ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
7dfde841732b11837b81dda865f24511c3ab48a1
#!/usr/bin/env python3.6 from password import Password def create_password(flo,me,beat,joby): new_password = Password(flo,me,beat,joby) return new_password def save_passwords(password): password.save_Password() def del_password(password): password.delete_password() def find_password(user_name): return Password.find_by_user_name(user_name) def check_existng_passwords(user_name): return Password.password_exist(user_name) def display_passwords(): return Password.display_passwords() def main(): print("Hello,What is your name?") user_name = input() print(f"Hello {user_name}. What would u like to do?") print ('\n') while True: print("Use these short codes : cc - create a credentials, del - delete credential dc - display password, fc -find a password, ex -exit the password list ") short_code = input().lower() if short_code == 'cc': print("Credential") print("-"*10) print("first_name") f_name = input() print("last_name") last_name = input() print("user_name") u_user_name = input() print("password") p_password = input() save_passwords(create_password(f_name,last_name,u_user_name,p_password)) print ('\n') print(f"New credential {f_name} {last_name} created") print ('\n') elif short_code == 'dc': if display_passwords(): print("Here is a list of all your passwords") print('\n') for password in display_passwords(): print(f"{password.first_name} {password.last_name} {password.user_name} {password.password}") print('\n') else: print('\n') print("You dont seem to have any passwords saved yet") print('\n') elif short_code == 'del': print("Enter the username you want to delete") search_user_name = input() if check_existng_passwords(search_user_name): search_password = find_password(search_user_name) del_password(search_password) print("account successfully deleted!") else: print("That account does not exist") elif short_code == 'fc': print("Enter the username you want to search for") search_user_name = input() if check_existng_passwords(search_user_name): search_password = find_password(search_user_name) print(f"{search_password.first_name} {search_password.last_name}") print('-' * 20) print(f"user_name.......{search_password.user_name}") print(f"password.......{search_password.password}") else: print("That password does not exist") elif short_code == "ex": print("Bye") break else: print("I really didn't get that. Please use the short codes") if __name__ == '__main__': main()
py
7dfde8d665334dbf67fdba47a46e9f4fb5095e68
import logging from schematics import Model from schematics.types import IntType, ModelType, StringType, serializable _LOGGER = logging.getLogger(__name__) class RedrivePolicy(Model): dead_ketter_target_arn = StringType(deserialize_from="deadLetterTargetArn") max_receive_count = StringType(deserialize_from="maxReceiveCount") class QueData(Model): class Option: serialize_when_none = False region_name = StringType(default='') url = StringType() arn = StringType(deserialize_from="QueueArn") approximate_number_of_messages = IntType(deserialize_from="ApproximateNumberOfMessages") approximate_number_of_messages_delayed = IntType(deserialize_from="ApproximateNumberOfMessagesDelayed") approximate_number_of_messages_not_visible = IntType(deserialize_from="ApproximateNumberOfMessagesNotVisible") created_timestamp = StringType(deserialize_from='CreatedTimestamp') delay_seconds = IntType(deserialize_from="DelaySeconds") last_modified_timestamp = StringType(deserialize_from='LastModifiedTimestamp') maximum_message_size = IntType(deserialize_from="MaximumMessageSize") message_retention_period = IntType(deserialize_from="MessageRetentionPeriod") receive_message_wait_time_seconds = IntType(deserialize_from="ReceiveMessageWaitTimeSeconds") visibility_timeout = IntType(deserialize_from="VisibilityTimeout") redrive_policy = ModelType(RedrivePolicy, deserialize_from="RedrivePolicy") fifo_queue = StringType(deserialize_from="FifoQueue") content_based_duplication = StringType(deserialize_from="ContentBasedDeduplication") kms_master_key_id = StringType(deserialize_from="KmsMasterKeyId") kms_data_key_reuse_period_seconds = StringType(deserialize_from="KmsDataKeyReusePeriodSeconds") account_id = StringType() policy = StringType(deserialize_from="Policy") @serializable def name(self): return self.arn.split(':')[-1] @serializable def reference(self): return { "resource_id": self.arn, "external_link": f"https://{self.region_name}.console.aws.amazon.com/sqs/home?{self.region_name}#queue-browser:selected={self.url};prefix={self.name}" } @serializable def cloudwatch(self): return { "namespace": "AWS/SQS", "dimensions": [ { "Name": "QueueName", "Value": self.name } ], "region_name": self.region_name }
py
7dfde8e26524ab2b00857b0ef91b55ce29735872
from random import randint, choice from elizabeth.core import Code from elizabeth.exceptions import JSONKeyError from elizabeth.utils import pull __all__ = [ 'USASpecProvider', 'BrazilSpecProvider', 'RussiaSpecProvider', 'JapanSpecProvider' ] # Internal _custom_code = Code.custom_code class BrazilSpecProvider(object): """Class that provides special data for pt-br""" class Meta: name = 'brazil_provider' @staticmethod def cpf(with_mask=True): """Get a random CPF (brazilian social security code) :param with_mask: use CPF mask (###.###.###-##) in the return :returns: Random CPF :Example: 001.137.297-40 """ def get_verifying_digit_cpf(cpf, peso): """Calculates the verifying digit for the CPF :param cpf: ist of integers with the CPF :param peso: Integer with the weight for the modulo 11 calculate :returns: the verifying digit for the CPF """ soma = 0 for index, digit in enumerate(cpf): soma += digit * (peso - index) resto = soma % 11 if resto == 0 or resto == 1 or resto >= 11: return 0 return 11 - resto cpf_without_dv = [randint(0, 9) for _ in range(9)] first_dv = get_verifying_digit_cpf(cpf_without_dv, 10) cpf_without_dv.append(first_dv) second_dv = get_verifying_digit_cpf(cpf_without_dv, 11) cpf_without_dv.append(second_dv) cpf = ''.join([str(i) for i in cpf_without_dv]) if with_mask: return cpf[:3] + '.' + cpf[3:6] + '.' + cpf[6:9] + '-' + cpf[9:] return cpf @staticmethod def cnpj(with_mask=True): """Get a random cnpj (brazilian social security code) :param with_mask: use cnpj mask (###.###.###-##) in the return :returns: Random cnpj :Example: 77.732.230/0001-70 """ def get_verifying_digit_cnpj(cnpj, peso): """Calculates the verifying digit for the cnpj :param cnpj: list of integers with the cnpj :param peso: integer with the weigth for the modulo 11 calcule :returns: the verifying digit for the cnpj """ soma = 0 if peso == 5: peso_list = [5, 4, 3, 2, 9, 8, 7, 6, 5, 4, 3, 2] elif peso == 6: peso_list = [6, 5, 4, 3, 2, 9, 8, 7, 6, 5, 4, 3, 2] for i, _ in enumerate(cnpj): soma += peso_list[i] * cnpj[i] resto = soma % 11 if resto < 2: return 0 return 11 - resto cnpj_without_dv = [randint(0, 9) for _ in range(12)] first_dv = get_verifying_digit_cnpj(cnpj_without_dv, 5) cnpj_without_dv.append(first_dv) second_dv = get_verifying_digit_cnpj(cnpj_without_dv, 6) cnpj_without_dv.append(second_dv) cnpj = ''.join([str(i) for i in cnpj_without_dv]) if with_mask: return cnpj[:2] + '.' + cnpj[2:5] + '.' + cnpj[5:8] + '/' + \ cnpj[8:12] + '-' + cnpj[12:] return cnpj class USASpecProvider(object): """Class that provides special data for en""" class Meta: name = 'usa_provider' @staticmethod def tracking_number(service='usps'): """Generate random tracking number for USPS, FedEx and UPS. :param service: :return: """ service = service.lower() if service not in ('usps', 'fedex', 'ups'): raise ValueError('Unsupported post service') services = { 'usps': ( '#### #### #### #### ####', '@@ ### ### ### US' ), 'fedex': ( "#### #### ####", "#### #### #### ###" ), 'ups': ("1Z@####@##########",) } mask = choice(services[service]) return _custom_code(mask=mask) @staticmethod def ssn(): """Generate a random, but valid Social Security Number. :returns: Random SSN :Example: 569-66-5801 """ # Valid SSNs exclude 000, 666, and 900-999 in the area group area = randint(1, 899) if area == 666: area = 665 return '{:03}-{:02}-{:04}'.format( area, randint(1, 99), randint(1, 9999)) @staticmethod def personality(category='mbti'): """Generate a type of personality. :param category: Category. :return: Personality type. :Example: ISFJ. """ mbtis = ("ISFJ", "ISTJ", "INFJ", "INTJ", "ISTP", "ISFP", "INFP", "INTP", "ESTP", "ESFP", "ENFP", "ENTP", "ESTJ", "ESFJ", "ENFJ", "ENTJ") if category.lower() == 'rheti': return randint(1, 10) return choice(mbtis) class RussiaSpecProvider(object): """Specific data for russian language (ru)""" class Meta: name = 'russia_provider' @staticmethod def generate_sentence(): """Generate sentence from the parts. :return: Sentence. :rtype: str """ data = pull('text.json', 'ru')['sentence'] sentence = [choice(data[k]) for k in ('head', 'p1', 'p2', 'tail')] return '{0} {1} {2} {3}'.format(*sentence) @staticmethod def patronymic(gender='female'): """Generate random patronymic name. :param gender: Gender of person. :return: Patronymic name. :Example: Алексеевна. """ gender = gender.lower() try: patronymic = pull('personal.json', 'ru')['patronymic'] return choice(patronymic[gender]) except: raise JSONKeyError( 'Not exist key. Please use one of ["female", "male"]') @staticmethod def passport_series(year=None): """Generate random series of passport. :param year: Year of manufacture. :return: Series. :Example: 02 15. """ year = randint(10, 16) if not \ year else year region = randint(1, 99) return '{:02d} {}'.format(region, year) @staticmethod def passport_number(): """Generate random passport number. :return: Number. :Example: 560430 """ return _custom_code(mask='######') def series_and_number(self): """Generate a random passport number and series. :return: Series and number. :Example: 57 16 805199. """ return '%s %s' % ( self.passport_series(), self.passport_number() ) class JapanSpecProvider(object): """Class that provides special data for jp""" class Meta: name = 'japan_provider' @staticmethod def full_to_half(text, alnum=True): """Convert all full width katakana, alphanumeric and few special characters like (, ), ・ to equivalent half width character. :param text: The text to be converted. :param alnum: Convert alphanumeric, default True. :return: Text with full width characters converted to half width. :Example: QVCジャパン(0123) """ fh_kana_special = { "ア": "ア", "イ": "イ", "ウ": "ウ", "エ": "エ", "オ": "オ", "カ": "カ", "キ": "キ", "ク": "ク", "ケ": "ケ", "コ": "コ", "ガ": "ガ", "ギ": "ギ", "グ": "グ", "ゲ": "ゲ", "ゴ": "ゴ", "サ": "サ", "シ": "シ", "ス": "ス", "セ": "セ", "ソ": "ソ", "ザ": "ザ", "ジ": "ジ", "ズ": "ズ", "ゼ": "ゼ", "ゾ": "ゾ", "タ": "タ", "チ": "チ", "ツ": "ツ", "テ": "テ", "ト": "ト", "ダ": "ダ", "ヂ": "ヂ", "ヅ": "ヅ", "デ": "デ", "ド": "ド", "ナ": "ナ", "ニ": "ニ", "ヌ": "ヌ", "ネ": "ネ", "ノ": "ノ", "ハ": "ハ", "ヒ": "ヒ", "フ": "フ", "ヘ": "ヘ", "ホ": "ホ", "バ": "バ", "ビ": "ビ", "ブ": "ブ", "ベ": "ベ", "ボ": "ボ", "パ": "パ", "ピ": "ピ", "プ": "プ", "ペ": "ペ", "ポ": "ポ", "マ": "マ", "ミ": "ミ", "ム": "ム", "メ": "メ", "モ": "モ", "ヤ": "ヤ", "ユ": "ユ", "ヨ": "ヨ", "ラ": "ラ", "リ": "リ", "ル": "ル", "レ": "レ", "ロ": "ロ", "ワ": "ワ", "ヲ": "ヲ", "ン": "ン", "ァ": "ァ", "ィ": "ィ", "ゥ": "ゥ", "ェ": "ェ", "ォ": "ォ", "ッ": "ッ", "ャ": "ャ", "ュ": "ュ", "ョ": "ョ", "!": "!", """: "\"", "#": "#", "$": "$", "%": "%", "&": "&", "'": "'", "(": "(", ")": ")", "*": "*", "+": "+", "ー": "ー", "/": "/", ":": ":", ";": ";", "<": "<", "=": "=", ">": ">", "?": "?", "@": "@", "[": "[", "\": "\\", "]": "]", "^": "^", "_": "_", "`": "`", "{": "{", "|": "|", "}": "}", "~": "~", "・": "・", "「": "「", "」": "」" } # leaving "。": "。", "、": "," out for now _fh_alnum_offset = 65248 # 0xFEE0 result = "" for char in text: if char in fh_kana_special: result += fh_kana_special[char] elif alnum and ord("0") <= ord(char) <= ord("z"): result += chr(ord(char) - _fh_alnum_offset) else: result += char return result @staticmethod def half_to_full(text, alnum=True): """Convert all half width katakana, alphanumeric, and special characters ((, ), ) to equivalent full width character. :param text: The text to be converted. :param alnum: Convert alphanumeric, default True. :return: Text with half width characters converted to full width. :Example: QVCジャパン(0123) """ _hf_alnum_offset = 65248 result = "" hf_voiced_kana = { "ガ": "ガ", "ギ": "ギ", "グ": "グ", "ゲ": "ゲ", "ゴ": "ゴ", "ザ": "ザ", "ジ": "ジ", "ズ": "ズ", "ゼ": "ゼ", "ゾ": "ゾ", "ダ": "ダ", "ヂ": "ヂ", "ヅ": "ヅ", "デ": "デ", "ド": "ド", "バ": "バ", "ビ": "ビ", "ブ": "ブ", "ベ": "ベ", "ボ": "ボ", "パ": "パ", "ピ": "ピ", "プ": "プ", "ペ": "ペ", "ポ": "ポ" } hf_kana_special = { "ア": "ア", "イ": "イ", "ウ": "ウ", "エ": "エ", "オ": "オ", "カ": "カ", "キ": "キ", "ク": "ク", "ケ": "ケ", "コ": "コ", "サ": "サ", "シ": "シ", "ス": "ス", "セ": "セ", "ソ": "ソ", "タ": "タ", "チ": "チ", "ツ": "ツ", "テ": "テ", "ト": "ト", "ナ": "ナ", "ニ": "ニ", "ヌ": "ヌ", "ネ": "ネ", "ノ": "ノ", "ハ": "ハ", "ヒ": "ヒ", "フ": "フ", "ヘ": "ヘ", "ホ": "ホ", "マ": "マ", "ミ": "ミ", "ム": "ム", "メ": "メ", "モ": "モ", "ヤ": "ヤ", "ユ": "ユ", "ヨ": "ヨ", "ラ": "ラ", "リ": "リ", "ル": "ル", "レ": "レ", "ロ": "ロ", "ワ": "ワ", "ヲ": "ヲ", "ン": "ン", "ァ": "ァ", "ィ": "ィ", "ゥ": "ゥ", "ェ": "ェ", "ォ": "ォ", "ッ": "ッ", "ャ": "ャ", "ュ": "ュ", "ョ": "ョ", "!": "!", "\"": """, "#": "#", "$": "$", "%": "%", "&": "&", "'": "'", "(": "(", ")": ")", "*": "*", "+": "+", "ー": "ー", "/": "/", ":": ":", ";": ";", "<": "<", "=": "=", ">": ">", "?": "?", "@": "@", "[": "[", "\\": "\", "]": "]", "^": "^", "_": "_", "`": "`", "{": "{", "|": "|", "}": "}", "~": "~", "・": "・", "「": "「", "」": "」" } def hf_parse(char, result): """Parse the char from half-width to full-width, append to result, and return result. :param char: Character to be parsed from half-width to full-width. :param result: Previous result string. :return: Result appended with parsed char. :Example: ラーメン """ if char in hf_kana_special: result += hf_kana_special[char] elif alnum and ord("0") <= ord(char) <= ord("z"): result += chr(ord(char) + _hf_alnum_offset) else: result += char return result # leave "。": "。", ",": "、", for now i = 0 while i < len(text) - 1: # need to lookahead for separate voice mark pair = text[i] + text[i + 1] if (text[i + 1] == "゙" or text[i + 1] == "゚") and \ pair in hf_voiced_kana: result += hf_voiced_kana[pair] i += 2 continue else: result = hf_parse(text[i], result) i += 1 if i == len(text) - 1: result = hf_parse(text[i], result) return result
py
7dfde9b0bea1f1d18e98ea8474f5af2681986b3c
#!/usr/bin/env python3 """ Bouncing Balls Program Displays one or more bouncing balls within a turtle screen. This program utilizes the following programming features: + turtle module + time module + random module """ import turtle import random import time def at_left_edge(ball, screen_width): """ (int, int) -> bool Handle ball when it hits the left edge of the screen """ if ball.xcor() < -screen_width / 2: return True else: return False def at_right_edge(ball, screen_width): """ (int, int) -> bool Handle ball when it hits the right edge of the screen """ if ball.xcor() > screen_width / 2: return True else: return False def at_top_edge(ball, screen_height): """ (int, int) -> bool Handle ball when it hits the top edge of the screen """ if ball.ycor() > screen_height / 2: return True else: return False def at_bottom_edge(ball, screen_height): """ (int, int) -> bool Handle ball when it hits the bottom edge of the screen """ if ball.ycor() < -screen_height / 2: return True else: return False def bounce_ball(ball, new_direction): """ (int, str) -> int Handle ball's change in direction when it bounces Returns the new heading """ if new_direction == 'left' or new_direction == 'right': new_heading = 180 - ball.heading() elif new_direction == 'up' or new_direction == 'down': new_heading = 360 - ball.heading() return new_heading def create_balls(num_balls): """ (int) -> list Initialize <num_balls> Returns a list populated with <num_balls> """ balls = [] for each_ball in range(0, num_balls): new_ball = turtle.Turtle() new_ball.shape('circle') new_ball.fillcolor('black') new_ball.speed(0) new_ball.penup() new_ball.setheading(random.randint(1, 359)) balls.append(new_ball) return balls def main(): """ Bouncing Balls Simulates bouncing balls in a turtle screen fo Simulates bouncing balls in a turtle screen for a specified number of seconds """ print('Simulates bouncing balls in a turtle screen for a specified number \ of seconds') # Program Greeting screen_width = 800 # Init Screen width screen_height = 600 # Init Screen height turtle.setup(screen_width, screen_height) # Set window size window = turtle.Screen() # Create turtle window window.title('Bouncing Balls') # Set window title # TODO: Input-Error-checking num_secs = int(input('Enter number of seconds to run: ')) # Execution time num_balls = int(input('Enter number of balls in simulation: ')) # Number of balls balls = create_balls(num_balls) # create balls start_time = time.time() # Set start time # Begin Simulation terminate = False # Init Loop Condition while not terminate: # Enter loop for each_ball in range(0, len(balls)): balls[each_ball].forward(15) if at_left_edge(balls[each_ball], screen_width): balls[each_ball].setheading(bounce_ball(balls[each_ball], 'right')) elif at_right_edge(balls[each_ball], screen_width): balls[each_ball].setheading(bounce_ball(balls[each_ball], 'left')) elif at_top_edge(balls[each_ball], screen_height): balls[each_ball].setheading(bounce_ball(balls[each_ball], 'down')) elif at_bottom_edge(balls[each_ball], screen_height): balls[each_ball].setheading(bounce_ball(balls[each_ball], 'up')) if time.time() - start_time > num_secs: terminate = True turtle.exitonclick() # Exit on Close window if __name__ == '__main__': main()
py
7dfde9c9b96d97cd5b473eba85b1fd3055cb4dd8
from .halostats import HaloStats ___red_end_user_data_statement__ = ( "This cog stores Discord ID's and Gamertags and uses Selenium to web-scrape the halotracker.com site for Halo Infinite stats\n**WARNING**\nRequires Google Chrome to be installed on server hosting the bot!" ) async def setup(bot): cog = HaloStats(bot) bot.add_cog(cog)
py
7dfdea425c1bae26f6997e1b9470028c0614e9b1
from __future__ import absolute_import, division, print_function, unicode_literals import os import random import unittest from math import pi import gpytorch import torch from gpytorch.kernels import MultitaskKernel, RBFKernel from gpytorch.likelihoods import MultitaskGaussianLikelihood from gpytorch.means import ConstantMean, MultitaskMean from gpytorch.distributions import MultitaskMultivariateNormal # Simple training data: let's try to learn a sine function train_x = torch.linspace(0, 1, 100) latent_error = torch.randn(train_x.size()) * 0.5 # y1 function is sin(2*pi*x) with noise N(0, 0.04) train_y1 = torch.sin(train_x * (2 * pi)) + latent_error + torch.randn(train_x.size()) * 0.1 # y2 function is cos(2*pi*x) with noise N(0, 0.04) train_y2 = torch.cos(train_x * (2 * pi)) + latent_error + torch.randn(train_x.size()) * 0.1 # Create a train_y which interleaves the two train_y = torch.stack([train_y1, train_y2], -1) class MultitaskGPModel(gpytorch.models.ExactGP): def __init__(self, train_x, train_y, likelihood): super(MultitaskGPModel, self).__init__(train_x, train_y, likelihood) self.mean_module = MultitaskMean(ConstantMean(), num_tasks=2) self_covar_module = RBFKernel() self.covar_module = MultitaskKernel(self_covar_module, num_tasks=2, rank=1) def forward(self, x): mean_x = self.mean_module(x) covar_x = self.covar_module(x) return MultitaskMultivariateNormal(mean_x, covar_x) class TestMultiTaskGPRegression(unittest.TestCase): def setUp(self): if os.getenv("UNLOCK_SEED") is None or os.getenv("UNLOCK_SEED").lower() == "false": self.rng_state = torch.get_rng_state() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) random.seed(0) def tearDown(self): if hasattr(self, "rng_state"): torch.set_rng_state(self.rng_state) def test_multitask_low_rank_noise_covar(self): likelihood = MultitaskGaussianLikelihood(num_tasks=2, rank=1) model = MultitaskGPModel(train_x, train_y, likelihood) # Find optimal model hyperparameters model.train() likelihood.train() # Use the adam optimizer optimizer = torch.optim.Adam([{"params": model.parameters()}], lr=0.1) # Includes GaussianLikelihood parameters # "Loss" for GPs - the marginal log likelihood mll = gpytorch.mlls.ExactMarginalLogLikelihood(likelihood, model) n_iter = 50 for _ in range(n_iter): # Zero prev backpropped gradients optimizer.zero_grad() # Make predictions from training data # Again, note feeding duplicated x_data and indices indicating which task output = model(train_x) # TODO: Fix this view call!! loss = -mll(output, train_y) loss.backward() optimizer.step() # Test the model model.eval() likelihood.eval() num_tasks = 2 task_noise_covar_factor = likelihood.task_noise_covar_factor log_noise = likelihood.log_noise task_noise_covar = task_noise_covar_factor.matmul( task_noise_covar_factor.transpose(-1, -2) ) + log_noise.exp() * torch.eye(num_tasks) self.assertGreater(task_noise_covar[0, 0, 1].item(), 0.05) if __name__ == "__main__": unittest.main()
py
7dfdea5b8e59c361cb0d9c5cdba87089f0f84d8b
import datetime from django.db import models try: from collections import OrderedDict except: # pragma: no cover from ordereddict import OrderedDict import uuid import json from string import Template import smtplib import requests from paying_for_college.csvkit.csvkit import Writer as cdw from django.core.mail import send_mail REGION_MAP = {'MW': ['IL', 'IN', 'IA', 'KS', 'MI', 'MN', 'MO', 'NE', 'ND', 'OH', 'SD', 'WI'], 'NE': ['CT', 'ME', 'MA', 'NH', 'NJ', 'NY', 'PA', 'RI', 'VT'], 'SO': ['AL', 'AR', 'DE', 'DC', 'FL', 'GA', 'KY', 'LA', 'MD', 'MS', 'NC', 'OK', 'SC', 'TN', 'TX', 'VA', 'WV'], 'WE': ['AK', 'AZ', 'CA', 'CO', 'HI', 'ID', 'MT', 'NV', 'NM', 'OR', 'UT', 'WA', 'WY'] } CONTROL_MAP = {'1': 'Public', '2': 'Private', '3': 'For-profit'} REGION_NAMES = {'MW': 'Midwest', 'NE': "Northeast", 'SO': 'South', 'WE': 'West'} HIGHEST_DEGREES = { # highest-awarded values from Ed API and our CSV spec '0': "Non-degree-granting", '1': 'Certificate', '2': "Associate degree", '3': "Bachelor's degree", '4': "Graduate degree" } LEVELS = { # Dept. of Ed classification of post-secondary degree levels '1': "Program of less than 1 academic year", '2': "Program of at least 1 but less than 2 academic years", '3': "Associate's degree", '4': "Program of at least 2 but less than 4 academic years", '5': "Bachelor's degree", '6': "Post-baccalaureate certificate", '7': "Master's degree", '8': "Post-master's certificate", '17': "Doctor's degree-research/scholarship", '18': "Doctor's degree-professional practice", '19': "Doctor's degree-other" } NOTIFICATION_TEMPLATE = Template("""Disclosure notification for offer ID $oid\n\ timestamp: $time\n\ errors: $errors\n\ If errors are "none," the disclosure is confirmed.\ """) def get_region(school): """return a school's region based on state""" for region in REGION_MAP: if school.state in REGION_MAP[region]: return region return '' def make_divisible_by_6(value): """Makes sure a value, such as program_length, is divisible by 6""" if not value or value % 6 == 0: return value else: return value + (6 - (value % 6)) class ConstantRate(models.Model): """Rate values that generally only change annually""" name = models.CharField(max_length=255) slug = models.CharField(max_length=255, blank=True, help_text="VARIABLE NAME FOR JS") value = models.DecimalField(max_digits=6, decimal_places=5) note = models.TextField(blank=True) updated = models.DateField(auto_now=True) def __unicode__(self): return u"%s (%s), updated %s" % (self.name, self.slug, self.updated) class Meta: ordering = ['slug'] class ConstantCap(models.Model): """Cap values that generally only change annually""" name = models.CharField(max_length=255) slug = models.CharField(max_length=255, blank=True, help_text="VARIABLE NAME FOR JS") value = models.IntegerField() note = models.TextField(blank=True) updated = models.DateField(auto_now=True) def __unicode__(self): return u"%s (%s), updated %s" % (self.name, self.slug, self.updated) class Meta: ordering = ['slug'] # original data_json fields: # ALIAS -- not needed, DELETE # AVGMONTHLYPAY # AVGSTULOANDEBT # AVGSTULOANDEBTRANK -- not needed, DELETE # BADALIAS -- not needed, DELETE # BAH 1356 -- not needed, DELETE # BOOKS # CITY (now school.city) # CONTROL (now school.control) # DEFAULTRATE # GRADRATE -- now school.grad_rate # GRADRATERANK -- not needed, DELETE # INDICATORGROUP # KBYOSS (now school.KBYOSS) -- not needed, DELETE # MEDIANDEBTCOMPLETER # new in 2015 # NETPRICE110K -- not needed, DELETE # NETPRICE3OK -- not needed, DELETE # NETPRICE48K -- not needed, DELETE # NETPRICE75K -- not needed, DELETE # NETPRICEGENERAL -- not needed, DELETE # NETPRICEOK -- not needed, DELETE # OFFERAA # OFFERBA # OFFERGRAD # ONCAMPUSAVAIL # ONLINE (now school.online) # OTHEROFFCAMPUS # OTHERONCAMPUS # OTHERWFAMILY # RETENTRATE -- not needed, DELETE # RETENTRATELT4 # new in 2015 -- not needed, DELETE # REPAY3YR # new in 2015 # ROOMBRDOFFCAMPUS # ROOMBRDONCAMPUS # SCHOOL (now school.primary_alias) # SCHOOL_ID (now school.pk) # STATE (now school.state) # TUITIONGRADINDIS # TUITIONGRADINS # TUITIONGRADOSS # TUITIONUNDERINDIS # TUITIONUNDERINS # TUITIONUNDEROSS # ZIP (now school.zip5) class Contact(models.Model): """school endpoint or email to which we send confirmations""" contacts = models.TextField(help_text="COMMA-SEPARATED LIST OF EMAILS", blank=True) endpoint = models.CharField(max_length=255, blank=True) name = models.CharField(max_length=255, blank=True) internal_note = models.TextField(blank=True) def __unicode__(self): return u", ".join([bit for bit in [self.contacts, self.endpoint] if bit]) class School(models.Model): """ Represents a school """ SETTLEMENT_CHOICES = ( ('edmc', 'Education Management Corporation'), ('', 'Non-settlement') ) school_id = models.IntegerField(primary_key=True) ope6_id = models.IntegerField(blank=True, null=True) ope8_id = models.IntegerField(blank=True, null=True) settlement_school = models.CharField(max_length=100, blank=True, choices=SETTLEMENT_CHOICES, default='') contact = models.ForeignKey(Contact, blank=True, null=True) data_json = models.TextField(blank=True) city = models.CharField(max_length=50, blank=True) state = models.CharField(max_length=2, blank=True) zip5 = models.CharField(max_length=5, blank=True) enrollment = models.IntegerField(blank=True, null=True) accreditor = models.CharField(max_length=255, blank=True) ownership = models.CharField(max_length=255, blank=True) control = models.CharField(max_length=50, blank=True, help_text="'Public', 'Private' or 'For-profit'") url = models.TextField(blank=True) degrees_predominant = models.TextField(blank=True) degrees_highest = models.TextField(blank=True) main_campus = models.NullBooleanField() online_only = models.NullBooleanField() operating = models.BooleanField(default=True) under_investigation = models.BooleanField(default=False, help_text=("Heightened Cash " "Monitoring 2")) KBYOSS = models.BooleanField(default=False) # shopping-sheet participant grad_rate_4yr = models.DecimalField(max_digits=5, decimal_places=3, blank=True, null=True) grad_rate_lt4 = models.DecimalField(max_digits=5, decimal_places=3, blank=True, null=True) grad_rate = models.DecimalField(max_digits=5, decimal_places=3, blank=True, null=True, help_text="A 2-YEAR POOLED VALUE") repay_3yr = models.DecimalField(max_digits=13, decimal_places=10, blank=True, null=True, help_text=("GRADS WITH A DECLINING BALANCE" " AFTER 3 YRS")) default_rate = models.DecimalField(max_digits=5, decimal_places=3, blank=True, null=True, help_text="LOAN DEFAULT RATE AT 3 YRS") median_total_debt = models.DecimalField(max_digits=7, decimal_places=1, blank=True, null=True, help_text="MEDIAN STUDENT DEBT") median_monthly_debt = models.DecimalField(max_digits=14, decimal_places=9, blank=True, null=True, help_text=("MEDIAN STUDENT " "MONTHLY DEBT")) median_annual_pay = models.IntegerField(blank=True, null=True, help_text=("MEDIAN PAY " "10 YRS AFTER ENTRY")) avg_net_price = models.IntegerField(blank=True, null=True, help_text="OVERALL AVERAGE") tuition_out_of_state = models.IntegerField(blank=True, null=True) tuition_in_state = models.IntegerField(blank=True, null=True) offers_perkins = models.BooleanField(default=False) def as_json(self): """delivers pertinent data points as json""" region = get_region(self) ordered_out = OrderedDict() jdata = json.loads(self.data_json) dict_out = { 'books': jdata['BOOKS'], 'city': self.city, 'control': self.control, 'defaultRate': "{0}".format(self.default_rate), 'gradRate': "{0}".format(self.grad_rate), 'highestDegree': self.get_highest_degree(), 'medianMonthlyDebt': "{0}".format(self.median_monthly_debt), 'medianTotalDebt': "{0}".format(self.median_total_debt), 'nicknames': ", ".join([nick.nickname for nick in self.nickname_set.all()]), 'offersPerkins': self.offers_perkins, 'onCampusAvail': jdata['ONCAMPUSAVAIL'], 'online': self.online_only, 'otherOffCampus': jdata['OTHEROFFCAMPUS'], 'otherOnCampus': jdata['OTHERONCAMPUS'], 'otherWFamily': jdata['OTHERWFAMILY'], 'predominantDegree': self.get_predominant_degree(), 'region': region, 'repay3yr': "{0}".format(self.repay_3yr), 'roomBrdOffCampus': jdata['ROOMBRDOFFCAMPUS'], 'roomBrdOnCampus': jdata['ROOMBRDONCAMPUS'], 'school': self.primary_alias, 'schoolID': self.pk, 'schoolSalary': self.median_annual_pay, 'settlementSchool': self.settlement_school, 'state': self.state, 'tuitionGradInDis': jdata['TUITIONGRADINDIS'], 'tuitionGradInS': jdata['TUITIONGRADINS'], 'tuitionGradOss': jdata['TUITIONGRADOSS'], 'tuitionUnderInDis': jdata['TUITIONUNDERINDIS'], 'tuitionUnderInS': self.tuition_in_state, 'tuitionUnderOoss': self.tuition_out_of_state, 'url': self.url, 'zip5': self.zip5, } for key in sorted(dict_out.keys()): ordered_out[key] = dict_out[key] return json.dumps(ordered_out) def __unicode__(self): return self.primary_alias + u" (%s)" % self.school_id def get_predominant_degree(self): predominant = '' if (self.degrees_predominant and self.degrees_predominant in HIGHEST_DEGREES): predominant = HIGHEST_DEGREES[self.degrees_predominant] return predominant def get_highest_degree(self): highest = '' if (self.degrees_highest and self.degrees_highest in HIGHEST_DEGREES): highest = HIGHEST_DEGREES[self.degrees_highest] return highest def convert_ope6(self): if self.ope6_id: digits = len(str(self.ope6_id)) if digits < 6: return ('0' * (6-digits)) + str(self.ope6_id) else: return str(self.ope6_id) else: return '' def convert_ope8(self): if self.ope8_id: digits = len(str(self.ope8_id)) if digits < 8: return ('0' * (8-digits)) + str(self.ope8_id) else: return str(self.ope8_id) else: return '' @property def primary_alias(self): if len(self.alias_set.values()) != 0: return self.alias_set.get(is_primary=True).alias else: return 'Not Available' @property def nicknames(self): return ", ".join([nick.nickname for nick in self.nickname_set.all()]) class Notification(models.Model): """record of a disclosure verification""" institution = models.ForeignKey(School) oid = models.CharField(max_length=40) timestamp = models.DateTimeField() errors = models.CharField(max_length=255) emails = models.TextField(blank=True, help_text="COMMA-SEPARATED STRING OF EMAILS") sent = models.BooleanField(default=False) log = models.TextField(blank=True) def __unicode__(self): return "{0} {1} ({2})".format(self.oid, self.institution.primary_alias, self.institution.pk) def notify_school(self): school = self.institution if not school.settlement_school: nonmsg = "No notification required; {} is not a settlement school" return nonmsg.format(school.primary_alias) payload = { 'oid': self.oid, 'time': self.timestamp.isoformat(), 'errors': self.errors } now = datetime.datetime.now() no_contact_msg = ("School notification failed: " "No endpoint or email info {}".format(now)) # we prefer to use endpount notification, so use it first if existing if school.contact: if school.contact.endpoint: endpoint = school.contact.endpoint if type(endpoint) == unicode: endpoint = endpoint.encode('utf-8') try: resp = requests.post(endpoint, data=payload, timeout=10) except requests.exceptions.ConnectionError as e: exmsg = ("Error: connection error at school " "{} {}\n".format(now, e)) self.log = self.log + exmsg self.save() return exmsg except requests.exceptions.Timeout: exmsg = ("Error: connection with school " "timed out {}\n".format(now)) self.log = self.log + exmsg self.save() return exmsg except requests.exceptions.RequestException as e: exmsg = ("Error: request error at school: " "{} {}\n".format(now, e)) self.log = self.log + exmsg self.save() return exmsg else: if resp.ok: self.sent = True self.log = ("School notified " "via endpoint {}".format(now)) self.save() return self.log else: msg = ("Send attempted: {}\nURL: {}\n" "response reason: {}\nstatus_code: {}\n" "content: {}\n\n".format(now, endpoint, resp.reason, resp.status_code, resp.content)) self.log = self.log + msg self.save() return "Notification failed: {}".format(msg) elif school.contact.contacts: try: send_mail("CFPB disclosure notification", NOTIFICATION_TEMPLATE.substitute(payload), "[email protected]", [email for email in school.contact.contacts.split(',')], fail_silently=False) self.sent = True self.emails = school.contact.contacts self.log = ("School notified via email " "at {}".format(self.emails)) self.save() return self.log except smtplib.SMTPException as e: email_fail_msg = ("School email notification " "failed on {}\n" "Error: {}".format(now, e)) self.log = self.log + email_fail_msg self.save() return email_fail_msg else: self.log = self.log + no_contact_msg self.save() return no_contact_msg else: self.log = self.log + no_contact_msg self.save() return no_contact_msg class Disclosure(models.Model): """Legally required wording for aspects of a school's aid disclosure""" name = models.CharField(max_length=255) institution = models.ForeignKey(School, blank=True, null=True) text = models.TextField(blank=True) def __unicode__(self): return self.name + u" (%s)" % unicode(self.institution) class Program(models.Model): """ Cost and outcome info for an individual course of study at a school """ DEBT_NOTE = "TITLEIV_DEBT + PRIVATE_DEBT + INSTITUTIONAL_DEBT" institution = models.ForeignKey(School) program_name = models.CharField(max_length=255) accreditor = models.CharField(max_length=255, blank=True) level = models.CharField(max_length=255, blank=True) program_code = models.CharField(max_length=255, blank=True) campus = models.CharField(max_length=255, blank=True) cip_code = models.CharField(max_length=255, blank=True) soc_codes = models.CharField(max_length=255, blank=True) total_cost = models.IntegerField(blank=True, null=True, help_text="COMPUTED") time_to_complete = models.IntegerField(blank=True, null=True, help_text="IN MONTHS") completion_rate = models.DecimalField(blank=True, null=True, max_digits=5, decimal_places=2) completion_cohort = models.IntegerField(blank=True, null=True, help_text="COMPLETION COHORT") completers = models.IntegerField(blank=True, null=True, help_text="COMPLETERS OF THE PROGRAM") titleiv_debt = models.IntegerField(blank=True, null=True) private_debt = models.IntegerField(blank=True, null=True) institutional_debt = models.IntegerField(blank=True, null=True) mean_student_loan_completers = models.IntegerField(blank=True, null=True, help_text=DEBT_NOTE) median_student_loan_completers = models.IntegerField(blank=True, null=True, help_text=DEBT_NOTE) default_rate = models.DecimalField(blank=True, null=True, max_digits=5, decimal_places=2) salary = models.IntegerField(blank=True, null=True, help_text='MEDIAN SALARY') program_length = models.IntegerField(blank=True, null=True, help_text="IN MONTHS") tuition = models.IntegerField(blank=True, null=True) fees = models.IntegerField(blank=True, null=True) housing = models.IntegerField(blank=True, null=True, help_text="HOUSING & MEALS") books = models.IntegerField(blank=True, null=True, help_text="BOOKS & SUPPLIES") transportation = models.IntegerField(blank=True, null=True) other_costs = models.IntegerField(blank=True, null=True) job_rate = models.DecimalField(blank=True, null=True, max_digits=5, decimal_places=2, help_text="COMPLETERS WHO GET RELATED JOB") job_note = models.TextField(blank=True, help_text="EXPLANATION FROM SCHOOL") test = models.BooleanField(default=False) def __unicode__(self): return u"%s (%s)" % (self.program_name, unicode(self.institution)) def get_level(self): level = '' if self.level and str(self.level) in HIGHEST_DEGREES: level = HIGHEST_DEGREES[str(self.level)] return level def as_json(self): ordered_out = OrderedDict() dict_out = { 'accreditor': self.accreditor, 'books': self.books, 'campus': self.campus, 'cipCode': self.cip_code, 'completionRate': "{0}".format(self.completion_rate), 'completionCohort': self.completion_cohort, 'completers': self.completers, 'defaultRate': "{0}".format(self.default_rate), 'fees': self.fees, 'housing': self.housing, 'institution': self.institution.primary_alias, 'institutionalDebt': self.institutional_debt, 'jobNote': self.job_note, 'jobRate': "{0}".format(self.job_rate), 'level': self.get_level(), 'levelCode': self.level, 'meanStudentLoanCompleters': self.mean_student_loan_completers, 'medianStudentLoanCompleters': self.median_student_loan_completers, 'privateDebt': self.private_debt, 'programCode': self.program_code, 'programLength': make_divisible_by_6(self.program_length), 'programName': self.program_name, 'programSalary': self.salary, 'schoolID': self.institution.school_id, 'socCodes': self.soc_codes, 'timeToComplete': self.time_to_complete, 'titleIVDebt': self.titleiv_debt, 'totalCost': self.total_cost, 'transportation': self.transportation, 'tuition': self.tuition, } for key in sorted(dict_out.keys()): ordered_out[key] = dict_out[key] return json.dumps(ordered_out) def as_csv(self, csvpath): """Output a CSV representation of a program""" headings = [ 'ipeds_unit_id', 'ope_id', 'program_code', 'program_name', 'program_length', 'program_level', 'accreditor', 'median_salary', 'average_time_to_complete', 'books_supplies', 'campus_name', 'cip_code', 'completion_rate', 'completion_cohort', 'completers', 'default_rate', 'job_placement_rate', 'job_placement_note', 'mean_student_loan_completers', 'median_student_loan_completers', 'soc_codes', 'total_cost', 'tuition_fees', 'test' ] with open(csvpath, 'w') as f: writer = cdw(f) writer.writerow(headings) writer.writerow([ self.institution.school_id, '', self.program_code, self.program_name, self.program_length, self.level, self.accreditor, self.salary, self.time_to_complete, self.books, self.campus, self.cip_code, "{}".format(self.completion_rate), self.completion_cohort, self.completers, "{0}".format(self.default_rate), "{0}".format(self.job_rate), self.job_note, self.mean_student_loan_completers, self.median_student_loan_completers, self.soc_codes, self.total_cost, self.tuition, self.test ]) # class Offer(models.Model): # """ # Financial aid package offered to a prospective student # """ # school = models.ForeignKey(School) # program = models.ForeignKey(Program) # student_id = models.CharField(max_length=255) # uuid = models.CharField(max_length=100, blank=True) # # COST OF ATTENDANCE # tuition = models.PositiveIntegerField(default=0, # help_text="TUITION & FEES") # tui # housing = models.PositiveIntegerField(default=0, # help_text="HOUSING & MEALS") # hou # books = models.PositiveIntegerField(default=0, # help_text="BOOKS & SUPPLIES") # bks # other = models.PositiveIntegerField(default=0, # help_text="OTHER EXPENSES") # oth # # MONEY FOR SCHOOL # scholarships = models.IntegerField(default=0, # help_text="SCHOLARSHIPS & GRANTS") # pell_grant = models.PositiveIntegerField(default=0) # tuition_assist = models.PositiveIntegerField(default=0, # help_text='SCHOLARSHIPS') # mil_assist = models.PositiveIntegerField(default=0, # help_text='MILITARY ASSISTANCE') # gi_bill = models.PositiveIntegerField(default=0) # you_pay = models.PositiveIntegerField(default=0) # family_pay = models.PositiveIntegerField(default=0) # work_study = models.PositiveIntegerField(default=0) # parent_loans = models.PositiveIntegerField(default=0) # perkins_loans = models.PositiveIntegerField(default=0) # subsidized_loans = models.PositiveIntegerField(default=0) # unsubsidized_loans = models.PositiveIntegerField(default=0) # plus_loans = models.PositiveIntegerField(default=0) # private_loans = models.PositiveIntegerField(default=0) # private_loan_interest = models.DecimalField(default=0.0, # max_digits=5, # decimal_places=2) # school_loans = models.PositiveIntegerField(default=0) # school_loan_interest = models.DecimalField(default=0.0, # max_digits=5, # decimal_places=2) # timestamp = models.DateTimeField(blank=True, null=True) # in_state = models.NullBooleanField(help_text="ONLY FOR PUBLIC SCHOOLS") # def save(self, *args, **kwargs): # if not self.uuid: # self.uuid = str(uuid.uuid4()) # super(Offer, self).save(*args, **kwargs) class Alias(models.Model): """ One of potentially several names for a school """ institution = models.ForeignKey(School) alias = models.TextField() is_primary = models.BooleanField(default=False) def __unicode__(self): return u"%s (alias for %s)" % (self.alias, unicode(self.institution)) class Meta: verbose_name_plural = "Aliases" class Nickname(models.Model): """ One of potentially several nicknames for a school """ institution = models.ForeignKey(School) nickname = models.TextField() is_female = models.BooleanField(default=False) def __unicode__(self): return u"%s (nickname for %s)" % (self.nickname, unicode(self.institution)) class Meta: ordering = ['nickname'] class BAHRate(models.Model): """ Basic Allowance for Housing (BAH) rates are zipcode-specific. Used in GI Bill data and may go away. """ zip5 = models.CharField(max_length=5) value = models.IntegerField() class Worksheet(models.Model): """ The saved state of a student's comaprison worksheet. This is likely to go away. """ guid = models.CharField(max_length=64, primary_key=True) saved_data = models.TextField() created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) class Feedback(models.Model): """ User-submitted feedback """ created = models.DateTimeField(auto_now_add=True) message = models.TextField() def print_vals(obj, val_list=False, val_dict=False, noprint=False): """inspect a Django db object""" keylist = sorted([key for key in obj._meta.get_all_field_names()], key=lambda s: s.lower()) if val_list: newlist = [] for key in keylist: try: print "%s: %s" % (key, obj.__getattribute__(key)) except: pass else: newlist.append(key) return [obj.__getattribute__(key) for key in newlist] elif val_dict: return obj.__dict__ else: msg = "" try: msg += "%s values for %s:\n" % (obj._meta.object_name, obj) except: # pragma: no cover pass for key in keylist: try: msg += "%s: %s\n" % (key, obj.__getattribute__(key)) except: # pragma: no cover pass if noprint is False: print msg else: return msg
py
7dfdea720d14b71ad6244fb9d63cf96803ea4088
import pandas as pd import numpy as np from os.path import join as opj import sys #import matplotlib.pyplot as plt #from matplotlib import cm #import matplotlib as mpl from scipy.spatial import distance import scipy.cluster.hierarchy as sch import json """jinja2 import triggers DeprecationWarning about imp module""" from jinja2 import Environment, PackageLoader#, FileSystemLoader from .modified_scipy_dendrogram import modified_dendrogram __all__ = ['plot_hclust', 'plot_hclust_props'] """TODO: - Control x and y zoom independently https://stackoverflow.com/questions/61071276/d3-synchronizing-2-separate-zoom-behaviors/61164185#61164185""" set1_colors = ["#e41a1c", "#377eb8", "#4daf4a", "#984ea3", "#ff7f00", "#ffff33", "#a65628", "#f781bf", "#999999"] set3_colors = ["#8dd3c7", "#ffffb3", "#bebada", "#fb8072", "#80b1d3", "#fdb462", "#b3de69", "#fccde5", "#d9d9d9", "#bc80bd", "#ccebc5", "#ffed6f"] def plot_hclust(Z, title='', leaf_counts=None): """Plot tree of linkage-based hierarchical clustering. Nodes annotated with cluster ID. Parameters ---------- Z : linkage matrix Result of calling sch.linkage on a compressed pair-wise distance matrix leaf_counts : np.ndarray [Z.shape[0] - 1, ] Weights/counts for each leaf of the tree, using the same order as pwdist matrix used to generate linkage matrix Z. Returns ------- html : str String that can be saved as HTML for viewing""" html = plot_hclust_props(Z, title=title, leaf_counts=leaf_counts) return html def plot_hclust_props(Z, title='', res=None, alpha_col='pvalue', alpha=0.05, tooltip_cols=[], colors=None, prune_col=None, leaf_counts=None): """Plot tree of linkage-based hierarchical clustering, with nodes colored using stacked bars representing proportion of cluster members associated with specific conditions. Nodes also optionally annotated with pvalue, number of members or cluster ID. Parameters ---------- Z : linkage matrix Result of calling sch.linkage on a compressed pair-wise distance matrix res : pd.DataFrame Result from calling hcluster_diff, with observed/frequencies and p-values for each node alpha_col : str Column in res to use for 'alpha' annotation alpha : float Threshold for plotting the stacked bars and annotation colors : tuple of valid colors Used for stacked bars of conditions at each node prune_col : str/column in res Column of res that indicates whether a result/node can be pruned from the tree. Tree will not print any pruned nodes that only contain other pruned nodes. leaf_counts : np.ndarray [Z.shape[0] - 1, ] Weights/counts for each leaf of the tree, using the same order as pwdist matrix used to generate Z linkage matrix. Returns ------- html : str String that can be saved as HTML for viewing""" height=600 width=900 paths, lines, annotations, legend_data = _hclust_paths(Z, height=height, width=width, res=res, alpha_col=alpha_col, alpha=alpha, tooltip_cols=tooltip_cols, colors=colors, prune_col=prune_col, leaf_counts=leaf_counts) #lines_df = 100 * pd.DataFrame({'x1':np.random.rand(10), 'y1':np.random.rand(10), 'x2':np.random.rand(10), 'y2':np.random.rand(10)}) #lines_df = lines_df.assign(stroke='red', stroke_width=1.5) #lines_json = lines_df.to_json(orient='records') #circle_data = pd.DataFrame({'x':np.random.rand(10)*50 + width/2, 'y':np.random.rand(10)*50 + height/2}).to_json(orient='records') jinja_env = Environment(loader=PackageLoader('hierdiff', 'templates')) #jinja_env = Environment(loader=FileSystemLoader(opj(_git, 'hierdiff', 'hierdiff'))) tree_tmp = jinja_env.get_template('tree_template.html') html = tree_tmp.render(mytitle=title, line_data=json.dumps(lines), annotation_data=json.dumps(annotations), legend_data=json.dumps(legend_data), path_data=json.dumps(paths), height=height, width=width) return html def _encode(s): """Creates valid JSON strings that can be decoded by JS in th browser""" return str(s).replace('"', '@DBLQ').replace('<', '@LT').replace('>', '@GT').replace('/', '@SL') def _hclust_paths(Z, height, width, margin=10, res=None, alpha_col='pvalue', alpha=0.05, tooltip_cols=[], colors=None, min_count=0, prune_col=None, leaf_counts=None): if colors is None: colors = set1_colors lines = [] annotations = [] paths = [] if not res is None: """Use cts from every other element since cluster membership is always the last feature of the counts array and is therefore the innermost loop""" x_val_cols = [c for c in res.columns if 'val_' in c][::2] x_ct_cols = [c.replace('val', 'ct') for c in x_val_cols] x_vals = ['|'.join(res[c].iloc[0][:-1]) for c in x_val_cols] legend_data = [{'label':v, 'color':c} for v,c in zip(x_vals, colors)] else: legend_data = [] dend = modified_dendrogram(Z, counts=leaf_counts) xscale = _linear_scale_factory((np.min(np.array(dend['icoord'])), np.max(np.array(dend['icoord']))), (0+margin, width-margin)) yscale = _linear_scale_factory((np.min(np.array(dend['dcoord'])), np.max(np.array(dend['dcoord']))), (height-margin, 0+margin)) for xx, yy, cid in zip(dend['icoord'], dend['dcoord'], dend['cid_list']): #axh.plot(xx, yy, zorder=1, lw=0.5, color='k', alpha=1) if not res is None: """Assumes there is only one matching cid (not true if multiple results are passed)""" cid_res = res.loc[res['cid'] == cid] if len(cid_res) > 1: print('Multiple matching results for each cluster id (i.e. cid)') return else: cid_res = cid_res.iloc[0] if not prune_col is None: """Prune (don't print) if all member results are also prune=True""" prune = res.loc[res['cid'].isin(cid_res['children']), prune_col].all() if prune: continue paths.append(dict(coords=[[xscale(x), yscale(y)] for x,y in zip(xx, yy)], stroke='black', stroke_width=1)) N = np.sum(cid_res['K_neighbors']) ann = [f'cid: {cid:d}', f'n_uniq: {N:1.0f}', f'n_ct: {np.sum(cid_res[x_ct_cols]):1.0f}'] ann.extend(['%s: %s' % (tt, _encode(cid_res[tt])) for tt in tooltip_cols]) annotations.append(dict(annotation=ann, x1=xscale(xx[1]), x2=xscale(xx[2]), y1=yscale(yy[1]), y2=yscale(yy[2]))) if alpha is None or cid_res[alpha_col] <= alpha and N > min_count: cts = np.asarray(cid_res[x_ct_cols]) obs = cts / np.sum(cts) L = (xx[2] - xx[1]) xvec = L * np.concatenate(([0.], obs, [1.])) curX = xx[1] for i in range(len(obs)): c = colors[i] lines.append(dict(x1=xscale(curX), x2=xscale(curX + L*obs[i]), y1=yscale(yy[1]), y2=yscale(yy[2]), stroke=c, stroke_width=10)) """axh.plot([curX, curX + L*obs[i]], yy[1:3], color=c, lw=10, solid_capstyle='butt')""" curX += L*obs[i] else: paths.append(dict(coords=[[xscale(x), yscale(y)] for x,y in zip(xx, yy)], stroke='black', stroke_width=1)) s = ['cid: %d' % cid] annotations.append(dict(annotation=s, x1=xscale(xx[1]), x2=xscale(xx[2]), y1=yscale(yy[1]), y2=yscale(yy[2]))) paths = _translate_paths(paths) return paths, lines, annotations, legend_data def _linear_scale_factory(domain, rng): scalar = (rng[1] - rng[0]) / (domain[1] - domain[0]) offset = rng[0] - scalar*domain[0] def _scaler(x): return x * scalar + offset return _scaler def _translate_paths(paths): """Simple translation of path coordinates to SVG path string""" svg = [] for j,p in enumerate(paths): tmp = '' for i,c in enumerate(p['coords']): if i == 0: tmp += 'M%f,%f' % tuple(c) else: tmp += 'L%f,%f' % tuple(c) paths[j]['str_coords'] = tmp return paths
py
7dfdea775c644de6769a62fc05202654ba3bcf3a
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class TrafficManagerEndpoint(pulumi.CustomResource): custom_headers: pulumi.Output[list] """ One or more `custom_header` blocks as defined below * `name` (`str`) - The name of the Traffic Manager endpoint. Changing this forces a new resource to be created. * `value` (`str`) """ endpoint_location: pulumi.Output[str] """ Specifies the Azure location of the Endpoint, this must be specified for Profiles using the `Performance` routing method if the Endpoint is of either type `nestedEndpoints` or `externalEndpoints`. For Endpoints of type `azureEndpoints` the value will be taken from the location of the Azure target resource. """ endpoint_monitor_status: pulumi.Output[str] endpoint_status: pulumi.Output[str] """ The status of the Endpoint, can be set to either `Enabled` or `Disabled`. Defaults to `Enabled`. """ geo_mappings: pulumi.Output[list] """ A list of Geographic Regions used to distribute traffic, such as `WORLD`, `UK` or `DE`. The same location can't be specified in two endpoints. [See the Geographic Hierarchies documentation for more information](https://docs.microsoft.com/en-us/rest/api/trafficmanager/geographichierarchies/getdefault). """ min_child_endpoints: pulumi.Output[float] """ This argument specifies the minimum number of endpoints that must be ‘online’ in the child profile in order for the parent profile to direct traffic to any of the endpoints in that child profile. This argument only applies to Endpoints of type `nestedEndpoints` and defaults to `1`. """ name: pulumi.Output[str] """ The name of the Traffic Manager endpoint. Changing this forces a new resource to be created. """ priority: pulumi.Output[float] """ Specifies the priority of this Endpoint, this must be specified for Profiles using the `Priority` traffic routing method. Supports values between 1 and 1000, with no Endpoints sharing the same value. If omitted the value will be computed in order of creation. """ profile_name: pulumi.Output[str] """ The name of the Traffic Manager Profile to attach create the Traffic Manager endpoint. """ resource_group_name: pulumi.Output[str] """ The name of the resource group in which to create the Traffic Manager endpoint. """ subnets: pulumi.Output[list] """ One or more `subnet` blocks as defined below * `first` (`str`) * `last` (`str`) * `scope` (`float`) """ target: pulumi.Output[str] """ The FQDN DNS name of the target. This argument must be provided for an endpoint of type `externalEndpoints`, for other types it will be computed. """ target_resource_id: pulumi.Output[str] """ The resource id of an Azure resource to target. This argument must be provided for an endpoint of type `azureEndpoints` or `nestedEndpoints`. """ type: pulumi.Output[str] """ The Endpoint type, must be one of: - `azureEndpoints` - `externalEndpoints` - `nestedEndpoints` """ weight: pulumi.Output[float] """ Specifies how much traffic should be distributed to this endpoint, this must be specified for Profiles using the `Weighted` traffic routing method. Supports values between 1 and 1000. """ def __init__(__self__, resource_name, opts=None, custom_headers=None, endpoint_location=None, endpoint_status=None, geo_mappings=None, min_child_endpoints=None, name=None, priority=None, profile_name=None, resource_group_name=None, subnets=None, target=None, target_resource_id=None, type=None, weight=None, __props__=None, __name__=None, __opts__=None): """ Manages a Traffic Manager Endpoint. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[list] custom_headers: One or more `custom_header` blocks as defined below :param pulumi.Input[str] endpoint_location: Specifies the Azure location of the Endpoint, this must be specified for Profiles using the `Performance` routing method if the Endpoint is of either type `nestedEndpoints` or `externalEndpoints`. For Endpoints of type `azureEndpoints` the value will be taken from the location of the Azure target resource. :param pulumi.Input[str] endpoint_status: The status of the Endpoint, can be set to either `Enabled` or `Disabled`. Defaults to `Enabled`. :param pulumi.Input[list] geo_mappings: A list of Geographic Regions used to distribute traffic, such as `WORLD`, `UK` or `DE`. The same location can't be specified in two endpoints. [See the Geographic Hierarchies documentation for more information](https://docs.microsoft.com/en-us/rest/api/trafficmanager/geographichierarchies/getdefault). :param pulumi.Input[float] min_child_endpoints: This argument specifies the minimum number of endpoints that must be ‘online’ in the child profile in order for the parent profile to direct traffic to any of the endpoints in that child profile. This argument only applies to Endpoints of type `nestedEndpoints` and defaults to `1`. :param pulumi.Input[str] name: The name of the Traffic Manager endpoint. Changing this forces a new resource to be created. :param pulumi.Input[float] priority: Specifies the priority of this Endpoint, this must be specified for Profiles using the `Priority` traffic routing method. Supports values between 1 and 1000, with no Endpoints sharing the same value. If omitted the value will be computed in order of creation. :param pulumi.Input[str] profile_name: The name of the Traffic Manager Profile to attach create the Traffic Manager endpoint. :param pulumi.Input[str] resource_group_name: The name of the resource group in which to create the Traffic Manager endpoint. :param pulumi.Input[list] subnets: One or more `subnet` blocks as defined below :param pulumi.Input[str] target: The FQDN DNS name of the target. This argument must be provided for an endpoint of type `externalEndpoints`, for other types it will be computed. :param pulumi.Input[str] target_resource_id: The resource id of an Azure resource to target. This argument must be provided for an endpoint of type `azureEndpoints` or `nestedEndpoints`. :param pulumi.Input[str] type: The Endpoint type, must be one of: - `azureEndpoints` - `externalEndpoints` - `nestedEndpoints` :param pulumi.Input[float] weight: Specifies how much traffic should be distributed to this endpoint, this must be specified for Profiles using the `Weighted` traffic routing method. Supports values between 1 and 1000. The **custom_headers** object supports the following: * `name` (`pulumi.Input[str]`) - The name of the Traffic Manager endpoint. Changing this forces a new resource to be created. * `value` (`pulumi.Input[str]`) The **subnets** object supports the following: * `first` (`pulumi.Input[str]`) * `last` (`pulumi.Input[str]`) * `scope` (`pulumi.Input[float]`) > This content is derived from https://github.com/terraform-providers/terraform-provider-azurerm/blob/master/website/docs/r/traffic_manager_endpoint.html.markdown. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['custom_headers'] = custom_headers __props__['endpoint_location'] = endpoint_location __props__['endpoint_status'] = endpoint_status __props__['geo_mappings'] = geo_mappings __props__['min_child_endpoints'] = min_child_endpoints __props__['name'] = name __props__['priority'] = priority if profile_name is None: raise TypeError("Missing required property 'profile_name'") __props__['profile_name'] = profile_name if resource_group_name is None: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['subnets'] = subnets __props__['target'] = target __props__['target_resource_id'] = target_resource_id if type is None: raise TypeError("Missing required property 'type'") __props__['type'] = type __props__['weight'] = weight __props__['endpoint_monitor_status'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure:trafficmanager/endpoint:Endpoint")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(TrafficManagerEndpoint, __self__).__init__( 'azure:network/trafficManagerEndpoint:TrafficManagerEndpoint', resource_name, __props__, opts) @staticmethod def get(resource_name, id, opts=None, custom_headers=None, endpoint_location=None, endpoint_monitor_status=None, endpoint_status=None, geo_mappings=None, min_child_endpoints=None, name=None, priority=None, profile_name=None, resource_group_name=None, subnets=None, target=None, target_resource_id=None, type=None, weight=None): """ Get an existing TrafficManagerEndpoint resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param str id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[list] custom_headers: One or more `custom_header` blocks as defined below :param pulumi.Input[str] endpoint_location: Specifies the Azure location of the Endpoint, this must be specified for Profiles using the `Performance` routing method if the Endpoint is of either type `nestedEndpoints` or `externalEndpoints`. For Endpoints of type `azureEndpoints` the value will be taken from the location of the Azure target resource. :param pulumi.Input[str] endpoint_status: The status of the Endpoint, can be set to either `Enabled` or `Disabled`. Defaults to `Enabled`. :param pulumi.Input[list] geo_mappings: A list of Geographic Regions used to distribute traffic, such as `WORLD`, `UK` or `DE`. The same location can't be specified in two endpoints. [See the Geographic Hierarchies documentation for more information](https://docs.microsoft.com/en-us/rest/api/trafficmanager/geographichierarchies/getdefault). :param pulumi.Input[float] min_child_endpoints: This argument specifies the minimum number of endpoints that must be ‘online’ in the child profile in order for the parent profile to direct traffic to any of the endpoints in that child profile. This argument only applies to Endpoints of type `nestedEndpoints` and defaults to `1`. :param pulumi.Input[str] name: The name of the Traffic Manager endpoint. Changing this forces a new resource to be created. :param pulumi.Input[float] priority: Specifies the priority of this Endpoint, this must be specified for Profiles using the `Priority` traffic routing method. Supports values between 1 and 1000, with no Endpoints sharing the same value. If omitted the value will be computed in order of creation. :param pulumi.Input[str] profile_name: The name of the Traffic Manager Profile to attach create the Traffic Manager endpoint. :param pulumi.Input[str] resource_group_name: The name of the resource group in which to create the Traffic Manager endpoint. :param pulumi.Input[list] subnets: One or more `subnet` blocks as defined below :param pulumi.Input[str] target: The FQDN DNS name of the target. This argument must be provided for an endpoint of type `externalEndpoints`, for other types it will be computed. :param pulumi.Input[str] target_resource_id: The resource id of an Azure resource to target. This argument must be provided for an endpoint of type `azureEndpoints` or `nestedEndpoints`. :param pulumi.Input[str] type: The Endpoint type, must be one of: - `azureEndpoints` - `externalEndpoints` - `nestedEndpoints` :param pulumi.Input[float] weight: Specifies how much traffic should be distributed to this endpoint, this must be specified for Profiles using the `Weighted` traffic routing method. Supports values between 1 and 1000. The **custom_headers** object supports the following: * `name` (`pulumi.Input[str]`) - The name of the Traffic Manager endpoint. Changing this forces a new resource to be created. * `value` (`pulumi.Input[str]`) The **subnets** object supports the following: * `first` (`pulumi.Input[str]`) * `last` (`pulumi.Input[str]`) * `scope` (`pulumi.Input[float]`) > This content is derived from https://github.com/terraform-providers/terraform-provider-azurerm/blob/master/website/docs/r/traffic_manager_endpoint.html.markdown. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["custom_headers"] = custom_headers __props__["endpoint_location"] = endpoint_location __props__["endpoint_monitor_status"] = endpoint_monitor_status __props__["endpoint_status"] = endpoint_status __props__["geo_mappings"] = geo_mappings __props__["min_child_endpoints"] = min_child_endpoints __props__["name"] = name __props__["priority"] = priority __props__["profile_name"] = profile_name __props__["resource_group_name"] = resource_group_name __props__["subnets"] = subnets __props__["target"] = target __props__["target_resource_id"] = target_resource_id __props__["type"] = type __props__["weight"] = weight return TrafficManagerEndpoint(resource_name, opts=opts, __props__=__props__) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
py
7dfdebaa1e091eb8231a2ef9b239f464cd5c54da
import os from unittest.mock import Mock import pytest from doit.exceptions import InvalidCommand from doit.cmd_run import Run from doit.cmd_list import List from doit import doit_cmd def cmd_main(args): main = doit_cmd.DoitMain() main.BIN_NAME = 'doit' return main.run(args) class TestRun(object): def test_version(self, capsys): cmd_main(["--version"]) out, err = capsys.readouterr() assert "lib" in out def test_usage(self, capsys): cmd_main(["--help"]) out, err = capsys.readouterr() assert "doit list" in out def test_run_is_default(self, monkeypatch): mock_run = Mock() monkeypatch.setattr(Run, "execute", mock_run) cmd_main([]) assert 1 == mock_run.call_count def test_run_other_subcommand(self, monkeypatch): mock_list = Mock() monkeypatch.setattr(List, "execute", mock_list) cmd_main(["list"]) assert 1 == mock_list.call_count def test_cmdline_vars(self, monkeypatch): mock_run = Mock() monkeypatch.setattr(Run, "execute", mock_run) cmd_main(['x=1', 'y=abc']) assert '1' == doit_cmd.get_var('x') assert 'abc' == doit_cmd.get_var('y') assert None is doit_cmd.get_var('z') def test_cmdline_novars(self, monkeypatch): mock_run = Mock() monkeypatch.setattr(Run, "execute", mock_run) cmd_main(['x=1']) # Simulate the variable below not being initialized by a subprocess on # Windows. See https://github.com/pydoit/doit/issues/164. doit_cmd._CMDLINE_VARS = None assert None is doit_cmd.get_var('x') def test_cmdline_vars_not_opts(self, monkeypatch): mock_run = Mock() monkeypatch.setattr(Run, "execute", mock_run) cmd_main(['--z=5']) assert None == doit_cmd.get_var('--z') def test_cmdline_loader_option_before_cmd_name(self, monkeypatch): mock_list = Mock() monkeypatch.setattr(List, "execute", mock_list) cmd_main(['-k', 'list', '--all']) assert mock_list.called params, args = mock_list.call_args[0] assert params['subtasks'] == True assert params['seek_file'] == True assert args == [] def test_cmdline_loader_option_mixed(self, monkeypatch): mock_run = Mock() monkeypatch.setattr(Run, "execute", mock_run) cmd_main(['-c', '-k', 'lala']) assert mock_run.called params, args = mock_run.call_args[0] assert params['continue'] == True assert params['seek_file'] == True assert args == ['lala'] def test_task_loader_has_cmd_list(self, monkeypatch): cmd_names = [] def save_cmd_names(self, params, args): cmd_names.extend(self.loader.cmd_names) monkeypatch.setattr(Run, "execute", save_cmd_names) cmd_main([]) assert 'list' in cmd_names def test_extra_config(self, monkeypatch, depfile_name): outfile_val = [] def monkey_run(self, opt_values, pos_args): outfile_val.append(opt_values['outfile']) monkeypatch.setattr(Run, "execute", monkey_run) extra_config = { 'outfile': 'foo.txt', 'dep_file': depfile_name, } doit_cmd.DoitMain(extra_config={'GLOBAL': extra_config}).run([]) assert outfile_val[0] == 'foo.txt' class TestErrors(object): def test_interrupt(self, monkeypatch): def my_raise(*args): raise KeyboardInterrupt() mock_cmd = Mock(side_effect=my_raise) monkeypatch.setattr(Run, "execute", mock_cmd) pytest.raises(KeyboardInterrupt, cmd_main, []) def test_user_error(self, capsys, monkeypatch): mock_cmd = Mock(side_effect=InvalidCommand) monkeypatch.setattr(Run, "execute", mock_cmd) got = cmd_main([]) assert 3 == got out, err = capsys.readouterr() assert "ERROR" in err def test_internal_error(self, capsys, monkeypatch): mock_cmd = Mock(side_effect=Exception) monkeypatch.setattr(Run, "execute", mock_cmd) got = cmd_main([]) assert 3 == got out, err = capsys.readouterr() # traceback from Exception (this case code from mock lib) assert "mock.py" in err class TestConfig(object): def test_no_ini_config_file(self): main = doit_cmd.DoitMain(config_filenames=()) main.run(['--version']) def test_load_plugins_command(self): config_filename = os.path.join(os.path.dirname(__file__), 'sample.cfg') main = doit_cmd.DoitMain(config_filenames=config_filename) assert 1 == len(main.config['COMMAND']) # test loaded plugin command is actually used with plugin name assert 'foo' in main.get_cmds() def test_merge_api_ini_config(self): config_filename = os.path.join(os.path.dirname(__file__), 'sample.cfg') api_config = {'GLOBAL': {'opty':'10', 'optz':'10'}} main = doit_cmd.DoitMain(config_filenames=config_filename, extra_config=api_config) assert 1 == len(main.config['COMMAND']) # test loaded plugin command is actually used with plugin name assert 'foo' in main.get_cmds() # INI has higher preference the api_config assert main.config['GLOBAL'] == {'optx':'6', 'opty':'7', 'optz':'10'} def test_execute_command_plugin(self, capsys): config_filename = os.path.join(os.path.dirname(__file__), 'sample.cfg') main = doit_cmd.DoitMain(config_filenames=config_filename) main.run(['foo']) got = capsys.readouterr()[0] assert got == 'this command does nothing!\n'
py
7dfdeca80a5358ba07c9d43642bf7cf6b8882c0d
from __future__ import print_function import httplib2 import sys from apiclient import discovery from datetime import datetime from friday_5pm_helper import ( EXPECTED_DATETIME_FORMATS, TimeEntryData, worklog_time_spent ) from friday_5pm_helper.credentials import get_credentials # If modifying these scopes, delete your previously saved credentials # at ~/.credentials/gsuite_utilities_gcalendar.json LOCAL_CREDENTIAL_FILE = 'gsuite_utilities_gcalendar.json' SCOPES = 'https://www.googleapis.com/auth/calendar.readonly' CLIENT_SECRET_FILE = 'client_secret_gcalendar.json' APPLICATION_NAME = 'G Suite Utilities' class GCalendarClient(): def __init__(self): """ Creates a Google Calendar API service object :return: a Google Calendar API service object """ credentials = get_credentials( LOCAL_CREDENTIAL_FILE, CLIENT_SECRET_FILE, SCOPES, APPLICATION_NAME ) http = credentials.authorize(httplib2.Http()) self.service = discovery.build('calendar', 'v3', http=http) def gcalendar_events(self, start_date, end_date): """ Outputs a list of the next 'max_results' events on the user's calendar. :param service: a Google Calendar API service object :return: a list """ min_time = start_date.isoformat() + 'Z' # 'Z' indicates UTC time max_time = end_date.isoformat() + 'Z' eventsResult = self.service.events().list( calendarId='primary', timeMin=min_time, timeMax=max_time, singleEvents=True, orderBy='startTime' ).execute() return eventsResult.get('items', []) def calc_interval(start_time, end_time): """ :param start_time: start time in datetime :param end_time: end time in datetime :return: string hh:mm """ for f in EXPECTED_DATETIME_FORMATS: try: end_dt = datetime.strptime(end_time, f) start_dt = datetime.strptime(start_time, f) t_delta_secs = (end_dt - start_dt).seconds return (worklog_time_spent(t_delta_secs), start_dt, end_dt) except Exception as e: pass print('Error: unable to parse {} and {}'.format(start_time, end_time)) return None def retrieve_gcalendar_event_data(start_date, end_date, tasks_info): """ Retrieve calendar events' data in TimeEntryData format :return: list of TimeEntryData """ time_entry_data_list = [] # see https://developers.google.com/google-apps/calendar/v3/reference/events/list for event in GCalendarClient().gcalendar_events(start_date, end_date): start_time_str = event['start'].get('dateTime', event['start'].get('date')) end_time_str = event['end'].get('dateTime', event['end'].get('date')) (interval, start, end) = calc_interval(start_time_str, end_time_str) time_entry_data_list.append(TimeEntryData( year=start.year, month=start.month, day=start.day, interval=interval, comment=event['summary'], taskid=tasks_info['InternalMeeting'] )) return time_entry_data_list if __name__ == '__main__': from friday_5pm_helper import start_and_end_of_week_of_a_day today = datetime.utcnow() (start_date, end_date) = start_and_end_of_week_of_a_day(today) ret = retrieve_gcalendar_event_data(start_date, end_date, tasks_info={'InternalMeeting':'123'}) for i in ret: print(i) sys.exit(0)
py
7dfdece15445f99796dae5e74a902e1ddcbd0364
import os import sys import transaction from sqlalchemy import engine_from_config from pyramid.paster import ( get_appsettings, setup_logging, ) from pyramid.scripts.common import parse_vars from ..models import ( DBSession, MyModel, Base, ) def usage(argv): cmd = os.path.basename(argv[0]) print('usage: %s <config_uri> [var=value]\n' '(example: "%s development.ini")' % (cmd, cmd)) sys.exit(1) def main(argv=sys.argv): if len(argv) < 2: usage(argv) config_uri = argv[1] options = parse_vars(argv[2:]) setup_logging(config_uri) settings = get_appsettings(config_uri, options=options) engine = engine_from_config(settings, 'sqlalchemy.') DBSession.configure(bind=engine) Base.metadata.create_all(engine) with transaction.manager: model = MyModel(name='one', value=1) DBSession.add(model)
py
7dfded18cd7790e8f9c04984c3876f830f7bc76f
# -*- coding: utf-8 -*- from .base_command import BaseCommand class RefreshCommand(BaseCommand): """ Reset and re-run all migrations. migrate:refresh {--d|database= : The database connection to use.} {--p|path= : The path of migrations files to be executed.} {--s|seed : Indicates if the seed task should be re-run.} {--seed-path= : The path of seeds files to be executed. Defaults to <comment>./seeds</comment>.} {--seeder=database_seeder : The name of the root seeder.} {--f|force : Force the operation to run.} """ def handle(self): """ Executes the command. """ if not self.confirm_to_proceed( "<question>Are you sure you want to refresh the database?:</question> " ): return database = self.option("database") options = [("--force", True)] if self.option("path"): options.append(("--path", self.option("path"))) if database: options.append(("--database", database)) if self.get_definition().has_option("config"): options.append(("--config", self.option("config"))) self.call("migrate:reset", options) self.call("migrate", options) if self._needs_seeding(): self._run_seeder(database) def _needs_seeding(self): return self.option("seed") def _run_seeder(self, database): options = [("--seeder", self.option("seeder")), ("--force", True)] if database: options.append(("--database", database)) if self.get_definition().has_option("config"): options.append(("--config", self.option("config"))) if self.option("seed-path"): options.append(("--path", self.option("seed-path"))) self.call("db:seed", options)
py
7dfdeda8ad26faf7c23023f8158af5f711c812ee
#!/usr/bin/env python # -*- coding: utf-8 -*- from collections import Iterable print isinstance([], Iterable) ls = [1, 2, 3] for index, value in enumerate(ls): print index, value ls = [x for x in range(1, 11)] for x in ls: print x ls = (x for x in range(0, 11)) print ls.next() for x in ls: print x def gen(): yield 99 for x in gen(): print x
py
7dfdee6b5f8a713d132ed74c36a3fde00d75b1d5
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team, The Microsoft Research team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from transformers.file_utils import cached_property from transformers.testing_utils import require_sentencepiece, slow from transformers.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from .test_tokenization_common import TokenizerTesterMixin SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model") @require_sentencepiece class XLMProphetNetTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = XLMProphetNetTokenizer test_rust_tokenizer = False def setUp(self): super().setUp() # We have a SentencePiece fixture for testing tokenizer = XLMProphetNetTokenizer(SAMPLE_VOCAB, keep_accents=True) tokenizer.save_pretrained(self.tmpdirname) def test_full_tokenizer(self): tokenizer = XLMProphetNetTokenizer(SAMPLE_VOCAB, keep_accents=True) tokens = tokenizer.tokenize("This is a test") self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(tokens), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], ) tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( tokens, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ], ) ids = tokenizer.convert_tokens_to_ids(tokens) self.assertListEqual( ids, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ], ) back_tokens = tokenizer.convert_ids_to_tokens(ids) self.assertListEqual( back_tokens, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ], ) @cached_property def big_tokenizer(self): return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased") @slow def test_tokenization_base_easy_symbols(self): symbols = "Hello World!" original_tokenizer_encodings = [35389, 6672, 49, 2] self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols))
py
7dfdeea90baf4abfe8f985cc91451397c44eb865
# coding: utf-8 """ No descripton provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: 2.1.1+01d50e5 Generated by: https://github.com/swagger-api/swagger-codegen.git Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import absolute_import import os import sys import unittest import graylog from graylog.rest import ApiException from graylog.apis.systemservice_manager_api import SystemserviceManagerApi class TestSystemserviceManagerApi(unittest.TestCase): """ SystemserviceManagerApi unit test stubs """ def setUp(self): self.api = graylog.apis.systemservice_manager_api.SystemserviceManagerApi() def tearDown(self): pass def test_list(self): """ Test case for list List current status of ServiceManager """ pass if __name__ == '__main__': unittest.main()
py
7dfdef0e67d0ef18672ac85f67e888b52d3f13f1
from django.urls import path from .views import ShareListView, ShareDetailView urlpatterns = [ path('', ShareListView.as_view(), name='home'), path( 'share/<int:share_id>/delete_article/<int:article_id>/', ShareDetailView.delete_article, name='delete_article' ), path('share/<int:pk>/', ShareDetailView.as_view(), name='share_detail'), ]
py
7dfdf0dc6d57e327a1630a6373c355dd334a2c6a
from pydantic import BaseModel, Field class FeedbackModel(BaseModel): title: str message: str class TransactionModel(BaseModel): instrumentId: str quantity: int price: float purchase_date: str = Field(..., regex="^\d{4}-\d{2}-\d{2}$")
py
7dfdf102b88fd7350e626a20d0ce9e4cb67645eb
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.tracing.decorator_async import distributed_trace_async from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models from ..._vendor import _convert_request from ...operations._availability_sets_operations import build_create_or_update_request, build_delete_request, build_get_request, build_list_available_sizes_request, build_list_by_subscription_request, build_list_request, build_update_request T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class AvailabilitySetsOperations: """AvailabilitySetsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.compute.v2020_12_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace_async async def create_or_update( self, resource_group_name: str, availability_set_name: str, parameters: "_models.AvailabilitySet", **kwargs: Any ) -> "_models.AvailabilitySet": """Create or update an availability set. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param availability_set_name: The name of the availability set. :type availability_set_name: str :param parameters: Parameters supplied to the Create Availability Set operation. :type parameters: ~azure.mgmt.compute.v2020_12_01.models.AvailabilitySet :keyword callable cls: A custom type or function that will be passed the direct response :return: AvailabilitySet, or the result of cls(response) :rtype: ~azure.mgmt.compute.v2020_12_01.models.AvailabilitySet :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.AvailabilitySet"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] _json = self._serialize.body(parameters, 'AvailabilitySet') request = build_create_or_update_request( resource_group_name=resource_group_name, availability_set_name=availability_set_name, subscription_id=self._config.subscription_id, content_type=content_type, json=_json, template_url=self.create_or_update.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('AvailabilitySet', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/availabilitySets/{availabilitySetName}'} # type: ignore @distributed_trace_async async def update( self, resource_group_name: str, availability_set_name: str, parameters: "_models.AvailabilitySetUpdate", **kwargs: Any ) -> "_models.AvailabilitySet": """Update an availability set. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param availability_set_name: The name of the availability set. :type availability_set_name: str :param parameters: Parameters supplied to the Update Availability Set operation. :type parameters: ~azure.mgmt.compute.v2020_12_01.models.AvailabilitySetUpdate :keyword callable cls: A custom type or function that will be passed the direct response :return: AvailabilitySet, or the result of cls(response) :rtype: ~azure.mgmt.compute.v2020_12_01.models.AvailabilitySet :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.AvailabilitySet"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] _json = self._serialize.body(parameters, 'AvailabilitySetUpdate') request = build_update_request( resource_group_name=resource_group_name, availability_set_name=availability_set_name, subscription_id=self._config.subscription_id, content_type=content_type, json=_json, template_url=self.update.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('AvailabilitySet', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/availabilitySets/{availabilitySetName}'} # type: ignore @distributed_trace_async async def delete( self, resource_group_name: str, availability_set_name: str, **kwargs: Any ) -> None: """Delete an availability set. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param availability_set_name: The name of the availability set. :type availability_set_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_delete_request( resource_group_name=resource_group_name, availability_set_name=availability_set_name, subscription_id=self._config.subscription_id, template_url=self.delete.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/availabilitySets/{availabilitySetName}'} # type: ignore @distributed_trace_async async def get( self, resource_group_name: str, availability_set_name: str, **kwargs: Any ) -> "_models.AvailabilitySet": """Retrieves information about an availability set. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param availability_set_name: The name of the availability set. :type availability_set_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: AvailabilitySet, or the result of cls(response) :rtype: ~azure.mgmt.compute.v2020_12_01.models.AvailabilitySet :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.AvailabilitySet"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_request( resource_group_name=resource_group_name, availability_set_name=availability_set_name, subscription_id=self._config.subscription_id, template_url=self.get.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('AvailabilitySet', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/availabilitySets/{availabilitySetName}'} # type: ignore @distributed_trace def list_by_subscription( self, expand: Optional[str] = None, **kwargs: Any ) -> AsyncIterable["_models.AvailabilitySetListResult"]: """Lists all availability sets in a subscription. :param expand: The expand expression to apply to the operation. Allowed values are 'instanceView'. :type expand: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either AvailabilitySetListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.compute.v2020_12_01.models.AvailabilitySetListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.AvailabilitySetListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) def prepare_request(next_link=None): if not next_link: request = build_list_by_subscription_request( subscription_id=self._config.subscription_id, expand=expand, template_url=self.list_by_subscription.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_by_subscription_request( subscription_id=self._config.subscription_id, expand=expand, template_url=next_link, ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("AvailabilitySetListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_by_subscription.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Compute/availabilitySets'} # type: ignore @distributed_trace def list( self, resource_group_name: str, **kwargs: Any ) -> AsyncIterable["_models.AvailabilitySetListResult"]: """Lists all availability sets in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either AvailabilitySetListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.compute.v2020_12_01.models.AvailabilitySetListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.AvailabilitySetListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) def prepare_request(next_link=None): if not next_link: request = build_list_request( resource_group_name=resource_group_name, subscription_id=self._config.subscription_id, template_url=self.list.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_request( resource_group_name=resource_group_name, subscription_id=self._config.subscription_id, template_url=next_link, ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("AvailabilitySetListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/availabilitySets'} # type: ignore @distributed_trace def list_available_sizes( self, resource_group_name: str, availability_set_name: str, **kwargs: Any ) -> AsyncIterable["_models.VirtualMachineSizeListResult"]: """Lists all available virtual machine sizes that can be used to create a new virtual machine in an existing availability set. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param availability_set_name: The name of the availability set. :type availability_set_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either VirtualMachineSizeListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.compute.v2020_12_01.models.VirtualMachineSizeListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.VirtualMachineSizeListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) def prepare_request(next_link=None): if not next_link: request = build_list_available_sizes_request( resource_group_name=resource_group_name, availability_set_name=availability_set_name, subscription_id=self._config.subscription_id, template_url=self.list_available_sizes.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_available_sizes_request( resource_group_name=resource_group_name, availability_set_name=availability_set_name, subscription_id=self._config.subscription_id, template_url=next_link, ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("VirtualMachineSizeListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_available_sizes.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/availabilitySets/{availabilitySetName}/vmSizes'} # type: ignore
py
7dfdf1bd735b31abe7300b757cd9dbcfe64710a7
# Copyright 2022 Touca, Inc. Subject to Apache-2.0 License. from conans import ConanFile, CMake class ToucaConan(ConanFile): name = "touca" homepage = "https://github.com/trytouca/trytouca/tree/main/sdk/cpp" description = "Touca SDK for C++" topics = ("regression-testing", "test-framework", "test-automation") license = "Apache-2.0" version = "1.5.2" author = "Touca, Inc. <[email protected]>" settings = "os", "compiler", "build_type", "arch" options = { "fPIC": [True, False], "shared": [True, False], "with_tests": [True, False], "with_cli": [True, False], "with_examples": [True, False], "with_framework": [True, False], "with_openssl": [True, False], } default_options = { "fPIC": True, "shared": False, "with_tests": False, "with_cli": False, "with_examples": False, "with_framework": True, "with_openssl": True, } generators = "cmake_find_package" exports_sources = [ "CMakeLists.txt", "LICENSE", "README.md", "cmake/**", "include/**", "src/**", "tests/**", "cli/**", ] def requirements(self): self.requires("cpp-httplib/0.9.5") self.requires("flatbuffers/2.0.0") self.requires("fmt/8.0.1") self.requires("ghc-filesystem/1.5.8") self.requires("mpark-variant/1.4.0") self.requires("rapidjson/1.1.0") if ( self.options.with_examples or self.options.with_framework or self.options.with_cli ): self.requires("cxxopts/2.2.1") def build_requirements(self): if self.options.with_tests: self.build_requires("catch2/2.13.7") def configure(self): self.options["fmt"].header_only = True self.options["flatbuffers"].header_only = True self.options["cpp-httplib"].with_openssl = self.options.with_openssl def _configure_cmake(self): cmake = CMake(self) cmake.definitions["TOUCA_BUILD_TESTS"] = self.options.with_tests cmake.definitions["TOUCA_BUILD_CLI"] = self.options.with_cli cmake.definitions["TOUCA_BUILD_EXAMPLES"] = self.options.with_examples cmake.definitions["TOUCA_BUILD_FRAMEWORK"] = self.options.with_framework cmake.configure() return cmake def build(self): cmake = self._configure_cmake() cmake.build() def test(self): cmake = self._configure_cmake() cmake.test() def package(self): cmake = self._configure_cmake() cmake.install() def package_info(self): client_requirements = [ "cpp-httplib::cpp-httplib", "fmt::fmt", "flatbuffers::flatbuffers", "ghc-filesystem::ghc-filesystem", "mpark-variant::mpark-variant", "rapidjson::rapidjson", ] if ( self.options.with_examples or self.options.with_framework or self.options.with_cli ): client_requirements.append("cxxopts::cxxopts") self.cpp_info.name = "touca" self.cpp_info.components["client"].names["cmake_find_package"] = "client" self.cpp_info.components["client"].libs = ["touca"] self.cpp_info.components["client"].requires = client_requirements
py
7dfdf21ec76551ea009bea6733acaade0f2fe156
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # Copyright 2021 Microsoft Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Modeling classes for LayoutLMv2 model.""" import copy import math import paddle import paddle.nn as nn import paddle.tensor as tensor import paddle.nn.functional as F from paddle.nn import Layer from paddle.nn import CrossEntropyLoss from .. import PretrainedModel, register_base_model from ..layoutxlm.visual_backbone import build_resnet_fpn_backbone from ..layoutxlm.visual_backbone import read_config __all__ = [ 'LayoutLMv2Model', "LayoutLMv2PretrainedModel", "LayoutLMv2ForTokenClassification", "LayoutLMv2ForPretraining", "LayoutLMv2ForRelationExtraction" ] def relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): ret = 0 if bidirectional: num_buckets //= 2 ret += (relative_position > 0).astype(paddle.int64) * num_buckets n = paddle.abs(relative_position) else: n = paddle.max(-relative_position, paddle.zeros_like(relative_position)) # now n is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = n < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance val_if_large = max_exact + (paddle.log( n.astype(paddle.float32) / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)).astype(paddle.int64) val_if_large = paddle.minimum( val_if_large, paddle.full_like(val_if_large, num_buckets - 1)) ret += paddle.where(is_small, n, val_if_large) return ret # Copied from paddlenlp.transformers.layoutxlm.modeling.LayoutXLMPooler with XLM->LMv2 class LayoutLMv2Pooler(Layer): def __init__(self, hidden_size, with_pool): super(LayoutLMv2Pooler, self).__init__() self.dense = nn.Linear(hidden_size, hidden_size) self.activation = nn.Tanh() self.with_pool = with_pool def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) if self.with_pool == 'tanh': pooled_output = self.activation(pooled_output) return pooled_output # Copied from paddlenlp.transformers.layoutxlm.modeling.LayoutXLMEmbeddings with XLM->LMv2 class LayoutLMv2Embeddings(Layer): """ Include embeddings from word, position and token_type embeddings """ def __init__(self, config): super(LayoutLMv2Embeddings, self).__init__() self.word_embeddings = nn.Embedding( config["vocab_size"], config["hidden_size"], padding_idx=0) self.position_embeddings = nn.Embedding( config["max_position_embeddings"], config["hidden_size"]) self.x_position_embeddings = nn.Embedding( config["max_2d_position_embeddings"], config["coordinate_size"]) self.y_position_embeddings = nn.Embedding( config["max_2d_position_embeddings"], config["coordinate_size"]) self.h_position_embeddings = nn.Embedding( config["max_2d_position_embeddings"], config["coordinate_size"]) self.w_position_embeddings = nn.Embedding( config["max_2d_position_embeddings"], config["coordinate_size"]) self.token_type_embeddings = nn.Embedding(config["type_vocab_size"], config["hidden_size"]) self.LayerNorm = nn.LayerNorm( config["hidden_size"], epsilon=config["layer_norm_eps"]) self.dropout = nn.Dropout(config["hidden_dropout_prob"]) self.register_buffer( "position_ids", paddle.arange(config["max_position_embeddings"]).expand((1, -1))) def _cal_spatial_position_embeddings(self, bbox): try: left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0]) upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1]) right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2]) lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3]) except IndexError as e: raise IndexError( "The :obj:`bbox`coordinate values should be within 0-1000 range." ) from e h_position_embeddings = self.h_position_embeddings(bbox[:, :, 3] - bbox[:, :, 1]) w_position_embeddings = self.w_position_embeddings(bbox[:, :, 2] - bbox[:, :, 0]) spatial_position_embeddings = paddle.concat( [ left_position_embeddings, upper_position_embeddings, right_position_embeddings, lower_position_embeddings, h_position_embeddings, w_position_embeddings, ], axis=-1, ) return spatial_position_embeddings def forward(self, input_ids, bbox=None, token_type_ids=None, position_ids=None): if position_ids is None: ones = paddle.ones_like(input_ids, dtype="int64") seq_length = paddle.cumsum(ones, axis=-1) position_ids = seq_length - ones position_ids.stop_gradient = True if token_type_ids is None: token_type_ids = paddle.zeros_like(input_ids, dtype="int64") input_embedings = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) try: left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0]) upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1]) right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2]) lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3]) except IndexError as e: raise IndexError( "The :obj:`bbox`coordinate values should be within 0-1000 range." ) from e h_position_embeddings = self.h_position_embeddings(bbox[:, :, 3] - bbox[:, :, 1]) w_position_embeddings = self.w_position_embeddings(bbox[:, :, 2] - bbox[:, :, 0]) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = ( input_embedings + position_embeddings + left_position_embeddings + upper_position_embeddings + right_position_embeddings + lower_position_embeddings + h_position_embeddings + w_position_embeddings + token_type_embeddings) embeddings = self.layer_norm(embeddings) embeddings = self.dropout(embeddings) return embeddings class LayoutLMv2PretrainedModel(PretrainedModel): model_config_file = "model_config.json" pretrained_init_configuration = { "layoutlmv2-base-uncased": { "attention_probs_dropout_prob": 0.1, "coordinate_size": 128, "fast_qkv": True, "gradient_checkpointing": False, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "image_feature_pool_shape": [7, 7, 256], "initializer_range": 0.02, "intermediate_size": 3072, "layer_norm_eps": 1e-12, "max_2d_position_embeddings": 1024, "max_position_embeddings": 512, "max_rel_2d_pos": 256, "max_rel_pos": 128, "model_type": "layoutlmv2", "num_attention_heads": 12, "num_hidden_layers": 12, "output_past": True, "pad_token_id": 0, "shape_size": 128, "rel_2d_pos_bins": 64, "rel_pos_bins": 32, "type_vocab_size": 2, "vocab_size": 30522, "has_relative_attention_bias": True, "has_spatial_attention_bias": True, "has_visual_segment_embedding": False, }, "layoutlmv2-large-uncased": { "attention_probs_dropout_prob": 0.1, "coordinate_size": 171, "fast_qkv": False, "gradient_checkpointing": False, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 1024, "image_feature_pool_shape": [7, 7, 256], "initializer_range": 0.02, "intermediate_size": 4096, "layer_norm_eps": 1e-12, "max_2d_position_embeddings": 1024, "max_position_embeddings": 512, "max_rel_2d_pos": 256, "max_rel_pos": 128, "model_type": "layoutlmv2", "num_attention_heads": 16, "num_hidden_layers": 24, "output_past": True, "pad_token_id": 0, "shape_size": 170, "rel_2d_pos_bins": 64, "rel_pos_bins": 32, "type_vocab_size": 2, "vocab_size": 30522, "has_relative_attention_bias": True, "has_spatial_attention_bias": True, "has_visual_segment_embedding": False, } } resource_files_names = {"model_state": "model_state.pdparams"} pretrained_resource_files_map = { "model_state": { "layoutlmv2-base-uncased": "https://bj.bcebos.com/paddlenlp/models/transformers/layoutlmv2/layoutlmv2-base-uncased/model_state.pdparams", "layoutlmv2-large-uncased": "https://bj.bcebos.com/paddlenlp/models/transformers/layoutlmv2/layoutlmv2-large-uncased/model_state.pdparams", } } base_model_prefix = "layoutlmv2" def init_weights(self, layer): """ Initialization hook """ if isinstance(layer, (nn.Linear, nn.Embedding)): if isinstance(layer.weight, paddle.Tensor): layer.weight.set_value( paddle.tensor.normal( mean=0.0, std=self.pretrained_init_configuration[ "initializer_range"] if "initializer_range" in self.pretrained_init_configuration else 0.02, shape=layer.weight.shape)) # Copied from paddlenlp.transformers.layoutxlm.modeling.LayoutXLMSelfOutput with XLM->LMv2 class LayoutLMv2SelfOutput(nn.Layer): def __init__(self, config): super(LayoutLMv2SelfOutput, self).__init__() self.dense = nn.Linear(config["hidden_size"], config["hidden_size"]) self.LayerNorm = nn.LayerNorm( config["hidden_size"], epsilon=config["layer_norm_eps"]) self.dropout = nn.Dropout(config["hidden_dropout_prob"]) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from paddlenlp.transformers.layoutxlm.modeling.LayoutXLMSelfAttention with XLM->LMv2 class LayoutLMv2SelfAttention(nn.Layer): def __init__(self, config): super(LayoutLMv2SelfAttention, self).__init__() if config["hidden_size"] % config[ "num_attention_heads"] != 0 and not hasattr(config, "embedding_size"): raise ValueError( "The hidden size {} is not a multiple of the number of attention " "heads {}".format(config["hidden_size"], config[ "num_attention_heads"])) self.fast_qkv = config["fast_qkv"] self.num_attention_heads = config["num_attention_heads"] self.attention_head_size = int(config["hidden_size"] / config["num_attention_heads"]) self.all_head_size = self.num_attention_heads * self.attention_head_size self.has_relative_attention_bias = config[ "has_relative_attention_bias"] self.has_spatial_attention_bias = config["has_spatial_attention_bias"] if config["fast_qkv"]: self.qkv_linear = nn.Linear( config["hidden_size"], 3 * self.all_head_size, bias_attr=False) self.q_bias = self.create_parameter( shape=[1, 1, self.all_head_size], default_initializer=nn.initializer.Constant(0.0)) self.v_bias = self.create_parameter( shape=[1, 1, self.all_head_size], default_initializer=nn.initializer.Constant(0.0)) else: self.query = nn.Linear(config["hidden_size"], self.all_head_size) self.key = nn.Linear(config["hidden_size"], self.all_head_size) self.value = nn.Linear(config["hidden_size"], self.all_head_size) self.dropout = nn.Dropout(config["attention_probs_dropout_prob"]) def transpose_for_scores(self, x): new_x_shape = x.shape[:-1] + [ self.num_attention_heads, self.attention_head_size ] x = x.reshape(new_x_shape) return x.transpose([0, 2, 1, 3]) def compute_qkv(self, hidden_states): if self.fast_qkv: qkv = self.qkv_linear(hidden_states) q, k, v = paddle.chunk(qkv, 3, axis=-1) if q.ndimension() == self.q_bias.ndimension(): q = q + self.q_bias v = v + self.v_bias else: _sz = (1, ) * (q.ndimension() - 1) + (-1, ) q = q + self.q_bias.reshape(_sz) v = v + self.v_bias.vreshape(_sz) else: q = self.query(hidden_states) k = self.key(hidden_states) v = self.value(hidden_states) return q, k, v def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, rel_pos=None, rel_2d_pos=None, ): q, k, v = self.compute_qkv(hidden_states) # (B, L, H*D) -> (B, H, L, D) query_layer = self.transpose_for_scores(q) key_layer = self.transpose_for_scores(k) value_layer = self.transpose_for_scores(v) query_layer = query_layer / math.sqrt(self.attention_head_size) # [BSZ, NAT, L, L] attention_scores = paddle.matmul(query_layer, key_layer.transpose([0, 1, 3, 2])) if self.has_relative_attention_bias: attention_scores += rel_pos if self.has_spatial_attention_bias: attention_scores += rel_2d_pos attention_scores = paddle.where( attention_mask.astype(paddle.bool).expand_as(attention_scores), paddle.ones_like(attention_scores) * float("-inf"), attention_scores) attention_probs = F.softmax(attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = paddle.matmul(attention_probs, value_layer) context_layer = context_layer.transpose([0, 2, 1, 3]) new_context_layer_shape = context_layer.shape[:-2] + [ self.all_head_size ] context_layer = context_layer.reshape(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else ( context_layer, ) return outputs # Copied from paddlenlp.transformers.layoutxlm.modeling.LayoutXLMAttention with XLM->LMv2 class LayoutLMv2Attention(nn.Layer): def __init__(self, config): super(LayoutLMv2Attention, self).__init__() self.self = LayoutLMv2SelfAttention(config) self.output = LayoutLMv2SelfOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, rel_pos=None, rel_2d_pos=None, ): self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, rel_pos=rel_pos, rel_2d_pos=rel_2d_pos, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output, ) + self_outputs[1:] # add attentions if we output them return outputs # Copied from paddlenlp.transformers.layoutxlm.modeling.LayoutXLMEncoder with XLM->LMv2 class LayoutLMv2Encoder(nn.Layer): def __init__(self, config): super(LayoutLMv2Encoder, self).__init__() self.config = config self.layer = nn.LayerList([ LayoutLMv2Layer(config) for _ in range(config["num_hidden_layers"]) ]) self.has_relative_attention_bias = config[ "has_relative_attention_bias"] self.has_spatial_attention_bias = config["has_spatial_attention_bias"] if self.has_relative_attention_bias: self.rel_pos_bins = config["rel_pos_bins"] self.max_rel_pos = config["max_rel_pos"] self.rel_pos_onehot_size = config["rel_pos_bins"] self.rel_pos_bias = nn.Linear( self.rel_pos_onehot_size, config["num_attention_heads"], bias_attr=False) if self.has_spatial_attention_bias: self.max_rel_2d_pos = config["max_rel_2d_pos"] self.rel_2d_pos_bins = config["rel_2d_pos_bins"] self.rel_2d_pos_onehot_size = config["rel_2d_pos_bins"] self.rel_pos_x_bias = nn.Linear( self.rel_2d_pos_onehot_size, config["num_attention_heads"], bias_attr=False) self.rel_pos_y_bias = nn.Linear( self.rel_2d_pos_onehot_size, config["num_attention_heads"], bias_attr=False) def _cal_1d_pos_emb(self, hidden_states, position_ids): rel_pos_mat = position_ids.unsqueeze(-2) - position_ids.unsqueeze(-1) rel_pos = relative_position_bucket( rel_pos_mat, num_buckets=self.rel_pos_bins, max_distance=self.max_rel_pos, ) rel_pos = paddle.nn.functional.one_hot( rel_pos, num_classes=self.rel_pos_onehot_size).astype(hidden_states.dtype) rel_pos = self.rel_pos_bias(rel_pos).transpose([0, 3, 1, 2]) return rel_pos def _cal_2d_pos_emb(self, hidden_states, bbox): position_coord_x = bbox[:, :, 0] position_coord_y = bbox[:, :, 3] rel_pos_x_2d_mat = position_coord_x.unsqueeze( -2) - position_coord_x.unsqueeze(-1) rel_pos_y_2d_mat = position_coord_y.unsqueeze( -2) - position_coord_y.unsqueeze(-1) rel_pos_x = relative_position_bucket( rel_pos_x_2d_mat, num_buckets=self.rel_2d_pos_bins, max_distance=self.max_rel_2d_pos, ) rel_pos_y = relative_position_bucket( rel_pos_y_2d_mat, num_buckets=self.rel_2d_pos_bins, max_distance=self.max_rel_2d_pos, ) rel_pos_x = F.one_hot( rel_pos_x, num_classes=self.rel_2d_pos_onehot_size).astype( hidden_states.dtype) rel_pos_y = F.one_hot( rel_pos_y, num_classes=self.rel_2d_pos_onehot_size).astype( hidden_states.dtype) rel_pos_x = self.rel_pos_x_bias(rel_pos_x).transpose([0, 3, 1, 2]) rel_pos_y = self.rel_pos_y_bias(rel_pos_y).transpose([0, 3, 1, 2]) rel_2d_pos = rel_pos_x + rel_pos_y return rel_2d_pos def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, output_attentions=False, output_hidden_states=False, bbox=None, position_ids=None, ): all_hidden_states = () if output_hidden_states else None rel_pos = self._cal_1d_pos_emb( hidden_states, position_ids) if self.has_relative_attention_bias else None rel_2d_pos = self._cal_2d_pos_emb( hidden_states, bbox) if self.has_spatial_attention_bias else None hidden_save = dict() hidden_save["input_hidden_states"] = hidden_states for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states, ) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[ i] if past_key_values is not None else None # gradient_checkpointing is set as False here so we remove some codes here hidden_save["input_attention_mask"] = attention_mask hidden_save["input_layer_head_mask"] = layer_head_mask layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, rel_pos=rel_pos, rel_2d_pos=rel_2d_pos, ) hidden_states = layer_outputs[0] hidden_save["{}_data".format(i)] = hidden_states return hidden_states, # Copied from paddlenlp.transformers.layoutxlm.modeling.LayoutXLMIntermediate with XLM->LMv2 class LayoutLMv2Intermediate(nn.Layer): def __init__(self, config): super(LayoutLMv2Intermediate, self).__init__() self.dense = nn.Linear(config["hidden_size"], config["intermediate_size"]) if config["hidden_act"] == "gelu": self.intermediate_act_fn = nn.GELU() else: assert False, "hidden_act is set as: {}, please check it..".format( config["hidden_act"]) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from paddlenlp.transformers.layoutxlm.modeling.LayoutXLMOutput with XLM->LMv2 class LayoutLMv2Output(nn.Layer): def __init__(self, config): super(LayoutLMv2Output, self).__init__() self.dense = nn.Linear(config["intermediate_size"], config["hidden_size"]) self.LayerNorm = nn.LayerNorm( config["hidden_size"], epsilon=config["layer_norm_eps"]) self.dropout = nn.Dropout(config["hidden_dropout_prob"]) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from paddlenlp.transformers.layoutxlm.modeling.LayoutXLMLayer with XLM->LMv2 class LayoutLMv2Layer(nn.Layer): def __init__(self, config): super(LayoutLMv2Layer, self).__init__() # since chunk_size_feed_forward is 0 as default, no chunk is needed here. self.seq_len_dim = 1 self.attention = LayoutLMv2Attention(config) self.add_cross_attention = False # default as false self.intermediate = LayoutLMv2Intermediate(config) self.output = LayoutLMv2Output(config) def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, rel_pos=None, rel_2d_pos=None, ): # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[: 2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, rel_pos=rel_pos, rel_2d_pos=rel_2d_pos, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[ 1:] # add self attentions if we output attention weights layer_output = self.feed_forward_chunk(attention_output) outputs = (layer_output, ) + outputs return outputs # Copied from paddlenlp.transformers.layoutxlm.modeling.VisualBackbone class VisualBackbone(nn.Layer): def __init__(self, config): super(VisualBackbone, self).__init__() self.cfg = read_config() self.backbone = build_resnet_fpn_backbone(self.cfg) assert len(self.cfg.MODEL.PIXEL_MEAN) == len(self.cfg.MODEL.PIXEL_STD) num_channels = len(self.cfg.MODEL.PIXEL_MEAN) self.register_buffer( "pixel_mean", paddle.to_tensor(self.cfg.MODEL.PIXEL_MEAN).reshape( [num_channels, 1, 1])) self.register_buffer( "pixel_std", paddle.to_tensor(self.cfg.MODEL.PIXEL_STD).reshape( [num_channels, 1, 1])) self.out_feature_key = "p2" # is_deterministic is disabled here. self.pool = nn.AdaptiveAvgPool2D(config["image_feature_pool_shape"][: 2]) if len(config["image_feature_pool_shape"]) == 2: config["image_feature_pool_shape"].append( self.backbone.output_shape()[self.out_feature_key].channels) assert self.backbone.output_shape( )[self.out_feature_key].channels == config["image_feature_pool_shape"][ 2] def forward(self, images): images_input = ( paddle.to_tensor(images) - self.pixel_mean) / self.pixel_std features = self.backbone(images_input) features = features[self.out_feature_key] features = self.pool(features).flatten(start_axis=2).transpose( [0, 2, 1]) return features # Copied from paddlenlp.transformers.layoutxlm.modeling.LayoutXLMModel with XLM->LMv2 @register_base_model class LayoutLMv2Model(LayoutLMv2PretrainedModel): """ The bare LayoutLMv2 Model outputting raw hidden-states. This model inherits from :class:`~paddlenlp.transformers.model_utils.PretrainedModel`. Refer to the superclass documentation for the generic methods. This model is also a Paddle `paddle.nn.Layer <https://www.paddlepaddle.org.cn/documentation /docs/en/api/paddle/fluid/dygraph/layers/Layer_en.html>`__ subclass. Use it as a regular Paddle Layer and refer to the Paddle documentation for all matter related to general usage and behavior. Args: vocab_size (`int`): Vocabulary size of the XLNet model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling XLNetModel. hidden_size (`int`, optional): Dimensionality of the encoder layers and the pooler layer. Defaults to ``768``. num_hidden_layers (`int`, optional): Number of hidden layers in the Transformer encoder. Defaults to ``12``. num_attention_heads (`int`, optional): Number of attention heads for each attention layer in the Transformer encoder. Defaults to ``12``. intermediate_size (`int`, optional): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. Defaults to ``3072``. hidden_act (`str`, optional): The non-linear activation function in the feed-forward layer. ``"gelu"``, ``"relu"`` and any other paddle supported activation functions are supported. Defaults to ``"gelu"``. hidden_dropout_prob (`float`, optional): The dropout probability for all fully connected layers in the embeddings and encoder. Defaults to ``0.1``. attention_probs_dropout_prob (`float`, optional): The dropout probability for all fully connected layers in the pooler. Defaults to ``0.1``. initializer_range (`float`, optional): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. Defaults to ``0.02``. """ def __init__( self, with_pool='tanh', **kwargs, ): super(LayoutLMv2Model, self).__init__() config = kwargs self.config = kwargs self.has_visual_segment_embedding = config[ "has_visual_segment_embedding"] self.embeddings = LayoutLMv2Embeddings(config) self.visual = VisualBackbone(config) self.visual.stop_gradient = True self.visual_proj = nn.Linear(config["image_feature_pool_shape"][-1], config["hidden_size"]) if self.has_visual_segment_embedding: self.visual_segment_embedding = self.create_parameter( shape=[config["hidden_size"], ], dtype=paddle.float32) self.visual_LayerNorm = nn.LayerNorm( config["hidden_size"], epsilon=config["layer_norm_eps"]) self.visual_dropout = nn.Dropout(config["hidden_dropout_prob"]) self.encoder = LayoutLMv2Encoder(config) self.pooler = LayoutLMv2Pooler(config["hidden_size"], with_pool) def _calc_text_embeddings(self, input_ids, bbox, position_ids, token_type_ids): words_embeddings = self.embeddings.word_embeddings(input_ids) position_embeddings = self.embeddings.position_embeddings(position_ids) spatial_position_embeddings = self.embeddings._cal_spatial_position_embeddings( bbox) token_type_embeddings = self.embeddings.token_type_embeddings( token_type_ids) embeddings = words_embeddings + position_embeddings + spatial_position_embeddings + token_type_embeddings embeddings = self.embeddings.LayerNorm(embeddings) embeddings = self.embeddings.dropout(embeddings) return embeddings def _calc_img_embeddings(self, image, bbox, position_ids): visual_embeddings = self.visual_proj( self.visual(image.astype(paddle.float32))) position_embeddings = self.embeddings.position_embeddings(position_ids) spatial_position_embeddings = self.embeddings._cal_spatial_position_embeddings( bbox) embeddings = visual_embeddings + position_embeddings + spatial_position_embeddings if self.has_visual_segment_embedding: embeddings += self.visual_segment_embedding embeddings = self.visual_LayerNorm(embeddings) embeddings = self.visual_dropout(embeddings) return embeddings def forward(self, input_ids=None, bbox=None, image=None, token_type_ids=None, position_ids=None, attention_mask=None, head_mask=None, output_hidden_states=None, output_attentions=None): input_shape = input_ids.shape visual_shape = list(input_shape) visual_shape[1] = self.config["image_feature_pool_shape"][ 0] * self.config["image_feature_pool_shape"][1] final_shape = list(input_shape) final_shape[1] += visual_shape[1] visual_bbox_x = (paddle.arange( 0, 1000 * (self.config["image_feature_pool_shape"][1] + 1), 1000, dtype=bbox.dtype, ) // self.config["image_feature_pool_shape"][1]) visual_bbox_y = (paddle.arange( 0, 1000 * (self.config["image_feature_pool_shape"][0] + 1), 1000, dtype=bbox.dtype, ) // self.config["image_feature_pool_shape"][0]) expand_shape = self.config["image_feature_pool_shape"][0:2] visual_bbox = paddle.stack( [ visual_bbox_x[:-1].expand(expand_shape), visual_bbox_y[:-1].expand(expand_shape[::-1]).transpose( [1, 0]), visual_bbox_x[1:].expand(expand_shape), visual_bbox_y[1:].expand(expand_shape[::-1]).transpose([1, 0]), ], axis=-1, ).reshape([-1, bbox.shape[-1]]) visual_bbox = visual_bbox.expand([final_shape[0], -1, -1]) final_bbox = paddle.concat([bbox, visual_bbox], axis=1) if attention_mask is None: attention_mask = paddle.ones(input_shape) visual_attention_mask = paddle.ones(visual_shape) attention_mask = attention_mask.astype(visual_attention_mask.dtype) final_attention_mask = paddle.concat( [attention_mask, visual_attention_mask], axis=1) if token_type_ids is None: token_type_ids = paddle.zeros(input_shape, dtype=paddle.int64) if position_ids is None: seq_length = input_shape[1] position_ids = self.embeddings.position_ids[:, :seq_length] position_ids = position_ids.expand_as(input_ids) visual_position_ids = paddle.arange(0, visual_shape[1]).expand( [input_shape[0], -1]) final_position_ids = paddle.concat( [position_ids, visual_position_ids], axis=1) if bbox is None: bbox = paddle.zeros(input_shape + [4]) text_layout_emb = self._calc_text_embeddings( input_ids=input_ids, bbox=bbox, token_type_ids=token_type_ids, position_ids=position_ids, ) visual_emb = self._calc_img_embeddings( image=image, bbox=visual_bbox, position_ids=visual_position_ids, ) final_emb = paddle.concat([text_layout_emb, visual_emb], axis=1) extended_attention_mask = final_attention_mask.unsqueeze(1).unsqueeze( 2) extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 if head_mask is not None: if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze( -1).unsqueeze(-1) head_mask = head_mask.expand(self.config["num_hidden_layers"], -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.to(dtype=next(self.parameters()).dtype) else: head_mask = [None] * self.config["num_hidden_layers"] encoder_outputs = self.encoder( final_emb, extended_attention_mask, bbox=final_bbox, position_ids=final_position_ids, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) return sequence_output, pooled_output # Copied from paddlenlp.transformers.layoutxlm.modeling.LayoutXLMForTokenClassification with XLM->LMv2 class LayoutLMv2ForTokenClassification(LayoutLMv2PretrainedModel): def __init__(self, layoutlmv2, num_classes=2, dropout=None): super(LayoutLMv2ForTokenClassification, self).__init__() self.num_classes = num_classes if isinstance(layoutlmv2, dict): self.layoutlmv2 = LayoutLMv2Model(**layoutlmv2) else: self.layoutlmv2 = layoutlmv2 self.dropout = nn.Dropout(dropout if dropout is not None else self. layoutlmv2.config["hidden_dropout_prob"]) self.classifier = nn.Linear(self.layoutlmv2.config["hidden_size"], num_classes) self.classifier.apply(self.init_weights) def get_input_embeddings(self): return self.layoutlmv2.embeddings.word_embeddings def forward( self, input_ids=None, bbox=None, image=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, labels=None, ): outputs = self.layoutlmv2( input_ids=input_ids, bbox=bbox, image=image, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, ) seq_length = input_ids.shape[1] # sequence out and image out sequence_output, image_output = outputs[0][:, :seq_length], outputs[ 0][:, seq_length:] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) outputs = logits, if labels is not None: loss_fct = nn.CrossEntropyLoss() if attention_mask is not None: active_loss = attention_mask.reshape([-1, ]) == 1 active_logits = logits.reshape( [-1, self.num_classes])[active_loss] active_labels = labels.reshape([-1, ])[active_loss] loss = loss_fct(active_logits, active_labels) else: loss = loss_fct( logits.reshape([-1, self.num_classes]), labels.reshape([-1, ])) outputs = (loss, ) + outputs return outputs # Copied from paddlenlp.transformers.layoutxlm.modeling.LayoutXLMPredictionHead with XLM->LMv2 class LayoutLMv2PredictionHead(Layer): """ Bert Model with a `language modeling` head on top for CLM fine-tuning. """ def __init__(self, hidden_size, vocab_size, activation, embedding_weights=None): super(LayoutLMv2PredictionHead, self).__init__() self.transform = nn.Linear(hidden_size, hidden_size) self.activation = getattr(nn.functional, activation) self.layer_norm = nn.LayerNorm(hidden_size) self.decoder_weight = self.create_parameter( shape=[vocab_size, hidden_size], dtype=self.transform.weight.dtype, is_bias=False) if embedding_weights is None else embedding_weights self.decoder_bias = self.create_parameter( shape=[vocab_size], dtype=self.decoder_weight.dtype, is_bias=True) def forward(self, hidden_states, masked_positions=None): if masked_positions is not None: hidden_states = paddle.reshape(hidden_states, [-1, hidden_states.shape[-1]]) hidden_states = paddle.tensor.gather(hidden_states, masked_positions) # gather masked tokens might be more quick hidden_states = self.transform(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = paddle.tensor.matmul( hidden_states, self.decoder_weight, transpose_y=True) + self.decoder_bias return hidden_states # Copied from paddlenlp.transformers.layoutxlm.modeling.LayoutXLMPretrainingHeads with XLM->LMv2 class LayoutLMv2PretrainingHeads(Layer): def __init__(self, hidden_size, vocab_size, activation, embedding_weights=None): super(LayoutLMv2PretrainingHeads, self).__init__() self.predictions = LayoutLMv2PredictionHead( hidden_size, vocab_size, activation, embedding_weights) def forward(self, sequence_output, masked_positions=None): prediction_scores = self.predictions(sequence_output, masked_positions) return prediction_scores # Copied from paddlenlp.transformers.layoutxlm.modeling.LayoutXLMForPretraining with XLM->LMv2 class LayoutLMv2ForPretraining(LayoutLMv2PretrainedModel): def __init__(self, layoutlmv2): super(LayoutLMv2ForPretraining, self).__init__() self.layoutlmv2 = layoutlmv2 self.cls = LayoutLMv2PretrainingHeads( self.layoutlmv2.config["hidden_size"], self.layoutlmv2.config["vocab_size"], self.layoutlmv2.config["hidden_act"], embedding_weights=self.layoutlmv2.embeddings.word_embeddings. weight) def forward(self, input_ids=None, bbox=None, image=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, masked_positions=None): outputs = self.layoutlmv2( input_ids=input_ids, bbox=bbox, image=image, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output, masked_positions) return prediction_scores # Copied from paddlenlp.transformers.layoutxlm.modeling.LayoutXLMOutput with XLM->LMv2 class BiaffineAttention(nn.Layer): """Implements a biaffine attention operator for binary relation classification.""" def __init__(self, in_features, out_features): super(BiaffineAttention, self).__init__() self.in_features = in_features self.out_features = out_features self.bilinear = nn.Bilinear( in_features, in_features, out_features, bias_attr=False) self.linear = nn.Linear(2 * in_features, out_features) def forward(self, x_1, x_2): return self.bilinear( x_1, x_2) + self.linear(paddle.concat( (x_1, x_2), axis=-1)) # Copied from paddlenlp.transformers.layoutxlm.modeling.REDecoder class REDecoder(nn.Layer): def __init__(self, hidden_size=768, hidden_dropout_prob=0.1): super(REDecoder, self).__init__() self.entity_emb = nn.Embedding(3, hidden_size) projection = nn.Sequential( nn.Linear(hidden_size * 2, hidden_size), nn.ReLU(), nn.Dropout(hidden_dropout_prob), nn.Linear(hidden_size, hidden_size // 2), nn.ReLU(), nn.Dropout(hidden_dropout_prob), ) self.ffnn_head = copy.deepcopy(projection) self.ffnn_tail = copy.deepcopy(projection) self.rel_classifier = BiaffineAttention(hidden_size // 2, 2) self.loss_fct = CrossEntropyLoss() def build_relation(self, relations, entities): batch_size = len(relations) new_relations = [] for b in range(batch_size): if len(entities[b]["start"]) <= 2: entities[b] = {"end": [1, 1], "label": [0, 0], "start": [0, 0]} all_possible_relations = set( [(i, j) for i in range(len(entities[b]["label"])) for j in range(len(entities[b]["label"])) if entities[b]["label"][i] == 1 and entities[b]["label"][j] == 2]) if len(all_possible_relations) == 0: all_possible_relations = {(0, 1)} positive_relations = set( list(zip(relations[b]["head"], relations[b]["tail"]))) negative_relations = all_possible_relations - positive_relations positive_relations = set([ i for i in positive_relations if i in all_possible_relations ]) reordered_relations = list(positive_relations) + list( negative_relations) relation_per_doc = { "head": [i[0] for i in reordered_relations], "tail": [i[1] for i in reordered_relations], "label": [1] * len(positive_relations) + [0] * (len(reordered_relations) - len(positive_relations)) } assert len(relation_per_doc["head"]) != 0 new_relations.append(relation_per_doc) return new_relations, entities def get_predicted_relations(self, logits, relations, entities): pred_relations = [] for i, pred_label in enumerate(logits.argmax(-1)): if pred_label != 1: continue rel = {} rel["head_id"] = relations["head"][i] rel["head"] = (entities["start"][rel["head_id"]], entities["end"][rel["head_id"]]) rel["head_type"] = entities["label"][rel["head_id"]] rel["tail_id"] = relations["tail"][i] rel["tail"] = (entities["start"][rel["tail_id"]], entities["end"][rel["tail_id"]]) rel["tail_type"] = entities["label"][rel["tail_id"]] rel["type"] = 1 pred_relations.append(rel) return pred_relations def forward(self, hidden_states, entities, relations): batch_size, max_n_words, context_dim = hidden_states.shape relations, entities = self.build_relation(relations, entities) loss = 0 all_pred_relations = [] for b in range(batch_size): head_entities = paddle.to_tensor(relations[b]["head"]) tail_entities = paddle.to_tensor(relations[b]["tail"]) relation_labels = paddle.to_tensor(relations[b]["label"]) entities_start_index = paddle.to_tensor(entities[b]["start"]) entities_labels = paddle.to_tensor(entities[b]["label"]) head_index = entities_start_index[head_entities] head_label = entities_labels[head_entities] head_label_repr = self.entity_emb(head_label) tail_index = entities_start_index[tail_entities] tail_label = entities_labels[tail_entities] tail_label_repr = self.entity_emb(tail_label) tmp_hidden_states = hidden_states[b][head_index] if len(tmp_hidden_states.shape) == 1: tmp_hidden_states = paddle.unsqueeze(tmp_hidden_states, axis=0) head_repr = paddle.concat( (tmp_hidden_states, head_label_repr), axis=-1) tmp_hidden_states = hidden_states[b][tail_index] if len(tmp_hidden_states.shape) == 1: tmp_hidden_states = paddle.unsqueeze(tmp_hidden_states, axis=0) tail_repr = paddle.concat( (tmp_hidden_states, tail_label_repr), axis=-1) heads = self.ffnn_head(head_repr) tails = self.ffnn_tail(tail_repr) logits = self.rel_classifier(heads, tails) loss += self.loss_fct(logits, relation_labels) pred_relations = self.get_predicted_relations(logits, relations[b], entities[b]) all_pred_relations.append(pred_relations) return loss, all_pred_relations # Copied from paddlenlp.transformers.layoutxlm.modeling.LayoutXLMForRelationExtraction with XLM->LMv2 class LayoutLMv2ForRelationExtraction(LayoutLMv2PretrainedModel): def __init__(self, layoutlmv2, hidden_size=768, hidden_dropout_prob=0.1, dropout=None): super(LayoutLMv2ForRelationExtraction, self).__init__() if isinstance(layoutlmv2, dict): self.layoutlmv2 = LayoutLMv2Model(**layoutlmv2) else: self.layoutlmv2 = layoutlmv2 self.extractor = REDecoder(hidden_size, hidden_dropout_prob) self.dropout = nn.Dropout(dropout if dropout is not None else self. layoutlmv2.config["hidden_dropout_prob"]) def init_weights(self, layer): """Initialize the weights""" if isinstance(layer, nn.Linear): layer.weight.set_value( paddle.tensor.normal( mean=0.0, std=0.02, shape=layer.weight.shape)) if layer.bias is not None: layer.bias.set_value( paddle.tensor.zeros(shape=layer.bias.shape)) elif isinstance(layer, nn.Embedding): layer.weight.set_value( paddle.tensor.normal( mean=0.0, std=0.02, shape=layer.weight.shape)) if layer._padding_idx is not None: layer.weight[layer._padding_idx].set_value( paddle.tensor.normal( mean=0.0, std=0.02, shape=layer.weight[layer._padding_idx].shape)) elif isinstance(layer, nn.LayerNorm): layer.weight.set_value(paddle.tensor.ones(shape=layer.bias.shape)) layer.bias.set_value(paddle.tensor.zeros(shape=layer.bias.shape)) def forward( self, input_ids, bbox, labels=None, image=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, entities=None, relations=None, ): outputs = self.layoutlmv2( input_ids=input_ids, bbox=bbox, image=image, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, ) seq_length = input_ids.shape[1] sequence_output, image_output = outputs[0][:, :seq_length], outputs[ 0][:, seq_length:] sequence_output = self.dropout(sequence_output) loss, pred_relations = self.extractor(sequence_output, entities, relations) return dict( loss=loss, entities=entities, relations=relations, pred_relations=pred_relations, hidden_states=outputs[0], )
py
7dfdf36d28604de16e220fbdc41361b45d57ecbe
from setuptools import setup def readme(): with open('README.rst') as f: return f.read() setup(name = 'crib', version = '0.2.3', description = 'Minimal command line encryption for tiny notes', long_description = readme(), keywords = 'notes encryption minimal', url = 'http://github.com/lepisma/crib', author = 'lepisma', author_email = '[email protected]', license = 'MIT', packages = ['crib'], install_requires = ['pycrypto'], entry_points={ 'console_scripts': ['crib = crib.command:main'], }, include_package_data = True, zip_safe = False)
py
7dfdf3bd912e7406ad6b408f0a86f6923e814d41
import os import errno import shutil import markdown ROOT = "website" SRC_DIR = "src" BUILD_DIR = "build" MD_DIR = f"{SRC_DIR}/md" # list of folders in SRC_DIR to be copied to BUILD_DIR ASSET_DIRS = ["css", "fonts", "images"] # preload base html with open("src/html/base.html", "r") as f: base_html = "".join(line for line in f.readlines()) def mkdir_if_not_exists(directory): if not os.path.isdir(directory): os.mkdir(directory) def copy(src, dest): try: shutil.copytree(src, dest) except OSError as e: if e.errno == errno.ENOTDIR: shutil.copy(src, dest) else: print("Directory not copied: Error {}".format(e)) def get_md_files(directory): for dirpath, _, filenames in os.walk(directory): for f in filenames: filepath = os.path.abspath(os.path.join(dirpath, f)) if filepath.endswith(".md"): yield filepath def page_source_from_md(markdown_file): with open(markdown_file, "r") as md: page_title = md.readline() # first line of markdown file reserved for page title text = "".join(line for line in md.readlines()) content = markdown.markdown(text, extensions=["attr_list", "fenced_code", "codehilite"]) return base_html[:].format(title=page_title, body=content) if __name__ == "__main__": # check if script was launched from root folder assert os.path.basename(os.getcwd()) == ROOT mkdir_if_not_exists(BUILD_DIR) # copy assets to build for dirname in ASSET_DIRS: copy(f"{SRC_DIR}/{dirname}", f"{BUILD_DIR}/{dirname}") assert os.path.isdir(MD_DIR) # convert markdown to html and write to html files in BUILD_DIR for filepath in get_md_files(MD_DIR): basedir, filename = os.path.split(filepath) webpage_name = filename.split(".")[0] + ".html" dest = f"{BUILD_DIR}/{basedir.split(MD_DIR)[-1]}" mkdir_if_not_exists(dest); with open(os.path.join(dest, webpage_name), "w") as webpage: webpage.writelines(page_source_from_md(filepath))
py
7dfdf40cd705eb57dfc6333bf5d5488590e97c12
#python import networkx as nx import itertools import copy import networkx as nx import pandas as pd import matplotlib.pyplot as plt G=nx.Graph() G.add_edges_from([(1,2),(1,3),(1,4),(3,4)]) G.nodes(data=True) G.node[1]['attribute']='value' G.nodes(data=True) plt.figure(figsize=(8, 6)) nx.draw(G ) plt.title('Graph Representation of Sleeping Giant Trail Map', size=15) plt.show()
py
7dfdf45859b5281007a8fa9d72491e1218cfd055
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import io import os import sys import textwrap import weakref from typing import List, Callable, Type from ..typing import OperandType, TileableType, SessionType from .context import Context class _LogWrapper: def __init__(self, ctx: Context, op: OperandType, log_path: str): self.ctx = ctx self.op = op self.log_path = log_path self.file = open(log_path, 'w') self.stdout = sys.stdout self.raw_stdout = self.stdout while isinstance(self.raw_stdout, _LogWrapper): self.raw_stdout = self.raw_stdout.stdout # flag about registering log path self.is_log_path_registered = False def __enter__(self): self.file.__enter__() # set stdout sys.stdout = self def __exit__(self, exc_type, exc_val, exc_tb): self.file.__exit__(exc_type, exc_val, exc_tb) # set back stdout sys.stdout = self.stdout def _register_log_path(self): if self.is_log_path_registered: return # register log path session_id = self.ctx.session_id tileable_op_key = self.op.tileable_op_key chunk_op_key = self.op.key worker_addr = self.ctx.current_address log_path = self.log_path self.ctx.register_custom_log_path( session_id, tileable_op_key, chunk_op_key, worker_addr, log_path) self.is_log_path_registered = True def write(self, data): self._register_log_path() # write into file self.file.write(data) # force flush to make sure `fetch_log` can get stdout in time self.file.flush() # write into previous stdout self.raw_stdout.write(data) def flush(self): self.raw_stdout.flush() def redirect_custom_log(func: Callable[[Type, Context, OperandType], None]): """ Redirect stdout to a file by wrapping ``Operand.execute(ctx, op)`` """ @functools.wraps(func) def wrap(cls, ctx: Context, op: OperandType): custom_log_dir = ctx.new_custom_log_dir() if custom_log_dir is None: return func(cls, ctx, op) log_path = os.path.join(custom_log_dir, op.key) with _LogWrapper(ctx, op, log_path): return func(cls, ctx, op) return wrap _tileable_to_log_fetcher = weakref.WeakKeyDictionary() class LogFetcher: def __init__(self, tileable_op_key: str, session: SessionType): self._tileable_op_key = tileable_op_key self._session = session self._chunk_op_key_to_result = dict() self._chunk_op_key_to_offsets = dict() def __len__(self): return len(self._chunk_op_key_to_result) @property def chunk_op_keys(self) -> List[str]: return list(self._chunk_op_key_to_result.keys()) @property def results(self) -> list: return list(self._chunk_op_key_to_result.values()) @property def offsets(self) -> List[List[int]]: return list(self._chunk_op_key_to_offsets.values()) def fetch(self, offsets: List[int] = None, sizes: List[int] = None): if offsets is None: offsets = self._chunk_op_key_to_offsets if sizes is None: sizes = 1 * 1024 ** 2 # 1M each time result: dict = self._session.fetch_tileable_op_logs( self._tileable_op_key, offsets=offsets, sizes=sizes) if result is None: return for chunk_key, chunk_result in result.items(): self._chunk_op_key_to_result[chunk_key] = chunk_result['log'] self._chunk_op_key_to_offsets[chunk_key] = chunk_result['offset'] def _display(self, representation: bool = True): if len(self) == 1: content = next(iter(self._chunk_op_key_to_result.values())) return repr(content) if representation else str(content) sio = io.StringIO() for chunk_op_key, content in self._chunk_op_key_to_result.items(): sio.write(textwrap.dedent( f""" Chunk op key: {chunk_op_key} Out: {content}""")) result = sio.getvalue() return repr(result) if representation else str(result) def __repr__(self): return self._display(True) def __str__(self): return self._display(False) def fetch( tileables: List[TileableType], session: SessionType, offsets: List[int] = None, sizes: List[int] = None): log_fetchers = [] for tileable in tileables: tileable = tileable.data if hasattr(tileable, 'data') else tileable if tileable not in _tileable_to_log_fetcher: _tileable_to_log_fetcher[tileable] = LogFetcher(tileable.op.key, session) log_fetcher = _tileable_to_log_fetcher[tileable] log_fetcher.fetch(offsets=offsets, sizes=sizes) log_fetchers.append(log_fetcher) return log_fetchers
py
7dfdf5200f1152c57a24969c0cd24eab50212bcb
""" This module contains methods that model the linear matter power spectrum. """
py
7dfdf542c6607b0d790380d4dc8c4e47683f1aae
""" handle generalizing dcg rules, to form fewer, simpler rules """ import my_dcg as dcg def merge_categories(rules, r1, r2): if r1.category == r2.category: return None if r1.out != r2.out: return None # print('merging ', r1.category, 'and', r2.category) # print('len(rules)', len(rules)) # print(rules) fold_from = r2.category fold_to = r1.category rules = [r for r in rules if r != r2] for rule in rules: if rule.category == fold_from: rule.category = fold_to for item in rule.out: if isinstance(item, dcg.NonTerminal): if item.category == fold_from: item.category = fold_to # print('len(rules)', len(rules)) # print(rules) return rules def merge_chunked_bothrules(rules, r1, r2): if r1.category != r2.category: return None cat = r1.category assert cat == r2.category if r1.arg.__class__ != dcg.ab or r2.arg.__class__ != dcg.ab: return None num_diffs = 0 if r1.arg.ai is None or r1.arg.bi is None or r2.arg.ai is None or r2.arg.bi is None: return None # print('r1', r1) # print('r2', r2) if r1.arg.ai != r2.arg.ai: # assert r1.arg.bi == r2.arg.bi if r1.arg.ai is None or r2.arg.ai is None: return None num_diffs += 1 diffarg1 = dcg.a(r1.arg.ai) diffarg2 = dcg.a(r2.arg.ai) vararg = dcg.a(None) inarg = dcg.ab(None, r1.arg.bi) if r1.arg.bi != r2.arg.bi: if r1.arg.bi is None or r2.arg.bi is None: return None # assert r1.arg.ai == r2.arg.ai num_diffs += 1 diffarg1 = dcg.b(r1.arg.bi) diffarg2 = dcg.b(r2.arg.bi) vararg = dcg.b(None) inarg = dcg.ab(r1.arg.ai, None) if num_diffs != 1: return None oldres_1 = dcg.translate(rules, dcg.NonTerminal(category=cat, arg=r1.arg)) oldres_2 = dcg.translate(rules, dcg.NonTerminal(category=cat, arg=r2.arg)) # first check that the non terminals match, and that the order of strings/nonterminals matches if len(r1.out) != len(r2.out): return None num_diff_strings = 0 diff_pos = None for i in range(len(r1.out)): item1 = r1.out[i] item2 = r2.out[i] if item1.__class__ != item2.__class__: return None if isinstance(item1, str): if item1 != item2: num_diff_strings += 1 diff_pos = i if num_diff_strings != 1: return None # common_left = [] # common_right = [] # if diff_pos > 0: common_left = r1.out[:diff_pos] common_right = r1.out[diff_pos + 1:] # print('common_left', common_left) # print('common_right', common_right) s1 = r1.out[diff_pos] s2 = r2.out[diff_pos] # print('diff', s1, s2) # go through, find first difference, from each end first_diff = 0 last_diff = 1 for i in range(max(len(s1), len(s2))): if len(s1) - 1 < i or len(s2) - 1 < i: first_diff = i break if s1[i] != s2[i]: first_diff = i break for i in range(1, max(len(s1), len(s2))): # print('i', i, s1[-i], s2[-i]) if len(s1) < i or len(s2) < i: # print('length break', i) last_diff = i break if s1[-i] != s2[-i]: last_diff = i break if first_diff == 0 and last_diff == 1: return None shortest_s_len = min(len(s1), len(s2)) if first_diff + last_diff - 1 > shortest_s_len: # ignore one of them, because we're overlapping... if last_diff - 1 > first_diff: first_diff = 0 else: last_diff = 1 s_start = '' if first_diff > 0: s_start = s1[:first_diff] assert s_start == s2[:first_diff] s_end = '' # print('s1', s1) # print('s2', s2) if last_diff > 1: s_end = s1[1 - last_diff:] # print('last_diff', last_diff, 's_end', s_end) assert s_end == s2[1 - last_diff:] # print(s_start, s_end) if last_diff > 1: s1_mid = s1[first_diff:1 - last_diff] s2_mid = s2[first_diff:1 - last_diff] else: s1_mid = s1[first_diff:] s2_mid = s2[first_diff:] # print(s_start, s_end) # print('s1_mid', s1_mid, 's2_mid', s2_mid) # asdf # print('old rules', rules) rules = [r for r in rules if r != r1 and r != r2] cat = r1.category new_cat = 'C' + str(len(rules)) # cat1 = 'C' + str(len(rules)) + '_1' # cat2 = 'C' + str(len(rules)) + '_2' # cat_common = 'C' + str(len(rules)) + '_c' # print('new cat', new_cat) # if s1_mid != '': new_rule1 = dcg.Rule( category=new_cat, arg=diffarg1, out=[s1_mid]) # print(new_rule1) rules.append(new_rule1) # if s2_mid != '': new_rule2 = dcg.Rule( category=new_cat, arg=diffarg2, out=[s2_mid]) # print(new_rule2) rules.append(new_rule2) # print('len(rules)', len(rules)) # print('len(rules)', len(rules)) # common_left = [] # common_right = [] # if diff_pos > 0: # common_left = if s_start != '': common_left.append(s_start) if s_end != '': common_right.append(s_end) new_rule_common = dcg.Rule( category=cat, out=common_left + [dcg.NonTerminal(category=new_cat, arg=vararg)] + common_right, arg=inarg ) # print('new_rule_common', new_rule_common) rules.append(new_rule_common) newres_1 = dcg.translate(rules, dcg.NonTerminal(category=cat, arg=r1.arg)) newres_2 = dcg.translate(rules, dcg.NonTerminal(category=cat, arg=r2.arg)) if False and (newres_1 != oldres_1 or newres_2 != oldres_2): print('') for rule in rules: print(rule) print('') print('r1', r1) print('r2', r2) print('r1.arg', r1.arg) print('r2.arg', r2.arg) print('s_start [%s]' % s_start, 's_end [%s]' % s_end) print('s1_mid [%s]' % s1_mid, 's2_mid [%s]' % s2_mid) # print(rules) print('oldres 1 [%s]' % oldres_1) print('oldres 2 [%s]' % oldres_2) print('newres_1 [%s]' % newres_1) print('newres_2 [%s]' % newres_2) # assert newres_1 == oldres_1 # assert newres_2 == oldres_2 # print('new rules', rules) # import kirby2001 # kirby2001.print_table(rules) return rules def generalize(rules): ever_modified = False modified = True while modified: rules, modified = _generalize(rules) if modified: ever_modified = True return rules, ever_modified def _generalize(rules): """ input: rules output: simpler_rules, was_simplified """ # was_simplified = False """ Do we really have to do O(n^2) comparisons? :( I guess so :( I mean, we could choose not to, but I think kirby 2001 probably does them exhaustively to simplify the code, we're just going to do a single merge per pass... # note that if any rules are merged, those rules are both excluded from the rest of the pass # I'm not sure if this is a theoretical requirement, but certainly simplifies :) """ # new_rules = [] for i, r1 in enumerate(rules): # print('r1', r1) # merge_done = False for r2 in rules[i + 1:]: # print('r2', r2) new_rules = merge_categories(rules, r1, r2) if new_rules is not None: return new_rules, True new_rules = merge_chunked_bothrules(rules, r1, r2) if new_rules is not None: return new_rules, True # res_new = None # res_new = merge_categories(r1, r2) # # if res_new is None: # # # if res_new is not None: # new_rules.append(res_new) # merge_done = True # break # if merge_done: # continue # else: # new_rules.append(r1) # new_rules.append(r2) return rules, False # return simpler_rules, was_simplified
py
7dfdf54bb57fef8f98ef1c80a4e08e35c87a2471
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SVGPath <=> skia-pathops constructs to enable ops on paths.""" import functools import pathops # pytype: disable=import-error from typing import Sequence, Tuple from picosvg.svg_meta import SVGCommand, SVGCommandGen, SVGCommandSeq from picosvg.svg_transform import Affine2D # Absolutes coords assumed # A should never occur because we convert arcs to cubics # S,T should never occur because we eliminate shorthand _SVG_CMD_TO_SKIA_FN = { "M": pathops.Path.moveTo, "L": pathops.Path.lineTo, "Q": pathops.Path.quadTo, "Z": pathops.Path.close, "C": pathops.Path.cubicTo, } _SVG_TO_SKIA_LINE_CAP = { "butt": pathops.LineCap.BUTT_CAP, "round": pathops.LineCap.ROUND_CAP, "square": pathops.LineCap.SQUARE_CAP, } _SVG_TO_SKIA_LINE_JOIN = { "miter": pathops.LineJoin.MITER_JOIN, "round": pathops.LineJoin.ROUND_JOIN, "bevel": pathops.LineJoin.BEVEL_JOIN, # No arcs or miter-clip } def _simple_skia_to_svg(svg_cmd, points) -> SVGCommandGen: # pathops.Path gives us sequences of points, flatten 'em yield (svg_cmd, tuple(c for pt in points for c in pt)) def _qcurveto_to_svg(points) -> SVGCommandGen: for (control_pt, end_pt) in pathops.decompose_quadratic_segment(points): yield ("Q", control_pt + end_pt) def _end_path(points) -> SVGCommandGen: if points: raise ValueError("endPath should have no points") return # pytype: disable=bad-return-type yield _SKIA_CMD_TO_SVG_CMD = { # simple conversions "moveTo": functools.partial(_simple_skia_to_svg, "M"), "lineTo": functools.partial(_simple_skia_to_svg, "L"), "quadTo": functools.partial(_simple_skia_to_svg, "Q"), "curveTo": functools.partial(_simple_skia_to_svg, "C"), "closePath": functools.partial(_simple_skia_to_svg, "Z"), # more interesting conversions "qCurveTo": _qcurveto_to_svg, # nop "endPath": _end_path, } _SVG_FILL_RULE_TO_SKIA_FILL_TYPE = { "nonzero": pathops.FillType.WINDING, "evenodd": pathops.FillType.EVEN_ODD, } def skia_path(svg_cmds: SVGCommandSeq, fill_rule: str) -> pathops.Path: try: fill_type = _SVG_FILL_RULE_TO_SKIA_FILL_TYPE[fill_rule] except KeyError: raise ValueError(f"Invalid fill rule: {fill_rule!r}") sk_path = pathops.Path(fillType=fill_type) for cmd, args in svg_cmds: if cmd not in _SVG_CMD_TO_SKIA_FN: raise ValueError(f'No mapping to Skia for "{cmd} {args}"') _SVG_CMD_TO_SKIA_FN[cmd](sk_path, *args) return sk_path def svg_commands(skia_path: pathops.Path) -> SVGCommandGen: for cmd, points in skia_path.segments: if cmd not in _SKIA_CMD_TO_SVG_CMD: raise ValueError(f'No mapping to svg for "{cmd} {points}"') for svg_cmd, svg_args in _SKIA_CMD_TO_SVG_CMD[cmd](points): yield (svg_cmd, svg_args) def _do_pathop( op: str, svg_cmd_seqs: Sequence[SVGCommandSeq], fill_rules: Sequence[str] ) -> SVGCommandGen: if not svg_cmd_seqs: return # pytype: disable=bad-return-type assert len(svg_cmd_seqs) == len(fill_rules) sk_path = skia_path(svg_cmd_seqs[0], fill_rules[0]) for svg_cmds, fill_rule in zip(svg_cmd_seqs[1:], fill_rules[1:]): sk_path2 = skia_path(svg_cmds, fill_rule) sk_path = pathops.op(sk_path, sk_path2, op, fix_winding=True) else: sk_path.simplify(fix_winding=True) assert sk_path.fillType == pathops.FillType.WINDING return svg_commands(sk_path) def union( svg_cmd_seqs: Sequence[SVGCommandSeq], fill_rules: Sequence[str] ) -> SVGCommandGen: return _do_pathop(pathops.PathOp.UNION, svg_cmd_seqs, fill_rules) def intersection( svg_cmd_seqs: Sequence[SVGCommandSeq], fill_rules: Sequence[str] ) -> SVGCommandGen: return _do_pathop(pathops.PathOp.INTERSECTION, svg_cmd_seqs, fill_rules) def remove_overlaps(svg_cmds: SVGCommandSeq, fill_rule: str) -> SVGCommandGen: """Create a simplified path filled using the "nonzero" winding rule. This uses skia-pathops simplify method to create a new path containing non-overlapping contours that describe the same area as the original path. The fill_rule ("evenodd" or "nonzero") of the original path determines what is inside or outside the path. After simplification, the winding order of the sub-paths is such that the path looks the same no matter what fill rule is used to render it. References: https://oreillymedia.github.io/Using_SVG/extras/ch06-fill-rule.html """ sk_path = skia_path(svg_cmds, fill_rule=fill_rule) sk_path.simplify(fix_winding=True) assert sk_path.fillType == pathops.FillType.WINDING return svg_commands(sk_path) def transform(svg_cmds: SVGCommandSeq, affine: Affine2D) -> SVGCommandGen: sk_path = skia_path(svg_cmds, fill_rule="nonzero").transform(*affine) return svg_commands(sk_path) def stroke( svg_cmds: SVGCommandSeq, svg_linecap: str, svg_linejoin: str, stroke_width: float, stroke_miterlimit: float, tolerance: float, dash_array: Sequence[float] = (), dash_offset: float = 0.0, ) -> SVGCommandGen: """Create a path that is a shape with its stroke applied. The result may contain self-intersecting paths, thus it should be filled using "nonzero" winding rule (otherwise with "evenodd" one may see gaps where the sub-paths overlap). """ cap = _SVG_TO_SKIA_LINE_CAP.get(svg_linecap, None) if cap is None: raise ValueError(f"Unsupported cap {svg_linecap}") join = _SVG_TO_SKIA_LINE_JOIN.get(svg_linejoin, None) if join is None: raise ValueError(f"Unsupported join {svg_linejoin}") # the input path's fill_rule doesn't affect the stroked result so for # simplicity here we assume 'nonzero' sk_path = skia_path(svg_cmds, fill_rule="nonzero") sk_path.stroke(stroke_width, cap, join, stroke_miterlimit, dash_array, dash_offset) # nuke any conics that snuck in (e.g. with stroke-linecap="round") sk_path.convertConicsToQuads(tolerance) assert sk_path.fillType == pathops.FillType.WINDING return svg_commands(sk_path) def bounding_box(svg_cmds: SVGCommandSeq): return skia_path(svg_cmds, fill_rule="nonzero").bounds def path_area(svg_cmds: SVGCommandSeq, fill_rule: str) -> float: """Return the path's absolute area.""" sk_path = skia_path(svg_cmds, fill_rule=fill_rule) sk_path.simplify(fix_winding=True) return sk_path.area
py
7dfdf594b0fdb514504b298a5f9c0e04e8817855
from fontTools.misc.py23 import * from fontTools.misc.loggingTools import CapturingLogHandler import unittest from fontTools.pens.basePen import AbstractPen from fontTools.pens.pointPen import AbstractPointPen, PointToSegmentPen, \ SegmentToPointPen, GuessSmoothPointPen, ReverseContourPointPen class _TestSegmentPen(AbstractPen): def __init__(self): self._commands = [] def __repr__(self): return " ".join(self._commands) def moveTo(self, pt): self._commands.append("%s %s moveto" % (pt[0], pt[1])) def lineTo(self, pt): self._commands.append("%s %s lineto" % (pt[0], pt[1])) def curveTo(self, *pts): pts = ["%s %s" % pt for pt in pts] self._commands.append("%s curveto" % " ".join(pts)) def qCurveTo(self, *pts): pts = ["%s %s" % pt if pt is not None else "None" for pt in pts] self._commands.append("%s qcurveto" % " ".join(pts)) def closePath(self): self._commands.append("closepath") def endPath(self): self._commands.append("endpath") def addComponent(self, glyphName, transformation): self._commands.append("'%s' %s addcomponent" % (glyphName, transformation)) def _reprKwargs(kwargs): items = [] for key in sorted(kwargs): value = kwargs[key] if isinstance(value, basestring): items.append("%s='%s'" % (key, value)) else: items.append("%s=%s" % (key, value)) return items class _TestPointPen(AbstractPointPen): def __init__(self): self._commands = [] def __repr__(self): return " ".join(self._commands) def beginPath(self, identifier=None, **kwargs): items = [] if identifier is not None: items.append("identifier='%s'" % identifier) items.extend(_reprKwargs(kwargs)) self._commands.append("beginPath(%s)" % ", ".join(items)) def addPoint(self, pt, segmentType=None, smooth=False, name=None, identifier=None, **kwargs): items = ["%s" % (pt,)] if segmentType is not None: items.append("segmentType='%s'" % segmentType) if smooth: items.append("smooth=True") if name is not None: items.append("name='%s'" % name) if identifier is not None: items.append("identifier='%s'" % identifier) items.extend(_reprKwargs(kwargs)) self._commands.append("addPoint(%s)" % ", ".join(items)) def endPath(self): self._commands.append("endPath()") def addComponent(self, glyphName, transform, identifier=None, **kwargs): items = ["'%s'" % glyphName, "%s" % transform] if identifier is not None: items.append("identifier='%s'" % identifier) items.extend(_reprKwargs(kwargs)) self._commands.append("addComponent(%s)" % ", ".join(items)) class PointToSegmentPenTest(unittest.TestCase): def test_open(self): pen = _TestSegmentPen() ppen = PointToSegmentPen(pen) ppen.beginPath() ppen.addPoint((10, 10), "move") ppen.addPoint((10, 20), "line") ppen.endPath() self.assertEqual("10 10 moveto 10 20 lineto endpath", repr(pen)) def test_closed(self): pen = _TestSegmentPen() ppen = PointToSegmentPen(pen) ppen.beginPath() ppen.addPoint((10, 10), "line") ppen.addPoint((10, 20), "line") ppen.addPoint((20, 20), "line") ppen.endPath() self.assertEqual("10 10 moveto 10 20 lineto 20 20 lineto closepath", repr(pen)) def test_cubic(self): pen = _TestSegmentPen() ppen = PointToSegmentPen(pen) ppen.beginPath() ppen.addPoint((10, 10), "line") ppen.addPoint((10, 20)) ppen.addPoint((20, 20)) ppen.addPoint((20, 40), "curve") ppen.endPath() self.assertEqual("10 10 moveto 10 20 20 20 20 40 curveto closepath", repr(pen)) def test_quad(self): pen = _TestSegmentPen() ppen = PointToSegmentPen(pen) ppen.beginPath(identifier='foo') ppen.addPoint((10, 10), "line") ppen.addPoint((10, 40)) ppen.addPoint((40, 40)) ppen.addPoint((10, 40), "qcurve") ppen.endPath() self.assertEqual("10 10 moveto 10 40 40 40 10 40 qcurveto closepath", repr(pen)) def test_quad_onlyOffCurvePoints(self): pen = _TestSegmentPen() ppen = PointToSegmentPen(pen) ppen.beginPath() ppen.addPoint((10, 10)) ppen.addPoint((10, 40)) ppen.addPoint((40, 40)) ppen.endPath() self.assertEqual("10 10 10 40 40 40 None qcurveto closepath", repr(pen)) def test_roundTrip1(self): tpen = _TestPointPen() ppen = PointToSegmentPen(SegmentToPointPen(tpen)) ppen.beginPath() ppen.addPoint((10, 10), "line") ppen.addPoint((10, 20)) ppen.addPoint((20, 20)) ppen.addPoint((20, 40), "curve") ppen.endPath() self.assertEqual("beginPath() addPoint((10, 10), segmentType='line') addPoint((10, 20)) " "addPoint((20, 20)) addPoint((20, 40), segmentType='curve') endPath()", repr(tpen)) def test_closed_outputImpliedClosingLine(self): tpen = _TestSegmentPen() ppen = PointToSegmentPen(tpen, outputImpliedClosingLine=True) ppen.beginPath() ppen.addPoint((10, 10), "line") ppen.addPoint((10, 20), "line") ppen.addPoint((20, 20), "line") ppen.endPath() self.assertEqual( "10 10 moveto " "10 20 lineto " "20 20 lineto " "10 10 lineto " # explicit closing line "closepath", repr(tpen) ) def test_closed_line_overlapping_start_end_points(self): # Test case from https://github.com/googlefonts/fontmake/issues/572. tpen = _TestSegmentPen() ppen = PointToSegmentPen(tpen, outputImpliedClosingLine=False) # The last oncurve point on this closed contour is a "line" segment and has # same coordinates as the starting point. ppen.beginPath() ppen.addPoint((0, 651), segmentType="line") ppen.addPoint((0, 101), segmentType="line") ppen.addPoint((0, 101), segmentType="line") ppen.addPoint((0, 651), segmentType="line") ppen.endPath() # Check that we always output an explicit 'lineTo' segment at the end, # regardless of the value of 'outputImpliedClosingLine', to disambiguate # the duplicate point from the implied closing line. self.assertEqual( "0 651 moveto " "0 101 lineto " "0 101 lineto " "0 651 lineto " "0 651 lineto " "closepath", repr(tpen) ) def test_roundTrip2(self): tpen = _TestPointPen() ppen = PointToSegmentPen(SegmentToPointPen(tpen)) ppen.beginPath() ppen.addPoint((0, 651), segmentType="line") ppen.addPoint((0, 101), segmentType="line") ppen.addPoint((0, 101), segmentType="line") ppen.addPoint((0, 651), segmentType="line") ppen.endPath() self.assertEqual( "beginPath() " "addPoint((0, 651), segmentType='line') " "addPoint((0, 101), segmentType='line') " "addPoint((0, 101), segmentType='line') " "addPoint((0, 651), segmentType='line') " "endPath()", repr(tpen) ) class TestSegmentToPointPen(unittest.TestCase): def test_move(self): tpen = _TestPointPen() pen = SegmentToPointPen(tpen) pen.moveTo((10, 10)) pen.endPath() self.assertEqual("beginPath() addPoint((10, 10), segmentType='move') endPath()", repr(tpen)) def test_poly(self): tpen = _TestPointPen() pen = SegmentToPointPen(tpen) pen.moveTo((10, 10)) pen.lineTo((10, 20)) pen.lineTo((20, 20)) pen.closePath() self.assertEqual("beginPath() addPoint((10, 10), segmentType='line') " "addPoint((10, 20), segmentType='line') " "addPoint((20, 20), segmentType='line') endPath()", repr(tpen)) def test_cubic(self): tpen = _TestPointPen() pen = SegmentToPointPen(tpen) pen.moveTo((10, 10)) pen.curveTo((10, 20), (20, 20), (20, 10)) pen.closePath() self.assertEqual("beginPath() addPoint((10, 10), segmentType='line') " "addPoint((10, 20)) addPoint((20, 20)) addPoint((20, 10), " "segmentType='curve') endPath()", repr(tpen)) def test_quad(self): tpen = _TestPointPen() pen = SegmentToPointPen(tpen) pen.moveTo((10, 10)) pen.qCurveTo((10, 20), (20, 20), (20, 10)) pen.closePath() self.assertEqual("beginPath() addPoint((10, 10), segmentType='line') " "addPoint((10, 20)) addPoint((20, 20)) " "addPoint((20, 10), segmentType=qcurve) endPath()", repr(tpen)) def test_quad(self): tpen = _TestPointPen() pen = SegmentToPointPen(tpen) pen.qCurveTo((10, 20), (20, 20), (20, 10), (10, 10), None) pen.closePath() self.assertEqual("beginPath() addPoint((10, 20)) addPoint((20, 20)) " "addPoint((20, 10)) addPoint((10, 10)) endPath()", repr(tpen)) def test_roundTrip1(self): spen = _TestSegmentPen() pen = SegmentToPointPen(PointToSegmentPen(spen)) pen.moveTo((10, 10)) pen.lineTo((10, 20)) pen.lineTo((20, 20)) pen.closePath() self.assertEqual("10 10 moveto 10 20 lineto 20 20 lineto closepath", repr(spen)) def test_roundTrip2(self): spen = _TestSegmentPen() pen = SegmentToPointPen(PointToSegmentPen(spen)) pen.qCurveTo((10, 20), (20, 20), (20, 10), (10, 10), None) pen.closePath() pen.addComponent('base', [1, 0, 0, 1, 0, 0]) self.assertEqual("10 20 20 20 20 10 10 10 None qcurveto closepath " "'base' [1, 0, 0, 1, 0, 0] addcomponent", repr(spen)) class TestGuessSmoothPointPen(unittest.TestCase): def test_guessSmooth_exact(self): tpen = _TestPointPen() pen = GuessSmoothPointPen(tpen) pen.beginPath(identifier="foo") pen.addPoint((0, 100), segmentType="curve") pen.addPoint((0, 200)) pen.addPoint((400, 200), identifier='bar') pen.addPoint((400, 100), segmentType="curve") pen.addPoint((400, 0)) pen.addPoint((0, 0)) pen.endPath() self.assertEqual("beginPath(identifier='foo') " "addPoint((0, 100), segmentType='curve', smooth=True) " "addPoint((0, 200)) addPoint((400, 200), identifier='bar') " "addPoint((400, 100), segmentType='curve', smooth=True) " "addPoint((400, 0)) addPoint((0, 0)) endPath()", repr(tpen)) def test_guessSmooth_almost(self): tpen = _TestPointPen() pen = GuessSmoothPointPen(tpen) pen.beginPath() pen.addPoint((0, 100), segmentType="curve") pen.addPoint((1, 200)) pen.addPoint((395, 200)) pen.addPoint((400, 100), segmentType="curve") pen.addPoint((400, 0)) pen.addPoint((0, 0)) pen.endPath() self.assertEqual("beginPath() addPoint((0, 100), segmentType='curve', smooth=True) " "addPoint((1, 200)) addPoint((395, 200)) " "addPoint((400, 100), segmentType='curve', smooth=True) " "addPoint((400, 0)) addPoint((0, 0)) endPath()", repr(tpen)) def test_guessSmooth_tangent(self): tpen = _TestPointPen() pen = GuessSmoothPointPen(tpen) pen.beginPath() pen.addPoint((0, 0), segmentType="move") pen.addPoint((0, 100), segmentType="line") pen.addPoint((3, 200)) pen.addPoint((300, 200)) pen.addPoint((400, 200), segmentType="curve") pen.endPath() self.assertEqual("beginPath() addPoint((0, 0), segmentType='move') " "addPoint((0, 100), segmentType='line', smooth=True) " "addPoint((3, 200)) addPoint((300, 200)) " "addPoint((400, 200), segmentType='curve') endPath()", repr(tpen)) class TestReverseContourPointPen(unittest.TestCase): def test_singlePoint(self): tpen = _TestPointPen() pen = ReverseContourPointPen(tpen) pen.beginPath() pen.addPoint((0, 0), segmentType="move") pen.endPath() self.assertEqual("beginPath() " "addPoint((0, 0), segmentType='move') " "endPath()", repr(tpen)) def test_line(self): tpen = _TestPointPen() pen = ReverseContourPointPen(tpen) pen.beginPath() pen.addPoint((0, 0), segmentType="move") pen.addPoint((0, 100), segmentType="line") pen.endPath() self.assertEqual("beginPath() " "addPoint((0, 100), segmentType='move') " "addPoint((0, 0), segmentType='line') " "endPath()", repr(tpen)) def test_triangle(self): tpen = _TestPointPen() pen = ReverseContourPointPen(tpen) pen.beginPath() pen.addPoint((0, 0), segmentType="line") pen.addPoint((0, 100), segmentType="line") pen.addPoint((100, 100), segmentType="line") pen.endPath() self.assertEqual("beginPath() " "addPoint((0, 0), segmentType='line') " "addPoint((100, 100), segmentType='line') " "addPoint((0, 100), segmentType='line') " "endPath()", repr(tpen)) def test_cubicOpen(self): tpen = _TestPointPen() pen = ReverseContourPointPen(tpen) pen.beginPath() pen.addPoint((0, 0), segmentType="move") pen.addPoint((0, 100)) pen.addPoint((100, 200)) pen.addPoint((200, 200), segmentType="curve") pen.endPath() self.assertEqual("beginPath() " "addPoint((200, 200), segmentType='move') " "addPoint((100, 200)) " "addPoint((0, 100)) " "addPoint((0, 0), segmentType='curve') " "endPath()", repr(tpen)) def test_quadOpen(self): tpen = _TestPointPen() pen = ReverseContourPointPen(tpen) pen.beginPath() pen.addPoint((0, 0), segmentType="move") pen.addPoint((0, 100)) pen.addPoint((100, 200)) pen.addPoint((200, 200), segmentType="qcurve") pen.endPath() self.assertEqual("beginPath() " "addPoint((200, 200), segmentType='move') " "addPoint((100, 200)) " "addPoint((0, 100)) " "addPoint((0, 0), segmentType='qcurve') " "endPath()", repr(tpen)) def test_cubicClosed(self): tpen = _TestPointPen() pen = ReverseContourPointPen(tpen) pen.beginPath() pen.addPoint((0, 0), segmentType="line") pen.addPoint((0, 100)) pen.addPoint((100, 200)) pen.addPoint((200, 200), segmentType="curve") pen.endPath() self.assertEqual("beginPath() " "addPoint((0, 0), segmentType='curve') " "addPoint((200, 200), segmentType='line') " "addPoint((100, 200)) " "addPoint((0, 100)) " "endPath()", repr(tpen)) def test_quadClosedOffCurveStart(self): tpen = _TestPointPen() pen = ReverseContourPointPen(tpen) pen.beginPath() pen.addPoint((100, 200)) pen.addPoint((200, 200), segmentType="qcurve") pen.addPoint((0, 0), segmentType="line") pen.addPoint((0, 100)) pen.endPath() self.assertEqual("beginPath() " "addPoint((100, 200)) " "addPoint((0, 100)) " "addPoint((0, 0), segmentType='qcurve') " "addPoint((200, 200), segmentType='line') " "endPath()", repr(tpen)) def test_quadNoOnCurve(self): tpen = _TestPointPen() pen = ReverseContourPointPen(tpen) pen.beginPath(identifier='bar') pen.addPoint((0, 0)) pen.addPoint((0, 100), identifier='foo', arbitrary='foo') pen.addPoint((100, 200), arbitrary=123) pen.addPoint((200, 200)) pen.endPath() pen.addComponent("base", [1, 0, 0, 1, 0, 0], identifier='foo') self.assertEqual("beginPath(identifier='bar') " "addPoint((0, 0)) " "addPoint((200, 200)) " "addPoint((100, 200), arbitrary=123) " "addPoint((0, 100), identifier='foo', arbitrary='foo') " "endPath() " "addComponent('base', [1, 0, 0, 1, 0, 0], identifier='foo')", repr(tpen)) def test_closed_line_overlapping_start_end_points(self): # Test case from https://github.com/googlefonts/fontmake/issues/572 tpen = _TestPointPen() pen = ReverseContourPointPen(tpen) pen.beginPath() pen.addPoint((0, 651), segmentType="line") pen.addPoint((0, 101), segmentType="line") pen.addPoint((0, 101), segmentType="line") pen.addPoint((0, 651), segmentType="line") pen.endPath() self.assertEqual( "beginPath() " "addPoint((0, 651), segmentType='line') " "addPoint((0, 651), segmentType='line') " "addPoint((0, 101), segmentType='line') " "addPoint((0, 101), segmentType='line') " "endPath()", repr(tpen) )
py
7dfdf5a76efbcf4d2a27ddefbe836fc1cc9a076c
# -*- coding: utf-8 -*- # Copyright 2018 IBM. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= from .initial_state import InitialState __all__ = ['InitialState']
py
7dfdf6e9baa96472bf9caa35398c661c1d13d3c3
from __future__ import print_function from builtins import input import os import shutil import logging import re import git import socket import time from io import open from knowledge_repo._version import __git_uri__ from ..post import KnowledgePost from ..repository import KnowledgeRepository from ..utils.exec_code import get_module_for_source from ..utils.types import str_types from ..utils.encoding import encode logger = logging.getLogger(__name__) class FolderKnowledgeRepository(KnowledgeRepository): _registry_keys = ['', 'file'] TEMPLATES = { 'README.md': os.path.abspath(os.path.join(os.path.dirname(__file__), '../templates', 'repository_readme.md')), '.knowledge_repo_config.yml': os.path.abspath(os.path.join(os.path.dirname(__file__), '../templates', 'repository_config.yml')) } @classmethod def create(cls, uri, embed_tooling=False): if uri.startswith('file://'): uri = uri[len('file://'):] path = os.path.abspath(uri) if not os.path.exists(path): os.makedirs(path) # Add README and configuration templates for filename, template in cls.TEMPLATES.items(): target = os.path.join(path, filename) if not os.path.exists(target): shutil.copy(template, target) else: logger.warning("Not overriding existing file '{}'.".format(filename)) return FolderKnowledgeRepository(path) @classmethod def from_uri(cls, uri, *args, **kwargs): """ If this folder is actually a git repository, a `GitKnowledgeRepository` is returned instead, unless the folder knowledge repository is explicitly requested via the 'file://' protocol. """ check_for_git = True if uri.startswith('file://'): check_for_git = False uri = uri[len('file://'):] if check_for_git and os.path.exists(os.path.join(uri, '.git')): from .gitrepository import GitKnowledgeRepository return GitKnowledgeRepository(uri, *args, **kwargs) return cls(uri, *args, **kwargs) def init(self, config='.knowledge_repo_config.yml', auto_create=False): self.auto_create = auto_create self.path = self.uri self.config.update(os.path.join(self.path, config)) @property def path(self): return self._path @path.setter def path(self, path): assert isinstance(path, str), "The path specified must be a string." path = os.path.abspath(os.path.expanduser(path)) if not os.path.exists(path): path = os.path.abspath(path) if self.auto_create: self.create(path) else: raise ValueError("Provided path '{}' does not exist.".format(path)) self._path = path # ----------- Repository actions / state ------------------------------------ @property def revision(self): return time.time() @property def status(self): return 'OK' @property def status_message(self): return 'OK' # ---------------- Post retrieval methods -------------------------------- def _dir(self, prefix, statuses): posts = set() if self.PostStatus.PUBLISHED in statuses: for path, folders, files in os.walk(os.path.join(self.path, prefix or '')): # Do not visit hidden folders for folder in folders: if folder.startswith('.'): folders.remove(folder) posts.update( os.path.join(os.path.relpath(path, start=self.path), folder) for folder in folders if folder.endswith('.kp') ) posts.update( os.path.join(os.path.relpath(path, start=self.path), file) for file in files if file.endswith('.kp') ) for post in sorted([post[2:] if post.startswith('./') else post for post in posts]): yield post # ------------- Post submission / addition user flow ---------------------- def _add_prepare(self, kp, path, update=False, **kwargs): pass def _add_cleanup(self, kp, path, update=False, **kwargs): pass def _submit(self, path=None, branch=None, force=False): pass # Added posts are already submitted def _publish(self, path): # Publish a post for general perusal pass # Added posts are already published def _unpublish(self, path): # unpublish a post for general perusal raise NotImplementedError def _accept(self, path): # Approve to publish a post for general perusal pass def _remove(self, path, all=False): shutil.rmtree(os.path.join(self.path, path)) # ------------ Knowledge Post Data Retrieval Methods ------------------------- def _kp_uuid(self, path): try: return self._kp_read_ref(path, 'UUID') except: return None def _kp_path(self, path, rel=None): return KnowledgeRepository._kp_path(self, os.path.expanduser(path), rel=rel or self.path) def _kp_exists(self, path, revision=None): return os.path.exists(os.path.join(self.path, path)) def _kp_status(self, path, revision=None, detailed=False, branch=None): return self.PostStatus.PUBLISHED def _kp_get_revision(self, path): # We use a 'REVISION' file in the knowledge post folder rather than using git # revisions because using git rev-parse is slow. try: return int(self._kp_read_ref(path, 'REVISION')) except: return 0 def _kp_get_revisions(self, path): raise NotImplementedError def _kp_write_ref(self, path, reference, data, uuid=None, revision=None): path = os.path.join(self.path, path) if os.path.isfile(path): kp = KnowledgePost.from_file(path, format='kp') kp._write_ref(reference, data) kp.to_file(path, format='kp') else: ref_path = os.path.join(path, reference) ref_dir = os.path.dirname(ref_path) if not os.path.exists(ref_dir): os.makedirs(ref_dir) with open(ref_path, 'wb') as f: return f.write(data) def _kp_dir(self, path, parent=None, revision=None): # TODO: Account for revision path = os.path.join(self.path, path) if os.path.isdir(path): if parent: path = os.path.join(path, parent) for dirpath, dirnames, filenames in os.walk(os.path.join(self.path, path)): for filename in filenames: if dirpath == "" and filename == "REVISION": continue yield os.path.relpath(os.path.join(dirpath, filename), os.path.join(self.path, path)) else: kp = KnowledgePost.from_file(path, format='kp') for reference in kp._dir(parent=parent): yield reference def _kp_has_ref(self, path, reference, revision=None): # TODO: Account for revision path = os.path.join(self.path, path) if os.path.isdir(path): return os.path.isfile(os.path.join(path, reference)) else: kp = KnowledgePost.from_file(path, format='kp') return kp._has_ref(reference) def _kp_diff(self, path, head, base): raise NotImplementedError def _kp_new_revision(self, path, uuid=None): self._kp_write_ref(path, "REVISION", encode(self._kp_get_revision(path) + 1)) if uuid: self._kp_write_ref(path, "UUID", encode(uuid)) def _kp_read_ref(self, path, reference, revision=None): path = os.path.join(self.path, path) if os.path.isdir(path): with open(os.path.join(self.path, path, reference), 'rb') as f: return f.read() else: kp = KnowledgePost.from_file(path, format='kp') return kp._read_ref(reference)
py
7dfdf76830ab71996d70cb5c873ea75d4e041b87
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function from __future__ import absolute_import from __future__ import division import sys, os, time import argparse try: import queue except ImportError: import Queue as queue curdir = os.path.dirname(os.path.abspath(sys.argv[0])) try: import ust_misc as um except ImportError: libdirs = [d for d in (os.path.join(curdir, '..', 'lib'), \ os.path.join(curdir, 'python', 'lib')) \ if os.path.isdir(d)] if libdirs: sys.path.append(libdirs[0]) import ust_misc as um import ust_target as ut def create_session(usb_clk_ghz = 1.0 / 26): # {{{ um.cl_args = sys.argv[1:] um.check_udagent_env(curdir) session = ut.UstSession() session.start() session.set_udb_clk_freq(usb_clk_ghz) session.apply_initial_configuration() return session # }}} def create_session s = None#create_session() class tinn(): # {{{ '''Magic constants and addresses copied from tinn.h ''' PATH_ACPU_ELF = "riscv/temp/tinn.acpu.x" PATH_SCPU_ELF = "riscv/temp/tinn.scpu.x" PATH_ACPU_BIN = "riscv/bin/tinn.acpu.bin" PATH_SCPU_BIN = "riscv/bin/tinn.scpu.bin" PATH_ASCIIDATASET = "resources/apps/tinn/semeion.data" PATH_SI_LOG = "log.si.txt" PATH_SI_VCD = "tinn1.vcd" # Initial values for PC set by session.get_jpam(initialise=True) using # values from session._cpu_start_addr() _START_ACPU = 0x60000000 _START_SCPU = 0x70000000 # Magic location for each core to signal the host via load/stores. HOSTFLAG_ACPU = 0x50000000 HOSTFLAG_SCPU = 0x50000008 # Address of Inter-Core Communication flags controlling run state. TOSLV_CMD = 0x50001000 TOMST_REQ = 0x50001008 # Address of pointers to message Inter-Core Communication buffers. TOSLV_BUFFADDR = 0x50001010 TOMST_BUFFADDR = 0x50001018 TOMST_BINBUFFADDR = 0x50001020 # ASCII data loaded into memory separately at known address. ASCIIDATASET_ADDR = 0x51000000 TAYGETE_AXI_COMMUNICATOR= 0xC0000000 TAYGETE_STATIC_INSTR = 0xC0010000 TAYGETE_VIRTUAL_CONSOLE = 0xC0020000 # }}} class tinn def toline_sinst_data(msg, axi_id_w=7, human=True): # {{{ '''Return string for a single STIN message. ''' # Time reported as a hex string. msgtime = int(msg.meta["time"], 16) if human: metastr = "%s@%d:" % (msg.module, msgtime) else: metastr = "%d" % msgtime fields = {str(k):v.value for (k,v) in msg.fields.items()} size = fields["size"] + 1 channel = fields["channel"] event = fields["event"] flag = fields["flag"] chstr = (" ch%d" % channel) if human else (" %d" % channel) flagstr = " FLAG" if flag else "" if fields["id_present"]: infrastructure_id = int(fields["data"] & (2**axi_id_w-1)) data = fields["data"] >> axi_id_w mststr = " mst=%d" % infrastructure_id else: data = fields["data"] mststr = "" if event or flag: datastr = "" else: data = data & (2**(size*8)-1) datastr = (" data=0x%x" % data) if human else (" 0x%x" % data) return "".join([metastr, chstr, flagstr, datastr, mststr]) # }}} def toline_sinst_data def proc_sinst(fd=sys.stdout, maxnum=10000, keepother=True, session=s): # {{{ '''Print and discard SI data messages like si_readlines, and classify any other type of message. ''' seen_msgs = 0 while seen_msgs < maxnum: try: (meta, msg) = session.mstream.msgs.get(False) msg.meta = meta seen_msgs += 1 except queue.Empty: break if session._check_msg_type(msg, "sinst_data"): print(toline_sinst_data(msg, human=False), file=fd) elif keepother: session._classify_msg(msg) return seen_msgs # }}} def proc_sinst def si_readlines(fd=sys.stdout, session=s, axi_id_w=7): # {{{ '''Print lines from all SI (Static Instrumentation) modules to an open file, default append to STDOUT. Returns a dict keyed by SI modules, each with a list of lines. Line format is "<SI module>: <data line>". E.g. To extract all lines from si1 the client should read all of the SI lines with something like: log = open("log.si.txt", 'w') si_readlines(log, session) ... maybe more calls to si_readlines ... log.close() And the host may do something like this: grep 'si1: ' log.si.txt ''' cs = session.MSG_CLASS_SI_DATA cmsgs = session.cmsgs si_modules = [md for md in sorted(cmsgs.keys()) if cs in cmsgs[md]] ret = {} for md in si_modules: #ret[md] = cmsgs[md][cs] ret[md] = cmsgs[md].pop(cs) if fd is not None: for md,msgs in ret.items(): for msg in msgs: print(toline_sinst_data(msg, axi_id_w=axi_id_w), file=fd) fd.flush() os.fsync(fd) return ret # }}} def si_readlines def vc_readlines(fd=sys.stdout, session=s): # {{{ '''Print lines from all VC (Virtual Console) modules to an open file, default append to STDOUT. Returns a dict keyed by VC channels, each with a list of lines. Line format is "<VC module>.<channel number>: <printf'ed line>". This is similar to ust_target.py:UstSession.handle_vc() except the output can be split by grepping on the first chararcters. E.g. To extract all lines from vc1 channel 0 (ACPU on Taygete) the client should read all of the VC lines with something like: log = open("log.vc.txt", 'w') _ = vc_readlines(log, session) ... maybe more calls to vc_readlines ... log.close() And the host may do something like this: grep 'vc1.0: ' log.vc.txt ''' ret = {} for (m, ch) in sorted(session.vci.keys()): vci = session.vci[(m, ch)] s = (vci.vc_string + session.vcread(m, ch)).replace("\r", "") lines = s.split("\n") vci.vc_string = lines.pop() chnm = "{}.{}".format(m, ch) ret[chnm] = lines if fd is not None: for chnm,lines in ret.items(): for line in lines: print(chnm + ": " + line, file=fd) fd.flush() os.fsync(fd) return ret # }}} def vc_readlines def pprint_rsp(rsp): # {{{ if type(rsp) is list: msgs = rsp elif type(rsp) is ut.msg_codec.MsgObj: msgs = [rsp] else: assert False, rsp import pprint for m in msgs: assert type(m) is ut.msg_codec.MsgObj pprint.pprint(m.fields.items()) # }}} def pprint_rsp def get_msg(md="foo", msg="get_bar", fields={}, session=s): # {{{ rsp = session.send_get_msg_with_response(md, session.blank_us_ctrl_fields(md, msg)) return rsp # }}} def get_msg def write_si_mailbox(session=s, # {{{ md="si1", channel=0, mailbox=0, wrdata=0xDEADBEEF, module_addr=tinn.TAYGETE_STATIC_INSTR, verbose=True): rsp_discovery = session.send_get_msg_with_response(md, session.blank_us_ctrl_fields(md, "discovery_request"))[0].fields.items() base_addr = [d.value for s,d in rsp_discovery if s == "base_addr"][0] # UL-001174-TR-3B-Static Instrumentation User Guide.pdf channel_address = base_addr + (0x200 * channel) addrN = channel_address + (0x10 * mailbox) final_addr = module_addr + addrN is_timestamp = (mailbox & (1 << 0)) != 0 is_flag = (mailbox & (1 << 1)) != 0 is_marked = (mailbox & (1 << 2)) != 0 is_blocking = (mailbox & (1 << 3)) != 0 is_event = (mailbox & (1 << 4)) != 0 if verbose: print("write_si_mailbox() WRITE") print(" md=%s" % md) print(" channel=%d" % channel) print(" mailbox=%d" % mailbox) print(" wrdata=%s -> final_addr=%s" % (hex(wrdata), hex(final_addr))) print(" module_addr=%s" % hex(module_addr)) print(" base_addr=%s" % hex(base_addr)) print(" channel_address=%s" % hex(channel_address)) print(" addrN=%s" % hex(addrN)) print(" TIMESTAMP=%s" % is_timestamp) print(" FLAG=%s" % is_flag) print(" MARKED=%s" % is_marked) print(" BLOCKING=%s" % is_blocking) print(" EVENT=%s" % is_event) session.dma_write32(final_addr, wrdata) if verbose: print(" SI MODULE CONFIG") channels_m1 = [d.value for s,d in rsp_discovery if s == "channels"][0] if channel <= channels_m1: print(" channel=%d <= channels-1=%d" % (channel, channels_m1)) else: print(" WARNING channel=%d > channels-1=%d" % (channel, channels_m1)) # # enabled # rsp_enabled = session.send_get_msg_with_response(md, session.blank_us_ctrl_fields(md, "get_enabled"))[0].fields.items() module_enabled = [d.value for s,d in rsp_enabled if s == "module_enable"][0] != 0 if module_enabled: print(" module enabled") else: print(" WARNING module disabled") # # event # if is_event: eventnum = wrdata & 0xFF event_select = 1 if eventnum > 128 else 0 maskindex = eventnum - (128 if event_select else 0) rsp_event = session.send_get_msg_with_response(md, session.blank_us_ctrl_fields(md, "get_event", {"select": event_select}))[0].fields.items() event_mask = [d.value for s,d in rsp_event if s == "mask"][0] event_enabled = (event_mask & (1 << maskindex)) != 0 if event_enabled: print(" event %d (from LSByte of wrdata) enabled" % eventnum) else: print(" WARNING event %d (from LSByte of wrdata) disabled" % eventnum) # # power # rsp_power = session.send_get_msg_with_response(md, session.blank_us_ctrl_fields(md, "get_power"))[0].fields.items() clk_disable = [d.value for s,d in rsp_power if s == "clk_disable"][0] != 0 if clk_disable: print(" internal clock gating enabled") else: print(" WARNING internal clock gating disabled") # # sinst # rsp_sinst = session.send_get_msg_with_response(md, session.blank_us_ctrl_fields(md, "get_sinst"))[0].fields.items() sys_flow = [d.value for s,d in rsp_sinst if s == "sys_flow"][0] inst_flow = [d.value for s,d in rsp_sinst if s == "inst_flow"][0] non_blocking_throttle_level = [d.value for s,d in rsp_sinst if s == "non_blocking_throttle_level"][0] blocking_throttle_level = [d.value for s,d in rsp_sinst if s == "blocking_throttle_level"][0] sys_timestamp = [d.value for s,d in rsp_sinst if s == "sys_timestamp"][0] inst_timestamp_override = [d.value for s,d in rsp_sinst if s == "inst_timestamp_override"][0] enable_event = [d.value for s,d in rsp_sinst if s == "enable_event"][0] disable_event = [d.value for s,d in rsp_sinst if s == "disable_event"][0] enable_event_control = [d.value for s,d in rsp_sinst if s == "enable_event_control"][0] != 0 disable_event_control = [d.value for s,d in rsp_sinst if s == "disable_event_control"][0] != 0 if enable_event_control: print(" WARNING module_enable enabled by event %d" % enable_event) if disable_event_control: print(" WARNING module_enable disabled by event %d" % disable_event) mst_id_capture_en = [d.value for s,d in rsp_sinst if s == "mst_id_capture_en"][0] mst_id_filter_lo = [d.value for s,d in rsp_sinst if s == "mst_id_filter_lo"][0] mst_id_filter_hi = [d.value for s,d in rsp_sinst if s == "mst_id_filter_hi"][0] axis_id_width_p = [d.value for s,d in rsp_discovery if s == "axi_id"][0] + 1 max_id = 2**axis_id_width_p - 1 if mst_id_filter_lo != 0 or mst_id_filter_hi != max_id: print(" WARNING (mst_id_filter_lo, mst_id_filter_hi)=(%d, %d)" " but max range is (0, %d)" % (mst_id_filter_lo, mst_id_filter_hi, max_id)) tx_timeout = [d.value for s,d in rsp_sinst if s == "tx_timeout"][0] if tx_timeout != 0: print(" WARNING tx_timeout=%d so blocking messages may time out" % tx_timeout) # # sinst_enables # group, chnumber = divmod(channel, 32) rsp_sinst_enables = session.send_get_msg_with_response(md, session.blank_us_ctrl_fields(md, "get_sinst_enables", {"group_index": group}))[0].fields.items() enable_map = [d.value for s,d in rsp_sinst_enables if s == "enable_map"][0] channel_enabled = (enable_map & (1 << chnumber)) != 0 if channel_enabled: print(" channel %d in group %d at chnumber %d enabled" % (channel, group, chnumber)) else: print(" WARNING channel %d in group %d at chnumber %d disabled" % (channel, group, chnumber)) # }}} def write_si_mailbox def si_set_sinst(session=s, # {{{ md="si1", sys_flow=0, inst_flow=0, non_blocking_throttle_level="never", blocking_throttle_level="never", sys_timestamp=1, inst_timestamp_override=0, enable_event=0, disable_event=0, enable_event_control=0, disable_event_control=0, mst_id_capture_en=1, mst_id_filter_lo=0, mst_id_filter_hi=-1, tx_timeout=0): fields = {"control_code": "set_sinst", "sys_flow": sys_flow, "inst_flow": inst_flow, "non_blocking_throttle_level": non_blocking_throttle_level, "blocking_throttle_level": blocking_throttle_level, "sys_timestamp": sys_timestamp, "inst_timestamp_override": inst_timestamp_override, "enable_event": enable_event, "disable_event": disable_event, "enable_event_control": enable_event_control, "disable_event_control": disable_event_control, "mst_id_capture_en": mst_id_capture_en, "mst_id_filter_lo": mst_id_filter_lo, "mst_id_filter_hi": mst_id_filter_hi, "tx_timeout": tx_timeout} session.mstream.send_msg(md, "system_control", fields) rsp = session.send_get_msg_with_response(md, s.blank_us_ctrl_fields(md, "get_sinst")) return rsp # }}} def si_set_sinst def si_set_enabled(session=s, # {{{ md="si1", operation="apply", module_enable=1): fields = {"control_code": "set_enabled", "operation": operation, "module_enable": module_enable} session.mstream.send_msg(md, "system_control", fields) rsp = session.send_get_msg_with_response(md, s.blank_us_ctrl_fields(md, "get_enabled")) return rsp # }}} def si_set_enabled def si_set_sinst_enables(session=s, # {{{ md="si1", operation="apply", group_index=0, enable_map=(2**32-1)): fields = {"control_code": "set_sinst_enables", "operation": operation, "group_index": group_index, "enable_map": enable_map} session.mstream.send_msg(md, "system_control", fields) rsp = session.send_get_msg_with_response(md, s.blank_us_ctrl_fields(md, "get_sinst_enables")) return rsp # }}} def si_set_sinst_enables def si_set_event(session=s, # {{{ md="si1", operation="apply", select=0, mask=(2**128-1)): fields = {"control_code": "set_event", "operation": operation, "select": select, "mask": mask} session.mstream.send_msg(md, "system_control", fields) rsp = session.send_get_msg_with_response(md, s.blank_us_ctrl_fields(md, "get_event", {"select": select})) return rsp # }}} def si_set_event def me_set_enabled(session=s, # {{{ md="rme1", operation="apply", upper_enable=(2**16-1), upper_ingress_enable=(2**16-1)): fields = {"control_code": "set_enabled", "operation": operation, "upper_enable": upper_enable, "upper_ingress_enable": upper_ingress_enable} session.mstream.send_msg(md, "system_control", fields) rsp = session.send_get_msg_with_response(md, s.blank_us_ctrl_fields(md, "get_enabled")) return rsp # }}} def me_set_enabled def me_set_event(session=s, # {{{ md="rme1", operation="apply", pathgroup=0, pathway=0, overflow=0, select=0, mask=(2**128-1)): fields = {"control_code": "set_event", "operation": operation, "pathgroup": pathgroup, "pathway": pathway, "overflow": overflow, "select": select, "mask": mask} session.mstream.send_msg(md, "system_control", fields) rsp = session.send_get_msg_with_response(md, s.blank_us_ctrl_fields(md, "get_event", {"select": select})) return rsp # }}} def me_set_event def run_tinn(): # {{{ print("Setting up UltraSoC infrastructure...", end='') # Enable Static Instrumentation module. si1_rsp_enabled = si_set_enabled(module_enable=0) si1_rsp_sinst = si_set_sinst() si1_rsp_event0 = si_set_event(select=0) si1_rsp_event1 = si_set_event(select=1) si1_rsp_sinst_enables = si_set_sinst_enables() si1_rsp_msg_params = get_msg("si1", "get_msg_params") # Enable Message Engine module. rme1_rsp_discovery = get_msg("rme1", "discovery_request") rme1_rsp_msg_params = get_msg("rme1", "get_msg_params") rme1_rsp_route = get_msg("rme1", "get_route") rme1_rsp_enabled = me_set_enabled(s) rme1_rsp_event0 = me_set_event(s, select=0) rme1_rsp_event1 = me_set_event(s, select=1) print("DONE") print("Copying semeion.data... ", end='') print("%d bytes DONE" % s.dma_write(tinn.ASCIIDATASET_ADDR, tinn.PATH_ASCIIDATASET)) print("Copying ACPU binary... ", end='') print("%d bytes DONE" % s.dma_write(tinn._START_ACPU, tinn.PATH_ACPU_BIN)) print("Copying SCPU binary... ", end='') print("%d bytes DONE" % s.dma_write(tinn._START_SCPU, tinn.PATH_SCPU_BIN)) # Initialise magic IPC locations, as specified in tinn_taygete.h print("Initialising IPC locations... ", end='') s.dma_write32(tinn.HOSTFLAG_ACPU, 0) s.dma_write32(tinn.HOSTFLAG_SCPU, 0) s.dma_write32(tinn.TOSLV_CMD, 0) s.dma_write32(tinn.TOMST_REQ, 0) s.dma_write32(tinn.TOSLV_BUFFADDR, 0xdeadbeef) s.dma_write32(tinn.TOMST_BUFFADDR, 0xdeadbeef) print("DONE") print("Getting CPU handles...") acpu = s.get_jpam("ACPU", xlen=64, initialise=True) scpu = s.get_jpam("SCPU", xlen=64, initialise=True) print("DONE") print("Running CPUs...") acpu.hart_run() scpu.hart_run() print("DONE") print("Starting tinn... ", end='') try: vc_logfile = open("log.vc.txt", 'w') except: vc_logfile = sys.stdout try: si_logfile = open(tinn.PATH_SI_LOG, 'w') except: si_logfile = sys.stdout # Arbitrary time delay before start recording to reduce the amount of quite # boring data collected in training phase. time.sleep(120) # 2m0s # Enable SI now that sinst_data sink is available. si1_rsp_enabled = si_set_enabled(module_enable=1) print("DONE") # Print VC lines until some infers have been done, checking magic address. ts = time.time() # Time start tn = ts # Time now (this loop iteration, initialization) while (s.dma_read32(tinn.HOSTFLAG_ACPU) < 200): tp = tn # Time previous (previous loop iteration) tn = time.time() # Time now (this loop iteration) if (tn - tp) < 1: # Wait at least a second between iterations. time.sleep(1) tn = time.time() assert (tn - tp) >= 1 tds = tn - ts # Time difference since start proc_sinst(si_logfile) vc_readlines(vc_logfile) print("Running tinn... %fs" % tds, end='\r') sys.stdout.flush() print("Ran tinn for %fs" % tds) print("Stopping CPUs...") # Disable module to stop more messages flooding out. si_set_enabled(module_enable=0) try: acpu.hart_halt() scpu.hart_halt() except: pass print("DONE") print("Closing logfiles... ", end='') vc_readlines(vc_logfile) proc_sinst(si_logfile) vc_logfile.close() si_logfile.close() print("DONE") # }}} def run_tinn def si_logfile_to_vcd(): # {{{ def reduce_time(t, factor=130): assert isinstance(t, int) ret = int(t / factor) * factor assert isinstance(ret, int) return ret print("Sorting SI logfile... ", end='') try: os.system("sort -n -o %s %s" % (tinn.PATH_SI_LOG, tinn.PATH_SI_LOG)) except: pass print("DONE") print("Writing VCD header... ", end='') # Look at every line and find all unique data values keeping count of how # often each appears. # Also find list of all signals which change at the first time. dv_cnts = {} t0_dvs = [] t0 = None with open(tinn.PATH_SI_LOG, 'r') as fd: for line in fd: t, c, d = line.split()[:3] dv = int(d, 16) dv_cnts[dv] = dv_cnts.setdefault(dv, 0) + 1 tv = reduce_time(int(t)) if t0 == None: t0 = tv if tv <= t0: t0_dvs.append(dv) assert 0 < len(dv_cnts) assert 0 < len(t0_dvs) assert isinstance(t0, int) # List of unique data values sorted by descending number of appearances. dvs = [vc[0] for vc in \ sorted(dv_cnts.items(), key=lambda vc: vc[1], reverse=True)] def int2varid(x): # {{{ assert type(x) is int assert x >= 0 # Each variable is assigned an arbitrary, compact ASCII identifier for # use in the value change section. The identifier is composed of # printable ASCII characters from ! to ~ (decimal 33 to 126). numerals = ''.join(chr(i) for i in range(33, 127)) base = len(numerals) if x == 0: return numerals[0] r = [] while x: r.append(numerals[x % base]) x //= base r.reverse() return ''.join(r) # }}} # Most frequently used data values have shorter varids. dv_varids = {dv: int2varid(i) for i,dv in enumerate(dvs)} # Use nm to generate {<dv>: <symbolname>} # NOTE: If using polymorphic functions --demangle will make them all look # like the same thing which may or may not be desirable. tool = "$RISCV/bin/riscv64-unknown-elf-nm --demangle --no-sort" symboltable = "tinn.symbols.txt" cmdfmt = tool + " %s >> " + symboltable # readelf could be used instead of nm # c++filt could be used instead of --demangle try: os.remove(symboltable) except: pass try: os.system(cmdfmt % tinn.PATH_ACPU_ELF) os.system(cmdfmt % tinn.PATH_SCPU_ELF) except: assert False, "Cannot create symboltable %s" % symboltable # For each address find the corresponding function name and use that as # signal name. dv_nms = {} with open(symboltable, 'r') as fd: for line in fd: # Line format for nm symbol table. # 000000006000c4d4 T abort # 00000000700014c8 t fprop(Tinn*, float const*) # 0000000070014f88 r initDataSet(DataItem*)::__PRETTY_FUNCTION__ # 0000000070003096 T std::type_info::~type_info() d, _t, n = line.split()[:3] dv = int(d, 16) # Only extract names for recorded data values. if dv not in dvs: continue if 0x60000000 <= dv <= 0x6fffffff: sec = "acpu." elif 0x70000000 <= dv <= 0x7fffffff: sec = "scpu." else: sec = "misc." # Remove function arg types from demangled name. # Replace non-alphanum characters with underscores. nm = ''.join(c if c.isalnum() else '_' for c in n.split('(')[0]) dv_nms[dv] = sec + nm # Assign names to any remaining data values. # NOTE: If everything is working as expected then this loop will do nothing. # If you're getting lots on unknown names then the ELF may be out of date or # something else has gone wrong with the risvc tool. for dv in dvs: if dv not in dv_nms.keys(): dv_nms[dv] = "unknown." + hex(dv) with open(tinn.PATH_SI_VCD, 'w') as fd: put = fd.write put("$comment UltraSoC Taygete ZC706 platform running Tinn $end\n") put("$date %s $end\n" % str(time.ctime())) put("$timescale 1s $end\n") put("$scope module tinn $end\n") for dv in dvs: nm = dv_nms[dv] varid = dv_varids[dv] put("$var wire 1 %s %s $end\n" % (dv_varids[dv], dv_nms[dv])) put("$upscope $end\n") put("$enddefinitions $end\n") print("DONE") print("Writing VCD body... ", end='') # For each line use dict of varids keyed by addresses to append time and # change to VCD body. ch0->0 (exit), ch1->1 (enter) with open(tinn.PATH_SI_LOG, 'r') as fd_log, \ open(tinn.PATH_SI_VCD, 'a') as fd_vcd: put = fd_vcd.write # Zero-initialize all signals. # NOTE: This will cause some misrepresentation for any signals which # were actually non-zero at the beginning of recording. put("#%d\n" % t0) for dv in dvs: if dv not in t0_dvs: varid = dv_varids[dv] put("b0 %s\n" % varid) for line in fd_log: t, c, d = line.split()[:3] tv = reduce_time(int(t)) put("#%d\n" % tv) dv = int(d, 16) varid = dv_varids[dv] if c == '0': cv = '0' elif c == '1': cv = '1' else: cv = 'x' put("b%s %s\n" % (cv, varid)) print("DONE") # }}} def si_logfile_to_vcd #run_tinn() si_logfile_to_vcd() #print(""" #=== Interactive target session === # Use created session object. Example use: # s.dma_read32(<address>) <- Read 32-bit word/register (via DMA) # s.dma_write32(<address>,<value>) <- Write 32-bit word/register (via DMA) # s.dma_write(<address>,<filename>) <- Write file to memory (via DMA) # s.load_and_run_riscv(<binfile>,<CPU>) # <- Load binary file to memory and run RISC-V hooked up to CPU # s.run_riscv_app(<app_name>) <- Load and run binary files on all CPUs, <app_name> can be one of: # {0} # s.handle_vc() <- Read data from console and dump it to screen # scpu.read_gpc("sp") <- Read stack pointer (GPR) # scpu.read_dpc() <- Read PC # scpu.read_csr("mcause") <- Read mcause (CSR) #""".format(("\n" + " "*50).join(['"'+app+'"' for app in .find_all_binapps()])))
py
7dfdf76bb13c44cfff3324e16598645a3de87ba9
import json import logging import math from ckan.common import c, request from ckan.lib.base import render from ckan.logic import get_action from flask import Blueprint from .helpers import advancedsearch_schema, field_options, query_helper log = logging.getLogger(__name__) bp_search = Blueprint('advanced_search_blueprint', __name__) def get_blueprints(): return [ bp_search, ] @bp_search.route('/advanced_search', methods=['GET', 'POST']) def search(): from ckan import model schema = advancedsearch_schema() context = { 'model': model, 'session': model.Session, 'user': c.user } # On initial page load there is no page parameter so display the first page # On possible page navigations use the page parameter to move to the next page # NOTE: this works also with a GET request but the POST filters will not be submitted so all datasets will be returned page = int(request.params.get('page', 1)) # Limit amount of results returned limit = 20 search_query_filters = [] q = '' main_query_field = schema['main_query_field'] options = {} for key, val in schema['input_fields'].items(): # Skip field used for main query if key == main_query_field: continue # Make a list of field options options[key] = field_options(val) if request.method == 'POST': # Use the field labelled as the main_query to build the value for q # TODO: Handle no main_query_field provided main_query_helper = query_helper(schema['input_fields'].get(main_query_field)) q = main_query_helper(main_query_field, request.form, schema['input_fields'], context) # Iterate through all fields in schema except the main_query_field # and process every field with the provided query_helper for key, val in schema['input_fields'].items(): # Skip field used for main query if key == main_query_field: continue # Get query helper function from schema query_helper_function = query_helper(val) # TODO: handle no query_helper if query_helper_function: res = query_helper_function(key, request.form, schema['input_fields'], context) if res: search_query_filters.append(res) sort_string = request.form.get('sort', 'metadata_created desc') data_dict = { 'q': q, 'rows': limit, 'start': (page - 1) * limit, 'extras': {}, 'sort': sort_string, 'defType': 'edismax', 'mm': 0 } if search_query_filters: # Outputs: (filter:value) AND (another_filter:another_value) data_dict['fq'] = '(' + ') AND ('.join(search_query_filters) + ')' query = get_action('package_search')(context, data_dict) json_query = json.dumps( {k: v for k, v in list(params_to_dict(request.form).items()) if k != 'page' and type(v) is list and len(v[0]) > 0} ) filters = { k: v for k, v in list(params_to_dict(request.form).items()) if k != 'search_target' and k != 'search_query' and k != 'page' and k != 'released-before' and k != 'released-after' and k != 'updated-before' and k != 'updated-after' and k != 'sort' and type(v) is list and len(v[0]) > 0 } for key, value in filters.items(): if 'all' in value: filters[key] = [{'value': 'all', 'label': 'All'}] continue if options and options[key]: options_list = [] for option in value: x = next((x for x in options[key] if x.get('value') == option), None) if x: options_list.append(x) filters[key] = options_list c.advanced_search = { "item_count": query['count'], # Round values up to get total amount of pages "total_pages": int(math.ceil(float(query['count']) / float(limit))), "collection": query['results'], # Return query parameters to the UI so that it can populate the fields with the previous query values # NOTE: Can this cause security issues? Returning POST request params back to the client "last_query": params_to_dict(request.form), "json_query": json_query, "filters": filters, "sort_string": sort_string, "field_options": options } c.advanced_search['last_query']['page'] = page return render('advanced_search/index.html') def params_to_dict(params): new_dict = {} for i in params: key = i if not hasattr(new_dict, key): value = params.getlist(i) new_dict.setdefault(key, value) return new_dict
py
7dfdf76c75bab4942b6fee77d49831bbd923431c
# python library to interface with panda import datetime import binascii import struct import hashlib import socket import usb1 import os import time import traceback import subprocess from .dfu import PandaDFU from .esptool import ESPROM, CesantaFlasher # noqa: F401 from .flash_release import flash_release # noqa: F401 from .update import ensure_st_up_to_date # noqa: F401 from .serial import PandaSerial # noqa: F401 from .isotp import isotp_send, isotp_recv __version__ = '0.0.9' BASEDIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "../") DEBUG = os.getenv("PANDADEBUG") is not None # *** wifi mode *** def build_st(target, mkfile="Makefile", clean=True): from panda import BASEDIR clean_cmd = "make -f %s clean" % mkfile if clean else ":" cmd = 'cd %s && %s && make -f %s %s' % (os.path.join(BASEDIR, "board"), clean_cmd, mkfile, target) try: _ = subprocess.check_output(cmd, stderr=subprocess.STDOUT, shell=True) except subprocess.CalledProcessError: raise def parse_can_buffer(dat): ret = [] for j in range(0, len(dat), 0x10): ddat = dat[j:j+0x10] f1, f2 = struct.unpack("II", ddat[0:8]) extended = 4 if f1 & extended: address = f1 >> 3 else: address = f1 >> 21 dddat = ddat[8:8+(f2&0xF)] if DEBUG: print(" R %x: %s" % (address, binascii.hexlify(dddat))) ret.append((address, f2>>16, dddat, (f2>>4)&0xFF)) return ret class PandaWifiStreaming(object): def __init__(self, ip="192.168.0.10", port=1338): self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self.sock.setblocking(0) self.ip = ip self.port = port self.kick() def kick(self): # must be called at least every 5 seconds self.sock.sendto("hello", (self.ip, self.port)) def can_recv(self): ret = [] while True: try: dat, addr = self.sock.recvfrom(0x200*0x10) if addr == (self.ip, self.port): ret += parse_can_buffer(dat) except socket.error as e: if e.errno != 35 and e.errno != 11: traceback.print_exc() break return ret # stupid tunneling of USB over wifi and SPI class WifiHandle(object): def __init__(self, ip="192.168.0.10", port=1337): self.sock = socket.create_connection((ip, port)) def __recv(self): ret = self.sock.recv(0x44) length = struct.unpack("I", ret[0:4])[0] return ret[4:4+length] def controlWrite(self, request_type, request, value, index, data, timeout=0): # ignore data in reply, panda doesn't use it return self.controlRead(request_type, request, value, index, 0, timeout) def controlRead(self, request_type, request, value, index, length, timeout=0): self.sock.send(struct.pack("HHBBHHH", 0, 0, request_type, request, value, index, length)) return self.__recv() def bulkWrite(self, endpoint, data, timeout=0): if len(data) > 0x10: raise ValueError("Data must not be longer than 0x10") self.sock.send(struct.pack("HH", endpoint, len(data))+data) self.__recv() # to /dev/null def bulkRead(self, endpoint, length, timeout=0): self.sock.send(struct.pack("HH", endpoint, 0)) return self.__recv() def close(self): self.sock.close() # *** normal mode *** class Panda(object): # matches cereal.car.CarParams.SafetyModel SAFETY_SILENT = 0 SAFETY_HONDA_NIDEC = 1 SAFETY_TOYOTA = 2 SAFETY_ELM327 = 3 SAFETY_GM = 4 SAFETY_HONDA_BOSCH_GIRAFFE = 5 SAFETY_FORD = 6 SAFETY_CADILLAC = 7 SAFETY_HYUNDAI = 8 SAFETY_CHRYSLER = 9 SAFETY_TESLA = 10 SAFETY_SUBARU = 11 SAFETY_BMW = 12 SAFETY_MAZDA = 13 SAFETY_NISSAN = 14 SAFETY_VOLKSWAGEN_MQB = 15 SAFETY_ALLOUTPUT = 17 SAFETY_GM_ASCM = 18 SAFETY_NOOUTPUT = 19 SAFETY_HONDA_BOSCH_HARNESS = 20 SAFETY_SUBARU_LEGACY = 22 SERIAL_DEBUG = 0 SERIAL_ESP = 1 SERIAL_LIN1 = 2 SERIAL_LIN2 = 3 GMLAN_CAN2 = 1 GMLAN_CAN3 = 2 REQUEST_IN = usb1.ENDPOINT_IN | usb1.TYPE_VENDOR | usb1.RECIPIENT_DEVICE REQUEST_OUT = usb1.ENDPOINT_OUT | usb1.TYPE_VENDOR | usb1.RECIPIENT_DEVICE HW_TYPE_UNKNOWN = b'\x00' HW_TYPE_WHITE_PANDA = b'\x01' HW_TYPE_GREY_PANDA = b'\x02' HW_TYPE_BLACK_PANDA = b'\x03' HW_TYPE_PEDAL = b'\x04' HW_TYPE_UNO = b'\x05' def __init__(self, serial=None, claim=True): self._serial = serial self._handle = None self.connect(claim) def close(self): self._handle.close() self._handle = None def connect(self, claim=True, wait=False): if self._handle != None: self.close() if self._serial == "WIFI": self._handle = WifiHandle() print("opening WIFI device") self.wifi = True else: context = usb1.USBContext() self._handle = None self.wifi = False while 1: try: for device in context.getDeviceList(skip_on_error=True): #print(device) if device.getVendorID() == 0xbbaa and device.getProductID() in [0xddcc, 0xddee]: try: this_serial = device.getSerialNumber() except Exception: continue if self._serial is None or this_serial == self._serial: self._serial = this_serial print("opening device", self._serial, hex(device.getProductID())) time.sleep(1) self.bootstub = device.getProductID() == 0xddee self.legacy = (device.getbcdDevice() != 0x2300) self._handle = device.open() if claim: self._handle.claimInterface(0) #self._handle.setInterfaceAltSetting(0, 0) #Issue in USB stack break except Exception as e: print("exception", e) traceback.print_exc() if wait == False or self._handle != None: break context = usb1.USBContext() #New context needed so new devices show up assert(self._handle != None) print("connected") def reset(self, enter_bootstub=False, enter_bootloader=False): # reset try: if enter_bootloader: self._handle.controlWrite(Panda.REQUEST_IN, 0xd1, 0, 0, b'') else: if enter_bootstub: self._handle.controlWrite(Panda.REQUEST_IN, 0xd1, 1, 0, b'') else: self._handle.controlWrite(Panda.REQUEST_IN, 0xd8, 0, 0, b'') except Exception: pass if not enter_bootloader: self.reconnect() def reconnect(self): self.close() time.sleep(1.0) success = False # wait up to 15 seconds for i in range(0, 15): try: self.connect() success = True break except Exception: print("reconnecting is taking %d seconds..." % (i+1)) try: dfu = PandaDFU(PandaDFU.st_serial_to_dfu_serial(self._serial)) dfu.recover() except Exception: pass time.sleep(1.0) if not success: raise Exception("reconnect failed") @staticmethod def flash_static(handle, code): # confirm flasher is present fr = handle.controlRead(Panda.REQUEST_IN, 0xb0, 0, 0, 0xc) assert fr[4:8] == b"\xde\xad\xd0\x0d" # unlock flash print("flash: unlocking") handle.controlWrite(Panda.REQUEST_IN, 0xb1, 0, 0, b'') # erase sectors 1 through 3 print("flash: erasing") for i in range(1, 4): handle.controlWrite(Panda.REQUEST_IN, 0xb2, i, 0, b'') # flash over EP2 STEP = 0x10 print("flash: flashing") for i in range(0, len(code), STEP): handle.bulkWrite(2, code[i:i+STEP]) # reset print("flash: resetting") try: handle.controlWrite(Panda.REQUEST_IN, 0xd8, 0, 0, b'') except Exception: pass def flash(self, fn=None, code=None, reconnect=True): print("flash: main version is " + self.get_version()) if not self.bootstub: self.reset(enter_bootstub=True) assert(self.bootstub) if fn is None and code is None: if self.legacy: fn = "obj/comma.bin" print("building legacy st code") build_st(fn, "Makefile.legacy") else: fn = "obj/panda.bin" print("building panda st code") build_st(fn) fn = os.path.join(BASEDIR, "board", fn) if code is None: with open(fn, "rb") as f: code = f.read() # get version print("flash: bootstub version is " + self.get_version()) # do flash Panda.flash_static(self._handle, code) # reconnect if reconnect: self.reconnect() def recover(self, timeout=None): self.reset(enter_bootloader=True) t_start = time.time() while len(PandaDFU.list()) == 0: print("waiting for DFU...") time.sleep(0.1) if timeout is not None and (time.time() - t_start) > timeout: return False dfu = PandaDFU(PandaDFU.st_serial_to_dfu_serial(self._serial)) dfu.recover() # reflash after recover self.connect(True, True) self.flash() return True @staticmethod def flash_ota_st(): ret = os.system("cd %s && make clean && make ota" % (os.path.join(BASEDIR, "board"))) time.sleep(1) return ret==0 @staticmethod def flash_ota_wifi(release=False): release_str = "RELEASE=1" if release else "" ret = os.system("cd {} && make clean && {} make ota".format(os.path.join(BASEDIR, "boardesp"),release_str)) time.sleep(1) return ret==0 @staticmethod def list(): context = usb1.USBContext() ret = [] try: for device in context.getDeviceList(skip_on_error=True): if device.getVendorID() == 0xbbaa and device.getProductID() in [0xddcc, 0xddee]: try: ret.append(device.getSerialNumber()) except Exception: continue except Exception: pass # TODO: detect if this is real #ret += ["WIFI"] return ret def call_control_api(self, msg): self._handle.controlWrite(Panda.REQUEST_OUT, msg, 0, 0, b'') # ******************* health ******************* def health(self): dat = self._handle.controlRead(Panda.REQUEST_IN, 0xd2, 0, 0, 41) a = struct.unpack("IIIIIIIIBBBBBBBBB", dat) return { "uptime": a[0], "voltage": a[1], "current": a[2], "can_rx_errs": a[3], "can_send_errs": a[4], "can_fwd_errs": a[5], "gmlan_send_errs": a[6], "faults": a[7], "ignition_line": a[8], "ignition_can": a[9], "controls_allowed": a[10], "gas_interceptor_detected": a[11], "car_harness_status": a[12], "usb_power_mode": a[13], "safety_mode": a[14], "fault_status": a[15], "power_save_enabled": a[16] } # ******************* control ******************* def enter_bootloader(self): try: self._handle.controlWrite(Panda.REQUEST_OUT, 0xd1, 0, 0, b'') except Exception as e: print(e) pass def get_version(self): return self._handle.controlRead(Panda.REQUEST_IN, 0xd6, 0, 0, 0x40).decode('utf8') @staticmethod def get_signature_from_firmware(fn): f = open(fn, 'rb') f.seek(-128, 2) # Seek from end of file return f.read(128) def get_signature(self): part_1 = self._handle.controlRead(Panda.REQUEST_IN, 0xd3, 0, 0, 0x40) part_2 = self._handle.controlRead(Panda.REQUEST_IN, 0xd4, 0, 0, 0x40) return bytes(part_1 + part_2) def get_type(self): return self._handle.controlRead(Panda.REQUEST_IN, 0xc1, 0, 0, 0x40) def is_white(self): return self.get_type() == Panda.HW_TYPE_WHITE_PANDA def is_grey(self): return self.get_type() == Panda.HW_TYPE_GREY_PANDA def is_black(self): return self.get_type() == Panda.HW_TYPE_BLACK_PANDA def is_uno(self): return self.get_type() == Panda.HW_TYPE_UNO def has_obd(self): return (self.is_uno() or self.is_black()) def get_serial(self): dat = self._handle.controlRead(Panda.REQUEST_IN, 0xd0, 0, 0, 0x20) hashsig, calc_hash = dat[0x1c:], hashlib.sha1(dat[0:0x1c]).digest()[0:4] assert(hashsig == calc_hash) return [dat[0:0x10].decode("utf8"), dat[0x10:0x10+10].decode("utf8")] def get_secret(self): return self._handle.controlRead(Panda.REQUEST_IN, 0xd0, 1, 0, 0x10) # ******************* configuration ******************* def set_usb_power(self, on): self._handle.controlWrite(Panda.REQUEST_OUT, 0xe6, int(on), 0, b'') def set_power_save(self, power_save_enabled=0): self._handle.controlWrite(Panda.REQUEST_OUT, 0xe7, int(power_save_enabled), 0, b'') def set_esp_power(self, on): self._handle.controlWrite(Panda.REQUEST_OUT, 0xd9, int(on), 0, b'') def esp_reset(self, bootmode=0): self._handle.controlWrite(Panda.REQUEST_OUT, 0xda, int(bootmode), 0, b'') time.sleep(0.2) def set_safety_mode(self, mode=SAFETY_SILENT): self._handle.controlWrite(Panda.REQUEST_OUT, 0xdc, mode, 0, b'') def set_can_forwarding(self, from_bus, to_bus): # TODO: This feature may not work correctly with saturated buses self._handle.controlWrite(Panda.REQUEST_OUT, 0xdd, from_bus, to_bus, b'') def set_gmlan(self, bus=2): # TODO: check panda type if bus is None: self._handle.controlWrite(Panda.REQUEST_OUT, 0xdb, 0, 0, b'') elif bus in [Panda.GMLAN_CAN2, Panda.GMLAN_CAN3]: self._handle.controlWrite(Panda.REQUEST_OUT, 0xdb, 1, bus, b'') def set_obd(self, obd): # TODO: check panda type self._handle.controlWrite(Panda.REQUEST_OUT, 0xdb, int(obd), 0, b'') def set_can_loopback(self, enable): # set can loopback mode for all buses self._handle.controlWrite(Panda.REQUEST_OUT, 0xe5, int(enable), 0, b'') def set_can_enable(self, bus_num, enable): # sets the can transciever enable pin self._handle.controlWrite(Panda.REQUEST_OUT, 0xf4, int(bus_num), int(enable), b'') def set_can_speed_kbps(self, bus, speed): self._handle.controlWrite(Panda.REQUEST_OUT, 0xde, bus, int(speed*10), b'') def set_uart_baud(self, uart, rate): self._handle.controlWrite(Panda.REQUEST_OUT, 0xe4, uart, int(rate/300), b'') def set_uart_parity(self, uart, parity): # parity, 0=off, 1=even, 2=odd self._handle.controlWrite(Panda.REQUEST_OUT, 0xe2, uart, parity, b'') def set_uart_callback(self, uart, install): self._handle.controlWrite(Panda.REQUEST_OUT, 0xe3, uart, int(install), b'') # ******************* can ******************* def can_send_many(self, arr): snds = [] transmit = 1 extended = 4 for addr, _, dat, bus in arr: assert len(dat) <= 8 if DEBUG: print(" W %x: %s" % (addr, binascii.hexlify(dat))) if addr >= 0x800: rir = (addr << 3) | transmit | extended else: rir = (addr << 21) | transmit snd = struct.pack("II", rir, len(dat) | (bus << 4)) + dat snd = snd.ljust(0x10, b'\x00') snds.append(snd) while True: try: #print("DAT: %s"%b''.join(snds).__repr__()) if self.wifi: for s in snds: self._handle.bulkWrite(3, s) else: self._handle.bulkWrite(3, b''.join(snds)) break except (usb1.USBErrorIO, usb1.USBErrorOverflow): print("CAN: BAD SEND MANY, RETRYING") def can_send(self, addr, dat, bus): self.can_send_many([[addr, None, dat, bus]]) def can_recv(self): dat = bytearray() while True: try: dat = self._handle.bulkRead(1, 0x10*256) break except (usb1.USBErrorIO, usb1.USBErrorOverflow): print("CAN: BAD RECV, RETRYING") time.sleep(0.1) return parse_can_buffer(dat) def can_clear(self, bus): """Clears all messages from the specified internal CAN ringbuffer as though it were drained. Args: bus (int): can bus number to clear a tx queue, or 0xFFFF to clear the global can rx queue. """ self._handle.controlWrite(Panda.REQUEST_OUT, 0xf1, bus, 0, b'') # ******************* isotp ******************* def isotp_send(self, addr, dat, bus, recvaddr=None, subaddr=None): return isotp_send(self, dat, addr, bus, recvaddr, subaddr) def isotp_recv(self, addr, bus=0, sendaddr=None, subaddr=None): return isotp_recv(self, addr, bus, sendaddr, subaddr) # ******************* serial ******************* def serial_read(self, port_number): ret = [] while 1: lret = bytes(self._handle.controlRead(Panda.REQUEST_IN, 0xe0, port_number, 0, 0x40)) if len(lret) == 0: break ret.append(lret) return b''.join(ret) def serial_write(self, port_number, ln): ret = 0 for i in range(0, len(ln), 0x20): ret += self._handle.bulkWrite(2, struct.pack("B", port_number) + ln[i:i+0x20]) return ret def serial_clear(self, port_number): """Clears all messages (tx and rx) from the specified internal uart ringbuffer as though it were drained. Args: port_number (int): port number of the uart to clear. """ self._handle.controlWrite(Panda.REQUEST_OUT, 0xf2, port_number, 0, b'') # ******************* kline ******************* # pulse low for wakeup def kline_wakeup(self): if DEBUG: print("kline wakeup...") self._handle.controlWrite(Panda.REQUEST_OUT, 0xf0, 0, 0, b'') if DEBUG: print("kline wakeup done") def kline_drain(self, bus=2): # drain buffer bret = bytearray() while True: ret = self._handle.controlRead(Panda.REQUEST_IN, 0xe0, bus, 0, 0x40) if len(ret) == 0: break elif DEBUG: print("kline drain: " + binascii.hexlify(ret)) bret += ret return bytes(bret) def kline_ll_recv(self, cnt, bus=2): echo = bytearray() while len(echo) != cnt: ret = self._handle.controlRead(Panda.REQUEST_OUT, 0xe0, bus, 0, cnt-len(echo)) if DEBUG and len(ret) > 0: print("kline recv: " + binascii.hexlify(ret)) echo += ret return str(echo) def kline_send(self, x, bus=2, checksum=True): def get_checksum(dat): result = 0 result += sum(map(ord, dat)) if isinstance(b'dat', str) else sum(dat) result = -result return struct.pack("B", result % 0x100) self.kline_drain(bus=bus) if checksum: x += get_checksum(x) for i in range(0, len(x), 0xf): ts = x[i:i+0xf] if DEBUG: print("kline send: " + binascii.hexlify(ts)) self._handle.bulkWrite(2, bytes([bus]) + ts) echo = self.kline_ll_recv(len(ts), bus=bus) if echo != ts: print("**** ECHO ERROR %d ****" % i) print(binascii.hexlify(echo)) print(binascii.hexlify(ts)) assert echo == ts def kline_recv(self, bus=2): msg = self.kline_ll_recv(2, bus=bus) msg += self.kline_ll_recv(ord(msg[1])-2, bus=bus) return msg def send_heartbeat(self): self._handle.controlWrite(Panda.REQUEST_OUT, 0xf3, 0, 0, b'') # ******************* RTC ******************* def set_datetime(self, dt): self._handle.controlWrite(Panda.REQUEST_OUT, 0xa1, int(dt.year), 0, b'') self._handle.controlWrite(Panda.REQUEST_OUT, 0xa2, int(dt.month), 0, b'') self._handle.controlWrite(Panda.REQUEST_OUT, 0xa3, int(dt.day), 0, b'') self._handle.controlWrite(Panda.REQUEST_OUT, 0xa4, int(dt.isoweekday()), 0, b'') self._handle.controlWrite(Panda.REQUEST_OUT, 0xa5, int(dt.hour), 0, b'') self._handle.controlWrite(Panda.REQUEST_OUT, 0xa6, int(dt.minute), 0, b'') self._handle.controlWrite(Panda.REQUEST_OUT, 0xa7, int(dt.second), 0, b'') def get_datetime(self): dat = self._handle.controlRead(Panda.REQUEST_IN, 0xa0, 0, 0, 8) a = struct.unpack("HBBBBBB", dat) return datetime.datetime(a[0], a[1], a[2], a[4], a[5], a[6]) # ******************* IR ******************* def set_ir_power(self, percentage): self._handle.controlWrite(Panda.REQUEST_OUT, 0xb0, int(percentage), 0, b'') # ******************* Fan ****************** def set_fan_power(self, percentage): self._handle.controlWrite(Panda.REQUEST_OUT, 0xb1, int(percentage), 0, b'') def get_fan_rpm(self): dat = self._handle.controlRead(Panda.REQUEST_IN, 0xb2, 0, 0, 2) a = struct.unpack("H", dat) return a[0] # ****************** Phone ***************** def set_phone_power(self, enabled): self._handle.controlWrite(Panda.REQUEST_OUT, 0xb3, int(enabled), 0, b'')
py
7dfdf7bc03eae9f5241d58e1bc0a734b59be3bb2
import filecmp import logging import logging.config import os import shutil import subprocess import sys from .colors import MessageColors logger = logging.getLogger(__name__) logging_levels = { '0': 'ERROR', '1': 'WARNING', '2': 'INFO', '3': 'DEBUG', } class ColorFilter(logging.Filter): color_map = { 'ERROR': MessageColors.FAIL, 'WARNING': MessageColors.WARNING, 'INFO': MessageColors.HEADER, 'DEBUG': MessageColors.OK } def filter(self, record): if sys.stdout.isatty(): record.msg = self.color_map[record.levelname] + record.msg + MessageColors.ENDC return record LOGGING = { 'version': 1, 'filters': { 'colorize': { '()': ColorFilter } }, 'handlers': { 'console': { 'class': 'logging.StreamHandler', 'filters': ['colorize'], 'stream': 'ext://sys.stdout' } }, 'loggers': { 'ansible_builder': { 'handlers': ['console'], } } } def configure_logger(verbosity): LOGGING['loggers']['ansible_builder']['level'] = logging_levels[str(verbosity)] logging.config.dictConfig(LOGGING) def run_command(command, capture_output=False, allow_error=False): logger.info('Running command:') logger.info(' {0}'.format(' '.join(command))) try: process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) except FileNotFoundError: logger.error(f"You do not have {command[0]} installed, please specify a different container runtime for this command.") sys.exit(1) output = [] for line in iter(process.stdout.readline, b''): line = line.decode(sys.stdout.encoding) if capture_output: output.append(line.rstrip()) logger.debug(line) rc = process.poll() if rc is not None and rc != 0 and (not allow_error): for line in output: logger.error(line) logger.error(f"An error occured (rc={rc}), see output line(s) above for details.") sys.exit(1) return (rc, output) def write_file(filename: str, lines: list) -> bool: new_text = '\n'.join(lines) if os.path.exists(filename): with open(filename, 'r') as f: if f.read() == new_text: logger.debug("File {0} is already up-to-date.".format(filename)) return False else: logger.warning('File {0} had modifications and will be rewritten'.format(filename)) with open(filename, 'w') as f: f.write(new_text) return True def copy_file(source: str, dest: str) -> bool: should_copy = False if not os.path.exists(dest): logger.debug("File {0} will be created.".format(dest)) should_copy = True elif not filecmp.cmp(source, dest, shallow=False): logger.warning('File {0} had modifications and will be rewritten'.format(dest)) should_copy = True elif os.path.getmtime(source) > os.path.getmtime(dest): logger.warning('File {0} updated time increased and will be rewritten'.format(dest)) should_copy = True if should_copy: shutil.copy(source, dest) else: logger.debug("File {0} is already up-to-date.".format(dest)) return should_copy
py
7dfdf85170d7cddca2ba5522fa642516e74fe6aa
from django import forms from django.contrib.auth.forms import UserCreationForm from django.contrib.auth.models import User from .models import Profile, Employee, Review class RegistrationForm(UserCreationForm): class Meta: model = User fields = ['first_name','last_name','email','username','password1','password2'] class ProfileForm(forms.ModelForm): phone = forms.CharField() address = forms.CharField() gender = forms.ChoiceField(choices = (("Male","Male"),("Female","Female"))) height = forms.DecimalField() weight = forms.DecimalField() goals = forms.ChoiceField(choices = (('Weight Loss','Weight Loss'),('Increase Muscle Mass','Increase Muscle Mass'),('Maintain Fitness','Maintain Fitness'))) time = forms.ChoiceField(choices = (("10am","10am"), ("11am","11am"), ("12pm","12pm"),("1pm","1pm"),("2pm","2pm"),("3pm","3pm"),("4pm","4pm"),("5pm","5pm"),("6pm","6pm"),("7pm","7pm"),("8pm","8pm"))) class Meta: model = Profile fields = ['phone','address','gender','height','weight','goals','time'] class UserUpdateForm(forms.ModelForm): class Meta: model = User fields = ['first_name', 'last_name', 'email'] class EmployeeForm(forms.ModelForm): phone = forms.CharField() gender = forms.ChoiceField(choices = (("Male","Male"),("Female","Female"))) class Meta: model = Employee fields = ['phone','gender'] class ReviewForm(forms.ModelForm): name = forms.CharField() email = forms.EmailField() thoughts = forms.CharField() class Meta: model = Review fields = ['name','email','thoughts']
py
7dfdf870f8f95acd2fd5e410763fdf822eb0904d
#!/usr/bin/env python # -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # (C) British Crown copyright. The Met Office. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """CLI to generate metadata cube for acceptance tests.""" from improver import cli @cli.clizefy @cli.with_output def process( mandatory_attributes_json: cli.inputjson, *, name="air_pressure_at_sea_level", units=None, spatial_grid="latlon", time_period: int = None, json_input: cli.inputjson = None, ensemble_members: int = 8, grid_spacing: float = None, domain_corner: cli.comma_separated_list_of_float = None, npoints: int = 71, ): """ Generate a cube with metadata only. Args: mandatory_attributes_json (Dict): Specifies the values of the mandatory attributes, title, institution and source. name (Optional[str]): Output variable name, or if creating a probability cube the name of the underlying variable to which the probability field applies. units (Optional[str]): Output variable units, or if creating a probability cube the units of the underlying variable / threshold. spatial_grid (Optional[str]): What type of x/y coordinate values to use. Permitted values are "latlon" or "equalarea". time_period (Optional[int]): The period in minutes between the time bounds. This is used to calculate the lower time bound. If unset the diagnostic will be instantaneous, i.e. without time bounds. json_input (Optional[Dict]): Dictionary containing values for one or more of: "name", "units", "time", "time_bounds", "frt", "spp__relative_to_threshold", "attributes" (dictionary of additional metadata attributes) and "coords" (dictionary). "coords" can contain "height_levels" (list of height/pressure level values), and one of "realizations", "percentiles" or "thresholds" (list of dimension values). ensemble_members (Optional[int]): Number of ensemble members. Default 8. Will not be used if "realizations", "percentiles" or "thresholds" provided in json_input. grid_spacing (Optional[float]): Resolution of grid (metres or degrees). domain_corner (Optional[Tuple[float, float]]): Bottom left corner of grid domain (y,x) (degrees for latlon or metres for equalarea). npoints (Optional[int]): Number of points along each of the y and x spatial axes. Returns: iris.cube.Cube: Output of generate_metadata() """ # Set arguments to pass to generate_metadata function and remove json_input for # processing contents before adding generate_metadata_args = locals() for key in ["mandatory_attributes_json", "json_input"]: generate_metadata_args.pop(key, None) from improver.synthetic_data.generate_metadata import generate_metadata from improver.synthetic_data.utilities import ( get_height_levels, get_leading_dimension, ) from improver.utilities.temporal import cycletime_to_datetime if json_input is not None: # Get leading dimension and height/pressure data from json_input if "coords" in json_input: coord_data = json_input["coords"] ( json_input["leading_dimension"], json_input["cube_type"], ) = get_leading_dimension(coord_data) json_input["height_levels"], json_input["pressure"] = get_height_levels( coord_data ) json_input.pop("coords", None) # Convert str time, frt and time_bounds to datetime if "time" in json_input: json_input["time"] = cycletime_to_datetime(json_input["time"]) if "frt" in json_input: json_input["frt"] = cycletime_to_datetime(json_input["frt"]) if "time_bounds" in json_input: time_bounds = [] for tb in json_input["time_bounds"]: time_bounds.append(cycletime_to_datetime(tb)) json_input["time_bounds"] = time_bounds # Update generate_metadata_args with the json_input data generate_metadata_args.update(json_input) return generate_metadata(mandatory_attributes_json, **generate_metadata_args)
py
7dfdf8ea459673602b0468db3ae07300f1195067
# coding=utf-8 import serial import logging from signals import DbusSignal, ModbusSignal SERVICE_NAME = 'com.victronenergy.meteo' DRIVER_NAME = 'dbus-imt-si-rs485tc.py' LOG_LEVEL = logging.INFO UPDATE_INTERVAL = 2 # seconds # modbus configuration BASE_ADDRESS = 0 NO_OF_REGISTERS = 9 SLAVE_ADDRESS = 1 # serial port configuration PARITY = serial.PARITY_NONE SERIAL_TIMEOUT = 0.5 # seconds BAUD_RATE = 9600 BYTE_SIZE = 8 STOP_BITS = 1 MODE = 'rtu' # signals configuration SIGNALS = [ DbusSignal('/Mgmt/ProcessName', DRIVER_NAME), DbusSignal('/Mgmt/ProcessVersion', '1.1.6'), DbusSignal('/Mgmt/Connection', 'Modbus RTU'), DbusSignal('/DeviceInstance', 1), DbusSignal('/ProductId', 0xB030), DbusSignal('/ProductName', 'IMT Si-RS485 Irradiance Sensor'), DbusSignal('/Connected', True), ModbusSignal('/Irradiance', register=0, gain=0.1, unit=u'W/m2'), ModbusSignal('/WindSpeed', register=3, gain=0.1, unit=u'm/s'), ModbusSignal('/CellTemperature', register=7, gain=0.1, unit=u'°C', signed=True), ModbusSignal('/ExternalTemperature', register=8, gain=0.1, unit=u'°C', signed=True) ] # subsensor settings # keys must match with ModbusSignal's name above # TTY will be replaced with the tty of the device SETTINGS = { '/WindSpeed': ['/Settings/Service/meteo/1/WindSpeedSensor', 'auto-detect', 0, 0], '/ExternalTemperature': ['/Settings/Service/meteo/1/ExternalTemperatureSensor', 'auto-detect', 0, 0] }
py
7dfdf94d4c3c2f61a9cab5deb1335336c16b8315
import unittest try: from unittest import mock except ImportError: # Python 2 fallback. import mock from pydocusign import DocuSignClient, Signer class DocuSignTestClient(DocuSignClient): def login_information(self): self.account_id = 'test' self.account_url = '{root}/accounts/test'.format(root=self.root_url) class ClientRequestTest(unittest.TestCase): def test_create_envelope_recipients(self): client = DocuSignTestClient() with mock.patch.object(client, 'post') as post_mock: signers = [ Signer(clientUserId='userid_2', email='[email protected]', name='Signer 2'), Signer(clientUserId='userid_2', email='[email protected]', name='Signer 2'), ] client.add_envelope_recipients('ABC123', signers) url = '/accounts/{account_id}/envelopes/ABC123/recipients'.format( account_id=client.account_id) post_mock.assert_called_once_with( url, data={'signers': [signers[0].to_dict(), signers[1].to_dict()]}, expected_status_code=201 ) with mock.patch.object(client, 'post') as post_mock: client.add_envelope_recipients('ABC123', [], resend_envelope=True) post_mock.assert_called_once_with( '/accounts/{}/envelopes/ABC123/recipients' '?resend_envelope=true'.format(client.account_id), data={'signers': []}, expected_status_code=201 ) def test_update_envelope_recipients(self): client = DocuSignTestClient() with mock.patch.object(client, 'put') as put_mock: signers = [ Signer(clientUserId='userid_2', email='[email protected]', name='Signer 2'), Signer(clientUserId='userid_2', email='[email protected]', name='Signer 2'), ] client.update_envelope_recipients('ABC123', signers) url = '/accounts/{account_id}/envelopes/ABC123/recipients'.format( account_id=client.account_id) put_mock.assert_called_once_with( url, data={'signers': [signers[0].to_dict(), signers[1].to_dict()]} ) with mock.patch.object(client, 'put') as put_mock: client.update_envelope_recipients('ABC123', [], resend_envelope=True) put_mock.assert_called_once_with( '/accounts/{}/envelopes/ABC123/recipients' '?resend_envelope=true'.format(client.account_id), data={'signers': []} ) def test_delete_envelope_recipient(self): client = DocuSignTestClient() with mock.patch.object(client, 'delete') as delete_mock: client.delete_envelope_recipient('ABC123', '1') url = '/accounts/{account_id}/envelopes/ABC123/recipients/1'.format( account_id=client.account_id) delete_mock.assert_called_once_with(url) def test_delete_envelope_recipients(self): client = DocuSignTestClient() with mock.patch.object(client, 'delete') as delete_mock: client.delete_envelope_recipients('ABC123', ['1', '2']) url = '/accounts/{account_id}/envelopes/ABC123/recipients'.format( account_id=client.account_id) delete_mock.assert_called_once_with( url, data={'signers': [{'recipientId': '1'}, {'recipientId': '2'}]} ) def test_get_page_image(self): client = DocuSignTestClient() with mock.patch.object(client, 'get') as get_mock: client.get_page_image('ABC123', 1, 1, 72, max_height=300) url = '/accounts/{accountId}/envelopes/ABC123/documents/1/pages/1/' \ 'page_image?dpi=72&max_height=300'\ .format(accountId=client.account_id) get_mock.assert_called_once_with(url)
py
7dfdfa706a5642684ce386632621c59482d5c61b
"""Package where needed crypto material is stored.""" from sympc.store.crypto_primitive_provider import CryptoPrimitiveProvider from sympc.store.crypto_store import CryptoStore def register_primitive_generator(name: str): """Decorator to register a crypto primitive provider. Args: name (str): Name of the primitive. # noqa: DAR201 """ def register_generator(func_generator): if name in CryptoPrimitiveProvider._func_providers: raise ValueError(f"Provider {name} already in _func_providers") CryptoPrimitiveProvider._func_providers[name] = func_generator return func_generator return register_generator def register_primitive_store_add(name): """Decorator to add primitives to the store. Args: name (str): Name of the primitive. # noqa: DAR201 """ def register_add(func_add): if name in CryptoStore._func_add_store: raise ValueError(f"Crypto Store 'adder' {name} already in _func_add_store") CryptoStore._func_add_store[name] = func_add return func_add return register_add def register_primitive_store_get(name): """Decorator to retrieve primitives from the store. Args: name (str): Name of the primitive. # noqa: DAR201 """ def register_get(func_get): if name in CryptoStore._func_get_store: raise ValueError(f"Crypto Store 'getter' {name} already in _func_get_store") CryptoStore._func_get_store[name] = func_get return func_get return register_get __all__ = ["CryptoStore", "CryptoPrimitiveProvider"]
py
7dfdfb0782cbd3ffa811193fe7db06555dcaa923
import logging from typing import Any, Dict, List, Optional, TypedDict, Union from utility import Utility log: logging.Logger = logging.getLogger(__name__) class ElderChallenges(TypedDict): """Structure of elder_challenges.csv""" id: int ref: str name: str desc: str amount: int loot: int xp: int class GunUnlockChallenges(TypedDict): """Structure of gun_unlock_challenges.csv""" id: int ref: str name: str desc: str amount: int xp: int loot: int class BRWeeklyChallenges(TypedDict): """Structure of br_weekly_challenges.csv""" id: int ref: str name: str desc: str amount: int xp: int loot: int start: int length: int season: int unknown1: str # Not defined in luashared/csvutils.lua class WeeklyChallenges(TypedDict): """Structure of weekly_challenges.csv""" id: int ref: str name: str desc: str amount: int xp: int loot: int start: int length: int season: int class StickerBookChallenges(TypedDict): """Structure of sticker_book_challenges.csv""" id: int ref: str name: str desc: str amount: str # Array of ints loot: str # Array of ints XPReward: str # Array of ints categoryType: str icon: str detailDesc: str class PetWatchTurboTable(TypedDict): """Structure of mp/petwatchturbotable.csv""" ref: str phaseNum: int phaseTime: int bonusTimeMax: int gameType: str charmID: int challengeDesc: str class MiscChallenges(TypedDict): """Structure of misc_challenges.csv""" id: int ref: str name: str desc: str amount: int xp: int loot: int categoryType: str icon: str detailDesc: str conversionType: str hideSplash: int # bool hideAARLoot: int # bool showAARPopup: int # bool sound: str class T9SeasonalChallenges(TypedDict): """Structure of mp/t9_seasonal_challenges.csv""" challengeID: int challengeRef: str seasonNum: int seasonChallengeIndex: int title: str description: str levelGate: int isMastery: int # bool isT9Exclusive: int # bool tier1Quantity: int tier1XP: int tier2Quantity: int tier2XP: int tier3Quantity: int tier3XP: int tier4Quantity: int tier4XP: int tier5Quantity: int tier5XP: int callingCard: str class T9SeasonalProgressionBlueprintRewards(TypedDict): """Structure of mp/progression/t9_seasonal_progression_blueprint_rewards.csv""" seasonDispNum: int seasonRank: int blueprintID: int class OfficerChallenges: """Officer Challenge XAssets.""" def Compile(self: Any) -> None: """Compile the Officer Challenge XAssets.""" challenges: List[Dict[str, Any]] = [] challenges = OfficerChallenges.Table(self, challenges) Utility.WriteFile(self, f"{self.eXAssets}/officerChallenges.json", challenges) log.info(f"Compiled {len(challenges):,} Officer Challenges") def Table(self: Any, challenges: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """Compile the elder_challenges.csv XAsset.""" table: List[Dict[str, Any]] = Utility.ReadCSV( self, f"{self.iXAssets}/elder_challenges.csv", ElderChallenges ) if table is None: return challenges for entry in table: if (ref := entry.get("ref")).startswith("ch_elder_s"): season: Optional[int] = int(ref.split("ch_elder_s")[1].split("_")[0]) else: season: Optional[int] = None if (amount := entry.get("amount")) is not None: amount: Optional[Union[str, int]] = f"{amount:,}" challenges.append( { "altId": ref, "name": self.localize.get(entry.get("name")), "description": self.localize.get(entry.get("desc")).replace( "&&1", amount ), "season": season, "xp": entry.get("xp"), } ) return challenges class WeaponUnlockChallenges: """Weapon Unlock Challenge XAssets.""" def Compile(self: Any) -> None: """Compile the Weapon Unlock Challenge XAssets.""" challenges: List[Dict[str, Any]] = [] challenges = WeaponUnlockChallenges.Table(self, challenges) Utility.WriteFile( self, f"{self.eXAssets}/weaponUnlockChallenges.json", challenges ) log.info(f"Compiled {len(challenges):,} Weapon Unlock Challenges") def Table(self: Any, challenges: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """Compile the gun_unlock_challenges.csv XAsset.""" table: List[Dict[str, Any]] = Utility.ReadCSV( self, f"{self.iXAssets}/gun_unlock_challenges.csv", GunUnlockChallenges ) if table is None: return challenges for entry in table: if (amount := entry.get("amount")) is not None: amount: Optional[Union[str, int]] = f"{amount:,}" challenges.append( { "id": entry.get("id"), "altId": entry.get("ref"), "name": self.localize.get(entry.get("name")), "description": self.localize.get(entry.get("desc")).replace( "&&1", amount ), "rewards": [ { "id": entry.get("loot"), "type": self.ModernWarfare.GetLootType(entry.get("loot")), }, { "xp": entry.get("xp"), }, ], } ) return challenges class WeeklyChallengesBR: """Weekly Battle Royale Challenges XAssets.""" def Compile(self: Any) -> None: """Compile the Weekly Battle Royale Challenges XAssets.""" challenges: List[Dict[str, Any]] = [] challenges = WeeklyChallengesBR.Table(self, challenges) Utility.WriteFile(self, f"{self.eXAssets}/weeklyChallengesBR.json", challenges) log.info(f"Compiled {len(challenges):,} Weekly Battle Royale Challenges") def Table(self: Any, challenges: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """Compile the br_weekly_challenges.csv XAsset.""" table: List[Dict[str, Any]] = Utility.ReadCSV( self, f"{self.iXAssets}/br_weekly_challenges.csv", BRWeeklyChallenges ) if table is None: return challenges for entry in table: altId: str = entry.get("ref") season: int = int(altId.split("season_")[1].split("_")[0]) week: int = int(altId.split("week_")[1].split("_")[0]) if (amount := entry.get("amount")) is not None: amount: Optional[Union[str, int]] = f"{amount:,}" challenges.append( { "id": entry.get("id"), "altId": altId, "name": self.localize.get(entry.get("name")), "description": self.localize.get(entry.get("desc")).replace( "&&1", amount ), "start": Utility.PrettyTime(self, entry.get("start")), "season": season, "week": week, "xp": entry.get("xp"), "rewards": [], } ) if (l := entry.get("loot")) is not None: challenges[-1]["rewards"].append( {"id": l, "type": self.ModernWarfare.GetLootType(l)} ) return challenges class WeeklyChallengesMP: """Weekly Multiplayer Challenges XAssets.""" def Compile(self: Any) -> None: """Compile the Weekly Multiplayer Challenges XAssets.""" challenges: List[Dict[str, Any]] = [] challenges = WeeklyChallengesMP.Table(self, challenges) Utility.WriteFile(self, f"{self.eXAssets}/weeklyChallengesMP.json", challenges) log.info(f"Compiled {len(challenges):,} Weekly Multiplayer Challenges") def Table(self: Any, challenges: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """Compile the weekly_challenges.csv XAsset.""" table: List[Dict[str, Any]] = Utility.ReadCSV( self, f"{self.iXAssets}/weekly_challenges.csv", WeeklyChallenges ) if table is None: return challenges for entry in table: altId: str = entry.get("ref") season: int = int(altId.split("season_")[1].split("_")[0]) week: int = int(altId.split("week_")[1].split("_")[0]) if (amount := entry.get("amount")) is not None: amount: Optional[Union[str, int]] = f"{amount:,}" challenges.append( { "id": entry.get("id"), "altId": altId, "name": self.localize.get(entry.get("name")), "description": self.localize.get(entry.get("desc")).replace( "&&1", amount ), "start": Utility.PrettyTime(self, entry.get("start")), "season": season, "week": week, "xp": entry.get("xp"), "rewards": [], } ) if (l := entry.get("loot")) is not None: challenges[-1]["rewards"].append( {"id": l, "type": self.ModernWarfare.GetLootType(l)} ) return challenges class MasteryChallenges: """Mastery Challenges XAssets.""" def Compile(self: Any) -> None: """Compile the Mastery Challenges XAssets.""" challenges: List[Dict[str, Any]] = [] challenges = MasteryChallenges.Table(self, challenges) Utility.WriteFile(self, f"{self.eXAssets}/masteryChallenges.json", challenges) log.info(f"Compiled {len(challenges):,} Mastery Challenges") def Table(self: Any, challenges: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """Compile the sticker_book_challenges.csv XAsset.""" table: List[Dict[str, Any]] = Utility.ReadCSV( self, f"{self.iXAssets}/sticker_book_challenges.csv", StickerBookChallenges ) if table is None: return challenges for entry in table: challenges.append( { "altId": entry.get("ref"), "name": self.localize.get(entry.get("name")), "description": self.localize.get(entry.get("desc")), "category": entry.get("categoryType"), "rewards": [], } ) amounts: List[int] = Utility.GetCSVArray(self, entry.get("amount"), int) loot: List[int] = Utility.GetCSVArray(self, entry.get("loot"), int) xp: List[int] = Utility.GetCSVArray(self, entry.get("XPReward"), int) for a, l, x in zip(amounts, loot, xp): challenges[-1]["rewards"].append( { "amount": a, "xp": x, "id": l, "type": self.ModernWarfare.GetLootType(l), } ) if (desc := challenges[-1].get("description")) is not None: challenges[-1]["description"] = desc.replace("&&1", str(amounts[-1])) return challenges class TurboChallenges: """Tomogunchi Turbo Challenges XAssets.""" def Compile(self: Any) -> None: """Compile the Tomogunchi Turbo Challenges XAssets.""" challenges: List[Dict[str, Any]] = [] challenges = TurboChallenges.Table(self, challenges) Utility.WriteFile(self, f"{self.eXAssets}/turboChallenges.json", challenges) log.info(f"Compiled {len(challenges):,} Tomogunchi Turbo Challenges") def Table(self: Any, challenges: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """Compile the mp/petwatchturbotable.csv XAsset.""" table: List[Dict[str, Any]] = Utility.ReadCSV( self, f"{self.iXAssets}/mp/petwatchturbotable.csv", PetWatchTurboTable ) if table is None: return challenges for entry in table: challenges.append( { "altId": entry.get("ref"), "phase": entry.get("phaseNum"), "description": self.localize.get(entry.get("challengeDesc")), "phaseTime": entry.get("phaseTime"), "maxBonusTime": entry.get("bonusTimeMax"), "charmAltId": None if (cid := entry.get("charmID")) is None else f"cos_{cid}", } ) return challenges class MiscellaneousChallenges: """Miscellaneous Challenges XAssets.""" def Compile(self: Any) -> None: """Compile the Miscellaneous Challenges XAssets.""" challenges: List[Dict[str, Any]] = [] challenges = MiscellaneousChallenges.Table(self, challenges) Utility.WriteFile(self, f"{self.eXAssets}/miscChallenges.json", challenges) log.info(f"Compiled {len(challenges):,} Miscellaneous Challenges") def Table(self: Any, challenges: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """Compile the misc_challenges.csv XAsset.""" table: List[Dict[str, Any]] = Utility.ReadCSV( self, f"{self.iXAssets}/misc_challenges.csv", MiscChallenges ) if table is None: return challenges for entry in table: if (d := self.localize.get(entry.get("desc"))) is not None: desc: Optional[str] = d elif (d := self.localize.get(entry.get("detailDesc"))) is not None: desc = d else: desc = None challenges.append( { "altId": entry.get("ref"), "name": self.localize.get(entry.get("name")), "description": desc, "rewards": [ { "id": entry.get("loot"), "type": self.ModernWarfare.GetLootType(entry.get("loot")), } ], } ) if desc is None: continue if (amount := entry.get("amount")) is not None: challenges[-1]["description"] = desc.replace("&&1", f"{amount:,}") return challenges class SeasonalChallenges: """Seasonal Challenges XAssets.""" def Compile(self: Any) -> None: """Compile the Seasonal Challenges XAssets.""" challenges: List[Dict[str, Any]] = [] challenges = SeasonalChallenges.Table(self, challenges) Utility.WriteFile(self, f"{self.eXAssets}/seasonalChallenges.json", challenges) log.info(f"Compiled {len(challenges):,} Seasonal Challenges") def Table(self: Any, challenges: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """Compile the mp/t9_seasonal_challenges.csv XAsset.""" table: List[Dict[str, Any]] = Utility.ReadCSV( self, f"{self.iXAssets}/mp/t9_seasonal_challenges.csv", T9SeasonalChallenges ) if table is None: return challenges for entry in table: desc = self.localize.get(entry.get("description")) challenges.append( { "id": entry.get("challengeID"), "altId": entry.get("challengeRef"), "name": self.localize.get(entry.get("title")), "description": desc, "season": entry.get("seasonNum"), "image": entry.get("callingCard"), "levelGate": entry.get("levelGate"), "t9Exclusive": bool(entry.get("isT9Exclusive")), "mastery": bool(entry.get("isMastery")), "tiers": [], } ) if (amount := entry.get("tier1Quantity")) is not None: challenges[-1]["tiers"].append( {"amount": amount, "xp": entry.get("tier1XP")} ) challenges[-1]["description"] = desc.replace("&&1", f"{amount:,}") if (amount := entry.get("tier2Quantity")) is not None: challenges[-1]["tiers"].append( {"amount": amount, "xp": entry.get("tier2XP")} ) challenges[-1]["description"] = desc.replace("&&1", f"{amount:,}") if (amount := entry.get("tier3Quantity")) is not None: challenges[-1]["tiers"].append( {"amount": amount, "xp": entry.get("tier3XP")} ) challenges[-1]["description"] = desc.replace("&&1", f"{amount:,}") if (amount := entry.get("tier4Quantity")) is not None: challenges[-1]["tiers"].append( {"amount": amount, "xp": entry.get("tier4XP")} ) challenges[-1]["description"] = desc.replace("&&1", f"{amount:,}") if (amount := entry.get("tier5Quantity")) is not None: challenges[-1]["tiers"].append( {"amount": amount, "xp": entry.get("tier5XP")} ) challenges[-1]["description"] = desc.replace("&&1", f"{amount:,}") return challenges class ProgressionRewards: """Progression Rewards XAssets.""" def Compile(self: Any) -> None: """Compile the Progression Rewards XAssets.""" rewards: List[Dict[str, Any]] = [] rewards = ProgressionRewards.Table(self, rewards) Utility.WriteFile(self, f"{self.eXAssets}/progressionRewards.json", rewards) log.info(f"Compiled {len(rewards):,} Progression Rewards") def Table(self: Any, rewards: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """Compile the mp/progression/t9_seasonal_progression_blueprint_rewards.csv XAsset.""" table: List[Dict[str, Any]] = Utility.ReadCSV( self, f"{self.iXAssets}/mp/progression/t9_seasonal_progression_blueprint_rewards.csv", T9SeasonalProgressionBlueprintRewards, ) if table is None: return rewards for entry in table: rewards.append( { "season": entry.get("seasonDispNum"), "rank": entry.get("seasonRank"), "rewards": [ { "id": (bId := entry.get("blueprintID")), "type": self.ModernWarfare.GetLootType(bId), } ], } ) return rewards
py
7dfdfb460d35266939e12c8942eec8a15836b464
# Generated by Django 3.0.2 on 2020-01-18 02:36 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('hoodie', '0007_auto_20200117_1759'), ] operations = [ migrations.RemoveField( model_name='post', name='hoody', ), migrations.AddField( model_name='post', name='hood', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='hood_posts', to='hoodie.Hood'), ), ]
py
7dfdfceaad14aea28338f6b1c30ad27737f7b853
# Copyright 2020 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Turns arbitrary objects into tf.CompositeTensor.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import contextlib import functools import threading import numpy as np import tensorflow.compat.v2 as tf # pylint: disable=g-direct-tensorflow-import from tensorflow.python.framework import composite_tensor from tensorflow.python.framework import type_spec from tensorflow.python.ops import resource_variable_ops from tensorflow.python.util import tf_inspect # pylint: enable=g-direct-tensorflow-import __all__ = [ 'auto_composite_tensor', 'AutoCompositeTensor', 'is_deferred_assertion_context', ] _DEFERRED_ASSERTION_CONTEXT = threading.local() _DEFERRED_ASSERTION_CONTEXT.is_deferred = False def is_deferred_assertion_context(): return getattr(_DEFERRED_ASSERTION_CONTEXT, 'is_deferred', False) @contextlib.contextmanager def _deferred_assertion_context(is_deferred=True): was_deferred = getattr(_DEFERRED_ASSERTION_CONTEXT, 'is_deferred', False) _DEFERRED_ASSERTION_CONTEXT.is_deferred = is_deferred try: yield finally: _DEFERRED_ASSERTION_CONTEXT.is_deferred = was_deferred _registry = {} # Mapping from (python pkg, class name) -> class. _SENTINEL = object() _AUTO_COMPOSITE_TENSOR_VERSION = 3 # Cache maps __init__ method to signature _sig_cache = {} def _cached_signature(f): if f not in _sig_cache: _sig_cache[f] = tf_inspect.signature(f) return _sig_cache[f] def _extract_init_kwargs(obj, omit_kwargs=(), limit_to=None, prefer_static_value=()): """Extract constructor kwargs to reconstruct `obj`.""" # If `obj` inherits its constructor from `AutoCompositeTensor` (which inherits # its constructor from `object`) return an empty dictionary to avoid # triggering the error below due to *args and **kwargs in the constructor. if type(obj).__init__ is AutoCompositeTensor.__init__: return {} sig = _cached_signature(type(obj).__init__) if any(v.kind in (tf_inspect.Parameter.VAR_KEYWORD, tf_inspect.Parameter.VAR_POSITIONAL) for v in sig.parameters.values()): raise ValueError( '*args and **kwargs are not supported. Found `{}`'.format(sig)) keys = [p for p in sig.parameters if p != 'self' and p not in omit_kwargs] if limit_to is not None: keys = [k for k in keys if k in limit_to] kwargs = {} not_found = object() for k in keys: src1 = getattr(obj, k, not_found) if src1 is not not_found: kwargs[k] = src1 else: src2 = getattr(obj, '_' + k, not_found) if src2 is not not_found: kwargs[k] = src2 else: src3 = getattr(obj, 'parameters', {}).get(k, not_found) if src3 is not not_found: kwargs[k] = src3 else: raise ValueError( f'Could not determine an appropriate value for field `{k}` in' f' object `{obj}`. Looked for \n' f' 1. an attr called `{k}`,\n' f' 2. an attr called `_{k}`,\n' f' 3. an entry in `obj.parameters` with key "{k}".') if k in prefer_static_value and kwargs[k] is not None: if tf.is_tensor(kwargs[k]): static_val = tf.get_static_value(kwargs[k]) if static_val is not None: kwargs[k] = static_val if isinstance(kwargs[k], (np.ndarray, np.generic)): # Generally, these are shapes or int, but may be other parameters such as # `power` for `tfb.PowerTransform`. kwargs[k] = kwargs[k].tolist() return kwargs def _extract_type_spec_recursively(value): """Return (collection of) TypeSpec(s) for `value` if it includes `Tensor`s. If `value` is a `Tensor` or `CompositeTensor`, return its `TypeSpec`. If `value` is a collection containing `Tensor` values, recursively supplant them with their respective `TypeSpec`s in a collection of parallel stucture. If `value` is nont of the above, return it unchanged. Args: value: a Python `object` to (possibly) turn into a (collection of) `tf.TypeSpec`(s). Returns: spec: the `TypeSpec` or collection of `TypeSpec`s corresponding to `value` or `value`, if no `Tensor`s are found. """ if isinstance(value, composite_tensor.CompositeTensor): return value._type_spec # pylint: disable=protected-access if isinstance(value, tf.Variable): return resource_variable_ops.VariableSpec( value.shape, dtype=value.dtype, trainable=value.trainable) if tf.is_tensor(value): return tf.TensorSpec(value.shape, value.dtype) if isinstance(value, (list, tuple)): specs = [_extract_type_spec_recursively(v) for v in value] was_tensor = list([a is not b for a, b in zip(value, specs)]) has_tensors = any(was_tensor) has_only_tensors = all(was_tensor) if has_tensors: if has_tensors != has_only_tensors: raise NotImplementedError( 'Found `{}` with both Tensor and non-Tensor parts: {}' .format(type(value), value)) return type(value)(specs) return value class _AutoCompositeTensorTypeSpec(tf.TypeSpec): """A tf.TypeSpec for `AutoCompositeTensor` objects.""" __slots__ = ('_param_specs', '_non_tensor_params', '_omit_kwargs', '_prefer_static_value', '_callable_params', '_serializable', '_comparable') def __init__(self, param_specs, non_tensor_params, omit_kwargs, prefer_static_value, non_identifying_kwargs, callable_params=None): """Initializes a new `_AutoCompositeTensorTypeSpec`. Args: param_specs: Python `dict` of `tf.TypeSpec` instances that describe kwargs to the `AutoCompositeTensor`'s constructor that are `Tensor`-like or `CompositeTensor` subclasses. non_tensor_params: Python `dict` containing non-`Tensor` and non- `CompositeTensor` kwargs to the `AutoCompositeTensor`'s constructor. omit_kwargs: Python `tuple` of strings corresponding to the names of kwargs to the `AutoCompositeTensor`'s constructor that should be omitted from the `_AutoCompositeTensorTypeSpec`'s serialization, equality/ compatibility checks, and rebuilding of the `AutoCompositeTensor` from `Tensor` components. prefer_static_value: Python `tuple` of strings corresponding to the names of `Tensor`-like kwargs to the `AutoCompositeTensor`s constructor that may be stored as static values, if known. These are typically shapes or axis values. non_identifying_kwargs: Python `tuple` of strings corresponding to the names of kwargs to the `AutoCompositeTensor`s constructor whose values are not relevant to the unique identification of the `_AutoCompositeTensorTypeSpec` instance. Equality/comparison checks and `__hash__` do not depend on these kwargs. callable_params: Python `dict` of callable kwargs to the `AutoCompositeTensor`'s constructor that do not subclass `CompositeTensor`, or `None`. If `callable_params` is a non-empty `dict`, then serialization of the `_AutoCompositeTensorTypeSpec` is not supported. Defaults to `None`, which is converted to an empty `dict`. """ self._param_specs = param_specs self._non_tensor_params = non_tensor_params self._omit_kwargs = omit_kwargs self._prefer_static_value = prefer_static_value self._non_identifying_kwargs = non_identifying_kwargs self._callable_params = {} if callable_params is None else callable_params self._serializable = ( _AUTO_COMPOSITE_TENSOR_VERSION, self._param_specs, self._non_tensor_params, self._omit_kwargs, self._prefer_static_value, self._non_identifying_kwargs) def remove_kwargs(d): return {k: v for k, v in d.items() if k not in self._non_identifying_kwargs} self._comparable = ( _AUTO_COMPOSITE_TENSOR_VERSION, remove_kwargs(self._param_specs), remove_kwargs(self._non_tensor_params), self._omit_kwargs, self._prefer_static_value, self._non_identifying_kwargs, tf.nest.map_structure(id, remove_kwargs(self._callable_params))) @classmethod def from_instance(cls, instance, omit_kwargs=(), non_identifying_kwargs=()): cls_value_type = cls.value_type.fget(None) if type(instance) is not cls_value_type: # pylint: disable=unidiomatic-typecheck raise ValueError(f'`{type(instance).__name__}` has inherited the ' f'`_type_spec` of `{cls_value_type.__name__}`. It ' f'should define its own, either directly, or by ' f'applying `auto_composite_tensor` to ' f'`{type(instance).__name__}.`') prefer_static_value = tuple( getattr(instance, '_composite_tensor_shape_params', ())) kwargs = _extract_init_kwargs(instance, omit_kwargs=omit_kwargs, prefer_static_value=prefer_static_value) non_tensor_params = {} param_specs = {} callable_params = {} for k, v in list(kwargs.items()): # If v contains no Tensors, this will just be v type_spec_or_v = _extract_type_spec_recursively(v) if type_spec_or_v is not v: param_specs[k] = type_spec_or_v elif callable(v): callable_params[k] = v else: non_tensor_params[k] = v # Construct the spec. return cls(param_specs=param_specs, non_tensor_params=non_tensor_params, omit_kwargs=omit_kwargs, prefer_static_value=prefer_static_value, non_identifying_kwargs=non_identifying_kwargs, callable_params=callable_params) def _to_components(self, obj): return _extract_init_kwargs(obj, limit_to=list(self._param_specs)) def _from_components(self, components): kwargs = dict( self._non_tensor_params, **self._callable_params, **components) with _deferred_assertion_context(): return self.value_type(**kwargs) @property def _component_specs(self): return self._param_specs def _serialize(self): if self._callable_params: raise ValueError( f'Cannot serialize object with callable parameters that are not ' f'`CompositeTensor`s: {self._callable_params.keys()}.') return self._serializable @classmethod def _deserialize(cls, encoded): version = encoded[0] if version == 1: encoded = encoded + ((),) version = 2 if version == 2: encoded = encoded + ((),) version = 3 if version != _AUTO_COMPOSITE_TENSOR_VERSION: raise ValueError(f'Expected version {_AUTO_COMPOSITE_TENSOR_VERSION},' f' but got {version}.') return cls(*encoded[1:]) def most_specific_compatible_type(self, other): """Returns the most specific TypeSpec compatible with `self` and `other`. Args: other: A `TypeSpec`. Raises: ValueError: If there is no TypeSpec that is compatible with both `self` and `other`. ValueError: If the `_callable_params` attributes of `self` and `other` are not equal. """ if type(self) is not type(other): raise ValueError( f'No TypeSpec is compatible with both {self} and {other}.') # pylint: disable=protected-access if self._callable_params != other._callable_params: raise ValueError(f'Callable parameters must be identical. Saw ' f'{self._callable_params} and {other._callable_params}.') merged = self._TypeSpec__most_specific_compatible_type_serialization( self._comparable[:-1], other._comparable[:-1]) # pylint: enable=protected-access return type(self)(*merged[1:], self._callable_params) def is_compatible_with(self, spec_or_value): """Returns true if `spec_or_value` is compatible with this TypeSpec.""" if not isinstance(spec_or_value, tf.TypeSpec): spec_or_value = type_spec.type_spec_from_value(spec_or_value) if type(self) is not type(spec_or_value): return False return self._TypeSpec__is_compatible( self._comparable, spec_or_value._comparable) # pylint: disable=protected-access def _with_tensor_ranks_only(self): """Returns a TypeSpec compatible with `self`, with tensor shapes relaxed. Returns: A `TypeSpec` that is compatible with `self`, where any `TensorShape` information has been relaxed to include only tensor rank (and not the dimension sizes for individual axes). """ def relax(value): if isinstance(value, tf.TypeSpec): return value._with_tensor_ranks_only() # pylint: disable=protected-access elif (isinstance(value, tf.TensorShape) and value.rank is not None): return tf.TensorShape([None] * value.rank) else: return value return type(self)( tf.nest.map_structure(relax, self._param_specs), self._non_tensor_params, self._omit_kwargs, self._prefer_static_value, self._callable_params) def __get_cmp_key(self): return (type(self), self._TypeSpec__make_cmp_key(self._comparable)) def __repr__(self): return '%s%r' % ( type(self).__name__, self._serializable + (self._callable_params,)) def __reduce__(self): if self._callable_params: raise ValueError( f'Cannot serialize object with callable parameters that are not ' f'`CompositeTensor`s: {self._callable_params.keys()}.') super(_AutoCompositeTensorTypeSpec, self).__reduce__() def __eq__(self, other): return (type(other) is type(self) and self.__get_cmp_key() == other.__get_cmp_key()) # pylint: disable=protected-access def __ne__(self, other): return not self == other def __hash__(self): return hash(self.__get_cmp_key()) class AutoCompositeTensor(composite_tensor.CompositeTensor): """Recommended base class for `@auto_composite_tensor`-ified classes. See details in `tfp.experimental.auto_composite_tensor` description. """ @property def _type_spec(self): # This property will be overwritten by the `@auto_composite_tensor` # decorator. However, we need it so that a valid subclass of the `ABCMeta` # class `CompositeTensor` can be constructed and passed to the # `@auto_composite_tensor` decorator pass def auto_composite_tensor( cls=None, omit_kwargs=(), non_identifying_kwargs=(), module_name=None): """Automagically generate `CompositeTensor` behavior for `cls`. `CompositeTensor` objects are able to pass in and out of `tf.function` and `tf.while_loop`, or serve as part of the signature of a TF saved model. The contract of `auto_composite_tensor` is that all __init__ args and kwargs must have corresponding public or private attributes (or properties). Each of these attributes is inspected (recursively) to determine whether it is (or contains) `Tensor`s or non-`Tensor` metadata. `list` and `tuple` attributes are supported, but must either contain *only* `Tensor`s (or lists, etc, thereof), or *no* `Tensor`s. E.g., - object.attribute = [1., 2., 'abc'] # valid - object.attribute = [tf.constant(1.), [tf.constant(2.)]] # valid - object.attribute = ['abc', tf.constant(1.)] # invalid If the attribute is a callable, serialization of the `TypeSpec`, and therefore interoperability with `tf.saved_model`, is not currently supported. As a workaround, callables that do not contain or close over `Tensor`s may be expressed as functors that subclass `AutoCompositeTensor` and used in place of the original callable arg: ```python @auto_composite_tensor(module_name='my.module') class F(AutoCompositeTensor): def __call__(self, *args, **kwargs): return original_callable(*args, **kwargs) ``` Callable objects that do contain or close over `Tensor`s should either (1) subclass `AutoCompositeTensor`, with the `Tensor`s passed to the constructor, (2) subclass `CompositeTensor` and implement their own `TypeSpec`, or (3) have a conversion function registered with `type_spec.register_type_spec_from_value_converter`. If the object has a `_composite_tensor_shape_parameters` field (presumed to have `tuple` of `str` value), the flattening code will use `tf.get_static_value` to attempt to preserve shapes as static metadata, for fields whose name matches a name specified in that field. Preserving static values can be important to correctly propagating shapes through a loop. Note that the Distribution and Bijector base classes provide a default implementation of `_composite_tensor_shape_parameters`, populated by `parameter_properties` annotations. If the decorated class `A` does not subclass `CompositeTensor`, a *new class* will be generated, which mixes in `A` and `CompositeTensor`. To avoid this extra class in the class hierarchy, we suggest inheriting from `auto_composite_tensor.AutoCompositeTensor`, which inherits from `CompositeTensor` and implants a trivial `_type_spec` @property. The `@auto_composite_tensor` decorator will then overwrite this trivial `_type_spec` @property. The trivial one is necessary because `_type_spec` is an abstract property of `CompositeTensor`, and a valid class instance must be created before the decorator can execute -- without the trivial `_type_spec` property present, `ABCMeta` will throw an error! The user may thus do any of the following: #### `AutoCompositeTensor` base class (recommended) ```python @tfp.experimental.auto_composite_tensor class MyClass(tfp.experimental.AutoCompositeTensor): ... mc = MyClass() type(mc) # ==> MyClass ``` #### No `CompositeTensor` base class (ok, but changes expected types) ```python @tfp.experimental.auto_composite_tensor class MyClass(object): ... mc = MyClass() type(mc) # ==> MyClass_AutoCompositeTensor ``` #### `CompositeTensor` base class, requiring trivial `_type_spec` ```python from tensorflow.python.framework import composite_tensor @tfp.experimental.auto_composite_tensor class MyClass(composite_tensor.CompositeTensor): @property def _type_spec(self): # will be overwritten by @auto_composite_tensor pass ... mc = MyClass() type(mc) # ==> MyClass ``` ## Full usage example ```python @tfp.experimental.auto_composite_tensor(omit_kwargs=('name',)) class Adder(tfp.experimental.AutoCompositeTensor): def __init__(self, x, y, name=None): with tf.name_scope(name or 'Adder') as name: self._x = tf.convert_to_tensor(x) self._y = tf.convert_to_tensor(y) self._name = name def xpy(self): return self._x + self._y def body(obj): return Adder(obj.xpy(), 1.), result, = tf.while_loop( cond=lambda _: True, body=body, loop_vars=(Adder(1., 1.),), maximum_iterations=3) result.xpy() # => 5. ``` Args: cls: The class for which to create a CompositeTensor subclass. omit_kwargs: Optional sequence of kwarg names to be omitted from the spec. non_identifying_kwargs: Optional sequence of kwarg names to be omitted from equality/comparison checks and the `__hash__` method of the spec. module_name: The module name with which to register the `TypeSpec`. If `None`, defaults to `cls.__module__`. Returns: composite_tensor_subclass: A subclass of `cls` and TF CompositeTensor. """ if cls is None: return functools.partial(auto_composite_tensor, omit_kwargs=omit_kwargs, non_identifying_kwargs=non_identifying_kwargs, module_name=module_name) if module_name is None: module_name = cls.__module__ type_spec_class_name = f'{cls.__name__}_ACTTypeSpec' type_spec_name = f'{module_name}.{type_spec_class_name}' try: ts = type_spec.lookup(type_spec_name) return ts.value_type.fget(None) except ValueError: pass # If the declared class is already a CompositeTensor subclass, we can avoid # affecting the actual type of the returned class. Otherwise, we need to # explicitly mix in the CT type, and hence create and return a newly # synthesized type. if issubclass(cls, composite_tensor.CompositeTensor): @type_spec.register(type_spec_name) class _AlreadyCTTypeSpec(_AutoCompositeTensorTypeSpec): @property def value_type(self): return cls _AlreadyCTTypeSpec.__name__ = type_spec_class_name def _type_spec(obj): return _AlreadyCTTypeSpec.from_instance( obj, omit_kwargs, non_identifying_kwargs) cls._type_spec = property(_type_spec) # pylint: disable=protected-access return cls clsid = (cls.__module__, cls.__name__, omit_kwargs, non_identifying_kwargs) # Check for subclass if retrieving from the _registry, in case the user # has redefined the class (e.g. in a REPL/notebook). if clsid in _registry and issubclass(_registry[clsid], cls): return _registry[clsid] @type_spec.register(type_spec_name) class _GeneratedCTTypeSpec(_AutoCompositeTensorTypeSpec): @property def value_type(self): return _registry[clsid] _GeneratedCTTypeSpec.__name__ = type_spec_class_name class _AutoCompositeTensor(cls, composite_tensor.CompositeTensor): """A per-`cls` subclass of `CompositeTensor`.""" @property def _type_spec(self): return _GeneratedCTTypeSpec.from_instance( self, omit_kwargs, non_identifying_kwargs) _AutoCompositeTensor.__name__ = cls.__name__ _registry[clsid] = _AutoCompositeTensor return _AutoCompositeTensor
py
7dfdff9a0045427ad5f76517838e6ba80ba219af
#!/usr/bin/env python3 """ Semantic class weights calculation for OmniDet # usage: ./compute_class_weights.py --config data/params.yaml # author: Varun Ravi Kumar <[email protected]> This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; Authors provide no warranty with the software and are not liable for anything. """ import json import os import numpy as np from torch.utils.data import DataLoader from tqdm import tqdm from data_loader.woodscape_loader import WoodScapeRawDataset from main import collect_tupperware printj = lambda dic: print(json.dumps(dic, indent=4)) def main(): args = collect_tupperware() printj(args) os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = args.cuda_visible_devices or -1 print(f"=> Loading {args.dataset.upper()} training dataset") # --- Load Data --- train_dataset = WoodScapeRawDataset(data_path=args.dataset_dir, path_file=args.train_file, is_train=False, config=args) train_loader = DataLoader(train_dataset, args.batch_size, shuffle=False, num_workers=args.num_workers, pin_memory=True, drop_last=False) # Get class weights from the selected weighing technique print(f"=> Weighing technique: {args.weighing} \n" f"Computing class weights... \n" f"This can take a while depending on the dataset size") if args.weighing.lower() == 'enet': class_weights = enet_weighing(train_loader, args.num_classes) elif args.weighing.lower() == 'mfb': class_weights = median_freq_balancing(train_loader, args.num_classes) else: class_weights = None with np.printoptions(precision=2, suppress=True): print(f"Class weights: {class_weights}") def enet_weighing(dataloader, num_classes, c=1.02): """Computes class weights as described in the ENet paper: w_class = 1 / (ln(c + p_class)), where c is usually 1.02 and p_class is the propensity score of that class: propensity_score = freq_class / total_pixels. References: https://arxiv.org/abs/1606.02147 Keyword arguments: :param dataloader: A data loader to iterate over the dataset. :param num_classes: The number of classes. :param c: An additional hyper-parameter which restricts the interval of values for the weights. Default: 1.02. """ class_count = 0 total = 0 for inputs in tqdm(dataloader): flat_label = inputs["motion_labels", 0, 0].cpu().numpy().flatten() # Sum up the number of pixels of each class and the total pixel counts for each label class_count += np.bincount(flat_label, minlength=num_classes) total += flat_label.size # Compute propensity score and then the weights for each class propensity_score = class_count / total class_weights = 1 / (np.log(c + propensity_score)) return class_weights def median_freq_balancing(dataloader, num_classes): """Computes class weights using median frequency balancing as described in https://arxiv.org/abs/1411.4734: w_class = median_freq / freq_class, where freq_class is the number of pixels of a given class divided by the total number of pixels in images where that class is present, and median_freq is the median of freq_class. :param dataloader: A data loader to iterate over the dataset whose weights are going to be computed. :param num_classes: The number of classes """ class_count = 0 total = 0 for inputs in tqdm(dataloader): flat_label = inputs["motion_labels", 0, 0].cpu().numpy().flatten() # Sum up the class frequencies bincount = np.bincount(flat_label, minlength=num_classes) # Create of mask of classes that exist in the label mask = bincount > 0 # Multiply the mask by the pixel count. The resulting array has one element for each class. # The value is either 0 (if the class does not exist in the label) # or equal to the pixel count (if the class exists in the label) total += mask * flat_label.size # Sum up the number of pixels found for each class class_count += bincount # Compute the frequency and its median freq = class_count / total med = np.median(freq) return med / freq if __name__ == "__main__": main()
py
7dfe0048402830bb8f112d662e39dbe50a985955
from PIL import Image import os, glob import numpy as np import random, math # 分類対象のカテゴリを選ぶ root_dir = "./image/" categories = ["normal", "beni", "negi", "cheese"] nb_classes = len(categories) image_size = 50 # 画像データを読み込む --- (※1) X = [] # 画像データ Y = [] # ラベルデータ def add_sample(cat, fname, is_train): img = Image.open(fname) img = img.convert("RGB") # カラーモードの変更 img = img.resize((image_size, image_size)) # 画像サイズの変更 data = np.asarray(img) X.append(data) Y.append(cat) if not is_train: return # 角度を変えたデータを追加 # 少しずつ回転する for ang in range(-20, 20, 5): img2 = img.rotate(ang) data = np.asarray(img2) X.append(data) Y.append(cat) # img2.save("gyudon-"+str(ang)+".png") # 反転する img2 = img2.transpose(Image.FLIP_LEFT_RIGHT) data = np.asarray(img2) X.append(data) Y.append(cat) def make_sample(files, is_train): global X, Y X = []; Y = [] for cat, fname in files: add_sample(cat, fname, is_train) return np.array(X), np.array(Y) # ディレクトリごとに分けられたファイルを収集する --- (※2) allfiles = [] for idx, cat in enumerate(categories): image_dir = root_dir + "/" + cat files = glob.glob(image_dir + "/*.jpg") for f in files: allfiles.append((idx, f)) # シャッフルして学習データとテストデータに分ける --- (※3) random.shuffle(allfiles) th = math.floor(len(allfiles) * 0.6) train = allfiles[0:th] test = allfiles[th:] X_train, y_train = make_sample(train, True) X_test, y_test = make_sample(test, False) xy = (X_train, X_test, y_train, y_test) np.save("./image/gyudon2.npy", xy) print("ok,", len(y_train))
py
7dfe009fa19b94245acc4b59e189453929adfc9d
import os import time # -*- coding:utf-8 -*- ''' -----------------------------Cpu----------------------------- ''' # Cpu use last_worktime=0 last_idletime=0 def get_cpu_use(): global last_worktime, last_idletime f=open("/proc/stat","r") line="" while not "cpu " in line: line=f.readline() f.close() spl=line.split(" ") worktime=int(spl[2])+int(spl[3])+int(spl[4]) idletime=int(spl[5]) dworktime=(worktime-last_worktime) didletime=(idletime-last_idletime) rate=float(dworktime)/(didletime+dworktime) cpu_t = rate*100 last_worktime=worktime last_idletime=idletime if(last_worktime==0): return 0 return round(cpu_t,2) # Cpu freq def get_cpu_freq(): freq_str = os.popen('cat /proc/cpuinfo | grep MHz | uniq').read() freqs =[] while freq_str.find('\n') != -1: freqs.append(float(freq_str[freq_str.find(':')+2:freq_str.find('\n')])) freq_str=freq_str[freq_str.find('\n')+1:] return max(freqs) # Cpu temp def get_cpu_temp(): if os.path.isfile('/sys/class/thermal/thermal_zone0/temp'): temp_str = os.popen('cat /sys/class/thermal/thermal_zone0/temp').read() elif os.path.isfile('/sys/class/hwmon/hwmon0/device/hwmon/hwmon0/temp1_input'): temp_str = os.popen('cat /sys/class/hwmon/hwmon0/device/hwmon/hwmon0/temp1_input').read() elif os.path.isfile('/sys/class/hwmon/hwmon0/device/hwmon0/temp1_input'): temp_str = os.popen('cat /sys/class/hwmon/hwmon0/device/hwmon0/temp1_input').read() else: return -1 return (float(temp_str)/1000) ''' -----------------------------Men----------------------------- ''' def get_mem_use(): mem_str = os.popen('free').read() if '内存'in mem_str : mem_str = mem_str[mem_str.find('内存:')+3:mem_str.find('交换')] else: mem_str = mem_str[mem_str.find('Mem:')+4:mem_str.find('Swap')] mem_str = mem_str.split() total = int(float(mem_str[0])/1024) used = int(float(mem_str[1])/1024) percent = int(used/total*100) return total,used,percent def get_swap_use(): mem_str = os.popen('free').read() if '内存'in mem_str : mem_str = mem_str[mem_str.find('交换:')+3:] else: mem_str = mem_str[mem_str.find('Swap:')+5:] mem_str = mem_str.split() total = int(float(mem_str[0])/1024) used = int(float(mem_str[1])/1024) percent = int(used/total*100) return total,used,percent ''' -----------------------------Gpu----------------------------- ''' gpus_str = os.popen('nvidia-smi -L').read() gpus =[] if 'communicate with the NVIDIA driver' not in gpus_str: while gpus_str.find('\n') != -1: gpus.append(gpus_str[gpus_str.find(':')+2:gpus_str.find('(')-1]) gpus_str=gpus_str[gpus_str.find('\n')+1:] def get_gpu_use(): gpu_infos = [] out_string = os.popen('nvidia-smi').read() # gpu infos for i in range(len(gpus)): infos_str = out_string infos_str = infos_str[infos_str.find(str(i)+' '+gpus[i][:10]):] infos_str = infos_str[infos_str.find('\n')+1:] infos_str = infos_str[:infos_str.find('\n')+1] infos_str = infos_str.split() #['|', '50%', '42C', 'P0', '19W', '/', '75W', '|', '929MiB', '/', '5050MiB', '|', '14%', 'Default', '|'] if infos_str[1].replace('%','') == 'N/A': fan = -1 else: fan = int(infos_str[1].replace('%','')) # % temp = int(infos_str[2].replace('C','')) # C if infos_str[4] == 'N/A': power_used = -1 power_max = -1 else: power_used = int(infos_str[4].replace('W','')) if infos_str[4] !='N/A' else 0 # W power_max = int(infos_str[6].replace('W','')) if infos_str[6] !='N/A' else -1 # W # power_max = int(infos_str[6].replace('W','')) mem_used = int(infos_str[8].replace('MiB','')) # MB mem_max = int(infos_str[10].replace('MiB','')) # MB util_used = int(infos_str[12].replace('%','')) if infos_str[12] !='N/A' else 0 # % gpu_infos.append([fan,temp,power_used,power_max,mem_used,mem_max,util_used]) # cuda infos infos_str = out_string infos_str = infos_str.split('\n') for line in infos_str: if 'NVIDIA-SMI' in line: cuda_infos = '\033[1;37m'+line.replace('|','')[1:]+'\033[0m' # task_infos infos_str = out_string infos_str = infos_str[infos_str.find('Processes'):] infos_str = infos_str[infos_str.find('\n')+1:] task_infos = '\033[1;37m'+infos_str[:infos_str.find('\n')+1].replace('|', '')+'\033[0m' infos_str = infos_str[infos_str.find('======'):] infos_str = infos_str[infos_str.find('\n')+1:] infos_str = infos_str[:infos_str.find('+-------------------')-1] infos_str = infos_str.replace('|','') infos_str = infos_str.split('\n') print_flag = False for line in infos_str: line_split = line.split() if 'No running' not in line and'+-------' not in line and float(line_split[-1].replace('MiB',''))>500: task_infos = task_infos+line+'\n' print_flag = True if not print_flag: task_infos='' return gpu_infos,cuda_infos,task_infos ''' -----------------------------Network----------------------------- ''' def get_task_info(): stream = os.popen('top -n 1')._stream out_string = stream.buffer.read().decode('utf-8',"ignore") out_string = out_string.split('\n') infos = '' if len(out_string) > 10: infos = '\033[1;37m PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND \033[0m\n' for i in range(3): infos += (out_string[7+i]+'\n') return infos ''' -----------------------------Network----------------------------- ''' net_infos_history = [0,0] def get_net_use(t_cost,network_adapter = 'all'): net_str = os.popen('cat /proc/net/dev').read() infos = [] net_infos = [0,0,0,0] while net_str.find('\n') != -1: if net_str[:50].find(':') != -1: infos.append((net_str[net_str.find(':')+2:net_str.find('\n')-1]).split()) net_str=net_str[net_str.find('\n')+1:] net_rxs=[];net_txs=[] for info in infos: net_rxs.append(int(info[0])) net_txs.append(int(info[8])) if network_adapter == 'all': net_infos[0] = (sum(net_rxs)/1024) net_infos[1] = (sum(net_txs)/1024) elif network_adapter == 'auto': net_infos[0] = (max(net_rxs)/1024) net_infos[1] = (max(net_txs)/1024) if net_infos_history[0] == 0: net_infos[2] = 0 net_infos[3] = 0 else: net_infos[2] = (net_infos[0]-net_infos_history[0])/t_cost net_infos[3] = (net_infos[1]-net_infos_history[1])/t_cost net_infos_history[0] = net_infos[0] net_infos_history[1] = net_infos[1] return net_infos ''' -----------------------------Disk----------------------------- ''' def get_disk_use(): disk_str = os.popen('df -h').read() disk_str = disk_str.split('\n') disk_infos = [] # print(disk_str) allows = ['/home','/media','/sd'] # and '/' for line in disk_str: info = line.split() if info != []: for allow in allows: if allow in line[38:] or info[5]=='/' or 'T' in info[1]: info[4] = auto_color(info[4], int(info[4].replace('%',''))) disk_infos.append(info) break return disk_infos ''' -----------------------------other tools----------------------------- ''' def get_bar(percent,num = 25): bar = '[' for i in range(num): if i < round(percent/(100/num)): bar += '#' else: bar += '-' bar += ']' bar = '{0:>5.1f}% '.format(percent)+bar bar = auto_color(bar, percent) return bar def fill_str(string,num): if len(string)>num: return string[:num-3]+'...' for i in range(num-len(string)): string +=' ' return string def auto_color(string,percent): if 0<=percent<=70: string = change_color(string, 'green') elif 70<percent<=90: string = change_color(string, 'yellow') else: string = change_color(string, 'red') return string def change_color(string,color): if color =='red': string = '\033[1;31m'+string+'\033[0m' elif color == 'green': string = '\033[1;32m'+string+'\033[0m' elif color == 'yellow': string = '\033[1;33m'+string+'\033[0m' if color =='white': string = '\033[1;37m'+string+'\033[0m' return string ''' -----------------------------main----------------------------- ''' def main(): t_cost = 0.5 sleep_time = 0.5 smooth = 10 smooth_gpu_infosss = [] while(1): t_start = time.time() #cpu cpu_used = get_cpu_use() cpu_freq = get_cpu_freq() cpu_temp = get_cpu_temp() cpu_used_bar = get_bar(cpu_used,num=65) task_infos = get_task_info() #memory mem_total,mem_used,mem_percent = get_mem_use() mem_used_bar = get_bar(mem_percent) swap_total,swap_used,swap_percent = get_swap_use() swap_used_bar = get_bar(swap_percent) #gpu util_used_bars=[];gpu_mem_bars=[] gpu_infoss,cuda_infos,gpu_task_infos = get_gpu_use() if len(smooth_gpu_infosss) < smooth: smooth_gpu_infosss.append(gpu_infoss) else: smooth_gpu_infosss[:smooth-1] = smooth_gpu_infosss[1:smooth] smooth_gpu_infosss[smooth-1] = gpu_infoss smooth_gpu_utils = [];smooth_gpu_powers = [] for i in range(len(gpus)): utils = []; powers = [] for j in range(len(smooth_gpu_infosss)): utils.append(smooth_gpu_infosss[j][i][6]) powers.append(smooth_gpu_infosss[j][i][2]) smooth_gpu_utils.append(sum(utils)/len(utils)) smooth_gpu_powers.append(int(sum(powers)/len(powers))) for i in range(len(gpus)): gpu_infos = gpu_infoss[i] util_used_bars.append(get_bar(smooth_gpu_utils[i])) gpu_mem_bars.append(get_bar(100*gpu_infoss[i][4]/gpu_infoss[i][5])) #net net_infos = get_net_use(t_cost) #disk disk_infos = get_disk_use() #-----------------------------print----------------------------- print_str = '' #cpu memory print_str += ('\033[1;37mCpu-T: {0:.1f}C | Freq: {1:.1f}MHz | Mem: {2:d}MB/{3:d}MB | Swap: {4:d}MB/{5:d}MB\033[0m\n').format( cpu_temp,cpu_freq,mem_used,mem_total,swap_used,swap_total) print_str += ('Cpu: '+cpu_used_bar+'\n') print_str += ('Mem: '+mem_used_bar+' Swap:'+swap_used_bar+'\n') # Task print_str += (task_infos+'\n') #gpu print_str += (cuda_infos+'\n') for i in range(len(gpus)): print_str +=(('\033[1;37mGpu'+'{0:d}'+': '+gpus[i].replace('GeForce','').replace(' RTX','').replace(' ','').replace('GPU','')+' Temp: {1:.1f}C | Power: {2:>3d}w/{3:d}w | Mem: {4:>5d}MB/{5:d}MB | Fan: {6:d}%\033[0m').format( i,gpu_infoss[i][1],smooth_gpu_powers[i],gpu_infoss[i][3], gpu_infoss[i][4],gpu_infoss[i][5],gpu_infoss[i][0])+'\n') print_str += ('Util:'+util_used_bars[i]+' Mem:'+gpu_mem_bars[i]+'\n') print_str += (gpu_task_infos+'\n') #net print_str += (('\033[1;37mNetwork ↑ all:{0:.1f}GB ↓ all:{1:.1f}GB ↑ :{2:.1f}Kb/s ↓ :{3:.1f}Kb/s\033[0m').format( net_infos[1]/1024/1024,net_infos[0]/1024/1024,net_infos[3],net_infos[2])+'\n') #disk print_str += ('\n\033[1;37mFilesystem Mounted on Used/Total Used%\033[0m'+'\n') for disk_info in disk_infos: print_str += (fill_str(disk_info[0], 23)+fill_str(disk_info[5], 23)+ \ fill_str(disk_info[2]+'/'+disk_info[1], 23)+fill_str(disk_info[4], 15)+'\n') print("\033c", end="") print(print_str,end="") time.sleep(sleep_time) t_end = time.time() t_cost = t_end-t_start if __name__ == '__main__': main()
py
7dfe012450cf7679377c58c795273804ee503fe2
# ------------------------------- IMPORT MODULES & SETUP ------------------------------------------------ # Standard Libraries import os # os.environ['OMP_NUM_THREADS'] = '48' import math import json import datetime import numpy as np import time import nvtx import argparse # ------------------------------- CUSTOM FUNCTIONS ------------------------------------------------ # Custom Library import sys sys.path.append('../') from proxy_apps.apps.timeseries_prediction import deepDMD, proxyDeepDMD, proxyDeepDMDMGPU, proxyDeepDMDPyTorch, proxyDeepDMDPyTorchJIT, hyperparameters from proxy_apps.utils.tf import TimingCallback from proxy_apps.utils.data.main import NpEncoder from proxy_apps.utils import file_reader, path_handler from proxy_apps.utils.data.grid import GridNetworkDataHandler, GridNetworkTFDataHandler, GridNetworkNewGen, GridDataGenPyTorch # ------------------------------- PATH & LOGGER SETUP ------------------------------------------------ # Parse Arguments parser = argparse.ArgumentParser(description='Run Time Series Prediction') parser.add_argument("--model_name", choices=["Baseline", "TFDataGen", "TFDataOptMGPU", "TFDataOptMGPUAcc", "PyTorch", "PyTorchOpt"], type=str, help="which implementation to run", required=True) parser.add_argument("--platform", choices=["gpu", "cpu"], type=str, help="name of the platform (cpu/gpu)", required=True) parser.add_argument("--machine_name", type=str, help="name of the machine", required=True) parser.add_argument("--n_gpus", type=int, help="number of GPUs", default=0) parser.add_argument("--n_cpus", type=int, help="number of CPUs", default=1) parser.add_argument("--n_epochs", type=int, help="number of epochs", default=10) parser.add_argument("--batch_size", type=int, help="batch size", default=1024) parser.add_argument("--tensorboard", type=int, choices=[0, 1], help="whether to store tensorboard output") parser.add_argument("--mixed_precision", type=int, choices=[0, 1], help="whether to turn on mixed precision or not") args = parser.parse_args() # System Setup config = file_reader.read_config('config_baseline.json') _N_EPOCHS = args.n_epochs _BATCH_SIZE = args.batch_size _APP_NAME = config["info"]["app_name"] _NROWS = int(config["data"]["n_rows"]) _NCOLS = int(config["data"]["n_cols"]) _REPEAT_COLS = int(config["data"]["repeat_cols"]) _WINDOW_SIZE = int(config["data"]["window_size"]) _SHIFT_SIZE = int(config["data"]["shift_size"]) _STRIDE = int(config["data"]["stride"]) _N_SIGNALS = int(config["data"]["n_signals"]) _DTYPE = config["model"]["dtype"] _MIXED_PRECISION = bool(args.mixed_precision) _N_GPUS = args.n_gpus _N_CPUS = args.n_cpus _LABEL = args.model_name _SUFFIX = args.platform + '_' + \ args.machine_name + '_' + \ 'ng' + str(_N_GPUS) + '_' + \ 'nc' + str(_N_CPUS) + '_' + \ 'e' + str(_N_EPOCHS) + '_' + \ 'b' + str(_BATCH_SIZE) + '_' + \ 'r' + str(_REPEAT_COLS) + '_' + \ 'mp' + str(args.mixed_precision) + '_' + _LABEL performance_dict = dict() # current directory curr_dir = os.path.dirname(os.path.realpath(__file__)) # output directory data_dir = path_handler.get_absolute_path(curr_dir, config["info"]["data_dir"] + config["info"]["name"] + "/" + config["info"]["app_name"] + "/" + _DTYPE + "/R" + str(_REPEAT_COLS) + "/") if not os.path.exists(data_dir): os.makedirs(data_dir) model_dir = path_handler.get_absolute_path(curr_dir, config["model"]["model_dir"] + config["info"]["name"] + "/" + config["info"]["app_name"] + "/" + _DTYPE + "/R" + str(_REPEAT_COLS) + "/") if not os.path.exists(model_dir): os.makedirs(model_dir) # ------------------------------- TensorFlow/PyTorch SETUP ------------------------------------------------ if _LABEL in ["PyTorch", "PyTorchOpt"]: import torch print("[INFO] PyTorch version: ", torch.__version__) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(device) if _DTYPE == "float64": torch.set_default_dtype(torch.float64) else: torch.set_default_dtype(torch.float32) if _MIXED_PRECISION: # set floatx _DTYPE = "float32" torch.set_default_dtype(torch.float32) def get_indexer(n_rows, window_size, shift_size, start_point, leave_last): return np.arange(window_size)[None, :] + start_point + shift_size*np.arange(((n_rows - window_size - leave_last - start_point) // shift_size) + 1)[:, None] else: import tensorflow as tf # TensorFlow Setup print("[INFO] Tensorflow version: ", tf.__version__) gpus = tf.config.experimental.list_physical_devices('GPU') for gpu in gpus: print("Name:", gpu.name, " Type:", gpu.device_type) # tf.config.experimental.set_memory_growth(gpu, True) logical_gpus = tf.config.experimental.list_logical_devices('GPU') for gpu in logical_gpus: print("Name:", gpu.name, " Type:", gpu.device_type) # tf.compat.v1.disable_eager_execution() print("[INFO] Eager mode: ", tf.executing_eagerly()) # For easy reset of notebook state. # Setup TensorFlow tf.keras.backend.clear_session() if _LABEL not in ["Baseline"]: tf.config.optimizer.set_jit(True) # Enable XLA. # Setup Precision if _LABEL in ["Baseline"]: tf.keras.backend.set_floatx('float64') def get_indexer(n_rows, window_size, shift_size, start_point, leave_last): return np.arange(window_size)[None, :] + start_point + shift_size*np.arange(((n_rows - window_size - leave_last - start_point) // shift_size) + 1)[:, None] elif _LABEL in ["TFDataGen", "TFDataOptMGPU", "TFDataOptMGPUAcc"]: tf.keras.backend.set_floatx(_DTYPE) if _MIXED_PRECISION: # set floatx _DTYPE = 'float32' tf.keras.backend.set_floatx(_DTYPE) # set policy policy = tf.keras.mixed_precision.Policy('mixed_float16') tf.keras.mixed_precision.set_global_policy(policy) # check dtypes print('Compute dtype: %s' % policy.compute_dtype) print('Variable dtype: %s' % policy.variable_dtype) @tf.function(experimental_compile=True) def get_indexer(n_rows, window_size, shift_size, start_point, leave_last): return np.arange(window_size)[None, :] + start_point + shift_size*np.arange(((n_rows - window_size - leave_last - start_point) // shift_size) + 1)[:, None] # Mirror Strategy for MGPUs if _LABEL in ["TFDataOptMGPU", "TFDataOptMGPUAcc"]: mirrored_strategy = tf.distribute.MirroredStrategy() # To avoid GPU Congestion os.environ["TF_GPU_THREAD_MODE"] = "gpu_private" # os.environ['TF_CUDNN_DETERMINISTIC']='1' # ------------------------------- CREATE DATA HANDLER ------------------------------------------------ data_handler_nvtx = nvtx.start_range("Create Data Handler") dh_start = time.time() if _LABEL in ["Baseline", "TFDataOpt"]: data_handler = GridNetworkDataHandler(scenario_dir=path_handler.get_absolute_path(curr_dir, config["info"]["input_dir"]), n_rows=_NROWS, n_cols=_NCOLS, repeat_cols=_REPEAT_COLS, dtype=_DTYPE ) scenario_data = data_handler.load_grid_data() # ------------------------------- DATA PREPROCESSING ------------------------------------------------ X_data, Y_data = data_handler.create_windows(scenario_data) # ------------------------------- DATA NORMALIZATION ------------------------------------------------ X_array, Y_array = data_handler.scale_data(X_data, Y_data) elif _LABEL in ["TFDataGen", "TFDataOptMGPU", "TFDataOptMGPUAcc"]: data_handler = GridNetworkNewGen(scenario_dir=path_handler.get_absolute_path(curr_dir, config["info"]["input_dir"]), n_rows=_NROWS, n_cols=_NCOLS, repeat_cols=_REPEAT_COLS, d_type=_DTYPE ) x_indexer = get_indexer(_NROWS, _WINDOW_SIZE, _SHIFT_SIZE, 0, _N_SIGNALS) y_indexer = get_indexer(_NROWS, _WINDOW_SIZE, _SHIFT_SIZE, 1, 0) scenario_data = data_handler.get_training_data(x_indexer, y_indexer) elif _LABEL in ["PyTorch", "PyTorchOpt"]: scenario_dir=path_handler.get_absolute_path(curr_dir, config["info"]["input_dir"]) dir_list = [scenario_dir + "/" + f + "/" for f in os.listdir(scenario_dir)] x_indexer = get_indexer(_NROWS, _WINDOW_SIZE, _SHIFT_SIZE, 0, _N_SIGNALS) y_indexer = get_indexer(_NROWS, _WINDOW_SIZE, _SHIFT_SIZE, 1, 0) dataset = GridDataGenPyTorch(dir_list, _NROWS, _NCOLS, _REPEAT_COLS, x_indexer, y_indexer, d_type=_DTYPE) if _LABEL == "PyTorch": train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=_BATCH_SIZE) elif _LABEL == "PyTorchOpt": train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=_BATCH_SIZE, pin_memory=True, num_workers=int(_N_CPUS)) dh_stop = time.time() performance_dict['data_handler_time'] = dh_stop-dh_start nvtx.end_range(data_handler_nvtx) # ------------------------------- CALLBACKS FOR TensorFlow ------------------------------------------------ if _LABEL not in ["PyTorch", "PyTorchOpt"]: # timing callback timing_cb = TimingCallback() # Stopping criteria if the training loss doesn't go down by 1e-3 early_stop_cb = tf.keras.callbacks.EarlyStopping( monitor='loss', min_delta = 1e-3, verbose = 1, mode='min', patience = 3, baseline=None, restore_best_weights=True) # all callbacks callbacks=[]# [early_stop_cb, timing_cb] if _LABEL in ["Baseline", "TFDataGen"]: callbacks.append(timing_cb) if args.tensorboard==1: # Create a TensorBoard Profiler logs = path_handler.get_absolute_path(curr_dir, config["model"]["tb_log_dir"] + _APP_NAME + "/" + _DTYPE + "/R" + str(_REPEAT_COLS) + "/tensorboard/" + _SUFFIX) tb_callback = tf.keras.callbacks.TensorBoard(log_dir=logs, histogram_freq=1, embeddings_freq=1, profile_batch=(1,20)) callbacks.append(tb_callback) # Initialize Hyperparameters - we can keep it as a dict instead of creating a separate class hyper_param_dict = config["model"]["hyperparameters"] hyper_param_dict['original_dim'] = _REPEAT_COLS * _NCOLS # input data dimension hyper_param_dict['num_epochs'] = _N_EPOCHS # Number of epochs hyper_param_dict['batch_size'] = _BATCH_SIZE hyper_param_dict['dtype'] = _DTYPE hp = hyperparameters.HyperParameters(hyper_param_dict) hp.model_name = _LABEL performance_dict["n_epochs"] = hp.ep performance_dict["batch_size"] = hp.bs if _LABEL == "Baseline": # ------------------------------- MODEL TRAINING ------------------------------------------------ # Initialize, build, and fit the model K_model = deepDMD.NeuralNetworkModel(hp) K_model.compile(optimizer=tf.optimizers.Adagrad(hp.lr)) # training model_training_nvtx = nvtx.start_range("Training") m_start = time.time() history = K_model.fit([X_array, Y_array], batch_size=hp.bs, epochs=hp.ep, callbacks=callbacks, shuffle=True) m_stop = time.time() nvtx.end_range(model_training_nvtx) # print info print('[INFO]: Time taken for model training (time module):', m_stop - m_start, 'seconds') print('[INFO]: Time taken for model training (Keras):', sum(timing_cb.logs), 'seconds') performance_dict['training_time_module'] = (m_stop - m_start) performance_dict['training_time_epoch_wise'] = timing_cb.logs performance_dict['training_loss'] = history.history['loss'] K_model.save(path_handler.get_absolute_path(model_dir, _SUFFIX)) elif _LABEL in ["TFDataGen", "TFDataOptMGPU", "TFDataOptMGPUAcc"]: # ------------------------------- MODEL TRAINING ------------------------------------------------ # Initialize and build the model if _LABEL in ["TFDataOptMGPU", "TFDataOptMGPUAcc"]: with mirrored_strategy.scope(): K_model = proxyDeepDMDMGPU.Encoder(hp) optimizer = tf.optimizers.Adagrad(hp.lr) if _MIXED_PRECISION: optimizer = tf.keras.mixed_precision.LossScaleOptimizer(optimizer) K_model.compile(optimizer=optimizer) else: K_model = proxyDeepDMD.NeuralNetworkModel(hp, mixed_precision=_MIXED_PRECISION) optimizer = tf.optimizers.Adagrad(hp.lr) if _MIXED_PRECISION: optimizer = tf.keras.mixed_precision.LossScaleOptimizer(optimizer) K_model.compile(optimizer=optimizer) if _LABEL in ["TFDataOptMGPU", "TFDataOptMGPUAcc"]: hp.bs = hp.bs * mirrored_strategy.num_replicas_in_sync print(mirrored_strategy.num_replicas_in_sync) # generate dataset data_options = tf.data.Options() data_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.DATA zip_data = scenario_data.with_options(data_options).batch(hp.bs) training_dataset = zip_data.cache() shuffle_buffer_size = x_indexer.shape[0] * x_indexer.shape[1] * len(data_handler.dir_list) // hp.bs if _LABEL in ["TFDataOptMGPUAcc"]: shuffle_buffer_size = mirrored_strategy.num_replicas_in_sync * shuffle_buffer_size training_dataset = training_dataset.repeat(mirrored_strategy.num_replicas_in_sync) training_dataset = training_dataset.shuffle(buffer_size=shuffle_buffer_size) training_dataset = training_dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE) # for multi-gpu, split the data if _LABEL in ["TFDataOptMGPU", "TFDataOptMGPUAcc"]: training_dataset = mirrored_strategy.experimental_distribute_dataset(training_dataset) # compile and fit model model_training_nvtx = nvtx.start_range("Training") m_start = time.time() if _LABEL in ["TFDataOptMGPU", "TFDataOptMGPUAcc"]: trainer = proxyDeepDMDMGPU.NeuralNetworkModel(hp, K_model, mixed_precision=_MIXED_PRECISION) all_loss, epoch_time, avg_batch_time = trainer.fit(training_dataset, n_epochs=hp.ep, batch_size=hp.bs, steps_per_epoch=shuffle_buffer_size) else: K_model.encoder.build(input_shape=(None, _REPEAT_COLS * _NCOLS)) history = K_model.fit(training_dataset, epochs=hp.ep, callbacks=callbacks, workers=_N_CPUS, use_multiprocessing=True) all_loss = history.history['loss'] m_stop = time.time() nvtx.end_range(model_training_nvtx) # print loss print("Loss Values:", all_loss) # print info print('[INFO]: Time taken for model training (time module):', m_stop - m_start, 'seconds') if _LABEL in ["TFDataOptMGPU", "TFDataOptMGPUAcc"]: print('[INFO]: Time taken for model training (Keras):', sum(epoch_time), 'seconds') else: print('[INFO]: Time taken for model training (Keras):', sum(timing_cb.logs), 'seconds') performance_dict['training_time_module'] = (m_stop - m_start) if _LABEL in ["TFDataOptMGPU", "TFDataOptMGPUAcc"]: performance_dict['training_time_epoch_wise'] = epoch_time else: performance_dict['training_time_epoch_wise'] = timing_cb.logs performance_dict['training_loss'] = all_loss if _LABEL in ["TFDataOptMGPU", "TFDataOptMGPUAcc"]: trainer.encoder.save(path_handler.get_absolute_path(model_dir, _SUFFIX)) else: K_model.encoder.save(path_handler.get_absolute_path(model_dir, _SUFFIX)) elif _LABEL in ["PyTorch", "PyTorchOpt"]: # ------------------------------- MODEL TRAINING ------------------------------------------------ use_amp = False if _MIXED_PRECISION: use_amp = True # if _LABEL in ["PyTorch"]: K_model = proxyDeepDMDPyTorch.Encoder(hp, device, use_amp) # elif _LABEL in ["PyTorchOpt"]: # K_model = torch.jit.script(proxyDeepDMDPyTorchJIT.Encoder(hp)) if torch.cuda.device_count() > 1: print("Let's use", torch.cuda.device_count(), "GPUs!") # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs K_model = torch.nn.DataParallel(K_model) K_model.to(device) optimizer = torch.optim.Adagrad(K_model.parameters(), lr=hp.lr) # fit model model_training_nvtx = nvtx.start_range("Training") m_start = time.time() # if _LABEL in ["PyTorch"]: trainer = proxyDeepDMDPyTorch.NeuralNetworkModel(hp, K_model, optimizer, device, use_amp) # elif _LABEL in ["PyTorchOpt"]: # trainer = proxyDeepDMDPyTorchJIT.NeuralNetworkModel(hp, K_model, optimizer, device, use_amp) all_loss, epoch_time, avg_batch_time = trainer.fit(train_dataloader) m_stop = time.time() nvtx.end_range(model_training_nvtx) # print loss all_loss = [x.cpu().data.numpy() for x in all_loss] print("Loss Values:", all_loss) # print info print('[INFO]: Time taken for model training (time module):', m_stop - m_start, 'seconds') print('[INFO]: Time taken for model training (Keras):', sum(epoch_time), 'seconds') performance_dict['training_time_module'] = (m_stop - m_start) performance_dict['training_time_epoch_wise'] = epoch_time performance_dict['training_loss'] = all_loss # if _LABEL in ["PyTorch"]: torch.save(trainer.encoder, path_handler.get_absolute_path(model_dir, _SUFFIX)) # elif _LABEL in ["PyTorchOpt"]: # torch.jit.save(trainer.encoder, path_handler.get_absolute_path(model_dir, _SUFFIX)) # ------------------------------- SAVE PERFORMANCE DICT ------------------------------------------------ with open(path_handler.get_absolute_path(data_dir, "training_performance_" + _SUFFIX + ".json"), 'w') as fp: json.dump(performance_dict, fp, cls=NpEncoder)
py
7dfe01c34819dc03b711b4e70868f1e4f8b27ea8
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .resource import Resource class ExpressRouteCircuit(Resource): """ExpressRouteCircuit resource. Variables are only populated by the server, and will be ignored when sending a request. :param id: Resource ID. :type id: str :ivar name: Resource name. :vartype name: str :ivar type: Resource type. :vartype type: str :param location: Resource location. :type location: str :param tags: Resource tags. :type tags: dict[str, str] :param sku: The SKU. :type sku: ~azure.mgmt.network.v2018_02_01.models.ExpressRouteCircuitSku :param allow_classic_operations: Allow classic operations :type allow_classic_operations: bool :param circuit_provisioning_state: The CircuitProvisioningState state of the resource. :type circuit_provisioning_state: str :param service_provider_provisioning_state: The ServiceProviderProvisioningState state of the resource. Possible values are 'NotProvisioned', 'Provisioning', 'Provisioned', and 'Deprovisioning'. Possible values include: 'NotProvisioned', 'Provisioning', 'Provisioned', 'Deprovisioning' :type service_provider_provisioning_state: str or ~azure.mgmt.network.v2018_02_01.models.ServiceProviderProvisioningState :param authorizations: The list of authorizations. :type authorizations: list[~azure.mgmt.network.v2018_02_01.models.ExpressRouteCircuitAuthorization] :param peerings: The list of peerings. :type peerings: list[~azure.mgmt.network.v2018_02_01.models.ExpressRouteCircuitPeering] :param service_key: The ServiceKey. :type service_key: str :param service_provider_notes: The ServiceProviderNotes. :type service_provider_notes: str :param service_provider_properties: The ServiceProviderProperties. :type service_provider_properties: ~azure.mgmt.network.v2018_02_01.models.ExpressRouteCircuitServiceProviderProperties :param provisioning_state: Gets the provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :type provisioning_state: str :param gateway_manager_etag: The GatewayManager Etag. :type gateway_manager_etag: str :ivar etag: Gets a unique read-only string that changes whenever the resource is updated. :vartype etag: str """ _validation = { 'name': {'readonly': True}, 'type': {'readonly': True}, 'etag': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'sku': {'key': 'sku', 'type': 'ExpressRouteCircuitSku'}, 'allow_classic_operations': {'key': 'properties.allowClassicOperations', 'type': 'bool'}, 'circuit_provisioning_state': {'key': 'properties.circuitProvisioningState', 'type': 'str'}, 'service_provider_provisioning_state': {'key': 'properties.serviceProviderProvisioningState', 'type': 'str'}, 'authorizations': {'key': 'properties.authorizations', 'type': '[ExpressRouteCircuitAuthorization]'}, 'peerings': {'key': 'properties.peerings', 'type': '[ExpressRouteCircuitPeering]'}, 'service_key': {'key': 'properties.serviceKey', 'type': 'str'}, 'service_provider_notes': {'key': 'properties.serviceProviderNotes', 'type': 'str'}, 'service_provider_properties': {'key': 'properties.serviceProviderProperties', 'type': 'ExpressRouteCircuitServiceProviderProperties'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'gateway_manager_etag': {'key': 'properties.gatewayManagerEtag', 'type': 'str'}, 'etag': {'key': 'etag', 'type': 'str'}, } def __init__(self, *, id: str=None, location: str=None, tags=None, sku=None, allow_classic_operations: bool=None, circuit_provisioning_state: str=None, service_provider_provisioning_state=None, authorizations=None, peerings=None, service_key: str=None, service_provider_notes: str=None, service_provider_properties=None, provisioning_state: str=None, gateway_manager_etag: str=None, **kwargs) -> None: super(ExpressRouteCircuit, self).__init__(id=id, location=location, tags=tags, **kwargs) self.sku = sku self.allow_classic_operations = allow_classic_operations self.circuit_provisioning_state = circuit_provisioning_state self.service_provider_provisioning_state = service_provider_provisioning_state self.authorizations = authorizations self.peerings = peerings self.service_key = service_key self.service_provider_notes = service_provider_notes self.service_provider_properties = service_provider_properties self.provisioning_state = provisioning_state self.gateway_manager_etag = gateway_manager_etag self.etag = None
py
7dfe02c3e0edf68c6ab82b0a41965a33d9ebdf3e
''' File: get_landsat8_aws.py Author: Min Feng Version: 0.1 Create: 2017-12-29 15:53:59 Description: download Landsat 8 images from AWS ''' import logging def _download(url, f_out): logging.info('downloading URL %s' % url) # return _get_s3_from_url(url, f_out) from gio import run_commands import os _cmd = 'wget %s' % url _d_out = os.path.dirname(f_out) run_commands.run(_cmd, cwd=_d_out) _f_out = os.path.join(_d_out, url.split('/')[-1]) if _f_out != f_out: import shutil shutil.move(_f_out, f_out) return import requests import shutil _num = 0 try: with open(f_out, 'wb') as _fo: _r = requests.get(url, stream=True) print(_r.headers['content-length']) shutil.copyfileobj(_r.raw, _fo) except Exception as _err: _num += 1 if _num > 3: raise _err # import urllib2 # with open(f_out, 'wb') as _fo: # _num = 0 # try: # _fo.write(urllib2.urlopen(url).read()) # except Exception, _err: # _num += 1 # if _num > 3: # raise _err def _get_s3_from_url(url, f_out): import urllib.parse _p = urllib.parse.urlparse(url).path if len(_p) > 1: if _p.startswith('/'): _p = _p[1:] return _get_s3(_p, f_out) def _get_s3(key, f_out): import boto _s3 = boto.connect_s3() _bk = _s3.get_bucket('landsat-pds') _kk = _bk.get_key(key) if _kk == None: raise Exception('failed found key %s' % key) _t = f_out + '.bak' with open(_t, 'wb') as _fo: _kk.get_contents_to_file(_fo) import shutil shutil.move(_t, f_out) def get_b8(sid, d_out=None): import os from gio import landsat _fs = {} _d_tmp = d_out os.path.exists(_d_tmp) or os.makedirs(_d_tmp) _id = landsat.parse(sid) _c1 = 'c1/' if 'LC08_' in str(sid) else '' for _b in ([10] + list(range(1, 8)) + [9, 11]): _fid = '%s_B%s.TIF' % (sid, _b) _fot = os.path.join(_d_tmp, _fid) _fs[_b] = _fot if os.path.exists(_fot): continue _url = 'http://landsat-pds.s3.amazonaws.com/%sL8/%03d/%03d/%s/%s' % \ (_c1, _id.path, _id.row, sid, _fid) _download(_url, _fot) for _b in ['MTL.txt']: _fid = '%s_%s' % (sid, _b) _fot = os.path.join(_d_tmp, _fid) _fs[_b] = _fot if os.path.exists(_fot): continue _url = 'http://landsat-pds.s3.amazonaws.com/%sL8/%03d/%03d/%s/%s' % \ (_c1, _id.path, _id.row, sid, _fid) _download(_url, _fot) return _fs def download_scene_id(sid, d_out): import os from gio import file_unzip with file_unzip.file_unzip() as _zip: _d_tmp = _zip.generate_file() os.path.exists(_d_tmp) or os.makedirs(_d_tmp) if get_b8(sid, _d_tmp): file_unzip.compress_folder(_d_tmp, d_out, []) def main(opts): download_scene_id(opts.scene_id, opts.output) def usage(): _p = environ_mag.usage(True) _p.add_argument('-i', '--scene-id', dest='scene_id', required=True) _p.add_argument('-o', '--output', dest='output', required=True) return _p if __name__ == '__main__': from gio import environ_mag environ_mag.init_path() environ_mag.run(main, [environ_mag.config(usage())])
py
7dfe02e888c577c01691cc022fa3572ac5ac9c25
"""Common model.""" import matplotlib.pyplot as pyplot import numpy import seaborn class BasePlotableModel: """ Base model to abstract common plotting features. """ numE = None numF = None numI = None numQ_E = None numQ_I = None numR = None numS = None tseries = None plotting_number_property = None """Property to access the number to base plotting on.""" def plot( self, ax=None, plot_S="line", plot_E="line", plot_I="line", plot_R="line", plot_F="line", plot_Q_E="line", plot_Q_I="line", combine_Q=True, color_S="tab:green", color_E="orange", color_I="crimson", color_R="tab:blue", color_F="black", color_Q_E="mediumorchid", color_Q_I="mediumorchid", color_reference="#E0E0E0", dashed_reference_results=None, dashed_reference_label="reference", shaded_reference_results=None, shaded_reference_label="reference", vlines=[], vline_colors=[], vline_styles=[], vline_labels=[], ylim=None, xlim=None, legend=True, title=None, side_title=None, plot_percentages=True, ): # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Create an Axes object if None provided: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if not ax: fig, ax = pyplot.subplots() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Prepare data series to be plotted: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Fseries = ( self.numF / getattr(self, self.plotting_number_property) if plot_percentages else self.numF ) Eseries = ( self.numE / getattr(self, self.plotting_number_property) if plot_percentages else self.numE ) Dseries = ( (self.numQ_E + self.numQ_I) / getattr(self, self.plotting_number_property) if plot_percentages else (self.numQ_E + self.numQ_I) ) Q_Eseries = ( self.numQ_E / getattr(self, self.plotting_number_property) if plot_percentages else self.numQ_E ) Q_Iseries = ( self.numQ_I / getattr(self, self.plotting_number_property) if plot_percentages else self.numQ_I ) Iseries = ( self.numI / getattr(self, self.plotting_number_property) if plot_percentages else self.numI ) Rseries = ( self.numR / getattr(self, self.plotting_number_property) if plot_percentages else self.numR ) Sseries = ( self.numS / getattr(self, self.plotting_number_property) if plot_percentages else self.numS ) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the reference data: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if dashed_reference_results: dashedReference_tseries = dashed_reference_results.tseries[ :: int(getattr(self, self.plotting_number_property) / 100) ] dashedReference_IDEstack = ( dashed_reference_results.numI + dashed_reference_results.numQ_I + dashed_reference_results.numQ_E + dashed_reference_results.numE )[:: int(getattr(self, self.plotting_number_property) / 100)] / ( getattr(self, self.plotting_number_property) if plot_percentages else 1 ) ax.plot( dashedReference_tseries, dashedReference_IDEstack, color="#E0E0E0", linestyle="--", label="$I+D+E$ (" + dashed_reference_label + ")", zorder=0, ) if shaded_reference_results: shadedReference_tseries = shaded_reference_results.tseries shadedReference_IDEstack = ( shaded_reference_results.numI + shaded_reference_results.numQ_I + shaded_reference_results.numQ_E + shaded_reference_results.numE ) / ( getattr(self, self.plotting_number_property) if plot_percentages else 1 ) ax.fill_between( shaded_reference_results.tseries, shadedReference_IDEstack, 0, color="#EFEFEF", label="$I+D+E$ (" + shaded_reference_label + ")", zorder=0, ) ax.plot( shaded_reference_results.tseries, shadedReference_IDEstack, color="#E0E0E0", zorder=1, ) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the stacked variables: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ topstack = numpy.zeros_like(self.tseries) if any(Fseries) and plot_F == "stacked": ax.fill_between( numpy.ma.masked_where(Fseries <= 0, self.tseries), numpy.ma.masked_where(Fseries <= 0, topstack + Fseries), topstack, color=color_F, alpha=0.5, label="$F$", zorder=2, ) ax.plot( numpy.ma.masked_where(Fseries <= 0, self.tseries), numpy.ma.masked_where(Fseries <= 0, topstack + Fseries), color=color_F, zorder=3, ) topstack = topstack + Fseries if any(Eseries) and plot_E == "stacked": ax.fill_between( numpy.ma.masked_where(Eseries <= 0, self.tseries), numpy.ma.masked_where(Eseries <= 0, topstack + Eseries), topstack, color=color_E, alpha=0.5, label="$E$", zorder=2, ) ax.plot( numpy.ma.masked_where(Eseries <= 0, self.tseries), numpy.ma.masked_where(Eseries <= 0, topstack + Eseries), color=color_E, zorder=3, ) topstack = topstack + Eseries if combine_Q and plot_Q_E == "stacked" and plot_Q_I == "stacked": ax.fill_between( numpy.ma.masked_where(Dseries <= 0, self.tseries), numpy.ma.masked_where(Dseries <= 0, topstack + Dseries), topstack, color=color_Q_E, alpha=0.5, label="$Q_{all}$", zorder=2, ) ax.plot( numpy.ma.masked_where(Dseries <= 0, self.tseries), numpy.ma.masked_where(Dseries <= 0, topstack + Dseries), color=color_Q_E, zorder=3, ) topstack = topstack + Dseries else: if any(Q_Eseries) and plot_Q_E == "stacked": ax.fill_between( numpy.ma.masked_where(Q_Eseries <= 0, self.tseries), numpy.ma.masked_where(Q_Eseries <= 0, topstack + Q_Eseries), topstack, color=color_Q_E, alpha=0.5, label="$Q_E$", zorder=2, ) ax.plot( numpy.ma.masked_where(Q_Eseries <= 0, self.tseries), numpy.ma.masked_where(Q_Eseries <= 0, topstack + Q_Eseries), color=color_Q_E, zorder=3, ) topstack = topstack + Q_Eseries if any(Q_Iseries) and plot_Q_I == "stacked": ax.fill_between( numpy.ma.masked_where(Q_Iseries <= 0, self.tseries), numpy.ma.masked_where(Q_Iseries <= 0, topstack + Q_Iseries), topstack, color=color_Q_I, alpha=0.5, label="$Q_I$", zorder=2, ) ax.plot( numpy.ma.masked_where(Q_Iseries <= 0, self.tseries), numpy.ma.masked_where(Q_Iseries <= 0, topstack + Q_Iseries), color=color_Q_I, zorder=3, ) topstack = topstack + Q_Iseries if any(Iseries) and plot_I == "stacked": ax.fill_between( numpy.ma.masked_where(Iseries <= 0, self.tseries), numpy.ma.masked_where(Iseries <= 0, topstack + Iseries), topstack, color=color_I, alpha=0.5, label="$I$", zorder=2, ) ax.plot( numpy.ma.masked_where(Iseries <= 0, self.tseries), numpy.ma.masked_where(Iseries <= 0, topstack + Iseries), color=color_I, zorder=3, ) topstack = topstack + Iseries if any(Rseries) and plot_R == "stacked": ax.fill_between( numpy.ma.masked_where(Rseries <= 0, self.tseries), numpy.ma.masked_where(Rseries <= 0, topstack + Rseries), topstack, color=color_R, alpha=0.5, label="$R$", zorder=2, ) ax.plot( numpy.ma.masked_where(Rseries <= 0, self.tseries), numpy.ma.masked_where(Rseries <= 0, topstack + Rseries), color=color_R, zorder=3, ) topstack = topstack + Rseries if any(Sseries) and plot_S == "stacked": ax.fill_between( numpy.ma.masked_where(Sseries <= 0, self.tseries), numpy.ma.masked_where(Sseries <= 0, topstack + Sseries), topstack, color=color_S, alpha=0.5, label="$S$", zorder=2, ) ax.plot( numpy.ma.masked_where(Sseries <= 0, self.tseries), numpy.ma.masked_where(Sseries <= 0, topstack + Sseries), color=color_S, zorder=3, ) topstack = topstack + Sseries # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the shaded variables: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if any(Fseries) and plot_F == "shaded": ax.fill_between( numpy.ma.masked_where(Fseries <= 0, self.tseries), numpy.ma.masked_where(Fseries <= 0, Fseries), 0, color=color_F, alpha=0.5, label="$F$", zorder=4, ) ax.plot( numpy.ma.masked_where(Fseries <= 0, self.tseries), numpy.ma.masked_where(Fseries <= 0, Fseries), color=color_F, zorder=5, ) if any(Eseries) and plot_E == "shaded": ax.fill_between( numpy.ma.masked_where(Eseries <= 0, self.tseries), numpy.ma.masked_where(Eseries <= 0, Eseries), 0, color=color_E, alpha=0.5, label="$E$", zorder=4, ) ax.plot( numpy.ma.masked_where(Eseries <= 0, self.tseries), numpy.ma.masked_where(Eseries <= 0, Eseries), color=color_E, zorder=5, ) if combine_Q and ( any(Dseries) and plot_Q_E == "shaded" and plot_Q_I == "shaded" ): ax.fill_between( numpy.ma.masked_where(Dseries <= 0, self.tseries), numpy.ma.masked_where(Dseries <= 0, Dseries), 0, color=color_Q_E, alpha=0.5, label="$Q_{all}$", zorder=4, ) ax.plot( numpy.ma.masked_where(Dseries <= 0, self.tseries), numpy.ma.masked_where(Dseries <= 0, Dseries), color=color_Q_E, zorder=5, ) else: if any(Q_Eseries) and plot_Q_E == "shaded": ax.fill_between( numpy.ma.masked_where(Q_Eseries <= 0, self.tseries), numpy.ma.masked_where(Q_Eseries <= 0, Q_Eseries), 0, color=color_Q_E, alpha=0.5, label="$Q_E$", zorder=4, ) ax.plot( numpy.ma.masked_where(Q_Eseries <= 0, self.tseries), numpy.ma.masked_where(Q_Eseries <= 0, Q_Eseries), color=color_Q_E, zorder=5, ) if any(Q_Iseries) and plot_Q_I == "shaded": ax.fill_between( numpy.ma.masked_where(Q_Iseries <= 0, self.tseries), numpy.ma.masked_where(Q_Iseries <= 0, Q_Iseries), 0, color=color_Q_I, alpha=0.5, label="$Q_I$", zorder=4, ) ax.plot( numpy.ma.masked_where(Q_Iseries <= 0, self.tseries), numpy.ma.masked_where(Q_Iseries <= 0, Q_Iseries), color=color_Q_I, zorder=5, ) if any(Iseries) and plot_I == "shaded": ax.fill_between( numpy.ma.masked_where(Iseries <= 0, self.tseries), numpy.ma.masked_where(Iseries <= 0, Iseries), 0, color=color_I, alpha=0.5, label="$I$", zorder=4, ) ax.plot( numpy.ma.masked_where(Iseries <= 0, self.tseries), numpy.ma.masked_where(Iseries <= 0, Iseries), color=color_I, zorder=5, ) if any(Sseries) and plot_S == "shaded": ax.fill_between( numpy.ma.masked_where(Sseries <= 0, self.tseries), numpy.ma.masked_where(Sseries <= 0, Sseries), 0, color=color_S, alpha=0.5, label="$S$", zorder=4, ) ax.plot( numpy.ma.masked_where(Sseries <= 0, self.tseries), numpy.ma.masked_where(Sseries <= 0, Sseries), color=color_S, zorder=5, ) if any(Rseries) and plot_R == "shaded": ax.fill_between( numpy.ma.masked_where(Rseries <= 0, self.tseries), numpy.ma.masked_where(Rseries <= 0, Rseries), 0, color=color_R, alpha=0.5, label="$R$", zorder=4, ) ax.plot( numpy.ma.masked_where(Rseries <= 0, self.tseries), numpy.ma.masked_where(Rseries <= 0, Rseries), color=color_R, zorder=5, ) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the line variables: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if any(Fseries) and plot_F == "line": ax.plot( numpy.ma.masked_where(Fseries <= 0, self.tseries), numpy.ma.masked_where(Fseries <= 0, Fseries), color=color_F, label="$F$", zorder=6, ) if any(Eseries) and plot_E == "line": ax.plot( numpy.ma.masked_where(Eseries <= 0, self.tseries), numpy.ma.masked_where(Eseries <= 0, Eseries), color=color_E, label="$E$", zorder=6, ) if combine_Q and (any(Dseries) and plot_Q_E == "line" and plot_Q_I == "line"): ax.plot( numpy.ma.masked_where(Dseries <= 0, self.tseries), numpy.ma.masked_where(Dseries <= 0, Dseries), color=color_Q_E, label="$Q_{all}$", zorder=6, ) else: if any(Q_Eseries) and plot_Q_E == "line": ax.plot( numpy.ma.masked_where(Q_Eseries <= 0, self.tseries), numpy.ma.masked_where(Q_Eseries <= 0, Q_Eseries), color=color_Q_E, label="$Q_E$", zorder=6, ) if any(Q_Iseries) and plot_Q_I == "line": ax.plot( numpy.ma.masked_where(Q_Iseries <= 0, self.tseries), numpy.ma.masked_where(Q_Iseries <= 0, Q_Iseries), color=color_Q_I, label="$Q_I$", zorder=6, ) if any(Iseries) and plot_I == "line": ax.plot( numpy.ma.masked_where(Iseries <= 0, self.tseries), numpy.ma.masked_where(Iseries <= 0, Iseries), color=color_I, label="$I$", zorder=6, ) if any(Sseries) and plot_S == "line": ax.plot( numpy.ma.masked_where(Sseries <= 0, self.tseries), numpy.ma.masked_where(Sseries <= 0, Sseries), color=color_S, label="$S$", zorder=6, ) if any(Rseries) and plot_R == "line": ax.plot( numpy.ma.masked_where(Rseries <= 0, self.tseries), numpy.ma.masked_where(Rseries <= 0, Rseries), color=color_R, label="$R$", zorder=6, ) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the vertical line annotations: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if len(vlines) > 0 and len(vline_colors) == 0: vline_colors = ["gray"] * len(vlines) if len(vlines) > 0 and len(vline_labels) == 0: vline_labels = [None] * len(vlines) if len(vlines) > 0 and len(vline_styles) == 0: vline_styles = [":"] * len(vlines) for vline_x, vline_color, vline_style, vline_label in zip( vlines, vline_colors, vline_styles, vline_labels ): if vline_x is not None: ax.axvline( x=vline_x, color=vline_color, linestyle=vline_style, alpha=1, label=vline_label, ) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the plot labels: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ax.set_xlabel("days") ax.set_ylabel( "percent of population" if plot_percentages else "number of individuals" ) ax.set_xlim(0, (max(self.tseries) if not xlim else xlim)) ax.set_ylim(0, ylim) if plot_percentages: ax.set_yticklabels(["{:,.0%}".format(y) for y in ax.get_yticks()]) if legend: legend_handles, legend_labels = ax.get_legend_handles_labels() ax.legend( legend_handles[::-1], legend_labels[::-1], loc="upper right", facecolor="white", edgecolor="none", framealpha=0.9, prop={"size": 8}, ) if title: ax.set_title(title, size=12) if side_title: ax.annotate( side_title, (0, 0.5), xytext=(-45, 0), ha="right", va="center", size=12, rotation=90, xycoords="axes fraction", textcoords="offset points", ) return ax def figure_basic( self, plot_S="line", plot_E="line", plot_I="line", plot_R="line", plot_F="line", plot_Q_E="line", plot_Q_I="line", combine_Q=True, color_S="tab:green", color_E="orange", color_I="crimson", color_R="tab:blue", color_F="black", color_Q_E="mediumorchid", color_Q_I="mediumorchid", color_reference="#E0E0E0", dashed_reference_results=None, dashed_reference_label="reference", shaded_reference_results=None, shaded_reference_label="reference", vlines=[], vline_colors=[], vline_styles=[], vline_labels=[], ylim=None, xlim=None, legend=True, title=None, side_title=None, plot_percentages=True, figsize=(12, 8), use_seaborn=True, show=True, ): fig, ax = pyplot.subplots(figsize=figsize) if use_seaborn: seaborn.set_style("ticks") seaborn.despine() self.plot( ax=ax, plot_S=plot_S, plot_E=plot_E, plot_I=plot_I, plot_R=plot_R, plot_F=plot_F, plot_Q_E=plot_Q_E, plot_Q_I=plot_Q_I, combine_Q=combine_Q, color_S=color_S, color_E=color_E, color_I=color_I, color_R=color_R, color_F=color_F, color_Q_E=color_Q_E, color_Q_I=color_Q_I, color_reference=color_reference, dashed_reference_results=dashed_reference_results, dashed_reference_label=dashed_reference_label, shaded_reference_results=shaded_reference_results, shaded_reference_label=shaded_reference_label, vlines=vlines, vline_colors=vline_colors, vline_styles=vline_styles, vline_labels=vline_labels, ylim=ylim, xlim=xlim, legend=legend, title=title, side_title=side_title, plot_percentages=plot_percentages, ) if show: pyplot.show() return fig, ax def figure_infections( self, plot_S=False, plot_E="stacked", plot_I="stacked", plot_R=False, plot_F=False, plot_Q_E="stacked", plot_Q_I="stacked", combine_Q=True, color_S="tab:green", color_E="orange", color_I="crimson", color_R="tab:blue", color_F="black", color_Q_E="mediumorchid", color_Q_I="mediumorchid", color_reference="#E0E0E0", dashed_reference_results=None, dashed_reference_label="reference", shaded_reference_results=None, shaded_reference_label="reference", vlines=[], vline_colors=[], vline_styles=[], vline_labels=[], ylim=None, xlim=None, legend=True, title=None, side_title=None, plot_percentages=True, figsize=(12, 8), use_seaborn=True, show=True, ): fig, ax = pyplot.subplots(figsize=figsize) if use_seaborn: seaborn.set_style("ticks") seaborn.despine() self.plot( ax=ax, plot_S=plot_S, plot_E=plot_E, plot_I=plot_I, plot_R=plot_R, plot_F=plot_F, plot_Q_E=plot_Q_E, plot_Q_I=plot_Q_I, combine_Q=combine_Q, color_S=color_S, color_E=color_E, color_I=color_I, color_R=color_R, color_F=color_F, color_Q_E=color_Q_E, color_Q_I=color_Q_I, color_reference=color_reference, dashed_reference_results=dashed_reference_results, dashed_reference_label=dashed_reference_label, shaded_reference_results=shaded_reference_results, shaded_reference_label=shaded_reference_label, vlines=vlines, vline_colors=vline_colors, vline_styles=vline_styles, vline_labels=vline_labels, ylim=ylim, xlim=xlim, legend=legend, title=title, side_title=side_title, plot_percentages=plot_percentages, ) if show: pyplot.show() return fig, ax
py
7dfe039e143d758de0467096bcb27891941e2d7d
""" Models that are used by multiple_seat_ranking_methods.py You can create and use your own Candidate and Ballot models as long as they implement the same properties and methods. """ from typing import List class Candidate: """A candidate in the election.""" def __init__(self, name: str): self.name = name def __str__(self) -> str: return self.name def __repr__(self) -> str: return "<Candidate('%s')>" % self.name def __hash__(self): return hash(self.name) def __eq__(self, other) -> bool: if other is None: return False return self.name == other.name class DuplicateCandidatesError(RuntimeError): pass class Ballot: """ A ballot (vote) where the voter has ranked all, or just some, of the candidates. If a voter lists one candidate multiple times, a DuplicateCandidatesError is thrown. """ def __init__(self, ranked_candidates: List[Candidate]): self.ranked_candidates: List[Candidate] = tuple(ranked_candidates) if Ballot._is_duplicates(ranked_candidates): raise DuplicateCandidatesError if not Ballot._is_all_candidate_objects(ranked_candidates): raise TypeError("Not all objects in ranked candidate list are of class Candidate or " "implement the same properties and methods") def __repr__(self) -> str: candidate_name = ", ".join([candidate.name for candidate in self.ranked_candidates]) return "<Ballot(%s)>" % candidate_name @staticmethod def _is_duplicates(ranked_candidates) -> bool: return len(set(ranked_candidates)) != len(ranked_candidates) @staticmethod def _is_all_candidate_objects(objects) -> bool: for obj in objects: if not Ballot._is_candidate_object(obj): return False # If all objects are Candidate-objects return True @staticmethod def _is_candidate_object(obj) -> bool: if obj.__class__ is Candidate: return True is_candidate_like = all([ hasattr(obj, 'name'), hasattr(obj, '__hash__'), hasattr(obj, '__eq__') ]) return is_candidate_like
py
7dfe05856b5e995845a54f23464ab4fbaf9d8b62
#! /usr/bin/python3.9 # # MIT License # # Copyright (c) 2022 Adrian F. Hoefflin [srccircumflex] # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # from sys import path as sys_path from sys import platform as _sys_platform from re import sub as _re_sub if _sys_platform == "win32": sys_path.append(_re_sub("\\\[^\\\]+$", "", __file__)) else: sys_path.append(_re_sub("/[^/]+$", "", __file__)) from _rc import configurations as CNF import _main hasattr(_main, "__file__") CNF.LATERAL_ = True try: from ini.LogStream_ini import main except Exception as e: print(f"|[ {type(e)} ]|[ {e} ]|[ {e.__traceback__.tb_frame}") CNF.EXP_EXIT(1) if __name__ == '__main__': try: main() except KeyboardInterrupt: exit('') except Exception as e: print(f"|[ {type(e)} ]|[ {e} ]|[ {e.__traceback__.tb_frame}") CNF.EXP_EXIT(1)
py
7dfe05b11d68d3ef23a0d0cd5ccf93abfa3650d6
from k5test import * realm = K5Realm(create_kdb=False) keyctl = which('keyctl') out = realm.run([klist, '-c', 'KEYRING:process:abcd'], expected_code=1) test_keyring = (keyctl is not None and 'Unknown credential cache type' not in out) if not test_keyring: skipped('keyring collection tests', 'keyring support not built') # Run the collection test program against each collection-enabled type. realm.run(['./t_cccol', 'DIR:' + os.path.join(realm.testdir, 'cc')]) if test_keyring: def cleanup_keyring(anchor, name): out = realm.run(['keyctl', 'list', anchor]) if ('keyring: ' + name + '\n') in out: keyid = realm.run(['keyctl', 'search', anchor, 'keyring', name]) realm.run(['keyctl', 'unlink', keyid.strip(), anchor]) # Use the test directory as the collection name to avoid colliding # with other build trees. cname = realm.testdir col_ringname = '_krb_' + cname # Remove any keys left behind by previous failed test runs. cleanup_keyring('@s', cname) cleanup_keyring('@s', col_ringname) cleanup_keyring('@u', col_ringname) # Run test program over each subtype, cleaning up as we go. Don't # test the persistent subtype, since it supports only one # collection and might be in actual use. realm.run(['./t_cccol', 'KEYRING:' + cname]) cleanup_keyring('@s', col_ringname) realm.run(['./t_cccol', 'KEYRING:legacy:' + cname]) cleanup_keyring('@s', col_ringname) realm.run(['./t_cccol', 'KEYRING:session:' + cname]) cleanup_keyring('@s', col_ringname) realm.run(['./t_cccol', 'KEYRING:user:' + cname]) cleanup_keyring('@u', col_ringname) realm.run(['./t_cccol', 'KEYRING:process:abcd']) realm.run(['./t_cccol', 'KEYRING:thread:abcd']) realm.stop() # Test cursor semantics using real ccaches. realm = K5Realm(create_host=False) realm.addprinc('alice', password('alice')) realm.addprinc('bob', password('bob')) ccdir = os.path.join(realm.testdir, 'cc') dccname = 'DIR:%s' % ccdir duser = 'DIR::%s/tkt1' % ccdir dalice = 'DIR::%s/tkt2' % ccdir dbob = 'DIR::%s/tkt3' % ccdir dnoent = 'DIR::%s/noent' % ccdir realm.kinit('user', password('user'), flags=['-c', duser]) realm.kinit('alice', password('alice'), flags=['-c', dalice]) realm.kinit('bob', password('bob'), flags=['-c', dbob]) if test_keyring: cleanup_keyring('@s', col_ringname) krccname = 'KEYRING:session:' + cname kruser = '%s:tkt1' % krccname kralice = '%s:tkt2' % krccname krbob = '%s:tkt3' % krccname krnoent = '%s:noent' % krccname realm.kinit('user', password('user'), flags=['-c', kruser]) realm.kinit('alice', password('alice'), flags=['-c', kralice]) realm.kinit('bob', password('bob'), flags=['-c', krbob]) def cursor_test(testname, args, expected): outlines = realm.run(['./t_cccursor'] + args).splitlines() outlines.sort() expected.sort() if outlines != expected: fail('Output not expected for %s\n' % testname + 'Expected output:\n\n' + '\n'.join(expected) + '\n\n' + 'Actual output:\n\n' + '\n'.join(outlines)) mark('FILE cursor') fccname = 'FILE:%s' % realm.ccache cursor_test('file-default', [], [fccname]) cursor_test('file-default2', [realm.ccache], [fccname]) cursor_test('file-default3', [fccname], [fccname]) mark('DIR cursor') cursor_test('dir', [dccname], [duser, dalice, dbob]) cursor_test('dir-subsidiary', [duser], [duser]) cursor_test('dir-nofile', [dnoent], []) if test_keyring: mark('KEYRING cursor') cursor_test('keyring', [krccname], [kruser, kralice, krbob]) cursor_test('keyring-subsidiary', [kruser], [kruser]) cursor_test('keyring-noent', [krnoent], []) mark('MEMORY cursor') mfoo = 'MEMORY:foo' mbar = 'MEMORY:bar' cursor_test('filemem', [fccname, mfoo], [fccname]) cursor_test('dirmem', [dccname, mfoo], [duser, dalice, dbob]) cursor_test('mem', [mfoo, mbar], [mfoo]) if test_keyring: cursor_test('keyringmem', [krccname, mfoo], [kruser, kralice, krbob]) # Test krb5_cccol_have_content. mark('krb5_cccol_have_content') realm.run(['./t_cccursor', dccname, 'CONTENT']) realm.run(['./t_cccursor', fccname, 'CONTENT']) realm.run(['./t_cccursor', realm.ccache, 'CONTENT']) realm.run(['./t_cccursor', mfoo, 'CONTENT'], expected_code=1) if test_keyring: realm.run(['./t_cccursor', krccname, 'CONTENT']) cleanup_keyring('@s', col_ringname) # Make sure FILE doesn't yield a nonexistent default cache. mark('FILE nonexistent') realm.run([kdestroy]) cursor_test('noexist', [], []) realm.run(['./t_cccursor', fccname, 'CONTENT'], expected_code=1) success('Renewing credentials')
py
7dfe073b1f3f5dc33a4b44de2003b1e6fecfe0d3
"""Functions used to preprocess the timeseries Lucas Draichi 2019 """ import datetime import talib import colorama import requests import pandas as pd import numpy as np # import plotly.graph_objs as go from termcolor import colored from configs.vars import WALLET_FIRST_SYMBOL, WALLET_SECOND_SYMBOL colorama.init() def get_dataset(mode, symbol, to_symbol, histo, limit): df = pd.read_csv('datasets/bot_{}_{}_{}_{}.csv'.format(mode, symbol + to_symbol, limit, histo)) return df def get_datasets(symbol, to_symbol, histo, limit): """Fetch the API and precess the desired pair Arguments: symbol {str} -- First pair to_symbol {str} -- Second pair histo {str ['day', 'hour']} -- Granularity limit {int [100 - 2000]} -- [description] Returns: pandas.Dataframe -- The OHLCV and indicators dataframe """ headers = {'User-Agent': 'Mozilla/5.0', 'authorization': 'Apikey 3d7d3e9e6006669ac00584978342451c95c3c78421268ff7aeef69995f9a09ce'} # OHLC url = 'https://min-api.cryptocompare.com/data/histo{}?fsym={}&tsym={}&e=Binance&limit={}'.format(histo, symbol, to_symbol, limit) print(colored('> downloading ' + symbol + ' OHLCV', 'green')) response = requests.get(url, headers=headers) json_response = response.json() status = json_response['Response'] if status == "Error": print(colored('=== {} ==='.format(json_response['Message']), 'red')) raise AssertionError() result = json_response['Data'] df = pd.DataFrame(result) df['Date'] = df['time'] # df['Date'] = pd.to_datetime(df['time'], utc=True, unit='s') df.drop('time', axis=1, inplace=True) # indicators # https://github.com/mrjbq7/ta-lib/blob/master/docs/func.md open_price, high, low, close = np.array(df['open']), np.array(df['high']), np.array(df['low']), np.array(df['close']) volume = np.array(df['volumefrom']) # cycle indicators df.loc[:, 'HT_DCPERIOD'] = talib.HT_DCPERIOD(close) df.loc[:, 'HT_DCPHASE'] = talib.HT_DCPHASE(close) df.loc[:, 'HT_PHASOR_inphase'], df.loc[:, 'HT_PHASOR_quadrature'] = talib.HT_PHASOR(close) df.loc[:, 'HT_SINE_sine'], df.loc[:, 'HT_SINE_leadsine'] = talib.HT_SINE(close) df.loc[:, 'HT_TRENDMODE'] = talib.HT_TRENDMODE(close) # momemtum indicators df.loc[:, 'ADX'] = talib.ADX(high, low, close, timeperiod=14) df.loc[:, 'ADXR'] = talib.ADXR(high, low, close, timeperiod=14) df.loc[:, 'APO'] = talib.APO(close, fastperiod=12, slowperiod=26, matype=0) df.loc[:, 'AROON_down'], df.loc[:, 'AROON_up'] = talib.AROON(high, low, timeperiod=14) df.loc[:, 'AROONOSC'] = talib.AROONOSC(high, low, timeperiod=14) df.loc[:, 'BOP'] = talib.BOP(open_price, high, low, close) df.loc[:, 'CCI'] = talib.CCI(high, low, close, timeperiod=14) df.loc[:, 'CMO'] = talib.CMO(close, timeperiod=14) df.loc[:, 'DX'] = talib.DX(high, low, close, timeperiod=14) df['MACD'], df['MACD_signal'], df['MACD_hist'] = talib.MACD(close, fastperiod=12, slowperiod=26, signalperiod=9) df.loc[:, 'MFI'] = talib.MFI(high, low, close, volume, timeperiod=14) df.loc[:, 'MINUS_DI'] = talib.MINUS_DI(high, low, close, timeperiod=14) df.loc[:, 'MINUS_DM'] = talib.MINUS_DM(high, low, timeperiod=14) df.loc[:, 'MOM'] = talib.MOM(close, timeperiod=10) df.loc[:, 'PPO'] = talib.PPO(close, fastperiod=12, slowperiod=26, matype=0) df.loc[:, 'ROC'] = talib.ROC(close, timeperiod=10) df.loc[:, 'RSI'] = talib.RSI(close, timeperiod=14) df.loc[:, 'STOCH_k'], df.loc[:, 'STOCH_d'] = talib.STOCH(high, low, close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) df.loc[:, 'STOCHF_k'], df.loc[:, 'STOCHF_d'] = talib.STOCHF(high, low, close, fastk_period=5, fastd_period=3, fastd_matype=0) df.loc[:, 'STOCHRSI_K'], df.loc[:, 'STOCHRSI_D'] = talib.STOCHRSI(close, timeperiod=30, fastk_period=14, fastd_period=10, fastd_matype=1) df.loc[:, 'TRIX'] = talib.TRIX(close, timeperiod=30) df.loc[:, 'ULTOSC'] = talib.ULTOSC(high, low, close, timeperiod1=7, timeperiod2=14, timeperiod3=28) df.loc[:, 'WILLR'] = talib.WILLR(high, low, close, timeperiod=14) # overlap studies df.loc[:, 'BBANDS_upper'], df.loc[:, 'BBANDS_middle'], df.loc[:, 'BBANDS_lower'] = talib.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0) df.loc[:, 'DEMA'] = talib.DEMA(close, timeperiod=30) df.loc[:, 'EMA'] = talib.EMA(close, timeperiod=30) df.loc[:, 'HT_TRENDLINE'] = talib.HT_TRENDLINE(close) df.loc[:, 'KAMA'] = talib.KAMA(close, timeperiod=30) df.loc[:, 'MA'] = talib.MA(close, timeperiod=30, matype=0) df.loc[:, 'MIDPOINT'] = talib.MIDPOINT(close, timeperiod=14) df.loc[:, 'WMA'] = talib.WMA(close, timeperiod=30) df.loc[:, 'SMA'] = talib.SMA(close) # pattern recoginition df.loc[:, 'CDL2CROWS'] = talib.CDL2CROWS(open_price, high, low, close) df.loc[:, 'CDL3BLACKCROWS'] = talib.CDL3BLACKCROWS(open_price, high, low, close) df.loc[:, 'CDL3INSIDE'] = talib.CDL3INSIDE(open_price, high, low, close) df.loc[:, 'CDL3LINESTRIKE'] = talib.CDL3LINESTRIKE(open_price, high, low, close) # price transform df.loc[:, 'WCLPRICE'] = talib.WCLPRICE(high, low, close) # statistic funcitons df.loc[:, 'BETA'] = talib.BETA(high, low, timeperiod=5) df.loc[:, 'CORREL'] = talib.CORREL(high, low, timeperiod=30) df.loc[:, 'STDDEV'] = talib.STDDEV(close, timeperiod=5, nbdev=1) df.loc[:, 'TSF'] = talib.TSF(close, timeperiod=14) df.loc[:, 'VAR'] = talib.VAR(close, timeperiod=5, nbdev=1) # volatility indicators df.loc[:, 'ATR'] = talib.ATR(high, low, close, timeperiod=14) df.loc[:, 'NATR'] = talib.NATR(high, low, close, timeperiod=14) df.loc[:, 'TRANGE'] = talib.TRANGE(high, low, close) # volume indicators df.loc[:, 'AD'] = talib.AD(high, low, close, volume) df.loc[:, 'ADOSC'] = talib.ADOSC(high, low, close, volume, fastperiod=3, slowperiod=10) df.loc[:, 'OBV'] = talib.OBV(close, volume) # wallet indicator to trading bot # df.loc[:, 'wallet_{}'.format(symbol)] = 1.0 # df.loc[:, 'wallet_first_symbol'] = WALLET_FIRST_SYMBOL # df.loc[:, 'wallet_second_symbol'] = WALLET_SECOND_SYMBOL # df.loc[:, 'wallet_{}'.format(to_symbol)] = 0.0 # df.fillna(df.mean(), inplace=True) df.dropna(inplace=True) df.set_index('Date', inplace=True) train_size = round(len(df) * 0.5) # 50% to train -> test with different value df_train = df[:train_size] df_train.name = symbol + to_symbol df_rollout = df[train_size:] df_rollout.name = symbol + to_symbol df_train.to_csv('datasets/bot_train_{}_{}_{}.csv'.format(symbol + to_symbol, limit, histo)) df_rollout.to_csv('datasets/bot_rollout_{}_{}_{}.csv'.format(symbol + to_symbol, limit, histo)) return df_train, df_rollout #-------------------------------------------------------------> def init_data(pair, mode, limit, histo): """Tranform the data from pandas.DataFrame to list to improve Ray's performance Arguments: pair {str} -- Pair mode {str ['train', 'rollout]} -- Select the correct dataset, train or rollout one. Returns: list, list -- The dataframe divided in two lists """ df = pd.read_csv('datasets/bot_{}_{}_{}_{}.csv'.format(mode, pair, limit, histo)) df.drop('Date', axis=1, inplace=True) df_array = df.values.tolist() keys = df.keys() return keys, df_array def build_layout(title, x_axis_title, y_axis_title): """Create the plotly's layout with custom configuration Arguments: title {str} -- Layout's central title x_axis_title {str} -- Axis x title y_axis_title {str} -- Axis y title Returns: Object -- Plotly object from plotly.graph_objs """ layout = go.Layout(plot_bgcolor='#2d2929', paper_bgcolor='#2d2929', title=title, font=dict(color='rgb(255, 255, 255)', size=17), legend=dict(orientation="h"), yaxis=dict(title=y_axis_title), xaxis=dict(title=x_axis_title)) return layout def var_cov_matrix(df, weigths): """Compute covariance matrix with respect of given weigths Arguments: df {pandas.DataFrame} -- The timeseries object weigths {list} -- List of weights to be used Returns: numpy.array -- The covariance matrix """ sigma = np.cov(np.array(df).T, ddof=0) var = (np.array(weigths) * sigma * np.array(weigths).T).sum() return var def calc_exp_returns(avg_return, weigths): """Compute the expected returns Arguments: avg_return {pandas.DataFrame} -- The average of returns weigths {list} -- A list of weigths Returns: array -- N dimensions array """ exp_returns = avg_return.dot(weigths.T) return exp_returns def print_dollar(): print(chr(27) + "[2J") print(colored(""" ||====================================================================|| ||//$\\\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\//$\\\|| ||(100)==================| FEDERAL RESERVE NOTE |================(100)|| ||\\\$// ~ '------========--------' \\\$//|| ||<< / /$\ // ____ \\\ \ >>|| ||>>| 12 //L\\\ // ///..) \\\ L38036133B 12 |<<|| ||<<| \\\ // || <|| >\ || |>>|| ||>>| \$/ || $$ --/ || One Hundred |<<|| ||====================================================================||>|| ||//$\\\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\//$\\\||<|| ||(100)==================| FEDERAL RESERVE NOTE |================(100)||>|| ||\\\$// ~ '------========--------' \\\$//||\|| ||<< / /$\ // ____ \\\ \ >>||)|| ||>>| 12 //L\\\ // ///..) \\\ L38036133B 12 |<<||/|| ||<<| \\\ // || <|| >\ || |>>||=|| ||>>| \$/ || $$ --/ || One Hundred |<<|| ||<<| L38036133B *\\\ |\_/ //* series |>>|| ||>>| 12 *\\\/___\_//* 1989 |<<|| ||<<\ Treasurer ______/Franklin\________ Secretary 12 />>|| ||//$\ ~|UNITED STATES OF AMERICA|~ /$\\\|| ||(100)=================== ONE HUNDRED DOLLARS =================(100)|| ||\\\$//\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\\\$//|| ||====================================================================|| """, 'green', attrs=['bold']))
py
7dfe07d1c5255b0e5819f6f17e96b6fed3f79e6b
# coding:utf-8 """ QUANTAXIS 数学模组 """ def QA_math_diff(data): y=[] for i in range(0,len(data)-1,1): y.append(float(data[i+1][0])-float(data[i][0])) return y def QA_math_max_min(data): return max(data)-min(data)
py
7dfe080ab0f663279ab8c6a2c551a689f918d72f
# # Exploratory Data Analysis of Engineered Features # Observations: # * Moderate to weak visual correlations between engineered features and targets # * Score of first assessment looks to have a sigificant collelation with estimated final score, final outcome # * Individual distributions show a lot of 0 values, unsurprising otherwise import numpy as np import pandas as pd import seaborn as sns sns.reset_defaults sns.set_style(style='darkgrid') import matplotlib.pyplot as plt # plt.style.use('ggplot') font = {'size' : 16} plt.rc('font', **font) plt.ion() get_ipython().run_line_magic('matplotlib', 'inline') plt.rcParams["patch.force_edgecolor"] = True plt.rcParams['figure.figsize'] = (20.0, 10.0) pd.set_option('display.max_columns', 2000) pd.set_option('display.max_rows', 2000) df = pd.read_csv('../data/processed/transformed_data_with_features.csv') df.fillna(value=0, inplace=True) # ## Engineered Feature Analysis # ### Bivariate Plots Against Targets: final_result_num, estimated_final_score sns.jointplot(x='clicks_per_day', y='final_result_num', data=df) sns.jointplot(x='clicks_per_day', y='estimated_final_score', data=df) sns.jointplot(x='pct_days_vle_accessed', y='final_result_num', data=df) sns.jointplot(x='pct_days_vle_accessed', y='estimated_final_score', data=df) sns.jointplot(x='studied_credits', y='final_result_num', data=df) sns.jointplot(x='studied_credits', y='estimated_final_score', data=df) sns.jointplot(x='max_clicks_one_day', y='final_result_num', data=df) sns.jointplot(x='max_clicks_one_day', y='estimated_final_score', data=df) sns.jointplot(x='first_date_vle_accessed', y='final_result_num', data=df) sns.jointplot(x='first_date_vle_accessed', y='estimated_final_score', data=df) sns.jointplot(x='avg_days_sub_early', y='final_result_num', data=df) sns.jointplot(x='avg_days_sub_early', y='estimated_final_score', data=df) sns.jointplot(x='days_early_first_assessment', y='final_result_num', data=df) sns.jointplot(x='days_early_first_assessment', y='estimated_final_score', data=df) sns.jointplot(x='score_first_assessment', y='final_result_num', data=df) sns.jointplot(x='score_first_assessment', y='estimated_final_score', data=df) sns.jointplot(x='avg_score', y='final_result_num', data=df) sns.jointplot(x='avg_score', y='estimated_final_score', data=df) # ### Univariate Plots of Engineered Features f = list(df.columns[[6,7,8,9,10,11,12,13,14]]) for feat in f: plt.figure() sns.distplot(df[feat])
py
7dfe08941d114a756589f5d939dd0addd093c13f
import os from utils.DatasetFilter import DatasetFilter from utils.Dataset import Dataset from utils.DatasetOptions import DatasetOptions import helpers.constants as constants import helpers.constantsNZ as constantsNZ dirProject = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) + '/'; dirData = dirProject + 'data/'; dirPlotsBase = dirProject + 'plots/feature_comparison_wiederkehrer_normal/' dict_options_analyzing = { 'dir_data': dirData, 'data_prefix': 'patrec', 'dataset': '20122015', 'grouping': 'verylightgrouping', 'encoding': 'categorical', 'newfeatures': {'names': constants.NEW_FEATURES}, 'featurereduction': None, 'filter_options': 'chronic_lung' } options = DatasetOptions(dict_options_analyzing); dataset = Dataset(options); datafilter = DatasetFilter(options); datafilter.filterDataDisease()
py
7dfe08cd4ef92164b6dc27099f94060b0cc5a1e0
from collections import namedtuple from srsly.msgpack import packb class MyList(list): pass class MyDict(dict): pass class MyTuple(tuple): pass MyNamedTuple = namedtuple("MyNamedTuple", "x y") def test_types(): assert packb(MyDict()) == packb(dict()) assert packb(MyList()) == packb(list()) assert packb(MyNamedTuple(1, 2)) == packb((1, 2))
py
7dfe08f4c9e30f1a94b1d201f5406142f05e5030
import json import logging import sys from pathlib import Path import pytest import nestedtext as nt sys.path.append(str(Path(__file__).parent / "official_tests" / "api")) import nestedtext_official_tests as nt_test_api logger = logging.getLogger(__name__) skip_testcases = { "inline_dict_01": "Unsupported cases: empty values, trailing commas", "inline_list_01": "Unsupported cases: empty values, trailing commas", } skip_load_testcases = {} skip_dump_testcases = { "dict_16": "Colon in object key", "dict_17": "Undiagnosed", "dict_20": "Very weird object keys", "dict_26": "Colon in object key", "string_multiline_12": "Very weird characters", } @pytest.mark.parametrize("case", nt_test_api.load_test_cases(), ids=lambda c: c.id) def test_all(case: nt_test_api.TestCase): if case.id in skip_testcases: pytest.skip(skip_testcases[case.id]) if "load" in case.case: load_in_path = case.case["load"]["in"]["path"] if case.id in skip_load_testcases: logger.warning( "Skipping load check for %s: %s", case.id, skip_load_testcases[case.id] ) elif "out" in case.case["load"]: logger.info("Checking successful load") expected = case.case["load"]["out"]["data"] with open(load_in_path, "r", encoding="utf-8") as f: actual = nt.load(f) assert actual == expected # Debug info. logger.debug("Loaded %s", load_in_path) with open(load_in_path, "r", encoding="utf-8") as f: logger.debug("\n%s", f.read()) logger.debug("%s", json.dumps(actual)) # Check loads() function too. with open(load_in_path, "r", encoding="utf-8") as f: actual2 = nt.loads(f.read()) assert actual2 == expected elif "err" in case.case["load"]: logger.info("Checking load error") with pytest.raises(nt.NestedtextError): with open(load_in_path, "r", encoding="utf-8") as f: nt.load(f) # TODO: Proper error checking if "dump" in case.case: if case.id in skip_dump_testcases: logger.warning( "Skipping dump check for %s: %s", case.id, skip_dump_testcases[case.id] ) elif "out" in case.case["dump"]: logger.info("Checking successful dump") actual = nt.dumps(case.case["dump"]["in"]["data"]) with open(case.case["dump"]["out"]["path"], "r") as f: expected = f.read() assert actual.strip() == expected.strip() elif "err" in case.case["dump"]: logger.info("Checking dump error") with pytest.raises(nt.NestedtextError): nt.dumps(case.case["dump"]["in"]["data"]) # TODO: Proper error checking
py
7dfe090f8131bb57a4ef7599324bec822c1b1ddc
import os from config import Config from .fonts import Fonts from pyrogram import Client, filters from pyrogram.types import InlineKeyboardButton, InlineKeyboardMarkup @Client.on_message(filters.command('start')) async def start(c, m): owner = await c.get_users(int(Config.OWNER_ID)) owner_username = owner.username if owner.username else 'Ns_bot_updates' # start text text = f"""👋Hey! {m.from_user.mention(style='md')}, 💡 ** I A Stylish Font Bot is SD Project** 🔥 `⚡⚡I can help you to get stylish fonts. Just send me some text and see magic📤.` **👲 Maintained By:** {owner.mention(style='md')} """ # Buttons buttons = [ [ InlineKeyboardButton('👨‍💻My Father👨‍💻', url=f"https://t.me/{owner_username}") ] ] await m.reply_text( text=text, reply_markup=InlineKeyboardMarkup(buttons) ) @Client.on_message(filters.private & filters.incoming & filters.text) async def style_buttons(c, m, cb=False): buttons = [[ InlineKeyboardButton('𝚃𝚢𝚙𝚎𝚠𝚛𝚒𝚝𝚎𝚛', callback_data='style+typewriter'), InlineKeyboardButton('𝕆𝕦𝕥𝕝𝕚𝕟𝕖', callback_data='style+outline'), InlineKeyboardButton('𝐒𝐞𝐫𝐢𝐟', callback_data='style+serif'), ],[ InlineKeyboardButton('𝑺𝒆𝒓𝒊𝒇', callback_data='style+bold_cool'), InlineKeyboardButton('𝑆𝑒𝑟𝑖𝑓', callback_data='style+cool'), InlineKeyboardButton('Sᴍᴀʟʟ Cᴀᴘs', callback_data='style+small_cap'), ],[ InlineKeyboardButton('𝓈𝒸𝓇𝒾𝓅𝓉', callback_data='style+script'), InlineKeyboardButton('𝓼𝓬𝓻𝓲𝓹𝓽', callback_data='style+script_bolt'), InlineKeyboardButton('ᵗⁱⁿʸ', callback_data='style+tiny'), ],[ InlineKeyboardButton('ᑕOᗰIᑕ', callback_data='style+comic'), InlineKeyboardButton('𝗦𝗮𝗻𝘀', callback_data='style+sans'), InlineKeyboardButton('𝙎𝙖𝙣𝙨', callback_data='style+slant_sans'), ],[ InlineKeyboardButton('𝘚𝘢𝘯𝘴', callback_data='style+slant'), InlineKeyboardButton('𝖲𝖺𝗇𝗌', callback_data='style+sim'), InlineKeyboardButton('Ⓒ︎Ⓘ︎Ⓡ︎Ⓒ︎Ⓛ︎Ⓔ︎Ⓢ︎', callback_data='style+circles'), ],[ InlineKeyboardButton('🅒︎🅘︎🅡︎🅒︎🅛︎🅔︎🅢︎', callback_data='style+circle_dark'), InlineKeyboardButton('𝔊𝔬𝔱𝔥𝔦𝔠', callback_data='style+gothic'), InlineKeyboardButton('𝕲𝖔𝖙𝖍𝖎𝖈', callback_data='style+gothic_bolt'), ],[ InlineKeyboardButton('C͜͡l͜͡o͜͡u͜͡d͜͡s͜͡', callback_data='style+cloud'), InlineKeyboardButton('H̆̈ă̈p̆̈p̆̈y̆̈', callback_data='style+happy'), InlineKeyboardButton('S̑̈ȃ̈d̑̈', callback_data='style+sad'), ],[ InlineKeyboardButton('Next ➡️', callback_data="nxt") ]] if not cb: await m.reply_text(m.text, reply_markup=InlineKeyboardMarkup(buttons), quote=True) else: await m.answer() await m.message.edit_reply_markup(InlineKeyboardMarkup(buttons)) @Client.on_callback_query(filters.regex('^nxt')) async def nxt(c, m): if m.data == "nxt": buttons = [[ InlineKeyboardButton('🇸 🇵 🇪 🇨 🇮 🇦 🇱 ', callback_data='style+special'), InlineKeyboardButton('🅂🅀🅄🄰🅁🄴🅂', callback_data='style+squares'), InlineKeyboardButton('🆂︎🆀︎🆄︎🅰︎🆁︎🅴︎🆂︎', callback_data='style+squares_bold'), ],[ InlineKeyboardButton('ꪖꪀᦔꪖꪶꪊᥴ𝓲ꪖ', callback_data='style+andalucia'), InlineKeyboardButton('爪卂几ᘜ卂', callback_data='style+manga'), InlineKeyboardButton('S̾t̾i̾n̾k̾y̾', callback_data='style+stinky'), ],[ InlineKeyboardButton('B̥ͦu̥ͦb̥ͦb̥ͦl̥ͦe̥ͦs̥ͦ', callback_data='style+bubbles'), InlineKeyboardButton('U͟n͟d͟e͟r͟l͟i͟n͟e͟', callback_data='style+underline'), InlineKeyboardButton('꒒ꍏꀷꌩꌃꀎꁅ', callback_data='style+ladybug'), ],[ InlineKeyboardButton('R҉a҉y҉s҉', callback_data='style+rays'), InlineKeyboardButton('B҈i҈r҈d҈s҈', callback_data='style+birds'), InlineKeyboardButton('S̸l̸a̸s̸h̸', callback_data='style+slash'), ],[ InlineKeyboardButton('s⃠t⃠o⃠p⃠', callback_data='style+stop'), InlineKeyboardButton('S̺͆k̺͆y̺͆l̺͆i̺͆n̺͆e̺͆', callback_data='style+skyline'), InlineKeyboardButton('A͎r͎r͎o͎w͎s͎', callback_data='style+arrows'), ],[ InlineKeyboardButton('ዪሀክቿነ', callback_data='style+qvnes'), InlineKeyboardButton('S̶t̶r̶i̶k̶e̶', callback_data='style+strike'), InlineKeyboardButton('F༙r༙o༙z༙e༙n༙', callback_data='style+frozen') ],[ InlineKeyboardButton('⬅️ Back', callback_data='nxt+0') ]] await m.answer() await m.message.edit_reply_markup(InlineKeyboardMarkup(buttons)) else: await style_buttons(c, m, cb=True) @Client.on_callback_query(filters.regex('^style')) async def style(c, m): await m.answer() cmd, style = m.data.split('+') if style == 'typewriter': cls = Fonts.typewriter if style == 'outline': cls = Fonts.outline if style == 'serif': cls = Fonts.serief if style == 'bold_cool': cls = Fonts.bold_cool if style == 'cool': cls = Fonts.cool if style == 'small_cap': cls = Fonts.smallcap if style == 'script': cls = Fonts.script if style == 'script_bolt': cls = Fonts.bold_script if style == 'tiny': cls = Fonts.tiny if style == 'comic': cls = Fonts.comic if style == 'sans': cls = Fonts.san if style == 'slant_sans': cls = Fonts.slant_san if style == 'slant': cls = Fonts.slant if style == 'sim': cls = Fonts.sim if style == 'circles': cls = Fonts.circles if style == 'circle_dark': cls = Fonts.dark_circle if style == 'gothic': cls = Fonts.gothic if style == 'gothic_bolt': cls = Fonts.bold_gothic if style == 'cloud': cls = Fonts.cloud if style == 'happy': cls = Fonts.happy if style == 'sad': cls = Fonts.sad if style == 'special': cls = Fonts.special if style == 'squares': cls = Fonts.square if style == 'squares_bold': cls = Fonts.dark_square if style == 'andalucia': cls = Fonts.andalucia if style == 'manga': cls = Fonts.manga if style == 'stinky': cls = Fonts.stinky if style == 'bubbles': cls = Fonts.bubbles if style == 'underline': cls = Fonts.underline if style == 'ladybug': cls = Fonts.ladybug if style == 'rays': cls = Fonts.rays if style == 'birds': cls = Fonts.birds if style == 'slash': cls = Fonts.slash if style == 'stop': cls = Fonts.stop if style == 'skyline': cls = Fonts.skyline if style == 'arrows': cls = Fonts.arrows if style == 'qvnes': cls = Fonts.rvnes if style == 'strike': cls = Fonts.strike if style == 'frozen': cls = Fonts.frozen new_text = cls(m.message.reply_to_message.text) try: await m.message.edit_text(new_text, reply_markup=m.message.reply_markup) except: pass
py
7dfe0a207af47dab978b105f3f4fa35d9d89cae8
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables __all__ = ['ConsumerGroup'] class ConsumerGroup(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, consumer_group_name: Optional[pulumi.Input[str]] = None, event_hub_name: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, namespace_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, type: Optional[pulumi.Input[str]] = None, user_metadata: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): """ Single item in List or Get Consumer group operation :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] consumer_group_name: The consumer group name :param pulumi.Input[str] event_hub_name: The Event Hub name :param pulumi.Input[str] location: Location of the resource. :param pulumi.Input[str] name: Name of the consumer group. :param pulumi.Input[str] namespace_name: The Namespace name :param pulumi.Input[str] resource_group_name: Name of the resource group within the azure subscription. :param pulumi.Input[str] type: ARM type of the Namespace. :param pulumi.Input[str] user_metadata: The user metadata. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() if consumer_group_name is None: raise TypeError("Missing required property 'consumer_group_name'") __props__['consumer_group_name'] = consumer_group_name if event_hub_name is None: raise TypeError("Missing required property 'event_hub_name'") __props__['event_hub_name'] = event_hub_name if location is None: raise TypeError("Missing required property 'location'") __props__['location'] = location __props__['name'] = name if namespace_name is None: raise TypeError("Missing required property 'namespace_name'") __props__['namespace_name'] = namespace_name if resource_group_name is None: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['type'] = type __props__['user_metadata'] = user_metadata __props__['created_at'] = None __props__['event_hub_path'] = None __props__['updated_at'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:eventhub/latest:ConsumerGroup"), pulumi.Alias(type_="azure-nextgen:eventhub/v20150801:ConsumerGroup"), pulumi.Alias(type_="azure-nextgen:eventhub/v20170401:ConsumerGroup")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(ConsumerGroup, __self__).__init__( 'azure-nextgen:eventhub/v20140901:ConsumerGroup', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'ConsumerGroup': """ Get an existing ConsumerGroup resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() return ConsumerGroup(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="createdAt") def created_at(self) -> pulumi.Output[str]: """ Exact time the message was created. """ return pulumi.get(self, "created_at") @property @pulumi.getter(name="eventHubPath") def event_hub_path(self) -> pulumi.Output[str]: """ The path of the Event Hub. """ return pulumi.get(self, "event_hub_path") @property @pulumi.getter def location(self) -> pulumi.Output[Optional[str]]: """ Resource location """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name """ return pulumi.get(self, "name") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type """ return pulumi.get(self, "type") @property @pulumi.getter(name="updatedAt") def updated_at(self) -> pulumi.Output[str]: """ The exact time the message was updated. """ return pulumi.get(self, "updated_at") @property @pulumi.getter(name="userMetadata") def user_metadata(self) -> pulumi.Output[Optional[str]]: """ The user metadata. """ return pulumi.get(self, "user_metadata") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
py
7dfe0a3b798f248ae89d618ea92ced547d91ebfc
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/7/16 21:21 # @Author : bxf # @File : PUB_RULE_OPT.py # @Software: PyCharm from model.util.TMP_PAGINATOR import * from model.util.PUB_RESP import * from model.util.newID import * class PUB_RULE_OPT: def get_lists(self, data): ''' 获取规则列表 :return: ''' try: page = data.get('_page') records = data.get('_limit') sql = 'SELECT * FROM t_rule_info ' rule_lists = GET_RECORDS_SQL(sql, page, records) tb_data = [] rule_list = rule_lists[2]#getJsonFromDatabase(rule_lists[1]) if rule_list: for i in rule_list: i['rule_import_desc'] = json.loads(i['rule_import_desc']) i['rule_import_project'] = json.loads(i['rule_import_project']) tb_data.append(i) else: tb_data=[] result = rule_lists[0] result['tb_data'] = tb_data return_data = respdata().sucessResp(result) return json.dumps(return_data, cls=MyEncoder, ensure_ascii=False) except Exception as e: return_data = respdata().exceptionResp(e) return json.dumps(return_data, cls=MyEncoder, ensure_ascii=False) def get_lists_by_check(self, data): ''' 获取规则列表 :return: ''' try: page = data.get('_page') records = data.get('_limit') sql = 'SELECT * FROM t_rule_info WHERE rule_checked=1 ' rule_lists = GET_RECORDS_SQL(sql, page, records) tb_data = [] rule_list =rule_lists[2] #getJsonFromDatabase(rule_lists[1]) if rule_list: for i in rule_list: i['rule_import_desc'] = json.loads(i['rule_import_desc']) i['rule_import_project'] = json.loads(i['rule_import_project']) tb_data.append(i) else: tb_data=[] result = rule_lists[0] result['tb_data'] = tb_data return_data = respdata().sucessResp(result) return json.dumps(return_data, cls=MyEncoder, ensure_ascii=False) except Exception as e: return_data = respdata().exceptionResp(e) return json.dumps(return_data, cls=MyEncoder, ensure_ascii=False) def insert(self, data): ''' 新增 :param data: 新增数据 :return: ''' try: get_data = json.loads(data) rule_id = newID().RULE_ID() rule_import_desc = json.dumps(get_data['rule_import_desc']) rule_import_project=get_data['rule_import_project'] # rule_import_project_a = dict() # for i in get_data['rule_import_desc']: # rule_import_project_a[i] = '' # rule_import_project.append(rule_import_project_a) rule_import_project=json.dumps(rule_import_project) rule_checked=get_data['rule_checked'] del get_data['rule_checked'] del get_data['rule_import_desc'] insert_result = insertToDatabase('t_rule_info', get_data, rule_id=rule_id,group_id=0, rule_import_desc=rule_import_desc, rule_import_project=rule_import_project,rule_checked=rule_checked) return_data = respdata().sucessMessage('', '新增成功,新增记录数为: ' + str(insert_result)) return json.dumps(return_data, cls=MyEncoder, ensure_ascii=False) except Exception as e: return_data = respdata().failMessage('', '新增失败,请检查!错误信息为:' + str(e)) return json.dumps(return_data, cls=MyEncoder, ensure_ascii=False) def update(self, data): ''' 修改 :param data: :return: ''' try: get_data=json.loads(data) rule_id = get_data['rule_id'] update_result = updateToDatabase('t_rule_info', get_data, rule_id=rule_id) return_data = respdata().sucessMessage('', '更新成功,更新条数为:' + str(update_result)) return json.dumps(return_data, cls=MyEncoder, ensure_ascii=False) except Exception as e: return_data = respdata().failMessage('', '更新失败,请检查!错误信息为:' + str(e)) return json.dumps(return_data, cls=MyEncoder, ensure_ascii=False) def delete(self, data): ''' 删除 :param data: :return: ''' rule_id = data sql = 'DELETE FROM t_rule_info WHERE rule_id ="' + rule_id + '"' DB_CONN().db_Update(sql) return_data = respdata().sucessMessage('', '删除成功!') return json.dumps(return_data, cls=MyEncoder, ensure_ascii=False) # 规则的用例模板配置 def case_rule_list(self, id, data): ''' 公共规则用例模板获取 :param data: 规则ID :return: 用例模板列表 ''' try: page = data.get('_page') records = data.get('_limit') sql = 'SELECT * FROM rule_case_info WHERE rule_id="' + id + '"' + ' AND ' rule_lists = GET_RECORDS(sql, page, records) return_data = respdata().sucessResp(rule_lists) return json.dumps(return_data, cls=MyEncoder, ensure_ascii=False) except Exception as e: return_data = respdata().exceptionResp(e) return json.dumps(return_data, cls=MyEncoder, ensure_ascii=False) def case_rule_insert(self, data): ''' 用例模板新增 :param data: 新增数据 :return: ''' try: get_data = json.loads(data) rule_case_id = newID().RULE_CASE_ID() insert_result = insertToDatabase('rule_case_info', get_data, rule_case_id=rule_case_id) return_data = respdata().sucessMessage('', '新增成功,新增记录数为: ' + str(insert_result)) return json.dumps(return_data, cls=MyEncoder, ensure_ascii=False) except Exception as e: return_data = respdata().failMessage('', '新增失败,请检查!错误信息为:' + str(e)) return json.dumps(return_data, cls=MyEncoder, ensure_ascii=False) def case_rule_update(self, data): ''' 用例模板更新 :param data: :return: ''' try: get_data=json.loads(data) rule_case_id = get_data['rule_case_id'] del get_data['adddate'] del get_data['c_id'] update_result = updateToDatabase('rule_case_info', get_data,rule_case_id=rule_case_id) return_data = respdata().sucessMessage('', '更新成功') return json.dumps(return_data, cls=MyEncoder, ensure_ascii=False) except Exception as e: return_data = respdata().failMessage('', '更新失败,请检查!错误信息为:' + str(e)) return json.dumps(return_data, cls=MyEncoder, ensure_ascii=False) def case_rule_delete(self, data): ''' 用例模板删除 :param data: 用例模板ID :return: ''' rule_case_id = data sql = 'DELETE FROM rule_case_info WHERE rule_case_id ="' + rule_case_id + '"' DB_CONN().db_Update(sql) return_data = respdata().sucessMessage('', '删除成功!') return json.dumps(return_data, cls=MyEncoder, ensure_ascii=False)
py
7dfe0a3dc7430c40ecfa138435e0cb0f054c9d39
import sys import os import math if __name__ == '__main__': def eprint(message): print(message, file=sys.stderr) if len(sys.argv) != 3: eprint("Syntax: {} <colorfile> <output>".format(sys.argv[0])) sys.exit(1) codes = [] with open(sys.argv[1]) as file: line_number = 0 while True: line_number = line_number + 1 line = file.readline() if not line: break if len(line) == 0: continue if line.startswith("##") or line[0].isspace(): continue # Get the key code code = line[0] # Make sure we have more than just that if len(line) == 1: eprint("Invalid line {} on line {}".format(line, line_number)) sys.exit(1) # Ignore spaces until we get something else line = line[1:] ignore_count = 0 for c in line: if c.isspace(): ignore_count = ignore_count + 1 continue break line = line[ignore_count:] # Ignore spaces after the code ignore_count = 0 for c in reversed(line): if c.isspace(): ignore_count = ignore_count + 1 continue break line = line[:-ignore_count] if len(line) < 6: eprint("Invalid code {} on line {}".format(line, line_number)) sys.exit(1) # Convert to lowercase line = line.lower() # Get a color color = None # Check if it's xxxxxx (reset) if line == "xxxxxx": continue else: color_int = 0 try: color_int = int(line, 16) except ValueError: eprint("Invalid code {} on line {}".format(line, line_number)) sys.exit(1) color = color_int # Escape the code if needed if code == "\\" or code == "'": code = "\\" + code # Add to the list codes.append([code, color]) # Write the codes with open(sys.argv[2], "w") as file: file.write("// SPDX-License-Identifier: GPL-3.0-only\n// DON'T EDIT THIS FILE\n// Edit color_codes and then regenerate this file with the color_codes_generator.py script\n\n") file.write("#include <cstdint>\n") file.write("#include <optional>\n") file.write("namespace Invader {\n") file.write(" std::optional<std::uint32_t> color_from_color_code(std::int16_t code) {\n") file.write(" switch(code) {\n") for code in codes: file.write(" case \'{}\':\n".format(code[0])) file.write(" return 0xFF{:06X};\n".format(code[1])) file.write(" default: return std::nullopt;\n") file.write(" }\n") file.write(" }\n") file.write("}\n")
py
7dfe0aad08879bd8d150b833a319ee5bc0e0f02e
#!/opt/libreoffice5.2/program/python # -*- coding: utf-8 -*- import uno # オートメーションのときのみ必要。 from com.sun.star.awt.PosSize import POSSIZE from com.sun.star.style.VerticalAlignment import BOTTOM import unohelper from com.sun.star.awt import XActionListener from com.sun.star.util import XCloseListener from com.sun.star.view import XSelectionChangeListener from com.sun.star.awt.MessageBoxType import INFOBOX from com.sun.star.awt.MessageBoxButtons import BUTTONS_OK def macro(): ctx = XSCRIPTCONTEXT.getComponentContext() # コンポーネントコンテクストの取得。 smgr = ctx.getServiceManager() # サービスマネージャーの取得。 doc = XSCRIPTCONTEXT.getDocument() # マクロを起動した時のドキュメントのモデルを取得。 docframe = doc.getCurrentController().getFrame() # モデル→コントローラ→フレーム、でドキュメントのフレームを取得。 docwindow = docframe.getContainerWindow() # ドキュメントのウィンドウを取得。 toolkit = docwindow.getToolkit() # ツールキットを取得。 dialog, addControl = dialogCreator(ctx, smgr, {"PositionX": 150, "PositionY": 150, "Width": 200, "Height": 200, "Title": "Selection Change", "Name": "dialog", "Step": 0, "TabIndex": 0, "Moveable": True}) dialog.createPeer(toolkit, docwindow) # ダイアログを描画。 dialogwindow = dialog.getPeer() # ダイアログウィンドウを取得。 addControl("FixedText", {"PositionX": 10, "PositionY": 0, "Width": 180, "Height": 30, "Label": "~Selection", "VerticalAlign": BOTTOM}) addControl("Edit", {"PositionX": 10, "PositionY": 40, "Width": 180, "Height": 30}, {"setFocus": None}) addControl("Button", {"PositionX": 80, "PositionY": 130, "Width": 110, "Height": 35, "DefaultButton": True, "Label": "~Show Selection"}, {"setActionCommand": "Button1", "addActionListener": ButtonListener(dialog, docwindow)}) createFrame = frameCreator(ctx, smgr, docframe) # 親フレームを渡す。 selectionchangelistener = SelectionChangeListener(dialog) docframe.getController().addSelectionChangeListener(selectionchangelistener) frame = createFrame(dialog.Model.Name, dialogwindow) # 新しいフレーム名、そのコンテナウィンドウ。 removeListeners = listenersRemover(docframe, frame, selectionchangelistener) closelistener = CloseListener(removeListeners) docframe.addCloseListener(closelistener) frame.addCloseListener(closelistener) dialog.setVisible(True) # ダイアログを見えるようにする。 def listenersRemover(docframe, frame, selectionchangelistener): def removeListeners(closelistener): frame.removeCloseListener(closelistener) docframe.removeCloseListener(closelistener) docframe.getController().removeSelectionChangeListener(selectionchangelistener) return removeListeners class SelectionChangeListener(unohelper.Base, XSelectionChangeListener): def __init__(self, dialog): self.dialog = dialog self.flag = True def selectionChanged(self, eventobject): if self.flag: self.flag = False selection = eventobject.Source.getSelection() if selection.supportsService("com.sun.star.text.TextRanges"): if len(selection)>0: rng = selection[0] txt = rng.getString() self.dialog.getControl("Edit1").setText(txt) self.flag = True def disposing(self, eventobject): pass class CloseListener(unohelper.Base, XCloseListener): def __init__(self, removeListeners): self.removeListeners = removeListeners def queryClosing(self, eventobject, getownership): pass def notifyClosing(self, eventobject): self.removeListeners(self) def disposing(self, eventobject): pass class ButtonListener(unohelper.Base, XActionListener): # ボタンリスナー def __init__(self, dialog, parentwindow): # windowはメッセージボックス表示のため。 self.dialog = dialog # ダイアログを取得。 self.parentwindow = parentwindow # ダイアログウィンドウを取得。 def actionPerformed(self, actionevent): cmd = actionevent.ActionCommand # アクションコマンドを取得。 edit = self.dialog.getControl("Edit1") # editという名前のコントロールを取得。 if cmd == "Button1": # 開くアクションコマンドがButton1のとき toolkit = self.parentwindow.getToolkit() # ツールキットを取得。 msgbox = toolkit.createMessageBox(self.parentwindow, INFOBOX, BUTTONS_OK, "Text Field", "{}".format(edit.getText())) # self.windowを親ウィンドウにしてメッセージボックスを作成。 msgbox.execute() # メッセージボックスを表示。 msgbox.dispose() # メッセージボックスを破棄。 def disposing(self, eventobject): pass def frameCreator(ctx, smgr, parentframe): # 新しいフレームを追加する関数を返す。親フレームを渡す。 def createFrame(framename, containerwindow): # 新しいフレーム名、そのコンテナウィンドウにするウィンドウを渡す。 frame = smgr.createInstanceWithContext("com.sun.star.frame.Frame", ctx) # 新しく作成したウィンドウを入れるためのフレームを作成。 frame.initialize(containerwindow) # フレームにウィンドウを入れる。 frame.setName(framename) # フレーム名を設定。 parentframe.getFrames().append(frame) # 新しく作ったフレームを既存のフレームの階層に追加する。 return frame return createFrame def dialogCreator(ctx, smgr, dialogprops): # ダイアログと、それにコントロールを追加する関数を返す。まずダイアログモデルのプロパティを取得。 dialog = smgr.createInstanceWithContext("com.sun.star.awt.UnoControlDialog", ctx) # ダイアログの生成。 dialog.setPosSize(dialogprops.pop("PositionX"), dialogprops.pop("PositionY"), dialogprops.pop("Width"), dialogprops.pop("Height"), POSSIZE) # ダイアログモデルのプロパティで設定すると単位がMapAppになってしまうのでコントロールに設定。 dialogmodel = smgr.createInstanceWithContext("com.sun.star.awt.UnoControlDialogModel", ctx) # ダイアログモデルの生成。 dialogmodel.setPropertyValues(tuple(dialogprops.keys()), tuple(dialogprops.values())) # ダイアログモデルのプロパティを設定。 dialog.setModel(dialogmodel) # ダイアログにダイアログモデルを設定。 dialog.setVisible(False) # 描画中のものを表示しない。 def addControl(controltype, props, attrs=None): # props: コントロールモデルのプロパティ、attr: コントロールの属性。 control = smgr.createInstanceWithContext("com.sun.star.awt.UnoControl{}".format(controltype), ctx) # コントロールを生成。 control.setPosSize(props.pop("PositionX"), props.pop("PositionY"), props.pop("Width"), props.pop("Height"), POSSIZE) # ピクセルで指定するために位置座標と大きさだけコントロールで設定。 if not "Name" in props: props["Name"] = _generateSequentialName(controltype) # Nameがpropsになければ通し番号名を生成。 controlmodel = dialogmodel.createInstance("com.sun.star.awt.UnoControl{}Model".format(controltype)) # コントロールモデルを生成。UnoControlDialogElementサービスのためにUnoControlDialogModelからの作成が必要。 values = props.values() # プロパティの値がタプルの時にsetProperties()でエラーが出るのでその対応が必要。 if any(map(isinstance, values, [tuple]*len(values))): [setattr(controlmodel, key, val) for key, val in props.items()] # valはリストでもタプルでも対応可能。XMultiPropertySetのsetPropertyValues()では[]anyと判断されてタプルも使えない。 else: controlmodel.setPropertyValues(tuple(props.keys()), tuple(values)) control.setModel(controlmodel) # コントロールにコントロールモデルを設定。 dialog.addControl(props["Name"], control) # コントロールをダイアログに追加。 if attrs is not None: # Dialogに追加したあとでないと各コントロールへの属性は追加できない。 control = dialog.getControl(props["Name"]) # ダイアログに追加された後のコントロールを取得。 for key, val in attrs.items(): # メソッドの引数がないときはvalをNoneにしている。 if val is None: getattr(control, key)() else: getattr(control, key)(val) def _generateSequentialName(controltype): # 連番名の作成。 i = 1 flg = True while flg: name = "{}{}".format(controltype, i) flg = dialog.getControl(name) # 同名のコントロールの有無を判断。 i += 1 return name return dialog, addControl # ダイアログとそのダイアログにコントロールを追加する関数を返す。 g_exportedScripts = macro, #マクロセレクターに限定表示させる関数をタプルで指定。 if __name__ == "__main__": # オートメーションで実行するとき import officehelper import traceback from functools import wraps import sys from com.sun.star.beans import PropertyValue from com.sun.star.script.provider import XScriptContext def connectOffice(func): # funcの前後でOffice接続の処理 @wraps(func) def wrapper(): # LibreOfficeをバックグラウンドで起動してコンポーネントテクストとサービスマネジャーを取得する。 try: ctx = officehelper.bootstrap() # コンポーネントコンテクストの取得。 except: print("Could not establish a connection with a running office.") sys.exit() print("Connected to a running office ...") smgr = ctx.getServiceManager() # サービスマネジャーの取得。 print("Using {} {}".format(*_getLOVersion(ctx, smgr))) # LibreOfficeのバージョンを出力。 try: return func(ctx, smgr) # 引数の関数の実行。 except: traceback.print_exc() def _getLOVersion(ctx, smgr): # LibreOfficeの名前とバージョンを返す。 cp = smgr.createInstanceWithContext('com.sun.star.configuration.ConfigurationProvider', ctx) node = PropertyValue(Name = 'nodepath', Value = 'org.openoffice.Setup/Product' ) # share/registry/main.xcd内のノードパス。 ca = cp.createInstanceWithArguments('com.sun.star.configuration.ConfigurationAccess', (node,)) return ca.getPropertyValues(('ooName', 'ooSetupVersion')) # LibreOfficeの名前とバージョンをタプルで返す。 return wrapper @connectOffice # mainの引数にctxとsmgrを渡すデコレータ。 def main(ctx, smgr): # XSCRIPTCONTEXTを生成。 class ScriptContext(unohelper.Base, XScriptContext): def __init__(self, ctx): self.ctx = ctx def getComponentContext(self): return self.ctx def getDesktop(self): return self.ctx.getServiceManager().createInstanceWithContext("com.sun.star.frame.Desktop", self.ctx) def getDocument(self): return self.getDesktop().getCurrentComponent() return ScriptContext(ctx) XSCRIPTCONTEXT = main() # XSCRIPTCONTEXTを取得。 doc = XSCRIPTCONTEXT.getDocument() # ドキュメントを取得。 if not hasattr(doc, "getCurrentController"): # ドキュメント以外のとき。スタート画面も除外。 XSCRIPTCONTEXT.getDesktop().loadComponentFromURL("private:factory/swriter", "_blank", 0, ()) # Writerのドキュメントを開く。 while doc is None: # ドキュメントのロード待ち。 doc = XSCRIPTCONTEXT.getDocument() macro()
py
7dfe0b20a7478c78e5f865b831c0bf0208cf7327
import pytest from pandas import DataFrame, IndexSlice, MultiIndex, date_range import pandas._testing as tm @pytest.fixture def df(): # c1 # 2016-01-01 00:00:00 a 0 # b 1 # c 2 # 2016-01-01 12:00:00 a 3 # b 4 # c 5 # 2016-01-02 00:00:00 a 6 # b 7 # c 8 # 2016-01-02 12:00:00 a 9 # b 10 # c 11 # 2016-01-03 00:00:00 a 12 # b 13 # c 14 dr = date_range("2016-01-01", "2016-01-03", freq="12H") abc = ["a", "b", "c"] mi = MultiIndex.from_product([dr, abc]) frame = DataFrame({"c1": range(0, 15)}, index=mi) return frame def test_partial_string_matching_single_index(df): # partial string matching on a single index for df_swap in [df.swaplevel(), df.swaplevel(0), df.swaplevel(0, 1)]: df_swap = df_swap.sort_index() just_a = df_swap.loc["a"] result = just_a.loc["2016-01-01"] expected = df.loc[IndexSlice[:, "a"], :].iloc[0:2] expected.index = expected.index.droplevel(1) tm.assert_frame_equal(result, expected) def test_partial_string_timestamp_multiindex(df): # GH10331 df_swap = df.swaplevel(0, 1).sort_index() SLC = IndexSlice # indexing with IndexSlice result = df.loc[SLC["2016-01-01":"2016-02-01", :], :] expected = df tm.assert_frame_equal(result, expected) # match on secondary index result = df_swap.loc[SLC[:, "2016-01-01":"2016-01-01"], :] expected = df_swap.iloc[[0, 1, 5, 6, 10, 11]] tm.assert_frame_equal(result, expected) # partial string match on year only result = df.loc["2016"] expected = df tm.assert_frame_equal(result, expected) # partial string match on date result = df.loc["2016-01-01"] expected = df.iloc[0:6] tm.assert_frame_equal(result, expected) # partial string match on date and hour, from middle result = df.loc["2016-01-02 12"] expected = df.iloc[9:12] tm.assert_frame_equal(result, expected) # partial string match on secondary index result = df_swap.loc[SLC[:, "2016-01-02"], :] expected = df_swap.iloc[[2, 3, 7, 8, 12, 13]] tm.assert_frame_equal(result, expected) # tuple selector with partial string match on date result = df.loc[("2016-01-01", "a"), :] expected = df.iloc[[0, 3]] tm.assert_frame_equal(result, expected) # Slicing date on first level should break (of course) with pytest.raises(KeyError, match="'2016-01-01'"): df_swap.loc["2016-01-01"] def test_partial_string_timestamp_multiindex_str_key_raises(df): # Even though this syntax works on a single index, this is somewhat # ambiguous and we don't want to extend this behavior forward to work # in multi-indexes. This would amount to selecting a scalar from a # column. with pytest.raises(KeyError, match="'2016-01-01'"): df["2016-01-01"] def test_partial_string_timestamp_multiindex_daily_resolution(df): # GH12685 (partial string with daily resolution or below) result = df.loc[IndexSlice["2013-03":"2013-03", :], :] expected = df.iloc[118:180] tm.assert_frame_equal(result, expected)
py
7dfe0d3d0769cf1c96e8d9971e0ca11590ce7531
""" 可迭代对象工具集 """ class IterableHelper: """ 可迭代对象助手类 """ # 静态方法:不需要操作实例与类成员 # 语义:工具函数(常用且独立) @staticmethod def find_all(iterable, condition): """ 在可迭代对象中,根据任意条件查找满足的所有元素 :param iterable:可迭代对象 :param condition:函数类型,查找条件 :return:生成器,推算满足条件的元素 """ for item in iterable: if condition(item): yield item @staticmethod def find_single(iterable, condition): """ 在可迭代对象中,根据任意条件查找满足的单个元素 :param iterable:可迭代对象 :param condition:函数类型,查找条件 :return:生成器,推算满足条件的元素 """ for item in iterable: if condition(item): return item @staticmethod def select(iterable, condition): """ 在可迭代对象中,根据逻辑处理元素 :param iterable: 可迭代对象 :param condition: 函数类型的处理逻辑 :return:生成器,推算处理结果 """ for item in iterable: yield condition(item) @staticmethod def get_count(iterable, condition): """ 在可迭代对象中计算满足条件的元素数量 :param iterable:可迭代对象 :param condition:函数类型的条件 :return:数量 """ count = 0 for item in iterable: if condition(item): count += 1 return count @staticmethod def sum(iterable, condition): """ 在可迭代对象中根据条件累计运算 :param iterable:可迭代对象 :param condition:函数类型的条件 :return:累计结果 """ sum_value = 0 for item in iterable: sum_value += condition(item) return sum_value @staticmethod def delete_all(iterable, condition): """ 在可迭代对象中删除满足条件的元素 :param iterable: 可迭代对象 :param condition: 函数类型的条件 :return:删除数量 """ count = 0 for i in range(len(iterable) - 1, -1, -1): if condition(iterable[i]): del iterable[i] count += 1 return count @staticmethod def get_max(iterable, condition): """ 根据条件在可迭代对象中获取最大元素 :param iterable:可迭代对象 :param condition:函数类型的条件 :return:最大元素 """ max_value = iterable[0] for i in range(1, len(iterable)): if condition(max_value) < condition(iterable[i]): max_value = iterable[i] return max_value @staticmethod def sort(iterable, condition, reverse=False): """ 根据条件对象可迭代对象进行降序排列 :param iterable: 可迭代对象 :param condition: 函数类型的条件 :param reverse: 是否反转 """ for r in range(len(iterable) - 1): for c in range(r + 1, len(iterable)): if reverse: # 是反转 降序排列(大-->小) if condition(iterable[r]) < condition(iterable[c]): iterable[r], iterable[c] = iterable[c], iterable[r] else: if condition(iterable[r]) > condition(iterable[c]): iterable[r], iterable[c] = iterable[c], iterable[r]
py
7dfe0e3d5b83419051be162aad496b4056e0329a
"""Asynchronous client for the PVOutput API.""" from .models import Status, System from .pvoutput import ( PVOutput, PVOutputAuthenticationError, PVOutputConnectionError, PVOutputError, ) __all__ = [ "PVOutput", "PVOutputAuthenticationError", "PVOutputConnectionError", "PVOutputError", "Status", "System", ]
py
7dfe0eca4881a985cc30cfb08131ea8e40d649c9
from gym.utils import EzPickle import numpy as np from magical import geom from magical.base_env import BaseEnv, ez_init import magical.entities as en SMALL_POS_BOUND = 0.05 DEFAULT_ROBOT_POSE = ((0.058, 0.53), -2.13) DEFAULT_GOAL_COLOUR = en.ShapeColour.BLUE DEFAULT_GOAL_XYHW = (-0.62, -0.17, 0.76, 0.75) class MoveToRegionEnv(BaseEnv, EzPickle): """Simple task where the robot merely has to move to a single coloured goal region.""" @ez_init() def __init__(self, rand_poses_minor=False, rand_poses_full=False, rand_goal_colour=False, **kwargs): super().__init__(**kwargs) assert not (rand_poses_minor and rand_poses_full), \ "cannot specify both 'rand_poses_minor' and 'rand_poses_full'" self.rand_poses_minor = rand_poses_minor self.rand_poses_full = rand_poses_full self.rand_goal_colour = rand_goal_colour def on_reset(self): goal_xyhw = DEFAULT_GOAL_XYHW if self.rand_poses_minor or self.rand_poses_full: # randomise width and height of goal region # (unfortunately this has to be done before pose randomisation b/c # I don't have an easy way of changing size later) if self.rand_poses_minor: hw_bound = self.JITTER_TARGET_BOUND else: hw_bound = None sampled_hw = geom.randomise_hw(self.RAND_GOAL_MIN_SIZE, self.RAND_GOAL_MAX_SIZE, self.rng, current_hw=goal_xyhw[2:], linf_bound=hw_bound) goal_xyhw = (*goal_xyhw[:2], *sampled_hw) # colour the goal region if self.rand_goal_colour: goal_colour = self.rng.choice( np.asarray(en.SHAPE_COLOURS, dtype='object')) else: goal_colour = DEFAULT_GOAL_COLOUR # place the goal region assert len(goal_xyhw) == 4, goal_xyhw goal = en.GoalRegion(*goal_xyhw, goal_colour) self.add_entities([goal]) self.__goal_ref = goal # now place the robot default_robot_pos, default_robot_angle = DEFAULT_ROBOT_POSE robot = self._make_robot(default_robot_pos, default_robot_angle) self.add_entities([robot]) self.__robot_ent_index = en.EntityIndex([robot]) if self.rand_poses_minor or self.rand_poses_full: if self.rand_poses_minor: # limit amount by which position and rotation can be randomised pos_limits = self.JITTER_POS_BOUND rot_limits = [None, self.JITTER_ROT_BOUND] else: # no limits, can randomise as much as needed assert self.rand_poses_full pos_limits = rot_limits = None geom.pm_randomise_all_poses(self._space, (self.__goal_ref, self._robot), self.ARENA_BOUNDS_LRBT, rng=self.rng, rand_pos=True, rand_rot=(False, True), rel_pos_linf_limits=pos_limits, rel_rot_limits=rot_limits) def score_on_end_of_traj(self): # this one just has a lazy binary reward dist, _ = self.__goal_ref.goal_shape.point_query( self._robot.robot_body.position) if dist <= 0: reward = 1.0 else: reward = 0.0 assert 0 <= reward <= 1 return reward
py
7dfe0ef71264f77bcb9cf269ad9ae85ebe4feddf
#!/usr/bin/python # GoogleMapDownloader.py # Created by Hayden Eskriett [http://eskriett.com] # # A script which when given a longitude, latitude and zoom level downloads a # high resolution google map # Find the associated blog post at: http://blog.eskriett.com/2013/07/19/downloading-google-maps/ # https://gis.stackexchange.com/a/42423 # 20 - (40075017/4294967296.0) * (2 ** (24-20)) * np.cos(np.deg2rad(44.439457)) """ decimal places decimal degrees N/S or E/W at equator 2 0.01 1.1132 km 3 0.001 111.32 m 4 0.0001 11.132 m 5 0.00001 1.1132 m """ import urllib from PIL import Image import os import math import numpy as np import cv2 import pandas as pd import utm import matplotlib.pyplot as plt class GoogleMapDownloader: """ A class which generates high resolution google maps images given a longitude, latitude and zoom level """ def __init__(self, lat, lng, zoom=12): """ GoogleMapDownloader Constructor Args: lat: The latitude of the location required lng: The longitude of the location required zoom: The zoom level of the location required, ranges from 0 - 23 defaults to 12 """ self._lat = lat self._lng = lng self._zoom = zoom def getXY(self): """ Generates an X,Y tile coordinate based on the latitude, longitude and zoom level Returns: An X,Y tile coordinate """ tile_size = 256 # Use a left shift to get the power of 2 # i.e. a zoom level of 2 will have 2^2 = 4 tiles numTiles = 1 << self._zoom # Find the x_point given the longitude point_x = (tile_size / 2 + self._lng * tile_size / 360.0) * numTiles // tile_size # Convert the latitude to radians and take the sine sin_y = math.sin(self._lat * (math.pi / 180.0)) # Calulate the y coorindate point_y = ((tile_size / 2) + 0.5 * math.log((1 + sin_y) / (1 - sin_y)) * -( tile_size / (2 * math.pi))) * numTiles // tile_size return int(point_x), int(point_y) def generateImage(self, **kwargs): """ Generates an image by stitching a number of google map tiles together. Args: start_x: The top-left x-tile coordinate start_y: The top-left y-tile coordinate tile_width: The number of tiles wide the image should be - defaults to 5 tile_height: The number of tiles high the image should be - defaults to 5 type: type of map "hybrid" or "standard" Returns: A high-resolution Goole Map image. """ start_x = kwargs.get('start_x', None) start_y = kwargs.get('start_y', None) tile_width = kwargs.get('tile_width', 5) tile_height = kwargs.get('tile_height', 5) type = kwargs.get('type', "standard") # Check that we have x and y tile coordinates if start_x == None or start_y == None: start_x, start_y = self.getXY() # Determine the size of the image width, height = 256 * tile_width, 256 * tile_height # Create a new image of the size require map_img = Image.new('RGB', (width, height)) print (tile_width, tile_height) for x in range(0, tile_width): for y in range(0, tile_height): if type == "hybrid": url = 'https://mt0.google.com/vt/lyrs=y&hl=en&x=' + str(start_x + x) + '&y=' \ + str(start_y + y) + '&z=' + str(self._zoom) else: url = 'https://mt0.google.com/vt?x='+str(start_x+x)+'&y='+str(start_y+y)+\ '&z='+str(self._zoom) print (x, y, url) current_tile = str(x) + '-' + str(y) urllib.request.urlretrieve(url, current_tile) im = Image.open(current_tile) map_img.paste(im, (x * 256, y * 256)) os.remove(current_tile) return map_img def add_wgs84(df, latitude="latitude", longitude="longitude"): df = df.assign(**{'easting': -1., 'northing': -1., "zone_no": -1., "zone_letter": ""}) for idx, row in df.iterrows(): easting, northing, zone_no, zone_letter = utm.from_latlon(row[latitude], row[longitude]) df.at[idx, "easting"] = easting df.at[idx, "northing"] = northing df.at[idx, "zone_no"] = zone_no df.at[idx, "zone_letter"] = zone_letter return df class ImageWgsHandler: def __init__(self, map_path): self.map_image = map_image = cv2.imread(map_path) self.img_rows, self.img_cols, _ = map_image.shape # Load reference points base = os.path.splitext(map_path)[0] self.reference_points = reference_points = pd.read_csv(f"{base}.csv") self.density = None if os.path.isfile(f"{base}.density"): with open(f"{base}.density", "r") as f: self.density = float(f.read().strip()) if self.density: print(f"Map density: {self.density} m /pixel") reference_points = add_wgs84(reference_points) # # # -- Check conversion # img = plt.imread(map_path) # eastings, northings = reference_points.easting.values, reference_points.northing.values # rows = row_f.predict(np.column_stack([eastings, northings])) # cols = col_f.predict(np.column_stack([eastings, northings])) # # # rows = reference_points.pixel_row # # cols = reference_points.pixel_column # # fig = plt.figure() # right, top = img_cols, img_rows # plt.imshow(img, extent=[0, right, 0, top]) # plt.scatter(cols, top-rows, s=1.5, c="r") # plt.axes().set_aspect('equal') (row_f, col_f), (easting_f, northing_f) = self.get_conversion_functions(reference_points) self.row_f, self.col_f = row_f, col_f self.easting_f, self.northing_f = easting_f, northing_f self.reference_points = reference_points @staticmethod def get_conversion_functions(reference_points): # -- Function conversion from WGS to pixel x = reference_points.easting.values y = reference_points.northing.values from sklearn import linear_model # from sklearn import svm # # classifiers = [ # svm.SVR(), # linear_model.SGDRegressor(), # linear_model.BayesianRidge(), # linear_model.LassoLars(), # linear_model.ARDRegression(), # linear_model.PassiveAggressiveRegressor(), # linear_model.TheilSenRegressor(max_iter=1000, tol=1.e-7), # linear_model.LinearRegression(normalize=True)] # # z = reference_points.pixel_row.values # for item in classifiers: # print(item) # clf = item # clf.fit(np.column_stack([x, y]), z) # print(np.abs(clf.predict(np.column_stack([x, y])) - z).sum(), '\n') # # z = reference_points.pixel_column.values # for item in classifiers: # print(item) # clf = item # clf.fit(np.column_stack([x, y]), z) # print(np.abs(clf.predict(np.column_stack([x, y])) - z).sum(), '\n') z = reference_points.pixel_row.values row_f = linear_model.LinearRegression() row_f.fit(np.column_stack([x, y]), z) z = reference_points.pixel_column.values col_f = linear_model.LinearRegression() col_f.fit(np.column_stack([x, y]), z) # -- Function conversion from Pixels to wgs x = reference_points.pixel_row.values y = reference_points.pixel_column.values z = reference_points.easting.values easting_f = linear_model.LinearRegression() easting_f.fit(np.column_stack([x, y]), z) z = reference_points.northing.values northing_f = linear_model.LinearRegression() northing_f.fit(np.column_stack([x, y]), z) return (row_f, col_f), (easting_f, northing_f) def plot_wgs_coord(self, eastings, northings, padding=100, ax=None, show_image=True, c="r", convert_method=0): import time if len(eastings) <= 0: return st = time.time() max_cols, max_rows = self.img_cols, self.img_rows img = self.map_image rows, cols = self.get_image_coord(eastings, northings, convert_method=convert_method) min_rows, max_rows = int(np.clip(rows.min() - padding, 0, max_rows)), \ int(np.clip(rows.max() + padding, 0, max_rows)) min_cols, max_cols = int(np.clip(cols.min() - padding, 0, max_cols)), \ int(np.clip(cols.max() + padding, 0, max_cols)) img_show = cv2.cvtColor(img[min_rows: max_rows, min_cols: max_cols], cv2.COLOR_BGR2RGB) fig = None if ax is None: fig, ax = plt.subplots() if show_image: ax.imshow(img_show, extent=[min_cols, max_cols, max_rows, min_rows], aspect="equal") ax.scatter(cols, rows, s=1.5, c=c) return fig, ax def get_image_coord(self, eastings, northings, convert_method=1): if self.density is not None and convert_method == 0: density = self.density ref_points = self.reference_points a = np.column_stack([eastings, northings]) b = ref_points[["easting", "northing"]].values dist = np.linalg.norm(a[:, np.newaxis] - b, axis=2) ref = ref_points.iloc[dist.argmin(axis=1)] cols = (ref.pixel_column + (eastings - ref.easting)/density).values rows = (ref.pixel_row - (northings - ref.northing)/density).values else: row_f, col_f = self.row_f, self.col_f rows = row_f.predict(np.column_stack([eastings, northings])) cols = col_f.predict(np.column_stack([eastings, northings])) return rows, cols def get_wgs_coord(self, rows, cols): easting_f, northing_f = self.easting_f, self.northing_f easting = easting_f.predict(np.column_stack([rows, cols])) northing = northing_f.predict(np.column_stack([rows, cols])) return easting, northing def validate_reference_points(): base = "util_data/high_res_full_UPB_hybrid" map_image = cv2.imread(f"{base}.jpg") with open(f"{base}.density", "r") as f: density = float(f.read().strip()) start_lat, start_long = 44.444122, 26.042366 start_easting, start_northing, zone_no, zone_letter = utm.from_latlon(start_lat, start_long) reference_points = pd.read_csv(f"{base}.csv") reference_points = add_wgs84(reference_points) img = plt.imread(f"{base}.jpg") img_rows, img_cols, _ = map_image.shape for idx, row in reference_points.iterrows(): if idx < 25: continue print(f"IDX: {idx}") px_row = row.pixel_row px_col = row.pixel_column # PLOT pixel fig = plt.figure() right, top = img_cols, img_rows plt.imshow(img, extent=[0, right, 0, top]) plt.scatter(px_col, top-px_row, s=4.5, c="r") plt.axes().set_aspect('equal') # PLOT gps x = (row.easting - start_easting)/density y = (start_northing - row.northing)/density # fig = plt.figure() # right, top = img_cols, img_rows # plt.imshow(img, extent=[0, right, 0, top]) plt.scatter(x, top-y, s=3.5, c="b") plt.axes().set_aspect('equal') plt.waitforbuttonpress() plt.close("all") def main(): import utm # Create a new instance of GoogleMap Downloader lat = 44.444122 long = 26.042366 scale = 20 gmd = GoogleMapDownloader(lat, long, scale) print("The tile coorindates are {}".format(gmd.getXY())) exit(0) try: # Get the high resolution image img = gmd.generateImage(tile_width=38, tile_height=41, type="hybrid") except IOError: print( "Could not generate the image - try adjusting the zoom level and checking your coordinates") else: # Save the image to disk img.save("/media/andrei/CE04D7C504D7AF291/nemodrive/data_collect/high_resolution_image_full" "_full3.png") print("The map has successfully been created") exit(0) # calculate pixel size equator_zoom_24 = 0.009330692 scale_size = equator_zoom_24 * (2 ** (24-scale)) pixel_size = np.cos(lat) * scale_size # WGS84 conversion from lat_lon GPS easting, northing, zone_no, zone_letter = utm.from_latlon(lat, long) easting += 2125 * pixel_size northing += 8853 * pixel_size new_lat, new_long = utm.to_latlon(easting, northing, zone_no, zone_letter) if __name__ == "__main__": main()
py
7dfe101e1cfcdb3e95ad121ad22b542b0772f2ca
import os import subprocess import time from leapp import reporting from leapp.libraries.stdlib import api ONE_MONTH = 2592000 # Number of seconds in one month def is_executable(path): """ Checks if path exists, if it is file and if is executable. """ return os.path.exists(path) and os.path.isfile(path) and os.access(path, os.X_OK) def get_xsession(path): """ Gets current XSession. If there is more than one definition of xsession for some reason, function returns last definition. Return empty string if no XSession found in file given by path (any reason including bad path etc.) """ default_xsession = "" if not isinstance(path, str): return default_xsession if not (os.path.exists(path) and os.path.isfile(path)): # Bad path - in container for example return default_xsession with open(path, "r") as f: for line in f.readlines(): if "xsession" in line.lower(): default_xsession = line.split("=")[1].lower() return default_xsession def check_app_in_use(app): """ Method return True if application was used in last month, False in other cases. """ path = "{0}/.kde/share/config/{1}rc".format(os.environ.get("HOME"), app) if os.path.isfile(path): last_modified = os.stat(path).st_mtime # Application is considered actively used, if it has been used in last month. return last_modified >= int(time.time() - ONE_MONTH) return False def is_installed(app): """ Wrapper for "rpm -q <app>" command Return value: True if application is found, False in other cases. Output of rpm command is not supressed. """ return True if subprocess.call(["rpm", "-q", app]) == 0 else False def check_kde_gnome(): apps_in_use = 0 api.current_logger().info(" Detecting desktop environments ") api.current_logger().info("==================================") # Detect installed desktops by their startup files kde_desktop_installed = is_executable("/usr/bin/startkde") gnome_desktop_installed = is_executable("/usr/bin/gnome-session") api.current_logger().info("* KDE installed: {0}".format(kde_desktop_installed)) api.current_logger().info("* Gnome installed: {0}".format(gnome_desktop_installed)) api.current_logger().info("----------------------------------") # No desktop installed, we don't even care about apps as they are most likely not used or even installed if not kde_desktop_installed and not gnome_desktop_installed: api.current_logger().info("No desktop installed. Continuing with the upgrade.") return if kde_desktop_installed: api.current_logger().info("KDE desktop is installed. Checking what we can do about it.") if not gnome_desktop_installed: api.current_logger().error("Cannot perform the upgrade because there is" " no other desktop than KDE installed.") # We cannot continue with the upgrade process reporting.create_report([ reporting.Title("Cannot upgrade because there is no other desktop than KDE installed."), reporting.Summary("With only KDE installed, there would be no other desktop after upgrade."), reporting.Severity(reporting.Severity.HIGH), reporting.Tags([ reporting.Tags.UPGRADE_PROCESS ]), reporting.Flags([ reporting.Flags.INHIBITOR ]), reporting.Remediation( hint="Install GNOME desktop to be able to upgrade.") ]) return # Assume GNOME is installed in this state user = os.environ.get("USER") default_xsession = get_xsession("/var/lib/AccountsService/users/{0}".format(user)) if not default_xsession: api.current_logger().warn("Unable to detect default session.") else: if "plasma" in default_xsession: # using in because there can be some white spaces api.current_logger().info("KDE used as default session.") api.current_logger().info("Upgrade can be performed, but KDE desktop will" " be removed in favor of GNOME") reporting.create_report([ reporting.Title("Upgrade can be performed, but KDE will be uninstalled."), reporting.Summary("KDE has to be uninstalled in favor of GNOME to perform the upgrade."), reporting.Severity(reporting.Severity.MEDIUM), reporting.Tags([ reporting.Tags.UPGRADE_PROCESS ]) else: api.current_logger().info("GNOME used as default session. Continuing with the upgrade.") api.current_logger().info("----------------------------------") # At this state we can assume that KDE desktop as such is not installed or used and we just need to # detect whether any KDE/Qt app is actively used to inform user that the application will be removed # during the upgrade process base_kde_apps = ("kde-baseapps", "okular", "ark", "kdepim", "konsole", "gwenview", "kdenetwork", "kate", "kwrite") api.current_logger().info(" Detecting installed KDE apps ") api.current_logger().info("================================") for app in base_kde_apps: if is_installed(app): if check_app_in_use(app): api.current_logger().info("Application {0} is actively used".format(app)) apps_in_use += 1 api.current_logger().info("* {0} {1} installed.".format(app, "is" if is_installed(app) else "is not")) api.current_logger().info("----------------------------------") if apps_in_use > 0: api.current_logger().info("KDE apps in use detected.") reporting.create_report([ reporting.Title("Upgrade can be performed, but KDE apps will be uninstalled."), reporting.Summary("KDE apps will be removed to perform the upgrade."), reporting.Severity(reporting.Severity.MEDIUM), reporting.Tags([ reporting.Tags.UPGRADE_PROCESS ]), reporting.Remediation( hint="KDE apps has to be removed, no other solution is possible.") ]) # upgrade can be performed, but user will loose KDE desktop in favor of GNOME desktop else: api.current_logger().info("No KDE app in use detected.") # upgrade can be performed
py
7dfe1043a50406cfc7d9b0f4e8c17878d5067bc6
# module pyparsing.py # # Copyright (c) 2003-2013 Paul T. McGuire # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __doc__ = \ """ pyparsing module - Classes and methods to define and execute parsing grammars The pyparsing module is an alternative approach to creating and executing simple grammars, vs. the traditional lex/yacc approach, or the use of regular expressions. With pyparsing, you don't need to learn a new syntax for defining grammars or matching expressions - the parsing module provides a library of classes that you use to construct the grammar directly in Python. Here is a program to parse "Hello, World!" (or any greeting of the form C{"<salutation>, <addressee>!"}):: from pyparsing import Word, alphas # define grammar of a greeting greet = Word( alphas ) + "," + Word( alphas ) + "!" hello = "Hello, World!" print (hello, "->", greet.parseString( hello )) The program outputs the following:: Hello, World! -> ['Hello', ',', 'World', '!'] The Python representation of the grammar is quite readable, owing to the self-explanatory class names, and the use of '+', '|' and '^' operators. The parsed results returned from C{parseString()} can be accessed as a nested list, a dictionary, or an object with named attributes. The pyparsing module handles some of the problems that are typically vexing when writing text parsers: - extra or missing whitespace (the above program will also handle "Hello,World!", "Hello , World !", etc.) - quoted strings - embedded comments """ __version__ = "2.0.2" __versionTime__ = "13 April 2014 12:10" __author__ = "Paul McGuire <[email protected]>" import string from weakref import ref as wkref import copy import sys import warnings import re import sre_constants import collections import pprint #~ sys.stderr.write( "testing pyparsing module, version %s, %s\n" % (__version__,__versionTime__ ) ) __all__ = [ 'And', 'CaselessKeyword', 'CaselessLiteral', 'CharsNotIn', 'Combine', 'Dict', 'Each', 'Empty', 'FollowedBy', 'Forward', 'GoToColumn', 'Group', 'Keyword', 'LineEnd', 'LineStart', 'Literal', 'MatchFirst', 'NoMatch', 'NotAny', 'OneOrMore', 'OnlyOnce', 'Optional', 'Or', 'ParseBaseException', 'ParseElementEnhance', 'ParseException', 'ParseExpression', 'ParseFatalException', 'ParseResults', 'ParseSyntaxException', 'ParserElement', 'QuotedString', 'RecursiveGrammarException', 'Regex', 'SkipTo', 'StringEnd', 'StringStart', 'Suppress', 'Token', 'TokenConverter', 'Upcase', 'White', 'Word', 'WordEnd', 'WordStart', 'ZeroOrMore', 'alphanums', 'alphas', 'alphas8bit', 'anyCloseTag', 'anyOpenTag', 'cStyleComment', 'col', 'commaSeparatedList', 'commonHTMLEntity', 'countedArray', 'cppStyleComment', 'dblQuotedString', 'dblSlashComment', 'delimitedList', 'dictOf', 'downcaseTokens', 'empty', 'hexnums', 'htmlComment', 'javaStyleComment', 'keepOriginalText', 'line', 'lineEnd', 'lineStart', 'lineno', 'makeHTMLTags', 'makeXMLTags', 'matchOnlyAtCol', 'matchPreviousExpr', 'matchPreviousLiteral', 'nestedExpr', 'nullDebugAction', 'nums', 'oneOf', 'opAssoc', 'operatorPrecedence', 'printables', 'punc8bit', 'pythonStyleComment', 'quotedString', 'removeQuotes', 'replaceHTMLEntity', 'replaceWith', 'restOfLine', 'sglQuotedString', 'srange', 'stringEnd', 'stringStart', 'traceParseAction', 'unicodeString', 'upcaseTokens', 'withAttribute', 'indentedBlock', 'originalTextFor', 'ungroup', 'infixNotation','locatedExpr', ] PY_3 = sys.version.startswith('3') if PY_3: _MAX_INT = sys.maxsize basestring = str unichr = chr _ustr = str # build list of single arg builtins, that can be used as parse actions singleArgBuiltins = [sum, len, sorted, reversed, list, tuple, set, any, all, min, max] else: _MAX_INT = sys.maxint range = xrange def _ustr(obj): """Drop-in replacement for str(obj) that tries to be Unicode friendly. It first tries str(obj). If that fails with a UnicodeEncodeError, then it tries unicode(obj). It then < returns the unicode object | encodes it with the default encoding | ... >. """ if isinstance(obj,unicode): return obj try: # If this works, then _ustr(obj) has the same behaviour as str(obj), so # it won't break any existing code. return str(obj) except UnicodeEncodeError: # The Python docs (http://docs.python.org/ref/customization.html#l2h-182) # state that "The return value must be a string object". However, does a # unicode object (being a subclass of basestring) count as a "string # object"? # If so, then return a unicode object: return unicode(obj) # Else encode it... but how? There are many choices... :) # Replace unprintables with escape codes? #return unicode(obj).encode(sys.getdefaultencoding(), 'backslashreplace_errors') # Replace unprintables with question marks? #return unicode(obj).encode(sys.getdefaultencoding(), 'replace') # ... # build list of single arg builtins, tolerant of Python version, that can be used as parse actions singleArgBuiltins = [] import __builtin__ for fname in "sum len sorted reversed list tuple set any all min max".split(): try: singleArgBuiltins.append(getattr(__builtin__,fname)) except AttributeError: continue _generatorType = type((y for y in range(1))) def _xml_escape(data): """Escape &, <, >, ", ', etc. in a string of data.""" # ampersand must be replaced first from_symbols = '&><"\'' to_symbols = ('&'+s+';' for s in "amp gt lt quot apos".split()) for from_,to_ in zip(from_symbols, to_symbols): data = data.replace(from_, to_) return data class _Constants(object): pass alphas = string.ascii_lowercase + string.ascii_uppercase nums = "0123456789" hexnums = nums + "ABCDEFabcdef" alphanums = alphas + nums _bslash = chr(92) printables = "".join(c for c in string.printable if c not in string.whitespace) class ParseBaseException(Exception): """base exception class for all parsing runtime exceptions""" # Performance tuning: we construct a *lot* of these, so keep this # constructor as small and fast as possible def __init__( self, pstr, loc=0, msg=None, elem=None ): self.loc = loc if msg is None: self.msg = pstr self.pstr = "" else: self.msg = msg self.pstr = pstr self.parserElement = elem def __getattr__( self, aname ): """supported attributes by name are: - lineno - returns the line number of the exception text - col - returns the column number of the exception text - line - returns the line containing the exception text """ if( aname == "lineno" ): return lineno( self.loc, self.pstr ) elif( aname in ("col", "column") ): return col( self.loc, self.pstr ) elif( aname == "line" ): return line( self.loc, self.pstr ) else: raise AttributeError(aname) def __str__( self ): return "%s (at char %d), (line:%d, col:%d)" % \ ( self.msg, self.loc, self.lineno, self.column ) def __repr__( self ): return _ustr(self) def markInputline( self, markerString = ">!<" ): """Extracts the exception line from the input string, and marks the location of the exception with a special symbol. """ line_str = self.line line_column = self.column - 1 if markerString: line_str = "".join((line_str[:line_column], markerString, line_str[line_column:])) return line_str.strip() def __dir__(self): return "loc msg pstr parserElement lineno col line " \ "markInputline __str__ __repr__".split() class ParseException(ParseBaseException): """exception thrown when parse expressions don't match class; supported attributes by name are: - lineno - returns the line number of the exception text - col - returns the column number of the exception text - line - returns the line containing the exception text """ pass class ParseFatalException(ParseBaseException): """user-throwable exception thrown when inconsistent parse content is found; stops all parsing immediately""" pass class ParseSyntaxException(ParseFatalException): """just like C{L{ParseFatalException}}, but thrown internally when an C{L{ErrorStop<And._ErrorStop>}} ('-' operator) indicates that parsing is to stop immediately because an unbacktrackable syntax error has been found""" def __init__(self, pe): super(ParseSyntaxException, self).__init__( pe.pstr, pe.loc, pe.msg, pe.parserElement) #~ class ReparseException(ParseBaseException): #~ """Experimental class - parse actions can raise this exception to cause #~ pyparsing to reparse the input string: #~ - with a modified input string, and/or #~ - with a modified start location #~ Set the values of the ReparseException in the constructor, and raise the #~ exception in a parse action to cause pyparsing to use the new string/location. #~ Setting the values as None causes no change to be made. #~ """ #~ def __init_( self, newstring, restartLoc ): #~ self.newParseText = newstring #~ self.reparseLoc = restartLoc class RecursiveGrammarException(Exception): """exception thrown by C{validate()} if the grammar could be improperly recursive""" def __init__( self, parseElementList ): self.parseElementTrace = parseElementList def __str__( self ): return "RecursiveGrammarException: %s" % self.parseElementTrace class _ParseResultsWithOffset(object): def __init__(self,p1,p2): self.tup = (p1,p2) def __getitem__(self,i): return self.tup[i] def __repr__(self): return repr(self.tup) def setOffset(self,i): self.tup = (self.tup[0],i) class ParseResults(object): """Structured parse results, to provide multiple means of access to the parsed data: - as a list (C{len(results)}) - by list index (C{results[0], results[1]}, etc.) - by attribute (C{results.<resultsName>}) """ def __new__(cls, toklist, name=None, asList=True, modal=True ): if isinstance(toklist, cls): return toklist retobj = object.__new__(cls) retobj.__doinit = True return retobj # Performance tuning: we construct a *lot* of these, so keep this # constructor as small and fast as possible def __init__( self, toklist, name=None, asList=True, modal=True, isinstance=isinstance ): if self.__doinit: self.__doinit = False self.__name = None self.__parent = None self.__accumNames = {} if isinstance(toklist, list): self.__toklist = toklist[:] elif isinstance(toklist, _generatorType): self.__toklist = list(toklist) else: self.__toklist = [toklist] self.__tokdict = dict() if name is not None and name: if not modal: self.__accumNames[name] = 0 if isinstance(name,int): name = _ustr(name) # will always return a str, but use _ustr for consistency self.__name = name if not toklist in (None,'',[]): if isinstance(toklist,basestring): toklist = [ toklist ] if asList: if isinstance(toklist,ParseResults): self[name] = _ParseResultsWithOffset(toklist.copy(),0) else: self[name] = _ParseResultsWithOffset(ParseResults(toklist[0]),0) self[name].__name = name else: try: self[name] = toklist[0] except (KeyError,TypeError,IndexError): self[name] = toklist def __getitem__( self, i ): if isinstance( i, (int,slice) ): return self.__toklist[i] else: if i not in self.__accumNames: return self.__tokdict[i][-1][0] else: return ParseResults([ v[0] for v in self.__tokdict[i] ]) def __setitem__( self, k, v, isinstance=isinstance ): if isinstance(v,_ParseResultsWithOffset): self.__tokdict[k] = self.__tokdict.get(k,list()) + [v] sub = v[0] elif isinstance(k,int): self.__toklist[k] = v sub = v else: self.__tokdict[k] = self.__tokdict.get(k,list()) + [_ParseResultsWithOffset(v,0)] sub = v if isinstance(sub,ParseResults): sub.__parent = wkref(self) def __delitem__( self, i ): if isinstance(i,(int,slice)): mylen = len( self.__toklist ) del self.__toklist[i] # convert int to slice if isinstance(i, int): if i < 0: i += mylen i = slice(i, i+1) # get removed indices removed = list(range(*i.indices(mylen))) removed.reverse() # fixup indices in token dictionary for name in self.__tokdict: occurrences = self.__tokdict[name] for j in removed: for k, (value, position) in enumerate(occurrences): occurrences[k] = _ParseResultsWithOffset(value, position - (position > j)) else: del self.__tokdict[i] def __contains__( self, k ): return k in self.__tokdict def __len__( self ): return len( self.__toklist ) def __bool__(self): return len( self.__toklist ) > 0 __nonzero__ = __bool__ def __iter__( self ): return iter( self.__toklist ) def __reversed__( self ): return iter( self.__toklist[::-1] ) def iterkeys( self ): """Returns all named result keys.""" if hasattr(self.__tokdict, "iterkeys"): return self.__tokdict.iterkeys() else: return iter(self.__tokdict) def itervalues( self ): """Returns all named result values.""" return (self[k] for k in self.iterkeys()) def iteritems( self ): return ((k, self[k]) for k in self.iterkeys()) if PY_3: keys = iterkeys values = itervalues items = iteritems else: def keys( self ): """Returns all named result keys.""" return list(self.iterkeys()) def values( self ): """Returns all named result values.""" return list(self.itervalues()) def items( self ): """Returns all named result keys and values as a list of tuples.""" return list(self.iteritems()) def haskeys( self ): """Since keys() returns an iterator, this method is helpful in bypassing code that looks for the existence of any defined results names.""" return bool(self.__tokdict) def pop( self, *args, **kwargs): """Removes and returns item at specified index (default=last). Supports both list and dict semantics for pop(). If passed no argument or an integer argument, it will use list semantics and pop tokens from the list of parsed tokens. If passed a non-integer argument (most likely a string), it will use dict semantics and pop the corresponding value from any defined results names. A second default return value argument is supported, just as in dict.pop().""" if not args: args = [-1] if 'default' in kwargs: args.append(kwargs['default']) if (isinstance(args[0], int) or len(args) == 1 or args[0] in self): ret = self[index] del self[index] return ret else: defaultvalue = args[1] return defaultvalue def get(self, key, defaultValue=None): """Returns named result matching the given key, or if there is no such name, then returns the given C{defaultValue} or C{None} if no C{defaultValue} is specified.""" if key in self: return self[key] else: return defaultValue def insert( self, index, insStr ): """Inserts new element at location index in the list of parsed tokens.""" self.__toklist.insert(index, insStr) # fixup indices in token dictionary for name in self.__tokdict: occurrences = self.__tokdict[name] for k, (value, position) in enumerate(occurrences): occurrences[k] = _ParseResultsWithOffset(value, position + (position > index)) def append( self, item ): """Add single element to end of ParseResults list of elements.""" self.__toklist.append(item) def extend( self, itemseq ): """Add sequence of elements to end of ParseResults list of elements.""" if isinstance(itemseq, ParseResults): self += itemseq else: self.__toklist.extend(itemseq) def clear( self ): """Clear all elements and results names.""" del self.__toklist[:] self.__tokdict.clear() def __getattr__( self, name ): try: return self[name] except KeyError: return "" if name in self.__tokdict: if name not in self.__accumNames: return self.__tokdict[name][-1][0] else: return ParseResults([ v[0] for v in self.__tokdict[name] ]) else: return "" def __add__( self, other ): ret = self.copy() ret += other return ret def __iadd__( self, other ): if other.__tokdict: offset = len(self.__toklist) addoffset = ( lambda a: (a<0 and offset) or (a+offset) ) otheritems = other.__tokdict.items() otherdictitems = [(k, _ParseResultsWithOffset(v[0],addoffset(v[1])) ) for (k,vlist) in otheritems for v in vlist] for k,v in otherdictitems: self[k] = v if isinstance(v[0],ParseResults): v[0].__parent = wkref(self) self.__toklist += other.__toklist self.__accumNames.update( other.__accumNames ) return self def __radd__(self, other): if isinstance(other,int) and other == 0: return self.copy() def __repr__( self ): return "(%s, %s)" % ( repr( self.__toklist ), repr( self.__tokdict ) ) def __str__( self ): out = [] for i in self.__toklist: if isinstance(i, ParseResults): out.append(_ustr(i)) else: out.append(repr(i)) return '[' + ', '.join(out) + ']' def _asStringList( self, sep='' ): out = [] for item in self.__toklist: if out and sep: out.append(sep) if isinstance( item, ParseResults ): out += item._asStringList() else: out.append( _ustr(item) ) return out def asList( self ): """Returns the parse results as a nested list of matching tokens, all converted to strings.""" out = [] for res in self.__toklist: if isinstance(res,ParseResults): out.append( res.asList() ) else: out.append( res ) return out def asDict( self ): """Returns the named parse results as dictionary.""" if PY_3: return dict( self.items() ) else: return dict( self.iteritems() ) def copy( self ): """Returns a new copy of a C{ParseResults} object.""" ret = ParseResults( self.__toklist ) ret.__tokdict = self.__tokdict.copy() ret.__parent = self.__parent ret.__accumNames.update( self.__accumNames ) ret.__name = self.__name return ret def asXML( self, doctag=None, namedItemsOnly=False, indent="", formatted=True ): """Returns the parse results as XML. Tags are created for tokens and lists that have defined results names.""" nl = "\n" out = [] namedItems = dict((v[1],k) for (k,vlist) in self.__tokdict.items() for v in vlist) nextLevelIndent = indent + " " # collapse out indents if formatting is not desired if not formatted: indent = "" nextLevelIndent = "" nl = "" selfTag = None if doctag is not None: selfTag = doctag else: if self.__name: selfTag = self.__name if not selfTag: if namedItemsOnly: return "" else: selfTag = "ITEM" out += [ nl, indent, "<", selfTag, ">" ] worklist = self.__toklist for i,res in enumerate(worklist): if isinstance(res,ParseResults): if i in namedItems: out += [ res.asXML(namedItems[i], namedItemsOnly and doctag is None, nextLevelIndent, formatted)] else: out += [ res.asXML(None, namedItemsOnly and doctag is None, nextLevelIndent, formatted)] else: # individual token, see if there is a name for it resTag = None if i in namedItems: resTag = namedItems[i] if not resTag: if namedItemsOnly: continue else: resTag = "ITEM" xmlBodyText = _xml_escape(_ustr(res)) out += [ nl, nextLevelIndent, "<", resTag, ">", xmlBodyText, "</", resTag, ">" ] out += [ nl, indent, "</", selfTag, ">" ] return "".join(out) def __lookup(self,sub): for k,vlist in self.__tokdict.items(): for v,loc in vlist: if sub is v: return k return None def getName(self): """Returns the results name for this token expression.""" if self.__name: return self.__name elif self.__parent: par = self.__parent() if par: return par.__lookup(self) else: return None elif (len(self) == 1 and len(self.__tokdict) == 1 and self.__tokdict.values()[0][0][1] in (0,-1)): return self.__tokdict.keys()[0] else: return None def dump(self,indent='',depth=0): """Diagnostic method for listing out the contents of a C{ParseResults}. Accepts an optional C{indent} argument so that this string can be embedded in a nested display of other data.""" out = [] out.append( indent+_ustr(self.asList()) ) items = sorted(self.items()) for k,v in items: if out: out.append('\n') out.append( "%s%s- %s: " % (indent,(' '*depth), k) ) if isinstance(v,ParseResults): if v.haskeys(): out.append( v.dump(indent,depth+1) ) else: out.append(_ustr(v)) else: out.append(_ustr(v)) return "".join(out) def pprint(self, *args, **kwargs): """Pretty-printer for parsed results as a list, using the C{pprint} module. Accepts additional positional or keyword args as defined for the C{pprint.pprint} method. (U{http://docs.python.org/3/library/pprint.html#pprint.pprint})""" pprint.pprint(self.asList(), *args, **kwargs) # add support for pickle protocol def __getstate__(self): return ( self.__toklist, ( self.__tokdict.copy(), self.__parent is not None and self.__parent() or None, self.__accumNames, self.__name ) ) def __setstate__(self,state): self.__toklist = state[0] (self.__tokdict, par, inAccumNames, self.__name) = state[1] self.__accumNames = {} self.__accumNames.update(inAccumNames) if par is not None: self.__parent = wkref(par) else: self.__parent = None def __dir__(self): return dir(super(ParseResults,self)) + list(self.keys()) collections.MutableMapping.register(ParseResults) def col (loc,strg): """Returns current column within a string, counting newlines as line separators. The first column is number 1. Note: the default parsing behavior is to expand tabs in the input string before starting the parsing process. See L{I{ParserElement.parseString}<ParserElement.parseString>} for more information on parsing strings containing C{<TAB>}s, and suggested methods to maintain a consistent view of the parsed string, the parse location, and line and column positions within the parsed string. """ return (loc<len(strg) and strg[loc] == '\n') and 1 or loc - strg.rfind("\n", 0, loc) def lineno(loc,strg): """Returns current line number within a string, counting newlines as line separators. The first line is number 1. Note: the default parsing behavior is to expand tabs in the input string before starting the parsing process. See L{I{ParserElement.parseString}<ParserElement.parseString>} for more information on parsing strings containing C{<TAB>}s, and suggested methods to maintain a consistent view of the parsed string, the parse location, and line and column positions within the parsed string. """ return strg.count("\n",0,loc) + 1 def line( loc, strg ): """Returns the line of text containing loc within a string, counting newlines as line separators. """ lastCR = strg.rfind("\n", 0, loc) nextCR = strg.find("\n", loc) if nextCR >= 0: return strg[lastCR+1:nextCR] else: return strg[lastCR+1:] def _defaultStartDebugAction( instring, loc, expr ): print (("Match " + _ustr(expr) + " at loc " + _ustr(loc) + "(%d,%d)" % ( lineno(loc,instring), col(loc,instring) ))) def _defaultSuccessDebugAction( instring, startloc, endloc, expr, toks ): print ("Matched " + _ustr(expr) + " -> " + str(toks.asList())) def _defaultExceptionDebugAction( instring, loc, expr, exc ): print ("Exception raised:" + _ustr(exc)) def nullDebugAction(*args): """'Do-nothing' debug action, to suppress debugging output during parsing.""" pass # Only works on Python 3.x - nonlocal is toxic to Python 2 installs #~ 'decorator to trim function calls to match the arity of the target' #~ def _trim_arity(func, maxargs=3): #~ if func in singleArgBuiltins: #~ return lambda s,l,t: func(t) #~ limit = 0 #~ foundArity = False #~ def wrapper(*args): #~ nonlocal limit,foundArity #~ while 1: #~ try: #~ ret = func(*args[limit:]) #~ foundArity = True #~ return ret #~ except TypeError: #~ if limit == maxargs or foundArity: #~ raise #~ limit += 1 #~ continue #~ return wrapper # this version is Python 2.x-3.x cross-compatible 'decorator to trim function calls to match the arity of the target' def _trim_arity(func, maxargs=2): if func in singleArgBuiltins: return lambda s,l,t: func(t) limit = [0] foundArity = [False] def wrapper(*args): while 1: try: ret = func(*args[limit[0]:]) foundArity[0] = True return ret except TypeError: if limit[0] <= maxargs and not foundArity[0]: limit[0] += 1 continue raise return wrapper class ParserElement(object): """Abstract base level parser element class.""" DEFAULT_WHITE_CHARS = " \n\t\r" verbose_stacktrace = False def setDefaultWhitespaceChars( chars ): """Overrides the default whitespace chars """ ParserElement.DEFAULT_WHITE_CHARS = chars setDefaultWhitespaceChars = staticmethod(setDefaultWhitespaceChars) def inlineLiteralsUsing(cls): """ Set class to be used for inclusion of string literals into a parser. """ ParserElement.literalStringClass = cls inlineLiteralsUsing = staticmethod(inlineLiteralsUsing) def __init__( self, savelist=False ): self.parseAction = list() self.failAction = None #~ self.name = "<unknown>" # don't define self.name, let subclasses try/except upcall self.strRepr = None self.resultsName = None self.saveAsList = savelist self.skipWhitespace = True self.whiteChars = ParserElement.DEFAULT_WHITE_CHARS self.copyDefaultWhiteChars = True self.mayReturnEmpty = False # used when checking for left-recursion self.keepTabs = False self.ignoreExprs = list() self.debug = False self.streamlined = False self.mayIndexError = True # used to optimize exception handling for subclasses that don't advance parse index self.errmsg = "" self.modalResults = True # used to mark results names as modal (report only last) or cumulative (list all) self.debugActions = ( None, None, None ) #custom debug actions self.re = None self.callPreparse = True # used to avoid redundant calls to preParse self.callDuringTry = False def copy( self ): """Make a copy of this C{ParserElement}. Useful for defining different parse actions for the same parsing pattern, using copies of the original parse element.""" cpy = copy.copy( self ) cpy.parseAction = self.parseAction[:] cpy.ignoreExprs = self.ignoreExprs[:] if self.copyDefaultWhiteChars: cpy.whiteChars = ParserElement.DEFAULT_WHITE_CHARS return cpy def setName( self, name ): """Define name for this expression, for use in debugging.""" self.name = name self.errmsg = "Expected " + self.name if hasattr(self,"exception"): self.exception.msg = self.errmsg return self def setResultsName( self, name, listAllMatches=False ): """Define name for referencing matching tokens as a nested attribute of the returned parse results. NOTE: this returns a *copy* of the original C{ParserElement} object; this is so that the client can define a basic element, such as an integer, and reference it in multiple places with different names. You can also set results names using the abbreviated syntax, C{expr("name")} in place of C{expr.setResultsName("name")} - see L{I{__call__}<__call__>}. """ newself = self.copy() if name.endswith("*"): name = name[:-1] listAllMatches=True newself.resultsName = name newself.modalResults = not listAllMatches return newself def setBreak(self,breakFlag = True): """Method to invoke the Python pdb debugger when this element is about to be parsed. Set C{breakFlag} to True to enable, False to disable. """ if breakFlag: _parseMethod = self._parse def breaker(instring, loc, doActions=True, callPreParse=True): import pdb pdb.set_trace() return _parseMethod( instring, loc, doActions, callPreParse ) breaker._originalParseMethod = _parseMethod self._parse = breaker else: if hasattr(self._parse,"_originalParseMethod"): self._parse = self._parse._originalParseMethod return self def setParseAction( self, *fns, **kwargs ): """Define action to perform when successfully matching parse element definition. Parse action fn is a callable method with 0-3 arguments, called as C{fn(s,loc,toks)}, C{fn(loc,toks)}, C{fn(toks)}, or just C{fn()}, where: - s = the original string being parsed (see note below) - loc = the location of the matching substring - toks = a list of the matched tokens, packaged as a C{L{ParseResults}} object If the functions in fns modify the tokens, they can return them as the return value from fn, and the modified list of tokens will replace the original. Otherwise, fn does not need to return any value. Note: the default parsing behavior is to expand tabs in the input string before starting the parsing process. See L{I{parseString}<parseString>} for more information on parsing strings containing C{<TAB>}s, and suggested methods to maintain a consistent view of the parsed string, the parse location, and line and column positions within the parsed string. """ self.parseAction = list(map(_trim_arity, list(fns))) self.callDuringTry = ("callDuringTry" in kwargs and kwargs["callDuringTry"]) return self def addParseAction( self, *fns, **kwargs ): """Add parse action to expression's list of parse actions. See L{I{setParseAction}<setParseAction>}.""" self.parseAction += list(map(_trim_arity, list(fns))) self.callDuringTry = self.callDuringTry or ("callDuringTry" in kwargs and kwargs["callDuringTry"]) return self def setFailAction( self, fn ): """Define action to perform if parsing fails at this expression. Fail acton fn is a callable function that takes the arguments C{fn(s,loc,expr,err)} where: - s = string being parsed - loc = location where expression match was attempted and failed - expr = the parse expression that failed - err = the exception thrown The function returns no value. It may throw C{L{ParseFatalException}} if it is desired to stop parsing immediately.""" self.failAction = fn return self def _skipIgnorables( self, instring, loc ): exprsFound = True while exprsFound: exprsFound = False for e in self.ignoreExprs: try: while 1: loc,dummy = e._parse( instring, loc ) exprsFound = True except ParseException: pass return loc def preParse( self, instring, loc ): if self.ignoreExprs: loc = self._skipIgnorables( instring, loc ) if self.skipWhitespace: wt = self.whiteChars instrlen = len(instring) while loc < instrlen and instring[loc] in wt: loc += 1 return loc def parseImpl( self, instring, loc, doActions=True ): return loc, [] def postParse( self, instring, loc, tokenlist ): return tokenlist #~ @profile def _parseNoCache( self, instring, loc, doActions=True, callPreParse=True ): debugging = ( self.debug ) #and doActions ) if debugging or self.failAction: #~ print ("Match",self,"at loc",loc,"(%d,%d)" % ( lineno(loc,instring), col(loc,instring) )) if (self.debugActions[0] ): self.debugActions[0]( instring, loc, self ) if callPreParse and self.callPreparse: preloc = self.preParse( instring, loc ) else: preloc = loc tokensStart = preloc try: try: loc,tokens = self.parseImpl( instring, preloc, doActions ) except IndexError: raise ParseException( instring, len(instring), self.errmsg, self ) except ParseBaseException as err: #~ print ("Exception raised:", err) if self.debugActions[2]: self.debugActions[2]( instring, tokensStart, self, err ) if self.failAction: self.failAction( instring, tokensStart, self, err ) raise else: if callPreParse and self.callPreparse: preloc = self.preParse( instring, loc ) else: preloc = loc tokensStart = preloc if self.mayIndexError or loc >= len(instring): try: loc,tokens = self.parseImpl( instring, preloc, doActions ) except IndexError: raise ParseException( instring, len(instring), self.errmsg, self ) else: loc,tokens = self.parseImpl( instring, preloc, doActions ) tokens = self.postParse( instring, loc, tokens ) retTokens = ParseResults( tokens, self.resultsName, asList=self.saveAsList, modal=self.modalResults ) if self.parseAction and (doActions or self.callDuringTry): if debugging: try: for fn in self.parseAction: tokens = fn( instring, tokensStart, retTokens ) if tokens is not None: retTokens = ParseResults( tokens, self.resultsName, asList=self.saveAsList and isinstance(tokens,(ParseResults,list)), modal=self.modalResults ) except ParseBaseException as err: #~ print "Exception raised in user parse action:", err if (self.debugActions[2] ): self.debugActions[2]( instring, tokensStart, self, err ) raise else: for fn in self.parseAction: tokens = fn( instring, tokensStart, retTokens ) if tokens is not None: retTokens = ParseResults( tokens, self.resultsName, asList=self.saveAsList and isinstance(tokens,(ParseResults,list)), modal=self.modalResults ) if debugging: #~ print ("Matched",self,"->",retTokens.asList()) if (self.debugActions[1] ): self.debugActions[1]( instring, tokensStart, loc, self, retTokens ) return loc, retTokens def tryParse( self, instring, loc ): try: return self._parse( instring, loc, doActions=False )[0] except ParseFatalException: raise ParseException( instring, loc, self.errmsg, self) # this method gets repeatedly called during backtracking with the same arguments - # we can cache these arguments and save ourselves the trouble of re-parsing the contained expression def _parseCache( self, instring, loc, doActions=True, callPreParse=True ): lookup = (self,instring,loc,callPreParse,doActions) if lookup in ParserElement._exprArgCache: value = ParserElement._exprArgCache[ lookup ] if isinstance(value, Exception): raise value return (value[0],value[1].copy()) else: try: value = self._parseNoCache( instring, loc, doActions, callPreParse ) ParserElement._exprArgCache[ lookup ] = (value[0],value[1].copy()) return value except ParseBaseException as pe: pe.__traceback__ = None ParserElement._exprArgCache[ lookup ] = pe raise _parse = _parseNoCache # argument cache for optimizing repeated calls when backtracking through recursive expressions _exprArgCache = {} def resetCache(): ParserElement._exprArgCache.clear() resetCache = staticmethod(resetCache) _packratEnabled = False def enablePackrat(): """Enables "packrat" parsing, which adds memoizing to the parsing logic. Repeated parse attempts at the same string location (which happens often in many complex grammars) can immediately return a cached value, instead of re-executing parsing/validating code. Memoizing is done of both valid results and parsing exceptions. This speedup may break existing programs that use parse actions that have side-effects. For this reason, packrat parsing is disabled when you first import pyparsing. To activate the packrat feature, your program must call the class method C{ParserElement.enablePackrat()}. If your program uses C{psyco} to "compile as you go", you must call C{enablePackrat} before calling C{psyco.full()}. If you do not do this, Python will crash. For best results, call C{enablePackrat()} immediately after importing pyparsing. """ if not ParserElement._packratEnabled: ParserElement._packratEnabled = True ParserElement._parse = ParserElement._parseCache enablePackrat = staticmethod(enablePackrat) def parseString( self, instring, parseAll=False ): """Execute the parse expression with the given string. This is the main interface to the client code, once the complete expression has been built. If you want the grammar to require that the entire input string be successfully parsed, then set C{parseAll} to True (equivalent to ending the grammar with C{L{StringEnd()}}). Note: C{parseString} implicitly calls C{expandtabs()} on the input string, in order to report proper column numbers in parse actions. If the input string contains tabs and the grammar uses parse actions that use the C{loc} argument to index into the string being parsed, you can ensure you have a consistent view of the input string by: - calling C{parseWithTabs} on your grammar before calling C{parseString} (see L{I{parseWithTabs}<parseWithTabs>}) - define your parse action using the full C{(s,loc,toks)} signature, and reference the input string using the parse action's C{s} argument - explictly expand the tabs in your input string before calling C{parseString} """ ParserElement.resetCache() if not self.streamlined: self.streamline() #~ self.saveAsList = True for e in self.ignoreExprs: e.streamline() if not self.keepTabs: instring = instring.expandtabs() try: loc, tokens = self._parse( instring, 0 ) if parseAll: loc = self.preParse( instring, loc ) se = Empty() + StringEnd() se._parse( instring, loc ) except ParseBaseException as exc: if ParserElement.verbose_stacktrace: raise else: # catch and re-raise exception from here, clears out pyparsing internal stack trace raise exc else: return tokens def scanString( self, instring, maxMatches=_MAX_INT, overlap=False ): """Scan the input string for expression matches. Each match will return the matching tokens, start location, and end location. May be called with optional C{maxMatches} argument, to clip scanning after 'n' matches are found. If C{overlap} is specified, then overlapping matches will be reported. Note that the start and end locations are reported relative to the string being parsed. See L{I{parseString}<parseString>} for more information on parsing strings with embedded tabs.""" if not self.streamlined: self.streamline() for e in self.ignoreExprs: e.streamline() if not self.keepTabs: instring = _ustr(instring).expandtabs() instrlen = len(instring) loc = 0 preparseFn = self.preParse parseFn = self._parse ParserElement.resetCache() matches = 0 try: while loc <= instrlen and matches < maxMatches: try: preloc = preparseFn( instring, loc ) nextLoc,tokens = parseFn( instring, preloc, callPreParse=False ) except ParseException: loc = preloc+1 else: if nextLoc > loc: matches += 1 yield tokens, preloc, nextLoc if overlap: nextloc = preparseFn( instring, loc ) if nextloc > loc: loc = nextLoc else: loc += 1 else: loc = nextLoc else: loc = preloc+1 except ParseBaseException as exc: if ParserElement.verbose_stacktrace: raise else: # catch and re-raise exception from here, clears out pyparsing internal stack trace raise exc def transformString( self, instring ): """Extension to C{L{scanString}}, to modify matching text with modified tokens that may be returned from a parse action. To use C{transformString}, define a grammar and attach a parse action to it that modifies the returned token list. Invoking C{transformString()} on a target string will then scan for matches, and replace the matched text patterns according to the logic in the parse action. C{transformString()} returns the resulting transformed string.""" out = [] lastE = 0 # force preservation of <TAB>s, to minimize unwanted transformation of string, and to # keep string locs straight between transformString and scanString self.keepTabs = True try: for t,s,e in self.scanString( instring ): out.append( instring[lastE:s] ) if t: if isinstance(t,ParseResults): out += t.asList() elif isinstance(t,list): out += t else: out.append(t) lastE = e out.append(instring[lastE:]) out = [o for o in out if o] return "".join(map(_ustr,_flatten(out))) except ParseBaseException as exc: if ParserElement.verbose_stacktrace: raise else: # catch and re-raise exception from here, clears out pyparsing internal stack trace raise exc def searchString( self, instring, maxMatches=_MAX_INT ): """Another extension to C{L{scanString}}, simplifying the access to the tokens found to match the given parse expression. May be called with optional C{maxMatches} argument, to clip searching after 'n' matches are found. """ try: return ParseResults([ t for t,s,e in self.scanString( instring, maxMatches ) ]) except ParseBaseException as exc: if ParserElement.verbose_stacktrace: raise else: # catch and re-raise exception from here, clears out pyparsing internal stack trace raise exc def __add__(self, other ): """Implementation of + operator - returns C{L{And}}""" if isinstance( other, basestring ): other = ParserElement.literalStringClass( other ) if not isinstance( other, ParserElement ): warnings.warn("Cannot combine element of type %s with ParserElement" % type(other), SyntaxWarning, stacklevel=2) return None return And( [ self, other ] ) def __radd__(self, other ): """Implementation of + operator when left operand is not a C{L{ParserElement}}""" if isinstance( other, basestring ): other = ParserElement.literalStringClass( other ) if not isinstance( other, ParserElement ): warnings.warn("Cannot combine element of type %s with ParserElement" % type(other), SyntaxWarning, stacklevel=2) return None return other + self def __sub__(self, other): """Implementation of - operator, returns C{L{And}} with error stop""" if isinstance( other, basestring ): other = ParserElement.literalStringClass( other ) if not isinstance( other, ParserElement ): warnings.warn("Cannot combine element of type %s with ParserElement" % type(other), SyntaxWarning, stacklevel=2) return None return And( [ self, And._ErrorStop(), other ] ) def __rsub__(self, other ): """Implementation of - operator when left operand is not a C{L{ParserElement}}""" if isinstance( other, basestring ): other = ParserElement.literalStringClass( other ) if not isinstance( other, ParserElement ): warnings.warn("Cannot combine element of type %s with ParserElement" % type(other), SyntaxWarning, stacklevel=2) return None return other - self def __mul__(self,other): """Implementation of * operator, allows use of C{expr * 3} in place of C{expr + expr + expr}. Expressions may also me multiplied by a 2-integer tuple, similar to C{{min,max}} multipliers in regular expressions. Tuples may also include C{None} as in: - C{expr*(n,None)} or C{expr*(n,)} is equivalent to C{expr*n + L{ZeroOrMore}(expr)} (read as "at least n instances of C{expr}") - C{expr*(None,n)} is equivalent to C{expr*(0,n)} (read as "0 to n instances of C{expr}") - C{expr*(None,None)} is equivalent to C{L{ZeroOrMore}(expr)} - C{expr*(1,None)} is equivalent to C{L{OneOrMore}(expr)} Note that C{expr*(None,n)} does not raise an exception if more than n exprs exist in the input stream; that is, C{expr*(None,n)} does not enforce a maximum number of expr occurrences. If this behavior is desired, then write C{expr*(None,n) + ~expr} """ if isinstance(other,int): minElements, optElements = other,0 elif isinstance(other,tuple): other = (other + (None, None))[:2] if other[0] is None: other = (0, other[1]) if isinstance(other[0],int) and other[1] is None: if other[0] == 0: return ZeroOrMore(self) if other[0] == 1: return OneOrMore(self) else: return self*other[0] + ZeroOrMore(self) elif isinstance(other[0],int) and isinstance(other[1],int): minElements, optElements = other optElements -= minElements else: raise TypeError("cannot multiply 'ParserElement' and ('%s','%s') objects", type(other[0]),type(other[1])) else: raise TypeError("cannot multiply 'ParserElement' and '%s' objects", type(other)) if minElements < 0: raise ValueError("cannot multiply ParserElement by negative value") if optElements < 0: raise ValueError("second tuple value must be greater or equal to first tuple value") if minElements == optElements == 0: raise ValueError("cannot multiply ParserElement by 0 or (0,0)") if (optElements): def makeOptionalList(n): if n>1: return Optional(self + makeOptionalList(n-1)) else: return Optional(self) if minElements: if minElements == 1: ret = self + makeOptionalList(optElements) else: ret = And([self]*minElements) + makeOptionalList(optElements) else: ret = makeOptionalList(optElements) else: if minElements == 1: ret = self else: ret = And([self]*minElements) return ret def __rmul__(self, other): return self.__mul__(other) def __or__(self, other ): """Implementation of | operator - returns C{L{MatchFirst}}""" if isinstance( other, basestring ): other = ParserElement.literalStringClass( other ) if not isinstance( other, ParserElement ): warnings.warn("Cannot combine element of type %s with ParserElement" % type(other), SyntaxWarning, stacklevel=2) return None return MatchFirst( [ self, other ] ) def __ror__(self, other ): """Implementation of | operator when left operand is not a C{L{ParserElement}}""" if isinstance( other, basestring ): other = ParserElement.literalStringClass( other ) if not isinstance( other, ParserElement ): warnings.warn("Cannot combine element of type %s with ParserElement" % type(other), SyntaxWarning, stacklevel=2) return None return other | self def __xor__(self, other ): """Implementation of ^ operator - returns C{L{Or}}""" if isinstance( other, basestring ): other = ParserElement.literalStringClass( other ) if not isinstance( other, ParserElement ): warnings.warn("Cannot combine element of type %s with ParserElement" % type(other), SyntaxWarning, stacklevel=2) return None return Or( [ self, other ] ) def __rxor__(self, other ): """Implementation of ^ operator when left operand is not a C{L{ParserElement}}""" if isinstance( other, basestring ): other = ParserElement.literalStringClass( other ) if not isinstance( other, ParserElement ): warnings.warn("Cannot combine element of type %s with ParserElement" % type(other), SyntaxWarning, stacklevel=2) return None return other ^ self def __and__(self, other ): """Implementation of & operator - returns C{L{Each}}""" if isinstance( other, basestring ): other = ParserElement.literalStringClass( other ) if not isinstance( other, ParserElement ): warnings.warn("Cannot combine element of type %s with ParserElement" % type(other), SyntaxWarning, stacklevel=2) return None return Each( [ self, other ] ) def __rand__(self, other ): """Implementation of & operator when left operand is not a C{L{ParserElement}}""" if isinstance( other, basestring ): other = ParserElement.literalStringClass( other ) if not isinstance( other, ParserElement ): warnings.warn("Cannot combine element of type %s with ParserElement" % type(other), SyntaxWarning, stacklevel=2) return None return other & self def __invert__( self ): """Implementation of ~ operator - returns C{L{NotAny}}""" return NotAny( self ) def __call__(self, name=None): """Shortcut for C{L{setResultsName}}, with C{listAllMatches=default}:: userdata = Word(alphas).setResultsName("name") + Word(nums+"-").setResultsName("socsecno") could be written as:: userdata = Word(alphas)("name") + Word(nums+"-")("socsecno") If C{name} is given with a trailing C{'*'} character, then C{listAllMatches} will be passed as C{True}. If C{name} is omitted, same as calling C{L{copy}}. """ if name is not None: return self.setResultsName(name) else: return self.copy() def suppress( self ): """Suppresses the output of this C{ParserElement}; useful to keep punctuation from cluttering up returned output. """ return Suppress( self ) def leaveWhitespace( self ): """Disables the skipping of whitespace before matching the characters in the C{ParserElement}'s defined pattern. This is normally only used internally by the pyparsing module, but may be needed in some whitespace-sensitive grammars. """ self.skipWhitespace = False return self def setWhitespaceChars( self, chars ): """Overrides the default whitespace chars """ self.skipWhitespace = True self.whiteChars = chars self.copyDefaultWhiteChars = False return self def parseWithTabs( self ): """Overrides default behavior to expand C{<TAB>}s to spaces before parsing the input string. Must be called before C{parseString} when the input grammar contains elements that match C{<TAB>} characters.""" self.keepTabs = True return self def ignore( self, other ): """Define expression to be ignored (e.g., comments) while doing pattern matching; may be called repeatedly, to define multiple comment or other ignorable patterns. """ if isinstance( other, Suppress ): if other not in self.ignoreExprs: self.ignoreExprs.append( other.copy() ) else: self.ignoreExprs.append( Suppress( other.copy() ) ) return self def setDebugActions( self, startAction, successAction, exceptionAction ): """Enable display of debugging messages while doing pattern matching.""" self.debugActions = (startAction or _defaultStartDebugAction, successAction or _defaultSuccessDebugAction, exceptionAction or _defaultExceptionDebugAction) self.debug = True return self def setDebug( self, flag=True ): """Enable display of debugging messages while doing pattern matching. Set C{flag} to True to enable, False to disable.""" if flag: self.setDebugActions( _defaultStartDebugAction, _defaultSuccessDebugAction, _defaultExceptionDebugAction ) else: self.debug = False return self def __str__( self ): return self.name def __repr__( self ): return _ustr(self) def streamline( self ): self.streamlined = True self.strRepr = None return self def checkRecursion( self, parseElementList ): pass def validate( self, validateTrace=[] ): """Check defined expressions for valid structure, check for infinite recursive definitions.""" self.checkRecursion( [] ) def parseFile( self, file_or_filename, parseAll=False ): """Execute the parse expression on the given file or filename. If a filename is specified (instead of a file object), the entire file is opened, read, and closed before parsing. """ try: file_contents = file_or_filename.read() except AttributeError: f = open(file_or_filename, "r") file_contents = f.read() f.close() try: return self.parseString(file_contents, parseAll) except ParseBaseException as exc: if ParserElement.verbose_stacktrace: raise else: # catch and re-raise exception from here, clears out pyparsing internal stack trace raise exc def __eq__(self,other): if isinstance(other, ParserElement): return self is other or self.__dict__ == other.__dict__ elif isinstance(other, basestring): try: self.parseString(_ustr(other), parseAll=True) return True except ParseBaseException: return False else: return super(ParserElement,self)==other def __ne__(self,other): return not (self == other) def __hash__(self): return hash(id(self)) def __req__(self,other): return self == other def __rne__(self,other): return not (self == other) class Token(ParserElement): """Abstract C{ParserElement} subclass, for defining atomic matching patterns.""" def __init__( self ): super(Token,self).__init__( savelist=False ) def setName(self, name): s = super(Token,self).setName(name) self.errmsg = "Expected " + self.name return s class Empty(Token): """An empty token, will always match.""" def __init__( self ): super(Empty,self).__init__() self.name = "Empty" self.mayReturnEmpty = True self.mayIndexError = False class NoMatch(Token): """A token that will never match.""" def __init__( self ): super(NoMatch,self).__init__() self.name = "NoMatch" self.mayReturnEmpty = True self.mayIndexError = False self.errmsg = "Unmatchable token" def parseImpl( self, instring, loc, doActions=True ): raise ParseException(instring, loc, self.errmsg, self) class Literal(Token): """Token to exactly match a specified string.""" def __init__( self, matchString ): super(Literal,self).__init__() self.match = matchString self.matchLen = len(matchString) try: self.firstMatchChar = matchString[0] except IndexError: warnings.warn("null string passed to Literal; use Empty() instead", SyntaxWarning, stacklevel=2) self.__class__ = Empty self.name = '"%s"' % _ustr(self.match) self.errmsg = "Expected " + self.name self.mayReturnEmpty = False self.mayIndexError = False # Performance tuning: this routine gets called a *lot* # if this is a single character match string and the first character matches, # short-circuit as quickly as possible, and avoid calling startswith #~ @profile def parseImpl( self, instring, loc, doActions=True ): if (instring[loc] == self.firstMatchChar and (self.matchLen==1 or instring.startswith(self.match,loc)) ): return loc+self.matchLen, self.match raise ParseException(instring, loc, self.errmsg, self) _L = Literal ParserElement.literalStringClass = Literal class Keyword(Token): """Token to exactly match a specified string as a keyword, that is, it must be immediately followed by a non-keyword character. Compare with C{L{Literal}}:: Literal("if") will match the leading C{'if'} in C{'ifAndOnlyIf'}. Keyword("if") will not; it will only match the leading C{'if'} in C{'if x=1'}, or C{'if(y==2)'} Accepts two optional constructor arguments in addition to the keyword string: C{identChars} is a string of characters that would be valid identifier characters, defaulting to all alphanumerics + "_" and "$"; C{caseless} allows case-insensitive matching, default is C{False}. """ DEFAULT_KEYWORD_CHARS = alphanums+"_$" def __init__( self, matchString, identChars=DEFAULT_KEYWORD_CHARS, caseless=False ): super(Keyword,self).__init__() self.match = matchString self.matchLen = len(matchString) try: self.firstMatchChar = matchString[0] except IndexError: warnings.warn("null string passed to Keyword; use Empty() instead", SyntaxWarning, stacklevel=2) self.name = '"%s"' % self.match self.errmsg = "Expected " + self.name self.mayReturnEmpty = False self.mayIndexError = False self.caseless = caseless if caseless: self.caselessmatch = matchString.upper() identChars = identChars.upper() self.identChars = set(identChars) def parseImpl( self, instring, loc, doActions=True ): if self.caseless: if ( (instring[ loc:loc+self.matchLen ].upper() == self.caselessmatch) and (loc >= len(instring)-self.matchLen or instring[loc+self.matchLen].upper() not in self.identChars) and (loc == 0 or instring[loc-1].upper() not in self.identChars) ): return loc+self.matchLen, self.match else: if (instring[loc] == self.firstMatchChar and (self.matchLen==1 or instring.startswith(self.match,loc)) and (loc >= len(instring)-self.matchLen or instring[loc+self.matchLen] not in self.identChars) and (loc == 0 or instring[loc-1] not in self.identChars) ): return loc+self.matchLen, self.match raise ParseException(instring, loc, self.errmsg, self) def copy(self): c = super(Keyword,self).copy() c.identChars = Keyword.DEFAULT_KEYWORD_CHARS return c def setDefaultKeywordChars( chars ): """Overrides the default Keyword chars """ Keyword.DEFAULT_KEYWORD_CHARS = chars setDefaultKeywordChars = staticmethod(setDefaultKeywordChars) class CaselessLiteral(Literal): """Token to match a specified string, ignoring case of letters. Note: the matched results will always be in the case of the given match string, NOT the case of the input text. """ def __init__( self, matchString ): super(CaselessLiteral,self).__init__( matchString.upper() ) # Preserve the defining literal. self.returnString = matchString self.name = "'%s'" % self.returnString self.errmsg = "Expected " + self.name def parseImpl( self, instring, loc, doActions=True ): if instring[ loc:loc+self.matchLen ].upper() == self.match: return loc+self.matchLen, self.returnString raise ParseException(instring, loc, self.errmsg, self) class CaselessKeyword(Keyword): def __init__( self, matchString, identChars=Keyword.DEFAULT_KEYWORD_CHARS ): super(CaselessKeyword,self).__init__( matchString, identChars, caseless=True ) def parseImpl( self, instring, loc, doActions=True ): if ( (instring[ loc:loc+self.matchLen ].upper() == self.caselessmatch) and (loc >= len(instring)-self.matchLen or instring[loc+self.matchLen].upper() not in self.identChars) ): return loc+self.matchLen, self.match raise ParseException(instring, loc, self.errmsg, self) class Word(Token): """Token for matching words composed of allowed character sets. Defined with string containing all allowed initial characters, an optional string containing allowed body characters (if omitted, defaults to the initial character set), and an optional minimum, maximum, and/or exact length. The default value for C{min} is 1 (a minimum value < 1 is not valid); the default values for C{max} and C{exact} are 0, meaning no maximum or exact length restriction. An optional C{exclude} parameter can list characters that might be found in the input C{bodyChars} string; useful to define a word of all printables except for one or two characters, for instance. """ def __init__( self, initChars, bodyChars=None, min=1, max=0, exact=0, asKeyword=False, excludeChars=None ): super(Word,self).__init__() if excludeChars: initChars = ''.join(c for c in initChars if c not in excludeChars) if bodyChars: bodyChars = ''.join(c for c in bodyChars if c not in excludeChars) self.initCharsOrig = initChars self.initChars = set(initChars) if bodyChars : self.bodyCharsOrig = bodyChars self.bodyChars = set(bodyChars) else: self.bodyCharsOrig = initChars self.bodyChars = set(initChars) self.maxSpecified = max > 0 if min < 1: raise ValueError("cannot specify a minimum length < 1; use Optional(Word()) if zero-length word is permitted") self.minLen = min if max > 0: self.maxLen = max else: self.maxLen = _MAX_INT if exact > 0: self.maxLen = exact self.minLen = exact self.name = _ustr(self) self.errmsg = "Expected " + self.name self.mayIndexError = False self.asKeyword = asKeyword if ' ' not in self.initCharsOrig+self.bodyCharsOrig and (min==1 and max==0 and exact==0): if self.bodyCharsOrig == self.initCharsOrig: self.reString = "[%s]+" % _escapeRegexRangeChars(self.initCharsOrig) elif len(self.bodyCharsOrig) == 1: self.reString = "%s[%s]*" % \ (re.escape(self.initCharsOrig), _escapeRegexRangeChars(self.bodyCharsOrig),) else: self.reString = "[%s][%s]*" % \ (_escapeRegexRangeChars(self.initCharsOrig), _escapeRegexRangeChars(self.bodyCharsOrig),) if self.asKeyword: self.reString = r"\b"+self.reString+r"\b" try: self.re = re.compile( self.reString ) except: self.re = None def parseImpl( self, instring, loc, doActions=True ): if self.re: result = self.re.match(instring,loc) if not result: raise ParseException(instring, loc, self.errmsg, self) loc = result.end() return loc, result.group() if not(instring[ loc ] in self.initChars): raise ParseException(instring, loc, self.errmsg, self) start = loc loc += 1 instrlen = len(instring) bodychars = self.bodyChars maxloc = start + self.maxLen maxloc = min( maxloc, instrlen ) while loc < maxloc and instring[loc] in bodychars: loc += 1 throwException = False if loc - start < self.minLen: throwException = True if self.maxSpecified and loc < instrlen and instring[loc] in bodychars: throwException = True if self.asKeyword: if (start>0 and instring[start-1] in bodychars) or (loc<instrlen and instring[loc] in bodychars): throwException = True if throwException: raise ParseException(instring, loc, self.errmsg, self) return loc, instring[start:loc] def __str__( self ): try: return super(Word,self).__str__() except: pass if self.strRepr is None: def charsAsStr(s): if len(s)>4: return s[:4]+"..." else: return s if ( self.initCharsOrig != self.bodyCharsOrig ): self.strRepr = "W:(%s,%s)" % ( charsAsStr(self.initCharsOrig), charsAsStr(self.bodyCharsOrig) ) else: self.strRepr = "W:(%s)" % charsAsStr(self.initCharsOrig) return self.strRepr class Regex(Token): """Token for matching strings that match a given regular expression. Defined with string specifying the regular expression in a form recognized by the inbuilt Python re module. """ compiledREtype = type(re.compile("[A-Z]")) def __init__( self, pattern, flags=0): """The parameters C{pattern} and C{flags} are passed to the C{re.compile()} function as-is. See the Python C{re} module for an explanation of the acceptable patterns and flags.""" super(Regex,self).__init__() if isinstance(pattern, basestring): if len(pattern) == 0: warnings.warn("null string passed to Regex; use Empty() instead", SyntaxWarning, stacklevel=2) self.pattern = pattern self.flags = flags try: self.re = re.compile(self.pattern, self.flags) self.reString = self.pattern except sre_constants.error: warnings.warn("invalid pattern (%s) passed to Regex" % pattern, SyntaxWarning, stacklevel=2) raise elif isinstance(pattern, Regex.compiledREtype): self.re = pattern self.pattern = \ self.reString = str(pattern) self.flags = flags else: raise ValueError("Regex may only be constructed with a string or a compiled RE object") self.name = _ustr(self) self.errmsg = "Expected " + self.name self.mayIndexError = False self.mayReturnEmpty = True def parseImpl( self, instring, loc, doActions=True ): result = self.re.match(instring,loc) if not result: raise ParseException(instring, loc, self.errmsg, self) loc = result.end() d = result.groupdict() ret = ParseResults(result.group()) if d: for k in d: ret[k] = d[k] return loc,ret def __str__( self ): try: return super(Regex,self).__str__() except: pass if self.strRepr is None: self.strRepr = "Re:(%s)" % repr(self.pattern) return self.strRepr class QuotedString(Token): """Token for matching strings that are delimited by quoting characters. """ def __init__( self, quoteChar, escChar=None, escQuote=None, multiline=False, unquoteResults=True, endQuoteChar=None): """ Defined with the following parameters: - quoteChar - string of one or more characters defining the quote delimiting string - escChar - character to escape quotes, typically backslash (default=None) - escQuote - special quote sequence to escape an embedded quote string (such as SQL's "" to escape an embedded ") (default=None) - multiline - boolean indicating whether quotes can span multiple lines (default=C{False}) - unquoteResults - boolean indicating whether the matched text should be unquoted (default=C{True}) - endQuoteChar - string of one or more characters defining the end of the quote delimited string (default=C{None} => same as quoteChar) """ super(QuotedString,self).__init__() # remove white space from quote chars - wont work anyway quoteChar = quoteChar.strip() if len(quoteChar) == 0: warnings.warn("quoteChar cannot be the empty string",SyntaxWarning,stacklevel=2) raise SyntaxError() if endQuoteChar is None: endQuoteChar = quoteChar else: endQuoteChar = endQuoteChar.strip() if len(endQuoteChar) == 0: warnings.warn("endQuoteChar cannot be the empty string",SyntaxWarning,stacklevel=2) raise SyntaxError() self.quoteChar = quoteChar self.quoteCharLen = len(quoteChar) self.firstQuoteChar = quoteChar[0] self.endQuoteChar = endQuoteChar self.endQuoteCharLen = len(endQuoteChar) self.escChar = escChar self.escQuote = escQuote self.unquoteResults = unquoteResults if multiline: self.flags = re.MULTILINE | re.DOTALL self.pattern = r'%s(?:[^%s%s]' % \ ( re.escape(self.quoteChar), _escapeRegexRangeChars(self.endQuoteChar[0]), (escChar is not None and _escapeRegexRangeChars(escChar) or '') ) else: self.flags = 0 self.pattern = r'%s(?:[^%s\n\r%s]' % \ ( re.escape(self.quoteChar), _escapeRegexRangeChars(self.endQuoteChar[0]), (escChar is not None and _escapeRegexRangeChars(escChar) or '') ) if len(self.endQuoteChar) > 1: self.pattern += ( '|(?:' + ')|(?:'.join("%s[^%s]" % (re.escape(self.endQuoteChar[:i]), _escapeRegexRangeChars(self.endQuoteChar[i])) for i in range(len(self.endQuoteChar)-1,0,-1)) + ')' ) if escQuote: self.pattern += (r'|(?:%s)' % re.escape(escQuote)) if escChar: self.pattern += (r'|(?:%s.)' % re.escape(escChar)) charset = ''.join(set(self.quoteChar[0]+self.endQuoteChar[0])).replace('^',r'\^').replace('-',r'\-') self.escCharReplacePattern = re.escape(self.escChar)+("([%s])" % charset) self.pattern += (r')*%s' % re.escape(self.endQuoteChar)) try: self.re = re.compile(self.pattern, self.flags) self.reString = self.pattern except sre_constants.error: warnings.warn("invalid pattern (%s) passed to Regex" % self.pattern, SyntaxWarning, stacklevel=2) raise self.name = _ustr(self) self.errmsg = "Expected " + self.name self.mayIndexError = False self.mayReturnEmpty = True def parseImpl( self, instring, loc, doActions=True ): result = instring[loc] == self.firstQuoteChar and self.re.match(instring,loc) or None if not result: raise ParseException(instring, loc, self.errmsg, self) loc = result.end() ret = result.group() if self.unquoteResults: # strip off quotes ret = ret[self.quoteCharLen:-self.endQuoteCharLen] if isinstance(ret,basestring): # replace escaped characters if self.escChar: ret = re.sub(self.escCharReplacePattern,"\g<1>",ret) # replace escaped quotes if self.escQuote: ret = ret.replace(self.escQuote, self.endQuoteChar) return loc, ret def __str__( self ): try: return super(QuotedString,self).__str__() except: pass if self.strRepr is None: self.strRepr = "quoted string, starting with %s ending with %s" % (self.quoteChar, self.endQuoteChar) return self.strRepr class CharsNotIn(Token): """Token for matching words composed of characters *not* in a given set. Defined with string containing all disallowed characters, and an optional minimum, maximum, and/or exact length. The default value for C{min} is 1 (a minimum value < 1 is not valid); the default values for C{max} and C{exact} are 0, meaning no maximum or exact length restriction. """ def __init__( self, notChars, min=1, max=0, exact=0 ): super(CharsNotIn,self).__init__() self.skipWhitespace = False self.notChars = notChars if min < 1: raise ValueError("cannot specify a minimum length < 1; use Optional(CharsNotIn()) if zero-length char group is permitted") self.minLen = min if max > 0: self.maxLen = max else: self.maxLen = _MAX_INT if exact > 0: self.maxLen = exact self.minLen = exact self.name = _ustr(self) self.errmsg = "Expected " + self.name self.mayReturnEmpty = ( self.minLen == 0 ) self.mayIndexError = False def parseImpl( self, instring, loc, doActions=True ): if instring[loc] in self.notChars: raise ParseException(instring, loc, self.errmsg, self) start = loc loc += 1 notchars = self.notChars maxlen = min( start+self.maxLen, len(instring) ) while loc < maxlen and \ (instring[loc] not in notchars): loc += 1 if loc - start < self.minLen: raise ParseException(instring, loc, self.errmsg, self) return loc, instring[start:loc] def __str__( self ): try: return super(CharsNotIn, self).__str__() except: pass if self.strRepr is None: if len(self.notChars) > 4: self.strRepr = "!W:(%s...)" % self.notChars[:4] else: self.strRepr = "!W:(%s)" % self.notChars return self.strRepr class White(Token): """Special matching class for matching whitespace. Normally, whitespace is ignored by pyparsing grammars. This class is included when some whitespace structures are significant. Define with a string containing the whitespace characters to be matched; default is C{" \\t\\r\\n"}. Also takes optional C{min}, C{max}, and C{exact} arguments, as defined for the C{L{Word}} class.""" whiteStrs = { " " : "<SPC>", "\t": "<TAB>", "\n": "<LF>", "\r": "<CR>", "\f": "<FF>", } def __init__(self, ws=" \t\r\n", min=1, max=0, exact=0): super(White,self).__init__() self.matchWhite = ws self.setWhitespaceChars( "".join(c for c in self.whiteChars if c not in self.matchWhite) ) #~ self.leaveWhitespace() self.name = ("".join(White.whiteStrs[c] for c in self.matchWhite)) self.mayReturnEmpty = True self.errmsg = "Expected " + self.name self.minLen = min if max > 0: self.maxLen = max else: self.maxLen = _MAX_INT if exact > 0: self.maxLen = exact self.minLen = exact def parseImpl( self, instring, loc, doActions=True ): if not(instring[ loc ] in self.matchWhite): raise ParseException(instring, loc, self.errmsg, self) start = loc loc += 1 maxloc = start + self.maxLen maxloc = min( maxloc, len(instring) ) while loc < maxloc and instring[loc] in self.matchWhite: loc += 1 if loc - start < self.minLen: raise ParseException(instring, loc, self.errmsg, self) return loc, instring[start:loc] class _PositionToken(Token): def __init__( self ): super(_PositionToken,self).__init__() self.name=self.__class__.__name__ self.mayReturnEmpty = True self.mayIndexError = False class GoToColumn(_PositionToken): """Token to advance to a specific column of input text; useful for tabular report scraping.""" def __init__( self, colno ): super(GoToColumn,self).__init__() self.col = colno def preParse( self, instring, loc ): if col(loc,instring) != self.col: instrlen = len(instring) if self.ignoreExprs: loc = self._skipIgnorables( instring, loc ) while loc < instrlen and instring[loc].isspace() and col( loc, instring ) != self.col : loc += 1 return loc def parseImpl( self, instring, loc, doActions=True ): thiscol = col( loc, instring ) if thiscol > self.col: raise ParseException( instring, loc, "Text not in expected column", self ) newloc = loc + self.col - thiscol ret = instring[ loc: newloc ] return newloc, ret class LineStart(_PositionToken): """Matches if current position is at the beginning of a line within the parse string""" def __init__( self ): super(LineStart,self).__init__() self.setWhitespaceChars( ParserElement.DEFAULT_WHITE_CHARS.replace("\n","") ) self.errmsg = "Expected start of line" def preParse( self, instring, loc ): preloc = super(LineStart,self).preParse(instring,loc) if instring[preloc] == "\n": loc += 1 return loc def parseImpl( self, instring, loc, doActions=True ): if not( loc==0 or (loc == self.preParse( instring, 0 )) or (instring[loc-1] == "\n") ): #col(loc, instring) != 1: raise ParseException(instring, loc, self.errmsg, self) return loc, [] class LineEnd(_PositionToken): """Matches if current position is at the end of a line within the parse string""" def __init__( self ): super(LineEnd,self).__init__() self.setWhitespaceChars( ParserElement.DEFAULT_WHITE_CHARS.replace("\n","") ) self.errmsg = "Expected end of line" def parseImpl( self, instring, loc, doActions=True ): if loc<len(instring): if instring[loc] == "\n": return loc+1, "\n" else: raise ParseException(instring, loc, self.errmsg, self) elif loc == len(instring): return loc+1, [] else: raise ParseException(instring, loc, self.errmsg, self) class StringStart(_PositionToken): """Matches if current position is at the beginning of the parse string""" def __init__( self ): super(StringStart,self).__init__() self.errmsg = "Expected start of text" def parseImpl( self, instring, loc, doActions=True ): if loc != 0: # see if entire string up to here is just whitespace and ignoreables if loc != self.preParse( instring, 0 ): raise ParseException(instring, loc, self.errmsg, self) return loc, [] class StringEnd(_PositionToken): """Matches if current position is at the end of the parse string""" def __init__( self ): super(StringEnd,self).__init__() self.errmsg = "Expected end of text" def parseImpl( self, instring, loc, doActions=True ): if loc < len(instring): raise ParseException(instring, loc, self.errmsg, self) elif loc == len(instring): return loc+1, [] elif loc > len(instring): return loc, [] else: raise ParseException(instring, loc, self.errmsg, self) class WordStart(_PositionToken): """Matches if the current position is at the beginning of a Word, and is not preceded by any character in a given set of C{wordChars} (default=C{printables}). To emulate the C{\b} behavior of regular expressions, use C{WordStart(alphanums)}. C{WordStart} will also match at the beginning of the string being parsed, or at the beginning of a line. """ def __init__(self, wordChars = printables): super(WordStart,self).__init__() self.wordChars = set(wordChars) self.errmsg = "Not at the start of a word" def parseImpl(self, instring, loc, doActions=True ): if loc != 0: if (instring[loc-1] in self.wordChars or instring[loc] not in self.wordChars): raise ParseException(instring, loc, self.errmsg, self) return loc, [] class WordEnd(_PositionToken): """Matches if the current position is at the end of a Word, and is not followed by any character in a given set of C{wordChars} (default=C{printables}). To emulate the C{\b} behavior of regular expressions, use C{WordEnd(alphanums)}. C{WordEnd} will also match at the end of the string being parsed, or at the end of a line. """ def __init__(self, wordChars = printables): super(WordEnd,self).__init__() self.wordChars = set(wordChars) self.skipWhitespace = False self.errmsg = "Not at the end of a word" def parseImpl(self, instring, loc, doActions=True ): instrlen = len(instring) if instrlen>0 and loc<instrlen: if (instring[loc] in self.wordChars or instring[loc-1] not in self.wordChars): raise ParseException(instring, loc, self.errmsg, self) return loc, [] class ParseExpression(ParserElement): """Abstract subclass of ParserElement, for combining and post-processing parsed tokens.""" def __init__( self, exprs, savelist = False ): super(ParseExpression,self).__init__(savelist) if isinstance( exprs, _generatorType ): exprs = list(exprs) if isinstance( exprs, basestring ): self.exprs = [ Literal( exprs ) ] elif isinstance( exprs, collections.Sequence ): # if sequence of strings provided, wrap with Literal if all(isinstance(expr, basestring) for expr in exprs): exprs = map(Literal, exprs) self.exprs = list(exprs) else: try: self.exprs = list( exprs ) except TypeError: self.exprs = [ exprs ] self.callPreparse = False def __getitem__( self, i ): return self.exprs[i] def append( self, other ): self.exprs.append( other ) self.strRepr = None return self def leaveWhitespace( self ): """Extends C{leaveWhitespace} defined in base class, and also invokes C{leaveWhitespace} on all contained expressions.""" self.skipWhitespace = False self.exprs = [ e.copy() for e in self.exprs ] for e in self.exprs: e.leaveWhitespace() return self def ignore( self, other ): if isinstance( other, Suppress ): if other not in self.ignoreExprs: super( ParseExpression, self).ignore( other ) for e in self.exprs: e.ignore( self.ignoreExprs[-1] ) else: super( ParseExpression, self).ignore( other ) for e in self.exprs: e.ignore( self.ignoreExprs[-1] ) return self def __str__( self ): try: return super(ParseExpression,self).__str__() except: pass if self.strRepr is None: self.strRepr = "%s:(%s)" % ( self.__class__.__name__, _ustr(self.exprs) ) return self.strRepr def streamline( self ): super(ParseExpression,self).streamline() for e in self.exprs: e.streamline() # collapse nested And's of the form And( And( And( a,b), c), d) to And( a,b,c,d ) # but only if there are no parse actions or resultsNames on the nested And's # (likewise for Or's and MatchFirst's) if ( len(self.exprs) == 2 ): other = self.exprs[0] if ( isinstance( other, self.__class__ ) and not(other.parseAction) and other.resultsName is None and not other.debug ): self.exprs = other.exprs[:] + [ self.exprs[1] ] self.strRepr = None self.mayReturnEmpty |= other.mayReturnEmpty self.mayIndexError |= other.mayIndexError other = self.exprs[-1] if ( isinstance( other, self.__class__ ) and not(other.parseAction) and other.resultsName is None and not other.debug ): self.exprs = self.exprs[:-1] + other.exprs[:] self.strRepr = None self.mayReturnEmpty |= other.mayReturnEmpty self.mayIndexError |= other.mayIndexError return self def setResultsName( self, name, listAllMatches=False ): ret = super(ParseExpression,self).setResultsName(name,listAllMatches) return ret def validate( self, validateTrace=[] ): tmp = validateTrace[:]+[self] for e in self.exprs: e.validate(tmp) self.checkRecursion( [] ) def copy(self): ret = super(ParseExpression,self).copy() ret.exprs = [e.copy() for e in self.exprs] return ret class And(ParseExpression): """Requires all given C{ParseExpression}s to be found in the given order. Expressions may be separated by whitespace. May be constructed using the C{'+'} operator. """ class _ErrorStop(Empty): def __init__(self, *args, **kwargs): super(And._ErrorStop,self).__init__(*args, **kwargs) self.name = '-' self.leaveWhitespace() def __init__( self, exprs, savelist = True ): super(And,self).__init__(exprs, savelist) self.mayReturnEmpty = all(e.mayReturnEmpty for e in self.exprs) self.setWhitespaceChars( exprs[0].whiteChars ) self.skipWhitespace = exprs[0].skipWhitespace self.callPreparse = True def parseImpl( self, instring, loc, doActions=True ): # pass False as last arg to _parse for first element, since we already # pre-parsed the string as part of our And pre-parsing loc, resultlist = self.exprs[0]._parse( instring, loc, doActions, callPreParse=False ) errorStop = False for e in self.exprs[1:]: if isinstance(e, And._ErrorStop): errorStop = True continue if errorStop: try: loc, exprtokens = e._parse( instring, loc, doActions ) except ParseSyntaxException: raise except ParseBaseException as pe: pe.__traceback__ = None raise ParseSyntaxException(pe) except IndexError: raise ParseSyntaxException( ParseException(instring, len(instring), self.errmsg, self) ) else: loc, exprtokens = e._parse( instring, loc, doActions ) if exprtokens or exprtokens.haskeys(): resultlist += exprtokens return loc, resultlist def __iadd__(self, other ): if isinstance( other, basestring ): other = Literal( other ) return self.append( other ) #And( [ self, other ] ) def checkRecursion( self, parseElementList ): subRecCheckList = parseElementList[:] + [ self ] for e in self.exprs: e.checkRecursion( subRecCheckList ) if not e.mayReturnEmpty: break def __str__( self ): if hasattr(self,"name"): return self.name if self.strRepr is None: self.strRepr = "{" + " ".join(_ustr(e) for e in self.exprs) + "}" return self.strRepr class Or(ParseExpression): """Requires that at least one C{ParseExpression} is found. If two expressions match, the expression that matches the longest string will be used. May be constructed using the C{'^'} operator. """ def __init__( self, exprs, savelist = False ): super(Or,self).__init__(exprs, savelist) if self.exprs: self.mayReturnEmpty = any(e.mayReturnEmpty for e in self.exprs) else: self.mayReturnEmpty = True def parseImpl( self, instring, loc, doActions=True ): maxExcLoc = -1 maxMatchLoc = -1 maxException = None for e in self.exprs: try: loc2 = e.tryParse( instring, loc ) except ParseException as err: err.__traceback__ = None if err.loc > maxExcLoc: maxException = err maxExcLoc = err.loc except IndexError: if len(instring) > maxExcLoc: maxException = ParseException(instring,len(instring),e.errmsg,self) maxExcLoc = len(instring) else: if loc2 > maxMatchLoc: maxMatchLoc = loc2 maxMatchExp = e if maxMatchLoc < 0: if maxException is not None: raise maxException else: raise ParseException(instring, loc, "no defined alternatives to match", self) return maxMatchExp._parse( instring, loc, doActions ) def __ixor__(self, other ): if isinstance( other, basestring ): other = ParserElement.literalStringClass( other ) return self.append( other ) #Or( [ self, other ] ) def __str__( self ): if hasattr(self,"name"): return self.name if self.strRepr is None: self.strRepr = "{" + " ^ ".join(_ustr(e) for e in self.exprs) + "}" return self.strRepr def checkRecursion( self, parseElementList ): subRecCheckList = parseElementList[:] + [ self ] for e in self.exprs: e.checkRecursion( subRecCheckList ) class MatchFirst(ParseExpression): """Requires that at least one C{ParseExpression} is found. If two expressions match, the first one listed is the one that will match. May be constructed using the C{'|'} operator. """ def __init__( self, exprs, savelist = False ): super(MatchFirst,self).__init__(exprs, savelist) if self.exprs: self.mayReturnEmpty = any(e.mayReturnEmpty for e in self.exprs) else: self.mayReturnEmpty = True def parseImpl( self, instring, loc, doActions=True ): maxExcLoc = -1 maxException = None for e in self.exprs: try: ret = e._parse( instring, loc, doActions ) return ret except ParseException as err: if err.loc > maxExcLoc: maxException = err maxExcLoc = err.loc except IndexError: if len(instring) > maxExcLoc: maxException = ParseException(instring,len(instring),e.errmsg,self) maxExcLoc = len(instring) # only got here if no expression matched, raise exception for match that made it the furthest else: if maxException is not None: raise maxException else: raise ParseException(instring, loc, "no defined alternatives to match", self) def __ior__(self, other ): if isinstance( other, basestring ): other = ParserElement.literalStringClass( other ) return self.append( other ) #MatchFirst( [ self, other ] ) def __str__( self ): if hasattr(self,"name"): return self.name if self.strRepr is None: self.strRepr = "{" + " | ".join(_ustr(e) for e in self.exprs) + "}" return self.strRepr def checkRecursion( self, parseElementList ): subRecCheckList = parseElementList[:] + [ self ] for e in self.exprs: e.checkRecursion( subRecCheckList ) class Each(ParseExpression): """Requires all given C{ParseExpression}s to be found, but in any order. Expressions may be separated by whitespace. May be constructed using the C{'&'} operator. """ def __init__( self, exprs, savelist = True ): super(Each,self).__init__(exprs, savelist) self.mayReturnEmpty = all(e.mayReturnEmpty for e in self.exprs) self.skipWhitespace = True self.initExprGroups = True def parseImpl( self, instring, loc, doActions=True ): if self.initExprGroups: opt1 = [ e.expr for e in self.exprs if isinstance(e,Optional) ] opt2 = [ e for e in self.exprs if e.mayReturnEmpty and e not in opt1 ] self.optionals = opt1 + opt2 self.multioptionals = [ e.expr for e in self.exprs if isinstance(e,ZeroOrMore) ] self.multirequired = [ e.expr for e in self.exprs if isinstance(e,OneOrMore) ] self.required = [ e for e in self.exprs if not isinstance(e,(Optional,ZeroOrMore,OneOrMore)) ] self.required += self.multirequired self.initExprGroups = False tmpLoc = loc tmpReqd = self.required[:] tmpOpt = self.optionals[:] matchOrder = [] keepMatching = True while keepMatching: tmpExprs = tmpReqd + tmpOpt + self.multioptionals + self.multirequired failed = [] for e in tmpExprs: try: tmpLoc = e.tryParse( instring, tmpLoc ) except ParseException: failed.append(e) else: matchOrder.append(e) if e in tmpReqd: tmpReqd.remove(e) elif e in tmpOpt: tmpOpt.remove(e) if len(failed) == len(tmpExprs): keepMatching = False if tmpReqd: missing = ", ".join(_ustr(e) for e in tmpReqd) raise ParseException(instring,loc,"Missing one or more required elements (%s)" % missing ) # add any unmatched Optionals, in case they have default values defined matchOrder += [e for e in self.exprs if isinstance(e,Optional) and e.expr in tmpOpt] resultlist = [] for e in matchOrder: loc,results = e._parse(instring,loc,doActions) resultlist.append(results) finalResults = ParseResults([]) for r in resultlist: dups = {} for k in r.keys(): if k in finalResults: tmp = ParseResults(finalResults[k]) tmp += ParseResults(r[k]) dups[k] = tmp finalResults += ParseResults(r) for k,v in dups.items(): finalResults[k] = v return loc, finalResults def __str__( self ): if hasattr(self,"name"): return self.name if self.strRepr is None: self.strRepr = "{" + " & ".join(_ustr(e) for e in self.exprs) + "}" return self.strRepr def checkRecursion( self, parseElementList ): subRecCheckList = parseElementList[:] + [ self ] for e in self.exprs: e.checkRecursion( subRecCheckList ) class ParseElementEnhance(ParserElement): """Abstract subclass of C{ParserElement}, for combining and post-processing parsed tokens.""" def __init__( self, expr, savelist=False ): super(ParseElementEnhance,self).__init__(savelist) if isinstance( expr, basestring ): expr = Literal(expr) self.expr = expr self.strRepr = None if expr is not None: self.mayIndexError = expr.mayIndexError self.mayReturnEmpty = expr.mayReturnEmpty self.setWhitespaceChars( expr.whiteChars ) self.skipWhitespace = expr.skipWhitespace self.saveAsList = expr.saveAsList self.callPreparse = expr.callPreparse self.ignoreExprs.extend(expr.ignoreExprs) def parseImpl( self, instring, loc, doActions=True ): if self.expr is not None: return self.expr._parse( instring, loc, doActions, callPreParse=False ) else: raise ParseException("",loc,self.errmsg,self) def leaveWhitespace( self ): self.skipWhitespace = False self.expr = self.expr.copy() if self.expr is not None: self.expr.leaveWhitespace() return self def ignore( self, other ): if isinstance( other, Suppress ): if other not in self.ignoreExprs: super( ParseElementEnhance, self).ignore( other ) if self.expr is not None: self.expr.ignore( self.ignoreExprs[-1] ) else: super( ParseElementEnhance, self).ignore( other ) if self.expr is not None: self.expr.ignore( self.ignoreExprs[-1] ) return self def streamline( self ): super(ParseElementEnhance,self).streamline() if self.expr is not None: self.expr.streamline() return self def checkRecursion( self, parseElementList ): if self in parseElementList: raise RecursiveGrammarException( parseElementList+[self] ) subRecCheckList = parseElementList[:] + [ self ] if self.expr is not None: self.expr.checkRecursion( subRecCheckList ) def validate( self, validateTrace=[] ): tmp = validateTrace[:]+[self] if self.expr is not None: self.expr.validate(tmp) self.checkRecursion( [] ) def __str__( self ): try: return super(ParseElementEnhance,self).__str__() except: pass if self.strRepr is None and self.expr is not None: self.strRepr = "%s:(%s)" % ( self.__class__.__name__, _ustr(self.expr) ) return self.strRepr class FollowedBy(ParseElementEnhance): """Lookahead matching of the given parse expression. C{FollowedBy} does *not* advance the parsing position within the input string, it only verifies that the specified parse expression matches at the current position. C{FollowedBy} always returns a null token list.""" def __init__( self, expr ): super(FollowedBy,self).__init__(expr) self.mayReturnEmpty = True def parseImpl( self, instring, loc, doActions=True ): self.expr.tryParse( instring, loc ) return loc, [] class NotAny(ParseElementEnhance): """Lookahead to disallow matching with the given parse expression. C{NotAny} does *not* advance the parsing position within the input string, it only verifies that the specified parse expression does *not* match at the current position. Also, C{NotAny} does *not* skip over leading whitespace. C{NotAny} always returns a null token list. May be constructed using the '~' operator.""" def __init__( self, expr ): super(NotAny,self).__init__(expr) #~ self.leaveWhitespace() self.skipWhitespace = False # do NOT use self.leaveWhitespace(), don't want to propagate to exprs self.mayReturnEmpty = True self.errmsg = "Found unwanted token, "+_ustr(self.expr) def parseImpl( self, instring, loc, doActions=True ): try: self.expr.tryParse( instring, loc ) except (ParseException,IndexError): pass else: raise ParseException(instring, loc, self.errmsg, self) return loc, [] def __str__( self ): if hasattr(self,"name"): return self.name if self.strRepr is None: self.strRepr = "~{" + _ustr(self.expr) + "}" return self.strRepr class ZeroOrMore(ParseElementEnhance): """Optional repetition of zero or more of the given expression.""" def __init__( self, expr ): super(ZeroOrMore,self).__init__(expr) self.mayReturnEmpty = True def parseImpl( self, instring, loc, doActions=True ): tokens = [] try: loc, tokens = self.expr._parse( instring, loc, doActions, callPreParse=False ) hasIgnoreExprs = ( len(self.ignoreExprs) > 0 ) while 1: if hasIgnoreExprs: preloc = self._skipIgnorables( instring, loc ) else: preloc = loc loc, tmptokens = self.expr._parse( instring, preloc, doActions ) if tmptokens or tmptokens.haskeys(): tokens += tmptokens except (ParseException,IndexError): pass return loc, tokens def __str__( self ): if hasattr(self,"name"): return self.name if self.strRepr is None: self.strRepr = "[" + _ustr(self.expr) + "]..." return self.strRepr def setResultsName( self, name, listAllMatches=False ): ret = super(ZeroOrMore,self).setResultsName(name,listAllMatches) ret.saveAsList = True return ret class OneOrMore(ParseElementEnhance): """Repetition of one or more of the given expression.""" def parseImpl( self, instring, loc, doActions=True ): # must be at least one loc, tokens = self.expr._parse( instring, loc, doActions, callPreParse=False ) try: hasIgnoreExprs = ( len(self.ignoreExprs) > 0 ) while 1: if hasIgnoreExprs: preloc = self._skipIgnorables( instring, loc ) else: preloc = loc loc, tmptokens = self.expr._parse( instring, preloc, doActions ) if tmptokens or tmptokens.haskeys(): tokens += tmptokens except (ParseException,IndexError): pass return loc, tokens def __str__( self ): if hasattr(self,"name"): return self.name if self.strRepr is None: self.strRepr = "{" + _ustr(self.expr) + "}..." return self.strRepr def setResultsName( self, name, listAllMatches=False ): ret = super(OneOrMore,self).setResultsName(name,listAllMatches) ret.saveAsList = True return ret class _NullToken(object): def __bool__(self): return False __nonzero__ = __bool__ def __str__(self): return "" _optionalNotMatched = _NullToken() class Optional(ParseElementEnhance): """Optional matching of the given expression. A default return string can also be specified, if the optional expression is not found. """ def __init__( self, expr, default=_optionalNotMatched ): super(Optional,self).__init__( expr, savelist=False ) self.defaultValue = default self.mayReturnEmpty = True def parseImpl( self, instring, loc, doActions=True ): try: loc, tokens = self.expr._parse( instring, loc, doActions, callPreParse=False ) except (ParseException,IndexError): if self.defaultValue is not _optionalNotMatched: if self.expr.resultsName: tokens = ParseResults([ self.defaultValue ]) tokens[self.expr.resultsName] = self.defaultValue else: tokens = [ self.defaultValue ] else: tokens = [] return loc, tokens def __str__( self ): if hasattr(self,"name"): return self.name if self.strRepr is None: self.strRepr = "[" + _ustr(self.expr) + "]" return self.strRepr class SkipTo(ParseElementEnhance): """Token for skipping over all undefined text until the matched expression is found. If C{include} is set to true, the matched expression is also parsed (the skipped text and matched expression are returned as a 2-element list). The C{ignore} argument is used to define grammars (typically quoted strings and comments) that might contain false matches. """ def __init__( self, other, include=False, ignore=None, failOn=None ): super( SkipTo, self ).__init__( other ) self.ignoreExpr = ignore self.mayReturnEmpty = True self.mayIndexError = False self.includeMatch = include self.asList = False if failOn is not None and isinstance(failOn, basestring): self.failOn = Literal(failOn) else: self.failOn = failOn self.errmsg = "No match found for "+_ustr(self.expr) def parseImpl( self, instring, loc, doActions=True ): startLoc = loc instrlen = len(instring) expr = self.expr failParse = False while loc <= instrlen: try: if self.failOn: try: self.failOn.tryParse(instring, loc) except ParseBaseException: pass else: failParse = True raise ParseException(instring, loc, "Found expression " + str(self.failOn)) failParse = False if self.ignoreExpr is not None: while 1: try: loc = self.ignoreExpr.tryParse(instring,loc) # print("found ignoreExpr, advance to", loc) except ParseBaseException: break expr._parse( instring, loc, doActions=False, callPreParse=False ) skipText = instring[startLoc:loc] if self.includeMatch: loc,mat = expr._parse(instring,loc,doActions,callPreParse=False) if mat: skipRes = ParseResults( skipText ) skipRes += mat return loc, [ skipRes ] else: return loc, [ skipText ] else: return loc, [ skipText ] except (ParseException,IndexError): if failParse: raise else: loc += 1 raise ParseException(instring, loc, self.errmsg, self) class Forward(ParseElementEnhance): """Forward declaration of an expression to be defined later - used for recursive grammars, such as algebraic infix notation. When the expression is known, it is assigned to the C{Forward} variable using the '<<' operator. Note: take care when assigning to C{Forward} not to overlook precedence of operators. Specifically, '|' has a lower precedence than '<<', so that:: fwdExpr << a | b | c will actually be evaluated as:: (fwdExpr << a) | b | c thereby leaving b and c out as parseable alternatives. It is recommended that you explicitly group the values inserted into the C{Forward}:: fwdExpr << (a | b | c) Converting to use the '<<=' operator instead will avoid this problem. """ def __init__( self, other=None ): super(Forward,self).__init__( other, savelist=False ) def __lshift__( self, other ): if isinstance( other, basestring ): other = ParserElement.literalStringClass(other) self.expr = other self.mayReturnEmpty = other.mayReturnEmpty self.strRepr = None self.mayIndexError = self.expr.mayIndexError self.mayReturnEmpty = self.expr.mayReturnEmpty self.setWhitespaceChars( self.expr.whiteChars ) self.skipWhitespace = self.expr.skipWhitespace self.saveAsList = self.expr.saveAsList self.ignoreExprs.extend(self.expr.ignoreExprs) return self def __ilshift__(self, other): return self << other def leaveWhitespace( self ): self.skipWhitespace = False return self def streamline( self ): if not self.streamlined: self.streamlined = True if self.expr is not None: self.expr.streamline() return self def validate( self, validateTrace=[] ): if self not in validateTrace: tmp = validateTrace[:]+[self] if self.expr is not None: self.expr.validate(tmp) self.checkRecursion([]) def __str__( self ): if hasattr(self,"name"): return self.name self._revertClass = self.__class__ self.__class__ = _ForwardNoRecurse try: if self.expr is not None: retString = _ustr(self.expr) else: retString = "None" finally: self.__class__ = self._revertClass return self.__class__.__name__ + ": " + retString def copy(self): if self.expr is not None: return super(Forward,self).copy() else: ret = Forward() ret <<= self return ret class _ForwardNoRecurse(Forward): def __str__( self ): return "..." class TokenConverter(ParseElementEnhance): """Abstract subclass of C{ParseExpression}, for converting parsed results.""" def __init__( self, expr, savelist=False ): super(TokenConverter,self).__init__( expr )#, savelist ) self.saveAsList = False class Upcase(TokenConverter): """Converter to upper case all matching tokens.""" def __init__(self, *args): super(Upcase,self).__init__(*args) warnings.warn("Upcase class is deprecated, use upcaseTokens parse action instead", DeprecationWarning,stacklevel=2) def postParse( self, instring, loc, tokenlist ): return list(map( str.upper, tokenlist )) class Combine(TokenConverter): """Converter to concatenate all matching tokens to a single string. By default, the matching patterns must also be contiguous in the input string; this can be disabled by specifying C{'adjacent=False'} in the constructor. """ def __init__( self, expr, joinString="", adjacent=True ): super(Combine,self).__init__( expr ) # suppress whitespace-stripping in contained parse expressions, but re-enable it on the Combine itself if adjacent: self.leaveWhitespace() self.adjacent = adjacent self.skipWhitespace = True self.joinString = joinString self.callPreparse = True def ignore( self, other ): if self.adjacent: ParserElement.ignore(self, other) else: super( Combine, self).ignore( other ) return self def postParse( self, instring, loc, tokenlist ): retToks = tokenlist.copy() del retToks[:] retToks += ParseResults([ "".join(tokenlist._asStringList(self.joinString)) ], modal=self.modalResults) if self.resultsName and retToks.haskeys(): return [ retToks ] else: return retToks class Group(TokenConverter): """Converter to return the matched tokens as a list - useful for returning tokens of C{L{ZeroOrMore}} and C{L{OneOrMore}} expressions.""" def __init__( self, expr ): super(Group,self).__init__( expr ) self.saveAsList = True def postParse( self, instring, loc, tokenlist ): return [ tokenlist ] class Dict(TokenConverter): """Converter to return a repetitive expression as a list, but also as a dictionary. Each element can also be referenced using the first token in the expression as its key. Useful for tabular report scraping when the first column can be used as a item key. """ def __init__( self, expr ): super(Dict,self).__init__( expr ) self.saveAsList = True def postParse( self, instring, loc, tokenlist ): for i,tok in enumerate(tokenlist): if len(tok) == 0: continue ikey = tok[0] if isinstance(ikey,int): ikey = _ustr(tok[0]).strip() if len(tok)==1: tokenlist[ikey] = _ParseResultsWithOffset("",i) elif len(tok)==2 and not isinstance(tok[1],ParseResults): tokenlist[ikey] = _ParseResultsWithOffset(tok[1],i) else: dictvalue = tok.copy() #ParseResults(i) del dictvalue[0] if len(dictvalue)!= 1 or (isinstance(dictvalue,ParseResults) and dictvalue.haskeys()): tokenlist[ikey] = _ParseResultsWithOffset(dictvalue,i) else: tokenlist[ikey] = _ParseResultsWithOffset(dictvalue[0],i) if self.resultsName: return [ tokenlist ] else: return tokenlist class Suppress(TokenConverter): """Converter for ignoring the results of a parsed expression.""" def postParse( self, instring, loc, tokenlist ): return [] def suppress( self ): return self class OnlyOnce(object): """Wrapper for parse actions, to ensure they are only called once.""" def __init__(self, methodCall): self.callable = _trim_arity(methodCall) self.called = False def __call__(self,s,l,t): if not self.called: results = self.callable(s,l,t) self.called = True return results raise ParseException(s,l,"") def reset(self): self.called = False def traceParseAction(f): """Decorator for debugging parse actions.""" f = _trim_arity(f) def z(*paArgs): thisFunc = f.func_name s,l,t = paArgs[-3:] if len(paArgs)>3: thisFunc = paArgs[0].__class__.__name__ + '.' + thisFunc sys.stderr.write( ">>entering %s(line: '%s', %d, %s)\n" % (thisFunc,line(l,s),l,t) ) try: ret = f(*paArgs) except Exception as exc: sys.stderr.write( "<<leaving %s (exception: %s)\n" % (thisFunc,exc) ) raise sys.stderr.write( "<<leaving %s (ret: %s)\n" % (thisFunc,ret) ) return ret try: z.__name__ = f.__name__ except AttributeError: pass return z # # global helpers # def delimitedList( expr, delim=",", combine=False ): """Helper to define a delimited list of expressions - the delimiter defaults to ','. By default, the list elements and delimiters can have intervening whitespace, and comments, but this can be overridden by passing C{combine=True} in the constructor. If C{combine} is set to C{True}, the matching tokens are returned as a single token string, with the delimiters included; otherwise, the matching tokens are returned as a list of tokens, with the delimiters suppressed. """ dlName = _ustr(expr)+" ["+_ustr(delim)+" "+_ustr(expr)+"]..." if combine: return Combine( expr + ZeroOrMore( delim + expr ) ).setName(dlName) else: return ( expr + ZeroOrMore( Suppress( delim ) + expr ) ).setName(dlName) def countedArray( expr, intExpr=None ): """Helper to define a counted list of expressions. This helper defines a pattern of the form:: integer expr expr expr... where the leading integer tells how many expr expressions follow. The matched tokens returns the array of expr tokens as a list - the leading count token is suppressed. """ arrayExpr = Forward() def countFieldParseAction(s,l,t): n = t[0] arrayExpr << (n and Group(And([expr]*n)) or Group(empty)) return [] if intExpr is None: intExpr = Word(nums).setParseAction(lambda t:int(t[0])) else: intExpr = intExpr.copy() intExpr.setName("arrayLen") intExpr.addParseAction(countFieldParseAction, callDuringTry=True) return ( intExpr + arrayExpr ) def _flatten(L): ret = [] for i in L: if isinstance(i,list): ret.extend(_flatten(i)) else: ret.append(i) return ret def matchPreviousLiteral(expr): """Helper to define an expression that is indirectly defined from the tokens matched in a previous expression, that is, it looks for a 'repeat' of a previous expression. For example:: first = Word(nums) second = matchPreviousLiteral(first) matchExpr = first + ":" + second will match C{"1:1"}, but not C{"1:2"}. Because this matches a previous literal, will also match the leading C{"1:1"} in C{"1:10"}. If this is not desired, use C{matchPreviousExpr}. Do *not* use with packrat parsing enabled. """ rep = Forward() def copyTokenToRepeater(s,l,t): if t: if len(t) == 1: rep << t[0] else: # flatten t tokens tflat = _flatten(t.asList()) rep << And( [ Literal(tt) for tt in tflat ] ) else: rep << Empty() expr.addParseAction(copyTokenToRepeater, callDuringTry=True) return rep def matchPreviousExpr(expr): """Helper to define an expression that is indirectly defined from the tokens matched in a previous expression, that is, it looks for a 'repeat' of a previous expression. For example:: first = Word(nums) second = matchPreviousExpr(first) matchExpr = first + ":" + second will match C{"1:1"}, but not C{"1:2"}. Because this matches by expressions, will *not* match the leading C{"1:1"} in C{"1:10"}; the expressions are evaluated first, and then compared, so C{"1"} is compared with C{"10"}. Do *not* use with packrat parsing enabled. """ rep = Forward() e2 = expr.copy() rep <<= e2 def copyTokenToRepeater(s,l,t): matchTokens = _flatten(t.asList()) def mustMatchTheseTokens(s,l,t): theseTokens = _flatten(t.asList()) if theseTokens != matchTokens: raise ParseException("",0,"") rep.setParseAction( mustMatchTheseTokens, callDuringTry=True ) expr.addParseAction(copyTokenToRepeater, callDuringTry=True) return rep def _escapeRegexRangeChars(s): #~ escape these chars: ^-] for c in r"\^-]": s = s.replace(c,_bslash+c) s = s.replace("\n",r"\n") s = s.replace("\t",r"\t") return _ustr(s) def oneOf( strs, caseless=False, useRegex=True ): """Helper to quickly define a set of alternative Literals, and makes sure to do longest-first testing when there is a conflict, regardless of the input order, but returns a C{L{MatchFirst}} for best performance. Parameters: - strs - a string of space-delimited literals, or a list of string literals - caseless - (default=False) - treat all literals as caseless - useRegex - (default=True) - as an optimization, will generate a Regex object; otherwise, will generate a C{MatchFirst} object (if C{caseless=True}, or if creating a C{Regex} raises an exception) """ if caseless: isequal = ( lambda a,b: a.upper() == b.upper() ) masks = ( lambda a,b: b.upper().startswith(a.upper()) ) parseElementClass = CaselessLiteral else: isequal = ( lambda a,b: a == b ) masks = ( lambda a,b: b.startswith(a) ) parseElementClass = Literal if isinstance(strs,basestring): symbols = strs.split() elif isinstance(strs, collections.Sequence): symbols = list(strs[:]) elif isinstance(strs, _generatorType): symbols = list(strs) else: warnings.warn("Invalid argument to oneOf, expected string or list", SyntaxWarning, stacklevel=2) i = 0 while i < len(symbols)-1: cur = symbols[i] for j,other in enumerate(symbols[i+1:]): if ( isequal(other, cur) ): del symbols[i+j+1] break elif ( masks(cur, other) ): del symbols[i+j+1] symbols.insert(i,other) cur = other break else: i += 1 if not caseless and useRegex: #~ print (strs,"->", "|".join( [ _escapeRegexChars(sym) for sym in symbols] )) try: if len(symbols)==len("".join(symbols)): return Regex( "[%s]" % "".join(_escapeRegexRangeChars(sym) for sym in symbols) ) else: return Regex( "|".join(re.escape(sym) for sym in symbols) ) except: warnings.warn("Exception creating Regex for oneOf, building MatchFirst", SyntaxWarning, stacklevel=2) # last resort, just use MatchFirst return MatchFirst( [ parseElementClass(sym) for sym in symbols ] ) def dictOf( key, value ): """Helper to easily and clearly define a dictionary by specifying the respective patterns for the key and value. Takes care of defining the C{L{Dict}}, C{L{ZeroOrMore}}, and C{L{Group}} tokens in the proper order. The key pattern can include delimiting markers or punctuation, as long as they are suppressed, thereby leaving the significant key text. The value pattern can include named results, so that the C{Dict} results can include named token fields. """ return Dict( ZeroOrMore( Group ( key + value ) ) ) def originalTextFor(expr, asString=True): """Helper to return the original, untokenized text for a given expression. Useful to restore the parsed fields of an HTML start tag into the raw tag text itself, or to revert separate tokens with intervening whitespace back to the original matching input text. Simpler to use than the parse action C{L{keepOriginalText}}, and does not require the inspect module to chase up the call stack. By default, returns a string containing the original parsed text. If the optional C{asString} argument is passed as C{False}, then the return value is a C{L{ParseResults}} containing any results names that were originally matched, and a single token containing the original matched text from the input string. So if the expression passed to C{L{originalTextFor}} contains expressions with defined results names, you must set C{asString} to C{False} if you want to preserve those results name values.""" locMarker = Empty().setParseAction(lambda s,loc,t: loc) endlocMarker = locMarker.copy() endlocMarker.callPreparse = False matchExpr = locMarker("_original_start") + expr + endlocMarker("_original_end") if asString: extractText = lambda s,l,t: s[t._original_start:t._original_end] else: def extractText(s,l,t): del t[:] t.insert(0, s[t._original_start:t._original_end]) del t["_original_start"] del t["_original_end"] matchExpr.setParseAction(extractText) return matchExpr def ungroup(expr): """Helper to undo pyparsing's default grouping of And expressions, even if all but one are non-empty.""" return TokenConverter(expr).setParseAction(lambda t:t[0]) def locatedExpr(expr): """Helper to decorate a returned token with its starting and ending locations in the input string. This helper adds the following results names: - locn_start = location where matched expression begins - locn_end = location where matched expression ends - value = the actual parsed results Be careful if the input text contains C{<TAB>} characters, you may want to call C{L{ParserElement.parseWithTabs}} """ locator = Empty().setParseAction(lambda s,l,t: l) return Group(locator("locn_start") + expr("value") + locator.copy().leaveWhitespace()("locn_end")) # convenience constants for positional expressions empty = Empty().setName("empty") lineStart = LineStart().setName("lineStart") lineEnd = LineEnd().setName("lineEnd") stringStart = StringStart().setName("stringStart") stringEnd = StringEnd().setName("stringEnd") _escapedPunc = Word( _bslash, r"\[]-*.$+^?()~ ", exact=2 ).setParseAction(lambda s,l,t:t[0][1]) _escapedHexChar = Regex(r"\\0?[xX][0-9a-fA-F]+").setParseAction(lambda s,l,t:unichr(int(t[0].lstrip(r'\0x'),16))) _escapedOctChar = Regex(r"\\0[0-7]+").setParseAction(lambda s,l,t:unichr(int(t[0][1:],8))) _singleChar = _escapedPunc | _escapedHexChar | _escapedOctChar | Word(printables, excludeChars=r'\]', exact=1) _charRange = Group(_singleChar + Suppress("-") + _singleChar) _reBracketExpr = Literal("[") + Optional("^").setResultsName("negate") + Group( OneOrMore( _charRange | _singleChar ) ).setResultsName("body") + "]" def srange(s): r"""Helper to easily define string ranges for use in Word construction. Borrows syntax from regexp '[]' string range definitions:: srange("[0-9]") -> "0123456789" srange("[a-z]") -> "abcdefghijklmnopqrstuvwxyz" srange("[a-z$_]") -> "abcdefghijklmnopqrstuvwxyz$_" The input string must be enclosed in []'s, and the returned string is the expanded character set joined into a single string. The values enclosed in the []'s may be:: a single character an escaped character with a leading backslash (such as \- or \]) an escaped hex character with a leading '\x' (\x21, which is a '!' character) (\0x## is also supported for backwards compatibility) an escaped octal character with a leading '\0' (\041, which is a '!' character) a range of any of the above, separated by a dash ('a-z', etc.) any combination of the above ('aeiouy', 'a-zA-Z0-9_$', etc.) """ _expanded = lambda p: p if not isinstance(p,ParseResults) else ''.join(unichr(c) for c in range(ord(p[0]),ord(p[1])+1)) try: return "".join(_expanded(part) for part in _reBracketExpr.parseString(s).body) except: return "" def matchOnlyAtCol(n): """Helper method for defining parse actions that require matching at a specific column in the input text. """ def verifyCol(strg,locn,toks): if col(locn,strg) != n: raise ParseException(strg,locn,"matched token not at column %d" % n) return verifyCol def replaceWith(replStr): """Helper method for common parse actions that simply return a literal value. Especially useful when used with C{L{transformString<ParserElement.transformString>}()}. """ def _replFunc(*args): return [replStr] return _replFunc def removeQuotes(s,l,t): """Helper parse action for removing quotation marks from parsed quoted strings. To use, add this parse action to quoted string using:: quotedString.setParseAction( removeQuotes ) """ return t[0][1:-1] def upcaseTokens(s,l,t): """Helper parse action to convert tokens to upper case.""" return [ tt.upper() for tt in map(_ustr,t) ] def downcaseTokens(s,l,t): """Helper parse action to convert tokens to lower case.""" return [ tt.lower() for tt in map(_ustr,t) ] def keepOriginalText(s,startLoc,t): """DEPRECATED - use new helper method C{L{originalTextFor}}. Helper parse action to preserve original parsed text, overriding any nested parse actions.""" try: endloc = getTokensEndLoc() except ParseException: raise ParseFatalException("incorrect usage of keepOriginalText - may only be called as a parse action") del t[:] t += ParseResults(s[startLoc:endloc]) return t def getTokensEndLoc(): """Method to be called from within a parse action to determine the end location of the parsed tokens.""" import inspect fstack = inspect.stack() try: # search up the stack (through intervening argument normalizers) for correct calling routine for f in fstack[2:]: if f[3] == "_parseNoCache": endloc = f[0].f_locals["loc"] return endloc else: raise ParseFatalException("incorrect usage of getTokensEndLoc - may only be called from within a parse action") finally: del fstack def _makeTags(tagStr, xml): """Internal helper to construct opening and closing tag expressions, given a tag name""" if isinstance(tagStr,basestring): resname = tagStr tagStr = Keyword(tagStr, caseless=not xml) else: resname = tagStr.name tagAttrName = Word(alphas,alphanums+"_-:") if (xml): tagAttrValue = dblQuotedString.copy().setParseAction( removeQuotes ) openTag = Suppress("<") + tagStr("tag") + \ Dict(ZeroOrMore(Group( tagAttrName + Suppress("=") + tagAttrValue ))) + \ Optional("/",default=[False]).setResultsName("empty").setParseAction(lambda s,l,t:t[0]=='/') + Suppress(">") else: printablesLessRAbrack = "".join(c for c in printables if c not in ">") tagAttrValue = quotedString.copy().setParseAction( removeQuotes ) | Word(printablesLessRAbrack) openTag = Suppress("<") + tagStr("tag") + \ Dict(ZeroOrMore(Group( tagAttrName.setParseAction(downcaseTokens) + \ Optional( Suppress("=") + tagAttrValue ) ))) + \ Optional("/",default=[False]).setResultsName("empty").setParseAction(lambda s,l,t:t[0]=='/') + Suppress(">") closeTag = Combine(_L("</") + tagStr + ">") openTag = openTag.setResultsName("start"+"".join(resname.replace(":"," ").title().split())).setName("<%s>" % tagStr) closeTag = closeTag.setResultsName("end"+"".join(resname.replace(":"," ").title().split())).setName("</%s>" % tagStr) openTag.tag = resname closeTag.tag = resname return openTag, closeTag def makeHTMLTags(tagStr): """Helper to construct opening and closing tag expressions for HTML, given a tag name""" return _makeTags( tagStr, False ) def makeXMLTags(tagStr): """Helper to construct opening and closing tag expressions for XML, given a tag name""" return _makeTags( tagStr, True ) def withAttribute(*args,**attrDict): """Helper to create a validating parse action to be used with start tags created with C{L{makeXMLTags}} or C{L{makeHTMLTags}}. Use C{withAttribute} to qualify a starting tag with a required attribute value, to avoid false matches on common tags such as C{<TD>} or C{<DIV>}. Call C{withAttribute} with a series of attribute names and values. Specify the list of filter attributes names and values as: - keyword arguments, as in C{(align="right")}, or - as an explicit dict with C{**} operator, when an attribute name is also a Python reserved word, as in C{**{"class":"Customer", "align":"right"}} - a list of name-value tuples, as in ( ("ns1:class", "Customer"), ("ns2:align","right") ) For attribute names with a namespace prefix, you must use the second form. Attribute names are matched insensitive to upper/lower case. To verify that the attribute exists, but without specifying a value, pass C{withAttribute.ANY_VALUE} as the value. """ if args: attrs = args[:] else: attrs = attrDict.items() attrs = [(k,v) for k,v in attrs] def pa(s,l,tokens): for attrName,attrValue in attrs: if attrName not in tokens: raise ParseException(s,l,"no matching attribute " + attrName) if attrValue != withAttribute.ANY_VALUE and tokens[attrName] != attrValue: raise ParseException(s,l,"attribute '%s' has value '%s', must be '%s'" % (attrName, tokens[attrName], attrValue)) return pa withAttribute.ANY_VALUE = object() opAssoc = _Constants() opAssoc.LEFT = object() opAssoc.RIGHT = object() def infixNotation( baseExpr, opList, lpar=Suppress('('), rpar=Suppress(')') ): """Helper method for constructing grammars of expressions made up of operators working in a precedence hierarchy. Operators may be unary or binary, left- or right-associative. Parse actions can also be attached to operator expressions. Parameters: - baseExpr - expression representing the most basic element for the nested - opList - list of tuples, one for each operator precedence level in the expression grammar; each tuple is of the form (opExpr, numTerms, rightLeftAssoc, parseAction), where: - opExpr is the pyparsing expression for the operator; may also be a string, which will be converted to a Literal; if numTerms is 3, opExpr is a tuple of two expressions, for the two operators separating the 3 terms - numTerms is the number of terms for this operator (must be 1, 2, or 3) - rightLeftAssoc is the indicator whether the operator is right or left associative, using the pyparsing-defined constants C{opAssoc.RIGHT} and C{opAssoc.LEFT}. - parseAction is the parse action to be associated with expressions matching this operator expression (the parse action tuple member may be omitted) - lpar - expression for matching left-parentheses (default=Suppress('(')) - rpar - expression for matching right-parentheses (default=Suppress(')')) """ ret = Forward() lastExpr = baseExpr | ( lpar + ret + rpar ) for i,operDef in enumerate(opList): opExpr,arity,rightLeftAssoc,pa = (operDef + (None,))[:4] if arity == 3: if opExpr is None or len(opExpr) != 2: raise ValueError("if numterms=3, opExpr must be a tuple or list of two expressions") opExpr1, opExpr2 = opExpr thisExpr = Forward()#.setName("expr%d" % i) if rightLeftAssoc == opAssoc.LEFT: if arity == 1: matchExpr = FollowedBy(lastExpr + opExpr) + Group( lastExpr + OneOrMore( opExpr ) ) elif arity == 2: if opExpr is not None: matchExpr = FollowedBy(lastExpr + opExpr + lastExpr) + Group( lastExpr + OneOrMore( opExpr + lastExpr ) ) else: matchExpr = FollowedBy(lastExpr+lastExpr) + Group( lastExpr + OneOrMore(lastExpr) ) elif arity == 3: matchExpr = FollowedBy(lastExpr + opExpr1 + lastExpr + opExpr2 + lastExpr) + \ Group( lastExpr + opExpr1 + lastExpr + opExpr2 + lastExpr ) else: raise ValueError("operator must be unary (1), binary (2), or ternary (3)") elif rightLeftAssoc == opAssoc.RIGHT: if arity == 1: # try to avoid LR with this extra test if not isinstance(opExpr, Optional): opExpr = Optional(opExpr) matchExpr = FollowedBy(opExpr.expr + thisExpr) + Group( opExpr + thisExpr ) elif arity == 2: if opExpr is not None: matchExpr = FollowedBy(lastExpr + opExpr + thisExpr) + Group( lastExpr + OneOrMore( opExpr + thisExpr ) ) else: matchExpr = FollowedBy(lastExpr + thisExpr) + Group( lastExpr + OneOrMore( thisExpr ) ) elif arity == 3: matchExpr = FollowedBy(lastExpr + opExpr1 + thisExpr + opExpr2 + thisExpr) + \ Group( lastExpr + opExpr1 + thisExpr + opExpr2 + thisExpr ) else: raise ValueError("operator must be unary (1), binary (2), or ternary (3)") else: raise ValueError("operator must indicate right or left associativity") if pa: matchExpr.setParseAction( pa ) thisExpr <<= ( matchExpr | lastExpr ) lastExpr = thisExpr ret <<= lastExpr return ret operatorPrecedence = infixNotation dblQuotedString = Regex(r'"(?:[^"\n\r\\]|(?:"")|(?:\\x[0-9a-fA-F]+)|(?:\\.))*"').setName("string enclosed in double quotes") sglQuotedString = Regex(r"'(?:[^'\n\r\\]|(?:'')|(?:\\x[0-9a-fA-F]+)|(?:\\.))*'").setName("string enclosed in single quotes") quotedString = Regex(r'''(?:"(?:[^"\n\r\\]|(?:"")|(?:\\x[0-9a-fA-F]+)|(?:\\.))*")|(?:'(?:[^'\n\r\\]|(?:'')|(?:\\x[0-9a-fA-F]+)|(?:\\.))*')''').setName("quotedString using single or double quotes") unicodeString = Combine(_L('u') + quotedString.copy()) def nestedExpr(opener="(", closer=")", content=None, ignoreExpr=quotedString.copy()): """Helper method for defining nested lists enclosed in opening and closing delimiters ("(" and ")" are the default). Parameters: - opener - opening character for a nested list (default="("); can also be a pyparsing expression - closer - closing character for a nested list (default=")"); can also be a pyparsing expression - content - expression for items within the nested lists (default=None) - ignoreExpr - expression for ignoring opening and closing delimiters (default=quotedString) If an expression is not provided for the content argument, the nested expression will capture all whitespace-delimited content between delimiters as a list of separate values. Use the C{ignoreExpr} argument to define expressions that may contain opening or closing characters that should not be treated as opening or closing characters for nesting, such as quotedString or a comment expression. Specify multiple expressions using an C{L{Or}} or C{L{MatchFirst}}. The default is L{quotedString}, but if no expressions are to be ignored, then pass C{None} for this argument. """ if opener == closer: raise ValueError("opening and closing strings cannot be the same") if content is None: if isinstance(opener,basestring) and isinstance(closer,basestring): if len(opener) == 1 and len(closer)==1: if ignoreExpr is not None: content = (Combine(OneOrMore(~ignoreExpr + CharsNotIn(opener+closer+ParserElement.DEFAULT_WHITE_CHARS,exact=1)) ).setParseAction(lambda t:t[0].strip())) else: content = (empty.copy()+CharsNotIn(opener+closer+ParserElement.DEFAULT_WHITE_CHARS ).setParseAction(lambda t:t[0].strip())) else: if ignoreExpr is not None: content = (Combine(OneOrMore(~ignoreExpr + ~Literal(opener) + ~Literal(closer) + CharsNotIn(ParserElement.DEFAULT_WHITE_CHARS,exact=1)) ).setParseAction(lambda t:t[0].strip())) else: content = (Combine(OneOrMore(~Literal(opener) + ~Literal(closer) + CharsNotIn(ParserElement.DEFAULT_WHITE_CHARS,exact=1)) ).setParseAction(lambda t:t[0].strip())) else: raise ValueError("opening and closing arguments must be strings if no content expression is given") ret = Forward() if ignoreExpr is not None: ret <<= Group( Suppress(opener) + ZeroOrMore( ignoreExpr | ret | content ) + Suppress(closer) ) else: ret <<= Group( Suppress(opener) + ZeroOrMore( ret | content ) + Suppress(closer) ) return ret def indentedBlock(blockStatementExpr, indentStack, indent=True): """Helper method for defining space-delimited indentation blocks, such as those used to define block statements in Python source code. Parameters: - blockStatementExpr - expression defining syntax of statement that is repeated within the indented block - indentStack - list created by caller to manage indentation stack (multiple statementWithIndentedBlock expressions within a single grammar should share a common indentStack) - indent - boolean indicating whether block must be indented beyond the the current level; set to False for block of left-most statements (default=True) A valid block must contain at least one C{blockStatement}. """ def checkPeerIndent(s,l,t): if l >= len(s): return curCol = col(l,s) if curCol != indentStack[-1]: if curCol > indentStack[-1]: raise ParseFatalException(s,l,"illegal nesting") raise ParseException(s,l,"not a peer entry") def checkSubIndent(s,l,t): curCol = col(l,s) if curCol > indentStack[-1]: indentStack.append( curCol ) else: raise ParseException(s,l,"not a subentry") def checkUnindent(s,l,t): if l >= len(s): return curCol = col(l,s) if not(indentStack and curCol < indentStack[-1] and curCol <= indentStack[-2]): raise ParseException(s,l,"not an unindent") indentStack.pop() NL = OneOrMore(LineEnd().setWhitespaceChars("\t ").suppress()) INDENT = Empty() + Empty().setParseAction(checkSubIndent) PEER = Empty().setParseAction(checkPeerIndent) UNDENT = Empty().setParseAction(checkUnindent) if indent: smExpr = Group( Optional(NL) + #~ FollowedBy(blockStatementExpr) + INDENT + (OneOrMore( PEER + Group(blockStatementExpr) + Optional(NL) )) + UNDENT) else: smExpr = Group( Optional(NL) + (OneOrMore( PEER + Group(blockStatementExpr) + Optional(NL) )) ) blockStatementExpr.ignore(_bslash + LineEnd()) return smExpr alphas8bit = srange(r"[\0xc0-\0xd6\0xd8-\0xf6\0xf8-\0xff]") punc8bit = srange(r"[\0xa1-\0xbf\0xd7\0xf7]") anyOpenTag,anyCloseTag = makeHTMLTags(Word(alphas,alphanums+"_:")) commonHTMLEntity = Combine(_L("&") + oneOf("gt lt amp nbsp quot").setResultsName("entity") +";").streamline() _htmlEntityMap = dict(zip("gt lt amp nbsp quot".split(),'><& "')) replaceHTMLEntity = lambda t : t.entity in _htmlEntityMap and _htmlEntityMap[t.entity] or None # it's easy to get these comment structures wrong - they're very common, so may as well make them available cStyleComment = Regex(r"/\*(?:[^*]*\*+)+?/").setName("C style comment") htmlComment = Regex(r"<!--[\s\S]*?-->") restOfLine = Regex(r".*").leaveWhitespace() dblSlashComment = Regex(r"\/\/(\\\n|.)*").setName("// comment") cppStyleComment = Regex(r"/(?:\*(?:[^*]*\*+)+?/|/[^\n]*(?:\n[^\n]*)*?(?:(?<!\\)|\Z))").setName("C++ style comment") javaStyleComment = cppStyleComment pythonStyleComment = Regex(r"#.*").setName("Python style comment") _commasepitem = Combine(OneOrMore(Word(printables, excludeChars=',') + Optional( Word(" \t") + ~Literal(",") + ~LineEnd() ) ) ).streamline().setName("commaItem") commaSeparatedList = delimitedList( Optional( quotedString.copy() | _commasepitem, default="") ).setName("commaSeparatedList") if __name__ == "__main__": def test( teststring ): try: tokens = simpleSQL.parseString( teststring ) tokenlist = tokens.asList() print (teststring + "->" + str(tokenlist)) print ("tokens = " + str(tokens)) print ("tokens.columns = " + str(tokens.columns)) print ("tokens.tables = " + str(tokens.tables)) print (tokens.asXML("SQL",True)) except ParseBaseException as err: print (teststring + "->") print (err.line) print (" "*(err.column-1) + "^") print (err) print() selectToken = CaselessLiteral( "select" ) fromToken = CaselessLiteral( "from" ) ident = Word( alphas, alphanums + "_$" ) columnName = delimitedList( ident, ".", combine=True ).setParseAction( upcaseTokens ) columnNameList = Group( delimitedList( columnName ) )#.setName("columns") tableName = delimitedList( ident, ".", combine=True ).setParseAction( upcaseTokens ) tableNameList = Group( delimitedList( tableName ) )#.setName("tables") simpleSQL = ( selectToken + \ ( '*' | columnNameList ).setResultsName( "columns" ) + \ fromToken + \ tableNameList.setResultsName( "tables" ) ) test( "SELECT * from XYZZY, ABC" ) test( "select * from SYS.XYZZY" ) test( "Select A from Sys.dual" ) test( "Select AA,BB,CC from Sys.dual" ) test( "Select A, B, C from Sys.dual" ) test( "Select A, B, C from Sys.dual" ) test( "Xelect A, B, C from Sys.dual" ) test( "Select A, B, C frox Sys.dual" ) test( "Select" ) test( "Select ^^^ frox Sys.dual" ) test( "Select A, B, C from Sys.dual, Table2 " )
py
7dfe10ad6a8f3273e4cc0f01e412de26588edf4f
from fabric.api import env #Management ip addresses of hosts in the cluster host1 = '[email protected]' host2 = '[email protected]' host3 = '[email protected]' #External routers if any #for eg. #ext_routers = [('mx1', '10.204.216.253')] ext_routers = [] #Autonomous system number router_asn = 64512 #Host from which the fab commands are triggered to install and provision host_build = '[email protected]' #Role definition of the hosts. env.roledefs = { 'all': [host1, host2, host3], 'cfgm': [host1], 'openstack': [host2], 'control': [host1], 'compute': [host3], 'collector': [host1], 'webui': [host1], 'database': [host1], 'build': [host_build], 'storage-master': [host1], 'storage-compute': [host1], } #Openstack admin password env.openstack_admin_password = 'c0ntrail123' #Hostnames env.hostnames = { 'all': ['a3s40', 'a3s39', 'a3s43'] } env.password = 'c0ntrail123' #Passwords of each host env.passwords = { host1: 'c0ntrail123', host2: 'c0ntrail123', host3: 'c0ntrail123', host_build: 'contrail123' } #For reimage purpose env.ostypes = { host1: 'redhat', host2: 'redhat', host3: 'redhat', } #OPTIONAL ANALYTICS CONFIGURATION #================================ # database_dir is the directory where cassandra data is stored # # If it is not passed, we will use cassandra's default # /var/lib/cassandra/data # #database_dir = '<separate-partition>/cassandra' # # analytics_data_dir is the directory where cassandra data for analytics # is stored. This is used to seperate cassandra's main data storage [internal # use and config data] with analytics data. That way critical cassandra's # system data and config data are not overrun by analytis data # # If it is not passed, we will use cassandra's default # /var/lib/cassandra/data # #analytics_data_dir = '<separate-partition>/analytics_data' # # ssd_data_dir is the directory where cassandra can store fast retrievable # temporary files (commit_logs). Giving cassandra an ssd disk for this # purpose improves cassandra performance # # If it is not passed, we will use cassandra's default # /var/lib/cassandra/commit_logs # #ssd_data_dir = '<seperate-partition>/commit_logs_data' #OPTIONAL BONDING CONFIGURATION #============================== #Inferface Bonding #bond= { # host1 : { 'name': 'bond0', 'member': ['p2p0p0','p2p0p1','p2p0p2','p2p0p3'], 'mode': '802.3ad', 'xmit_hash_policy': 'layer3+4' }, #} #OPTIONAL SEPARATION OF MANAGEMENT AND CONTROL + DATA and OPTIONAL VLAN INFORMATION #================================================================================== #control_data = { # host1 : { 'ip': '192.168.10.1/24', 'gw' : '192.168.10.254', 'device': 'bond0', 'vlan': '224' }, #} #OPTIONAL STATIC ROUTE CONFIGURATION #=================================== #static_route = { # host1 : [{ 'ip': '10.1.1.0', 'netmask' : '255.255.255.0', 'gw':'192.168.10.254', 'intf': 'bond0' }, # { 'ip': '10.1.2.0', 'netmask' : '255.255.255.0', 'gw':'192.168.10.254', 'intf': 'bond0' }], #} #storage compute disk config #storage_node_config = { # host1 : { 'disks' : ['sdc', 'sdd'] }, #} #live migration config #live_migration = True #To disable installing contrail interface rename package env.interface_rename = False #In environments where keystone is deployed outside of Contrail provisioning #scripts , you can use the below options # # Note : # "insecure" is applicable only when protocol is https # The entries in env.keystone overrides the below options which used # to be supported earlier : # service_token # keystone_ip # keystone_admin_user # keystone_admin_password # region_name # env.keystone = { 'keystone_ip' : '10.84.12.15', 'auth_protocol' : 'http', #Default is http 'auth_port' : '35357', #Default is 35357 'admin_token' : '1232323223', 'admin_user' : 'admin', #Default is admin 'admin_password': 'c0ntrail123', #Default is contrail123 'service_tenant': 'service', #Default is service 'admin_tenant' : 'admin', #Default is admin 'region_name' : 'RegionOne', #Default is RegionOne 'insecure' : 'True', #Default = False } # # In environments where openstack services are deployed independently # from contrail, you can use the below options # service_token : Common service token for for all services like nova, # neutron, glance, cinder etc # amqp_host : IP of AMQP Server to be used in openstack # # old # 'service_token' : '15ee68dbae3b4416a7fda3400e0a6683', env.openstack = { 'service_token' : 'a55e1eb7680d4d4eb092698480ab31f7', 'amqp_host' : '10.84.12.15', } # Neutron specific configuration #env.neutron = { # 'protocol': 'http', # Default is http #} #To enable multi-tenancy feature #multi_tenancy = True #To enable haproxy feature #haproxy = True #To Enable prallel execution of task in multiple nodes #do_parallel = True # To configure the encapsulation priority. Default: MPLSoGRE #env.encap_priority = "'MPLSoUDP','MPLSoGRE','VXLAN'" # Optional proxy settings. # env.http_proxy = os.environ.get('http_proxy') env.test_repo_dir="/home/stack/redhat_sanity/multi_node/contrail-test" env.mail_from='[email protected]' env.mail_to='[email protected]' multi_tenancy=True env.encap_priority="'MPLSoUDP','MPLSoGRE','VXLAN'" env.mail_server='10.84.24.64' env.mail_port='4000' env.log_scenario='Redhat70_Two_Node_Sanity_[CONTRAIL_ALL_ROLES_PLUS_RDO]'
py
7dfe11c756560a615406f7669294b717958a5a58
""" More fully featured dataset readers and iterators for multitask training then allennlp. Differences: - randomly sample batches from each dataset according to dataset size, so gradient steps are spread out over each throught the course of training. - allows to use any generic iterators for each dataset - allows to remove some datasets for vocab creation Implementation in allennlp: Interface for dataset and iterator in allennlp trainer: train_generator = self._iterator(self._train_data, num_epochs=1, shuffle=shuffle) num_training_batches = self._iterator.get_num_batches(self._train_data) Interface for dataset and iterator in train command: instances_for_vocab = [] for instance in dataset: instances_for_vocab.append(instance) --> then pass into Vocabulary.from_params(...) So dataset needs to implement __iter__, except it is only called to construct the Vocabulary, if we also pair this dataset with a special iterator that doesn't call __iter__. """ from typing import Dict, List, Iterable from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data import Instance from allennlp.data.iterators import DataIterator from allennlp.data import Vocabulary import numpy as np import torch class MultitaskDataset: def __init__(self, datasets: Dict[str, Iterable[Instance]], datasets_for_vocab_creation: List[str]): self.datasets = datasets self.datasets_for_vocab_creation = datasets_for_vocab_creation def __iter__(self): # with our iterator, this is only called for vocab creation for key in self.datasets_for_vocab_creation: for instance in self.datasets[key]: yield instance @DatasetReader.register("multitask_reader") class MultitaskDatasetReader(DatasetReader): def __init__(self, dataset_readers: Dict[str, DatasetReader], datasets_for_vocab_creation: List[str]) -> None: super().__init__(False) self.dataset_readers = dataset_readers self.datasets_for_vocab_creation = datasets_for_vocab_creation def read(self, file_path: Dict[str, str]): """ read returns an iterable of instances that is directly iterated over when constructing vocab, and in the iterators. Since we will also pair this reader with a special iterator, we only have to worry about the case where the return value from this call is used to iterate for vocab creation. In addition, it is the return value from this that is passed into Trainer as the dataset (and then into the iterator) """ datasets = {key: self.dataset_readers[key].read(fpath) for key, fpath in file_path.items()} return MultitaskDataset(datasets, self.datasets_for_vocab_creation) @DataIterator.register("multitask_iterator") class MultiTaskDataIterator(DataIterator): def __init__(self, iterators: Dict[str, DataIterator], names_to_index: List[str], iterate_forever: bool = False, sampling_rates: List[float] = None) -> None: self.iterators = iterators self.names_to_index = names_to_index self.sampling_rates = sampling_rates self.iterate_forever = iterate_forever def __call__(self, multitask_dataset: MultitaskDataset, num_epochs: int = None, shuffle: bool = True): # get the number of batches in each of the sub-iterators for # the sampling rate num_batches_per_iterator = [] for name in self.names_to_index: dataset = multitask_dataset.datasets[name] num_batches_per_iterator.append( self.iterators[name].get_num_batches(dataset) ) total_batches_per_epoch = sum(num_batches_per_iterator) # make the sampling rates -- p = np.array(num_batches_per_iterator, dtype=np.float) \ / total_batches_per_epoch if self.iterate_forever: total_batches_per_epoch = 1000000000 if self.sampling_rates is not None: p = np.array(self.sampling_rates, dtype=np.float) for epoch in range(num_epochs): generators = [] for name in self.names_to_index: dataset = multitask_dataset.datasets[name] generators.append( self.iterators[name]( dataset, num_epochs=1, shuffle=shuffle, ) ) n_batches_this_epoch = 0 all_indices = np.arange(len(generators)).tolist() while n_batches_this_epoch < total_batches_per_epoch: index = np.random.choice(len(generators), p=p) try: batch = next(generators[index]) except StopIteration: # remove this generator from the pile! del generators[index] if len(generators) == 0: # something went wrong raise ValueError del all_indices[index] newp = np.concatenate([p[:index], p[index+1:]]) newp /= newp.sum() p = newp continue # add the iterator id batch['dataset_index'] = torch.tensor(all_indices[index]) yield batch n_batches_this_epoch += 1 def _take_instances(self, *args, **kwargs): raise NotImplementedError def _memory_sized_lists(self, *args, **kwargs): raise NotImplementedError def _ensure_batch_is_sufficiently_small(self, *args, **kwargs): raise NotImplementedError def get_num_batches(self, multitask_dataset: MultitaskDataset) -> int: num_batches = 0 for name, dataset in multitask_dataset.datasets.items(): num_batches += self.iterators[name].get_num_batches(dataset) return num_batches def index_with(self, vocab: Vocabulary): for iterator in self.iterators.values(): iterator.index_with(vocab)
py
7dfe12629e155de84e41002084e19eab07976f75
# coding: utf-8 # # Copyright 2013 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import inspect import json from oslo_utils import strutils from oslo_utils import uuidutils import six import wsme from wsme import types as wtypes from ironic.api.controllers.v1 import utils as v1_utils from ironic.common import exception from ironic.common.i18n import _ from ironic.common import utils class MacAddressType(wtypes.UserType): """A simple MAC address type.""" basetype = wtypes.text name = 'macaddress' @staticmethod def validate(value): return utils.validate_and_normalize_mac(value) @staticmethod def frombasetype(value): if value is None: return None return MacAddressType.validate(value) class UuidOrNameType(wtypes.UserType): """A simple UUID or logical name type.""" basetype = wtypes.text name = 'uuid_or_name' @staticmethod def validate(value): if not (uuidutils.is_uuid_like(value) or v1_utils.is_valid_logical_name(value)): raise exception.InvalidUuidOrName(name=value) return value @staticmethod def frombasetype(value): if value is None: return None return UuidOrNameType.validate(value) class NameType(wtypes.UserType): """A simple logical name type.""" basetype = wtypes.text name = 'name' @staticmethod def validate(value): if not v1_utils.is_valid_logical_name(value): raise exception.InvalidName(name=value) return value @staticmethod def frombasetype(value): if value is None: return None return NameType.validate(value) class UuidType(wtypes.UserType): """A simple UUID type.""" basetype = wtypes.text name = 'uuid' @staticmethod def validate(value): if not uuidutils.is_uuid_like(value): raise exception.InvalidUUID(uuid=value) return value @staticmethod def frombasetype(value): if value is None: return None return UuidType.validate(value) class BooleanType(wtypes.UserType): """A simple boolean type.""" basetype = wtypes.text name = 'boolean' @staticmethod def validate(value): try: return strutils.bool_from_string(value, strict=True) except ValueError as e: # raise Invalid to return 400 (BadRequest) in the API raise exception.Invalid(six.text_type(e)) @staticmethod def frombasetype(value): if value is None: return None return BooleanType.validate(value) class JsonType(wtypes.UserType): """A simple JSON type.""" basetype = wtypes.text name = 'json' def __str__(self): # These are the json serializable native types return ' | '.join(map(str, (wtypes.text, six.integer_types, float, BooleanType, list, dict, None))) @staticmethod def validate(value): try: json.dumps(value) except TypeError: raise exception.Invalid(_('%s is not JSON serializable') % value) else: return value @staticmethod def frombasetype(value): return JsonType.validate(value) class ListType(wtypes.UserType): """A simple list type.""" basetype = wtypes.text name = 'list' @staticmethod def validate(value): """Validate and convert the input to a ListType. :param value: A comma separated string of values :returns: A list of unique values, whose order is not guaranteed. """ items = [v.strip().lower() for v in six.text_type(value).split(',')] # filter() to remove empty items # set() to remove duplicated items return list(set(filter(None, items))) @staticmethod def frombasetype(value): if value is None: return None return ListType.validate(value) macaddress = MacAddressType() uuid_or_name = UuidOrNameType() name = NameType() uuid = UuidType() boolean = BooleanType() listtype = ListType() # Can't call it 'json' because that's the name of the stdlib module jsontype = JsonType() class JsonPatchType(wtypes.Base): """A complex type that represents a single json-patch operation.""" path = wtypes.wsattr(wtypes.StringType(pattern='^(/[\w-]+)+$'), mandatory=True) op = wtypes.wsattr(wtypes.Enum(str, 'add', 'replace', 'remove'), mandatory=True) value = wsme.wsattr(jsontype, default=wtypes.Unset) # The class of the objects being patched. Override this in subclasses. # Should probably be a subclass of ironic.api.controllers.base.APIBase. _api_base = None # Attributes that are not required for construction, but which may not be # removed if set. Override in subclasses if needed. _extra_non_removable_attrs = set() # Set of non-removable attributes, calculated lazily. _non_removable_attrs = None @staticmethod def internal_attrs(): """Returns a list of internal attributes. Internal attributes can't be added, replaced or removed. This method may be overwritten by derived class. """ return ['/created_at', '/id', '/links', '/updated_at', '/uuid'] @classmethod def non_removable_attrs(cls): """Returns a set of names of attributes that may not be removed. Attributes whose 'mandatory' property is True are automatically added to this set. To add additional attributes to the set, override the field _extra_non_removable_attrs in subclasses, with a set of the form {'/foo', '/bar'}. """ if cls._non_removable_attrs is None: cls._non_removable_attrs = cls._extra_non_removable_attrs.copy() if cls._api_base: fields = inspect.getmembers(cls._api_base, lambda a: not inspect.isroutine(a)) for name, field in fields: if getattr(field, 'mandatory', False): cls._non_removable_attrs.add('/%s' % name) return cls._non_removable_attrs @staticmethod def validate(patch): _path = '/' + patch.path.split('/')[1] if _path in patch.internal_attrs(): msg = _("'%s' is an internal attribute and can not be updated") raise wsme.exc.ClientSideError(msg % patch.path) if patch.path in patch.non_removable_attrs() and patch.op == 'remove': msg = _("'%s' is a mandatory attribute and can not be removed") raise wsme.exc.ClientSideError(msg % patch.path) if patch.op != 'remove': if patch.value is wsme.Unset: msg = _("'add' and 'replace' operations need a value") raise wsme.exc.ClientSideError(msg) ret = {'path': patch.path, 'op': patch.op} if patch.value is not wsme.Unset: ret['value'] = patch.value return ret class LocalLinkConnectionType(wtypes.UserType): """A type describing local link connection.""" basetype = wtypes.DictType name = 'locallinkconnection' mandatory_fields = {'switch_id', 'port_id'} valid_fields = mandatory_fields.union({'switch_info'}) @staticmethod def validate(value): """Validate and convert the input to a LocalLinkConnectionType. :param value: A dictionary of values to validate, switch_id is a MAC address or an OpenFlow based datapath_id, switch_info is an optional field. For example:: { 'switch_id': mac_or_datapath_id(), 'port_id': 'Ethernet3/1', 'switch_info': 'switch1' } :returns: A dictionary. :raises: Invalid if some of the keys in the dictionary being validated are unknown, invalid, or some required ones are missing. """ wtypes.DictType(wtypes.text, wtypes.text).validate(value) keys = set(value) # This is to workaround an issue when an API object is initialized from # RPC object, in which dictionary fields that are set to None become # empty dictionaries if not keys: return value invalid = keys - LocalLinkConnectionType.valid_fields if invalid: raise exception.Invalid(_('%s are invalid keys') % (invalid)) # Check all mandatory fields are present missing = LocalLinkConnectionType.mandatory_fields - keys if missing: msg = _('Missing mandatory keys: %s') % missing raise exception.Invalid(msg) # Check switch_id is either a valid mac address or # OpenFlow datapath_id and normalize it. try: value['switch_id'] = utils.validate_and_normalize_mac( value['switch_id']) except exception.InvalidMAC: try: value['switch_id'] = utils.validate_and_normalize_datapath_id( value['switch_id']) except exception.InvalidDatapathID: raise exception.InvalidSwitchID(switch_id=value['switch_id']) return value @staticmethod def frombasetype(value): if value is None: return None return LocalLinkConnectionType.validate(value) locallinkconnectiontype = LocalLinkConnectionType() class VifType(JsonType): basetype = wtypes.text name = 'viftype' mandatory_fields = {'id'} @staticmethod def validate(value): super(VifType, VifType).validate(value) keys = set(value) # Check all mandatory fields are present missing = VifType.mandatory_fields - keys if missing: msg = _('Missing mandatory keys: %s') % ', '.join(list(missing)) raise exception.Invalid(msg) UuidOrNameType.validate(value['id']) return value @staticmethod def frombasetype(value): if value is None: return None return VifType.validate(value) viftype = VifType()
py
7dfe12cafe8bff6a6eb7a7e24bff9a4cd0e02118
# # Tests for FOQS lead-acid model # import pybamm import unittest class TestLeadAcidFOQS(unittest.TestCase): def test_well_posed(self): # debug mode slows down the FOQS model a fair bit, so turn off pybamm.settings.debug_mode = False model = pybamm.lead_acid.FOQS() pybamm.settings.debug_mode = True model.check_well_posedness() class TestLeadAcidFOQSWithSideReactions(unittest.TestCase): def test_well_posed_differential(self): options = {"surface form": "differential", "hydrolysis": "true"} # debug mode slows down the FOQS model a fair bit, so turn off pybamm.settings.debug_mode = False model = pybamm.lead_acid.FOQS(options) pybamm.settings.debug_mode = True model.check_well_posedness() if __name__ == "__main__": print("Add -v for more debug output") import sys if "-v" in sys.argv: debug = True pybamm.settings.debug_mode = True unittest.main()
py
7dfe1331af5462fe0486254c82a8d392dcc2c50f
import sys from django.utils.timezone import now try: from django.db import models except Exception: print("There was an error loading django modules. Do you have django installed?") sys.exit() from django.conf import settings import uuid # Instructor model class Instructor(models.Model): user = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE, ) full_time = models.BooleanField(default=True) total_learners = models.IntegerField() def __str__(self): return self.user.username # Learner model class Learner(models.Model): user = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE, ) STUDENT = 'student' DEVELOPER = 'developer' DATA_SCIENTIST = 'data_scientist' DATABASE_ADMIN = 'dba' OCCUPATION_CHOICES = [ (STUDENT, 'Student'), (DEVELOPER, 'Developer'), (DATA_SCIENTIST, 'Data Scientist'), (DATABASE_ADMIN, 'Database Admin') ] occupation = models.CharField( null=False, max_length=20, choices=OCCUPATION_CHOICES, default=STUDENT ) social_link = models.URLField(max_length=200) def __str__(self): return self.user.username + "," + \ self.occupation # Course model class Course(models.Model): name = models.CharField(null=False, max_length=30, default='online course') image = models.ImageField(upload_to='course_images/') description = models.CharField(max_length=1000) pub_date = models.DateField(null=True) instructors = models.ManyToManyField(Instructor) users = models.ManyToManyField(settings.AUTH_USER_MODEL, through='Enrollment') total_enrollment = models.IntegerField(default=0) is_enrolled = False def __str__(self): return "Name: " + self.name + "," + \ "Description: " + self.description # Lesson model class Lesson(models.Model): title = models.CharField(max_length=200, default="title") order = models.IntegerField(default=0) course = models.ForeignKey(Course, on_delete=models.CASCADE) content = models.TextField() # Enrollment model # <HINT> Once a user enrolled a class, an enrollment entry should be created between the user and course # And we could use the enrollment to track information such as exam submissions class Enrollment(models.Model): AUDIT = 'audit' HONOR = 'honor' BETA = 'BETA' COURSE_MODES = [ (AUDIT, 'Audit'), (HONOR, 'Honor'), (BETA, 'BETA') ] user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE) course = models.ForeignKey(Course, on_delete=models.CASCADE) date_enrolled = models.DateField(default=now) mode = models.CharField(max_length=5, choices=COURSE_MODES, default=AUDIT) rating = models.FloatField(default=5.0) # <HINT> Create a Question Model with: # Used to persist question content for a course # Has a One-To-Many (or Many-To-Many if you want to reuse questions) relationship with course # Has a grade point for each question # Has question content # Other fields and methods you would like to design class Question(models.Model): question_text = models.CharField(max_length = 200) grade = models.IntegerField() lessson_id = models.ForeignKey(Course, on_delete=models.CASCADE) # <HINT> A sample model method to calculate if learner get the score of the question def is_get_score(self, selected_ids): all_answers = self.choice_set.filter(is_correct=True).count() selected_correct = self.choice_set.filter(is_correct=True, id__in=selected_ids).count() if all_answers == selected_correct: return True else: return False # <HINT> Create a Choice Model with: # Used to persist choice content for a question # One-To-Many (or Many-To-Many if you want to reuse choices) relationship with Question # Choice content # Indicate if this choice of the question is a correct one or not # Other fields and methods you would like to design class Choice(models.Model): choice_text = models.CharField(max_length = 200) is_correct = models.IntegerField() question_id = models.ForeignKey(Question, on_delete=models.CASCADE) # <HINT> The submission model # One enrollment could have multiple submission # One submission could have multiple choices # One choice could belong to multiple submissions class Submission(models.Model): enrollment = models.ForeignKey(Enrollment, on_delete=models.CASCADE) choices = models.ManyToManyField(Choice) # Other fields and methods you would like to design
py
7dfe15f0699beb05ec7f979ac40511252e9a5ef1
import pytest from pytest import approx import pymap3d as pm @pytest.mark.parametrize("lat,dist", [(0, 0), (90, 10001965.729)]) def test_meridian_dist(lat, dist): assert pm.meridian_dist(lat) == approx(dist) @pytest.mark.parametrize( "lat1,lat2,arclen", [(0, 0, 0), (0, 90, 10001965.729), (0, -90, 10001965.729), (0, 40, 4429529.03035058), (40, 80, 4455610.84159)], ) def test_meridian_arc(lat1, lat2, arclen): """ meridianarc(deg2rad(40), deg2rad(80), wgs84Ellipsoid) """ assert pm.meridian_arc(lat1, lat2) == approx(arclen) @pytest.mark.parametrize( "lon1,lon2,lat,dist", [(0, 0, 0, 0), (0, 90, 0, 10018754.1714), (0, -90, 0, 10018754.1714), (90, 0, 0, 10018754.1714), (-90, 0, 0, 10018754.1714)], ) def test_departure(lon1, lon2, lat, dist): assert pm.departure(lon1, lon2, lat) == approx(dist) @pytest.mark.parametrize( "lat1,lon1,lat2,lon2,arclen,az", [ (40, -80, 65, -148, 5248666.20853187, 302.0056736), (0, 0, 0, 90, 10018754.17, 90), (0, 0, 0, -90, 10018754.17, 270), (0, 90, 0, 0, 10018754.17, 270), (0, -90, 0, 0, 10018754.17, 90), (1, 0, 0, 0, 110574.4, 180), (-1, 0, 0, 0, 110574.4, 0), ], ) def test_loxodrome_inverse(lat1, lon1, lat2, lon2, arclen, az): """ distance('rh', 40, -80, 65, -148, wgs84Ellipsoid) azimuth('rh', 40, -80, 65, -148, wgs84Ellipsoid) """ rhdist, rhaz = pm.loxodrome_inverse(lat1, lon1, lat2, lon2) assert rhdist == approx(arclen) assert rhaz == approx(az) assert isinstance(rhdist, float) assert isinstance(rhaz, float) def test_numpy_loxodrome_inverse(): pytest.importorskip("numpy") d, a = pm.loxodrome_inverse([40, 40], [-80, -80], 65, -148) assert d == approx(5248666.209) assert a == approx(302.00567) @pytest.mark.parametrize( "lat0,lon0,rng,az,lat1,lon1", [ (40, -80, 10000, 30, 40.077995, -79.9414144), (0, 0, 0, 0, 0, 0), (0, 0, 10018754.17, 90, 0, 90), (0, 0, 10018754.17, -90, 0, -90), (0, 0, 110574.4, 180, -1, 0), (-1, 0, 110574.4, 0, 0, 0), ], ) def test_loxodrome_direct(lat0, lon0, rng, az, lat1, lon1): lat2, lon2 = pm.loxodrome_direct(lat0, lon0, rng, az) assert lat2 == approx(lat1, abs=1e-6) assert lon2 == approx(lon1) assert isinstance(lat2, float) assert isinstance(lon2, float) def test_numpy_loxodrome_direct(): pytest.importorskip("numpy") lat, lon = pm.loxodrome_direct([40, 40], [-80, -80], [10000, 10000], [30, 30]) assert lat == approx(40.077995) assert lon == approx(-79.941414) @pytest.mark.parametrize("lat,lon", [([0, 45, 90], [0, 45, 90])]) def test_meanm(lat, lon): pytest.importorskip("numpy") assert pm.meanm(lat, lon) == approx([47.26967, 18.460557])
py
7dfe15f7f9913386ff59cdad7af6082f2c67aa57
from django.contrib import admin # Register your models here. from .models import Direct admin.site.register(Direct)
py
7dfe161cdda2e4efdb8c5eef45355ec5a5b7440a
import tensorflow as tf import os, sys import requests as http import json import datetime from random import random from time import sleep from tqdm import tqdm # import horovod.tensorflow as hvd # hvd.init() os.environ['CUDA_VISIBLE_DEVICES'] = "3" #str(hvd.local_rank()) gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: # Create 2 virtual GPUs with 3GB memory each try: tf.config.experimental.set_virtual_device_configuration( gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=3000), tf.config.experimental.VirtualDeviceConfiguration(memory_limit=3000), tf.config.experimental.VirtualDeviceConfiguration(memory_limit=3000)]) logical_gpus = tf.config.experimental.list_logical_devices('GPU') # print(len(gpus), "Physical GPU,", len(logical_gpus), "Logical GPUs") except RuntimeError as e: pass # Virtual devices must be set before GPUs have been initialized from object_detection import DetectObject from scipy.spatial.distance import euclidean from tools import generate_detections as gdet from deep_sort.tracker import Tracker from deep_sort.detection import Detection from deep_sort import preprocessing, nn_matching from tensorflow.compat.v1 import InteractiveSession from tensorflow.compat.v1 import ConfigProto import matplotlib.pyplot as plt import numpy as np import cv2 from PIL import Image from core.functions import * from core.config import cfg from tensorflow.python.saved_model import tag_constants from core.yolov4 import filter_boxes import core.utils as utils from absl.flags import FLAGS from absl import app, flags, logging import time import os # define constants flags.DEFINE_string('framework', 'tf', '(tf, tflite, trt') flags.DEFINE_string('weights', './checkpoints/yolov4-416', 'path to weights file') flags.DEFINE_integer('size', 416, 'resize images to') flags.DEFINE_boolean('tiny', False, 'yolo or yolo-tiny') flags.DEFINE_string('model', 'yolov3', 'yolov3 or yolov4') flags.DEFINE_string('video', './data/video/test.mp4', 'path to input video or set to 0 for webcam') flags.DEFINE_string('output', None, 'path to output video') flags.DEFINE_string('output_format', 'XVID', 'codec used in VideoWriter when saving video to file') flags.DEFINE_float('iou', 0.45, 'iou threshold') flags.DEFINE_float('score', 0.70, 'score threshold') flags.DEFINE_boolean('dont_show', False, 'dont show video output') flags.DEFINE_boolean('info', True, 'show detailed info of tracked objects') flags.DEFINE_boolean('count', True, 'count objects being tracked on screen') flags.DEFINE_boolean('crop', True, 'crop detections from images') class NumpyEncoder(json.JSONEncoder): """ Special json encoder for numpy types """ def default(self, obj): if isinstance(obj, np.integer): return int(obj) elif isinstance(obj, np.floating): return float(obj) elif isinstance(obj, np.ndarray): return obj.tolist() return json.JSONEncoder.default(self, obj) #check if the ROI folder exist in the root folder if os.path.exists('./ROI'): print('Clearing out files in ROI......') cleardata = [os.remove(os.path.join('./ROI', f)) for f in os.listdir('./ROI')] print('Cleared out files!!!') else: print("Creating exporting folder: ROI....") os.mkdir('./ROI') print("Created ROI Folder for image exportation......") minimapArray = [] def main(_argv): # Definition of the parameters max_cosine_distance = 0.4 nn_budget = None nms_max_overlap = 1.0 interpreter = None # initialize deep sort model_filename = 'model_data/mars-small128.pb' encoder = gdet.create_box_encoder(model_filename, batch_size=1) # calculate cosine distance metric metric = nn_matching.NearestNeighborDistanceMetric( "cosine", max_cosine_distance, nn_budget) # initialize tracker tracker = Tracker(metric) # load configuration for object detector config = ConfigProto() config.gpu_options.allow_growth = True session = InteractiveSession(config=config) STRIDES, ANCHORS, NUM_CLASS, XYSCALE = utils.load_config(FLAGS) input_size = FLAGS.size video_path = FLAGS.video # get video name by using split method video_name = video_path.split('/')[-1] video_name = video_name.split('.')[0] # load tflite model if flag is set if FLAGS.framework == 'tflite': interpreter = tf.lite.Interpreter(model_path=FLAGS.weights) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() # otherwise load standard tensorflow saved model else: saved_model_loaded = tf.saved_model.load( FLAGS.weights, tags=[tag_constants.SERVING]) infer = saved_model_loaded.signatures['serving_default'] # begin video capture try: vid = cv2.VideoCapture(int(video_path)) except: vid = cv2.VideoCapture(video_path) # Try to read video if valid return_value, frame = vid.read() if return_value: pass else: print('Invalid video Directory!!!') filename = video_path.split('.')[-2] # VideoOut = None MinimapOut = None # Get total number of frames in a video TotalFrames = int(vid.get(cv2.CAP_PROP_FRAME_COUNT)) # get video ready to save locally if flag is set if FLAGS.output: # by default VideoCapture returns float instead of int width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)) time_milli = vid.get(cv2.CAP_PROP_POS_MSEC) time_milli = time_milli/1000 # set frame per seconds vid.set(cv2.CAP_PROP_FPS, 1000) fps = int(vid.get(cv2.CAP_PROP_FPS)) codec = cv2.VideoWriter_fourcc(*FLAGS.output_format) frame_num = 0 count = 10 ObjectDetector = DetectObject() for _, i in enumerate(tqdm(range(TotalFrames))): return_value, frame = vid.read() if return_value: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) image = Image.fromarray(frame) else: print('Video has ended or failed, try a different video format!') break # pass in the object detector ObjectDetector.interpreter = interpreter bboxes, frame, result = ObjectDetector.analyzeDetection(return_value, frame, frame_num, FLAGS, infer, encoder, nms_max_overlap, tracker) # loop through the bounding box and export into the ROI folder. for i, j in bboxes.items(): xmin, ymin, w, h = int(j[0]), int(j[1]), int(j[2]), int(j[3]) if w <= 0 or h <= 0: pass else: # ROI Extraction maskedImage = frame[ymin:ymin+h, xmin:xmin+w] roi_name= "./ROI/ROI_frame_%s.jpg" %(str(frame_num)) cv2.imwrite(roi_name, maskedImage) # save transformed image to path # cv2.imshow('frame',result) frame_num += 1 if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.destroyAllWindows() if __name__ == '__main__': try: app.run(main) except SystemExit: pass
py
7dfe16424a2d3a67152024fcfa03142d8f8d6fe8
""" Generate various steady state data sets.""" from bayescmd.steady_state import RunSteadyState import os import distutils import json import copy import itertools import matplotlib.pyplot as plt import seaborn as sns from datetime import datetime from matplotlib import rcParams import numpy as np MODEL_NAME = "bp_hypothermia_4" # inputs = {"P_a": (30, 70), "Pa_CO2": (8, 160), "SaO2sup": (0.2, 1.0)} # temperatures = [37, 35, 33.5] # cbar = sns.color_palette("muted", n_colors=4) # for direction in ["up", "down"]: # for i, r in inputs.items(): # data = {} # workdir = os.path.join( # os.pardir, 'data', 'steady_state', MODEL_NAME, 'autoregulation') # distutils.dir_util.mkpath(workdir) # distutils.dir_util.mkpath(os.path.join(workdir, "Figures")) # print("Running steady state - {}".format(i)) # for t in temperatures: # print("Running temperature {}C".format(t)) # config = { # "model_name": MODEL_NAME, # "inputs": i, # "parameters": { # "temp": t # }, # "targets": ["CBF"], # "max_val": r[1], # "min_val": r[0], # "debug": True, # "direction": direction # } # model = RunSteadyState(conf=config, workdir=workdir) # output = model.run_steady_state() # data[t] = output # with open(os.path.join(workdir, # "{}_{}.json".format(i, direction)), 'w') as f: # json.dump(data, f) # fig, ax = plt.subplots() # for idx, t in enumerate(temperatures): # ax.plot(data[t][i], data[t]['CBF'], label=t, color=cbar[idx]) # ax.set_title("Steady state for varying {} - {}".format(i, direction)) # ax.set_ylabel("CBF") # ax.set_xlabel(i) # legend = ax.legend(loc='upper center') # fig.savefig(os.path.join(workdir, "Figures", "{}_{}.png".format(i, direction)), # bbox_inches="tight") outputs = ["CMRO2", "CCO", "HbT", "CBF", "Hbdiff", "TOI", "Vmca", "HbO2", "HHb"] # For debugging # outputs.extend(["k_MAshut", "k_nMAshut", "Q_temp", "_ADP", "_ATP"]) q10_range = np.arange(0.1, 5.1, 0.1) qdiff_range = np.arange(0.1, 1.0, 0.02) q_range = list(itertools.product(q10_range, qdiff_range)) pa_range = [30, 40, 50, 60, 70] sao2_range = [0.8, 0.9, 1.0] cbar = sns.color_palette("Set1", n_colors=len(q10_range)) data = {} direction = "down" workdir = os.path.join(os.pardir, 'data', 'steady_state', MODEL_NAME, "model_output") distutils.dir_util.mkpath(workdir) for q in q_range: print("Running Q10 {}, q_diff {}".format(q[0], q[1])) config = { "model_name": MODEL_NAME, "inputs": "temp", "parameters": { "Q_10": q[0], "q_diff": q[1] }, "targets": copy.copy(outputs), "max_val": 37, "min_val": 33.5, "debug": False, "direction": direction } model = RunSteadyState(conf=config, workdir=workdir) output = model.run_steady_state() data["{}_{}".format(q[0], q[1])] = output with open(os.path.join(workdir, "q_range_runs_{}.json".format(direction)), 'w') as f: json.dump(data, f) # rcParams['axes.titlepad'] = 12 # for o in outputs: # print("Plotting {}".format(o)) # if direction == "both": # fig, ax = plt.subplots(nrows=len(q10_range), # ncols=len(qdiff_range), figsize=(10, 10), sharey=True) # for idx, q in enumerate(q_range): # q_key = "{}_{}".format(q[0], q[1]) # ax[idx//len(q10_range)][idx % len(q10_range)].plot(data[q_key]["temp"][:len(data[q_key][o]) // 2 + 1], # data[q_key][o][:len( # data[q_key][o]) // 2 + 1], # label="Up") # ax[idx//len(q10_range)][idx % len(qdiff_range)].plot(data[q_key]["temp"][len(data[q_key][o]) // 2:], # data[q_key][o][len( # data[q_key][o]) // 2:], # label="Down") # ax[idx//len(q10_range)][idx % # len(qdiff_range)].set_title("Q10: {} q_diff: {}".format(q[0], q[1])) # ax[idx//len(q10_range)][idx % # len(qdiff_range)].set_ylabel(o) # ax[idx//len(q10_range)][idx % # len(qdiff_range)].set_xlabel("Temp (C)") # # ax[idx//5][idx % 5].legend() # plt.tight_layout() # plt.subplots_adjust(hspace=0.4) # path = os.path.join(workdir, "Figures") # distutils.dir_util.mkpath(path) # fig.savefig(os.path.join(path, "{}_both.png".format(o)), # bbox_inches="tight") # plt.close() # else: # fig, ax = plt.subplots(nrows=len(q10_range), # ncols=len(qdiff_range), figsize=(10, 10), sharey="col") # for idx, q in enumerate(q_range): # q_key = "{}_{}".format(q[0], q[1]) # ax.flatten()[idx].plot(data[q_key]["temp"], # data[q_key][o], label="$Q_{10}$: %.2f\n$q_{diff}$: %.2f" % (q[0], q[1])) # ax.flatten()[idx].set_title( # "$Q_{10}$: %.2f $q_{diff}$: %.2f" % (q[0], q[1])) # ax.flatten()[idx].set_ylabel(o) # ax.flatten()[idx].set_xlabel("Temp (C)") # # ax.flatten()[idx].legend() # fig.suptitle("Effect of %s temperature on %s" % # ("decreasing" if direction == "down" else "increasing", o)) # fig.subplots_adjust(top=0.9, hspace=0.5, wspace=0.5) # path = os.path.join(workdir, "Figures") # distutils.dir_util.mkpath(path) # fig.savefig(os.path.join(path, "{}_{}.png".format(o, direction)), # bbox_inches="tight") # plt.close()
py
7dfe16fce486c88484a754b232b589be1c6cee86
import base64 import os import time from flask import Flask, jsonify, request, redirect, url_for, send_file, make_response, render_template from flask_cors import CORS, cross_origin from options.test_options import TestOptions from data.data_loader import CreateDataLoader from models.models import create_model import util.util as util # Model loader opt = TestOptions().parse() opt.nThreads = 1 opt.batchSize = 1 opt.serial_batches = True opt.no_flip = True model = create_model(opt) # Config app = Flask(__name__, template_folder='templates', static_url_path='/static/') CORS(app) app.config['UPLOAD_DIR'] = os.path.join(os.getcwd(), 'upload') app.config['RESULT_DIR'] = os.path.join(os.getcwd(), 'results') app.config['ALLOWED_EXTENSIONS'] = {'jpg', 'jpeg', 'png'} # Setup if not os.path.exists(app.config['UPLOAD_DIR']): os.mkdir(app.config['UPLOAD_DIR']) if not os.path.exists(app.config['RESULT_DIR']): os.mkdir(app.config['RESULT_DIR']) # Helpers def allowed_file(filename): return '.' in filename and \ filename.rsplit('.', 1)[1] in app.config['ALLOWED_EXTENSIONS'] def error(msg): return jsonify({'error': msg}) # Routers @app.route('/') def pong(): return 'Hello', {'Content-Type': 'text-plain; charset=utf-8'} @app.route('/home') def home_page(): return render_template('main_page.html') @app.route('/gen', methods=['POST']) def gen(): # if 'file' not in request.files: # if 'file' not in request.files: # return error('file form-data not existed'), 412 # image = request.files['file'] # if not allowed_file(image.filename): # return error('Only supported %s' % app.config['ALLOWED_EXTENSIONS']), 415 # Submit taylor.jpg ---> save image to upload/12345678/taylor.jpg (upload/timestamp/imagename.ext) t = int(time.time()) image_dir = os.path.join(app.config['UPLOAD_DIR'], str(t)) image_path = os.path.join(image_dir, '1.png') os.mkdir(image_dir) image_data = base64.b64decode(request.data) with open(image_path, 'wb') as f: f.write(image_data) # image.save(image_path) # Prepare data loader opt.dataroot = image_dir data_loader = CreateDataLoader(opt) dataset = data_loader.load_data() for i, data in enumerate(dataset): if i >= opt.how_many: break model.set_input(data) # Forward model.test() # Convert image to numpy array fake = util.tensor2im(model.fake_B.data) # Save image result_dir = os.path.join(app.config['RESULT_DIR'], str(t)) result_path = os.path.join(result_dir, '1.png') os.mkdir(result_dir) util.save_image(fake, result_path) # with open(result_path, 'rb') as img_f: # img_stream = img_f.read() # img_stream = base64.b64encode(img_stream) # return img_stream return send_file(result_path) if __name__ == '__main__': app.run()
py
7dfe17702ba0e2a96a68338248602d0d1371ef8a
# SPDX-FileCopyrightText: 2018 Mikey Sklar for Adafruit Industries # SPDX-FileCopyrightText: 2020 Erin St. Blaine for Adafruit Industries # # SPDX-License-Identifier: MIT import time import board import neopixel pixel_count = 6 # Number of NeoPixels pixel_pin = board.D1 # Pin where NeoPixels are connected speed = .1 # Animation speed (in seconds). # This is how long to spend in a single animation frame. # Higher values are slower. # Good values to try are 400, 200, 100, 50, 25, etc. animation = 0 # Type of animation, can be one of these values: # 0 - Solid color pulse # 1 - Moving color pulse color_steps = 8 # Number of steps in the animation. brightness = 1.0 # 0-1, higher number is brighter # Adjacent colors (on color wheel). # red yellow color_animation = ([255, 0, 0], [255, 36, 0], [255, 72, 0], [255, 109, 0], [255, 145, 0], [255, 182, 0], [255, 218, 0], [255, 255, 0]) # Adjacent colors #([255, 0, 0], [255, 36, 0], [255, 72, 0], [255, 109, 0], # [255, 145, 0], [255, 182, 0], [255, 218, 0], [255, 255, 0]) # red yellow #([255, 255, 0], [218, 255, 0], [182, 255, 0], [145, 255, 0], # [109, 255, 0], [72, 255, 0], [36, 255, 0], [0, 255, 0]) # yello green #([0, 255, 0], [0, 255, 36], [0, 255, 72], [0, 255, 109], # [0, 255, 145], [0, 255, 182], [0, 255, 218], [0, 255, 255]) # green cyan #([0, 255, 255], [0, 218, 255], [0, 182, 255], [0, 145, 255], # [0, 109, 255], [0, 72, 255], [0, 36, 255], [0, 0, 255]) # cyan blue #([0, 0, 255], [36, 0, 255], [72, 0, 255], [109, 0, 255], # [145, 0, 255], [182, 0, 255], [218, 0, 255], [255, 0, 255]) # blue magenta #([255, 0, 255], [255, 0, 218], [255, 0, 182], [255, 0, 145], # [255, 0, 109], [255, 0, 72], [255, 0, 36], [255, 0, 0]) # magenta red # Complimentary colors #([255, 0, 0], [218, 36, 36], [182, 72, 72], [145, 109, 109], # [109, 145, 145], [72, 182, 182], [36, 218, 218], [0, 255, 255]) # red cyan #([255, 255, 0], [218, 218, 36], [182, 182, 72], [145, 145, 109], # [109, 109, 145], [72, 72, 182], [36, 36, 218], [0, 0, 255]) # yellow blue #([0, 255, 0], [36, 218, 36], [72, 182, 72], [109, 145, 109], # [145, 109, 145], [182, 72, 182], [218, 36, 218], [255, 0, 255]) # green magenta # Other combos #([255, 0, 0], [218, 36, 0], [182, 72, 0], [145, 109, 0], # [109, 145, 0], [72, 182, 0], [36, 218, 0], [0, 255, 0]) # red green #([255, 255, 0], [218, 255, 36], [182, 255, 72], [145, 255, 109], # [109, 255, 145], [72, 255, 182], [36, 255, 218], [0, 255, 255]) # yellow cyan #([0, 255, 0], [0, 218, 36], [0, 182, 72], [0, 145, 109], # [0, 109, 145], [0, 72, 182], [0, 36, 218], [0, 0, 255]) # green blue #([0, 255, 255], [36, 218, 255], [72, 182, 255], [109, 145, 255], # [145, 109, 255], [182, 72, 255], [218, 36, 255], [255, 0, 255]) # cyan magenta #([0, 0, 255], [36, 0, 218], [72, 0, 182], [109, 0, 145], # [145, 0, 109], [182, 0, 72], [218, 0, 36], [255, 0, 0]) # blue red #([255, 0, 255], [255, 36, 218], [255, 72, 182], [255, 109, 145], # [255, 145, 109], [255, 182, 72], [255, 218, 36], [255, 255, 0]) # magenta yellow # Solid colors fading to dark #([255, 0, 0], [223, 0, 0], [191, 0, 0], [159, 0, 0], # [127, 0, 0], [95, 0, 0], [63, 0, 0], [31, 0, 0]) # red #([255, 153, 0], [223, 133, 0], [191, 114, 0], [159, 95, 0], # [127, 76, 0], [95, 57, 0], [63, 38, 0], [31, 19, 0]) # orange #([255, 255, 0], [223, 223, 0], [191, 191, 0], [159, 159, 0], # [127, 127, 0], [95, 95, 0], [63, 63, 0], [31, 31, 0]) # yellow #([0, 255, 0], [0, 223, 0], [0, 191, 0], [0, 159, 0], # [0, 127, 0], [0, 95, 0], [0, 63, 0], [0, 31, 0]) # green #([0, 0, 255], [0, 0, 223], [0, 0, 191], [0, 0, 159], # [0, 0, 127], [0, 0, 95], [0, 0, 63], [0, 0, 31]) # blue #([75, 0, 130], [65, 0, 113], [56, 0, 97], [46, 0, 81], # [37, 0, 65], [28, 0, 48], [18, 0, 32], [9, 0, 16]) # indigo #([139, 0, 255], [121, 0, 223], [104, 0, 191], [86, 0, 159], # [69, 0, 127], [52, 0, 95], [34, 0, 63], [17, 0, 31]) # violet #([255, 255, 255], [223, 223, 223], [191, 191, 191], [159, 159, 159], # [127, 127, 127], [95, 95, 95], [63, 63, 63], [31, 31, 31]) # white #([255, 0, 0], [255, 153, 0], [255, 255, 0], [0, 255, 0], # [0, 0, 255], [75, 0, 130], [139, 0, 255], [255, 255, 255]) # rainbow colors # Global state used by the sketch strip = neopixel.NeoPixel(pixel_pin, pixel_count, brightness=1, auto_write=False) while True: # Loop forever... # Main loop will update all the pixels based on the animation. for i in range(pixel_count): # Animation 0, solid color pulse of all pixels. if animation == 0: current_step = (time.monotonic() / speed) % (color_steps * 2 - 2) if current_step >= color_steps: current_step = color_steps - (current_step - (color_steps - 2)) # Animation 1, moving color pulse. Use position to change brightness. elif animation == 1: current_step = (time.monotonic() / speed + i) % (color_steps * 2 - 2) if current_step >= color_steps: current_step = color_steps - (current_step - (color_steps - 2)) strip[i] = color_animation[int(current_step)] # Show the updated pixels. strip.show()
py
7dfe1848d58b1c69954d8f6600a2e80a5d5b9076
from django.test import TestCase from courses import models from courses.tests.factories import ( SemesterFactory, SemesterDepartmentFactory, OfferedForFactory, CourseFactory, SectionFactory, DepartmentFactory, PeriodFactory, SectionPeriodFactory ) class SemesterBasedQuerySetTest(TestCase): def setUp(self): self.sem = SemesterFactory.create(year=2011, month=1) self.sd1 = SemesterDepartmentFactory.create(semester=self.sem) self.sd2 = SemesterDepartmentFactory.create(semester=self.sem) def test_semester_based_queryset_for_a_semester(self): departments = models.Department.objects.by_semester(2011, 1) self.assertEqual([self.sd1.department, self.sd2.department], list(departments)) def test_semester_based_queryset_is_empty_for_another_semester(self): departments = models.Department.objects.by_semester(2010, 1) self.assertEqual([], list(departments)) def test_no_semester_filtering_if_none(self): departments = models.Department.objects.by_semester(None, None) self.assertEqual([self.sd1.department, self.sd2.department], list(departments)) class SerializableQuerySetTest(TestCase): def setUp(self): self.sem = SemesterFactory.create(year=2011, month=1) dept1 = DepartmentFactory.create(name='depart1', code='dept1') self.sd1 = SemesterDepartmentFactory.create(semester=self.sem, department=dept1) dept2 = DepartmentFactory.create(name='depart2', code='dept2') self.sd2 = SemesterDepartmentFactory.create(semester=self.sem, department=dept2) def test_serializable_queryset(self): departments = models.Department.objects.all().toJSON() self.assertEqual([{ 'name': 'depart1', 'code': 'dept1', }, { 'name': 'depart2', 'code': 'dept2', }], departments) class SectionPeriodQuerySetTest(TestCase): def setUp(self): self.sem = SemesterFactory.create(year=2011, month=1) self.dept = DepartmentFactory.create(code='CSCI') SemesterDepartmentFactory.create(department=self.dept, semester=self.sem) self.course = CourseFactory.create(number=2222, department=self.dept) OfferedForFactory.create(course=self.course, semester=self.sem) self.section = SectionFactory.create(course=self.course, semester=self.sem) SectionPeriodFactory.create(section=self.section) def test_filter_by_course_code(self): sps = models.SectionPeriod.objects.by_course_code('CSCI', 2222) self.assertEqual([self.section], [sp.section for sp in sps]) def test_filter_by_course(self): c = models.Course.objects.all()[0] sps = models.SectionPeriod.objects.by_course(c) self.assertEqual([self.section], [sp.section for sp in sps]) def test_filter_by_sections(self): sps = models.SectionPeriod.objects.by_sections([self.section]) self.assertEqual([self.section], [sp.section for sp in sps]) def test_filter_by_courses(self): sps = models.SectionPeriod.objects.by_courses([self.course]) self.assertEqual([self.section], [sp.section for sp in sps]) class CourseQuerySetTest(TestCase): def setUp(self): self.sem = SemesterFactory.create() self.dept1 = DepartmentFactory.create(code='CSCI') self.dept2 = DepartmentFactory.create() self.course1 = CourseFactory.create(department=self.dept1, name='the course') OfferedForFactory.create(course=self.course1, semester=self.sem) self.course2 = CourseFactory.create(department=self.dept2) OfferedForFactory.create(course=self.course2, semester=self.sem) self.course3 = CourseFactory.create(department=self.dept1, name='another course') OfferedForFactory.create(course=self.course3, semester=self.sem) def test_filter_by_department(self): courses = models.Course.objects.by_department(self.dept1) self.assertEqual([self.course1, self.course3], list(courses)) def test_search_by_department(self): courses = models.Course.objects.search(dept='CSCI') self.assertEqual([self.course1, self.course3], list(courses)) def test_search_by_query(self): courses = models.Course.objects.search('another').get() self.assertEqual(self.course3, courses)
py
7dfe19487762242297c0d9583165c7e300ef33c5
from sqlalchemy import Column, Integer, String, ForeignKey from sqlalchemy.orm import relationship, backref from bot.DataBase.models.base import Base class Admin(Base): __tablename__ = "admins" id = Column(Integer, primary_key=True) user_id = Column(Integer, ForeignKey("users.id")) user = relationship("User", backref=backref("admins", cascade="all, delete-orphan")) type = Column(String, default="support") def __init__(self, user): self.user = user
py
7dfe194968328344d7da6b727cb5e57fd47333eb
''' Arduino interface ''' import glob import os import serial import subprocess import time PRODUCTION = os.getenv("PRODUCTION") class FakeSerial(object): # FIXME: implement and connect to Arduino class def __init__(self, log, *args, **kwargs): self.Log = log self.Value = '' self.Map = { 'I': "I", 'W': "30.0", 'V': "", '1': '1', '2': '2', '3': '3' } self.Numbers = "123456789" def close(self): return def write(self, value): self.Value = value.decode().strip() self.Log.debug("SERIAL: sent: '%s'"%self.Value) if self.Value in self.Numbers: if self.Value in self.Map['V']: self.Map['V'] = self.Map['V'].replace(self.Value, "") else: self.Map['V'] = self.Map['V'] + self.Value return def readline(self): resp = self.Map.get(self.Value, 'E') self.Log.debug("SERIAL: response: '%s'"%resp) return resp.encode() class Arduino(object): def __init__(self, log): self.Log = log self.Stream = None self._newSerial() self.Running = False def _newSerial(self): ''' Reset the serial device using the DTR lines ''' try: self.Stream.close() except: pass if PRODUCTION: serial_devices = glob.glob("/dev/ttyUSB*") if len(serial_devices) < 1: self.Log.error("No Serial devices detected. Restarting ...") subprocess.call("sudo reboot", shell=True) self.SerialDevice = sorted(serial_devices)[-1] self.Stream = serial.Serial(self.SerialDevice, 57600, timeout=1) else: self.Stream = FakeSerial(self.Log) if self._sendData('I') == 'I': return # still not reset self.Log.error("Failed to reset Serial!!!") def resetSerial(self): try: self.Stream.close() except: pass if PRODUCTION: # FIXME: match device to the actual subprocess.call("sudo ./usbreset /dev/bus/usb/001/002", shell=True, cwd=os.path.expanduser("~/")) time.sleep(2) self._newSerial() def _readResponse(self): try: response = self.Stream.readline().decode('utf-8').strip() while len(response) > 0 and response.startswith('D'): self.Log.debug(response) response = self.Stream.readline().decode('utf-8').strip() except Exception as e: self.Log.error("Serial exception: %s" % (e), exc_info=1) self.resetSerial() self.Log.debug("SERIAL - Response: '%s'"%(response)) return response def _sendData(self, value): self._readResponse() v = bytes(value, 'utf-8') self.Log.debug("SERIAL - Sending: %s"%(v)) self.Stream.write(v) return self._readResponse() def handleDebugMessages(self): self._readResponse() def getOpenValves(self): valves = self._sendData("V") return [int(c) for c in valves] def getWaterCounter(self): # This should only be called via the WaterMeter class ret = self._sendData("W") try: # int wont handle decimals in the string, but float handles with or without return int(float(ret)) except Exception: self.Log.error("Int(%s) conversion failed for Arduino.getWaterCounter()"%ret) return 0 def toggleValve(self, valve): if self._sendData(str(valve)) == str(valve): return True return False def openValve(self, valve): open_valves = self.getOpenValves() if not valve in open_valves: self.toggleValve(valve) return True return False def closeValve(self, valve): open_valves = self.getOpenValves() if valve in open_valves: self.toggleValve(valve) return True return False def checkStartButton(self): return self._sendData('S') == 'S' def enterProgramMode(self): self.Running = True return self._sendData('P') == 'P' def leaveProgramMode(self): self.Running = False return self._sendData('p') == 'p' def isProgramRunning(self): return self.Running
py
7dfe1a6f2e3d8e1ddea3bb94b0ee898471077e0b
_base_ = [ '../../_base_/meta_test/tiered-imagenet_meta-test_5way-1shot.py', '../../_base_/runtime/iter_based_runtime.py', '../../_base_/schedules/adam_100k_iter.py' ] img_size = 84 img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromBytes'), dict(type='RandomResizedCrop', size=img_size), dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'), dict(type='ColorJitter', brightness=0.4, contrast=0.4, saturation=0.4), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='ToTensor', keys=['gt_label']), dict(type='Collect', keys=['img', 'gt_label']) ] data = dict( samples_per_gpu=1, workers_per_gpu=8, train=dict( type='EpisodicDataset', num_episodes=100000, num_ways=5, num_shots=5, num_queries=16, dataset=dict( type='TieredImageNetDataset', data_prefix='data/tiered_imagenet', subset='train', pipeline=train_pipeline))) model = dict( type='ProtoNet', backbone=dict(type='ResNet12'), head=dict(type='PrototypeHead'))
py
7dfe1aa0eb5f70709d7fd4319b80819a6d8d897a
from django.test import TestCase from django.urls import reverse from .utils import add_default_data from petition.models import Petition, Signature class ConfirmViewTest(TestCase): """Test confirm view""" @classmethod def setUpTestData(cls): add_default_data() def test_ConfirmOk(self): data = { 'first_name': 'Alan', 'last_name': 'John', 'email': '[email protected]', 'subscribed_to_mailinglist': False, } petition = Petition.objects.filter(published=True).first() response = self.client.post(reverse('create_signature', args=[petition.id]), data, follow=True) self.assertRedirects(response, petition.url) signature = Signature.objects.filter(petition=petition).first() self.assertEqual(signature.confirmed, False) confirm_hash = signature.confirmation_hash response = self.client.get(reverse('confirm', args=[petition.id, confirm_hash]), follow=True) self.assertRedirects(response, petition.url) signature = Signature.objects.filter(petition=petition).first() # Reload the object self.assertEqual(signature.confirmed, True)
py
7dfe1ab72272fb73e5716974903c3c1814653c17
from collections import OrderedDict from django.urls import reverse_lazy from django.utils.translation import gettext_lazy as _ OSCAR_SHOP_NAME = 'Oscar' OSCAR_SHOP_TAGLINE = '' OSCAR_HOMEPAGE = reverse_lazy('promotions:home') # Dynamic class loading OSCAR_DYNAMIC_CLASS_LOADER = 'oscar.core.loading.default_class_loader' # Basket settings OSCAR_BASKET_COOKIE_LIFETIME = 7 * 24 * 60 * 60 OSCAR_BASKET_COOKIE_OPEN = 'oscar_open_basket' OSCAR_BASKET_COOKIE_SECURE = False OSCAR_MAX_BASKET_QUANTITY_THRESHOLD = 10000 # Recently-viewed products OSCAR_RECENTLY_VIEWED_COOKIE_LIFETIME = 7 * 24 * 60 * 60 OSCAR_RECENTLY_VIEWED_COOKIE_NAME = 'oscar_history' OSCAR_RECENTLY_VIEWED_COOKIE_SECURE = False OSCAR_RECENTLY_VIEWED_PRODUCTS = 20 # Currency OSCAR_DEFAULT_CURRENCY = 'USD' # Paths OSCAR_IMAGE_FOLDER = 'images/products/%Y/%m/' OSCAR_PROMOTION_FOLDER = 'images/promotions/' OSCAR_DELETE_IMAGE_FILES = True # Copy this image from oscar/static/img to your MEDIA_ROOT folder. # It needs to be there so Sorl can resize it. OSCAR_MISSING_IMAGE_URL = 'image_not_found.jpg' OSCAR_UPLOAD_ROOT = '/tmp' # Address settings OSCAR_REQUIRED_ADDRESS_FIELDS = ('first_name', 'last_name', 'line1', 'line4', 'postcode', 'country') # Pagination settings OSCAR_OFFERS_PER_PAGE = 20 OSCAR_PRODUCTS_PER_PAGE = 20 OSCAR_REVIEWS_PER_PAGE = 20 OSCAR_NOTIFICATIONS_PER_PAGE = 20 OSCAR_EMAILS_PER_PAGE = 20 OSCAR_ORDERS_PER_PAGE = 20 OSCAR_ADDRESSES_PER_PAGE = 20 OSCAR_STOCK_ALERTS_PER_PAGE = 20 OSCAR_DASHBOARD_ITEMS_PER_PAGE = 20 # Checkout OSCAR_ALLOW_ANON_CHECKOUT = False # Promotions OSCAR_PROMOTION_POSITIONS = (('page', 'Page'), ('right', 'Right-hand sidebar'), ('left', 'Left-hand sidebar')) # Reviews OSCAR_ALLOW_ANON_REVIEWS = True OSCAR_MODERATE_REVIEWS = False # Accounts OSCAR_ACCOUNTS_REDIRECT_URL = 'customer:profile-view' # This enables sending alert notifications/emails instantly when products get # back in stock by listening to stock record update signals. # This might impact performance for large numbers of stock record updates. # Alternatively, the management command ``oscar_send_alerts`` can be used to # run periodically, e.g. as a cron job. In this case eager alerts should be # disabled. OSCAR_EAGER_ALERTS = True # Registration OSCAR_SEND_REGISTRATION_EMAIL = True OSCAR_FROM_EMAIL = '[email protected]' # Slug handling OSCAR_SLUG_FUNCTION = 'oscar.core.utils.default_slugifier' OSCAR_SLUG_MAP = {} OSCAR_SLUG_BLACKLIST = [] OSCAR_SLUG_ALLOW_UNICODE = False # Cookies OSCAR_COOKIES_DELETE_ON_LOGOUT = ['oscar_recently_viewed_products', ] # Hidden Oscar features, e.g. wishlists or reviews OSCAR_HIDDEN_FEATURES = [] # Menu structure of the dashboard navigation OSCAR_DASHBOARD_NAVIGATION = [ { 'label': _('Dashboard'), 'icon': 'icon-th-list', 'url_name': 'dashboard:index', }, { 'label': _('Catalogue'), 'icon': 'icon-sitemap', 'children': [ { 'label': _('Products'), 'url_name': 'dashboard:catalogue-product-list', }, { 'label': _('Product Types'), 'url_name': 'dashboard:catalogue-class-list', }, { 'label': _('Categories'), 'url_name': 'dashboard:catalogue-category-list', }, { 'label': _('Ranges'), 'url_name': 'dashboard:range-list', }, { 'label': _('Low stock alerts'), 'url_name': 'dashboard:stock-alert-list', }, ] }, { 'label': _('Fulfilment'), 'icon': 'icon-shopping-cart', 'children': [ { 'label': _('Orders'), 'url_name': 'dashboard:order-list', }, { 'label': _('Statistics'), 'url_name': 'dashboard:order-stats', }, { 'label': _('Partners'), 'url_name': 'dashboard:partner-list', }, # The shipping method dashboard is disabled by default as it might # be confusing. Weight-based shipping methods aren't hooked into # the shipping repository by default (as it would make # customising the repository slightly more difficult). # { # 'label': _('Shipping charges'), # 'url_name': 'dashboard:shipping-method-list', # }, ] }, { 'label': _('Customers'), 'icon': 'icon-group', 'children': [ { 'label': _('Customers'), 'url_name': 'dashboard:users-index', }, { 'label': _('Stock alert requests'), 'url_name': 'dashboard:user-alert-list', }, ] }, { 'label': _('Offers'), 'icon': 'icon-bullhorn', 'children': [ { 'label': _('Offers'), 'url_name': 'dashboard:offer-list', }, { 'label': _('Vouchers'), 'url_name': 'dashboard:voucher-list', }, { 'label': _('Voucher Sets'), 'url_name': 'dashboard:voucher-set-list', }, ], }, { 'label': _('Content'), 'icon': 'icon-folder-close', 'children': [ { 'label': _('Content blocks'), 'url_name': 'dashboard:promotion-list', }, { 'label': _('Content blocks by page'), 'url_name': 'dashboard:promotion-list-by-page', }, { 'label': _('Pages'), 'url_name': 'dashboard:page-list', }, { 'label': _('Email templates'), 'url_name': 'dashboard:comms-list', }, { 'label': _('Reviews'), 'url_name': 'dashboard:reviews-list', }, ] }, { 'label': _('Reports'), 'icon': 'icon-bar-chart', 'url_name': 'dashboard:reports-index', }, ] OSCAR_DASHBOARD_DEFAULT_ACCESS_FUNCTION = 'oscar.apps.dashboard.nav.default_access_fn' # noqa # Search facets OSCAR_SEARCH_FACETS = { 'fields': OrderedDict([ # The key for these dicts will be used when passing facet data # to the template. Same for the 'queries' dict below. ('product_class', {'name': _('Type'), 'field': 'product_class'}), ('rating', {'name': _('Rating'), 'field': 'rating'}), # You can specify an 'options' element that will be passed to the # SearchQuerySet.facet() call. # For instance, with Elasticsearch backend, 'options': {'order': 'term'} # will sort items in a facet by title instead of number of items. # It's hard to get 'missing' to work # correctly though as of Solr's hilarious syntax for selecting # items without a specific facet: # http://wiki.apache.org/solr/SimpleFacetParameters#facet.method # 'options': {'missing': 'true'} ]), 'queries': OrderedDict([ ('price_range', { 'name': _('Price range'), 'field': 'price', 'queries': [ # This is a list of (name, query) tuples where the name will # be displayed on the front-end. (_('0 to 20'), '[0 TO 20]'), (_('20 to 40'), '[20 TO 40]'), (_('40 to 60'), '[40 TO 60]'), (_('60+'), '[60 TO *]'), ] }), ]), } OSCAR_PROMOTIONS_ENABLED = True OSCAR_PRODUCT_SEARCH_HANDLER = None
py
7dfe1b01895f9a4abb64cee8e5019944bbad5a59
import sqlite3 import urllib import re from urllib.request import urlopen from bs4 import BeautifulSoup from phyllo.phyllo_logger import logger # seems to work fine # should probably check on chapter divisions def getBooks(soup): siteURL = 'http://www.thelatinlibrary.com' textsURL = [] # get links to books in the collection for a in soup.find_all('a', href=True): link = a['href'] textsURL.append("{}/{}".format(siteURL, a['href'])) # remove unnecessary URLs while ("http://www.thelatinlibrary.com/index.html" in textsURL): textsURL.remove("http://www.thelatinlibrary.com/index.html") textsURL.remove("http://www.thelatinlibrary.com/classics.html") textsURL.remove("http://www.thelatinlibrary.com/christian.html") logger.info("\n".join(textsURL)) return textsURL def main(): # The collection URL below. collURL = 'http://www.thelatinlibrary.com/bernardcluny.html' collOpen = urllib.request.urlopen(collURL) collSOUP = BeautifulSoup(collOpen, 'html5lib') author = collSOUP.title.string.strip() colltitle = collSOUP.title.string.strip() date = collSOUP.span.string.strip().replace('(', '').replace(')', '').replace(u"\u2013", '-') textsURL = getBooks(collSOUP) with sqlite3.connect('texts.db') as db: c = db.cursor() c.execute( 'CREATE TABLE IF NOT EXISTS texts (id INTEGER PRIMARY KEY, title TEXT, book TEXT,' ' language TEXT, author TEXT, date TEXT, chapter TEXT, verse TEXT, passage TEXT,' ' link TEXT, documentType TEXT)') c.execute("DELETE FROM texts WHERE author = 'Bernard of Cluny'") for url in textsURL: openurl = urllib.request.urlopen(url) textsoup = BeautifulSoup(openurl, 'html5lib') title = textsoup.title.string.split(':')[1].strip() getp = textsoup.find_all('p') for p in getp: try: if p['class'][0].lower() in ['border', 'pagehead', 'shortborder', 'smallborder', 'margin', 'internal_navigation']: # these are not part of the main t continue except: pass verses = [] chapter_f = p.find('b') if chapter_f is not None: chapter = p.get_text().strip() verse = 0 continue elif p.find('br') is not None: brtags = p.findAll('br') try: try: firstline = brtags[0].previous_sibling.strip() except: firstline = brtags[0].previous_sibling.previous_sibling.strip() verses.append(firstline) except: pass for br in brtags: try: text = br.next_sibling.next_sibling.strip() except: text = br.next_sibling.strip() if text is None or text == '' or text.isspace(): continue if text.endswith(r'[0-9]+'): try: text = text.split(r'[0-9]')[0].strip() except: pass verses.append(text) else: text = p.get_text() verses.append(text.strip()) for v in verses: if v.startswith('Christian'): continue if v is None or v == '' or v.isspace(): continue # verse number assignment. verse += 1 c.execute("INSERT INTO texts VALUES (?,?,?,?,?,?,?, ?, ?, ?, ?)", (None, colltitle, title, 'Latin', author, date, chapter, verse, v.strip(), url, 'poetry')) if __name__ == '__main__': main()
py
7dfe1bc0e46dd6e6790669e74cdd25eb586d6a87
# -*- coding: utf-8 -*- """ Created on Mon Mar 2 09:12:35 2020 @author: Ajit Johnson Nirmal Convert counts table to ANN object Added capability to take in multiple images and create a single AnnData Object """ # Import library import numpy as np import anndata as ad import pandas as pd import random def mcmicro_to_object (image_path,remove_dna=True,remove_string_from_name=None, islog=True,drop_markers=None,random_sample=None, CellId='CellId',split='Area',custom_imageid=None, min_cells=None): """ Parameters ---------- image_path : list List of path to the image or images. Each Image should have a unique path supplied. remove_dna : bool, optional Remove the DNA channels from the final output. Looks for channels with the string 'dna' in it. The default is True. remove_string_from_name : string, optional Used to celan up channel names. If a string is given, that particular string will be removed from all marker names. If multiple images are passed, just use the string that appears in the first image. The default is None. islog : bool, optional If the data is in log scale, passing true will convert it to natural scale. The default is True. drop_markers : list, optional List of markers to drop from the analysis. e.g. ["CD3D", "CD20"]. The default is None. random_sample : int, optional Randomly sub-sample the data with the desired number of cells. The default is None. CellId : string, optional Name of the column that contains the cell ID. The default is CellId. split : string, optional To split the CSV into counts table and meta data, pass in the name of the column that immediately follows the marker quantification. The default is Area. Returns ------- AnnData Object Example ------- image_path = ['/Users/aj/whole_sections/PTCL1_450.csv', '/Users/aj/whole_sections/PTCL2_552.csv'] adata = histocat_to_object (image_path, marker_list= my_markers, islog=True, drop_markers= ['CD21', 'ACTIN'],remove_string_from_name='Cell_PTCL1_450', random_sample=5000) """ # Import data based on the location provided def load_process_data (image): # Print the data that is being processed print("Loading " + str(image.rsplit('/', 1)[-1])) d = pd.read_csv(image) # If the data does not have a unique image ID column, add one. if 'ImageId' not in d.columns: if custom_imageid is not None: imid = custom_imageid else: imid = random.randint(1000000,9999999) d['ImageId'] = imid # Unique name for the data d.index = d['ImageId'].astype(str)+'_'+d[CellId].astype(str) # Drop ImageId and cell ID column d.drop([CellId], axis=1, inplace=True) # Move Image ID to the last column cols = d.columns.tolist() cols.insert(len(cols), cols.pop(cols.index('ImageId'))) d = d.reindex(columns= cols) # If there is INF replace with zero d = d.replace([np.inf, -np.inf], 0) # Return data return d # Apply function to all images and create a master dataframe r_load_process_data = lambda x: load_process_data(image=x) # Create lamda function all_data = list(map(r_load_process_data, list(image_path))) # Apply function # Merge all the data into a single large dataframe for i in range(len(all_data)): all_data[i].columns = all_data[0].columns entire_data = pd.concat(all_data, axis=0, sort=False) #Remove the images that contain less than a defined threshold of cells (min_cells) if min_cells is not None: to_drop = entire_data['ImageId'].value_counts()[entire_data['ImageId'].value_counts() < min_cells].index entire_data = entire_data[~entire_data['ImageId'].isin(to_drop)] print('Removed Images that contained less than '+str(min_cells)+' cells: '+ str(to_drop.values)) # Split the data into expression data and meta data # Step-1 (Find the index of the column with name Area) split_idx = entire_data.columns.get_loc(split) meta = entire_data.iloc [:,split_idx:] # Step-2 (select only the expression values) entire_data = entire_data.iloc [:,:split_idx] # Save a copy of the column names in the uns space of ANNDATA if remove_string_from_name != None: markers = list(entire_data.columns.str.replace(remove_string_from_name, '')) else: markers = list(entire_data.columns) # Remove DNA channels if remove_dna == True: entire_data = entire_data.loc[:,~entire_data.columns.str.contains('dna', case=False)] # Drop unnecessary markers if drop_markers != None: for i in drop_markers: entire_data = entire_data.loc[:,~entire_data.columns.str.contains(i, case=False)] # Rename the columns of the data if remove_string_from_name != None: entire_data.columns = entire_data.columns.str.replace(remove_string_from_name, '') # Convert the data to natural scale if islog==True: entire_data= np.exp(entire_data) # Randomly sample the data if random_sample != None: entire_data = entire_data.sample(n=random_sample,replace=False) # Create an anndata object adata = ad.AnnData(entire_data) adata.obs = meta adata.uns['all_markers'] = markers # # Return data return adata
py
7dfe1bcc94542529486aa6bc785275dfdc046c8c
import logging import pytest import random from ocs_ci.framework import config from ocs_ci.ocs.resources import pod from ocs_ci.framework.testlib import ( tier4, tier4a, tier4b, ManageTest, ignore_leftovers, ipi_deployment_required, ) from ocs_ci.ocs import constants, node from ocs_ci.ocs.cluster import CephCluster, is_lso_cluster from ocs_ci.ocs.resources.storage_cluster import osd_encryption_verification from ocs_ci.framework.pytest_customization.marks import ( skipif_openshift_dedicated, skipif_bmpsi, bugzilla, skipif_external_mode, ) from ocs_ci.helpers.sanity_helpers import Sanity log = logging.getLogger(__name__) def select_osd_node_name(): """ select randomly one of the osd nodes Returns: str: the selected osd node name """ osd_node_names = node.get_osd_running_nodes() osd_node_name = random.choice(osd_node_names) log.info(f"Selected OSD is {osd_node_name}") return osd_node_name def check_node_replacement_verification_steps( old_node_name, new_node_name, old_osd_node_names, old_osd_ids ): """ Check if the node replacement verification steps finished successfully. Args: old_node_name (str): The name of the old node that has been deleted new_node_name (str): The name of the new node that has been created old_osd_node_names (list): The name of the new node that has been added to osd nodes old_osd_ids (list): List of the old osd ids Raises: AssertionError: If the node replacement verification steps failed. """ new_osd_node_name = node.wait_for_new_osd_node(old_osd_node_names, timeout=1500) assert new_osd_node_name, "New osd node not found" assert node.node_replacement_verification_steps_ceph_side( old_node_name, new_node_name, new_osd_node_name ) assert node.node_replacement_verification_steps_user_side( old_node_name, new_node_name, new_osd_node_name, old_osd_ids ) def delete_and_create_osd_node(osd_node_name): """ Delete an osd node, and create a new one to replace it Args: osd_node_name (str): The osd node name to delete """ new_node_name = None old_osd_ids = node.get_node_osd_ids(osd_node_name) old_osd_node_names = node.get_osd_running_nodes() # error message for invalid deployment configuration msg_invalid = ( "ocs-ci config 'deployment_type' value " f"'{config.ENV_DATA['deployment_type']}' is not valid, " f"results of this test run are all invalid." ) if config.ENV_DATA["deployment_type"] == "ipi": if is_lso_cluster(): # TODO: Implement functionality for Internal-Attached devices mode # once ocs-ci issue #4545 is resolved # https://github.com/red-hat-storage/ocs-ci/issues/4545 pytest.skip("Functionality not implemented for this deployment mode") else: new_node_name = node.delete_and_create_osd_node_ipi(osd_node_name) elif config.ENV_DATA["deployment_type"] == "upi": if config.ENV_DATA["platform"].lower() == constants.AWS_PLATFORM: new_node_name = node.delete_and_create_osd_node_aws_upi(osd_node_name) elif config.ENV_DATA["platform"].lower() == constants.VSPHERE_PLATFORM: if is_lso_cluster(): new_node_name = node.delete_and_create_osd_node_vsphere_upi_lso( osd_node_name, use_existing_node=False ) else: new_node_name = node.delete_and_create_osd_node_vsphere_upi( osd_node_name, use_existing_node=False ) else: log.error(msg_invalid) pytest.fail(msg_invalid) log.info("Start node replacement verification steps...") check_node_replacement_verification_steps( osd_node_name, new_node_name, old_osd_node_names, old_osd_ids ) @tier4 @tier4a @ignore_leftovers @ipi_deployment_required @skipif_openshift_dedicated @skipif_bmpsi @skipif_external_mode class TestNodeReplacementWithIO(ManageTest): """ Knip-894 Node replacement proactive with IO """ @pytest.fixture(autouse=True) def init_sanity(self): """ Initialize Sanity instance """ self.sanity_helpers = Sanity() def test_nodereplacement_proactive_with_io_running( self, pvc_factory, pod_factory, dc_pod_factory, bucket_factory, rgw_bucket_factory, ): """ Knip-894 Node Replacement proactive when IO running in the background """ # Get worker nodes worker_node_list = node.get_worker_nodes() log.info(f"Current available worker nodes are {worker_node_list}") osd_node_name = select_osd_node_name() log.info("Creating dc pod backed with rbd pvc and running io in bg") for worker_node in worker_node_list: if worker_node != osd_node_name: rbd_dc_pod = dc_pod_factory( interface=constants.CEPHBLOCKPOOL, node_name=worker_node, size=20 ) pod.run_io_in_bg(rbd_dc_pod, expect_to_fail=False, fedora_dc=True) log.info("Creating dc pod backed with cephfs pvc and running io in bg") for worker_node in worker_node_list: if worker_node != osd_node_name: cephfs_dc_pod = dc_pod_factory( interface=constants.CEPHFILESYSTEM, node_name=worker_node, size=20 ) pod.run_io_in_bg(cephfs_dc_pod, expect_to_fail=False, fedora_dc=True) delete_and_create_osd_node(osd_node_name) # Creating Resources log.info("Creating Resources using sanity helpers") self.sanity_helpers.create_resources( pvc_factory, pod_factory, bucket_factory, rgw_bucket_factory ) # Deleting Resources self.sanity_helpers.delete_resources() # Verify everything running fine log.info("Verifying All resources are Running and matches expected result") self.sanity_helpers.health_check(tries=120) # Verify OSD is encrypted if config.ENV_DATA.get("encryption_at_rest"): osd_encryption_verification() @tier4 @tier4a @ignore_leftovers @skipif_openshift_dedicated @skipif_bmpsi @skipif_external_mode class TestNodeReplacement(ManageTest): """ Knip-894 Node replacement proactive """ @pytest.fixture(autouse=True) def init_sanity(self): """ Initialize Sanity instance """ self.sanity_helpers = Sanity() def test_nodereplacement_proactive(self): """ Knip-894 Node Replacement proactive(without IO running) """ osd_node_name = select_osd_node_name() delete_and_create_osd_node(osd_node_name) # Verify everything running fine log.info("Verifying All resources are Running and matches expected result") self.sanity_helpers.health_check(tries=120) # Verify OSD encrypted if config.ENV_DATA.get("encryption_at_rest"): osd_encryption_verification() ceph_cluster_obj = CephCluster() assert ceph_cluster_obj.wait_for_rebalance( timeout=1800 ), "Data re-balance failed to complete" @tier4b @ignore_leftovers @bugzilla("1840539") @pytest.mark.polarion_id("OCS-2535") @skipif_external_mode class TestNodeReplacementTwice(ManageTest): """ Node replacement twice: node_x -> node_y node_z -> node_x After node_replacement, the deleted node (node_x) suppose to be removed from the ceph-osd-tree. The BZ deals with the SECOND node_replacement. The existence of the deleted node (node_x from previous replacement) in the crash-map ends with: 1. node is labeled for rack correctly 2. ceph side host still on the old rack """ def test_nodereplacement_twice(self): for i in range(2): # Get random node name for replacement node_name_to_delete = select_osd_node_name() log.info(f"Selected node for replacement: {node_name_to_delete}") delete_and_create_osd_node(node_name_to_delete) ct_pod = pod.get_ceph_tools_pod() tree_output = ct_pod.exec_ceph_cmd(ceph_cmd="ceph osd tree") log.info("ceph osd tree output:") log.info(tree_output) assert not ( node_name_to_delete in str(tree_output) ), f"Deleted host {node_name_to_delete} still exist in ceph osd tree after node replacement"
py
7dfe1cea000358a4e2f2f40af695960ae5dbe459
''' ========================================================================== GrantHoldArbiter_test.py ========================================================================== Author : Yanghui Ou Date : Jan 22, 2020 ''' from pymtl3 import * from .GrantHoldArbiter import GrantHoldArbiter def test_simple(): arb = GrantHoldArbiter( nreqs=4 ) arb.elaborate() arb.apply( DefaultPassGroup() ) arb.sim_reset() arb.reqs @= 0b0011 arb.hold @= 0 arb.en @= 1 arb.sim_tick() g0 = arb.grants.clone() arb.sim_tick() arb.hold @= 1 arb.sim_eval_combinational() assert arb.grants == g0 arb.sim_tick()
py
7dfe1d58c75d0f02573560f51c06df1adfe09e09
#!/usr/bin/env python # Copyright 2013 Hewlett-Packard Development Company, L.P. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys, os sys.path.append(os.path.dirname(os.path.realpath(__file__))+'/lib') from cloudagents import CloudAgent from time import sleep ca = CloudAgent() ca.required_config = { "name": "Wringer", "version": "0.1.0", "author": "Jeff Kramer", "url": "http://www.hpcloud.com/", "help": """This script does integration testing.""", "config": [{ "name": "count", "regexp": "^\d+$", "title": "Count", "description": "Number to count down from.", "type": "string", "required": True } ] } def agent(): count = int(ca.conf['count']) for num in range(count,-1,-1): sleep(1) percent = 100-int((float(num)/float(count))*100.0) ca.log(str(num),"Counted down to "+str(num)+".",percent) ca.run(agent)
py
7dfe1dae1b3b1c76850b2f81d093956ff049d1af
#!/usr/bin/env python3 from telegram.ext import Dispatcher,CommandHandler,CallbackContext from telegram import BotCommand,Update from json import dumps msg_type = { "video":["file_id","file_unique_id","width","height","duration"], "photo":["file_id","file_unique_id","width","height","file_size"], "audio":["file_id","file_unique_id","mime_type","file_size"], "animation":["file_id","file_unique_id","width","height","duration"], "sticker":["file_id","file_unique_id","width","height","is_animated"], "video_note":["file_id","file_unique_id","length","duration"], "voice":["file_id","file_unique_id","duration","mime_type","file_size"] } def getobjinfo (msgtype,msgobj): if msgtype == "photo": msg = f"PhotoSize(" else: msg = f"{msgtype.capitalize()}(" for i in msg_type[msgtype]: msg += str(f'{i}="{msgobj.__dict__[i]}",') return f"{msg[:-1]})\n" def getmsgtype(update,context): if update.message.reply_to_message: if update.message.reply_to_message.video: video = update.message.reply_to_message.video update.message.reply_video(video,caption=f'{getobjinfo("video",video)}\nMade By Parker&hdcola') elif update.message.reply_to_message.photo: msg = '' photo = update.message.reply_to_message.photo lastindex = -1 for i in photo: lastindex += 1 msg += f"\nPhoto {lastindex+1}:\n{getobjinfo('photo',i)}\n" msg += '\nMade By Parker&hdcola' update.message.reply_photo(photo[lastindex],caption=msg) elif update.message.reply_to_message.audio: audio = update.message.reply_to_message.audio update.message.reply_audio(audio,caption=f'{getobjinfo("audio",audio)}\nMade By Parker&hdcola') elif update.message.reply_to_message.animation: animation = update.message.reply_to_message.animation update.message.reply_animation(animation,caption=f'{getobjinfo("animation",animation)}\nMade By Parker&hdcola') elif update.message.reply_to_message.sticker: sticker = update.message.reply_to_message.sticker update.message.reply_text(f'{getobjinfo("sticker",sticker)}\nMade By Parker&hdcola') elif update.message.reply_to_message.video_note: video_note = update.message.reply_to_message.sticker update.message.reply_text(f'{getobjinfo("video_note",video_note)}\nMade By Parker&hdcola') elif update.message.reply_to_message.voice: voice = update.message.reply_to_message.voice update.message.reply_voice(voice,caption=f'{getobjinfo("voice",voice)}\nMade By Parker&hdcola') else: info(update,context) else: info(update,context) def info(update : Update, context : CallbackContext): u = str(update) u = dumps(eval(u),indent=2) update.message.reply_text(text=u) # context.bot.send_message(update.effective_user.id,text=u) def add_dispatcher(dp:Dispatcher): dp.add_handler(CommandHandler('ainfo', getmsgtype)) dp.add_handler(CommandHandler("info", info)) return [BotCommand('ainfo','得到消息中的对象声明(Made by Parker&hdcola)'),BotCommand('info','查看消息的信息数据')]
py
7dfe1e39ce74497e45a8baf832cb5b0c61e46e16
# ----------------------------------------------------------------------------- # Copyright (c) 2014--, The Qiita Development Team. # # Distributed under the terms of the BSD 3-clause License. # # The full license is in the file LICENSE, distributed with this software. # ----------------------------------------------------------------------------- from __future__ import division from qiita_core.exceptions import QiitaError class QiitaDBError(QiitaError): """Base class for all qiita_db exceptions""" pass class QiitaDBNotImplementedError(QiitaDBError): """""" pass class QiitaDBExecutionError(QiitaDBError): """Exception for error when executing SQL queries""" pass class QiitaDBConnectionError(QiitaDBError): """Exception for error when connecting to the db""" pass class QiitaDBColumnError(QiitaDBError): """Exception when missing table information or excess information passed""" pass class QiitaDBDuplicateError(QiitaDBError): """Exception when duplicating something in the database""" def __init__(self, obj_name, attributes): super(QiitaDBDuplicateError, self).__init__() self.args = ("The '%s' object with attributes (%s) already exists." % (obj_name, attributes),) class QiitaDBStatusError(QiitaDBError): """Exception when editing is done with an unallowed status""" pass class QiitaDBUnknownIDError(QiitaDBError): """Exception for error when an object does not exists in the DB""" def __init__(self, missing_id, table): super(QiitaDBUnknownIDError, self).__init__() self.args = ("The object with ID '%s' does not exists in table '%s'" % (missing_id, table),) class QiitaDBDuplicateHeaderError(QiitaDBError): """Exception for error when a MetadataTemplate has duplicate columns""" def __init__(self): super(QiitaDBDuplicateHeaderError, self).__init__() self.args = ("Duplicate headers found in MetadataTemplate. Note " "that the headers are not case-sensitive",) class QiitaDBIncompatibleDatatypeError(QiitaDBError): """When arguments are used with incompatible operators in a query""" def __init__(self, operator, argument_type): super(QiitaDBIncompatibleDatatypeError, self).__init__() self.args = ("The %s operator is not for use with data of type %s" % (operator, str(argument_type)))
py
7dfe2004d5e90bfd72dcfb3a6555fc4932848357
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2019, John McNamara, [email protected] # from ..excel_comparsion_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename('image_anchor05.xlsx') def test_create_file(self): """Test the creation of a simple XlsxWriter file with image(s).""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() worksheet.insert_image( 'D7', self.image_dir + 'yellow.png', {'x_offset': 1, 'y_offset': 2, 'positioning': 2}) workbook.close() self.assertExcelEqual()
py
7dfe200a0c942972e4d9a2fd8c7fb8369856d106
# -*- coding: utf-8 -*- # Copyright (c) 2019, VHRS and contributors # For license information, please see license.txt from __future__ import unicode_literals # import frappe from frappe.model.document import Document class ChemicalTestonConcreteSample(Document): pass
py
7dfe204c084eddcc43cc4a7d035eaca051832d1d
#https://stackoverflow.com/a/70664652/15181929 import contextlib as _contextlib try: import msvcrt as _msvcrt # Length 0 sequences, length 1 sequences... _ESCAPE_SEQUENCES = [frozenset(("\x00", "\xe0"))] _next_input = _msvcrt.getwch _set_terminal_raw = _contextlib.nullcontext _input_ready = _msvcrt.kbhit except ImportError: # Unix import sys as _sys, tty as _tty, termios as _termios, \ select as _select, functools as _functools # Length 0 sequences, length 1 sequences... _ESCAPE_SEQUENCES = [ frozenset(("\x1b",)), frozenset(("\x1b\x5b", "\x1b\x4f"))] @_contextlib.contextmanager def _set_terminal_raw(): fd = _sys.stdin.fileno() old_settings = _termios.tcgetattr(fd) try: _tty.setraw(_sys.stdin.fileno()) yield finally: _termios.tcsetattr(fd, _termios.TCSADRAIN, old_settings) _next_input = _functools.partial(_sys.stdin.read, 1) def _input_ready(): return _select.select([_sys.stdin], [], [], 0) == ([_sys.stdin], [], []) _MAX_ESCAPE_SEQUENCE_LENGTH = len(_ESCAPE_SEQUENCES) def _get_keystroke(): key = _next_input() while (len(key) <= _MAX_ESCAPE_SEQUENCE_LENGTH and key in _ESCAPE_SEQUENCES[len(key)-1]): key += _next_input() return key def _flush(): while _input_ready(): _next_input() def key_pressed(key: str = None, *, flush: bool = True) -> bool: """Return True if the specified key has been pressed Args: key: The key to check for. If None, any key will do. flush: If True (default), flush the input buffer after the key was found. Return: boolean stating whether a key was pressed. """ with _set_terminal_raw(): if key is None: if not _input_ready(): return False if flush: _flush() return True while _input_ready(): keystroke = _get_keystroke() if keystroke == key: if flush: _flush() return True return False def print_key() -> None: """Print the key that was pressed Useful for debugging and figuring out keys. """ with _set_terminal_raw(): _flush() print("\\x" + "\\x".join(map("{:02x}".format, map(ord, _get_keystroke())))) def wait_key(key=None, *, pre_flush=False, post_flush=True) -> str: """Wait for a specific key to be pressed. Args: key: The key to check for. If None, any key will do. pre_flush: If True, flush the input buffer before waiting for input. Useful in case you wish to ignore previously pressed keys. post_flush: If True (default), flush the input buffer after the key was found. Useful for ignoring multiple key-presses. Returns: The key that was pressed. """ with _set_terminal_raw(): if pre_flush: _flush() if key is None: key = _get_keystroke() if post_flush: _flush() return key while _get_keystroke() != key: pass if post_flush: _flush() return key
py
7dfe2105c8785683d46ae44239392071d01a9c70
from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import sys import tempfile from observations.r.fruitohms import fruitohms def test_fruitohms(): """Test module fruitohms.py by downloading fruitohms.csv and testing shape of extracted data has 128 rows and 2 columns """ test_path = tempfile.mkdtemp() x_train, metadata = fruitohms(test_path) try: assert x_train.shape == (128, 2) except: shutil.rmtree(test_path) raise()
py
7dfe2238ba320293069f087c5760015499624e47
"""Console script for opencdms.""" import sys import click @click.command() def main(args=None): """Console script for opencdms.""" # See click documentation at https://click.palletsprojects.com/ click.echo("Replace this message by putting your code into " "opencdms.cli.main") return 0 if __name__ == "__main__": sys.exit(main()) # pragma: no cover