ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
7dfeaa7f8be502956858f88ccc8dbbda43c2bc4e
"""Example code for the epd2in13bc driver.""" from time import sleep from PIL import Image from einkd.drivers.virtual import TkinterDriver images = [ 'examples/img/880x528-b.png', 'examples/img/880x528-w.png', 'examples/img/880x528-r.png', ] if __name__ == "__main__": with TkinterDriver((800, 528)) as epd: epd.clear() sleep(5) for img_name in images: img = Image.open(img_name) epd.show(img) epd.refresh() sleep(5)
py
7dfeaa8851c1663f2602409873311eb2e34d5711
''' Register on Alyx the set of tracked traces (after histology) for a given mouse. All your tracks should be in a single folder, and the files names should follow the nomenclature {yyyy-mm-dd}_{SubjectName}_{SessionNumber}_{ProbeLabel}_pts.csv Edit the variable 'path_tracks'(set it either to your local directory [example given here], either to the Google folder if synched to your machine). To check if the registration worked, go to the admin interface > experiments > trajectory estimates > search for the subject If you want to test first, use ALYX_URL = "https://dev.alyx.internationalbrainlab.org" And check the data appears on: https://dev.alyx.internationalbrainlab.org/admin/experiments/trajectoryestimate/? When you feel confident you can upload without error, set EXAMPLE_OVERWRITE = False , change to the ALYX_URL = "https://alyx.internationalbrainlab.org" and re-run. With EXAMPLE_OVERWRITE = True, the script downloads an example dataset and runs the registration (used for automatic testing of the example). ''' # Author: Olivier, Gaelle from ibllib.pipes import histology from oneibl.one import ONE from pathlib import Path # ======== EDIT FOR USERS ==== # Edit so as to reflect the directory containing your electrode tracks path_tracks = "/Users/gaelle/Downloads/Flatiron/examples/00_to_add" EXAMPLE_OVERWRITE = True # Put to False when wanting to run the script on your data ALYX_URL = "https://dev.alyx.internationalbrainlab.org" # FOR TESTING # ALYX_URL = "https://alyx.internationalbrainlab.org" # UNCOMMENT WHEN READY # ======== DO NOT EDIT BELOW ==== one = ONE(base_url=ALYX_URL) if EXAMPLE_OVERWRITE: # TODO Olivier : Function to download examples folder cachepath = Path(one._par.CACHE_DIR) path_tracks = cachepath.joinpath('examples', 'histology', 'tracks_to_add') histology.register_track_files(path_tracks=path_tracks, one=one, overwrite=True) histology.detect_missing_histology_tracks(path_tracks=path_tracks, one=one)
py
7dfeaafb626650365675879e8de4cf43f7d72188
""" The :mod:`skrmt.covariance` module implements different methods to estimate covariance matrices. """ from .estimator import sample_estimator from .estimator import fsopt_estimator from .estimator import linear_shrinkage_estimator from .estimator import analytical_shrinkage_estimator from .estimator import empirical_bayesian_estimator from .estimator import minimax_estimator from .metrics import loss_mv, loss_frobenius from .metrics import prial_mv __all__ = ["sample_estimator", "fsopt_estimator", "linear_shrinkage_estimator", "analytical_shrinkage_estimator", "empirical_bayesian_estimator", "minimax_estimator", "loss_mv", "loss_frobenius", "prial_mv"]
py
7dfeab3902c0eae6ecd3c8c6f978b197dc66a78a
# Copyright 2019 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import numpy as np import pytest import cirq import cirq.testing def test_deprecated(): with cirq.testing.assert_logs('cirq.to_valid_density_matrix', 'deprecated'): _ = cirq.sim.to_valid_density_matrix(0, 1) with cirq.testing.assert_logs('cirq.von_neumann_entropy', 'deprecated'): _ = cirq.sim.von_neumann_entropy(np.eye(2) / 2) def test_sample_density_matrix_big_endian(): results = [] for x in range(8): matrix = cirq.to_valid_density_matrix(x, 3) sample = cirq.sample_density_matrix(matrix, [2, 1, 0]) results.append(sample) expecteds = [[list(reversed(x))] for x in list(itertools.product([False, True], repeat=3))] for result, expected in zip(results, expecteds): np.testing.assert_equal(result, expected) def test_sample_density_matrix_partial_indices(): for index in range(3): for x in range(8): matrix = cirq.to_valid_density_matrix(x, 3) np.testing.assert_equal(cirq.sample_density_matrix(matrix, [index]), [[bool(1 & (x >> (2 - index)))]]) def test_sample_density_matrix_partial_indices_oder(): for x in range(8): matrix = cirq.to_valid_density_matrix(x, 3) expected = [[bool(1 & (x >> 0)), bool(1 & (x >> 1))]] np.testing.assert_equal(cirq.sample_density_matrix(matrix, [2, 1]), expected) def test_sample_density_matrix_partial_indices_all_orders(): for perm in itertools.permutations([0, 1, 2]): for x in range(8): matrix = cirq.to_valid_density_matrix(x, 3) expected = [[bool(1 & (x >> (2 - p))) for p in perm]] np.testing.assert_equal(cirq.sample_density_matrix(matrix, perm), expected) def test_sample_density_matrix(): state = np.zeros(8, dtype=np.complex64) state[0] = 1 / np.sqrt(2) state[2] = 1 / np.sqrt(2) matrix = cirq.to_valid_density_matrix(state, num_qubits=3) for _ in range(10): sample = cirq.sample_density_matrix(matrix, [2, 1, 0]) assert (np.array_equal(sample, [[False, False, False]]) or np.array_equal(sample, [[False, True, False]])) # Partial sample is correct. for _ in range(10): np.testing.assert_equal(cirq.sample_density_matrix(matrix, [2]), [[False]]) np.testing.assert_equal(cirq.sample_density_matrix(matrix, [0]), [[False]]) def test_sample_density_matrix_seed(): density_matrix = 0.5 * np.eye(2) samples = cirq.sample_density_matrix(density_matrix, [0], repetitions=10, seed=1234) assert np.array_equal(samples, [[False], [True], [False], [True], [True], [False], [False], [True], [True], [True]]) samples = cirq.sample_density_matrix(density_matrix, [0], repetitions=10, seed=np.random.RandomState(1234)) assert np.array_equal(samples, [[False], [True], [False], [True], [True], [False], [False], [True], [True], [True]]) def test_sample_empty_density_matrix(): matrix = np.zeros(shape=()) np.testing.assert_almost_equal(cirq.sample_density_matrix(matrix, []), [[]]) def test_sample_density_matrix_no_repetitions(): matrix = cirq.to_valid_density_matrix(0, 3) np.testing.assert_almost_equal( cirq.sample_density_matrix(matrix, [1], repetitions=0), np.zeros(shape=(0, 1))) np.testing.assert_almost_equal( cirq.sample_density_matrix(matrix, [0, 1], repetitions=0), np.zeros(shape=(0, 2))) def test_sample_density_matrix_repetitions(): for perm in itertools.permutations([0, 1, 2]): for x in range(8): matrix = cirq.to_valid_density_matrix(x, 3) expected = [[bool(1 & (x >> (2 - p))) for p in perm]] * 3 result = cirq.sample_density_matrix(matrix, perm, repetitions=3) np.testing.assert_equal(result, expected) def test_sample_density_matrix_negative_repetitions(): matrix = cirq.to_valid_density_matrix(0, 3) with pytest.raises(ValueError, match='-1'): cirq.sample_density_matrix(matrix, [1], repetitions=-1) def test_sample_density_matrix_not_square(): with pytest.raises(ValueError, match='not square'): cirq.sample_density_matrix(np.array([1, 0, 0]), [1]) def test_sample_density_matrix_not_power_of_two(): with pytest.raises(ValueError, match='power of two'): cirq.sample_density_matrix(np.ones((3, 3)) / 3, [1]) with pytest.raises(ValueError, match='power of two'): cirq.sample_density_matrix(np.ones((2, 3, 2, 3)) / 6, [1]) def test_sample_density_matrix_higher_powers_of_two(): with pytest.raises(ValueError, match='powers of two'): cirq.sample_density_matrix(np.ones((2, 4, 2, 4)) / 8, [1]) def test_sample_density_matrix_out_of_range(): matrix = cirq.to_valid_density_matrix(0, 3) with pytest.raises(IndexError, match='-2'): cirq.sample_density_matrix(matrix, [-2]) with pytest.raises(IndexError, match='3'): cirq.sample_density_matrix(matrix, [3]) def test_sample_density_matrix_no_indices(): matrix = cirq.to_valid_density_matrix(0, 3) bits = cirq.sample_density_matrix(matrix, []) np.testing.assert_almost_equal(bits, np.zeros(shape=(1, 0))) def test_sample_density_matrix_validate_qid_shape(): matrix = cirq.to_valid_density_matrix(0, 3) cirq.sample_density_matrix(matrix, [], qid_shape=(2, 2, 2)) with pytest.raises(ValueError, match='Matrix size does not match qid shape'): cirq.sample_density_matrix(matrix, [], qid_shape=(2, 2, 1)) matrix2 = cirq.to_valid_density_matrix(0, qid_shape=(1, 2, 3)) cirq.sample_density_matrix(matrix2, [], qid_shape=(1, 2, 3)) with pytest.raises(ValueError, match='Matrix size does not match qid shape'): cirq.sample_density_matrix(matrix2, [], qid_shape=(2, 2, 2)) def test_measure_density_matrix_computational_basis(): results = [] for x in range(8): matrix = cirq.to_valid_density_matrix(x, 3) bits, out_matrix = cirq.measure_density_matrix(matrix, [2, 1, 0]) results.append(bits) np.testing.assert_almost_equal(out_matrix, matrix) expected = [list(reversed(x)) for x in list(itertools.product([False, True], repeat=3))] assert results == expected def test_measure_density_matrix_computational_basis_reversed(): results = [] for x in range(8): matrix = cirq.to_valid_density_matrix(x, 3) bits, out_matrix = cirq.measure_density_matrix(matrix, [0, 1, 2]) results.append(bits) np.testing.assert_almost_equal(out_matrix, matrix) expected = [list(x) for x in list(itertools.product([False, True], repeat=3))] assert results == expected def test_measure_density_matrix_computational_basis_reshaped(): results = [] for x in range(8): matrix = np.reshape(cirq.to_valid_density_matrix(x, 3), (2,) * 6) bits, out_matrix = cirq.measure_density_matrix(matrix, [2, 1, 0]) results.append(bits) np.testing.assert_almost_equal(out_matrix, matrix) expected = [list(reversed(x)) for x in list(itertools.product([False, True], repeat=3))] assert results == expected def test_measure_density_matrix_partial_indices(): for index in range(3): for x in range(8): matrix = cirq.to_valid_density_matrix(x, 3) bits, out_matrix = cirq.measure_density_matrix(matrix, [index]) np.testing.assert_almost_equal(out_matrix, matrix) assert bits == [bool(1 & (x >> (2 - index)))] def test_measure_density_matrix_partial_indices_all_orders(): for perm in itertools.permutations([0, 1, 2]): for x in range(8): matrix = cirq.to_valid_density_matrix(x, 3) bits, out_matrix = cirq.measure_density_matrix(matrix, perm) np.testing.assert_almost_equal(matrix, out_matrix) assert bits == [bool(1 & (x >> (2 - p))) for p in perm] def matrix_000_plus_010(): state = np.zeros(8, dtype=np.complex64) state[0] = 1 / np.sqrt(2) state[2] = 1j / np.sqrt(2) return cirq.to_valid_density_matrix(state, num_qubits=3) def test_measure_density_matrix_collapse(): matrix = matrix_000_plus_010() for _ in range(10): bits, out_matrix = cirq.measure_density_matrix(matrix, [2, 1, 0]) assert bits in [[False, False, False], [False, True, False]] expected = np.zeros(8, dtype=np.complex64) if bits[1]: expected[2] = 1j else: expected[0] = 1 expected_matrix = np.outer(np.conj(expected), expected) np.testing.assert_almost_equal(out_matrix, expected_matrix) assert out_matrix is not matrix # Partial sample is correct. for _ in range(10): bits, out_matrix = cirq.measure_density_matrix(matrix, [2]) np.testing.assert_almost_equal(out_matrix, matrix) assert bits == [False] bits, out_matrix = cirq.measure_density_matrix(matrix, [0]) np.testing.assert_almost_equal(out_matrix, matrix) assert bits == [False] def test_measure_density_matrix_seed(): n = 5 matrix = np.eye(2**n) / 2**n bits, out_matrix1 = cirq.measure_density_matrix(matrix, range(n), seed=1234) assert bits == [False, False, True, True, False] bits, out_matrix2 = cirq.measure_density_matrix( matrix, range(n), seed=np.random.RandomState(1234)) assert bits == [False, False, True, True, False] np.testing.assert_allclose(out_matrix1, out_matrix2) def test_measure_density_matrix_out_is_matrix(): matrix = matrix_000_plus_010() bits, out_matrix = cirq.measure_density_matrix(matrix, [2, 1, 0], out=matrix) expected_state = np.zeros(8, dtype=np.complex64) expected_state[2 if bits[1] else 0] = 1.0 expected_matrix = np.outer(np.conj(expected_state), expected_state) np.testing.assert_array_almost_equal(out_matrix, expected_matrix) assert out_matrix is matrix def test_measure_state_out_is_not_matrix(): matrix = matrix_000_plus_010() out = np.zeros_like(matrix) _, out_matrix = cirq.measure_density_matrix(matrix, [2, 1, 0], out=out) assert out is not matrix assert out is out_matrix def test_measure_density_matrix_not_square(): with pytest.raises(ValueError, match='not square'): cirq.measure_density_matrix(np.array([1, 0, 0]), [1]) with pytest.raises(ValueError, match='not square'): cirq.measure_density_matrix(np.array([1, 0, 0, 0]).reshape((2, 1, 2)), [1], qid_shape=(2, 1)) def test_measure_density_matrix_not_power_of_two(): with pytest.raises(ValueError, match='power of two'): cirq.measure_density_matrix(np.ones((3, 3)) / 3, [1]) with pytest.raises(ValueError, match='power of two'): cirq.measure_density_matrix(np.ones((2, 3, 2, 3)) / 6, [1]) def test_measure_density_matrix_higher_powers_of_two(): with pytest.raises(ValueError, match='powers of two'): cirq.measure_density_matrix(np.ones((2, 4, 2, 4)) / 8, [1]) def test_measure_density_matrix_tensor_different_left_right_shape(): with pytest.raises(ValueError, match='not equal'): cirq.measure_density_matrix(np.array([1, 0, 0, 0]).reshape( (2, 2, 1, 1)), [1], qid_shape=(2, 1)) def test_measure_density_matrix_out_of_range(): matrix = cirq.to_valid_density_matrix(0, 3) with pytest.raises(IndexError, match='-2'): cirq.measure_density_matrix(matrix, [-2]) with pytest.raises(IndexError, match='3'): cirq.measure_density_matrix(matrix, [3]) def test_measure_state_no_indices(): matrix = cirq.to_valid_density_matrix(0, 3) bits, out_matrix = cirq.measure_density_matrix(matrix, []) assert [] == bits np.testing.assert_almost_equal(out_matrix, matrix) def test_measure_state_no_indices_out_is_matrix(): matrix = cirq.to_valid_density_matrix(0, 3) bits, out_matrix = cirq.measure_density_matrix(matrix, [], out=matrix) assert [] == bits np.testing.assert_almost_equal(out_matrix, matrix) assert out_matrix is matrix def test_measure_state_no_indices_out_is_not_matrix(): matrix = cirq.to_valid_density_matrix(0, 3) out = np.zeros_like(matrix) bits, out_matrix = cirq.measure_density_matrix(matrix, [], out=out) assert [] == bits np.testing.assert_almost_equal(out_matrix, matrix) assert out is out_matrix assert out is not matrix def test_measure_state_empty_density_matrix(): matrix = np.zeros(shape=()) bits, out_matrix = cirq.measure_density_matrix(matrix, []) assert [] == bits np.testing.assert_almost_equal(matrix, out_matrix) @pytest.mark.parametrize('seed', [17, 35, 48]) def test_to_valid_density_matrix_on_simulator_output(seed): circuit = cirq.testing.random_circuit(qubits=5, n_moments=20, op_density=0.9, random_state=seed) simulator = cirq.DensityMatrixSimulator() result = simulator.simulate(circuit) _ = cirq.to_valid_density_matrix(result.final_density_matrix, num_qubits=5)
py
7dfeab69e93e1d1efe96dc4ab4b6a1b782467800
import setuptools with open("README.md", "r") as fh: long_description = fh.read() def _requires_from_file(filename): return open(filename).read().splitlines() setuptools.setup( name="galois_field", version="2.1.4", author="Sakoda Takuya", author_email="[email protected]", description="Galois Field: GF(p^n)", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/syakoo/galois_field", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], install_requires=_requires_from_file('requirements.txt'), setup_requires=["pytest-runner"], test_requires=["pytest"], python_requires='>=3.7', )
py
7dfeaba07e9a5c4b2b2355180929311fb1d425dc
""" Mask R-CNN The main Mask R-CNN model implementation. Copyright (c) 2017 Matterport, Inc. Licensed under the MIT License (see LICENSE for details) Written by Waleed Abdulla """ import os import random import datetime import re import math import logging from collections import OrderedDict import multiprocessing import numpy as np # import tensorflow as tf #mwm 1, 3 import tensorflow.compat.v1 as tf tf.disable_v2_behavior() tf.compat.v1.disable_eager_execution() tf.compat.v1.placeholder() import keras #mwm 1, 1 # import tensorflow.keras as keras #from tensorflow.keras import backend as K import keras.backend as K import keras.layers as KL #from keras import engine as KE import keras.engine as KE import keras.models as KM from mrcnn import utils # Requires TensorFlow 1.3+ and Keras 2.0.8+. from distutils.version import LooseVersion assert LooseVersion(tf.__version__) >= LooseVersion("1.3") assert LooseVersion(keras.__version__) >= LooseVersion('2.0.8') ############################################################ # Utility Functions ############################################################ def log(text, array=None): """Prints a text message. And, optionally, if a Numpy array is provided it prints it's shape, min, and max values. """ if array is not None: text = text.ljust(25) text += ("shape: {:20} ".format(str(array.shape))) if array.size: text += ("min: {:10.5f} max: {:10.5f}".format(array.min(),array.max())) else: text += ("min: {:10} max: {:10}".format("","")) text += " {}".format(array.dtype) print(text) class BatchNorm(KL.BatchNormalization): """Extends the Keras BatchNormalization class to allow a central place to make changes if needed. Batch normalization has a negative effect on training if batches are small so this layer is often frozen (via setting in Config class) and functions as linear layer. """ def call(self, inputs, training=None): """ Note about training values: None: Train BN layers. This is the normal mode False: Freeze BN layers. Good when batch size is small True: (don't use). Set layer in training mode even when making inferences """ return super(self.__class__, self).call(inputs, training=training) def compute_backbone_shapes(config, image_shape): """Computes the width and height of each stage of the backbone network. Returns: [N, (height, width)]. Where N is the number of stages """ if callable(config.BACKBONE): return config.COMPUTE_BACKBONE_SHAPE(image_shape) # Currently supports ResNet only assert config.BACKBONE in ["resnet50", "resnet101"] return np.array( [[int(math.ceil(image_shape[0] / stride)), int(math.ceil(image_shape[1] / stride))] for stride in config.BACKBONE_STRIDES]) ############################################################ # Resnet Graph ############################################################ # Code adopted from: # https://github.com/fchollet/deep-learning-models/blob/master/resnet50.py def identity_block(input_tensor, kernel_size, filters, stage, block, use_bias=True, train_bn=True): """The identity_block is the block that has no conv layer at shortcut # Arguments input_tensor: input tensor kernel_size: default 3, the kernel size of middle conv layer at main path filters: list of integers, the nb_filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names use_bias: Boolean. To use or not use a bias in conv layers. train_bn: Boolean. Train or freeze Batch Norm layers """ nb_filter1, nb_filter2, nb_filter3 = filters conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = KL.Conv2D(nb_filter1, (1, 1), name=conv_name_base + '2a', use_bias=use_bias)(input_tensor) x = BatchNorm(name=bn_name_base + '2a')(x, training=train_bn) x = KL.Activation('relu')(x) x = KL.Conv2D(nb_filter2, (kernel_size, kernel_size), padding='same', name=conv_name_base + '2b', use_bias=use_bias)(x) x = BatchNorm(name=bn_name_base + '2b')(x, training=train_bn) x = KL.Activation('relu')(x) x = KL.Conv2D(nb_filter3, (1, 1), name=conv_name_base + '2c', use_bias=use_bias)(x) x = BatchNorm(name=bn_name_base + '2c')(x, training=train_bn) x = KL.Add()([x, input_tensor]) x = KL.Activation('relu', name='res' + str(stage) + block + '_out')(x) return x def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2), use_bias=True, train_bn=True): """conv_block is the block that has a conv layer at shortcut # Arguments input_tensor: input tensor kernel_size: default 3, the kernel size of middle conv layer at main path filters: list of integers, the nb_filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names use_bias: Boolean. To use or not use a bias in conv layers. train_bn: Boolean. Train or freeze Batch Norm layers Note that from stage 3, the first conv layer at main path is with subsample=(2,2) And the shortcut should have subsample=(2,2) as well """ nb_filter1, nb_filter2, nb_filter3 = filters conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = KL.Conv2D(nb_filter1, (1, 1), strides=strides, name=conv_name_base + '2a', use_bias=use_bias)(input_tensor) x = BatchNorm(name=bn_name_base + '2a')(x, training=train_bn) x = KL.Activation('relu')(x) x = KL.Conv2D(nb_filter2, (kernel_size, kernel_size), padding='same', name=conv_name_base + '2b', use_bias=use_bias)(x) x = BatchNorm(name=bn_name_base + '2b')(x, training=train_bn) x = KL.Activation('relu')(x) x = KL.Conv2D(nb_filter3, (1, 1), name=conv_name_base + '2c', use_bias=use_bias)(x) x = BatchNorm(name=bn_name_base + '2c')(x, training=train_bn) shortcut = KL.Conv2D(nb_filter3, (1, 1), strides=strides, name=conv_name_base + '1', use_bias=use_bias)(input_tensor) shortcut = BatchNorm(name=bn_name_base + '1')(shortcut, training=train_bn) x = KL.Add()([x, shortcut]) x = KL.Activation('relu', name='res' + str(stage) + block + '_out')(x) return x def resnet_graph(input_image, architecture, stage5=False, train_bn=True): """Build a ResNet graph. architecture: Can be resnet50 or resnet101 stage5: Boolean. If False, stage5 of the network is not created train_bn: Boolean. Train or freeze Batch Norm layers """ assert architecture in ["resnet50", "resnet101"] # Stage 1 x = KL.ZeroPadding2D((3, 3))(input_image) x = KL.Conv2D(64, (7, 7), strides=(2, 2), name='conv1', use_bias=True)(x) x = BatchNorm(name='bn_conv1')(x, training=train_bn) x = KL.Activation('relu')(x) C1 = x = KL.MaxPooling2D((3, 3), strides=(2, 2), padding="same")(x) # Stage 2 x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1), train_bn=train_bn) x = identity_block(x, 3, [64, 64, 256], stage=2, block='b', train_bn=train_bn) C2 = x = identity_block(x, 3, [64, 64, 256], stage=2, block='c', train_bn=train_bn) # Stage 3 x = conv_block(x, 3, [128, 128, 512], stage=3, block='a', train_bn=train_bn) x = identity_block(x, 3, [128, 128, 512], stage=3, block='b', train_bn=train_bn) x = identity_block(x, 3, [128, 128, 512], stage=3, block='c', train_bn=train_bn) C3 = x = identity_block(x, 3, [128, 128, 512], stage=3, block='d', train_bn=train_bn) # Stage 4 x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a', train_bn=train_bn) block_count = {"resnet50": 5, "resnet101": 22}[architecture] for i in range(block_count): x = identity_block(x, 3, [256, 256, 1024], stage=4, block=chr(98 + i), train_bn=train_bn) C4 = x # Stage 5 if stage5: x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a', train_bn=train_bn) x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b', train_bn=train_bn) C5 = x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c', train_bn=train_bn) else: C5 = None return [C1, C2, C3, C4, C5] ############################################################ # Proposal Layer ############################################################ def apply_box_deltas_graph(boxes, deltas): """Applies the given deltas to the given boxes. boxes: [N, (y1, x1, y2, x2)] boxes to update deltas: [N, (dy, dx, log(dh), log(dw))] refinements to apply """ # Convert to y, x, h, w height = boxes[:, 2] - boxes[:, 0] width = boxes[:, 3] - boxes[:, 1] center_y = boxes[:, 0] + 0.5 * height center_x = boxes[:, 1] + 0.5 * width # Apply deltas center_y += deltas[:, 0] * height center_x += deltas[:, 1] * width height *= tf.exp(deltas[:, 2]) width *= tf.exp(deltas[:, 3]) # Convert back to y1, x1, y2, x2 y1 = center_y - 0.5 * height x1 = center_x - 0.5 * width y2 = y1 + height x2 = x1 + width result = tf.stack([y1, x1, y2, x2], axis=1, name="apply_box_deltas_out") return result def clip_boxes_graph(boxes, window): """ boxes: [N, (y1, x1, y2, x2)] window: [4] in the form y1, x1, y2, x2 """ # Split wy1, wx1, wy2, wx2 = tf.split(window, 4) y1, x1, y2, x2 = tf.split(boxes, 4, axis=1) # Clip y1 = tf.maximum(tf.minimum(y1, wy2), wy1) x1 = tf.maximum(tf.minimum(x1, wx2), wx1) y2 = tf.maximum(tf.minimum(y2, wy2), wy1) x2 = tf.maximum(tf.minimum(x2, wx2), wx1) clipped = tf.concat([y1, x1, y2, x2], axis=1, name="clipped_boxes") clipped.set_shape((clipped.shape[0], 4)) return clipped class ProposalLayer(KE.Layer): """Receives anchor scores and selects a subset to pass as proposals to the second stage. Filtering is done based on anchor scores and non-max suppression to remove overlaps. It also applies bounding box refinement deltas to anchors. Inputs: rpn_probs: [batch, num_anchors, (bg prob, fg prob)] rpn_bbox: [batch, num_anchors, (dy, dx, log(dh), log(dw))] anchors: [batch, num_anchors, (y1, x1, y2, x2)] anchors in normalized coordinates Returns: Proposals in normalized coordinates [batch, rois, (y1, x1, y2, x2)] """ def __init__(self, proposal_count, nms_threshold, config=None, **kwargs): super(ProposalLayer, self).__init__(**kwargs) self.config = config self.proposal_count = proposal_count self.nms_threshold = nms_threshold def call(self, inputs): # Box Scores. Use the foreground class confidence. [Batch, num_rois, 1] scores = inputs[0][:, :, 1] # Box deltas [batch, num_rois, 4] deltas = inputs[1] deltas = deltas * np.reshape(self.config.RPN_BBOX_STD_DEV, [1, 1, 4]) # Anchors anchors = inputs[2] # Improve performance by trimming to top anchors by score # and doing the rest on the smaller subset. pre_nms_limit = tf.minimum(self.config.PRE_NMS_LIMIT, tf.shape(anchors)[1]) ix = tf.nn.top_k(scores, pre_nms_limit, sorted=True, name="top_anchors").indices scores = utils.batch_slice([scores, ix], lambda x, y: tf.gather(x, y), self.config.IMAGES_PER_GPU) deltas = utils.batch_slice([deltas, ix], lambda x, y: tf.gather(x, y), self.config.IMAGES_PER_GPU) pre_nms_anchors = utils.batch_slice([anchors, ix], lambda a, x: tf.gather(a, x), self.config.IMAGES_PER_GPU, names=["pre_nms_anchors"]) # Apply deltas to anchors to get refined anchors. # [batch, N, (y1, x1, y2, x2)] boxes = utils.batch_slice([pre_nms_anchors, deltas], lambda x, y: apply_box_deltas_graph(x, y), self.config.IMAGES_PER_GPU, names=["refined_anchors"]) # Clip to image boundaries. Since we're in normalized coordinates, # clip to 0..1 range. [batch, N, (y1, x1, y2, x2)] window = np.array([0, 0, 1, 1], dtype=np.float32) boxes = utils.batch_slice(boxes, lambda x: clip_boxes_graph(x, window), self.config.IMAGES_PER_GPU, names=["refined_anchors_clipped"]) # Filter out small boxes # According to Xinlei Chen's paper, this reduces detection accuracy # for small objects, so we're skipping it. # Non-max suppression def nms(boxes, scores): indices = tf.image.non_max_suppression( boxes, scores, self.proposal_count, self.nms_threshold, name="rpn_non_max_suppression") proposals = tf.gather(boxes, indices) # Pad if needed padding = tf.maximum(self.proposal_count - tf.shape(proposals)[0], 0) proposals = tf.pad(proposals, [(0, padding), (0, 0)]) return proposals proposals = utils.batch_slice([boxes, scores], nms, self.config.IMAGES_PER_GPU) return proposals def compute_output_shape(self, input_shape): return (None, self.proposal_count, 4) ############################################################ # ROIAlign Layer ############################################################ def log2_graph(x): """Implementation of Log2. TF doesn't have a native implementation.""" return tf.math.log(x) / tf.math.log(2.0) class PyramidROIAlign(KE.Layer): """Implements ROI Pooling on multiple levels of the feature pyramid. Params: - pool_shape: [pool_height, pool_width] of the output pooled regions. Usually [7, 7] Inputs: - boxes: [batch, num_boxes, (y1, x1, y2, x2)] in normalized coordinates. Possibly padded with zeros if not enough boxes to fill the array. - image_meta: [batch, (meta data)] Image details. See compose_image_meta() - feature_maps: List of feature maps from different levels of the pyramid. Each is [batch, height, width, channels] Output: Pooled regions in the shape: [batch, num_boxes, pool_height, pool_width, channels]. The width and height are those specific in the pool_shape in the layer constructor. """ def __init__(self, pool_shape, **kwargs): super(PyramidROIAlign, self).__init__(**kwargs) self.pool_shape = tuple(pool_shape) def call(self, inputs): # Crop boxes [batch, num_boxes, (y1, x1, y2, x2)] in normalized coords boxes = inputs[0] # Image meta # Holds details about the image. See compose_image_meta() image_meta = inputs[1] # Feature Maps. List of feature maps from different level of the # feature pyramid. Each is [batch, height, width, channels] feature_maps = inputs[2:] # Assign each ROI to a level in the pyramid based on the ROI area. y1, x1, y2, x2 = tf.split(boxes, 4, axis=2) h = y2 - y1 w = x2 - x1 # Use shape of first image. Images in a batch must have the same size. image_shape = parse_image_meta_graph(image_meta)['image_shape'][0] # Equation 1 in the Feature Pyramid Networks paper. Account for # the fact that our coordinates are normalized here. # e.g. a 224x224 ROI (in pixels) maps to P4 image_area = tf.cast(image_shape[0] * image_shape[1], tf.float32) roi_level = log2_graph(tf.sqrt(h * w) / (224.0 / tf.sqrt(image_area))) roi_level = tf.minimum(5, tf.maximum( 2, 4 + tf.cast(tf.round(roi_level), tf.int32))) roi_level = tf.squeeze(roi_level, 2) # Loop through levels and apply ROI pooling to each. P2 to P5. pooled = [] box_to_level = [] for i, level in enumerate(range(2, 6)): ix = tf.where(tf.equal(roi_level, level)) level_boxes = tf.gather_nd(boxes, ix) # Box indices for crop_and_resize. box_indices = tf.cast(ix[:, 0], tf.int32) # Keep track of which box is mapped to which level box_to_level.append(ix) # Stop gradient propogation to ROI proposals level_boxes = tf.stop_gradient(level_boxes) box_indices = tf.stop_gradient(box_indices) # Crop and Resize # From Mask R-CNN paper: "We sample four regular locations, so # that we can evaluate either max or average pooling. In fact, # interpolating only a single value at each bin center (without # pooling) is nearly as effective." # # Here we use the simplified approach of a single value per bin, # which is how it's done in tf.crop_and_resize() # Result: [batch * num_boxes, pool_height, pool_width, channels] pooled.append(tf.image.crop_and_resize( feature_maps[i], level_boxes, box_indices, self.pool_shape, method="bilinear")) # Pack pooled features into one tensor pooled = tf.concat(pooled, axis=0) # Pack box_to_level mapping into one array and add another # column representing the order of pooled boxes box_to_level = tf.concat(box_to_level, axis=0) box_range = tf.expand_dims(tf.range(tf.shape(box_to_level)[0]), 1) box_to_level = tf.concat([tf.cast(box_to_level, tf.int32), box_range], axis=1) # Rearrange pooled features to match the order of the original boxes # Sort box_to_level by batch then box index # TF doesn't have a way to sort by two columns, so merge them and sort. sorting_tensor = box_to_level[:, 0] * 100000 + box_to_level[:, 1] ix = tf.nn.top_k(sorting_tensor, k=tf.shape( box_to_level)[0]).indices[::-1] ix = tf.gather(box_to_level[:, 2], ix) pooled = tf.gather(pooled, ix) # Re-add the batch dimension shape = tf.concat([tf.shape(boxes)[:2], tf.shape(pooled)[1:]], axis=0) pooled = tf.reshape(pooled, shape) return pooled def compute_output_shape(self, input_shape): return input_shape[0][:2] + self.pool_shape + (input_shape[2][-1], ) ############################################################ # Detection Target Layer ############################################################ def overlaps_graph(boxes1, boxes2): """Computes IoU overlaps between two sets of boxes. boxes1, boxes2: [N, (y1, x1, y2, x2)]. """ # 1. Tile boxes2 and repeat boxes1. This allows us to compare # every boxes1 against every boxes2 without loops. # TF doesn't have an equivalent to np.repeat() so simulate it # using tf.tile() and tf.reshape. b1 = tf.reshape(tf.tile(tf.expand_dims(boxes1, 1), [1, 1, tf.shape(boxes2)[0]]), [-1, 4]) b2 = tf.tile(boxes2, [tf.shape(boxes1)[0], 1]) # 2. Compute intersections b1_y1, b1_x1, b1_y2, b1_x2 = tf.split(b1, 4, axis=1) b2_y1, b2_x1, b2_y2, b2_x2 = tf.split(b2, 4, axis=1) y1 = tf.maximum(b1_y1, b2_y1) x1 = tf.maximum(b1_x1, b2_x1) y2 = tf.minimum(b1_y2, b2_y2) x2 = tf.minimum(b1_x2, b2_x2) intersection = tf.maximum(x2 - x1, 0) * tf.maximum(y2 - y1, 0) # 3. Compute unions b1_area = (b1_y2 - b1_y1) * (b1_x2 - b1_x1) b2_area = (b2_y2 - b2_y1) * (b2_x2 - b2_x1) union = b1_area + b2_area - intersection # 4. Compute IoU and reshape to [boxes1, boxes2] iou = intersection / union overlaps = tf.reshape(iou, [tf.shape(boxes1)[0], tf.shape(boxes2)[0]]) return overlaps def detection_targets_graph(proposals, gt_class_ids, gt_boxes, gt_masks, config): """Generates detection targets for one image. Subsamples proposals and generates target class IDs, bounding box deltas, and masks for each. Inputs: proposals: [POST_NMS_ROIS_TRAINING, (y1, x1, y2, x2)] in normalized coordinates. Might be zero padded if there are not enough proposals. gt_class_ids: [MAX_GT_INSTANCES] int class IDs gt_boxes: [MAX_GT_INSTANCES, (y1, x1, y2, x2)] in normalized coordinates. gt_masks: [height, width, MAX_GT_INSTANCES] of boolean type. Returns: Target ROIs and corresponding class IDs, bounding box shifts, and masks. rois: [TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)] in normalized coordinates class_ids: [TRAIN_ROIS_PER_IMAGE]. Integer class IDs. Zero padded. deltas: [TRAIN_ROIS_PER_IMAGE, (dy, dx, log(dh), log(dw))] masks: [TRAIN_ROIS_PER_IMAGE, height, width]. Masks cropped to bbox boundaries and resized to neural network output size. Note: Returned arrays might be zero padded if not enough target ROIs. """ # Assertions asserts = [ tf.Assert(tf.greater(tf.shape(proposals)[0], 0), [proposals], name="roi_assertion"), ] with tf.control_dependencies(asserts): proposals = tf.identity(proposals) # Remove zero padding proposals, _ = trim_zeros_graph(proposals, name="trim_proposals") gt_boxes, non_zeros = trim_zeros_graph(gt_boxes, name="trim_gt_boxes") gt_class_ids = tf.boolean_mask(gt_class_ids, non_zeros, name="trim_gt_class_ids") gt_masks = tf.gather(gt_masks, tf.where(non_zeros)[:, 0], axis=2, name="trim_gt_masks") # Handle COCO crowds # A crowd box in COCO is a bounding box around several instances. Exclude # them from training. A crowd box is given a negative class ID. crowd_ix = tf.where(gt_class_ids < 0)[:, 0] non_crowd_ix = tf.where(gt_class_ids > 0)[:, 0] crowd_boxes = tf.gather(gt_boxes, crowd_ix) gt_class_ids = tf.gather(gt_class_ids, non_crowd_ix) gt_boxes = tf.gather(gt_boxes, non_crowd_ix) gt_masks = tf.gather(gt_masks, non_crowd_ix, axis=2) # Compute overlaps matrix [proposals, gt_boxes] overlaps = overlaps_graph(proposals, gt_boxes) # Compute overlaps with crowd boxes [proposals, crowd_boxes] crowd_overlaps = overlaps_graph(proposals, crowd_boxes) crowd_iou_max = tf.reduce_max(crowd_overlaps, axis=1) no_crowd_bool = (crowd_iou_max < 0.001) # Determine positive and negative ROIs roi_iou_max = tf.reduce_max(overlaps, axis=1) # 1. Positive ROIs are those with >= 0.5 IoU with a GT box positive_roi_bool = (roi_iou_max >= 0.5) positive_indices = tf.where(positive_roi_bool)[:, 0] # 2. Negative ROIs are those with < 0.5 with every GT box. Skip crowds. negative_indices = tf.where(tf.logical_and(roi_iou_max < 0.5, no_crowd_bool))[:, 0] # Subsample ROIs. Aim for 33% positive # Positive ROIs positive_count = int(config.TRAIN_ROIS_PER_IMAGE * config.ROI_POSITIVE_RATIO) positive_indices = tf.random_shuffle(positive_indices)[:positive_count] positive_count = tf.shape(positive_indices)[0] # Negative ROIs. Add enough to maintain positive:negative ratio. r = 1.0 / config.ROI_POSITIVE_RATIO negative_count = tf.cast(r * tf.cast(positive_count, tf.float32), tf.int32) - positive_count negative_indices = tf.random_shuffle(negative_indices)[:negative_count] # Gather selected ROIs positive_rois = tf.gather(proposals, positive_indices) negative_rois = tf.gather(proposals, negative_indices) # Assign positive ROIs to GT boxes. positive_overlaps = tf.gather(overlaps, positive_indices) roi_gt_box_assignment = tf.cond( tf.greater(tf.shape(positive_overlaps)[1], 0), true_fn = lambda: tf.argmax(positive_overlaps, axis=1), false_fn = lambda: tf.cast(tf.constant([]),tf.int64) ) roi_gt_boxes = tf.gather(gt_boxes, roi_gt_box_assignment) roi_gt_class_ids = tf.gather(gt_class_ids, roi_gt_box_assignment) # Compute bbox refinement for positive ROIs deltas = utils.box_refinement_graph(positive_rois, roi_gt_boxes) deltas /= config.BBOX_STD_DEV # Assign positive ROIs to GT masks # Permute masks to [N, height, width, 1] transposed_masks = tf.expand_dims(tf.transpose(gt_masks, [2, 0, 1]), -1) # Pick the right mask for each ROI roi_masks = tf.gather(transposed_masks, roi_gt_box_assignment) # Compute mask targets boxes = positive_rois if config.USE_MINI_MASK: # Transform ROI coordinates from normalized image space # to normalized mini-mask space. y1, x1, y2, x2 = tf.split(positive_rois, 4, axis=1) gt_y1, gt_x1, gt_y2, gt_x2 = tf.split(roi_gt_boxes, 4, axis=1) gt_h = gt_y2 - gt_y1 gt_w = gt_x2 - gt_x1 y1 = (y1 - gt_y1) / gt_h x1 = (x1 - gt_x1) / gt_w y2 = (y2 - gt_y1) / gt_h x2 = (x2 - gt_x1) / gt_w boxes = tf.concat([y1, x1, y2, x2], 1) box_ids = tf.range(0, tf.shape(roi_masks)[0]) masks = tf.image.crop_and_resize(tf.cast(roi_masks, tf.float32), boxes, box_ids, config.MASK_SHAPE) # Remove the extra dimension from masks. masks = tf.squeeze(masks, axis=3) # Threshold mask pixels at 0.5 to have GT masks be 0 or 1 to use with # binary cross entropy loss. masks = tf.round(masks) # Append negative ROIs and pad bbox deltas and masks that # are not used for negative ROIs with zeros. rois = tf.concat([positive_rois, negative_rois], axis=0) N = tf.shape(negative_rois)[0] P = tf.maximum(config.TRAIN_ROIS_PER_IMAGE - tf.shape(rois)[0], 0) rois = tf.pad(rois, [(0, P), (0, 0)]) roi_gt_boxes = tf.pad(roi_gt_boxes, [(0, N + P), (0, 0)]) roi_gt_class_ids = tf.pad(roi_gt_class_ids, [(0, N + P)]) deltas = tf.pad(deltas, [(0, N + P), (0, 0)]) masks = tf.pad(masks, [[0, N + P], (0, 0), (0, 0)]) return rois, roi_gt_class_ids, deltas, masks class DetectionTargetLayer(KE.Layer): """Subsamples proposals and generates target box refinement, class_ids, and masks for each. Inputs: proposals: [batch, N, (y1, x1, y2, x2)] in normalized coordinates. Might be zero padded if there are not enough proposals. gt_class_ids: [batch, MAX_GT_INSTANCES] Integer class IDs. gt_boxes: [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)] in normalized coordinates. gt_masks: [batch, height, width, MAX_GT_INSTANCES] of boolean type Returns: Target ROIs and corresponding class IDs, bounding box shifts, and masks. rois: [batch, TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)] in normalized coordinates target_class_ids: [batch, TRAIN_ROIS_PER_IMAGE]. Integer class IDs. target_deltas: [batch, TRAIN_ROIS_PER_IMAGE, (dy, dx, log(dh), log(dw)] target_mask: [batch, TRAIN_ROIS_PER_IMAGE, height, width] Masks cropped to bbox boundaries and resized to neural network output size. Note: Returned arrays might be zero padded if not enough target ROIs. """ def __init__(self, config, **kwargs): super(DetectionTargetLayer, self).__init__(**kwargs) self.config = config def call(self, inputs): proposals = inputs[0] gt_class_ids = inputs[1] gt_boxes = inputs[2] gt_masks = inputs[3] # Slice the batch and run a graph for each slice # TODO: Rename target_bbox to target_deltas for clarity names = ["rois", "target_class_ids", "target_bbox", "target_mask"] outputs = utils.batch_slice( [proposals, gt_class_ids, gt_boxes, gt_masks], lambda w, x, y, z: detection_targets_graph( w, x, y, z, self.config), self.config.IMAGES_PER_GPU, names=names) return outputs def compute_output_shape(self, input_shape): return [ (None, self.config.TRAIN_ROIS_PER_IMAGE, 4), # rois (None, self.config.TRAIN_ROIS_PER_IMAGE), # class_ids (None, self.config.TRAIN_ROIS_PER_IMAGE, 4), # deltas (None, self.config.TRAIN_ROIS_PER_IMAGE, self.config.MASK_SHAPE[0], self.config.MASK_SHAPE[1]) # masks ] def compute_mask(self, inputs, mask=None): return [None, None, None, None] ############################################################ # Detection Layer ############################################################ def refine_detections_graph(rois, probs, deltas, window, config): """Refine classified proposals and filter overlaps and return final detections. Inputs: rois: [N, (y1, x1, y2, x2)] in normalized coordinates probs: [N, num_classes]. Class probabilities. deltas: [N, num_classes, (dy, dx, log(dh), log(dw))]. Class-specific bounding box deltas. window: (y1, x1, y2, x2) in normalized coordinates. The part of the image that contains the image excluding the padding. Returns detections shaped: [num_detections, (y1, x1, y2, x2, class_id, score)] where coordinates are normalized. """ # Class IDs per ROI class_ids = tf.argmax(probs, axis=1, output_type=tf.int32) # Class probability of the top class of each ROI # indices = tf.stack([tf.range(probs.shape[0]), class_ids], axis=1) #mwm 1,1 indices = tf.stack([tf.range(tf.shape(probs)[0]), class_ids], axis = 1) class_scores = tf.gather_nd(probs, indices) # Class-specific bounding box deltas deltas_specific = tf.gather_nd(deltas, indices) # Apply bounding box deltas # Shape: [boxes, (y1, x1, y2, x2)] in normalized coordinates refined_rois = apply_box_deltas_graph( rois, deltas_specific * config.BBOX_STD_DEV) # Clip boxes to image window refined_rois = clip_boxes_graph(refined_rois, window) # TODO: Filter out boxes with zero area # Filter out background boxes keep = tf.where(class_ids > 0)[:, 0] # Filter out low confidence boxes if config.DETECTION_MIN_CONFIDENCE: conf_keep = tf.where(class_scores >= config.DETECTION_MIN_CONFIDENCE)[:, 0] keep = tf.sets.set_intersection(tf.expand_dims(keep, 0), tf.expand_dims(conf_keep, 0)) keep = tf.sparse_tensor_to_dense(keep)[0] # Apply per-class NMS # 1. Prepare variables pre_nms_class_ids = tf.gather(class_ids, keep) pre_nms_scores = tf.gather(class_scores, keep) pre_nms_rois = tf.gather(refined_rois, keep) unique_pre_nms_class_ids = tf.unique(pre_nms_class_ids)[0] def nms_keep_map(class_id): """Apply Non-Maximum Suppression on ROIs of the given class.""" # Indices of ROIs of the given class ixs = tf.where(tf.equal(pre_nms_class_ids, class_id))[:, 0] # Apply NMS class_keep = tf.image.non_max_suppression( tf.gather(pre_nms_rois, ixs), tf.gather(pre_nms_scores, ixs), max_output_size=config.DETECTION_MAX_INSTANCES, iou_threshold=config.DETECTION_NMS_THRESHOLD) # Map indices class_keep = tf.gather(keep, tf.gather(ixs, class_keep)) # Pad with -1 so returned tensors have the same shape gap = config.DETECTION_MAX_INSTANCES - tf.shape(class_keep)[0] class_keep = tf.pad(class_keep, [(0, gap)], mode='CONSTANT', constant_values=-1) # Set shape so map_fn() can infer result shape class_keep.set_shape([config.DETECTION_MAX_INSTANCES]) return class_keep # 2. Map over class IDs nms_keep = tf.map_fn(nms_keep_map, unique_pre_nms_class_ids, dtype=tf.int64) # 3. Merge results into one list, and remove -1 padding nms_keep = tf.reshape(nms_keep, [-1]) nms_keep = tf.gather(nms_keep, tf.where(nms_keep > -1)[:, 0]) # 4. Compute intersection between keep and nms_keep keep = tf.sets.set_intersection(tf.expand_dims(keep, 0), tf.expand_dims(nms_keep, 0)) keep = tf.sparse_tensor_to_dense(keep)[0] # Keep top detections roi_count = config.DETECTION_MAX_INSTANCES class_scores_keep = tf.gather(class_scores, keep) num_keep = tf.minimum(tf.shape(class_scores_keep)[0], roi_count) top_ids = tf.nn.top_k(class_scores_keep, k=num_keep, sorted=True)[1] keep = tf.gather(keep, top_ids) # Arrange output as [N, (y1, x1, y2, x2, class_id, score)] # Coordinates are normalized. detections = tf.concat([ tf.gather(refined_rois, keep), tf.to_float(tf.gather(class_ids, keep))[..., tf.newaxis], tf.gather(class_scores, keep)[..., tf.newaxis] ], axis=1) # Pad with zeros if detections < DETECTION_MAX_INSTANCES gap = config.DETECTION_MAX_INSTANCES - tf.shape(detections)[0] detections = tf.pad(detections, [(0, gap), (0, 0)], "CONSTANT") return detections class DetectionLayer(KE.Layer): """Takes classified proposal boxes and their bounding box deltas and returns the final detection boxes. Returns: [batch, num_detections, (y1, x1, y2, x2, class_id, class_score)] where coordinates are normalized. """ def __init__(self, config=None, **kwargs): super(DetectionLayer, self).__init__(**kwargs) self.config = config def call(self, inputs): rois = inputs[0] mrcnn_class = inputs[1] mrcnn_bbox = inputs[2] image_meta = inputs[3] # Get windows of images in normalized coordinates. Windows are the area # in the image that excludes the padding. # Use the shape of the first image in the batch to normalize the window # because we know that all images get resized to the same size. m = parse_image_meta_graph(image_meta) image_shape = m['image_shape'][0] window = norm_boxes_graph(m['window'], image_shape[:2]) # Run detection refinement graph on each item in the batch detections_batch = utils.batch_slice( [rois, mrcnn_class, mrcnn_bbox, window], lambda x, y, w, z: refine_detections_graph(x, y, w, z, self.config), self.config.IMAGES_PER_GPU) # Reshape output # [batch, num_detections, (y1, x1, y2, x2, class_id, class_score)] in # normalized coordinates return tf.reshape( detections_batch, [self.config.BATCH_SIZE, self.config.DETECTION_MAX_INSTANCES, 6]) def compute_output_shape(self, input_shape): return (None, self.config.DETECTION_MAX_INSTANCES, 6) ############################################################ # Region Proposal Network (RPN) ############################################################ def rpn_graph(feature_map, anchors_per_location, anchor_stride): """Builds the computation graph of Region Proposal Network. feature_map: backbone features [batch, height, width, depth] anchors_per_location: number of anchors per pixel in the feature map anchor_stride: Controls the density of anchors. Typically 1 (anchors for every pixel in the feature map), or 2 (every other pixel). Returns: rpn_class_logits: [batch, H * W * anchors_per_location, 2] Anchor classifier logits (before softmax) rpn_probs: [batch, H * W * anchors_per_location, 2] Anchor classifier probabilities. rpn_bbox: [batch, H * W * anchors_per_location, (dy, dx, log(dh), log(dw))] Deltas to be applied to anchors. """ # TODO: check if stride of 2 causes alignment issues if the feature map # is not even. # Shared convolutional base of the RPN shared = KL.Conv2D(512, (3, 3), padding='same', activation='relu', strides=anchor_stride, name='rpn_conv_shared')(feature_map) # Anchor Score. [batch, height, width, anchors per location * 2]. x = KL.Conv2D(2 * anchors_per_location, (1, 1), padding='valid', activation='linear', name='rpn_class_raw')(shared) # Reshape to [batch, anchors, 2] rpn_class_logits = KL.Lambda( lambda t: tf.reshape(t, [tf.shape(t)[0], -1, 2]))(x) # Softmax on last dimension of BG/FG. rpn_probs = KL.Activation( "softmax", name="rpn_class_xxx")(rpn_class_logits) # Bounding box refinement. [batch, H, W, anchors per location * depth] # where depth is [x, y, log(w), log(h)] x = KL.Conv2D(anchors_per_location * 4, (1, 1), padding="valid", activation='linear', name='rpn_bbox_pred')(shared) # Reshape to [batch, anchors, 4] rpn_bbox = KL.Lambda(lambda t: tf.reshape(t, [tf.shape(t)[0], -1, 4]))(x) return [rpn_class_logits, rpn_probs, rpn_bbox] def build_rpn_model(anchor_stride, anchors_per_location, depth): """Builds a Keras model of the Region Proposal Network. It wraps the RPN graph so it can be used multiple times with shared weights. anchors_per_location: number of anchors per pixel in the feature map anchor_stride: Controls the density of anchors. Typically 1 (anchors for every pixel in the feature map), or 2 (every other pixel). depth: Depth of the backbone feature map. Returns a Keras Model object. The model outputs, when called, are: rpn_class_logits: [batch, H * W * anchors_per_location, 2] Anchor classifier logits (before softmax) rpn_probs: [batch, H * W * anchors_per_location, 2] Anchor classifier probabilities. rpn_bbox: [batch, H * W * anchors_per_location, (dy, dx, log(dh), log(dw))] Deltas to be applied to anchors. """ input_feature_map = KL.Input(shape=[None, None, depth], name="input_rpn_feature_map") outputs = rpn_graph(input_feature_map, anchors_per_location, anchor_stride) return KM.Model([input_feature_map], outputs, name="rpn_model") ############################################################ # Feature Pyramid Network Heads ############################################################ def fpn_classifier_graph(rois, feature_maps, image_meta, pool_size, num_classes, train_bn=True, fc_layers_size=1024): """Builds the computation graph of the feature pyramid network classifier and regressor heads. rois: [batch, num_rois, (y1, x1, y2, x2)] Proposal boxes in normalized coordinates. feature_maps: List of feature maps from different layers of the pyramid, [P2, P3, P4, P5]. Each has a different resolution. image_meta: [batch, (meta data)] Image details. See compose_image_meta() pool_size: The width of the square feature map generated from ROI Pooling. num_classes: number of classes, which determines the depth of the results train_bn: Boolean. Train or freeze Batch Norm layers fc_layers_size: Size of the 2 FC layers Returns: logits: [batch, num_rois, NUM_CLASSES] classifier logits (before softmax) probs: [batch, num_rois, NUM_CLASSES] classifier probabilities bbox_deltas: [batch, num_rois, NUM_CLASSES, (dy, dx, log(dh), log(dw))] Deltas to apply to proposal boxes """ # ROI Pooling # Shape: [batch, num_rois, POOL_SIZE, POOL_SIZE, channels] x = PyramidROIAlign([pool_size, pool_size], name="roi_align_classifier")([rois, image_meta] + feature_maps) # Two 1024 FC layers (implemented with Conv2D for consistency) x = KL.TimeDistributed(KL.Conv2D(fc_layers_size, (pool_size, pool_size), padding="valid"), name="mrcnn_class_conv1")(x) x = KL.TimeDistributed(BatchNorm(), name='mrcnn_class_bn1')(x, training=train_bn) x = KL.Activation('relu')(x) x = KL.TimeDistributed(KL.Conv2D(fc_layers_size, (1, 1)), name="mrcnn_class_conv2")(x) x = KL.TimeDistributed(BatchNorm(), name='mrcnn_class_bn2')(x, training=train_bn) x = KL.Activation('relu')(x) shared = KL.Lambda(lambda x: K.squeeze(K.squeeze(x, 3), 2), name="pool_squeeze")(x) # Classifier head mrcnn_class_logits = KL.TimeDistributed(KL.Dense(num_classes), name='mrcnn_class_logits')(shared) mrcnn_probs = KL.TimeDistributed(KL.Activation("softmax"), name="mrcnn_class")(mrcnn_class_logits) # BBox head # [batch, num_rois, NUM_CLASSES * (dy, dx, log(dh), log(dw))] x = KL.TimeDistributed(KL.Dense(num_classes * 4, activation='linear'), name='mrcnn_bbox_fc')(shared) # Reshape to [batch, num_rois, NUM_CLASSES, (dy, dx, log(dh), log(dw))] s = K.int_shape(x) #mrcnn_bbox = KL.Reshape((s[1], num_classes, 4), name="mrcnn_bbox")(x) #mwm 1, 4 # if s[1] == None: # mrcnn_bbox = KL.Reshape((-1, num_classes, 4), name="mrcnn_bbox")(x) # else: # mrcnn_bbox = KL.Reshape((s[1], num_classes, 4), name="mrcnn_bbox")(x) #mwm 4,1 (again) mrcnn_bbox = KL.Reshape((-1, num_classes, 4), name="mrcnn_bbox")(x) return mrcnn_class_logits, mrcnn_probs, mrcnn_bbox def build_fpn_mask_graph(rois, feature_maps, image_meta, pool_size, num_classes, train_bn=True): """Builds the computation graph of the mask head of Feature Pyramid Network. rois: [batch, num_rois, (y1, x1, y2, x2)] Proposal boxes in normalized coordinates. feature_maps: List of feature maps from different layers of the pyramid, [P2, P3, P4, P5]. Each has a different resolution. image_meta: [batch, (meta data)] Image details. See compose_image_meta() pool_size: The width of the square feature map generated from ROI Pooling. num_classes: number of classes, which determines the depth of the results train_bn: Boolean. Train or freeze Batch Norm layers Returns: Masks [batch, num_rois, MASK_POOL_SIZE, MASK_POOL_SIZE, NUM_CLASSES] """ # ROI Pooling # Shape: [batch, num_rois, MASK_POOL_SIZE, MASK_POOL_SIZE, channels] x = PyramidROIAlign([pool_size, pool_size], name="roi_align_mask")([rois, image_meta] + feature_maps) # Conv layers x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"), name="mrcnn_mask_conv1")(x) x = KL.TimeDistributed(BatchNorm(), name='mrcnn_mask_bn1')(x, training=train_bn) x = KL.Activation('relu')(x) x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"), name="mrcnn_mask_conv2")(x) x = KL.TimeDistributed(BatchNorm(), name='mrcnn_mask_bn2')(x, training=train_bn) x = KL.Activation('relu')(x) x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"), name="mrcnn_mask_conv3")(x) x = KL.TimeDistributed(BatchNorm(), name='mrcnn_mask_bn3')(x, training=train_bn) x = KL.Activation('relu')(x) x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"), name="mrcnn_mask_conv4")(x) x = KL.TimeDistributed(BatchNorm(), name='mrcnn_mask_bn4')(x, training=train_bn) x = KL.Activation('relu')(x) x = KL.TimeDistributed(KL.Conv2DTranspose(256, (2, 2), strides=2, activation="relu"), name="mrcnn_mask_deconv")(x) x = KL.TimeDistributed(KL.Conv2D(num_classes, (1, 1), strides=1, activation="sigmoid"), name="mrcnn_mask")(x) return x ############################################################ # Loss Functions ############################################################ def smooth_l1_loss(y_true, y_pred): """Implements Smooth-L1 loss. y_true and y_pred are typically: [N, 4], but could be any shape. """ diff = K.abs(y_true - y_pred) less_than_one = K.cast(K.less(diff, 1.0), "float32") loss = (less_than_one * 0.5 * diff**2) + (1 - less_than_one) * (diff - 0.5) return loss def rpn_class_loss_graph(rpn_match, rpn_class_logits): """RPN anchor classifier loss. rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive, -1=negative, 0=neutral anchor. rpn_class_logits: [batch, anchors, 2]. RPN classifier logits for BG/FG. """ # Squeeze last dim to simplify rpn_match = tf.squeeze(rpn_match, -1) # Get anchor classes. Convert the -1/+1 match to 0/1 values. anchor_class = K.cast(K.equal(rpn_match, 1), tf.int32) # Positive and Negative anchors contribute to the loss, # but neutral anchors (match value = 0) don't. indices = tf.where(K.not_equal(rpn_match, 0)) # Pick rows that contribute to the loss and filter out the rest. rpn_class_logits = tf.gather_nd(rpn_class_logits, indices) anchor_class = tf.gather_nd(anchor_class, indices) # Cross entropy loss loss = K.sparse_categorical_crossentropy(target=anchor_class, output=rpn_class_logits, from_logits=True) loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0)) return loss def rpn_bbox_loss_graph(config, target_bbox, rpn_match, rpn_bbox): """Return the RPN bounding box loss graph. config: the model config object. target_bbox: [batch, max positive anchors, (dy, dx, log(dh), log(dw))]. Uses 0 padding to fill in unsed bbox deltas. rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive, -1=negative, 0=neutral anchor. rpn_bbox: [batch, anchors, (dy, dx, log(dh), log(dw))] """ # Positive anchors contribute to the loss, but negative and # neutral anchors (match value of 0 or -1) don't. rpn_match = K.squeeze(rpn_match, -1) indices = tf.where(K.equal(rpn_match, 1)) # Pick bbox deltas that contribute to the loss rpn_bbox = tf.gather_nd(rpn_bbox, indices) # Trim target bounding box deltas to the same length as rpn_bbox. batch_counts = K.sum(K.cast(K.equal(rpn_match, 1), tf.int32), axis=1) target_bbox = batch_pack_graph(target_bbox, batch_counts, config.IMAGES_PER_GPU) loss = smooth_l1_loss(target_bbox, rpn_bbox) loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0)) return loss def mrcnn_class_loss_graph(target_class_ids, pred_class_logits, active_class_ids): """Loss for the classifier head of Mask RCNN. target_class_ids: [batch, num_rois]. Integer class IDs. Uses zero padding to fill in the array. pred_class_logits: [batch, num_rois, num_classes] active_class_ids: [batch, num_classes]. Has a value of 1 for classes that are in the dataset of the image, and 0 for classes that are not in the dataset. """ # During model building, Keras calls this function with # target_class_ids of type float32. Unclear why. Cast it # to int to get around it. target_class_ids = tf.cast(target_class_ids, 'int64') # Find predictions of classes that are not in the dataset. pred_class_ids = tf.argmax(pred_class_logits, axis=2) # TODO: Update this line to work with batch > 1. Right now it assumes all # images in a batch have the same active_class_ids pred_active = tf.gather(active_class_ids[0], pred_class_ids) # Loss loss = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=target_class_ids, logits=pred_class_logits) # Erase losses of predictions of classes that are not in the active # classes of the image. loss = loss * pred_active # Computer loss mean. Use only predictions that contribute # to the loss to get a correct mean. loss = tf.reduce_sum(loss) / tf.reduce_sum(pred_active) return loss def mrcnn_bbox_loss_graph(target_bbox, target_class_ids, pred_bbox): """Loss for Mask R-CNN bounding box refinement. target_bbox: [batch, num_rois, (dy, dx, log(dh), log(dw))] target_class_ids: [batch, num_rois]. Integer class IDs. pred_bbox: [batch, num_rois, num_classes, (dy, dx, log(dh), log(dw))] """ # Reshape to merge batch and roi dimensions for simplicity. target_class_ids = K.reshape(target_class_ids, (-1,)) target_bbox = K.reshape(target_bbox, (-1, 4)) pred_bbox = K.reshape(pred_bbox, (-1, K.int_shape(pred_bbox)[2], 4)) # Only positive ROIs contribute to the loss. And only # the right class_id of each ROI. Get their indices. positive_roi_ix = tf.where(target_class_ids > 0)[:, 0] positive_roi_class_ids = tf.cast( tf.gather(target_class_ids, positive_roi_ix), tf.int64) indices = tf.stack([positive_roi_ix, positive_roi_class_ids], axis=1) # Gather the deltas (predicted and true) that contribute to loss target_bbox = tf.gather(target_bbox, positive_roi_ix) pred_bbox = tf.gather_nd(pred_bbox, indices) # Smooth-L1 Loss loss = K.switch(tf.size(target_bbox) > 0, smooth_l1_loss(y_true=target_bbox, y_pred=pred_bbox), tf.constant(0.0)) loss = K.mean(loss) return loss def mrcnn_mask_loss_graph(target_masks, target_class_ids, pred_masks): """Mask binary cross-entropy loss for the masks head. target_masks: [batch, num_rois, height, width]. A float32 tensor of values 0 or 1. Uses zero padding to fill array. target_class_ids: [batch, num_rois]. Integer class IDs. Zero padded. pred_masks: [batch, proposals, height, width, num_classes] float32 tensor with values from 0 to 1. """ # Reshape for simplicity. Merge first two dimensions into one. target_class_ids = K.reshape(target_class_ids, (-1,)) mask_shape = tf.shape(target_masks) target_masks = K.reshape(target_masks, (-1, mask_shape[2], mask_shape[3])) pred_shape = tf.shape(pred_masks) pred_masks = K.reshape(pred_masks, (-1, pred_shape[2], pred_shape[3], pred_shape[4])) # Permute predicted masks to [N, num_classes, height, width] pred_masks = tf.transpose(pred_masks, [0, 3, 1, 2]) # Only positive ROIs contribute to the loss. And only # the class specific mask of each ROI. positive_ix = tf.where(target_class_ids > 0)[:, 0] positive_class_ids = tf.cast( tf.gather(target_class_ids, positive_ix), tf.int64) indices = tf.stack([positive_ix, positive_class_ids], axis=1) # Gather the masks (predicted and true) that contribute to loss y_true = tf.gather(target_masks, positive_ix) y_pred = tf.gather_nd(pred_masks, indices) # Compute binary cross entropy. If no positive ROIs, then return 0. # shape: [batch, roi, num_classes] loss = K.switch(tf.size(y_true) > 0, K.binary_crossentropy(target=y_true, output=y_pred), tf.constant(0.0)) loss = K.mean(loss) return loss ############################################################ # Data Generator ############################################################ def load_image_gt(dataset, config, image_id, augment=False, augmentation=None, use_mini_mask=False): """Load and return ground truth data for an image (image, mask, bounding boxes). augment: (deprecated. Use augmentation instead). If true, apply random image augmentation. Currently, only horizontal flipping is offered. augmentation: Optional. An imgaug (https://github.com/aleju/imgaug) augmentation. For example, passing imgaug.augmenters.Fliplr(0.5) flips images right/left 50% of the time. use_mini_mask: If False, returns full-size masks that are the same height and width as the original image. These can be big, for example 1024x1024x100 (for 100 instances). Mini masks are smaller, typically, 224x224 and are generated by extracting the bounding box of the object and resizing it to MINI_MASK_SHAPE. Returns: image: [height, width, 3] shape: the original shape of the image before resizing and cropping. class_ids: [instance_count] Integer class IDs bbox: [instance_count, (y1, x1, y2, x2)] mask: [height, width, instance_count]. The height and width are those of the image unless use_mini_mask is True, in which case they are defined in MINI_MASK_SHAPE. """ # Load image and mask image = dataset.load_image(image_id) mask, class_ids = dataset.load_mask(image_id) original_shape = image.shape image, window, scale, padding, crop = utils.resize_image( image, min_dim=config.IMAGE_MIN_DIM, min_scale=config.IMAGE_MIN_SCALE, max_dim=config.IMAGE_MAX_DIM, mode=config.IMAGE_RESIZE_MODE) mask = utils.resize_mask(mask, scale, padding, crop) # Random horizontal flips. # TODO: will be removed in a future update in favor of augmentation if augment: logging.warning("'augment' is deprecated. Use 'augmentation' instead.") if random.randint(0, 1): image = np.fliplr(image) mask = np.fliplr(mask) # Augmentation # This requires the imgaug lib (https://github.com/aleju/imgaug) if augmentation: import imgaug # Augmenters that are safe to apply to masks # Some, such as Affine, have settings that make them unsafe, so always # test your augmentation on masks MASK_AUGMENTERS = ["Sequential", "SomeOf", "OneOf", "Sometimes", "Fliplr", "Flipud", "CropAndPad", "Affine", "PiecewiseAffine"] def hook(images, augmenter, parents, default): """Determines which augmenters to apply to masks.""" return augmenter.__class__.__name__ in MASK_AUGMENTERS # Store shapes before augmentation to compare image_shape = image.shape mask_shape = mask.shape # Make augmenters deterministic to apply similarly to images and masks det = augmentation.to_deterministic() image = det.augment_image(image) # Change mask to np.uint8 because imgaug doesn't support np.bool mask = det.augment_image(mask.astype(np.uint8), hooks=imgaug.HooksImages(activator=hook)) # Verify that shapes didn't change assert image.shape == image_shape, "Augmentation shouldn't change image size" assert mask.shape == mask_shape, "Augmentation shouldn't change mask size" # Change mask back to bool mask = mask.astype(np.bool) # Note that some boxes might be all zeros if the corresponding mask got cropped out. # and here is to filter them out _idx = np.sum(mask, axis=(0, 1)) > 0 mask = mask[:, :, _idx] class_ids = class_ids[_idx] # Bounding boxes. Note that some boxes might be all zeros # if the corresponding mask got cropped out. # bbox: [num_instances, (y1, x1, y2, x2)] bbox = utils.extract_bboxes(mask) # Active classes # Different datasets have different classes, so track the # classes supported in the dataset of this image. active_class_ids = np.zeros([dataset.num_classes], dtype=np.int32) source_class_ids = dataset.source_class_ids[dataset.image_info[image_id]["source"]] active_class_ids[source_class_ids] = 1 # Resize masks to smaller size to reduce memory usage if use_mini_mask: mask = utils.minimize_mask(bbox, mask, config.MINI_MASK_SHAPE) # Image meta data image_meta = compose_image_meta(image_id, original_shape, image.shape, window, scale, active_class_ids) return image, image_meta, class_ids, bbox, mask def build_detection_targets(rpn_rois, gt_class_ids, gt_boxes, gt_masks, config): """Generate targets for training Stage 2 classifier and mask heads. This is not used in normal training. It's useful for debugging or to train the Mask RCNN heads without using the RPN head. Inputs: rpn_rois: [N, (y1, x1, y2, x2)] proposal boxes. gt_class_ids: [instance count] Integer class IDs gt_boxes: [instance count, (y1, x1, y2, x2)] gt_masks: [height, width, instance count] Ground truth masks. Can be full size or mini-masks. Returns: rois: [TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)] class_ids: [TRAIN_ROIS_PER_IMAGE]. Integer class IDs. bboxes: [TRAIN_ROIS_PER_IMAGE, NUM_CLASSES, (y, x, log(h), log(w))]. Class-specific bbox refinements. masks: [TRAIN_ROIS_PER_IMAGE, height, width, NUM_CLASSES). Class specific masks cropped to bbox boundaries and resized to neural network output size. """ assert rpn_rois.shape[0] > 0 assert gt_class_ids.dtype == np.int32, "Expected int but got {}".format( gt_class_ids.dtype) assert gt_boxes.dtype == np.int32, "Expected int but got {}".format( gt_boxes.dtype) assert gt_masks.dtype == np.bool_, "Expected bool but got {}".format( gt_masks.dtype) # It's common to add GT Boxes to ROIs but we don't do that here because # according to XinLei Chen's paper, it doesn't help. # Trim empty padding in gt_boxes and gt_masks parts instance_ids = np.where(gt_class_ids > 0)[0] assert instance_ids.shape[0] > 0, "Image must contain instances." gt_class_ids = gt_class_ids[instance_ids] gt_boxes = gt_boxes[instance_ids] gt_masks = gt_masks[:, :, instance_ids] # Compute areas of ROIs and ground truth boxes. rpn_roi_area = (rpn_rois[:, 2] - rpn_rois[:, 0]) * \ (rpn_rois[:, 3] - rpn_rois[:, 1]) gt_box_area = (gt_boxes[:, 2] - gt_boxes[:, 0]) * \ (gt_boxes[:, 3] - gt_boxes[:, 1]) # Compute overlaps [rpn_rois, gt_boxes] overlaps = np.zeros((rpn_rois.shape[0], gt_boxes.shape[0])) for i in range(overlaps.shape[1]): gt = gt_boxes[i] overlaps[:, i] = utils.compute_iou( gt, rpn_rois, gt_box_area[i], rpn_roi_area) # Assign ROIs to GT boxes rpn_roi_iou_argmax = np.argmax(overlaps, axis=1) rpn_roi_iou_max = overlaps[np.arange( overlaps.shape[0]), rpn_roi_iou_argmax] # GT box assigned to each ROI rpn_roi_gt_boxes = gt_boxes[rpn_roi_iou_argmax] rpn_roi_gt_class_ids = gt_class_ids[rpn_roi_iou_argmax] # Positive ROIs are those with >= 0.5 IoU with a GT box. fg_ids = np.where(rpn_roi_iou_max > 0.5)[0] # Negative ROIs are those with max IoU 0.1-0.5 (hard example mining) # TODO: To hard example mine or not to hard example mine, that's the question # bg_ids = np.where((rpn_roi_iou_max >= 0.1) & (rpn_roi_iou_max < 0.5))[0] bg_ids = np.where(rpn_roi_iou_max < 0.5)[0] # Subsample ROIs. Aim for 33% foreground. # FG fg_roi_count = int(config.TRAIN_ROIS_PER_IMAGE * config.ROI_POSITIVE_RATIO) if fg_ids.shape[0] > fg_roi_count: keep_fg_ids = np.random.choice(fg_ids, fg_roi_count, replace=False) else: keep_fg_ids = fg_ids # BG remaining = config.TRAIN_ROIS_PER_IMAGE - keep_fg_ids.shape[0] if bg_ids.shape[0] > remaining: keep_bg_ids = np.random.choice(bg_ids, remaining, replace=False) else: keep_bg_ids = bg_ids # Combine indices of ROIs to keep keep = np.concatenate([keep_fg_ids, keep_bg_ids]) # Need more? remaining = config.TRAIN_ROIS_PER_IMAGE - keep.shape[0] if remaining > 0: # Looks like we don't have enough samples to maintain the desired # balance. Reduce requirements and fill in the rest. This is # likely different from the Mask RCNN paper. # There is a small chance we have neither fg nor bg samples. if keep.shape[0] == 0: # Pick bg regions with easier IoU threshold bg_ids = np.where(rpn_roi_iou_max < 0.5)[0] assert bg_ids.shape[0] >= remaining keep_bg_ids = np.random.choice(bg_ids, remaining, replace=False) assert keep_bg_ids.shape[0] == remaining keep = np.concatenate([keep, keep_bg_ids]) else: # Fill the rest with repeated bg rois. keep_extra_ids = np.random.choice( keep_bg_ids, remaining, replace=True) keep = np.concatenate([keep, keep_extra_ids]) assert keep.shape[0] == config.TRAIN_ROIS_PER_IMAGE, \ "keep doesn't match ROI batch size {}, {}".format( keep.shape[0], config.TRAIN_ROIS_PER_IMAGE) # Reset the gt boxes assigned to BG ROIs. rpn_roi_gt_boxes[keep_bg_ids, :] = 0 rpn_roi_gt_class_ids[keep_bg_ids] = 0 # For each kept ROI, assign a class_id, and for FG ROIs also add bbox refinement. rois = rpn_rois[keep] roi_gt_boxes = rpn_roi_gt_boxes[keep] roi_gt_class_ids = rpn_roi_gt_class_ids[keep] roi_gt_assignment = rpn_roi_iou_argmax[keep] # Class-aware bbox deltas. [y, x, log(h), log(w)] bboxes = np.zeros((config.TRAIN_ROIS_PER_IMAGE, config.NUM_CLASSES, 4), dtype=np.float32) pos_ids = np.where(roi_gt_class_ids > 0)[0] bboxes[pos_ids, roi_gt_class_ids[pos_ids]] = utils.box_refinement( rois[pos_ids], roi_gt_boxes[pos_ids, :4]) # Normalize bbox refinements bboxes /= config.BBOX_STD_DEV # Generate class-specific target masks masks = np.zeros((config.TRAIN_ROIS_PER_IMAGE, config.MASK_SHAPE[0], config.MASK_SHAPE[1], config.NUM_CLASSES), dtype=np.float32) for i in pos_ids: class_id = roi_gt_class_ids[i] assert class_id > 0, "class id must be greater than 0" gt_id = roi_gt_assignment[i] class_mask = gt_masks[:, :, gt_id] if config.USE_MINI_MASK: # Create a mask placeholder, the size of the image placeholder = np.zeros(config.IMAGE_SHAPE[:2], dtype=bool) # GT box gt_y1, gt_x1, gt_y2, gt_x2 = gt_boxes[gt_id] gt_w = gt_x2 - gt_x1 gt_h = gt_y2 - gt_y1 # Resize mini mask to size of GT box placeholder[gt_y1:gt_y2, gt_x1:gt_x2] = \ np.round(utils.resize(class_mask, (gt_h, gt_w))).astype(bool) # Place the mini batch in the placeholder class_mask = placeholder # Pick part of the mask and resize it y1, x1, y2, x2 = rois[i].astype(np.int32) m = class_mask[y1:y2, x1:x2] mask = utils.resize(m, config.MASK_SHAPE) masks[i, :, :, class_id] = mask return rois, roi_gt_class_ids, bboxes, masks def build_rpn_targets(image_shape, anchors, gt_class_ids, gt_boxes, config): """Given the anchors and GT boxes, compute overlaps and identify positive anchors and deltas to refine them to match their corresponding GT boxes. anchors: [num_anchors, (y1, x1, y2, x2)] gt_class_ids: [num_gt_boxes] Integer class IDs. gt_boxes: [num_gt_boxes, (y1, x1, y2, x2)] Returns: rpn_match: [N] (int32) matches between anchors and GT boxes. 1 = positive anchor, -1 = negative anchor, 0 = neutral rpn_bbox: [N, (dy, dx, log(dh), log(dw))] Anchor bbox deltas. """ # RPN Match: 1 = positive anchor, -1 = negative anchor, 0 = neutral rpn_match = np.zeros([anchors.shape[0]], dtype=np.int32) # RPN bounding boxes: [max anchors per image, (dy, dx, log(dh), log(dw))] rpn_bbox = np.zeros((config.RPN_TRAIN_ANCHORS_PER_IMAGE, 4)) # Handle COCO crowds # A crowd box in COCO is a bounding box around several instances. Exclude # them from training. A crowd box is given a negative class ID. crowd_ix = np.where(gt_class_ids < 0)[0] if crowd_ix.shape[0] > 0: # Filter out crowds from ground truth class IDs and boxes non_crowd_ix = np.where(gt_class_ids > 0)[0] crowd_boxes = gt_boxes[crowd_ix] gt_class_ids = gt_class_ids[non_crowd_ix] gt_boxes = gt_boxes[non_crowd_ix] # Compute overlaps with crowd boxes [anchors, crowds] crowd_overlaps = utils.compute_overlaps(anchors, crowd_boxes) crowd_iou_max = np.amax(crowd_overlaps, axis=1) no_crowd_bool = (crowd_iou_max < 0.001) else: # All anchors don't intersect a crowd no_crowd_bool = np.ones([anchors.shape[0]], dtype=bool) # Compute overlaps [num_anchors, num_gt_boxes] overlaps = utils.compute_overlaps(anchors, gt_boxes) # Match anchors to GT Boxes # If an anchor overlaps a GT box with IoU >= 0.7 then it's positive. # If an anchor overlaps a GT box with IoU < 0.3 then it's negative. # Neutral anchors are those that don't match the conditions above, # and they don't influence the loss function. # However, don't keep any GT box unmatched (rare, but happens). Instead, # match it to the closest anchor (even if its max IoU is < 0.3). # # 1. Set negative anchors first. They get overwritten below if a GT box is # matched to them. Skip boxes in crowd areas. anchor_iou_argmax = np.argmax(overlaps, axis=1) anchor_iou_max = overlaps[np.arange(overlaps.shape[0]), anchor_iou_argmax] rpn_match[(anchor_iou_max < 0.3) & (no_crowd_bool)] = -1 # 2. Set an anchor for each GT box (regardless of IoU value). # If multiple anchors have the same IoU match all of them gt_iou_argmax = np.argwhere(overlaps == np.max(overlaps, axis=0))[:,0] rpn_match[gt_iou_argmax] = 1 # 3. Set anchors with high overlap as positive. rpn_match[anchor_iou_max >= 0.7] = 1 # Subsample to balance positive and negative anchors # Don't let positives be more than half the anchors ids = np.where(rpn_match == 1)[0] extra = len(ids) - (config.RPN_TRAIN_ANCHORS_PER_IMAGE // 2) if extra > 0: # Reset the extra ones to neutral ids = np.random.choice(ids, extra, replace=False) rpn_match[ids] = 0 # Same for negative proposals ids = np.where(rpn_match == -1)[0] extra = len(ids) - (config.RPN_TRAIN_ANCHORS_PER_IMAGE - np.sum(rpn_match == 1)) if extra > 0: # Rest the extra ones to neutral ids = np.random.choice(ids, extra, replace=False) rpn_match[ids] = 0 # For positive anchors, compute shift and scale needed to transform them # to match the corresponding GT boxes. ids = np.where(rpn_match == 1)[0] ix = 0 # index into rpn_bbox # TODO: use box_refinement() rather than duplicating the code here for i, a in zip(ids, anchors[ids]): # Closest gt box (it might have IoU < 0.7) gt = gt_boxes[anchor_iou_argmax[i]] # Convert coordinates to center plus width/height. # GT Box gt_h = gt[2] - gt[0] gt_w = gt[3] - gt[1] gt_center_y = gt[0] + 0.5 * gt_h gt_center_x = gt[1] + 0.5 * gt_w # Anchor a_h = a[2] - a[0] a_w = a[3] - a[1] a_center_y = a[0] + 0.5 * a_h a_center_x = a[1] + 0.5 * a_w # Compute the bbox refinement that the RPN should predict. rpn_bbox[ix] = [ (gt_center_y - a_center_y) / a_h, (gt_center_x - a_center_x) / a_w, np.log(gt_h / a_h), np.log(gt_w / a_w), ] # Normalize rpn_bbox[ix] /= config.RPN_BBOX_STD_DEV ix += 1 return rpn_match, rpn_bbox def generate_random_rois(image_shape, count, gt_class_ids, gt_boxes): """Generates ROI proposals similar to what a region proposal network would generate. image_shape: [Height, Width, Depth] count: Number of ROIs to generate gt_class_ids: [N] Integer ground truth class IDs gt_boxes: [N, (y1, x1, y2, x2)] Ground truth boxes in pixels. Returns: [count, (y1, x1, y2, x2)] ROI boxes in pixels. """ # placeholder rois = np.zeros((count, 4), dtype=np.int32) # Generate random ROIs around GT boxes (90% of count) rois_per_box = int(0.9 * count / gt_boxes.shape[0]) for i in range(gt_boxes.shape[0]): gt_y1, gt_x1, gt_y2, gt_x2 = gt_boxes[i] h = gt_y2 - gt_y1 w = gt_x2 - gt_x1 # random boundaries r_y1 = max(gt_y1 - h, 0) r_y2 = min(gt_y2 + h, image_shape[0]) r_x1 = max(gt_x1 - w, 0) r_x2 = min(gt_x2 + w, image_shape[1]) # To avoid generating boxes with zero area, we generate double what # we need and filter out the extra. If we get fewer valid boxes # than we need, we loop and try again. while True: y1y2 = np.random.randint(r_y1, r_y2, (rois_per_box * 2, 2)) x1x2 = np.random.randint(r_x1, r_x2, (rois_per_box * 2, 2)) # Filter out zero area boxes threshold = 1 y1y2 = y1y2[np.abs(y1y2[:, 0] - y1y2[:, 1]) >= threshold][:rois_per_box] x1x2 = x1x2[np.abs(x1x2[:, 0] - x1x2[:, 1]) >= threshold][:rois_per_box] if y1y2.shape[0] == rois_per_box and x1x2.shape[0] == rois_per_box: break # Sort on axis 1 to ensure x1 <= x2 and y1 <= y2 and then reshape # into x1, y1, x2, y2 order x1, x2 = np.split(np.sort(x1x2, axis=1), 2, axis=1) y1, y2 = np.split(np.sort(y1y2, axis=1), 2, axis=1) box_rois = np.hstack([y1, x1, y2, x2]) rois[rois_per_box * i:rois_per_box * (i + 1)] = box_rois # Generate random ROIs anywhere in the image (10% of count) remaining_count = count - (rois_per_box * gt_boxes.shape[0]) # To avoid generating boxes with zero area, we generate double what # we need and filter out the extra. If we get fewer valid boxes # than we need, we loop and try again. while True: y1y2 = np.random.randint(0, image_shape[0], (remaining_count * 2, 2)) x1x2 = np.random.randint(0, image_shape[1], (remaining_count * 2, 2)) # Filter out zero area boxes threshold = 1 y1y2 = y1y2[np.abs(y1y2[:, 0] - y1y2[:, 1]) >= threshold][:remaining_count] x1x2 = x1x2[np.abs(x1x2[:, 0] - x1x2[:, 1]) >= threshold][:remaining_count] if y1y2.shape[0] == remaining_count and x1x2.shape[0] == remaining_count: break # Sort on axis 1 to ensure x1 <= x2 and y1 <= y2 and then reshape # into x1, y1, x2, y2 order x1, x2 = np.split(np.sort(x1x2, axis=1), 2, axis=1) y1, y2 = np.split(np.sort(y1y2, axis=1), 2, axis=1) global_rois = np.hstack([y1, x1, y2, x2]) rois[-remaining_count:] = global_rois return rois def data_generator(dataset, config, shuffle=True, augment=False, augmentation=None, random_rois=0, batch_size=1, detection_targets=False, no_augmentation_sources=None): """A generator that returns images and corresponding target class ids, bounding box deltas, and masks. dataset: The Dataset object to pick data from config: The model config object shuffle: If True, shuffles the samples before every epoch augment: (deprecated. Use augmentation instead). If true, apply random image augmentation. Currently, only horizontal flipping is offered. augmentation: Optional. An imgaug (https://github.com/aleju/imgaug) augmentation. For example, passing imgaug.augmenters.Fliplr(0.5) flips images right/left 50% of the time. random_rois: If > 0 then generate proposals to be used to train the network classifier and mask heads. Useful if training the Mask RCNN part without the RPN. batch_size: How many images to return in each call detection_targets: If True, generate detection targets (class IDs, bbox deltas, and masks). Typically for debugging or visualizations because in trainig detection targets are generated by DetectionTargetLayer. no_augmentation_sources: Optional. List of sources to exclude for augmentation. A source is string that identifies a dataset and is defined in the Dataset class. Returns a Python generator. Upon calling next() on it, the generator returns two lists, inputs and outputs. The contents of the lists differs depending on the received arguments: inputs list: - images: [batch, H, W, C] - image_meta: [batch, (meta data)] Image details. See compose_image_meta() - rpn_match: [batch, N] Integer (1=positive anchor, -1=negative, 0=neutral) - rpn_bbox: [batch, N, (dy, dx, log(dh), log(dw))] Anchor bbox deltas. - gt_class_ids: [batch, MAX_GT_INSTANCES] Integer class IDs - gt_boxes: [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)] - gt_masks: [batch, height, width, MAX_GT_INSTANCES]. The height and width are those of the image unless use_mini_mask is True, in which case they are defined in MINI_MASK_SHAPE. outputs list: Usually empty in regular training. But if detection_targets is True then the outputs list contains target class_ids, bbox deltas, and masks. """ b = 0 # batch item index image_index = -1 image_ids = np.copy(dataset.image_ids) error_count = 0 no_augmentation_sources = no_augmentation_sources or [] # Anchors # [anchor_count, (y1, x1, y2, x2)] backbone_shapes = compute_backbone_shapes(config, config.IMAGE_SHAPE) anchors = utils.generate_pyramid_anchors(config.RPN_ANCHOR_SCALES, config.RPN_ANCHOR_RATIOS, backbone_shapes, config.BACKBONE_STRIDES, config.RPN_ANCHOR_STRIDE) # Keras requires a generator to run indefinitely. while True: try: # Increment index to pick next image. Shuffle if at the start of an epoch. image_index = (image_index + 1) % len(image_ids) if shuffle and image_index == 0: np.random.shuffle(image_ids) # Get GT bounding boxes and masks for image. image_id = image_ids[image_index] # If the image source is not to be augmented pass None as augmentation if dataset.image_info[image_id]['source'] in no_augmentation_sources: image, image_meta, gt_class_ids, gt_boxes, gt_masks = \ load_image_gt(dataset, config, image_id, augment=augment, augmentation=None, use_mini_mask=config.USE_MINI_MASK) else: image, image_meta, gt_class_ids, gt_boxes, gt_masks = \ load_image_gt(dataset, config, image_id, augment=augment, augmentation=augmentation, use_mini_mask=config.USE_MINI_MASK) # Skip images that have no instances. This can happen in cases # where we train on a subset of classes and the image doesn't # have any of the classes we care about. if not np.any(gt_class_ids > 0): continue # RPN Targets rpn_match, rpn_bbox = build_rpn_targets(image.shape, anchors, gt_class_ids, gt_boxes, config) # Mask R-CNN Targets if random_rois: rpn_rois = generate_random_rois( image.shape, random_rois, gt_class_ids, gt_boxes) if detection_targets: rois, mrcnn_class_ids, mrcnn_bbox, mrcnn_mask =\ build_detection_targets( rpn_rois, gt_class_ids, gt_boxes, gt_masks, config) # Init batch arrays if b == 0: batch_image_meta = np.zeros( (batch_size,) + image_meta.shape, dtype=image_meta.dtype) batch_rpn_match = np.zeros( [batch_size, anchors.shape[0], 1], dtype=rpn_match.dtype) batch_rpn_bbox = np.zeros( [batch_size, config.RPN_TRAIN_ANCHORS_PER_IMAGE, 4], dtype=rpn_bbox.dtype) batch_images = np.zeros( (batch_size,) + image.shape, dtype=np.float32) batch_gt_class_ids = np.zeros( (batch_size, config.MAX_GT_INSTANCES), dtype=np.int32) batch_gt_boxes = np.zeros( (batch_size, config.MAX_GT_INSTANCES, 4), dtype=np.int32) batch_gt_masks = np.zeros( (batch_size, gt_masks.shape[0], gt_masks.shape[1], config.MAX_GT_INSTANCES), dtype=gt_masks.dtype) if random_rois: batch_rpn_rois = np.zeros( (batch_size, rpn_rois.shape[0], 4), dtype=rpn_rois.dtype) if detection_targets: batch_rois = np.zeros( (batch_size,) + rois.shape, dtype=rois.dtype) batch_mrcnn_class_ids = np.zeros( (batch_size,) + mrcnn_class_ids.shape, dtype=mrcnn_class_ids.dtype) batch_mrcnn_bbox = np.zeros( (batch_size,) + mrcnn_bbox.shape, dtype=mrcnn_bbox.dtype) batch_mrcnn_mask = np.zeros( (batch_size,) + mrcnn_mask.shape, dtype=mrcnn_mask.dtype) # If more instances than fits in the array, sub-sample from them. if gt_boxes.shape[0] > config.MAX_GT_INSTANCES: ids = np.random.choice( np.arange(gt_boxes.shape[0]), config.MAX_GT_INSTANCES, replace=False) gt_class_ids = gt_class_ids[ids] gt_boxes = gt_boxes[ids] gt_masks = gt_masks[:, :, ids] # Add to batch batch_image_meta[b] = image_meta batch_rpn_match[b] = rpn_match[:, np.newaxis] batch_rpn_bbox[b] = rpn_bbox batch_images[b] = mold_image(image.astype(np.float32), config) batch_gt_class_ids[b, :gt_class_ids.shape[0]] = gt_class_ids batch_gt_boxes[b, :gt_boxes.shape[0]] = gt_boxes batch_gt_masks[b, :, :, :gt_masks.shape[-1]] = gt_masks if random_rois: batch_rpn_rois[b] = rpn_rois if detection_targets: batch_rois[b] = rois batch_mrcnn_class_ids[b] = mrcnn_class_ids batch_mrcnn_bbox[b] = mrcnn_bbox batch_mrcnn_mask[b] = mrcnn_mask b += 1 # Batch full? if b >= batch_size: inputs = [batch_images, batch_image_meta, batch_rpn_match, batch_rpn_bbox, batch_gt_class_ids, batch_gt_boxes, batch_gt_masks] outputs = [] if random_rois: inputs.extend([batch_rpn_rois]) if detection_targets: inputs.extend([batch_rois]) # Keras requires that output and targets have the same number of dimensions batch_mrcnn_class_ids = np.expand_dims( batch_mrcnn_class_ids, -1) outputs.extend( [batch_mrcnn_class_ids, batch_mrcnn_bbox, batch_mrcnn_mask]) yield inputs, outputs # start a new batch b = 0 except (GeneratorExit, KeyboardInterrupt): raise except: # Log it and skip the image logging.exception("Error processing image {}".format( dataset.image_info[image_id])) error_count += 1 if error_count > 5: raise ############################################################ # MaskRCNN Class ############################################################ class MaskRCNN(): """Encapsulates the Mask RCNN model functionality. The actual Keras model is in the keras_model property. """ def __init__(self, mode, config, model_dir): """ mode: Either "training" or "inference" config: A Sub-class of the Config class model_dir: Directory to save training logs and trained weights """ assert mode in ['training', 'inference'] self.mode = mode self.config = config self.model_dir = model_dir self.set_log_dir() self.keras_model = self.build(mode=mode, config=config) def build(self, mode, config): """Build Mask R-CNN architecture. input_shape: The shape of the input image. mode: Either "training" or "inference". The inputs and outputs of the model differ accordingly. """ assert mode in ['training', 'inference'] # Image size must be dividable by 2 multiple times h, w = config.IMAGE_SHAPE[:2] if h / 2**6 != int(h / 2**6) or w / 2**6 != int(w / 2**6): raise Exception("Image size must be dividable by 2 at least 6 times " "to avoid fractions when downscaling and upscaling." "For example, use 256, 320, 384, 448, 512, ... etc. ") # Inputs input_image = KL.Input( shape=[None, None, config.IMAGE_SHAPE[2]], name="input_image") input_image_meta = KL.Input(shape=[config.IMAGE_META_SIZE], name="input_image_meta") if mode == "training": # RPN GT input_rpn_match = KL.Input( shape=[None, 1], name="input_rpn_match", dtype=tf.int32) input_rpn_bbox = KL.Input( shape=[None, 4], name="input_rpn_bbox", dtype=tf.float32) # Detection GT (class IDs, bounding boxes, and masks) # 1. GT Class IDs (zero padded) input_gt_class_ids = KL.Input( shape=[None], name="input_gt_class_ids", dtype=tf.int32) # 2. GT Boxes in pixels (zero padded) # [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)] in image coordinates input_gt_boxes = KL.Input( shape=[None, 4], name="input_gt_boxes", dtype=tf.float32) # Normalize coordinates gt_boxes = KL.Lambda(lambda x: norm_boxes_graph( x, K.shape(input_image)[1:3]))(input_gt_boxes) # 3. GT Masks (zero padded) # [batch, height, width, MAX_GT_INSTANCES] if config.USE_MINI_MASK: input_gt_masks = KL.Input( shape=[config.MINI_MASK_SHAPE[0], config.MINI_MASK_SHAPE[1], None], name="input_gt_masks", dtype=bool) else: input_gt_masks = KL.Input( shape=[config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1], None], name="input_gt_masks", dtype=bool) elif mode == "inference": # Anchors in normalized coordinates input_anchors = KL.Input(shape=[None, 4], name="input_anchors") # Build the shared convolutional layers. # Bottom-up Layers # Returns a list of the last layers of each stage, 5 in total. # Don't create the thead (stage 5), so we pick the 4th item in the list. if callable(config.BACKBONE): _, C2, C3, C4, C5 = config.BACKBONE(input_image, stage5=True, train_bn=config.TRAIN_BN) else: _, C2, C3, C4, C5 = resnet_graph(input_image, config.BACKBONE, stage5=True, train_bn=config.TRAIN_BN) # Top-down Layers # TODO: add assert to varify feature map sizes match what's in config P5 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c5p5')(C5) P4 = KL.Add(name="fpn_p4add")([ KL.UpSampling2D(size=(2, 2), name="fpn_p5upsampled")(P5), KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c4p4')(C4)]) P3 = KL.Add(name="fpn_p3add")([ KL.UpSampling2D(size=(2, 2), name="fpn_p4upsampled")(P4), KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c3p3')(C3)]) P2 = KL.Add(name="fpn_p2add")([ KL.UpSampling2D(size=(2, 2), name="fpn_p3upsampled")(P3), KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c2p2')(C2)]) # Attach 3x3 conv to all P layers to get the final feature maps. P2 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p2")(P2) P3 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p3")(P3) P4 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p4")(P4) P5 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p5")(P5) # P6 is used for the 5th anchor scale in RPN. Generated by # subsampling from P5 with stride of 2. P6 = KL.MaxPooling2D(pool_size=(1, 1), strides=2, name="fpn_p6")(P5) # Note that P6 is used in RPN, but not in the classifier heads. rpn_feature_maps = [P2, P3, P4, P5, P6] mrcnn_feature_maps = [P2, P3, P4, P5] # Anchors if mode == "training": anchors = self.get_anchors(config.IMAGE_SHAPE) # Duplicate across the batch dimension because Keras requires it # TODO: can this be optimized to avoid duplicating the anchors? anchors = np.broadcast_to(anchors, (config.BATCH_SIZE,) + anchors.shape) # A hack to get around Keras's bad support for constants # anchors = KL.Lambda(lambda x: tf.Variable(anchors), name="anchors")(input_image) #mwm 1 line, 2 lines anchor_layer = AnchorsLayer(name="anchors") anchors = anchor_layer(anchors) else: anchors = input_anchors # RPN Model rpn = build_rpn_model(config.RPN_ANCHOR_STRIDE, len(config.RPN_ANCHOR_RATIOS), config.TOP_DOWN_PYRAMID_SIZE) # Loop through pyramid layers layer_outputs = [] # list of lists for p in rpn_feature_maps: layer_outputs.append(rpn([p])) # Concatenate layer outputs # Convert from list of lists of level outputs to list of lists # of outputs across levels. # e.g. [[a1, b1, c1], [a2, b2, c2]] => [[a1, a2], [b1, b2], [c1, c2]] output_names = ["rpn_class_logits", "rpn_class", "rpn_bbox"] outputs = list(zip(*layer_outputs)) outputs = [KL.Concatenate(axis=1, name=n)(list(o)) for o, n in zip(outputs, output_names)] rpn_class_logits, rpn_class, rpn_bbox = outputs # Generate proposals # Proposals are [batch, N, (y1, x1, y2, x2)] in normalized coordinates # and zero padded. proposal_count = config.POST_NMS_ROIS_TRAINING if mode == "training"\ else config.POST_NMS_ROIS_INFERENCE rpn_rois = ProposalLayer( proposal_count=proposal_count, nms_threshold=config.RPN_NMS_THRESHOLD, name="ROI", config=config)([rpn_class, rpn_bbox, anchors]) if mode == "training": # Class ID mask to mark class IDs supported by the dataset the image # came from. active_class_ids = KL.Lambda( lambda x: parse_image_meta_graph(x)["active_class_ids"] )(input_image_meta) if not config.USE_RPN_ROIS: # Ignore predicted ROIs and use ROIs provided as an input. input_rois = KL.Input(shape=[config.POST_NMS_ROIS_TRAINING, 4], name="input_roi", dtype=np.int32) # Normalize coordinates target_rois = KL.Lambda(lambda x: norm_boxes_graph( x, K.shape(input_image)[1:3]))(input_rois) else: target_rois = rpn_rois # Generate detection targets # Subsamples proposals and generates target outputs for training # Note that proposal class IDs, gt_boxes, and gt_masks are zero # padded. Equally, returned rois and targets are zero padded. rois, target_class_ids, target_bbox, target_mask =\ DetectionTargetLayer(config, name="proposal_targets")([ target_rois, input_gt_class_ids, gt_boxes, input_gt_masks]) # Network Heads # TODO: verify that this handles zero padded ROIs mrcnn_class_logits, mrcnn_class, mrcnn_bbox =\ fpn_classifier_graph(rois, mrcnn_feature_maps, input_image_meta, config.POOL_SIZE, config.NUM_CLASSES, train_bn=config.TRAIN_BN, fc_layers_size=config.FPN_CLASSIF_FC_LAYERS_SIZE) mrcnn_mask = build_fpn_mask_graph(rois, mrcnn_feature_maps, input_image_meta, config.MASK_POOL_SIZE, config.NUM_CLASSES, train_bn=config.TRAIN_BN) # TODO: clean up (use tf.identify if necessary) output_rois = KL.Lambda(lambda x: x * 1, name="output_rois")(rois) # Losses rpn_class_loss = KL.Lambda(lambda x: rpn_class_loss_graph(*x), name="rpn_class_loss")( [input_rpn_match, rpn_class_logits]) rpn_bbox_loss = KL.Lambda(lambda x: rpn_bbox_loss_graph(config, *x), name="rpn_bbox_loss")( [input_rpn_bbox, input_rpn_match, rpn_bbox]) class_loss = KL.Lambda(lambda x: mrcnn_class_loss_graph(*x), name="mrcnn_class_loss")( [target_class_ids, mrcnn_class_logits, active_class_ids]) bbox_loss = KL.Lambda(lambda x: mrcnn_bbox_loss_graph(*x), name="mrcnn_bbox_loss")( [target_bbox, target_class_ids, mrcnn_bbox]) mask_loss = KL.Lambda(lambda x: mrcnn_mask_loss_graph(*x), name="mrcnn_mask_loss")( [target_mask, target_class_ids, mrcnn_mask]) # Model inputs = [input_image, input_image_meta, input_rpn_match, input_rpn_bbox, input_gt_class_ids, input_gt_boxes, input_gt_masks] if not config.USE_RPN_ROIS: inputs.append(input_rois) outputs = [rpn_class_logits, rpn_class, rpn_bbox, mrcnn_class_logits, mrcnn_class, mrcnn_bbox, mrcnn_mask, rpn_rois, output_rois, rpn_class_loss, rpn_bbox_loss, class_loss, bbox_loss, mask_loss] model = KM.Model(inputs, outputs, name='mask_rcnn') else: # Network Heads # Proposal classifier and BBox regressor heads mrcnn_class_logits, mrcnn_class, mrcnn_bbox =\ fpn_classifier_graph(rpn_rois, mrcnn_feature_maps, input_image_meta, config.POOL_SIZE, config.NUM_CLASSES, train_bn=config.TRAIN_BN, fc_layers_size=config.FPN_CLASSIF_FC_LAYERS_SIZE) # Detections # output is [batch, num_detections, (y1, x1, y2, x2, class_id, score)] in # normalized coordinates detections = DetectionLayer(config, name="mrcnn_detection")( [rpn_rois, mrcnn_class, mrcnn_bbox, input_image_meta]) # Create masks for detections detection_boxes = KL.Lambda(lambda x: x[..., :4])(detections) mrcnn_mask = build_fpn_mask_graph(detection_boxes, mrcnn_feature_maps, input_image_meta, config.MASK_POOL_SIZE, config.NUM_CLASSES, train_bn=config.TRAIN_BN) model = KM.Model([input_image, input_image_meta, input_anchors], [detections, mrcnn_class, mrcnn_bbox, mrcnn_mask, rpn_rois, rpn_class, rpn_bbox], name='mask_rcnn') # Add multi-GPU support. if config.GPU_COUNT > 1: from mrcnn.parallel_model import ParallelModel model = ParallelModel(model, config.GPU_COUNT) return model def find_last(self): """Finds the last checkpoint file of the last trained model in the model directory. Returns: The path of the last checkpoint file """ # Get directory names. Each directory corresponds to a model dir_names = next(os.walk(self.model_dir))[1] key = self.config.NAME.lower() dir_names = filter(lambda f: f.startswith(key), dir_names) dir_names = sorted(dir_names) if not dir_names: import errno raise FileNotFoundError( errno.ENOENT, "Could not find model directory under {}".format(self.model_dir)) # Pick last directory dir_name = os.path.join(self.model_dir, dir_names[-1]) # Find the last checkpoint checkpoints = next(os.walk(dir_name))[2] checkpoints = filter(lambda f: f.startswith("mask_rcnn"), checkpoints) checkpoints = sorted(checkpoints) if not checkpoints: import errno raise FileNotFoundError( errno.ENOENT, "Could not find weight files in {}".format(dir_name)) checkpoint = os.path.join(dir_name, checkpoints[-1]) return checkpoint def load_weights(self, filepath, by_name=False, exclude=None): """Modified version of the corresponding Keras function with the addition of multi-GPU support and the ability to exclude some layers from loading. exclude: list of layer names to exclude """ import h5py # Conditional import to support versions of Keras before 2.2 # TODO: remove in about 6 months (end of 2018) try: from keras.engine import saving except ImportError: # Keras before 2.2 used the 'topology' namespace. from keras.engine import topology as saving if exclude: by_name = True if h5py is None: raise ImportError('`load_weights` requires h5py.') f = h5py.File(filepath, mode='r') if 'layer_names' not in f.attrs and 'model_weights' in f: f = f['model_weights'] # In multi-GPU training, we wrap the model. Get layers # of the inner model because they have the weights. keras_model = self.keras_model layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")\ else keras_model.layers # Exclude some layers if exclude: layers = filter(lambda l: l.name not in exclude, layers) #if by_name: # saving.load_weights_from_hdf5_group_by_name(f, layers) #else: # saving.load_weights_from_hdf5_group(f, layers) #mwm 4, 2 # print("keras_model.load_weights(filepath, by_name={})".format(by_name)) keras_model.load_weights(filepath, by_name=by_name, skip_mismatch=by_name) if hasattr(f, 'close'): f.close() # Update the log directory self.set_log_dir(filepath) def get_imagenet_weights(self): """Downloads ImageNet trained weights from Keras. Returns path to weights file. """ from keras.utils.data_utils import get_file TF_WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/'\ 'releases/download/v0.2/'\ 'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5' weights_path = get_file('resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5', TF_WEIGHTS_PATH_NO_TOP, cache_subdir='models', md5_hash='a268eb855778b3df3c7506639542a6af') return weights_path def compile(self, learning_rate, momentum): """Gets the model ready for training. Adds losses, regularization, and metrics. Then calls the Keras compile() function. """ # Optimizer object optimizer = keras.optimizers.SGD( lr=learning_rate, momentum=momentum, clipnorm=self.config.GRADIENT_CLIP_NORM) # Add Losses # First, clear previously set losses to avoid duplication #mwm 0,2 # self.keras_model._losses = [] # self.keras_model._per_input_losses = {} loss_names = [ "rpn_class_loss", "rpn_bbox_loss", "mrcnn_class_loss", "mrcnn_bbox_loss", "mrcnn_mask_loss"] for name in loss_names: layer = self.keras_model.get_layer(name) if layer.output in self.keras_model.losses: continue # loss = ( # tf.reduce_mean(layer.output, keepdims=True) # * self.config.LOSS_WEIGHTS.get(name, 1.)) # self.keras_model.add_loss(loss) #mwm 4,3 loss = tf.reduce_mean(input_tensor=layer.output, keepdims=True) print("loss: {}".format(loss)) self.keras_model.add_loss(loss) # Add L2 Regularization # Skip gamma and beta weights of batch normalization layers. reg_losses = [ keras.regularizers.l2(self.config.WEIGHT_DECAY)(w) / tf.cast(tf.size(w), tf.float32) for w in self.keras_model.trainable_weights if 'gamma' not in w.name and 'beta' not in w.name] self.keras_model.add_loss(tf.add_n(reg_losses)) # Compile self.keras_model.compile( optimizer=optimizer, loss=[None] * len(self.keras_model.outputs)) # Add metrics for losses for name in loss_names: if name in self.keras_model.metrics_names: continue layer = self.keras_model.get_layer(name) self.keras_model.metrics_names.append(name) loss = ( tf.reduce_mean(layer.output, keepdims=True) * self.config.LOSS_WEIGHTS.get(name, 1.)) #mwm 0,1 self.keras_model.metrics_tensors = [] self.keras_model.metrics_tensors.append(loss) def set_trainable(self, layer_regex, keras_model=None, indent=0, verbose=1): """Sets model layers as trainable if their names match the given regular expression. """ # Print message on the first call (but not on recursive calls) if verbose > 0 and keras_model is None: log("Selecting layers to train") keras_model = keras_model or self.keras_model # In multi-GPU training, we wrap the model. Get layers # of the inner model because they have the weights. layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")\ else keras_model.layers for layer in layers: # Is the layer a model? if layer.__class__.__name__ == 'Model': print("In model: ", layer.name) self.set_trainable( layer_regex, keras_model=layer, indent=indent + 4) continue if not layer.weights: continue # Is it trainable? trainable = bool(re.fullmatch(layer_regex, layer.name)) # Update layer. If layer is a container, update inner layer. if layer.__class__.__name__ == 'TimeDistributed': layer.layer.trainable = trainable else: layer.trainable = trainable # Print trainable layer names if trainable and verbose > 0: log("{}{:20} ({})".format(" " * indent, layer.name, layer.__class__.__name__)) def set_log_dir(self, model_path=None): """Sets the model log directory and epoch counter. model_path: If None, or a format different from what this code uses then set a new log directory and start epochs from 0. Otherwise, extract the log directory and the epoch counter from the file name. """ # Set date and epoch counter as if starting a new model self.epoch = 0 now = datetime.datetime.now() # If we have a model path with date and epochs use them if model_path: # Continue from we left of. Get epoch and date from the file name # A sample model path might look like: # \path\to\logs\coco20171029T2315\mask_rcnn_coco_0001.h5 (Windows) # /path/to/logs/coco20171029T2315/mask_rcnn_coco_0001.h5 (Linux) regex = r".*[/\\][\w-]+(\d{4})(\d{2})(\d{2})T(\d{2})(\d{2})[/\\]mask\_rcnn\_[\w-]+(\d{4})\.h5" m = re.match(regex, model_path) if m: now = datetime.datetime(int(m.group(1)), int(m.group(2)), int(m.group(3)), int(m.group(4)), int(m.group(5))) # Epoch number in file is 1-based, and in Keras code it's 0-based. # So, adjust for that then increment by one to start from the next epoch self.epoch = int(m.group(6)) - 1 + 1 print('Re-starting from epoch %d' % self.epoch) # Directory for training logs self.log_dir = os.path.join(self.model_dir, "{}{:%Y%m%dT%H%M}".format( self.config.NAME.lower(), now)) # Path to save after each epoch. Include placeholders that get filled by Keras. self.checkpoint_path = os.path.join(self.log_dir, "mask_rcnn_{}_*epoch*.h5".format( self.config.NAME.lower())) self.checkpoint_path = self.checkpoint_path.replace( "*epoch*", "{epoch:04d}") def train(self, train_dataset, val_dataset, learning_rate, epochs, layers, augmentation=None, custom_callbacks=None, no_augmentation_sources=None): """Train the model. train_dataset, val_dataset: Training and validation Dataset objects. learning_rate: The learning rate to train with epochs: Number of training epochs. Note that previous training epochs are considered to be done alreay, so this actually determines the epochs to train in total rather than in this particaular call. layers: Allows selecting wich layers to train. It can be: - A regular expression to match layer names to train - One of these predefined values: heads: The RPN, classifier and mask heads of the network all: All the layers 3+: Train Resnet stage 3 and up 4+: Train Resnet stage 4 and up 5+: Train Resnet stage 5 and up augmentation: Optional. An imgaug (https://github.com/aleju/imgaug) augmentation. For example, passing imgaug.augmenters.Fliplr(0.5) flips images right/left 50% of the time. You can pass complex augmentations as well. This augmentation applies 50% of the time, and when it does it flips images right/left half the time and adds a Gaussian blur with a random sigma in range 0 to 5. augmentation = imgaug.augmenters.Sometimes(0.5, [ imgaug.augmenters.Fliplr(0.5), imgaug.augmenters.GaussianBlur(sigma=(0.0, 5.0)) ]) custom_callbacks: Optional. Add custom callbacks to be called with the keras fit_generator method. Must be list of type keras.callbacks. no_augmentation_sources: Optional. List of sources to exclude for augmentation. A source is string that identifies a dataset and is defined in the Dataset class. """ assert self.mode == "training", "Create model in training mode." # Pre-defined layer regular expressions layer_regex = { # all layers but the backbone "heads": r"(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", # From a specific Resnet stage and up "3+": r"(res3.*)|(bn3.*)|(res4.*)|(bn4.*)|(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", "4+": r"(res4.*)|(bn4.*)|(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", "5+": r"(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", # All layers "all": ".*", } if layers in layer_regex.keys(): layers = layer_regex[layers] # Data generators train_generator = data_generator(train_dataset, self.config, shuffle=True, augmentation=augmentation, batch_size=self.config.BATCH_SIZE, no_augmentation_sources=no_augmentation_sources) val_generator = data_generator(val_dataset, self.config, shuffle=True, batch_size=self.config.BATCH_SIZE) # Create log_dir if it does not exist if not os.path.exists(self.log_dir): os.makedirs(self.log_dir) # Callbacks callbacks = [ keras.callbacks.TensorBoard(log_dir=self.log_dir, histogram_freq=0, write_graph=True, write_images=False), keras.callbacks.ModelCheckpoint(self.checkpoint_path, verbose=0, save_weights_only=True), ] # Add custom callbacks to the list if custom_callbacks: callbacks += custom_callbacks # Train log("\nStarting at epoch {}. LR={}\n".format(self.epoch, learning_rate)) log("Checkpoint Path: {}".format(self.checkpoint_path)) self.set_trainable(layers) self.compile(learning_rate, self.config.LEARNING_MOMENTUM) # Work-around for Windows: Keras fails on Windows when using # multiprocessing workers. See discussion here: # https://github.com/matterport/Mask_RCNN/issues/13#issuecomment-353124009 if os.name is 'nt': workers = 0 else: workers = multiprocessing.cpu_count() #mwm 2 # workers = 1 # use_multiprocessing = False # self.keras_model.fit_generator( # train_generator, # initial_epoch=self.epoch, # epochs=epochs, # # steps_per_epoch=self.config.steps_per_epoch, # steps_per_epoch=self.config.STEPS_PER_EPOCH, # callbacks=callbacks, # validation_data=val_generator, # # validation_steps=self.config.validation_steps, # validation_steps=self.config.VALIDATION_STEPS, # max_queue_size=100, # workers=workers, # # use_multiprocessing=True, # #mwm 1,1 # use_multiprocessing=False, # ) #mwm 12,21 self.keras_model.fit( x=train_generator, y=None, batch_size=None, epochs=epochs, verbose=1, callbacks=callbacks, validation_split=0.0, validation_data=val_generator, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=self.epoch, steps_per_epoch=self.config.STEPS_PER_EPOCH, validation_steps=self.config.VALIDATION_STEPS, validation_freq=1, max_queue_size=100, workers=workers, use_multiprocessing=False, ) self.epoch = max(self.epoch, epochs) def mold_inputs(self, images): """Takes a list of images and modifies them to the format expected as an input to the neural network. images: List of image matrices [height,width,depth]. Images can have different sizes. Returns 3 Numpy matrices: molded_images: [N, h, w, 3]. Images resized and normalized. image_metas: [N, length of meta data]. Details about each image. windows: [N, (y1, x1, y2, x2)]. The portion of the image that has the original image (padding excluded). """ molded_images = [] image_metas = [] windows = [] for image in images: # Resize image # TODO: move resizing to mold_image() molded_image, window, scale, padding, crop = utils.resize_image( image, min_dim=self.config.IMAGE_MIN_DIM, min_scale=self.config.IMAGE_MIN_SCALE, max_dim=self.config.IMAGE_MAX_DIM, mode=self.config.IMAGE_RESIZE_MODE) molded_image = mold_image(molded_image, self.config) # Build image_meta image_meta = compose_image_meta( 0, image.shape, molded_image.shape, window, scale, np.zeros([self.config.NUM_CLASSES], dtype=np.int32)) # Append molded_images.append(molded_image) windows.append(window) image_metas.append(image_meta) # Pack into arrays molded_images = np.stack(molded_images) image_metas = np.stack(image_metas) windows = np.stack(windows) return molded_images, image_metas, windows def unmold_detections(self, detections, mrcnn_mask, original_image_shape, image_shape, window): """Reformats the detections of one image from the format of the neural network output to a format suitable for use in the rest of the application. detections: [N, (y1, x1, y2, x2, class_id, score)] in normalized coordinates mrcnn_mask: [N, height, width, num_classes] original_image_shape: [H, W, C] Original image shape before resizing image_shape: [H, W, C] Shape of the image after resizing and padding window: [y1, x1, y2, x2] Pixel coordinates of box in the image where the real image is excluding the padding. Returns: boxes: [N, (y1, x1, y2, x2)] Bounding boxes in pixels class_ids: [N] Integer class IDs for each bounding box scores: [N] Float probability scores of the class_id masks: [height, width, num_instances] Instance masks """ # How many detections do we have? # Detections array is padded with zeros. Find the first class_id == 0. zero_ix = np.where(detections[:, 4] == 0)[0] N = zero_ix[0] if zero_ix.shape[0] > 0 else detections.shape[0] # Extract boxes, class_ids, scores, and class-specific masks boxes = detections[:N, :4] class_ids = detections[:N, 4].astype(np.int32) scores = detections[:N, 5] masks = mrcnn_mask[np.arange(N), :, :, class_ids] # Translate normalized coordinates in the resized image to pixel # coordinates in the original image before resizing window = utils.norm_boxes(window, image_shape[:2]) wy1, wx1, wy2, wx2 = window shift = np.array([wy1, wx1, wy1, wx1]) wh = wy2 - wy1 # window height ww = wx2 - wx1 # window width scale = np.array([wh, ww, wh, ww]) # Convert boxes to normalized coordinates on the window boxes = np.divide(boxes - shift, scale) # Convert boxes to pixel coordinates on the original image boxes = utils.denorm_boxes(boxes, original_image_shape[:2]) # Filter out detections with zero area. Happens in early training when # network weights are still random exclude_ix = np.where( (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) <= 0)[0] if exclude_ix.shape[0] > 0: boxes = np.delete(boxes, exclude_ix, axis=0) class_ids = np.delete(class_ids, exclude_ix, axis=0) scores = np.delete(scores, exclude_ix, axis=0) masks = np.delete(masks, exclude_ix, axis=0) N = class_ids.shape[0] # Resize masks to original image size and set boundary threshold. full_masks = [] for i in range(N): # Convert neural network mask to full size mask full_mask = utils.unmold_mask(masks[i], boxes[i], original_image_shape) full_masks.append(full_mask) full_masks = np.stack(full_masks, axis=-1)\ if full_masks else np.empty(original_image_shape[:2] + (0,)) return boxes, class_ids, scores, full_masks def detect(self, images, verbose=0): """Runs the detection pipeline. images: List of images, potentially of different sizes. Returns a list of dicts, one dict per image. The dict contains: rois: [N, (y1, x1, y2, x2)] detection bounding boxes class_ids: [N] int class IDs scores: [N] float probability scores for the class IDs masks: [H, W, N] instance binary masks """ assert self.mode == "inference", "Create model in inference mode." assert len( images) == self.config.BATCH_SIZE, "len(images) must be equal to BATCH_SIZE" if verbose: log("Processing {} images".format(len(images))) for image in images: log("image", image) # Mold inputs to format expected by the neural network molded_images, image_metas, windows = self.mold_inputs(images) # Validate image sizes # All images in a batch MUST be of the same size image_shape = molded_images[0].shape for g in molded_images[1:]: assert g.shape == image_shape,\ "After resizing, all images must have the same size. Check IMAGE_RESIZE_MODE and image sizes." # Anchors anchors = self.get_anchors(image_shape) # Duplicate across the batch dimension because Keras requires it # TODO: can this be optimized to avoid duplicating the anchors? anchors = np.broadcast_to(anchors, (self.config.BATCH_SIZE,) + anchors.shape) if verbose: log("molded_images", molded_images) log("image_metas", image_metas) log("anchors", anchors) # Run object detection detections, _, _, mrcnn_mask, _, _, _ =\ self.keras_model.predict([molded_images, image_metas, anchors], verbose=0) # Process detections results = [] for i, image in enumerate(images): final_rois, final_class_ids, final_scores, final_masks =\ self.unmold_detections(detections[i], mrcnn_mask[i], image.shape, molded_images[i].shape, windows[i]) results.append({ "rois": final_rois, "class_ids": final_class_ids, "scores": final_scores, "masks": final_masks, }) return results def detect_molded(self, molded_images, image_metas, verbose=0): """Runs the detection pipeline, but expect inputs that are molded already. Used mostly for debugging and inspecting the model. molded_images: List of images loaded using load_image_gt() image_metas: image meta data, also returned by load_image_gt() Returns a list of dicts, one dict per image. The dict contains: rois: [N, (y1, x1, y2, x2)] detection bounding boxes class_ids: [N] int class IDs scores: [N] float probability scores for the class IDs masks: [H, W, N] instance binary masks """ assert self.mode == "inference", "Create model in inference mode." assert len(molded_images) == self.config.BATCH_SIZE,\ "Number of images must be equal to BATCH_SIZE" if verbose: log("Processing {} images".format(len(molded_images))) for image in molded_images: log("image", image) # Validate image sizes # All images in a batch MUST be of the same size image_shape = molded_images[0].shape for g in molded_images[1:]: assert g.shape == image_shape, "Images must have the same size" # Anchors anchors = self.get_anchors(image_shape) # Duplicate across the batch dimension because Keras requires it # TODO: can this be optimized to avoid duplicating the anchors? anchors = np.broadcast_to(anchors, (self.config.BATCH_SIZE,) + anchors.shape) if verbose: log("molded_images", molded_images) log("image_metas", image_metas) log("anchors", anchors) # Run object detection detections, _, _, mrcnn_mask, _, _, _ =\ self.keras_model.predict([molded_images, image_metas, anchors], verbose=0) # Process detections results = [] for i, image in enumerate(molded_images): window = [0, 0, image.shape[0], image.shape[1]] final_rois, final_class_ids, final_scores, final_masks =\ self.unmold_detections(detections[i], mrcnn_mask[i], image.shape, molded_images[i].shape, window) results.append({ "rois": final_rois, "class_ids": final_class_ids, "scores": final_scores, "masks": final_masks, }) return results def get_anchors(self, image_shape): """Returns anchor pyramid for the given image size.""" backbone_shapes = compute_backbone_shapes(self.config, image_shape) # Cache anchors and reuse if image shape is the same if not hasattr(self, "_anchor_cache"): self._anchor_cache = {} if not tuple(image_shape) in self._anchor_cache: # Generate Anchors a = utils.generate_pyramid_anchors( self.config.RPN_ANCHOR_SCALES, self.config.RPN_ANCHOR_RATIOS, backbone_shapes, self.config.BACKBONE_STRIDES, self.config.RPN_ANCHOR_STRIDE) # Keep a copy of the latest anchors in pixel coordinates because # it's used in inspect_model notebooks. # TODO: Remove this after the notebook are refactored to not use it self.anchors = a # Normalize coordinates self._anchor_cache[tuple(image_shape)] = utils.norm_boxes(a, image_shape[:2]) return self._anchor_cache[tuple(image_shape)] def ancestor(self, tensor, name, checked=None): """Finds the ancestor of a TF tensor in the computation graph. tensor: TensorFlow symbolic tensor. name: Name of ancestor tensor to find checked: For internal use. A list of tensors that were already searched to avoid loops in traversing the graph. """ checked = checked if checked is not None else [] # Put a limit on how deep we go to avoid very long loops if len(checked) > 500: return None # Convert name to a regex and allow matching a number prefix # because Keras adds them automatically if isinstance(name, str): name = re.compile(name.replace("/", r"(\_\d+)*/")) parents = tensor.op.inputs for p in parents: if p in checked: continue if bool(re.fullmatch(name, p.name)): return p checked.append(p) a = self.ancestor(p, name, checked) if a is not None: return a return None def find_trainable_layer(self, layer): """If a layer is encapsulated by another layer, this function digs through the encapsulation and returns the layer that holds the weights. """ if layer.__class__.__name__ == 'TimeDistributed': return self.find_trainable_layer(layer.layer) return layer def get_trainable_layers(self): """Returns a list of layers that have weights.""" layers = [] # Loop through all layers for l in self.keras_model.layers: # If layer is a wrapper, find inner trainable layer l = self.find_trainable_layer(l) # Include layer if it has weights if l.get_weights(): layers.append(l) return layers def run_graph(self, images, outputs, image_metas=None): """Runs a sub-set of the computation graph that computes the given outputs. image_metas: If provided, the images are assumed to be already molded (i.e. resized, padded, and normalized) outputs: List of tuples (name, tensor) to compute. The tensors are symbolic TensorFlow tensors and the names are for easy tracking. Returns an ordered dict of results. Keys are the names received in the input and values are Numpy arrays. """ model = self.keras_model # Organize desired outputs into an ordered dict outputs = OrderedDict(outputs) for o in outputs.values(): assert o is not None # Build a Keras function to run parts of the computation graph inputs = model.inputs if model.uses_learning_phase and not isinstance(K.learning_phase(), int): inputs += [K.learning_phase()] kf = K.function(model.inputs, list(outputs.values())) # Prepare inputs if image_metas is None: molded_images, image_metas, _ = self.mold_inputs(images) else: molded_images = images image_shape = molded_images[0].shape # Anchors anchors = self.get_anchors(image_shape) # Duplicate across the batch dimension because Keras requires it # TODO: can this be optimized to avoid duplicating the anchors? anchors = np.broadcast_to(anchors, (self.config.BATCH_SIZE,) + anchors.shape) model_in = [molded_images, image_metas, anchors] # Run inference if model.uses_learning_phase and not isinstance(K.learning_phase(), int): model_in.append(0.) outputs_np = kf(model_in) # Pack the generated Numpy arrays into a a dict and log the results. outputs_np = OrderedDict([(k, v) for k, v in zip(outputs.keys(), outputs_np)]) for k, v in outputs_np.items(): log(k, v) return outputs_np ############################################################ # Data Formatting ############################################################ def compose_image_meta(image_id, original_image_shape, image_shape, window, scale, active_class_ids): """Takes attributes of an image and puts them in one 1D array. image_id: An int ID of the image. Useful for debugging. original_image_shape: [H, W, C] before resizing or padding. image_shape: [H, W, C] after resizing and padding window: (y1, x1, y2, x2) in pixels. The area of the image where the real image is (excluding the padding) scale: The scaling factor applied to the original image (float32) active_class_ids: List of class_ids available in the dataset from which the image came. Useful if training on images from multiple datasets where not all classes are present in all datasets. """ meta = np.array( [image_id] + # size=1 list(original_image_shape) + # size=3 list(image_shape) + # size=3 list(window) + # size=4 (y1, x1, y2, x2) in image cooredinates [scale] + # size=1 list(active_class_ids) # size=num_classes ) return meta def parse_image_meta(meta): """Parses an array that contains image attributes to its components. See compose_image_meta() for more details. meta: [batch, meta length] where meta length depends on NUM_CLASSES Returns a dict of the parsed values. """ image_id = meta[:, 0] original_image_shape = meta[:, 1:4] image_shape = meta[:, 4:7] window = meta[:, 7:11] # (y1, x1, y2, x2) window of image in in pixels scale = meta[:, 11] active_class_ids = meta[:, 12:] return { "image_id": image_id.astype(np.int32), "original_image_shape": original_image_shape.astype(np.int32), "image_shape": image_shape.astype(np.int32), "window": window.astype(np.int32), "scale": scale.astype(np.float32), "active_class_ids": active_class_ids.astype(np.int32), } def parse_image_meta_graph(meta): """Parses a tensor that contains image attributes to its components. See compose_image_meta() for more details. meta: [batch, meta length] where meta length depends on NUM_CLASSES Returns a dict of the parsed tensors. """ image_id = meta[:, 0] original_image_shape = meta[:, 1:4] image_shape = meta[:, 4:7] window = meta[:, 7:11] # (y1, x1, y2, x2) window of image in in pixels scale = meta[:, 11] active_class_ids = meta[:, 12:] return { "image_id": image_id, "original_image_shape": original_image_shape, "image_shape": image_shape, "window": window, "scale": scale, "active_class_ids": active_class_ids, } def mold_image(images, config): """Expects an RGB image (or array of images) and subtracts the mean pixel and converts it to float. Expects image colors in RGB order. """ return images.astype(np.float32) - config.MEAN_PIXEL def unmold_image(normalized_images, config): """Takes a image normalized with mold() and returns the original.""" return (normalized_images + config.MEAN_PIXEL).astype(np.uint8) ############################################################ # Miscellenous Graph Functions ############################################################ def trim_zeros_graph(boxes, name='trim_zeros'): """Often boxes are represented with matrices of shape [N, 4] and are padded with zeros. This removes zero boxes. boxes: [N, 4] matrix of boxes. non_zeros: [N] a 1D boolean mask identifying the rows to keep """ non_zeros = tf.cast(tf.reduce_sum(tf.abs(boxes), axis=1), tf.bool) boxes = tf.boolean_mask(boxes, non_zeros, name=name) return boxes, non_zeros def batch_pack_graph(x, counts, num_rows): """Picks different number of values from each row in x depending on the values in counts. """ outputs = [] for i in range(num_rows): outputs.append(x[i, :counts[i]]) return tf.concat(outputs, axis=0) def norm_boxes_graph(boxes, shape): """Converts boxes from pixel coordinates to normalized coordinates. boxes: [..., (y1, x1, y2, x2)] in pixel coordinates shape: [..., (height, width)] in pixels Note: In pixel coordinates (y2, x2) is outside the box. But in normalized coordinates it's inside the box. Returns: [..., (y1, x1, y2, x2)] in normalized coordinates """ h, w = tf.split(tf.cast(shape, tf.float32), 2) scale = tf.concat([h, w, h, w], axis=-1) - tf.constant(1.0) shift = tf.constant([0., 0., 1., 1.]) return tf.divide(boxes - shift, scale) def denorm_boxes_graph(boxes, shape): """Converts boxes from normalized coordinates to pixel coordinates. boxes: [..., (y1, x1, y2, x2)] in normalized coordinates shape: [..., (height, width)] in pixels Note: In pixel coordinates (y2, x2) is outside the box. But in normalized coordinates it's inside the box. Returns: [..., (y1, x1, y2, x2)] in pixel coordinates """ h, w = tf.split(tf.cast(shape, tf.float32), 2) scale = tf.concat([h, w, h, w], axis=-1) - tf.constant(1.0) shift = tf.constant([0., 0., 1., 1.]) return tf.cast(tf.round(tf.multiply(boxes, scale) + shift), tf.int32) class AnchorsLayer(tf.keras.layers.Layer): def __init__(self, name="anchors", **kwargs): super(AnchorsLayer, self).__init__(name=name, **kwargs) def call(self, anchor): return anchor def get_config(self) : config = super(AnchorsLayer, self).get_config() return config
py
7dfeabacf303ae4fba03326cd91c2bc98c639e5c
import os import tabnanny import subprocess from ast import parse from typing import Text import multiprocessing as mp from laziest.analyzer import Analyzer from laziest.strings import test_method_prefix from laziest.codegen import generate_test_file_content from laziest.conf.config import init_config, default_settings from laziest.walker import PathWalker, FilteredPaths from codegraph.core import CodeGraph tabnanny.verbose = True q = mp.Queue() def dump_to_file(path: Text, tf_content: Text, tests_dir: Text) -> Text: test_file_name = f'test_{os.path.basename(path)}' test_file_path = os.path.join(tests_dir, test_file_name) with open(test_file_path, 'w+') as test_file: test_file.write(tf_content) return test_file_path def run_laziest(args: dict): """ main method with call steps to run laziest """ config_args = {arg: args[arg] for arg in args if arg in default_settings and args[arg] is not None} # init config cfg = init_config(config_args) path = args['path'] if not os.path.exists(path): raise Exception(f'Path {path} not exists') fp = FilteredPaths(cfg.use_ignore_files) pw = PathWalker(path, fp, cfg.recursive) # get paths to python modules paths = [x for x in pw.python_files if '__init__' not in x] # TODO: need to add codegraph # create code graph, iterate on bunch of functions, not files # 1st level (with no dependencies) # 2nd level (with deps on functions/clases) of first level and etc # if not config_args.get('overwrite', False): # append = True # run differ, to collect existed file names and methods # pass generate_bunch_of_test_files(paths, args['debug']) exit(0) def generate_bunch_of_test_files(python_paths, debug): num_cores = mp.cpu_count() pool = mp.Pool(num_cores) jobs = [] for python_file in python_paths: jobs.append(pool.apply_async(tests_generator_per_file, (python_file, debug))) # wait for all jobs to finish for job in list(jobs): job.get() while not q.empty(): proc = subprocess.Popen(f'black -l {79} {q.get()}', shell=True) proc.wait() proc.kill() pool.close() pool.join() def tests_generator_per_file(python_file, debug): print(f'Run test generation for {python_file}') # run TestSetCreator to get list of expected test files append = False # validate '.py' file - check intends tabnanny.check(python_file) # run analyzer with open(python_file, "r") as source: source_massive = source.read() tree = parse(source_massive) an = Analyzer(source_massive, debug) an.visit(tree) an.report() cg = CodeGraph(paths=[python_file]) # data with entities end line no and start line no code_lines = cg.get_lines_numbers()[python_file] # to get diff with existed tests signatures_list = {'classes': [], 'def': []} for class_ in an.tree['classes']: signatures_list['classes'].append(test_method_prefix + class_['name']) # run test file generator tf_content = generate_test_file_content(an, python_file, code_lines, debug) if append: # append new tests to tf # if new method in test case for class - insert pass # TODO: need to change on getting prefix from command line and config prefix = 'tests' if prefix in python_file: tests_dir = os.path.join(python_file.split(prefix)[0], prefix) else: tests_dir = os.path.join(os.path.dirname(os.path.dirname(python_file)), 'tests') os.makedirs(tests_dir, exist_ok=True) test_file_path = dump_to_file(python_file, tf_content, tests_dir) q.put(test_file_path)
py
7dfead9b1cc5490701c2f53936f47eb7b62289e7
# coding=utf-8 # Distributed under the MIT software license, see the accompanying # file LICENSE or http://www.opensource.org/licenses/mit-license.php. from abc import ABCMeta, abstractmethod from math import log, floor from google.protobuf.json_format import MessageToJson, Parse from pyqrllib.pyqrllib import bin2hstr, QRLHelper, XmssFast from qrl.core import config from qrl.core.AddressState import AddressState from qrl.core.misc import logger from qrl.core.txs import build_tx from qrl.crypto.misc import sha256 from qrl.generated import qrl_pb2 CODEMAP = { 'transfer': 1, 'coinbase': 2, 'latticePK': 3, 'message': 4, 'token': 5, 'transfer_token': 6, 'slave': 7 } class Transaction(object, metaclass=ABCMeta): """ Abstract Base class to be derived by all other transactions """ def __init__(self, protobuf_transaction=None): self._data = protobuf_transaction # This object cointains persistable data if protobuf_transaction is None: self._data = qrl_pb2.Transaction() def __lt__(self, tx): if self.fee < tx.fee: return True return False def __gt__(self, tx): if self.fee > tx.fee: return True return False @property def size(self): return self._data.ByteSize() @property def pbdata(self): """ Returns a protobuf object that contains persistable data representing this object :return: A protobuf Transaction object :rtype: qrl_pb2.Transaction """ return self._data @property def type(self): return self._data.WhichOneof('transactionType') @property def fee(self): return self._data.fee @property def nonce(self): return self._data.nonce @property def master_addr(self): return self._data.master_addr @property def addr_from(self): if self.master_addr: return self.master_addr return bytes(QRLHelper.getAddress(self.PK)) @property def ots_key(self): return self.get_ots_from_signature(self.signature) @staticmethod def get_ots_from_signature(signature): try: return int(bin2hstr(signature)[0:8], 16) except ValueError: raise ValueError('OTS Key Index: First 4 bytes of signature are invalid') @staticmethod def calc_allowed_decimals(value): if not isinstance(value, int): raise ValueError('value should be of integer type') if value == 0: return 19 # floor value could be negative, so return 0 when the floor value is negative return max(floor(19 - log(value, 10)), 0) @property def PK(self): return self._data.public_key @property def signature(self): return self._data.signature @staticmethod def from_pbdata(pbdata: qrl_pb2.Transaction): return build_tx(pbdata.WhichOneof('transactionType'), pbdata) @staticmethod def from_json(json_data): pbdata = qrl_pb2.Transaction() Parse(json_data, pbdata) return Transaction.from_pbdata(pbdata) @staticmethod def get_slave(tx): addr_from_pk = bytes(QRLHelper.getAddress(tx.PK)) if addr_from_pk != tx.addr_from: return addr_from_pk return None @property def txhash(self) -> bytes: return self._data.transaction_hash def update_txhash(self): self._data.transaction_hash = self.generate_txhash() def generate_txhash(self): return sha256( self.get_data_hash() + self.signature + self.PK ) def get_data_bytes(self) -> bytes: """ This method returns the essential bytes that represent the transaction and will be later signed :return: """ raise NotImplementedError def get_data_hash(self) -> bytes: """ This method returns the hashes of the transaction data. :return: """ return sha256(self.get_data_bytes()) def sign(self, object_with_sign_method): self._data.signature = object_with_sign_method.sign(self.get_data_hash()) self.update_txhash() @abstractmethod def apply_state_changes(self, addresses_state): """ This method, applies the changes on the state caused by txn. :return: """ raise NotImplementedError def _apply_state_changes_for_PK(self, addresses_state: dict): addr_from_pk = bytes(QRLHelper.getAddress(self.PK)) if addr_from_pk in addresses_state: if self.addr_from != addr_from_pk: addresses_state[addr_from_pk].transaction_hashes.append(self.txhash) addresses_state[addr_from_pk].increase_nonce() addresses_state[addr_from_pk].set_ots_key(self.ots_key) @abstractmethod def revert_state_changes(self, addresses_state, chain_manager): """ This method reverts the changes on the state caused by txn. :return: """ raise NotImplementedError def _revert_state_changes_for_PK(self, addresses_state, chain_manager): addr_from_pk = bytes(QRLHelper.getAddress(self.PK)) if addr_from_pk in addresses_state: if self.addr_from != addr_from_pk: addresses_state[addr_from_pk].transaction_hashes.remove(self.txhash) addresses_state[addr_from_pk].decrease_nonce() addresses_state[addr_from_pk].unset_ots_key(self.ots_key, chain_manager) def set_affected_address(self, addresses_set: set): addresses_set.add(self.addr_from) addresses_set.add(bytes(QRLHelper.getAddress(self.PK))) @abstractmethod def _validate_custom(self) -> bool: """ This is an extension point for derived classes validation If derived classes need additional field validation they should override this member """ raise NotImplementedError def validate_transaction_pool(self, transaction_pool): for tx_set in transaction_pool: txn = tx_set[1].transaction if txn.txhash == self.txhash: continue if self.PK != txn.PK: continue if txn.ots_key == self.ots_key: logger.info('State validation failed for %s because: OTS Public key re-use detected', bin2hstr(self.txhash)) logger.info('Subtype %s', type(self)) return False return True def validate(self, verify_signature=True) -> bool: """ This method calls validate_or_raise, logs any failure and returns True or False accordingly The main purpose is to avoid exceptions and accommodate legacy code :return: True is the transaction is valid :rtype: bool """ try: self.validate_or_raise(verify_signature) except ValueError as e: logger.info('[%s] failed validate_tx', bin2hstr(self.txhash)) logger.warning(str(e)) return False except Exception as e: logger.exception(e) return False return True def _coinbase_filter(self): if config.dev.coinbase_address in [bytes(QRLHelper.getAddress(self.PK)), self.master_addr]: raise ValueError('Coinbase Address only allowed to do Coinbase Transaction') def _get_allowed_access_types(self): return [0] def _get_master_address(self): return self.addr_from def validate_or_raise(self, verify_signature=True) -> bool: """ This method will validate a transaction and raise exception if problems are found :return: True if the exception is valid, exceptions otherwise :rtype: bool """ if not self._validate_custom(): raise ValueError("Custom validation failed") self._coinbase_filter() expected_transaction_hash = self.generate_txhash() if verify_signature and self.txhash != expected_transaction_hash: logger.warning('Invalid Transaction hash') logger.warning('Expected Transaction hash %s', bin2hstr(expected_transaction_hash)) logger.warning('Found Transaction hash %s', expected_transaction_hash) raise ValueError("Invalid Transaction Hash") if verify_signature and not XmssFast.verify(self.get_data_hash(), self.signature, self.PK): raise ValueError("Invalid xmss signature") return True def validate_slave(self, addr_from_state: AddressState, addr_from_pk_state: AddressState): addr_from_pk = bytes(QRLHelper.getAddress(self.PK)) master_address = self._get_master_address() allowed_access_types = self._get_allowed_access_types() if self.master_addr == addr_from_pk: logger.warning('Matching master_addr field and address from PK') return False if addr_from_pk != master_address: if str(self.PK) not in addr_from_state.slave_pks_access_type: logger.warning("Public key and address don't match") return False access_type = addr_from_pk_state.slave_pks_access_type[str(self.PK)] if access_type not in allowed_access_types: logger.warning('Access Type %s', access_type) logger.warning('Slave Address doesnt have sufficient permission') return False return True def get_message_hash(self): # FIXME: refactor, review that things are not recalculated too often, cache, etc. return self.txhash def to_json(self): # FIXME: Remove once we move completely to protobuf return MessageToJson(self._data, sort_keys=True) def serialize(self) -> str: return self._data.SerializeToString() @staticmethod def deserialize(data): pbdata = qrl_pb2.Transaction() pbdata.ParseFromString(bytes(data)) tx = Transaction(pbdata) return tx
py
7dfeae90c026f08e5853be0059507d5cd8f47f1d
from __future__ import absolute_import from __future__ import print_function import sys import os from optparse import OptionParser # the next line can be removed after installation sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import pyverilog import pyverilog.utils.util as util from pyverilog.dataflow.dataflow_analyzer import VerilogDataflowAnalyzer from pyverilog.dataflow.optimizer import VerilogDataflowOptimizer from pyverilog.controlflow.active_range import VerilogActiveAnalyzer def main(): INFO = "Active condition analyzer (Obsoluted)" VERSION = pyverilog.__version__ USAGE = "Usage: python example_active_range.py -t TOPMODULE file ..." def showVersion(): print(INFO) print(VERSION) print(USAGE) sys.exit() optparser = OptionParser() optparser.add_option("-v", "--version", action="store_true", dest="showversion", default=False, help="Show the version") optparser.add_option("-t", "--top", dest="topmodule", default="TOP", help="Top module, Default=TOP") optparser.add_option("-s", "--search", dest="searchtarget", action="append", default=[], help="Search Target Signal") (options, args) = optparser.parse_args() filelist = args if options.showversion: showVersion() for f in filelist: if not os.path.exists(f): raise IOError("file not found: " + f) if len(filelist) == 0: showVersion() analyzer = VerilogDataflowAnalyzer(filelist, options.topmodule) analyzer.generate() directives = analyzer.get_directives() terms = analyzer.getTerms() binddict = analyzer.getBinddict() optimizer = VerilogDataflowOptimizer(terms, binddict) optimizer.resolveConstant() resolved_terms = optimizer.getResolvedTerms() resolved_binddict = optimizer.getResolvedBinddict() constlist = optimizer.getConstlist() aanalyzer = VerilogActiveAnalyzer(options.topmodule, terms, binddict, resolved_terms, resolved_binddict, constlist) for target in options.searchtarget: signal = util.toTermname(target) print('Active Conditions: %s' % signal) active_conditions = aanalyzer.getActiveConditions(signal) print(sorted(active_conditions, key=lambda x: str(x))) print('Changed Conditions') changed_conditions = aanalyzer.getChangedConditions(signal) print(sorted(changed_conditions, key=lambda x: str(x))) print('Changed Condition Dict') changed_conditiondict = aanalyzer.getChangedConditionsWithAssignments(signal) print(sorted(changed_conditiondict.items(), key=lambda x: str(x[0]))) print('Unchanged Conditions') unchanged_conditions = aanalyzer.getUnchangedConditions(signal) print(sorted(unchanged_conditions, key=lambda x: str(x))) if __name__ == '__main__': main()
py
7dfeaefa2f756d0d0f945c499cb27995b2aeba67
import streamlit as st from fpdf import FPDF import base64 report_text = st.text_input("Report Text") export_as_pdf = st.button("Export Report") def create_download_link(val, filename): b64 = base64.b64encode(val) # val looks like b'...' return f'<a href="data:application/octet-stream;base64,{b64.decode()}" download="{filename}.pdf">Download file</a>' if export_as_pdf: pdf = FPDF() pdf.add_page() pdf.set_font('Arial', 'B', 16) pdf.cell(40, 10, report_text) html = create_download_link(pdf.output(dest="S").encode("latin-1"), "test") st.markdown(html, unsafe_allow_html=True)
py
7dfeaf3601a944907b2f5efc7409d7a13234bfd8
class Solution: def sortColors(self, nums: List[int]) -> None: """ Do not return anything, modify nums in-place instead. """ c = collections.Counter(nums) for i in range(c[0]): nums[i] = 0 for i in range(c[0], c[0] + c[1]): nums[i] = 1 for i in range(c[0] + c[1], c[0] + c[1] + c[2]): nums[i] = 2
py
7dfeaf9d97459abe6ddd6674a0082809af8dbc3b
"""Convert Freesurfer *.gii triangular mesh surface to Wavefront .obj file.""" import os import numpy as np import nibabel as nb import bvbabel import timeit FILE = "/home/faruk/Documents/temp_bv_fsaverage/white_left.gii" # ----------------------------------------------------------------------------- # Load data gii = nb.load(FILE) basename = FILE.split(os.extsep, 1)[0] def compute_vertex_normals(verts, faces): """"Compute vertex normals. Parameters ---------- verts: 2d numpy array, shape [nvertices, 3] Coordinates of vertices faces: 2d numpy array [nfaces, 3] Vertex indices forming triangles. Returns ------- normals: 2d numpy array, shape [nvertices, 3] Unit vector vertex normals. Reference --------- https://sites.google.com/site/dlampetest/python/calculating-normals-of-a-triangle-mesh-using-numpy """ def normalize_v3(arr): """Normalize a numpy array of 3 component vectors shape=(n, 3).""" lens = np.sqrt(arr[:, 0]**2. + arr[:, 1]**2. + arr[:, 2]**2.) arr[:, 0] /= lens arr[:, 1] /= lens arr[:, 2] /= lens return arr norm = np.zeros(verts.shape, dtype=verts.dtype) # Create an indexed view into the vertex array tris = verts[faces] # Calculate the normals (cross product of the vectors v1-v0 & v2-v0) n = np.cross(tris[::, 1] - tris[::, 0], tris[::, 2] - tris[::, 0]) # Normalize weights in each normal equally. n = normalize_v3(n) # Convert face normals to vertex normals and normalize again norm[faces[:, 0]] += n norm[faces[:, 1]] += n norm[faces[:, 2]] += n return normalize_v3(norm) # ============================================================================= # Extract vertices and faces verts = gii.darrays[0].data faces = gii.darrays[1].data faces = faces[:, [0, 2, 1]] norms = compute_vertex_normals(verts, faces) nr_verts = verts.shape[0] nr_faces = faces.shape[0] # ----------------------------------------------------------------------------- # Save OBJ basename = FILE.split(os.extsep, 1)[0] outname = "{}_bvbabel.obj".format(basename) print("Writing OBJ file...") bvbabel.obj.write_obj(outname, verts, norms, faces) print("Finished.")
py
7dfeafb4762d6c11e434f923ad0e9181519205e5
import typing as T from datetime import datetime from random import choice, randint from string import ascii_lowercase, digits from cumulusci.tests.util import random_sha date_format = "%Y-%m-%dT%H:%M:%SZ" class GithubApiTestMixin: """Mixin that provide common values and mocked http responses for tests of code that talks to the Github API""" def init_github(self): self.repo_api_url = "https://api.github.com/repos/TestOwner/TestRepo" self.github_info = { "github_owner": "TestOwner", "github_repo": "TestRepo", "github_username": "TestUser", "github_password": "TestPass", "prefix_beta": "beta/", "prefix_prod": "release/", "default_branch": "main", } def _get_expected_user(self, name): user_url = "https://api.github.com/users/{}".format(name) return { "id": 1234567892, "login": name, "url": user_url, "type": "User", "site_admin": False, "avatar_url": "https://avatars2.githubusercontent.com/u/42554011?v=4", "gravatar_id": "", "html_url": "https://github.com/{}".format(name), "followers_url": user_url + "/followers", "following_url": user_url + "/following{/other_user}", "gists_url": user_url + "/gists{/gist_id}", "starred_url": user_url + "/starred{/owner}{/repo}", "subscriptions_url": user_url + "/subscriptions", "organizations_url": user_url + "/orgs", "repos_url": user_url + "/repos", "events_url": user_url + "/events{/privacy}", "received_events_url": user_url + "/received_events", } def _get_expected_repo(self, owner, name): html_url = "https://github.com/{}/{}".format(owner, name) url = "https://api.github.com/repos/{}/{}".format(owner, name) owner_url = "https://api.github.com/users/{}".format(owner) now = datetime.now().isoformat() response_body = { "id": 1234567890, "name": name, "description": "", "archived": False, "created_at": now, "default_branch": "main", "fork": False, "forks_count": 1, "full_name": "{}/{}".format(owner, name), "git_url": "git://github.com/{}/{}.git".format(owner, name), "has_downloads": False, "has_issues": False, "has_pages": False, "has_projects": False, "has_wiki": False, "homepage": "", "language": "Python", "mirror_url": None, "network_count": 0, "open_issues_count": 0, "owner": { "id": 1234567891, "login": owner, "url": owner_url, "type": "Organization", "site_admin": False, "avatar_url": "https://avatars2.githubusercontent.com/u/42554011?v=4", "gravatar_id": "", "html_url": "https://github.com/{}".format(owner), "followers_url": owner_url + "/followers", "following_url": owner_url + "/following{/other_user}", "gists_url": owner_url + "/gists{/gist_id}", "starred_url": owner_url + "/starred{/owner}{/repo}", "subscriptions_url": owner_url + "/subscriptions", "organizations_url": owner_url + "/orgs", "repos_url": owner_url + "/repos", "events_url": owner_url + "/events{/privacy}", "received_events_url": owner_url + "/received_events", }, "pushed_at": now, "private": False, "size": 1, "ssh_url": "[email protected]:{}/{}.git".format(owner, name), "stargazers_count": 0, "subscribers_count": 0, "svn_url": html_url, "updated_at": now, "watchers_count": 0, "archive_url": url + "/{archive_format}{/ref}", "assignees_url": url + "/assignees{/user}", "blobs_url": url + "/git/blobs{/sha}", "branches_url": url + "/branches{/branch}", "clone_url": html_url + ".git", "collaborators_url": url + "/collaborators{/collaborator}", "comments_url": url + "/comments{/number}", "commits_url": url + "/commits{/sha}", "compare_url": url + "/compare/{base}...{head}", "contents_url": url + "/contents/{+path}", "contributors_url": url + "/CumulusCI/contributors", "deployments_url": url + "/CumulusCI/deployments", "downloads_url": url + "/downloads", "events_url": url + "/events", "forks_url": url + "/forks", "git_commits_url": url + "/git/commits{/sha}", "git_refs_url": url + "/git/refs{/sha}", "git_tags_url": url + "/git/tags{/sha}", "hooks_url": url + "/hooks", "html_url": html_url, "issue_comment_url": url + "/issues/comments{/number}", "issue_events_url": url + "/issues/events{/number}", "issues_url": url + "/issues{/number}", "keys_url": url + "/keys{/key_id}", "labels_url": url + "/labels{/name}", "languages_url": url + "/languages", "merges_url": url + "/merges", "milestones_url": url + "/milestones{/number}", "notifications_url": url + "/notifications{?since,all,participating}", "pulls_url": url + "/pulls{/number}", "releases_url": url + "/releases{/id}", "stargazers_url": url + "/stargazers", "statuses_url": url + "/statuses/{sha}", "subscribers_url": url + "/subscribers", "subscription_url": url + "/subscription", "tags_url": url + "/tags", "teams_url": url + "/teams", "trees_url": url + "/git/trees{/sha}", "url": url, } return response_body def _get_expected_branch(self, branch, commit=None): if not commit: commit = self._random_sha() response_body = { "id": 1234567890, "name": branch, "commit": { "sha": commit, "url": "", "author": None, "comments_url": "", "commit": { "url": "", "author": {}, "committer": {}, "message": "", "tree": {"sha": "", "url": ""}, }, "committer": {}, "html_url": "", "parents": [], }, "_links": {}, "protected": False, "protection": {}, "protection_url": "", } return response_body def _get_expected_tag( self, name, commit_sha, tag_sha=None, tag_date=None, message=None ): if tag_sha is None: tag_sha = self._random_sha() if not tag_date: tag_date = datetime.utcnow() tag_date = datetime.strftime(tag_date, date_format) return { "sha": tag_sha, "url": "", "message": message or "", "object": {"url": "", "sha": commit_sha, "type": "commit"}, "tag": name, "tagger": {"date": tag_date}, } def _get_expected_tag_ref(self, tag, sha): return { "ref": f"refs/tags/{tag}", "object": {"type": "tag", "sha": sha, "url": ""}, "name": tag, "url": "", } def _get_expected_ref(self, ref, sha, type="commit"): return { "ref": f"refs/{ref}", "object": {"type": "commit", "sha": sha, "url": ""}, "name": ref, "url": "", } def _get_expected_repo_tag(self, tag, sha): return { "name": tag, "commit": {"sha": sha, "url": ""}, "tarball_url": "", "zipball_url": "", } def _get_expected_commit(self, sha): return { "url": f"{self.repo_api_url}/commits/{sha}", "sha": sha, "files": [], "stats": {}, } def _get_expected_branches(self, branches=None): if not branches: branches = [] response_body = [] for branch in branches: response_body.append(self._get_expected_branch(**branch)) return response_body def _get_expected_compare(self, base, head, files=None): if not files: files = [] response_body = { "base_commit": { "url": "{}/commits/{}".format(self.repo_api_url, base), "sha": base, "author": None, "comments_url": "", "commit": { "sha": "", "url": "", "author": {}, "committer": {}, "message": "", "tree": {"sha": "", "url": ""}, }, "committer": {}, "html_url": "", "parents": [], }, "merge_base_commit": { "url": "{}/commits/{}".format(self.repo_api_url, head), "sha": head, "author": None, "comments_url": "", "commit": { "sha": "", "url": "", "author": {}, "committer": {}, "message": "", "tree": {"sha": "", "url": ""}, }, "committer": {}, "html_url": "", "parents": [], }, "ahead_by": 0, "behind_by": len(files), "commits": [], "diff_url": "", "files": files, "html_url": "", "patch_url": "", "permalink_url": "", "status": "", "total_commits": 0, "url": "", } return response_body def _get_expected_merge(self, conflict=None): if conflict: return {"message": "Merge Conflict"} new_commit = self._random_sha() response_body = { "sha": new_commit, "merged": True, "message": "Merged", "url": "", "author": None, "comments_url": "", "commit": { "sha": "", "url": "", "author": {}, "committer": {}, "message": "", "tree": {"sha": "", "url": ""}, }, "committer": {}, "html_url": "", "parents": [], } return response_body def _get_expected_pull_request( self, pull_id, issue_number, body=None, merged_date=None, **kw ): if merged_date: state = "closed" merged_date = datetime.strftime(merged_date, date_format) else: state = "open" commit_sha = self._random_sha() merge_sha = None if merged_date: merge_sha = self._random_sha() base_repo = self._get_expected_repo("TestOwner", "TestRepo") if hasattr(self, "project_config"): default_branch = self.project_config.project__git__default_branch else: default_branch = "main" pr = { "active_lock_reason": "too heated", "additions": [], "assignee": None, "assignees": [], "auto_merge": False, "author_association": None, "base": { "ref": default_branch, "sha": commit_sha, "label": "", "repo": base_repo, }, "body": body or "testing", "body_html": "testing", "body_text": "testing", "closed_at": merged_date, "comments": [], "comments_url": "", "commits": [], "commits_url": "", "created_at": merged_date, "deletions": [], "diff_url": "", "draft": False, "head": {"ref": "some-other-branch", "sha": commit_sha, "label": ""}, "html_url": "https://github.com/TestOwner/TestRepo/pulls/{}".format( issue_number ), "id": pull_id, "issue_url": "{}/issues/{}".format(self.repo_api_url, issue_number), "_links": {}, "locked": True, "merge_commit_sha": merge_sha, "mergeable": not merged_date, "mergeable_state": "clean", "merged_at": merged_date, "merged": merged_date is not None, "merged_by": None, "number": issue_number, "patch_url": "", "requested_teams": "", "requested_reviewers": "", "review_comment_url": "", "review_comments": [], "review_comments_url": "", "state": state, "statuses_url": "", "title": "Pull Request #{}".format(issue_number), "updated_at": merged_date, "url": "https://github.com/TestOwner/TestRepo/pulls/{}".format( issue_number ), "user": base_repo["owner"], } pr.update(kw) return pr def _get_expected_pull_requests(self, num_pull_requests): return [self._get_expected_pull_request(i, i) for i in range(num_pull_requests)] def _get_expected_issue(self, issue_number, owner=None, repo=None, labels=None): if owner is None: owner = "TestOwner" if repo is None: repo = "TestRepo" now = datetime.now().isoformat() response_body = { "assignee": None, "assignees": [], "body": "I'm having a problem with this.", "body_html": "", "body_text": "", "closed_at": None, "closed_by": None, "comments": [], "comments_url": "", "created_at": now, "events_url": "", "html_url": "https://github.com/{}/{}/issues/{}".format( owner, repo, issue_number ), "id": issue_number, "labels": labels or [], "labels_url": "", "locked": False, "milestone": None, "number": issue_number, "state": "open", "title": "Found a bug", "updated_at": now, "url": "https://api.github.com/repos/{}/{}/issues/{}".format( owner, repo, issue_number ), "user": self._get_expected_user("user"), } return response_body def _get_expected_issue_comment(self, body): now = datetime.now().isoformat() return { "author_association": "", "body": body, "body_html": "", "body_text": "", "created_at": now, "url": "", "html_url": "", "id": 0, "issue_url": "", "updated_at": now, "user": self._get_expected_user("user"), } def _get_expected_releases( self, owner: str, repo: str, release_names: T.List[str] ) -> T.List[T.Dict]: releases = [] for release in release_names: releases.append( { "url": f"https://api.github.com/repos/{owner}/{repo}/releases/{release}", "html_url": "https://github.com/octocat/Hello-World/releases/v1.0.0", "assets_url": "https://api.github.com/repos/octocat/Hello-World/releases/1/assets", "upload_url": "https://uploads.github.com/repos/octocat/Hello-World/releases/1/assets{?name,label}", "tarball_url": "https://api.github.com/repos/octocat/Hello-World/tarball/v1.0.0", "zipball_url": "https://api.github.com/repos/octocat/Hello-World/zipball/v1.0.0", "id": 1, "node_id": "MDc6UmVsZWFzZTE=", "tag_name": release, "target_commitish": "master", "name": release, "body": "Description of the release", "draft": False, "prerelease": False, "created_at": "2013-02-27T19:35:32Z", "published_at": "2013-02-27T19:35:32Z", "author": { "login": "octocat", "id": 1, "node_id": "MDQ6VXNlcjE=", "avatar_url": "https://github.com/images/error/octocat_happy.gif", "gravatar_id": "", "url": "https://api.github.com/users/octocat", "html_url": "https://github.com/octocat", "followers_url": "https://api.github.com/users/octocat/followers", "following_url": "https://api.github.com/users/octocat/following{/other_user}", "gists_url": "https://api.github.com/users/octocat/gists{/gist_id}", "starred_url": "https://api.github.com/users/octocat/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/octocat/subscriptions", "organizations_url": "https://api.github.com/users/octocat/orgs", "repos_url": "https://api.github.com/users/octocat/repos", "events_url": "https://api.github.com/users/octocat/events{/privacy}", "received_events_url": "https://api.github.com/users/octocat/received_events", "type": "User", "site_admin": False, }, "assets": [ { "url": f"https://api.github.com/repos/{owner}/{repo}/releases/assets/1", "browser_download_url": "https://github.com/octocat/Hello-World/releases/download/v1.0.0/example.zip", "id": 1, "node_id": "MDEyOlJlbGVhc2VBc3NldDE=", "name": "example.zip", "label": "short description", "state": "uploaded", "content_type": "application/zip", "size": 1024, "download_count": 42, "created_at": "2013-02-27T19:35:32Z", "updated_at": "2013-02-27T19:35:32Z", "uploader": { "login": "octocat", "id": 1, "node_id": "MDQ6VXNlcjE=", "avatar_url": "https://github.com/images/error/octocat_happy.gif", "gravatar_id": "", "url": "https://api.github.com/users/octocat", "html_url": "https://github.com/octocat", "followers_url": "https://api.github.com/users/octocat/followers", "following_url": "https://api.github.com/users/octocat/following{/other_user}", "gists_url": "https://api.github.com/users/octocat/gists{/gist_id}", "starred_url": "https://api.github.com/users/octocat/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/octocat/subscriptions", "organizations_url": "https://api.github.com/users/octocat/orgs", "repos_url": "https://api.github.com/users/octocat/repos", "events_url": "https://api.github.com/users/octocat/events{/privacy}", "received_events_url": "https://api.github.com/users/octocat/received_events", "type": "User", "site_admin": False, }, } ], } ) return releases def _get_expected_release(self, tag_name, **kw): now = datetime.now().isoformat() release = { "url": "https://release", "assets": [], "assets_url": "", "author": self._get_expected_user("author"), "body": "", "created_at": now, "draft": False, "html_url": "", "id": 1, "name": "1.0", "prerelease": False, "published_at": now, "tag_name": tag_name, "tarball_url": "", "target_commitish": "", "upload_url": "", "zipball_url": "", } release.update(kw) return release def _get_expected_prerelease_tag_gql(self, tag_name): return { "data": {"repository": {"releases": {"nodes": [{"tagName": tag_name}]}}} } def _random_sha(self): return random_sha() def _get_expected_not_found(self): return { "message": "Not Found", "documentation_url": "https://developer.github.com/v3", } def _get_expected_label(self, name=None, desc=None): return { "id": randint(100000000, 999999999), "node_id": "MDU6TGFiZWwyMDgwNDU5NDY=", "url": "https://api.github.com/repos/octocat/Hello-World/labels/bug", "name": name or "Test Label", "description": desc or "Test label description.", "color": "f29513", "default": False, } def _get_expected_labels(self, labels): return [self._get_expected_label(name=label) for label in labels] def _get_expected_gist(self, description, files, public=False): """Gist creationg returns 201 on success""" gh_id = self.create_id(20) gist_files = {} for filename, content in files.items(): gist_files[filename] = { "filename": filename, "type": "text/plain", "language": "text", "raw_url": f"https://gist.githubusercontent.com/octocat/{gh_id}/raw/99c1bf3a345505c2e6195198d5f8c36267de570b/hello_world.py", "size": 199, "truncated": False, "content": content, } expected_gist = { "url": f"https://api.github.com/gists/{gh_id}", "forks_url": f"https://api.github.com/gists/{gh_id}/forks", "commits_url": f"https://api.github.com/gists/{gh_id}/commits", "id": gh_id, "node_id": "MDQ6R2lzdGFhNWEzMTVkNjFhZTk0MzhiMThk", "git_pull_url": f"https://gist.github.com/{gh_id}.git", "git_push_url": f"https://gist.github.com/{gh_id}.git", "html_url": f"https://gist.github.com/{gh_id}", "files": gist_files, "public": public, "created_at": "2010-04-14T02:15:15Z", "updated_at": "2011-06-20T11:34:15Z", "description": "Hello World Examples", "comments": 0, "user": None, "comments_url": f"https://api.github.com/gists/{gh_id}/comments/", "owner": { "login": "octocat", "id": 1, "node_id": "MDQ6VXNlcjE=", "avatar_url": "https://github.com/images/error/octocat_happy.gif", "gravatar_id": "", "url": "https://api.github.com/users/octocat", "html_url": "https://github.com/octocat", "followers_url": "https://api.github.com/users/octocat/followers", "following_url": "https://api.github.com/users/octocat/following{/other_user}", "gists_url": "https://api.github.com/users/octocat/gists{/gist_id}", "starred_url": "https://api.github.com/users/octocat/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/octocat/subscriptions", "organizations_url": "https://api.github.com/users/octocat/orgs", "repos_url": "https://api.github.com/users/octocat/repos", "events_url": "https://api.github.com/users/octocat/events{/privacy}", "received_events_url": "https://api.github.com/users/octocat/received_events", "type": "User", "site_admin": False, }, "truncated": False, "forks": [], "history": [ { "url": "https://api.github.com/gists/aa5a315d61ae9438b18d/57a7f021a713b1c5a6a199b54cc514735d2d462f", "version": "57a7f021a713b1c5a6a199b54cc514735d2d462f", "user": { "login": "octocat", "id": 1, "node_id": "MDQ6VXNlcjE=", "avatar_url": "https://github.com/images/error/octocat_happy.gif", "gravatar_id": "", "url": "https://api.github.com/users/octocat", "html_url": "https://github.com/octocat", "followers_url": "https://api.github.com/users/octocat/followers", "following_url": "https://api.github.com/users/octocat/following{/other_user}", "gists_url": "https://api.github.com/users/octocat/gists{/gist_id}", "starred_url": "https://api.github.com/users/octocat/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/octocat/subscriptions", "organizations_url": "https://api.github.com/users/octocat/orgs", "repos_url": "https://api.github.com/users/octocat/repos", "events_url": "https://api.github.com/users/octocat/events{/privacy}", "received_events_url": "https://api.github.com/users/octocat/received_events", "type": "User", "site_admin": False, }, "change_status": {"deletions": 0, "additions": 180, "total": 180}, "committed_at": "2010-04-14T02:15:15Z", } ], } return expected_gist def create_id(self, length): characters = [*digits, *ascii_lowercase] return "".join([choice(characters) for i in range(length)])
py
7dfeb000df6cbcbc0ca90ae15e888b32930e38aa
# coding: UTF-8 import os import torch import numpy as np import pickle as pkl from tqdm import tqdm # python 进度条 import time from datetime import timedelta MAX_VOCAB_SIZE = 10000 # 词表长度限制 UNK, PAD = '<UNK>', '<PAD>' # 未知字,padding符号 def build_vocab(file_path, tokenizer, max_size, min_freq): # vocab, {word: num}(按词频顺序),<UNK> 未知字,<PAD> 填充字符, # 需要去停用词么? # min_freq 最小为1,可以不设置 vocab_dic = {} with open(file_path, 'r', encoding='UTF-8') as f: for line in tqdm(f): lin = line.strip() if not lin: continue content = lin.split('\t')[0] for word in tokenizer(content): vocab_dic[word] = vocab_dic.get(word, 0) + 1 vocab_list = sorted([_ for _ in vocab_dic.items() if _[1] >= min_freq], key=lambda x: x[1], reverse=True)[:max_size] vocab_dic = {word_count[0]: idx for idx, word_count in enumerate(vocab_list)} vocab_dic.update({UNK: len(vocab_dic), PAD: len(vocab_dic) + 1}) return vocab_dic def build_dataset(config, ues_word): if ues_word: tokenizer = lambda x: x.split(' ') # 以空格隔开,word-level else: tokenizer = lambda x: [y for y in x] # char-level if os.path.exists(config.vocab_path): vocab = pkl.load(open(config.vocab_path, 'rb')) else: vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1) pkl.dump(vocab, open(config.vocab_path, 'wb')) print(f"Vocab size: {len(vocab)}") def load_dataset(path, pad_size=32): contents = [] with open(path, 'r', encoding='UTF-8') as f: for line in tqdm(f): lin = line.strip() if not lin: continue content, label = lin.split('\t') words_line = [] token = tokenizer(content) seq_len = len(token) if pad_size: if len(token) < pad_size: token.extend([PAD] * (pad_size - len(token))) else: token = token[:pad_size] seq_len = pad_size # word to id for word in token: words_line.append(vocab.get(word, vocab.get(UNK))) contents.append((words_line, int(label), seq_len)) return contents # [([...], 0), ([...], 1), ...] train = load_dataset(config.train_path, config.pad_size) dev = load_dataset(config.dev_path, config.pad_size) test = load_dataset(config.test_path, config.pad_size) return vocab, train, dev, test class DatasetIterater(object): def __init__(self, batches, batch_size, device): self.batch_size = batch_size self.batches = batches self.n_batches = len(batches) // batch_size self.residue = False # 记录batch数量是否为整数 if len(batches) % self.n_batches != 0: self.residue = True self.index = 0 self.device = device def _to_tensor(self, datas): x = torch.LongTensor([_[0] for _ in datas]).to(self.device) y = torch.LongTensor([_[1] for _ in datas]).to(self.device) # pad前的长度(超过pad_size的设为pad_size) seq_len = torch.LongTensor([_[2] for _ in datas]).to(self.device) return (x, seq_len), y def __next__(self): if self.residue and self.index == self.n_batches: batches = self.batches[self.index * self.batch_size: len(self.batches)] self.index += 1 batches = self._to_tensor(batches) return batches elif self.index >= self.n_batches: self.index = 0 raise StopIteration else: batches = self.batches[self.index * self.batch_size: (self.index + 1) * self.batch_size] self.index += 1 batches = self._to_tensor(batches) return batches def __iter__(self): return self def __len__(self): if self.residue: return self.n_batches + 1 else: return self.n_batches def build_iterator(dataset, config): iter = DatasetIterater(dataset, config.batch_size, config.device) return iter def get_time_dif(start_time): """获取已使用时间""" end_time = time.time() time_dif = end_time - start_time return timedelta(seconds=int(round(time_dif))) if __name__ == "__main__": '''提取预训练词向量''' # 下面的目录、文件名按需更改。 train_dir = "./THUCNews/data/train.txt" vocab_dir = "./THUCNews/data/vocab.pkl" pretrain_dir = "./THUCNews/data/sgns.sogou.char" emb_dim = 300 filename_trimmed_dir = "./THUCNews/data/embedding_SougouNews" if os.path.exists(vocab_dir): word_to_id = pkl.load(open(vocab_dir, 'rb')) else: # tokenizer = lambda x: x.split(' ') # 以词为单位构建词表(数据集中词之间以空格隔开) tokenizer = lambda x: [y for y in x] # 以字为单位构建词表 word_to_id = build_vocab(train_dir, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1) pkl.dump(word_to_id, open(vocab_dir, 'wb')) # embeddings = np.random.rand(len(word_to_id), emb_dim) # f = open(pretrain_dir, "r", encoding='UTF-8') # for i, line in enumerate(f.readlines()): # # if i == 0: # 若第一行是标题,则跳过 # # continue # lin = line.strip().split(" ") # if lin[0] in word_to_id: # idx = word_to_id[lin[0]] # emb = [float(x) for x in lin[1:301]] # embeddings[idx] = np.asarray(emb, dtype='float32') # f.close() # np.savez_compressed(filename_trimmed_dir, embeddings=embeddings) vocab, train_data, dev_data, test_data = build_dataset(config, args.word) train_iter = build_iterator(train_data, config) train = load_dataset(config.train_path, config.pad_size)
py
7dfeb0211b478d27fad8d8e45c78adee341f130e
############################################################################### # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. ############################################################################### import re import queue from .proto import keras, is_tf_keras from .proto.tfcompat import tensorflow as tf from .proto.tfcompat import is_tf2 from .common import k2o_logger from .topology import Topology from .funcbook import get_converter, set_converter from ._consts import TYPES from ._tf_ops import pass_thru_converter from ._parser_tf import (infer_variable_type, LayerInfo, is_placeholder_node, tsname_to_node, on_parsing_keras_layer_v2, adjust_input_batch_size as _adjust_input_batch_size, adjust_input_output_size as _adjust_input_output_size) from ._parser_1x import (extract_inbound_nodes, list_input_tensors, list_input_mask, list_output_mask, list_output_tensors, list_input_shapes, list_output_shapes, on_parsing_keras_layer) def _find_node(nodes, name): try: opname = tsname_to_node(name) return next(n_ for n_ in nodes if n_.name == opname) except StopIteration: return None def _locate_inputs_by_node(node_list, varset): inputs = {} for n_ in node_list: assert n_ in node_list for i_ in n_.inputs: op = i_.op if op.name[0] == '^': continue if (not is_placeholder_node(op)) and op in node_list: continue if i_ not in inputs: v0 = varset.get_local_variable_or_declare_one(i_.name, infer_variable_type(i_, varset.target_opset)) inputs[i_] = v0 return list(inputs.values()), list(inputs.keys()) def _locate_outputs(node_list, varset): var_output = [] nodes = [] for n_ in varset.variable_name_mapping.keys(): node = _find_node(node_list, n_) if node is not None and (not is_placeholder_node(node)): nodes.append(node) assert nodes for n0_ in nodes: for n_ in n0_.outputs: var_output.append( varset.get_local_variable_or_declare_one(n_.name, infer_variable_type(n_, varset.target_opset))) return var_output def _is_relevant_keras_node(model, node): # type: (keras.Model, object) -> bool if not hasattr(model, '_nodes_by_depth'): return True # 'Sequential' object has no attribute '_nodes_by_depth' in the legacy keras version. for v in model._nodes_by_depth.values(): if node in v: return True return False def _on_parsing_time_distributed_layer(graph, node_list, layer, model, varset, prefix=None): """ This conversion supports timedistributed wrapper partially where the layer itself can be converted by onnx. """ inputs = [] ishapes = [] outputs = [] oshapes = [] num_relevant_keras_node = 0 for nb_ in extract_inbound_nodes(layer): if _is_relevant_keras_node(model, nb_): inputs += list_input_tensors(nb_) ishapes += list_input_shapes(nb_) outputs += list_output_tensors(nb_) oshapes += list_output_shapes(nb_) num_relevant_keras_node = num_relevant_keras_node + 1 assert num_relevant_keras_node == 1 prefix = prefix or '' i_ = inputs[0] iname = prefix + i_.name k2o_logger().debug('td_layer input: ' + iname) i0 = varset.get_local_variable_or_declare_one(iname, infer_variable_type(i_, varset.target_opset)) o1_reshape_shape = (-1,) + oshapes[0][2:] i0_reshape_name = i_.op.name + '_reshape_0:0' i0_reshape = varset.declare_local_variable(i0_reshape_name, infer_variable_type(i_, varset.target_opset)) i0_reshape_shape = (-1,) + ishapes[0][2:] i0_reshape.type.shape = i0_reshape_shape operator_reshape_0 = varset.declare_local_operator(TYPES.TD_Reshape, op_name=layer.name + '_reshape_0', target_shape=i0_reshape_shape) operator_reshape_0.add_input(i0) operator_reshape_0.add_output(i0_reshape) o_ = outputs[0] oname = prefix + o_.name k2o_logger().debug('td_layer output: ' + oname) o1 = varset.get_local_variable_or_declare_one(oname, infer_variable_type(o_, varset.target_opset)) oshapes1 = [-1 if s_ is None else s_ for s_ in oshapes[0]] operator_reshape_1 = varset.declare_local_operator(TYPES.TD_Reshape, op_name=layer.name + '_reshape_1', target_shape=oshapes1) operator_reshape_1.add_output(o1) o1_reshape_name = o_.op.name + '_reshape_1:0' o1_reshape = varset.declare_local_variable(o1_reshape_name, infer_variable_type(o_, varset.target_opset)) o1_reshape.type.shape = o1_reshape_shape operator_reshape_1.add_input(o1_reshape) if isinstance(layer.layer, keras.Model): kenode = extract_inbound_nodes(layer.layer)[0] intop = varset.declare_local_operator(TYPES.Identity) intop.add_input(i0_reshape) intop.add_output(varset.get_local_variable_or_declare_one(list_input_tensors(kenode)[0].name)) _on_parsing_model_layer(layer.layer, graph, kenode, varset) intop = varset.declare_local_operator(TYPES.Identity) intop.add_input(varset.get_local_variable_or_declare_one(list_output_tensors(kenode)[0].name)) intop.add_output(o1_reshape) else: operator = varset.declare_local_operator(type(layer.layer), raw_model=layer.layer, op_name=layer.name) operator.nodelist = node_list operator.add_input(i0_reshape) operator.add_output(o1_reshape) cvt = get_converter(type(layer.layer)) if cvt is not None and hasattr(cvt, 'shape_infer'): operator.shape_infer = cvt.shape_infer def _check_layer_converter_availability(sub_model): for l_ in sub_model.layers: if isinstance(l_, keras.Model): exist = _check_layer_converter_availability(l_) else: layer_type = type(l_) exist = get_converter(layer_type) or \ layer_type in [keras.layers.InputLayer, keras.layers.wrappers.TimeDistributed] if not exist: k2o_logger().info("The layer {} doesn't have a specific converter, fall back.".format(str(l_))) break else: return True return False def _create_identity(ts_from, ts_to, varset): ty_ = infer_variable_type(ts_from, varset.target_opset) var0 = varset.get_local_variable_or_declare_one(ts_from.name, ty_) var1 = varset.get_local_variable_or_declare_one(ts_to.name, ty_) op = varset.declare_local_operator(TYPES.Identity, op_name=ts_to.name) op.add_input(var0) op.add_output(var1) return op def _create_model_input_mapping_operators(ts_from, ts_to, prefix, subprefix, varset): ty_ = infer_variable_type(ts_from, varset.target_opset) # type(_infer_variable_type(ts_to, varset.target_opset) and ... # ... type(ty_) can be different which is resolved by implicit cast. var0 = varset.get_local_variable_or_declare_one(subprefix + ts_from.name, ty_) var1 = varset.get_local_variable_or_declare_one(prefix + ts_to.name, ty_) op = varset.declare_local_operator(TYPES.Identity, op_name=prefix + ts_to.name) op.add_input(var0) op.add_output(var1) k2o_logger().debug( "mapping: %s -> %s (%s -> %s)" % (ts_from.name, ts_to.name, subprefix + ts_from.name, prefix + ts_to.name)) return op def _find_kenode_by_output_tensor(inbound_nodes, output_name): def find_ts_name(tensors, name): return next((ts_ for ts_ in tensors if ts_.name.find(name) == 0), None) return next((n_ for n_ in inbound_nodes if find_ts_name(list_output_tensors(n_), output_name) is not None), None) def _is_template_tensors(tensors, templ_tensors): for t_, tt_ in zip(tensors, templ_tensors): # t_.shape and tt_.shape can be different if the input shape is different. if t_.name.find(tt_.name) < 0: return False return True def _on_parsing_model_layer(sub_model, graph, target_kenode, varset, top_kenode=None, upper_prefix=None): ts_inputs = [] ts_outputs = [] upper_prefix = upper_prefix if upper_prefix else '' prefix = '' # mapping input/output nodes for the sub_model. inbound_nodes = extract_inbound_nodes(sub_model) sub_model_node_idx = 0 if len(inbound_nodes) > 1 and inbound_nodes[0] is not target_kenode: # Assumption: the first node in the inbound node list is always the one used in the keras layers. curr_node = target_kenode assert curr_node is not None found = False base_node = inbound_nodes[0] for nodes_ in sub_model._nodes_by_depth.values(): for nd_ in nodes_: if _is_template_tensors(list_output_tensors(curr_node), list_output_tensors(nd_)): found = True base_node = nd_ break else: sub_model_node_idx += 1 if found: break else: assert False, "Cannot find the node for the model layer {}".format(sub_model.name) bn_name_list = [bn_.name for bn_ in list_output_tensors(base_node)] prefix_found = False for idx_, out_ in enumerate(list_output_tensors(curr_node)): if not prefix_found: name_match_len = -1 for bn_name_ in bn_name_list: cur_match_len = out_.name.find(bn_name_) if cur_match_len > -1: name_match_len = cur_match_len break assert name_match_len > 0 prefix = out_.name[0:name_match_len] prefix_found = True ts_outputs.append(out_) if top_kenode is None: top_kenode = curr_node # the input node needs to be mapped to the outmost inbound keras node. for idx_, in_ in enumerate(list_input_tensors(top_kenode)): _create_model_input_mapping_operators(in_, list_input_tensors(inbound_nodes[0])[idx_], upper_prefix + prefix, upper_prefix, varset) ts_inputs.append(in_) k2o_logger().debug("prefix_beg: %s" % prefix) for i_ in range(sub_model_node_idx, len(sub_model._nodes_by_depth)): nodes_ = sub_model._nodes_by_depth[i_] for n_ in nodes_: layer = n_.outbound_layer if isinstance(layer, keras.layers.InputLayer): continue elif isinstance(layer, keras.layers.wrappers.TimeDistributed): _on_parsing_time_distributed_layer(graph, [], layer, sub_model, varset, upper_prefix + prefix) elif isinstance(layer, keras.Model): k2o_logger().debug("Processing a keras sub model - %s" % layer.name) cur_kenode = _find_kenode_by_output_tensor(extract_inbound_nodes(layer), sub_model.outputs[0].name) _on_parsing_model_layer(layer, graph, n_, varset, cur_kenode, upper_prefix + prefix) else: on_parsing_keras_layer(graph, [], layer, n_, sub_model, varset, upper_prefix + prefix) k2o_logger().debug("prefix_end: - %s" % prefix) return ts_inputs, ts_outputs def _check_tfnode_converter_availability(graph, node): var_assign_map = {'VarHandleOp': 'AssignVariableOp', 'VariableV2': 'Assign'} if node.type in var_assign_map: if is_tf2: v_output = node.outputs[0].name for graph_node_name in graph._nodes_by_name: graph_op = graph._nodes_by_name[graph_node_name] if graph_op.type == var_assign_map[node.type] and len(graph_op.inputs) > 1 and v_output == \ graph_op.inputs[0].name: cur_i = graph_op.inputs[1].op if cur_i.type == 'Const' and cur_i.get_attr('value').tensor_content != b'': return True return False else: return True else: cvt = get_converter(node.type) return cvt is not None def _check_tfnodes_converter_availability(graph, nodelist, debug_mode): status = True for n_ in nodelist: if not _check_tfnode_converter_availability(graph, n_): k2o_logger().warning( "WARN: No corresponding ONNX op matches the tf.op node {} of type {}".format(n_.name, n_.type) + "\n The generated ONNX model needs run with the custom op supports.") status = False return status def _on_parsing_tf_nodes(graph, nodelist, varset, debug_mode): _check_tfnodes_converter_availability(graph, nodelist, debug_mode) for node_ in nodelist: k2o_logger().debug("Processing a tf node - %s" % node_.name) operator = varset.declare_local_operator(node_.type, raw_model=node_, op_name=node_.name) for o_ in node_.outputs: oname = o_.name k2o_logger().debug('\toutput: ' + oname) out0 = varset.get_local_variable_or_declare_one(oname, infer_variable_type(o_, varset.target_opset)) operator.add_output(out0) for i_ in node_.inputs: k2o_logger().debug('\tinput : ' + i_.name) var_type = infer_variable_type(i_, varset.target_opset) i0 = varset.get_local_variable_or_declare_one(i_.name, var_type) operator.add_input(i0) cvt = get_converter(operator.type) if cvt is None: assert isinstance(operator.type, str), \ "Only tf-op can be pass_thru conversion, type: {}".format(type(operator.type)) set_converter(operator.type, pass_thru_converter) elif hasattr(cvt, 'shape_infer'): operator.shape_infer = cvt.shape_infer def _infer_graph_shape(topology, top_level, varset): raw_model_container = topology.raw_model var_queue = queue.Queue() for i_ in raw_model_container.input_names: var_queue.put_nowait(top_level.get_local_variable_or_declare_one(i_)) visited = set() while not var_queue.empty(): var = var_queue.get_nowait() k2o_logger().debug("var: " + var.full_name) for oop in var.op_to: if oop in visited: continue visited.add(oop) if isinstance(oop.raw_operator, (keras.layers.Layer, tf.Operation)): assert oop.outputs elif oop.raw_operator: oop.outputs = _locate_outputs(oop.raw_operator, varset) else: assert oop.outputs for o_ in oop.outputs: o_.op_from = oop si = oop.shape_infer if si is not None: # let operator to build its own shape if it can't be deduced from the tf.graph. si(oop) for o_ in oop.outputs: var_queue.put_nowait(o_) def _create_link_node(var_ts, top_level, varset, reversed_io=False, adjust_batch_size=False): if adjust_batch_size: ty_ = _adjust_input_batch_size(infer_variable_type(var_ts, varset.target_opset)) else: ty_ = infer_variable_type(var_ts, varset.target_opset) var0 = top_level.get_local_variable_or_declare_one(var_ts.name, ty_) var1 = varset.get_local_variable_or_declare_one(var_ts.name, ty_) op = varset.declare_local_operator(TYPES.Identity) if reversed_io: var0, var1 = var1, var0 op.add_input(var1) op.add_output(var0) return op def _build_inference_nodeset(graph, outputs): nodes_to_keep = set() node_inputs = outputs[:] while node_inputs: nd_ = node_inputs[0] del node_inputs[0] if nd_ in nodes_to_keep: continue nodes_to_keep.add(nd_) node_inputs.extend(in_.op for in_ in nd_.inputs) return nodes_to_keep def _create_keras_nodelist(layer, inference_nodeset, out_node=None): newly = list() ts_end = set() # the input tensor set of the whole layer/model. for node_ in extract_inbound_nodes(layer): if out_node is not None and out_node.name not in \ [tsname_to_node(ts_.name) for ts_ in list_output_tensors(node_)]: continue # this layer could be reused several times in the whole graph. for ts_ in list_output_tensors(node_): if ts_.op in inference_nodeset: newly.extend([ts_.op for ts_ in list_output_tensors(node_)]) ts_end |= set(list_input_tensors(node_)) for ts_ in list_input_mask(layer): ts_end.add(ts_) for ts_ in list_output_mask(layer): newly.append(ts_.op) visited = set() nodelist = list() # keep the node list order. while newly: visited.update(newly) nodelist.extend(newly) newly.clear() for n_ in visited: for i_ in n_.inputs: if i_ in ts_end or i_.op in visited or i_.op not in inference_nodeset: continue if isinstance(layer, keras.Model): # ugly fixing for the shared layer. if i_.name.startswith(layer.name): pass elif i_.name.startswith('^' + layer.name): pass else: continue newly.append(i_.op) return nodelist def _general_nodelist_closure(node, nodeset, keras_nodeset): nodes = set() visited = set() def is_stop_node(nd): return is_placeholder_node(nd) or nd in keras_nodeset node_added = [node] updated = True while updated: updated = False while node_added: nd_ = node_added[0] del node_added[0] if nd_ not in visited: visited.add(nd_) if not is_stop_node(nd_) and nd_ not in nodes: nodes.add(nd_) updated = True node_added.extend(in_.op for in_ in nd_.inputs if not is_stop_node(in_.op)) node_added = [] for nd_ in nodeset: if any(in_.op in nodes for in_ in nd_.inputs): node_added.append(nd_) return nodes def _build_keras_nodeset(inference_nodeset, keras_node_dict): nodes = set() for layer_, _ in keras_node_dict.values(): nodes.update(_create_keras_nodelist(layer_, inference_nodeset)) return nodes def _get_output_nodes(node_list, node): nodes_has_children = set() for node in node_list: if node: for input_tensor in node.inputs: nodes_has_children.add(input_tensor.op) return [n_ for n_ in node_list if n_ not in nodes_has_children] # need to keep the order. def _filter_out_input(node_name): # tf.keras BN layer sometimes create a placeholder node 'scale' in tf 2.x. # It creates 'cond/input' since tf 2.2. # Given bn layer will be converted in a whole layer, it's fine to just filter this node out. filter_patterns = [r"batch_normalization_\d+\/scale$", r"batch_normalization_\d+\/cond/input"] filter_out = False for pattern_ in filter_patterns: filter_out = filter_out or re.match(pattern_, node_name) return filter_out def _advance_by_input(cur_node, layer_nodes, subgraph, inputs, graph_inputs, q_overall): for input_ in cur_node.inputs: predecessor = input_.op if is_placeholder_node(predecessor) and not _filter_out_input(predecessor.name): inputs.add(predecessor) graph_inputs.add(predecessor) continue if predecessor in layer_nodes or len(layer_nodes) == 0: subgraph.append(predecessor) else: inputs.add(predecessor) q_overall.put_nowait(predecessor) def _visit_nodelist(activated_keras_nodes, input_nodes, layer_key, keras_node_dict, node, nodelist, q_overall, visited): subgraph = list() i_subgraph = set() for ot_ in (_get_output_nodes(activated_keras_nodes, node) if activated_keras_nodes else [node]): if ot_ not in nodelist: visited.add(ot_) nodelist.append(ot_) _advance_by_input(ot_, activated_keras_nodes, subgraph, i_subgraph, input_nodes, q_overall) while subgraph: int_node = subgraph.pop(0) if int_node in input_nodes or int_node in visited or int_node in keras_node_dict: continue visited.add(int_node) nodelist.append(int_node) _advance_by_input(int_node, activated_keras_nodes, subgraph, i_subgraph, input_nodes, q_overall) return i_subgraph def _parse_nodes(graph, inference_nodeset, graph_inputs, keras_node_dict, keras_nodeset, node, nodelist, varset, visited, q_overall): layer_key_, model_ = (None, None) if node.name in keras_node_dict: layer_key_, model_ = keras_node_dict[node.name] if isinstance(layer_key_, keras.Model) and \ _check_layer_converter_availability(layer_key_): k2o_logger().debug("Processing a keras sub model - %s" % layer_key_.name) kenode = _find_kenode_by_output_tensor(extract_inbound_nodes(layer_key_), node.name) ts_in, ts_out = _on_parsing_model_layer(layer_key_, graph, kenode, varset) for ts_ in ts_in: if is_placeholder_node(ts_.op): graph_inputs.add(ts_.op) else: q_overall.put_nowait(ts_.op) visited.update(ts_.op for ts_ in ts_out) return layer_key_, model_ activated_keras_nodes = _create_keras_nodelist(layer_key_, inference_nodeset, node) else: activated_keras_nodes = _general_nodelist_closure(node, inference_nodeset, keras_nodeset) _visit_nodelist(activated_keras_nodes, graph_inputs, layer_key_, keras_node_dict, node, nodelist, q_overall, visited) return layer_key_, model_ def _parse_graph_core(graph, keras_node_dict, topology, top_scope, output_names): """ travel the tensor Graph and build the corresponding intermediate operation objects. :param graph: the tensorflow session graph of the Keras mode. :param keras_node_dict: the mapping of operation node to keras layer output. :param topology: The whole topology of the intermediate objects. :param top_scope: The top varset :param output_names: the output names of the TF graph :return: The whole topology of the intermediate objects. """ input_nodes = set() # build the node in the working scope. varset = topology.declare_scope('curr_', top_scope) model_outputs = [] for name in output_names: var_ts = graph.get_operation_by_name(tsname_to_node(name)).outputs[0] _create_link_node(var_ts, top_scope, varset, adjust_batch_size=True) model_outputs.append(var_ts.op) # starting from the output node. q_overall = queue.Queue() for n_ in model_outputs: q_overall.put_nowait(n_) visited = set() # since the output could be shared among the successor nodes. inference_nodeset = _build_inference_nodeset(graph, model_outputs) keras_nodeset = _build_keras_nodeset(inference_nodeset, keras_node_dict) while not q_overall.empty(): node = q_overall.get_nowait() if node in input_nodes or node in visited or node not in inference_nodeset: continue nodes = [] layer_key_, model_ = _parse_nodes(graph, inference_nodeset, input_nodes, keras_node_dict, keras_nodeset, node, nodes, varset, visited, q_overall) if not nodes: # already processed by the _parse_nodes continue k2o_logger().debug('Processing a keras layer - (%s: %s)' % (layer_key_.name, type(layer_key_)) if layer_key_ else (nodes[0].name, "Custom_Layer")) if isinstance(layer_key_, keras.layers.TimeDistributed): _on_parsing_time_distributed_layer(graph, nodes, layer_key_, model_, varset) elif layer_key_ is None or get_converter(type(layer_key_)) is None: _on_parsing_tf_nodes(graph, nodes, varset, topology.debug_mode) else: kenode = _find_kenode_by_output_tensor(extract_inbound_nodes(layer_key_), nodes[0].name) on_parsing_keras_layer(graph, nodes, layer_key_, kenode, model_, varset) for nd_ in input_nodes: var_ts = nd_.outputs[0] # since it's placeholder node, safely claim there is only one output. _create_link_node(var_ts, top_scope, varset, True) _infer_graph_shape(topology, top_scope, varset) topology.root_names = [variable.onnx_name for variable in top_scope.variables.values()] return topology def _sorted_inputs(nodelist, outputs, inputs_set): inputs = [] node_set = frozenset(nodelist) visited = set() def travel(node): for in_ts_ in node.inputs: op_node = in_ts_.op if op_node in visited: continue visited.add(op_node) if (op_node in inputs_set) and (op_node not in inputs): inputs.append(op_node) elif op_node in node_set: travel(op_node) for ts_ in outputs: travel(ts_.op) return inputs def _parse_nodes_v2(graph, inference_nodeset, graph_inputs, keras_node_dict, node, varset, visited, q_overall): layer_key, model_ = (None, None) current_layer_outputs = {} if node.name in keras_node_dict: layer_key, model_ = keras_node_dict[node.name] else: ts_out = node.outputs[0] kh_ = getattr(ts_out, '_keras_history', None) if kh_ is not None: layer_key = kh_.layer kenode = extract_inbound_nodes(layer_key)[kh_.node_index] current_layer_outputs.update({ts_.op.name: (layer_key, None) for ts_ in list_output_tensors(kenode)}) if layer_key is None: layer_info = LayerInfo.create_single_node(node, visited) else: if isinstance(layer_key, keras.Model): k2o_logger().debug("Processing a keras model layer - %s" % layer_key.name) kenode = _find_kenode_by_output_tensor(extract_inbound_nodes(layer_key), node.outputs[0].name) for ts_ in list_output_tensors(kenode): _create_identity(ts_.op.inputs[0], ts_, varset) visited.add(ts_.op) _advance_by_input(ts_.op, [ts_.op], list(), set(), graph_inputs, q_overall) return None, model_ else: layer_info = LayerInfo.create(node, layer_key, {**keras_node_dict, **current_layer_outputs}, inference_nodeset) nodelist = [] layer_inputs = _visit_nodelist(layer_info.nodelist, graph_inputs, None, keras_node_dict, node, nodelist, q_overall, visited) sorted_inputs = _sorted_inputs(layer_info.nodelist, layer_info.outputs, layer_inputs) for input_ in sorted_inputs: layer_info.inputs.extend(input_.outputs) layer_info.nodelist = [n_ for n_ in layer_info.nodelist if not is_placeholder_node(n_)] return layer_info, model_ def _parse_graph_core_v2(graph, keras_node_dict, topology, top_scope, output_names): """ travel the tensor Graph and build the corresponding intermediate operation objects. :param graph: the tensorflow session graph of the Keras mode. :param keras_node_dict: the mapping of operation node to keras layer output. :param topology: The whole topology of the intermediate objects. :param top_scope: The top varset :param output_names: the output names of the TF graph :return: The whole topology of the intermediate objects. """ input_nodes = set() # build the node in the working scope. varset = topology.declare_scope('curr_', top_scope) model_outputs = [] for name in output_names: var_ts = graph.get_operation_by_name(tsname_to_node(name)).outputs[0] _create_link_node(var_ts, top_scope, varset, adjust_batch_size=True) model_outputs.append(var_ts.op) # starting from the output node. q_overall = queue.Queue() for n_ in model_outputs: q_overall.put_nowait(n_) visited = set() # since the output could be shared among the successor nodes. # Some complicated layer may have some nodes which cannot be visited from the graph output... # ..., so the layer outputs are added into visit graph to avoid missing nodes. layer_outputs = [graph.get_operation_by_name(nm_) for nm_ in keras_node_dict] inference_nodeset = _build_inference_nodeset(graph, model_outputs + layer_outputs) while not q_overall.empty(): node = q_overall.get_nowait() if node in input_nodes or node in visited or node not in inference_nodeset: continue layer_info, model_ = _parse_nodes_v2(graph, inference_nodeset, input_nodes, keras_node_dict, node, varset, visited, q_overall) if not layer_info: # already processed by the _parse_nodes_v2 continue k2o_logger().debug('Processing a keras layer - (%s: %s)' % (layer_info.layer.name, type(layer_info.layer)) if layer_info.layer else (layer_info.nodelist[0].name, "Custom_Layer")) if layer_info.layer and isinstance(layer_info.layer, keras.layers.TimeDistributed): _on_parsing_time_distributed_layer(graph, layer_info.nodelist, layer_info.layer, model_, varset) elif layer_info.layer and get_converter(type(layer_info.layer)): on_parsing_keras_layer_v2(graph, layer_info, varset) else: _on_parsing_tf_nodes(graph, layer_info.nodelist, varset, topology.debug_mode) for nd_ in input_nodes: var_ts = nd_.outputs[0] # since it's placeholder node, safely claim there is only one output. _create_link_node(var_ts, top_scope, varset, True) _infer_graph_shape(topology, top_scope, varset) topology.root_names = [variable.onnx_name for variable in top_scope.variables.values()] return topology def parse_graph_modeless(topo, graph, target_opset, input_names, output_names, keras_node_dict): top_level = topo.declare_scope('__root') input_tensors = [graph.get_tensor_by_name(n_) for n_ in input_names] output_tensors = [graph.get_tensor_by_name(n_) for n_ in output_names] for ts_i_ in input_tensors: var_type = _adjust_input_batch_size(infer_variable_type(ts_i_, target_opset)) if ts_i_.name.endswith(':0'): str_value = ts_i_.name[:-2] op = top_level.declare_local_operator(TYPES.Identity) var0 = top_level.get_local_variable_or_declare_one(str_value, var_type) var1 = top_level.get_local_variable_or_declare_one(ts_i_.name, var_type) op.add_input(var0) op.add_output(var1) else: str_value = ts_i_.name top_level.get_local_variable_or_declare_one(str_value, var_type) topo.raw_model.add_input_name(str_value) for ts_o_ in output_tensors: var_type = _adjust_input_batch_size(infer_variable_type(ts_o_, target_opset)) str_value = ts_o_.name top_level.get_local_variable_or_declare_one(str_value, var_type) topo.raw_model.add_output_name(str_value) return _parse_graph_core_v2( graph, keras_node_dict, topo, top_level, output_names ) def parse_graph(topo, graph, target_opset, output_names, keras_node_dict): # type: (Topology, tf.Graph, int, [], []) -> Topology """ Build the node-layer mapper and parse the whole TF graph of Keras Model. """ top_level = topo.declare_scope('__root') dim_variable_counter = 0 # Create the onnx model input name before parsing to keep ... # ... the model input names are identical to the original Keras model. for idx_ in range(len(topo.raw_model.model.inputs)): op = top_level.declare_local_operator(TYPES.Identity) idx_key = idx_ if isinstance(topo.raw_model.model.inputs, dict): idx_key = list(topo.raw_model.model.inputs.keys())[idx_] input_ts = topo.raw_model.model.inputs[idx_key] var_type = _adjust_input_batch_size(infer_variable_type(input_ts, target_opset)) dim_variable_counter = _adjust_input_output_size(var_type, dim_variable_counter) str_value = input_ts.name var0 = None if hasattr(topo.raw_model.model, 'input_names'): str_value = topo.raw_model.model.input_names[idx_] elif input_ts.name.endswith(':0'): str_value = input_ts.name[:-2] else: # if there is no difference between input tensor name and model input name, # skip it. var0 = top_level.get_local_variable_or_declare_one(str_value, var_type) if not var0: var0 = top_level.get_local_variable_or_declare_one(str_value, var_type) var1 = top_level.get_local_variable_or_declare_one(input_ts.name, var_type) op.add_input(var0) op.add_output(var1) topo.raw_model.add_input_name(str_value) output_name_dict = {} output_tensors = topo.raw_model.model.outputs if output_names: output_tensors = [graph.get_tensor_by_name(n_) for n_ in output_names] for idx_, ts_ in enumerate(output_tensors): op = top_level.declare_local_operator(TYPES.Identity) var_type = _adjust_input_batch_size(infer_variable_type(ts_, target_opset)) dim_variable_counter = _adjust_input_output_size(var_type, dim_variable_counter) str_value = ts_.name use_ts_name = False if hasattr(topo.raw_model.model, 'output_names'): str_value = topo.raw_model.model.output_names[idx_] elif ts_.name.endswith(':0'): str_value = tsname_to_node(ts_.name) else: # if there is no difference between output tensor name and model output name # skip it. use_ts_name = True if str_value in output_name_dict: cur_count = output_name_dict[str_value] output_name_dict[str_value] = cur_count + 1 str_value = str_value + ':' + str(cur_count) else: output_name_dict[str_value] = 1 if not use_ts_name: var0 = top_level.get_local_variable_or_declare_one(str_value, var_type) var1 = top_level.get_local_variable_or_declare_one(ts_.name, var_type) op.add_input(var1) op.add_output(var0) topo.raw_model.add_output_name(str_value) return _parse_graph_core_v2( graph, keras_node_dict, topo, top_level, output_names ) if is_tf2 and is_tf_keras else _parse_graph_core( graph, keras_node_dict, topo, top_level, output_names)
py
7dfeb2493d33b99bf89a73977eea12feadbbd431
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Wed Nov 8 12:00:11 2017 @author: prmiles """ import numpy as np import sys from .utilities.progressbar import progress_bar from .utilities.general import check_settings import matplotlib.pyplot as plt from matplotlib import cm from matplotlib import colors as mplcolor from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Poly3DCollection from scipy.interpolate import interp1d def calculate_intervals(chain, results, data, model, s2chain=None, nsample=500, waitbar=True, sstype=0): ''' Calculate distribution of model response to form propagation intervals Samples values from chain, performs forward model evaluation, and tabulates credible and prediction intervals (if obs. error var. included). Args: * **chain** (:class:`~numpy.ndarray`): Parameter chains, expect shape=(nsimu, npar). * **results** (:py:class:`dict`): Results dictionary generated by pymcmcstat. * **data** (:class:`~.DataStructure`): Data * **model**: User defined function. Note, if your model outputs multiple quantities of interest (QoI) at the same time in a multi-dimensional array, then make sure it is returned as a (N, p) array where N is the number of evaluation points and p is the number of QoI. Kwargs: * **s2chain** (:py:class:`float`, :class:`~numpy.ndarray`, or None): Observation error variance chain. * **nsample** (:py:class:`int`): No. of samples drawn from posteriors. * **waitbar** (:py:class:`bool`): Flag to display progress bar. * **sstype** (:py:class:`int`): Sum-of-squares type. Can be 0 (normal), 1 (sqrt), or 2 (log). Returns: * :py:class:`dict` with two elements: 1) `credible` and 2) `prediction` ''' parind = results['parind'] q = results['theta'] nsimu, npar = chain.shape s2chain = check_s2chain(s2chain, nsimu) iisample, nsample = define_sample_points(nsample, nsimu) if waitbar is True: __wbarstatus = progress_bar(iters=int(nsample)) ci = [] pi = [] multiple = False for kk, isa in enumerate(iisample): # progress bar if waitbar is True: __wbarstatus.update(kk) # extract chain set q[parind] = chain[kk, :] # evaluate model y = model(q, data) # check model output if y.ndim == 2: nrow, ncol = y.shape if nrow != y.size and ncol != y.size: multiple = True if multiple is False: # store model prediction in credible intervals ci.append(y.reshape(y.size,)) # store model output if s2chain is None: continue else: # estimate prediction intervals s2 = s2chain[kk] obs = observation_sample(s2, y, sstype) pi.append(obs.reshape(obs.size,)) else: # Model output contains multiple QoI # Expect ncol = No. of QoI if kk == 0: cis = [] pis = [] for jj in range(ncol): cis.append([]) pis.append([]) for jj in range(ncol): # store model prediction in credible intervals cis[jj].append(y[:, jj]) # store model output if s2chain is None: continue else: # estimate prediction intervals if s2chain.ndim == 2: if s2chain.shape[1] == ncol: s2 = s2chain[kk, jj] else: s2 = s2chain[kk] else: s2 = s2chain[kk] obs = observation_sample(s2, y[:, jj], sstype) pis[jj].append(obs.reshape(obs.size,)) if multiple is False: # Setup output credible = np.array(ci) if s2chain is None: prediction = None else: prediction = np.array(pi) return dict(credible=credible, prediction=prediction) else: # Setup output for multiple QoI out = [] for jj in range(ncol): credible = np.array(cis[jj]) if s2chain is None: prediction = None else: prediction = np.array(pis[jj]) out.append(dict(credible=credible, prediction=prediction)) return out # -------------------------------------------- def plot_intervals(intervals, time, ydata=None, xdata=None, limits=[95], adddata=None, addmodel=True, addlegend=True, addcredible=True, addprediction=True, data_display={}, model_display={}, interval_display={}, fig=None, figsize=None, legloc='upper left', ciset=None, piset=None, return_settings=False): ''' Plot propagation intervals in 2-D This routine takes the model distributions generated using the :func:`~calculate_intervals` method and then plots specific quantiles. The user can plot just the intervals, or also include the median model response and/or observations. Specific settings for credible intervals are controlled by defining the `ciset` dictionary. Likewise, for prediction intervals, settings are defined using `piset`. The setting options available for each interval are as follows: - `limits`: This should be a list of numbers between 0 and 100, e.g., `limits=[50, 90]` will result in 50% and 90% intervals. - `cmap`: The program is designed to "try" to choose colors that are visually distinct. The user can specify the colormap to choose from. - `colors`: The user can specify the color they would like for each interval in a list, e.g., ['r', 'g', 'b']. This list should have the same number of elements as `limits` or the code will revert back to its default behavior. Args: * **intervals** (:py:class:`dict`): Interval dictionary generated using :meth:`calculate_intervals` method. * **time** (:class:`~numpy.ndarray`): Independent variable, i.e., x-axis of plot Kwargs: * **ydata** (:class:`~numpy.ndarray` or None): Observations, expect 1-D array if defined. * **xdata** (:class:`~numpy.ndarray` or None): Independent values corresponding to observations. This is required if the observations do not align with your times of generating the model response. * **limits** (:py:class:`list`): Quantile limits that correspond to percentage size of desired intervals. Note, this is the default limits, but specific limits can be defined using the `ciset` and `piset` dictionaries. * **adddata** (:py:class:`bool`): Flag to include data * **addmodel** (:py:class:`bool`): Flag to include median model response * **addlegend** (:py:class:`bool`): Flag to include legend * **addcredible** (:py:class:`bool`): Flag to include credible intervals * **addprediction** (:py:class:`bool`): Flag to include prediction intervals * **model_display** (:py:class:`dict`): Display settings for median model response * **data_display** (:py:class:`dict`): Display settings for data * **interval_display** (:py:class:`dict`): General display settings for intervals. * **fig**: Handle of previously created figure object * **figsize** (:py:class:`tuple`): (width, height) in inches * **legloc** (:py:class:`str`): Legend location - matplotlib help for details. * **ciset** (:py:class:`dict`): Settings for credible intervals * **piset** (:py:class:`dict`): Settings for prediction intervals * **return_settings** (:py:class:`bool`): Flag to return ciset and piset along with fig and ax. Returns: * (:py:class:`tuple`) with elements 1) Figure handle 2) Axes handle 3) Dictionary with `ciset` and `piset` inside (only outputted if `return_settings=True`) ''' # unpack dictionary credible = intervals['credible'] prediction = intervals['prediction'] # Check user-defined settings ciset = __setup_iset(ciset, default_iset=dict( limits=limits, cmap=None, colors=None)) piset = __setup_iset(piset, default_iset=dict( limits=limits, cmap=None, colors=None)) # Check limits ciset['limits'] = _check_limits(ciset['limits'], limits) piset['limits'] = _check_limits(piset['limits'], limits) # convert limits to ranges ciset['quantiles'] = _convert_limits(ciset['limits']) piset['quantiles'] = _convert_limits(piset['limits']) # setup display settings interval_display, model_display, data_display = setup_display_settings( interval_display, model_display, data_display) # Define colors ciset['colors'] = setup_interval_colors(ciset, inttype='ci') piset['colors'] = setup_interval_colors(piset, inttype='pi') # Define labels ciset['labels'] = _setup_labels(ciset['limits'], inttype='CI') piset['labels'] = _setup_labels(piset['limits'], inttype='PI') if fig is None: fig = plt.figure(figsize=figsize) ax = fig.gca() time = time.reshape(time.size,) # add prediction intervals if addprediction is True: for ii, quantile in enumerate(piset['quantiles']): pi = generate_quantiles(prediction, np.array(quantile)) ax.fill_between(time, pi[0], pi[1], facecolor=piset['colors'][ii], label=piset['labels'][ii], **interval_display) # add credible intervals if addcredible is True: for ii, quantile in enumerate(ciset['quantiles']): ci = generate_quantiles(credible, np.array(quantile)) ax.fill_between(time, ci[0], ci[1], facecolor=ciset['colors'][ii], label=ciset['labels'][ii], **interval_display) # add model (median model response) if addmodel is True: ci = generate_quantiles(credible, np.array(0.5)) ax.plot(time, ci, **model_display) # add data to plot if ydata is not None and adddata is None: adddata = True if adddata is True and ydata is not None: if xdata is None: ax.plot(time, ydata, **data_display) else: ax.plot(xdata, ydata, **data_display) # add legend if addlegend is True: handles, labels = ax.get_legend_handles_labels() ax.legend(handles, labels, loc=legloc) if return_settings is True: return fig, ax, dict(ciset=ciset, piset=piset) else: return fig, ax # -------------------------------------------- def plot_3d_intervals(intervals, time, ydata=None, xdata=None, limits=[95], adddata=False, addlegend=True, addmodel=True, figsize=None, model_display={}, data_display={}, interval_display={}, addcredible=True, addprediction=True, fig=None, legloc='upper left', ciset=None, piset=None, return_settings=False): ''' Plot propagation intervals in 3-D This routine takes the model distributions generated using the :func:`~calculate_intervals` method and then plots specific quantiles. The user can plot just the intervals, or also include the median model response and/or observations. Specific settings for credible intervals are controlled by defining the `ciset` dictionary. Likewise, for prediction intervals, settings are defined using `piset`. The setting options available for each interval are as follows: - `limits`: This should be a list of numbers between 0 and 100, e.g., `limits=[50, 90]` will result in 50% and 90% intervals. - `cmap`: The program is designed to "try" to choose colors that are visually distinct. The user can specify the colormap to choose from. - `colors`: The user can specify the color they would like for each interval in a list, e.g., ['r', 'g', 'b']. This list should have the same number of elements as `limits` or the code will revert back to its default behavior. Args: * **intervals** (:py:class:`dict`): Interval dictionary generated using :meth:`calculate_intervals` method. * **time** (:class:`~numpy.ndarray`): Independent variable, i.e., x- and y-axes of plot. Note, it must be a 2-D array with shape=(N, 2), where N is the number of evaluation points. Kwargs: * **ydata** (:class:`~numpy.ndarray` or None): Observations, expect 1-D array if defined. * **xdata** (:class:`~numpy.ndarray` or None): Independent values corresponding to observations. This is required if the observations do not align with your times of generating the model response. * **limits** (:py:class:`list`): Quantile limits that correspond to percentage size of desired intervals. Note, this is the default limits, but specific limits can be defined using the `ciset` and `piset` dictionaries. * **adddata** (:py:class:`bool`): Flag to include data * **addmodel** (:py:class:`bool`): Flag to include median model response * **addlegend** (:py:class:`bool`): Flag to include legend * **addcredible** (:py:class:`bool`): Flag to include credible intervals * **addprediction** (:py:class:`bool`): Flag to include prediction intervals * **model_display** (:py:class:`dict`): Display settings for median model response * **data_display** (:py:class:`dict`): Display settings for data * **interval_display** (:py:class:`dict`): General display settings for intervals. * **fig**: Handle of previously created figure object * **figsize** (:py:class:`tuple`): (width, height) in inches * **legloc** (:py:class:`str`): Legend location - matplotlib help for details. * **ciset** (:py:class:`dict`): Settings for credible intervals * **piset** (:py:class:`dict`): Settings for prediction intervals * **return_settings** (:py:class:`bool`): Flag to return ciset and piset along with fig and ax. Returns: * (:py:class:`tuple`) with elements 1) Figure handle 2) Axes handle 3) Dictionary with `ciset` and `piset` inside (only outputted if `return_settings=True`) ''' # unpack dictionary credible = intervals['credible'] prediction = intervals['prediction'] # Check user-defined settings ciset = __setup_iset(ciset, default_iset=dict( limits=limits, cmap=None, colors=None)) piset = __setup_iset(piset, default_iset=dict( limits=limits, cmap=None, colors=None)) # Check limits ciset['limits'] = _check_limits(ciset['limits'], limits) piset['limits'] = _check_limits(piset['limits'], limits) # convert limits to ranges ciset['quantiles'] = _convert_limits(ciset['limits']) piset['quantiles'] = _convert_limits(piset['limits']) # setup display settings interval_display, model_display, data_display = setup_display_settings( interval_display, model_display, data_display) # Define colors ciset['colors'] = setup_interval_colors(ciset, inttype='ci') piset['colors'] = setup_interval_colors(piset, inttype='pi') # Define labels ciset['labels'] = _setup_labels(ciset['limits'], inttype='CI') piset['labels'] = _setup_labels(piset['limits'], inttype='PI') if fig is None: fig = plt.figure(figsize=figsize) ax = Axes3D(fig) ax = fig.gca() time1 = time[:, 0] time2 = time[:, 1] # add prediction intervals if addprediction is True: for ii, quantile in enumerate(piset['quantiles']): pi = generate_quantiles(prediction, np.array(quantile)) # Add a polygon instead of fill_between rev = np.arange(time1.size - 1, -1, -1) x = np.concatenate((time1, time1[rev])) y = np.concatenate((time2, time2[rev])) z = np.concatenate((pi[0], pi[1][rev])) verts = [list(zip(x, y, z))] surf = Poly3DCollection(verts, color=piset['colors'][ii], label=piset['labels'][ii]) # Add fix for legend compatibility surf._facecolors2d = surf._facecolors3d surf._edgecolors2d = surf._edgecolors3d ax.add_collection3d(surf) # add credible intervals if addcredible is True: for ii, quantile in enumerate(ciset['quantiles']): ci = generate_quantiles(credible, np.array(quantile)) # Add a polygon instead of fill_between rev = np.arange(time1.size - 1, -1, -1) x = np.concatenate((time1, time1[rev])) y = np.concatenate((time2, time2[rev])) z = np.concatenate((ci[0], ci[1][rev])) verts = [list(zip(x, y, z))] surf = Poly3DCollection(verts, color=ciset['colors'][ii], label=ciset['labels'][ii]) # Add fix for legend compatibility surf._facecolors2d = surf._facecolors3d surf._edgecolors2d = surf._edgecolors3d ax.add_collection3d(surf) # add model (median model response) if addmodel is True: ci = generate_quantiles(credible, np.array(0.5)) ax.plot(time1, time2, ci, **model_display) # add data to plot if ydata is not None and adddata is None: adddata = True if adddata is True: if xdata is None: ax.plot(time1, time2, ydata.reshape(time1.shape), **data_display) else: # User provided xdata array for observation points ax.plot(xdata[:, 0], xdata[:, 1], ydata.reshape(time1.shape), **data_display) # add legend if addlegend is True: handles, labels = ax.get_legend_handles_labels() ax.legend(handles, labels, loc=legloc) if return_settings is True: return fig, ax, dict(ciset=ciset, piset=piset) else: return fig, ax def check_s2chain(s2chain, nsimu): ''' Check size of s2chain Args: * **s2chain** (:py:class:`float`, :class:`~numpy.ndarray`, or `None`): Observation error variance chain or value * **nsimu** (:py:class:`int`): No. of elements in chain Returns: * **s2chain** (:class:`~numpy.ndarray` or `None`) ''' if s2chain is None: return None else: if isinstance(s2chain, float): s2chain = np.ones((nsimu,))*s2chain if s2chain.ndim == 2: if s2chain.shape[0] != nsimu: s2chain = s2chain * np.ones((nsimu, s2chain.size)) else: if s2chain.size != nsimu: # scalars provided for multiple QoI s2chain = s2chain * np.ones((nsimu, s2chain.size)) return s2chain # -------------------------------------------- def observation_sample(s2, y, sstype): ''' Calculate model response with observation errors. Args: * **s2** (:class:`~numpy.ndarray`): Observation error(s). * **y** (:class:`~numpy.ndarray`): Model responses. * **sstype** (:py:class:`int`): Flag to specify sstype. Returns: * **opred** (:class:`~numpy.ndarray`): Model responses with observation errors. ''' if sstype == 0: opred = y + np.random.standard_normal(y.shape) * np.sqrt(s2) elif sstype == 1: # sqrt opred = (np.sqrt(y) + np.random.standard_normal(y.shape) * np.sqrt(s2))**2 elif sstype == 2: # log opred = y*np.exp(np.random.standard_normal(y.shape) * np.sqrt(s2)) else: sys.exit('Unknown sstype') return opred # -------------------------------------------- def define_sample_points(nsample, nsimu): ''' Define indices to sample from posteriors. Args: * **nsample** (:py:class:`int`): Number of samples to draw from posterior. * **nsimu** (:py:class:`int`): Number of MCMC simulations. Returns: * **iisample** (:class:`~numpy.ndarray`): Array of indices in posterior set. * **nsample** (:py:class:`int`): Number of samples to draw from posterior. ''' # define sample points if nsample >= nsimu: iisample = range(nsimu) # sample all points from chain nsample = nsimu else: # randomly sample from chain iisample = np.ceil(np.random.rand(nsample)*nsimu) - 1 iisample = iisample.astype(int) return iisample, nsample # -------------------------------------------- def generate_quantiles(x, p=np.array([0.25, 0.5, 0.75])): ''' Calculate empirical quantiles. Args: * **x** (:class:`~numpy.ndarray`): Observations from which to generate quantile. * **p** (:class:`~numpy.ndarray`): Quantile limits. Returns: * (:class:`~numpy.ndarray`): Interpolated quantiles. ''' # extract number of rows/cols from np.array n = x.shape[0] # define vector valued interpolation function xpoints = np.arange(0, n, 1) interpfun = interp1d(xpoints, np.sort(x, 0), axis=0) # evaluation points itpoints = (n - 1)*p return interpfun(itpoints) def setup_display_settings(interval_display, model_display, data_display): ''' Compare user defined display settings with defaults and merge. Args: * **interval_display** (:py:class:`dict`): User defined settings for interval display. * **model_display** (:py:class:`dict`): User defined settings for model display. * **data_display** (:py:class:`dict`): User defined settings for data display. Returns: * **interval_display** (:py:class:`dict`): Settings for interval display. * **model_display** (:py:class:`dict`): Settings for model display. * **data_display** (:py:class:`dict`): Settings for data display. ''' # Setup interval display default_interval_display = dict( linestyle=':', linewidth=1, alpha=1.0, edgecolor='k') interval_display = check_settings(default_interval_display, interval_display) # Setup model display default_model_display = dict( linestyle='-', color='k', marker='', linewidth=2, markersize=5, label='Model') model_display = check_settings(default_model_display, model_display) # Setup data display default_data_display = dict( linestyle='', color='b', marker='.', linewidth=1, markersize=5, label='Data') data_display = check_settings(default_data_display, data_display) return interval_display, model_display, data_display def setup_interval_colors(iset, inttype='CI'): ''' Setup colors for empirical intervals This routine attempts to distribute the color of the UQ intervals based on a normalize color map. Or, it will assign user-defined colors; however, this only happens if the correct number of colors are specified. Args: * **iset** (:py:class:`dict`): This dictionary should contain the following keys - `limits`, `cmap`, and `colors`. Kwargs: * **inttype** (:py:class:`str`): Type of uncertainty interval Returns: * **ic** (:py:class:`list`): List containing color for each interval ''' limits, cmap, colors = iset['limits'], iset['cmap'], iset['colors'] norm = __setup_cmap_norm(limits) cmap = __setup_default_cmap(cmap, inttype) # assign colors using color map or using colors defined by user ic = [] if colors is None: # No user defined colors for limits in limits: ic.append(cmap(norm(limits))) else: if len(colors) == len(limits): # correct number of colors defined for color in colors: ic.append(color) else: # User defined the wrong number of colors print('Note, user-defined colors were ignored. Using color map. ' + 'Expected a list of length {}, but received {}'.format( len(limits), len(colors))) for limits in limits: ic.append(cmap(norm(limits))) return ic # -------------------------------------------- def _setup_labels(limits, inttype='CI'): ''' Setup labels for prediction/credible intervals. ''' labels = [] for limit in limits: labels.append(str('{}% {}'.format(limit, inttype))) return labels def _check_limits(limits, default_limits): if limits is None: limits = default_limits limits.sort(reverse=True) return limits def _convert_limits(limits): rng = [] for limit in limits: limit = limit/100 rng.append([0.5 - limit/2, 0.5 + limit/2]) return rng def __setup_iset(iset, default_iset): ''' Setup interval settings by comparing user input to default ''' if iset is None: iset = {} iset = check_settings(default_iset, iset) return iset def __setup_cmap_norm(limits): if len(limits) == 1: norm = mplcolor.Normalize(vmin=0, vmax=100) else: norm = mplcolor.Normalize(vmin=min(limits), vmax=max(limits)) return norm def __setup_default_cmap(cmap, inttype): if cmap is None: if inttype.upper() == 'CI': cmap = cm.autumn else: cmap = cm.winter return cmap
py
7dfeb3846b3c1e387f71b5244f435e9940cd4a2e
#!/usr/bin/python # Copyright (c) 2011 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import shutil, sys; """ Copy File. This module works much like the cp posix command - it takes 2 arguments: (src, dst) and copies the file with path |src| to |dst|. """ def Main(src, dst): return shutil.copyfile(src, dst) if __name__ == '__main__': sys.exit(Main(sys.argv[1], sys.argv[2]))
py
7dfeb3f4f7c1d389612e800109c9ba39c35ceb93
input = """ %#maxint=10. %number(0..10). q(C) :- number(C). a | b :- p(A,B), q(C), r(X,A), q(X), not s(X), not t(C). p(1,1). r(3,1). s(5). s(0). t(0). t(2). """ output = """ %#maxint=10. %number(0..10). q(C) :- number(C). a | b :- p(A,B), q(C), r(X,A), q(X), not s(X), not t(C). p(1,1). r(3,1). s(5). s(0). t(0). t(2). """
py
7dfeb490479e24d8548934ee8891e774440e26d1
from django.urls import path from . import views urlpatterns = [ path("", views.IndexRedirectView.as_view()), ]
py
7dfeb4c72f1db3152a850607476bdfe94ab9a4a0
from typing import List from ..object import Object from pyrogram import raw, utils, types import pyrogram class Channel(Object): def __init__( self, *, client: "pyrogram.Client" = None, id: int = None, title: str = None, is_forbidden: bool = None, forbidden_until: int = None, username: str = None, photo: "types.ChatPhoto" = None, is_creator: bool = None, left: bool = None, is_broadcast: bool = None, is_verified: bool = None, is_supergroup: bool = None, is_restricted: bool = None, signatures_enabled: bool = None, min: bool = None, is_scam: bool = None, is_fake: bool = None, has_private_join_link: bool = None, has_geo: bool = None, slow_mode: bool = None, access_hash: int = None, date: int = None, version: int = None, restrictions: List["types.Restriction"] = None, admin_rights: "types.ChatAdminRights" = None, banned_rights: "types.ChatPermissions" = None, default_banned_rights: "types.ChatPermissions" = None, members_count: int = None, ): super().__init__(client) self.id = id self.title = title self.is_forbidden = is_forbidden self.forbidden_until = forbidden_until self.username = username self.photo = photo self.is_creator = is_creator self.left = left self.is_broadcast = is_broadcast self.is_verified = is_verified self.is_supergroup = is_supergroup self.is_restricted = is_restricted self.signatures_enabled = signatures_enabled self.min = min self.is_scam = is_scam self.is_fake = is_fake self.has_private_join_link = has_private_join_link self.has_geo = has_geo self.slow_mode = slow_mode self.access_hash = access_hash self.date = date self.version = version self.restrictions = restrictions self.admin_rights = admin_rights self.banned_rights = banned_rights self.default_banned_rights = default_banned_rights self.members_count = members_count @staticmethod def _parse(client, channel): if channel is None: return None peer_id = utils.get_channel_id(channel.id) return Channel( client=client, id=peer_id, title=getattr(channel, 'title', None), is_forbidden=isinstance(channel, raw.types.ChannelForbidden), forbidden_until=getattr(channel, 'until_date', None), username=getattr(channel, 'username', None), photo=types.ChatPhoto._parse(client, getattr(channel, "photo", None), peer_id, getattr(channel, 'access_hash', 0)), is_creator=getattr(channel, 'creator', None), left=getattr(channel, 'left', None), is_broadcast=getattr(channel, 'broadcast', None), is_verified=getattr(channel, 'verified', None), is_supergroup=getattr(channel, 'megagroup', None), is_restricted=getattr(channel, 'restricted', None), signatures_enabled=getattr(channel, 'signatures', None), min=getattr(channel, 'min', None), is_scam=getattr(channel, 'scam', None), is_fake=getattr(channel, "fake", None), has_private_join_link=getattr(channel, 'has_link', None), has_geo=getattr(channel, 'has_geo', None), slow_mode=getattr(channel, 'slowmode_enabled', None), access_hash=getattr(channel, 'access_hash', None), date=getattr(channel, 'date', None), version=getattr(channel, 'version', None), restrictions=types.List( [types.Restriction._parse(r) for r in getattr(channel, 'restriction_reason', [])]) or None, admin_rights=types.ChatAdminRights._parse(getattr(channel, 'admin_rights', None)), banned_rights=types.ChatPermissions._parse(getattr(channel, 'banned_rights', None)), default_banned_rights=types.ChatPermissions._parse(getattr(channel, 'default_banned_rights', None)), members_count=getattr(channel, 'participants_count', None), ) @staticmethod def _parse_input_channel(client: "pyrogram.Client", input_channel: raw.types.InputChannel): if input_channel is None: return None peer_id = utils.get_channel_id(input_channel.channel_id) return Channel( client=client, id=peer_id, access_hash=getattr(input_channel, 'access_hash', None), )
py
7dfeb5040afd6bfd883f33ab5353f730b58cd5b8
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "mips.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
py
7dfeb50f443e313e7f311027daac78f3c9ae4c26
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Build a block by the txs with minimum hash value """ def buildGoodEblock(node, numTxInBlock, termNum = 0): # ascending sort by hash sortedEblock = sorted(node.epool, key=lambda tx: tx.sha256ToInt("%s" % (termNum))) block = sortedEblock[:numTxInBlock] return block """ Build a block by the using b (num of txs in a block) different hash functions and taking the txs that minimize each hash """ def buildGoodEblockMultipleHashFunc(node, numTxInBlock): # TODO finish this procedure for i in range(numTxInBlock): # ascending sort by hash sortedEpool = sorted(node.epool, \ key=lambda tx: tx.sha256ToInt("%s" % (i))) block = sortedEpool[:numTxInBlock] return block """ Build a block by taking txs with hash value lower than some threshold """ def buildGoodEblockConstThreshold(node, numTxInBlock, threshold): epool = node.epool block = [] blockSize = 0 for tx in epool: if tx.hashInt < threshold: block.append(tx) blockSize += 1 if blockSize >= numTxInBlock: break return block
py
7dfeb54d24029a171db52f3fb2998342e2f19a63
#Devloper: JuanAstaiza #Date: 20-Sep-2021 ''' Descripción: Este es nuestro primer script pyhton con Python. Este script genera una ventana en PyGame con el título ¡Hello world! ''' #1. Importar librerias / paquetes import pygame import sys # 2. Inicializar Pygame pygame.init(); # 3. Dimenzionar (w x h) el tamaño de la ventana del video juego # Configuraciones generales de la ventana (WxH,title,Color) width=800 height=400 mywindow=pygame.display.set_mode((width,height)) pygame.display.set_caption("Number Race v 1.0") #Cargar imagen icon = pygame.image.load('images/car.png') #setear imagen pygame.display.set_icon(icon) # Setear Colores R(red) G (Green) B (Blue) => HxD # RGB => 0-225 #Primera opción white = pygame.Color(255,255,255) red = pygame.Color(255,0,0) green = pygame.Color(0,255,0) blue = pygame.Color(0,0,255) x = pygame.Color(140,217,150) y = pygame.Color(255,229,143) #Segunda opción bgColor = (100,100,100) #Figuras ##Restangulo rect1=pygame.Rect(150,300,150,50) #x,y,w,h rect2=pygame.Rect(350,230,150,50) #x,y,w,h rect1.center = (width // 2,height // 2) #El punto medio 800 (División de asignación) - CALCULA EL ALTO DE LA PANTALLA PARA SABER EL PUNTO INTEMEDIO print(rect2.x) print(rect2.y) ##Circulo #4. Mantener visible / abierta la ventana en pantalla while True: for event in pygame.event.get(): if event.type == pygame.QUIT: # Valida si usuario presionó cerrar x pygame.quit() # Cierra la ventana sys.exit() # Cierra mywindow.fill(x) pygame.draw.rect(mywindow,red,rect1) # contexto (ventana) ,color ,rectangulo pygame.draw.rect(mywindow,blue,rect2) # contexto (ventana) ,color ,rectangulo pygame.draw.rect(mywindow,green,(50,50,50,50)) pygame.draw.line(mywindow,red,(10,10),(300,10),5) pygame.draw.circle(mywindow,y,(400,200),100) pygame.draw.polygon(mywindow, blue,((0,300), (100,200),(200,300))) pygame.display.update()
py
7dfeb585ad3cee27b83a42be93794ce6ca904db5
from django.apps import AppConfig #registry of model streams class policyEngineConfig(AppConfig): name = 'policyengine' def ready(self): import policyengine.handlers from actstream import registry registry.register(self.get_model('GovernableAction')) registry.register(self.get_model('GovernableActionBundle')) registry.register(self.get_model('Policy')) registry.register(self.get_model('CommunityUser')) registry.register(self.get_model('CommunityRole')) registry.register(self.get_model('BooleanVote')) registry.register(self.get_model('NumberVote')) registry.register(self.get_model('Proposal')) registry.register(self.get_model('CommunityDoc'))
py
7dfeb5a8aaa0321d95dbe55f28247e44bd5d83b0
print("Kinjal Raykarmakar\nSec: CSE2H\tRoll: 29\n") word = input("Enter a word: ") print(word[::-1])
py
7dfeb5e6bde4f2ecf90b2479e18aa0aa9ee0bd6a
############################################################################## # # Copyright (c) 2001, 2002 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """ Pretty-Print an Interface object as structured text (Yum) This module provides a function, asStructuredText, for rendering an interface as structured text. """ import zope.interface def asStructuredText(I, munge=0): """ Output structured text format. Note, this will whack any existing 'structured' format of the text. """ r = [I.getName()] outp = r.append level = 1 if I.getDoc(): outp(_justify_and_indent(_trim_doc_string(I.getDoc()), level)) bases = [base for base in I.__bases__ if base is not zope.interface.Interface ] if bases: outp(_justify_and_indent("This interface extends:", level, munge)) level += 1 for b in bases: item = "o %s" % b.getName() outp(_justify_and_indent(_trim_doc_string(item), level, munge)) level -= 1 namesAndDescriptions = sorted(I.namesAndDescriptions()) outp(_justify_and_indent("Attributes:", level, munge)) level += 1 for name, desc in namesAndDescriptions: if not hasattr(desc, 'getSignatureString'): # ugh... item = "%s -- %s" % (desc.getName(), desc.getDoc() or 'no documentation') outp(_justify_and_indent(_trim_doc_string(item), level, munge)) level -= 1 outp(_justify_and_indent("Methods:", level, munge)) level += 1 for name, desc in namesAndDescriptions: if hasattr(desc, 'getSignatureString'): # ugh... item = "%s%s -- %s" % (desc.getName(), desc.getSignatureString(), desc.getDoc() or 'no documentation') outp(_justify_and_indent(_trim_doc_string(item), level, munge)) return "\n\n".join(r) + "\n\n" def _trim_doc_string(text): """ Trims a doc string to make it format correctly with structured text. """ lines = text.replace('\r\n', '\n').split('\n') nlines = [lines.pop(0)] if lines: min_indent = min([len(line) - len(line.lstrip()) for line in lines]) for line in lines: nlines.append(line[min_indent:]) return '\n'.join(nlines) def _justify_and_indent(text, level, munge=0, width=72): """ indent and justify text, rejustify (munge) if specified """ indent = " " * level if munge: lines = [] line = indent text = text.split() for word in text: line = ' '.join([line, word]) if len(line) > width: lines.append(line) line = indent else: lines.append(line) return '\n'.join(lines) else: return indent + \ text.strip().replace("\r\n", "\n") .replace("\n", "\n" + indent)
py
7dfeb5ecaaaee43220e0e4369bd828153d0545c5
# -*- coding: utf-8 -*- import json from chanjo.cli import root from chanjo.store.models import Sample from chanjo.cli.calculate import dump_json def test_mean(popexist_db, cli_runner): # GIVEN an existing databse with one sample assert Sample.query.count() == 1 # WHEN assessing the mean values metrics per sample res = cli_runner.invoke(root, ['-d', popexist_db.uri, 'calculate', 'mean']) # THEN the command should return JSON results assert res.exit_code == 0 # ... returns some debug info to STDERR that we strip away lines = res.output.strip().split('\n') assert len(lines) == 1 # ... the last row (no incl. empty line) is JSON formatted data = json.loads(lines[0].strip()) assert data['sample_id'] == 'sample' assert isinstance(data['mean_coverage'], float) def test_dump_json(): # GIVEN some dict data = {'name': 'PT Anderson', 'age': 45} # WHEN dumping to JSON with pretty-option enabled json = dump_json(data, pretty=True) # THEN the output is formatted over multiple lines assert isinstance(json, str) assert len(json.split('\n')) == 4
py
7dfeb6cce093abab78fbdfca356c5d8f79edc874
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # Thanks to https://devblogs.microsoft.com/cppblog/clear-functional-c-documentation-with-sphinx-breathe-doxygen-cmake/ # This calls doxygen when we are running RTD # Doxygen XML output in saved in docs/doxygen_output/xml # This is then parsed using breathe and sphinx, using output from docs/doxygen_output/xml import subprocess, os # Check if we're running on Read the Docs' servers read_the_docs_build = os.environ.get('READTHEDOCS', None) == 'True' breathe_projects = {} if read_the_docs_build: subprocess.call('doxygen', shell=True) breathe_projects['TaskTorrent'] = 'doxygen_output/xml/' # -- Project information ----------------------------------------------------- project = 'TaskTorrent' copyright = '2019-2020, Leopold Cambier' author = 'Leopold Cambier' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "breathe" ] breathe_default_project = "TaskTorrent" # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static']
py
7dfeb845ef24d4653bf1b8a490d35b3a0f281fa9
# Copyright 2020 Mario Graff Guerrero # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from re import T from typing import Callable, Iterable, List, Union from b4msa.textmodel import TextModel from microtc.utils import load_model from microtc import emoticons from EvoMSA.utils import download from collections import OrderedDict, defaultdict from microtc.utils import Counter from os.path import isfile, join, dirname from microtc.textmodel import TextModel from microtc.params import OPTION_DELETE, OPTION_NONE from microtc.utils import tweet_iterator from .place import BoundingBox, location try: from tqdm import tqdm except ImportError: def tqdm(x, **kwargs): return x class Dataset(object): """ Self-supervised learning requires the automatic construction of a labeled dataset. This class contains different methods to facilitate the build of this type of dataset, starting from an unlabeled corpus. >>> from text_models.dataset import Dataset >>> dataset = Dataset() >>> dataset.add(dataset.load_emojis()) >>> dataset.add(dataset.tm_words()) >>> result = dataset.klass("good morning Mexico") >>> dataset.process("good morning Mexico") ['~', '~mexico~'] """ def __init__(self, lang="En"): self._lang = lang self._map = dict() @property def textModel(self): "Text model used to process the texts" try: return self._tm except AttributeError: self._tm = load_model(download("b4msa_%s.tm" % self._lang)) return self._tm @staticmethod def load_emojis(): def download(fname): from urllib import request import os output = fname.split("/")[-1] if os.path.isfile(output): return output request.urlretrieve(fname, output) return output if isfile(join(dirname(__file__), "data", "emojis.dict")): return load_model(join(dirname(__file__), "data", "emojis.dict")) data = "https://www.unicode.org/Public/emoji/12.1/emoji-data.txt" sec = "https://www.unicode.org/Public/emoji/12.1/emoji-sequences.txt" var ="https://www.unicode.org/Public/emoji/12.1/emoji-variation-sequences.txt" zwj = "https://www.unicode.org/Public/emoji/12.1/emoji-zwj-sequences.txt" emos = emoticons.read_emoji_standard(download(data)) emoticons.read_emoji_standard(download(sec), emos) emoticons.read_emoji_standard(download(var), emos) emoticons.read_emoji_standard(download(zwj), emos) return {x: True for x in emos.keys()} def tm_words(self): """ Text model words :rtype: dict """ tm = self.textModel.text_transformations emos = self.load_emojis() words = [tm(k) for k in self.textModel.model.word2id.keys() if k[:2] != "q:" and k.count("~") == 0 and k not in emos] words.sort() _ = OrderedDict([(w, True) for w in words]) return _ def aggress_words(self): from EvoMSA import base from microtc.utils import tweet_iterator import os lang = self._lang.lower() fname = os.path.join(os.path.dirname(base.__file__), 'conf', 'aggressiveness.%s' % lang) data = list(tweet_iterator(fname))[0] tm = self.textModel.text_transformations return {tm(x): True for x in data["words"]} def affective_words(self): from ConceptModelling import text_preprocessing as base from microtc.utils import tweet_iterator import os lang = self._lang.lower() fname = os.path.join(os.path.dirname(base.__file__), 'data', '%s.affective.words.json' % lang) tm = self.textModel.text_transformations words = dict() for data in tweet_iterator(fname): words.update({tm(x): True for x in data["words"]}) return words @property def klasses(self): """Labels or words""" try: return self._words except AttributeError: self._words = OrderedDict() return self._words def add(self, data): """ Add words to the processor :param data: words :type data: dict """ self._map.update({k: v for k, v in data.items() if not isinstance(v, bool)}) words = self.klasses words.update(data) if hasattr(self, "_data_structure"): del self._data_structure @property def data_structure(self): try: return self._data_structure except AttributeError: _ = emoticons.create_data_structure self._data_structure = _(self.klasses) return self._data_structure def klass(self, text): """ Labels in a text :param text: :type text: str :returns: The labels in the text :rtype: set """ get = self._map.get text = self.textModel.text_transformations(text) lst = self.find_klass(text) _ = [text[a:b] for a, b in lst] return set([get(x, x) for x in _]) def find_klass(self, text): """Obtain the position of each label in the text :param text: text :type text: str :return: list of pairs, init and end of the word :rtype: list """ blocks = list() init = i = end = 0 head = self.data_structure current = head text_length = len(text) while i < text_length: char = text[i] try: current = current[char] i += 1 if "__end__" in current: end = i except KeyError: current = head if end > init: blocks.append([init, end]) if (end - init) > 2 and text[end - 1] == '~': init = i = end = (end - 1) else: init = i = end elif i > init: if (i - init) > 2 and text[i - 1] == '~': init = end = i = (i - 1) else: init = end = i else: init += 1 i = end = init if end > init: blocks.append([init, end]) return blocks def process(self, text, klass=None): """ Remove klass from text :param text: :type text: str :param klass: :type klass: str :rtype: list """ text = self.textModel.text_transformations(text) lst = self.find_klass(text) if klass is not None: lst = [[a, b] for a, b in lst if text[a:b] == klass] lst.reverse() init = 0 B = [] text_len = len(text) while len(lst): a, b = lst.pop() if (b - a) > 2: if a < text_len and text[a] == "~" and a > 0: a += 1 if b > 0 and text[b-1] == "~" and b < text_len: b -= 1 B.append(text[init:a]) init = b if init < len(text): B.append(text[init:]) return [x for x in B if len(x)] def remove(self, klass): """ Remove label from the processor :param klass: :type klass: str """ del self.klasses[klass] if hasattr(self, "_data_structure"): del self._data_structure class TokenCount(object): """Count frequency""" def __init__(self, tokenizer: Callable[[Union[str, dict]], Iterable[str]]) -> None: self._tokenizer = tokenizer self._counter = Counter() @property def counter(self) -> Counter: return self._counter @property def num_documents(self) -> int: return self.counter.update_calls def process(self, iterable: Iterable[Union[str, dict]]) -> None: pl = self.process_line [pl(line) for line in iterable] def process_line(self, txt: Union[str, dict]) -> None: self.counter.update(self._tokenizer(txt)) def clean(self) -> None: counter = self.counter min_value = 0.0001 * counter.update_calls min_value = max(2, min_value) keys = list(counter.keys()) for k in keys: if counter[k] <= min_value: del counter[k] @staticmethod def textModel(token_list) -> TextModel: tm = TextModel(num_option=OPTION_DELETE, usr_option=OPTION_NONE, url_option=OPTION_DELETE, emo_option=OPTION_NONE, hashtag_option=OPTION_NONE, del_dup=False, del_punc=True, token_list=token_list) return tm @classmethod def bigrams(cls) -> "TokenCount": tm = cls.textModel(token_list=[-2]) return cls(tokenizer=tm.tokenize) @classmethod def co_ocurrence(cls) -> "TokenCount": tm = cls.textModel(token_list=[-1]) def co_ocurrence(txt): tokens = tm.tokenize(txt) for k, frst in enumerate(tokens[:-1]): for scnd in tokens[k+1:]: if frst == scnd: yield frst else: _ = [frst, scnd] _.sort() yield "~".join(_) return cls(tokenizer=co_ocurrence) @classmethod def single_co_ocurrence(cls) -> "TokenCount": tm = cls.textModel(token_list=[-1]) def co_ocurrence(txt): tokens = tm.tokenize(txt) for k, frst in enumerate(tokens[:-1]): for scnd in tokens[k+1:]: if frst != scnd: _ = [frst, scnd] _.sort() yield "~".join(_) for x in tokens: yield x return cls(tokenizer=co_ocurrence) class GeoFrequency(object): def __init__(self, fnames: Union[list, str], reader: Callable[[str], Iterable[dict]]=tweet_iterator) -> None: self._fnames = fnames if isinstance(fnames, list) else [fnames] self._reader = reader self._label = BoundingBox().label self._data = defaultdict(TokenCount.single_co_ocurrence) _ = join(dirname(__file__), "data", "state.dict") self._states = load_model(_) @property def data(self) -> defaultdict: return self._data def compute(self) -> None: for fname in tqdm(self._fnames): self.compute_file(fname) def compute_file(self, fname: str) -> None: label = self._label states = self._states data = self._data for line in self._reader(fname): try: country, geo = None, None country = line["place"]["country_code"] geo = label(dict(position=location(line), country=country)) geo = states[geo] except Exception: pass if geo is not None: data[geo].process_line(line) elif country is not None: data[country].process_line(line) else: data["nogeo"].process_line(line) def clean(self) -> None: keys = list(self.data.keys()) data = self.data max_value = max([x.num_documents for x in data.values()]) min_value = 0.0001 * max_value min_value = max(2, min_value) for key in keys: data[key].clean() if len(data[key].counter) == 0 or data[key].num_documents <= min_value: del data[key]
py
7dfeb887ef361d3b25970046065979cd6edf54a6
import sys from grndiag.parser import Parser if sys.version_info < (2, 7): import unittest2 as unittest else import unittest class TestParser(unittest.TestCase):
py
7dfeb8ab7ba61e04844b1e80b5f16dce88285c03
import requests import json from .helper import Helper """ - ERROR 403 v1/celery_tasks/last/ - ERROR 404 v1/celery_tasks/last/{org_pk}/ """ class Celery_tasks(Helper): def __init__(self, base_url, org_pk, teams_pk, access_token, _csrf_token, headers, pagination): super().__init__(base_url, org_pk, teams_pk, access_token, _csrf_token, headers, pagination) # TODO GET on /api/v1/celery_tasks/last/ def get_last_celery_task(self): """ """ route = 'v1/celery_tasks/last/{0}/'.format(self.org_pk) response = self.process_request(requests, 'GET', self.base_url, route, self.headers, None, None) return self.process_response(response) def get_celery_tasks_list(self, page=1): """ Get the list of celery tasks """ route = 'v1/celery_tasks/list/{0}/?page_size={1}&page={2}'.format(self.org_pk, self.pagination, page) response = self.process_request(requests, 'GET', self.base_url, route, self.headers, None, None) return self.process_response(response)
py
7dfeb95f803dbc59f20f65547a1017edaf039247
# -*- coding: utf-8 -*- """ smash.models.verify_model_response This file was automatically generated for SMASH by SMASH v2.0 ( https://smashlabs.io ) """ class VerifyModelResponse(object): """Implementation of the 'Verify Model Response' model. TODO: type model description here. Attributes: request (string): TODO: type description here. to (string): TODO: type description here. verified (string): TODO: type description here. id (string): TODO: type description here. """ # Create a mapping from Model property names to API property names _names = { "request" : "request", "to" : "to", "verified" : "verified", "id" : "id" } def __init__(self, request=None, to=None, verified=None, id=None, additional_properties = {}): """Constructor for the VerifyModelResponse class""" # Initialize members of the class self.request = request self.to = to self.verified = verified self.id = id # Add additional model properties to the instance self.additional_properties = additional_properties @classmethod def from_dictionary(cls, dictionary): """Creates an instance of this model from a dictionary Args: dictionary (dictionary): A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class. """ if dictionary is None: return None # Extract variables from the dictionary request = dictionary.get("request") to = dictionary.get("to") verified = dictionary.get("verified") id = dictionary.get("id") # Clean out expected properties from dictionary for key in cls._names.values(): if key in dictionary: del dictionary[key] # Return an object of this model return cls(request, to, verified, id, dictionary)
py
7dfeba78bae3cc5f2942ef3697d3353d7339d799
import pytest from pandas.util import testing as tm import ibis from ibis.backends.base_file import FileDatabase from ibis.backends.csv import CSVClient, CSVTable @pytest.fixture def transformed(csv): # we need to cast to a timestamp type # as we read in as strings closes = csv.csv_dir.close closes = closes.mutate(time=closes.time.cast('timestamp')) opens = csv.csv_dir.open opens = opens.mutate(time=opens.time.cast('timestamp')) t = opens.inner_join(closes, ['time', 'ticker']) t = t[opens, closes.close] t = t.mutate(avg=(t.open + t.close) / 2) t = t[['time', 'ticker', 'avg']] return t def test_client(tmpdir, file_backends_data): # construct with a path to a file csv = tmpdir for k, v in file_backends_data.items(): f = csv / '{}.csv'.format(k) v.to_csv(str(f), index=False) c = CSVClient(csv / 'open.csv') assert c.list_databases() == [] assert c.list_tables() == ['open'] c = CSVClient(csv / 'close.csv') assert c.list_databases() == [] assert c.list_tables() == ['close'] def test_navigation(csv): # directory navigation assert isinstance(csv, FileDatabase) result = dir(csv) assert result == ['csv_dir'] prices = csv.csv_dir assert isinstance(prices, FileDatabase) result = dir(prices) assert result == ['close', 'open'] result = prices.list_tables() assert result == ['close', 'open'] opens = prices.open assert isinstance(opens.op(), CSVTable) closes = prices.close assert isinstance(closes.op(), CSVTable) def test_read(csv, file_backends_data): closes = csv.csv_dir.close assert str(closes) is not None result = closes.execute() expected = file_backends_data['close'] # csv's don't preserve dtypes expected['time'] = expected['time'].astype(str) tm.assert_frame_equal(result, expected) result = closes.execute() tm.assert_frame_equal(result, expected) def test_read_with_projection(csv2, file_backends_data): t = csv2.csv_dir2.df result = t.execute() assert 'close' in result.columns assert 'open' in result.columns t = t[['time', 'ticker', 'close']] result = t.execute() assert 'close' in result.columns assert 'open' not in result.columns def test_insert(transformed, tmpdir): t = transformed # csv's don't preserve dtypes expected = t.execute() expected['time'] = expected['time'].astype(str) tpath = tmpdir / 'new_csv' tpath.mkdir() path = tpath / 'foo.csv' assert not path.exists() c = ibis.csv.connect(tpath) c.insert('foo.csv', t) assert path.exists() # readback t = CSVClient(str(tpath)).database() result = t.list_tables() assert result == ['foo'] result = t.foo.execute() tm.assert_frame_equal(result, expected)
py
7dfebab94a2f56763b3a46192868fb888f305971
# -*- coding: utf-8 -*- # Copyright 2014 Objectif Libre # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from glanceclient import client as glance_client from keystoneauth1 import loading as ks_loading from oslo_config import cfg from oslo_log import log LOG = log.getLogger(__name__) CONF = cfg.CONF def drop_resource(service, resource_id): _glance_client = GlanceClient() if service == 'image': _glance_client.delete_image(resource_id) class GlanceClient(object): def __init__(self): ks_loading.register_session_conf_options(CONF, "glance_client") ks_loading.register_auth_conf_options(CONF, "glance_client") self.auth = ks_loading.load_auth_from_conf_options( CONF, "glance_client") self.session = ks_loading.load_session_from_conf_options( CONF, "glance_client", auth=self.auth) self.glance_client = glance_client.Client( version='1', session=self.session, auth=self.auth) def delete_image(self, image_id, region_name=None): self.glance_client.images.delete(image_id)
py
7dfebb0b60e95620e6d159c0a161d0e61a5f9d13
#!/usr/bin/python # coding: utf-8 -*- # (c) 2017, Wayne Witzel III <[email protected]> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: tower_host version_added: "2.3" author: "Wayne Witzel III (@wwitzel3)" short_description: create, update, or destroy Ansible Tower host. description: - Create, update, or destroy Ansible Tower hosts. See U(https://www.ansible.com/tower) for an overview. options: name: description: - The name to use for the host. required: True type: str description: description: - The description to use for the host. type: str inventory: description: - Inventory the host should be made a member of. required: True type: str enabled: description: - If the host should be enabled. type: bool default: 'yes' variables: description: - Variables to use for the host. Use C(@) for a file. type: str state: description: - Desired state of the resource. choices: ["present", "absent"] default: "present" type: str extends_documentation_fragment: awx.awx.auth ''' EXAMPLES = ''' - name: Add tower host tower_host: name: localhost description: "Local Host Group" inventory: "Local Inventory" state: present tower_config_file: "~/tower_cli.cfg" variables: example_var: 123 ''' import os from ..module_utils.ansible_tower import TowerModule, tower_auth_config, tower_check_mode try: import tower_cli import tower_cli.exceptions as exc from tower_cli.conf import settings except ImportError: pass def main(): argument_spec = dict( name=dict(required=True), description=dict(), inventory=dict(required=True), enabled=dict(type='bool', default=True), variables=dict(), state=dict(choices=['present', 'absent'], default='present'), ) module = TowerModule(argument_spec=argument_spec, supports_check_mode=True) name = module.params.get('name') description = module.params.get('description') inventory = module.params.get('inventory') enabled = module.params.get('enabled') state = module.params.get('state') variables = module.params.get('variables') if variables: if variables.startswith('@'): filename = os.path.expanduser(variables[1:]) with open(filename, 'r') as f: variables = f.read() json_output = {'host': name, 'state': state} tower_auth = tower_auth_config(module) with settings.runtime_values(**tower_auth): tower_check_mode(module) host = tower_cli.get_resource('host') try: inv_res = tower_cli.get_resource('inventory') inv = inv_res.get(name=inventory) if state == 'present': result = host.modify(name=name, inventory=inv['id'], enabled=enabled, variables=variables, description=description, create_on_missing=True) json_output['id'] = result['id'] elif state == 'absent': result = host.delete(name=name, inventory=inv['id']) except (exc.NotFound) as excinfo: module.fail_json(msg='Failed to update host, inventory not found: {0}'.format(excinfo), changed=False) except (exc.ConnectionError, exc.BadRequest, exc.AuthError) as excinfo: module.fail_json(msg='Failed to update host: {0}'.format(excinfo), changed=False) json_output['changed'] = result['changed'] module.exit_json(**json_output) if __name__ == '__main__': main()
py
7dfebb0d3c654dd83dd83085ca7624687dc9e4da
# coding: utf-8 """ SendinBlue API SendinBlue provide a RESTFul API that can be used with any languages. With this API, you will be able to : - Manage your campaigns and get the statistics - Manage your contacts - Send transactional Emails and SMS - and much more... You can download our wrappers at https://github.com/orgs/sendinblue **Possible responses** | Code | Message | | :-------------: | ------------- | | 200 | OK. Successful Request | | 201 | OK. Successful Creation | | 202 | OK. Request accepted | | 204 | OK. Successful Update/Deletion | | 400 | Error. Bad Request | | 401 | Error. Authentication Needed | | 402 | Error. Not enough credit, plan upgrade needed | | 403 | Error. Permission denied | | 404 | Error. Object does not exist | | 405 | Error. Method not allowed | | 406 | Error. Not Acceptable | # noqa: E501 OpenAPI spec version: 3.0.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class RemainingCreditModel(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'child': 'RemainingCreditModelChild', 'reseller': 'RemainingCreditModelReseller' } attribute_map = { 'child': 'child', 'reseller': 'reseller' } def __init__(self, child=None, reseller=None): # noqa: E501 """RemainingCreditModel - a model defined in Swagger""" # noqa: E501 self._child = None self._reseller = None self.discriminator = None self.child = child self.reseller = reseller @property def child(self): """Gets the child of this RemainingCreditModel. # noqa: E501 :return: The child of this RemainingCreditModel. # noqa: E501 :rtype: RemainingCreditModelChild """ return self._child @child.setter def child(self, child): """Sets the child of this RemainingCreditModel. :param child: The child of this RemainingCreditModel. # noqa: E501 :type: RemainingCreditModelChild """ if child is None: raise ValueError("Invalid value for `child`, must not be `None`") # noqa: E501 self._child = child @property def reseller(self): """Gets the reseller of this RemainingCreditModel. # noqa: E501 :return: The reseller of this RemainingCreditModel. # noqa: E501 :rtype: RemainingCreditModelReseller """ return self._reseller @reseller.setter def reseller(self, reseller): """Sets the reseller of this RemainingCreditModel. :param reseller: The reseller of this RemainingCreditModel. # noqa: E501 :type: RemainingCreditModelReseller """ if reseller is None: raise ValueError("Invalid value for `reseller`, must not be `None`") # noqa: E501 self._reseller = reseller def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(RemainingCreditModel, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, RemainingCreditModel): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
py
7dfebbc9bc1eb680e56c77fb96a186ab7f90e1be
import os, sys, re, json from subprocess import Popen, PIPE, STDOUT # By default use builds/ammo.js. Or the commandline argument can override that. build = os.path.join('builds', 'temp.js') if len(sys.argv) > 1: build = sys.argv[1] print 'Using build:', build exec(open(os.path.expanduser('~/.emscripten'), 'r').read()) JS_ENGINE = SPIDERMONKEY_ENGINE #JS_ENGINE = V8_ENGINE # Note: fails stress due to floating point differences print print '===================================' print def run(filename): if JS_ENGINE == SPIDERMONKEY_ENGINE: return Popen(JS_ENGINE + ['-e', 'gcparam("maxBytes", 1024*1024*1024); load("' + build + '"); load("' + os.path.join('tests', 'testutils.js') + '")', filename], stdout=PIPE).communicate()[0] else: return Popen(JS_ENGINE + [build, os.path.join('tests', 'testutils.js'), filename], stdout=PIPE).communicate()[0] __counter = 0 def stage(text): global __counter print __counter, ':', text __counter += 1 if len(sys.argv) != 3 or sys.argv[2] != 'benchmark': stage('regression tests') for test in ['basics', 'wrapping', '2', '3', 'constraint']: name = test + '.js' print ' ', name fullname = os.path.join('tests', name) output = run(fullname) assert 'ok.' in output, output stage('hello world') output = run(os.path.join('examples', 'hello_world.js')) #assert open(os.path.join('examples', 'hello_world.txt')).read() in output, output assert 'ok.' in output, output stage('stress') output = run(os.path.join('tests', 'stress.js')) #assert ''' 0 : 0.00,-56.00,0.00 1 : 13.03,-5.00,-5.24 2 : 2.43,-5.00,-3.49 3 : -6.77,-5.54,-0.77 4 : -2.55,-5.00,2.84 5 : 11.75,-5.00,11.25 6 : 2.35,-5.61,0.12 total time:''' in output#, output assert 'ok.' in output, output print ' stress benchmark: ' + output.split('\n')[-3] print print '===================================' print print 'ok.'
py
7dfebbda1bdf7ecdbc7317ce0cc339d246de6c67
""" Training the SNRM model. Authors: Hamed Zamani ([email protected]) """ import pymongo import logging import numpy as np import tensorflow as tf import json from dictionary import Dictionary from params import FLAGS from snrm import SNRM import time from util import check_gpu_available, my_tokenize import random import os FORMAT = '%(asctime)-15s %(message)s' logging.basicConfig(format=FORMAT, level=logging.DEBUG) # layer_size is a list containing the size of each layer. It can be set through the 'hiddein_x' arguments. # layer_size = [FLAGS.emb_dim] layer_size = [] for i in [FLAGS.hidden_1, FLAGS.hidden_2, FLAGS.hidden_3]: #, FLAGS.hidden_4]: # ,FLAGS.hidden_5]: if i <= 0: break layer_size.append(i) # Dictionary is a class containing terms and their IDs. The implemented class just load the terms from a Galago dump # file. If you are not using Galago, you have to implement your own reader. See the 'dictionary.py' file. dictionary = Dictionary() print("loading dictionary...") # dictionary.load_from_galago_dump(FLAGS.base_path + FLAGS.dict_file_name, FLAGS.dict_min_freq) dictionary.load_my_dict(FLAGS.base_path + FLAGS.dict_file_name, FLAGS.dict_min_freq) print("creating SNRM model...") # The SNRM model. snrm = SNRM(dictionary=dictionary, pre_trained_embedding_file_name=FLAGS.base_path + FLAGS.pre_trained_embedding_file_name, batch_size=FLAGS.batch_size, max_q_len=FLAGS.max_q_len, max_doc_len=FLAGS.max_doc_len, emb_dim=FLAGS.emb_dim, layer_size=layer_size, dropout_parameter=FLAGS.dropout_parameter, regularization_term=FLAGS.regularization_term, learning_rate=FLAGS.learning_rate) client = pymongo.MongoClient() db = client.snrm # doc_coll = db.docs_exp doc_coll = db.docs2 all_doc_map = {} print("loading all documents...") for doc in doc_coll.find({}): all_doc_map[doc["docNo"]] = doc["tokens"] print("documents loaded.") def tokens2vec(tokens, length): data = [0] * length count = 0 for token in tokens: if token in dictionary.term_to_id.keys(): if count >= length: break data[count] = dictionary.term_to_id[token] count += 1 return data def get_tokens(docNo): global all_doc_map return all_doc_map[docNo] def generate_batch(batch_size, mode='train'): """ Generating pairwise training or validation data for each batch. This function should be implemented. Note: For unknown terms term ID should be set to zero. Please use the dictionary size for padding. In other words, padding value should be |V|+1, where |V| is the vocabulary size. Args: batch_size (int): total number of training or validation data in each batch. mode (str): should be either 'train' or 'valid'. Returns: batch_query (list): a 2D list of int containing query term IDs with size (batch_size * FLAGS.max_q_len). batch_doc1 (list): a 2D list of int containing doc 1 term IDs with size (batch_size * FLAGS.max_doc_len). batch_doc2 (list): a 2D list of int containing doc 2 term IDs with size (batch_size * FLAGS.max_doc_len). batch_label (list): a 2D list of float within the range of [0, 1] with size (batch_size * 1). Label shows the probability of doc1 being more relevant than doc2. This can simply be 0 or 1. """ # raise Exception('the generate_batch method is not implemented.') global batch_index batch_query = [] batch_doc1 = [] batch_doc2 = [] batch_label = [] if batch_index+batch_size >= data_size: batch_index = batch_index + batch_size - data_size batch_data = pair_wise_data[batch_index:batch_index+batch_size] random.shuffle(batch_data) # shuffle the order for data in batch_data: q = tokens2vec(my_tokenize(data["q"]), FLAGS.max_q_len) d1 = tokens2vec(get_tokens(data["d1_id"]), FLAGS.max_doc_len) d2 = tokens2vec(get_tokens(data["d2_id"]), FLAGS.max_doc_len) batch_query.append(q) batch_doc1.append(d1) batch_doc2.append(d2) if data["label"] == -1: batch_label.append(0.0) else: batch_label.append(1.0) batch_index += batch_size return batch_query, batch_doc1, batch_doc2, batch_label batch_index = 0 print("loading pair wise dataset") with open("../data/pair_wise_data.json", "r") as f: pair_wise_data = json.load(f) data_size = len(pair_wise_data) print("dataset loaded, len:", data_size) # # check the gpu availability # while not check_gpu_available(): # time.sleep(1) writer = tf.summary.FileWriter(FLAGS.base_path + FLAGS.log_path + FLAGS.run_name, graph=snrm.graph) # Launch the graph with tf.Session(graph=snrm.graph) as session: session.run(snrm.init) logging.info('Initialized') # ckpt = tf.train.get_checkpoint_state(FLAGS.base_path + FLAGS.model_path) # # print(FLAGS.base_path + FLAGS.model_path, "----", FLAGS.run_name + "164000") # # print(ckpt) # # exit() # model_checkpoint_path = FLAGS.base_path + FLAGS.model_path + FLAGS.run_name + "162000" # print(model_checkpoint_path) # if os.path.exists(model_checkpoint_path + ".meta"): # logging.info(model_checkpoint_path) # snrm.saver.restore(session, model_checkpoint_path) # restore all variables # logging.info('Load model from {:s}'.format(model_checkpoint_path)) # training if not FLAGS.experiment_mode: num_steps = FLAGS.num_train_steps average_loss = 0 for step in range(num_steps): query, doc1, doc2, labels = generate_batch(FLAGS.batch_size, 'train') labels = np.array(labels) labels = np.concatenate( [labels.reshape(FLAGS.batch_size, 1), 1.-labels.reshape(FLAGS.batch_size, 1)], axis=1) feed_dict = {snrm.query_pl: query, snrm.doc1_pl: doc1, snrm.doc2_pl: doc2, snrm.labels_pl: labels} # We perform one update step by evaluating the optimizer op (including it # in the list of returned values for session.run() _, loss_val, summary = session.run([snrm.optimizer, snrm.loss, snrm.summary_op], feed_dict=feed_dict) writer.add_summary(summary, step) if step % 10 == 0: print(step, batch_index, time.strftime("%Y-%m-%d %H:%M:%S")) if (step % FLAGS.validate_every_n_steps == 0) and (step != 0): valid_coss = 0. valid_id = 0 doc_total_len = 0 doc_count = 0 q_total_len = 0 q_count = 0 all_zero_d_count = 0 all_zero_q_count = 0 for valid_step in range(FLAGS.num_valid_steps): query, doc1, doc2, labels = generate_batch(FLAGS.batch_size, 'valid') labels = np.array(labels) labels = np.concatenate( [labels.reshape(FLAGS.batch_size, 1), 1. - labels.reshape(FLAGS.batch_size, 1)], axis=1) # print(labels) feed_dict = {snrm.query_pl: query, snrm.doc1_pl: doc1, snrm.doc2_pl: doc2, snrm.labels_pl: labels} cost_val, doc_repr1, q_repr = session.run([snrm.cost, snrm.d1_repr, snrm.q_repr], feed_dict=feed_dict) # doc_repr1 = session.run(snrm.doc_representation, feed_dict={snrm.doc_pl: doc1}) # q_repr = session.run(snrm.query_representation, feed_dict={snrm.query_pl: query}) for i in range(FLAGS.batch_size): d_c = 0 # 本次的document not zero count for j in range(len(doc_repr1[i])): if doc_repr1[i][j] > 0.: d_c += 1 if d_c == 0: all_zero_d_count += 1 doc_total_len += d_c doc_count += FLAGS.batch_size for i in range(FLAGS.batch_size): q_c = 0 # 本次的query not zero count for j in range(len(q_repr[i])): if q_repr[i][j] > 0.: q_c += 1 if q_c == 0: all_zero_q_count += 1 q_total_len += q_c q_count += FLAGS.batch_size valid_coss += cost_val valid_coss /= FLAGS.num_valid_steps print('Average cost on validation set at step ', step, ': ', valid_coss) print('Doc Avg Length at step ', step, ': ', doc_total_len / doc_count, ", zc-->", all_zero_d_count) print('Query Avg Length at step ', step, ': ', q_total_len / q_count, ", zc-->", all_zero_q_count) if step > 0 and step % FLAGS.save_snapshot_every_n_steps == 0: save_path = snrm.saver.save(session, FLAGS.base_path + FLAGS.model_path + FLAGS.run_name + str(step)) print('Model saved in file: %s' % save_path) save_path = snrm.saver.save(session, FLAGS.base_path + FLAGS.model_path + FLAGS.run_name) print('Model saved in file: %s' % save_path) else: print('Experiment Mode is ON!') # inference should be done. You should implement it. It's easy. Please refer to the paper. You should just # construct the inverted index from the learned representations. Then the query should fed to the network and # the documents that contain the "query latent terms" should be scored and ranked. If you have any question, # please do not hesitate to contact me ([email protected]).
py
7dfebcac1d2d7648fabe3af050b382c3b43ee100
import sys import threading import logging from collections import deque from inspect import isawaitable from asyncio import get_event_loop from pulsar.api import create_future, ensure_future, AsyncObject from .utils import wait, GreenletWorker, getcurrent _DEFAULT_WORKERS = 100 _MAX_WORKERS = 1000 class _DONE: pass class GreenPool(AsyncObject): """A pool of running greenlets. This pool maintains a group of greenlets to perform asynchronous tasks via the :meth:`submit` method. """ worker_name = 'exec' def __init__(self, max_workers=None, loop=None): self._loop = loop or get_event_loop() self._max_workers = min(max_workers or _DEFAULT_WORKERS, _MAX_WORKERS) self._greenlets = set() self._available = set() self._queue = deque() self._shutdown = False self._waiter = None self._logger = logging.getLogger('pulsar.greenpool') self._shutdown_lock = threading.Lock() self.wait = wait @property def max_workers(self): return self._max_workers @max_workers.setter def max_workers(self, value): value = int(value) assert value > 0 self._max_workers = value @property def in_green_worker(self): """True if the current greenlet is a green pool worker """ return isinstance(getcurrent(), GreenletWorker) @property def closed(self): """True if this pool is closed and no task can queued """ return self._shutdown def submit(self, func, *args, **kwargs): """Equivalent to ``func(*args, **kwargs)``. This method create a new task for function ``func`` and adds it to the queue. Return a :class:`~asyncio.Future` called back once the task has finished. """ with self._shutdown_lock: if self._shutdown: raise RuntimeError( 'cannot schedule new futures after shutdown') if self.in_green_worker: return wait(func(*args, **kwargs)) else: future = create_future(self._loop) self._put((future, func, args, kwargs)) return future def shutdown(self, wait=True): with self._shutdown_lock: self._shutdown = True self._put(None) if wait: self._waiter = create_future(self._loop) return self._waiter def getcurrent(self): return getcurrent() # INTERNALS def _adjust_greenlet_count(self): if (not self._shutdown and not self._available and len(self._greenlets) < self._max_workers): green = GreenletWorker(self._green_run) self._greenlets.add(green) self.logger.debug('Num greenlets: %d', len(self._greenlets)) green.switch() return self._available def _put(self, task): # Run in the main greenlet of the evnet-loop thread self._queue.appendleft(task) self._check_queue() def _check_queue(self): # Run in the main greenlet of the event-loop thread if not self._adjust_greenlet_count(): self.logger.debug('No greenlet available') return self._loop.call_soon(self._check_queue) try: task = self._queue.pop() except IndexError: return ensure_future(self._green_task(self._available.pop(), task), loop=self._loop) async def _green_task(self, green, task): # Coroutine executing the in main greenlet # This coroutine is executed for every task put into the queue while task is not _DONE: # switch to the greenlet to start the task task = green.switch(task) # if an asynchronous result is returned, await while True: try: task = await task except TypeError as exc: if isawaitable(task): task = self._dispach_error(green, exc) else: break except Exception as exc: task = self._dispach_error(green, exc) def _dispach_error(self, green, exc): exc_info = sys.exc_info() if not exc_info[0]: exc_info = (exc, None, None) return green.throw(*exc_info) def _green_run(self): # The run method of a worker greenlet task = True while task: green = getcurrent() parent = green.parent assert parent # add greenlet in the available greenlets self._available.add(green) task = parent.switch(_DONE) # switch back to the main execution if task: future, func, args, kwargs = task try: try: result = wait(func(*args, **kwargs), True) except StopIteration as exc: # See PEP 479 raise RuntimeError('Unhandled StopIteration') from exc except Exception as exc: future.set_exception(exc) else: future.set_result(result) else: # Greenlet cleanup self._greenlets.remove(green) if self._greenlets: self._put(None) elif self._waiter: self._waiter.set_result(None) self._waiter = None parent.switch(_DONE)
py
7dfebcae6da8394e9ecb77f25177e0dcf10c6d01
# -*- coding: utf-8 -*- """ Created on Mon Jan 25 11:03:00 2021 @author: ZiyaoHe """ from geopy import distance import time newport_ri = (41.49008, -71.312796) cleveland_oh = (41.499498, -81.695391) import timeit start = timeit.default_timer() d1=distance.distance(newport_ri, cleveland_oh).meters stop = timeit.default_timer() print("---Geopy %s seconds ---" % (stop - start)) #newport_ri1 = (41.49008, -71.312796,300) #cleveland_oh1 = (41.499498, -81.695391,712.5) #d2=distance.distance(newport_ri1, cleveland_oh1).meters start = timeit.default_timer() import math #d3=math.sqrt(d1**2+412.5**2) #print('d2 is:' + d2) #print('d3 is:' + d3) def d_2points(lat1,lng1,h1,lat2,lng2,h2): R = 6378100 #radius of earth lng1=math.radians(lng1) lng2=math.radians(lng2) lat1=math.radians(lat1) lat2=math.radians(lat2) dlng = lng1-lng2 dlat = lat1 - lat2 dh= h1-h2 a = math.sin(dlat / 2)**2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlng / 2)**2 c = math.asin(math.sqrt(a)) dis_horizontal = 2 *R * c return dis_horizontal d2= d_2points(41.49008, -71.312796,10,41.499498, -81.695391,12) stop = timeit.default_timer() print("---Haversine %s seconds ---" %( (stop - start))) print('d1 is:' + str(d1)) print('d2 is:' + str(d2)) import decimal a=decimal.Decimal('0.2285714285714285841168345671446461762700762068') print(1/a) print((1/a)%10)
py
7dfebd38ea371481846c58e8a0110b7d11c79de5
# Copyright 2012 VMware, Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from neutron_lib.db import model_base import sqlalchemy as sa from sqlalchemy import orm from neutron.api.v2 import attributes from neutron.db import models_v2 from neutron.db import standard_attr class SecurityGroup(standard_attr.HasStandardAttributes, model_base.BASEV2, model_base.HasId, model_base.HasProject): """Represents a v2 neutron security group.""" name = sa.Column(sa.String(attributes.NAME_MAX_LEN)) class DefaultSecurityGroup(model_base.BASEV2, model_base.HasProjectPrimaryKey): __tablename__ = 'default_security_group' security_group_id = sa.Column(sa.String(36), sa.ForeignKey("securitygroups.id", ondelete="CASCADE"), nullable=False) security_group = orm.relationship( SecurityGroup, lazy='joined', backref=orm.backref('default_security_group', cascade='all,delete'), primaryjoin="SecurityGroup.id==DefaultSecurityGroup.security_group_id", ) class SecurityGroupPortBinding(model_base.BASEV2): """Represents binding between neutron ports and security profiles.""" port_id = sa.Column(sa.String(36), sa.ForeignKey("ports.id", ondelete='CASCADE'), primary_key=True) security_group_id = sa.Column(sa.String(36), sa.ForeignKey("securitygroups.id"), primary_key=True) revises_on_change = ('ports', ) # Add a relationship to the Port model in order to instruct SQLAlchemy to # eagerly load security group bindings ports = orm.relationship( models_v2.Port, backref=orm.backref("security_groups", lazy='joined', cascade='delete')) class SecurityGroupRule(standard_attr.HasStandardAttributes, model_base.BASEV2, model_base.HasId, model_base.HasProject): """Represents a v2 neutron security group rule.""" security_group_id = sa.Column(sa.String(36), sa.ForeignKey("securitygroups.id", ondelete="CASCADE"), nullable=False) remote_group_id = sa.Column(sa.String(36), sa.ForeignKey("securitygroups.id", ondelete="CASCADE"), nullable=True) revises_on_change = ('security_group', ) direction = sa.Column(sa.Enum('ingress', 'egress', name='securitygrouprules_direction')) ethertype = sa.Column(sa.String(40)) protocol = sa.Column(sa.String(40)) port_range_min = sa.Column(sa.Integer) port_range_max = sa.Column(sa.Integer) remote_ip_prefix = sa.Column(sa.String(255)) security_group = orm.relationship( SecurityGroup, backref=orm.backref('rules', cascade='all,delete', lazy='joined'), primaryjoin="SecurityGroup.id==SecurityGroupRule.security_group_id") source_group = orm.relationship( SecurityGroup, backref=orm.backref('source_rules', cascade='all,delete'), primaryjoin="SecurityGroup.id==SecurityGroupRule.remote_group_id")
py
7dfebd88dd874008838686b0ac35b8c5fed739a3
#!/usr/bin/env python3 PROXY = {} def setProxy(proxy_string): # Create valid ProxyDict if proxy_string != "-": PROXY = {'http': proxy_string, 'https': proxy_string} # No proxy if nothing is set in .ini else: PROXY = {}
py
7dfebe70101ef7eb4b885a2cbb59ceb29a3188ec
#!python from linkedlist import LinkedList # Implement LinkedQueue below, then change the assignment at the bottom # to use this Queue implementation to verify it passes all tests class LinkedQueue(object): def __init__(self, iterable=None): """Initialize this queue and enqueue the given items, if any.""" # Initialize a new linked list to store the items self.list = LinkedList() if iterable is not None: for item in iterable: self.enqueue(item) def __repr__(self): """Return a string representation of this queue.""" return 'Queue({} items, front={})'.format(self.length(), self.front()) def is_empty(self): """Return True if this queue is empty, or False otherwise.""" # TODO: Check if empty return self.list.is_empty() def length(self): """Return the number of items in this queue.""" # TODO: Count number of items return self.list.length() def enqueue(self, item): """Insert the given item at the back of this queue. Running time: O(???) – Why? [TODO]""" # TODO: Insert given item self.list.prepend(item) def front(self): """Return the item at the front of this queue without removing it, or None if this queue is empty.""" # TODO: Return front item, if any if self.list.is_empty(): return None else: return self.list.tail.data def dequeue(self): """Remove and return the item at the front of this queue, or raise ValueError if this queue is empty. Running time: O(???) – Why? [TODO]""" # TODO: Remove and return front item, if any if self.list.is_empty(): raise ValueError("no data") else: front_data = self.list.tail.data self.list.delete(front_data) return front_data # Implement ArrayQueue below, then change the assignment at the bottom # to use this Queue implementation to verify it passes all tests class ArrayQueue(object): def __init__(self, iterable=None): """Initialize this queue and enqueue the given items, if any.""" # Initialize a new list (dynamic array) to store the items self.list = list() if iterable is not None: for item in iterable: self.enqueue(item) def __repr__(self): """Return a string representation of this queue.""" return 'Queue({} items, front={})'.format(self.length(), self.front()) def is_empty(self): """Return True if this queue is empty, or False otherwise.""" # TODO: Check if empty if len(self.list) == 0: return True else: return False def length(self): """Return the number of items in this queue.""" # TODO: Count number of items return len(self.list) def enqueue(self, item): """Insert the given item at the back of this queue. Running time: O(???) – Why? [TODO]""" # TODO: Insert given item self.list.append(item) def front(self): """Return the item at the front of this queue without removing it, or None if this queue is empty.""" # TODO: Return front item, if any if self.is_empty(): return None return self.list[0] def dequeue(self): """Remove and return the item at the front of this queue, or raise ValueError if this queue is empty. Running time: O(???) – Why? [TODO]""" # TODO: Remove and return front item, if any if self.is_empty(): raise ValueError("Queue is empty") front_item = self.list[0] self.list.pop(0) return front_item # Implement LinkedQueue and ArrayQueue above, then change the assignment below # to use each of your Queue implementations to verify they each pass all tests Queue = LinkedQueue # Queue = ArrayQueue
py
7dfebf55973da03430259c0f28b8f918b2d8a0ff
import time import random import numpy as np import pandas as pd import cv2, os, serial, csv import matplotlib.pyplot as plt from . import clock as clock from functions import cnn_to_raw from img_serializer import serialize_image from file_finder import get_new_filename class SuironIO(clock.Action): """ Class which handles input output aspect of the suiron - Reads inputs from webcam and normalizes them - Also reads serial input and write them to file """ # Constructor def __init__(self, id=1, width=72, height=48, depth=3, baudrate=57600): # Image settings self.width = int(width) self.height = int(height) self.depth = int(depth) self.sz=self.width *self.height *self.depth # Video IO self.cap = cv2.VideoCapture(id) # Use first capture device # Serial IO self.outfile = None # In-memory variable to record data # to prevent too much I/O self.frame_results = [] self.servo_results = [] self.motorspeed_results = [] """ Functions below are used for inputs (recording data) """ # Initialize settings before saving def init_saving(self, folder='data', filename='output_', extension='.csv'): fileoutname = get_new_filename(folder=folder, filename=filename, extension=extension) # Filename to save serial data and image data # Output file print(fileoutname) outfile = open(fileoutname, 'w') # Truncate file first self.outfile = open(fileoutname, 'a') def start(self, period): thread=clock.Clock(self, period) thread.start() return thread def run(self): time.sleep(0.1) # Saves both inputs def record_inputs(self, s_inputs): # Frame is just a numpy array frame = self.get_frame() # Serial inputs is a dict with key 'servo', and 'motor' # If its not in manual mode then proceed # print("yeah") # print("helllo {}".format(s_inputs)) if s_inputs: servo = s_inputs['servo'] motor = s_inputs['motor'] # Append to memory # tolist so it actually appends the entire thing dat=serialize_image(frame) # print(len(dat)) if (len(dat)==self.sz): self.frame_results.append(dat) # print(serialize_image(frame)) self.servo_results.append(servo) self.motorspeed_results.append(motor) # Gets frame def get_frame(self): ret, frame = self.cap.read() # If we get a frame, save it if not ret: raise IOError('No image found!') frame = self.normalize_frame(frame) return frame # Gets frame for prediction def get_frame_prediction(self): ret, frame = self.cap.read() # if we get a frame if not ret: raise IOError('No image found!') frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frame = cv2.resize(frame, (self.width, self.height), interpolation=cv2.INTER_CUBIC) frame = frame.astype('uint8') return frame # Normalizes inputs so we don't have to worry about weird # characters e.g. \r\n def normalize_serial(self, line): # Assuming that it receives # servo, motor # 'error' basically means that # its in manual mode try: line = line.replace('\n', '').split(',') line_dict = {'servo': int(line[0]), 'motor': int(line[1])} return line_dict except: return None # Normalizes frame so we don't have BGR as opposed to RGB def normalize_frame(self, frame): frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frame = cv2.resize(frame, (self.width, self.height), interpolation=cv2.INTER_CUBIC) frame = frame.flatten() frame = frame.astype('uint8') return frame # Saves files def save_inputs(self): raw_data = { 'image': self.frame_results, 'servo': self.servo_results, 'motor': self.motorspeed_results } df = pd.DataFrame(raw_data, columns=['image', 'servo', 'motor']) df.to_csv(self.outfile) """ Functions below are used for ouputs (controlling servo/motor) """ # Controls the servo given the numpy array outputted by # the neural network def servo_write(self, np_y): servo_out = cnn_to_raw(np_y) if (servo_out < 90): servo_out *= 0.85 elif (servo_out > 90): servo_out *= 1.15 self.ser.write('steer,' + str(servo_out) + '\n') time.sleep(0.02) # Sets the motor at a fixed speed def motor_write_fixed(self): self.ser.write('motor,80\n') time.sleep(0.02) # Stops motors def motor_stop(self): self.ser.write('motor,90\n') time.sleep(0.02) # Staightens servos def servo_straighten(self): self.ser.write('steer,90') time.sleep(0.02) def __del__(self): if self.outfile: self.outfile.close()
py
7dfec05d4d18d64c9e8c4d71915995f929f7fc5a
import pandas #filter the data based on the ten rules of investing by benjamin graham fin_analysis = fin_analysis[fin_analysis["epsEstimate"] > 0 ] fin_analysis = fin_analysis[(fin_analysis["price"] < 50) & (fin_analysis["price"] > 0)] fin_analysis = fin_analysis[(fin_analysis["peRatio"] < 11) & (fin_analysis["peRatio"] != -1)] fin_analysis = fin_analysis[fin_analysis["priceToBook"] < 10] fin_analysis = fin_analysis[fin_analysis["priceToSales"] < 10 & (fin_analysis["priceToSales"] > 0)] fin_analysis = fin_analysis[fin_analysis["debt"] > 0] fin_analysis = fin_analysis[fin_analysis["day5ChangePercent"] > 0]
py
7dfec28f465c66a48ea1ff642b59ce2913e633f6
# -*- encoding: utf-8 -*- # # Copyright (c) 2013-2018, OVH SAS. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of OVH SAS nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY OVH SAS AND CONTRIBUTORS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL OVH SAS AND CONTRIBUTORS BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import asyncio import mock import unittest from uuid import uuid4 def _run(coro): return asyncio.run(coro) class AsyncMock(mock.Mock): def __call__(self, *args, **kwargs): sup = super(AsyncMock, self) async def coro(): return sup.__call__(*args, **kwargs) return coro() def __await__(self): return self().__await__() class testConsumerKeyRequest(unittest.TestCase): def test_add_rules(self): # Prepare import asyncovh m_client = AsyncMock() ck = asyncovh.ConsumerKeyRequest(m_client) # Test: No-op self.assertEqual([], ck._access_rules) ck._access_rules = [] # Test: allow one ck.add_rule("GET", '/me') self.assertEqual([ {'method': 'GET', 'path': '/me'}, ], ck._access_rules) ck._access_rules = [] # Test: allow safe methods on domain ck.add_rules(asyncovh.API_READ_WRITE_SAFE, '/domains/test.com') self.assertEqual([ {'method': 'GET', 'path': '/domains/test.com'}, {'method': 'POST', 'path': '/domains/test.com'}, {'method': 'PUT', 'path': '/domains/test.com'}, ], ck._access_rules) ck._access_rules = [] # Test: allow all sms, strips suffix ck.add_recursive_rules(asyncovh.API_READ_WRITE, '/sms/*') self.assertEqual([ {'method': 'GET', 'path': '/sms'}, {'method': 'POST', 'path': '/sms'}, {'method': 'PUT', 'path': '/sms'}, {'method': 'DELETE', 'path': '/sms'}, {'method': 'GET', 'path': '/sms/*'}, {'method': 'POST', 'path': '/sms/*'}, {'method': 'PUT', 'path': '/sms/*'}, {'method': 'DELETE', 'path': '/sms/*'}, ], ck._access_rules) ck._access_rules = [] # Test: allow all, does not insert the empty rule ck.add_recursive_rules(asyncovh.API_READ_WRITE, '/') self.assertEqual([ {'method': 'GET', 'path': '/*'}, {'method': 'POST', 'path': '/*'}, {'method': 'PUT', 'path': '/*'}, {'method': 'DELETE', 'path': '/*'}, ], ck._access_rules) ck._access_rules = [] # Test launch request ck.add_recursive_rules(asyncovh.API_READ_WRITE, '/') self.assertEqual(m_client.request_consumerkey.return_value, _run(ck.request())) m_client.request_consumerkey.assert_called_once_with(ck._access_rules, None)
py
7dfec3a6b8863495f8dfac89576357e5e5000a9c
import uuid import ipaddress from kubernetes import client from games.enabled import get_game_by_id NAMESPACE="default" EXTERNAL_PREFIX="77.80.229.128/25" def list(u_ip): services = client.CoreV1Api().list_service_for_all_namespaces( watch=False, label_selector="app=gaas" ) deployments = client.AppsV1Api().list_deployment_for_all_namespaces( watch=False, label_selector="app=gaas" ) pods = client.CoreV1Api().list_pod_for_all_namespaces( watch=False, label_selector="app=gaas" ) servers={} for service in services.items: uid=service.metadata.labels["server"] candelete=False ip=service.spec.external_i_ps[0] game=service.metadata.labels["game"] name=get_game_by_id(game).name servers[uid] = { "uid":service.metadata.labels["server"], "game": game, "gamename": name, "ip": ip, "ports": [ "{}/{}".format(port.protocol, port.port) for port in service.spec.ports ] } for deploy in deployments.items: uid=deploy.metadata.labels["server"] if uid not in servers: continue if deploy.metadata.labels["creator"] == u_ip: servers[uid]["candelete"] = "yes" print(deploy.metadata.labels) for container in deploy.spec.template.spec.containers: if container.env: servers[uid]["env"]={ env.name: env.value for env in container.env } for pod in pods.items: uid=pod.metadata.labels["server"] if uid not in servers: continue servers[uid]["pods"]=[{ "ready": status.ready, "image": status.image, "restart_count": status.restart_count, "state": status.state.waiting.reason if status.state.waiting is not None else None, } for status in pod.status.container_statuses] return servers def delete(uid, ip): deployment = client.AppsV1Api().read_namespaced_deployment_status( name="gaas-{}".format(uid), namespace=NAMESPACE, ) if deployment.metadata.labels["creator"] != ip: raise Exception("You did not create this job") client.AppsV1Api().delete_namespaced_deployment( name="gaas-{}".format(uid), namespace=NAMESPACE, ) client.CoreV1Api().delete_namespaced_service( name="gaas-{}".format(uid), namespace=NAMESPACE, ) def add(ip, game_id, params): game=get_game_by_id(game_id) game.validate_params(params) uid=uuid.uuid4().hex[:12] name="gaas-{}".format(uid) labels={ "app": "gaas", "game": game_id, "server": uid, "creator": ip, } metadata=client.V1ObjectMeta( labels=labels, name=name, ) ip_ext=alloc_ip() extra_env=[client.V1EnvVar( name="IP_ALLOC", value=ip_ext ), client.V1EnvVar( name="IP_CREATOR", value=ip )] containers = game.make_deployment(params) generic_ports = [] # TODO(bluecmd): Hack to work around that not all # ports are routed to the VIP by default. This allows # outgoing connections from inside the pod on the VIP. for p in range(50000, 50016): generic_ports.append(client.V1ServicePort( name="internal-tcp-" + str(p), port=p, target_port=p, protocol="TCP")) generic_ports.append(client.V1ServicePort( name="internal-udp-" + str(p), port=p, target_port=p, protocol="UDP")) for container in containers: if container.env: container.env.extend(extra_env) else: container.env = extra_env if not container.resources: container.resources=client.V1ResourceRequirements( limits={ "cpu": "4", "memory": "32G" }, requests={ "cpu": "2", "memory": "16G" } ) deployment=client.V1Deployment( spec=client.V1DeploymentSpec( replicas=1, strategy=client.AppsV1beta1DeploymentStrategy( rolling_update=client.AppsV1beta1RollingUpdateDeployment( max_surge=0, max_unavailable=1 ) ), selector=client.V1LabelSelector( match_labels=labels, ), template=client.V1PodTemplateSpec( spec=client.V1PodSpec( containers=containers, termination_grace_period_seconds=0, # TODO(bluecmd): Hack to work around that not all # ports are routed to the VIP by default. This allows # outgoing connections from inside the pod on the VIP. security_context=client.V1PodSecurityContext( sysctls=[client.V1Sysctl( name='net.ipv4.ip_local_port_range', value='50000 50015')]), affinity=client.V1Affinity( node_affinity=client.V1NodeAffinity( required_during_scheduling_ignored_during_execution=client.V1NodeSelector( node_selector_terms=[ client.V1NodeSelectorTerm( match_expressions=[ client.V1NodeSelectorRequirement( key="kubernetes.io/role", operator="NotIn", values=["shared"] ) ] ) ] ) ) ) ) ) ) ) service=client.V1Service( spec=client.V1ServiceSpec( type="ClusterIP", selector=labels, ports=game.make_service(params) + generic_ports, external_i_ps=[ip_ext], ) ) deployment.metadata=metadata deployment.spec.template.metadata=metadata service.metadata=metadata service.metadata.annotations={"kube-router.io/service.dsr": "tunnel"} client.AppsV1Api().create_namespaced_deployment( namespace=NAMESPACE, body=deployment, ) service_resp = client.CoreV1Api().create_namespaced_service( namespace=NAMESPACE, body=service, ) return {"uid": uid, "ip": ip} def alloc_ip(): space=ipaddress.ip_network(EXTERNAL_PREFIX) reserved=[] services = client.CoreV1Api().list_service_for_all_namespaces(watch=False) for service in services.items: if service.spec.external_i_ps: reserved.extend(service.spec.external_i_ps) for ip in space: if str(ip) not in reserved: print("Alloc ip {}".format(ip)) return str(ip) raise Exception("Cluster ran out of available IPs")
py
7dfec3d299480f66dd4d424e8849c601044f4ace
import os import logging import ast import sys import importlib from itertools import product, chain logger = logging.getLogger('soil') builtins = importlib.import_module('builtins') def name(value, known_modules=[]): '''Return a name that can be imported, to serialize/deserialize an object''' if value is None: return 'None' if not isinstance(value, type): # Get the class name first value = type(value) tname = value.__name__ if hasattr(builtins, tname): return tname modname = value.__module__ if modname == '__main__': return tname if known_modules and modname in known_modules: return tname for kmod in known_modules: if not kmod: continue module = importlib.import_module(kmod) if hasattr(module, tname): return tname return '{}.{}'.format(modname, tname) def serializer(type_): if type_ != 'str' and hasattr(builtins, type_): return repr return lambda x: x def serialize(v, known_modules=[]): '''Get a text representation of an object.''' tname = name(v, known_modules=known_modules) func = serializer(tname) return func(v), tname def deserializer(type_, known_modules=[]): if type(type_) != str: # Already deserialized return type_ if type_ == 'str': return lambda x='': x if type_ == 'None': return lambda x=None: None if hasattr(builtins, type_): # Check if it's a builtin type cls = getattr(builtins, type_) return lambda x=None: ast.literal_eval(x) if x is not None else cls() # Otherwise, see if we can find the module and the class modules = known_modules or [] options = [] for mod in modules: if mod: options.append((mod, type_)) if '.' in type_: # Fully qualified module module, type_ = type_.rsplit(".", 1) options.append ((module, type_)) errors = [] for modname, tname in options: try: module = importlib.import_module(modname) cls = getattr(module, tname) return getattr(cls, 'deserialize', cls) except (ImportError, AttributeError) as ex: errors.append((modname, tname, ex)) raise Exception('Could not find type {}. Tried: {}'.format(type_, errors)) def deserialize(type_, value=None, **kwargs): '''Get an object from a text representation''' if not isinstance(type_, str): return type_ des = deserializer(type_, **kwargs) if value is None: return des return des(value)
py
7dfec42717b0208da00788e0cb50b384a587a800
from unittest import mock import pytest from oauthlib.common import Request as OAuthRequest from oauthlib.oauth2 import InvalidRequestError from h.models import Token from h.oauth.errors import InvalidRefreshTokenError from h.services.oauth_provider import ( OAuthProviderService, oauth_provider_service_factory, ) @pytest.mark.usefixtures("validator_service", "user_service") class TestOAuthProviderService: def test_load_client_id_sets_client_id_from_refresh_token( self, svc, oauth_request, factories, validator_service ): token_1, token_2 = factories.OAuth2Token(), factories.OAuth2Token() oauth_request.refresh_token = token_2.refresh_token def fake_find_refresh_token(refresh_token): if refresh_token == token_1.refresh_token: return token_1 elif refresh_token == token_2.refresh_token: return token_2 validator_service.find_refresh_token.side_effect = fake_find_refresh_token assert oauth_request.client_id is None svc.load_client_id_from_refresh_token(oauth_request) assert oauth_request.client_id == token_2.authclient.id def test_load_client_id_skips_setting_client_id_when_not_refresh_token( self, svc, oauth_request, factories, validator_service ): token = factories.OAuth2Token() def fake_find_refresh_token(refresh_token): if refresh_token == token.refresh_token: return token validator_service.find_refresh_token.side_effect = fake_find_refresh_token svc.load_client_id_from_refresh_token(oauth_request) assert oauth_request.client_id is None def test_load_client_id_raises_for_missing_refresh_token( self, svc, oauth_request, validator_service ): validator_service.find_refresh_token.return_value = None oauth_request.refresh_token = "missing" with pytest.raises(InvalidRefreshTokenError): svc.load_client_id_from_refresh_token(oauth_request) def test_generate_access_token(self, svc, token_urlsafe): token_urlsafe.return_value = "very-secret" assert svc.generate_access_token(None) == "5768-very-secret" def test_generate_refresh_token(self, svc, token_urlsafe): token_urlsafe.return_value = "top-secret" assert svc.generate_refresh_token(None) == "4657-top-secret" def test_validate_revocation_request_adds_revoke_marker(self, svc, oauth_request): try: svc.validate_revocation_request(oauth_request) except InvalidRequestError: # Not here to test this pass finally: assert oauth_request.h_revoke_request is True def test_validate_revocation_request_looks_up_token( self, svc, oauth_request, token ): oauth_request.token = mock.sentinel.token svc.oauth_validator.find_token.return_value = token oauth_request.http_method = "POST" svc.validate_revocation_request(oauth_request) svc.oauth_validator.find_token.assert_called_once_with(mock.sentinel.token) assert oauth_request.client_id == token.authclient.id @pytest.fixture def token(self): return mock.create_autospec(Token, instance=True) @pytest.fixture def svc(self, pyramid_request): return oauth_provider_service_factory(None, pyramid_request) @pytest.fixture def token_urlsafe(self, patch): return patch("h.services.oauth_provider.token_urlsafe") @pytest.fixture def oauth_request(self): return OAuthRequest("/") @pytest.mark.usefixtures("validator_service", "user_service") class TestOAuthProviderServiceFactory: def test_it_returns_oauth_provider_service(self, pyramid_request): svc = oauth_provider_service_factory(None, pyramid_request) assert isinstance(svc, OAuthProviderService) @pytest.fixture def validator_service(pyramid_config): svc = mock.Mock() pyramid_config.register_service(svc, name="oauth_validator") return svc
py
7dfec45a1c5f2da9b4777111601504cb8435c206
#!/usr/bin/env python # This file is part of the pyMOR project (http://www.pymor.org). # Copyright Holders: Rene Milk, Stephan Rave, Felix Schindler # License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause) """Proof of concept for solving the poisson equation in 2D using linear finite elements and our grid interface Usage: cg.py [--rect] PROBLEM-NUMBER DIRICHLET-NUMBER NEUMANN-NUMBER NEUMANN-COUNT Arguments: PROBLEM-NUMBER {0,1}, selects the problem to solve DIRICHLET-NUMBER {0,1,2}, selects the Dirichlet data function NEUMANN-NUMBER {0,1}, selects the Neumann data function NEUMANN-COUNT 0: no neumann boundary 1: right edge is neumann boundary 2: right+top edges are neumann boundary 3: right+top+bottom edges are neumann boundary --rect Use RectGrid instead of TriaGrid Options: -h, --help this message """ from __future__ import absolute_import, division, print_function import math as m from docopt import docopt import numpy as np from pymor.analyticalproblems.elliptic import EllipticProblem from pymor.discretizers.elliptic import discretize_elliptic_cg from pymor.domaindescriptions.boundarytypes import BoundaryType from pymor.domaindescriptions.basic import RectDomain from pymor.domaindiscretizers.default import discretize_domain_default from pymor.functions.basic import GenericFunction, ConstantFunction from pymor.grids.rect import RectGrid from pymor.grids.tria import TriaGrid def cg_demo(nrhs, ndirichlet, nneumann, neumann_count, rect_grid=False): rhs0 = GenericFunction(lambda X: np.ones(X.shape[:-1]) * 10, 2) # NOQA rhs1 = GenericFunction(lambda X: (X[..., 0] - 0.5) ** 2 * 1000, 2) # NOQA dirichlet0 = GenericFunction(lambda X: np.zeros(X.shape[:-1]), 2) # NOQA dirichlet1 = GenericFunction(lambda X: np.ones(X.shape[:-1]), 2) # NOQA dirichlet2 = GenericFunction(lambda X: X[..., 0], 2) # NOQA neumann0 = None neumann1 = ConstantFunction(3., dim_domain=2) neumann2 = GenericFunction(lambda X: 50*(0.1 <= X[..., 1]) * (X[..., 1] <= 0.2) +50*(0.8 <= X[..., 1]) * (X[..., 1] <= 0.9), 2) domain0 = RectDomain() # NOQA domain1 = RectDomain(right=BoundaryType('neumann')) # NOQA domain2 = RectDomain(right=BoundaryType('neumann'), top=BoundaryType('neumann')) # NOQA domain3 = RectDomain(right=BoundaryType('neumann'), top=BoundaryType('neumann'), bottom=BoundaryType('neumann')) # NOQA assert 0 <= nrhs <= 1, ValueError('Invalid rhs number.') rhs = eval('rhs{}'.format(nrhs)) assert 0 <= ndirichlet <= 2, ValueError('Invalid Dirichlet boundary number.') dirichlet = eval('dirichlet{}'.format(ndirichlet)) assert 0 <= nneumann <= 2, ValueError('Invalid Neumann boundary number.') neumann = eval('neumann{}'.format(nneumann)) assert 0 <= neumann_count <= 3, ValueError('Invalid Neumann boundary count.') domain = eval('domain{}'.format(neumann_count)) for n in [32, 128]: grid_name = '{1}(({0},{0}))'.format(n, 'RectGrid' if rect_grid else 'TriaGrid' ) print('Solving on {0}'.format(grid_name)) print('Setup problem ...') problem = EllipticProblem(domain=domain, rhs=rhs, dirichlet_data=dirichlet, neumann_data=neumann) print('Discretize ...') if rect_grid: grid, bi = discretize_domain_default(problem.domain, diameter=m.sqrt(2) / n, grid_type=RectGrid) else: grid, bi = discretize_domain_default(problem.domain, diameter=1. / n, grid_type=TriaGrid) discretization, _ = discretize_elliptic_cg(analytical_problem=problem, grid=grid, boundary_info=bi) print('Solve ...') U = discretization.solve() print('Plot ...') discretization.visualize(U, title=grid_name) print('') if __name__ == '__main__': args = docopt(__doc__) nrhs = int(args['PROBLEM-NUMBER']) ndirichlet = int(args['DIRICHLET-NUMBER']) nneumann = int(args['NEUMANN-NUMBER']) neumann_count = int(args['NEUMANN-COUNT']) rect_grid = bool(args['--rect']) cg_demo(nrhs, ndirichlet, nneumann, neumann_count, rect_grid)
py
7dfec4cc8e26c302f3b1ded06c1dc6d5bd8abbf1
# dataset settings dataset_type = 'Hie_Dataset' # img_norm_cfg = dict( # mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromNIIFile'), dict(type='ExtractDataFromObj'), dict(type='NormalizeMedical', norm_type='full_volume_mean', instensity_min_val=0.5, instensity_max_val=99.5), # dict(type='ResizeMedical', size=(80, 160, 160)), dict(type='ResizeMedical', size=(160, 160, 80)), # dict(type='Normalize', **img_norm_cfg), dict(type='ConcatImage'), # dict(type='ImageToTensor', keys=['img']), dict(type='ToTensor', keys=['gt_label', 'img']), dict(type='Collect', keys=['img', 'gt_label']) ] test_pipeline = [ dict(type='LoadImageFromNIIFile'), dict(type='ExtractDataFromObj'), dict(type='NormalizeMedical', norm_type='full_volume_mean', instensity_min_val=0.5, instensity_max_val=99.5), dict(type='ResizeMedical', size=(160, 160, 80)), dict(type='ToTensor', keys=['img']), dict(type='Collect', keys=['img']) ] data = dict( samples_per_gpu=8, workers_per_gpu=8, train=dict( type=dataset_type, data_prefix='/opt/data/private/project/charelchen.cj/workDir/dataset/hie/' 'hie_resample_0.5x0.5x0.5_niigz', ann_file='/opt/data/private/project/charelchen.cj/workDir/dataset/hie/t1_zw_fse_train.txt', pipeline=train_pipeline, modes=['t1_zw']), val=dict( type=dataset_type, data_prefix='/opt/data/private/project/charelchen.cj/workDir/dataset/hie/' 'hie_resample_0.5x0.5x0.5_niigz', ann_file='/opt/data/private/project/charelchen.cj/workDir/dataset/hie/t1_zw_fse_val.txt', pipeline=test_pipeline, modes=['t1_zw']), test=dict( # replace `data/val` with `data/test` for standard test type=dataset_type, data_prefix='/opt/data/private/project/charelchen.cj/workDir/dataset/hie/' 'hie_resample_0.5x0.5x0.5_niigz', ann_file='/opt/data/private/project/charelchen.cj/workDir/dataset/hie/t1_zw_fse_val.txt', pipeline=test_pipeline, modes=['t1_zw'])) evaluation = dict(interval=2, metric=['accuracy', 'precision', 'recall', 'f1_score', 'support']) norm_cfg = dict(type='BN3d', requires_grad=True) conv_cfg = dict(type='Conv3d') num_classes = 2 # model settings model = dict( type='ImageClassifier', backbone=dict( type='ResNet', depth=18, in_channels=1, in_dims=3, num_stages=4, out_indices=(3, ), style='pytorch', norm_cfg=norm_cfg, conv_cfg=conv_cfg, init_cfg=[ dict(type='Kaiming', layer=['Conv3d']), dict( type='Constant', val=1, layer=['_BatchNorm', 'GroupNorm', 'BN3d']) ] ), neck=dict(type='GlobalAveragePooling', dim=3), head=dict( type='LinearClsHead', num_classes=num_classes, in_channels=512, loss=dict(type='CrossEntropyLoss', loss_weight=1.0), topk=(1,), )) optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict(policy='step', step=[40, 80, 120]) runner = dict(type='EpochBasedRunner', max_epochs=160) log_config = dict( interval=10, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) # yapf:enable checkpoint_config = dict(by_epoch=True, interval=2) dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)]
py
7dfec513ed8e613a2646452c095b52035c8ce369
# Configuration file for jupyter-notebook. #------------------------------------------------------------------------------ # Application(SingletonConfigurable) configuration #------------------------------------------------------------------------------ ## This is an application. ## The date format used by logging formatters for %(asctime)s # Default: '%Y-%m-%d %H:%M:%S' # c.Application.log_datefmt = '%Y-%m-%d %H:%M:%S' ## The Logging format template # Default: '[%(name)s]%(highlevel)s %(message)s' # c.Application.log_format = '[%(name)s]%(highlevel)s %(message)s' ## Set the log level by value or name. # Choices: any of [0, 10, 20, 30, 40, 50, 'DEBUG', 'INFO', 'WARN', 'ERROR', 'CRITICAL'] # Default: 30 # c.Application.log_level = 30 ## Instead of starting the Application, dump configuration to stdout # Default: False # c.Application.show_config = False ## Instead of starting the Application, dump configuration to stdout (as JSON) # Default: False # c.Application.show_config_json = False #------------------------------------------------------------------------------ # JupyterApp(Application) configuration #------------------------------------------------------------------------------ ## Base class for Jupyter applications ## Answer yes to any prompts. # Default: False # c.JupyterApp.answer_yes = False ## Full path of a config file. # Default: '' # c.JupyterApp.config_file = '' ## Specify a config file to load. # Default: '' # c.JupyterApp.config_file_name = '' ## Generate default config file. # Default: False # c.JupyterApp.generate_config = False ## The date format used by logging formatters for %(asctime)s # See also: Application.log_datefmt # c.JupyterApp.log_datefmt = '%Y-%m-%d %H:%M:%S' ## The Logging format template # See also: Application.log_format # c.JupyterApp.log_format = '[%(name)s]%(highlevel)s %(message)s' ## Set the log level by value or name. # See also: Application.log_level # c.JupyterApp.log_level = 30 ## Instead of starting the Application, dump configuration to stdout # See also: Application.show_config # c.JupyterApp.show_config = False ## Instead of starting the Application, dump configuration to stdout (as JSON) # See also: Application.show_config_json # c.JupyterApp.show_config_json = False #------------------------------------------------------------------------------ # NotebookApp(JupyterApp) configuration #------------------------------------------------------------------------------ ## Set the Access-Control-Allow-Credentials: true header # Default: False # c.NotebookApp.allow_credentials = False ## Set the Access-Control-Allow-Origin header # # Use '*' to allow any origin to access your server. # # Takes precedence over allow_origin_pat. # Default: '' # c.NotebookApp.allow_origin = '' ## Use a regular expression for the Access-Control-Allow-Origin header # # Requests from an origin matching the expression will get replies with: # # Access-Control-Allow-Origin: origin # # where `origin` is the origin of the request. # # Ignored if allow_origin is set. # Default: '' # c.NotebookApp.allow_origin_pat = '' ## Allow password to be changed at login for the notebook server. # # While logging in with a token, the notebook server UI will give the opportunity to # the user to enter a new password at the same time that will replace # the token login mechanism. # # This can be set to false to prevent changing password from # the UI/API. # Default: True # c.NotebookApp.allow_password_change = True ## Allow requests where the Host header doesn't point to a local server # # By default, requests get a 403 forbidden response if the 'Host' header # shows that the browser thinks it's on a non-local domain. # Setting this option to True disables this check. # # This protects against 'DNS rebinding' attacks, where a remote web server # serves you a page and then changes its DNS to send later requests to a # local IP, bypassing same-origin checks. # # Local IP addresses (such as 127.0.0.1 and ::1) are allowed as local, # along with hostnames configured in local_hostnames. # Default: False # c.NotebookApp.allow_remote_access = False ## Whether to allow the user to run the notebook as root. # Default: False # c.NotebookApp.allow_root = False ## Answer yes to any prompts. # See also: JupyterApp.answer_yes # c.NotebookApp.answer_yes = False ## " # Require authentication to access prometheus metrics. # Default: True # c.NotebookApp.authenticate_prometheus = True ## Reload the webapp when changes are made to any Python src files. # Default: False # c.NotebookApp.autoreload = False ## DEPRECATED use base_url # Default: '/' # c.NotebookApp.base_project_url = '/' ## The base URL for the notebook server. # # Leading and trailing slashes can be omitted, # and will automatically be added. # Default: '/' # c.NotebookApp.base_url = '/' ## Specify what command to use to invoke a web # browser when opening the notebook. If not specified, the # default browser will be determined by the `webbrowser` # standard library module, which allows setting of the # BROWSER environment variable to override it. # Default: '' # c.NotebookApp.browser = '' ## The full path to an SSL/TLS certificate file. # Default: '' # c.NotebookApp.certfile = '' ## The full path to a certificate authority certificate for SSL/TLS client # authentication. # Default: '' # c.NotebookApp.client_ca = '' ## Full path of a config file. # See also: JupyterApp.config_file # c.NotebookApp.config_file = '' ## Specify a config file to load. # See also: JupyterApp.config_file_name # c.NotebookApp.config_file_name = '' ## The config manager class to use # Default: 'notebook.services.config.manager.ConfigManager' # c.NotebookApp.config_manager_class = 'notebook.services.config.manager.ConfigManager' ## The notebook manager class to use. # Default: 'notebook.services.contents.largefilemanager.LargeFileManager' # c.NotebookApp.contents_manager_class = 'notebook.services.contents.largefilemanager.LargeFileManager' ## Extra keyword arguments to pass to `set_secure_cookie`. See tornado's # set_secure_cookie docs for details. # Default: {} # c.NotebookApp.cookie_options = {} ## The random bytes used to secure cookies. # By default this is a new random number every time you start the Notebook. # Set it to a value in a config file to enable logins to persist across server sessions. # # Note: Cookie secrets should be kept private, do not share config files with # cookie_secret stored in plaintext (you can read the value from a file). # Default: b'' # c.NotebookApp.cookie_secret = b'' ## The file where the cookie secret is stored. # Default: '' # c.NotebookApp.cookie_secret_file = '' ## Override URL shown to users. # # Replace actual URL, including protocol, address, port and base URL, # with the given value when displaying URL to the users. Do not change # the actual connection URL. If authentication token is enabled, the # token is added to the custom URL automatically. # # This option is intended to be used when the URL to display to the user # cannot be determined reliably by the Jupyter notebook server (proxified # or containerized setups for example). # Default: '' # c.NotebookApp.custom_display_url = '' ## The default URL to redirect to from `/` # Default: '/tree' # c.NotebookApp.default_url = '/tree' ## Disable cross-site-request-forgery protection # # Jupyter notebook 4.3.1 introduces protection from cross-site request forgeries, # requiring API requests to either: # # - originate from pages served by this server (validated with XSRF cookie and token), or # - authenticate with a token # # Some anonymous compute resources still desire the ability to run code, # completely without authentication. # These services can disable all authentication and security checks, # with the full knowledge of what that implies. # Default: False # c.NotebookApp.disable_check_xsrf = False ## Whether to enable MathJax for typesetting math/TeX # # MathJax is the javascript library Jupyter uses to render math/LaTeX. It is # very large, so you may want to disable it if you have a slow internet # connection, or for offline use of the notebook. # # When disabled, equations etc. will appear as their untransformed TeX # source. # Default: True # c.NotebookApp.enable_mathjax = True ## extra paths to look for Javascript notebook extensions # Default: [] # c.NotebookApp.extra_nbextensions_path = [] ## handlers that should be loaded at higher priority than the default services # Default: [] # c.NotebookApp.extra_services = [] ## Extra paths to search for serving static files. # # This allows adding javascript/css to be available from the notebook server machine, # or overriding individual files in the IPython # Default: [] # c.NotebookApp.extra_static_paths = [] ## Extra paths to search for serving jinja templates. # # Can be used to override templates from notebook.templates. # Default: [] # c.NotebookApp.extra_template_paths = [] # Default: '' # c.NotebookApp.file_to_run = '' ## Generate default config file. # See also: JupyterApp.generate_config # c.NotebookApp.generate_config = False ## Extra keyword arguments to pass to `get_secure_cookie`. See tornado's # get_secure_cookie docs for details. # Default: {} # c.NotebookApp.get_secure_cookie_kwargs = {} ## Deprecated: Use minified JS file or not, mainly use during dev to avoid JS # recompilation # Default: False # c.NotebookApp.ignore_minified_js = False ## (bytes/sec) # Maximum rate at which stream output can be sent on iopub before they are # limited. # Default: 1000000 # c.NotebookApp.iopub_data_rate_limit = 1000000 ## (msgs/sec) # Maximum rate at which messages can be sent on iopub before they are # limited. # Default: 1000 # c.NotebookApp.iopub_msg_rate_limit = 1000 ## The IP address the notebook server will listen on. # Default: 'localhost' # c.NotebookApp.ip = 'localhost' ## Supply extra arguments that will be passed to Jinja environment. # Default: {} # c.NotebookApp.jinja_environment_options = {} ## Extra variables to supply to jinja templates when rendering. # Default: {} # c.NotebookApp.jinja_template_vars = {} ## The kernel manager class to use. # Default: 'notebook.services.kernels.kernelmanager.MappingKernelManager' # c.NotebookApp.kernel_manager_class = 'notebook.services.kernels.kernelmanager.MappingKernelManager' ## The kernel spec manager class to use. Should be a subclass of # `jupyter_client.kernelspec.KernelSpecManager`. # # The Api of KernelSpecManager is provisional and might change without warning # between this version of Jupyter and the next stable one. # Default: 'jupyter_client.kernelspec.KernelSpecManager' # c.NotebookApp.kernel_spec_manager_class = 'jupyter_client.kernelspec.KernelSpecManager' ## The full path to a private key file for usage with SSL/TLS. # Default: '' # c.NotebookApp.keyfile = '' ## Hostnames to allow as local when allow_remote_access is False. # # Local IP addresses (such as 127.0.0.1 and ::1) are automatically accepted # as local as well. # Default: ['localhost'] # c.NotebookApp.local_hostnames = ['localhost'] ## The date format used by logging formatters for %(asctime)s # See also: Application.log_datefmt # c.NotebookApp.log_datefmt = '%Y-%m-%d %H:%M:%S' ## The Logging format template # See also: Application.log_format # c.NotebookApp.log_format = '[%(name)s]%(highlevel)s %(message)s' ## Set to True to enable JSON formatted logs. Run "pip install notebook[json- # logging]" to install the required dependent packages. Can also be set using # the environment variable JUPYTER_ENABLE_JSON_LOGGING=true. # Default: False # c.NotebookApp.log_json = False ## Set the log level by value or name. # See also: Application.log_level # c.NotebookApp.log_level = 30 ## The login handler class to use. # Default: 'notebook.auth.login.LoginHandler' # c.NotebookApp.login_handler_class = 'notebook.auth.login.LoginHandler' ## The logout handler class to use. # Default: 'notebook.auth.logout.LogoutHandler' # c.NotebookApp.logout_handler_class = 'notebook.auth.logout.LogoutHandler' ## The MathJax.js configuration file that is to be used. # Default: 'TeX-AMS-MML_HTMLorMML-full,Safe' # c.NotebookApp.mathjax_config = 'TeX-AMS-MML_HTMLorMML-full,Safe' ## A custom url for MathJax.js. # Should be in the form of a case-sensitive url to MathJax, # for example: /static/components/MathJax/MathJax.js # Default: '' # c.NotebookApp.mathjax_url = '' ## Sets the maximum allowed size of the client request body, specified in the # Content-Length request header field. If the size in a request exceeds the # configured value, a malformed HTTP message is returned to the client. # # Note: max_body_size is applied even in streaming mode. # Default: 536870912 # c.NotebookApp.max_body_size = 536870912 ## Gets or sets the maximum amount of memory, in bytes, that is allocated for use # by the buffer manager. # Default: 536870912 # c.NotebookApp.max_buffer_size = 536870912 ## Gets or sets a lower bound on the open file handles process resource limit. # This may need to be increased if you run into an OSError: [Errno 24] Too many # open files. This is not applicable when running on Windows. # Default: 0 # c.NotebookApp.min_open_files_limit = 0 ## Dict of Python modules to load as notebook server extensions. Entry values can # be used to enable and disable the loading of the extensions. The extensions # will be loaded in alphabetical order. # Default: {} # c.NotebookApp.nbserver_extensions = {} ## The directory to use for notebooks and kernels. # Default: '' # c.NotebookApp.notebook_dir = '' ## Whether to open in a browser after starting. # The specific browser used is platform dependent and # determined by the python standard library `webbrowser` # module, unless it is overridden using the --browser # (NotebookApp.browser) configuration option. # Default: True # c.NotebookApp.open_browser = True ## Hashed password to use for web authentication. # # To generate, type in a python/IPython shell: # # from notebook.auth import passwd; passwd() # # The string should be of the form type:salt:hashed- # password. # Default: '' # c.NotebookApp.password = '' ## Forces users to use a password for the Notebook server. # This is useful in a multi user environment, for instance when # everybody in the LAN can access each other's machine through ssh. # # In such a case, serving the notebook server on localhost is not secure # since any user can connect to the notebook server via ssh. # Default: False # c.NotebookApp.password_required = False ## The port the notebook server will listen on (env: JUPYTER_PORT). # Default: 8888 # c.NotebookApp.port = 8888 ## The number of additional ports to try if the specified port is not available # (env: JUPYTER_PORT_RETRIES). # Default: 50 # c.NotebookApp.port_retries = 50 ## DISABLED: use %pylab or %matplotlib in the notebook to enable matplotlib. # Default: 'disabled' # c.NotebookApp.pylab = 'disabled' ## If True, display a button in the dashboard to quit # (shutdown the notebook server). # Default: True # c.NotebookApp.quit_button = True ## (sec) Time window used to # check the message and data rate limits. # Default: 3 # c.NotebookApp.rate_limit_window = 3 ## Reraise exceptions encountered loading server extensions? # Default: False # c.NotebookApp.reraise_server_extension_failures = False ## DEPRECATED use the nbserver_extensions dict instead # Default: [] # c.NotebookApp.server_extensions = [] ## The session manager class to use. # Default: 'notebook.services.sessions.sessionmanager.SessionManager' # c.NotebookApp.session_manager_class = 'notebook.services.sessions.sessionmanager.SessionManager' ## Instead of starting the Application, dump configuration to stdout # See also: Application.show_config # c.NotebookApp.show_config = False ## Instead of starting the Application, dump configuration to stdout (as JSON) # See also: Application.show_config_json # c.NotebookApp.show_config_json = False ## Shut down the server after N seconds with no kernels or terminals running and # no activity. This can be used together with culling idle kernels # (MappingKernelManager.cull_idle_timeout) to shutdown the notebook server when # it's not in use. This is not precisely timed: it may shut down up to a minute # later. 0 (the default) disables this automatic shutdown. # Default: 0 # c.NotebookApp.shutdown_no_activity_timeout = 0 ## The UNIX socket the notebook server will listen on. # Default: '' # c.NotebookApp.sock = '' ## The permissions mode for UNIX socket creation (default: 0600). # Default: '0600' # c.NotebookApp.sock_mode = '0600' ## Supply SSL options for the tornado HTTPServer. # See the tornado docs for details. # Default: {} # c.NotebookApp.ssl_options = {} ## Supply overrides for terminado. Currently only supports "shell_command". On # Unix, if "shell_command" is not provided, a non-login shell is launched by # default when the notebook server is connected to a terminal, a login shell # otherwise. # Default: {} # c.NotebookApp.terminado_settings = {} ## Set to False to disable terminals. # # This does *not* make the notebook server more secure by itself. # Anything the user can in a terminal, they can also do in a notebook. # # Terminals may also be automatically disabled if the terminado package # is not available. # Default: True # c.NotebookApp.terminals_enabled = True ## Token used for authenticating first-time connections to the server. # # The token can be read from the file referenced by JUPYTER_TOKEN_FILE or set directly # with the JUPYTER_TOKEN environment variable. # # When no password is enabled, # the default is to generate a new, random token. # # Setting to an empty string disables authentication altogether, which # is NOT RECOMMENDED. # Default: '<generated>' # c.NotebookApp.token = '<generated>' ## Supply overrides for the tornado.web.Application that the Jupyter notebook # uses. # Default: {} # c.NotebookApp.tornado_settings = {} ## Whether to trust or not X-Scheme/X-Forwarded-Proto and X-Real-Ip/X-Forwarded- # For headers sent by the upstream reverse proxy. Necessary if the proxy handles # SSL # Default: False # c.NotebookApp.trust_xheaders = False ## Disable launching browser by redirect file # # For versions of notebook > 5.7.2, a security feature measure was added that # prevented the authentication token used to launch the browser from being visible. # This feature makes it difficult for other users on a multi-user system from # running code in your Jupyter session as you. # # However, some environments (like Windows Subsystem for Linux (WSL) and Chromebooks), # launching a browser using a redirect file can lead the browser failing to load. # This is because of the difference in file structures/paths between the runtime and # the browser. # # Disabling this setting to False will disable this behavior, allowing the browser # to launch by using a URL and visible token (as before). # Default: True # c.NotebookApp.use_redirect_file = True ## DEPRECATED, use tornado_settings # Default: {} # c.NotebookApp.webapp_settings = {} ## Specify Where to open the notebook on startup. This is the # `new` argument passed to the standard library method `webbrowser.open`. # The behaviour is not guaranteed, but depends on browser support. Valid # values are: # # - 2 opens a new tab, # - 1 opens a new window, # - 0 opens in an existing window. # # See the `webbrowser.open` documentation for details. # Default: 2 # c.NotebookApp.webbrowser_open_new = 2 ## Set the tornado compression options for websocket connections. # # This value will be returned from # :meth:`WebSocketHandler.get_compression_options`. None (default) will disable # compression. A dict (even an empty one) will enable compression. # # See the tornado docs for WebSocketHandler.get_compression_options for details. # Default: None # c.NotebookApp.websocket_compression_options = None ## The base URL for websockets, # if it differs from the HTTP server (hint: it almost certainly doesn't). # # Should be in the form of an HTTP origin: ws[s]://hostname[:port] # Default: '' # c.NotebookApp.websocket_url = '' #------------------------------------------------------------------------------ # ConnectionFileMixin(LoggingConfigurable) configuration #------------------------------------------------------------------------------ ## Mixin for configurable classes that work with connection files ## JSON file in which to store connection info [default: kernel-<pid>.json] # # This file will contain the IP, ports, and authentication key needed to connect # clients to this kernel. By default, this file will be created in the security dir # of the current profile, but can be specified by absolute path. # Default: '' # c.ConnectionFileMixin.connection_file = '' ## set the control (ROUTER) port [default: random] # Default: 0 # c.ConnectionFileMixin.control_port = 0 ## set the heartbeat port [default: random] # Default: 0 # c.ConnectionFileMixin.hb_port = 0 ## set the iopub (PUB) port [default: random] # Default: 0 # c.ConnectionFileMixin.iopub_port = 0 ## Set the kernel's IP address [default localhost]. # If the IP address is something other than localhost, then # Consoles on other machines will be able to connect # to the Kernel, so be careful! # Default: '' # c.ConnectionFileMixin.ip = '' ## set the shell (ROUTER) port [default: random] # Default: 0 # c.ConnectionFileMixin.shell_port = 0 ## set the stdin (ROUTER) port [default: random] # Default: 0 # c.ConnectionFileMixin.stdin_port = 0 # Choices: any of ['tcp', 'ipc'] (case-insensitive) # Default: 'tcp' # c.ConnectionFileMixin.transport = 'tcp' #------------------------------------------------------------------------------ # KernelManager(ConnectionFileMixin) configuration #------------------------------------------------------------------------------ ## Manages a single kernel in a subprocess on this host. # # This version starts kernels with Popen. ## Should we autorestart the kernel if it dies. # Default: True # c.KernelManager.autorestart = True ## JSON file in which to store connection info [default: kernel-<pid>.json] # See also: ConnectionFileMixin.connection_file # c.KernelManager.connection_file = '' ## set the control (ROUTER) port [default: random] # See also: ConnectionFileMixin.control_port # c.KernelManager.control_port = 0 ## set the heartbeat port [default: random] # See also: ConnectionFileMixin.hb_port # c.KernelManager.hb_port = 0 ## set the iopub (PUB) port [default: random] # See also: ConnectionFileMixin.iopub_port # c.KernelManager.iopub_port = 0 ## Set the kernel's IP address [default localhost]. # See also: ConnectionFileMixin.ip # c.KernelManager.ip = '' ## set the shell (ROUTER) port [default: random] # See also: ConnectionFileMixin.shell_port # c.KernelManager.shell_port = 0 ## Time to wait for a kernel to terminate before killing it, in seconds. When a # shutdown request is initiated, the kernel will be immediately sent an # interrupt (SIGINT), followedby a shutdown_request message, after 1/2 of # `shutdown_wait_time`it will be sent a terminate (SIGTERM) request, and finally # at the end of `shutdown_wait_time` will be killed (SIGKILL). terminate and # kill may be equivalent on windows. Note that this value can beoverridden by # the in-use kernel provisioner since shutdown times mayvary by provisioned # environment. # Default: 5.0 # c.KernelManager.shutdown_wait_time = 5.0 ## set the stdin (ROUTER) port [default: random] # See also: ConnectionFileMixin.stdin_port # c.KernelManager.stdin_port = 0 # See also: ConnectionFileMixin.transport # c.KernelManager.transport = 'tcp' #------------------------------------------------------------------------------ # Session(Configurable) configuration #------------------------------------------------------------------------------ ## Object for handling serialization and sending of messages. # # The Session object handles building messages and sending them # with ZMQ sockets or ZMQStream objects. Objects can communicate with each # other over the network via Session objects, and only need to work with the # dict-based IPython message spec. The Session will handle # serialization/deserialization, security, and metadata. # # Sessions support configurable serialization via packer/unpacker traits, # and signing with HMAC digests via the key/keyfile traits. # # Parameters # ---------- # # debug : bool # whether to trigger extra debugging statements # packer/unpacker : str : 'json', 'pickle' or import_string # importstrings for methods to serialize message parts. If just # 'json' or 'pickle', predefined JSON and pickle packers will be used. # Otherwise, the entire importstring must be used. # # The functions must accept at least valid JSON input, and output # *bytes*. # # For example, to use msgpack: # packer = 'msgpack.packb', unpacker='msgpack.unpackb' # pack/unpack : callables # You can also set the pack/unpack callables for serialization directly. # session : bytes # the ID of this Session object. The default is to generate a new UUID. # username : unicode # username added to message headers. The default is to ask the OS. # key : bytes # The key used to initialize an HMAC signature. If unset, messages # will not be signed or checked. # keyfile : filepath # The file containing a key. If this is set, `key` will be initialized # to the contents of the file. ## Threshold (in bytes) beyond which an object's buffer should be extracted to # avoid pickling. # Default: 1024 # c.Session.buffer_threshold = 1024 ## Whether to check PID to protect against calls after fork. # # This check can be disabled if fork-safety is handled elsewhere. # Default: True # c.Session.check_pid = True ## Threshold (in bytes) beyond which a buffer should be sent without copying. # Default: 65536 # c.Session.copy_threshold = 65536 ## Debug output in the Session # Default: False # c.Session.debug = False ## The maximum number of digests to remember. # # The digest history will be culled when it exceeds this value. # Default: 65536 # c.Session.digest_history_size = 65536 ## The maximum number of items for a container to be introspected for custom serialization. # Containers larger than this are pickled outright. # Default: 64 # c.Session.item_threshold = 64 ## execution key, for signing messages. # Default: b'' # c.Session.key = b'' ## path to file containing execution key. # Default: '' # c.Session.keyfile = '' ## Metadata dictionary, which serves as the default top-level metadata dict for # each message. # Default: {} # c.Session.metadata = {} ## The name of the packer for serializing messages. # Should be one of 'json', 'pickle', or an import name # for a custom callable serializer. # Default: 'json' # c.Session.packer = 'json' ## The UUID identifying this session. # Default: '' # c.Session.session = '' ## The digest scheme used to construct the message signatures. # Must have the form 'hmac-HASH'. # Default: 'hmac-sha256' # c.Session.signature_scheme = 'hmac-sha256' ## The name of the unpacker for unserializing messages. # Only used with custom functions for `packer`. # Default: 'json' # c.Session.unpacker = 'json' ## Username for the Session. Default is your system username. # Default: 'acg34' # c.Session.username = 'acg34' #------------------------------------------------------------------------------ # MultiKernelManager(LoggingConfigurable) configuration #------------------------------------------------------------------------------ ## A class for managing multiple kernels. ## The name of the default kernel to start # Default: 'python3' # c.MultiKernelManager.default_kernel_name = 'python3' ## The kernel manager class. This is configurable to allow # subclassing of the KernelManager for customized behavior. # Default: 'jupyter_client.ioloop.IOLoopKernelManager' # c.MultiKernelManager.kernel_manager_class = 'jupyter_client.ioloop.IOLoopKernelManager' ## Share a single zmq.Context to talk to all my kernels # Default: True # c.MultiKernelManager.shared_context = True #------------------------------------------------------------------------------ # MappingKernelManager(MultiKernelManager) configuration #------------------------------------------------------------------------------ ## A KernelManager that handles notebook mapping and HTTP error handling ## White list of allowed kernel message types. # When the list is empty, all message types are allowed. # Default: [] # c.MappingKernelManager.allowed_message_types = [] ## Whether messages from kernels whose frontends have disconnected should be buffered in-memory. # When True (default), messages are buffered and replayed on reconnect, # avoiding lost messages due to interrupted connectivity. # Disable if long-running kernels will produce too much output while # no frontends are connected. # Default: True # c.MappingKernelManager.buffer_offline_messages = True ## Whether to consider culling kernels which are busy. # Only effective if cull_idle_timeout > 0. # Default: False # c.MappingKernelManager.cull_busy = False ## Whether to consider culling kernels which have one or more connections. # Only effective if cull_idle_timeout > 0. # Default: False # c.MappingKernelManager.cull_connected = False ## Timeout (in seconds) after which a kernel is considered idle and ready to be culled. # Values of 0 or lower disable culling. Very short timeouts may result in kernels being culled # for users with poor network connections. # Default: 0 # c.MappingKernelManager.cull_idle_timeout = 0 ## The interval (in seconds) on which to check for idle kernels exceeding the # cull timeout value. # Default: 300 # c.MappingKernelManager.cull_interval = 300 ## The name of the default kernel to start # See also: MultiKernelManager.default_kernel_name # c.MappingKernelManager.default_kernel_name = 'python3' ## Timeout for giving up on a kernel (in seconds). # On starting and restarting kernels, we check whether the # kernel is running and responsive by sending kernel_info_requests. # This sets the timeout in seconds for how long the kernel can take # before being presumed dead. # This affects the MappingKernelManager (which handles kernel restarts) # and the ZMQChannelsHandler (which handles the startup). # Default: 60 # c.MappingKernelManager.kernel_info_timeout = 60 ## The kernel manager class. This is configurable to allow # See also: MultiKernelManager.kernel_manager_class # c.MappingKernelManager.kernel_manager_class = 'jupyter_client.ioloop.IOLoopKernelManager' # Default: '' # c.MappingKernelManager.root_dir = '' ## Share a single zmq.Context to talk to all my kernels # See also: MultiKernelManager.shared_context # c.MappingKernelManager.shared_context = True #------------------------------------------------------------------------------ # KernelSpecManager(LoggingConfigurable) configuration #------------------------------------------------------------------------------ ## List of allowed kernel names. # # By default, all installed kernels are allowed. # Default: set() # c.KernelSpecManager.allowed_kernelspecs = set() ## If there is no Python kernelspec registered and the IPython # kernel is available, ensure it is added to the spec list. # Default: True # c.KernelSpecManager.ensure_native_kernel = True ## The kernel spec class. This is configurable to allow # subclassing of the KernelSpecManager for customized behavior. # Default: 'jupyter_client.kernelspec.KernelSpec' # c.KernelSpecManager.kernel_spec_class = 'jupyter_client.kernelspec.KernelSpec' ## Deprecated, use `KernelSpecManager.allowed_kernelspecs` # Default: set() # c.KernelSpecManager.whitelist = set() #------------------------------------------------------------------------------ # ContentsManager(LoggingConfigurable) configuration #------------------------------------------------------------------------------ ## Base class for serving files and directories. # # This serves any text or binary file, # as well as directories, # with special handling for JSON notebook documents. # # Most APIs take a path argument, # which is always an API-style unicode path, # and always refers to a directory. # # - unicode, not url-escaped # - '/'-separated # - leading and trailing '/' will be stripped # - if unspecified, path defaults to '', # indicating the root path. ## Allow access to hidden files # Default: False # c.ContentsManager.allow_hidden = False # Default: None # c.ContentsManager.checkpoints = None # Default: 'notebook.services.contents.checkpoints.Checkpoints' # c.ContentsManager.checkpoints_class = 'notebook.services.contents.checkpoints.Checkpoints' # Default: {} # c.ContentsManager.checkpoints_kwargs = {} ## handler class to use when serving raw file requests. # # Default is a fallback that talks to the ContentsManager API, # which may be inefficient, especially for large files. # # Local files-based ContentsManagers can use a StaticFileHandler subclass, # which will be much more efficient. # # Access to these files should be Authenticated. # Default: 'notebook.files.handlers.FilesHandler' # c.ContentsManager.files_handler_class = 'notebook.files.handlers.FilesHandler' ## Extra parameters to pass to files_handler_class. # # For example, StaticFileHandlers generally expect a `path` argument # specifying the root directory from which to serve files. # Default: {} # c.ContentsManager.files_handler_params = {} ## Glob patterns to hide in file and directory listings. # Default: ['__pycache__', '*.pyc', '*.pyo', '.DS_Store', '*.so', '*.dylib', '*~'] # c.ContentsManager.hide_globs = ['__pycache__', '*.pyc', '*.pyo', '.DS_Store', '*.so', '*.dylib', '*~'] ## Python callable or importstring thereof # # To be called on a contents model prior to save. # # This can be used to process the structure, # such as removing notebook outputs or other side effects that # should not be saved. # # It will be called as (all arguments passed by keyword):: # # hook(path=path, model=model, contents_manager=self) # # - model: the model to be saved. Includes file contents. # Modifying this dict will affect the file that is stored. # - path: the API path of the save destination # - contents_manager: this ContentsManager instance # Default: None # c.ContentsManager.pre_save_hook = None # Default: '/' # c.ContentsManager.root_dir = '/' ## The base name used when creating untitled directories. # Default: 'Untitled Folder' # c.ContentsManager.untitled_directory = 'Untitled Folder' ## The base name used when creating untitled files. # Default: 'untitled' # c.ContentsManager.untitled_file = 'untitled' ## The base name used when creating untitled notebooks. # Default: 'Untitled' # c.ContentsManager.untitled_notebook = 'Untitled' #------------------------------------------------------------------------------ # FileManagerMixin(Configurable) configuration #------------------------------------------------------------------------------ ## Mixin for ContentsAPI classes that interact with the filesystem. # # Provides facilities for reading, writing, and copying both notebooks and # generic files. # # Shared by FileContentsManager and FileCheckpoints. # # Note ---- Classes using this mixin must provide the following attributes: # # root_dir : unicode # A directory against which API-style paths are to be resolved. # # log : logging.Logger ## By default notebooks are saved on disk on a temporary file and then if successfully written, it replaces the old ones. # This procedure, namely 'atomic_writing', causes some bugs on file system without operation order enforcement (like some networked fs). # If set to False, the new notebook is written directly on the old one which could fail (eg: full filesystem or quota ) # Default: True # c.FileManagerMixin.use_atomic_writing = True #------------------------------------------------------------------------------ # FileContentsManager(FileManagerMixin, ContentsManager) configuration #------------------------------------------------------------------------------ ## Allow access to hidden files # See also: ContentsManager.allow_hidden # c.FileContentsManager.allow_hidden = False # See also: ContentsManager.checkpoints # c.FileContentsManager.checkpoints = None # See also: ContentsManager.checkpoints_class # c.FileContentsManager.checkpoints_class = 'notebook.services.contents.checkpoints.Checkpoints' # See also: ContentsManager.checkpoints_kwargs # c.FileContentsManager.checkpoints_kwargs = {} ## If True (default), deleting files will send them to the # platform's trash/recycle bin, where they can be recovered. If False, # deleting files really deletes them. # Default: True # c.FileContentsManager.delete_to_trash = True ## handler class to use when serving raw file requests. # See also: ContentsManager.files_handler_class # c.FileContentsManager.files_handler_class = 'notebook.files.handlers.FilesHandler' ## Extra parameters to pass to files_handler_class. # See also: ContentsManager.files_handler_params # c.FileContentsManager.files_handler_params = {} ## # See also: ContentsManager.hide_globs # c.FileContentsManager.hide_globs = ['__pycache__', '*.pyc', '*.pyo', '.DS_Store', '*.so', '*.dylib', '*~'] ## Python callable or importstring thereof # # to be called on the path of a file just saved. # # This can be used to process the file on disk, # such as converting the notebook to a script or HTML via nbconvert. # # It will be called as (all arguments passed by keyword):: # # hook(os_path=os_path, model=model, contents_manager=instance) # # - path: the filesystem path to the file just written # - model: the model representing the file # - contents_manager: this ContentsManager instance # Default: None # c.FileContentsManager.post_save_hook = None ## Python callable or importstring thereof # See also: ContentsManager.pre_save_hook # c.FileContentsManager.pre_save_hook = None # Default: '' # c.FileContentsManager.root_dir = '' ## DEPRECATED, use post_save_hook. Will be removed in Notebook 5.0 # Default: False # c.FileContentsManager.save_script = False ## The base name used when creating untitled directories. # See also: ContentsManager.untitled_directory # c.FileContentsManager.untitled_directory = 'Untitled Folder' ## The base name used when creating untitled files. # See also: ContentsManager.untitled_file # c.FileContentsManager.untitled_file = 'untitled' ## The base name used when creating untitled notebooks. # See also: ContentsManager.untitled_notebook # c.FileContentsManager.untitled_notebook = 'Untitled' ## By default notebooks are saved on disk on a temporary file and then if # successfully written, it replaces the old ones. # See also: FileManagerMixin.use_atomic_writing # c.FileContentsManager.use_atomic_writing = True #------------------------------------------------------------------------------ # NotebookNotary(LoggingConfigurable) configuration #------------------------------------------------------------------------------ ## A class for computing and verifying notebook signatures. ## The hashing algorithm used to sign notebooks. # Choices: any of ['sha384', 'md5', 'sha224', 'blake2b', 'sha3_224', 'sha1', 'sha3_512', 'blake2s', 'sha512', 'sha3_384', 'sha3_256', 'sha256'] # Default: 'sha256' # c.NotebookNotary.algorithm = 'sha256' ## The storage directory for notary secret and database. # Default: '' # c.NotebookNotary.data_dir = '' ## The sqlite file in which to store notebook signatures. # By default, this will be in your Jupyter data directory. # You can set it to ':memory:' to disable sqlite writing to the filesystem. # Default: '' # c.NotebookNotary.db_file = '' ## The secret key with which notebooks are signed. # Default: b'' # c.NotebookNotary.secret = b'' ## The file where the secret key is stored. # Default: '' # c.NotebookNotary.secret_file = '' ## A callable returning the storage backend for notebook signatures. # The default uses an SQLite database. # Default: traitlets.Undefined # c.NotebookNotary.store_factory = traitlets.Undefined #------------------------------------------------------------------------------ # AsyncMultiKernelManager(MultiKernelManager) configuration #------------------------------------------------------------------------------ ## The name of the default kernel to start # See also: MultiKernelManager.default_kernel_name # c.AsyncMultiKernelManager.default_kernel_name = 'python3' ## The kernel manager class. This is configurable to allow # subclassing of the AsyncKernelManager for customized behavior. # Default: 'jupyter_client.ioloop.AsyncIOLoopKernelManager' # c.AsyncMultiKernelManager.kernel_manager_class = 'jupyter_client.ioloop.AsyncIOLoopKernelManager' ## Share a single zmq.Context to talk to all my kernels # See also: MultiKernelManager.shared_context # c.AsyncMultiKernelManager.shared_context = True ## Whether to make kernels available before the process has started. The # kernel has a `.ready` future which can be awaited before connecting # Default: False # c.AsyncMultiKernelManager.use_pending_kernels = False #------------------------------------------------------------------------------ # AsyncMappingKernelManager(MappingKernelManager, AsyncMultiKernelManager) configuration #------------------------------------------------------------------------------ ## White list of allowed kernel message types. # See also: MappingKernelManager.allowed_message_types # c.AsyncMappingKernelManager.allowed_message_types = [] ## Whether messages from kernels whose frontends have disconnected should be # buffered in-memory. # See also: MappingKernelManager.buffer_offline_messages # c.AsyncMappingKernelManager.buffer_offline_messages = True ## Whether to consider culling kernels which are busy. # See also: MappingKernelManager.cull_busy # c.AsyncMappingKernelManager.cull_busy = False ## Whether to consider culling kernels which have one or more connections. # See also: MappingKernelManager.cull_connected # c.AsyncMappingKernelManager.cull_connected = False ## Timeout (in seconds) after which a kernel is considered idle and ready to be # culled. # See also: MappingKernelManager.cull_idle_timeout # c.AsyncMappingKernelManager.cull_idle_timeout = 0 ## The interval (in seconds) on which to check for idle kernels exceeding the # cull timeout value. # See also: MappingKernelManager.cull_interval # c.AsyncMappingKernelManager.cull_interval = 300 ## The name of the default kernel to start # See also: MultiKernelManager.default_kernel_name # c.AsyncMappingKernelManager.default_kernel_name = 'python3' ## Timeout for giving up on a kernel (in seconds). # See also: MappingKernelManager.kernel_info_timeout # c.AsyncMappingKernelManager.kernel_info_timeout = 60 ## The kernel manager class. This is configurable to allow # See also: AsyncMultiKernelManager.kernel_manager_class # c.AsyncMappingKernelManager.kernel_manager_class = 'jupyter_client.ioloop.AsyncIOLoopKernelManager' # See also: MappingKernelManager.root_dir # c.AsyncMappingKernelManager.root_dir = '' ## Share a single zmq.Context to talk to all my kernels # See also: MultiKernelManager.shared_context # c.AsyncMappingKernelManager.shared_context = True ## Whether to make kernels available before the process has started. The # See also: AsyncMultiKernelManager.use_pending_kernels # c.AsyncMappingKernelManager.use_pending_kernels = False #------------------------------------------------------------------------------ # GatewayKernelManager(AsyncMappingKernelManager) configuration #------------------------------------------------------------------------------ ## Kernel manager that supports remote kernels hosted by Jupyter Kernel or # Enterprise Gateway. ## White list of allowed kernel message types. # See also: MappingKernelManager.allowed_message_types # c.GatewayKernelManager.allowed_message_types = [] ## Whether messages from kernels whose frontends have disconnected should be # buffered in-memory. # See also: MappingKernelManager.buffer_offline_messages # c.GatewayKernelManager.buffer_offline_messages = True ## Whether to consider culling kernels which are busy. # See also: MappingKernelManager.cull_busy # c.GatewayKernelManager.cull_busy = False ## Whether to consider culling kernels which have one or more connections. # See also: MappingKernelManager.cull_connected # c.GatewayKernelManager.cull_connected = False ## Timeout (in seconds) after which a kernel is considered idle and ready to be # culled. # See also: MappingKernelManager.cull_idle_timeout # c.GatewayKernelManager.cull_idle_timeout = 0 ## The interval (in seconds) on which to check for idle kernels exceeding the # cull timeout value. # See also: MappingKernelManager.cull_interval # c.GatewayKernelManager.cull_interval = 300 ## The name of the default kernel to start # See also: MultiKernelManager.default_kernel_name # c.GatewayKernelManager.default_kernel_name = 'python3' ## Timeout for giving up on a kernel (in seconds). # See also: MappingKernelManager.kernel_info_timeout # c.GatewayKernelManager.kernel_info_timeout = 60 ## The kernel manager class. This is configurable to allow # See also: AsyncMultiKernelManager.kernel_manager_class # c.GatewayKernelManager.kernel_manager_class = 'jupyter_client.ioloop.AsyncIOLoopKernelManager' # See also: MappingKernelManager.root_dir # c.GatewayKernelManager.root_dir = '' ## Share a single zmq.Context to talk to all my kernels # See also: MultiKernelManager.shared_context # c.GatewayKernelManager.shared_context = True ## Whether to make kernels available before the process has started. The # See also: AsyncMultiKernelManager.use_pending_kernels # c.GatewayKernelManager.use_pending_kernels = False #------------------------------------------------------------------------------ # GatewayKernelSpecManager(KernelSpecManager) configuration #------------------------------------------------------------------------------ ## List of allowed kernel names. # See also: KernelSpecManager.allowed_kernelspecs # c.GatewayKernelSpecManager.allowed_kernelspecs = set() ## If there is no Python kernelspec registered and the IPython # See also: KernelSpecManager.ensure_native_kernel # c.GatewayKernelSpecManager.ensure_native_kernel = True ## The kernel spec class. This is configurable to allow # See also: KernelSpecManager.kernel_spec_class # c.GatewayKernelSpecManager.kernel_spec_class = 'jupyter_client.kernelspec.KernelSpec' ## Deprecated, use `KernelSpecManager.allowed_kernelspecs` # See also: KernelSpecManager.whitelist # c.GatewayKernelSpecManager.whitelist = set() #------------------------------------------------------------------------------ # GatewayClient(SingletonConfigurable) configuration #------------------------------------------------------------------------------ ## This class manages the configuration. It's its own singleton class so that we # can share these values across all objects. It also contains some helper methods # to build request arguments out of the various config options. ## The authorization token used in the HTTP headers. (JUPYTER_GATEWAY_AUTH_TOKEN # env var) # Default: None # c.GatewayClient.auth_token = None ## The filename of CA certificates or None to use defaults. # (JUPYTER_GATEWAY_CA_CERTS env var) # Default: None # c.GatewayClient.ca_certs = None ## The filename for client SSL certificate, if any. (JUPYTER_GATEWAY_CLIENT_CERT # env var) # Default: None # c.GatewayClient.client_cert = None ## The filename for client SSL key, if any. (JUPYTER_GATEWAY_CLIENT_KEY env var) # Default: None # c.GatewayClient.client_key = None ## The time allowed for HTTP connection establishment with the Gateway server. # (JUPYTER_GATEWAY_CONNECT_TIMEOUT env var) # Default: 40.0 # c.GatewayClient.connect_timeout = 40.0 ## A comma-separated list of environment variable names that will be included, along with # their values, in the kernel startup request. The corresponding `env_whitelist` configuration # value must also be set on the Gateway server - since that configuration value indicates which # environmental values to make available to the kernel. (JUPYTER_GATEWAY_ENV_WHITELIST env var) # Default: '' # c.GatewayClient.env_whitelist = '' ## The time allowed for HTTP reconnection with the Gateway server for the first time. # Next will be JUPYTER_GATEWAY_RETRY_INTERVAL multiplied by two in factor of numbers of retries # but less than JUPYTER_GATEWAY_RETRY_INTERVAL_MAX. # (JUPYTER_GATEWAY_RETRY_INTERVAL env var) # Default: 1.0 # c.GatewayClient.gateway_retry_interval = 1.0 ## The maximum time allowed for HTTP reconnection retry with the Gateway server. # (JUPYTER_GATEWAY_RETRY_INTERVAL_MAX env var) # Default: 30.0 # c.GatewayClient.gateway_retry_interval_max = 30.0 ## The maximum retries allowed for HTTP reconnection with the Gateway server. # (JUPYTER_GATEWAY_RETRY_MAX env var) # Default: 5 # c.GatewayClient.gateway_retry_max = 5 ## Additional HTTP headers to pass on the request. This value will be converted to a dict. # (JUPYTER_GATEWAY_HEADERS env var) # Default: '{}' # c.GatewayClient.headers = '{}' ## The password for HTTP authentication. (JUPYTER_GATEWAY_HTTP_PWD env var) # Default: None # c.GatewayClient.http_pwd = None ## The username for HTTP authentication. (JUPYTER_GATEWAY_HTTP_USER env var) # Default: None # c.GatewayClient.http_user = None ## The gateway API endpoint for accessing kernel resources # (JUPYTER_GATEWAY_KERNELS_ENDPOINT env var) # Default: '/api/kernels' # c.GatewayClient.kernels_endpoint = '/api/kernels' ## The gateway API endpoint for accessing kernelspecs # (JUPYTER_GATEWAY_KERNELSPECS_ENDPOINT env var) # Default: '/api/kernelspecs' # c.GatewayClient.kernelspecs_endpoint = '/api/kernelspecs' ## The gateway endpoint for accessing kernelspecs resources # (JUPYTER_GATEWAY_KERNELSPECS_RESOURCE_ENDPOINT env var) # Default: '/kernelspecs' # c.GatewayClient.kernelspecs_resource_endpoint = '/kernelspecs' ## The time allowed for HTTP request completion. (JUPYTER_GATEWAY_REQUEST_TIMEOUT # env var) # Default: 40.0 # c.GatewayClient.request_timeout = 40.0 ## The url of the Kernel or Enterprise Gateway server where # kernel specifications are defined and kernel management takes place. # If defined, this Notebook server acts as a proxy for all kernel # management and kernel specification retrieval. (JUPYTER_GATEWAY_URL env var) # Default: None # c.GatewayClient.url = None ## For HTTPS requests, determines if server's certificate should be validated or not. # (JUPYTER_GATEWAY_VALIDATE_CERT env var) # Default: True # c.GatewayClient.validate_cert = True ## The websocket url of the Kernel or Enterprise Gateway server. If not provided, this value # will correspond to the value of the Gateway url with 'ws' in place of 'http'. (JUPYTER_GATEWAY_WS_URL env var) # Default: None # c.GatewayClient.ws_url = None #------------------------------------------------------------------------------ # TerminalManager(LoggingConfigurable) configuration #------------------------------------------------------------------------------ ## ## Timeout (in seconds) in which a terminal has been inactive and ready to be culled. # Values of 0 or lower disable culling. # Default: 0 # c.TerminalManager.cull_inactive_timeout = 0 ## The interval (in seconds) on which to check for terminals exceeding the # inactive timeout value. # Default: 300 # c.TerminalManager.cull_interval = 300
py
7dfec5a961d8c74c80f4b8eb6c749905a249e9a5
# # This file is auto-generated, please do not modify directly! # import unittest import gm class TestMat3f(unittest.TestCase): def testDefaultInitialization(self): matrix = gm.Mat3f() self.assertEqual(matrix, gm.Mat3f(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)) def testElementInitialization(self): gm.Mat3f(0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0) def testElementReadAccess(self): matrix = gm.Mat3f(0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0) self.assertAlmostEqual(matrix[0], 0.0) self.assertAlmostEqual(matrix[1], 2.0) self.assertAlmostEqual(matrix[2], 4.0) self.assertAlmostEqual(matrix[3], 6.0) self.assertAlmostEqual(matrix[4], 8.0) self.assertAlmostEqual(matrix[5], 10.0) self.assertAlmostEqual(matrix[6], 12.0) self.assertAlmostEqual(matrix[7], 14.0) self.assertAlmostEqual(matrix[8], 16.0) def testElementWriteAccess(self): matrix = gm.Mat3f() matrix[0] = 0.0 matrix[1] = 2.0 matrix[2] = 4.0 matrix[3] = 6.0 matrix[4] = 8.0 matrix[5] = 10.0 matrix[6] = 12.0 matrix[7] = 14.0 matrix[8] = 16.0 self.assertAlmostEqual(matrix[0], 0.0) self.assertAlmostEqual(matrix[1], 2.0) self.assertAlmostEqual(matrix[2], 4.0) self.assertAlmostEqual(matrix[3], 6.0) self.assertAlmostEqual(matrix[4], 8.0) self.assertAlmostEqual(matrix[5], 10.0) self.assertAlmostEqual(matrix[6], 12.0) self.assertAlmostEqual(matrix[7], 14.0) self.assertAlmostEqual(matrix[8], 16.0) def testMatrixElementReadAccess(self): matrix = gm.Mat3f(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0) self.assertEqual(matrix[0, 0], 0.0) self.assertEqual(matrix[0, 1], 1.0) self.assertEqual(matrix[0, 2], 2.0) self.assertEqual(matrix[1, 0], 3.0) self.assertEqual(matrix[1, 1], 4.0) self.assertEqual(matrix[1, 2], 5.0) self.assertEqual(matrix[2, 0], 6.0) self.assertEqual(matrix[2, 1], 7.0) self.assertEqual(matrix[2, 2], 8.0) def testMatrixElementWriteAccess(self): matrix = gm.Mat3f() matrix[0, 0] = 0.0 matrix[0, 1] = 1.0 matrix[0, 2] = 2.0 matrix[1, 0] = 3.0 matrix[1, 1] = 4.0 matrix[1, 2] = 5.0 matrix[2, 0] = 6.0 matrix[2, 1] = 7.0 matrix[2, 2] = 8.0 self.assertEqual(matrix, gm.Mat3f(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0))
py
7dfec60156de5ff5f7a0bb752a9a86cf58bdd258
import random import os from . import line_count, create_idx_key, get_idx_key, get_write_fn, get_read_fn, _io_type from . import _env, parser, json, glob, Timer if _env['tqdm']: from tqdm.auto import tqdm, trange if _env['tf']: from .tflow import setup_tf_serialization_features, serialize_tf_example, SerializeTFWorker, TFRWriter from .tflow import TFDatasetFromTensors, TFRDataset if _env['torch']: from .torch import serialize_torch_example, SerializeTorchWorker, setup_torch_serialization_features from .torch import TorchWriter, DynamicCollate, PylinesDataset, PylinesIterableFunctionDataset, PylinesDatasetFromIterator #if _env['ray']: # import ray.util.multiprocessing as mp #else: import math from .logger import get_logger import multiprocessing as mp import hashlib import gc logger = get_logger() _tokenize_fn = None # https://stackoverflow.com/questions/620367/how-to-jump-to-a-particular-line-in-a-huge-text-file class LineSeekableFile: def __init__(self, seekable): self.fin = seekable self.line_map = list() # Map from line index -> file position. self.line_map.append(0) while seekable.readline(): self.line_map.append(seekable.tell()) def index(self): return self.line_map def __len__(self): return len(self.line_map) def __getitem__(self, index): # NOTE: This assumes that you're not reading the file sequentially. # For that, just use 'for line in file'. self.fin.seek(self.line_map[index]) return self.fin.readline() class LazyLoadFile: def __init__(self, filename, skip_broken=True): self.filename = filename self.reader = get_read_fn(filename) self._skip = skip_broken self.fseek = LineSeekableFile(self.reader) if self._skip: self.lineidx = 0 self.badidx = 0 def random_iter(self, num_lines=None): num_lines = num_lines if num_lines else len(self.fseek) total_idx = [i for i in range(num_lines)] random.shuffle(total_idx) for idx in total_idx: if self._skip: try: yield self.loads(self.fseek[idx]) self.lineidx += 1 except: self.badidx += 1 else: yield self.loads(self.fseek[idx]) def quick_iter(self, num_lines=None): num_lines = num_lines if num_lines else len(self.fseek) for x, line in enumerate(self.reader): if self._skip: try: yield self.loads(line) self.lineidx += 1 except: self.badidx += 1 else: yield self.loads(line) if x >= num_lines: break def iter(self): for line in self.reader: if self._skip: try: yield self.loads(line) self.lineidx += 1 except: self.badidx += 1 else: yield self.loads(line) def loads(self, v): return parser.parse(v).as_dict() def __getitem__(self, idx): return self.loads(self.fseek[idx]) def __len__(self): return len(self.fseek) def stats(self): return {'loaded': self.lineidx, 'missed': self.badidx} def resetstats(self): self.lineidx = 0 self.badidx = 0 return {'loaded': self.lineidx, 'missed': self.badidx} def setup_tokenize_fn(tokenizer_fn): assert _env['transformers'], 'Transformers must be installed to use tokenize function' global _tokenize_fn _tokenize_fn = tokenizer_fn def TokenizerWorker(ex): try: result = _tokenize_fn(ex) return result except: return None def setup_iter_fn(iter_fn): global _iter_func _iter_func = iter_fn def IterWorker(ex): try: result = _iter_func(ex) return result except: return None def setup_filter_fns(filter_fns): global _filter_func _filter_func = filter_fns def FilterWorker(ex): result = {} for key in ex: if key not in _filter_func['bypass'] and key in _filter_func: res = _filter_func[key](ex[key]) if res: result[key] = res elif key in _filter_func['bypass']: result[key] = ex[key] if bool(result): return None return result def FileIterator(filename): with get_read_fn(filename) as f: for line in f: yield parser.parse(line).as_dict() raise StopIteration def make_hashes(inputs): return hashlib.sha256(str.encode(inputs)).hexdigest() def check_hashes(inputs, hashed_text): if make_hashes(inputs) == hashed_text: return hashed_text return False class Pylines: def __init__(self, input_fns=None, output_fn=None, skip_broken=True, overwrite_output=False, use_lazy=False, use_mp=True, use_idx=False, total_lines=0): self._skip, self._lazy, self._mp, self._idx, self._overwrite = skip_broken, use_lazy, use_mp, use_idx, overwrite_output self.total_lines = total_lines self.writer, self.reader = None, None self.input_fns, self.output_fn = None, None self.stats = {} self.timer = Timer() self.stored_items = list() self._io(input_fns, output_fn) def as_tokenizer(self, tokenizer_fn=None, input_fns=None, use_mp=True): if tokenizer_fn: setup_tokenize_fn(tokenizer_fn) assert _tokenize_fn, 'tokenizer_fn must first be set before being able to run' self._io(input_fns, output_fn=None) for result in self._as_iter(_tokenize_fn, TokenizerWorker, use_mp, desc='Tokenization'): yield result logger.info(f'{self.timer.stop()} for Tokenizing {self.total_lines} Items') def run_tokenizer(self, tokenizer_fn=None, input_fns=None, output_fn=None, use_mp=True): self._io(input_fns, output_fn) for result in self.as_tokenizer(tokenizer_fn=tokenizer_fn, use_mp=use_mp): self.write(result) self.flush() def as_processor(self, iter_func=None, input_fns=None, use_mp=True): if iter_func: setup_iter_fn(iter_func) assert _iter_func, 'iter_func must first be set before running' self._io(input_fns, output_fn=None) for result in self._as_iter(_iter_func, IterWorker, use_mp, desc='Iterator Function'): yield result logger.info(f'{self.timer.stop()} for {self.total_lines} Items') def run_processor(self, iter_func=None, input_fns=None, output_fn=None, use_mp=True): self._io(input_fns, output_fn) for result in self.as_processor(iter_func=iter_func, use_mp=use_mp): self.write(result) self.flush() # filter_funcs = {'text': filter_fuc, 'target': filter_func, 'idx': filter_func, 'bypass': ['key_1', 'key_2']} def as_filter(self, filter_funcs=None, input_fns=None, use_mp=True): if filter_funcs: setup_filter_fns(filter_funcs) assert _filter_func, 'filter_funcs must first be set before running' self._io(input_fns, output_fn=None) for result in self._as_iter(FilterWorker, FilterWorker, use_mp, desc='Filtering Items'): yield result logger.info(f'{self.timer.stop()} for Filtering {self.total_lines} Items') def run_filter(self, filter_funcs=None, input_fns=None, output_fn=None, use_mp=True): self._io(input_fns, output_fn) for result in self.as_filter(filter_funcs=filter_funcs, use_mp=use_mp): self.write(result) self.flush() def _tftensordict(self, all_examples, dataset_features=None): _features = list() _tensor_examples = dict() for axis in dataset_features: _features += dataset_features[axis]['names'] for feats in _features: _tensor_examples[feats] = list() for ex in all_examples: for key, v in ex.items(): if key in _features: _tensor_examples[key].extend(v) return _tensor_examples def _tfencoder(self, all_examples, dataset_features=None, slices=True, use_mp=True): if dataset_features: for axis in dataset_features: assert 'names' in dataset_features[axis], 'names is a required key for dataset features.' setup_tf_serialization_features(dataset_features) if slices: _tensor_ds = self._tftensordict(all_examples, dataset_features) return _tensor_ds else: for serialized_ex in self._as_iter_items(all_examples, serialize_tf_example, SerializeTFWorker, use_mp=use_mp, desc=f'Serializing to TFRecords'): yield serialized_ex def _tfwriter(self, all_examples, output_dir, dataset_features=None, start_idx=1, split_key='split', split='train', write_string='{}_shard_{}.tfrecords', shard_size=50000, overwrite=False, use_tempdir=False, use_mp=True): _total_match = self.count_matching(split_key, split) if split_key else self.total_lines with TFRWriter(output_dir, _total_match, start_idx, split, write_string, shard_size, overwrite, use_tempdir) as writer: for serialized_ex in self._tfencoder(all_examples, dataset_features, slices=False, use_mp=use_mp): writer.write(serialized_ex) tfrecord_files, total_items = writer.close() return tfrecord_files, total_items def _torchencoder(self, all_examples, dataset_features=None, use_mp=True): if dataset_features: setup_torch_serialization_features(dataset_features) for serialized_ex in self._as_iter_items(all_examples, serialize_torch_example, SerializeTorchWorker, use_mp=use_mp, desc=f'Serializing to Torch'): yield serialized_ex def _torchwriter(self, all_examples, output_dir, dataset_features=None, start_idx=1, split_key='split', split='train', write_string='{}_shard_{}.pkl', shard_size=50000, overwrite=False, use_tempdir=False, use_mp=True, compression=True): _total_match = self.count_matching(split_key, split) if split_key else self.total_lines with TorchWriter(output_dir, _total_match, start_idx, split, write_string, shard_size, overwrite, use_tempdir, compression) as writer: for serialized_ex in self._torchencoder(all_examples, dataset_features, use_mp): writer.write(serialized_ex) torch_files, total_items = writer.close() return torch_files, total_items def _tokenize_examples(self, tokenizer_fn, use_mp=True): all_results = list() if tokenizer_fn: for result in self.as_tokenizer(tokenizer_fn, use_mp=use_mp): all_results.append(result) else: logger.warning(f'No Tokenizer Function Provided. Assuming Input Files are Pretokenized.') for result in self.as_iterator(): all_results.append(result) logger.info(f'Loaded {len(all_results)} Examples. Keys: {list(i for i in all_results[0])}') return all_results def as_encoder(self, dataset_features=None, tokenizer_fn=None, serialization='tf', input_fns=None, use_mp=True): _methods = ['tf', 'torch'] assert serialization in _methods, f'Currently only {_methods} are supported' assert _env[serialization], f'{serialization} library is required to run Serialization' self._io(input_fns, output_fn=None) all_examples = self._tokenize_examples(tokenizer_fn, use_mp) if serialization == 'tf': for serialized_ex in self._tfencoder(all_examples, dataset_features, use_mp): yield serialized_ex elif serialization == 'torch': for serialized_ex in self._torchencoder(all_examples, dataset_features, use_mp): yield serialized_ex logger.info(f'{self.timer.stop()} for Serializing [{serialization}] {len(all_examples)} Examples') def run_encoder(self, output_dir, dataset_features=None, tokenizer_fn=None, serialization='tf', input_fns=None, start_idx=1, split_key='split', split='train', write_string='{}_shard_{}.tfrecords', shard_size=50000, overwrite=False, use_tempdir=False, use_mp=True, compression=True): self._io(input_fns, output_fn=None) all_examples = self._tokenize_examples(tokenizer_fn, use_mp) if serialization == 'tf': tfrecord_files, total_items = self._tfwriter(all_examples, output_dir, dataset_features, start_idx, split_key, split, write_string, shard_size, overwrite, use_tempdir, use_mp) return tfrecord_files, total_items elif serialization == 'torch': torch_files, total_items = self._torchwriter(all_examples, output_dir, dataset_features, start_idx, split_key, split, write_string, shard_size, overwrite, use_tempdir, use_mp, compression) return torch_files, total_items def as_dataset(self, batch_sizes, dataset_features=None, tokenizer_fn=None, framework='tf', input_fns=None, split_key='split', splits=['train', 'validation', 'test'], use_mp=True): self._io(input_fns, output_fn=None) all_examples = self._tokenize_examples(tokenizer_fn, use_mp) _dataset = dict() _encoder_fn = self._tfencoder if framework == 'tf' else None if splits: _splitdataset = self._dataset_splits(all_examples, split_key, splits) for split in splits: if _encoder_fn: _encoded_examples = list() for example in _encoder_fn(_splitdataset[split], dataset_features, use_mp): _encoded_examples.append(example) else: _encoded_examples = _splitdataset[split] _dataset[split] = {'examples': _encoded_examples, 'batch_size': batch_sizes[split]} _splitdataset = None gc.collect() else: if _encoder_fn: _encoded_examples = list() for example in _encoder_fn(all_examples, dataset_features, use_mp): _encoded_examples.append(example) else: _encoded_examples = all_examples _dataset['train'] = {'examples': _encoded_examples, 'batch_size': batch_sizes} splits = ['train'] if framework == 'tf': _tfdataset = TFDatasetFromTensors(_dataset, dataset_features) return _tfdataset elif framework == 'torch': _torchdataset = dict() for split in splits: _torchdataset[split] = PylinesDataset(num_examples=len(_dataset[split]['examples']), examples=_dataset[split]['examples']) logger.info('Torch Dataset should be used with DynamicCollate function with the DataLoader for Optimal Performance') return _torchdataset def _dataset_splits(self, all_examples, split_key, splits): split_results = dict() for split in splits: split_results[split] = list() for example in all_examples: ex_split = example[split_key] split_results[ex_split].append(example) return split_results def _as_iter(self, IterFunc, Worker, use_mp, desc): pbar = trange(self.total_lines, desc=desc) if _env['tqdm'] else None self.timer.start(desc) if use_mp: if isinstance(use_mp, int): pool = mp.Pool(use_mp) else: pool = mp.Pool() for fn in self.input_fns: for result in pool.imap_unordered(Worker, FileIterator(fn)): if result: yield result if pbar: pbar.update() else: for fn in self.input_fns: for result in self._file_iter(fn): ex = IterFunc(result) if ex: yield ex if pbar: pbar.update() if pbar: pbar.close() def _as_iter_items(self, items, IterFunc, Worker, use_mp, desc): pbar = trange(len(items), desc=desc) if _env['tqdm'] else None self.timer.start(desc) if use_mp: if isinstance(use_mp, int): pool = mp.Pool(use_mp) else: pool = mp.Pool() for result in pool.imap_unordered(Worker, items): if result: yield result if pbar: pbar.update() else: for item in items: ex = IterFunc(item) if ex: yield ex if pbar: pbar.update() if pbar: pbar.close() def deduplicate(self, keys, input_fns=None, output_fn=None, write=True): self._io(input_fns, output_fn) _sets = {} results = list() assert _io_type(keys) == 'list', 'Keys must be in the form of a list' for key in keys: _sets[key] = set() for result in self.as_iterator(): _pass = True for k in keys: hashed_key = make_hashes(result[k]) if hashed_key in _sets[k]: _pass = False else: _sets[k].add(hashed_key) if _pass: if write: self.write(result) else: results.append(result) if not write: return results def find(self, key, value, results='first', filename=None, verbose=False): assert results in ['first', 'all'], 'Results should either be all or first to return' _matched_results = list() _matched = False if filename: for x, result in enumerate(self._fast_file_iter(filename)): if result[key] == value: _matched_results.append((result if _io_type(result) == 'dict' else result.as_dict())) _matched = True if _matched: if verbose: logger.info(f'Found Match on IDX: {x}') if results == 'first': break elif results == 'all': _matched = False else: for fn in self.input_fns: for x, result in enumerate(self._fast_file_iter(fn)): if result[key] == value: _matched_results.append((result if _io_type(result) == 'dict' else result.as_dict())) _matched = True if results == 'first': break if _matched: if verbose: logger.info(f'Found Match on IDX: {x} in {fn}') if results == 'first': break elif results == 'all': _matched = False if _matched and results == 'first': break return _matched_results def merge(self, input_fns=None, output_fn=None): self._io(input_fns, output_fn) pbar = trange(self.total_lines, desc=f'Merging {len(self.input_fns)} Files') if _env['tqdm'] else None self.timer.start(f'Merging {len(self.input_fns)} Files') for result in self.as_iterator(): self.write(result) if pbar: pbar.update() self.flush() if pbar: pbar.close() logger.info(f'{self.timer.stop()} with {self.total_lines} Items to {self.output_fn}') def count_matching(self, key, value, input_fns=None): _matches = 0 self._io(input_fns) for result in self.as_iterator(): if result[key] == value: _matches += 1 return _matches def verify_linecount(self): _idx = 0 for result in self.as_iterator(): if result and result != '': _idx += 1 logger.info(f'Original Count: {self.total_lines} Verified Count: {_idx}') if _idx >= self.total_lines: self.total_lines = _idx return _idx def write(self, item): if not self.writer: assert self.output_fn, 'Output File must be set prior to write. call .writefile(filename) to set the output file' self.writer_fn = get_write_fn(self.output_fn, overwrite=self._overwrite) self.writer = self.writer_fn.write self._writeidx = 0 self.flushidx = math.ceil(self.total_lines / 10) self.writer(json.dumps(item, ensure_ascii=False)) self.writer('\n') self._writeidx += 1 if self._writeidx % self.flushidx == 0: self.writer_fn.flush() self._writeidx = 0 def index(self, idx, fn=None): if fn: return self._file_idx(idx, fn) else: results = {} for fn in self.input_fns: results[fn] = self._file_idx(idx, fn) return results def to_dict(self, input_fns=None): results = {} self._io(input_fns) for result in self.as_iterator(): for key in result: if key not in results: results[key] = {'items': [result[key]], 'count': 1} else: results[key]['items'].append(result[key]) results[key]['count'] += 1 return results def to_list(self, input_fns=None): results = list() self._io(input_fns) for result in self.as_iterator(): results.append(result) return results def from_list(self, all_items, write=True, clear_items=False, output_fn=None): self._io(input_fns=None, output_fn=output_fn) assert _io_type(all_items) == 'list', 'This function must be used with a list' if write: logger.info(f'Writing {len(all_items)} to {self.output_fn}') for item in all_items: self.write(item) else: if clear_items: logger.info(f'Flushing Existing Items from Memory') self.stored_items = None gc.collect() self.stored_items = list() self.stored_items += all_items logger.info(f'Stored {len(all_items)} to Memory. Total Stored Items: {len(self.stored_items)}. Call pylines.stored_items to access items.') def to_batches(self, all_items=None, batch_size=2): all_batches = list() all_items = all_items if all_items else self.stored_items for batch in self._build_batches(all_items, batch_size): all_batches += [batch] return all_batches def as_iterator(self): for fn in self.input_fns: for item in self._file_iter(fn): yield item def _build_batches(self, lst, batch_size): for i in range(0, len(lst), batch_size): yield lst[i:i + batch_size] def _file_idx(self, idx, fn): reader = get_read_fn(fn) for x, line in enumerate(reader): if x < idx: pass elif x == idx: return self.loads(line) reader.close() def _file_iter(self, fn): reader = get_read_fn(fn) if self._skip: self._reset_stats(fn) for line in reader: if self._skip: try: yield self.loads(line) self.stats[fn]['read'] += 1 except: self.stats[fn]['missed'] += 1 else: yield self.loads(line) reader.close() def _fast_file_iter(self, fn): reader = get_read_fn(fn) if self._skip: self._reset_stats(fn) for line in reader: if self._skip: try: yield self.loads(line) self.stats[fn]['read'] += 1 except: self.stats[fn]['missed'] += 1 else: yield self.loads(line) reader.close() def _get_file_lines(self, input_fns=None): if input_fns: for fn in input_fns: self.total_lines += line_count(fn) else: self.total_lines = 0 for fn in self.input_fns: self.total_lines += line_count(fn) def __iter__(self): for fn in self.input_fns: for result in self._file_iter(fn): yield result def _io(self, input_fns=None, output_fn=None): if input_fns: self._setup_input_fns(input_fns) self._get_file_lines() if output_fn: self._setup_output_fn(output_fn) def _setup_input_fns(self, input_fns): in_files = [] if _io_type(input_fns) == 'str': if input_fns.endswith('*'): in_files = glob(input_fns) else: in_files = [input_fns] elif _io_type(input_fns) == 'list': for fn in input_fns: if fn.endswith('*'): in_files += glob(fn) else: in_files.append(fn) else: raise ValueError('Input Filenames should be a string or list') if self.input_fns: in_files = [f for f in in_files if f not in self.input_fns] if len(in_files) != 0: self.input_fns += in_files else: self.input_fns = in_files def _setup_output_fn(self, output_fn): if self.writer: self.writer_fn.flush() self.writer_fn.close() self.writer, self.writer_fn = None, None if _io_type(output_fn) == 'str': self.output_fn = output_fn else: raise ValueError('Output Filenames should be a string') def set_output_fn(self, output_fn): _setup_output_fn(self, output_fn) def parse(self, v): return parser.parse(v) def loads(self, v): if _io_type(v) == 'bytes': return parser.parse(v).as_dict() else: return json.loads(v) def load(self, v): return json.load(v) def dumps(self, v): return json.dumps(v, ensure_ascii=False) def dump(self, fn, v): if _io_type(fn) == 'str': json.dump(v, get_write_fn(fn, overwrite=self._overwrite)) else: json.dump(v, fn) def _reset_stats(self, fn): self.stats[fn] = {'read': 0, 'missed': 0} def clear_input_files(self): self.stats = {} self.input_fns = None def set_input_files(self, input_fns): self.clear_input_files() self._setup_input_fns(input_fns) def add_files(self, input_fns): self._setup_input_fns(input_fns) def set_writefile(self, output_fn, overwrite=False): self._overwrite = overwrite self._setup_output_fn(output_fn) def close(self): if self.writer: self.writer_fn.flush() self.writer_fn.close() if self.reader: self.reader.close() def flush(self): if self.writer: self.writer_fn.flush() def linecount(self, filename=None): results = {} if filename: results[filename] = line_count(filename) return results for fn in self.input_fns: results[fn] = line_count(fn) return results def __len__(self): return self.total_lines def __enter__(self): return self def __exit__(self, *_): self.close()
py
7dfec6962caf536d310e5cff349c735a7355c087
# Author: Alexandre Barachant <[email protected]> # Sylvain Chevallier <[email protected]> # License: BSD Style. import json import os import os.path as osp import requests from mne import get_config, set_config from mne.datasets.utils import _get_path from mne.utils import _fetch_file, _url_to_local_path, verbose from pooch import file_hash, retrieve from requests.exceptions import HTTPError def get_dataset_path(sign, path): """Returns the dataset path allowing for changes in MNE_DATA config Parameters ---------- sign : str Signifier of dataset path : None | str Location of where to look for the data storing location. If None, the environment variable or config parameter ``MNE_DATASETS_(signifier)_PATH`` is used. If it doesn't exist, the "~/mne_data" directory is used. If the dataset is not found under the given path, the data will be automatically downloaded to the specified folder. Returns ------- path : None | str Location of where to look for the data storing location """ sign = sign.upper() key = "MNE_DATASETS_{:s}_PATH".format(sign) if get_config(key) is None: if get_config("MNE_DATA") is None: path_def = osp.join(osp.expanduser("~"), "mne_data") print( "MNE_DATA is not already configured. It will be set to " "default location in the home directory - " + path_def + "\nAll datasets will be downloaded to this location, if anything is " "already downloaded, please move manually to this location" ) if not osp.isdir(path_def): os.makedirs(path_def) set_config("MNE_DATA", osp.join(osp.expanduser("~"), "mne_data")) set_config(key, get_config("MNE_DATA")) return _get_path(path, key, sign) @verbose def data_path(url, sign, path=None, force_update=False, update_path=True, verbose=None): """Get path to local copy of given dataset URL. **Deprecated** This is a low-level function useful for getting a local copy of a remote dataset. It is deprecated in favor of data_dl. Parameters ---------- url : str Path to remote location of data sign : str Signifier of dataset path : None | str Location of where to look for the data storing location. If None, the environment variable or config parameter ``MNE_DATASETS_(signifier)_PATH`` is used. If it doesn't exist, the "~/mne_data" directory is used. If the dataset is not found under the given path, the data will be automatically downloaded to the specified folder. force_update : bool Force update of the dataset even if a local copy exists. update_path : bool | None, **Deprecated** Unused, kept for compatibility purpose. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose`). Returns ------- path : list of str Local path to the given data file. This path is contained inside a list of length one, for compatibility. """ # noqa: E501 path = get_dataset_path(sign, path) key_dest = "MNE-{:s}-data".format(sign.lower()) destination = _url_to_local_path(url, osp.join(path, key_dest)) # Fetch the file if not osp.isfile(destination) or force_update: if osp.isfile(destination): os.remove(destination) if not osp.isdir(osp.dirname(destination)): os.makedirs(osp.dirname(destination)) _fetch_file(url, destination, print_destination=False) return destination @verbose def data_dl(url, sign, path=None, force_update=False, verbose=None): """Download file from url to specified path This function should replace data_path as the MNE will not support the download of dataset anymore. This version is using Pooch. Parameters ---------- url : str Path to remote location of data sign : str Signifier of dataset path : None | str Location of where to look for the data storing location. If None, the environment variable or config parameter ``MNE_DATASETS_(signifier)_PATH`` is used. If it doesn't exist, the "~/mne_data" directory is used. If the dataset is not found under the given path, the data will be automatically downloaded to the specified folder. force_update : bool Force update of the dataset even if a local copy exists. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose`). Returns ------- path : list of str Local path to the given data file. This path is contained inside a list of length one, for compatibility. """ path = get_dataset_path(sign, path) key_dest = "MNE-{:s}-data".format(sign.lower()) destination = _url_to_local_path(url, osp.join(path, key_dest)) # Fetch the file if not osp.isfile(destination) or force_update: if osp.isfile(destination): os.remove(destination) if not osp.isdir(osp.dirname(destination)): os.makedirs(osp.dirname(destination)) known_hash = None else: known_hash = file_hash(destination) dlpath = retrieve( url, known_hash, fname=osp.basename(url), path=osp.dirname(destination) ) return dlpath # This function is from https://github.com/cognoma/figshare (BSD-3-Clause) def fs_issue_request(method, url, headers, data=None, binary=False): """Wrapper for HTTP request Parameters ---------- method : str HTTP method. One of GET, PUT, POST or DELETE url : str URL for the request headers: dict HTTP header information data: dict Figshare article data binary: bool Whether data is binary or not Returns ------- response_data: dict JSON response for the request returned as python dict """ if data is not None and not binary: data = json.dumps(data) response = requests.request(method, url, headers=headers, data=data) try: response.raise_for_status() try: response_data = json.loads(response.text) except ValueError: response_data = response.content except HTTPError as error: print("Caught an HTTPError: {}".format(error)) print("Body:\n", response.text) raise return response_data def fs_get_file_list(article_id, version=None): """List all the files associated with a given article. Parameters ---------- article_id : str or int Figshare article ID version : str or id, default is None Figshare article version. If None, selects the most recent version. Returns ------- response : dict HTTP request response as a python dict """ fsurl = "https://api.figshare.com/v2" if version is None: url = fsurl + "/articles/{}/files".format(article_id) headers = {"Content-Type": "application/json"} response = fs_issue_request("GET", url, headers=headers) return response else: url = fsurl + "/articles/{}/versions/{}".format(article_id, version) request = fs_issue_request("GET", url, headers=headers) return request["files"] def fs_get_file_hash(filelist): """Returns a dict associating figshare file id to MD5 hash Parameters ---------- filelist : list of dict HTTP request response from fs_get_file_list Returns ------- response : dict keys are file_id and values are md5 hash """ return {str(f["id"]): "md5:" + f["supplied_md5"] for f in filelist} def fs_get_file_id(filelist): """Returns a dict associating filename to figshare file id Parameters ---------- filelist : list of dict HTTP request response from fs_get_file_list Returns ------- response : dict keys are filname and values are file_id """ return {f["name"]: str(f["id"]) for f in filelist} def fs_get_file_name(filelist): """Returns a dict associating figshare file id to filename Parameters ---------- filelist : list of dict HTTP request response from fs_get_file_list Returns ------- response : dict keys are file_id and values are file name """ return {str(f["id"]): f["name"] for f in filelist}
py
7dfec70777e8c914e82162a3f6b699f248b3783d
import numpy as np import json """ Do not modify this file. """ # Softmax loss and Softmax gradient ### Loss functions ### class softmax_cross_entropy: def __init__(self): self.expand_Y = None self.calib_logit = None self.sum_exp_calib_logit = None self.prob = None def forward(self, X, Y): self.expand_Y = np.zeros(X.shape).reshape(-1) self.expand_Y[Y.astype(int).reshape(-1) + np.arange(X.shape[0]) * X.shape[1]] = 1.0 self.expand_Y = self.expand_Y.reshape(X.shape) self.calib_logit = X - np.amax(X, axis = 1, keepdims = True) self.sum_exp_calib_logit = np.sum(np.exp(self.calib_logit), axis = 1, keepdims = True) self.prob = np.exp(self.calib_logit) / self.sum_exp_calib_logit forward_output = - np.sum(np.multiply(self.expand_Y, self.calib_logit - np.log(self.sum_exp_calib_logit))) / X.shape[0] return forward_output def backward(self, X, Y): backward_output = - (self.expand_Y - self.prob) / X.shape[0] return backward_output ### Momentum ### def add_momentum(model): momentum = dict() for module_name, module in model.items(): if hasattr(module, 'params'): for key, _ in module.params.items(): momentum[module_name + '_' + key] = np.zeros(module.gradient[key].shape) return momentum def data_loader_mnist(dataset): # This function reads the MNIST data and separate it into train, val, and test set with open(dataset, 'r') as f: data_set = json.load(f) train_set, valid_set, test_set = data_set['train'], data_set['valid'], data_set['test'] Xtrain = np.array(train_set[0]) Ytrain = np.array(train_set[1]) Xvalid = np.array(valid_set[0]) Yvalid = np.array(valid_set[1]) Xtest = np.array(test_set[0]) Ytest = np.array(test_set[1]) return Xtrain, Ytrain, Xvalid, Yvalid, Xtest, Ytest def predict_label(f): # This is a function to determine the predicted label given scores if f.shape[1] == 1: return (f > 0).astype(float) else: return np.argmax(f, axis=1).astype(float).reshape((f.shape[0], -1)) class DataSplit: def __init__(self, X, Y): self.X = X self.Y = Y self.N, self.d = self.X.shape def get_example(self, idx): batchX = np.zeros((len(idx), self.d)) batchY = np.zeros((len(idx), 1)) for i in range(len(idx)): batchX[i] = self.X[idx[i]] batchY[i, :] = self.Y[idx[i]] return batchX, batchY
py
7dfec764c914a8bfa53efc065569bae0e556442c
#!/usr/bin/env python # -*- coding: utf-8 -*- # The MIT License (MIT) # Copyright (c) 2017 Juan Cabral # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ============================================================================= # FUTURE # ============================================================================= from __future__ import unicode_literals # ============================================================================= # DOC # ============================================================================= __doc__ = """""" # ============================================================================= # IMPORTS # ============================================================================= import numpy as np from .core import Extractor # ============================================================================= # EXTRACTOR CLASS # ============================================================================= class SmallKurtosis(Extractor): r""" **SmallKurtosis** Small sample kurtosis of the magnitudes. .. math:: SmallKurtosis = \frac{N (N+1)}{(N-1)(N-2)(N-3)} \sum_{i=1}^N (\frac{m_i-\hat{m}}{\sigma})^4 - \frac{3( N-1 )^2}{(N-2) (N-3)} For a normal distribution, the small kurtosis should be zero: .. code-block:: pycon >>> fs = feets.FeatureSpace(only=['SmallKurtosis']) >>> features, values = fs.extract(**lc_normal) >>> dict(zip(features, values)) {'SmallKurtosis': 0.044451779515607193} See http://www.xycoon.com/peakedness_small_sample_test_1.htm References ---------- .. [richards2011machine] Richards, J. W., Starr, D. L., Butler, N. R., Bloom, J. S., Brewer, J. M., Crellin-Quick, A., ... & Rischard, M. (2011). On machine-learned classification of variable stars with sparse and noisy time-series data. The Astrophysical Journal, 733(1), 10. Doi:10.1088/0004-637X/733/1/10. """ data = ['magnitude'] features = ["SmallKurtosis"] def fit(self, magnitude): n = len(magnitude) mean = np.mean(magnitude) std = np.std(magnitude) S = sum(((magnitude - mean) / std) ** 4) c1 = float(n * (n + 1)) / ((n - 1) * (n - 2) * (n - 3)) c2 = float(3 * (n - 1) ** 2) / ((n - 2) * (n - 3)) return {"SmallKurtosis": c1 * S - c2}
py
7dfec8dc6f9582f21be812730b444e2430b8fa82
from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('cmsplugin_cascade', '0011_merge_sharable_with_cascadeelement'), ] operations = [ migrations.AlterField( model_name='cascadeelement', name='shared_glossary', field=models.ForeignKey(blank=True, editable=False, null=True, on_delete=django.db.models.deletion.SET_NULL, to='cmsplugin_cascade.SharedGlossary'), ), ]
py
7dfec921bae27c946d38dc4284993184e91a446f
from tpk4128.client import SocketClient import time import cv2 import numpy as np def main(): client = SocketClient('10.0.0.7', 50007) while True: client.sendall(b'Hello World!') # Tip: len(img.tostring()) size, data = client.recv(2764800) # my macbook 2764800 if not data: break # Tip: img.dtype, img.shape img = np.frombuffer(data, dtype=np.uint8).reshape(720, 1280, 3) # Dimentions 720, 1280, 3 cv2.imshow('img', img) if cv2.waitKey(20) == 27: # Esc: 27 break if __name__ == '__main__': main()
py
7dfec93e29c966f08fd53b3d62d205371b8bce36
GSM_03_38_POR_BASIC = { 0x00: "@", 0x01: "\u00a3", 0x02: "$", 0x03: "\u00a5", 0x04: "\u00ea", 0x05: "\u00e9", 0x06: "\u00fa", 0x07: "\u00ed", 0x08: "\u00f3", 0x09: "\u00e7", 0x0a: "\n", 0x0b: "\u00d4", 0x0c: "\u00f4", 0x0d: "\r", 0x0e: "\u00c1", 0x0f: "\u00e1", 0x10: "\u0394", 0x11: "_", 0x12: "\u00aa", 0x13: "\u00c7", 0x14: "\u00c0", 0x15: "\u221e", 0x16: "^", 0x17: "\\", 0x18: "\u20ac", 0x19: "\u00d3", 0x1a: "|", 0x1b: "", 0x1c: "\u00c2", 0x1d: "\u00e2", 0x1e: "\u00ca", 0x1f: "\u00c9", 0x20: " ", 0x21: "!", 0x22: '"', 0x23: "#", 0x24: "\u00ba", 0x25: "%", 0x26: "&", 0x27: "'", 0x28: "(", 0x29: ")", 0x2a: "*", 0x2b: "+", 0x2c: ",", 0x2d: "-", 0x2e: ".", 0x2f: "/", 0x30: "0", 0x31: "1", 0x32: "2", 0x33: "3", 0x34: "4", 0x35: "5", 0x36: "6", 0x37: "7", 0x38: "8", 0x39: "9", 0x3a: ":", 0x3b: ";", 0x3c: "<", 0x3d: "=", 0x3e: ">", 0x3f: "?", 0x40: "\u00cd", 0x41: "A", 0x42: "B", 0x43: "C", 0x44: "D", 0x45: "E", 0x46: "F", 0x47: "G", 0x48: "H", 0x49: "I", 0x4a: "J", 0x4b: "K", 0x4c: "L", 0x4d: "M", 0x4e: "N", 0x4f: "O", 0x50: "P", 0x51: "Q", 0x52: "R", 0x53: "S", 0x54: "T", 0x55: "U", 0x56: "V", 0x57: "W", 0x58: "X", 0x59: "Y", 0x5a: "Z", 0x5b: "\u00c3", 0x5c: "\u00d5", 0x5d: "\u00da", 0x5e: "\u00dc", 0x5f: "\u00a7", 0x60: "~", 0x61: "a", 0x62: "b", 0x63: "c", 0x64: "d", 0x65: "e", 0x66: "f", 0x67: "g", 0x68: "h", 0x69: "i", 0x6a: "j", 0x6b: "k", 0x6c: "l", 0x6d: "m", 0x6e: "n", 0x6f: "o", 0x70: "p", 0x71: "q", 0x72: "r", 0x73: "s", 0x74: "t", 0x75: "u", 0x76: "v", 0x77: "w", 0x78: "x", 0x79: "y", 0x7a: "z", 0x7b: "\u00e3", 0x7c: "\u00f5", 0x7d: "`", 0x7e: "\u00fc", 0x7f: "\u00e0", } GSM_03_38_POR_EXTENSION = { 0x00: "", 0x01: "", 0x02: "", 0x03: "", 0x04: "", 0x05: "\u00ea", 0x06: "", 0x07: "", 0x08: "", 0x09: "\u00e7", 0x0a: "\n", 0x0b: "\u00d4", 0x0c: "\u00f4", 0x0d: "", 0x0e: "\u00c1", 0x0f: "\u00e1", 0x10: "", 0x11: "", 0x12: "\u03a6", 0x13: "\u0393", 0x14: "^", 0x15: "\u03a9", 0x16: "\u03a0", 0x17: "\u03a8", 0x18: "\u03a3", 0x19: "\u0398", 0x1a: "", 0x1b: "", 0x1c: "", 0x1d: "", 0x1e: "", 0x1f: "\u00ca", 0x20: "", 0x21: "", 0x22: "", 0x23: "", 0x24: "", 0x25: "", 0x26: "", 0x27: "", 0x28: "{", 0x29: "}", 0x2a: "", 0x2b: "", 0x2c: "", 0x2d: "", 0x2e: "", 0x2f: "\\", 0x30: "", 0x31: "", 0x32: "", 0x33: "", 0x34: "", 0x35: "", 0x36: "", 0x37: "", 0x38: "", 0x39: "", 0x3a: "", 0x3b: "", 0x3c: "[", 0x3d: "~", 0x3e: "]", 0x3f: "", 0x40: "|", 0x41: "\u00c0", 0x42: "", 0x43: "", 0x44: "", 0x45: "", 0x46: "", 0x47: "", 0x48: "", 0x49: "\u00cd", 0x4a: "", 0x4b: "", 0x4c: "", 0x4d: "", 0x4e: "", 0x4f: "\u00d3", 0x50: "", 0x51: "", 0x52: "", 0x53: "", 0x54: "", 0x55: "\u00da", 0x56: "", 0x57: "", 0x58: "", 0x59: "", 0x5a: "", 0x5b: "\u00c3", 0x5c: "\u00d5", 0x5d: "", 0x5e: "", 0x5f: "", 0x60: "", 0x61: "\u00c2", 0x62: "", 0x63: "", 0x64: "", 0x65: "\u20ac", 0x66: "", 0x67: "", 0x68: "", 0x69: "\u00ed", 0x6a: "", 0x6b: "", 0x6c: "", 0x6d: "", 0x6e: "", 0x6f: "\u00f3", 0x70: "", 0x71: "", 0x72: "", 0x73: "", 0x74: "", 0x75: "\u00fa", 0x76: "", 0x77: "", 0x78: "", 0x79: "", 0x7a: "", 0x7b: "\u00e3", 0x7c: "\u00f5", 0x7d: "", 0x7e: "", 0x7f: "\u00e2", } # These are characters that shouldn't be in a properly decoded string UNRECOGNIZED_CHAR_CODES = { 0x00: True, 0x01: True, 0x02: True, 0x03: True, 0x04: True, 0x05: True, 0x06: True, 0x07: True, 0x08: True, 0x09: True, 0x0b: True, 0x0c: True, 0x0e: True, 0x0f: True, 0x10: True, 0x11: True, 0x12: True, 0x13: True, 0x14: True, 0x15: True, 0x16: True, 0x17: True, 0x18: True, 0x19: True, 0x1a: True, 0x1b: True, 0x1c: True, 0x1d: True, 0x1e: True, 0x1f: True, 0x7f: True, } ESCAPE_CHAR = 0x1b def looks_like_gsm(text): for char in text: if UNRECOGNIZED_CHAR_CODES.get(ord(char), False): return True return False def gsm_to_unicode(text): """ Converts each character in text to it's equivalent GSM-decoded character. If the character is anything other than ESCAPE_CHAR, then it's decoded with GSM_03_38_POR_BASIC. If a character is the ESCAPE_CHAR, then it is skipped and the next character is decoded with GSM_03_38_POR_EXTENSION. """ result = "" is_escape = False for char in text: gsm_char_code = ord(char) if gsm_char_code == ESCAPE_CHAR: is_escape = True elif is_escape: ext_char = GSM_03_38_POR_EXTENSION.get(gsm_char_code, "") if ext_char: result += ext_char else: result += " %s" % GSM_03_38_POR_BASIC.get(gsm_char_code, "") is_escape = False else: result += GSM_03_38_POR_BASIC.get(gsm_char_code, "") return result def convert_raw_string(text): """ Unfortunately, it's not possible to tell whether we'll get a message that's encoded with GSM or not. So all we can do is decode messages that look like they are encoded with GSM. """ if looks_like_gsm(text): return gsm_to_unicode(text) else: return text
py
7dfec94eb28595611df5af7c7a3207d1bdc0029e
from django.urls import re_path, include, path from data.views import Classify, ClassifyTags, classify_stats urlpatterns = [ re_path('^classify/$', Classify.as_view(), name='classify'), re_path('^tags/$', ClassifyTags.as_view(), name='tags'), re_path('^status/$', classify_stats, name='status'), ]
py
7dfec9946cd7567c9fe0da83b5abd87ca2f3669b
""" https://github.com/hysts/pytorch_cutmix/blob/master/cutmix.py MIT License Copyright (c) 2019 hysts Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import torch import torch.nn as nn import torch.nn.functional as F import numpy as np def cutmix_data(x, y, alpha): if alpha > 0.: lam = np.random.beta(alpha, alpha) if lam < 0.5: lam = 1 - lam else: lam = 1. if type(x) != tuple: batch_size = x.size()[0] index = torch.randperm(batch_size).cuda() image_h, image_w = x.size()[2:] cx = np.random.uniform(0, image_w) cy = np.random.uniform(0, image_h) w = image_w * np.sqrt(1 - lam) h = image_h * np.sqrt(1 - lam) x0 = int(np.round(max(cx - w / 2, 0))) x1 = int(np.round(min(cx + w / 2, image_w))) y0 = int(np.round(max(cy - h / 2, 0))) y1 = int(np.round(min(cy + h / 2, image_h))) mixed_x = x mixed_x[:, :, y0:y1, x0:x1] = x[index, :, y0:y1, x0:x1] else: # x[0]: (B, C, W, H) # x[1] ~ x[N]: (B, ?) batch_size = x[0].size()[0] index = torch.randperm(batch_size).cuda() image_h, image_w = x[0].size()[2:] cx = np.random.uniform(0, image_w) cy = np.random.uniform(0, image_h) w = image_w * np.sqrt(1 - lam) h = image_h * np.sqrt(1 - lam) x0 = int(np.round(max(cx - w / 2, 0))) x1 = int(np.round(min(cx + w / 2, image_w))) y0 = int(np.round(max(cy - h / 2, 0))) y1 = int(np.round(min(cy + h / 2, image_h))) mix_x = x[0] mix_x[:, :, y0:y1, x0:x1] = x[0][index, :, y0:y1, x0:x1] mixed_x = [mix_x] for i in range(len(x)): if i > 0: mixed_x.append(lam * x[i] + (1 - lam) * x[i][index,:]) mixed_x = tuple(mixed_x) y_a, y_b = y, y[index] return mixed_x, y_a, y_b, lam
py
7dfec99e6bd771bc4de988e49f2d023c40ebca70
from fastapi import FastAPI from starlette.middleware.sessions import SessionMiddleware from starlette.middleware.cors import CORSMiddleware from .resources import models, tests, vocab, results, auth, simulations, livepapers from . import settings description = """ The EBRAINS Model Validation Service is a web service to support the structured [validation](https://en.wikipedia.org/wiki/Verification_and_validation_of_computer_simulation_models) of neuroscience models. Using the [EBRAINS Knowledge Graph](https://kg.ebrains.eu) as its data store, the Model Validation Service provides: - a catalog of models, each linked to validations of that model; - a library of validation tests, implemented in Python, each linked to reference data; - a database of validation results. The Model Validation Service is used by the EBRAINS Model Catalog web app (new version coming soon). A [Python client](https://hbp-validation-client.readthedocs.io/) for the service is also available. These pages provide interactive documentation. To try out queries, you will need an [EBRAINS user account](https://ebrains.eu/register/). Please [login here](https://validation-v2.brainsimulation.eu/login), then copy the "access token" into the dialog that appears when you click "Authorize" below. (this workflow will be simplified in the near future). """ app = FastAPI(title="EBRAINS Model Validation Service", description=description, version="2.0") app.add_middleware( SessionMiddleware, secret_key=settings.SESSIONS_SECRET_KEY ) app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) app.include_router(auth.router, tags=["Authentication and authorization"]) app.include_router(models.router, tags=["Models"]) app.include_router(tests.router, tags=["Validation Tests"]) app.include_router(results.router, tags=["Validation Results"]) app.include_router(simulations.router, tags=["Simulations"]) app.include_router(livepapers.router, tags=["Live Papers"]) app.include_router(vocab.router, tags=["Controlled vocabularies"])
py
7dfec9b4feb10ca4ffc8708b277581d16b025207
import torch from torch.optim.optimizer import Optimizer, required import torch.optim._functional as F from agc_optims.utils import agc class SGD_AGC(Optimizer): r"""Implements stochastic gradient descent (optionally with momentum) with adaptive gradient clipping (AGC). .. math:: \begin{aligned} &\rule{110mm}{0.4pt} \\ &\textbf{input} : \gamma \text{ (lr)}, \: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)}, \: \lambda \text{ (weight decay)}, \\ &\hspace{13mm} \:\mu \text{ (momentum)}, \:\tau \text{ (dampening)},\:nesterov\\[-1.ex] &\rule{110mm}{0.4pt} \\ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm}\textbf{if} \: \lambda \neq 0 \\ &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\ &\hspace{5mm}\textbf{if} \: \mu \neq 0 \\ &\hspace{10mm}\textbf{if} \: t > 1 \\ &\hspace{15mm} \textbf{b}_t \leftarrow \mu \textbf{b}_{t-1} + (1-\tau) g_t \\ &\hspace{10mm}\textbf{else} \\ &\hspace{15mm} \textbf{b}_t \leftarrow g_t \\ &\hspace{10mm}\textbf{if} \: nesterov \\ &\hspace{15mm} g_t \leftarrow g_{t-1} + \mu \textbf{b}_t \\ &\hspace{10mm}\textbf{else} \\[-1.ex] &\hspace{15mm} g_t \leftarrow \textbf{b}_t \\ &\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \gamma g_t \\[-1.ex] &\rule{110mm}{0.4pt} \\[-1.ex] &\bf{return} \: \theta_t \\[-1.ex] &\rule{110mm}{0.4pt} \\[-1.ex] \end{aligned} Nesterov momentum is based on the formula from `On the importance of initialization and momentum in deep learning`__. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float): learning rate momentum (float, optional): momentum factor (default: 0) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) dampening (float, optional): dampening for momentum (default: 0) nesterov (bool, optional): enables Nesterov momentum (default: False) clipping (float, optional): clipping value for the AGC (default: 1e-2) agc_eps (float, optional): term used in agc to prevent grads clipped to zero (default: 1e-3) Example: >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step() __ http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf .. note:: The implementation of SGD with Momentum/Nesterov subtly differs from Sutskever et. al. and implementations in some other frameworks. Considering the specific case of Momentum, the update can be written as .. math:: \begin{aligned} v_{t+1} & = \mu * v_{t} + g_{t+1}, \\ p_{t+1} & = p_{t} - \text{lr} * v_{t+1}, \end{aligned} where :math:`p`, :math:`g`, :math:`v` and :math:`\mu` denote the parameters, gradient, velocity, and momentum respectively. This is in contrast to Sutskever et. al. and other frameworks which employ an update of the form .. math:: \begin{aligned} v_{t+1} & = \mu * v_{t} + \text{lr} * g_{t+1}, \\ p_{t+1} & = p_{t} - v_{t+1}. \end{aligned} The Nesterov version is analogously modified. This implementation of SGD was taken from the official PyTorch Sources and the code for the AGC was adapted from https://github.com/vballoli/nfnets-pytorch. """ def __init__(self, params, lr=required, momentum=0, dampening=0, weight_decay=0, nesterov=False, clipping=1e-2, agc_eps=1e-3): if lr is not required and lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) if momentum < 0.0: raise ValueError("Invalid momentum value: {}".format(momentum)) if weight_decay < 0.0: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) if not 0.0 <= clipping < 1.0: raise ValueError("Invalid clipping parameter: {}".format(clipping)) if not 0.0 <= agc_eps: raise ValueError("Invalid agc_eps value: {}".format(agc_eps)) defaults = dict(lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov, clipping=clipping, agc_eps=agc_eps) if nesterov and (momentum <= 0 or dampening != 0): raise ValueError("Nesterov momentum requires a momentum and zero dampening") super(SGD_AGC, self).__init__(params, defaults) def __setstate__(self, state): super(SGD_AGC, self).__setstate__(state) for group in self.param_groups: group.setdefault('nesterov', False) @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: params_with_grad = [] d_p_list = [] momentum_buffer_list = [] weight_decay = group['weight_decay'] momentum = group['momentum'] dampening = group['dampening'] nesterov = group['nesterov'] lr = group['lr'] clipping = group['clipping'] agc_eps = group['agc_eps'] for p in group['params']: if p.grad is not None: ## AGC agc(param=p, clipping=clipping, eps=agc_eps) params_with_grad.append(p) d_p_list.append(p.grad) state = self.state[p] if 'momentum_buffer' not in state: momentum_buffer_list.append(None) else: momentum_buffer_list.append(state['momentum_buffer']) F.sgd(params_with_grad, d_p_list, momentum_buffer_list, weight_decay=weight_decay, momentum=momentum, lr=lr, dampening=dampening, nesterov=nesterov) # update momentum_buffers in state for p, momentum_buffer in zip(params_with_grad, momentum_buffer_list): state = self.state[p] state['momentum_buffer'] = momentum_buffer return loss
py
7dfec9d8efa482df166c292f23d3121052c0bdfd
class AssetTypeService(object): """ :class:`fortnox.AssetTypeService` is used by :class:`fortnox.Client` to make actions related to Asset Type resource. Normally you won't instantiate this class directly. """ """ Allowed attributes for AssetType to send to Fortnox backend servers. """ OPTS_KEYS_TO_PERSIST = ['Number', 'Description', 'AccountAssetId', 'AccountDepreciationId', 'AccountValueLossId', 'Type'] SERVICE = "AssetType" def __init__(self, http_client): """ :param :class:`fortnox.HttpClient` http_client: Pre configured high-level http client. """ self.__http_client = http_client @property def http_client(self): return self.__http_client def list(self, **params): """ Retrieve all AssetTypes Returns all AssetTypes available to the Company, according to the parameters provided :calls: ``get /assets/types`` :param dict params: (optional) Search options. :return: List of dictionaries that support attriubte-style access, which represent collection of AssetTypes. :rtype: list """ _, _, asset_types = self.http_client.get("/assets/types", params=params) return asset_types[1:] def retrieve(self, id): """ Retrieve a single AssetType Returns a single AssetType according to the unique AssetType ID provided If the specified AssetType does not exist, this query returns an error :calls: ``get /assets/types/{id}`` :param int id: Unique identifier of an AssetType. :return: Dictionary that support attriubte-style access and represent AssetType resource. :rtype: dict """ _, _, asset_type = self.http_client.get("/assets/types/{id}".format(id=id)) return asset_type def create(self, *args, **kwargs): """ Create an AssetType Creates a new AssetType **Notice** the AssetType's name **must** be unique within the scope of the resource_type :calls: ``post /assets/types`` :param tuple *args: (optional) Single object representing AssetType resource. :param dict **kwargs: (optional) AssetType attributes. :return: Dictionary that support attriubte-style access and represents newely created AssetType resource. :rtype: dict """ if not args and not kwargs: raise Exception('attributes for AssetType are missing') initial_attributes = args[0] if args else kwargs attributes = dict((k, v) for k, v in initial_attributes.items()) attributes.update({'service': self.SERVICE}) _, _, asset_type = self.http_client.post("/assets/types", body=attributes) return asset_type def update(self, id, *args, **kwargs): """ Update an AssetType Updates an AssetType's information If the specified AssetType does not exist, this query will return an error **Notice** if you want to update an AssetType, you **must** make sure the AssetType's name is unique within the scope of the specified resource :calls: ``put /assets/types/{id}`` :param int id: Unique identifier of an AssetType. :param tuple *args: (optional) Single object representing AssetType resource which attributes should be updated. :param dict **kwargs: (optional) AssetType attributes to update. :return: Dictionary that support attriubte-style access and represents updated AssetType resource. :rtype: dict """ if not args and not kwargs: raise Exception('attributes for AssetType are missing') attributes = args[0] if args else kwargs attributes = dict((k, v) for k, v in attributes.items()) attributes.update({'service': self.SERVICE}) _, _, asset_type = self.http_client.put("/assets/types/{id}".format(id=id), body=attributes) return asset_type def destroy(self, id): """ Delete an AssetType Deletes an existing AssetType If the specified AssetType is assigned to any resource, we will remove this AssetType from all such resources If the specified AssetType does not exist, this query will return an error This operation cannot be undone :calls: ``delete /assets/types/{id}`` :param int id: Unique identifier of an AssetType. :return: True if the operation succeeded. :rtype: bool """ status_code, _, _ = self.http_client.delete("/assets/types/{id}".format(id=id)) return status_code == 200
py
7dfec9e6badca436f3c74cbfbf9c1af0ab75d016
from django.shortcuts import render,get_object_or_404,redirect from django.utils import timezone from web_hiring.models import Post from django.db.models import Q from django.forms.models import model_to_dict from django.contrib.auth.mixins import LoginRequiredMixin from django.contrib.auth.decorators import login_required from django.template.loader import render_to_string from django.http import JsonResponse from django.urls import reverse_lazy from web_hiring.forms import PostForm from django.views.generic import (TemplateView, ListView, DetailView,CreateView, UpdateView,DeleteView,) from django.conf import settings from web_hiring.notificators import vacancy_notification # Create your views here. class AboutView(TemplateView): template_name = 'about.html' class PostListView(ListView): model = Post paginate_by = 30 def get_queryset(self): return Post.objects.filter(publish_date__lte=timezone.now()).order_by('-publish_date') class SearchResultsView(ListView): model = Post paginate_by = 30 template_name = 'post_search.html' def get_queryset(self): # новый query = self.request.GET.get('q') object_list = Post.objects.filter( Q(title__icontains=query) | Q(text__icontains=query), publish_date__lte=timezone.now()).order_by('-publish_date') return object_list class PostDetailView(DetailView): model = Post class CreatePostView(LoginRequiredMixin,CreateView): login_url = '/login/' redirect_field_name = 'web_hiring/post_detail.html' form_class = PostForm model = Post def form_valid(self, form): form.instance.author = self.request.user form.instance.salary = form.instance.salary + ' $' new_form = form.save(commit=False) if new_form.title == "Другое": form.instance.title = self.request.POST.get('titlespecify') return super().form_valid(form) class PostUpdateView(LoginRequiredMixin,UpdateView): login_url = '/login/' redirect_field_name = 'web_hiring/post_detail.html' form_class = PostForm model = Post class PostDeleteView(LoginRequiredMixin,DeleteView): model = Post success_url = reverse_lazy('web_hiring:post_list') class DraftListView(LoginRequiredMixin,ListView): login_url = '/login/' redirect_field_name = 'web_hiring/post_list.html' model = Post def get_queryset(self): return Post.objects.filter(publish_date__isnull=True).order_by('create_date') class PublihedListView(LoginRequiredMixin,ListView): login_url = '/login/' redirect_field_name = 'web_hiring/post_list.html' model = Post def get_queryset(self): return Post.objects.filter(author=self.request.user,publish_date__isnull=False).order_by('create_date') ################################################################## ################################################################## @login_required def post_publish(request,pk): post = get_object_or_404(Post,pk=pk) form = model_to_dict(Post.objects.get(pk=pk)) vacancy_notification(form) post.publish() return redirect('web_hiring:post_detail',pk=pk)
py
7dfec9ffdf0095e4110914bc45657a3a01b6d73f
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Weapon() result.template = "object/weapon/melee/sword/crafted_saber/shared_sword_lightsaber_one_handed_s1_gen4.iff" result.attribute_template_id = 10 result.stfName("weapon_name","sword_lightsaber_type1") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
py
7dfeca408940019822823154bd164719f8c72877
#!/usr/bin/env python import codecs import os from setuptools import find_packages, setup here = os.path.abspath(os.path.dirname(__file__)) def read_file(filename): """Open a related file and return its content.""" with codecs.open(os.path.join(here, filename), encoding="utf-8") as f: content = f.read() return content README = read_file("README.rst") CHANGELOG = read_file("CHANGELOG.rst") setup( name="django-tinymce", version="3.0.3.dev0", packages=find_packages(), include_package_data=True, author="Aljosa Mohorovic", author_email="[email protected]", description=( "A Django application that contains a widget to render a " "form field as a TinyMCE editor." ), long_description=README + "\n\n" + CHANGELOG, license="MIT License", keywords="django widget tinymce", zip_safe=False, classifiers=[ "Development Status :: 5 - Production/Stable", "Environment :: Web Environment", "Framework :: Django", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Topic :: Software Development :: Libraries :: Application Frameworks", "Topic :: Software Development :: Libraries :: Python Modules", ], platforms=["any"], url="https://github.com/aljosa/django-tinymce", test_suite="runtests.runtests", )
py
7dfecab277c4e6d76eeb1bf7c836bb23116f8765
#! /usr/bin/env python # coding=utf-8 """Tests the views.""" # Django from django.contrib.auth import get_user_model from django.test import TestCase from django.urls import reverse # Current django project from sports_manager.models import Gymnasium class TestGymnasiumCreateViewAsAnonymous(TestCase): """Tests.""" def test_get(self): """Tests.""" r = self.client.get(reverse('sports-manager:gymnasium-create')) self.assertEqual(r.status_code, 403) def test_post(self): """Tests.""" d = { 'name': 'Watteau', 'address': '37 rue Lequesne', 'city': 'Nogent-Sur-Marne', 'zip_code': '94130', 'phone': '0100000000', 'surface': '123', 'capacity': '456', } r = self.client.post(reverse('sports-manager:gymnasium-create'), d) self.assertEqual(r.status_code, 403) class TestGymnasiumCreateViewAsLogged(TestCase): """Tests.""" def setUp(self): """Setup for al the following tests.""" self.dict = { 'username': "hbuyse", 'password': "usermodel", 'first_name': "Henri", 'last_name': "Buyse" } get_user_model().objects.create_user(**self.dict) def test_get(self): """Tests.""" self.assertTrue(self.client.login(username=self.dict['username'], password=self.dict['password'])) r = self.client.get(reverse('sports-manager:gymnasium-create')) self.assertEqual(r.status_code, 403) def test_post(self): """Tests.""" d = { 'name': 'Watteau', 'address': '37 rue Lequesne', 'city': 'Nogent-Sur-Marne', 'zip_code': '94130', 'phone': '0100000000', 'surface': '123', 'capacity': '456', } self.assertTrue(self.client.login(username=self.dict['username'], password=self.dict['password'])) r = self.client.post(reverse('sports-manager:gymnasium-create'), d) self.assertEqual(r.status_code, 403) class TestGymnasiumCreateViewAsStaff(TestCase): """Tests.""" def setUp(self): """Setup for al the following tests.""" self.dict = { 'username': "hbuyse", 'password': "usermodel", 'first_name': "Henri", 'last_name': "Buyse", 'is_staff': True } get_user_model().objects.create_user(**self.dict) def test_get(self): """Tests.""" self.assertTrue(self.client.login(username=self.dict['username'], password=self.dict['password'])) r = self.client.get(reverse('sports-manager:gymnasium-create')) self.assertEqual(r.status_code, 200) def test_post(self): """Tests.""" d = { 'name': 'Watteau', 'address': '37 rue Lequesne', 'city': 'Nogent-Sur-Marne', 'zip_code': '94130', 'phone': '0100000000', 'surface': '123', 'capacity': '456', } self.assertTrue(self.client.login(username=self.dict['username'], password=self.dict['password'])) r = self.client.post(reverse('sports-manager:gymnasium-create'), d) self.assertRedirects(r, '/gymnasium/watteau/', fetch_redirect_response=False) class TestGymnasiumCreateViewAsSuperuser(TestCase): """Tests.""" def setUp(self): """Setup for al the following tests.""" self.dict = { 'username': "hbuyse", 'password': "usermodel", 'first_name': "Henri", 'last_name': "Buyse", 'email': '[email protected]' } get_user_model().objects.create_superuser(**self.dict) def test_get(self): """Tests.""" self.assertTrue(self.client.login(username=self.dict['username'], password=self.dict['password'])) r = self.client.get(reverse('sports-manager:gymnasium-create')) self.assertEqual(r.status_code, 200) def test_post(self): """Tests.""" d = { 'name': 'Watteau', 'address': '37 rue Lequesne', 'city': 'Nogent-Sur-Marne', 'zip_code': '94130', 'phone': '0100000000', 'surface': '123', 'capacity': '456', } self.assertTrue(self.client.login(username=self.dict['username'], password=self.dict['password'])) r = self.client.post(reverse('sports-manager:gymnasium-create'), d) self.assertRedirects(r, '/gymnasium/watteau/', fetch_redirect_response=False)
py
7dfecb3103725007520d56459a887898bedc8166
''' Copyright (c) 2013-2014, Joshua Pitts All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' def eat_code_caves(flItms, caveone, cavetwo): try: if flItms['CavesPicked'][cavetwo][0] == flItms['CavesPicked'][caveone][0]: return int(flItms['CavesPicked'][cavetwo][1], 16) - int(flItms['CavesPicked'][caveone][1], 16) else: caveone_found = False cavetwo_found = False forward = True windows_memoffset_holder = 0 for section in flItms['Sections']: if flItms['CavesPicked'][caveone][0] == section[0] and caveone_found is False: caveone_found = True if cavetwo_found is False: windows_memoffset_holder += section[1] + 4096 - section[1] % 4096 - section[3] forward = True continue if section[1] % 4096 == 0: continue break if flItms['CavesPicked'][cavetwo][0] == section[0] and cavetwo_found is False: cavetwo_found = True if caveone_found is False: windows_memoffset_holder += -(section[1] + 4096 - section[1] % 4096 - section[3]) forward = False continue if section[1] % 4096 == 0: continue break if caveone_found is True or cavetwo_found is True: if section[1] % 4096 == 0: continue if forward is True: windows_memoffset_holder += section[1] + 4096 - section[1] % 4096 - section[3] if forward is False: windows_memoffset_holder += -(section[1] + 4096 - section[1] % 4096 - section[3]) continue #Need a way to catch all the sections in between other sections return int(flItms['CavesPicked'][cavetwo][1], 16) - int(flItms['CavesPicked'][caveone][1], 16) + windows_memoffset_holder except Exception: #print "EAT CODE CAVE", str(e) return 0
py
7dfecc914c053c0adb5c42c77c863f10ebceb68d
# polling_location/urls.py # Brought to you by We Vote. Be good. # -*- coding: UTF-8 -*- from django.conf.urls import url from . import views_admin urlpatterns = [ url(r'^$', views_admin.polling_location_list_view, name='polling_location_list',), url(r'^import/$', views_admin.polling_locations_import_from_master_server_view, name='polling_locations_import_from_master_server'), url(r'^import_status/$', views_admin.polling_locations_import_from_master_server_status_view, name='polling_locations_import_from_master_server_status'), # Processing incoming file with polling locations url(r'^import_polling_locations_process/$', views_admin.import_polling_locations_process_view, name='import_polling_locations_process'), url(r'^(?P<polling_location_local_id>[0-9]+)/edit/$', views_admin.polling_location_edit_view, name='polling_location_edit'), url(r'^(?P<polling_location_local_id>[0-9]+)/visualize/$', views_admin.polling_location_visualize_view, name='polling_location_visualize'), url(r'^(?P<polling_location_we_vote_id>wv[\w]{2}ploc[\w]+)/edit_we_vote_id/$', views_admin.polling_location_edit_view, name='polling_location_we_vote_id_edit'), url(r'^polling_location_edit_process/$', views_admin.polling_location_edit_process_view, name='polling_location_edit_process'), url(r'^polling_locations_add_address_from_latitude_and_longitude/$', views_admin.polling_locations_add_address_from_latitude_and_longitude_view, name='polling_locations_add_address_from_latitude_and_longitude'), url(r'^polling_locations_add_latitude_and_longitude/$', views_admin.polling_locations_add_latitude_and_longitude_view, name='polling_locations_add_latitude_and_longitude'), url(r'^statistics/$', views_admin.polling_location_statistics_view, name='polling_location_statistics',), url(r'^(?P<polling_location_local_id>[0-9]+)/summary/$', views_admin.polling_location_summary_view, name='polling_location_summary'), url(r'^(?P<polling_location_we_vote_id>wv[\w]{2}ploc[\w]+)/summary/$', views_admin.polling_location_summary_by_we_vote_id_view, name='polling_location_summary_by_we_vote_id'), url(r'^soft_delete_duplicates/$', views_admin.soft_delete_duplicates_view, name='soft_delete_duplicates'), ]
py
7dfecdcd3062edd46ca9d5184dbfb5c33c4dae07
# -*- coding: utf-8 -*- # Copyright 2018-2020 Streamlit Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for cache's show_spinner option.""" import streamlit as st from tests import testutil @st.cache(show_spinner=False) def function_without_spinner(): return 3 @st.cache(show_spinner=True) def function_with_spinner(): return 3 class CacheSpinnerTest(testutil.DeltaGeneratorTestCase): """ We test the ability to turn on and off the spinner with the show_spinner option by inspecting the report queue. """ def test_with_spinner(self): """If the show_spinner flag is set, there should be one element in the report queue. """ function_with_spinner() self.assertFalse(self.report_queue.is_empty()) def test_without_spinner(self): """If the show_spinner flag is not set, the report queue should be empty. """ function_without_spinner() self.assertTrue(self.report_queue.is_empty())
py
7dfece1e6d0fbc1e14e6e60f0965e987fb3fcfbe
""" FactSet SCIM API FactSet's SCIM API implementation. # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from fds.sdk.ProcuretoPaySCIM.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, OpenApiModel ) from fds.sdk.ProcuretoPaySCIM.exceptions import ApiAttributeError class ProductResourceMeta(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { 'resource_type': (str,), # noqa: E501 'location': (str,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'resource_type': 'resourceType', # noqa: E501 'location': 'location', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, *args, **kwargs): # noqa: E501 """ProductResourceMeta - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) resource_type (str): [optional] # noqa: E501 location (str): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """ProductResourceMeta - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) resource_type (str): [optional] # noqa: E501 location (str): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
py
7dfecfc0322c25ec378083eeeaa25444b8a1878a
from django.contrib import admin from instagram.models import Post, Comment admin.site.register(Post) admin.site.register(Comment)
py
7dfed0bb2038fbf056a9eeaf1a5c69922ae78332
from asynctest import TestCase as AsyncTestCase from asynctest import mock as async_mock from .....admin.request_context import AdminRequestContext from .....storage.error import StorageError from .. import routes as test_module from ..manager import V10DiscoveryMgr from ..messages.query import Query from ..models.discovery_record import V10DiscoveryExchangeRecord class TestDiscoveryRoutes(AsyncTestCase): async def setUp(self): self.session_inject = {} self.context = AdminRequestContext.test_context(self.session_inject) self.profile = self.context.profile self.request_dict = { "context": self.context, "outbound_message_router": async_mock.CoroutineMock(), } self.request = async_mock.MagicMock( app={}, match_info={}, query={}, __getitem__=lambda _, k: self.request_dict[k], ) async def test_query_features(self): self.request.json = async_mock.CoroutineMock() self.request.query = {"query": "*"} test_rec = V10DiscoveryExchangeRecord( discovery_exchange_id="3fa85f64-5717-4562-b3fc-2c963f66afa6", query_msg=Query(query="*"), ) with async_mock.patch.object( test_module.web, "json_response" ) as mock_response, async_mock.patch.object( V10DiscoveryMgr, "create_and_send_query", autospec=True ) as mock_create_query: mock_create_query.return_value = test_rec res = await test_module.query_features(self.request) mock_response.assert_called_once_with(test_rec.serialize()) async def test_query_features_with_connection(self): self.request.json = async_mock.CoroutineMock() self.request.query = {"query": "*", "connection_id": "test", "comment": "test"} test_rec = V10DiscoveryExchangeRecord( discovery_exchange_id="3fa85f64-5717-4562-b3fc-2c963f66afa6", query_msg=Query(query="*"), ) with async_mock.patch.object( test_module.web, "json_response" ) as mock_response, async_mock.patch.object( V10DiscoveryMgr, "create_and_send_query", autospec=True ) as mock_create_query: mock_create_query.return_value = test_rec res = await test_module.query_features(self.request) mock_response.assert_called_once_with(test_rec.serialize()) async def test_query_records(self): self.request.json = async_mock.CoroutineMock() self.request.query = {"connection_id": "test"} test_rec = V10DiscoveryExchangeRecord( discovery_exchange_id="3fa85f64-5717-4562-b3fc-2c963f66afa6", query_msg=Query(query="*"), ) with async_mock.patch.object( test_module.web, "json_response" ) as mock_response, async_mock.patch.object( test_module, "V10DiscoveryExchangeRecord", autospec=True ) as mock_ex_rec: mock_ex_rec.retrieve_by_connection_id.return_value = test_rec res = await test_module.query_records(self.request) mock_response.assert_called_once_with({"results": [test_rec.serialize()]}) async def test_query_records_x(self): self.request.json = async_mock.CoroutineMock() self.request.query = {"connection_id": "test"} with async_mock.patch.object( test_module.web, "json_response" ) as mock_response, async_mock.patch.object( test_module, "V10DiscoveryExchangeRecord", autospec=True ) as mock_ex_rec: mock_ex_rec.retrieve_by_connection_id.side_effect = StorageError with self.assertRaises(test_module.web.HTTPBadRequest): await test_module.query_records(self.request) async def test_query_records_all(self): self.request.json = async_mock.CoroutineMock() test_recs = [ V10DiscoveryExchangeRecord( discovery_exchange_id="3fa85f64-5717-4562-b3fc-2c963f66afa6", query_msg=Query(query="*"), ), V10DiscoveryExchangeRecord( discovery_exchange_id="3fa85f64-5717-4562-b3fc-2c963f66afa7", query_msg=Query(query="test"), ), ] with async_mock.patch.object( test_module.web, "json_response" ) as mock_response, async_mock.patch.object( test_module, "V10DiscoveryExchangeRecord", autospec=True ) as mock_ex_rec: mock_ex_rec.query.return_value = test_recs res = await test_module.query_records(self.request) mock_response.assert_called_once_with( {"results": [k.serialize() for k in test_recs]} ) async def test_query_records_connection_x(self): self.request.json = async_mock.CoroutineMock() with async_mock.patch.object( test_module.web, "json_response" ) as mock_response, async_mock.patch.object( test_module, "V10DiscoveryExchangeRecord", autospec=True ) as mock_ex_rec: mock_ex_rec.query.side_effect = StorageError with self.assertRaises(test_module.web.HTTPBadRequest): await test_module.query_records(self.request) async def test_register(self): mock_app = async_mock.MagicMock() mock_app.add_routes = async_mock.MagicMock() await test_module.register(mock_app) mock_app.add_routes.assert_called_once() async def test_post_process_routes(self): mock_app = async_mock.MagicMock(_state={"swagger_dict": {}}) test_module.post_process_routes(mock_app) assert "tags" in mock_app._state["swagger_dict"]
py
7dfed4089b28783a18e0758944253c92694d718a
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # mp_throttle documentation build configuration file, created by # sphinx-quickstart on Thu Aug 9 20:17:19 2018. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import re # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) root = os.path.abspath('/home/elpunkt/Documents/Link to Projekte/Python/mp_throttle') sys.path.append(root) def find_version_author_mail(): here = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(root, "mp_throttle/__init__.py"), 'r') as fp: version_file = fp.read() version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M) author_match = re.search(r"^__author__ = ['\"]([^'\"]*)['\"]", version_file, re.M) author, mail = re.split(r'<',author_match.group(1)) return version_match.group(1), author.rstrip(), re.sub('>', '', mail) _version, _author, _mail = find_version_author_mail() # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.viewcode', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = 'mp_throttle' copyright = '2018, Lucas Langholf' author = _author # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = _version # The full version, including alpha/beta/rc tags. release = _version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { 'github_button': True, 'github_banner': True, 'github_user': 'elpunkt', 'github_repo': 'mp_throttle', 'description': 'Throttle and Monitor for Python multiprocessing.', } # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. html_sidebars = { '**': ['navigation.html', 'localtoc.html', 'searchbox.html'], } # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'h', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'r', 'sv', 'tr' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'mp_throttledoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'mp_throttle.tex', 'mp\\_throttle Documentation', _author, 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'mp_throttle', 'mp_throttle Documentation', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'mp_throttle', 'mp_throttle Documentation', author, 'mp_throttle', 'Throttle and Monitor for multiprocessing.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
py
7dfed5c5b8f6fa08b2d33f3bb11f6b570b9276a8
''' Copyright (C) 2014 Parrot SA Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Parrot nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' from ARFuncs import * def Android_AppendDepsPrebuiltAndroidMk(target, lib, mkfile, array, suffix, rootDir): for soName in lib.soLibs: libPrefix = 'lib' if not soName.startswith('lib') else '' libPrefixUpper = libPrefix.upper() soNameUpper = libPrefixUpper + soName.upper() soNameLower = libPrefix + soName.lower() pbName = '%(soNameUpper)s-prebuilt' % locals() if not pbName in array: mkfile.write('# %(soNameUpper)s\n' % locals()) mkfile.write('include $(CLEAR_VARS)\n') mkfile.write('\n') mkfile.write('LOCAL_MODULE := %(pbName)s\n' % locals()) mkfile.write('LOCAL_SRC_FILES := %(rootDir)s/$(TARGET_ARCH_ABI)/lib/%(soName)s' % locals() + '\n') mkfile.write('\n') mkfile.write('include $(PREBUILT_SHARED_LIBRARY)\n') mkfile.write('\n') array.append(pbName) def Android_CreateApplicationMk(projectRoot, abis): appMkName = '%(projectRoot)s/jni/Application.mk' % locals() appMkTmpName = '%(projectRoot)s/jni/Application.mk.new' % locals() appMk = open(appMkTmpName, 'w') appMk.write('APP_ABI := ') for abi in abis: appMk.write (abi + ' ') appMk.write('\n') appMk.write('APP_PLATFORM := android-' + os.environ.get('AR_ANDROID_MIN_VERSION') + '\n') appMk.close() ARReplaceFileIfDifferent(appMkName, appMkTmpName) def Android_CreateAndroidManifest(projectRoot, lib): androidManifestName = '%(projectRoot)s/AndroidManifest.xml' % locals() androidManifestTmpName = '%(projectRoot)s/AndroidManifest.xml.new' % locals() libLower = lib.name.lower() androidMinVersion = os.environ.get('AR_ANDROID_MIN_VERSION') androidTargetVersion = os.environ.get('AR_ANDROID_API_VERSION') androidManifest = open(androidManifestTmpName, 'w') androidManifest.write('<?xml version="1.0" encoding="utf-8"?>\n') androidManifest.write('<manifest xmlns:android="http://schemas.android.com/apk/res/android"\n') androidManifest.write(' package="com.parrot.arsdk.%(libLower)s"' % locals()) androidManifest.write(' android:installLocation="auto"\n') androidManifest.write(' android:versionCode="1"\n') androidManifest.write(' android:versionName="1" >\n') androidManifest.write('\n') androidManifest.write(' <uses-sdk\n') androidManifest.write(' android:minSdkVersion="%(androidMinVersion)s"\n' % locals()) androidManifest.write(' android:targetSdkVersion="%(androidTargetVersion)s" />\n' % locals()) androidManifest.write('</manifest>\n') androidManifest.close() ARReplaceFileIfDifferent(androidManifestName, androidManifestTmpName) def Android_CreateAndroidMk(target, projectRoot, installRoot, lib, debug, hasNative=True, inhouse=False): JniRootDir = '%(projectRoot)s/jni/' % locals() andMkName = '%(JniRootDir)s/Android.mk' % locals() andMkTmpName = '%(JniRootDir)s/Android.mk.new' % locals() suffix = '_dbg' if debug else '' prebuilts = [] andMk = open(andMkTmpName, 'w') andMk.write('LOCAL_PATH := $(call my-dir)\n') andMk.write('\n') # Write prebuilt deps (use shared) lib.runOnAllDeps(target, Android_AppendDepsPrebuiltAndroidMk, mkfile=andMk, array=prebuilts, suffix=suffix, rootDir=installRoot) # Write prebuilt self (use shared) libUpper = lib.name.upper() libLower = lib.name.lower() if hasNative: andMk.write('# lib%(lib)s\n' % locals()) andMk.write('include $(CLEAR_VARS)\n') andMk.write('\n') andMk.write('LOCAL_MODULE := LIB%(libUpper)s-prebuilt\n' % locals()) andMk.write('LOCAL_SRC_FILES := %(installRoot)s/$(TARGET_ARCH_ABI)/lib/lib%(libLower)s%(suffix)s.' % locals() + target.soext + '\n') andMk.write('\n') andMk.write('include $(PREBUILT_SHARED_LIBRARY)\n') andMk.write('\n') # Write JNI Compiler wrapper andMk.write('# JNI Wrapper\n') andMk.write('include $(CLEAR_VARS)\n') andMk.write('\n') # TEMP ALWAYS USE -g !!! #andMk.write('LOCAL_CFLAGS := \n') andMk.write('LOCAL_CFLAGS := -g\n') # END OF TEMP ALWAYS USE -g !!! if inhouse: andMk.write('LOCAL_CFLAGS += -D_IN_HOUSE\n') andMk.write('ifeq ($(TARGET_ARCH_ABI), armeabi-v7a)\n') andMk.write(' LOCAL_CFLAGS += -mfloat-abi=softfp -mfpu=neon\n') andMk.write('endif\n') andMk.write('LOCAL_C_INCLUDES:= %(installRoot)s/$(TARGET_ARCH_ABI)/include\n' % locals()) andMk.write('LOCAL_MODULE := lib%(libLower)s_android%(suffix)s\n' % locals()) JniCFiles = [] for Dir, directories, files in os.walk(JniRootDir): for _file in files: if _file.endswith('.c'): JniCFiles.append (os.path.join(Dir, _file).replace(JniRootDir, '')) if JniCFiles: andMk.write('LOCAL_SRC_FILES :=') for _file in JniCFiles: andMk.write(' %(_file)s' % locals()) andMk.write('\n') andMk.write('LOCAL_LDLIBS := -llog -lz\n') if hasNative or prebuilts: andMk.write('LOCAL_SHARED_LIBRARIES :=') if hasNative: andMk.write(' LIB%(libUpper)s-prebuilt' % locals()) for dep in prebuilts: andMk.write(' %(dep)s' % locals()) andMk.write('\n') andMk.write('include $(BUILD_SHARED_LIBRARY)\n') andMk.close() ARReplaceFileIfDifferent(andMkName, andMkTmpName)
py
7dfed63925116f18144bff17e2885029e29250c3
""" CLI argument definitions for the screenshotter. This module defines the argument parser. """ from argparse import ArgumentParser, RawDescriptionHelpFormatter parser = ArgumentParser( description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument( '--temp-dir', default='/tmp/public-cache', help='Local temp dir for snapshots') parser.add_argument('--states', default='', help='Comma-separated list of state 2-letter names. If present, will only screenshot those.') parser.add_argument('--phantomjscloud-key', default='', help='API key for PhantomJScloud, used for browser image capture') # Args relating to S3 setup parser.add_argument( '--s3-bucket', default='covid-data-archive', help='S3 bucket name') parser.add_argument( '--s3-subfolder', default='state_screenshots', help='Name of subfolder on S3 bucket to upload files to') parser.add_argument('--push-to-s3', dest='push_to_s3', action='store_true', default=False, help='Push screenshots to S3') # Determines which screenshots we're aiming to take; these may have different schedules. Only one # can be true at a time group = parser.add_mutually_exclusive_group(required=True) group.add_argument('--screenshot-core-urls', dest='core_urls', action='store_true', default=False, help='Screenshot core data URLs from States Info') group.add_argument('--screenshot-crdt-urls', dest='crdt_urls', action='store_true', default=False, help='Screenshot CRDT data URLs') group.add_argument('--screenshot-ltc-urls', dest='ltc_urls', action='store_true', default=False, help='Screenshot LTC data URLs') # Allows the user to specify primary, secondary, etc. screenshots to take # If none of these arguments are present, all screenshots will be taken screenshot_type_group = parser.add_argument_group('which_screenshots') screenshot_type_group.add_argument('--primary', dest='primary', action='store_true', default=False, help='Run the primary screenshot') screenshot_type_group.add_argument('--secondary', dest='secondary', action='store_true', default=False, help='Run the secondary screenshot') screenshot_type_group.add_argument('--tertiary', dest='tertiary', action='store_true', default=False, help='Run the tertiary screenshot') screenshot_type_group.add_argument('--quaternary', dest='quaternary', action='store_true', default=False, help='Run the quaternary screenshot') screenshot_type_group.add_argument('--quinary', dest='quinary', action='store_true', default=False, help='Run the quinary screenshot') # Args relating to Slack notifications parser.add_argument( '--slack-channel', default='', help='Slack channel ID to notify on screenshot errors') parser.add_argument( '--slack-api-token', default='', help='Slack API token to use for notifications')
py
7dfed7a52363a8f52c5dc7af85f3bac8d6fe6ae2
""" Module to manage the init services programs (sysv init and systemd). """ from jadi import component from aj.api.http import url, HttpPlugin from aj.auth import authorize from aj.api.endpoint import endpoint, EndpointError from aj.plugins.services.api import ServiceManager, ServiceOperationError @component(HttpPlugin) class Handler(HttpPlugin): def __init__(self, context): self.context = context self.managers = {x.id:x for x in ServiceManager.all(self.context)} def __service_to_json(self, svc): """ Utility to convert a Service object into dict for angular. :param svc: Service object :type svc: Service :return: Services informations :rtype: dict """ return { 'id': svc.id, 'name': svc.name, 'state': svc.state, 'running': svc.running, 'managerId': svc.manager.id, 'enabled': svc.enabled, 'static': svc.static, } @url(r'/api/services/managers') @endpoint(api=True) def handle_api_managers(self, http_context): """ List all available managers. :param http_context: HttpContext :type http_context: HttpContext :return: List of managers, one manager per dict :rtype: list of dict """ return [ { 'id': mgr.id, 'name': mgr.name, } for mgr in self.managers.values() ] @url(r'/api/services/list/(?P<manager_id>\w+)') @endpoint(api=True) def handle_api_list(self, http_context, manager_id=None): """ Retrieve all services from one specified init system. :param http_context: HttpContext :type http_context: HttpContext :param manager_id: Manager id, e.g. systemd :type manager_id: string :return: List of services informations :rtype: list of dict """ return [self.__service_to_json(svc) for svc in self.managers[manager_id].list()] @url(r'/api/services/get/(?P<manager_id>\w+)/(?P<service_id>.+)') @endpoint(api=True) def handle_api_get(self, http_context, manager_id=None, service_id=None): """ Retrieve the service informations for one specified service in one specified manager. :param http_context: HttpContext :type http_context: HttpContext :param manager_id: Manager id, e.g. systemd :type manager_id: string :param service_id: Service id, e.g. ssh :type service_id: string :return: Service informations :rtype: dict """ return self.__service_to_json(self.managers[manager_id].get_service(service_id)) @url(r'/api/services/get_status/(?P<manager_id>\w+)/(?P<service_id>.+)') @endpoint(api=True) def handle_api_get_status(self, http_context, manager_id=None, service_id=None): """ Retrieve the service informations for one specified service in one specified manager. :param http_context: HttpContext :type http_context: HttpContext :param manager_id: Manager id, e.g. systemd :type manager_id: string :param service_id: Service id, e.g. ssh :type service_id: string :return: Service informations :rtype: dict """ return self.managers[manager_id].get_status(service_id) @url(r'/api/services/do/(?P<operation>\w+)/(?P<manager_id>\w+)/(?P<service_id>.+)') @authorize('services:manage') @endpoint(api=True) def handle_api_operate(self, http_context, manager_id=None, operation=None, service_id=None): """ Launch one command for a specified service. :param http_context: HttpContext :type http_context: HttpContext :param manager_id: Manager id, e.g. systemd :type manager_id: string :param operation: Operation type, e.g. start :type operation: string :param service_id: Service id, e.g. ssh :type service_id: string :return: Service informations :rtype: dict """ if operation not in ['start', 'stop', 'restart', 'kill', 'disable', 'enable']: return try: getattr(self.managers[manager_id], operation)(service_id) except ServiceOperationError as e: raise EndpointError(e)
py
7dfed8067f770f101b470a5e633c65056ecce429
import json import copy import datetime import random import requests import sys import tabulate import time from inputimeout import TimeoutOccurred, inputimeout from collections import Counter from hashlib import sha256 from captcha import captcha_builder_manual, captcha_builder_auto, captcha_builder_api BOOKING_URL = "https://cdn-api.co-vin.in/api/v2/appointment/schedule" BENEFICIARIES_URL = "https://cdn-api.co-vin.in/api/v2/appointment/beneficiaries" CALENDAR_URL_DISTRICT = "https://cdn-api.co-vin.in/api/v2/appointment/sessions/calendarByDistrict?district_id={0}&date={1}" CALENDAR_URL_PINCODE = "https://cdn-api.co-vin.in/api/v2/appointment/sessions/calendarByPin?pincode={0}&date={1}" CAPTCHA_URL = "https://cdn-api.co-vin.in/api/v2/auth/getRecaptcha" OTP_PUBLIC_URL = "https://cdn-api.co-vin.in/api/v2/auth/public/generateOTP" OTP_PRO_URL = "https://cdn-api.co-vin.in/api/v2/auth/generateMobileOTP" RESCHEDULE_URL = "https://cdn-api.co-vin.in/api/v2/appointment/reschedule" CANCEL_URL = "https://cdn-api.co-vin.in/api/v2/appointment/cancel" OTP_VALIDATE_URL = "https://cdn-api.co-vin.in/api/v2/auth/validateMobileOtp" DOWNLOAD_APPOINTMENT = "https://cdn-api.co-vin.in/api/v2/appointment/appointmentslip/download?appointment_id={}" WARNING_BEEP_DURATION = (1000, 5000) try: import winsound except ImportError: import os if sys.platform == "darwin": def beep(freq, duration): # brew install SoX --> install SOund eXchange universal sound sample translator on mac os.system( f"play -n synth {duration / 1000} sin {freq} >/dev/null 2>&1") else: def beep(freq, duration): # apt-get install beep --> install beep package on linux distros before running os.system('beep -f %s -l %s' % (freq, duration)) else: def beep(freq, duration): winsound.Beep(freq, duration) def book_appointment(request_header, details, mobile, generate_captcha_pref, api_key=None, captcha_api_choice=None): """ This function 1. Takes details in json format 2. Attempts to book an appointment using the details 3. Returns True or False depending on Token Validity """ try: valid_captcha = True while valid_captcha: captcha = generate_captcha(request_header, generate_captcha_pref, api_key, captcha_api_choice) details["captcha"] = captcha print( "================================= ATTEMPTING BOOKING ==================================================") resp = requests.post(BOOKING_URL, headers=request_header, json=details) # print(f"Booking Response Code: {resp.status_code}") # print(f"Booking Response : {resp.text}") if resp.status_code == 401: print("TOKEN INVALID") return resp.status_code elif resp.status_code == 200: beep(WARNING_BEEP_DURATION[0], WARNING_BEEP_DURATION[1]) print( "############## BOOKED! ############################ BOOKED! ################") print( " Hey, Hey, Hey! It's your lucky day! ") booked_appointment_id = resp.text booked_appointment_id = (booked_appointment_id[32:68]) print(booked_appointment_id) response = requests.get(DOWNLOAD_APPOINTMENT.format(booked_appointment_id), headers=request_header) if response.status_code == 200: filename = "appointment_slip" + booked_appointment_id with open(filename, 'wb') as f: f.write(response.content) return 1000 elif resp.status_code == 409: # This vaccination center is completely booked for the selected date. print(f"Response: {resp.status_code} : {resp.text}") return resp.status_code elif resp.status_code == 400: # bad request or invalid captcha print(f"Response: {resp.status_code} : {resp.text}") return resp.status_code elif resp.status_code >= 500: # Internal server error print(f"Response: {resp.status_code} : {resp.text}") pass else: print(f"Response: {resp.status_code} : {resp.text}") return True except Exception as e: print(str(e)) beep(WARNING_BEEP_DURATION[0], WARNING_BEEP_DURATION[1]) def check_and_book(request_header, beneficiary_dtls, location_dtls, search_option, **kwargs): """ This function 1. Checks the vaccination calendar for available slots, 2. Lists all viable options, 3. Takes user's choice of vaccination center and slot, 4. Calls function to book appointment, and 5. Returns True or False depending on Token Validity """ slots_available = False try: min_age_booking = get_min_age(beneficiary_dtls) minimum_slots = kwargs["min_slots"] refresh_freq = kwargs["ref_freq"] auto_book = kwargs["auto_book"] start_date = kwargs["start_date"] vaccine_type = kwargs["vaccine_type"] fee_type = kwargs["fee_type"] mobile = kwargs["mobile"] captcha_automation = kwargs['captcha_automation'] captcha_api_choice = kwargs['captcha_api_choice'] captcha_automation_api_key = kwargs['captcha_automation_api_key'] dose_num = kwargs['dose_num'] excluded_pincodes = kwargs['excluded_pincodes'], reschedule_inp = kwargs['reschedule_inp'] if isinstance(start_date, int) and start_date == 2: start_date = (datetime.datetime.today() + datetime.timedelta(days=1)).strftime("%d-%m-%Y") elif isinstance(start_date, int) and start_date == 1: start_date = datetime.datetime.today().strftime("%d-%m-%Y") else: pass if search_option == 2: options = check_calendar_by_district(request_header, vaccine_type, location_dtls, start_date, minimum_slots, min_age_booking, fee_type, dose_num, excluded_pincodes) else: options = check_calendar_by_pincode(request_header, vaccine_type, location_dtls, start_date, minimum_slots, min_age_booking, fee_type, dose_num) if isinstance(options, bool): return False options = sorted(options, key=lambda k: (k["district"].lower(), k["pincode"], k["name"].lower(), datetime.datetime.strptime(k["date"], "%d-%m-%Y"), ), ) if len(options) > 0: slots_available = True options = sorted(options, key=lambda k: (k["available"], k["date"]), reverse=True) print( "\n======================================= Available slots found =======================================") tmp_options = copy.deepcopy(options) if len(tmp_options) > 0: cleaned_options_for_display = [] for item in tmp_options: item.pop("session_id", None) item.pop("center_id", None) cleaned_options_for_display.append(item) display_table(cleaned_options_for_display) if auto_book == 'n': try: choice = inputimeout( prompt='----------> Enter a choice e.g: 1.4 for (1st center 4th slot):\n----------> OR wait 20 second for auto update of centers: ', timeout=20) choice = choice.split('.') choice = [int(item) for item in choice] except ValueError: print("invalid input") return True if reschedule_inp == "r" or reschedule_inp == "R": new_req = { 'appointment_id': [beneficiary['appointment_id'] for beneficiary in beneficiary_dtls], 'center_id': options[choice[0] - 1]['center_id'], 'session_id': options[choice[0] - 1]['session_id'], 'slot': options[choice[0] - 1]['slots'][choice[1] - 1], } print(f"Booking with info: {new_req}") return reschedule_appointment(request_header, new_req, mobile, captcha_automation, captcha_automation_api_key, captcha_api_choice) else: new_req = { 'beneficiaries': [beneficiary['bref_id'] for beneficiary in beneficiary_dtls], 'dose': dose_num, 'center_id': options[choice[0] - 1]['center_id'], 'session_id': options[choice[0] - 1]['session_id'], 'slot': options[choice[0] - 1]['slots'][choice[1] - 1] } print(f"Booking with info: {new_req}") booking_status = book_appointment(request_header, new_req, mobile, captcha_automation, captcha_automation_api_key, captcha_api_choice) if booking_status == 1000: return "break" else: return True else: for i in range(refresh_freq, 0, -1): msg = f"No viable options. Next update in {i} seconds.." print(msg, end="\r", flush=True) sys.stdout.flush() time.sleep(1) choice = "." except TimeoutOccurred: time.sleep(1) return True else: if not slots_available: return True else: # sort by date and maximum available slots start_epoch = int(time.time()) # if captcha automation is enabled then spend maximum 30 seconds before requesting new availability status from CoWIN. here, max time for both captcha auto and manual is same MAX_ALLOWED_DURATION_OF_STALE_INFORMATION_IN_SECS = 1 * 30 if captcha_automation != 'n' else 1 * 60 # Try all available centers one by one for i in range(0, len(options)): option = options[i] # all_slots_of_a_center = option.get("slots", []) # randomly choosing 2/3 slots of a center instead of trying all slots one by one to minimise API hit if center is full all_slots_of_a_center = (random.sample(option["slots"], 2)) if ((len(option['slots'])) <= 4) else (random.sample(option["slots"], 3)) if not all_slots_of_a_center: continue # Try all slots of a center one by one for selected_slot in all_slots_of_a_center: current_epoch = int(time.time()) if current_epoch - start_epoch >= MAX_ALLOWED_DURATION_OF_STALE_INFORMATION_IN_SECS: print( "\n\n######################## Tried too many times but still not able to book, getting new availability status from CoWIN #####################\n\n") return True try: center_id = option["center_id"] print( f"\n============> Trying Choice # {i + 1} Center Name # {option['name']} , Center # {center_id}, Slot #{selected_slot}") if reschedule_inp == "r" or reschedule_inp == "R": new_req = { "appointment_id": beneficiary_dtls[0]['appointment_id'], "center_id": option["center_id"], "session_id": option["session_id"], "slot": selected_slot, } print(f"Booking with info: {new_req}") booking_status = reschedule_appointment(request_header, new_req, mobile, captcha_automation, captcha_automation_api_key, captcha_api_choice) else: new_req = { "beneficiaries": [beneficiary["bref_id"] for beneficiary in beneficiary_dtls], "dose": dose_num, "center_id": option["center_id"], "session_id": option["session_id"], "slot": selected_slot, } print(f"Booking with info: {new_req}") booking_status = book_appointment(request_header, new_req, mobile, captcha_automation, captcha_automation_api_key, captcha_api_choice) if booking_status == 1000: return "break" # token invalid. returning 401 response code elif booking_status == 401: return True # bad request or captcha error elif booking_status == 400: pass # selected slot of the center is fully booked else: pass except IndexError: print("============> Invalid Option!") os.system("pause") pass # tried all slots of all centers but still not able to book then look for current status of centers return True # --------------get all pincodes to filter centers by excluded pincode ---------------# def get_all_pincodes(request_header, district_id, start_date, min_age): if start_date == 1: INP_DATE = datetime.datetime.today().strftime("%d-%m-%Y") else: INP_DATE = (datetime.datetime.today() + datetime.timedelta(days=1)).strftime("%d-%m-%Y") DIST_ID = district_id URL = \ CALENDAR_URL_DISTRICT.format(DIST_ID, INP_DATE) response = requests.get(URL, headers=request_header) if response.status_code == 200: pincode_list = response.json() if "centers" in pincode_list: pincode_list = filter_centers_by_age(pincode_list, int(min_age)) refined_pincodes = [] if "centers" in pincode_list: for center in list(pincode_list["centers"]): tmp = {"pincode": center["pincode"], "name": center["name"], "block name": center["block_name"] } refined_pincodes.append(tmp) if len(refined_pincodes) > 0: print( "\n List of all available centers : \n you can enter other pincodes too to avoid those center in future\n") display_table(refined_pincodes) else: print( "\n No available centers found at present.. you can how ever add the pincodes to exclude the centers if they become available \n") excluded_pincodes = [] pincodes = input( "Enter comma separated pincodes to exclude: \n(you can enter pincodes to avoid those center in future)\n") for idx, pincode in enumerate(pincodes.split(",")): if not pincode or len(pincode) < 6: print(f"Ignoring invalid pincode: {pincode}") continue pincode = {'pincode': pincode} excluded_pincodes.append(pincode) return excluded_pincodes else: print("\n No centers available on: " + str(INP_DATE)) else: print(response.status_code) pass def get_districts(request_header): """ This function 1. Lists all states, prompts to select one, 2. Lists all districts in that state, prompts to select required ones, and 3. Returns the list of districts as list(dict) """ states = requests.get("https://cdn-api.co-vin.in/api/v2/admin/location/states", headers=request_header) if states.status_code == 200: states = states.json()["states"] refined_states = [] for state in states: tmp = {"state": state["state_name"]} refined_states.append(tmp) display_table(refined_states) state = int(input("\nEnter State index: ")) state_id = states[state - 1]["state_id"] districts = requests.get(f"https://cdn-api.co-vin.in/api/v2/admin/location/districts/{state_id}", headers=request_header) if districts.status_code == 200: districts = districts.json()["districts"] refined_districts = [] for district in districts: tmp = {"district": district["district_name"]} refined_districts.append(tmp) display_table(refined_districts) reqd_districts = input("\nEnter comma separated index numbers of districts to monitor : ") districts_idx = [int(idx) - 1 for idx in reqd_districts.split(",")] reqd_districts = [ { "district_id": item["district_id"], "district_name": item["district_name"], "alert_freq": 440 + ((2 * idx) * 110), } for idx, item in enumerate(districts) if idx in districts_idx ] print(f"Selected districts: ") display_table(reqd_districts) return reqd_districts else: print("Unable to fetch districts") print(districts.status_code) print(districts.text) os.system("pause") sys.exit(1) else: print("Unable to fetch states") print(states.status_code) print(states.text) os.system("pause") sys.exit(1) def fetch_beneficiaries(request_header): return requests.get(BENEFICIARIES_URL, headers=request_header) def get_required_beneficiaries(request_header, beneficiaries): """ This function 1. Fetches all beneficiaries registered under the mobile number, 2. Prompts user to select the applicable beneficiaries, and 3. Returns the list of beneficiaries as list(dict) """ refined_beneficiaries = [] for beneficiary in beneficiaries: beneficiary["age"] = datetime.datetime.today().year - int(beneficiary["birth_year"]) if beneficiary["vaccination_status"] == "Partially Vaccinated" and len(beneficiary["dose2_date"]) == 0: dose2_date_calculated = vaccine_dose2_duedate(beneficiary["vaccine"], beneficiary["dose1_date"]) beneficiary["dose2_date"] = dose2_date_calculated tmp = { "bref_id": beneficiary["beneficiary_reference_id"], "name": beneficiary["name"], "vaccine": beneficiary["vaccine"], "age": beneficiary["age"], "status": beneficiary["vaccination_status"], "birth_year": beneficiary["birth_year"], "mobile_number": beneficiary["mobile_number"], "photo_id_type": beneficiary["photo_id_type"], "photo_id_number": beneficiary["photo_id_number"], "dose1_date": beneficiary["dose1_date"], "dose2_date": beneficiary["dose2_date"], } refined_beneficiaries.append(tmp) display_table(refined_beneficiaries) print( """ ################# IMPORTANT NOTES ################# # 1. While selecting beneficiaries, make sure that selected beneficiaries are all taking the same dose: either first OR second. # Please do no try to club together booking for first dose for one beneficiary and second dose for another beneficiary. # # 2. While selecting beneficiaries, also make sure that beneficiaries selected for second dose are all taking the same vaccine: COVISHIELD OR COVAXIN. # Please do no try to club together booking for beneficiary taking COVISHIELD with beneficiary taking COVAXIN. # # 3. If you're selecting multiple beneficiaries, make sure all are of the same age group (45+ or 18+) as defined by the govt. # Please do not try to club together booking for younger and older beneficiaries. ################################################### """ ) reqd_beneficiaries = input("\nEnter comma separated index numbers of beneficiaries to book for : ") beneficiary_idx = [int(idx) - 1 for idx in reqd_beneficiaries.split(",")] reqd_beneficiaries = [ { "bref_id": item["bref_id"], "name": item["name"], "vaccine": item["vaccine"], "age": item["age"], "status": item["status"], "dose1_date": item["dose1_date"], "dose2_date": item["dose2_date"], } for idx, item in enumerate(refined_beneficiaries) if idx in beneficiary_idx ] print(f"Selected beneficiaries: ") display_table(reqd_beneficiaries) return reqd_beneficiaries def clear_bucket_and_send_OTP(storage_url, mobile, request_header): print("clearing OTP bucket: " + storage_url) response = requests.put(storage_url, data={}) data = { "mobile": mobile, "secret": "U2FsdGVkX1+z/4Nr9nta+2DrVJSv7KS6VoQUSQ1ZXYDx/CJUkWxFYG6P3iM/VW+6jLQ9RDQVzp/RcZ8kbT41xw==", } print(f"Requesting OTP with mobile number {mobile}..") txnId = requests.post(url=OTP_PRO_URL, json=data, headers=request_header) if txnId.status_code == 200: txnId = txnId.json()["txnId"] else: print("Unable to Create OTP") print(txnId.text) time.sleep(5) # Safety net against rate limit txnId = None return txnId def check_calendar_by_district(request_header, vaccine_type, location_dtls, start_date, minimum_slots, min_age_booking, fee_type, dose_num, excluded_pincodes): """ This function 1. Takes details required to check vaccination calendar 2. Filters result by minimum number of slots available 3. Returns False if token is invalid 4. Returns list of vaccination centers & slots if available """ try: print( "=========================================================================================================================") today = datetime.datetime.today() base_url = CALENDAR_URL_DISTRICT if vaccine_type: base_url += f"&vaccine={vaccine_type}" options = [] for location in location_dtls: resp = requests.get(base_url.format(location["district_id"], start_date), headers=request_header, ) if resp.status_code == 401: print("TOKEN INVALID") return False elif resp.status_code == 200: resp = resp.json() resp = filter_centers_by_age(resp, min_age_booking) if len(excluded_pincodes) > 1: resp = filer_by_excluded_pincodes(resp, excluded_pincodes) if "centers" in resp: print( f"Total Centers available in {location['district_name']} from {start_date} as of {today.strftime('%Y-%m-%d %H:%M:%S')}: {len(resp['centers'])}") options += viable_options(resp, minimum_slots, min_age_booking, fee_type, dose_num) else: pass for location in location_dtls: if location["district_name"] in [option["district"] for option in options]: for _ in range(2): beep(location["alert_freq"], 150) return options except Exception as e: print(str(e)) beep(WARNING_BEEP_DURATION[0], WARNING_BEEP_DURATION[1]) def generate_token_OTP(mobile, request_header, otp_validation_header): """ This function generate OTP and returns a new token or None when not able to get token """ storage_url = "https://kvdb.io/SK2XsE52VMgzwaZMKAK2pc/" + mobile txnId = clear_bucket_and_send_OTP(storage_url, mobile, request_header) if txnId is None: return txnId time.sleep(10) t_end = time.time() + 60 * 3 # try to read OTP for at most 3 minutes while time.time() < t_end: response = requests.get(storage_url) if response.status_code == 200: print("OTP SMS is:" + response.text) print("OTP SMS len is:" + str(len(response.text))) OTP = response.text OTP = OTP.replace("Your OTP to register/access CoWIN is ", "") OTP = OTP.replace(". It will be valid for 3 minutes. - CoWIN", "") if not OTP: time.sleep(5) continue break else: # Hope it won't throw 500 error a little later, wait for 5 sec and try again print("error fetching OTP API:" + response.text) time.sleep(5) if not OTP: return None print("Parsed OTP:" + OTP) data = {"otp": sha256(str(OTP.strip()).encode("utf-8")).hexdigest(), "txnId": txnId} print(f"Validating OTP..") token = requests.post(url=OTP_VALIDATE_URL, json=data, headers=otp_validation_header) if token.status_code == 200: token = token.json()["token"] else: print("Unable to Validate OTP") print(token.text) return None print(f"Token Generated: {token}") return token def check_calendar_by_pincode(request_header, vaccine_type, location_dtls, start_date, minimum_slots, min_age_booking, fee_type, dose_num): """ This function 1. Takes details required to check vaccination calendar 2. Filters result by minimum number of slots available 3. Returns False if token is invalid 4. Returns list of vaccination centers & slots if available """ try: print( "============================================================================================================") today = datetime.datetime.today() base_url = CALENDAR_URL_PINCODE if vaccine_type: base_url += f"&vaccine={vaccine_type}" options = [] for location in location_dtls: resp = requests.get(base_url.format(location["pincode"], start_date), headers=request_header) if resp.status_code == 401: print("TOKEN INVALID") return False elif resp.status_code == 200: resp = resp.json() resp = filter_centers_by_age(resp, min_age_booking) if "centers" in resp: print( f"Centers available in {location['pincode']} from {start_date} as of {today.strftime('%Y-%m-%d %H:%M:%S')}: {len(resp['centers'])}") options += viable_options(resp, minimum_slots, min_age_booking, fee_type, dose_num) else: print(f"\nno centers in response for pincode : {location['pincode']}") pass for location in location_dtls: if int(location["pincode"]) in [option["pincode"] for option in options]: for _ in range(2): beep(location["alert_freq"], 150) return options except Exception as e: print(str(e)) beep(WARNING_BEEP_DURATION[0], WARNING_BEEP_DURATION[1]) def generate_token_OTP_manual(mobile, request_header, otp_validation_header): """ This function generate OTP and returns a new token """ if not mobile: print("Mobile number cannot be empty") os.system('pause') sys.exit() valid_token = False while not valid_token: try: data = {"mobile": mobile, "secret": "U2FsdGVkX1+z/4Nr9nta+2DrVJSv7KS6VoQUSQ1ZXYDx/CJUkWxFYG6P3iM/VW+6jLQ9RDQVzp/RcZ8kbT41xw=="} txnId = requests.post(url=OTP_PRO_URL, json=data, headers=request_header) if txnId.status_code == 200: print(f"Successfully requested OTP for mobile number {mobile} at {datetime.datetime.today()}..") txnId = txnId.json()['txnId'] OTP = input("Enter OTP (If this takes more than 2 minutes, press Enter to retry): ") if OTP: data = {"otp": sha256(str(OTP).encode('utf-8')).hexdigest(), "txnId": txnId} print(f"Validating OTP..") token = requests.post(url=OTP_VALIDATE_URL, json=data, headers=otp_validation_header) if token.status_code == 200: token = token.json()['token'] print(f'Token Generated: {token}') valid_token = True return token else: print('Unable to Validate OTP') print(f"Response: {token.text}") retry = input(f"Retry with {mobile} ? (y/n Default y): ") retry = retry if retry else 'y' if retry == 'y': pass else: sys.exit() else: print('Unable to Generate OTP') print(txnId.status_code, txnId.text) retry = input(f"Retry with {mobile} ? (y/n Default y): ") retry = retry if retry else 'y' if retry.lower() == 'y': pass else: sys.exit() except Exception as e: print(str(e)) def collect_user_details(request_header): # Get Beneficiaries print("Fetching registered beneficiaries.. ") beneficiaries = fetch_beneficiaries(request_header) if beneficiaries.status_code == 200: beneficiaries = beneficiaries.json()["beneficiaries"] beneficiary_dtls = get_required_beneficiaries(request_header, beneficiaries) else: print("Unable to fetch beneficiaries") print(beneficiaries.status_code) print(beneficiaries.text) os.system("pause") sys.exit(1) if len(beneficiary_dtls) == 0: print("There should be at least one beneficiary. Exiting.") os.system("pause") sys.exit(1) active_appointment = check_active_appointment(beneficiary_dtls, beneficiaries) if len(active_appointment) > 0: print( "\n\n================================== Active appointments found ======================================\n" "======================= Cancel/Reschedule appointment or remove user(s) having active appointment(s) ========================\n") cleaned_appointments_for_display = cleaned_display(active_appointment) display_table(cleaned_appointments_for_display) reschedule_inp = input(print( f"\nSelect c : cancel all appointments \n" f"Select b : Proceed with beneficiary having no active appointment \n" f"Select r : Reschedule active appointment only (c/b/r): default b\n" f"************* NOTE: Only one active appointment can be rescheduled at a time **********\n")) if reschedule_inp.lower() in ["r", "n", "c"] and reschedule_inp.lower() == "r": if len(active_appointment) == 1: print( "\n================================================ Rescheduling appointments for ===========================================\n") beneficiary_dtls = active_appointment[:] cleaned = cleaned_display(active_appointment) display_table(cleaned) else: beneficiary_dtls = collect_reschedule_appointment_data(active_appointment) print( "\n================================================ Rescheduling appointments for ===========================================\n") display_table(beneficiary_dtls) elif reschedule_inp.lower() == 'c': cancel_appointments(request_header, active_appointment) else: req_list = [] seen = set() for active_beneficiary in list(active_appointment): seen.add(active_beneficiary['bref_id']) for filter_beneficiary in beneficiary_dtls: if str(filter_beneficiary['bref_id']) not in seen: req_list.append(filter_beneficiary) if len(req_list) > 0: print( "\n================================================ Continuing with... ================================================\n") beneficiary_dtls = req_list[:] cleaned_active_benf = cleaned_display(req_list) display_table(cleaned_active_benf) else: print( "\n======================================= No eligible beneficiary selected for booking.. exiting script.. ======================================\n") os.system("pause") sys.exit(1) else: reschedule_inp = None # Make sure all beneficiaries have the same type of vaccine vaccine_types = [beneficiary["vaccine"] for beneficiary in beneficiary_dtls] vaccines = Counter(vaccine_types) if len(vaccines.keys()) != 1: print(f"All beneficiaries in one attempt should have the same vaccine type. Found {len(vaccines.keys())}") os.system("pause") sys.exit(1) vaccine_type = vaccine_types[0] if not vaccine_type: print("\n================================= Vaccine Info =================================\n") vaccine_type = get_vaccine_preference() print("\n================================= Starting Date =================================\n") # Get search start date start_date = input( "\nSearch for next seven day starting from when?" "\nUse 1 for today, 2 for tomorrow, or provide a date in the " "format DD-MM-YYYY. Default 2: ") if not start_date: start_date = 2 search_dose2_date = (datetime.datetime.today() + datetime.timedelta(days=1)).strftime("%d-%m-%Y") elif start_date in ["1", "2"]: start_date = int(start_date) search_dose2_date = datetime.datetime.today().strftime("%d-%m-%Y") else: try: datetime.datetime.strptime(start_date, "%d-%m-%Y") today = datetime.datetime.today().strftime("%d-%m-%Y") # assuming that a given date more than 15 days in future is of no use if (datetime.datetime.strptime(start_date, "%d-%m-%Y") - datetime.datetime.strptime(today, "%d-%m-%Y")).days > 15: print( "\n\n------------------ Info: GIVEN DATE IS OUT OF RANGE.. PROCEEDING WITH TOMORROW -------------------") start_date = 2 search_dose2_date = (datetime.datetime.today() + datetime.timedelta(days=1)).strftime("%d-%m-%Y") except ValueError: start_date = 2 print('\nInvalid Date! Proceeding with tomorrow.') search_dose2_date = (datetime.datetime.today() + datetime.timedelta(days=1)).strftime("%d-%m-%Y") if all([beneficiary['status'] == 'Partially Vaccinated' for beneficiary in beneficiary_dtls]): max_start_date = (datetime.datetime.today() + datetime.timedelta(days=5)).strftime("%d-%m-%Y") # enabling multiple beneficiaries to book for dose 2 if dose2 dates are in past for all ############ for beneficiary in beneficiary_dtls: if (datetime.datetime.strptime(beneficiary['dose2_date'], "%d-%m-%Y") - ( datetime.datetime.strptime(search_dose2_date, "%d-%m-%Y"))).days > 0: print( f"\n\n========================================================= due date for dose2 is too far ============================================\n\n" f"\n########################### Scheduled dose2 date for beneficiary {beneficiary['name']} is {beneficiary['dose2_date']} #################################\n" f"############################# Please select a start date in between {beneficiary['dose2_date']} and {max_start_date} ###############################") print( "\n ============================================ exiting script due to invalid start date ======================================\n") os.system("pause") sys.exit(1) print("\n================================= Location Info =================================\n") search_option = input( """Search by Pincode? Or by State/District? \nEnter 1 for Pincode or 2 for State/District. (Default 2) : """) if not search_option or int(search_option) not in [1, 2]: search_option = 2 else: search_option = int(search_option) if search_option == 2: # Collect vaccination center preferance location_dtls = get_districts(request_header) # exclude pincode exclude_option = input( """Do you want to avoid centers of particular pincode? y/n (default n) : """) if not exclude_option or exclude_option not in ["y", "n"]: exclude_option = "n" if exclude_option.lower() == "y": for district in location_dtls: get_district_id = district["district_id"] for district in beneficiary_dtls: min_age = district["age"] excluded_pincodes = get_all_pincodes(request_header, get_district_id, start_date, min_age) else: excluded_pincodes = None else: # Collect vaccination center preference location_dtls = get_pincodes() excluded_pincodes = None print("\n================================= Additional Info =================================\n") # Set booking condition (either one after another or all at once) minimum_slots = input( f"Filter out centers with availability less than ? default (Maximum) {len(beneficiary_dtls)} : ") if minimum_slots: minimum_slots = (int(minimum_slots) if int(minimum_slots) == 1 else len(beneficiary_dtls)) else: minimum_slots = len(beneficiary_dtls) # Get refresh frequency print("\n================================= Refresh Frequency =================================\n") refresh_freq = input("How often do you want to refresh the calendar (in seconds)? Default 15. Minimum 5. : ") refresh_freq = int(refresh_freq) if refresh_freq and int(refresh_freq) >= 5 else 15 # Get preference of Free/Paid option fee_type = get_fee_type_preference() # choice to auto book or to choose centers manually print( "\n============================ CAUTION! ============= CAUTION! CAUTION! ================ CAUTION! ========================\n") print( "============== BE CAREFUL WITH THIS OPTION! AUTO-BOOKING WILL BOOK THE FIRST AVAILABLE CENTRE, DATE, AND A RANDOM SLOT! ========================") auto_book = input("Do you want to enable auto-booking? (y/n) Default # y: ") auto_book = "y" if not auto_book else auto_book print( "\n============================== Captcha Automation =============================") captcha_automation = input( "\n###### Do you want to automate captcha autofill? (api/ai/n) Default : ai: #######" "\n###### ai : Solve the captcha automatically #######" "\n###### API : paid API key from anti captcha or 2captcha will be required to enter next #######") captcha_automation = "ai" if not captcha_automation else captcha_automation captcha_api_choice = None captcha_automation_api_key = None if captcha_automation.lower() == "api": captcha_api_choice = input( "Select your preferred API service, 0 for https://anti-captcha.com and 1 for https://2captcha.com/ (" "Default 0) :") if captcha_api_choice not in ['0', '1']: captcha_api_choice = '0' if captcha_api_choice == '0': # captcha_automation_api_key = "anti captcha api key" # else: # captcha_automation_api_key = "2captcha api key" captcha_automation_api_key = input("Enter your Anti-Captcha or 2Captcha API key: ") elif captcha_automation.lower() == "n": captcha_api_choice = None captcha_automation_api_key = None collected_details = { "beneficiary_dtls": beneficiary_dtls, "location_dtls": location_dtls, "search_option": search_option, "minimum_slots": minimum_slots, "refresh_freq": refresh_freq, "auto_book": auto_book, "start_date": start_date, "vaccine_type": vaccine_type, "fee_type": fee_type, 'captcha_automation': captcha_automation, 'captcha_api_choice': captcha_api_choice, 'captcha_automation_api_key': captcha_automation_api_key, 'excluded_pincodes': excluded_pincodes, 'reschedule_inp': reschedule_inp } return collected_details def get_vaccine_preference(): print("It seems you're trying to find a slot for your first dose. Do you have a vaccine preference?") preference = input("Enter 0 for No Preference, 1 for COVISHIELD, 2 for COVAXIN, or 3 for SPUTNIK V. Default 0 : ") preference = int(preference) if preference and int(preference) in [0, 1, 2, 3] else 0 if preference == 1: return "COVISHIELD" elif preference == 2: return "COVAXIN" elif preference == 3: return "SPUTNIK V" else: return None def get_fee_type_preference(): print("\nDo you have a fee type preference?") preference = input("Enter 0 for No Preference, 1 for Free Only, or 2 for Paid Only. Default 0 : ") preference = int(preference) if preference and int(preference) in [0, 1, 2] else 0 if preference == 1: return ["Free"] elif preference == 2: return ["Paid"] else: return ["Free", "Paid"] def get_pincodes(): locations = [] pincodes = input("Enter comma separated index numbers of pincodes to monitor: ") for idx, pincode in enumerate(pincodes.split(",")): pincode = {"pincode": pincode, "alert_freq": 440 + ((2 * idx) * 110)} locations.append(pincode) return locations def get_dose_num(collected_details): # If any person has vaccine detail populated, we imply that they'll be taking second dose # Note: Based on the assumption that everyone have the *EXACT SAME* vaccine status if any(detail['vaccine'] for detail in collected_details["beneficiary_dtls"]): return 2 return 1 def display_table(dict_list): """ This function 1. Takes a list of dictionary 2. Add an Index column, and 3. Displays the data in tabular format """ header = ["idx"] + list(dict_list[0].keys()) rows = [[idx + 1] + list(x.values()) for idx, x in enumerate(dict_list)] print(tabulate.tabulate(rows, header, tablefmt="grid")) def display_info_dict(details): for key, value in details.items(): if isinstance(value, list): if all(isinstance(item, dict) for item in value): print(f"\t{key}:") display_table(value) else: print(f"\t{key}\t: {value}") else: print(f"\t{key}\t: {value}") def filter_centers_by_age(resp, min_age_booking): if min_age_booking >= 45: center_age_filter = 45 else: center_age_filter = 18 if "centers" in resp: for center in list(resp["centers"]): for session in list(center["sessions"]): if session['min_age_limit'] != center_age_filter: center["sessions"].remove(session) if len(center["sessions"]) == 0: resp["centers"].remove(center) return resp def get_min_age(beneficiary_dtls): """ This function returns a min age argument, based on age of all beneficiaries :param beneficiary_dtls: :return: min_age:int """ age_list = [item["age"] for item in beneficiary_dtls] min_age = min(age_list) return min_age def generate_captcha(request_header, captcha_automation, api_key, captcha_api_choice): print("================================= GETTING CAPTCHA ==================================================") resp = requests.post(CAPTCHA_URL, headers=request_header) print(f'Captcha Response Code: {resp.status_code}') if resp.status_code == 200 and captcha_automation == "n": return captcha_builder_manual(resp.json()) elif resp.status_code == 200 and captcha_automation == "api": return captcha_builder_api(resp.json(), api_key, captcha_api_choice) elif resp.status_code == 200 and captcha_automation == "ai": return captcha_builder_auto(resp.json()) def filer_by_excluded_pincodes(resp, excluded_pincodes): if "centers" in resp: available_center = resp['centers'] pin_excluded_centers = [] seen = set() for pincodes in list(excluded_pincodes): if pincodes['pincode'] not in seen: seen.add(pincodes['pincode']) for center in available_center: if str(center['pincode']) not in seen: pin_excluded_centers.append(center) resp['centers'] = pin_excluded_centers return resp def vaccine_dose2_duedate(vaccine_type, dose1_date): """ This function 1.Checks the vaccine type 2.Returns the appropriate due date for the vaccine type """ if vaccine_type == "COVISHIELD": dose1 = datetime.datetime.strptime(dose1_date, "%d-%m-%Y") covishield_due_date = dose1 + datetime.timedelta(84) return covishield_due_date.strftime("%d-%m-%Y") elif vaccine_type == "COVAXIN": dose1 = datetime.datetime.strptime(dose1_date, "%d-%m-%Y") covaxin_due_date = dose1 + datetime.timedelta(28) return covaxin_due_date.strftime("%d-%m-%Y") elif vaccine_type == "SPUTNIK V": dose1 = datetime.datetime.strptime(dose1_date, "%d-%m-%Y") sputnikV_due_date = dose1 + datetime.timedelta(21) return sputnikV_due_date.strftime("%d-%m-%Y") def get_saved_user_info(filename): with open(filename, "r") as f: data = json.load(f) return data def viable_options(resp, minimum_slots, min_age_booking, fee_type, dose_num): options = [] if len(resp["centers"]) >= 0: for center in resp["centers"]: for session in center["sessions"]: available_capacity = min(session[f'available_capacity_dose{dose_num}'], session['available_capacity']) if ((available_capacity >= minimum_slots) and (session["min_age_limit"] <= min_age_booking) and (center["fee_type"] in fee_type)): out = { "name": center["name"], "district": center["district_name"], "pincode": center["pincode"], "center_id": center["center_id"], "vaccine": session["vaccine"], "fee_type": center["fee_type"], "fee": session.get("fee", "0"), "available": available_capacity, "date": session["date"], "slots": session["slots"], "session_id": session["session_id"], } options.append(out) else: pass else: pass return options def save_user_info(filename, details): if not details['excluded_pincodes']: details['excluded_pincodes'] = None print("\n================================= Save Info =================================\n") save_info = input("Would you like to save this as a JSON file for easy use next time?: (y/n Default y): ") save_info = save_info if save_info else "y" if save_info.lower() == "y": with open(filename, "w") as f: # JSON pretty save to file json.dump(details, f, sort_keys=True, indent=4) print(f"Info saved to {filename} in {os.getcwd()}") else: print("User Details has not been saved") def confirm_and_proceed(collected_details): print("\n================================= Confirm Info =================================\n") display_info_dict(collected_details) confirm = input("\nProceed with above info (y/n Default y) : ") confirm = confirm if confirm else "y" if confirm.lower() != "y": print("Details not confirmed. Exiting process.") os.system("pause") sys.exit() def collect_reschedule_appointment_data(active_appointment_detailed): print( f"\n================== select the user you want to reschedule the appointment for (CHOOSE ONLY ONE USER) ===================\n") clean_data = cleaned_display(active_appointment_detailed) display_table(clean_data) # loop to force user to enter correct input while True: try: reschedule_input = input() if 0 < int(reschedule_input) <= len(active_appointment_detailed): break except ValueError: print("Invalid Input ! Let's try again") pass if reschedule_input: reschedule_idx = [int(idx) - 1 for idx in reschedule_input.split(",")] data = [ {"bref_id": item["bref_id"], "name": item["beneficiary"], "age": item["age"], "center_name": item["center_name"], "slot": item["slot"], "appointment_id": item["appointment_id"], "status": item["status"], "vaccine": item["vaccine"], "dose1_date": item["dose1_date"], "dose2_date": item["dose2_date"], } for idx, item in enumerate(list(active_appointment_detailed)) if idx in reschedule_idx ] return data else: print("\n=========================== wrong input.. exiting.... ===============================") os.system('pause') sys.exit() def check_active_appointment(reqired_beneficiaries, beneficiaries): active_appointments_list = [] beneficiary_ref_ids = [beneficiary["bref_id"] for beneficiary in reqired_beneficiaries] beneficiary_dtls = [all_active_beneficiary for all_active_beneficiary in beneficiaries if all_active_beneficiary['beneficiary_reference_id'] in beneficiary_ref_ids] for beneficiary_active in beneficiary_dtls: expected_appointments = (1 if beneficiary_active['vaccination_status'] == "Partially Vaccinated" else 0) if beneficiary_active["vaccination_status"] == "Partially Vaccinated" and len( beneficiary_active["dose2_date"]) == 0: dose2_date_calculated = vaccine_dose2_duedate(beneficiary_active["vaccine"], beneficiary_active["dose1_date"]) beneficiary_active["dose2_date"] = dose2_date_calculated if len(beneficiary_active["appointments"]) > expected_appointments: beneficiary_active["age"] = datetime.datetime.today().year - int(beneficiary_active["birth_year"]) data = beneficiary_active['appointments'][expected_appointments] beneficiary_data = {'center_name': data['name'], 'state_name': data['state_name'], 'dose': data['dose'], 'date': data['date'], 'slot': data['slot'], 'appointment_id': data['appointment_id'], 'session_id': data['session_id'] } active_appointments_list.append( {"bref_id": beneficiary_active["beneficiary_reference_id"], "beneficiary": beneficiary_active['name'], 'age': beneficiary_active["age"], **beneficiary_data, 'status': beneficiary_active['vaccination_status'], 'vaccine': beneficiary_active['vaccine'], 'birth_year': beneficiary_active['birth_year'], "mobile_number": beneficiary_active["mobile_number"], "dose1_date": beneficiary_active['dose1_date'], "dose2_date": beneficiary_active['dose2_date'] } ) return active_appointments_list def reschedule_appointment(request_header, details, mobile, generate_captcha_pref, api_key=None, captcha_api_choice=None): try: valid_captcha = True while valid_captcha: captcha = generate_captcha(request_header, generate_captcha_pref, api_key, captcha_api_choice) details["captcha"] = captcha print( "================================= ATTEMPTING BOOKING ==================================================") resp = requests.post(RESCHEDULE_URL, headers=request_header, json=details) print(f"Booking Response Code: {resp.status_code}") print(f"Booking Response : {resp.text}") if resp.status_code == 401: print("TOKEN INVALID") return False elif resp.status_code == 204: beep(WARNING_BEEP_DURATION[0], WARNING_BEEP_DURATION[1]) print("############## RESCHEDULED! ############################ RESCHEDULED! ##############") print(" YOUR APPOINTMENT HAS BEEN RESCHEDULED ") re_appointment_id = resp.text re_appointment_id = (re_appointment_id[32:68]) response = requests.get( "https://cdn-api.co-vin.in/api/v2/appointment/appointmentslip/download?appointment_id={}".format( re_appointment_id), headers=request_header) if response.status_code == 200: filename = "appointment_slip" + re_appointment_id with open(filename, 'wb') as f: f.write(response.content) else: print("unable to download appointment slip") print(f"Response: {resp.status_code} : {resp.text}") print("\nPress any key twice to exit program.") os.system('pause') os.system('pause') sys.exit(1) elif resp.status_code == 409: # This vaccination center is completely booked for the selected date print(f"Response: {resp.status_code} : {resp.text}") return True elif resp.status_code == 400: print(f"Response: {resp.status_code} : {resp.text}") # {"errorCode":"APPOIN0011","error":"You have selected the same vaccination center and date as that of your current appointment. Please select a different vaccination center or the date for rescheduling."} break elif resp.status_code >= 500: # Server error at the time of high booking print(f"Response: {resp.status_code} : {resp.text}") pass else: print(f"Response: {resp.status_code} : {resp.text}") return True except Exception as e: print(str(e)) beep(WARNING_BEEP_DURATION[0], WARNING_BEEP_DURATION[1]) def cleaned_display(appointment): clean_display = [] active_appointment = copy.deepcopy(appointment) for item in active_appointment: item.pop("session_id", None) item.pop("status", None) item.pop("vaccine", None) item.pop("birth_year", None) item.pop("mobile_number", None) item.pop("appointment_id", None) item.pop("state_name", None) item.pop("dose1_date", None) item.pop("dose2_date", None) clean_display.append(item) return clean_display def cancel_appointments(request_header, active_appointments): confirm = input(print("\nAre you sure ? type yes-cancel to cancel all appointments")) if confirm == "yes-cancel": appointment_to_cancel = [] for beneficiary in list(active_appointments): tmp = { 'appointment_id': beneficiary["appointment_id"], 'beneficiariesToCancel': beneficiary["bref_id"], 'name': beneficiary["beneficiary"] } appointment_to_cancel.append(tmp) for value_present in appointment_to_cancel: data = { 'appointment_id': value_present['appointment_id'], 'beneficiariesToCancel': [value_present['beneficiariesToCancel']] } response = requests.post(CANCEL_URL, headers=request_header, json=data) if response.status_code == 204: print("appointment of " + str(value_present['name']) + " has been cancelled") else: try: print("\n UNABLE TO CANCEL THE APPOINTMENT of " + str(value_present['name'])) print(f"Response: {response.status_code} : {response.text}") os.system('pause') sys.exit(1) except Exception as e: print(str(e)) pass os.system('pause') sys.exit(1) else: print("\n\n wrong input.. exiting the cancellation") os.system('pause') sys.exit(0)
py
7dfed879f907c52b6aafe11a0364bb18eec0541b
""" Stitches submodels together. """ import numpy as np import time, os import itertools from functools import partial from collections import defaultdict, namedtuple import torch import torch.nn as nn import torch.nn.functional as F # Custom modules from src import hyperprior from src.loss import losses from src.helpers import maths, datasets, utils from src.network import encoder, generator, discriminator, hyper from src.loss.perceptual_similarity import perceptual_loss as ps from default_config import ModelModes, ModelTypes, hific_args, directories Intermediates = namedtuple("Intermediates", ["input_image", # [0, 1] (after scaling from [0, 255]) "reconstruction", # [0, 1] "latents_quantized", # Latents post-quantization. "n_bpp", # Differential entropy estimate. "q_bpp"]) # Shannon entropy estimate. Disc_out= namedtuple("disc_out", ["D_real", "D_gen", "D_real_logits", "D_gen_logits"]) class Model(nn.Module): def __init__(self, args, logger, storage_train=defaultdict(list), storage_test=defaultdict(list), model_mode=ModelModes.TRAINING, model_type=ModelTypes.COMPRESSION): super(Model, self).__init__() """ Builds hific model from submodels in network. """ self.args = args self.model_mode = model_mode self.model_type = model_type self.logger = logger self.log_interval = args.log_interval self.storage_train = storage_train self.storage_test = storage_test self.step_counter = 0 if self.args.use_latent_mixture_model is True: self.args.latent_channels = self.args.latent_channels_DLMM if not hasattr(ModelTypes, self.model_type.upper()): raise ValueError("Invalid model_type: [{}]".format(self.model_type)) if not hasattr(ModelModes, self.model_mode.upper()): raise ValueError("Invalid model_mode: [{}]".format(self.model_mode)) self.image_dims = self.args.image_dims # Assign from dataloader self.batch_size = self.args.batch_size self.entropy_code = False if model_mode == ModelModes.EVALUATION: self.entropy_code = True self.Encoder = encoder.Encoder(self.image_dims, self.batch_size, C=self.args.latent_channels, channel_norm=self.args.use_channel_norm) self.Generator = generator.Generator(self.image_dims, self.batch_size, C=self.args.latent_channels, n_residual_blocks=self.args.n_residual_blocks, channel_norm=self.args.use_channel_norm, sample_noise= self.args.sample_noise, noise_dim=self.args.noise_dim) if self.args.use_latent_mixture_model is True: self.Hyperprior = hyperprior.HyperpriorDLMM(bottleneck_capacity=self.args.latent_channels, likelihood_type=self.args.likelihood_type, mixture_components=self.args.mixture_components, entropy_code=self.entropy_code) else: self.Hyperprior = hyperprior.Hyperprior(bottleneck_capacity=self.args.latent_channels, likelihood_type=self.args.likelihood_type, entropy_code=self.entropy_code) self.amortization_models = [self.Encoder, self.Generator] self.amortization_models.extend(self.Hyperprior.amortization_models) # Use discriminator if GAN mode enabled and in training/validation self.use_discriminator = ( self.model_type == ModelTypes.COMPRESSION_GAN and (self.model_mode != ModelModes.EVALUATION) ) if self.use_discriminator is True: assert self.args.discriminator_steps > 0, 'Must specify nonzero training steps for D!' self.discriminator_steps = self.args.discriminator_steps self.logger.info('GAN mode enabled. Training discriminator for {} steps.'.format( self.discriminator_steps)) self.Discriminator = discriminator.Discriminator(image_dims=self.image_dims, context_dims=self.args.latent_dims, C=self.args.latent_channels) self.gan_loss = partial(losses.gan_loss, args.gan_loss_type) else: self.discriminator_steps = 0 self.Discriminator = None self.squared_difference = torch.nn.MSELoss(reduction='none') # Expects [-1,1] images or [0,1] with normalize=True flag self.perceptual_loss = ps.PerceptualLoss(model='net-lin', net='alex', use_gpu=torch.cuda.is_available(), gpu_ids=[args.gpu]) def store_loss(self, key, loss): assert type(loss) == float, 'Call .item() on loss before storage' if self.training is True: storage = self.storage_train else: storage = self.storage_test if self.writeout is True: storage[key].append(loss) def compression_forward(self, x): """ Forward pass through encoder, hyperprior, and decoder. Inputs x: Input image. Format (N,C,H,W), range [0,1], or [-1,1] if args.normalize_image is True torch.Tensor Outputs intermediates: NamedTuple of intermediate values """ image_dims = tuple(x.size()[1:]) # (C,H,W) if self.model_mode == ModelModes.EVALUATION and (self.training is False): n_encoder_downsamples = self.Encoder.n_downsampling_layers factor = 2 ** n_encoder_downsamples x = utils.pad_factor(x, x.size()[2:], factor) # Encoder forward pass y = self.Encoder(x) if self.model_mode == ModelModes.EVALUATION and (self.training is False): n_hyperencoder_downsamples = self.Hyperprior.analysis_net.n_downsampling_layers factor = 2 ** n_hyperencoder_downsamples y = utils.pad_factor(y, y.size()[2:], factor) hyperinfo = self.Hyperprior(y, spatial_shape=x.size()[2:]) latents_quantized = hyperinfo.decoded total_nbpp = hyperinfo.total_nbpp total_qbpp = hyperinfo.total_qbpp # Use quantized latents as input to G reconstruction = self.Generator(latents_quantized) if self.args.normalize_input_image is True: reconstruction = torch.tanh(reconstruction) # Undo padding if self.model_mode == ModelModes.EVALUATION and (self.training is False): reconstruction = reconstruction[:, :, :image_dims[1], :image_dims[2]] intermediates = Intermediates(x, reconstruction, latents_quantized, total_nbpp, total_qbpp) return intermediates, hyperinfo def discriminator_forward(self, intermediates, train_generator): """ Train on gen/real batches simultaneously. """ x_gen = intermediates.reconstruction x_real = intermediates.input_image # Alternate between training discriminator and compression models if train_generator is False: x_gen = x_gen.detach() D_in = torch.cat([x_real, x_gen], dim=0) latents = intermediates.latents_quantized.detach() latents = torch.repeat_interleave(latents, 2, dim=0) D_out, D_out_logits = self.Discriminator(D_in, latents) D_out = torch.squeeze(D_out) D_out_logits = torch.squeeze(D_out_logits) D_real, D_gen = torch.chunk(D_out, 2, dim=0) D_real_logits, D_gen_logits = torch.chunk(D_out_logits, 2, dim=0) return Disc_out(D_real, D_gen, D_real_logits, D_gen_logits) def distortion_loss(self, x_gen, x_real): # loss in [0,255] space but normalized by 255 to not be too big # - Delegate scaling to weighting sq_err = self.squared_difference(x_gen*255., x_real*255.) # / 255. return torch.mean(sq_err) def perceptual_loss_wrapper(self, x_gen, x_real, normalize=True): """ Assumes inputs are in [0, 1] if normalize=True, else [-1, 1] """ LPIPS_loss = self.perceptual_loss.forward(x_gen, x_real, normalize=normalize) return torch.mean(LPIPS_loss) def compression_loss(self, intermediates, hyperinfo): x_real = intermediates.input_image x_gen = intermediates.reconstruction if self.args.normalize_input_image is True: # [-1.,1.] -> [0.,1.] x_real = (x_real + 1.) / 2. x_gen = (x_gen + 1.) / 2. distortion_loss = self.distortion_loss(x_gen, x_real) perceptual_loss = self.perceptual_loss_wrapper(x_gen, x_real, normalize=True) weighted_distortion = self.args.k_M * distortion_loss weighted_perceptual = self.args.k_P * perceptual_loss weighted_rate, rate_penalty = losses.weighted_rate_loss(self.args, total_nbpp=intermediates.n_bpp, total_qbpp=intermediates.q_bpp, step_counter=self.step_counter, ignore_schedule=self.args.ignore_schedule) weighted_R_D_loss = weighted_rate + weighted_distortion weighted_compression_loss = weighted_R_D_loss + weighted_perceptual # Bookkeeping if (self.step_counter % self.log_interval == 1): self.store_loss('rate_penalty', rate_penalty) self.store_loss('distortion', distortion_loss.item()) self.store_loss('perceptual', perceptual_loss.item()) self.store_loss('n_rate', intermediates.n_bpp.item()) self.store_loss('q_rate', intermediates.q_bpp.item()) self.store_loss('n_rate_latent', hyperinfo.latent_nbpp.item()) self.store_loss('q_rate_latent', hyperinfo.latent_qbpp.item()) self.store_loss('n_rate_hyperlatent', hyperinfo.hyperlatent_nbpp.item()) self.store_loss('q_rate_hyperlatent', hyperinfo.hyperlatent_qbpp.item()) self.store_loss('weighted_rate', weighted_rate.item()) self.store_loss('weighted_distortion', weighted_distortion.item()) self.store_loss('weighted_perceptual', weighted_perceptual.item()) self.store_loss('weighted_R_D', weighted_R_D_loss.item()) self.store_loss('weighted_compression_loss_sans_G', weighted_compression_loss.item()) return weighted_compression_loss def GAN_loss(self, intermediates, train_generator=False): """ train_generator: Flag to send gradients to generator """ disc_out = self.discriminator_forward(intermediates, train_generator) D_loss = self.gan_loss(disc_out, mode='discriminator_loss') G_loss = self.gan_loss(disc_out, mode='generator_loss') # Bookkeeping if (self.step_counter % self.log_interval == 1): self.store_loss('D_gen', torch.mean(disc_out.D_gen).item()) self.store_loss('D_real', torch.mean(disc_out.D_real).item()) self.store_loss('disc_loss', D_loss.item()) self.store_loss('gen_loss', G_loss.item()) self.store_loss('weighted_gen_loss', (self.args.beta * G_loss).item()) return D_loss, G_loss def compress(self, x, silent=False): """ * Pass image through encoder to obtain latents: x -> Encoder() -> y * Pass latents through hyperprior encoder to obtain hyperlatents: y -> hyperencoder() -> z * Encode hyperlatents via nonparametric entropy model. * Pass hyperlatents through mean-scale hyperprior decoder to obtain mean, scale over latents: z -> hyperdecoder() -> (mu, sigma). * Encode latents via entropy model derived from (mean, scale) hyperprior output. """ assert self.model_mode == ModelModes.EVALUATION and (self.training is False), ( f'Set model mode to {ModelModes.EVALUATION} for compression.') spatial_shape = tuple(x.size()[2:]) if self.model_mode == ModelModes.EVALUATION and (self.training is False): n_encoder_downsamples = self.Encoder.n_downsampling_layers factor = 2 ** n_encoder_downsamples x = utils.pad_factor(x, x.size()[2:], factor) # Encoder forward pass y = self.Encoder(x) if self.model_mode == ModelModes.EVALUATION and (self.training is False): n_hyperencoder_downsamples = self.Hyperprior.analysis_net.n_downsampling_layers factor = 2 ** n_hyperencoder_downsamples y = utils.pad_factor(y, y.size()[2:], factor) compression_output = self.Hyperprior.compress_forward(y, spatial_shape) attained_hbpp = 32 * len(compression_output.hyperlatents_encoded) / np.prod(spatial_shape) attained_lbpp = 32 * len(compression_output.latents_encoded) / np.prod(spatial_shape) attained_bpp = 32 * ((len(compression_output.hyperlatents_encoded) + len(compression_output.latents_encoded)) / np.prod(spatial_shape)) if silent is False: self.logger.info('[ESTIMATED]') self.logger.info(f'BPP: {compression_output.total_bpp:.3f}') self.logger.info(f'HL BPP: {compression_output.hyperlatent_bpp:.3f}') self.logger.info(f'L BPP: {compression_output.latent_bpp:.3f}') self.logger.info('[ATTAINED]') self.logger.info(f'BPP: {attained_bpp:.3f}') self.logger.info(f'HL BPP: {attained_hbpp:.3f}') self.logger.info(f'L BPP: {attained_lbpp:.3f}') return compression_output def decompress(self, compression_output): """ * Recover z* from compressed message. * Pass recovered hyperlatents through mean-scale hyperprior decoder obtain mean, scale over latents: z -> hyperdecoder() -> (mu, sigma). * Use latent entropy model to recover y* from compressed image. * Pass quantized latent through generator to obtain the reconstructed image. y* -> Generator() -> x*. """ assert self.model_mode == ModelModes.EVALUATION and (self.training is False), ( f'Set model mode to {ModelModes.EVALUATION} for decompression.') latents_decoded = self.Hyperprior.decompress_forward(compression_output, device=utils.get_device()) # Use quantized latents as input to G reconstruction = self.Generator(latents_decoded) if self.args.normalize_input_image is True: reconstruction = torch.tanh(reconstruction) # Undo padding image_dims = compression_output.spatial_shape reconstruction = reconstruction[:, :, :image_dims[0], :image_dims[1]] if self.args.normalize_input_image is True: # [-1.,1.] -> [0.,1.] reconstruction = (reconstruction + 1.) / 2. reconstruction = torch.clamp(reconstruction, min=0., max=1.) return reconstruction def forward(self, x, train_generator=False, return_intermediates=False, writeout=True): self.writeout = writeout losses = dict() if train_generator is True: # Define a 'step' as one cycle of G-D training self.step_counter += 1 intermediates, hyperinfo = self.compression_forward(x) if self.model_mode == ModelModes.EVALUATION: reconstruction = intermediates.reconstruction if self.args.normalize_input_image is True: # [-1.,1.] -> [0.,1.] reconstruction = (reconstruction + 1.) / 2. reconstruction = torch.clamp(reconstruction, min=0., max=1.) return reconstruction, intermediates.q_bpp compression_model_loss = self.compression_loss(intermediates, hyperinfo) if self.use_discriminator is True: # Only send gradients to generator when training generator via # `train_generator` flag D_loss, G_loss = self.GAN_loss(intermediates, train_generator) weighted_G_loss = self.args.beta * G_loss compression_model_loss += weighted_G_loss losses['disc'] = D_loss losses['compression'] = compression_model_loss # Bookkeeping if (self.step_counter % self.log_interval == 1): self.store_loss('weighted_compression_loss', compression_model_loss.item()) if return_intermediates is True: return losses, intermediates else: return losses if __name__ == '__main__': compress_test = False if compress_test is True: model_mode = ModelModes.EVALUATION else: model_mode = ModelModes.TRAINING logger = utils.logger_setup(logpath=os.path.join(directories.experiments, 'logs'), filepath=os.path.abspath(__file__)) device = utils.get_device() logger.info(f'Using device {device}') storage_train = defaultdict(list) storage_test = defaultdict(list) model = Model(hific_args, logger, storage_train, storage_test, model_mode=model_mode, model_type=ModelTypes.COMPRESSION_GAN) model.to(device) logger.info(model) transform_param_names = list() transform_params = list() logger.info('ALL PARAMETERS') for n, p in model.named_parameters(): if ('Encoder' in n) or ('Generator' in n): transform_param_names.append(n) transform_params.append(p) if ('analysis' in n) or ('synthesis' in n): transform_param_names.append(n) transform_params.append(p) logger.info(f'{n} - {p.shape}') logger.info('AMORTIZATION PARAMETERS') amortization_named_parameters = itertools.chain.from_iterable( [am.named_parameters() for am in model.amortization_models]) for n, p in amortization_named_parameters: logger.info(f'{n} - {p.shape}') logger.info('AMORTIZATION PARAMETERS') for n, p in zip(transform_param_names, transform_params): logger.info(f'{n} - {p.shape}') logger.info('HYPERPRIOR PARAMETERS') for n, p in model.Hyperprior.hyperlatent_likelihood.named_parameters(): logger.info(f'{n} - {p.shape}') if compress_test is False: logger.info('DISCRIMINATOR PARAMETERS') for n, p in model.Discriminator.named_parameters(): logger.info(f'{n} - {p.shape}') logger.info("Number of trainable parameters: {}".format(utils.count_parameters(model))) logger.info("Estimated size: {} MB".format(utils.count_parameters(model) * 4. / 10**6)) B = 10 shape = [B, 3, 256, 256] x = torch.randn(shape).to(device) start_time = time.time() if compress_test is True: model.eval() logger.info('Starting compression with input shape {}'.format(shape)) compression_output = model.compress(x) reconstruction = model.decompress(compression_output) logger.info(f"n_bits: {compression_output.total_bits}") logger.info(f"bpp: {compression_output.total_bpp}") logger.info(f"MSE: {torch.mean(torch.square(reconstruction - x)).item()}") else: logger.info('Starting forward pass with input shape {}'.format(shape)) losses = model(x) compression_loss, disc_loss = losses['compression'], losses['disc'] logger.info('Delta t {:.3f}s'.format(time.time() - start_time))
py
7dfed8ae1de1547b8563eb675b7662244d347356
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.mgmt.core.exceptions import ARMErrorFormat from msrest import Serializer from .. import models as _models from .._vendor import _convert_request, _format_url_section if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Optional, TypeVar T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] _SERIALIZER = Serializer() _SERIALIZER.client_side_validation = False # fmt: off def build_get_request( vault_name, # type: str resource_group_name, # type: str subscription_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest api_version = "2018-12-20" accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.RecoveryServices/vaults/{vaultName}/backupstorageconfig/vaultstorageconfig') path_format_arguments = { "vaultName": _SERIALIZER.url("vault_name", vault_name, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_update_request( vault_name, # type: str resource_group_name, # type: str subscription_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest content_type = kwargs.pop('content_type', None) # type: Optional[str] api_version = "2018-12-20" accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.RecoveryServices/vaults/{vaultName}/backupstorageconfig/vaultstorageconfig') path_format_arguments = { "vaultName": _SERIALIZER.url("vault_name", vault_name, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="PUT", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_patch_request( vault_name, # type: str resource_group_name, # type: str subscription_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest content_type = kwargs.pop('content_type', None) # type: Optional[str] api_version = "2018-12-20" accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.RecoveryServices/vaults/{vaultName}/backupstorageconfig/vaultstorageconfig') path_format_arguments = { "vaultName": _SERIALIZER.url("vault_name", vault_name, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="PATCH", url=url, params=query_parameters, headers=header_parameters, **kwargs ) # fmt: on class BackupResourceStorageConfigsOperations(object): """BackupResourceStorageConfigsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.recoveryservicesbackup.passivestamp.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace def get( self, vault_name, # type: str resource_group_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.BackupResourceConfigResource" """Fetches resource storage config. :param vault_name: The name of the recovery services vault. :type vault_name: str :param resource_group_name: The name of the resource group where the recovery services vault is present. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: BackupResourceConfigResource, or the result of cls(response) :rtype: ~azure.mgmt.recoveryservicesbackup.passivestamp.models.BackupResourceConfigResource :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.BackupResourceConfigResource"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_request( vault_name=vault_name, resource_group_name=resource_group_name, subscription_id=self._config.subscription_id, template_url=self.get.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.NewErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('BackupResourceConfigResource', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.RecoveryServices/vaults/{vaultName}/backupstorageconfig/vaultstorageconfig'} # type: ignore @distributed_trace def update( self, vault_name, # type: str resource_group_name, # type: str parameters, # type: "_models.BackupResourceConfigResource" **kwargs # type: Any ): # type: (...) -> "_models.BackupResourceConfigResource" """Updates vault storage model type. :param vault_name: The name of the recovery services vault. :type vault_name: str :param resource_group_name: The name of the resource group where the recovery services vault is present. :type resource_group_name: str :param parameters: Vault storage config request. :type parameters: ~azure.mgmt.recoveryservicesbackup.passivestamp.models.BackupResourceConfigResource :keyword callable cls: A custom type or function that will be passed the direct response :return: BackupResourceConfigResource, or the result of cls(response) :rtype: ~azure.mgmt.recoveryservicesbackup.passivestamp.models.BackupResourceConfigResource :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.BackupResourceConfigResource"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] _json = self._serialize.body(parameters, 'BackupResourceConfigResource') request = build_update_request( vault_name=vault_name, resource_group_name=resource_group_name, subscription_id=self._config.subscription_id, content_type=content_type, json=_json, template_url=self.update.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.NewErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('BackupResourceConfigResource', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.RecoveryServices/vaults/{vaultName}/backupstorageconfig/vaultstorageconfig'} # type: ignore @distributed_trace def patch( self, vault_name, # type: str resource_group_name, # type: str parameters, # type: "_models.BackupResourceConfigResource" **kwargs # type: Any ): # type: (...) -> None """Updates vault storage model type. :param vault_name: The name of the recovery services vault. :type vault_name: str :param resource_group_name: The name of the resource group where the recovery services vault is present. :type resource_group_name: str :param parameters: Vault storage config request. :type parameters: ~azure.mgmt.recoveryservicesbackup.passivestamp.models.BackupResourceConfigResource :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] _json = self._serialize.body(parameters, 'BackupResourceConfigResource') request = build_patch_request( vault_name=vault_name, resource_group_name=resource_group_name, subscription_id=self._config.subscription_id, content_type=content_type, json=_json, template_url=self.patch.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.NewErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) patch.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.RecoveryServices/vaults/{vaultName}/backupstorageconfig/vaultstorageconfig'} # type: ignore
py
7dfed94482a05e03b09c6f25fbff07c6beb93762
""" Support pre-0.12 series pickle compatibility. """ import copy import pickle as pkl from typing import TYPE_CHECKING import warnings from pandas import Index if TYPE_CHECKING: from pandas import Series, DataFrame def load_reduce(self): stack = self.stack args = stack.pop() func = stack[-1] if len(args) and type(args[0]) is type: n = args[0].__name__ # noqa try: stack[-1] = func(*args) return except TypeError as err: # If we have a deprecated function, # try to replace and try again. msg = "_reconstruct: First argument must be a sub-type of ndarray" if msg in str(err): try: cls = args[0] stack[-1] = object.__new__(cls) return except TypeError: pass raise _sparse_msg = """\ Loading a saved '{cls}' as a {new} with sparse values. '{cls}' is now removed. You should re-save this dataset in its new format. """ class _LoadSparseSeries: # To load a SparseSeries as a Series[Sparse] # https://github.com/python/mypy/issues/1020 # error: Incompatible return type for "__new__" (returns "Series", but must return # a subtype of "_LoadSparseSeries") def __new__(cls) -> "Series": # type: ignore from pandas import Series warnings.warn( _sparse_msg.format(cls="SparseSeries", new="Series"), FutureWarning, stacklevel=6, ) return Series(dtype=object) class _LoadSparseFrame: # To load a SparseDataFrame as a DataFrame[Sparse] # https://github.com/python/mypy/issues/1020 # error: Incompatible return type for "__new__" (returns "DataFrame", but must # return a subtype of "_LoadSparseFrame") def __new__(cls) -> "DataFrame": # type: ignore from pandas import DataFrame warnings.warn( _sparse_msg.format(cls="SparseDataFrame", new="DataFrame"), FutureWarning, stacklevel=6, ) return DataFrame() # If classes are moved, provide compat here. _class_locations_map = { ("pandas.core.sparse.array", "SparseArray"): ("pandas.core.arrays", "SparseArray"), # 15477 ("pandas.core.base", "FrozenNDArray"): ("numpy", "ndarray"), ("pandas.core.indexes.frozen", "FrozenNDArray"): ("numpy", "ndarray"), ("pandas.core.base", "FrozenList"): ("pandas.core.indexes.frozen", "FrozenList"), # 10890 ("pandas.core.series", "TimeSeries"): ("pandas.core.series", "Series"), ("pandas.sparse.series", "SparseTimeSeries"): ( "pandas.core.sparse.series", "SparseSeries", ), # 12588, extensions moving ("pandas._sparse", "BlockIndex"): ("pandas._libs.sparse", "BlockIndex"), ("pandas.tslib", "Timestamp"): ("pandas._libs.tslib", "Timestamp"), # 18543 moving period ("pandas._period", "Period"): ("pandas._libs.tslibs.period", "Period"), ("pandas._libs.period", "Period"): ("pandas._libs.tslibs.period", "Period"), # 18014 moved __nat_unpickle from _libs.tslib-->_libs.tslibs.nattype ("pandas.tslib", "__nat_unpickle"): ( "pandas._libs.tslibs.nattype", "__nat_unpickle", ), ("pandas._libs.tslib", "__nat_unpickle"): ( "pandas._libs.tslibs.nattype", "__nat_unpickle", ), # 15998 top-level dirs moving ("pandas.sparse.array", "SparseArray"): ( "pandas.core.arrays.sparse", "SparseArray", ), ("pandas.sparse.series", "SparseSeries"): ( "pandas.compat.pickle_compat", "_LoadSparseSeries", ), ("pandas.sparse.frame", "SparseDataFrame"): ( "pandas.core.sparse.frame", "_LoadSparseFrame", ), ("pandas.indexes.base", "_new_Index"): ("pandas.core.indexes.base", "_new_Index"), ("pandas.indexes.base", "Index"): ("pandas.core.indexes.base", "Index"), ("pandas.indexes.numeric", "Int64Index"): ( "pandas.core.indexes.numeric", "Int64Index", ), ("pandas.indexes.range", "RangeIndex"): ("pandas.core.indexes.range", "RangeIndex"), ("pandas.indexes.multi", "MultiIndex"): ("pandas.core.indexes.multi", "MultiIndex"), ("pandas.tseries.index", "_new_DatetimeIndex"): ( "pandas.core.indexes.datetimes", "_new_DatetimeIndex", ), ("pandas.tseries.index", "DatetimeIndex"): ( "pandas.core.indexes.datetimes", "DatetimeIndex", ), ("pandas.tseries.period", "PeriodIndex"): ( "pandas.core.indexes.period", "PeriodIndex", ), # 19269, arrays moving ("pandas.core.categorical", "Categorical"): ("pandas.core.arrays", "Categorical"), # 19939, add timedeltaindex, float64index compat from 15998 move ("pandas.tseries.tdi", "TimedeltaIndex"): ( "pandas.core.indexes.timedeltas", "TimedeltaIndex", ), ("pandas.indexes.numeric", "Float64Index"): ( "pandas.core.indexes.numeric", "Float64Index", ), ("pandas.core.sparse.series", "SparseSeries"): ( "pandas.compat.pickle_compat", "_LoadSparseSeries", ), ("pandas.core.sparse.frame", "SparseDataFrame"): ( "pandas.compat.pickle_compat", "_LoadSparseFrame", ), } # our Unpickler sub-class to override methods and some dispatcher # functions for compat class Unpickler(pkl._Unpickler): # type: ignore def find_class(self, module, name): # override superclass key = (module, name) module, name = _class_locations_map.get(key, key) return super().find_class(module, name) Unpickler.dispatch = copy.copy(Unpickler.dispatch) Unpickler.dispatch[pkl.REDUCE[0]] = load_reduce def load_newobj(self): args = self.stack.pop() cls = self.stack[-1] # compat if issubclass(cls, Index): obj = object.__new__(cls) else: obj = cls.__new__(cls, *args) self.stack[-1] = obj Unpickler.dispatch[pkl.NEWOBJ[0]] = load_newobj def load_newobj_ex(self): kwargs = self.stack.pop() args = self.stack.pop() cls = self.stack.pop() # compat if issubclass(cls, Index): obj = object.__new__(cls) else: obj = cls.__new__(cls, *args, **kwargs) self.append(obj) try: Unpickler.dispatch[pkl.NEWOBJ_EX[0]] = load_newobj_ex except (AttributeError, KeyError): pass def load(fh, encoding=None, is_verbose=False): """load a pickle, with a provided encoding Parameters ---------- fh : a filelike object encoding : an optional encoding is_verbose : show exception output """ try: fh.seek(0) if encoding is not None: up = Unpickler(fh, encoding=encoding) else: up = Unpickler(fh) up.is_verbose = is_verbose return up.load() except (ValueError, TypeError): raise
py
7dfeda747fe7ce5688cc86f5717ad68d4460c814
# -*- coding: utf-8 -*- """ Created on Mon Sep 14 18:57:16 2020 @author: OLLIVANDER """ # Infix to Postfix Expression preference = {'+':1 , '-':1, '*':2, '/':2, '^':3} operators= set(['+', '-','*','/','^','(',')']) expression = input("Enter infix expression: ") fin ='' st=[] flag=0 for i in expression: #print(i) if i not in operators: fin+=i # print("operand" , fin) elif i=='(': st.append('(') # print('hi',st) #print(st) elif i ==')': while st[-1]!='(': fin+=st.pop() st.pop() print(" ) " , fin) elif flag==0: st.append(i) flag=9 else: while( len(st)!=0 and st[-1]!='(' and preference[st[-1]]>=preference[i]): fin+=st.pop() st.append(i) print('i = ', i) print("stack = ", st) print("fin = " , fin) while len(st)!=0: fin+=st.pop() print(len(st)) print(fin)
py
7dfedab0bf89598429864c2e9d90e92035f2380c
n = input('Digite o número: ') print(n[0]) print(n[1]) print(n[2]) print(n[3])
py
7dfedad1d4b6edf79a690413d6b8a7271034ef22
# Scrapy settings for scrappers project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://docs.scrapy.org/en/latest/topics/settings.html # https://docs.scrapy.org/en/latest/topics/downloader-middleware.html # https://docs.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'scrappers' SPIDER_MODULES = ['scrappers.spiders'] NEWSPIDER_MODULE = 'scrappers.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent USER_AGENT = 'yahoo_news (+https://friendlyuser.github.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = True # list of links for redirects REDIRECT_ENABLED= False # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs DOWNLOAD_DELAY = 0.75 ROBOTSTXT_OBEY = True HTTPERROR_ALLOWED_CODES = [302, 404] # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See https://docs.scrapy.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'scrappers.middlewares.ScrappersSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'scrappers.middlewares.ScrappersDownloaderMiddleware': 543, #} # Enable or disable extensions # See https://docs.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See https://docs.scrapy.org/en/latest/topics/item-pipeline.html #ITEM_PIPELINES = { # 'scrappers.pipelines.ScrappersPipeline': 300, #} # Enable and configure the AutoThrottle extension (disabled by default) # See https://docs.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
py
7dfedae922657ebcce88077e301f5848b90a4f45
#!/usr/bin/env python """ Copyright (C) 2014 Ivan Gregor This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. Computes precision and recall, including correction. """ import os import argparse from algbioi.com import fasta from algbioi.com import taxonomy_ncbi from algbioi.eval import cami class _TaxonomyWrapperA(): """ Wraps the functionality of the database. """ def __init__(self, databaseFile): self._taxonomy = taxonomy_ncbi.TaxonomyNcbi(databaseFile) self._rankToId = {} self._ncbidToRankId = {} self._predAtRankId = {} # rankId -> ncbid -> ncbid at given rank self._noDefAtRankId = {} # rankId -> set of ncbids for which the ncbid at given rank is not defined self._ncbidToNcbidParent = {} # ncbid -> parent ncbid id = 0 for rank in taxonomy_ncbi.TAXONOMIC_RANKS: self._rankToId[rank] = id self._predAtRankId[id] = {} self._noDefAtRankId[id] = set() id += 1 def _getRankId(self, ncbid): """ Gets a rankId given an ncbi taxon id @rtype: int """ rankId = self._ncbidToRankId.get(ncbid, None) if rankId is not None: return rankId else: rank = self._taxonomy.getRank(ncbid) if rank is None: return None else: rankId = self._rankToId.get(rank, None) self._ncbidToRankId[ncbid] = rankId return rankId def _getParent(self, ncbid): """ Gets direct parent ncbi taxon id. """ parent = self._ncbidToNcbidParent.get(ncbid, None) if parent is None: parent = self._taxonomy.getParentNcbid(ncbid) self._ncbidToNcbidParent[ncbid] = parent return parent def getPredDictAtRank(self, seqToNcbid, rank): """ Gets predictions at the given rank as a dictionary. @param seqToNcbid: contain mapping, sequence name -> ncbi taxon id @type seqToNcbid: dict @param rank: the resulting dictionary will contain predictions a this rank @type rank: str @return: mapping, sequence name -> ncbi taxon id at given rank @rtype: dict """ rankId = self._rankToId[rank] retDict = {} predAtRankBuff = self._predAtRankId[rankId] noDefAtRankBuff = self._noDefAtRankId[rankId] for seq, ncbid in seqToNcbid.iteritems(): pred = predAtRankBuff.get(ncbid, None) if pred is not None: retDict[seq] = pred # we already know the ncbid at given rank continue if ncbid in noDefAtRankBuff: continue # the ncbid is not defined at this rank (we already know) ncbidRankId = self._getRankId(ncbid) #if ncbidRankId is None: # noDefAtRankBuff.add(ncbid) # continue # we have just found out that the ncbid is not defined at this rank if ncbidRankId == rankId: # the ncbid is defined already at the right rank predAtRankBuff[ncbid] = ncbid retDict[seq] = ncbid continue if (ncbidRankId is None) or (ncbidRankId > rankId): # the right ncbid may be defined at a higher rank current = self._getParent(ncbid) while current is not None: currentRankId = self._getRankId(current) if currentRankId == rankId: retDict[seq] = current predAtRankBuff[ncbid] = current break current = self._getParent(current) if current is None: noDefAtRankBuff.add(ncbid) # we have just found out that the ncbid is not defined at this rank return retDict def close(self): self._taxonomy.close() class Accuracy(): """ Implements computation of the "precision" and "recall" according to different definitions. """ def __init__(self, seqIdToBp, seqIdToPred, seqIdToTruePred, taxonomy, correctLabelThreshold=None): """ Initializes the accuracy object. @param seqIdToBp: dictionary or a fasta file @param seqIdToPred: dictionary or a prediction file @param seqIdToTruePred: dictionary or a true prediction file @param taxonomy: database file in the sqlite3 format, or taxonomy object retrieved from not closed Accuracy """ if isinstance(seqIdToBp, dict): self._seqToBp = seqIdToBp else: assert os.path.isfile(seqIdToBp) self._seqToBp = fasta.getSequenceToBpDict(seqIdToBp) if isinstance(seqIdToPred, dict): self._seqToPred = seqIdToPred else: assert os.path.isfile(seqIdToPred) self._seqToPred = cami.readAssignments(seqIdToPred) if isinstance(seqIdToTruePred, dict): self._seqToTrue = seqIdToTruePred else: assert os.path.isfile(seqIdToTruePred) self._seqToTrue = cami.readAssignments(seqIdToTruePred) if isinstance(taxonomy, _TaxonomyWrapperA): self._taxonomy = taxonomy else: assert os.path.isfile(taxonomy) self._taxonomy = _TaxonomyWrapperA(taxonomy) # correct the predictions self._seqToPred if correctLabelThreshold is not None: self._seqToPred = self._correctPredictions( self._seqToBp, self._seqToPred, self._seqToTrue, self._taxonomy, correctLabelThreshold) def _correctPredictions(self, seqIdToBp, seqIdToPred, seqIdToTruePred, taxonomy, correctLabelThreshold): """ """ newPred = {} ranks = taxonomy_ncbi.TAXONOMIC_RANKS[1:] ranks.reverse() for rank in ranks: # get true clades at given rank seqIdToLabelRank = taxonomy.getPredDictAtRank(seqIdToTruePred, rank) # get pred clades at given rank seqIdToPredRank = taxonomy.getPredDictAtRank(seqIdToPred, rank) # map: true taxonId -> seqId labelToSeqIdList = {} for seqId, taxonId in seqIdToLabelRank.iteritems(): if taxonId in labelToSeqIdList: labelToSeqIdList[taxonId].append(seqId) else: labelToSeqIdList[taxonId] = [seqId] for taxonId, seqIdList in labelToSeqIdList.iteritems(): idToBp = {} sumBp = 0 for seqId in seqIdList: id = seqIdToPredRank.get(seqId, None) if id is None: continue bp = seqIdToBp[seqId] if id in idToBp: idToBp[id] += bp else: idToBp[id] = bp sumBp += bp entryList = [] for id, bp in idToBp.iteritems(): entryList.append((id, bp)) if len(entryList) == 0: continue entryList.sort(key=lambda x: x[1], reverse=True) id, bp = entryList[0] if id == taxonId: continue percent = float(bp) / float(sumBp) if percent >= correctLabelThreshold: for seqId in seqIdList: if seqIdToPred.get(seqId, None) == id: newPred[seqId] = taxonId for seqId, taxonId in seqIdToPred.iteritems(): if seqId not in newPred: newPred[seqId] = taxonId return newPred def getAccuracy(self, rank, minFracClade=None, minFracPred=None, asBp=True, weightAccordingBinSize=True): """ Precision (specificity) and Recall (sensitivity) according to PhyloPythiaS and PhyloPythia papers. The number of classes correspond to the number of classes in the true reference and param "minFracClades". @param rank: on which taxonomic rank the predictions should be considered @param minFracClade: a clade is considered only if the dataset (true labels) contain at least this fraction of sequences that belong to the clade @param minFracPred: a clade is considered only if the corresponding predicted bins contain at least this fraction of the overall sequences (None ~ this criteria is not considered and only true "reference" bins are used for the comparison). @param asBp: count it according to the sequence lengths @param weightAccordingBinSize: weight individual bins according to their bin size @return: [precision, recall, classPrecisionNum, classRecallNum] """ predAtRankDict = self._taxonomy.getPredDictAtRank(self._seqToPred, rank) trueAtRankDict = self._taxonomy.getPredDictAtRank(self._seqToTrue, rank) tp = {} # class label -> count of sequences correctly assigned to clade i t = {} # class label -> true count of sequences of clade i p = {} # class label -> count of sequences assigned to clade i tpOther = 0 # count of sequences correctly unassigned tOther = 0 # true count of sequences that are unassigned at given rank # iterate over all sequences for seq, seqLen in self._seqToBp.iteritems(): # bp if asBp: bp = seqLen else: bp = 1 # true i = None if seq in trueAtRankDict: i = trueAtRankDict[seq] if i not in t: t[i] = bp else: t[i] += bp else: tOther += bp if seq not in predAtRankDict: tpOther += bp # pred j = None if seq in predAtRankDict: j = predAtRankDict[seq] if j not in p: p[j] = bp else: p[j] += bp # match if i == j and i is not None: if i not in tp: tp[i] = bp else: tp[i] += bp classesP = p.keys() # classes for precision classesR = t.keys() # classes for recall # filter out least abundant TRUE clades if minFracClade is not None: sumT = tOther # true bin containing all sequences undefined at this rank for i in classesR: sumT += t[i] rmList = [] for i in classesR: if (sumT == 0) or (float(t[i]) / float(sumT) < minFracClade): rmList.append(i) for i in rmList: classesR.remove(i) if (sumT == 0) or (float(tOther) / float(sumT) < minFracClade): tOther = 0 # filter out least abundant PREDICTED clades if minFracPred is not None: sumT = 0 for i in classesP: sumT += p[i] rmList = [] for i in classesP: if (sumT == 0) or (float(p[i]) / float(sumT) < minFracPred): rmList.append(i) for i in rmList: classesP.remove(i) # zero missing entries for i in classesR: if i not in tp: tp[i] = 0 if i not in p: p[i] = 0 for i in classesP: if i not in tp: tp[i] = 0 if i not in t: t[i] = 0 wp = {} # weights for precision wr = {} # weights for recall if weightAccordingBinSize: # compute weights of individual bins that correspond to the number of bp/sequences # assigned to individual bins sumP = 0.0 sumR = 0.0 for i in classesP: sumP += p[i] for i in classesR: sumR += t[i] sumR += tOther for i in classesP: wp[i] = float(p[i]) / sumP for i in classesR: wr[i] = float(t[i]) / sumR if tOther > 0: wrOther = float(tOther) / sumR else: # all bins are equally important for i in classesP: wp[i] = 1.0 / float(len(classesP)) for i in classesR: if tOther > 0: w = 1.0 / float(len(classesR) + 1) wr[i] = w wrOther = w else: wr[i] = 1.0 / float(len(classesR)) if len(classesR) == 0 and tOther > 0: wrOther = 1.0 # precision precision = 0.0 for i in classesP: if p[i] > 0: precision += (float(tp[i]) / float(p[i])) * wp[i] # recall recall = 0.0 classesRCount = len(classesR) for i in classesR: recall += (float(tp[i]) / float(t[i])) * wr[i] if tOther > 0: recall += (float(tpOther) / float(tOther)) * wrOther classesRCount += 1 # return [precision, recall, len(classesP), classesRCount] def getAccuracyPrint(self, ranks, minFracClade, minFracPred, overview=True, asBp=True, weightAccordingBinSize=True): """ Gets the precision and recall values printed as a string @param ranks: compute the precision and recall at these ranks @rtype: str """ buff = '# precision, recall, #classes precision, #classes recall, seq. count/bp, weighted bins\n' for rank in ranks: if overview: # overview buff += str(rank + ',--,--,--,----------,----------\n') buff += self.getAccuracyPrintEntry(rank, minFracClade, minFracPred, False, False) # asBp, weighted buff += self.getAccuracyPrintEntry(rank, minFracClade, minFracPred, True, False) buff += self.getAccuracyPrintEntry(rank, minFracClade, minFracPred, False, True) buff += self.getAccuracyPrintEntry(rank, minFracClade, minFracPred, True, True) else: # custom buff += self.getAccuracyPrintEntry(rank, minFracClade, minFracPred, asBp=asBp, weightAccordingBinSize=weightAccordingBinSize) return buff def getAccuracyPrintEntry(self, rank, minFracClade, minFracPred, asBp=True, weightAccordingBinSize=True): p, r, cp, cr = self.getAccuracy(rank, minFracClade, minFracPred, asBp, weightAccordingBinSize) if asBp: c = 'bp' else: c = 'count' if weightAccordingBinSize: w = 'weighted' else: w = 'not weighted' return str('%s, %s, %s, %s, "%s", "%s"\n' % (round(p * 100.0, 1), round(r * 100.0, 1), cp, cr, c, w)) def getTaxonomy(self): return self._taxonomy def close(self, closeTaxonomy=True): if closeTaxonomy: self._taxonomy.close() def _main(): parser = argparse.ArgumentParser( description='Computes precision and recall measures according to different definitions.', epilog='') parser.add_argument('-f', '--fasta', nargs=1, type=file, required=True, help='Fasta file.', metavar='contigs.fna', dest='f') parser.add_argument('-p', '--predictions', nargs=1, type=file, required=True, help='Tab separated prediction file (first column sequence name, last column predicted ncbid).', metavar='pred.csv', dest='p') parser.add_argument('-t', '--true-assignments', nargs=1, type=file, required=True, help='Tab separated true assignments file (first column sequence name, ' 'last column predicted ncbid.', metavar='true_assignments.csv', dest='t') parser.add_argument('-d', '--database', nargs=1, type=file, required=True, help='Database file containing the NCBI taxonomy in the sqlite3 format.', metavar='ncbitax_sqlite.db', dest='d') parser.add_argument('-r', '--ranks', nargs=1, help='Compute the measures only for these ranks (given as comma ' 'separated strings) Default ~ consider all ranks.', metavar='order,family,genus', dest='r') parser.add_argument('-c', '--min-frac-clade', nargs=1, help='A clade is considered in the computation of "Recall" only if the reference (the true ' 'assignments) contain at least this fraction of sequences that belong to the ' 'corresponding clade at the corresponding rank. (e.g. value 0.01 means that all clades ' 'that are considered in the computations of recall represent at least 1%% of the overall ' 'dataset) Default ~ 0.01', metavar='0.01', dest='c') parser.add_argument('-b', '--min-frac-bin', nargs=1, help='In the computation of "Precision". A clade is considered only if the corresponding ' 'predicted bins contain at least this fraction of the overall predicted sequences at the ' 'corresponding rank (Default ~ 0.01)', metavar='0.01', dest='b') parser.add_argument('-s', '--consider-seq-len', action='store_true', help='Compute the measures based on the sequence lengths (in bp). ' '(Default ~ based on sequence counts)', dest='s') parser.add_argument('-w', '--weight-bins', action='store_true', help='The measures are computed using weighted averages over bin sizes. Size of true bins is ' 'used to compute "Recall". Size of predicted bins is used to compute "Precision". ' '(Default ~ not weighted)', dest='w') parser.add_argument('-o', '--overview', action='store_true', help='Compute the measures according to several default settings. ' 'You can still set the (-c) and (-b) options.', dest='o') parser.add_argument('-m', '--map-by-correction', nargs=1, help='Correct assignments by mapping to the most probable label. A float close to 0.9. ' '(Default ~ no correction)', metavar='0.9', dest='m') args = parser.parse_args() if args.r: ranks = str(args.r[0].name).strip("'").strip('"').split(',') else: ranks = taxonomy_ncbi.TAXONOMIC_RANKS[1:] if args.c: minFracClade = float(args.c[0]) else: minFracClade = 0.01 if args.b: minFracPred = float(args.b[0]) else: minFracPred = 0.01 if args.m: correction = float(args.m[0]) else: correction = None acc = Accuracy(args.f[0].name, args.p[0].name, args.t[0].name, args.d[0].name, correction) print(acc.getAccuracyPrint(ranks, minFracClade, minFracPred, overview=bool(args.o), asBp=bool(args.s), weightAccordingBinSize=bool(args.w))) acc.close() def _test(): fastaFilePath = '/Users/ivan/Documents/work/binning/data/simMC/AMGN_AMD.Arachne.contigs.fna' predFilePath = '/Users/ivan/Documents/work/binning/tests/simMC/AMD05/output/AMGN_AMD.Arachne.contigs.fna.pOUT' trueFilePath = '/Users/ivan/Documents/work/binning/data/simMC/AMD.Arachne.genus' databaseFile = '/Users/ivan/Documents/work/binning/taxonomy/ncbi_taxonomy_20110629/ncbitax_sqlite.db' ranks = ['superkingdom', 'phylum', 'class', 'order', 'family', 'genus', 'species'] acc = Accuracy(fastaFilePath, predFilePath, trueFilePath, databaseFile) print(acc.getAccuracyPrint(ranks, minFracClade=0.01, minFracPred=0.01, overview=True)) acc.close() if __name__ == "__main__": _main() #_test()
py
7dfeddf45f8b82243ef575c320ccff4fc0b29489
# --------------------------------- # test the algorithm implementation # on a multidimensional XOR problem # > python xor.py # --------------------------------- import tensorflow as tf import argparse parser = argparse.ArgumentParser(description='main') parser.add_argument('--algorithm', default="gradient", type=str, help='algorithm type') parser.add_argument('--strategy', default="target", type=str, help='strategy type') parser.add_argument('--center', default=None, type=str, help='center in strategy r') parser.add_argument('--n', default=320, type=int, help='number of observations') parser.add_argument('--size', default=16, type=int, help='number of neurons in layers') parser.add_argument('--seed', default=0, type=int, help='random seed') args = parser.parse_args() N = args.n SIZE = args.size tf.random.set_seed(args.seed) import code import numpy as np import pandas as pd np.random.seed(args.seed) x1 = np.random.normal(size=N) x2 = np.random.normal(size=N) x3 = np.random.normal(size=N) y = 1 * (x1 * x2 * x3 > 0) X = pd.DataFrame({'x1': x1, 'x2': x2, 'x3': x3}) normalizer = tf.keras.layers.experimental.preprocessing.Normalization() normalizer.adapt(X) model = tf.keras.Sequential() model.add(normalizer) model.add(tf.keras.layers.Dense(SIZE, activation="relu")) model.add(tf.keras.layers.Dense(SIZE, activation="relu")) model.add(tf.keras.layers.Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer=tf.keras.optimizers.SGD(), metrics=['acc', 'AUC']) model.fit(X, y, batch_size=int(N/10), epochs=300, verbose=0) explainer = code.Explainer(model, X) if args.algorithm == "gradient": alg = code.GradientAlgorithm(explainer, variable="x1") else: alg = code.GeneticAlgorithm(explainer, variable="x1", std_ratio=1/6) if args.strategy == "target": alg.fool_aim(random_state=args.seed) else: alg.fool(center=args.center, random_state=args.seed) alg.plot_losses() alg.plot_explanation() alg.plot_data(constant=False)
py
7dfede2ee5349b3ded9713a1e088f95b97b7f6a0
import xbmc import xbmcgui import kodigui import busy import opener import info import videoplayer import playersettings import search import dropdown import windowutils import optionsdialog import preplayutils from plexnet import plexplayer, media from lib import colors from lib import util from lib import metadata from lib.util import T class PrePlayWindow(kodigui.ControlledWindow, windowutils.UtilMixin): xmlFile = 'script-plex-pre_play.xml' path = util.ADDON.getAddonInfo('path') theme = 'Main' res = '1080i' width = 1920 height = 1080 THUMB_POSTER_DIM = (347, 518) RELATED_DIM = (268, 397) EXTRA_DIM = (329, 185) ROLES_DIM = (268, 268) PREVIEW_DIM = (343, 193) EXTRA_LIST_ID = 400 RELATED_LIST_ID = 401 ROLES_LIST_ID = 403 OPTIONS_GROUP_ID = 200 PROGRESS_IMAGE_ID = 250 HOME_BUTTON_ID = 201 SEARCH_BUTTON_ID = 202 INFO_BUTTON_ID = 304 PLAY_BUTTON_ID = 302 TRAILER_BUTTON_ID = 303 SETTINGS_BUTTON_ID = 305 OPTIONS_BUTTON_ID = 306 PLAYER_STATUS_BUTTON_ID = 204 def __init__(self, *args, **kwargs): kodigui.ControlledWindow.__init__(self, *args, **kwargs) self.video = kwargs.get('video') self.auto_play = kwargs.get('auto_play') self.parentList = kwargs.get('parent_list') self.videos = None self.exitCommand = None self.trailer = None self.lastFocusID = None def onFirstInit(self): self.extraListControl = kodigui.ManagedControlList(self, self.EXTRA_LIST_ID, 5) self.relatedListControl = kodigui.ManagedControlList(self, self.RELATED_LIST_ID, 5) self.rolesListControl = kodigui.ManagedControlList(self, self.ROLES_LIST_ID, 5) self.progressImageControl = self.getControl(self.PROGRESS_IMAGE_ID) self.setup() if self.auto_play: self.auto_play = False self.playVideo() def onReInit(self): self.video.reload() self.refreshInfo() def refreshInfo(self): oldFocusId = self.getFocusId() util.setGlobalProperty('hide.resume', '' if self.video.viewOffset.asInt() else '1') self.setInfo() xbmc.sleep(100) if oldFocusId == self.PLAY_BUTTON_ID: self.focusPlayButton() def onAction(self, action): try: controlID = self.getFocusId() if not controlID and self.lastFocusID and not action == xbmcgui.ACTION_MOUSE_MOVE: self.setFocusId(self.lastFocusID) if action in(xbmcgui.ACTION_NAV_BACK, xbmcgui.ACTION_CONTEXT_MENU): if not xbmc.getCondVisibility('ControlGroup({0}).HasFocus(0)'.format(self.OPTIONS_GROUP_ID)): if self.getProperty('on.extras'): self.setFocusId(self.OPTIONS_GROUP_ID) return if action == xbmcgui.ACTION_LAST_PAGE and xbmc.getCondVisibility('ControlGroup(300).HasFocus(0)'): self.next() elif action == xbmcgui.ACTION_NEXT_ITEM: self.setFocusId(300) self.next() elif action == xbmcgui.ACTION_FIRST_PAGE and xbmc.getCondVisibility('ControlGroup(300).HasFocus(0)'): self.prev() elif action == xbmcgui.ACTION_PREV_ITEM: self.setFocusId(300) self.prev() except: util.ERROR() kodigui.ControlledWindow.onAction(self, action) def onClick(self, controlID): if controlID == self.HOME_BUTTON_ID: self.goHome() elif controlID == self.EXTRA_LIST_ID: self.openItem(self.extraListControl) elif controlID == self.RELATED_LIST_ID: self.openItem(self.relatedListControl) elif controlID == self.ROLES_LIST_ID: self.roleClicked() elif controlID == self.PLAY_BUTTON_ID: self.playVideo() elif controlID == self.PLAYER_STATUS_BUTTON_ID: self.showAudioPlayer() elif controlID == self.INFO_BUTTON_ID: self.infoButtonClicked() elif controlID == self.SETTINGS_BUTTON_ID: self.settingsButtonClicked() elif controlID == self.TRAILER_BUTTON_ID: self.openItem(item=self.trailer) elif controlID == self.OPTIONS_BUTTON_ID: self.optionsButtonClicked() elif controlID == self.SEARCH_BUTTON_ID: self.searchButtonClicked() def onFocus(self, controlID): self.lastFocusID = controlID if 399 < controlID < 500: self.setProperty('hub.focus', str(controlID - 400)) if xbmc.getCondVisibility('ControlGroup(50).HasFocus(0) + ControlGroup(300).HasFocus(0)'): self.setProperty('on.extras', '') elif xbmc.getCondVisibility('ControlGroup(50).HasFocus(0) + !ControlGroup(300).HasFocus(0)'): self.setProperty('on.extras', '1') def searchButtonClicked(self): self.processCommand(search.dialog(self, section_id=self.video.getLibrarySectionId() or None)) def settingsButtonClicked(self): if not self.video.mediaChoice: playerObject = plexplayer.PlexPlayer(self.video) playerObject.build() playersettings.showDialog(video=self.video, non_playback=True) self.setAudioAndSubtitleInfo() def infoButtonClicked(self): opener.handleOpen( info.InfoWindow, title=self.video.title, sub_title=self.getProperty('info'), thumb=self.video.type == 'episode' and self.video.thumb or self.video.defaultThumb, thumb_fallback='script.plexo/thumb_fallbacks/{0}.png'.format(self.video.type == 'episode' and 'show' or 'movie'), info=self.video.summary, background=self.getProperty('background'), is_16x9=self.video.type == 'episode' ) def optionsButtonClicked(self): options = [] # if xbmc.getCondVisibility('Player.HasAudio + MusicPlayer.HasNext'): # options.append({'key': 'play_next', 'display': 'Play Next'}) if len(self.video.media) > 1: options.append({'key': 'play_version', 'display': T(32451, 'Play Version...')}) if self.video.isWatched and not self.video.viewOffset.asInt(): options.append({'key': 'mark_unwatched', 'display': T(32318, 'Mark Unwatched')}) else: options.append({'key': 'mark_watched', 'display': T(32319, 'Mark Watched')}) options.append(dropdown.SEPARATOR) if self.video.type == 'episode': options.append({'key': 'to_season', 'display': T(32400, 'Go to Season')}) options.append({'key': 'to_show', 'display': T(32323, 'Go to Show')}) if self.video.type in ('episode', 'movie'): options.append({'key': 'to_section', 'display': T(32324, u'Go to {0}').format(self.video.getLibrarySectionTitle())}) if self.video.server.allowsMediaDeletion: options.append({'key': 'delete', 'display': T(32322, 'Delete')}) # if xbmc.getCondVisibility('Player.HasAudio') and self.section.TYPE == 'artist': # options.append({'key': 'add_to_queue', 'display': 'Add To Queue'}) # if False: # options.append({'key': 'add_to_playlist', 'display': 'Add To Playlist'}) posy = 880 if not util.getGlobalProperty('hide.resume'): posy += 106 if self.getProperty('trailer.button'): posy += 106 choice = dropdown.showDropdown(options, (posy, 618), close_direction='left') if not choice: return if choice['key'] == 'play_version': self.playVideo(play_version=True) elif choice['key'] == 'play_next': xbmc.executebuiltin('PlayerControl(Next)') elif choice['key'] == 'mark_watched': self.video.markWatched() self.refreshInfo() util.MONITOR.watchStatusChanged() elif choice['key'] == 'mark_unwatched': self.video.markUnwatched() self.refreshInfo() util.MONITOR.watchStatusChanged() elif choice['key'] == 'to_season': self.processCommand(opener.open(self.video.parentRatingKey)) elif choice['key'] == 'to_show': self.processCommand(opener.open(self.video.grandparentRatingKey)) elif choice['key'] == 'to_section': self.goHome(self.video.getLibrarySectionId()) elif choice['key'] == 'delete': self.delete() def delete(self): button = optionsdialog.show( T(32326, 'Really delete?'), T(32327, 'Are you sure you really want to delete this media?'), T(32328, 'Yes'), T(32329, 'No') ) if button != 0: return if self._delete(): self.doClose() else: util.messageDialog(T(32330, 'Message'), T(32331, 'There was a problem while attempting to delete the media.')) @busy.dialog() def _delete(self): success = self.video.delete() util.LOG('Media DELETE: {0} - {1}'.format(self.video, success and 'SUCCESS' or 'FAILED')) return success def roleClicked(self): mli = self.rolesListControl.getSelectedItem() if not mli: return sectionRoles = busy.widthDialog(mli.dataSource.sectionRoles, '') if not sectionRoles: util.DEBUG_LOG('No sections found for actor') return if len(sectionRoles) > 1: x, y = self.getRoleItemDDPosition() options = [{'role': r, 'display': r.reasonTitle} for r in sectionRoles] choice = dropdown.showDropdown(options, (x, y), pos_is_bottom=True, close_direction='bottom') if not choice: return role = choice['role'] else: role = sectionRoles[0] self.processCommand(opener.open(role)) def getVideos(self): if not self.videos: if self.video.TYPE == 'episode': self.videos = self.video.show().episodes() if not self.videos: return False return True def next(self): if not self._next(): return self.setup() @busy.dialog() def _next(self): if self.parentList: mli = self.parentList.getListItemByDataSource(self.video) if not mli: return False pos = mli.pos() + 1 if not self.parentList.positionIsValid(pos): pos = 0 self.video = self.parentList.getListItem(pos).dataSource else: if not self.getVideos(): return False if self.video not in self.videos: return False pos = self.videos.index(self.video) pos += 1 if pos >= len(self.videos): pos = 0 self.video = self.videos[pos] return True def prev(self): if not self._prev(): return self.setup() @busy.dialog() def _prev(self): if self.parentList: mli = self.parentList.getListItemByDataSource(self.video) if not mli: return False pos = mli.pos() - 1 if pos < 0: pos = self.parentList.size() - 1 self.video = self.parentList.getListItem(pos).dataSource else: if not self.getVideos(): return False if self.video not in self.videos: return False pos = self.videos.index(self.video) pos -= 1 if pos < 0: pos = len(self.videos) - 1 self.video = self.videos[pos] return True def getRoleItemDDPosition(self): y = 980 if xbmc.getCondVisibility('Control.IsVisible(500)'): y += 360 if xbmc.getCondVisibility('Control.IsVisible(501)'): y += 520 if xbmc.getCondVisibility('!String.IsEmpty(Window.Property(on.extras))'): y -= 300 if xbmc.getCondVisibility('Integer.IsGreater(Window.Property(hub.focus),0) + Control.IsVisible(500)'): y -= 500 if xbmc.getCondVisibility('Integer.IsGreater(Window.Property(hub.focus),1) + Control.IsVisible(501)'): y -= 500 focus = int(xbmc.getInfoLabel('Container(403).Position')) x = ((focus + 1) * 304) - 100 return x, y def playVideo(self, play_version=False): if not self.video.available(): util.messageDialog(T(32312, 'Unavailable'), T(32313, 'This item is currently unavailable.')) return if play_version: if not preplayutils.chooseVersion(self.video): return else: preplayutils.resetVersion(self.video) resume = False if self.video.viewOffset.asInt(): button = optionsdialog.show( T(32314, 'In Progress'), T(32315, 'Resume playback?'), T(32316, 'Resume'), T(32317, 'Play From Beginning') ) if button is None: return resume = (button == 0) self.processCommand(videoplayer.play(video=self.video, resume=resume)) def openItem(self, control=None, item=None): if not item: mli = control.getSelectedItem() if not mli: return item = mli.dataSource self.processCommand(opener.open(item)) def focusPlayButton(self): try: if not self.getFocusId() == self.PLAY_BUTTON_ID: self.setFocusId(self.PLAY_BUTTON_ID) except (SystemError, RuntimeError): self.setFocusId(self.PLAY_BUTTON_ID) @busy.dialog() def setup(self): self.focusPlayButton() util.DEBUG_LOG('PrePlay: Showing video info: {0}'.format(self.video)) if self.video.type == 'episode': self.setProperty('preview.yes', '1') elif self.video.type == 'movie': self.setProperty('preview.no', '1') self.video.reload(checkFiles=1, includeRelated=1, includeRelatedCount=10, includeExtras=1, includeExtrasCount=10) self.setInfo() self.fillExtras() hasPrev = self.fillRelated() self.fillRoles(hasPrev) def setInfo(self): self.setProperty('background', self.video.art.asTranscodedImageURL(self.width, self.height, blur=128, opacity=60, background=colors.noAlpha.Background)) self.setProperty('title', self.video.title) self.setProperty('duration', util.durationToText(self.video.duration.asInt())) self.setProperty('summary', self.video.summary.strip().replace('\t', ' ')) directors = u' / '.join([d.tag for d in self.video.directors()][:5]) directorsLabel = len(self.video.directors) > 1 and T(32401, u'DIRECTORS').upper() or T(32383, u'DIRECTOR').upper() self.setProperty('directors', directors and u'{0} {1}'.format(directorsLabel, directors) or '') if self.video.type == 'episode': self.setProperty('content.rating', '') self.setProperty('thumb', self.video.defaultThumb.asTranscodedImageURL(*self.THUMB_POSTER_DIM)) self.setProperty('preview', self.video.thumb.asTranscodedImageURL(*self.PREVIEW_DIM)) self.setProperty('info', u'{0} {1} {2} {3}'.format(T(32303, 'Season'), self.video.parentIndex, T(32304, 'Episode'), self.video.index)) self.setProperty('date', util.cleanLeadingZeros(self.video.originallyAvailableAt.asDatetime('%B %d, %Y'))) writers = u' / '.join([w.tag for w in self.video.writers()][:5]) writersLabel = len(self.video.writers) > 1 and T(32403, u'WRITERS').upper() or T(32402, u'WRITER').upper() self.setProperty('writers', writers and u'{0} {1}'.format(writersLabel, writers) or '') self.setProperty('related.header', T(32306, 'Related Shows')) elif self.video.type == 'movie': self.setProperty('preview', '') self.setProperty('thumb', self.video.thumb.asTranscodedImageURL(*self.THUMB_POSTER_DIM)) genres = u' / '.join([g.tag for g in self.video.genres()][:3]) self.setProperty('info', genres) self.setProperty('date', self.video.year) self.setProperty('content.rating', self.video.contentRating.split('/', 1)[-1]) cast = u' / '.join([r.tag for r in self.video.roles()][:5]) castLabel = 'CAST' self.setProperty('writers', cast and u'{0} {1}'.format(castLabel, cast) or '') self.setProperty('related.header', T(32404, 'Related Movies')) self.setProperty('video.res', self.video.resolutionString()) self.setProperty('audio.codec', self.video.audioCodecString()) self.setProperty('audio.channels', self.video.audioChannelsString(metadata.apiTranslate)) self.setProperties(('rating.stars', 'rating', 'rating.image', 'rating2', 'rating2.image'), '') if self.video.userRating: stars = str(int(round((self.video.userRating.asFloat() / 10) * 5))) self.setProperty('rating.stars', stars) # elif self.video.rating: # stars = str(int(round((self.video.rating.asFloat() / 10) * 5))) # self.setProperty('rating.stars', stars) if self.video.ratingImage: rating = self.video.rating audienceRating = self.video.audienceRating if self.video.ratingImage.startswith('rottentomatoes:'): rating = '{0}%'.format(int(rating.asFloat() * 10)) if audienceRating: audienceRating = '{0}%'.format(int(audienceRating.asFloat() * 10)) self.setProperty('rating', rating) self.setProperty('rating.image', 'script.plexo/ratings/{0}.png'.format(self.video.ratingImage.replace('://', '/'))) if self.video.audienceRatingImage: self.setProperty('rating2', audienceRating) self.setProperty('rating2.image', 'script.plexo/ratings/{0}.png'.format(self.video.audienceRatingImage.replace('://', '/'))) else: self.setProperty('rating', self.video.rating) self.setAudioAndSubtitleInfo() self.setProperty('unavailable', not self.video.media()[0].isAccessible() and '1' or '') if self.video.viewOffset.asInt(): width = self.video.viewOffset.asInt() and (1 + int((self.video.viewOffset.asInt() / self.video.duration.asFloat()) * self.width)) or 1 self.progressImageControl.setWidth(width) else: self.progressImageControl.setWidth(1) def setAudioAndSubtitleInfo(self): sas = self.video.selectedAudioStream() self.setProperty('audio', sas and sas.getTitle(metadata.apiTranslate) or T(32309, 'None')) sss = self.video.selectedSubtitleStream() if sss: if len(self.video.subtitleStreams) > 1: self.setProperty( 'subtitles', u'{0} \u2022 {1} {2}'.format(sss.getTitle(metadata.apiTranslate), len(self.video.subtitleStreams) - 1, T(32307, 'More')) ) else: self.setProperty('subtitles', sss.getTitle(metadata.apiTranslate)) else: if self.video.subtitleStreams: self.setProperty('subtitles', u'{0} \u2022 {1} {2}'.format(T(32309, 'None'), len(self.video.subtitleStreams), T(32308, 'Available'))) else: self.setProperty('subtitles', T(32309, u'None')) def createListItem(self, obj): mli = kodigui.ManagedListItem(obj.title or '', thumbnailImage=obj.thumb.asTranscodedImageURL(*self.EXTRA_DIM), data_source=obj) return mli def fillExtras(self): items = [] idx = 0 if not self.video.extras: self.extraListControl.reset() return False for extra in self.video.extras(): if not self.trailer and extra.extraType.asInt() == media.METADATA_RELATED_TRAILER: self.trailer = extra self.setProperty('trailer.button', '1') continue mli = self.createListItem(extra) if mli: mli.setProperty('index', str(idx)) mli.setProperty( 'thumb.fallback', 'script.plexo/thumb_fallbacks/{0}.png'.format(extra.type in ('show', 'season', 'episode') and 'show' or 'movie') ) items.append(mli) idx += 1 if not items: return False self.extraListControl.reset() self.extraListControl.addItems(items) return True def fillRelated(self, has_prev=False): items = [] idx = 0 if not self.video.related: self.relatedListControl.reset() return False for rel in self.video.related()[0].items: mli = kodigui.ManagedListItem(rel.title or '', thumbnailImage=rel.thumb.asTranscodedImageURL(*self.RELATED_DIM), data_source=rel) if mli: mli.setProperty('thumb.fallback', 'script.plexo/thumb_fallbacks/{0}.png'.format(rel.type in ('show', 'season', 'episode') and 'show' or 'movie')) mli.setProperty('index', str(idx)) items.append(mli) idx += 1 if not items: return False self.setProperty('divider.{0}'.format(self.RELATED_LIST_ID), has_prev and '1' or '') self.relatedListControl.reset() self.relatedListControl.addItems(items) return True def fillRoles(self, has_prev=False): items = [] idx = 0 if not self.video.roles: self.rolesListControl.reset() return False for role in self.video.roles(): mli = kodigui.ManagedListItem(role.tag, role.role, thumbnailImage=role.thumb.asTranscodedImageURL(*self.ROLES_DIM), data_source=role) mli.setProperty('index', str(idx)) items.append(mli) idx += 1 if not items: return False self.setProperty('divider.{0}'.format(self.ROLES_LIST_ID), has_prev and '1' or '') self.rolesListControl.reset() self.rolesListControl.addItems(items) return True
py
7dfee001c433fc7843dad1bfdab4e8099d435a8f
''' Задача «Обращение фрагмента» Условие Дана строка, в которой буква h встречается как минимум два раза. Разверните последовательность символов, заключенную между первым и последним появлением буквы h, в противоположном порядке. ''' s = input() # s = '123h56h78' s1 = s[:] ind1 = s1.find('h') ind2 = s1.rfind('h') print(s[:ind1] + s[ind2:ind1:-1] + s[ind2:])
py
7dfee08f58a989d86cdc5d2c30b69cc4199b2280
import solutions from solutions import * from random import randint, randrange, random assert sum_of_odd(3, 8) == 15 for _ in range(1000): rand_a = randint(-100, 500) rand_b = randint(-100, 500) rand_a, rand_b = min(rand_a, rand_b), max(rand_a, rand_b) odd_sum = sum_of_odd(rand_a, rand_b) loop_sum = 0 for i in range(rand_a, rand_b + 1): if i % 2 == 1: loop_sum += i assert odd_sum == loop_sum lis = [3, 6, -1] raise_by_one(lis) assert lis == [4, 7, 0] for _ in range(100): comp = [randint(-1000, 1000) + random() for _ in range(500)] comp2 = comp[::1] raise_by_one(comp) for i in range(len(comp2)): assert comp2[i] + 1 == comp[i] arr_list = ArrayList() arr_list.prepend("str1") arr_list.prepend("str2") arr_list.print_list() arr_list.set_at(1, "str3") arr_list.print_list() for i in range(1000): arr_list.prepend(i) arr_list.print_list() assert arr_list.get_size() == 1002 rental = Rental() rental.add_car("MFT67", "chrysler", 5) car = rental.get_car("MFT67") car.set_brand("fiat") print(rental) rental.add_car("ABC", "WowzerBus", 40) rental.add_car("12345", "my car", 100) rental.add_car("23456", "your car", 200) rental.add_car("34567", "our car", 103) print(rental)
py
7dfee1ec0b9455af72726ca74ba1fc717b46f9b5
# coding=utf-8 import os import numpy as np import librosa import torch from torch.utils.data import Dataset, DataLoader import glob import scipy.io as scio from audio_util import * #import pdb def toTorch(x): return torch.from_numpy(x.astype(np.float32)) class Generator_train_dataset(Dataset): def __init__(self, file_list, noise_path): self.file_list = file_list self.noise_path = noise_path self.target_score = np.asarray([1.0, 1.0],dtype=np.float32) def __len__(self): return len(self.file_list) def __getitem__(self, idx): pmag = 0.30 pban = 0.20 file = self.file_list[idx] clean_wav,_ = librosa.load(self.file_list[idx], sr=44100) noise_wav,_ = librosa.load(self.noise_path+self.file_list[idx].split('/')[-1], sr=44100) # already power compression by 0.30 noise_mag,noise_phase = Sp_and_phase(noise_wav, Normalization=True) clean_mag,clean_phase = Sp_and_phase(clean_wav, Normalization=True) #bandNoise = compute_band_E(noise_wav) ** pban #bandClean = compute_band_E(clean_wav) ** pban return clean_mag,clean_phase,noise_mag,noise_phase,self.target_score class Discriminator_train_dataset(Dataset): def __init__(self, file_list, noise_path, clean_path): self.file_list = file_list self.noise_path = noise_path self.clean_path = clean_path def __len__(self): return len(self.file_list) def __getitem__(self,idx): pban = 0.20 score_filepath = self.file_list[idx].split(',') enhance_wav,_ = librosa.load(score_filepath[2], sr=44100) enhance_mag, _ = Sp_and_phase(enhance_wav, Normalization=True) #pdb.set_trace() f = self.file_list[idx].split('/')[-1] if '@' in f: f = f.split('@')[0] + '.wav' noise_wav,_ = librosa.load(self.noise_path+f, sr=44100) noise_mag, _ = Sp_and_phase(noise_wav, Normalization=True) clean_wav, _ = librosa.load(self.clean_path+f, sr=44100) clean_mag, _ = Sp_and_phase(clean_wav, Normalization=True) #bandNoise = compute_band_E(noise_wav) ** pban #bandEnhan = compute_band_E(enhance_wav) ** pban #bandClean = compute_band_E(clean_wav) ** pban True_score = np.asarray([float(score_filepath[0]),float(score_filepath[1])],dtype=np.float32) #noise_mag, clean_mag, bandNoise, bandClean = noise_mag.T, clean_mag.T, bandNoise.T, bandClean.T #enhance_mag, bandEnhan = enhance_mag.T, bandEnhan.T noise_mag, clean_mag, enhance_mag = noise_mag.T, clean_mag.T, enhance_mag.T noise_mag = noise_mag.reshape(1,513,noise_mag.shape[1]) clean_mag = clean_mag.reshape(1,513,clean_mag.shape[1]) enhance_mag = enhance_mag.reshape(1,513,enhance_mag.shape[1]) #bandNoise = bandNoise.reshape(1,40,bandNoise.shape[1]) #bandClean = bandClean.reshape(1,40,bandClean.shape[1]) #bandEnhan = bandEnhan.reshape(1,40,bandEnhan.shape[1]) return np.concatenate((enhance_mag,noise_mag,clean_mag),axis=0), True_score def create_dataloader(filelist, noise_path, clean_path=None, loader='G'): if loader=='G': return DataLoader(dataset=Generator_train_dataset(filelist, noise_path), batch_size=1, shuffle=True, num_workers=6, drop_last=True) elif loader=='D': return DataLoader(dataset=Discriminator_train_dataset(filelist, noise_path, clean_path), batch_size=1, shuffle=True, num_workers=6, drop_last=True) else: raise Exception("No such dataloader type!")
py
7dfee275b686a46773dfddf1aec93dabbe43b425
# Copyright 2010 The NetWho Project. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """IRC outgoing parser.""" __author__ = 'thomas%stromberg.org (Thomas Stromberg)' import re from base_parser import BaseParser, Identity class IrcOutgoingParser(BaseParser): DPORTS = [6667, 6668, 6669, 8001] PROTOCOL = 'IRC' CONNECT_RE = re.compile('NICK (\w+)\r\nUSER (\w+) .*? ([\w\.]+) :(.*?)\r\n') TOPIC_RE = re.compile(':([\w\.]+) 332 (\w+) (\#\w+) :') def parse(self, pkt, payload): if not payload: print 'none' yield None else: match = self.CONNECT_RE.search(payload) if match: print match (nick, username, server, full_name) = match.groups() print match.groups() yield Identity(service=server, event='connect', type='handle', value=nick, certainty=0.7) yield Identity(service=server, event='connect', type='name', value=full_name, certainty=0.3) yield Identity(service=server, event='connect', type='username', value=username, certainty=0.25) match = self.TOPIC_RE.search(payload) if match: (server, nick, channel) = match.groups() yield Identity(service='%s: %s' % (server, channel), event='topic', type='handle', value=nick, certainty=1)
py
7dfee40df254a9cbc7d290aec1472e6129ddcd5f
from NIENV import * # API METHODS -------------- # self.main_widget # self.update_shape() # Ports # self.input(index) # self.set_output_val(index, val) # self.exec_output(index) # self.create_new_input(type_, label, widget_name=None, widget_pos='under', pos=-1) # self.delete_input(index) # self.create_new_output(type_, label, pos=-1) # self.delete_output(index) # Logging # mylog = self.new_log('Example Log') # mylog.log('I\'m alive!!') # self.log_message('hello global!', target='global') # self.log_message('that\'s not good', target='error') # -------------------------- from sklearn.svm import SVC class SVCGetParams_NodeInstance(NodeInstance): def __init__(self, params): super(SVCGetParams_NodeInstance, self).__init__(params) tmp = SVC() params = tmp.get_params() for key in params: self.create_new_output(type_="data", label=key, pos=-1) del tmp self.create_new_output(type_="data", label="param dict", pos=-1) # self.special_actions['action name'] = {'method': M(self.action_method)} # ... def update_event(self, input_called=-1): if input_called == 0: model = self.input(1) params = model.get_params() i = 0 for param in params: self.set_output_val(i, params[param]) i += 1 self.set_output_val(i, params) def get_data(self): data = {} return data def set_data(self, data): pass def removing(self): pass
py
7dfee483a40c58406c352751dcb1561720b294f1
from ..broker import Broker class DiscoveryHintBroker(Broker): controller = "discovery_hints" def index(self, **kwargs): """Lists the available discovery hints. Any of the inputs listed may be be used to narrow the list; other inputs will be ignored. Of the various ways to query lists, using this method is most efficient. **Inputs** | ``api version min:`` 2 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param id: The internal NetMRI identifier for the discovery hint. :type id: Integer | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param id: The internal NetMRI identifier for the discovery hint. :type id: Array of Integer | ``api version min:`` 2 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param UnitID: The internal NetMRI identifier collector assigned to the discovery hint. :type UnitID: Integer | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param UnitID: The internal NetMRI identifier collector assigned to the discovery hint. :type UnitID: Array of Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param start: The record number to return in the selected page of data. It will always appear, although it may not be the first record. See the :limit for more information. :type start: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 1000 :param limit: The size of the page of data, that is, the maximum number of records returned. The limit size will be used to break the data up into pages and the first page with the start record will be returned. So if you have 100 records and use a :limit of 10 and a :start of 10, you will get records 10-19. The maximum limit is 10000. :type limit: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` id :param sort: The data field(s) to use for sorting the output. Default is id. Valid values are id, hint, device_type, UnitID, created_by, updated_by, created_at, updated_at, cli_user_name_secure_ssh, cli_user_password_secure_ssh, snmp_protocol, snmp_community_secure, snmp_auth_protocol, snmp_auth_password_secure, snmp_private_protocol, snmp_private_password_secure, secure_version, cli_user_name_secure_telnet, cli_user_password_secure_telnet, cli_enable_password_secure. :type sort: Array of String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` asc :param dir: The direction(s) in which to sort the data. Default is 'asc'. Valid values are 'asc' and 'desc'. :type dir: Array of String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param select: The list of attributes to return for each DiscoveryHint. Valid values are id, hint, device_type, UnitID, created_by, updated_by, created_at, updated_at, cli_user_name_secure_ssh, cli_user_password_secure_ssh, snmp_protocol, snmp_community_secure, snmp_auth_protocol, snmp_auth_password_secure, snmp_private_protocol, snmp_private_password_secure, secure_version, cli_user_name_secure_telnet, cli_user_password_secure_telnet, cli_enable_password_secure. If empty or omitted, all attributes will be returned. :type select: Array | ``api version min:`` 2.8 | ``api version max:`` None | ``required:`` False | ``default:`` None :param goto_field: The field name for NIOS GOTO that is used for locating a row position of records. :type goto_field: String | ``api version min:`` 2.8 | ``api version max:`` None | ``required:`` False | ``default:`` None :param goto_value: The value of goto_field for NIOS GOTO that is used for locating a row position of records. :type goto_value: String **Outputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return discovery_hints: An array of the DiscoveryHint objects that match the specified input criteria. :rtype discovery_hints: Array of DiscoveryHint """ return self.api_list_request(self._get_method_fullname("index"), kwargs) def show(self, **kwargs): """Shows the details for the specified discovery hint. **Inputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` True | ``default:`` None :param id: The internal NetMRI identifier for the discovery hint. :type id: Integer **Outputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return discovery_hint: The discovery hint identified by the specified id. :rtype discovery_hint: DiscoveryHint """ return self.api_request(self._get_method_fullname("show"), kwargs) def create(self, **kwargs): """Creates a new discovery hint. **Inputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` True | ``default:`` None :param hint: The hint used by the discovery engine. :type hint: String | ``api version min:`` None | ``api version max:`` None | ``required:`` True | ``default:`` None :param device_type: The device type applied to the given discovery hint. :type device_type: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param UnitID: The internal NetMRI identifier collector assigned to the discovery hint. :type UnitID: Integer **Outputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return id: The id of the newly created discovery hint. :rtype id: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return model: The class name of the newly created discovery hint. :rtype model: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return uri: A URI that may be used to retrieve the newly created discovery hint. :rtype uri: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return discovery_hint: The newly created discovery hint. :rtype discovery_hint: DiscoveryHint """ return self.api_request(self._get_method_fullname("create"), kwargs) def update(self, **kwargs): """Updates an existing discovery hint. **Inputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` True | ``default:`` None :param id: The internal NetMRI identifier for the discovery hint. :type id: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param hint: The hint used by the discovery engine. If omitted, this field will not be updated. :type hint: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param device_type: The device type applied to the given discovery hint. If omitted, this field will not be updated. :type device_type: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param UnitID: The internal NetMRI identifier collector assigned to the discovery hint. If omitted, this field will be updated to the default value. :type UnitID: Integer **Outputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return id: The id of the updated discovery hint. :rtype id: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return model: The class name of the updated discovery hint. :rtype model: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return uri: A URI that may be used to retrieve the updated discovery hint. :rtype uri: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return discovery_hint: The updated discovery hint. :rtype discovery_hint: DiscoveryHint """ return self.api_request(self._get_method_fullname("update"), kwargs) def destroy(self, **kwargs): """Deletes the specified discovery hint from NetMRI. **Inputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` True | ``default:`` None :param id: The internal NetMRI identifier for the discovery hint. :type id: Integer **Outputs** """ return self.api_request(self._get_method_fullname("destroy"), kwargs)
py
7dfee4cc30f3be2b92aab17de3fbdbe1929f3365
# Copyright 2019 Silverbackhq # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Third Party Library from django.http import JsonResponse from django.utils.translation import gettext as _ # Local Library from app.modules.core.response import Response def csrf_failure(request, reason=""): correlation_id = request.META["X-Correlation-ID"] if "X-Correlation-ID" in request.META else "" response = Response() return JsonResponse(response.send_private_failure([{ "type": "error", "message": _("Error! Access forbidden due to invalid CSRF token.") }], {}, correlation_id))
py
7dfee50ace417c571f220c4982667cd8f771373d
from django.shortcuts import render from books.models import Book def foo_view(request): books = Book.objects.filter(title__icontains='world') return render(request,'foobar/foo.html',{'books':books}) def bar_view(request): books = Book.objects.filter(title__icontains='the') return render(request,'foobar/bar.html',{'books':books}) def foo_bar_view(request,template_name,search_str): books=Book.objects.filter(title__icontains=search_str) return render(request,template_name,{'books':books})
py
7dfee681a4e1b6fbefd0561d0d54c4f5e074348f
""" hubspot companies api """ from hubspot3.base import BaseClient from hubspot3.utils import prettify, get_log from typing import List, Dict, Optional, Union COMPANIES_API_VERSION = "2" class CompaniesClient(BaseClient): """ hubspot3 Companies client :see: https://developers.hubspot.com/docs/methods/companies/companies-overview """ def __init__(self, *args, **kwargs): super(CompaniesClient, self).__init__(*args, **kwargs) self.log = get_log("hubspot3.companies") def _get_path(self, subpath: str) -> str: """get the full api url for the given subpath on this client""" return "companies/v{}/{}".format( self.options.get("version") or COMPANIES_API_VERSION, subpath ) def create(self, data: Dict = None, **options) -> Dict: """create a new company""" data = data or {} return self._call("companies/", data=data, method="POST", **options) def update(self, company_id: str, data: Dict = None, **options) -> Dict: """update the given company with data""" data = data or {} return self._call( "companies/{}".format(company_id), data=data, method="PUT", **options ) def delete(self, company_id: str, **options) -> Dict: """delete a company""" return self._call("companies/{}".format(company_id), method="DELETE", **options) def get(self, company_id: str, **options) -> Dict: """get a single company by it's ID""" return self._call("companies/{}".format(company_id), method="GET", **options) def search_domain( self, domain: str, limit: int = 1, extra_properties: Dict = None, **options ) -> Dict: """searches for companies by domain name. limit is max'd at 100""" # default properties to fetch properties = [ "domain", "createdate", "name", "hs_lastmodifieddate", "hubspot_owner_id", ] # append extras if they exist if extra_properties: if isinstance(extra_properties, list): properties += extra_properties if isinstance(extra_properties, str): properties.append(extra_properties) return self._call( "domains/{}/companies".format(domain), method="POST", data={"limit": limit, "requestOptions": {"properties": properties}}, **options, ) def get_all( self, extra_properties: Union[str, List] = None, **options ) -> Optional[List]: """get all companies, including extra properties if they are passed in""" finished = False output = [] offset = 0 query_limit = 250 # Max value according to docs # default properties to fetch properties = [ "name", "description", "address", "address2", "city", "state", "story", "hubspot_owner_id", ] # append extras if they exist if extra_properties: if isinstance(extra_properties, list): properties += extra_properties if isinstance(extra_properties, str): properties.append(extra_properties) while not finished: batch = self._call( "companies/paged", method="GET", doseq=True, params={ "limit": query_limit, "offset": offset, "properties": properties, }, **options, ) output.extend( [ prettify(company, id_key="companyId") for company in batch["companies"] if not company["isDeleted"] ] ) finished = not batch["has-more"] offset = batch["offset"] return output def _get_recent(self, recency_type: str, **options) -> Optional[List]: """ Returns either list of recently modified companies or recently created companies, depending on recency_type passed in. Both API endpoints take identical parameters and return identical formats, they differ only in the URLs (companies/recent/created or companies/recent/modified) :see: https://developers.hubspot.com/docs/methods/companies/get_companies_modified :see: https://developers.hubspot.com/docs/methods/companies/get_companies_created """ finished = False output = [] offset = 0 query_limit = 250 # Max value according to docs while not finished: batch = self._call( "companies/recent/{}".format(recency_type), method="GET", doseq=True, params={"count": query_limit, "offset": offset}, **options, ) output.extend( [ prettify(company, id_key="companyId") for company in batch["results"] if not company["isDeleted"] ] ) finished = not batch["hasMore"] offset = batch["offset"] return output def get_recently_modified(self, **options) -> Optional[List]: return self._get_recent("modified", **options) def get_recently_created(self, **options) -> Optional[List]: return self._get_recent("created", **options) def get_contacts_at_a_company(self, company_id: str, **options) -> Optional[List]: """ Returns all of the contacts who have an associatedcompanyid contact property of `company_id`. :see: https://developers.hubspot.com/docs/methods/companies/get_company_contacts """ return self._call( "companies/{}/contacts".format(company_id), method="GET", **options )
py
7dfee7da0846f96403c4690fad9695f0960a8481
from django.conf.urls import url, include from django.contrib.auth import views as auth_views from . import views urlpatterns = [ url(r'^$', views.home, name='home'), # url(r'^login/$', auth_views.login, {'template_name': 'login.html'}, name='login'), # url(r'^logout/$', auth_views.logout, {'next_page': 'login'}, name='logout'), url(r'^signup/$', views.signup, name='signup'), url(r'^activate/(?P<uidb64>[0-9A-Za-z_\-]+)/(?P<token>[0-9A-Za-z]{1,13}-[0-9A-Za-z]{1,20})/$', views.activate, name='activate'), ]
py
7dfee932de4e33210406fb9a10f37de148bc595b
# -*- coding: utf-8 -*- """Setup tests for this package.""" import unittest from plone import api from plone.app.testing import TEST_USER_ID from plone.app.testing import setRoles from ..testing import TINYMCE_LATEX_INTEGRATION_TESTING try: from Products.CMFPlone.utils import get_installer except ImportError: get_installer = None class TestSetup(unittest.TestCase): """Test that this is properly installed.""" layer = TINYMCE_LATEX_INTEGRATION_TESTING def setUp(self): """Custom shared utility setup for tests.""" self.portal = self.layer['portal'] if get_installer: self.installer = get_installer(self.portal, self.layer['request']) else: self.installer = api.portal.get_tool('portal_quickinstaller') def test_product_installed(self): """Test if collective.tinymceplugins.latex is installed.""" self.assertTrue(self.installer.isProductInstalled( 'collective.tinymceplugins.latex')) class TestUninstall(unittest.TestCase): layer = TINYMCE_LATEX_INTEGRATION_TESTING def setUp(self): self.portal = self.layer['portal'] if get_installer: self.installer = get_installer(self.portal, self.layer['request']) else: self.installer = api.portal.get_tool('portal_quickinstaller') roles_before = api.user.get_roles(TEST_USER_ID) setRoles(self.portal, TEST_USER_ID, ['Manager']) self.installer.uninstallProducts(['collective.tinymceplugins.latex']) setRoles(self.portal, TEST_USER_ID, roles_before) def test_product_uninstalled(self): """Test if collective.tinymceplugins.latex is cleanly uninstalled.""" self.assertFalse(self.installer.isProductInstalled( 'collective.tinymceplugins.latex'))