ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
7dfb4600aaabd0a7ec113ba9076b5612fb5f5d4e
# SPDX-FileCopyrightText: 2017 Carter Nelson for Adafruit Industries # # SPDX-License-Identifier: MIT """ `adafruit_onewire.device` ==================================================== Provides access to a single device on the 1-Wire bus. * Author(s): Carter Nelson """ __version__ = "1.2.5" __repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_OneWire.git" _MATCH_ROM = b"\x55" class OneWireDevice: """A class to represent a single device on the 1-Wire bus.""" def __init__(self, bus, address): self._bus = bus self._address = address def __enter__(self): self._select_rom() return self def __exit__(self, *exc): return False def readinto(self, buf, *, start=0, end=None): """ Read into ``buf`` from the device. The number of bytes read will be the length of ``buf``. If ``start`` or ``end`` is provided, then the buffer will be sliced as if ``buf[start:end]``. This will not cause an allocation like ``buf[start:end]`` will so it saves memory. :param bytearray buf: buffer to write into :param int start: Index to start writing at :param int end: Index to write up to but not include """ self._bus.readinto(buf, start=start, end=end) if start == 0 and end is None and len(buf) >= 8: if self._bus.crc8(buf): raise RuntimeError("CRC error.") def write(self, buf, *, start=0, end=None): """ Write the bytes from ``buf`` to the device. If ``start`` or ``end`` is provided, then the buffer will be sliced as if ``buffer[start:end]``. This will not cause an allocation like ``buffer[start:end]`` will so it saves memory. :param bytearray buf: buffer containing the bytes to write :param int start: Index to start writing from :param int end: Index to read up to but not include """ return self._bus.write(buf, start=start, end=end) def _select_rom(self): self._bus.reset() self.write(_MATCH_ROM) self.write(self._address.rom)
py
7dfb4760f21eb6d0ec3db9306d3b4150b91e1be1
from django.conf import settings from django.utils.importlib import import_module from django.utils.module_loading import module_has_submodule from django.contrib import admin def autoload(submodules): for app in settings.INSTALLED_APPS: mod = import_module(app) for submodule in submodules: try: import_module("{}.{}".format(app, submodule)) except: if module_has_submodule(mod, submodule): raise def run(): autoload(["receivers"]) admin.autodiscover()
py
7dfb47ee819e035b2e2b0e8b8122dcd065635766
from __future__ import print_function import io import os import platform import socket import sys from eel import chrome from PyInstaller import __version__ as pyinstaller_version class ForwardToFunctionStream(io.TextIOBase): def __init__(self, output_function=print): self.output_function = output_function def write(self, string): self.output_function(string) return len(string) def can_use_chrome(): """ Identify if Chrome is available for Eel to use """ chrome_instance_path = chrome.find_path() return chrome_instance_path is not None and os.path.exists(chrome_instance_path) def open_output_folder(folder): """ Open a folder in the local file explorer """ folder_directory = os.path.abspath(folder) if platform.system() == 'Windows': os.startfile(folder_directory, 'explore') elif platform.system() == 'Linux': os.system('xdg-open "' + folder_directory + '"') elif platform.system() == 'Darwin': os.system('open "' + folder_directory + '"') else: return False return True def get_warnings(): warnings = [] # Make sure PyInstaller 3.4 or above is being used with Python 3.7 try: if sys.version_info >= (3, 7) and float(pyinstaller_version) < 3.4: message = 'You will need PyInstaller 3.4 or above to use this tool with Python 3.7.' message += '\nYou are currently using PyInstaller {pyinstaller_version}.'.format(pyinstaller_version=pyinstaller_version) message += '\nPlease upgrade PyInstaller: python -m pip install pyinstaller --upgrade' warnings.append({ 'message': message, 'link': None }) except ValueError: pass # Dev branches will have pyinstaller_version as a string in the form X.Y.devZ+HASH. Ignore it if this is the case. # Make sure PyInstaller 4.0 or above is being used with Python 3.8 and 3.9 try: if sys.version_info.major == 3 and (sys.version_info.minor == 8 or sys.version_info.minor == 9) and float(pyinstaller_version) < 4.1: message = 'PyInstaller 4.0 and below does not officially support Python 3.8 and 3.9.' message += '\nYou are currently using PyInstaller {pyinstaller_version}.'.format(pyinstaller_version=pyinstaller_version) message += '\nIt is highly recommended to update your version of PyInstaller using: python -m pip install pyinstaller --upgrade' warnings.append({ 'message': message, 'link': None }) except ValueError: pass # Dev branches will have pyinstaller_version as a string in the form X.Y.devZ+HASH. Ignore it if this is the case. # Make sure PyInstaller 4.6 or above is being used with Python 3.10 try: if sys.version_info.major == 3 and sys.version_info.minor == 10 and float(pyinstaller_version) < 4.6: message = 'You will need PyInstaller 4.6 or above to use this tool with Python 3.10.' message += '\nYou are currently using PyInstaller {pyinstaller_version}.'.format(pyinstaller_version=pyinstaller_version) message += '\nPlease upgrade PyInstaller: python -m pip install pyinstaller --upgrade' warnings.append({ 'message': message, 'link': None }) except ValueError: pass # Dev branches will have pyinstaller_version as a string in the form X.Y.devZ+HASH. Ignore it if this is the case. # Make sure we are not using Python from the Windows Store if "Packages\PythonSoftwareFoundation.Python." in sys.executable: message = 'It looks like you may be using Python from the Windows Store, the Python binary you are currently using is at:' message += '"' + sys.executable + '"' message += '\n\nPython from the Windows Store is not supported by PyInstaller so you may get errors referencing "win32ctypes.pywin32.pywintypes.error: (1920, \'LoadLibraryEx\', \'The file cannot be accessed by the system\'".' message += '\nTo fix this, use a distribution of Python from python.org.' warnings.append({ 'message': message, 'link': "https://github.com/brentvollebregt/auto-py-to-exe/issues/166" }) return warnings def get_port(): """ Get an available port by starting a new server, stopping and and returning the port """ sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.bind(('localhost', 0)) port = sock.getsockname()[1] sock.close() return port
py
7dfb47f8246a9e876c9d34997e31f7ea9b57776b
from LightPipes import * import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib import patches wavelength = 1500*nm size = 25*mm N = 500 F=Begin(size,wavelength,N) F=CircAperture(F, 2*mm, x_shift=-6*mm, y_shift=-2*mm) F=Fresnel(F, 0.4*m) Xc,Yc, NXc, NYc =Centroid(F) sx, sy = D4sigma(F) I0=Intensity(F) # Axes ... fig, main_ax = plt.subplots(figsize=(5, 5)) divider = make_axes_locatable(main_ax) top_ax = divider.append_axes("top", 1.05, pad=0.1, sharex=main_ax) right_ax = divider.append_axes("right", 1.05, pad=0.1, sharey=main_ax) # Make some labels invisible top_ax.xaxis.set_tick_params(labelbottom=False) right_ax.yaxis.set_tick_params(labelleft=False) # Labels ... main_ax.set_xlabel('X [mm]') main_ax.set_ylabel('Y [mm]') top_ax.set_ylabel('Intensity [a.u.]') right_ax.set_xlabel('Intensity [a.u.]') #plot ... main_ax.pcolormesh(F.xvalues/mm, F.yvalues/mm, I0) main_ax.axvline(Xc/mm, color='r') main_ax.axhline(Yc/mm, color='g') main_ax.add_patch(patches.Ellipse((Xc/mm, Yc/mm), sx/mm, sy/mm, fill=False, lw=1,color='w', ls='--')) right_ax.plot(I0[:,NXc],F.yvalues/mm, 'r-', lw=1) top_ax.plot(F.xvalues/mm,I0[NYc,:], 'g-', lw=1) plt.show()
py
7dfb482adc314196b795d00b14bef2d5690dda4e
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import unittest os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import numpy as np import tensorlayerx as tlx import tensorlayerx from tests.utils import CustomTestCase class Layer_RNN_Test(CustomTestCase): @classmethod def setUpClass(self): self.rnncell_input = tlx.nn.Input([4, 16], name='input') self.rnncell_prev_h = tlx.nn.Input([4,32]) self.rnncell = tlx.nn.RNNCell(input_size=16, hidden_size=32, bias=True, act='tanh', name='rnncell_1') self.rnncell_out, _ = self.rnncell(self.rnncell_input, self.rnncell_prev_h) self.rnn_input = tlx.nn.Input([23, 32, 16], name='input1') self.rnn_prev_h = tlx.nn.Input([4, 32, 32]) self.rnn = tlx.nn.RNN( input_size=16, hidden_size=32, bias=True, num_layers=2, bidirectional = True, act='tanh', batch_first=False, dropout=0, name='rnn_1') self.rnn_out, _ = self.rnn(self.rnn_input, self.rnn_prev_h) self.lstmcell_input = tlx.nn.Input([4, 16], name='input') self.lstmcell_prev_h = tlx.nn.Input([4, 32]) self.lstmcell_prev_c = tlx.nn.Input([4, 32]) self.lstmcell = tlx.nn.LSTMCell(input_size=16, hidden_size=32, bias=True, name='lstmcell_1') self.lstmcell_out, (h, c) = self.lstmcell(self.lstmcell_input, (self.lstmcell_prev_h, self.lstmcell_prev_c)) self.lstm_input = tlx.nn.Input([23, 32, 16], name='input') self.lstm_prev_h = tlx.nn.Input([4, 32, 32]) self.lstm_prev_c = tlx.nn.Input([4, 32, 32]) self.lstm = tlx.nn.LSTM(input_size=16, hidden_size=32, bias=True, num_layers=2, bidirectional=True, batch_first=False, dropout=0, name='lstm_1') self.lstm_out, (h, c) = self.lstm(self.lstm_input, (self.lstm_prev_h, self.lstm_prev_c)) self.grucell_input = tlx.nn.Input([4, 16], name='input') self.grucell_prev_h = tlx.nn.Input([4, 32]) self.grucell = tlx.nn.GRUCell(input_size=16, hidden_size=32, bias=True, name='grucell_1') self.grucell_out, h = self.grucell(self.grucell_input, self.grucell_prev_h) self.gru_input = tlx.nn.Input([23, 32, 16], name='input') self.gru_prev_h = tlx.nn.Input([4, 32, 32]) self.gru = tlx.nn.GRU(input_size=16, hidden_size=32, bias=True, num_layers=2, bidirectional=True, batch_first=False, dropout=0, name='GRU_1') self.gru_out, h = self.gru(self.gru_input, self.gru_prev_h) @classmethod def tearDownClass(self): pass def test_layer_n1(self): self.assertEqual(tlx.get_tensor_shape(self.rnncell_out), [4, 32]) def test_layer_n2(self): self.assertEqual(tlx.get_tensor_shape(self.rnn_out), [23, 32, 64]) def test_layer_n3(self): self.assertEqual(tlx.get_tensor_shape(self.lstmcell_out), [4, 32]) def test_layer_n4(self): self.assertEqual(tlx.get_tensor_shape(self.lstm_out), [23, 32, 64]) def test_layer_n5(self): self.assertEqual(tlx.get_tensor_shape(self.grucell_out), [4, 32]) def test_layer_n6(self): self.assertEqual(tlx.get_tensor_shape(self.gru_out), [23, 32, 64]) class Layer_Transformer_Test(CustomTestCase): @classmethod def setUpClass(self): self.multiheadattention_q = tlx.nn.Input(shape=(4,2,128),init=tlx.initializers.ones()) self.multiheadattention_attn_mask = tlx.convert_to_tensor(np.zeros((4,4)),dtype='bool') self.multiheadattention = tlx.nn.MultiheadAttention(embed_dim=128, num_heads=4) self.multiheadattention_out = self.multiheadattention( self.multiheadattention_q, attn_mask=self.multiheadattention_attn_mask ) self.transformerencoderLayer_q = tlx.nn.Input(shape=(4, 2, 128), init=tlx.initializers.ones()) self.transformerencoderLayer_attn_mask = tlx.convert_to_tensor(np.zeros((4, 4)), dtype='bool') self.encoder = tlx.nn.TransformerEncoderLayer(128, 2, 256) self.encoderlayer_out = self.encoder(self.transformerencoderLayer_q, src_mask=self.transformerencoderLayer_attn_mask) self.transformerdecoderLayer_q = tlx.nn.Input(shape=(4, 2, 128), init=tlx.initializers.ones()) self.encoder_layer = tlx.nn.TransformerDecoderLayer(128, 2, 256) self.decoderlayer_out = self.encoder_layer(self.transformerdecoderLayer_q, self.transformerdecoderLayer_q) self.transformerencoder_q = tlx.nn.Input(shape=(4, 2, 128), init=tlx.initializers.ones()) self.transformerencoder_attn_mask = tlx.convert_to_tensor(np.zeros((4, 4)), dtype='bool') self.encoder_layer = tlx.nn.TransformerEncoderLayer(128, 2, 256) self.encoder = tlx.nn.TransformerEncoder(self.encoder_layer, num_layers=3) self.encoder_out = self.encoder(self.transformerencoder_q, mask=self.transformerencoder_attn_mask) self.transformeradecoder_q = tlx.nn.Input(shape=(4, 2, 128), init=tlx.initializers.ones()) self.decoder_layer = tlx.nn.TransformerDecoderLayer(128, 2, 256) self.decoder = tlx.nn.TransformerDecoder(self.decoder_layer, num_layers=3) self.decoder_out = self.decoder(self.transformeradecoder_q, self.transformeradecoder_q) self.src = tlx.nn.Input(shape=(4, 2, 128), init=tlx.initializers.ones()) self.tgt = tlx.nn.Input(shape=(4, 2, 128), init=tlx.initializers.ones()) self.layer = tlx.nn.Transformer(d_model=128, nhead=4) self.out = self.layer(self.src, self.tgt) @classmethod def tearDownClass(self): pass def test_layer_n7(self): self.assertEqual(tlx.get_tensor_shape(self.multiheadattention_out[0]), [4, 2, 128]) def test_layer_n8(self): self.assertEqual(tlx.get_tensor_shape(self.encoderlayer_out), [4, 2, 128]) def test_layer_n9(self): self.assertEqual(tlx.get_tensor_shape(self.decoderlayer_out), [4, 2, 128]) def test_layer_n10(self): self.assertEqual(tlx.get_tensor_shape(self.encoder_out), [4, 2, 128]) def test_layer_n11(self): self.assertEqual(tlx.get_tensor_shape(self.decoder_out), [4, 2, 128]) def test_layer_n12(self): self.assertEqual(tlx.get_tensor_shape(self.out), [4, 2, 128]) if __name__ == '__main__': unittest.main()
py
7dfb484349ebb73ec10ed61296b7a774bbd68e9e
########################################################################## # # Copyright (c) 2022, Cinesite VFX Ltd. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of John Haddon nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import Gaffer import GafferArnold Gaffer.Metadata.registerNode( GafferArnold.ArnoldImager, "description", """ Assigns an imager. This is stored as an `ai:imager` option in Gaffer's globals, and applied to all render outputs. > Tip : Use the `layer_selection` parameter on each imager to control > which AOVs the imager applies to. """, plugs = { "imager" : [ "description", """ The imager to be assigned. The output of an ArnoldShader node holding an imager should be connected here. Multiple imagers may be assigned at once by chaining them together via their `input` parameters, and then assigning the final imager via the ArnoldImager node. """, "noduleLayout:section", "left", "nodule:type", "GafferUI::StandardNodule", ], "mode" : [ "description", """ The mode used to combine the `imager` input with any imagers that already exist in the globals. - Replace : Removes all pre-existing imagers, and replaces them with the new ones. - InsertFirst : Inserts the new imagers so that they will be run before any pre-existing imagers. - InsertLast : Inserts the new imagers so that they will be run after any pre-existing imagers. """, "preset:Replace", GafferArnold.ArnoldImager.Mode.Replace, "preset:InsertFirst", GafferArnold.ArnoldImager.Mode.InsertFirst, "preset:InsertLast", GafferArnold.ArnoldImager.Mode.InsertLast, "plugValueWidget:type", "GafferUI.PresetsPlugValueWidget", ], } )
py
7dfb48f1ade30cd75fdb4d968f910e57f8c3774b
# Copyright 2021 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import random import numpy as np import cunumeric as num def test(): anp = np.random.randn(4, 5) b = random.randint(1, 13) a = num.array(anp) assert np.array_equal(a / b, anp / b) assert np.array_equal(b / a, b / anp) return if __name__ == "__main__": test()
py
7dfb491bcb3fe23c969e84434c084c203a702ef2
import json import datetime import os from firebase import firebase from firebase_profile import FIREBASE_URL class Pothole: def __init__(self, lat: float, lng: float, depth: str=None, length: str=None, image: str=None): self.lat = lat self.lng = lng self.depth = depth self.length = length self.image = image def to_dict(self): """ Format the pothole to a dictionary so that it is easier to be added into the database. """ obj = {} obj['latitude'] = self.lat obj['longitude'] = self.lng if self.depth: obj['depth'] = self.depth if self.length: obj['length'] = self.length if self.image: obj['image'] = self.image return obj class MyFirebase: def __init__(self, url, auth=None): self.url = url self.fb = firebase.FirebaseApplication(url, auth) self.url_potholes = self.url + '/potholes' def rename_node(self, parent_url, old_node, new_node): """ Rename the node at the given path Parameters ---------- parent_url : str The url of the parent folder, which should end with '/' old_node : str The old name of the node new_node : str The new name of the node Returns ------- rename successfully: bool True/False """ try: content = self.fb.get(parent_url, old_node) if not content: print("Error: rename_node: old node %s does NOT exist yet" % (parent_url + old_node)) return False content_new = self.fb.get(parent_url, new_node) if content_new: print("Error: rename_node: new node %s already exists" % (parent_url + new_node)) return False self.fb.put(parent_url, new_node, content) self.fb.delete(parent_url, old_node) return True except: # TODO: revert partial changes if needed print("Error: rename_node: url %s, old name %s, new name %s" % (parent_url, old_node, new_node)) return False def remove_node(self, parent_url, *nodes): """ Remove the given nodes from the specified url Parameter --------- parent_url : str The url of the parent folder, which should end with '/' nodes : [str] The list of nodes to be removed """ for node in nodes: # TODO: add some checking? self.fb.delete(parent_url, node) def save_database_to_file(self, output_file): """ Save the database into file """ print("Save database to file %s" % output_file) database = self.fb.get(self.url, None) # print(database) with open(output_file, 'w') as fp: json.dump(database, fp) def backup_database(self): """ Backup the database """ current_time = datetime.datetime.utcnow() backup_folder = self.get_backup_folder() backup_file = os.path.join(backup_folder, 'UTC - ' + str(current_time) + '.json') self.save_database_to_file(backup_file) def get_latest_backup(self): """ Get the latest backup file """ backup_folder = self.get_backup_folder() files = os.listdir(backup_folder) files = [f for f in files if os.path.isfile(os.path.join(backup_folder, f)) and not f.startswith('.')] files = sorted(files) if files: latest = files[-1] return os.path.join(backup_folder, latest) return None def recover_from_latest_backup(self): """ Load the latest backup into the database """ latest_backup = self.get_latest_backup() if not latest_backup: print("No backup available.") return with open(latest_backup, 'r') as fp: database = json.load(fp) # print(database) print("recover from %s" % latest_backup) for top_key, values in database.items(): self.fb.put(self.url, top_key, values) def get_backup_folder(self): """ Get the backup folder """ backup_folder = os.path.join(os.getcwd(), 'backup') if not os.path.isdir(backup_folder): os.mkdir(backup_folder) return backup_folder def pothole_exist(self, pothole: Pothole): """ Check if the given pothole is already existing in the database. Returns ------- True if pothole already exists. """ potholes = self.fb.get(self.url_potholes, None) for _, pot in potholes.items(): if pot['latitude'] == pothole.lat and pot['longitude'] == pothole.lng: return True return False def post_pothole(self, pothole: Pothole): """ Add given pothole into the database via POST """ if self.pothole_exist(pothole): print("pothole exists") return self.fb.post(self.url_potholes, pothole.to_dict()) def init_db(mfb: MyFirebase): """ Add a couple of potholes into the database """ # mfb.backup_database() potholes = [(42.999938,-78.797406), (42.980365,-78.807876), (42.999499,-78.794131)] for pot in potholes: pothole = Pothole(pot[0], pot[1], '40cm', '3cm', '<img src="" alt="" />') mfb.post_pothole(pothole) if __name__ == '__main__': myfb = MyFirebase(FIREBASE_URL) init_db(myfb)
py
7dfb4aa59831887bb5dfce8a41823e9fc7263400
############################################################################## # Copyright by The HDF Group. # # All rights reserved. # # # # This file is part of HSDS (HDF5 Scalable Data Service), Libraries and # # Utilities. The full HSDS copyright notice, including # # terms governing use, modification, and redistribution, is contained in # # the file COPYING, which can be found at the root of the source code # # distribution tree. If you do not have access to this file, you may # # request a copy from [email protected]. # ############################################################################## import numpy import time from .. import hsds_logger as log def getArraySize(arr): """ Return size in bytes of numpy array """ nbytes = arr.dtype.itemsize for n in arr.shape: nbytes *= n return nbytes class Node(object): def __init__(self, id, data, mem_size=1024, isdirty=False, prev=None, next=None): self._id = id self._data = data self._mem_size = mem_size self._isdirty = isdirty self._prev = prev self._next = next self._last_access = time.time() class LruCache(object): """ LRU cache for Numpy arrays that are read/written from S3 If name is "ChunkCache", chunk items are assumed by be ndarrays """ def __init__(self, mem_target=32*1024*1024, name="LruCache", expire_time=None): self._hash = {} self._lru_head = None self._lru_tail = None self._mem_size = 0 self._dirty_size = 0 self._mem_target = mem_target self._expire_time = expire_time self._name = name self._dirty_set = set() def _delNode(self, key): # remove from LRU if key not in self._hash: raise KeyError(key) node = self._hash[key] prev = node._prev next_node = node._next if prev is None: if self._lru_head != node: raise KeyError("unexpected error") self._lru_head = next_node else: prev._next = next_node if next_node is None: if self._lru_tail != node: raise KeyError("unexpected error") self._lru_tail = prev else: next_node._prev = prev node._next = node._prev = None log.debug(f"LRU {self._name} node {node._id} removed {self._name}") return node def _moveToFront(self, key): # move this node to the front of LRU list if key not in self._hash: raise KeyError(key) node = self._hash[key] if self._lru_head == node: # already the front return node if node._prev is None: raise KeyError("unexpected error") prev = node._prev next_node = node._next node._prev = None node._next = self._lru_head prev._next = next_node self._lru_head._prev = node if next_node is not None: next_node._prev = prev else: if self._lru_tail != node: raise KeyError("unexpected error") self._lru_tail = prev self._lru_head = node return node def _hasKey(self, key, ignore_expire=False): """ check if key is present node """ if key not in self._hash: return False if ignore_expire: return True node = self._hash[key] now = time.time() if self._expire_time: age = now - node._last_access if age > self._expire_time and not node._isdirty: msg = f"LRU {self._name} node {key} has been in cache for " msg += f"{now - node._last_access:.3f} seconds, expiring" log.debug(msg) return False else: return True else: return True def __delitem__(self, key): node = self._delNode(key) # remove from LRU del self._hash[key] # remove from hash # remove from LRU list self._mem_size -= node._mem_size if key in self._dirty_set: log.warning(f"LRU {self._name} removing dirty node: {key}") self._dirty_set.remove(key) self._dirty_size -= node._mem_size def __len__(self): """ Number of nodes in the cache """ return len(self._hash) def __iter__(self): """ Iterate over node ids """ node = self._lru_head while node is not None: yield node._id node = node._next def __contains__(self, key): """ Test if key is in the cache """ return self._hasKey(key) def __getitem__(self, key): """ Return numpy array from cache """ # doing a getitem has the side effect of moving this node # up in the LRU list if not self._hasKey(key): raise KeyError(key) node = self._moveToFront(key) return node._data def __setitem__(self, key, data): log.debug(f"setitem, key: {key}") if isinstance(data, numpy.ndarray): # can just compute size for numpy array mem_size = getArraySize(data) elif isinstance(data, dict): # TBD - come up with a way to get the actual data size # for dict objects mem_size = 1024 elif isinstance(data, bytes): mem_size = len(data) else: raise TypeError("Unexpected type for LRUCache") if key in self._hash: # key is already in the LRU - update mem size, data and # move to front node = self._hash[key] old_size = self._hash[key]._mem_size mem_delta = node._mem_size - old_size self._mem_size += mem_delta node._data = data node._mem_size = mem_size self._moveToFront(key) if node._isdirty: self._dirty_size += mem_delta node._last_access = time.time() msg = f"LRU {self._name} updated node: {key} " msg += f"[was {old_size} bytes now {node._mem_size} bytes]" log.debug(msg) else: node = Node(key, data, mem_size=mem_size) if self._lru_head is None: self._lru_head = self._lru_tail = node else: # newer items go to the front next_node = self._lru_head if next_node._prev is not None: raise KeyError("unexpected error") node._next = next_node next_node._prev = node self._lru_head = node self._hash[key] = node self._mem_size += node._mem_size msg = f"LRU {self._name} adding {node._mem_size} to cache, " msg += "mem_size is now: {self._mem_size}" log.debug(msg) if node._isdirty: self._dirty_size += node._mem_size msg = f"LRU {self._name} dirty size is now: {self._dirty_size}" log.debug(msg) msg = f"LRU {self._name} added new node: {key} " msg += f"[{node._mem_size} bytes]" log.debug(msg) if self._mem_size > self._mem_target: # set dirty temporarily so we can't remove this node in reduceCache msg = f"LRU {self._name} mem_size greater than target " msg += f"{self._mem_target} reducing cache" log.debug(msg) isdirty = node._isdirty node._isdirty = True self._reduceCache() node._isdirty = isdirty def _reduceCache(self): # remove nodes from cache (if not dirty) until we are under # memory mem_target log.debug(f"LRU {self._name} reduceCache") node = self._lru_tail # start from the back while node is not None: next_node = node._prev if not node._isdirty: log.debug(f"LRU {self._name} removing node: {node._id}") self.__delitem__(node._id) if self._mem_size <= self._mem_target: msg = f"LRU {self._name} mem_size reduced below target" log.debug(msg) break else: pass # can't remove dirty nodes node = next_node if self._mem_size > self._mem_target: msg = f"LRU {self._name} mem size of {self._mem_size} " msg += f"not reduced below target {self._mem_target}" log.debug(msg) # done reduceCache def clearCache(self): # remove all nodes from cache log.debug(f"LRU {self._name} clearCache") node = self._lru_tail # start from the back while node is not None: next_node = node._prev if node._isdirty: msg = f"LRU {self._name} found dirty node during clear: " msg += f"{node._id}" log.error(msg) raise ValueError("Unable to clear cache") log.debug(f"LRU {self._name} removing node: {node._id}") self.__delitem__(node._id) node = next_node # done clearCache def consistencyCheck(self): """ verify that the data structure is self-consistent """ id_list = [] dirty_count = 0 mem_usage = 0 dirty_usage = 0 # walk the LRU list node = self._lru_head node_type = None while node is not None: id_list.append(node._id) if node._id not in self._hash: raise ValueError(f"node: {node._id} not found in hash") if node._isdirty: dirty_count += 1 if node._id not in self._dirty_set: msg = f"expected to find id: {node._id} in dirty set" raise ValueError(msg) dirty_usage += node._mem_size mem_usage += node._mem_size if node_type is None: node_type = type(node._data) else: if not isinstance(node._data, node_type): raise TypeError("Unexpected datatype") node = node._next # finish forward iteration if len(id_list) != len(self._hash): msg = "unexpected number of elements in forward LRU list" raise ValueError() if dirty_count != len(self._dirty_set): raise ValueError("unexpected number of dirty nodes") if mem_usage != self._mem_size: raise ValueError("unexpected memory size") if dirty_usage != self._dirty_size: raise ValueError("unexpected dirty size") # go back through list node = self._lru_tail pos = len(id_list) reverse_count = 0 while node is not None: reverse_count += 1 if pos == 0: raise ValueError(f"unexpected node: {node._id}") if node._id != id_list[pos - 1]: msg = f"expected node: {id_list[pos-1]} but found: {node._id}" raise ValueError(msg) pos -= 1 node = node._prev if reverse_count != len(id_list): msg = "elements in reverse list do not equal forward list" raise ValueError(msg) # done - consistencyCheck def setDirty(self, key): """ setting dirty flag has the side effect of moving this node up in the LRU list """ log.debug(f"LRU {self._name} set dirty node id: {key}") node = self._moveToFront(key) if not node._isdirty: self._dirty_size += node._mem_size node._isdirty = True self._dirty_set.add(key) def clearDirty(self, key): """ clear the dirty flag """ # clearing dirty flag has the side effect of moving this node # up in the LRU list # also, may trigger a memory cleanup log.debug(f"LRU {self._name} clear dirty node: {key}") node = self._moveToFront(key) if node._isdirty: self._dirty_size -= node._mem_size node._isdirty = False if key in self._dirty_set: self._dirty_set.remove(key) if self._mem_size > self._mem_target: # maybe we can free up some memory now self._reduceCache() def isDirty(self, key): """ return dirty flag """ # don't adjust LRU position return key in self._dirty_set def dump_lru(self): """ Return LRU list as a string (for debugging) """ node = self._lru_head s = "->" while node: s += node._id node = node._next if node: s += "," node = self._lru_tail s += "\n<-" while node: s += node._id node = node._prev if node: s += "," s += "\n" return s @property def cacheUtilizationPercent(self): return int((self._mem_size/self._mem_target)*100.0) @property def dirtyCount(self): return len(self._dirty_set) @property def memUsed(self): return self._mem_size @property def memTarget(self): return self._mem_target @property def memDirty(self): return self._dirty_size
py
7dfb4b401294badbe5dc3249968ac1d37552be7c
import copy import errno import json import logging import os from pbr.version import VersionInfo import requests import time LOG = logging.getLogger(__name__) LOG.setLevel(logging.INFO) # Async strategies ASYNC_CONTINUE = 'continue' ASYNC_PAUSE = 'pause' ASYNC_BLOCK = 'block' class UnconfiguredException(Exception): pass class APIException(Exception): def __init__(self, message, method, url, status_code, text): self.message = message self.method = method self.url = url self.status_code = status_code self.text = text class RequestMalformedException(APIException): pass class UnauthorizedException(APIException): pass class ResourceCannotBeDeletedException(APIException): pass class ResourceNotFoundException(APIException): pass class DependenciesNotReadyException(APIException): pass class ResourceInUseException(APIException): pass class InternalServerError(APIException): pass class InsufficientResourcesException(APIException): pass class UnknownAsyncStrategy(APIException): pass STATUS_CODES_TO_ERRORS = { 400: RequestMalformedException, 401: UnauthorizedException, 403: ResourceCannotBeDeletedException, 404: ResourceNotFoundException, 406: DependenciesNotReadyException, 409: ResourceInUseException, 500: InternalServerError, 507: InsufficientResourcesException, } def _calculate_async_deadline(strategy): if strategy == ASYNC_CONTINUE: return -1 if strategy == ASYNC_PAUSE: return 60 if strategy == ASYNC_BLOCK: return 3600 raise UnknownAsyncStrategy('Async strategy %s is unknown' % strategy) class Client(object): def __init__(self, base_url=None, verbose=False, namespace=None, key=None, sync_request_timeout=300, suppress_configuration_lookup=False, logger=None, async_strategy=ASYNC_BLOCK): global LOG if verbose: LOG.setLevel(logging.DEBUG) if logger: LOG = logger self.sync_request_timeout = sync_request_timeout if not suppress_configuration_lookup: # Where do we find authentication details? First off, we try command line # flags; then environment variables (thanks for doing this for free click); # ~/.shakenfist (which is a JSON file); and finally /etc/sf/shakenfist.json. if not base_url: user_conf = os.path.expanduser('~/.shakenfist') if os.path.exists(user_conf): with open(user_conf) as f: d = json.loads(f.read()) if not namespace: namespace = d['namespace'] if not key: key = d['key'] if not base_url: base_url = d['apiurl'] if not base_url: try: if os.path.exists('/etc/sf/shakenfist.json'): with open('/etc/sf/shakenfist.json') as f: d = json.loads(f.read()) if not namespace: namespace = d['namespace'] if not key: key = d['key'] if not base_url: base_url = d['apiurl'] except IOError as e: if e.errno != errno.EACCES: raise if not base_url: raise UnconfiguredException( 'You have not specified the server to communicate with') self.base_url = base_url self.namespace = namespace self.key = key self.async_strategy = async_strategy LOG.debug('Client configured with apiurl of %s for namespace %s ' 'and async strategy %s' % (self.base_url, self.namespace, self.async_strategy)) self.cached_auth = None def _actual_request_url(self, method, url, data=None, data_is_binary=False, allow_redirects=True): url = self.base_url + url h = {'Authorization': self.cached_auth, 'User-Agent': get_user_agent()} if data: if data_is_binary: h['Content-Type'] = 'application/octet-stream' else: h['Content-Type'] = 'application/json' data = json.dumps(data, indent=4, sort_keys=True) start_time = time.time() r = requests.request(method, url, data=data, headers=h, allow_redirects=allow_redirects) end_time = time.time() LOG.debug('-------------------------------------------------------') LOG.debug('API client requested: %s %s' % (method, url)) if data: if data_is_binary: LOG.debug('Data: ...binary omitted...') else: LOG.debug('Data:\n %s' % '\n '.join(data.split('\n'))) for h in r.history: LOG.debug('URL request history: %s --> %s %s' % (h.url, h.status_code, h.headers.get('Location'))) LOG.debug('API client response: code = %s (took %.02f seconds)' % (r.status_code, (end_time - start_time))) if r.text: if data_is_binary: LOG.debug('Data: ...binary omitted...') else: try: LOG.debug('Data:\n %s' % ('\n '.join(json.dumps(json.loads(r.text), indent=4, sort_keys=True).split('\n')))) except Exception: LOG.debug('Text:\n %s' % ('\n '.join(r.text.split('\n')))) LOG.debug('-------------------------------------------------------') if r.status_code in STATUS_CODES_TO_ERRORS: raise STATUS_CODES_TO_ERRORS[r.status_code]( 'API request failed', method, url, r.status_code, r.text) acceptable = [200] if not allow_redirects: acceptable.append(301) if r.status_code not in acceptable: raise APIException( 'API request failed', method, url, r.status_code, r.text) return r def _authenticate(self): LOG.debug('Authentication request made, contents not logged') auth_url = self.base_url + '/auth' r = requests.request('POST', auth_url, data=json.dumps( {'namespace': self.namespace, 'key': self.key}), headers={'Content-Type': 'application/json', 'User-Agent': get_user_agent()}) if r.status_code != 200: raise UnauthorizedException('API unauthorized', 'POST', auth_url, r.status_code, r.text) return 'Bearer %s' % r.json()['access_token'] def _request_url(self, method, url, data=None, data_is_binary=False): # NOTE(mikal): if we are not authenticated, probe the base_url looking # for redirections. If we are redirected, rewrite our base_url to the # redirection target. if not self.cached_auth: probe = self._actual_request_url('GET', '', allow_redirects=False) if probe.status_code == 301: LOG.debug('API server redirects to %s' % probe.headers['Location']) self.base_url = probe.headers['Location'] self.cached_auth = self._authenticate() deadline = time.time() + _calculate_async_deadline(self.async_strategy) while True: try: try: return self._actual_request_url( method, url, data=data, data_is_binary=data_is_binary) except UnauthorizedException: self.cached_auth = self._authenticate() return self._actual_request_url( method, url, data=data, data_is_binary=data_is_binary) except DependenciesNotReadyException as e: # The API server will return a 406 exception when we have # specified an operation which depends on a resource and # that resource is not in the created state. if time.time() > deadline: LOG.debug('Deadline exceeded waiting for dependancies') raise e LOG.debug('Dependencies not ready, retrying') time.sleep(1) def get_instances(self, all=False): r = self._request_url('GET', '/instances', data={'all': all}) return r.json() def delete_all_instances(self, namespace): r = self._request_url('DELETE', '/instances', data={'confirm': True, 'namespace': namespace}) deleted = r.json() waiting_for = set(deleted) deadline = time.time() + _calculate_async_deadline(self.async_strategy) while waiting_for: LOG.debug('Waiting for instances to deleted: %s' % ', '.join(waiting_for)) if time.time() > deadline: LOG.debug('Deadline exceeded waiting for instances to delete') break time.sleep(1) for uuid in copy.copy(waiting_for): inst = self.get_instance(uuid) if not inst or inst['state'] == 'deleted': LOG.debug('Instance %s is now deleted' % uuid) waiting_for.remove(uuid) return deleted def get_instance(self, instance_uuid): r = self._request_url('GET', '/instances/' + instance_uuid) return r.json() def get_instance_interfaces(self, instance_uuid): r = self._request_url('GET', '/instances/' + instance_uuid + '/interfaces') return r.json() def get_instance_metadata(self, instance_uuid): r = self._request_url('GET', '/instances/' + instance_uuid + '/metadata') return r.json() def set_instance_metadata_item(self, instance_uuid, key, value): r = self._request_url('PUT', '/instances/' + instance_uuid + '/metadata/' + key, data={'value': value}) return r.json() def delete_instance_metadata_item(self, instance_uuid, key): r = self._request_url('DELETE', '/instances/' + instance_uuid + '/metadata/' + key) return r.json() def create_instance(self, name, cpus, memory, network, disk, sshkey, userdata, namespace=None, force_placement=None, video=None, uefi=False): body = { 'name': name, 'cpus': cpus, 'memory': memory, 'network': network, 'ssh_key': sshkey, 'user_data': userdata, 'namespace': namespace, 'video': video, 'uefi': uefi } if force_placement: body['placed_on'] = force_placement # Ensure size is always an int if specified clean_disks = [] for d in disk: if 'size' in d and d['size']: d['size'] = int(d['size']) clean_disks.append(d) body['disk'] = clean_disks r = self._request_url('POST', '/instances', data=body) i = r.json() deadline = time.time() + _calculate_async_deadline(self.async_strategy) while True: if i['state'] not in ['initial', 'creating']: return i LOG.debug('Waiting for instance to be created') if time.time() > deadline: LOG.debug('Deadline exceeded waiting for instance to be created') return i time.sleep(1) i = self.get_instance(i['uuid']) def snapshot_instance(self, instance_uuid, all=False, device=None, label_name=None): r = self._request_url( 'POST', '/instances/' + instance_uuid + '/snapshot', data={'all': all, 'device': device}) out = r.json() waiting_for = [] for s in out: waiting_for.append(out[s]['blob_uuid']) deadline = time.time() + _calculate_async_deadline(self.async_strategy) while waiting_for: LOG.debug('Waiting for snapshots: %s' % ', '.join(waiting_for)) if time.time() > deadline: LOG.debug('Deadline exceeded waiting for snapshots') break time.sleep(1) snaps = self.get_instance_snapshots(instance_uuid) for s in snaps: if s.get('blob_uuid') in waiting_for: if s.get('state') == 'created': LOG.debug('Blob %s now present' % s['blob_uuid']) waiting_for.remove(s['blob_uuid']) else: LOG.debug('Blob %s not yet created' % s['blob_uuid']) if not all and label_name: # It only makes sense to update a label if we've snapshotted a single # disk. Otherwise we'd immediately clobber the label with the last # disk in the snapshot series. if not device: device = 'vda' out['label'] = self.update_label( label_name, out[device]['blob_uuid']) return out def get_instance_snapshots(self, instance_uuid): r = self._request_url('GET', '/instances/' + instance_uuid + '/snapshot') return r.json() def update_label(self, label_name, blob_uuid): r = self._request_url( 'POST', '/label/%s' % label_name, data={'blob_uuid': blob_uuid}) return r.json() def reboot_instance(self, instance_uuid, hard=False): style = 'soft' if hard: style = 'hard' r = self._request_url('POST', '/instances/' + instance_uuid + '/reboot' + style) return r.json() def power_off_instance(self, instance_uuid): r = self._request_url('POST', '/instances/' + instance_uuid + '/poweroff') return r.json() def power_on_instance(self, instance_uuid): r = self._request_url('POST', '/instances/' + instance_uuid + '/poweron') return r.json() def pause_instance(self, instance_uuid): r = self._request_url('POST', '/instances/' + instance_uuid + '/pause') return r.json() def unpause_instance(self, instance_uuid): r = self._request_url('POST', '/instances/' + instance_uuid + '/unpause') return r.json() def delete_instance(self, instance_uuid, namespace=None, async_request=False): # Why pass a namespace when you're passing an exact UUID? The idea here # is that it provides a consistent interface, but also a safety check # against overly zealous loops deleting things. data = None if namespace: data = {'namespace': namespace} self._request_url('DELETE', '/instances/' + instance_uuid, data=data) if async_request: return i = self.get_instance(instance_uuid) deadline = time.time() + _calculate_async_deadline(self.async_strategy) while True: if i['state'] == 'deleted': return LOG.debug('Waiting for instance to be deleted') if time.time() > deadline: LOG.debug('Deadline exceeded waiting for instance to delete') return time.sleep(1) i = self.get_instance(instance_uuid) def get_instance_events(self, instance_uuid): r = self._request_url('GET', '/instances/' + instance_uuid + '/events') return r.json() def cache_artifact(self, image_url): r = self._request_url('POST', '/artifacts', data={'url': image_url}) return r.json() def upload_artifact(self, name, upload_uuid): r = self._request_url('POST', '/artifacts/upload/%s' % name, data={'upload_uuid': upload_uuid}) return r.json() def get_artifact(self, artifact_uuid): r = self._request_url('GET', '/artifacts/' + artifact_uuid) return r.json() def get_artifacts(self, node=None): r = self._request_url('GET', '/artifacts', data={'node': node}) return r.json() def get_artifact_events(self, artifact_uuid): r = self._request_url('GET', '/artifacts/' + artifact_uuid + '/events') return r.json() def get_artifact_versions(self, artifact_uuid): r = self._request_url( 'GET', '/artifacts/' + artifact_uuid + '/versions') return r.json() def delete_artifact(self, artifact_uuid): r = self._request_url('DELETE', '/artifacts/' + artifact_uuid) return r.json() def delete_artifact_version(self, artifact_uuid, version_id): r = self._request_url('DELETE', '/artifacts/' + artifact_uuid + '/versions/' + str(version_id)) return r.json() def get_networks(self, all=False): r = self._request_url('GET', '/networks', data={'all': all}) return r.json() def get_network(self, network_uuid): r = self._request_url('GET', '/networks/' + network_uuid) return r.json() def delete_network(self, network_uuid, namespace=None): # Why pass a namespace when you're passing an exact UUID? The idea here # is that it provides a consistent interface, but also a safety check # against overly zealous loops deleting things. data = None if namespace: data = {'namespace': namespace} r = self._request_url('DELETE', '/networks/' + network_uuid, data=data) return r.json() def delete_all_networks(self, namespace, clean_wait=False): r = self._request_url('DELETE', '/networks', data={'confirm': True, 'namespace': namespace, 'clean_wait': clean_wait, }) return r.json() def get_network_events(self, instance_uuid): r = self._request_url('GET', '/networks/' + instance_uuid + '/events') return r.json() def allocate_network(self, netblock, provide_dhcp, provide_nat, name, namespace=None): r = self._request_url('POST', '/networks', data={ 'netblock': netblock, 'provide_dhcp': provide_dhcp, 'provide_nat': provide_nat, 'name': name, 'namespace': namespace }) n = r.json() deadline = time.time() + _calculate_async_deadline(self.async_strategy) while True: if n['state'] not in ['initial', 'creating']: return n LOG.debug('Waiting for network to be created') if time.time() > deadline: LOG.debug('Deadline exceeded waiting for network to be created') return n time.sleep(1) n = self.get_network(n['uuid']) def get_network_interfaces(self, network_uuid): r = self._request_url('GET', '/networks/' + network_uuid + '/interfaces') return r.json() def get_network_metadata(self, network_uuid): r = self._request_url('GET', '/networks/' + network_uuid + '/metadata') return r.json() def set_network_metadata_item(self, network_uuid, key, value): r = self._request_url('PUT', '/networks/' + network_uuid + '/metadata/' + key, data={'value': value}) return r.json() def delete_network_metadata_item(self, network_uuid, key): r = self._request_url('DELETE', '/networks/' + network_uuid + '/metadata/' + key) return r.json() def get_nodes(self): r = self._request_url('GET', '/nodes') return r.json() def get_interface(self, interface_uuid): r = self._request_url('GET', '/interfaces/' + interface_uuid) return r.json() def float_interface(self, interface_uuid): r = self._request_url('POST', '/interfaces/' + interface_uuid + '/float') return r.json() def defloat_interface(self, interface_uuid): r = self._request_url('POST', '/interfaces/' + interface_uuid + '/defloat') return r.json() def get_console_data(self, instance_uuid, length=None): url = '/instances/' + instance_uuid + '/consoledata' if length: d = {'length': length} else: d = {} r = self._request_url('GET', url, data=d) return r.text def delete_console_data(self, instance_uuid): url = '/instances/' + instance_uuid + '/consoledata' self._request_url('DELETE', url) def get_namespaces(self): r = self._request_url('GET', '/auth/namespaces') return r.json() def create_namespace(self, namespace): r = self._request_url('POST', '/auth/namespaces', data={'namespace': namespace}) return r.json() def delete_namespace(self, namespace): if not namespace: namespace = self.namespace self._request_url('DELETE', '/auth/namespaces/' + namespace) def get_namespace_keynames(self, namespace): r = self._request_url('GET', '/auth/namespaces/' + namespace + '/keys') return r.json() def add_namespace_key(self, namespace, key_name, key): r = self._request_url('POST', '/auth/namespaces/' + namespace + '/keys', data={'key_name': key_name, 'key': key}) return r.json() def delete_namespace_key(self, namespace, key_name): self._request_url( 'DELETE', '/auth/namespaces/' + namespace + '/keys/' + key_name) def get_namespace_metadata(self, namespace): r = self._request_url('GET', '/auth/namespaces/' + namespace + '/metadata') return r.json() def set_namespace_metadata_item(self, namespace, key, value): r = self._request_url('PUT', '/auth/namespaces/' + namespace + '/metadata/' + key, data={'value': value}) return r.json() def delete_namespace_metadata_item(self, namespace, key): r = self._request_url( 'DELETE', '/auth/namespaces/' + namespace + '/metadata/' + key) return r.json() def get_existing_locks(self): r = self._request_url('GET', '/admin/locks') return r.json() def ping(self, network_uuid, address): r = self._request_url('GET', '/networks/' + network_uuid + '/ping/' + address) return r.json() def create_upload(self): r = self._request_url('POST', '/upload') return r.json() def send_upload(self, upload_uuid, data): r = self._request_url('POST', '/upload/' + upload_uuid, data=data, data_is_binary=True) return r.json() def get_user_agent(): sf_version = VersionInfo('shakenfist_client').version_string() return 'Mozilla/5.0 (Ubuntu; Linux x86_64) Shaken Fist/%s' % sf_version
py
7dfb4b4e1596b913723d8483fa38f478ca4488b8
import inspect import os import warnings from importlib import import_module from django.core.exceptions import ImproperlyConfigured from django.utils.deprecation import RemovedInDjango41Warning from django.utils.functional import cached_property from django.utils.module_loading import import_string, module_has_submodule APPS_MODULE_NAME = 'apps' MODELS_MODULE_NAME = 'models' class AppConfig: """Class representing a Django application and its configuration.""" def __init__(self, app_name, app_module): # Full Python path to the application e.g. 'django.contrib.admin'. self.name = app_name # Root module for the application e.g. <module 'django.contrib.admin' # from 'django/contrib/admin/__init__.py'>. self.module = app_module # Reference to the Apps registry that holds this AppConfig. Set by the # registry when it registers the AppConfig instance. self.apps = None # The following attributes could be defined at the class level in a # subclass, hence the test-and-set pattern. # Last component of the Python path to the application e.g. 'admin'. # This value must be unique across a Django project. if not hasattr(self, 'label'): self.label = app_name.rpartition(".")[2] if not self.label.isidentifier(): raise ImproperlyConfigured( "The app label '%s' is not a valid Python identifier." % self.label ) # Human-readable name for the application e.g. "Admin". if not hasattr(self, 'verbose_name'): self.verbose_name = self.label.title() # Filesystem path to the application directory e.g. # '/path/to/django/contrib/admin'. if not hasattr(self, 'path'): self.path = self._path_from_module(app_module) # Module containing models e.g. <module 'django.contrib.admin.models' # from 'django/contrib/admin/models.py'>. Set by import_models(). # None if the application doesn't have a models module. self.models_module = None # Mapping of lowercase model names to model classes. Initially set to # None to prevent accidental access before import_models() runs. self.models = None def __repr__(self): return '<%s: %s>' % (self.__class__.__name__, self.label) @cached_property def default_auto_field(self): from django.conf import settings return settings.DEFAULT_AUTO_FIELD @property def _is_default_auto_field_overridden(self): return self.__class__.default_auto_field is not AppConfig.default_auto_field def _path_from_module(self, module): """Attempt to determine app's filesystem path from its module.""" # See #21874 for extended discussion of the behavior of this method in # various cases. # Convert to list because __path__ may not support indexing. paths = list(getattr(module, '__path__', [])) if len(paths) != 1: filename = getattr(module, '__file__', None) if filename is not None: paths = [os.path.dirname(filename)] else: # For unknown reasons, sometimes the list returned by __path__ # contains duplicates that must be removed (#25246). paths = list(set(paths)) if len(paths) > 1: raise ImproperlyConfigured( "The app module %r has multiple filesystem locations (%r); " "you must configure this app with an AppConfig subclass " "with a 'path' class attribute." % (module, paths)) elif not paths: raise ImproperlyConfigured( "The app module %r has no filesystem location, " "you must configure this app with an AppConfig subclass " "with a 'path' class attribute." % module) return paths[0] @classmethod def create(cls, entry): """ Factory that creates an app config from an entry in INSTALLED_APPS. """ # create() eventually returns app_config_class(app_name, app_module). app_config_class = None app_config_name = None app_name = None app_module = None # If import_module succeeds, entry points to the app module. try: app_module = import_module(entry) except Exception: pass else: # If app_module has an apps submodule that defines a single # AppConfig subclass, use it automatically. # To prevent this, an AppConfig subclass can declare a class # variable default = False. # If the apps module defines more than one AppConfig subclass, # the default one can declare default = True. if module_has_submodule(app_module, APPS_MODULE_NAME): mod_path = '%s.%s' % (entry, APPS_MODULE_NAME) mod = import_module(mod_path) # Check if there's exactly one AppConfig candidate, # excluding those that explicitly define default = False. app_configs = [ (name, candidate) for name, candidate in inspect.getmembers(mod, inspect.isclass) if ( issubclass(candidate, cls) and candidate is not cls and getattr(candidate, 'default', True) ) ] if len(app_configs) == 1: app_config_class = app_configs[0][1] app_config_name = '%s.%s' % (mod_path, app_configs[0][0]) else: # Check if there's exactly one AppConfig subclass, # among those that explicitly define default = True. app_configs = [ (name, candidate) for name, candidate in app_configs if getattr(candidate, 'default', False) ] if len(app_configs) > 1: candidates = [repr(name) for name, _ in app_configs] raise RuntimeError( '%r declares more than one default AppConfig: ' '%s.' % (mod_path, ', '.join(candidates)) ) elif len(app_configs) == 1: app_config_class = app_configs[0][1] app_config_name = '%s.%s' % (mod_path, app_configs[0][0]) # If app_module specifies a default_app_config, follow the link. # default_app_config is deprecated, but still takes over the # automatic detection for backwards compatibility during the # deprecation period. try: new_entry = app_module.default_app_config except AttributeError: # Use the default app config class if we didn't find anything. if app_config_class is None: app_config_class = cls app_name = entry else: message = ( '%r defines default_app_config = %r. ' % (entry, new_entry) ) if new_entry == app_config_name: message += ( 'Django now detects this configuration automatically. ' 'You can remove default_app_config.' ) else: message += ( "However, Django's automatic detection %s. You should " "move the default config class to the apps submodule " "of your application and, if this module defines " "several config classes, mark the default one with " "default = True." % ( "picked another configuration, %r" % app_config_name if app_config_name else "did not find this configuration" ) ) warnings.warn(message, RemovedInDjango41Warning, stacklevel=2) entry = new_entry app_config_class = None # If import_string succeeds, entry is an app config class. if app_config_class is None: try: app_config_class = import_string(entry) except Exception: pass # If both import_module and import_string failed, it means that entry # doesn't have a valid value. if app_module is None and app_config_class is None: # If the last component of entry starts with an uppercase letter, # then it was likely intended to be an app config class; if not, # an app module. Provide a nice error message in both cases. mod_path, _, cls_name = entry.rpartition('.') if mod_path and cls_name[0].isupper(): # We could simply re-trigger the string import exception, but # we're going the extra mile and providing a better error # message for typos in INSTALLED_APPS. # This may raise ImportError, which is the best exception # possible if the module at mod_path cannot be imported. mod = import_module(mod_path) candidates = [ repr(name) for name, candidate in inspect.getmembers(mod, inspect.isclass) if issubclass(candidate, cls) and candidate is not cls ] msg = "Module '%s' does not contain a '%s' class." % (mod_path, cls_name) if candidates: msg += ' Choices are: %s.' % ', '.join(candidates) raise ImportError(msg) else: # Re-trigger the module import exception. import_module(entry) # Check for obvious errors. (This check prevents duck typing, but # it could be removed if it became a problem in practice.) if not issubclass(app_config_class, AppConfig): raise ImproperlyConfigured( "'%s' isn't a subclass of AppConfig." % entry) # Obtain app name here rather than in AppClass.__init__ to keep # all error checking for entries in INSTALLED_APPS in one place. if app_name is None: try: app_name = app_config_class.name except AttributeError: raise ImproperlyConfigured( "'%s' must supply a name attribute." % entry ) # Ensure app_name points to a valid module. try: app_module = import_module(app_name) except ImportError: raise ImproperlyConfigured( "Cannot import '%s'. Check that '%s.%s.name' is correct." % ( app_name, app_config_class.__module__, app_config_class.__qualname__, ) ) # Entry is a path to an app config class. return app_config_class(app_name, app_module) def get_model(self, model_name, require_ready=True): """ Return the model with the given case-insensitive model_name. Raise LookupError if no model exists with this name. """ if require_ready: self.apps.check_models_ready() else: self.apps.check_apps_ready() try: return self.models[model_name.lower()] except KeyError: raise LookupError( "App '%s' doesn't have a '%s' model." % (self.label, model_name)) def get_models(self, include_auto_created=False, include_swapped=False): """ Return an iterable of models. By default, the following models aren't included: - auto-created models for many-to-many relations without an explicit intermediate table, - models that have been swapped out. Set the corresponding keyword argument to True to include such models. Keyword arguments aren't documented; they're a private API. """ self.apps.check_models_ready() for model in self.models.values(): if model._meta.auto_created and not include_auto_created: continue if model._meta.swapped and not include_swapped: continue yield model def import_models(self): # Dictionary of models for this app, primarily maintained in the # 'all_models' attribute of the Apps this AppConfig is attached to. self.models = self.apps.all_models[self.label] if module_has_submodule(self.module, MODELS_MODULE_NAME): models_module_name = '%s.%s' % (self.name, MODELS_MODULE_NAME) self.models_module = import_module(models_module_name) def ready(self): """ Override this method in subclasses to run code when Django starts. """
py
7dfb4b98da1e78d55f588b31b2db23edcc320ef4
import requests,base64,json,hashlib from Crypto.Cipher import AES def encrypt(key, text): cryptor = AES.new(key.encode('utf8'), AES.MODE_CBC, b'0102030405060708') length = 16 count = len(text.encode('utf-8')) if (count % length != 0): add = length - (count % length) else: add = 16 pad = chr(add) text1 = text + (pad * add) ciphertext = cryptor.encrypt(text1.encode('utf8')) cryptedStr = str(base64.b64encode(ciphertext),encoding='utf-8') return cryptedStr def md5(str): hl = hashlib.md5() hl.update(str.encode(encoding='utf-8')) return hl.hexdigest() def protect(text): return {"params":encrypt('TA3YiYCfY2dDJQgg',encrypt('0CoJUm6Qyw8W8jud',text)),"encSecKey":"84ca47bca10bad09a6b04c5c927ef077d9b9f1e37098aa3eac6ea70eb59df0aa28b691b7e75e4f1f9831754919ea784c8f74fbfadf2898b0be17849fd656060162857830e241aba44991601f137624094c114ea8d17bce815b0cd4e5b8e2fbaba978c6d1d14dc3d1faf852bdd28818031ccdaaa13a6018e1024e2aae98844210"} s=requests.Session() header={} url="https://music.163.com/weapi/login/cellphone" url2="https://music.163.com/weapi/point/dailyTask" url3="https://music.163.com/weapi/v1/discovery/recommend/resource" logindata={ "phone":input(), "countrycode":"86", "password":md5(input()), "rememberLogin":"true", } headers = { 'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36', "Referer" : "http://music.163.com/", "Accept-Encoding" : "gzip, deflate", } headers2 = { 'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36', "Referer" : "http://music.163.com/", "Accept-Encoding" : "gzip, deflate", "Cookie":"os=pc; osver=Microsoft-Windows-10-Professional-build-10586-64bit; appver=2.0.3.131777; channel=netease; __remember_me=true;" } res=s.post(url=url,data=protect(json.dumps(logindata)),headers=headers2) tempcookie=res.cookies object=json.loads(res.text) if object['code']==200: print("登录成功!") else: print("登录失败!请检查密码是否正确!"+str(object['code'])) exit(object['code']) res=s.post(url=url2,data=protect('{"type":0}'),headers=headers) object=json.loads(res.text) if object['code']!=200 and object['code']!=-2: print("签到时发生错误:"+object['msg']) else: if object['code']==200: print("签到成功,经验+"+str(object['point'])) else: print("重复签到") res=s.post(url=url3,data=protect('{"csrf_token":"'+requests.utils.dict_from_cookiejar(tempcookie)['__csrf']+'"}'),headers=headers) object=json.loads(res.text,strict=False) for x in object['recommend']: url='https://music.163.com/weapi/v3/playlist/detail?csrf_token='+requests.utils.dict_from_cookiejar(tempcookie)['__csrf'] data={ 'id':x['id'], 'n':1000, 'csrf_token':requests.utils.dict_from_cookiejar(tempcookie)['__csrf'], } res=s.post(url,protect(json.dumps(data)),headers=headers) object=json.loads(res.text,strict=False) buffer=[] count=0 for j in object['playlist']['trackIds']: data2={} data2["action"]="play" data2["json"]={} data2["json"]["download"]=0 data2["json"]["end"]="playend" data2["json"]["id"]=j["id"] data2["json"]["sourceId"]="" data2["json"]["time"]="240" data2["json"]["type"]="song" data2["json"]["wifi"]=0 buffer.append(data2) count+=1 if count>=310: break if count>=310: break url = "http://music.163.com/weapi/feedback/weblog" postdata={ "logs":json.dumps(buffer) } res=s.post(url,protect(json.dumps(postdata))) object=json.loads(res.text,strict=False) if object['code']==200: print("刷单成功!共"+str(count)+"首") exit() else: print("发生错误:"+str(object['code'])+object['message']) exit(object['code'])
py
7dfb4be33f7aba757171644dbe4a8b24876a1245
if __name__ == '__main__': from userbot import main
py
7dfb4cb0cb620c1eaeb890201b48b36fba3bad1b
# -*- coding: utf-8 -*- """ Created on Sat Jun 8 23:14:11 2019 @author: Parikshith.H """ class vehicle: num=10 #class variables/static variables-assigned a value inside class declaration #static variable does not belong to object it belongs to class #static variable is shared among objects #static variables exists throughout the program def __init__(self,w,t): self.__wheel=w self.__type=t self.__number=vehicle.num vehicle.num=vehicle.num+1 def display(self): print(self.__wheel,self.__type,self.__number) print(vehicle.num) car1=vehicle(4,'petrol') car1.display() # ============================================================================= # #output: # 10 # 4 petrol 10 # ============================================================================= print(vehicle.num) car2=vehicle(4,'diesel') car2.display() # ============================================================================= # #output: # 11 # 4 diesel 11 # ============================================================================= print(vehicle.num) # ============================================================================= # #output: # 12 # ============================================================================= class student: id=1 def __init__(self,n,ph): self.__name=n self.__phone=ph self.__usn='4VV16CS' + str(student.id) student.id=student.id+1 def display(self): print(self.__name,self.__phone,self.__usn) student1=student('a',9988776655) student1.display() # ============================================================================= # #output: # a 9988776655 4VV16CS1 # ============================================================================= student2=student('b',9966554433) student2.display() # ============================================================================= # #output: # b 9966554433 4VV16CS2 # =============================================================================
py
7dfb4d9f5e61625f583cfc6211149f533f9462df
import numpy as np import scipy.signal from gym.spaces import Box, Discrete import torch import torch.nn as nn from torch.distributions.normal import Normal from torch.distributions.categorical import Categorical def combined_shape(length, shape=None): if shape is None: return (length,) return (length, shape) if np.isscalar(shape) else (length, *shape) def mlp(sizes, activation, output_activation=nn.Identity): layers = [] for j in range(len(sizes)-1): act = activation if j < len(sizes)-2 else output_activation layers += [nn.Linear(sizes[j], sizes[j+1]), act()] return nn.Sequential(*layers) class split_model(nn.Module): def __init__(self,sizes, activation, output_activation=nn.Identity,split_index=-1): super(split_model, self).__init__() self.mlp1 = mlp(sizes, activation, output_activation) self.mlp2 = mlp(sizes, activation, output_activation) self.split_index = split_index def forward(self, x): if len(list(x.size()))==1: x = x.unsqueeze(0) split = torch.eq(x[:,self.split_index],1).unsqueeze(1) x = split.float()*self.mlp1(x)+torch.logical_not(split).float()*self.mlp2(x) return x def mlp_switch(sizes, activation, output_activation=nn.Identity,split_index=-1): return split_model(sizes, activation, output_activation,split_index=split_index) def count_vars(module): return sum([np.prod(p.shape) for p in module.parameters()]) def discount_cumsum(x, discount): """ magic from rllab for computing discounted cumulative sums of vectors. input: vector x, [x0, x1, x2] output: [x0 + discount * x1 + discount^2 * x2, x1 + discount * x2, x2] """ return scipy.signal.lfilter([1], [1, float(-discount)], x[::-1], axis=0)[::-1] class Actor(nn.Module): def _distribution(self, obs): raise NotImplementedError def _log_prob_from_distribution(self, pi, act): raise NotImplementedError def forward(self, obs, act=None): # Produce action distributions for given observations, and # optionally compute the log likelihood of given actions under # those distributions. pi = self._distribution(obs) logp_a = None if act is not None: logp_a = self._log_prob_from_distribution(pi, act) return pi, logp_a class MLPCategoricalActor(Actor): def __init__(self, obs_dim, act_dim, hidden_sizes, activation,use_split=False): super().__init__() if not use_split: self.logits_net = mlp([obs_dim] + list(hidden_sizes) + [act_dim], activation) else: self.logits_net = mlp_switch([obs_dim] + list(hidden_sizes) + [act_dim], activation) def _distribution(self, obs): logits = self.logits_net(obs) return Categorical(logits=logits) def _log_prob_from_distribution(self, pi, act): return pi.log_prob(act) class MLPGaussianActor(Actor): def __init__(self, obs_dim, act_dim, hidden_sizes, activation,use_split=False): super().__init__() log_std = -0.5 * np.ones(act_dim, dtype=np.float32) self.log_std = torch.nn.Parameter(torch.as_tensor(log_std)) if not use_split: self.mu_net = mlp([obs_dim] + list(hidden_sizes) + [act_dim], activation) else: self.mu_net = mlp_switch([obs_dim] + list(hidden_sizes) + [act_dim], activation) def _distribution(self, obs): mu = self.mu_net(obs) std = torch.exp(self.log_std) return Normal(mu, std) def _log_prob_from_distribution(self, pi, act): return pi.log_prob(act).sum(axis=-1) # Last axis sum needed for Torch Normal distribution class MLPCritic(nn.Module): def __init__(self, obs_dim, hidden_sizes, activation,use_split=False): super().__init__() if not use_split: self.v_net = mlp([obs_dim] + list(hidden_sizes) + [1], activation) else: self.v_net = mlp_switch([obs_dim] + list(hidden_sizes) + [1], activation) def forward(self, obs): return torch.squeeze(self.v_net(obs), -1) # Critical to ensure v has right shape. class MLPActorCritic(nn.Module): def __init__(self, observation_space, action_space, hidden_sizes=(64,64), activation=nn.Tanh): super().__init__() obs_dim = observation_space.shape[0] # policy builder depends on action space if isinstance(action_space, Box): self.pi = MLPGaussianActor(obs_dim, action_space.shape[0], hidden_sizes, activation) elif isinstance(action_space, Discrete): self.pi = MLPCategoricalActor(obs_dim, action_space.n, hidden_sizes, activation) # build value function self.v = MLPCritic(obs_dim, hidden_sizes, activation) def step(self, obs): with torch.no_grad(): pi = self.pi._distribution(obs) a = pi.sample() logp_a = self.pi._log_prob_from_distribution(pi, a) v = self.v(obs) return a.numpy(), v.numpy(), logp_a.numpy() def act(self, obs): return self.step(obs)[0] class MLPActorCriticSplit(nn.Module): def __init__(self, observation_space, action_space, hidden_sizes=(64,64), activation=nn.Tanh): super().__init__() obs_dim = observation_space.shape[0] # policy builder depends on action space if isinstance(action_space, Box): self.pi = MLPGaussianActor(obs_dim, action_space.shape[0], hidden_sizes, activation,use_split=True) elif isinstance(action_space, Discrete): self.pi = MLPCategoricalActor(obs_dim, action_space.n, hidden_sizes, activation,use_split=True) # build value function self.v = MLPCritic(obs_dim, hidden_sizes, activation,use_split=True) def step(self, obs): with torch.no_grad(): pi = self.pi._distribution(obs) a = pi.sample() logp_a = self.pi._log_prob_from_distribution(pi, a) v = self.v(obs) return a.numpy(), v.numpy(), logp_a.numpy() def act(self, obs): return self.step(obs)[0]
py
7dfb4e2b76dbe808daef4748d2c650e81c560300
r"""``sphobjinv._vendored`` *package definition module*. ``sphobjinv`` is a toolkit for manipulation and inspection of Sphinx |objects.inv| files. Subpackage marker module for vendored packages. **Author** Brian Skinn ([email protected]) **File Created** 11 Dec 2021 **Copyright** \(c) Brian Skinn 2016-2022 **Source Repository** https://github.com/bskinn/sphobjinv **Documentation** https://sphobjinv.readthedocs.io/en/latest **License** The MIT License; see |license_txt|_ for full license terms **Members** """
py
7dfb4e6f29a00ad42e0fd96496208166c92cc6fc
small_bottles = float(input("Inserisci il numero di bottiglie piccole")) big_bottles = float(input("Inserisci il numero di bottiglie grandi")) valore_totale=(small_bottles*0.1)+(big_bottles*0.25) print("hai guadagnato:",float(valore_totale))
py
7dfb4eb2df81fb7cd4de3ab58b11bddd1f89fcc1
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.13.4 # kernelspec: # display_name: Python 3 (ipykernel) # language: python # name: python3 # --- # + import requests ensembl_server = 'http://rest.ensembl.org' def do_request(server, service, *args, **kwargs): url_params = '' for a in args: if a is not None: url_params += '/' + a req = requests.get('%s/%s%s' % (server, service, url_params), params=kwargs, headers={'Content-Type': 'application/json'}) if not req.ok: req.raise_for_status() return req.json() # - answer = do_request(ensembl_server, 'info/species') for i, sp in enumerate(answer['species']): print(i, sp['name']) ext_dbs = do_request(ensembl_server, 'info/external_dbs', 'homo_sapiens', filter='HGNC%') print(ext_dbs) answer = do_request(ensembl_server, 'lookup/symbol', 'homo_sapiens', 'LCT') print(answer) lct_id = answer['id'] lct_seq = do_request(ensembl_server, 'sequence/id', lct_id) print(lct_seq) lct_xrefs = do_request(ensembl_server, 'xrefs/id', lct_id) for xref in lct_xrefs: print(xref['db_display_name']) print(xref) refs = do_request(ensembl_server, 'xrefs/id', lct_id, external_db='GO', all_levels='1') print(lct_id, refs) hom_response = do_request(ensembl_server, 'homology/id', lct_id, type='orthologues', sequence='none') #print(hom_response['data'][0]['homologies']) homologies = hom_response['data'][0]['homologies'] for homology in homologies: print(homology['target']['species']) if homology['target']['species'] != 'equus_caballus': continue print(homology) print(homology['taxonomy_level']) horse_id = homology['target']['id'] horse_req = do_request(ensembl_server, 'lookup/id', horse_id) print(horse_req) # + #maybe synteny of MCM6 and LCT with caballus and gorilla
py
7dfb4ee8ce4ac0e661e3c5aefd5c86db8d6e3159
# -*- coding: utf-8 -*- """ Tools for dealing with bibliographic information. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from .bibtex import BibtexParser, parse_bibtex from .person import PersonName from .xmp import XmpParser, parse_xmp
py
7dfb4ef28bf7c47a35d6fe8dfa51bfe3200ed1d2
import logging import re import six # Python 2+3 compatibility from .glyphlist import glyphname2unicode from .latin_enc import ENCODING from .psparser import PSLiteral from .additional_glyphlist import glyphname2unicode as additional_glyphs glyphname2unicode.update(additional_glyphs) HEXADECIMAL = re.compile(r'[0-9a-fA-F]+') log = logging.getLogger(__name__) def name2unicode(name): """Converts Adobe glyph names to Unicode numbers. In contrast to the specification, this raises a KeyError instead of return an empty string when the key is unknown. This way the caller must explicitly define what to do when there is not a match. Reference: https://github.com/adobe-type-tools/agl-specification#2-the-mapping :returns unicode character if name resembles something, otherwise a KeyError """ if name in glyphname2unicode: return glyphname2unicode.get(name) name = name.split('.')[0] components = name.split('_') if len(components) > 1: return ''.join(map(name2unicode, components)) elif name.startswith('uni'): name_without_uni = name.strip('uni') if HEXADECIMAL.match(name_without_uni) and len(name_without_uni) % 4 == 0: unicode_digits = [int(name_without_uni[i:i + 4], base=16) for i in range(0, len(name_without_uni), 4)] for digit in unicode_digits: raise_key_error_for_invalid_unicode(digit) characters = map(six.unichr, unicode_digits) return ''.join(characters) elif name.startswith('u'): name_without_u = name.strip('u') if HEXADECIMAL.match(name_without_u) and 4 <= len(name_without_u) <= 6: unicode_digit = int(name_without_u, base=16) raise_key_error_for_invalid_unicode(unicode_digit) return six.unichr(unicode_digit) # taken from: # https://github.com/apache/pdfbox/blob/3d6d6631b50b92d864f07068cb1566f8e4bec9ab/pdfbox/src/main/java/org/apache/pdfbox/encoding/Encoding.java # this encoding is used in pdfs generated with TeX/LateX elif len(name) <= 4 and (name.startswith("x") or name.startswith("a")): try: value = int(name[1:], base=16 if name.startswith("x") else 10) # add some additional mapping for values < 32 and = 127 if 0 <= value <= 9: value += 161 elif 10 <= value < 32: value += 163 elif value == 127: value = 196 character = chr(value) glyphname2unicode[name] = character return character except ValueError: log.debug("Not a number in character name: " + name) raise KeyError('Could not convert unicode name "%s" to character because it does not match specification' % name) def raise_key_error_for_invalid_unicode(unicode_digit): """Unicode values should not be in the range D800 through DFFF because that is used for surrogate pairs in UTF-16 :raises KeyError if unicode digit is invalid """ if 55295 < unicode_digit < 57344: raise KeyError('Unicode digit %d is invalid because it is in the range D800 through DFFF' % unicode_digit) class EncodingDB(object): std2unicode = {} mac2unicode = {} win2unicode = {} pdf2unicode = {} for (name, std, mac, win, pdf) in ENCODING: c = name2unicode(name) if std: std2unicode[std] = c if mac: mac2unicode[mac] = c if win: win2unicode[win] = c if pdf: pdf2unicode[pdf] = c encodings = { 'StandardEncoding': std2unicode, 'MacRomanEncoding': mac2unicode, 'WinAnsiEncoding': win2unicode, 'PDFDocEncoding': pdf2unicode, } @classmethod def get_encoding(klass, name, diff=None): cid2unicode = klass.encodings.get(name, klass.std2unicode) if diff: cid2unicode = cid2unicode.copy() cid = 0 for x in diff: if isinstance(x, int): cid = x elif isinstance(x, PSLiteral): try: cid2unicode[cid] = name2unicode(x.name) except KeyError as e: log.debug(str(e)) cid += 1 return cid2unicode
py
7dfb4f7c7576bb983a89105cd460fa43e3bce1a8
from django import template import re from django.forms.fields import DateField register = template.Library() ### ### Counts the total of probe readings and water history ### records (forms) in a unified_field_data.UnifiedReport record @register.filter(expects_localtime=True) def day_records(day_records): return len(day_records.all_forms) @register.filter(expects_localtime=True) def form_index(form_id): m = re.search( "\d+", str(form_id)) return m.group(0) @register.filter(expects_localtime=True) def time_format(time_str): ## Easier and probably faster than dealing with Python's datetime class m = re.search("(\d+:\d+)", str(time_str)) return m.group(0)
py
7dfb4f7e6f8d6e99d854b37db22e935bb99c2e61
# -*- coding: UTF-8 -*- """ A scraper utility package """ __author__ = "the01" __email__ = "[email protected]" __copyright__ = "Copyright (C) 2014-19, Florian JUNG" __license__ = "MIT" __version__ = "0.3.1" __date__ = "2019-08-04" from .webscraper import WebScraper, default_user_agents, \ WEBConnectException, WEBFileException, WEBParameterException from .cache import Cache from .models import Response, CacheInfo __all__ = [ "webscraper", "WebScraper", "Cache", "Response", "CacheInfo" ]
py
7dfb503cb9ad540fab1cccae20866c1886019ac8
# coding: utf-8 import matplotlib import matplotlib.pyplot as plt import matplotlib.patches as mpatches import matplotlib.cm as cm from guitar.env import * from kerasy.utils import chooseTextColor, handleTypeError from ..env import LEN_OCTAVES def get_notes2color(theme="rainbow"): notes2color={} for i,note in enumerate(NOTES): rgba = cm.cmap_d.get(theme)(i/LEN_OCTAVES) notes2color[note] = (rgba, chooseTextColor(rgb=rgba[:3], ctype="rgb", max_val=1)) return notes2color def plot_notes_color_theme(theme="rainbow", radius=0.3, fontsize=20, title=True, ax=None, fig=None): if isinstance(theme, matplotlib.colors.ListedColormap) or \ isinstance(theme, matplotlib.colors.LinearSegmentedColormap): cmap = theme theme = cmap.name elif isinstance(theme, str): cmap = cm.cmap_d.get(theme) else: handleTypeError(types=[str, matplotlib.colors.ListedColormap, matplotlib.colors.LinearSegmentedColormap], theme=theme) if ax is None: fig, ax = plt.subplots(figsize=(LEN_OCTAVES,1)) ax.set_xlim(-0.5, 11.5) if title: ax.set_title(theme) # Plot notes with color. for i,note in enumerate(NOTES): rgba = cmap(i/LEN_OCTAVES) fc = chooseTextColor(rgba[:3], ctype="rgb", max_val=1) ax.add_patch(mpatches.Circle(xy=(i, 0), radius=radius, color=rgba)) ax.annotate(text=note, xy=(i, 0), color=fc, weight='bold', fontsize=fontsize, ha='center', va='center') # Adjust for different sized figures. if fig is not None: bbox = ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted()) w,h = bbox.width, bbox.height height = 1/2 * h * (LEN_OCTAVES/w) ax.set_ylim(-height, height) return ax def plot_notes_all_color_theme(radius=0.3, fontsize=20): for name, cmap in cm.cmap_d.items(): plot_notes_color_theme(cmap, radius=radius, fontsize=fontsize)
py
7dfb516b1d1ecae8683d75152f7d568733a769ff
import pandas as pd import folium.folium as folium import itertools import numpy as np import logging import geojson as gj import copy import attrdict as ad # import emission.analysis.classification.cleaning.location_smoothing as ls import bson.json_util as bju import emission.storage.decorations.location_queries as lq import emission.storage.decorations.trip_queries as esdt import emission.storage.decorations.place_queries as esdp import emission.storage.decorations.stop_queries as esds import emission.storage.decorations.section_queries as esdsc import emission.storage.timeseries.abstract_timeseries as esta import emission.core.wrapper.stop as ecws import emission.core.wrapper.section as ecwsc import emission.analysis.plotting.geojson.geojson_feature_converter as gfc import emission.analysis.plotting.leaflet_osm.folium_geojson_plugin as fgjp import emission.storage.timeseries.timequery as estt import emission.net.api.usercache as enau all_color_list = ['black', 'brown', 'blue', 'chocolate', 'cyan', 'fuschia', 'green', 'lime', 'magenta', 'navy', 'pink', 'purple', 'red', 'snow', 'yellow'] sel_color_list = ['black', 'blue', 'chocolate', 'cyan', 'fuschia', 'green', 'lime', 'magenta', 'pink', 'purple', 'red', 'yellow'] def df_to_string_list(df): """ Convert the input df into a list of strings, suitable for using as popups in a map. This is a utility function. """ # print "Converting df with size %s to string list" % df.shape[0] array_list = df.to_dict(orient='records') return [str(line) for line in array_list] def get_maps_for_range(user_id, start_ts, end_ts): map_list = [] geojson_list = gfc.get_geojson_for_ts(user_id, start_ts, end_ts) return get_maps_for_geojson_list(geojson_list) def get_maps_for_usercache(user_id): from functional import seq data_to_phone = seq(enau.sync_server_to_phone(user_id)) logging.debug("Before pipeline, trips to phone list has length %d" % len(data_to_phone.to_list())) logging.debug("keys are %s" % data_to_phone.map(lambda e: ad.AttrDict(e).metadata.key)) trips_to_phone = data_to_phone.map(lambda e: ad.AttrDict(e))\ .filter(lambda e: e.metadata.key.startswith("diary/trips")) \ .map(lambda e: e.data) logging.debug("After pipeline, trips to phone list has length %d" % len(trips_to_phone.to_list())) # logging.debug("trips_to_phone = %s" % trips_to_phone) maps_for_day = [] for day in trips_to_phone: maps_for_day.append(get_maps_for_geojson_list(day)) return maps_for_day def get_maps_for_geojson_list(trip_geojson_list): map_list = [] for trip_doc in trip_geojson_list: # logging.debug(trip_doc) trip_geojson = ad.AttrDict(trip_doc) logging.debug("centering based on start = %s, end = %s " % (trip_geojson.features[0], trip_geojson.features[1])) flipped_midpoint = lambda(p1, p2): [(p1.coordinates[1] + p2.coordinates[1])/2, (p1.coordinates[0] + p2.coordinates[0])/2] curr_map = folium.Map(flipped_midpoint((trip_geojson.features[0].geometry, trip_geojson.features[1].geometry))) curr_plugin = fgjp.FoliumGeojsonPlugin(dict(trip_geojson)) curr_map.add_plugin(curr_plugin) map_list.append(curr_map) return map_list def flipped(coord): return (coord[1], coord[0]) def get_center_for_map(coords): # logging.debug(trip_geojson) midpoint = lambda(p1, p2): [(p1[0] + p2[0])/2, (p1[1] + p2[1])/2] if len(coords) == 0: return None if len(coords) == 1: return flipped(coords) if len(coords) > 0: logging.debug("Getting midpoint of %s and %s" % (coords[0], coords[-1])) return flipped(midpoint((coords[0], coords[-1]))) def get_maps_for_geojson_unsectioned(feature_list): map_list = [] for feature in feature_list: # logging.debug("Getting map for feature %s" % bju.dumps(feature)) feature_coords = list(get_coords(feature)) # feature_coords = list(gj.utils.coords(feature)) curr_map = folium.Map(get_center_for_map(feature_coords)) curr_plugin = fgjp.FoliumGeojsonPlugin(dict(feature)) curr_map.add_plugin(curr_plugin) map_list.append(curr_map) return map_list def get_coords(feature): # logging.debug("Getting coordinates for feature %s" % bju.dumps(feature)) if feature["type"] == "FeatureCollection": retVal = [] for f in feature["features"]: retVal.extend(get_coords(f)) return retVal else: return gj.utils.coords(feature) def get_maps_for_range_old(user_id, start_ts, end_ts): # First, get the timeline for that range. ts = esta.TimeSeries.get_time_series(user_id) trip_list = esdt.get_trips(user_id, estt.TimeQuery("data.start_ts", start_ts, end_ts)) # TODO: Should the timeline support random access as well? # If it did, we wouldn't need this additional map # I think that it would be good to support a doubly linked list, i.e. prev and next in addition # to the iteration interface place_list = esdp.get_places(user_id, estt.TimeQuery("data.exit_ts", start_ts, end_ts)) place_list = place_list + (esdp.get_places(user_id, estt.TimeQuery("data.enter_ts", start_ts, end_ts))) place_map = dict([(p.get_id(), p) for p in place_list]) map_list = [] flipped_midpoint = lambda(p1, p2): [(p1.coordinates[1] + p2.coordinates[1])/2, (p1.coordinates[0] + p2.coordinates[0])/2] for i, trip in enumerate(trip_list): logging.debug("-" * 20 + trip.start_fmt_time + "=>" + trip.end_fmt_time + "(" + str(trip.end_ts - trip.start_ts) + ")") if (len(esdt.get_raw_sections_for_trip(user_id, trip.get_id())) == 0 and len(esdt.get_raw_stops_for_trip(user_id, trip.get_id())) == 0): logging.debug("Skipping trip because it has no stops and no sections") continue start_point = gj.GeoJSON.to_instance(trip.start_loc) end_point = gj.GeoJSON.to_instance(trip.end_loc) curr_map = folium.Map(flipped_midpoint((start_point, end_point))) map_list.append(curr_map) logging.debug("About to display places %s and %s" % (trip.start_place, trip.end_place)) update_place(curr_map, trip.start_place, place_map, marker_color='green') update_place(curr_map, trip.end_place, place_map, marker_color='red') # TODO: Should get_timeline_for_trip work on a trip_id or on a trip object # it seems stupid to convert trip object -> id -> trip object curr_trip_timeline = esdt.get_raw_timeline_for_trip(user_id, trip.get_id()) for i, trip_element in enumerate(curr_trip_timeline): # logging.debug("Examining element %s of type %s" % (trip_element, type(trip_element))) if type(trip_element) == ecws.Stop: time_query = esds.get_time_query_for_stop(trip_element.get_id()) logging.debug("time_query for stop %s = %s" % (trip_element, time_query)) stop_points_df = ts.get_data_df("background/filtered_location", time_query) # logging.debug("stop_points_df.head() = %s" % stop_points_df.head()) if len(stop_points_df) > 0: update_line(curr_map, stop_points_df, line_color = sel_color_list[-1], popup="%s -> %s" % (trip_element.enter_fmt_time, trip_element.exit_fmt_time)) else: assert(type(trip_element) == ecwsc.Section) time_query = esdsc.get_time_query_for_section(trip_element.get_id()) logging.debug("time_query for section %s = %s" % (trip_element, "[%s,%s,%s]" % (time_query.timeType, time_query.startTs, time_query.endTs))) section_points_df = ts.get_data_df("background/filtered_location", time_query) logging.debug("section_points_df.tail() = %s" % section_points_df.tail()) if len(section_points_df) > 0: update_line(curr_map, section_points_df, line_color = sel_color_list[trip_element.sensed_mode.value], popup="%s (%s -> %s)" % (trip_element.sensed_mode, trip_element.start_fmt_time, trip_element.end_fmt_time)) else: logging.warn("found no points for section %s" % trip_element) return map_list def update_place(curr_map, place_id, place_map, marker_color='blue'): if place_id is not None and place_id in place_map: place = place_map[place_id] logging.debug("Retrieved place %s" % place) if hasattr(place, "location"): coords = copy.copy(place.location.coordinates) coords.reverse() logging.debug("Displaying place at %s" % coords) curr_map.simple_marker(location=coords, popup=str(place), marker_color=marker_color) else: logging.debug("starting place has no location, skipping") else: logging.warn("place not mapped because place_id = %s and place_id in place_map = %s" % (place_id, place_id in place_map)) def update_line(currMap, line_points, line_color = None, popup=None): currMap.div_markers(line_points[['latitude', 'longitude']].as_matrix().tolist(), df_to_string_list(line_points), marker_size=5) currMap.line(line_points[['latitude', 'longitude']].as_matrix().tolist(), line_color = line_color, popup = popup) ########################## # Everything below this line is from the time when we were evaluating # segmentation and can potentially be deleted. It is also likely to have bitrotted. # Let's hold off a bit on that until we have the replacement, though ########################## def get_map_list(df, potential_splits): mapList = [] potential_splits_list = list(potential_splits) for start, end in zip(potential_splits_list, potential_splits_list[1:]): trip = df[start:end] print "Considering trip from %s to %s because start = %d and end = %d" % (df.formatted_time.loc[start], df.formatted_time.loc[end], start, end) if end - start < 4: # If there are only 3 entries, that means that there is only one # point other than the start and the end, bail print "Ignoring trip from %s to %s because start = %d and end = %d" % (df.formatted_time.loc[start], df.formatted_time.loc[end], start, end) continue mapList.append(get_map(trip)) return mapList def get_map_list_after_segmentation(section_map, outlier_algo = None, filter_algo = None): mapList = [] for trip, section_list in section_map: logging.debug("%s %s -> %s %s" % ("=" * 20, trip.start_time, trip.end_time, "=" * 20)) trip_df = lq.get_points_for_section(trip) curr_map = folium.Map([trip_df.mLatitude.mean(), trip_df.mLongitude.mean()]) last_section_end = None for (i, section) in enumerate(section_list): logging.debug("%s %s: %s -> %s %s" % ("-" * 20, i, section.start_time, section.end_time, "-" * 20)) raw_section_df = trip_df[np.logical_and(trip_df.mTime >= section.start_ts, trip_df.mTime <= section.end_ts)] section_df = ls.filter_points(raw_section_df, outlier_algo, filter_algo) if section_df.shape[0] == 0: logging.info("Found empty df! skipping...") continue logging.debug("for section %s, section_df.shape = %s, formatted_time.head() = %s" % (section, section_df.shape, section_df["formatted_time"].head())) update_map(curr_map, section_df, line_color = sel_color_list[section.activity.value], popup = "%s" % (section.activity)) if section_df.shape[0] > 0: curr_section_start = section_df.iloc[0] if i != 0 and last_section_end is not None: # We want to join this to the previous section. curr_map.line([[last_section_end.mLatitude, last_section_end.mLongitude], [curr_section_start.mLatitude, curr_section_start.mLongitude]], line_color = sel_color_list[-1], popup = "%s -> %s" % (section_list[i-1].activity, section.activity)) last_section_end = section_df.iloc[-1] mapList.append(curr_map) return mapList def get_map(section_points, line_color = None, popup=None): currMap = folium.Map([section_points.mLatitude.mean(), section_points.mLongitude.mean()]) update_map(currMap, section_points, line_color, popup) return currMap def update_map(currMap, section_points, line_color = None, popup=None): currMap.div_markers(section_points[['mLatitude', 'mLongitude']].as_matrix().tolist(), df_to_string_list(section_points), marker_size=5) currMap.line(section_points[['mLatitude', 'mLongitude']].as_matrix().tolist(), line_color = line_color, popup = popup) def evaluate_filtering(section_list, outlier_algos, filtering_algos): """ TODO: Is this the best place for this? If not, what is? It almost seems like we need to have a separate evaluation module that is separate from the plotting and the calculation modules. But then, what is the purpose of this module? """ nCols = 2 + len(outlier_algos) * len(filtering_algos) nRows = len(section_list) map_list = [] for section in section_list: curr_compare_list = [] section_df = ls.get_section_points(section) curr_compare_list.append(get_map(section_df)) curr_compare_list.append(get_map(ls.filter_points(section_df, None, None))) for (oa, fa) in itertools.product(outlier_algos, filtering_algos): curr_filtered_df = ls.filter_points(section_df, oa, fa) print ("After filtering with %s, %s, size is %s" % (oa, fa, curr_filtered_df.shape)) if "activity" in section: curr_compare_list.append(get_map(curr_filtered_df, line_color = sel_color_list[section.activity.value], popup = "%s" % (section.activity))) else: curr_compare_list.append(get_map(curr_filtered_df)) assert(len(curr_compare_list) == nCols) map_list.append(curr_compare_list) assert(len(map_list) == nRows) return map_list
py
7dfb52b70f5e0eae9b451f34531d6fc651a4c8ef
import numpy as np from scipy.special import gammaln from aux import addrandomtopic,dictionate import time data=np.array([[0,0], [0,1], [1,0], [1,1], [0,1], [2,2], [2,1], [1,2], [0,1], [1,1], [0,1], [2,3], [3,3], [3,2], [3,4], [4,3], [4,4], [3,3], [3,3], [3,2], [1,1], [1,0], [4,4], [4,3], [1,1], [1,0], [1,2], [2,1], [0,1], [0,1], [2,2], [4,3], [3,5], [4,3], [3,2], [2,4], [4,3], [3,3], [4,3], [4,3], [4,3], [1,4]]) class Model: def __init__(self,data,alpha,beta): #** Preprocess the data self.data,idx2vals,vals2idx,self.counts=dictionate(data) #self.data is dictionated data self.V=len(idx2vals[0]) # Total number of observed variables in V self.W=len(idx2vals[1]) # Total number of observed variables in W self.alpha=alpha self.beta=beta # Global parameters self.currV=0 # Current number of observed variables in V self.currW=0 # Current number of observed variables in W self.Vs=set() # Set of Vs self.Ws=set() # Set of Ws self.K=0 # Current number of existing K self.nvk_=np.zeros((self.V,self.K)) self.n_kw=np.zeros((self.W,self.K)) self.n_k_=np.zeros(self.K) self.sum_N=0 self.P_new=self.alpha # Remove empty columns from structure with the exception of the first column def removeEmptyCols(self,idx): assert(np.sum(self.n_kw[:][:,idx]) == 0 and np.sum(self.nvk_[:][:,idx]) == 0 and self.n_k_[idx] == 0 or (np.sum(self.n_kw[:][:,idx]) != 0 and np.sum(self.nvk_[:][:,idx]) != 0 and self.n_k_[idx] != 0)) if np.sum(self.n_kw[:][:,idx]) == 0: self.n_kw=np.delete(self.n_kw,(idx),axis=1) self.nvk_=np.delete(self.nvk_,(idx),axis=1) self.n_k_=np.delete(self.n_k_,(idx)) self.sum_N=np.delete(self.sum_N,(idx)) self.data.T[-1][self.data.T[-1]>idx]-=1 self.K-=1 def update_topic(self,rowid,it): x,y,currk=self.data[rowid] #**1. Leave from Current Topic self.n_kw[y][currk]-=1 self.nvk_[x][currk]-=1 self.n_k_[currk]-=1 # While observing the data construct Set of W and V if it==0: self.Ws.add(y) self.Vs.add(x) self.P_new=self.alpha/(len(self.Ws)*len(self.Vs))**2 self.sum_N=2*self.n_k_+len(self.Ws)*len(self.Vs)*self.beta else: self.sum_N[currk]-=2 W_=len(self.Ws)*1.0 V_=len(self.Vs)*1.0 if currk>0: #currk needs to be updated as well self.removeEmptyCols(currk) Nxy=self.nvk_[x]/W_+self.n_kw[y]/V_+self.beta log_Nvu=np.log(self.nvk_/W_+self.n_kw[y]/V_+self.beta+1) log_Nxw=np.log(self.nvk_[x]/W_+self.n_kw/V_+self.beta+1) #* Compute the terms used for calculating the posterior A=gammaln(self.sum_N)-gammaln(self.sum_N+W_+V_) B=gammaln(Nxy+2)-gammaln(Nxy) C=np.sum(log_Nvu,0)+np.sum(log_Nxw,0) log_p_z=A+B+C p_z = np.exp(log_p_z-log_p_z.max()) # it may be optimized if p_z[0] is screwing up p_z = np.multiply(self.n_k_,p_z) p_z[0] = self.P_new p_z = p_z / p_z.sum() newk=np.random.multinomial(1, p_z / p_z.sum()).argmax() if newk==0: self.K+=1 self.n_kw=np.hstack((self.n_kw,np.zeros((self.W,1)))) self.nvk_=np.hstack((self.nvk_,np.zeros((self.V,1)))) self.n_k_=np.hstack((self.n_k_,0)) self.sum_N=np.hstack((self.sum_N,0)) #* Sits at Last Table self.n_kw[y][-1]+=1 self.nvk_[x][-1]+=1 self.n_k_[-1]+=1 self.sum_N[-1]=2+len(self.Ws)*len(self.Vs)*self.beta self.data[rowid][-1]=self.K else: #* Sits at New Table self.n_kw[y][newk]+=1 self.nvk_[x][newk]+=1 self.n_k_[newk]+=1 self.data[rowid][-1]=newk if it>0: self.sum_N[newk]+=2 def inference(self,iterations_max): #** Initialize the topics self.data=np.hstack((self.data,np.zeros((np.shape(self.data)[0],1)))) self.data=np.asarray(np.asarray(self.data,dtype=np.float),dtype=np.int) #** Initialize the book-keeping self.nvk_=np.array([self.counts[0]]).T self.n_kw=np.array([self.counts[1]]).T self.n_k_=np.array([np.shape(self.data)[0]]) #** MAIN LOOP for it in range(iterations_max): for rowid in range(len(self.data)): self.update_topic(rowid,it) print "Iteration",it,"Number of topics",len(self.n_k_)-1 self.printTopics() print "\nTopic Allocations" print self.data def loglikelihood(self): return 0 def printTopics(self): ntopics=len(self.n_k_)-1 topics=[] for i in range(ntopics): topics.append(np.zeros((self.V,self.W))) for row in self.data: x,y,t=row topics[t-1][x][y]+=1 # given the fact that 0 is not a topic for i,topic in enumerate(topics): np.save("topic"+str(i),topic) print "\nTopic "+str(i)+"------------------------ \n",topic print "Row Topic : ",np.around(np.sum(topic,axis=0),decimals=1) print "Column Topic: ",np.around(np.sum(topic,axis=1),decimals=1) if __name__=="__main__": alpha=0.01 #>0.00001- NIPS or > 0.01 - small toy beta=1.0 #150.0 - NIPS or ~1.2- small toy iterations=30 m= Model(data,alpha,beta) m.inference(iterations) print "Likelihood",m.loglikelihood()
py
7dfb5325729542d75222eb66fcbf2893dacf537c
from django.db import models # Create your models here. class Espetaculos(models.Model): titulo = models.CharField(max_length=255) def __str__(self): return self.titulo
py
7dfb53425b6a823a8228730878003f88a186537e
"""Support for OS X.""" from __future__ import print_function from rpython.translator.platform import posix import os # # Although Intel 32bit is supported since Apple Mac OS X 10.4, (and PPC since, ever) # the @rpath handling used in Darwin._args_for_shared is only availabe # since 10.5, so we use that as minimum requirement. Bumped to 10.7 # to allow the use of thread-local in __thread in C. # Bumped to 10.9 2021-11-22 to match CPython, # see https://github.com/python/cpython/blob/42205ee51 # # Keep in sync with MACOSX_DEPLOYMENT_TARGET, for pypy see # lib_pypy/_sysconfigdata.py # DARWIN_VERSION_MIN = '-mmacosx-version-min=10.7' class Darwin(posix.BasePosix): name = "darwin" standalone_only = ('-mdynamic-no-pic',) shared_only = () link_flags = (DARWIN_VERSION_MIN,) cflags = ('-O3', '-fomit-frame-pointer', DARWIN_VERSION_MIN,) so_ext = 'dylib' DEFAULT_CC = 'clang' rpath_flags = ['-Wl,-rpath', '-Wl,@executable_path/'] def get_multiarch(self): return 'darwin' def get_rpath_flags(self, rel_libdirs): # needed for cross compiling on ARM, needs fixing if relevant for darwin if len(rel_libdirs) > 0: print('in get_rpath_flags, rel_libdirs is not fixed up',rel_libdirs) return self.rpath_flags def _args_for_shared(self, args, **kwds): if 'exe_name' in kwds: target_basename = kwds['exe_name'].basename else: target_basename = '$(TARGET)' # The default '$(TARGET)' is used inside a Makefile. Otherwise # we get the basename of the executable we're trying to build. return (list(self.shared_only) + ['-dynamiclib', '-install_name', '@rpath/' + target_basename, '-undefined', 'dynamic_lookup', '-flat_namespace', '-headerpad_max_install_names', ] + args) def _include_dirs_for_libffi(self): return self._pkg_config("libffi", "--cflags-only-I", ['/usr/include/ffi'], check_result_dir=True) def _library_dirs_for_libffi(self): return self._pkg_config("libffi", "--libs-only-L", ['/usr/lib'], check_result_dir=True) def _include_dirs_for_openssl(self): return self._pkg_config("openssl", "--cflags-only-I", ['/usr/include', '/usr/local/opt/openssl/include'], check_result_dir=True) def _library_dirs_for_openssl(self): return self._pkg_config("openssl", "--libs-only-L", ['/usr/lib', '/usr/local/opt/openssl/lib'], check_result_dir=True) def _frameworks(self, frameworks): args = [] for f in frameworks: args.append('-framework') args.append(f) return args def _link_args_from_eci(self, eci, standalone): args = super(Darwin, self)._link_args_from_eci(eci, standalone) frameworks = self._frameworks(eci.frameworks) include_dirs = self._includedirs(eci.include_dirs) return (args + frameworks + include_dirs) def _exportsymbols_link_flags(self): # XXX unsure if OS/X requires an option to the linker to tell # "please export all RPY_EXPORTED symbols even in the case of # making a binary and not a dynamically-linked library". # It's not "-exported_symbols_list" but something close. return [] def gen_makefile(self, cfiles, eci, exe_name=None, path=None, shared=False, headers_to_precompile=[], no_precompile_cfiles = [], profopt=False, config=None): # ensure frameworks are passed in the Makefile fs = self._frameworks(eci.frameworks) extra_libs = self.extra_libs if len(fs) > 0: # concat (-framework, FrameworkName) pairs self.extra_libs += tuple(map(" ".join, zip(fs[::2], fs[1::2]))) mk = super(Darwin, self).gen_makefile(cfiles, eci, exe_name, path, shared=shared, headers_to_precompile=headers_to_precompile, no_precompile_cfiles = no_precompile_cfiles, profopt=profopt, config=config) self.extra_libs = extra_libs return mk class Darwin_PowerPC(Darwin):#xxx fixme, mwp name = "darwin_powerpc" link_flags = Darwin.link_flags + ('-arch', 'ppc') cflags = Darwin.cflags + ('-arch', 'ppc') class Darwin_i386(Darwin): name = "darwin_i386" link_flags = Darwin.link_flags + ('-arch', 'i386') cflags = Darwin.cflags + ('-arch', 'i386') class Darwin_x86_64(Darwin): name = "darwin_x86_64" link_flags = Darwin.link_flags + ('-arch', 'x86_64') cflags = Darwin.cflags + ('-arch', 'x86_64')
py
7dfb5482a805b19690d9bf465f274bd99a1c8eb7
""" Test that when being upgraded to version 4, a version 3 Inbox has the 'filter' attribute set to a new L{xquotient.spam.Filter}, and that the other attributes are copied over """ from axiom.test.historic.stubloader import StubbedTest from xmantissa.webapp import PrivateApplication from xquotient.spam import Filter from xquotient.filter import Focus from xquotient.inbox import Inbox class InboxUpgradeTestCase(StubbedTest): def test_focusAttributeSet(self): """ Test that L{xquotient.inbox.Inbox.focus} is set to the only Focus powerup in the store. """ inbox = self.store.findUnique(Inbox) focus = self.store.findUnique(Focus) self.assertIdentical(focus, inbox.focus) def test_focusInstalled(self): """ Test that the L{xquotient.filter.Focus} looks like it was properly installed, by looking at its dependencies """ focus = self.store.findUnique(Focus) self.failIf( focus.messageSource is None, 'xquotient.filter.Focus was not installed properly') def test_inboxAttributesCopied(self): """ Test that the attributes of the L{xquotient.inbox.Inbox} were copied over from the previous version """ inbox = self.store.findUnique(Inbox) self.assertEqual(inbox.uiComplexity, 2) self.assertEqual(inbox.showMoreDetail, True) self.assertIdentical( inbox.privateApplication, self.store.findUnique(PrivateApplication)) self.assertIdentical( inbox.filter, self.store.findUnique(Filter))
py
7dfb552bdfe6732a9e2aff833d69a6ebf19ea945
from .track_selected_count import TrackSelectedCount from .track_played_count import TrackPlayedCount from .genre_selected import GenreSelected
py
7dfb553a126e71d32fea4f350266f65b81021a14
from Agent import * class Winner(Agent): """docstring for Wall.""" def __init__(self, environment, posX, posY, name): super(Winner, self).__init__(environment, posX, posY, name) self.color = "Yellow" self.dead = False def decide(self): pass def update(self): pass def isDead(self): return self.dead
py
7dfb55e58dc6d2b3e6dfa7ed33421359c2c0c6c8
import unittest import rxbp from rxbp.acknowledgement.continueack import continue_ack from rxbp.observerinfo import ObserverInfo from rxbp.indexed.selectors.bases.numericalbase import NumericalBase from rxbp.subscriber import Subscriber from rxbp.testing.tobserver import TObserver from rxbp.testing.tscheduler import TScheduler class TestFromRange(unittest.TestCase): def setUp(self) -> None: self.scheduler = TScheduler() def test_base(self): subscription = rxbp.from_range(1, 4).unsafe_subscribe(Subscriber( scheduler=self.scheduler, subscribe_scheduler=self.scheduler)) self.assertEqual(NumericalBase(3), subscription.info.base) def test_use_case(self): sink = TObserver(immediate_continue=0) subscription = rxbp.from_range(1, 4).unsafe_subscribe(Subscriber( scheduler=self.scheduler, subscribe_scheduler=self.scheduler)) subscription.observable.observe(ObserverInfo(observer=sink)) self.scheduler.advance_by(1) self.assertEqual([1, 2, 3], sink.received) self.assertTrue(sink.is_completed) def test_from_list_batch_size_of_one(self): sink = TObserver(immediate_continue=0) subscription = rxbp.from_range(1, 4, batch_size=1).unsafe_subscribe(Subscriber( scheduler=self.scheduler, subscribe_scheduler=self.scheduler)) subscription.observable.observe(ObserverInfo(observer=sink)) self.scheduler.advance_by(1) self.assertEqual([1], sink.received) self.assertFalse(sink.is_completed) sink.ack.on_next(continue_ack) self.scheduler.advance_by(1) self.assertEqual([1, 2], sink.received) def test_from_list_batch_size_of_two(self): sink = TObserver(immediate_continue=0) subscription = rxbp.from_range(1, 4, batch_size=2).unsafe_subscribe(Subscriber( scheduler=self.scheduler, subscribe_scheduler=self.scheduler)) subscription.observable.observe(ObserverInfo(observer=sink)) self.scheduler.advance_by(1) self.assertEqual([1, 2], sink.received) sink.ack.on_next(continue_ack) self.scheduler.advance_by(1) self.assertEqual([1, 2, 3], sink.received) self.assertTrue(sink.is_completed)
py
7dfb585287bf3d6a0655dd1e2492b1c98519584b
#!/usr/bin/env python3 # spin_async.py # credits: Example by Luciano Ramalho inspired by # Michele Simionato's multiprocessing example in the python-list: # https://mail.python.org/pipermail/python-list/2009-February/538048.html # BEGIN PRIME_ASYNCIO import asyncio import itertools import time import spin_thread async def spin(msg): # <1> for char in itertools.cycle('⠇⠋⠙⠸⠴⠦'): status = f'\r{char} {msg}' print(status, flush=True, end='') try: await asyncio.sleep(.1) # <2> except asyncio.CancelledError: # <3> break blanks = ' ' * len(status) print(f'\r{blanks}\r', end='') async def slow_function(): # <4> loop = asyncio.get_running_loop() result = await loop.run_in_executor(None, spin_thread.fetch_by_size, 7_000_000) return result async def supervisor(): # <6> spinner = asyncio.create_task(spin('thinking!')) # <7> print('spinner object:', spinner) # <8> result = await slow_function() # <9> spinner.cancel() # <10> return result def main(): t0 = time.perf_counter() size, name = asyncio.run(supervisor()) # <11> dt = time.perf_counter() - t0 print(f'{size:_d} bytes downloaded') print('Name:', name) print(f'Elapsed time: {dt:0.3}s') if __name__ == '__main__': main() # END SPINNER_ASYNCIO
py
7dfb59b66bd6bc3d4e07dc9f6879ef6397de055b
from bibliopixel.animation.circle import Circle from bibliopixel.colors import COLORS class ArcRotate(Circle): COLOR_DEFAULTS = ('colors', [COLORS.Red, COLORS.Green, COLORS.Blue]), def __init__(self, layout, arc=180, outerRing=-1, outterRing=None, **kwds): super().__init__(layout, **kwds) if outterRing is not None: # Legacy misspelling outerRing = outterRing if outerRing < 0 or outerRing > self.layout.lastRing: outerRing = self.layout.lastRing self.outerRing = outerRing self.arcCount = len(self.palette) self.arc = arc / 2 def pre_run(self): self._step = 0 def step(self, amt=1): self.layout.all_off() ci = 0 for r in range(self.outerRing, self.outerRing - self.arcCount, -1): c = self.palette(ci) ci += 1 self.layout.fillRing(r, c, startAngle=self._step - self.arc, endAngle=self._step + self.arc) self._step += amt self._step %= 360
py
7dfb59e36e93cab43bba06bb4eda9650c1a91b4f
# sqlalchemy/pool/dbapi_proxy.py # Copyright (C) 2005-2021 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: https://www.opensource.org/licenses/mit-license.php """DBAPI proxy utility. Provides transparent connection pooling on top of a Python DBAPI. This is legacy SQLAlchemy functionality that is not typically used today. """ from .impl import QueuePool from .. import util from ..util import threading proxies = {} @util.deprecated( "1.3", "The :func:`.pool.manage` function is deprecated, and will be " "removed in a future release.", ) def manage(module, **params): r"""Return a proxy for a DB-API module that automatically pools connections. Given a DB-API 2.0 module and pool management parameters, returns a proxy for the module that will automatically pool connections, creating new connection pools for each distinct set of connection arguments sent to the decorated module's connect() function. :param module: a DB-API 2.0 database module :param poolclass: the class used by the pool module to provide pooling. Defaults to :class:`.QueuePool`. :param \**params: will be passed through to *poolclass* """ try: return proxies[module] except KeyError: return proxies.setdefault(module, _DBProxy(module, **params)) def clear_managers(): """Remove all current DB-API 2.0 managers. All pools and connections are disposed. """ for manager in proxies.values(): manager.close() proxies.clear() class _DBProxy(object): """Layers connection pooling behavior on top of a standard DB-API module. Proxies a DB-API 2.0 connect() call to a connection pool keyed to the specific connect parameters. Other functions and attributes are delegated to the underlying DB-API module. """ def __init__(self, module, poolclass=QueuePool, **kw): """Initializes a new proxy. module a DB-API 2.0 module poolclass a Pool class, defaulting to QueuePool Other parameters are sent to the Pool object's constructor. """ self.module = module self.kw = kw self.poolclass = poolclass self.pools = {} self._create_pool_mutex = threading.Lock() def close(self): for key in list(self.pools): del self.pools[key] def __del__(self): self.close() def __getattr__(self, key): return getattr(self.module, key) def get_pool(self, *args, **kw): key = self._serialize(*args, **kw) try: return self.pools[key] except KeyError: with self._create_pool_mutex: if key not in self.pools: kw.pop("sa_pool_key", None) pool = self.poolclass( lambda: self.module.connect(*args, **kw), **self.kw ) self.pools[key] = pool return pool else: return self.pools[key] def connect(self, *args, **kw): """Activate a connection to the database. Connect to the database using this DBProxy's module and the given connect arguments. If the arguments match an existing pool, the connection will be returned from the pool's current thread-local connection instance, or if there is no thread-local connection instance it will be checked out from the set of pooled connections. If the pool has no available connections and allows new connections to be created, a new database connection will be made. """ return self.get_pool(*args, **kw).connect() def dispose(self, *args, **kw): """Dispose the pool referenced by the given connect arguments.""" key = self._serialize(*args, **kw) try: del self.pools[key] except KeyError: pass def _serialize(self, *args, **kw): if "sa_pool_key" in kw: return kw["sa_pool_key"] return tuple(list(args) + [(k, kw[k]) for k in sorted(kw)])
py
7dfb5a02979b6ae64a050e287dc8c99f780839f1
from archives.models import Document from django import forms from django.forms import SelectDateWidget class DocumentForm(forms.ModelForm): coverage_start = forms.DateField(label="Start Date", widget=SelectDateWidget(years=list(range( 1879, 1991))), help_text="Enter the start date for material covered in this document.") coverage_end = forms.DateField(label="End Date", widget=SelectDateWidget(years=list(range( 1879, 1991))), help_text="For documents covering more than one day indicate the end date for material covered.") class Meta: model = Document fields = '__all__'
py
7dfb5a21e48dba73720fc17daa34384ff1390ba7
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # License: GNU General Public License v3. See license.txt from __future__ import unicode_literals import frappe import re import redis from frappe.utils import cint, strip_html_tags from frappe.model.base_document import get_controller from frappe.model.db_schema import varchar_len from six import text_type def setup_global_search_table(): """ Creates __global_seach table :return: """ if not '__global_search' in frappe.db.get_tables(): frappe.db.sql('''create table __global_search( doctype varchar(100), name varchar({varchar_len}), title varchar({varchar_len}), content text, fulltext(content), route varchar({varchar_len}), published int(1) not null default 0, unique `doctype_name` (doctype, name)) COLLATE=utf8mb4_unicode_ci ENGINE=MyISAM CHARACTER SET=utf8mb4'''.format(varchar_len=varchar_len)) def reset(): """ Deletes all data in __global_search :return: """ frappe.db.sql('delete from __global_search') def get_doctypes_with_global_search(with_child_tables=True): """ Return doctypes with global search fields :param with_child_tables: :return: """ def _get(): global_search_doctypes = [] filters = {} if not with_child_tables: filters = {"istable": ["!=", 1], "issingle": ["!=", 1]} for d in frappe.get_all('DocType', fields=['name', 'module'], filters=filters): meta = frappe.get_meta(d.name) if len(meta.get_global_search_fields()) > 0: global_search_doctypes.append(d) installed_apps = frappe.get_installed_apps() module_app = frappe.local.module_app doctypes = [ d.name for d in global_search_doctypes if module_app.get(frappe.scrub(d.module)) and module_app[frappe.scrub(d.module)] in installed_apps ] return doctypes return frappe.cache().get_value('doctypes_with_global_search', _get) def rebuild_for_doctype(doctype): """ Rebuild entries of doctype's documents in __global_search on change of searchable fields :param doctype: Doctype """ def _get_filters(): filters = frappe._dict({ "docstatus": ["!=", 2] }) if meta.has_field("enabled"): filters.enabled = 1 if meta.has_field("disabled"): filters.disabled = 0 return filters meta = frappe.get_meta(doctype) if cint(meta.istable) == 1: parent_doctypes = frappe.get_all("DocField", fields="parent", filters={ "fieldtype": "Table", "options": doctype }) for p in parent_doctypes: rebuild_for_doctype(p.parent) return # Delete records delete_global_search_records_for_doctype(doctype) parent_search_fields = meta.get_global_search_fields() fieldnames = get_selected_fields(meta, parent_search_fields) # Get all records from parent doctype table all_records = frappe.get_all(doctype, fields=fieldnames, filters=_get_filters()) # Children data all_children, child_search_fields = get_children_data(doctype, meta) all_contents = [] for doc in all_records: content = [] for field in parent_search_fields: value = doc.get(field.fieldname) if value: content.append(get_formatted_value(value, field)) # get children data for child_doctype, records in all_children.get(doc.name, {}).items(): for field in child_search_fields.get(child_doctype): for r in records: if r.get(field.fieldname): content.append(get_formatted_value(r.get(field.fieldname), field)) if content: # if doctype published in website, push title, route etc. published = 0 title, route = "", "" try: if hasattr(get_controller(doctype), "is_website_published") and meta.allow_guest_to_view: d = frappe.get_doc(doctype, doc.name) published = 1 if d.is_website_published() else 0 title = d.get_title() route = d.get("route") except ImportError: # some doctypes has been deleted via future patch, hence controller does not exists pass all_contents.append({ "doctype": frappe.db.escape(doctype), "name": frappe.db.escape(doc.name), "content": frappe.db.escape(' ||| '.join(content or '')), "published": published, "title": frappe.db.escape(title or '')[:int(varchar_len)], "route": frappe.db.escape(route or '')[:int(varchar_len)] }) if all_contents: insert_values_for_multiple_docs(all_contents) def delete_global_search_records_for_doctype(doctype): frappe.db.sql(''' delete from __global_search where doctype = %s''', doctype, as_dict=True) def get_selected_fields(meta, global_search_fields): fieldnames = [df.fieldname for df in global_search_fields] if meta.istable==1: fieldnames.append("parent") elif "name" not in fieldnames: fieldnames.append("name") if meta.has_field("is_website_published"): fieldnames.append("is_website_published") return fieldnames def get_children_data(doctype, meta): """ Get all records from all the child tables of a doctype all_children = { "parent1": { "child_doctype1": [ { "field1": val1, "field2": val2 } ] } } """ all_children = frappe._dict() child_search_fields = frappe._dict() for child in meta.get_table_fields(): child_meta = frappe.get_meta(child.options) search_fields = child_meta.get_global_search_fields() if search_fields: child_search_fields.setdefault(child.options, search_fields) child_fieldnames = get_selected_fields(child_meta, search_fields) child_records = frappe.get_all(child.options, fields=child_fieldnames, filters={ "docstatus": ["!=", 1], "parenttype": doctype }) for record in child_records: all_children.setdefault(record.parent, frappe._dict())\ .setdefault(child.options, []).append(record) return all_children, child_search_fields def insert_values_for_multiple_docs(all_contents): values = [] for content in all_contents: values.append("( '{doctype}', '{name}', '{content}', '{published}', '{title}', '{route}')" .format(**content)) batch_size = 50000 for i in range(0, len(values), batch_size): batch_values = values[i:i + batch_size] # ignoring duplicate keys for doctype_name frappe.db.sql(''' insert ignore into __global_search (doctype, name, content, published, title, route) values {0} '''.format(", ".join(batch_values))) def update_global_search(doc): """ Add values marked with `in_global_search` to `frappe.flags.update_global_search` from given doc :param doc: Document to be added to global search """ if doc.docstatus > 1 or (doc.meta.has_field("enabled") and not doc.get("enabled")) \ or doc.get("disabled"): return if frappe.flags.update_global_search==None: frappe.flags.update_global_search = [] content = [] for field in doc.meta.get_global_search_fields(): if doc.get(field.fieldname) and field.fieldtype != "Table": content.append(get_formatted_value(doc.get(field.fieldname), field)) # Get children for child in doc.meta.get_table_fields(): for d in doc.get(child.fieldname): if d.parent == doc.name: for field in d.meta.get_global_search_fields(): if d.get(field.fieldname): content.append(get_formatted_value(d.get(field.fieldname), field)) if content: published = 0 if hasattr(doc, 'is_website_published') and doc.meta.allow_guest_to_view: published = 1 if doc.is_website_published() else 0 title = (doc.get_title() or '')[:int(varchar_len)] route = doc.get('route') if doc else '' frappe.flags.update_global_search.append( dict( doctype=doc.doctype, name=doc.name, content=' ||| '.join(content or ''), published=published, title=title, route=route ) ) enqueue_global_search() def enqueue_global_search(): if frappe.flags.update_global_search: try: frappe.enqueue('frappe.utils.global_search.sync_global_search', now=frappe.flags.in_test or frappe.flags.in_install or frappe.flags.in_migrate, flags=frappe.flags.update_global_search, enqueue_after_commit=True) except redis.exceptions.ConnectionError: sync_global_search() frappe.flags.update_global_search = [] def get_formatted_value(value, field): """ Prepare field from raw data :param value: :param field: :return: """ from six.moves.html_parser import HTMLParser if getattr(field, 'fieldtype', None) in ["Text", "Text Editor"]: h = HTMLParser() value = h.unescape(value) value = (re.subn(r'<[\s]*(script|style).*?</\1>(?s)', '', text_type(value))[0]) value = ' '.join(value.split()) return field.label + " : " + strip_html_tags(text_type(value)) def sync_global_search(flags=None): """ Add values from `flags` (frappe.flags.update_global_search) to __global_search. This is called internally at the end of the request. :param flags: :return: """ if not flags: flags = frappe.flags.update_global_search # Can pass flags manually as frappe.flags.update_global_search isn't reliable at a later time, # when syncing is enqueued for value in flags: frappe.db.sql(''' insert into __global_search (doctype, name, content, published, title, route) values (%(doctype)s, %(name)s, %(content)s, %(published)s, %(title)s, %(route)s) on duplicate key update content = %(content)s''', value) frappe.flags.update_global_search = [] def delete_for_document(doc): """ Delete the __global_search entry of a document that has been deleted :param doc: Deleted document """ frappe.db.sql(''' delete from __global_search where doctype = %s and name = %s''', (doc.doctype, doc.name), as_dict=True) @frappe.whitelist() def search(text, start=0, limit=20, doctype=""): """ Search for given text in __global_search :param text: phrase to be searched :param start: start results at, default 0 :param limit: number of results to return, default 20 :return: Array of result objects """ text = "+" + text + "*" if not doctype: results = frappe.db.sql(''' select doctype, name, content from __global_search where match(content) against (%s IN BOOLEAN MODE) limit {start}, {limit}'''.format(start=start, limit=limit), text+"*", as_dict=True) else: results = frappe.db.sql(''' select doctype, name, content from __global_search where doctype = %s AND match(content) against (%s IN BOOLEAN MODE) limit {start}, {limit}'''.format(start=start, limit=limit), (doctype, text), as_dict=True) for r in results: try: if frappe.get_meta(r.doctype).image_field: r.image = frappe.db.get_value(r.doctype, r.name, frappe.get_meta(r.doctype).image_field) except Exception: frappe.clear_messages() return results @frappe.whitelist(allow_guest=True) def web_search(text, start=0, limit=20): """ Search for given text in __global_search where published = 1 :param text: phrase to be searched :param start: start results at, default 0 :param limit: number of results to return, default 20 :return: Array of result objects """ text = "+" + text + "*" results = frappe.db.sql(''' select doctype, name, content, title, route from __global_search where published = 1 and match(content) against (%s IN BOOLEAN MODE) limit {start}, {limit}'''.format(start=start, limit=limit), text, as_dict=True) return results
py
7dfb5b10edc1414647ce6fa26a56bb5fd89702ae
# # Author: Tiberiu Boros # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import dynet_config import optparse import sys import numpy as np if __name__ == '__main__': parser = optparse.OptionParser() parser.add_option('--cleanup', action='store_true', dest='cleanup', help='Cleanup temporary training files and start from fresh') parser.add_option('--phase', action='store', dest='phase', choices=['1', '2', '3', '4', '5'], help='select phase: 1 - prepare corpus; 2 - train vocoder; 3 - train encoder; 4 - end-to-end; 5 - test vocoder') parser.add_option("--batch-size", action='store', dest='batch_size', default='1000', type='int', help='number of samples in a single batch (default=1000)') parser.add_option("--set-mem", action='store', dest='memory', default='2048', type='int', help='preallocate memory for batch training (default 2048)') parser.add_option("--autobatch", action='store_true', dest='autobatch', help='turn on/off dynet autobatching') parser.add_option("--resume", action='store_true', dest='resume', help='resume from last checkpoint') parser.add_option("--no-guided-attention", action='store_true', dest='no_guided_attention', help='disable guided attention') parser.add_option("--no-bounds", action='store_true', dest='no_bounds', help='disable fixed synthesis length') parser.add_option("--use-gpu", action='store_true', dest='gpu', help='turn on/off GPU support') parser.add_option('--train-folder', action='store', dest='train_folder', help='Location of the training files') parser.add_option('--dev-folder', action='store', dest='dev_folder', help='Location of the development files') parser.add_option('--target-sample-rate', action='store', dest='target_sample_rate', help='Resample input files at this rate (default=16000)', type='int', default=16000) parser.add_option('--mgc-order', action='store', dest='mgc_order', type='int', help='Order of MGC parameters (default=60)', default=60) (params, _) = parser.parse_args(sys.argv) memory = int(params.memory) if params.autobatch: autobatch = True else: autobatch = False dynet_config.set(mem=memory, random_seed=9, autobatch=autobatch) if params.gpu: dynet_config.set_gpu() def array2file(a, filename): np.save(filename, a) def file2array(filename): a = np.load(filename) return a def render_spectrogram(mgc, output_file): bitmap = np.zeros((mgc.shape[1], mgc.shape[0], 3), dtype=np.uint8) mgc_min = mgc.min() mgc_max = mgc.max() for x in xrange(mgc.shape[0]): for y in xrange(mgc.shape[1]): val = (mgc[x, y] - mgc_min) / (mgc_max - mgc_min) color = val * 255 bitmap[mgc.shape[1] - y - 1, x] = [color, color, color] import scipy.misc as smp img = smp.toimage(bitmap) img.save(output_file) def create_lab_file(txt_file, lab_file): fin = open(txt_file, 'r') fout = open(lab_file, 'w') line = fin.readline().decode('utf-8').strip().replace('\t', ' ') while True: nl = line.replace(' ', ' ') if nl == line: break line = nl fout.write('START\n') for char in line: l_char = char.lower() style = 'CASE:lower' if l_char == l_char.upper(): style = 'CASE:symb' elif l_char != char: style = 'CASE:upper' if len(txt_file.replace('\\', '/').split('/')[-1].split('_')) != 1: speaker = 'SPEAKER:' + txt_file.replace('\\', '/').split('_')[0].split('/')[-1] else: speaker = 'SPEAKER:none' fout.write(l_char.encode('utf-8') + '\t' + speaker + '\t' + style + '\n') fout.write('STOP\n') fin.close() fout.close() return "" def phase_1_prepare_corpus(params): from os import listdir from os.path import isfile, join from os.path import exists train_files_tmp = [f for f in listdir(params.train_folder) if isfile(join(params.train_folder, f))] dev_files_tmp = [f for f in listdir(params.dev_folder) if isfile(join(params.dev_folder, f))] sys.stdout.write("Scanning training files...") sys.stdout.flush() final_list = [] for file in train_files_tmp: base_name = file[:-4] lab_name = base_name + '.txt' wav_name = base_name + '.wav' if exists(join(params.train_folder, lab_name)) and exists(join(params.train_folder, wav_name)): if base_name not in final_list: final_list.append(base_name) train_files = final_list sys.stdout.write(" found " + str(len(train_files)) + " valid training files\n") sys.stdout.write("Scanning development files...") sys.stdout.flush() final_list = [] for file in dev_files_tmp: base_name = file[:-4] lab_name = base_name + '.txt' wav_name = base_name + '.wav' if exists(join(params.dev_folder, lab_name)) and exists(join(params.dev_folder, wav_name)): if base_name not in final_list: final_list.append(base_name) dev_files = final_list sys.stdout.write(" found " + str(len(dev_files)) + " valid development files\n") from io_modules.dataset import DatasetIO from io_modules.vocoder import MelVocoder from shutil import copyfile import pysptk dio = DatasetIO() vocoder = MelVocoder() base_folder = params.train_folder for index in xrange(len(train_files)): sys.stdout.write("\r\tprocessing file " + str(index + 1) + "/" + str(len(train_files))) sys.stdout.flush() base_name = train_files[index] txt_name = base_name + '.txt' wav_name = base_name + '.wav' spc_name = base_name + '.png' lab_name = base_name + '.lab' # LAB - copy or create if exists(join(base_folder, lab_name)): copyfile(join(base_folder, lab_name), join('data/processed/train', lab_name)) else: create_lab_file(join(base_folder, txt_name), join('data/processed/train', lab_name)) # TXT copyfile(join(base_folder, txt_name), join('data/processed/train', txt_name)) # WAVE data, sample_rate = dio.read_wave(join(base_folder, wav_name), sample_rate=params.target_sample_rate) mgc = vocoder.melspectrogram(data, sample_rate=params.target_sample_rate, num_mels=params.mgc_order) # SPECT render_spectrogram(mgc, join('data/processed/train', spc_name)) dio.write_wave(join('data/processed/train', base_name + '.orig.wav'), data, sample_rate) array2file(mgc, join('data/processed/train', base_name + '.mgc')) sys.stdout.write('\n') base_folder = params.dev_folder for index in xrange(len(dev_files)): sys.stdout.write("\r\tprocessing file " + str(index + 1) + "/" + str(len(dev_files))) sys.stdout.flush() base_name = dev_files[index] txt_name = base_name + '.txt' wav_name = base_name + '.wav' spc_name = base_name + '.png' lab_name = base_name + '.lab' # LAB - copy or create if exists(join(base_folder, lab_name)): copyfile(join(base_folder, lab_name), join('data/processed/dev', lab_name)) else: create_lab_file(join(base_folder, txt_name), join('data/processed/dev', lab_name)) # TXT copyfile(join(base_folder, txt_name), join('data/processed/dev/', txt_name)) # WAVE data, sample_rate = dio.read_wave(join(base_folder, wav_name), sample_rate=params.target_sample_rate) mgc = vocoder.melspectrogram(data, sample_rate=params.target_sample_rate, num_mels=params.mgc_order) # SPECT render_spectrogram(mgc, join('data/processed/dev', spc_name)) dio.write_wave(join('data/processed/dev', base_name + '.orig.wav'), data, sample_rate) array2file(mgc, join('data/processed/dev', base_name + '.mgc')) sys.stdout.write('\n') def phase_2_train_vocoder(params): from io_modules.dataset import Dataset from models.vocoder import Vocoder from trainers.vocoder import Trainer vocoder = Vocoder(params) if params.resume: sys.stdout.write('Resuming from previous checkpoint\n') vocoder.load('data/models/rnn_vocoder') trainset = Dataset("data/processed/train") devset = Dataset("data/processed/dev") sys.stdout.write('Found ' + str(len(trainset.files)) + ' training files and ' + str( len(devset.files)) + ' development files\n') trainer = Trainer(vocoder, trainset, devset) trainer.start_training(20, params.batch_size, params.target_sample_rate) def phase_3_train_encoder(params): from io_modules.dataset import Dataset from io_modules.dataset import Encodings from models.encoder import Encoder from trainers.encoder import Trainer trainset = Dataset("data/processed/train") devset = Dataset("data/processed/dev") sys.stdout.write('Found ' + str(len(trainset.files)) + ' training files and ' + str( len(devset.files)) + ' development files\n') encodings = Encodings() count = 0 if not params.resume: for train_file in trainset.files: count += 1 if count % 100 == 0: sys.stdout.write('\r' + str(count) + '/' + str(len(trainset.files)) + ' processed files') sys.stdout.flush() from io_modules.dataset import DatasetIO dio = DatasetIO() lab_list = dio.read_lab(train_file + ".lab") for entry in lab_list: encodings.update(entry) sys.stdout.write('\r' + str(count) + '/' + str(len(trainset.files)) + ' processed files\n') sys.stdout.write('Found ' + str(len(encodings.char2int)) + ' unique symbols, ' + str( len(encodings.context2int)) + ' unique features and ' + str( len(encodings.speaker2int)) + ' unique speakers\n') encodings.store('data/models/encoder.encodings') else: encodings.load('data/models/encoder.encodings') if params.resume: runtime = True # avoid ortonormal initialization else: runtime = False encoder = Encoder(params, encodings, runtime=runtime) if params.resume: sys.stdout.write('Resuming from previous checkpoint\n') encoder.load('data/models/rnn_encoder') if params.no_guided_attention: sys.stdout.write('Disabling guided attention\n') if params.no_bounds: sys.stdout.write('Using internal stopping condition for synthesis\n') trainer = Trainer(encoder, trainset, devset) trainer.start_training(10, 1000, params) def phase_5_test_vocoder(params): from io_modules.dataset import Dataset from models.vocoder import Vocoder from trainers.vocoder import Trainer vocoder = Vocoder(params, runtime=True) vocoder.load('data/models/rnn') trainset = Dataset("data/processed/train") devset = Dataset("data/processed/dev") sys.stdout.write('Found ' + str(len(trainset.files)) + ' training files and ' + str( len(devset.files)) + ' development files\n') trainer = Trainer(vocoder, trainset, devset) trainer.synth_devset(params.batch_size, target_sample_rate=params.target_sample_rate, sample=True, temperature=0.8) if params.phase and params.phase == '1': phase_1_prepare_corpus(params) if params.phase and params.phase == '2': phase_2_train_vocoder(params) if params.phase and params.phase == '3': phase_3_train_encoder(params) if params.phase and params.phase == '4': print ("Not yet implemented. Still wondering if this is really required") if params.phase and params.phase == '5': phase_5_test_vocoder(params)
py
7dfb5b292e899ee86c9073b3697e0708367d4898
"""A check to ensure author initials are separated by a space.""" import re import bibcheck.checker class Issue(bibcheck.checker.Issue): """Represents an issue with DOIs.""" @property def message(self): """Get the message for this issue.""" return "DOI entries should just contain the DOI." class DoiChecker(bibcheck.checker.Checker): # pylint: disable=too-few-public-methods """ Check for issues with DOI entries. 1. DOI entries should not be a URL: doi={10.1000/foo} instead of doi={https://doi.org/10.1000/foo}. """ def __init__(self): self.__doi_url_regex = re.compile(r'doi\s*=\s*[{"]\s*https://doi.org/.*["}]') def check(self, line: bibcheck.checker.Line): """ Check if a line contains any DOI issues. :param bibcheck.checker.Line line: The line of text to check, along with file context information. :return: A list of issues if the given ``line`` contains DOI problems. :rtype: list of bibcheck.checks.doi.Issue objects. """ if self.__doi_url_regex.search(line.text): return bibcheck.checks.doi.Issue(line.file_path, line.line_number) return []
py
7dfb5ca95bbfca6c2d029cddb0e78c8682900daa
# http://www.codewars.com/kata/56a946cd7bd95ccab2000055/ def lowercase_count(strng): total = 0 for letter in strng: if ord(letter) >= 97 and ord(letter) <= 122: total += 1 return total
py
7dfb5cbf60ef49544c4ea717f7c5c4fa8b3c4a5b
from django.shortcuts import render, redirect #from django.contrib.auth.forms import UserCreationForm from django.contrib import messages from .forms import RegisterForm from django.contrib.auth.decorators import login_required # Create your views here. def register(request): if request.method == 'POST': form = RegisterForm(request.POST) if form.is_valid(): form.save() username = form.cleaned_data.get('username') messages.success(request, f'Welcome {username}, your account has been created !') return redirect('login') else: form = RegisterForm() return render(request, 'users/register.html', {'form':form}) @login_required def profilpage(request): return render(request, 'users/profile.html')
py
7dfb5d162be81c00abe9d49c275953cfe5ea4a00
""" The registry for samplers designed to partition the dataset across the clients. Having a registry of all available classes is convenient for retrieving an instance based on a configuration at run-time. """ import logging from collections import OrderedDict from plato.config import Config if hasattr(Config().trainer, 'use_mindspore'): from plato.samplers.mindspore import ( iid as iid_mindspore, dirichlet as dirichlet_mindspore, ) registered_samplers = OrderedDict([ ('iid', iid_mindspore.Sampler), ('noniid', dirichlet_mindspore.Sampler), ]) elif hasattr(Config().trainer, 'use_tensorflow'): from plato.samplers.tensorflow import base registered_samplers = OrderedDict([ ('iid', base.Sampler), ('noniid', base.Sampler), ('mixed', base.Sampler), ]) else: try: from plato.samplers import (iid, dirichlet, mixed, orthogonal, all_inclusive) registered_samplers = OrderedDict([ ('iid', iid.Sampler), ('noniid', dirichlet.Sampler), ('mixed', mixed.Sampler), ('orthogonal', orthogonal.Sampler), ('all_inclusive', all_inclusive.Sampler), ]) except: from plato.samplers.nnrt import base registered_samplers = OrderedDict([ ('iid', base.Sampler), ('noniid', base.Sampler), ('mixed', base.Sampler), ]) def get(datasource, client_id): """Get an instance of the sampler.""" if hasattr(Config().data, 'sampler'): sampler_type = Config().data.sampler else: sampler_type = 'iid' logging.info("[Client #%d] Sampler: %s", client_id, sampler_type) if sampler_type in registered_samplers: registered_sampler = registered_samplers[sampler_type](datasource, client_id) else: raise ValueError('No such sampler: {}'.format(sampler_type)) return registered_sampler
py
7dfb5fb9df48579583c84ee90f3df3fc057e3f76
# Title: Dijkstra's Algorithm for finding single source shortest path from scratch # Author: Shubham Malik # References: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm import math import sys # For storing the vertex set to retreive node with the lowest distance class PriorityQueue: # Based on Min Heap def __init__(self): self.cur_size = 0 self.array = [] self.pos = {} # To store the pos of node in array def isEmpty(self): return self.cur_size == 0 def min_heapify(self, idx): lc = self.left(idx) rc = self.right(idx) if lc < self.cur_size and self.array(lc)[0] < self.array(idx)[0]: smallest = lc else: smallest = idx if rc < self.cur_size and self.array(rc)[0] < self.array(smallest)[0]: smallest = rc if smallest != idx: self.swap(idx, smallest) self.min_heapify(smallest) def insert(self, tup): # Inserts a node into the Priority Queue self.pos[tup[1]] = self.cur_size self.cur_size += 1 self.array.append((sys.maxsize, tup[1])) self.decrease_key((sys.maxsize, tup[1]), tup[0]) def extract_min(self): # Removes and returns the min element at top of priority queue min_node = self.array[0][1] self.array[0] = self.array[self.cur_size - 1] self.cur_size -= 1 self.min_heapify(1) del self.pos[min_node] return min_node def left(self, i): # returns the index of left child return 2 * i + 1 def right(self, i): # returns the index of right child return 2 * i + 2 def par(self, i): # returns the index of parent return math.floor(i / 2) def swap(self, i, j): # swaps array elements at indices i and j # update the pos{} self.pos[self.array[i][1]] = j self.pos[self.array[j][1]] = i temp = self.array[i] self.array[i] = self.array[j] self.array[j] = temp def decrease_key(self, tup, new_d): idx = self.pos[tup[1]] # assuming the new_d is atmost old_d self.array[idx] = (new_d, tup[1]) while idx > 0 and self.array[self.par(idx)][0] > self.array[idx][0]: self.swap(idx, self.par(idx)) idx = self.par(idx) class Graph: def __init__(self, num): self.adjList = {} # To store graph: u -> (v,w) self.num_nodes = num # Number of nodes in graph # To store the distance from source vertex self.dist = [0] * self.num_nodes self.par = [-1] * self.num_nodes # To store the path def add_edge(self, u, v, w): # Edge going from node u to v and v to u with weight w # u (w)-> v, v (w) -> u # Check if u already in graph if u in self.adjList.keys(): self.adjList[u].append((v, w)) else: self.adjList[u] = [(v, w)] # Assuming undirected graph if v in self.adjList.keys(): self.adjList[v].append((u, w)) else: self.adjList[v] = [(u, w)] def show_graph(self): # u -> v(w) for u in self.adjList: print( u, "->", " -> ".join(str(f"{v}({w})") for v, w in self.adjList[u]), ) def dijkstra(self, src): # Flush old junk values in par[] self.par = [-1] * self.num_nodes # src is the source node self.dist[src] = 0 Q = PriorityQueue() Q.insert((0, src)) # (dist from src, node) for u in self.adjList.keys(): if u != src: self.dist[u] = sys.maxsize # Infinity self.par[u] = -1 while not Q.isEmpty(): u = Q.extract_min() # Returns node with the min dist from source # Update the distance of all the neighbours of u and # if their prev dist was INFINITY then push them in Q for v, w in self.adjList[u]: new_dist = self.dist[u] + w if self.dist[v] > new_dist: if self.dist[v] == sys.maxsize: Q.insert((new_dist, v)) else: Q.decrease_key((self.dist[v], v), new_dist) self.dist[v] = new_dist self.par[v] = u # Show the shortest distances from src self.show_distances(src) def show_distances(self, src): print(f"Distance from node: {src}") for u in range(self.num_nodes): print(f"Node {u} has distance: {self.dist[u]}") def show_path(self, src, dest): # To show the shortest path from src to dest # WARNING: Use it *after* calling dijkstra path = [] cost = 0 temp = dest # Backtracking from dest to src while self.par[temp] != -1: path.append(temp) if temp != src: for v, w in self.adjList[temp]: if v == self.par[temp]: cost += w break temp = self.par[temp] path.append(src) path.reverse() print(f"----Path to reach {dest} from {src}----") for u in path: print(f"{u}", end=" ") if u != dest: print("-> ", end="") print("\nTotal cost of path: ", cost) if __name__ == "__main__": graph = Graph(9) graph.add_edge(0, 1, 4) graph.add_edge(0, 7, 8) graph.add_edge(1, 2, 8) graph.add_edge(1, 7, 11) graph.add_edge(2, 3, 7) graph.add_edge(2, 8, 2) graph.add_edge(2, 5, 4) graph.add_edge(3, 4, 9) graph.add_edge(3, 5, 14) graph.add_edge(4, 5, 10) graph.add_edge(5, 6, 2) graph.add_edge(6, 7, 1) graph.add_edge(6, 8, 6) graph.add_edge(7, 8, 7) graph.show_graph() graph.dijkstra(0) graph.show_path(0, 4) # OUTPUT # 0 -> 1(4) -> 7(8) # 1 -> 0(4) -> 2(8) -> 7(11) # 7 -> 0(8) -> 1(11) -> 6(1) -> 8(7) # 2 -> 1(8) -> 3(7) -> 8(2) -> 5(4) # 3 -> 2(7) -> 4(9) -> 5(14) # 8 -> 2(2) -> 6(6) -> 7(7) # 5 -> 2(4) -> 3(14) -> 4(10) -> 6(2) # 4 -> 3(9) -> 5(10) # 6 -> 5(2) -> 7(1) -> 8(6) # Distance from node: 0 # Node 0 has distance: 0 # Node 1 has distance: 4 # Node 2 has distance: 12 # Node 3 has distance: 19 # Node 4 has distance: 21 # Node 5 has distance: 11 # Node 6 has distance: 9 # Node 7 has distance: 8 # Node 8 has distance: 14 # ----Path to reach 4 from 0---- # 0 -> 7 -> 6 -> 5 -> 4 # Total cost of path: 21
py
7dfb60a32fc945aaa9343b54c05d19ea23be2224
import json import urllib.request import re import os from collections import Counter # *** CHANGE THIS as appropriate ***: # Base path to save all data to my_base_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "data/open.canada.ca") # List of data formats that we don't want to download skip_download = [] # skip_download = ['HTML','CSV','PDF','XLS','ZIP','XML','TXT','GML'] # INPUT: URL to json file # OUTPUT: json data def get_jsonparsed_data(json_url): response = urllib.request.urlopen(json_url) str_response = response.read().decode('utf-8') return json.loads(str_response) # INPUT: Name of file with URLs. Finds URLs that point to open.canada. # OUTPUT: URLs to json files, the corresponding open.canada web pages, and open.canada IDs. def get_json_urls(hyperlinks_text_file_name): f = open(hyperlinks_text_file_name, 'r') json_urls = []; # list of URLs to json metadata files of open.canada data open_canada_urls = []; # corresponding list of URLs to open.canada data open_canada_IDs = []; # corresponding IDs for line in f: # print(line,end='') match = re.search('open.canada.ca', line) # match = re.search(pat, text) if match: # print(line,end='') ID = re.findall('/dataset/(.+)', line) # print(ID) json_urls.append("http://open.canada.ca/data/api/action/package_show?id=" + str(ID[0])) open_canada_urls.append(line.strip('\n')) open_canada_IDs.append(ID[0]) f.close() return (json_urls, open_canada_urls, open_canada_IDs) # INPUT: json description provided by open.canada (and a URL to open.canada web-page) # OUTPUT: metadata in our format def parse_orig_json(json_data, open_canada_url): my_metadata = {} # create empty dict to be filled with metadata my_metadata['title'] = json_data['result']['title'] my_metadata['source_page'] = open_canada_url # fields below still need to be filled with actual values my_metadata['source_files'] = [] # [d.get('url') for d in json_data['result']['resources'] if d.get('url')] # ['http://url_to_source_file_1','http://url_to_source_file_2'] my_metadata['Category'] = 'Open Data' my_metadata['data_last_modified'] = json_data['result']['revision_timestamp'] my_metadata['data_schema'] = {} my_metadata['description'] = json_data['result']['notes'] my_metadata['license'] = json_data['result']['license_url'] my_metadata['tags'] = [] my_metadata['update_frequency'] = 'Other' return my_metadata # Saves file from URL to folder_name, using specified file_name or automatically assigned one. # INPUT: URL; folder_name where file will be saved; file_name = 0 for automatic assignment. def download_file(URL, folder_name, file_name=0): if file_name == 0: # if file name is not specified file_name = os.path.basename(URL) # get file name full_path_to_save = os.path.join(folder_name, file_name) try: urllib.request.urlretrieve(URL, full_path_to_save) except urllib.request.HTTPError: # If unable to download, save failed URL to download_errors.txt print('There was an error with the request') f = open(os.path.join(folder_name, 'download_errors.txt'), 'a') f.write(URL + '\n') f.close() def get_all_data_types(open_canada_IDs, json_urls): # Find all types of data resouces, count number of files of each type and get the following result: # {'CSV': 466, # 'HTML': 211, # 'JSON': 3, # 'PDF': 27, # 'SHAPE': 3, # 'TXT': 18, # 'XLS': 111, # 'XML': 92, # 'ZIP': 38, # 'doc': 3, # 'fgdb / gdb': 1, # 'gml': 3, # 'jpeg 2000': 19, # 'kml / kmz': 1, # 'other': 54, # 'rtf': 2, # 'wfs': 1, # 'wms': 1}) # Can list these types in skip_download = [] to skip downloading certain types. res_type = []; for idx in range(0, len(open_canada_IDs)): print("Processing data source " + str(idx) + ", ID: " + str(open_canada_IDs[idx])) json_data = get_jsonparsed_data(json_urls[idx]) for res in json_data['result']['resources']: res_type.append(res['format']) set(res_type) res_type.sort() return Counter(res_type) # Get json_urls, open_canada_urls and open_canada_IDs from the text file containing hyperlinks. ( json_urls , open_canada_urls, open_canada_IDs ) = get_json_urls("sources/open.canada.ca.txt") # Main loop for downloading data from open.data # for idx in range(0,1): for idx in range(0, len(open_canada_IDs)): print("\nProcessing data source " + str(idx) + ", ID: " + str(open_canada_IDs[idx])) folder_path = os.path.join(my_base_path, open_canada_IDs[idx]) print(folder_path) # create folder to download files to if not os.path.exists(folder_path): os.makedirs(folder_path) # download original json orig_json_filename = open_canada_IDs[idx] + '.json' download_file(json_urls[idx], folder_path, orig_json_filename) # get data from original json json_data = get_jsonparsed_data(json_urls[idx]) # create metadata from original json metadata = parse_orig_json(json_data, open_canada_urls[idx]) # download all data resources for res in json_data['result']['resources']: if res['format'] in skip_download: print(" Skipping: " + res['url']) else: print(" Downloading: " + res['url']) download_file(res['url'], folder_path) metadata['source_files'].append(res['url']) # save metadata fp = open(os.path.join(folder_path, 'metadata.json'), 'w') json.dump(metadata, fp) fp.close()
py
7dfb6233aacb992b02c259d4562d413a091be1b9
from cltk_capitains_corpora_converter import run def update(): run( "cloned", output="json", repository="https://github.com/OpenGreekAndLatin/csel-dev.git", nodes=["tei:note", "tei:orig"], credit="Open Philology, Humboldt Chair of Digital Humanities ( https://github.com/OpenGreekAndLatin/csel-dev )", silent=False ) if __name__ == '__main__': update()
py
7dfb62dbb2a161b1d33778f92122175938d9ce29
import torch from torch import nn from torch.nn import functional as F from torch.distributions import Normal, OneHotCategorical import logging logger = logging.getLogger() class MixtureDensityNet(nn.Module): def __init__(self, n_input: int, n_output: int, n_component: int): """ Parameters ---------- n_input : int the dimension of input feature n_output : the dimension of output space n_component : the number of component of Gauss distribution """ super(MixtureDensityNet, self).__init__() self.n_input = n_input self.n_output = n_output self.n_component = n_component self.mu_linear = nn.Linear(n_input, n_output * n_component) self.logsigma_linear = nn.Linear(n_input, n_output * n_component) self.logpi_linear = nn.Linear(n_input, n_component) def forward(self, feature): """ Parameters ---------- feature : torch.Tensor[N, n_input] input feature Returns ------- norm: Normal cat: OneHotCategorical """ n_data = feature.size()[0] mu = self.mu_linear(feature).reshape((n_data, self.n_output, self.n_component)) logsigma = self.logsigma_linear(feature).reshape((n_data, self.n_output, self.n_component)) norm = Normal(loc=mu, scale=torch.exp(logsigma)) logpi = self.logpi_linear(feature) logpi = logpi - torch.min(logpi) cat = OneHotCategorical(logits=logpi) return norm, cat
py
7dfb62ff0eaeee5117fa534d31549859b4ec5be2
"""packer_builder/specs/builders/__init__.py"""
py
7dfb63c23cdd6051009742d6b84db928b43c8fb2
def sample_func(a, b, c): return 'Hello' class SampleClass: def __init__(self, a): self.a = a def get_a(self): return self.a def set_a(self, x): self.a = a
py
7dfb653d066194c8218bf3cb994633df9a208dc3
#!flask/bin/python from flask import Flask, jsonify, make_response, abort, request from wuxingData import wuxingDic import main import characters import metaphysic import readDic app = Flask(__name__) tasks = [ { 'id': 1, 'title': u'Buy groceries', 'description': u'Milk, Cheese, Pizza, Fruit, Tylenol', 'done': False }, { 'id': 2, 'title': u'Learn Python', 'description': u'Need to find a good Python tutorial on the web', 'done': False } ] @app.route('/api/tasks', methods=['GET']) def get_tasks(): return jsonify({'tasks': tasks}) @app.route('/api/tasks/<int:task_id>', methods=['GET']) def get_task(task_id): task = filter(lambda t: t['id'] == task_id, tasks) if len(task) == 0: abort(404) return jsonify({'task': task[0]}) @app.route('/api/tasks', methods=['POST']) def create_task(): if not request.json or not 'title' in request.json: abort(400) task = { 'id': tasks[-1]['id'] + 1, 'title': request.json['title'], 'description': request.json.get('description', ""), 'done': False } tasks.append(task) return jsonify({'task': task}), 201 @app.route('/api/tasks/<int:task_id>', methods=['PUT']) def update_task(task_id): task = filter(lambda t: t['id'] == task_id, tasks) if len(task) == 0: abort(404) if not request.json: abort(400) if 'title' in request.json and type(request.json['title']) != unicode: abort(400) if 'description' in request.json and type(request.json['description']) is not unicode: abort(400) if 'done' in request.json and type(request.json['done']) is not bool: abort(400) task[0]['title'] = request.json.get('title', task[0]['title']) task[0]['description'] = request.json.get('description', task[0]['description']) task[0]['done'] = request.json.get('done', task[0]['done']) return jsonify({'task': task[0]}) @app.route('/api/tasks/<int:task_id>', methods=['DELETE']) def delete_task(task_id): task = filter(lambda t: t['id'] == task_id, tasks) if len(task) == 0: abort(404) tasks.remove(task[0]) return jsonify({'result': True}) @app.errorhandler(404) def not_found(error): return make_response(jsonify({'error': 'Not found'}), 404) if __name__ == '__main__': app.debug = True app.run()
py
7dfb6558746488ff82e5e94132a99d7e88502ad5
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core from hypothesis import given import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np class TestLengthsTileOp(hu.HypothesisTestCase): @given( inputs=st.integers(min_value=1, max_value=20).flatmap( lambda size: st.tuples( hu.arrays([size]), hu.arrays([size], dtype=np.int32, elements=st.integers(min_value=0, max_value=20)), ) ), **hu.gcs_cpu_only) def test_lengths_tile(self, inputs, gc, dc): data, lengths = inputs def lengths_tile_op(data, lengths): return [np.concatenate([ [d] * l for d, l in zip(data, lengths) ])] op = core.CreateOperator( "LengthsTile", ["data", "lengths"], ["output"] ) self.assertReferenceChecks( device_option=gc, op=op, inputs=[data, lengths], reference=lengths_tile_op, )
py
7dfb66a87cde16cf4fe4ec13fe68e8ace0320859
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Tangible() result.template = "object/tangible/ship/crafted/armor/shared_mass_reduction_kit_mk5.iff" result.attribute_template_id = 8 result.stfName("space_crafting_n","mass_reduction_kit_mk5") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
py
7dfb66f2f931776459c34e7733dcb05176a69013
import numpy.random as rd import torch from elegantrl.agents.AgentBase import AgentBase from elegantrl.agents.net import QNet, QNetDuel class AgentDQN(AgentBase): # [ElegantRL.2021.12.12] """ Bases: ``AgentBase`` Deep Q-Network algorithm. “Human-Level Control Through Deep Reinforcement Learning”. Mnih V. et al.. 2015. :param net_dim[int]: the dimension of networks (the width of neural networks) :param state_dim[int]: the dimension of state (the number of state vector) :param action_dim[int]: the dimension of action (the number of discrete action) :param learning_rate[float]: learning rate of optimizer :param if_per_or_gae[bool]: PER (off-policy) or GAE (on-policy) for sparse reward :param env_num[int]: the env number of VectorEnv. env_num == 1 means don't use VectorEnv :param agent_id[int]: if the visible_gpu is '1,9,3,4', agent_id=1 means (1,9,4,3)[agent_id] == 9 """ def __init__(self): AgentBase.__init__(self) self.ClassCri = QNet self.explore_rate = ( 0.25 # the probability of choosing action randomly in epsilon-greedy ) def init( self, net_dim=256, state_dim=8, action_dim=2, reward_scale=1.0, gamma=0.99, learning_rate=1e-4, if_per_or_gae=False, env_num=1, gpu_id=0, ): """ Explict call ``self.init()`` to overwrite the ``self.object`` in ``__init__()`` for multiprocessing. """ AgentBase.init( self, net_dim=net_dim, state_dim=state_dim, action_dim=action_dim, reward_scale=reward_scale, gamma=gamma, learning_rate=learning_rate, if_per_or_gae=if_per_or_gae, env_num=env_num, gpu_id=gpu_id, ) if if_per_or_gae: # if_use_per self.criterion = torch.nn.SmoothL1Loss(reduction="none") self.get_obj_critic = self.get_obj_critic_per else: self.criterion = torch.nn.SmoothL1Loss(reduction="mean") self.get_obj_critic = self.get_obj_critic_raw def select_actions( self, states: torch.Tensor ) -> torch.Tensor: # for discrete action space """ Select discrete actions given an array of states. .. note:: Using ϵ-greedy to select uniformly random actions for exploration. :param states: an array of states in a shape (batch_size, state_dim, ). :return: an array of actions in a shape (batch_size, action_dim, ) where each action is clipped into range(-1, 1). """ if rd.rand() < self.explore_rate: # epsilon-greedy a_ints = torch.randint( self.action_dim, size=states.shape[0] ) # choosing action randomly else: actions = self.act(states.to(self.device)) a_ints = actions.argmax(dim=1) return a_ints.detach().cpu() def explore_one_env(self, env, target_step) -> list: """ Collect trajectories through the actor-environment interaction for a **single** environment instance. :param env: the DRL environment instance. :param target_step: the total step for the interaction. :param reward_scale: a reward scalar to clip the reward. :param gamma: the discount factor. :return: a list of trajectories [traj, ...] where each trajectory is a list of transitions [(state, other), ...]. """ traj = [] state = self.states[0] for _ in range(target_step): ten_state = torch.as_tensor(state, dtype=torch.float32) ten_action = self.select_actions(ten_state.unsqueeze(0))[0] action = ten_action.numpy() # isinstance(action, int) next_s, reward, done, _ = env.step(action) ten_other = torch.empty(2 + 1) ten_other[0] = reward ten_other[1] = done ten_other[2] = ten_action traj.append((ten_state, ten_other)) state = env.reset() if done else next_s self.states[0] = state traj_state = torch.stack([item[0] for item in traj]) traj_other = torch.stack([item[1] for item in traj]) traj_list = [ (traj_state, traj_other), ] return self.convert_trajectory(traj_list) # [traj_env_0, ...] def explore_vec_env(self, env, target_step) -> list: """ Collect trajectories through the actor-environment interaction for a **vectorized** environment instance. :param env: the DRL environment instance. :param target_step: the total step for the interaction. :param reward_scale: a reward scalar to clip the reward. :param gamma: the discount factor. :return: a list of trajectories [traj, ...] where each trajectory is a list of transitions [(state, other), ...]. """ ten_states = self.states traj = [] for _ in range(target_step): ten_actions = self.select_actions(ten_states) ten_next_states, ten_rewards, ten_dones = env.step(ten_actions) ten_others = torch.cat( ( ten_rewards.unsqueeze(0), ten_dones.unsqueeze(0), ten_actions.unsqueeze(0), ) ) traj.append((ten_states, ten_others)) ten_states = ten_next_states self.states = ten_states traj_state = torch.stack([item[0] for item in traj]) traj_other = torch.stack([item[1] for item in traj]) traj_list = [ (traj_state[:, env_i, :], traj_other[:, env_i, :]) for env_i in range(len(self.states)) ] return self.convert_trajectory(traj_list) # [traj_env_0, ...] def update_net(self, buffer, batch_size, repeat_times, soft_update_tau) -> tuple: """ Update the neural networks by sampling batch data from ``ReplayBuffer``. :param buffer: the ReplayBuffer instance that stores the trajectories. :param batch_size: the size of batch data for Stochastic Gradient Descent (SGD). :param repeat_times: the re-using times of each trajectory. :param soft_update_tau: the soft update parameter. :return: a tuple of the log information. """ buffer.update_now_len() obj_critic = q_value = None for _ in range(int(buffer.now_len / batch_size * repeat_times)): obj_critic, q_value = self.get_obj_critic(buffer, batch_size) self.optim_update(self.cri_optim, obj_critic) if self.if_use_cri_target: self.soft_update(self.cri_target, self.cri, soft_update_tau) return obj_critic.item(), q_value.mean().item() def get_obj_critic_raw(self, buffer, batch_size): """ Calculate the loss of the network and predict Q values with **uniform sampling**. :param buffer: the ReplayBuffer instance that stores the trajectories. :param batch_size: the size of batch data for Stochastic Gradient Descent (SGD). :return: the loss of the network and Q values. """ with torch.no_grad(): reward, mask, action, state, next_s = buffer.sample_batch(batch_size) next_q = self.cri_target(next_s).max(dim=1, keepdim=True)[0] q_label = reward + mask * next_q q_value = self.cri(state).gather(1, action.long()) obj_critic = self.criterion(q_value, q_label) return obj_critic, q_value def get_obj_critic_per(self, buffer, batch_size): """ Calculate the loss of the network and predict Q values with **Prioritized Experience Replay (PER)**. :param buffer: the ReplayBuffer instance that stores the trajectories. :param batch_size: the size of batch data for Stochastic Gradient Descent (SGD). :return: the loss of the network and Q values. """ with torch.no_grad(): reward, mask, action, state, next_s, is_weights = buffer.sample_batch( batch_size ) next_q = self.cri_target(next_s).max(dim=1, keepdim=True)[0] q_label = reward + mask * next_q q_value = self.cri(state).gather(1, action.long()) td_error = self.criterion( q_value, q_label ) # or td_error = (q_value - q_label).abs() obj_critic = (td_error * is_weights).mean() buffer.td_error_update(td_error.detach()) return obj_critic, q_value class AgentDuelingDQN(AgentDQN): # [ElegantRL.2021.12.12] """ Bases: ``AgentDQN`` Dueling network. """ def __init__(self): AgentDQN.__init__(self) self.ClassCri = QNetDuel
py
7dfb66fc5225de3e0473132c64277701c522edb5
#!/usr/bin/env python3 # Copyright (c) 2016-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test Wallet encryption""" import time from test_framework.test_framework import BGLTestFramework from test_framework.util import ( assert_equal, assert_raises_rpc_error, assert_greater_than, assert_greater_than_or_equal, ) class WalletEncryptionTest(BGLTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): passphrase = "WalletPassphrase" passphrase2 = "SecondWalletPassphrase" # Make sure the wallet isn't encrypted first address = self.nodes[0].getnewaddress() privkey = self.nodes[0].dumpprivkey(address) assert_equal(privkey[:1], "c") assert_equal(len(privkey), 52) assert_raises_rpc_error(-15, "Error: running with an unencrypted wallet, but walletpassphrase was called", self.nodes[0].walletpassphrase, 'ff', 1) assert_raises_rpc_error(-15, "Error: running with an unencrypted wallet, but walletpassphrasechange was called.", self.nodes[0].walletpassphrasechange, 'ff', 'ff') # Encrypt the wallet assert_raises_rpc_error(-8, "passphrase can not be empty", self.nodes[0].encryptwallet, '') self.nodes[0].encryptwallet(passphrase) # Test that the wallet is encrypted assert_raises_rpc_error(-13, "Please enter the wallet passphrase with walletpassphrase first", self.nodes[0].dumpprivkey, address) assert_raises_rpc_error(-15, "Error: running with an encrypted wallet, but encryptwallet was called.", self.nodes[0].encryptwallet, 'ff') assert_raises_rpc_error(-8, "passphrase can not be empty", self.nodes[0].walletpassphrase, '', 1) assert_raises_rpc_error(-8, "passphrase can not be empty", self.nodes[0].walletpassphrasechange, '', 'ff') # Check that walletpassphrase works self.nodes[0].walletpassphrase(passphrase, 2) assert_equal(privkey, self.nodes[0].dumpprivkey(address)) # Check that the timeout is right time.sleep(3) assert_raises_rpc_error(-13, "Please enter the wallet passphrase with walletpassphrase first", self.nodes[0].dumpprivkey, address) # Test wrong passphrase assert_raises_rpc_error(-14, "wallet passphrase entered was incorrect", self.nodes[0].walletpassphrase, passphrase + "wrong", 10) # Test walletlock self.nodes[0].walletpassphrase(passphrase, 84600) assert_equal(privkey, self.nodes[0].dumpprivkey(address)) self.nodes[0].walletlock() assert_raises_rpc_error(-13, "Please enter the wallet passphrase with walletpassphrase first", self.nodes[0].dumpprivkey, address) # Test passphrase changes self.nodes[0].walletpassphrasechange(passphrase, passphrase2) assert_raises_rpc_error(-14, "wallet passphrase entered was incorrect", self.nodes[0].walletpassphrase, passphrase, 10) self.nodes[0].walletpassphrase(passphrase2, 10) assert_equal(privkey, self.nodes[0].dumpprivkey(address)) self.nodes[0].walletlock() # Test timeout bounds assert_raises_rpc_error(-8, "Timeout cannot be negative.", self.nodes[0].walletpassphrase, passphrase2, -10) # Check the timeout # Check a time less than the limit MAX_VALUE = 100000000 expected_time = int(time.time()) + MAX_VALUE - 600 self.nodes[0].walletpassphrase(passphrase2, MAX_VALUE - 600) actual_time = self.nodes[0].getwalletinfo()['unlocked_until'] assert_greater_than_or_equal(actual_time, expected_time) assert_greater_than(expected_time + 5, actual_time) # 5 second buffer # Check a time greater than the limit expected_time = int(time.time()) + MAX_VALUE - 1 self.nodes[0].walletpassphrase(passphrase2, MAX_VALUE + 1000) actual_time = self.nodes[0].getwalletinfo()['unlocked_until'] assert_greater_than_or_equal(actual_time, expected_time) assert_greater_than(expected_time + 5, actual_time) # 5 second buffer if __name__ == '__main__': WalletEncryptionTest().main()
py
7dfb6809b6bee85f929b6a9558b0ccd617fe7a31
# coding:utf-8 from logging import getLogger from peewee import Proxy from playhouse.pool import PooledMySQLDatabase from service import Service __all__ = [ "DataBaseService" ] DB_CONNECTION_MAX_NUM = 4 class PooledMySQLDatabaseWithReconnection(PooledMySQLDatabase): """Mysql connection pool support reconnection""" def execute_sql(self, sql, params=None, require_commit=True): """override and support reconnect""" log = getLogger('peewee.pool') try: return super(PooledMySQLDatabaseWithReconnection, self) \ .execute_sql(sql, params, require_commit) except Exception as exe: typeName = type( exe ).__name__ if typeName in ('OperationalError', ): try: log.info("try to close current connection") if(not self.is_closed()): log.info("try to close connection") self.close() log.info("try to re-execute current sql") cursor = self.get_cursor() cursor.execute(sql, params or ()) if require_commit and self.get_autocommit(): self.commit() return cursor except Exception as exc: raise RuntimeError('reconnection failed: %s' \ % unicode( exc )) raise class DataBaseService(Service): """Manage all services""" def __init__(self, env, host, port, user, passwd, db): super(DataBaseService, self).__init__(env) self._db_proxy = Proxy() self._conn_info = dict(host=host, port=port, \ user=user, passwd=passwd, \ db=db) def on_active(self): super(DataBaseService, self).on_active() conn_info = self._conn_info.copy() db_name = conn_info.pop('db') database = PooledMySQLDatabaseWithReconnection( db_name, max_connections=DB_CONNECTION_MAX_NUM, stale_timeout=300, threadlocals=True, **conn_info ) self._db_proxy.initialize( database ) self._db_proxy.connect() def get_db(self): return self._db_proxy
py
7dfb6888a52c4c7f82248f2d539271e9cc38b3ff
################################################################################ # # Copyright (c) 2009 The MadGraph5_aMC@NLO Development team and Contributors # # This file is a part of the MadGraph5_aMC@NLO project, an application which # automatically generates Feynman diagrams and matrix elements for arbitrary # high-energy processes in the Standard Model and beyond. # # It is subject to the MadGraph5_aMC@NLO license which should accompany this # distribution. # # For more information, visit madgraph.phys.ucl.ac.be and amcatnlo.web.cern.ch # ################################################################################ """Unit test Library for the objects in decay module.""" from __future__ import division import copy import os import sys import time import tests.unit_tests as unittest import madgraph.core.base_objects as base_objects import models.import_ufo as import_ufo import models.model_reader as model_reader _file_path = os.path.split(os.path.dirname(os.path.realpath(__file__)))[0] #=============================================================================== # TestModelReader #=============================================================================== class TestModelReader(unittest.TestCase): """Test class for the ModelReader object""" def setUp(self): """Set up decay model""" #Read the full SM sm_path = import_ufo.find_ufo_path('sm') self.base_model = import_ufo.import_model(sm_path) self.model_reader = model_reader.ModelReader(self.base_model) def test_set_parameters_and_couplings(self): """Test reading a param card""" param_path = os.path.join(_file_path, '../input_files/param_card_sm.dat') self.model_reader.set_parameters_and_couplings(os.path.join(param_path)) for param in sum([self.base_model.get('parameters')[key] for key \ in self.base_model.get('parameters')], []): value = param.value self.assertTrue(isinstance(value, (complex, float, int))) self.assertTrue(isinstance(self.model_reader.get('parameter_dict')[\ param.name], (complex, float, int))) for coupl in sum([self.base_model.get('couplings')[key] for key \ in self.base_model.get('couplings')], []): value = coupl.value self.assertTrue(isinstance(value, complex)) self.assertTrue(isinstance(self.model_reader.get('coupling_dict')[\ coupl.name], complex)) if __name__ == '__main__': unittest.unittest.main()
py
7dfb68d53a42c2ffe48a419952c6efc736ff586d
from peewee import * from barcounter import confutils as conf from . import db DRINK_NAME_LENGTH = conf.limitation("drink_name_length") class AbstractModel(Model): class Meta: database = db class Person(AbstractModel): uid = IntegerField() server = IntegerField() intoxication = IntegerField() class Drink(AbstractModel): server = IntegerField() name = CharField(max_length=DRINK_NAME_LENGTH) intoxication = IntegerField() portion_size = IntegerField() portions_per_day = IntegerField() portions_left = IntegerField()
py
7dfb6a87c3c972f54da48b129ad49452a66cef80
""" looks for parameter values that are reflected in the response. Author: maradrianbelen.com The scan function will be called for request/response made via ZAP, excluding some of the automated tools Passive scan rules should not make any requests Note that new passive scripts will initially be disabled Right click the script in the Scripts tree and select "enable" Refactored & Improved by nil0x42 """ # Set to True if you want to see results on a per param basis # (i.e.: A single URL may be listed more than once) RESULT_PER_FINDING = False # Ignore parameters whose length is too short MIN_PARAM_VALUE_LENGTH = 8 def scan(ps, msg, src): # Docs on alert raising function: # raiseAlert(int risk, int confidence, str name, str description, str uri, # str param, str attack, str otherInfo, str solution, # str evidence, int cweId, int wascId, HttpMessage msg) # risk: 0: info, 1: low, 2: medium, 3: high # confidence: 0: falsePositive, 1: low, 2: medium, 3: high, 4: confirmed alert_title = "Reflected HTTP GET parameter(s) (script)" alert_desc = ("Reflected parameter value has been found. " "A reflected parameter values may introduce XSS " "vulnerability or HTTP header injection.") uri = header = body = None reflected_params = [] for param in msg.getUrlParams(): value = param.getValue() if len(value) < MIN_PARAM_VALUE_LENGTH: continue if not header: uri = msg.getRequestHeader().getURI().toString() header = msg.getResponseHeader().toString() body = msg.getResponseBody().toString() if value in header or value in body: if RESULT_PER_FINDING: param_name = param.getName() ps.raiseAlert(0, 2, alert_title, alert_desc, uri, param_name, None, None, None, value, 0, 0, msg) else: reflected_params.append(param.getName()) if reflected_params and not RESULT_PER_FINDING: reflected_params = u",".join(reflected_params) ps.raiseAlert(0, 2, alert_title, alert_desc, uri, reflected_params, None, None, None, None, 0, 0, msg)
py
7dfb6c861cd96bb4310cdb390c6bad5e18c5e7ea
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from absl.testing import absltest, parameterized import jax from jax.config import config import jax.dlpack import jax.numpy as jnp from jax import test_util as jtu import numpy as np config.parse_flags_with_absl() try: import torch import torch.utils.dlpack except ImportError: torch = None try: import cupy except ImportError: cupy = None try: import tensorflow as tf tf_version = tuple( int(x) for x in tf.version.VERSION.split("-")[0].split(".")) except: tf = None dlpack_dtypes = sorted(list(jax.dlpack.SUPPORTED_DTYPES), key=lambda x: x.__name__) torch_dtypes = [jnp.int8, jnp.int16, jnp.int32, jnp.int64, jnp.uint8, jnp.float16, jnp.float32, jnp.float64] nonempty_nonscalar_array_shapes = [(4,), (3, 4), (2, 3, 4)] empty_array_shapes = [] empty_array_shapes += [(0,), (0, 4), (3, 0),] nonempty_nonscalar_array_shapes += [(3, 1), (1, 4), (2, 1, 4)] nonempty_array_shapes = [()] + nonempty_nonscalar_array_shapes all_shapes = nonempty_array_shapes + empty_array_shapes class DLPackTest(jtu.JaxTestCase): def setUp(self): super(DLPackTest, self).setUp() if jtu.device_under_test() == "tpu": self.skipTest("DLPack not supported on TPU") @parameterized.named_parameters(jtu.cases_from_list( {"testcase_name": "_{}_take_ownership={}".format( jtu.format_shape_dtype_string(shape, dtype), take_ownership), "shape": shape, "dtype": dtype, "take_ownership": take_ownership} for shape in all_shapes for dtype in dlpack_dtypes for take_ownership in [False, True])) def testJaxRoundTrip(self, shape, dtype, take_ownership): rng = jtu.rand_default(self.rng()) np = rng(shape, dtype) x = jnp.array(np) dlpack = jax.dlpack.to_dlpack(x, take_ownership=take_ownership) self.assertEqual(take_ownership, x.device_buffer.is_deleted()) y = jax.dlpack.from_dlpack(dlpack) self.assertAllClose(np.astype(x.dtype), y) self.assertRaisesRegex(RuntimeError, "DLPack tensor may be consumed at most once", lambda: jax.dlpack.from_dlpack(dlpack)) @parameterized.named_parameters(jtu.cases_from_list( {"testcase_name": "_{}".format( jtu.format_shape_dtype_string(shape, dtype)), "shape": shape, "dtype": dtype} for shape in all_shapes for dtype in dlpack_dtypes)) @unittest.skipIf(not tf, "Test requires TensorFlow") def testTensorFlowToJax(self, shape, dtype): if not config.x64_enabled and dtype in [jnp.int64, jnp.uint64, jnp.float64]: raise self.skipTest("x64 types are disabled by jax_enable_x64") if (jtu.device_under_test() == "gpu" and not tf.config.list_physical_devices("GPU")): raise self.skipTest("TensorFlow not configured with GPU support") rng = jtu.rand_default(self.rng()) np = rng(shape, dtype) with tf.device("/GPU:0" if jtu.device_under_test() == "gpu" else "/CPU:0"): x = tf.constant(np) dlpack = tf.experimental.dlpack.to_dlpack(x) y = jax.dlpack.from_dlpack(dlpack) self.assertAllClose(np, y) @parameterized.named_parameters(jtu.cases_from_list( {"testcase_name": "_{}".format( jtu.format_shape_dtype_string(shape, dtype)), "shape": shape, "dtype": dtype} for shape in all_shapes for dtype in dlpack_dtypes)) @unittest.skipIf(not tf, "Test requires TensorFlow") def testJaxToTensorFlow(self, shape, dtype): if not config.x64_enabled and dtype in [jnp.int64, jnp.uint64, jnp.float64]: self.skipTest("x64 types are disabled by jax_enable_x64") if (jtu.device_under_test() == "gpu" and not tf.config.list_physical_devices("GPU")): raise self.skipTest("TensorFlow not configured with GPU support") rng = jtu.rand_default(self.rng()) np = rng(shape, dtype) x = jnp.array(np) # TODO(b/171320191): this line works around a missing context initialization # bug in TensorFlow. _ = tf.add(1, 1) dlpack = jax.dlpack.to_dlpack(x) y = tf.experimental.dlpack.from_dlpack(dlpack) self.assertAllClose(np, y.numpy()) @parameterized.named_parameters(jtu.cases_from_list( {"testcase_name": "_{}".format( jtu.format_shape_dtype_string(shape, dtype)), "shape": shape, "dtype": dtype} for shape in all_shapes for dtype in torch_dtypes)) @unittest.skipIf(not torch, "Test requires PyTorch") def testTorchToJax(self, shape, dtype): if not config.x64_enabled and dtype in [jnp.int64, jnp.float64]: self.skipTest("x64 types are disabled by jax_enable_x64") rng = jtu.rand_default(self.rng()) np = rng(shape, dtype) x = torch.from_numpy(np) x = x.cuda() if jtu.device_under_test() == "gpu" else x dlpack = torch.utils.dlpack.to_dlpack(x) y = jax.dlpack.from_dlpack(dlpack) self.assertAllClose(np, y) @parameterized.named_parameters(jtu.cases_from_list( {"testcase_name": "_{}".format( jtu.format_shape_dtype_string(shape, dtype)), "shape": shape, "dtype": dtype} for shape in all_shapes for dtype in torch_dtypes)) @unittest.skipIf(not torch, "Test requires PyTorch") def testJaxToTorch(self, shape, dtype): if not config.x64_enabled and dtype in [jnp.int64, jnp.float64]: self.skipTest("x64 types are disabled by jax_enable_x64") rng = jtu.rand_default(self.rng()) np = rng(shape, dtype) x = jnp.array(np) dlpack = jax.dlpack.to_dlpack(x) y = torch.utils.dlpack.from_dlpack(dlpack) self.assertAllClose(np, y.cpu().numpy()) class CudaArrayInterfaceTest(jtu.JaxTestCase): def setUp(self): super(CudaArrayInterfaceTest, self).setUp() if jtu.device_under_test() != "gpu": self.skipTest("__cuda_array_interface__ is only supported on GPU") @parameterized.named_parameters(jtu.cases_from_list( {"testcase_name": "_{}".format( jtu.format_shape_dtype_string(shape, dtype)), "shape": shape, "dtype": dtype} for shape in all_shapes for dtype in dlpack_dtypes)) @unittest.skipIf(not cupy, "Test requires CuPy") def testJaxToCuPy(self, shape, dtype): rng = jtu.rand_default(self.rng()) x = rng(shape, dtype) y = jnp.array(x) z = cupy.asarray(y) self.assertEqual(y.__cuda_array_interface__["data"][0], z.__cuda_array_interface__["data"][0]) self.assertAllClose(x, cupy.asnumpy(z)) class Bfloat16Test(jtu.JaxTestCase): @unittest.skipIf((not tf or tf_version < (2, 5, 0)), "Test requires TensorFlow 2.5.0 or newer") def testJaxAndTfHaveTheSameBfloat16Type(self): self.assertEqual(np.dtype(jnp.bfloat16).num, np.dtype(tf.dtypes.bfloat16.as_numpy_dtype).num) if __name__ == "__main__": absltest.main(testLoader=jtu.JaxTestLoader())
py
7dfb6d7df425b97a27596fe2daf8ce3ba7674823
# -*- coding: utf-8 -*- ################################################################################ ## Form generated from reading UI file 'input_photos_ui.ui' ## ## Created by: Qt User Interface Compiler version 5.15.2 ## ## WARNING! All changes made in this file will be lost when recompiling UI file! ################################################################################ from PySide2.QtCore import * from PySide2.QtGui import * from PySide2.QtWidgets import * import ui.rsc_rc class Ui_insert(object): def setupUi(self, insert): if not insert.objectName(): insert.setObjectName(u"insert") insert.resize(956, 671) insert.setStyleSheet(u"QWidget#centralwidget\n" "{\n" "background-color: rgb(255, 255, 255);\n" "}") self.centralwidget = QWidget(insert) self.centralwidget.setObjectName(u"centralwidget") self.chazhao = QToolButton(self.centralwidget) self.chazhao.setObjectName(u"chazhao") self.chazhao.setGeometry(QRect(580, 150, 191, 121)) icon = QIcon() icon.addFile(u":img/chazhao.png", QSize(), QIcon.Normal, QIcon.Off) self.chazhao.setIcon(icon) self.chazhao.setIconSize(QSize(240, 180)) self.chazhao.setAutoRaise(True) self.out = QToolButton(self.centralwidget) self.out.setObjectName(u"out") self.out.setGeometry(QRect(750, 510, 201, 101)) icon1 = QIcon() icon1.addFile(u":/img/fanhui.png", QSize(), QIcon.Normal, QIcon.Off) self.out.setIcon(icon1) self.out.setIconSize(QSize(147, 100)) self.out.setAutoRaise(True) self.t1 = QLabel(self.centralwidget) self.t1.setObjectName(u"t1") self.t1.setGeometry(QRect(590, 50, 345, 75)) self.t1.setPixmap(QPixmap(u":/img/xuehao.png")) self.stu_id = QLineEdit(self.centralwidget) self.stu_id.setObjectName(u"stu_id") self.stu_id.setGeometry(QRect(700, 70, 180, 33)) self.stu_id.setStyleSheet(u"font: 25px \"\u5fae\u8f6f\u96c5\u9ed1\";\n" "color: rgb(112, 112, 112);") self.stu_id.setFrame(False) self.camera = QLabel(self.centralwidget) self.camera.setObjectName(u"camera") self.camera.setGeometry(QRect(20, 20, 551, 411)) self.camera.setFrameShape(QFrame.Box) self.camera.setLineWidth(3) self.camera.setPixmap(QPixmap(u":img/backgrand.png")) self.camera.setAlignment(Qt.AlignCenter) self.t3_2 = QLabel(self.centralwidget) self.t3_2.setObjectName(u"t3_2") self.t3_2.setGeometry(QRect(60, 460, 121, 35)) font = QFont() font.setFamily(u"\u5fae\u8f6f\u96c5\u9ed1") font.setBold(False) font.setItalic(False) font.setWeight(50) self.t3_2.setFont(font) self.t3_2.setStyleSheet(u"font: 25px \"\u5fae\u8f6f\u96c5\u9ed1\";\n" "color: rgb(112, 112, 112);") self.chaxunjieguo = QLabel(self.centralwidget) self.chaxunjieguo.setObjectName(u"chaxunjieguo") self.chaxunjieguo.setGeometry(QRect(190, 460, 471, 35)) self.chaxunjieguo.setFont(font) self.chaxunjieguo.setStyleSheet(u"font: 25px \"\u5fae\u8f6f\u96c5\u9ed1\";\n" "color: rgb(112, 112, 112);") self.stu_id_2 = QLabel(self.centralwidget) self.stu_id_2.setObjectName(u"stu_id_2") self.stu_id_2.setGeometry(QRect(130, 570, 221, 35)) self.stu_id_2.setFont(font) self.stu_id_2.setStyleSheet(u"font: 25px \"\u5fae\u8f6f\u96c5\u9ed1\";\n" "color: rgb(112, 112, 112);") self.shibiejieguo = QLabel(self.centralwidget) self.shibiejieguo.setObjectName(u"shibiejieguo") self.shibiejieguo.setGeometry(QRect(20, 440, 721, 201)) self.shibiejieguo.setFrameShape(QFrame.Box) self.shibiejieguo.setFrameShadow(QFrame.Raised) self.shibiejieguo.setLineWidth(3) self.t1_2 = QLabel(self.centralwidget) self.t1_2.setObjectName(u"t1_2") self.t1_2.setGeometry(QRect(370, 510, 75, 33)) self.t1_2.setStyleSheet(u"font: 25px \"\u5fae\u8f6f\u96c5\u9ed1\";\n" "color: rgb(112, 112, 112);") self.t2_2 = QLabel(self.centralwidget) self.t2_2.setObjectName(u"t2_2") self.t2_2.setGeometry(QRect(370, 570, 75, 33)) self.t2_2.setStyleSheet(u"font: 25px \"\u5fae\u8f6f\u96c5\u9ed1\";\n" "color: rgb(112, 112, 112);") self.t4 = QLabel(self.centralwidget) self.t4.setObjectName(u"t4") self.t4.setGeometry(QRect(60, 570, 65, 35)) self.t4.setFont(font) self.t4.setStyleSheet(u"font: 25px \"\u5fae\u8f6f\u96c5\u9ed1\";\n" "color: rgb(112, 112, 112);") self.stu_age = QLabel(self.centralwidget) self.stu_age.setObjectName(u"stu_age") self.stu_age.setGeometry(QRect(440, 570, 221, 35)) self.stu_age.setStyleSheet(u"font: 25px \"\u5fae\u8f6f\u96c5\u9ed1\";\n" "color: rgb(112, 112, 112);") self.stu_major = QLabel(self.centralwidget) self.stu_major.setObjectName(u"stu_major") self.stu_major.setGeometry(QRect(440, 510, 221, 35)) self.stu_major.setStyleSheet(u"font: 25px \"\u5fae\u8f6f\u96c5\u9ed1\";\n" "color: rgb(112, 112, 112);") self.stu_name = QLabel(self.centralwidget) self.stu_name.setObjectName(u"stu_name") self.stu_name.setGeometry(QRect(130, 510, 221, 35)) self.stu_name.setFont(font) self.stu_name.setStyleSheet(u"font: 25px \"\u5fae\u8f6f\u96c5\u9ed1\";\n" "color: rgb(112, 112, 112);") self.t3 = QLabel(self.centralwidget) self.t3.setObjectName(u"t3") self.t3.setGeometry(QRect(60, 510, 65, 35)) self.t3.setFont(font) self.t3.setStyleSheet(u"font: 25px \"\u5fae\u8f6f\u96c5\u9ed1\";\n" "color: rgb(112, 112, 112);") self.lururenlian = QToolButton(self.centralwidget) self.lururenlian.setObjectName(u"lururenlian") self.lururenlian.setGeometry(QRect(770, 150, 181, 121)) icon2 = QIcon() icon2.addFile(u":/img/lururenlian.png", QSize(), QIcon.Normal, QIcon.Off) self.lururenlian.setIcon(icon2) self.lururenlian.setIconSize(QSize(240, 180)) self.lururenlian.setAutoRaise(True) self.paizhao = QToolButton(self.centralwidget) self.paizhao.setObjectName(u"paizhao") self.paizhao.setGeometry(QRect(590, 270, 181, 121)) icon3 = QIcon() icon3.addFile(u":/img/paizhao.png", QSize(), QIcon.Normal, QIcon.Off) self.paizhao.setIcon(icon3) self.paizhao.setIconSize(QSize(240, 180)) self.paizhao.setAutoRaise(True) self.luru = QToolButton(self.centralwidget) self.luru.setObjectName(u"luru") self.luru.setGeometry(QRect(770, 270, 181, 121)) icon4 = QIcon() icon4.addFile(u":/img/luru.png", QSize(), QIcon.Normal, QIcon.Off) self.luru.setIcon(icon4) self.luru.setIconSize(QSize(240, 180)) self.luru.setAutoRaise(True) insert.setCentralWidget(self.centralwidget) self.shibiejieguo.raise_() self.chazhao.raise_() self.out.raise_() self.t1.raise_() self.stu_id.raise_() self.camera.raise_() self.t3_2.raise_() self.chaxunjieguo.raise_() self.stu_id_2.raise_() self.t1_2.raise_() self.t2_2.raise_() self.t4.raise_() self.stu_age.raise_() self.stu_major.raise_() self.stu_name.raise_() self.t3.raise_() self.lururenlian.raise_() self.paizhao.raise_() self.luru.raise_() self.retranslateUi(insert) QMetaObject.connectSlotsByName(insert) # setupUi def retranslateUi(self, insert): insert.setWindowTitle(QCoreApplication.translate("insert", u"MainWindow", None)) self.chazhao.setText("") self.out.setText("") self.t1.setText("") self.stu_id.setText("") self.stu_id.setPlaceholderText(QCoreApplication.translate("insert", u"\u8bf7\u8f93\u5165\u5b66\u53f7", None)) self.camera.setText("") self.t3_2.setText(QCoreApplication.translate("insert", u"\u67e5\u8be2\u7ed3\u679c\uff1a", None)) self.chaxunjieguo.setText("") self.stu_id_2.setText("") self.shibiejieguo.setText("") self.t1_2.setText(QCoreApplication.translate("insert", u"\u4e13\u4e1a\uff1a", None)) self.t2_2.setText(QCoreApplication.translate("insert", u"\u5e74\u9f84\uff1a", None)) self.t4.setText(QCoreApplication.translate("insert", u"\u5b66\u53f7\uff1a", None)) self.stu_age.setText("") self.stu_major.setText("") self.stu_name.setText("") self.t3.setText(QCoreApplication.translate("insert", u"\u59d3\u540d\uff1a", None)) self.lururenlian.setText("") self.paizhao.setText("") self.luru.setText("") # retranslateUi
py
7dfb6e5da83c0b979eeabba63ff64ff936dacac0
import numpy as np from copy import copy from si.data.dataset import Dataset class StandardScaler: """ Standardize features by centering the mean to 0 and unit variance. The standard score of an instance is calculated by: z = (x - u) / s where u is the mean of the training data and s is the standard deviation. Standardizing data is often necessary before training many machine learning models to avoid problems like exploding/vanishing gradients and feature dominance. Attributes ---------- _mean : numpy array of shape (n_features, ) The mean of each feature in the training set. _var : numpy array of shape (n_features, ) The variance of each feature in the training set. """ def __init__(self): pass def fit(self, dataset): """ Calculate and store the mean and variance of each feature in the training set. Parameters ---------- dataset : A Dataset object to be standardized """ self._mean = np.mean(dataset.X, axis=0) self._var = np.var(dataset.X, axis=0) def transform(self, dataset1, inline=False): """ Standardize data by subtracting out the mean and dividing by standard deviation calculated during fitting. Parameters ---------- dataset : A Dataset object to be standardized Returns ------- A Dataset object with standardized data. """ Z = (dataset1.X - self._mean) / np.sqrt(self._var) if inline: dataset1.X = Z return dataset1 else: return Dataset(Z, copy(dataset1.y), copy(dataset1._xnames), copy(dataset1._yname)) def fit_transform(self, dataset, inline=False): """ Calculate and store the mean and variance of each feature and standardize the data. Parameters ---------- dataset : A Dataset object to be standardized Returns ------- A Dataset object to with standardized data. """ self.fit(dataset) return self.transform(dataset, inline=inline) def inverse_transform(self, dataset, inline=False): """ Transform data back into orginal state by multiplying by standard deviation and adding the mean back in. Inverse standard scaler: x = z * s + u where s is the standard deviation, and u is the mean. Parameters ---------- dataset : A standardized Dataset object Returns ------- Dataset object """ X = dataset.X * np.sqrt(self._var) + self._mean if inline: dataset.X = X return dataset else: from ..data import Dataset return Dataset(X, copy(dataset.y), copy(dataset._xnames), copy(dataset._yname))
py
7dfb70b5a600a3f66d1595c43e0840acf6558c59
builtins_test_text_001 = ''' arg = 10 int = 10 ''' builtins_test_text_002 = ''' def function_one(): pass def function_two( arg, ): pass def function_three( int, ): pass async def function_four(): pass async def function_five( arg, ): pass async def function_six( int, ): pass def int(): pass ''' builtins_test_text_003 = ''' for i in range(10): pass for int in range(10): pass for a, b in range(10): pass for a, int in range(10): pass for *a, b in [[1,2,3]]: pass for *int, b in [[1,2,3]]: pass ''' builtins_test_text_004 = ''' with func(): pass with func() as var: pass with func() as int: pass with func_one() as var_one, func_two() as var_two: pass with func_one() as int, func_two() as var_two: pass with func_one() as var_one, func_two() as int: pass with func() as (var_one, var_two): pass with func() as (var_one, int): pass ''' builtins_test_text_005 = ''' var = [ var_one for var_one in var_list ] var = [ int for int in var_list ] var = [ (var_one, var_two) for (var_one, var_two) in var_list ] var = [ (var_one, int) for (var_one, int) in var_list ] ''' builtins_test_text_006 = ''' class ClassName: pass class dict: pass class SomeClass: type = 'some' def method( self, ): pass def filter( self, ): pass '''
py
7dfb70c48cee595a7610549bdf8338e64bd31d8b
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import json from datetime import datetime, timedelta from typing import List, Optional from unittest.mock import Mock, patch from uuid import uuid4 import pytest from contextlib2 import contextmanager from flask_sqlalchemy import BaseQuery from freezegun import freeze_time from sqlalchemy.sql import func from superset import db from superset.models.core import Database from superset.models.dashboard import Dashboard from superset.models.reports import ( ReportExecutionLog, ReportRecipients, ReportRecipientType, ReportSchedule, ReportScheduleType, ReportScheduleValidatorType, ReportState, ) from superset.models.slice import Slice from superset.reports.commands.exceptions import ( AlertQueryError, AlertQueryInvalidTypeError, AlertQueryMultipleColumnsError, AlertQueryMultipleRowsError, ReportScheduleNotFoundError, ReportScheduleNotificationError, ReportSchedulePreviousWorkingError, ReportScheduleScreenshotFailedError, ReportScheduleScreenshotTimeout, ReportScheduleWorkingTimeoutError, ) from superset.reports.commands.execute import AsyncExecuteReportScheduleCommand from superset.utils.core import get_example_database from tests.fixtures.birth_names_dashboard import load_birth_names_dashboard_with_slices from tests.fixtures.world_bank_dashboard import ( load_world_bank_dashboard_with_slices_module_scope, ) from tests.reports.utils import insert_report_schedule from tests.test_app import app from tests.utils import read_fixture pytestmark = pytest.mark.usefixtures( "load_world_bank_dashboard_with_slices_module_scope" ) test_id = str(uuid4()) def get_target_from_report_schedule(report_schedule: ReportSchedule) -> List[str]: return [ json.loads(recipient.recipient_config_json)["target"] for recipient in report_schedule.recipients ] def get_error_logs_query(report_schedule: ReportSchedule) -> BaseQuery: return ( db.session.query(ReportExecutionLog) .filter( ReportExecutionLog.report_schedule == report_schedule, ReportExecutionLog.state == ReportState.ERROR, ) .order_by(ReportExecutionLog.end_dttm.desc()) ) def get_notification_error_sent_count(report_schedule: ReportSchedule) -> int: logs = get_error_logs_query(report_schedule).all() notification_sent_logs = [ log.error_message for log in logs if log.error_message == "Notification sent with error" ] return len(notification_sent_logs) def assert_log(state: str, error_message: Optional[str] = None): db.session.commit() logs = db.session.query(ReportExecutionLog).all() if state == ReportState.WORKING: assert len(logs) == 2 assert logs[1].error_message == error_message assert logs[1].state == state return # On error we send an email if state == ReportState.ERROR: assert len(logs) == 3 else: assert len(logs) == 2 log_states = [log.state for log in logs] assert ReportState.WORKING in log_states assert state in log_states assert error_message in [log.error_message for log in logs] def create_report_notification( email_target: Optional[str] = None, slack_channel: Optional[str] = None, chart: Optional[Slice] = None, dashboard: Optional[Dashboard] = None, database: Optional[Database] = None, sql: Optional[str] = None, report_type: Optional[str] = None, validator_type: Optional[str] = None, validator_config_json: Optional[str] = None, grace_period: Optional[int] = None, ) -> ReportSchedule: report_type = report_type or ReportScheduleType.REPORT target = email_target or slack_channel config_json = {"target": target} if slack_channel: recipient = ReportRecipients( type=ReportRecipientType.SLACK, recipient_config_json=json.dumps(config_json), ) else: recipient = ReportRecipients( type=ReportRecipientType.EMAIL, recipient_config_json=json.dumps(config_json), ) report_schedule = insert_report_schedule( type=report_type, name=f"report", crontab=f"0 9 * * *", description=f"Daily report", sql=sql, chart=chart, dashboard=dashboard, database=database, recipients=[recipient], validator_type=validator_type, validator_config_json=validator_config_json, grace_period=grace_period, ) return report_schedule def cleanup_report_schedule(report_schedule: ReportSchedule) -> None: db.session.query(ReportExecutionLog).filter( ReportExecutionLog.report_schedule == report_schedule ).delete() db.session.query(ReportRecipients).filter( ReportRecipients.report_schedule == report_schedule ).delete() db.session.delete(report_schedule) db.session.commit() @contextmanager def create_test_table_context(database: Database): database.get_sqla_engine().execute( "CREATE TABLE test_table AS SELECT 1 as first, 2 as second" ) database.get_sqla_engine().execute( "INSERT INTO test_table (first, second) VALUES (1, 2)" ) database.get_sqla_engine().execute( "INSERT INTO test_table (first, second) VALUES (3, 4)" ) yield db.session database.get_sqla_engine().execute("DROP TABLE test_table") @pytest.yield_fixture() def create_report_email_chart(): with app.app_context(): chart = db.session.query(Slice).first() report_schedule = create_report_notification( email_target="[email protected]", chart=chart ) yield report_schedule cleanup_report_schedule(report_schedule) @pytest.yield_fixture() def create_report_email_dashboard(): with app.app_context(): dashboard = db.session.query(Dashboard).first() report_schedule = create_report_notification( email_target="[email protected]", dashboard=dashboard ) yield report_schedule cleanup_report_schedule(report_schedule) @pytest.yield_fixture() def create_report_slack_chart(): with app.app_context(): chart = db.session.query(Slice).first() report_schedule = create_report_notification( slack_channel="slack_channel", chart=chart ) yield report_schedule cleanup_report_schedule(report_schedule) @pytest.yield_fixture() def create_report_slack_chart_working(): with app.app_context(): chart = db.session.query(Slice).first() report_schedule = create_report_notification( slack_channel="slack_channel", chart=chart ) report_schedule.last_state = ReportState.WORKING report_schedule.last_eval_dttm = datetime(2020, 1, 1, 0, 0) db.session.commit() log = ReportExecutionLog( scheduled_dttm=report_schedule.last_eval_dttm, start_dttm=report_schedule.last_eval_dttm, end_dttm=report_schedule.last_eval_dttm, state=ReportState.WORKING, report_schedule=report_schedule, uuid=uuid4(), ) db.session.add(log) db.session.commit() yield report_schedule cleanup_report_schedule(report_schedule) @pytest.yield_fixture() def create_alert_slack_chart_success(): with app.app_context(): chart = db.session.query(Slice).first() report_schedule = create_report_notification( slack_channel="slack_channel", chart=chart, report_type=ReportScheduleType.ALERT, ) report_schedule.last_state = ReportState.SUCCESS report_schedule.last_eval_dttm = datetime(2020, 1, 1, 0, 0) log = ReportExecutionLog( report_schedule=report_schedule, state=ReportState.SUCCESS, start_dttm=report_schedule.last_eval_dttm, end_dttm=report_schedule.last_eval_dttm, scheduled_dttm=report_schedule.last_eval_dttm, ) db.session.add(log) db.session.commit() yield report_schedule cleanup_report_schedule(report_schedule) @pytest.yield_fixture() def create_alert_slack_chart_grace(): with app.app_context(): chart = db.session.query(Slice).first() report_schedule = create_report_notification( slack_channel="slack_channel", chart=chart, report_type=ReportScheduleType.ALERT, ) report_schedule.last_state = ReportState.GRACE report_schedule.last_eval_dttm = datetime(2020, 1, 1, 0, 0) log = ReportExecutionLog( report_schedule=report_schedule, state=ReportState.SUCCESS, start_dttm=report_schedule.last_eval_dttm, end_dttm=report_schedule.last_eval_dttm, scheduled_dttm=report_schedule.last_eval_dttm, ) db.session.add(log) db.session.commit() yield report_schedule cleanup_report_schedule(report_schedule) @pytest.yield_fixture( params=["alert1", "alert2", "alert3", "alert4", "alert5", "alert6", "alert7",] ) def create_alert_email_chart(request): param_config = { "alert1": { "sql": "SELECT 10 as metric", "validator_type": ReportScheduleValidatorType.OPERATOR, "validator_config_json": '{"op": ">", "threshold": 9}', }, "alert2": { "sql": "SELECT 10 as metric", "validator_type": ReportScheduleValidatorType.OPERATOR, "validator_config_json": '{"op": ">=", "threshold": 10}', }, "alert3": { "sql": "SELECT 10 as metric", "validator_type": ReportScheduleValidatorType.OPERATOR, "validator_config_json": '{"op": "<", "threshold": 11}', }, "alert4": { "sql": "SELECT 10 as metric", "validator_type": ReportScheduleValidatorType.OPERATOR, "validator_config_json": '{"op": "<=", "threshold": 10}', }, "alert5": { "sql": "SELECT 10 as metric", "validator_type": ReportScheduleValidatorType.OPERATOR, "validator_config_json": '{"op": "!=", "threshold": 11}', }, "alert6": { "sql": "SELECT 'something' as metric", "validator_type": ReportScheduleValidatorType.NOT_NULL, "validator_config_json": "{}", }, "alert7": { "sql": "SELECT {{ 5 + 5 }} as metric", "validator_type": ReportScheduleValidatorType.OPERATOR, "validator_config_json": '{"op": "!=", "threshold": 11}', }, } with app.app_context(): chart = db.session.query(Slice).first() example_database = get_example_database() with create_test_table_context(example_database): report_schedule = create_report_notification( email_target="[email protected]", chart=chart, report_type=ReportScheduleType.ALERT, database=example_database, sql=param_config[request.param]["sql"], validator_type=param_config[request.param]["validator_type"], validator_config_json=param_config[request.param][ "validator_config_json" ], ) yield report_schedule cleanup_report_schedule(report_schedule) @pytest.yield_fixture( params=[ "alert1", "alert2", "alert3", "alert4", "alert5", "alert6", "alert7", "alert8", "alert9", ] ) def create_no_alert_email_chart(request): param_config = { "alert1": { "sql": "SELECT 10 as metric", "validator_type": ReportScheduleValidatorType.OPERATOR, "validator_config_json": '{"op": "<", "threshold": 10}', }, "alert2": { "sql": "SELECT 10 as metric", "validator_type": ReportScheduleValidatorType.OPERATOR, "validator_config_json": '{"op": ">=", "threshold": 11}', }, "alert3": { "sql": "SELECT 10 as metric", "validator_type": ReportScheduleValidatorType.OPERATOR, "validator_config_json": '{"op": "<", "threshold": 10}', }, "alert4": { "sql": "SELECT 10 as metric", "validator_type": ReportScheduleValidatorType.OPERATOR, "validator_config_json": '{"op": "<=", "threshold": 9}', }, "alert5": { "sql": "SELECT 10 as metric", "validator_type": ReportScheduleValidatorType.OPERATOR, "validator_config_json": '{"op": "!=", "threshold": 10}', }, "alert6": { "sql": "SELECT first from test_table where 1=0", "validator_type": ReportScheduleValidatorType.NOT_NULL, "validator_config_json": "{}", }, "alert7": { "sql": "SELECT first from test_table where 1=0", "validator_type": ReportScheduleValidatorType.OPERATOR, "validator_config_json": '{"op": ">", "threshold": 0}', }, "alert8": { "sql": "SELECT Null as metric", "validator_type": ReportScheduleValidatorType.NOT_NULL, "validator_config_json": "{}", }, "alert9": { "sql": "SELECT Null as metric", "validator_type": ReportScheduleValidatorType.OPERATOR, "validator_config_json": '{"op": ">", "threshold": 0}', }, } with app.app_context(): chart = db.session.query(Slice).first() example_database = get_example_database() with create_test_table_context(example_database): report_schedule = create_report_notification( email_target="[email protected]", chart=chart, report_type=ReportScheduleType.ALERT, database=example_database, sql=param_config[request.param]["sql"], validator_type=param_config[request.param]["validator_type"], validator_config_json=param_config[request.param][ "validator_config_json" ], ) yield report_schedule cleanup_report_schedule(report_schedule) @pytest.yield_fixture(params=["alert1", "alert2"]) def create_mul_alert_email_chart(request): param_config = { "alert1": { "sql": "SELECT first, second from test_table", "validator_type": ReportScheduleValidatorType.OPERATOR, "validator_config_json": '{"op": "<", "threshold": 10}', }, "alert2": { "sql": "SELECT first from test_table", "validator_type": ReportScheduleValidatorType.OPERATOR, "validator_config_json": '{"op": "<", "threshold": 10}', }, } with app.app_context(): chart = db.session.query(Slice).first() example_database = get_example_database() with create_test_table_context(example_database): report_schedule = create_report_notification( email_target="[email protected]", chart=chart, report_type=ReportScheduleType.ALERT, database=example_database, sql=param_config[request.param]["sql"], validator_type=param_config[request.param]["validator_type"], validator_config_json=param_config[request.param][ "validator_config_json" ], ) yield report_schedule cleanup_report_schedule(report_schedule) @pytest.yield_fixture(params=["alert1", "alert2"]) def create_invalid_sql_alert_email_chart(request): param_config = { "alert1": { "sql": "SELECT 'string' ", "validator_type": ReportScheduleValidatorType.OPERATOR, "validator_config_json": '{"op": "<", "threshold": 10}', }, "alert2": { "sql": "SELECT first from foo_table", "validator_type": ReportScheduleValidatorType.OPERATOR, "validator_config_json": '{"op": "<", "threshold": 10}', }, } with app.app_context(): chart = db.session.query(Slice).first() example_database = get_example_database() with create_test_table_context(example_database): report_schedule = create_report_notification( email_target="[email protected]", chart=chart, report_type=ReportScheduleType.ALERT, database=example_database, sql=param_config[request.param]["sql"], validator_type=param_config[request.param]["validator_type"], validator_config_json=param_config[request.param][ "validator_config_json" ], grace_period=60 * 60, ) yield report_schedule cleanup_report_schedule(report_schedule) @pytest.mark.usefixtures( "load_birth_names_dashboard_with_slices", "create_report_email_chart" ) @patch("superset.reports.notifications.email.send_email_smtp") @patch("superset.utils.screenshots.ChartScreenshot.get_screenshot") def test_email_chart_report_schedule( screenshot_mock, email_mock, create_report_email_chart ): """ ExecuteReport Command: Test chart email report schedule """ # setup screenshot mock screenshot = read_fixture("sample.png") screenshot_mock.return_value = screenshot with freeze_time("2020-01-01T00:00:00Z"): AsyncExecuteReportScheduleCommand( test_id, create_report_email_chart.id, datetime.utcnow() ).run() notification_targets = get_target_from_report_schedule( create_report_email_chart ) # assert that the link sent is correct assert ( f'<a href="http://0.0.0.0:8080/superset/slice/' f'{create_report_email_chart.chart.id}/">Explore in Superset</a>' in email_mock.call_args[0][2] ) # Assert the email smtp address assert email_mock.call_args[0][0] == notification_targets[0] # Assert the email inline screenshot smtp_images = email_mock.call_args[1]["images"] assert smtp_images[list(smtp_images.keys())[0]] == screenshot # Assert logs are correct assert_log(ReportState.SUCCESS) @pytest.mark.usefixtures( "load_birth_names_dashboard_with_slices", "create_report_email_dashboard" ) @patch("superset.reports.notifications.email.send_email_smtp") @patch("superset.utils.screenshots.DashboardScreenshot.get_screenshot") def test_email_dashboard_report_schedule( screenshot_mock, email_mock, create_report_email_dashboard ): """ ExecuteReport Command: Test dashboard email report schedule """ # setup screenshot mock screenshot = read_fixture("sample.png") screenshot_mock.return_value = screenshot with freeze_time("2020-01-01T00:00:00Z"): AsyncExecuteReportScheduleCommand( test_id, create_report_email_dashboard.id, datetime.utcnow() ).run() notification_targets = get_target_from_report_schedule( create_report_email_dashboard ) # Assert the email smtp address assert email_mock.call_args[0][0] == notification_targets[0] # Assert the email inline screenshot smtp_images = email_mock.call_args[1]["images"] assert smtp_images[list(smtp_images.keys())[0]] == screenshot # Assert logs are correct assert_log(ReportState.SUCCESS) @pytest.mark.usefixtures( "load_birth_names_dashboard_with_slices", "create_report_slack_chart" ) @patch("superset.reports.notifications.slack.WebClient.files_upload") @patch("superset.utils.screenshots.ChartScreenshot.get_screenshot") def test_slack_chart_report_schedule( screenshot_mock, file_upload_mock, create_report_slack_chart ): """ ExecuteReport Command: Test chart slack report schedule """ # setup screenshot mock screenshot = read_fixture("sample.png") screenshot_mock.return_value = screenshot with freeze_time("2020-01-01T00:00:00Z"): AsyncExecuteReportScheduleCommand( test_id, create_report_slack_chart.id, datetime.utcnow() ).run() notification_targets = get_target_from_report_schedule( create_report_slack_chart ) assert file_upload_mock.call_args[1]["channels"] == notification_targets[0] assert file_upload_mock.call_args[1]["file"] == screenshot # Assert logs are correct assert_log(ReportState.SUCCESS) @pytest.mark.usefixtures("create_report_slack_chart") def test_report_schedule_not_found(create_report_slack_chart): """ ExecuteReport Command: Test report schedule not found """ max_id = db.session.query(func.max(ReportSchedule.id)).scalar() with pytest.raises(ReportScheduleNotFoundError): AsyncExecuteReportScheduleCommand(test_id, max_id + 1, datetime.utcnow()).run() @pytest.mark.usefixtures("create_report_slack_chart_working") def test_report_schedule_working(create_report_slack_chart_working): """ ExecuteReport Command: Test report schedule still working """ # setup screenshot mock with freeze_time("2020-01-01T00:00:00Z"): with pytest.raises(ReportSchedulePreviousWorkingError): AsyncExecuteReportScheduleCommand( test_id, create_report_slack_chart_working.id, datetime.utcnow() ).run() assert_log( ReportState.WORKING, error_message=ReportSchedulePreviousWorkingError.message, ) assert create_report_slack_chart_working.last_state == ReportState.WORKING @pytest.mark.usefixtures("create_report_slack_chart_working") def test_report_schedule_working_timeout(create_report_slack_chart_working): """ ExecuteReport Command: Test report schedule still working but should timed out """ current_time = create_report_slack_chart_working.last_eval_dttm + timedelta( seconds=create_report_slack_chart_working.working_timeout + 1 ) with freeze_time(current_time): with pytest.raises(ReportScheduleWorkingTimeoutError): AsyncExecuteReportScheduleCommand( test_id, create_report_slack_chart_working.id, datetime.utcnow() ).run() # Only needed for MySQL, understand why db.session.commit() logs = db.session.query(ReportExecutionLog).all() # Two logs, first is created by fixture assert len(logs) == 2 assert logs[1].error_message == ReportScheduleWorkingTimeoutError.message assert logs[1].state == ReportState.ERROR assert create_report_slack_chart_working.last_state == ReportState.ERROR @pytest.mark.usefixtures("create_alert_slack_chart_success") def test_report_schedule_success_grace(create_alert_slack_chart_success): """ ExecuteReport Command: Test report schedule on success to grace """ # set current time to within the grace period current_time = create_alert_slack_chart_success.last_eval_dttm + timedelta( seconds=create_alert_slack_chart_success.grace_period - 10 ) with freeze_time(current_time): AsyncExecuteReportScheduleCommand( test_id, create_alert_slack_chart_success.id, datetime.utcnow() ).run() db.session.commit() assert create_alert_slack_chart_success.last_state == ReportState.GRACE @pytest.mark.usefixtures("create_alert_slack_chart_grace") def test_report_schedule_success_grace_end(create_alert_slack_chart_grace): """ ExecuteReport Command: Test report schedule on grace to noop """ # set current time to within the grace period current_time = create_alert_slack_chart_grace.last_eval_dttm + timedelta( seconds=create_alert_slack_chart_grace.grace_period + 1 ) with freeze_time(current_time): AsyncExecuteReportScheduleCommand( test_id, create_alert_slack_chart_grace.id, datetime.utcnow() ).run() db.session.commit() assert create_alert_slack_chart_grace.last_state == ReportState.NOOP @pytest.mark.usefixtures("create_alert_email_chart") @patch("superset.reports.notifications.email.send_email_smtp") @patch("superset.utils.screenshots.ChartScreenshot.get_screenshot") def test_alert_limit_is_applied(screenshot_mock, email_mock, create_alert_email_chart): """ ExecuteReport Command: Test that all alerts apply a SQL limit to stmts """ with patch.object( create_alert_email_chart.database.db_engine_spec, "execute", return_value=None ) as execute_mock: with patch.object( create_alert_email_chart.database.db_engine_spec, "fetch_data", return_value=None, ) as fetch_data_mock: AsyncExecuteReportScheduleCommand( test_id, create_alert_email_chart.id, datetime.utcnow() ).run() assert "LIMIT 2" in execute_mock.call_args[0][1] @pytest.mark.usefixtures( "load_birth_names_dashboard_with_slices", "create_report_email_dashboard" ) @patch("superset.reports.notifications.email.send_email_smtp") @patch("superset.utils.screenshots.DashboardScreenshot.get_screenshot") def test_email_dashboard_report_fails( screenshot_mock, email_mock, create_report_email_dashboard ): """ ExecuteReport Command: Test dashboard email report schedule notification fails """ # setup screenshot mock from smtplib import SMTPException screenshot = read_fixture("sample.png") screenshot_mock.return_value = screenshot email_mock.side_effect = SMTPException("Could not connect to SMTP XPTO") with pytest.raises(ReportScheduleNotificationError): AsyncExecuteReportScheduleCommand( test_id, create_report_email_dashboard.id, datetime.utcnow() ).run() assert_log(ReportState.ERROR, error_message="Could not connect to SMTP XPTO") @pytest.mark.usefixtures( "load_birth_names_dashboard_with_slices", "create_alert_email_chart" ) @patch("superset.reports.notifications.email.send_email_smtp") @patch("superset.utils.screenshots.ChartScreenshot.get_screenshot") @patch.dict( "superset.extensions.feature_flag_manager._feature_flags", ALERTS_ATTACH_REPORTS=True, ) def test_slack_chart_alert(screenshot_mock, email_mock, create_alert_email_chart): """ ExecuteReport Command: Test chart slack alert """ # setup screenshot mock screenshot = read_fixture("sample.png") screenshot_mock.return_value = screenshot with freeze_time("2020-01-01T00:00:00Z"): AsyncExecuteReportScheduleCommand( test_id, create_alert_email_chart.id, datetime.utcnow() ).run() notification_targets = get_target_from_report_schedule(create_alert_email_chart) # Assert the email smtp address assert email_mock.call_args[0][0] == notification_targets[0] # Assert the email inline screenshot smtp_images = email_mock.call_args[1]["images"] assert smtp_images[list(smtp_images.keys())[0]] == screenshot # Assert logs are correct assert_log(ReportState.SUCCESS) @pytest.mark.usefixtures( "load_birth_names_dashboard_with_slices", "create_alert_email_chart" ) @patch("superset.reports.notifications.email.send_email_smtp") @patch.dict( "superset.extensions.feature_flag_manager._feature_flags", ALERTS_ATTACH_REPORTS=False, ) def test_slack_chart_alert_no_attachment(email_mock, create_alert_email_chart): """ ExecuteReport Command: Test chart slack alert """ # setup screenshot mock with freeze_time("2020-01-01T00:00:00Z"): AsyncExecuteReportScheduleCommand( test_id, create_alert_email_chart.id, datetime.utcnow() ).run() notification_targets = get_target_from_report_schedule(create_alert_email_chart) # Assert the email smtp address assert email_mock.call_args[0][0] == notification_targets[0] # Assert the there is no attached image assert email_mock.call_args[1]["images"] is None # Assert logs are correct assert_log(ReportState.SUCCESS) @pytest.mark.usefixtures( "load_birth_names_dashboard_with_slices", "create_report_slack_chart" ) @patch("superset.reports.notifications.slack.WebClient") @patch("superset.utils.screenshots.ChartScreenshot.get_screenshot") def test_slack_token_callable_chart_report( screenshot_mock, slack_client_mock_class, create_report_slack_chart ): """ ExecuteReport Command: Test chart slack alert (slack token callable) """ slack_client_mock_class.return_value = Mock() app.config["SLACK_API_TOKEN"] = Mock(return_value="cool_code") # setup screenshot mock screenshot = read_fixture("sample.png") screenshot_mock.return_value = screenshot with freeze_time("2020-01-01T00:00:00Z"): AsyncExecuteReportScheduleCommand( test_id, create_report_slack_chart.id, datetime.utcnow() ).run() app.config["SLACK_API_TOKEN"].assert_called_once() assert slack_client_mock_class.called_with(token="cool_code", proxy="") assert_log(ReportState.SUCCESS) @pytest.mark.usefixtures("create_no_alert_email_chart") def test_email_chart_no_alert(create_no_alert_email_chart): """ ExecuteReport Command: Test chart email no alert """ with freeze_time("2020-01-01T00:00:00Z"): AsyncExecuteReportScheduleCommand( test_id, create_no_alert_email_chart.id, datetime.utcnow() ).run() assert_log(ReportState.NOOP) @pytest.mark.usefixtures("create_mul_alert_email_chart") def test_email_mul_alert(create_mul_alert_email_chart): """ ExecuteReport Command: Test chart email multiple rows """ with freeze_time("2020-01-01T00:00:00Z"): with pytest.raises( (AlertQueryMultipleRowsError, AlertQueryMultipleColumnsError) ): AsyncExecuteReportScheduleCommand( test_id, create_mul_alert_email_chart.id, datetime.utcnow() ).run() @pytest.mark.usefixtures( "load_birth_names_dashboard_with_slices", "create_alert_email_chart" ) @patch("superset.reports.notifications.email.send_email_smtp") def test_soft_timeout_alert(email_mock, create_alert_email_chart): """ ExecuteReport Command: Test soft timeout on alert queries """ from celery.exceptions import SoftTimeLimitExceeded from superset.reports.commands.exceptions import AlertQueryTimeout with patch.object( create_alert_email_chart.database.db_engine_spec, "execute", return_value=None ) as execute_mock: execute_mock.side_effect = SoftTimeLimitExceeded() with pytest.raises(AlertQueryTimeout): AsyncExecuteReportScheduleCommand( test_id, create_alert_email_chart.id, datetime.utcnow() ).run() notification_targets = get_target_from_report_schedule(create_alert_email_chart) # Assert the email smtp address, asserts a notification was sent with the error assert email_mock.call_args[0][0] == notification_targets[0] assert_log( ReportState.ERROR, error_message="A timeout occurred while executing the query." ) @pytest.mark.usefixtures( "load_birth_names_dashboard_with_slices", "create_alert_email_chart" ) @patch("superset.reports.notifications.email.send_email_smtp") @patch("superset.utils.screenshots.ChartScreenshot.get_screenshot") @patch.dict( "superset.extensions.feature_flag_manager._feature_flags", ALERTS_ATTACH_REPORTS=True, ) def test_soft_timeout_screenshot(screenshot_mock, email_mock, create_alert_email_chart): """ ExecuteReport Command: Test soft timeout on screenshot """ from celery.exceptions import SoftTimeLimitExceeded from superset.reports.commands.exceptions import AlertQueryTimeout screenshot_mock.side_effect = SoftTimeLimitExceeded() with pytest.raises(ReportScheduleScreenshotTimeout): AsyncExecuteReportScheduleCommand( test_id, create_alert_email_chart.id, datetime.utcnow() ).run() notification_targets = get_target_from_report_schedule(create_alert_email_chart) # Assert the email smtp address, asserts a notification was sent with the error assert email_mock.call_args[0][0] == notification_targets[0] assert_log( ReportState.ERROR, error_message="A timeout occurred while taking a screenshot." ) @pytest.mark.usefixtures( "load_birth_names_dashboard_with_slices", "create_report_email_chart" ) @patch("superset.reports.notifications.email.send_email_smtp") @patch("superset.utils.screenshots.ChartScreenshot.get_screenshot") def test_fail_screenshot(screenshot_mock, email_mock, create_report_email_chart): """ ExecuteReport Command: Test soft timeout on screenshot """ from celery.exceptions import SoftTimeLimitExceeded from superset.reports.commands.exceptions import AlertQueryTimeout screenshot_mock.side_effect = Exception("Unexpected error") with pytest.raises(ReportScheduleScreenshotFailedError): AsyncExecuteReportScheduleCommand( test_id, create_report_email_chart.id, datetime.utcnow() ).run() notification_targets = get_target_from_report_schedule(create_report_email_chart) # Assert the email smtp address, asserts a notification was sent with the error assert email_mock.call_args[0][0] == notification_targets[0] assert_log( ReportState.ERROR, error_message="Failed taking a screenshot Unexpected error" ) @pytest.mark.usefixtures( "load_birth_names_dashboard_with_slices", "create_alert_email_chart" ) @patch("superset.reports.notifications.email.send_email_smtp") @patch.dict( "superset.extensions.feature_flag_manager._feature_flags", ALERTS_ATTACH_REPORTS=False, ) def test_email_disable_screenshot(email_mock, create_alert_email_chart): """ ExecuteReport Command: Test soft timeout on screenshot """ AsyncExecuteReportScheduleCommand( test_id, create_alert_email_chart.id, datetime.utcnow() ).run() notification_targets = get_target_from_report_schedule(create_alert_email_chart) # Assert the email smtp address, asserts a notification was sent with the error assert email_mock.call_args[0][0] == notification_targets[0] # Assert the there is no attached image assert email_mock.call_args[1]["images"] is None assert_log(ReportState.SUCCESS) @pytest.mark.usefixtures("create_invalid_sql_alert_email_chart") @patch("superset.reports.notifications.email.send_email_smtp") def test_invalid_sql_alert(email_mock, create_invalid_sql_alert_email_chart): """ ExecuteReport Command: Test alert with invalid SQL statements """ with freeze_time("2020-01-01T00:00:00Z"): with pytest.raises((AlertQueryError, AlertQueryInvalidTypeError)): AsyncExecuteReportScheduleCommand( test_id, create_invalid_sql_alert_email_chart.id, datetime.utcnow() ).run() notification_targets = get_target_from_report_schedule( create_invalid_sql_alert_email_chart ) # Assert the email smtp address, asserts a notification was sent with the error assert email_mock.call_args[0][0] == notification_targets[0] @pytest.mark.usefixtures("create_invalid_sql_alert_email_chart") @patch("superset.reports.notifications.email.send_email_smtp") def test_grace_period_error(email_mock, create_invalid_sql_alert_email_chart): """ ExecuteReport Command: Test alert grace period on error """ with freeze_time("2020-01-01T00:00:00Z"): with pytest.raises((AlertQueryError, AlertQueryInvalidTypeError)): AsyncExecuteReportScheduleCommand( test_id, create_invalid_sql_alert_email_chart.id, datetime.utcnow() ).run() # Only needed for MySQL, understand why db.session.commit() notification_targets = get_target_from_report_schedule( create_invalid_sql_alert_email_chart ) # Assert the email smtp address, asserts a notification was sent with the error assert email_mock.call_args[0][0] == notification_targets[0] assert ( get_notification_error_sent_count(create_invalid_sql_alert_email_chart) == 1 ) with freeze_time("2020-01-01T00:30:00Z"): with pytest.raises((AlertQueryError, AlertQueryInvalidTypeError)): AsyncExecuteReportScheduleCommand( test_id, create_invalid_sql_alert_email_chart.id, datetime.utcnow() ).run() db.session.commit() assert ( get_notification_error_sent_count(create_invalid_sql_alert_email_chart) == 1 ) # Grace period ends, assert a notification was sent with freeze_time("2020-01-01T01:30:00Z"): with pytest.raises((AlertQueryError, AlertQueryInvalidTypeError)): AsyncExecuteReportScheduleCommand( test_id, create_invalid_sql_alert_email_chart.id, datetime.utcnow() ).run() db.session.commit() assert ( get_notification_error_sent_count(create_invalid_sql_alert_email_chart) == 2 ) @pytest.mark.usefixtures("create_invalid_sql_alert_email_chart") @patch("superset.reports.notifications.email.send_email_smtp") @patch("superset.utils.screenshots.ChartScreenshot.get_screenshot") def test_grace_period_error_flap( screenshot_mock, email_mock, create_invalid_sql_alert_email_chart ): """ ExecuteReport Command: Test alert grace period on error """ with freeze_time("2020-01-01T00:00:00Z"): with pytest.raises((AlertQueryError, AlertQueryInvalidTypeError)): AsyncExecuteReportScheduleCommand( test_id, create_invalid_sql_alert_email_chart.id, datetime.utcnow() ).run() db.session.commit() # Assert we have 1 notification sent on the log assert ( get_notification_error_sent_count(create_invalid_sql_alert_email_chart) == 1 ) with freeze_time("2020-01-01T00:30:00Z"): with pytest.raises((AlertQueryError, AlertQueryInvalidTypeError)): AsyncExecuteReportScheduleCommand( test_id, create_invalid_sql_alert_email_chart.id, datetime.utcnow() ).run() db.session.commit() assert ( get_notification_error_sent_count(create_invalid_sql_alert_email_chart) == 1 ) # Change report_schedule to valid create_invalid_sql_alert_email_chart.sql = "SELECT 1 AS metric" create_invalid_sql_alert_email_chart.grace_period = 0 db.session.merge(create_invalid_sql_alert_email_chart) db.session.commit() with freeze_time("2020-01-01T00:31:00Z"): # One success AsyncExecuteReportScheduleCommand( test_id, create_invalid_sql_alert_email_chart.id, datetime.utcnow() ).run() # Grace period ends AsyncExecuteReportScheduleCommand( test_id, create_invalid_sql_alert_email_chart.id, datetime.utcnow() ).run() db.session.commit() create_invalid_sql_alert_email_chart.sql = "SELECT 'first'" create_invalid_sql_alert_email_chart.grace_period = 10 db.session.merge(create_invalid_sql_alert_email_chart) db.session.commit() # assert that after a success, when back to error we send the error notification # again with freeze_time("2020-01-01T00:32:00Z"): with pytest.raises((AlertQueryError, AlertQueryInvalidTypeError)): AsyncExecuteReportScheduleCommand( test_id, create_invalid_sql_alert_email_chart.id, datetime.utcnow() ).run() db.session.commit() assert ( get_notification_error_sent_count(create_invalid_sql_alert_email_chart) == 2 )
py
7dfb70dae57890958dda608951963a015e9d06d9
""" No: 8 Date: 11-11-2020 Problem: Two Sum Given an array of integers, return whether or not two numbers sum to a given target, k. Note: you may not sum a number with itself. TestCases: [1, 3, 8, 2], k = 10, return true (8 + 2) [3, 9, 13, 7], k = 8, return false [4, 2, 6, 5, 2], k = 4, return true (2 + 2) Time Complexity: O(n) - length of array Space Complexity: O(n) - length of array """ def TwoSum(arr, k) -> bool: dict = {} for num in arr: if (num) not in dict: dict[k - num] = num else: return True return False tests = [ [[1, 3, 8, 2], 10, True], [[3, 9, 13, 7], 8, False], [[4, 2, 6, 5, 2], 4, True], ] for test in tests: assert TwoSum(test[0], test[1]) == test[2]
py
7dfb70f6ab21a60f777ea47a7c8173b3e958a597
from datetime import datetime from flask import (Flask, redirect, render_template, request, make_response, jsonify, url_for) from flask.ext.sqlalchemy import SQLAlchemy from temperature_client import TemperatureClient ### # Configuration ### # Temperature server (see pi/temp-server/server.py) TEMP_SERVER_HOST = '127.0.0.1' TEMP_SERVER_PORT = 8888 app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///roasts.db' db = SQLAlchemy(app) temperature_client = TemperatureClient(TEMP_SERVER_HOST, TEMP_SERVER_PORT) ### # Models ### class Roast(db.Model): id = db.Column(db.Integer, primary_key=True) beans = db.Column(db.String(100)) weight = db.Column(db.Integer) roaster = db.Column(db.String(50)) duration = db.Column(db.Numeric(5, 2)) start_at = db.Column(db.DateTime(True)) end_at = db.Column(db.DateTime(True)) first_crack = db.Column(db.DateTime(True)) second_crack = db.Column(db.DateTime(True)) synced = db.Column(db.Boolean) def __init__(self, beans, weight, roaster, duration): self.beans = beans self.weight = weight self.roaster = roaster self.duration = duration self.start_at = datetime.utcnow() self.synced = False class TemperatureReading(db.Model): id = db.Column(db.Integer, primary_key=True) farenheight = db.Column(db.Numeric(6, 2)) log_date = db.Column(db.DateTime(True)) roast_id = db.Column(db.Integer, db.ForeignKey('roast.id')) roast = db.relationship('Roast', backref=db.backref('temperature_readings', lazy='dynamic')) def __init__(self, roast_id, farenheight): self.roast_id = roast_id self.farenheight = farenheight @app.route('/') def new_roast(): """Prompt for beans, roaster's name, and weight""" return render_template('new_roast.html') @app.route('/', methods=['POST']) def create_roast(): form = request.form roast = Roast(form.get('beans'), form.get('weight'), form.get('roaster'), form.get('duration')) # Add the Roast to the database db.session.add(roast) db.session.commit() # Redirect to the current roast return redirect(url_for('.current_roast')) @app.route('/current') def current_roast(): roast = Roast.query.filter(Roast.end_at == None).first() if roast == None: return redirect(url_for('.new_roast')) return render_template('current.html', roast=roast) @app.route('/current-temperature') def current_temperature(): reading = temperature_client.get() return make_response(jsonify(reading)) if __name__ == '__main__': app.run(host='0.0.0.0', port=8080, debug=True)
py
7dfb714a705e0c03e58a931e35e2d7474b1aa686
import evdev devices = [evdev.InputDevice(fn) for fn in evdev.list_devices()] for device in devices: print(device.fn, device.name, device.phys) print(device.capabilities(verbose=True)) print('')
py
7dfb71d4b41fe6aa8af403dc91605e601423ce89
# Python script for PythonHelper unit test # Print Hello World + input arguments import sys if __name__ == '__main__': result = "Hello World!" parameters = sys.argv[1:] for p in parameters : result = result + " " + p print(result)
py
7dfb73193450467bd3e85da32205b5c780ecb3e2
print ''' ###################################################################################################### # ________ ________ __ __ _______ ______ ________ ________ ______ __ __ # #| \| \| \ | \| \ / \ | \| \ / \ | \ / \ # # \$$$$$$$$| $$$$$$$$| $$\ | $$| $$$$$$$\| $$$$$$\ \$$$$$$$$| $$$$$$$$| $$$$$$\| $$\ / $$ # # | $$ | $$__ | $$$\| $$| $$ | $$| $$___\$$ | $$ | $$__ | $$__| $$| $$$\ / $$$ # # | $$ | $$ \ | $$$$\ $$| $$ | $$ \$$ \ | $$ | $$ \ | $$ $$| $$$$\ $$$$ # # | $$ | $$$$$ | $$\$$ $$| $$ | $$ _\$$$$$$\ | $$ | $$$$$ | $$$$$$$$| $$\$$ $$ $$ # # | $$ | $$_____ | $$ \$$$$| $$__/ $$| \__| $$ | $$ | $$_____ | $$ | $$| $$ \$$$| $$ # # | $$ | $$ \| $$ \$$$| $$ $$ \$$ $$ | $$ | $$ \| $$ | $$| $$ \$ | $$ # # \$$ \$$$$$$$$ \$$ \$$ \$$$$$$$ \$$$$$$ \$$ \$$$$$$$$ \$$ \$$ \$$ \$$ # # # # Coded by : Ismael Al-safadi * photo forensic * # ###################################################################################################### ''' import sys choice = raw_input("Select your choice \npress [1] to extract metadata. \npress [2] to delete metadata.\n[-]write (exit) to leave.\n>> ") if choice =="1": from PIL import Image from PIL.ExifTags import TAGS path=raw_input("enter the path of image:") dict_dict = {} try: i = Image.open(path) info = i._getexif() for tag, value in (info.items()): decoded = TAGS.get(tag, tag) dict_dict[decoded] = value type_of_phone= dict_dict['Make'] flash=dict_dict['Flash'] GPSInfo=dict_dict['GPSInfo'] DateTimeOriginal=dict_dict['DateTimeOriginal'] Software=dict_dict['Software'] Model=dict_dict['Model'] print "[+]The type of camera or Phone :"+type_of_phone if flash!=0: print "[+]Flash is open" else: print "[+]Flash is not open" print"[+]GPSInfo:"+str(GPSInfo) print "[+]DateTimeOriginal:"+DateTimeOriginal print "[+]Software:"+Software print "[+]Model:"+Model except: print "\n [-] Ops!! sorry we cant find anything !" elif choice =="2": import piexif path=raw_input("enter the path of image:") data = piexif.load(path) piexif.remove(path) empty = piexif.load(path) print "\n [+] Done ^__^ " elif choice == "exit": sys.exit() else : print " Wrong choice \n "
py
7dfb732eac233c7a428c06ff516eae92d768f3e6
# encoding: utf-8 from django.core.cache import cache from django.http import HttpResponseRedirect, Http404 from django.shortcuts import render_to_response from django.template import RequestContext from django.utils.translation import ugettext as _ from django.conf import settings from django.contrib import messages from seahub.avatar.forms import PrimaryAvatarForm, DeleteAvatarForm, UploadAvatarForm,\ GroupAvatarForm from seahub.avatar.models import Avatar, GroupAvatar from seahub.avatar.settings import AVATAR_MAX_AVATARS_PER_USER, AVATAR_DEFAULT_SIZE from seahub.avatar.signals import avatar_updated from seahub.avatar.util import get_primary_avatar, get_default_avatar_url, \ invalidate_cache, invalidate_group_cache from seahub.utils import render_error, render_permission_error, \ check_and_get_org_by_group from seahub.auth.decorators import login_required from seaserv import ccnet_threaded_rpc, check_group_staff def _get_next(request): """ The part that's the least straightforward about views in this module is how they determine their redirects after they have finished computation. In short, they will try and determine the next place to go in the following order: 1. If there is a variable named ``next`` in the *POST* parameters, the view will redirect to that variable's value. 2. If there is a variable named ``next`` in the *GET* parameters, the view will redirect to that variable's value. 3. If Django can determine the previous page from the HTTP headers, the view will redirect to that previous page. """ next = request.POST.get('next', request.GET.get('next', request.META.get('HTTP_REFERER', None))) if not next: next = request.path return next def _get_avatars(user): # Default set. Needs to be sliced, but that's it. Keep the natural order. avatars = Avatar.objects.filter(emailuser=user.email) # Current avatar primary_avatar = avatars.order_by('-primary')[:1] if primary_avatar: avatar = primary_avatar[0] else: avatar = None if AVATAR_MAX_AVATARS_PER_USER == 1: avatars = primary_avatar else: # Slice the default set now that we used the queryset for the primary avatar avatars = avatars[:AVATAR_MAX_AVATARS_PER_USER] return (avatar, avatars) @login_required def add(request, extra_context=None, next_override=None, upload_form=UploadAvatarForm, *args, **kwargs): if extra_context is None: extra_context = {} avatar, avatars = _get_avatars(request.user) upload_avatar_form = upload_form(request.POST or None, request.FILES or None, user=request.user) if request.method == "POST" and 'avatar' in request.FILES: if upload_avatar_form.is_valid(): avatar = Avatar( emailuser = request.user.username, primary = True, ) image_file = request.FILES['avatar'] avatar.avatar.save(image_file.name, image_file) avatar.save() messages.success(request, _("Successfully uploaded a new avatar.")) avatar_updated.send(sender=Avatar, user=request.user, avatar=avatar) return HttpResponseRedirect(next_override or _get_next(request)) else: messages.error(request, upload_avatar_form.errors['avatar']) return HttpResponseRedirect(_get_next(request)) else: # Only allow post request to change avatar. raise Http404 # return render_to_response( # 'avatar/add.html', # extra_context, # context_instance = RequestContext( # request, # { 'avatar': avatar, # 'avatars': avatars, # 'upload_avatar_form': upload_avatar_form, # 'next': next_override or _get_next(request), } # ) # ) @login_required def group_add(request, gid): group_id_int = int(gid) # Checked by URL Conf if not check_group_staff(group_id_int, request.user.username): raise Http404 group = ccnet_threaded_rpc.get_group(group_id_int) if not group: return HttpResponseRedirect(reverse('group_list', args=[])) # change navigator when user in diffent context org, base_template = check_and_get_org_by_group(group_id_int, request.user.username) form = GroupAvatarForm(request.POST or None, request.FILES or None) if request.method == 'POST' and 'avatar' in request.FILES: if form.is_valid(): image_file = request.FILES['avatar'] avatar = GroupAvatar() avatar.group_id = gid avatar.avatar.save(image_file.name, image_file) avatar.save() # invalidate group avatar cache invalidate_group_cache(gid) messages.success(request, _("Successfully uploaded a new group avatar.")) else: messages.error(request, form.errors['avatar']) return HttpResponseRedirect(_get_next(request)) else: # Only allow post request to change group avatar. raise Http404 # return render_to_response('avatar/set_avatar.html', { # 'group' : group, # 'form' : form, # 'org': org, # 'base_template': base_template, # }, context_instance=RequestContext(request)) @login_required def change(request, extra_context=None, next_override=None, upload_form=UploadAvatarForm, primary_form=PrimaryAvatarForm, *args, **kwargs): if extra_context is None: extra_context = {} avatar, avatars = _get_avatars(request.user) if avatar: kwargs = {'initial': {'choice': avatar.id}} else: kwargs = {} upload_avatar_form = upload_form(user=request.user, **kwargs) primary_avatar_form = primary_form(request.POST or None, user=request.user, avatars=avatars, **kwargs) if request.method == "POST": updated = False if 'choice' in request.POST and primary_avatar_form.is_valid(): avatar = Avatar.objects.get(id= primary_avatar_form.cleaned_data['choice']) avatar.primary = True avatar.save() updated = True messages.success(request, _("Successfully updated your avatar.")) if updated: avatar_updated.send(sender=Avatar, user=request.user, avatar=avatar) return HttpResponseRedirect(next_override or _get_next(request)) return render_to_response( 'avatar/change.html', extra_context, context_instance = RequestContext( request, { 'avatar': avatar, 'avatars': avatars, 'upload_avatar_form': upload_avatar_form, 'primary_avatar_form': primary_avatar_form, 'next': next_override or _get_next(request), } ) ) @login_required def delete(request, extra_context=None, next_override=None, *args, **kwargs): if extra_context is None: extra_context = {} avatar, avatars = _get_avatars(request.user) delete_avatar_form = DeleteAvatarForm(request.POST or None, user=request.user, avatars=avatars) if request.method == 'POST': if delete_avatar_form.is_valid(): ids = delete_avatar_form.cleaned_data['choices'] if unicode(avatar.id) in ids and avatars.count() > len(ids): # Find the next best avatar, and set it as the new primary for a in avatars: if unicode(a.id) not in ids: a.primary = True a.save() avatar_updated.send(sender=Avatar, user=request.user, avatar=avatar) break # NOTE: `Avatar.objects.filter(id__in=ids).delete()` will NOT work # correctly. Sinct delete() on QuerySet will not call delete # method on avatar object. for a in Avatar.objects.filter(id__in=ids): a.delete() messages.success(request, _("Successfully deleted the requested avatars.")) return HttpResponseRedirect(next_override or _get_next(request)) return render_to_response( 'avatar/confirm_delete.html', extra_context, context_instance = RequestContext( request, { 'avatar': avatar, 'avatars': avatars, 'delete_avatar_form': delete_avatar_form, 'next': next_override or _get_next(request), } ) ) def render_primary(request, extra_context={}, user=None, size=AVATAR_DEFAULT_SIZE, *args, **kwargs): size = int(size) avatar = get_primary_avatar(user, size=size) if avatar: # FIXME: later, add an option to render the resized avatar dynamically # instead of redirecting to an already created static file. This could # be useful in certain situations, particulary if there is a CDN and # we want to minimize the storage usage on our static server, letting # the CDN store those files instead return HttpResponseRedirect(avatar.avatar_url(size)) else: url = get_default_avatar_url() return HttpResponseRedirect(url)
py
7dfb73fc0ee1179665ae8627593030d05622f1ab
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Useful utilities for tests.""" import functools import os import time import uuid from testtools import testcase TZ = None def timezone(func): @functools.wraps(func) def wrapper(*args, **kwargs): tz_original = os.environ.get('TZ') try: if TZ: os.environ['TZ'] = TZ time.tzset() return func(*args, **kwargs) finally: if TZ: if tz_original: os.environ['TZ'] = tz_original else: if 'TZ' in os.environ: del os.environ['TZ'] time.tzset() return wrapper def new_uuid(): """Return a string UUID.""" return uuid.uuid4().hex def wip(message, expected_exception=Exception, bug=None): """Mark a test as work in progress. Based on code by Nat Pryce: https://gist.github.com/npryce/997195#file-wip-py The test will always be run. If the test fails then a TestSkipped exception is raised. If the test passes an AssertionError exception is raised so that the developer knows they made the test pass. This is a reminder to remove the decorator. :param message: a string message to help clarify why the test is marked as a work in progress :param expected_exception: an exception class that will be checked for when @wip verifies an exception is raised. The test will fail if a different exception is raised. Default is "any" exception is valid :param bug: (optional) a string for tracking the bug and what bug should cause the @wip decorator to be removed from the testcase Usage: >>> @wip('Expected Error', expected_exception=Exception, bug="#000000") >>> def test(): >>> pass """ if bug: bugstr = " (BugID " + bug + ")" else: bugstr = "" def _wip(f): @functools.wraps(f) def run_test(*args, **kwargs): __e = None try: f(*args, **kwargs) except Exception as __e: # noqa F841 if (expected_exception != Exception and not isinstance(__e, expected_exception)): raise AssertionError( 'Work In Progress Test Failed%(bugstr)s with ' 'unexpected exception. Expected "%(expected)s" ' 'got "%(exception)s": %(message)s ' % {'message': message, 'bugstr': bugstr, 'expected': expected_exception.__class__.__name__, 'exception': __e.__class__.__name__}) # NOTE(notmorgan): We got the expected exception we can safely # skip this test. raise testcase.TestSkipped( 'Work In Progress Test Failed as ' 'expected%(bugstr)s: %(message)s' % {'message': message, 'bugstr': bugstr}) raise AssertionError('Work In Progress Test Passed%(bugstr)s: ' '%(message)s' % {'message': message, 'bugstr': bugstr}) return run_test return _wip
py
7dfb748a88fcaf11df8f7b79ce9cc5ffc02b81e4
import boto3 from botocore.exceptions import ClientError import logging import config import os import csv def upload_file(local_file, object_name=None): """Upload a file to the S3 bucket for this project :param local_file: Path to local file to upload :param object_name: Name under which to store the file in the bucket :return: True if file is uploaded, else False """ if (object_name == None): object_name = local_file try: s3 = boto3.client('s3', aws_access_key_id=config.ACCESS_KEY, aws_secret_access_key=config.SECRET_KEY) s3.upload_file( local_file, config.BUCKET, object_name ) except ClientError as e: logging.error(e) return False return True def download_file(object_name, location = None): """Download a file from the S3 bucket for this project :param object_name: Name under which the file is stored in the bucket :param location: Local path to which the file is downloaded :return: True if file is downloaded, else False """ if (object_name == None): object_name = local_file try: s3 = boto3.client('s3', aws_access_key_id=config.ACCESS_KEY, aws_secret_access_key=config.SECRET_KEY) if (location == None): location = "./" + object_name s3.download_file( config.BUCKET, object_name, location ) except ClientError as e: logging.error(e) return False return True # upload data uploaded_cancers = [] for cancer in os.listdir("./data"): if (cancer == ".DS_Store"): continue try: upload_file(f"./data/{cancer}/data.csv", f"{cancer}_data.csv") upload_file(f"./data/{cancer}/clinical_data.csv", f"{cancer}_clinical_data.csv") uploaded_cancers.append(cancer) print(cancer) except FileNotFoundError as e: print(e) continue # save a .csv with cancer names with open("./uploaded_cancers", 'w', newline='') as out_file: wr = csv.writer(out_file, quoting=csv.QUOTE_ALL) wr.writerow(uploaded_cancers) # upload_file("./data.csv", "data.csv") # upload_file("./clinical_data.csv", "clinical_data.csv")
py
7dfb75a7b10833d07a7df7feca72bb0a199dea25
#python exception let you deal with unexpected results #unexpected results try: print(a) #this will throw an exception except: print("a is not defined!") #there are specific errors in python try: print(a) #this will throw a NameError except NameError: print("a is still not defined!") except: print("Something else went wrong!") #this will break our system #since a is not defined print(a)
py
7dfb7669e1be40ccbdc80d5b2f59db87dac57f38
#! /usr/bin/env python import os import sys from lib.common import list_file_paths import pickle import random to_skip_pickle = "evade_both_to_skip.pickle" if os.path.isfile(to_skip_pickle): to_skip = pickle.load(open(to_skip_pickle)) else: to_skip = ['1ec657f52bf1811af14d7da549cb6add70c778f0', 'b01be494ac00843796cb200caf91e7ab2e997c34', 'b4f13bf5f4174fd7a7c2a52b21309da8da0b33ce', 'f2a9170030b999834018203f468ea9bcf8e444c0', 'f3efb335a617ecb76e1e7519bc7c2c3df8fa47f6'] def main(argv): # robustmlp classifier_name = sys.argv[1] ext_genome_folder = sys.argv[2] ext_genome_tag = ext_genome_folder.split('/')[-1] pop = sys.argv[3] gen = sys.argv[4] mutation_rate = sys.argv[5] round_id = int(sys.argv[6]) token = sys.argv[7] start = int(sys.argv[8]) if not os.path.isdir(ext_genome_folder): print "Error: invalid ext genome folder." sys.exit(1) seed_paths = pickle.load(open('shuffled_seed_paths_most_benign.pickle', 'rb')) for seed_path in seed_paths[start:]: start_hash = seed_path.split('/')[-1].split('.')[0] if start_hash in to_skip: print "Skipped ", start_hash continue cmd = "./gp_1_replace_mix.py -c %s -s %s -e %s -p %s -g %s -m %s -x 0 -f 0 -t %s --round %d" \ % (classifier_name, seed_path, ext_genome_folder, pop, gen, mutation_rate, token, round_id) try: print cmd os.system(cmd) except KeyboardInterrupt, error: break if __name__ == '__main__': main(sys.argv)
py
7dfb769eb03d5be318cb102a630728947e956816
import numpy as np from sklearn.preprocessing import FunctionTransformer from sklearn.pipeline import Pipeline from sklearn.pipeline import FeatureUnion from sklearn.preprocessing import StandardScaler from ..models.profile import Profile from ..interfaces.helper import Helper from ..interfaces.glove import GloVe from .noGloveValueError import NoGloveValueError class Features: """ Contains all pipeline functions for both LIWC and glove. """ def __init__( self, ): return def featureLIWC( self, profileCol, ): """ Extract LIWC features (namely LIWC categories) from each profile in list as feature. Parameters ---------- profileCol : list, default=None, required List with profiles to generate features for. Returns ------- np.array(outputList) : numpy.array Generated features in numpy format. """ # will contain the LIWC measures for each profile outputList = [] # loop over profileCollection for profile in profileCol: # create row liwc_data = [] # get names of liwc categories for attrName in Profile.liwc_category_list: # get value of current category attr = getattr(profile, attrName) # append to current profile # and convert to float liwc_data.append(np.float(attr)) outputList.append(liwc_data) # create numpy array, as scikit needs this format return np.array(outputList) def createLIWCFeaturePipeline( self, ): """ Create pipeline that can be passed into multiple training procceses this is just a blueprint for calculating the features no features are calculated yet! Returns ------- featurePipeline : Pipeline Pipeline containing feature generation and scaling. """ # Create skicit-learn compatible FunctionTransformers # for usage with other sklearn functions # featureLIWC is the name of the function to be called to # extract features liwc_Trans = FunctionTransformer(self.featureLIWC, validate=False) # Combine feature(s) with FeatureUnion featureTransformer = FeatureUnion([ ('liwc', liwc_Trans), ], n_jobs=-1) # parallelize via multiprocess # combine into a pipeline including scaling featurePipeline = Pipeline([ ('features', featureTransformer), ("stdScaler", StandardScaler()) ]) return featurePipeline def _condenseGloVeVectors( self, vectorList, ): """ For each user a vectorList is passed in with different length. This will be condensed into a single 900 dim vector. """ # convert to np array for mean,max,min functions vectorList = np.array(vectorList) # correct structure from (1,x,300) to (x,300) vectorList = vectorList[0] # for each dimension identify mean,max,min # and save in separate vector meanVector = vectorList.mean(axis=0) maxVector = np.amax(a=vectorList, axis=0) minVector = np.amin(a=vectorList, axis=0) # combine all 300 dim vectors in 900 dim vector returnVector = [] returnVector.extend(meanVector) returnVector.extend(maxVector) returnVector.extend(minVector) # convert to numpy array for scikit returnVector = np.array(returnVector) return returnVector def featureGloVe( self, profileList, ): """ For each profile in profile list generate GloVe features. Each profile contains text and for this text the glove vectors are retrieved and condensed into one single vector for this user. All user vectors are appended into the outputList. The word coverageStatistics and wordCounts for each user are saved in this feature object instance to be retrieved later. Parameters ---------- profileList : list, default=None, required List containing relevant profiles for which to extract features. Returns ------- np.array(outputList) : numpy.array Features in correct output format. """ if self.glove is None: raise Exception("GloVe not loaded.") # will contain the GloVe measures for each profile outputList = [] # get index as list, for faster lookup index_as_list = self.glove.get_index_list() # initialize progress bar helper = Helper() numProfiles = len(profileList) helper.printProgressBar( 0, numProfiles, prefix='Progress:', suffix='Complete', length=50 ) # list for saving coverage statistics coverageStatistics = [] # word count, that are included, for profiles wordCounts = [] # loop over profileList for num, profile in enumerate(profileList): # tokenize text in tweets # separated by space tokens = profile.text.split(' ') profile_vectors = [] # for each word lookup glove vector # if no match -> ignore it # first identify set of words not in glove not_in_glove = set(np.setdiff1d(tokens, index_as_list)) # get words in glove, indcluding duplicates # so if words exist n times in text, they will be n times in list in_glove = [word for word in tokens if word not in not_in_glove] if len(in_glove) == 0: # es konnte kein wort in glove gefunden werden # raise Exception eString = ( "Could not find any glove values for given words" ) raise NoGloveValueError(eString) else: # mind. ein Wort wurde gefunden # lookup glove vectors # should return duplicates! glove_values = self.glove.getGloVeByWordList( wordList=in_glove ) converted_vals = np.array(glove_values) # add vectors to list of this profile's vectors profile_vectors.append(converted_vals) # fill coverage statistics as share of tokens (=words) # that exist in glove in comparison to total tokens profile_coverage = len(converted_vals) / len(tokens) # add to global list coverageStatistics.append(profile_coverage) wordCounts.append(len(tokens)) # after all vectors for this profile are retrieved # condense with maximum, minimum, average in 900 dim vector final_vector = self._condenseGloVeVectors(profile_vectors) # add 900 dim to output list outputList.append(final_vector) # Update Progress Bar helper.printProgressBar( num + 1, numProfiles, prefix='Progress:', suffix='Complete', length=50 ) # save coverage statistics in class attribute to be accessible self.coverageStatistics = coverageStatistics self.wordCounts = wordCounts # create numpy array, as scikit needs this format return np.array(outputList) def createGloVeFeaturePipeline( self, glovePath='data/glove/glove.db', dataBaseMode=True, ): """ Create pipeline that can be passed into multiple training procceses this is just a blueprint for calculating the features no features are calculated yet! No parallelization (n_jobs=1) due to GloVe lookup in database. Parameters ---------- glovePath : string, default='data/glove/glove.db' Path to GloVe flat or database file. dataBaseMode : boolean, default=True If True path points to SQLite database file. Returns ------- featurePipeline : Pipeline Pipeline containing feature generation. """ glove = GloVe( filePath=glovePath, dataBaseMode=dataBaseMode, ) self.glove = glove # Create skicit-learn compatible FunctionTransformers # for usage with other sklearn functions # featureGloVe is the name of the function to be called to # extract features glove_Trans = FunctionTransformer(self.featureGloVe, validate=False) # Combine feature(s) with FeatureUnion featureTransformer = FeatureUnion([ ('glove', glove_Trans), ], n_jobs=1) # no parallelization # combine into a pipeline, no scaling since GloVe is scaled featurePipeline = Pipeline([ ('features', featureTransformer) ]) return featurePipeline
py
7dfb76a54ad9097f3f3adae24d57398fb76edeac
# -*- coding: utf-8 -*- # flake8: noqa """ MIT License Copyright (c) 2019-2021 Terbau Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ __version__ = '3.5.0' from .client import Client, run_multiple, start_multiple, close_multiple from .auth import (Auth, EmailAndPasswordAuth, ExchangeCodeAuth, AuthorizationCodeAuth, DeviceAuth, RefreshTokenAuth, AdvancedAuth) from .friend import Friend, IncomingPendingFriend, OutgoingPendingFriend from .message import FriendMessage, PartyMessage from .party import (DefaultPartyConfig, DefaultPartyMemberConfig, PartyMember, ClientPartyMember, JustChattingClientPartyMember, Party, ClientParty, ReceivedPartyInvitation, SentPartyInvitation, PartyJoinConfirmation) from .presence import Presence, PresenceGameplayStats, PresenceParty from .user import (ClientUser, User, BlockedUser, ExternalAuth, UserSearchEntry, SacSearchEntryUser) from .stats import StatsV2, StatsCollection from .enums import * from .errors import * from .store import Store, FeaturedStoreItem, DailyStoreItem from .news import BattleRoyaleNewsPost from .playlist import Playlist from .kairos import Avatar from .http import HTTPRetryConfig, Route
py
7dfb76bee43bf1fd88795197397df974948c7f80
# -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2017-11-19 04:25 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('info', '0003_auto_20171119_0721'), ] operations = [ migrations.RenameModel( old_name='Photo_three', new_name='Photos_three', ), ]
py
7dfb7782d8a03bf5ab4900c520b0462452303e5a
from picamera import PiCamera from time import sleep, time import sys import argparse import cv2 VALID_MODES = ["photo", "video"] def video(camera, filename="/home/pi/Desktop/video.h264", duration=10): camera.start_recording(filename) sleep(duration) camera.stop_recording() return filename def photo(camera, filename="/home/pi/Desktop/photo.jpg"): camera.capture(filename) return filename def acquire(mode="video"): cam_settings = dict(resolution=(1024, 768), framerate=15) prev_settings = dict(alpha=200, fullscreen=False, window=(0, 0, 1024, 768)) camera_function = dict(video=video, photo=photo) file_ext = dict(video="h264", photo="jpg") filename = f"/home/pi/Desktop/{mode}-{time()}.{file_ext[mode]}" with PiCamera(**cam_settings) as camera: camera.rotation = 90 with camera.start_preview(**prev_settings) as preview: sleep(2) output = camera_function[mode](camera, filename=filename) return output def cli_args(): ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required=True, help="path to input image") ap.add_argument("-p", "--prototxt", required=True, help="path to Caffe 'deploy' prototxt file") ap.add_argument("-m", "--model", required=True, help="path to Caffe pre-trained model") ap.add_argument("-l", "--labels", required=True, help="path to ImageNet labels (i.e., syn-sets)") args = vars(ap.parse_args()) return args def main(): mode = "photo" # args = cli_args() output = acquire(mode) print(f"Saved output to: {output}") if __name__ == "__main__": main()
py
7dfb7a02d7a4c70e9188ae7ec7e9206e819ee2c5
# -*- coding: utf-8 -*- import logging from typing import List from aiohttp.web import Request from mtpylon.middlewares import MiddleWareFunc from mtpylon.message_sender import MessageSender from mtpylon.income_message import IncomeMessage logger = logging.getLogger(__name__) async def handle_unknown_message( middlewares: List[MiddleWareFunc], sender: MessageSender, request: Request, message: IncomeMessage, ): """ Logs that we don't know how to handle this message """ logger.warning(f'Unknown message: {message}')
py
7dfb7aeee0a6215762e518792d484ded225b3a4c
from itertools import chain import json from django.conf import settings from django.core.serializers.json import DjangoJSONEncoder from django.utils.safestring import SafeString from django.utils.module_loading import import_string from django.http import HttpResponse, Http404, HttpResponseBadRequest from django.views.generic import View, TemplateView from django.shortcuts import redirect from census.views import GeographyDetailView as BaseGeographyDetailView, LocateView as BaseLocateView, render_json_to_response from wazimap.geo import geo_data from wazimap.profiles import enhance_api_data from wazimap.data.tables import get_datatable, DATA_TABLES from wazimap.data.utils import LocationNotFound from wazimap.data.download import DownloadManager def render_json_error(message, status_code=400): """ Utility method for rendering a view's data to JSON response. """ result = json.dumps({'error': message}, indent=4) response = HttpResponse(result, content_type='application/javascript') response.status_code = status_code return response class HomepageView(TemplateView): template_name = 'homepage.html' def get_context_data(self, *args, **kwargs): return { 'root_geo': geo_data.root_geography(), } class GeographyDetailView(BaseGeographyDetailView): adjust_slugs = True default_geo_version = None def dispatch(self, *args, **kwargs): request = args[0] version = request.GET.get('geo_version', self.default_geo_version) self.geo_id = self.kwargs.get('geography_id', None) try: self.geo_level, self.geo_code = self.geo_id.split('-', 1) self.geo = geo_data.get_geography(self.geo_code, self.geo_level, version) except (ValueError, LocationNotFound): raise Http404 # check slug if self.adjust_slugs and (kwargs.get('slug') or self.geo.slug): if kwargs['slug'] != self.geo.slug: kwargs['slug'] = self.geo.slug url = '/profiles/%s-%s-%s' % (self.geo_level, self.geo_code, self.geo.slug) return redirect(url, permanent=True) # Skip the parent class's logic completely and go back to basics return TemplateView.dispatch(self, *args, **kwargs) def get_context_data(self, *args, **kwargs): page_context = {} # load the profile profile_method = settings.WAZIMAP.get('profile_builder', None) self.profile_name = settings.WAZIMAP.get('default_profile', 'default') if not profile_method: raise ValueError("You must define WAZIMAP.profile_builder in settings.py") profile_method = import_string(profile_method) profile_data = profile_method(self.geo, self.profile_name, self.request) profile_data['geography'] = self.geo.as_dict_deep() profile_data = enhance_api_data(profile_data) page_context.update(profile_data) profile_data_json = SafeString(json.dumps(profile_data, cls=DjangoJSONEncoder)) page_context.update({ 'profile_data_json': profile_data_json }) # is this a head-to-head view? page_context['head2head'] = 'h2h' in self.request.GET return page_context def get_geography(self, geo_id): # stub this out to prevent the subclass for calling out to CR pass def get_template_names(self): return ['profile/profile_detail_%s.html' % self.profile_name, 'profile/profile_detail.html'] class GeographyJsonView(GeographyDetailView): """ Return geo profile data as json. """ adjust_slugs = False default_geo_version = settings.WAZIMAP.get('legacy_embed_geo_version') def dispatch(self, *args, **kwargs): return super(GeographyJsonView, self).dispatch(*args, **kwargs) def get(self, request, *args, **kwargs): context = self.get_context_data(**kwargs) return HttpResponse(context['profile_data_json'], content_type='application/javascript') class PlaceSearchJson(View): def get(self, request, *args, **kwargs): geo_levels = request.GET.get('geolevels', None) geo_version = request.GET.get('geo_version', None) if geo_levels: geo_levels = [lev.strip() for lev in geo_levels.split(',')] geo_levels = [lev for lev in geo_levels if lev] if 'q' in request.GET: search_term = request.GET['q'] places = geo_data.get_locations(search_term, geo_levels, geo_version) return render_json_to_response( {'results': [p.as_dict() for p in places]} ) elif 'coords' in request.GET and ',' in request.GET['coords']: lat, lon = self.request.GET['coords'].split(',', 1) try: lat = float(lat) lon = float(lon) except ValueError as e: return HttpResponseBadRequest('bad parameter: %s' % e.message) places = geo_data.get_locations_from_coords(latitude=lat, longitude=lon, levels=geo_levels, version=geo_version) return render_json_to_response({'results': [p.as_dict() for p in places]}) else: return HttpResponseBadRequest('"q" or "coords" parameter is required') class LocateView(BaseLocateView): def get_context_data(self, *args, **kwargs): page_context = {} lat = self.request.GET.get('lat', None) lon = self.request.GET.get('lon', None) if lat and lon: version = self.request.GET.get('geo_version', None) places = geo_data.get_locations_from_coords(latitude=lat, longitude=lon, version=version) page_context.update({ 'location': { 'lat': lat, 'lon': lon }, 'places': places }) return page_context class DataAPIView(View): """ View that provides an API for census table information, mimicking that of the Censusreporter API described at https://github.com/censusreporter/census-api#get-10datashowacs An example call: http://api.censusreporter.org/1.0/data/show/latest?table_ids=B17001&geo_ids=04000US36%2C01000US """ def get(self, request, *args, **kwargs): try: self.geo_ids = request.GET.get('geo_ids', '').split(',') geo_version = request.GET.get('geo_version', None) self.data_geos, self.info_geos = self.get_geos(self.geo_ids, geo_version) except LocationNotFound as e: return render_json_error(e.message, 404) try: self.table_ids = request.GET.get('table_ids', '').split(',') self.tables = [get_datatable(t) for t in self.table_ids] except KeyError as e: return render_json_error('Unknown table: %s' % e.message, 404) if kwargs.get('action') == 'show': return self.show(request) if kwargs.get('action') == 'download': return self.download(request) def show(self, request): dataset = ', '.join(sorted(list(set(t.dataset_name for t in self.tables)))) years = ', '.join(sorted(list(set(t.year for t in self.tables)))) data = self.get_data(self.data_geos, self.tables) return render_json_to_response({ 'release': { 'name': dataset, 'years': years, }, 'tables': dict((t.id.upper(), t.as_dict()) for t in self.tables), 'data': data, 'geography': dict((g.geoid, g.as_dict()) for g in chain(self.data_geos, self.info_geos)), }) def download(self, request): mgr = DownloadManager() fmt = request.GET.get('format', 'csv') if fmt not in mgr.DOWNLOAD_FORMATS: response = HttpResponse('Unspported format %s. Supported formats: %s' % (fmt, ', '.join(mgr.DOWNLOAD_FORMATS.keys()))) response.status_code = 400 return response data = self.get_data(self.data_geos, self.tables) content, fname, mime_type = mgr.generate_download_bundle(self.tables, self.data_geos, self.geo_ids, data, fmt) response = HttpResponse(content, content_type=mime_type) response['Content-Disposition'] = 'attachment; filename="%s"' % fname return response def get_geos(self, geo_ids, geo_version): """ Return a tuple (data_geos, info_geos) of geo objects, where data_geos or geos we should get data for, and info_geos are geos that we only need to return geo info/metadata for. """ data_geos = [] info_geos = [] for geo_id in geo_ids: # either country-KE or level|country-KE, which indicates # we must break country-KE into +levels+ if '-' not in geo_id: raise LocationNotFound('Invalid geo id: %s' % geo_id) level, code = geo_id.split('-', 1) if '|' in level: # break geo down further split_level, level = level.split('|', 1) geo = geo_data.get_geography(code, level, geo_version) info_geos.append(geo) try: data_geos.extend(geo.split_into(split_level)) except ValueError: raise LocationNotFound('Invalid geo level: %s' % split_level) else: # normal geo data_geos.append(geo_data.get_geography(code, level, geo_version)) return data_geos, info_geos def get_data(self, geos, tables): data = {} for table in tables: for geo_id, table_data in table.raw_data_for_geos(geos).iteritems(): data.setdefault(geo_id, {})[table.id.upper()] = table_data return data class TableAPIView(View): """ View that lists data tables. """ def get(self, request, *args, **kwargs): return render_json_to_response([t.as_dict(columns=False) for t in DATA_TABLES.itervalues()]) class AboutView(TemplateView): template_name = 'about.html' class HelpView(TemplateView): template_name = 'help.html' class GeographyCompareView(TemplateView): template_name = 'profile/head2head.html' def get_context_data(self, geo_id1, geo_id2): page_context = { 'geo_id1': geo_id1, 'geo_id2': geo_id2, } try: level, code = geo_id1.split('-', 1) page_context['geo1'] = geo_data.get_geography(code, level) level, code = geo_id2.split('-', 1) page_context['geo2'] = geo_data.get_geography(code, level) except (ValueError, LocationNotFound): raise Http404 return page_context class GeoAPIView(View): """ View that lists things about geos. Currently just parents. """ def get(self, request, geo_id, *args, **kwargs): try: level, code = geo_id.split('-', 1) geo = geo_data.get_geography(code, level) except (ValueError, LocationNotFound): raise Http404 parents = [g.as_dict() for g in geo.ancestors()] return render_json_to_response(parents) class TableDetailView(TemplateView): template_name = 'table/table_detail.html' def dispatch(self, *args, **kwargs): try: self.table = get_datatable(kwargs['table']) except KeyError: raise Http404 return super(TableDetailView, self).dispatch(*args, **kwargs) def get_context_data(self, *args, **kwargs): return { 'table': self.table, }
py
7dfb7b260ab4efd6a789835dbc96edc3dc5aeea5
#!/usr/bin/env python # -*- coding: utf-8 -*- # # A Solution to "Special Pythagorean triplet" – Project Euler Problem No. 9 # by Florian Buetow # # Sourcecode: https://github.com/fbcom/project-euler # Problem statement: https://projecteuler.net/problem=9 # def isPythagoreanTriple(a, b, c): if a < b < c: return a**2 + b**2 == c**2 return False def findTipleHavingSum(sum): # small problem size -> brute force it for a in range(1, sum): for b in range(a, sum - a + 1): for c in range(b, sum - b + 1): if a+b+c == sum: if isPythagoreanTriple(a, b, c): return (a, b, c) sum = 1000 triple = findTipleHavingSum(sum) print "Triple:", triple print "Solution:", reduce(lambda product, factor: product * factor, triple)
py
7dfb7c58f9847aaed8067d31c7336c49d992ff58
#!/usr/bin/env python3 # # Copyright (C) 2020-2021 by # David Turner, Robert Wilhelm, and Werner Lemberg. # # This file is part of the FreeType project, and may only be used, modified, # and distributed under the terms of the FreeType project license, # LICENSE.TXT. By continuing to use, modify, or distribute this file you # indicate that you have read the license and understand and accept it # fully. """Toggle settings in `ftoption.h` file based on command-line arguments. This script takes an `ftoption.h` file as input and rewrites `#define`/`#undef` lines in it based on `--enable=CONFIG_VARNAME` or `--disable=CONFIG_VARNAME` arguments passed to it, where `CONFIG_VARNAME` is configuration variable name, such as `FT_CONFIG_OPTION_USE_LZW`, that may appear in the file. Note that if one of `CONFIG_VARNAME` is not found in the input file, this script exits with an error message listing the missing variable names. """ import argparse import os import re import sys def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( "input", metavar="FTOPTION_H", help="Path to input ftoption.h file." ) parser.add_argument("--output", help="Output to file instead of stdout.") parser.add_argument( "--enable", action="append", default=[], help="Enable a given build option (e.g. FT_CONFIG_OPTION_USE_LZW).", ) parser.add_argument( "--disable", action="append", default=[], help="Disable a given build option.", ) args = parser.parse_args() common_options = set(args.enable) & set(args.disable) if common_options: parser.error( "Options cannot be both enabled and disabled: %s" % sorted(common_options) ) return 1 with open(args.input) as f: input_file = f.read() options_seen = set() new_lines = [] for line in input_file.splitlines(): # Expected formats: # #define <CONFIG_VAR> # /* #define <CONFIG_VAR> */ # #undef <CONFIG_VAR> line = line.rstrip() if line.startswith("/* #define ") and line.endswith(" */"): option_name = line[11:-3].strip() option_enabled = False elif line.startswith("#define "): option_name = line[8:].strip() option_enabled = True elif line.startswith("#undef "): option_name = line[7:].strip() option_enabled = False else: new_lines.append(line) continue options_seen.add(option_name) if option_enabled and option_name in args.disable: line = "#undef " + option_name elif not option_enabled and option_name in args.enable: line = "#define " + option_name new_lines.append(line) result = "\n".join(new_lines) + "\n" # Sanity check that all command-line options were actually processed. cmdline_options = set(args.enable) | set(args.disable) assert cmdline_options.issubset( options_seen ), "Could not find options in input file: " + ", ".join( sorted(cmdline_options - options_seen) ) if args.output: with open(args.output, "w") as f: f.write(result) else: print(result) return 0 if __name__ == "__main__": sys.exit(main())
py
7dfb7d0f84b348eedf92941e4eb8b624f5545cdf
from __future__ import print_function import sys sys.path.append(".") from collections import Counter from itertools import chain import torch from utils.math_utils import js_divergence, kl_divergence from utils.tensor_ops import get_tensor from metrics.base_metric import BaseEvaluator # sys.path.append(".") class CorpusDistribution(object): @staticmethod def get_unigram_distribution(examples, vocab): """ :param examples: list of sentence :param vocab: :return: """ unigram_count = [0] * len(vocab) word_freq = Counter(chain(*examples)) for word in word_freq: unigram_count[vocab[word]] = word_freq['word'] count = get_tensor(unigram_count) count += (1.0 / torch.sum(count)) * (count.eq(0.0).float()) # count += 1e-6 return count / torch.sum(count) class UnigramKLEvaluator(BaseEvaluator): def _check_format(self, **kwargs): pass def __init__(self, ): super(UnigramKLEvaluator, self).__init__(name="Unigram KL") def get_evaluate(self, corpus_source, pred_source, vocab, dtype='js'): """ :param corpus_source: list of sentence :param pred_source: list of sentence :param vocab: VocabularyEntry :param dtype: "js" or "kl" :return: """ ref_dis = CorpusDistribution.get_unigram_distribution(examples=corpus_source, vocab=vocab) pre_dis = CorpusDistribution.get_unigram_distribution(examples=pred_source, vocab=vocab) func = js_divergence if dtype == 'js' else kl_divergence return func(ref_dis, pre_dis) if __name__ == "__main__": train_path = "/home/user_data/baoy/projects/seq2seq_parser/data/snli-sample/train.bin" dev_path = "/home/user_data/baoy/projects/seq2seq_parser/data/snli-sample/dev.bin" test_path = "/home/user_data/baoy/projects/seq2seq_parser/data/snli-sample/test.bin" vocab_file = "/home/user_data/baoy/projects/seq2seq_parser/data/snli-sample/origin_vocab.bin" plain_file = "./gen.text" with open(plain_file, 'r') as f: sample = [line.split(" ") for line in f.readlines()] from struct_self.dataset import Dataset from struct_self.vocab import Vocab vocab = Vocab.from_bin_file(vocab_file) train_exam = Dataset.from_bin_file(train_path).examples train = [e.src for e in train_exam] dev_exam = Dataset.from_bin_file(dev_path).examples dev = [e.src for e in dev_exam] test_exam = Dataset.from_bin_file(test_path).examples test = [e.src for e in test_exam] t = UnigramKLEvaluator() # print("train with dev:", t.get_evaluate(train, dev, vocab.src)) # print("train with test:", t.get_evaluate(train, test, vocab.src)) # print("dev with test", t.get_evaluate(dev, test, vocab.src)) # print("test with dev", t.get_evaluate(test, dev, vocab.src)) print("train with sample", t.get_evaluate(test, sample, vocab.src))
py
7dfb8188c7f41bc49bfd02846f14dcc93b945599
import hashlib import json import logging from dataclasses import asdict, dataclass import requests from .config import Przelewy24Config logger = logging.getLogger(__name__) @dataclass class Transaction: amount: int sessionId: str currency: str description: str email: str country: str language: str @dataclass class TransactionDTO: merchantId: int posId: int sessionId: str amount: int currency: str description: str email: str country: str language: str urlReturn: str urlStatus: str sign: str # cart: List[ItemDTO] @classmethod def create_from( cls, transaction: Transaction, config: Przelewy24Config, sign: str, success_url: str, status_url: str, ): return cls( merchantId=config.merchant_id, posId=config.merchant_id, sessionId=transaction.sessionId, amount=transaction.amount, currency=transaction.currency, description=transaction.description, email=transaction.email, country=transaction.country, language=transaction.language, urlReturn=success_url, urlStatus=status_url, sign=sign, ) @dataclass class VerifyDTO: merchantId: int posId: int sessionId: str amount: int currency: str orderId: int sign: str @classmethod def create_from( cls, *, orderId: int, transaction: Transaction, config: Przelewy24Config, sign: str, ): return cls( merchantId=config.merchant_id, posId=config.merchant_id, sessionId=transaction.sessionId, amount=transaction.amount, currency=transaction.currency, orderId=orderId, # TODO sign=sign, ) class Przelewy24API: def __init__(self, config: Przelewy24Config, session=None): self._http = session or requests.session() self._config = config super().__init__() def _do(self, method: str, endpoint: str, data=None): response = self._http.request( method=method, url=endpoint, json=data, auth=(str(self._config.pos_id), str(self._config.api_key)), ) logger.debug( "%s %s: status_code=%s content=%s", method, endpoint, response.status_code, response.content.decode("utf-8"), ) if response.status_code != 200: raise RuntimeError( f"Przelewy24 returns {response.status_code} instead of 200: {response.content}" ) return response.json() def _create_sha386_sign(self, **kwargs) -> str: return hashlib.sha384( json.dumps(kwargs).replace(" ", "").encode("utf-8") ).hexdigest() def testConnection(self) -> bool: response = self._do("GET", self._config.endpoints.testConnection) return response["data"] def register( self, *, transaction: Transaction, success_url: str, status_url: str ) -> str: sign = self._config.generate_sign( sessionId=transaction.sessionId, merchantId=self._config.merchant_id, amount=transaction.amount, currency=transaction.currency, ) transaction = TransactionDTO.create_from( transaction, self._config, sign, success_url, status_url ) payload = asdict(transaction) response = self._do("POST", self._config.endpoints.transactionRegister, payload) token = response["data"]["token"] return f"{self._config.endpoints.transactionRequest}/{token}" def verify(self, *, transaction: Transaction, orderId: int) -> bool: sign = self._config.generate_sign( sessionId=transaction.sessionId, orderId=orderId, amount=transaction.amount, currency=transaction.currency, ) verify = VerifyDTO.create_from( orderId=orderId, transaction=transaction, config=self._config, sign=sign ) payload = asdict(verify) response = self._do("PUT", self._config.endpoints.transactionVerify, payload) return response["data"]["status"] == "success"
py
7dfb81931cd8d8fb6d47755ce0abb96a25a6b34e
from .default import Config class ProductionConfig(Config): """ Configurations for Production. """ DEBUG = False TESTING = False
py
7dfb81b5c91c7167ab02477bbe9a891577536fc8
#!/usr/bin/env python import os import sys from setuptools import setup try: from setuptools import find_namespace_packages except ImportError: # the user has a downlevel version of setuptools. print('Error: dbt requires setuptools v40.1.0 or higher.') print('Please upgrade setuptools with "pip install --upgrade setuptools" ' 'and try again') sys.exit(1) PSYCOPG2_MESSAGE = ''' No package name override was set. Using 'psycopg2-binary' package to satisfy 'psycopg2' If you experience segmentation faults, silent crashes, or installation errors, consider retrying with the 'DBT_PSYCOPG2_NAME' environment variable set to 'psycopg2'. It may require a compiler toolchain and development libraries! '''.strip() def _dbt_psycopg2_name(): # if the user chose something, use that package_name = os.getenv('DBT_PSYCOPG2_NAME', '') if package_name: return package_name # default to psycopg2-binary for all OSes/versions print(PSYCOPG2_MESSAGE) return 'psycopg2-binary' package_name = "dbt-postgres" package_version = "0.17.0rc1" description = """The postgres adpter plugin for dbt (data build tool)""" this_directory = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(this_directory, 'README.md')) as f: long_description = f.read() DBT_PSYCOPG2_NAME = _dbt_psycopg2_name() setup( name=package_name, version=package_version, description=description, long_description=description, long_description_content_type='text/markdown', author="Fishtown Analytics", author_email="[email protected]", url="https://github.com/fishtown-analytics/dbt", packages=find_namespace_packages(include=['dbt', 'dbt.*']), package_data={ 'dbt': [ 'include/postgres/dbt_project.yml', 'include/postgres/macros/*.sql', 'include/postgres/macros/**/*.sql', ] }, install_requires=[ 'dbt-core=={}'.format(package_version), '{}~=2.8'.format(DBT_PSYCOPG2_NAME), ], zip_safe=False, classifiers=[ 'Development Status :: 5 - Production/Stable', 'License :: OSI Approved :: Apache Software License', 'Operating System :: Microsoft :: Windows', 'Operating System :: MacOS :: MacOS X', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], python_requires=">=3.6.2", )
py
7dfb81e71d7f48b3703c2557c6e8b8b715ec3c22
from django.contrib import admin from profiles.models import Profile, Subscription, Notification @admin.register(Profile) class ProfileAdmin(admin.ModelAdmin): list_display = ("user", "email", "feature_subscriptions") list_editable = ("feature_subscriptions",) search_fields = ("user__email",) def email(self, p): return p.user.email @admin.register(Subscription) class SubscriptionAdmin(admin.ModelAdmin): list_display = ("__str__", "user", "subscription_type", "active") list_filter = ("active",) autocomplete_fields = ("sponsor", "bill") @admin.register(Notification) class NotificationAdmin(admin.ModelAdmin): list_display = ("id", "email", "sent", "num_bill_updates", "num_query_updates") search_fields = ("email",) ordering = ("sent",) date_hierarchy = "sent" def has_add_permission(self, request): return False def has_delete_permission(self, request, obj=None): return False
py
7dfb820cdee2eb6e961388cea5f176f91f575dbf
import pandas as pd from tqdm import tqdm from ..util import log from sklearn.preprocessing import OrdinalEncoder def auto_encoder(df, df_feature_type, id): df_copy = df.copy() label_encoder_list = [] ordinal_encoder_list = [] for f in tqdm(df_feature_type.keys()): if df_feature_type[f] == 'cat': label_encoder_list.append(f) temp = pd.DataFrame(df_copy[f].astype(str)) temp.index = range(len(temp)) temp[f] = temp[[f]].apply(lambda x: x.astype('category').cat.codes) if id is not None: if f in id: df_copy[f + '_encoder'] = temp[f].values else: df_copy[f] = temp[f].values if df_feature_type[f] == 'ord': ordinal_encoder_list.append(f) ord_encoder = OrdinalEncoder() df_copy[f] = ord_encoder.fit_transform(pd.DataFrame(df_copy[f])) log(f"label_encoder_list: {label_encoder_list}") log(f"ordinal_encoder_list: {ordinal_encoder_list}") return df_copy
py
7dfb826d8f3bfff1722c79bac6d24da5138ae0d5
# -*- coding: utf-8 -*- # # Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Genomics resource filter expression rewrite backend.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import re from googlecloudsdk.core.resource import resource_expr_rewrite from googlecloudsdk.core.util import times import six def _RewriteTimeTerm(key, op, operand): """Rewrites <createTime op operand>.""" if op not in ['<', '<=', '=', ':', '>=', '>']: return None try: dt = times.ParseDateTime(operand) except ValueError as e: raise ValueError( '{operand}: date-time value expected for {key}: {error}' .format(operand=operand, key=key, error=str(e))) if op == ':': op = '=' return '{key} {op} "{dt}"'.format( key=key, op=op, dt=times.FormatDateTime(dt, tzinfo=times.UTC)) class OperationsBackend(resource_expr_rewrite.Backend): """Limit filter expressions to those supported by the Genomics backend.""" _FORMAT = '{key} {op} {operand}' _QUOTED_FORMAT = '{key} {op} "{operand}"' _TERMS = { r'^done$': _FORMAT, r'^error.code$': _FORMAT, r'^metadata.labels\.(.*)': _QUOTED_FORMAT, r'^metadata.events$': _QUOTED_FORMAT, } _CREATE_TIME_TERMS = [ r'^metadata.create_time$', r'^metadata.createTime$', ] def RewriteTerm(self, key, op, operand, key_type): """Limit <key op operand> terms to expressions supported by the backend.""" for regex in self._CREATE_TIME_TERMS: if re.match(regex, key): return _RewriteTimeTerm(key, op, operand) for regex, fmt in six.iteritems(self._TERMS): if re.match(regex, key): return fmt.format(key=key, op=op, operand=operand) return None
py
7dfb8272c2d964f14c2f9407c337a8fede9bf073
""" Bloom filter Python example =========================== This is a toy implementation of a Bloom filter for educational purposes. """ import functools import hashlib import math class BloomFilter: """Bloom filter implementation.""" def __init__(self, m, k): self._m = m self._k = k self._bits = [False] * m self._hash_fns = [functools.partial(self._Hash, i) for i in range(k)] def _Hash(self, seed, x): """This method with different seed values make up the k hash functions.""" h = hashlib.md5() h.update(b'%d' % seed) h.update(b'%d' % x) return int.from_bytes(h.digest(), signed=False, byteorder='big') % self._m def Add(self, x): """Add an element to the set.""" for f in self._hash_fns: self._bits[f(x)] = True def Has(self, x): """Query the set for an element, may return false positives.""" for f in self._hash_fns: if not self._bits[f(x)]: return False return True if __name__ == '__main__': bf = BloomFilter(m=200, k=3) for x in range(20): bf.Add(x) for x in range(21, 100): if bf.Has(x): print('False positive:', x)
py
7dfb82a5648a61dface400307da2446c50cc41bb
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for yapf.format_token.""" import unittest from lib2to3 import pytree from lib2to3.pgen2 import token from yapf.yapflib import format_token class TabbedContinuationAlignPaddingTest(unittest.TestCase): def testSpace(self): align_style = 'SPACE' pad = format_token._TabbedContinuationAlignPadding(0, align_style, 2, 4) self.assertEqual(pad, '') pad = format_token._TabbedContinuationAlignPadding(2, align_style, 2, 4) self.assertEqual(pad, ' ' * 2) pad = format_token._TabbedContinuationAlignPadding(5, align_style, 2, 4) self.assertEqual(pad, ' ' * 5) def testFixed(self): align_style = 'FIXED' pad = format_token._TabbedContinuationAlignPadding(0, align_style, 4, 8) self.assertEqual(pad, '') pad = format_token._TabbedContinuationAlignPadding(2, align_style, 4, 8) self.assertEqual(pad, '\t' * 2) pad = format_token._TabbedContinuationAlignPadding(5, align_style, 4, 8) self.assertEqual(pad, '\t' * 2) def testVAlignRight(self): align_style = 'VALIGN-RIGHT' pad = format_token._TabbedContinuationAlignPadding(0, align_style, 4, 8) self.assertEqual(pad, '') pad = format_token._TabbedContinuationAlignPadding(2, align_style, 4, 8) self.assertEqual(pad, '\t') pad = format_token._TabbedContinuationAlignPadding(4, align_style, 4, 8) self.assertEqual(pad, '\t') pad = format_token._TabbedContinuationAlignPadding(5, align_style, 4, 8) self.assertEqual(pad, '\t' * 2) class FormatTokenTest(unittest.TestCase): def testSimple(self): tok = format_token.FormatToken(pytree.Leaf(token.STRING, "'hello world'")) self.assertEqual("FormatToken(name=STRING, value='hello world')", str(tok)) self.assertTrue(tok.is_string) tok = format_token.FormatToken(pytree.Leaf(token.COMMENT, '# A comment')) self.assertEqual('FormatToken(name=COMMENT, value=# A comment)', str(tok)) self.assertTrue(tok.is_comment) def testIsMultilineString(self): tok = format_token.FormatToken(pytree.Leaf(token.STRING, '"""hello"""')) self.assertTrue(tok.is_multiline_string) tok = format_token.FormatToken(pytree.Leaf(token.STRING, 'r"""hello"""')) self.assertTrue(tok.is_multiline_string) if __name__ == '__main__': unittest.main()
py
7dfb82d6bbdd6639c774c01a9f4cf027b9729929
""" Argo Server API You can get examples of requests and responses by using the CLI with `--gloglevel=9`, e.g. `argo list --gloglevel=9` # noqa: E501 The version of the OpenAPI document: VERSION Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from argo_workflows.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) from ..model_utils import OpenApiModel from argo_workflows.exceptions import ApiAttributeError def lazy_import(): from argo_workflows.model.service_port import ServicePort globals()['ServicePort'] = ServicePort class IoArgoprojEventsV1alpha1Service(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'cluster_ip': (str,), # noqa: E501 'ports': ([ServicePort],), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'cluster_ip': 'clusterIP', # noqa: E501 'ports': 'ports', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, *args, **kwargs): # noqa: E501 """IoArgoprojEventsV1alpha1Service - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) cluster_ip (str): [optional] # noqa: E501 ports ([ServicePort]): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """IoArgoprojEventsV1alpha1Service - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) cluster_ip (str): [optional] # noqa: E501 ports ([ServicePort]): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
py
7dfb835e41a8a6b5077e9e23781d707b7dd11cee
import random import numpy as np from itertools import product import multiprocessing as mp import os import cv2 import pybullet as pb from pybullet_utils import bullet_client import pybullet_data from time import time import argparse parser = argparse.ArgumentParser() parser.add_argument('--dir_out', default='test/', type=str, help="Where experiments should be saved") parser.add_argument('--seed', default=1, type=int, help="Random seed") parser.add_argument('--n_balls', default=3, type=int, help="# of balls in the scene") parser.add_argument('--n_examples', default=10, type=int, help="# of experiments to generate") args = parser.parse_args() COLORS = ['red', 'green', 'blue', 'yellow'][:args.n_balls] W, H = 112, 112 # Image shape RANGE_POS = 3 RANGE_SPEED = 3 EPSILON = 100 # Threshold for constraints def check_bayes(alt_ab, alt_cd, ab, cd): """ Check the identifiability contraint :param alt_ab: list of alternative trajectories from AB :param alt_cd: list of alternative trajectories from CD :param ab: AB candidate :param cd: CD candidate :return: True if experiment is identifiable """ for i in range(len(alt_ab)): if alt_ab[i] == ab: if alt_cd[i] != cd: return False return True def check_counterfactual(alt_cd, cd, mass_permutation): """ Check the counterfactuality constraint :param alt_cd: list of alternative trajectories from CD :param cd: CD candidate :param mass_permutation: List of every mass permutation :return: List of counterfactual objects. Experiment is cf if len()>0 """ counterfactual_cubes = [] for k in range(cd.n_balls): alter_cf = cd.confounders.copy() alter_cf[k] = 1 if alter_cf[k] == 10 else 10 alt_trajectory = alt_cd[mass_permutation.index(alter_cf)] if alt_trajectory != cd: counterfactual_cubes.append(k) return counterfactual_cubes class Generator: def __init__(self, dir_out, seed, n_balls, nb_examples): """ Class that oversees the experiment generation :param dir_out: Where experiments should be saved :param seed: Random seed :param n_balls: # of balls in the scene :param nb_examples: # of experiments to generate """ self.dir_out = dir_out self.seed = seed random.seed(seed) np.random.seed(seed) self.mass_permutation = [list(combo) for combo in product([1, 10], repeat=args.n_balls)] self.logs_cf = {str(d): 0 for d in self.mass_permutation} # Usefull to ensure balance in the dataset self.n_balls = n_balls # LOGS variables self.list_time = [] self.nb_examples = nb_examples self.total_trial_counter = 0 self.ab_trial_counter = 0 self.cd_trial_counter = 0 def generate(self): """Generate the experiments""" nb_ex = 0 # Choose colors, masses configuration and if we apply a remove do-operation do_remove_op, index_cf, colors = self.get_configuration_example() t = time() while nb_ex < self.nb_examples: # Step 1 : find a valid AB self.total_trial_counter += 1 ab = self.find_valid_AB(self.mass_permutation[index_cf]) ab = self.simulate_one(ab, colors) # Step 2 : find a valid CD do_op, cf_cubes, cd = self.find_valid_CD(ab, do_remove_op, colors, index_cf) if cd is not None: # If a valid CD has been found self.list_time.append(time() - t) self.logs_cf[str(self.mass_permutation[index_cf])] += 1 # Update the logs for dataset balance nb_ex += 1 ab, cd = self.simulate_final(ab, cd, colors) # Simulate AB and CD with rendering self.save(ab, cd, colors, do_op, cf_cubes, nb_ex) # Save the experiment t = time() # Choose new configuration do_remove_op, index_cf, colors = self.get_configuration_example() def get_configuration_example(self): """Sample a do-operation, colors and masses. Try to ensure balance in the masses distribution""" do_remove_op = random.random() < 0.3 # 30% of chance of being a remove operation # Search for the masses with the less representation in previous experiments cf = min(self.mass_permutation, key=lambda x: self.logs_cf[str(x)]) index_cf = self.mass_permutation.index(cf) # Randomly sample colors colors = random.sample(COLORS, args.n_balls) return do_remove_op, index_cf, colors def find_valid_AB(self, masse): """No constraint on A, simply return a random candidate""" self.ab_trial_counter += 1 candidate = Arena(self.n_balls, masse) return candidate def find_valid_CD(self, ab, do_remove_op, colors, index_cf, ): """ Search for a valid CD trajectory. :param ab: AB candidate :param do_remove_op: Bool, True if the do-op should be a remove op :param colors: Colors list :param index_cf: index of the masse configuration in self.mass_configuration :return: the do-operation parameters, list of counterfactual objects, CD candidate """ found_cd = False n_trials = 0 while found_cd is False and n_trials < 10: # Try 10 different do-op, else quit self.cd_trial_counter += 1 if do_remove_op: n_trials = 10 cd = ab.remove_ball() # Remove a (random) ball do_op = {"operation": "remove", "amplitude": 0, "cube": -1} else: do_op, cd = ab.generate_random_do_operation() # Generate a random do-op if cd != []: # do-op sampling may failed, in this case, try again if do_op['operation'] is not None: # Simulate all alternative traj. from CD alt_cd = self.simulate_all(cd, colors) cd.trajectory = alt_cd[index_cf].trajectory.copy() # Check counterfactuality constraint counterfactual_cubes = check_counterfactual(alt_cd, cd, self.mass_permutation) if len(counterfactual_cubes) > 0: # Simulate all alternative traj. from AB alt_ab = self.simulate_all(ab, colors) if check_bayes(alt_ab, alt_cd, ab, cd): # Check identifiability constraint found_cd = True n_trials += 1 if found_cd: return do_op, counterfactual_cubes, cd else: return None, None, None def simulate_all(self, tower, colors): """ Simulate every outcomes with every mass configuration for a given initial condition :param tower: initial condition :param colors: list of object colors :return: list of outcomes for each mass configuration """ towers = [tower.clone(m) for m in self.mass_permutation] childPipes, parentPipes = [], [] processes = [] # Simulation are multiprocess, to go faster for pr in range(len(towers)): # Create pipes to get the simulation parentPipe, childPipe = mp.Pipe() parentPipes.append(parentPipe) childPipes.append(childPipe) for rank in range(len(towers)): # Run the processes simulator = Simulator(25, 6, 0, W, H) # Simulate at 25 FPS, for 6 second, no substeps. p = mp.Process(target=simulator.run, args=(childPipes[rank], towers[rank], 0, colors, False)) p.start() processes.append(p) for rank, p in enumerate(processes): # Get the simulation state, _, _, _ = parentPipes[rank].recv() towers[rank].trajectory = state p.join() return towers def simulate_one(self, arena, colors): """ Simulate a single trajectory without rendering :param arena: initial condition :param colors: list of colors :return: outcome """ parentPipe, childPipe = mp.Pipe() simulator = Simulator(25, 6, 0, W, H) p = mp.Process(target=simulator.run, args=(childPipe, arena, 0, colors, False)) p.start() state, _, _, _ = parentPipe.recv() arena.trajectory = state p.join() return arena def simulate_final(self, ab, cd, colors): """ Simulate with rendering :param ab: AB candidate :param cd: CD candidate :param colors: colors list :return: simulated trajectories """ childPipes, parentPipes = [], [] for pr in range(2): # Create pipes to get the simulation parentPipe, childPipe = mp.Pipe() parentPipes.append(parentPipe) childPipes.append(childPipe) simulator = Simulator(25, 6, 0, W, H) plane_id = random.randint(0, 3) p_ab = mp.Process(target=simulator.run, args=(childPipes[0], ab, plane_id, colors, True)) p_cd = mp.Process(target=simulator.run, args=(childPipes[1], cd, plane_id, colors, True)) p_ab.start() p_cd.start() # Get results for AB and CD ab.trajectory, ab.rgb, ab.depth, ab.seg = parentPipes[0].recv() cd.trajectory, cd.rgb, cd.depth, cd.seg = parentPipes[1].recv() p_ab.join() p_cd.join() return ab, cd def save(self, ab, cd, colors, do_op, cf_cubes, n): """ Save the experiment :param ab: AB candidate :param cd: CD candidate :param colors: colors list :param do_op: do-operation parameters :param cf_cubes: list of counterfactual cubes :param n: index of this experiments :return: """ assert ab.confounders == cd.confounders assert len(cf_cubes) > 0 # Create the paths out_dir = self.dir_out + str(self.seed) + "_" + str(n) + "/" os.makedirs(out_dir, exist_ok=True) os.makedirs(out_dir + 'ab', exist_ok=True) os.makedirs(out_dir + 'cd', exist_ok=True) # Add a column of zero if the do-operation is a remove operation cd.fill_trajectory(ab.n_balls) # Save ground truth trajectory as numpy array + save confounders np.save(out_dir + "ab/states.npy", ab.trajectory) np.save(out_dir + "cd/states.npy", cd.trajectory) np.save(out_dir + "confounders.npy", ab.confounders) # Write do-op parameter in a file with open(out_dir + "do_op.txt", 'w') as f: if do_op["operation"] == "remove": f.write(f"Remove the {colors[-1]} cube") else: f.write( f"Move the {colors[do_op['cube']]} cube of {do_op['amplitude']} in the {do_op['operation']} direction") # Write colors in a file with open(out_dir + "COLORS.txt", 'w') as f: f.write(str(colors)) # Write list of cf cubes in a file with open(out_dir + "cd/counterfactual_balls.txt", 'w') as f: f.write("Cubes that strongly depend on their masses\n") f.write('\n'.join([f"idx:{i}, colors={colors[i]}" for i in cf_cubes])) # SAVE RGB writer = cv2.VideoWriter(out_dir + 'ab/rgb.mp4', cv2.VideoWriter_fourcc(*'mp4v'), 25, (W, H)) for rgb in ab.rgb: writer.write(cv2.cvtColor(rgb, cv2.COLOR_BGR2RGB)) writer.release() writer = cv2.VideoWriter(out_dir + 'cd/rgb.mp4', cv2.VideoWriter_fourcc(*'mp4v'), 25, (W, H)) for rgb in cd.rgb: writer.write(cv2.cvtColor(rgb, cv2.COLOR_BGR2RGB)) writer.release() # SAVE DEPTH writer = cv2.VideoWriter(out_dir + 'ab/depth.mp4', cv2.VideoWriter_fourcc(*'mp4v'), 25, (W, H)) for rgb in ab.depth: rgb = np.round(rgb * 255) writer.write(cv2.cvtColor(rgb.astype(np.uint8).reshape((W, H, 1)), cv2.COLOR_GRAY2BGR)) writer.release() writer = cv2.VideoWriter(out_dir + 'cd/depth.mp4', cv2.VideoWriter_fourcc(*'mp4v'), 25, (W, H)) for rgb in cd.depth: rgb = np.round(rgb * 255) writer.write(cv2.cvtColor(rgb.astype(np.uint8).reshape((W, H, 1)), cv2.COLOR_GRAY2BGR)) writer.release() # SAVE SEGMENTATION writer = cv2.VideoWriter(out_dir + 'ab/segmentation.mp4', cv2.VideoWriter_fourcc(*'mp4v'), 25, (W, H)) for rgb in ab.seg: writer.write(cv2.cvtColor(rgb.astype(np.uint8).reshape((W, H, 1)), cv2.COLOR_GRAY2BGR)) writer.release() writer = cv2.VideoWriter(out_dir + 'cd/segmentation.mp4', cv2.VideoWriter_fourcc(*'mp4v'), 25, (W, H)) for rgb in cd.seg: writer.write(cv2.cvtColor(rgb.astype(np.uint8).reshape((W, H, 1)), cv2.COLOR_GRAY2BGR)) writer.release() # Write some logs with open("logs_create_dataset_" + str(self.seed) + ".txt", "a") as f: f.write( f"{n}/{self.nb_examples} in {self.total_trial_counter} trial ({self.ab_trial_counter} on AB, {self.cd_trial_counter} on CD), took {round(self.list_time[-1], 1)} seconds (Average {round(np.mean(self.list_time), 2)})\n") self.total_trial_counter = 0 self.ab_trial_counter = 0 self.cd_trial_counter = 0 class Arena: def __init__(self, n_balls, confounders): """Class that model a trajectory""" self.start_position = [] self.start_speed = [] self.n_balls = n_balls self.confounders = confounders self.trajectory = None self.rgb = None self.depth = None self.seg = None self.init() def init(self): """Generate random initial condition""" for _ in range(self.n_balls): no_overlap = False # Make sure that there is no overlap between balls while no_overlap is False: no_overlap = True cand_pose = RANGE_POS * (2 * np.random.random(2) - 1) # Generate random position for a ball for balls in self.start_position: if np.sqrt(((balls - cand_pose) ** 2).sum()) < 1: no_overlap = False self.start_position.append(cand_pose) self.start_speed.append(RANGE_SPEED * (2 * np.random.random(2) - 1)) # Random speed def compute_valid_movement_range(self, ball_idx): """For do-op sampling : return maximal displacement in each direction without getting out of the limits""" x, y = self.start_position[ball_idx] delta_x = np.array([-3.5 + x, 3.5 - x]) delta_y = np.array([-3.5 + y, 3.5 - y]) return delta_x, delta_y def remove_ball(self): """Remove a random ball from the scene""" new_arena = Arena(self.n_balls - 1, self.confounders.copy()) new_arena.start_position = [n.copy() for n in self.start_position[:-1]] new_arena.start_speed = [n.copy() for n in self.start_speed[:-1]] return new_arena def clone(self, cf=None): """Clone an arena""" if cf is None: new_arena = Arena(self.n_balls, self.confounders.copy()) else: new_arena = Arena(self.n_balls, cf) new_arena.start_position = [n.copy() for n in self.start_position] new_arena.start_speed = [n.copy() for n in self.start_speed] return new_arena def generate_random_do_operation(self): """Return a do-operation candidate""" ball_idx = random.randint(0, self.n_balls - 1) # Select random ball for do-op delta_x, delta_y = self.compute_valid_movement_range(ball_idx) operation = random.choice(['x', 'y']) # Select a direction delta = delta_x if operation == "x" else delta_y delta = delta * 0.9 # List of possible do-op (bounded in absolute value) epsilons = list(np.arange(0.5, delta[1], 0.1)) + list(np.arange(delta[0], -0.5, 0.1)) if len(epsilons) == 0: # If there is no possible movement in this direction, quit... return {"operation": None, "cube": None, "amplitude": None}, [] # Sample a displacement amplitude amplitude = random.choices(epsilons, k=1)[0] cd = self.clone() # Apply do-op cd.start_position[ball_idx][0 if operation == "x" else 1] += amplitude # Check for overlap for i in cd.start_position: for j in cd.start_position: if (i != j).all() and np.sqrt(((i - j) ** 2).sum()) < 1: return {"operation": None, "cube": None, "amplitude": None}, [] return {"operation": operation, "amplitude": amplitude, "cube": ball_idx}, cd def fill_trajectory(self, n_balls): """Make sure that states are of good shape""" T, K, S = self.trajectory.shape if K != n_balls: self.trajectory = np.concatenate([self.trajectory, np.zeros((T, 1, S))], axis=1) def __eq__(self, other): """Check if two trajectories are equal or not""" if other == []: return False error = np.zeros(self.n_balls) # Compute MSE on 3D position per object (the measure is independant from the number of object) for k in range(other.trajectory.shape[1]): error[k] = np.sqrt(((self.trajectory[:, k, :2] - other.trajectory[:, k, :2]) ** 2).sum(-1)).sum(0) # If 1 object MSE is above threshold, trajectories are different. return (error > EPSILON).sum() == 0 class Simulator: def __init__(self, fps, time_duration, num_substeps=1000, W=448, H=448): """ Class that model the physics simulator :param fps: frame per second :param time_duration: simulation time length :param num_substeps: substeps for simulation accuracy :param W: Width of image :param H: Height of image """ self.fixed_timestep = 1 / fps self.nb_steps = time_duration * fps self.num_substeps = num_substeps self.p = None self.W, self.H = W, H def run(self, pipe, arena, plane_id, colors, rendering=False): """ Run the simulator :param pipe: multiprocess pipe to output the results :param arena: initial condition :param plane_id: id of the place for the ground :param colors: colors list :param rendering: activate or not the rendering :return: None """ # Initialize the simulator self.p = bullet_client.BulletClient(pb.DIRECT) self.p.setAdditionalSearchPath(pybullet_data.getDataPath()) self.p.setGravity(0, 0, -10) self.p.setPhysicsEngineParameter(fixedTimeStep=self.fixed_timestep, numSolverIterations=10000, solverResidualThreshold=1e-10, numSubSteps=self.num_substeps) # Init the environnement list_cube = self._init(arena, colors, plane_id) # Logs seq_states = np.zeros((self.nb_steps, arena.n_balls, 3 + 4 + 3 + 3)) list_rgb = [] list_depth = [] list_seg = [] # Simulate for t in range(self.nb_steps): for i, cube in enumerate(list_cube): pos, angle = self.p.getBasePositionAndOrientation(cube) vel_pose, vel_angle = self.p.getBaseVelocity(cube) seq_states[t, i] = list(pos) + list(angle) + list(vel_pose) + list(vel_angle) if rendering: img_arr = self.get_rendering() rgb = img_arr[2][:, :, :3] list_depth.append(img_arr[3]) list_seg.append(img_arr[4]) list_rgb.append(rgb) self.p.stepSimulation() pipe.send((seq_states, list_rgb, list_depth, list_seg)) pipe.close() def _init(self, arena, colors, plane_id): """ Init the scene with corresponding objects :param arena: initial condition :param colors: colors list :param plane_id: index of the ground texture :return: """ # Load ground pb.loadURDF(f"../data_generation/urdf/plane_{plane_id}/plane.urdf", useMaximalCoordinates=True) # Walls limit = 4.3 angle = (np.pi / 2.) pb.loadURDF(f"../data_generation/urdf/plane_white/plane.urdf", [0, limit, 0], pb.getQuaternionFromEuler([angle, 0, 0]), useMaximalCoordinates=True) pb.loadURDF(f"../data_generation/urdf/plane_white/plane.urdf", [0, -limit, 0], pb.getQuaternionFromEuler([-angle, 0, 0]), useMaximalCoordinates=True) pb.loadURDF(f"../data_generation/urdf/plane_white/plane.urdf", [limit, 0, 0], pb.getQuaternionFromEuler([0, -angle, 0]), useMaximalCoordinates=True) pb.loadURDF(f"../data_generation/urdf/plane_white/plane.urdf", [-limit, 0, 0], pb.getQuaternionFromEuler([0, angle, 0]), useMaximalCoordinates=True) # Add balls list_balls = [] for i in range(arena.n_balls): color = colors[i] x, y = arena.start_position[i] cube = self.p.loadURDF(f"../data_generation/urdf/{color}/ball.urdf", [x, y, 0.5], useMaximalCoordinates=True) pb.changeDynamics(cube, -1, mass=arena.confounders[i], lateralFriction=0, restitution=1) # Change physical parameters vx, vy = arena.start_speed[i] pb.resetBaseVelocity(cube, [vx, vy, 0]) # Change initial speed list_balls.append(cube) return list_balls def get_rendering(self): """ Rendering of the environment """ viewMatrix = pb.computeViewMatrix([0, 0.01, 8], [0, 0, 0], [0, 0, 1]) projectionMatrix = pb.computeProjectionMatrixFOV(60, self.W / self.H, 4, 20) img_arr = pb.getCameraImage(self.W, self.H, viewMatrix, projectionMatrix, shadow=0, lightDirection=[1, 1, 1], renderer=pb.ER_BULLET_HARDWARE_OPENGL) return img_arr if __name__ == '__main__': g = Generator(dir_out=args.dir_out, seed=args.seed, n_balls=args.n_balls, nb_examples=args.n_examples) g.generate()
py
7dfb83e1ce0c568e96ac62e3a9176dc99d86f53d
import subprocess import time import pyautogui as pgui def openBrowser(): proc = subprocess.call('firefox', shell=True) time.sleep(5) pgui.hotkey('ctrl', 't') pgui.hotkey('alt', '1') if __name__ == '__main__': openBrowser()
py
7dfb85099e48ce5e43b0c751bcf616755f9bc257
from aiochan import * async def pass_on(left, right): value = await left.get() await right.put(1 + value) print(f'Left[{value}] Right[{value + 1}]') async def main(): n = 6 left = None rightmost = Chan() right = rightmost for _ in range(n): left = Chan() go(pass_on(left, right)) right = left print('Coroutines are waiting') async def giver(c): print('Give Gopher1 the initial value') await c.put(1) go(giver(left)) print('Final value: ' + str(await rightmost.get())) if __name__ == '__main__': run_in_thread(main())
py
7dfb866d41e0786f9c1543165a02f38913ebb8c6
# coding=utf-8 from prototypical_batch_sampler import PrototypicalBatchSampler from prototypical_loss import prototypical_loss as loss_fn from chinadrinks_dataset import ChinadrinkDataset from protonet import ProtoNet from parser_util_extract import get_parser from tensorboardX import SummaryWriter from tqdm import tqdm import numpy as np import torch import os import random import shutil import pickle def init_seed(opt): ''' Disable cudnn to maximize reproducibility ''' torch.cuda.cudnn_enabled = False np.random.seed(opt.manual_seed) torch.manual_seed(opt.manual_seed) torch.cuda.manual_seed(opt.manual_seed) def init_dataset(opt, mode, root): dataset = ChinadrinkDataset(mode=mode, root= root, size = opt.img_size) n_classes = len(np.unique(dataset.y)) print(n_classes) #print(dataset.y) if n_classes < opt.classes_per_it_val: raise(Exception('There are not enough classes in the dataset in order ' + 'to satisfy the chosen classes_per_it. Decrease the ' + 'classes_per_it_{tr/val} option and try again.')) return dataset def init_sampler(opt, labels, mode): if 'train' in mode: classes_per_it = opt.classes_per_it_tr #classes_per_it = 1034 num_samples = opt.num_support_tr + opt.num_query_tr else: classes_per_it = opt.classes_per_it_val #classes_per_it = 434 num_samples = opt.num_support_val + opt.num_query_val return PrototypicalBatchSampler(labels=labels, classes_per_it=classes_per_it, num_samples=num_samples, iterations=opt.iterations) def init_dataloader(opt, mode, root): dataset = init_dataset(opt, mode, root) #labels = [int(x) for x in dataset.y] sampler = init_sampler(opt, dataset.y, mode) dataloader = torch.utils.data.DataLoader(dataset, batch_sampler=sampler) torch.cuda.empty_cache() return dataloader def init_protonet(opt, pretrained_file= "", pretrained = False): ''' Initialize the ProtoNet ''' device = 'cuda:0' if torch.cuda.is_available() and opt.cuda else 'cpu' model = ProtoNet().to(device) if(pretrained): model.load_state_dict(torch.load(pretrained_file)) print("Loaded pre-trained model") return model def train(opt, tr_dataloader, model): ''' Train the model with the prototypical learning algorithm ''' #writer = SummaryWriter('/home/caffe/orbix/Prototypical-Networks-for-Few-shot-Learning-PyTorch/logs/Chinadrink_Protonet_22_dropout') device = 'cuda:0' if torch.cuda.is_available() and opt.cuda else 'cpu' for epoch in range(opt.epochs): torch.cuda.empty_cache() print('=== Epoch: {} ==='.format(epoch)) tr_iter = iter(tr_dataloader) model.train() torch.cuda.empty_cache() for batch in tqdm(tr_iter): #optim.zero_grad() x, y = batch x, y = x.to(device), y.to(device) model_output = model(x) return model_output,y def test(opt, test_dataloader, model): ''' Test the model trained with the prototypical learning algorithm ''' device = 'cuda:0' if torch.cuda.is_available() and opt.cuda else 'cpu' #writer = SummaryWriter('/home/caffe/orbix/Prototypical-Networks-for-Few-shot-Learning-PyTorch/logs/Chinadrink_Protonet_22_dropout') avg_acc = list() for epoch in range(10): test_iter = iter(test_dataloader) for batch in test_iter: x, y = batch x, y = x.to(device), y.to(device) model_output = model(x) return model_output,y def eval(opt): ''' Initialize everything and train ''' model = init_protonet(options) model_path = os.path.join(opt.experiment_root, 'best_model.pth') model.load_state_dict(torch.load(model_path)) test(opt=options, test_dataloader=test_dataloader, model=model) def main(): ''' Initialize everything and train ''' options = get_parser().parse_args() if not os.path.exists(options.experiment_root): os.makedirs(options.experiment_root) if torch.cuda.is_available() and not options.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") init_seed(options) #dataset_root = options.dataset_root train_folder ='/home/caffe/data/chinadrink_prod_train' test_folder = '/home/caffe/data/chinadrink_test/all_cropped_images/' filepath = '/home/caffe/orbix/Prototypical-Networks-for-Few-shot-Learning-PyTorch/output/best_model_rgb28.pth' train_features_file = '/home/caffe/data/chinadrink' test_features_file = '/home/caffe/data/chinadrink' ''' tr_dataloader = init_dataloader(options, 'train', root = train_folder) ''' model = init_protonet(opt = options,pretrained_file = filepath, pretrained = True) ''' train_features, train_labels = train(opt=options, tr_dataloader=tr_dataloader, model=model) #save train features np.save(train_features_file+'train_features_rgb', train_features.cpu().detach().numpy()) #save train labels with open(train_features_file+'train_labels_rgb.pkl','wb') as f: pickle.dump(train_labels.cpu(),f) print('Loaded train features/labels') ''' test_dataloader = init_dataloader(options, 'test', root = test_folder) test_features, test_labels = test(opt=options, test_dataloader=test_dataloader, model=model) print(test_features.size()) #save test features np.save(test_features_file+'test_features_rgb', test_features.cpu().detach().numpy()) #save test labels with open(test_features_file+'test_labels_rgb.pkl','wb') as f: pickle.dump(test_labels.cpu(),f) if __name__ == '__main__': main()
py
7dfb86a7a985f2da78c0ab13f2e35d6842a89b7e
# Copyright (c) MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from parameterized import parameterized from monai.transforms import Resample from monai.transforms.utils import create_grid from tests.utils import TEST_NDARRAYS, assert_allclose TESTS = [] for p in TEST_NDARRAYS: for q in TEST_NDARRAYS: for device in [None, "cpu", "cuda"] if torch.cuda.is_available() else [None, "cpu"]: TESTS.append( [ dict(padding_mode="zeros", device=device), {"grid": p(create_grid((2, 2))), "img": q(np.arange(4).reshape((1, 2, 2)))}, q(np.array([[[0.0, 1.0], [2.0, 3.0]]])), ] ) TESTS.append( [ dict(padding_mode="zeros", device=device), {"grid": p(create_grid((4, 4))), "img": q(np.arange(4).reshape((1, 2, 2)))}, q( np.array( [[[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 2.0, 3.0, 0.0], [0.0, 0.0, 0.0, 0.0]]] ) ), ] ) TESTS.append( [ dict(padding_mode="border", device=device), {"grid": p(create_grid((4, 4))), "img": q(np.arange(4).reshape((1, 2, 2)))}, q( np.array( [[[0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0], [2.0, 2.0, 3, 3.0], [2.0, 2.0, 3.0, 3.0]]] ) ), ] ) TESTS.append( [ dict(padding_mode="reflection", device=device), {"grid": p(create_grid((4, 4))), "img": q(np.arange(4).reshape((1, 2, 2))), "mode": "nearest"}, q( np.array( [[[3.0, 2.0, 3.0, 2.0], [1.0, 0.0, 1.0, 0.0], [3.0, 2.0, 3.0, 2.0], [1.0, 0.0, 1.0, 0.0]]] ) ), ] ) TESTS.append( [ dict(padding_mode="zeros", device=device), { "grid": p(create_grid((4, 4, 4))), "img": q(np.arange(8).reshape((1, 2, 2, 2))), "mode": "bilinear", }, q( np.array( [ [ [ [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], ], [ [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 2.0, 3.0, 0.0], [0.0, 0.0, 0.0, 0.0], ], [ [0.0, 0.0, 0.0, 0.0], [0.0, 4.0, 5.0, 0.0], [0.0, 6.0, 7.0, 0.0], [0.0, 0.0, 0.0, 0.0], ], [ [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], ], ] ] ) ), ] ) TESTS.append( [ dict(padding_mode="border", device=device), { "grid": p(create_grid((4, 4, 4))), "img": q(np.arange(8).reshape((1, 2, 2, 2))), "mode": "bilinear", }, q( np.array( [ [ [ [0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0], [2.0, 2.0, 3.0, 3.0], [2.0, 2.0, 3.0, 3.0], ], [ [0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0], [2.0, 2.0, 3.0, 3.0], [2.0, 2.0, 3.0, 3.0], ], [ [4.0, 4.0, 5.0, 5.0], [4.0, 4.0, 5.0, 5.0], [6.0, 6.0, 7.0, 7.0], [6.0, 6.0, 7.0, 7.0], ], [ [4.0, 4.0, 5.0, 5.0], [4.0, 4.0, 5.0, 5.0], [6.0, 6.0, 7.0, 7.0], [6.0, 6.0, 7.0, 7.0], ], ] ] ) ), ] ) class TestResample(unittest.TestCase): @parameterized.expand(TESTS) def test_resample(self, input_param, input_data, expected_val): g = Resample(**input_param) result = g(**input_data) if "device" in input_data: self.assertEqual(result.device, input_data["device"]) assert_allclose(result, expected_val, rtol=1e-4, atol=1e-4) if __name__ == "__main__": unittest.main()
py
7dfb870d895087c7be226f3f2545f1525768d5fa
#!/usr/bin/env python # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import os import re import subprocess # nosec import sys import yaml # NOTE(SamYaple): Update the search path to prefer PROJECT_ROOT as the source # of packages to import if we are using local tools instead of # pip installed kolla tools PROJECT_ROOT = os.path.abspath(os.path.join( os.path.dirname(os.path.realpath(__file__)), '..')) if PROJECT_ROOT not in sys.path: sys.path.insert(0, PROJECT_ROOT) from kolla.common import config # noqa logging.basicConfig(level=logging.INFO) LOG = logging.getLogger(__name__) RELEASE_REPO = 'https://github.com/openstack/releases' TARGET = '.releases' SKIP_PROJECTS = { 'crane': 'Crane is not managed by openstack/releases project', 'gnocchi-base': 'Gnocchi is not managed by openstack/releases project', 'monasca-thresh': 'Package not published in tarballs.openstack.org', 'rally': 'Rally is not managed by openstack/releases project', } RE_DEFAULT_BRANCH = re.compile('^defaultbranch=stable/(.*)') RE_FILENAME = re.compile('(?P<project_name>.*)-(?P<tag>[^-]*).tar.gz') def update_releases_repo(): if not os.path.exists(TARGET): cmd = ['git', 'clone', RELEASE_REPO, TARGET] else: cmd = ['git', '--git-dir', os.path.join(TARGET, '.git'), '--work-tree', TARGET, 'pull'] subprocess.call(cmd) # nosec def get_default_branch(): gitreview_file = os.path.join(PROJECT_ROOT, '.gitreview') if not os.path.exists(gitreview_file): return with open(gitreview_file, 'r') as gitreview: for line in gitreview: branches = RE_DEFAULT_BRANCH.findall(line) if branches: return branches[0] def load_all_info(openstack_release): projects = {} release_path = os.path.join(TARGET, 'deliverables', openstack_release) if not os.path.exists(release_path): raise ValueError( 'Can not find openstack release: "%s"' % openstack_release) for deliverable in os.listdir(release_path): if not deliverable.endswith('.yaml'): continue with open(os.path.join(release_path, deliverable)) as f: info = yaml.safe_load(f) if 'releases' in info and len(info['releases']) > 0: latest_release = info['releases'][-1] latest_version = latest_release['version'] for project in latest_release['projects']: project_name = project['repo'].split('/')[-1] if 'tarball-base' in project: tarball_base = project['tarball-base'] elif 'repository-settings' in info: try: repo = project['repo'] repository_settings = info['repository-settings'][repo] tarball_base = repository_settings['tarball-base'] except KeyError: tarball_base = project_name projects[project_name] = {'latest_version': latest_version, 'tarball_base': tarball_base} projects[tarball_base] = {'latest_version': latest_version, 'tarball_base': tarball_base} return projects def main(): parser = argparse.ArgumentParser( description='Check and update OpenStack service version.') parser.add_argument('--openstack-release', '-r', default=get_default_branch(), help='OpenStack release name') parser.add_argument('--include-independent', '-i', default=False, action='store_true', help='Whether update independent projects') parser.add_argument('--check', '-c', default=False, action='store_true', help='Run without update config.py file') conf = parser.parse_args(sys.argv[1:]) if not conf.openstack_release: raise ValueError('Can not detect openstack release. Please assign' ' it through "--openstack-release" parameter') LOG.info('Update using openstack release: "%s"', conf.openstack_release) if conf.check: LOG.info('Run in check only mode') update_releases_repo() projects = load_all_info(openstack_release=conf.openstack_release) independents_projects = load_all_info(openstack_release='_independent') with open(os.path.join(PROJECT_ROOT, 'kolla/common/config.py')) as f: config_py = f.read() for key in sorted(config.SOURCES): independent_project = False value = config.SOURCES[key] if key in SKIP_PROJECTS: LOG.info('%s is skipped: %s', key, SKIP_PROJECTS[key]) continue # get project name from location location = value['location'] filename = os.path.basename(location) match = RE_FILENAME.match(filename) if match: project_name, old_tag = match.groups() else: raise ValueError('Can not parse "%s"' % filename) if project_name == "requirements": # Use the stable branch for requirements. latest_tag = "stable-{}".format(conf.openstack_release) tarball_base = project_name elif project_name in projects: latest_tag = projects[project_name]['latest_version'] tarball_base = projects[project_name]['tarball_base'] elif project_name in independents_projects: latest_tag = independents_projects[project_name]['latest_version'] tarball_base = independents_projects[project_name]['tarball_base'] independent_project = True else: LOG.warning('Can not find %s project release', project_name) continue if latest_tag and old_tag != latest_tag: if independent_project and not conf.include_independent: LOG.warning('%s is an independent project, please update it' ' manually. Possible need upgrade from %s to %s', project_name, old_tag, latest_tag) continue LOG.info('Update %s from %s to %s %s', project_name, old_tag, tarball_base, latest_tag) # starting "'" to replace whole filenames not partial ones # so nova does not change blazar-nova old_str = "'{}-{}".format(project_name, old_tag) new_str = "'{}-{}".format(tarball_base, latest_tag) config_py = config_py.replace(old_str, new_str) if not conf.check: with open(os.path.join(PROJECT_ROOT, 'kolla/common/config.py'), 'w') as f: f.write(config_py) if __name__ == '__main__': main()
py
7dfb87541ca8d27c649cb16cc1399a19a02d70a8
# coding: utf-8 # Copyright (c) Max-Planck-Institut für Eisenforschung GmbH - Computational Materials Design (CM) Department # Distributed under the terms of "New BSD License", see the LICENSE file. import unittest import os import posixpath from pyiron_atomistics.atomistics.structure.atoms import CrystalStructure from pyiron_atomistics.vasp.base import Input, Output from pyiron_atomistics import Project from pyiron_base import state, ProjectHDFio from pyiron_atomistics.vasp.potential import VaspPotentialSetter from pyiron_atomistics.vasp.vasp import Vasp from pyiron_atomistics.vasp.metadyn import VaspMetadyn from pyiron_atomistics.vasp.structure import read_atoms import numpy as np import warnings __author__ = "Sudarsan Surendralal" class TestVasp(unittest.TestCase): """ Tests the pyiron_atomistics.objects.hamilton.dft.vasp.Vasp class """ @classmethod def setUpClass(cls): state.update({'resource_paths': os.path.join(os.path.dirname(os.path.abspath(__file__)), "../static")}) cls.execution_path = os.path.dirname(os.path.abspath(__file__)) cls.project = Project(os.path.join(cls.execution_path, "test_vasp")) cls.job = cls.project.create_job("Vasp", "trial") cls.job_spin = cls.project.create_job("Vasp", "spin") cls.job_spin.structure = CrystalStructure("Fe", BravaisBasis="bcc", a=2.83) cls.job_spin.structure = cls.job_spin.structure.repeat(2) cls.job_spin.structure[2] = "Se" cls.job_spin.structure[3] = "O" cls.job_metadyn = cls.project.create_job("VaspMetadyn", "trial_metadyn") cls.job_complete = Vasp( project=ProjectHDFio(project=cls.project, file_name="vasp_complete"), job_name="vasp_complete", ) poscar_file = posixpath.join( cls.execution_path, "../static/vasp_test_files/full_job_sample/POSCAR" ) cls.job_complete.structure = read_atoms(poscar_file, species_from_potcar=True) poscar_file = posixpath.join( cls.execution_path, "../static/vasp_test_files/poscar_samples/POSCAR_metadyn" ) cls.job_metadyn.structure = read_atoms(poscar_file) @classmethod def tearDownClass(cls): cls.execution_path = os.path.dirname(os.path.abspath(__file__)) project = Project(os.path.join(cls.execution_path, "test_vasp")) project.remove_jobs_silently(recursive=True) project.remove(enable=True) state.update() def setUp(self): self.job.structure = None def test_list_potentials(self): self.assertRaises(ValueError, self.job.list_potentials) self.assertEqual(sorted([ 'Fe', 'Fe_GW', 'Fe_pv', 'Fe_sv', 'Fe_sv_GW', 'Se', 'Se_GW', 'O', 'O_GW', 'O_GW_new', 'O_h', 'O_s', 'O_s_GW' ]), sorted(self.job_spin.list_potentials())) self.assertEqual( sorted(['Fe', 'Fe_GW', 'Fe_pv', 'Fe_sv', 'Fe_sv_GW']), sorted(self.job_complete.list_potentials()) ) self.job_spin.potential["Fe"] = 'Fe_sv_GW' self.job_complete.potential.Fe = 'Fe_sv_GW' self.assertEqual('Fe_sv_GW', list(self.job_spin.potential.to_dict().values())[0]) self.assertEqual('Fe_sv_GW', list(self.job_complete.potential.to_dict().values())[0]) self.job_complete.potential["Fe"] = 'Fe' self.job_spin.potential.Fe = 'Fe' def test_init(self): self.assertEqual(self.job.__name__, "Vasp") self.assertEqual(self.job._sorted_indices, None) self.assertIsInstance(self.job.input, Input) self.assertIsInstance(self.job._output_parser, Output) self.assertIsInstance(self.job._potential, VaspPotentialSetter) self.assertTrue(self.job._compress_by_default) self.assertEqual(self.job.get_eddrmm_handling(), "warn") self.assertIsInstance(self.job_metadyn, Vasp) self.assertIsInstance(self.job_metadyn, VaspMetadyn) self.assertTrue(self.job_metadyn.input.incar["LBLUEOUT"]) def test_eddrmm(self): self.job.set_eddrmm_handling("ignore") self.assertEqual(self.job.get_eddrmm_handling(), "ignore") self.job.set_eddrmm_handling("restart") self.assertEqual(self.job.get_eddrmm_handling(), "restart") self.job.set_eddrmm_handling() self.assertEqual(self.job.get_eddrmm_handling(), "warn") self.assertRaises(ValueError, self.job.set_eddrmm_handling, status="blah") def test_rwigs(self): rwigs_dict = {"Fe": 1.1, "Se": 2.2, "O": 3.3, "N": 4.4} rwigs_dict_wrong_1 = {"Fe": "not a float", "Se": 2.2, "O": 3.3, "N": 4.4} rwigs_dict_wrong_2 = {"Fe": 1.1} self.assertIsNone(self.job_spin.get_rwigs()) self.assertRaises(AssertionError, self.job_spin.set_rwigs, rwigs_dict="not a dict") self.assertRaises(ValueError, self.job_spin.set_rwigs, rwigs_dict=rwigs_dict_wrong_1) self.assertRaises(ValueError, self.job_spin.set_rwigs, rwigs_dict=rwigs_dict_wrong_2) self.job_spin.set_rwigs(rwigs_dict) rwigs_dict_out = self.job_spin.get_rwigs() for key in rwigs_dict_out.keys(): self.assertEqual(rwigs_dict_out[key], rwigs_dict[key]) def test_spin_constraints(self): self.job_spin.spin_constraints = 1 self.assertTrue(self.job_spin.spin_constraints) self.job_spin.spin_constraints = 2 self.assertTrue(self.job_spin.spin_constraints) del self.job_spin.input.incar["I_CONSTRAINED_M"] self.assertFalse(self.job_spin.spin_constraints) def test_spin_constraint(self): rwigs_dict = {"Fe": 1.1, "Se": 2.2, "O": 3.3, "N": 4.4} self.assertRaises( AssertionError, self.job_spin.set_spin_constraint, lamb=0.5, rwigs_dict=rwigs_dict, direction="not a bool", norm=False ) self.assertRaises( AssertionError, self.job_spin.set_spin_constraint, lamb=0.5, rwigs_dict=rwigs_dict, direction=True, norm="not a bool" ) self.assertRaises( AssertionError, self.job_spin.set_spin_constraint, lamb="not a float", rwigs_dict=rwigs_dict, direction=True, norm=False ) self.assertRaises( ValueError, self.job_spin.set_spin_constraint, lamb=0.5, rwigs_dict=rwigs_dict, direction=False, norm=False ) self.assertRaises( ValueError, self.job_spin.set_spin_constraint, lamb=0.5, rwigs_dict=rwigs_dict, direction=False, norm=True ) self.job_spin.set_spin_constraint(lamb=0.5, rwigs_dict=rwigs_dict, direction=True, norm=False) self.assertEqual(self.job_spin.input.incar["LAMBDA"], 0.5) self.assertEqual(self.job_spin.input.incar["I_CONSTRAINED_M"], 1) rwigs_dict_out = self.job_spin.get_rwigs() for key in rwigs_dict_out.keys(): self.assertEqual(rwigs_dict_out[key], rwigs_dict[key]) self.job_spin.set_spin_constraint(lamb=0.5, rwigs_dict=rwigs_dict, direction=True, norm=True) self.assertEqual(self.job_spin.input.incar["I_CONSTRAINED_M"], 2) def test_potential(self): self.assertEqual(self.job.potential, self.job._potential) def test_plane_wave_cutoff(self): self.assertIsInstance(self.job.plane_wave_cutoff, (float, int, type(None))) # self.assertIsInstance(self.job.plane_wave_cutoff, (float, int)) self.job.plane_wave_cutoff = 350 self.assertEqual(self.job.input.incar["ENCUT"], 350) self.assertEqual(self.job.plane_wave_cutoff, 350) self.assertEqual(self.job.plane_wave_cutoff, self.job.encut) self.job.encut = 450 self.assertEqual(self.job.encut, 450) self.assertEqual(self.job.input.incar["ENCUT"], 450) self.assertEqual(self.job.plane_wave_cutoff, 450) def test_exchange_correlation_functional(self): self.assertEqual(self.job.exchange_correlation_functional, "GGA") self.assertEqual(self.job.input.potcar["xc"], "GGA") self.job.exchange_correlation_functional = "LDA" self.assertEqual(self.job.exchange_correlation_functional, "LDA") self.assertEqual(self.job.input.potcar["xc"], "LDA") def test_get_nelect(self): atoms = CrystalStructure("Pt", BravaisBasis="fcc", a=3.98) self.job.structure = atoms self.assertEqual(self.job.get_nelect(), 10) def test_write_magmoms(self): magmom = np.arange(8.) magmom_ncl = np.zeros([8, 3]) magmom_ncl[:, 0] = magmom / 2 magmom_ncl[:, 1] = magmom magmom_ncl[:, 2] = magmom ** 2 magmom_str = "0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0" magmom_ncl_str =\ "0.0 0.0 0.0 0.5 1.0 1.0 1.0 2.0 4.0 1.5 3.0 9.0 " \ "2.0 4.0 16.0 2.5 5.0 25.0 3.0 6.0 36.0 3.5 7.0 49.0" self.job.structure = CrystalStructure("Fe", BravaisBasis="bcc", a=2.83) self.job.structure = self.job.structure.repeat(2) self.job.structure.set_initial_magnetic_moments(magmom) self.job.input.incar["ISPIN"] = 1 self.job.write_magmoms() self.assertIsNone(self.job.input.incar["MAGMOM"]) self.assertEqual(self.job.input.incar["ISPIN"], 1) del self.job.input.incar["ISPIN"] self.job.write_magmoms() self.assertEqual(self.job.input.incar["ISPIN"], 2) self.assertEqual(self.job.input.incar["MAGMOM"], magmom_str) del self.job.input.incar["MAGMOM"] self.job.structure.set_initial_magnetic_moments(magmom_ncl) self.job.set_spin_constraint(lamb=1.0, rwigs_dict={"Fe": 2.5}, direction=True, norm=True) self.job.write_magmoms() self.assertEqual(self.job.input.incar["LNONCOLLINEAR"], True) self.assertEqual(self.job.input.incar["MAGMOM"], magmom_ncl_str) self.assertEqual(self.job.input.incar["M_CONSTR"], magmom_ncl_str) del self.job.input.incar["MAGMOM"] del self.job.input.incar["M_CONSTR"] del self.job.input.incar["LNONCOLLINEAR"] del self.job.input.incar["RWIGS"] self.assertRaises(ValueError, self.job.write_magmoms) self.job.input.incar["RWIGS"] = "2.5" del self.job.input.incar["LAMBDA"] self.assertRaises(ValueError, self.job.write_magmoms) def test_set_empty_states(self): atoms = CrystalStructure("Pt", BravaisBasis="fcc", a=3.98) self.job.structure = atoms self.job.set_empty_states(n_empty_states=10) self.assertEqual(self.job.input.incar["NBANDS"], 15) self.job.structure = atoms.repeat([3, 1, 1]) self.job.set_empty_states(n_empty_states=10) self.assertEqual(self.job.input.incar["NBANDS"], 25) def test_set_occpuancy_smearing(self): job_smear = self.project.create_job("Vasp", "smearing") self.assertIsNone(job_smear.input.incar["ISMEAR"]) self.assertIsNone(job_smear.input.incar["SIGMA"]) job_smear.set_occupancy_smearing(smearing="methfessel_paxton") self.assertEqual(job_smear.input.incar["ISMEAR"], 1) job_smear.set_occupancy_smearing(smearing="methfessel_paxton", order=2) self.assertEqual(job_smear.input.incar["ISMEAR"], 2) job_smear.set_occupancy_smearing(smearing="Fermi", width=0.1) self.assertEqual(job_smear.input.incar["ISMEAR"], -1) self.assertEqual(job_smear.input.incar["SIGMA"], 0.1) job_smear.set_occupancy_smearing(smearing="Gaussian", width=0.1) self.assertEqual(job_smear.input.incar["ISMEAR"], 0) self.assertEqual(job_smear.input.incar["SIGMA"], 0.1) with warnings.catch_warnings(record=True) as w: job_smear.set_occupancy_smearing(smearing="Gaussian", ismear=10) self.assertEqual(job_smear.input.incar["ISMEAR"], 10) self.assertEqual(len(w), 1) self.assertRaises(ValueError, job_smear.set_occupancy_smearing, smearing="gibberish") def test_calc_static(self): self.job.calc_static( electronic_steps=90, retain_charge_density=True, retain_electrostatic_potential=True, ) self.assertEqual(self.job.input.incar["IBRION"], -1) self.assertEqual(self.job.input.incar["NELM"], 90) self.assertEqual(self.job.input.incar["LVTOT"], True) self.assertEqual(self.job.input.incar["LCHARG"], True) def test_set_structure(self): self.assertEqual(self.job.structure, None) atoms = CrystalStructure("Pt", BravaisBasis="fcc", a=3.98) self.job.structure = atoms self.assertEqual(self.job.structure, atoms) self.job.structure = None self.assertEqual(self.job.structure, None) self.job.structure = atoms self.assertEqual(self.job.structure, atoms) def test_run_complete(self): self.job_complete.exchange_correlation_functional = "PBE" self.job_complete.set_occupancy_smearing(smearing="fermi", width=0.2) self.job_complete.calc_static() self.job_complete.set_convergence_precision(electronic_energy=1e-7) self.job_complete.write_electrostatic_potential = False self.assertEqual(self.job_complete.input.incar["SIGMA"], 0.2) self.assertEqual(self.job_complete.input.incar["LVTOT"], False) self.assertEqual(self.job_complete.input.incar["EDIFF"], 1e-7) file_directory = posixpath.join( self.execution_path, "../static/vasp_test_files/full_job_sample" ) self.job_complete.restart_file_list.append( posixpath.join(file_directory, "vasprun.xml") ) self.job_complete.restart_file_list.append( posixpath.join(file_directory, "OUTCAR") ) self.job_complete.restart_file_list.append( posixpath.join(file_directory, "CHGCAR") ) self.job_complete.restart_file_list.append( posixpath.join(file_directory, "WAVECAR") ) self.job_complete.run(run_mode="manual") self.job_complete.status.collect = True self.job_complete.run() nodes = [ "positions", "temperature", "energy_tot", "steps", "positions", "forces", "cells", "pressures", ] with self.job_complete.project_hdf5.open("output/generic") as h_gen: hdf_nodes = h_gen.list_nodes() self.assertTrue(all([node in hdf_nodes for node in nodes])) nodes = [ "energy_free", "energy_int", "energy_zero", "final_magmoms", "magnetization", "n_elect", "scf_dipole_mom", "scf_energy_free", "scf_energy_int", "scf_energy_zero", ] with self.job_complete.project_hdf5.open("output/generic/dft") as h_dft: hdf_nodes = h_dft.list_nodes() self.assertTrue(all([node in hdf_nodes for node in nodes])) nodes = ["efermi", "eig_matrix", "k_points", "k_weights", "occ_matrix"] with self.job_complete.project_hdf5.open( "output/electronic_structure" ) as h_dft: hdf_nodes = h_dft.list_nodes() self.assertTrue(all([node in hdf_nodes for node in nodes])) job_chg_den = self.job_complete.restart_from_charge_density(job_name="chg") self.assertEqual(job_chg_den.structure, self.job_complete.get_structure(-1)) self.assertTrue( posixpath.join(self.job_complete.working_directory, "CHGCAR") in job_chg_den.restart_file_list ) def check_group_is_empty(example_job, group_name): with example_job.project_hdf5.open(group_name) as h_gr: self.assertTrue(h_gr.list_nodes() == []) self.assertTrue(h_gr.list_groups() == []) check_group_is_empty(job_chg_den, "output") job_chg_wave = self.job_complete.restart_from_wave_and_charge( job_name="chg_wave" ) self.assertEqual(job_chg_wave.structure, self.job_complete.get_structure(-1)) self.assertTrue( posixpath.join(self.job_complete.working_directory, "WAVECAR") in job_chg_wave.restart_file_list ) self.assertTrue( posixpath.join(self.job_complete.working_directory, "CHGCAR") in job_chg_wave.restart_file_list ) for key, val in job_chg_wave.restart_file_dict.items(): self.assertTrue(key, val) check_group_is_empty(job_chg_wave, "output") job = self.job_complete.restart() job.restart_file_list.append( posixpath.join(file_directory, "vasprun.xml") ) job.restart_file_list.append( posixpath.join(file_directory, "OUTCAR") ) job.run(run_mode="manual") job.status.collect = True job.run() # Check if error raised if the files don't exist self.assertRaises(FileNotFoundError, job.restart_from_wave_functions, "wave_restart") self.assertRaises(FileNotFoundError, job.restart_from_charge_density, "chg_restart") self.assertRaises(FileNotFoundError, job.restart_from_wave_and_charge, "wave_chg_restart") def test_vasp_metadyn(self): self.job_metadyn.set_primitive_constraint("bond_1", "bond", atom_indices=[0, 2], increment=1e-4) self.job_metadyn.set_primitive_constraint("bond_2", "bond", atom_indices=[0, 3], increment=1e-4) self.job_metadyn.set_complex_constraint("combine", "linear_combination", {"bond_1": 1, "bond_2": -1}, increment=1e-4) self.job_metadyn.write_constraints() constraints = self.job_metadyn.input.iconst._dataset["Value"] for val in ['R 1 6 0', 'R 1 2 0', 'S 1 -1 0']: self.assertTrue(val in constraints) def test_setting_input(self): self.job.set_convergence_precision(electronic_energy=1e-7, ionic_force_tolerance=0.1) self.assertEqual(self.job.input.incar["EDIFF"], 1e-7) self.assertEqual(self.job.input.incar["EDIFFG"], -0.1) self.job.calc_minimize() self.assertEqual(self.job.input.incar["EDIFFG"], -0.01) self.job.calc_minimize(ionic_energy=1e-4) self.assertEqual(self.job.input.incar["EDIFFG"], 0.0001) self.job.calc_minimize(ionic_forces=1e-3) self.assertEqual(self.job.input.incar["EDIFFG"], -0.001) self.assertEqual(self.job.input.incar["EDIFF"], 1e-7) def test_mixing_parameter(self): job = self.project.create_job('Vasp', 'mixing_parameter') job.set_mixing_parameters(density_mixing_parameter=0.1) self.assertEqual(job.input.incar['IMIX'], 4) with self.assertRaises(NotImplementedError): job.set_mixing_parameters(density_residual_scaling=0.1) def test_potentials(self): # Assert that no warnings are raised with warnings.catch_warnings(record=True) as w: structure = self.project.create_ase_bulk("Al", cubic=True) element = self.project.create_element(new_element_name='Al_GW', parent_element="Al", potential_file='Al_GW') structure[:] = element job = self.project.create.job.Vasp("test") job.structure = structure job.run(run_mode="manual") self.assertEqual(len(w), 0) def test_kspacing(self): job_kspace = self.project.create_job("Vasp", "job_kspacing") job_kspace.structure = self.project.create_ase_bulk("Fe") job_kspace.input.incar["KSPACING"] = 0.5 with warnings.catch_warnings(record=True) as w: job_kspace.run(run_mode="manual") self.assertNotIn("KPOINTS", job_kspace.list_files(), "'KPOINTS' file written even when " "KPACING tag is present in INCAR") self.assertEqual(len(w), 1) self.assertEqual(str(w[0].message), "'KSPACING' found in INCAR, no KPOINTS file written") if __name__ == "__main__": unittest.main()
py
7dfb87934c3d1c89cac6632ff0be21a9e93d8806
"""blogger URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('', include('posts.urls')), path('accounts/', include('django.contrib.auth.urls')), path('accounts/', include('accounts.urls')), ]
py
7dfb87a4706a1bb6947f69d3a4f8a77626a56cf9
#!/usr/bin/env python # # Copyright 2008, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """pump v0.2.0 - Pretty Useful for Meta Programming. A tool for preprocessor meta programming. Useful for generating repetitive boilerplate code. Especially useful for writing C++ classes, functions, macros, and templates that need to work with various number of arguments. USAGE: pump.py SOURCE_FILE EXAMPLES: pump.py foo.cc.pump Converts foo.cc.pump to foo.cc. GRAMMAR: CODE ::= ATOMIC_CODE* ATOMIC_CODE ::= $var ID = EXPRESSION | $var ID = [[ CODE ]] | $range ID EXPRESSION..EXPRESSION | $for ID SEPARATOR [[ CODE ]] | $($) | $ID | $(EXPRESSION) | $if EXPRESSION [[ CODE ]] ELSE_BRANCH | [[ CODE ]] | RAW_CODE SEPARATOR ::= RAW_CODE | EMPTY ELSE_BRANCH ::= $else [[ CODE ]] | $elif EXPRESSION [[ CODE ]] ELSE_BRANCH | EMPTY EXPRESSION has Python syntax. """ __author__ = '[email protected] (Zhanyong Wan)' import os import re import sys TOKEN_TABLE = [ (re.compile(r'\$var\s+'), '$var'), (re.compile(r'\$elif\s+'), '$elif'), (re.compile(r'\$else\s+'), '$else'), (re.compile(r'\$for\s+'), '$for'), (re.compile(r'\$if\s+'), '$if'), (re.compile(r'\$range\s+'), '$range'), (re.compile(r'\$[_A-Za-z]\w*'), '$id'), (re.compile(r'\$\(\$\)'), '$($)'), (re.compile(r'\$'), '$'), (re.compile(r'\[\[\n?'), '[['), (re.compile(r'\]\]\n?'), ']]'), ] class Cursor: """Represents a position (line and column) in a text file.""" def __init__(self, line=-1, column=-1): self.line = line self.column = column def __eq__(self, rhs): return self.line == rhs.line and self.column == rhs.column def __ne__(self, rhs): return not self == rhs def __lt__(self, rhs): return self.line < rhs.line or ( self.line == rhs.line and self.column < rhs.column) def __le__(self, rhs): return self < rhs or self == rhs def __gt__(self, rhs): return rhs < self def __ge__(self, rhs): return rhs <= self def __str__(self): if self == Eof(): return 'EOF' else: return '%s(%s)' % (self.line + 1, self.column) def __add__(self, offset): return Cursor(self.line, self.column + offset) def __sub__(self, offset): return Cursor(self.line, self.column - offset) def Clone(self): """Returns a copy of self.""" return Cursor(self.line, self.column) # Special cursor to indicate the end-of-file. def Eof(): """Returns the special cursor to denote the end-of-file.""" return Cursor(-1, -1) class Token: """Represents a token in a Pump source file.""" def __init__(self, start=None, end=None, value=None, token_type=None): if start is None: self.start = Eof() else: self.start = start if end is None: self.end = Eof() else: self.end = end self.value = value self.token_type = token_type def __str__(self): return 'Token @%s: \'%s\' type=%s' % ( self.start, self.value, self.token_type) def Clone(self): """Returns a copy of self.""" return Token(self.start.Clone(), self.end.Clone(), self.value, self.token_type) def StartsWith(lines, pos, string): """Returns True if the given position in lines starts with 'string'.""" return lines[pos.line][pos.column:].startswith(string) def FindFirstInLine(line, token_table): best_match_start = -1 for (regex, token_type) in token_table: m = regex.search(line) if m: # We found regex in lines if best_match_start < 0 or m.start() < best_match_start: best_match_start = m.start() best_match_length = m.end() - m.start() best_match_token_type = token_type if best_match_start < 0: return None return (best_match_start, best_match_length, best_match_token_type) def FindFirst(lines, token_table, cursor): """Finds the first occurrence of any string in strings in lines.""" start = cursor.Clone() cur_line_number = cursor.line for line in lines[start.line:]: if cur_line_number == start.line: line = line[start.column:] m = FindFirstInLine(line, token_table) if m: # We found a regex in line. (start_column, length, token_type) = m if cur_line_number == start.line: start_column += start.column found_start = Cursor(cur_line_number, start_column) found_end = found_start + length return MakeToken(lines, found_start, found_end, token_type) cur_line_number += 1 # We failed to find str in lines return None def SubString(lines, start, end): """Returns a substring in lines.""" if end == Eof(): end = Cursor(len(lines) - 1, len(lines[-1])) if start >= end: return '' if start.line == end.line: return lines[start.line][start.column:end.column] result_lines = ([lines[start.line][start.column:]] + lines[start.line + 1:end.line] + [lines[end.line][:end.column]]) return ''.join(result_lines) def StripMetaComments(str): """Strip meta comments from each line in the given string.""" # First, completely remove lines containing nothing but a meta # comment, including the trailing \n. str = re.sub(r'^\s*\$\$.*\n', '', str) # Then, remove meta comments from contentful lines. return re.sub(r'\s*\$\$.*', '', str) def MakeToken(lines, start, end, token_type): """Creates a new instance of Token.""" return Token(start, end, SubString(lines, start, end), token_type) def ParseToken(lines, pos, regex, token_type): line = lines[pos.line][pos.column:] m = regex.search(line) if m and not m.start(): return MakeToken(lines, pos, pos + m.end(), token_type) else: print 'ERROR: %s expected at %s.' % (token_type, pos) sys.exit(1) ID_REGEX = re.compile(r'[_A-Za-z]\w*') EQ_REGEX = re.compile(r'=') REST_OF_LINE_REGEX = re.compile(r'.*?(?=$|\$\$)') OPTIONAL_WHITE_SPACES_REGEX = re.compile(r'\s*') WHITE_SPACE_REGEX = re.compile(r'\s') DOT_DOT_REGEX = re.compile(r'\.\.') def Skip(lines, pos, regex): line = lines[pos.line][pos.column:] m = re.search(regex, line) if m and not m.start(): return pos + m.end() else: return pos def SkipUntil(lines, pos, regex, token_type): line = lines[pos.line][pos.column:] m = re.search(regex, line) if m: return pos + m.start() else: print ('ERROR: %s expected on line %s after column %s.' % (token_type, pos.line + 1, pos.column)) sys.exit(1) def ParseExpTokenInParens(lines, pos): def ParseInParens(pos): pos = Skip(lines, pos, OPTIONAL_WHITE_SPACES_REGEX) pos = Skip(lines, pos, r'\(') pos = Parse(pos) pos = Skip(lines, pos, r'\)') return pos def Parse(pos): pos = SkipUntil(lines, pos, r'\(|\)', ')') if SubString(lines, pos, pos + 1) == '(': pos = Parse(pos + 1) pos = Skip(lines, pos, r'\)') return Parse(pos) else: return pos start = pos.Clone() pos = ParseInParens(pos) return MakeToken(lines, start, pos, 'exp') def RStripNewLineFromToken(token): if token.value.endswith('\n'): return Token(token.start, token.end, token.value[:-1], token.token_type) else: return token def TokenizeLines(lines, pos): while True: found = FindFirst(lines, TOKEN_TABLE, pos) if not found: yield MakeToken(lines, pos, Eof(), 'code') return if found.start == pos: prev_token = None prev_token_rstripped = None else: prev_token = MakeToken(lines, pos, found.start, 'code') prev_token_rstripped = RStripNewLineFromToken(prev_token) if found.token_type == '$var': if prev_token_rstripped: yield prev_token_rstripped yield found id_token = ParseToken(lines, found.end, ID_REGEX, 'id') yield id_token pos = Skip(lines, id_token.end, OPTIONAL_WHITE_SPACES_REGEX) eq_token = ParseToken(lines, pos, EQ_REGEX, '=') yield eq_token pos = Skip(lines, eq_token.end, r'\s*') if SubString(lines, pos, pos + 2) != '[[': exp_token = ParseToken(lines, pos, REST_OF_LINE_REGEX, 'exp') yield exp_token pos = Cursor(exp_token.end.line + 1, 0) elif found.token_type == '$for': if prev_token_rstripped: yield prev_token_rstripped yield found id_token = ParseToken(lines, found.end, ID_REGEX, 'id') yield id_token pos = Skip(lines, id_token.end, WHITE_SPACE_REGEX) elif found.token_type == '$range': if prev_token_rstripped: yield prev_token_rstripped yield found id_token = ParseToken(lines, found.end, ID_REGEX, 'id') yield id_token pos = Skip(lines, id_token.end, OPTIONAL_WHITE_SPACES_REGEX) dots_pos = SkipUntil(lines, pos, DOT_DOT_REGEX, '..') yield MakeToken(lines, pos, dots_pos, 'exp') yield MakeToken(lines, dots_pos, dots_pos + 2, '..') pos = dots_pos + 2 new_pos = Cursor(pos.line + 1, 0) yield MakeToken(lines, pos, new_pos, 'exp') pos = new_pos elif found.token_type == '$': if prev_token: yield prev_token yield found exp_token = ParseExpTokenInParens(lines, found.end) yield exp_token pos = exp_token.end elif (found.token_type == ']]' or found.token_type == '$if' or found.token_type == '$elif' or found.token_type == '$else'): if prev_token_rstripped: yield prev_token_rstripped yield found pos = found.end else: if prev_token: yield prev_token yield found pos = found.end def Tokenize(s): """A generator that yields the tokens in the given string.""" if s != '': lines = s.splitlines(True) for token in TokenizeLines(lines, Cursor(0, 0)): yield token class CodeNode: def __init__(self, atomic_code_list=None): self.atomic_code = atomic_code_list class VarNode: def __init__(self, identifier=None, atomic_code=None): self.identifier = identifier self.atomic_code = atomic_code class RangeNode: def __init__(self, identifier=None, exp1=None, exp2=None): self.identifier = identifier self.exp1 = exp1 self.exp2 = exp2 class ForNode: def __init__(self, identifier=None, sep=None, code=None): self.identifier = identifier self.sep = sep self.code = code class ElseNode: def __init__(self, else_branch=None): self.else_branch = else_branch class IfNode: def __init__(self, exp=None, then_branch=None, else_branch=None): self.exp = exp self.then_branch = then_branch self.else_branch = else_branch class RawCodeNode: def __init__(self, token=None): self.raw_code = token class LiteralDollarNode: def __init__(self, token): self.token = token class ExpNode: def __init__(self, token, python_exp): self.token = token self.python_exp = python_exp def PopFront(a_list): head = a_list[0] a_list[:1] = [] return head def PushFront(a_list, elem): a_list[:0] = [elem] def PopToken(a_list, token_type=None): token = PopFront(a_list) if token_type is not None and token.token_type != token_type: print 'ERROR: %s expected at %s' % (token_type, token.start) print 'ERROR: %s found instead' % (token,) sys.exit(1) return token def PeekToken(a_list): if not a_list: return None return a_list[0] def ParseExpNode(token): python_exp = re.sub(r'([_A-Za-z]\w*)', r'self.GetValue("\1")', token.value) return ExpNode(token, python_exp) def ParseElseNode(tokens): def Pop(token_type=None): return PopToken(tokens, token_type) next = PeekToken(tokens) if not next: return None if next.token_type == '$else': Pop('$else') Pop('[[') code_node = ParseCodeNode(tokens) Pop(']]') return code_node elif next.token_type == '$elif': Pop('$elif') exp = Pop('code') Pop('[[') code_node = ParseCodeNode(tokens) Pop(']]') inner_else_node = ParseElseNode(tokens) return CodeNode([IfNode(ParseExpNode(exp), code_node, inner_else_node)]) elif not next.value.strip(): Pop('code') return ParseElseNode(tokens) else: return None def ParseAtomicCodeNode(tokens): def Pop(token_type=None): return PopToken(tokens, token_type) head = PopFront(tokens) t = head.token_type if t == 'code': return RawCodeNode(head) elif t == '$var': id_token = Pop('id') Pop('=') next = PeekToken(tokens) if next.token_type == 'exp': exp_token = Pop() return VarNode(id_token, ParseExpNode(exp_token)) Pop('[[') code_node = ParseCodeNode(tokens) Pop(']]') return VarNode(id_token, code_node) elif t == '$for': id_token = Pop('id') next_token = PeekToken(tokens) if next_token.token_type == 'code': sep_token = next_token Pop('code') else: sep_token = None Pop('[[') code_node = ParseCodeNode(tokens) Pop(']]') return ForNode(id_token, sep_token, code_node) elif t == '$if': exp_token = Pop('code') Pop('[[') code_node = ParseCodeNode(tokens) Pop(']]') else_node = ParseElseNode(tokens) return IfNode(ParseExpNode(exp_token), code_node, else_node) elif t == '$range': id_token = Pop('id') exp1_token = Pop('exp') Pop('..') exp2_token = Pop('exp') return RangeNode(id_token, ParseExpNode(exp1_token), ParseExpNode(exp2_token)) elif t == '$id': return ParseExpNode(Token(head.start + 1, head.end, head.value[1:], 'id')) elif t == '$($)': return LiteralDollarNode(head) elif t == '$': exp_token = Pop('exp') return ParseExpNode(exp_token) elif t == '[[': code_node = ParseCodeNode(tokens) Pop(']]') return code_node else: PushFront(tokens, head) return None def ParseCodeNode(tokens): atomic_code_list = [] while True: if not tokens: break atomic_code_node = ParseAtomicCodeNode(tokens) if atomic_code_node: atomic_code_list.append(atomic_code_node) else: break return CodeNode(atomic_code_list) def ParseToAST(pump_src_text): """Convert the given Pump source text into an AST.""" tokens = list(Tokenize(pump_src_text)) code_node = ParseCodeNode(tokens) return code_node class Env: def __init__(self): self.variables = [] self.ranges = [] def Clone(self): clone = Env() clone.variables = self.variables[:] clone.ranges = self.ranges[:] return clone def PushVariable(self, var, value): # If value looks like an int, store it as an int. try: int_value = int(value) if ('%s' % int_value) == value: value = int_value except Exception: pass self.variables[:0] = [(var, value)] def PopVariable(self): self.variables[:1] = [] def PushRange(self, var, lower, upper): self.ranges[:0] = [(var, lower, upper)] def PopRange(self): self.ranges[:1] = [] def GetValue(self, identifier): for (var, value) in self.variables: if identifier == var: return value print 'ERROR: meta variable %s is undefined.' % (identifier,) sys.exit(1) def EvalExp(self, exp): try: result = eval(exp.python_exp) except Exception, e: print 'ERROR: caught exception %s: %s' % (e.__class__.__name__, e) print ('ERROR: failed to evaluate meta expression %s at %s' % (exp.python_exp, exp.token.start)) sys.exit(1) return result def GetRange(self, identifier): for (var, lower, upper) in self.ranges: if identifier == var: return (lower, upper) print 'ERROR: range %s is undefined.' % (identifier,) sys.exit(1) class Output: def __init__(self): self.string = '' def GetLastLine(self): index = self.string.rfind('\n') if index < 0: return '' return self.string[index + 1:] def Append(self, s): self.string += s def RunAtomicCode(env, node, output): if isinstance(node, VarNode): identifier = node.identifier.value.strip() result = Output() RunAtomicCode(env.Clone(), node.atomic_code, result) value = result.string env.PushVariable(identifier, value) elif isinstance(node, RangeNode): identifier = node.identifier.value.strip() lower = int(env.EvalExp(node.exp1)) upper = int(env.EvalExp(node.exp2)) env.PushRange(identifier, lower, upper) elif isinstance(node, ForNode): identifier = node.identifier.value.strip() if node.sep is None: sep = '' else: sep = node.sep.value (lower, upper) = env.GetRange(identifier) for i in range(lower, upper + 1): new_env = env.Clone() new_env.PushVariable(identifier, i) RunCode(new_env, node.code, output) if i != upper: output.Append(sep) elif isinstance(node, RawCodeNode): output.Append(node.raw_code.value) elif isinstance(node, IfNode): cond = env.EvalExp(node.exp) if cond: RunCode(env.Clone(), node.then_branch, output) elif node.else_branch is not None: RunCode(env.Clone(), node.else_branch, output) elif isinstance(node, ExpNode): value = env.EvalExp(node) output.Append('%s' % (value,)) elif isinstance(node, LiteralDollarNode): output.Append('$') elif isinstance(node, CodeNode): RunCode(env.Clone(), node, output) else: print 'BAD' print node sys.exit(1) def RunCode(env, code_node, output): for atomic_code in code_node.atomic_code: RunAtomicCode(env, atomic_code, output) def IsSingleLineComment(cur_line): return '//' in cur_line def IsInPreprocessorDirective(prev_lines, cur_line): if cur_line.lstrip().startswith('#'): return True return prev_lines and prev_lines[-1].endswith('\\') def WrapComment(line, output): loc = line.find('//') before_comment = line[:loc].rstrip() if before_comment == '': indent = loc else: output.append(before_comment) indent = len(before_comment) - len(before_comment.lstrip()) prefix = indent*' ' + '// ' max_len = 80 - len(prefix) comment = line[loc + 2:].strip() segs = [seg for seg in re.split(r'(\w+\W*)', comment) if seg != ''] cur_line = '' for seg in segs: if len((cur_line + seg).rstrip()) < max_len: cur_line += seg else: if cur_line.strip() != '': output.append(prefix + cur_line.rstrip()) cur_line = seg.lstrip() if cur_line.strip() != '': output.append(prefix + cur_line.strip()) def WrapCode(line, line_concat, output): indent = len(line) - len(line.lstrip()) prefix = indent*' ' # Prefix of the current line max_len = 80 - indent - len(line_concat) # Maximum length of the current line new_prefix = prefix + 4*' ' # Prefix of a continuation line new_max_len = max_len - 4 # Maximum length of a continuation line # Prefers to wrap a line after a ',' or ';'. segs = [seg for seg in re.split(r'([^,;]+[,;]?)', line.strip()) if seg != ''] cur_line = '' # The current line without leading spaces. for seg in segs: # If the line is still too long, wrap at a space. while cur_line == '' and len(seg.strip()) > max_len: seg = seg.lstrip() split_at = seg.rfind(' ', 0, max_len) output.append(prefix + seg[:split_at].strip() + line_concat) seg = seg[split_at + 1:] prefix = new_prefix max_len = new_max_len if len((cur_line + seg).rstrip()) < max_len: cur_line = (cur_line + seg).lstrip() else: output.append(prefix + cur_line.rstrip() + line_concat) prefix = new_prefix max_len = new_max_len cur_line = seg.lstrip() if cur_line.strip() != '': output.append(prefix + cur_line.strip()) def WrapPreprocessorDirective(line, output): WrapCode(line, ' \\', output) def WrapPlainCode(line, output): WrapCode(line, '', output) def IsMultiLineIWYUPragma(line): return re.search(r'/\* IWYU pragma: ', line) def IsHeaderGuardIncludeOrOneLineIWYUPragma(line): return (re.match(r'^#(ifndef|define|endif\s*//)\s*[\w_]+\s*$', line) or re.match(r'^#include\s', line) or # Don't break IWYU pragmas, either; that causes iwyu.py problems. re.search(r'// IWYU pragma: ', line)) def WrapLongLine(line, output): line = line.rstrip() if len(line) <= 80: output.append(line) elif IsSingleLineComment(line): if IsHeaderGuardIncludeOrOneLineIWYUPragma(line): # The style guide made an exception to allow long header guard lines, # includes and IWYU pragmas. output.append(line) else: WrapComment(line, output) elif IsInPreprocessorDirective(output, line): if IsHeaderGuardIncludeOrOneLineIWYUPragma(line): # The style guide made an exception to allow long header guard lines, # includes and IWYU pragmas. output.append(line) else: WrapPreprocessorDirective(line, output) elif IsMultiLineIWYUPragma(line): output.append(line) else: WrapPlainCode(line, output) def BeautifyCode(string): lines = string.splitlines() output = [] for line in lines: WrapLongLine(line, output) output2 = [line.rstrip() for line in output] return '\n'.join(output2) + '\n' def ConvertFromPumpSource(src_text): """Return the text generated from the given Pump source text.""" ast = ParseToAST(StripMetaComments(src_text)) output = Output() RunCode(Env(), ast, output) return BeautifyCode(output.string) def main(argv): if len(argv) == 1: print __doc__ sys.exit(1) file_path = argv[-1] output_str = ConvertFromPumpSource(file(file_path, 'r').read()) if file_path.endswith('.pump'): output_file_path = file_path[:-5] else: output_file_path = '-' if output_file_path == '-': print output_str, else: output_file = file(output_file_path, 'w') output_file.write('// This file was GENERATED by command:\n') output_file.write('// %s %s\n' % (os.path.basename(__file__), os.path.basename(file_path))) output_file.write('// DO NOT EDIT BY HAND!!!\n\n') output_file.write(output_str) output_file.close() if __name__ == '__main__': main(sys.argv)
py
7dfb8809267629fed27d78df6d05d3c8d1a6996d
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals import frappe import time from frappe import _, msgprint from frappe.utils import flt, cstr, now, get_datetime_str, file_lock from frappe.utils.background_jobs import enqueue from frappe.model.base_document import BaseDocument, get_controller from frappe.model.naming import set_new_name from werkzeug.exceptions import NotFound, Forbidden import hashlib, json from frappe.model import optional_fields from frappe.utils.file_manager import save_url # once_only validation # methods def get_doc(arg1, arg2=None): """returns a frappe.model.Document object. :param arg1: Document dict or DocType name. :param arg2: [optional] document name. There are two ways to call `get_doc` # will fetch the latest user object (with child table) from the database user = get_doc("User", "[email protected]") # create a new object user = get_doc({ "doctype":"User" "email_id": "[email protected]", "user_roles: [ {"role": "System Manager"} ] }) """ if isinstance(arg1, BaseDocument): return arg1 elif isinstance(arg1, basestring): doctype = arg1 else: doctype = arg1.get("doctype") controller = get_controller(doctype) if controller: return controller(arg1, arg2) raise ImportError, arg1 class Document(BaseDocument): """All controllers inherit from `Document`.""" def __init__(self, arg1, arg2=None): """Constructor. :param arg1: DocType name as string or document **dict** :param arg2: Document name, if `arg1` is DocType name. If DocType name and document name are passed, the object will load all values (including child documents) from the database. """ self.doctype = self.name = None self._default_new_docs = {} self.flags = frappe._dict() if arg1 and isinstance(arg1, basestring): if not arg2: # single self.doctype = self.name = arg1 else: self.doctype = arg1 if isinstance(arg2, dict): # filter self.name = frappe.db.get_value(arg1, arg2, "name") if self.name is None: frappe.throw(_("{0} {1} not found").format(_(arg1), arg2), frappe.DoesNotExistError) else: self.name = arg2 self.load_from_db() elif isinstance(arg1, dict): super(Document, self).__init__(arg1) self.init_valid_columns() else: # incorrect arguments. let's not proceed. raise frappe.DataError("Document({0}, {1})".format(arg1, arg2)) def reload(self): """Reload document from database""" self.load_from_db() def load_from_db(self): """Load document and children from database and create properties from fields""" if not getattr(self, "_metaclass", False) and self.meta.issingle: single_doc = frappe.db.get_singles_dict(self.doctype) if not single_doc: single_doc = frappe.new_doc(self.doctype).as_dict() single_doc["name"] = self.doctype del single_doc["__islocal"] super(Document, self).__init__(single_doc) self.init_valid_columns() self._fix_numeric_types() else: d = frappe.db.get_value(self.doctype, self.name, "*", as_dict=1) if not d: frappe.throw(_("{0} {1} not found").format(_(self.doctype), self.name), frappe.DoesNotExistError) super(Document, self).__init__(d) if self.name=="DocType" and self.doctype=="DocType": from frappe.model.meta import doctype_table_fields table_fields = doctype_table_fields else: table_fields = self.meta.get_table_fields() for df in table_fields: children = frappe.db.get_values(df.options, {"parent": self.name, "parenttype": self.doctype, "parentfield": df.fieldname}, "*", as_dict=True, order_by="idx asc") if children: self.set(df.fieldname, children) else: self.set(df.fieldname, []) # sometimes __setup__ can depend on child values, hence calling again at the end if hasattr(self, "__setup__"): self.__setup__() def get_latest(self): if not getattr(self, "latest", None): self.latest = frappe.get_doc(self.doctype, self.name) return self.latest def check_permission(self, permtype='read', permlabel=None): """Raise `frappe.PermissionError` if not permitted""" if not self.has_permission(permtype): self.raise_no_permission_to(permlabel or permtype) def has_permission(self, permtype="read", verbose=False): """Call `frappe.has_permission` if `self.flags.ignore_permissions` is not set. :param permtype: one of `read`, `write`, `submit`, `cancel`, `delete`""" if self.flags.ignore_permissions: return True return frappe.has_permission(self.doctype, permtype, self, verbose=verbose) def raise_no_permission_to(self, perm_type): """Raise `frappe.PermissionError`.""" msg = _("No permission to {0} {1} {2}".format(perm_type, self.doctype, self.name or "")) frappe.msgprint(msg) raise frappe.PermissionError(msg) def insert(self, ignore_permissions=None): """Insert the document in the database (as a new document). This will check for user permissions and execute `before_insert`, `validate`, `on_update`, `after_insert` methods if they are written. :param ignore_permissions: Do not check permissions if True.""" if self.flags.in_print: return self.flags.email_alerts_executed = [] if ignore_permissions!=None: self.flags.ignore_permissions = ignore_permissions self.set("__islocal", True) self.check_permission("create") self._set_defaults() self.set_user_and_timestamp() self.set_docstatus() self.check_if_latest() self.run_method("before_insert") self.set_new_name() self.set_parent_in_children() self.validate_higher_perm_levels() self.flags.in_insert = True self.run_before_save_methods() self._validate() self.set_docstatus() self.flags.in_insert = False # run validate, on update etc. # parent if getattr(self.meta, "issingle", 0): self.update_single(self.get_valid_dict()) else: self.db_insert() # children for d in self.get_all_children(): d.db_insert() self.run_method("after_insert") self.flags.in_insert = True if self.get("amended_from"): self.copy_attachments_from_amended_from() self.run_post_save_methods() self.flags.in_insert = False # delete __islocal if hasattr(self, "__islocal"): delattr(self, "__islocal") return self def save(self, *args, **kwargs): """Wrapper for _save""" return self._save(*args, **kwargs) def _save(self, ignore_permissions=None): """Save the current document in the database in the **DocType**'s table or `tabSingles` (for single types). This will check for user permissions and execute `validate` before updating, `on_update` after updating triggers. :param ignore_permissions: Do not check permissions if True.""" if self.flags.in_print: return self.flags.email_alerts_executed = [] if ignore_permissions!=None: self.flags.ignore_permissions = ignore_permissions if self.get("__islocal") or not self.get("name"): self.insert() return self.check_permission("write", "save") self.set_user_and_timestamp() self.set_docstatus() self.check_if_latest() self.set_parent_in_children() self.validate_higher_perm_levels() self.run_before_save_methods() if self._action != "cancel": self._validate() if self._action == "update_after_submit": self.validate_update_after_submit() self.set_docstatus() # parent if self.meta.issingle: self.update_single(self.get_valid_dict()) else: self.db_update() self.update_children() self.run_post_save_methods() return self def copy_attachments_from_amended_from(self): '''Copy attachments from `amended_from`''' from frappe.desk.form.load import get_attachments #loop through attachments for attach_item in get_attachments(self.doctype, self.amended_from): #save attachments to new doc save_url(attach_item.file_url, attach_item.file_name, self.doctype, self.name, "Home/Attachments", attach_item.is_private) def update_children(self): '''update child tables''' for df in self.meta.get_table_fields(): self.update_child_table(df.fieldname, df) def update_child_table(self, fieldname, df=None): '''sync child table for given fieldname''' rows = [] if not df: df = self.meta.get_field(fieldname) for d in self.get(df.fieldname): d.db_update() rows.append(d.name) if df.options in (self.flags.ignore_children_type or []): # do not delete rows for this because of flags # hack for docperm :( return if rows: # select rows that do not match the ones in the document deleted_rows = frappe.db.sql("""select name from `tab{0}` where parent=%s and parenttype=%s and parentfield=%s and name not in ({1})""".format(df.options, ','.join(['%s'] * len(rows))), [self.name, self.doctype, fieldname] + rows) if len(deleted_rows) > 0: # delete rows that do not match the ones in the document frappe.db.sql("""delete from `tab{0}` where name in ({1})""".format(df.options, ','.join(['%s'] * len(deleted_rows))), tuple(row[0] for row in deleted_rows)) else: # no rows found, delete all rows frappe.db.sql("""delete from `tab{0}` where parent=%s and parenttype=%s and parentfield=%s""".format(df.options), (self.name, self.doctype, fieldname)) def set_new_name(self): """Calls `frappe.naming.se_new_name` for parent and child docs.""" set_new_name(self) # set name for children for d in self.get_all_children(): set_new_name(d) def set_title_field(self): """Set title field based on template""" def get_values(): values = self.as_dict() # format values for key, value in values.iteritems(): if value==None: values[key] = "" return values if self.meta.get("title_field")=="title": df = self.meta.get_field(self.meta.title_field) if df.options: self.set(df.fieldname, df.options.format(**get_values())) elif self.is_new() and not self.get(df.fieldname) and df.default: # set default title for new transactions (if default) self.set(df.fieldname, df.default.format(**get_values())) def update_single(self, d): """Updates values for Single type Document in `tabSingles`.""" frappe.db.sql("""delete from tabSingles where doctype=%s""", self.doctype) for field, value in d.iteritems(): if field != "doctype": frappe.db.sql("""insert into tabSingles(doctype, field, value) values (%s, %s, %s)""", (self.doctype, field, value)) if self.doctype in frappe.db.value_cache: del frappe.db.value_cache[self.doctype] def set_user_and_timestamp(self): self._original_modified = self.modified self.modified = now() self.modified_by = frappe.session.user if not self.creation: self.creation = self.modified if not self.owner: self.owner = self.modified_by for d in self.get_all_children(): d.modified = self.modified d.modified_by = self.modified_by if not d.owner: d.owner = self.owner if not d.creation: d.creation = self.creation frappe.flags.currently_saving.append((self.doctype, self.name)) def set_docstatus(self): if self.docstatus==None: self.docstatus=0 for d in self.get_all_children(): d.docstatus = self.docstatus def _validate(self): self._validate_mandatory() self._validate_links() self._validate_selects() self._validate_constants() self._validate_length() self._extract_images_from_text_editor() self._sanitize_content() self._save_passwords() children = self.get_all_children() for d in children: d._validate_selects() d._validate_constants() d._validate_length() d._extract_images_from_text_editor() d._sanitize_content() d._save_passwords() if self.is_new(): # don't set fields like _assign, _comments for new doc for fieldname in optional_fields: self.set(fieldname, None) def apply_fieldlevel_read_permissions(self): '''Remove values the user is not allowed to read (called when loading in desk)''' has_higher_permlevel = False for p in self.get_permissions(): if p.permlevel > 0: has_higher_permlevel = True break if not has_higher_permlevel: return has_access_to = self.get_permlevel_access('read') for df in self.meta.fields: if df.permlevel and not df.permlevel in has_access_to: self.set(df.fieldname, None) for table_field in self.meta.get_table_fields(): for df in frappe.get_meta(table_field.options).fields or []: if df.permlevel and not df.permlevel in has_access_to: for child in self.get(table_field.fieldname) or []: child.set(df.fieldname, None) def validate_higher_perm_levels(self): """If the user does not have permissions at permlevel > 0, then reset the values to original / default""" if self.flags.ignore_permissions or frappe.flags.in_install: return has_access_to = self.get_permlevel_access() high_permlevel_fields = self.meta.get_high_permlevel_fields() if high_permlevel_fields: self.reset_values_if_no_permlevel_access(has_access_to, high_permlevel_fields) # check for child tables for df in self.meta.get_table_fields(): high_permlevel_fields = frappe.get_meta(df.options).meta.get_high_permlevel_fields() if high_permlevel_fields: for d in self.get(df.fieldname): d.reset_values_if_no_permlevel_access(has_access_to, high_permlevel_fields) def get_permlevel_access(self, permission_type='write'): if not hasattr(self, "_has_access_to"): user_roles = frappe.get_roles() self._has_access_to = [] for perm in self.get_permissions(): if perm.role in user_roles and perm.permlevel > 0 and perm.get(permission_type): if perm.permlevel not in self._has_access_to: self._has_access_to.append(perm.permlevel) return self._has_access_to def has_permlevel_access_to(self, fieldname, df=None, permission_type='read'): if not df: df = self.meta.get_field(fieldname) return df.permlevel in self.get_permlevel_access() def get_permissions(self): if self.meta.istable: # use parent permissions permissions = frappe.get_meta(self.parenttype).permissions else: permissions = self.meta.permissions return permissions def _set_defaults(self): if frappe.flags.in_import: return new_doc = frappe.new_doc(self.doctype, as_dict=True) self.update_if_missing(new_doc) # children for df in self.meta.get_table_fields(): new_doc = frappe.new_doc(df.options, as_dict=True) value = self.get(df.fieldname) if isinstance(value, list): for d in value: d.update_if_missing(new_doc) def check_if_latest(self): """Checks if `modified` timestamp provided by document being updated is same as the `modified` timestamp in the database. If there is a different, the document has been updated in the database after the current copy was read. Will throw an error if timestamps don't match. Will also validate document transitions (Save > Submit > Cancel) calling `self.check_docstatus_transition`.""" conflict = False self._action = "save" if not self.get('__islocal'): if self.meta.issingle: modified = frappe.db.sql('''select value from tabSingles where doctype=%s and field='modified' for update''', self.doctype) modified = modified and modified[0][0] if modified and modified != cstr(self._original_modified): conflict = True else: tmp = frappe.db.sql("""select modified, docstatus from `tab{0}` where name = %s for update""".format(self.doctype), self.name, as_dict=True) if not tmp: frappe.throw(_("Record does not exist")) else: tmp = tmp[0] modified = cstr(tmp.modified) if modified and modified != cstr(self._original_modified): conflict = True self.check_docstatus_transition(tmp.docstatus) if conflict: frappe.msgprint(_("Error: Document has been modified after you have opened it") \ + (" (%s, %s). " % (modified, self.modified)) \ + _("Please refresh to get the latest document."), raise_exception=frappe.TimestampMismatchError) else: self.check_docstatus_transition(0) def check_docstatus_transition(self, docstatus): """Ensures valid `docstatus` transition. Valid transitions are (number in brackets is `docstatus`): - Save (0) > Save (0) - Save (0) > Submit (1) - Submit (1) > Submit (1) - Submit (1) > Cancel (2) """ if not self.docstatus: self.docstatus = 0 if docstatus==0: if self.docstatus==0: self._action = "save" elif self.docstatus==1: self._action = "submit" self.check_permission("submit") else: raise frappe.DocstatusTransitionError, _("Cannot change docstatus from 0 to 2") elif docstatus==1: if self.docstatus==1: self._action = "update_after_submit" self.check_permission("submit") elif self.docstatus==2: self._action = "cancel" self.check_permission("cancel") else: raise frappe.DocstatusTransitionError, _("Cannot change docstatus from 1 to 0") elif docstatus==2: raise frappe.ValidationError, _("Cannot edit cancelled document") def set_parent_in_children(self): """Updates `parent` and `parenttype` property in all children.""" for d in self.get_all_children(): d.parent = self.name d.parenttype = self.doctype def validate_update_after_submit(self): if self.flags.ignore_validate_update_after_submit: return self._validate_update_after_submit() for d in self.get_all_children(): if d.is_new() and self.meta.get_field(d.parentfield).allow_on_submit: # in case of a new row, don't validate allow on submit, if table is allow on submit continue d._validate_update_after_submit() # TODO check only allowed values are updated def _validate_mandatory(self): if self.flags.ignore_mandatory: return missing = self._get_missing_mandatory_fields() for d in self.get_all_children(): missing.extend(d._get_missing_mandatory_fields()) if not missing: return for fieldname, msg in missing: msgprint(msg) if frappe.flags.print_messages: print self.as_json().encode("utf-8") raise frappe.MandatoryError('[{doctype}, {name}]: {fields}'.format( fields=", ".join((each[0] for each in missing)), doctype=self.doctype, name=self.name)) def _validate_links(self): if self.flags.ignore_links: return invalid_links, cancelled_links = self.get_invalid_links() for d in self.get_all_children(): result = d.get_invalid_links(is_submittable=self.meta.is_submittable) invalid_links.extend(result[0]) cancelled_links.extend(result[1]) if invalid_links: msg = ", ".join((each[2] for each in invalid_links)) frappe.throw(_("Could not find {0}").format(msg), frappe.LinkValidationError) if cancelled_links: msg = ", ".join((each[2] for each in cancelled_links)) frappe.throw(_("Cannot link cancelled document: {0}").format(msg), frappe.CancelledLinkError) def get_all_children(self, parenttype=None): """Returns all children documents from **Table** type field in a list.""" ret = [] for df in self.meta.get("fields", {"fieldtype": "Table"}): if parenttype: if df.options==parenttype: return self.get(df.fieldname) value = self.get(df.fieldname) if isinstance(value, list): ret.extend(value) return ret def run_method(self, method, *args, **kwargs): """run standard triggers, plus those in hooks""" if "flags" in kwargs: del kwargs["flags"] if hasattr(self, method) and hasattr(getattr(self, method), "__call__"): fn = lambda self, *args, **kwargs: getattr(self, method)(*args, **kwargs) else: # hack! to run hooks even if method does not exist fn = lambda self, *args, **kwargs: None fn.__name__ = method.encode("utf-8") out = Document.hook(fn)(self, *args, **kwargs) self.run_email_alerts(method) return out def run_trigger(self, method, *args, **kwargs): return self.run_method(method, *args, **kwargs) def run_email_alerts(self, method): '''Run email alerts for this method''' if frappe.flags.in_import or frappe.flags.in_patch or frappe.flags.in_install: return if self.flags.email_alerts_executed==None: self.flags.email_alerts_executed = [] from frappe.email.doctype.email_alert.email_alert import evaluate_alert if self.flags.email_alerts == None: alerts = frappe.cache().hget('email_alerts', self.doctype) if alerts==None: alerts = frappe.get_all('Email Alert', fields=['name', 'event', 'method'], filters={'enabled': 1, 'document_type': self.doctype}) frappe.cache().hset('email_alerts', self.doctype, alerts) self.flags.email_alerts = alerts if not self.flags.email_alerts: return def _evaluate_alert(alert): if not alert.name in self.flags.email_alerts_executed: evaluate_alert(self, alert.name, alert.event) event_map = { "on_update": "Save", "after_insert": "New", "on_submit": "Submit", "on_cancel": "Cancel" } if not self.flags.in_insert: # value change is not applicable in insert event_map['validate'] = 'Value Change' for alert in self.flags.email_alerts: event = event_map.get(method, None) if event and alert.event == event: _evaluate_alert(alert) elif alert.event=='Method' and method == alert.method: _evaluate_alert(alert) @staticmethod def whitelist(f): f.whitelisted = True return f @whitelist.__func__ def _submit(self): """Submit the document. Sets `docstatus` = 1, then saves.""" self.docstatus = 1 self.save() @whitelist.__func__ def _cancel(self): """Cancel the document. Sets `docstatus` = 2, then saves.""" self.docstatus = 2 self.save() @whitelist.__func__ def submit(self): """Submit the document. Sets `docstatus` = 1, then saves.""" self._submit() @whitelist.__func__ def cancel(self): """Cancel the document. Sets `docstatus` = 2, then saves.""" self._cancel() def delete(self): """Delete document.""" frappe.delete_doc(self.doctype, self.name, flags=self.flags) def run_before_save_methods(self): """Run standard methods before `INSERT` or `UPDATE`. Standard Methods are: - `validate`, `before_save` for **Save**. - `validate`, `before_submit` for **Submit**. - `before_cancel` for **Cancel** - `before_update_after_submit` for **Update after Submit** Will also update title_field if set""" self.set_title_field() self.reset_seen() if self.flags.ignore_validate: return if self._action=="save": self.run_method("validate") self.run_method("before_save") elif self._action=="submit": self.run_method("validate") self.run_method("before_submit") elif self._action=="cancel": self.run_method("before_cancel") elif self._action=="update_after_submit": self.run_method("before_update_after_submit") def run_post_save_methods(self): """Run standard methods after `INSERT` or `UPDATE`. Standard Methods are: - `on_update` for **Save**. - `on_update`, `on_submit` for **Submit**. - `on_cancel` for **Cancel** - `update_after_submit` for **Update after Submit**""" if self._action=="save": self.run_method("on_update") elif self._action=="submit": self.run_method("on_update") self.run_method("on_submit") if not self.flags.ignore_submit_comment: self.add_comment("Submitted") elif self._action=="cancel": self.run_method("on_cancel") self.check_no_back_links_exist() if not self.flags.ignore_submit_comment: self.add_comment("Cancelled") elif self._action=="update_after_submit": self.run_method("on_update_after_submit") self.run_method('on_change') self.update_timeline_doc() self.clear_cache() self.notify_update() if (self.doctype, self.name) in frappe.flags.currently_saving: frappe.flags.currently_saving.remove((self.doctype, self.name)) self.latest = None def clear_cache(self): frappe.cache().hdel("last_modified", self.doctype) def reset_seen(self): '''Clear _seen property and set current user as seen''' if getattr(self.meta, 'track_seen', False): self._seen = json.dumps([frappe.session.user]) def notify_update(self): """Publish realtime that the current document is modified""" frappe.publish_realtime("doc_update", {"modified": self.modified, "doctype": self.doctype, "name": self.name}, doctype=self.doctype, docname=self.name, after_commit=True) if not self.meta.get("read_only") and not self.meta.get("issingle") and \ not self.meta.get("istable"): frappe.publish_realtime("list_update", {"doctype": self.doctype}, after_commit=True) def check_no_back_links_exist(self): """Check if document links to any active document before Cancel.""" from frappe.model.delete_doc import check_if_doc_is_linked, check_if_doc_is_dynamically_linked if not self.flags.ignore_links: check_if_doc_is_linked(self, method="Cancel") check_if_doc_is_dynamically_linked(self, method="Cancel") @staticmethod def whitelist(f): """Decorator: Whitelist method to be called remotely via REST API.""" f.whitelisted = True return f @staticmethod def hook(f): """Decorator: Make method `hookable` (i.e. extensible by another app). Note: If each hooked method returns a value (dict), then all returns are collated in one dict and returned. Ideally, don't return values in hookable methods, set properties in the document.""" def add_to_return_value(self, new_return_value): if isinstance(new_return_value, dict): if not self.get("_return_value"): self._return_value = {} self._return_value.update(new_return_value) else: self._return_value = new_return_value or self.get("_return_value") def compose(fn, *hooks): def runner(self, method, *args, **kwargs): add_to_return_value(self, fn(self, *args, **kwargs)) for f in hooks: add_to_return_value(self, f(self, method, *args, **kwargs)) return self._return_value return runner def composer(self, *args, **kwargs): hooks = [] method = f.__name__ doc_events = frappe.get_doc_hooks() for handler in doc_events.get(self.doctype, {}).get(method, []) \ + doc_events.get("*", {}).get(method, []): hooks.append(frappe.get_attr(handler)) composed = compose(f, *hooks) return composed(self, method, *args, **kwargs) return composer def is_whitelisted(self, method): fn = getattr(self, method, None) if not fn: raise NotFound("Method {0} not found".format(method)) elif not getattr(fn, "whitelisted", False): raise Forbidden("Method {0} not whitelisted".format(method)) def validate_value(self, fieldname, condition, val2, doc=None, raise_exception=None): """Check that value of fieldname should be 'condition' val2 else throw Exception.""" error_condition_map = { "in": _("one of"), "not in": _("none of"), "^": _("beginning with"), } if not doc: doc = self val1 = doc.get_value(fieldname) df = doc.meta.get_field(fieldname) val2 = doc.cast(val2, df) if not frappe.compare(val1, condition, val2): label = doc.meta.get_label(fieldname) condition_str = error_condition_map.get(condition, condition) if doc.parentfield: msg = _("Incorrect value in row {0}: {1} must be {2} {3}".format(doc.idx, label, condition_str, val2)) else: msg = _("Incorrect value: {0} must be {1} {2}".format(label, condition_str, val2)) # raise passed exception or True msgprint(msg, raise_exception=raise_exception or True) def validate_table_has_rows(self, parentfield, raise_exception=None): """Raise exception if Table field is empty.""" if not (isinstance(self.get(parentfield), list) and len(self.get(parentfield)) > 0): label = self.meta.get_label(parentfield) frappe.throw(_("Table {0} cannot be empty").format(label), raise_exception or frappe.EmptyTableError) def round_floats_in(self, doc, fieldnames=None): """Round floats for all `Currency`, `Float`, `Percent` fields for the given doc. :param doc: Document whose numeric properties are to be rounded. :param fieldnames: [Optional] List of fields to be rounded.""" if not fieldnames: fieldnames = (df.fieldname for df in doc.meta.get("fields", {"fieldtype": ["in", ["Currency", "Float", "Percent"]]})) for fieldname in fieldnames: doc.set(fieldname, flt(doc.get(fieldname), self.precision(fieldname, doc.parentfield))) def get_url(self): """Returns Desk URL for this document. `/desk#Form/{doctype}/{name}`""" return "/desk#Form/{doctype}/{name}".format(doctype=self.doctype, name=self.name) def add_comment(self, comment_type, text=None, comment_by=None, link_doctype=None, link_name=None): """Add a comment to this document. :param comment_type: e.g. `Comment`. See Communication for more info.""" comment = frappe.get_doc({ "doctype":"Communication", "communication_type": "Comment", "sender": comment_by or frappe.session.user, "comment_type": comment_type, "reference_doctype": self.doctype, "reference_name": self.name, "content": text or comment_type, "link_doctype": link_doctype, "link_name": link_name }).insert(ignore_permissions=True) return comment def add_seen(self, user=None): '''add the given/current user to list of users who have seen this document (_seen)''' if not user: user = frappe.session.user if self.meta.track_seen: if self._seen: _seen = json.loads(self._seen) else: _seen = [] if user not in _seen: _seen.append(user) self.db_set('_seen', json.dumps(_seen), update_modified=False) frappe.local.flags.commit = True def get_signature(self): """Returns signature (hash) for private URL.""" return hashlib.sha224(get_datetime_str(self.creation)).hexdigest() def get_liked_by(self): liked_by = getattr(self, "_liked_by", None) if liked_by: return json.loads(liked_by) else: return [] def set_onload(self, key, value): if not self.get("__onload"): self.set("__onload", frappe._dict()) self.get("__onload")[key] = value def update_timeline_doc(self): if frappe.flags.in_install or not self.meta.get("timeline_field"): return timeline_doctype = self.meta.get_link_doctype(self.meta.timeline_field) timeline_name = self.get(self.meta.timeline_field) if not (timeline_doctype and timeline_name): return # update timeline doc in communication if it is different than current timeline doc frappe.db.sql("""update `tabCommunication` set timeline_doctype=%(timeline_doctype)s, timeline_name=%(timeline_name)s where reference_doctype=%(doctype)s and reference_name=%(name)s and (timeline_doctype is null or timeline_doctype != %(timeline_doctype)s or timeline_name is null or timeline_name != %(timeline_name)s)""", { "doctype": self.doctype, "name": self.name, "timeline_doctype": timeline_doctype, "timeline_name": timeline_name }) def queue_action(self, action, **kwargs): '''Run an action in background. If the action has an inner function, like _submit for submit, it will call that instead''' # call _submit instead of submit, so you can override submit to call # run_delayed based on some action # See: Stock Reconciliation if hasattr(self, '_' + action): action = '_' + action if file_lock.lock_exists(self.get_signature()): frappe.throw(_('This document is currently queued for execution. Please try again'), title=_('Document Queued'), indicator='red') self.lock() enqueue('frappe.model.document.execute_action', doctype=self.doctype, name=self.name, action=action, **kwargs) def lock(self, timeout=None): '''Creates a lock file for the given document. If timeout is set, it will retry every 1 second for acquiring the lock again :param timeout: Timeout in seconds, default 0''' signature = self.get_signature() if file_lock.lock_exists(signature): lock_exists = True if timeout: for i in range(timeout): time.sleep(1) if not file_lock.lock_exists(signature): lock_exists = False break if lock_exists: raise frappe.DocumentLockedError file_lock.create_lock(signature) def unlock(self): '''Delete the lock file for this document''' file_lock.delete_lock(self.get_signature()) def execute_action(doctype, name, action, **kwargs): '''Execute an action on a document (called by background worker)''' doc = frappe.get_doc(doctype, name) doc.unlock() try: getattr(doc, action)(**kwargs) except Exception: frappe.db.rollback() # add a comment (?) if frappe.local.message_log: msg = json.loads(frappe.local.message_log[-1]).get('message') else: msg = '<pre><code>' + frappe.get_traceback() + '</pre></code>' doc.add_comment('Comment', _('Action Failed') + '<br><br>' + msg) doc.notify_update()
py
7dfb8871d137c9cc64d6c12ce1d90b1d476692e4
# Templating utils from util.templating import * # Error documents from error import * # Page view functions from main import * from paste import * from user import * from misc import * # API view functions from api.authentication import * from api.paste import * from api.user import *