name": "ssd-resnet34", }, } def get_backend(backend): if backend == "tensorflow": from backend_tf import BackendTensorflow backend = BackendTensorflow() elif backend == "onnxruntime": from backend_onnxruntime import BackendOnnxruntime backend = BackendOnnxruntime() elif backend == "null": from backend_null import BackendNull backend = BackendNull() elif backend == "pytorch": from backend_pytorch import BackendPytorch backend = BackendPytorch() elif backend == "pytorch-native": from backend_pytorch_native import BackendPytorchNative backend = BackendPytorchNative() elif backend == "tflite": from backend_tflite import BackendTflite backend = BackendTflite() else: raise ValueError("unknown backend: " + backend) return backend def get_profile_and_model_path(profile_name: str): if profile_name == "resnet50-tf": return SUPPORTED_PROFILES[profile_name], "/models/resnet50_v1.pb" elif profile_name == "ssd-mobilenet-tf": return SUPPORTED_PROFILES[profile_name], "/models/ssd_mobilenet_v1_coco_2018_01_28.pb" elif profile_name == "ssd-resnet34-tf": return SUPPORTED_PROFILES[profile_name], "/models/resnet34_tf.22.1.pb" elif profile_name == "resnet50-onnxruntime": return SUPPORTED_PROFILES[profile_name], "/models/resnet50_v1.onnx" elif profile_name == "ssd-mobilenet-onnxruntime": return SUPPORTED_PROFILES[profile_name], "/models/updated_ssd_mobilenet_v1_coco_2018_01_28.onnx" elif profile_name == "ssd-resnet34-onnxruntime": return SUPPORTED_PROFILES[profile_name], "/models/updated_resnet34-ssd1200.onnx" elif profile_name == "resnet50-pytorch": profile = SUPPORTED_PROFILES["resnet50-onnxruntime"] profile['backend'] = "pytorch" return profile, "/models/resnet50_v1.onnx" elif profile_name == "ssd-mobilenet-pytorch": return SUPPORTED_PROFILES[profile_name], "/models/updated_ssd_mobilenet_v1_coco_2018_01_28.onnx" elif profile_name == "ssd-mobilenet-pytorch-native": return SUPPORTED_PROFILES[profile_name], "/models/ssd_mobilenet_v1.pytorch" elif profile_name == "ssd-resnet34-pytorch": return SUPPORTED_PROFILES[profile_name], "/models/resnet34-ssd1200.pytorch" else: raise Exception("Unsupported profile: {}".format(profile_name)) def get_img_format(backend_name: str): if backend_name == "onnxruntime": return "NCHW" elif backend_name == "tensorflow": return "NHWC" elif backend_name == "pytorch": return "NCHW" else: raise Exception("Unsupported backend: {}".format(backend_name)) @dataclass class Item: """An item that we queue for processing by the thread pool.""" def __init__(self, query_id, content_id, img, label=None): self.query_id = query_id self.content_id = content_id self.img = img self.label = label self.start = time.time()
py
7df70b14fcec21339d69e2259ab70fe699f94e52
import traceback from django.shortcuts import HttpResponse def process(request, **kwargs): app = kwargs.pop('app', None) fun = kwargs.pop('function', None) index = kwargs.pop('id', None) mode = kwargs.pop('mode', None) if app == 'api': app = 'ApiManager' try: app = __import__("%s.views" % app) view = getattr(app, 'views') fun = getattr(view, fun) # 执行view.py中的函数,并获取其返回值 if mode: result = fun(request, mode, index) else: result = fun(request, index) except TypeError: result = fun(request) except (ImportError, AttributeError): # 导入失败时,自定义404错误 return HttpResponse(traceback.format_exc()) return result
py
7df70b51d2a7f03ea49fad202076099789f44cb1
''' Created on Nov 20, 2012 @author: vinnie ''' from utils import * def in1d_running(q, A): ''' j where q[k] in A for 0 <= k <= j This is the maximum index j where q[0:j] is in A ''' j = 0 while j < len(q) and q[j] in A: j += 1 return j def s_A(Q, A): ''' s(A) = {(i,j) | q[i,k] in A for 0 <= k <= j} The set of all coordinates where Q[i,0:k] is in A for 0 <= k <= j, where j is defined by the ind1d_running function above ''' return [(i, k) for i in A for k in range(in1d_running(Q[i], A))] def P(Q, A, m): ''' Given the single hashing scheme defined by matrix Q, compute the probably that the first |A| slots are occupied by the slots in A ''' if len(A) == 0: return 0 elif len(A) == 1: return 1.0 / m else: return (1.0 / m) * sum([P(Q, tuple(a for a in A if a != Q[i][j]), m) for (i, j) in s_A(Q, A)]) def P_map(Q): ''' Compute P(A) for each n-combination in [0,1,2...m) for 0 <= n < m Also compute P( [0,1,2...m] ). Only one combination is needed, this should always be equal to 1.0 ''' m = len(Q) m_range = range(m) p = {A: P(Q, A, m) for A in generate_A(m_range)} return p def delta_prime(Q): ''' The average number of spaces probed for each insertion by the time the table is full. This is the best measure for the efficiency of a single hashing scheme ''' m = len(Q) m_range = [row[0] for row in Q] set_A = generate_A(m_range) return (1.0 / (m ** 2)) * sum(P(Q, A, m) * len(s_A(Q, A)) for A in set_A) def d_prime(Q, n): ''' The average number of probes needed to insert the nth element into a table with single hashing scheme Q ''' m = len(Q) m_range = [row[0] for row in Q] assert n <= m set_A = [A for A in generate_A(m_range) if len(A) == n - 1] return (1.0 / m) * sum(P(Q, A, m) * len(s_A(Q, A)) for A in set_A) def search_random(m, N): from operator import itemgetter import matplotlib.pyplot as plt import random random.seed(1234) score_Q = [(delta_prime(Q), Q) for Q in [random_Q(m) for _ in range(N)]] min_score, min_Q = min(score_Q, key=itemgetter(0)) max_score, max_Q = max(score_Q, key=itemgetter(0)) print('Best score:', min_score, min_Q) print('Worst score:', max_score, max_Q) plt.hist(list(zip(*score_Q))[0], bins=100, normed=True) plt.xlabel('Probes per insertion') plt.ylabel('Density') plt.savefig('m%d_scores.png' % m) return if __name__ == '__main__': search_random(5, 10000)
py
7df70bcafa6576dd57c1a3a8f4619d7375a56526
from cas import views as cas_views from django.conf import settings from django.conf.urls import url, include from django.contrib import admin from django.contrib.auth import views as auth_views from django.contrib.auth.forms import PasswordResetForm from django.contrib.staticfiles.urls import staticfiles_urlpatterns from django.views.generic.base import TemplateView urlpatterns = [ url(r'^$', TemplateView.as_view(template_name='index.html'), name='home'), url(r'^about/$', TemplateView.as_view(template_name='index.html'), name='about'), url(r'^contact/sent/$', TemplateView.as_view(template_name='contact_form/contact_form_sent.html'), name='contact_form_sent'), url(r'^invalid-request$', TemplateView.as_view(template_name='invalid_request.html'), name='invalid_request'), url(r'^accounts/password/reset/$', auth_views.password_reset, {'template_name': 'accounts/password_reset_form.html', 'password_reset_form': PasswordResetForm}, name='password_reset'), url(r'^accounts/password/reset/done/$', auth_views.password_reset_done, {'template_name': 'accounts/password_reset_done.html'}, name='password_reset_done'), url(r'^accounts/password/reset/confirm/(?P<uidb64>[0-9A-Za-z]+)-(?P<token>.+)/$', auth_views.password_reset_confirm, name='password_reset_confirm'), url(r'^accounts/password/reset/complete/$', auth_views.password_reset_complete, name='password_reset_complete'), # FIXME: ideally this should be set up dynamically by iterating through each # ExperimentMetadata instance and using their namespace (e.g., replace all # instances of forestry with ExperimentMetadata.namespace) # url(r'^forestry/', include('vcweb.experiment.forestry.urls', namespace='forestry', app_name='forestry')), # url(r'^bound/', include('vcweb.experiment.bound.urls', namespace='bound', app_name='bound')), # url(r'^lighterprints/', include('vcweb.experiment.lighterprints.urls', namespace='lighterprints', # app_name='lighterprints')), # url(r'^broker/', include('vcweb.experiment.broker.urls', namespace='broker', app_name='broker')), url(r'^admin/', include(admin.site.urls)), url(r'^cas/login', cas_views.login, name='cas_login'), url(r'^cas/logout', cas_views.logout, name='cas_logout'), url(r'^cas/error', TemplateView.as_view(template_name='cas_access_forbidden.html'), name='cas_error'), # subject pool urls url(r'^subject-pool/', include('vcweb.core.subjectpool.urls', app_name='subjectpool', namespace='subjectpool')), # Uncomment the admin/doc line below and add 'django.contrib.admindocs' # to INSTALLED_APPS to enable admin documentation: # (r'^admin/doc/', include('django.contrib.admindocs.urls')), ] def experiment_urls(): for experiment in settings.VCWEB_EXPERIMENTS: experiment_name = experiment.rpartition('.')[2] # include all experiment urls.py under the experiment name's namespace yield url(r'^' + experiment_name + '/', include(experiment + '.urls', namespace=experiment_name, app_name=experiment_name)) urlpatterns += experiment_urls() # core urls catches everything else urlpatterns.append( url(r'', include('vcweb.core.urls', namespace='core', app_name='core'))) if settings.DEBUG: import debug_toolbar urlpatterns += staticfiles_urlpatterns() urlpatterns += [ url(r'^500/$', TemplateView.as_view(template_name='500.html')), url(r'^404/$', TemplateView.as_view(template_name='404.html')), url(r'^403/$', TemplateView.as_view(template_name='403.html')), ] urlpatterns = [ url(r'^__debug__/', include(debug_toolbar.urls)), ] + urlpatterns
py
7df70bd55f27096cd30cbfb721907df1a26a6fd3
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.14.4 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class AppsV1beta1DeploymentRollback(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'api_version': 'str', 'kind': 'str', 'name': 'str', 'rollback_to': 'AppsV1beta1RollbackConfig', 'updated_annotations': 'dict(str, str)' } attribute_map = { 'api_version': 'apiVersion', 'kind': 'kind', 'name': 'name', 'rollback_to': 'rollbackTo', 'updated_annotations': 'updatedAnnotations' } def __init__(self, api_version=None, kind=None, name=None, rollback_to=None, updated_annotations=None): """ AppsV1beta1DeploymentRollback - a model defined in Swagger """ self._api_version = None self._kind = None self._name = None self._rollback_to = None self._updated_annotations = None self.discriminator = None if api_version is not None: self.api_version = api_version if kind is not None: self.kind = kind self.name = name self.rollback_to = rollback_to if updated_annotations is not None: self.updated_annotations = updated_annotations @property def api_version(self): """ Gets the api_version of this AppsV1beta1DeploymentRollback. APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#resources :return: The api_version of this AppsV1beta1DeploymentRollback. :rtype: str """ return self._api_version @api_version.setter def api_version(self, api_version): """ Sets the api_version of this AppsV1beta1DeploymentRollback. APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#resources :param api_version: The api_version of this AppsV1beta1DeploymentRollback. :type: str """ self._api_version = api_version @property def kind(self): """ Gets the kind of this AppsV1beta1DeploymentRollback. Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#types-kinds :return: The kind of this AppsV1beta1DeploymentRollback. :rtype: str """ return self._kind @kind.setter def kind(self, kind): """ Sets the kind of this AppsV1beta1DeploymentRollback. Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#types-kinds :param kind: The kind of this AppsV1beta1DeploymentRollback. :type: str """ self._kind = kind @property def name(self): """ Gets the name of this AppsV1beta1DeploymentRollback. Required: This must match the Name of a deployment. :return: The name of this AppsV1beta1DeploymentRollback. :rtype: str """ return self._name @name.setter def name(self, name): """ Sets the name of this AppsV1beta1DeploymentRollback. Required: This must match the Name of a deployment. :param name: The name of this AppsV1beta1DeploymentRollback. :type: str """ if name is None: raise ValueError("Invalid value for `name`, must not be `None`") self._name = name @property def rollback_to(self): """ Gets the rollback_to of this AppsV1beta1DeploymentRollback. The config of this deployment rollback. :return: The rollback_to of this AppsV1beta1DeploymentRollback. :rtype: AppsV1beta1RollbackConfig """ return self._rollback_to @rollback_to.setter def rollback_to(self, rollback_to): """ Sets the rollback_to of this AppsV1beta1DeploymentRollback. The config of this deployment rollback. :param rollback_to: The rollback_to of this AppsV1beta1DeploymentRollback. :type: AppsV1beta1RollbackConfig """ if rollback_to is None: raise ValueError("Invalid value for `rollback_to`, must not be `None`") self._rollback_to = rollback_to @property def updated_annotations(self): """ Gets the updated_annotations of this AppsV1beta1DeploymentRollback. The annotations to be updated to a deployment :return: The updated_annotations of this AppsV1beta1DeploymentRollback. :rtype: dict(str, str) """ return self._updated_annotations @updated_annotations.setter def updated_annotations(self, updated_annotations): """ Sets the updated_annotations of this AppsV1beta1DeploymentRollback. The annotations to be updated to a deployment :param updated_annotations: The updated_annotations of this AppsV1beta1DeploymentRollback. :type: dict(str, str) """ self._updated_annotations = updated_annotations def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, AppsV1beta1DeploymentRollback): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
py
7df70c7d45e32c2ac4dc07da9cfd0f63e6e75f48
"""The test for the sensibo entity.""" from __future__ import annotations from datetime import timedelta from unittest.mock import patch import pytest from homeassistant.components.climate.const import ( ATTR_FAN_MODE, DOMAIN as CLIMATE_DOMAIN, SERVICE_SET_FAN_MODE, ) from homeassistant.components.number.const import ( ATTR_VALUE, DOMAIN as NUMBER_DOMAIN, SERVICE_SET_VALUE, ) from homeassistant.components.sensibo.const import SENSIBO_ERRORS from homeassistant.config_entries import ConfigEntry from homeassistant.const import ATTR_ENTITY_ID from homeassistant.core import HomeAssistant from homeassistant.exceptions import HomeAssistantError from homeassistant.helpers import device_registry as dr, entity_registry as er from homeassistant.util import dt from .response import DATA_FROM_API from tests.common import async_fire_time_changed async def test_entity(hass: HomeAssistant, load_int: ConfigEntry) -> None: """Test the Sensibo climate.""" state1 = hass.states.get("climate.hallway") assert state1 dr_reg = dr.async_get(hass) dr_entries = dr.async_entries_for_config_entry(dr_reg, load_int.entry_id) dr_entry: dr.DeviceEntry for dr_entry in dr_entries: if dr_entry.name == "Hallway": assert dr_entry.identifiers == {("sensibo", "ABC999111")} device_id = dr_entry.id er_reg = er.async_get(hass) er_entries = er.async_entries_for_device( er_reg, device_id, include_disabled_entities=True ) er_entry: er.RegistryEntry for er_entry in er_entries: if er_entry.name == "Hallway": assert er_entry.unique_id == "Hallway" @pytest.mark.parametrize("p_error", SENSIBO_ERRORS) async def test_entity_send_command( hass: HomeAssistant, p_error: Exception, load_int: ConfigEntry ) -> None: """Test the Sensibo send command with error.""" state = hass.states.get("climate.hallway") assert state with patch( "homeassistant.components.sensibo.util.SensiboClient.async_set_ac_state_property", return_value={"result": {"status": "Success"}}, ): await hass.services.async_call( CLIMATE_DOMAIN, SERVICE_SET_FAN_MODE, {ATTR_ENTITY_ID: state.entity_id, ATTR_FAN_MODE: "low"}, blocking=True, ) await hass.async_block_till_done() state = hass.states.get("climate.hallway") assert state.attributes["fan_mode"] == "low" with patch( "homeassistant.components.sensibo.util.SensiboClient.async_set_ac_state_property", side_effect=p_error, ): with pytest.raises(HomeAssistantError): await hass.services.async_call( CLIMATE_DOMAIN, SERVICE_SET_FAN_MODE, {ATTR_ENTITY_ID: state.entity_id, ATTR_FAN_MODE: "low"}, blocking=True, ) state = hass.states.get("climate.hallway") assert state.attributes["fan_mode"] == "low" async def test_entity_send_command_calibration( hass: HomeAssistant, load_int: ConfigEntry ) -> None: """Test the Sensibo send command for calibration.""" registry = er.async_get(hass) registry.async_update_entity( "number.hallway_temperature_calibration", disabled_by=None ) await hass.async_block_till_done() with patch( "homeassistant.components.sensibo.coordinator.SensiboClient.async_get_devices_data", return_value=DATA_FROM_API, ): async_fire_time_changed( hass, dt.utcnow() + timedelta(minutes=5), ) await hass.async_block_till_done() state = hass.states.get("number.hallway_temperature_calibration") assert state.state == "0.1" with patch( "homeassistant.components.sensibo.util.SensiboClient.async_set_calibration", return_value={"status": "success"}, ): await hass.services.async_call( NUMBER_DOMAIN, SERVICE_SET_VALUE, {ATTR_ENTITY_ID: state.entity_id, ATTR_VALUE: 0.2}, blocking=True, ) state = hass.states.get("number.hallway_temperature_calibration") assert state.state == "0.2"
py
7df70e959af52d2b290a09344b02a69ac8543fc6
from datetime import datetime, timedelta import unittest from app import app, db from app.models import User, Post class UserModelCase(unittest.TestCase): def setUp(self): app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite://' db.create_all() def tearDown(self): db.session.remove() db.drop_all() def test_password_hashing(self): u = User(username='susan') u.set_password('cat') self.assertFalse(u.check_password('dog')) self.assertTrue(u.check_password('cat')) def test_avatar(self): u = User(username='john', email='[email protected]') self.assertEqual(u.avatar(128), ('https://www.gravatar.com/avatar/' 'd4c74594d841139328695756648b6bd6' '?d=identicon&s=128')) def test_follow(self): u1 = User(username='john', email='[email protected]') u2 = User(username='susan', email='[email protected]') db.session.add(u1) db.session.add(u2) db.session.commit() self.assertEqual(u1.followed.all(), []) self.assertEqual(u1.followers.all(), []) u1.follow(u2) db.session.commit() self.assertTrue(u1.is_following(u2)) self.assertEqual(u1.followed.count(), 1) self.assertEqual(u1.followed.first().username, 'susan') self.assertEqual(u2.followers.count(), 1) self.assertEqual(u2.followers.first().username, 'john') u1.unfollow(u2) db.session.commit() self.assertFalse(u1.is_following(u2)) self.assertEqual(u1.followed.count(), 0) self.assertEqual(u2.followers.count(), 0) def test_follow_posts(self): # create four users u1 = User(username='john', email='[email protected]') u2 = User(username='susan', email='[email protected]') u3 = User(username='mary', email='[email protected]') u4 = User(username='david', email='[email protected]') db.session.add_all([u1, u2, u3, u4]) # create four posts now = datetime.utcnow() p1 = Post(body="post from john", author=u1, timestamp=now + timedelta(seconds=1)) p2 = Post(body="post from susan", author=u2, timestamp=now + timedelta(seconds=4)) p3 = Post(body="post from mary", author=u3, timestamp=now + timedelta(seconds=3)) p4 = Post(body="post from david", author=u4, timestamp=now + timedelta(seconds=2)) db.session.add_all([p1, p2, p3, p4]) db.session.commit() # setup the followers u1.follow(u2) # john follows susan u1.follow(u4) # john follows david u2.follow(u3) # susan follows mary u3.follow(u4) # mary follows david db.session.commit() # check the followed posts of each user f1 = u1.followed_posts().all() f2 = u2.followed_posts().all() f3 = u3.followed_posts().all() f4 = u4.followed_posts().all() self.assertEqual(f1, [p2, p4, p1]) self.assertEqual(f2, [p2, p3]) self.assertEqual(f3, [p3, p4]) self.assertEqual(f4, [p4]) if __name__ == '__main__': unittest.main(verbosity=2)
py
7df70eb16b544b5a96fc87097dd681ed41ef3413
import typing import dask.array as da import numpy as np from typing_extensions import Literal from sgkit.distance import metrics from sgkit.typing import ArrayLike MetricTypes = Literal["euclidean", "correlation"] def pairwise_distance( x: ArrayLike, metric: MetricTypes = "euclidean", split_every: typing.Optional[int] = None, ) -> da.array: """Calculates the pairwise distance between all pairs of row vectors in the given two dimensional array x. To illustrate the algorithm consider the following (4, 5) two dimensional array: [e.00, e.01, e.02, e.03, e.04] [e.10, e.11, e.12, e.13, e.14] [e.20, e.21, e.22, e.23, e.24] [e.30, e.31, e.32, e.33, e.34] The rows of the above matrix are the set of vectors. Now let's label all the vectors as v0, v1, v2, v3. The result will be a two dimensional symmetric matrix which will contain the distance between all pairs. Since there are 4 vectors, calculating the distance between each vector and every other vector, will result in 16 distances and the resultant array will be of size (4, 4) as follows: [v0.v0, v0.v1, v0.v2, v0.v3] [v1.v0, v1.v1, v1.v2, v1.v3] [v2.v0, v2.v1, v2.v2, v2.v3] [v3.v0, v3.v1, v3.v2, v3.v3] The (i, j) position in the resulting array (matrix) denotes the distance between vi and vj vectors. Negative and nan values are considered as missing values. They are ignored for all distance metric calculations. Parameters ---------- x [array-like, shape: (M, N)] An array like two dimensional matrix. The rows are the vectors used for comparison, i.e. for pairwise distance. metric The distance metric to use. The distance function can be 'euclidean' or 'correlation'. split_every Determines the depth of the recursive aggregation in the reduction step. This argument is directly passed to the call to``dask.reduction`` function in the reduce step of the map reduce. Omit to let dask heuristically decide a good default. A default can also be set globally with the split_every key in dask.config. Returns ------- [array-like, shape: (M, M)] A two dimensional distance matrix, which will be symmetric. The dimension will be (M, M). The (i, j) position in the resulting array (matrix) denotes the distance between ith and jth row vectors in the input array. Examples -------- >>> from sgkit.distance.api import pairwise_distance >>> import dask.array as da >>> x = da.array([[6, 4, 1,], [4, 5, 2], [9, 7, 3]]).rechunk(2, 2) >>> pairwise_distance(x, metric='euclidean').compute() array([[0. , 2.44948974, 4.69041576], [2.44948974, 0. , 5.47722558], [4.69041576, 5.47722558, 0. ]]) >>> import numpy as np >>> x = np.array([[6, 4, 1,], [4, 5, 2], [9, 7, 3]]) >>> pairwise_distance(x, metric='euclidean').compute() array([[0. , 2.44948974, 4.69041576], [2.44948974, 0. , 5.47722558], [4.69041576, 5.47722558, 0. ]]) >>> x = np.array([[6, 4, 1,], [4, 5, 2], [9, 7, 3]]) >>> pairwise_distance(x, metric='correlation').compute() array([[-4.44089210e-16, 2.62956526e-01, 2.82353505e-03], [ 2.62956526e-01, 0.00000000e+00, 2.14285714e-01], [ 2.82353505e-03, 2.14285714e-01, 0.00000000e+00]]) """ try: metric_map_func = getattr(metrics, f"{metric}_map") metric_reduce_func = getattr(metrics, f"{metric}_reduce") n_map_param = metrics.N_MAP_PARAM[metric] except AttributeError: raise NotImplementedError(f"Given metric: {metric} is not implemented.") x = da.asarray(x) if x.ndim != 2: raise ValueError(f"2-dimensional array expected, got '{x.ndim}'") # setting this variable outside of _pairwise to avoid it's recreation # in every iteration, which eventually leads to increase in dask # graph serialisation/deserialisation time significantly metric_param = np.empty(n_map_param, dtype=x.dtype) def _pairwise(f: ArrayLike, g: ArrayLike) -> ArrayLike: result: ArrayLike = metric_map_func(f[:, None, :], g, metric_param) # Adding a new axis to help combine chunks along this axis in the # reduction step (see the _aggregate and _combine functions below). return result[..., np.newaxis] # concatenate in blockwise leads to high memory footprints, so instead # we perform blockwise without contraction followed by reduction. # More about this issue: https://github.com/dask/dask/issues/6874 out = da.blockwise( _pairwise, "ijk", x, "ik", x, "jk", dtype=x.dtype, concatenate=False, ) def _aggregate(x_chunk: ArrayLike, **_: typing.Any) -> ArrayLike: """Last function to be executed when resolving the dask graph, producing the final output. It is always invoked, even when the reduced Array counts a single chunk along the reduced axes.""" x_chunk = x_chunk.reshape(x_chunk.shape[:-2] + (-1, n_map_param)) result: ArrayLike = metric_reduce_func(x_chunk) return result def _chunk(x_chunk: ArrayLike, **_: typing.Any) -> ArrayLike: return x_chunk def _combine(x_chunk: ArrayLike, **_: typing.Any) -> ArrayLike: """Function used for intermediate recursive aggregation (see split_every argument to ``da.reduction below``). If the reduction can be performed in less than 3 steps, it will not be invoked at all.""" # reduce chunks by summing along the -2 axis x_chunk_reshaped = x_chunk.reshape(x_chunk.shape[:-2] + (-1, n_map_param)) return x_chunk_reshaped.sum(axis=-2)[..., np.newaxis] r = da.reduction( out, chunk=_chunk, combine=_combine, aggregate=_aggregate, axis=-1, dtype=x.dtype, meta=np.ndarray((0, 0), dtype=x.dtype), split_every=split_every, name="pairwise", ) t = da.triu(r) return t + t.T
py
7df70eb92a0832db62e8e4a856d32450609fac8c
from django.shortcuts import render from .models import Image, Location, Category # Create your views here. def home(request): images=Image.get_images() locations=Location.objects.all() categories=Category.objects.all() return render(request, 'home.html', {"images":images, "locations":locations, "categories":categories}) def search_by_category(request): if 'image_category' in request.GET and request.GET["image_category"]: search_term=request.GET.get("image_category") searched_images=Image.search_by_category(search_term) return render(request, 'search.html', {"images":searched_images}) else: message="No search term added" return render(request, 'search.html', {"message":message}) def photos_by_location(request, location_id): images=Image.filter_by_location(location_id) location=Location.objects.get(id=location_id) return render(request, 'locations.html', {"images":images, "location":location})
py
7df70f49bd27ff60ef68b5df473b5f0062da10f9
from typing import Any, Dict, List, Mapping import numpy as np import torch from catalyst.core import _Runner from catalyst.rl2 import ( AlgorithmSpec, EnvironmentSpec, RLExperiment, RLState, utils ) # RLRunner has only one stage (?) - endless training # each Epoch we recalculate training loader based on current Replay buffer # then -> typical training on loader with selected algorithm # class RLRunner(_Runner): experiment: RLExperiment state: RLState def _fetch_rollouts(self): pass def _prepare_for_stage(self, stage: str): super()._prepare_for_stage(stage=stage) self.algorithm: AlgorithmSpec = \ self.experiment.get_algorithm(stage=stage) self.environment: EnvironmentSpec = \ self.experiment.get_environment(stage=stage) def _prepare_for_epoch(self, stage: str, epoch: int): super()._prepare_for_epoch(stage=stage, epoch=epoch) # @TODO: remove this trick utils.set_global_seed(self.experiment.initial_seed + epoch) loaders = self.experiment.get_loaders(stage=stage, epoch=epoch) self.loaders = loaders def _run_batch_train_step(self, batch: Mapping[str, Any]): # todo: should implement different training steps # for different algorithms metrics: Dict = self.algorithm.train_on_batch( batch, actor_update=(self.state.step % self.state.actor_grad_period == 0), critic_update=( self.state.step % self.state.critic_grad_period == 0 ), ) or {} metrics_ = self._update_target_weights(self.state.step) or {} metrics.update(**metrics_) self.state.metric_manager.add_batch_value(metrics_dict=metrics) def forward(self, batch: Mapping[str, Any], **kwargs) -> Mapping[str, Any]: # todo: should implement different policy -> action # for different use-cases: discrete, continuous action spaces pass @torch.no_grad() def inference( self, sampler_ids: List[int], run_ids: List[int], states: np.ndarray, rewards: np.ndarray, ): # looks like production-ready thing # @TODO: make a microservice from this method batch = None actions = self.predict_batch(batch) return actions
py
7df70f542aad64b30b9e6f29ed00a3298e9d363a
"""udemy_django_rest_tutorial URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from django.conf.urls.static import static from django.conf import settings urlpatterns = [ path('admin/', admin.site.urls), path('api/user/', include('user.urls')), path('api/recipe/', include('recipe.urls')), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
py
7df71142c55895545d0948902d619d088386197d
""" dacashd JSONRPC interface """ import sys import os sys.path.append(os.path.join(os.path.dirname(__file__), '..')) sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'lib')) import config import base58 from bitcoinrpc.authproxy import AuthServiceProxy, JSONRPCException from masternode import Masternode from decimal import Decimal import time class DACashDaemon(): def __init__(self, **kwargs): host = kwargs.get('host', '127.0.0.1') user = kwargs.get('user') password = kwargs.get('password') port = kwargs.get('port') self.creds = (user, password, host, port) # memoize calls to some dacashd methods self.governance_info = None self.gobject_votes = {} @property def rpc_connection(self): return AuthServiceProxy("http://{0}:{1}@{2}:{3}".format(*self.creds)) @classmethod def from_dacash_conf(self, dacash_dot_conf): from dacash_config import DACashConfig config_text = DACashConfig.slurp_config_file(dacash_dot_conf) creds = DACashConfig.get_rpc_creds(config_text, config.network) creds[u'host'] = config.rpc_host return self(**creds) def rpc_command(self, *params): return self.rpc_connection.__getattr__(params[0])(*params[1:]) # common RPC convenience methods def get_masternodes(self): mnlist = self.rpc_command('masternodelist', 'full') return [Masternode(k, v) for (k, v) in mnlist.items()] def get_current_masternode_vin(self): from dacashlib import parse_masternode_status_vin my_vin = None try: status = self.rpc_command('masternode', 'status') mn_outpoint = status.get('outpoint') or status.get('vin') my_vin = parse_masternode_status_vin(mn_outpoint) except JSONRPCException as e: pass return my_vin def governance_quorum(self): # TODO: expensive call, so memoize this total_masternodes = self.rpc_command('masternode', 'count', 'enabled') min_quorum = self.govinfo['governanceminquorum'] # the minimum quorum is calculated based on the number of masternodes quorum = max(min_quorum, (total_masternodes // 10)) return quorum @property def govinfo(self): if (not self.governance_info): self.governance_info = self.rpc_command('getgovernanceinfo') return self.governance_info # governance info convenience methods def superblockcycle(self): return self.govinfo['superblockcycle'] def last_superblock_height(self): height = self.rpc_command('getblockcount') cycle = self.superblockcycle() return cycle * (height // cycle) def next_superblock_height(self): return self.last_superblock_height() + self.superblockcycle() def is_masternode(self): return not (self.get_current_masternode_vin() is None) def is_synced(self): mnsync_status = self.rpc_command('mnsync', 'status') synced = (mnsync_status['IsBlockchainSynced'] and mnsync_status['IsMasternodeListSynced'] and mnsync_status['IsWinnersListSynced'] and mnsync_status['IsSynced'] and not mnsync_status['IsFailed']) return synced def current_block_hash(self): height = self.rpc_command('getblockcount') block_hash = self.rpc_command('getblockhash', height) return block_hash def get_superblock_budget_allocation(self, height=None): if height is None: height = self.rpc_command('getblockcount') return Decimal(self.rpc_command('getsuperblockbudget', height)) def next_superblock_max_budget(self): cycle = self.superblockcycle() current_block_height = self.rpc_command('getblockcount') last_superblock_height = (current_block_height // cycle) * cycle next_superblock_height = last_superblock_height + cycle last_allocation = self.get_superblock_budget_allocation(last_superblock_height) next_allocation = self.get_superblock_budget_allocation(next_superblock_height) next_superblock_max_budget = next_allocation return next_superblock_max_budget # "my" votes refers to the current running masternode # memoized on a per-run, per-object_hash basis def get_my_gobject_votes(self, object_hash): import dacashlib if not self.gobject_votes.get(object_hash): my_vin = self.get_current_masternode_vin() # if we can't get MN vin from output of `masternode status`, # return an empty list if not my_vin: return [] (txid, vout_index) = my_vin.split('-') cmd = ['gobject', 'getcurrentvotes', object_hash, txid, vout_index] raw_votes = self.rpc_command(*cmd) self.gobject_votes[object_hash] = dacashlib.parse_raw_votes(raw_votes) return self.gobject_votes[object_hash] def is_govobj_maturity_phase(self): # 3-day period for govobj maturity maturity_phase_delta = 1662 # ~(60*24*3)/2.6 if config.network == 'testnet': maturity_phase_delta = 24 # testnet event_block_height = self.next_superblock_height() maturity_phase_start_block = event_block_height - maturity_phase_delta current_height = self.rpc_command('getblockcount') event_block_height = self.next_superblock_height() # print "current_height = %d" % current_height # print "event_block_height = %d" % event_block_height # print "maturity_phase_delta = %d" % maturity_phase_delta # print "maturity_phase_start_block = %d" % maturity_phase_start_block return (current_height >= maturity_phase_start_block) def we_are_the_winner(self): import dacashlib # find the elected MN vin for superblock creation... current_block_hash = self.current_block_hash() mn_list = self.get_masternodes() winner = dacashlib.elect_mn(block_hash=current_block_hash, mnlist=mn_list) my_vin = self.get_current_masternode_vin() # print "current_block_hash: [%s]" % current_block_hash # print "MN election winner: [%s]" % winner # print "current masternode VIN: [%s]" % my_vin return (winner == my_vin) def estimate_block_time(self, height): import dacashlib """ Called by block_height_to_epoch if block height is in the future. Call `block_height_to_epoch` instead of this method. DO NOT CALL DIRECTLY if you don't want a "Oh Noes." exception. """ current_block_height = self.rpc_command('getblockcount') diff = height - current_block_height if (diff < 0): raise Exception("Oh Noes.") future_seconds = dacashlib.blocks_to_seconds(diff) estimated_epoch = int(time.time() + future_seconds) return estimated_epoch def block_height_to_epoch(self, height): """ Get the epoch for a given block height, or estimate it if the block hasn't been mined yet. Call this method instead of `estimate_block_time`. """ epoch = -1 try: bhash = self.rpc_command('getblockhash', height) block = self.rpc_command('getblock', bhash) epoch = block['time'] except JSONRPCException as e: if e.message == 'Block height out of range': epoch = self.estimate_block_time(height) else: print("error: %s" % e) raise e return epoch @property def has_sentinel_ping(self): getinfo = self.rpc_command('getinfo') return (getinfo['protocolversion'] >= config.min_dacashd_proto_version_with_sentinel_ping) def ping(self): self.rpc_command('sentinelping', config.sentinel_version)
py
7df7119a95dcb2b6c2793195e377a35e554afcfc
#!/usr/bin/python import sys, json, re, logging, argparse from pysam import Samfile from pbsuite.utils.summarizeAssembly import getStats def expandAlign(alignment): """ Takes a pysam Alignment and creates (reference, query) alignments For example: query = ATCGC-GT reference = AT-GCGGA Where C inserted, G deleted, A->T Sub """ seq = alignment.seq cigar = expandCigar(alignment.cigar) mdTag = None for i in alignment.tags: if i[0] == "MD": mdTag = expandMd(i[1]) if mdTag is None:# and alignment.target: logging.debug(("Mapped read %s doesn't have MD tag. Mismatches will be 0") \ % (alignment.qname)) mdTag = "-" * len(cigar) qPos = 0 tPos = 0 tSeq = [] qSeq = [] #Expanding query seq and filling in target seq try: for i in cigar: if i == 0: qSeq.append(seq[qPos]) if mdTag[tPos] != '-': tSeq.append(mdTag[tPos]) else: tSeq.append(seq[qPos]) qPos += 1 tPos += 1 elif i == 1: qSeq.append(seq[qPos]) tSeq.append('-') qPos += 1 elif i == 2: qSeq.append('-') tSeq.append(mdTag[tPos]) tPos += 1 except IndexError: return None, None return (qSeq,tSeq) def expandCigar(cigar): """ Turns the abbreviated cigar into the full array 0 = M 1 = I 2 = D """ ret = [] for t,s in cigar: ret.extend([t]*s) return ret def expandMd(md): """ Turns abbreviated MD into a full array """ ret = [] for i in re.findall("\d+|\^?[ATCGN]+", md): if i.startswith('^'): ret.extend(list(i[1:])) elif i[0] in ["A","T","C","G","N"]: ret.extend(list(i)) else: ret.extend(['-']*int(i)) return ret def counter(query, reference): mat = ins = dels = sub = 0 for q,r in zip(query, reference): if q == '-': dels += 1 elif r == '-': ins += 1 elif q != r: sub += 1 else: mat += 1 acc = mat/float(mat+ins+dels+sub) tot = len(filter(lambda x: x != '-', query)) return acc, tot, ins, dels, sub if __name__ == '__main__': if len(sys.argv) == 1: sam = Samfile("-", "r") elif len(sys.argv) == 2: try: sam = Samfile(sys.argv[1]) except ValueError: sys.stderr.write("%s may not be a valid sam/bam file\n" % (sys.argv[1])) exit(0) else: sys.stderr.write("Expected 1 argument - the sam/bam file\n") exit(0) readLengths = [] accuracy = 0 insertions = 0 deletions = 0 subs = 0 soft = 0 tot = 0.0 cnt = 0.0 unmapped = 0 for align in sam: if align.is_unmapped: unmapped += 1 continue query, refer = expandAlign(align) if query is None: continue#does this happen? readLengths.append(len(align.seq)) cnt += 1 a,t,i,d,s = counter(query, refer) sc = 0 if align.cigar[0][1] == 4: sc += align.cigar[0][0] if align.cigar[-1][1] == 4: sc += align.cigar[0][0] accuracy += a tot += t insertions += i deletions += d subs += s soft += sc errCnt = float(insertions + deletions + subs) stats = getStats(readLengths) space = str(max([len(str(x)) for x in stats.values()])+2) report = ("#Seqs | {numSeqs:%d,}\n" "Min | {min:%d,}\n" "1st Qu.| {FstQu:%d,}\n" + \ "Median | {median:%d,}\n" + \ "Mean | {mean:%d,}\n" + \ "3rd Qu.| {TrdQu:%d,}\n" + \ "Max | {max:%d,}\n" + \ "Total | {totalLength:%d,}\n" + \ "n50 | {n50:%d,}\n" + \ "n90 | {n90:%d,}\n" + \ "n95 | {n95:%d,}\n").replace("%d", str(space)) #print stats print "Read Stats"#, json.dumps(getStats(readLengths), indent=4) print report.format(**stats) print "Bases Counted %d" % tot print "Average Accuracy %.2f" % (accuracy/cnt) print "Total Unmapped %d" % (unmapped) print "Percent Unmapped %.2f" % (unmapped/cnt) print print "Total Insertions %d" % insertions print "Average Insertions per Read %.2f" % (insertions/cnt) print "Percentage of errors Insertions %.2f" % (insertions/errCnt) print print "Total Deletions %d" % deletions print "Average Deletions per Read %.2f" % (deletions/cnt) print "Percentage of errors Deletions %.2f" % (deletions/errCnt) print print "Total Substitutions %d" % subs print "Average Substitutions per Read %.2f" % (subs/cnt) print "Percentage of errors Substitutions %.2f" % (subs/errCnt) print print "Total SoftClipped %d" % soft print "Average SoftClipped per Read %.2f" % (soft/cnt)
py
7df711bbd4db6f1343762eba9ad4fb6052b301e7
"""General-purpose test script for image-to-image translation. Once you have trained your model with train.py, you can use this script to test the model. It will load a saved model from '--checkpoints_dir' and save the results to '--results_dir'. It first creates model and dataset given the option. It will hard-code some parameters. It then runs inference for '--num_test' images and save results to an HTML file. Example (You need to train models first or download pre-trained models from our website): Test a CycleGAN model (both sides): python test.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan Test a CycleGAN model (one side only): python test.py --dataroot datasets/horse2zebra/testA --name horse2zebra_pretrained --model test --no_dropout The option '--model test' is used for generating CycleGAN results only for one side. This option will automatically set '--dataset_mode single', which only loads the images from one set. On the contrary, using '--model cycle_gan' requires loading and generating results in both directions, which is sometimes unnecessary. The results will be saved at ./results/. Use '--results_dir <directory_path_to_save_result>' to specify the results directory. Test a pix2pix model: python test.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA See options/base_options.py and options/test_options.py for more test options. See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md """ import os from options.test_options import TestOptions from data import create_dataset from models import create_model from util.visualizer import save_images from util import html import torch if __name__ == '__main__': opt = TestOptions().parse() # get test options # hard-code some parameters for test opt.num_threads = 0 # test code only supports num_threads = 1 opt.batch_size = 1 # test code only supports batch_size = 1 opt.save_to_video = 1 opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed. opt.no_flip = True # no flip; comment this line if results on flipped images are needed. opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file. dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options model = create_model(opt) # create a model given opt.model and other options model.setup(opt) # regular setup: load and print networks; create schedulers # create a website web_dir = os.path.join(opt.results_dir, opt.name, '{}_{}'.format(opt.phase, opt.epoch)) # define the website directory if opt.load_iter > 0: # load_iter is 0 by default web_dir = '{:s}_iter{:d}'.format(web_dir, opt.load_iter) print('creating web directory', web_dir) webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.epoch)) # test with eval mode. This only affects layers like batchnorm and dropout. # For [pix2pix]: we use batchnorm and dropout in the original pix2pix. You can experiment it with and without eval() mode. # For [CycleGAN]: It should not affect CycleGAN as CycleGAN uses instancenorm without dropout. if opt.eval: model.eval() if opt.save_to_video: import numpy as np from PIL import Image, ImageDraw import cv2 import util, html videodims = (768, 256) # fourcc =cv2.VideoWriter_fourcc(*"mp4v") fourcc = cv2.VideoWriter_fourcc(*'XVID') video = cv2.VideoWriter("out/test.avi", fourcc, 10.0, videodims) img = Image.new('RGB', videodims, color='darkred') # draw stuff that goes on every frame here # for i in range(0, 60 * 60): for i, data in enumerate(dataset): if i >= opt.num_test: # only apply our model to opt.num_test images. break model.set_input(data) # unpack data from data loader model.test() # run inference visuals = model.get_current_visuals() # get image results img_path = model.get_image_paths() # get image paths if opt.save_to_video: from util.util import tensor2im combines_image = torch.cat( (dict(visuals.items())['real_A'], dict(visuals.items())['fake_B'], dict(visuals.items())['real_B']), -1) imtemp = tensor2im(combines_image) # draw frame specific stuff here. # video.write(cv2.cvtColor(np.array(imtemp), cv2.COLOR_RGB2BGR)) video.write(cv2.cvtColor(imtemp, cv2.COLOR_RGB2BGR)) if i % 5 == 0: # save images to an HTML file print('processing (%04d)-th image... %s' % (i, img_path)) save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio, width=opt.display_winsize) webpage.save() # save the HTML video.release()
py
7df712e7be23be3094213f549789fe08269c4fe5
import os import yaml import logging import collections def init_logging(): log = logging.getLogger(__name__) return log log = init_logging() class YamlConfig(collections.MutableMapping): """ A configuration object populated by parsing a yaml file, with optional default values. Note that modifying the _defaults attribute of an instance can potentially yield confusing results; if you need to do modify defaults, use the class variable or create a subclass. """ _defaults = dict() def __init__(self, yaml_path=None): self.yaml_path = yaml_path if self.yaml_path: self.load() else: self._conf = dict() def load(self, conf=None): if conf: if isinstance(conf, dict): self._conf = conf else: self._conf = yaml.safe_load(conf) return if os.path.exists(self.yaml_path): with open(self.yaml_path) as f: self._conf = yaml.safe_load(f) else: log.debug("%s not found", self.yaml_path) self._conf = dict() def update(self, in_dict): """ Update an existing configuration using dict.update() :param in_dict: The dict to use to update """ self._conf.update(in_dict) @classmethod def from_dict(cls, in_dict): """ Build a config object from a dict. :param in_dict: The dict to use :returns: The config object """ conf_obj = cls() conf_obj._conf = in_dict return conf_obj def to_dict(self): """ :returns: A shallow copy of the configuration as a dict """ return dict(self._conf) @classmethod def from_str(cls, in_str): """ Build a config object from a string or yaml stream. :param in_str: The stream or string :returns: The config object """ conf_obj = cls() conf_obj._conf = yaml.safe_load(in_str) return conf_obj def to_str(self): """ :returns: str(self) """ return str(self) def get(self, key, default=None): return self._conf.get(key, default) def __str__(self): return yaml.safe_dump(self._conf, default_flow_style=False).strip() def __repr__(self): return self.__str__() def __getitem__(self, name): return self.__getattr__(name) def __getattr__(self, name): return self._conf.get(name, self._defaults.get(name)) def __contains__(self, name): return self._conf.__contains__(name) def __setattr__(self, name, value): if name.endswith('_conf') or name in ('yaml_path'): object.__setattr__(self, name, value) else: self._conf[name] = value def __delattr__(self, name): del self._conf[name] def __len__(self): return self._conf.__len__() def __iter__(self): return self._conf.__iter__() def __setitem__(self, name, value): self._conf.__setitem__(name, value) def __delitem__(self, name): self._conf.__delitem__(name) class TeuthologyConfig(YamlConfig): """ This class is intended to unify teuthology's many configuration files and objects. Currently it serves as a convenient interface to ~/.teuthology.yaml and nothing else. """ yaml_path = os.path.join(os.path.expanduser('~/.teuthology.yaml')) _defaults = { 'archive_base': '/home/teuthworker/archive', 'archive_upload': None, 'archive_upload_key': None, 'archive_upload_url': None, 'automated_scheduling': False, 'reserve_machines': 5, 'ceph_git_base_url': 'https://github.com/ceph/', 'ceph_git_url': None, 'ceph_qa_suite_git_url': None, 'ceph_cm_ansible_git_url': None, 'use_conserver': False, 'conserver_master': 'conserver.front.sepia.ceph.com', 'conserver_port': 3109, 'gitbuilder_host': 'gitbuilder.ceph.com', 'githelper_base_url': 'http://git.ceph.com:8080', 'check_package_signatures': True, 'lab_domain': 'front.sepia.ceph.com', 'lock_server': 'http://paddles.front.sepia.ceph.com/', 'max_job_time': 259200, # 3 days 'nsupdate_url': 'http://nsupdate.front.sepia.ceph.com/update', 'results_server': 'http://paddles.front.sepia.ceph.com/', 'results_ui_server': 'http://pulpito.ceph.com/', 'results_sending_email': 'teuthology', 'results_timeout': 43200, 'src_base_path': os.path.expanduser('~/src'), 'verify_host_keys': True, 'watchdog_interval': 120, 'kojihub_url': 'http://koji.fedoraproject.org/kojihub', 'kojiroot_url': 'http://kojipkgs.fedoraproject.org/packages', 'koji_task_url': 'https://kojipkgs.fedoraproject.org/work/', 'baseurl_template': 'http://{host}/{proj}-{pkg_type}-{dist}-{arch}-{flavor}/{uri}', 'use_shaman': False, 'shaman_host': 'shaman.ceph.com', 'teuthology_path': None, 'suite_verify_ceph_hash': True, 'suite_allow_missing_packages': False, 'openstack': { 'clone': 'git clone http://github.com/ceph/teuthology', 'user-data': 'teuthology/openstack/openstack-{os_type}-{os_version}-user-data.txt', 'ip': '1.1.1.1', 'machine': { 'disk': 20, 'ram': 8000, 'cpus': 1, }, 'volumes': { 'count': 0, 'size': 1, }, }, } def __init__(self, yaml_path=None): super(TeuthologyConfig, self).__init__(yaml_path or self.yaml_path) def get_ceph_cm_ansible_git_url(self): return (self.ceph_cm_ansible_git_url or self.ceph_git_base_url + 'ceph-cm-ansible.git') def get_ceph_qa_suite_git_url(self): return (self.ceph_qa_suite_git_url or self.get_ceph_git_url()) def get_ceph_git_url(self): return (self.ceph_git_url or self.ceph_git_base_url + 'ceph-ci.git') class JobConfig(YamlConfig): pass class FakeNamespace(YamlConfig): """ This class is meant to behave like a argparse Namespace We'll use this as a stop-gap as we refactor commands but allow the tasks to still be passed a single namespace object for the time being. """ def __init__(self, config_dict=None): if not config_dict: config_dict = dict() self._conf = self._clean_config(config_dict) set_config_attr(self) def _clean_config(self, config_dict): """ Makes sure that the keys of config_dict are able to be used. For example the "--" prefix of a docopt dict isn't valid and won't populate correctly. """ result = dict() for key, value in config_dict.items(): new_key = key if new_key.startswith("--"): new_key = new_key[2:] elif new_key.startswith("<") and new_key.endswith(">"): new_key = new_key[1:-1] if "-" in new_key: new_key = new_key.replace("-", "_") result[new_key] = value return result def __getattr__(self, name): """ We need to modify this for FakeNamespace so that getattr() will work correctly on a FakeNamespace instance. """ if name in self._conf: return self._conf[name] elif name in self._defaults: return self._defaults[name] raise AttributeError(name) def __setattr__(self, name, value): if name == 'teuthology_config': object.__setattr__(self, name, value) else: super(FakeNamespace, self).__setattr__(name, value) def __repr__(self): return repr(self._conf) def __str__(self): return str(self._conf) def set_config_attr(obj): """ Set obj.teuthology_config, mimicking the old behavior of misc.read_config """ obj.teuthology_config = config def _get_config_path(): system_config_path = '/etc/teuthology.yaml' if not os.path.exists(TeuthologyConfig.yaml_path) and \ os.path.exists(system_config_path): return system_config_path return TeuthologyConfig.yaml_path config = TeuthologyConfig(yaml_path=_get_config_path())
py
7df71588569967b65629cdfa66b2c0bd177e5f54
import _plotly_utils.basevalidators class AutocolorscaleValidator(_plotly_utils.basevalidators.BooleanValidator): def __init__( self, plotly_name="autocolorscale", parent_name="layout.coloraxis", **kwargs ): super(AutocolorscaleValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), implied_edits=kwargs.pop("implied_edits", {}), **kwargs )
py
7df716afb057f4b6b0f17903e371695505a2e630
from classes import * if __name__ == '__main__': # create all the beds bed_1 = Bed("bed 1", "single") bed_2 = Bed("bed 2", "single") bed_3 = Bed("bed 3", "single") bed_4 = Bed("bed 4", "single") bed_5 = Bed("bed 5", "single") # Create all the rooms room_1 = Room("room 1", [bed_1]) room_2 = Room("room 2", [bed_2]) room_3 = Room("room 3", [bed_3]) room_4 = Room("room 4", [bed_4]) room_5 = Room("room 5", [bed_5]) # Create the house the_house = House(1050) # Add rooms to the house the_house.add_room(room_1) the_house.add_room(room_2) the_house.add_room(room_3) the_house.add_room(room_4) the_house.add_room(room_5) # Create the people and their bids Tim = Person("Tim") Tom = Person("Tom") Schubert = Person("Schubert") Jack = Person("Jack") Watson = Person("Watt") # Add bids to a person Tim.add_bids({ "room 1": 20, "room 2": 20, "room 3": 40, "room 4": 20, "room 5": 20 }) Tom.add_bids({ "room 1": 20, "room 2": 20, "room 3": 40, "room 4": 20, "room 5": 20 }) Schubert.add_bids({ "room 1": -20, "room 2": 20, "room 3": 40, "room 4": 20, "room 5": 20 }) Jack.add_bids({ "room 1": 20, "room 2": 20, "room 3": 40, "room 4": 20, "room 5": 20 }) Watson.add_bids({ "room 1": 20, "room 2": 20, "room 3": 40, "room 4": 80, "room 5": 20 }) test = Calculator(price_by="total average", bid_value="extra") # Add people to the calculator test.add_people([Tim, Tom, Jack, Schubert, Watson]) # Add house to calculator test.add_house(the_house) # Calculate prices test.calculate() test.view_results()
py
7df717d1cc0c28cc9f02e1fc115da6d0c80cfefc
from typing import Optional from pyshexc.parser.ShExDocParser import ShExDocParser from pyshexc.parser.ShExDocVisitor import ShExDocVisitor from pyshexc.parser_impl.parser_context import ParserContext from pyshexc.parser_impl.shex_annotations_and_semacts_parser import ShexAnnotationAndSemactsParser from pyshexc.parser_impl.shex_shape_expression_parser import ShexShapeExpressionParser from ShExJSG.ShExJ import ShapeExternal, IRIREF, ShapeDecl class ShexDocParser(ShExDocVisitor): """ parser for sheExDoc production """ def __init__(self, default_base: Optional[str]=None): ShExDocVisitor.__init__(self) self.context = ParserContext() self.context.base = IRIREF(default_base) if default_base else None def visitShExDoc(self, ctx: ShExDocParser.ShExDocContext): """ shExDoc: directive* ((notStartAction | startActions) statement*)? EOF """ super().visitShExDoc(ctx) def visitBaseDecl(self, ctx: ShExDocParser.BaseDeclContext): """ baseDecl: KW_BASE IRIREF """ self.context.base = '' self.context.base = self.context.iriref_to_shexj_iriref(ctx.IRIREF()) def visitPrefixDecl(self, ctx: ShExDocParser.PrefixDeclContext): """ prefixDecl: KW_PREFIX PNAME_NS IRIREF """ iri = self.context.iriref_to_shexj_iriref(ctx.IRIREF()) prefix = ctx.PNAME_NS().getText() if iri not in self.context.ld_prefixes: self.context.prefixes[prefix] = iri.val def visitImportDecl(self, ctx: ShExDocParser.ImportDeclContext): """ importDecl : KW_IMPORT IRIREF """ if self.context.schema.imports is None: self.context.schema.imports = [self.context.iriref_to_shexj_iriref(ctx.IRIREF())] else: self.context.schema.imports.append(self.context.iriref_to_shexj_iriref(ctx.IRIREF())) def visitStart(self, ctx: ShExDocParser.StartContext): """ start: KW_START '=' shapeExpression """ shexpr = ShexShapeExpressionParser(self.context, None) shexpr.visit(ctx.shapeExpression()) self.context.schema.start = shexpr.expr def visitShapeExprDecl(self, ctx: ShExDocParser.ShapeExprDeclContext): """ shapeExprDecl: KW_ABSTRACT? shapeExprLabel restrictions* (shapeExpression | KW_EXTERNAL) ;""" label = self.context.shapeexprlabel_to_IRI(ctx.shapeExprLabel()) if ctx.KW_EXTERNAL(): shape = ShapeExternal() else: shexpr = ShexShapeExpressionParser(self.context) shexpr.visit(ctx.shapeExpression()) shape = shexpr.expr if ctx.KW_ABSTRACT() or ctx.restrictions(): shape = ShapeDecl(shapeExpr=shape) if ctx.KW_ABSTRACT(): shape.abstract = True if ctx.restrictions(): shape.restricts = [self.context.shapeexprlabel_to_IRI(r.shapeExprLabel()) for r in ctx.restrictions()] if label: shape.id = label if self.context.schema.shapes is None: self.context.schema.shapes = [shape] else: self.context.schema.shapes.append(shape) def visitStartActions(self, ctx: ShExDocParser.StartActionsContext): """ startActions: semanticAction+ ; """ startacts = [] for cd in ctx.semanticAction(): cdparser = ShexAnnotationAndSemactsParser(self.context) cdparser.visit(cd) startacts += cdparser.semacts self.context.schema.startActs = startacts
py
7df718833c541067ea2005817c7ed1b051b31fad
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 9 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import isi_sdk_8_2_2 from isi_sdk_8_2_2.models.auth_role import AuthRole # noqa: E501 from isi_sdk_8_2_2.rest import ApiException class TestAuthRole(unittest.TestCase): """AuthRole unit test stubs""" def setUp(self): pass def tearDown(self): pass def testAuthRole(self): """Test AuthRole""" # FIXME: construct object with mandatory attributes with example values # model = isi_sdk_8_2_2.models.auth_role.AuthRole() # noqa: E501 pass if __name__ == '__main__': unittest.main()
py
7df718a7948038b43a68f8db908ae396806b365d
"""Sciter handlers sample (Go examples port).""" import sciter class RootEventHandler(sciter.EventHandler): def __init__(self, el, frame): super().__init__(element=el) self.parent = frame pass def on_event(self, source, target, code, phase, reason): he = sciter.Element(source) #print("-> event:", code, phase, he) pass @sciter.script("mcall") def method_call(self, *args): # # `root.mcall()` (see handlers.htm) calls behavior method of the root dom element (native equivalent is `Element.call_method()`), # so we need to attach a "behavior" to that element to catch and handle such calls. # Also it can be handled at script by several ways: # * `behavior` - Element subclassing with full control # * `aspect` - provides partial handling by attaching a single function to the dom element # * manually attaching function to Element via code like `root.mcall = function(args..) {};` # print("->mcall args:", "\t".join(map(str, args))) # explicit null for example, in other cases you can return any python object like None or True return sciter.Value.null() pass class Frame(sciter.Window): def __init__(self): super().__init__(ismain=True, uni_theme=False, debug=False) self.set_dispatch_options(enable=True, require_attribute=False) pass def test_call(self): # test sciter call v = self.call_function('gFunc', "kkk", 555) print("sciter call successfully:", v) # test method call root = self.get_root() v = root.call_method('mfn', "method call", 10300) print("method call successfully:", v) # test function call v = root.call_function('gFunc', "function call", 10300) print("function call successfully:", v) pass # Functions called from script: #@sciter.script - optional attribute here because of self.set_dispatch_options() def kkk(self): print("kkk called!") def fn(*args): print("%d: %s" % ( len(args), ",".join(map(str, args)) )) return "native functor called" rv = {} rv['num'] = 1000 rv['str'] = "a string" rv['f'] = fn return rv @sciter.script def sumall(self, *args): sum = 0 for v in args: sum += v return sum @sciter.script("gprintln") def gprint(self, *args): print("->", " ".join(map(str, args))) pass def on_load_data(self, nm): print("loading", nm.uri) pass def on_data_loaded(self, nm): print("loaded ", nm.uri) pass def on_event(self, source, target, code, phase, reason): # events from html controls (behaviors) he = sciter.Element(source) #print(".. event:", code, phase) # TODO: following statement looks ugly. # Guess it wasn't a nice idea to split event mask to separate code and phase values # Or we may pack all event arguments to single object (dict) to eliminate such parameters bloat # if code == sciter.event.BEHAVIOR_EVENTS.BUTTON_CLICK and phase == sciter.event.PHASE_MASK.SINKING and he.test('#native'): print("native button clicked!") return True pass pass if __name__ == "__main__": print("Sciter version:", sciter.version(as_str=True)) # create window frame = Frame() # enable debug only for this window frame.setup_debug() # load file frame.load_file("examples/handlers.htm") #frame.load_html(b"""<html><body><button id='native'>Click</button></body></html>""") # install additional handler ev2 = RootEventHandler(frame.get_root(), frame) frame.test_call() frame.run_app()
py
7df718c75b0d62eb2761da3de2381f1755e8043e
""" Utilities for handling JWST file/data formats. Requires https://github.com/spacetelescope/jwst """ import numpy as np def hdu_to_imagemodel(in_hdu): """ Workaround for initializing a `jwst.datamodels.ImageModel` from a normal FITS ImageHDU that could contain HST header keywords and unexpected WCS definition. TBD Parameters ---------- in_hdu : `astropy.io.fits.ImageHDU` Returns ------- img : `jwst.datamodels.ImageModel` """ from astropy.io.fits import ImageHDU, HDUList from astropy.coordinates import ICRS from jwst.datamodels import util import gwcs hdu = ImageHDU(data=in_hdu.data, header=in_hdu.header) new_header = strip_telescope_header(hdu.header) hdu.header = new_header # Initialize data model img = util.open(HDUList([hdu])) # Initialize GWCS tform = gwcs.wcs.utils.make_fitswcs_transform(new_header) hwcs = gwcs.WCS(forward_transform=tform, output_frame=ICRS())#gwcs.CelestialFrame()) sh = hdu.data.shape hwcs.bounding_box = ((-0.5, sh[0]-0.5), (-0.5, sh[1]-0.5)) # Put gWCS in meta, where blot/drizzle expect to find it img.meta.wcs = hwcs return img def xxx(header): """ """ ra, dec = 53.18118642, -27.79096316 hdu = utils.make_wcsheader(ra=ra, dec=dec, size=10, pixscale=0.06, get_hdu=True) out = grizli.jwst.hdu_to_imagemodel(hdu) from jwst.datamodels import ModelContainer, DrizProductModel product = DrizProductModel(out.data.shape) product.meta.wcs = out.meta.wcs from jwst.resample import gwcs_blot, gwcs_drizzle driz = gwcs_drizzle.GWCSDrizzle(product)#, outwcs=out.meta.wcs) driz.add_image(blot_data, wcs_model.meta.wcs, xmax=out.data.shape[1], ymax=out.data.shape[0]) from jwst.resample import resample_utils from drizzle import util input_wcs = wcs_model.meta.wcs output_wcs = out.meta.wcs fillval = 'INDEF' insci = blot_data inwht = None xmin = xmax = ymin = ymax = 0 uniqid = 1 outsci = driz.outsci*1 outwht = driz.outwht*1 outcon = driz.outcon*1 in_units = 'cps' from jwst.resample import resample groups = ModelContainer([wcs_model]) sampler = resample.ResampleData(groups, output=driz) def change_header_pointing(header, ra_ref=0., dec_ref=0., pa_v3=0.): """ Update a FITS header for a new pointing (center + roll). Parameters ---------- header : `~astropy.io.fits.Header` Parent header (must contain `V2_REF`, `V3_REF` keywords). ra_ref, dec_ref : float Pointing center, in decimal degrees, at reference the pixel defined in. pa_v3 : float Position angle of the telescope V3 axis, degrees. .. warning:: Doesn't update PC keywords based on pa_v3, which would rather have to be computed from the new `gwcs`. """ from jwst.lib.set_telescope_pointing import compute_local_roll v2_ref = header['V2_REF'] v3_ref = header['V3_REF'] # Strip units, if any args = [] for v in (pa_v3, ra_ref, dec_ref, v2_ref, v3_ref): if hasattr(v, 'value'): args.append(v.value) else: args.append(v) roll_ref = compute_local_roll(*tuple(args)) new_header = header.copy() new_header['XPA_V3'] = args[0] new_header['CRVAL1'] = new_header['RA_REF'] = args[1] new_header['CRVAL2'] = new_header['DEC_REF'] = args[2] new_header['ROLL_REF'] = roll_ref return new_header def img_with_wcs(input): """ Open a JWST exposure and apply the distortion model. Parameters ---------- input : type Anything `jwst.datamodels.util.open` can accept for initialization. Returns ------- with_wcs : `jwst.datamodels.ImageModel` Image model with full `~gwcs` in `with_wcs.meta.wcs`. """ from jwst.datamodels import util from jwst.assign_wcs import AssignWcsStep # from jwst.stpipe import crds_client # from jwst.assign_wcs import assign_wcs # HDUList -> jwst.datamodels.ImageModel img = util.open(input) # print("{}".format(img)) # for item in img.meta: # print("{}: {} ({})".format(item, img.meta[item], type(img.meta[item]))) # AssignWcs to pupulate img.meta.wcsinfo step = AssignWcsStep() with_wcs = step.process(img) ## Above should be more robust to get all of the necessary ref files #dist_file = crds_client.get_reference_file(img, 'distortion') #reference_files = {'distortion': dist_file} #with_wcs = assign_wcs.load_wcs(img, reference_files=reference_files) return with_wcs def strip_telescope_header(header, simplify_wcs=True): """ Strip non-JWST keywords that confuse `jwst.datamodels.util.open`. Parameters ---------- header : `~astropy.io.fits.Header` Input FITS header. """ import astropy.wcs as pywcs new_header = header.copy() if 'TELESCOP' in new_header: if new_header['TELESCOP'] != 'JWST': keys = ['TELESCOP', 'FILTER', 'DETECTOR', 'INSTRUME'] for key in keys: if key in header: new_header.remove(key) if simplify_wcs: # Make simple WCS header orig_wcs = pywcs.WCS(new_header) new_header = orig_wcs.to_header() new_header['EXTNAME'] = 'SCI' new_header['RADESYS'] = 'ICRS' new_header['CDELT1'] = -new_header['PC1_1'] new_header['CDELT2'] = new_header['PC2_2'] new_header['PC1_1'] = -1 new_header['PC2_2'] = 1 return new_header def model_wcs_header(datamodel, get_sip=False, order=4, step=32): """ Make a header with approximate WCS for use in DS9. Parameters ---------- datamodel : `jwst.datamodels.ImageModel` Image model with full `~gwcs` in `with_wcs.meta.wcs`. get_sip : bool If True, fit a `astropy.modeling.models.SIP` distortion model to the image WCS. order : int Order of the SIP polynomial model. step : int For fitting the SIP model, generate a grid of detector pixels every `step` pixels in both axes for passing through `datamodel.meta.wcs.forward_transform`. Returns ------- header : '~astropy.io.fits.Header` Header with simple WCS definition: CD rotation but no distortion. """ from astropy.io.fits import Header from scipy.optimize import least_squares sh = datamodel.data.shape try: pipe = datamodel.meta.wcs.pipeline[0][1] if 'offset_2' in pipe.param_names: # NIRISS WCS c_x = pipe.offset_2.value c_y = pipe.offset_3.value else: # Simple WCS c_x = pipe.offset_0.value c_y = pipe.offset_1.value crpix = np.array([-c_x+1, -c_y+1]) except: crpix = np.array(sh)/2.+0.5 crval = datamodel.meta.wcs.forward_transform(crpix[0], crpix[1]) cdx = datamodel.meta.wcs.forward_transform(crpix[0]+1, crpix[1]) cdy = datamodel.meta.wcs.forward_transform(crpix[0], crpix[1]+1) header = Header() header['RADESYS'] = 'ICRS' header['CTYPE1'] = 'RA---TAN' header['CTYPE2'] = 'DEC--TAN' header['CUNIT1'] = header['CUNIT2'] = 'deg' header['CRPIX1'] = crpix[0] header['CRPIX2'] = crpix[1] header['CRVAL1'] = crval[0] header['CRVAL2'] = crval[1] cosd = np.cos(crval[1]/180*np.pi) header['CD1_1'] = (cdx[0]-crval[0])*cosd header['CD1_2'] = (cdy[0]-crval[0])*cosd header['CD2_1'] = cdx[1]-crval[1] header['CD2_2'] = cdy[1]-crval[1] cd = np.array([[header['CD1_1'], header['CD1_2']], [header['CD2_1'], header['CD2_2']]]) if not get_sip: return header #### Fit a SIP header to the gwcs transformed coordinates v, u = np.meshgrid(np.arange(1,sh[0]+1,step), np.arange(1,sh[1]+1,step)) x, y = datamodel.meta.wcs.forward_transform(u, v) y -= crval[1] x = (x-crval[0])*np.cos(crval[1]/180*np.pi) a_names = [] b_names = [] #order = 4 for i in range(order+1): for j in range(order+1): ext = '{0}_{1}'.format(i,j) if (i+j) > order: continue if ext in ['0_0', '0_1','1_0']: continue a_names.append('A_'+ext) b_names.append('B_'+ext) p0 = np.zeros(4+len(a_names)+len(b_names)) p0[:4] += cd.flatten() args = (u.flatten(), v.flatten(), x.flatten(), y.flatten(), crpix, a_names, b_names, cd, 0) # Fit the SIP coeffs fit = least_squares(_objective_sip, p0, jac='2-point', bounds=(-np.inf, np.inf), method='lm', ftol=1e-08, xtol=1e-08, gtol=1e-08, x_scale=1.0, loss='linear', f_scale=1.0, diff_step=None, tr_solver=None, tr_options={}, jac_sparsity=None, max_nfev=1000, verbose=0, args=args, kwargs={}) # Get the results args = (u.flatten(), v.flatten(), x.flatten(), y.flatten(), crpix, a_names, b_names, cd, 1) cd_fit, a_coeff, b_coeff = _objective_sip(fit.x, *args) # Put in the header for i in range(2): for j in range(2): header['CD{0}_{1}'.format(i+1, j+1)] = cd_fit[i,j] header['CTYPE1'] = 'RA---TAN-SIP' header['CTYPE2'] = 'DEC--TAN-SIP' header['A_ORDER'] = order for k in a_coeff: header[k] = a_coeff[k] header['B_ORDER'] = order for k in b_coeff: header[k] = b_coeff[k] return header def _objective_sip(params, u, v, x, y, crpix, a_names, b_names, cd, ret): """ Objective function for fitting SIP coefficients """ from astropy.modeling import models, fitting #u, v, x, y, crpix, a_names, b_names, cd = data cdx = params[0:4].reshape((2,2)) a_params = params[4:4+len(a_names)] b_params = params[4+len(a_names):] a_coeff = {} for i in range(len(a_names)): a_coeff[a_names[i]] = a_params[i] b_coeff = {} for i in range(len(b_names)): b_coeff[b_names[i]] = b_params[i] if ret == 1: return cdx, a_coeff, b_coeff sip = models.SIP(crpix=crpix, a_order=4, b_order=4, a_coeff=a_coeff, b_coeff=b_coeff) fuv, guv = sip(u,v) xo, yo = np.dot(cdx, np.array([u+fuv-crpix[0], v+guv-crpix[1]])) #dr = np.sqrt((x-xo)**2+(y-yo)**2)*3600. dr = np.append(x-xo, y-yo)*3600./0.065 #print(params, np.abs(dr).max()) return dr
py
7df719130f27655cbd8a386c44e2e21b9d9e75ed
########################################################################### # Created by: Hang Zhang # Email: [email protected] # Copyright (c) 2017 ########################################################################### import torch from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F import encoding from .base import BaseNet from .fcn import FCNHead __all__ = ['EncNet', 'EncModule', 'get_encnet', 'get_encnet_resnet50_pcontext', 'get_encnet_resnet101_pcontext', 'get_encnet_resnet50_ade'] class EncNet(BaseNet): def __init__(self, nclass, backbone, aux=True, se_loss=True, lateral=False, norm_layer=nn.BatchNorm2d, **kwargs): super(EncNet, self).__init__(nclass, backbone, aux, se_loss, norm_layer=norm_layer, **kwargs) self.head = EncHead(self.nclass, in_channels=2048, se_loss=se_loss, lateral=lateral, norm_layer=norm_layer, up_kwargs=self._up_kwargs) if aux: self.auxlayer = FCNHead(1024, nclass, norm_layer=norm_layer) def forward(self, x): imsize = x.size()[2:] features = self.base_forward(x) x = list(self.head(*features)) x[0] = F.upsample(x[0], imsize, **self._up_kwargs) if self.aux: auxout = self.auxlayer(features[2]) auxout = F.upsample(auxout, imsize, **self._up_kwargs) x.append(auxout) return tuple(x) class EncModule(nn.Module): def __init__(self, in_channels, nclass, ncodes=32, se_loss=True, norm_layer=None): super(EncModule, self).__init__() norm_layer = nn.BatchNorm1d if isinstance(norm_layer, nn.BatchNorm2d) else \ encoding.nn.BatchNorm1d self.se_loss = se_loss self.encoding = nn.Sequential( nn.Conv2d(in_channels, in_channels, 1, bias=False), nn.BatchNorm2d(in_channels), nn.ReLU(inplace=True), encoding.nn.Encoding(D=in_channels, K=ncodes), norm_layer(ncodes), nn.ReLU(inplace=True), encoding.nn.Mean(dim=1)) self.fc = nn.Sequential( nn.Linear(in_channels, in_channels), nn.Sigmoid()) if self.se_loss: self.selayer = nn.Linear(in_channels, nclass) def forward(self, x): en = self.encoding(x) b, c, _, _ = x.size() gamma = self.fc(en) y = gamma.view(b, c, 1, 1) outputs = [F.relu_(x + x * y)] if self.se_loss: outputs.append(self.selayer(en)) return tuple(outputs) class EncHead(nn.Module): def __init__(self, out_channels, in_channels, se_loss=True, lateral=True, norm_layer=None, up_kwargs=None): super(EncHead, self).__init__() self.se_loss = se_loss self.lateral = lateral self.up_kwargs = up_kwargs self.conv5 = nn.Sequential( nn.Conv2d(in_channels, 512, 3, padding=1, bias=False), norm_layer(512), nn.ReLU(inplace=True)) if lateral: self.connect = nn.ModuleList([ nn.Sequential( nn.Conv2d(512, 512, kernel_size=1, bias=False), norm_layer(512), nn.ReLU(inplace=True)), nn.Sequential( nn.Conv2d(1024, 512, kernel_size=1, bias=False), norm_layer(512), nn.ReLU(inplace=True)), ]) self.fusion = nn.Sequential( nn.Conv2d(3*512, 512, kernel_size=3, padding=1, bias=False), norm_layer(512), nn.ReLU(inplace=True)) self.encmodule = EncModule(512, out_channels, ncodes=32, se_loss=se_loss, norm_layer=norm_layer) self.conv6 = nn.Sequential(nn.Dropout2d(0.1, False), nn.Conv2d(512, out_channels, 1)) def forward(self, *inputs): feat = self.conv5(inputs[-1]) if self.lateral: c2 = self.connect[0](inputs[1]) c3 = self.connect[1](inputs[2]) feat = self.fusion(torch.cat([feat, c2, c3], 1)) outs = list(self.encmodule(feat)) outs[0] = self.conv6(outs[0]) return tuple(outs) def get_encnet(dataset='pascal_voc', backbone='resnet50', pretrained=False, root='~/.encoding/models', **kwargs): r"""EncNet model from the paper `"Context Encoding for Semantic Segmentation" <https://arxiv.org/pdf/1803.08904.pdf>`_ Parameters ---------- dataset : str, default pascal_voc The dataset that model pretrained on. (pascal_voc, ade20k) backbone : str, default resnet50 The backbone network. (resnet50, 101, 152) pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.encoding/models' Location for keeping the model parameters. Examples -------- >>> model = get_encnet(dataset='pascal_voc', backbone='resnet50', pretrained=False) >>> print(model) """ acronyms = { 'pascal_voc': 'voc', 'ade20k': 'ade', 'pcontext': 'pcontext', } kwargs['lateral'] = True if dataset.lower() == 'pcontext' else False # infer number of classes from ..datasets import datasets, VOCSegmentation, VOCAugSegmentation, ADE20KSegmentation model = EncNet(datasets[dataset.lower()].NUM_CLASS, backbone=backbone, root=root, **kwargs) if pretrained: from .model_store import get_model_file model.load_state_dict(torch.load( get_model_file('encnet_%s_%s'%(backbone, acronyms[dataset]), root=root))) return model def get_encnet_resnet50_pcontext(pretrained=False, root='~/.encoding/models', **kwargs): r"""EncNet-PSP model from the paper `"Context Encoding for Semantic Segmentation" <https://arxiv.org/pdf/1803.08904.pdf>`_ Parameters ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.encoding/models' Location for keeping the model parameters. Examples -------- >>> model = get_encnet_resnet50_pcontext(pretrained=True) >>> print(model) """ return get_encnet('pcontext', 'resnet50', pretrained, root=root, aux=False, **kwargs) def get_encnet_resnet101_pcontext(pretrained=False, root='~/.encoding/models', **kwargs): r"""EncNet-PSP model from the paper `"Context Encoding for Semantic Segmentation" <https://arxiv.org/pdf/1803.08904.pdf>`_ Parameters ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.encoding/models' Location for keeping the model parameters. Examples -------- >>> model = get_encnet_resnet101_pcontext(pretrained=True) >>> print(model) """ return get_encnet('pcontext', 'resnet101', pretrained, root=root, aux=False, **kwargs) def get_encnet_resnet50_ade(pretrained=False, root='~/.encoding/models', **kwargs): r"""EncNet-PSP model from the paper `"Context Encoding for Semantic Segmentation" <https://arxiv.org/pdf/1803.08904.pdf>`_ Parameters ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.encoding/models' Location for keeping the model parameters. Examples -------- >>> model = get_encnet_resnet50_ade(pretrained=True) >>> print(model) """ return get_encnet('ade20k', 'resnet50', pretrained, root=root, aux=True, **kwargs)
py
7df71a59aa65a0d0e90a47ded2095f7ebfbb6ea9
15 uid=2057284 20 ctime=1295323748 20 atime=1295578340 24 SCHILY.dev=234881026 23 SCHILY.ino=29219952 18 SCHILY.nlink=1
py
7df71c05752468dab206f6c6be62ddc82989b86c
import math import subprocess _interesting_modules = ('overrepresented sequences', 'per sequence quality scores') def run_preprocessing(namespace): ''' Runs all the preprocessing steps - quality estimation, trimming, etc. Based on the input parameters, performs the following steps: 1. Checks if the FastQC report is available. 1.a If it is, loads the existing data. 1.b If it is not, creates a FastQC report in the output directory. 2. Performs the quality and adapter trimming (if FastQC detected adapters and contaminant file available) 3. Estimates the sample evenness based on sequence overrepresentation in the sample. Args: namespace: Object (from configparser.parse_args) which contains all the command-line options ''' # Preliminary data generation generate_report = True input_fname = namespace.fastq_file.split('/')[-1] input_prefix = input_fname.split('.')[0] # Determine if filtering is needed, and if it is, run it. if namespace.fastqc_report: generate_report = False fastqc_fname = '%s/fastqc_data.txt' % namespace.fastqc_report if generate_report: cmd = 'fastqc -o %s %s --extract' % (namespace.output_dir, namespace.fastq_file) subprocess.call(cmd, shell=True) fastqc_fname = '%s/%s_fastqc/fastqc_data.txt' % (namespace.output_dir, input_prefix) fastqc_modules = dict(iter(parse_fastqc(fastqc_fname))) # Let's stipulate something about the sample evenness and 16s abundance overrepresented = fastqc_modules['overrepresented sequences'] per_seq_qual = fastqc_modules['per sequence quality scores'] evenness, potential_16s = determine_sample_complexity(overrepresented) # Temporary solution # TODO with open('%s/.preprocessing' % namespace.output_dir, 'w') as fout: fout.write('evenness %s\npotential_16s %s\n' % (evenness, potential_16s)) with open('%s/per-sequence-quality-scores.tsv' % namespace.output_dir, 'w') as fout: fout.write('quality count\n') fout.write('\n'.join(map(lambda i: '%d %s' % (i[0], i[1]), per_seq_qual.items()))) # Filtering using trim-galore filtering = True if overrepresented.seq_constructs else False cmd = "trim_galore -q 15 --length 20 " if filtering: if not namespace.contaminants: print 'ERROR: Cannot filter adapters, no contaminant file present. Will perform default cutadapt filtering.' else: contaminants = overrepresented.get_original_adapters(namespace.contaminants) adapters = ' '.join(map(lambda seq: '-a %s' % seq, contaminants.values())) cmd += adapters cmd = '%s %s > %s/%s.fastq' % (cmd, namespace.fastq_file, namespace.output_dir, input_prefix) subprocess.call(cmd, shell=True) cmd = 'mv %s_trimmed.fq %s' % (input_prefix, namespace.output_dir) subprocess.call(cmd, shell=True) cmd = 'mv %s_trimming_report.txt %s' % (input_fname, namespace.output_dir) subprocess.call(cmd, shell=True) def determine_sample_complexity(overrepresented): '''Guesses sample complexity based on overrepresented sequences. It uses the information on number and percentage of overrepresented sequences and tries to guess whether these is rRNA content present in the sample and the level of the evenness of the sample: Args: overrepresented: :metagenomix.preprocessing.fastqc.Overrepresented Returns: tuple: (evenness, potential_16s), values of which can be low, medium and high. ''' evenness = None potential_16s = None perc_data = overrepresented.dataset_specific.values() # The sample is even and there is low probability of rRNA content. if len(perc_data) == 0: evenness = 'high' potential_16s = 'low' return evenness, potential_16s # Ignore this for now, it is ashamedly silly: N = len(perc_data) max_perc = max(perc_data) min_perc = min(perc_data) if N > 10 and N < 20: if max_perc > 5.: potential_16s = 'high' else: potential_16s = 'medium' elif N > 20: potential_16s = 'high' else: potential_16s = 'low' if max_perc > 0.5 and max_perc < 5.: evenness = 'medium' elif max_perc > 5.: evenness = 'low' else: evenness = 'high' return evenness, potential_16s class Overrepresented(object): '''Place-holder for overrepresented sequences module data.''' __slots__ = {'seq_constructs', 'dataset_specific'} def __init__(self, seq_constructs=set(), dataset_specific={}): self.seq_constructs = seq_constructs self.dataset_specific = dataset_specific def get_original_adapters(self, contaminant_file): contaminants = load_contaminants(contaminant_file) return dict(map(lambda n: (n, contaminants[n]), self.seq_constructs)) def _parse_overrepresented_sequences(fin): sequencing = set() no_hit = {} for l in fin: l = l.strip() if l == '>>END_MODULE': return Overrepresented(sequencing, no_hit) if l.startswith('#'): continue seq, count, perc, source = l.split('\t') if source.lower() == 'no hit': no_hit[seq] = float(perc) else: parenthesis = source.find('(') source = source[: parenthesis - 1] sequencing.add(source) def _parse_per_sequence_quality_scores(fin): qual_scores = {} for l in fin: l = l.strip() if l == '>>END_MODULE': return qual_scores if l.startswith('#'): continue qual, count = l.split('\t') qual_scores[int(qual)] = count def load_contaminants(contaminant_file): '''Loads contaminant sequences from a file. Args: contaminant_file: path to a file containing sequencing contaminants. Returns: dict(adapter_name, adapter_sequence) ''' c = {} with open(contaminant_file) as fin: for l in fin: l = l.strip() if not l or l.startswith('#'): continue data = l.split('\t') name, seq = data[0], data[-1] c[name] = seq return c def parse_fastqc(fqc_fname): '''Parses the FastQC report file (fastqc_data.txt in the report directory) Function is a generator. It checks which of the modules are declared "interesting". For each of the interesting modules, invokes a function _parse_<MODULE_NAME>, which returns an object with the data contained in the module. Overrepresented sequences supported for now. Args: fqc_fname: Path to the fastqc_data.txt file of the FastQC report. Returns: Yields tuple (module_name, object with module data) ''' with open(fqc_fname ,'r') as fin: for l in fin: l = l.strip() if l.startswith('#'): continue if l.startswith('>>') and l != '>>END_MODULE': module_name, status = l[2:].lower().split('\t') if module_name in _interesting_modules: yield module_name, globals()['_parse_%s' % ('_'.join(module_name.split(' ')))](fin) def main(): import sys if len(sys.argv) < 2: print 'Usage: python fasqc.py <FASTQC_DATA.TXT> [CONTAMINANTS_FILE]' sys.exit(-1) fqc_fname = sys.argv[1] modules = {} for mod_name, res in parse_fastqc(fqc_fname): modules[mod_name] = res print modules['overrepresented sequences'].dataset_specific print modules['overrepresented sequences'].seq_constructs if len(sys.argv) == 3: cf = sys.argv[2] print modules['overrepresented sequences'].get_original_adapters(cf) if __name__ == '__main__': main()
py
7df71c26c414291206f35c084ab45bf7283dca6c
import src.data_mgmt as dm import src.model as m import os import pandas as pd from src.utils import * from datetime import datetime feature_dict = {'NU_NOTIFIC' : 'Registry ID', 'DT_NOTIFIC' : 'Notification Date', 'SEM_NOT' : 'Week Post Sympt', 'DT_SIN_PRI' : 'Date First Sympt', 'SEM_PRI' : 'Test Location ID', 'SG_UF_NOT' : 'Test Location Federal', 'ID_REGIONA' : 'Test Location Region ID', 'CO_REGIONA' : 'Test Location Region', 'ID_MUNICIP' : 'Test Location MunicipalityID', 'CO_MUN_NOT' : 'Test Location Municipality', 'ID_UNIDADE' : 'Test Unit ID', 'CO_UNI_NOT' : 'Test Unit', 'CS_SEXO' : 'Gender', 'DT_NASC' : 'Birth Date', 'NU_IDADE_N' : 'Age', 'TP_IDADE' : 'Birth Date', 'COD_IDADE' : 'Age code', 'CS_GESTANT' : 'Gestational Age', 'CS_RACA' : 'Race', 'CS_ETINIA' : 'Indigenous', 'CS_ESCOL_N' : 'Schooling', 'ID_PAIS' : 'CountryID', 'CO_PAIS' : 'CountryName', 'SG_UF' : 'Residency ID', 'ID_RG_RESI' : 'Residency Region ID', 'CO_RG_RESI' : 'Residency Region', 'ID_MN_RESI' : 'Residency Municipality', 'CO_MUN_RES' : 'Residency Municipality ID', 'CS_ZONA' : 'Residency Type', 'SURTO_SG' : 'Acute Respiratory Distress Syndrome', 'NOSOCOMIAL' : 'Contracted At Hospital', 'AVE_SUINO' : 'Contact Birds Pigs', 'FEBRE' : 'Fever', 'TOSSE' : 'Cough', 'GARGANTA' : 'Throat', 'DISPNEIA' : 'Dyspnea', 'DESC_RESP' : 'Respiratory Discomfort', 'SATURACAO' : 'SpO2 less 95%', 'DIARREIA' : 'Diarrhea', 'VOMITO' : 'Vomiting', 'OUTRO_SIN' : 'Other Symptoms', 'OUTRO_DES' : 'Other Symptoms Description', 'PUERPERA' : 'Postpartum', 'CARDIOPATI' : 'Cardiovascular Disease', 'HEMATOLOGI' : 'Hematologic Disease', 'SIND_DOWN' : 'Down Syndrome', 'HEPATICA' : 'Liver Chronic Disease', 'ASMA' : 'Asthma', 'DIABETES' : 'Diabetes', 'NEUROLOGIC' : 'Neurological Disease', 'PNEUMOPATI' : 'Another Chronic Pneumopathy', 'IMUNODEPRE' : 'Immunosuppression', 'RENAL' : 'Renal Chronic Disease', 'OBESIDADE' : 'Obesity', 'OBES_IMC' : 'BMI', 'OUT_MORBI' : 'Other Risks', 'MORB_DESC' : 'Other Risks Desc', 'VACINA' : 'Flu Shot', 'DT_UT_DOSE' : 'Flu Shot Date', 'MAE_VAC' : 'Flu Shot Less 6 months', 'DT_VAC_MAE' : 'Flu Shot Date Less 6 Months', 'M_AMAMENTA' : 'Breast Feeds 6 Months', 'DT_DOSEUNI' : 'Date Vaccine Children', 'DT_1_DOSE' : 'Date Vaccine Children1', 'DT_2_DOSE' : 'Date Vaccine Children2', 'ANTIVIRAL' : 'Antiviral Use', 'TP_ANTIVIR' : 'Type Antiviral', 'OUT_ANTIV' : 'Type Antiviral Other', 'DT_ANTIVIR' : 'Antiviral Start Date', 'HOSPITAL' : 'Hospitalization', 'DT_INTERNA' : 'Date Hospitalization', 'SG_UF_INTE' : 'Hospital Region ID', 'ID_RG_INTE' : 'Hospital Region IBGE2', 'CO_RG_INTE' : 'Hospital Region IBGE', 'ID_MN_INTE' : 'Hopspital MunicpialityID', 'CO_MU_INTE' : 'Hopspital Municpiality', 'ID_UN_INTE' : 'Hospital ID', 'CO_UN_INTE' : 'Hospital ID', 'UTI' : 'ICU', 'DT_ENTUTI' : 'ICU start Date', 'DT_SAIDUTI' : 'ICU end Date', 'SUPORT_VEN' : 'Ventilator', 'RAIOX_RES' : 'Xray Thorax Result', 'RAIOX_OUT' : 'Xray Thorax Other', 'DT_RAIOX' : 'Xray Test Date', 'AMOSTRA' : 'Amostra', 'DT_COLETA' : 'Amostra Date', 'TP_AMOSTRA' : 'Amostra Type', 'OUT_AMOST' : 'Amostra Other', 'REQUI_GAL' : 'gal Sys Test', 'IF_RESUL' : 'Test Result', 'DT_IF' : 'Test Result Date', 'POS_IF_FLU' : 'Test Influenza', 'TP_FLU_IF' : 'Influenza Type', 'POS_IF_OUT' : 'Positive Others', 'IF_VSR' : 'Positive VSR', 'IF_PARA1' : 'Positive Influenza 1', 'IF_PARA2' : 'Positive Influenza 2', 'IF_PARA3' : 'Positive Influenza 3', 'IF_ADENO' : 'Positive Adenovirus', 'IF_OUTRO' : 'Positive Other', 'DS_IF_OUT' : 'Other Respiratory Virus', 'LAB_IF' : 'Test Lab', 'CO_LAB_IF' : 'Test Lab Other', 'PCR_RESUL' : 'Result PCR', 'DT_PCR' : 'Result PCR Date', 'POS_PCRFLU' : 'Result PCR Influeza', 'TP_FLU_PCR' : 'Result PCR Type Influeza', 'PCR_FLUASU' : 'Result PCR SubType Influeza', 'FLUASU_OUT' : 'Result PCR SubType Influeza_Other', 'PCR_FLUBLI' : 'Result PCR SubType Influeza_Other_spec', 'FLUBLI_OUT' : 'Result PCR SubType InfluezaB_Linage', 'POS_PCROUT' : 'Result PCR Other', 'PCR_VSR' : 'Result PCR VSR', 'PCR_PARA1' : 'Result PCR parainfluenza1', 'PCR_PARA2' : 'Result PCR parainfluenza2', 'PCR_PARA3' : 'Result PCR parainfluenza3', 'PCR_PARA4' : 'Result PCR parainfluenza4', 'PCR_ADENO' : 'Result PCR adenovirus', 'PCR_METAP' : 'Result PCR metapneumovirus', 'PCR_BOCA' : 'Result PCR bocavirus', 'PCR_RINO' : 'Result PCR rinovirus', 'PCR_OUTRO' : 'Result PCR other', 'DS_PCR_OUT' : 'Result PCR other name', 'LAB_PCR' : 'Lab PCR', 'CO_LAB_PCR' : 'LabP CR co', 'CLASSI_FIN' : 'Result Final', 'CLASSI_OUT' : 'Result Final other', 'CRITERIO' : 'Result Final confirmation', 'EVOLUCAO' : 'Evolution', 'DT_EVOLUCA' : 'Death Date', 'DT_ENCERRA' : 'Date Quarentine', 'OBSERVA' : 'Other Observations', 'DT_DIGITA' : 'Date Registry', 'HISTO_VGM' : 'HISTO_VGM', 'PAIS_VGM' : 'PAIS_VGM', 'CO_PS_VGM' : 'CO_PS_VGM', 'LO_PS_VGM' : 'LO_PS_VGM', 'DT_VGM' : 'DT_VGM', 'DT_RT_VGM' : 'DT_RT_VGM', 'PCR_SARS2' : 'Result PCR Covid', 'PAC_COCBO' : 'Occupation ID', 'PAC_DSCBO' : 'Occupation Des' } region_var = 'Test Location Federal' numeric_cols = ['Age', #'Gestational Age', 'BMI' ] date_cols = [ 'BirthDate', 'ICUstartDate', 'ICUendDate', 'AmostraDate', 'DeathDate', 'DateQuarentine', ] categorical_cols = ['Gender', 'Race', #'Indigenous', 'Schooling', 'Acute Respiratory Distress Syndrome', 'Contracted At Hospital', #'Contact Birds Pigs', 'Fever', 'Cough', 'Throat', 'Dyspnea', 'Respiratory Discomfort', 'SpO2 less 95%', 'Diarrhea', 'Vomiting', 'Other Symptoms', 'Postpartum', 'Cardiovascular Disease', 'Hematologic Disease', 'Down Syndrome', 'Liver Chronic Disease', 'Asthma', 'Diabetes', 'Neurological Disease', 'Another Chronic Pneumopathy', 'Immunosuppression', 'Renal Chronic Disease', 'Obesity', 'Other Risks', #'Flu Shot Less 6 months', #'Breast Feeds 6 Months', 'Antiviral Use', #'TypeAntiviral', 'Hospitalization', 'ICU', 'Ventilator', 'Xray Thorax Result', #'Amostra', 'Result Final', 'Evolution', #'Residency Region', #'OccupationID', # 'Hospital ID', # 'Hospital Region ID', #'Notification Date' region_var ] keep_cols = categorical_cols.copy() keep_cols.extend(numeric_cols) post_hosp = [ 'Hospitalization', 'Antiviral', 'ICU', 'Ventilator', 'Xray Torax Result', 'Amostra', 'Evolution' ] post_death = [ 'Hospitalization', 'Antiviral', 'ICU', 'Ventilator', 'Amostra', 'Evolution' ] var_dictionary = {'typical':{'1.0':'', '2.0':' Nope '}, 'Race':{'1.0':'White', '2.0':'Black', '3.0':'Yellow', '4.0':'Brown', '5.0':'Indigenous'}, 'Schooling':{'0.0':'No Education', '1.0':'Elem 1-5', '2.0':'Elem 6-9', '3.0':'Medium 1-3', '4.0':'Superior', '5.0':'NA'}, 'Xray Thorax Result':{'1.0':'Normal', '2.0':'Interstitial infiltrate', '3.0':'Consolidation', '4.0':'Mixed', '5.0':'Other','6.0':'Not done' }, 'Ventilator':{'1.0':'Invasive', '2.0':'Non Invasive', '3.0':'No'}, 'Evolution':{'1.0':'Recovered', '2.0':'Death'}, 'Gender':{'M':'M', 'F':'F', 'I':'I'}, 'Hospital':{'1.0':'Public', '2.0':'Private'}, 'Region': {'DF' : 'Midwest', 'SP' : 'Southeast', 'SC' : 'South', 'RJ' : 'Southeast', 'PR' : 'South', 'RS' : 'South', 'ES' : 'Southeast', 'GO' : 'Midwest', 'MG' : 'Southeast', 'MS' : 'Midwest', 'MT' : 'Midwest', 'AP' : 'North', 'RR' : 'North', 'TO' : 'North', 'RO' : 'North', 'RN' : 'Northeast', 'CE' : 'Northeast', 'AM' : 'North', 'PE' : 'Northeast', 'SE' : 'Northeast', 'AC' : 'North', 'BA' : 'Northeast', 'PB' : 'Northeast', 'PA' : 'North', 'PI' : 'Northeast', 'MA' : 'Northeast', 'AL' : 'Northeast'} } #fname = 'data/INFLUD-08-06-2020.csv' fname = 'data/INFLUD-30-06-2020.csv' ts = datetime.now().strftime("%d-%b-%Y_%H-%M-%S") outdir = 'results/' + ts out_dir_p = outdir+'/PredictiveModels' out_dir_da = outdir+'/DataAnalytics' os.mkdir(outdir) os.mkdir(out_dir_p) os.mkdir(out_dir_da) # Read Data keep_cols.append('Date Registry') df = dm.read_data(fname, feature_dict, keep_cols, sep=';') df = dm.filter_positive_test(df) df = dm.get_hosp_from_previous(df, fname='data/INFLUD-08-06-2020.csv', feature_dict=feature_dict, keep_cols=keep_cols, categorical_cols=categorical_cols) ''' # Add public/private vari df = dm.add_public_private_var(df, fname='data/ICU_beds.csv') categorical_cols.append('Public Hospital') keep_cols.append('Public Hospital') df.drop(columns=['Hospital ID'], inplace=True ) categorical_cols.remove('Hospital ID') keep_cols.remove('Hospital ID') ''' # Add 5 regions df = df.rename(columns={region_var:'Region'}) categorical_cols.append('Region') keep_cols.append('Region') categorical_cols.remove(region_var) keep_cols.remove(region_var) categorical_cols.remove('Public Hospital') categorical_cols.append('Hospital') # Add HDI ''' fname = 'data/hdi.csv' pp_df = pd.read_csv(fname) pp_df.drop(columns=['public nonICU', 'private nonICU', 'public ICU', 'private ICU'], inplace=True) df = df.merge(pp_df, how='left', on='Hospital ID') del pp_df df.rename(columns={'public hospital': 'Public Hospital'}, inplace=True) df['Public Hospital'].loc[df['Public Hospital'] == 0] = 2.0 df['Public Hospital'].loc[df['Public Hospital'] == 1] = 1.0 df["Public Hospital"] = df["Public Hospital"].fillna(9.0) ''' #TODO: CREATE CONGESTION METRIC # Data Analytics dm.create_basic_analytics(df, categorical_vars=categorical_cols, out_dir=out_dir_da) # Preprocessing #TODO: what to do with jobs? #table = dm.get_categorical_stats(df[categorical_cols], plot=True, fname=out_dir_da+'/cat_stats') df['Region'] = df['Region'].replace(var_dictionary['Region']) df = df.drop(df[(df['Age'] > 50) & (df['Postpartum'] == 1)].index) df = dm.set_mode_on_NA(df, numeric_cols) df = dm.one_hot_encoding(df, categorical_features=categorical_cols) print(len(list(df))) df = dm.remove_features_containing(df, '9.0') print(len(list(df))) df = dm.var_to_categorical(df, var_name='Age', bins=[0,30,50,65,100]) #df = dm.var_to_categorical(df, var_name='BMI', bins=[18.5,25,30,40,100]) df.drop(columns=['BMI'], inplace=True) df = dm.rename_features(df, var_dictionary, ignore_vars=['Age', 'Result Final', 'BMI', 'Gender', 'Region']) df['Race Brown/Black'] = df['Race Brown'] + df['Race Black'] df.drop(columns=['Race Brown'], inplace=True) df.drop(columns=['Race Black'], inplace=True) rem_vars =['Xray Thorax Result Normal', 'Xray Thorax Result Interstitial infiltrate', 'Xray Thorax Result Mixed', 'Xray Thorax Result Other', 'Xray Thorax Result Not done', # 'Obesity ', 'Result Final_5.0'] print(len(list(df))) df.drop(columns=rem_vars, inplace=True) df = dm.remove_features_containing(df, ' Nope ') print(len(list(df))) df = dm.remove_features_containing(df, 'NA') print(len(list(df))) df = df[(df['Evolution Death']==1) | (df['Evolution Recovered']==1)] df = dm.remove_corr_features(df, print_=False, plot_=False) print(len(list(df))) #dm.create_basic_analytics(df, categorical_vars=list(df), out_dir=out_dir_da) # Classification def run_model(df, name, y, remove_vars=False, max_vars=100): x_train, x_test, y_train, y_test = dm.create_training_and_test_sets(df, y=y, remove_vars=remove_vars, percentage_train=0.7) selected_features, ktest_table = m.t_test(x_train, y_train, p=0.05) ktest_table['y'] = name x_train = x_train[selected_features] x_test = x_test[selected_features] print(len(list(x_train))) selected_features = m.feature_elimination(x_train, y_train, out_dir=out_dir_p, name=name, max_vars=max_vars) x_train = x_train[selected_features] x_test = x_test[selected_features] print(len(list(x_train))) m.run_classification_models(x_train, x_test, y_train, y_test, name=name, out_dir=out_dir_p, max_steps=10000) return ktest_table # Run different classification models #models = ['Hosp', 'Death', 'Death_hosp', 'ICU', 'Ventilator']#, 'XrayToraxResult'] models = [ 'Death_0','Death_1', 'Ventilator','Ventilator_small', 'Ventilator_w_ICU', 'Ventilator_w_ICU_small', 'Death_0_small', 'Death_1_small', # 'ICU', 'ICU_small', ] ktest_g = pd.DataFrame(index=list(df)) for name in models: df0 = df.copy() df0 = df0[df0['Hospitalization '] == 1] max_vars = 100 if name == 'Death_0' or name =='Death_0_small': y = 'Evolution Death' remove_vars = ['Antiviral', 'ICU', 'Ventilator', 'Evolution'] if 'small' in name: max_vars = 10 elif name == 'Death_1' or name =='Death_1_small': y = 'Evolution Death' remove_vars = ['Evolution'] if 'small' in name: max_vars = 10 elif name == 'ICU' or name=='ICU_small': y = 'ICU ' remove_vars = ['ICU ', 'Ventilator', 'Evolution'] if 'small' in name: max_vars = 10 elif name == 'Ventilator' or name=='Ventilator_small': y = 'Ventilator Invasive' remove_vars = ['ICU ', 'Ventilator', 'Evolution'] if 'small' in name: max_vars = 10 elif name == 'Ventilator_w_ICU' or name=='Ventilator_w_ICU_small': y = 'Ventilator Invasive' remove_vars = ['Ventilator', 'Evolution'] if 'small' in name: max_vars = 10 print('\n--------------------\n'+name+'\n--------------------\n') ktest = run_model(df=df0, name=name, y=y, remove_vars=remove_vars, max_vars=max_vars) #ktest_g = pd.concat([ktest_g, ktest], axis=1) #ktest_g = ktest_g.round(decimals=2) #ktest_g.to_latex(out_dir_da + '/pvTable.tex', column_format='lrrl|rrl|rrl|rrl|rrl' ) # Generate and save pdf report shell('mv '+ out_dir_p + ' ' + 'results/report_template/media', printOut=False) shell('mv '+ out_dir_da + ' ' + 'results/report_template/media', printOut=False) os.chdir('results/report_template') shell('pdflatex -interaction nonstopmode --jobname=report_'+ts+' main.tex', printOut=False) shell('rm *.out *.log *.aux', printOut=False) os.chdir('../..') shell('mv results/report_template/report_'+ts+'.pdf results/' + ts, printOut=False) shell('mv results/report_template/media/PredictiveModels ' + 'results/' + ts , printOut=False) shell('mv results/report_template/media/DataAnalytics ' + 'results/' + ts , printOut=False)
py
7df71c2d99bdf2a53ba927ae9f8ed2c26f35e6af
cid = str(input('Digite o nome da cidade ')).strip() print(cid[:5].upper() == 'SANTO')
py
7df71c5337fc52bcf6388916644e57902be31f50
from logging.config import fileConfig from sqlalchemy import engine_from_config from sqlalchemy import pool from alembic import context from app.models import Base from app.config import settings # this is the Alembic Config object, which provides # access to the values within the .ini file in use. config = context.config config.set_main_option( "sqlalchemy.url", f'postgresql+psycopg2://{settings.database_username}:{settings.database_password}@{settings.database_hostname}:{settings.database_port}/{settings.database_name}') # Interpret the config file for Python logging. # This line sets up loggers basically. fileConfig(config.config_file_name) # add your model's MetaData object here # for 'autogenerate' support # from myapp import mymodel # target_metadata = mymodel.Base.metadata target_metadata = Base.metadata # other values from the config, defined by the needs of env.py, # can be acquired: # my_important_option = config.get_main_option("my_important_option") # ... etc. def run_migrations_offline(): """Run migrations in 'offline' mode. This configures the context with just a URL and not an Engine, though an Engine is acceptable here as well. By skipping the Engine creation we don't even need a DBAPI to be available. Calls to context.execute() here emit the given string to the script output. """ url = config.get_main_option("sqlalchemy.url") context.configure( url=url, target_metadata=target_metadata, literal_binds=True, dialect_opts={"paramstyle": "named"}, ) with context.begin_transaction(): context.run_migrations() def run_migrations_online(): """Run migrations in 'online' mode. In this scenario we need to create an Engine and associate a connection with the context. """ connectable = engine_from_config( config.get_section(config.config_ini_section), prefix="sqlalchemy.", poolclass=pool.NullPool, ) with connectable.connect() as connection: context.configure( connection=connection, target_metadata=target_metadata ) with context.begin_transaction(): context.run_migrations() if context.is_offline_mode(): run_migrations_offline() else: run_migrations_online()
py
7df71cb1871dfea3f8f61aab65a37b78443d8661
import os import sys import ai_flow as af from ai_flow import ExampleSupportType, ModelType, ExampleMeta, ModelMeta, PythonObjectExecutor, BaseJobConfig from flink_ai_flow import LocalFlinkJobConfig, FlinkPythonExecutor from data_type import FloatDataType from proxima_executor import BuildIndexExecutor, SearchExecutor, SearchExecutor3 from python_job_executor import TrainAutoEncoder, ReadCsvExample, MergePredictResult from tianchi_executor import ReadTrainExample, StreamTableEnvCreator, ReadPredictExample, PredictAutoEncoder, \ SearchSink, WriteSecondResult, ReadOnlinePredictExample, FindHistory, OnlinePredictAutoEncoder, \ StreamTableEnvCreatorBuildIndex, PredictAutoEncoderWithTrain, WritePredictResult, ReadMergeExample def get_project_path(): """ Get the current project path. """ return os.path.dirname(os.path.dirname(os.path.abspath(__file__))) def collect_data_file(): """ Collect the example data file. """ # Example data sets are under the following data set path. data_set = '{}/data_set/'.format(os.environ['ENV_HOME']) # First output result file is under the following output path. output = '{}/codes/{}/output/'.format(os.environ['ENV_HOME'], os.environ['TASK_ID']) predict_result_directory = '{}/codes/{}/'.format(os.environ['ENV_HOME'], os.environ['TASK_ID']) + 'predict_result' merge_predict_result_path = '{}/codes/{}/'.format(os.environ['ENV_HOME'], os.environ['TASK_ID']) + 'merge_data.csv' train_data_file = data_set + 'train_data.csv' label_data_file = data_set + 'label_file.csv' first_test_file = data_set + 'first_test_data.csv' first_result_data_file = output + 'first_result.csv' return train_data_file, predict_result_directory, merge_predict_result_path, first_test_file, first_result_data_file def prepare_workflow(train_data_file: str, predict_result_directory: str, merge_predict_result_path: str, first_test_data_file: str, first_result_data_file: str): """ Prepare workflow: Example & Model Metadata registration. """ train_example_meta: ExampleMeta = af.register_example(name='train_data', support_type=ExampleSupportType.EXAMPLE_BATCH, data_type='pandas', data_format='csv', batch_uri=train_data_file) predict_result_meta: ExampleMeta = af.register_example(name='predict_result', support_type=ExampleSupportType.EXAMPLE_BATCH, batch_uri=predict_result_directory) merge_data_meta: ExampleMeta = af.register_example(name='merge_data', support_type=ExampleSupportType.EXAMPLE_BATCH, batch_uri=merge_predict_result_path) first_test_example_meta: ExampleMeta = af.register_example(name='first_test_data', support_type=ExampleSupportType.EXAMPLE_BATCH, data_type='pandas', data_format='csv', batch_uri=first_test_data_file) second_test_example_data: ExampleMeta = af.register_example(name='second_test_data', support_type=ExampleSupportType.EXAMPLE_STREAM, data_type='kafka', data_format='csv', stream_uri='localhost:9092') first_result_example_meta: ExampleMeta = af.register_example(name='first_result_111', support_type=ExampleSupportType.EXAMPLE_BATCH, data_type='pandas', data_format='csv', batch_uri=first_result_data_file) second_result_example_meta: ExampleMeta = af.register_example(name='second_result_111', support_type=ExampleSupportType.EXAMPLE_STREAM, data_type='kafka', data_format='csv', stream_uri='localhost:9092') train_model_meta: ModelMeta = af.register_model(model_name='auto_encoder', model_type=ModelType.SAVED_MODEL) return train_example_meta, predict_result_meta, merge_data_meta, \ first_test_example_meta, second_test_example_data, \ first_result_example_meta, second_result_example_meta, train_model_meta def run_workflow(): """ Run the user-defined workflow definition. """ train_data_file, predict_result_directory, merge_predict_result_path, \ first_test_data_file, first_result_data_file = collect_data_file() # Prepare workflow: Example & Model Metadata registration. train_example_meta, predict_result_meta, merge_data_meta, first_test_example_meta, second_test_example_meta, \ first_result_example_meta, second_result_example_meta, train_model_meta = \ prepare_workflow(train_data_file=train_data_file, predict_result_directory=predict_result_directory, merge_predict_result_path=merge_predict_result_path, first_test_data_file=first_test_data_file, first_result_data_file=first_result_data_file) # Save proxima indexes under the following index path. index_path = '{}/codes/{}/'.format(os.environ['ENV_HOME'], os.environ['TASK_ID']) + 'test.index' # Set Python job config to train model. python_job_config_0 = BaseJobConfig(platform='local', engine='python', job_name='train') python_job_config_1 = BaseJobConfig(platform='local', engine='python', job_name='start_cluster_serving') python_job_config_2 = BaseJobConfig(platform='local', engine='python', job_name='merge_predict_result') # Set Flink job config to predict with cluster serving global_job_config_1 = LocalFlinkJobConfig() global_job_config_1.local_mode = 'cluster' global_job_config_1.flink_home = os.environ['FLINK_HOME'] global_job_config_1.job_name = 'cluster_serving' global_job_config_1.set_table_env_create_func(StreamTableEnvCreatorBuildIndex()) # Set Flink job config to build index. global_job_config_2 = LocalFlinkJobConfig() global_job_config_2.local_mode = 'cluster' global_job_config_2.flink_home = os.environ['FLINK_HOME'] global_job_config_2.job_name = 'build_index' global_job_config_2.set_table_env_create_func(StreamTableEnvCreator()) # Set Flink job config to fink sick. global_job_config_3 = LocalFlinkJobConfig() global_job_config_3.local_mode = 'cluster' global_job_config_3.flink_home = os.environ['FLINK_HOME'] global_job_config_3.job_name = 'find_sick' global_job_config_3.set_table_env_create_func(StreamTableEnvCreator()) # Set Flink job config to online cluster. global_job_config_4 = LocalFlinkJobConfig() global_job_config_4.local_mode = 'cluster' global_job_config_4.flink_home = os.environ['FLINK_HOME'] global_job_config_4.job_name = 'online_cluster' global_job_config_4.set_table_env_create_func(StreamTableEnvCreator()) with af.config(python_job_config_0): # Under first job config, we construct the first job, the job is going to train an auto_encoder model. python_job_0_read_train_example = af.read_example(example_info=train_example_meta, executor=PythonObjectExecutor(python_object=ReadCsvExample())) python_job_0_train_model = af.train(input_data_list=[python_job_0_read_train_example], executor=PythonObjectExecutor(python_object=TrainAutoEncoder()), model_info=train_model_meta, name='trainer_0') with af.config(python_job_config_1): python_job_1_cluster_serving_channel = af.cluster_serving(model_info=train_model_meta, parallelism=16) with af.config(global_job_config_1): flink_job_0_read_train_example = af.read_example(example_info=train_example_meta, executor=FlinkPythonExecutor(python_object=ReadTrainExample())) flink_job_0_predict_model = af.predict(input_data_list=[flink_job_0_read_train_example], model_info=train_model_meta, executor=FlinkPythonExecutor( python_object=PredictAutoEncoderWithTrain())) flink_job_0_write_predict_data = af.write_example(input_data=flink_job_0_predict_model, example_info=predict_result_meta, executor=FlinkPythonExecutor( python_object=WritePredictResult())) with af.config(python_job_config_2): python_job_2_merge_train_data_file = af.user_define_operation(executor=PythonObjectExecutor( python_object=MergePredictResult())) with af.config(global_job_config_2): flink_job_1_read_train_example = af.read_example(example_info=merge_data_meta, executor=FlinkPythonExecutor(python_object=ReadMergeExample())) flink_job_1_build_index_channel = af.transform([flink_job_1_read_train_example], executor=FlinkPythonExecutor( python_object=BuildIndexExecutor(index_path, FloatDataType(), 128))) with af.config(global_job_config_3): flink_job_2_read_history_example = af.read_example(example_info=first_test_example_meta, executor=FlinkPythonExecutor( python_object=ReadPredictExample())) flink_job_2_predict_model = af.predict(input_data_list=[flink_job_2_read_history_example], model_info=train_model_meta, executor=FlinkPythonExecutor(python_object=PredictAutoEncoder())) flink_job_2_transformed_data = af.transform([flink_job_2_predict_model], executor=FlinkPythonExecutor( python_object=SearchExecutor(index_path, FloatDataType(), 2))) flink_job_2_read_train_example = af.read_example(example_info=train_example_meta, executor=FlinkPythonExecutor(python_object=ReadTrainExample())) flink_job_2_join_channel = af.transform( input_data_list=[flink_job_2_transformed_data, flink_job_2_read_train_example], executor=FlinkPythonExecutor(python_object=FindHistory())) flink_job_2_write_result = af.write_example(input_data=flink_job_2_join_channel, example_info=first_result_example_meta, executor=FlinkPythonExecutor(python_object=SearchSink())) with af.config(global_job_config_4): flink_job_3_read_online_example = af.read_example(example_info=second_test_example_meta, executor=FlinkPythonExecutor( python_object=ReadOnlinePredictExample())) flink_job_3_predict_model = af.predict(input_data_list=[flink_job_3_read_online_example], model_info=train_model_meta, executor=FlinkPythonExecutor(python_object=OnlinePredictAutoEncoder())) flink_job_3_transformed_data = af.transform([flink_job_3_predict_model], executor=FlinkPythonExecutor( python_object=SearchExecutor3(index_path, FloatDataType(), 2))) af.write_example(input_data=flink_job_3_transformed_data, example_info=second_result_example_meta, executor=FlinkPythonExecutor(python_object=WriteSecondResult())) af.stop_before_control_dependency(python_job_1_cluster_serving_channel, python_job_0_train_model) af.stop_before_control_dependency(flink_job_0_read_train_example, python_job_1_cluster_serving_channel) af.stop_before_control_dependency(python_job_2_merge_train_data_file, flink_job_0_read_train_example) af.stop_before_control_dependency(flink_job_1_build_index_channel, python_job_2_merge_train_data_file) af.stop_before_control_dependency(flink_job_2_read_history_example, flink_job_1_build_index_channel) af.stop_before_control_dependency(flink_job_3_read_online_example, flink_job_2_write_result) workflow_id = af.run(get_project_path() + '/python_codes') res = af.wait_workflow_execution_finished(workflow_id) sys.exit(res) if __name__ == '__main__': af.set_project_config_file(get_project_path() + '/project.yaml') run_workflow()
py
7df71dbc32aad8324aa8c2be9a10218b7f1e1ab1
""" Default logs and messages for the :class:`~django_analyses.runner.queryset_runner.QuerySetRunner` class. """ class bcolors: """ ANSI escape sequences used for text formatting. References ---------- * https://stackoverflow.com/a/287944/4416932 """ HEADER = "\033[95m" OKBLUE = "\033[94m" OKCYAN = "\033[96m" OKGREEN = "\033[92m" WARNING = "\033[93m" FAIL = "\033[91m" ENDC = "\033[0m" BOLD = "\033[1m" UNDERLINE = "\033[4m" #: Batch run start messsage. BATCH_RUN_START = f"{bcolors.UNDERLINE}{bcolors.HEADER}{bcolors.BOLD}{{analysis_version}}{bcolors.ENDC}{bcolors.UNDERLINE}{bcolors.HEADER}: Batch Execution{bcolors.ENDC}" #: Base queryset generation message. BASE_QUERY_START = "Querying {model_name} instances..." #: Base queryset generation result. BASE_QUERY_END = "{n_instances} instances found." #: Report querying default execution queryset. DEFAULT_QUERYSET_QUERY = ( f"\n{bcolors.OKBLUE}🔎 Default execution queryset generation:{bcolors.ENDC}" ) #: Report the successful creation of an asynchronous execution task. EXECUTION_STARTED = f"\n{bcolors.OKGREEN}🚀Successfully started {{analysis_version}} execution over {{n_instances}} {{model_name}} instances🚀{bcolors.ENDC}" #: Filter queryset start. FILTER_QUERYSET_START = "Filtering queryset..." #: Report filter result. FILTER_QUERYSET_END = "{n_candidates} execution candidates found." #: Reporting starting to generate input specifications for analysis execution. INPUT_GENERATION = ( f"\n🔀 {bcolors.OKBLUE}Generating input specifications:{bcolors.ENDC}" ) INPUT_GENERATION_FINISHED = "{n_inputs} input specifications prepared." #: Report querying existing input instances. INPUT_QUERY_START = "Querying existing runs..." #: Report number of existing input instances. INPUT_QUERY_END = "{n_existing} runs found." INPUT_QUERYSET_VALIDATION = ( f"\n{bcolors.OKBLUE}🔎 Input queryset validation:{bcolors.ENDC}" ) #: No pending instances were detected in the database. NONE_PENDING = f"{bcolors.OKGREEN}Congratulations! No pending {{model_name}} instances were detected in the database 👏{bcolors.ENDC}" #: No pending instances were detected in the provided queryset. NONE_PENDING_IN_QUERYSET = f"{bcolors.OKGREEN}All {{n_instances}} provided {{model_name}} instances have been processed already 👑{bcolors.ENDC}" #: No candidates in execution queryset. NO_CANDIDATES = f"{bcolors.WARNING}No execution candidates detected in {{model_name}} queryset!{bcolors.ENDC}" #: Report pending instances. PENDING_FOUND = f"{{n_existing}} existing runs found.\n{bcolors.BOLD}{{n_pending}}{bcolors.ENDC} instances pending execution." #: Report starting a queryset existing/pending split. PENDING_QUERY_START = f"\n⚖ {bcolors.OKBLUE}Checking execution status for the {{queryset_description}} queryset:\n{bcolors.ENDC}Filtering existing runs...\n(large querysets might take a few moments to be evaluated)" #: General input preprocessing failure message. PREPROCESSING_FAILURE = f"{bcolors.WARNING}Failed to preprocess {{model_name}} #{{instance_id}}!{bcolors.ENDC}" #: Report number of preprocessing failures encountered. PREPROCESSING_FAILURE_REPORT = f"{bcolors.WARNING}{bcolors.BOLD}{{n_invalid}} of {{n_total}} {{model_name}} instances failed to be preprocessed for input generation.{bcolors.ENDC}" # flake8: noqa: E501
py
7df71e5d959a2048cde1c5c547245bf67c894e76
from oarepo_nusl_rules import rule_registry from oarepo_nusl_rules.register import RuleRegistry def test_register_load(): instance1 = RuleRegistry.Instance() RuleRegistry.Instance().load() instance2 = RuleRegistry.Instance() assert len(RuleRegistry.Instance().rules) > 0 assert instance1 is instance2 def test_register_instance(): instance1 = rule_registry instance2 = RuleRegistry.Instance() assert instance1 is instance2
py
7df71e6211fbd6d95879affef9c5a7a6c9ee9740
"""This module contains the general information for BiosVfXPTPrefetch ManagedObject.""" from ...imcmo import ManagedObject from ...imccoremeta import MoPropertyMeta, MoMeta from ...imcmeta import VersionMeta class BiosVfXPTPrefetchConsts: VP_XPTPREFETCH_DISABLED = "Disabled" VP_XPTPREFETCH_ENABLED = "Enabled" _VP_XPTPREFETCH_DISABLED = "disabled" _VP_XPTPREFETCH_ENABLED = "enabled" VP_XPTPREFETCH_PLATFORM_DEFAULT = "platform-default" class BiosVfXPTPrefetch(ManagedObject): """This is BiosVfXPTPrefetch class.""" consts = BiosVfXPTPrefetchConsts() naming_props = set([]) mo_meta = { "classic": MoMeta("BiosVfXPTPrefetch", "biosVfXPTPrefetch", "xpt-prefetch", VersionMeta.Version311d, "InputOutput", 0x1f, [], ["admin"], [u'biosPlatformDefaults', u'biosSettings'], [], ["Get", "Set"]), } prop_meta = { "classic": { "dn": MoPropertyMeta("dn", "dn", "string", VersionMeta.Version311d, MoPropertyMeta.READ_WRITE, 0x2, 0, 255, None, [], []), "rn": MoPropertyMeta("rn", "rn", "string", VersionMeta.Version311d, MoPropertyMeta.READ_WRITE, 0x4, 0, 255, None, [], []), "status": MoPropertyMeta("status", "status", "string", VersionMeta.Version311d, MoPropertyMeta.READ_WRITE, 0x8, None, None, None, ["", "created", "deleted", "modified", "removed"], []), "vp_xpt_prefetch": MoPropertyMeta("vp_xpt_prefetch", "vpXPTPrefetch", "string", VersionMeta.Version311d, MoPropertyMeta.READ_WRITE, 0x10, None, None, None, ["Disabled", "Enabled", "disabled", "enabled", "platform-default"], []), }, } prop_map = { "classic": { "dn": "dn", "rn": "rn", "status": "status", "vpXPTPrefetch": "vp_xpt_prefetch", }, } def __init__(self, parent_mo_or_dn, **kwargs): self._dirty_mask = 0 self.status = None self.vp_xpt_prefetch = None ManagedObject.__init__(self, "BiosVfXPTPrefetch", parent_mo_or_dn, **kwargs)
py
7df71e6fa2edc72eb26c38b7b9ddf805fc896e8a
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools from numbers import Integral import numpy as np from ... import opcodes as OperandDef from ...core import TilesError from ...serialize import KeyField, AnyField, Int32Field from ...utils import check_chunks_unknown_shape from ..core import Tensor, TENSOR_TYPE, TENSOR_CHUNK_TYPE, TensorOrder from ..utils import broadcast_shape, unify_chunks from ..operands import TensorHasInput, TensorOperandMixin from ..datasource import tensor as astensor from ..array_utils import as_same_device, device from .ravel import ravel class TensorRepeat(TensorHasInput, TensorOperandMixin): _op_type_ = OperandDef.REPEAT _input = KeyField('input') _repeats = AnyField('repeats') _axis = Int32Field('axis') def __init__(self, axis=None, dtype=None, sparse=False, **kw): super().__init__(_axis=axis, _dtype=dtype, _sparse=sparse, **kw) @property def repeats(self): return self._repeats @property def axis(self): return self._axis def _set_inputs(self, inputs): super()._set_inputs(inputs) self._input = self._inputs[0] if len(inputs) > 1: self._repeats = self._inputs[1] def __call__(self, a, repeats): axis = self._axis a = astensor(a) if axis is None: a = ravel(a) ax = axis or 0 if not isinstance(repeats, Integral): if not isinstance(repeats, Tensor): repeats = np.asarray(repeats) if repeats.size == 1: repeats = int(repeats[0]) size = repeats * a.shape[axis or 0] elif a.shape[ax] == 1: size = repeats = int(repeats.sum()) else: size = int(repeats.sum()) else: size = np.nan if not isinstance(repeats, Integral): if repeats.ndim != 1: raise ValueError('repeats should be 1-d tensor') broadcast_shape(repeats.shape, a.shape[ax: ax + 1]) else: size = a.shape[axis or 0] * repeats shape = a.shape[:ax] + (size,) + a.shape[ax + 1:] self.dtype = a.dtype self.sparse = a.issparse() inputs = [a] if isinstance(repeats, Tensor): inputs.append(repeats) else: self._repeats = repeats return self.new_tensor(inputs, shape, order=TensorOrder.C_ORDER) @classmethod def tile(cls, op): a = op.input repeats = op.repeats axis = op.axis ax = axis or 0 out = op.outputs[0] check_chunks_unknown_shape(op.inputs, TilesError) if isinstance(repeats, TENSOR_TYPE): a, repeats = unify_chunks(a, (repeats, (ax,))) nsplit = a.nsplits[axis or 0] if isinstance(repeats, Integral): new_nsplit = [] for split in nsplit: s = max(split // repeats, 1) c = split // s new_nsplit.extend([s] * c) if split % s != 0: new_nsplit.append(split % s) a = a.rechunk({ax: new_nsplit})._inplace_tile() out_chunks = [] ax_cum_count = np.cumsum((0,) + a.nsplits[ax]) is_repeats_ndarray = isinstance(repeats, np.ndarray) for out_idx in itertools.product(*[range(len(s)) for s in a.nsplits]): in_chunk = a.cix[out_idx] ax_idx = out_idx[ax] if is_repeats_ndarray: start = ax_cum_count[ax_idx] stop = ax_cum_count[ax_idx + 1] rp = repeats[start: stop] size = int(rp.sum()) elif not isinstance(repeats, Integral): rp = repeats.cix[ax_idx, ] size = np.nan else: rp = repeats size = in_chunk.shape[ax] * rp chunk_inputs = [in_chunk] if isinstance(rp, TENSOR_CHUNK_TYPE): chunk_inputs.append(rp) chunk_shape = in_chunk.shape[:ax] + (size,) + in_chunk.shape[ax + 1:] chunk_op = op.copy().reset_key() if len(chunk_inputs) < 2: # repeats is not chunk chunk_op._repeats = rp out_chunk = chunk_op.new_chunk(chunk_inputs, shape=chunk_shape, index=out_idx, order=out.order) out_chunks.append(out_chunk) nsplits = [tuple(c.shape[i] for c in out_chunks if all(idx == 0 for j, idx in enumerate(c.index) if j != i)) for i in range(len(out_chunks[0].shape))] new_op = op.copy() return new_op.new_tensors(op.inputs, out.shape, order=out.order, chunks=out_chunks, nsplits=nsplits) @classmethod def execute(cls, ctx, op): inputs, device_id, xp = as_same_device( [ctx[c.key] for c in op.inputs], device=op.device, ret_extra=True) a = inputs[0] if len(inputs) > 1: repeats = inputs[1] else: repeats = op.repeats with device(device_id): ctx[op.outputs[0].key] = xp.repeat(a, repeats=repeats, axis=op.axis) def repeat(a, repeats, axis=None): """ Repeat elements of a tensor. Parameters ---------- a : array_like Input tensor. repeats : int or tensor of ints The number of repetitions for each element. `repeats` is broadcasted to fit the shape of the given axis. axis : int, optional The axis along which to repeat values. By default, use the flattened input tensor, and return a flat output tensor. Returns ------- repeated_tensor : Tensor Output array which has the same shape as `a`, except along the given axis. See Also -------- tile : Tile a tensor. Examples -------- >>> import mars.tensor as mt >>> mt.repeat(3, 4).execute() array([3, 3, 3, 3]) >>> x = mt.array([[1,2],[3,4]]) >>> mt.repeat(x, 2).execute() array([1, 1, 2, 2, 3, 3, 4, 4]) >>> mt.repeat(x, 3, axis=1).execute() array([[1, 1, 1, 2, 2, 2], [3, 3, 3, 4, 4, 4]]) >>> mt.repeat(x, [1, 2], axis=0).execute() array([[1, 2], [3, 4], [3, 4]]) """ op = TensorRepeat(axis=axis) return op(a, repeats)
py
7df71f4cd7eba07294c30ab033df3aeb831c54cb
from autoarray.plot.wrap.wrap_base import set_backend set_backend() import matplotlib.pyplot as plt from matplotlib import patches as ptch from matplotlib.collections import PatchCollection import numpy as np import itertools from typing import List, Union, Optional, Tuple from autoarray.plot.wrap import wrap_base as wb from autoarray.plot.wrap.wrap_base import AbstractMatWrap from autoarray.inversion.mappers.voronoi import MapperVoronoiNoInterp from autoarray.inversion.mappers.voronoi import MapperVoronoi from autoarray.inversion.mappers.delaunay import MapperDelaunay from autoarray.inversion.mappers.mapper_util import triangle_area_from from autoarray.structures.grids.two_d.grid_2d import Grid2D from autoarray.structures.grids.two_d.grid_2d_irregular import Grid2DIrregular from autoarray.structures.vectors.irregular import VectorYX2DIrregular from autoarray import exc class AbstractMatWrap2D(AbstractMatWrap): """ An abstract base class for wrapping matplotlib plotting methods which take as input and plot data structures. For example, the `ArrayOverlay` object specifically plots `Array2D` data structures. As full description of the matplotlib wrapping can be found in `mat_base.AbstractMatWrap`. """ @property def config_folder(self): return "mat_wrap_2d" class ArrayOverlay(AbstractMatWrap2D): """ Overlays an `Array2D` data structure over a figure. This object wraps the following Matplotlib method: - plt.imshow: https://matplotlib.org/3.3.2/api/_as_gen/matplotlib.pyplot.imshow.html This uses the `Units` and coordinate system of the `Array2D` to overlay it on on the coordinate system of the figure that is plotted. """ def overlay_array(self, array, figure): aspect = figure.aspect_from(shape_native=array.shape_native) extent = array.extent_of_zoomed_array(buffer=0) plt.imshow(X=array.native, aspect=aspect, extent=extent, **self.config_dict) class GridScatter(AbstractMatWrap2D): """ Scatters an input set of grid points, for example (y,x) coordinates or data structures representing 2D (y,x) coordinates like a `Grid2D` or `Grid2DIrregular`. List of (y,x) coordinates are plotted with varying colors. This object wraps the following Matplotlib methods: - plt.scatter: https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.scatter.html There are a number of children of this method in the `mat_obj.py` module that plot specific sets of (y,x) points. Each of these objects uses uses their own config file and settings so that each has a unique appearance on every figure: - `OriginScatter`: plots the (y,x) coordinates of the origin of a data structure (e.g. as a black cross). - `MaskScatter`: plots a mask over an image, using the `Mask2d` object's (y,x) `edge_grid_sub_1` property. - `BorderScatter: plots a border over an image, using the `Mask2d` object's (y,x) `border_grid_sub_1` property. - `PositionsScatter`: plots the (y,x) coordinates that are input in a plotter via the `positions` input. - `IndexScatter`: plots specific (y,x) coordinates of a grid (or grids) via their 1d or 2d indexes. - `PixelizationGridScatter`: plots the grid of a `Pixelization` object (see `autoarray.inversion`). Parameters ---------- colors : [str] The color or list of colors that the grid is plotted using. For plotting indexes or a grid list, a list of colors can be specified which the plot cycles through. """ def scatter_grid(self, grid: Union[np.ndarray, Grid2D]): """ Plot an input grid of (y,x) coordinates using the matplotlib method `plt.scatter`. Parameters ---------- grid : Grid2D The grid of (y,x) coordinates that is plotted. errors The error on every point of the grid that is plotted. """ config_dict = self.config_dict if len(config_dict["c"]) > 1: config_dict["c"] = config_dict["c"][0] try: plt.scatter(y=grid[:, 0], x=grid[:, 1], **config_dict) except (IndexError, TypeError): return self.scatter_grid_list(grid_list=grid) def scatter_grid_list(self, grid_list: Union[List[Grid2D], List[Grid2DIrregular]]): """ Plot an input list of grids of (y,x) coordinates using the matplotlib method `plt.scatter`. This method colors each grid in each entry of the list the same, so that the different grids are visible in the plot. Parameters ---------- grid_list The list of grids of (y,x) coordinates that are plotted. """ if len(grid_list) == 0: return color = itertools.cycle(self.config_dict["c"]) config_dict = self.config_dict config_dict.pop("c") try: for grid in grid_list: plt.scatter(y=grid[:, 0], x=grid[:, 1], c=next(color), **config_dict) except IndexError: return None def scatter_grid_colored( self, grid: Union[np.ndarray, Grid2D], color_array: np.ndarray, cmap: str ): """ Plot an input grid of (y,x) coordinates using the matplotlib method `plt.scatter`. The method colors the scattered grid according to an input ndarray of color values, using an input colormap. Parameters ---------- grid : Grid2D The grid of (y,x) coordinates that is plotted. color_array : ndarray The array of RGB color values used to color the grid. cmap : str The Matplotlib colormap used for the grid point coloring. """ config_dict = self.config_dict config_dict.pop("c") plt.scatter(y=grid[:, 0], x=grid[:, 1], c=color_array, cmap=cmap, **config_dict) def scatter_grid_indexes( self, grid: Union[np.ndarray, Grid2D], indexes: np.ndarray ): """ Plot specific points of an input grid of (y,x) coordinates, which are specified according to the 1D or 2D indexes of the `Grid2D`. This method allows us to color in points on grids that map between one another. Parameters ---------- grid : Grid2D The grid of (y,x) coordinates that is plotted. indexes The 1D indexes of the grid that are colored in when plotted. """ if not isinstance(grid, np.ndarray): raise exc.PlottingException( "The grid passed into scatter_grid_indexes is not a ndarray and thus its" "1D indexes cannot be marked and plotted." ) if len(grid.shape) != 2: raise exc.PlottingException( "The grid passed into scatter_grid_indexes is not 2D (e.g. a flattened 1D" "grid) and thus its 1D indexes cannot be marked." ) if isinstance(indexes, list): if not any(isinstance(i, list) for i in indexes): indexes = [indexes] color = itertools.cycle(self.config_dict["c"]) config_dict = self.config_dict config_dict.pop("c") for index_list in indexes: if all([isinstance(index, float) for index in index_list]) or all( [isinstance(index, int) for index in index_list] ): plt.scatter( y=grid[index_list, 0], x=grid[index_list, 1], color=next(color), **config_dict, ) elif all([isinstance(index, tuple) for index in index_list]) or all( [isinstance(index, list) for index in index_list] ): ys, xs = map(list, zip(*index_list)) plt.scatter( y=grid.native[ys, xs, 0], x=grid.native[ys, xs, 1], color=next(color), **config_dict, ) else: raise exc.PlottingException( "The indexes input into the grid_scatter_index method do not conform to a " "useable type" ) class GridPlot(AbstractMatWrap2D): """ Plots `Grid2D` data structure that are better visualized as solid lines, for example rectangular lines that are plotted over an image and grids of (y,x) coordinates as lines (as opposed to a scatter of points using the `GridScatter` object). This object wraps the following Matplotlib methods: - plt.plot: https://matplotlib.org/3.3.3/api/_as_gen/matplotlib.pyplot.plot.html Parameters ---------- colors : [str] The color or list of colors that the grid is plotted using. For plotting indexes or a grid list, a list of colors can be specified which the plot cycles through. """ def plot_rectangular_grid_lines( self, extent: Tuple[float, float, float, float], shape_native: Tuple[int, int] ): """ Plots a rectangular grid of lines on a plot, using the coordinate system of the figure. The size and shape of the grid is specified by the `extent` and `shape_native` properties of a data structure which will provide the rectangaular grid lines on a suitable coordinate system for the plot. Parameters ---------- extent : (float, float, float, float) The extent of the rectangualr grid, with format [xmin, xmax, ymin, ymax] shape_native The 2D shape of the mask the array is paired with. """ ys = np.linspace(extent[2], extent[3], shape_native[1] + 1) xs = np.linspace(extent[0], extent[1], shape_native[0] + 1) # grid lines for x in xs: plt.plot([x, x], [ys[0], ys[-1]], **self.config_dict) for y in ys: plt.plot([xs[0], xs[-1]], [y, y], **self.config_dict) def plot_grid(self, grid: Union[np.ndarray, Grid2D]): """ Plot an input grid of (y,x) coordinates using the matplotlib method `plt.scatter`. Parameters ---------- grid : Grid2D The grid of (y,x) coordinates that is plotted. """ try: plt.plot(grid[:, 1], grid[:, 0], **self.config_dict) except (IndexError, TypeError): return self.plot_grid_list(grid_list=grid) def plot_grid_list(self, grid_list: Union[List[Grid2D], List[Grid2DIrregular]]): """ Plot an input list of grids of (y,x) coordinates using the matplotlib method `plt.line`. This method colors each grid in the list the same, so that the different grids are visible in the plot. This provides an alternative to `GridScatter.scatter_grid_list` where the plotted grids appear as lines instead of scattered points. Parameters ---------- grid_list : Grid2DIrregular The list of grids of (y,x) coordinates that are plotted. """ if len(grid_list) == 0: return None color = itertools.cycle(self.config_dict["c"]) config_dict = self.config_dict config_dict.pop("c") try: for grid in grid_list: plt.plot(grid[:, 1], grid[:, 0], c=next(color), **config_dict) except IndexError: return None class GridErrorbar(AbstractMatWrap2D): """ Plots an input set of grid points with 2D errors, for example (y,x) coordinates or data structures representing 2D (y,x) coordinates like a `Grid2D` or `Grid2DIrregular`. Multiple lists of (y,x) coordinates are plotted with varying colors. This object wraps the following Matplotlib methods: - plt.errorbar: https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.errorbar.html Parameters ---------- colors : [str] The color or list of colors that the grid is plotted using. For plotting indexes or a grid list, a list of colors can be specified which the plot cycles through. """ def errorbar_grid( self, grid: Union[np.ndarray, Grid2D], y_errors: Optional[Union[np.ndarray, List]] = None, x_errors: Optional[Union[np.ndarray, List]] = None, ): """ Plot an input grid of (y,x) coordinates using the matplotlib method `plt.errorbar`. The (y,x) coordinates are plotted as dots, with a line / cross for its errors. Parameters ---------- grid : Grid2D The grid of (y,x) coordinates that is plotted. y_errors The y values of the error on every point of the grid that is plotted (e.g. vertically). x_errors The x values of the error on every point of the grid that is plotted (e.g. horizontally). """ config_dict = self.config_dict if len(config_dict["c"]) > 1: config_dict["c"] = config_dict["c"][0] try: plt.errorbar( y=grid[:, 0], x=grid[:, 1], yerr=y_errors, xerr=x_errors, **config_dict ) except (IndexError, TypeError): return self.errorbar_grid_list(grid_list=grid) def errorbar_grid_list( self, grid_list: Union[List[Grid2D], List[Grid2DIrregular]], y_errors: Optional[Union[np.ndarray, List]] = None, x_errors: Optional[Union[np.ndarray, List]] = None, ): """ Plot an input list of grids of (y,x) coordinates using the matplotlib method `plt.errorbar`. The (y,x) coordinates are plotted as dots, with a line / cross for its errors. This method colors each grid in each entry of the list the same, so that the different grids are visible in the plot. Parameters ---------- grid_list The list of grids of (y,x) coordinates that are plotted. """ if len(grid_list) == 0: return color = itertools.cycle(self.config_dict["c"]) config_dict = self.config_dict config_dict.pop("c") try: for grid in grid_list: plt.errorbar( y=grid[:, 0], x=grid[:, 1], yerr=np.asarray(y_errors), xerr=np.asarray(x_errors), c=next(color), **config_dict, ) except IndexError: return None def errorbar_grid_colored( self, grid: Union[np.ndarray, Grid2D], color_array: np.ndarray, cmap: str, y_errors: Optional[Union[np.ndarray, List]] = None, x_errors: Optional[Union[np.ndarray, List]] = None, ): """ Plot an input grid of (y,x) coordinates using the matplotlib method `plt.errorbar`. The method colors the errorbared grid according to an input ndarray of color values, using an input colormap. Parameters ---------- grid : Grid2D The grid of (y,x) coordinates that is plotted. color_array : ndarray The array of RGB color values used to color the grid. cmap : str The Matplotlib colormap used for the grid point coloring. """ config_dict = self.config_dict config_dict.pop("c") plt.scatter(y=grid[:, 0], x=grid[:, 1], c=color_array, cmap=cmap) plt.errorbar( y=grid[:, 0], x=grid[:, 1], yerr=np.asarray(y_errors), xerr=np.asarray(x_errors), zorder=0.0, **self.config_dict, ) class VectorYXQuiver(AbstractMatWrap2D): """ Plots a `VectorField` data structure. A vector field is a set of 2D vectors on a grid of 2d (y,x) coordinates. These are plotted as arrows representing the (y,x) components of each vector at each (y,x) coordinate of it grid. This object wraps the following Matplotlib method: https://matplotlib.org/3.3.2/api/_as_gen/matplotlib.pyplot.quiver.html """ def quiver_vectors(self, vectors: VectorYX2DIrregular): """ Plot a vector field using the matplotlib method `plt.quiver` such that each vector appears as an arrow whose direction depends on the y and x magnitudes of the vector. Parameters ---------- vectors : VectorYX2DIrregular The vector field that is plotted using `plt.quiver`. """ plt.quiver( vectors.grid[:, 1], vectors.grid[:, 0], vectors[:, 1], vectors[:, 0], **self.config_dict, ) class PatchOverlay(AbstractMatWrap2D): """ Adds patches to a plotted figure using matplotlib `patches` objects. The coordinate system of each `Patch` uses that of the figure, which is typically set up using the plotted data structure. This makes it straight forward to add patches in specific locations. This object wraps methods described in below: https://matplotlib.org/3.3.2/api/collections_api.html """ def overlay_patches(self, patches: Union[ptch.Patch]): """ Overlay a list of patches on a figure, for example an `Ellipse`. ` Parameters ---------- patches : [Patch] The patches that are laid over the figure. """ patch_collection = PatchCollection(patches=patches, **self.config_dict) plt.gcf().gca().add_collection(patch_collection) class VoronoiDrawer(AbstractMatWrap2D): """ Draws Voronoi pixels from a `MapperVoronoiNoInterp` object (see `inversions.mapper`). This includes both drawing each Voronoi cell and coloring it according to a color value. The mapper contains the grid of (y,x) coordinate where the centre of each Voronoi cell is plotted. This object wraps methods described in below: https://matplotlib.org/3.3.2/api/_as_gen/matplotlib.pyplot.fill.html """ def draw_voronoi_pixels( self, mapper: MapperVoronoiNoInterp, values: np.ndarray, cmap: wb.Cmap, colorbar: wb.Colorbar, colorbar_tickparams: wb.ColorbarTickParams = None, ): """ Draws the Voronoi pixels of the input `mapper` using its `pixelization_grid` which contains the (y,x) coordinate of the centre of every Voronoi cell. This uses the method `plt.fill`. Parameters ---------- mapper : MapperVoronoiNoInterp An object which contains the (y,x) grid of Voronoi cell centres. values An array used to compute the color values that every Voronoi cell is plotted using. cmap : str The colormap used to plot each Voronoi cell. colorbar : Colorbar The `Colorbar` object in `mat_base` used to set the colorbar of the figure the Voronoi mesh is plotted on. """ regions, vertices = self.voronoi_polygons(voronoi=mapper.voronoi) if values is not None: vmin = cmap.vmin_from(array=values) vmax = cmap.vmax_from(array=values) color_values = np.where(values > vmax, vmax, values) color_values = np.where(values < vmin, vmin, color_values) if vmax != vmin: color_array = (color_values - vmin) / (vmax - vmin) else: color_array = np.ones(color_values.shape[0]) cmap = plt.get_cmap(cmap.config_dict["cmap"]) if colorbar is not None: colorbar = colorbar.set_with_color_values( cmap=cmap, color_values=color_values ) if colorbar is not None and colorbar_tickparams is not None: colorbar_tickparams.set(cb=colorbar) else: cmap = plt.get_cmap("Greys") color_array = np.zeros(shape=mapper.pixels) for region, index in zip(regions, range(mapper.pixels)): polygon = vertices[region] col = cmap(color_array[index]) plt.fill(*zip(*polygon), facecolor=col, zorder=-1, **self.config_dict) def voronoi_polygons(self, voronoi, radius=None): """ Reconstruct infinite voronoi regions in a 2D diagram to finite regions. Parameters ---------- voronoi : Voronoi The input Voronoi diagram that is being plotted. radius, optional Distance to 'points at infinity'. Returns ------- regions : list of tuples Indices of vertices in each revised Voronoi regions. vertices : list of tuples Grid2DIrregular for revised Voronoi vertices. Same as coordinates of input vertices, with 'points at infinity' appended to the end. """ if voronoi.points.shape[1] != 2: raise ValueError("Requires 2D input") new_regions = [] new_vertices = voronoi.vertices.tolist() center = voronoi.points.mean(axis=0) if radius is None: radius = voronoi.points.ptp().max() * 2 # Construct a map containing all ridges for a given point all_ridges = {} for (p1, p2), (v1, v2) in zip(voronoi.ridge_points, voronoi.ridge_vertices): all_ridges.setdefault(p1, []).append((p2, v1, v2)) all_ridges.setdefault(p2, []).append((p1, v1, v2)) # Reconstruct infinite regions for p1, region in enumerate(voronoi.point_region): vertices = voronoi.regions[region] if all(v >= 0 for v in vertices): # finite region new_regions.append(vertices) continue # reconstruct a non-finite region ridges = all_ridges[p1] new_region = [v for v in vertices if v >= 0] for p2, v1, v2 in ridges: if v2 < 0: v1, v2 = v2, v1 if v1 >= 0: # finite ridge: already in the region continue # Compute the missing endpoint of an infinite ridge t = voronoi.points[p2] - voronoi.points[p1] # tangent t /= np.linalg.norm(t) n = np.array([-t[1], t[0]]) # hyper midpoint = voronoi.points[[p1, p2]].mean(axis=0) direction = np.sign(np.dot(midpoint - center, n)) * n far_point = voronoi.vertices[v2] + direction * radius new_region.append(len(new_vertices)) new_vertices.append(far_point.tolist()) # sort region counterclockwise vs = np.asarray([new_vertices[v] for v in new_region]) c = vs.mean(axis=0) angles = np.arctan2(vs[:, 1] - c[1], vs[:, 0] - c[0]) new_region = np.array(new_region)[np.argsort(angles)] # finish new_regions.append(new_region.tolist()) return new_regions, np.asarray(new_vertices) class DelaunayDrawer(AbstractMatWrap2D): """ Draws Voronoi pixels from a `MapperVoronoiNoInterp` object (see `inversions.mapper`). This includes both drawing each Voronoi cell and coloring it according to a color value. The mapper contains the grid of (y,x) coordinate where the centre of each Voronoi cell is plotted. This object wraps methods described in below: https://matplotlib.org/3.3.2/api/_as_gen/matplotlib.pyplot.fill.html """ def draw_delaunay_pixels( self, mapper: MapperDelaunay, values: np.ndarray, cmap: wb.Cmap, colorbar: wb.Colorbar, colorbar_tickparams: wb.ColorbarTickParams = None, aspect=None, ): """ Draws the Voronoi pixels of the input `mapper` using its `pixelization_grid` which contains the (y,x) coordinate of the centre of every Voronoi cell. This uses the method `plt.fill`. Parameters ---------- mapper : MapperVoronoiNoInterp An object which contains the (y,x) grid of Voronoi cell centres. values An array used to compute the color values that every Voronoi cell is plotted using. cmap : str The colormap used to plot each Voronoi cell. colorbar : Colorbar The `Colorbar` object in `mat_base` used to set the colorbar of the figure the Voronoi mesh is plotted on. """ extent = mapper.source_pixelization_grid.extent y_mean = 0.5 * (extent[2] + extent[3]) y_half_length = 0.5 * (extent[3] - extent[2]) x_mean = 0.5 * (extent[0] + extent[1]) x_half_length = 0.5 * (extent[1] - extent[0]) half_length = np.max([y_half_length, x_half_length]) y0 = y_mean - half_length y1 = y_mean + half_length x0 = x_mean - half_length x1 = x_mean + half_length nnn = 401 ys = np.linspace(y0, y1, nnn) xs = np.linspace(x0, x1, nnn) xs_grid, ys_grid = np.meshgrid(xs, ys) xs_grid_1d = xs_grid.ravel() ys_grid_1d = ys_grid.ravel() if values is None: return interpolating_values = self.delaunay_interpolation_from( delaunay=mapper.delaunay, interpolating_yx=np.vstack((ys_grid_1d, xs_grid_1d)).T, pixel_values=values, ) vmin = cmap.vmin_from(array=values) vmax = cmap.vmax_from(array=values) color_values = np.where(values > vmax, vmax, values) color_values = np.where(values < vmin, vmin, color_values) cmap = plt.get_cmap(cmap.config_dict["cmap"]) if colorbar is not None: colorbar = colorbar.set_with_color_values( cmap=cmap, color_values=color_values ) if colorbar is not None and colorbar_tickparams is not None: colorbar_tickparams.set(cb=colorbar) plt.imshow( interpolating_values.reshape((nnn, nnn)), cmap=cmap, extent=[x0, x1, y0, y1], origin="lower", aspect=aspect, ) # uncomment below if only plot triangle boundaries # d_points, simplices = self.delaunay_triangles(mapper.delaunay) # plt.triplot(d_points[:, 0], d_points[:, 1], simplices) # plt.xlim([-0.6, 0.6]) # plt.ylim([-0.6, 0.6]) def delaunay_triangles(self, delaunay): """ Reconstruct infinite voronoi regions in a 2D diagram to finite regions. Parameters ---------- voronoi : Voronoi The input Voronoi diagram that is being plotted. radius, optional Distance to 'points at infinity'. Returns ------- regions : list of tuples Indices of vertices in each revised Voronoi regions. vertices : list of tuples Grid2DIrregular for revised Voronoi vertices. Same as coordinates of input vertices, with 'points at infinity' appended to the end. """ xpts = delaunay.points[:, 1] ypts = delaunay.points[:, 0] return np.vstack((xpts, ypts)).T, delaunay.simplices def delaunay_interpolation_from(self, delaunay, interpolating_yx, pixel_values): simplex_index_for_interpolating_points = delaunay.find_simplex(interpolating_yx) simplices = delaunay.simplices pixel_points = delaunay.points interpolating_values = np.zeros(len(interpolating_yx)) for i in range(len(interpolating_yx)): simplex_index = simplex_index_for_interpolating_points[i] interpolating_point = interpolating_yx[i] if simplex_index == -1: cloest_pixel_index = np.argmin( np.sum((pixel_points - interpolating_point) ** 2.0, axis=1) ) interpolating_values[i] = pixel_values[cloest_pixel_index] else: triangle_points = pixel_points[simplices[simplex_index]] triangle_values = pixel_values[simplices[simplex_index]] term0 = triangle_area_from( corner_0=triangle_points[1], corner_1=triangle_points[2], corner_2=interpolating_point, ) term1 = triangle_area_from( corner_0=triangle_points[0], corner_1=triangle_points[2], corner_2=interpolating_point, ) term2 = triangle_area_from( corner_0=triangle_points[0], corner_1=triangle_points[1], corner_2=interpolating_point, ) norm = term0 + term1 + term2 weight_abc = np.array([term0, term1, term2]) / norm interpolating_values[i] = np.sum(weight_abc * triangle_values) return interpolating_values class VoronoiNNDrawer(AbstractMatWrap2D): """ Draws Voronoi pixels from a `MapperVoronoiNoInterp` object (see `inversions.mapper`). This includes both drawing each Voronoi cell and coloring it according to a color value. The mapper contains the grid of (y,x) coordinate where the centre of each Voronoi cell is plotted. This object wraps methods described in below: https://matplotlib.org/3.3.2/api/_as_gen/matplotlib.pyplot.fill.html """ def draw_voronoiNN_pixels( self, mapper: MapperVoronoi, values: np.ndarray, cmap: wb.Cmap, colorbar: wb.Colorbar, colorbar_tickparams: wb.ColorbarTickParams = None, aspect=None, ): """ Draws the Voronoi pixels of the input `mapper` using its `pixelization_grid` which contains the (y,x) coordinate of the centre of every Voronoi cell. This uses the method `plt.fill`. Parameters ---------- mapper : MapperVoronoiNoInterp An object which contains the (y,x) grid of Voronoi cell centres. values An array used to compute the color values that every Voronoi cell is plotted using. cmap : str The colormap used to plot each Voronoi cell. colorbar : Colorbar The `Colorbar` object in `mat_base` used to set the colorbar of the figure the Voronoi mesh is plotted on. """ extent = mapper.source_pixelization_grid.extent y_mean = 0.5 * (extent[2] + extent[3]) y_half_length = 0.5 * (extent[3] - extent[2]) x_mean = 0.5 * (extent[0] + extent[1]) x_half_length = 0.5 * (extent[1] - extent[0]) half_length = np.max([y_half_length, x_half_length]) y0 = y_mean - half_length y1 = y_mean + half_length x0 = x_mean - half_length x1 = x_mean + half_length nnn = 401 ys = np.linspace(y0, y1, nnn) xs = np.linspace(x0, x1, nnn) xs_grid, ys_grid = np.meshgrid(xs, ys) xs_grid_1d = xs_grid.ravel() ys_grid_1d = ys_grid.ravel() if values is None: return interpolating_values = self.voronoiNN_interpolation_from( voronoi=mapper.voronoi, interpolating_yx=np.vstack((ys_grid_1d, xs_grid_1d)).T, pixel_values=values, ) vmin = cmap.vmin_from(array=values) vmax = cmap.vmax_from(array=values) color_values = np.where(values > vmax, vmax, values) color_values = np.where(values < vmin, vmin, color_values) cmap = plt.get_cmap(cmap.config_dict["cmap"]) if colorbar is not None: colorbar = colorbar.set_with_color_values( cmap=cmap, color_values=color_values ) if colorbar is not None and colorbar_tickparams is not None: colorbar_tickparams.set(cb=colorbar) plt.imshow( interpolating_values.reshape((nnn, nnn)), cmap=cmap, extent=[x0, x1, y0, y1], origin="lower", aspect=aspect, ) # uncomment below if only plot triangle boundaries # d_points, simplices = self.delaunay_triangles(mapper.delaunay) # plt.triplot(d_points[:, 0], d_points[:, 1], simplices) # plt.xlim([-0.6, 0.6]) # plt.ylim([-0.6, 0.6]) def voronoiNN_interpolation_from(self, voronoi, interpolating_yx, pixel_values): try: from autoarray.util.nn import nn_py except ImportError as e: raise ImportError( "In order to use the VoronoiNN pixelization you must install the " "Natural Neighbor Interpolation c package.\n\n" "" "See: https://github.com/Jammy2211/PyAutoArray/tree/master/autoarray/util/nn" ) from e pixel_points = voronoi.points interpolating_values = nn_py.natural_interpolation( pixel_points[:, 0], pixel_points[:, 1], pixel_values, interpolating_yx[:, 1], interpolating_yx[:, 0], ) return interpolating_values class OriginScatter(GridScatter): """ Plots the (y,x) coordinates of the origin of a data structure (e.g. as a black cross). See `mat_structure.Scatter` for a description of how matplotlib is wrapped to make this plot. """ pass class MaskScatter(GridScatter): """ Plots a mask over an image, using the `Mask2d` object's (y,x) `edge_grid_sub_1` property. See `mat_structure.Scatter` for a description of how matplotlib is wrapped to make this plot. """ pass class BorderScatter(GridScatter): """ Plots a border over an image, using the `Mask2d` object's (y,x) `border_grid_sub_1` property. See `mat_structure.Scatter` for a description of how matplotlib is wrapped to make this plot. """ pass class PositionsScatter(GridScatter): """ Plots the (y,x) coordinates that are input in a plotter via the `positions` input. See `mat_structure.Scatter` for a description of how matplotlib is wrapped to make this plot. """ pass class IndexScatter(GridScatter): """ Plots specific (y,x) coordinates of a grid (or grids) via their 1d or 2d indexes. See `mat_structure.Scatter` for a description of how matplotlib is wrapped to make this plot. """ pass class PixelizationGridScatter(GridScatter): """ Plots the grid of a `Pixelization` object (see `autoarray.inversion`). See `mat_structure.Scatter` for a description of how matplotlib is wrapped to make this plot. """ pass class ParallelOverscanPlot(GridPlot): pass class SerialPrescanPlot(GridPlot): pass class SerialOverscanPlot(GridPlot): pass
py
7df7203f505654709e6468f8f8572067b8603b3d
import pathlib from functools import cached_property from typing import ( Dict, Iterable, Optional, Pattern, Set, Tuple, Type) import verboselogs # type:ignore import aiohttp import gidgethub.abc import gidgethub.aiohttp import abstracts from aio.core.tasks import ConcurrentError from aio.core.functional import async_property from envoy.github.abstract import ( AGithubRelease, AGithubReleaseAssetsFetcher, AGithubReleaseAssetsPusher, AGithubReleaseManager, GithubReleaseError, ReleaseDict) from envoy.github.release.assets import ( GithubReleaseAssetsFetcher, GithubReleaseAssetsPusher) @abstracts.implementer(AGithubRelease) class GithubRelease: file_exts = {"deb", "changes", "rpm"} def __init__(self, manager: AGithubReleaseManager, version: str): self.manager = manager self._version = version @async_property(cache=True) async def asset_names(self) -> Set[str]: """Set of the names of assets for this release version.""" return set(asset["name"] for asset in await self.assets) @async_property(cache=True) async def assets(self) -> Dict: """Assets dictionary as returned by Github Release API.""" try: return await self.github.getitem(await self.assets_url) except gidgethub.GitHubException as e: raise GithubReleaseError(e) @async_property(cache=True) async def assets_url(self) -> str: """URL for retrieving this version's assets information from.""" return (await self.release)["assets_url"] @async_property(cache=True) async def delete_url(self) -> pathlib.PurePosixPath: """Github API-relative URL for deleting this release version.""" return self.releases_url.joinpath(str(await self.release_id)) @async_property async def exists(self) -> bool: return self.version_name in await self.release_names @property def fetcher(self) -> Type[AGithubReleaseAssetsFetcher]: return GithubReleaseAssetsFetcher @property def github(self) -> gidgethub.abc.GitHubAPI: return self.manager.github @property def log(self) -> verboselogs.VerboseLogger: return self.manager.log @property def pusher(self) -> Type[AGithubReleaseAssetsPusher]: return GithubReleaseAssetsPusher @async_property(cache=True) async def release(self) -> Dict: """Dictionary of release version information as returned by the Github Release API.""" return await self.get() @async_property(cache=True) async def release_id(self) -> int: """The Github release ID for this version, required for some URLs.""" return (await self.release)["id"] @async_property async def release_names(self) -> Tuple[str, ...]: """Tuple of release tag names as returned by the Github Release API. This is used to check whether the release exists already. """ return tuple( release["tag_name"] for release in await self.manager.releases) @property def releases_url(self) -> pathlib.PurePosixPath: return self.manager.releases_url @property def session(self) -> aiohttp.ClientSession: return self.manager.session @async_property(cache=True) async def upload_url(self) -> str: """Upload URL for this release version.""" return (await self.release)["upload_url"].split("{")[0] @property def version(self) -> str: return self._version @property def version_name(self) -> str: return self.manager.format_version(self.version) @cached_property def version_url(self) -> pathlib.PurePosixPath: """Github API-relative URL to retrieve release version information from.""" return self.releases_url.joinpath("tags", self.version_name) async def create( self, assets: Optional[Iterable[pathlib.Path]] = None) -> ReleaseDict: results = ReleaseDict() if await self.exists: self.fail(f"Release {self.version_name} already exists") else: self.log.notice(f"Creating release {self.version}") try: results["release"] = await self.github.post( str(self.releases_url), data=dict(tag_name=self.version_name)) except gidgethub.GitHubException as e: raise GithubReleaseError(e) self.log.success(f"Release created {self.version}") if assets: results.update(await self.push(assets)) return results async def delete(self) -> None: if not await self.exists: raise GithubReleaseError( f"Unable to delete version {self.version_name} as it does not " "exist") self.log.notice(f"Deleting release version: {self.version_name}") try: await self.github.delete(str(await self.delete_url)) except gidgethub.GitHubException as e: raise GithubReleaseError(e) self.log.success(f"Release version deleted: {self.version_name}") async def fetch( self, path: pathlib.Path, asset_types: Optional[Dict[str, Pattern[str]]] = None, append: Optional[bool] = False) -> ReleaseDict: self.log.notice( "Downloading assets for release version: " f"{self.version_name} -> {path}") response = ReleaseDict(assets=[], errors=[]) fetcher = self.fetcher(self, path, asset_types, append=append) async for result in fetcher: if result.get("error"): response["errors"].append(result) continue response["assets"].append(result) self.log.info( f"Asset saved: {result['name']} -> {result['outfile']}") if not response["errors"]: self.log.success( "Assets downloaded for release version: " f"{self.version_name} -> {path}") return response def fail(self, message: str) -> str: return self.manager.fail(message) async def get(self) -> Dict: try: return await self.github.getitem(str(self.version_url)) except gidgethub.GitHubException as e: raise GithubReleaseError(e) async def push( self, artefacts: Iterable[pathlib.Path]) -> ReleaseDict: self.log.notice(f"Pushing assets for {self.version}") response = ReleaseDict(assets=[], errors=[]) try: for path in artefacts: async for result in self.pusher(self, path): if result.get("error"): response["errors"].append(result) continue response["assets"].append(result) self.log.info(f"Release file uploaded {result['name']}") except ConcurrentError as e: raise e.args[0] if not response["errors"]: self.log.success(f"Assets uploaded: {self.version}") return response
py
7df72122b6db3e8743d9f8bd644f95a82793657b
import os import torch from torch.hub import load_state_dict_from_url from torchvision.datasets.folder import default_loader from pathlib import Path from torchvision import transforms from .alexnet_gn import * from .resnet import * url_root = "https://visionlab-pretrainedmodels.s3.amazonaws.com" def build_alexnet_model(weights_url, config): model = alexnet_gn(out_dim=config['out_dim'], l2norm=config['l2norm']) model.config = config if weights_url is not None: print(f"=> loading checkpoint: {Path(weights_url).name}") checkpoint = load_state_dict_from_url(weights_url, model_dir=None, map_location=torch.device('cpu')) state_dict = {str.replace(k,'module.',''): v for k,v in checkpoint['state_dict'].items()} model.load_state_dict(state_dict) print("=> state loaded.") # used for test stimuli (for which we don't want to crop out edges) transform = transforms.Compose([ transforms.Resize(224), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=config['mean'], std=config['std']) ]) # standard resize and center crop for validation model.val_transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=config['mean'], std=config['std']) ]) return model, transform def ipcl1(): model_name = 'ipcl_alpha_alexnet_gn_u128_stack' filename = '06_instance_imagenet_AlexNet_n5_lr03_pct40_t07_div1000_e100_bs128_bm20_gn_stack_final_weights_only.pth.tar' weights_url = os.path.join(url_root, "project_instancenet", "ipcl", filename) config = { "ref#": 1, "type": "ipcl", "details": "primary model", "aug": "Set 1", "top1_knn": 38.4, "top1_linear": 39.5, "out_dim": 128, "l2norm": True, "mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225] } print(config) model, transform = build_alexnet_model(weights_url, config) return model, transform def ipcl2(): model_name = 'ipcl_alpha_alexnet_gn_u128_rep2' filename = '06_instance_imagenet_AlexNet_n5_lr03_pct40_t07_div1000_e100_bs128_bm20_gn_rep2_final_weights_only.pth.tar' weights_url = os.path.join(url_root, "project_instancenet", "ipcl", filename) config = { "ref#": 2, "type": "ipcl", "details": "variation: new code base", "aug": "Set 1", "top1_knn": 38.4, "top1_linear": 39.7, "out_dim": 128, "l2norm": True, "mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225] } print(config) model, transform = build_alexnet_model(weights_url, config) return model, transform def ipcl3(): model_name = 'ipcl_alpha_alexnet_gn_u128_redux' filename = 'alexnet_gn_dim128_unsupervised_redux_checkpoint_weights_only.pth.tar' weights_url = os.path.join(url_root, "project_instancenet", "ipcl", filename) config = { "ref#": 3, "type": "ipcl", "details": "variation: one cycle lr & momentum (73 epochs)", "aug": "Set 1", "top1_knn": 35.4, "top1_linear": 35.7, "out_dim": 128, "l2norm": True, "mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225] } print(config) model, transform = build_alexnet_model(weights_url, config) return model, transform def ipcl4(): model_name = 'ipcl_alpha_alexnet_gn_u128_ranger' filename = 'alexnet_gn_dim128_unsupervised_ranger_checkpoint_weights_only.pth.tar' weights_url = os.path.join(url_root, "project_instancenet", "ipcl", filename) config = { "ref#": 4, "type": "ipcl", "details": "variation: explore ranger (82 epochs)", "aug": "Set 1", "top1_knn": 37.5, "top1_linear": 32.2, "out_dim": 128, "l2norm": True, "mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225] } print(config) model, transform = build_alexnet_model(weights_url, config) return model, transform def ipcl5(): model_name = 'ipcl_alpha_alexnet_gn_u128_transforms' filename = 'alexnet_gn_dim128_unsupervised_transforms_checkpoint_weights_only.pth.tar' weights_url = os.path.join(url_root, "project_instancenet", "ipcl", filename) config = { "ref#": 5, "type": "ipcl", "details": "variation: custom transforms (82 epochs)", "aug": "Set 1", "top1_knn": 36.9, "top1_linear": 38.5, "out_dim": 128, "l2norm": True, "mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225] } print(config) model, transform = build_alexnet_model(weights_url, config) return model, transform def ipcl6(): model_name = 'ipcl_alexnet_gn_u128_imagenet' filename = 'alexnet_gn_u128_imagenet_final_weights_only.pth.tar' weights_url = os.path.join(url_root, "project_instancenet", "ipcl", filename) config = { "ref#": 6, "type": "ipcl", "details": "ImageNet baseline with new augmentations", "aug": "Set 2", "top1_knn": 35.1, "top1_linear": None, "out_dim": 128, "l2norm": True, "mean": [0.5, 0.5, 0.5], "std": [0.2, 0.2, 0.2] } print(config) model, transform = build_alexnet_model(weights_url, config) return model, transform def ipcl7(): model_name = 'ipcl_alexnet_gn_u128_openimagesv6' filename = 'alexnet_gn_u128_openimagesv6_final_weights_only.pth.tar' weights_url = os.path.join(url_root, "project_instancenet", "ipcl", filename) config = { "ref#": 7, "type": "ipcl", "details": "train on independent object dataset, OpenImagesV6", "aug": "Set 2", "top1_knn": 33.3, "top1_linear": None, "out_dim": 128, "l2norm": True, "mean": [0.5, 0.5, 0.5], "std": [0.2, 0.2, 0.2] } print(config) model, transform = build_alexnet_model(weights_url, config) return model, transform def ipcl8(): model_name = 'ipcl_alexnet_gn_u128_places2' filename = 'alexnet_gn_u128_places2_final_weights_only.pth.tar' weights_url = os.path.join(url_root, "project_instancenet", "ipcl", filename) config = { "ref#": 8, "type": "ipcl", "details": "train on scene dataset, Places2", "aug": "Set 2", "top1_knn": 30.9, "top1_linear": None, "out_dim": 128, "l2norm": True, "mean": [0.5, 0.5, 0.5], "std": [0.2, 0.2, 0.2] } print(config) model, transform = build_alexnet_model(weights_url, config) return model, transform def ipcl9(): model_name = 'ipcl_alexnet_gn_u128_vggface2' filename = 'alexnet_gn_u128_vggface2_lr001_final_weights_only.pth.tar' weights_url = os.path.join(url_root, "project_instancenet", "ipcl", filename) config = { "ref#": 9, "type": "ipcl", "details": "train on face dataset, VggFace2", "aug": "Set 2", "top1_knn": 12.4, "top1_linear": None, "out_dim": 128, "l2norm": True, "mean": [0.5, 0.5, 0.5], "std": [0.2, 0.2, 0.2] } print(config) model, transform = build_alexnet_model(weights_url, config) return model, transform def ipcl10(): model_name = 'ipcl_alexnet_gn_u128_FacesPlacesObjects1281167' filename = 'alexnet_gn_u128_FacesPlacesObjects1281167_final_weights_only.pth.tar' weights_url = os.path.join(url_root, "project_instancenet", "ipcl", filename) config = { "ref#": 10, "type": "ipcl", "details": "train on faces-places-objects-1x-ImageNet", "aug": "Set 2", "top1_knn": 31.6, "top1_linear": None, "out_dim": 128, "l2norm": True, "mean": [0.5, 0.5, 0.5], "std": [0.2, 0.2, 0.2] } print(config) model, transform = build_alexnet_model(weights_url, config) return model, transform def ipcl11(): model_name = 'ipcl_alexnet_gn_u128_FacesPlacesObjects1281167x3' filename = 'alexnet_gn_u128_FacesPlacesObjects1281167x3_final_weights_only.pth.tar' weights_url = os.path.join(url_root, "project_instancenet", "ipcl", filename) config = { "ref#": 11, "type": "ipcl", "details": "train on faces-places-objects-3x-ImageNet", "aug": "Set 2", "top1_knn": 33.9, "top1_linear": None, "out_dim": 128, "l2norm": True, "mean": [0.5, 0.5, 0.5], "std": [0.2, 0.2, 0.2] } print(config) model, transform = build_alexnet_model(weights_url, config) return model, transform def ipcl12(): model_name = 'ipcl_alpha_alexnet_gn_s1000_imagenet_wus_aug' filename = 'alexnet_gn_s1000_imagenet_wus_aug_final_weights_only.pth.tar' weights_url = os.path.join(url_root, "project_instancenet", "ipcl", filename) config = { "ref#": 12, "type": "category supervised", "details": "trained with 5 augmentations per image to match IPCL", "aug": "Set 1", "top1_knn": 58.8, "top1_linear": 55.7, "out_dim": 1000, "l2norm": False, "mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225] } print(config) model, transform = build_alexnet_model(weights_url, config) return model, transform def ipcl13(): model_name = 'wusnet_alexnet_gn_s1000' filename = 'alexnet_gn_supervised_final.pth.tar' weights_url = os.path.join(url_root, "project_instancenet", "wusnet", filename) config = { "ref#": 13, "type": "category supervised", "details": "trained with single augmentation per image", "aug": "Set 1", "top1_knn": 55.5, "top1_linear": 54.5, "out_dim": 1000, "l2norm": False, "mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225] } print(config) model, transform = build_alexnet_model(weights_url, config) return model, transform def ipcl14(): model_name = 'ipcl_alexnet_gn_s1000_imagenet' filename = 'alexnet_gn_s1000_imagenet_base_aug3_blur0_rot0_w0_d0_std02_final_weights_only.pth.tar' weights_url = os.path.join(url_root, "project_instancenet", "ipcl", filename) config = { "ref#": 14, "type": "category supervised", "details": "ImageNet baseline with new augmentations", "aug": "Set 2", "top1_knn": 56.0, "top1_linear": None, "out_dim": 1000, "l2norm": False, "mean": [0.5, 0.5, 0.5], "std": [0.2, 0.2, 0.2] } print(config) model, transform = build_alexnet_model(weights_url, config) return model, transform def ipcl15(): model_name = 'ipcl_alexnet_gn_s1000_imagenet_rep1' filename = 'alexnet_gn_s1000_imagenet_base_aug3_blur0_rot0_w0_d0_std02_rep1_final_weights_only.pth.tar' weights_url = os.path.join(url_root, "project_instancenet", "ipcl", filename) config = { "ref#": 15, "type": "category supervised", "details": "primary model", "aug": "Set 2", "top1_knn": 56.0, "top1_linear": None, "out_dim": 1000, "l2norm": False, "mean": [0.5, 0.5, 0.5], "std": [0.2, 0.2, 0.2] } print(config) model, transform = build_alexnet_model(weights_url, config) return model, transform def ipcl16(): model_name = 'ipcl_alpha_alexnet_gn_u128_random' filename = '' weights_url = None config = { "ref#": 16, "type": "untrained", "details": "untrained model with random weights and biases", "aug": "-", "top1_knn": 3.5, "top1_linear": 7.2, "out_dim": 128, "l2norm": True, "mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225] } print(config) model, transform = build_alexnet_model(weights_url, config) return model, transform
py
7df722121fe6b2021f2ca33e9628ab4676db6c62
#!/usr/bin/python from __future__ import division import argparse import datetime, sys, os import urllib2, json import ttbindec, defs p = argparse.ArgumentParser() p.add_argument('ttbin', nargs='*', type=argparse.FileType('rb'), default=sys.stdin, help='.ttbin files (default stdin)') p.add_argument('-g', '--geolocate', action='store_true', help='Geolocate using Google Maps api') p.add_argument('-r', '--rename', action='store_true', help='Rename files to YYYY-MM-DDTHH:MM:SS_Activity_Duration.ttbin') args = p.parse_args() for ttbin in args.ttbin: if len(args.ttbin)>1: indent=" " print "\n%s:" % ttbin.name else: indent="" data = ttbin.read() tag, fh, rls, offset = ttbindec.read_header(data) fw = '%d.%d.%d' % tuple(fh.firmware_version) product = "%d (%s)" % (fh.product_id, {1001:"Runner",1002:"MultiSport"}.get(fh.product_id,"Unknown")) start_time = datetime.datetime.fromtimestamp(fh.start_time-fh.local_time_offset) activity, laps, distance, duration, end_time = 'UNKNOWN', 1, None, 'UNKNOWN', None fp = None while offset<len(data): tag, rec, offset = ttbindec.read_record(data, offset) if isinstance(rec, defs.FILE_STATUS_RECORD): try: activity = defs.C_ACTIVITY(rec.activity).name.title() except ValueError: activity = None end_time = datetime.datetime.fromtimestamp(rec.timestamp-fh.local_time_offset) elif isinstance(rec, defs.FILE_LAP_RECORD): laps += 1 elif isinstance(rec, defs.FILE_SUMMARY_RECORD): distance = rec.distance duration = "%02d:%02d:%02d" % (rec.duration//3600, (rec.duration//60)%60, rec.duration%60) elif fp is None and isinstance(rec, defs.FILE_GPS_RECORD): lat, long = "%08.d"%rec.latitude, "%08.d"%rec.longitude fp = "%s.%s,%s.%s" % (lat[:-7],lat[-7:],long[:-7],long[-7:]) print indent+"Device: %s, firmware v%s" % (product, fw) print indent+"Activity: %s" % activity print indent+"Start time: %s" % start_time.isoformat() print indent+"End time: %s" % end_time.isoformat() print indent+"Duration: %s" % duration if fp: print indent+"Start location: %s" % fp if args.geolocate: try: j = json.load(urllib2.urlopen("http://maps.googleapis.com/maps/api/geocode/json?latlng=%s" % fp)) addr = j['results'][0]['formatted_address'] print indent+" %s" % addr except Exception: pass if distance: print indent+"Distance: %gm, %d laps" % (distance, laps) if args.rename and ttbin is not sys.stdin: ttbin.close() newfn = '%s_%s_%s.ttbin' % (start_time.isoformat(), activity, duration) newpath = os.path.join(os.path.dirname(ttbin.name), newfn) if os.path.exists(newpath): if not os.path.samefile(ttbin.name, newpath): print>>sys.stderr, "File exists, not renaming: %s" % newpath else: os.rename(ttbin.name, newpath) print indent+"Renamed to %s" % newfn
py
7df722c15f501106c8b215f16456dc4cc03ea838
# sslutil.py - SSL handling for mercurial # # Copyright 2005, 2006, 2007, 2008 Matt Mackall <[email protected]> # Copyright 2006, 2007 Alexis S. L. Carvalho <[email protected]> # Copyright 2006 Vadim Gelfer <[email protected]> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. import os, sys from mercurial import util from mercurial.i18n import _ _canloaddefaultcerts = False try: # avoid using deprecated/broken FakeSocket in python 2.6 import ssl CERT_REQUIRED = ssl.CERT_REQUIRED try: ssl_context = ssl.SSLContext _canloaddefaultcerts = util.safehasattr(ssl_context, 'load_default_certs') def ssl_wrap_socket(sock, keyfile, certfile, cert_reqs=ssl.CERT_NONE, ca_certs=None, serverhostname=None): # Allow any version of SSL starting with TLSv1 and # up. Note that specifying TLSv1 here prohibits use of # newer standards (like TLSv1_2), so this is the right way # to do this. Note that in the future it'd be better to # support using ssl.create_default_context(), which sets # up a bunch of things in smart ways (strong ciphers, # protocol versions, etc) and is upgraded by Python # maintainers for us, but that breaks too many things to # do it in a hurry. sslcontext = ssl.SSLContext(ssl.PROTOCOL_SSLv23) sslcontext.options &= ssl.OP_NO_SSLv2 & ssl.OP_NO_SSLv3 if certfile is not None: sslcontext.load_cert_chain(certfile, keyfile) sslcontext.verify_mode = cert_reqs if ca_certs is not None: sslcontext.load_verify_locations(cafile=ca_certs) elif _canloaddefaultcerts: sslcontext.load_default_certs() sslsocket = sslcontext.wrap_socket(sock, server_hostname=serverhostname) # check if wrap_socket failed silently because socket had been # closed # - see http://bugs.python.org/issue13721 if not sslsocket.cipher(): raise util.Abort(_('ssl connection failed')) return sslsocket except AttributeError: def ssl_wrap_socket(sock, keyfile, certfile, cert_reqs=ssl.CERT_NONE, ca_certs=None, serverhostname=None): sslsocket = ssl.wrap_socket(sock, keyfile, certfile, cert_reqs=cert_reqs, ca_certs=ca_certs, ssl_version=ssl.PROTOCOL_TLSv1) # check if wrap_socket failed silently because socket had been # closed # - see http://bugs.python.org/issue13721 if not sslsocket.cipher(): raise util.Abort(_('ssl connection failed')) return sslsocket except ImportError: CERT_REQUIRED = 2 import socket, httplib def ssl_wrap_socket(sock, keyfile, certfile, cert_reqs=CERT_REQUIRED, ca_certs=None, serverhostname=None): if not util.safehasattr(socket, 'ssl'): raise util.Abort(_('Python SSL support not found')) if ca_certs: raise util.Abort(_( 'certificate checking requires Python 2.6')) ssl = socket.ssl(sock, keyfile, certfile) return httplib.FakeSocket(sock, ssl) def _verifycert(cert, hostname): '''Verify that cert (in socket.getpeercert() format) matches hostname. CRLs is not handled. Returns error message if any problems are found and None on success. ''' if not cert: return _('no certificate received') dnsname = hostname.lower() def matchdnsname(certname): return (certname == dnsname or '.' in dnsname and certname == '*.' + dnsname.split('.', 1)[1]) san = cert.get('subjectAltName', []) if san: certnames = [value.lower() for key, value in san if key == 'DNS'] for name in certnames: if matchdnsname(name): return None if certnames: return _('certificate is for %s') % ', '.join(certnames) # subject is only checked when subjectAltName is empty for s in cert.get('subject', []): key, value = s[0] if key == 'commonName': try: # 'subject' entries are unicode certname = value.lower().encode('ascii') except UnicodeEncodeError: return _('IDN in certificate not supported') if matchdnsname(certname): return None return _('certificate is for %s') % certname return _('no commonName or subjectAltName found in certificate') # CERT_REQUIRED means fetch the cert from the server all the time AND # validate it against the CA store provided in web.cacerts. # # We COMPLETELY ignore CERT_REQUIRED on Python <= 2.5, as it's totally # busted on those versions. def _plainapplepython(): """return true if this seems to be a pure Apple Python that * is unfrozen and presumably has the whole mercurial module in the file system * presumably is an Apple Python that uses Apple OpenSSL which has patches for using system certificate store CAs in addition to the provided cacerts file """ if sys.platform != 'darwin' or util.mainfrozen() or not sys.executable: return False exe = os.path.realpath(sys.executable).lower() return (exe.startswith('/usr/bin/python') or exe.startswith('/system/library/frameworks/python.framework/')) def _defaultcacerts(): """return path to CA certificates; None for system's store; ! to disable""" if _plainapplepython(): dummycert = os.path.join(os.path.dirname(__file__), 'dummycert.pem') if os.path.exists(dummycert): return dummycert if _canloaddefaultcerts: return None return '!' def sslkwargs(ui, host): kws = {} hostfingerprint = ui.config('hostfingerprints', host) if hostfingerprint: return kws cacerts = ui.config('web', 'cacerts') if cacerts == '!': pass elif cacerts: cacerts = util.expandpath(cacerts) if not os.path.exists(cacerts): raise util.Abort(_('could not find web.cacerts: %s') % cacerts) else: cacerts = _defaultcacerts() if cacerts and cacerts != '!': ui.debug('using %s to enable OS X system CA\n' % cacerts) ui.setconfig('web', 'cacerts', cacerts, 'defaultcacerts') if cacerts != '!': kws.update({'ca_certs': cacerts, 'cert_reqs': CERT_REQUIRED, }) return kws class validator(object): def __init__(self, ui, host): self.ui = ui self.host = host def __call__(self, sock, strict=False): host = self.host cacerts = self.ui.config('web', 'cacerts') hostfingerprint = self.ui.config('hostfingerprints', host) if not getattr(sock, 'getpeercert', False): # python 2.5 ? if hostfingerprint: raise util.Abort(_("host fingerprint for %s can't be " "verified (Python too old)") % host) if strict: raise util.Abort(_("certificate for %s can't be verified " "(Python too old)") % host) if self.ui.configbool('ui', 'reportoldssl', True): self.ui.warn(_("warning: certificate for %s can't be verified " "(Python too old)\n") % host) return if not sock.cipher(): # work around http://bugs.python.org/issue13721 raise util.Abort(_('%s ssl connection error') % host) try: peercert = sock.getpeercert(True) peercert2 = sock.getpeercert() except AttributeError: raise util.Abort(_('%s ssl connection error') % host) if not peercert: raise util.Abort(_('%s certificate error: ' 'no certificate received') % host) peerfingerprint = util.sha1(peercert).hexdigest() nicefingerprint = ":".join([peerfingerprint[x:x + 2] for x in xrange(0, len(peerfingerprint), 2)]) if hostfingerprint: if peerfingerprint.lower() != \ hostfingerprint.replace(':', '').lower(): raise util.Abort(_('certificate for %s has unexpected ' 'fingerprint %s') % (host, nicefingerprint), hint=_('check hostfingerprint configuration')) self.ui.debug('%s certificate matched fingerprint %s\n' % (host, nicefingerprint)) elif cacerts != '!': msg = _verifycert(peercert2, host) if msg: raise util.Abort(_('%s certificate error: %s') % (host, msg), hint=_('configure hostfingerprint %s or use ' '--insecure to connect insecurely') % nicefingerprint) self.ui.debug('%s certificate successfully verified\n' % host) elif strict: raise util.Abort(_('%s certificate with fingerprint %s not ' 'verified') % (host, nicefingerprint), hint=_('check hostfingerprints or web.cacerts ' 'config setting')) else: self.ui.warn(_('warning: %s certificate with fingerprint %s not ' 'verified (check hostfingerprints or web.cacerts ' 'config setting)\n') % (host, nicefingerprint))
py
7df7230e48d1f111ce7ccc2d74c7a621a4f246b4
import numpy as np import getopt, sys import torch import torch.nn as nn from option.default_option import TrainOptions from model_search import Network from genotypes import * from option.default_option import TrainOptions from visualize import * """ Loads a model checkpoint from commandline arguments and displays with additional option to visualize the checkpoint: - epoch - training loss - training accuracy - validation loss - validation accuracy Command Line Arguments: - experiment name: --experiment= - epoch number: --epoch= - visualize the model as .png in /visualizations (bool): --visualize= """ opt = TrainOptions() def initialize(): device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') opt = TrainOptions() criterion = nn.CrossEntropyLoss().to(device) model = Network(opt.init_channels, 10, opt.layers, criterion) model.to(device) optimizer_model = torch.optim.SGD(model.parameters(), lr=opt.learning_rate, momentum=opt.momentum, weight_decay=opt.weight_decay) optimizer_arch = torch.optim.Adam(model.arch_parameters(), lr=opt.arch_learning_rate, betas=opt.arch_betas, weight_decay=opt.arch_weight_decay) return device, opt, criterion, model, optimizer_model, optimizer_arch def load_checkpoint(LOAD_EPOCH, experiment): """ Loads model checkpoint metadata saved in /experiments at a particular epoch """ checkpoint = torch.load('experiments/' + experiment + '/weights_epoch_' + LOAD_EPOCH + '.pt', map_location=device) model.load_state_dict(checkpoint['model_state_dict']) optimizer_model.load_state_dict(checkpoint['optimizer_model_state_dict']) optimizer_arch.load_state_dict(checkpoint['optimizer_arch_state_dict']) epoch = checkpoint['epoch'] train_loss = checkpoint['train_loss'] train_acc_top1 = checkpoint['train_acc_top1'] train_acc_top5 = checkpoint['train_acc_top5'] valid_loss = checkpoint['valid_loss'] valid_acc_top1 = checkpoint['valid_acc_top1'] valid_acc_top5 = checkpoint['valid_acc_top5'] model_state_dict = checkpoint['model_state_dict'] arch_alphas = checkpoint['arch_alphas'] return epoch, train_loss, train_acc_top1, train_acc_top5, valid_loss, valid_acc_top1, valid_acc_top5, model_state_dict, arch_alphas if __name__ == '__main__': opt_list, _ = getopt.getopt(sys.argv[1:], 'x', ['experiment=', 'epoch=', 'visualize=']) experiment, LOAD_EPOCH, visualize = opt_list[0][1], opt_list[1][1], opt_list[2][1] == 'True' device, opt, criterion, model, optimizer_model, optimizer_arch = initialize() epoch, train_loss, train_acc_top1, train_acc_top5, valid_loss, valid_acc_top1, valid_acc_top5, model_state_dict, arch_alphas = load_checkpoint(LOAD_EPOCH, experiment) if visualize: temperature = opt.initial_temp * np.exp(opt.anneal_rate * epoch) alpha_normal, alpha_reduce = arch_alphas[0], arch_alphas[1] m_normal = torch.distributions.relaxed_categorical.RelaxedOneHotCategorical( torch.tensor([temperature]), torch.tensor(alpha_normal)) m_reduce = torch.distributions.relaxed_categorical.RelaxedOneHotCategorical( torch.tensor([temperature]) , torch.tensor(alpha_reduce)) alpha_normal = m_normal.sample().cpu().numpy() alpha_reduce = m_reduce.sample().cpu().numpy() ex = genotype(alpha_normal, alpha_reduce) plot(ex.normal, './visualizations/' + experiment + '/normal_epoch_' + str(epoch)) plot(ex.reduce, './visualizations/' + experiment + '/reduction_epoch_' + str(epoch)) print("Saved visualization to normal.png and reduction.png") print('SNAS status') print('epoch:', epoch) print('train_loss:', train_loss) print('train_acc_top1:', train_acc_top1) print('train_acc_top5:', train_acc_top5) print('valid_loss:', valid_loss) print('valid_acc_top1:', valid_acc_top1) print('valid_acc_top5:', valid_acc_top5)
py
7df7234d1e43f3707f033ca969e3c3e502bac890
#!/usr/bin/env python3 import json import os # import pandas as pd from amd_plot_roofline_hierarchical_jg import roofline # cloned from: # https://github.com/Techercise/AMD-Instruction-Roofline-using-rocProf-Metrics # -> blob/main/amd_postprocess_instruction.py # ----------------------------------------------------------------------------- # https://github.com/Techercise/AMD-Instruction-Roofline-using-rocProf-Metrics # https://arxiv.org/pdf/2110.08221.pdf # -> Matthew Leinhauser <[email protected]> # -> Sunita Chandrasekaran <[email protected]> # "Metrics and Design of an Instruction Roofline Model for AMD GPUs" # FP64_Gflops/s: # P100=4761 (sm60, 56sms*64c/sm*1.33GHz, 16GB), # V100=7833 (sm70, 80sms*64c/sm*1.53GHz, 16GB), # A100=9746 (sm80, 108sms*64c/sm*1.41GHz), # Mi100=11500 # ----------------------------------------------------------------------------- # {{{ read_json_data def read_json_data(infile, kernel): f = open(infile) d = json.load(f) f.close() dd = d['runs'][0]['testcases'] labels = [] fetchsize = [] sq_insts_valu = [] writesize = [] sq_insts_salu = [] ns = [] for job_n in range(len(dd)): # print(f'job_n={job_n}') for metric_job_n in range(len(dd[job_n]['perfvars'])): json_metric_name = dd[job_n]["perfvars"][metric_job_n]["name"] json_metric_value = dd[job_n]["perfvars"][metric_job_n]["value"] if json_metric_name == 'n_cubeside': labels.append(f'-n{json_metric_value}') elif json_metric_name == f'{kernel}_FetchSize': fetchsize.append(json_metric_value) elif json_metric_name == f'{kernel}_SQ_INSTS_VALU': sq_insts_valu.append(json_metric_value) elif json_metric_name == f'{kernel}_WriteSize': writesize.append(json_metric_value) elif json_metric_name == f'{kernel}_SQ_INSTS_SALU': sq_insts_salu.append(json_metric_value) elif json_metric_name == f'{kernel}_ns': ns.append(json_metric_value) # print(labels) # print(fetchsize) # print(sq_insts_valu) # print(writesize) # print(sq_insts_salu) # print(ns) return (labels, fetchsize, sq_insts_valu, writesize, sq_insts_salu, ns) # }}} # {{{ compute roofs, Intensity and GIPS: # 1ns=10^-9s / 1us=10^-6s def calc_Instructions(sq_insts_valu, sq_insts_salu): """ dfmetric['Instructions'] = \ (dfmetric['SQ_INSTS_VALU'] * 4) + dfmetric['SQ_INSTS_SALU'] """ # TODO: return [sq_insts_salu[ii] + sq_insts_valu[ii] * 4 for ...] res = [] for ii in range(len(sq_insts_valu)): res.append(sq_insts_salu[ii] + sq_insts_valu[ii] * 4) return res def calc_Time(ns): """ dfmetric['Time'] = dfmetric['time'] * pow(10, -6) # = from usec to sec nsec * 10^-9 = sec # = from nsec to sec """ return [ii * pow(10, -9) for ii in ns] def calc_Instructions_Intensity(inst, fetchsize, writesize, time): """ dfmetric['Instruction Intensity HBM'] = \ (dfmetric['Instructions'] / 64) / ((dfmetric['Fetch_Size'] + dfmetric['Write_Size']) * dfmetric['Time']) """ res = [] for ii in range(len(inst)): res.append((inst[ii] / 64) / ((fetchsize[ii] + writesize[ii]) * time[ii])) return res def calc_GIPS(inst, time): """ dfmetric['GIPS'] = (dfmetric['Instructions'] / 64) / (pow(10, 9) * dfmetric['Time']) """ res = [] wavefront = 64 for ii in range(len(inst)): res.append((inst[ii] / wavefront) / (pow(10, 9) * time[ii])) return res # }}} # {{{ plot: def plot_roofline(jsonfile, gips, Instruction_Intensity_HBM, labels, flag, kernel): l2_ai = [0 for z in gips] l1_ai = [0 for z in gips] roofline(jsonfile, gips, Instruction_Intensity_HBM, l2_ai, l1_ai, labels, flag, kernel) # }}} if __name__ == '__main__': jsonfile = 'res_amd_mi100/reframe.json' # jsonfile = 'eff.json' kernels = [ 'computeMomentumAndEnergyIAD', 'findNeighborsKernel', 'computeIAD', 'density', ] kernel = kernels[0] # kernel = kernels[1] # kernel = kernels[2] # kernel = kernels[3] lumi = True # False if lumi: # {{{ lumi: for kernel in kernels: labels, fetchsize, sq_insts_valu, writesize, sq_insts_salu, ns = read_json_data(jsonfile, kernel) time = calc_Time(ns) # print(f'ns={ns}') # print(f'time={time}') inst = calc_Instructions(sq_insts_valu, sq_insts_salu) Instruction_Intensity_HBM = calc_Instructions_Intensity(inst, fetchsize, writesize, time) gips = calc_GIPS(inst, time) flag = 'HBM' print(f'# kernel={kernel}') # print(ns) # print(time) # print(inst) print(f'# jsonfile={jsonfile}') print(f'Instruction_Intensity_HBM={Instruction_Intensity_HBM}') print(f'gips={gips}') print(f'labels={labels}') print(f'flag={flag}') plot_roofline(jsonfile, gips, Instruction_Intensity_HBM, labels, flag, kernel) os.rename('generic_mi100_roofline.png', f'{kernel}_mi100_roofline.png') # }}} debug = False if debug: # {{{ debug: # {{{ xls ok:fig7 TWEAC_simulations/mi100_tweac_cc_inst_output.csv # -> gips=[4.993347263108402] # -> Instruction_Intensity_HBM=[0.40753481867458635] # metrics,SQ_INSTS_SALU,inst,7430073024 # metrics,SQ_INSTS_VALU,inst,17764624449 # metrics,FetchSize,bytes,11460394000 # metrics,WriteSize,bytes,792172000 # metrics,time,us,245603.571 <----- us ? sq_insts_salu = [7430073024] sq_insts_valu = [17764624449] fetchsize = [11460394000] writesize = [792172000] ns = [245603.571] # }}} # {{{ ok:fig6 LWFA_simulations/mi100_lw_cc_inst_output.csv # Instruction_Intensity_HBM=[1.862501575963134] # gips=[2.855576241257221] sq_insts_salu = [30791040] sq_insts_valu = [104751360] fetchsize = [1124711000] writesize = [408483000] ns = [2461.174] # }}} # {{{ ?: LWFA_simulations/mi100_lw_pp_inst_output.csv # Instruction_Intensity_HBM=[2.520477925887229] # gips=[4.709127371397627] # sq_insts_salu = [28203840] # sq_insts_valu = [309335040] # fetchsize = [1229821000] # writesize = [638526000] # ns = [4199.106] # }}} time = calc_Time(ns) inst = calc_Instructions(sq_insts_valu, sq_insts_salu) gips = calc_GIPS(inst, time) Instruction_Intensity_HBM = calc_Instructions_Intensity(inst, fetchsize, writesize, time) labels = ['x'] flag = 'HBM' print(f'Instruction_Intensity_HBM={Instruction_Intensity_HBM}') print(f'gips={gips}') # }}}
py
7df726885ace3945c2a10a94bd9b4c7a20a82135
class Node: def __init__(self, name): self.name = name self.children = set() self.parents = set() def add_child(self, child): self.children.add(child) def add_parent(self, parent): self.parents.add(parent) # parse the nodes nodes = {} with open(r'C:\Users\jeremymill\Documents\AoC2018\7\input.txt') as f: for line in f: line = line.split(' ') nodename = line[1] child = line[7] #if the nodename doesn't exist, create it if nodename not in nodes: nodes[nodename] = Node(nodename) nodes[nodename].add_child(child) #if the nodename does exist, add a child to it else: nodes[nodename].add_child(child) #if the child isn't a node, create it and add a parent if child not in nodes: nodes[child] = Node(child) nodes[child].add_parent(nodename) #if the child is a node, just add a parent else: nodes[child].add_parent(nodename) # find the node with no parent roots = [] for nodename, node in nodes.items(): if len(node.parents) == 0: roots.append(nodename) roots = sorted(roots) print(roots) #start with node C eligible_children = [] eliminated_children = [roots[0]] for child in nodes[roots[0]].children: print('root child: ', child) eligible_children.append(child) for root in roots[1:]: eligible_children.append(root) #result variable result = roots[0] print("e-children: ", eligible_children) while len(eligible_children) > 0: #sort alphabetically eligible_children = sorted(eligible_children) #make sure the next lowest eligible has eliminated parents count = 0 childzero = eligible_children[0] while True: curr_count = count for parent in nodes[eligible_children[count]].parents: if parent not in eliminated_children: count += 1 break if curr_count == count: break #add the lowest eligible to the result result += eligible_children[count] eliminated_children.append(eligible_children[count]) #add the children of the lowest to eligible children for child in nodes[eligible_children[count]].children: if child not in eliminated_children: eligible_children.append(child) #remove the child eligible_children.remove(eligible_children[count]) eligible_children = set(eligible_children) print("e-children: ", eligible_children) print(result)
py
7df726a4d5a8bb1071e443bdf6a45dcd6685b3a1
#! /usr/bin/env python """This module contains code to make, locate, and parse the appropriate segment PSF library files to use for a given simulation. These files are made using the WebbPSF psf_grid() method, and are turned into photutils GriddedPSFModel objects using webbpsf.utils.to_griddedpsfmodel. Author ------ - Lauren Chambers Use --- This module can be imported and called as such: :: from mirage.psf.segment_psfs import get_gridded_segment_psf_library_list lib = get_gridded_segment_psf_library_list(instrument, detector, filter, out_dir, pupilname="CLEAR") """ import logging import os import time from astropy.io import fits import numpy as np import pysiaf import webbpsf from webbpsf.gridded_library import CreatePSFLibrary from webbpsf.utils import to_griddedpsfmodel import multiprocessing import functools from mirage.logging import logging_functions from mirage.psf.psf_selection import get_library_file from mirage.utils.constants import LOG_CONFIG_FILENAME, STANDARD_LOGFILE_NAME classdir = os.path.abspath(os.path.join(os.path.dirname(__file__), '../')) log_config_file = os.path.join(classdir, 'logging', LOG_CONFIG_FILENAME) logging_functions.create_logger(log_config_file, STANDARD_LOGFILE_NAME) def _generate_psfs_for_one_segment(inst, ote, segment_tilts, out_dir, boresight, lib, detectors, filters, fov_pixels, nlambda, overwrite, i): """ Helper function for parallelized segment PSF calculations For use with multiprocessing.Pool, the iterable argument must be in the last position See doc string of generate_segment_psfs for input parameter definitions. """ logger = logging.getLogger('mirage.psf.segment_psfs._generate_psfs_for_one_segment') i_segment = i + 1 segname = webbpsf.webbpsf_core.segname(i_segment) logger.info('GENERATING SEGMENT {} DATA'.format(segname)) det_filt_match = False for det in sorted(detectors): for filt in list(filters): if inst.name.lower() == 'nircam': # Make sure the detectors and filters match for NIRCam LW/SW # i.e. ignore SW filters if we're on LW, and vice versa if (det in lib.nrca_short_detectors and filt not in lib.nrca_short_filters) \ or (det in lib.nrca_long_detectors and filt not in lib.nrca_long_filters): continue det_filt_match = True # Define the filter and detector inst.filter = filt inst.detector = det # Restrict the pupil to the current segment pupil = webbpsf.webbpsf_core.one_segment_pupil(i_segment) ote.amplitude = pupil[0].data inst.pupil = ote # Determine normalization factor - what fraction of total pupil is in this one segment? full_pupil = fits.getdata(os.path.join(webbpsf.utils.get_webbpsf_data_path(), 'jwst_pupil_RevW_npix1024.fits.gz')) pupil_fraction_for_this_segment = pupil[0].data.sum() / full_pupil.sum() # Generate the PSF grid # NOTE: we are choosing a polychromatic simulation here to better represent the # complexity of simulating unstacked PSFs. See the WebbPSF website for more details. grid = inst.psf_grid(num_psfs=1, save=False, all_detectors=False, use_detsampled_psf=True, fov_pixels=fov_pixels, oversample=1, overwrite=overwrite, add_distortion=False, nlambda=nlambda, verbose=False) # Apply correct normalization factor for the fraction of light in that segment. # WebbPSF is outputting PSFs normalized to 1 by default even for the individual segments. grid.data *= pupil_fraction_for_this_segment # Remove and add header keywords about segment del grid.meta["grid_xypos"] del grid.meta["oversampling"] grid.meta['SEGID'] = (i_segment, 'ID of the mirror segment') grid.meta['SEGNAME'] = (segname, 'Name of the mirror segment') grid.meta['XTILT'] = (round(segment_tilts[i, 0], 2), 'X tilt of the segment in micro radians') grid.meta['YTILT'] = (round(segment_tilts[i, 1], 2), 'Y tilt of the segment in micro radians') grid.meta['SMPISTON'] = (ote.segment_state[18][4], 'Secondary mirror piston (defocus) in microns') grid.meta['SMXTILT'] = (ote.segment_state[18][0], 'Secondary mirror X Tilt in microradians') grid.meta['SMYTILT'] = (ote.segment_state[18][1], 'Secondary mirror Y Tilt in microradians') grid.meta['SMXTRANS'] = (ote.segment_state[18][2], 'Secondary mirror X Translation in microns') grid.meta['SMYTRANS'] = (ote.segment_state[18][3], 'Secondary mirror Y Translation in microns') grid.meta['FRACAREA'] = (pupil_fraction_for_this_segment, "Fractional area of OTE primary for this segment") if boresight is not None: grid.meta['BSOFF_V2'] = (boresight[0], 'Telescope boresight offset in V2 in arcminutes') grid.meta['BSOFF_V3'] = (boresight[1], 'Telescope boresight offset in V3 in arcminutes') # Write out file filename = '{}_{}_{}_fovp{}_samp1_npsf1_seg{:02d}.fits'.format(inst.name.lower(), det.lower(), filt.lower(), fov_pixels, i_segment) filepath = os.path.join(out_dir, filename) primaryhdu = fits.PrimaryHDU(grid.data) tuples = [(a, b, c) for (a, (b, c)) in sorted(grid.meta.items())] primaryhdu.header.extend(tuples) hdu = fits.HDUList(primaryhdu) hdu.writeto(filepath, overwrite=overwrite) logger.info('Saved gridded library file to {}'.format(filepath)) if inst.name.lower()=='nircam' and det_filt_match == False: raise ValueError('No matching filters and detectors given - all ' 'filters are longwave but detectors are shortwave, ' 'or vice versa.') def generate_segment_psfs(ote, segment_tilts, out_dir, filters=['F212N', 'F480M'], detectors='all', fov_pixels=1024, boresight=None, overwrite=False, segment=None, jitter=None, nlambda=10, instrument='NIRCam', inst_options=None): """Generate NIRCam PSF libraries for all 18 mirror segments given a perturbed OTE mirror state. Saves each PSF library as a FITS file named in the following format: nircam_{filter}_fovp{fov size}_samp1_npsf1_seg{segment number}.fits OR fgs_{filter}_fovp{fov size}_samp1_npsf1_seg{segment number}.fits Parameters ---------- ote : webbpsf.opds.OTE_Linear_Model_WSS object WebbPSF OTE object describing perturbed OTE state with tip and tilt removed segment_tilts : numpy.ndarray List of X and Y tilts for each mirror segment, in microradians out_dir : str Directory in which to save FITS files filters : str or list, optional Which filters to generate PSF libraries for. Default is ['F212N', 'F480M'] (the two NIRCam filters used for most commissioning activities). Note, this parameter is ignored for FGS sims. detectors : str or list, optional Which detectors to generate PSF libraries for. Default is 'all', which will generate all detectors for whichever of NIRCam or FGS is specified by the instrument parameter. fov_pixels : int, optional Size of the PSF to generate, in pixels. Default is 1024. boresight: list, optional Telescope boresight offset in V2/V3 in arcminutes. This offset is added on top of the individual segment tip/tilt values. overwrite : bool, optional True/False boolean to overwrite the output file if it already exists. Default is True. segment : int or list The mirror segment number or list of numbers for which to generate PSF libraries jitter : float Jitter value to use in the call to webbpsf when generating PSF library. If None (default) the nominal jitter (7mas radial) is used. nlambda : int Number of wavelengths to use for polychromatic PSF calculations. instrument : string Which instrument to generate segment PSFs for. Should be either "NIRCam" or "FGS". inst_options : dict Optional; additional options to set on the NIRCam or FGS class instance used in this function. Any items in this dict will be added into the .options dict prior to the PSF calculations. """ logger = logging.getLogger('mirage.psf.segment_psfs.generate_segment_psfs') # Create webbpsf NIRCam instance inst = webbpsf.Instrument(instrument) # Create dummy CreatePSFLibrary instance to get lists of filter and detectors lib = CreatePSFLibrary # Define the filter list to loop through if instrument.upper()=='FGS': # FGS does not have an option for filters filters = ['FGS'] else: # NIRCam can have one or more named filters specified if isinstance(filters, str): filters = [filters] elif not isinstance(filters, list): raise TypeError('Please define filters as a string or list, not {}'.format(type(filters))) # Define the detector list to loop through if detectors == 'all': detectors = inst.detector_list elif isinstance(detectors, str): detectors = [detectors] elif not isinstance(detectors, list): raise TypeError('Please define detectors as a string or list, not {}'.format(type(detectors))) # Make sure segment is a list segments = list(range(18)) if segment is not None: if isinstance(segment, int): segments = [segment] elif isinstance(segment, list): segments = segment else: raise ValueError("segment keyword must be either an integer or list of integers.") # Allow for non-nominal jitter values if jitter is not None: if isinstance(jitter, float): inst.options['jitter'] = 'gaussian' inst.options['jitter_sigma'] = jitter logger.info('Adding jitter: {} arcsec'.format(jitter)) elif isinstance(jitter, str): allowed_strings = ['PCS=Coarse_Like_ITM', 'PCS=Coarse'] if jitter in allowed_strings: inst.options['jitter'] = jitter logger.info('Adding {} jitter'.format(jitter)) else: logger.warning("Invalid jitter string. Must be one of: {}. Ignoring and using defaults.".format(allowed_strings)) else: logger.warning("Wrong input to jitter, assuming defaults") if inst_options is not None: inst.options.update(inst_options) # Set up multiprocessing pool nproc = min(multiprocessing.cpu_count() // 2,18) # number of procs could be optimized further here. TBD. # some parts of PSF calc are themselves parallelized so using # fewer processes than number of cores is likely reasonable. pool = multiprocessing.Pool(processes=nproc) logger.info(f"Will perform parallelized calculation using {nproc} processes") # Set up a function instance with most arguments fixed calc_psfs_for_one_segment = functools.partial(_generate_psfs_for_one_segment, inst, ote, segment_tilts, out_dir, boresight, lib, detectors, filters, fov_pixels, nlambda, overwrite) # Create PSF grids for all requested segments, detectors, and filters pool_start_time = time.time() results = pool.map(calc_psfs_for_one_segment, segments) pool_stop_time = time.time() logger.info('\n=========== Elapsed time (all segments): {} ============\n'.format(pool_stop_time - pool_start_time)) pool.close() def get_gridded_segment_psf_library_list(instrument, detector, filtername, library_path, pupilname="CLEAR"): """Find the filenames for the appropriate gridded segment PSF libraries and read them into griddedPSFModel objects Parameters ---------- instrument : str Name of instrument the PSFs are from detector : str Name of the detector within ```instrument``` filtername : str Name of filter used for PSF library creation library_path : str Path pointing to the location of the PSF library pupilname : str, optional Name of pupil wheel element used for PSF library creation. Default is "CLEAR". Returns: -------- libraries : list of photutils.griddedPSFModel List of object containing segment PSF libraries """ logger = logging.getLogger('mirage.psf.segment_psfs.get_gridded_segment_psf_library_list') library_list = get_segment_library_list(instrument, detector, filtername, library_path, pupil=pupilname) logger.info("Segment PSFs will be generated using:") for filename in library_list: logger.info(os.path.basename(filename)) libraries = [] for filename in library_list: with fits.open(filename) as hdulist: # hdr = hdulist[0].header # d = hdulist[0].data # # data = d[0][0] # phdu = fits.PrimaryHDU(data, header=hdr) # hdulist = fits.HDUList(phdu) lib_model = to_griddedpsfmodel(hdulist) libraries.append(lib_model) return libraries def get_segment_library_list(instrument, detector, filt, library_path, pupil='CLEAR'): """Given an instrument and filter name along with the path of the PSF library, find the appropriate 18 segment PSF library files. Parameters ----------- instrument : str Name of instrument the PSFs are from detector : str Name of the detector within ```instrument``` filt : str Name of filter used for PSF library creation library_path : str Path pointing to the location of the PSF library pupil : str, optional Name of pupil wheel element used for PSF library creation. Default is 'CLEAR'. segment_id : int or None, optional If specified, returns a segment PSF library file and denotes the ID of the mirror segment Returns -------- library_list : list List of the names of the segment PSF library files for the instrument and filter name """ library_list = [] for seg_id in np.arange(1, 19): segment_file = get_library_file( instrument, detector, filt, pupil, '', 0, library_path, segment_id=seg_id ) library_list.append(segment_file) return library_list def get_segment_offset(segment_number, detector, library_list): """Convert vectors coordinates in the local segment control coordinate system to NIRCam detector X and Y coordinates, at least proportionally, in order to calculate the location of the segment PSFs on the given detector. Parameters ---------- segment : int Segment ID, i.e 3 detector : str Name of NIRCam detector library_list : list List of the names of the segment PSF library files Returns ------- x_arcsec The x offset of the segment PSF in arcsec y_arcsec The y offset of the segment PSF in arcsec """ # Verify that the segment number in the header matches the index seg_index = int(segment_number) - 1 header = fits.getheader(library_list[seg_index]) assert int(header['SEGID']) == int(segment_number), \ "Uh-oh. The segment ID of the library does not match the requested " \ "segment. The library_list was not assembled correctly." xtilt = header['XTILT'] ytilt = header['YTILT'] segment = header['SEGNAME'][:2] sm_piston = header.get('SMPISTON',0) # SM piston has, as one of its effects, adding tilt onto each segment, # along with higher order WFE such as defocus. We model here the effect # of SM piston onto the x and y offsets. # Coefficients determined based on WAS influence function matrix, as # derived from segment control geometries. if segment.startswith('A'): xtilt += sm_piston * 0.010502 elif segment.startswith('B'): xtilt += sm_piston * -0.020093 elif segment.startswith('C'): ytilt += sm_piston * 0.017761 # Next we work out the individual offsets from segment-level tilts control_xaxis_rotations = { 'A1': 180, 'A2': 120, 'A3': 60, 'A4': 0, 'A5': -60, 'A6': -120, 'B1': 0, 'C1': 60, 'B2': -60, 'C2': 0, 'B3': -120, 'C3': -60, 'B4': -180, 'C4': -120, 'B5': -240, 'C5': -180, 'B6': -300, 'C6': -240 } x_rot = control_xaxis_rotations[segment] # degrees x_rot_rad = x_rot * np.pi / 180 # radians # Note that y is defined as the x component and x is defined as the y component. # This is because "xtilt" moves the PSF in the y direction, and vice versa. tilt_onto_y = (xtilt * np.cos(x_rot_rad)) - (ytilt * np.sin(x_rot_rad)) tilt_onto_x = (xtilt * np.sin(x_rot_rad)) + (ytilt * np.cos(x_rot_rad)) umrad_to_arcsec = 1e-6 * (180./np.pi) * 3600 x_arcsec = 2 * umrad_to_arcsec * tilt_onto_x y_arcsec = 2 * umrad_to_arcsec * tilt_onto_y # Secondary mirror tilts and translations also shift the apparent location of each PSF, # often referred to as "changing the boresight". # Coefficients for this are worked out by Randal Telfer in # "JWST Secondary Mirror Influence Functions", doc #JWST-PRES-043631 # Values here are taken from Rev C of that document. They are given in units of NIRCam SW pixels per micro-unit of SM pose. # We include just the first order terms, neglecting the small higher order terms sm_xtilt = header.get('SMXTILT', 0) sm_ytilt = header.get('SMYTILT', 0) sm_xtrans = header.get('SMXTRANS', 0) sm_ytrans = header.get('SMYTRANS', 0) nrc_pixelscale = 0.0311 # arcsec/pixel x_boresight_offset = ( 1.27777*sm_ytilt - 0.71732*sm_xtrans) * nrc_pixelscale y_boresight_offset = (-1.27363*sm_xtilt - 0.71571*sm_ytrans) * nrc_pixelscale x_arcsec += x_boresight_offset y_arcsec += y_boresight_offset # Optionally, for more recent versions of webbpsf, the FITS header may simply contain the # Hexike tilt coefficient that we want to use. If so, use that instead of all of the above! # This method is superior, because it more correctly (and more simply) book-keeps the cross terms # between different OTE pose terms into optical tip and tilt. In particular, this is needed for # accurate modeling of radial translation corrections when using incoherent PSF calculations. if f'S{segment_number:02d}XTILT' in header: hexike_to_arcsec = 206265/webbpsf.constants.JWST_SEGMENT_RADIUS # recall that Hexike tilt _around the X axis_ produces an offset _into Y_, and vice versa. x_arcsec = header[f'S{segment_number:02d}YTILT'] * hexike_to_arcsec # also recall coord flip of Y axis from OTE L.O.M in entrance pupil to exit pupil y_arcsec = -header[f'S{segment_number:02d}XTILT'] * hexike_to_arcsec # Optionally, arbitrary boresight offset may also be present in the FITS header metadata. # If so, include that in the PSF too. Be careful about coordinate sign for the V2 axis! try: x_arcsec -= header['BSOFF_V2']*60 # BS offset values in header are in arcminutes y_arcsec += header['BSOFF_V3']*60 # except: pass return x_arcsec, y_arcsec
py
7df726b4f6bb69f049b0850b686bf1942af07cdd
import math import analizer.libs.MathFunctions as mt list_errors_tg = list() def acos(column): i = 0 column = mt.convert_num_col(column) result = list() while i < len(column): if isinstance(column[i], int) or isinstance(column[i], float): valor = "" if column[i] >= -1 and 1 >= column[i]: valor = math.acos(column[i]) else: valor = "Error de dominio" list_errors_tg.append("Error: 22003: la entrada esta fuera del dominio") result.append(valor) else: result.append(column[i]) i += 1 return result def acosd(column): return mt.degrees(acos(column)) def asin(column): i = 0 column = mt.convert_num_col(column) result = list() while i < len(column): if isinstance(column[i], int) or isinstance(column[i], float): valor = "" if column[i] >= -1 and 1 >= column[i]: valor = math.asin(column[i]) else: valor = "Error de dominio" list_errors_tg.append("Error: 22003: la entrada esta fuera del dominio") result.append(valor) else: result.append(column[i]) i += 1 return result def asind(column): return mt.degrees(asin(column)) def atan(column): i = 0 column = mt.convert_num_col(column) result = list() while i < len(column): if isinstance(column[i], int) or isinstance(column[i], float): result.append(math.atan(column[i])) else: result.append(column[i]) i += 1 return result def atand(column): return mt.degrees(atan(column)) def atan2(column1, column2): i = 0 column1 = mt.convert_num_col(column1) column2 = mt.convert_num_col(column2) result = list() while i < len(column1): if (isinstance(column1[i], int) or isinstance(column1[i], float)) and ( isinstance(column2[i], int) or isinstance(column2[i], float) ): result.append(math.atan2(column1[i], column2[i])) else: result.append(column1[i]) i += 1 return result def atan2d(column1, column2): return mt.degrees(atan2(column1, column2)) def cos(column): i = 0 column = mt.convert_num_col(column) result = list() while i < len(column): if isinstance(column[i], int) or isinstance(column[i], float): result.append(math.cos(column[i])) else: result.append(column[i]) i += 1 return result def cosd(column): return mt.degrees(cos(column)) def cot(column): i = 0 column = mt.convert_num_col(column) result = list() while i < len(column): if isinstance(column[i], int) or isinstance(column[i], float): if column[i] % math.pi != 0: result.append((math.cos(column[i]) / math.sin(column[i]))) else: result.append("Error de dominio") list_errors_tg.append("Error: 22003: la entrada esta fuera del dominio") else: result.append(column[i]) i += 1 return result def cotd(column): return mt.degrees(cot(column)) def sin(column): i = 0 column = mt.convert_num_col(column) result = list() while i < len(column): if isinstance(column[i], int) or isinstance(column[i], float): result.append(math.sin(column[i])) else: result.append(column[i]) i += 1 return result def sind(column): return mt.degrees(sin(column)) def tan(column): i = 0 column = mt.convert_num_col(column) result = list() while i < len(column): if isinstance(column[i], int) or isinstance(column[i], float): if (column[i] - (math.pi / 2)) % (math.pi) != 0: result.append(math.tan(column[i])) else: result.append("Error de dominio") list_errors_tg.append("Error: 22003: la entrada esta fuera del dominio") else: result.append(column[i]) i += 1 return result def tand(column): return mt.degrees(tan(column)) def sinh(column): i = 0 column = mt.convert_num_col(column) result = list() while i < len(column): if isinstance(column[i], int) or isinstance(column[i], float): result.append(math.sinh(column[i])) else: result.append(column[i]) i += 1 return result def cosh(column): i = 0 column = mt.convert_num_col(column) result = list() while i < len(column): if isinstance(column[i], int) or isinstance(column[i], float): result.append(math.cosh(column[i])) else: result.append(column[i]) i += 1 return result def tanh(column): i = 0 column = mt.convert_num_col(column) result = list() while i < len(column): if isinstance(column[i], int) or isinstance(column[i], float): result.append(math.tanh(column[i])) else: result.append(column[i]) i += 1 return result def asinh(column): i = 0 column = mt.convert_num_col(column) result = list() while i < len(column): if isinstance(column[i], int) or isinstance(column[i], float): result.append(math.asinh(column[i])) else: result.append(column[i]) i += 1 return result def acosh(column): i = 0 column = mt.convert_num_col(column) result = list() while i < len(column): if isinstance(column[i], int) or isinstance(column[i], float): if column[i] >= 1: result.append(math.acosh(column[i])) else: result.append("Error de dominio") list_errors_tg.append("Error: 22003: la entrada esta fuera del dominio") else: result.append(column[i]) i += 1 return result def atanh(column): i = 0 column = mt.convert_num_col(column) result = list() while i < len(column): if isinstance(column[i], int) or isinstance(column[i], float): if column[i] < 1 and column[i] > -1: result.append(math.atanh(column[i])) else: result.append("Error de dominio") list_errors_tg.append("Error: 22003: la entrada esta fuera del dominio") else: result.append(column[i]) i += 1 return result
py
7df727cd0ba5eb481a9e2568ffdd063bfce90314
from IPython.core.magic import Magics, line_magic, magics_class # type: ignore from IPython.core.magic_arguments import (argument, magic_arguments, # type: ignore parse_argstring) # type: ignore from .main import find_dotenv, load_dotenv @magics_class class IPythonDotEnv(Magics): @magic_arguments() @argument( '-o', '--override', action='store_true', help="Indicate to override existing variables" ) @argument( '-v', '--verbose', action='store_true', help="Indicate function calls to be verbose" ) @argument('dotenv_path', nargs='?', type=str, default='.env', help='Search in increasingly higher folders for the `dotenv_path`') @line_magic def dotenv(self, line): args = parse_argstring(self.dotenv, line) # Locate the .env file dotenv_path = args.dotenv_path try: dotenv_path = find_dotenv(dotenv_path, True, True) except IOError: print("cannot find .env file") return # Load the .env file load_dotenv(dotenv_path, verbose=args.verbose, override=args.override) def load_ipython_extension(ipython): """Register the %dotenv magic.""" ipython.register_magics(IPythonDotEnv)
py
7df728509c11c705a768febf0c2e33a75e44066b
""" Use lldb Python SBValue.WatchPointee() API to create a watchpoint for write of '*g_char_ptr'. """ from __future__ import print_function import lldb from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * from lldbsuite.test import lldbutil class SetWatchlocationAPITestCase(TestBase): mydir = TestBase.compute_mydir(__file__) NO_DEBUG_INFO_TESTCASE = True def setUp(self): # Call super's setUp(). TestBase.setUp(self) # Our simple source filename. self.source = 'main.cpp' # Find the line number to break inside main(). self.line = line_number( self.source, '// Set break point at this line.') # This is for verifying that watch location works. self.violating_func = "do_bad_thing_with_location" def test_watch_location(self): """Exercise SBValue.WatchPointee() API to set a watchpoint.""" self.build() exe = self.getBuildArtifact("a.out") # Create a target by the debugger. target = self.dbg.CreateTarget(exe) self.assertTrue(target, VALID_TARGET) # Now create a breakpoint on main.c. breakpoint = target.BreakpointCreateByLocation(self.source, self.line) self.assertTrue(breakpoint and breakpoint.GetNumLocations() == 1, VALID_BREAKPOINT) # Now launch the process, and do not stop at the entry point. process = target.LaunchSimple( None, None, self.get_process_working_directory()) # We should be stopped due to the breakpoint. Get frame #0. process = target.GetProcess() self.assertEqual(process.GetState(), lldb.eStateStopped, PROCESS_STOPPED) thread = lldbutil.get_stopped_thread( process, lldb.eStopReasonBreakpoint) frame0 = thread.GetFrameAtIndex(0) value = frame0.FindValue('g_char_ptr', lldb.eValueTypeVariableGlobal) pointee = value.CreateValueFromAddress( "pointee", value.GetValueAsUnsigned(0), value.GetType().GetPointeeType()) # Watch for write to *g_char_ptr. error = lldb.SBError() watchpoint = value.WatchPointee(True, False, True, error) self.assertTrue(value and watchpoint, "Successfully found the pointer and set a watchpoint") self.DebugSBValue(value) self.DebugSBValue(pointee) # Hide stdout if not running with '-t' option. if not self.TraceOn(): self.HideStdout() print(watchpoint) # Continue. Expect the program to stop due to the variable being # written to. process.Continue() if (self.TraceOn()): lldbutil.print_stacktraces(process) thread = lldbutil.get_stopped_thread( process, lldb.eStopReasonWatchpoint) self.assertTrue(thread, "The thread stopped due to watchpoint") self.DebugSBValue(value) self.DebugSBValue(pointee) self.expect( lldbutil.print_stacktrace( thread, string_buffer=True), exe=False, substrs=[ self.violating_func]) # This finishes our test.
py
7df729762df99035f9a9631be48809e2c22a5d1a
import cv2 class Filter(object): '''invert colors''' def __init__(self, params): self.params = params def apply(self, img): return cv2.bitwise_not(img)
py
7df72ae28e80a3c12a8f1a36276d88389c58eecd
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: v1.20.7 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from kubernetes.client.configuration import Configuration class IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'api_version': 'str', 'ca_cert_path': 'str', 'control_plane': 'IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfigurationControlPlane', 'discovery': 'IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfigurationDiscovery', 'kind': 'str', 'node_registration': 'IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecInitConfigurationNodeRegistration' } attribute_map = { 'api_version': 'apiVersion', 'ca_cert_path': 'caCertPath', 'control_plane': 'controlPlane', 'discovery': 'discovery', 'kind': 'kind', 'node_registration': 'nodeRegistration' } def __init__(self, api_version=None, ca_cert_path=None, control_plane=None, discovery=None, kind=None, node_registration=None, local_vars_configuration=None): # noqa: E501 """IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._api_version = None self._ca_cert_path = None self._control_plane = None self._discovery = None self._kind = None self._node_registration = None self.discriminator = None if api_version is not None: self.api_version = api_version if ca_cert_path is not None: self.ca_cert_path = ca_cert_path if control_plane is not None: self.control_plane = control_plane if discovery is not None: self.discovery = discovery if kind is not None: self.kind = kind if node_registration is not None: self.node_registration = node_registration @property def api_version(self): """Gets the api_version of this IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration. # noqa: E501 APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources # noqa: E501 :return: The api_version of this IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration. # noqa: E501 :rtype: str """ return self._api_version @api_version.setter def api_version(self, api_version): """Sets the api_version of this IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration. APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources # noqa: E501 :param api_version: The api_version of this IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration. # noqa: E501 :type: str """ self._api_version = api_version @property def ca_cert_path(self): """Gets the ca_cert_path of this IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration. # noqa: E501 CACertPath is the path to the SSL certificate authority used to secure comunications between node and control-plane. Defaults to \"/etc/kubernetes/pki/ca.crt\". TODO: revisit when there is defaulting from k/k # noqa: E501 :return: The ca_cert_path of this IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration. # noqa: E501 :rtype: str """ return self._ca_cert_path @ca_cert_path.setter def ca_cert_path(self, ca_cert_path): """Sets the ca_cert_path of this IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration. CACertPath is the path to the SSL certificate authority used to secure comunications between node and control-plane. Defaults to \"/etc/kubernetes/pki/ca.crt\". TODO: revisit when there is defaulting from k/k # noqa: E501 :param ca_cert_path: The ca_cert_path of this IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration. # noqa: E501 :type: str """ self._ca_cert_path = ca_cert_path @property def control_plane(self): """Gets the control_plane of this IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration. # noqa: E501 :return: The control_plane of this IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration. # noqa: E501 :rtype: IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfigurationControlPlane """ return self._control_plane @control_plane.setter def control_plane(self, control_plane): """Sets the control_plane of this IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration. :param control_plane: The control_plane of this IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration. # noqa: E501 :type: IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfigurationControlPlane """ self._control_plane = control_plane @property def discovery(self): """Gets the discovery of this IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration. # noqa: E501 :return: The discovery of this IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration. # noqa: E501 :rtype: IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfigurationDiscovery """ return self._discovery @discovery.setter def discovery(self, discovery): """Sets the discovery of this IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration. :param discovery: The discovery of this IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration. # noqa: E501 :type: IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfigurationDiscovery """ self._discovery = discovery @property def kind(self): """Gets the kind of this IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration. # noqa: E501 Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds # noqa: E501 :return: The kind of this IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration. # noqa: E501 :rtype: str """ return self._kind @kind.setter def kind(self, kind): """Sets the kind of this IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration. Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds # noqa: E501 :param kind: The kind of this IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration. # noqa: E501 :type: str """ self._kind = kind @property def node_registration(self): """Gets the node_registration of this IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration. # noqa: E501 :return: The node_registration of this IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration. # noqa: E501 :rtype: IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecInitConfigurationNodeRegistration """ return self._node_registration @node_registration.setter def node_registration(self, node_registration): """Sets the node_registration of this IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration. :param node_registration: The node_registration of this IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration. # noqa: E501 :type: IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecInitConfigurationNodeRegistration """ self._node_registration = node_registration def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, IoXK8sClusterBootstrapV1alpha4KubeadmConfigSpecJoinConfiguration): return True return self.to_dict() != other.to_dict()
py
7df72bab1d9cf1127c46fcec7f83270a88839613
from output.models.ms_data.complex_type.ct_h011_xsd.ct_h011 import ( FooType, MyType, Root, ) __all__ = [ "FooType", "MyType", "Root", ]
py
7df72c460c682961c2394cf861f47a3418b5bd0c
''' Defines general utility functions ''' from models.architectures import ALLOWABLE_TYPES as ALLOWABLE_MODEL_TYPES import os ############################# # Dynamically set variables ############################# class RuntimeDeterminedEnviromentVars( object ): ''' Example use: inputs = { 'num_samples_epoch': 100 } cfg = { 'batch_size': 5, 'epoch_steps': [ '<LOAD_DYNAMIC>', 'steps_per_epoch' ] } for key, value in cfg.items(): if isinstance( value, list ) and len( value ) == 2 and value[0] == 'LOAD_DYNAMIC': RuntimeDeterminedEnviromentVars.register( cfg, key, value[1] ) RuntimeDeterminedEnviromentVars.load_dynamic_variables( inputs, cfg ) RuntimeDeterminedEnviromentVars.populate_registered_variables() print( cfg ) # epoch_steps = 20 ''' registered_variables = [] is_loaded = False # These are initialized in load_dynamic_variables steps_per_epoch = '' # An int that condains the number of steps the network will take per epoch @classmethod def load_dynamic_variables( cls, inputs, cfg ): ''' Args: inputs: a dict from train.py cfg: a dict from a config.py ''' cls.steps_per_epoch = inputs[ 'num_samples_epoch' ] // cfg[ 'batch_size' ] cls.is_loaded = True @classmethod def register( cls, dict_containing_field_to_populate, field_name, attr_name ): cls.registered_variables.append( [dict_containing_field_to_populate, field_name, attr_name] ) @classmethod def register_dict( cls, dict_to_register ): ''' Registers any fields in the dict that should be dynamically loaded. Such fields should have value: [ '<LOAD_DYNAMIC>', attr_name ] ''' for key, value in dict_to_register.items(): if isinstance( value, list ) and len( value ) == 2 and value[0] == '<LOAD_DYNAMIC>': cls.register( dict_to_register, key, value[1] ) elif isinstance( value, dict ): cls.register_dict( value ) @classmethod def populate_registered_variables( cls ): for dict_containing_field_to_populate, field_name, attr_name in cls.registered_variables: dict_containing_field_to_populate[field_name] = getattr( cls, attr_name ) print( "\t{0}={1}".format( field_name, getattr( cls, attr_name ) ) ) ########################### # Utility functions ########################### def validate_config( cfg ): ''' Catches many general cfg errors. ''' if cfg[ 'model_type' ] not in ALLOWABLE_MODEL_TYPES: raise ValueError( "'model_type' in config.py must be one of {0}".format( ALLOWABLE_MODEL_TYPES )) if cfg[ 'model_type' ] is not 'empty' and 'optimizer' not in cfg: raise ValueError( "an 'optimizer' must be specified".format( ALLOWABLE_MODEL_TYPES )) if 'optimizer' in cfg and 'optimizer_kwargs' not in cfg: raise ValueError( "The arguments for the optimizer {0} must be given, named, in 'optimizer_kwargs'".format( cfg[ 'optimizer' ] )) def load_config( cfg_dir, nopause=False ): ''' Raises: FileNotFoundError if 'config.py' doesn't exist in cfg_dir ''' if not os.path.isfile( os.path.join( cfg_dir, 'config.py' ) ): raise ImportError( 'config.py not found in {0}'.format( cfg_dir ) ) import sys try: del sys.modules[ 'config' ] except: pass sys.path.insert( 0, cfg_dir ) import config as loading_config # cleanup # print([ v for v in sys.modules if "config" in v]) # return cfg = loading_config.get_cfg( nopause ) try: del sys.modules[ 'config' ] except: pass sys.path.remove(cfg_dir) return cfg def update_keys(old_dict, key_starts_with, new_dict): for k, v in new_dict.items(): if k.startswith(key_starts_with): old_dict[k] = v return old_dict
py
7df72d45b423697ee559f8caec84002751226ef7
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Training-related part of the Keras engine. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import weakref import numpy as np import six from tensorflow.python.data.ops import dataset_ops from tensorflow.python.data.ops import iterator_ops from tensorflow.python.data.ops.dataset_ops import Dataset from tensorflow.python.eager import context from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_util from tensorflow.python.keras import backend as K from tensorflow.python.keras import losses from tensorflow.python.keras import metrics as metrics_module from tensorflow.python.keras import optimizers from tensorflow.python.keras.engine import base_layer from tensorflow.python.keras.engine import distributed_training_utils from tensorflow.python.keras.engine import training_arrays from tensorflow.python.keras.engine import training_distributed from tensorflow.python.keras.engine import training_eager from tensorflow.python.keras.engine import training_generator from tensorflow.python.keras.engine import training_utils from tensorflow.python.keras.engine.network import Network from tensorflow.python.keras.utils import data_utils from tensorflow.python.keras.utils.generic_utils import slice_arrays from tensorflow.python.ops import math_ops from tensorflow.python.ops import weights_broadcast_ops from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training import optimizer as tf_optimizer_module from tensorflow.python.training.checkpointable import base as checkpointable from tensorflow.python.util import nest from tensorflow.python.util.tf_export import tf_export @tf_export('keras.models.Model', 'keras.Model') class Model(Network): """`Model` groups layers into an object with training and inference features. There are two ways to instantiate a `Model`: 1 - With the "functional API", where you start from `Input`, you chain layer calls to specify the model's forward pass, and finally you create your model from inputs and outputs: ```python import tensorflow as tf inputs = tf.keras.Input(shape=(3,)) x = tf.keras.layers.Dense(4, activation=tf.nn.relu)(inputs) outputs = tf.keras.layers.Dense(5, activation=tf.nn.softmax)(x) model = tf.keras.Model(inputs=inputs, outputs=outputs) ``` 2 - By subclassing the `Model` class: in that case, you should define your layers in `__init__` and you should implement the model's forward pass in `call`. ```python import tensorflow as tf class MyModel(tf.keras.Model): def __init__(self): super(MyModel, self).__init__() self.dense1 = tf.keras.layers.Dense(4, activation=tf.nn.relu) self.dense2 = tf.keras.layers.Dense(5, activation=tf.nn.softmax) def call(self, inputs): x = self.dense1(inputs) return self.dense2(x) model = MyModel() ``` If you subclass `Model`, you can optionally have a `training` argument (boolean) in `call`, which you can use to specify a different behavior in training and inference: ```python import tensorflow as tf class MyModel(tf.keras.Model): def __init__(self): super(MyModel, self).__init__() self.dense1 = tf.keras.layers.Dense(4, activation=tf.nn.relu) self.dense2 = tf.keras.layers.Dense(5, activation=tf.nn.softmax) self.dropout = tf.keras.layers.Dropout(0.5) def call(self, inputs, training=False): x = self.dense1(inputs) if training: x = self.dropout(x, training=training) return self.dense2(x) model = MyModel() ``` """ def __init__(self, *args, **kwargs): super(Model, self).__init__(*args, **kwargs) # Create a cache for iterator get_next op. self._iterator_get_next = weakref.WeakKeyDictionary() # Create a cache for dataset - uninitialized iterators self._dataset_iterator_cache = weakref.WeakKeyDictionary() # initializing _distribution_strategy here since it is possible to call # predict on a model without compiling it. self._distribution_strategy = None def _set_sample_weight_attributes(self, sample_weight_mode, skip_target_weighing_indices): """Sets sample weight related attributes on the model.""" sample_weights, sample_weight_modes = training_utils.prepare_sample_weights( self.output_names, sample_weight_mode, skip_target_weighing_indices) self.sample_weights = sample_weights self.sample_weight_modes = sample_weight_modes self._feed_sample_weight_modes = [ sample_weight_modes[i] for i in range(len(self.outputs)) if i not in skip_target_weighing_indices ] self._feed_sample_weights = [ sample_weights[i] for i in range(len(sample_weights)) if i not in skip_target_weighing_indices ] def _cache_output_metric_attributes(self, metrics, weighted_metrics): """Caches metric name and function attributes for every model output.""" output_shapes = [ None if output is None else output.get_shape().as_list() for output in self.outputs ] self._per_output_metrics = training_utils.collect_per_output_metric_info( metrics, self.output_names, output_shapes, self.loss_functions) self._per_output_weighted_metrics = \ training_utils.collect_per_output_metric_info( weighted_metrics, self.output_names, output_shapes, self.loss_functions, self.sample_weights) def _add_unique_metric_name(self, metric_name, output_index): """Makes the metric name unique and adds it to the model's metric name list. If there are multiple outputs for which the metrics are calculated, the metric names have to be made unique by appending an integer. Arguments: metric_name: Metric name that corresponds to the metric specified by the user. For example: 'acc'. output_index: The index of the model output for which the metric name is being added. Returns: string, name of the model's unique metric name """ if len(self.output_names) > 1: metric_name = '%s_%s' % (self.output_names[output_index], metric_name) j = 1 base_metric_name = metric_name while metric_name in self.metrics_names: metric_name = '%s_%d' % (base_metric_name, j) j += 1 return metric_name def _init_metric_attributes(self): """Initialized model metric attributes.""" self.metrics_names = ['loss'] self.metrics_tensors = [] self.metrics_updates = [] self.stateful_metric_names = [] self.stateful_metric_functions = [] def _set_per_output_metric_attributes(self, metrics_dict, output_index): """Sets the metric attributes on the model for the given output. Arguments: metrics_dict: A dict with metric names as keys and metric fns as values. output_index: The index of the model output for which the metric attributes are added. """ for metric_name, metric_fn in metrics_dict.items(): metric_name = self._add_unique_metric_name(metric_name, output_index) # Keep track of metric name. self.metrics_names.append(metric_name) # Keep track of stateful metric attributes (name and metric function). if isinstance(metric_fn, base_layer.Layer) and metric_fn.stateful: self.stateful_metric_names.append(metric_name) self.stateful_metric_functions.append(metric_fn) def _set_metric_attributes(self, outputs, skip_target_indices=None): """Sets the metric attributes on the model for all the model outputs.""" skip_target_indices = skip_target_indices or [] for i in range(len(outputs)): if i in skip_target_indices: continue self._set_per_output_metric_attributes(self._per_output_metrics[i], i) self._set_per_output_metric_attributes( self._per_output_weighted_metrics[i], i) def _handle_per_output_metrics(self, metrics_dict, y_true, y_pred, mask, weights=None): """Calls metric functions for a single output. Arguments: metrics_dict: A dict with metric names as keys and metric fns as values. y_true: Target output. y_pred: Predicted output. mask: Computed mask value for the current output. weights: Weights to be applied on the current output. Returns: A list of metric result tensors. """ metric_results = [] for metric_name, metric_fn in metrics_dict.items(): with K.name_scope(metric_name): if isinstance(metric_fn, metrics_module.Metric): # Call the stateful metric function. if mask is not None: mask = math_ops.cast(mask, y_pred.dtype) # Update weights with mask. if weights is None: weights = mask else: # Update shape of weights if possible before adding mask. # Update dimensions of weights to match with mask if possible. mask, _, weights = metrics_module.squeeze_or_expand_dimensions( mask, None, weights) try: # Broadcast weights if possible. weights = weights_broadcast_ops.broadcast_weights(weights, mask) except ValueError: pass # TODO(psv): Handle case when mask and weight shapes are not # compatible. weights *= mask metric_result = metric_fn(y_true, y_pred, weights) else: # Call the stateless metric function. weighted_metric_fn = training_utils.weighted_masked_objective( metric_fn) metric_result = weighted_metric_fn( y_true, y_pred, weights=weights, mask=mask) if not context.executing_eagerly(): # Keep track of metric result tensor. self.metrics_tensors.append(metric_result) metric_results.append(metric_result) is_stateful = isinstance(metric_fn, base_layer.Layer) and metric_fn.stateful if is_stateful and not context.executing_eagerly(): # Keep track of updates created by stateful metrics. self.metrics_updates += metric_fn.updates return metric_results def _handle_metrics(self, outputs, skip_target_indices=None, targets=None, sample_weights=None, masks=None): """Handles calling metric functions. Arguments: outputs: List of outputs (predictions). skip_target_indices: Optional. List of target ids to skip. targets: List of targets. sample_weights: Optional list of sample weight arrays. masks: List of computed output mask values. Returns: A list of metric result tensors. """ skip_target_indices = skip_target_indices or [] metric_results = [] with K.name_scope('metrics'): for i in range(len(outputs)): if i in skip_target_indices: continue output = outputs[i] if outputs else None target = targets[i] if targets else None output_mask = masks[i] if masks else None metric_results.extend( self._handle_per_output_metrics(self._per_output_metrics[i], target, output, output_mask)) metric_results.extend( self._handle_per_output_metrics( self._per_output_weighted_metrics[i], target, output, output_mask, weights=sample_weights[i])) return metric_results @checkpointable.no_automatic_dependency_tracking def compile(self, optimizer, loss=None, metrics=None, loss_weights=None, sample_weight_mode=None, weighted_metrics=None, target_tensors=None, distribute=None, **kwargs): """Configures the model for training. Arguments: optimizer: String (name of optimizer) or optimizer instance. See [optimizers](/api_docs/python/tf/keras/optimizers). loss: String (name of objective function) or objective function. See [losses](/api_docs/python/tf/losses). If the model has multiple outputs, you can use a different loss on each output by passing a dictionary or a list of losses. The loss value that will be minimized by the model will then be the sum of all individual losses. metrics: List of metrics to be evaluated by the model during training and testing. Typically you will use `metrics=['accuracy']`. To specify different metrics for different outputs of a multi-output model, you could also pass a dictionary, such as `metrics={'output_a': 'accuracy'}`. loss_weights: Optional list or dictionary specifying scalar coefficients (Python floats) to weight the loss contributions of different model outputs. The loss value that will be minimized by the model will then be the *weighted sum* of all individual losses, weighted by the `loss_weights` coefficients. If a list, it is expected to have a 1:1 mapping to the model's outputs. If a tensor, it is expected to map output names (strings) to scalar coefficients. sample_weight_mode: If you need to do timestep-wise sample weighting (2D weights), set this to `"temporal"`. `None` defaults to sample-wise weights (1D). If the model has multiple outputs, you can use a different `sample_weight_mode` on each output by passing a dictionary or a list of modes. weighted_metrics: List of metrics to be evaluated and weighted by sample_weight or class_weight during training and testing. target_tensors: By default, Keras will create placeholders for the model's target, which will be fed with the target data during training. If instead you would like to use your own target tensors (in turn, Keras will not expect external Numpy data for these targets at training time), you can specify them via the `target_tensors` argument. It can be a single tensor (for a single-output model), a list of tensors, or a dict mapping output names to target tensors. distribute: The DistributionStrategy instance that we want to use to distribute the training of the model. **kwargs: These arguments are passed to `tf.Session.run`. Raises: ValueError: In case of invalid arguments for `optimizer`, `loss`, `metrics` or `sample_weight_mode`. """ # Validate that arguments passed by the user to `compile` are supported by # DistributionStrategy. if distribute and not isinstance( optimizer, (tf_optimizer_module.Optimizer, optimizers.TFOptimizer)): raise NotImplementedError('Only TF native optimizers are supported with ' 'DistributionStrategy.') if distribute and context.executing_eagerly(): raise NotImplementedError('DistributionStrategy is not supported in ' 'Eager mode.') if distribute and sample_weight_mode: raise NotImplementedError('sample_weight_mode is not supported with ' 'DistributionStrategy.') if distribute and weighted_metrics: raise NotImplementedError('weighted_metrics is not supported with ' 'DistributionStrategy.') if distribute and target_tensors: raise ValueError('target_tensors is not supported with ' 'DistributionStrategy.') loss = loss or {} if context.executing_eagerly() and not isinstance( optimizer, (tf_optimizer_module.Optimizer, optimizers.TFOptimizer)): raise ValueError('Only TF native optimizers are supported in Eager mode.') self.optimizer = optimizers.get(optimizer) # We've disabled automatic dependency tracking for this method, but do want # to add a checkpoint dependency on the optimizer if it's checkpointable. if isinstance(self.optimizer, checkpointable.CheckpointableBase): self._track_checkpointable( self.optimizer, name='optimizer', overwrite=True) self.loss = loss self.metrics = metrics or [] self.loss_weights = loss_weights self.sample_weight_mode = sample_weight_mode self.weighted_metrics = weighted_metrics if context.executing_eagerly() and target_tensors is not None: raise ValueError('target_tensors is not supported in Eager mode.') self.target_tensors = target_tensors # Set DistributionStrategy specific parameters. self._distribution_strategy = distribute # Reset the value of grouped_model self._grouped_model = None if self._distribution_strategy is not None: distributed_training_utils.configure_and_create_session( self._distribution_strategy) if not self.built: # Model is not compilable because it does not know its number of inputs # and outputs, nor their shapes and names. We will compile after the first # time the model gets called on training data. return self._is_compiled = True # Prepare loss functions. if isinstance(loss, dict): for name in loss: if name not in self.output_names: raise ValueError( 'Unknown entry in loss ' 'dictionary: "' + name + '". ' 'Only expected the following keys: ' + str(self.output_names)) loss_functions = [] for name in self.output_names: if name not in loss: logging.warning( 'Output "' + name + '" missing from loss dictionary. We assume ' 'this was done on purpose. The fit and evaluate APIs will not be ' 'expecting any data to be passed to "' + name + '".') loss_functions.append(losses.get(loss.get(name))) elif isinstance(loss, list): if len(loss) != len(self.outputs): raise ValueError('When passing a list as loss, ' 'it should have one entry per model outputs. ' 'The model has ' + str(len(self.outputs)) + ' outputs, but you passed loss=' + str(loss)) loss_functions = [losses.get(l) for l in loss] else: loss_function = losses.get(loss) loss_functions = [loss_function for _ in range(len(self.outputs))] self.loss_functions = loss_functions weighted_losses = [training_utils.weighted_masked_objective(fn) for fn in loss_functions] skip_target_indices = [] skip_target_weighing_indices = [] self._feed_outputs = [] self._feed_output_names = [] self._feed_output_shapes = [] self._feed_loss_fns = [] for i in range(len(weighted_losses)): if weighted_losses[i] is None: skip_target_indices.append(i) skip_target_weighing_indices.append(i) # Prepare output masks. if not context.executing_eagerly(): masks = [getattr(x, '_keras_mask', None) for x in self.outputs] if not isinstance(masks, list): masks = [masks] # Prepare loss weights. if loss_weights is None: loss_weights_list = [1. for _ in range(len(self.outputs))] elif isinstance(loss_weights, dict): for name in loss_weights: if name not in self.output_names: raise ValueError( 'Unknown entry in loss_weights ' 'dictionary: "' + name + '". ' 'Only expected the following keys: ' + str(self.output_names)) loss_weights_list = [] for name in self.output_names: loss_weights_list.append(loss_weights.get(name, 1.)) elif isinstance(loss_weights, list): if len(loss_weights) != len(self.outputs): raise ValueError( 'When passing a list as loss_weights, ' 'it should have one entry per model output. ' 'The model has ' + str(len(self.outputs)) + ' outputs, but you passed loss_weights=' + str(loss_weights)) loss_weights_list = loss_weights else: raise TypeError('Could not interpret loss_weights argument: ' + str(loss_weights) + ' - expected a list of dicts.') self.loss_weights_list = loss_weights_list # Initialize model metric attributes. self._init_metric_attributes() # Initialization for Eager mode execution. if context.executing_eagerly(): # Prepare sample weights. self._set_sample_weight_attributes(sample_weight_mode, skip_target_weighing_indices) # Save all metric attributes per output of the model. self._cache_output_metric_attributes(metrics, weighted_metrics) if target_tensors is not None: raise ValueError('target_tensors are not currently supported in Eager ' 'mode.') self.total_loss = None for i in range(len(self.outputs)): if len(self.outputs) > 1: self.metrics_names.append(self.output_names[i] + '_loss') # Set metric attributes on model. self._set_metric_attributes( self.outputs, skip_target_indices=skip_target_indices, ) self.targets = [] for i in range(len(self.outputs)): self._feed_output_names.append(self.output_names[i]) self._collected_trainable_weights = self.trainable_weights return # Prepare targets of model. self.targets = [] self._feed_targets = [] if target_tensors not in (None, []): if isinstance(target_tensors, list): if len(target_tensors) != len(self.outputs): raise ValueError( 'When passing a list as `target_tensors`, ' 'it should have one entry per model output. ' 'The model has ' + str(len(self.outputs)) + ' outputs, but you passed target_tensors=' + str(target_tensors)) elif isinstance(target_tensors, dict): for name in target_tensors: if name not in self.output_names: raise ValueError( 'Unknown entry in `target_tensors` ' 'dictionary: "' + name + '". ' 'Only expected the following keys: ' + str(self.output_names)) tmp_target_tensors = [] for name in self.output_names: tmp_target_tensors.append(target_tensors.get(name, None)) target_tensors = tmp_target_tensors else: raise TypeError('Expected `target_tensors` to be ' 'a list or dict, but got:', target_tensors) for i in range(len(self.outputs)): if i in skip_target_indices: self.targets.append(None) else: shape = K.int_shape(self.outputs[i]) name = self.output_names[i] if target_tensors not in (None, []): target = target_tensors[i] else: target = None if target is None or K.is_placeholder(target): if target is None: target = K.placeholder( ndim=len(shape), name=name + '_target', sparse=K.is_sparse(self.outputs[i]), dtype=K.dtype(self.outputs[i])) self._feed_targets.append(target) self._feed_outputs.append(self.outputs[i]) self._feed_output_names.append(name) self._feed_output_shapes.append(shape) self._feed_loss_fns.append(self.loss_functions[i]) else: skip_target_weighing_indices.append(i) self.targets.append(target) # Prepare sample weights. self._set_sample_weight_attributes(sample_weight_mode, skip_target_weighing_indices) # Save all metric attributes per output of the model. self._cache_output_metric_attributes(metrics, weighted_metrics) # Compute total loss. total_loss = None with K.name_scope('loss'): for i in range(len(self.outputs)): if i in skip_target_indices: continue y_true = self.targets[i] y_pred = self.outputs[i] weighted_loss = weighted_losses[i] sample_weight = self.sample_weights[i] mask = masks[i] loss_weight = loss_weights_list[i] with K.name_scope(self.output_names[i] + '_loss'): output_loss = weighted_loss(y_true, y_pred, sample_weight, mask) if len(self.outputs) > 1: self.metrics_tensors.append(output_loss) self.metrics_names.append(self.output_names[i] + '_loss') if total_loss is None: total_loss = loss_weight * output_loss else: total_loss += loss_weight * output_loss if total_loss is None: if not self.losses: raise ValueError('The model cannot be compiled ' 'because it has no loss to optimize.') else: total_loss = 0. # Add regularization penalties # and other layer-specific losses. for loss_tensor in self.losses: total_loss += loss_tensor # Set metric attributes on model. self._set_metric_attributes( self.outputs, skip_target_indices=skip_target_indices, ) # Invoke metric functions for all the outputs. self._handle_metrics( self.outputs, masks=masks, targets=self.targets, skip_target_indices=skip_target_indices, sample_weights=self.sample_weights) # If using distribution strategy and stateful_metrics, raise an error # since we currently don't support stateful metrics. if self._distribution_strategy is not None and self.stateful_metric_names: raise NotImplementedError('Stateful metrics are not supported with ' 'DistributionStrategy.') # Prepare gradient updates and state updates. self.total_loss = total_loss # Functions for train, test and predict will # be compiled lazily when required. # This saves time when the user is not using all functions. self._function_kwargs = kwargs self.train_function = None self.test_function = None self.predict_function = None # Collected trainable weights, sorted in topological order. trainable_weights = self.trainable_weights self._collected_trainable_weights = trainable_weights def _check_trainable_weights_consistency(self): """Check trainable weights count consistency. This will raise a warning if `trainable_weights` and `_collected_trainable_weights` are inconsistent (i.e. have different number of parameters). Inconsistency will typically arise when one modifies `model.trainable` without calling `model.compile` again. """ if not hasattr(self, '_collected_trainable_weights'): return if len(self.trainable_weights) != len(self._collected_trainable_weights): logging.warning( UserWarning( 'Discrepancy between trainable weights and collected trainable' ' weights, did you set `model.trainable` without calling' ' `model.compile` after ?')) def _make_train_function(self): if not hasattr(self, 'train_function'): raise RuntimeError('You must compile your model before using it.') self._check_trainable_weights_consistency() if self.train_function is None: inputs = (self._feed_inputs + self._feed_targets + self._feed_sample_weights) if self.uses_learning_phase and not isinstance(K.learning_phase(), int): inputs += [K.learning_phase()] with K.name_scope('training'): with K.name_scope(self.optimizer.__class__.__name__): # Training updates updates = self.optimizer.get_updates( params=self._collected_trainable_weights, loss=self.total_loss) # Unconditional updates updates += self.get_updates_for(None) # Conditional updates relevant to this model updates += self.get_updates_for(self.inputs) # Stateful metrics updates updates += self.metrics_updates # Gets loss and metrics. Updates weights at each call. self.train_function = K.function( inputs, [self.total_loss] + self.metrics_tensors, updates=updates, name='train_function', **self._function_kwargs) def _make_test_function(self): if not hasattr(self, 'test_function'): raise RuntimeError('You must compile your model before using it.') if self.test_function is None: inputs = (self._feed_inputs + self._feed_targets + self._feed_sample_weights) if self.uses_learning_phase and not isinstance(K.learning_phase(), int): inputs += [K.learning_phase()] # Return loss and metrics, no gradient updates. # Does update the network states. self.test_function = K.function( inputs, [self.total_loss] + self.metrics_tensors, updates=self.state_updates + self.metrics_updates, name='test_function', **self._function_kwargs) def _make_predict_function(self): if not hasattr(self, 'predict_function'): self.predict_function = None if self.predict_function is None: if self.uses_learning_phase and not isinstance(K.learning_phase(), int): inputs = self._feed_inputs + [K.learning_phase()] else: inputs = self._feed_inputs # Gets network outputs. Does not update weights. # Does update the network states. kwargs = getattr(self, '_function_kwargs', {}) self.predict_function = K.function( inputs, self.outputs, updates=self.state_updates, name='predict_function', **kwargs) def _get_iterator_get_next_tensors(self, iterator): get_next_op = self._iterator_get_next.get(iterator, None) if get_next_op is None: get_next_op = iterator.get_next() self._iterator_get_next[iterator] = get_next_op return get_next_op def _distribution_standardize_user_data(self, x, y=None, sample_weight=None, class_weight=None, batch_size=None, check_steps=False, steps_name='steps', steps=None, validation_split=0): """Runs validation checks on input and target data passed by the user. This is called when using DistributionStrategy to train, evaluate or serve the model. Args: x: Input data. A numpy array or `tf.data` dataset. y: Target data. A numpy array or None if x is a `tf.data` dataset. sample_weight: An optional sample-weight array passed by the user to weight the importance of each sample in `x`. class_weight: An optional class-weight array by the user to weight the importance of samples in `x` based on the class they belong to, as conveyed by `y`. batch_size: Integer batch size. If provided, it is used to run additional validation checks on stateful models. check_steps: boolean, True if we want to check for validity of `steps` and False, otherwise. steps_name: The public API's parameter name for `steps`. steps: Integer or `None`. Total number of steps (batches of samples) to execute. validation_split: Float between 0 and 1. Fraction of the training data to be used as validation data. Returns: Iterator for reading the dataset `x`. Raises: ValueError: In case of invalid user-provided data. RuntimeError: If the model was never compiled. """ if sample_weight is not None and sample_weight.all(): raise NotImplementedError('`sample_weight` is currently not supported ' 'when using DistributionStrategy.') if class_weight: raise NotImplementedError('`class_weight` is currently not supported ' 'when using DistributionStrategy.') # Validates `steps` argument right at the beginning since we use it to # construct the dataset object. # TODO(anjalisridhar): This may not be a valid error since we now accept # numpy array inputs. We still want to assert that we have a populated steps # parameter. if check_steps: if steps is None: raise ValueError('When using DistributionStrategy, ' 'you should specify the `{steps_name}` argument.' .format(steps_name=steps_name)) first_x_value = nest.flatten(x)[0] if isinstance(first_x_value, np.ndarray): x_shape = first_x_value.shape x_dtype = first_x_value.dtype if batch_size is None: batch_size = x_shape[0] // steps if y is not None: first_y_value = nest.flatten(y)[0] x = Dataset.from_generator(lambda x=x, y=y: six.moves.zip(x, y), output_types=(x_dtype, first_y_value.dtype), output_shapes=(x_shape[1:], first_y_value.shape[1:])) # TODO(anjalisridhar): What should the buffer size be? x = x.shuffle(10000) x = x.repeat() x = x.batch(batch_size) y = None else: # This case is for the predict call where the dataset only contains # inputs and no targets i.e it does not return a tuple. # TODO(anjalisridhar): Raise an error if we are not able to process # all the predict samples. This can happen if the number of batches is # not evenly divisible by the number of worker devices. x = Dataset.from_generator(lambda x=x: x, output_types=x_dtype, output_shapes=x_shape[1:]) x = x.repeat() x = x.batch(batch_size) # TODO(anjalisridhar): Can we use the iterator and getnext op cache? # We require users to pass Datasets since we distribute the dataset across # multiple devices. assert isinstance(x, dataset_ops.Dataset) # TODO(anjalisridhar): We want distribute_dataset() to accept a Dataset or a # function which returns a Dataset. Currently distribute_dataset() only # accepts a function that returns a Dataset. Once we add support for being # able to clone a Dataset on multiple workers we can remove this lambda. result = self._distribution_strategy.distribute_dataset(lambda: x) iterator = result.make_initializable_iterator() K.get_session().run(iterator.initializer) training_utils.validate_iterator_input(x, y, sample_weight, validation_split) return iterator def _standardize_user_data(self, x, y=None, sample_weight=None, class_weight=None, batch_size=None, check_steps=False, steps_name='steps', steps=None, validation_split=0): """Runs validation checks on input and target data passed by the user. Also standardizes the data to lists of arrays, in order. Also builds and compiles the model on the fly if it is a subclassed model that has never been called before (and thus has no inputs/outputs). This is a purely internal method, subject to refactoring at any time. Args: x: Input data. It could be: - A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs). - A TensorFlow tensor, or a list of tensors (in case the model has multiple inputs). - A dict mapping input names to the corresponding array/tensors, if the model has named inputs. - A `tf.data` dataset or a dataset iterator. y: Target data. Like the input data `x`, it could be either Numpy array(s) or TensorFlow tensor(s). It should be consistent with `x` (you cannot have Numpy inputs and tensor targets, or inversely). If `x` is a dataset or a dataset iterator, `y` should not be specified (since targets will be obtained from the iterator). sample_weight: An optional sample-weight array passed by the user to weight the importance of each sample in `x`. class_weight: An optional class-weight array by the user to weight the importance of samples in `x` based on the class they belong to, as conveyed by `y`. batch_size: Integer batch size. If provided, it is used to run additional validation checks on stateful models. check_steps: boolean, True if we want to check for validity of `steps` and False, otherwise. For example, when we are standardizing one batch of data for train_on_batch/predict_on_batch/test_on_batch APIs, `steps` value is not required and we should not check for its validity in these cases. steps_name: The public API's parameter name for `steps`. steps: Integer or `None`. Total number of steps (batches of samples) to execute. validation_split: Float between 0 and 1. Fraction of the training data to be used as validation data. Returns: A tuple of 3: inputs (arrays or dicts, depending on whether `x` was a dict or not), target arrays, sample-weight arrays. If the model's input and targets are symbolic, these lists are empty (since the model takes no user-provided data, instead the data comes from the symbolic inputs/targets). Raises: ValueError: In case of invalid user-provided data. RuntimeError: If the model was never compiled. """ if self._distribution_strategy: iterator = self._distribution_standardize_user_data( x, y, sample_weight=sample_weight, class_weight=class_weight, batch_size=batch_size, check_steps=check_steps, steps_name=steps_name, steps=steps, validation_split=validation_split) return iterator, None, None if isinstance(x, dataset_ops.Dataset): if context.executing_eagerly(): x = x.make_one_shot_iterator() else: if x in self._dataset_iterator_cache: x = self._dataset_iterator_cache[x] else: iterator = x.make_initializable_iterator() self._dataset_iterator_cache[x] = iterator x = iterator K.get_session().run(x.initializer) # Validates `steps` argument based on x's type. if check_steps: training_utils.check_steps_argument(x, steps, steps_name) is_x_eager_iterator = isinstance(x, iterator_ops.EagerIterator) is_x_iterator = isinstance(x, iterator_ops.Iterator) # Validate user inputs when data is given as a dataset or dataset iterator. if is_x_iterator or is_x_eager_iterator: training_utils.validate_iterator_input(x, y, sample_weight, validation_split) # For eager iterators, when we have to process multiple batches of samples, # we will standardize the data when we actually loop over iterator and get # the batches. For now, we just return the iterator as is. if is_x_eager_iterator and steps is not None: return x, y, sample_weight # If input data is a dataset iterator in graph mode or if it is an eager # iterator and only one batch of samples is required, we fetch the data # tensors from the iterator and then standardize them. if is_x_iterator or is_x_eager_iterator: try: if is_x_iterator: next_element = self._get_iterator_get_next_tensors(x) else: next_element = x.get_next() except errors.OutOfRangeError: raise RuntimeError('Your dataset iterator ran out of data; ' 'Make sure that your dataset can generate ' 'required number of samples.') if (not isinstance(next_element, (list, tuple)) or len(next_element) not in [2, 3]): raise ValueError( 'Please provide model inputs as a list or tuple of 2 or 3' 'elements: (input, target) or (input, target, sample_weights)' 'Received %s' % next_element) if len(next_element) == 2: x, y = next_element else: x, y, sample_weight = next_element x, y, sample_weights = self._standardize_weights(x, y, sample_weight, class_weight, batch_size) return x, y, sample_weights def _standardize_weights(self, x, y, sample_weight=None, class_weight=None, batch_size=None,): # TODO(sourabhbajaj): Split input validation from weight standardization. if sample_weight is not None and class_weight is not None: logging.warning( 'Received both a `sample_weight` and `class_weight` argument. ' 'The `class_weight` argument will be ignored.') # First, we build/compile the model on the fly if necessary. all_inputs = [] is_build_called = False is_compile_called = False dict_inputs = False if not self.inputs: # We need to use `x` to set the model inputs. # We type-check that `x` and `y` are either single arrays # or lists of arrays. if isinstance(x, (list, tuple)): if not all(isinstance(v, np.ndarray) or tensor_util.is_tensor(v) for v in x): raise ValueError('Please provide as model inputs either a single ' 'array or a list of arrays. You passed: x=' + str(x)) all_inputs += list(x) elif isinstance(x, dict): dict_inputs = True keys = sorted(x.keys()) all_inputs = [x[k] for k in keys] else: if not isinstance(x, np.ndarray) and not tensor_util.is_tensor(x): raise ValueError('Please provide as model inputs either a single ' 'array or a list of arrays. You passed: x=' + str(x)) all_inputs.append(x) # Build the model using the retrieved inputs (value or symbolic). # If values, then in symbolic-mode placeholders will be created # to match the value shapes. if not self.inputs: is_build_called = True self._set_inputs(x) else: dict_inputs = isinstance(self.inputs, dict) if y is not None: if not self.optimizer: raise RuntimeError('You must compile a model before ' 'training/testing. ' 'Use `model.compile(optimizer, loss)`.') if not self._is_compiled: # On-the-fly compilation of the model. # We need to use `y` to set the model targets. if isinstance(y, (list, tuple)): if not all(isinstance(v, np.ndarray) or tensor_util.is_tensor(v) for v in y): raise ValueError('Please provide as model targets either a single ' 'array or a list of arrays. ' 'You passed: y=' + str(y)) all_inputs += list(y) elif isinstance(y, dict): raise ValueError('Please do not pass a dictionary as model targets.') else: if not isinstance(y, np.ndarray) and not tensor_util.is_tensor(y): raise ValueError('Please provide as model targets either a single ' 'array or a list of arrays. ' 'You passed: y=' + str(y)) all_inputs.append(y) # Typecheck that all inputs are *either* value *or* symbolic. # TODO(fchollet): this check could be removed in Eager mode? if any(tensor_util.is_tensor(v) for v in all_inputs): if not all(tensor_util.is_tensor(v) for v in all_inputs): raise ValueError('Do not pass inputs that mix Numpy arrays and ' 'TensorFlow tensors. ' 'You passed: x=' + str(x) + '; y=' + str(y)) if context.executing_eagerly(): target_tensors = None else: # Handle target tensors if any passed. if not isinstance(y, (list, tuple)): y = [y] target_tensors = [v for v in y if tensor_util.is_tensor(v)] is_compile_called = True self.compile(optimizer=self.optimizer, loss=self.loss, metrics=self.metrics, loss_weights=self.loss_weights, target_tensors=target_tensors) # In graph mode, if we had just set inputs and targets as symbolic tensors # by invoking build and compile on the model respectively, we do not have to # feed anything to the model. Model already has input and target data as # part of the graph. # Note: in this case, `any` and `all` are equivalent since we disallow # mixed symbolic/value inputs. if (not context.executing_eagerly() and is_build_called and is_compile_called and any(tensor_util.is_tensor(v) for v in all_inputs)): return [], [], [] # What follows is input validation and standardization to list format, # in the case where all inputs are value arrays. if context.executing_eagerly(): # In eager mode, do not do shape validation # since the network has no input nodes (placeholders) to be fed. feed_input_names = self.input_names feed_input_shapes = None elif not self._is_graph_network: # Case: symbolic-mode subclassed network. Do not do shape validation. feed_input_names = self._feed_input_names feed_input_shapes = None else: # Case: symbolic-mode graph network. # In this case, we run extensive shape validation checks. feed_input_names = self._feed_input_names feed_input_shapes = self._feed_input_shapes # Standardize the inputs. x = training_utils.standardize_input_data( x, feed_input_names, feed_input_shapes, check_batch_axis=False, # Don't enforce the batch size. exception_prefix='input') if y is not None: if not self._is_graph_network: feed_output_names = self._feed_output_names feed_output_shapes = None # Sample weighting not supported in this case. # TODO(fchollet): consider supporting it. feed_sample_weight_modes = [None for _ in self.outputs] else: feed_output_names = self._feed_output_names feed_sample_weight_modes = self._feed_sample_weight_modes feed_output_shapes = [] for output_shape, loss_fn in zip(self._feed_output_shapes, self._feed_loss_fns): if loss_fn is losses.sparse_categorical_crossentropy: if K.image_data_format() == 'channels_first': feed_output_shapes.append( (output_shape[0], 1) + output_shape[2:]) else: feed_output_shapes.append(output_shape[:-1] + (1,)) elif (not hasattr(loss_fn, '__name__') or getattr(losses, loss_fn.__name__, None) is None): # If `loss_fn` is not a function (e.g. callable class) # or if it not in the `losses` module, then # it is a user-defined loss and we make no assumptions # about it. feed_output_shapes.append(None) else: feed_output_shapes.append(output_shape) # Standardize the outputs. y = training_utils.standardize_input_data( y, feed_output_names, feed_output_shapes, check_batch_axis=False, # Don't enforce the batch size. exception_prefix='target') # Generate sample-wise weight values given the `sample_weight` and # `class_weight` arguments. sample_weights = training_utils.standardize_sample_weights( sample_weight, feed_output_names) class_weights = training_utils.standardize_class_weights( class_weight, feed_output_names) sample_weights = [ training_utils.standardize_weights(ref, sw, cw, mode) for (ref, sw, cw, mode) in zip(y, sample_weights, class_weights, feed_sample_weight_modes) ] # Check that all arrays have the same length. if not self._distribution_strategy: training_utils.check_array_lengths(x, y, sample_weights) if self._is_graph_network and not context.executing_eagerly(): # Additional checks to avoid users mistakenly using improper loss fns. training_utils.check_loss_and_target_compatibility( y, self._feed_loss_fns, feed_output_shapes) else: y = [] sample_weights = [] if self.stateful and batch_size: # Check that for stateful networks, number of samples is a multiple # of the static batch size. if x[0].shape[0] % batch_size != 0: raise ValueError('In a stateful network, ' 'you should only pass inputs with ' 'a number of samples that can be ' 'divided by the batch size. Found: ' + str(x[0].shape[0]) + ' samples') # If dictionary inputs were provided, we return a dictionary as well. if dict_inputs: x = dict(zip(feed_input_names, x)) return x, y, sample_weights @checkpointable.no_automatic_dependency_tracking def _set_inputs(self, inputs, training=None): """Set model's input and output specs based on the input data received. This is to be used for Model subclasses, which do not know at instantiation time what their inputs look like. Args: inputs: Single array, or list of arrays. The arrays could be placeholders, Numpy arrays, or data tensors. - if placeholders: the model is built on top of these placeholders, and we expect Numpy data to be fed for them when calling `fit`/etc. - if Numpy data: we create placeholders matching the shape of the Numpy arrays. We expect Numpy data to be fed for these placeholders when calling `fit`/etc. - if data tensors: the model is built on top of these tensors. We do not expect any Numpy data to be provided when calling `fit`/etc. training: Boolean or None. Only relevant in symbolic mode. Specifies whether to build the model's graph in inference mode (False), training mode (True), or using the Keras learning phase (None). Raises: ValueError: If dict inputs are passed to a Sequential Model where the first layer isn't FeatureLayer. """ call_convention = getattr( self, '_call_convention', base_layer.CallConvention.EXPLICIT_INPUTS_ARGUMENT) if call_convention not in ( base_layer.CallConvention.EXPLICIT_INPUTS_ARGUMENT, base_layer.CallConvention.SINGLE_POSITIONAL_ARGUMENT): raise NotImplementedError( 'Subclassed Models without "inputs" (or single positional arguments) ' 'in their call() signatures do not yet support shape inference. File ' 'a feature request if this limitation bothers you.') if self.__class__.__name__ == 'Sequential': if tensor_util.is_tensor(inputs): input_shape = (None,) + tuple(inputs.get_shape().as_list()[1:]) self.build(input_shape=input_shape) elif isinstance(inputs, dict): # We assert that the first layer is a FeatureLayer. if not training_utils.is_feature_layer(self.layers[0]): raise ValueError('Passing a dictionary input to a Sequential Model ' 'which doesnt have FeatureLayer as the first layer ' 'is an error') input_shape = (None,) self.build(input_shape=input_shape) else: input_shape = (None,) + inputs.shape[1:] self.build(input_shape=input_shape) if context.executing_eagerly(): self._eager_set_inputs(inputs) else: self._symbolic_set_inputs(inputs, training=training) @checkpointable.no_automatic_dependency_tracking def _eager_set_inputs(self, inputs): """Set model's input and output specs based on the input data received. This is to be used for Model subclasses, which do not know at instantiation time what their inputs look like. We assume the number and ndim of outputs does not change over different calls. Args: inputs: Argument `x` (input data) passed by the user upon first model use. Raises: ValueError: If the model's inputs are already set. """ assert context.executing_eagerly() if self.inputs: raise ValueError('Model inputs are already set.') # On-the-fly setting of model inputs/outputs as DeferredTensors, # to keep track of number of inputs and outputs and their ndim. model_inputs = training_utils.ModelInputs(inputs) dummy_input_values = model_inputs.get_input_values() dummy_output_values = self.call(dummy_input_values) self.inputs = model_inputs.get_symbolic_inputs(return_single_as_list=True) self.input_names = model_inputs.get_input_names() dummy_output_values = nest.flatten(dummy_output_values) self.outputs = [ base_layer.DeferredTensor(shape=(None for _ in v.shape), dtype=v.dtype) for v in dummy_output_values ] self.output_names = [ 'output_%d' % (i + 1) for i in range(len(dummy_output_values))] self.built = True @checkpointable.no_automatic_dependency_tracking def _symbolic_set_inputs(self, inputs, outputs=None, training=None): """Set model's inputs and output specs based. This is to be used for Model subclasses, which do not know at instantiation time what their inputs look like. Args: inputs: Argument `x` (input data) passed by the user upon first model use. outputs: None, a data tensor, or a list of data tensors. If None, the outputs will be determined by invoking self.call(), otherwise the provided value will be used. training: Boolean or None. Only relevant in symbolic mode. Specifies whether to build the model's graph in inference mode (False), training mode (True), or using the Keras learning phase (None). Raises: ValueError: If the model's inputs are already set. """ assert not context.executing_eagerly() if self.inputs: raise ValueError('Model inputs are already set.') # On-the-fly setting of symbolic model inputs (either by using the tensor # provided, or by creating a placeholder if Numpy data was provided). model_inputs = training_utils.ModelInputs(inputs) dummy_input_values = model_inputs.get_symbolic_inputs() self.inputs = model_inputs.get_symbolic_inputs(return_single_as_list=True) self.input_names = model_inputs.get_input_names() self._feed_inputs = [] self._feed_input_names = [] self._feed_input_shapes = [] for k, v in model_inputs.as_dict(): if K.is_placeholder(v): self._feed_inputs.append(v) self._feed_input_names.append(k) self._feed_input_shapes.append(K.int_shape(v)) if outputs is None: # Obtain symbolic outputs by calling the model. if self._expects_training_arg: outputs = self.call(dummy_input_values, training=training) else: outputs = self.call(dummy_input_values) outputs = nest.flatten(outputs) self.outputs = outputs self.output_names = [ 'output_%d' % (i + 1) for i in range(len(self.outputs))] self.built = True def fit(self, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0., validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None, max_queue_size=10, workers=1, use_multiprocessing=False, **kwargs): """Trains the model for a fixed number of epochs (iterations on a dataset). Arguments: x: Input data. It could be: - A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs). - A TensorFlow tensor, or a list of tensors (in case the model has multiple inputs). - A dict mapping input names to the corresponding array/tensors, if the model has named inputs. - A `tf.data` dataset or a dataset iterator. Should return a tuple of either `(inputs, targets)` or `(inputs, targets, sample_weights)`. - A generator or `keras.utils.Sequence` returning `(inputs, targets)` or `(inputs, targets, sample weights)`. y: Target data. Like the input data `x`, it could be either Numpy array(s) or TensorFlow tensor(s). It should be consistent with `x` (you cannot have Numpy inputs and tensor targets, or inversely). If `x` is a dataset, dataset iterator, generator, or `keras.utils.Sequence` instance, `y` should not be specified (since targets will be obtained from `x`). batch_size: Integer or `None`. Number of samples per gradient update. If unspecified, `batch_size` will default to 32. Do not specify the `batch_size` if your data is in the form of symbolic tensors, dataset, dataset iterators, generators, or `keras.utils.Sequence` instances (since they generate batches). epochs: Integer. Number of epochs to train the model. An epoch is an iteration over the entire `x` and `y` data provided. Note that in conjunction with `initial_epoch`, `epochs` is to be understood as "final epoch". The model is not trained for a number of iterations given by `epochs`, but merely until the epoch of index `epochs` is reached. verbose: Integer. 0, 1, or 2. Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch. callbacks: List of `keras.callbacks.Callback` instances. List of callbacks to apply during training. See [callbacks](/api_docs/python/tf/keras/callbacks). validation_split: Float between 0 and 1. Fraction of the training data to be used as validation data. The model will set apart this fraction of the training data, will not train on it, and will evaluate the loss and any model metrics on this data at the end of each epoch. The validation data is selected from the last samples in the `x` and `y` data provided, before shuffling. This argument is not supported when `x` is a dataset, dataset iterator, generator or `keras.utils.Sequence` instance. validation_data: Data on which to evaluate the loss and any model metrics at the end of each epoch. The model will not be trained on this data. `validation_data` will override `validation_split`. `validation_data` could be: - tuple `(x_val, y_val)` of Numpy arrays or tensors - tuple `(x_val, y_val, val_sample_weights)` of Numpy arrays - dataset or a dataset iterator shuffle: Boolean (whether to shuffle the training data before each epoch) or str (for 'batch'). 'batch' is a special option for dealing with the limitations of HDF5 data; it shuffles in batch-sized chunks. Has no effect when `steps_per_epoch` is not `None`. class_weight: Optional dictionary mapping class indices (integers) to a weight (float) value, used for weighting the loss function (during training only). This can be useful to tell the model to "pay more attention" to samples from an under-represented class. sample_weight: Optional Numpy array of weights for the training samples, used for weighting the loss function (during training only). You can either pass a flat (1D) Numpy array with the same length as the input samples (1:1 mapping between weights and samples), or in the case of temporal data, you can pass a 2D array with shape `(samples, sequence_length)`, to apply a different weight to every timestep of every sample. In this case you should make sure to specify `sample_weight_mode="temporal"` in `compile()`. This argument is not supported when `x` is a dataset, dataset iterator, generator, or `keras.utils.Sequence` instance, instead provide the sample_weights as the third element of `x`. initial_epoch: Integer. Epoch at which to start training (useful for resuming a previous training run). steps_per_epoch: Integer or `None`. Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. When training with input tensors such as TensorFlow data tensors, the default `None` is equal to the number of samples in your dataset divided by the batch size, or 1 if that cannot be determined. validation_steps: Only relevant if `steps_per_epoch` is specified. Total number of steps (batches of samples) to validate before stopping. max_queue_size: Integer. Used for generator or `keras.utils.Sequence` input only. Maximum size for the generator queue. If unspecified, `max_queue_size` will default to 10. workers: Integer. Used for generator or `keras.utils.Sequence` input only. Maximum number of processes to spin up when using process-based threading. If unspecified, `workers` will default to 1. If 0, will execute the generator on the main thread. use_multiprocessing: Boolean. Used for generator or `keras.utils.Sequence` input only. If `True`, use process-based threading. If unspecified, `use_multiprocessing` will default to `False`. Note that because this implementation relies on multiprocessing, you should not pass non-picklable arguments to the generator as they can't be passed easily to children processes. **kwargs: Used for backwards compatibility. Returns: A `History` object. Its `History.history` attribute is a record of training loss values and metrics values at successive epochs, as well as validation loss values and validation metrics values (if applicable). Raises: RuntimeError: If the model was never compiled. ValueError: In case of mismatch between the provided input data and what the model expects. """ # TODO(fchollet): this method may be creating reference cycles, which would # lead to accumulating garbage in memory when called in a loop. Investigate. if data_utils.is_generator_or_sequence(x): training_utils.check_generator_arguments(y, sample_weight) return self.fit_generator( x, steps_per_epoch=steps_per_epoch, epochs=epochs, verbose=verbose, callbacks=callbacks, validation_data=validation_data, validation_steps=validation_steps, class_weight=class_weight, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing, shuffle=shuffle, initial_epoch=initial_epoch) # Backwards compatibility if batch_size is None and steps_per_epoch is None: batch_size = 32 # Legacy support if 'nb_epoch' in kwargs: logging.warning( 'The `nb_epoch` argument in `fit` ' 'has been renamed `epochs`.') epochs = kwargs.pop('nb_epoch') if kwargs: raise TypeError('Unrecognized keyword arguments: ' + str(kwargs)) # Validate and standardize user data. if self._distribution_strategy: distributed_training_utils.validate_callbacks(callbacks) distributed_training_utils.validate_inputs(x, y) first_x_value = nest.flatten(x)[0] if not steps_per_epoch and isinstance(first_x_value, np.ndarray): steps_per_epoch = distributed_training_utils.get_input_batch_params( first_x_value, batch_size, self._distribution_strategy) x, y, sample_weights = self._standardize_user_data( x, y, sample_weight=sample_weight, class_weight=class_weight, batch_size=batch_size, check_steps=True, steps_name='steps_per_epoch', steps=steps_per_epoch, validation_split=validation_split) # Prepare validation data. if validation_data: if (isinstance(validation_data, iterator_ops.Iterator) or isinstance(validation_data, iterator_ops.EagerIterator) or isinstance(validation_data, dataset_ops.Dataset)): val_x = validation_data val_y = None val_sample_weight = None elif len(validation_data) == 2: val_x, val_y = validation_data # pylint: disable=unpacking-non-sequence val_sample_weight = None elif len(validation_data) == 3: val_x, val_y, val_sample_weight = validation_data # pylint: disable=unpacking-non-sequence else: raise ValueError( 'When passing a `validation_data` argument, ' 'it must contain either 2 items (x_val, y_val), ' 'or 3 items (x_val, y_val, val_sample_weights), ' 'or alternatively it could be a dataset or a ' 'dataset or a dataset iterator. ' 'However we received `validation_data=%s`' % validation_data) # Validate and standardize validation data. if self._distribution_strategy: distributed_training_utils.validate_inputs(val_x, val_y) first_valx_value = nest.flatten(val_x)[0] if not validation_steps and isinstance(first_valx_value, np.ndarray): validation_steps = distributed_training_utils.get_input_batch_params( first_valx_value, batch_size, self._distribution_strategy) val_x, val_y, val_sample_weights = self._standardize_user_data( val_x, val_y, sample_weight=val_sample_weight, batch_size=batch_size, steps=validation_steps) elif validation_split and 0. < validation_split < 1.: if training_utils.has_symbolic_tensors(x): raise ValueError('If your data is in the form of symbolic tensors, ' 'you cannot use `validation_split`.') if hasattr(x[0], 'shape'): split_at = int(x[0].shape[0] * (1. - validation_split)) else: split_at = int(len(x[0]) * (1. - validation_split)) x, val_x = (slice_arrays(x, 0, split_at), slice_arrays(x, split_at)) y, val_y = (slice_arrays(y, 0, split_at), slice_arrays(y, split_at)) sample_weights, val_sample_weights = (slice_arrays( sample_weights, 0, split_at), slice_arrays(sample_weights, split_at)) elif validation_steps: val_x = [] val_y = [] val_sample_weights = [] else: val_x = None val_y = None val_sample_weights = None if context.executing_eagerly(): return training_eager.fit_loop( self, inputs=x, targets=y, sample_weights=sample_weights, class_weight=class_weight, batch_size=batch_size, epochs=epochs, verbose=verbose, callbacks=callbacks, val_inputs=val_x, val_targets=val_y, val_sample_weights=val_sample_weights, shuffle=shuffle, initial_epoch=initial_epoch, steps_per_epoch=steps_per_epoch, validation_steps=validation_steps) elif self._distribution_strategy: return training_distributed.fit_loop( self, x, epochs=epochs, verbose=verbose, callbacks=callbacks, val_iterator=val_x, initial_epoch=initial_epoch, steps_per_epoch=steps_per_epoch, validation_steps=validation_steps) else: return training_arrays.fit_loop( self, x, y, sample_weights=sample_weights, batch_size=batch_size, epochs=epochs, verbose=verbose, callbacks=callbacks, val_inputs=val_x, val_targets=val_y, val_sample_weights=val_sample_weights, shuffle=shuffle, initial_epoch=initial_epoch, steps_per_epoch=steps_per_epoch, validation_steps=validation_steps) def evaluate(self, x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None, max_queue_size=10, workers=1, use_multiprocessing=False): """Returns the loss value & metrics values for the model in test mode. Computation is done in batches. Arguments: x: Input data. It could be: - A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs). - A TensorFlow tensor, or a list of tensors (in case the model has multiple inputs). - A dict mapping input names to the corresponding array/tensors, if the model has named inputs. - A `tf.data` dataset or a dataset iterator. - A generator or `keras.utils.Sequence` instance. y: Target data. Like the input data `x`, it could be either Numpy array(s) or TensorFlow tensor(s). It should be consistent with `x` (you cannot have Numpy inputs and tensor targets, or inversely). If `x` is a dataset, dataset iterator, generator or `keras.utils.Sequence` instance, `y` should not be specified (since targets will be obtained from the iterator/dataset). batch_size: Integer or `None`. Number of samples per gradient update. If unspecified, `batch_size` will default to 32. Do not specify the `batch_size` is your data is in the form of symbolic tensors, dataset, dataset iterators, generators, or `keras.utils.Sequence` instances (since they generate batches). verbose: 0 or 1. Verbosity mode. 0 = silent, 1 = progress bar. sample_weight: Optional Numpy array of weights for the test samples, used for weighting the loss function. You can either pass a flat (1D) Numpy array with the same length as the input samples (1:1 mapping between weights and samples), or in the case of temporal data, you can pass a 2D array with shape `(samples, sequence_length)`, to apply a different weight to every timestep of every sample. In this case you should make sure to specify `sample_weight_mode="temporal"` in `compile()`. This argument is not supported when `x` is a dataset or a dataset iterator, instead pass sample weights as the third element of `x`. steps: Integer or `None`. Total number of steps (batches of samples) before declaring the evaluation round finished. Ignored with the default value of `None`. max_queue_size: Integer. Used for generator or `keras.utils.Sequence` input only. Maximum size for the generator queue. If unspecified, `max_queue_size` will default to 10. workers: Integer. Used for generator or `keras.utils.Sequence` input only. Maximum number of processes to spin up when using process-based threading. If unspecified, `workers` will default to 1. If 0, will execute the generator on the main thread. use_multiprocessing: Boolean. Used for generator or `keras.utils.Sequence` input only. If `True`, use process-based threading. If unspecified, `use_multiprocessing` will default to `False`. Note that because this implementation relies on multiprocessing, you should not pass non-picklable arguments to the generator as they can't be passed easily to children processes. Returns: Scalar test loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute `model.metrics_names` will give you the display labels for the scalar outputs. Raises: ValueError: in case of invalid arguments. """ if data_utils.is_generator_or_sequence(x): training_utils.check_generator_arguments(y, sample_weight) return self.evaluate_generator( x, steps=steps, verbose=verbose, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing) # Backwards compatibility. if batch_size is None and steps is None: batch_size = 32 # Validate and standardize user data. if self._distribution_strategy: distributed_training_utils.validate_inputs(x, y) first_x_value = nest.flatten(x)[0] if isinstance(first_x_value, np.ndarray) and not steps: steps = distributed_training_utils.get_input_batch_params( first_x_value, batch_size, self._distribution_strategy) x, y, sample_weights = self._standardize_user_data( x, y, sample_weight=sample_weight, batch_size=batch_size, check_steps=True, steps_name='steps', steps=steps) if context.executing_eagerly(): return training_eager.test_loop( self, inputs=x, targets=y, sample_weights=sample_weights, batch_size=batch_size, verbose=verbose, steps=steps) elif self._distribution_strategy: return training_distributed.test_loop( self, iterator=x, verbose=verbose, steps=steps) else: return training_arrays.test_loop( self, inputs=x, targets=y, sample_weights=sample_weights, batch_size=batch_size, verbose=verbose, steps=steps) def predict(self, x, batch_size=None, verbose=0, steps=None, max_queue_size=10, workers=1, use_multiprocessing=False): """Generates output predictions for the input samples. Computation is done in batches. Arguments: x: Input samples. It could be: - A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs). - A TensorFlow tensor, or a list of tensors (in case the model has multiple inputs). - A `tf.data` dataset or a dataset iterator. - A generator or `keras.utils.Sequence` instance. batch_size: Integer or `None`. Number of samples per gradient update. If unspecified, `batch_size` will default to 32. Do not specify the `batch_size` is your data is in the form of symbolic tensors, dataset, dataset iterators, generators, or `keras.utils.Sequence` instances (since they generate batches). verbose: Verbosity mode, 0 or 1. steps: Total number of steps (batches of samples) before declaring the prediction round finished. Ignored with the default value of `None`. max_queue_size: Integer. Used for generator or `keras.utils.Sequence` input only. Maximum size for the generator queue. If unspecified, `max_queue_size` will default to 10. workers: Integer. Used for generator or `keras.utils.Sequence` input only. Maximum number of processes to spin up when using process-based threading. If unspecified, `workers` will default to 1. If 0, will execute the generator on the main thread. use_multiprocessing: Boolean. Used for generator or `keras.utils.Sequence` input only. If `True`, use process-based threading. If unspecified, `use_multiprocessing` will default to `False`. Note that because this implementation relies on multiprocessing, you should not pass non-picklable arguments to the generator as they can't be passed easily to children processes. Returns: Numpy array(s) of predictions. Raises: ValueError: In case of mismatch between the provided input data and the model's expectations, or in case a stateful model receives a number of samples that is not a multiple of the batch size. """ if data_utils.is_generator_or_sequence(x): return self.predict_generator( x, steps=steps, verbose=verbose, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing) # Backwards compatibility. if batch_size is None and steps is None: batch_size = 32 if self._distribution_strategy: # Turn off prefetching since this is currently not deterministic. Once # b/112498930 is fixed we can turn it back on. # `_prefetch_on_device` is currently a property of only # `MirroredStrategy`. if hasattr(self._distribution_strategy, '_prefetch_on_device'): self._distribution_strategy._prefetch_on_device = False # pylint: disable=protected-access distributed_training_utils.validate_inputs(x, None) first_x_value = nest.flatten(x)[0] if isinstance(first_x_value, np.ndarray) and not steps: steps = distributed_training_utils.get_input_batch_params( first_x_value, batch_size, self._distribution_strategy) # Validate and standardize user data. # TODO(anjalisridhar): We don't pass batch_size here for some reason. This # means that we end up calculating it twice which we should avoid. x, _, _ = self._standardize_user_data( x, check_steps=True, steps_name='steps', steps=steps) if context.executing_eagerly(): return training_eager.predict_loop( self, x, batch_size=batch_size, verbose=verbose, steps=steps) elif self._distribution_strategy: results = training_distributed.predict_loop( self, x, verbose=verbose, steps=steps) # Turn prefetching back on since we turned it off previously. if hasattr(self._distribution_strategy, '_prefetch_on_device'): self._distribution_strategy._prefetch_on_device = True # pylint: disable=protected-access return results else: return training_arrays.predict_loop( self, x, batch_size=batch_size, verbose=verbose, steps=steps) def train_on_batch(self, x, y=None, sample_weight=None, class_weight=None): """Runs a single gradient update on a single batch of data. Arguments: x: Input data. It could be: - A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs). - A TensorFlow tensor, or a list of tensors (in case the model has multiple inputs). - A dict mapping input names to the corresponding array/tensors, if the model has named inputs. - A `tf.data` dataset or a dataset iterator. y: Target data. Like the input data `x`, it could be either Numpy array(s) or TensorFlow tensor(s). It should be consistent with `x` (you cannot have Numpy inputs and tensor targets, or inversely). If `x` is a dataset or a dataset iterator, `y` should not be specified (since targets will be obtained from the iterator). sample_weight: Optional array of the same length as x, containing weights to apply to the model's loss for each sample. In the case of temporal data, you can pass a 2D array with shape (samples, sequence_length), to apply a different weight to every timestep of every sample. In this case you should make sure to specify sample_weight_mode="temporal" in compile(). This argument is not supported when `x` is a dataset or a dataset iterator. class_weight: Optional dictionary mapping class indices (integers) to a weight (float) to apply to the model's loss for the samples from this class during training. This can be useful to tell the model to "pay more attention" to samples from an under-represented class. Returns: Scalar training loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute `model.metrics_names` will give you the display labels for the scalar outputs. Raises: ValueError: In case of invalid user-provided arguments. """ if self._distribution_strategy: raise NotImplementedError('`train_on_batch` is not supported for models ' 'compiled with DistributionStrategy.') # Validate and standardize user data. x, y, sample_weights = self._standardize_user_data( x, y, sample_weight=sample_weight, class_weight=class_weight) if context.executing_eagerly(): outputs = training_eager.train_on_batch( self, x, y, sample_weights=sample_weights) else: if self.uses_learning_phase and not isinstance(K.learning_phase(), int): ins = x + y + sample_weights + [1] else: ins = x + y + sample_weights self._make_train_function() outputs = self.train_function(ins) if len(outputs) == 1: return outputs[0] return outputs def test_on_batch(self, x, y=None, sample_weight=None): """Test the model on a single batch of samples. Arguments: x: Input data. It could be: - A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs). - A TensorFlow tensor, or a list of tensors (in case the model has multiple inputs). - A dict mapping input names to the corresponding array/tensors, if the model has named inputs. - A `tf.data` dataset or a dataset iterator. y: Target data. Like the input data `x`, it could be either Numpy array(s) or TensorFlow tensor(s). It should be consistent with `x` (you cannot have Numpy inputs and tensor targets, or inversely). If `x` is a dataset or a dataset iterator, `y` should not be specified (since targets will be obtained from the iterator). sample_weight: Optional array of the same length as x, containing weights to apply to the model's loss for each sample. In the case of temporal data, you can pass a 2D array with shape (samples, sequence_length), to apply a different weight to every timestep of every sample. In this case you should make sure to specify sample_weight_mode="temporal" in compile(). This argument is not supported when `x` is a dataset or a dataset iterator. Returns: Scalar test loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute `model.metrics_names` will give you the display labels for the scalar outputs. Raises: ValueError: In case of invalid user-provided arguments. """ if self._distribution_strategy: raise NotImplementedError('`test_on_batch` is not supported for models ' 'compiled with DistributionStrategy.') # Validate and standardize user data. x, y, sample_weights = self._standardize_user_data( x, y, sample_weight=sample_weight) if context.executing_eagerly(): outputs = training_eager.test_on_batch( self, x, y, sample_weights=sample_weights) else: if self.uses_learning_phase and not isinstance(K.learning_phase(), int): ins = x + y + sample_weights + [0] else: ins = x + y + sample_weights self._make_test_function() outputs = self.test_function(ins) if len(outputs) == 1: return outputs[0] return outputs def predict_on_batch(self, x): """Returns predictions for a single batch of samples. Arguments: x: Input data. It could be: - A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs). - A TensorFlow tensor, or a list of tensors (in case the model has multiple inputs). - A `tf.data` dataset or a dataset iterator. Returns: Numpy array(s) of predictions. Raises: ValueError: In case of mismatch between given number of inputs and expectations of the model. """ if self._distribution_strategy: raise NotImplementedError('`predict_on_batch` is not supported for ' 'models compiled with DistributionStrategy.') # Validate and standardize user data. inputs, _, _ = self._standardize_user_data(x) if context.executing_eagerly(): if (isinstance(x, iterator_ops.EagerIterator) or (isinstance(x, dataset_ops.Dataset) and context.executing_eagerly())): inputs = training_utils.cast_if_floating_dtype(inputs) else: inputs = [ ops.convert_to_tensor(val, dtype=K.floatx()) for val in inputs ] return self(inputs) # pylint: disable=not-callable if not context.executing_eagerly(): if self.uses_learning_phase and not isinstance(K.learning_phase(), int): ins = inputs + [0] else: ins = inputs self._make_predict_function() outputs = self.predict_function(ins) if len(outputs) == 1: return outputs[0] return outputs def fit_generator(self, generator, steps_per_epoch=None, epochs=1, verbose=1, callbacks=None, validation_data=None, validation_steps=None, class_weight=None, max_queue_size=10, workers=1, use_multiprocessing=False, shuffle=True, initial_epoch=0): """Fits the model on data yielded batch-by-batch by a Python generator. The generator is run in parallel to the model, for efficiency. For instance, this allows you to do real-time data augmentation on images on CPU in parallel to training your model on GPU. The use of `keras.utils.Sequence` guarantees the ordering and guarantees the single use of every input per epoch when using `use_multiprocessing=True`. Arguments: generator: A generator or an instance of `Sequence` (`keras.utils.Sequence`) object in order to avoid duplicate data when using multiprocessing. The output of the generator must be either - a tuple `(inputs, targets)` - a tuple `(inputs, targets, sample_weights)`. This tuple (a single output of the generator) makes a single batch. Therefore, all arrays in this tuple must have the same length (equal to the size of this batch). Different batches may have different sizes. For example, the last batch of the epoch is commonly smaller than the others, if the size of the dataset is not divisible by the batch size. The generator is expected to loop over its data indefinitely. An epoch finishes when `steps_per_epoch` batches have been seen by the model. steps_per_epoch: Total number of steps (batches of samples) to yield from `generator` before declaring one epoch finished and starting the next epoch. It should typically be equal to the number of samples of your dataset divided by the batch size. Optional for `Sequence`: if unspecified, will use the `len(generator)` as a number of steps. epochs: Integer, total number of iterations on the data. verbose: Verbosity mode, 0, 1, or 2. callbacks: List of callbacks to be called during training. validation_data: This can be either - a generator for the validation data - a tuple (inputs, targets) - a tuple (inputs, targets, sample_weights). validation_steps: Only relevant if `validation_data` is a generator. Total number of steps (batches of samples) to yield from `generator` before stopping. Optional for `Sequence`: if unspecified, will use the `len(validation_data)` as a number of steps. class_weight: Dictionary mapping class indices to a weight for the class. max_queue_size: Integer. Maximum size for the generator queue. If unspecified, `max_queue_size` will default to 10. workers: Integer. Maximum number of processes to spin up when using process-based threading. If unspecified, `workers` will default to 1. If 0, will execute the generator on the main thread. use_multiprocessing: Boolean. If `True`, use process-based threading. If unspecified, `use_multiprocessing` will default to `False`. Note that because this implementation relies on multiprocessing, you should not pass non-picklable arguments to the generator as they can't be passed easily to children processes. shuffle: Boolean. Whether to shuffle the order of the batches at the beginning of each epoch. Only used with instances of `Sequence` (`keras.utils.Sequence`). Has no effect when `steps_per_epoch` is not `None`. initial_epoch: Epoch at which to start training (useful for resuming a previous training run) Returns: A `History` object. Example: ```python def generate_arrays_from_file(path): while 1: f = open(path) for line in f: # create numpy arrays of input data # and labels, from each line in the file x1, x2, y = process_line(line) yield ({'input_1': x1, 'input_2': x2}, {'output': y}) f.close() model.fit_generator(generate_arrays_from_file('/my_file.txt'), steps_per_epoch=10000, epochs=10) ``` Raises: ValueError: In case the generator yields data in an invalid format. """ if self._distribution_strategy: raise NotImplementedError('`fit_generator` is not supported for ' 'models compiled with DistributionStrategy.') if not self.built and not self._is_graph_network: raise NotImplementedError( '`fit_generator` is not yet enabled for unbuilt Model subclasses') return training_generator.fit_generator( self, generator, steps_per_epoch=steps_per_epoch, epochs=epochs, verbose=verbose, callbacks=callbacks, validation_data=validation_data, validation_steps=validation_steps, class_weight=class_weight, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing, shuffle=shuffle, initial_epoch=initial_epoch) def evaluate_generator(self, generator, steps=None, max_queue_size=10, workers=1, use_multiprocessing=False, verbose=0): """Evaluates the model on a data generator. The generator should return the same kind of data as accepted by `test_on_batch`. Arguments: generator: Generator yielding tuples (inputs, targets) or (inputs, targets, sample_weights) or an instance of `keras.utils.Sequence` object in order to avoid duplicate data when using multiprocessing. steps: Total number of steps (batches of samples) to yield from `generator` before stopping. Optional for `Sequence`: if unspecified, will use the `len(generator)` as a number of steps. max_queue_size: maximum size for the generator queue workers: Integer. Maximum number of processes to spin up when using process-based threading. If unspecified, `workers` will default to 1. If 0, will execute the generator on the main thread. use_multiprocessing: Boolean. If `True`, use process-based threading. If unspecified, `use_multiprocessing` will default to `False`. Note that because this implementation relies on multiprocessing, you should not pass non-picklable arguments to the generator as they can't be passed easily to children processes. verbose: Verbosity mode, 0 or 1. Returns: Scalar test loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute `model.metrics_names` will give you the display labels for the scalar outputs. Raises: ValueError: in case of invalid arguments. Raises: ValueError: In case the generator yields data in an invalid format. """ if self._distribution_strategy: raise NotImplementedError('`evaluate_generator` is not supported for ' 'models compiled with DistributionStrategy.') if not self.built and not self._is_graph_network: raise NotImplementedError( '`evaluate_generator` is not yet enabled for ' 'unbuilt Model subclasses') return training_generator.evaluate_generator( self, generator, steps=steps, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing, verbose=verbose) def predict_generator(self, generator, steps=None, max_queue_size=10, workers=1, use_multiprocessing=False, verbose=0): """Generates predictions for the input samples from a data generator. The generator should return the same kind of data as accepted by `predict_on_batch`. Arguments: generator: Generator yielding batches of input samples or an instance of `keras.utils.Sequence` object in order to avoid duplicate data when using multiprocessing. steps: Total number of steps (batches of samples) to yield from `generator` before stopping. Optional for `Sequence`: if unspecified, will use the `len(generator)` as a number of steps. max_queue_size: Maximum size for the generator queue. workers: Integer. Maximum number of processes to spin up when using process-based threading. If unspecified, `workers` will default to 1. If 0, will execute the generator on the main thread. use_multiprocessing: Boolean. If `True`, use process-based threading. If unspecified, `use_multiprocessing` will default to `False`. Note that because this implementation relies on multiprocessing, you should not pass non-picklable arguments to the generator as they can't be passed easily to children processes. verbose: verbosity mode, 0 or 1. Returns: Numpy array(s) of predictions. Raises: ValueError: In case the generator yields data in an invalid format. """ if self._distribution_strategy: raise NotImplementedError('`predict_generator` is not supported for ' 'models compiled with DistributionStrategy.') if not self.built and not self._is_graph_network: raise NotImplementedError( '`predict_generator` is not yet enabled for unbuilt Model subclasses') return training_generator.predict_generator( self, generator, steps=steps, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing, verbose=verbose) def _get_callback_model(self): """Returns the Callback Model for this Model.""" if hasattr(self, '_replicated_model') and self._replicated_model: # When using training_distributed, we set the callback model # to an instance of the `DistributedModel` that we create in # the `compile` call. The `DistributedModel` is initialized # with the first replicated model. We need to set the callback # model to a DistributedModel to allow us to override saving # and loading weights when we checkpoint the model during training. return self._replicated_model if hasattr(self, 'callback_model') and self.callback_model: return self.callback_model return self def _make_callback_model(self): first_replicated_model = self._distribution_strategy.unwrap( self._grouped_model)[0] # We initialize the callback model with the first replicated model. self._replicated_model = DistributedCallbackModel(first_replicated_model) self._replicated_model.set_original_model(self) class DistributedCallbackModel(Model): """Model that is used for callbacks with DistributionStrategy.""" def __init__(self, model): super(DistributedCallbackModel, self).__init__() # TODO(anjalisridhar): Right now the only attributes set are the layer and # weights. We may need to set additional attributes as needed since we have # not called compile on this model. def set_original_model(self, orig_model): self._original_model = orig_model def save_weights(self, filepath, overwrite=True, save_format=None): self._replicated_model.save_weights(filepath, overwrite=overwrite, save_format=save_format) def save(self, filepath, overwrite=True, include_optimizer=True): # save weights from the distributed model to the original model distributed_model_weights = self.get_weights() self._original_model.set_weights(distributed_model_weights) # TODO(anjalisridhar): Do we need to save the original model here? # Saving the first replicated model works as well. self._original_model.save(filepath, overwrite=True, include_optimizer=False) def load_weights(self, filepath, by_name=False): self._original_model.load_weights(filepath, by_name=False) # Copy the weights from the original model to each of the replicated models. orig_model_weights = self._original_model.get_weights() distributed_training_utils.set_weights( self._original_model._distribution_strategy, self, # pylint: disable=protected-access orig_model_weights) def __getattr__(self, item): # Whitelisted atttributes of the model that can be accessed by the user # during a callback. if item not in ['_setattr_tracking']: logging.warning('You are accessing attribute ' + item + 'of the ' 'DistributedCallbackModel that may not have been set ' 'correctly.')
py
7df72d958e57cd7b2ce3cec6f07fe8aa4fadde6d
from django.contrib import messages from django.core.exceptions import ImproperlyConfigured from django.shortcuts import redirect, render from requests.exceptions import ConnectionError, HTTPError from .forms import EmailSubscriptionForm def home(request): # Include email signup form context = { 'form': EmailSubscriptionForm(), } return render(request, 'landingpage/home.html', context) def email_signup(request): template = 'landingpage/email_signup_confirm.html' # process the form data if it has been POSTed to this view if request.method == 'POST': # populate form instance with post data form = EmailSubscriptionForm(request.POST) # The posted form data is valid, try to subscribe the email to Mailchimp if form.is_valid(): try: form.signup_email(request) # cannot connect to MailChimp except (HTTPError, ConnectionError) as error: message = "MailChimp Error: {}." messages.error(request, message.format(error)) # missing MAILCHIMP_LIST_ID or API Key except ImproperlyConfigured as error: messages.error(request, error) # redirect home if there was no exception else: return redirect('home') # if it was any other request, just display the empty form else: form = EmailSubscriptionForm() return render(request, template, {'form': form})
py
7df72fd6b37f9d329ee39e2082e0fff9fe47eb2b
#! /usr/bin/env python # -*- coding: utf-8 -*- # The MIT License (MIT) # # Copyright (c) 2013 Bartosz Janda # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import UIView class UIControlSyntheticProvider(UIView.UIViewSyntheticProvider): """ Class representing UIControl. """ def __init__(self, value_obj, internal_dict): super(UIControlSyntheticProvider, self).__init__(value_obj, internal_dict) self.type_name = "UIControl"
py
7df73089386543a5e3a0a8b7bcc5df32177ac323
# Copyright 2019 DeepMind Technologies Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example use of the CFR algorithm on Kuhn Poker.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import app from absl import flags from open_spiel.python.algorithms import cfr from open_spiel.python.algorithms import exploitability import pyspiel FLAGS = flags.FLAGS flags.DEFINE_integer("iterations", 100, "Number of iterations") flags.DEFINE_string("game", "kuhn_poker", "Name of the game") flags.DEFINE_integer("players", 2, "Number of players") flags.DEFINE_integer("print_freq", 10, "How often to print the exploitability") def main(_): #game = pyspiel.load_game(FLAGS.game, {"players": FLAGS.players}) game = pyspiel.load_game(FLAGS.game) cfr_solver = cfr.CFRSolver(game) for i in range(FLAGS.iterations): cfr_solver.evaluate_and_update_policy() if i % FLAGS.print_freq == 0: conv = exploitability.exploitability(game, cfr_solver.average_policy()) print("Iteration {} exploitability {}".format(i, conv)) if __name__ == "__main__": app.run(main)
py
7df7318d6fb9e5a00906b504fc6e677b6334a63c
"""Create synthetic datasets for surrogate training.""" # %% from os import mkdir, getcwd import numpy as np import pandas as pd from optproblems import wfg, dtlz, zdt from pyDOE import lhs from tqdm import tqdm mean = 0.5 std_dev = 0.1 noise_mean = 0 noise_std = 0.05 num_obj = 2 num_var_zdt = {"ZDT1": 30, "ZDT2": 30, "ZDT3": 30, "ZDT4": 10, "ZDT6": 10} problems = { "WFG1": wfg.WFG1, "WFG2": wfg.WFG2, "WFG3": wfg.WFG3, "WFG4": wfg.WFG4, "WFG5": wfg.WFG5, "WFG6": wfg.WFG6, "WFG7": wfg.WFG7, "WFG8": wfg.WFG8, "WFG9": wfg.WFG9, "ZDT1": zdt.ZDT1, "ZDT2": zdt.ZDT2, "ZDT3": zdt.ZDT3, "ZDT4": zdt.ZDT4, "ZDT6": zdt.ZDT6, "DTLZ1": dtlz.DTLZ1, "DTLZ2": dtlz.DTLZ2, "DTLZ3": dtlz.DTLZ3, "DTLZ4": dtlz.DTLZ4, "DTLZ5": dtlz.DTLZ5, "DTLZ6": dtlz.DTLZ6, "DTLZ7": dtlz.DTLZ7, } def generatedata( *, problemname: str, num_var: int, num_samples: int, distribution: str, noise: bool, missing_data: bool, save_folder: str, ): """Generate random dataset from known benchmark problems or engineering problems. Parameters ---------- problemname : str Name of the problem num_var : int number of decision variables num_samples : int number of samples distribution : str Normal or uniform distribution noise : bool Presence or absence of noise in data missing_data : bool Presence or absence of missing chunks of data save_folder : str Path to the save folder """ if "DTLZ" in problemname: generateDTLZ( problemname, num_var, num_samples, distribution, noise, missing_data, save_folder, ) return elif "WFG" in problemname: generateWFG( problemname, num_var, num_samples, distribution, noise, missing_data, save_folder, ) return elif "ZDT" in problemname: generateZDT( problemname, num_var, num_samples, distribution, noise, missing_data, save_folder, ) return else: print("Error with Problem name") return def generate_var_0_1( problemname: str, num_var: int, num_samples: int, distribution: str, noise: bool, missing_data: bool, save_folder: str, ): filename = ( save_folder + "/" + problemname + "_" + str(num_var) + "_" + str(num_samples) + "_" + distribution ) if distribution == "uniform": var = lhs(num_var, num_samples) elif distribution == "normal": means = [mean] * num_var cov = np.eye(num_var) * np.square(std_dev) var = np.random.multivariate_normal(means, cov, num_samples) if noise: noise_means = [noise_mean] * num_var noise_cov = np.eye(num_var) * np.square(noise_std) noise_var = np.random.multivariate_normal(noise_means, noise_cov, num_samples) filename = filename + "_noisy" var = var + noise_var # To keep values between 0 and 1 var[var > 1] = 1 var[var < 0] = 0 return (var, filename) def generateDTLZ( problemname: str, num_var: int, num_samples: int, distribution: str, noise: bool, missing_data: bool, save_folder: str, ): """Generate and save DTLZ datasets as csv. Parameters ---------- problemname : str Name of the problem num_var : int number of variables num_samples : int Number of samples distribution : str Uniform or normal distribution noise : bool Presence or absence of noise missing_data : bool Presence or absence of missing data save_folder : str Path to the folder to save csv files """ objective = problems[problemname](num_obj, num_var) var_names = ["x{0}".format(x) for x in range(num_var)] obj_names = ["f1", "f2"] if distribution in ["uniform", "normal"]: var, filename = generate_var_0_1( problemname, num_var, num_samples, distribution, noise, missing_data, save_folder, ) elif distribution == "optimal": x_first_m_1 = np.random.random((num_samples, num_obj - 1)) if problemname == "DTLZ6" or problemname == "DTLZ7": x_last_k = np.zeros((num_samples, num_var - num_obj + 1)) else: x_last_k = np.zeros((num_samples, num_var - num_obj + 1)) + 0.5 var = np.hstack((x_first_m_1, x_last_k)) filename = ( save_folder + "/" + problemname + "_" + str(num_var) + "_" + str(num_samples) + "_" + distribution ) obj = [objective(x) for x in var] data = np.hstack((var, obj)) data = pd.DataFrame(data, columns=var_names + obj_names) filename = filename + ".csv" data.to_csv(filename, index=False) return def generateWFG( problemname: str, num_var: int, num_samples: int, distribution: str, noise: bool, missing_data: bool, save_folder: str, ): """Generate and save WFG datasets as csv. Parameters ---------- problemname : str Name of the problem num_var : int number of variables num_samples : int Number of samples distribution : str Uniform or normal distribution noise : bool Presence or absence of noise missing_data : bool Presence or absence of missing data save_folder : str Path to the folder to save csv files """ objective = problems[problemname](num_obj, num_var, k=4) var_names = ["x{0}".format(x) for x in range(num_var)] obj_names = ["f1", "f2"] if distribution in ["uniform", "normal"]: var, filename = generate_var_0_1( problemname, num_var, num_samples, distribution, noise, missing_data, save_folder, ) elif distribution == "optimal": solns = objective.get_optimal_solutions(max_number=num_samples) var = np.asarray([soln.phenome for soln in solns]) filename = ( save_folder + "/" + problemname + "_" + str(num_var) + "_" + str(num_samples) + "_" + distribution ) obj = [objective(x) for x in var] data = np.hstack((var, obj)) data = pd.DataFrame(data, columns=var_names + obj_names) filename = filename + ".csv" data.to_csv(filename, index=False) return def generateZDT( problemname: str, num_var: int, num_samples: int, distribution: str, noise: bool, missing_data: bool, save_folder: str, ): """Generate and save ZDT datasets as csv. Parameters ---------- problemname : str Name of the problem num_var : int number of variables num_samples : int Number of samples distribution : str Uniform or normal distribution noise : bool Presence or absence of noise missing_data : bool Presence or absence of missing data save_folder : str Path to the folder to save csv files """ objective = problems[problemname]() num_var = num_var_zdt[problemname] var_names = ["x{0}".format(x) for x in range(num_var)] obj_names = ["f1", "f2"] if distribution in ["uniform", "normal"]: var, filename = generate_var_0_1( problemname, num_var, num_samples, distribution, noise, missing_data, save_folder, ) elif distribution == "optimal": var = np.zeros((num_samples, num_var - 1)) var_x1 = np.linspace(0, 1, num_samples).reshape(-1, 1) var = np.hstack((var_x1, var)) filename = ( save_folder + "/" + problemname + "_" + str(num_var) + "_" + str(num_samples) + "_" + distribution ) obj = [objective(x) for x in var] data = np.hstack((var, obj)) data = pd.DataFrame(data, columns=var_names + obj_names) filename = filename + ".csv" data.to_csv(filename, index=False) return def create_datasets( folder: str = None, num_vars: list = None, num_samples: list = None, distribution: list = None, missing_data: bool = False, noise: bool = False, ): """Automatically create datasets and save them as csv files in ./datasets_benchmark """ if folder is None: folder = "datasets_benchmark_train" mkdir(folder) folder = getcwd() + "/" + folder if num_vars is None: num_vars = [6, 10, 16, 20, 30] if num_samples is None: num_samples = [ 100, 150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1500, 2000, ] if distribution is None: distribution = ["uniform", "normal"] for problem in tqdm(problems): for num_var in num_vars: for samples in num_samples: for dist in distribution: generatedata( problemname=problem, num_var=num_var, num_samples=samples, distribution=dist, noise=noise, missing_data=missing_data, save_folder=folder, ) if __name__ == "__main__": # Training files # create_datasets() # Testing files create_datasets( folder="datasets_benchmark_test", num_samples=[10000], distribution=["uniform"] )
py
7df731a04731cea99944b11364c2e81b5e04b73d
import os from aioweb.conf import settings from aioweb.util import package_path def setup(router): router.root('site#index') router.get('site#test') router.static('/static/', [ os.path.join(package_path('aioweb'), 'assets'), os.path.join(settings.BASE_DIR, 'app/assets'), ])
py
7df731e5579584900689bf82b3d7fd9981dd8003
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=R0913, C0302 """ This module contains various GCP Cloud DLP operators which allow you to perform basic operations using Cloud DLP. """ from typing import Dict, Optional, Sequence, Tuple, Union from google.api_core.exceptions import AlreadyExists, NotFound from google.api_core.retry import Retry from google.cloud.dlp_v2.types import ( ByteContentItem, ContentItem, DeidentifyConfig, DeidentifyTemplate, FieldMask, InspectConfig, InspectJobConfig, InspectTemplate, JobTrigger, RedactImageRequest, RiskAnalysisJobConfig, StoredInfoTypeConfig, ) from google.protobuf.json_format import MessageToDict from airflow.models import BaseOperator from airflow.providers.google.cloud.hooks.dlp import CloudDLPHook from airflow.utils.decorators import apply_defaults class CloudDLPCancelDLPJobOperator(BaseOperator): """ Starts asynchronous cancellation on a long-running DlpJob. :param dlp_job_id: ID of the DLP job resource to be cancelled. :type dlp_job_id: str :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str """ template_fields = ("dlp_job_id", "project_id", "gcp_conn_id") @apply_defaults def __init__( self, *, dlp_job_id: str, project_id: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.dlp_job_id = dlp_job_id self.project_id = project_id self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) hook.cancel_dlp_job( dlp_job_id=self.dlp_job_id, project_id=self.project_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) class CloudDLPCreateDeidentifyTemplateOperator(BaseOperator): """ Creates a DeidentifyTemplate for re-using frequently used configuration for de-identifying content, images, and storage. :param organization_id: (Optional) The organization ID. Required to set this field if parent resource is an organization. :type organization_id: str :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. Only set this field if the parent resource is a project instead of an organization. :type project_id: str :param deidentify_template: (Optional) The DeidentifyTemplate to create. :type deidentify_template: dict or google.cloud.dlp_v2.types.DeidentifyTemplate :param template_id: (Optional) The template ID. :type template_id: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str :rtype: google.cloud.dlp_v2.types.DeidentifyTemplate """ template_fields = ( "organization_id", "project_id", "deidentify_template", "template_id", "gcp_conn_id", ) @apply_defaults def __init__( self, *, organization_id: Optional[str] = None, project_id: Optional[str] = None, deidentify_template: Optional[Union[Dict, DeidentifyTemplate]] = None, template_id: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.organization_id = organization_id self.project_id = project_id self.deidentify_template = deidentify_template self.template_id = template_id self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) try: template = hook.create_deidentify_template( organization_id=self.organization_id, project_id=self.project_id, deidentify_template=self.deidentify_template, template_id=self.template_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) except AlreadyExists: template = hook.get_deidentify_template( organization_id=self.organization_id, project_id=self.project_id, template_id=self.template_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) return MessageToDict(template) class CloudDLPCreateDLPJobOperator(BaseOperator): """ Creates a new job to inspect storage or calculate risk metrics. :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param inspect_job: (Optional) The configuration for the inspect job. :type inspect_job: dict or google.cloud.dlp_v2.types.InspectJobConfig :param risk_job: (Optional) The configuration for the risk job. :type risk_job: dict or google.cloud.dlp_v2.types.RiskAnalysisJobConfig :param job_id: (Optional) The job ID. :type job_id: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param wait_until_finished: (Optional) If true, it will keep polling the job state until it is set to DONE. :type wait_until_finished: bool :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str :rtype: google.cloud.dlp_v2.types.DlpJob """ template_fields = ("project_id", "inspect_job", "risk_job", "job_id", "gcp_conn_id") @apply_defaults def __init__( self, *, project_id: Optional[str] = None, inspect_job: Optional[Union[Dict, InspectJobConfig]] = None, risk_job: Optional[Union[Dict, RiskAnalysisJobConfig]] = None, job_id: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, wait_until_finished: bool = True, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.project_id = project_id self.inspect_job = inspect_job self.risk_job = risk_job self.job_id = job_id self.retry = retry self.timeout = timeout self.metadata = metadata self.wait_until_finished = wait_until_finished self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) try: job = hook.create_dlp_job( project_id=self.project_id, inspect_job=self.inspect_job, risk_job=self.risk_job, job_id=self.job_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, wait_until_finished=self.wait_until_finished, ) except AlreadyExists: job = hook.get_dlp_job( project_id=self.project_id, dlp_job_id=self.job_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) return MessageToDict(job) class CloudDLPCreateInspectTemplateOperator(BaseOperator): """ Creates an InspectTemplate for re-using frequently used configuration for inspecting content, images, and storage. :param organization_id: (Optional) The organization ID. Required to set this field if parent resource is an organization. :type organization_id: str :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. Only set this field if the parent resource is a project instead of an organization. :type project_id: str :param inspect_template: (Optional) The InspectTemplate to create. :type inspect_template: dict or google.cloud.dlp_v2.types.InspectTemplate :param template_id: (Optional) The template ID. :type template_id: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str :rtype: google.cloud.dlp_v2.types.InspectTemplate """ template_fields = ( "organization_id", "project_id", "inspect_template", "template_id", "gcp_conn_id", ) @apply_defaults def __init__( self, *, organization_id: Optional[str] = None, project_id: Optional[str] = None, inspect_template: Optional[InspectTemplate] = None, template_id: Optional[Union[Dict, InspectTemplate]] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.organization_id = organization_id self.project_id = project_id self.inspect_template = inspect_template self.template_id = template_id self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) try: template = hook.create_inspect_template( organization_id=self.organization_id, project_id=self.project_id, inspect_template=self.inspect_template, template_id=self.template_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) except AlreadyExists: template = hook.get_inspect_template( organization_id=self.organization_id, project_id=self.project_id, template_id=self.template_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) return MessageToDict(template) class CloudDLPCreateJobTriggerOperator(BaseOperator): """ Creates a job trigger to run DLP actions such as scanning storage for sensitive information on a set schedule. :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param job_trigger: (Optional) The JobTrigger to create. :type job_trigger: dict or google.cloud.dlp_v2.types.JobTrigger :param trigger_id: (Optional) The JobTrigger ID. :type trigger_id: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str :rtype: google.cloud.dlp_v2.types.JobTrigger """ template_fields = ("project_id", "job_trigger", "trigger_id", "gcp_conn_id") @apply_defaults def __init__( self, *, project_id: Optional[str] = None, job_trigger: Optional[Union[Dict, JobTrigger]] = None, trigger_id: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.project_id = project_id self.job_trigger = job_trigger self.trigger_id = trigger_id self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) try: trigger = hook.create_job_trigger( project_id=self.project_id, job_trigger=self.job_trigger, trigger_id=self.trigger_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) except AlreadyExists: trigger = hook.get_job_trigger( project_id=self.project_id, job_trigger_id=self.trigger_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) return MessageToDict(trigger) class CloudDLPCreateStoredInfoTypeOperator(BaseOperator): """ Creates a pre-built stored infoType to be used for inspection. :param organization_id: (Optional) The organization ID. Required to set this field if parent resource is an organization. :type organization_id: str :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. Only set this field if the parent resource is a project instead of an organization. :type project_id: str :param config: (Optional) The config for the StoredInfoType. :type config: dict or google.cloud.dlp_v2.types.StoredInfoTypeConfig :param stored_info_type_id: (Optional) The StoredInfoType ID. :type stored_info_type_id: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str :rtype: google.cloud.dlp_v2.types.StoredInfoType """ template_fields = ( "organization_id", "project_id", "config", "stored_info_type_id", "gcp_conn_id", ) @apply_defaults def __init__( self, *, organization_id: Optional[str] = None, project_id: Optional[str] = None, config: Optional[StoredInfoTypeConfig] = None, stored_info_type_id: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.organization_id = organization_id self.project_id = project_id self.config = config self.stored_info_type_id = stored_info_type_id self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) try: info = hook.create_stored_info_type( organization_id=self.organization_id, project_id=self.project_id, config=self.config, stored_info_type_id=self.stored_info_type_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) except AlreadyExists: info = hook.get_stored_info_type( organization_id=self.organization_id, project_id=self.project_id, stored_info_type_id=self.stored_info_type_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) return MessageToDict(info) class CloudDLPDeidentifyContentOperator(BaseOperator): """ De-identifies potentially sensitive info from a ContentItem. This method has limits on input size and output size. :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param deidentify_config: (Optional) Configuration for the de-identification of the content item. Items specified here will override the template referenced by the deidentify_template_name argument. :type deidentify_config: dict or google.cloud.dlp_v2.types.DeidentifyConfig :param inspect_config: (Optional) Configuration for the inspector. Items specified here will override the template referenced by the inspect_template_name argument. :type inspect_config: dict or google.cloud.dlp_v2.types.InspectConfig :param item: (Optional) The item to de-identify. Will be treated as text. :type item: dict or google.cloud.dlp_v2.types.ContentItem :param inspect_template_name: (Optional) Optional template to use. Any configuration directly specified in inspect_config will override those set in the template. :type inspect_template_name: str :param deidentify_template_name: (Optional) Optional template to use. Any configuration directly specified in deidentify_config will override those set in the template. :type deidentify_template_name: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str :rtype: google.cloud.dlp_v2.types.DeidentifyContentResponse """ template_fields = ( "project_id", "deidentify_config", "inspect_config", "item", "inspect_template_name", "deidentify_template_name", "gcp_conn_id", ) @apply_defaults def __init__( self, *, project_id: Optional[str] = None, deidentify_config: Optional[Union[Dict, DeidentifyConfig]] = None, inspect_config: Optional[Union[Dict, InspectConfig]] = None, item: Optional[Union[Dict, ContentItem]] = None, inspect_template_name: Optional[str] = None, deidentify_template_name: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.project_id = project_id self.deidentify_config = deidentify_config self.inspect_config = inspect_config self.item = item self.inspect_template_name = inspect_template_name self.deidentify_template_name = deidentify_template_name self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) response = hook.deidentify_content( project_id=self.project_id, deidentify_config=self.deidentify_config, inspect_config=self.inspect_config, item=self.item, inspect_template_name=self.inspect_template_name, deidentify_template_name=self.deidentify_template_name, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) return MessageToDict(response) class CloudDLPDeleteDeidentifyTemplateOperator(BaseOperator): """ Deletes a DeidentifyTemplate. :param template_id: The ID of deidentify template to be deleted. :type template_id: str :param organization_id: (Optional) The organization ID. Required to set this field if parent resource is an organization. :type organization_id: str :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. Only set this field if the parent resource is a project instead of an organization. :type project_id: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str """ template_fields = ("template_id", "organization_id", "project_id", "gcp_conn_id") @apply_defaults def __init__( self, *, template_id: str, organization_id: Optional[str] = None, project_id: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.template_id = template_id self.organization_id = organization_id self.project_id = project_id self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) try: hook.delete_deidentify_template( template_id=self.template_id, organization_id=self.organization_id, project_id=self.project_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) except NotFound: self.log.error("Template %s not found.", self.template_id) class CloudDLPDeleteDLPJobOperator(BaseOperator): """ Deletes a long-running DlpJob. This method indicates that the client is no longer interested in the DlpJob result. The job will be cancelled if possible. :param dlp_job_id: The ID of the DLP job resource to be cancelled. :type dlp_job_id: str :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str """ template_fields = ("dlp_job_id", "project_id", "gcp_conn_id") @apply_defaults def __init__( self, *, dlp_job_id: str, project_id: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.dlp_job_id = dlp_job_id self.project_id = project_id self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) try: hook.delete_dlp_job( dlp_job_id=self.dlp_job_id, project_id=self.project_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) except NotFound: self.log.error("Job %s id not found.", self.dlp_job_id) class CloudDLPDeleteInspectTemplateOperator(BaseOperator): """ Deletes an InspectTemplate. :param template_id: The ID of the inspect template to be deleted. :type template_id: str :param organization_id: (Optional) The organization ID. Required to set this field if parent resource is an organization. :type organization_id: str :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. Only set this field if the parent resource is a project instead of an organization. :type project_id: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str """ template_fields = ("template_id", "organization_id", "project_id", "gcp_conn_id") @apply_defaults def __init__( self, *, template_id: str, organization_id: Optional[str] = None, project_id: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.template_id = template_id self.organization_id = organization_id self.project_id = project_id self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) try: hook.delete_inspect_template( template_id=self.template_id, organization_id=self.organization_id, project_id=self.project_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) except NotFound: self.log.error("Template %s not found", self.template_id) class CloudDLPDeleteJobTriggerOperator(BaseOperator): """ Deletes a job trigger. :param job_trigger_id: The ID of the DLP job trigger to be deleted. :type job_trigger_id: str :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str """ template_fields = ("job_trigger_id", "project_id", "gcp_conn_id") @apply_defaults def __init__( self, *, job_trigger_id: str, project_id: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.job_trigger_id = job_trigger_id self.project_id = project_id self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) try: hook.delete_job_trigger( job_trigger_id=self.job_trigger_id, project_id=self.project_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) except NotFound: self.log.error("Trigger %s not found", self.job_trigger_id) class CloudDLPDeleteStoredInfoTypeOperator(BaseOperator): """ Deletes a stored infoType. :param stored_info_type_id: The ID of the stored info type to be deleted. :type stored_info_type_id: str :param organization_id: (Optional) The organization ID. Required to set this field if parent resource is an organization. :type organization_id: str :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. Only set this field if the parent resource is a project instead of an organization. :type project_id: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str """ template_fields = ( "stored_info_type_id", "organization_id", "project_id", "gcp_conn_id", ) @apply_defaults def __init__( self, *, stored_info_type_id: str, organization_id: Optional[str] = None, project_id: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.stored_info_type_id = stored_info_type_id self.organization_id = organization_id self.project_id = project_id self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) try: hook.delete_stored_info_type( stored_info_type_id=self.stored_info_type_id, organization_id=self.organization_id, project_id=self.project_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) except NotFound: self.log.error("Stored info %s not found", self.stored_info_type_id) class CloudDLPGetDeidentifyTemplateOperator(BaseOperator): """ Gets a DeidentifyTemplate. :param template_id: The ID of deidentify template to be read. :type template_id: str :param organization_id: (Optional) The organization ID. Required to set this field if parent resource is an organization. :type organization_id: str :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. Only set this field if the parent resource is a project instead of an organization. :type project_id: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str :rtype: google.cloud.dlp_v2.types.DeidentifyTemplate """ template_fields = ("template_id", "organization_id", "project_id", "gcp_conn_id") @apply_defaults def __init__( self, *, template_id: str, organization_id: Optional[str] = None, project_id: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.template_id = template_id self.organization_id = organization_id self.project_id = project_id self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) template = hook.get_deidentify_template( template_id=self.template_id, organization_id=self.organization_id, project_id=self.project_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) return MessageToDict(template) class CloudDLPGetDLPJobOperator(BaseOperator): """ Gets the latest state of a long-running DlpJob. :param dlp_job_id: The ID of the DLP job resource to be read. :type dlp_job_id: str :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str :rtype: google.cloud.dlp_v2.types.DlpJob """ template_fields = ("dlp_job_id", "project_id", "gcp_conn_id") @apply_defaults def __init__( self, *, dlp_job_id: str, project_id: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.dlp_job_id = dlp_job_id self.project_id = project_id self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) job = hook.get_dlp_job( dlp_job_id=self.dlp_job_id, project_id=self.project_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) return MessageToDict(job) class CloudDLPGetInspectTemplateOperator(BaseOperator): """ Gets an InspectTemplate. :param template_id: The ID of inspect template to be read. :type template_id: str :param organization_id: (Optional) The organization ID. Required to set this field if parent resource is an organization. :type organization_id: str :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. Only set this field if the parent resource is a project instead of an organization. :type project_id: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str :rtype: google.cloud.dlp_v2.types.InspectTemplate """ template_fields = ("template_id", "organization_id", "project_id", "gcp_conn_id") @apply_defaults def __init__( self, *, template_id: str, organization_id: Optional[str] = None, project_id: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.template_id = template_id self.organization_id = organization_id self.project_id = project_id self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) template = hook.get_inspect_template( template_id=self.template_id, organization_id=self.organization_id, project_id=self.project_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) return MessageToDict(template) class CloudDLPGetDLPJobTriggerOperator(BaseOperator): """ Gets a job trigger. :param job_trigger_id: The ID of the DLP job trigger to be read. :type job_trigger_id: str :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str :rtype: google.cloud.dlp_v2.types.JobTrigger """ template_fields = ("job_trigger_id", "project_id", "gcp_conn_id") @apply_defaults def __init__( self, *, job_trigger_id: str, project_id: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.job_trigger_id = job_trigger_id self.project_id = project_id self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) trigger = hook.get_job_trigger( job_trigger_id=self.job_trigger_id, project_id=self.project_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) return MessageToDict(trigger) class CloudDLPGetStoredInfoTypeOperator(BaseOperator): """ Gets a stored infoType. :param stored_info_type_id: The ID of the stored info type to be read. :type stored_info_type_id: str :param organization_id: (Optional) The organization ID. Required to set this field if parent resource is an organization. :type organization_id: str :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. Only set this field if the parent resource is a project instead of an organization. :type project_id: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str :rtype: google.cloud.dlp_v2.types.StoredInfoType """ template_fields = ( "stored_info_type_id", "organization_id", "project_id", "gcp_conn_id", ) @apply_defaults def __init__( self, *, stored_info_type_id: str, organization_id: Optional[str] = None, project_id: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.stored_info_type_id = stored_info_type_id self.organization_id = organization_id self.project_id = project_id self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) info = hook.get_stored_info_type( stored_info_type_id=self.stored_info_type_id, organization_id=self.organization_id, project_id=self.project_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) return MessageToDict(info) class CloudDLPInspectContentOperator(BaseOperator): """ Finds potentially sensitive info in content. This method has limits on input size, processing time, and output size. :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param inspect_config: (Optional) Configuration for the inspector. Items specified here will override the template referenced by the inspect_template_name argument. :type inspect_config: dict or google.cloud.dlp_v2.types.InspectConfig :param item: (Optional) The item to de-identify. Will be treated as text. :type item: dict or google.cloud.dlp_v2.types.ContentItem :param inspect_template_name: (Optional) Optional template to use. Any configuration directly specified in inspect_config will override those set in the template. :type inspect_template_name: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str :rtype: google.cloud.tasks_v2.types.InspectContentResponse """ template_fields = ( "project_id", "inspect_config", "item", "inspect_template_name", "gcp_conn_id", ) @apply_defaults def __init__( self, *, project_id: Optional[str] = None, inspect_config: Optional[Union[Dict, InspectConfig]] = None, item: Optional[Union[Dict, ContentItem]] = None, inspect_template_name: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.project_id = project_id self.inspect_config = inspect_config self.item = item self.inspect_template_name = inspect_template_name self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) response = hook.inspect_content( project_id=self.project_id, inspect_config=self.inspect_config, item=self.item, inspect_template_name=self.inspect_template_name, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) return MessageToDict(response) class CloudDLPListDeidentifyTemplatesOperator(BaseOperator): """ Lists DeidentifyTemplates. :param organization_id: (Optional) The organization ID. Required to set this field if parent resource is an organization. :type organization_id: str :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. Only set this field if the parent resource is a project instead of an organization. :type project_id: str :param page_size: (Optional) The maximum number of resources contained in the underlying API response. :type page_size: int :param order_by: (Optional) Optional comma separated list of fields to order by, followed by asc or desc postfix. :type order_by: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str :rtype: list[google.cloud.dlp_v2.types.DeidentifyTemplate] """ template_fields = ("organization_id", "project_id", "gcp_conn_id") @apply_defaults def __init__( self, *, organization_id: Optional[str] = None, project_id: Optional[str] = None, page_size: Optional[int] = None, order_by: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.organization_id = organization_id self.project_id = project_id self.page_size = page_size self.order_by = order_by self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) template = hook.list_deidentify_templates( organization_id=self.organization_id, project_id=self.project_id, page_size=self.page_size, order_by=self.order_by, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) return MessageToDict(template) class CloudDLPListDLPJobsOperator(BaseOperator): """ Lists DlpJobs that match the specified filter in the request. :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param results_filter: (Optional) Filter used to specify a subset of results. :type results_filter: str :param page_size: (Optional) The maximum number of resources contained in the underlying API response. :type page_size: int :param job_type: (Optional) The type of job. :type job_type: str :param order_by: (Optional) Optional comma separated list of fields to order by, followed by asc or desc postfix. :type order_by: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str :rtype: list[google.cloud.dlp_v2.types.DlpJob] """ template_fields = ("project_id", "gcp_conn_id") @apply_defaults def __init__( self, *, project_id: Optional[str] = None, results_filter: Optional[str] = None, page_size: Optional[int] = None, job_type: Optional[str] = None, order_by: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.project_id = project_id self.results_filter = results_filter self.page_size = page_size self.job_type = job_type self.order_by = order_by self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) job = hook.list_dlp_jobs( project_id=self.project_id, results_filter=self.results_filter, page_size=self.page_size, job_type=self.job_type, order_by=self.order_by, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) return MessageToDict(job) class CloudDLPListInfoTypesOperator(BaseOperator): """ Returns a list of the sensitive information types that the DLP API supports. :param language_code: (Optional) Optional BCP-47 language code for localized infoType friendly names. If omitted, or if localized strings are not available, en-US strings will be returned. :type language_code: str :param results_filter: (Optional) Filter used to specify a subset of results. :type results_filter: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str :rtype: ListInfoTypesResponse """ template_fields = ("language_code", "gcp_conn_id") @apply_defaults def __init__( self, *, language_code: Optional[str] = None, results_filter: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.language_code = language_code self.results_filter = results_filter self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) response = hook.list_info_types( language_code=self.language_code, results_filter=self.results_filter, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) return MessageToDict(response) class CloudDLPListInspectTemplatesOperator(BaseOperator): """ Lists InspectTemplates. :param organization_id: (Optional) The organization ID. Required to set this field if parent resource is an organization. :type organization_id: str :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. Only set this field if the parent resource is a project instead of an organization. :type project_id: str :param page_size: (Optional) The maximum number of resources contained in the underlying API response. :type page_size: int :param order_by: (Optional) Optional comma separated list of fields to order by, followed by asc or desc postfix. :type order_by: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str :rtype: list[google.cloud.dlp_v2.types.InspectTemplate] """ template_fields = ("organization_id", "project_id", "gcp_conn_id") @apply_defaults def __init__( self, *, organization_id: Optional[str] = None, project_id: Optional[str] = None, page_size: Optional[int] = None, order_by: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.organization_id = organization_id self.project_id = project_id self.page_size = page_size self.order_by = order_by self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) templates = hook.list_inspect_templates( organization_id=self.organization_id, project_id=self.project_id, page_size=self.page_size, order_by=self.order_by, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) return [MessageToDict(t) for t in templates] class CloudDLPListJobTriggersOperator(BaseOperator): """ Lists job triggers. :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param page_size: (Optional) The maximum number of resources contained in the underlying API response. :type page_size: int :param order_by: (Optional) Optional comma separated list of fields to order by, followed by asc or desc postfix. :type order_by: str :param results_filter: (Optional) Filter used to specify a subset of results. :type results_filter: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str :rtype: list[google.cloud.dlp_v2.types.JobTrigger] """ template_fields = ("project_id", "gcp_conn_id") @apply_defaults def __init__( self, *, project_id: Optional[str] = None, page_size: Optional[int] = None, order_by: Optional[str] = None, results_filter: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.project_id = project_id self.page_size = page_size self.order_by = order_by self.results_filter = results_filter self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) jobs = hook.list_job_triggers( project_id=self.project_id, page_size=self.page_size, order_by=self.order_by, results_filter=self.results_filter, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) return [MessageToDict(j) for j in jobs] class CloudDLPListStoredInfoTypesOperator(BaseOperator): """ Lists stored infoTypes. :param organization_id: (Optional) The organization ID. Required to set this field if parent resource is an organization. :type organization_id: str :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. Only set this field if the parent resource is a project instead of an organization. :type project_id: str :param page_size: (Optional) The maximum number of resources contained in the underlying API response. :type page_size: int :param order_by: (Optional) Optional comma separated list of fields to order by, followed by asc or desc postfix. :type order_by: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str :rtype: list[google.cloud.dlp_v2.types.StoredInfoType] """ template_fields = ("organization_id", "project_id", "gcp_conn_id") @apply_defaults def __init__( self, *, organization_id: Optional[str] = None, project_id: Optional[str] = None, page_size: Optional[int] = None, order_by: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.organization_id = organization_id self.project_id = project_id self.page_size = page_size self.order_by = order_by self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) infos = hook.list_stored_info_types( organization_id=self.organization_id, project_id=self.project_id, page_size=self.page_size, order_by=self.order_by, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) return [MessageToDict(i) for i in infos] class CloudDLPRedactImageOperator(BaseOperator): """ Redacts potentially sensitive info from an image. This method has limits on input size, processing time, and output size. :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param inspect_config: (Optional) Configuration for the inspector. Items specified here will override the template referenced by the inspect_template_name argument. :type inspect_config: dict or google.cloud.dlp_v2.types.InspectConfig :param image_redaction_configs: (Optional) The configuration for specifying what content to redact from images. :type image_redaction_configs: list[dict] or list[google.cloud.dlp_v2.types.RedactImageRequest.ImageRedactionConfig] :param include_findings: (Optional) Whether the response should include findings along with the redacted image. :type include_findings: bool :param byte_item: (Optional) The content must be PNG, JPEG, SVG or BMP. :type byte_item: dict or google.cloud.dlp_v2.types.ByteContentItem :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str :rtype: google.cloud.dlp_v2.types.RedactImageResponse """ template_fields = ( "project_id", "inspect_config", "image_redaction_configs", "include_findings", "byte_item", "gcp_conn_id", ) @apply_defaults def __init__( self, *, project_id: Optional[str] = None, inspect_config: Optional[Union[Dict, InspectConfig]] = None, image_redaction_configs: Optional[Union[Dict, RedactImageRequest.ImageRedactionConfig]] = None, include_findings: Optional[bool] = None, byte_item: Optional[Union[Dict, ByteContentItem]] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.project_id = project_id self.inspect_config = inspect_config self.image_redaction_configs = image_redaction_configs self.include_findings = include_findings self.byte_item = byte_item self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) response = hook.redact_image( project_id=self.project_id, inspect_config=self.inspect_config, image_redaction_configs=self.image_redaction_configs, include_findings=self.include_findings, byte_item=self.byte_item, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) return MessageToDict(response) class CloudDLPReidentifyContentOperator(BaseOperator): """ Re-identifies content that has been de-identified. :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param reidentify_config: (Optional) Configuration for the re-identification of the content item. :type reidentify_config: dict or google.cloud.dlp_v2.types.DeidentifyConfig :param inspect_config: (Optional) Configuration for the inspector. :type inspect_config: dict or google.cloud.dlp_v2.types.InspectConfig :param item: (Optional) The item to re-identify. Will be treated as text. :type item: dict or google.cloud.dlp_v2.types.ContentItem :param inspect_template_name: (Optional) Optional template to use. Any configuration directly specified in inspect_config will override those set in the template. :type inspect_template_name: str :param reidentify_template_name: (Optional) Optional template to use. References an instance of DeidentifyTemplate. Any configuration directly specified in reidentify_config or inspect_config will override those set in the template. :type reidentify_template_name: str :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str :rtype: google.cloud.dlp_v2.types.ReidentifyContentResponse """ template_fields = ( "project_id", "reidentify_config", "inspect_config", "item", "inspect_template_name", "reidentify_template_name", "gcp_conn_id", ) @apply_defaults def __init__( self, *, project_id: Optional[str] = None, reidentify_config: Optional[Union[Dict, DeidentifyConfig]] = None, inspect_config: Optional[Union[Dict, InspectConfig]] = None, item: Optional[Union[Dict, ContentItem]] = None, inspect_template_name: Optional[str] = None, reidentify_template_name: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.project_id = project_id self.reidentify_config = reidentify_config self.inspect_config = inspect_config self.item = item self.inspect_template_name = inspect_template_name self.reidentify_template_name = reidentify_template_name self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) response = hook.reidentify_content( project_id=self.project_id, reidentify_config=self.reidentify_config, inspect_config=self.inspect_config, item=self.item, inspect_template_name=self.inspect_template_name, reidentify_template_name=self.reidentify_template_name, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) return MessageToDict(response) class CloudDLPUpdateDeidentifyTemplateOperator(BaseOperator): """ Updates the DeidentifyTemplate. :param template_id: The ID of deidentify template to be updated. :type template_id: str :param organization_id: (Optional) The organization ID. Required to set this field if parent resource is an organization. :type organization_id: str :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. Only set this field if the parent resource is a project instead of an organization. :type project_id: str :param deidentify_template: New DeidentifyTemplate value. :type deidentify_template: dict or google.cloud.dlp_v2.types.DeidentifyTemplate :param update_mask: Mask to control which fields get updated. :type update_mask: dict or google.cloud.dlp_v2.types.FieldMask :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str :rtype: google.cloud.dlp_v2.types.DeidentifyTemplate """ template_fields = ( "template_id", "organization_id", "project_id", "deidentify_template", "update_mask", "gcp_conn_id", ) @apply_defaults def __init__( self, *, template_id: str, organization_id: Optional[str] = None, project_id: Optional[str] = None, deidentify_template: Optional[Union[Dict, DeidentifyTemplate]] = None, update_mask: Optional[Union[Dict, FieldMask]] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.template_id = template_id self.organization_id = organization_id self.project_id = project_id self.deidentify_template = deidentify_template self.update_mask = update_mask self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) template = hook.update_deidentify_template( template_id=self.template_id, organization_id=self.organization_id, project_id=self.project_id, deidentify_template=self.deidentify_template, update_mask=self.update_mask, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) return MessageToDict(template) class CloudDLPUpdateInspectTemplateOperator(BaseOperator): """ Updates the InspectTemplate. :param template_id: The ID of the inspect template to be updated. :type template_id: str :param organization_id: (Optional) The organization ID. Required to set this field if parent resource is an organization. :type organization_id: str :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. Only set this field if the parent resource is a project instead of an organization. :type project_id: str :param inspect_template: New InspectTemplate value. :type inspect_template: dict or google.cloud.dlp_v2.types.InspectTemplate :param update_mask: Mask to control which fields get updated. :type update_mask: dict or google.cloud.dlp_v2.types.FieldMask :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str :rtype: google.cloud.dlp_v2.types.InspectTemplate """ template_fields = ( "template_id", "organization_id", "project_id", "inspect_template", "update_mask", "gcp_conn_id", ) @apply_defaults def __init__( self, *, template_id: str, organization_id: Optional[str] = None, project_id: Optional[str] = None, inspect_template: Optional[Union[Dict, InspectTemplate]] = None, update_mask: Optional[Union[Dict, FieldMask]] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.template_id = template_id self.organization_id = organization_id self.project_id = project_id self.inspect_template = inspect_template self.update_mask = update_mask self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) template = hook.update_inspect_template( template_id=self.template_id, organization_id=self.organization_id, project_id=self.project_id, inspect_template=self.inspect_template, update_mask=self.update_mask, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) return MessageToDict(template) class CloudDLPUpdateJobTriggerOperator(BaseOperator): """ Updates a job trigger. :param job_trigger_id: The ID of the DLP job trigger to be updated. :type job_trigger_id: str :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param job_trigger: New JobTrigger value. :type job_trigger: dict or google.cloud.dlp_v2.types.JobTrigger :param update_mask: Mask to control which fields get updated. :type update_mask: dict or google.cloud.dlp_v2.types.FieldMask :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str :rtype: google.cloud.dlp_v2.types.InspectTemplate """ template_fields = ( "job_trigger_id", "project_id", "job_trigger", "update_mask", "gcp_conn_id", ) @apply_defaults def __init__( self, *, job_trigger_id, project_id: Optional[str] = None, job_trigger: Optional[JobTrigger] = None, update_mask: Optional[Union[Dict, FieldMask]] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.job_trigger_id = job_trigger_id self.project_id = project_id self.job_trigger = job_trigger self.update_mask = update_mask self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) trigger = hook.update_job_trigger( job_trigger_id=self.job_trigger_id, project_id=self.project_id, job_trigger=self.job_trigger, update_mask=self.update_mask, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) return MessageToDict(trigger) class CloudDLPUpdateStoredInfoTypeOperator(BaseOperator): """ Updates the stored infoType by creating a new version. :param stored_info_type_id: The ID of the stored info type to be updated. :type stored_info_type_id: str :param organization_id: (Optional) The organization ID. Required to set this field if parent resource is an organization. :type organization_id: str :param project_id: (Optional) Google Cloud Platform project ID where the DLP Instance exists. Only set this field if the parent resource is a project instead of an organization. :type project_id: str :param config: Updated configuration for the storedInfoType. If not provided, a new version of the storedInfoType will be created with the existing configuration. :type config: dict or google.cloud.dlp_v2.types.StoredInfoTypeConfig :param update_mask: Mask to control which fields get updated. :type update_mask: dict or google.cloud.dlp_v2.types.FieldMask :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :type retry: google.api_core.retry.Retry :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. :type timeout: float :param metadata: (Optional) Additional metadata that is provided to the method. :type metadata: sequence[tuple[str, str]]] :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str :rtype: google.cloud.dlp_v2.types.StoredInfoType """ template_fields = ( "stored_info_type_id", "organization_id", "project_id", "config", "update_mask", "gcp_conn_id", ) @apply_defaults def __init__( self, *, stored_info_type_id, organization_id: Optional[str] = None, project_id: Optional[str] = None, config: Optional[Union[Dict, StoredInfoTypeConfig]] = None, update_mask: Optional[Union[Dict, FieldMask]] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = "google_cloud_default", **kwargs ) -> None: super().__init__(**kwargs) self.stored_info_type_id = stored_info_type_id self.organization_id = organization_id self.project_id = project_id self.config = config self.update_mask = update_mask self.retry = retry self.timeout = timeout self.metadata = metadata self.gcp_conn_id = gcp_conn_id def execute(self, context): hook = CloudDLPHook(gcp_conn_id=self.gcp_conn_id) info = hook.update_stored_info_type( stored_info_type_id=self.stored_info_type_id, organization_id=self.organization_id, project_id=self.project_id, config=self.config, update_mask=self.update_mask, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) return MessageToDict(info)
py
7df7325dc066bd5034e5e2abde290fb04cef7905
# Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance # with the License. A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "LICENSE.txt" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES # OR CONDITIONS OF ANY KIND, express or implied. See the License for the specific language governing permissions and # limitations under the License. import json import pytest import yaml from assertpy import assert_that from marshmallow.validate import ValidationError from pcluster.constants import MAX_NUMBER_OF_COMPUTE_RESOURCES, MAX_NUMBER_OF_QUEUES from pcluster.schemas.cluster_schema import ( ClusterSchema, HeadNodeIamSchema, ImageSchema, QueueIamSchema, SchedulingSchema, SharedStorageSchema, ) from tests.pcluster.aws.dummy_aws_api import mock_aws_api from tests.pcluster.utils import load_cluster_model_from_yaml def _check_cluster_schema(config_file_name): # Load cluster model from Yaml file input_yaml, cluster = load_cluster_model_from_yaml(config_file_name) # Re-create Yaml file from model and compare content cluster_schema = ClusterSchema(cluster_name="clustername") cluster_schema.context = {"delete_defaults_when_dump": True} output_json = cluster_schema.dump(cluster) assert_that(json.dumps(input_yaml, sort_keys=True)).is_equal_to(json.dumps(output_json, sort_keys=True)) # Print output yaml output_yaml = yaml.dump(output_json) print(output_yaml) @pytest.mark.parametrize("config_file_name", ["slurm.required.yaml", "slurm.full.yaml"]) def test_cluster_schema_slurm(mocker, test_datadir, config_file_name): mock_aws_api(mocker) _check_cluster_schema(config_file_name) @pytest.mark.parametrize("config_file_name", ["awsbatch.simple.yaml", "awsbatch.full.yaml"]) def test_cluster_schema_awsbatch(test_datadir, config_file_name): _check_cluster_schema(config_file_name) @pytest.mark.parametrize( "os, custom_ami, failure_message", [ (None, None, "Missing data for required field"), ("ubuntu1804", "ami-12345678", None), ("centos7", None, None), ], ) def test_image_schema(os, custom_ami, failure_message): image_schema = {} if os: image_schema["Os"] = os if custom_ami: image_schema["CustomAmi"] = custom_ami if failure_message: with pytest.raises(ValidationError, match=failure_message): ImageSchema().load(image_schema) else: image = ImageSchema().load(image_schema) assert_that(image.os).is_equal_to(os) assert_that(image.custom_ami).is_equal_to(custom_ami) @pytest.mark.parametrize( "instance_role, instance_profile, additional_iam_policies, s3_access, failure_message", [ (None, None, "arn:aws:iam::aws:policy/AdministratorAccess", True, False), ( "arn:aws:iam::aws:role/CustomHeadNodeRole", None, "arn:aws:iam::aws:policy/AdministratorAccess", False, "InstanceProfile, InstanceRole or AdditionalIamPolicies can not be configured together.", ), ( "arn:aws:iam::aws:role/CustomHeadNodeRole", None, None, True, "S3Access can not be configured when InstanceRole is set.", ), ( None, "arn:aws:iam::aws:instance-profile/CustomNodeInstanceProfile", None, True, "S3Access can not be configured when InstanceProfile is set.", ), ( "arn:aws:iam::aws:role/CustomHeadNodeRole", "arn:aws:iam::aws:instance-profile/CustomNodeInstanceProfile", None, False, "InstanceProfile, InstanceRole or AdditionalIamPolicies can not be configured together.", ), (None, "arn:aws:iam::aws:instance-profile/CustomNodeInstanceProfile", None, False, False), ("arn:aws:iam::aws:role/CustomHeadNodeRole", None, None, False, False), ], ) def test_iam_schema(instance_role, instance_profile, additional_iam_policies, s3_access, failure_message): iam_dict = dict() if instance_role: iam_dict["InstanceRole"] = instance_role if instance_profile: iam_dict["InstanceProfile"] = instance_profile if additional_iam_policies: iam_dict["AdditionalIamPolicies"] = [{"Policy": additional_iam_policies}] if s3_access: iam_dict["S3Access"] = [{"BucketName": "dummy-bucket-name"}] if failure_message: with pytest.raises( ValidationError, match=failure_message, ): HeadNodeIamSchema().load(iam_dict) with pytest.raises( ValidationError, match=failure_message, ): QueueIamSchema().load(iam_dict) else: iam = HeadNodeIamSchema().load(iam_dict) assert_that(iam.instance_role).is_equal_to(instance_role) assert_that(iam.instance_profile).is_equal_to(instance_profile) iam = QueueIamSchema().load(iam_dict) assert_that(iam.instance_role).is_equal_to(instance_role) assert_that(iam.instance_profile).is_equal_to(instance_profile) DUMMY_AWSBATCH_QUEUE = { "Name": "queue1", "Networking": {"SubnetIds": ["subnet-12345678"]}, "ComputeResources": [{"Name": "compute_resource1", "InstanceTypes": ["c5.xlarge"]}], } def dummy_slurm_queue(name="queue1", number_of_compute_resource=1): slurm_queue = { "Name": name, "Networking": {"SubnetIds": ["subnet-12345678"]}, "ComputeResources": [], } for index in range(number_of_compute_resource): slurm_queue["ComputeResources"].append( dummy_slurm_compute_resource(f"compute_resource{index}", f"c{index}.xlarge") ) return slurm_queue def dummpy_slurm_queue_list(queue_num): return [dummy_slurm_queue(f"queue{index}") for index in range(queue_num)] def dummy_slurm_compute_resource(name, instance_type): return {"Name": name, "InstanceType": instance_type} @pytest.mark.parametrize( "config_dict, failure_message", [ # failures ({"Scheduler": "awsbatch"}, "AwsBatchQueues section must be specified"), ({"Scheduler": "slurm"}, "SlurmQueues section must be specified"), ( {"Scheduler": "slurm", "AwsBatchQueues": [DUMMY_AWSBATCH_QUEUE]}, "Queues section is not appropriate to the Scheduler", ), ( {"Scheduler": "awsbatch", "SlurmQueues": [dummy_slurm_queue()]}, "Queues section is not appropriate to the Scheduler", ), ( {"Scheduler": "slurm", "SlurmQueues": [dummy_slurm_queue()], "AwsBatchQueues": [DUMMY_AWSBATCH_QUEUE]}, "Queues section is not appropriate to the Scheduler", ), ( {"Scheduler": "slurm", "SlurmSettings": {}, "AwsBatchSettings": {}}, "Multiple .*Settings sections cannot be specified in the Scheduling section", ), # success ({"Scheduler": "slurm", "SlurmQueues": [dummy_slurm_queue()]}, None), ( { "Scheduler": "slurm", "SlurmQueues": [ dummy_slurm_queue(), { "Name": "queue2", "Networking": {"SubnetIds": ["subnet-12345678"]}, "ComputeResources": [ {"Name": "compute_resource3", "InstanceType": "c5.2xlarge", "MaxCount": 5}, {"Name": "compute_resource4", "InstanceType": "c4.2xlarge"}, ], }, ], }, None, ), ( { "Scheduler": "slurm", "SlurmQueues": [ dummy_slurm_queue(), { "Name": "queue2", "Networking": {"SubnetIds": ["subnet-00000000"]}, "ComputeResources": [ {"Name": "compute_resource3", "InstanceType": "c5.2xlarge", "MaxCount": 5}, {"Name": "compute_resource4", "InstanceType": "c4.2xlarge"}, ], }, ], }, "The SubnetIds used for all of the queues should be the same", ), ( # maximum slurm queue length { "Scheduler": "slurm", "SlurmQueues": dummpy_slurm_queue_list(10), }, None, ), ( # beyond maximum slurm queue length { "Scheduler": "slurm", "SlurmQueues": dummpy_slurm_queue_list(11), }, f"Queue.*Longer than maximum length {MAX_NUMBER_OF_QUEUES}", ), ( # maximum slurm queue length { "Scheduler": "slurm", "SlurmQueues": [dummy_slurm_queue("queue1", number_of_compute_resource=5)], }, None, ), ( # beyond maximum slurm queue length { "Scheduler": "slurm", "SlurmQueues": [dummy_slurm_queue("queue1", number_of_compute_resource=6)], }, f"ComputeResources.*Longer than maximum length {MAX_NUMBER_OF_COMPUTE_RESOURCES}", ), ], ) def test_scheduling_schema(mocker, config_dict, failure_message): mock_aws_api(mocker) if failure_message: with pytest.raises(ValidationError, match=failure_message): SchedulingSchema().load(config_dict) else: SchedulingSchema().load(config_dict) @pytest.mark.parametrize( "config_dict, failure_message", [ # failures ({"StorageType": "Ebs"}, "Missing data for required field."), ({"StorageType": "Ebs", "MountDir": "mount/tmp"}, "Missing data for required field."), ({"StorageType": "Ebs", "Name": "name"}, "Missing data for required field."), ({"StorageType": "Efs", "Name": "name"}, "Missing data for required field."), ( { "StorageType": "Ebs", "Name": "name", "MountDir": "mount/tmp", "FsxLustreSettings": {"CopyTagsToBackups": True}, }, "SharedStorage > .*Settings section is not appropriate to the", ), ( {"StorageType": "Efs", "Name": "name", "MountDir": "mount/tmp", "EbsSettings": {"Encrypted": True}}, "SharedStorage > .*Settings section is not appropriate to the", ), ( {"StorageType": "FsxLustre", "Name": "name", "MountDir": "mount/tmp", "EfsSettings": {"Encrypted": True}}, "SharedStorage > .*Settings section is not appropriate to the", ), ( { "StorageType": "Efs", "Name": "name", "MountDir": "mount/tmp", "EbsSettings": {"Encrypted": True}, "EfsSettings": {"Encrypted": True}, }, "Multiple .*Settings sections cannot be specified in the SharedStorage items", ), # success ( { "StorageType": "FsxLustre", "Name": "name", "MountDir": "mount/tmp", "FsxLustreSettings": {"CopyTagsToBackups": True}, }, None, ), ({"StorageType": "Efs", "Name": "name", "MountDir": "mount/tmp", "EfsSettings": {"Encrypted": True}}, None), ({"StorageType": "Ebs", "Name": "name", "MountDir": "mount/tmp", "EbsSettings": {"Encrypted": True}}, None), ], ) def test_shared_storage_schema(mocker, config_dict, failure_message): mock_aws_api(mocker) if failure_message: with pytest.raises(ValidationError, match=failure_message): SharedStorageSchema().load(config_dict) else: SharedStorageSchema().load(config_dict) @pytest.mark.parametrize( "scheduler, install_intel_packages_enabled, failure_message", [ ("slurm", True, None), ("slurm", False, None), ("awsbatch", True, "use of the IntelSoftware configuration is not supported when using awsbatch"), ("awsbatch", False, None), ], ) def test_scheduler_constraints_for_intel_packages( mocker, test_datadir, scheduler, install_intel_packages_enabled, failure_message ): mock_aws_api(mocker) config_file_name = f"{scheduler}.{'enabled' if install_intel_packages_enabled else 'disabled'}.yaml" if failure_message: with pytest.raises( ValidationError, match=failure_message, ): load_cluster_model_from_yaml(config_file_name, test_datadir) else: _, cluster = load_cluster_model_from_yaml(config_file_name, test_datadir) assert_that(cluster.scheduling.scheduler).is_equal_to(scheduler) assert_that(cluster.additional_packages.intel_software.intel_hpc_platform).is_equal_to( install_intel_packages_enabled )
py
7df7338e99334d5f9af467adbfe3a2a4b24ae78b
# -------------------------- # UFSC - CTC - INE - INE5603 # Exercício do Navio # -------------------------- # Classe que permite gerenciar os containers de um navio. # from view.menu import Menu class PainelGerenciaContainer: def gerencie(self, navio): opcoes = { 0: 'Voltar', 1: 'Carregar Container', 2: 'Descarregar Container', 3: 'Verificar se Carrega Container', 4: 'Procurar Containers por Peso' } menu = Menu('Gerenciando Containers', opcoes) voltar = False while not voltar: opcao = menu.pergunte() if opcao == 0: voltar = True else: if opcao == 1: self._carregue(navio) elif opcao == 2: self._descarregue(navio) elif opcao == 3: self._verifique(navio) elif opcao == 4: self._procure_por_peso(navio) def _carregue(self, navio): print('** Carregar Container **') codigo = input('Código do Container: ') refrigerado = 'S' == input('Refrigerado? [s/n]').upper() peso_mercadoria = int(input('Peso da mercadoria: ')) if navio.carregue(codigo, refrigerado, peso_mercadoria): print('Carregou!') else: print('Não foi possível carregar.') input('Tecle ENTER para continuar') def _descarregue(self, navio): print('** Descarregar Container **') codigo = input('Código do Container a ser descarregado: ') container = navio.descarregue(codigo) if container is None: print('Não há container com código {}'.format(codigo)) else: print('Descarregado container {} cujo peso é {}'.format(codigo, container.peso())) input('Tecle ENTER para continuar') def _verifique(self, navio): print('** Verificar se Carrega Container **') codigo = input('Código do Container a ser verificado: ') if navio.carregando(codigo): print('Sim, está carregando este container.') else: print('Não, não carrega este container.') input('Tecle ENTER para continuar') def _procure_por_peso(self, navio): print('** Procurar Conainers Mais Leves Que **') peso = int(input('Qual o peso limite desejado? ')) containers = navio.containers_abaixo_de_peso(peso) if len(containers) == 0: print('Não há nenhum container cujo peso esteja abaixo de {}'.format(peso)) else: print('Há {} container(s) cujo peso está abaixo de {}'.format(len(containers), peso)) for container in containers: print(container) input('Tecle ENTER para continuar')
py
7df73434435dbe2dc01627b0ef5899eb2317d034
# coding=utf-8 # Copyright 2019 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """TABLE BERT utility functions.""" from tapas.models.bert import modeling from tapas.utils import attention_utils import tensorflow.compat.v1 as tf _AttentionMode = attention_utils.RestrictAttentionMode def create_model( features, mode, bert_config, restrict_attention_mode=_AttentionMode.FULL, restrict_attention_bucket_size=0, restrict_attention_header_size=None, restrict_attention_row_heads_ratio=0.5, restrict_attention_sort_after_projection=True, token_weights=None, disabled_features=None, disable_position_embeddings=False, reset_position_index_per_cell=False, proj_value_length=None, ): """Creates a TABLE BERT model.""" is_training = (mode == tf.estimator.ModeKeys.TRAIN) token_type_features = [ "segment_ids", "column_ids", "row_ids", "prev_label_ids", "column_ranks", "inv_column_ranks", "numeric_relations" ] token_type_ids = [] for key in token_type_features: if disabled_features is not None and key in disabled_features: token_type_ids.append(tf.zeros_like(features[key])) else: token_type_ids.append(features[key]) attention_mask = None custom_attention_layer = None num_row_heads = int(bert_config.num_attention_heads * restrict_attention_row_heads_ratio) num_column_heads = bert_config.num_attention_heads - num_row_heads if restrict_attention_mode == _AttentionMode.HEADWISE_SAME_COLUMN_OR_ROW: attention_mask = attention_utils.compute_headwise_sparse_attention_mask( num_row_heads=num_row_heads, num_column_heads=num_column_heads, bucket_size=restrict_attention_bucket_size, header_size=restrict_attention_header_size, **features) elif restrict_attention_mode == _AttentionMode.SAME_COLUMN_OR_ROW: attention_mask = attention_utils.compute_sparse_attention_mask(**features) elif restrict_attention_mode == _AttentionMode.HEADWISE_EFFICIENT: custom_attention_layer = attention_utils.create_bucketed_attention_layer( input_mask=features["input_mask"], input_header=tf.math.equal(features["segment_ids"], 0), bucket_size=restrict_attention_bucket_size, header_size=restrict_attention_header_size, sort_after_projection=restrict_attention_sort_after_projection, token_type_ids=[(num_row_heads, True, features["row_ids"]), (num_column_heads, False, features["column_ids"])]) elif restrict_attention_mode == _AttentionMode.FULL: pass else: raise ValueError(f"Unknown attention mode: {restrict_attention_mode}") return modeling.BertModel( config=bert_config, is_training=is_training, input_ids=features["input_ids"], input_mask=features["input_mask"], attention_mask=attention_mask, custom_attention_layer=custom_attention_layer, token_weights=token_weights, token_type_ids=token_type_ids, use_position_embeddings=not disable_position_embeddings, reset_position_index_per_cell=reset_position_index_per_cell, proj_value_length=proj_value_length, )
py
7df73447566991a673cb31f09fcd3248cef954fd
# labplus mPython library # MIT license; Copyright (c) 2018 labplus # V1.0 Zhang KaiHua([email protected]) # mpython buildin periphers drivers # history: # V1.1 add oled draw function,add buzz.freq(). by tangliufeng # V1.2 add servo/ui class,by tangliufeng from machine import I2C, PWM, Pin, ADC, TouchPad from ssd1106 import SSD1106_I2C import esp, math, time, network import ustruct, array from neopixel import NeoPixel # from esp import dht_readinto from time import sleep_ms, sleep_us, sleep import framebuf import calibrate_img from micropython import schedule,const i2c = I2C(0, scl=Pin(Pin.P19), sda=Pin(Pin.P20), freq=400000) class Font(object): def __init__(self, font_address=0x400000): self.font_address = font_address buffer = bytearray(18) esp.flash_read(self.font_address, buffer) self.header, \ self.height, \ self.width, \ self.baseline, \ self.x_height, \ self.Y_height, \ self.first_char,\ self.last_char = ustruct.unpack('4sHHHHHHH', buffer) self.first_char_info_address = self.font_address + 18 def GetCharacterData(self, c): uni = ord(c) # if uni not in range(self.first_char, self.last_char): # return None if (uni < self.first_char or uni > self.last_char): return None char_info_address = self.first_char_info_address + \ (uni - self.first_char) * 6 buffer = bytearray(6) esp.flash_read(char_info_address, buffer) ptr_char_data, len = ustruct.unpack('IH', buffer) if (ptr_char_data) == 0 or (len == 0): return None buffer = bytearray(len) esp.flash_read(ptr_char_data + self.font_address, buffer) return buffer class TextMode(): normal = 1 rev = 2 trans = 3 xor = 4 class OLED(SSD1106_I2C): """ 128x64 oled display """ def __init__(self): super().__init__(128, 64, i2c) self.f = Font() if self.f is None: raise Exception('font load failed') def DispChar(self, s, x, y, mode=TextMode.normal, auto_return=False): row = 0 str_width = 0 if self.f is None: return for c in s: data = self.f.GetCharacterData(c) if data is None: if auto_return is True: x = x + self.f.width else: x = x + self.width continue width, bytes_per_line = ustruct.unpack('HH', data[:4]) # print('character [%d]: width = %d, bytes_per_line = %d' % (ord(c) # , width, bytes_per_line)) if auto_return is True: if x > self.width - width: str_width += self.width - x x = 0 row += 1 y += self.f.height if y > (self.height - self.f.height)+0: y, row = 0, 0 for h in range(0, self.f.height): w = 0 i = 0 while w < width: mask = data[4 + h * bytes_per_line + i] if (width - w) >= 8: n = 8 else: n = width - w py = y + h page = py >> 3 bit = 0x80 >> (py % 8) for p in range(0, n): px = x + w + p c = 0 if (mask & 0x80) != 0: if mode == TextMode.normal or \ mode == TextMode.trans: c = 1 if mode == TextMode.rev: c = 0 if mode == TextMode.xor: c = self.buffer[page * (self.width if auto_return is True else 128) + px] & bit if c != 0: c = 0 else: c = 1 super().pixel(px, py, c) else: if mode == TextMode.normal: c = 0 super().pixel(px, py, c) if mode == TextMode.rev: c = 1 super().pixel(px, py, c) mask = mask << 1 w = w + 8 i = i + 1 x = x + width + 1 str_width += width + 1 return (str_width-1,(x-1, y)) def DispChar_font(self, font, s, x, y, invert=False): """ custom font display.Ref by , https://github.com/peterhinch/micropython-font-to-py :param font: use font_to_py.py script convert to `py` from `ttf` or `otf`. """ screen_width = self.width screen_height = self.height text_row = x text_col = y text_length = 0 if font.hmap(): font_map = framebuf.MONO_HMSB if font.reverse() else framebuf.MONO_HLSB else: raise ValueError('Font must be horizontally mapped.') for c in s: glyph, char_height, char_width = font.get_ch(c) buf = bytearray(glyph) if invert: for i, v in enumerate(buf): buf[i] = 0xFF & ~ v fbc = framebuf.FrameBuffer(buf, char_width, char_height, font_map) if text_row + char_width > screen_width - 1: text_length += screen_width-text_row text_row = 0 text_col += char_height if text_col + char_height > screen_height + 2: text_col = 0 super().blit(fbc, text_row, text_col) text_row = text_row + char_width+1 text_length += char_width+1 return (text_length-1, (text_row-1, text_col)) # display if 60 in i2c.scan(): oled = OLED() display = oled class Accelerometer(): """MSA300""" # Range and resolustion RANGE_2G = const(0) RANGE_4G = const(1) RANGE_8G = const(2) RANGE_16G = const(3) RES_14_BIT = const(0) RES_12_BIT = const(1) RES_10_BIT = const(2) # Event TILT_LEFT = const(0) TILT_RIGHT = const(1) TILT_UP = const(2) TILT_DOWN = const(3) FACE_UP = const(4) FACE_DOWN = const(5) SINGLE_CLICK = const(6) DOUBLE_CLICK = const(7) FREEFALL = const(8) def __init__(self): self.addr = 38 self.i2c = i2c self.set_resolution(Accelerometer.RES_10_BIT) self.set_range(Accelerometer.RANGE_2G) self._writeReg(0x12, 0x03) # polarity of y,z axis, self._writeReg(0x11, 0) # set power mode = normal # interrupt self._writeReg(0x16, 0x70) # int enabled: Orient | S_TAP | D_TAP self._writeReg(0x17, 0x08) # int enabled: Freefall self._writeReg(0x19, 0x71) # int1 map to: Orient, S_TAP, D_TAP, Freefall self._writeReg(0x20, 0x02) # int1 active level = 0, output = OD self._writeReg(0x21, 0x0C) # int tempoary latched 25ms # freefall: # single mode: |acc_x| < Threshold && |acc_y| < Threshold && |acc_z| < Threshold, at least time > Duration # sum mode: |acc_x| + |acc_y| + |acc_z| < Threshold, at least time > Duration self._writeReg(0x22, 20) # Freefall Duration:(n+1)*2ms, range from 2ms to 512ms self._writeReg(0x23, 48) # Freefall Threshold: n*7.81mg self._writeReg(0x24, 0x01) # Freefall mode = 0-singlemode;hysteresis = n*125mg # tap: self._writeReg(0x2A, 0x06) # Tap duration:quit = 30ms, shock=50ms, time window for secent shock=500ms self._writeReg(0x2B, 0x0A) # Tap threshold = 10*[62.5mg@2G | 125mg@4G | 250mg@8G | 500mg@16g] # Orient self._writeReg(0x2C, 0x18) # Orient hysteresis= 1*62.5mg; # block mode = 10 z_axis blocking or slope in any axis > 0.2g; # orient mode = 00-symetrical self._writeReg(0x2D, 8) # Z-axis block # int pin irq register self.int = Pin(37, Pin.IN) self.int.irq(trigger=Pin.IRQ_FALLING, handler=self.irq) # event handler self.event_tilt_up = None self.event_tilt_down = None self.event_tilt_left = None self.event_tilt_right = None self.event_face_up = None self.event_face_down = None self.event_single_click = None self.event_double_click = None self.event_freefall = None def irq(self, arg): reg_int = self._readReg(0x09)[0] reg_orent = self._readReg(0x0C)[0] # orient_int if (reg_int & 0x40): if ((reg_orent & 0x30) == 0x00 and self.event_tilt_left is not None): schedule(self.event_tilt_left, self.TILT_LEFT) if ((reg_orent & 0x30) == 0x10 and self.event_tilt_right is not None): schedule(self.event_tilt_right, self.TILT_RIGHT) if ((reg_orent & 0x30) == 0x20 and self.event_tilt_up is not None): schedule(self.event_tilt_up, self.TILT_UP) if ((reg_orent & 0x30) == 0x30 and self.event_tilt_down is not None): schedule(self.event_tilt_down, self.TILT_DOWN) if ((reg_orent & 0x40) == 0x00 and self.event_face_up): schedule(self.event_face_up, self.FACE_UP) if ((reg_orent & 0x40) == 0x40 and self.event_face_down): schedule(self.event_face_down, self.FACE_DOWN) # single tap if (reg_int & 0x20): if (self.event_single_click is not None): schedule(self.event_single_click, self.SINGLE_CLICK) # double tap if (reg_int & 0x10): if (self.event_double_click is not None): schedule(self.event_double_click, self.DOUBLE_CLICK) # freefall if (reg_int & 0x01): if (self.event_freefall is not None): schedule(self.event_freefall, self.FREEFALL) # print("acc sensor interrupt, because 0x%2x, orient = 0x%2x" % (reg_int, reg_orent)) def _readReg(self, reg, nbytes=1): return self.i2c.readfrom_mem(self.addr, reg, nbytes) def _writeReg(self, reg, value): self.i2c.writeto_mem(self.addr, reg, value.to_bytes(1, 'little')) def set_resolution(self, resolution): format = self._readReg(0x0f, 1) format = format[0] & ~0xC format |= (resolution << 2) self._writeReg(0x0f, format) def set_range(self, range): self.range = range format = self._readReg(0x0f, 1) format = format[0] & ~0x3 format |= range self._writeReg(0x0f, format) def set_offset(self, x=None, y=None, z=None): for i in (x, y, z): if i is not None: if i < -1 or i > 1: raise ValueError("out of range,only offset 1 gravity") if x is not None: self._writeReg(0x39, int(round(x/0.0039))) elif y is not None: self._writeReg(0x38, int(round(y/0.0039))) elif z is not None: self._writeReg(0x3A, int(round(z/0.0039))) def get_x(self): retry = 0 if (retry < 5): try: buf = self._readReg(0x02, 2) x = ustruct.unpack('h', buf)[0] return x / 4 / 4096 * 2**self.range except: retry = retry + 1 else: raise Exception("i2c read/write error!") def get_y(self): retry = 0 if (retry < 5): try: buf = self._readReg(0x04, 2) y = ustruct.unpack('h', buf)[0] return y / 4 / 4096 * 2**self.range except: retry = retry + 1 else: raise Exception("i2c read/write error!") def get_z(self): retry = 0 if (retry < 5): try: buf = self._readReg(0x06, 2) z = ustruct.unpack('h', buf)[0] return z / 4 / 4096 * 2**self.range except: retry = retry + 1 else: raise Exception("i2c read/write error!") def roll_pitch_angle(self): x, y, z = self.get_x(), self.get_y(), -self.get_z() # vector normalize mag = math.sqrt(x ** 2 + y ** 2+z ** 2) x /= mag y /= mag z /= mag roll = math.degrees(-math.asin(y)) pitch = math.degrees(math.atan2(x, z)) return roll, pitch # 3 axis accelerometer accelerometer = Accelerometer() class Magnetic(object): """ MMC5983MA driver """ def __init__(self): self.addr = 48 self.i2c = i2c # 传量器裸数据,乘0.25后转化为mGS self.raw_x = 0.0 self.raw_y = 0.0 self.raw_z = 0.0 # 校准后的偏移量, 基于裸数据 self.cali_offset_x = 0.0 self.cali_offset_y = 0.0 self.cali_offset_z = 0.0 # 去皮偏移量,类似电子秤去皮功能,基于裸数据。 self.peeling_x = 0.0 self.peeling_y = 0.0 self.peeling_z = 0.0 self.is_peeling = 0 self.i2c.writeto(self.addr, b'\x09\x20\xbd\x00', True) # self.i2c.writeto(self.addr, b'\x09\x21', True) def _set_offset(self): self.i2c.writeto(self.addr, b'\x09\x08', True) #set self.i2c.writeto(self.addr, b'\x09\x01', True) while True: self.i2c.writeto(self.addr, b'\x08', False) buf = self.i2c.readfrom(self.addr, 1) status = ustruct.unpack('B', buf)[0] if(status & 0x01): break self.i2c.writeto(self.addr, b'\x00', False) buf = self.i2c.readfrom(self.addr, 6) data = ustruct.unpack('>3H', buf) self.i2c.writeto(self.addr, b'\x09\x10', True) #reset self.i2c.writeto(self.addr, b'\x09\x01', True) while True: self.i2c.writeto(self.addr, b'\x08', False) buf = self.i2c.readfrom(self.addr, 1) status = ustruct.unpack('B', buf)[0] if(status & 0x01): break self.i2c.writeto(self.addr, b'\x00', False) buf = self.i2c.readfrom(self.addr, 6) data1 = ustruct.unpack('>3H', buf) self.x_offset = (data[0] + data1[0])/2 self.y_offset = (data[1] + data1[1])/2 self.z_offset = (data[2] + data1[2])/2 # print(self.x_offset) # print(self.y_offset) # print(self.z_offset) def _get_raw(self): retry = 0 if (retry < 5): try: self.i2c.writeto(self.addr, b'\x09\x08', True) #set self.i2c.writeto(self.addr, b'\x09\x01', True) while True: self.i2c.writeto(self.addr, b'\x08', False) buf = self.i2c.readfrom(self.addr, 1) status = ustruct.unpack('B', buf)[0] if(status & 0x01): break self.i2c.writeto(self.addr, b'\x00', False) buf = self.i2c.readfrom(self.addr, 6) data = ustruct.unpack('>3H', buf) self.i2c.writeto(self.addr, b'\x09\x10', True) #reset self.i2c.writeto(self.addr, b'\x09\x01', True) while True: self.i2c.writeto(self.addr, b'\x08', False) buf = self.i2c.readfrom(self.addr, 1) status = ustruct.unpack('B', buf)[0] if(status & 0x01): break self.i2c.writeto(self.addr, b'\x00', False) buf = self.i2c.readfrom(self.addr, 6) data1 = ustruct.unpack('>3H', buf) self.raw_x = -((data[0] - data1[0])/2) self.raw_y = -((data[1] - data1[1])/2) self.raw_z = -((data[2] - data1[2])/2) # print(str(self.x) + " " + str(self.y) + " " + str(self.z)) except: retry = retry + 1 else: raise Exception("i2c read/write error!") def peeling(self): self._get_raw() self.peeling_x = self.raw_x self.peeling_y = self.raw_y self.peeling_z = self.raw_z self.is_peeling = 1 def clear_peeling(self): self.peeling_x = 0.0 self.peeling_y = 0.0 self.peeling_z = 0.0 self.is_peeling = 0 def get_x(self): self._get_raw() return self.raw_x * 0.25 def get_y(self): self._get_raw() return self.raw_y * 0.25 def get_z(self): self._get_raw() return self.raw_z * 0.25 def get_field_strength(self): self._get_raw() if self.is_peeling == 1: return (math.sqrt((self.raw_x - self.peeling_x)*(self.raw_x - self.peeling_x) + (self.raw_y - self.peeling_y)*(self.raw_y - self.peeling_y) + (self.raw_z - self.peeling_z)*(self.raw_z - self.peeling_z)))*0.25 return (math.sqrt(self.raw_x * self.raw_x + self.raw_y * self.raw_y + self.raw_z * self.raw_z))*0.25 def calibrate(self): oled.fill(0) oled.DispChar("步骤1:", 0,0,1) oled.DispChar("如图",0,26,1) oled.DispChar("转几周",0,43,1) oled.bitmap(64,0,calibrate_img.rotate,64,64,1) oled.show() self._get_raw() min_x = max_x = self.raw_x min_y = max_y = self.raw_y min_z = max_z = self.raw_z ticks_start = time.ticks_ms() while (time.ticks_diff(time.ticks_ms(), ticks_start) < 15000) : self._get_raw() min_x = min(self.raw_x, min_x) min_y = min(self.raw_y, min_y) max_x = max(self.raw_x, max_x) max_y = max(self.raw_y, max_y) time.sleep_ms(100) self.cali_offset_x = (max_x + min_x) / 2 self.cali_offset_y = (max_y + min_y) / 2 print('cali_offset_x: ' + str(self.cali_offset_x) + ' cali_offset_y: ' + str(self.cali_offset_y)) oled.fill(0) oled.DispChar("步骤2:", 85,0,1) oled.DispChar("如图",85,26,1) oled.DispChar("转几周",85,43,1) oled.bitmap(0,0,calibrate_img.rotate1,64,64,1) oled.show() ticks_start = time.ticks_ms() while (time.ticks_diff(time.ticks_ms(), ticks_start) < 15000) : self._get_raw() min_z = min(self.raw_z, min_z) # min_y = min(self.raw_y, min_y) max_z = max(self.raw_z, max_z) # max_y = max(self.raw_y, max_y) time.sleep_ms(100) self.cali_offset_z = (max_z + min_z) / 2 # self.cali_offset_y = (max_y + min_y) / 2 print('cali_offset_z: ' + str(self.cali_offset_z)) # print('cali_offset_y: ' + str(self.cali_offset_y)) oled.fill(0) oled.DispChar("校准完成", 40,24,1) oled.show() oled.fill(0) def get_heading(self): self._get_raw() # if (accelerometer): # # use accelerometer get inclination # x = accelerometer.get_x() # y = accelerometer.get_y() # z = accelerometer.get_z() # phi = math.atan2(x, -z) # theta = math.atan2(y, (x*math.sin(phi) - z*math.cos(phi))) # sinPhi = math.sin(phi) # cosPhi = math.cos(phi) # sinTheta = math.sin(theta) # cosTheta = math.cos(theta) # heading = (math.atan2(x*cosTheta + y*sinTheta*sinPhi + z*sinTheta*cosPhi, z*sinPhi - y*cosPhi)) * (180 / 3.14159265) + 180 # return heading temp_x = self.raw_x - self.cali_offset_x temp_y = self.raw_y - self.cali_offset_y temp_z = self.raw_z - self.cali_offset_z heading = math.atan2(temp_y, -temp_x) * (180 / 3.14159265) + 180 return heading def _get_temperature(self): retry = 0 if (retry < 5): try: self.i2c.writeto(self.addr, b'\x09\x02', True) while True: self.i2c.writeto(self.addr, b'\x08', False) buf = self.i2c.readfrom(self.addr, 1) status = ustruct.unpack('B', buf)[0] if(status & 0x02): break self.i2c.writeto(self.addr, b'\x07', False) buf = self.i2c.readfrom(self.addr, 1) temp = (ustruct.unpack('B', buf)[0])*0.8 -75 # print(data) return temp except: retry = retry + 1 else: raise Exception("i2c read/write error!") def _get_id(self): retry = 0 if (retry < 5): try: self.i2c.writeto(self.addr, bytearray([0x2f]), False) buf = self.i2c.readfrom(self.addr, 1, True) print(buf) id = ustruct.unpack('B', buf)[0] return id except: retry = retry + 1 else: raise Exception("i2c read/write error!") # Magnetic if 48 in i2c.scan(): magnetic = Magnetic() class BME280(object): def __init__(self): self.addr = 119 # The “ctrl_hum” register sets the humidity data acquisition options of the device # 0x01 = [2:0]oversampling ×1 i2c.writeto(self.addr, b'\xF2\x01') # The “ctrl_meas” register sets the pressure and temperature data acquisition options of the device. # The register needs to be written after changing “ctrl_hum” for the changes to become effective. # 0x27 = [7:5]Pressure oversampling ×1 | [4:2]Temperature oversampling ×4 | [1:0]Normal mode i2c.writeto(self.addr, b'\xF4\x27') # The “config” register sets the rate, filter and interface options of the device. Writes to the “config” # register in normal mode may be ignored. In sleep mode writes are not ignored. i2c.writeto(self.addr, b'\xF5\x00') i2c.writeto(self.addr, b'\x88', False) bytes = i2c.readfrom(self.addr, 6) self.dig_T = ustruct.unpack('Hhh', bytes) i2c.writeto(self.addr, b'\x8E', False) bytes = i2c.readfrom(self.addr, 18) self.dig_P = ustruct.unpack('Hhhhhhhhh', bytes) i2c.writeto(self.addr, b'\xA1', False) self.dig_H = array.array('h', [0, 0, 0, 0, 0, 0]) self.dig_H[0] = i2c.readfrom(self.addr, 1)[0] i2c.writeto(self.addr, b'\xE1', False) buff = i2c.readfrom(self.addr, 7) self.dig_H[1] = ustruct.unpack('h', buff[0:2])[0] self.dig_H[2] = buff[2] self.dig_H[3] = (buff[3] << 4) | (buff[4] & 0x0F) self.dig_H[4] = (buff[5] << 4) | (buff[4] >> 4 & 0x0F) self.dig_H[5] = buff[6] def temperature(self): retry = 0 if (retry < 5): try: i2c.writeto(self.addr, b'\xFA', False) buff = i2c.readfrom(self.addr, 3) T = (((buff[0] << 8) | buff[1]) << 4) | (buff[2] >> 4 & 0x0F) c1 = (T / 16384.0 - self.dig_T[0] / 1024.0) * self.dig_T[1] c2 = ((T / 131072.0 - self.dig_T[0] / 8192.0) * (T / 131072.0 - self.dig_T[0] / 8192.0)) * self.dig_T[2] self.tFine = c1 + c2 return self.tFine / 5120.0 except: retry = retry + 1 else: raise Exception("i2c read/write error!") def pressure(self): retry = 0 if (retry < 5): try: self.temperature() i2c.writeto(self.addr, b'\xF7', False) buff = i2c.readfrom(self.addr, 3) P = (((buff[0] << 8) | buff[1]) << 4) | (buff[2] >> 4 & 0x0F) c1 = self.tFine / 2.0 - 64000.0 c2 = c1 * c1 * self.dig_P[5] / 32768.0 c2 = c2 + c1 * self.dig_P[4] * 2.0 c2 = c2 / 4.0 + self.dig_P[3] * 65536.0 c1 = (self.dig_P[2] * c1 * c1 / 524288.0 + self.dig_P[1] * c1) / 524288.0 c1 = (1.0 + c1 / 32768.0) * self.dig_P[0] if c1 == 0.0: return 0 p = 1048576.0 - P p = (p - c2 / 4096.0) * 6250.0 / c1 c1 = self.dig_P[8] * p * p / 2147483648.0 c2 = p * self.dig_P[7] / 32768.0 p = p + (c1 + c2 + self.dig_P[6]) / 16.0 return p except: retry = retry + 1 else: raise Exception("i2c read/write error!") def humidity(self): retry = 0 if (retry < 5): try: self.temperature() i2c.writeto(self.addr, b'\xFD', False) buff = i2c.readfrom(self.addr, 2) H = buff[0] << 8 | buff[1] h = self.tFine - 76800.0 h = (H - (self.dig_H[3] * 64.0 + self.dig_H[4] / 16384.0 * h)) * \ (self.dig_H[1] / 65536.0 * (1.0 + self.dig_H[5] / 67108864.0 * h * \ (1.0 + self.dig_H[2] / 67108864.0 * h))) h = h * (1.0 - self.dig_H[0] * h / 524288.0) if h > 100.0: return 100.0 elif h < 0.0: return 0.0 else: return h except: retry = retry + 1 else: raise Exception("i2c read/write error!") # bm280 if 119 in i2c.scan(): bme280 = BME280() class PinMode(object): IN = 1 OUT = 2 PWM = 3 ANALOG = 4 OUT_DRAIN = 5 pins_remap_esp32 = (33, 32, 35, 34, 39, 0, 16, 17, 26, 25, 36, 2, -1, 18, 19, 21, 5, -1, -1, 22, 23, -1, -1, 27, 14, 12, 13, 15, 4) class MPythonPin(): def __init__(self, pin, mode=PinMode.IN, pull=None): if mode not in [PinMode.IN, PinMode.OUT, PinMode.PWM, PinMode.ANALOG, PinMode.OUT_DRAIN]: raise TypeError("mode must be 'IN, OUT, PWM, ANALOG,OUT_DRAIN'") if pin == 4: raise TypeError("P4 is used for light sensor") if pin == 10: raise TypeError("P10 is used for sound sensor") try: self.id = pins_remap_esp32[pin] except IndexError: raise IndexError("Out of Pin range") if mode == PinMode.IN: # if pin in [3]: # raise TypeError('IN not supported on P%d' % pin) self.Pin = Pin(self.id, Pin.IN, pull) if mode == PinMode.OUT: if pin in [2, 3]: raise TypeError('OUT not supported on P%d' % pin) self.Pin = Pin(self.id, Pin.OUT, pull) if mode == PinMode.OUT_DRAIN: if pin in [2, 3]: raise TypeError('OUT_DRAIN not supported on P%d' % pin) self.Pin = Pin(self.id, Pin.OPEN_DRAIN, pull) if mode == PinMode.PWM: if pin not in [0, 1, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 19, 20, 23, 24, 25, 26, 27, 28]: raise TypeError('PWM not supported on P%d' % pin) self.pwm = PWM(Pin(self.id), duty=0) if mode == PinMode.ANALOG: if pin not in [0, 1, 2, 3, 4, 10]: raise TypeError('ANALOG not supported on P%d' % pin) self.adc = ADC(Pin(self.id)) self.adc.atten(ADC.ATTN_11DB) self.mode = mode def irq(self, handler=None, trigger=Pin.IRQ_RISING): if not self.mode == PinMode.IN: raise TypeError('the pin is not in IN mode') return self.Pin.irq(handler, trigger) def read_digital(self): if not self.mode == PinMode.IN: raise TypeError('the pin is not in IN mode') return self.Pin.value() def write_digital(self, value): if self.mode not in [PinMode.OUT, PinMode.OUT_DRAIN]: raise TypeError('the pin is not in OUT or OUT_DRAIN mode') self.Pin.value(value) def read_analog(self): if not self.mode == PinMode.ANALOG: raise TypeError('the pin is not in ANALOG mode') return self.adc.read() def write_analog(self, duty, freq=1000): if not self.mode == PinMode.PWM: raise TypeError('the pin is not in PWM mode') self.pwm.freq(freq) self.pwm.duty(duty) ''' # to be test class LightSensor(ADC): def __init__(self): super().__init__(Pin(pins_remap_esp32[4])) # super().atten(ADC.ATTN_11DB) def value(self): # lux * k * Rc = N * 3.9/ 4096 # k = 0.0011mA/Lux # lux = N * 3.9/ 4096 / Rc / k return super().read() * 1.1 / 4095 / 6.81 / 0.011 ''' class wifi: def __init__(self): self.sta = network.WLAN(network.STA_IF) self.ap = network.WLAN(network.AP_IF) def connectWiFi(self, ssid, passwd, timeout=10): if self.sta.isconnected(): self.sta.disconnect() self.sta.active(True) list = self.sta.scan() for i, wifi_info in enumerate(list): try: if wifi_info[0].decode() == ssid: self.sta.connect(ssid, passwd) wifi_dbm = wifi_info[3] break except UnicodeError: self.sta.connect(ssid, passwd) wifi_dbm = '?' break if i == len(list) - 1: raise OSError("SSID invalid / failed to scan this wifi") start = time.time() print("Connection WiFi", end="") while (self.sta.ifconfig()[0] == '0.0.0.0'): if time.ticks_diff(time.time(), start) > timeout: print("") raise OSError("Timeout!,check your wifi password and keep your network unblocked") print(".", end="") time.sleep_ms(500) print("") print('WiFi(%s,%sdBm) Connection Successful, Config:%s' % (ssid, str(wifi_dbm), str(self.sta.ifconfig()))) def disconnectWiFi(self): if self.sta.isconnected(): self.sta.disconnect() self.sta.active(False) print('disconnect WiFi...') def enable_APWiFi(self, essid, password=b'',channel=10): self.ap.active(True) if password: authmode=4 else: authmode=0 self.ap.config(essid=essid,password=password,authmode=authmode, channel=channel) def disable_APWiFi(self): self.ap.active(False) print('disable AP WiFi...') # 3 rgb leds rgb = NeoPixel(Pin(17, Pin.OUT), 3, 3, 1, brightness=0.3) rgb.write() # light sensor light = ADC(Pin(39)) light.atten(light.ATTN_11DB) # sound sensor sound = ADC(Pin(36)) sound.atten(sound.ATTN_11DB) # buttons class Button: def __init__(self, pin_num, reverse=False): self.__reverse = reverse (self.__press_level, self.__release_level) = (0, 1) if not self.__reverse else (1, 0) self.__pin = Pin(pin_num, Pin.IN, pull=Pin.PULL_UP) self.__pin.irq(trigger=Pin.IRQ_FALLING | Pin.IRQ_RISING, handler=self.__irq_handler) # self.__user_irq = None self.event_pressed = None self.event_released = None self.__pressed_count = 0 self.__was_pressed = False # print("level: pressed is {}, released is {}." .format(self.__press_level, self.__release_level)) def __irq_handler(self, pin): irq_falling = True if pin.value() == self.__press_level else False # debounce time.sleep_ms(10) if self.__pin.value() == (self.__press_level if irq_falling else self.__release_level): # new event handler # pressed event if irq_falling: if self.event_pressed is not None: schedule(self.event_pressed, self.__pin) # key status self.__was_pressed = True if (self.__pressed_count < 100): self.__pressed_count = self.__pressed_count + 1 # release event else: if self.event_released is not None: schedule(self.event_released, self.__pin) def is_pressed(self): if self.__pin.value() == self.__press_level: return True else: return False def was_pressed(self): r = self.__was_pressed self.__was_pressed = False return r def get_presses(self): r = self.__pressed_count self.__pressed_count = 0 return r def value(self): return self.__pin.value() def irq(self, *args, **kws): self.__pin.irq(*args, **kws) class Touch: def __init__(self, pin): self.__touch_pad = TouchPad(pin) self.__touch_pad.irq(self.__irq_handler) self.event_pressed = None self.event_released = None self.__pressed_count = 0 self.__was_pressed = False self.__value = 0 def __irq_handler(self, value): # when pressed if value == 1: if self.event_pressed is not None: self.event_pressed(value) self.__was_pressed = True self.__value = 1 if (self.__pressed_count < 100): self.__pressed_count = self.__pressed_count + 1 # when released else: self.__value = 0 if self.event_released is not None: self.event_released(value) def config(self, threshold): self.__touch_pad.config(threshold) def is_pressed(self): if self.__value: return True else: return False def was_pressed(self): r = self.__was_pressed self.__was_pressed = False return r def get_presses(self): r = self.__pressed_count self.__pressed_count = 0 return r def read(self): return self.__touch_pad.read() # button_a = Pin(0, Pin.IN, Pin.PULL_UP) # button_b = Pin(2, Pin.IN, Pin.PULL_UP) button_a = Button(0) button_b = Button(2) # touchpad touchpad_p = touchPad_P = Touch(Pin(27)) touchpad_y = touchPad_Y = Touch(Pin(14)) touchpad_t = touchPad_T = Touch(Pin(12)) touchpad_h = touchPad_H = Touch(Pin(13)) touchpad_o = touchPad_O = Touch(Pin(15)) touchpad_n = touchPad_N = Touch(Pin(4)) from gui import * def numberMap(inputNum, bMin, bMax, cMin, cMax): outputNum = 0 outputNum = ((cMax - cMin) / (bMax - bMin)) * (inputNum - bMin) + cMin return outputNum
py
7df7347b194cc6d1c4d8d2726a2271745689c067
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function class CheddarError(Exception): def __init__(self, message=None, http_body=None, http_status=None): super(CheddarError, self).__init__(message) self.http_body = http_body self.http_status = http_status class ConfigurationError(CheddarError): pass class AuthenticationError(CheddarError): pass class APIError(CheddarError): pass class APIConnectionError(APIError): pass class MessageIntegrityError(CheddarError): pass
py
7df73490145238c63d540d903dd50c1101a5a231
from .base import BaseAPI, CRUDAPI, check_token __all__ = [ 'ConfigAPI', 'StoreAPI', 'WebhookAPI', ] # TODO: build account class ConfigAPI(BaseAPI): """Config API.""" @check_token def __call__(self, **kw): r""" Return account config. :param \**kw: additional keyword arguments are passed to requests. :raises: :class:`recommendpy.exceptions.RecommendAPIError`. :return: result of response.json(). """ return self._client.send( 'get', self.get_path(), **kw ) @check_token def update( self, default_store, default_currency, default_price_list, **kw ): r""" Update config. :param default_store: default store (required). :param default_currency: default currency (required). :param default_price_list: default price list (required). :param \**kw: additional keyword arguments are passed to requests. :raises: :class:`recommendpy.exceptions.RecommendAPIError`. :return: result of response.json(). """ data = { 'default_store': default_store, 'default_currency': default_currency, 'default_price_list': default_price_list, } return self._client.send( 'put', self.get_path(), data, **kw ) class StoreAPI(CRUDAPI): """Store API.""" pass class WebhookAPI(CRUDAPI): """WebhookAPI API.""" def update(self, identifier, **kw): raise NotImplementedError()
py
7df736444aaded22807bfd494a9909c42159acc0
""" UK-specific Form helpers """ import re from django.forms.fields import CharField, Select from django.forms import ValidationError from django.utils.translation import ugettext_lazy as _ class UKPostcodeField(CharField): """ A form field that validates its input is a UK postcode. The regular expression used is sourced from the schema for British Standard BS7666 address types: http://www.govtalk.gov.uk/gdsc/schemas/bs7666-v2-0.xsd The value is uppercased and a space added in the correct place, if required. """ default_error_messages = { 'invalid': _(u'Enter a valid postcode.'), } outcode_pattern = '[A-PR-UWYZ]([0-9]{1,2}|([A-HIK-Y][0-9](|[0-9]|[ABEHMNPRVWXY]))|[0-9][A-HJKSTUW])' incode_pattern = '[0-9][ABD-HJLNP-UW-Z]{2}' postcode_regex = re.compile(r'^(GIR 0AA|%s %s)$' % (outcode_pattern, incode_pattern)) space_regex = re.compile(r' *(%s)$' % incode_pattern) def clean(self, value): value = super(UKPostcodeField, self).clean(value) if value == u'': return value postcode = value.upper().strip() # Put a single space before the incode (second part). postcode = self.space_regex.sub(r' \1', postcode) if not self.postcode_regex.search(postcode): raise ValidationError(self.default_error_messages['invalid']) return postcode class UKCountySelect(Select): """ A Select widget that uses a list of UK Counties/Regions as its choices. """ def __init__(self, attrs=None): from uk_regions import UK_REGION_CHOICES super(UKCountySelect, self).__init__(attrs, choices=UK_REGION_CHOICES) class UKNationSelect(Select): """ A Select widget that uses a list of UK Nations as its choices. """ def __init__(self, attrs=None): from uk_regions import UK_NATIONS_CHOICES super(UKNationSelect, self).__init__(attrs, choices=UK_NATIONS_CHOICES)
py
7df736a2935129faf3279c2c247ebdcc6442b026
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow.contrib.solvers.python.ops import lanczos from tensorflow.contrib.solvers.python.ops import util def _add_test(test, test_name, fn): test_name = "_".join(["test", test_name]) if hasattr(test, test_name): raise RuntimeError("Test %s defined more than once" % test_name) setattr(test, test_name, fn) class LanczosBidiagTest(tf.test.TestCase): pass # Filled in below. def _get_lanczos_tests(dtype_, use_static_shape_, shape_, orthogonalize_, steps_): def test_lanczos_bidiag(self): np.random.seed(1) a_np = np.random.uniform( low=-1.0, high=1.0, size=np.prod(shape_)).reshape(shape_).astype(dtype_) tol = 1e-12 if dtype_ == np.float64 else 1e-5 with self.test_session() as sess: if use_static_shape_: a = tf.constant(a_np) else: a = tf.placeholder(dtype_) operator = util.create_operator(a) lbd = lanczos.lanczos_bidiag( operator, steps_, orthogonalize=orthogonalize_) # The computed factorization should satisfy the equations # A * V = U * B # A' * U[:, :-1] = V * B[:-1, :]' av = tf.batch_matmul(a, lbd.v) ub = lanczos.bidiag_matmul(lbd.u, lbd.alpha, lbd.beta, adjoint_b=False) atu = tf.batch_matmul(a, lbd.u[:, :-1], adj_x=True) vbt = lanczos.bidiag_matmul(lbd.v, lbd.alpha, lbd.beta, adjoint_b=True) if use_static_shape_: av_val, ub_val, atu_val, vbt_val = sess.run([av, ub, atu, vbt]) else: av_val, ub_val, atu_val, vbt_val = sess.run([av, ub, atu, vbt], feed_dict={a: a_np}) self.assertAllClose(av_val, ub_val, atol=tol, rtol=tol) self.assertAllClose(atu_val, vbt_val, atol=tol, rtol=tol) return [test_lanczos_bidiag] if __name__ == "__main__": for dtype in np.float32, np.float64: for shape in [[4, 4], [7, 4], [5, 8]]: for orthogonalize in True, False: for steps in range(1, min(shape) + 1): for use_static_shape in True, False: arg_string = "%s_%s_%s_%s_staticshape_%s" % ( dtype.__name__, "_".join(map(str, shape)), orthogonalize, steps, use_static_shape) for test_fn in _get_lanczos_tests(dtype, use_static_shape, shape, orthogonalize, steps): name = "_".join(["Lanczos", test_fn.__name__, arg_string]) _add_test(LanczosBidiagTest, name, test_fn) tf.test.main()