ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
b4010594ff3b8c0f5fcd14ff66584543a40679e5
import os from conans import ConanFile, CMake, tools class TestPackageConan(ConanFile): settings = "os", "compiler", "build_type", "arch" generators = "cmake", "cmake_find_package" def build(self): cmake = CMake(self) cmake.definitions["BUILDING_SHARED"] = self.options["redis-plus-plus"].shared cmake.configure() cmake.build() def test(self): if not tools.cross_building(self.settings): self.run(os.path.join("bin", "test_package"), run_environment=True)
py
b40106a00f6d005cefb96bce518f29a6c2dbd3be
import numpy as np from sklearn.model_selection import train_test_split from sklearn import datasets # import matplotlib.pyplot as plt # from logistic_regression import LogisticRegression from Regression.regression import LogisticRegression # from regression import LogisticRegression def accuracy(y_true, y_pred): accuracy = np.sum(y_true == y_pred) / len(y_true) return accuracy bc = datasets.load_breast_cancer() X, y = bc.data, bc.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1234) regressor = LogisticRegression(learning_rate=0.0001, n_iters=1000) regressor.fit(X_train, y_train) predictions = regressor.predict(X_test) print("LR classification accuracy:", accuracy(y_test, predictions))
py
b401073dad63ab199df7d637efb365de30ef5184
from setuptools import setup # has fake Trove classifier to fool Python extractor to believe this is Python 3 for sure # Programming Language :: Python :: 3.7 setup( name="example-setup.py", install_requires=["requests==1.2.3"], python_requires='>=3.5', )
py
b401086ad3468007b9076639b50e2ebfc5abdd2e
# -*- Python -*- # This file is licensed under a pytorch-style license # See frontends/pytorch/LICENSE for license information. import typing import torch import torch_mlir # RUN: %PYTHON %s | npcomp-opt | FileCheck %s mb = torch_mlir.ModuleBuilder() class TestModule(torch.nn.Module): def __init__(self): super().__init__() self.i = 3 self.f = 42.5 # CHECK: %[[TRUE:.*]] = basicpy.bool_constant true # CHECK: %[[N3:.*]] = basicpy.numeric_constant 3 : i64 # CHECK: %[[N42:.*]] = basicpy.numeric_constant 4.250000e+01 : f64 # CHECK: %[[MODULE:.*]] = torch.nn_module { # Note: for some reason, Torch always adds a "training" property to all modules. # CHECK: torch.attr "training", %[[TRUE]] : !basicpy.BoolType # CHECK: torch.attr "i", %[[N3]] : i64 # CHECK: torch.attr "f", %[[N42]] : f64 test_module = TestModule() recursivescriptmodule = torch.jit.script(test_module) # TODO: Automatically handle unpacking Python class RecursiveScriptModule into the underlying ScriptModule. mb.import_module(recursivescriptmodule._c) mb.module.operation.print()
py
b4010a4bc2b60c042d6fc96c0e7fda8e65e72358
""" 3D IoU Calculation and Rotated NMS Written by Shaoshuai Shi All Rights Reserved 2019-2020. """ import torch from det3d.ops.iou3d_nms import iou3d_nms_cuda, iou3d_nms_utils from . import iou3d_nms_cuda import numpy as np def boxes_iou_bev(boxes_a, boxes_b): """ Args: boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading] boxes_b: (N, 7) [x, y, z, dx, dy, dz, heading] Returns: ans_iou: (N, M) """ assert boxes_a.shape[1] == boxes_b.shape[1] == 7 ans_iou = torch.cuda.FloatTensor(torch.Size((boxes_a.shape[0], boxes_b.shape[0]))).zero_() iou3d_nms_cuda.boxes_iou_bev_gpu(boxes_a.contiguous(), boxes_b.contiguous(), ans_iou) return ans_iou def to_pcdet(boxes): # transform back to pcdet's coordinate boxes = boxes[:, [0, 1, 2, 4, 3, 5, -1]] boxes[:, -1] = -boxes[:, -1] - np.pi/2 return boxes def boxes_iou3d_gpu(boxes_a, boxes_b): """ Args: boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading] boxes_b: (N, 7) [x, y, z, dx, dy, dz, heading] Returns: ans_iou: (N, M) """ assert boxes_a.shape[1] == boxes_b.shape[1] == 7 # transform back to pcdet's coordinate boxes_a = to_pcdet(boxes_a) boxes_b = to_pcdet(boxes_b) # height overlap boxes_a_height_max = (boxes_a[:, 2] + boxes_a[:, 5] / 2).view(-1, 1) boxes_a_height_min = (boxes_a[:, 2] - boxes_a[:, 5] / 2).view(-1, 1) boxes_b_height_max = (boxes_b[:, 2] + boxes_b[:, 5] / 2).view(1, -1) boxes_b_height_min = (boxes_b[:, 2] - boxes_b[:, 5] / 2).view(1, -1) # bev overlap overlaps_bev = torch.cuda.FloatTensor(torch.Size((boxes_a.shape[0], boxes_b.shape[0]))).zero_() # (N, M) iou3d_nms_cuda.boxes_overlap_bev_gpu(boxes_a.contiguous(), boxes_b.contiguous(), overlaps_bev) max_of_min = torch.max(boxes_a_height_min, boxes_b_height_min) min_of_max = torch.min(boxes_a_height_max, boxes_b_height_max) overlaps_h = torch.clamp(min_of_max - max_of_min, min=0) # 3d iou overlaps_3d = overlaps_bev * overlaps_h vol_a = (boxes_a[:, 3] * boxes_a[:, 4] * boxes_a[:, 5]).view(-1, 1) vol_b = (boxes_b[:, 3] * boxes_b[:, 4] * boxes_b[:, 5]).view(1, -1) iou3d = overlaps_3d / torch.clamp(vol_a + vol_b - overlaps_3d, min=1e-6) return iou3d def nms_gpu(boxes, scores, thresh, pre_maxsize=None, **kwargs): """ :param boxes: (N, 7) [x, y, z, dx, dy, dz, heading] :param scores: (N) :param thresh: :return: """ assert boxes.shape[1] == 7 order = scores.sort(0, descending=True)[1] if pre_maxsize is not None: order = order[:pre_maxsize] boxes = boxes[order].contiguous() keep = torch.LongTensor(boxes.size(0)) num_out = iou3d_nms_cuda.nms_gpu(boxes, keep, thresh) return order[keep[:num_out].cuda()].contiguous(), None def nms_normal_gpu(boxes, scores, thresh, **kwargs): """ :param boxes: (N, 7) [x, y, z, dx, dy, dz, heading] :param scores: (N) :param thresh: :return: """ assert boxes.shape[1] == 7 order = scores.sort(0, descending=True)[1] boxes = boxes[order].contiguous() keep = torch.LongTensor(boxes.size(0)) num_out = iou3d_nms_cuda.nms_normal_gpu(boxes, keep, thresh) return order[keep[:num_out].cuda()].contiguous(), None
py
b4010aa75e3685be7a15d36a72f5db5d9e6d3d5b
# Generated by Django 2.2.3 on 2019-07-23 09:07 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('mytutor', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='question', name='asked_by', ), migrations.RemoveField( model_name='question', name='subject', ), ]
py
b4010bfb73606698249d4abbd7f4a89ba33e5619
import os,sys #filename with absolute path WF = "/tmp/SDKsettings.txt" def restoreServers(): try: f = open(WF,"r") l = f.readline() while l: w =l.split(",") print "Restore server " + w[1] + " on node " + w[0] +\ "with SDK " + w[2] AdminTask.setServerSDK('-nodeName ' +w[0]+ ' -serverName ' +w[1]+\ ' -sdkName ' + w[2]) l = f.readline() finally: f.close() restoreServers()
py
b4010c75396a0d01efdabb4aa59a31403e80987f
w = 50.0 h = 50.0 def mandel(): """Print a mandelbrot fractal to the console, yielding after each character is printed""" y = 0.0 while y < h: x = 0.0 while x < w: Zr, Zi, Tr, Ti = 0.0, 0.0, 0.0, 0.0 Cr = 2 * x / w - 1.5 Ci = 2 * y / h - 1.0 i = 0 while i < 50 and Tr + Ti <= 4: Zi = 2 * Zr * Zi + Ci Zr = Tr - Ti + Cr Tr = Zr * Zr Ti = Zi * Zi i += 1 if Tr + Ti <= 4: print('*', end='') else: print('·', end='') x += 1 yield print() y += 1 yield # run the mandelbrot try: from browser import request_animation_frame except: request_animation_frame = None gen = mandel() def gen_cb(_time=None): for _ in range(4): gen.__next__() request_animation_frame(gen_cb) if request_animation_frame: gen_cb() else: any(gen)
py
b4010cbce3da4136ce10037374806913f79425dc
# pylint: skip-file import asyncio import sys import json import time from typing import ( Optional, List, Sequence, Union, Dict, Awaitable, BinaryIO, Tuple, Any, ) from base64 import b64encode from urllib.parse import quote import aiohttp import backoff # type: ignore from . import __version__ from .utils import filter_items from .errors import ( HTTPException, Forbidden, NotFound, SpotifyException, BearerTokenError, RateLimitedException, ) __all__ = ("HTTPClient", "HTTPUserClient") _GET_BEARER_ARG_ERR = "{name} was `None` when getting a bearer token." _PYTHON_VERSION = ".".join(str(_) for _ in sys.version_info[:3]) _AIOHTTP_VERSION = aiohttp.__version__ class HTTPClient: """A class responsible for handling all HTTP logic. This class combines a small amount of stateful logic control with the :meth:`request` method and a very thin wrapper over the raw HTTP API. All endpoint methods mirror the default arguments the API uses and is best described as a series of "good defaults" for the routes. Parameters ---------- client_id : str The client id provided by spotify for the app. client_secret : str The client secret for the app. loop : Optional[event loop] The event loop the client should run on, if no loop is specified `asyncio.get_event_loop()` is called and used instead. Attributes ---------- loop : AbstractEventLoop The loop the client is running with. client_id : str The client id of the app. client_secret : str The client secret. """ RETRY_AMOUNT = 10 DEFAULT_USER_AGENT = ( user_agent ) = f"Application (https://github.com/mental32/spotify.py {__version__}) Python/{_PYTHON_VERSION} aiohttp/{_AIOHTTP_VERSION}" def __init__(self, client_id: str, client_secret: str, loop=None): self.loop = loop or asyncio.get_event_loop() self._session = aiohttp.ClientSession(loop=self.loop) self.client_id = client_id self.client_secret = client_secret self.bearer_info: Optional[Dict[str, str]] = None self.__request_barrier_lock = asyncio.Lock() self.__request_barrier = asyncio.Event() self.__request_barrier.set() @staticmethod def route( method: str, path: str, *, base: str = "https://api.spotify.com/v1", **kwargs ) -> Tuple[str, str]: """Used for constructing URLs for API endpoints. Parameters ---------- method : str The HTTP/REST method used. path : str A path to be formatted. kwargs : Any The arguments used to format the path. Returns ------- route : Tuple[str, str] A tuple of the method and formatted url path to use. """ url = base + path if kwargs: url = url.format( **{ key: (quote(value) if isinstance(value, str) else value) for key, value in kwargs.items() } ) return (method, url) async def get_bearer_info( self, client_id: Optional[str] = None, client_secret: Optional[str] = None, session: Optional[aiohttp.ClientSession] = None, ): """Get the application bearer token from client_id and client_secret. Raises ------ SpotifyException This will be raised when either `client_id` or `client_secret` is `None` """ client_id = client_id or self.client_id client_secret = client_secret or self.client_secret if client_id is None: raise SpotifyException(_GET_BEARER_ARG_ERR.format(name="client_id")) if client_secret is None: raise SpotifyException(_GET_BEARER_ARG_ERR.format(name="client_secret")) token = b64encode(":".join((client_id, client_secret)).encode()) data = {"grant_type": "client_credentials"} headers = {"Authorization": f"Basic {token.decode()}"} session = session or self._session async with session.post( "https://accounts.spotify.com/api/token", data=data, headers=headers ) as response: bearer_info = json.loads(await response.text(encoding="utf-8")) if "error" in bearer_info.keys(): raise BearerTokenError(response=response, message=bearer_info) return bearer_info @backoff.on_exception(backoff.expo, RateLimitedException) async def request(self, route, **kwargs): r"""Make a request to the spotify API with the current bearer credentials. Parameters ---------- route : Tuple[str, str] A tuple of the method and url gained from :meth:`route`. \*\*kwargs : Any keyword arguments to pass into :class:`aiohttp.ClientSession.request` """ assert isinstance(route, tuple), "route parameter was not a tuple!" assert len(route) == 2, "route parameter must have exactly two items" method, url, = route headers = kwargs.pop("headers", {}) if "Authorization" not in headers: if self.bearer_info is None: self.bearer_info = bearer_info = await self.get_bearer_info() access_token = bearer_info["access_token"] else: access_token = self.bearer_info["access_token"] headers["Authorization"] = "Bearer " + access_token headers = { "Content-Type": kwargs.pop("content_type", "application/json"), "User-Agent": self.user_agent, **headers, } if "json" in kwargs: headers["Content-Type"] = "application/json" kwargs["data"] = json.dumps( kwargs.pop("json"), separators=(",", ":"), ensure_ascii=True ) for current_retry in range(self.RETRY_AMOUNT): await self.__request_barrier.wait() response = await self._session.request( method, url, headers=headers, **kwargs ) try: status = response.status try: data = json.loads(await response.text(encoding="utf-8")) except json.decoder.JSONDecodeError: data = {} if 300 > status >= 200: return data if status == 401: self.bearer_info = bearer_info = await self.get_bearer_info() headers["Authorization"] = "Bearer " + bearer_info["access_token"] continue if status == 429: # we're being rate limited. self.__request_barrier.clear() amount = int(response.headers.get("Retry-After")) checkpoint = int(time.time()) async with self.__request_barrier_lock: if (int(time.time()) - checkpoint) < amount: self.__request_barrier.clear() await asyncio.sleep(int(amount), loop=self.loop) self.__request_barrier.set() continue if status in (502, 503): # unconditional retry continue if status == 403: raise Forbidden(response, data) if status == 404: raise NotFound(response, data) finally: await response.release() if response.status == 429: raise RateLimitedException((amount, _max_retries - current_retry)) raise HTTPException(response, data) async def close(self): """Close the underlying HTTP session.""" await self._session.close() # Methods are defined in the order that they are listed in # the api docs (https://developer.spotify.com/documentation/web-api/reference/) # Album related endpoints def album(self, spotify_id: str, market: Optional[str] = "US") -> Awaitable: """Get Spotify catalog information for a single album. Parameters ---------- spotify_id : str The spotify_id to search by. market : Optional[str] An ISO 3166-1 alpha-2 country code. """ route = self.route("GET", "/albums/{spotify_id}", spotify_id=spotify_id) payload: Dict[str, Any] = {} if market: payload["market"] = market return self.request(route, params=payload) def album_tracks( self, spotify_id: str, limit: Optional[int] = 20, offset: Optional[int] = 0, market="US", ) -> Awaitable: """Get Spotify catalog information about an album’s tracks. Parameters ---------- spotify_id : str The spotify_id to search by. limit : Optional[int] The maximum number of items to return. Default: 20. Minimum: 1. Maximum: 50. offset : Optiona[int] The offset of which Spotify should start yielding from. market : Optional[str] An ISO 3166-1 alpha-2 country code. """ route = self.route("GET", "/albums/{spotify_id}/tracks", spotify_id=spotify_id) payload: Dict[str, Any] = {"limit": limit, "offset": offset} if market: payload["market"] = market return self.request(route, params=payload) def albums(self, spotify_ids, market="US") -> Awaitable: """Get Spotify catalog information for multiple albums identified by their Spotify IDs. Parameters ---------- spotify_ids : List[str] The spotify_ids to search by. market : Optional[str] An ISO 3166-1 alpha-2 country code. """ route = self.route("GET", "/albums/") payload: Dict[str, Any] = {"ids": spotify_ids} if market: payload["market"] = market return self.request(route, params=payload) # Artist related endpoints. def artist(self, spotify_id) -> Awaitable: """Get Spotify catalog information for a single artist identified by their unique Spotify ID. Parameters ---------- spotify_id : str The spotify_id to search by. """ route = self.route("GET", "/artists/{spotify_id}", spotify_id=spotify_id) return self.request(route) def artist_albums( self, spotify_id, include_groups=None, limit: Optional[int] = 20, offset: Optional[int] = 0, market="US", ): """Get Spotify catalog information about an artist’s albums. Parameters ---------- spotify_id : str The spotify_id to search by. include_groups : INCLUDE_GROUPS_TP INCLUDE_GROUPS limit : Optional[int] The maximum number of items to return. Default: 20. Minimum: 1. Maximum: 50. offset : Optiona[int] The offset of which Spotify should start yielding from. market : Optional[str] An ISO 3166-1 alpha-2 country code. """ route = self.route("GET", "/artists/{spotify_id}/albums", spotify_id=spotify_id) payload: Dict[str, Any] = {"limit": limit, "offset": offset} if include_groups: payload["include_groups"] = include_groups if market: payload["market"] = market return self.request(route, params=payload) def artist_top_tracks(self, spotify_id, country) -> Awaitable: """Get Spotify catalog information about an artist’s top tracks by country. Parameters ---------- spotify_id : str The spotify_id to search by. country : COUNTRY_TP COUNTRY """ route = self.route( "GET", "/artists/{spotify_id}/top-tracks", spotify_id=spotify_id ) payload: Dict[str, Any] = {"country": country} return self.request(route, params=payload) def artist_related_artists(self, spotify_id) -> Awaitable: """Get Spotify catalog information about artists similar to a given artist. Similarity is based on analysis of the Spotify community’s listening history. Parameters ---------- spotify_id : str The spotify_id to search by. """ route = self.route( "GET", "/artists/{spotify_id}/related-artists", spotify_id=spotify_id ) return self.request(route) def artists(self, spotify_ids) -> Awaitable: """Get Spotify catalog information for several artists based on their Spotify IDs. Parameters ---------- spotify_id : List[str] The spotify_ids to search with. """ route = self.route("GET", "/artists") payload: Dict[str, Any] = {"ids": spotify_ids} return self.request(route, params=payload) # Browse endpoints. def category(self, category_id, country=None, locale=None) -> Awaitable: """Get a single category used to tag items in Spotify (on, for example, the Spotify player’s “Browse” tab). Parameters ---------- category_id : str The Spotify category ID for the category. country : COUNTRY_TP COUNTRY locale : LOCALE_TP LOCALE """ route = self.route( "GET", "/browse/categories/{category_id}", category_id=category_id ) payload: Dict[str, Any] = {} if country: payload["country"] = country if locale: payload["locale"] = locale return self.request(route, params=payload) def category_playlists( self, category_id, limit: Optional[int] = 20, offset: Optional[int] = 0, country=None, ) -> Awaitable: """Get a list of Spotify playlists tagged with a particular category. Parameters ---------- category_id : str The Spotify category ID for the category. limit : Optional[int] The maximum number of items to return. Default: 20. Minimum: 1. Maximum: 50. offset : Optional[int] The index of the first item to return. Default: 0 country : COUNTRY_TP COUNTRY """ route = self.route( "GET", "/browse/categories/{category_id}/playlists", category_id=category_id ) payload: Dict[str, Any] = {"limit": limit, "offset": offset} if country: payload["country"] = country return self.request(route, params=payload) def categories( self, limit: Optional[int] = 20, offset: Optional[int] = 0, country=None, locale=None, ) -> Awaitable: """Get a list of categories used to tag items in Spotify (on, for example, the Spotify player’s “Browse” tab). Parameters ---------- limit : Optional[int] The maximum number of items to return. Default: 20. Minimum: 1. Maximum: 50. offset : Optional[int] The index of the first item to return. Default: 0 country : COUNTRY_TP COUNTRY locale : LOCALE_TP LOCALE """ route = self.route("GET", "/browse/categories") payload: Dict[str, Any] = {"limit": limit, "offset": offset} if country: payload["country"] = country if locale: payload["locale"] = locale return self.request(route, params=payload) def featured_playlists( self, locale=None, country=None, timestamp=None, limit: Optional[int] = 20, offset: Optional[int] = 0, ): """Get a list of Spotify featured playlists (shown, for example, on a Spotify player’s ‘Browse’ tab). Parameters ---------- locale : LOCALE_TP LOCALE country : COUNTRY_TP COUNTRY timestamp : TIMESTAMP_TP TIMESTAMP limit : Optional[int] The maximum number of items to return. Default: 20. Minimum: 1. Maximum: 50. offset : Optional[int] The index of the first item to return. Default: 0 """ route = self.route("GET", "/browse/featured-playlists") payload: Dict[str, Any] = {"limit": limit, "offset": offset} if country: payload["country"] = country if locale: payload["locale"] = locale if timestamp: payload["timestamp"] = timestamp return self.request(route, params=payload) def new_releases( self, *, country=None, limit: Optional[int] = 20, offset: Optional[int] = 0 ) -> Awaitable: """Get a list of new album releases featured in Spotify (shown, for example, on a Spotify player’s “Browse” tab). Parameters ---------- limit : Optional[int] The maximum number of items to return. Default: 20. Minimum: 1. Maximum: 50. offset : Optional[int] The index of the first item to return. Default: 0 country : COUNTRY_TP COUNTRY """ route = self.route("GET", "/browse/new-releases") payload: Dict[str, Any] = {"limit": limit, "offset": offset} if country: payload["country"] = country return self.request(route, params=payload) def recommendations( self, seed_artists, seed_genres, seed_tracks, *, limit: Optional[int] = 20, market=None, **filters, ): """Get Recommendations Based on Seeds. Parameters ---------- seed_artists : str A comma separated list of Spotify IDs for seed artists. Up to 5 seed values may be provided. seed_genres : str A comma separated list of any genres in the set of available genre seeds. Up to 5 seed values may be provided. seed_tracks : str A comma separated list of Spotify IDs for a seed track. Up to 5 seed values may be provided. limit : Optional[int] The maximum number of items to return. Default: 20. Minimum: 1. Maximum: 50. market : Optional[str] An ISO 3166-1 alpha-2 country code. max_* : Optional[Keyword arguments] For each tunable track attribute, a hard ceiling on the selected track attribute’s value can be provided. min_* : Optional[Keyword arguments] For each tunable track attribute, a hard floor on the selected track attribute’s value can be provided. target_* : Optional[Keyword arguments] For each of the tunable track attributes (below) a target value may be provided. """ route = self.route("GET", "/recommendations") payload: Dict[str, Any] = { "seed_artists": seed_artists, "seed_genres": seed_genres, "seed_tracks": seed_tracks, "limit": limit, } if market: payload["market"] = market if filters: payload.update(filters) return self.request(route, params=payload) # Follow related endpoints. def following_artists_or_users(self, ids, *, type_="artist") -> Awaitable: """Check to see if the current user is following one or more artists or other Spotify users. Parameters ---------- ids : List[:class:`str`] A comma-separated list of the artist or the user Spotify IDs to check. A maximum of 50 IDs can be sent in one request. type_ : Optional[:class:`str`] The ID type: either "artist" or "user". Default: "artist" """ route = self.route("GET", "/me/following/contains") payload: Dict[str, Any] = {"ids": ids, "type": type_} return self.request(route, params=payload) def following_playlists(self, playlist_id: str, ids: List[str]) -> Awaitable: """Check to see if one or more Spotify users are following a specified playlist. Parameters ---------- playlist_id : :class:`str` The Spotify ID of the playlist. ids : List[:class:`str`] A list of the artist or the user Spotify IDs. A maximum of five IDs are allowed. """ route = self.route( "GET", "/playlists/{playlist_id}/followers/contains", playlist_id=playlist_id, ) payload: Dict[str, Any] = {"ids": ids} return self.request(route, params=payload) def follow_artist_or_user(self, type_: str, ids: List[str]) -> Awaitable: """Add the current user as a follower of one or more artists or other Spotify users. Parameters ---------- type_ : :class:`str` either artist or user. ids : List[:class:`str`] A list of the artist or the user Spotify IDs. """ route = self.route("PUT", "/me/following") payload: Dict[str, Any] = {"ids": ids, "type": type_} return self.request(route, params=payload) def followed_artists( self, *, limit: Optional[int] = 20, after: Optional[str] = None ) -> Awaitable: """Get the current user’s followed artists. Parameters ---------- limit : Optional[:class:`int`] The maximum number of items to return. Default: 20. Minimum: 1. Maximum: 50. after : Optional[:class:`str`] The last artist ID retrieved from the previous request. """ route = self.route("GET", "/me/following") payload: Dict[str, Any] = {"limit": limit, "type": "artist"} if after: payload["after"] = after return self.request(route, params=payload) def unfollow_artists_or_users(self, type_: str, ids: List[str]) -> Awaitable: """Remove the current user as a follower of one or more artists or other Spotify users. Parameters ---------- type_ : :class:`str` either artist or user. ids : List[:class:`str`] A list of the artist or the user Spotify IDs. """ route = self.route("DELETE", "/me/following") payload: Dict[str, Any] = {"ids": ids, "type": type_} return self.request(route, params=payload) def unfollow_playlist(self, playlist_id: str) -> Awaitable: """Remove the current user as a follower of a playlist. Parameters ---------- playlist_id : :class:`str` The Spotify ID of the playlist that is to be no longer followed. """ route = self.route( "DELETE", "/playlists/{playlist_id}/followers", playlist_id=playlist_id ) return self.request(route) def is_saved_album(self, ids: List[str]) -> Awaitable: """Check if one or more albums is already saved in the current Spotify user’s ‘Your Music’ library. Parameters ---------- ids : List[:class:`str`] A list of the Spotify IDs. """ route = self.route("GET", "/me/albums/contains") payload: Dict[str, Any] = {"ids": ",".join(ids)} return self.request(route, params=payload) def is_saved_track(self, ids: List[str]) -> Awaitable: """Check if one or more tracks is already saved in the current Spotify user’s ‘Your Music’ library. Parameters ---------- ids : List[:class:`str`] A list of the Spotify IDs. """ route = self.route("GET", "/me/tracks/contains") payload: Dict[str, Any] = {"ids": ",".join(ids)} return self.request(route, params=payload) def saved_albums( self, *, limit: Optional[int] = 20, offset: Optional[int] = 0, market: Optional[str] = None, ) -> Awaitable: """Get a list of the albums saved in the current Spotify user’s ‘Your Music’ library. Parameters ---------- limit : Optional[:class:`str`] The maximum number of objects to return. Default: 20. Minimum: 1. Maximum: 50. offset : Optional[:class:`str`] The index of the first object to return. Default: 0 (i.e., the first object). Use with limit to get the next set of objects. market : Optional[:class:`str`] An ISO 3166-1 alpha-2 country code or the string from_token. Provide this parameter if you want to apply Track Relinking. """ route = self.route("GET", "/me/albums") payload: Dict[str, Any] = {"limit": limit, "offset": offset} if market is not None: payload["market"] = market return self.request(route, params=payload) def saved_tracks( self, *, limit: Optional[int] = 20, offset: Optional[int] = 0, market: Optional[str] = None, ) -> Awaitable: """Get a list of the songs saved in the current Spotify user’s ‘Your Music’ library. Parameters ---------- limit : Optional[:class:`str`] The maximum number of objects to return. Default: 20. Minimum: 1. Maximum: 50. offset : Optional[:class:`str`] The index of the first object to return. Default: 0 (i.e., the first object). Use with limit to get the next set of objects. market : Optional[:class:`str`] An ISO 3166-1 alpha-2 country code or the string from_token. Provide this parameter if you want to apply Track Relinking. """ route = self.route("GET", "/me/tracks") payload: Dict[str, Any] = {"limit": limit, "offset": offset} if market: payload["market"] = market return self.request(route, params=payload) def delete_saved_albums(self, ids: List[str]) -> Awaitable: """Remove one or more albums from the current user’s ‘Your Music’ library. Parameters ---------- ids : List[:class:`str`] A list of the Spotify IDs. """ route = self.route("DELETE", "/me/albums") return self.request(route, json=ids) def delete_saved_tracks(self, ids: List[str]) -> Awaitable: """Remove one or more tracks from the current user’s ‘Your Music’ library. Parameters ---------- ids : List[:class:`str`] A list of the Spotify IDs. """ route = self.route("DELETE", "/me/tracks") return self.request(route, json=ids) def save_tracks(self, ids: List[str]) -> Awaitable: """Save one or more tracks to the current user’s ‘Your Music’ library. Parameters ---------- ids : List[:class:`str`] A list of the Spotify IDs. """ route = self.route("PUT", "/me/tracks") return self.request(route, json=ids) def save_albums(self, ids: List[str]) -> Awaitable: """Save one or more albums to the current user’s ‘Your Music’ library. Parameters ---------- ids : List[:class:`str`] A list of the Spotify IDs. """ route = self.route("PUT", "/me/albums") return self.request(route, json=ids) def top_artists_or_tracks( self, type_: str, *, limit: Optional[int] = 20, offset: Optional[int] = 0, time_range: Optional[str] = None, ) -> Awaitable: """Get the current user’s top artists or tracks based on calculated affinity. Affinity is a measure of the expected preference a user has for a particular track or artist. It is based on user behavior, including play history, but does not include actions made while in incognito mode. Light or infrequent users of Spotify may not have sufficient play history to generate a full affinity data set. As a user’s behavior is likely to shift over time, this preference data is available over three time spans. For each time range, the top 50 tracks and artists are available for each user. In the future, it is likely that this restriction will be relaxed. This data is typically updated once each day for each user. Parameters ---------- type_ : :class;`str` The type of entity to return. Valid values: "artists" or "tracks". limit : Optional[:class:`int`] The number of entities to return. Default: 20. Minimum: 1. Maximum: 50. For example: limit=2 offset : Optional[:class:`int`] The index of the first entity to return. Default: 0 (i.e., the first track). Use with limit to get the next set of entities. time_range : Optional[:class:`str`] Over what time frame the affinities are computed. Valid values: - "long_term" (calculated from several years of data and including all new data as it becomes available) - "medium_term" (approximately last 6 months) - "short_term" (approximately last 4 weeks). Default: medium_term. """ route = self.route("GET", "/me/top/{type_}", type_=type_) payload: Dict[str, Any] = {"limit": limit, "offset": offset} if time_range is not None: payload["time_range"] = time_range return self.request(route, params=payload) def available_devices(self) -> Awaitable: """Get information about a user’s available devices.""" route = self.route("GET", "/me/player/devices") return self.request(route) def current_player(self, *, market: Optional[str] = None) -> Awaitable: """Get information about the user’s current playback state, including track, track progress, and active device. Parameters ---------- market : Optional[:class:`str`] An ISO 3166-1 alpha-2 country code or the string from_token. Provide this parameter if you want to apply Track Relinking. """ route = self.route("GET", "/me/player") payload: Dict[str, Any] = {} if market: payload["market"] = market return self.request(route, params=payload) def playback_queue(self, *, uri: str, device_id: Optional[str] = None) -> Awaitable: """Add an item to the end of the user’s current playback queue. Parameters ---------- uri : :class:`str` The uri of the item to add to the queue. Must be a track or an episode uri. device_id : :class:`str` The id of the device this command is targeting. If not supplied, the user’s currently active device is the target. """ route = self.route("POST", "/me/player/queue") params = {"uri": uri} if device_id is not None: params["device_id"] = device_id return self.request(route, params=params) def recently_played( self, *, limit: Optional[int] = 20, before: Optional[str] = None, after: Optional[str] = None, ) -> Awaitable: """Get tracks from the current user’s recently played tracks. Returns the most recent 50 tracks played by a user. Note that a track currently playing will not be visible in play history until it has completed. A track must be played for more than 30 seconds to be included in play history. Any tracks listened to while the user had “Private Session” enabled in their client will not be returned in the list of recently played tracks. The endpoint uses a bidirectional cursor for paging. Follow the next field with the before parameter to move back in time, or use the after parameter to move forward in time. If you supply no before or after parameter, the endpoint will return the most recently played songs, and the next link will page back in time. Parameters ---------- limit : Optional[:class:`int`] The maximum number of items to return. Default: 20. Minimum: 1. Maximum: 50. after : Optional[:class:`str`] A Unix timestamp in milliseconds. Returns all items after (but not including) this cursor position. If after is specified, before must not be specified. before : Optional[:class:`str`] A Unix timestamp in milliseconds. Returns all items before (but not including) this cursor position. If before is specified, after must not be specified. """ route = self.route("GET", "/me/player/recently-played") payload: Dict[str, Any] = {"limit": limit} if before: payload["before"] = before elif after: payload["after"] = after return self.request(route, params=payload) def currently_playing(self, *, market: Optional[str] = None) -> Awaitable: """Get the object currently being played on the user’s Spotify account. Parameters ---------- market : Optional[:class:`str`] An ISO 3166-1 alpha-2 country code or the string from_token. Provide this parameter if you want to apply Track Relinking. """ route = self.route("GET", "/me/player/currently-playing") payload: Dict[str, Any] = {} if market: payload["market"] = market return self.request(route, params=payload) def pause_playback(self, *, device_id: Optional[str] = None) -> Awaitable: """Pause playback on the user’s account. Parameters ---------- device_id : Optional[:class:`str`] The id of the device this command is targeting. If not supplied, the user’s currently active device is the target. """ route = self.route("PUT", "/me/player/pause") payload: Dict[str, Any] = {} if device_id: payload["device_id"] = device_id return self.request(route, params=payload) def seek_playback( self, position_ms: int, *, device_id: Optional[str] = None ) -> Awaitable: """Seeks to the given position in the user’s currently playing track. Parameters ---------- position_ms : :class:`int` The position in milliseconds to seek to. Must be a positive number. Passing in a position that is greater than the length of the track will cause the player to start playing the next song. device_id : Optional[:class:`str`] The id of the device this command is targeting. If not supplied, the user’s currently active device is the target. """ route = self.route("PUT", "/me/player/seek") payload: Dict[str, Any] = {"position_ms": position_ms} if device_id: payload["device_id"] = device_id return self.request(route, params=payload) def repeat_playback( self, state: str, *, device_id: Optional[str] = None ) -> Awaitable: """Set the repeat mode for the user’s playback. Options are repeat-track, repeat-context, and off. Parameters ---------- state : :class:`str` "track", "context" or "off". - track will repeat the current track. - context will repeat the current context. - off will turn repeat off. device_id : Optional[str] The id of the device this command is targeting. If not supplied, the user’s currently active device is the target. """ route = self.route("PUT", "/me/player/repeat") payload: Dict[str, Any] = {"state": state} if device_id: payload["device_id"] = device_id return self.request(route, params=payload) def set_playback_volume( self, volume: int, *, device_id: Optional[str] = None ) -> Awaitable: """Set the volume for the user’s current playback device. Parameters ---------- volume : :class:`int` The volume to set. Must be a value from 0 to 100 inclusive. device_id : Optional[:class:`str`] The id of the device this command is targeting. If not supplied, the user’s currently active device is the target. """ route = self.route("PUT", "/me/player/volume") payload: Dict[str, Any] = {"volume_percent": volume} if device_id: payload["device_id"] = device_id return self.request(route, params=payload) def skip_next(self, *, device_id: Optional[str] = None) -> Awaitable: """Skips to next track in the user’s queue. Parameters ---------- device_id : Optional[:class:`str`] The id of the device this command is targeting. If not supplied, the user’s currently active device is the target. """ route = self.route("POST", "/me/player/next") payload: Dict[str, Any] = {} if device_id: payload["device_id"] = device_id return self.request(route, params=payload) def skip_previous(self, *, device_id: Optional[str] = None) -> Awaitable: """Skips to previous track in the user’s queue. Parameters ---------- device_id : Optional[:class:`str`] The id of the device this command is targeting. If not supplied, the user’s currently active device is the target. """ route = self.route("POST", "/me/player/previous") payload: Dict[str, Any] = {} if device_id: payload["device_id"] = device_id return self.request(route, params=payload) def play_playback( self, context_uri: Union[str, Sequence[str]], *, offset: Optional[Union[str, int]] = None, device_id: Optional[str] = None, position_ms: Optional[int] = 0, ) -> Awaitable: """Start a new context or resume current playback on the user’s active device. .. note:: In order to resume playback set the context_uri to None. Parameters ---------- context_uri : Union[str, Sequence[:class:`str`]] The context to play, if it is a string then it must be a uri of a album, artist or playlist. Otherwise a sequece of strings can be passed in and they must all be track URIs offset : Optional[Union[:class:`str`, :class:`int`]] The offset of which to start from, must either be an integer or a track URI. device_id : Optional[:class:`str`] The id of the device this command is targeting. If not supplied, the user’s currently active device is the target. position_ms : Optional[:class:`int`] indicates from what position to start playback. Must be a positive number. Passing in a position that is greater than the length of the track will cause the player to start playing the next song. """ route = self.route("PUT", "/me/player/play") payload: Dict[str, Any] = {"position_ms": position_ms} params: Dict[str, Any] = {} can_set_offset: bool = False if isinstance(context_uri, str): payload["context_uri"] = context_uri can_set_offset = "playlist" in context_uri or "album" in context_uri elif hasattr(context_uri, "__iter__"): payload["uris"] = list(context_uri) can_set_offset = True elif context_uri is None: pass # Do nothing, context_uri == None is allowed and intended for resume's else: raise TypeError( f"`context_uri` must be a string or an iterable object, got {type(context_uri)}" ) if offset is not None: if can_set_offset: _offset: Dict[str, Union[int, str]] if isinstance(offset, str): _offset = {"uri": offset} elif isinstance(offset, int): _offset = {"position": offset} else: raise TypeError( f"`offset` should be either a string or an integer, got {type(offset)}" ) payload["offset"] = _offset else: raise ValueError( "not able to set `offset` as either `context_uri` was not a list or it was a playlist or album uri." ) if device_id is not None: params["device_id"] = device_id return self.request(route, params=params, json=payload) def shuffle_playback( self, state: bool, *, device_id: Optional[str] = None ) -> Awaitable: """Toggle shuffle on or off for user’s playback. Parameters ---------- state : :class:`bool` True : Shuffle user’s playback False : Do not shuffle user’s playback. device_id : Optional[:class:`str`] The id of the device this command is targeting. If not supplied, the user’s currently active device is the target. """ route = self.route("PUT", "/me/player/shuffle") payload: Dict[str, Any] = {"state": f"{bool(state)}".lower()} if device_id is not None: payload["device_id"] = device_id return self.request(route, params=payload) def transfer_player( self, device_id: str, *, play: Optional[bool] = False ) -> Awaitable: """Transfer playback to a new device and determine if it should start playing. .. note: Note that a value of false for the play parameter when also transferring to another device_id will not pause playback. To ensure that playback is paused on the new device you should send a pause command to the currently active device before transferring to the new device_id. Parameters ---------- device_id : :class:`str` A Spotify Device ID play : Optional[:class:`bool`] True: ensure playback happens on new device. False or not provided: keep the current playback state. """ route = self.route("PUT", "/me/player") payload: Dict[str, Any] = {"device_ids": [device_id], "play": play} return self.request(route, json=payload) def add_playlist_tracks( self, playlist_id: str, tracks: Sequence[Union[str]], position: Optional[int] = None, ) -> Awaitable: """Add one or more tracks to a user’s playlist. Parameters ---------- playlist_id : :class:`str` The Spotify ID for the playlist. tracks : Sequence[Union[:class:`str`]] A sequence of track URIs. position : Optional[:class:`int`] The position to insert the tracks, a zero-based index. """ route = self.route( "POST", "/playlists/{playlist_id}/tracks", playlist_id=playlist_id ) payload: Dict[str, Any] = {"uris": [track for track in tracks]} if position is not None: payload["position"] = position return self.request(route, json=payload) def change_playlist_details( self, playlist_id: str, *, name: Optional[str] = None, public: Optional[bool] = None, collaborative: Optional[bool] = None, description: Optional[str] = None, ) -> Awaitable: """Change a playlist’s name and public/private state. (The user must, of course, own the playlist.) Parameters ---------- playlist_id : :class:`str` The Spotify ID for the playlist. name : :class:`str` The name for the new playlist public : Optional[:class:`bool`] Defaults to true . If true the playlist will be public, if false it will be private collaborative : Optional[:class:`bool`] Defaults to false . If true the playlist will be collaborative. .. note:: to create a collaborative playlist you must also set public to false description : Optional[:class:`str`] The value for playlist description as displayed in Spotify Clients and in the Web API. """ route = self.route("PUT", "/playlists/{playlist_id}", playlist_id=playlist_id) payload: Dict[str, Any] = filter_items( { "name": name, "public": public, "collaborative": collaborative, "description": description, } ) return self.request(route, json=payload) def create_playlist( self, user_id: str, *, name: str, public: Optional[bool] = True, collaborative: Optional[bool] = False, description: Optional[str] = "", ) -> Awaitable: """Create a playlist for a Spotify user. (The playlist will be empty until you add tracks.) Parameters ---------- user_id : :class:`str` The user’s Spotify user ID. name : :class:`str` The name for the new playlist public : Optional[:class:`bool`] Defaults to true . If true the playlist will be public, if false it will be private collaborative : Optional[:class:`bool`] Defaults to false . If true the playlist will be collaborative. .. note:: to create a collaborative playlist you must also set public to false description : Optional[:class:`str`] The value for playlist description as displayed in Spotify Clients and in the Web API. """ route = self.route("POST", "/users/{user_id}/playlists", user_id=user_id) payload: Dict[str, Any] = { "name": name, "public": public, "collaborative": collaborative, "description": description, } return self.request(route, json=payload) def follow_playlist( self, playlist_id: str, *, public: Optional[bool] = True ) -> Awaitable: """Add the current user as a follower of a playlist. Parameters ---------- playlist_id : :class:`str` The Spotify ID of the playlist. Any playlist can be followed, regardless of its public/private status, as long as you know its playlist ID. public : Optional[:class:`bool`] Defaults to true. If true the playlist will be included in user’s public playlists, if false it will remain private. """ route = self.route( "PUT", "/playlists/{playlist_id}/followers", playlist_id=playlist_id ) payload: Dict[str, Any] = {"public": public} return self.request(route, json=payload) def current_playlists( self, *, limit: Optional[int] = 20, offset: Optional[int] = 0 ) -> Awaitable: """Get a list of the playlists owned or followed by the current Spotify user. Parameters ---------- limit : Optional[:class:`str`] The maximum number of playlists to return. Default: 20. Minimum: 1. Maximum: 50. offset : Optional[:class:`str`] he index of the first playlist to return. Default: 0 (the first object). Maximum offset: 100.000. """ route = self.route("GET", "/me/playlists") return self.request(route, params={"limit": limit, "offset": offset}) def get_playlists( self, user_id: str, *, limit: Optional[int] = 20, offset: Optional[int] = 0 ) -> Awaitable: """Get a list of the playlists owned or followed by a Spotify user. Parameters ---------- user_id : :class:`str` The user’s Spotify user ID. limit : Optional[:class:`str`] The maximum number of playlists to return. Default: 20. Minimum: 1. Maximum: 50. offset : Optional[:class:`str`] he index of the first playlist to return. Default: 0 (the first object). Maximum offset: 100.000. """ route = self.route("GET", "/users/{user_id}/playlists", user_id=user_id) return self.request(route, params={"limit": limit, "offset": offset}) def get_playlist_cover_image(self, playlist_id: str) -> Awaitable: """Get the current image associated with a specific playlist. Parameters ---------- playlist_id : :class:`str` The Spotify ID for the playlist. """ route = self.route( "GET", "/playlists/{playlist_id}/images", playlist_id=playlist_id ) return self.request(route) def get_playlist( self, playlist_id: str, *, fields: Optional[str] = None, market: Optional[str] = None, ) -> Awaitable: """Get a playlist owned by a Spotify user. Parameters ---------- playlist_id : :class:`str` The Spotify ID for the playlist. fields: Optional[:class:`str`] Filters for the query: a comma-separated list of the fields to return. If omitted, all fields are returned. For example, to get just the total number of tracks and the request limit: `fields=total,limit` A dot separator can be used to specify non-reoccurring fields, while parentheses can be used to specify reoccurring fields within objects. For example, to get just the added date and user ID of the adder: `fields=items(added_at,added_by.id)` Use multiple parentheses to drill down into nested objects, for example: `fields=items(track(name,href,album(name,href)))` Fields can be excluded by prefixing them with an exclamation mark, for example: `fields=items.track.album(!external_urls,images)` market : Optional[:class:`str`] An ISO 3166-1 alpha-2 country code or the string "from_token". Provide this parameter if you want to apply Track Relinking. """ route = self.route("GET", "/playlists/{playlist_id}", playlist_id=playlist_id) payload: Dict[str, Any] = {} if fields: payload["fields"] = fields if market: payload["market"] = market return self.request(route, params=payload) def get_playlist_tracks( self, playlist_id: str, *, fields: Optional[str] = None, market: Optional[str] = None, limit: Optional[int] = 20, offset: Optional[int] = 0, ) -> Awaitable: """Get full details of the tracks of a playlist owned by a Spotify user. Parameters ---------- playlist_id : :class:`str` The Spotify ID for the playlist. fields: Optional[:class:`str`] Filters for the query: a comma-separated list of the fields to return. If omitted, all fields are returned. For example, to get just the total number of tracks and the request limit: `fields=total,limit` A dot separator can be used to specify non-reoccurring fields, while parentheses can be used to specify reoccurring fields within objects. For example, to get just the added date and user ID of the adder: `fields=items(added_at,added_by.id)` Use multiple parentheses to drill down into nested objects, for example: `fields=items(track(name,href,album(name,href)))` Fields can be excluded by prefixing them with an exclamation mark, for example: `fields=items.track.album(!external_urls,images)` limit : Optional[:class:`str`] The maximum number of tracks to return. Default: 100. Minimum: 1. Maximum: 100. offset : Optional[:class:`str`] The index of the first track to return. Default: 0 (the first object). market : Optional[:class:`str`] An ISO 3166-1 alpha-2 country code or the string "from_token". Provide this parameter if you want to apply Track Relinking. """ route = self.route( "GET", "/playlists/{playlist_id}/tracks", playlist_id=playlist_id ) payload: Dict[str, Any] = {"limit": limit, "offset": offset} if fields: payload["fields"] = fields if market: payload["market"] = market return self.request(route, params=payload) def remove_playlist_tracks( self, playlist_id: str, tracks: Sequence[Union[str, Dict[str, Any]]], *, snapshot_id: str = None, ) -> Awaitable: """Remove one or more tracks from a user’s playlist. Parameters ---------- playlist_id : str The id of the playlist to target tracks : Sequence[Union[str, Dict[str, Union[str, int]]]] Either a sequence of track URIs to remove a specific occurence of a track or for targeted removal pass in a dict that looks like `{'uri': URI, 'position': POSITIONS}` where `URI` is track URI and `POSITIONS` is an list of integers snapshot_id : Optional[str] The snapshot to target. """ route = self.route( "DELETE ", "/playlists/{playlist_id}/tracks", playlist_id=playlist_id ) payload: Dict[str, Any] = { "tracks": [ ({"uri": track} if isinstance(track, str) else track) for track in tracks ] } if snapshot_id: payload["snapshot_id"] = snapshot_id return self.request(route, json=payload) def reorder_playlists_tracks( self, playlist_id: str, range_start: int, range_length: int, insert_before: int, *, snapshot_id: Optional[str] = None, ) -> Awaitable: """Reorder a track or a group of tracks in a playlist. Visualization of how reordering tracks works .. image:: /images/visualization-reordering-tracks.png .. note:: When reordering tracks, the timestamp indicating when they were added and the user who added them will be kept untouched. In addition, the users following the playlists won’t be notified about changes in the playlists when the tracks are reordered. Parameters ---------- playlist_id : :class:`str` The Spotify ID for the playlist. range_start : :class:`int` The position of the first track to be reordered. range_length : :class:`int` The amount of tracks to be reordered. Defaults to 1 if not set. The range of tracks to be reordered begins from the range_start position, and includes the range_length subsequent tracks. insert_before : :class:`int` The position where the tracks should be inserted. To reorder the tracks to the end of the playlist, simply set insert_before to the position after the last track. snapshot_id : Optional[:class:`str`] The playlist’s snapshot ID against which you want to make the changes. """ route = self.route( "PUT", "/playlists/{playlist_id}/tracks", playlist_id=playlist_id ) payload: Dict[str, Any] = { "range_start": range_start, "range_length": range_length, "insert_before": insert_before, } if snapshot_id: payload["snapshot_id"] = snapshot_id return self.request(route, json=payload) def replace_playlist_tracks( self, playlist_id: str, tracks: Sequence[str] ) -> Awaitable: """Replace all the tracks in a playlist, overwriting its existing tracks. .. note:: This powerful request can be useful for replacing tracks, re-ordering existing tracks, or clearing the playlist. Parameters ---------- playlist_id : :class:`str` The Spotify ID for the playlist. tracks : Sequence[:class:`str`] A list of tracks to replace with. """ route = self.route( "PUT", "/playlists/{playlist_id}/tracks", playlist_id=playlist_id ) payload: Dict[str, Any] = {"uris": tuple(tracks)} return self.request(route, json=payload) def upload_playlist_cover_image( self, playlist_id: str, file: BinaryIO ) -> Awaitable: """Replace the image used to represent a specific playlist. Parameters ---------- playlist_id : :class:`str` The Spotify ID for the playlist. file : File-like object An file-like object that supports reading the contents that are being read should be :class:`bytes` """ route = self.route( "PUT", "/playlists/{playlist_id}/images", playlist_id=playlist_id ) return self.request( route, data=b64encode(file.read()), content_type="image/jpeg" ) def track_audio_analysis(self, track_id: str) -> Awaitable: """Get a detailed audio analysis for a single track identified by its unique Spotify ID. The Audio Analysis endpoint provides low-level audio analysis for all of the tracks in the Spotify catalog. The Audio Analysis describes the track’s structure and musical content, including rhythm, pitch, and timbre. All information is precise to the audio sample. Many elements of analysis include confidence values, a floating-point number ranging from 0.0 to 1.0. Confidence indicates the reliability of its corresponding attribute. Elements carrying a small confidence value should be considered speculative. There may not be sufficient data in the audio to compute the attribute with high certainty. Parameters ---------- track_id : :class:`str` The Spotify ID for the track. """ route = self.route("GET", "/audio-analysis/{id}", id=track_id) return self.request(route) def track_audio_features(self, track_id: str) -> Awaitable: """Get audio feature information for a single track identified by its unique Spotify ID. Parameters ---------- track_id : :class:`str` The Spotify ID for the track. """ route = self.route("GET", "/audio-features/{id}", id=track_id) return self.request(route) def audio_features(self, track_ids: List[str]) -> Awaitable: """Get audio features for multiple tracks based on their Spotify IDs. Parameters ---------- track_ids : List[:class:`str`] A comma-separated list of the Spotify IDs for the tracks. Maximum: 100 IDs. """ route = self.route("GET", "/audio-features") return self.request(route, params={"ids": track_ids}) def track(self, track_id: str, market: Optional[str] = None) -> Awaitable: """Get Spotify catalog information for a single track identified by its unique Spotify ID. Parameters ---------- track_id : :class:`str` The Spotify ID for the track. market : Optional[:class:`str`] An ISO 3166-1 alpha-2 country code or the string "from_token". Provide this parameter if you want to apply Track Relinking. """ route = self.route("GET", "/tracks/{id}", id=track_id) payload: Dict[str, Any] = {} if market is not None: payload["market"] = market return self.request(route, params=payload) def tracks(self, track_ids: List[str], market: Optional[str] = None) -> Awaitable: """Get Spotify catalog information for multiple tracks based on their Spotify IDs. Parameters ---------- track_ids : List[:class:`str`] A comma-separated list of the Spotify IDs for the tracks. Maximum: 50 IDs. market : Optional[:class:`str`] An ISO 3166-1 alpha-2 country code or the string "from_token". Provide this parameter if you want to apply Track Relinking. """ route = self.route("GET", "/tracks") payload: Dict[str, Any] = {"ids": track_ids} if market is not None: payload["market"] = market return self.request(route, params=payload) def current_user(self) -> Awaitable: """Get detailed profile information about the current user (including the current user’s username).""" route = self.route("GET", "/me") return self.request(route) def user(self, user_id: str) -> Awaitable: """Get public profile information about a Spotify user. Parameters --------- user_id : class:`str` The user’s Spotify user ID. """ route = self.route("GET", "/users/{user_id}", user_id=user_id) return self.request(route) def search( # pylint: disable=invalid-name self, q: str, query_type: str = "track,playlist,artist,album", market: str = "US", limit: int = 20, offset: int = 0, include_external: Optional[str] = None, ) -> Awaitable: """Get Spotify Catalog information about artists, albums, tracks or playlists that match a keyword string. Parameters ---------- q : :class:`str` Search query keywords and optional field filters and operators. e.g. `roadhouse blues.` query_type : Optional[:class:`str`] A comma-separated list of item types to search across. (default: "track,playlist,artist,album") Valid types are: album, artist, playlist, and track. Search results include hits from all the specified item types. market : Optional[:class:`str`] An ISO 3166-1 alpha-2 country code or the string "from_token". (default: "US") If a country code is specified, only artists, albums, and tracks with content that is playable in that market is returned. .. note:: - Playlist results are not affected by the market parameter. - If market is set to "from_token", and a valid access token is specified in the request header, only content playable in the country associated with the user account, is returned. - Users can view the country that is associated with their account in the account settings. A user must grant access to the user-read-private scope prior to when the access token is issued. limit : Optional[:class:`int`] Maximum number of results to return. (Default: 20, Minimum: 1, Maximum: 50) .. note:: The limit is applied within each type, not on the total response. For example, if the limit value is 3 and the type is artist,album, the response contains 3 artists and 3 albums. offset : Optional[:class:`int`] The index of the first result to return. Default: 0 (the first result). Maximum offset (including limit): 10,000. Use with limit to get the next page of search results. include_external : Optional[:class:`str`] Possible values: `audio` If `include_external=audio` is specified the response will include any relevant audio content that is hosted externally. By default external content is filtered out from responses. """ route = self.route("GET", "/search") payload: Dict[str, Any] = { "q": q, "type": query_type, "limit": limit, "offset": offset, } if market: payload["market"] = market if include_external is not None: payload["include_external"] = include_external return self.request(route, params=payload) # Shows & Episode related endpoints def save_shows(self, ids: List[str]) -> Awaitable: """Save one or more shows to current Spotify user’s library. Parameters ---------- ids : List[:class:`str`] A list of the Spotify IDs. """ route = self.route("PUT", "/me/shows") payload: Dict[str, Any] = {"ids": ",".join(ids)} return self.request(route, params=payload) def get_saved_shows(self, limit: int = 20, offset: int = 0) -> Awaitable: """Get a list of shows saved in the current Spotify user’s library. Optional parameters can be used to limit the number of shows returned. Parameters ---------- limit : Optional[int] The maximum number of items to return. Default: 20. Minimum: 1. Maximum: 50. offset : Optiona[int] The offset of which Spotify should start yielding from. """ route = self.route("GET", "/me/shows") payload: Dict[str, Any] = {"limit": limit, "offset": offset} return self.request(route, params=payload) def get_show(self, spotify_id: str, market: Optional[str] = "US") -> Awaitable: """Get Spotify catalog information for a single show identified by its unique Spotify ID. Parameters ---------- spotify_id : str The spotify_id to for the show. market : Optional[str] An ISO 3166-1 alpha-2 country code. """ route = self.route("GET", "/shows/{spotify_id}", spotify_id=spotify_id) payload: Dict[str, Any] = {} if market: payload["market"] = market return self.request(route, params=payload) def get_multiple_shows( self, ids: List[str], market: Optional[str] = "US" ) -> Awaitable: """Get Spotify catalog information for several shows based on their Spotify IDs. Parameters ---------- ids : List[:class:`str`] A list of the Spotify IDs. market : Optional[str] An ISO 3166-1 alpha-2 country code. """ route = self.route("GET", "/shows") payload: Dict[str, Any] = {"ids": ",".join(ids)} if market: payload["market"] = market return self.request(route, params=payload) def get_shows_episodes( self, spotify_id: str, market: Optional[str] = "US", limit: int = 20, offset: int = 0, ) -> Awaitable: """Get Spotify catalog information about an show’s episodes. Optional parameters can be used to limit the number of episodes returned. Parameters ---------- spotify_id : str The spotify_id to for the show. market : Optional[str] An ISO 3166-1 alpha-2 country code. limit : Optional[int] The maximum number of items to return. Default: 20. Minimum: 1. Maximum: 50. offset : Optiona[int] The offset of which Spotify should start yielding from. """ route = self.route("GET", "/shows/{spotify_id}/episodes", spotify_id=spotify_id) payload: Dict[str, Any] = {"limit": limit, "offset": offset} if market: payload["market"] = market return self.request(route, params=payload) def check_saved_shows(self, ids: List[str]) -> Awaitable: """Check if one or more shows is already saved in the current Spotify user’s library. Parameters ---------- ids : List[:class:`str`] A list of the Spotify IDs. """ route = self.route("GET", "/me/shows/contains") payload: Dict[str, Any] = {"ids": ",".join(ids)} return self.request(route, params=payload) def remove_saved_shows( self, ids: List[str], market: Optional[str] = "US" ) -> Awaitable: """Delete one or more shows from current Spotify user’s library. Parameters ---------- ids : List[:class:`str`] A list of the Spotify IDs. market : Optional[str] An ISO 3166-1 alpha-2 country code. """ route = self.route("DELETE", "/me/shows") payload: Dict[str, Any] = {"ids": ",".join(ids)} if market: payload["market"] = market return self.request(route, params=payload) def get_episode(self, spotify_id: str, market: Optional[str] = "US") -> Awaitable: """Get Spotify catalog information for a single episode identified by its unique Spotify ID. Parameters ---------- spotify_id : str The spotify_id to for the show. market : Optional[str] An ISO 3166-1 alpha-2 country code. """ route = self.route("GET", "/episodes/{spotify_id}", spotify_id=spotify_id) payload: Dict[str, Any] = {} if market: payload["market"] = market return self.request(route, params=payload) def get_multiple_episodes( self, ids: List[str], market: Optional[str] = "US" ) -> Awaitable: """Get Spotify catalog information for several episodes based on their Spotify IDs. Parameters ---------- ids : List[:class:`str`] A list of the Spotify IDs. market : Optional[str] An ISO 3166-1 alpha-2 country code. """ route = self.route("GET", "/episodes") payload: Dict[str, Any] = {"ids": ",".join(ids)} if market: payload["market"] = market return self.request(route, params=payload) REFRESH_TOKEN_URL = "https://accounts.spotify.com/api/token?grant_type=refresh_token&refresh_token={refresh_token}" class HTTPUserClient(HTTPClient): """HTTPClient for access to user endpoints.""" def __init__( self, client_id: str, client_secret: str, token: str = None, refresh_token: str = None, loop=None, ): assert token or refresh_token super().__init__(client_id, client_secret, loop=loop) if token: self.bearer_info = {"access_token": token} self.refresh_token = refresh_token async def get_bearer_info(self, *_, **__): if not self.refresh_token: # Should only happen if User.from_token didn't receive refresh_token raise SpotifyException( "Access token expired and no refresh token was provided" ) headers = { "Authorization": f"Basic {b64encode(':'.join((self.client_id, self.client_secret)).encode()).decode()}", "Content-Type": "application/x-www-form-urlencoded", } route = ("POST", REFRESH_TOKEN_URL.format(refresh_token=self.refresh_token)) return await self.request(route, headers=headers)
py
b4010daf56d3adc1e7b1a354fa9f8ad1f31abd4c
# https://leetcode.com/problems/matrix-block-sum/ class Solution: def matrixBlockSum(self, mat: list[list[int]], k: int) -> list[list[int]]: rows = len(mat) cols = len(mat[0]) if rows == cols == 1: return mat # Preprocess mat, calculate block sums for columns. col_block_sums = [[0 for _ in range(cols)] for _ in range(rows)] for i in range(rows): for j in range(cols): if i == 0: col_block_sums[i][j] = sum([row[j] for row in mat[:k + 1]]) else: top_sum = col_block_sums[i - 1][j] subtrahend = mat[i - k - 1][j] if i - k - 1 >= 0 else 0 addend = mat[i + k][j] if i + k < rows else 0 col_block_sums[i][j] = top_sum - subtrahend + addend # Calculate answer using column block sums. ans = [[0 for _ in range(cols)] for _ in range(rows)] for i in range(rows): for j in range(cols): if j == 0: ans[i][j] = sum(col_block_sums[i][:k + 1]) else: left_sum = ans[i][j - 1] subtrahend = ( col_block_sums[i][j - k - 1] if j - k - 1 >= 0 else 0) addend = col_block_sums[i][j + k] if j + k < cols else 0 ans[i][j] = left_sum - subtrahend + addend # Mission complete! return ans
py
b4010e1fc31c04926a5b5ad6992bf1c406ce042f
""" Django settings for djangoProject2 project. Generated by 'django-admin startproject' using Django 3.2.8. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-w8ua_e9hi@((3%%f^y_t)wm+=y-kmdv34hd99ohj--i6z0lzj(' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'project_first_app' ] AUTH_USER_MODEL = 'project_first_app.OwerUser' MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'djangoProject2.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [BASE_DIR / 'templates'] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'djangoProject2.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
py
b4010ebdd6ca12a91be135219120ba4d279e5e63
#funcao ou metodo em Python, sempre deve iniciar com DEF (definition) """ def big_mac(): print("sanduiche big mac") print("inicio") big_mac() print("fim") """ def fazer_big_mac(nome): print(f"sanduiche big mac {nome}") def fazer_batata(tamanho): print(f"batata {tamanho}") def preparar_refri(tipo, tamanho): print(f"{tipo} {tamanho}") #fazer_big_mac("Hugo") #fazer_big_mac("Louyse") #fazer_big_mac("Juju") fazer_big_mac("Hugo") fazer_batata("Grande") preparar_refri("Coke", "Media") def fazer_combo(nome, tamanho_batata, tipo_refri, tamanho_refri): print(f"***Saindo um combo") fazer_big_mac(nome) fazer_batata(tamanho_batata) preparar_refri(tipo_refri, tamanho_refri) fazer_combo("HUGO", "Gigante", "Fanta", "Enorme") def maior_num(lista_num): lista_num.sort() lista_num.reverse() maior_num = lista_num[0] return maior_num res = maior_num([123,21,45,84984,-1,48,99999]) print(res)
py
b4010ed24caaa5b96b1daa4ed3cf162a5857c400
project_resources = [ { "urn": "do:loadbalancer:9625f517-75f0-4af8-a336-62374e68dc0d", "assigned_at": "2022-03-10T16:27:58.728298Z", "links": { "self": "https://api.digitalocean.com/v2/load_balancers/9625f517-75f0-4af8-a336-62374e68dc0d" }, "status": "ok", }, { "urn": "do:kubernetes:e1c48631-b382-4001-2168-c47c54795a26", "assigned_at": "2022-03-10T13:07:00.577221Z", "links": { "self": "https://api.digitalocean.com/v2/kubernetes/clusters/e1c48631-b382-4001-2168-c47c54795a26" }, "status": "ok", }, { "urn": "do:dbaas:2848a998-e151-4d5a-9813-0904a44c2397", "assigned_at": "2022-03-10T11:40:06.461298Z", "links": { "self": "https://api.digitalocean.com/v2/databases/2848a998-e151-4d5a-9813-0904a44c2397" }, "status": "ok", }, { "urn": "do:volume:631f81d2-9fc1-11ec-800c-0a58ac14d197", "assigned_at": "2022-03-09T15:55:55.700167Z", "links": { "self": "https://api.digitalocean.com/v2/volumes/631f81d2-9fc1-11ec-800c-0a58ac14d197" }, "status": "ok", }, { "urn": "do:floatingip:127.0.0.1", "assigned_at": "2022-03-03T22:06:30.0352Z", "links": {"self": "https://api.digitalocean.com/v2/floating_ips/127.0.0.1"}, "status": "ok", }, { "urn": "do:droplet:289110074", "assigned_at": "2022-03-03T16:26:58.243032Z", "links": {"self": "https://api.digitalocean.com/v2/droplets/289110074"}, "status": "ok", }, { "urn": "do:space:api-test-space.resoto", "assigned_at": "2022-02-23T13:42:22.636219Z", "links": {"self": "https://api-test-space.resoto.fra1.digitaloceanspaces.com"}, "status": "ok", }, ]
py
b40112d7af7a3343483376a1b27eafa5a3196268
import io import pprp import pprp.config import pprp.utility def decrypt_sink(dg, block_size=pprp.config.DEFAULT_BLOCK_SIZE_B): s = io.BytesIO() last_block = None for block in dg: block_to_send = last_block last_block = block if block_to_send is not None: s.write(block_to_send) trimmed_last_block = pprp.utility.trim_pkcs7_padding(last_block) s.write(trimmed_last_block) return s.getvalue() def encrypt_sink(eg): s = io.BytesIO() for block in eg: s.write(block) return s.getvalue() def decrypt_to_file_sink(f, dg, block_size=pprp.config.DEFAULT_BLOCK_SIZE_B): last_block = None for block in dg: (block_to_send, last_block) = (last_block, block) if block_to_send is not None: f.write(block_to_send) trimmed_last_block = pprp.utility.trim_pkcs7_padding(last_block) f.write(trimmed_last_block) f.flush() def encrypt_to_file_sink(f, eg): for block in eg: f.write(block) f.flush()
py
b401130475163cd0f9b43041d3ccd7cc7c78454b
# (c) Copyright IBM Corp. 2021 # (c) Copyright Instana Inc. 2020 from __future__ import absolute_import import urllib3 from django.apps import apps from ..apps.app_django import INSTALLED_APPS from django.contrib.staticfiles.testing import StaticLiveServerTestCase import os from instana.singletons import agent, tracer from ..helpers import fail_with_message_and_span_dump, get_first_span_by_filter, drop_log_spans_from_list apps.populate(INSTALLED_APPS) class TestDjango(StaticLiveServerTestCase): def setUp(self): """ Clear all spans before a test run """ self.recorder = tracer.recorder self.recorder.clear_spans() self.http = urllib3.PoolManager() def tearDown(self): """ Do nothing for now """ os.environ["INSTANA_DISABLE_W3C_TRACE_CORRELATION"] = "" def test_basic_request(self): with tracer.start_active_span('test'): response = self.http.request('GET', self.live_server_url + '/', fields={"test": 1}) assert response self.assertEqual(200, response.status) spans = self.recorder.queued_spans() self.assertEqual(3, len(spans)) test_span = spans[2] urllib3_span = spans[1] django_span = spans[0] assert ('X-INSTANA-T' in response.headers) assert (int(response.headers['X-INSTANA-T'], 16)) self.assertEqual(django_span.t, response.headers['X-INSTANA-T']) assert ('X-INSTANA-S' in response.headers) assert (int(response.headers['X-INSTANA-S'], 16)) self.assertEqual(django_span.s, response.headers['X-INSTANA-S']) assert ('X-INSTANA-L' in response.headers) self.assertEqual('1', response.headers['X-INSTANA-L']) server_timing_value = "intid;desc=%s" % django_span.t assert ('Server-Timing' in response.headers) self.assertEqual(server_timing_value, response.headers['Server-Timing']) self.assertEqual("test", test_span.data["sdk"]["name"]) self.assertEqual("urllib3", urllib3_span.n) self.assertEqual("django", django_span.n) self.assertEqual(test_span.t, urllib3_span.t) self.assertEqual(urllib3_span.t, django_span.t) self.assertEqual(urllib3_span.p, test_span.s) self.assertEqual(django_span.p, urllib3_span.s) self.assertIsNone(django_span.sy) self.assertIsNone(urllib3_span.sy) self.assertIsNone(test_span.sy) self.assertEqual(None, django_span.ec) self.assertEqual('/', django_span.data["http"]["url"]) self.assertEqual('GET', django_span.data["http"]["method"]) self.assertEqual(200, django_span.data["http"]["status"]) self.assertEqual('test=1', django_span.data["http"]["params"]) self.assertEqual('^$', django_span.data["http"]["path_tpl"]) self.assertIsNone(django_span.stack) def test_synthetic_request(self): headers = { 'X-INSTANA-SYNTHETIC': '1' } with tracer.start_active_span('test'): response = self.http.request('GET', self.live_server_url + '/', headers=headers) assert response self.assertEqual(200, response.status) spans = self.recorder.queued_spans() self.assertEqual(3, len(spans)) test_span = spans[2] urllib3_span = spans[1] django_span = spans[0] self.assertEqual('^$', django_span.data["http"]["path_tpl"]) self.assertTrue(django_span.sy) self.assertIsNone(urllib3_span.sy) self.assertIsNone(test_span.sy) def test_request_with_error(self): with tracer.start_active_span('test'): response = self.http.request('GET', self.live_server_url + '/cause_error') assert response self.assertEqual(500, response.status) spans = self.recorder.queued_spans() spans = drop_log_spans_from_list(spans) span_count = len(spans) if span_count != 3: msg = "Expected 3 spans but got %d" % span_count fail_with_message_and_span_dump(msg, spans) filter = lambda span: span.n == 'sdk' and span.data['sdk']['name'] == 'test' test_span = get_first_span_by_filter(spans, filter) assert (test_span) filter = lambda span: span.n == 'urllib3' urllib3_span = get_first_span_by_filter(spans, filter) assert (urllib3_span) filter = lambda span: span.n == 'django' django_span = get_first_span_by_filter(spans, filter) assert (django_span) assert ('X-INSTANA-T' in response.headers) assert (int(response.headers['X-INSTANA-T'], 16)) self.assertEqual(django_span.t, response.headers['X-INSTANA-T']) assert ('X-INSTANA-S' in response.headers) assert (int(response.headers['X-INSTANA-S'], 16)) self.assertEqual(django_span.s, response.headers['X-INSTANA-S']) assert ('X-INSTANA-L' in response.headers) self.assertEqual('1', response.headers['X-INSTANA-L']) server_timing_value = "intid;desc=%s" % django_span.t assert ('Server-Timing' in response.headers) self.assertEqual(server_timing_value, response.headers['Server-Timing']) self.assertEqual("test", test_span.data["sdk"]["name"]) self.assertEqual("urllib3", urllib3_span.n) self.assertEqual("django", django_span.n) self.assertEqual(test_span.t, urllib3_span.t) self.assertEqual(urllib3_span.t, django_span.t) self.assertEqual(urllib3_span.p, test_span.s) self.assertEqual(django_span.p, urllib3_span.s) self.assertEqual(1, django_span.ec) self.assertEqual('/cause_error', django_span.data["http"]["url"]) self.assertEqual('GET', django_span.data["http"]["method"]) self.assertEqual(500, django_span.data["http"]["status"]) self.assertEqual('This is a fake error: /cause-error', django_span.data["http"]["error"]) self.assertEqual('^cause_error$', django_span.data["http"]["path_tpl"]) self.assertIsNone(django_span.stack) def test_request_with_not_found(self): with tracer.start_active_span('test'): response = self.http.request('GET', self.live_server_url + '/not_found') assert response self.assertEqual(404, response.status) spans = self.recorder.queued_spans() spans = drop_log_spans_from_list(spans) span_count = len(spans) if span_count != 3: msg = "Expected 3 spans but got %d" % span_count fail_with_message_and_span_dump(msg, spans) filter = lambda span: span.n == 'django' django_span = get_first_span_by_filter(spans, filter) assert (django_span) self.assertIsNone(django_span.ec) self.assertEqual(404, django_span.data["http"]["status"]) def test_request_with_not_found_no_route(self): with tracer.start_active_span('test'): response = self.http.request('GET', self.live_server_url + '/no_route') assert response self.assertEqual(404, response.status) spans = self.recorder.queued_spans() spans = drop_log_spans_from_list(spans) span_count = len(spans) if span_count != 3: msg = "Expected 3 spans but got %d" % span_count fail_with_message_and_span_dump(msg, spans) filter = lambda span: span.n == 'django' django_span = get_first_span_by_filter(spans, filter) assert (django_span) self.assertIsNone(django_span.data["http"]["path_tpl"]) self.assertIsNone(django_span.ec) self.assertEqual(404, django_span.data["http"]["status"]) def test_complex_request(self): with tracer.start_active_span('test'): response = self.http.request('GET', self.live_server_url + '/complex') assert response self.assertEqual(200, response.status) spans = self.recorder.queued_spans() self.assertEqual(5, len(spans)) test_span = spans[4] urllib3_span = spans[3] django_span = spans[2] ot_span1 = spans[1] ot_span2 = spans[0] assert ('X-INSTANA-T' in response.headers) assert (int(response.headers['X-INSTANA-T'], 16)) self.assertEqual(django_span.t, response.headers['X-INSTANA-T']) assert ('X-INSTANA-S' in response.headers) assert (int(response.headers['X-INSTANA-S'], 16)) self.assertEqual(django_span.s, response.headers['X-INSTANA-S']) assert ('X-INSTANA-L' in response.headers) self.assertEqual('1', response.headers['X-INSTANA-L']) server_timing_value = "intid;desc=%s" % django_span.t assert ('Server-Timing' in response.headers) self.assertEqual(server_timing_value, response.headers['Server-Timing']) self.assertEqual("test", test_span.data["sdk"]["name"]) self.assertEqual("urllib3", urllib3_span.n) self.assertEqual("django", django_span.n) self.assertEqual("sdk", ot_span1.n) self.assertEqual("sdk", ot_span2.n) self.assertEqual(test_span.t, urllib3_span.t) self.assertEqual(urllib3_span.t, django_span.t) self.assertEqual(django_span.t, ot_span1.t) self.assertEqual(ot_span1.t, ot_span2.t) self.assertEqual(urllib3_span.p, test_span.s) self.assertEqual(django_span.p, urllib3_span.s) self.assertEqual(ot_span1.p, django_span.s) self.assertEqual(ot_span2.p, ot_span1.s) self.assertEqual(None, django_span.ec) self.assertIsNone(django_span.stack) self.assertEqual('/complex', django_span.data["http"]["url"]) self.assertEqual('GET', django_span.data["http"]["method"]) self.assertEqual(200, django_span.data["http"]["status"]) self.assertEqual('^complex$', django_span.data["http"]["path_tpl"]) def test_custom_header_capture(self): # Hack together a manual custom headers list agent.options.extra_http_headers = [u'X-Capture-This', u'X-Capture-That'] request_headers = dict() request_headers['X-Capture-This'] = 'this' request_headers['X-Capture-That'] = 'that' with tracer.start_active_span('test'): response = self.http.request('GET', self.live_server_url + '/', headers=request_headers) # response = self.client.get('/') assert response self.assertEqual(200, response.status) spans = self.recorder.queued_spans() self.assertEqual(3, len(spans)) test_span = spans[2] urllib3_span = spans[1] django_span = spans[0] self.assertEqual("test", test_span.data["sdk"]["name"]) self.assertEqual("urllib3", urllib3_span.n) self.assertEqual("django", django_span.n) self.assertEqual(test_span.t, urllib3_span.t) self.assertEqual(urllib3_span.t, django_span.t) self.assertEqual(urllib3_span.p, test_span.s) self.assertEqual(django_span.p, urllib3_span.s) self.assertEqual(None, django_span.ec) self.assertIsNone(django_span.stack) self.assertEqual('/', django_span.data["http"]["url"]) self.assertEqual('GET', django_span.data["http"]["method"]) self.assertEqual(200, django_span.data["http"]["status"]) self.assertEqual('^$', django_span.data["http"]["path_tpl"]) assert "X-Capture-This" in django_span.data["http"]["header"] self.assertEqual("this", django_span.data["http"]["header"]["X-Capture-This"]) assert "X-Capture-That" in django_span.data["http"]["header"] self.assertEqual("that", django_span.data["http"]["header"]["X-Capture-That"]) def test_with_incoming_context(self): request_headers = dict() request_headers['X-INSTANA-T'] = '1' request_headers['X-INSTANA-S'] = '1' request_headers['traceparent'] = '01-4bf92f3577b34da6a3ce929d0e0e4736-00f067aa0ba902b7-01-788777' request_headers['tracestate'] = 'rojo=00f067aa0ba902b7,in=a3ce929d0e0e4736;8357ccd9da194656,congo=t61rcWkgMzE' response = self.http.request('GET', self.live_server_url + '/', headers=request_headers) assert response self.assertEqual(200, response.status) spans = self.recorder.queued_spans() self.assertEqual(1, len(spans)) django_span = spans[0] self.assertEqual(django_span.t, '0000000000000001') self.assertEqual(django_span.p, '0000000000000001') assert ('X-INSTANA-T' in response.headers) assert (int(response.headers['X-INSTANA-T'], 16)) self.assertEqual(django_span.t, response.headers['X-INSTANA-T']) assert ('X-INSTANA-S' in response.headers) assert (int(response.headers['X-INSTANA-S'], 16)) self.assertEqual(django_span.s, response.headers['X-INSTANA-S']) assert ('X-INSTANA-L' in response.headers) self.assertEqual('1', response.headers['X-INSTANA-L']) assert ('traceparent' in response.headers) self.assertEqual('01-4bf92f3577b34da6a3ce929d0e0e4736-{}-01'.format(django_span.s), response.headers['traceparent']) assert ('tracestate' in response.headers) self.assertEqual( 'in={};{},rojo=00f067aa0ba902b7,congo=t61rcWkgMzE'.format( django_span.t, django_span.s), response.headers['tracestate']) server_timing_value = "intid;desc=%s" % django_span.t assert ('Server-Timing' in response.headers) self.assertEqual(server_timing_value, response.headers['Server-Timing']) def test_with_incoming_context_and_correlation(self): request_headers = dict() request_headers['X-INSTANA-T'] = '1' request_headers['X-INSTANA-S'] = '1' request_headers['X-INSTANA-L'] = '1, correlationType=web; correlationId=1234567890abcdef' request_headers['traceparent'] = '00-4bf92f3577b34da6a3ce929d0e0e4736-00f067aa0ba902b7-01' request_headers['tracestate'] = 'rojo=00f067aa0ba902b7,in=a3ce929d0e0e4736;8357ccd9da194656,congo=t61rcWkgMzE' response = self.http.request('GET', self.live_server_url + '/', headers=request_headers) assert response self.assertEqual(200, response.status) spans = self.recorder.queued_spans() self.assertEqual(1, len(spans)) django_span = spans[0] self.assertEqual(django_span.t, 'a3ce929d0e0e4736') self.assertEqual(django_span.p, '00f067aa0ba902b7') self.assertEqual(django_span.ia.t, 'a3ce929d0e0e4736') self.assertEqual(django_span.ia.p, '8357ccd9da194656') self.assertEqual(django_span.lt, '4bf92f3577b34da6a3ce929d0e0e4736') self.assertEqual(django_span.tp, True) self.assertEqual(django_span.crtp, 'web') self.assertEqual(django_span.crid, '1234567890abcdef') assert ('X-INSTANA-T' in response.headers) assert (int(response.headers['X-INSTANA-T'], 16)) self.assertEqual(django_span.t, response.headers['X-INSTANA-T']) assert ('X-INSTANA-S' in response.headers) assert (int(response.headers['X-INSTANA-S'], 16)) self.assertEqual(django_span.s, response.headers['X-INSTANA-S']) assert ('X-INSTANA-L' in response.headers) self.assertEqual('1', response.headers['X-INSTANA-L']) assert ('traceparent' in response.headers) self.assertEqual('00-4bf92f3577b34da6a3ce929d0e0e4736-{}-01'.format(django_span.s), response.headers['traceparent']) assert ('tracestate' in response.headers) self.assertEqual( 'in={};{},rojo=00f067aa0ba902b7,congo=t61rcWkgMzE'.format( django_span.t, django_span.s), response.headers['tracestate']) server_timing_value = "intid;desc=%s" % django_span.t assert ('Server-Timing' in response.headers) self.assertEqual(server_timing_value, response.headers['Server-Timing']) def test_with_incoming_traceparent_tracestate(self): request_headers = dict() request_headers['traceparent'] = '00-4bf92f3577b34da6a3ce929d0e0e4736-00f067aa0ba902b7-01' request_headers['tracestate'] = 'rojo=00f067aa0ba902b7,in=a3ce929d0e0e4736;8357ccd9da194656,congo=t61rcWkgMzE' response = self.http.request('GET', self.live_server_url + '/', headers=request_headers) assert response self.assertEqual(200, response.status) spans = self.recorder.queued_spans() self.assertEqual(1, len(spans)) django_span = spans[0] self.assertEqual(django_span.t, 'a3ce929d0e0e4736') # last 16 chars from traceparent trace_id self.assertEqual(django_span.p, '00f067aa0ba902b7') self.assertEqual(django_span.ia.t, 'a3ce929d0e0e4736') self.assertEqual(django_span.ia.p, '8357ccd9da194656') self.assertEqual(django_span.lt, '4bf92f3577b34da6a3ce929d0e0e4736') self.assertEqual(django_span.tp, True) assert ('X-INSTANA-T' in response.headers) assert (int(response.headers['X-INSTANA-T'], 16)) self.assertEqual(django_span.t, response.headers['X-INSTANA-T']) assert ('X-INSTANA-S' in response.headers) assert (int(response.headers['X-INSTANA-S'], 16)) self.assertEqual(django_span.s, response.headers['X-INSTANA-S']) assert ('X-INSTANA-L' in response.headers) self.assertEqual('1', response.headers['X-INSTANA-L']) assert ('traceparent' in response.headers) self.assertEqual('00-4bf92f3577b34da6a3ce929d0e0e4736-{}-01'.format(django_span.s), response.headers['traceparent']) assert ('tracestate' in response.headers) self.assertEqual( 'in=a3ce929d0e0e4736;{},rojo=00f067aa0ba902b7,congo=t61rcWkgMzE'.format( django_span.s), response.headers['tracestate']) server_timing_value = "intid;desc=%s" % django_span.t assert ('Server-Timing' in response.headers) self.assertEqual(server_timing_value, response.headers['Server-Timing']) def test_with_incoming_traceparent_tracestate_disable_traceparent(self): os.environ["INSTANA_DISABLE_W3C_TRACE_CORRELATION"] = "1" request_headers = dict() request_headers['traceparent'] = '00-4bf92f3577b34da6a3ce929d0e0e4736-00f067aa0ba902b7-01' request_headers['tracestate'] = 'rojo=00f067aa0ba902b7,in=a3ce929d0e0e4736;8357ccd9da194656,congo=t61rcWkgMzE' response = self.http.request('GET', self.live_server_url + '/', headers=request_headers) assert response self.assertEqual(200, response.status) spans = self.recorder.queued_spans() self.assertEqual(1, len(spans)) django_span = spans[0] self.assertEqual(django_span.t, 'a3ce929d0e0e4736') # last 16 chars from traceparent trace_id self.assertEqual(django_span.p, '8357ccd9da194656') assert ('X-INSTANA-T' in response.headers) assert (int(response.headers['X-INSTANA-T'], 16)) self.assertEqual(django_span.t, response.headers['X-INSTANA-T']) assert ('X-INSTANA-S' in response.headers) assert (int(response.headers['X-INSTANA-S'], 16)) self.assertEqual(django_span.s, response.headers['X-INSTANA-S']) assert ('X-INSTANA-L' in response.headers) self.assertEqual('1', response.headers['X-INSTANA-L']) assert ('traceparent' in response.headers) self.assertEqual('00-4bf92f3577b34da6a3ce929d0e0e4736-{}-01'.format(django_span.s), response.headers['traceparent']) assert ('tracestate' in response.headers) self.assertEqual( 'in=a3ce929d0e0e4736;{},rojo=00f067aa0ba902b7,congo=t61rcWkgMzE'.format( django_span.s), response.headers['tracestate']) server_timing_value = "intid;desc=%s" % django_span.t assert ('Server-Timing' in response.headers) self.assertEqual(server_timing_value, response.headers['Server-Timing']) def test_with_incoming_mixed_case_context(self): request_headers = dict() request_headers['X-InSTANa-T'] = '0000000000000001' request_headers['X-instana-S'] = '0000000000000001' response = self.http.request('GET', self.live_server_url + '/', headers=request_headers) assert response self.assertEqual(200, response.status) spans = self.recorder.queued_spans() self.assertEqual(1, len(spans)) django_span = spans[0] self.assertEqual(django_span.t, '0000000000000001') self.assertEqual(django_span.p, '0000000000000001') assert ('X-INSTANA-T' in response.headers) assert (int(response.headers['X-INSTANA-T'], 16)) self.assertEqual(django_span.t, response.headers['X-INSTANA-T']) assert ('X-INSTANA-S' in response.headers) assert (int(response.headers['X-INSTANA-S'], 16)) self.assertEqual(django_span.s, response.headers['X-INSTANA-S']) assert ('X-INSTANA-L' in response.headers) self.assertEqual('1', response.headers['X-INSTANA-L']) server_timing_value = "intid;desc=%s" % django_span.t assert ('Server-Timing' in response.headers) self.assertEqual(server_timing_value, response.headers['Server-Timing'])
py
b401138ef4a644cb2f903daa683c45ee3009fc38
from urllib.parse import urlencode from zerver.lib.test_classes import WebhookTestCase class PapertrailHookTests(WebhookTestCase): STREAM_NAME = 'papertrail' URL_TEMPLATE = "/api/v1/external/papertrail?&api_key={api_key}&stream={stream}" FIXTURE_DIR_NAME = 'papertrail' def test_short_message(self) -> None: expected_topic = "logs" expected_message = """ [Search for "Important stuff"](https://papertrailapp.com/searches/42) found **2** matches: May 18 20:30:02 - abc - cron OR server1: ``` quote message body ``` May 18 20:30:02 - server1 - cron OR server1: ``` quote A short event ``` """.strip() self.check_webhook( "short_post", expected_topic, expected_message, content_type="application/x-www-form-urlencoded", ) def test_long_message(self) -> None: expected_topic = "logs" expected_message = """ [Search for "Important stuff"](https://papertrailapp.com/searches/42) found **5** matches: May 18 20:30:02 - abc - cron OR server1: ``` quote message body 1 ``` May 18 20:30:02 - abc - cron OR server1: ``` quote message body 2 ``` May 18 20:30:02 - abc - cron OR server1: ``` quote message body 3 ``` May 18 20:30:02 - abc - cron OR server1: ``` quote message body 4 ``` [See more](https://papertrailapp.com/searches/42) """.strip() self.check_webhook( "long_post", expected_topic, expected_message, content_type="application/x-www-form-urlencoded", ) def test_incorrect_message(self) -> None: with self.assertRaises(AssertionError) as e: self.check_webhook( "incorrect_post", "", "", content_type="application/x-www-form-urlencoded" ) self.assertIn("events key is missing from payload", e.exception.args[0]) def get_body(self, fixture_name: str) -> str: # Papertrail webhook sends a POST request with payload parameter # containing the JSON body. Documented here: # https://help.papertrailapp.com/kb/how-it-works/web-hooks#encoding body = self.webhook_fixture_data("papertrail", fixture_name, file_type="json") return urlencode({'payload': body})
py
b40115295f7e208fd524642b0dd2b7016c4ab972
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class AzureFirewallsOperations: """AzureFirewallsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2018_04_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _delete_initial( self, resource_group_name: str, azure_firewall_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-04-01" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'azureFirewallName': self._serialize.url("azure_firewall_name", azure_firewall_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/azureFirewalls/{azureFirewallName}'} # type: ignore async def begin_delete( self, resource_group_name: str, azure_firewall_name: str, **kwargs ) -> AsyncLROPoller[None]: """Deletes the specified Azure Firewall. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param azure_firewall_name: The name of the Azure Firewall. :type azure_firewall_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: Pass in True if you'd like the AsyncARMPolling polling method, False for no polling, or your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, azure_firewall_name=azure_firewall_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'azureFirewallName': self._serialize.url("azure_firewall_name", azure_firewall_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/azureFirewalls/{azureFirewallName}'} # type: ignore async def get( self, resource_group_name: str, azure_firewall_name: str, **kwargs ) -> "_models.AzureFirewall": """Gets the specified Azure Firewall. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param azure_firewall_name: The name of the Azure Firewall. :type azure_firewall_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: AzureFirewall, or the result of cls(response) :rtype: ~azure.mgmt.network.v2018_04_01.models.AzureFirewall :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.AzureFirewall"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-04-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'azureFirewallName': self._serialize.url("azure_firewall_name", azure_firewall_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('AzureFirewall', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/azureFirewalls/{azureFirewallName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, azure_firewall_name: str, parameters: "_models.AzureFirewall", **kwargs ) -> "_models.AzureFirewall": cls = kwargs.pop('cls', None) # type: ClsType["_models.AzureFirewall"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-04-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'azureFirewallName': self._serialize.url("azure_firewall_name", azure_firewall_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'AzureFirewall') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('AzureFirewall', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('AzureFirewall', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/azureFirewalls/{azureFirewallName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, azure_firewall_name: str, parameters: "_models.AzureFirewall", **kwargs ) -> AsyncLROPoller["_models.AzureFirewall"]: """Creates or updates the specified Azure Firewall. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param azure_firewall_name: The name of the Azure Firewall. :type azure_firewall_name: str :param parameters: Parameters supplied to the create or update Azure Firewall operation. :type parameters: ~azure.mgmt.network.v2018_04_01.models.AzureFirewall :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: Pass in True if you'd like the AsyncARMPolling polling method, False for no polling, or your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either AzureFirewall or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2018_04_01.models.AzureFirewall] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.AzureFirewall"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, azure_firewall_name=azure_firewall_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('AzureFirewall', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'azureFirewallName': self._serialize.url("azure_firewall_name", azure_firewall_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/azureFirewalls/{azureFirewallName}'} # type: ignore def list( self, resource_group_name: str, **kwargs ) -> AsyncIterable["_models.AzureFirewallListResult"]: """Lists all Azure Firewalls in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either AzureFirewallListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2018_04_01.models.AzureFirewallListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.AzureFirewallListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-04-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('AzureFirewallListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/azureFirewalls'} # type: ignore def list_all( self, **kwargs ) -> AsyncIterable["_models.AzureFirewallListResult"]: """Gets all the Azure Firewalls in a subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either AzureFirewallListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2018_04_01.models.AzureFirewallListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.AzureFirewallListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-04-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_all.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('AzureFirewallListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_all.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/azureFirewalls'} # type: ignore
py
b40115381b553a6f7bcad269cf8174b7b404199f
# coding:utf-8 import sys from PyQt5.QtCore import Qt from PyQt5.QtWidgets import QApplication, QWidget, QPushButton class Window(QWidget): def __init__(self, parent=None): super().__init__(parent=parent) self.resize(200, 200) self.btn = QPushButton('点我', parent=self) self.btn.move(18, 75) self.btn.clicked.connect(lambda: print('按下按钮')) with open('resource/push_button.qss', encoding='utf-8') as f: self.setStyleSheet(f.read()) if __name__ == '__main__': app = QApplication(sys.argv) w = Window() w.show() sys.exit(app.exec_())
py
b401158ffde1b2b6e42e3ce7af6b59ba72c54dc1
from typing import ( Any, Dict, List, ) from sqlalchemy import false from galaxy import model from galaxy.app import MinimalManagerApp from galaxy.exceptions import ( Conflict, ObjectAttributeMissingException, ObjectNotFound, ) from galaxy.managers.base import decode_id from galaxy.managers.context import ProvidesAppContext from galaxy.schema.fields import EncodedDatabaseIdField from galaxy.web import url_for class GroupsManager: """Interface/service object shared by controllers for interacting with groups.""" def __init__(self, app: MinimalManagerApp) -> None: self._app = app def index(self, trans: ProvidesAppContext): """ Displays a collection (list) of groups. """ rval = [] for group in trans.sa_session.query(model.Group).filter(model.Group.deleted == false()): item = group.to_dict(value_mapper={"id": trans.security.encode_id}) encoded_id = trans.security.encode_id(group.id) item["url"] = url_for("group", id=encoded_id) rval.append(item) return rval def create(self, trans: ProvidesAppContext, payload: Dict[str, Any]): """ Creates a new group. """ name = payload.get("name", None) if name is None: raise ObjectAttributeMissingException("Missing required name") self._check_duplicated_group_name(trans, name) group = model.Group(name=name) trans.sa_session.add(group) encoded_user_ids = payload.get("user_ids", []) users = self._get_users_by_encoded_ids(trans, encoded_user_ids) encoded_role_ids = payload.get("role_ids", []) roles = self._get_roles_by_encoded_ids(trans, encoded_role_ids) trans.app.security_agent.set_entity_group_associations(groups=[group], roles=roles, users=users) trans.sa_session.flush() encoded_id = trans.security.encode_id(group.id) item = group.to_dict(view="element", value_mapper={"id": trans.security.encode_id}) item["url"] = url_for("group", id=encoded_id) return [item] def show(self, trans: ProvidesAppContext, encoded_id: EncodedDatabaseIdField): """ Displays information about a group. """ group = self._get_group(trans, encoded_id) item = group.to_dict(view="element", value_mapper={"id": trans.security.encode_id}) item["url"] = url_for("group", id=encoded_id) item["users_url"] = url_for("group_users", group_id=encoded_id) item["roles_url"] = url_for("group_roles", group_id=encoded_id) return item def update(self, trans: ProvidesAppContext, encoded_id: EncodedDatabaseIdField, payload: Dict[str, Any]): """ Modifies a group. """ group = self._get_group(trans, encoded_id) name = payload.get("name", None) if name: self._check_duplicated_group_name(trans, name) group.name = name trans.sa_session.add(group) encoded_user_ids = payload.get("user_ids", []) users = self._get_users_by_encoded_ids(trans, encoded_user_ids) encoded_role_ids = payload.get("role_ids", []) roles = self._get_roles_by_encoded_ids(trans, encoded_role_ids) trans.app.security_agent.set_entity_group_associations( groups=[group], roles=roles, users=users, delete_existing_assocs=False ) trans.sa_session.flush() def _decode_id(self, encoded_id: EncodedDatabaseIdField) -> int: return decode_id(self._app, encoded_id) def _decode_ids(self, encoded_ids: List[EncodedDatabaseIdField]) -> List[int]: return [self._decode_id(encoded_id) for encoded_id in encoded_ids] def _check_duplicated_group_name(self, trans: ProvidesAppContext, group_name: str) -> None: if trans.sa_session.query(model.Group).filter(model.Group.name == group_name).first(): raise Conflict(f"A group with name '{group_name}' already exists") def _get_group(self, trans: ProvidesAppContext, encoded_id: EncodedDatabaseIdField) -> model.Group: decoded_group_id = self._decode_id(encoded_id) group = trans.sa_session.query(model.Group).get(decoded_group_id) if group is None: raise ObjectNotFound(f"Group with id {encoded_id} was not found.") return group def _get_users_by_encoded_ids( self, trans: ProvidesAppContext, encoded_user_ids: List[EncodedDatabaseIdField] ) -> List[model.User]: decoded_user_ids = self._decode_ids(encoded_user_ids) users = trans.sa_session.query(model.User).filter(model.User.table.c.id.in_(decoded_user_ids)).all() return users def _get_roles_by_encoded_ids( self, trans: ProvidesAppContext, encoded_role_ids: List[EncodedDatabaseIdField] ) -> List[model.Role]: decoded_role_ids = self._decode_ids(encoded_role_ids) roles = trans.sa_session.query(model.Role).filter(model.Role.id.in_(decoded_role_ids)).all() return roles
py
b4011764cecf2d6675b5f358f303a638fee41664
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pandas as pd from ... import opcodes from ...core import recursive_tile from ...core.custom_log import redirect_custom_log from ...serialization.serializables import KeyField, FunctionField, \ TupleField, DictField, BoolField from ...utils import enter_current_session, has_unknown_shape, quiet_stdio from ..operands import DataFrameOperand, DataFrameOperandMixin, OutputType from ..utils import build_df, build_empty_df, build_series, parse_index, \ validate_output_types class DataFrameMapChunk(DataFrameOperand, DataFrameOperandMixin): _op_type_ = opcodes.MAP_CHUNK _input = KeyField('input') _func = FunctionField('func') _args = TupleField('args') _kwargs = DictField('kwargs') _with_chunk_index = BoolField('with_chunk_index') def __init__(self, input=None, func=None, args=None, kwargs=None, output_types=None, with_chunk_index=None, **kw): super().__init__(_input=input, _func=func, _args=args, _kwargs=kwargs, _output_types=output_types, _with_chunk_index=with_chunk_index, **kw) @property def input(self): return self._input @property def func(self): return self._func @property def args(self): return self._args @property def kwargs(self): return self._kwargs @property def with_chunk_index(self): return self._with_chunk_index def _set_inputs(self, inputs): super()._set_inputs(inputs) self._input = self._inputs[0] def __call__(self, df_or_series, index=None, dtypes=None): test_obj = build_df(df_or_series, size=2) \ if df_or_series.ndim == 2 else \ build_series(df_or_series, size=2, name=df_or_series.name) output_type = self._output_types[0] if self.output_types else None # try run to infer meta try: kwargs = self.kwargs or dict() if self.with_chunk_index: kwargs['chunk_index'] = (0,) * df_or_series.ndim with np.errstate(all='ignore'), quiet_stdio(): obj = self._func(test_obj, *self._args, **kwargs) except: # noqa: E722 # nosec if df_or_series.ndim == 1 or output_type == OutputType.series: obj = pd.Series([], dtype=np.dtype(object)) elif output_type == OutputType.dataframe and dtypes is not None: obj = build_empty_df(dtypes) else: raise TypeError('Cannot determine `output_type`, ' 'you have to specify it as `dataframe` or `series`, ' 'for dataframe, `dtypes` is required as well ' 'if output_type=\'dataframe\'') if getattr(obj, 'ndim', 0) == 1 or output_type == OutputType.series: shape = self._kwargs.pop('shape', None) if shape is None: # series if obj.shape == test_obj.shape: shape = df_or_series.shape else: shape = (np.nan,) if index is None: index = obj.index index_value = parse_index(index, df_or_series, self._func, self._args, self._kwargs) return self.new_series([df_or_series], dtype=obj.dtype, shape=shape, index_value=index_value, name=obj.name) else: dtypes = dtypes if dtypes is not None else obj.dtypes # dataframe if obj.shape == test_obj.shape: shape = (df_or_series.shape[0], len(dtypes)) else: shape = (np.nan, len(dtypes)) columns_value = parse_index(dtypes.index, store_data=True) if index is None: index = obj.index index_value = parse_index(index, df_or_series, self._func, self._args, self._kwargs) return self.new_dataframe([df_or_series], shape=shape, dtypes=dtypes, index_value=index_value, columns_value=columns_value) @classmethod def tile(cls, op: "DataFrameMapChunk"): inp = op.input out = op.outputs[0] if inp.ndim == 2 and inp.chunk_shape[1] > 1: if has_unknown_shape(inp): yield # if input is a DataFrame, make sure 1 chunk on axis columns inp = yield from recursive_tile(inp.rechunk({1: inp.shape[1]})) out_chunks = [] nsplits = [[]] if out.ndim == 1 else [[], [out.shape[1]]] for chunk in inp.chunks: chunk_op = op.copy().reset_key() chunk_op.tileable_op_key = op.key if op.output_types[0] == OutputType.dataframe: if np.isnan(out.shape[0]): shape = (np.nan, out.shape[1]) else: shape = (chunk.shape[0], out.shape[1]) index_value = parse_index(out.index_value.to_pandas(), chunk, op.func, op.args, op.kwargs) out_chunk = chunk_op.new_chunk([chunk], shape=shape, dtypes=out.dtypes, index_value=index_value, columns_value=out.columns_value, index=(chunk.index[0], 0)) out_chunks.append(out_chunk) nsplits[0].append(out_chunk.shape[0]) else: if np.isnan(out.shape[0]): shape = (np.nan,) else: shape = (chunk.shape[0],) index_value = parse_index(out.index_value.to_pandas(), chunk, op.func, op.args, op.kwargs) out_chunk = chunk_op.new_chunk([chunk], shape=shape, index_value=index_value, name=out.name, dtype=out.dtype, index=(chunk.index[0],)) out_chunks.append(out_chunk) nsplits[0].append(out_chunk.shape[0]) params = out.params params['nsplits'] = tuple(tuple(ns) for ns in nsplits) params['chunks'] = out_chunks new_op = op.copy() return new_op.new_tileables(op.inputs, kws=[params]) @classmethod @redirect_custom_log @enter_current_session def execute(cls, ctx, op: "DataFrameMapChunk"): inp = ctx[op.input.key] out_chunk = op.outputs[0] kwargs = op.kwargs or dict() if op.with_chunk_index: kwargs['chunk_index'] = out_chunk.index ctx[out_chunk.key] = op.func(inp, *op.args, **kwargs) def map_chunk(df_or_series, func, args=(), **kwargs): """ Apply function to each chunk. Parameters ---------- func : function Function to apply to each chunk. args : tuple Positional arguments to pass to func in addition to the array/series. **kwargs Additional keyword arguments to pass as keywords arguments to func. Returns ------- Series or DataFrame Result of applying ``func`` to each chunk of the DataFrame or Series. See Also -------- DataFrame.apply : Perform any type of operations. Examples -------- >>> import mars.dataframe as md >>> df = md.DataFrame([[4, 9]] * 3, columns=['A', 'B']) >>> df.execute() A B 0 4 9 1 4 9 2 4 9 Output type including Series or DataFrame will be auto inferred. >>> df.map_chunk(lambda c: c['A'] + c['B']).execute() 0 13 1 13 2 13 dtype: int64 You can specify ``output_type`` by yourself if auto infer failed. >>> import pandas as pd >>> import numpy as np >>> df['c'] = ['s1', 's2', 's3'] >>> df.map_chunk(lambda c: pd.concat([c['A'], c['c'].str.slice(1).astype(int)], axis=1)).execute() Traceback (most recent call last): TypeError: Cannot determine `output_type`, you have to specify it as `dataframe` or `series`... >>> df.map_chunk(lambda c: pd.concat([c['A'], c['c'].str.slice(1).astype(int)], axis=1), >>> output_type='dataframe', dtypes=pd.Series([np.dtype(object), np.dtype(int)])).execute() A c 0 4 1 1 4 2 2 4 3 """ output_type = kwargs.pop('output_type', None) output_types = kwargs.pop('output_types', None) object_type = kwargs.pop('object_type', None) output_types = validate_output_types( output_type=output_type, output_types=output_types, object_type=object_type) output_type = output_types[0] if output_types else None if output_type: output_types = [output_type] index = kwargs.pop('index', None) dtypes = kwargs.pop('dtypes', None) with_chunk_index = kwargs.pop('with_chunk_index', False) op = DataFrameMapChunk(input=df_or_series, func=func, args=args, kwargs=kwargs, output_types=output_types, with_chunk_index=with_chunk_index) return op(df_or_series, index=index, dtypes=dtypes)
py
b4011864caaca67c028eb8766aa710c92ccd51ba
""" The ``train`` subcommand can be used to train a model. It requires a configuration file and a directory in which to write the results. .. code-block:: bash $ allennlp train --help usage: allennlp train [-h] -s SERIALIZATION_DIR [-r] [-f] [-o OVERRIDES] [--file-friendly-logging] [--include-package INCLUDE_PACKAGE] param_path Train the specified model on the specified dataset. positional arguments: param_path path to parameter file describing the model to be trained optional arguments: -h, --help show this help message and exit -s SERIALIZATION_DIR, --serialization-dir SERIALIZATION_DIR directory in which to save the model and its logs -r, --recover recover training from the state in serialization_dir -f, --force overwrite the output directory if it exists -o OVERRIDES, --overrides OVERRIDES a JSON structure used to override the experiment configuration --file-friendly-logging outputs tqdm status on separate lines and slows tqdm refresh rate --include-package INCLUDE_PACKAGE additional packages to include """ from typing import Dict, Iterable import argparse import logging import os import re import shutil import torch from allennlp.commands.evaluate import evaluate from allennlp.commands.subcommand import Subcommand from allennlp.common.checks import ConfigurationError, check_for_gpu from allennlp.common import Params from allennlp.common.util import prepare_environment, prepare_global_logging, \ get_frozen_and_tunable_parameter_names, dump_metrics from allennlp.data import Vocabulary from allennlp.data.instance import Instance from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.iterators.data_iterator import DataIterator from allennlp.models.archival import archive_model, CONFIG_NAME from allennlp.models.model import Model, _DEFAULT_WEIGHTS from allennlp.training.trainer import Trainer logger = logging.getLogger(__name__) # pylint: disable=invalid-name class Train(Subcommand): def add_subparser(self, name: str, parser: argparse._SubParsersAction) -> argparse.ArgumentParser: # pylint: disable=protected-access description = '''Train the specified model on the specified dataset.''' subparser = parser.add_parser(name, description=description, help='Train a model') subparser.add_argument('param_path', type=str, help='path to parameter file describing the model to be trained') subparser.add_argument('-s', '--serialization-dir', required=True, type=str, help='directory in which to save the model and its logs') subparser.add_argument('-r', '--recover', action='store_true', default=False, help='recover training from the state in serialization_dir') subparser.add_argument('-f', '--force', action='store_true', required=False, help='overwrite the output directory if it exists') subparser.add_argument('-o', '--overrides', type=str, default="", help='a JSON structure used to override the experiment configuration') subparser.add_argument('--file-friendly-logging', action='store_true', default=False, help='outputs tqdm status on separate lines and slows tqdm refresh rate') subparser.set_defaults(func=train_model_from_args) return subparser def train_model_from_args(args: argparse.Namespace): """ Just converts from an ``argparse.Namespace`` object to string paths. """ train_model_from_file(args.param_path, args.serialization_dir, args.overrides, args.file_friendly_logging, args.recover, args.force) def train_model_from_file(parameter_filename: str, serialization_dir: str, overrides: str = "", file_friendly_logging: bool = False, recover: bool = False, force: bool = False) -> Model: """ A wrapper around :func:`train_model` which loads the params from a file. Parameters ---------- parameter_filename : ``str`` A json parameter file specifying an AllenNLP experiment. serialization_dir : ``str`` The directory in which to save results and logs. We just pass this along to :func:`train_model`. overrides : ``str`` A JSON string that we will use to override values in the input parameter file. file_friendly_logging : ``bool``, optional (default=False) If ``True``, we make our output more friendly to saved model files. We just pass this along to :func:`train_model`. recover : ``bool`, optional (default=False) If ``True``, we will try to recover a training run from an existing serialization directory. This is only intended for use when something actually crashed during the middle of a run. For continuing training a model on new data, see the ``fine-tune`` command. force : ``bool``, optional (default=False) If ``True``, we will overwrite the serialization directory if it already exists. """ # Load the experiment config from a file and pass it to ``train_model``. params = Params.from_file(parameter_filename, overrides) return train_model(params, serialization_dir, file_friendly_logging, recover, force) def datasets_from_params(params: Params) -> Dict[str, Iterable[Instance]]: """ Load all the datasets specified by the config. """ dataset_reader = DatasetReader.from_params(params.pop('dataset_reader')) validation_dataset_reader_params = params.pop("validation_dataset_reader", None) validation_and_test_dataset_reader: DatasetReader = dataset_reader if validation_dataset_reader_params is not None: logger.info("Using a separate dataset reader to load validation and test data.") validation_and_test_dataset_reader = DatasetReader.from_params(validation_dataset_reader_params) train_data_path = params.pop('train_data_path') logger.info("Reading training data from %s", train_data_path) train_data = dataset_reader.read(train_data_path) datasets: Dict[str, Iterable[Instance]] = {"train": train_data} validation_data_path = params.pop('validation_data_path', None) if validation_data_path is not None: logger.info("Reading validation data from %s", validation_data_path) validation_data = validation_and_test_dataset_reader.read(validation_data_path) datasets["validation"] = validation_data test_data_path = params.pop("test_data_path", None) if test_data_path is not None: logger.info("Reading test data from %s", test_data_path) test_data = validation_and_test_dataset_reader.read(test_data_path) datasets["test"] = test_data return datasets def create_serialization_dir( params: Params, serialization_dir: str, recover: bool, force: bool) -> None: """ This function creates the serialization directory if it doesn't exist. If it already exists and is non-empty, then it verifies that we're recovering from a training with an identical configuration. Parameters ---------- params: ``Params`` A parameter object specifying an AllenNLP Experiment. serialization_dir: ``str`` The directory in which to save results and logs. recover: ``bool`` If ``True``, we will try to recover from an existing serialization directory, and crash if the directory doesn't exist, or doesn't match the configuration we're given. force: ``bool`` If ``True``, we will overwrite the serialization directory if it already exists. """ if recover and force: raise ConfigurationError("Illegal arguments: both force and recover are true.") if os.path.exists(serialization_dir) and force: shutil.rmtree(serialization_dir) if os.path.exists(serialization_dir) and os.listdir(serialization_dir): if not recover: raise ConfigurationError(f"Serialization directory ({serialization_dir}) already exists and is " f"not empty. Specify --recover to recover training from existing output.") logger.info(f"Recovering from prior training at {serialization_dir}.") recovered_config_file = os.path.join(serialization_dir, CONFIG_NAME) if not os.path.exists(recovered_config_file): raise ConfigurationError("The serialization directory already exists but doesn't " "contain a config.json. You probably gave the wrong directory.") else: loaded_params = Params.from_file(recovered_config_file) # Check whether any of the training configuration differs from the configuration we are # resuming. If so, warn the user that training may fail. fail = False flat_params = params.as_flat_dict() flat_loaded = loaded_params.as_flat_dict() for key in flat_params.keys() - flat_loaded.keys(): logger.error(f"Key '{key}' found in training configuration but not in the serialization " f"directory we're recovering from.") fail = True for key in flat_loaded.keys() - flat_params.keys(): logger.error(f"Key '{key}' found in the serialization directory we're recovering from " f"but not in the training config.") fail = True for key in flat_params.keys(): if flat_params.get(key, None) != flat_loaded.get(key, None): logger.error(f"Value for '{key}' in training configuration does not match that the value in " f"the serialization directory we're recovering from: " f"{flat_params[key]} != {flat_loaded[key]}") fail = True if fail: raise ConfigurationError("Training configuration does not match the configuration we're " "recovering from.") else: if recover: raise ConfigurationError(f"--recover specified but serialization_dir ({serialization_dir}) " "does not exist. There is nothing to recover from.") os.makedirs(serialization_dir, exist_ok=True) def train_model(params: Params, serialization_dir: str, file_friendly_logging: bool = False, recover: bool = False, force: bool = False) -> Model: """ Trains the model specified in the given :class:`Params` object, using the data and training parameters also specified in that object, and saves the results in ``serialization_dir``. Parameters ---------- params : ``Params`` A parameter object specifying an AllenNLP Experiment. serialization_dir : ``str`` The directory in which to save results and logs. file_friendly_logging : ``bool``, optional (default=False) If ``True``, we add newlines to tqdm output, even on an interactive terminal, and we slow down tqdm's output to only once every 10 seconds. recover : ``bool``, optional (default=False) If ``True``, we will try to recover a training run from an existing serialization directory. This is only intended for use when something actually crashed during the middle of a run. For continuing training a model on new data, see the ``fine-tune`` command. force : ``bool``, optional (default=False) If ``True``, we will overwrite the serialization directory if it already exists. Returns ------- best_model: ``Model`` The model with the best epoch weights. """ prepare_environment(params) create_serialization_dir(params, serialization_dir, recover, force) prepare_global_logging(serialization_dir, file_friendly_logging) cuda_device = params.params.get('trainer').get('cuda_device', -1) if isinstance(cuda_device, list): for device in cuda_device: check_for_gpu(device) else: check_for_gpu(cuda_device) params.to_file(os.path.join(serialization_dir, CONFIG_NAME)) all_datasets = datasets_from_params(params) datasets_for_vocab_creation = set(params.pop("datasets_for_vocab_creation", all_datasets)) for dataset in datasets_for_vocab_creation: if dataset not in all_datasets: raise ConfigurationError(f"invalid 'dataset_for_vocab_creation' {dataset}") logger.info("From dataset instances, %s will be considered for vocabulary creation.", ", ".join(datasets_for_vocab_creation)) if recover and os.path.exists(os.path.join(serialization_dir, "vocabulary")): vocab = Vocabulary.from_files(os.path.join(serialization_dir, "vocabulary")) else: vocab = Vocabulary.from_params( params.pop("vocabulary", {}), (instance for key, dataset in all_datasets.items() for instance in dataset if key in datasets_for_vocab_creation) ) model = Model.from_params(vocab=vocab, params=params.pop('model')) # Initializing the model can have side effect of expanding the vocabulary vocab.save_to_files(os.path.join(serialization_dir, "vocabulary")) iterator = DataIterator.from_params(params.pop("iterator")) iterator.index_with(vocab) validation_iterator_params = params.pop("validation_iterator", None) if validation_iterator_params: validation_iterator = DataIterator.from_params(validation_iterator_params) validation_iterator.index_with(vocab) else: validation_iterator = None train_data = all_datasets['train'] validation_data = all_datasets.get('validation') test_data = all_datasets.get('test') trainer_params = params.pop("trainer") no_grad_regexes = trainer_params.pop("no_grad", ()) for name, parameter in model.named_parameters(): if any(re.search(regex, name) for regex in no_grad_regexes): parameter.requires_grad_(False) frozen_parameter_names, tunable_parameter_names = \ get_frozen_and_tunable_parameter_names(model) logger.info("Following parameters are Frozen (without gradient):") for name in frozen_parameter_names: logger.info(name) logger.info("Following parameters are Tunable (with gradient):") for name in tunable_parameter_names: logger.info(name) trainer_choice = trainer_params.pop_choice("type", Trainer.list_available(), default_to_first_choice=True) trainer = Trainer.by_name(trainer_choice).from_params(model=model, serialization_dir=serialization_dir, iterator=iterator, train_data=train_data, validation_data=validation_data, params=trainer_params, validation_iterator=validation_iterator) evaluate_on_test = params.pop_bool("evaluate_on_test", False) params.assert_empty('base train command') try: metrics = trainer.train() except KeyboardInterrupt: # if we have completed an epoch, try to create a model archive. if os.path.exists(os.path.join(serialization_dir, _DEFAULT_WEIGHTS)): logging.info("Training interrupted by the user. Attempting to create " "a model archive using the current best epoch weights.") archive_model(serialization_dir, files_to_archive=params.files_to_archive) raise # Now tar up results archive_model(serialization_dir, files_to_archive=params.files_to_archive) logger.info("Loading the best epoch weights.") best_model_state_path = os.path.join(serialization_dir, 'best.th') best_model_state = torch.load(best_model_state_path) best_model = model best_model.load_state_dict(best_model_state) if test_data and evaluate_on_test: logger.info("The model will be evaluated using the best epoch weights.") test_metrics = evaluate( best_model, test_data, validation_iterator or iterator, cuda_device=trainer._cuda_devices[0] # pylint: disable=protected-access ) for key, value in test_metrics.items(): metrics["test_" + key] = value elif test_data: logger.info("To evaluate on the test set after training, pass the " "'evaluate_on_test' flag, or use the 'allennlp evaluate' command.") dump_metrics(os.path.join(serialization_dir, "metrics.json"), metrics, log=True) return best_model
py
b40119d5c661ad46c03a29848e6de492afee196b
from django.db import models # Create your models here. class Photo(models.Model): image = models.ImageField(upload_to='upload_image') date = models.DateTimeField(auto_now_add=True) def __str__(self): return str(self.image.url) + ' uploaded : ' + str(self.date) class Meta: verbose_name_plural = "Uploaded images" class CnnModelTable(models.Model): name = models.CharField(max_length=30) Top1Accuracy = models.CharField(max_length=10) Top5Accuracy = models.CharField(max_length=10) Parameters = models.CharField(max_length=20) Depth = models.CharField(max_length=5) def __str__(self): return self.name class Meta: verbose_name_plural = "CNN MODELS" class CNNModels(models.Model): MODEL_CHOICES = ( ('densenet', 'tf.keras.applications.densenet'), ('inception_resnet_v2', 'tf.keras.applications.inception_resnet_v2'), ('inception_v3', 'tf.keras.applications.inception_v3'), ('mobilenet', 'tf.keras.applications.mobilenet'), ('mobilenet_v2', 'tf.keras.applications.mobilenet_v2'), ('nasnet', 'tf.keras.applications.nasnet'), ('resnet50', 'tf.keras.applications.resnet50'), ('vgg16', 'tf.keras.applications.vgg16'), ('vgg19', 'tf.keras.applications.vgg19'), ('xception', 'tf.keras.applications.xception'), ) CNNModels = models.CharField(max_length=1000, choices=MODEL_CHOICES) class Meta: verbose_name_plural = "CNNModelsChoice"
py
b4011af5c15c563941c3f66b550f2f2b975af77b
from __future__ import absolute_import, division, print_function
py
b4011c7d8473f509ed124080d3cd128e4316cb35
""" Django support. """ from __future__ import absolute_import import datetime import decimal from django.db import models from .. import generators as g, mix_types as t, six from ..main import ( Field, Relation, NO_VALUE, TypeMixerMeta as BaseTypeMixerMeta, TypeMixer as BaseTypeMixer, GenFactory as BaseFactory, Mixer as BaseMixer) class GenFactory(BaseFactory): """ Map a django classes to simple types. """ types = { (models.CharField, models.SlugField): str, models.TextField: t.Text, models.BooleanField: bool, models.BigIntegerField: t.BigInteger, (models.AutoField, models.IntegerField): int, models.PositiveIntegerField: t.PositiveInteger, models.PositiveSmallIntegerField: t.PositiveSmallInteger, models.SmallIntegerField: t.SmallInteger, models.DateField: datetime.date, models.DateTimeField: datetime.datetime, models.TimeField: datetime.time, models.DecimalField: decimal.Decimal, models.FloatField: float, models.EmailField: t.EmailString, models.IPAddressField: t.IP4String, models.URLField: t.URL, } class TypeMixerMeta(BaseTypeMixerMeta): """ Load django models from strings. """ def __load_cls(cls, cls_type): if isinstance(cls_type, six.string_types): assert '.' in cls_type, ("'model_class' must be either a model" " or a model name in the format" " app_label.model_name") app_label, model_name = cls_type.split(".") cls_type = models.get_model(app_label, model_name) return cls_type class TypeMixer(six.with_metaclass(TypeMixerMeta, BaseTypeMixer)): """ TypeMixer for Django. """ __metaclass__ = TypeMixerMeta factory = GenFactory def set_value(self, target, field_name, field_value, finaly=False): """ Set value to generated instance. :return : None or (name, value) for later use """ field = self.__fields.get(field_name) if field and field.scheme in self.__scheme._meta.local_many_to_many: if not isinstance(field_value, (list, tuple)): field_value = [field_value] return field_name, field_value return super(TypeMixer, self).set_value( target, field_name, field_value, finaly ) @staticmethod def get_default(field, target): """ Get default value from field. :return value: A default value or NO_VALUE """ if not field.scheme.has_default(): return NO_VALUE return field.scheme.get_default() def gen_select(self, target, field_name, field_value): """ Select exists value from database. :param target: Target for generate value. :param field_name: Name of field for generation. :return : None or (name, value) for later use """ field = self.__fields.get(field_name) if field: try: return self.set_value( target, field_name, field.scheme.rel.to.objects .filter(**field_value.kwargs) .order_by('?')[0] ) except Exception: raise Exception( "Cannot find a value for the field: '{0}'".format( field_name )) return super(TypeMixer, self).gen_select( target, field_name, field_value) def gen_relation(self, target, field_name, relation, force=False): """ Generate a related relation by `relation`. :param target: Target for generate value. :param field_name: Name of relation for generation. :param relation: Instance of :class:`Relation` :return : None or (name, value) for later use """ if ( not relation.scheme or relation.scheme.null or relation.scheme.blank or relation.scheme.auto_created ) and not relation.params and not force: return None rel = relation.scheme if not rel: raise ValueError('Unknown relation: %s' % field_name) new_scheme = rel.related.parent_model value = target if new_scheme != self.__scheme: value = self.__mixer and self.__mixer.blend( new_scheme, **relation.params ) or TypeMixer( new_scheme, factory=self.__factory, fake=self.fake, ).blend(**relation.params) return self.set_value(target, rel.name, value) def make_generator(self, field, fname=None, fake=False): """ Make values generator for field. :param field: A mixer field :param field_name: Field name :param fake: Force fake data :return generator: """ fcls = type(field) stype = self.__factory.cls_to_simple(fcls) kwargs = dict() if fcls is models.CommaSeparatedIntegerField: return g.gen_choices( [1, 2, 3, 4, 5, 6, 7, 8, 9, 0], field.max_length) if field and field.choices: choices, _ = list(zip(*field.choices)) return g.gen_choice(choices) if stype is str: kwargs['length'] = field.max_length elif stype is decimal.Decimal: kwargs['i'] = field.max_digits - field.decimal_places kwargs['d'] = field.decimal_places gen_maker = self.__factory.gen_maker(fcls, fname, fake) return gen_maker(**kwargs) @staticmethod def is_unique(field): """ Return True is field's value should be a unique. :return bool: """ return field.scheme.unique @staticmethod def is_required(field): """ Return True is field's value should be defined. :return bool: """ return not (field.scheme.null and field.scheme.blank) def __load_fields(self): for field in self.__scheme._meta.fields: if isinstance(field, models.AutoField)\ and self.__mixer and self.__mixer.commit: continue if isinstance(field, models.ForeignKey): yield field.name, Relation(field, field.name) continue yield field.name, Field(field, field.name) for field in self.__scheme._meta.local_many_to_many: yield field.name, Relation(field, field.name) class Mixer(BaseMixer): """ Integration with Django. """ type_mixer_cls = TypeMixer def __init__(self, commit=True, **params): super(Mixer, self).__init__(**params) self.commit = commit def post_generate(self, result): """ Save objects in db. :return value: A generated value """ if self.commit: result.save() return result # Default mixer mixer = Mixer() # lint_ignore=W0212,W0201,E1002,F0401
py
b4011d28bb7d0f496cf89ea9e807e4b039a19be5
import pandas as pd import datetime import requests from io import BytesIO, StringIO import os import click import re # the data we already cache in the package in_package_data = range(2002, 2017) DONWLOAD_URL = "http://yield.chinabond.com.cn/cbweb-mn/yc/downYearBzqx?year=%s&&wrjxCBFlag=0&&zblx=txy&ycDefId=%s" YIELD_MAIN_URL = 'http://yield.chinabond.com.cn/cbweb-mn/yield_main' def get_data(): """ every body need to update the new data every day, if you wanna cal this function multi-time intra-day, you should cache it your self Data are combined with 2 parts 1 the xlsx files inside the package 2 newly fetched data those not in the package, we will fetch them on the fly """ cur_year = datetime.datetime.now().year last_in_package_data = max(in_package_data) # download new data to_downloads = range(last_in_package_data + 1, cur_year + 1) # frist, get ycDefIds params response = requests.get(YIELD_MAIN_URL) matchs = re.search(r'\?ycDefIds=(.*?)\&', response.text) ycdefids = matchs.group(1) assert (ycdefids is not None) # please contact me on github if fails fetched_data = [] for year in to_downloads: print('Downloading from ' + DONWLOAD_URL % (year, ycdefids)) response = requests.get(DONWLOAD_URL % (year, ycdefids)) fetched_data.append(BytesIO(response.content)) # combine all data dfs = [] basedir = os.path.join(os.path.dirname(__file__), "xlsx") for i in in_package_data: dfs.append(pd.read_excel(os.path.join(basedir, "%d.xlsx" % i))) for memfile in fetched_data: dfs.append(pd.read_excel(memfile)) df = pd.concat(dfs) return df def get_pivot_data(): """ pivot data """ df = get_data() df.columns = ['date','period1','period','return'] return df.pivot(index='date', columns='period', values='return') def get_zipline_format(): pivot_data = get_pivot_data() pivot_data.columns.name = None pivot_data = pivot_data.reset_index() all_china_bond = pivot_data[[0.08, 0.25, 0.5, 1.0, 2.0, 3.0, 5.0, 7.0, 10.0, 20.0, 30.0]] all_china_bond.columns =['1month', '3month','6month', '1year', '2year', '3year', '5year', '7year', '10year', '20year', '30year'] all_china_bond.index = pd.to_datetime(pivot_data['date']) return all_china_bond @click.command() @click.option("-f", '--fileformat', type=str, default='zipline', help='zipline (default) - zipline style file , all - dump all file') @click.argument("path_to_save") def save_zipline_file(fileformat, path_to_save = None): """ Save china treasury curve data to file """ if path_to_save is None: raise Exception("please provie path") if fileformat not in ('zipline', 'all'): raise Exception("filetype must in ('zipline', 'all') ") click.echo("saving data") if fileformat == 'zipline': get_zipline_format().to_csv(path_to_save) else: get_pivot_data().to_csv(path_to_save) click.echo("done") if __name__ == '__main__': save_zipline_file()
py
b4011da4afbf5974b75e627a7ae7e118bc061929
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from ... import opcodes as OperandDef from ...serialization.serializables import KeyField, DataTypeField, StringField from ..array_utils import as_same_device, device from ..operands import TensorHasInput, TensorOperandMixin from ..utils import get_order class TensorAstype(TensorHasInput, TensorOperandMixin): _op_type_ = OperandDef.ASTYPE _input = KeyField('input') _dtype = DataTypeField('dtype') _order = StringField('order') _casting = StringField('casting') def __init__(self, dtype=None, order=None, casting=None, sparse=False, **kw): super().__init__(_dtype=dtype, _order=order, _casting=casting, sparse=sparse, **kw) @property def dtype(self): return self._dtype @property def order(self): return self._order @property def casting(self): return self._casting def _set_inputs(self, inputs): super()._set_inputs(inputs) self._input = self._inputs[0] def __call__(self, tensor, order=None): return self.new_tensor([tensor], tensor.shape, order=order) @classmethod def tile(cls, op): in_tensor = op.input out_tensor = op.outputs[0] out_chunks = [] for c in in_tensor.chunks: chunk_op = op.copy().reset_key() chunk = chunk_op.new_chunk([c], shape=c.shape, index=c.index, order=out_tensor.order) out_chunks.append(chunk) new_op = op.copy() return new_op.new_tensors(op.inputs, nsplits=in_tensor.nsplits, chunks=out_chunks, kws=[out_tensor.params]) @classmethod def execute(cls, ctx, op): chunk = op.outputs[0] (x,), device_id, xp = as_same_device( [ctx[c.key] for c in op.inputs], device=op.device, ret_extra=True) with device(device_id): if op.sparse: ctx[chunk.key] = x.astype(op.dtype) else: if xp is np: ctx[chunk.key] = x.astype(op.dtype, order=op.order, casting=op.casting) else: # pragma: no cover # cupy does not support casting ctx[chunk.key] = x.astype(op.dtype, order=op.order) def _astype(tensor, dtype, order='K', casting='unsafe', copy=True): """ Copy of the tensor, cast to a specified type. Parameters ---------- dtype : str or dtype Typecode or data-type to which the array is cast. casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional Controls what kind of data casting may occur. Defaults to 'unsafe' for backwards compatibility. * 'no' means the data types should not be cast at all. * 'equiv' means only byte-order changes are allowed. * 'safe' means only casts which can preserve values are allowed. * 'same_kind' means only safe casts or casts within a kind, like float64 to float32, are allowed. * 'unsafe' means any data conversions may be done. order : {'C', 'F', 'A', 'K'}, optional Controls the memory layout order of the result. 'C' means C order, 'F' means Fortran order, 'A' means 'F' order if all the arrays are Fortran contiguous, 'C' order otherwise, and 'K' means as close to the order the array elements appear in memory as possible. Default is 'K'. copy : bool, optional By default, astype always returns a newly allocated array. If this is set to false, and the `dtype`, `order`, and `subok` requirements are satisfied, the input array is returned instead of a copy. Returns ------- arr_t : Tensor Unless `copy` is False and the other conditions for returning the input array are satisfied (see description for `copy` input parameter), `arr_t` is a new tensor of the same shape as the input array, with dtype, order given by `dtype`, `order`. Notes ----- astype method returns an error if the string dtype to cast to is not long enough in 'safe' casting mode to hold the max value of integer/float array that is being casted. Previously the casting was allowed even if the result was truncated. Raises ------ ComplexWarning When casting from complex to float or int. To avoid this, one should use ``a.real.astype(t)``. Examples -------- >>> import mars.tensor as mt >>> x = mt.array([1, 2, 2.5]) >>> x.execute() array([ 1. , 2. , 2.5]) >>> x.astype(int).execute() array([1, 2, 2]) """ dtype = np.dtype(dtype) tensor_order = get_order(order, tensor.order) if tensor.dtype == dtype and tensor.order == tensor_order: return tensor if not copy else tensor.copy(order=order) elif not np.can_cast(tensor.dtype, dtype, casting=casting): raise TypeError(f'Cannot cast array from {tensor.dtype!r} to {dtype!r} ' f'according to the rule {casting}') op = TensorAstype(dtype=dtype, order=order, casting=casting, sparse=tensor.issparse()) return op(tensor, order=tensor_order)
py
b4011dcc102a4aca04be70a18bf11c2ba52d2a8d
name=input('what is your name?') print('Hello, ' + name.upper()) print('Hey, ' + name.lower()) print('I wanna write your name one more time ' + name.capitalize()) print('Actually I want 1 more time haha, so hey ' + name.swapcase())
py
b4011dec6a5f07f28cf71cf617d68cb7cf918a3a
from django.shortcuts import render, redirect, reverse, render_to_response from django.http import HttpResponseRedirect,HttpResponse from .models import TaskForm, Task, UsernameForm, Username from django.template import RequestContext # Create your views here. def tasks(request): if request.method == 'POST': # this is wehere POST request is accessed form = TaskForm(request.POST or None) if form.is_valid(): user = Username.objects.get(username=request.COOKIES.get('username')) temp = form.save(commit=False) temp.username = user temp.save() form = TaskForm() tasks = Task.objects.filter(username__username=request.COOKIES.get('username')).order_by('priority') return render(request, 'tasks.html', {'form': form, 'tasks': tasks, 'user': user}) else: if 'username' not in request.COOKIES: from django.utils.crypto import get_random_string unique_id = get_random_string(length=32) username = Username() username.username = unique_id username.save() response = redirect(reverse('tasks')) # 604800s = 1 week response.set_cookie('username', username, max_age=604800) return response # this is where GET request are accessed form = TaskForm() tasks = Task.objects.filter(username__username=request.COOKIES.get('username')).order_by('priority') user = Username.objects.filter(username=request.COOKIES.get('username')) return render(request, 'tasks.html', {'form': form, 'tasks': tasks, 'user': user}) def check_user_validity(request): ''' Check if user such user exists in Database ''' try: return Username.objects.get(username__exact=request.COOKIES["username"]) except Exception: return False def delete(request, id): if 'username' in request.COOKIES and check_user_validity(request): #now check if user trying to access this task actually created this task Task.objects.filter(id=id,username=Username.objects.get(username__exact=request.COOKIES["username"])).delete() return redirect(reverse('tasks')) else: return HttpResponse("You are not allowed to access this resource") def complete(request, id): if 'username' in request.COOKIES and check_user_validity(request): try: task=Task.objects.get(id=id,username=Username.objects.get(username__exact=request.COOKIES["username"])) if task.complete: task.complete = 0 else: task.complete = 1 task.save() return redirect('/') except Exception: return HttpResponse("Sorry You are not allowed to access This task ") else: return HttpResponse("You are not allowed to access this resource") def clear(request): Username.objects.filter(username=request.COOKIES['username']).delete() response = HttpResponseRedirect('/tasks/') response.delete_cookie('username') return response
py
b4011e470d306e28060b0085f7402e43980e6bfd
import greentest import gevent from gevent import pywsgi import test__server from test__server import * from test__server import Settings as server_Settings def application(self, environ, start_response): if environ['PATH_INFO'] == '/': start_response("200 OK", []) return [b"PONG"] if environ['PATH_INFO'] == '/ping': start_response("200 OK", []) return [b"PONG"] elif environ['PATH_INFO'] == '/short': gevent.sleep(0.5) start_response("200 OK", []) return [] elif environ['PATH_INFO'] == '/long': gevent.sleep(10) start_response("200 OK", []) return [] else: start_response("404 pywsgi WTF?", []) return [] class SimpleWSGIServer(pywsgi.WSGIServer): application = application internal_error_start = b'HTTP/1.1 500 Internal Server Error\n'.replace(b'\n', b'\r\n') internal_error_end = b'\n\nInternal Server Error'.replace(b'\n', b'\r\n') internal_error503 = b'''HTTP/1.1 503 Service Unavailable Connection: close Content-type: text/plain Content-length: 31 Service Temporarily Unavailable'''.replace(b'\n', b'\r\n') class Settings: ServerClass = pywsgi.WSGIServer ServerSubClass = SimpleWSGIServer close_socket_detected = True restartable = False close_socket_detected = False @staticmethod def assert500(self): conn = self.makefile() conn.write(b'GET / HTTP/1.0\r\n\r\n') result = conn.read() assert result.startswith(internal_error_start), (result, internal_error_start) assert result.endswith(internal_error_end), (result, internal_error_end) assertAcceptedConnectionError = assert500 @staticmethod def assert503(self): conn = self.makefile() conn.write(b'GET / HTTP/1.0\r\n\r\n') result = conn.read() assert result == internal_error503, (result, internal_error503) @staticmethod def assertPoolFull(self): self.assertRaises(socket.timeout, self.assertRequestSucceeded) @staticmethod def assertAcceptedConnectionError(self): conn = self.makefile() result = conn.read() assert not result, repr(result) test__server.Settings = Settings del TestNoneSpawn if __name__ == '__main__': greentest.main()
py
b4011e77529fd1b0ff9d862936bebac7a7841d43
from typing import List from pdip.data import EntityBase from pdi.domain.base.secret.AuthenticationTypeBase import AuthenticationTypeBase from pdi.domain.base.secret.SecretBase import SecretBase class SecretTypeBase(EntityBase): def __init__(self, Name: str = None, Secrets: List[SecretBase] = [], AuthenticationTypes: List[AuthenticationTypeBase] = [], *args, **kwargs): super().__init__(*args, **kwargs) self.Name: int = Name self.Secrets = Secrets self.AuthenticationTypes = AuthenticationTypes
py
b4011f17b881564ef90fef936b0a0d755ba9701b
from dataclasses import dataclass from typing import List, Tuple, Optional from fffw import encoding from fffw.encoding import * from fffw.wrapper import param @dataclass class X11Grab(encoding.Input): """ X-server grabbing input. """ # `skip=True` removes parameter from argument list # (it is added manually in `as_pairs`). # This field overwrites `default` from `encoding.Input`. input_file: str = param(name='i', default=':0.0', skip=True) # `init=False` excludes parameter from `__init__`. # Field is initialized with value passed in `default` # parameter. Exactly as in dataclasses. format: str = param(name='f', default='x11grab', init=False) size: str = param(name='video_size') fps: float = param(name='framerate') def as_pairs(self) -> List[Tuple[Optional[str], Optional[str]]]: return super().as_pairs() + [('i', self.input_file)] ff = FFMPEG() ff < X11Grab(fps=25, size='cif', input_file=':0.0+10,20') # As Output is not initialized with any video codec, # force excluding `-vn` flag. ff > output_file('out.mpg', no_video=False) print(ff.get_cmd())
py
b4011f53175525b987f47349bb001053913f8e64
#!/usr/bin/env python3 def createDataRetriever(name=''): from .DataRetriever import DataRetriever return DataRetriever(name=name) def getFactoriesInfo(): """ Returns a dictionary with information on how to create an object Sensor from its factory """ return {'DataRetriever': { 'factory':'createDataRetriever' } }
py
b4011f71d38299ca1bd7c74d545dbc50407dd8b2
#!python import sys import wave import pyaudio import wavfile import argparse import numpy as np from playsound import playsound from scipy.signal import kaiserord, lfilter, firwin, freqz from pylab import figure, plot, xlabel, ylabel, xlim, ylim, title, grid, axes, show OUTPUT_FOLDER = 'out/' CHUNK = 1024 CHANNELS = 1 NOISE_A = 500 class Noiser: """ Utility class to generate a noise. Core extracted from https://stackoverflow.com/questions/33933842/how-to-generate-noise-in-frequency-range-with-numpy """ def __init__(self): pass def fftnoise(self, f): f = np.array(f, dtype="complex") Np = (len(f) - 1) // 2 phases = np.random.rand(Np) * 2 * np.pi phases = np.cos(phases) + 1j * np.sin(phases) f[1 : Np + 1] *= phases f[-1 : -1 - Np : -1] = np.conj(f[1 : Np + 1]) return np.fft.ifft(f).real def band_limited_noise(self, min_freq, max_freq, samples=1024, samplerate=1): freqs = np.abs(np.fft.fftfreq(samples, 1 / samplerate)) f = np.zeros(samples) f[np.logical_and(freqs >= min_freq, freqs <= max_freq)] = 1 return self.fftnoise(f) class Recorder: def __init__(self, duration, sample_rate): self.duration = duration self.sample_rate = sample_rate def __do_record(self, chunk, channels, files_prefix, aformat=pyaudio.paInt16): p = pyaudio.PyAudio() stream = p.open(format=aformat, channels=channels, rate=self.sample_rate, input=True, frames_per_buffer=chunk) print("* recording") frames = [] for i in range(0, int(self.sample_rate / chunk * self.duration)): data = stream.read(chunk) frames.append(data) print("* done recording") stream.stop_stream() stream.close() p.terminate() file_output = OUTPUT_FOLDER + files_prefix + "_output.wav" wf = wave.open(file_output, 'wb') wf.setnchannels(channels) wf.setsampwidth(p.get_sample_size(aformat)) wf.setframerate(self.sample_rate) wf.writeframes(b''.join(frames)) wf.close() return file_output def record(self, files_prefix): return self.__do_record(CHUNK, CHANNELS, files_prefix) class KaiserFilter: def __init__(self, sample_rate, cutoff_hz_1, cutoff_hz_2, ripple_db): self.sample_rate = sample_rate self.cutoff_hz_1 = cutoff_hz_1 self.cutoff_hz_2 = cutoff_hz_2 self.ripple_db = ripple_db def add_noise_and_filter(self, x, noise, play_sounds, files_prefix): t = np.arange(len(x)) / self.sample_rate # Plot original signal. figure() plot(t, x) title('Original signal') grid(True) #------------------------------------------------ # Add noise to original signal #------------------------------------------------ with_noise = x + noise # Plot the signal with noise. figure() plot(t, with_noise) title('Signal with noise') grid(True) # Save audio with noise. output_with_noise = ''.join([OUTPUT_FOLDER, files_prefix, '_with_noise.wav']) wavfile.write(output_with_noise, self.sample_rate, with_noise, normalized=True) # Override x signal. x = with_noise #------------------------------------------------ # Create a FIR filter and apply it to x. #------------------------------------------------ # The Nyquist rate of the signal. nyq_rate = self.sample_rate / 2.0 # The desired width of the transition from pass to stop, # relative to the Nyquist rate. width = (self.cutoff_hz_2 - self.cutoff_hz_1) / nyq_rate # Compute the order and Kaiser parameter for the FIR filter. N, beta = kaiserord(self.ripple_db, width) N |= 1 # Use firwin with a Kaiser window to create a FIR filter. taps = firwin(N, [self.cutoff_hz_1 / nyq_rate, self.cutoff_hz_2 / nyq_rate], window=('kaiser', beta), pass_zero=True) # Use lfilter to filter x with the FIR filter. filtered_x = lfilter(taps, 1.0, x) #------------------------------------------------ # Plot the magnitude response of the filter. #------------------------------------------------ figure() w, h = freqz(taps, worN=8000) plot((w / np.pi) * nyq_rate, np.absolute(h)) xlabel('Frequency (Hz)') ylabel('Gain') title('Frequency response') ylim(-0.05, 1.05) grid(True) #------------------------------------------------ # Plot the filtered signal. #------------------------------------------------ # The phase delay of the filtered signal. delay = 0.5 * (N - 1) / self.sample_rate # Plot the filtered signal, shifted to compensate for the phase delay. figure() # Plot just the "good" part of the filtered signal. The first N-1 # samples are "corrupted" by the initial conditions. plot(t[N-1:]-delay, filtered_x[N-1:], 'g') title('Filtered signal') xlabel('t') grid(True) # Save filtered audio output_filtered = "".join([OUTPUT_FOLDER, files_prefix, '_filtered.wav']) wavfile.write(output_filtered, self.sample_rate, filtered_x, normalized=True) if play_sounds: playsound(output_with_noise) playsound(output_filtered) # Show plotted figures show() def main(): parser = argparse.ArgumentParser() parser.add_argument('--duration', '-d', default=5, type=int, help='Recording duration in seconds') parser.add_argument('--rate', '-r', default=44100, type=int, help='Audio sample rate') parser.add_argument('--window', '-w', choices=['kaiser'], default='kaiser', help='Filter window type') parser.add_argument('--cutoffhz1', '-wc1', default=1900, type=int, help='The cutoff frequency 1 of the filter') parser.add_argument('--cutoffhz2', '-wc2', default=2100, type=int, help='The cutoff frequency 2 of the filter') parser.add_argument('--ripple_db', '-rd', default=60, type=int, help='The desired attenuation in the stop band, in dB') parser.add_argument('--noise_1', '-n1', default=1950, type=int, help='Noise minimum frequency') parser.add_argument('--noise_2', '-n2', default=2050, type=int, help='Noise maximum frequency') parser.add_argument('--play', '-p', default=True, type=bool, help='Play audios with and without noise') args = vars(parser.parse_args()) files_prefix = '_'.join(['noise', str(args['noise_1']), str(args['noise_2'])\ , str(args['cutoffhz1']), str(args['cutoffhz2']), str(args['ripple_db'])]) audio_path = Recorder(args['duration'], args['rate']).record(files_prefix) x = wavfile.read(audio_path, normalized=True, forcestereo=False)[1] noise = Noiser().band_limited_noise(min_freq=args['noise_1'], max_freq=args['noise_2']\ , samples=len(x), samplerate=args['rate']) * NOISE_A if args['window'] == 'kaiser': KaiserFilter(args['rate'], args['cutoffhz1'], args['cutoffhz2'], args['ripple_db'])\ .add_noise_and_filter(x, noise, args['play'], files_prefix) if __name__ == "__main__": main()
py
b4011fa6b77ebd6c7bd06d228ce60c19fe945524
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from nova.tests.functional.notification_sample_tests \ import notification_sample_base from nova.tests.unit import fake_notifier class TestFlavorNotificationSample( notification_sample_base.NotificationSampleTestBase): def test_flavor_create(self): body = { "flavor": { "name": "test_flavor", "ram": 1024, "vcpus": 2, "disk": 10, "id": "a22d5517-147c-4147-a0d1-e698df5cd4e3", "rxtx_factor": 2.0 } } self.admin_api.api_post('flavors', body) self._verify_notification('flavor-create') def test_flavor_destroy(self): body = { "flavor": { "name": "test_flavor", "ram": 1024, "vcpus": 2, "disk": 10, "id": "a22d5517-147c-4147-a0d1-e698df5cd4e3", "rxtx_factor": 2.0 } } # Create a flavor. self.admin_api.api_post('flavors', body) self.admin_api.api_delete( 'flavors/a22d5517-147c-4147-a0d1-e698df5cd4e3') self._verify_notification( 'flavor-delete', actual=fake_notifier.VERSIONED_NOTIFICATIONS[1]) def test_flavor_update(self): body = { "flavor": { "name": "test_flavor", "ram": 1024, "vcpus": 2, "disk": 10, "id": "a22d5517-147c-4147-a0d1-e698df5cd4e3", "os-flavor-access:is_public": False, "rxtx_factor": 2.0 } } # Create a flavor. self.admin_api.api_post('flavors', body) body = { "extra_specs": { "key1": "value1", "key2": "value2" } } self.admin_api.api_post( 'flavors/a22d5517-147c-4147-a0d1-e698df5cd4e3/os-extra_specs', body) body = { "addTenantAccess": { "tenant": "fake_tenant" } } self.admin_api.api_post( 'flavors/a22d5517-147c-4147-a0d1-e698df5cd4e3/action', body) self._verify_notification( 'flavor-update', actual=fake_notifier.VERSIONED_NOTIFICATIONS[2])
py
b401215b62161cc96339fea4b0a68dfd02abb285
""" List of form-of templates. Auto-generated with `python -m scripts`. """ # START labels = { "&": "and", "+": "with", "2ch slang": "2channel slang", "Ante-Classical": "pre-Classical", "Ante-classical": "pre-Classical", "Anteclassical": "pre-Classical", "Classic 1811 Dictionary of the i Tongue": "archaic, slang", "Hispanicism": "Castilianism", "International Phonetic Alphabet": "IPA", "NNES": "non-native speakers' English", "NNS": "non-native speakers", "NNSE": "non-native speakers' English", "Now": "now", "Post-Classical": "post-Classical", "Post-classical": "post-Classical", "Postclassical": "post-Classical", "Pre-Classical": "pre-Classical", "Pre-classical": "pre-Classical", "Preclassical": "pre-Classical", "UK slang": "British slang", "_": "", "active voice": "active", "ad slang": "advertising slang", "affectionate": "endearing", "ambitransitive": "transitive, intransitive", "ante-Classical": "pre-Classical", "ante-classical": "pre-Classical", "anteclassical": "pre-Classical", "argot": "cant", "baby talk": "childish", "back-slang": "back slang", "backslang": "back slang", "bookish": "literary", "child language": "childish", "chu Nom": "Vietnamese chữ Nôm", "coarse": "vulgar", "cognate object": "with cognate object", "colloquially": "colloquial", "control": "control verb", "copular": "copulative", "cosmo": "advertising slang", "coster": "costermongers", "costermonger": "costermongers", "costermongers back slang": "costermongers", "costermongers' back slang": "costermongers", "costers": "costermongers", "cryptolect": "cant", "derogative": "derogatory", "disparaging": "derogatory", "dual": "in the dual", "dysphemism": "dysphemistic", "elevated": "solemn", "euphemism": "euphemistic", "except in": "outside", "expletive": "swear word", "fandom": "fandom slang", "female speech": "women's speech", "figurative": "figuratively", "hapax legomenon": "hapax", "hedges": "hedge", "historic": "historical", "history": "historical", "hyperbole": "hyperbolic", "ideophone": "ideophonic", "idiom": "idiomatic", "idiomatically": "idiomatic", "imperative mood": "imperative", "in dual": "in the dual", "in mediopassive": "in the mediopassive", "in plural": "in the plural", "in singular": "in the singular", "in the active": "active", "in the imperative": "imperative", "in the indicative": "indicative", "in the jussive": "jussive", "in the middle": "middle", "in the middle voice": "middle", "in the passive": "passive", "in the subjunctive": "subjunctive", "indicative mood": "indicative", "informally": "informal", "internet slang": "Internet slang", "jocular": "humorous", "jussive mood": "jussive", "leet": "leetspeak", "literal": "literally", "mainly": "chiefly", "male speech": "men's speech", "mediopassive": "in the mediopassive", "metaphor": "figuratively", "metaphorical": "figuratively", "metaphorically": "figuratively", "metonym": "metonymically", "metonymic": "metonymically", "metonymy": "metonymically", "middle voice": "middle", "mostly": "chiefly", "narrowly": "strictly", "negative polarity": "chiefly in the negative", "negative polarity item": "chiefly in the negative", "neologistic": "neologism", "no plural": "singular only", "non-standard": "nonstandard", "nonce": "nonce word", "notcomp": "not comparable", "nowadays": "now", "obscene": "vulgar", "passive voice": "passive", "pejorative": "derogatory", "plural": "in the plural", "plurale tantum": "plural only", "pluralonly": "plural only", "possessive pronoun": "possessive", "post-classical": "post-Classical", "postclassical": "post-Classical", "pre-classical": "pre-Classical", "preclassical": "pre-Classical", "primarily": "chiefly", "profane": "vulgar", "profanity": "swear word", "pronominal": "takes a reflexive pronoun", "public school slang": "school slang", "racial slur": "ethnic slur", "rare sense": "rare", "rare term": "rare", "reflexive pronoun": "reflexive", "sectarian slur": "religious slur", "self-deprecating": "self-deprecatory", "seong-eo": "set phrase from Classical Chinese", "singular": "in the singular", "singulare tantum": "singular only", "stative verb": "stative", "student slang": "college slang", "subjunctive mood": "subjunctive", "texting": "text messaging", "thieves": "thieves' cant", "thieves cant": "thieves' cant", "thieves'": "thieves' cant", "uds.": "used formally in Spain", "uncomparable": "not comparable", "university slang": "college slang", "usually in plural": "usually in the plural", "usually in the negative": "chiefly in the negative", "usually plural": "usually in the plural", } # 144 label_syntaxes = { "&": { "omit_postComma": True, "omit_preComma": True, "omit_preSpace": False, }, "+": { "omit_postComma": True, "omit_preComma": True, "omit_preSpace": False, }, ";": { "omit_postComma": True, "omit_preComma": True, "omit_preSpace": True, }, "Homeric epithet": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "Now": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "_": { "omit_postComma": True, "omit_preComma": True, "omit_preSpace": False, }, "also": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "and": { "omit_postComma": True, "omit_preComma": True, "omit_preSpace": False, }, "by": { "omit_postComma": True, "omit_preComma": True, "omit_preSpace": False, }, "chiefly": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "especially": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "except": { "omit_postComma": True, "omit_preComma": True, "omit_preSpace": False, }, "except in": { "omit_postComma": True, "omit_preComma": True, "omit_preSpace": False, }, "excluding": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "extremely": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "frequently": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "humorously": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "including": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "mainly": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "many": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "markedly": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "mildly": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "mostly": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "now": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "nowadays": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "occasionally": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "of": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "of a": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "of an": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "often": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "or": { "omit_postComma": True, "omit_preComma": True, "omit_preSpace": False, }, "originally": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "outside": { "omit_postComma": True, "omit_preComma": True, "omit_preSpace": False, }, "particularly": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "possibly": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "primarily": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "rarely": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "slightly": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "sometimes": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "somewhat": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "strongly": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "then": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "typically": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "usually": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "very": { "omit_postComma": True, "omit_preComma": False, "omit_preSpace": False, }, "with": { "omit_postComma": True, "omit_preComma": True, "omit_preSpace": False, }, } # 46 labels_topical = { "Ancient Hinduism": "Vedic religion", "Arabian god": "Arabian mythology", "Arthurian mythology": "Arthurian legend", "Asatru": "Germanic paganism", "Bible": "biblical", "Biblical": "biblical", "Biblical character": "biblical", "Biblical figure": "biblical", "Catholic": "Catholicism", "Chinese chess": "xiangqi", "Chinese constellation": "Chinese astronomy", "Chinese medicine": "traditional Chinese medicine", "Chinese star": "Chinese astronomy", "Communism": "communism", "Daoism": "Taoism", "E number": "food manufacture", "Eastern Catholic": "Eastern Catholicism", "Egyptian god": "Egyptian mythology", "GUI": "graphical user interface", "Germanic Paganism": "Germanic paganism", "Germanic neopaganism": "Germanic paganism", "Go": "go", "Greek god": "Greek mythology", "Halacha": "Jewish law", "Halachah": "Jewish law", "Halakha": "Jewish law", "Halakhah": "Jewish law", "Heathenry": "Germanic paganism", "Hindu god": "Hinduism", "Japanese god": "Japanese mythology", "Java PL": "Java programming language", "JavaPL": "Java programming language", "Jewish Law": "Jewish law", "LGBTQ": "LGBT", "MMO": "online gaming", "MMORPG": "online gaming", "Mesopotamian god": "Mesopotamian mythology", "Nazi": "Nazism", "Norse neopaganism": "Germanic paganism", "Norse paganism": "Germanic paganism", "RPG": "role-playing games", "Rasta": "Rastafari", "Rastafarian": "Rastafari", "Rastafarianism": "Rastafari", "Roman Catholic": "Roman Catholicism", "Roman god": "Roman mythology", "Rubik's cubes": "Rubik's Cube", "Shamanism": "shamanism", "TCM": "traditional Chinese medicine", "TV": "television", "USSR": "Soviet Union", "Vedic Hinduism": "Vedic religion", "Vedicism": "Vedic religion", "Vedism": "Vedic religion", "WMF": "Wiktionary and WMF jargon", "WMF jargon": "Wiktionary and WMF jargon", "Wiktionary": "Wiktionary and WMF jargon", "Wiktionary jargon": "Wiktionary and WMF jargon", "alcohol": "alcoholic beverages", "amino acid": "biochemistry", "analysis": "mathematical analysis", "ancient Hinduism": "Vedic religion", "angling": "fishing", "architectural element": "architecture", "architectural elements": "architecture", "arts": "art", "asana": "yoga", "association football": "soccer", "asterism": "uranography", "automotives": "automotive", "bacteria": "bacteriology", "baraminology": "creationism", "betting": "gambling", "biblical character": "biblical", "biblical figure": "biblical", "bicycling": "cycling", "board game": "board games", "book of the bible": "biblical", "canid": "zoology", "carbohydrate": "biochemistry", "carboxylic acid": "organic chemistry", "card game": "card games", "cards": "card games", "cat": "zoology", "cell phone": "mobile telephony", "cell phones": "mobile telephony", "chemical element": "chemistry", "christianity": "Christianity", "cinema": "film", "coenzyme": "biochemistry", "communications": "communication", "comp sci": "computer science", "compilation": "software compilation", "comptheory": "computing theory", "computer": "computing", "computer game": "computer games", "computer language": "computer languages", "computer programming": "programming", "computers": "computing", "constellation": "astronomy", "constructed languages": "conlanging", "cookery": "cooking", "cookware": "cooking", "copyright": "copyright law", "coral science": "marine biology", "cosmetology": "cosmetics", "cryptocurrency": "cryptocurrencies", "cuisine": "cooking", "culinary": "cooking", "currency": "numismatics", "database": "databases", "dice": "dice games", "disease": "medicine", "diseases": "medicine", "element symbol": "chemistry", "emergency": "emergency medicine", "enzyme": "biochemistry", "equestrian": "equestrianism", "fatty acid": "organic chemistry", "felid": "zoology", "fictional character": "fiction", "figure of speech": "rhetoric", "film genre": "film", "filmology": "cinematography", "firearm": "firearms", "fish": "zoology", "football": "soccer", "footwear": "clothing", "functional group prefix": "organic chemistry", "functional group suffix": "organic chemistry", "galaxy": "astronomy", "game": "games", "game of go": "game of Go", "gardening": "horticulture", "gastronomy": "cooking", "genetic disorder": "medical genetics", "gnosticism": "Gnosticism", "grammatical case": "grammar", "grammatical mood": "grammar", "greekmyth": "Greek mythology", "gun mechanisms": "firearms", "gynecology": "gynaecology", "haematology": "hematology", "halacha": "Jewish law", "halachah": "Jewish law", "halakha": "Jewish law", "halakhah": "Jewish law", "ham radio": "amateur radio", "heathenry": "Germanic paganism", "heraldic charge": "heraldry", "heraldiccharge": "heraldry", "hockey": "field hockey or ice hockey", "hormone": "biochemistry", "horoscope": "astrology", "horses": "equestrianism", "hydrocarbon chain prefix": "organic chemistry", "hydrocarbon chain suffix": "organic chemistry", "indo-european studies": "Indo-European studies", "industry": "manufacturing", "inorganic compound": "inorganic chemistry", "internet": "Internet", "islam": "Islam", "isotope": "physics", "jewish law": "Jewish law", "landforms": "geography", "legal": "law", "letterpress": "letterpress typography", "lipid": "biochemistry", "logical fallacy": "rhetoric", "math": "mathematics", "maths": "mathematics", "medical": "medicine", "medical sign": "medicine", "medieval folklore": "mediaeval folklore", "metal type": "letterpress typography", "metal typesetting": "letterpress typography", "metamaterial": "physics", "military rank": "military", "military ranks": "military", "military unit": "military", "mineral": "mineralogy", "mobile phone": "mobile telephony", "mobile phones": "mobile telephony", "morphology": "linguistic morphology", "motor sport": "motor racing", "motorbike": "motorcycling", "motorcycle": "motorcycling", "motorcycles": "motorcycling", "motorsport": "motor racing", "muscle": "anatomy", "mushroom": "mycology", "mushrooms": "mycology", "music genre": "music", "musical instrument": "music", "musical instruments": "music", "musici": "music", "musician": "music", "mythological creature": "mythology", "mythological creatures": "mythology", "nazi": "Nazism", "nazism": "Nazism", "neo-Nazi": "Nazism", "neo-Nazism": "Nazism", "neo-nazi": "Nazism", "neo-nazism": "Nazism", "neo-pagan": "paganism", "neo-paganism": "paganism", "neoNazi": "Nazism", "neoNazism": "Nazism", "neonazi": "Nazism", "neonazism": "Nazism", "neopagan": "paganism", "neopaganism": "paganism", "neurotoxin": "neurotoxicology", "neurotransmitter": "biochemistry", "object-oriented": "object-oriented programming", "obstetric": "obstetrics", "oil drilling": "oil industry", "online": "Internet", "online games": "online gaming", "organic compound": "organic chemistry", "pagan": "paganism", "pain": "medicine", "palaeontology": "paleontology", "paleography": "palaeography", "part of speech": "grammar", "particle": "physics", "patents": "patent law", "pesapallo": "pesäpallo", "pharmaceutical drug": "pharmacology", "pharmaceutical effect": "pharmacology", "philology": "linguistics", "plant": "botany", "plant disease": "phytopathology", "playing card": "card games", "poison": "toxicology", "police": "law enforcement", "policing": "law enforcement", "political": "politics", "political subdivision": "government", "pro wrestling": "professional wrestling", "protein": "biochemistry", "proteins": "biochemistry", "quantum": "quantum mechanics", "quantum physics": "quantum mechanics", "radiation": "physics", "rail": "rail transport", "railroading": "rail transport", "railroads": "rail transport", "rasta": "Rastafari", "rastafarian": "Rastafari", "regex": "regular expressions", "rock": "petrology", "role playing games": "role-playing games", "schools": "education", "sci fi": "science fiction", "science": "sciences", "scientific": "sciences", "scifi": "science fiction", "scouting": "Scouting", "scuba": "underwater diving", "scuba diving": "underwater diving", "skeleton": "anatomy", "social science": "social sciences", "software development": "software engineering", "space": "space science", "sport": "sports", "squash": "squash (sport)", "standard of identity": "standards of identity", "star": "astronomy", "steroid": "biochemistry", "steroid drug": "biochemistry, steroids", "steroid hormone": "biochemistry, steroids", "stock symbol": "stock ticker symbol", "sugar acid": "organic chemistry", "surface feature": "planetology", "symptom": "medicine", "tax": "taxation", "taxes": "taxation", "taxonomic name": "taxonomy", "telecom": "telecommunications", "telecommunication": "telecommunications", "telephone": "telephony", "telephones": "telephony", "theatre": "theater", "tincture": "heraldry", "trading card games": "collectible card games", "transportation": "transport", "typesetting": "typography", "valentinianism": "Valentinianism", "vector": "linear algebra", "vector algebra": "linear algebra", "vegetables": "vegetable", "vehicle": "vehicles", "video game genre": "video games", "video gaming": "video games", "vitamin": "biochemistry", "vulcanology": "volcanology", "watercraft": "nautical", "weapons": "weaponry", "white nationalism": "white supremacist ideology", "white nationalist": "white supremacist ideology", "white power": "white supremacist ideology", "white racism": "white supremacist ideology", "white supremacism": "white supremacist ideology", "white supremacist": "white supremacist ideology", "white supremacy": "white supremacist ideology", "yoga pose": "yoga", "zodiac": "astrology", "zodiac constellations": "astronomy", "Ásatrú": "Germanic paganism", } # 311 labels_regional = { "AU": "Australia", "Acadia": "Acadian", "Adrianople": "Edirne", "African": "Africa", "Afyon": "Afyonkarahisar", "Aghin": "Ağın", "Aghjabadi": "Agjabedi", "Aghjabedi": "Agjabedi", "Aghri": "Ağrı", "Akhalkalak": "Akhalkalaki", "Akhlkalak": "Akhalkalaki", "Al-Andalus": "al-Andalus", "Alaskan": "Alaska", "Alaškert": "Alashkert", "Algerian": "Algeria", "Algherese": "Alghero", "Ali Bayramli": "Shirvan", "Alto Adige": "South Tyrol", "America": "US", "American": "US", "American form": "US", "Andean": "Andes", "Angolan": "Angola", "Antarctic": "Antarctica", "Appalachian": "Appalachia", "Arabkir": "Arapgir", "Aragon": "Aragón", "Aragonese": "Aragón", "Arapkir": "Arapgir", "Archesh": "Erciş", "Ardabil": "Ardebil", "Ardabīl ": "Ardebil", "Ardanuji": "Ardanuç", "Ardebīl": "Ardebil", "Ardvin": "Artvin", "Ardvini": "Artvin", "Argentinian": "Argentina", "Artanuj": "Ardanuç", "Artchesh": "Erciş", "Aslanbek": "Aslanbeg", "Asturian": "Asturias", "Atana": "Adana", "Atlantic Canadian": "Atlantic Canada", "Australian": "Australia", "Australian form": "Australian", "Austrian": "Austria", "Azorean": "Azores", "Azorian": "Azores", "Ağcabədi": "Agjabedi", "Ağdam": "Agdam", "Baghesh": "Bitlis", "Bahaman": "Bahamas", "Bahian": "Bahia", "Baiano": "Bahia", "Baki": "Baku", "Bakı": "Baku", "Balakən": "Balakan", "Baleares": "Balearics", "Balearic": "Balearics", "Balearic Islands": "Balearics", "Balears": "Balearics", "Balu": "Palu", "Bantenese": "Banten", "Barbadian": "Barbados", "Bardizag": "Partizak", "Bavarian": "Bavaria", "Bedfordshire dialect": "Bedfordshire", "Belgian": "Belgium", "Belizean": "Belize", "Berkshire dialect": "Berkshire", "Bermudan": "Bermuda", "Bernese": "Bern", "Bhawnagari": "Kathiyawadi", "Bohuslan": "Bohuslän", "Bolivian": "Bolivia", "Bolognese": "Bologna", "Borchali": "Borchaly", "Borchalu": "Borchaly", "Borçalı": "Borchaly", "Bosnian": "Bosnia", "Brabantian": "Brabant", "Brazilian": "Brazil", "Brebian": "Brebes", "Bristolian": "Bristol", "Brit": "Britain", "British": "Britain", "British Columbian": "British Columbia", "British form": "British", "Bucovina": "Bukovina", "Bukovinian": "Bukovina", "Bukowina": "Bukovina", "Burma": "Myanmar", "Burmese": "Myanmar", "Burundian": "Burundi", "Bərdə": "Barda", "Cajun": "Louisiana", "Californian": "California", "Canadian": "Canada", "Canadian form": "Canadian", "Canarias": "Canary Islands", "Canaries": "Canary Islands", "Cape Verdean": "Cape Verde", "Carinthian": "Carinthia", "Carioca": "Rio de Janeiro", "Carpigiano": "Carpi", "Central American": "Central America", "Chadian": "Chad", "Chebsko": "Egerland", "Chilean": "Chile", "Chmshkatsag": "Çemişgezek", "Cirebonese": "Cirebon", "Colombian": "Colombia", "Commonwealth": "Commonwealth of Nations", "Commonwealth form": "British", "Commonwealth spelling": "British spelling", "Congo-Brazzaville": "Congo", "Congo-Kinshasa": "Congo", "Congolese": "Congo", "Cornish": "Cornwall", "Cornish dialect": "Cornwall", "Costa Rican": "Costa Rica", "Crimean": "Crimea", "Croatian": "Croatia", "Cuban": "Cuba", "Culfa": "Julfa", "Cumbrian": "Cumbria", "Cypriot": "Cyprus", "Côte d'Ivoire": "Ivory Coast", "Côte d’Ivoire": "Ivory Coast", "Cəbrayıl": "Jabrayil", "Cəlilabad": "Jalilabad", "D.C.": "District of Columbia", "DC": "District of Columbia", "DDR": "East Germany", "DR Congo": "Congo", "Dalmatian": "Dalmatia", "Democratic Republic of Congo": "Congo", "Democratic Republic of the Congo": "Congo", "Den Haag": "The Hague", "Derbyshire dialect": "Derbyshire", "Devonian": "Devon", "Devonian dialect": "Devon", "Devonshire": "Devon", "Devonshire dialect": "Devon", "Devrik": "Divriği", "Devrike": "Divriği", "Dewrik": "Divriği", "Dewrike": "Divriği", "Diyarbakir": "Diyarbakır", "Diyarbekir": "Diyarbakır", "Dobrogea": "Dobruja", "Dobrujan": "Dobruja", "Dorset dialect": "Dorset", "Dərbənd": "Derbent", "East African": "East Africa", "East Anglian": "East Anglia", "East Anglian dialect": "East Anglia", "East German": "East Germany", "East Midlands dialect": "East Midlands", "East Prussia": "Prussia", "East Prussian": "Prussia", "Ecuadorian": "Ecuador", "Egerländisch": "Egerland", "Egin": "Akn", "Egyptian": "Egypt", "Elazig": "Elazığ", "Elazigh": "Elazığ", "Eleşkirt": "Alashkert", "English": "England", "Equatoguinean": "Equatorial Guinea", "Equatorial Guinean": "Equatorial Guinea", "Ercis": "Erciş", "Erdîş": "Erciş", "Erzinjan": "Erzincan", "Erznka": "Erzincan", "Erzrum": "Erzurum", "Essex dialect": "Essex", "Estonian": "Estonia", "Evdokia": "Tokat", "Extremaduran": "Extremadura", "Eğin": "Akn", "Feer": "Föhr-Amrum", "Fering": "Föhr-Amrum", "Finnish": "Finland", "Fizuli": "Fuzuli", "Fluminense": "Rio de Janeiro", "French": "France", "Föhr-Amrum dialect": "Föhr-Amrum", "Füzuli": "Fuzuli", "GDR": "East Germany", "Gakh": "Qakh", "Galician": "Galicia", "Gandzak": "Ganja", "Gaucho": "Rio Grande do Sul", "Gavar": "Nor Bayazet", "Gazakh": "Qazakh", "Gaúcho": "Rio Grande do Sul", "Georgia (US)": "Georgia", "German": "Germany", "Getabek": "Gadabay", "Ghars": "Kars", "Glos": "Gloucestershire", "Gloucestershire dialect": "Gloucestershire", "Goan": "Goa", "Gohilwadi": "Kathiyawadi", "Gotlandic": "Gotland", "Goygol": "Göygöl", "Great Britain": "Britain", "Guatemalan": "Guatemala", "Guyanese": "Guyana", "Gyurin": "Gürün", "Göyçay": "Goychay", "Gədəbəy": "Gadabay", "Gəncə": "Ganja", "Hachn": "Haçin", "Hadjin": "Haçin", "Hague": "The Hague", "Hajin": "Haçin", "Hajn": "Haçin", "Hakari": "Hakkari", "Hakiari": "Hakkari", "Hakkiari": "Hakkari", "Hakkâri": "Hakkari", "Halunder": "Heligoland", "Harput": "Kharberd", "Hawaiian": "Hawaii", "Helenendorf": "Göygöl", "Helgoland": "Heligoland", "Helgoland dialect": "Heligoland", "Heligoland dialect": "Heligoland", "Heligolandic": "Heligoland", "Herefordshire dialect": "Herefordshire", "Hin Jugha": "Julfa", "Hodiçor": "Khotorjur", "Holadi": "Kathiyawadi", "Hollandic": "Holland", "Honduran": "Honduras", "Huelvan": "Extremadura", "Indian": "India", "Indianan": "Indiana", "Indianian": "Indiana", "Indonesian": "Indonesia", "Insular Scots": "Orkney, Shetland", "Iranian": "Iran", "Iraqi": "Iraq", "Irish": "Ireland", "Isle of Lewis": "Lewis", "Isle of Mann": "Isle of Man", "Isle of Skye": "Skye", "Israeli": "Israel", "Ivorian": "Ivory Coast", "Izmir": "İzmir", "Izmit": "İzmit", "Içel": "İçel", "Jamaican": "Jamaica", "Javakhk": "Javakheti", "Javanese": "Java", "Jeolla": "Jeolla dialect", "Jhalawadi": "Kathiyawadi", "Jordanian": "Jordan", "Jugha": "Julfa", "Jutlandic": "Jutland", "Kakhi": "Qakh", "Kalbar": "West Kalimantan", "Kaqavaberd": "Kakavaberd", "Karaköse": "Ağrı", "Karin": "Erzurum", "Karvansara": "Karvansara, Gegharkunik", "Karvansaray": "Karvansara, Gegharkunik", "Kathiawadi": "Kathiyawadi", "Kaua'i": "Kauaʻi", "Kauai": "Kauaʻi", "Kazakh": "Qazakh", "Kazakhstani": "Kazakhstan", "Kelbajar": "Kalbajar", "Kent dialect": "Kent", "Kentish": "Kent", "Kentish dialect": "Kent", "Kenyan": "Kenya", "Kesaria": "Kayseri", "Khanlar": "Göygöl", "Kharpert": "Kharberd", "Kharput": "Kharberd", "Khevsuria": "Khevsureti", "Khlat": "Ahlat", "Khodorchur": "Khotorjur", "Kirklareli": "Kırklareli", "Kyurin": "Gürün", "Kärnten": "Carinthia", "Kürdəmir": "Kurdamir", "Kəlbəcər": "Kalbajar", "Lana'i": "Lānaʻi", "Lanai": "Lānaʻi", "Lanaʻi": "Lānaʻi", "Lankon": "Lankaran", "Latvian": "Latvia", "Laçîn": "Lachin", "Laçın": "Lachin", "Lebanese": "Lebanon", "Levant": "Levantine", "Liberian": "Liberia", "Libyan": "Libya", "Lithuanian": "Lithuania", "Liverpool": "Liverpudlian", "Lower Austrian": "Lower Austria", "Loṙi": "Lori", "Lulea": "Luleå", "Luxembourgish": "Luxembourg", "Luxemburg": "Luxembourg", "Luxemburgish": "Luxembourg", "Luzern": "Lucerne", "Lvov": "Lviv", "Lwow": "Lviv", "Lwów": "Lviv", "Lāna'i": "Lānaʻi", "Lənkaran": "Lankaran", "Lənkəran": "Lankaran", "Macanese": "Macau", "Macao": "Macau", "Madeiran": "Madeira", "Mahesani": "Mehsani", "Mainland": "Mainland China", "Majorca": "Mallorca", "Malatia": "Malatya", "Malaysian": "Malaysia", "Malian": "Mali", "Mallorcan": "Mallorca", "Maltese": "Malta", "Manc": "Manchester", "Mancunian": "Manchester", "Mantovano": "Mantua", "Manx": "Isle of Man", "Maramures": "Maramureș", "Masallı": "Masally", "Mauritanian": "Mauritania", "Mexican": "Mexico", "Meğri": "Meghri", "Midlands dialect": "Midlands", "Midwest US": "Midwestern US", "Miks": "Moks", "Mingəçevir": "Mingachevir", "Mirandolese": "Mirandola", "Mississippian": "Mississippi", "Modenese": "Modena", "Moldavian": "Moldavia", "Moldova": "Moldavia", "Moldovan": "Moldavia", "Moloka'i": "Molokaʻi", "Molokai": "Molokaʻi", "Montenegrin": "Montenegro", "Moravian": "Moravia", "Moroccan": "Morocco", "Mozambican": "Mozambique", "Muntenian": "Muntenia", "Murcian": "Murcia", "Mush": "Muş", "Myanmarese": "Myanmar", "Müküs": "Moks", "NC": "North Carolina", "NY": "New York", "NYC": "New York City", "NZ": "New Zealand", "Nahçıvan": "Nakhchivan", "Nakhichevan": "Nakhchivan", "Nakhichevan-on-Don": "Nor Nakhichevan", "Nakhijevan": "Nakhchivan", "Namibian": "Namibia", "Napoli": "Naples", "Navarrese": "Navarre", "Naxçıvan": "Nakhchivan", "Neapolitan": "Naples", "Nepalese": "Nepal", "Nepali": "Nepal", "New Mexican": "New Mexico", "New Nakhichevan": "Nor Nakhichevan", "New Orleans": "Louisiana", "New York city": "New York City", "Ni'ihau": "Niʻihau", "Nicaraguan": "Nicaragua", "Nicomedia": "İzmit", "Nidzh": "Nij", "Niederösterreich": "Lower Austria", "Niederösterreichisch": "Lower Austria", "Nigde": "Niğde", "Nigerian": "Nigeria", "Nigerien": "Niger", "Niihau": "Niʻihau", "Nikomedia": "İzmit", "Nor Jugha": "New Julfa", "Nor Nakhijevan": "Nor Nakhichevan", "Nordeste": "Northeast Brazil", "Nordestino": "Northeast Brazil", "North Carolinian": "North Carolina", "North East England": "Northumbria", "North England": "Northern England", "North Indian": "North India", "North-East England": "Northumbria", "Northeast Brazilian": "Northeast Brazil", "Northeast England": "Northumbria", "Northeastern Brazilian": "Northeast Brazil", "Northern Irish": "Northern Ireland", "Northern Isles": "Orkney, Shetland", "Northumberland": "Northumbria", "Northumbrian": "Northumbria", "Nottinghamshire dialect": "Nottinghamshire", "Nova Scotian": "Nova Scotia", "Novo-Bayazet": "Nor Bayazet", "OH": "Ohio", "Oaxacan": "Oaxaca", "Odrin": "Edirne", "Ohioan": "Ohio", "Old Julfa": "Julfa", "Oltenian": "Oltenia", "Omani": "Oman", "Oomram": "Föhr-Amrum", "Orcadian": "Orkney", "Ostrobothnian": "Ostrobothnia", "Oxfordshire dialect": "Oxfordshire", "Oğuz": "Oghuz", "Pakistani": "Pakistan", "Palestinian": "Palestine", "Panamanian": "Panama", "Paraguayan": "Paraguay", "Paranaense": "Paraná", "Parmigiano": "Parma", "Paulista": "São Paulo", "Pennsylvanian": "Pennsylvania", "Peruvian": "Peru", "Philippine": "Philippines", "Piacentino": "Piacenza", "Picard": "Picardy", "Polis": "Istanbul", "Portuguese": "Portugal", "Presov": "Prešov", "Prussian": "Prussia", "Puerto Rican": "Puerto Rico", "Punjabi": "Punjab", "Qax": "Qakh", "Qazax": "Qazakh", "Québec": "Quebec", "Reggiano": "Reggio Emilia", "Republic of Congo": "Congo", "Republic of Moldova": "Moldova", "Republic of the Congo": "Congo", "Rhodesian": "Rhodesia", "Ross": "Ross-shire", "Rotterdams": "Rotterdam", "Rwandan": "Rwanda", "SEA": "Southeast Asia", "Saarlandic": "Saarland", "Saarlandish": "Saarland", "Saarländisch": "Saarland", "Saatlı": "Saatly", "Saint Gallen": "St. Gallen", "Saint Ouen": "Saint Ouën", "Saint Ouënnais": "Saint Ouën", "Salvadorian": "El Salvador", "Sandø": "Sandoy", "Santomean": "São Tomé and Príncipe", "Sao Paulo": "São Paulo", "Sao Tomean": "São Tomé and Príncipe", "Sason": "Sasun", "Sassoun": "Sasun", "Scanian": "Scania", "Scottish": "Scotland", "Scouse": "Liverpudlian", "Sebastea": "Sivas", "Sebastia": "Sivas", "Sense District": "Sense", "Sensler": "Sense", "Senslerdeutsch": "Sense", "Serbian": "Serbia", "Shaki": "Sheki", "Shanghainese": "Shanghai", "Shetland Islands": "Shetland", "Shetland islands": "Shetland", "Shetlandic": "Shetland", "Shetlands": "Shetland", "Shurishkar": "Shuryshkar", "Singaporean": "Singapore", "Skanian": "Scania", "Skåne": "Scania", "Somerset dialect": "Somerset", "Sorathi": "Kathiyawadi", "South African": "South Africa", "South American": "South America", "South Asian": "South Asia", "South Brazilian": "South Brazil", "South England": "Southern England", "South Indian": "South India", "South Midlands": "Midlands", "South Pole": "Antarctica", "South Tirol": "South Tyrol", "South Tirolean": "South Tyrol", "South Tirolese": "South Tyrol", "South Tyrolean": "South Tyrol", "South Tyrolese": "South Tyrol", "Southeast Asian": "Southeast Asia", "Southern Brazilian": "South Brazil", "Southwest US": "Southwestern US", "Spanish": "Spain", "Spilambertese": "Spilamberto", "Sri Lankan": "Sri Lanka", "St Gallen": "St. Gallen", "St Louis, Missouri": "Missouri", "St Petersburg": "Saint Petersburg", "St. Louis, Missouri": "Missouri", "St. Petersburg": "Saint Petersburg", "Steiermark": "Styria", "Steiermärkisch": "Styria", "Steirisch": "Styria", "Styrian": "Styria", "Sudanese": "Sudan", "Suduroy": "Suðuroy", "Suffolk dialect": "Suffolk", "Sumut": "North Sumatra", "Surinamese": "Suriname", "Suzhounese": "Suzhou", "Swedish": "Sweden", "Swiss": "Switzerland", "Swiss German": "Switzerland", "Syrian": "Syria", "São Tomé": "São Tomé and Príncipe", "São Toméan": "São Tomé and Príncipe", "Söl": "Sylt", "Söl'": "Sylt", "Söl'ring": "Sylt", "Sölring": "Sylt", "Sırakonak": "Khotorjur", "TX": "Texas", "Tabrizi": "Tabriz", "Taiwanese": "Taiwan", "Tanzanian": "Tanzania", "Tebriz": "Tabriz", "Tevrik": "Divriği", "Tewrik": "Divriği", "Texan": "Texas", "Thai": "Thailand", "Tiflis": "Tbilisi", "Tigranakert": "Diyarbakır", "Tobago": "Trinidad and Tobago", "Tobagonian": "Trinidad and Tobago", "Transilvania": "Transylvania", "Transylvanian": "Transylvania", "Trapizon": "Trabzon", "Trinidad": "Trinidad and Tobago", "Trinidadian": "Trinidad and Tobago", "Trinidadian and Tobagonian": "Trinidad and Tobago", "Tunisian": "Tunisia", "Təbriz": "Tabriz", "Tərtər": "Tartar", "U.S.": "US", "UK": "Britain", "UK form": "British", "US South": "Southern US", "US Southern": "Southern US", "US form": "US", "USA": "US", "Ucar": "Ujar", "Ugandan": "Uganda", "United Kingdom": "Britain", "United States": "US", "United States of America": "US", "University of Cambridge": "Cambridge University", "University of Oxford": "Oxford University", "Upper Midwest US": "Upper Midwestern US", "Urha": "Urfa", "Urner": "Uri", "Urnerdeutsch": "Uri", "Urseren": "Uri", "Uruguayan": "Uruguay", "Vaghaver": "Ağın", "Vayots dzor": "Vayots Dzor", "Venetian": "Venice", "Venezuelan": "Venezuela", "Viennese": "Vienna", "Vietnamese": "Vietnam", "Virginian": "Virginia", "Viöl": "Fjolde", "Vozim": "Vozm", "Wallonian": "Wallonia", "Washington, D.C.": "District of Columbia", "Washington, DC": "District of Columbia", "Welsh": "Wales", "West African": "West Africa", "West Cumbrian": "West Cumbria", "West England": "West Country", "West Indies": "Caribbean", "West Prussia": "Prussia", "West Prussian": "Prussia", "West of England": "West Country", "Western England": "West Country", "Wilts": "Wiltshire", "Wilts dialect": "Wiltshire", "Wiltshire dialect": "Wiltshire", "Xanlar": "Göygöl", "Xlat": "Ahlat", "Xocavənd": "Khojavend", "Xodiçur": "Khotorjur", "Xodorçur": "Khotorjur", "Xodrçur": "Khotorjur", "Yelenino": "Göygöl", "Yemeni": "Yemen", "Yemenite": "Yemen", "Yerznka": "Erzincan", "Yevlax": "Yevlakh", "Zagatala": "Zaqatala", "Zakatala": "Zaqatala", "Zangelan": "Zangilan", "Zurich": "Zürich", "Zəngilan": "Zangilan", "Zərdab": "Zardab", "Zәncan": "Zanjan", "Zәngan": "Zanjan", "classical": "Classical", "cypriot": "Cyprus", "mainland": "Mainland China", "mainland China": "Mainland China", "north England": "Northern England", "northern England": "Northern England", "northwestern US": "Northwestern US", "south England": "Southern England", "southern England": "Southern England", "southern US": "Southern US", "southwest US": "Southwestern US", "southwestern US": "Southwestern US", "west England": "West Country", "western England": "West Country", "western US": "Western US", "Çemişkezek": "Çemişgezek", "Österbotten": "Ostrobothnia", "Özim": "Vozm", "Öömrang": "Föhr-Amrum", "Üzim": "Vozm", "Čmškacag": "Çemişgezek", "İmişli": "Imishli", "İrəvan": "Yerevan", "İstanbul": "Istanbul", "Şamaxı": "Shamakhi", "Şanlıurfa": "Urfa", "Şirvan": "Shirvan", "Şuşa": "Shusha", "Şəki": "Sheki", "Şəmkir": "Shamkir", "Əli Bayramlı": "Shirvan", "Ərdəbil": "Ardebil", } # 646 labels_subvarieties = { "13": "Tredici Comuni", "13 Communities": "Tredici Comuni", "7": "Sette Comuni", "AA": "African-American", "AAVE": "African-American Vernacular", "Achterhoek": "Achterhoeks", "Achterhooks": "Achterhoeks", "Aeolic Greek": "Aeolic", "African American": "African-American", "African American English": "African-American", "African American Vernacular English": "African-American Vernacular", "African-American English": "African-American", "African-American Vernacular English": "African-American Vernacular", "Akan Kasa": "Twi", "Alsace": "Alsatian", "Alsacien": "Alsatian", "Alsatian German": "Alsatian", "American English": "US", "Amoy": "Xiamen", "Amoy dialect": "Xiamen", "Ancient Aramaic": "Old Aramaic", "Ancient Hebrew": "Biblical Hebrew", "Apulian": "Apulia", "Arbëreshë": "Arbëresh", "Arbërisht": "Arbëresh", "Arcadocypriot Greek": "Arcadocypriot", "Armenian Kipchak": "Armeno-Kipchak", "Artsakh": "Karabakh", "Assiutic": "Lycopolitan", "Attic Greek": "Attic", "Australian Aboriginal English": "Australian Aboriginal", "Australian English": "Australia", "Auvergnat": "Auvergne", "Auvernhat": "Auvergne", "Ayitcha": "Kocheyali", "Ayticha": "Kocheyali", "BHS": "Buddhist Hybrid Sanskrit", "Babylonian Talmudic Aramaic": "Jewish Babylonian Aramaic", "Badiú": "Santiago", "Badiú or Santiago": "Santiago", "Bambaiyya": "Bombay", "Bashmuric": "Fayyumic", "Batangas Tagalog": "Batangas", "Batangueño": "Batangas", "Batavia": "Batavian Malay", "Batavian": "Batavian Malay", "Beijing Mandarin": "Beijing", "Belarusian": "Belarus", "Belarusian Classical Orthography": "Taraškievica", "Betawi": "Batavian Malay", "Bialystok": "Białystok", "Binh Dinh": "Bình Định", "Binh Dinh dialect": "Bình Định", "Boavista": "Boa Vista", "Boeotian Greek": "Boeotian", "Breemsch": "Oldenburg", "Bremen": "Oldenburg", "British English": "British", "British Indian English": "British India", "British Mediaeval Latin": "British Medieval Latin", "Brummie": "Birmingham", "Brummy": "Birmingham", "Byzantine Greek": "Byzantine", "Bzyp": "Bzyb", "Bình Định dialect": "Bình Định", "CPA": "Christian Palestinian Aramaic", "Campello Monti": "Rimella and Campello Monti", "Canadian English": "Canada", "Central Assamese": "Central Assam", "Central German": "central Germany", "Central Germany": "central Germany", "Central Italian": "central Italy", "Central Italy": "central Italy", "Central Scots": "Central", "Central Vietnamese": "Central Vietnam", "Cham Albanian": "Cham", "Changchew": "Zhangzhou", "Changchew dialect": "Zhangzhou", "Chinchew": "Quanzhou", "Chinchew dialect": "Quanzhou", "Choanchew": "Quanzhou", "Choanchew dialect": "Quanzhou", "Choynimni": "Choinimni", "Choynok": "Choinok", "Chukaymina": "Chukaimina", "Church Latin": "Ecclesiastical Latin", "Cieszyn Silesian": "Cieszyn Silesia", "Classical Hebrew": "Biblical Hebrew", "Clay Frisian": "Clay", "Cois Fhairrge": "Cois Fharraige", "Colloquial Singapore English": "Singlish", "Colloquial Singaporean English": "Singlish", "Cologne": "Kölsch", "Colognian": "Kölsch", "Contemporary Anglo-Latin": "British Contemporary Latin", "Contemporary British": "British Contemporary Latin", "Cracow": "Kraków", "Crete": "Cretan", "Crimean Romani": "Crimea", "Cuyavia": "Kujawy", "Côte d'Ivoire": "Ivory Coast", "Côte d'Ivoire slang": "Ivory Coast slang", "Côte d’Ivoire": "Ivory Coast", "Côte d’Ivoire slang": "Ivory Coast slang", "De'kwana": "De'kwana dialect", "Digor dialect": "Digor", "Djidjelli": "Jijel", "Doric Scots": "Doric", "Drenthe": "Drents", "Drèents": "Drents", "EC Scots": "East Central", "Earlier ME": "Early Middle English", "Early ME": "Early Middle English", "East Anglian English": "East Anglia", "East Central Scots": "East Central", "East Midland ME": "East Midlands", "East Midland Middle English": "East Midlands", "East Midlands English": "East Midlands", "East Midlands ME": "East Midlands", "East Norse": "Old East Norse", "East Palatine": "Vorderpfälzisch", "Elsässisch": "Alsatian", "Elu": "Helu", "Epic Greek": "Epic", "European French": "Europe", "Faiyumic": "Fayyumic", "Fanti": "Fante", "Fantse": "Fante", "Ffima": "Kurima-jima", "Ffyama": "Kurima-jima", "Flanders": "East and West Flanders", "Flemish": "East and West Flanders", "Galilean Aramaic": "Jewish Palestinian Aramaic", "Gascon": "Gascony", "Geordie": "Tyneside", "Gharabagh": "Karabakh", "Goral": "Góral", "Groningen": "Gronings", "Grunnegs": "Gronings", "Grönnegs": "Gronings", "Gungjung": "speech of the royal court", "Gwenedeg": "Gwened", "Ha Tinh": "Hà Tĩnh", "Ha Tinh dialect": "Hà Tĩnh", "Hachijo": "Hachijō", "Hai Phong": "Hải Phòng", "Hai Phong dialect": "Hải Phòng", "Hainan Min": "Hainanese", "Hainan Min Chinese": "Hainanese", "Haiphong": "Hải Phòng", "Hakitia": "Haketia", "Hallifreesk": "Halligen", "Hallig": "Halligen", "Hallig Frisian": "Halligen", "Hallig dialect": "Halligen", "Halligen Dialect": "Halligen", "Halligen Frisian": "Halligen", "Halligen dialect": "Halligen", "Hamburg": "Hamburgisch", "Hamgyeong": "Hamgyong", "Hamgyŏng": "Hamgyong", "Hankou": "Wuhan", "Hankow": "Wuhan", "Hanmuntu": "highly formal Literary Chinese-style Korean", "Haquitía": "Haketia", "Hariyana": "Hariyāṇvī", "Hariyanvi": "Hariyāṇvī", "Hatra": "Hatran", "Hatran Aramaic": "Hatran", "Hejazi Arabic": "Hejazi", "Hellenistic": "Koine", "Hellenistic Koine": "Koine", "Hellenizing": "Hellenizing School", "Hellenophile": "Hellenizing School", "Hellenophile School": "Hellenizing School", "Hesse": "Hessian", "Hessen": "Hessian", "Hessisch": "Hessian", "Hinghwa": "Puxian Min", "Hoisanese": "Taishanese", "Holsteinisch": "Holstein", "Homeric": "Epic", "Homshetsi": "Hamshen", "Homshetsma": "Hamshen", "Hue": "Huế", "Hue dialect": "Huế", "Huế dialect": "Huế", "Hà Tĩnh dialect": "Hà Tĩnh", "Hải Phòng dialect": "Hải Phòng", "Ikema Island": "Ikema", "Ikema-jima": "Ikema", "Ikemajima": "Ikema", "Ikima": "Ikema", "Ikyaama": "Ikema", "Ikyama": "Ikema", "ImpA": "Imperial Aramaic", "Indian English": "India", "Ingiloy": "Ingilo", "Inner Mbugu": "Ma'a", "Inuttitut": "Nunavik", "Ionic Greek": "Ionic", "Irabu Island": "Irabu", "Irabu-jima": "Irabu", "Irabujima": "Irabu", "Irau": "Irabu", "Irav": "Irabu", "Iron dialect": "Iron", "Ivorian": "Ivory Coast", "Ivorian slang": "Ivory Coast slang", "Ivory Coast French": "Ivory Coast", "Ivory Coast French slang": "Ivory Coast slang", "JBA": "Jewish Babylonian Aramaic", "JLA": "Jewish Literary Aramaic", "JPA": "Jewish Palestinian Aramaic", "Jamaica": "Jamaican", "Jamaican English": "Jamaican", "Jamaican Standard English": "Jamaican", "Ji-Lu Mandarin": "Jilu Mandarin", "Jiang-Huai Mandarin": "Jianghuai Mandarin", "Jiao-Liao Mandarin": "Jiaoliao Mandarin", "Jijel Arabic": "Jijel", "Jijeli": "Jijel", "Judean Aramaic": "Jewish Palestinian Aramaic", "Kaapse Afrikaans": "Cape Afrikaans", "Kaliarnta": "Kaliarda", "Kamruipa": "Kamrupi", "Kamrup": "Kamrupi", "Kamrupiya": "Kamrupi", "Kangwon": "Gangwon", "Kangwŏn": "Gangwon", "Kichwa": "Standard Ecuadorian Kichwa", "Koine Greek": "Koine", "Krakow": "Kraków", "Krk": "Vegliot", "Kromanti": "Kromanti spirit possession language", "Kurema": "Kurima-jima", "Kurema Island": "Kurima-jima", "Kurema-jima": "Kurima-jima", "Kuremajima": "Kurima-jima", "Kurima": "Kurima-jima", "Kurima Island": "Kurima-jima", "Kurimajima": "Kurima-jima", "Kuyavia": "Kujawy", "Köln": "Kölsch", "LDA": "Lisan ud-Dawat", "Labradorimiutut": "Inuttut", "Lan-Yin Mandarin": "Lanyin Mandarin", "Languedocian": "Languedoc", "Languedocien": "Languedoc", "Late Anglo-Latin": "British Late Latin", "Late British": "British Late Latin", "Late ME": "Late Middle English", "Later": "Later Sanskrit", "Later ME": "Late Middle English", "Later-Sanskrit": "Later Sanskrit", "Latin American Spanish": "Latin America", "Lemosin": "Limousin", "Lisaan ud-Da'wat": "Lisan ud-Dawat", "Lisaan ud-Da'wat il-'Alaviyah": "Lisan ud-Dawat", "Lodz": "Łódź", "Louisiana French": "Louisiana", "Lower Yangtze Mandarin": "Jianghuai Mandarin", "Lowicz": "Łowicz", "Mamluk": "Mamluk-Kipchak", "Mazury": "Masuria", "Mecklenburg": "Mecklenburgisch", "Mecklenburg Low German": "Mecklenburgisch", "Mecklenburgisch Low German": "Mecklenburgisch", "Mecklenburgish": "Mecklenburgisch", "Mediaeval Anglo-Latin": "British Medieval Latin", "Mediaeval British": "British Medieval Latin", "Medieval Anglo-Latin": "British Medieval Latin", "Medieval British": "British Medieval Latin", "Medieval Greek": "Byzantine", "Meerut": "Delhi-Meerut", "Megarian": "Doric", "Mekong Delta dialect": "Mekong Delta", "Melkite Aramaic": "Christian Palestinian Aramaic", "Memphitic": "Bohairic", "Mesokemic": "Oxyrhynchite", "Mfantse": "Fante", "Midlands English": "Midlands", "Minangkabau": "Minangkabau Malay", "Minna Island": "Minna", "Minna-jima": "Minna", "Minnajima": "Minna", "Mishnaic": "Mishnaic Hebrew", "Mooring dialect": "Mooring", "Moselfränkisch": "Moselle Franconian", "Multicultural London English": "MLE", "Mumbai": "Bombay", "Münster": "Münsterland", "Münsterländisch": "Münsterland", "NEC Scots": "Northeast Central", "NN Scots": "North Northern", "NabA": "Nabataean", "Nabataean Aramaic": "Nabataean", "Namsadang": "traditional acrobats' cant", "Neo-Hittite": "New Hittite", "Neo-Sanskrit": "New Sanskrit", "New Anglo-Latin": "British New Latin", "New British": "British New Latin", "New Zealand English": "New Zealand", "Nghe An": "Nghệ An", "Nghe An dialect": "Nghệ An", "Nghe Tinh": "Nghệ Tĩnh", "Nghe Tinh dialect": "Nghệ Tĩnh", "Nghệ An dialect": "Nghệ An", "Nghệ Tinh dialect": "Nghệ Tĩnh", "Non-Oxford": "Non-Oxford British English", "Non-Oxford British spelling": "Non-Oxford British English", "Nopchinchi": "Noptinte", "Nopthrinthre": "Noptinte", "Nopṭinṭe": "Noptinte", "Normal Mbugu": "Mbugu", "North America": "Canada, US", "North American": "Canada, US", "North German": "Northern Germany", "North Germany": "Northern Germany", "North Korean": "North Korea", "North ME": "Northern", "North Midland US": "Midland US", "North Northern Scots": "North Northern", "North Scots": "Northern", "North Vietnam": "Northern Vietnam", "North Vietnamese": "Northern Vietnam", "North and Central German": "northern and central Germany", "North and Central Germany": "northern and central Germany", "North-Central Vietnam": "North Central Vietnam", "Northeast Central Scots": "Northeast Central", "Northern Dutch": "Northern", "Northern German": "Northern Germany", "Northern Italian": "northern Italy", "Northern Italy": "northern Italy", "Northern ME": "Northern", "Northern Middle English": "Northern", "Northern Midland US": "Midland US", "Northern Scots": "Northern", "Northern Vietnamese": "Northern Vietnam", "Northern and Central German": "northern and central Germany", "Northern and Central Germany": "northern and central Germany", "Nouchi": "Ivory Coast slang", "Noussi": "Ivory Coast slang", "Nunatsiavummiutut": "Inuttut", "Nunavimmiutitut": "Nunavik", "OffA": "Imperial Aramaic", "Official Aramaic": "Imperial Aramaic", "Ogami": "Ōgami", "Ogami Island": "Ōgami", "Ogami-jima": "Ōgami", "Ogamijima": "Ōgami", "Old": "Old Avestan", "Old Gotlandic": "Old Gutnish", "Old Hebrew": "Biblical Hebrew", "Ollnborg": "Oldenburg", "Oujiang": "Wenzhou", "Oxford": "Oxford British English", "Oxford British spelling": "Oxford British English", "P'yŏng'an": "Pyongan", "P'yŏngan": "Pyongan", "PalA": "Palmyrene", "Palatinate German": "Palatine", "Palatine German": "Palatine", "Palestinian Syriac": "Christian Palestinian Aramaic", "Palmyrene Aramaic": "Palmyrene", "Peking": "Beijing", "Pekingese": "Beijing", "Pfälzisch": "Palatine", "Philhellene": "Hellenizing School", "Philhellene School": "Hellenizing School", "Phu Yen": "Phú Yên", "Phu Yen dialect": "Phú Yên", "Phú Yên dialect": "Phú Yên", "Polar Eskimo": "Inuktun", "Pomeranian LG": "Pomeranian", "Pomeranian Low German": "Pomeranian", "Potteries dialect": "Potteries", "Poznan": "Poznań", "Provencal": "Provençal", "Psїsara": "Hirara", "Pu-Xian": "Puxian Min", "Pu-Xian Min": "Puxian Min", "Puxian": "Puxian Min", "Pyeong'an": "Pyongan", "Pyeong-an": "Pyongan", "Pyeongan": "Pyongan", "Pyong'an": "Pyongan", "Pyŏngan": "Pyongan", "Pälzisch": "Palatine", "Pїsara": "Hirara", "Quang Binh": "Quảng Bình", "Quang Binh dialect": "Quảng Bình", "Quang Nam": "Quảng Nam", "Quang Nam dialect": "Quảng Nam", "Quang Ngai": "Quảng Ngãi", "Quang Ngai dialect": "Quảng Ngãi", "Quang Tri": "Quảng Trị", "Quang Tri dialect": "Quảng Trị", "Quanzhou dialect": "Quanzhou", "Quảng Bình dialect": "Quảng Bình", "Quảng Nam dialect": "Quảng Nam", "Quảng Ngãi dialect": "Quảng Ngãi", "Quảng Trị dialect": "Quảng Trị", "RCM": "Rimella and Campello Monti", "RLC": "Revived Late Cornish", "Ralik": "Rālik", "Rarha": "Rāṛha", "Renaissance Anglo-Latin": "British Renaissance Latin", "Renaissance British": "British Renaissance Latin", "Rimella": "Rimella and Campello Monti", "Ripuarian Franconian": "Ripuarian", "Ripuarisch": "Ripuarian", "Roman": "Rome", "Roman Italian": "Rome", "Romanesco": "Rome", "Romanesco Italian": "Rome", "Royal Thai": "royal", "SEC Scots": "Southeast Central", "SLDE": "Switzerland and Liechtenstein", "SN Scots": "South Northern", "SWC Scots": "Southwest Central", "SWF": "Standard Written Form", "Sa'idi": "Upper Egypt", "Saidi": "Upper Egypt", "Saigonese": "Saigon", "Saingilo": "Ingilo", "Sallaans": "Sallands", "Salland": "Sallands", "Salop": "Shropshire", "Salopian": "Shropshire", "Santoantão": "Santo Antão", "Sarkese": "Sark", "Saʽidi": "Upper Egypt", "Schleswigsch": "Schleswig", "Scottish English": "Scotland", "Sercquiais": "Sark", "Seven Communities": "Sette Comuni", "Shrops": "Shropshire", "Shropshire dialect": "Shropshire", "Sichuan": "Sichuanese", "Simmani": "ginseng-harvesters' cant", "Singapore Hokkien": "Singaporean Hokkien", "South African English": "South Africa", "South German": "Southern German", "South Hesse": "South Hessian", "South Hessen": "South Hessian", "South Korean": "South Korea", "South ME": "Southern", "South Midland US": "Midland US", "South Northern Scots": "South Northern", "South Russia": "Southern Russia", "South Sweden": "Southern", "South Swedish": "Southern", "South Vietnam": "Southern Vietnam", "South Vietnamese": "Southern Vietnam", "South of Russia": "Southern Russia", "Southeast Central Scots": "Southeast Central", "Southern American English": "Southern US", "Southern Dutch": "Southern", "Southern England English": "Southern England", "Southern English": "Southern England", "Southern English dialect": "Southern England", "Southern Italian": "southern Italy", "Southern Italy": "southern Italy", "Southern ME": "Southern", "Southern Middle English": "Southern", "Southern Midland US": "Midland US", "Southern Russian": "Southern Russia", "Southern Scots": "South Scots", "Southern Sweden": "Southern", "Southern Swedish": "Southern", "Southern US English": "Southern US", "Southern Vietnamese": "Southern Vietnam", "Southwest Central Scots": "Southwest Central", "Southwest ME": "Southern", "Southwest Mandarin": "Southwestern Mandarin", "Stellingwerf": "Stellingwerfs", "Subakhmimic": "Lycopolitan", "Swiss German": "Switzerland", "Switzerland and Liechtenstein spelling": "Switzerland and Liechtenstein", "Syropalestinian": "Christian Palestinian Aramaic", "Syropalestinian Aramaic": "Christian Palestinian Aramaic", "Südhessisch": "South Hessian", "TAO": "traditional orthography", "Taihu": "Northern Wu", "Taihu Wu": "Northern Wu", "Taiwan Hakka": "Taiwanese Hakka", "Taiwan Hakka & Hokkien": "Taiwanese Hokkien and Hakka", "Taiwan Hakka & Min Nan": "Taiwanese Hokkien and Hakka", "Taiwan Hakka and Hokkien": "Taiwanese Hokkien and Hakka", "Taiwan Hakka and Min Nan": "Taiwanese Hokkien and Hakka", "Taiwan Hokkien": "Taiwanese Hokkien", "Taiwan Hokkien & Hakka": "Taiwanese Hokkien and Hakka", "Taiwan Hokkien and Hakka": "Taiwanese Hokkien and Hakka", "Taiwan Mandarin": "Taiwanese Mandarin", "Taiwan Min Nan": "Taiwanese Hokkien", "Taiwan Min Nan & Hakka": "Taiwanese Hokkien and Hakka", "Taiwanese Hakka & Hokkien": "Taiwanese Hokkien and Hakka", "Taiwanese Hakka & Min Nan": "Taiwanese Hokkien and Hakka", "Taiwanese Hakka and Hokkien": "Taiwanese Hokkien and Hakka", "Taiwanese Hakka and Min Nan": "Taiwanese Hokkien and Hakka", "Taiwanese Hokkien & Hakka": "Taiwanese Hokkien and Hakka", "Taiwanese Min Nan": "Taiwanese Hokkien", "Taiwanese Min Nan & Hakka": "Taiwanese Hokkien and Hakka", "Taiwanese Min Nan and Hakka": "Taiwanese Hokkien and Hakka", "Talmudic Aramaic": "Jewish Babylonian Aramaic", "Tanjore": "Thanjavur", "Taraskievica": "Taraškievica", "Targumic Aramaic": "Jewish Literary Aramaic", "Terengganu": "Terengganu Malay", "Thanh Hoa": "Thanh Hoá", "Thanh Hoa dialect": "Thanh Hoá", "Thanh Hoá dialect": "Thanh Hoá", "Thebaic": "Sahidic", "Thirteen Communities": "Tredici Comuni", "Tianjin Mandarin": "Tianjin", "Tianjin dialect": "Tianjin", "Tianjinese": "Tianjin", "Toishanese": "Taishanese", "Topra": "Delhi-Topra", "Tulamne": "Tulamni", "Tuscan": "Tuscany", "Tweants": "Twents", "Twente": "Twents", "U.S. English": "US", "UC": "Unified Cornish", "UCR": "Unified Cornish Revised", "US English": "US", "US Spanish": "US", "Ukrainian": "Ukraine", "Ullans": "Ulster Scots", "United States Spanish": "US", "Upper Egyptian": "Upper Egypt", "Upper Saxony": "Upper Saxon", "Upper Yangtze Mandarin": "Southwestern Mandarin", "Valencian": "Valencia", "Vanga": "Vaṅga", "Vannes": "Gwened", "Vannetais": "Gwened", "Veluwe": "Veluws", "Vulgar Anglo-Latin": "British Vulgar Latin", "Vulgar British": "British Vulgar Latin", "WC Scots": "West Central", "Walserdeutsch": "Walser", "Waser German": "Walser", "Wenzhou Wu": "Wenzhou", "Wenzhounese": "Wenzhou", "West Arabian": "Hejazi", "West Central Scots": "West Central", "West Country English": "West Country", "West Country dialect": "West Country", "West Midland ME": "West Midlands", "West Midland Middle English": "West Midlands", "West Midlands English": "West Midlands", "West Midlands ME": "West Midlands", "West Midlands dialect": "West Midlands", "West Norse": "Old West Norse", "West Palatine": "Westpfälzisch", "West Pomeranian LG": "Western Pomeranian", "West Pomeranian Low German": "Western Pomeranian", "Western Pomeranian LG": "Western Pomeranian", "Western Pomeranian Low German": "Western Pomeranian", "Westphalia": "Westphalian", "Wielkopolska": "Greater Poland", "Wikchamni": "Wukchumni", "Wood Frisian": "Wood", "Wuhan dialect": "Wuhan", "Wukchamni": "Wukchumni", "Xaladitka": "North Russia", "Xiamen dialect": "Xiamen", "Xinghua": "Puxian Min", "Yachikumne": "Chulamni", "Yachikumni": "Chulamni", "Ye'kwana": "Ye'kwana dialect", "Young": "Young Avestan", "Younger": "Young Avestan", "Younger Avestan": "Young Avestan", "Zhangzhou dialect": "Zhangzhou", "Zhongyuan Mandarin": "Central Plains Mandarin", "ante-classical": "Old Latin", "central Assam": "Central Assam", "central Assamese": "Central Assam", "central German": "central Germany", "central Italian": "central Italy", "central Vietnam": "Central Vietnam", "central Vietnamese": "Central Vietnam", "cretan": "Cretan", "daytshmerish": "Daytshmerish", "early ME": "Early Middle English", "ebonics": "African-American Vernacular", "hbo": "Biblical Hebrew", "hellenizing": "Hellenizing School", "hellenizing school": "Hellenizing School", "hellenophile": "Hellenizing School", "hellenophile school": "Hellenizing School", "hunaban": "Hellenizing School", "inner Mbugu": "Ma'a", "late ME": "Late Middle English", "later": "Later Sanskrit", "later Sanskrit": "Later Sanskrit", "later-Sanskrit": "Later Sanskrit", "maniot": "Maniot", "non-Oxford": "Non-Oxford British English", "non-Oxford British spelling": "Non-Oxford British English", "normal Mbugu": "Mbugu", "north German": "Northern Germany", "north Germany": "Northern Germany", "north Vietnam": "Northern Vietnam", "north Vietnamese": "Northern Vietnam", "north and central German": "northern and central Germany", "north and central Germany": "northern and central Germany", "northeastern Mandarin": "Northeastern Mandarin", "northern German": "Northern Germany", "northern Germany": "Northern Germany", "northern Italian": "northern Italy", "northern Vietnam": "Northern Vietnam", "northern Vietnamese": "Northern Vietnam", "northern and central German": "northern and central Germany", "nouchi": "Ivory Coast slang", "noussi": "Ivory Coast slang", "overseas Vietnamese": "Overseas Vietnamese", "philhellene": "Hellenizing School", "philhellene school": "Hellenizing School", "prs": "Dari", "south German": "Southern German", "south Hesse": "South Hessian", "south Hessen": "South Hessian", "south Hessian": "South Hessian", "south Sweden": "Southern", "south Swedish": "Southern", "south Vietnam": "Southern Vietnam", "south Vietnamese": "Southern Vietnam", "south of Russia": "Southern Russia", "southern German": "Southern German", "southern Italian": "southern Italy", "southern Russia": "Southern Russia", "southern Russian": "Southern Russia", "southern Sweden": "Southern", "southern Swedish": "Southern", "southern Vietnam": "Southern Vietnam", "southern Vietnamese": "Southern Vietnam", "southwestern Mandarin": "Southwestern Mandarin", "wae": "Walser", "yunaban": "Hellenizing School", "Čakavian": "Chakavian", "Ōgami Island": "Ōgami", "Ōgami-jima": "Ōgami", "Ōgamijima": "Ōgami", } # 648 # END
py
b401223645cbb552a03f5e3f50ac02b94fb43f19
#!/usr/bin/env python3 import shutil import tempfile import unittest from collections import Counter, defaultdict from os import path from pytorch_translate.research.test import morphology_test_utils as morph_utils from pytorch_translate.research.unsupervised_morphology.ibm_model1 import IBMModel1 class TestIBMModel1(unittest.TestCase): def test_str2int(self): ibm_model = IBMModel1() # Calling multiple times to make sure we get the same value. assert ibm_model.str2int("hello") == 1 assert ibm_model.str2int("bye") == 2 assert ibm_model.str2int("hello") == 1 assert ibm_model.str2int("bye") == 2 assert len(ibm_model._str2int) == 3 assert len(ibm_model._int2str) == 3 assert ibm_model._int2str == [ibm_model.null_str, "hello", "bye"] assert ibm_model.int2str(2) == "bye" def test_morph_init(self): ibm_model = IBMModel1() tmp_dir, f1, f2 = morph_utils.get_two_same_tmp_files() ibm_model.initialize_translation_probs(f1, f2) assert len(ibm_model.translation_prob) == 10 assert ( len(ibm_model.translation_prob[ibm_model.str2int(ibm_model.null_str)]) == 9 ) assert len(ibm_model.translation_prob[ibm_model.str2int("345")]) == 6 assert ( ibm_model.translation_prob[ibm_model.str2int("122")][ ibm_model.str2int("123") ] == 1.0 / 4 ) shutil.rmtree(tmp_dir) def test_expectation_for_one_sentence(self): ibm_model = IBMModel1() tmp_dir, f1, f2 = morph_utils.get_two_same_tmp_files() ibm_model.initialize_translation_probs(f1, f2) translation_counts = defaultdict(lambda: defaultdict(float)) ibm_model.expectation_for_one_sentence( Counter( ibm_model.str2int(w) for w in ["123", "124", "234", "345", ibm_model.null_str] ), Counter(ibm_model.str2int(w) for w in ["123", "124", "234", "345"]), translation_counts, ) assert ( round( translation_counts[ibm_model.str2int("123")][ibm_model.str2int("345")], 3, ) == 0.176 ) shutil.rmtree(tmp_dir) def test_ibm_train(self): ibm_model = IBMModel1() tmp_dir, f1, f2 = morph_utils.get_two_same_tmp_files() ibm_model.learn_ibm_parameters(src_path=f1, dst_path=f2, num_iters=3) assert ( ibm_model.translation_prob[ibm_model.str2int("456789")][ ibm_model.str2int("345") ] == 0 ) assert ( ibm_model.translation_prob[ibm_model.str2int("456789")][ ibm_model.str2int("456789") ] == 0.5 ) shutil.rmtree(tmp_dir)
py
b4012474126b100d7fed278f4bb9618d7b71bebf
from lin.model import User as LinUser from lin.model import db, func, manager class User(LinUser): def _set_fields(self): self._exclude = ["delete_time", "create_time", "update_time"] @classmethod def count_by_username(cls, username) -> int: result = db.session.query(func.count(cls.id)).filter( cls.username == username, cls.delete_time == None ) count = result.scalar() return count @classmethod def count_by_email(cls, email) -> int: result = db.session.query(func.count(cls.id)).filter( cls.email == email, cls.delete_time == None ) count = result.scalar() return count @classmethod def select_page_by_group_id(cls, group_id, root_group_id) -> list: """通过分组id分页获取用户数据""" query = db.session.query(manager.user_group_model.user_id).filter( manager.user_group_model.group_id == group_id, manager.user_group_model.group_id != root_group_id, ) result = cls.query.filter_by(soft=True).filter(cls.id.in_(query)) users = result.all() return users def reset_password(self, new_password): self.password = new_password def change_password(self, old_password, new_password): if self.check_password(old_password): self.password = new_password return True return False
py
b4012493412e07eb1252faa88ad3f47eb9bdd402
import os from dataclasses import dataclass from functools import lru_cache from pydantic import BaseSettings, Field # Hostname to fetch STAC information from STAC_API_URL_ENV_VAR = "STAC_API_URL" # HREF base to be used when sending responses STAC_API_HREF_ENV_VAR = "STAC_API_HREF" DEFAULT_MAX_ITEMS_PER_TILE_ENV_VAR = "DEFAULT_MAX_ITEMS_PER_TILE" @dataclass class FeatureFlags: VRT: bool = True if os.environ.get("FF_VRT") else False class Settings(BaseSettings): stac_api_url: str = os.environ[STAC_API_URL_ENV_VAR] stac_api_href: str = os.environ[STAC_API_HREF_ENV_VAR] title: str = "Preview of Tile Access Services" openapi_url: str = "/openapi.json" item_endpoint_prefix: str = "/item" mosaic_endpoint_prefix: str = "/mosaic" legend_endpoint_prefix: str = "/legend" debug: bool = os.getenv("TILER_DEBUG", "False").lower() == "true" api_version: str = "1.0" default_max_items_per_tile: int = Field( env=DEFAULT_MAX_ITEMS_PER_TILE_ENV_VAR, default=10 ) feature_flags: FeatureFlags = FeatureFlags() @lru_cache def get_settings() -> Settings: return Settings()
py
b40124aff45c3927c738e8b30286add35c273135
import pygame from pygame.sprite import Group from settings import Settings from game_stats import GameStats from scoreboard import Scoreboard from button import Button from ship import Ship import game_functions as gf def run_game(): # Initialize game pygame.init() # Initialize settings ai_settings = Settings() # Build the screen screen = pygame.display.set_mode( (ai_settings.screen_width, ai_settings.screen_height)) pygame.display.set_caption("Alien Invasion") # Make Play button play_button = Button(ai_settings, screen, "PLAY") # Store game stats, create scoreboard stats = GameStats(ai_settings) sb = Scoreboard(ai_settings, screen, stats) # Make a ship ship = Ship(ai_settings, screen) # Make a group to store bullets bullets = Group() # Make a group to store aliens aliens = Group() # Create the fleet of aliens gf.create_fleet(ai_settings, screen, ship, aliens) # Main game loop while True: # Check for player input gf.check_events(ai_settings, screen, stats, sb, play_button, ship, aliens, bullets) if stats.game_active: # Update element positions ship.update() gf.update_bullets(ai_settings, screen, stats, sb, ship, aliens, bullets) gf.update_aliens(ai_settings, screen, stats, sb, ship, aliens, bullets) # Draw screen gf.update_screen(ai_settings, screen, stats, sb, ship, aliens, bullets, play_button) run_game()
py
b40125d9a4f817e0a6cf52668aacb73b8568e512
import keras from utils.query import con, cursor class Progress(keras.callbacks.Callback): """ This class serves to keep track of the current training job's progress """ def __init__(self, job_id, steps_per_epoch, num_epochs): super(keras.callbacks.Callback, self).__init__() self.steps_per_epoch = steps_per_epoch self.max_epoch = num_epochs self.job_id = job_id self.curr_epoch = 0 self.table_name = 'training_progress' self.connection = con self.cursor = cursor def on_train_begin(self, logs={}): self.cursor.execute( f"""UPDATE {self.table_name} SET job_id=%s, status=1, curr_epoch=0, max_epoch=%s, curr_batch=0, steps_per_epoch=%s, stop_flag=False """, (self.job_id, self.max_epoch, self.steps_per_epoch)) self.connection.commit() def on_train_end(self, logs={}): # Status level 2 tells the frontend that we're done training. self.cursor.execute( f"""UPDATE {self.table_name} SET status = 2""") self.connection.commit() def on_epoch_begin(self, epoch, logs={}): self.cursor.execute(f"""UPDATE {self.table_name} SET curr_epoch = %s""", (epoch,)) self.connection.commit() def on_epoch_end(self, epoch, logs={}): self.curr_epoch = epoch def on_batch_begin(self, batch, logs={}): self.curr_batch = batch self.cursor.execute( f"""UPDATE {self.table_name} SET curr_batch = %s""", (batch,)) self.connection.commit() def on_batch_end(self, batch, logs={}): self.cursor.execute( f"""SELECT stop_flag FROM {self.table_name}""") flag = self.cursor.fetchone()[0] # If the stop flag is set someone has requested that we end the training early if flag: print("ending training early") self.model.stop_training = True return # This simulates a small training job if __name__ == '__main__': steps_per_epoch = 100 num_epochs = 3 progress = Progress( job_id=1234, steps_per_epoch=steps_per_epoch, num_epochs=num_epochs) progress.on_train_begin() for epoch in range(num_epochs): progress.on_epoch_begin(epoch) for batch in range(steps_per_epoch): progress.on_batch_begin(batch) progress.on_batch_end(batch) progress.on_epoch_end(epoch) progress.on_train_end()
py
b40128c8350f4e5ca8aa1a5cd39a02e4f0ba0de8
# -*- coding: utf-8 -*- # Generated by Django 1.11.15 on 2019-02-15 21:15 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('web', '0003_word2vecfile'), ] operations = [ migrations.CreateModel( name='UDPipeFile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('model', models.FileField(upload_to='')), ], ), ]
py
b40128f459b4456437c57a15963fad17a721ea14
# Synchronization module for flow.polar.com # (c) 2018 Anton Ashmarin, [email protected] from tapiriik.settings import WEB_ROOT, POLAR_CLIENT_SECRET, POLAR_CLIENT_ID, POLAR_RATE_LIMITS from tapiriik.services.service_base import ServiceAuthenticationType, ServiceBase from tapiriik.services.api import APIException, UserException, UserExceptionType from tapiriik.services.interchange import UploadedActivity, ActivityType, ActivityStatistic, ActivityStatisticUnit, SourceFile, ActivityFileType from tapiriik.services.tcx import TCXIO from datetime import datetime, timedelta from django.core.urlresolvers import reverse from urllib.parse import urlencode from requests.auth import HTTPBasicAuth from io import StringIO import uuid import gzip import logging import lxml import pytz import requests import isodate logger = logging.getLogger(__name__) class PolarFlowService(ServiceBase): ID = "polarflow" DisplayName = "Polar Flow" DisplayAbbreviation = "PF" AuthenticationType = ServiceAuthenticationType.OAuth AuthenticationNoFrame = True # otherwise looks ugly in the small frame UserProfileURL = "https://flow.polar.com/training/profiles/{0}" UserActivityURL = "https://flow.polar.com/training/analysis/{1}" SupportsHR = SupportsCalories = SupportsCadence = SupportsTemp = SupportsPower = True ReceivesActivities = False # polar accesslink does not support polar data change. GlobalRateLimits = POLAR_RATE_LIMITS PartialSyncRequiresTrigger = True PartialSyncTriggerPollInterval = timedelta(minutes=1) # For mapping common->Polar Flow (text has no meaning due to upload unsupported) _activity_type_mappings = { ActivityType.Cycling: "Ride", ActivityType.MountainBiking: "Ride", ActivityType.Hiking: "Hike", ActivityType.Running: "Run", ActivityType.Walking: "Walk", ActivityType.Snowboarding: "Snowboard", ActivityType.Skating: "IceSkate", ActivityType.CrossCountrySkiing: "NordicSki", ActivityType.DownhillSkiing: "AlpineSki", ActivityType.Swimming: "Swim", ActivityType.Gym: "Workout", ActivityType.Rowing: "Rowing", ActivityType.RollerSkiing: "RollerSki", ActivityType.StrengthTraining: "WeightTraining", ActivityType.Climbing: "RockClimbing", ActivityType.Wheelchair: "Wheelchair", ActivityType.Other: "Other", } # Polar Flow -> common _reverse_activity_type_mappings = { "RUNNING": ActivityType.Running, "JOGGING": ActivityType.Running, "ROAD_RUNNING": ActivityType.Running, "TRACK_AND_FIELD_RUNNING": ActivityType.Running, "TRAIL_RUNNING": ActivityType.Running, "TREADMILL_RUNNING": ActivityType.Running, "CYCLING": ActivityType.Cycling, "ROAD_BIKING": ActivityType.Cycling, "INDOOR_CYCLING": ActivityType.Cycling, "MOUNTAIN_BIKING": ActivityType.MountainBiking, "WALKING": ActivityType.Walking, "HIKING": ActivityType.Hiking, "DOWNHILL_SKIING": ActivityType.DownhillSkiing, "CROSS-COUNTRY_SKIING": ActivityType.CrossCountrySkiing, "SNOWBOARDING": ActivityType.Snowboarding, "SKATING": ActivityType.Skating, "SWIMMING": ActivityType.Swimming, "OPEN_WATER_SWIMMING": ActivityType.Swimming, "POOL_SWIMMING": ActivityType.Swimming, "PARASPORTS_WHEELCHAIR": ActivityType.Wheelchair, "ROWING": ActivityType.Rowing, "INDOOR_ROWING": ActivityType.Rowing, "STRENGTH_TRAINING": ActivityType.StrengthTraining, "OTHER_INDOOR": ActivityType.Other, "OTHER_OUTDOOR": ActivityType.Other, "ROLLER_SKIING_CLASSIC": ActivityType.RollerSkiing, "ROLLER_SKIING_FREESTYLE": ActivityType.RollerSkiing, # not supported somehow #"": ActivityType.Elliptical, "FUNCTIONAL_TRAINING": ActivityType.Gym, "CORE": ActivityType.Gym, "GROUP_EXERCISE": ActivityType.Gym, "PILATES": ActivityType.Gym, "YOGA": ActivityType.Gym, "VERTICALSPORTS_WALLCLIMBING": ActivityType.Climbing, } SupportedActivities = list(_activity_type_mappings.keys()) _api_endpoint = "https://www.polaraccesslink.com" def _register_user(self, access_token): headers = { "Content-Type": "application/json", "Accept": "application/json", "Authorization": "Bearer {}".format(access_token) } res = requests.post(self._api_endpoint + "/v3/users", json={"member-id": uuid.uuid4().hex}, headers=headers) return res.status_code == 200 def _delete_user(self, serviceRecord): res = requests.delete(self._api_endpoint + "/v3/users/{userid}".format(userid=serviceRecord.ExternalID), headers=self._api_headers(serviceRecord)) def _create_transaction(self, serviceRecord): # Transaction contains max 50 items and last 10 minutes and after that it would be no acces to data within its scope # hope worker can download all data, otherwise still no issue - we will stop downloading skipping exception # and fetch missed data later in scope of another transaction res = requests.post(self._api_endpoint + "/v3/users/{userid}/exercise-transactions".format(userid=serviceRecord.ExternalID), headers=self._api_headers(serviceRecord)) # No new training data status_code=204 if res.status_code == 401: #TODO why it could happen logger.debug("No authorization to create transaction") raise APIException("No authorization to create transaction", block=True, user_exception=UserException(UserExceptionType.Authorization, intervention_required=True)) transaction_uri = res.json()["resource-uri"] if res.status_code == 201 else None serviceRecord.ServiceData = {"Transaction-uri": transaction_uri} return transaction_uri def _commit_transaction(self, serviceRecord): if hasattr(serviceRecord, "ServiceData"): transaction_uri = serviceRecord.ServiceData["Transaction-uri"] if transaction_uri: res = requests.put(transaction_uri, headers=self._api_headers(serviceRecord)) # TODO : should handle responce code? # 200 OK Transaction has been committed and data deleted None # 204 No Content No content when there is no data available None # 404 Not Found No transaction was found with given transaction id None def _api_headers(self, serviceRecord, headers={}): headers.update({"Authorization": "Bearer {}".format(serviceRecord.Authorization["OAuthToken"])}) return headers def WebInit(self): params = {'response_type':'code', 'client_id': POLAR_CLIENT_ID, 'redirect_uri': WEB_ROOT + reverse("oauth_return", kwargs={"service": "polarflow"})} self.UserAuthorizationURL = "https://flow.polar.com/oauth2/authorization?" + urlencode(params) def RetrieveAuthorizationToken(self, req, level): code = req.GET.get("code") params = {"grant_type": "authorization_code", "code": code, "redirect_uri": WEB_ROOT + reverse("oauth_return", kwargs={"service": "polarflow"})} response = requests.post("https://polarremote.com/v2/oauth2/token", data=params, auth=HTTPBasicAuth(POLAR_CLIENT_ID, POLAR_CLIENT_SECRET)) data = response.json() if response.status_code != 200: raise APIException(data["error"]) authorizationData = {"OAuthToken": data["access_token"]} userId = data["x_user_id"] try: self._register_user(data["access_token"]) except requests.exceptions.HTTPError as err: # Error 409 Conflict means that the user has already been registered for this client. # That error can be ignored if err.response.status_code != 409: raise APIException("Unable to link user", block=True, user_exception=UserException(UserExceptionType.Authorization, intervention_required=True)) return (userId, authorizationData) def RevokeAuthorization(self, serviceRecord): self._delete_user(serviceRecord) def SubscribeToPartialSyncTrigger(self, serviceRecord): # There is no per-user webhook subscription with Polar Flow. serviceRecord.SetPartialSyncTriggerSubscriptionState(True) def UnsubscribeFromPartialSyncTrigger(self, serviceRecord): # As above. serviceRecord.SetPartialSyncTriggerSubscriptionState(False) def PollPartialSyncTrigger(self, multiple_index): response = requests.get(self._api_endpoint + "/v3/notifications", auth=HTTPBasicAuth(POLAR_CLIENT_ID, POLAR_CLIENT_SECRET)) to_sync_ids = [] if response.status_code == 200: for item in response.json()["available-user-data"]: if item["data-type"] == "EXERCISE": to_sync_ids.append(item["user-id"]) return to_sync_ids def DownloadActivityList(self, serviceRecord, exhaustive=False): activities = [] exclusions = [] transaction_url = self._create_transaction(serviceRecord) if transaction_url: res = requests.get(transaction_url, headers=self._api_headers(serviceRecord)) if res.status_code == 200: # otherwise no new data, skip for activity_url in res.json()["exercises"]: data = requests.get(activity_url, headers=self._api_headers(serviceRecord)) if data.status_code == 200: activity = self._create_activity(data.json()) activities.append(activity) else: # may be just deleted, who knows, skip logger.debug("Cannot recieve training at url: {}".format(activity_url)) return activities, exclusions def _create_activity(self, activity_data): activity = UploadedActivity() activity.GPS = not activity_data["has-route"] if "detailed-sport-info" in activity_data and activity_data["detailed-sport-info"] in self._reverse_activity_type_mappings: activity.Type = self._reverse_activity_type_mappings[activity_data["detailed-sport-info"]] else: activity.Type = ActivityType.Other activity.StartTime = pytz.utc.localize(isodate.parse_datetime(activity_data["start-time"])) activity.EndTime = activity.StartTime + isodate.parse_duration(activity_data["duration"]) distance = activity_data["distance"] if "distance" in activity_data else None activity.Stats.Distance = ActivityStatistic(ActivityStatisticUnit.Meters, value=float(distance) if distance else None) hr_data = activity_data["heart-rate"] if "heart-rate" in activity_data else None avg_hr = hr_data["average"] if "average" in hr_data else None max_hr = hr_data["maximum"] if "maximum" in hr_data else None activity.Stats.HR.update(ActivityStatistic(ActivityStatisticUnit.BeatsPerMinute, avg=float(avg_hr) if avg_hr else None, max=float(max_hr) if max_hr else None)) calories = activity_data["calories"] if "calories" in activity_data else None activity.Stats.Energy = ActivityStatistic(ActivityStatisticUnit.Kilocalories, value=int(calories) if calories else None) activity.ServiceData = {"ActivityID": activity_data["id"]} logger.debug("\tActivity s/t {}: {}".format(activity.StartTime, activity.Type)) activity.CalculateUID() return activity def DownloadActivity(self, serviceRecord, activity): # NOTE tcx have to be gzipped but it actually doesn't # https://www.polar.com/accesslink-api/?python#get-tcx #tcx_data_raw = requests.get(activity_link + "/tcx", headers=self._api_headers(serviceRecord)) #tcx_data = gzip.GzipFile(fileobj=StringIO(tcx_data_raw)).read() tcx_url = serviceRecord.ServiceData["Transaction-uri"] + "/exercises/{}/tcx".format(activity.ServiceData["ActivityID"]) response = requests.get(tcx_url, headers=self._api_headers(serviceRecord, {"Accept": "application/vnd.garmin.tcx+xml"})) if response.status_code == 404: # Transaction was disbanded, all data linked to it will be returned in next transaction raise APIException("Transaction disbanded", user_exception=UserException(UserExceptionType.DownloadError)) try: tcx_data = response.text activity = TCXIO.Parse(tcx_data.encode('utf-8'), activity) activity.SourceFile = SourceFile(tcx_data, ActivityFileType.TCX) except lxml.etree.XMLSyntaxError: raise APIException("Cannot recieve training tcx at url: {}".format(tcx_url), user_exception=UserException(UserExceptionType.DownloadError)) return activity def SynchronizationComplete(self, serviceRecord): # Transaction should be commited to make access to next data possible self._commit_transaction(serviceRecord) def DeleteCachedData(self, serviceRecord): # Nothing to delete pass def DeleteActivity(self, serviceRecord, uploadId): # Not supported pass def UploadActivity(self, serviceRecord, activity): # Not supported pass
py
b40128f947a5475d04748ee5c29bb3958da86e83
""" Utilities for working with the local dataset cache. This file is adapted from the AllenNLP library at https://github.com/allenai/allennlp Copyright by the AllenNLP authors. """ import os import logging import shutil import tempfile import json from urllib.parse import urlparse from pathlib import Path from typing import Optional, Tuple, Union, IO, Callable, Set from hashlib import sha256 from functools import wraps from tqdm import tqdm import boto3 from botocore.exceptions import ClientError import requests logger = logging.getLogger(__name__) # pylint: disable=invalid-name PYTORCH_PRETRAINED_BERT_CACHE = Path(os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', Path.home() / '.pytorch_pretrained_bert')) def url_to_filename(url: str, etag: str = None) -> str: """ Convert `url` into a hashed filename in a repeatable way. If `etag` is specified, append its hash to the url's, delimited by a period. """ url_bytes = url.encode('utf-8') url_hash = sha256(url_bytes) filename = url_hash.hexdigest() if etag: etag_bytes = etag.encode('utf-8') etag_hash = sha256(etag_bytes) filename += '.' + etag_hash.hexdigest() return filename def filename_to_url(filename: str, cache_dir: Union[str, Path] = None) -> Tuple[str, str]: """ Return the url and etag (which may be ``None``) stored for `filename`. Raise ``FileNotFoundError`` if `filename` or its stored metadata do not exist. """ if cache_dir is None: cache_dir = PYTORCH_PRETRAINED_BERT_CACHE if isinstance(cache_dir, Path): cache_dir = str(cache_dir) cache_path = os.path.join(cache_dir, filename) if not os.path.exists(cache_path): raise FileNotFoundError("file {} not found".format(cache_path)) meta_path = cache_path + '.json' if not os.path.exists(meta_path): raise FileNotFoundError("file {} not found".format(meta_path)) with open(meta_path) as meta_file: metadata = json.load(meta_file) url = metadata['url'] etag = metadata['etag'] return url, etag def cached_path(url_or_filename: Union[str, Path], cache_dir: Union[str, Path] = None) -> str: """ Given something that might be a URL (or might be a local path), determine which. If it's a URL, download the file and cache it, and return the path to the cached file. If it's already a local path, make sure the file exists and then return the path. """ if cache_dir is None: cache_dir = PYTORCH_PRETRAINED_BERT_CACHE if isinstance(url_or_filename, Path): url_or_filename = str(url_or_filename) if isinstance(cache_dir, Path): cache_dir = str(cache_dir) parsed = urlparse(url_or_filename) if parsed.scheme in ('http', 'https', 's3'): # URL, so get it from the cache (downloading if necessary) return get_from_cache(url_or_filename, cache_dir) elif os.path.exists(url_or_filename): # File, and it exists. return url_or_filename elif parsed.scheme == '': # File, but it doesn't exist. raise FileNotFoundError("file {} not found".format(url_or_filename)) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename)) def split_s3_path(url: str) -> Tuple[str, str]: """Split a full s3 path into the bucket name and path.""" parsed = urlparse(url) if not parsed.netloc or not parsed.path: raise ValueError("bad s3 path {}".format(url)) bucket_name = parsed.netloc s3_path = parsed.path # Remove '/' at beginning of path. if s3_path.startswith("/"): s3_path = s3_path[1:] return bucket_name, s3_path def s3_request(func: Callable): """ Wrapper function for s3 requests in order to create more helpful error messages. """ @wraps(func) def wrapper(url: str, *args, **kwargs): try: return func(url, *args, **kwargs) except ClientError as exc: if int(exc.response["Error"]["Code"]) == 404: raise FileNotFoundError("file {} not found".format(url)) else: raise return wrapper @s3_request def s3_etag(url: str) -> Optional[str]: """Check ETag on S3 object.""" s3_resource = boto3.resource("s3") bucket_name, s3_path = split_s3_path(url) s3_object = s3_resource.Object(bucket_name, s3_path) return s3_object.e_tag @s3_request def s3_get(url: str, temp_file: IO) -> None: """Pull a file directly from S3.""" s3_resource = boto3.resource("s3") bucket_name, s3_path = split_s3_path(url) s3_resource.Bucket(bucket_name).download_fileobj(s3_path, temp_file) def http_get(url: str, temp_file: IO) -> None: req = requests.get(url, stream=True) content_length = req.headers.get('Content-Length') total = int(content_length) if content_length is not None else None progress = tqdm(unit="B", total=total) for chunk in req.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks progress.update(len(chunk)) temp_file.write(chunk) progress.close() def get_from_cache(url: str, cache_dir: Union[str, Path] = None) -> str: """ Given a URL, look for the corresponding dataset in the local cache. If it's not there, download it. Then return the path to the cached file. """ if cache_dir is None: cache_dir = PYTORCH_PRETRAINED_BERT_CACHE if isinstance(cache_dir, Path): cache_dir = str(cache_dir) os.makedirs(cache_dir, exist_ok=True) # Get eTag to add to filename, if it exists. if url.startswith("s3://"): etag = s3_etag(url) else: response = requests.head(url, allow_redirects=True) if response.status_code != 200: raise IOError("HEAD request failed for url {} with status code {}" .format(url, response.status_code)) etag = response.headers.get("ETag") filename = url_to_filename(url, etag) # get cache path to put the file cache_path = os.path.join(cache_dir, filename) if not os.path.exists(cache_path): # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with tempfile.NamedTemporaryFile() as temp_file: logger.info("%s not found in cache, downloading to %s", url, temp_file.name) # GET file object if url.startswith("s3://"): s3_get(url, temp_file) else: http_get(url, temp_file) # we are copying the file before closing it, so flush to avoid truncation temp_file.flush() # shutil.copyfileobj() starts at the current position, so go to the start temp_file.seek(0) logger.info("copying %s to cache at %s", temp_file.name, cache_path) with open(cache_path, 'wb') as cache_file: shutil.copyfileobj(temp_file, cache_file) logger.info("creating metadata file for %s", cache_path) meta = {'url': url, 'etag': etag} meta_path = cache_path + '.json' with open(meta_path, 'w') as meta_file: json.dump(meta, meta_file) logger.info("removing temp file %s", temp_file.name) return cache_path def read_set_from_file(filename: str) -> Set[str]: ''' Extract a de-duped collection (set) of text from a file. Expected file format is one item per line. ''' collection = set() with open(filename, 'r', encoding='utf-8') as file_: for line in file_: collection.add(line.rstrip()) return collection def get_file_extension(path: str, dot=True, lower: bool = True): ext = os.path.splitext(path)[1] ext = ext if dot else ext[1:] return ext.lower() if lower else ext
py
b4012977e0c76ee2dd68c441e42af0a3e8db9693
# -*- coding: utf-8 -*- # Copyright (C) 2015-2018 by Brendt Wohlberg <[email protected]> # All rights reserved. BSD 3-clause License. # This file is part of the SPORCO package. Details of the copyright # and user license can be found in the 'LICENSE.txt' file distributed # with the package. """ADMM algorithms for the Convolutional Constrained MOD problem with Mask Decoupling""" from __future__ import division from __future__ import absolute_import import copy import numpy as np from sporco.admm import admm from sporco.admm import ccmod import sporco.cnvrep as cr import sporco.linalg as sl from sporco.common import _fix_dynamic_class_lookup __author__ = """Brendt Wohlberg <[email protected]>""" class ConvCnstrMODMaskDcplBase(admm.ADMMTwoBlockCnstrnt): r""" Base class for ADMM algorithms for Convolutional Constrained MOD with Mask Decoupling :cite:`heide-2015-fast`. | .. inheritance-diagram:: ConvCnstrMODMaskDcplBase :parts: 2 | Solve the optimisation problem .. math:: \mathrm{argmin}_\mathbf{d} \; (1/2) \left\| W \left(\sum_m \mathbf{d}_m * \mathbf{x}_m - \mathbf{s}\right) \right\|_2^2 \quad \text{such that} \quad \mathbf{d}_m \in C \;\; \forall m where :math:`C` is the feasible set consisting of filters with unit norm and constrained support, and :math:`W` is a mask array, via the ADMM problem .. math:: \mathrm{argmin}_{\mathbf{d},\mathbf{g}_0,\mathbf{g}_1} \; (1/2) \| W \mathbf{g}_0 \|_2^2 + \iota_C(\mathbf{g}_1) \;\text{such that}\; \left( \begin{array}{c} X \\ I \end{array} \right) \mathbf{d} - \left( \begin{array}{c} \mathbf{g}_0 \\ \mathbf{g}_1 \end{array} \right) = \left( \begin{array}{c} \mathbf{s} \\ \mathbf{0} \end{array} \right) \;\;, where :math:`\iota_C(\cdot)` is the indicator function of feasible set :math:`C`, and :math:`X \mathbf{d} = \sum_m \mathbf{x}_m * \mathbf{d}_m`. | The implementation of this class is substantially complicated by the support of multi-channel signals. In the following, the number of channels in the signal and dictionary are denoted by ``C`` and ``Cd`` respectively, the number of signals and the number of filters are denoted by ``K`` and ``M`` respectively, ``X``, ``Z``, and ``S`` denote the dictionary, coefficient map, and signal arrays respectively, and ``Y0`` and ``Y1`` denote blocks 0 and 1 of the auxiliary (split) variable of the ADMM problem. We need to consider three different cases: 1. Single channel signal and dictionary (``C`` = ``Cd`` = 1) 2. Multi-channel signal, single channel dictionary (``C`` > 1, ``Cd`` = 1) 3. Multi-channel signal and dictionary (``C`` = ``Cd`` > 1) The final three (non-spatial) dimensions of the main variables in each of these cases are as in the following table: ====== ================== ===================== ================== Var. ``C`` = ``Cd`` = 1 ``C`` > 1, ``Cd`` = 1 ``C`` = ``Cd`` > 1 ====== ================== ===================== ================== ``X`` 1 x 1 x ``M`` 1 x 1 x ``M`` ``Cd`` x 1 x ``M`` ``Z`` 1 x ``K`` x ``M`` ``C`` x ``K`` x ``M`` 1 x ``K`` x ``M`` ``S`` 1 x ``K`` x 1 ``C`` x ``K`` x 1 ``C`` x ``K`` x 1 ``Y0`` 1 x ``K`` x 1 ``C`` x ``K`` x 1 ``C`` x ``K`` x 1 ``Y1`` 1 x 1 x ``M`` 1 x 1 x ``M`` ``C`` x 1 x ``M`` ====== ================== ===================== ================== In order to combine the block components ``Y0`` and ``Y1`` of variable ``Y`` into a single array, we need to be able to concatenate the two component arrays on one of the axes, but the shapes ``Y0`` and ``Y1`` are not compatible for concatenation. The solution for cases 1. and 3. is to swap the ``K`` and ``M`` axes of `Y0`` before concatenating, as well as after extracting the ``Y0`` component from the concatenated ``Y`` variable. In case 2., since the ``C`` and ``K`` indices have the same behaviour in the dictionary update equation, we combine these axes in :meth:`.__init__`, so that the case 2. array shapes become ====== ===================== Var. ``C`` > 1, ``Cd`` = 1 ====== ===================== ``X`` 1 x 1 x ``M`` ``Z`` 1 x ``C`` ``K`` x ``M`` ``S`` 1 x ``C`` ``K`` x 1 ``Y0`` 1 x ``C`` ``K`` x 1 ``Y1`` 1 x 1 x ``M`` ====== ===================== making it possible to concatenate ``Y0`` and ``Y1`` using the same axis swapping strategy as in the other cases. See :meth:`.block_sep0` and :meth:`block_cat` for additional details. | After termination of the :meth:`solve` method, attribute :attr:`itstat` is a list of tuples representing statistics of each iteration. The fields of the named tuple ``IterationStats`` are: ``Iter`` : Iteration number ``DFid`` : Value of data fidelity term :math:`(1/2) \sum_k \| W (\sum_m \mathbf{d}_m * \mathbf{x}_{k,m} - \mathbf{s}_k) \|_2^2` ``Cnstr`` : Constraint violation measure ``PrimalRsdl`` : Norm of primal residual ``DualRsdl`` : Norm of dual residual ``EpsPrimal`` : Primal residual stopping tolerance :math:`\epsilon_{\mathrm{pri}}` ``EpsDual`` : Dual residual stopping tolerance :math:`\epsilon_{\mathrm{dua}}` ``Rho`` : Penalty parameter ``XSlvRelRes`` : Relative residual of X step solver ``Time`` : Cumulative run time """ class Options(admm.ADMMTwoBlockCnstrnt.Options): r"""ConvCnstrMODMaskDcplBase algorithm options Options include all of those defined in :class:`.ADMMTwoBlockCnstrnt.Options`, together with additional options: ``LinSolveCheck`` : Flag indicating whether to compute relative residual of X step solver. ``ZeroMean`` : Flag indicating whether the solution dictionary :math:`\{\mathbf{d}_m\}` should have zero-mean components. """ defaults = copy.deepcopy(admm.ADMMEqual.Options.defaults) defaults.update({'AuxVarObj': False, 'fEvalX': True, 'gEvalY': False, 'LinSolveCheck': False, 'ZeroMean': False, 'RelaxParam': 1.8, 'rho': 1.0, 'ReturnVar': 'Y1'}) def __init__(self, opt=None): """ Parameters ---------- opt : dict or None, optional (default None) ConvCnstrMODMaskDcpl algorithm options """ if opt is None: opt = {} admm.ADMMTwoBlockCnstrnt.Options.__init__(self, opt) def __setitem__(self, key, value): """Set options 'fEvalX' and 'gEvalY' appropriately when option 'AuxVarObj' is set. """ admm.ADMMTwoBlockCnstrnt.Options.__setitem__(self, key, value) if key == 'AuxVarObj': if value is True: self['fEvalX'] = False self['gEvalY'] = True else: self['fEvalX'] = True self['gEvalY'] = False itstat_fields_objfn = ('DFid', 'Cnstr') itstat_fields_extra = ('XSlvRelRes',) hdrtxt_objfn = ('DFid', 'Cnstr') hdrval_objfun = {'DFid': 'DFid', 'Cnstr': 'Cnstr'} def __init__(self, Z, S, W, dsz, opt=None, dimK=None, dimN=2): """ Parameters ---------- Z : array_like Coefficient map array S : array_like Signal array W : array_like Mask array. The array shape must be such that the array is compatible for multiplication with input array S (see :func:`.cnvrep.mskWshape` for more details). dsz : tuple Filter support size(s) opt : :class:`ConvCnstrMODMaskDcplBase.Options` object Algorithm options dimK : 0, 1, or None, optional (default None) Number of dimensions in input signal corresponding to multiple independent signals dimN : int, optional (default 2) Number of spatial dimensions """ # Set default options if none specified if opt is None: opt = ConvCnstrMODMaskDcplBase.Options() # Infer problem dimensions and set relevant attributes of self self.cri = cr.CDU_ConvRepIndexing(dsz, S, dimK=dimK, dimN=dimN) # Convert W to internal shape W = np.asarray(W.reshape(cr.mskWshape(W, self.cri)), dtype=S.dtype) # Reshape W if necessary (see discussion of reshape of S below) if self.cri.Cd == 1 and self.cri.C > 1: # In most cases broadcasting rules make it possible for W # to have a singleton dimension corresponding to a non-singleton # dimension in S. However, when S is reshaped to interleave axisC # and axisK on the same axis, broadcasting is no longer sufficient # unless axisC and axisK of W are either both singleton or both # of the same size as the corresponding axes of S. If neither of # these cases holds, it is necessary to replicate the axis of W # (axisC or axisK) that does not have the same size as the # corresponding axis of S. shpw = list(W.shape) swck = shpw[self.cri.axisC] * shpw[self.cri.axisK] if swck > 1 and swck < self.cri.C * self.cri.K: if W.shape[self.cri.axisK] == 1 and self.cri.K > 1: shpw[self.cri.axisK] = self.cri.K else: shpw[self.cri.axisC] = self.cri.C W = np.broadcast_to(W, shpw) self.W = W.reshape( W.shape[0:self.cri.dimN] + (1, W.shape[self.cri.axisC] * W.shape[self.cri.axisK], 1)) else: self.W = W # Call parent class __init__ Nx = self.cri.N * self.cri.Cd * self.cri.M CK = (self.cri.C if self.cri.Cd == 1 else 1) * self.cri.K shpY = list(self.cri.shpX) shpY[self.cri.axisC] = self.cri.Cd shpY[self.cri.axisK] = 1 shpY[self.cri.axisM] += CK super(ConvCnstrMODMaskDcplBase, self).__init__( Nx, shpY, self.cri.axisM, CK, S.dtype, opt) # Reshape S to standard layout (Z, i.e. X in cbpdn, is assumed # to be taken from cbpdn, and therefore already in standard # form). If the dictionary has a single channel but the input # (and therefore also the coefficient map array) has multiple # channels, the channel index and multiple image index have # the same behaviour in the dictionary update equation: the # simplest way to handle this is to just reshape so that the # channels also appear on the multiple image index. if self.cri.Cd == 1 and self.cri.C > 1: self.S = S.reshape(self.cri.Nv + (1, self.cri.C*self.cri.K, 1)) else: self.S = S.reshape(self.cri.shpS) self.S = np.asarray(self.S, dtype=self.dtype) # Create constraint set projection function self.Pcn = cr.getPcn(dsz, self.cri.Nv, self.cri.dimN, self.cri.dimCd, zm=opt['ZeroMean']) # Initialise byte-aligned arrays for pyfftw self.YU = sl.pyfftw_empty_aligned(self.Y.shape, dtype=self.dtype) xfshp = list(self.cri.Nv + (self.cri.Cd, 1, self.cri.M)) self.Xf = sl.pyfftw_rfftn_empty_aligned(xfshp, self.cri.axisN, self.dtype) if Z is not None: self.setcoef(Z) def uinit(self, ushape): """Return initialiser for working variable U""" if self.opt['Y0'] is None: return np.zeros(ushape, dtype=self.dtype) else: # If initial Y is non-zero, initial U is chosen so that # the relevant dual optimality criterion (see (3.10) in # boyd-2010-distributed) is satisfied. Ub0 = (self.W**2) * self.block_sep0(self.Y) / self.rho Ub1 = self.block_sep1(self.Y) return self.block_cat(Ub0, Ub1) def setcoef(self, Z): """Set coefficient array.""" # If the dictionary has a single channel but the input (and # therefore also the coefficient map array) has multiple # channels, the channel index and multiple image index have # the same behaviour in the dictionary update equation: the # simplest way to handle this is to just reshape so that the # channels also appear on the multiple image index. if self.cri.Cd == 1 and self.cri.C > 1: Z = Z.reshape(self.cri.Nv + (1, self.cri.Cx*self.cri.K, self.cri.M,)) self.Z = np.asarray(Z, dtype=self.dtype) self.Zf = sl.rfftn(self.Z, self.cri.Nv, self.cri.axisN) def getdict(self, crop=True): """Get final dictionary. If ``crop`` is ``True``, apply :func:`.cnvrep.bcrop` to returned array. """ D = self.block_sep1(self.Y) if crop: D = cr.bcrop(D, self.cri.dsz, self.cri.dimN) return D def xstep_check(self, b): r"""Check the minimisation of the Augmented Lagrangian with respect to :math:`\mathbf{x}` by method `xstep` defined in derived classes. This method should be called at the end of any `xstep` method. """ if self.opt['LinSolveCheck']: Zop = lambda x: sl.inner(self.Zf, x, axis=self.cri.axisM) ZHop = lambda x: sl.inner(np.conj(self.Zf), x, axis=self.cri.axisK) ax = ZHop(Zop(self.Xf)) + self.Xf self.xrrs = sl.rrs(ax, b) else: self.xrrs = None def ystep(self): r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{y}`. """ AXU = self.AX + self.U Y0 = (self.rho*(self.block_sep0(AXU) - self.S)) / (self.W**2 + self.rho) Y1 = self.Pcn(self.block_sep1(AXU)) self.Y = self.block_cat(Y0, Y1) def relax_AX(self): """Implement relaxation if option ``RelaxParam`` != 1.0.""" self.AXnr = self.cnst_A(self.X, self.Xf) if self.rlx == 1.0: self.AX = self.AXnr else: alpha = self.rlx self.AX = alpha*self.AXnr + (1-alpha)*self.block_cat( self.var_y0() + self.S, self.var_y1()) def block_sep0(self, Y): r"""Separate variable into component corresponding to :math:`\mathbf{y}_0` in :math:`\mathbf{y}\;\;`. The method from parent class :class:`.ADMMTwoBlockCnstrnt` is overridden here to allow swapping of K (multi-image) and M (filter) axes in block 0 so that it can be concatenated on axis M with block 1. This is necessary because block 0 has the dimensions of S while block 1 has the dimensions of D. Handling of multi-channel signals substantially complicate this issue. There are two multi-channel cases: multi-channel dictionary and signal (Cd = C > 1), and single-channel dictionary with multi-channel signal (Cd = 1, C > 1). In the former case, S and D shapes are (N x C x K x 1) and (N x C x 1 x M) respectively. In the latter case, :meth:`.__init__` has already taken care of combining C (multi-channel) and K (multi-image) axes in S, so the S and D shapes are (N x 1 x C K x 1) and (N x 1 x 1 x M) respectively. """ return np.swapaxes( Y[(slice(None),)*self.blkaxis + (slice(0, self.blkidx),)], self.cri.axisK, self.cri.axisM) def block_cat(self, Y0, Y1): r"""Concatenate components corresponding to :math:`\mathbf{y}_0` and :math:`\mathbf{y}_1` to form :math:`\mathbf{y}\;\;`. The method from parent class :class:`.ADMMTwoBlockCnstrnt` is overridden here to allow swapping of K (multi-image) and M (filter) axes in block 0 so that it can be concatenated on axis M with block 1. This is necessary because block 0 has the dimensions of S while block 1 has the dimensions of D. Handling of multi-channel signals substantially complicate this issue. There are two multi-channel cases: multi-channel dictionary and signal (Cd = C > 1), and single-channel dictionary with multi-channel signal (Cd = 1, C > 1). In the former case, S and D shapes are (N x C x K x 1) and (N x C x 1 x M) respectively. In the latter case, :meth:`.__init__` has already taken care of combining C (multi-channel) and K (multi-image) axes in S, so the S and D shapes are (N x 1 x C K x 1) and (N x 1 x 1 x M) respectively. """ return np.concatenate((np.swapaxes(Y0, self.cri.axisK, self.cri.axisM), Y1), axis=self.blkaxis) def cnst_A(self, X, Xf=None): r"""Compute :math:`A \mathbf{x}` component of ADMM problem constraint. """ return self.block_cat(self.cnst_A0(X, Xf), self.cnst_A1(X)) def obfn_g0var(self): """Variable to be evaluated in computing :meth:`.ADMMTwoBlockCnstrnt.obfn_g0`, depending on the ``AuxVarObj`` option value. """ return self.var_y0() if self.opt['AuxVarObj'] else \ self.cnst_A0(None, self.Xf) - self.cnst_c0() def cnst_A0(self, X, Xf=None): r"""Compute :math:`A_0 \mathbf{x}` component of ADMM problem constraint. """ # This calculation involves non-negligible computational cost # when Xf is None (i.e. the function is not being applied to # self.X). if Xf is None: Xf = sl.rfftn(X, None, self.cri.axisN) return sl.irfftn(sl.inner(self.Zf, Xf, axis=self.cri.axisM), self.cri.Nv, self.cri.axisN) def cnst_A0T(self, Y0): r"""Compute :math:`A_0^T \mathbf{y}_0` component of :math:`A^T \mathbf{y}` (see :meth:`.ADMMTwoBlockCnstrnt.cnst_AT`). """ # This calculation involves non-negligible computational cost. It # should be possible to disable relevant diagnostic information # (dual residual) to avoid this cost. Y0f = sl.rfftn(Y0, None, self.cri.axisN) return sl.irfftn(sl.inner(np.conj(self.Zf), Y0f, axis=self.cri.axisK), self.cri.Nv, self.cri.axisN) def cnst_c0(self): r"""Compute constant component :math:`\mathbf{c}_0` of :math:`\mathbf{c}` in the ADMM problem constraint. """ return self.S def eval_objfn(self): """Compute components of regularisation function as well as total contribution to objective function. """ dfd = self.obfn_g0(self.obfn_g0var()) cns = self.obfn_g1(self.obfn_g1var()) return (dfd, cns) def obfn_g0(self, Y0): r"""Compute :math:`g_0(\mathbf{y}_0)` component of ADMM objective function. """ return (np.linalg.norm(self.W * Y0)**2) / 2.0 def obfn_g1(self, Y1): r"""Compute :math:`g_1(\mathbf{y_1})` component of ADMM objective function. """ return np.linalg.norm((self.Pcn(Y1) - Y1)) def itstat_extra(self): """Non-standard entries for the iteration stats record tuple.""" return (self.xrrs,) def reconstruct(self, D=None): """Reconstruct representation.""" if D is None: Df = self.Xf else: Df = sl.rfftn(D, None, self.cri.axisN) Sf = np.sum(self.Zf * Df, axis=self.cri.axisM) return sl.irfftn(Sf, self.cri.Nv, self.cri.axisN) def rsdl_s(self, Yprev, Y): """Compute dual residual vector.""" return self.rho*np.linalg.norm(self.cnst_AT(self.U)) def rsdl_sn(self, U): """Compute dual residual normalisation term.""" return self.rho*np.linalg.norm(U) class ConvCnstrMODMaskDcpl_IterSM(ConvCnstrMODMaskDcplBase): r""" ADMM algorithm for Convolutional Constrained MOD with Mask Decoupling :cite:`heide-2015-fast` with the :math:`\mathbf{x}` step solved via iterated application of the Sherman-Morrison equation :cite:`wohlberg-2016-efficient`. | .. inheritance-diagram:: ConvCnstrMODMaskDcpl_IterSM :parts: 2 | Multi-channel signals/images are supported :cite:`wohlberg-2016-convolutional`. See :class:`.ConvCnstrMODMaskDcplBase` for interface details. """ class Options(ConvCnstrMODMaskDcplBase.Options): """ConvCnstrMODMaskDcpl_IterSM algorithm options Options are the same as those defined in :class:`.ConvCnstrMODMaskDcplBase.Options`. """ defaults = copy.deepcopy(ConvCnstrMODMaskDcplBase.Options.defaults) def __init__(self, opt=None): """ Parameters ---------- opt : dict or None, optional (default None) ConvCnstrMODMaskDcpl_IterSM algorithm options """ if opt is None: opt = {} ConvCnstrMODMaskDcplBase.Options.__init__(self, opt) def __init__(self, Z, S, W, dsz, opt=None, dimK=1, dimN=2): """ | **Call graph** .. image:: ../_static/jonga/ccmodmdism_init.svg :width: 20% :target: ../_static/jonga/ccmodmdism_init.svg """ # Set default options if none specified if opt is None: opt = ConvCnstrMODMaskDcpl_IterSM.Options() super(ConvCnstrMODMaskDcpl_IterSM, self).__init__(Z, S, W, dsz, opt, dimK, dimN) def xstep(self): r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{x}`. """ self.YU[:] = self.Y - self.U self.block_sep0(self.YU)[:] += self.S YUf = sl.rfftn(self.YU, None, self.cri.axisN) b = sl.inner(np.conj(self.Zf), self.block_sep0(YUf), axis=self.cri.axisK) + self.block_sep1(YUf) self.Xf[:] = sl.solvemdbi_ism(self.Zf, 1.0, b, self.cri.axisM, self.cri.axisK) self.X = sl.irfftn(self.Xf, self.cri.Nv, self.cri.axisN) self.xstep_check(b) class ConvCnstrMODMaskDcpl_CG(ConvCnstrMODMaskDcplBase): r""" ADMM algorithm for Convolutional Constrained MOD with Mask Decoupling :cite:`heide-2015-fast` with the :math:`\mathbf{x}` step solved via Conjugate Gradient (CG) :cite:`wohlberg-2016-efficient`. | .. inheritance-diagram:: ConvCnstrMODMaskDcpl_CG :parts: 2 | Multi-channel signals/images are supported :cite:`wohlberg-2016-convolutional`. See :class:`.ConvCnstrMODMaskDcplBase` for interface details. """ class Options(ConvCnstrMODMaskDcplBase.Options): """ConvCnstrMODMaskDcpl_CG algorithm options Options include all of those defined in :class:`.ConvCnstrMODMaskDcplBase.Options`, together with additional options: ``CG`` : CG solver options ``MaxIter`` : Maximum CG iterations. ``StopTol`` : CG stopping tolerance. """ defaults = copy.deepcopy(ConvCnstrMODMaskDcplBase.Options.defaults) defaults.update({'CG': {'MaxIter': 1000, 'StopTol': 1e-3}}) def __init__(self, opt=None): """ Parameters ---------- opt : dict or None, optional (default None) ConvCnstrMODMaskDcpl_CG algorithm options """ if opt is None: opt = {} ConvCnstrMODMaskDcplBase.Options.__init__(self, opt) itstat_fields_extra = ('XSlvRelRes', 'XSlvCGIt') def __init__(self, Z, S, W, dsz, opt=None, dimK=1, dimN=2): """ | **Call graph** .. image:: ../_static/jonga/ccmodmdcg_init.svg :width: 20% :target: ../_static/jonga/ccmodmdcg_init.svg """ # Set default options if none specified if opt is None: opt = ConvCnstrMODMaskDcpl_CG.Options() super(ConvCnstrMODMaskDcpl_CG, self).__init__(Z, S, W, dsz, opt, dimK, dimN) self.Xf[:] = 0.0 def xstep(self): r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{x}`. """ self.cgit = None self.YU[:] = self.Y - self.U self.block_sep0(self.YU)[:] += self.S YUf = sl.rfftn(self.YU, None, self.cri.axisN) b = sl.inner(np.conj(self.Zf), self.block_sep0(YUf), axis=self.cri.axisK) + self.block_sep1(YUf) self.Xf[:], cgit = sl.solvemdbi_cg( self.Zf, 1.0, b, self.cri.axisM, self.cri.axisK, self.opt['CG', 'StopTol'], self.opt['CG', 'MaxIter'], self.Xf) self.cgit = cgit self.X = sl.irfftn(self.Xf, self.cri.Nv, self.cri.axisN) self.xstep_check(b) def itstat_extra(self): """Non-standard entries for the iteration stats record tuple.""" return (self.xrrs, self.cgit) class ConvCnstrMODMaskDcpl_Consensus(ccmod.ConvCnstrMOD_Consensus): r""" Hybrid ADMM Consensus algorithm for Convolutional Constrained MOD with Mask Decoupling :cite:`garcia-2018-convolutional1`. | .. inheritance-diagram:: ConvCnstrMODMaskDcpl_Consensus :parts: 2 | Solve the optimisation problem .. math:: \mathrm{argmin}_\mathbf{d} \; (1/2) \left\| W \left(\sum_m \mathbf{d}_m * \mathbf{x}_m - \mathbf{s} \right) \right\|_2^2 \quad \text{such that} \quad \mathbf{d}_m \in C \;\; \forall m where :math:`C` is the feasible set consisting of filters with unit norm and constrained support, and :math:`W` is a mask array, via a hybrid ADMM Consensus problem. See the documentation of :class:`.ConvCnstrMODMaskDcplBase` for a detailed discussion of the implementational complications resulting from the support of multi-channel signals. """ def __init__(self, Z, S, W, dsz, opt=None, dimK=None, dimN=2): """ | **Call graph** .. image:: ../_static/jonga/ccmodmdcnsns_init.svg :width: 20% :target: ../_static/jonga/ccmodmdcnsns_init.svg | Parameters ---------- Z : array_like Coefficient map array S : array_like Signal array W : array_like Mask array. The array shape must be such that the array is compatible for multiplication with input array S (see :func:`.cnvrep.mskWshape` for more details). dsz : tuple Filter support size(s) opt : :class:`.ConvCnstrMOD_Consensus.Options` object Algorithm options dimK : 0, 1, or None, optional (default None) Number of dimensions in input signal corresponding to multiple independent signals dimN : int, optional (default 2) Number of spatial dimensions """ # Set default options if none specified if opt is None: opt = ccmod.ConvCnstrMOD_Consensus.Options() super(ConvCnstrMODMaskDcpl_Consensus, self).__init__( Z, S, dsz, opt=opt, dimK=dimK, dimN=dimN) # Convert W to internal shape if W is None: W = np.array([1.0], dtype=self.dtype) W = np.asarray(W.reshape(cr.mskWshape(W, self.cri)), dtype=S.dtype) # Reshape W if necessary (see discussion of reshape of S in # ccmod.ConvCnstrMOD_Consensus.__init__) if self.cri.Cd == 1 and self.cri.C > 1: # In most cases broadcasting rules make it possible for W # to have a singleton dimension corresponding to a non-singleton # dimension in S. However, when S is reshaped to interleave axisC # and axisK on the same axis, broadcasting is no longer sufficient # unless axisC and axisK of W are either both singleton or both # of the same size as the corresponding axes of S. If neither of # these cases holds, it is necessary to replicate the axis of W # (axisC or axisK) that does not have the same size as the # corresponding axis of S. shpw = list(W.shape) swck = shpw[self.cri.axisC] * shpw[self.cri.axisK] if swck > 1 and swck < self.cri.C * self.cri.K: if W.shape[self.cri.axisK] == 1 and self.cri.K > 1: shpw[self.cri.axisK] = self.cri.K else: shpw[self.cri.axisC] = self.cri.C W = np.broadcast_to(W, shpw) self.W = W.reshape( W.shape[0:self.cri.dimN] + (1, W.shape[self.cri.axisC] * W.shape[self.cri.axisK], 1)) else: self.W = W # Initialise additional variables required for the different # splitting used in combining the consensus solution with mask # decoupling self.Y1 = np.zeros(self.S.shape, dtype=self.dtype) self.U1 = np.zeros(self.S.shape, dtype=self.dtype) self.YU1 = sl.pyfftw_empty_aligned(self.S.shape, dtype=self.dtype) def setcoef(self, Z): """Set coefficient array.""" # This method largely replicates the method from parent class # ConvCnstrMOD_Consensus that it overrides. The inherited # method is overridden to avoid the superfluous computation of # self.ZSf in that method, which is not required for the # modified algorithm with mask decoupling if self.cri.Cd == 1 and self.cri.C > 1: Z = Z.reshape(self.cri.Nv + (1,) + (self.cri.Cx*self.cri.K,) + (self.cri.M,)) self.Z = np.asarray(Z, dtype=self.dtype) self.Zf = sl.rfftn(self.Z, self.cri.Nv, self.cri.axisN) def var_y1(self): """Get the auxiliary variable that is constrained to be equal to the dictionary. The method is named for compatibility with the method of the same name in :class:`.ConvCnstrMODMaskDcpl_IterSM` and :class:`.ConvCnstrMODMaskDcpl_CG` (it is *not* variable `Y1` in this class). """ return self.Y def relax_AX(self): """The parent class method that this method overrides only implements the relaxation step for the variables of the baseline consensus algorithm. This method calls the overridden method and then implements the relaxation step for the additional variables required for the mask decoupling modification to the baseline algorithm. """ super(ConvCnstrMODMaskDcpl_Consensus, self).relax_AX() self.AX1nr = sl.irfftn(sl.inner(self.Zf, self.swapaxes(self.Xf), axis=self.cri.axisM), self.cri.Nv, self.cri.axisN) if self.rlx == 1.0: self.AX1 = self.AX1nr else: alpha = self.rlx self.AX1 = alpha*self.AX1nr + (1-alpha)*(self.Y1 + self.S) def xstep(self): """The xstep of the baseline consensus class from which this class is derived is re-used to implement the xstep of the modified algorithm by replacing ``self.ZSf``, which is constant in the baseline algorithm, with a quantity derived from the additional variables ``self.Y1`` and ``self.U1``. It is also necessary to set the penalty parameter to unity for the duration of the x step. """ self.YU1[:] = self.Y1 - self.U1 self.ZSf = np.conj(self.Zf) * (self.Sf + sl.rfftn( self.YU1, None, self.cri.axisN)) rho = self.rho self.rho = 1.0 super(ConvCnstrMODMaskDcpl_Consensus, self).xstep() self.rho = rho def ystep(self): """The parent class ystep method is overridden to allow also performing the ystep for the additional variables introduced in the modification to the baseline algorithm. """ super(ConvCnstrMODMaskDcpl_Consensus, self).ystep() AXU1 = self.AX1 + self.U1 self.Y1 = self.rho*(AXU1 - self.S) / (self.W**2 + self.rho) def ustep(self): """The parent class ystep method is overridden to allow also performing the ystep for the additional variables introduced in the modification to the baseline algorithm. """ super(ConvCnstrMODMaskDcpl_Consensus, self).ustep() self.U1 += self.AX1 - self.Y1 - self.S def obfn_dfd(self): r"""Compute data fidelity term :math:`(1/2) \| W \left( \sum_m \mathbf{d}_m * \mathbf{x}_m - \mathbf{s} \right) \|_2^2`. """ Ef = sl.inner(self.Zf, self.obfn_fvarf(), axis=self.cri.axisM) \ - self.Sf return (np.linalg.norm(self.W * sl.irfftn(Ef, self.cri.Nv, self.cri.axisN))**2) / 2.0 def compute_residuals(self): """Compute residuals and stopping thresholds. The parent class method is overridden to ensure that the residual calculations include the additional variables introduced in the modification to the baseline algorithm. """ # The full primary residual is straightforward to compute from # the primary residuals for the baseline algorithm and for the # additional variables r0 = self.rsdl_r(self.AXnr, self.Y) r1 = self.AX1nr - self.Y1 - self.S r = np.sqrt(np.sum(r0**2) + np.sum(r1**2)) # The full dual residual is more complicated to compute than the # full primary residual ATU = self.swapaxes(self.U) + sl.irfftn( np.conj(self.Zf) * sl.rfftn(self.U1, self.cri.Nv, self.cri.axisN), self.cri.Nv, self.cri.axisN) s = self.rho * np.linalg.norm(ATU) # The normalisation factor for the full primal residual is also not # straightforward nAX = np.sqrt(np.linalg.norm(self.AXnr)**2 + np.linalg.norm(self.AX1nr)**2) nY = np.sqrt(np.linalg.norm(self.Y)**2 + np.linalg.norm(self.Y1)**2) rn = max(nAX, nY, np.linalg.norm(self.S)) # The normalisation factor for the full dual residual is # straightforward to compute sn = self.rho * np.sqrt(np.linalg.norm(self.U)**2 + np.linalg.norm(self.U1)**2) # Final residual values and stopping tolerances depend on # whether standard or normalised residuals are specified via the # options object if self.opt['AutoRho', 'StdResiduals']: epri = np.sqrt(self.Nc)*self.opt['AbsStopTol'] + \ rn*self.opt['RelStopTol'] edua = np.sqrt(self.Nx)*self.opt['AbsStopTol'] + \ sn*self.opt['RelStopTol'] else: if rn == 0.0: rn = 1.0 if sn == 0.0: sn = 1.0 r /= rn s /= sn epri = np.sqrt(self.Nc)*self.opt['AbsStopTol']/rn + \ self.opt['RelStopTol'] edua = np.sqrt(self.Nx)*self.opt['AbsStopTol']/sn + \ self.opt['RelStopTol'] return r, s, epri, edua def ConvCnstrMODMaskDcpl(*args, **kwargs): """A wrapper function that dynamically defines a class derived from one of the implementations of the Convolutional Constrained MOD with Mask Decoupling problems, and returns an object instantiated with the provided. parameters. The wrapper is designed to allow the appropriate object to be created by calling this function using the same syntax as would be used if it were a class. The specific implementation is selected by use of an additional keyword argument 'method'. Valid values are: - ``'ism'`` : Use the implementation defined in :class:`.ConvCnstrMODMaskDcpl_IterSM`. This method works well for a small number of training images, but is very slow for larger training sets. - ``'cg'`` : Use the implementation defined in :class:`.ConvCnstrMODMaskDcpl_CG`. This method is slower than ``'ism'`` for small training sets, but has better run time scaling as the training set grows. - ``'cns'`` : Use the implementation defined in :class:`.ConvCnstrMODMaskDcpl_Consensus`. This method is the best choice for large training sets. The default value is ``'cns'``. """ # Extract method selection argument or set default if 'method' in kwargs: method = kwargs['method'] del kwargs['method'] else: method = 'cns' # Assign base class depending on method selection argument if method == 'ism': base = ConvCnstrMODMaskDcpl_IterSM elif method == 'cg': base = ConvCnstrMODMaskDcpl_CG elif method == 'cns': base = ConvCnstrMODMaskDcpl_Consensus else: raise ValueError('Unknown ConvCnstrMODMaskDcpl solver method %s' % method) # Nested class with dynamically determined inheritance class ConvCnstrMODMaskDcpl(base): def __init__(self, *args, **kwargs): super(ConvCnstrMODMaskDcpl, self).__init__(*args, **kwargs) # Allow pickling of objects of type ConvCnstrMODMaskDcpl _fix_dynamic_class_lookup(ConvCnstrMODMaskDcpl, method) # Return object of the nested class type return ConvCnstrMODMaskDcpl(*args, **kwargs) def ConvCnstrMODMaskDcplOptions(opt=None, method='cns'): """A wrapper function that dynamically defines a class derived from the Options class associated with one of the implementations of the Convolutional Constrained MOD with Mask Decoupling problem, and returns an object instantiated with the provided parameters. The wrapper is designed to allow the appropriate object to be created by calling this function using the same syntax as would be used if it were a class. The specific implementation is selected by use of an additional keyword argument 'method'. Valid values are as specified in the documentation for :func:`ConvCnstrMODMaskDcpl`. """ # Assign base class depending on method selection argument if method == 'ism': base = ConvCnstrMODMaskDcpl_IterSM.Options elif method == 'cg': base = ConvCnstrMODMaskDcpl_CG.Options elif method == 'cns': base = ConvCnstrMODMaskDcpl_Consensus.Options else: raise ValueError('Unknown ConvCnstrMODMaskDcpl solver method %s' % method) # Nested class with dynamically determined inheritance class ConvCnstrMODMaskDcplOptions(base): def __init__(self, opt): super(ConvCnstrMODMaskDcplOptions, self).__init__(opt) # Allow pickling of objects of type ConvCnstrMODMaskDcplOptions _fix_dynamic_class_lookup(ConvCnstrMODMaskDcplOptions, method) # Return object of the nested class type return ConvCnstrMODMaskDcplOptions(opt)
py
b4012983ed28675ee8c653b98fb745b267b2312a
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/stable/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- Project information ----------------------------------------------------- project = 'comp-match' copyright = '2018, franklingu' author = 'franklingu' # The short X.Y version version = '' # The full version, including alpha/beta/rc tags release = '0.0.0.dev' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.ifconfig', 'sphinx.ext.githubpages', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path . exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'comp-matchdoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'comp-match.tex', 'comp-match Documentation', 'franklingu', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'comp-match', 'comp-match Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'comp-match', 'comp-match Documentation', author, 'comp-match', 'One line description of project.', 'Miscellaneous'), ] # -- Options for Epub output ------------------------------------------------- # Bibliographic Dublin Core info. epub_title = project epub_author = author epub_publisher = author epub_copyright = copyright # The unique identifier of the text. This can be a ISBN number # or the project homepage. # # epub_identifier = '' # A unique identification for the text. # # epub_uid = '' # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # -- Extension configuration ------------------------------------------------- # -- Options for intersphinx extension --------------------------------------- # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'https://docs.python.org/': None} # -- Options for todo extension ---------------------------------------------- # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True
py
b40129e2c39a030b2b194182d7523b7069757617
#!/usr/bin/env python3 from mylib.ext import http_headers ROOT_DOMAIN = 'bilibili.com' class BilibiliSplinterBrowserWrapper: def __init__(self, splinter_browser, cookies_dict=None, cookies_source=None): b = self.browser = splinter_browser b.visit('https://' + ROOT_DOMAIN) if cookies_dict: self.add_cookies(cookies_dict) elif cookies_source: self.add_cookies_from(cookies_source) def add_cookies_from(self, x): self.add_cookies(http_headers.get_cookies_dict_from(x)) def add_cookies(self, cookies: dict): self.browser.cookies.add(cookies) for cookie in self.list_cookies(): cookie['domain'] = ROOT_DOMAIN self.add_single_cookie_dict(cookie) self.browser.reload() def add_single_cookie_dict(self, single_cookie_dict): self.browser.driver.add_cookie(single_cookie_dict) def get_cookies(self): return self.browser.cookies.all() def list_cookies(self): return self.browser.driver.get_cookies()
py
b4012b0b21e8e1418e19e144f1f9e57f60365499
from django.apps import AppConfig class StaffConfig(AppConfig): name = 'staff' verbose_name = 'Staff'
py
b4012be860f9ec9259d12906e4da2147e8685482
import abc import re from typing import ( Any, Optional, Union, ) import litecore.validation.base as base import litecore.validation.length as length import litecore.validation.specified as specified import litecore.validation.exceptions as exc class RegEx(base.Validator): __slots__ = base.get_slots(base.Validator) + ( 'pattern', 'flags', '_compiled', ) def __init__( self, *, pattern: Optional[Union[str, bytes, re.Pattern]] = None, flags: int = 0, **kwargs, ) -> None: super().__init__(**kwargs) self.pattern = pattern self.flags = flags if isinstance(pattern, re.Pattern): self._compiled = pattern else: self._compiled = re.compile(pattern, flags) def _validate(self, value: Any) -> Any: if not re.match(self._compiled, value): raise exc.PatternError(value, self) return super()._validate(value) @base.abstractslots(('regex',)) class HasRegEx(base.Validator): __slots__ = () def __init__( self, *, regex: Optional[RegEx] = None, **kwargs, ) -> None: super().__init__(**kwargs) self.regex = regex @abc.abstractmethod def _validate(self, value: Any) -> Any: if self.regex is not None: value = self.regex(value) return super()._validate(value) class String(HasRegEx, length.HasLength, specified.SimpleChoices): """ Examples: """ __slots__ = ('encoding',) + base.combine_slots( HasRegEx, length.HasLength, specified.SimpleChoices, ) default_coerce_type = str def __init__( self, *, encoding: Optional[str] = 'utf-8', **kwargs, ) -> None: super().__init__(**kwargs) self.encoding = encoding def _validate(self, value: Any) -> Any: if isinstance(value, bytes) and self.encoding is not None: try: value = value.decode(self.encoding) except UnicodeDecodeError as err: args = (value, self, str, err) raise exc.ValidationTypeError(*args) from err return super()._validate(value)
py
b4012c4378e508ce63325920dec3916fc3ec12bc
""" created by nikos at 4/26/21 """ import datetime from ..base import MLBStatsAPIEndpointModel from mlb_statsapi.utils.stats_api_object import configure_api YMDTHMS = '%Y-%m-%dT%H:%M:%SZ' YYYYMMDD_HHMMSS = '%Y%m%d_%H%M%S' MMDDYYYY_HHMMSS = '%m%d%Y_%H%M%S' class GameModel(MLBStatsAPIEndpointModel): date_formats = { 'updatedSince': YMDTHMS, 'timecode': YYYYMMDD_HHMMSS, 'startTimecode': MMDDYYYY_HHMMSS, 'endTimecode': MMDDYYYY_HHMMSS } @configure_api def liveGameV1(self, **kwargs): return self.get_api_file_object(**kwargs) @configure_api def liveGameDiffPatchV1(self, **kwargs): return self.get_api_file_object(**kwargs) @configure_api def liveTimestampv11(self, **kwargs): return self.get_api_file_object(**kwargs) @configure_api def currentGameStats(self, **kwargs): return self.get_api_file_object(**kwargs) @configure_api def getGameContextMetrics(self, **kwargs): return self.get_api_file_object(**kwargs) @configure_api def getWinProbability(self, **kwargs): return self.get_api_file_object(**kwargs) @configure_api def boxscore(self, **kwargs): return self.get_api_file_object(**kwargs) @configure_api def content(self, **kwargs): return self.get_api_file_object(**kwargs) @configure_api def colorFeed(self, **kwargs): return self.get_api_file_object(**kwargs) @configure_api def colorTimestamps(self, **kwargs): return self.get_api_file_object(**kwargs) @configure_api def linescore(self, **kwargs): return self.get_api_file_object(**kwargs) @configure_api def playByPlay(self, **kwargs): return self.get_api_file_object(**kwargs) @property def _methods(self) -> dict: return {m.__name__: m for m in ( self.liveGameV1, self.liveGameDiffPatchV1, self.liveTimestampv11, self.currentGameStats, self.getGameContextMetrics, self.getWinProbability, self.boxscore, self.content, self.colorFeed, self.colorTimestamps, self.linescore, self.playByPlay )} @property def now_timestamp(self): return datetime.datetime.now().strftime(YYYYMMDD_HHMMSS)
py
b4012c685e436a9facb9b1b0c915099848241775
# Copyright (c) 2013, Frappe Technologies Pvt. Ltd. and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe import _ def execute(filters=None): columns, data = [], [] columns = [ { "fieldname": "order_no", "label": _("Order No"), "fieldtype": "Link", "options": "Order Tracking", "width": 150 }, { "fieldname": "project", "label" : _("Project"), "fieldtype": "Link", "options": "Project" }, { "fieldname": "supplier", "label": _("Supplier"), "fieldtype": "Link", "options": "Supplier", }, { "fieldname": "mode_of_transport", "label": _("Mode of Transport"), "fieldtype": "Data", "width": 150 }, { "fieldname": "shipped_date", "label": _("Shipping Date"), "fieldtype": "Date", "width": 150 }, { "fieldname": "expected_arrival_date", "label": _("Expected Arrival Date"), "fieldtype": "Date", "width": 150 }, { "fieldname": "arrival_date", "label": _("Arrival Date"), "fieldtype": "Date", }, { "fieldname": "order_status", "label": _("Status"), "fieldtype": "Data", "width": 200 }, { "fieldname": "bl_number", "label": _("Bl No"), "fieldtype": "Data", "width": 150 }, { "fieldname": "container_no", "label": _("Container"), "fieldtype": "Data", "width": 150 }, { "fieldname": "container_size", "label": _("Container Size"), "fieldtype": "Data", }, { "fieldname": "no_of_packages", "label": _("No of Packages"), "fieldtype": "Data", }, { "fieldname": "clearing_completion_date", "label": _("Clearing Completion Date"), "fieldtype": "Date", }, { "fieldname": "delivered_date", "label": _("Delivered Date"), "fieldtype": "Date", }, { "fieldname": "offloading_date", "label": _("Off-Loading Date"), "fieldtype": "Date", }, ] if filters.from_date > filters.to_date: frappe.throw(_("From Date must be before To Date {}").format(filters.to_date)) where_filter = {"from_date": filters.from_date,"to_date": filters.to_date,} where = "" if filters.order: where += ' AND tot.name = %(order)s ' where_filter.update({"order": filters.order}) if filters.supplier: where += ' AND tot.supplier = %(supplier)s ' where_filter.update({"supplier": filters.supplier}) data = frappe.db.sql('''SELECT tot.name AS order_no, tot.supplier, tot.project, tot.shipped_date, tot.expected_arrival_date, tot.mode_of_transport, tot.bl_number, tot.arrival_date, tot.clearing_completion_date, tot.delivered_date, tot.offloading_date, /*tc.container_no, tc.size, tc.no_of_packages,*/ (SELECT CONCAT(op.date, " : ", op.current_location, ":", op.status) FROM `tabOrder Progress` AS op WHERE tot.name = op.parent ORDER BY op.date DESC LIMIT 0,1 ) AS order_status FROM (`tabOrder Tracking` tot) /*LEFT JOIN (`tabContainer` tc) ON (tot.name = tc.parent)*/ Where tot.expected_arrival_date BETWEEN %(from_date)s AND %(to_date)s '''+ where, where_filter, as_dict=1) for order in data: # # For container info # container_info = frappe.db.sql('''SELECT container_no, size,no_of_packages FROM (`tabContainer` tc) LEFT JOIN (`tabOrder Tracking` tot) ON (tot.name = tc.parent) WHERE tot.name = %(parent)s ''', {"parent": order.order_no,}, as_dict=1) order.container_no = '' order.container_size='' order.no_of_packages='' for co in container_info: order.container_no += str(co.container_no) + ',' order.container_size += str(co.size) + ',' order.no_of_packages += str(co.no_of_packages) + ',' return columns, data
py
b4012c6a842a6403178b64678bbab37934daa9d7
from functools import partial import numpy as np import pytest from pandas.core.dtypes.common import is_categorical_dtype from pandas.core.dtypes.dtypes import IntervalDtype from pandas import ( Categorical, CategoricalIndex, Float64Index, Index, Int64Index, Interval, IntervalIndex, date_range, notna, period_range, timedelta_range, ) import pandas._testing as tm from pandas.core.arrays import IntervalArray import pandas.core.common as com @pytest.fixture(params=[None, "foo"]) def name(request): return request.param class ConstructorTests: """ Common tests for all variations of IntervalIndex construction. Input data to be supplied in breaks format, then converted by the subclass method get_kwargs_from_breaks to the expected format. """ @pytest.mark.filterwarnings("ignore:Passing keywords other:FutureWarning") @pytest.mark.parametrize( "breaks", [ [3, 14, 15, 92, 653], np.arange(10, dtype="int64"), Int64Index(range(-10, 11)), Float64Index(np.arange(20, 30, 0.5)), date_range("20180101", periods=10), date_range("20180101", periods=10, tz="US/Eastern"), timedelta_range("1 day", periods=10), ], ) def test_constructor(self, constructor, breaks, closed, name): result_kwargs = self.get_kwargs_from_breaks(breaks, closed) result = constructor(closed=closed, name=name, **result_kwargs) assert result.closed == closed assert result.name == name assert result.dtype.subtype == getattr(breaks, "dtype", "int64") tm.assert_index_equal(result.left, Index(breaks[:-1])) tm.assert_index_equal(result.right, Index(breaks[1:])) @pytest.mark.parametrize( "breaks, subtype", [ (Int64Index([0, 1, 2, 3, 4]), "float64"), (Int64Index([0, 1, 2, 3, 4]), "datetime64[ns]"), (Int64Index([0, 1, 2, 3, 4]), "timedelta64[ns]"), (Float64Index([0, 1, 2, 3, 4]), "int64"), (date_range("2017-01-01", periods=5), "int64"), (timedelta_range("1 day", periods=5), "int64"), ], ) def test_constructor_dtype(self, constructor, breaks, subtype): # GH 19262: conversion via dtype parameter warn = None if subtype == "int64" and breaks.dtype.kind in ["M", "m"]: # astype(int64) deprecated warn = FutureWarning with tm.assert_produces_warning(warn): expected_kwargs = self.get_kwargs_from_breaks(breaks.astype(subtype)) expected = constructor(**expected_kwargs) result_kwargs = self.get_kwargs_from_breaks(breaks) iv_dtype = IntervalDtype(subtype, "right") for dtype in (iv_dtype, str(iv_dtype)): with tm.assert_produces_warning(warn): result = constructor(dtype=dtype, **result_kwargs) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "breaks", [ Int64Index([0, 1, 2, 3, 4]), Int64Index([0, 1, 2, 3, 4]), Int64Index([0, 1, 2, 3, 4]), Float64Index([0, 1, 2, 3, 4]), date_range("2017-01-01", periods=5), timedelta_range("1 day", periods=5), ], ) def test_constructor_pass_closed(self, constructor, breaks): # not passing closed to IntervalDtype, but to IntervalArray constructor warn = None if isinstance(constructor, partial) and constructor.func is Index: # passing kwargs to Index is deprecated warn = FutureWarning iv_dtype = IntervalDtype(breaks.dtype) result_kwargs = self.get_kwargs_from_breaks(breaks) for dtype in (iv_dtype, str(iv_dtype)): with tm.assert_produces_warning(warn): result = constructor(dtype=dtype, closed="left", **result_kwargs) assert result.dtype.closed == "left" @pytest.mark.filterwarnings("ignore:Passing keywords other:FutureWarning") @pytest.mark.parametrize("breaks", [[np.nan] * 2, [np.nan] * 4, [np.nan] * 50]) def test_constructor_nan(self, constructor, breaks, closed): # GH 18421 result_kwargs = self.get_kwargs_from_breaks(breaks) result = constructor(closed=closed, **result_kwargs) expected_subtype = np.float64 expected_values = np.array(breaks[:-1], dtype=object) assert result.closed == closed assert result.dtype.subtype == expected_subtype tm.assert_numpy_array_equal(np.array(result), expected_values) @pytest.mark.filterwarnings("ignore:Passing keywords other:FutureWarning") @pytest.mark.parametrize( "breaks", [ [], np.array([], dtype="int64"), np.array([], dtype="float64"), np.array([], dtype="datetime64[ns]"), np.array([], dtype="timedelta64[ns]"), ], ) def test_constructor_empty(self, constructor, breaks, closed): # GH 18421 result_kwargs = self.get_kwargs_from_breaks(breaks) result = constructor(closed=closed, **result_kwargs) expected_values = np.array([], dtype=object) expected_subtype = getattr(breaks, "dtype", np.int64) assert result.empty assert result.closed == closed assert result.dtype.subtype == expected_subtype tm.assert_numpy_array_equal(np.array(result), expected_values) @pytest.mark.parametrize( "breaks", [ tuple("0123456789"), list("abcdefghij"), np.array(list("abcdefghij"), dtype=object), np.array(list("abcdefghij"), dtype="<U1"), ], ) def test_constructor_string(self, constructor, breaks): # GH 19016 msg = ( "category, object, and string subtypes are not supported " "for IntervalIndex" ) with pytest.raises(TypeError, match=msg): constructor(**self.get_kwargs_from_breaks(breaks)) @pytest.mark.parametrize("cat_constructor", [Categorical, CategoricalIndex]) def test_constructor_categorical_valid(self, constructor, cat_constructor): # GH 21243/21253 if isinstance(constructor, partial) and constructor.func is Index: # Index is defined to create CategoricalIndex from categorical data pytest.skip() breaks = np.arange(10, dtype="int64") expected = IntervalIndex.from_breaks(breaks) cat_breaks = cat_constructor(breaks) result_kwargs = self.get_kwargs_from_breaks(cat_breaks) result = constructor(**result_kwargs) tm.assert_index_equal(result, expected) def test_generic_errors(self, constructor): # filler input data to be used when supplying invalid kwargs filler = self.get_kwargs_from_breaks(range(10)) # invalid closed msg = "closed must be one of 'right', 'left', 'both', 'neither'" with pytest.raises(ValueError, match=msg): constructor(closed="invalid", **filler) # unsupported dtype msg = "dtype must be an IntervalDtype, got int64" with pytest.raises(TypeError, match=msg): constructor(dtype="int64", **filler) # invalid dtype msg = "data type [\"']invalid[\"'] not understood" with pytest.raises(TypeError, match=msg): constructor(dtype="invalid", **filler) # no point in nesting periods in an IntervalIndex periods = period_range("2000-01-01", periods=10) periods_kwargs = self.get_kwargs_from_breaks(periods) msg = "Period dtypes are not supported, use a PeriodIndex instead" with pytest.raises(ValueError, match=msg): constructor(**periods_kwargs) # decreasing values decreasing_kwargs = self.get_kwargs_from_breaks(range(10, -1, -1)) msg = "left side of interval must be <= right side" with pytest.raises(ValueError, match=msg): constructor(**decreasing_kwargs) class TestFromArrays(ConstructorTests): """Tests specific to IntervalIndex.from_arrays""" @pytest.fixture def constructor(self): return IntervalIndex.from_arrays def get_kwargs_from_breaks(self, breaks, closed="right"): """ converts intervals in breaks format to a dictionary of kwargs to specific to the format expected by IntervalIndex.from_arrays """ return {"left": breaks[:-1], "right": breaks[1:]} def test_constructor_errors(self): # GH 19016: categorical data data = Categorical(list("01234abcde"), ordered=True) msg = ( "category, object, and string subtypes are not supported " "for IntervalIndex" ) with pytest.raises(TypeError, match=msg): IntervalIndex.from_arrays(data[:-1], data[1:]) # unequal length left = [0, 1, 2] right = [2, 3] msg = "left and right must have the same length" with pytest.raises(ValueError, match=msg): IntervalIndex.from_arrays(left, right) @pytest.mark.parametrize( "left_subtype, right_subtype", [(np.int64, np.float64), (np.float64, np.int64)] ) def test_mixed_float_int(self, left_subtype, right_subtype): """mixed int/float left/right results in float for both sides""" left = np.arange(9, dtype=left_subtype) right = np.arange(1, 10, dtype=right_subtype) result = IntervalIndex.from_arrays(left, right) expected_left = Float64Index(left) expected_right = Float64Index(right) expected_subtype = np.float64 tm.assert_index_equal(result.left, expected_left) tm.assert_index_equal(result.right, expected_right) assert result.dtype.subtype == expected_subtype class TestFromBreaks(ConstructorTests): """Tests specific to IntervalIndex.from_breaks""" @pytest.fixture def constructor(self): return IntervalIndex.from_breaks def get_kwargs_from_breaks(self, breaks, closed="right"): """ converts intervals in breaks format to a dictionary of kwargs to specific to the format expected by IntervalIndex.from_breaks """ return {"breaks": breaks} def test_constructor_errors(self): # GH 19016: categorical data data = Categorical(list("01234abcde"), ordered=True) msg = ( "category, object, and string subtypes are not supported " "for IntervalIndex" ) with pytest.raises(TypeError, match=msg): IntervalIndex.from_breaks(data) def test_length_one(self): """breaks of length one produce an empty IntervalIndex""" breaks = [0] result = IntervalIndex.from_breaks(breaks) expected = IntervalIndex.from_breaks([]) tm.assert_index_equal(result, expected) def test_left_right_dont_share_data(self): # GH#36310 breaks = np.arange(5) result = IntervalIndex.from_breaks(breaks)._data assert result._left.base is None or result._left.base is not result._right.base class TestFromTuples(ConstructorTests): """Tests specific to IntervalIndex.from_tuples""" @pytest.fixture def constructor(self): return IntervalIndex.from_tuples def get_kwargs_from_breaks(self, breaks, closed="right"): """ converts intervals in breaks format to a dictionary of kwargs to specific to the format expected by IntervalIndex.from_tuples """ if len(breaks) == 0: return {"data": breaks} tuples = list(zip(breaks[:-1], breaks[1:])) if isinstance(breaks, (list, tuple)): return {"data": tuples} elif is_categorical_dtype(breaks): return {"data": breaks._constructor(tuples)} return {"data": com.asarray_tuplesafe(tuples)} def test_constructor_errors(self): # non-tuple tuples = [(0, 1), 2, (3, 4)] msg = "IntervalIndex.from_tuples received an invalid item, 2" with pytest.raises(TypeError, match=msg.format(t=tuples)): IntervalIndex.from_tuples(tuples) # too few/many items tuples = [(0, 1), (2,), (3, 4)] msg = "IntervalIndex.from_tuples requires tuples of length 2, got {t}" with pytest.raises(ValueError, match=msg.format(t=tuples)): IntervalIndex.from_tuples(tuples) tuples = [(0, 1), (2, 3, 4), (5, 6)] with pytest.raises(ValueError, match=msg.format(t=tuples)): IntervalIndex.from_tuples(tuples) def test_na_tuples(self): # tuple (NA, NA) evaluates the same as NA as an element na_tuple = [(0, 1), (np.nan, np.nan), (2, 3)] idx_na_tuple = IntervalIndex.from_tuples(na_tuple) idx_na_element = IntervalIndex.from_tuples([(0, 1), np.nan, (2, 3)]) tm.assert_index_equal(idx_na_tuple, idx_na_element) class TestClassConstructors(ConstructorTests): """Tests specific to the IntervalIndex/Index constructors""" @pytest.fixture( params=[IntervalIndex, partial(Index, dtype="interval")], ids=["IntervalIndex", "Index"], ) def constructor(self, request): return request.param def get_kwargs_from_breaks(self, breaks, closed="right"): """ converts intervals in breaks format to a dictionary of kwargs to specific to the format expected by the IntervalIndex/Index constructors """ if len(breaks) == 0: return {"data": breaks} ivs = [ Interval(left, right, closed) if notna(left) else left for left, right in zip(breaks[:-1], breaks[1:]) ] if isinstance(breaks, list): return {"data": ivs} elif is_categorical_dtype(breaks): return {"data": breaks._constructor(ivs)} return {"data": np.array(ivs, dtype=object)} def test_generic_errors(self, constructor): """ override the base class implementation since errors are handled differently; checks unnecessary since caught at the Interval level """ pass def test_constructor_string(self): # GH23013 # When forming the interval from breaks, # the interval of strings is already forbidden. pass def test_constructor_errors(self, constructor): # mismatched closed within intervals with no constructor override ivs = [Interval(0, 1, closed="right"), Interval(2, 3, closed="left")] msg = "intervals must all be closed on the same side" with pytest.raises(ValueError, match=msg): constructor(ivs) # scalar msg = ( r"IntervalIndex\(...\) must be called with a collection of " "some kind, 5 was passed" ) with pytest.raises(TypeError, match=msg): constructor(5) # not an interval; dtype depends on 32bit/windows builds msg = "type <class 'numpy.int(32|64)'> with value 0 is not an interval" with pytest.raises(TypeError, match=msg): constructor([0, 1]) @pytest.mark.filterwarnings("ignore:Passing keywords other:FutureWarning") @pytest.mark.parametrize( "data, closed", [ ([], "both"), ([np.nan, np.nan], "neither"), ( [Interval(0, 3, closed="neither"), Interval(2, 5, closed="neither")], "left", ), ( [Interval(0, 3, closed="left"), Interval(2, 5, closed="right")], "neither", ), (IntervalIndex.from_breaks(range(5), closed="both"), "right"), ], ) def test_override_inferred_closed(self, constructor, data, closed): # GH 19370 if isinstance(data, IntervalIndex): tuples = data.to_tuples() else: tuples = [(iv.left, iv.right) if notna(iv) else iv for iv in data] expected = IntervalIndex.from_tuples(tuples, closed=closed) result = constructor(data, closed=closed) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "values_constructor", [list, np.array, IntervalIndex, IntervalArray] ) def test_index_object_dtype(self, values_constructor): # Index(intervals, dtype=object) is an Index (not an IntervalIndex) intervals = [Interval(0, 1), Interval(1, 2), Interval(2, 3)] values = values_constructor(intervals) result = Index(values, dtype=object) assert type(result) is Index tm.assert_numpy_array_equal(result.values, np.array(values)) def test_index_mixed_closed(self): # GH27172 intervals = [ Interval(0, 1, closed="left"), Interval(1, 2, closed="right"), Interval(2, 3, closed="neither"), Interval(3, 4, closed="both"), ] result = Index(intervals) expected = Index(intervals, dtype=object) tm.assert_index_equal(result, expected) def test_dtype_closed_mismatch(): # GH#38394 closed specified in both dtype and IntervalIndex constructor dtype = IntervalDtype(np.int64, "left") msg = "closed keyword does not match dtype.closed" with pytest.raises(ValueError, match=msg): IntervalIndex([], dtype=dtype, closed="neither") with pytest.raises(ValueError, match=msg): IntervalArray([], dtype=dtype, closed="neither")
py
b4012cd0f1d3867c4172b548eed51ea3414d0cc5
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class NetworkInterfaceIPConfigurationsOperations: """NetworkInterfaceIPConfigurationsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2018_04_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, resource_group_name: str, network_interface_name: str, **kwargs ) -> AsyncIterable["models.NetworkInterfaceIPConfigurationListResult"]: """Get all ip configurations in a network interface. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_interface_name: The name of the network interface. :type network_interface_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either NetworkInterfaceIPConfigurationListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2018_04_01.models.NetworkInterfaceIPConfigurationListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.NetworkInterfaceIPConfigurationListResult"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2018-04-01" def prepare_request(next_link=None): if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkInterfaceName': self._serialize.url("network_interface_name", network_interface_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') else: url = next_link query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('NetworkInterfaceIPConfigurationListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkInterfaces/{networkInterfaceName}/ipConfigurations'} # type: ignore async def get( self, resource_group_name: str, network_interface_name: str, ip_configuration_name: str, **kwargs ) -> "models.NetworkInterfaceIPConfiguration": """Gets the specified network interface ip configuration. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_interface_name: The name of the network interface. :type network_interface_name: str :param ip_configuration_name: The name of the ip configuration name. :type ip_configuration_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: NetworkInterfaceIPConfiguration, or the result of cls(response) :rtype: ~azure.mgmt.network.v2018_04_01.models.NetworkInterfaceIPConfiguration :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.NetworkInterfaceIPConfiguration"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2018-04-01" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkInterfaceName': self._serialize.url("network_interface_name", network_interface_name, 'str'), 'ipConfigurationName': self._serialize.url("ip_configuration_name", ip_configuration_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('NetworkInterfaceIPConfiguration', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkInterfaces/{networkInterfaceName}/ipConfigurations/{ipConfigurationName}'} # type: ignore
py
b4012d078fc04c25d32a2b498740385a6e44ee98
import tensorflow as tf import math import numpy as np import sys sys.path.append('../../../') import tensornet NUM_CLASSES = 10 opts = {} opts['use_dropout'] = True opts['initial_learning_rate'] = 0.1 opts['num_epochs_per_decay'] = 30.0 opts['learning_rate_decay_factor'] = 0.1 def aug_train(image, aux): aug_image = tf.pad(image, [[4, 4], [4, 4], [0, 0]]) aug_image = tf.random_crop(aug_image, [32, 32, 3]) aug_image = tf.image.random_flip_left_right(aug_image) aug_image = tf.image.random_contrast(aug_image, 0.75, 1.25) aug_image = (aug_image - aux['mean']) / aux['std'] return aug_image def aug_eval(image, aux): aug_image = (image - aux['mean']) / aux['std'] return aug_image def inference(images, train_phase, reuse=None, cpu_variables=False): """Build the model up to where it may be used for inference. Args: images: Images placeholder. train_phase: Train phase placeholder Returns: logits: Output tensor with the computed logits. """ tn_init = lambda dev: lambda shape: tf.truncated_normal(shape, stddev=dev) tu_init = lambda bound: lambda shape: tf.random_uniform(shape, minval = -bound, maxval = bound) dropout_rate = lambda p: (opts['use_dropout'] * (p - 1.0)) * tf.to_float(train_phase) + 1.0 layers = [] layers.append(images) layers.append(tensornet.layers.conv(layers[-1], 64, [3, 3], cpu_variables=cpu_variables, biases_initializer=tf.zeros_initializer(), scope='conv1.1')) layers.append(tensornet.layers.batch_normalization(layers[-1], train_phase, cpu_variables=cpu_variables, scope='bn1.1')) layers.append(tf.nn.relu(layers[-1], name='relu1.1')) layers.append(tensornet.layers.conv(layers[-1], 64, [3, 3], cpu_variables=cpu_variables, biases_initializer=tf.zeros_initializer(), scope='conv1.2')) layers.append(tensornet.layers.batch_normalization(layers[-1], train_phase, cpu_variables=cpu_variables, scope='bn1.2')) layers.append(tf.nn.relu(layers[-1], name='relu1.2')) layers.append(tf.nn.max_pool(layers[-1], [1, 3, 3, 1], [1, 2, 2, 1], 'SAME', name='max_pool1')) layers.append(tensornet.layers.conv(layers[-1], 128, [3, 3], cpu_variables=cpu_variables, biases_initializer=tf.zeros_initializer(), scope='conv2.1')) layers.append(tensornet.layers.batch_normalization(layers[-1], train_phase, cpu_variables=cpu_variables, scope='bn2.1')) layers.append(tf.nn.relu(layers[-1], name='relu2.1')) layers.append(tensornet.layers.conv(layers[-1], 128, [3, 3], cpu_variables=cpu_variables, biases_initializer=tf.zeros_initializer(), scope='conv2.2')) layers.append(tensornet.layers.batch_normalization(layers[-1], train_phase, cpu_variables=cpu_variables, scope='bn2.2')) layers.append(tf.nn.relu(layers[-1], name='relu2.2')) layers.append(tf.nn.max_pool(layers[-1], [1, 3, 3, 1], [1, 2, 2, 1], 'SAME', name='max_pool2')) layers.append(tensornet.layers.conv(layers[-1], 128, [3, 3], padding='VALID', cpu_variables=cpu_variables, biases_initializer=tf.zeros_initializer(), scope='conv3.1')) layers.append(tensornet.layers.batch_normalization(layers[-1], train_phase, cpu_variables=cpu_variables, scope='bn3.1')) layers.append(tf.nn.relu(layers[-1], name='relu3.1')) layers.append(tensornet.layers.conv(layers[-1], 128, [3, 3], padding='VALID', cpu_variables=cpu_variables, biases_initializer=tf.zeros_initializer(), scope='conv3.2')) layers.append(tensornet.layers.batch_normalization(layers[-1], train_phase, cpu_variables=cpu_variables, scope='bn3.2')) layers.append(tf.nn.relu(layers[-1], name='relu3.2')) layers.append(tf.nn.avg_pool(layers[-1], [1,4,4,1], [1,4,4,1], 'SAME', name='avg_pool_full')) sz = np.prod(layers[-1].get_shape().as_list()[1:]) layers.append(tensornet.layers.linear(tf.reshape(layers[-1], [-1, sz]), NUM_CLASSES, cpu_variables=cpu_variables, biases_initializer=None, scope='linear4.1')) return layers[-1] def losses(logits, labels): """Calculates losses from the logits and the labels. Args: logits: input tensor, float - [batch_size, NUM_CLASSES]. labels: Labels tensor, int32 - [batch_size]. Returns: losses: list of loss tensors of type float. """ xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels, name='xentropy') loss = tf.reduce_mean(xentropy, name='loss') return [loss] def evaluation(logits, labels): """Evaluate the quality of the logits at predicting the label. Args: logits: Logits tensor, float - [batch_size, NUM_CLASSES]. labels: Labels tensor, int32 - [batch_size], with values in the range [0, NUM_CLASSES). Returns: A scalar int32 tensor with the number of examples (out of batch_size) that were predicted correctly. """ # For a classifier model, we can use the in_top_k Op. # It returns a bool tensor with shape [batch_size] that is true for # the examples where the label's is was in the top k (here k=1) # of all logits for that example. correct_flags = tf.nn.in_top_k(logits, labels, 1) # Return the number of true entries. return tf.cast(correct_flags, tf.int32)
py
b4012d334130d88bb0ae18961d87cb03641af1d2
""" ID: kumar.g1 LANG: PYTHON2 TASK: Longest Common Subsequence """ def longestCommonSubsequence(a, b): len_a = len(a) len_b = len(b) if not len_a or not len_b: return 0 L = [[0 for _ in range(len_b+1)] for _ in range(len_a+1)] for i in range(1, len_a+1): for j in range(1, len_b+1): if a[i-1] == b[j-1]: L[i][j] = 1 + L[i-1][j-1] else: L[i][j] = max(L[i-1][j], L[i][j-1]) max_len = L[len_a][len_b] i = len_a j = len_b seq = [] while max_len > 0: if L[i][j] == L[i-1][j-1]+1 and a[i-1] == b[j-1]: seq.append(a[i-1]) max_len -= 1 i = i-1 j = j-1 elif i > 0 and L[i-1][j] == L[i][j]: i = i-1 else: j = j-1 return list(reversed(seq)) # assert longestCommonSubsequence([1, 2, 3, 4, 1], [3, 4, 1, 2, 1, 3]) == [1, 2, 3] print longestCommonSubsequence([1, 2, 3, 4, 1], [3, 4, 1, 2, 1, 3])
py
b4012de84a9068e346c9c53746bbf91bda08dace
""" This module contains some tests for the `PlatformReportView` which require a different set of fixtures which clash with those for other tests of this view. """ import pytest from django.urls import reverse from django.utils.timezone import now from api.models import OrganizationAPIKey from sushi.models import CounterReportsToCredentials from sushi.tests.conftest import counter_report_type, credentials, platforms, organizations # noqa from test_fixtures.entities.scheduler import FetchIntentionFactory @pytest.mark.django_db class TestPlatformReportApiView: def test_platform_report_view_no_data_with_sushi_no_attempts( self, client, counter_report_type, organizations, credentials ): """ Report has no data for the requested period but there is SUSHI active for this combination of platform, organization and report """ api_key, key_val = OrganizationAPIKey.objects.create_key( organization=credentials.organization, name='test' ) credentials.counter_reports.add(counter_report_type) resp = client.get( reverse( 'api_platform_report_data', kwargs={ 'platform_id': credentials.platform.pk, 'report_type': counter_report_type.report_type.short_name, }, ), {'month': '2020-01', 'dims': ''}, HTTP_AUTHORIZATION=f'Api-Key {key_val}', ) assert resp.status_code == 200 data = resp.json() assert data['complete_data'] is False assert data['status'] == 'Data not yet harvested' def test_platform_report_view_no_data_with_inactive_sushi( self, client, counter_report_type, organizations, credentials ): """ Report has no data for the requested period and there is SUSHI which is inactive for this combination of platform, organization and report """ api_key, key_val = OrganizationAPIKey.objects.create_key( organization=credentials.organization, name='test' ) credentials.counter_reports.add(counter_report_type) credentials.enabled = False credentials.save() resp = client.get( reverse( 'api_platform_report_data', kwargs={ 'platform_id': credentials.platform.pk, 'report_type': counter_report_type.report_type.short_name, }, ), {'month': '2020-01', 'dims': ''}, HTTP_AUTHORIZATION=f'Api-Key {key_val}', ) assert resp.status_code == 200 data = resp.json() assert data['complete_data'] is False assert data['status'] == 'SUSHI credentials are not automatically harvested' def test_platform_report_view_no_data_with_broken_sushi( self, client, counter_report_type, organizations, credentials ): """ Report has no data for the requested period and there is SUSHI which is broken for this combination of platform, organization and report """ api_key, key_val = OrganizationAPIKey.objects.create_key( organization=credentials.organization, name='test' ) credentials.counter_reports.add(counter_report_type) credentials.broken = True credentials.save() resp = client.get( reverse( 'api_platform_report_data', kwargs={ 'platform_id': credentials.platform.pk, 'report_type': counter_report_type.report_type.short_name, }, ), {'month': '2020-01', 'dims': ''}, HTTP_AUTHORIZATION=f'Api-Key {key_val}', ) assert resp.status_code == 200 data = resp.json() assert data['complete_data'] is False assert data['status'] == 'SUSHI credentials are incorrect' def test_platform_report_view_no_data_with_sushi_with_queued_attempt( self, client, counter_report_type, organizations, credentials ): """ Report has no data for the requested period but there is SUSHI active for this combination of platform, organization and report. There is a fetch attempt which is still running. """ api_key, key_val = OrganizationAPIKey.objects.create_key( organization=credentials.organization, name='test' ) credentials.counter_reports.add(counter_report_type) fi = FetchIntentionFactory( credentials=credentials, counter_report=counter_report_type, start_date='2020-01-01', end_date='2020-01-31', when_processed=now(), ) FetchIntentionFactory( credentials=credentials, counter_report=counter_report_type, start_date='2020-01-01', end_date='2020-01-31', queue=fi.queue, attempt=None, ) resp = client.get( reverse( 'api_platform_report_data', kwargs={ 'platform_id': credentials.platform.pk, 'report_type': counter_report_type.report_type.short_name, }, ), {'month': '2020-01', 'dims': ''}, HTTP_AUTHORIZATION=f'Api-Key {key_val}', ) assert resp.status_code == 200 data = resp.json() assert data['complete_data'] is False assert data['status'] == 'Harvesting ongoing' def test_platform_report_view_no_data_with_sushi_with_3030_attempt( self, client, counter_report_type, organizations, credentials ): """ Report has no data for the requested period but there is SUSHI active for this combination of platform, organization and report. The last attempt ended with 3030 which means valid empty data result. """ api_key, key_val = OrganizationAPIKey.objects.create_key( organization=credentials.organization, name='test' ) credentials.counter_reports.add(counter_report_type) FetchIntentionFactory( credentials=credentials, counter_report=counter_report_type, start_date='2020-01-01', end_date='2020-01-31', attempt__error_code='3030', ) resp = client.get( reverse( 'api_platform_report_data', kwargs={ 'platform_id': credentials.platform.pk, 'report_type': counter_report_type.report_type.short_name, }, ), {'month': '2020-01', 'dims': ''}, HTTP_AUTHORIZATION=f'Api-Key {key_val}', ) assert resp.status_code == 200 data = resp.json() assert data['complete_data'] is True assert data['status'] == 'Empty data' def test_platform_report_view_no_data_with_sushi_with_unsuccessfull_attempt( self, client, counter_report_type, organizations, credentials ): """ Report has no data for the requested period but there is SUSHI active for this combination of platform, organization and report. The last attempt ended without any indication of empty data, so the harvesing was not successfull. """ api_key, key_val = OrganizationAPIKey.objects.create_key( organization=credentials.organization, name='test' ) credentials.counter_reports.add(counter_report_type) FetchIntentionFactory( credentials=credentials, counter_report=counter_report_type, start_date='2020-01-01', end_date='2020-01-31', ) resp = client.get( reverse( 'api_platform_report_data', kwargs={ 'platform_id': credentials.platform.pk, 'report_type': counter_report_type.report_type.short_name, }, ), {'month': '2020-01', 'dims': ''}, HTTP_AUTHORIZATION=f'Api-Key {key_val}', ) assert resp.status_code == 200 data = resp.json() assert data['complete_data'] is False assert data['status'] == 'Harvesting error' def test_platform_report_view_no_data_with_sushi_with_broken_report( self, client, counter_report_type, organizations, credentials ): """ Report has no data for the requested period but there is SUSHI active for this combination of platform, organization and report, but the report is marked as broken for these credentials. """ api_key, key_val = OrganizationAPIKey.objects.create_key( organization=credentials.organization, name='test' ) CounterReportsToCredentials.objects.create( credentials=credentials, counter_report=counter_report_type, broken=True ) resp = client.get( reverse( 'api_platform_report_data', kwargs={ 'platform_id': credentials.platform.pk, 'report_type': counter_report_type.report_type.short_name, }, ), {'month': '2020-01', 'dims': ''}, HTTP_AUTHORIZATION=f'Api-Key {key_val}', ) assert resp.status_code == 200 data = resp.json() assert data['complete_data'] is False assert data['status'] == 'Report marked as broken for existing credentials'
py
b4012df3d012ebaf2be9f676eafca5a4bdee4f07
# coding: utf-8 """ Provides datastore model implementations as well as validator factories for it """ from .base import Base, BaseValidator from .config_auth import ConfigAuth from .config import Config from .user import User, UserValidator from .route import Route, RouteRefStructure, RouteDrawingStructure, RouteValidator from .waypoint import WayPoint, WayPointValidator from .tag import TagValidator, TagStructure, Tag, TagRelation, Taggable from .icon import Iconize, Icon, IconValidator from .collection import Collection, CollectionUser, AddCollection from .collection import CollectionValidator
py
b4012e18bf9385616fe59f195cdf2e0ef16d4cc0
# SPDX-License-Identifier: Apache-2.0 # # The OpenSearch Contributors require contributions made to # this file be licensed under the Apache-2.0 license or a # compatible open source license. import os import unittest import yaml from manifests.input_manifest import InputManifest class TestInputManifest(unittest.TestCase): def setUp(self): self.maxDiff = None self.manifests_path = os.path.realpath(os.path.join(os.path.dirname(__file__), "..", "..", "manifests")) def test_1_0(self): path = os.path.join(self.manifests_path, "1.0.0", "opensearch-1.0.0.yml") manifest = InputManifest.from_path(path) self.assertEqual(manifest.version, "1.0") self.assertEqual(manifest.build.name, "OpenSearch") self.assertEqual(manifest.build.version, "1.0.0") self.assertEqual(len(list(manifest.components.select(focus="common-utils"))), 1) opensearch_component = manifest.components["OpenSearch"] self.assertEqual(opensearch_component.name, "OpenSearch") self.assertEqual( opensearch_component.repository, "https://github.com/opensearch-project/OpenSearch.git", ) self.assertEqual(opensearch_component.ref, "1.0") for component in manifest.components.values(): self.assertIsInstance(component.ref, str) def test_1_1(self): path = os.path.join(self.manifests_path, "1.1.0", "opensearch-1.1.0.yml") manifest = InputManifest.from_path(path) self.assertEqual(manifest.version, "1.0") self.assertEqual(manifest.build.name, "OpenSearch") self.assertEqual(manifest.build.version, "1.1.0") self.assertEqual(len(list(manifest.components.select(focus="common-utils"))), 1) # opensearch component opensearch_component = manifest.components["OpenSearch"] self.assertEqual(opensearch_component.name, "OpenSearch") self.assertEqual( opensearch_component.repository, "https://github.com/opensearch-project/OpenSearch.git", ) self.assertEqual(opensearch_component.ref, "1.1.0") # components for component in manifest.components.values(): self.assertIsInstance(component.ref, str) # alerting component checks alerting_component = manifest.components["alerting"] self.assertIsNotNone(alerting_component) self.assertEqual(len(alerting_component.checks), 2) for check in alerting_component.checks: self.assertIsInstance(check, InputManifest.Check) self.assertIsNone(alerting_component.checks[0].args) self.assertEqual(alerting_component.checks[1].args, "alerting") def test_1_2(self): path = os.path.join(self.manifests_path, "1.2.0/opensearch-1.2.0.yml") manifest = InputManifest.from_path(path) self.assertEqual(manifest.version, "1.0") self.assertEqual(manifest.build.name, "OpenSearch") self.assertEqual(manifest.build.version, "1.2.0") self.assertEqual(manifest.ci.image.name, "opensearchstaging/ci-runner:centos7-x64-arm64-jdkmulti-node10.24.1-cypress6.9.1-20211028") self.assertEqual(manifest.ci.image.args, "-e JAVA_HOME=/usr/lib/jvm/adoptopenjdk-14-hotspot") self.assertNotEqual(len(manifest.components), 0) self.assertEqual(len(list(manifest.components.select(focus="common-utils"))), 1) # opensearch component opensearch_component = manifest.components["OpenSearch"] self.assertEqual(opensearch_component.name, "OpenSearch") self.assertEqual( opensearch_component.repository, "https://github.com/opensearch-project/OpenSearch.git", ) self.assertEqual(opensearch_component.ref, "1.2") # components for component in manifest.components.values(): self.assertIsInstance(component.ref, str) # alerting component checks alerting_component = manifest.components["alerting"] self.assertIsNotNone(alerting_component) self.assertEqual(len(alerting_component.checks), 2) for check in alerting_component.checks: self.assertIsInstance(check, InputManifest.Check) self.assertIsNone(alerting_component.checks[0].args) self.assertEqual(alerting_component.checks[1].args, "alerting") def test_to_dict(self): path = os.path.join(self.manifests_path, "1.1.0", "opensearch-1.1.0.yml") manifest = InputManifest.from_path(path) data = manifest.to_dict() with open(path) as f: self.assertEqual(yaml.safe_load(f), data) def test_invalid_ref(self): data_path = os.path.join(os.path.dirname(__file__), "data") manifest_path = os.path.join(data_path, "invalid-ref.yml") with self.assertRaises(Exception) as context: InputManifest.from_path(manifest_path) self.assertTrue(str(context.exception).startswith("Invalid manifest schema: {'components': ")) def test_select(self): path = os.path.join(self.manifests_path, "1.1.0", "opensearch-1.1.0.yml") manifest = InputManifest.from_path(path) self.assertEqual(len(list(manifest.components.select(focus="common-utils"))), 1) self.assertNotEqual(len(list(manifest.components.select(platform="windows"))), 0) self.assertEqual(len(list(manifest.components.select(focus="k-NN", platform="linux"))), 1) def test_select_none(self): path = os.path.join(self.manifests_path, "1.1.0", "opensearch-1.1.0.yml") manifest = InputManifest.from_path(path) with self.assertRaises(ValueError) as ctx: self.assertEqual(len(list(manifest.components.select(focus="k-NN", platform="windows"))), 0) self.assertEqual(str(ctx.exception), "No components matched focus=k-NN, platform=windows.") def test_component___matches__(self): self.assertTrue(InputManifest.Component({"name": "x", "repository": "", "ref": ""}).__matches__()) def test_component___matches_platform__(self): data = {"name": "x", "repository": "", "ref": ""} self.assertTrue(InputManifest.Component(data).__matches__(platform=None)) self.assertTrue(InputManifest.Component(data).__matches__(platform="x")) self.assertTrue(InputManifest.Component({**data, "platforms": ["linux"]}).__matches__(platform="linux")) self.assertTrue(InputManifest.Component({**data, "platforms": ["linux", "windows"]}).__matches__(platform="linux")) self.assertFalse(InputManifest.Component({**data, "platforms": ["linux"]}).__matches__(platform="x")) def test_component___matches_focus__(self): component = InputManifest.Component({"name": "x", "repository": "", "ref": ""}) self.assertTrue(component.__matches__(focus=None)) self.assertTrue(component.__matches__(focus="x")) self.assertFalse(component.__matches__(focus="y"))
py
b4012fd8701c82f864a1f56d7632479ad5215b97
# Generated by Django 3.0.7 on 2021-05-01 05:55 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('App', '0011_shopsdelhi'), ] operations = [ migrations.CreateModel( name='ShopsChennai', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('img', models.ImageField(upload_to='Images/Chennai/Events')), ('location', models.TextField()), ('hreftag', models.TextField()), ], ), migrations.CreateModel( name='ShopsKolkata', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('img', models.ImageField(upload_to='Images/Kolkata/Events')), ('location', models.TextField()), ('hreftag', models.TextField()), ], ), migrations.CreateModel( name='ShopsMumbai', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('img', models.ImageField(upload_to='Images/Mumbai/Events')), ('location', models.TextField()), ('hreftag', models.TextField()), ], ), ]
py
b40130991d295cd4df01b08ec60780dd9393bb63
# Copyright (c) 2021, Intel Corporation # # SPDX-License-Identifier: BSD-3-Clause from .message_passing_protocol import MPPSocket
py
b401313adbb9b3b79b3ca1a9ed961168921cfa2c
"""Credential exchange admin routes.""" from aiohttp import web from aiohttp_apispec import docs, request_schema, response_schema from marshmallow import fields, Schema from ....connections.models.connection_record import ConnectionRecord from ....holder.base import BaseHolder from ....messaging.credential_definitions.util import CRED_DEF_TAGS from ....messaging.valid import ( INDY_CRED_DEF_ID, INDY_DID, INDY_SCHEMA_ID, INDY_VERSION, UUIDFour, ) from ....storage.error import StorageNotFoundError from ...problem_report.message import ProblemReport from .manager import CredentialManager from .messages.credential_proposal import CredentialProposal from .messages.inner.credential_preview import ( CredentialPreview, CredentialPreviewSchema, ) from .models.credential_exchange import ( V10CredentialExchange, V10CredentialExchangeSchema, ) class V10AttributeMimeTypesResultSchema(Schema): """Result schema for credential attribute MIME types by credential definition.""" class V10CredentialExchangeListResultSchema(Schema): """Result schema for Aries#0036 v1.0 credential exchange query.""" results = fields.List( fields.Nested(V10CredentialExchangeSchema), description="Aries#0036 v1.0 credential exchange records", ) class V10CredentialProposalRequestSchema(Schema): """Request schema for sending credential proposal admin message.""" connection_id = fields.UUID( description="Connection identifier", required=True, example=UUIDFour.EXAMPLE, # typically but not necessarily a UUID4 ) cred_def_id = fields.Str( description="Credential definition identifier", required=False, **INDY_CRED_DEF_ID, ) schema_id = fields.Str( description="Schema identifier", required=False, **INDY_SCHEMA_ID, ) schema_issuer_did = fields.Str( description="Schema issuer DID", required=False, **INDY_DID, ) schema_name = fields.Str( description="Schema name", required=False, example="preferences", ) schema_version = fields.Str( description="Schema version", required=False, **INDY_VERSION, ) issuer_did = fields.Str( description="Credential issuer DID", required=False, **INDY_DID, ) comment = fields.Str(description="Human-readable comment", required=False) credential_proposal = fields.Nested(CredentialPreviewSchema, required=True) class V10CredentialOfferRequestSchema(Schema): """Request schema for sending credential offer admin message.""" connection_id = fields.UUID( description="Connection identifier", required=True, example=UUIDFour.EXAMPLE, # typically but not necessarily a UUID4 ) cred_def_id = fields.Str( description="Credential definition identifier", required=True, **INDY_CRED_DEF_ID, ) auto_issue = fields.Bool( description=( "Whether to respond automatically to credential requests, creating " "and issuing requested credentials" ), required=False, default=False, ) comment = fields.Str(description="Human-readable comment", required=False) credential_preview = fields.Nested(CredentialPreviewSchema, required=True) class V10CredentialIssueRequestSchema(Schema): """Request schema for sending credential issue admin message.""" comment = fields.Str(description="Human-readable comment", required=False) credential_preview = fields.Nested(CredentialPreviewSchema, required=True) class V10CredentialProblemReportRequestSchema(Schema): """Request schema for sending problem report.""" explain_ltxt = fields.Str(required=True) @docs(tags=["issue-credential"], summary="Get attribute MIME types from wallet") @response_schema(V10AttributeMimeTypesResultSchema(), 200) async def attribute_mime_types_get(request: web.BaseRequest): """ Request handler for getting credential attribute MIME types. Args: request: aiohttp request object Returns: The MIME types response """ context = request.app["request_context"] credential_id = request.match_info["credential_id"] holder: BaseHolder = await context.inject(BaseHolder) return web.json_response(await holder.get_mime_type(credential_id)) @docs(tags=["issue-credential"], summary="Fetch all credential exchange records") @response_schema(V10CredentialExchangeListResultSchema(), 200) async def credential_exchange_list(request: web.BaseRequest): """ Request handler for searching connection records. Args: request: aiohttp request object Returns: The connection list response """ context = request.app["request_context"] tag_filter = {} if "thread_id" in request.query and request.query["thread_id"] != "": tag_filter["thread_id"] = request.query["thread_id"] post_filter = {} for param_name in ("connection_id", "role", "state"): if param_name in request.query and request.query[param_name] != "": post_filter[param_name] = request.query[param_name] records = await V10CredentialExchange.query(context, tag_filter, post_filter) return web.json_response({"results": [record.serialize() for record in records]}) @docs(tags=["issue-credential"], summary="Fetch a single credential exchange record") @response_schema(V10CredentialExchangeSchema(), 200) async def credential_exchange_retrieve(request: web.BaseRequest): """ Request handler for fetching single connection record. Args: request: aiohttp request object Returns: The credential exchange record """ context = request.app["request_context"] credential_exchange_id = request.match_info["cred_ex_id"] try: record = await V10CredentialExchange.retrieve_by_id( context, credential_exchange_id ) except StorageNotFoundError: raise web.HTTPNotFound() return web.json_response(record.serialize()) @docs(tags=["issue-credential"], summary="Send credential, automating entire flow") @request_schema(V10CredentialProposalRequestSchema()) @response_schema(V10CredentialExchangeSchema(), 200) async def credential_exchange_send(request: web.BaseRequest): """ Request handler for sending credential from issuer to holder from attr values. If both issuer and holder are configured for automatic responses, the operation ultimately results in credential issue; otherwise, the result waits on the first response not automated; the credential exchange record retains state regardless. Args: request: aiohttp request object Returns: The credential exchange record """ context = request.app["request_context"] outbound_handler = request.app["outbound_message_router"] body = await request.json() comment = body.get("comment") connection_id = body.get("connection_id") preview_spec = body.get("credential_proposal") if not preview_spec: raise web.HTTPBadRequest(reason="credential_proposal must be provided.") try: connection_record = await ConnectionRecord.retrieve_by_id( context, connection_id ) except StorageNotFoundError: raise web.HTTPBadRequest() if not connection_record.is_ready: raise web.HTTPForbidden() credential_proposal = CredentialProposal( comment=comment, credential_proposal=CredentialPreview.deserialize(preview_spec), **{t: body.get(t) for t in CRED_DEF_TAGS if body.get(t)}, ) credential_manager = CredentialManager(context) ( credential_exchange_record, credential_offer_message, ) = await credential_manager.prepare_send( connection_id, credential_proposal=credential_proposal ) await outbound_handler( credential_offer_message, connection_id=credential_exchange_record.connection_id ) return web.json_response(credential_exchange_record.serialize()) @docs(tags=["issue-credential"], summary="Send issuer a credential proposal") @request_schema(V10CredentialProposalRequestSchema()) @response_schema(V10CredentialExchangeSchema(), 200) async def credential_exchange_send_proposal(request: web.BaseRequest): """ Request handler for sending credential proposal. Args: request: aiohttp request object Returns: The credential exchange record """ context = request.app["request_context"] outbound_handler = request.app["outbound_message_router"] body = await request.json() connection_id = body.get("connection_id") comment = body.get("comment") preview_spec = body.get("credential_proposal") if not preview_spec: raise web.HTTPBadRequest(reason="credential_proposal must be provided.") try: connection_record = await ConnectionRecord.retrieve_by_id( context, connection_id ) except StorageNotFoundError: raise web.HTTPBadRequest() if not connection_record.is_ready: raise web.HTTPForbidden() credential_preview = CredentialPreview.deserialize(preview_spec) credential_manager = CredentialManager(context) credential_exchange_record = await credential_manager.create_proposal( connection_id, comment=comment, credential_preview=credential_preview, **{t: body.get(t) for t in CRED_DEF_TAGS if body.get(t)}, ) await outbound_handler( CredentialProposal.deserialize( credential_exchange_record.credential_proposal_dict ), connection_id=connection_id, ) return web.json_response(credential_exchange_record.serialize()) @docs( tags=["issue-credential"], summary="Send holder a credential offer, free from reference to any proposal", ) @request_schema(V10CredentialOfferRequestSchema()) @response_schema(V10CredentialExchangeSchema(), 200) async def credential_exchange_send_free_offer(request: web.BaseRequest): """ Request handler for sending free credential offer. An issuer initiates a such a credential offer, which is free any holder-initiated corresponding proposal. Args: request: aiohttp request object Returns: The credential exchange record """ context = request.app["request_context"] outbound_handler = request.app["outbound_message_router"] body = await request.json() connection_id = body.get("connection_id") cred_def_id = body.get("cred_def_id") auto_issue = body.get( "auto_issue", context.settings.get("debug.auto_respond_credential_request") ) comment = body.get("comment") preview_spec = body.get("credential_preview") if not cred_def_id: raise web.HTTPBadRequest(reason="cred_def_id is required") if auto_issue and not preview_spec: raise web.HTTPBadRequest( reason="If auto_issue is set to" + " true then credential_preview must also be provided." ) try: connection_record = await ConnectionRecord.retrieve_by_id( context, connection_id ) except StorageNotFoundError: raise web.HTTPBadRequest() if not connection_record.is_ready: raise web.HTTPForbidden() if preview_spec: credential_preview = CredentialPreview.deserialize(preview_spec) credential_proposal = CredentialProposal( comment=comment, credential_proposal=credential_preview, cred_def_id=cred_def_id, ) credential_proposal_dict = credential_proposal.serialize() else: credential_proposal_dict = None credential_exchange_record = V10CredentialExchange( connection_id=connection_id, initiator=V10CredentialExchange.INITIATOR_SELF, credential_definition_id=cred_def_id, credential_proposal_dict=credential_proposal_dict, auto_issue=auto_issue, ) credential_manager = CredentialManager(context) ( credential_exchange_record, credential_offer_message, ) = await credential_manager.create_offer( credential_exchange_record, comment=comment ) await outbound_handler(credential_offer_message, connection_id=connection_id) return web.json_response(credential_exchange_record.serialize()) @docs( tags=["issue-credential"], summary="Send holder a credential offer in reference to a proposal", ) @response_schema(V10CredentialExchangeSchema(), 200) async def credential_exchange_send_bound_offer(request: web.BaseRequest): """ Request handler for sending bound credential offer. A holder initiates this sequence with a credential proposal; this message responds with an offer bound to the proposal. Args: request: aiohttp request object Returns: The credential exchange record """ context = request.app["request_context"] outbound_handler = request.app["outbound_message_router"] credential_exchange_id = request.match_info["cred_ex_id"] credential_exchange_record = await V10CredentialExchange.retrieve_by_id( context, credential_exchange_id ) assert credential_exchange_record.state == ( V10CredentialExchange.STATE_PROPOSAL_RECEIVED ) connection_id = credential_exchange_record.connection_id try: connection_record = await ConnectionRecord.retrieve_by_id( context, connection_id ) except StorageNotFoundError: raise web.HTTPBadRequest() if not connection_record.is_ready: raise web.HTTPForbidden() credential_manager = CredentialManager(context) ( credential_exchange_record, credential_offer_message, ) = await credential_manager.create_offer(credential_exchange_record, comment=None) await outbound_handler(credential_offer_message, connection_id=connection_id) return web.json_response(credential_exchange_record.serialize()) @docs(tags=["issue-credential"], summary="Send a credential request") @response_schema(V10CredentialExchangeSchema(), 200) async def credential_exchange_send_request(request: web.BaseRequest): """ Request handler for sending credential request. Args: request: aiohttp request object Returns: The credential exchange record """ context = request.app["request_context"] outbound_handler = request.app["outbound_message_router"] credential_exchange_id = request.match_info["cred_ex_id"] credential_exchange_record = await V10CredentialExchange.retrieve_by_id( context, credential_exchange_id ) connection_id = credential_exchange_record.connection_id assert credential_exchange_record.state == ( V10CredentialExchange.STATE_OFFER_RECEIVED ) try: connection_record = await ConnectionRecord.retrieve_by_id( context, connection_id ) except StorageNotFoundError: raise web.HTTPBadRequest() if not connection_record.is_ready: raise web.HTTPForbidden() credential_manager = CredentialManager(context) ( credential_exchange_record, credential_request_message, ) = await credential_manager.create_request( credential_exchange_record, connection_record.my_did ) await outbound_handler(credential_request_message, connection_id=connection_id) return web.json_response(credential_exchange_record.serialize()) @docs(tags=["issue-credential"], summary="Send a credential") @request_schema(V10CredentialIssueRequestSchema()) @response_schema(V10CredentialExchangeSchema(), 200) async def credential_exchange_issue(request: web.BaseRequest): """ Request handler for sending credential. Args: request: aiohttp request object Returns: The credential exchange record """ context = request.app["request_context"] outbound_handler = request.app["outbound_message_router"] body = await request.json() comment = body.get("comment") preview_spec = body.get("credential_preview") if not preview_spec: raise web.HTTPBadRequest(reason="credential_preview must be provided.") credential_exchange_id = request.match_info["cred_ex_id"] cred_exch_record = await V10CredentialExchange.retrieve_by_id( context, credential_exchange_id ) connection_id = cred_exch_record.connection_id assert cred_exch_record.state == V10CredentialExchange.STATE_REQUEST_RECEIVED try: connection_record = await ConnectionRecord.retrieve_by_id( context, connection_id ) except StorageNotFoundError: raise web.HTTPBadRequest() if not connection_record.is_ready: raise web.HTTPForbidden() credential_preview = CredentialPreview.deserialize(preview_spec) credential_manager = CredentialManager(context) ( cred_exch_record, credential_issue_message, ) = await credential_manager.issue_credential( cred_exch_record, comment=comment, credential_values=credential_preview.attr_dict(decode=False), ) await outbound_handler(credential_issue_message, connection_id=connection_id) return web.json_response(cred_exch_record.serialize()) @docs(tags=["issue-credential"], summary="Store a received credential") @response_schema(V10CredentialExchangeSchema(), 200) async def credential_exchange_store(request: web.BaseRequest): """ Request handler for storing credential. Args: request: aiohttp request object Returns: The credential exchange record """ context = request.app["request_context"] outbound_handler = request.app["outbound_message_router"] credential_exchange_id = request.match_info["cred_ex_id"] credential_exchange_record = await V10CredentialExchange.retrieve_by_id( context, credential_exchange_id ) connection_id = credential_exchange_record.connection_id assert credential_exchange_record.state == ( V10CredentialExchange.STATE_CREDENTIAL_RECEIVED ) try: connection_record = await ConnectionRecord.retrieve_by_id( context, connection_id ) except StorageNotFoundError: raise web.HTTPBadRequest() if not connection_record.is_ready: raise web.HTTPForbidden() credential_manager = CredentialManager(context) ( credential_exchange_record, credential_stored_message, ) = await credential_manager.store_credential(credential_exchange_record) await outbound_handler(credential_stored_message, connection_id=connection_id) return web.json_response(credential_exchange_record.serialize()) @docs( tags=["issue-credential"], summary="Send a problem report for credential exchange" ) @request_schema(V10CredentialProblemReportRequestSchema()) async def credential_exchange_problem_report(request: web.BaseRequest): """ Request handler for sending problem report. Args: request: aiohttp request object """ context = request.app["request_context"] outbound_handler = request.app["outbound_message_router"] credential_exchange_id = request.match_info["cred_ex_id"] body = await request.json() try: credential_exchange_record = await V10CredentialExchange.retrieve_by_id( context, credential_exchange_id ) except StorageNotFoundError: raise web.HTTPNotFound() error_result = ProblemReport(explain_ltxt=body["explain_ltxt"]) error_result.assign_thread_id(credential_exchange_record.thread_id) await outbound_handler( error_result, connection_id=credential_exchange_record.connection_id ) return web.json_response({}) @docs( tags=["issue-credential"], summary="Remove an existing credential exchange record" ) async def credential_exchange_remove(request: web.BaseRequest): """ Request handler for removing a credential exchange record. Args: request: aiohttp request object """ context = request.app["request_context"] credential_exchange_id = request.match_info["cred_ex_id"] try: credential_exchange_record = await V10CredentialExchange.retrieve_by_id( context, credential_exchange_id ) except StorageNotFoundError: raise web.HTTPNotFound() await credential_exchange_record.delete_record(context) return web.json_response({}) async def register(app: web.Application): """Register routes.""" app.add_routes( [ web.get( "/issue-credential/mime-types/{credential_id}", attribute_mime_types_get ), web.get("/issue-credential/records", credential_exchange_list), web.get( "/issue-credential/records/{cred_ex_id}", credential_exchange_retrieve ), web.post("/issue-credential/send", credential_exchange_send), web.post( "/issue-credential/send-proposal", credential_exchange_send_proposal ), web.post( "/issue-credential/send-offer", credential_exchange_send_free_offer ), web.post( "/issue-credential/records/{cred_ex_id}/send-offer", credential_exchange_send_bound_offer, ), web.post( "/issue-credential/records/{cred_ex_id}/send-request", credential_exchange_send_request, ), web.post( "/issue-credential/records/{cred_ex_id}/issue", credential_exchange_issue, ), web.post( "/issue-credential/records/{cred_ex_id}/store", credential_exchange_store, ), web.post( "/issue-credential/records/{cred_ex_id}/problem-report", credential_exchange_problem_report, ), web.post( "/issue-credential/records/{cred_ex_id}/remove", credential_exchange_remove, ), ] )
py
b4013163cb3c275283ae2662931fefcdffad1fda
# -*- coding: utf-8 -*- """Parallel workflow execution via SLURM """ from __future__ import (print_function, division, unicode_literals, absolute_import) from builtins import open import os import sys from ...interfaces.base import CommandLine from .base import (GraphPluginBase, logger) def node_completed_status(checknode): """ A function to determine if a node has previously completed it's work :param checknode: The node to check the run status :return: boolean value True indicates that the node does not need to be run. """ """ TODO: place this in the base.py file and refactor """ node_state_does_not_require_overwrite = ( checknode.overwrite is False or (checknode.overwrite is None and not checknode._interface.always_run)) hash_exists = False try: hash_exists, _, _, _ = checknode.hash_exists() except Exception: hash_exists = False return (hash_exists and node_state_does_not_require_overwrite) class SLURMGraphPlugin(GraphPluginBase): """Execute using SLURM The plugin_args input to run can be used to control the SGE execution. Currently supported options are: - template : template to use for batch job submission - qsub_args : arguments to be prepended to the job execution script in the qsub call """ _template = "#!/bin/bash" def __init__(self, **kwargs): self._sbatch_args = '' if 'plugin_args' in kwargs and kwargs['plugin_args']: if 'retry_timeout' in kwargs['plugin_args']: self._retry_timeout = kwargs['plugin_args']['retry_timeout'] if 'max_tries' in kwargs['plugin_args']: self._max_tries = kwargs['plugin_args']['max_tries'] if 'template' in kwargs['plugin_args']: self._template = kwargs['plugin_args']['template'] if os.path.isfile(self._template): self._template = open(self._template).read() if 'sbatch_args' in kwargs['plugin_args']: self._sbatch_args = kwargs['plugin_args']['sbatch_args'] if 'dont_resubmit_completed_jobs' in kwargs['plugin_args']: self._dont_resubmit_completed_jobs = kwargs['plugin_args'][ 'dont_resubmit_completed_jobs'] else: self._dont_resubmit_completed_jobs = False super(SLURMGraphPlugin, self).__init__(**kwargs) def _submit_graph(self, pyfiles, dependencies, nodes): def make_job_name(jobnumber, nodeslist): """ - jobnumber: The index number of the job to create - nodeslist: The name of the node being processed - return: A string representing this job to be displayed by SLURM """ job_name = 'j{0}_{1}'.format(jobnumber, nodeslist[jobnumber]._id) # Condition job_name to be a valid bash identifier (i.e. - is invalid) job_name = job_name.replace('-', '_').replace('.', '_').replace( ':', '_') return job_name batch_dir, _ = os.path.split(pyfiles[0]) submitjobsfile = os.path.join(batch_dir, 'submit_jobs.sh') cache_doneness_per_node = dict() if self._dont_resubmit_completed_jobs: # A future parameter for controlling this behavior could be added here for idx, pyscript in enumerate(pyfiles): node = nodes[idx] node_status_done = node_completed_status(node) # if the node itself claims done, then check to ensure all # dependancies are also done if node_status_done and idx in dependencies: for child_idx in dependencies[idx]: if child_idx in cache_doneness_per_node: child_status_done = cache_doneness_per_node[ child_idx] else: child_status_done = node_completed_status( nodes[child_idx]) node_status_done = node_status_done and child_status_done cache_doneness_per_node[idx] = node_status_done with open(submitjobsfile, 'wt') as fp: fp.writelines('#!/usr/bin/env bash\n') fp.writelines('# Condense format attempted\n') for idx, pyscript in enumerate(pyfiles): node = nodes[idx] if cache_doneness_per_node.get(idx, False): continue else: template, sbatch_args = self._get_args( node, ["template", "sbatch_args"]) batch_dir, name = os.path.split(pyscript) name = '.'.join(name.split('.')[:-1]) batchscript = '\n'.join( (template, '%s %s' % (sys.executable, pyscript))) batchscriptfile = os.path.join(batch_dir, 'batchscript_%s.sh' % name) batchscriptoutfile = batchscriptfile + '.o' batchscripterrfile = batchscriptfile + '.e' with open(batchscriptfile, 'wt') as batchfp: batchfp.writelines(batchscript) batchfp.close() deps = '' if idx in dependencies: values = '' for jobid in dependencies[idx]: # Avoid dependancies of done jobs if not self._dont_resubmit_completed_jobs or not cache_doneness_per_node[jobid]: values += "${{{0}}}:".format( make_job_name(jobid, nodes)) if values != '': # i.e. if some jobs were added to dependency list values = values.rstrip(':') deps = '--dependency=afterok:%s' % values jobname = make_job_name(idx, nodes) # Do not use default output locations if they are set in self._sbatch_args stderrFile = '' if self._sbatch_args.count('-e ') == 0: stderrFile = '-e {errFile}'.format( errFile=batchscripterrfile) stdoutFile = '' if self._sbatch_args.count('-o ') == 0: stdoutFile = '-o {outFile}'.format( outFile=batchscriptoutfile) full_line = '{jobNm}=$(sbatch {outFileOption} {errFileOption} {extraSBatchArgs} {dependantIndex} -J {jobNm} {batchscript} | awk \'/^Submitted/ {{print $4}}\')\n'.format( jobNm=jobname, outFileOption=stdoutFile, errFileOption=stderrFile, extraSBatchArgs=sbatch_args, dependantIndex=deps, batchscript=batchscriptfile) fp.writelines(full_line) cmd = CommandLine( 'bash', environ=dict(os.environ), resource_monitor=False, terminal_output='allatonce') cmd.inputs.args = '%s' % submitjobsfile cmd.run() logger.info('submitted all jobs to queue')
py
b40131cc0f7760cd11fcf2ba0595a918a3c845c6
from .Mercs import Mercs
py
b40132517b8804560c85bcf3230ee5b60fed3aba
#!/usr/bin/env python3 # Copyright (c) 2017-2020 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test various fingerprinting protections. If a stale block more than a month old or its header are requested by a peer, the node should pretend that it does not have it to avoid fingerprinting. """ import time from test_framework.blocktools import (create_block, create_coinbase) from test_framework.messages import CInv, MSG_BLOCK from test_framework.p2p import ( P2PInterface, msg_headers, msg_block, msg_getdata, msg_getheaders, p2p_lock, ) from test_framework.test_framework import BlinkhashTestFramework from test_framework.util import ( assert_equal, ) class P2PFingerprintTest(BlinkhashTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 # Build a chain of blocks on top of given one def build_chain(self, nblocks, prev_hash, prev_height, prev_median_time): blocks = [] for _ in range(nblocks): coinbase = create_coinbase(prev_height + 1) block_time = prev_median_time + 1 block = create_block(int(prev_hash, 16), coinbase, block_time) block.solve() blocks.append(block) prev_hash = block.hash prev_height += 1 prev_median_time = block_time return blocks # Send a getdata request for a given block hash def send_block_request(self, block_hash, node): msg = msg_getdata() msg.inv.append(CInv(MSG_BLOCK, block_hash)) node.send_message(msg) # Send a getheaders request for a given single block hash def send_header_request(self, block_hash, node): msg = msg_getheaders() msg.hashstop = block_hash node.send_message(msg) # Checks that stale blocks timestamped more than a month ago are not served # by the node while recent stale blocks and old active chain blocks are. # This does not currently test that stale blocks timestamped within the # last month but that have over a month's worth of work are also withheld. def run_test(self): node0 = self.nodes[0].add_p2p_connection(P2PInterface()) # Set node time to 60 days ago self.nodes[0].setmocktime(int(time.time()) - 60 * 24 * 60 * 60) # Generating a chain of 10 blocks block_hashes = self.nodes[0].generatetoaddress(10, self.nodes[0].get_deterministic_priv_key().address) # Create longer chain starting 2 blocks before current tip height = len(block_hashes) - 2 block_hash = block_hashes[height - 1] block_time = self.nodes[0].getblockheader(block_hash)["mediantime"] + 1 new_blocks = self.build_chain(5, block_hash, height, block_time) # Force reorg to a longer chain node0.send_message(msg_headers(new_blocks)) node0.wait_for_getdata([x.sha256 for x in new_blocks]) for block in new_blocks: node0.send_and_ping(msg_block(block)) # Check that reorg succeeded assert_equal(self.nodes[0].getblockcount(), 13) stale_hash = int(block_hashes[-1], 16) # Check that getdata request for stale block succeeds self.send_block_request(stale_hash, node0) node0.wait_for_block(stale_hash, timeout=3) # Check that getheader request for stale block header succeeds self.send_header_request(stale_hash, node0) node0.wait_for_header(hex(stale_hash), timeout=3) # Longest chain is extended so stale is much older than chain tip self.nodes[0].setmocktime(0) block_hash = int(self.nodes[0].generatetoaddress(1, self.nodes[0].get_deterministic_priv_key().address)[-1], 16) assert_equal(self.nodes[0].getblockcount(), 14) node0.wait_for_block(block_hash, timeout=3) # Request for very old stale block should now fail with p2p_lock: node0.last_message.pop("block", None) self.send_block_request(stale_hash, node0) node0.sync_with_ping() assert "block" not in node0.last_message # Request for very old stale block header should now fail with p2p_lock: node0.last_message.pop("headers", None) self.send_header_request(stale_hash, node0) node0.sync_with_ping() assert "headers" not in node0.last_message # Verify we can fetch very old blocks and headers on the active chain block_hash = int(block_hashes[2], 16) self.send_block_request(block_hash, node0) self.send_header_request(block_hash, node0) node0.sync_with_ping() self.send_block_request(block_hash, node0) node0.wait_for_block(block_hash, timeout=3) self.send_header_request(block_hash, node0) node0.wait_for_header(hex(block_hash), timeout=3) if __name__ == '__main__': P2PFingerprintTest().main()
py
b40132bda48230e9c38fbc8889a54fa61dde2946
# Copyright (c) 2017-2021, Mudita Sp. z.o.o. All rights reserved. # For licensing, see https://github.com/mudita/MuditaOS/LICENSE.md import pytest import time from harness import log from harness.utils import Timeout from harness.interface.error import Error, TestError from harness.api.filesystem import get_log_file_with_path from harness.api.device_info import GetDeviceInfo from harness.api.backup import BackupInit, BackupGetState @pytest.mark.service_desktop_test @pytest.mark.rt1051 @pytest.mark.usefixtures("phone_unlocked") @pytest.mark.backup def test_backup(harness): log.debug("Requesting backup"); resp = BackupInit().run(harness) assert resp.taskId != "" taskId = resp.taskId # in response we get a task ID and status 200 log.debug("Backup started, waiting for results") time.sleep(1) # wait for the endpoint to be ready # start polling for backup status and wait for it to end i = 0 try: with Timeout.limit(seconds=30): while True: i = i+1 # now that we know the task ID we can poll for it's status # body = { "id": response.taskId } resp = BackupGetState(taskId).run(harness) # Backup is still running if resp.state == "running": log.debug("Backup is running...") # Backup has stopped, should be OK and finished, status is 303 # and redirects to a location as per the documentation elif resp.state == "finished": log.debug("Backup ended, checking results") resp = GetDeviceInfo().run(harness) bkpPath = resp.diag_info["backupLocation"] # Retrieving backup file from phone p = bkpPath + "/" + taskId log.debug(f'Backup file path: {p}') get_log_file_with_path(harness, p, "./") break # Backup ended with error elif resp.state == "error": log.debug(f'Backup failed: {resp.reason}') raise TestError(Error.TEST_FAILED) # wait for a moment log.debug("Sleeping 1s") time.sleep(1) except Timeout as e: log.error("Backup timeout reached") raise TestError(Error.OtherError)
py
b401331f4f320dbb0674b58ad9e4bec4352081af
from os import path from distutils import dir_util, file_util if path.exists ('package'): dir_util.remove_tree ('package') bin_path = path.join ('package', 'bin') dir_util.mkpath (bin_path) file_util.copy_file ('EIFGENs/classic/F_code/el_server', bin_path) dir_util.copy_tree ('graphics/icons', 'package/icons')
py
b4013338fb2130c3e5268dc8adf2441c4ae8ce6a
# -*- coding: utf-8 -*- from collections import OrderedDict from typing import Callable, Union import attr import yaml # im really surprised this is not there in lib @attr.s(repr=False, slots=True, hash=True) class _LengthValidator(object): _repr = "<instance_of validator for length {length!r}>" length = attr.ib() _err_gt = ( "'{name}' must be longer than {length!r} (got {value!r} with length " "{actual!r}).") _err_gte = ( "'{name}' must be longer or equal to {length!r} " "(got {value!r} with length " "{actual!r}).") _err_lt = ( "length of '{name}' must be less than {length!r} " "(got {value!r} with length " "{actual!r}).") _err_lte = ( "length of '{name}' must be less than or equal to {length!r} " "(got {value!r} with length " "{actual!r}).") _err_eq = ( "length of '{name}' must be equal to {length!r} " "(got {value!r} with length " "{actual!r}).") def __call__(self, inst, attr, value) -> None: if str(self.length).startswith('>='): self._gte(inst, attr, value) elif str(self.length).startswith('<='): self._lte(inst, attr, value) elif str(self.length).startswith('>'): self._gt(inst, attr, value) elif str(self.length).startswith('<'): self._lt(inst, attr, value) else: self._eq(inst, attr, value) def __repr__(self) -> str: return self._repr.format(length=self.length) # attr: p.c.attribs.ValidatingAttribs def _type_error( self, msg: str, attr, value: Union[dict, list, str, tuple, OrderedDict], length: int) -> TypeError: return TypeError( msg.format( name=attr.name, length=length, actual=len(value), value=value), attr, self.length, value) def _gt(self, inst, attr, value) -> None: if not len(value) > int(self.length.strip('>')): raise self._type_error( self._err_gt, attr, value, self.length.strip('>')) def _gte(self, inst, attr, value) -> None: if not len(value) >= int(self.length.strip('>=')): raise self._type_error( self._err_gte, attr, value, self.length.strip('>=')) def _lt(self, inst, attr, value) -> None: if not len(value) < int(self.length.strip('<')): raise self._type_error( self._err_lt, attr, value, self.length.strip('<')) def _lte(self, inst, attr, value) -> None: if not len(value) <= int(self.length.strip('<=')): raise self._type_error( self._err_lte, attr, value, self.length.strip('<=')) def _eq(self, inst, attr, value) -> None: if not len(value) == int(self.length): raise self._type_error( self._err_eq, attr, value, self.length) def has_length(length: Union[int, str]) -> _LengthValidator: return _LengthValidator(length) # this may not be useful - may be due to lack of understanding of attrs # seems useful to me, and gets things moving for now @attr.s(repr=False, slots=True, hash=True) class _AllMembersValidator(object): _repr = "<instance_of validator for membership test {members!r}>" members = attr.ib() def __call__(self, inst, attr, value) -> None: """ We use a callable class to be able to change the ``__repr__``. """ _iter = value if isinstance(value, (dict, OrderedDict)): _iter = value.items() for member in _iter: if not self.members(member): raise TypeError( "'{name}' member did not match requirements " "(got {value!r})".format( name=attr.name, value=member, ), attr, member) def __repr__(self): return self._repr.format(members=self.members) def all_members(membertest: Callable): return _AllMembersValidator(membertest) @attr.s(repr=False, slots=True, hash=True) class _WellFormedStringValidator(object): _repr = "<instance_of validator for well-formed string {string_type!r}>" string_type = attr.ib() def __call__(self, inst, attr, value) -> None: return getattr(self, f'valid_{self.string_type}')(inst, attr, value) def valid_yaml(self, inst, attr, value) -> None: try: yaml.safe_load(value) except yaml.parser.ParserError: raise TypeError( "'{name}' Unable to parse as {string_type}".format( name=attr.name, string_type=self.string_type), attr, self.string_type, value) def __repr__(self) -> str: return self._repr.format(string_type=self.string_type) def is_well_formed(format_type: str) -> _WellFormedStringValidator: return _WellFormedStringValidator(format_type)
py
b401336c5f9e3848a2d00983234edc7b0619fc47
import redis # connexion à la base de données DBSession = redis.Redis(unix_socket_path='/var/run/redis/redis.sock')
py
b401337b2b38b122e92b36f5734599c59c7051da
"""The Sphinx awesome theme as a Python package. :copyright: Copyright Kai Welke. :license: MIT, see LICENSE_ for details .. _LICENSE: https://github.com/kai687/sphinxawesome-theme/blob/master/LICENSE """ try: from importlib.metadata import PackageNotFoundError, version # type: ignore except ImportError: # pragma: no cover from importlib_metadata import version, PackageNotFoundError # type: ignore from os import environ, path from typing import Any, Dict from sphinx.application import Sphinx try: # obtain version from `pyproject.toml` via `importlib.metadata.version()` __version__ = version(__name__) except PackageNotFoundError: # pragma: no cover __version__ = "unknown" def setup(app: "Sphinx") -> Dict[str, Any]: """Register the theme and its extensions wih Sphinx. The setup function of this theme accomplishes the following: - add the HTML theme - activate the ``sphinxawesome.sampdirective`` extension - activate the ``sphinxawesome_theme.highlighting`` extension - activate the ``sphinxawesome_theme.html_translator`` extension - add the ``AdmonitionID`` as post-transform - execute the ``post_process_html`` code when the build has finished """ app.add_html_theme("sphinxawesome_theme", path.abspath(path.dirname(__file__))) app.setup_extension("sphinxawesome.sampdirective") app.setup_extension("sphinxawesome_theme.highlighting") app.setup_extension("sphinxawesome_theme.html_translator") app.setup_extension("sphinxawesome_theme.admonition_ids") app.setup_extension("sphinxawesome_theme.jinja_filters") app.setup_extension("sphinxawesome_theme.permalinks_backport") # if this environment variable is defined, skip the postprocessing if "SPHINX_AWESOME_THEME_NO_POSTPROCESSING" not in environ: app.setup_extension("sphinxawesome_theme.postprocess") return { "version": __version__, "parallel_read_safe": True, "parallel_write_safe": True, }
py
b40133dadb147e2e620b1cd57500932e395dd5bb
# -*- coding: utf-8 -*- from __future__ import print_function import caffe from caffe import layers as L from caffe import params as P from google.protobuf import text_format import math import os import shutil import stat import subprocess import sys import time sys.path.append('../') from username import USERNAME sys.dont_write_bytecode = True from solverParam import * from reid_data_layer import * # we need to define a reidNet to train from PyLib.Utils.path import * from PyLib.NetLib.ReIDNet import * def reid_train(): time_postfix = time.strftime("%m-%d_%H-%M-%S",time.localtime()) ################################################################################ os.chdir(caffe_root) ################################################################################ # work dir ProjectName = "{}_{}_{}".format(BaseNet,Models,Ver) work_dir = "{}/{}/{}".format(Results_dir,Project,ProjectName) make_if_not_exist(work_dir) ################################################################################ # work and model dirs proto_dir = "{}/Proto".format(work_dir) log_dir = "{}/Logs".format(work_dir) model_dir = "{}/Models".format(work_dir) pic_dir = "{}/Pics".format(work_dir) job_dir = "{}/Job".format(work_dir) make_if_not_exist(proto_dir) make_if_not_exist(log_dir) make_if_not_exist(model_dir) make_if_not_exist(pic_dir) make_if_not_exist(job_dir) ################################################################################ # work file log_file = "{}/{}.log".format(log_dir,time_postfix) train_net_file = "{}/train.prototxt".format(proto_dir) test_net_file = "{}/test.prototxt".format(proto_dir) solver_file = "{}/solver.prototxt".format(proto_dir) snapshot_prefix = "{}/{}".format(model_dir,ProjectName) job_file = "{}/train.sh".format(job_dir) ################################################################################ # TRAIN net = caffe.NetSpec() net = get_reidDataLayer(net,batch_size=get_train_batchsize()) # we need to define a ReIDNet net = ReIDNet(net, data_layer="data", label_layer="label", net_input_width=net_input_width, net_input_height=net_input_height) with open(train_net_file, 'w') as f: print('name: "{}_train"'.format(ProjectName), file=f) print(net.to_proto(), file=f) ################################################################################ # TEST net = caffe.NetSpec() net = get_reidDataLayer(net,batch_size=get_test_batchsize()) net = ReIDNet_Test(net, data_layer="data", label_layer="label", net_input_width=net_input_width, net_input_height=net_input_height) with open(test_net_file, 'w') as f: print('name: "{}_test"'.format(ProjectName), file=f) print(net.to_proto(), file=f) ################################################################################ # Solver solver_param = get_solver_param() solver = caffe_pb2.SolverParameter(train_net=train_net_file, \ test_net=[test_net_file], \ snapshot_prefix=snapshot_prefix, \ **solver_param) with open(solver_file, 'w') as f: print(solver, file=f) ################################################################################ # CaffeModel & Snapshot max_iter = 0 for file in os.listdir(model_dir): if file.endswith(".solverstate"): basename = os.path.splitext(file)[0] iter = int(basename.split("{}_iter_".format(ProjectName))[1]) if iter > max_iter: max_iter = iter train_param = '--weights="{}" \\\n'.format(Pretrained_Model) if resume_training: if max_iter > 0: train_param = '--snapshot="{}_iter_{}.solverstate" \\\n'.format(snapshot_prefix, max_iter) ################################################################################ # scripts with open(job_file, 'w') as f: f.write('cd {}\n'.format(caffe_root)) f.write('./build/tools/caffe train \\\n') f.write('--solver="{}" \\\n'.format(solver_file)) f.write(train_param) if solver_param['solver_mode'] == P.Solver.GPU: f.write('--gpu {} 2>&1 | tee {}\n'.format(get_gpus(), log_file)) else: f.write('2>&1 | tee {}.log\n'.format(log_file)) os.chmod(job_file, stat.S_IRWXU) # ========================================================================== # Training subprocess.call(job_file, shell=True) if __name__ == "__main__": reid_train()
py
b40134b95268b10067f4efc057329a2a98648066
# -*- coding: utf-8 -*- ''' Gives SaltStack access to Windows event log Charles McMarrow <[email protected]> ''' from __future__ import absolute_import # Import Python libs import logging import collections # Import Salt Libs import salt.utils.platform # Import Third Party Libs try: import win32evtlog import win32evtlogutil import winerror import pywintypes IMPORT_STATUS = True except ImportError: IMPORT_STATUS = False # keys of all the parts of a Event supported by the API EVENT_PARTS = ('closingRecordNumber', 'computerName', 'data', 'eventCategory', 'eventID', 'eventType', 'recordNumber', 'reserved', 'reservedFlags', 'sid', 'sourceName', 'stringInserts', 'timeGenerated', 'timeWritten', ) # keys time TIME_PARTS = ('year', 'month', 'day', 'hour', 'minute', 'second', ) TimeTuple = collections.namedtuple('TimeTuple', 'year, month, day, hour, minute, second') log = logging.getLogger(__name__) __virtualname__ = 'win_event_viewer' def __virtual__(): ''' Load only on minions running on Windows. ''' if not salt.utils.platform.is_windows() or not IMPORT_STATUS: return False, 'win_event_viewer: most be on windows' return __virtualname__ def _change_str_to_bytes(data, encoding='utf-8', encode_keys=False): ''' Convert string objects to byte objects. This function will destroy the data object and objects that data links to. data object encoding str encode_keys bool if false key strings will not be turned into bytes return new object ''' if isinstance(data, dict): new_dict = {} # recursively check every item in dict for key in data: item = _change_str_to_bytes(data[key], encoding) if encode_keys: # keys that are strings most be made into bytes key = _change_str_to_bytes(key, encoding) new_dict[key] = item data = new_dict elif isinstance(data, list): new_list = [] # recursively check every item in list for item in data: new_list.append(_change_str_to_bytes(item, encoding)) data = new_list elif isinstance(data, tuple): new_list = [] # recursively check every item in list for item in data: new_list.append(_change_str_to_bytes(item, encoding)) data = tuple(new_list) elif isinstance(data, str): # data is turning into bytes because if was a string data = data.encode(encoding) return data def _get_raw_time(time): ''' Will make a pywintypes.datetime into a TimeTuple. time pywintypes.datetime return TimeTuple ''' return TimeTuple._make((time.year, time.month, time.day, time.hour, time.minute, time.second)) def make_event_dict(event): ''' Will make a PyEventLogRecord into a dict. event PyEventLogRecord return dict ''' event_dict = {} for event_part in EVENT_PARTS: # get object value and add it to the event dict event_dict[event_part] = getattr(event, event_part[0].upper() + event_part[1:], None) # format items event_dict['eventID'] = winerror.HRESULT_CODE(event_dict['eventID']) if event_dict['sid'] is not None: event_dict['sid'] = event_dict['sid'].GetSidIdentifierAuthority() event_dict['timeGenerated'] = _get_raw_time(event_dict['timeGenerated']) event_dict['timeWritten'] = _get_raw_time(event_dict['timeWritten']) return _change_str_to_bytes(event_dict) def _get_event_handler(log_name, target_computer=None): ''' Will try to open a PyHANDLE. log_name str target_computer None or str return PyHANDLE ''' # TODO: upgrade windows token # 'log close' can fail if this is not done try: return win32evtlog.OpenEventLog(target_computer, log_name) except pywintypes.error: raise FileNotFoundError('Log "{0}" of "{1}" can not be found or access was denied!'.format(log_name, target_computer)) def _close_event_handler(handler): ''' Will close the event handler. handler PyHANDLE ''' # TODO: downgrade windows token win32evtlog.CloseEventLog(handler) def get_event_generator(log_name, target_computer=None, raw=False): ''' Will get all log events one by one. Events are not in exact order. log_name str target_computer None or str raw bool True: PyEventLogRecord False: dict return PyEventLogRecord or dict ''' handler = _get_event_handler(log_name, target_computer) flags = win32evtlog.EVENTLOG_BACKWARDS_READ | win32evtlog.EVENTLOG_SEQUENTIAL_READ event_count = 0 while win32evtlog.GetNumberOfEventLogRecords(handler) > event_count: # get list of some of the events events = win32evtlog.ReadEventLog(handler, flags, 0) if not events: # event log was updated and events are not ready to be given yet # rather than wait just return break for event in events: event_count += 1 if raw: yield event else: yield make_event_dict(event) _close_event_handler(handler) def get_events(log_name, target_computer=None, raw=False): ''' Convert pywinypes.datetime into a TimeTuple. log_name str target_computer None or str raw bool True: PyEventLogRecord False: dict return tuple ''' return tuple(get_event_generator(log_name, target_computer, raw)) def get_event_sorted_by_info_generator(log_name, target_computer=None): ''' Makes keys to event log_name str target_computer None or str return dict ''' for event in get_event_generator(log_name, target_computer): event_info = {} for part in event: event_info[part] = event[part] for spot, key in enumerate(TIME_PARTS): event_info[key] = event['timeGenerated'][spot] yield event, event_info def get_events_sorted_by_info(log_name, target_computer=None): ''' Make dict of sorted events log_name str target_computer None or str return dict ''' event_info = {event_part: collections.defaultdict(list) for event_part in EVENT_PARTS + TIME_PARTS} for event, info in get_event_sorted_by_info_generator(log_name, target_computer): for part in info: event_info[part][info.get(part)].append(event) return event_info def get_event_filter_generator(log_name, target_computer=None, all_requirements=True, **kwargs): ''' Will find events that meet the requirements log_name str target_computer None or str all_requirements bool True: all requirements most be meet False: only a single requirement most be meet kwargs requirements for the events return dict ''' for event, info in get_event_sorted_by_info_generator(log_name, target_computer): if all_requirements: # all keys need to match each other for key in kwargs: if kwargs[key] != info[key]: break else: yield event else: # just a single key par needs to match if any([kwargs[key] == info[key] for key in kwargs]): yield event def get_events_filter(log_name, target_computer=None, all_requirements=True, **kwargs): ''' Find events that meet the requirements. log_name str target_computer None or str all_requirements bool True: all requirements most be meet False: only a single requirement most be meet kwargs requirements for the events return list ''' return tuple(get_event_filter_generator(log_name, target_computer, all_requirements, **kwargs)) def log_event(application_name, event_id, **kwargs): ''' Adds event to application log. application_name str event_id int kwargs parts of event ''' win32evtlogutil.ReportEvent(application_name, event_id, **kwargs) def clear_log(log_name, target_computer=None): ''' Clears event log. A clear log event will be add it after the log was clear. log_name str target_computer None or str ''' handler = _get_event_handler(log_name, target_computer) win32evtlog.ClearEventLog(handler, log_name) _close_event_handler(handler) def get_number_of_events(log_name, target_computer=None): ''' Gets the number of events in a log. log_name str target_computer None or str return int ''' handler = _get_event_handler(log_name, target_computer) number_of_events = win32evtlog.GetNumberOfEventLogRecords(handler) _close_event_handler(handler) return number_of_events
py
b40134e198cd9637567056f0ef741163e03cb246
import numpy import scipy.special class NeuralNet(object): def __init__(self, n_input, n_hidden, n_output, learning_rate): self.n_input = n_input self.n_hidden = n_hidden self.n_output = n_output self.learning_rate = learning_rate self.wih = numpy.random.normal(0.0, pow(self.n_hidden, -0.5), (self.n_hidden, self.n_input)) self.who = numpy.random.normal(0.0, pow(self.n_output, -0.5), (self.n_output, self.n_hidden)) def train(self, inputs_list, targets_list): p = 0.5 # Dropout Error Rate inputs = numpy.array(inputs_list, ndmin=2).T targets = numpy.array(targets_list, ndmin=2).T hidden_inputs = numpy.dot(self.wih, inputs) d1 = (numpy.random.rand(*hidden_inputs.shape) < p) / p hidden_inputs *= d1 hidden_outputs = self.activation_function(hidden_inputs) final_inputs = numpy.dot(self.who, hidden_outputs) d2 = (numpy.random.rand(*final_inputs.shape) < p) / p final_inputs *= d2 final_outputs = self.activation_function(final_inputs) output_errors = targets - final_outputs hidden_errors = numpy.dot(self.who.T, output_errors) self.who += self.learning_rate * numpy.dot(output_errors * final_outputs * (1.0 - final_outputs), hidden_outputs.T) self.wih += self.learning_rate * numpy.dot(hidden_errors * hidden_outputs * (1.0 - hidden_outputs), inputs.T) def query(self, inputs_list): inputs = numpy.array(inputs_list, ndmin=2).T hidden_inputs = numpy.dot(self.wih, inputs) hidden_outputs = self.activation_function(hidden_inputs) final_inputs = numpy.dot(self.who, hidden_outputs) final_outputs = self.activation_function(final_inputs) return final_outputs def activation_function(self, x): return scipy.special.expit(x) """ Example usage of NeuralNetwork to solve the MNIST data set. """ import sys, os import numpy # Sloppily add neural_network to our path so we can import it sys.path.insert(0, os.path.abspath('../neural_network')) from neural_networkD import NeuralNet def train_the_neural_net(neural_net, epochs=1): print 'Training the neural network.' training_data_file = open('mnist_train.csv', 'r') training_data_list = training_data_file.readlines() training_data_file.close() epochs = epochs for i in range(epochs): print 'Training epoch {}/{}.'.format(i+1, epochs) for record in training_data_list: all_values = record.split(',') inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01 targets = numpy.zeros(output_nodes) + 0.01 targets[int(all_values[0])] = 0.99 neural_net.train(inputs, targets) print 'complete.' def test_the_neural_net(neural_net): print 'Testing the neural network.' test_data_file = open('mnist_test.csv', 'r') test_data_list = test_data_file.readlines() test_data_file.close() scorecard = [] for i, record in enumerate(test_data_list): all_values = record.split(',') correct_label = int(all_values[0]) inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01 outputs = neural_net.query(inputs) label = numpy.argmax(outputs) if label == correct_label: scorecard.append(1) else: scorecard.append(0) print 'complete.' return scorecard if __name__ == '__main__': print 'Starting neural network to recognize handwritten digits.' input_nodes = 784 hidden_nodes = 200 output_nodes = 10 learning_rate = 0.1 nn = NeuralNet(input_nodes, hidden_nodes, output_nodes, learning_rate) # Train train_the_neural_net(nn, epochs=1) # Test test_results = numpy.asarray(test_the_neural_net(nn)) # Print results print('Neural network is {}% accurate at predicting handwritten digits.' .format(test_results.sum() / float(test_results.size) * 100.0))
py
b40134febd67cd63cc62ef82a30bb7493fffe2fb
#!/usr/bin/env python # -*- coding: utf-8 -*- # # This is very different to AboutModules in Ruby Koans # Our AboutMultipleInheritance class is a little more comparable # from runner.koan import * # # Package hierarchy of Python Koans project: # # contemplate_koans.py # koans/ # __init__.py # about_asserts.py # about_attribute_access.py # about_class_attributes.py # about_classes.py # ... # a_package_folder/ # __init__.py # a_module.py class AboutPackages(Koan): def test_subfolders_can_form_part_of_a_module_package(self): # Import ./a_package_folder/a_module.py from .a_package_folder.a_module import Duck duck = Duck() self.assertEqual('Donald', duck.name) def test_subfolders_become_modules_if_they_have_an_init_module(self): # Import ./a_package_folder/__init__.py from .a_package_folder import an_attribute self.assertEqual(1984, an_attribute) # ------------------------------------------------------------------ def test_use_absolute_imports_to_import_upper_level_modules(self): # Import /contemplate_koans.py import contemplate_koans self.assertEqual('contemplate_koans', contemplate_koans.__name__) # contemplate_koans.py is the root module in this package because it's # the first python module called in koans. # # If contemplate_koans.py was based in a_package_folder that would be # the root folder, which would make reaching the koans folder # almost impossible. So always leave the starting python script in # a folder which can reach everything else. def test_import_a_module_in_a_subfolder_folder_using_an_absolute_path(self): # Import contemplate_koans.py/koans/a_package_folder/a_module.py from koans.a_package_folder.a_module import Duck self.assertEqual('koans.a_package_folder.a_module', Duck.__module__)
py
b401362a9c2b530e1c659830c3dfdd3832ea3489
#! /usr/bin/python __author__ = 'xudshen' from BaseFeatures import BaseFeatures import math class MorphologicalFeatures(BaseFeatures): def __init__(self, sample_path, species_name): BaseFeatures.__init__(self, sample_path, species_name) def process(self): D = float(self.features.get('Diameter')) Lp = float(self.features.get('Physiological Length')) Wp = float(self.features.get('Physiological Width')) A = float(self.features.get('Leaf Area')) P = float(self.features.get('Leaf Perimeter')) Ah = float(self.features.get('Convex Hull Area')) Ph = float(self.features.get('Convex Hull Perimeter')) self.features.update({ 'Aspect ratio': Lp / Wp, 'Form factor': 4 * math.pi * A / P**2, 'Rectangularity': Lp * Wp / A, 'Narrow factor': D / Lp, 'Perimeter radio of diameter': P / D, 'Perimeter ratio of physiological': P / (Lp + Wp), 'Roundness': 4 * A / (math.pi * D**2), 'Roughness': Ph / P, 'Convex area radio': Ah / A, })
py
b40136730bb8901b1d375542f0cf16b658887daa
# test mod_md acme terms-of-service handling import pytest from TestEnv import TestEnv def setup_module(module): print("setup_module: %s" % module.__name__) TestEnv.init() def teardown_module(module): print("teardown_module: %s" % module.__name__) class TestRegAdd: def setup_method(self, method): print("setup_method: %s" % method.__name__) TestEnv.clear_store() def teardown_method(self, method): print("teardown_method: %s" % method.__name__) # test case: add a single dns managed domain def test_100_000(self): dns = "greenbytes.de" jout1 = TestEnv.a2md(["add", dns])['jout'] TestEnv.check_json_contains(jout1['output'][0], { "name": dns, "domains": [dns], "contacts": [], "ca": { "url": TestEnv.ACME_URL, "proto": "ACME" }, "state": TestEnv.MD_S_INCOMPLETE }) assert TestEnv.a2md(["list"])['jout'] == jout1 # test case: add > 1 dns managed domain def test_100_001(self): dns = ["greenbytes2.de", "www.greenbytes2.de", "mail.greenbytes2.de"] jout1 = TestEnv.a2md(["add"] + dns)['jout'] TestEnv.check_json_contains(jout1['output'][0], { "name": dns[0], "domains": dns, "contacts": [], "ca": { "url": TestEnv.ACME_URL, "proto": "ACME" }, "state": TestEnv.MD_S_INCOMPLETE }) assert TestEnv.a2md(["list"])['jout'] == jout1 # test case: add second managed domain def test_100_002(self): dns1 = ["test100-002.com", "test100-002a.com", "test100-002b.com"] TestEnv.a2md(["add"] + dns1) # add second managed domain dns2 = ["greenbytes2.de", "www.greenbytes2.de", "mail.greenbytes2.de"] jout = TestEnv.a2md(["add"] + dns2)['jout'] # assert: output covers only changed md assert len(jout['output']) == 1 TestEnv.check_json_contains(jout['output'][0], { "name": dns2[0], "domains": dns2, "contacts": [], "ca": { "url": TestEnv.ACME_URL, "proto": "ACME" }, "state": TestEnv.MD_S_INCOMPLETE }) assert len(TestEnv.a2md(["list"])['jout']['output']) == 2 # test case: add existing domain def test_100_003(self): dns = "greenbytes.de" assert TestEnv.a2md(["add", dns])['rv'] == 0 assert TestEnv.a2md(["add", dns])['rv'] == 1 # test case: add without CA URL def test_100_004(self): dns = "greenbytes.de" jout1 = TestEnv.run([TestEnv.A2MD, "-d", TestEnv.STORE_DIR, "-j", "add", dns])['jout'] assert len(jout1['output']) == 1 TestEnv.check_json_contains(jout1['output'][0], { "name": dns, "domains": [dns], "contacts": [], "ca": { "proto": "ACME" }, "state": TestEnv.MD_S_INCOMPLETE }) assert TestEnv.a2md(["list"])['jout'] == jout1 # test case: add with invalid DNS @pytest.mark.parametrize("invalid_dns", [ "tld", "white sp.ace", "invalid.*.wildcard.com", "k\xc3ller.idn.com" ]) def test_100_005(self, invalid_dns): assert TestEnv.a2md(["add", invalid_dns])["rv"] == 1 assert TestEnv.a2md(["add", "test-100.de", invalid_dns])["rv"] == 1 # test case: add with invalid ACME URL @pytest.mark.parametrize("invalid_url", [ "no.schema/path", "http://white space/path", "http://bad.port:-1/path"]) def test_100_006(self, invalid_url): args = [TestEnv.A2MD, "-a", invalid_url, "-d", TestEnv.STORE_DIR, "-j"] dns = "greenbytes.de" args.extend(["add", dns]) assert TestEnv.run(args)["rv"] == 1 # test case: add overlapping dns names def test_100_007(self): assert TestEnv.a2md(["add", "test-100.com", "test-101.com"])['rv'] == 0 # 1: alternate DNS exists as primary name assert TestEnv.a2md(["add", "greenbytes2.de", "test-100.com"])['rv'] == 1 # 2: alternate DNS exists as alternate DNS assert TestEnv.a2md(["add", "greenbytes2.de", "test-101.com"])['rv'] == 1 # 3: primary name exists as alternate DNS assert TestEnv.a2md(["add", "test-101.com"])['rv'] == 1 # test case: add subdomains as separate managed domain def test_100_008(self): assert TestEnv.a2md(["add", "test-100.com"])['rv'] == 0 assert TestEnv.a2md(["add", "sub.test-100.com"])['rv'] == 0 # test case: add duplicate domain def test_100_009(self): dns1 = "test-100.com" dns2 = "test-101.com" jout = TestEnv.a2md(["add", dns1, dns2, dns1, dns2])['jout'] # DNS is only listed once assert len(jout['output']) == 1 md = jout['output'][0] assert md['domains'] == [dns1, dns2] # test case: add pnuycode name def test_100_010(self): assert TestEnv.a2md(["add", "xn--kller-jua.punycode.de"])['rv'] == 0 # test case: don't sort alternate names def test_100_011(self): dns = ["test-100.com", "test-xxx.com", "test-aaa.com"] jout = TestEnv.a2md(["add"] + dns)['jout'] # DNS is only listed as specified assert len(jout['output']) == 1 md = jout['output'][0] assert md['domains'] == dns # test case: add DNS wildcard @pytest.mark.parametrize("wild_dns", [ "*.wildcard.com" ]) def test_100_012(self, wild_dns): assert TestEnv.a2md(["add", wild_dns])['rv'] == 0
py
b4013815a3e802958b8202b0096e7fd77b78f268
# coding: utf-8 import pprint import re import six class CommonTask: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'task_id': 'str', 'status': 'str', 'create_time': 'str', 'start_time': 'str', 'end_time': 'str', 'description': 'str', 'input': 'ObsObjInfo', 'output': 'ObsObjInfo', 'user_data': 'str' } attribute_map = { 'task_id': 'task_id', 'status': 'status', 'create_time': 'create_time', 'start_time': 'start_time', 'end_time': 'end_time', 'description': 'description', 'input': 'input', 'output': 'output', 'user_data': 'user_data' } def __init__(self, task_id=None, status=None, create_time=None, start_time=None, end_time=None, description=None, input=None, output=None, user_data=None): """CommonTask - a model defined in huaweicloud sdk""" self._task_id = None self._status = None self._create_time = None self._start_time = None self._end_time = None self._description = None self._input = None self._output = None self._user_data = None self.discriminator = None if task_id is not None: self.task_id = task_id if status is not None: self.status = status if create_time is not None: self.create_time = create_time if start_time is not None: self.start_time = start_time if end_time is not None: self.end_time = end_time if description is not None: self.description = description if input is not None: self.input = input if output is not None: self.output = output if user_data is not None: self.user_data = user_data @property def task_id(self): """Gets the task_id of this CommonTask. 任务ID :return: The task_id of this CommonTask. :rtype: str """ return self._task_id @task_id.setter def task_id(self, task_id): """Sets the task_id of this CommonTask. 任务ID :param task_id: The task_id of this CommonTask. :type: str """ self._task_id = task_id @property def status(self): """Gets the status of this CommonTask. 任务状态。 取值如下: - INIT:初始状态。 - WAITING:等待启动。 - PROCESSING:处理中。 - SUCCEED:处理成功。 - FAILED:处理失败。 - CANCELED:已取消。 :return: The status of this CommonTask. :rtype: str """ return self._status @status.setter def status(self, status): """Sets the status of this CommonTask. 任务状态。 取值如下: - INIT:初始状态。 - WAITING:等待启动。 - PROCESSING:处理中。 - SUCCEED:处理成功。 - FAILED:处理失败。 - CANCELED:已取消。 :param status: The status of this CommonTask. :type: str """ self._status = status @property def create_time(self): """Gets the create_time of this CommonTask. 任务创建时间 :return: The create_time of this CommonTask. :rtype: str """ return self._create_time @create_time.setter def create_time(self, create_time): """Sets the create_time of this CommonTask. 任务创建时间 :param create_time: The create_time of this CommonTask. :type: str """ self._create_time = create_time @property def start_time(self): """Gets the start_time of this CommonTask. 任务启动时间 :return: The start_time of this CommonTask. :rtype: str """ return self._start_time @start_time.setter def start_time(self, start_time): """Sets the start_time of this CommonTask. 任务启动时间 :param start_time: The start_time of this CommonTask. :type: str """ self._start_time = start_time @property def end_time(self): """Gets the end_time of this CommonTask. 任务结束时间 :return: The end_time of this CommonTask. :rtype: str """ return self._end_time @end_time.setter def end_time(self, end_time): """Sets the end_time of this CommonTask. 任务结束时间 :param end_time: The end_time of this CommonTask. :type: str """ self._end_time = end_time @property def description(self): """Gets the description of this CommonTask. 错误描述 :return: The description of this CommonTask. :rtype: str """ return self._description @description.setter def description(self, description): """Sets the description of this CommonTask. 错误描述 :param description: The description of this CommonTask. :type: str """ self._description = description @property def input(self): """Gets the input of this CommonTask. :return: The input of this CommonTask. :rtype: ObsObjInfo """ return self._input @input.setter def input(self, input): """Sets the input of this CommonTask. :param input: The input of this CommonTask. :type: ObsObjInfo """ self._input = input @property def output(self): """Gets the output of this CommonTask. :return: The output of this CommonTask. :rtype: ObsObjInfo """ return self._output @output.setter def output(self, output): """Sets the output of this CommonTask. :param output: The output of this CommonTask. :type: ObsObjInfo """ self._output = output @property def user_data(self): """Gets the user_data of this CommonTask. 用户数据。 :return: The user_data of this CommonTask. :rtype: str """ return self._user_data @user_data.setter def user_data(self, user_data): """Sets the user_data of this CommonTask. 用户数据。 :param user_data: The user_data of this CommonTask. :type: str """ self._user_data = user_data def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CommonTask): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
py
b4013956a96dfac33b8c8a895ab208c3b8fcfbef
""" Here the vertex is defined The following attributes are supported: * position * normal * color * texcoord """ from ..math import * class Vertex(object): def __init__(self, **kwargs): self.position = Vec3(0, 0, 0) self.normal = None self.color = Vec3(1.,1.,1.) self.texcoord = None if len(kwargs) == 0: raise ValueError("Vertex must specify attributes, for example: position, normal, color, texcoord") else: if "position" in kwargs: if type(kwargs["position"]) == Vec3: self.position = kwargs["position"].copy() elif type(kwargs["position"]) == tuple or type(kwargs["position"]) == list: if len(kwargs["position"]) != 3: raise ValueError("position must be specified as Vec3 or a list/tuple") else: self.position = Vec3(kwargs["position"][0], kwargs["position"][1], kwargs["position"][2]) else: raise ValueError("position must be specified as Vec3 or a list/tuple") if "normal" in kwargs: if type(kwargs["normal"]) == Vec3: # TODO: a list/tuple of values is ok too... self.normal = kwargs["normal"].copy() elif type(kwargs["normal"]) == tuple or type(kwargs["normal"]) == list: if len(kwargs["normal"]) != 3: raise ValueError("normal must be specified as Vec3 or a list/tuple with 3 floats") else: self.normal = Vec3(kwargs["position"][0], kwargs["position"][1], kwargs["position"][2]) else: raise ValueError("normal must be specified as Vec3 or a list/tuple") if "color" in kwargs: if type(kwargs["color"]) == Vec4: raise ValueError("Color must be Vec3") elif type(kwargs["color"]) == Vec3: color = kwargs["color"] self.color = Vec3(color.x, color.y, color.z) elif type(kwargs["color"]) == tuple or type(kwargs["color"]) == list: color = kwargs["color"] if len(color) == 3: self.color = Vec3(color[0], color[1], color[2]) else: raise ValueError("Wrong number of components for color") else: raise ValueError("color must be specified as Vec3 or list/tuple with 3 components") if "texcoord" in kwargs: if type(kwargs["texcoord"]) == Vec2: self.texcoord = kwargs["texcoord"].copy() elif type(kwargs["texcoord"]) == tuple or type(kwargs["texcoord"]) == list: if len(kwargs["texcoord"]) == 2: self.texcoord = Vec2(kwargs["texcoord"][0], kwargs["texcoord"][1]) else: raise ValueError("Wrong number of components for texcoord") else: raise ValueError("position must be specified as Vec2 or list/tuple")
py
b4013a2e84723809c03d67f1684fae63a6dcdc87
import subprocess as sub import sys from pathlib import Path from unittest.mock import patch import graphviz import networkx as nx import pytest import yaml from networkx.algorithms import isomorphism import wic.cli import wic.compiler import wic.main import wic.utils from wic import auto_gen_header from wic.schemas import wic_schema from wic.wic_types import GraphData, GraphReps, NodeData, Yaml, YamlTree @pytest.mark.slow def test_examples() -> None: """Runs all of the examples in the examples/ directory. Note that some of the yml files lack inputs and cannot be run independently, and are excluded. """ testargs = ['wic', '--yaml', '', '--cwl_output_intermediate_files', 'True'] # ignore --yaml # For now, we need to enable --cwl_output_intermediate_files. See comment in compiler.py with patch.object(sys, 'argv', testargs): args = wic.cli.parser.parse_args() tools_cwl = wic.main.get_tools_cwl(Path('.')) yml_paths = wic.main.get_yml_paths(Path('examples/')) # Generate schemas for validation validator = wic_schema.get_validator(tools_cwl, list(yml_paths)) # First compile all of the workflows. for yml_path_str, yml_path in yml_paths.items(): # Load the high-level yaml workflow file. with open(yml_path, mode='r', encoding='utf-8') as y: root_yaml_tree: Yaml = yaml.safe_load(y.read()) Path('autogenerated/').mkdir(parents=True, exist_ok=True) y_t = YamlTree(yml_path_str, root_yaml_tree) yaml_tree_raw = wic.ast.read_ast_from_disk(y_t, yml_paths, tools_cwl, validator) with open(f'autogenerated/{Path(yml_path).stem}_tree_raw.yml', mode='w', encoding='utf-8') as f: f.write(yaml.dump(yaml_tree_raw.yml)) yaml_tree = wic.ast.merge_yml_trees(yaml_tree_raw, {}, tools_cwl) with open(f'autogenerated/{Path(yml_path).stem}_tree_merged.yml', mode='w', encoding='utf-8') as f: f.write(yaml.dump(yaml_tree.yml)) graph_gv = graphviz.Digraph(name=f'cluster_{yml_path}') graph_gv.attr(newrank='True') graph_nx = nx.DiGraph() graphdata = GraphData(str(yml_path)) graph = GraphReps(graph_gv, graph_nx, graphdata) compiler_info = wic.compiler.compile_workflow(yaml_tree, args, [], [graph], {}, {}, tools_cwl, True, relative_run_path=True) rose_tree = compiler_info.rose sub_node_data: NodeData = rose_tree.data yaml_stem = sub_node_data.name wic.utils.write_to_disk(rose_tree, Path('autogenerated/'), relative_run_path=True) # Now blindly run all workflows and (if all inputs are present) check for return code 0. # Workflows are first validated before runtime, so this also checks for validity. # NOTE: Do not use --cachedir; we want to actually test everything. cmd = ['cwltool', '--outdir', f'outdir/{yaml_stem}', f'autogenerated/{yaml_stem}.cwl', f'autogenerated/{yaml_stem}_inputs.yml'] proc = sub.run(cmd, stdout=sub.PIPE, stderr=sub.STDOUT, check=False) # Capture the output if not proc.returncode == 0: # Since some of the workflows will be subworkflows # (i.e. will not have all inputs), we need to check for # "Missing required input parameter" and only fail the # workflows which should have succeeded. missing_input = "Missing required input parameter" output = proc.stdout.decode("utf-8") if not missing_input in output: print(f"Error! {yml_path} failed!") print(output) assert proc.returncode == 0 @pytest.mark.fast def test_cwl_embedding_independence() -> None: """Tests that compiling a subworkflow is independent of how it is embedded into a parent workflow. Specifically, this compiles the root workflow and re-compiles every subworkflow (individually) as if it were a root workflow, then checks that the CWL for each subworkflow remains identical and checks that the embedded subworkflow DAGs and the re-compiled DAGs are isomorphic. """ testargs = ['wic', '--yaml', ''] # ignore --yaml with patch.object(sys, 'argv', testargs): args = wic.cli.parser.parse_args() tools_cwl = wic.main.get_tools_cwl(Path('.')) yml_paths = wic.main.get_yml_paths(Path('examples')) # Generate schemas for validation validator = wic_schema.get_validator(tools_cwl, list(yml_paths)) # First compile all of the workflows once. for yml_path_str, yml_path in yml_paths.items(): # Load the high-level yaml workflow file. with open(yml_path, mode='r', encoding='utf-8') as y: root_yaml_tree: Yaml = yaml.safe_load(y.read()) # Write the combined workflow (with all subworkflows as children) to disk. Path('autogenerated/').mkdir(parents=True, exist_ok=True) y_t = YamlTree(yml_path_str + '.yml', root_yaml_tree) yaml_tree_raw = wic.ast.read_ast_from_disk(y_t, yml_paths, tools_cwl, validator) with open(f'autogenerated/{yml_path.stem}_tree_raw.yml', mode='w', encoding='utf-8') as f: f.write(yaml.dump(yaml_tree_raw.yml)) yaml_tree = wic.ast.merge_yml_trees(yaml_tree_raw, {}, tools_cwl) with open(f'autogenerated/{yml_path.stem}_tree_merged.yml', mode='w', encoding='utf-8') as f: f.write(yaml.dump(yaml_tree.yml)) # NOTE: The entire purpose of parsing an entire yaml forest is so we # can easily access the subtrees here. (i.e. without re-walking the AST) yaml_forest = wic.ast.tree_to_forest(yaml_tree, tools_cwl) yaml_forest_lst = wic.utils.flatten_forest(yaml_forest) graph_gv = graphviz.Digraph(name=f'cluster_{yml_path}') graph_gv.attr(newrank='True') graph_nx = nx.DiGraph() graphdata = GraphData(str(yml_path)) graph = GraphReps(graph_gv, graph_nx, graphdata) is_root = True compiler_info = wic.compiler.compile_workflow(yaml_tree, args, [], [graph], {}, {}, tools_cwl, is_root, relative_run_path=False) rose_tree = compiler_info.rose node_data_lst = wic.utils.flatten_rose_tree(rose_tree) # This test doesn't need to write to disk, but useful for debugging. wic.utils.write_to_disk(rose_tree, Path('autogenerated/'), relative_run_path=False) # Now, for each subworkflow of the given root workflow, compile the # subworkflow again from scratch, as if it were the root workflow, # and check that the generated CWL is identical. In other words, # check that the generated CWL of a subworkflow is independent of its # embedding into a parent workflow. for sub_node_data, sub_yaml_forest in zip(node_data_lst[1:], yaml_forest_lst): sub_name = sub_node_data.name assert sub_yaml_forest.yaml_tree.name == sub_name + '.yml' # NOTE: Do we want to also test embedding independence with args.graph_inline_depth? # If so, we will need to patch testargs depending on len(sub_node_data.namespaces) # (due to the various instances of `if len(namespaces) < args.graph_inline_depth`) graph_fakeroot_gv = graphviz.Digraph(name=f'cluster_{sub_name}') graph_fakeroot_gv.attr(newrank='True') graph_fakeroot_nx = nx.DiGraph() graphdata_fakeroot = GraphData(str(sub_name)) graph_fakeroot = GraphReps(graph_fakeroot_gv, graph_fakeroot_nx, graphdata_fakeroot) fake_root = True compiler_info_fakeroot = wic.compiler.compile_workflow(sub_yaml_forest.yaml_tree, args, [], [graph_fakeroot], {}, {}, tools_cwl, fake_root, relative_run_path=False) sub_node_data_fakeroot: NodeData = compiler_info_fakeroot.rose.data sub_cwl_fakeroot = sub_node_data_fakeroot.compiled_cwl # NOTE: Relative run: paths cause this test to fail, so remove them. # Using namespaced filenames in a single flat directory also # doesn't work because the namespaces will be of different lengths. sub_cwl_embedded = wic.utils.recursively_delete_dict_key('run', sub_node_data.compiled_cwl) sub_cwl_fakeroot = wic.utils.recursively_delete_dict_key('run', sub_cwl_fakeroot) if sub_cwl_embedded != sub_cwl_fakeroot: # Before we crash and burn, write out files for debugging. with open(f'{sub_name}_forest_embedded.yml', mode='w', encoding='utf-8') as w: w.write(yaml.dump(yaml_forest)) with open(f'{sub_name}_forest_fakeroot.yml', mode='w', encoding='utf-8') as w: w.write(yaml.dump(sub_yaml_forest)) # NOTE: Use _dot_cwl so we don't glob these files in get_tools_cwl() yaml_content = yaml.dump(sub_cwl_embedded, sort_keys=False, line_break='\n', indent=2) filename_emb = f'{sub_name}_embedded_dot_cwl' with open(filename_emb, mode='w', encoding='utf-8') as w: w.write('#!/usr/bin/env cwl-runner\n') w.write(auto_gen_header) w.write(''.join(yaml_content)) yaml_content = yaml.dump(sub_cwl_fakeroot, sort_keys=False, line_break='\n', indent=2) filename_fake = f'{sub_name}_fakeroot_dot_cwl' with open(filename_fake, mode='w', encoding='utf-8') as w: w.write('#!/usr/bin/env cwl-runner\n') w.write(auto_gen_header) w.write(''.join(yaml_content)) cmd = f'diff {filename_emb} {filename_fake} > {sub_name}.diff' sub.run(cmd, shell=True, check=False) print(f'Error! Check {filename_emb} and {filename_fake} and {sub_name}.diff') assert sub_cwl_embedded == sub_cwl_fakeroot # Check that the subgraphs are isomorphic. sub_graph_nx = sub_node_data.graph.networkx sub_graph_fakeroot_nx = sub_node_data_fakeroot.graph.networkx g_m = isomorphism.GraphMatcher(sub_graph_nx, sub_graph_fakeroot_nx) assert g_m.is_isomorphic() def test_inline_subworkflows() -> None: """Tests that compiling a workflow is independent of how subworkflows are inlined. Specifically, this inlines every subworkflow (individually) and checks that the original DAG and the inlined DAGs are isomorphic. """ testargs = ['wic', '--yaml', '', '--cwl_output_intermediate_files', 'True'] # ignore --yaml # For now, we need to enable --cwl_output_intermediate_files. See comment in compiler.py with patch.object(sys, 'argv', testargs): args = wic.cli.parser.parse_args() tools_cwl = wic.main.get_tools_cwl(Path('.')) yml_paths = wic.main.get_yml_paths(Path('examples/')) # Generate schemas for validation validator = wic_schema.get_validator(tools_cwl, list(yml_paths)) for yml_path_str, yml_path in yml_paths.items(): # Load the high-level yaml workflow file. with open(yml_path, mode='r', encoding='utf-8') as y: root_yaml_tree: Yaml = yaml.safe_load(y.read()) Path('autogenerated/').mkdir(parents=True, exist_ok=True) y_t = YamlTree(yml_path_str, root_yaml_tree) yaml_tree_raw = wic.ast.read_ast_from_disk(y_t, yml_paths, tools_cwl, validator) with open(f'autogenerated/{Path(yml_path).stem}_tree_raw.yml', mode='w', encoding='utf-8') as f: f.write(yaml.dump(yaml_tree_raw.yml)) yaml_tree = wic.ast.merge_yml_trees(yaml_tree_raw, {}, tools_cwl) with open(f'autogenerated/{Path(yml_path).stem}_tree_merged.yml', mode='w', encoding='utf-8') as f: f.write(yaml.dump(yaml_tree.yml)) graph_gv = graphviz.Digraph(name=f'cluster_{yml_path}') graph_gv.attr(newrank='True') graph_nx = nx.DiGraph() graphdata = GraphData(str(yml_path)) graph = GraphReps(graph_gv, graph_nx, graphdata) compiler_info = wic.compiler.compile_workflow(yaml_tree, args, [], [graph], {}, {}, tools_cwl, True, relative_run_path=True) rose_tree = compiler_info.rose sub_node_data: NodeData = rose_tree.data wic.utils.write_to_disk(rose_tree, Path('autogenerated/'), relative_run_path=True) # Inline each subworkflow individually and check that the graphs are isomorphic. namespaces_list = wic.ast.get_inlineable_subworkflows(yaml_tree, tools_cwl, []) for namespaces in namespaces_list: inline_yaml_tree = wic.ast.inline_subworkflow(yaml_tree, tools_cwl, namespaces) inline_graph_gv = graphviz.Digraph(name=f'cluster_{yml_path}') inline_graph_gv.attr(newrank='True') inline_graph_nx = nx.DiGraph() inline_graphdata = GraphData(str(yml_path)) inline_graph = GraphReps(inline_graph_gv, inline_graph_nx, inline_graphdata) inline_compiler_info = wic.compiler.compile_workflow(inline_yaml_tree, args, [], [inline_graph], {}, {}, tools_cwl, True, relative_run_path=True) inline_rose_tree = inline_compiler_info.rose inline_sub_node_data: NodeData = inline_rose_tree.data # Check that the subgraphs are isomorphic. sub_graph_nx = sub_node_data.graph.networkx sub_graph_fakeroot_nx = inline_sub_node_data.graph.networkx g_m = isomorphism.GraphMatcher(sub_graph_nx, sub_graph_fakeroot_nx) assert g_m.is_isomorphic()
py
b4013bf5371cdb1f2083a57d735f29e230666293
import time import os import datetime import codecs import cv2 import urllib2 from bs4 import BeautifulSoup import requests from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import Select from selenium.webdriver.support.ui import WebDriverWait from selenium.common.exceptions import NoSuchElementException from selenium.webdriver.common.keys import Keys baseurl = "http://academicscc.vit.ac.in/student/stud_login.asp" regno = raw_input("Registration Number: ") passwd = raw_input("Password: ") xpaths = { 'usernameTxtBox' : "html/body/table[3]/tbody/tr/td/form/table/tbody/tr/td/table/tbody/tr[2]/td[2]/input[@name='regno']", 'passwordTxtBox' : "html/body/table[3]/tbody/tr/td/form/table/tbody/tr/td/table/tbody/tr[3]/td[2]/input[@name='passwd']", 'captchaTxtBox' : "html/body/table[3]/tbody/tr/td/form/table/tbody/tr/td/table/tbody/tr[5]/td/input[@name='vrfcd']", 'submitButton' : "html/body/table[3]/tbody/tr/td/form/table/tbody/tr/td/table/tbody/tr[6]/td/input[1]" } mydriver = webdriver.Firefox() test = mydriver.get(baseurl) mydriver.maximize_window() mydriver.execute_script('document.getElementById("imgCaptcha").oncontextmenu = "return true"') #taking screenshot to save the captcha mydriver.save_screenshot("screenshot.png") img = cv2.imread("screenshot.png") crop_img = img[280:320, 650:800] # Crop from x, y, w, h -> 100, 200, 300, 400 # NOTE: its img[y: y + h, x: x + w] and *not* img[x: x + w, y: y + h] #cv2.imshow("cropped", crop_img) #cv2.waitKey(0) cv2.imwrite('captcha.png',crop_img) gray_image = cv2.cvtColor(crop_img, cv2.COLOR_BGR2GRAY) cv2.imwrite('gray_captcha.png',gray_image) #Clear Username TextBox if already allowed "Remember Me" mydriver.find_element_by_xpath(xpaths['usernameTxtBox']).clear() #Write Username in Username TextBox mydriver.find_element_by_xpath(xpaths['usernameTxtBox']).send_keys(regno) #Clear Password TextBox if already allowed "Remember Me" mydriver.find_element_by_xpath(xpaths['passwordTxtBox']).clear() #Write Password in password TextBox mydriver.find_element_by_xpath(xpaths['passwordTxtBox']).send_keys(passwd) #Get Captcha from the user vrfcd = raw_input("Please enter the captcha: ") #Clear Captcha TextBox if already allowed "Remember Me" mydriver.find_element_by_xpath(xpaths['captchaTxtBox']).clear() #Write Captcha in captcha TextBox mydriver.find_element_by_xpath(xpaths['captchaTxtBox']).send_keys(vrfcd) #Click Login button mydriver.find_element_by_xpath(xpaths['submitButton']).click() time.sleep(1) fromdate = "01-Jan-2017" todate = datetime.date.today().strftime ("%d-%b-%Y") attendanceurl = "https://academicscc.vit.ac.in/student/attn_report.asp?sem=WS&fmdt="+fromdate+"&todt="+todate mydriver.find_element_by_tag_name('body').send_keys(Keys.CONTROL + 't') mydriver.get(attendanceurl) html_source = mydriver.page_source text_file = codecs.open("attendance.html", "w", 'utf-8') text_file.write(html_source) text_file.close()
py
b4013bf7aab37882b4e0a21183f243ba68a0c498
# Copyright 2019, The TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for dp_optimizer_keras.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np import tensorflow as tf from tensorflow_privacy.privacy.optimizers import dp_optimizer_keras from tensorflow_privacy.privacy.optimizers import dp_optimizer_keras_vectorized class DPOptimizerComputeGradientsTest(tf.test.TestCase, parameterized.TestCase): """Tests for _compute_gradients method.""" def _loss(self, val0, val1): """Loss function whose derivative w.r.t val1 is val1 - val0.""" return 0.5 * tf.reduce_sum( input_tensor=tf.math.squared_difference(val0, val1), axis=1) # Parameters for testing: optimizer, num_microbatches, expected gradient for # var0, expected gradient for var1. @parameterized.named_parameters( ('DPGradientDescent 1', dp_optimizer_keras.DPKerasSGDOptimizer, 1, [-2.5, -2.5], [-0.5]), ('DPAdam 2', dp_optimizer_keras.DPKerasAdamOptimizer, 2, [-2.5, -2.5 ], [-0.5]), ('DPAdagrad 4', dp_optimizer_keras.DPKerasAdagradOptimizer, 4, [-2.5, -2.5], [-0.5]), ('DPGradientDescentVectorized 1', dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 1, [-2.5, -2.5], [-0.5]), ('DPAdamVectorized 2', dp_optimizer_keras_vectorized.VectorizedDPKerasAdamOptimizer, 2, [-2.5, -2.5], [-0.5]), ('DPAdagradVectorized 4', dp_optimizer_keras_vectorized.VectorizedDPKerasAdagradOptimizer, 4, [-2.5, -2.5], [-0.5]), ('DPAdagradVectorized None', dp_optimizer_keras_vectorized.VectorizedDPKerasAdagradOptimizer, None, [-2.5, -2.5], [-0.5]), ) def testBaselineWithCallableLoss(self, cls, num_microbatches, expected_grad0, expected_grad1): var0 = tf.Variable([1.0, 2.0]) var1 = tf.Variable([3.0]) data0 = tf.Variable([[3.0, 4.0], [5.0, 6.0], [7.0, 8.0], [-1.0, 0.0]]) data1 = tf.Variable([[8.0], [2.0], [3.0], [1.0]]) opt = cls( l2_norm_clip=100.0, noise_multiplier=0.0, num_microbatches=num_microbatches, learning_rate=2.0) loss = lambda: self._loss(data0, var0) + self._loss(data1, var1) grads_and_vars = opt._compute_gradients(loss, [var0, var1]) self.assertAllCloseAccordingToType(expected_grad0, grads_and_vars[0][0]) self.assertAllCloseAccordingToType(expected_grad1, grads_and_vars[1][0]) # Parameters for testing: optimizer, num_microbatches, expected gradient for # var0, expected gradient for var1. @parameterized.named_parameters( ('DPGradientDescent 1', dp_optimizer_keras.DPKerasSGDOptimizer, 1, [-2.5, -2.5], [-0.5]), ('DPAdam 2', dp_optimizer_keras.DPKerasAdamOptimizer, 2, [-2.5, -2.5 ], [-0.5]), ('DPAdagrad 4', dp_optimizer_keras.DPKerasAdagradOptimizer, 4, [-2.5, -2.5], [-0.5]), ('DPGradientDescentVectorized 1', dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 1, [-2.5, -2.5], [-0.5]), ('DPAdamVectorized 2', dp_optimizer_keras_vectorized.VectorizedDPKerasAdamOptimizer, 2, [-2.5, -2.5], [-0.5]), ('DPAdagradVectorized 4', dp_optimizer_keras_vectorized.VectorizedDPKerasAdagradOptimizer, 4, [-2.5, -2.5], [-0.5]), ('DPAdagradVectorized None', dp_optimizer_keras_vectorized.VectorizedDPKerasAdagradOptimizer, None, [-2.5, -2.5], [-0.5]), ) def testBaselineWithTensorLoss(self, cls, num_microbatches, expected_grad0, expected_grad1): var0 = tf.Variable([1.0, 2.0]) var1 = tf.Variable([3.0]) data0 = tf.Variable([[3.0, 4.0], [5.0, 6.0], [7.0, 8.0], [-1.0, 0.0]]) data1 = tf.Variable([[8.0], [2.0], [3.0], [1.0]]) opt = cls( l2_norm_clip=100.0, noise_multiplier=0.0, num_microbatches=num_microbatches, learning_rate=2.0) tape = tf.GradientTape() with tape: loss = self._loss(data0, var0) + self._loss(data1, var1) grads_and_vars = opt._compute_gradients( loss, [var0, var1], tape=tape) self.assertAllCloseAccordingToType(expected_grad0, grads_and_vars[0][0]) self.assertAllCloseAccordingToType(expected_grad1, grads_and_vars[1][0]) @parameterized.named_parameters( ('DPGradientDescent', dp_optimizer_keras.DPKerasSGDOptimizer), ('DPGradientDescentVectorized', dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer), ) def testClippingNorm(self, cls): var0 = tf.Variable([0.0, 0.0]) data0 = tf.Variable([[3.0, 4.0], [6.0, 8.0]]) opt = cls( l2_norm_clip=1.0, noise_multiplier=0.0, num_microbatches=1, learning_rate=2.0) loss = lambda: self._loss(data0, var0) # Expected gradient is sum of differences. grads_and_vars = opt._compute_gradients(loss, [var0]) self.assertAllCloseAccordingToType([-0.6, -0.8], grads_and_vars[0][0]) @parameterized.named_parameters( ('DPGradientDescent 2 4 1', dp_optimizer_keras.DPKerasSGDOptimizer, 2.0, 4.0, 1), ('DPGradientDescent 4 1 4', dp_optimizer_keras.DPKerasSGDOptimizer, 4.0, 1.0, 4), ('DPGradientDescentVectorized 2 4 1', dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 2.0, 4.0, 1), ('DPGradientDescentVectorized 4 1 4', dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 4.0, 1.0, 4), ) def testNoiseMultiplier(self, cls, l2_norm_clip, noise_multiplier, num_microbatches): var0 = tf.Variable(tf.zeros([1000], dtype=tf.float32)) data0 = tf.Variable(tf.zeros([16, 1000], dtype=tf.float32)) opt = cls( l2_norm_clip=l2_norm_clip, noise_multiplier=noise_multiplier, num_microbatches=num_microbatches, learning_rate=2.0) loss = lambda: self._loss(data0, var0) grads_and_vars = opt._compute_gradients(loss, [var0]) grads = grads_and_vars[0][0].numpy() # Test standard deviation is close to l2_norm_clip * noise_multiplier. self.assertNear( np.std(grads), l2_norm_clip * noise_multiplier / num_microbatches, 0.5) @parameterized.named_parameters( ('DPGradientDescent', dp_optimizer_keras.DPKerasSGDOptimizer), ('DPAdagrad', dp_optimizer_keras.DPKerasAdagradOptimizer), ('DPAdam', dp_optimizer_keras.DPKerasAdamOptimizer), ('DPGradientDescentVectorized', dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer), ('DPAdagradVectorized', dp_optimizer_keras_vectorized.VectorizedDPKerasAdagradOptimizer), ('DPAdamVectorized', dp_optimizer_keras_vectorized.VectorizedDPKerasAdamOptimizer), ) def testAssertOnNoCallOfComputeGradients(self, cls): """Tests that assertion fails when DP gradients are not computed.""" opt = cls( l2_norm_clip=100.0, noise_multiplier=0.0, num_microbatches=1, learning_rate=2.0) with self.assertRaises(AssertionError): grads_and_vars = tf.Variable([0.0]) opt.apply_gradients(grads_and_vars) # Expect no exception if _compute_gradients is called. var0 = tf.Variable([0.0]) data0 = tf.Variable([[0.0]]) loss = lambda: self._loss(data0, var0) grads_and_vars = opt._compute_gradients(loss, [var0]) opt.apply_gradients(grads_and_vars) class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase): """Tests for get_gradient method. Since get_gradients must run in graph mode, the method is tested within the Estimator framework. """ def _make_linear_model_fn(self, opt_cls, l2_norm_clip, noise_multiplier, num_microbatches, learning_rate): """Returns a model function for a linear regressor.""" def linear_model_fn(features, labels, mode): layer = tf.keras.layers.Dense( 1, activation='linear', name='dense', kernel_initializer='zeros', bias_initializer='zeros') preds = layer.apply(features) vector_loss = 0.5 * tf.math.squared_difference(labels, preds) scalar_loss = tf.reduce_mean(input_tensor=vector_loss) optimizer = opt_cls( l2_norm_clip=l2_norm_clip, noise_multiplier=noise_multiplier, num_microbatches=num_microbatches, learning_rate=learning_rate) params = layer.trainable_weights global_step = tf.compat.v1.train.get_global_step() train_op = tf.group( optimizer.get_updates(loss=vector_loss, params=params), [tf.compat.v1.assign_add(global_step, 1)]) return tf.estimator.EstimatorSpec( mode=mode, loss=scalar_loss, train_op=train_op) return linear_model_fn # Parameters for testing: optimizer, num_microbatches. @parameterized.named_parameters( ('DPGradientDescent 1', dp_optimizer_keras.DPKerasSGDOptimizer, 1), ('DPGradientDescent 2', dp_optimizer_keras.DPKerasSGDOptimizer, 2), ('DPGradientDescent 4', dp_optimizer_keras.DPKerasSGDOptimizer, 4), ('DPGradientDescentVectorized 1', dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 1), ('DPGradientDescentVectorized 2', dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 2), ('DPGradientDescentVectorized 4', dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 4), ('DPGradientDescentVectorized None', dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, None), ) def testBaseline(self, cls, num_microbatches): """Tests that DP optimizers work with tf.estimator.""" linear_regressor = tf.estimator.Estimator( model_fn=self._make_linear_model_fn(cls, 100.0, 0.0, num_microbatches, 0.05)) true_weights = np.array([[-5], [4], [3], [2]]).astype(np.float32) true_bias = np.array([6.0]).astype(np.float32) train_data = np.random.normal(scale=3.0, size=(1000, 4)).astype(np.float32) train_labels = np.matmul(train_data, true_weights) + true_bias + np.random.normal( scale=0.0, size=(1000, 1)).astype(np.float32) def train_input_fn(): return tf.data.Dataset.from_tensor_slices( (train_data, train_labels)).batch(8) linear_regressor.train(input_fn=train_input_fn, steps=125) self.assertAllClose( linear_regressor.get_variable_value('dense/kernel'), true_weights, atol=0.05) self.assertAllClose( linear_regressor.get_variable_value('dense/bias'), true_bias, atol=0.05) # Parameters for testing: optimizer, num_microbatches. @parameterized.named_parameters( ('DPGradientDescent 1', dp_optimizer_keras.DPKerasSGDOptimizer, 1), ('DPGradientDescentVectorized 1', dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 1), ) def testClippingNorm(self, cls, num_microbatches): """Tests that DP optimizers work with tf.estimator.""" true_weights = np.array([[6.0], [0.0], [0], [0]]).astype(np.float32) true_bias = np.array([0]).astype(np.float32) train_data = np.array([[1.0, 0.0, 0.0, 0.0]]).astype(np.float32) train_labels = np.matmul(train_data, true_weights) + true_bias def train_input_fn(): return tf.data.Dataset.from_tensor_slices( (train_data, train_labels)).batch(1) unclipped_linear_regressor = tf.estimator.Estimator( model_fn=self._make_linear_model_fn(cls, 1.0e9, 0.0, num_microbatches, 1.0)) unclipped_linear_regressor.train(input_fn=train_input_fn, steps=1) kernel_value = unclipped_linear_regressor.get_variable_value('dense/kernel') bias_value = unclipped_linear_regressor.get_variable_value('dense/bias') global_norm = np.linalg.norm(np.concatenate((kernel_value, [bias_value]))) clipped_linear_regressor = tf.estimator.Estimator( model_fn=self._make_linear_model_fn(cls, 1.0, 0.0, num_microbatches, 1.0)) clipped_linear_regressor.train(input_fn=train_input_fn, steps=1) self.assertAllClose( clipped_linear_regressor.get_variable_value('dense/kernel'), kernel_value / global_norm, atol=0.001) self.assertAllClose( clipped_linear_regressor.get_variable_value('dense/bias'), bias_value / global_norm, atol=0.001) # Parameters for testing: optimizer, l2_norm_clip, noise_multiplier, # num_microbatches. @parameterized.named_parameters( ('DPGradientDescent 2 4 1', dp_optimizer_keras.DPKerasSGDOptimizer, 2.0, 4.0, 1), ('DPGradientDescent 3 2 4', dp_optimizer_keras.DPKerasSGDOptimizer, 3.0, 2.0, 4), ('DPGradientDescent 8 6 8', dp_optimizer_keras.DPKerasSGDOptimizer, 8.0, 6.0, 8), ('DPGradientDescentVectorized 2 4 1', dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 2.0, 4.0, 1), ('DPGradientDescentVectorized 3 2 4', dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 3.0, 2.0, 4), ('DPGradientDescentVectorized 8 6 8', dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 8.0, 6.0, 8), ) def testNoiseMultiplier(self, cls, l2_norm_clip, noise_multiplier, num_microbatches): """Tests that DP optimizers work with tf.estimator.""" linear_regressor = tf.estimator.Estimator( model_fn=self._make_linear_model_fn( cls, l2_norm_clip, noise_multiplier, num_microbatches, learning_rate=1.0)) true_weights = np.zeros((1000, 1), dtype=np.float32) true_bias = np.array([0.0]).astype(np.float32) train_data = np.zeros((16, 1000), dtype=np.float32) train_labels = np.matmul(train_data, true_weights) + true_bias def train_input_fn(): return tf.data.Dataset.from_tensor_slices( (train_data, train_labels)).batch(16) linear_regressor.train(input_fn=train_input_fn, steps=1) kernel_value = linear_regressor.get_variable_value('dense/kernel') self.assertNear( np.std(kernel_value), l2_norm_clip * noise_multiplier / num_microbatches, 0.5) @parameterized.named_parameters( ('DPGradientDescent', dp_optimizer_keras.DPKerasSGDOptimizer), ('DPAdagrad', dp_optimizer_keras.DPKerasAdagradOptimizer), ('DPAdam', dp_optimizer_keras.DPKerasAdamOptimizer), ('DPGradientDescentVectorized', dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer), ('DPAdagradVectorized', dp_optimizer_keras_vectorized.VectorizedDPKerasAdagradOptimizer), ('DPAdamVectorized', dp_optimizer_keras_vectorized.VectorizedDPKerasAdamOptimizer), ) def testAssertOnNoCallOfGetGradients(self, cls): """Tests that assertion fails when DP gradients are not computed.""" opt = cls( l2_norm_clip=100.0, noise_multiplier=0.0, num_microbatches=1, learning_rate=2.0) with self.assertRaises(AssertionError): grads_and_vars = tf.Variable([0.0]) opt.apply_gradients(grads_and_vars) def testLargeBatchEmulationNoNoise(self): # Test for emulation of large batch training. # It tests that updates are only done every gradient_accumulation_steps # steps. # In this test we set noise multiplier to zero and clipping norm to high # value, such that optimizer essentially behave as non-DP optimizer. # This makes easier to check how values of variables are changing. # # This test optimizes loss var0*x + var1 # Gradients of this loss are computed as: # d(loss)/d(var0) = x # d(loss)/d(var1) = 1 var0 = tf.Variable([[1.0, 2.0]], dtype=tf.float32) var1 = tf.Variable([3.0], dtype=tf.float32) x1 = tf.constant([[2.0, 0.0], [0.0, 1.0]], dtype=tf.float32) loss1 = lambda: tf.matmul(var0, x1, transpose_b=True) + var1 x2 = tf.constant([[4.0, 2.0], [2.0, 1.0]], dtype=tf.float32) loss2 = lambda: tf.matmul(var0, x2, transpose_b=True) + var1 opt = dp_optimizer_keras.DPKerasSGDOptimizer( l2_norm_clip=100.0, noise_multiplier=0.0, gradient_accumulation_steps=2, learning_rate=1.0) # before any call to optimizer self.assertAllCloseAccordingToType([[1.0, 2.0]], var0) self.assertAllCloseAccordingToType([3.0], var1) opt.minimize(loss1, [var0, var1]) # After first call to optimizer values didn't change self.assertAllCloseAccordingToType([[1.0, 2.0]], var0) self.assertAllCloseAccordingToType([3.0], var1) opt.minimize(loss2, [var0, var1]) # After second call to optimizer updates were applied self.assertAllCloseAccordingToType([[-1.0, 1.0]], var0) self.assertAllCloseAccordingToType([2.0], var1) opt.minimize(loss2, [var0, var1]) # After third call to optimizer values didn't change self.assertAllCloseAccordingToType([[-1.0, 1.0]], var0) self.assertAllCloseAccordingToType([2.0], var1) opt.minimize(loss2, [var0, var1]) # After fourth call to optimizer updates were applied again self.assertAllCloseAccordingToType([[-4.0, -0.5]], var0) self.assertAllCloseAccordingToType([1.0], var1) @parameterized.named_parameters( ('DPKerasSGDOptimizer 1', dp_optimizer_keras.DPKerasSGDOptimizer, 1), ('DPKerasSGDOptimizer 2', dp_optimizer_keras.DPKerasSGDOptimizer, 2), ('DPKerasSGDOptimizer 4', dp_optimizer_keras.DPKerasSGDOptimizer, 4), ('DPKerasAdamOptimizer 2', dp_optimizer_keras.DPKerasAdamOptimizer, 1), ('DPKerasAdagradOptimizer 2', dp_optimizer_keras.DPKerasAdagradOptimizer, 2), ) def testLargeBatchEmulation(self, cls, gradient_accumulation_steps): # Tests various optimizers with large batch emulation. # Uses clipping and noise, thus does not test specific values # of the variables and only tests how often variables are updated. var0 = tf.Variable([[1.0, 2.0]], dtype=tf.float32) var1 = tf.Variable([3.0], dtype=tf.float32) x = tf.constant([[2.0, 0.0], [0.0, 1.0]], dtype=tf.float32) loss = lambda: tf.matmul(var0, x, transpose_b=True) + var1 opt = cls( l2_norm_clip=100.0, noise_multiplier=0.0, gradient_accumulation_steps=gradient_accumulation_steps, learning_rate=1.0) for _ in range(gradient_accumulation_steps): self.assertAllCloseAccordingToType([[1.0, 2.0]], var0) self.assertAllCloseAccordingToType([3.0], var1) opt.minimize(loss, [var0, var1]) self.assertNotAllClose([[1.0, 2.0]], var0) self.assertNotAllClose([3.0], var1) if __name__ == '__main__': tf.test.main()
py
b4013c38ac7370666ecaad01f9addbf5834f1d48
# GENERATED BY KOMAND SDK - DO NOT EDIT import komand import json class Component: DESCRIPTION = "Add a GitHub Issue to a ZenHub Epic" class Input: EPIC_ID = "epic_id" ISSUE = "issue" REPO_ID = "repo_id" class Output: ISSUE = "issue" STATUS_CODE = "status_code" class AddIssueToEpicInput(komand.Input): schema = json.loads(""" { "type": "object", "title": "Variables", "properties": { "epic_id": { "type": "integer", "title": "Epic ID", "description": "GitHub Issue Number of the ZenHub Epic", "order": 2 }, "issue": { "$ref": "#/definitions/issue_reference", "title": "Issue", "description": "A GitHub Issue to add to the ZenHub Epic", "order": 3 }, "repo_id": { "type": "integer", "title": "Repository ID", "description": "GitHub Repository ID e.g. 24237263", "order": 1 } }, "required": [ "epic_id", "issue", "repo_id" ], "definitions": { "issue_reference": { "type": "object", "title": "issue_reference", "properties": { "issue_number": { "type": "integer", "title": "Issue Number", "description": "Issue number e.g. 43", "order": 2 }, "issue_url": { "type": "string", "title": "Issue URL", "description": "Issue URL e.g. https://github.com/jonschipp/ISLET/issues/79", "order": 3 }, "repo_id": { "type": "integer", "title": "Repo ID", "description": "Repo ID e.g. 24237263", "order": 1 } } } } } """) def __init__(self): super(self.__class__, self).__init__(self.schema) class AddIssueToEpicOutput(komand.Output): schema = json.loads(""" { "type": "object", "title": "Variables", "properties": { "issue": { "$ref": "#/definitions/issue_reference", "title": "Issue", "description": "The GitHub Issue added to the ZenHub Epic", "order": 2 }, "status_code": { "type": "integer", "title": "Status", "description": "HTTP status code", "order": 1 } }, "definitions": { "issue_reference": { "type": "object", "title": "issue_reference", "properties": { "issue_number": { "type": "integer", "title": "Issue Number", "description": "Issue number e.g. 43", "order": 2 }, "issue_url": { "type": "string", "title": "Issue URL", "description": "Issue URL e.g. https://github.com/jonschipp/ISLET/issues/79", "order": 3 }, "repo_id": { "type": "integer", "title": "Repo ID", "description": "Repo ID e.g. 24237263", "order": 1 } } } } } """) def __init__(self): super(self.__class__, self).__init__(self.schema)
py
b4013d6def7d17b2cd7cb91bd7b8f54751ffb739
import numpy as np from skimage.morphology import erosion from pyVideoDatasets.BackgroundSubtraction import * try: import cv2 as vv except: from pyKinectTools.utils.VideoViewer import VideoViewer vv = VideoViewer() class BasePlayer(object): depthIm = None colorIm = None users = None backgroundModel = None foregroundMask = None prevcolorIm = None def __init__(self, base_dir='./', get_depth=True, get_color=False, get_skeleton=False, bg_subtraction=False, fill_images=False): self.base_dir = base_dir self.deviceID = '[]' self.get_depth = get_depth self.get_color = get_color self.get_skeleton =get_skeleton self.enable_bg_subtraction = bg_subtraction self.fill_images = fill_images def update_background(self): try: self.background_model.update(self.depthIm) self.mask = self.background_model.get_foreground() except: self.mask = -1 def set_background(self, im): self.background_model.backgroundModel = im def set_bg_model(self, bg_type='box', param=None): ''' Types: 'box'[param=max_depth] 'static'[param=background] 'mean' 'median' 'adaptive_mog' ''' if bg_type == 'box': self.bg_subtraction = BoxModel(param) elif bg_type == 'static': if param==None: param = self.depthIm self.bg_subtraction = StaticModel(depthIm=param) elif bg_type == 'mean': self.bg_subtraction = MeanModel(depthIm=self.depthIm) elif bg_type == 'median': self.bg_subtraction = MedianModel(depthIm=self.depthIm) elif bg_type == 'adaptive_mog': self.bg_subtraction = AdaptiveMixtureOfGaussians(self.depthIm, maxGaussians=5, learningRate=0.01, decayRate=0.001, variance=300**2) else: print "No background model added" self.backgroundModel = self.bg_subtraction.get_model() def next(self, frames=1): pass def get_person(self, edge_thresh=200): mask, _, _, _ = extract_people(self.foregroundMask, minPersonPixThresh=5000, gradThresh=edge_thresh) self.mask = erosion(mask, np.ones([3,3], np.uint8)) return self.mask def visualize(self, color=True, depth=True, skel=False, text=False): # ''' Find people ''' if skel: plotUsers(self.depthIm, self.users) if self.get_depth and depth: vv.imshow("Depth", (self.depthIm-1000)/float(self.depthIm.max())) # vv.imshow("Depth", self.depthIm/6000.) if self.get_color and color: vv.imshow("Color "+self.deviceID, self.colorIm) # vv.putText("Color "+self.deviceID, self.colorIm, "Day "+self.day_dir+" Time "+self.hour_dir+":"+self.minute_dir+" Dev#"+str(self.dev), (10,220)) # vv.imshow("Color", self.colorIm) vv.waitKey(10) def run(self): pass
py
b4013e7cd53fb07c353b20294692f9b0bba320f3
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import six from heat.common import exception from heat.engine import properties from heat.engine import resource class SecurityGroup(resource.Resource): PROPERTIES = ( GROUP_DESCRIPTION, VPC_ID, SECURITY_GROUP_INGRESS, SECURITY_GROUP_EGRESS, ) = ( 'GroupDescription', 'VpcId', 'SecurityGroupIngress', 'SecurityGroupEgress', ) _RULE_KEYS = ( RULE_CIDR_IP, RULE_FROM_PORT, RULE_TO_PORT, RULE_IP_PROTOCOL, RULE_SOURCE_SECURITY_GROUP_ID, RULE_SOURCE_SECURITY_GROUP_NAME, RULE_SOURCE_SECURITY_GROUP_OWNER_ID, ) = ( 'CidrIp', 'FromPort', 'ToPort', 'IpProtocol', 'SourceSecurityGroupId', 'SourceSecurityGroupName', 'SourceSecurityGroupOwnerId', ) _rule_schema = { RULE_CIDR_IP: properties.Schema( properties.Schema.STRING ), RULE_FROM_PORT: properties.Schema( properties.Schema.STRING ), RULE_TO_PORT: properties.Schema( properties.Schema.STRING ), RULE_IP_PROTOCOL: properties.Schema( properties.Schema.STRING ), RULE_SOURCE_SECURITY_GROUP_ID: properties.Schema( properties.Schema.STRING ), RULE_SOURCE_SECURITY_GROUP_NAME: properties.Schema( properties.Schema.STRING ), RULE_SOURCE_SECURITY_GROUP_OWNER_ID: properties.Schema( properties.Schema.STRING, implemented=False ), } properties_schema = { GROUP_DESCRIPTION: properties.Schema( properties.Schema.STRING, _('Description of the security group.'), required=True ), VPC_ID: properties.Schema( properties.Schema.STRING, _('Physical ID of the VPC. Not implemented.') ), SECURITY_GROUP_INGRESS: properties.Schema( properties.Schema.LIST, schema=properties.Schema( properties.Schema.MAP, _('List of security group ingress rules.'), schema=_rule_schema, ) ), SECURITY_GROUP_EGRESS: properties.Schema( properties.Schema.LIST, schema=properties.Schema( properties.Schema.MAP, _('List of security group egress rules.'), schema=_rule_schema, ) ), } def handle_create(self): if self.is_using_neutron(): self._handle_create_neutron() else: self._handle_create_nova() def _convert_to_neutron_rule(self, direction, sg_rule): return { 'direction': direction, 'ethertype': 'IPv4', 'remote_ip_prefix': sg_rule.get(self.RULE_CIDR_IP), 'port_range_min': sg_rule.get(self.RULE_FROM_PORT), 'port_range_max': sg_rule.get(self.RULE_TO_PORT), 'protocol': sg_rule.get(self.RULE_IP_PROTOCOL), # Neutron understands both names and ids 'remote_group_id': sg_rule.get(self.RULE_SOURCE_SECURITY_GROUP_ID) or sg_rule.get(self.RULE_SOURCE_SECURITY_GROUP_NAME), 'security_group_id': self.resource_id } def _handle_create_neutron(self): client = self.neutron() sec = client.create_security_group({'security_group': { 'name': self.physical_resource_name(), 'description': self.properties[self.GROUP_DESCRIPTION]} })['security_group'] def sanitize_security_group(i): # Neutron only accepts positive ints if (i.get(self.RULE_FROM_PORT) is not None and int(i[self.RULE_FROM_PORT]) < 0): i[self.RULE_FROM_PORT] = None if (i.get(self.RULE_TO_PORT) is not None and int(i[self.RULE_TO_PORT]) < 0): i[self.RULE_TO_PORT] = None if (i.get(self.RULE_FROM_PORT) is None and i.get(self.RULE_TO_PORT) is None): i[self.RULE_CIDR_IP] = None self.resource_id_set(sec['id']) if self.properties[self.SECURITY_GROUP_INGRESS]: for i in self.properties[self.SECURITY_GROUP_INGRESS]: sanitize_security_group(i) try: rule = client.create_security_group_rule({ 'security_group_rule': self._convert_to_neutron_rule('ingress', i) }) except Exception as ex: if self.client_plugin('neutron').is_conflict(ex): # no worries, the rule is already there pass else: # unexpected error raise if self.properties[self.SECURITY_GROUP_EGRESS]: # Delete the default rules which allow all egress traffic for rule in sec['security_group_rules']: if rule['direction'] == 'egress': client.delete_security_group_rule(rule['id']) for i in self.properties[self.SECURITY_GROUP_EGRESS]: sanitize_security_group(i) try: rule = client.create_security_group_rule({ 'security_group_rule': self._convert_to_neutron_rule('egress', i) }) except Exception as ex: if self.client_plugin('neutron').is_conflict(ex): # no worries, the rule is already there pass else: # unexpected error raise def _handle_create_nova(self): sec = None groups = self.nova().security_groups.list() for group in groups: if group.name == self.physical_resource_name(): sec = group break if not sec: sec = self.nova().security_groups.create( self.physical_resource_name(), self.properties[self.GROUP_DESCRIPTION]) self.resource_id_set(sec.id) if self.properties[self.SECURITY_GROUP_INGRESS]: rules_client = self.nova().security_group_rules for i in self.properties[self.SECURITY_GROUP_INGRESS]: source_group_id = None if i.get(self.RULE_SOURCE_SECURITY_GROUP_ID) is not None: source_group_id = i[self.RULE_SOURCE_SECURITY_GROUP_ID] elif i.get(self.RULE_SOURCE_SECURITY_GROUP_NAME) is not None: rule_name = i[self.RULE_SOURCE_SECURITY_GROUP_NAME] for group in groups: if group.name == rule_name: source_group_id = group.id break else: raise SecurityGroupNotFound(group_name=rule_name) try: rules_client.create( sec.id, i.get(self.RULE_IP_PROTOCOL), i.get(self.RULE_FROM_PORT), i.get(self.RULE_TO_PORT), i.get(self.RULE_CIDR_IP), source_group_id) except Exception as ex: if self.client_plugin('nova').is_bad_request(ex) and \ six.text_type(ex).find('already exists') >= 0: # no worries, the rule is already there pass else: # unexpected error raise def handle_delete(self): if self.is_using_neutron(): self._handle_delete_neutron() else: self._handle_delete_nova() def _handle_delete_nova(self): if self.resource_id is not None: try: sec = self.nova().security_groups.get(self.resource_id) except Exception as e: self.client_plugin('nova').ignore_not_found(e) else: for rule in sec.rules: try: self.nova().security_group_rules.delete(rule['id']) except Exception as e: self.client_plugin('nova').ignore_not_found(e) self.nova().security_groups.delete(self.resource_id) def _handle_delete_neutron(self): client = self.neutron() if self.resource_id is not None: try: sec = client.show_security_group( self.resource_id)['security_group'] except Exception as ex: self.client_plugin('neutron').ignore_not_found(ex) else: for rule in sec['security_group_rules']: try: client.delete_security_group_rule(rule['id']) except Exception as ex: self.client_plugin('neutron').ignore_not_found(ex) try: client.delete_security_group(self.resource_id) except Exception as ex: self.client_plugin('neutron').ignore_not_found(ex) def FnGetRefId(self): if self.is_using_neutron(): return super(SecurityGroup, self).FnGetRefId() else: return self.physical_resource_name() def validate(self): res = super(SecurityGroup, self).validate() if res: return res if (self.properties[self.SECURITY_GROUP_EGRESS] and not self.is_using_neutron()): raise exception.EgressRuleNotAllowed() class SecurityGroupNotFound(exception.HeatException): msg_fmt = _('Security Group "%(group_name)s" not found') def resource_mapping(): return { 'AWS::EC2::SecurityGroup': SecurityGroup, }
py
b4013f515ae6a1723a14c71d94ff757e8abd2fab
"""Setup script for object_detection.""" from setuptools import find_packages from setuptools import setup REQUIRED_PACKAGES = ['Pillow>=1.0'] setup( name='object_detection', version='0.1', install_requires=REQUIRED_PACKAGES, include_package_data=True, packages=[p for p in find_packages() if p.startswith('object_detection')], description='Tensorflow Object Detection Library for Mensural Detection', )
py
b4013f6a2f657d29a1165c4cc37349d7bb6a8c1f
import os from io import StringIO from pprint import pprint from typing import Any from typing import cast from typing import Dict from typing import Iterable from typing import Iterator from typing import List from typing import Optional from typing import Tuple from typing import Type from typing import TYPE_CHECKING from typing import TypeVar from typing import Union import attr from _pytest._code.code import ExceptionChainRepr from _pytest._code.code import ExceptionInfo from _pytest._code.code import ExceptionRepr from _pytest._code.code import ReprEntry from _pytest._code.code import ReprEntryNative from _pytest._code.code import ReprExceptionInfo from _pytest._code.code import ReprFileLocation from _pytest._code.code import ReprFuncArgs from _pytest._code.code import ReprLocals from _pytest._code.code import ReprTraceback from _pytest._code.code import TerminalRepr from _pytest._io import TerminalWriter from _pytest.compat import final from _pytest.config import Config from _pytest.nodes import Collector from _pytest.nodes import Item from _pytest.outcomes import skip if TYPE_CHECKING: from typing import NoReturn from typing_extensions import Literal from _pytest.runner import CallInfo def getworkerinfoline(node): try: return node._workerinfocache except AttributeError: d = node.workerinfo ver = "%s.%s.%s" % d["version_info"][:3] node._workerinfocache = s = "[{}] {} -- Python {} {}".format( d["id"], d["sysplatform"], ver, d["executable"] ) return s _R = TypeVar("_R", bound="BaseReport") class BaseReport: when: Optional[str] location: Optional[Tuple[str, Optional[int], str]] longrepr: Union[ None, ExceptionInfo[BaseException], Tuple[str, int, str], str, TerminalRepr ] sections: List[Tuple[str, str]] nodeid: str outcome: "Literal['passed', 'failed', 'skipped']" def __init__(self, **kw: Any) -> None: self.__dict__.update(kw) if TYPE_CHECKING: # Can have arbitrary fields given to __init__(). def __getattr__(self, key: str) -> Any: ... def toterminal(self, out: TerminalWriter) -> None: if hasattr(self, "node"): out.line(getworkerinfoline(self.node)) longrepr = self.longrepr if longrepr is None: return if hasattr(longrepr, "toterminal"): longrepr_terminal = cast(TerminalRepr, longrepr) longrepr_terminal.toterminal(out) else: try: s = str(longrepr) except UnicodeEncodeError: s = "<unprintable longrepr>" out.line(s) def get_sections(self, prefix: str) -> Iterator[Tuple[str, str]]: for name, content in self.sections: if name.startswith(prefix): yield prefix, content @property def longreprtext(self) -> str: """Read-only property that returns the full string representation of ``longrepr``. .. versionadded:: 3.0 """ file = StringIO() tw = TerminalWriter(file) tw.hasmarkup = False self.toterminal(tw) exc = file.getvalue() return exc.strip() @property def caplog(self) -> str: """Return captured log lines, if log capturing is enabled. .. versionadded:: 3.5 """ return "\n".join( content for (prefix, content) in self.get_sections("Captured log") ) @property def capstdout(self) -> str: """Return captured text from stdout, if capturing is enabled. .. versionadded:: 3.0 """ return "".join( content for (prefix, content) in self.get_sections("Captured stdout") ) @property def capstderr(self) -> str: """Return captured text from stderr, if capturing is enabled. .. versionadded:: 3.0 """ return "".join( content for (prefix, content) in self.get_sections("Captured stderr") ) @property def passed(self) -> bool: return self.outcome == "passed" @property def failed(self) -> bool: return self.outcome == "failed" @property def skipped(self) -> bool: return self.outcome == "skipped" @property def fspath(self) -> str: return self.nodeid.split("::")[0] @property def count_towards_summary(self) -> bool: """**Experimental** Whether this report should be counted towards the totals shown at the end of the test session: "1 passed, 1 failure, etc". .. note:: This function is considered **experimental**, so beware that it is subject to changes even in patch releases. """ return True @property def head_line(self) -> Optional[str]: """**Experimental** The head line shown with longrepr output for this report, more commonly during traceback representation during failures:: ________ Test.foo ________ In the example above, the head_line is "Test.foo". .. note:: This function is considered **experimental**, so beware that it is subject to changes even in patch releases. """ if self.location is not None: fspath, lineno, domain = self.location return domain return None def _get_verbose_word(self, config: Config): _category, _short, verbose = config.hook.pytest_report_teststatus( report=self, config=config ) return verbose def _to_json(self) -> Dict[str, Any]: """Return the contents of this report as a dict of builtin entries, suitable for serialization. This was originally the serialize_report() function from xdist (ca03269). Experimental method. """ return _report_to_json(self) @classmethod def _from_json(cls: Type[_R], reportdict: Dict[str, object]) -> _R: """Create either a TestReport or CollectReport, depending on the calling class. It is the callers responsibility to know which class to pass here. This was originally the serialize_report() function from xdist (ca03269). Experimental method. """ kwargs = _report_kwargs_from_json(reportdict) return cls(**kwargs) def _report_unserialization_failure( type_name: str, report_class: Type[BaseReport], reportdict ) -> "NoReturn": url = "https://github.com/pytest-dev/pytest/issues" stream = StringIO() pprint("-" * 100, stream=stream) pprint("INTERNALERROR: Unknown entry type returned: %s" % type_name, stream=stream) pprint("report_name: %s" % report_class, stream=stream) pprint(reportdict, stream=stream) pprint("Please report this bug at %s" % url, stream=stream) pprint("-" * 100, stream=stream) raise RuntimeError(stream.getvalue()) @final class TestReport(BaseReport): """Basic test report object (also used for setup and teardown calls if they fail).""" __test__ = False def __init__( self, nodeid: str, location: Tuple[str, Optional[int], str], keywords, outcome: "Literal['passed', 'failed', 'skipped']", longrepr: Union[ None, ExceptionInfo[BaseException], Tuple[str, int, str], str, TerminalRepr ], when: "Literal['setup', 'call', 'teardown']", sections: Iterable[Tuple[str, str]] = (), duration: float = 0, user_properties: Optional[Iterable[Tuple[str, object]]] = None, **extra, ) -> None: #: Normalized collection nodeid. self.nodeid = nodeid #: A (filesystempath, lineno, domaininfo) tuple indicating the #: actual location of a test item - it might be different from the #: collected one e.g. if a method is inherited from a different module. self.location: Tuple[str, Optional[int], str] = location #: A name -> value dictionary containing all keywords and #: markers associated with a test invocation. self.keywords = keywords #: Test outcome, always one of "passed", "failed", "skipped". self.outcome = outcome #: None or a failure representation. self.longrepr = longrepr #: One of 'setup', 'call', 'teardown' to indicate runtest phase. self.when = when #: User properties is a list of tuples (name, value) that holds user #: defined properties of the test. self.user_properties = list(user_properties or []) #: List of pairs ``(str, str)`` of extra information which needs to #: marshallable. Used by pytest to add captured text #: from ``stdout`` and ``stderr``, but may be used by other plugins #: to add arbitrary information to reports. self.sections = list(sections) #: Time it took to run just the test. self.duration = duration self.__dict__.update(extra) def __repr__(self) -> str: return "<{} {!r} when={!r} outcome={!r}>".format( self.__class__.__name__, self.nodeid, self.when, self.outcome ) @classmethod def from_item_and_call(cls, item: Item, call: "CallInfo[None]") -> "TestReport": """Create and fill a TestReport with standard item and call info.""" when = call.when # Remove "collect" from the Literal type -- only for collection calls. assert when != "collect" duration = call.duration keywords = {x: 1 for x in item.keywords} excinfo = call.excinfo sections = [] if not call.excinfo: outcome: Literal["passed", "failed", "skipped"] = "passed" longrepr: Union[ None, ExceptionInfo[BaseException], Tuple[str, int, str], str, TerminalRepr, ] = None else: if not isinstance(excinfo, ExceptionInfo): outcome = "failed" longrepr = excinfo elif isinstance(excinfo.value, skip.Exception): outcome = "skipped" r = excinfo._getreprcrash() if excinfo.value._use_item_location: filename, line = item.reportinfo()[:2] assert line is not None longrepr = str(filename), line + 1, r.message else: longrepr = (str(r.path), r.lineno, r.message) else: outcome = "failed" if call.when == "call": longrepr = item.repr_failure(excinfo) else: # exception in setup or teardown longrepr = item._repr_failure_py( excinfo, style=item.config.getoption("tbstyle", "auto") ) for rwhen, key, content in item._report_sections: sections.append((f"Captured {key} {rwhen}", content)) return cls( item.nodeid, item.location, keywords, outcome, longrepr, when, sections, duration, user_properties=item.user_properties, ) @final class CollectReport(BaseReport): """Collection report object.""" when = "collect" def __init__( self, nodeid: str, outcome: "Literal['passed', 'failed', 'skipped']", longrepr: Union[ None, ExceptionInfo[BaseException], Tuple[str, int, str], str, TerminalRepr ], result: Optional[List[Union[Item, Collector]]], sections: Iterable[Tuple[str, str]] = (), **extra, ) -> None: #: Normalized collection nodeid. self.nodeid = nodeid #: Test outcome, always one of "passed", "failed", "skipped". self.outcome = outcome #: None or a failure representation. self.longrepr = longrepr #: The collected items and collection nodes. self.result = result or [] #: List of pairs ``(str, str)`` of extra information which needs to #: marshallable. # Used by pytest to add captured text : from ``stdout`` and ``stderr``, # but may be used by other plugins : to add arbitrary information to # reports. self.sections = list(sections) self.__dict__.update(extra) @property def location(self): return (self.fspath, None, self.fspath) def __repr__(self) -> str: return "<CollectReport {!r} lenresult={} outcome={!r}>".format( self.nodeid, len(self.result), self.outcome ) class CollectErrorRepr(TerminalRepr): def __init__(self, msg: str) -> None: self.longrepr = msg def toterminal(self, out: TerminalWriter) -> None: out.line(self.longrepr, red=True) def pytest_report_to_serializable( report: Union[CollectReport, TestReport] ) -> Optional[Dict[str, Any]]: if isinstance(report, (TestReport, CollectReport)): data = report._to_json() data["$report_type"] = report.__class__.__name__ return data # TODO: Check if this is actually reachable. return None # type: ignore[unreachable] def pytest_report_from_serializable( data: Dict[str, Any], ) -> Optional[Union[CollectReport, TestReport]]: if "$report_type" in data: if data["$report_type"] == "TestReport": return TestReport._from_json(data) elif data["$report_type"] == "CollectReport": return CollectReport._from_json(data) assert False, "Unknown report_type unserialize data: {}".format( data["$report_type"] ) return None def _report_to_json(report: BaseReport) -> Dict[str, Any]: """Return the contents of this report as a dict of builtin entries, suitable for serialization. This was originally the serialize_report() function from xdist (ca03269). """ def serialize_repr_entry( entry: Union[ReprEntry, ReprEntryNative] ) -> Dict[str, Any]: data = attr.asdict(entry) for key, value in data.items(): if hasattr(value, "__dict__"): data[key] = attr.asdict(value) entry_data = {"type": type(entry).__name__, "data": data} return entry_data def serialize_repr_traceback(reprtraceback: ReprTraceback) -> Dict[str, Any]: result = attr.asdict(reprtraceback) result["reprentries"] = [ serialize_repr_entry(x) for x in reprtraceback.reprentries ] return result def serialize_repr_crash( reprcrash: Optional[ReprFileLocation], ) -> Optional[Dict[str, Any]]: if reprcrash is not None: return attr.asdict(reprcrash) else: return None def serialize_exception_longrepr(rep: BaseReport) -> Dict[str, Any]: assert rep.longrepr is not None # TODO: Investigate whether the duck typing is really necessary here. longrepr = cast(ExceptionRepr, rep.longrepr) result: Dict[str, Any] = { "reprcrash": serialize_repr_crash(longrepr.reprcrash), "reprtraceback": serialize_repr_traceback(longrepr.reprtraceback), "sections": longrepr.sections, } if isinstance(longrepr, ExceptionChainRepr): result["chain"] = [] for repr_traceback, repr_crash, description in longrepr.chain: result["chain"].append( ( serialize_repr_traceback(repr_traceback), serialize_repr_crash(repr_crash), description, ) ) else: result["chain"] = None return result d = report.__dict__.copy() if hasattr(report.longrepr, "toterminal"): if hasattr(report.longrepr, "reprtraceback") and hasattr( report.longrepr, "reprcrash" ): d["longrepr"] = serialize_exception_longrepr(report) else: d["longrepr"] = str(report.longrepr) else: d["longrepr"] = report.longrepr for name in d: if isinstance(d[name], os.PathLike): d[name] = os.fspath(d[name]) elif name == "result": d[name] = None # for now return d def _report_kwargs_from_json(reportdict: Dict[str, Any]) -> Dict[str, Any]: """Return **kwargs that can be used to construct a TestReport or CollectReport instance. This was originally the serialize_report() function from xdist (ca03269). """ def deserialize_repr_entry(entry_data): data = entry_data["data"] entry_type = entry_data["type"] if entry_type == "ReprEntry": reprfuncargs = None reprfileloc = None reprlocals = None if data["reprfuncargs"]: reprfuncargs = ReprFuncArgs(**data["reprfuncargs"]) if data["reprfileloc"]: reprfileloc = ReprFileLocation(**data["reprfileloc"]) if data["reprlocals"]: reprlocals = ReprLocals(data["reprlocals"]["lines"]) reprentry: Union[ReprEntry, ReprEntryNative] = ReprEntry( lines=data["lines"], reprfuncargs=reprfuncargs, reprlocals=reprlocals, reprfileloc=reprfileloc, style=data["style"], ) elif entry_type == "ReprEntryNative": reprentry = ReprEntryNative(data["lines"]) else: _report_unserialization_failure(entry_type, TestReport, reportdict) return reprentry def deserialize_repr_traceback(repr_traceback_dict): repr_traceback_dict["reprentries"] = [ deserialize_repr_entry(x) for x in repr_traceback_dict["reprentries"] ] return ReprTraceback(**repr_traceback_dict) def deserialize_repr_crash(repr_crash_dict: Optional[Dict[str, Any]]): if repr_crash_dict is not None: return ReprFileLocation(**repr_crash_dict) else: return None if ( reportdict["longrepr"] and "reprcrash" in reportdict["longrepr"] and "reprtraceback" in reportdict["longrepr"] ): reprtraceback = deserialize_repr_traceback( reportdict["longrepr"]["reprtraceback"] ) reprcrash = deserialize_repr_crash(reportdict["longrepr"]["reprcrash"]) if reportdict["longrepr"]["chain"]: chain = [] for repr_traceback_data, repr_crash_data, description in reportdict[ "longrepr" ]["chain"]: chain.append( ( deserialize_repr_traceback(repr_traceback_data), deserialize_repr_crash(repr_crash_data), description, ) ) exception_info: Union[ ExceptionChainRepr, ReprExceptionInfo ] = ExceptionChainRepr(chain) else: exception_info = ReprExceptionInfo(reprtraceback, reprcrash) for section in reportdict["longrepr"]["sections"]: exception_info.addsection(*section) reportdict["longrepr"] = exception_info return reportdict
py
b4013fa6ce9d722ed308bb2312738080b3301d58
from django.core.management.base import BaseCommand from human_lambdas.user_handler.models import Organization, User class Command(BaseCommand): help = "Updates the task count" def handle(self, *args, **options): users = User.objects.all() for user in users: org = Organization.objects.filter(user=user).first() if not org: self.stdout.write( self.style.SUCCESS( 'No organization was found for user "%s"' % user.email ) ) else: user.current_organization_id = org.pk user.save() self.stdout.write( self.style.SUCCESS( 'Successfully updated current organization id for user "%s"' % user.pk ) )
py
b4014028461ea749cba9c7fae64c5d617337c55e
from django.test import TestCase, Client from django.contrib.auth import get_user_model from django.urls import reverse class AdminSiteTests(TestCase): def setUp(self): self.client = Client() self.admin_user = get_user_model().objects.create_superuser( email='[email protected]', password='password123' ) self.client.force_login(self.admin_user) self.user = get_user_model().objects.create_user( email='[email protected]', password='password123', name='Test user full name' ) def test_users_listed(self): """Test that users are lited on user page""" url = reverse('admin:core_user_changelist') res = self.client.get(url) self.assertContains(res, self.user.name) self.assertContains(res, self.user.email) def test_user_change_page(self): """Test that the user edit page works""" url = reverse('admin:core_user_change', args=[self.user.id]) res = self.client.get(url) self.assertEqual(res.status_code, 200) def test_create_user_page(self): """Test that the crate user page works""" url = reverse('admin:core_user_add') res = self.client.get(url) self.assertEqual(res.status_code, 200)
py
b401411f2ea01d56ca83e8e2a75867971714f3f0
# encoding: UTF-8 # 默认空值 EMPTY_STRING = '' EMPTY_UNICODE = u'' EMPTY_INT = 0 EMPTY_FLOAT = 0.0 # 方向常量 DIRECTION_NONE = u'无方向' DIRECTION_LONG = u'多' DIRECTION_SHORT = u'空' DIRECTION_UNKNOWN = u'未知' DIRECTION_NET = u'净' DIRECTION_SELL = u'卖出' # IB接口 # 开平常量 OFFSET_NONE = u'无开平' OFFSET_OPEN = u'开仓' OFFSET_CLOSE = u'平仓' OFFSET_CLOSETODAY = u'平今' OFFSET_CLOSEYESTERDAY = u'平昨' OFFSET_UNKNOWN = u'未知' # 状态常量 STATUS_NOTTRADED = u'未成交' STATUS_PARTTRADED = u'部分成交' STATUS_ALLTRADED = u'全部成交' STATUS_CANCELLED = u'已撤销' STATUS_UNKNOWN = u'未知' # 合约类型常量 PRODUCT_EQUITY = u'股票' PRODUCT_FUTURES = u'期货' PRODUCT_OPTION = u'期权' PRODUCT_INDEX = u'指数' PRODUCT_COMBINATION = u'组合' PRODUCT_FOREX = u'外汇' PRODUCT_UNKNOWN = u'未知' PRODUCT_SPOT = u'现货' PRODUCT_DEFER = u'延期' PRODUCT_NONE = '' # 价格类型常量 PRICETYPE_LIMITPRICE = u'限价' PRICETYPE_MARKETPRICE = u'市价' PRICETYPE_FAK = u'FAK' PRICETYPE_FOK = u'FOK' # 期权类型 OPTION_CALL = u'看涨期权' OPTION_PUT = u'看跌期权' # 交易所类型 EXCHANGE_SSE = 'SSE' # 上交所 EXCHANGE_SZSE = 'SZSE' # 深交所 EXCHANGE_CFFEX = 'CFFEX' # 中金所 EXCHANGE_SHFE = 'SHFE' # 上期所 EXCHANGE_CZCE = 'CZCE' # 郑商所 EXCHANGE_DCE = 'DCE' # 大商所 EXCHANGE_SGE = 'SGE' # 上金所 EXCHANGE_UNKNOWN = 'UNKNOWN'# 未知交易所 EXCHANGE_NONE = '' # 空交易所 EXCHANGE_HKEX = 'HKEX' # 港交所 EXCHANGE_SMART = 'SMART' # IB智能路由(股票、期权) EXCHANGE_NYMEX = 'NYMEX' # IB 期货 EXCHANGE_GLOBEX = 'GLOBEX' # CME电子交易平台 EXCHANGE_IDEALPRO = 'IDEALPRO' # IB外汇ECN EXCHANGE_CME = 'CME' # CME交易所 EXCHANGE_ICE = 'ICE' # ICE交易所 EXCHANGE_OANDA = 'OANDA' # OANDA外汇做市商 EXCHANGE_OKCOIN = 'OKCOIN' # OKCOIN比特币交易所 # 货币类型 CURRENCY_USD = 'USD' # 美元 CURRENCY_CNY = 'CNY' # 人民币 CURRENCY_UNKNOWN = 'UNKNOWN' # 未知货币 CURRENCY_NONE = '' # 空货币
py
b401413e97a2c7138f7abb997a5a784684b0174e
import scipy.sparse def symmetrize(M): return (M + M.T)/2 def almost_degenerate(size, density, epsilon, symmetric = False): N = size D = scipy.sparse.diags([range(N)], [0], shape = (N,N)) M = D + epsilon*scipy.sparse.rand(N, N, density=density) if symmetric: H = symmetrize(M) else: H = M if density >= 0.5: H = H.toarray() else: H.tocsr() return(H) def perturbative_matrix(size, density, epsilon, symmetric = False): N = size D = scipy.sparse.diags([range(1, N+1)], [0], shape = (N,N)) M = D + epsilon*scipy.sparse.rand(N, N, density=density) if symmetric: H = symmetrize(M) else: H = M if density >= 0.5: H = H.toarray() else: H.tocsr() return(H)
py
b40141aeb37b7e1ffe17fdda9c022e255d4a73b1
__author__ = 'Chris Joakim' __email__ = "[email protected]" __license__ = "MIT" __version__ = "2020.06.23" import json import os import azure.cosmos.cosmos_client as cosmos_client import azure.cosmos.errors as errors import azure.cosmos.http_constants as http_constants import azure.cosmos.diagnostics as diagnostics import azure.cosmos.documents as documents import azure.cosmos.exceptions as exceptions import azure.cosmos.partition_key as partition_key REQUEST_CHARGE_HEADER = 'x-ms-request-charge' ACTIVITY_ID_HEADER = 'x-ms-activity-id' class Cosmos(object): def __init__(self, opts): self._opts = opts self._dbname = None self._dbproxy = None self._ctrproxy = None self._cname = None self._query_metrics = True self.reset_record_diagnostics() print(self._opts) url = opts['url'] key = opts['key'] self._client = cosmos_client.CosmosClient(url, {'masterKey': key}) # <class 'azure.cosmos.cosmos_client.CosmosClient'> def list_databases(self): self.reset_record_diagnostics() return list(self._client.list_databases()) def set_db(self, dbname): try: self.reset_record_diagnostics() self._dbname = dbname self._dbproxy = self._client.create_database( id=dbname, populate_query_metrics=self._query_metrics, response_hook=self._record_diagnostics) except: self._dbproxy = self._client.get_database_client(database=dbname) return self._dbproxy # <class 'azure.cosmos.database.DatabaseProxy'> def list_containers(self, proxy=None): self.reset_record_diagnostics() return list(self._dbproxy.list_containers()) def create_container(self, cname, pk, throughput): try: self.reset_record_diagnostics() self._ctrproxy = self._dbproxy.create_container( id=cname, partition_key=partition_key.PartitionKey(path=pk), offer_throughput=throughput, populate_query_metrics=self._query_metrics, response_hook=self._record_diagnostics) return self._ctrproxy # <class 'azure.cosmos.container.ContainerProxy'> except exceptions.CosmosResourceExistsError: return self.set_container(cname) except: return None def set_container(self, cname): self.reset_record_diagnostics() self._ctrproxy = self._dbproxy.get_container_client(cname) # <class 'azure.cosmos.container.ContainerProxy'> return self._ctrproxy def update_container_throughput(self, cname, throughput): self.reset_record_diagnostics() self.set_container(cname) offer = self._ctrproxy.replace_throughput( throughput=int(throughput), response_hook=self._record_diagnostics) # <class 'azure.cosmos.offer.Offer'> return offer def get_container_offer(self, cname): self.reset_record_diagnostics() self.set_container(cname) offer = self._ctrproxy.read_offer( response_hook=self._record_diagnostics) # <class 'azure.cosmos.offer.Offer'> return offer def delete_container(self, cname): try: self.reset_record_diagnostics() return self._dbproxy.delete_container( cname, populate_query_metrics=self._query_metrics, response_hook=self._record_diagnostics) except: return None def upsert_doc(self, doc): try: self.reset_record_diagnostics() return self._ctrproxy.upsert_item( doc, populate_query_metrics=self._query_metrics, response_hook=self._record_diagnostics) except: return None def delete_doc(self, doc, doc_pk): try: self.reset_record_diagnostics() return self._ctrproxy.delete_item( doc, partition_key=doc_pk, populate_query_metrics=self._query_metrics, response_hook=self._record_diagnostics) except: return None def read_doc(self, cname, doc_id, doc_pk): try: self.set_container(cname) self.reset_record_diagnostics() return self._ctrproxy.read_item( doc_id, partition_key=doc_pk, populate_query_metrics=self._query_metrics, response_hook=self._record_diagnostics) except: return None def query_container(self, cname, sql, xpartition, max_count): try: self.set_container(cname) self.reset_record_diagnostics() return self._ctrproxy.query_items( query=sql, enable_cross_partition_query=xpartition, max_item_count=max_count, populate_query_metrics=self._query_metrics, response_hook=self._record_diagnostics) except: return None # Metrics and Diagnostics def enable_query_metrics(self): self._query_metrics = True def disable_query_metrics(self): self._query_metrics = False def reset_record_diagnostics(self): self._record_diagnostics = diagnostics.RecordDiagnostics() def print_record_diagnostics(self): # <class 'azure.cosmos.diagnostics.RecordDiagnostics'> # headers is an instance of <class 'requests.structures.CaseInsensitiveDict'> # and is not JSON serializable # headers.keys() is an instance of <class 'collections.abc.KeysView'> print('record_diagnostics: {}'.format(self._record_diagnostics.headers)) print(str(type(self._record_diagnostics.headers))) keys = self._record_diagnostics.headers.keys() print(str(type(keys))) print(keys) for header in self._record_diagnostics.headers.items(): print(header) print(str(type(header))) def record_diagnostics_headers_dict(self): data = dict() for header in self._record_diagnostics.headers.items(): key, val = header # unpack the header 2-tuple data[key] = val return data def print_last_request_charge(self): print('last_request_charge: {} activity: {}'.format( self.last_request_charge(), self.last_activity_id())) def last_request_charge(self): if REQUEST_CHARGE_HEADER in self._record_diagnostics.headers: return self._record_diagnostics.headers[REQUEST_CHARGE_HEADER] else: return -1 def last_activity_id(self): if ACTIVITY_ID_HEADER in self._record_diagnostics.headers: return self._record_diagnostics.headers[ACTIVITY_ID_HEADER] else: return None # Example dict from method record_diagnostics_headers_dict: # { # "Cache-Control": "no-store, no-cache", # "Content-Location": "https://cjoakimcosmossql-eastus.documents.azure.com/dbs/dev/colls/test/docs/ba5f31cf-7f74-4534-964f-8b36b4dc26cd/", # "Content-Type": "application/json", # "Date": "Thu, 04 Jun 2020 16:25:28 GMT", # "Pragma": "no-cache", # "Server": "Microsoft-HTTPAPI/2.0", # "Strict-Transport-Security": "max-age=31536000", # "Transfer-Encoding": "chunked", # "etag": "\"7d00094d-0000-0100-0000-5ed920780000\"", # "lsn": "14", # "x-ms-activity-id": "19ae0802-6d2e-4cba-b534-5a8b1a1ec502", # "x-ms-alt-content-path": "dbs/dev/colls/test", # "x-ms-content-path": "YtUbAOWiNQE=", # "x-ms-cosmos-item-llsn": "14", # "x-ms-cosmos-llsn": "14", # "x-ms-gatewayversion": "version=2.11.0", # "x-ms-global-Committed-lsn": "14", # "x-ms-item-lsn": "14", # "x-ms-last-state-change-utc": "Thu, 04 Jun 2020 11:35:30.048 GMT", # "x-ms-number-of-read-regions": "0", # "x-ms-request-charge": "1", # "x-ms-resource-quota": "documentSize=10240;documentsSize=10485760;documentsCount=-1;collectionSize=10485760;", # "x-ms-resource-usage": "documentSize=0;documentsSize=2;documentsCount=3;collectionSize=3;", # "x-ms-schemaversion": "1.9", # "x-ms-serviceversion": "version=2.11.0.0", # "x-ms-session-token": "0:-1#14", # "x-ms-transport-request-id": "2", # "x-ms-xp-role": "1" # }
py
b40142c70def891c810bef69e74e4f781d7671b2
import peewee # Create the database connection db = peewee.SqliteDatabase('database/dictionary.db') class BaseModel(peewee.Model): """Base model class, all models will inherit this class""" text = peewee.CharField(unique=True) normalized_text = peewee.CharField() meaning = peewee.CharField() class Meta: # Indicates where the model should be stored database = db class Any(BaseModel): """This class represents the 'Any' table""" class Verb(BaseModel): """This class represents the 'Verb' table""" class Noun(BaseModel): """This class represents the 'Noun' table""" class Adjective(BaseModel): """This class represents the 'Adjective' table""" class Adverb(BaseModel): """This class represents the 'Adverb' table"""
py
b40142e44c7ecdbfa99c07b889038a2fb9dd1e29
# Copyright (C) 2019 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> import inspect import sqlalchemy as sa from ggrc.models import all_models from ggrc.models import inflector from ggrc.models import reflection from ggrc.models.all_models import * # noqa from ggrc.models.custom_attribute_definition import init_cad_listeners from ggrc.utils import html_cleaner from ggrc.utils import benchmark """All GGRC model objects and associated utilities.""" def init_models(app): """Init models.""" for model in all_models.all_models: inflector.register_inflections(model._inflector) def init_hooks(): """Initialize main and extensions related SQLAlchemy hooks.""" from ggrc.extensions import get_extension_modules from ggrc.models import hooks hooks.init_hooks() for extension_module in get_extension_modules(): ext_init_hooks = getattr(extension_module, 'init_hooks', None) if ext_init_hooks: ext_init_hooks() def init_all_models(app): """Register all GGRC models services with the Flask application ``app``.""" from ggrc.extensions import get_extension_modules # Usually importing the module is enough, but just in case, also invoke # ``init_models`` init_models(app) for extension_module in get_extension_modules(): ext_init_models = getattr(extension_module, 'init_models', None) if ext_init_models: ext_init_models(app) init_hooks() def init_lazy_mixins(): """Lazy mixins initialisation Mixins with `__lazy__init__` property set to True will wait with their initialization until after the models have been fully initialized. This is useful in cases where we need full model class, e.g. to hook up signaling logic. """ for model in all_models.all_models: # MRO chain includes base model that we don't want to include here mixins = (mixin for mixin in inspect.getmro(model) if mixin != model) for mixin in mixins: if getattr(mixin, '__lazy_init__', False): mixin.init(model) def init_session_monitor_cache(): """Init session cache monitor.""" from sqlalchemy.orm.session import Session from sqlalchemy import event from ggrc.models.cache import Cache def update_cache_before_flush(session, flush_context, objects): """Updates cache before flush.""" with benchmark("update cache before flush"): cache = Cache.get_cache(create=True) if cache: cache.update_before_flush(session, flush_context) def update_cache_after_flush(session, flush_context): """Updates cache after flush.""" with benchmark("update cache after flush"): cache = Cache.get_cache(create=False) if cache: cache.update_after_flush(session, flush_context) def clear_cache(session): """Clear cache.""" cache = Cache.get_cache() if cache: cache.clear() event.listen(Session, 'before_flush', update_cache_before_flush) event.listen(Session, 'after_flush', update_cache_after_flush) event.listen(Session, 'after_commit', clear_cache) event.listen(Session, 'after_rollback', clear_cache) def init_sanitization_hooks(): """Registers event listener on String/Text attributes.""" for model in all_models.all_models: # noqa attr_names = reflection.AttributeInfo.gather_attrs(model, "_sanitize_html") for attr_name in attr_names: attr = getattr(model, attr_name) sa.event.listen(attr, 'set', html_cleaner.cleaner, retval=True) def init_app(app): """Init apps.""" init_all_models(app) init_lazy_mixins() init_session_monitor_cache() init_sanitization_hooks() init_cad_listeners() from ggrc.models.inflector import get_model # noqa
py
b401432a3fc2a42a67f73624df1e8bab1a6f5940
import itertools import random from uuid import uuid4 from moto.packages.boto.ec2.blockdevicemapping import ( BlockDeviceType, BlockDeviceMapping, ) from moto.ec2.exceptions import InvalidInstanceIdError from collections import OrderedDict from moto.core import ACCOUNT_ID, BaseBackend, BaseModel, CloudFormationModel from moto.core.utils import camelcase_to_underscores, BackendDict from moto.ec2 import ec2_backends from moto.elb import elb_backends from moto.elbv2 import elbv2_backends from moto.elb.exceptions import LoadBalancerNotFoundError from .exceptions import ( AutoscalingClientError, ResourceContentionError, InvalidInstanceError, ValidationError, ) # http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/AS_Concepts.html#Cooldown DEFAULT_COOLDOWN = 300 ASG_NAME_TAG = "aws:autoscaling:groupName" class InstanceState(object): def __init__( self, instance, lifecycle_state="InService", health_status="Healthy", protected_from_scale_in=False, autoscaling_group=None, ): self.instance = instance self.lifecycle_state = lifecycle_state self.health_status = health_status self.protected_from_scale_in = protected_from_scale_in if not hasattr(self.instance, "autoscaling_group"): self.instance.autoscaling_group = autoscaling_group class FakeLifeCycleHook(BaseModel): def __init__(self, name, as_name, transition, timeout, result): self.name = name self.as_name = as_name if transition: self.transition = transition if timeout: self.timeout = timeout else: self.timeout = 3600 if result: self.result = result else: self.result = "ABANDON" class FakeScalingPolicy(BaseModel): def __init__( self, name, policy_type, metric_aggregation_type, adjustment_type, as_name, min_adjustment_magnitude, scaling_adjustment, cooldown, target_tracking_config, step_adjustments, estimated_instance_warmup, predictive_scaling_configuration, autoscaling_backend, ): self.name = name self.policy_type = policy_type self.metric_aggregation_type = metric_aggregation_type self.adjustment_type = adjustment_type self.as_name = as_name self.min_adjustment_magnitude = min_adjustment_magnitude self.scaling_adjustment = scaling_adjustment if cooldown is not None: self.cooldown = cooldown else: self.cooldown = DEFAULT_COOLDOWN self.target_tracking_config = target_tracking_config self.step_adjustments = step_adjustments self.estimated_instance_warmup = estimated_instance_warmup self.predictive_scaling_configuration = predictive_scaling_configuration self.autoscaling_backend = autoscaling_backend @property def arn(self): return f"arn:aws:autoscaling:{self.autoscaling_backend.region}:{ACCOUNT_ID}:scalingPolicy:c322761b-3172-4d56-9a21-0ed9d6161d67:autoScalingGroupName/{self.as_name}:policyName/{self.name}" def execute(self): if self.adjustment_type == "ExactCapacity": self.autoscaling_backend.set_desired_capacity( self.as_name, self.scaling_adjustment ) elif self.adjustment_type == "ChangeInCapacity": self.autoscaling_backend.change_capacity( self.as_name, self.scaling_adjustment ) elif self.adjustment_type == "PercentChangeInCapacity": self.autoscaling_backend.change_capacity_percent( self.as_name, self.scaling_adjustment ) class FakeLaunchConfiguration(CloudFormationModel): def __init__( self, name, image_id, key_name, ramdisk_id, kernel_id, security_groups, user_data, instance_type, instance_monitoring, instance_profile_name, spot_price, ebs_optimized, associate_public_ip_address, block_device_mapping_dict, ): self.name = name self.image_id = image_id self.key_name = key_name self.ramdisk_id = ramdisk_id self.kernel_id = kernel_id self.security_groups = security_groups if security_groups else [] self.user_data = user_data self.instance_type = instance_type self.instance_monitoring = instance_monitoring self.instance_profile_name = instance_profile_name self.spot_price = spot_price self.ebs_optimized = ebs_optimized self.associate_public_ip_address = associate_public_ip_address self.block_device_mapping_dict = block_device_mapping_dict @classmethod def create_from_instance(cls, name, instance, backend): config = backend.create_launch_configuration( name=name, image_id=instance.image_id, kernel_id="", ramdisk_id="", key_name=instance.key_name, security_groups=instance.security_groups, user_data=instance.user_data, instance_type=instance.instance_type, instance_monitoring=False, instance_profile_name=None, spot_price=None, ebs_optimized=instance.ebs_optimized, associate_public_ip_address=instance.associate_public_ip, block_device_mappings=instance.block_device_mapping, ) return config @staticmethod def cloudformation_name_type(): return "LaunchConfigurationName" @staticmethod def cloudformation_type(): # https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-autoscaling-launchconfiguration.html return "AWS::AutoScaling::LaunchConfiguration" @classmethod def create_from_cloudformation_json( cls, resource_name, cloudformation_json, region_name, **kwargs ): properties = cloudformation_json["Properties"] instance_profile_name = properties.get("IamInstanceProfile") backend = autoscaling_backends[region_name] config = backend.create_launch_configuration( name=resource_name, image_id=properties.get("ImageId"), kernel_id=properties.get("KernelId"), ramdisk_id=properties.get("RamdiskId"), key_name=properties.get("KeyName"), security_groups=properties.get("SecurityGroups"), user_data=properties.get("UserData"), instance_type=properties.get("InstanceType"), instance_monitoring=properties.get("InstanceMonitoring"), instance_profile_name=instance_profile_name, spot_price=properties.get("SpotPrice"), ebs_optimized=properties.get("EbsOptimized"), associate_public_ip_address=properties.get("AssociatePublicIpAddress"), block_device_mappings=properties.get("BlockDeviceMapping.member"), ) return config @classmethod def update_from_cloudformation_json( cls, original_resource, new_resource_name, cloudformation_json, region_name ): cls.delete_from_cloudformation_json( original_resource.name, cloudformation_json, region_name ) return cls.create_from_cloudformation_json( new_resource_name, cloudformation_json, region_name ) @classmethod def delete_from_cloudformation_json( cls, resource_name, cloudformation_json, region_name ): backend = autoscaling_backends[region_name] try: backend.delete_launch_configuration(resource_name) except KeyError: pass def delete(self, region_name): backend = autoscaling_backends[region_name] backend.delete_launch_configuration(self.name) @property def physical_resource_id(self): return self.name @property def block_device_mappings(self): if not self.block_device_mapping_dict: return None else: return self._parse_block_device_mappings() @property def instance_monitoring_enabled(self): if self.instance_monitoring: return "true" return "false" def _parse_block_device_mappings(self): block_device_map = BlockDeviceMapping() for mapping in self.block_device_mapping_dict: block_type = BlockDeviceType() mount_point = mapping.get("device_name") if "ephemeral" in mapping.get("virtual_name", ""): block_type.ephemeral_name = mapping.get("virtual_name") else: block_type.volume_type = mapping.get("ebs._volume_type") block_type.snapshot_id = mapping.get("ebs._snapshot_id") block_type.delete_on_termination = mapping.get( "ebs._delete_on_termination" ) block_type.size = mapping.get("ebs._volume_size") block_type.iops = mapping.get("ebs._iops") block_device_map[mount_point] = block_type return block_device_map class FakeAutoScalingGroup(CloudFormationModel): def __init__( self, name, availability_zones, desired_capacity, max_size, min_size, launch_config_name, launch_template, vpc_zone_identifier, default_cooldown, health_check_period, health_check_type, load_balancers, target_group_arns, placement_group, termination_policies, autoscaling_backend, ec2_backend, tags, new_instances_protected_from_scale_in=False, ): self.autoscaling_backend = autoscaling_backend self.ec2_backend = ec2_backend self.name = name self._id = str(uuid4()) self.region = self.autoscaling_backend.region self._set_azs_and_vpcs(availability_zones, vpc_zone_identifier) self.max_size = max_size self.min_size = min_size self.launch_template = None self.launch_config = None self._set_launch_configuration(launch_config_name, launch_template) self.default_cooldown = ( default_cooldown if default_cooldown else DEFAULT_COOLDOWN ) self.health_check_period = health_check_period self.health_check_type = health_check_type if health_check_type else "EC2" self.load_balancers = load_balancers self.target_group_arns = target_group_arns self.placement_group = placement_group self.termination_policies = termination_policies self.new_instances_protected_from_scale_in = ( new_instances_protected_from_scale_in ) self.suspended_processes = [] self.instance_states = [] self.tags = tags or [] self.set_desired_capacity(desired_capacity) @property def tags(self): return self._tags @tags.setter def tags(self, tags): for tag in tags: if "resource_id" not in tag or not tag["resource_id"]: tag["resource_id"] = self.name if "resource_type" not in tag or not tag["resource_type"]: tag["resource_type"] = "auto-scaling-group" self._tags = tags @property def arn(self): return f"arn:aws:autoscaling:{self.region}:{ACCOUNT_ID}:autoScalingGroup:{self._id}:autoScalingGroupName/{self.name}" def active_instances(self): return [x for x in self.instance_states if x.lifecycle_state == "InService"] def _set_azs_and_vpcs(self, availability_zones, vpc_zone_identifier, update=False): # for updates, if only AZs are provided, they must not clash with # the AZs of existing VPCs if update and availability_zones and not vpc_zone_identifier: vpc_zone_identifier = self.vpc_zone_identifier if vpc_zone_identifier: # extract azs for vpcs subnet_ids = vpc_zone_identifier.split(",") subnets = self.autoscaling_backend.ec2_backend.get_all_subnets( subnet_ids=subnet_ids ) vpc_zones = [subnet.availability_zone for subnet in subnets] if availability_zones and set(availability_zones) != set(vpc_zones): raise AutoscalingClientError( "ValidationError", "The availability zones of the specified subnets and the Auto Scaling group do not match", ) availability_zones = vpc_zones elif not availability_zones: if not update: raise AutoscalingClientError( "ValidationError", "At least one Availability Zone or VPC Subnet is required.", ) return self.availability_zones = availability_zones self.vpc_zone_identifier = vpc_zone_identifier def _set_launch_configuration(self, launch_config_name, launch_template): if launch_config_name: self.launch_config = self.autoscaling_backend.launch_configurations[ launch_config_name ] self.launch_config_name = launch_config_name if launch_template: launch_template_id = launch_template.get("launch_template_id") launch_template_name = launch_template.get("launch_template_name") if not (launch_template_id or launch_template_name) or ( launch_template_id and launch_template_name ): raise ValidationError( "Valid requests must contain either launchTemplateId or LaunchTemplateName" ) if launch_template_id: self.launch_template = self.ec2_backend.get_launch_template( launch_template_id ) elif launch_template_name: self.launch_template = self.ec2_backend.get_launch_template_by_name( launch_template_name ) self.launch_template_version = launch_template["version"] @staticmethod def __set_string_propagate_at_launch_booleans_on_tags(tags): bool_to_string = {True: "true", False: "false"} for tag in tags: if "PropagateAtLaunch" in tag: tag["PropagateAtLaunch"] = bool_to_string[tag["PropagateAtLaunch"]] return tags @staticmethod def cloudformation_name_type(): return "AutoScalingGroupName" @staticmethod def cloudformation_type(): # https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-autoscaling-autoscalinggroup.html return "AWS::AutoScaling::AutoScalingGroup" @classmethod def create_from_cloudformation_json( cls, resource_name, cloudformation_json, region_name, **kwargs ): properties = cloudformation_json["Properties"] launch_config_name = properties.get("LaunchConfigurationName") launch_template = { camelcase_to_underscores(k): v for k, v in properties.get("LaunchTemplate", {}).items() } load_balancer_names = properties.get("LoadBalancerNames", []) target_group_arns = properties.get("TargetGroupARNs", []) backend = autoscaling_backends[region_name] group = backend.create_auto_scaling_group( name=resource_name, availability_zones=properties.get("AvailabilityZones", []), desired_capacity=properties.get("DesiredCapacity"), max_size=properties.get("MaxSize"), min_size=properties.get("MinSize"), launch_config_name=launch_config_name, launch_template=launch_template, vpc_zone_identifier=( ",".join(properties.get("VPCZoneIdentifier", [])) or None ), default_cooldown=properties.get("Cooldown"), health_check_period=properties.get("HealthCheckGracePeriod"), health_check_type=properties.get("HealthCheckType"), load_balancers=load_balancer_names, target_group_arns=target_group_arns, placement_group=None, termination_policies=properties.get("TerminationPolicies", []), tags=cls.__set_string_propagate_at_launch_booleans_on_tags( properties.get("Tags", []) ), new_instances_protected_from_scale_in=properties.get( "NewInstancesProtectedFromScaleIn", False ), ) return group @classmethod def update_from_cloudformation_json( cls, original_resource, new_resource_name, cloudformation_json, region_name ): cls.delete_from_cloudformation_json( original_resource.name, cloudformation_json, region_name ) return cls.create_from_cloudformation_json( new_resource_name, cloudformation_json, region_name ) @classmethod def delete_from_cloudformation_json( cls, resource_name, cloudformation_json, region_name ): backend = autoscaling_backends[region_name] try: backend.delete_auto_scaling_group(resource_name) except KeyError: pass def delete(self, region_name): backend = autoscaling_backends[region_name] backend.delete_auto_scaling_group(self.name) @property def physical_resource_id(self): return self.name @property def image_id(self): if self.launch_template: version = self.launch_template.get_version(self.launch_template_version) return version.image_id return self.launch_config.image_id @property def instance_type(self): if self.launch_template: version = self.launch_template.get_version(self.launch_template_version) return version.instance_type return self.launch_config.instance_type @property def user_data(self): if self.launch_template: version = self.launch_template.get_version(self.launch_template_version) return version.user_data return self.launch_config.user_data @property def security_groups(self): if self.launch_template: version = self.launch_template.get_version(self.launch_template_version) return version.security_groups return self.launch_config.security_groups def update( self, availability_zones, desired_capacity, max_size, min_size, launch_config_name, launch_template, vpc_zone_identifier, health_check_period, health_check_type, new_instances_protected_from_scale_in=None, ): self._set_azs_and_vpcs(availability_zones, vpc_zone_identifier, update=True) if max_size is not None: self.max_size = max_size if min_size is not None: self.min_size = min_size if desired_capacity is None: if min_size is not None and min_size > len(self.instance_states): desired_capacity = min_size if max_size is not None and max_size < len(self.instance_states): desired_capacity = max_size self._set_launch_configuration(launch_config_name, launch_template) if health_check_period is not None: self.health_check_period = health_check_period if health_check_type is not None: self.health_check_type = health_check_type if new_instances_protected_from_scale_in is not None: self.new_instances_protected_from_scale_in = ( new_instances_protected_from_scale_in ) if desired_capacity is not None: self.set_desired_capacity(desired_capacity) def set_desired_capacity(self, new_capacity): if new_capacity is None: self.desired_capacity = self.min_size else: self.desired_capacity = new_capacity curr_instance_count = len(self.active_instances()) if self.desired_capacity == curr_instance_count: pass # Nothing to do here elif self.desired_capacity > curr_instance_count: # Need more instances count_needed = int(self.desired_capacity) - int(curr_instance_count) propagated_tags = self.get_propagated_tags() self.replace_autoscaling_group_instances(count_needed, propagated_tags) else: # Need to remove some instances count_to_remove = curr_instance_count - self.desired_capacity instances_to_remove = [ # only remove unprotected state for state in self.instance_states if not state.protected_from_scale_in ][:count_to_remove] if instances_to_remove: # just in case not instances to remove instance_ids_to_remove = [ instance.instance.id for instance in instances_to_remove ] self.autoscaling_backend.ec2_backend.terminate_instances( instance_ids_to_remove ) self.instance_states = list( set(self.instance_states) - set(instances_to_remove) ) if self.name in self.autoscaling_backend.autoscaling_groups: self.autoscaling_backend.update_attached_elbs(self.name) self.autoscaling_backend.update_attached_target_groups(self.name) def get_propagated_tags(self): propagated_tags = {} for tag in self.tags: # boto uses 'propagate_at_launch # boto3 and cloudformation use PropagateAtLaunch if "propagate_at_launch" in tag and tag["propagate_at_launch"] == "true": propagated_tags[tag["key"]] = tag["value"] if "PropagateAtLaunch" in tag and tag["PropagateAtLaunch"] == "true": propagated_tags[tag["Key"]] = tag["Value"] return propagated_tags def replace_autoscaling_group_instances(self, count_needed, propagated_tags): propagated_tags[ASG_NAME_TAG] = self.name reservation = self.autoscaling_backend.ec2_backend.add_instances( self.image_id, count_needed, self.user_data, self.security_groups, instance_type=self.instance_type, tags={"instance": propagated_tags}, placement=random.choice(self.availability_zones), ) for instance in reservation.instances: instance.autoscaling_group = self self.instance_states.append( InstanceState( instance, protected_from_scale_in=self.new_instances_protected_from_scale_in, ) ) def append_target_groups(self, target_group_arns): append = [x for x in target_group_arns if x not in self.target_group_arns] self.target_group_arns.extend(append) class AutoScalingBackend(BaseBackend): def __init__(self, region_name): self.autoscaling_groups = OrderedDict() self.launch_configurations = OrderedDict() self.policies = {} self.lifecycle_hooks = {} self.ec2_backend = ec2_backends[region_name] self.elb_backend = elb_backends[region_name] self.elbv2_backend = elbv2_backends[region_name] self.region = region_name def reset(self): region = self.region self.__dict__ = {} self.__init__(region) @staticmethod def default_vpc_endpoint_service(service_region, zones): """Default VPC endpoint service.""" return BaseBackend.default_vpc_endpoint_service_factory( service_region, zones, "autoscaling" ) + BaseBackend.default_vpc_endpoint_service_factory( service_region, zones, "autoscaling-plans" ) def create_launch_configuration( self, name, image_id, key_name, kernel_id, ramdisk_id, security_groups, user_data, instance_type, instance_monitoring, instance_profile_name, spot_price, ebs_optimized, associate_public_ip_address, block_device_mappings, instance_id=None, ): valid_requests = [ instance_id is not None, image_id is not None and instance_type is not None, ] if not any(valid_requests): raise ValidationError( "Valid requests must contain either the InstanceID parameter or both the ImageId and InstanceType parameters." ) if instance_id is not None: # TODO: https://docs.aws.amazon.com/autoscaling/ec2/userguide/create-lc-with-instanceID.html pass launch_configuration = FakeLaunchConfiguration( name=name, image_id=image_id, key_name=key_name, kernel_id=kernel_id, ramdisk_id=ramdisk_id, security_groups=security_groups, user_data=user_data, instance_type=instance_type, instance_monitoring=instance_monitoring, instance_profile_name=instance_profile_name, spot_price=spot_price, ebs_optimized=ebs_optimized, associate_public_ip_address=associate_public_ip_address, block_device_mapping_dict=block_device_mappings, ) self.launch_configurations[name] = launch_configuration return launch_configuration def describe_launch_configurations(self, names): configurations = self.launch_configurations.values() if names: return [ configuration for configuration in configurations if configuration.name in names ] else: return list(configurations) def delete_launch_configuration(self, launch_configuration_name): self.launch_configurations.pop(launch_configuration_name, None) def create_auto_scaling_group( self, name, availability_zones, desired_capacity, max_size, min_size, launch_config_name, launch_template, vpc_zone_identifier, default_cooldown, health_check_period, health_check_type, load_balancers, target_group_arns, placement_group, termination_policies, tags, new_instances_protected_from_scale_in=False, instance_id=None, ): def make_int(value): return int(value) if value is not None else value max_size = make_int(max_size) min_size = make_int(min_size) desired_capacity = make_int(desired_capacity) default_cooldown = make_int(default_cooldown) if health_check_period is None: health_check_period = 300 else: health_check_period = make_int(health_check_period) # TODO: Add MixedInstancesPolicy once implemented. # Verify only a single launch config-like parameter is provided. params = [launch_config_name, launch_template, instance_id] num_params = sum([1 for param in params if param]) if num_params != 1: raise ValidationError( "Valid requests must contain either LaunchTemplate, LaunchConfigurationName, " "InstanceId or MixedInstancesPolicy parameter." ) if instance_id: try: instance = self.ec2_backend.get_instance(instance_id) launch_config_name = name FakeLaunchConfiguration.create_from_instance( launch_config_name, instance, self ) except InvalidInstanceIdError: raise InvalidInstanceError(instance_id) group = FakeAutoScalingGroup( name=name, availability_zones=availability_zones, desired_capacity=desired_capacity, max_size=max_size, min_size=min_size, launch_config_name=launch_config_name, launch_template=launch_template, vpc_zone_identifier=vpc_zone_identifier, default_cooldown=default_cooldown, health_check_period=health_check_period, health_check_type=health_check_type, load_balancers=load_balancers, target_group_arns=target_group_arns, placement_group=placement_group, termination_policies=termination_policies, autoscaling_backend=self, ec2_backend=self.ec2_backend, tags=tags, new_instances_protected_from_scale_in=new_instances_protected_from_scale_in, ) self.autoscaling_groups[name] = group self.update_attached_elbs(group.name) self.update_attached_target_groups(group.name) return group def update_auto_scaling_group( self, name, availability_zones, desired_capacity, max_size, min_size, launch_config_name, launch_template, vpc_zone_identifier, health_check_period, health_check_type, new_instances_protected_from_scale_in=None, ): """ The parameter DefaultCooldown, PlacementGroup, TerminationPolicies are not yet implemented """ # TODO: Add MixedInstancesPolicy once implemented. # Verify only a single launch config-like parameter is provided. if launch_config_name and launch_template: raise ValidationError( "Valid requests must contain either LaunchTemplate, LaunchConfigurationName " "or MixedInstancesPolicy parameter." ) group = self.autoscaling_groups[name] group.update( availability_zones=availability_zones, desired_capacity=desired_capacity, max_size=max_size, min_size=min_size, launch_config_name=launch_config_name, launch_template=launch_template, vpc_zone_identifier=vpc_zone_identifier, health_check_period=health_check_period, health_check_type=health_check_type, new_instances_protected_from_scale_in=new_instances_protected_from_scale_in, ) return group def describe_auto_scaling_groups(self, names): groups = self.autoscaling_groups.values() if names: return [group for group in groups if group.name in names] else: return list(groups) def delete_auto_scaling_group(self, group_name): self.set_desired_capacity(group_name, 0) self.autoscaling_groups.pop(group_name, None) def describe_auto_scaling_instances(self, instance_ids): instance_states = [] for group in self.autoscaling_groups.values(): instance_states.extend( [ x for x in group.instance_states if not instance_ids or x.instance.id in instance_ids ] ) return instance_states def attach_instances(self, group_name, instance_ids): group = self.autoscaling_groups[group_name] original_size = len(group.instance_states) if (original_size + len(instance_ids)) > group.max_size: raise ResourceContentionError else: group.desired_capacity = original_size + len(instance_ids) new_instances = [ InstanceState( self.ec2_backend.get_instance(x), protected_from_scale_in=group.new_instances_protected_from_scale_in, autoscaling_group=group, ) for x in instance_ids ] for instance in new_instances: self.ec2_backend.create_tags( [instance.instance.id], {ASG_NAME_TAG: group.name} ) group.instance_states.extend(new_instances) self.update_attached_elbs(group.name) self.update_attached_target_groups(group.name) def set_instance_health(self, instance_id, health_status): """ The ShouldRespectGracePeriod-parameter is not yet implemented """ instance = self.ec2_backend.get_instance(instance_id) instance_state = next( instance_state for group in self.autoscaling_groups.values() for instance_state in group.instance_states if instance_state.instance.id == instance.id ) instance_state.health_status = health_status def detach_instances(self, group_name, instance_ids, should_decrement): group = self.autoscaling_groups[group_name] original_size = group.desired_capacity detached_instances = [ x for x in group.instance_states if x.instance.id in instance_ids ] for instance in detached_instances: self.ec2_backend.delete_tags( [instance.instance.id], {ASG_NAME_TAG: group.name} ) new_instance_state = [ x for x in group.instance_states if x.instance.id not in instance_ids ] group.instance_states = new_instance_state if should_decrement: group.desired_capacity = original_size - len(instance_ids) group.set_desired_capacity(group.desired_capacity) return detached_instances def set_desired_capacity(self, group_name, desired_capacity): group = self.autoscaling_groups[group_name] group.set_desired_capacity(desired_capacity) self.update_attached_elbs(group_name) def change_capacity(self, group_name, scaling_adjustment): group = self.autoscaling_groups[group_name] desired_capacity = group.desired_capacity + scaling_adjustment self.set_desired_capacity(group_name, desired_capacity) def change_capacity_percent(self, group_name, scaling_adjustment): """http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/as-scale-based-on-demand.html If PercentChangeInCapacity returns a value between 0 and 1, Auto Scaling will round it off to 1. If the PercentChangeInCapacity returns a value greater than 1, Auto Scaling will round it off to the lower value. For example, if PercentChangeInCapacity returns 12.5, then Auto Scaling will round it off to 12.""" group = self.autoscaling_groups[group_name] percent_change = 1 + (scaling_adjustment / 100.0) desired_capacity = group.desired_capacity * percent_change if group.desired_capacity < desired_capacity < group.desired_capacity + 1: desired_capacity = group.desired_capacity + 1 else: desired_capacity = int(desired_capacity) self.set_desired_capacity(group_name, desired_capacity) def create_lifecycle_hook(self, name, as_name, transition, timeout, result): lifecycle_hook = FakeLifeCycleHook(name, as_name, transition, timeout, result) self.lifecycle_hooks["%s_%s" % (as_name, name)] = lifecycle_hook return lifecycle_hook def describe_lifecycle_hooks(self, as_name, lifecycle_hook_names=None): return [ lifecycle_hook for lifecycle_hook in self.lifecycle_hooks.values() if (lifecycle_hook.as_name == as_name) and ( not lifecycle_hook_names or lifecycle_hook.name in lifecycle_hook_names ) ] def delete_lifecycle_hook(self, as_name, name): self.lifecycle_hooks.pop("%s_%s" % (as_name, name), None) def put_scaling_policy( self, name, policy_type, metric_aggregation_type, adjustment_type, as_name, min_adjustment_magnitude, scaling_adjustment, cooldown, target_tracking_config, step_adjustments, estimated_instance_warmup, predictive_scaling_configuration, ): policy = FakeScalingPolicy( name, policy_type, metric_aggregation_type, adjustment_type=adjustment_type, as_name=as_name, min_adjustment_magnitude=min_adjustment_magnitude, scaling_adjustment=scaling_adjustment, cooldown=cooldown, target_tracking_config=target_tracking_config, step_adjustments=step_adjustments, estimated_instance_warmup=estimated_instance_warmup, predictive_scaling_configuration=predictive_scaling_configuration, autoscaling_backend=self, ) self.policies[name] = policy return policy def describe_policies( self, autoscaling_group_name=None, policy_names=None, policy_types=None ): return [ policy for policy in self.policies.values() if (not autoscaling_group_name or policy.as_name == autoscaling_group_name) and (not policy_names or policy.name in policy_names) and (not policy_types or policy.policy_type in policy_types) ] def delete_policy(self, group_name): self.policies.pop(group_name, None) def execute_policy(self, group_name): policy = self.policies[group_name] policy.execute() def update_attached_elbs(self, group_name): group = self.autoscaling_groups[group_name] group_instance_ids = set( state.instance.id for state in group.active_instances() ) # skip this if group.load_balancers is empty # otherwise elb_backend.describe_load_balancers returns all available load balancers if not group.load_balancers: return try: elbs = self.elb_backend.describe_load_balancers(names=group.load_balancers) except LoadBalancerNotFoundError: # ELBs can be deleted before their autoscaling group return for elb in elbs: elb_instace_ids = set(elb.instance_ids) self.elb_backend.register_instances( elb.name, group_instance_ids - elb_instace_ids, from_autoscaling=True ) self.elb_backend.deregister_instances( elb.name, elb_instace_ids - group_instance_ids, from_autoscaling=True ) def update_attached_target_groups(self, group_name): group = self.autoscaling_groups[group_name] group_instance_ids = set(state.instance.id for state in group.instance_states) # no action necessary if target_group_arns is empty if not group.target_group_arns: return target_groups = self.elbv2_backend.describe_target_groups( target_group_arns=group.target_group_arns, load_balancer_arn=None, names=None, ) for target_group in target_groups: asg_targets = [ {"id": x, "port": target_group.port} for x in group_instance_ids ] self.elbv2_backend.register_targets(target_group.arn, (asg_targets)) def create_or_update_tags(self, tags): for tag in tags: group_name = tag["resource_id"] group = self.autoscaling_groups[group_name] old_tags = group.tags new_tags = [] # if key was in old_tags, update old tag for old_tag in old_tags: if old_tag["key"] == tag["key"]: new_tags.append(tag) else: new_tags.append(old_tag) # if key was never in old_tag's add it (create tag) if not any(new_tag["key"] == tag["key"] for new_tag in new_tags): new_tags.append(tag) group.tags = new_tags def delete_tags(self, tags): for tag_to_delete in tags: group_name = tag_to_delete["resource_id"] key_to_delete = tag_to_delete["key"] group = self.autoscaling_groups[group_name] old_tags = group.tags group.tags = [x for x in old_tags if x["key"] != key_to_delete] def attach_load_balancers(self, group_name, load_balancer_names): group = self.autoscaling_groups[group_name] group.load_balancers.extend( [x for x in load_balancer_names if x not in group.load_balancers] ) self.update_attached_elbs(group_name) def describe_load_balancers(self, group_name): return self.autoscaling_groups[group_name].load_balancers def detach_load_balancers(self, group_name, load_balancer_names): group = self.autoscaling_groups[group_name] group_instance_ids = set(state.instance.id for state in group.instance_states) elbs = self.elb_backend.describe_load_balancers(names=group.load_balancers) for elb in elbs: self.elb_backend.deregister_instances( elb.name, group_instance_ids, from_autoscaling=True ) group.load_balancers = [ x for x in group.load_balancers if x not in load_balancer_names ] def attach_load_balancer_target_groups(self, group_name, target_group_arns): group = self.autoscaling_groups[group_name] group.append_target_groups(target_group_arns) self.update_attached_target_groups(group_name) def describe_load_balancer_target_groups(self, group_name): return self.autoscaling_groups[group_name].target_group_arns def detach_load_balancer_target_groups(self, group_name, target_group_arns): group = self.autoscaling_groups[group_name] group.target_group_arns = [ x for x in group.target_group_arns if x not in target_group_arns ] for target_group in target_group_arns: asg_targets = [{"id": x.instance.id} for x in group.instance_states] self.elbv2_backend.deregister_targets(target_group, (asg_targets)) def suspend_processes(self, group_name, scaling_processes): all_proc_names = [ "Launch", "Terminate", "AddToLoadBalancer", "AlarmNotification", "AZRebalance", "HealthCheck", "InstanceRefresh", "ReplaceUnhealthy", "ScheduledActions", ] group = self.autoscaling_groups[group_name] set_to_add = set(scaling_processes or all_proc_names) group.suspended_processes = list( set(group.suspended_processes).union(set_to_add) ) def resume_processes(self, group_name, scaling_processes): group = self.autoscaling_groups[group_name] if scaling_processes: group.suspended_processes = list( set(group.suspended_processes).difference(set(scaling_processes)) ) else: group.suspended_processes = [] def set_instance_protection( self, group_name, instance_ids, protected_from_scale_in ): group = self.autoscaling_groups[group_name] protected_instances = [ x for x in group.instance_states if x.instance.id in instance_ids ] for instance in protected_instances: instance.protected_from_scale_in = protected_from_scale_in def notify_terminate_instances(self, instance_ids): for ( autoscaling_group_name, autoscaling_group, ) in self.autoscaling_groups.items(): original_active_instance_count = len(autoscaling_group.active_instances()) autoscaling_group.instance_states = list( filter( lambda i_state: i_state.instance.id not in instance_ids, autoscaling_group.instance_states, ) ) difference = original_active_instance_count - len( autoscaling_group.active_instances() ) if difference > 0: autoscaling_group.replace_autoscaling_group_instances( difference, autoscaling_group.get_propagated_tags() ) self.update_attached_elbs(autoscaling_group_name) def enter_standby_instances(self, group_name, instance_ids, should_decrement): group = self.autoscaling_groups[group_name] original_size = group.desired_capacity standby_instances = [] for instance_state in group.instance_states: if instance_state.instance.id in instance_ids: instance_state.lifecycle_state = "Standby" standby_instances.append(instance_state) if should_decrement: group.desired_capacity = group.desired_capacity - len(instance_ids) group.set_desired_capacity(group.desired_capacity) return standby_instances, original_size, group.desired_capacity def exit_standby_instances(self, group_name, instance_ids): group = self.autoscaling_groups[group_name] original_size = group.desired_capacity standby_instances = [] for instance_state in group.instance_states: if instance_state.instance.id in instance_ids: instance_state.lifecycle_state = "InService" standby_instances.append(instance_state) group.desired_capacity = group.desired_capacity + len(instance_ids) group.set_desired_capacity(group.desired_capacity) return standby_instances, original_size, group.desired_capacity def terminate_instance(self, instance_id, should_decrement): instance = self.ec2_backend.get_instance(instance_id) instance_state = next( instance_state for group in self.autoscaling_groups.values() for instance_state in group.instance_states if instance_state.instance.id == instance.id ) group = instance.autoscaling_group original_size = group.desired_capacity self.detach_instances(group.name, [instance.id], should_decrement) self.ec2_backend.terminate_instances([instance.id]) return instance_state, original_size, group.desired_capacity def describe_tags(self, filters): """ Pagination is not yet implemented. Only the `auto-scaling-group` and `propagate-at-launch` filters are implemented. """ resources = self.autoscaling_groups.values() tags = list(itertools.chain(*[r.tags for r in resources])) for f in filters: if f["Name"] == "auto-scaling-group": tags = [t for t in tags if t["resource_id"] in f["Values"]] if f["Name"] == "propagate-at-launch": values = [v.lower() for v in f["Values"]] tags = [ t for t in tags if t.get("propagate_at_launch", "").lower() in values ] return tags autoscaling_backends = BackendDict(AutoScalingBackend, "ec2")
py
b401442ef5eb3bc058ed1290403af040198ac568
# mininode.py - Deuscoin P2P network half-a-node # # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # This python code was modified from ArtForz' public domain half-a-node, as # found in the mini-node branch of http://github.com/jgarzik/pynode. # # NodeConn: an object which manages p2p connectivity to a deuscoin node # NodeConnCB: a base class that describes the interface for receiving # callbacks with network messages from a NodeConn # CBlock, CTransaction, CBlockHeader, CTxIn, CTxOut, etc....: # data structures that should map to corresponding structures in # deuscoin/primitives # msg_block, msg_tx, msg_headers, etc.: # data structures that represent network messages # ser_*, deser_*: functions that handle serialization/deserialization import struct import socket import asyncore import binascii import time import sys import random import cStringIO import hashlib from threading import RLock from threading import Thread import logging import copy BIP0031_VERSION = 60000 MY_VERSION = 60001 # past bip-31 for ping/pong MY_SUBVERSION = "/python-mininode-tester:0.0.1/" MAX_INV_SZ = 50000 MAX_BLOCK_SIZE = 1000000 # Keep our own socket map for asyncore, so that we can track disconnects # ourselves (to workaround an issue with closing an asyncore socket when # using select) mininode_socket_map = dict() # One lock for synchronizing all data access between the networking thread (see # NetworkThread below) and the thread running the test logic. For simplicity, # NodeConn acquires this lock whenever delivering a message to to a NodeConnCB, # and whenever adding anything to the send buffer (in send_message()). This # lock should be acquired in the thread running the test logic to synchronize # access to any data shared with the NodeConnCB or NodeConn. mininode_lock = RLock() # Serialization/deserialization tools def sha256(s): return hashlib.new('sha256', s).digest() def hash256(s): return sha256(sha256(s)) def deser_string(f): nit = struct.unpack("<B", f.read(1))[0] if nit == 253: nit = struct.unpack("<H", f.read(2))[0] elif nit == 254: nit = struct.unpack("<I", f.read(4))[0] elif nit == 255: nit = struct.unpack("<Q", f.read(8))[0] return f.read(nit) def ser_string(s): if len(s) < 253: return chr(len(s)) + s elif len(s) < 0x10000: return chr(253) + struct.pack("<H", len(s)) + s elif len(s) < 0x100000000L: return chr(254) + struct.pack("<I", len(s)) + s return chr(255) + struct.pack("<Q", len(s)) + s def deser_uint256(f): r = 0L for i in xrange(8): t = struct.unpack("<I", f.read(4))[0] r += t << (i * 32) return r def ser_uint256(u): rs = "" for i in xrange(8): rs += struct.pack("<I", u & 0xFFFFFFFFL) u >>= 32 return rs def uint256_from_str(s): r = 0L t = struct.unpack("<IIIIIIII", s[:32]) for i in xrange(8): r += t[i] << (i * 32) return r def uint256_from_compact(c): nbytes = (c >> 24) & 0xFF v = (c & 0xFFFFFFL) << (8 * (nbytes - 3)) return v def deser_vector(f, c): nit = struct.unpack("<B", f.read(1))[0] if nit == 253: nit = struct.unpack("<H", f.read(2))[0] elif nit == 254: nit = struct.unpack("<I", f.read(4))[0] elif nit == 255: nit = struct.unpack("<Q", f.read(8))[0] r = [] for i in xrange(nit): t = c() t.deserialize(f) r.append(t) return r def ser_vector(l): r = "" if len(l) < 253: r = chr(len(l)) elif len(l) < 0x10000: r = chr(253) + struct.pack("<H", len(l)) elif len(l) < 0x100000000L: r = chr(254) + struct.pack("<I", len(l)) else: r = chr(255) + struct.pack("<Q", len(l)) for i in l: r += i.serialize() return r def deser_uint256_vector(f): nit = struct.unpack("<B", f.read(1))[0] if nit == 253: nit = struct.unpack("<H", f.read(2))[0] elif nit == 254: nit = struct.unpack("<I", f.read(4))[0] elif nit == 255: nit = struct.unpack("<Q", f.read(8))[0] r = [] for i in xrange(nit): t = deser_uint256(f) r.append(t) return r def ser_uint256_vector(l): r = "" if len(l) < 253: r = chr(len(l)) elif len(l) < 0x10000: r = chr(253) + struct.pack("<H", len(l)) elif len(l) < 0x100000000L: r = chr(254) + struct.pack("<I", len(l)) else: r = chr(255) + struct.pack("<Q", len(l)) for i in l: r += ser_uint256(i) return r def deser_string_vector(f): nit = struct.unpack("<B", f.read(1))[0] if nit == 253: nit = struct.unpack("<H", f.read(2))[0] elif nit == 254: nit = struct.unpack("<I", f.read(4))[0] elif nit == 255: nit = struct.unpack("<Q", f.read(8))[0] r = [] for i in xrange(nit): t = deser_string(f) r.append(t) return r def ser_string_vector(l): r = "" if len(l) < 253: r = chr(len(l)) elif len(l) < 0x10000: r = chr(253) + struct.pack("<H", len(l)) elif len(l) < 0x100000000L: r = chr(254) + struct.pack("<I", len(l)) else: r = chr(255) + struct.pack("<Q", len(l)) for sv in l: r += ser_string(sv) return r def deser_int_vector(f): nit = struct.unpack("<B", f.read(1))[0] if nit == 253: nit = struct.unpack("<H", f.read(2))[0] elif nit == 254: nit = struct.unpack("<I", f.read(4))[0] elif nit == 255: nit = struct.unpack("<Q", f.read(8))[0] r = [] for i in xrange(nit): t = struct.unpack("<i", f.read(4))[0] r.append(t) return r def ser_int_vector(l): r = "" if len(l) < 253: r = chr(len(l)) elif len(l) < 0x10000: r = chr(253) + struct.pack("<H", len(l)) elif len(l) < 0x100000000L: r = chr(254) + struct.pack("<I", len(l)) else: r = chr(255) + struct.pack("<Q", len(l)) for i in l: r += struct.pack("<i", i) return r # Deserialize from a hex string representation (eg from RPC) def FromHex(obj, hex_string): obj.deserialize(cStringIO.StringIO(binascii.unhexlify(hex_string))) return obj # Convert a binary-serializable object to hex (eg for submission via RPC) def ToHex(obj): return binascii.hexlify(obj.serialize()).decode('utf-8') # Objects that map to deuscoind objects, which can be serialized/deserialized class CAddress(object): def __init__(self): self.nServices = 1 self.pchReserved = "\x00" * 10 + "\xff" * 2 self.ip = "0.0.0.0" self.port = 0 def deserialize(self, f): self.nServices = struct.unpack("<Q", f.read(8))[0] self.pchReserved = f.read(12) self.ip = socket.inet_ntoa(f.read(4)) self.port = struct.unpack(">H", f.read(2))[0] def serialize(self): r = "" r += struct.pack("<Q", self.nServices) r += self.pchReserved r += socket.inet_aton(self.ip) r += struct.pack(">H", self.port) return r def __repr__(self): return "CAddress(nServices=%i ip=%s port=%i)" % (self.nServices, self.ip, self.port) class CInv(object): typemap = { 0: "Error", 1: "TX", 2: "Block"} def __init__(self, t=0, h=0L): self.type = t self.hash = h def deserialize(self, f): self.type = struct.unpack("<i", f.read(4))[0] self.hash = deser_uint256(f) def serialize(self): r = "" r += struct.pack("<i", self.type) r += ser_uint256(self.hash) return r def __repr__(self): return "CInv(type=%s hash=%064x)" \ % (self.typemap[self.type], self.hash) class CBlockLocator(object): def __init__(self): self.nVersion = MY_VERSION self.vHave = [] def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.vHave = deser_uint256_vector(f) def serialize(self): r = "" r += struct.pack("<i", self.nVersion) r += ser_uint256_vector(self.vHave) return r def __repr__(self): return "CBlockLocator(nVersion=%i vHave=%s)" \ % (self.nVersion, repr(self.vHave)) class COutPoint(object): def __init__(self, hash=0, n=0): self.hash = hash self.n = n def deserialize(self, f): self.hash = deser_uint256(f) self.n = struct.unpack("<I", f.read(4))[0] def serialize(self): r = "" r += ser_uint256(self.hash) r += struct.pack("<I", self.n) return r def __repr__(self): return "COutPoint(hash=%064x n=%i)" % (self.hash, self.n) class CTxIn(object): def __init__(self, outpoint=None, scriptSig="", nSequence=0): if outpoint is None: self.prevout = COutPoint() else: self.prevout = outpoint self.scriptSig = scriptSig self.nSequence = nSequence def deserialize(self, f): self.prevout = COutPoint() self.prevout.deserialize(f) self.scriptSig = deser_string(f) self.nSequence = struct.unpack("<I", f.read(4))[0] def serialize(self): r = "" r += self.prevout.serialize() r += ser_string(self.scriptSig) r += struct.pack("<I", self.nSequence) return r def __repr__(self): return "CTxIn(prevout=%s scriptSig=%s nSequence=%i)" \ % (repr(self.prevout), binascii.hexlify(self.scriptSig), self.nSequence) class CTxOut(object): def __init__(self, nValue=0, scriptPubKey=""): self.nValue = nValue self.scriptPubKey = scriptPubKey def deserialize(self, f): self.nValue = struct.unpack("<q", f.read(8))[0] self.scriptPubKey = deser_string(f) def serialize(self): r = "" r += struct.pack("<q", self.nValue) r += ser_string(self.scriptPubKey) return r def __repr__(self): return "CTxOut(nValue=%i.%08i scriptPubKey=%s)" \ % (self.nValue // 100000000, self.nValue % 100000000, binascii.hexlify(self.scriptPubKey)) class CTransaction(object): def __init__(self, tx=None): if tx is None: self.nVersion = 1 self.vin = [] self.vout = [] self.nLockTime = 0 self.sha256 = None self.hash = None else: self.nVersion = tx.nVersion self.vin = copy.deepcopy(tx.vin) self.vout = copy.deepcopy(tx.vout) self.nLockTime = tx.nLockTime self.sha256 = None self.hash = None def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.vin = deser_vector(f, CTxIn) self.vout = deser_vector(f, CTxOut) self.nLockTime = struct.unpack("<I", f.read(4))[0] self.sha256 = None self.hash = None def serialize(self): r = "" r += struct.pack("<i", self.nVersion) r += ser_vector(self.vin) r += ser_vector(self.vout) r += struct.pack("<I", self.nLockTime) return r def rehash(self): self.sha256 = None self.calc_sha256() def calc_sha256(self): if self.sha256 is None: self.sha256 = uint256_from_str(hash256(self.serialize())) self.hash = hash256(self.serialize())[::-1].encode('hex_codec') def is_valid(self): self.calc_sha256() for tout in self.vout: if tout.nValue < 0 or tout.nValue > 21000000L * 100000000L: return False return True def __repr__(self): return "CTransaction(nVersion=%i vin=%s vout=%s nLockTime=%i)" \ % (self.nVersion, repr(self.vin), repr(self.vout), self.nLockTime) class CBlockHeader(object): def __init__(self, header=None): if header is None: self.set_null() else: self.nVersion = header.nVersion self.hashPrevBlock = header.hashPrevBlock self.hashMerkleRoot = header.hashMerkleRoot self.nTime = header.nTime self.nBits = header.nBits self.nNonce = header.nNonce self.sha256 = header.sha256 self.hash = header.hash self.calc_sha256() def set_null(self): self.nVersion = 1 self.hashPrevBlock = 0 self.hashMerkleRoot = 0 self.nTime = 0 self.nBits = 0 self.nNonce = 0 self.sha256 = None self.hash = None def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.hashPrevBlock = deser_uint256(f) self.hashMerkleRoot = deser_uint256(f) self.nTime = struct.unpack("<I", f.read(4))[0] self.nBits = struct.unpack("<I", f.read(4))[0] self.nNonce = struct.unpack("<I", f.read(4))[0] self.sha256 = None self.hash = None def serialize(self): r = "" r += struct.pack("<i", self.nVersion) r += ser_uint256(self.hashPrevBlock) r += ser_uint256(self.hashMerkleRoot) r += struct.pack("<I", self.nTime) r += struct.pack("<I", self.nBits) r += struct.pack("<I", self.nNonce) return r def calc_sha256(self): if self.sha256 is None: r = "" r += struct.pack("<i", self.nVersion) r += ser_uint256(self.hashPrevBlock) r += ser_uint256(self.hashMerkleRoot) r += struct.pack("<I", self.nTime) r += struct.pack("<I", self.nBits) r += struct.pack("<I", self.nNonce) self.sha256 = uint256_from_str(hash256(r)) self.hash = hash256(r)[::-1].encode('hex_codec') def rehash(self): self.sha256 = None self.calc_sha256() return self.sha256 def __repr__(self): return "CBlockHeader(nVersion=%i hashPrevBlock=%064x hashMerkleRoot=%064x nTime=%s nBits=%08x nNonce=%08x)" \ % (self.nVersion, self.hashPrevBlock, self.hashMerkleRoot, time.ctime(self.nTime), self.nBits, self.nNonce) class CBlock(CBlockHeader): def __init__(self, header=None): super(CBlock, self).__init__(header) self.vtx = [] def deserialize(self, f): super(CBlock, self).deserialize(f) self.vtx = deser_vector(f, CTransaction) def serialize(self): r = "" r += super(CBlock, self).serialize() r += ser_vector(self.vtx) return r def calc_merkle_root(self): hashes = [] for tx in self.vtx: tx.calc_sha256() hashes.append(ser_uint256(tx.sha256)) while len(hashes) > 1: newhashes = [] for i in xrange(0, len(hashes), 2): i2 = min(i+1, len(hashes)-1) newhashes.append(hash256(hashes[i] + hashes[i2])) hashes = newhashes return uint256_from_str(hashes[0]) def is_valid(self): self.calc_sha256() target = uint256_from_compact(self.nBits) if self.sha256 > target: return False for tx in self.vtx: if not tx.is_valid(): return False if self.calc_merkle_root() != self.hashMerkleRoot: return False return True def solve(self): self.rehash() target = uint256_from_compact(self.nBits) while self.sha256 > target: self.nNonce += 1 self.rehash() def __repr__(self): return "CBlock(nVersion=%i hashPrevBlock=%064x hashMerkleRoot=%064x nTime=%s nBits=%08x nNonce=%08x vtx=%s)" \ % (self.nVersion, self.hashPrevBlock, self.hashMerkleRoot, time.ctime(self.nTime), self.nBits, self.nNonce, repr(self.vtx)) class CUnsignedAlert(object): def __init__(self): self.nVersion = 1 self.nRelayUntil = 0 self.nExpiration = 0 self.nID = 0 self.nCancel = 0 self.setCancel = [] self.nMinVer = 0 self.nMaxVer = 0 self.setSubVer = [] self.nPriority = 0 self.strComment = "" self.strStatusBar = "" self.strReserved = "" def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.nRelayUntil = struct.unpack("<q", f.read(8))[0] self.nExpiration = struct.unpack("<q", f.read(8))[0] self.nID = struct.unpack("<i", f.read(4))[0] self.nCancel = struct.unpack("<i", f.read(4))[0] self.setCancel = deser_int_vector(f) self.nMinVer = struct.unpack("<i", f.read(4))[0] self.nMaxVer = struct.unpack("<i", f.read(4))[0] self.setSubVer = deser_string_vector(f) self.nPriority = struct.unpack("<i", f.read(4))[0] self.strComment = deser_string(f) self.strStatusBar = deser_string(f) self.strReserved = deser_string(f) def serialize(self): r = "" r += struct.pack("<i", self.nVersion) r += struct.pack("<q", self.nRelayUntil) r += struct.pack("<q", self.nExpiration) r += struct.pack("<i", self.nID) r += struct.pack("<i", self.nCancel) r += ser_int_vector(self.setCancel) r += struct.pack("<i", self.nMinVer) r += struct.pack("<i", self.nMaxVer) r += ser_string_vector(self.setSubVer) r += struct.pack("<i", self.nPriority) r += ser_string(self.strComment) r += ser_string(self.strStatusBar) r += ser_string(self.strReserved) return r def __repr__(self): return "CUnsignedAlert(nVersion %d, nRelayUntil %d, nExpiration %d, nID %d, nCancel %d, nMinVer %d, nMaxVer %d, nPriority %d, strComment %s, strStatusBar %s, strReserved %s)" \ % (self.nVersion, self.nRelayUntil, self.nExpiration, self.nID, self.nCancel, self.nMinVer, self.nMaxVer, self.nPriority, self.strComment, self.strStatusBar, self.strReserved) class CAlert(object): def __init__(self): self.vchMsg = "" self.vchSig = "" def deserialize(self, f): self.vchMsg = deser_string(f) self.vchSig = deser_string(f) def serialize(self): r = "" r += ser_string(self.vchMsg) r += ser_string(self.vchSig) return r def __repr__(self): return "CAlert(vchMsg.sz %d, vchSig.sz %d)" \ % (len(self.vchMsg), len(self.vchSig)) # Objects that correspond to messages on the wire class msg_version(object): command = "version" def __init__(self): self.nVersion = MY_VERSION self.nServices = 1 self.nTime = time.time() self.addrTo = CAddress() self.addrFrom = CAddress() self.nNonce = random.getrandbits(64) self.strSubVer = MY_SUBVERSION self.nStartingHeight = -1 def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] if self.nVersion == 10300: self.nVersion = 300 self.nServices = struct.unpack("<Q", f.read(8))[0] self.nTime = struct.unpack("<q", f.read(8))[0] self.addrTo = CAddress() self.addrTo.deserialize(f) if self.nVersion >= 106: self.addrFrom = CAddress() self.addrFrom.deserialize(f) self.nNonce = struct.unpack("<Q", f.read(8))[0] self.strSubVer = deser_string(f) if self.nVersion >= 209: self.nStartingHeight = struct.unpack("<i", f.read(4))[0] else: self.nStartingHeight = None else: self.addrFrom = None self.nNonce = None self.strSubVer = None self.nStartingHeight = None def serialize(self): r = "" r += struct.pack("<i", self.nVersion) r += struct.pack("<Q", self.nServices) r += struct.pack("<q", self.nTime) r += self.addrTo.serialize() r += self.addrFrom.serialize() r += struct.pack("<Q", self.nNonce) r += ser_string(self.strSubVer) r += struct.pack("<i", self.nStartingHeight) return r def __repr__(self): return 'msg_version(nVersion=%i nServices=%i nTime=%s addrTo=%s addrFrom=%s nNonce=0x%016X strSubVer=%s nStartingHeight=%i)' \ % (self.nVersion, self.nServices, time.ctime(self.nTime), repr(self.addrTo), repr(self.addrFrom), self.nNonce, self.strSubVer, self.nStartingHeight) class msg_verack(object): command = "verack" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return "" def __repr__(self): return "msg_verack()" class msg_addr(object): command = "addr" def __init__(self): self.addrs = [] def deserialize(self, f): self.addrs = deser_vector(f, CAddress) def serialize(self): return ser_vector(self.addrs) def __repr__(self): return "msg_addr(addrs=%s)" % (repr(self.addrs)) class msg_alert(object): command = "alert" def __init__(self): self.alert = CAlert() def deserialize(self, f): self.alert = CAlert() self.alert.deserialize(f) def serialize(self): r = "" r += self.alert.serialize() return r def __repr__(self): return "msg_alert(alert=%s)" % (repr(self.alert), ) class msg_inv(object): command = "inv" def __init__(self, inv=None): if inv is None: self.inv = [] else: self.inv = inv def deserialize(self, f): self.inv = deser_vector(f, CInv) def serialize(self): return ser_vector(self.inv) def __repr__(self): return "msg_inv(inv=%s)" % (repr(self.inv)) class msg_getdata(object): command = "getdata" def __init__(self, inv=None): self.inv = inv if inv != None else [] def deserialize(self, f): self.inv = deser_vector(f, CInv) def serialize(self): return ser_vector(self.inv) def __repr__(self): return "msg_getdata(inv=%s)" % (repr(self.inv)) class msg_getblocks(object): command = "getblocks" def __init__(self): self.locator = CBlockLocator() self.hashstop = 0L def deserialize(self, f): self.locator = CBlockLocator() self.locator.deserialize(f) self.hashstop = deser_uint256(f) def serialize(self): r = "" r += self.locator.serialize() r += ser_uint256(self.hashstop) return r def __repr__(self): return "msg_getblocks(locator=%s hashstop=%064x)" \ % (repr(self.locator), self.hashstop) class msg_tx(object): command = "tx" def __init__(self, tx=CTransaction()): self.tx = tx def deserialize(self, f): self.tx.deserialize(f) def serialize(self): return self.tx.serialize() def __repr__(self): return "msg_tx(tx=%s)" % (repr(self.tx)) class msg_block(object): command = "block" def __init__(self, block=None): if block is None: self.block = CBlock() else: self.block = block def deserialize(self, f): self.block.deserialize(f) def serialize(self): return self.block.serialize() def __repr__(self): return "msg_block(block=%s)" % (repr(self.block)) class msg_getaddr(object): command = "getaddr" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return "" def __repr__(self): return "msg_getaddr()" class msg_ping_prebip31(object): command = "ping" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return "" def __repr__(self): return "msg_ping() (pre-bip31)" class msg_ping(object): command = "ping" def __init__(self, nonce=0L): self.nonce = nonce def deserialize(self, f): self.nonce = struct.unpack("<Q", f.read(8))[0] def serialize(self): r = "" r += struct.pack("<Q", self.nonce) return r def __repr__(self): return "msg_ping(nonce=%08x)" % self.nonce class msg_pong(object): command = "pong" def __init__(self, nonce=0L): self.nonce = nonce def deserialize(self, f): self.nonce = struct.unpack("<Q", f.read(8))[0] def serialize(self): r = "" r += struct.pack("<Q", self.nonce) return r def __repr__(self): return "msg_pong(nonce=%08x)" % self.nonce class msg_mempool(object): command = "mempool" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return "" def __repr__(self): return "msg_mempool()" class msg_sendheaders(object): command = "sendheaders" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return "" def __repr__(self): return "msg_sendheaders()" # getheaders message has # number of entries # vector of hashes # hash_stop (hash of last desired block header, 0 to get as many as possible) class msg_getheaders(object): command = "getheaders" def __init__(self): self.locator = CBlockLocator() self.hashstop = 0L def deserialize(self, f): self.locator = CBlockLocator() self.locator.deserialize(f) self.hashstop = deser_uint256(f) def serialize(self): r = "" r += self.locator.serialize() r += ser_uint256(self.hashstop) return r def __repr__(self): return "msg_getheaders(locator=%s, stop=%064x)" \ % (repr(self.locator), self.hashstop) # headers message has # <count> <vector of block headers> class msg_headers(object): command = "headers" def __init__(self): self.headers = [] def deserialize(self, f): # comment in deuscoind indicates these should be deserialized as blocks blocks = deser_vector(f, CBlock) for x in blocks: self.headers.append(CBlockHeader(x)) def serialize(self): blocks = [CBlock(x) for x in self.headers] return ser_vector(blocks) def __repr__(self): return "msg_headers(headers=%s)" % repr(self.headers) class msg_reject(object): command = "reject" def __init__(self): self.message = "" self.code = "" self.reason = "" self.data = 0L def deserialize(self, f): self.message = deser_string(f) self.code = struct.unpack("<B", f.read(1))[0] self.reason = deser_string(f) if (self.message == "block" or self.message == "tx"): self.data = deser_uint256(f) def serialize(self): r = ser_string(self.message) r += struct.pack("<B", self.code) r += ser_string(self.reason) if (self.message == "block" or self.message == "tx"): r += ser_uint256(self.data) return r def __repr__(self): return "msg_reject: %s %d %s [%064x]" \ % (self.message, self.code, self.reason, self.data) # This is what a callback should look like for NodeConn # Reimplement the on_* functions to provide handling for events class NodeConnCB(object): def __init__(self): self.verack_received = False # deliver_sleep_time is helpful for debugging race conditions in p2p # tests; it causes message delivery to sleep for the specified time # before acquiring the global lock and delivering the next message. self.deliver_sleep_time = None def set_deliver_sleep_time(self, value): with mininode_lock: self.deliver_sleep_time = value def get_deliver_sleep_time(self): with mininode_lock: return self.deliver_sleep_time # Spin until verack message is received from the node. # Tests may want to use this as a signal that the test can begin. # This can be called from the testing thread, so it needs to acquire the # global lock. def wait_for_verack(self): while True: with mininode_lock: if self.verack_received: return time.sleep(0.05) def deliver(self, conn, message): deliver_sleep = self.get_deliver_sleep_time() if deliver_sleep is not None: time.sleep(deliver_sleep) with mininode_lock: try: getattr(self, 'on_' + message.command)(conn, message) except: print "ERROR delivering %s (%s)" % (repr(message), sys.exc_info()[0]) def on_version(self, conn, message): if message.nVersion >= 209: conn.send_message(msg_verack()) conn.ver_send = min(MY_VERSION, message.nVersion) if message.nVersion < 209: conn.ver_recv = conn.ver_send def on_verack(self, conn, message): conn.ver_recv = conn.ver_send self.verack_received = True def on_inv(self, conn, message): want = msg_getdata() for i in message.inv: if i.type != 0: want.inv.append(i) if len(want.inv): conn.send_message(want) def on_addr(self, conn, message): pass def on_alert(self, conn, message): pass def on_getdata(self, conn, message): pass def on_getblocks(self, conn, message): pass def on_tx(self, conn, message): pass def on_block(self, conn, message): pass def on_getaddr(self, conn, message): pass def on_headers(self, conn, message): pass def on_getheaders(self, conn, message): pass def on_ping(self, conn, message): if conn.ver_send > BIP0031_VERSION: conn.send_message(msg_pong(message.nonce)) def on_reject(self, conn, message): pass def on_close(self, conn): pass def on_mempool(self, conn): pass def on_pong(self, conn, message): pass # The actual NodeConn class # This class provides an interface for a p2p connection to a specified node class NodeConn(asyncore.dispatcher): messagemap = { "version": msg_version, "verack": msg_verack, "addr": msg_addr, "alert": msg_alert, "inv": msg_inv, "getdata": msg_getdata, "getblocks": msg_getblocks, "tx": msg_tx, "block": msg_block, "getaddr": msg_getaddr, "ping": msg_ping, "pong": msg_pong, "headers": msg_headers, "getheaders": msg_getheaders, "reject": msg_reject, "mempool": msg_mempool } MAGIC_BYTES = { "mainnet": "\xf9\xbe\xb4\xd9", # mainnet "testnet3": "\x0b\x11\x09\x07", # testnet3 "regtest": "\xfa\xbf\xb5\xda" # regtest } def __init__(self, dstaddr, dstport, rpc, callback, net="regtest", services=1): asyncore.dispatcher.__init__(self, map=mininode_socket_map) self.log = logging.getLogger("NodeConn(%s:%d)" % (dstaddr, dstport)) self.dstaddr = dstaddr self.dstport = dstport self.create_socket(socket.AF_INET, socket.SOCK_STREAM) self.sendbuf = "" self.recvbuf = "" self.ver_send = 209 self.ver_recv = 209 self.last_sent = 0 self.state = "connecting" self.network = net self.cb = callback self.disconnect = False # stuff version msg into sendbuf vt = msg_version() vt.nServices = services vt.addrTo.ip = self.dstaddr vt.addrTo.port = self.dstport vt.addrFrom.ip = "0.0.0.0" vt.addrFrom.port = 0 self.send_message(vt, True) print 'MiniNode: Connecting to Deuscoin Node IP # ' + dstaddr + ':' \ + str(dstport) try: self.connect((dstaddr, dstport)) except: self.handle_close() self.rpc = rpc def show_debug_msg(self, msg): self.log.debug(msg) def handle_connect(self): self.show_debug_msg("MiniNode: Connected & Listening: \n") self.state = "connected" def handle_close(self): self.show_debug_msg("MiniNode: Closing Connection to %s:%d... " % (self.dstaddr, self.dstport)) self.state = "closed" self.recvbuf = "" self.sendbuf = "" try: self.close() except: pass self.cb.on_close(self) def handle_read(self): try: t = self.recv(8192) if len(t) > 0: self.recvbuf += t self.got_data() except: pass def readable(self): return True def writable(self): with mininode_lock: length = len(self.sendbuf) return (length > 0) def handle_write(self): with mininode_lock: try: sent = self.send(self.sendbuf) except: self.handle_close() return self.sendbuf = self.sendbuf[sent:] def got_data(self): while True: if len(self.recvbuf) < 4: return if self.recvbuf[:4] != self.MAGIC_BYTES[self.network]: raise ValueError("got garbage %s" % repr(self.recvbuf)) if self.ver_recv < 209: if len(self.recvbuf) < 4 + 12 + 4: return command = self.recvbuf[4:4+12].split("\x00", 1)[0] msglen = struct.unpack("<i", self.recvbuf[4+12:4+12+4])[0] checksum = None if len(self.recvbuf) < 4 + 12 + 4 + msglen: return msg = self.recvbuf[4+12+4:4+12+4+msglen] self.recvbuf = self.recvbuf[4+12+4+msglen:] else: if len(self.recvbuf) < 4 + 12 + 4 + 4: return command = self.recvbuf[4:4+12].split("\x00", 1)[0] msglen = struct.unpack("<i", self.recvbuf[4+12:4+12+4])[0] checksum = self.recvbuf[4+12+4:4+12+4+4] if len(self.recvbuf) < 4 + 12 + 4 + 4 + msglen: return msg = self.recvbuf[4+12+4+4:4+12+4+4+msglen] th = sha256(msg) h = sha256(th) if checksum != h[:4]: raise ValueError("got bad checksum " + repr(self.recvbuf)) self.recvbuf = self.recvbuf[4+12+4+4+msglen:] if command in self.messagemap: f = cStringIO.StringIO(msg) t = self.messagemap[command]() t.deserialize(f) self.got_message(t) else: self.show_debug_msg("Unknown command: '" + command + "' " + repr(msg)) def send_message(self, message, pushbuf=False): if self.state != "connected" and not pushbuf: return self.show_debug_msg("Send %s" % repr(message)) command = message.command data = message.serialize() tmsg = self.MAGIC_BYTES[self.network] tmsg += command tmsg += "\x00" * (12 - len(command)) tmsg += struct.pack("<I", len(data)) if self.ver_send >= 209: th = sha256(data) h = sha256(th) tmsg += h[:4] tmsg += data with mininode_lock: self.sendbuf += tmsg self.last_sent = time.time() def got_message(self, message): if message.command == "version": if message.nVersion <= BIP0031_VERSION: self.messagemap['ping'] = msg_ping_prebip31 if self.last_sent + 30 * 60 < time.time(): self.send_message(self.messagemap['ping']()) self.show_debug_msg("Recv %s" % repr(message)) self.cb.deliver(self, message) def disconnect_node(self): self.disconnect = True class NetworkThread(Thread): def run(self): while mininode_socket_map: # We check for whether to disconnect outside of the asyncore # loop to workaround the behavior of asyncore when using # select disconnected = [] for fd, obj in mininode_socket_map.items(): if obj.disconnect: disconnected.append(obj) [ obj.handle_close() for obj in disconnected ] asyncore.loop(0.1, use_poll=True, map=mininode_socket_map, count=1) # An exception we can raise if we detect a potential disconnect # (p2p or rpc) before the test is complete class EarlyDisconnectError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value)
py
b401452d9943cefd023db86bfd1b49d133091afc
import torch import numpy as np import reward.utils as U from reward.batcher import BaseBatcher class RolloutBatcher(BaseBatcher): def get_batch(self, act_fn): if self.s is None: self.s = self.transform_s(self.runner.reset()) self.s = U.to_tensor(self.s) horizon = self.batch_size // self.runner.num_envs batch = U.Batch(keys=["s_and_tp1", "ac", "r", "d"]) for i in range(horizon): ac = act_fn(self.s, self.num_steps) sn, r, d, info = self.runner.act(ac) sn = U.to_tensor(self.transform_s(sn)) batch.s_and_tp1.append(self.s) batch.ac.append(ac) batch.r.append(r) batch.d.append(d) # batch.info.append(info) self.s = sn batch.s_and_tp1.append(self.s) batch.s_and_tp1 = torch.stack(batch.s_and_tp1) batch.s = batch.s_and_tp1[:-1] batch.sn = batch.s_and_tp1[1:] batch.ac = U.to_np(batch.ac) batch.r = U.to_np(batch.r) batch.d = U.to_np(batch.d) batch = self.transform_batch(batch) return batch
py
b40147346280c612ad8dbd4b24a9c6eb3c889c84
import argparse import os import random import time import numpy as np import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim as optim import torch.utils.data import torchvision.datasets as dset import torchvision.transforms as transforms import torchvision.utils as vutils from torch.autograd import Variable from dataset.dataset_nocs import Dataset from libs.network import KeyNet from libs.loss import Loss cate_list = ['bottle', 'bowl', 'camera', 'can', 'laptop', 'mug'] parser = argparse.ArgumentParser() parser.add_argument('--dataset_root', type=str, default='img_dataset', help='dataset root dir') parser.add_argument('--img_num', type=int, default=500, help='number of training images') parser.add_argument('--resume', type=str, default='', help='resume model') parser.add_argument('--num_points', type=int, default=500, help='points') parser.add_argument('--workers', type=int, default=5, help='number of data loading workers') parser.add_argument('--num_kp', type=int, default=8, help='number of kp') parser.add_argument('--outf', type=str, default='models/', help='save dir') parser.add_argument('--lr', default=0.0001, help='learning rate') opt = parser.parse_args() model = KeyNet(num_points=opt.num_points, num_key=opt.num_kp, num_cates=opt.num_cates) model.cuda() if opt.resume != '': model.load_state_dict(torch.load('{0}/{1}'.format(opt.outf, opt.resume))) dataset = Dataset(opt.dataset_root, opt.num_points, opt.image_num) dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=opt.workers) # test_dataset = Dataset('val', opt.dataset_root, False, opt.num_points, opt.num_cates, 1000, opt.category) # testdataloader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=True, num_workers=opt.workers) criterion = Loss(opt.num_kp, opt.num_cates) best_test = np.Inf optimizer = optim.Adam(model.parameters(), lr=opt.lr) for epoch in range(0, 500): model.train() train_dis_avg = 0.0 train_count = 0 optimizer.zero_grad() for i, data in enumerate(dataloader, 0): img_fr, choose_fr, cloud_fr, r_fr, t_fr, img_to, choose_to, cloud_to, r_to, t_to, mesh, anchor, scale = data img_fr, choose_fr, cloud_fr, r_fr, t_fr, img_to, choose_to, cloud_to, r_to, t_to, mesh, anchor, scale= Variable( img_fr).cuda(), \ Variable( choose_fr).cuda(), \ Variable( cloud_fr).cuda(), \ Variable( r_fr).cuda(), \ Variable( t_fr).cuda(), \ Variable( img_to).cuda(), \ Variable( choose_to).cuda(), \ Variable( cloud_to).cuda(), \ Variable( r_to).cuda(), \ Variable( t_to).cuda(), \ Variable( mesh).cuda(), \ Variable( anchor).cuda(), \ Variable( scale).cuda(), \ Variable( cate).cuda() Kp_fr, anc_fr, att_fr = model(img_fr, choose_fr, cloud_fr, anchor, scale, cate, t_fr) Kp_to, anc_to, att_to = model(img_to, choose_to, cloud_to, anchor, scale, cate, t_to) loss, _ = criterion(Kp_fr, Kp_to, anc_fr, anc_to, att_fr, att_to, r_fr, t_fr, r_to, t_to, mesh, scale, cate) loss.backward() train_dis_avg += loss.item() train_count += 1 if train_count != 0 and train_count % 8 == 0: optimizer.step() optimizer.zero_grad() print(train_count, float(train_dis_avg) / 8.0) train_dis_avg = 0.0 if train_count != 0 and train_count % 100 == 0: torch.save(model.state_dict(), '{0}/model_current_{1}.pth'.format(opt.outf, cate_list[opt.category - 1])) optimizer.zero_grad() model.eval() score = [] for j, data in enumerate(testdataloader, 0): img_fr, choose_fr, cloud_fr, r_fr, t_fr, img_to, choose_to, cloud_to, r_to, t_to, mesh, anchor, scale, cate = data img_fr, choose_fr, cloud_fr, r_fr, t_fr, img_to, choose_to, cloud_to, r_to, t_to, mesh, anchor, scale, cate = Variable( img_fr).cuda(), \ Variable( choose_fr).cuda(), \ Variable( cloud_fr).cuda(), \ Variable( r_fr).cuda(), \ Variable( t_fr).cuda(), \ Variable( img_to).cuda(), \ Variable( choose_to).cuda(), \ Variable( cloud_to).cuda(), \ Variable( r_to).cuda(), \ Variable( t_to).cuda(), \ Variable( mesh).cuda(), \ Variable( anchor).cuda(), \ Variable( scale).cuda(), \ Variable( cate).cuda() Kp_fr, anc_fr, att_fr = model(img_fr, choose_fr, cloud_fr, anchor, scale, cate, t_fr) Kp_to, anc_to, att_to = model(img_to, choose_to, cloud_to, anchor, scale, cate, t_to) _, item_score = criterion(Kp_fr, Kp_to, anc_fr, anc_to, att_fr, att_to, r_fr, t_fr, r_to, t_to, mesh, scale, cate) print(item_score) score.append(item_score) test_dis = np.mean(np.array(score)) if test_dis < best_test: best_test = test_dis torch.save(model.state_dict(), '{0}/model_{1}_{2}_{3}.pth'.format(opt.outf, epoch, test_dis, cate_list[opt.category - 1])) print(epoch, '>>>>>>>>----------BEST TEST MODEL SAVED---------<<<<<<<<')
py
b401486dfa029314aa0b0dacf2fefd214cc2de47
# -*- coding: utf-8 -*- import pendulum from flexmock import flexmock, flexmock_teardown from ... import OratorTestCase from orator.query.builder import QueryBuilder from orator.query.grammars import QueryGrammar from orator.query.expression import QueryExpression from orator.orm.builder import Builder from orator.orm.model import Model from orator.orm.relations import HasMany from orator.orm.collection import Collection class OrmHasManyTestCase(OratorTestCase): def tearDown(self): flexmock_teardown() def test_create_properly_creates_new_model(self): relation = self._get_relation() created = flexmock(Model(), save=lambda: True, set_attribute=lambda: None) created.should_receive('save').once().and_return(True) relation.get_related().should_receive('new_instance').once().with_args({'name': 'john'}).and_return(created) created.should_receive('set_attribute').with_args('foreign_key', 1) self.assertEqual(created, relation.create(name='john')) def test_find_or_new_finds_model(self): relation = self._get_relation() model = flexmock() model.foo = 'bar' relation.get_query().should_receive('find').once().with_args('foo', ['*']).and_return(model) model.should_receive('set_attribute').never() self.assertEqual('bar', relation.find_or_new('foo').foo) def test_find_or_new_returns_new_model_with_foreign_key_set(self): relation = self._get_relation() relation.get_query().should_receive('find').once().with_args('foo', ['*']).and_return(None) model = flexmock() model.foo = 'bar' relation.get_related().should_receive('new_instance').once().with_args().and_return(model) model.should_receive('set_attribute').once().with_args('foreign_key', 1) self.assertEqual('bar', relation.find_or_new('foo').foo) def test_first_or_new_finds_first_model(self): relation = self._get_relation() relation.get_query().should_receive('where').once().with_args({'foo': 'bar'}).and_return(relation.get_query()) model = flexmock() model.foo = 'bar' relation.get_query().should_receive('first').once().with_args().and_return(model) model.should_receive('set_attribute').never() self.assertEqual('bar', relation.first_or_new(foo='bar').foo) def test_first_or_new_returns_new_model_with_foreign_key_set(self): relation = self._get_relation() relation.get_query().should_receive('where').once().with_args({'foo': 'bar'}).and_return(relation.get_query()) relation.get_query().should_receive('first').once().with_args().and_return(None) model = flexmock() model.foo = 'bar' relation.get_related().should_receive('new_instance').once().with_args().and_return(model) model.should_receive('set_attribute').once().with_args('foreign_key', 1) self.assertEqual('bar', relation.first_or_new(foo='bar').foo) def test_first_or_create_finds_first_model(self): relation = self._get_relation() relation.get_query().should_receive('where').once().with_args({'foo': 'bar'}).and_return(relation.get_query()) model = flexmock() model.foo = 'bar' relation.get_query().should_receive('first').once().with_args().and_return(model) model.should_receive('set_attribute').never() self.assertEqual('bar', relation.first_or_create(foo='bar').foo) def test_first_or_create_returns_new_model_with_foreign_key_set(self): relation = self._get_relation() relation.get_query().should_receive('where').once().with_args({'foo': 'bar'}).and_return(relation.get_query()) relation.get_query().should_receive('first').once().with_args().and_return(None) model = flexmock() model.foo = 'bar' relation.get_related().should_receive('new_instance').once().with_args({'foo': 'bar'}).and_return(model) model.should_receive('save').once().and_return(True) model.should_receive('set_attribute').once().with_args('foreign_key', 1) self.assertEqual('bar', relation.first_or_create(foo='bar').foo) def test_update_or_create_finds_first_model_and_updates(self): relation = self._get_relation() relation.get_query().should_receive('where').once().with_args({'foo': 'bar'}).and_return(relation.get_query()) model = flexmock() model.foo = 'bar' relation.get_query().should_receive('first').once().with_args().and_return(model) relation.get_related().should_receive('new_instance').never() model.should_receive('fill').once().with_args({'foo': 'baz'}) model.should_receive('save').once() self.assertEqual('bar', relation.update_or_create({'foo': 'bar'}, {'foo': 'baz'}).foo) def test_update_or_create_creates_new_model_with_foreign_key_set(self): relation = self._get_relation() relation.get_query().should_receive('where').once().with_args({'foo': 'bar'}).and_return(relation.get_query()) relation.get_query().should_receive('first').once().with_args().and_return(None) model = flexmock() model.foo = 'bar' relation.get_related().should_receive('new_instance').once().and_return(model) model.should_receive('fill').once().with_args({'foo': 'baz'}) model.should_receive('save').once() model.should_receive('set_attribute').once().with_args('foreign_key', 1) self.assertEqual('bar', relation.update_or_create({'foo': 'bar'}, {'foo': 'baz'}).foo) def test_update_updates_models_with_timestamps(self): relation = self._get_relation() relation.get_related().should_receive('uses_timestamps').once().and_return(True) now = pendulum.now() relation.get_related().should_receive('fresh_timestamp').once().and_return(now) relation.get_query().should_receive('update').once().with_args({'foo': 'bar', 'updated_at': now}).and_return('results') self.assertEqual('results', relation.update(foo='bar')) def test_relation_is_properly_initialized(self): relation = self._get_relation() model = flexmock(Model()) model.should_receive('set_relation').once().with_args('foo', Collection) models = relation.init_relation([model], 'foo') self.assertEqual([model], models) def test_eager_constraints_are_properly_added(self): relation = self._get_relation() relation.get_query().get_query().should_receive('where_in').once().with_args('table.foreign_key', [1, 2]) model1 = OrmHasOneModelStub() model1.id = 1 model2 = OrmHasOneModelStub() model2.id = 2 relation.add_eager_constraints([model1, model2]) def test_save_many_returns_list_of_models(self): relation = self._get_relation() model1 = flexmock() model1.foo = 'foo' model1.should_receive('save').once().and_return(True) model1.should_receive('set_attribute').once().with_args('foreign_key', 1) model2 = flexmock() model2.foo = 'bar' model2.should_receive('save').once().and_return(True) model2.should_receive('set_attribute').once().with_args('foreign_key', 1) self.assertEqual([model1, model2], relation.save_many([model1, model2])) def test_models_are_properly_matched_to_parents(self): relation = self._get_relation() result1 = OrmHasOneModelStub() result1.foreign_key = 1 result2 = OrmHasOneModelStub() result2.foreign_key = 2 result3 = OrmHasOneModelStub() result3.foreign_key = 2 model1 = OrmHasOneModelStub() model1.id = 1 model2 = OrmHasOneModelStub() model2.id = 2 model3 = OrmHasOneModelStub() model3.id = 3 relation.get_related().should_receive('new_collection').replace_with(lambda l=None: Collection(l)) relation.get_query().should_receive('where').with_args('table.foreign_key', '=', 2) relation.get_query().should_receive('where').with_args('table.foreign_key', '=', 3) models = relation.match([model1, model2, model3], Collection([result1, result2, result3]), 'foo') self.assertEqual(1, models[0].foo[0].foreign_key) self.assertEqual(1, len(models[0].foo)) self.assertEqual(2, models[1].foo[0].foreign_key) self.assertEqual(2, models[1].foo[1].foreign_key) self.assertEqual(2, len(models[1].foo)) self.assertTrue(models[2].foo.is_empty()) def test_relation_count_query_can_be_built(self): relation = self._get_relation() query = flexmock(QueryBuilder(None, QueryGrammar(), None)) builder = Builder(query) builder.get_query().should_receive('select').once() relation.get_parent().should_receive('get_table').and_return('table') builder.should_receive('where').once().with_args('table.foreign_key', '=', QueryExpression) parent_query = flexmock(QueryBuilder(None, None, None)) relation.get_query().should_receive('get_query').and_return(parent_query) grammar = flexmock() parent_query.should_receive('get_grammar').once().and_return(grammar) grammar.should_receive('wrap').once().with_args('table.id') relation.get_relation_count_query(builder, builder) def _get_relation(self): flexmock(Builder) query = flexmock(QueryBuilder(None, QueryGrammar(), None)) builder = Builder(query) builder.should_receive('where').with_args('table.foreign_key', '=', 1) related = flexmock(Model()) related.should_receive('new_query').and_return(builder) builder.should_receive('get_model').and_return(related) parent = flexmock(Model()) parent.should_receive('get_attribute').with_args('id').and_return(1) parent.should_receive('get_created_at_column').and_return('created_at') parent.should_receive('get_updated_at_column').and_return('updated_at') parent.should_receive('new_query').and_return(builder) return HasMany(builder, parent, 'table.foreign_key', 'id') class OrmHasOneModelStub(Model): pass
py
b4014a275b29db55cea136361b7986c1d76f3f71
"""engine.SCons.Variables.PackageVariable This file defines the option type for SCons implementing 'package activation'. To be used whenever a 'package' may be enabled/disabled and the package path may be specified. Usage example: Examples: x11=no (disables X11 support) x11=yes (will search for the package installation dir) x11=/usr/local/X11 (will check this path for existance) To replace autoconf's --with-xxx=yyy opts = Variables() opts.Add(PackageVariable('x11', 'use X11 installed here (yes = search some places', 'yes')) ... if env['x11'] == True: dir = ... search X11 in some standard places ... env['x11'] = dir if env['x11']: ... build with x11 ... """ # # Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "src/engine/SCons/Variables/PackageVariable.py 5023 2010/06/14 22:05:46 scons" __all__ = ['PackageVariable',] import SCons.Errors __enable_strings = ('1', 'yes', 'true', 'on', 'enable', 'search') __disable_strings = ('0', 'no', 'false', 'off', 'disable') def _converter(val): """ """ lval = val.lower() if lval in __enable_strings: return True if lval in __disable_strings: return False #raise ValueError("Invalid value for boolean option: %s" % val) return val def _validator(key, val, env, searchfunc): # NB: searchfunc is currenty undocumented and unsupported """ """ # todo: write validator, check for path import os if env[key] is True: if searchfunc: env[key] = searchfunc(key, val) elif env[key] and not os.path.exists(val): raise SCons.Errors.UserError( 'Path does not exist for option %s: %s' % (key, val)) def PackageVariable(key, help, default, searchfunc=None): # NB: searchfunc is currenty undocumented and unsupported """ The input parameters describe a 'package list' option, thus they are returned with the correct converter and validator appended. The result is usable for input to opts.Add() . A 'package list' option may either be 'all', 'none' or a list of package names (seperated by space). """ help = '\n '.join( (help, '( yes | no | /path/to/%s )' % key)) return (key, help, default, lambda k, v, e: _validator(k,v,e,searchfunc), _converter) # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
py
b4014b8ee2cb25bf233f46f383d4cf3809248cf6
from enum import IntEnum class EntityLabelCatalog(IntEnum): """Enumerated named entity labels.""" # spaCy default labels PERSON = 0 # People, including fictional NORP = 1 # Nationalities or religious or political groups FAC = 2 # Buildings, airports, highways, bridges, etc. ORG = 3 # Companies, agencies, institutions, etc. GPE = 4 # Countries, sities, states. LOC = 5 # Non-GPE locations, mountain ranges, bodies of water PRODUCT = 6 # Objects, vehicles, foods, etc. (Not services.) EVENT = 7 # Named hurricanes, battles, wars, sports events, etc. WORK_OF_ART = 8 # Titles of books, songs, etc. LAW = 9 # Named documents made into laws. LANGUAGE = 10 # Any named language. DATE = 11 # Absolute or relative dates or periods. TIME = 12 # Times smaller than a day. PERCENT = 13 # Percentage, including ”%“. MONEY = 14 # Monetary values, including unit. QUANTITY = 15 # Measurements, as of weight or distance. ORDINAL = 16 # “first”, “second”, etc. CARDINAL = 17 # Numerals that do not fall under another type. # Additional VK labels SSN = 18 # Social security number EMAIL_ADDRESS = 19 # Email address PHYSICAL_ADDRESS = 20 # Physical address (any format) PHONE_NUMBER = 21 # Phone number (any format) @classmethod def get_names(cls): """Return names of all classes.""" return [label.name for label in cls] @classmethod def get_spacy_labels(cls): """Return names of all spaCy labels.""" return [label.name for i, label in enumerate(cls) if i <= 17] @classmethod def get_vk_labels(cls): """Return names of all VK custom labels.""" return [label.name for i, label in enumerate(cls) if i > 17]
py
b4014df3f81c0aead1c6fd9bf4a3dbf13d905b0a
#!/usr/bin/env python # -*- coding: utf-8 -*- # My imports import numpy as np from astropy import coordinates as coord from astropy import units as u import pandas as pd from clint.textui import puts, colored import time from ParallaxSpec import parallax from astroquery.simbad import Simbad import warnings warnings.filterwarnings('ignore') from astroquery.irsa_dust import IrsaDust from astroquery.vizier import Vizier def GAIAplx(ra, de): v = Vizier(columns=["*", "+_r"], catalog='I/345/gaia2') pos=coord.SkyCoord(ra=ra, dec=de,unit=(u.hourangle,u.deg),frame='icrs',obstime='J2000') result=v.query_region(pos, radius="10s", catalog='I/345/gaia2') # Moving the positions to 2000 try: nlines=len(result[0]['RA_ICRS']) deltat=-15.5 sep=[] for ig,name in enumerate(result[0]['Source']): raold=result[0]['RA_ICRS'].data[ig]+(result[0]['pmRA'].data[ig] *deltat)/3600000. deold=result[0]['DE_ICRS'].data[ig]+(result[0]['pmDE'].data[ig] *deltat)/3600000. posold = coord.ICRS(ra=raold * u.deg, dec=deold * u.deg) sep.append(pos.separation(posold).arcsecond) indG=np.argmin(sep) if sep[indG]<1.5 and result[0]['Plx'].data[indG]>0: return str(round(result[0]['Plx'].data[indG],2)), str(round(result[0]['e_Plx'].data[indG],2)) except: return 'NULL','NULL' return 'NULL','NULL' def torres(name, teff=False, logg=False, feh=False): """ Calculates the mass and error from Torres. See source for more information """ from TorresMass import massTorres T, Terr = teff L, Lerr = logg F, Ferr = feh try: Terr, Lerr, Ferr = float(Terr), float(Lerr), float(Ferr) T, L, F = float(T), float(L), float(F) except ValueError: puts(colored.red('No mass derived for this star...')) return 'NULL', 'NULL' M, Merr = massTorres(T, Terr, L, Lerr, F, Ferr) puts(colored.green('Done')) return round(M, 2), round(Merr, 2) def variable_assignment(digits): try: if digits > 0: x = '%.2f' % round(eval(input('> ')), digits) else: x = '%d' % round(eval(input('> ')), digits) except SyntaxError as e: x = 'NULL' return x if __name__ == '__main__': nasa_str = input('\nExoplanet from NASA database? [True/False]: ') if nasa_str == 'True': nasa = True print('Adding exoplanets from the NASA database') elif nasa_str == 'False': nasa = False print('Adding exoplanets from the EU database') else: print('Answer different from True or False\nBye...') exit # stars = np.loadtxt('names.txt', dtype='S', delimiter='\t',usecols=(0,), ) "does not work when the file has only one line" with open('names.txt') as f: stars = f.readlines() f.close() var = 'Y' # Read the data from exoplanet.eu fields = ['star_name', 'ra', 'dec', 'mag_v', 'star_metallicity', 'star_metallicity_error_min', 'star_metallicity_error_max', 'star_teff', 'star_teff_error_min', 'star_teff_error_max'] # Read data from NASA exoplanet archive fields_nasa = ['pl_hostname', 'hd_name', 'ra', 'dec', 'ra_str', 'dec_str', 'st_vj', 'st_vjerr', 'st_metfe', 'st_metfeerr1', 'st_metfeerr2', 'st_teff', 'st_tefferr1', 'st_tefferr2', 'st_plx', 'st_plxerr1', 'st_plxerr2', 'st_logg', 'st_loggerr1', 'st_loggerr2', 'st_mass', 'st_masserr1', 'st_masserr2', 'st_spstr'] if nasa: # Loading NASA exoplanet archive exo_all = pd.read_csv('nasaexo.csv', skipinitialspace=True, usecols=fields_nasa) # Changing some column names to match exoplanet.EU exo_all = exo_all.rename(columns={"pl_hostname": "star_name", "st_vj": "mag_v", "st_vjerr": "mag_v_err", "st_teff": "star_teff", "st_tefferr1": "star_teff_error_max", "st_tefferr2": "star_teff_error_min", "st_metfe": "star_metallicity", "st_metfeerr1": "star_metallicity_error_max", "st_metfeerr2": "star_metallicity_error_min"}) else: # Laoding exoplanet.EU exo_all = pd.read_csv('exo.csv', skipinitialspace=True, usecols=fields) # Remove trailing whitespaces exo_all.star_name = exo_all.star_name.str.strip() print(exo_all.star_name) output = 'WEBSITE_online_EU-NASA_to_ADD.rdb' for i, star in enumerate(stars): star = star.strip('\n').replace('K0I', 'KOI') print(star) exo = exo_all[exo_all.star_name == star] next = True print('') print('Star: ' + colored.green(star)) try: name = exo.star_name.values[0] except IndexError as e: print('') puts(colored.red(star) + ' not found. Star added in the file manual.list.') print('') manual = open('manual.list', "a") manual.write(star+'\n') manual.close() next = False # Update the list of new hosts with open('names.txt', 'w') as names: # if the last star was added so no star is updated if i+1==len(stars): names.write('') else: for j in stars[i+1:]: names.write(j) names.close() print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~') # if the star is found in the exoplanet.eu # or if found in NASA exoplanet archive if next: print('') var = input('Continue? [Y/N]: ') if var.upper().strip() == 'Y': # Get RA and dec (can be passed for NASA exoplanets) ra, dec = float(exo.ra.values[0]), float(exo.dec.values[0]) c = coord.SkyCoord(ra, dec, unit=(u.degree, u.degree), frame='icrs') RA = list(c.ra.hms) RA[0] = str(int(RA[0])).zfill(2) RA[1] = str(int(RA[1])).zfill(2) RA[2] = str(round(RA[2], 2)).zfill(4) if len(RA[2]) == 4: RA[2] += '0' RA = "{0} {1} {2}".format(*RA) DEC = list(c.dec.dms) DEC[0] = str(int(DEC[0])).zfill(2) DEC[1] = str(abs(int(DEC[1]))).zfill(2) DEC[2] = str(abs(round(DEC[2], 2))).zfill(4) if int(DEC[0]) > 0: DEC[0] = '+'+DEC[0] if len(DEC[2]) == 4: DEC[2] += '0' DEC = "{0} {1} {2}".format(*DEC) # Search in Simbad the parallax, Vmag and spectral type customSimbad = Simbad() # customSimbad.add_votable_fields('plx','plx_error','flux(V)','flux_error(V)','sptype','otype','ids','dist') customSimbad.add_votable_fields('plx', 'plx_error', 'flux(V)', 'flux_error(V)', 'sptype', 'otype', 'ids') result = customSimbad.query_region(coord.SkyCoord(ra=c.ra, dec=c.dec, frame='icrs'), radius='15s') empty = 'NULL' # Here comes the user interface part... puts(colored.black('\nStandard parameters\n')) # The metallicity error if ~np.isnan(exo.star_metallicity_error_min.values[0]) and ~np.isnan(exo.star_metallicity_error_max.values[0]): errFeH_exo = (abs(exo.star_metallicity_error_min.values[0]) + abs(exo.star_metallicity_error_max.values[0])) / 2.0 elif ~np.isnan(exo.star_metallicity_error_min.values[0]): errFeH_exo = abs(exo.star_metallicity_error_min.values[0]) elif ~np.isnan(exo.star_metallicity_error_max.values[0]): errFeH_exo = abs(exo.star_metallicity_error_max.values[0]) else: errFeH_exo = np.nan # The metallicity FeH_exo = exo.star_metallicity.values[0] if np.isnan(FeH_exo): puts('The ' + colored.yellow('[Fe/H]')) FeH = variable_assignment(2) puts('The error on ' + colored.yellow('[Fe/H]')) Ferr = variable_assignment(2) else: FeH = round(float(FeH_exo), 2) if np.isnan(errFeH_exo): puts('The error on ' + colored.yellow('[Fe/H]')) Ferr = variable_assignment(2) else: Ferr = round(errFeH_exo, 2) print('Fe/H: ', FeH, '+-', Ferr) # The effective temperature error if ~np.isnan(exo.star_teff_error_min.values[0]) and ~np.isnan(exo.star_teff_error_max.values[0]): errTeff_exo = (abs(exo.star_teff_error_min.values[0]) + abs(exo.star_teff_error_max.values[0])) / 2.0 elif ~np.isnan(exo.star_teff_error_min.values[0]): errTeff_exo = abs(exo.star_teff_error_min.values[0]) elif ~np.isnan(exo.star_teff_error_max.values[0]): errTeff_exo = abs(exo.star_teff_error_max.values[0]) else: errTeff_exo = np.nan # The effective temperature Teff_exo = exo.star_teff.values[0] if np.isnan(Teff_exo): puts('The ' + colored.yellow('Teff')) Teff = variable_assignment(0) puts('The error on ' + colored.yellow('Teff')) Tefferr = variable_assignment(0) else: # the Teff is not float Teff = int(Teff_exo) if ~np.isnan(errTeff_exo): Tefferr = int(errTeff_exo) else: puts('The error on ' + colored.yellow('Teff')) Tefferr = variable_assignment(0) print('Teff: ', Teff, '+-', Tefferr) # NASA database has loggs # The logg error and logg if nasa: if ~np.isnan(exo.st_loggerr2.values[0]) and ~np.isnan(exo.st_loggerr1.values[0]): errlogg_exo = (abs(exo.st_loggerr2.values[0]) + abs(exo.st_loggerr1.values[0])) / 2.0 elif ~np.isnan(exo.st_loggerr2.values[0]): errlogg_exo = abs(exo.st_loggerr2.values[0]) elif ~np.isnan(exo.st_loggerr1.values[0]): errlogg_exo = abs(exo.st_loggerr1.values[0]) else: errlogg_exo = np.nan logg_exo = exo.st_logg.values[0] if np.isnan(logg_exo): puts('The ' + colored.yellow('logg')) logg = variable_assignment(2) puts('The error on ' + colored.yellow('logg')) loggerr = variable_assignment(2) else: # logg is a float logg = round(float(logg_exo), 2) if ~np.isnan(errlogg_exo): loggerr = round(errlogg_exo, 2) else: puts('The error on ' + colored.yellow('logg')) loggerr = variable_assignment(0) else: # The log g and log g error for EU database puts('The ' + colored.yellow('logg')) logg = variable_assignment(2) puts('The error on ' + colored.yellow('logg')) loggerr = variable_assignment(2) print('logg: ', logg, '+-', loggerr) # The mass puts(colored.magenta('Calculating the mass...')) M, Merr = torres(name, [Teff, Tefferr], [logg, loggerr], feh=[FeH, Ferr]) # The microturbulence number puts('The '+colored.yellow('microturbulence')) vt = variable_assignment(2) puts('The error on '+colored.yellow('microturbulence')) vterr = variable_assignment(2) # Author and link to ADS puts('Who is the '+colored.yellow('author?')) author = input('> ').strip() if author == '': author = empty puts('Link to article ('+colored.yellow('ADS')+')') link = input('> ').strip() if link == '': link = empty # Source flag puts(colored.yellow('Source flag')) source = input('(0/1) > ') if source == '': source = '0' V_exo = exo.mag_v.values[0] try: # select the star and not the planet, # they have the same coordinates if len(result) > 1: indr = np.where((result['OTYPE'] != 'Planet') & (result['OTYPE'] != 'Planet?') & (result['OTYPE'][1] != 'brownD*'))[0][0] else: indr = 0 RA = str(result['RA'][indr])[:11] DEC = str(result['DEC'][indr])[:12] # The HD number HD=empty for iname in result['IDS'][indr].split('|'): if iname[:2]=='HD': HD=iname.replace('HD ','') # The V magnitude if type(result['FLUX_V'][indr])!=np.ma.core.MaskedConstant: V=round(float(result['FLUX_V'][indr]), 2) if type(result['FLUX_ERROR_V'][indr])!=np.ma.core.MaskedConstant: Verr=round(float(result['FLUX_ERROR_V'][indr]), 2) else: print('\nV magnitude = '+str(V)) puts('The error on ' + colored.yellow('V magnitude')) Verr = variable_assignment(2) if Verr == '': Verr = 'NULL' else: if ~np.isnan(V_exo): V = round(float(V_exo), 2) else: puts('The ' + colored.yellow('V magnitude')) V = variable_assignment(2) if V == '': V = 'NULL' print('\nV magnitude = '+str(V)) puts('The error on ' + colored.yellow('V magnitude')) Verr = variable_assignment(2) if Verr == '': Verr = 'NULL' # The parallax plx, eplx = GAIAplx(RA, DEC) if plx != 'NULL': p = plx perr = eplx pflag = 'GAIADR2' elif type(result['PLX_VALUE'][indr]) != np.ma.core.MaskedConstant: p = round(float(result['PLX_VALUE'][indr]), 2) if type(result['PLX_VALUE'][indr]) != np.ma.core.MaskedConstant: perr = round(float(result['PLX_ERROR'][indr]), 2) else: perr = empty pflag = 'Simbad' else: try: pos = coord.SkyCoord(ra=ra, dec=dec, unit=(u.hourangle,u.deg), frame='icrs') #AvSF = Schlafly & Finkbeiner 2011 (ApJ 737, 103) tableAv = IrsaDust.get_query_table(pos, radius='02d', section='ebv', timeout=60) Av = tableAv['ext SandF mean'].data[0] Averr = tableAv['ext SandF std'].data[0] except: Av = 0 Averr = 0 try: p, perr = [round(x, 2) for x in parallax(Teff, Tefferr, float(logg), float(loggerr), V, Verr, M, Merr, Av, Averr)] pflag = 'Spec' except: p = 'NULL' perr = 'NULL' pflag = 'NULL' # Comments if result['SP_TYPE'][indr] != '' and result['SP_TYPE'][indr][0] == 'M': comment = result['SP_TYPE'][indr] else: puts('Any '+colored.yellow('comments')) puts('E.g. if we have a M dwarf...') comment = input('> ') if comment == '': comment = 'NULL' # Exoplanet database puts('From which exoplanet database:' + colored.yellow('EU or NASA or EU,NASA')) database = input('> ') if database == '': database = 'NULL' except: # The HD number puts('The '+colored.yellow('HD number')) HD = input('> ') if HD == '': HD = 'NULL' # The V magnitude if ~np.isnan(V_exo): V = round(float(V_exo), 2) else: puts('The ' + colored.yellow('V magnitude')) V = variable_assignment(2) print('\nV magnitude = '+str(V)) puts('The error on ' + colored.yellow('V magnitude')) Verr = variable_assignment(2) # The parallax plx, eplx = GAIAplx(RA, DEC) if plx != 'NULL': p = plx perr = eplx pflag = 'GAIADR2' else: try: pos = coord.SkyCoord(ra=RA, dec=DEC, unit=(u.hourangle, u.deg), frame='icrs') #AvSF = Schlafly & Finkbeiner 2011 (ApJ 737, 103) tableAv = IrsaDust.get_query_table(pos, radius='02d', section='ebv', timeout=60) Av = tableAv['ext SandF mean'].data[0] Averr = tableAv['ext SandF std'].data[0] except: Av = 0 Averr = 0 try: p, perr = [round(x, 2) for x in parallax(Teff, Tefferr, logg, loggerr, V, Verr, M, Merr, Av, Averr)] pflag = 'Spec' # print p,perr except: p = 'NULL' perr = 'NULL' pflag = 'NULL' # Comments puts('Any '+colored.yellow('comments')) puts('E.g. if we have a M dwarf...') comment = input('> ') if comment == '': comment = 'NULL' # Exoplanet database puts('From which exoplanet database: ' + colored.yellow('EU or NASA or EU,NASA')) database = input('> ') if database == '': database = 'NULL' # Last update update = str(time.strftime("%Y-%m-%d")) params = [name, HD, RA, DEC, V, Verr, p, perr, pflag, Teff, Tefferr, logg, loggerr, 'NULL', 'NULL', vt, vterr, FeH, Ferr, M, Merr, author, link, source, update, comment, database] params = list(map(str, params)) # New host information with open(output, 'a') as f: f.write('\n'+'\t'.join(params) + '\tNULL') f.close() # Update the list of new hosts with open('names.txt', 'w') as names: # if the last star was added so no star is updated if i+1 == len(stars): names.write('') else: for j in stars[i+1:]: names.write(j) names.close() print('') print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~') else: print('Bye...') break
py
b4014e3387647b2270d3e186b0448a74121bda50
"Test the functionality of Python classes implementing operators." import sys import unittest testmeths = [ # Binary operations "add", "radd", "sub", "rsub", "mul", "rmul", "matmul", "rmatmul", "truediv", "rtruediv", "floordiv", "rfloordiv", "mod", "rmod", "divmod", "rdivmod", "pow", "rpow", "rshift", "rrshift", "lshift", "rlshift", "and", "rand", "or", "ror", "xor", "rxor", # List/dict operations "contains", "getitem", "setitem", "delitem", # Unary operations "neg", "pos", "abs", # generic operations "init", ] # These need to return something other than None # "hash", # "str", # "repr", # "int", # "float", # These are separate because they can influence the test of other methods. # "getattr", # "setattr", # "delattr", callLst = [] def trackCall(f): def track(*args, **kwargs): callLst.append((f.__name__, args)) return f(*args, **kwargs) return track statictests = """ @trackCall def __hash__(self, *args): return hash(id(self)) @trackCall def __str__(self, *args): return "AllTests" @trackCall def __repr__(self, *args): return "AllTests" @trackCall def __int__(self, *args): return 1 @trackCall def __index__(self, *args): return 1 @trackCall def __float__(self, *args): return 1.0 @trackCall def __eq__(self, *args): return True @trackCall def __ne__(self, *args): return False @trackCall def __lt__(self, *args): return False @trackCall def __le__(self, *args): return True @trackCall def __gt__(self, *args): return False @trackCall def __ge__(self, *args): return True """ # Synthesize all the other AllTests methods from the names in testmeths. method_template = """\ @trackCall def __%s__(self, *args): pass """ d = {} exec(statictests, globals(), d) for method in testmeths: exec(method_template % method, globals(), d) AllTests = type("AllTests", (object,), d) del d, statictests, method, method_template class ClassTests(unittest.TestCase): def setUp(self): callLst[:] = [] def assertCallStack(self, expected_calls): actualCallList = callLst[:] # need to copy because the comparison below will add # additional calls to callLst if expected_calls != actualCallList: self.fail("Expected call list:\n %s\ndoes not match actual call list\n %s" % (expected_calls, actualCallList)) def testInit(self): foo = AllTests() self.assertCallStack([("__init__", (foo,))]) def testBinaryOps(self): testme = AllTests() # Binary operations callLst[:] = [] testme + 1 self.assertCallStack([("__add__", (testme, 1))]) callLst[:] = [] 1 + testme self.assertCallStack([("__radd__", (testme, 1))]) callLst[:] = [] testme - 1 self.assertCallStack([("__sub__", (testme, 1))]) callLst[:] = [] 1 - testme self.assertCallStack([("__rsub__", (testme, 1))]) callLst[:] = [] testme * 1 self.assertCallStack([("__mul__", (testme, 1))]) callLst[:] = [] 1 * testme self.assertCallStack([("__rmul__", (testme, 1))]) callLst[:] = [] testme @ 1 self.assertCallStack([("__matmul__", (testme, 1))]) callLst[:] = [] 1 @ testme self.assertCallStack([("__rmatmul__", (testme, 1))]) callLst[:] = [] testme / 1 self.assertCallStack([("__truediv__", (testme, 1))]) callLst[:] = [] 1 / testme self.assertCallStack([("__rtruediv__", (testme, 1))]) callLst[:] = [] testme // 1 self.assertCallStack([("__floordiv__", (testme, 1))]) callLst[:] = [] 1 // testme self.assertCallStack([("__rfloordiv__", (testme, 1))]) callLst[:] = [] testme % 1 self.assertCallStack([("__mod__", (testme, 1))]) callLst[:] = [] 1 % testme self.assertCallStack([("__rmod__", (testme, 1))]) callLst[:] = [] divmod(testme,1) self.assertCallStack([("__divmod__", (testme, 1))]) callLst[:] = [] divmod(1, testme) self.assertCallStack([("__rdivmod__", (testme, 1))]) callLst[:] = [] testme ** 1 self.assertCallStack([("__pow__", (testme, 1))]) callLst[:] = [] 1 ** testme self.assertCallStack([("__rpow__", (testme, 1))]) callLst[:] = [] testme >> 1 self.assertCallStack([("__rshift__", (testme, 1))]) callLst[:] = [] 1 >> testme self.assertCallStack([("__rrshift__", (testme, 1))]) callLst[:] = [] testme << 1 self.assertCallStack([("__lshift__", (testme, 1))]) callLst[:] = [] 1 << testme self.assertCallStack([("__rlshift__", (testme, 1))]) callLst[:] = [] testme & 1 self.assertCallStack([("__and__", (testme, 1))]) callLst[:] = [] 1 & testme self.assertCallStack([("__rand__", (testme, 1))]) callLst[:] = [] testme | 1 self.assertCallStack([("__or__", (testme, 1))]) callLst[:] = [] 1 | testme self.assertCallStack([("__ror__", (testme, 1))]) callLst[:] = [] testme ^ 1 self.assertCallStack([("__xor__", (testme, 1))]) callLst[:] = [] 1 ^ testme self.assertCallStack([("__rxor__", (testme, 1))]) def testListAndDictOps(self): testme = AllTests() # List/dict operations class Empty: pass try: 1 in Empty() self.fail('failed, should have raised TypeError') except TypeError: pass callLst[:] = [] 1 in testme self.assertCallStack([('__contains__', (testme, 1))]) callLst[:] = [] testme[1] self.assertCallStack([('__getitem__', (testme, 1))]) callLst[:] = [] testme[1] = 1 self.assertCallStack([('__setitem__', (testme, 1, 1))]) callLst[:] = [] del testme[1] self.assertCallStack([('__delitem__', (testme, 1))]) callLst[:] = [] testme[:42] self.assertCallStack([('__getitem__', (testme, slice(None, 42)))]) callLst[:] = [] testme[:42] = "The Answer" self.assertCallStack([('__setitem__', (testme, slice(None, 42), "The Answer"))]) callLst[:] = [] del testme[:42] self.assertCallStack([('__delitem__', (testme, slice(None, 42)))]) callLst[:] = [] testme[2:1024:10] self.assertCallStack([('__getitem__', (testme, slice(2, 1024, 10)))]) callLst[:] = [] testme[2:1024:10] = "A lot" self.assertCallStack([('__setitem__', (testme, slice(2, 1024, 10), "A lot"))]) callLst[:] = [] del testme[2:1024:10] self.assertCallStack([('__delitem__', (testme, slice(2, 1024, 10)))]) callLst[:] = [] testme[:42, ..., :24:, 24, 100] self.assertCallStack([('__getitem__', (testme, (slice(None, 42, None), Ellipsis, slice(None, 24, None), 24, 100)))]) callLst[:] = [] testme[:42, ..., :24:, 24, 100] = "Strange" self.assertCallStack([('__setitem__', (testme, (slice(None, 42, None), Ellipsis, slice(None, 24, None), 24, 100), "Strange"))]) callLst[:] = [] del testme[:42, ..., :24:, 24, 100] self.assertCallStack([('__delitem__', (testme, (slice(None, 42, None), Ellipsis, slice(None, 24, None), 24, 100)))]) def testUnaryOps(self): testme = AllTests() callLst[:] = [] -testme self.assertCallStack([('__neg__', (testme,))]) callLst[:] = [] +testme self.assertCallStack([('__pos__', (testme,))]) callLst[:] = [] abs(testme) self.assertCallStack([('__abs__', (testme,))]) callLst[:] = [] int(testme) self.assertCallStack([('__int__', (testme,))]) callLst[:] = [] float(testme) self.assertCallStack([('__float__', (testme,))]) callLst[:] = [] oct(testme) self.assertCallStack([('__index__', (testme,))]) callLst[:] = [] hex(testme) self.assertCallStack([('__index__', (testme,))]) def testMisc(self): testme = AllTests() callLst[:] = [] hash(testme) self.assertCallStack([('__hash__', (testme,))]) callLst[:] = [] repr(testme) self.assertCallStack([('__repr__', (testme,))]) callLst[:] = [] str(testme) self.assertCallStack([('__str__', (testme,))]) callLst[:] = [] testme == 1 self.assertCallStack([('__eq__', (testme, 1))]) callLst[:] = [] testme < 1 self.assertCallStack([('__lt__', (testme, 1))]) callLst[:] = [] testme > 1 self.assertCallStack([('__gt__', (testme, 1))]) callLst[:] = [] testme != 1 self.assertCallStack([('__ne__', (testme, 1))]) callLst[:] = [] 1 == testme self.assertCallStack([('__eq__', (1, testme))]) callLst[:] = [] 1 < testme self.assertCallStack([('__gt__', (1, testme))]) callLst[:] = [] 1 > testme self.assertCallStack([('__lt__', (1, testme))]) callLst[:] = [] 1 != testme self.assertCallStack([('__ne__', (1, testme))]) def testGetSetAndDel(self): # Interfering tests class ExtraTests(AllTests): @trackCall def __getattr__(self, *args): return "SomeVal" @trackCall def __setattr__(self, *args): pass @trackCall def __delattr__(self, *args): pass testme = ExtraTests() callLst[:] = [] testme.spam self.assertCallStack([('__getattr__', (testme, "spam"))]) callLst[:] = [] testme.eggs = "spam, spam, spam and ham" self.assertCallStack([('__setattr__', (testme, "eggs", "spam, spam, spam and ham"))]) callLst[:] = [] del testme.cardinal self.assertCallStack([('__delattr__', (testme, "cardinal"))]) def testDel(self): x = [] class DelTest: def __del__(self): x.append("crab people, crab people") testme = DelTest() del testme import gc gc.collect() self.assertEqual(["crab people, crab people"], x) def testBadTypeReturned(self): # return values of some method are type-checked class BadTypeClass: def __int__(self): return None __float__ = __int__ __complex__ = __int__ __str__ = __int__ __repr__ = __int__ __bytes__ = __int__ __bool__ = __int__ __index__ = __int__ def index(x): return [][x] for f in [float, complex, str, repr, bytes, bin, oct, hex, bool, index]: self.assertRaises(TypeError, f, BadTypeClass()) def testHashStuff(self): # Test correct errors from hash() on objects with comparisons but # no __hash__ class C0: pass hash(C0()) # This should work; the next two should raise TypeError class C2: def __eq__(self, other): return 1 self.assertRaises(TypeError, hash, C2()) @unittest.skipIf(hasattr(sys, "pyston_version_info"), "Pyston disables recursion checking") def testSFBug532646(self): # Test for SF bug 532646 class A: pass A.__call__ = A() a = A() try: a() # This should not segfault except RecursionError: pass else: self.fail("Failed to raise RecursionError") def testForExceptionsRaisedInInstanceGetattr2(self): # Tests for exceptions raised in instance_getattr2(). def booh(self): raise AttributeError("booh") class A: a = property(booh) try: A().a # Raised AttributeError: A instance has no attribute 'a' except AttributeError as x: if str(x) != "booh": self.fail("attribute error for A().a got masked: %s" % x) class E: __eq__ = property(booh) E() == E() # In debug mode, caused a C-level assert() to fail class I: __init__ = property(booh) try: # In debug mode, printed XXX undetected error and # raises AttributeError I() except AttributeError as x: pass else: self.fail("attribute error for I.__init__ got masked") def assertNotOrderable(self, a, b): with self.assertRaises(TypeError): a < b with self.assertRaises(TypeError): a > b with self.assertRaises(TypeError): a <= b with self.assertRaises(TypeError): a >= b def testHashComparisonOfMethods(self): # Test comparison and hash of methods class A: def __init__(self, x): self.x = x def f(self): pass def g(self): pass def __eq__(self, other): return True def __hash__(self): raise TypeError class B(A): pass a1 = A(1) a2 = A(1) self.assertTrue(a1.f == a1.f) self.assertFalse(a1.f != a1.f) self.assertFalse(a1.f == a2.f) self.assertTrue(a1.f != a2.f) self.assertFalse(a1.f == a1.g) self.assertTrue(a1.f != a1.g) self.assertNotOrderable(a1.f, a1.f) self.assertEqual(hash(a1.f), hash(a1.f)) self.assertFalse(A.f == a1.f) self.assertTrue(A.f != a1.f) self.assertFalse(A.f == A.g) self.assertTrue(A.f != A.g) self.assertTrue(B.f == A.f) self.assertFalse(B.f != A.f) self.assertNotOrderable(A.f, A.f) self.assertEqual(hash(B.f), hash(A.f)) # the following triggers a SystemError in 2.4 a = A(hash(A.f)^(-1)) hash(a.f) def testSetattrWrapperNameIntern(self): # Issue #25794: __setattr__ should intern the attribute name class A: pass def add(self, other): return 'summa' name = str(b'__add__', 'ascii') # shouldn't be optimized self.assertIsNot(name, '__add__') # not interned type.__setattr__(A, name, add) self.assertEqual(A() + 1, 'summa') name2 = str(b'__add__', 'ascii') self.assertIsNot(name2, '__add__') self.assertIsNot(name2, name) type.__delattr__(A, name2) with self.assertRaises(TypeError): A() + 1 def testSetattrNonStringName(self): class A: pass with self.assertRaises(TypeError): type.__setattr__(A, b'x', None) def testConstructorErrorMessages(self): # bpo-31506: Improves the error message logic for object_new & object_init # Class without any method overrides class C: pass error_msg = r'C.__init__\(\) takes exactly one argument \(the instance to initialize\)' with self.assertRaisesRegex(TypeError, r'C\(\) takes no arguments'): C(42) with self.assertRaisesRegex(TypeError, r'C\(\) takes no arguments'): C.__new__(C, 42) with self.assertRaisesRegex(TypeError, error_msg): C().__init__(42) with self.assertRaisesRegex(TypeError, r'C\(\) takes no arguments'): object.__new__(C, 42) with self.assertRaisesRegex(TypeError, error_msg): object.__init__(C(), 42) # Class with both `__init__` & `__new__` method overridden class D: def __new__(cls, *args, **kwargs): super().__new__(cls, *args, **kwargs) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) error_msg = r'object.__new__\(\) takes exactly one argument \(the type to instantiate\)' with self.assertRaisesRegex(TypeError, error_msg): D(42) with self.assertRaisesRegex(TypeError, error_msg): D.__new__(D, 42) with self.assertRaisesRegex(TypeError, error_msg): object.__new__(D, 42) # Class that only overrides __init__ class E: def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) error_msg = r'object.__init__\(\) takes exactly one argument \(the instance to initialize\)' with self.assertRaisesRegex(TypeError, error_msg): E().__init__(42) with self.assertRaisesRegex(TypeError, error_msg): object.__init__(E(), 42) if __name__ == '__main__': unittest.main()