ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
b402736fe41a1923f5e1f2be2b9ac727b56303ec
from controller import Robot from controller import Motor from controller import PositionSensor from controller import Robot, DistanceSensor, GPS, Camera, Receiver, Emitter import cv2 import numpy as np import math import time robot = Robot() timeStep = 32 tile_size = 0.12 speed = 6.28 media_baldoza = 0.06 estado = 1 start = 0 global r global g global b r = 0 g = 0 b = 0 # start = robot.getTime() # Camera initialization camera = robot.getDevice("camera3") camera.enable(timeStep) # Colour sensor initialization colour_sensor = robot.getDevice("colour_sensor") colour_sensor.enable(timeStep) # Distance sensor initialization distancia_sensor1 = robot.getDevice("distance sensor1") distancia_sensor1.enable(timeStep) # Motor initialization ruedaIzquierda = robot.getDevice("wheel1 motor") ruedaDerecha = robot.getDevice("wheel2 motor") ruedaIzquierda.setPosition(float('inf')) ruedaDerecha.setPosition(float('inf')) rIzq_encoder = ruedaIzquierda.getPositionSensor() rDer_encoder = ruedaDerecha.getPositionSensor() rIzq_encoder.enable(timeStep) rDer_encoder.enable(timeStep) # Functions def leer_sensores(): global r global g global b # Color sensor image = colour_sensor.getImage() r = colour_sensor.imageGetRed(image, 1, 0, 0) g = colour_sensor.imageGetGreen(image, 1, 0, 0) b = colour_sensor.imageGetBlue(image, 1, 0, 0) # azul: r=65 g=65 b=252 # rojo: r=252 g=65 b=65 # print("r: " + str(r) + " g: " + str(g) + " b: " + str(b)) """ # Camara image = camera.getImage() imagen = np.frombuffer(image, np.uint8).reshape((camera.getHeight(), camera.getWidth(), 4)) frame = cv2.cvtColor(imagen, cv2.COLOR_BGRA2BGR) cv2.imshow("frame", frame) frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Grayscale cv2.imshow("grayScale", frame) cv2.threshold(frame, 80, 255, cv2.THRESH_BINARY) # Threshold cv2.imshow("thresh", frame) cv2.waitKey(1) # Sensor de Distancia print("Distancia: " + str(distancia_sensor1.getValue())) """ def avanzar(vel): ruedaIzquierda.setVelocity(vel) ruedaDerecha.setVelocity(vel) def retroceder(vel): ruedaIzquierda.setVelocity(-vel) ruedaDerecha.setVelocity(-vel) def girar_der(vel): ruedaIzquierda.setVelocity(-vel) ruedaDerecha.setVelocity(vel) def girar_izq(vel): ruedaIzquierda.setVelocity(vel) ruedaDerecha.setVelocity(-vel) gyro = robot.getDevice("gyro") gyro.enable(timeStep) def rotar(angulo): global angulo_actual global tiempo_anterior # iniciar_rotacion if angulo > 0: girar_der(0.5) else: girar_izq(0.5) # Mientras no llego al angulo solicitado sigo girando if (abs(abs(angulo) - angulo_actual) > 1): tiempo_actual = robot.getTime() # print("Inicio rotacion angulo", angulo, "Angulo actual:",angulo_actual) tiempo_transcurrido = tiempo_actual - \ tiempo_anterior # tiempo que paso en cada timestep # rad/seg * mseg * 1000 radsIntimestep = abs(gyro.getValues()[1]) * tiempo_transcurrido degsIntimestep = radsIntimestep * 180 / math.pi # print("rads: " + str(radsIntimestep) + # " | degs: " + str(degsIntimestep)) angulo_actual += degsIntimestep # Si se pasa de 360 grados se ajusta la rotacion empezando desde 0 grados angulo_actual = angulo_actual % 360 # Si es mas bajo que 0 grados, le resta ese valor a 360 if angulo_actual < 0: angulo_actual += 360 tiempo_anterior = tiempo_actual # print("Angulo actual:", angulo_actual) return False #print("Rotacion finalizada.") angulo_actual = 0 return True def delay(ms): initTime = robot.getTime() # Store starting time (in seconds) while robot.step(timeStep) != -1: print("delay") if (robot.getTime() - initTime) * 1000.0 > ms: # If time elapsed (converted into ms) is greater than value passed in avanzar(0) break def rotar_enclavado(angulo): while robot.step(timeStep) != -1: leer_sensores() # print("r: " + str(r) + " g: " + str(g) + " b: " + str(b)) if rotar(angulo) == True: # If time elapsed (converted into ms) is greater than value passed in avanzar(0) break def avance(tipo_avance): start = rDer_encoder.getValue() velocidad = 0 avance = 0 if tipo_avance == "medio": velocidad = 3 avance = 2.9 elif tipo_avance == "largo": avance = 5.9 velocidad = 5.96 elif tipo_avance == "esquina": avance = 4.1 velocidad = 6.28 while robot.step(timeStep) != -1: avanzar(velocidad) leer_sensores() tipo_pizza() # print("r: " + str(r) + " g: " + str(g) + " b: " + str(b)) if rDer_encoder.getValue() >= start + avance: avanzar(0) break def retroceso(tipo_retroceso): start = rDer_encoder.getValue() velocidad = 0 retroceso = 0 if tipo_retroceso == "medio": velocidad = 6.28 retroceso = 2.9 elif tipo_retroceso == "largo": retroceso = 5.9 velocidad = 5.96 elif tipo_retroceso == "esquina": retroceso = 4.1 velocidad = 6.28 elif tipo_retroceso == "poquito": retroceso = 1.9 velocidad = 6.28 while robot.step(timeStep) != -1: retroceder(velocidad) leer_sensores() # print("r: " + str(r) + " g: " + str(g) + " b: " + str(b)) if start - retroceso >= rDer_encoder.getValue(): avanzar(0) break def tipo_pizza(): #print("valores(1): r:" + str(r) + " , g:" + str(g) + " , b:" + str(b)) if 255 >= r >= 240 and 60 <= b <= 75 and 60 <= g <= 75: print("(Red)pasaje zona 3 a 1") elif 150 >= r >= 100 and 210 <= b <= 230 and 60 <= g <= 75: print("(Vaiolet)pasaje zona 2 a 3") elif 60 <= r <= 75 and 255 >= b >= 245 and 60 <= g <= 75: print("(Blue)pasaje zona 1 a 2") elif 200 <= r <= 220 and 110 >= b >= 100 and 175 <= g <= 180: print("Entered swamp") return "swamp" elif 250 >= r >= 230 and 250 >= b >= 235 and 250 >= g >= 235: print("Found Checkpoint") elif r == 233 and b == 233 and g == 233: print("Azulejo normal") elif 30 <= r <= 50 : print("un agujero negro we") retroceso("medio") rotar_enclavado(90) else: return "prueba" angulo_actual = 0 tiempo_anterior = robot.getTime() contador = 0 while robot.step(timeStep) != -1: avance("medio")
py
b40274448f1e8621ef7e78bce899e892e5532ead
"""Quick and Dirty, a high level file access wrapper. The QnD interface looks like this:: f = format_specific_open(filename, mode) # e.g. openh5 var = f.varname # read var var = f['varname'] var = f.get('varname', default) f.var = var_value # declare and write var f['var'] = something f.var = dtype, shape # declare var without writing f.update({...vars...}, another_var=value, ...) f.grpname = {...vars...} # declare a subgroup and some members if name in f: do_something varnames = list(f) for name in f: do_something for name, var in f.items(): do_something g = f.grpname f = g.root() # Use the root method to get the top-level QGroup. f.close() # important if you have written to f Generally, a QnD QGroup like `f` in the example behaves like a dict. However, you may also reference variables or subgroups as if they were attributes. Use attributes to access variables when you know the variable name. In short, use square brackets when the variable name is the value of an expression. (QnD will remove a single trailing underscore from any attribute reference, so you can use ``f.yield_`` for ``f['yield']`` or ``f.items_`` for ``f['items']``.) The adict module has an `ADict` class and a `redict` function to produce ordinary in-memory dict objects with their items accessible as attributes with the same rules. You can read a whole file (or a whole subgroup) like this:: ff = f(2) The optional `2` argument is the auto-read mode flag. By default, the auto-read mode flag is set to 1, which causes ``f.varname`` to read an array variable and return its value, but to simply return a QGroup object (like `f`) if the name refers to a subgroup. When the `auto` flag equals `2`, any subgroups are read recursively, and their values become ADict instances. (QnD also supports QList variables, and ``auto=2`` mode returns those as python list instances.) The ``items()`` method also accepts an optional `auto` argument to temporarily change auto-read mode used for the iteration. You can turn auto-read mode off by setting the `auto` flag to `0`. In this mode, referencing a variable returns a QLeaf instance without reading it. This enables you to query a variable without reading it. You can also do that by retrieving the attributes object:: with f.push(): # Use f as a context manager to temporarily change modes. f.auto(0) # Turn off auto-read mode. v = f.varname value = v() # Read a QLeaf by calling it... value = v[:] # ...or by indexing it. v(value) # Write a QLeaf by calling it with an argument... v[:] = value # ...or by setting a slice. v.dtype, v.shape, v.size, v.ndim # properties of the QLeaf v # An alternate method which pays no attention to auto mode: va = f.attrs.varname # Get attributes of varname. va.dtype, va.shape, va.size, va.ndim # Built-in pseudo-attributes. # You can use va to get or set real attributes of varname as well: units = va.units # retrieve units attribute va.centering = 1 # set centering attribute When you call a QGroup like `f` as a function, you may also pass it a list of variable names to read only that subset of variables. With auto-read mode turned off, this results in a sort of "casual subgroup":: g = f(0, 'vname1', 'vname2', ...) h = f(1, 'vname1', 'vname2', ...) ff = f(2, 'vname1', 'vname2', ...) Here, g is an ADict containing QLeaf and QGroup objects, with nothing at all read from the file, while h is and ADict containing ndarray and QGroup objects, while ff is an ADict containing ndarray and ADict objects, with no references at all to `f`. If you want to use `f` as a context manager in the manner of other python file handles, so that the file is closed when you exit the with statement, just do it:: with openh5(filename, "a") as f: do_something(f) # f has been properly flushed and closed on exit from the with. ------ QnD also supports old netCDF style UNLIMITED dimensions, and their equivalents in HDF5. Unlike the netCDF or HDF5 interface, in QnD the first (slowest varying) dimension of these arrays maps to a python list, so we regard the entire collected variable as a list of ndarrays. The netCDF record number is the index into the list, while any faster varying dimensions are real ndarray dimensions. This subtle difference in approach is more consistent with the way these variables are stored, and also generalizes to the fairly common case that the array dimensions -- often mesh dimensions -- change from one record to the next. To write records using QnD, turn on "recording mode":: f.recording(1) # 0 for off, 2 for generalized records f.time = 0. f.x = x = arange(10) f.time = 0.5 f.x = x**2 Ordinarily, when you set the value of ``f.time`` or ``f.x``, any previous value will be overwritten. But in recording mode, each time you write a variable, you create a new record, saving the new value without overwriting the previous value. If you want all record variables to have the same number of records, you need to be sure you write them each the same number of times. One way to do that is to use the update function rather than setting them one at a time:: record = ADict() record.time, record.x = 0., arange(10) f.recording(1) f.update(record) record.time, record.x = 0.5, record.x**2 f.update(record) You cannot change a variable from not having records to having records (or from recording mode 1 to recording mode 2); the recording mode in force when a variable was first declared determines if and how all future write operations behave. Reading back record variables introduces "goto mode". Initially, goto mode is off or None, so that reading a record variable gets the whole collection of values as a QList, or as an ordinary python list if auto mode is on:: f.goto(None) # explicitly turn off goto mode f.auto(2) times = f.time # python list of f.time values xs = f.x # python list of f.x arrays f.auto(0) time = f.time # QList for the collection of time values nrecords = len(time) On the other hand, with goto mode turned on, the fact that `time` and `x` are record variables disappears, so that your view of ``f.time`` and ``f.x`` matches what it was when you recorded them. You use the goto function to set the record:: f.goto(0) # first record is 0, like any python list t = f.time # == 0. f.goto(1) # set to second record t = f.time # == 0.5 x = f.x # == arange(10)**2 f.goto(-1) # final record, negative index works like any python list # You can also pass a keyword to goto, which can be the name of any # scalar record variable, to go to the record nearest that value. f.goto(time=0.1) # will select record 0 here current_record = f.goto() # goto() returns current record number for r in f.gotoit(): do_something # f.goto(r) is set automatically Note the ``gotoit()`` method returns an iterator over all records, yielding the record number for each pass, and setting the goto record for each pass automatically. You can use ``f.push()`` in a with statement to temporarily move to a different record. If you set the recording mode to `2`, the record variables need not have the same shape or same type from one record to the next (indeed, they can be a subgroup on one record and an array on another). This cannot be represented as an UNLIMITED array dimension in an HDF5 or netCDF file, so the QList variable in QnD will become an HDF5 group in this case, where variable names in the group are _0, _1, _2, and so on for QList element 0, 1, 2, and so on (plus a hidden element _ which identifies this group as a list when it is empty). You can create a QList of this general type without using recording or goto mode at all:: f.recording(0) # Turn off recording and goto modes. f.goto(None) f.varname = list # Make an empty QList ql = f.varname ql.append(value0) ql.extend([value1, value2, ...]) var = ql[1] # retrieves value1 nelements = len(ql) # current number of elements (also works for QGroup) ql.auto(0) # a QList has auto mode just like a QGroup for var in ql: do_something # var depends on ql auto mode setting ------ """ from __future__ import absolute_import # The three kinds of objects we support here are: # 1. QGroup --> dict with str keys # 2. QList --> list # 3. QLeaf --> ndarray with dtype.kind in buifcS, with U encoded as S # and V handled as recarray. # We attempt to store arbitrary python objects as a QGroup with member # __class__ = 'modulename.classname' (or just classname for builtin) # remainder of QGroup is the instance __dict__, unless __class__ has a # __setstate__, in which case argument to that method stored in the # __setstate__ variable. # If __class__ has a __getnewargs__, result is written sub-QGroup with # _0, _1, ..., which will be passed to the class constructor -- otherwise # the class starts empty and neither __new__ nor __init__ is called. # List or tuple objects not distinguished, becoming QList items. # Dict objects with non-text keys stored with __class__ = 'dict' and # members _0, _1, _2, etc., where even item is key and following odd item # is corresponding value. # We ask the backend to support the variable value None as a QLeaf in # addition to the arrays, if possible. Arrays with zero length dimensions # should also be supported if possible. # # This qnd module also provides a low level QnDList implementation of the # QList in terms of the backend QGroup (recording=2) and QLeaf (recording=1) # implementations, for backends which do not support a native list type. # The convention is that a generic QList is a QGroup with a blank member _ # and members _0, _1, _2, etc. If the backend supports QLeaf arrays with an # UNLIMITED leading dimension, these can also be presented as QList # variables by the QnD API. # Backend object methods assumed here: # qnd_group methods: close(), flush(), root() # isgroup() -> 1, islist() -> 0, isleaf() -> 0 # __len__, __iter__ returns names # lookup(name) -> None if not found # declare(name, dtype, shape, unlim) dtype can be dict, list, or None # attget(vname) --> variable attributes, vname='' for group attributes # attset(vname, aname, dtype, shape, value) --> variable attributes # qnd_list methods: root() # isgroup() -> 0, isleaf() -> 0 # islist() -> 1 if this is UNLIMITED dimension, -> 2 if anonymous group # __len__, __iter__ returns unread elements # index(i) -> None if i out of range # declare(dtype, shape) dtype can be dict, list, or None # qnd_leaf methods: root() # isgroup() -> 0, islist() -> 0, isleaf() -> 1 # query() -> dtype, shape, sshape (None, (), () for None) # read(args) # write(value, args) import sys from weakref import proxy, ProxyTypes from importlib import import_module import re # Major change in array(x) function semantics when x is a list of ragged # arrays: This now generates a DeprecationWarning as of 1.19, and # presumably an exception for some future numpy (beyond 1.21). See the # _categorize function below for the workaround. from warnings import catch_warnings, simplefilter from numpy import VisibleDeprecationWarning from numpy import (dtype, asfarray, asanyarray, arange, interp, where, prod, ndarray) from numpy.core.defchararray import encode as npencode, decode as npdecode from .adict import ItemsAreAttrs, ADict PY2 = sys.version_info < (3,) if PY2: range = xrange else: basestring = str _NOT_PRESENT_ = object() _us_digits = re.compile(r"^_\d*$") class QGroup(ItemsAreAttrs): """Group of subgroups, lists, and ndarrays. You reference QGroup items by name, either as ``qg['name']`` like a dict item, or equivalently as ``qg.name`` like an object attribute. Use ``[]`` when the item name is an expression or the contents of a variable; use ``.`` when you know the name of the item. You can use ``[]`` or ``.`` to both get and set items in the QGroup. To read the entire group into a ADict, call it like a function, ``qg()``; you may supply a list of names to read only a subset of items. A QGroup acts like a dict in many ways:: if 'name' in qg: do_something for name in qg: do_something item_names = list(qg) # qg.keys() exists but is never necessary for name, item in qg.items(): do_something qg.update({name0: val0, ...}, [(name1, val1), ...], name2=val2, ...) value = qg.get('name', default) A QGroup has several possible states or modes: 1. Recording mode, turned on by ``qg.recording(1)`` and off by ``qg.recording(0)``, affects what happens when you set group items. With recording mode off, setting an item to an array creates the item as an array if its name has not been used, or otherwise writes its new value, requiring it be compatible with the dtype and shape of the previous declaration. With recording mode on, setting an item for the first time creates a QList and sets its first element to the given value, and subsequently setting that item appends the given value to the existing QList. There is also a recording mode ``qg.recording(2)`` in which subsequent values need not match the dtype or shape of the first item. You may not switch recording modes for a given item; the mode in effect when an item is first created governs the behavior of that item. 2. Goto mode, in which you set a current record with ``qg.goto(rec)``. Any item you retrieve or query which is a QList retrieves or queries the element with 0-origin index ``rec`` instead of the whole QList. You turn off goto mode with ``qg.goto(None)``. There is also a ``qg.gotoit()`` function which returns an iterator over all the records (generally the longest QList in ``qg``). 3. Auto mode, turned on by ``qg.auto(1)`` and off by ``qg.auto(0)``, in which getting any item reads and returns its value, rather than a QLeaf object. There is also a ``qg.auto(2)`` mode in which the auto-read feature applies to any QGroup or QList (if goto mode is off) items recursively. A QGroup has `push` and `drop` methods which can be used to save and restore all its modes. The `drop` method is called implicitly upon exit from a with statement, so you can use the QGroup as a context manager:: with openh5('myfile.h5', 'a') as qg: do_something(qg) with qg.push(): qg.goto(rec) do_something_else(qg) # qg restored to goto mode state before with. do_even_more(qg) # qg flushed and closed upon exit from with clause that has no # no corresponding push Attributes ---------- islist isleaf Always 0. isgroup Always 1. dtype Always ``dict``, the builtin python type. shape ndim size sshape Always None. """ __slots__ = "_qnd_group", "_qnd_state", "_qnd_cache", "__weakref__" isgroup = 1 islist = isleaf = 0 dtype, shape, ndim, size, sshape = dict, None, None, None, None def __init__(self, item=None, state=None, auto=None, recording=None, goto=None): object.__setattr__(self, "_qnd_group", item) object.__setattr__(self, "_qnd_state", QState() if state is None else QState(state)) object.__setattr__(self, "_qnd_cache", None) state = self._qnd_state if auto is not None: state.auto = int(auto) if recording is not None: state.recording = int(recording) if goto is not None: state.goto = int(goto) def recording(self, flag): """Change recording mode for this QGroup. With recording mode off, writing to a variable overwrites that variable. With recording mode on, new variables are declared as a QList and subsequent write operations append a new element to this QList instead of overwriting any previously stored values. In netCDF parlance, variables declared in recording mode are record variables. Writing to a variable declared when recording mode was off will always overwrite it; once declared, you cannot convert a variable to a QList simply by turning on recording mode. See goto mode for handling record variable read operations. A `flag` value of 0 turns off recording mode. A `flag` of 1 turns on recording mode, utilizing a trailing UNLIMITED array dimension in netCDF or HDF5 parlance, which promises that all values written will have the same dtype and shape. A `flag` of 2 places no restrictions on the dtype or shape of the QList elements; such an unrestricted QList resembles an anonymous QGroup. """ self._qnd_state.recording = int(flag) def goto(self, record=_NOT_PRESENT_, **kwargs): """Set the current record for this QGroup, or turn off goto mode. Pass `record` of None to turn off goto mode, so that QList variables appear as the whole QList. Setting an integer `record` makes any QList variable appear to be the specified single element. A `record` value may be negative, with the usual python interpretation for a negative sequence index. If different QList variables have different lengths, the current `record` may be out of range for some variables but not for others. (Hence using goto mode may be confusing in such situations.) Note that you can temporarily set goto mode using a with clause. This `goto` method also accepts a keyword argument instead of a `record` number. The keyword name must match the name of a QList variable in this QGroup, whose vaules are scalars. This will set `record` to the record where that variable is nearest the keyword value. Thus, ``goto(time=t)`` selects the record nearest `time` t. As a special case, you can get the current record number by calling `goto` with neither a `record` nor a keyword:: current_record = qg.goto() """ if kwargs: if record is not _NOT_PRESENT_: raise TypeError("either use keyword or record index") if len(kwargs) != 1: raise TypeError("only one keyword argument accepted") name, val = list(kwargs.items())[0] records, values = self._qnd_goto_recs(name) val = float(val) n = values.size if n > 1: # result of interp is float scalar in older numpy versions # rather than numpy.float64, cannot use astype i = int(interp(val, values, arange(n) + 0.5)) else: i = 0 record = records[min(i, n-1)] elif record is _NOT_PRESENT_: return self._qnd_state.goto elif record is not None: record = int(record) self._qnd_state.goto = record def _qnd_goto_recs(self, name): cache = self._qnd_cache values = cache.get(name) if cache else None if values is None: item = self._qnd_group.lookup(name) if item is not None and item.islist(): with self.push(): self.goto(None) self.auto(2) values = self[name] values = asfarray(values) if values.ndim != 1 or values.size < 1: values = None if values is None: raise TypeError("{} is not scalar record variable" "".format(name)) values = _monotonize(values) if not cache: cache = {} object.__setattr__(self, "_qnd_cache", cache) cache[name] = values return values # returned by _monotonize def gotoit(self, name=None): """Iterate over goto records, yielding current record. Optional `name` argument is the name of a `goto` method keyword, which may implicitly remove records corresponding to non-monotonic changes of that variable. If `name` is a decreasing variable, the record order will be reversed. As a side effect, the current record of this QGroup will be set during each pass. If the loop completes, the original goto state will be restored, but breaking out of the loop will leave the goto record set. """ if name is not None: records, _ = self._qnd_goto_recs(name) else: # scan through all variables to find largest recrod count nrecords = 0 for name in self._qnd_group: item = self._qnd_group.lookup(name) if item.islist(): n = len(item) if n > nrecords: nrecords = n records = arange(nrecords) r0 = self._qnd_state.goto for r in records: self._qnd_state.goto = r yield r self._qnd_state.goto = r0 def auto(self, recurse): """Set the auto-read mode for this QGroup. In auto-read mode, getting an item returns its value, rather than a QLeaf. If the item is a QGroup or QList, that is returned if the `recurse` value is 1, whereas if `recurse` is 2, the QGroup or QList variables will be read recursively. Setting `recurse` to 0 turns off auto-read mode entirely. Note that you can temporarily set auto mode using a with clause. """ self._qnd_state.auto = int(recurse) def push(self): """Push current recording, goto, and auto mode onto state stack.""" self._qnd_state.push() return self def drop(self, nlevels=None, close=False): """Restore previous recording, goto, and auto mode settings. Default ``drop()`` drops one pushed state, ``drop(n)`` drops n, ``drop('all')`` drops all pushed states. By default, `drop` is a no-op if no pushed states to drop, ``drop(close=1)`` closes the file if no pushed states to drop, which is called implicitly on exit from a with suite. """ if nlevels is None: nlevels = 1 elif nlevels == "all": nlevels = len(self._qnd_state) - 3 while nlevels >= 0: if self._qnd_state.drop() and close: self.close() nlevels -= 1 def close(self): """Close associated file.""" this = self._qnd_group if this is not None: for nm in ["_qnd_group", "_qnd_state", "_qnd_cache"]: object.__setattr__(self, nm, None) this.close() def flush(self): """Flush associated file.""" this = self._qnd_group if this is not None: this.flush() def root(self): """Return root QGroup for this item.""" qgroup = self._qnd_group root = qgroup.root() if root is qgroup: return self state = QState(self._qnd_state) # copy return QGroup(root, state) def attrs(self): """Return attribute tree for variables in this group.""" return QAttributes(self._qnd_group) def get(self, key, default=None): """like dict.get method""" try: return self[key] except KeyError: return default def items(self, auto=None): """like dict.items method (iteritems in python2)""" if auto == self._qnd_state.auto: auto = None for name in self._qnd_group: if auto is None: value = self[name] else: with self.push(): self.auto(auto) value = self[name] yield name, value def __repr__(self): this = self._qnd_group if this is not None: return "<QGroup with {} items>".format(len(this)) else: return "<closed QGroup>" def __len__(self): return len(self._qnd_group) def __contains__(self, name): return self._qnd_group.lookup(name) is not None def __iter__(self): return iter(self._qnd_group) keys = __iter__ __enter__ = push def __exit__(self, etype, evalue, etrace): self.drop(close=1) def __call__(self, auto=None, *args): # Make qg() shorthand for qg[()], returning whole group. if auto == self._qnd_state.auto: auto = None if auto is None: value = self[args] else: with self.push(): self.auto(auto) value = self[args] return value def __getitem__(self, key): if not isinstance(key, tuple): key = (key,) if not key: # qg[()] retrieves entire group key = (list(self._qnd_group),) name, args = key[0], key[1:] if isinstance(name, basestring): if "/" in name: if name.startswith("/"): return self.root()[(name[1:],) + args] name = name.split("/") name, args = name[0], tuple(name[1:]) + args else: # qg[["name1", "name2", ...], slice0, ...] # returns [qg.name1[slice0, ...], qg.name2[slice0, ...], ...] items = [] for key in name: if not isinstance(key, basestring): # Prevent recursive name lists inside name lists. raise KeyError("expecting item name or list of item names") items.append((key, self[(key,)+args])) return ADict(items) item = self._qnd_group.lookup(name) if item is None: raise KeyError("no such item in QGroup as {}".format(name)) state = self._qnd_state auto, recording = state.auto, state.recording record = state.goto if item.islist(): item = QList(item, auto) if record is None: if not args and auto <= 1: return item else: args = (record,) + args return item[args] if args else item[:] if item.isleaf(): return _reader(item, args) if args or auto else QLeaf(item) # Item must be a group, set up inherited part of state. # Note that goto record was not used, so subgroup inherits it. cls = item.lookup("__class__") if cls is not None and auto: return _load_object(item, cls) item = QGroup(item, auto=auto, recording=recording, goto=record) return item() if auto > 1 else item def __setitem__(self, key, value): name, args = (key[0], key[1:]) if isinstance(key, tuple) else (key, ()) if not isinstance(name, basestring): name = "/".join(name) if "/" in name: if name.startswith("/"): item = self.root() name = name[1:] else: path, name = name.rsplit("/", 1) with self.push(): self.auto = 0 item = self[path] item[(name,) + args] = value return dtype, shape, value = _categorize(value) state = self._qnd_state recording, record = state.recording, state.goto this = self._qnd_group item = this.lookup(name) if item is None: # Declare item now. if args: raise KeyError("partial write during declaration of {}" "".format(name)) if recording: # numpy (1.16.4) misfeature dtype('f8') tests == None # (other dtypes are != None as expected), so cannot # ask if (list, dict, object, None) contains dtype if recording != 1 or (dtype is None or dtype in (list, dict, object)): # Declare an anonymous-group-style list. item = this.declare(name, list, None) else: # Declare item with UNLIMITED dimension. item = this.declare(name, dtype, shape, 1) # item now an empty list elif dtype == dict: item = this.declare(name, dict, None) if value: QGroup(item).update(value) return elif dtype == list: item = this.declare(name, list, None) if value: QList(item).extend(value) return elif dtype == object: item = this.declare(name, dict, None) _dump_object(item, value) return else: item = this.declare(name, dtype, shape) if value is None: return while item.islist(): if recording: if args: raise KeyError("partial write while recording {}" "".format(name)) record = len(item) # index of next record item = item.declare(dict if dtype == object else dtype, shape) # declare the next item state.goto = record if dtype is None: return if dtype == list: if value: QList(item).extend(value) return if dtype == dict: if value: QGroup(item).update(value) return if dtype == object: _dump_object(item, value) return break if record is None: if args: record, args = args[0], args[1:] elif dtype == list and not value: # qg.lst = list is no-op for existing QList return else: raise ValueError("cannot set existing QList {}, use " "append, goto, or recording".format(name)) item = item.index(record) if item is None: raise KeyError("no such item in QList as {}".format(record)) record = None # makes no sense to use record recursively recording = 0 if item.isgroup(): if args: QGroup(item)[args] = value return if dtype == dict and not value: # qg.grp = {} is no-op for existing QGroup return raise ValueError("cannot set existing QGroup {}, use update" "".format(name)) # item is a leaf (neither a list nor a group) if dtype in (dict, list, object): raise TypeError("type mismatch in QLeaf {}".format(name)) elif item.query()[0] is None: # None QLeaf objects need not support write() method. if dtype is None and not args: return raise TypeError("QLeaf {} declared as None".format(name)) item.write(value, args) def _monotonize(values): # This function ensures values are monotonically increasing, # searching backwards for decreasing sequences. decreasing = values[-1] < values[0] if decreasing: values = -values mask = values == values vnext = values[-1] for i in range(-2, -values.size-1, -1): v = values[i] if v >= vnext: mask[i] = False else: vnext = v records, values = where(mask)[0], values[mask] if decreasing: # Reverse both records and values so latter is strictly increasing. # In this way, values can always be used as x in the interp function. records = records[::-1] values = -values[::-1] return records, values def _categorize(value, attrib=False): # This function defines the various sorts of values QnD recognizes: # 1. None dtype = shape = value = None # 2. list [, seq] dtype = list, shape = None, value = [] or seq # 3. {...} dtype = dict, shape = None, value = {...} # 4. type|dtype [, shape] dtype = dtype(type), shape, value = None # 5. array_like value.dtype, value.shape, value = asanyarray(...) # 6. object or dtype('O') dtype = object, shape = None, value if value is None: dtype = shape = None elif isinstance(value, (type, _dtype)): if value == list: dtype, shape, value = list, None, [] else: dtype, shape, value = _dtype(value), (), None elif isinstance(value, dict): if all(isinstance(key, basestring) for key in value): dtype = dict else: dtype = object shape = None elif (isinstance(value, tuple) and len(value) == 2+bool(attrib) and isinstance(value[0], (type, _dtype))): dtype = value[0] if dtype is not None and dtype not in (list, dict, object): dtype = _dtype(dtype) # no-op if already a dtype if not attrib: if dtype == list: value, shape = value[1], None else: value, shape = None, tuple(value[1]) else: shape, value = value[1:] else: # The array(a) constructor used to accept essentially any argument a. # At numpy 1.19 it began issues a VisibleDeprecationWarning when a # was a list whose items were of differing lengths (or shapes). # Prior to that, it simply produced an ndarray of dtype object whose # items were the python entities in the original list. This is the # behavior we want in QnD, so we do not want to print a warning. # Moreover, when the feature is eventually removed, this case will # throw a (currently unknown) exception, which we need to avoid. # Passing the dtype=object keyword to the array() constructor # produces the pre-1.19 behavior (as far as I can tell), but of # course we cannot do that here. # The following code must work in three cases: (1) pre-1.19 numpy, # (2) numpy 1.19-1.21 (at least) which print unwanted warnings without # special treatment, and (3) future numpy which throws an error # without the dtype=object keyword. Since QnD must always run in # all three cases, there is no way to remove the protection against # the deprecation wawrning, even when numpy move past it. with catch_warnings(): # Make case 2 (numpy 1.19) behave like case 3 (future numpy) simplefilter("error", VisibleDeprecationWarning) try: v = asanyarray(value) except Exception: # As far as I can tell, the original numpy array() constructor # would accept any argument whatsoever, returning either a # scalar or 1D array of type object if its argument could not # be interpreted. Therefore I believe only a ragged array # argument reaches this point, and we can return to the # original behavior by specifying dtype explicitly. # Nevertheless, we protect against a possible exception. simplefilter("ignore", VisibleDeprecationWarning) try: v = asanyarray(value, dtype=object) except Exception: return object, None, value dtype, shape = v.dtype, v.shape if dtype.kind == "O": if not shape: dtype, shape = object, None else: # Note that this does not work as expected when the contents # of the list were themselves lists (not ndarrays) of numbers # of varying lengths, since the asanyarray function will not # convert those inner lists to ndarrays. Hence v.tolist() is # really the same as the original value here. # A QnD user must ensure that the inner lists are ndarrays if # that is what they intended. dtype, shape, value = list, None, v.tolist() else: value = v if isinstance(dtype, _dtype): kind = dtype.kind if kind == "U": if value is not None: value = npencode(value, "utf8") # convert to 'S' dtype = value.dtype elif kind == "O": raise ValueError("numpy dtype.kind 'O' not supported") return dtype, shape, value def _reader(item, args): value = item.read(args) dtyp = getattr(value, "dtype", None) if dtyp is not None: kind = dtyp.kind if kind == "V": if dtyp.names: # The recarray has some significant misfeatures. The worst # is that it will not print (repr or str) if it is aligned, # or simply if the itemsize does not match what it expects. # value = value.view(recarray) pass elif kind in "SU": if not PY2: if dtyp.kind == "S": try: value = npdecode(value, "utf8") except UnicodeDecodeError: value = npdecode(value, "latin1") if isinstance(value, ndarray) and not value.shape: value = value[()] return value _dtype = dtype # to allow access in methods using local name dtype _builtin_module = str.__class__.__module__ def _dump_object(item, value): # item.isgroup() is true, as yet empty, value is an object item = QGroup(item) if isinstance(value, dict): # special case for dict with non-text keys item["__class__"] = "dict" items = value.iteritems if PY2 else value.items for i, (k, v) in enumerate(items()): item["_" + str(2*i)] = k item["_" + str(2*i+1)] = v else: cls = value.__class__ cname, module = cls.__name__, cls.__module__ if module is not None and module != _builtin_module: cname = ".".join((module, cname)) item["__class__"] = cname # Note that __getnewargs_ex__ is python3 only, so we skip # it here. The recommendation in the python3 docs is to use # the _ex version only if __new__ requires keyword arguments. # Similarly, we do not support the python2-only __getinitargs__. mydict = getattr(value, "__dict__", None) getnew = getattr(value, "__getnewargs__", None) setter = hasattr(value, "__setstate__") getter = getattr(value, "__getstate__", None) if getnew: args = getnew() elif not getter and mydict is None: # We cannot handle the intricacies of the full # pickle/copyreg protocol, but by handling one simple # case of __reduce__ we can pick up both slice() and set() # objects, which is worthwhile. # Virtually all objects have a __reduce__ method, which # will often raise a TypeError. Go ahead and blow up here. getnew = value.__reduce__() if getnew[0] != cls or any(v is not None for v in getnew[2:]): raise TypeError("QnD cannot dump class {}".format(cname)) args = getnew[1] if getnew: item["__getnewargs__"] = {} subdir = item["__getnewargs__"] for i, arg in enumerate(args): subdir["_" + str(i)] = arg value = getter() if getter else mydict if setter: # __setstate__ only called if __getstate__ not false # Never convert lists or tuples to ndarrays here. (??) if value: if isinstance(value, (list, tuple)): value = list, value item["__setstate__"] = value elif value: item.update(value) def _load_object(qgroup, cls): # If you fail here, you can still read the group with ADict(qgroup) # which avoids this special treatment. cls = cls.read() # assume QLeaf yields a text string if not isinstance(cls, basestring): raise TypeError("Expecting __class__ member of QGroup to be text.") qgroup = QGroup(qgroup, auto=2) if cls == "dict": obj = {} names = list(name for name in qgroup if name != "__class__") if len(names) & 1: names[0] = "" # die in first pass key = None for i, n in enumerate(sorted(names)): if "_{}".format(i) != n: raise TypeError("QGroup with __class__ dict error") value = qgroup[n] if i & 1: obj[key] = value else: key = value else: cls = cls.rsplit(".", 1) try: module = (import_module(cls[0]) if len(cls) > 1 else sys.modules[_builtin_module]) cls = getattr(module, cls[-1]) except (ImportError, AttributeError): # If the named module does not exist or does not have # the specified class, just return an ADict. return ADict(qgroup) args = qgroup.get("__getnewargs__") if args is not None: args = [args["_" + str(i)] for i in range(len(args))] obj = cls(*args) else: obj = object.__new__(cls) args = qgroup.get("__setstate__") if args is not None: obj.__setstate__(args) else: names = list(name for name in qgroup if name not in ["__class__", "__getnewargs__"]) if names: obj.__dict__.update(qgroup(2, names)) return obj class QState(list): """State information for a QGroup.""" __slots__ = () def __init__(self, recording=0, goto=None, auto=0): if hasattr(recording, "__iter__"): seq = tuple(recording)[:3] else: if goto is not None: goto = int(goto) recording, auto = int(recording), int(auto) seq = recording, goto, auto super(QState, self).__init__(seq) @property def recording(self): return self[0] @recording.setter def recording(self, value): self[0] = int(value) @property def goto(self): return self[1] @goto.setter def goto(self, value): self[1] = None if value is None else int(value) @property def auto(self): return self[2] @auto.setter def auto(self, value): self[2] = int(value) def push(self): state = self[:3] self.append(state) def drop(self): if len(self) < 4: return 1 self[:3] = super(QState, self).pop() return 0 class QList(object): """List of subgroups, lists, and ndarrays. You reference QList elements by index or slice, like ordinary list elements, including the python convention for negative index values. To read the entire list, call it like a function, ``ql()``, which is equivalent to ``ql[:]``. A QList has __iter__, append, and extend:: for element in ql: do_something ql.append(value) ql.extend(iterable) In general, the elements of a QList are unrelated to one another; it's like an anonymous QGroup. However, a common use case is to represent a so-called UNLIMITED dimension in netCDF or HDF5. In this case, every element will have the same dtype and shape. The `islist` method returns 1 for this special restricted case, while it returns 2 for an unrestricted QList. Whether this makes any difference depends on the underlying file format. The QGroup `recording` and `goto` methods allow you to access QList items in the group transparently, as if they were individual elements at a current record or index. Attributes ---------- isgroup isleaf Always 0. islist This is 1 if this QList is a record array declared in recording mode 1, and 2 if it was declared in any other way (including as a record array in recording mode 2). dtype Always ``list``, the builtin python type. shape ndim size sshape Always None. """ __slots__ = "_qnd_list", "_qnd_auto" isgroup = isleaf = 0 dtype, shape, ndim, size, sshape = list, None, None, None, None def __init__(self, item=None, auto=0): object.__setattr__(self, "_qnd_list", item) self.auto(auto) def auto(self, recurse): """Set auto read mode, analogous to QGroup.auto method.""" object.__setattr__(self, "_qnd_auto", int(recurse)) def root(self): """Return root QGroup for this item.""" return QGroup(self._qnd_list.root(), QState(auto=self._qnd_auto)) @property def islist(self): return self._qnd_list.islist() def extend(self, iterable): """append multiple new elements to this QList""" for value in iterable: self.append(value) def append(self, value): """append a new element to this QList""" dtype, shape, value = _categorize(value) item = self._qnd_list.declare(dtype, shape) if dtype is None: return if dtype == list: if value: QList(item).extend(value) return if dtype == dict: if value: QGroup(item).update(value) return if dtype == object: _dump_object(item, value) return if value is not None: item.write(value, ()) # Being unable to do partial write on declaration is consistent # with behavior of QGroup __setitem__. The way to get it is to # make a declaration with value = (type, shape) instead of an # actual value in both cases. def __repr__(self): return "<QList with {} items>".format(len(self)) def __len__(self): return len(self._qnd_list) def __iter__(self): auto = self._qnd_auto recurse = auto > 1 for item in self._qnd_list: if item.isgroup(): cls = item.lookup("__class__") if auto else None if cls is None: item, readit = QGroup(item), recurse else: item, readit = _load_object(item, cls), 0 elif item.islist(): item, readit = QList(item), recurse else: item, readit = QLeaf(item), auto yield item() if readit else item def __call__(self): return self[:] def __getitem__(self, key): if not isinstance(key, tuple): key = (key,) index, args = key[0], key[1:] this = self._qnd_list if isinstance(index, slice): index = range(*index.indices(len(this))) if hasattr(index, "__iter__"): return [self[(i,) + args] for i in index] item = this.index(index) if item is None: raise IndexError("QList index {} out of range".format(index)) auto = self._qnd_auto if item.islist(): item = QList(item, auto) if args: return item[args] return item[:] if auto > 1 else item if item.isleaf(): return _reader(item, args) if args or auto else QLeaf(item) # Item must be a group, set up inherited part of state. # Note that goto record was not used, so subgroup inherits it. cls = item.lookup("__class__") if cls is not None and auto: return _load_object(item, cls) item = QGroup(item, auto=auto) return item() if auto > 1 else item def __setitem__(self, key, value): if not isinstance(key, tuple): key = (key,) index, args = key[0], key[1:] if isinstance(index, slice) or hasattr(index, "__iter__"): raise TypeError("QList does not support multi-element setitem") dtype, shape, value = _categorize(value) item = self._qnd_list.index(index) if item is None: raise IndexError("QList index {} out of range".format(index)) if item.islist() or item.isgroup(): idtype = list if item.islist() else dict if idtype == dtype and not value: return raise TypeError("cannot set existing QGroup or QList") # item is a QLeaf if item.query()[0] is None: if dtype is None and not args: return raise TypeError("QLeaf {} declared as None".format(index)) # Work around numpy (1.16.4) misfeature dtype('f8') tests == None: if dtype is None or dtype in (list, dict, object): raise TypeError("type mismatch setting QLeaf {}".format(index)) item.write(value, args) class QLeaf(object): """An ndarray or None stored in a file. You can read the data by calling the leaf instance ``ql()``, or by indexing it ``ql[:]``, which also provides a means for partial reads. A QLeaf has `dtype`, `shape`, `ndim`, and `size` properties with the same meanings as an ndarray (except None has all these properties equal None). Additionally, the `sshape` property may return a symbolic shape with optional strings in the tuple representing dimension names. You can write data by calling ``ql(value)``, or by setting a slice, which provides a means for partial writes. Attributes ---------- isgroup islist Always 0. isleaf Always 1. dtype The numpy dtype of this ndarray, or None if this leaf is None. This is the dtype in memory, not necessarily as stored. shape ndim size The numpy ndarray properties, or None if this leaf is None. sshape A symbolic shape tuple, like shape except dimension lengths may be type str instead of int. """ __slots__ = "_qnd_leaf", isgroup = islist = 0 isleaf = 1 def __init__(self, item): object.__setattr__(self, "_qnd_leaf", item) def root(self): """Return root QGroup for this item.""" return QGroup(self._qnd_leaf.root()) def __call__(self, value=_NOT_PRESENT_): if value is _NOT_PRESENT_: return self[()] else: self[()] = value def __getitem__(self, key): return _reader(self._qnd_leaf, key if isinstance(key, tuple) else (key,)) def __setitem__(self, key, value): self._qnd_leaf.write(value, key if isinstance(key, tuple) else (key,)) @property def dtype(self): return self._qnd_leaf.query()[0] @property def shape(self): return self._qnd_leaf.query()[1] @property def ndim(self): return len(self._qnd_leaf.query()[1]) @property def size(self): shape = self._qnd_leaf.query()[1] return prod(shape) if shape else 1 @property def sshape(self): _, s, ss = self._qnd_leaf.query() return ss if ss else s class QAttributes(ItemsAreAttrs): """Attributes for a QGroup and its members. Usage:: qa = qgroup.attrs() qa0 = qa.vname # for variables in this group, or qa['vname'] qa1 = qa._ # or qa[''] for attributes of this group value = qa0.aname # or qa0['aname'], None if no such attribute qa0.aname = value # or qa0['aname'] = value qa0.aname = dtype, shape, value if 'aname' in qa0: do_something for aname in qa0: do_something for aname, value in qa0.items(): do_something """ __slots__ = "_qnd_parent", "_qnd_vname", "__weakref__" def __init__(self, parent, vname=None): if not isinstance(parent, ProxyTypes): parent = proxy(parent) object.__setattr__(self, "_qnd_parent", parent) object.__setattr__(self, "_qnd_vname", vname) def __repr__(self): vname = self._qnd_vname if vname is None: return "<QAttributes accessor for QGroup items>" elif not vname: return "<QAttributes for whole QGroup>" return "<QAttributes for item {}>".format(vname) def get(self, key, default=None): parent, vname = self._qnd_parent, self._qnd_vname if vname is None: # Get group attribute, even though that is inconsistent... # Should we implement matching set() or just let it go? vname = "" else: parent = parent._qnd_parent return parent.attget(vname).get(key, default) def keys(self): group, vname = self._qnd_group_vname() return iter(group.attget(vname)) def items(self): group, vname = self._qnd_group_vname() return group.attget(vname).items() def _qnd_group_vname(self): parent, vname = self._qnd_parent, self._qnd_vname if vname is None: raise TypeError("need to specify QGroup item name") return parent._qnd_parent, vname def __getattr__(self, name): vname = self._qnd_vname if vname is None or name not in self._qnd_builtins_: return super(QAttributes, self).__getattr__(name) # Handle builtin pseudo-attributes here; they do not show up # in the actual attribute dict referenced by [key]. # Can use dtype_, shape_, etc. attributes if real attributes # have these names. item = self._qnd_parent._qnd_parent.lookup(vname) if item.isgroup(): return dict if name == "dtype" else None if item.islist(): return list if name == "dtype" else None dsss = item.query() if dsss[0] is None: return None if name == "ndim": return len(dsss[1]) if name == "size": return prod(dsss[1]) return dsss[self._qnd_builtins_.index(name)] _qnd_builtins_ = ["dtype", "shape", "sshape", "size", "ndim"] def __getitem__(self, key): parent, vname = self._qnd_parent, self._qnd_vname if vname is None: # key is vname item = parent.lookup(key) if key else True if item is None: raise KeyError("no such item in QGroup as {}".format(key)) return QAttributes(self, key) return parent._qnd_parent.attget(vname).get(key) def __setitem__(self, key, value): group, vname = self._qnd_group_vname() # Note that value can be (dtype, shape, value) to be explicit. dtype, shape, value = _categorize(value, 1) if dtype in (list, dict, object): raise TypeError("an attribute cannot be a dict or list") group.attset(vname, key, dtype, shape, value) def __iter__(self): group, vname = self._qnd_group_vname() return iter(group.attget(vname)) def __contains__(self, name): group, vname = self._qnd_group_vname() return name in group.attget(vname) def __len__(self): group, vname = self._qnd_group_vname() return len(group.attget(vname)) class QnDList(object): """Implmentation of a low level QList type using QGroup. A backend which has no direct support for QList objects can use this to produce a pseudo-list, which is a group with member names _ (None or a single signed or unsigned byte, value never read) and names _0, _1, _2, etc. This implementation will handle both UNLIMITED index-style lists made with recording = 1 (that is group.declare with unlim flag) and general lists. If UNLIMITED dimensions are supported, pass the QnDLeaf to this constructor:: item = QnDList(QnDLeaf) # if at least one record exists item = QnDList(QnDLeaf, 1) # if no records yet exist Use the fromgroup constructor to check if a QnDGroup is a pseudo-list:: item = QnDList.fromgroup(QnDGroup) """ __slots__ = "_qnd_parent", "_qnd_current", def __init__(self, parent, empty=None): self._qnd_parent = parent current = empty if empty is not None: if parent.isgroup(): parent.declare("_", None, ()) elif not isinstance(parent, QnDList): current = -1 self._qnd_current = current @staticmethod def fromgroup(parent): item = parent.lookup("_") if item is not None: if all(_us_digits.match(name) for name in parent): return QnDList(parent) # parent is a pseudo-list return parent def parent(self): parent = self._qnd_parent return parent._qnd_parent if isinstance(parent, QnDList) else parent @staticmethod def isgroup(): return 0 def isleaf(self): return int(isinstance(self._qnd_parent, QnDList)) def islist(self): if self._qnd_parent.isgroup(): return 2 return int(not isinstance(self._qnd_parent, QnDList)) def root(self): return self._qnd_parent.root() # len, iter, index, declare are list methods, assume isleaf() false def __len__(self): if self._qnd_parent.isgroup(): return len(self._qnd_parent) - 1 # subtract _ item if self._qnd_current is not None and self._qnd_current < 0: return 0 # leaf.query() probably returns 1 return self._qnd_parent.query()[1][0] def __iter__(self): parent = self._qnd_parent if parent.isgroup(): for i in range(len(self)): yield parent.lookup("_" + str(i)) else: for i in range(len(self)): yield QnDList(self, i) def index(self, ndx): nrecs = max(len(self), 1) if ndx < 0: ndx = ndx + nrecs if ndx < 0 or ndx >= nrecs: return None # out of range, let caller raise any exception parent = self._qnd_parent if parent.isgroup(): return parent.lookup("_" + str(ndx)) return QnDList(self, ndx) def declare(self, dtype, shape): parent = self._qnd_parent nrecs = len(self) if parent.isgroup(): return parent.declare("_" + str(nrecs), dtype, shape) return QnDList(self, nrecs) # query, read, write are leaf methods, assume isleaf() true def query(self): qndlist = self._qnd_parent dtype, shape, sshape = qndlist._qnd_parent.query() shape = shape[1:] if sshape: sshape = sshape[1:] return dtype, shape, sshape def read(self, args=()): current = self._qnd_current qndlist = self._qnd_parent check = qndlist._qnd_current if check is not None and check < 0: raise TypeError("attempt to read from empty UNLIMITED array") return qndlist._qnd_parent.read((current,) + args) def write(self, value, args=()): qndlist = self._qnd_parent qndlist._qnd_parent.write(value, (self._qnd_current,) + args) # Turn off special empty list state (if on): qndlist._qnd_current = None
py
b402745b3667a29214a0f64613439f4161def820
from abc import ABC, abstractmethod from typing import Any, Union, TypeVar KeysSet = TypeVar('KeysSet', tuple[Union[str, int], ...], list[Union[str, int], ...]) class Base(ABC): _data: Any @abstractmethod async def setdefault(self, cog: str, keys: KeysSet, value: Any = None) -> None: """Initialize a sub_key if not already initialized""" ... @abstractmethod async def set(self, cog: str, keys: KeysSet, value: Any) -> None: """Set a value to a sub_key""" ... @abstractmethod async def get(self, cog: str, keys: KeysSet) -> Any: """Get the value knowing his location""" ... @abstractmethod async def delete(self, cog: str, keys: KeysSet) -> None: """Delete a sub_key and its value""" ... @abstractmethod def register(self, cog: str, *, schema: dict, override_schema: bool) -> None: """Initialize a main_key in data if not already initialized""" ... @abstractmethod async def unregister(self, cog: str) -> None: """Delete main_key and its sub_keys from data""" ... @abstractmethod async def dump(self) -> None: """Save data""" ... async def _load(self) -> None: """Load data""" raise NotImplementedError
py
b40275b583a0fb554bc642b719edbff525679253
"""JciHitachi integration.""" import asyncio import async_timeout import logging from datetime import timedelta from queue import Queue from typing import NamedTuple import voluptuous as vol from homeassistant.const import CONF_DEVICES, CONF_EMAIL, CONF_PASSWORD from homeassistant.helpers import discovery import homeassistant.helpers.config_validation as cv from homeassistant.helpers.update_coordinator import ( CoordinatorEntity, DataUpdateCoordinator, UpdateFailed ) from JciHitachi.api import JciHitachiAPI _LOGGER = logging.getLogger(__name__) DOMAIN = "jcihitachi_tw" API = "api" COORDINATOR = "coordinator" UPDATE_DATA = "update_data" UPDATED_DATA = "updated_data" CONF_RETRY = "retry" DEFAULT_RETRY = 5 DEFAULT_DEVICES = [] PLATFORMS = ["climate", "sensor"] CONFIG_SCHEMA = vol.Schema( { DOMAIN: vol.Schema( { vol.Required(CONF_EMAIL): cv.string, vol.Required(CONF_PASSWORD): cv.string, vol.Optional(CONF_RETRY, default=DEFAULT_RETRY): cv.positive_int, vol.Optional(CONF_DEVICES, default=DEFAULT_DEVICES): vol.All(cv.ensure_list, list), } ) }, extra=vol.ALLOW_EXTRA, ) async def async_setup(hass, config): _LOGGER.debug( f"CONF_EMAIL: {config[DOMAIN].get(CONF_EMAIL)}, \ CONF_PASSWORD: {''.join(['*']*len(config[DOMAIN].get(CONF_EMAIL)))}, \ CONF_RETRY: {config[DOMAIN].get(CONF_RETRY)}, \ CONF_DEVICES: {config[DOMAIN].get(CONF_DEVICES)}" ) if len(config[DOMAIN].get(CONF_DEVICES)) == 0: config[DOMAIN][CONF_DEVICES] = None api = JciHitachiAPI( email=config[DOMAIN].get(CONF_EMAIL), password=config[DOMAIN].get(CONF_PASSWORD), device_names=config[DOMAIN].get(CONF_DEVICES), max_retries=config[DOMAIN].get(CONF_RETRY), ) hass.data[API] = api hass.data[UPDATE_DATA] = Queue() hass.data[UPDATED_DATA] = dict() hass.data[COORDINATOR] = None try: await hass.async_add_executor_job(api.login) except AssertionError as err: _LOGGER.error(f"Encountered assertion error:{err}") return False except RuntimeError as err: _LOGGER.error(f"Failed to login API: {err}") return False _LOGGER.debug( f"Peripheral info: {[peripheral for peripheral in api._peripherals.values()]}") async def async_update_data(): """Fetch data from API endpoint. This is the place to pre-process the data to lookup tables so entities can quickly look up their data. """ try: # Note: asyncio.TimeoutError and aiohttp.ClientError are already # handled by the data update coordinator. async with async_timeout.timeout(10): await hass.async_add_executor_job(api.refresh_status) hass.data[UPDATED_DATA] = api.get_status() _LOGGER.debug( f"Latest data: {[(name, value.status) for name, value in hass.data[UPDATED_DATA].items()]}") except asyncio.TimeoutError as err: raise UpdateFailed(f"Command executed timed out when regularly fetching data.") except Exception as err: raise UpdateFailed(f"Error communicating with API: {err}") coordinator = DataUpdateCoordinator( hass, _LOGGER, # Name of the data. For logging purposes. name=DOMAIN, update_method=async_update_data, # Polling interval. Will only be polled if there are subscribers. update_interval=timedelta(seconds=30), ) await coordinator.async_refresh() hass.data[COORDINATOR] = coordinator # Start jcihitachi components if hass.data[API]: _LOGGER.debug("Starting jcihitachi components.") for platform in PLATFORMS: discovery.load_platform(hass, platform, DOMAIN, {}, config) # Return boolean to indicate that initialization was successful. return True class JciHitachiEntity(CoordinatorEntity): def __init__(self, peripheral, coordinator): super().__init__(coordinator) self._peripheral = peripheral @property def name(self): """Return the peripheral's name.""" return self._peripheral.name @property def unique_id(self): """Return the peripheral's unique id.""" raise NotImplementedError def put_queue(self, command, value, device_name): """Put data into the queue to update status""" self.hass.data[UPDATE_DATA].put( UpdateData(command, value, device_name) ) def update(self): """Update latest status.""" api = self.hass.data[API] while self.hass.data[UPDATE_DATA].qsize() > 0: data = self.hass.data[UPDATE_DATA].get() _LOGGER.debug(f"Updating data: {data}") result = api.set_status(*data) if result is True: _LOGGER.debug("Data updated successfully.") api.refresh_status() self.hass.data[UPDATED_DATA] = api.get_status() _LOGGER.debug( f"Latest data: {[(name, value.status) for name, value in self.hass.data[UPDATED_DATA].items()]}") # Important: We have to reset the update scheduler to prevent old status from wrongly being loaded. self.coordinator.async_set_updated_data(None) class UpdateData(NamedTuple): command : str value : int device_name : str
py
b402762ee86914d9f14cc798272a07ed4f273266
import sys import os import argparse from ChainRepository import ChainRepository from ChainHierarchyPrinter import ChainHierarchyPrinter from GitCommandPreviewer import GitCommandPreviewer from pygit2 import Repository from BranchFilters.BranchFilterer import BranchFilterer from BranchFilters.BasicBranchFilterer import BasicBranchFilterer from LegendPrinter import LegendPrinter def __main__(): parser = argparse.ArgumentParser(description='Process some integers.') parser.add_argument("-f", "--full", help="Replay all commits during preview", action="store_true") parser.add_argument("-r", "--reduce", help="Filter to only the branches in the command", action="store_true") args, unknown_args = parser.parse_known_args() command = "git " + ' '.join(unknown_args) validate() repo_name = os.getcwd() + "\\.git" branch_filterer = BranchFilterer() if args.reduce: branch_filterer = BasicBranchFilterer(unknown_args) repository = Repository(repo_name) chain_repo = ChainRepository(repository, branch_filterer) commands = ["git checkout " + chain_repo.head_name, command] LegendPrinter().print_legend() print("\nBefore `%s`" % command) ChainHierarchyPrinter(chain_repo.tree, chain_repo.head_name).print() print("\nAfter `%s`" % command) GitCommandPreviewer(chain_repo, not args.full, branch_filterer).preview_commands(commands) print() def validate(): if not os.path.exists("./.git"): print("Must be run inside a repository") __main__()
py
b402764b26090141ba8e9cd51fe46205bb7b553d
from app.core.routers.generic import router as server_health from app.core.routers.publication import publications_router from app.core.routers.author import authors_router from app.utils.api.router import TypedAPIRouter generic_router = TypedAPIRouter(router=server_health, tags=["Server health"]) publications_router = TypedAPIRouter(router=publications_router, tags=["Publications"]) author_router = TypedAPIRouter(router=authors_router, tags=["Authors"])
py
b40276826ca50731969c52d324e44e871d350684
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING from azure.mgmt.core import ARMPipelineClient from msrest import Deserializer, Serializer if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Optional from azure.core.credentials import TokenCredential from azure.core.pipeline.transport import HttpRequest, HttpResponse from ._configuration import AuthorizationManagementClientConfiguration from .operations import PermissionsOperations from .operations import RoleDefinitionsOperations from .operations import ProviderOperationsMetadataOperations from .operations import GlobalAdministratorOperations from .operations import RoleAssignmentsOperations from .operations import ClassicAdministratorsOperations from . import models class AuthorizationManagementClient(object): """Role based access control provides you a way to apply granular level policy administration down to individual resources or resource groups. These operations enable you to manage role definitions and role assignments. A role definition describes the set of actions that can be performed on resources. A role assignment grants access to Azure Active Directory users. :ivar permissions: PermissionsOperations operations :vartype permissions: azure.mgmt.authorization.v2015_07_01.operations.PermissionsOperations :ivar role_definitions: RoleDefinitionsOperations operations :vartype role_definitions: azure.mgmt.authorization.v2015_07_01.operations.RoleDefinitionsOperations :ivar provider_operations_metadata: ProviderOperationsMetadataOperations operations :vartype provider_operations_metadata: azure.mgmt.authorization.v2015_07_01.operations.ProviderOperationsMetadataOperations :ivar global_administrator: GlobalAdministratorOperations operations :vartype global_administrator: azure.mgmt.authorization.v2015_07_01.operations.GlobalAdministratorOperations :ivar role_assignments: RoleAssignmentsOperations operations :vartype role_assignments: azure.mgmt.authorization.v2015_07_01.operations.RoleAssignmentsOperations :ivar classic_administrators: ClassicAdministratorsOperations operations :vartype classic_administrators: azure.mgmt.authorization.v2015_07_01.operations.ClassicAdministratorsOperations :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials.TokenCredential :param subscription_id: The ID of the target subscription. :type subscription_id: str :param str base_url: Service URL """ def __init__( self, credential, # type: "TokenCredential" subscription_id, # type: str base_url=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> None if not base_url: base_url = 'https://management.azure.com' self._config = AuthorizationManagementClientConfiguration(credential, subscription_id, **kwargs) self._client = ARMPipelineClient(base_url=base_url, config=self._config, **kwargs) client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) self._serialize.client_side_validation = False self._deserialize = Deserializer(client_models) self.permissions = PermissionsOperations( self._client, self._config, self._serialize, self._deserialize) self.role_definitions = RoleDefinitionsOperations( self._client, self._config, self._serialize, self._deserialize) self.provider_operations_metadata = ProviderOperationsMetadataOperations( self._client, self._config, self._serialize, self._deserialize) self.global_administrator = GlobalAdministratorOperations( self._client, self._config, self._serialize, self._deserialize) self.role_assignments = RoleAssignmentsOperations( self._client, self._config, self._serialize, self._deserialize) self.classic_administrators = ClassicAdministratorsOperations( self._client, self._config, self._serialize, self._deserialize) def _send_request(self, http_request, **kwargs): # type: (HttpRequest, Any) -> HttpResponse """Runs the network request through the client's chained policies. :param http_request: The network request you want to make. Required. :type http_request: ~azure.core.pipeline.transport.HttpRequest :keyword bool stream: Whether the response payload will be streamed. Defaults to True. :return: The response of your network call. Does not do error handling on your response. :rtype: ~azure.core.pipeline.transport.HttpResponse """ path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } http_request.url = self._client.format_url(http_request.url, **path_format_arguments) stream = kwargs.pop("stream", True) pipeline_response = self._client._pipeline.run(http_request, stream=stream, **kwargs) return pipeline_response.http_response def close(self): # type: () -> None self._client.close() def __enter__(self): # type: () -> AuthorizationManagementClient self._client.__enter__() return self def __exit__(self, *exc_details): # type: (Any) -> None self._client.__exit__(*exc_details)
py
b40276c638ffadda1d5dd6250928339a4d86606d
import graphene from graphene_sqlalchemy import SQLAlchemyObjectType from database import StudentsTable, TeachersTable, ClassesTable, GradesTable class Students(SQLAlchemyObjectType): class Meta: model = StudentsTable class StudentFields: id = graphene.Int() name = graphene.String() age = graphene.Int() country = graphene.String() class AddStudentFields(graphene.InputObjectType, StudentFields): pass class Teachers(SQLAlchemyObjectType): class Meta: model = TeachersTable class Classes(SQLAlchemyObjectType): class Meta: model = ClassesTable class Grades(SQLAlchemyObjectType): class Meta: model = GradesTable
py
b40276cd5a84142ec3194c9be78234d4849d843b
# Copyright 2018 Canonical Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import mock import unit_tests.utils as ut_utils import zaza.utilities.file_assertions as file_assertions class TestFileAssertionUtils(ut_utils.BaseTestCase): def setUp(self): super(TestFileAssertionUtils, self).setUp() # Patch all run_on_unit calls self.patch( 'zaza.utilities.file_assertions.model.run_on_unit', new_callable=mock.MagicMock(), name='run_on_unit' ) self._assert = mock.MagicMock() self._assert.assertEqual = mock.MagicMock() def test_path_glob(self): self.run_on_unit.return_value = { 'Stdout': 'file-name root root 600' } file_details = {'path': '*'} file_assertions.assert_path_glob( self._assert, 'test/0', file_details) self.run_on_unit.assert_called_once_with( 'test/0', 'bash -c "shopt -s -q globstar;' ' stat -c "%n %U %G %a" *"') def test_single_path(self): self.run_on_unit.return_value = { 'Stdout': 'root root 600' } file_details = {'path': 'test'} file_assertions.assert_single_file( self._assert, 'test/0', file_details) self.run_on_unit.assert_called_once_with( 'test/0', 'stat -c "%U %G %a" test') def test_error_message_glob(self): message = file_assertions._error_message( "Owner", "test/0", "root", "/path/to/something") self.assertEqual( message, "Owner is incorrect for /path/to/something on test/0: root") def test_error_message_single(self): message = file_assertions._error_message( "Owner", "test/0", "root") self.assertEqual(message, "Owner is incorrect on test/0: root")
py
b4027821d3d1d65a4f54bf5f8c1f93a3092590b7
# Copyright (c) 2015 Ansible, Inc. # All Rights Reserved. # Python import copy import json import logging import re import six import urllib from collections import OrderedDict from datetime import timedelta # OAuth2 from oauthlib.common import generate_token from oauth2_provider.settings import oauth2_settings # Django from django.conf import settings from django.contrib.auth.models import User from django.contrib.contenttypes.models import ContentType from django.core.exceptions import ObjectDoesNotExist, ValidationError as DjangoValidationError from django.db import models from django.utils.translation import ugettext_lazy as _ from django.utils.encoding import force_text from django.utils.text import capfirst from django.utils.timezone import now from django.utils.functional import cached_property # Django REST Framework from rest_framework.exceptions import ValidationError, PermissionDenied from rest_framework import fields from rest_framework import serializers from rest_framework import validators from rest_framework.utils.serializer_helpers import ReturnList # Django-Polymorphic from polymorphic.models import PolymorphicModel # AWX from awx.main.constants import SCHEDULEABLE_PROVIDERS, ANSI_SGR_PATTERN from awx.main.models import * # noqa from awx.main.models.unified_jobs import ACTIVE_STATES from awx.main.models.base import NEW_JOB_TYPE_CHOICES from awx.main.access import get_user_capabilities from awx.main.fields import ImplicitRoleField from awx.main.utils import ( get_type_for_model, get_model_for_type, timestamp_apiformat, camelcase_to_underscore, getattrd, parse_yaml_or_json, has_model_field_prefetched, extract_ansible_vars, encrypt_dict) from awx.main.utils.filters import SmartFilter from awx.main.redact import REPLACE_STR from awx.main.validators import vars_validate_or_raise from awx.conf.license import feature_enabled from awx.api.versioning import reverse, get_request_version from awx.api.fields import BooleanNullField, CharNullField, ChoiceNullField, VerbatimField logger = logging.getLogger('awx.api.serializers') DEPRECATED = 'This resource has been deprecated and will be removed in a future release' # Fields that should be summarized regardless of object type. DEFAULT_SUMMARY_FIELDS = ('id', 'name', 'description')# , 'created_by', 'modified_by')#, 'type') # Keys are fields (foreign keys) where, if found on an instance, summary info # should be added to the serialized data. Values are a tuple of field names on # the related object to include in the summary data (if the field is present on # the related object). SUMMARIZABLE_FK_FIELDS = { 'organization': DEFAULT_SUMMARY_FIELDS, 'user': ('id', 'username', 'first_name', 'last_name'), 'application': ('id', 'name', 'client_id'), 'team': DEFAULT_SUMMARY_FIELDS, 'inventory': DEFAULT_SUMMARY_FIELDS + ('has_active_failures', 'total_hosts', 'hosts_with_active_failures', 'total_groups', 'groups_with_active_failures', 'has_inventory_sources', 'total_inventory_sources', 'inventory_sources_with_failures', 'organization_id', 'kind', 'insights_credential_id',), 'host': DEFAULT_SUMMARY_FIELDS + ('has_active_failures', 'has_inventory_sources'), 'group': DEFAULT_SUMMARY_FIELDS + ('has_active_failures', 'total_hosts', 'hosts_with_active_failures', 'total_groups', 'groups_with_active_failures', 'has_inventory_sources'), 'project': DEFAULT_SUMMARY_FIELDS + ('status', 'scm_type'), 'source_project': DEFAULT_SUMMARY_FIELDS + ('status', 'scm_type'), 'project_update': DEFAULT_SUMMARY_FIELDS + ('status', 'failed',), 'credential': DEFAULT_SUMMARY_FIELDS + ('kind', 'cloud', 'credential_type_id'), 'vault_credential': DEFAULT_SUMMARY_FIELDS + ('kind', 'cloud', 'credential_type_id'), 'job': DEFAULT_SUMMARY_FIELDS + ('status', 'failed', 'elapsed'), 'job_template': DEFAULT_SUMMARY_FIELDS, 'workflow_job_template': DEFAULT_SUMMARY_FIELDS, 'workflow_job': DEFAULT_SUMMARY_FIELDS, 'schedule': DEFAULT_SUMMARY_FIELDS + ('next_run',), 'unified_job_template': DEFAULT_SUMMARY_FIELDS + ('unified_job_type',), 'last_job': DEFAULT_SUMMARY_FIELDS + ('finished', 'status', 'failed', 'license_error'), 'last_job_host_summary': DEFAULT_SUMMARY_FIELDS + ('failed',), 'last_update': DEFAULT_SUMMARY_FIELDS + ('status', 'failed', 'license_error'), 'current_update': DEFAULT_SUMMARY_FIELDS + ('status', 'failed', 'license_error'), 'current_job': DEFAULT_SUMMARY_FIELDS + ('status', 'failed', 'license_error'), 'inventory_source': ('source', 'last_updated', 'status'), 'custom_inventory_script': DEFAULT_SUMMARY_FIELDS, 'source_script': ('name', 'description'), 'role': ('id', 'role_field'), 'notification_template': DEFAULT_SUMMARY_FIELDS, 'instance_group': {'id', 'name', 'controller_id'}, 'insights_credential': DEFAULT_SUMMARY_FIELDS, } def reverse_gfk(content_object, request): ''' Computes a reverse for a GenericForeignKey field. Returns a dictionary of the form { '<type>': reverse(<type detail>) } for example { 'organization': '/api/v1/organizations/1/' } ''' if content_object is None or not hasattr(content_object, 'get_absolute_url'): return {} return { camelcase_to_underscore(content_object.__class__.__name__): content_object.get_absolute_url(request=request) } class CopySerializer(serializers.Serializer): name = serializers.CharField() def validate(self, attrs): name = attrs.get('name') view = self.context.get('view', None) obj = view.get_object() if name == obj.name: raise serializers.ValidationError(_( 'The original object is already named {}, a copy from' ' it cannot have the same name.'.format(name) )) return attrs class BaseSerializerMetaclass(serializers.SerializerMetaclass): ''' Custom metaclass to enable attribute inheritance from Meta objects on serializer base classes. Also allows for inheriting or updating field lists from base class(es): class Meta: # Inherit all fields from base class. fields = ('*',) # Inherit all fields from base class and add 'foo'. fields = ('*', 'foo') # Inherit all fields from base class except 'bar'. fields = ('*', '-bar') # Define fields as 'foo' and 'bar'; ignore base class fields. fields = ('foo', 'bar') # Extra field kwargs dicts are also merged from base classes. extra_kwargs = { 'foo': {'required': True}, 'bar': {'read_only': True}, } # If a subclass were to define extra_kwargs as: extra_kwargs = { 'foo': {'required': False, 'default': ''}, 'bar': {'label': 'New Label for Bar'}, } # The resulting value of extra_kwargs would be: extra_kwargs = { 'foo': {'required': False, 'default': ''}, 'bar': {'read_only': True, 'label': 'New Label for Bar'}, } # Extra field kwargs cannot be removed in subclasses, only replaced. ''' @staticmethod def _is_list_of_strings(x): return isinstance(x, (list, tuple)) and all([isinstance(y, basestring) for y in x]) @staticmethod def _is_extra_kwargs(x): return isinstance(x, dict) and all([isinstance(k, basestring) and isinstance(v, dict) for k,v in x.items()]) @classmethod def _update_meta(cls, base, meta, other=None): for attr in dir(other): if attr.startswith('_'): continue val = getattr(other, attr) meta_val = getattr(meta, attr, None) # Special handling for lists/tuples of strings (field names). if cls._is_list_of_strings(val) and cls._is_list_of_strings(meta_val or []): meta_val = meta_val or [] new_vals = [] except_vals = [] if base: # Merge values from all bases. new_vals.extend([x for x in meta_val]) for v in val: if not base and v == '*': # Inherit all values from previous base(es). new_vals.extend([x for x in meta_val]) elif not base and v.startswith('-'): # Except these values. except_vals.append(v[1:]) else: new_vals.append(v) val = [] for v in new_vals: if v not in except_vals and v not in val: val.append(v) val = tuple(val) # Merge extra_kwargs dicts from base classes. elif cls._is_extra_kwargs(val) and cls._is_extra_kwargs(meta_val or {}): meta_val = meta_val or {} new_val = {} if base: for k,v in meta_val.items(): new_val[k] = copy.deepcopy(v) for k,v in val.items(): new_val.setdefault(k, {}).update(copy.deepcopy(v)) val = new_val # Any other values are copied in case they are mutable objects. else: val = copy.deepcopy(val) setattr(meta, attr, val) def __new__(cls, name, bases, attrs): meta = type('Meta', (object,), {}) for base in bases[::-1]: cls._update_meta(base, meta, getattr(base, 'Meta', None)) cls._update_meta(None, meta, attrs.get('Meta', meta)) attrs['Meta'] = meta return super(BaseSerializerMetaclass, cls).__new__(cls, name, bases, attrs) class BaseSerializer(serializers.ModelSerializer): __metaclass__ = BaseSerializerMetaclass class Meta: fields = ('id', 'type', 'url', 'related', 'summary_fields', 'created', 'modified', 'name', 'description') summary_fields = () summarizable_fields = () # add the URL and related resources type = serializers.SerializerMethodField() url = serializers.SerializerMethodField() related = serializers.SerializerMethodField('_get_related') summary_fields = serializers.SerializerMethodField('_get_summary_fields') # make certain fields read only created = serializers.SerializerMethodField() modified = serializers.SerializerMethodField() @property def version(self): """ The request version component of the URL as an integer i.e., 1 or 2 """ return get_request_version(self.context.get('request')) def get_type(self, obj): return get_type_for_model(self.Meta.model) def get_types(self): return [self.get_type(None)] def get_type_choices(self): type_name_map = { 'job': _('Playbook Run'), 'ad_hoc_command': _('Command'), 'project_update': _('SCM Update'), 'inventory_update': _('Inventory Sync'), 'system_job': _('Management Job'), 'workflow_job': _('Workflow Job'), 'workflow_job_template': _('Workflow Template'), } choices = [] for t in self.get_types(): name = type_name_map.get(t, force_text(get_model_for_type(t)._meta.verbose_name).title()) choices.append((t, name)) return choices def get_url(self, obj): if obj is None or not hasattr(obj, 'get_absolute_url'): return '' elif isinstance(obj, User): return self.reverse('api:user_detail', kwargs={'pk': obj.pk}) else: return obj.get_absolute_url(request=self.context.get('request')) def filter_field_metadata(self, fields, method): """ Filter field metadata based on the request method. This it intended to be extended by subclasses. """ return fields def _get_related(self, obj): return {} if obj is None else self.get_related(obj) def _generate_named_url(self, url_path, obj, node): url_units = url_path.split('/') named_url = node.generate_named_url(obj) url_units[4] = named_url return '/'.join(url_units) def get_related(self, obj): res = OrderedDict() view = self.context.get('view', None) if view and (hasattr(view, 'retrieve') or view.request.method == 'POST') and \ type(obj) in settings.NAMED_URL_GRAPH: original_url = self.get_url(obj) if not original_url.startswith('/api/v1'): res['named_url'] = self._generate_named_url( original_url, obj, settings.NAMED_URL_GRAPH[type(obj)] ) if getattr(obj, 'created_by', None): res['created_by'] = self.reverse('api:user_detail', kwargs={'pk': obj.created_by.pk}) if getattr(obj, 'modified_by', None): res['modified_by'] = self.reverse('api:user_detail', kwargs={'pk': obj.modified_by.pk}) return res def _get_summary_fields(self, obj): return {} if obj is None else self.get_summary_fields(obj) def get_summary_fields(self, obj): # Return values for certain fields on related objects, to simplify # displaying lists of items without additional API requests. summary_fields = OrderedDict() for fk, related_fields in SUMMARIZABLE_FK_FIELDS.items(): try: # A few special cases where we don't want to access the field # because it results in additional queries. if fk == 'job' and isinstance(obj, UnifiedJob): continue if fk == 'project' and (isinstance(obj, InventorySource) or isinstance(obj, Project)): continue fkval = getattr(obj, fk, None) if fkval is None: continue if fkval == obj: continue summary_fields[fk] = OrderedDict() for field in related_fields: if ( self.version < 2 and field == 'credential_type_id' and fk in ['credential', 'vault_credential']): # TODO: remove version check in 3.3 continue fval = getattr(fkval, field, None) if fval is None and field == 'type': if isinstance(fkval, PolymorphicModel): fkval = fkval.get_real_instance() fval = get_type_for_model(fkval) elif fval is None and field == 'unified_job_type' and isinstance(fkval, UnifiedJobTemplate): fkval = fkval.get_real_instance() fval = get_type_for_model(fkval._get_unified_job_class()) if fval is not None: summary_fields[fk][field] = fval # Can be raised by the reverse accessor for a OneToOneField. except ObjectDoesNotExist: pass if getattr(obj, 'created_by', None): summary_fields['created_by'] = OrderedDict() for field in SUMMARIZABLE_FK_FIELDS['user']: summary_fields['created_by'][field] = getattr(obj.created_by, field) if getattr(obj, 'modified_by', None): summary_fields['modified_by'] = OrderedDict() for field in SUMMARIZABLE_FK_FIELDS['user']: summary_fields['modified_by'][field] = getattr(obj.modified_by, field) # RBAC summary fields roles = {} for field in obj._meta.get_fields(): if type(field) is ImplicitRoleField: roles[field.name] = role_summary_fields_generator(obj, field.name) if len(roles) > 0: summary_fields['object_roles'] = roles # Advance display of RBAC capabilities if hasattr(self, 'show_capabilities'): view = self.context.get('view', None) parent_obj = None if view and hasattr(view, 'parent_model') and hasattr(view, 'get_parent_object'): parent_obj = view.get_parent_object() if view and view.request and view.request.user: user_capabilities = get_user_capabilities( view.request.user, obj, method_list=self.show_capabilities, parent_obj=parent_obj) if user_capabilities: summary_fields['user_capabilities'] = user_capabilities return summary_fields def get_created(self, obj): if obj is None: return None elif isinstance(obj, User): return obj.date_joined elif hasattr(obj, 'created'): return obj.created return None def get_modified(self, obj): if obj is None: return None elif isinstance(obj, User): return obj.last_login # Not actually exposed for User. elif hasattr(obj, 'modified'): return obj.modified return None def get_extra_kwargs(self): extra_kwargs = super(BaseSerializer, self).get_extra_kwargs() if self.instance: read_only_on_update_fields = getattr(self.Meta, 'read_only_on_update_fields', tuple()) for field_name in read_only_on_update_fields: kwargs = extra_kwargs.get(field_name, {}) kwargs['read_only'] = True extra_kwargs[field_name] = kwargs return extra_kwargs def build_standard_field(self, field_name, model_field): # DRF 3.3 serializers.py::build_standard_field() -> utils/field_mapping.py::get_field_kwargs() short circuits # when a Model's editable field is set to False. The short circuit skips choice rendering. # # This logic is to force rendering choice's on an uneditable field. # Note: Consider expanding this rendering for more than just choices fields # Note: This logic works in conjuction with if hasattr(model_field, 'choices') and model_field.choices: was_editable = model_field.editable model_field.editable = True field_class, field_kwargs = super(BaseSerializer, self).build_standard_field(field_name, model_field) if hasattr(model_field, 'choices') and model_field.choices: model_field.editable = was_editable if was_editable is False: field_kwargs['read_only'] = True # Pass model field default onto the serializer field if field is not read-only. if model_field.has_default() and not field_kwargs.get('read_only', False): field_kwargs['default'] = field_kwargs['initial'] = model_field.get_default() # Enforce minimum value of 0 for PositiveIntegerFields. if isinstance(model_field, (models.PositiveIntegerField, models.PositiveSmallIntegerField)) and 'choices' not in field_kwargs: field_kwargs['min_value'] = 0 # Use custom boolean field that allows null and empty string as False values. if isinstance(model_field, models.BooleanField) and not field_kwargs.get('read_only', False): field_class = BooleanNullField # Use custom char or choice field that coerces null to an empty string. if isinstance(model_field, (models.CharField, models.TextField)) and not field_kwargs.get('read_only', False): if 'choices' in field_kwargs: field_class = ChoiceNullField else: field_class = CharNullField # Update the message used for the unique validator to use capitalized # verbose name; keeps unique message the same as with DRF 2.x. opts = self.Meta.model._meta.concrete_model._meta for validator in field_kwargs.get('validators', []): if isinstance(validator, validators.UniqueValidator): unique_error_message = model_field.error_messages.get('unique', None) if unique_error_message: unique_error_message = unique_error_message % { 'model_name': capfirst(opts.verbose_name), 'field_label': capfirst(model_field.verbose_name), } validator.message = unique_error_message return field_class, field_kwargs def build_relational_field(self, field_name, relation_info): field_class, field_kwargs = super(BaseSerializer, self).build_relational_field(field_name, relation_info) # Don't include choices for foreign key fields. field_kwargs.pop('choices', None) return field_class, field_kwargs def get_unique_together_validators(self): # Allow the model's full_clean method to handle the unique together validation. return [] def run_validation(self, data=fields.empty): try: return super(BaseSerializer, self).run_validation(data) except ValidationError as exc: # Avoid bug? in DRF if exc.detail happens to be a list instead of a dict. raise ValidationError(detail=serializers.as_serializer_error(exc)) def get_validation_exclusions(self, obj=None): # Borrowed from DRF 2.x - return model fields that should be excluded # from model validation. cls = self.Meta.model opts = cls._meta.concrete_model._meta exclusions = [field.name for field in opts.fields] for field_name, field in self.fields.items(): field_name = field.source or field_name if field_name not in exclusions: continue if field.read_only: continue if isinstance(field, serializers.Serializer): continue exclusions.remove(field_name) # The clean_ methods cannot be ran on many-to-many models exclusions.extend([field.name for field in opts.many_to_many]) return exclusions def validate(self, attrs): attrs = super(BaseSerializer, self).validate(attrs) try: # Create/update a model instance and run it's full_clean() method to # do any validation implemented on the model class. exclusions = self.get_validation_exclusions(self.instance) obj = self.instance or self.Meta.model() for k,v in attrs.items(): if k not in exclusions: setattr(obj, k, v) obj.full_clean(exclude=exclusions) # full_clean may modify values on the instance; copy those changes # back to attrs so they are saved. for k in attrs.keys(): if k not in exclusions: attrs[k] = getattr(obj, k) except DjangoValidationError as exc: # DjangoValidationError may contain a list or dict; normalize into a # dict where the keys are the field name and the values are a list # of error messages, then raise as a DRF ValidationError. DRF would # normally convert any DjangoValidationError to a non-field specific # error message; here we preserve field-specific errors raised from # the model's full_clean method. d = exc.update_error_dict({}) for k,v in d.items(): v = v if isinstance(v, list) else [v] v2 = [] for e in v: if isinstance(e, DjangoValidationError): v2.extend(list(e)) elif isinstance(e, list): v2.extend(e) else: v2.append(e) d[k] = map(force_text, v2) raise ValidationError(d) return attrs def reverse(self, *args, **kwargs): kwargs['request'] = self.context.get('request') return reverse(*args, **kwargs) @property def is_detail_view(self): if 'view' in self.context: if 'pk' in self.context['view'].kwargs: return True return False class EmptySerializer(serializers.Serializer): pass class BaseFactSerializer(BaseSerializer): __metaclass__ = BaseSerializerMetaclass def get_fields(self): ret = super(BaseFactSerializer, self).get_fields() if 'module' in ret: # TODO: the values_list may pull in a LOT of entries before the distinct is called modules = Fact.objects.all().values_list('module', flat=True).distinct() choices = [(o, o.title()) for o in modules] ret['module'] = serializers.ChoiceField(choices=choices, read_only=True, required=False) return ret class UnifiedJobTemplateSerializer(BaseSerializer): class Meta: model = UnifiedJobTemplate fields = ('*', 'last_job_run', 'last_job_failed', 'next_job_run', 'status') def get_related(self, obj): res = super(UnifiedJobTemplateSerializer, self).get_related(obj) if obj.current_job: res['current_job'] = obj.current_job.get_absolute_url(request=self.context.get('request')) if obj.last_job: res['last_job'] = obj.last_job.get_absolute_url(request=self.context.get('request')) if obj.next_schedule: res['next_schedule'] = obj.next_schedule.get_absolute_url(request=self.context.get('request')) return res def get_types(self): if type(self) is UnifiedJobTemplateSerializer: return ['project', 'inventory_source', 'job_template', 'system_job_template', 'workflow_job_template',] else: return super(UnifiedJobTemplateSerializer, self).get_types() def to_representation(self, obj): serializer_class = None if type(self) is UnifiedJobTemplateSerializer: if isinstance(obj, Project): serializer_class = ProjectSerializer elif isinstance(obj, InventorySource): serializer_class = InventorySourceSerializer elif isinstance(obj, JobTemplate): serializer_class = JobTemplateSerializer elif isinstance(obj, SystemJobTemplate): serializer_class = SystemJobTemplateSerializer elif isinstance(obj, WorkflowJobTemplate): serializer_class = WorkflowJobTemplateSerializer if serializer_class: serializer = serializer_class(instance=obj, context=self.context) return serializer.to_representation(obj) else: return super(UnifiedJobTemplateSerializer, self).to_representation(obj) class UnifiedJobSerializer(BaseSerializer): show_capabilities = ['start', 'delete'] class Meta: model = UnifiedJob fields = ('*', 'unified_job_template', 'launch_type', 'status', 'failed', 'started', 'finished', 'elapsed', 'job_args', 'job_cwd', 'job_env', 'job_explanation', 'execution_node', 'result_traceback') extra_kwargs = { 'unified_job_template': { 'source': 'unified_job_template_id', 'label': 'unified job template', }, 'job_env': { 'read_only': True, 'label': 'job_env', } } def get_types(self): if type(self) is UnifiedJobSerializer: return ['project_update', 'inventory_update', 'job', 'ad_hoc_command', 'system_job', 'workflow_job',] else: return super(UnifiedJobSerializer, self).get_types() def get_related(self, obj): res = super(UnifiedJobSerializer, self).get_related(obj) if obj.unified_job_template: res['unified_job_template'] = obj.unified_job_template.get_absolute_url(request=self.context.get('request')) if obj.schedule: res['schedule'] = obj.schedule.get_absolute_url(request=self.context.get('request')) if isinstance(obj, ProjectUpdate): res['stdout'] = self.reverse('api:project_update_stdout', kwargs={'pk': obj.pk}) elif isinstance(obj, InventoryUpdate): res['stdout'] = self.reverse('api:inventory_update_stdout', kwargs={'pk': obj.pk}) elif isinstance(obj, Job): res['stdout'] = self.reverse('api:job_stdout', kwargs={'pk': obj.pk}) elif isinstance(obj, AdHocCommand): res['stdout'] = self.reverse('api:ad_hoc_command_stdout', kwargs={'pk': obj.pk}) if obj.workflow_job_id: res['source_workflow_job'] = self.reverse('api:workflow_job_detail', kwargs={'pk': obj.workflow_job_id}) return res def get_summary_fields(self, obj): summary_fields = super(UnifiedJobSerializer, self).get_summary_fields(obj) if obj.spawned_by_workflow: summary_fields['source_workflow_job'] = {} try: summary_obj = obj.unified_job_node.workflow_job except UnifiedJob.unified_job_node.RelatedObjectDoesNotExist: return summary_fields for field in SUMMARIZABLE_FK_FIELDS['job']: val = getattr(summary_obj, field, None) if val is not None: summary_fields['source_workflow_job'][field] = val return summary_fields def to_representation(self, obj): serializer_class = None if type(self) is UnifiedJobSerializer: if isinstance(obj, ProjectUpdate): serializer_class = ProjectUpdateSerializer elif isinstance(obj, InventoryUpdate): serializer_class = InventoryUpdateSerializer elif isinstance(obj, Job): serializer_class = JobSerializer elif isinstance(obj, AdHocCommand): serializer_class = AdHocCommandSerializer elif isinstance(obj, SystemJob): serializer_class = SystemJobSerializer elif isinstance(obj, WorkflowJob): serializer_class = WorkflowJobSerializer if serializer_class: serializer = serializer_class(instance=obj, context=self.context) ret = serializer.to_representation(obj) else: ret = super(UnifiedJobSerializer, self).to_representation(obj) if 'elapsed' in ret: if obj and obj.pk and obj.started and not obj.finished: td = now() - obj.started ret['elapsed'] = (td.microseconds + (td.seconds + td.days * 24 * 3600) * 10 ** 6) / (10 ** 6 * 1.0) ret['elapsed'] = float(ret['elapsed']) return ret class UnifiedJobListSerializer(UnifiedJobSerializer): class Meta: fields = ('*', '-job_args', '-job_cwd', '-job_env', '-result_traceback') def get_field_names(self, declared_fields, info): field_names = super(UnifiedJobListSerializer, self).get_field_names(declared_fields, info) # Meta multiple inheritance and -field_name options don't seem to be # taking effect above, so remove the undesired fields here. return tuple(x for x in field_names if x not in ('job_args', 'job_cwd', 'job_env', 'result_traceback')) def get_types(self): if type(self) is UnifiedJobListSerializer: return ['project_update', 'inventory_update', 'job', 'ad_hoc_command', 'system_job', 'workflow_job'] else: return super(UnifiedJobListSerializer, self).get_types() def to_representation(self, obj): serializer_class = None if type(self) is UnifiedJobListSerializer: if isinstance(obj, ProjectUpdate): serializer_class = ProjectUpdateListSerializer elif isinstance(obj, InventoryUpdate): serializer_class = InventoryUpdateListSerializer elif isinstance(obj, Job): serializer_class = JobListSerializer elif isinstance(obj, AdHocCommand): serializer_class = AdHocCommandListSerializer elif isinstance(obj, SystemJob): serializer_class = SystemJobListSerializer elif isinstance(obj, WorkflowJob): serializer_class = WorkflowJobSerializer if serializer_class: serializer = serializer_class(instance=obj, context=self.context) ret = serializer.to_representation(obj) else: ret = super(UnifiedJobListSerializer, self).to_representation(obj) if 'elapsed' in ret: ret['elapsed'] = float(ret['elapsed']) return ret class UnifiedJobStdoutSerializer(UnifiedJobSerializer): result_stdout = serializers.SerializerMethodField() class Meta: fields = ('result_stdout',) def get_types(self): if type(self) is UnifiedJobStdoutSerializer: return ['project_update', 'inventory_update', 'job', 'ad_hoc_command', 'system_job'] else: return super(UnifiedJobStdoutSerializer, self).get_types() class UserSerializer(BaseSerializer): password = serializers.CharField(required=False, default='', write_only=True, help_text=_('Write-only field used to change the password.')) ldap_dn = serializers.CharField(source='profile.ldap_dn', read_only=True) external_account = serializers.SerializerMethodField(help_text=_('Set if the account is managed by an external service')) is_system_auditor = serializers.BooleanField(default=False) show_capabilities = ['edit', 'delete'] class Meta: model = User fields = ('*', '-name', '-description', '-modified', 'username', 'first_name', 'last_name', 'email', 'is_superuser', 'is_system_auditor', 'password', 'ldap_dn', 'external_account') def to_representation(self, obj): # TODO: Remove in 3.3 ret = super(UserSerializer, self).to_representation(obj) ret.pop('password', None) if obj and type(self) is UserSerializer or self.version == 1: ret['auth'] = obj.social_auth.values('provider', 'uid') return ret def get_validation_exclusions(self, obj=None): ret = super(UserSerializer, self).get_validation_exclusions(obj) ret.append('password') return ret def validate_password(self, value): if not self.instance and value in (None, ''): raise serializers.ValidationError(_('Password required for new User.')) return value def _update_password(self, obj, new_password): # For now we're not raising an error, just not saving password for # users managed by LDAP who already have an unusable password set. if getattr(settings, 'AUTH_LDAP_SERVER_URI', None) and feature_enabled('ldap'): try: if obj.pk and obj.profile.ldap_dn and not obj.has_usable_password(): new_password = None except AttributeError: pass if (getattr(settings, 'SOCIAL_AUTH_GOOGLE_OAUTH2_KEY', None) or getattr(settings, 'SOCIAL_AUTH_GITHUB_KEY', None) or getattr(settings, 'SOCIAL_AUTH_GITHUB_ORG_KEY', None) or getattr(settings, 'SOCIAL_AUTH_GITHUB_TEAM_KEY', None) or getattr(settings, 'SOCIAL_AUTH_SAML_ENABLED_IDPS', None)) and obj.social_auth.all(): new_password = None if (getattr(settings, 'RADIUS_SERVER', None) or getattr(settings, 'TACACSPLUS_HOST', None)) and obj.enterprise_auth.all(): new_password = None if new_password: obj.set_password(new_password) obj.save(update_fields=['password']) UserSessionMembership.clear_session_for_user(obj) elif not obj.password: obj.set_unusable_password() obj.save(update_fields=['password']) def get_external_account(self, obj): account_type = None if getattr(settings, 'AUTH_LDAP_SERVER_URI', None) and feature_enabled('ldap'): try: if obj.pk and obj.profile.ldap_dn and not obj.has_usable_password(): account_type = "ldap" except AttributeError: pass if (getattr(settings, 'SOCIAL_AUTH_GOOGLE_OAUTH2_KEY', None) or getattr(settings, 'SOCIAL_AUTH_GITHUB_KEY', None) or getattr(settings, 'SOCIAL_AUTH_GITHUB_ORG_KEY', None) or getattr(settings, 'SOCIAL_AUTH_GITHUB_TEAM_KEY', None) or getattr(settings, 'SOCIAL_AUTH_SAML_ENABLED_IDPS', None)) and obj.social_auth.all(): account_type = "social" if (getattr(settings, 'RADIUS_SERVER', None) or getattr(settings, 'TACACSPLUS_HOST', None)) and obj.enterprise_auth.all(): account_type = "enterprise" return account_type def create(self, validated_data): new_password = validated_data.pop('password', None) obj = super(UserSerializer, self).create(validated_data) self._update_password(obj, new_password) return obj def update(self, obj, validated_data): new_password = validated_data.pop('password', None) obj = super(UserSerializer, self).update(obj, validated_data) self._update_password(obj, new_password) return obj def get_related(self, obj): res = super(UserSerializer, self).get_related(obj) res.update(dict( teams = self.reverse('api:user_teams_list', kwargs={'pk': obj.pk}), organizations = self.reverse('api:user_organizations_list', kwargs={'pk': obj.pk}), admin_of_organizations = self.reverse('api:user_admin_of_organizations_list', kwargs={'pk': obj.pk}), projects = self.reverse('api:user_projects_list', kwargs={'pk': obj.pk}), credentials = self.reverse('api:user_credentials_list', kwargs={'pk': obj.pk}), roles = self.reverse('api:user_roles_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:user_activity_stream_list', kwargs={'pk': obj.pk}), access_list = self.reverse('api:user_access_list', kwargs={'pk': obj.pk}), applications = self.reverse('api:o_auth2_application_list', kwargs={'pk': obj.pk}), tokens = self.reverse('api:o_auth2_token_list', kwargs={'pk': obj.pk}), authorized_tokens = self.reverse('api:user_authorized_token_list', kwargs={'pk': obj.pk}), personal_tokens = self.reverse('api:o_auth2_personal_token_list', kwargs={'pk': obj.pk}), )) return res def _validate_ldap_managed_field(self, value, field_name): if not getattr(settings, 'AUTH_LDAP_SERVER_URI', None) or not feature_enabled('ldap'): return value try: is_ldap_user = bool(self.instance and self.instance.profile.ldap_dn) except AttributeError: is_ldap_user = False if is_ldap_user: ldap_managed_fields = ['username'] ldap_managed_fields.extend(getattr(settings, 'AUTH_LDAP_USER_ATTR_MAP', {}).keys()) ldap_managed_fields.extend(getattr(settings, 'AUTH_LDAP_USER_FLAGS_BY_GROUP', {}).keys()) if field_name in ldap_managed_fields: if value != getattr(self.instance, field_name): raise serializers.ValidationError(_('Unable to change %s on user managed by LDAP.') % field_name) return value def validate_username(self, value): return self._validate_ldap_managed_field(value, 'username') def validate_first_name(self, value): return self._validate_ldap_managed_field(value, 'first_name') def validate_last_name(self, value): return self._validate_ldap_managed_field(value, 'last_name') def validate_email(self, value): return self._validate_ldap_managed_field(value, 'email') def validate_is_superuser(self, value): return self._validate_ldap_managed_field(value, 'is_superuser') class UserAuthorizedTokenSerializer(BaseSerializer): refresh_token = serializers.SerializerMethodField() token = serializers.SerializerMethodField() class Meta: model = OAuth2AccessToken fields = ( '*', '-name', 'description', 'user', 'token', 'refresh_token', 'expires', 'scope', 'application', ) read_only_fields = ('user', 'token', 'expires') def get_token(self, obj): request = self.context.get('request', None) try: if request.method == 'POST': return obj.token else: return '*************' except ObjectDoesNotExist: return '' def get_refresh_token(self, obj): request = self.context.get('request', None) try: if request.method == 'POST': return getattr(obj.refresh_token, 'token', '') else: return '**************' except ObjectDoesNotExist: return '' def create(self, validated_data): validated_data['user'] = self.context['request'].user validated_data['token'] = generate_token() validated_data['expires'] = now() + timedelta( seconds=oauth2_settings.ACCESS_TOKEN_EXPIRE_SECONDS ) obj = super(OAuth2TokenSerializer, self).create(validated_data) obj.save() if obj.application is not None: RefreshToken.objects.create( user=self.context['request'].user, token=generate_token(), application=obj.application, access_token=obj ) return obj class OAuth2ApplicationSerializer(BaseSerializer): show_capabilities = ['edit', 'delete'] class Meta: model = OAuth2Application fields = ( '*', 'description', 'user', 'client_id', 'client_secret', 'client_type', 'redirect_uris', 'authorization_grant_type', 'skip_authorization', ) read_only_fields = ('client_id', 'client_secret') read_only_on_update_fields = ('user', 'authorization_grant_type') extra_kwargs = { 'user': {'allow_null': False, 'required': True}, 'authorization_grant_type': {'allow_null': False} } def to_representation(self, obj): ret = super(OAuth2ApplicationSerializer, self).to_representation(obj) if obj.client_type == 'public': ret.pop('client_secret', None) return ret def get_modified(self, obj): if obj is None: return None return obj.updated def get_related(self, obj): ret = super(OAuth2ApplicationSerializer, self).get_related(obj) if obj.user: ret['user'] = self.reverse('api:user_detail', kwargs={'pk': obj.user.pk}) ret['tokens'] = self.reverse( 'api:o_auth2_application_token_list', kwargs={'pk': obj.pk} ) ret['activity_stream'] = self.reverse( 'api:o_auth2_application_activity_stream_list', kwargs={'pk': obj.pk} ) return ret def _summary_field_tokens(self, obj): token_list = [{'id': x.pk, 'token': '**************', 'scope': x.scope} for x in obj.oauth2accesstoken_set.all()[:10]] if has_model_field_prefetched(obj, 'oauth2accesstoken_set'): token_count = len(obj.oauth2accesstoken_set.all()) else: if len(token_list) < 10: token_count = len(token_list) else: token_count = obj.oauth2accesstoken_set.count() return {'count': token_count, 'results': token_list} def get_summary_fields(self, obj): ret = super(OAuth2ApplicationSerializer, self).get_summary_fields(obj) ret['tokens'] = self._summary_field_tokens(obj) return ret class OAuth2TokenSerializer(BaseSerializer): refresh_token = serializers.SerializerMethodField() token = serializers.SerializerMethodField() class Meta: model = OAuth2AccessToken fields = ( '*', '-name', 'description', 'user', 'token', 'refresh_token', 'application', 'expires', 'scope', ) read_only_fields = ('user', 'token', 'expires') def get_modified(self, obj): if obj is None: return None return obj.updated def get_related(self, obj): ret = super(OAuth2TokenSerializer, self).get_related(obj) if obj.user: ret['user'] = self.reverse('api:user_detail', kwargs={'pk': obj.user.pk}) if obj.application: ret['application'] = self.reverse( 'api:o_auth2_application_detail', kwargs={'pk': obj.application.pk} ) ret['activity_stream'] = self.reverse( 'api:o_auth2_token_activity_stream_list', kwargs={'pk': obj.pk} ) return ret def get_token(self, obj): request = self.context.get('request', None) try: if request.method == 'POST': return obj.token else: return '*************' except ObjectDoesNotExist: return '' def get_refresh_token(self, obj): request = self.context.get('request', None) try: if request.method == 'POST': return getattr(obj.refresh_token, 'token', '') else: return '**************' except ObjectDoesNotExist: return '' def create(self, validated_data): validated_data['user'] = self.context['request'].user validated_data['token'] = generate_token() validated_data['expires'] = now() + timedelta( seconds=oauth2_settings.ACCESS_TOKEN_EXPIRE_SECONDS ) obj = super(OAuth2TokenSerializer, self).create(validated_data) if obj.application and obj.application.user: obj.user = obj.application.user obj.save() if obj.application is not None: RefreshToken.objects.create( user=obj.application.user if obj.application.user else None, token=generate_token(), application=obj.application, access_token=obj ) return obj class OAuth2TokenDetailSerializer(OAuth2TokenSerializer): class Meta: read_only_fields = ('*', 'user', 'application') class OAuth2AuthorizedTokenSerializer(BaseSerializer): refresh_token = serializers.SerializerMethodField() token = serializers.SerializerMethodField() class Meta: model = OAuth2AccessToken fields = ( '*', '-name', 'description', 'user', 'token', 'refresh_token', 'expires', 'scope', 'application', ) read_only_fields = ('user', 'token', 'expires') def get_token(self, obj): request = self.context.get('request', None) try: if request.method == 'POST': return obj.token else: return '*************' except ObjectDoesNotExist: return '' def get_refresh_token(self, obj): request = self.context.get('request', None) try: if request.method == 'POST': return getattr(obj.refresh_token, 'token', '') else: return '**************' except ObjectDoesNotExist: return '' def create(self, validated_data): validated_data['user'] = self.context['request'].user validated_data['token'] = generate_token() validated_data['expires'] = now() + timedelta( seconds=oauth2_settings.ACCESS_TOKEN_EXPIRE_SECONDS ) obj = super(OAuth2AuthorizedTokenSerializer, self).create(validated_data) if obj.application and obj.application.user: obj.user = obj.application.user obj.save() if obj.application is not None: RefreshToken.objects.create( user=obj.application.user if obj.application.user else None, token=generate_token(), application=obj.application, access_token=obj ) return obj class OAuth2PersonalTokenSerializer(BaseSerializer): refresh_token = serializers.SerializerMethodField() token = serializers.SerializerMethodField() class Meta: model = OAuth2AccessToken fields = ( '*', '-name', 'description', 'user', 'token', 'refresh_token', 'application', 'expires', 'scope', ) read_only_fields = ('user', 'token', 'expires', 'application') def get_modified(self, obj): if obj is None: return None return obj.updated def get_related(self, obj): ret = super(OAuth2PersonalTokenSerializer, self).get_related(obj) if obj.user: ret['user'] = self.reverse('api:user_detail', kwargs={'pk': obj.user.pk}) if obj.application: ret['application'] = self.reverse( 'api:o_auth2_application_detail', kwargs={'pk': obj.application.pk} ) ret['activity_stream'] = self.reverse( 'api:o_auth2_token_activity_stream_list', kwargs={'pk': obj.pk} ) return ret def get_token(self, obj): request = self.context.get('request', None) try: if request.method == 'POST': return obj.token else: return '*************' except ObjectDoesNotExist: return '' def get_refresh_token(self, obj): return None def create(self, validated_data): validated_data['user'] = self.context['request'].user validated_data['token'] = generate_token() validated_data['expires'] = now() + timedelta( seconds=oauth2_settings.ACCESS_TOKEN_EXPIRE_SECONDS ) obj = super(OAuth2PersonalTokenSerializer, self).create(validated_data) obj.save() return obj class OrganizationSerializer(BaseSerializer): show_capabilities = ['edit', 'delete'] class Meta: model = Organization fields = ('*', 'custom_virtualenv',) def get_related(self, obj): res = super(OrganizationSerializer, self).get_related(obj) res.update(dict( projects = self.reverse('api:organization_projects_list', kwargs={'pk': obj.pk}), inventories = self.reverse('api:organization_inventories_list', kwargs={'pk': obj.pk}), workflow_job_templates = self.reverse('api:organization_workflow_job_templates_list', kwargs={'pk': obj.pk}), users = self.reverse('api:organization_users_list', kwargs={'pk': obj.pk}), admins = self.reverse('api:organization_admins_list', kwargs={'pk': obj.pk}), teams = self.reverse('api:organization_teams_list', kwargs={'pk': obj.pk}), credentials = self.reverse('api:organization_credential_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:organization_activity_stream_list', kwargs={'pk': obj.pk}), notification_templates = self.reverse('api:organization_notification_templates_list', kwargs={'pk': obj.pk}), notification_templates_any = self.reverse('api:organization_notification_templates_any_list', kwargs={'pk': obj.pk}), notification_templates_success = self.reverse('api:organization_notification_templates_success_list', kwargs={'pk': obj.pk}), notification_templates_error = self.reverse('api:organization_notification_templates_error_list', kwargs={'pk': obj.pk}), object_roles = self.reverse('api:organization_object_roles_list', kwargs={'pk': obj.pk}), access_list = self.reverse('api:organization_access_list', kwargs={'pk': obj.pk}), instance_groups = self.reverse('api:organization_instance_groups_list', kwargs={'pk': obj.pk}), )) return res def get_summary_fields(self, obj): summary_dict = super(OrganizationSerializer, self).get_summary_fields(obj) counts_dict = self.context.get('related_field_counts', None) if counts_dict is not None and summary_dict is not None: if obj.id not in counts_dict: summary_dict['related_field_counts'] = { 'inventories': 0, 'teams': 0, 'users': 0, 'job_templates': 0, 'admins': 0, 'projects': 0} else: summary_dict['related_field_counts'] = counts_dict[obj.id] return summary_dict class ProjectOptionsSerializer(BaseSerializer): class Meta: fields = ('*', 'local_path', 'scm_type', 'scm_url', 'scm_branch', 'scm_clean', 'scm_delete_on_update', 'credential', 'timeout',) def get_related(self, obj): res = super(ProjectOptionsSerializer, self).get_related(obj) if obj.credential: res['credential'] = self.reverse('api:credential_detail', kwargs={'pk': obj.credential.pk}) return res def validate(self, attrs): errors = {} # Don't allow assigning a local_path used by another project. # Don't allow assigning a local_path when scm_type is set. valid_local_paths = Project.get_local_path_choices() if self.instance: scm_type = attrs.get('scm_type', self.instance.scm_type) or u'' else: scm_type = attrs.get('scm_type', u'') or u'' if self.instance and not scm_type: valid_local_paths.append(self.instance.local_path) if scm_type: attrs.pop('local_path', None) if 'local_path' in attrs and attrs['local_path'] not in valid_local_paths: errors['local_path'] = 'Invalid path choice.' if errors: raise serializers.ValidationError(errors) return super(ProjectOptionsSerializer, self).validate(attrs) def to_representation(self, obj): ret = super(ProjectOptionsSerializer, self).to_representation(obj) if obj is not None and 'credential' in ret and not obj.credential: ret['credential'] = None return ret class ProjectSerializer(UnifiedJobTemplateSerializer, ProjectOptionsSerializer): status = serializers.ChoiceField(choices=Project.PROJECT_STATUS_CHOICES, read_only=True) last_update_failed = serializers.BooleanField(read_only=True) last_updated = serializers.DateTimeField(read_only=True) show_capabilities = ['start', 'schedule', 'edit', 'delete'] class Meta: model = Project fields = ('*', 'organization', 'scm_delete_on_next_update', 'scm_update_on_launch', 'scm_update_cache_timeout', 'scm_revision', 'custom_virtualenv',) + \ ('last_update_failed', 'last_updated') # Backwards compatibility read_only_fields = ('scm_delete_on_next_update',) def get_related(self, obj): res = super(ProjectSerializer, self).get_related(obj) res.update(dict( teams = self.reverse('api:project_teams_list', kwargs={'pk': obj.pk}), playbooks = self.reverse('api:project_playbooks', kwargs={'pk': obj.pk}), inventory_files = self.reverse('api:project_inventories', kwargs={'pk': obj.pk}), update = self.reverse('api:project_update_view', kwargs={'pk': obj.pk}), project_updates = self.reverse('api:project_updates_list', kwargs={'pk': obj.pk}), scm_inventory_sources = self.reverse('api:project_scm_inventory_sources', kwargs={'pk': obj.pk}), schedules = self.reverse('api:project_schedules_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:project_activity_stream_list', kwargs={'pk': obj.pk}), notification_templates_any = self.reverse('api:project_notification_templates_any_list', kwargs={'pk': obj.pk}), notification_templates_success = self.reverse('api:project_notification_templates_success_list', kwargs={'pk': obj.pk}), notification_templates_error = self.reverse('api:project_notification_templates_error_list', kwargs={'pk': obj.pk}), access_list = self.reverse('api:project_access_list', kwargs={'pk': obj.pk}), object_roles = self.reverse('api:project_object_roles_list', kwargs={'pk': obj.pk}), copy = self.reverse('api:project_copy', kwargs={'pk': obj.pk}), )) if obj.organization: res['organization'] = self.reverse('api:organization_detail', kwargs={'pk': obj.organization.pk}) # Backwards compatibility. if obj.current_update: res['current_update'] = self.reverse('api:project_update_detail', kwargs={'pk': obj.current_update.pk}) if obj.last_update: res['last_update'] = self.reverse('api:project_update_detail', kwargs={'pk': obj.last_update.pk}) return res def to_representation(self, obj): ret = super(ProjectSerializer, self).to_representation(obj) if 'scm_revision' in ret and obj.scm_type == '': ret['scm_revision'] = '' return ret def validate(self, attrs): def get_field_from_model_or_attrs(fd): return attrs.get(fd, self.instance and getattr(self.instance, fd) or None) organization = None if 'organization' in attrs: organization = attrs['organization'] elif self.instance: organization = self.instance.organization view = self.context.get('view', None) if not organization and not view.request.user.is_superuser: # Only allow super users to create orgless projects raise serializers.ValidationError(_('Organization is missing')) elif get_field_from_model_or_attrs('scm_type') == '': for fd in ('scm_update_on_launch', 'scm_delete_on_update', 'scm_clean'): if get_field_from_model_or_attrs(fd): raise serializers.ValidationError({fd: _('Update options must be set to false for manual projects.')}) return super(ProjectSerializer, self).validate(attrs) class ProjectPlaybooksSerializer(ProjectSerializer): playbooks = serializers.SerializerMethodField(help_text=_('Array of playbooks available within this project.')) class Meta: model = Project fields = ('playbooks',) def get_playbooks(self, obj): return obj.playbook_files if obj.scm_type else obj.playbooks @property def data(self): ret = super(ProjectPlaybooksSerializer, self).data ret = ret.get('playbooks', []) return ReturnList(ret, serializer=self) class ProjectInventoriesSerializer(ProjectSerializer): inventory_files = serializers.ReadOnlyField(help_text=_( 'Array of inventory files and directories available within this project, ' 'not comprehensive.')) class Meta: model = Project fields = ('inventory_files',) @property def data(self): ret = super(ProjectInventoriesSerializer, self).data ret = ret.get('inventory_files', []) return ReturnList(ret, serializer=self) class ProjectUpdateViewSerializer(ProjectSerializer): can_update = serializers.BooleanField(read_only=True) class Meta: fields = ('can_update',) class ProjectUpdateSerializer(UnifiedJobSerializer, ProjectOptionsSerializer): class Meta: model = ProjectUpdate fields = ('*', 'project', 'job_type') def get_related(self, obj): res = super(ProjectUpdateSerializer, self).get_related(obj) try: res.update(dict( project = self.reverse('api:project_detail', kwargs={'pk': obj.project.pk}), )) except ObjectDoesNotExist: pass res.update(dict( cancel = self.reverse('api:project_update_cancel', kwargs={'pk': obj.pk}), scm_inventory_updates = self.reverse('api:project_update_scm_inventory_updates', kwargs={'pk': obj.pk}), notifications = self.reverse('api:project_update_notifications_list', kwargs={'pk': obj.pk}), events = self.reverse('api:project_update_events_list', kwargs={'pk': obj.pk}), )) return res class ProjectUpdateListSerializer(ProjectUpdateSerializer, UnifiedJobListSerializer): pass class ProjectUpdateCancelSerializer(ProjectUpdateSerializer): can_cancel = serializers.BooleanField(read_only=True) class Meta: fields = ('can_cancel',) class BaseSerializerWithVariables(BaseSerializer): def validate_variables(self, value): return vars_validate_or_raise(value) class InventorySerializer(BaseSerializerWithVariables): show_capabilities = ['edit', 'delete', 'adhoc'] class Meta: model = Inventory fields = ('*', 'organization', 'kind', 'host_filter', 'variables', 'has_active_failures', 'total_hosts', 'hosts_with_active_failures', 'total_groups', 'groups_with_active_failures', 'has_inventory_sources', 'total_inventory_sources', 'inventory_sources_with_failures', 'insights_credential', 'pending_deletion',) def get_related(self, obj): res = super(InventorySerializer, self).get_related(obj) res.update(dict( hosts = self.reverse('api:inventory_hosts_list', kwargs={'pk': obj.pk}), groups = self.reverse('api:inventory_groups_list', kwargs={'pk': obj.pk}), root_groups = self.reverse('api:inventory_root_groups_list', kwargs={'pk': obj.pk}), variable_data = self.reverse('api:inventory_variable_data', kwargs={'pk': obj.pk}), script = self.reverse('api:inventory_script_view', kwargs={'pk': obj.pk}), tree = self.reverse('api:inventory_tree_view', kwargs={'pk': obj.pk}), inventory_sources = self.reverse('api:inventory_inventory_sources_list', kwargs={'pk': obj.pk}), update_inventory_sources = self.reverse('api:inventory_inventory_sources_update', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:inventory_activity_stream_list', kwargs={'pk': obj.pk}), job_templates = self.reverse('api:inventory_job_template_list', kwargs={'pk': obj.pk}), ad_hoc_commands = self.reverse('api:inventory_ad_hoc_commands_list', kwargs={'pk': obj.pk}), access_list = self.reverse('api:inventory_access_list', kwargs={'pk': obj.pk}), object_roles = self.reverse('api:inventory_object_roles_list', kwargs={'pk': obj.pk}), instance_groups = self.reverse('api:inventory_instance_groups_list', kwargs={'pk': obj.pk}), copy = self.reverse('api:inventory_copy', kwargs={'pk': obj.pk}), )) if obj.insights_credential: res['insights_credential'] = self.reverse('api:credential_detail', kwargs={'pk': obj.insights_credential.pk}) if obj.organization: res['organization'] = self.reverse('api:organization_detail', kwargs={'pk': obj.organization.pk}) return res def to_representation(self, obj): ret = super(InventorySerializer, self).to_representation(obj) if obj is not None and 'organization' in ret and not obj.organization: ret['organization'] = None return ret def validate_host_filter(self, host_filter): if host_filter: try: SmartFilter().query_from_string(host_filter) except RuntimeError as e: raise models.base.ValidationError(e) return host_filter def validate(self, attrs): kind = None if 'kind' in attrs: kind = attrs['kind'] elif self.instance: kind = self.instance.kind host_filter = None if 'host_filter' in attrs: host_filter = attrs['host_filter'] elif self.instance: host_filter = self.instance.host_filter if kind == 'smart' and not host_filter: raise serializers.ValidationError({'host_filter': _( 'Smart inventories must specify host_filter')}) return super(InventorySerializer, self).validate(attrs) # TODO: Remove entire serializer in 3.3, replace with normal serializer class InventoryDetailSerializer(InventorySerializer): def get_fields(self): fields = super(InventoryDetailSerializer, self).get_fields() if self.version == 1: fields['can_run_ad_hoc_commands'] = serializers.SerializerMethodField() return fields def get_can_run_ad_hoc_commands(self, obj): view = self.context.get('view', None) return bool(obj and view and view.request and view.request.user and view.request.user.can_access(Inventory, 'run_ad_hoc_commands', obj)) class InventoryScriptSerializer(InventorySerializer): class Meta: fields = () class HostSerializer(BaseSerializerWithVariables): show_capabilities = ['edit', 'delete'] class Meta: model = Host fields = ('*', 'inventory', 'enabled', 'instance_id', 'variables', 'has_active_failures', 'has_inventory_sources', 'last_job', 'last_job_host_summary', 'insights_system_id', 'ansible_facts_modified',) read_only_fields = ('last_job', 'last_job_host_summary', 'insights_system_id', 'ansible_facts_modified',) def build_relational_field(self, field_name, relation_info): field_class, field_kwargs = super(HostSerializer, self).build_relational_field(field_name, relation_info) # Inventory is read-only unless creating a new host. if self.instance and field_name == 'inventory': field_kwargs['read_only'] = True field_kwargs.pop('queryset', None) return field_class, field_kwargs def get_related(self, obj): res = super(HostSerializer, self).get_related(obj) res.update(dict( variable_data = self.reverse('api:host_variable_data', kwargs={'pk': obj.pk}), groups = self.reverse('api:host_groups_list', kwargs={'pk': obj.pk}), all_groups = self.reverse('api:host_all_groups_list', kwargs={'pk': obj.pk}), job_events = self.reverse('api:host_job_events_list', kwargs={'pk': obj.pk}), job_host_summaries = self.reverse('api:host_job_host_summaries_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:host_activity_stream_list', kwargs={'pk': obj.pk}), inventory_sources = self.reverse('api:host_inventory_sources_list', kwargs={'pk': obj.pk}), smart_inventories = self.reverse('api:host_smart_inventories_list', kwargs={'pk': obj.pk}), ad_hoc_commands = self.reverse('api:host_ad_hoc_commands_list', kwargs={'pk': obj.pk}), ad_hoc_command_events = self.reverse('api:host_ad_hoc_command_events_list', kwargs={'pk': obj.pk}), fact_versions = self.reverse('api:host_fact_versions_list', kwargs={'pk': obj.pk}), )) if self.version > 1: res['insights'] = self.reverse('api:host_insights', kwargs={'pk': obj.pk}) if obj.inventory: res['inventory'] = self.reverse('api:inventory_detail', kwargs={'pk': obj.inventory.pk}) if obj.last_job: res['last_job'] = self.reverse('api:job_detail', kwargs={'pk': obj.last_job.pk}) if obj.last_job_host_summary: res['last_job_host_summary'] = self.reverse('api:job_host_summary_detail', kwargs={'pk': obj.last_job_host_summary.pk}) if self.version > 1: res.update(dict( ansible_facts = self.reverse('api:host_ansible_facts_detail', kwargs={'pk': obj.pk}), )) return res def get_summary_fields(self, obj): d = super(HostSerializer, self).get_summary_fields(obj) try: d['last_job']['job_template_id'] = obj.last_job.job_template.id d['last_job']['job_template_name'] = obj.last_job.job_template.name except (KeyError, AttributeError): pass if has_model_field_prefetched(obj, 'groups'): group_list = sorted([{'id': g.id, 'name': g.name} for g in obj.groups.all()], key=lambda x: x['id'])[:5] else: group_list = [{'id': g.id, 'name': g.name} for g in obj.groups.all().order_by('id')[:5]] group_cnt = obj.groups.count() d.setdefault('groups', {'count': group_cnt, 'results': group_list}) d.setdefault('recent_jobs', [{ 'id': j.job.id, 'name': j.job.job_template.name if j.job.job_template is not None else "", 'status': j.job.status, 'finished': j.job.finished, } for j in obj.job_host_summaries.select_related('job__job_template').order_by('-created')[:5]]) return d def _get_host_port_from_name(self, name): # Allow hostname (except IPv6 for now) to specify the port # inline. port = None if name.count(':') == 1: name, port = name.split(':') try: port = int(port) if port < 1 or port > 65535: raise ValueError except ValueError: raise serializers.ValidationError(_(u'Invalid port specification: %s') % force_text(port)) return name, port def validate_name(self, value): name = force_text(value or '') # Validate here only, update in main validate method. host, port = self._get_host_port_from_name(name) return value def validate_inventory(self, value): if value.kind == 'smart': raise serializers.ValidationError({"detail": _("Cannot create Host for Smart Inventory")}) return value def validate_variables(self, value): return vars_validate_or_raise(value) def validate(self, attrs): name = force_text(attrs.get('name', self.instance and self.instance.name or '')) host, port = self._get_host_port_from_name(name) if port: attrs['name'] = host variables = force_text(attrs.get('variables', self.instance and self.instance.variables or '')) vars_dict = parse_yaml_or_json(variables) vars_dict['ansible_ssh_port'] = port attrs['variables'] = json.dumps(vars_dict) return super(HostSerializer, self).validate(attrs) def to_representation(self, obj): ret = super(HostSerializer, self).to_representation(obj) if not obj: return ret if 'inventory' in ret and not obj.inventory: ret['inventory'] = None if 'last_job' in ret and not obj.last_job: ret['last_job'] = None if 'last_job_host_summary' in ret and not obj.last_job_host_summary: ret['last_job_host_summary'] = None return ret class AnsibleFactsSerializer(BaseSerializer): class Meta: model = Host def to_representation(self, obj): return obj.ansible_facts class GroupSerializer(BaseSerializerWithVariables): class Meta: model = Group fields = ('*', 'inventory', 'variables', 'has_active_failures', 'total_hosts', 'hosts_with_active_failures', 'total_groups', 'groups_with_active_failures', 'has_inventory_sources') @property def show_capabilities(self): # TODO: consolidate in 3.3 if self.version == 1: return ['copy', 'edit', 'start', 'schedule', 'delete'] else: return ['copy', 'edit', 'delete'] def build_relational_field(self, field_name, relation_info): field_class, field_kwargs = super(GroupSerializer, self).build_relational_field(field_name, relation_info) # Inventory is read-only unless creating a new group. if self.instance and field_name == 'inventory': field_kwargs['read_only'] = True field_kwargs.pop('queryset', None) return field_class, field_kwargs def get_summary_fields(self, obj): # TODO: remove in 3.3 summary_fields = super(GroupSerializer, self).get_summary_fields(obj) if self.version == 1: try: inv_src = obj.deprecated_inventory_source summary_fields['inventory_source'] = {} for field in SUMMARIZABLE_FK_FIELDS['inventory_source']: fval = getattr(inv_src, field, None) if fval is not None: summary_fields['inventory_source'][field] = fval except Group.deprecated_inventory_source.RelatedObjectDoesNotExist: pass return summary_fields def get_related(self, obj): res = super(GroupSerializer, self).get_related(obj) res.update(dict( variable_data = self.reverse('api:group_variable_data', kwargs={'pk': obj.pk}), hosts = self.reverse('api:group_hosts_list', kwargs={'pk': obj.pk}), potential_children = self.reverse('api:group_potential_children_list', kwargs={'pk': obj.pk}), children = self.reverse('api:group_children_list', kwargs={'pk': obj.pk}), all_hosts = self.reverse('api:group_all_hosts_list', kwargs={'pk': obj.pk}), job_events = self.reverse('api:group_job_events_list', kwargs={'pk': obj.pk}), job_host_summaries = self.reverse('api:group_job_host_summaries_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:group_activity_stream_list', kwargs={'pk': obj.pk}), inventory_sources = self.reverse('api:group_inventory_sources_list', kwargs={'pk': obj.pk}), ad_hoc_commands = self.reverse('api:group_ad_hoc_commands_list', kwargs={'pk': obj.pk}), )) if self.version == 1: # TODO: remove in 3.3 try: res['inventory_source'] = self.reverse('api:inventory_source_detail', kwargs={'pk': obj.deprecated_inventory_source.pk}) except Group.deprecated_inventory_source.RelatedObjectDoesNotExist: pass if obj.inventory: res['inventory'] = self.reverse('api:inventory_detail', kwargs={'pk': obj.inventory.pk}) return res def create(self, validated_data): # TODO: remove in 3.3 instance = super(GroupSerializer, self).create(validated_data) if self.version == 1: # TODO: remove in 3.3 manual_src = InventorySource(deprecated_group=instance, inventory=instance.inventory) manual_src.v1_group_name = instance.name manual_src.save() return instance def validate_name(self, value): if value in ('all', '_meta'): raise serializers.ValidationError(_('Invalid group name.')) return value def validate_inventory(self, value): if value.kind == 'smart': raise serializers.ValidationError({"detail": _("Cannot create Group for Smart Inventory")}) return value def to_representation(self, obj): ret = super(GroupSerializer, self).to_representation(obj) if obj is not None and 'inventory' in ret and not obj.inventory: ret['inventory'] = None return ret class GroupTreeSerializer(GroupSerializer): children = serializers.SerializerMethodField() class Meta: model = Group fields = ('*', 'children') def get_children(self, obj): if obj is None: return {} children_qs = obj.children children_qs = children_qs.select_related('inventory') children_qs = children_qs.prefetch_related('inventory_source') return GroupTreeSerializer(children_qs, many=True).data class BaseVariableDataSerializer(BaseSerializer): class Meta: fields = ('variables',) def to_representation(self, obj): if obj is None: return {} ret = super(BaseVariableDataSerializer, self).to_representation(obj) return parse_yaml_or_json(ret.get('variables', '') or '{}') def to_internal_value(self, data): data = {'variables': json.dumps(data)} return super(BaseVariableDataSerializer, self).to_internal_value(data) class InventoryVariableDataSerializer(BaseVariableDataSerializer): class Meta: model = Inventory class HostVariableDataSerializer(BaseVariableDataSerializer): class Meta: model = Host class GroupVariableDataSerializer(BaseVariableDataSerializer): class Meta: model = Group class CustomInventoryScriptSerializer(BaseSerializer): script = serializers.CharField(trim_whitespace=False) show_capabilities = ['edit', 'delete'] class Meta: model = CustomInventoryScript fields = ('*', "script", "organization") def validate_script(self, value): if not value.startswith("#!"): raise serializers.ValidationError(_('Script must begin with a hashbang sequence: i.e.... #!/usr/bin/env python')) return value def to_representation(self, obj): ret = super(CustomInventoryScriptSerializer, self).to_representation(obj) if obj is None: return ret request = self.context.get('request', None) if request.user not in obj.admin_role and \ not request.user.is_superuser and \ not request.user.is_system_auditor and \ not (obj.organization is not None and request.user in obj.organization.auditor_role): ret['script'] = None return ret def get_related(self, obj): res = super(CustomInventoryScriptSerializer, self).get_related(obj) res.update(dict( object_roles = self.reverse('api:inventory_script_object_roles_list', kwargs={'pk': obj.pk}), copy = self.reverse('api:inventory_script_copy', kwargs={'pk': obj.pk}), )) if obj.organization: res['organization'] = self.reverse('api:organization_detail', kwargs={'pk': obj.organization.pk}) return res class InventorySourceOptionsSerializer(BaseSerializer): credential = models.PositiveIntegerField( blank=True, null=True, default=None, help_text='This resource has been deprecated and will be removed in a future release') class Meta: fields = ('*', 'source', 'source_path', 'source_script', 'source_vars', 'credential', 'source_regions', 'instance_filters', 'group_by', 'overwrite', 'overwrite_vars', 'timeout', 'verbosity') def get_related(self, obj): res = super(InventorySourceOptionsSerializer, self).get_related(obj) if obj.credential: # TODO: remove when 'credential' field is removed res['credential'] = self.reverse('api:credential_detail', kwargs={'pk': obj.credential}) if obj.source_script: res['source_script'] = self.reverse('api:inventory_script_detail', kwargs={'pk': obj.source_script.pk}) return res def validate_source_vars(self, value): ret = vars_validate_or_raise(value) for env_k in parse_yaml_or_json(value): if env_k in settings.INV_ENV_VARIABLE_BLACKLIST: raise serializers.ValidationError(_("`{}` is a prohibited environment variable".format(env_k))) return ret def validate(self, attrs): # TODO: Validate source, validate source_regions errors = {} source = attrs.get('source', self.instance and self.instance.source or '') source_script = attrs.get('source_script', self.instance and self.instance.source_script or '') if source == 'custom': if source_script is None or source_script == '': errors['source_script'] = _("If 'source' is 'custom', 'source_script' must be provided.") else: try: if not self.instance: dest_inventory = attrs.get('inventory', None) if not dest_inventory: errors['inventory'] = _("Must provide an inventory.") else: dest_inventory = self.instance.inventory if dest_inventory and source_script.organization != dest_inventory.organization: errors['source_script'] = _("The 'source_script' does not belong to the same organization as the inventory.") except Exception: errors['source_script'] = _("'source_script' doesn't exist.") logger.exception('Problem processing source_script validation.') if errors: raise serializers.ValidationError(errors) return super(InventorySourceOptionsSerializer, self).validate(attrs) # TODO: remove when old 'credential' fields are removed def get_summary_fields(self, obj): summary_fields = super(InventorySourceOptionsSerializer, self).get_summary_fields(obj) if 'credential' in summary_fields: cred = obj.get_cloud_credential() if cred: summary_fields['credential'] = { 'id': cred.id, 'name': cred.name, 'description': cred.description, 'kind': cred.kind, 'cloud': True, 'credential_type_id': cred.credential_type_id } else: summary_fields.pop('credential') return summary_fields class InventorySourceSerializer(UnifiedJobTemplateSerializer, InventorySourceOptionsSerializer): status = serializers.ChoiceField(choices=InventorySource.INVENTORY_SOURCE_STATUS_CHOICES, read_only=True) last_update_failed = serializers.BooleanField(read_only=True) last_updated = serializers.DateTimeField(read_only=True) show_capabilities = ['start', 'schedule', 'edit', 'delete'] group = serializers.SerializerMethodField( help_text=_('Automatic group relationship, will be removed in 3.3')) class Meta: model = InventorySource fields = ('*', 'name', 'inventory', 'update_on_launch', 'update_cache_timeout', 'source_project', 'update_on_project_update') + \ ('last_update_failed', 'last_updated', 'group') # Backwards compatibility. def get_related(self, obj): res = super(InventorySourceSerializer, self).get_related(obj) res.update(dict( update = self.reverse('api:inventory_source_update_view', kwargs={'pk': obj.pk}), inventory_updates = self.reverse('api:inventory_source_updates_list', kwargs={'pk': obj.pk}), schedules = self.reverse('api:inventory_source_schedules_list', kwargs={'pk': obj.pk}), credentials = self.reverse('api:inventory_source_credentials_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:inventory_source_activity_stream_list', kwargs={'pk': obj.pk}), hosts = self.reverse('api:inventory_source_hosts_list', kwargs={'pk': obj.pk}), groups = self.reverse('api:inventory_source_groups_list', kwargs={'pk': obj.pk}), notification_templates_any = self.reverse('api:inventory_source_notification_templates_any_list', kwargs={'pk': obj.pk}), notification_templates_success = self.reverse('api:inventory_source_notification_templates_success_list', kwargs={'pk': obj.pk}), notification_templates_error = self.reverse('api:inventory_source_notification_templates_error_list', kwargs={'pk': obj.pk}), )) if obj.inventory: res['inventory'] = self.reverse('api:inventory_detail', kwargs={'pk': obj.inventory.pk}) if obj.source_project_id is not None: res['source_project'] = self.reverse('api:project_detail', kwargs={'pk': obj.source_project.pk}) # Backwards compatibility. if obj.current_update: res['current_update'] = self.reverse('api:inventory_update_detail', kwargs={'pk': obj.current_update.pk}) if obj.last_update: res['last_update'] = self.reverse('api:inventory_update_detail', kwargs={'pk': obj.last_update.pk}) if self.version == 1: # TODO: remove in 3.3 if obj.deprecated_group: res['group'] = self.reverse('api:group_detail', kwargs={'pk': obj.deprecated_group.pk}) return res def get_fields(self): # TODO: remove in 3.3 fields = super(InventorySourceSerializer, self).get_fields() if self.version > 1: fields.pop('group', None) return fields def get_summary_fields(self, obj): # TODO: remove in 3.3 summary_fields = super(InventorySourceSerializer, self).get_summary_fields(obj) if self.version == 1 and obj.deprecated_group_id: g = obj.deprecated_group summary_fields['group'] = {} for field in SUMMARIZABLE_FK_FIELDS['group']: fval = getattr(g, field, None) if fval is not None: summary_fields['group'][field] = fval return summary_fields def get_group(self, obj): # TODO: remove in 3.3 if obj.deprecated_group: return obj.deprecated_group.id return None def build_relational_field(self, field_name, relation_info): field_class, field_kwargs = super(InventorySourceSerializer, self).build_relational_field(field_name, relation_info) # SCM Project and inventory are read-only unless creating a new inventory. if self.instance and field_name == 'inventory': field_kwargs['read_only'] = True field_kwargs.pop('queryset', None) return field_class, field_kwargs # TODO: remove when old 'credential' fields are removed def build_field(self, field_name, info, model_class, nested_depth): # have to special-case the field so that DRF will not automagically make it # read-only because it's a property on the model. if field_name == 'credential': return self.build_standard_field(field_name, self.credential) return super(InventorySourceOptionsSerializer, self).build_field(field_name, info, model_class, nested_depth) def to_representation(self, obj): ret = super(InventorySourceSerializer, self).to_representation(obj) if obj is None: return ret if 'inventory' in ret and not obj.inventory: ret['inventory'] = None return ret def validate_source_project(self, value): if value and value.scm_type == '': raise serializers.ValidationError(_("Cannot use manual project for SCM-based inventory.")) return value def validate_source(self, value): if value == '': raise serializers.ValidationError(_( "Manual inventory sources are created automatically when a group is created in the v1 API.")) return value def validate_update_on_project_update(self, value): if value and self.instance and self.instance.schedules.exists(): raise serializers.ValidationError(_("Setting not compatible with existing schedules.")) return value def validate_inventory(self, value): if value and value.kind == 'smart': raise serializers.ValidationError({"detail": _("Cannot create Inventory Source for Smart Inventory")}) return value # TODO: remove when old 'credential' fields are removed def create(self, validated_data): deprecated_fields = {} if 'credential' in validated_data: deprecated_fields['credential'] = validated_data.pop('credential') obj = super(InventorySourceSerializer, self).create(validated_data) if deprecated_fields: self._update_deprecated_fields(deprecated_fields, obj) return obj # TODO: remove when old 'credential' fields are removed def update(self, obj, validated_data): deprecated_fields = {} if 'credential' in validated_data: deprecated_fields['credential'] = validated_data.pop('credential') obj = super(InventorySourceSerializer, self).update(obj, validated_data) if deprecated_fields: self._update_deprecated_fields(deprecated_fields, obj) return obj # TODO: remove when old 'credential' fields are removed def _update_deprecated_fields(self, fields, obj): if 'credential' in fields: new_cred = fields['credential'] existing_creds = obj.credentials.exclude(credential_type__kind='vault') for cred in existing_creds: # Remove all other cloud credentials if cred != new_cred: obj.credentials.remove(cred) if new_cred: # Add new credential obj.credentials.add(new_cred) def validate(self, attrs): deprecated_fields = {} if 'credential' in attrs: # TODO: remove when 'credential' field removed deprecated_fields['credential'] = attrs.pop('credential') def get_field_from_model_or_attrs(fd): return attrs.get(fd, self.instance and getattr(self.instance, fd) or None) if get_field_from_model_or_attrs('source') != 'scm': redundant_scm_fields = filter( lambda x: attrs.get(x, None), ['source_project', 'source_path', 'update_on_project_update'] ) if redundant_scm_fields: raise serializers.ValidationError( {"detail": _("Cannot set %s if not SCM type." % ' '.join(redundant_scm_fields))} ) attrs = super(InventorySourceSerializer, self).validate(attrs) # Check type consistency of source and cloud credential, if provided if 'credential' in deprecated_fields: # TODO: remove when v2 API is deprecated cred = deprecated_fields['credential'] attrs['credential'] = cred if cred is not None: cred = Credential.objects.get(pk=cred) view = self.context.get('view', None) if (not view) or (not view.request) or (view.request.user not in cred.use_role): raise PermissionDenied() cred_error = InventorySource.cloud_credential_validation( get_field_from_model_or_attrs('source'), cred ) if cred_error: raise serializers.ValidationError({"detail": cred_error}) return attrs class InventorySourceUpdateSerializer(InventorySourceSerializer): can_update = serializers.BooleanField(read_only=True) class Meta: fields = ('can_update',) class InventoryUpdateSerializer(UnifiedJobSerializer, InventorySourceOptionsSerializer): class Meta: model = InventoryUpdate fields = ('*', 'inventory_source', 'license_error', 'source_project_update') def get_related(self, obj): res = super(InventoryUpdateSerializer, self).get_related(obj) try: res.update(dict( inventory_source = self.reverse( 'api:inventory_source_detail', kwargs={'pk': obj.inventory_source.pk} ), )) except ObjectDoesNotExist: pass res.update(dict( cancel = self.reverse('api:inventory_update_cancel', kwargs={'pk': obj.pk}), notifications = self.reverse('api:inventory_update_notifications_list', kwargs={'pk': obj.pk}), credentials = self.reverse('api:inventory_update_credentials_list', kwargs={'pk': obj.pk}), events = self.reverse('api:inventory_update_events_list', kwargs={'pk': obj.pk}), )) if obj.source_project_update_id: res['source_project_update'] = self.reverse('api:project_update_detail', kwargs={'pk': obj.source_project_update.pk}) return res class InventoryUpdateListSerializer(InventoryUpdateSerializer, UnifiedJobListSerializer): pass class InventoryUpdateCancelSerializer(InventoryUpdateSerializer): can_cancel = serializers.BooleanField(read_only=True) class Meta: fields = ('can_cancel',) class TeamSerializer(BaseSerializer): show_capabilities = ['edit', 'delete'] class Meta: model = Team fields = ('*', 'organization') def get_related(self, obj): res = super(TeamSerializer, self).get_related(obj) res.update(dict( projects = self.reverse('api:team_projects_list', kwargs={'pk': obj.pk}), users = self.reverse('api:team_users_list', kwargs={'pk': obj.pk}), credentials = self.reverse('api:team_credentials_list', kwargs={'pk': obj.pk}), roles = self.reverse('api:team_roles_list', kwargs={'pk': obj.pk}), object_roles = self.reverse('api:team_object_roles_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:team_activity_stream_list', kwargs={'pk': obj.pk}), access_list = self.reverse('api:team_access_list', kwargs={'pk': obj.pk}), )) if obj.organization: res['organization'] = self.reverse('api:organization_detail', kwargs={'pk': obj.organization.pk}) return res def to_representation(self, obj): ret = super(TeamSerializer, self).to_representation(obj) if obj is not None and 'organization' in ret and not obj.organization: ret['organization'] = None return ret class RoleSerializer(BaseSerializer): class Meta: model = Role read_only_fields = ('id', 'role_field', 'description', 'name') def to_representation(self, obj): ret = super(RoleSerializer, self).to_representation(obj) if obj.object_id: content_object = obj.content_object if hasattr(content_object, 'username'): ret['summary_fields']['resource_name'] = obj.content_object.username if hasattr(content_object, 'name'): ret['summary_fields']['resource_name'] = obj.content_object.name content_model = obj.content_type.model_class() ret['summary_fields']['resource_type'] = get_type_for_model(content_model) ret['summary_fields']['resource_type_display_name'] = content_model._meta.verbose_name.title() ret.pop('created') ret.pop('modified') return ret def get_related(self, obj): ret = super(RoleSerializer, self).get_related(obj) ret['users'] = self.reverse('api:role_users_list', kwargs={'pk': obj.pk}) ret['teams'] = self.reverse('api:role_teams_list', kwargs={'pk': obj.pk}) try: if obj.content_object: ret.update(reverse_gfk(obj.content_object, self.context.get('request'))) except AttributeError: # AttributeError's happen if our content_object is pointing at # a model that no longer exists. This is dirty data and ideally # doesn't exist, but in case it does, let's not puke. pass return ret class RoleSerializerWithParentAccess(RoleSerializer): show_capabilities = ['unattach'] class ResourceAccessListElementSerializer(UserSerializer): show_capabilities = [] # Clear fields from UserSerializer parent class def to_representation(self, user): ''' With this method we derive "direct" and "indirect" access lists. Contained in the direct access list are all the roles the user is a member of, and all of the roles that are directly granted to any teams that the user is a member of. The indirect access list is a list of all of the roles that the user is a member of that are ancestors of any roles that grant permissions to the resource. ''' ret = super(ResourceAccessListElementSerializer, self).to_representation(user) obj = self.context['view'].get_parent_object() if self.context['view'].request is not None: requesting_user = self.context['view'].request.user else: requesting_user = None if 'summary_fields' not in ret: ret['summary_fields'] = {} def format_role_perm(role): role_dict = { 'id': role.id, 'name': role.name, 'description': role.description} try: role_dict['resource_name'] = role.content_object.name role_dict['resource_type'] = get_type_for_model(role.content_type.model_class()) role_dict['related'] = reverse_gfk(role.content_object, self.context.get('request')) except AttributeError: pass if role.content_type is not None: role_dict['user_capabilities'] = {'unattach': requesting_user.can_access( Role, 'unattach', role, user, 'members', data={}, skip_sub_obj_read_check=False)} else: # Singleton roles should not be managed from this view, as per copy/edit rework spec role_dict['user_capabilities'] = {'unattach': False} return { 'role': role_dict, 'descendant_roles': get_roles_on_resource(obj, role)} def format_team_role_perm(naive_team_role, permissive_role_ids): ret = [] team_role = naive_team_role if naive_team_role.role_field == 'admin_role': team_role = naive_team_role.content_object.member_role for role in team_role.children.filter(id__in=permissive_role_ids).all(): role_dict = { 'id': role.id, 'name': role.name, 'description': role.description, 'team_id': team_role.object_id, 'team_name': team_role.content_object.name, 'team_organization_name': team_role.content_object.organization.name, } if role.content_type is not None: role_dict['resource_name'] = role.content_object.name role_dict['resource_type'] = get_type_for_model(role.content_type.model_class()) role_dict['related'] = reverse_gfk(role.content_object, self.context.get('request')) role_dict['user_capabilities'] = {'unattach': requesting_user.can_access( Role, 'unattach', role, team_role, 'parents', data={}, skip_sub_obj_read_check=False)} else: # Singleton roles should not be managed from this view, as per copy/edit rework spec role_dict['user_capabilities'] = {'unattach': False} ret.append({ 'role': role_dict, 'descendant_roles': get_roles_on_resource(obj, team_role)}) return ret team_content_type = ContentType.objects.get_for_model(Team) content_type = ContentType.objects.get_for_model(obj) direct_permissive_role_ids = Role.objects.filter(content_type=content_type, object_id=obj.id).values_list('id', flat=True) all_permissive_role_ids = Role.objects.filter(content_type=content_type, object_id=obj.id).values_list('ancestors__id', flat=True) direct_access_roles = user.roles \ .filter(id__in=direct_permissive_role_ids).all() direct_team_roles = Role.objects \ .filter(content_type=team_content_type, members=user, children__in=direct_permissive_role_ids) if content_type == team_content_type: # When looking at the access list for a team, exclude the entries # for that team. This exists primarily so we don't list the read role # as a direct role when a user is a member or admin of a team direct_team_roles = direct_team_roles.exclude( children__content_type=team_content_type, children__object_id=obj.id ) indirect_team_roles = Role.objects \ .filter(content_type=team_content_type, members=user, children__in=all_permissive_role_ids) \ .exclude(id__in=direct_team_roles) indirect_access_roles = user.roles \ .filter(id__in=all_permissive_role_ids) \ .exclude(id__in=direct_permissive_role_ids) \ .exclude(id__in=direct_team_roles) \ .exclude(id__in=indirect_team_roles) ret['summary_fields']['direct_access'] \ = [format_role_perm(r) for r in direct_access_roles.distinct()] \ + [y for x in (format_team_role_perm(r, direct_permissive_role_ids) for r in direct_team_roles.distinct()) for y in x] \ + [y for x in (format_team_role_perm(r, all_permissive_role_ids) for r in indirect_team_roles.distinct()) for y in x] ret['summary_fields']['indirect_access'] \ = [format_role_perm(r) for r in indirect_access_roles.distinct()] return ret class CredentialTypeSerializer(BaseSerializer): show_capabilities = ['edit', 'delete'] managed_by_tower = serializers.ReadOnlyField() class Meta: model = CredentialType fields = ('*', 'kind', 'name', 'managed_by_tower', 'inputs', 'injectors') def validate(self, attrs): if self.instance and self.instance.managed_by_tower: raise PermissionDenied( detail=_("Modifications not allowed for managed credential types") ) if self.instance and self.instance.credentials.exists(): if 'inputs' in attrs and attrs['inputs'] != self.instance.inputs: raise PermissionDenied( detail= _("Modifications to inputs are not allowed for credential types that are in use") ) ret = super(CredentialTypeSerializer, self).validate(attrs) if 'kind' in attrs and attrs['kind'] not in ('cloud', 'net'): raise serializers.ValidationError({ "kind": _("Must be 'cloud' or 'net', not %s") % attrs['kind'] }) fields = attrs.get('inputs', {}).get('fields', []) for field in fields: if field.get('ask_at_runtime', False): raise serializers.ValidationError({"inputs": _("'ask_at_runtime' is not supported for custom credentials.")}) return ret def get_related(self, obj): res = super(CredentialTypeSerializer, self).get_related(obj) res['credentials'] = self.reverse( 'api:credential_type_credential_list', kwargs={'pk': obj.pk} ) res['activity_stream'] = self.reverse( 'api:credential_type_activity_stream_list', kwargs={'pk': obj.pk} ) return res def to_representation(self, data): value = super(CredentialTypeSerializer, self).to_representation(data) # translate labels and help_text for credential fields "managed by Tower" if value.get('managed_by_tower'): for field in value.get('inputs', {}).get('fields', []): field['label'] = _(field['label']) if 'help_text' in field: field['help_text'] = _(field['help_text']) return value def filter_field_metadata(self, fields, method): # API-created/modified CredentialType kinds are limited to # `cloud` and `net` if method in ('PUT', 'POST'): fields['kind']['choices'] = filter( lambda choice: choice[0] in ('cloud', 'net'), fields['kind']['choices'] ) return fields # TODO: remove when API v1 is removed @six.add_metaclass(BaseSerializerMetaclass) class V1CredentialFields(BaseSerializer): class Meta: model = Credential fields = ('*', 'kind', 'cloud', 'host', 'username', 'password', 'security_token', 'project', 'domain', 'ssh_key_data', 'ssh_key_unlock', 'become_method', 'become_username', 'become_password', 'vault_password', 'subscription', 'tenant', 'secret', 'client', 'authorize', 'authorize_password') def build_field(self, field_name, info, model_class, nested_depth): if field_name in V1Credential.FIELDS: return self.build_standard_field(field_name, V1Credential.FIELDS[field_name]) return super(V1CredentialFields, self).build_field(field_name, info, model_class, nested_depth) @six.add_metaclass(BaseSerializerMetaclass) class V2CredentialFields(BaseSerializer): class Meta: model = Credential fields = ('*', 'credential_type', 'inputs') class CredentialSerializer(BaseSerializer): show_capabilities = ['edit', 'delete'] class Meta: model = Credential fields = ('*', 'organization') def get_fields(self): fields = super(CredentialSerializer, self).get_fields() # TODO: remove when API v1 is removed if self.version == 1: fields.update(V1CredentialFields().get_fields()) else: fields.update(V2CredentialFields().get_fields()) return fields def to_representation(self, data): value = super(CredentialSerializer, self).to_representation(data) # TODO: remove when API v1 is removed if self.version == 1: if value.get('kind') == 'vault': value['kind'] = 'ssh' for field in V1Credential.PASSWORD_FIELDS: if field in value and force_text(value[field]).startswith('$encrypted$'): value[field] = '$encrypted$' if 'inputs' in value: value['inputs'] = data.display_inputs() return value def get_related(self, obj): res = super(CredentialSerializer, self).get_related(obj) if obj.organization: res['organization'] = self.reverse('api:organization_detail', kwargs={'pk': obj.organization.pk}) res.update(dict( activity_stream = self.reverse('api:credential_activity_stream_list', kwargs={'pk': obj.pk}), access_list = self.reverse('api:credential_access_list', kwargs={'pk': obj.pk}), object_roles = self.reverse('api:credential_object_roles_list', kwargs={'pk': obj.pk}), owner_users = self.reverse('api:credential_owner_users_list', kwargs={'pk': obj.pk}), owner_teams = self.reverse('api:credential_owner_teams_list', kwargs={'pk': obj.pk}), copy = self.reverse('api:credential_copy', kwargs={'pk': obj.pk}), )) # TODO: remove when API v1 is removed if self.version > 1: res.update(dict( credential_type = self.reverse('api:credential_type_detail', kwargs={'pk': obj.credential_type.pk}), )) parents = [role for role in obj.admin_role.parents.all() if role.object_id is not None] if parents: res.update({parents[0].content_type.name:parents[0].content_object.get_absolute_url(self.context.get('request'))}) elif len(obj.admin_role.members.all()) > 0: user = obj.admin_role.members.all()[0] res.update({'user': self.reverse('api:user_detail', kwargs={'pk': user.pk})}) return res def get_summary_fields(self, obj): summary_dict = super(CredentialSerializer, self).get_summary_fields(obj) summary_dict['owners'] = [] for user in obj.admin_role.members.all(): summary_dict['owners'].append({ 'id': user.pk, 'type': 'user', 'name': user.username, 'description': ' '.join([user.first_name, user.last_name]), 'url': self.reverse('api:user_detail', kwargs={'pk': user.pk}), }) for parent in [role for role in obj.admin_role.parents.all() if role.object_id is not None]: summary_dict['owners'].append({ 'id': parent.content_object.pk, 'type': camelcase_to_underscore(parent.content_object.__class__.__name__), 'name': parent.content_object.name, 'description': parent.content_object.description, 'url': parent.content_object.get_absolute_url(self.context.get('request')), }) return summary_dict def get_validation_exclusions(self, obj=None): # CredentialType is now part of validation; legacy v1 fields (e.g., # 'username', 'password') in JSON POST payloads use the # CredentialType's inputs definition to determine their validity ret = super(CredentialSerializer, self).get_validation_exclusions(obj) for field in ('credential_type', 'inputs'): if field in ret: ret.remove(field) return ret def to_internal_value(self, data): # TODO: remove when API v1 is removed if 'credential_type' not in data and self.version == 1: # If `credential_type` is not provided, assume the payload is a # v1 credential payload that specifies a `kind` and a flat list # of field values # # In this scenario, we should automatically detect the proper # CredentialType based on the provided values kind = data.get('kind', 'ssh') credential_type = CredentialType.from_v1_kind(kind, data) if credential_type is None: raise serializers.ValidationError({"kind": _('"%s" is not a valid choice' % kind)}) data['credential_type'] = credential_type.pk value = OrderedDict( {'credential_type': credential_type}.items() + super(CredentialSerializer, self).to_internal_value(data).items() ) # Make a set of the keys in the POST/PUT payload # - Subtract real fields (name, organization, inputs) # - Subtract virtual v1 fields defined on the determined credential # type (username, password, etc...) # - Any leftovers are invalid for the determined credential type valid_fields = set(super(CredentialSerializer, self).get_fields().keys()) valid_fields.update(V2CredentialFields().get_fields().keys()) valid_fields.update(['kind', 'cloud']) for field in set(data.keys()) - valid_fields - set(credential_type.defined_fields): if data.get(field): raise serializers.ValidationError( {"detail": _("'%s' is not a valid field for %s") % (field, credential_type.name)} ) value.pop('kind', None) return value return super(CredentialSerializer, self).to_internal_value(data) def validate_credential_type(self, credential_type): if self.instance and credential_type.pk != self.instance.credential_type.pk: for rel in ( 'ad_hoc_commands', 'insights_inventories', 'unifiedjobs', 'unifiedjobtemplates', 'projects', 'projectupdates', 'workflowjobnodes' ): if getattr(self.instance, rel).count() > 0: raise ValidationError( _('You cannot change the credential type of the credential, as it may break the functionality' ' of the resources using it.'), ) return credential_type class CredentialSerializerCreate(CredentialSerializer): user = serializers.PrimaryKeyRelatedField( queryset=User.objects.all(), required=False, default=None, write_only=True, allow_null=True, help_text=_('Write-only field used to add user to owner role. If provided, ' 'do not give either team or organization. Only valid for creation.')) team = serializers.PrimaryKeyRelatedField( queryset=Team.objects.all(), required=False, default=None, write_only=True, allow_null=True, help_text=_('Write-only field used to add team to owner role. If provided, ' 'do not give either user or organization. Only valid for creation.')) organization = serializers.PrimaryKeyRelatedField( queryset=Organization.objects.all(), required=False, default=None, allow_null=True, help_text=_('Inherit permissions from organization roles. If provided on creation, ' 'do not give either user or team.')) class Meta: model = Credential fields = ('*', 'user', 'team') def validate(self, attrs): owner_fields = set() for field in ('user', 'team', 'organization'): if field in attrs: if attrs[field]: owner_fields.add(field) else: attrs.pop(field) if not owner_fields: raise serializers.ValidationError({"detail": _("Missing 'user', 'team', or 'organization'.")}) if attrs.get('team'): attrs['organization'] = attrs['team'].organization try: return super(CredentialSerializerCreate, self).validate(attrs) except ValidationError as e: # TODO: remove when API v1 is removed # If we have an `inputs` error on `/api/v1/`: # {'inputs': {'username': [...]}} # ...instead, send back: # {'username': [...]} if self.version == 1 and isinstance(e.detail.get('inputs'), dict): e.detail = e.detail['inputs'] raise e else: raise def create(self, validated_data): user = validated_data.pop('user', None) team = validated_data.pop('team', None) # If our payload contains v1 credential fields, translate to the new # model # TODO: remove when API v1 is removed if self.version == 1: for attr in ( set(V1Credential.FIELDS) & set(validated_data.keys()) # set intersection ): validated_data.setdefault('inputs', {}) value = validated_data.pop(attr) if value: validated_data['inputs'][attr] = value credential = super(CredentialSerializerCreate, self).create(validated_data) if user: credential.admin_role.members.add(user) if team: if not credential.organization or team.organization.id != credential.organization.id: raise serializers.ValidationError({"detail": _("Credential organization must be set and match before assigning to a team")}) credential.admin_role.parents.add(team.admin_role) credential.use_role.parents.add(team.member_role) return credential class UserCredentialSerializerCreate(CredentialSerializerCreate): class Meta: model = Credential fields = ('*', '-team', '-organization') class TeamCredentialSerializerCreate(CredentialSerializerCreate): class Meta: model = Credential fields = ('*', '-user', '-organization') class OrganizationCredentialSerializerCreate(CredentialSerializerCreate): class Meta: model = Credential fields = ('*', '-user', '-team') class LabelsListMixin(object): def _summary_field_labels(self, obj): label_list = [{'id': x.id, 'name': x.name} for x in obj.labels.all()[:10]] if has_model_field_prefetched(obj, 'labels'): label_ct = len(obj.labels.all()) else: if len(label_list) < 10: label_ct = len(label_list) else: label_ct = obj.labels.count() return {'count': label_ct, 'results': label_list} def get_summary_fields(self, obj): res = super(LabelsListMixin, self).get_summary_fields(obj) res['labels'] = self._summary_field_labels(obj) return res # TODO: remove when API v1 is removed @six.add_metaclass(BaseSerializerMetaclass) class V1JobOptionsSerializer(BaseSerializer): class Meta: model = Credential fields = ('*', 'cloud_credential', 'network_credential') V1_FIELDS = { 'cloud_credential': models.PositiveIntegerField(blank=True, null=True, default=None, help_text=DEPRECATED), 'network_credential': models.PositiveIntegerField(blank=True, null=True, default=None, help_text=DEPRECATED), } def build_field(self, field_name, info, model_class, nested_depth): if field_name in self.V1_FIELDS: return self.build_standard_field(field_name, self.V1_FIELDS[field_name]) return super(V1JobOptionsSerializer, self).build_field(field_name, info, model_class, nested_depth) @six.add_metaclass(BaseSerializerMetaclass) class LegacyCredentialFields(BaseSerializer): class Meta: model = Credential fields = ('*', 'credential', 'vault_credential') LEGACY_FIELDS = { 'credential': models.PositiveIntegerField(blank=True, null=True, default=None, help_text=DEPRECATED), 'vault_credential': models.PositiveIntegerField(blank=True, null=True, default=None, help_text=DEPRECATED), } def build_field(self, field_name, info, model_class, nested_depth): if field_name in self.LEGACY_FIELDS: return self.build_standard_field(field_name, self.LEGACY_FIELDS[field_name]) return super(LegacyCredentialFields, self).build_field(field_name, info, model_class, nested_depth) class JobOptionsSerializer(LabelsListMixin, BaseSerializer): class Meta: fields = ('*', 'job_type', 'inventory', 'project', 'playbook', 'forks', 'limit', 'verbosity', 'extra_vars', 'job_tags', 'force_handlers', 'skip_tags', 'start_at_task', 'timeout', 'use_fact_cache',) def get_fields(self): fields = super(JobOptionsSerializer, self).get_fields() # TODO: remove when API v1 is removed if self.version == 1: fields.update(V1JobOptionsSerializer().get_fields()) fields.update(LegacyCredentialFields().get_fields()) return fields def get_related(self, obj): res = super(JobOptionsSerializer, self).get_related(obj) res['labels'] = self.reverse('api:job_template_label_list', kwargs={'pk': obj.pk}) try: if obj.inventory: res['inventory'] = self.reverse('api:inventory_detail', kwargs={'pk': obj.inventory.pk}) except ObjectDoesNotExist: setattr(obj, 'inventory', None) try: if obj.project: res['project'] = self.reverse('api:project_detail', kwargs={'pk': obj.project.pk}) except ObjectDoesNotExist: setattr(obj, 'project', None) try: if obj.credential: res['credential'] = self.reverse( 'api:credential_detail', kwargs={'pk': obj.credential} ) except ObjectDoesNotExist: setattr(obj, 'credential', None) try: if obj.vault_credential: res['vault_credential'] = self.reverse( 'api:credential_detail', kwargs={'pk': obj.vault_credential} ) except ObjectDoesNotExist: setattr(obj, 'vault_credential', None) if self.version > 1: if isinstance(obj, UnifiedJobTemplate): res['extra_credentials'] = self.reverse( 'api:job_template_extra_credentials_list', kwargs={'pk': obj.pk} ) res['credentials'] = self.reverse( 'api:job_template_credentials_list', kwargs={'pk': obj.pk} ) elif isinstance(obj, UnifiedJob): res['extra_credentials'] = self.reverse('api:job_extra_credentials_list', kwargs={'pk': obj.pk}) res['credentials'] = self.reverse('api:job_credentials_list', kwargs={'pk': obj.pk}) else: cloud_cred = obj.cloud_credential if cloud_cred: res['cloud_credential'] = self.reverse('api:credential_detail', kwargs={'pk': cloud_cred}) net_cred = obj.network_credential if net_cred: res['network_credential'] = self.reverse('api:credential_detail', kwargs={'pk': net_cred}) return res def to_representation(self, obj): ret = super(JobOptionsSerializer, self).to_representation(obj) if obj is None: return ret if 'inventory' in ret and not obj.inventory: ret['inventory'] = None if 'project' in ret and not obj.project: ret['project'] = None if 'playbook' in ret: ret['playbook'] = '' ret['credential'] = obj.credential ret['vault_credential'] = obj.vault_credential if self.version == 1: ret['cloud_credential'] = obj.cloud_credential ret['network_credential'] = obj.network_credential return ret def create(self, validated_data): deprecated_fields = {} for key in ('credential', 'vault_credential', 'cloud_credential', 'network_credential'): if key in validated_data: deprecated_fields[key] = validated_data.pop(key) obj = super(JobOptionsSerializer, self).create(validated_data) if deprecated_fields: # TODO: remove in 3.3 self._update_deprecated_fields(deprecated_fields, obj) return obj def update(self, obj, validated_data): deprecated_fields = {} for key in ('credential', 'vault_credential', 'cloud_credential', 'network_credential'): if key in validated_data: deprecated_fields[key] = validated_data.pop(key) obj = super(JobOptionsSerializer, self).update(obj, validated_data) if deprecated_fields: # TODO: remove in 3.3 self._update_deprecated_fields(deprecated_fields, obj) return obj def _update_deprecated_fields(self, fields, obj): for key, existing in ( ('credential', obj.credentials.filter(credential_type__kind='ssh')), ('vault_credential', obj.credentials.filter(credential_type__kind='vault')), ('cloud_credential', obj.cloud_credentials), ('network_credential', obj.network_credentials), ): if key in fields: for cred in existing: obj.credentials.remove(cred) if fields[key]: obj.credentials.add(fields[key]) obj.save() def validate(self, attrs): v1_credentials = {} view = self.context.get('view', None) for attr, kind, error in ( ('cloud_credential', 'cloud', _('You must provide a cloud credential.')), ('network_credential', 'net', _('You must provide a network credential.')), ('credential', 'ssh', _('You must provide an SSH credential.')), ('vault_credential', 'vault', _('You must provide a vault credential.')), ): if kind in ('cloud', 'net') and self.version > 1: continue # cloud and net deprecated creds are v1 only if attr in attrs: v1_credentials[attr] = None pk = attrs.pop(attr) if pk: cred = v1_credentials[attr] = Credential.objects.get(pk=pk) if cred.credential_type.kind != kind: raise serializers.ValidationError({attr: error}) if ((not self.instance or cred.pk != getattr(self.instance, attr)) and view and view.request and view.request.user not in cred.use_role): raise PermissionDenied() if 'project' in self.fields and 'playbook' in self.fields: project = attrs.get('project', self.instance and self.instance.project or None) playbook = attrs.get('playbook', self.instance and self.instance.playbook or '') if not project: raise serializers.ValidationError({'project': _('This field is required.')}) if project and project.scm_type and playbook and force_text(playbook) not in project.playbook_files: raise serializers.ValidationError({'playbook': _('Playbook not found for project.')}) if project and not project.scm_type and playbook and force_text(playbook) not in project.playbooks: raise serializers.ValidationError({'playbook': _('Playbook not found for project.')}) if project and not playbook: raise serializers.ValidationError({'playbook': _('Must select playbook for project.')}) ret = super(JobOptionsSerializer, self).validate(attrs) ret.update(v1_credentials) return ret class JobTemplateMixin(object): ''' Provide recent jobs and survey details in summary_fields ''' def _recent_jobs(self, obj): if hasattr(obj, 'workflow_jobs'): job_mgr = obj.workflow_jobs else: job_mgr = obj.jobs return [{'id': x.id, 'status': x.status, 'finished': x.finished} for x in job_mgr.all().order_by('-created')[:10]] def get_summary_fields(self, obj): d = super(JobTemplateMixin, self).get_summary_fields(obj) if obj.survey_spec is not None and ('name' in obj.survey_spec and 'description' in obj.survey_spec): d['survey'] = dict(title=obj.survey_spec['name'], description=obj.survey_spec['description']) d['recent_jobs'] = self._recent_jobs(obj) # TODO: remove in 3.3 if self.version == 1 and 'vault_credential' in d: if d['vault_credential'].get('kind','') == 'vault': d['vault_credential']['kind'] = 'ssh' return d class JobTemplateSerializer(JobTemplateMixin, UnifiedJobTemplateSerializer, JobOptionsSerializer): show_capabilities = ['start', 'schedule', 'copy', 'edit', 'delete'] status = serializers.ChoiceField(choices=JobTemplate.JOB_TEMPLATE_STATUS_CHOICES, read_only=True, required=False) class Meta: model = JobTemplate fields = ('*', 'host_config_key', 'ask_diff_mode_on_launch', 'ask_variables_on_launch', 'ask_limit_on_launch', 'ask_tags_on_launch', 'ask_skip_tags_on_launch', 'ask_job_type_on_launch', 'ask_verbosity_on_launch', 'ask_inventory_on_launch', 'ask_credential_on_launch', 'survey_enabled', 'become_enabled', 'diff_mode', 'allow_simultaneous', 'custom_virtualenv') def get_related(self, obj): res = super(JobTemplateSerializer, self).get_related(obj) res.update(dict( jobs = self.reverse('api:job_template_jobs_list', kwargs={'pk': obj.pk}), schedules = self.reverse('api:job_template_schedules_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:job_template_activity_stream_list', kwargs={'pk': obj.pk}), launch = self.reverse('api:job_template_launch', kwargs={'pk': obj.pk}), notification_templates_any = self.reverse('api:job_template_notification_templates_any_list', kwargs={'pk': obj.pk}), notification_templates_success = self.reverse('api:job_template_notification_templates_success_list', kwargs={'pk': obj.pk}), notification_templates_error = self.reverse('api:job_template_notification_templates_error_list', kwargs={'pk': obj.pk}), access_list = self.reverse('api:job_template_access_list', kwargs={'pk': obj.pk}), survey_spec = self.reverse('api:job_template_survey_spec', kwargs={'pk': obj.pk}), labels = self.reverse('api:job_template_label_list', kwargs={'pk': obj.pk}), object_roles = self.reverse('api:job_template_object_roles_list', kwargs={'pk': obj.pk}), instance_groups = self.reverse('api:job_template_instance_groups_list', kwargs={'pk': obj.pk}), copy = self.reverse('api:job_template_copy', kwargs={'pk': obj.pk}), )) if obj.host_config_key: res['callback'] = self.reverse('api:job_template_callback', kwargs={'pk': obj.pk}) return res def validate(self, attrs): def get_field_from_model_or_attrs(fd): return attrs.get(fd, self.instance and getattr(self.instance, fd) or None) inventory = get_field_from_model_or_attrs('inventory') project = get_field_from_model_or_attrs('project') prompting_error_message = _("Must either set a default value or ask to prompt on launch.") if project is None: raise serializers.ValidationError({'project': _("Job types 'run' and 'check' must have assigned a project.")}) elif inventory is None and not get_field_from_model_or_attrs('ask_inventory_on_launch'): raise serializers.ValidationError({'inventory': prompting_error_message}) return super(JobTemplateSerializer, self).validate(attrs) def validate_extra_vars(self, value): return vars_validate_or_raise(value) def get_summary_fields(self, obj): summary_fields = super(JobTemplateSerializer, self).get_summary_fields(obj) all_creds = [] extra_creds = [] if obj.pk: for cred in obj.credentials.all(): summarized_cred = { 'id': cred.pk, 'name': cred.name, 'description': cred.description, 'kind': cred.kind, 'credential_type_id': cred.credential_type_id } all_creds.append(summarized_cred) if self.is_detail_view: for summarized_cred in all_creds: if summarized_cred['kind'] in ('cloud', 'net'): extra_creds.append(summarized_cred) elif summarized_cred['kind'] == 'ssh': summary_fields['credential'] = summarized_cred elif summarized_cred['kind'] == 'vault': summary_fields['vault_credential'] = summarized_cred if self.version > 1: if self.is_detail_view: summary_fields['extra_credentials'] = extra_creds else: # Credential would be an empty dictionary in this case summary_fields.pop('credential', None) summary_fields['credentials'] = all_creds return summary_fields class JobSerializer(UnifiedJobSerializer, JobOptionsSerializer): passwords_needed_to_start = serializers.ReadOnlyField() ask_diff_mode_on_launch = serializers.ReadOnlyField() ask_variables_on_launch = serializers.ReadOnlyField() ask_limit_on_launch = serializers.ReadOnlyField() ask_skip_tags_on_launch = serializers.ReadOnlyField() ask_tags_on_launch = serializers.ReadOnlyField() ask_job_type_on_launch = serializers.ReadOnlyField() ask_verbosity_on_launch = serializers.ReadOnlyField() ask_inventory_on_launch = serializers.ReadOnlyField() ask_credential_on_launch = serializers.ReadOnlyField() artifacts = serializers.SerializerMethodField() class Meta: model = Job fields = ('*', 'job_template', 'passwords_needed_to_start', 'ask_diff_mode_on_launch', 'ask_variables_on_launch', 'ask_limit_on_launch', 'ask_tags_on_launch', 'ask_skip_tags_on_launch', 'ask_job_type_on_launch', 'ask_verbosity_on_launch', 'ask_inventory_on_launch', 'ask_credential_on_launch', 'allow_simultaneous', 'artifacts', 'scm_revision', 'instance_group', 'diff_mode') def get_related(self, obj): res = super(JobSerializer, self).get_related(obj) res.update(dict( job_events = self.reverse('api:job_job_events_list', kwargs={'pk': obj.pk}), job_host_summaries = self.reverse('api:job_job_host_summaries_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:job_activity_stream_list', kwargs={'pk': obj.pk}), notifications = self.reverse('api:job_notifications_list', kwargs={'pk': obj.pk}), labels = self.reverse('api:job_label_list', kwargs={'pk': obj.pk}), )) try: if obj.job_template: res['job_template'] = self.reverse('api:job_template_detail', kwargs={'pk': obj.job_template.pk}) except ObjectDoesNotExist: setattr(obj, 'job_template', None) if (obj.can_start or True) and self.version == 1: # TODO: remove in 3.3 res['start'] = self.reverse('api:job_start', kwargs={'pk': obj.pk}) if obj.can_cancel or True: res['cancel'] = self.reverse('api:job_cancel', kwargs={'pk': obj.pk}) try: if obj.project_update: res['project_update'] = self.reverse( 'api:project_update_detail', kwargs={'pk': obj.project_update.pk} ) except ObjectDoesNotExist: pass res['create_schedule'] = self.reverse('api:job_create_schedule', kwargs={'pk': obj.pk}) res['relaunch'] = self.reverse('api:job_relaunch', kwargs={'pk': obj.pk}) return res def get_artifacts(self, obj): if obj: return obj.display_artifacts() return {} def to_internal_value(self, data): # When creating a new job and a job template is specified, populate any # fields not provided in data from the job template. if not self.instance and isinstance(data, dict) and data.get('job_template', False): try: job_template = JobTemplate.objects.get(pk=data['job_template']) except JobTemplate.DoesNotExist: raise serializers.ValidationError({'job_template': _('Invalid job template.')}) data.setdefault('name', job_template.name) data.setdefault('description', job_template.description) data.setdefault('job_type', job_template.job_type) if job_template.inventory: data.setdefault('inventory', job_template.inventory.pk) if job_template.project: data.setdefault('project', job_template.project.pk) data.setdefault('playbook', job_template.playbook) if job_template.credential: data.setdefault('credential', job_template.credential.pk) data.setdefault('forks', job_template.forks) data.setdefault('limit', job_template.limit) data.setdefault('verbosity', job_template.verbosity) data.setdefault('extra_vars', job_template.extra_vars) data.setdefault('job_tags', job_template.job_tags) data.setdefault('force_handlers', job_template.force_handlers) data.setdefault('skip_tags', job_template.skip_tags) data.setdefault('start_at_task', job_template.start_at_task) return super(JobSerializer, self).to_internal_value(data) def to_representation(self, obj): ret = super(JobSerializer, self).to_representation(obj) if obj is None: return ret if 'job_template' in ret and not obj.job_template: ret['job_template'] = None if 'extra_vars' in ret: ret['extra_vars'] = obj.display_extra_vars() return ret def get_summary_fields(self, obj): summary_fields = super(JobSerializer, self).get_summary_fields(obj) if self.is_detail_view: # TODO: remove version check in 3.3 all_creds = [] extra_creds = [] for cred in obj.credentials.all(): summarized_cred = { 'id': cred.pk, 'name': cred.name, 'description': cred.description, 'kind': cred.kind, 'credential_type_id': cred.credential_type_id } all_creds.append(summarized_cred) if cred.credential_type.kind in ('cloud', 'net'): extra_creds.append(summarized_cred) elif cred.credential_type.kind == 'ssh': summary_fields['credential'] = summarized_cred elif cred.credential_type.kind == 'vault': summary_fields['vault_credential'] = summarized_cred if self.version > 1: summary_fields['extra_credentials'] = extra_creds summary_fields['credentials'] = all_creds return summary_fields class JobCancelSerializer(JobSerializer): can_cancel = serializers.BooleanField(read_only=True) class Meta: fields = ('can_cancel',) class JobRelaunchSerializer(BaseSerializer): passwords_needed_to_start = serializers.SerializerMethodField() retry_counts = serializers.SerializerMethodField() hosts = serializers.ChoiceField( required=False, allow_null=True, default='all', choices=[ ('all', _('No change to job limit')), ('failed', _('All failed and unreachable hosts')) ], write_only=True ) class Meta: model = Job fields = ('passwords_needed_to_start', 'retry_counts', 'hosts',) def to_internal_value(self, data): obj = self.context.get('obj') all_data = self.to_representation(obj) all_data.update(data) ret = super(JobRelaunchSerializer, self).to_internal_value(all_data) return ret def to_representation(self, obj): res = super(JobRelaunchSerializer, self).to_representation(obj) view = self.context.get('view', None) if hasattr(view, '_raw_data_form_marker'): password_keys = dict([(p, u'') for p in self.get_passwords_needed_to_start(obj)]) res.update(password_keys) return res def get_passwords_needed_to_start(self, obj): if obj: return obj.passwords_needed_to_start return '' def get_retry_counts(self, obj): if obj.status in ACTIVE_STATES: return _('Relaunch by host status not available until job finishes running.') data = OrderedDict([]) for status in self.fields['hosts'].choices.keys(): data[status] = obj.retry_qs(status).count() return data def validate_passwords_needed_to_start(self, value): obj = self.context.get('obj') data = self.context.get('data') # Check for passwords needed needed = self.get_passwords_needed_to_start(obj) provided = dict([(field, data.get(field, '')) for field in needed]) if not all(provided.values()): raise serializers.ValidationError(needed) return value def validate(self, attrs): obj = self.context.get('obj') if obj.project is None: raise serializers.ValidationError(dict(errors=[_("Job Template Project is missing or undefined.")])) if obj.inventory is None or obj.inventory.pending_deletion: raise serializers.ValidationError(dict(errors=[_("Job Template Inventory is missing or undefined.")])) attrs.pop('hosts', None) attrs = super(JobRelaunchSerializer, self).validate(attrs) return attrs class JobCreateScheduleSerializer(BaseSerializer): can_schedule = serializers.SerializerMethodField() prompts = serializers.SerializerMethodField() class Meta: model = Job fields = ('can_schedule', 'prompts',) def get_can_schedule(self, obj): ''' Need both a job template and job prompts to schedule ''' return obj.can_schedule @staticmethod def _summarize(res_name, obj): summary = {} for field in SUMMARIZABLE_FK_FIELDS[res_name]: summary[field] = getattr(obj, field, None) return summary def get_prompts(self, obj): try: config = obj.launch_config ret = config.prompts_dict(display=True) if 'inventory' in ret: ret['inventory'] = self._summarize('inventory', ret['inventory']) if 'credentials' in ret: all_creds = [self._summarize('credential', cred) for cred in ret['credentials']] ret['credentials'] = all_creds return ret except JobLaunchConfig.DoesNotExist: return {'all': _('Unknown, job may have been ran before launch configurations were saved.')} class AdHocCommandSerializer(UnifiedJobSerializer): class Meta: model = AdHocCommand fields = ('*', 'job_type', 'inventory', 'limit', 'credential', 'module_name', 'module_args', 'forks', 'verbosity', 'extra_vars', 'become_enabled', 'diff_mode', '-unified_job_template', '-description') extra_kwargs = { 'name': { 'read_only': True, }, } def get_field_names(self, declared_fields, info): field_names = super(AdHocCommandSerializer, self).get_field_names(declared_fields, info) # Meta multiple inheritance and -field_name options don't seem to be # taking effect above, so remove the undesired fields here. return tuple(x for x in field_names if x not in ('unified_job_template', 'description')) def build_standard_field(self, field_name, model_field): field_class, field_kwargs = super(AdHocCommandSerializer, self).build_standard_field(field_name, model_field) # Load module name choices dynamically from DB settings. if field_name == 'module_name': field_class = serializers.ChoiceField module_name_choices = [(x, x) for x in settings.AD_HOC_COMMANDS] module_name_default = 'command' if 'command' in [x[0] for x in module_name_choices] else '' field_kwargs['choices'] = module_name_choices field_kwargs['required'] = bool(not module_name_default) field_kwargs['default'] = module_name_default or serializers.empty field_kwargs['allow_blank'] = bool(module_name_default) field_kwargs.pop('max_length', None) return field_class, field_kwargs def get_related(self, obj): res = super(AdHocCommandSerializer, self).get_related(obj) if obj.inventory: res['inventory'] = self.reverse('api:inventory_detail', kwargs={'pk': obj.inventory.pk}) if obj.credential: res['credential'] = self.reverse('api:credential_detail', kwargs={'pk': obj.credential.pk}) res.update(dict( events = self.reverse('api:ad_hoc_command_ad_hoc_command_events_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:ad_hoc_command_activity_stream_list', kwargs={'pk': obj.pk}), notifications = self.reverse('api:ad_hoc_command_notifications_list', kwargs={'pk': obj.pk}), )) res['cancel'] = self.reverse('api:ad_hoc_command_cancel', kwargs={'pk': obj.pk}) res['relaunch'] = self.reverse('api:ad_hoc_command_relaunch', kwargs={'pk': obj.pk}) return res def to_representation(self, obj): ret = super(AdHocCommandSerializer, self).to_representation(obj) if 'inventory' in ret and not obj.inventory: ret['inventory'] = None if 'credential' in ret and not obj.credential: ret['credential'] = None # For the UI, only module_name is returned for name, instead of the # longer module name + module_args format. if 'name' in ret: ret['name'] = obj.module_name return ret def validate_extra_vars(self, value): redacted_extra_vars, removed_vars = extract_ansible_vars(value) if removed_vars: raise serializers.ValidationError(_( "{} are prohibited from use in ad hoc commands." ).format(", ".join(removed_vars))) return vars_validate_or_raise(value) class AdHocCommandCancelSerializer(AdHocCommandSerializer): can_cancel = serializers.BooleanField(read_only=True) class Meta: fields = ('can_cancel',) class AdHocCommandRelaunchSerializer(AdHocCommandSerializer): class Meta: fields = () def to_representation(self, obj): if obj: return dict([(p, u'') for p in obj.passwords_needed_to_start]) else: return {} class SystemJobTemplateSerializer(UnifiedJobTemplateSerializer): class Meta: model = SystemJobTemplate fields = ('*', 'job_type',) def get_related(self, obj): res = super(SystemJobTemplateSerializer, self).get_related(obj) res.update(dict( jobs = self.reverse('api:system_job_template_jobs_list', kwargs={'pk': obj.pk}), schedules = self.reverse('api:system_job_template_schedules_list', kwargs={'pk': obj.pk}), launch = self.reverse('api:system_job_template_launch', kwargs={'pk': obj.pk}), notification_templates_any = self.reverse('api:system_job_template_notification_templates_any_list', kwargs={'pk': obj.pk}), notification_templates_success = self.reverse('api:system_job_template_notification_templates_success_list', kwargs={'pk': obj.pk}), notification_templates_error = self.reverse('api:system_job_template_notification_templates_error_list', kwargs={'pk': obj.pk}), )) return res class SystemJobSerializer(UnifiedJobSerializer): result_stdout = serializers.SerializerMethodField() class Meta: model = SystemJob fields = ('*', 'system_job_template', 'job_type', 'extra_vars', 'result_stdout') def get_related(self, obj): res = super(SystemJobSerializer, self).get_related(obj) if obj.system_job_template: res['system_job_template'] = self.reverse('api:system_job_template_detail', kwargs={'pk': obj.system_job_template.pk}) res['notifications'] = self.reverse('api:system_job_notifications_list', kwargs={'pk': obj.pk}) if obj.can_cancel or True: res['cancel'] = self.reverse('api:system_job_cancel', kwargs={'pk': obj.pk}) res['events'] = self.reverse('api:system_job_events_list', kwargs={'pk': obj.pk}) return res def get_result_stdout(self, obj): try: return obj.result_stdout except StdoutMaxBytesExceeded as e: return _( "Standard Output too large to display ({text_size} bytes), " "only download supported for sizes over {supported_size} bytes.").format( text_size=e.total, supported_size=e.supported ) class SystemJobCancelSerializer(SystemJobSerializer): can_cancel = serializers.BooleanField(read_only=True) class Meta: fields = ('can_cancel',) class WorkflowJobTemplateSerializer(JobTemplateMixin, LabelsListMixin, UnifiedJobTemplateSerializer): show_capabilities = ['start', 'schedule', 'edit', 'copy', 'delete'] class Meta: model = WorkflowJobTemplate fields = ('*', 'extra_vars', 'organization', 'survey_enabled', 'allow_simultaneous', 'ask_variables_on_launch',) def get_related(self, obj): res = super(WorkflowJobTemplateSerializer, self).get_related(obj) res.update(dict( workflow_jobs = self.reverse('api:workflow_job_template_jobs_list', kwargs={'pk': obj.pk}), schedules = self.reverse('api:workflow_job_template_schedules_list', kwargs={'pk': obj.pk}), launch = self.reverse('api:workflow_job_template_launch', kwargs={'pk': obj.pk}), copy = self.reverse('api:workflow_job_template_copy', kwargs={'pk': obj.pk}), workflow_nodes = self.reverse('api:workflow_job_template_workflow_nodes_list', kwargs={'pk': obj.pk}), labels = self.reverse('api:workflow_job_template_label_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:workflow_job_template_activity_stream_list', kwargs={'pk': obj.pk}), notification_templates_any = self.reverse('api:workflow_job_template_notification_templates_any_list', kwargs={'pk': obj.pk}), notification_templates_success = self.reverse('api:workflow_job_template_notification_templates_success_list', kwargs={'pk': obj.pk}), notification_templates_error = self.reverse('api:workflow_job_template_notification_templates_error_list', kwargs={'pk': obj.pk}), access_list = self.reverse('api:workflow_job_template_access_list', kwargs={'pk': obj.pk}), object_roles = self.reverse('api:workflow_job_template_object_roles_list', kwargs={'pk': obj.pk}), survey_spec = self.reverse('api:workflow_job_template_survey_spec', kwargs={'pk': obj.pk}), )) if obj.organization: res['organization'] = self.reverse('api:organization_detail', kwargs={'pk': obj.organization.pk}) return res def validate_extra_vars(self, value): return vars_validate_or_raise(value) # TODO: class WorkflowJobTemplateListSerializer(WorkflowJobTemplateSerializer): pass # TODO: class WorkflowJobSerializer(LabelsListMixin, UnifiedJobSerializer): class Meta: model = WorkflowJob fields = ('*', 'workflow_job_template', 'extra_vars', 'allow_simultaneous', '-execution_node',) def get_related(self, obj): res = super(WorkflowJobSerializer, self).get_related(obj) if obj.workflow_job_template: res['workflow_job_template'] = self.reverse('api:workflow_job_template_detail', kwargs={'pk': obj.workflow_job_template.pk}) res['notifications'] = self.reverse('api:workflow_job_notifications_list', kwargs={'pk': obj.pk}) res['workflow_nodes'] = self.reverse('api:workflow_job_workflow_nodes_list', kwargs={'pk': obj.pk}) res['labels'] = self.reverse('api:workflow_job_label_list', kwargs={'pk': obj.pk}) res['activity_stream'] = self.reverse('api:workflow_job_activity_stream_list', kwargs={'pk': obj.pk}) res['relaunch'] = self.reverse('api:workflow_job_relaunch', kwargs={'pk': obj.pk}) if obj.can_cancel or True: res['cancel'] = self.reverse('api:workflow_job_cancel', kwargs={'pk': obj.pk}) return res def to_representation(self, obj): ret = super(WorkflowJobSerializer, self).to_representation(obj) if obj is None: return ret if 'extra_vars' in ret: ret['extra_vars'] = obj.display_extra_vars() return ret # TODO: class WorkflowJobListSerializer(WorkflowJobSerializer, UnifiedJobListSerializer): class Meta: fields = ('*', '-execution_node',) class WorkflowJobCancelSerializer(WorkflowJobSerializer): can_cancel = serializers.BooleanField(read_only=True) class Meta: fields = ('can_cancel',) class LaunchConfigurationBaseSerializer(BaseSerializer): job_type = serializers.ChoiceField(allow_blank=True, allow_null=True, required=False, default=None, choices=NEW_JOB_TYPE_CHOICES) job_tags = serializers.CharField(allow_blank=True, allow_null=True, required=False, default=None) limit = serializers.CharField(allow_blank=True, allow_null=True, required=False, default=None) skip_tags = serializers.CharField(allow_blank=True, allow_null=True, required=False, default=None) diff_mode = serializers.NullBooleanField(required=False, default=None) verbosity = serializers.ChoiceField(allow_null=True, required=False, default=None, choices=VERBOSITY_CHOICES) exclude_errors = () class Meta: fields = ('*', 'extra_data', 'inventory', # Saved launch-time config fields 'job_type', 'job_tags', 'skip_tags', 'limit', 'skip_tags', 'diff_mode', 'verbosity') def get_related(self, obj): res = super(LaunchConfigurationBaseSerializer, self).get_related(obj) if obj.inventory_id: res['inventory'] = self.reverse('api:inventory_detail', kwargs={'pk': obj.inventory_id}) res['credentials'] = self.reverse( 'api:{}_credentials_list'.format(get_type_for_model(self.Meta.model)), kwargs={'pk': obj.pk} ) return res def _build_mock_obj(self, attrs): mock_obj = self.Meta.model() if self.instance: for field in self.instance._meta.fields: setattr(mock_obj, field.name, getattr(self.instance, field.name)) field_names = set(field.name for field in self.Meta.model._meta.fields) for field_name, value in attrs.items(): setattr(mock_obj, field_name, value) if field_name not in field_names: attrs.pop(field_name) return mock_obj def to_representation(self, obj): ret = super(LaunchConfigurationBaseSerializer, self).to_representation(obj) if obj is None: return ret if 'extra_data' in ret and obj.survey_passwords: ret['extra_data'] = obj.display_extra_data() return ret def get_summary_fields(self, obj): summary_fields = super(LaunchConfigurationBaseSerializer, self).get_summary_fields(obj) # Credential would be an empty dictionary in this case summary_fields.pop('credential', None) return summary_fields def validate(self, attrs): attrs = super(LaunchConfigurationBaseSerializer, self).validate(attrs) ujt = None if 'unified_job_template' in attrs: ujt = attrs['unified_job_template'] elif self.instance: ujt = self.instance.unified_job_template # Replace $encrypted$ submissions with db value if exists # build additional field survey_passwords to track redacted variables if 'extra_data' in attrs: extra_data = parse_yaml_or_json(attrs.get('extra_data', {})) if hasattr(ujt, 'survey_password_variables'): # Prepare additional field survey_passwords for save password_dict = {} for key in ujt.survey_password_variables(): if key in extra_data: password_dict[key] = REPLACE_STR if not self.instance or password_dict != self.instance.survey_passwords: attrs['survey_passwords'] = password_dict.copy() # Force dict type (cannot preserve YAML formatting if passwords are involved) if not isinstance(attrs['extra_data'], dict): attrs['extra_data'] = parse_yaml_or_json(attrs['extra_data']) # Encrypt the extra_data for save, only current password vars in JT survey encrypt_dict(attrs['extra_data'], password_dict.keys()) # For any raw $encrypted$ string, either # - replace with existing DB value # - raise a validation error # - remove key from extra_data if survey default is present if self.instance: db_extra_data = parse_yaml_or_json(self.instance.extra_data) else: db_extra_data = {} for key in password_dict.keys(): if attrs['extra_data'].get(key, None) == REPLACE_STR: if key not in db_extra_data: element = ujt.pivot_spec(ujt.survey_spec)[key] if 'default' in element and element['default']: attrs['survey_passwords'].pop(key, None) attrs['extra_data'].pop(key, None) else: raise serializers.ValidationError( {"extra_data": _('Provided variable {} has no database value to replace with.').format(key)}) else: attrs['extra_data'][key] = db_extra_data[key] # Build unsaved version of this config, use it to detect prompts errors mock_obj = self._build_mock_obj(attrs) accepted, rejected, errors = ujt._accept_or_ignore_job_kwargs( _exclude_errors=self.exclude_errors, **mock_obj.prompts_dict()) # Launch configs call extra_vars extra_data for historical reasons if 'extra_vars' in errors: errors['extra_data'] = errors.pop('extra_vars') if errors: raise serializers.ValidationError(errors) # Model `.save` needs the container dict, not the psuedo fields if mock_obj.char_prompts: attrs['char_prompts'] = mock_obj.char_prompts return attrs class WorkflowJobTemplateNodeSerializer(LaunchConfigurationBaseSerializer): credential = models.PositiveIntegerField( blank=True, null=True, default=None, help_text='This resource has been deprecated and will be removed in a future release') success_nodes = serializers.PrimaryKeyRelatedField(many=True, read_only=True) failure_nodes = serializers.PrimaryKeyRelatedField(many=True, read_only=True) always_nodes = serializers.PrimaryKeyRelatedField(many=True, read_only=True) exclude_errors = ('required',) # required variables may be provided by WFJT or on launch class Meta: model = WorkflowJobTemplateNode fields = ('*', 'credential', 'workflow_job_template', '-name', '-description', 'id', 'url', 'related', 'unified_job_template', 'success_nodes', 'failure_nodes', 'always_nodes',) def get_related(self, obj): res = super(WorkflowJobTemplateNodeSerializer, self).get_related(obj) res['success_nodes'] = self.reverse('api:workflow_job_template_node_success_nodes_list', kwargs={'pk': obj.pk}) res['failure_nodes'] = self.reverse('api:workflow_job_template_node_failure_nodes_list', kwargs={'pk': obj.pk}) res['always_nodes'] = self.reverse('api:workflow_job_template_node_always_nodes_list', kwargs={'pk': obj.pk}) if obj.unified_job_template: res['unified_job_template'] = obj.unified_job_template.get_absolute_url(self.context.get('request')) try: res['workflow_job_template'] = self.reverse('api:workflow_job_template_detail', kwargs={'pk': obj.workflow_job_template.pk}) except WorkflowJobTemplate.DoesNotExist: pass return res def build_field(self, field_name, info, model_class, nested_depth): # have to special-case the field so that DRF will not automagically make it # read-only because it's a property on the model. if field_name == 'credential': return self.build_standard_field(field_name, self.credential) return super(WorkflowJobTemplateNodeSerializer, self).build_field(field_name, info, model_class, nested_depth) def build_relational_field(self, field_name, relation_info): field_class, field_kwargs = super(WorkflowJobTemplateNodeSerializer, self).build_relational_field(field_name, relation_info) # workflow_job_template is read-only unless creating a new node. if self.instance and field_name == 'workflow_job_template': field_kwargs['read_only'] = True field_kwargs.pop('queryset', None) return field_class, field_kwargs def validate(self, attrs): deprecated_fields = {} if 'credential' in attrs: # TODO: remove when v2 API is deprecated deprecated_fields['credential'] = attrs.pop('credential') view = self.context.get('view') attrs = super(WorkflowJobTemplateNodeSerializer, self).validate(attrs) ujt_obj = None if 'unified_job_template' in attrs: ujt_obj = attrs['unified_job_template'] elif self.instance: ujt_obj = self.instance.unified_job_template if isinstance(ujt_obj, (WorkflowJobTemplate)): raise serializers.ValidationError({ "unified_job_template": _("Cannot nest a %s inside a WorkflowJobTemplate") % ujt_obj.__class__.__name__}) if 'credential' in deprecated_fields: # TODO: remove when v2 API is deprecated cred = deprecated_fields['credential'] attrs['credential'] = cred if cred is not None: if not ujt_obj.ask_credential_on_launch: raise serializers.ValidationError({"credential": _( "Related template is not configured to accept credentials on launch.")}) cred = Credential.objects.get(pk=cred) view = self.context.get('view', None) if (not view) or (not view.request) or (view.request.user not in cred.use_role): raise PermissionDenied() return attrs def create(self, validated_data): # TODO: remove when v2 API is deprecated deprecated_fields = {} if 'credential' in validated_data: deprecated_fields['credential'] = validated_data.pop('credential') obj = super(WorkflowJobTemplateNodeSerializer, self).create(validated_data) if 'credential' in deprecated_fields: if deprecated_fields['credential']: obj.credentials.add(deprecated_fields['credential']) return obj def update(self, obj, validated_data): # TODO: remove when v2 API is deprecated deprecated_fields = {} if 'credential' in validated_data: deprecated_fields['credential'] = validated_data.pop('credential') obj = super(WorkflowJobTemplateNodeSerializer, self).update(obj, validated_data) if 'credential' in deprecated_fields: for cred in obj.credentials.filter(credential_type__kind='ssh'): obj.credentials.remove(cred) if deprecated_fields['credential']: obj.credentials.add(deprecated_fields['credential']) return obj class WorkflowJobNodeSerializer(LaunchConfigurationBaseSerializer): credential = models.PositiveIntegerField( blank=True, null=True, default=None, help_text='This resource has been deprecated and will be removed in a future release') success_nodes = serializers.PrimaryKeyRelatedField(many=True, read_only=True) failure_nodes = serializers.PrimaryKeyRelatedField(many=True, read_only=True) always_nodes = serializers.PrimaryKeyRelatedField(many=True, read_only=True) class Meta: model = WorkflowJobNode fields = ('*', 'credential', 'job', 'workflow_job', '-name', '-description', 'id', 'url', 'related', 'unified_job_template', 'success_nodes', 'failure_nodes', 'always_nodes',) def get_related(self, obj): res = super(WorkflowJobNodeSerializer, self).get_related(obj) res['success_nodes'] = self.reverse('api:workflow_job_node_success_nodes_list', kwargs={'pk': obj.pk}) res['failure_nodes'] = self.reverse('api:workflow_job_node_failure_nodes_list', kwargs={'pk': obj.pk}) res['always_nodes'] = self.reverse('api:workflow_job_node_always_nodes_list', kwargs={'pk': obj.pk}) if obj.unified_job_template: res['unified_job_template'] = obj.unified_job_template.get_absolute_url(self.context.get('request')) if obj.job: res['job'] = obj.job.get_absolute_url(self.context.get('request')) if obj.workflow_job: res['workflow_job'] = self.reverse('api:workflow_job_detail', kwargs={'pk': obj.workflow_job.pk}) return res class WorkflowJobNodeListSerializer(WorkflowJobNodeSerializer): pass class WorkflowJobNodeDetailSerializer(WorkflowJobNodeSerializer): pass class WorkflowJobTemplateNodeDetailSerializer(WorkflowJobTemplateNodeSerializer): ''' Influence the api browser sample data to not include workflow_job_template when editing a WorkflowNode. Note: I was not able to accomplish this trough the use of extra_kwargs. Maybe something to do with workflow_job_template being a relational field? ''' def build_relational_field(self, field_name, relation_info): field_class, field_kwargs = super(WorkflowJobTemplateNodeDetailSerializer, self).build_relational_field(field_name, relation_info) if self.instance and field_name == 'workflow_job_template': field_kwargs['read_only'] = True field_kwargs.pop('queryset', None) return field_class, field_kwargs class JobListSerializer(JobSerializer, UnifiedJobListSerializer): pass class AdHocCommandListSerializer(AdHocCommandSerializer, UnifiedJobListSerializer): pass class SystemJobListSerializer(SystemJobSerializer, UnifiedJobListSerializer): pass class JobHostSummarySerializer(BaseSerializer): class Meta: model = JobHostSummary fields = ('*', '-name', '-description', 'job', 'host', 'host_name', 'changed', 'dark', 'failures', 'ok', 'processed', 'skipped', 'failed') def get_related(self, obj): res = super(JobHostSummarySerializer, self).get_related(obj) res.update(dict( job=self.reverse('api:job_detail', kwargs={'pk': obj.job.pk}))) if obj.host is not None: res.update(dict( host=self.reverse('api:host_detail', kwargs={'pk': obj.host.pk}) )) return res def get_summary_fields(self, obj): d = super(JobHostSummarySerializer, self).get_summary_fields(obj) try: d['job']['job_template_id'] = obj.job.job_template.id d['job']['job_template_name'] = obj.job.job_template.name except (KeyError, AttributeError): pass return d class JobEventSerializer(BaseSerializer): event_display = serializers.CharField(source='get_event_display2', read_only=True) event_level = serializers.IntegerField(read_only=True) class Meta: model = JobEvent fields = ('*', '-name', '-description', 'job', 'event', 'counter', 'event_display', 'event_data', 'event_level', 'failed', 'changed', 'uuid', 'parent_uuid', 'host', 'host_name', 'parent', 'playbook', 'play', 'task', 'role', 'stdout', 'start_line', 'end_line', 'verbosity') def get_related(self, obj): res = super(JobEventSerializer, self).get_related(obj) res.update(dict( job = self.reverse('api:job_detail', kwargs={'pk': obj.job_id}), )) if obj.parent_id: res['parent'] = self.reverse('api:job_event_detail', kwargs={'pk': obj.parent_id}) if obj.children.exists(): res['children'] = self.reverse('api:job_event_children_list', kwargs={'pk': obj.pk}) if obj.host_id: res['host'] = self.reverse('api:host_detail', kwargs={'pk': obj.host_id}) if obj.hosts.exists(): res['hosts'] = self.reverse('api:job_event_hosts_list', kwargs={'pk': obj.pk}) return res def get_summary_fields(self, obj): d = super(JobEventSerializer, self).get_summary_fields(obj) try: d['job']['job_template_id'] = obj.job.job_template.id d['job']['job_template_name'] = obj.job.job_template.name except (KeyError, AttributeError): pass return d def to_representation(self, obj): ret = super(JobEventSerializer, self).to_representation(obj) # Show full stdout for event detail view, truncate only for list view. if hasattr(self.context.get('view', None), 'retrieve'): return ret # Show full stdout for playbook_on_* events. if obj and obj.event.startswith('playbook_on'): return ret max_bytes = settings.EVENT_STDOUT_MAX_BYTES_DISPLAY if max_bytes > 0 and 'stdout' in ret and len(ret['stdout']) >= max_bytes: ret['stdout'] = ret['stdout'][:(max_bytes - 1)] + u'\u2026' set_count = 0 reset_count = 0 for m in ANSI_SGR_PATTERN.finditer(ret['stdout']): if m.string[m.start():m.end()] == u'\u001b[0m': reset_count += 1 else: set_count += 1 ret['stdout'] += u'\u001b[0m' * (set_count - reset_count) return ret class JobEventWebSocketSerializer(JobEventSerializer): created = serializers.SerializerMethodField() modified = serializers.SerializerMethodField() event_name = serializers.CharField(source='event') group_name = serializers.SerializerMethodField() class Meta: model = JobEvent fields = ('*', 'event_name', 'group_name',) def get_created(self, obj): return obj.created.isoformat() def get_modified(self, obj): return obj.modified.isoformat() def get_group_name(self, obj): return 'job_events' class ProjectUpdateEventSerializer(JobEventSerializer): class Meta: model = ProjectUpdateEvent fields = ('*', '-name', '-description', '-job', '-job_id', '-parent_uuid', '-parent', '-host', 'project_update') def get_related(self, obj): res = super(JobEventSerializer, self).get_related(obj) res['project_update'] = self.reverse( 'api:project_update_detail', kwargs={'pk': obj.project_update_id} ) return res class ProjectUpdateEventWebSocketSerializer(ProjectUpdateEventSerializer): created = serializers.SerializerMethodField() modified = serializers.SerializerMethodField() event_name = serializers.CharField(source='event') group_name = serializers.SerializerMethodField() class Meta: model = ProjectUpdateEvent fields = ('*', 'event_name', 'group_name',) def get_created(self, obj): return obj.created.isoformat() def get_modified(self, obj): return obj.modified.isoformat() def get_group_name(self, obj): return 'project_update_events' class AdHocCommandEventSerializer(BaseSerializer): event_display = serializers.CharField(source='get_event_display', read_only=True) class Meta: model = AdHocCommandEvent fields = ('*', '-name', '-description', 'ad_hoc_command', 'event', 'counter', 'event_display', 'event_data', 'failed', 'changed', 'uuid', 'host', 'host_name', 'stdout', 'start_line', 'end_line', 'verbosity') def get_related(self, obj): res = super(AdHocCommandEventSerializer, self).get_related(obj) res.update(dict( ad_hoc_command = self.reverse('api:ad_hoc_command_detail', kwargs={'pk': obj.ad_hoc_command_id}), )) if obj.host: res['host'] = self.reverse('api:host_detail', kwargs={'pk': obj.host.pk}) return res def to_representation(self, obj): ret = super(AdHocCommandEventSerializer, self).to_representation(obj) # Show full stdout for event detail view, truncate only for list view. if hasattr(self.context.get('view', None), 'retrieve'): return ret max_bytes = settings.EVENT_STDOUT_MAX_BYTES_DISPLAY if max_bytes > 0 and 'stdout' in ret and len(ret['stdout']) >= max_bytes: ret['stdout'] = ret['stdout'][:(max_bytes - 1)] + u'\u2026' set_count = 0 reset_count = 0 for m in ANSI_SGR_PATTERN.finditer(ret['stdout']): if m.string[m.start():m.end()] == u'\u001b[0m': reset_count += 1 else: set_count += 1 ret['stdout'] += u'\u001b[0m' * (set_count - reset_count) return ret class AdHocCommandEventWebSocketSerializer(AdHocCommandEventSerializer): created = serializers.SerializerMethodField() modified = serializers.SerializerMethodField() event_name = serializers.CharField(source='event') group_name = serializers.SerializerMethodField() class Meta: model = AdHocCommandEvent fields = ('*', 'event_name', 'group_name',) def get_created(self, obj): return obj.created.isoformat() def get_modified(self, obj): return obj.modified.isoformat() def get_group_name(self, obj): return 'ad_hoc_command_events' class InventoryUpdateEventSerializer(AdHocCommandEventSerializer): class Meta: model = InventoryUpdateEvent fields = ('*', '-name', '-description', '-ad_hoc_command', '-host', '-host_name', 'inventory_update') def get_related(self, obj): res = super(AdHocCommandEventSerializer, self).get_related(obj) res['inventory_update'] = self.reverse( 'api:inventory_update_detail', kwargs={'pk': obj.inventory_update_id} ) return res class InventoryUpdateEventWebSocketSerializer(InventoryUpdateEventSerializer): created = serializers.SerializerMethodField() modified = serializers.SerializerMethodField() event_name = serializers.CharField(source='event') group_name = serializers.SerializerMethodField() class Meta: model = InventoryUpdateEvent fields = ('*', 'event_name', 'group_name',) def get_created(self, obj): return obj.created.isoformat() def get_modified(self, obj): return obj.modified.isoformat() def get_group_name(self, obj): return 'inventory_update_events' class SystemJobEventSerializer(AdHocCommandEventSerializer): class Meta: model = SystemJobEvent fields = ('*', '-name', '-description', '-ad_hoc_command', '-host', '-host_name', 'system_job') def get_related(self, obj): res = super(AdHocCommandEventSerializer, self).get_related(obj) res['system_job'] = self.reverse( 'api:system_job_detail', kwargs={'pk': obj.system_job_id} ) return res class SystemJobEventWebSocketSerializer(SystemJobEventSerializer): created = serializers.SerializerMethodField() modified = serializers.SerializerMethodField() event_name = serializers.CharField(source='event') group_name = serializers.SerializerMethodField() class Meta: model = SystemJobEvent fields = ('*', 'event_name', 'group_name',) def get_created(self, obj): return obj.created.isoformat() def get_modified(self, obj): return obj.modified.isoformat() def get_group_name(self, obj): return 'system_job_events' class JobLaunchSerializer(BaseSerializer): # Representational fields passwords_needed_to_start = serializers.ReadOnlyField() can_start_without_user_input = serializers.BooleanField(read_only=True) variables_needed_to_start = serializers.ReadOnlyField() credential_needed_to_start = serializers.SerializerMethodField() inventory_needed_to_start = serializers.SerializerMethodField() survey_enabled = serializers.SerializerMethodField() job_template_data = serializers.SerializerMethodField() defaults = serializers.SerializerMethodField() # Accepted on launch fields extra_vars = serializers.JSONField(required=False, write_only=True) inventory = serializers.PrimaryKeyRelatedField( queryset=Inventory.objects.all(), required=False, write_only=True ) credentials = serializers.PrimaryKeyRelatedField( many=True, queryset=Credential.objects.all(), required=False, write_only=True ) credential_passwords = VerbatimField(required=False, write_only=True) diff_mode = serializers.BooleanField(required=False, write_only=True) job_tags = serializers.CharField(required=False, write_only=True, allow_blank=True) job_type = serializers.ChoiceField(required=False, choices=NEW_JOB_TYPE_CHOICES, write_only=True) skip_tags = serializers.CharField(required=False, write_only=True, allow_blank=True) limit = serializers.CharField(required=False, write_only=True, allow_blank=True) verbosity = serializers.ChoiceField(required=False, choices=VERBOSITY_CHOICES, write_only=True) class Meta: model = JobTemplate fields = ('can_start_without_user_input', 'passwords_needed_to_start', 'extra_vars', 'inventory', 'limit', 'job_tags', 'skip_tags', 'job_type', 'verbosity', 'diff_mode', 'credentials', 'credential_passwords', 'ask_variables_on_launch', 'ask_tags_on_launch', 'ask_diff_mode_on_launch', 'ask_skip_tags_on_launch', 'ask_job_type_on_launch', 'ask_limit_on_launch', 'ask_verbosity_on_launch', 'ask_inventory_on_launch', 'ask_credential_on_launch', 'survey_enabled', 'variables_needed_to_start', 'credential_needed_to_start', 'inventory_needed_to_start', 'job_template_data', 'defaults', 'verbosity') read_only_fields = ( 'ask_diff_mode_on_launch', 'ask_variables_on_launch', 'ask_limit_on_launch', 'ask_tags_on_launch', 'ask_skip_tags_on_launch', 'ask_job_type_on_launch', 'ask_verbosity_on_launch', 'ask_inventory_on_launch', 'ask_credential_on_launch',) def get_credential_needed_to_start(self, obj): return False def get_inventory_needed_to_start(self, obj): return not (obj and obj.inventory) def get_survey_enabled(self, obj): if obj: return obj.survey_enabled and 'spec' in obj.survey_spec return False def get_defaults(self, obj): defaults_dict = {} for field_name in JobTemplate.get_ask_mapping().keys(): if field_name == 'inventory': defaults_dict[field_name] = dict( name=getattrd(obj, '%s.name' % field_name, None), id=getattrd(obj, '%s.pk' % field_name, None)) elif field_name == 'credentials': if self.version > 1: for cred in obj.credentials.all(): cred_dict = dict( id=cred.id, name=cred.name, credential_type=cred.credential_type.pk, passwords_needed=cred.passwords_needed ) if cred.credential_type.managed_by_tower and 'vault_id' in cred.credential_type.defined_fields: cred_dict['vault_id'] = cred.inputs.get('vault_id') or None defaults_dict.setdefault(field_name, []).append(cred_dict) else: defaults_dict[field_name] = getattr(obj, field_name) return defaults_dict def get_job_template_data(self, obj): return dict(name=obj.name, id=obj.id, description=obj.description) def validate_extra_vars(self, value): return vars_validate_or_raise(value) def validate(self, attrs): template = self.context.get('template') accepted, rejected, errors = template._accept_or_ignore_job_kwargs( _exclude_errors=['prompts'], # make several error types non-blocking **attrs) self._ignored_fields = rejected if template.inventory and template.inventory.pending_deletion is True: errors['inventory'] = _("The inventory associated with this Job Template is being deleted.") elif 'inventory' in accepted and accepted['inventory'].pending_deletion: errors['inventory'] = _("The provided inventory is being deleted.") # Prohibit providing multiple credentials of the same CredentialType.kind # or multiples of same vault id distinct_cred_kinds = [] for cred in accepted.get('credentials', []): if cred.unique_hash() in distinct_cred_kinds: errors.setdefault('credentials', []).append(_( 'Cannot assign multiple {} credentials.' ).format(cred.unique_hash(display=True))) distinct_cred_kinds.append(cred.unique_hash()) # Prohibit removing credentials from the JT list (unsupported for now) template_credentials = template.credentials.all() if 'credentials' in attrs: removed_creds = set(template_credentials) - set(attrs['credentials']) provided_mapping = Credential.unique_dict(attrs['credentials']) for cred in removed_creds: if cred.unique_hash() in provided_mapping.keys(): continue # User replaced credential with new of same type errors.setdefault('credentials', []).append(_( 'Removing {} credential at launch time without replacement is not supported. ' 'Provided list lacked credential(s): {}.' ).format(cred.unique_hash(display=True), ', '.join([str(c) for c in removed_creds]))) # verify that credentials (either provided or existing) don't # require launch-time passwords that have not been provided if 'credentials' in accepted: launch_credentials = accepted['credentials'] else: launch_credentials = template_credentials passwords = attrs.get('credential_passwords', {}) # get from original attrs passwords_lacking = [] for cred in launch_credentials: for p in cred.passwords_needed: if p not in passwords: passwords_lacking.append(p) else: accepted.setdefault('credential_passwords', {}) accepted['credential_passwords'][p] = passwords[p] if len(passwords_lacking): errors['passwords_needed_to_start'] = passwords_lacking if errors: raise serializers.ValidationError(errors) if 'extra_vars' in accepted: extra_vars_save = accepted['extra_vars'] else: extra_vars_save = None # Validate job against JobTemplate clean_ methods accepted = super(JobLaunchSerializer, self).validate(accepted) # Preserve extra_vars as dictionary internally if extra_vars_save: accepted['extra_vars'] = extra_vars_save return accepted class WorkflowJobLaunchSerializer(BaseSerializer): can_start_without_user_input = serializers.BooleanField(read_only=True) variables_needed_to_start = serializers.ReadOnlyField() survey_enabled = serializers.SerializerMethodField() extra_vars = VerbatimField(required=False, write_only=True) workflow_job_template_data = serializers.SerializerMethodField() class Meta: model = WorkflowJobTemplate fields = ('can_start_without_user_input', 'extra_vars', 'survey_enabled', 'variables_needed_to_start', 'node_templates_missing', 'node_prompts_rejected', 'workflow_job_template_data') def get_survey_enabled(self, obj): if obj: return obj.survey_enabled and 'spec' in obj.survey_spec return False def get_workflow_job_template_data(self, obj): return dict(name=obj.name, id=obj.id, description=obj.description) def validate(self, attrs): obj = self.instance accepted, rejected, errors = obj._accept_or_ignore_job_kwargs( _exclude_errors=['required'], **attrs) WFJT_extra_vars = obj.extra_vars attrs = super(WorkflowJobLaunchSerializer, self).validate(attrs) obj.extra_vars = WFJT_extra_vars return attrs class NotificationTemplateSerializer(BaseSerializer): show_capabilities = ['edit', 'delete'] class Meta: model = NotificationTemplate fields = ('*', 'organization', 'notification_type', 'notification_configuration') type_map = {"string": (str, unicode), "int": (int,), "bool": (bool,), "list": (list,), "password": (str, unicode), "object": (dict, OrderedDict)} def to_representation(self, obj): ret = super(NotificationTemplateSerializer, self).to_representation(obj) if 'notification_configuration' in ret: ret['notification_configuration'] = obj.display_notification_configuration() return ret def get_related(self, obj): res = super(NotificationTemplateSerializer, self).get_related(obj) res.update(dict( test = self.reverse('api:notification_template_test', kwargs={'pk': obj.pk}), notifications = self.reverse('api:notification_template_notification_list', kwargs={'pk': obj.pk}), copy = self.reverse('api:notification_template_copy', kwargs={'pk': obj.pk}), )) if obj.organization: res['organization'] = self.reverse('api:organization_detail', kwargs={'pk': obj.organization.pk}) return res def _recent_notifications(self, obj): return [{'id': x.id, 'status': x.status, 'created': x.created} for x in obj.notifications.all().order_by('-created')[:5]] def get_summary_fields(self, obj): d = super(NotificationTemplateSerializer, self).get_summary_fields(obj) d['recent_notifications'] = self._recent_notifications(obj) return d def validate(self, attrs): from awx.api.views import NotificationTemplateDetail notification_type = None if 'notification_type' in attrs: notification_type = attrs['notification_type'] elif self.instance: notification_type = self.instance.notification_type else: notification_type = None if not notification_type: raise serializers.ValidationError(_('Missing required fields for Notification Configuration: notification_type')) notification_class = NotificationTemplate.CLASS_FOR_NOTIFICATION_TYPE[notification_type] missing_fields = [] incorrect_type_fields = [] error_list = [] if 'notification_configuration' not in attrs: return attrs if self.context['view'].kwargs and isinstance(self.context['view'], NotificationTemplateDetail): object_actual = self.context['view'].get_object() else: object_actual = None for field in notification_class.init_parameters: if field not in attrs['notification_configuration']: missing_fields.append(field) continue field_val = attrs['notification_configuration'][field] field_type = notification_class.init_parameters[field]['type'] expected_types = self.type_map[field_type] if not type(field_val) in expected_types: incorrect_type_fields.append((field, field_type)) continue if field_type == "list" and len(field_val) < 1: error_list.append(_("No values specified for field '{}'").format(field)) continue if field_type == "password" and field_val == "$encrypted$" and object_actual is not None: attrs['notification_configuration'][field] = object_actual.notification_configuration[field] if missing_fields: error_list.append(_("Missing required fields for Notification Configuration: {}.").format(missing_fields)) if incorrect_type_fields: for type_field_error in incorrect_type_fields: error_list.append(_("Configuration field '{}' incorrect type, expected {}.").format(type_field_error[0], type_field_error[1])) if error_list: raise serializers.ValidationError(error_list) return super(NotificationTemplateSerializer, self).validate(attrs) class NotificationSerializer(BaseSerializer): class Meta: model = Notification fields = ('*', '-name', '-description', 'notification_template', 'error', 'status', 'notifications_sent', 'notification_type', 'recipients', 'subject') def get_related(self, obj): res = super(NotificationSerializer, self).get_related(obj) res.update(dict( notification_template = self.reverse('api:notification_template_detail', kwargs={'pk': obj.notification_template.pk}), )) return res class LabelSerializer(BaseSerializer): class Meta: model = Label fields = ('*', '-description', 'organization') def get_related(self, obj): res = super(LabelSerializer, self).get_related(obj) if obj.organization: res['organization'] = self.reverse('api:organization_detail', kwargs={'pk': obj.organization.pk}) return res class SchedulePreviewSerializer(BaseSerializer): class Meta: model = Schedule fields = ('rrule',) # We reject rrules if: # - DTSTART is not include # - INTERVAL is not included # - SECONDLY is used # - TZID is used # - BYDAY prefixed with a number (MO is good but not 20MO) # - BYYEARDAY # - BYWEEKNO # - Multiple DTSTART or RRULE elements # - Can't contain both COUNT and UNTIL # - COUNT > 999 def validate_rrule(self, value): rrule_value = value multi_by_month_day = ".*?BYMONTHDAY[\:\=][0-9]+,-*[0-9]+" multi_by_month = ".*?BYMONTH[\:\=][0-9]+,[0-9]+" by_day_with_numeric_prefix = ".*?BYDAY[\:\=][0-9]+[a-zA-Z]{2}" match_count = re.match(".*?(COUNT\=[0-9]+)", rrule_value) match_multiple_dtstart = re.findall(".*?(DTSTART(;[^:]+)?\:[0-9]+T[0-9]+Z?)", rrule_value) match_native_dtstart = re.findall(".*?(DTSTART:[0-9]+T[0-9]+) ", rrule_value) match_multiple_rrule = re.findall(".*?(RRULE\:)", rrule_value) if not len(match_multiple_dtstart): raise serializers.ValidationError(_('Valid DTSTART required in rrule. Value should start with: DTSTART:YYYYMMDDTHHMMSSZ')) if len(match_native_dtstart): raise serializers.ValidationError(_('DTSTART cannot be a naive datetime. Specify ;TZINFO= or YYYYMMDDTHHMMSSZZ.')) if len(match_multiple_dtstart) > 1: raise serializers.ValidationError(_('Multiple DTSTART is not supported.')) if not len(match_multiple_rrule): raise serializers.ValidationError(_('RRULE required in rrule.')) if len(match_multiple_rrule) > 1: raise serializers.ValidationError(_('Multiple RRULE is not supported.')) if 'interval' not in rrule_value.lower(): raise serializers.ValidationError(_('INTERVAL required in rrule.')) if 'secondly' in rrule_value.lower(): raise serializers.ValidationError(_('SECONDLY is not supported.')) if re.match(multi_by_month_day, rrule_value): raise serializers.ValidationError(_('Multiple BYMONTHDAYs not supported.')) if re.match(multi_by_month, rrule_value): raise serializers.ValidationError(_('Multiple BYMONTHs not supported.')) if re.match(by_day_with_numeric_prefix, rrule_value): raise serializers.ValidationError(_("BYDAY with numeric prefix not supported.")) if 'byyearday' in rrule_value.lower(): raise serializers.ValidationError(_("BYYEARDAY not supported.")) if 'byweekno' in rrule_value.lower(): raise serializers.ValidationError(_("BYWEEKNO not supported.")) if 'COUNT' in rrule_value and 'UNTIL' in rrule_value: raise serializers.ValidationError(_("RRULE may not contain both COUNT and UNTIL")) if match_count: count_val = match_count.groups()[0].strip().split("=") if int(count_val[1]) > 999: raise serializers.ValidationError(_("COUNT > 999 is unsupported.")) try: Schedule.rrulestr(rrule_value) except Exception as e: raise serializers.ValidationError(_("rrule parsing failed validation: {}").format(e)) return value class ScheduleSerializer(LaunchConfigurationBaseSerializer, SchedulePreviewSerializer): show_capabilities = ['edit', 'delete'] class Meta: model = Schedule fields = ('*', 'unified_job_template', 'enabled', 'dtstart', 'dtend', 'rrule', 'next_run',) def get_related(self, obj): res = super(ScheduleSerializer, self).get_related(obj) res.update(dict( unified_jobs = self.reverse('api:schedule_unified_jobs_list', kwargs={'pk': obj.pk}), )) if obj.unified_job_template: res['unified_job_template'] = obj.unified_job_template.get_absolute_url(self.context.get('request')) try: if obj.unified_job_template.project: res['project'] = obj.unified_job_template.project.get_absolute_url(self.context.get('request')) except ObjectDoesNotExist: pass if obj.inventory: res['inventory'] = obj.inventory.get_absolute_url(self.context.get('request')) elif obj.unified_job_template and getattr(obj.unified_job_template, 'inventory', None): res['inventory'] = obj.unified_job_template.inventory.get_absolute_url(self.context.get('request')) return res def validate_unified_job_template(self, value): if type(value) == InventorySource and value.source not in SCHEDULEABLE_PROVIDERS: raise serializers.ValidationError(_('Inventory Source must be a cloud resource.')) elif type(value) == Project and value.scm_type == '': raise serializers.ValidationError(_('Manual Project cannot have a schedule set.')) elif type(value) == InventorySource and value.source == 'scm' and value.update_on_project_update: raise serializers.ValidationError(_( six.text_type('Inventory sources with `update_on_project_update` cannot be scheduled. ' 'Schedule its source project `{}` instead.').format(value.source_project.name))) return value class InstanceSerializer(BaseSerializer): consumed_capacity = serializers.SerializerMethodField() percent_capacity_remaining = serializers.SerializerMethodField() jobs_running = serializers.SerializerMethodField() class Meta: model = Instance read_only_fields = ('uuid', 'hostname', 'version') fields = ("id", "type", "url", "related", "uuid", "hostname", "created", "modified", 'capacity_adjustment', "version", "capacity", "consumed_capacity", "percent_capacity_remaining", "jobs_running", "cpu", "memory", "cpu_capacity", "mem_capacity", "enabled") def get_related(self, obj): res = super(InstanceSerializer, self).get_related(obj) res['jobs'] = self.reverse('api:instance_unified_jobs_list', kwargs={'pk': obj.pk}) res['instance_groups'] = self.reverse('api:instance_instance_groups_list', kwargs={'pk': obj.pk}) return res def get_consumed_capacity(self, obj): return obj.consumed_capacity def get_percent_capacity_remaining(self, obj): if not obj.capacity or obj.consumed_capacity == obj.capacity: return 0.0 else: return float("{0:.2f}".format(((float(obj.capacity) - float(obj.consumed_capacity)) / (float(obj.capacity))) * 100)) def get_jobs_running(self, obj): return UnifiedJob.objects.filter(execution_node=obj.hostname, status__in=('running', 'waiting',)).count() class InstanceGroupSerializer(BaseSerializer): committed_capacity = serializers.SerializerMethodField() consumed_capacity = serializers.SerializerMethodField() percent_capacity_remaining = serializers.SerializerMethodField() jobs_running = serializers.SerializerMethodField() instances = serializers.SerializerMethodField() class Meta: model = InstanceGroup fields = ("id", "type", "url", "related", "name", "created", "modified", "capacity", "committed_capacity", "consumed_capacity", "percent_capacity_remaining", "jobs_running", "instances", "controller", "policy_instance_percentage", "policy_instance_minimum", "policy_instance_list") def get_related(self, obj): res = super(InstanceGroupSerializer, self).get_related(obj) res['jobs'] = self.reverse('api:instance_group_unified_jobs_list', kwargs={'pk': obj.pk}) res['instances'] = self.reverse('api:instance_group_instance_list', kwargs={'pk': obj.pk}) if obj.controller_id: res['controller'] = self.reverse('api:instance_group_detail', kwargs={'pk': obj.controller_id}) return res def get_jobs_qs(self): # Store running jobs queryset in context, so it will be shared in ListView if 'running_jobs' not in self.context: self.context['running_jobs'] = UnifiedJob.objects.filter( status__in=('running', 'waiting')) return self.context['running_jobs'] def get_capacity_dict(self): # Store capacity values (globally computed) in the context if 'capacity_map' not in self.context: ig_qs = None if self.parent: # Is ListView: ig_qs = self.parent.instance self.context['capacity_map'] = InstanceGroup.objects.capacity_values( qs=ig_qs, tasks=self.get_jobs_qs(), breakdown=True) return self.context['capacity_map'] def get_consumed_capacity(self, obj): return self.get_capacity_dict()[obj.name]['running_capacity'] def get_committed_capacity(self, obj): return self.get_capacity_dict()[obj.name]['committed_capacity'] def get_percent_capacity_remaining(self, obj): if not obj.capacity: return 0.0 else: return float("{0:.2f}".format( ((float(obj.capacity) - float(self.get_consumed_capacity(obj))) / (float(obj.capacity))) * 100) ) def get_jobs_running(self, obj): jobs_qs = self.get_jobs_qs() return sum(1 for job in jobs_qs if job.instance_group_id == obj.id) def get_instances(self, obj): return obj.instances.count() class ActivityStreamSerializer(BaseSerializer): changes = serializers.SerializerMethodField() object_association = serializers.SerializerMethodField() @cached_property def _local_summarizable_fk_fields(self): summary_dict = copy.copy(SUMMARIZABLE_FK_FIELDS) # Special requests summary_dict['group'] = summary_dict['group'] + ('inventory_id',) for key in summary_dict.keys(): if 'id' not in summary_dict[key]: summary_dict[key] = summary_dict[key] + ('id',) field_list = summary_dict.items() # Needed related fields that are not in the default summary fields field_list += [ ('workflow_job_template_node', ('id', 'unified_job_template_id')), ('label', ('id', 'name', 'organization_id')), ('notification', ('id', 'status', 'notification_type', 'notification_template_id')), ('access_token', ('id', 'token')) ] return field_list class Meta: model = ActivityStream fields = ('*', '-name', '-description', '-created', '-modified', 'timestamp', 'operation', 'changes', 'object1', 'object2', 'object_association') def get_fields(self): ret = super(ActivityStreamSerializer, self).get_fields() for key, field in ret.items(): if key == 'changes': field.help_text = _('A summary of the new and changed values when an object is created, updated, or deleted') if key == 'object1': field.help_text = _('For create, update, and delete events this is the object type that was affected. ' 'For associate and disassociate events this is the object type associated or disassociated with object2.') if key == 'object2': field.help_text = _('Unpopulated for create, update, and delete events. For associate and disassociate ' 'events this is the object type that object1 is being associated with.') if key == 'operation': field.help_text = _('The action taken with respect to the given object(s).') return ret def get_changes(self, obj): if obj is None: return {} try: return json.loads(obj.changes) except Exception: logger.warn("Error deserializing activity stream json changes") return {} def get_object_association(self, obj): try: return obj.object_relationship_type.split(".")[-1].split("_")[1] except Exception: pass return "" def get_related(self, obj): rel = {} if obj.actor is not None: rel['actor'] = self.reverse('api:user_detail', kwargs={'pk': obj.actor.pk}) for fk, __ in self._local_summarizable_fk_fields: if not hasattr(obj, fk): continue m2m_list = self._get_rel(obj, fk) if m2m_list: rel[fk] = [] id_list = [] for thisItem in m2m_list: if getattr(thisItem, 'id', None) in id_list: continue id_list.append(getattr(thisItem, 'id', None)) if fk == 'custom_inventory_script': rel[fk].append(self.reverse('api:inventory_script_detail', kwargs={'pk': thisItem.id})) elif fk == 'application': rel[fk].append(self.reverse( 'api:o_auth2_application_detail', kwargs={'pk': thisItem.pk} )) elif fk == 'access_token': rel[fk].append(self.reverse( 'api:o_auth2_token_detail', kwargs={'pk': thisItem.pk} )) else: rel[fk].append(self.reverse('api:' + fk + '_detail', kwargs={'pk': thisItem.id})) if fk == 'schedule': rel['unified_job_template'] = thisItem.unified_job_template.get_absolute_url(self.context.get('request')) if obj.setting and obj.setting.get('category', None): rel['setting'] = self.reverse( 'api:setting_singleton_detail', kwargs={'category_slug': obj.setting['category']} ) rel['access_token'] = '*************' return rel def _get_rel(self, obj, fk): related_model = ActivityStream._meta.get_field(fk).related_model related_manager = getattr(obj, fk) if issubclass(related_model, PolymorphicModel) and hasattr(obj, '_prefetched_objects_cache'): # HACK: manually fill PolymorphicModel caches to prevent running query multiple times # unnecessary if django-polymorphic issue #68 is solved if related_manager.prefetch_cache_name not in obj._prefetched_objects_cache: obj._prefetched_objects_cache[related_manager.prefetch_cache_name] = list(related_manager.all()) return related_manager.all() def get_summary_fields(self, obj): summary_fields = OrderedDict() for fk, related_fields in self._local_summarizable_fk_fields: try: if not hasattr(obj, fk): continue m2m_list = self._get_rel(obj, fk) if m2m_list: summary_fields[fk] = [] for thisItem in m2m_list: if fk == 'job': summary_fields['job_template'] = [] job_template_item = {} job_template_fields = SUMMARIZABLE_FK_FIELDS['job_template'] job_template = getattr(thisItem, 'job_template', None) if job_template is not None: for field in job_template_fields: fval = getattr(job_template, field, None) if fval is not None: job_template_item[field] = fval summary_fields['job_template'].append(job_template_item) if fk == 'schedule': unified_job_template = getattr(thisItem, 'unified_job_template', None) if unified_job_template is not None: summary_fields[get_type_for_model(unified_job_template)] = {'id': unified_job_template.id, 'name': unified_job_template.name} thisItemDict = {} for field in related_fields: fval = getattr(thisItem, field, None) if fval is not None: thisItemDict[field] = fval summary_fields[fk].append(thisItemDict) except ObjectDoesNotExist: pass if obj.actor is not None: summary_fields['actor'] = dict(id = obj.actor.id, username = obj.actor.username, first_name = obj.actor.first_name, last_name = obj.actor.last_name) if obj.setting: summary_fields['setting'] = [obj.setting] summary_fields['access_token'] = '*************' return summary_fields class FactVersionSerializer(BaseFactSerializer): class Meta: model = Fact fields = ('related', 'module', 'timestamp') read_only_fields = ('*',) def get_related(self, obj): res = super(FactVersionSerializer, self).get_related(obj) params = { 'datetime': timestamp_apiformat(obj.timestamp), 'module': obj.module, } res['fact_view'] = '%s?%s' % ( reverse('api:host_fact_compare_view', kwargs={'pk': obj.host.pk}, request=self.context.get('request')), urllib.urlencode(params) ) return res class FactSerializer(BaseFactSerializer): class Meta: model = Fact # TODO: Consider adding in host to the fields list ? fields = ('related', 'timestamp', 'module', 'facts', 'id', 'summary_fields', 'host') read_only_fields = ('*',) def get_related(self, obj): res = super(FactSerializer, self).get_related(obj) res['host'] = obj.host.get_absolute_url(self.context.get('request')) return res def to_representation(self, obj): ret = super(FactSerializer, self).to_representation(obj) if obj is None: return ret if 'facts' in ret and isinstance(ret['facts'], six.string_types): ret['facts'] = json.loads(ret['facts']) return ret
py
b40279a43db56cb04a29099b18641c1f77c9d667
# coding: utf-8 """ Pure Storage FlashBlade REST 1.9 Python SDK Pure Storage FlashBlade REST 1.9 Python SDK, developed by [Pure Storage, Inc](http://www.purestorage.com/). Documentations can be found at [purity-fb.readthedocs.io](http://purity-fb.readthedocs.io/). OpenAPI spec version: 1.9 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class FileSystemSnapshot(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ #BEGIN_CUSTOM # IR-51527: Prevent Pytest from attempting to collect this class based on name. __test__ = False #END_CUSTOM """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'name': 'str', 'id': 'str', 'destroyed': 'bool', 'owner': 'Reference', 'owner_destroyed': 'bool', 'policy': 'LocationReference', 'source': 'str', 'source_destroyed': 'bool', 'source_id': 'str', 'source_is_local': 'bool', 'source_location': 'Reference', 'source_display_name': 'str', 'suffix': 'str', 'time_remaining': 'int' } attribute_map = { 'name': 'name', 'id': 'id', 'destroyed': 'destroyed', 'owner': 'owner', 'owner_destroyed': 'owner_destroyed', 'policy': 'policy', 'source': 'source', 'source_destroyed': 'source_destroyed', 'source_id': 'source_id', 'source_is_local': 'source_is_local', 'source_location': 'source_location', 'source_display_name': 'source_display_name', 'suffix': 'suffix', 'time_remaining': 'time_remaining' } def __init__(self, name=None, id=None, destroyed=None, owner=None, owner_destroyed=None, policy=None, source=None, source_destroyed=None, source_id=None, source_is_local=None, source_location=None, source_display_name=None, suffix=None, time_remaining=None): # noqa: E501 """FileSystemSnapshot - a model defined in Swagger""" # noqa: E501 self._name = None self._id = None self._destroyed = None self._owner = None self._owner_destroyed = None self._policy = None self._source = None self._source_destroyed = None self._source_id = None self._source_is_local = None self._source_location = None self._source_display_name = None self._suffix = None self._time_remaining = None self.discriminator = None if name is not None: self.name = name if id is not None: self.id = id if destroyed is not None: self.destroyed = destroyed if owner is not None: self.owner = owner if owner_destroyed is not None: self.owner_destroyed = owner_destroyed if policy is not None: self.policy = policy if source is not None: self.source = source if source_destroyed is not None: self.source_destroyed = source_destroyed if source_id is not None: self.source_id = source_id if source_is_local is not None: self.source_is_local = source_is_local if source_location is not None: self.source_location = source_location if source_display_name is not None: self.source_display_name = source_display_name if suffix is not None: self.suffix = suffix if time_remaining is not None: self.time_remaining = time_remaining @property def name(self): """Gets the name of this FileSystemSnapshot. # noqa: E501 The name of the object # noqa: E501 :return: The name of this FileSystemSnapshot. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this FileSystemSnapshot. The name of the object # noqa: E501 :param name: The name of this FileSystemSnapshot. # noqa: E501 :type: str """ self._name = name @property def id(self): """Gets the id of this FileSystemSnapshot. # noqa: E501 A unique ID chosen by the system. Cannot change. # noqa: E501 :return: The id of this FileSystemSnapshot. # noqa: E501 :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this FileSystemSnapshot. A unique ID chosen by the system. Cannot change. # noqa: E501 :param id: The id of this FileSystemSnapshot. # noqa: E501 :type: str """ self._id = id @property def destroyed(self): """Gets the destroyed of this FileSystemSnapshot. # noqa: E501 Is the file system snapshot destroyed? False by default. # noqa: E501 :return: The destroyed of this FileSystemSnapshot. # noqa: E501 :rtype: bool """ return self._destroyed @destroyed.setter def destroyed(self, destroyed): """Sets the destroyed of this FileSystemSnapshot. Is the file system snapshot destroyed? False by default. # noqa: E501 :param destroyed: The destroyed of this FileSystemSnapshot. # noqa: E501 :type: bool """ self._destroyed = destroyed @property def owner(self): """Gets the owner of this FileSystemSnapshot. # noqa: E501 A reference to the file system that owns this snapshot. If the owner is destroyed, this will be destroyed. # noqa: E501 :return: The owner of this FileSystemSnapshot. # noqa: E501 :rtype: Reference """ return self._owner @owner.setter def owner(self, owner): """Sets the owner of this FileSystemSnapshot. A reference to the file system that owns this snapshot. If the owner is destroyed, this will be destroyed. # noqa: E501 :param owner: The owner of this FileSystemSnapshot. # noqa: E501 :type: Reference """ self._owner = owner @property def owner_destroyed(self): """Gets the owner_destroyed of this FileSystemSnapshot. # noqa: E501 Is the owning file system destroyed? # noqa: E501 :return: The owner_destroyed of this FileSystemSnapshot. # noqa: E501 :rtype: bool """ return self._owner_destroyed @owner_destroyed.setter def owner_destroyed(self, owner_destroyed): """Sets the owner_destroyed of this FileSystemSnapshot. Is the owning file system destroyed? # noqa: E501 :param owner_destroyed: The owner_destroyed of this FileSystemSnapshot. # noqa: E501 :type: bool """ self._owner_destroyed = owner_destroyed @property def policy(self): """Gets the policy of this FileSystemSnapshot. # noqa: E501 A reference to the associated policy. # noqa: E501 :return: The policy of this FileSystemSnapshot. # noqa: E501 :rtype: LocationReference """ return self._policy @policy.setter def policy(self, policy): """Sets the policy of this FileSystemSnapshot. A reference to the associated policy. # noqa: E501 :param policy: The policy of this FileSystemSnapshot. # noqa: E501 :type: LocationReference """ self._policy = policy @property def source(self): """Gets the source of this FileSystemSnapshot. # noqa: E501 The name of the file system that was the source of the data in this snapshot. Normally this is the same as the owner, but if the snapshot is replicated, the source is the original file system. # noqa: E501 :return: The source of this FileSystemSnapshot. # noqa: E501 :rtype: str """ return self._source @source.setter def source(self, source): """Sets the source of this FileSystemSnapshot. The name of the file system that was the source of the data in this snapshot. Normally this is the same as the owner, but if the snapshot is replicated, the source is the original file system. # noqa: E501 :param source: The source of this FileSystemSnapshot. # noqa: E501 :type: str """ self._source = source @property def source_destroyed(self): """Gets the source_destroyed of this FileSystemSnapshot. # noqa: E501 Deprecated. Use `owner_destroyed`. Is the owning file system destroyed? # noqa: E501 :return: The source_destroyed of this FileSystemSnapshot. # noqa: E501 :rtype: bool """ return self._source_destroyed @source_destroyed.setter def source_destroyed(self, source_destroyed): """Sets the source_destroyed of this FileSystemSnapshot. Deprecated. Use `owner_destroyed`. Is the owning file system destroyed? # noqa: E501 :param source_destroyed: The source_destroyed of this FileSystemSnapshot. # noqa: E501 :type: bool """ self._source_destroyed = source_destroyed @property def source_id(self): """Gets the source_id of this FileSystemSnapshot. # noqa: E501 The unique global ID of the source file system. # noqa: E501 :return: The source_id of this FileSystemSnapshot. # noqa: E501 :rtype: str """ return self._source_id @source_id.setter def source_id(self, source_id): """Sets the source_id of this FileSystemSnapshot. The unique global ID of the source file system. # noqa: E501 :param source_id: The source_id of this FileSystemSnapshot. # noqa: E501 :type: str """ self._source_id = source_id @property def source_is_local(self): """Gets the source_is_local of this FileSystemSnapshot. # noqa: E501 Is the source of this file system snapshot on the local array? # noqa: E501 :return: The source_is_local of this FileSystemSnapshot. # noqa: E501 :rtype: bool """ return self._source_is_local @source_is_local.setter def source_is_local(self, source_is_local): """Sets the source_is_local of this FileSystemSnapshot. Is the source of this file system snapshot on the local array? # noqa: E501 :param source_is_local: The source_is_local of this FileSystemSnapshot. # noqa: E501 :type: bool """ self._source_is_local = source_is_local @property def source_location(self): """Gets the source_location of this FileSystemSnapshot. # noqa: E501 A reference to the source array. # noqa: E501 :return: The source_location of this FileSystemSnapshot. # noqa: E501 :rtype: Reference """ return self._source_location @source_location.setter def source_location(self, source_location): """Sets the source_location of this FileSystemSnapshot. A reference to the source array. # noqa: E501 :param source_location: The source_location of this FileSystemSnapshot. # noqa: E501 :type: Reference """ self._source_location = source_location @property def source_display_name(self): """Gets the source_display_name of this FileSystemSnapshot. # noqa: E501 Full name of the source with remote array information. Response will be same as source for local file system snapshots. # noqa: E501 :return: The source_display_name of this FileSystemSnapshot. # noqa: E501 :rtype: str """ return self._source_display_name @source_display_name.setter def source_display_name(self, source_display_name): """Sets the source_display_name of this FileSystemSnapshot. Full name of the source with remote array information. Response will be same as source for local file system snapshots. # noqa: E501 :param source_display_name: The source_display_name of this FileSystemSnapshot. # noqa: E501 :type: str """ self._source_display_name = source_display_name @property def suffix(self): """Gets the suffix of this FileSystemSnapshot. # noqa: E501 The suffix of the snapshot, e.g., snap1. # noqa: E501 :return: The suffix of this FileSystemSnapshot. # noqa: E501 :rtype: str """ return self._suffix @suffix.setter def suffix(self, suffix): """Sets the suffix of this FileSystemSnapshot. The suffix of the snapshot, e.g., snap1. # noqa: E501 :param suffix: The suffix of this FileSystemSnapshot. # noqa: E501 :type: str """ self._suffix = suffix @property def time_remaining(self): """Gets the time_remaining of this FileSystemSnapshot. # noqa: E501 Time in milliseconds before the file system snapshot is eradicated. Null if not destroyed. # noqa: E501 :return: The time_remaining of this FileSystemSnapshot. # noqa: E501 :rtype: int """ return self._time_remaining @time_remaining.setter def time_remaining(self, time_remaining): """Sets the time_remaining of this FileSystemSnapshot. Time in milliseconds before the file system snapshot is eradicated. Null if not destroyed. # noqa: E501 :param time_remaining: The time_remaining of this FileSystemSnapshot. # noqa: E501 :type: int """ self._time_remaining = time_remaining def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(FileSystemSnapshot, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, FileSystemSnapshot): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
py
b40279e93ca7db12be4dba0bbb8bf6ef96a2e13a
import praw import string from datetime import datetime import time import random import credentials import replies as r import pekofy as peko # because it sounds better bot_name = credentials.bot_name author = credentials.author reddit = praw.Reddit(client_id=credentials.client_id, client_secret=credentials.client_secret, username=credentials.bot_name, password=credentials.bot_pass, user_agent=credentials.user_agent) subreddit_list = ['u_' + bot_name, 'u_' + author, 'hololive', 'VirtualYoutubers', 'Hololewd', 'okbuddyhololive', 'goodanimemes', 'VtuberV8', 'Priconne', 'AmeliaWatson', 'GawrGura'] subreddit = reddit.subreddit('+'.join(subreddit_list)) replies = r.replies def reply_f(reply, comment_obj, pekofy_msg=None): """ reply to a comment :param reply: the reply type to send :type reply: string :param comment_obj: the comment to reply :type comment_obj: praw.models.Comment :param pekofy_msg: pekofied message that should only be passed when the reply variable is 'pekofy' to pass the pekofied reply to the replies, defaults to None :type pekofy_msg: string """ replies["pekofy"]["message"] = pekofy_msg if pekofy_msg and is_triggering(pekofy_msg, "nothing changed"): reply = "nothing changed" reply_content = replies[reply] if not random.randint(0, 100) <= (replies[reply]['chance'] if 'chance' in reply_content else 100) or \ already_replied_to(comment_obj, reply): return message = random.choice(reply_content["messages"]) if "messages" in replies[reply] else reply_content["message"] try: comment_obj.reply(message) global comments_replied comments_replied += 1 except Exception as e: print(f"Couldn't reply: {e}") notify_author(e, comment_obj, message) print(f"{reply}: https://www.reddit.com{comment_obj.permalink}") print(f"Reply: {message}") print("------------------------") def already_replied_to(comment, reply): """ returns if already replied the same type of comment or not """ second_refresh = False for i in range(2): try: comment.refresh() break except praw.exceptions.ClientException: # work around as stated in the praw issue 838 if second_refresh: return False time.sleep(10) second_refresh = True comment.replies.replace_more() child_comments = comment.replies.list() for top_comment in child_comments: if top_comment.parent().id != comment.id: break if top_comment.author == bot_name: if top_comment.body in replies[reply]["messages" if "messages" in replies[reply] else "message"]: print(f"Already {reply}'d: {top_comment.body} \ncontinuing...") print("------------------------") return True return False def notify_author(exception, comment=None, tried_reply=None): """ Notifies to the author, don't forget to whitelist the bot if your PM's are closed """ title = datetime.now().strftime("%Y.%m.%d - %H:%M:%S") if comment and tried_reply: body = f"{bot_name} has run into an error: {exception}\n" \ f"Here\'s the [link](https://www.reddit.com{comment.permalink}) to the comment.\n" \ f"Tried to reply this: {tried_reply}" else: body = f'{bot_name} has run into an error: {exception}\n' try: reddit.redditor(author).message(title, body) except Exception: print("Couldn't notify the author") def is_triggering(text, reply): """ whether the text triggers the given reply type or not """ include_bot = replies[reply]['include_bot'] if 'include_bot' in replies[reply] else False if replies[reply]["exact"] if (True if "exact" in replies[reply] else False) else False: condition = [True if trigger == text else False for trigger in replies[reply]["triggers"]] else: condition = [True if trigger in text else False for trigger in replies[reply]["triggers"]] if replies[reply]["trigger_type"] == "all": return all(condition) and ("bot" in text if include_bot else True) return any(condition) and ("bot" in text if include_bot else True) def passed_limit(comment, limit=2): """ returns true if the same comment has been pekofied too much by climbing up the comment tree until it reaches the limit """ current_usage = 0 for i in range(limit): if comment.parent_id == comment.link_id: break if comment.parent().author == bot_name: comment = comment.parent() if comment.parent_id == comment.link_id: break if comment.parent().author and is_triggering(comment.parent().body, "pekofy"): comment = comment.parent() current_usage += 1 return current_usage == limit def is_top_level(comment): """ returns if the comment is top level (directly replied to the post) """ return comment.parent_id == comment.link_id def is_anti(comment): """ Checks if author of the comment is a possible anti/hater by counting their overall comment score in the same comment tree """ score_sum = comment.score temp_comment = comment while True: if is_top_level(temp_comment.parent()): break if temp_comment.parent().author: temp_comment = temp_comment.parent() if temp_comment.author == comment.author: # same user in the comment chain, add to sum score_sum += temp_comment.score else: break if score_sum < -1: return True return False comments_replied, comments_scanned = 0, 0 # used for exponential back off in case reddit server is unable to respond initial_wait_time = 10 current_wait_time = initial_wait_time max_wait_time = 600 reset_limit = 50 while 1: try: # exception handling at it's finest (lol) # scan each comment for comment in subreddit.stream.comments(): comments_scanned += 1 # comment has been deleted or it's author is the bot itself if not comment.author or comment.author == bot_name: continue # pain peko reply reply_f("pain peko", comment) if is_triggering(comment.body.lower(), "pain peko") else None # hey moona reply if len(comment.body)<350: # longer messages tend to be more serious, don't "hey moona" reply_f("hey moona", comment) if is_triggering(comment.body.lower(), "hey moona") else None # feedback gratitude replied = False if not is_top_level(comment): if comment.parent().author: if comment.parent().author.name == bot_name: for feedback in ["love", "cute", "thank", "sorry", "insult"]: if is_triggering(comment.body.lower(), feedback): reply_f(feedback, comment) replied = True break if replied: continue # both pekofy and unpekofy written if is_triggering(comment.body, "confused"): reply_f("confused", comment) continue # if keyword found, try to pekofy if is_triggering(comment.body, "pekofy"): # can't pekofy due to comment not having any parent if not comment.parent().author: continue # parent is a post, pekofy accordingly if is_top_level(comment): reply_f("pekofy", comment, peko.pekofy( comment.submission.title + '\n\n' + comment.submission.selftext if comment.submission.selftext else comment.submission.title)) continue # someone tried to break it by recursive calling, kindly say no if is_triggering(comment.parent().body, "pekofy"): reply_f("no", comment) continue # someone tried to pekofy a good/bad bot reply, don't pekofy if is_triggering(comment.parent().body.lower(), "bot score abuse"): reply_f("bot score abuse", comment) continue # don't pekofy if limit already reached before. if comment.parent().body == replies["limit reached"]["message"] and comment.parent().author == bot_name: continue # if the same sentence has been pekofied too much already, don't pekofy if passed_limit(comment): reply_f("limit reached", comment) continue # not pekofy if anti/hater if is_anti(comment): reply_f("no", comment) continue # try to reply to the comment reply_f("pekofy", comment, peko.pekofy(comment.parent().body)) # delete keyphrase found if is_triggering(comment.body, "unpekofy") and comment.parent().author == bot_name and comment.parent().body: if comment.parent().score < -1: print(f'Unpekofied: {comment.parent().body}') comment.parent().delete() print("------------------------") # More than [reset_limit] comments has been scanned without an incident, reset wait time. if comments_scanned % reset_limit == 0: current_wait_time = initial_wait_time except KeyboardInterrupt: print("Keyboard Interrupt. Terminating...") break except praw.exceptions.RedditAPIException as e: print(f"RedditAPIException: {e}") notify_author(e) except praw.exceptions.PRAWException as e: print(f"PRAWException: {e}") notify_author(e) except Exception as e: print(f"Unhandled exception: {e}") notify_author(e) finally: print("------------------------") print(f"Replied comments so far: {comments_replied}") print(f"Scanned comments so far: {comments_scanned}") comments_replied, comments_scanned = 0, 0 # not-so-exponential back off time.sleep(current_wait_time) if not current_wait_time > max_wait_time: current_wait_time *= 2
py
b4027a4f70ec7fe980b0e98ef10ed15a698ff24d
from docutils import nodes class color(nodes.General, nodes.TextElement): pass def visit_color_node_html(self, node): self.body.append( """<span style="border: 1px solid #000; background-color: %s"> &nbsp;&nbsp; </span>&nbsp;&nbsp;""" % node.astext() ) def depart_color_node_html(self, node): pass def visit_color_node_latex(self, node): pass def depart_color_node_latex(self, node): pass def color_role(name, rawtext, text, lineno, inliner, options={}, content=[]): node = color() node += nodes.Text(text) return [node], []
py
b4027a553f1efda77d40b7a6e55ebae5bb3acd65
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 3 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import isi_sdk_8_0 from isi_sdk_8_0.models.storagepool_settings import StoragepoolSettings # noqa: E501 from isi_sdk_8_0.rest import ApiException class TestStoragepoolSettings(unittest.TestCase): """StoragepoolSettings unit test stubs""" def setUp(self): pass def tearDown(self): pass def testStoragepoolSettings(self): """Test StoragepoolSettings""" # FIXME: construct object with mandatory attributes with example values # model = isi_sdk_8_0.models.storagepool_settings.StoragepoolSettings() # noqa: E501 pass if __name__ == '__main__': unittest.main()
py
b4027aa37b63f7693e3c2beaad5eddcc9360d585
from .Sensor import Sensor from .utils import LcApiException from .utils import _isStringCompat import json import yaml class _Replicant( object ): def __init__( self, manager ): self._manager = manager class Responder( _Replicant ): '''Responder service manager object.''' def sweep( self, sid ): '''Perform a sweep of a given host. Args: sid (str): sensor ID to sweep. ''' if isinstance( sid, Sensor ): sid = sid.sid return self._manager.replicantRequest( 'responder', { 'action' : 'sweep', 'sid' : sid, }, True ) class Yara( _Replicant ): '''Yara service manager object.''' def scan( self, sid, sources ): '''Perform an ad-hoc scan of a sensor with Yara signatures. Args: sid (str): sensor ID to scan. sources (list of str): list of source Yara signature names to use in the scan. ''' if isinstance( sid, Sensor ): sid = sid.sid return self._manager.replicantRequest( 'yara', { 'action' : 'scan', 'sid' : sid, 'sources' : sources, }, True ) def getRules( self ): '''Get the constant Yara scanning rules in effect. Returns: Dict of rules. ''' return self._manager.replicantRequest( 'yara', { 'action' : 'list_rules', }, False ) def getSources( self ): '''Get the Yara signature sources. Returns: Dict of sources. ''' return self._manager.replicantRequest( 'yara', { 'action' : 'list_sources', }, False ) def addRule( self, ruleName, sources = [], tags = [], platforms = [] ): '''Add a constant Yara scanning rule. Args: ruleName (str): name of the rule to add. sources (list of str): list of sources this rule should scan with. tags (list of str): list of tags sensors must posses for this rule to apply. platforms (str of str): list of platform names this rule applies to. ''' return self._manager.replicantRequest( 'yara', { 'action' : 'add_rule', 'name' : ruleName, 'sources' : sources, 'tags' : tags, 'platforms' : platforms, }, False ) def removeRule( self, ruleName ): '''Remove a constant Yara scanning rule. Args: ruleName (str): name of the rule to remove. ''' return self._manager.replicantRequest( 'yara', { 'action' : 'remove_rule', 'name' : ruleName, }, False ) def addSource( self, sourceName, source ): '''Add a Yara signature source. Args: sourceName (str): name of the source to add. source (str): source URL for the Yara signature(s). ''' return self._manager.replicantRequest( 'yara', { 'action' : 'add_source', 'name' : sourceName, 'source' : source, }, False ) def removeSource( self, sourceName ): '''Remove a Yara rule source. Args: sourceName (str): name of the source to remove. ''' return self._manager.replicantRequest( 'yara', { 'action' : 'remove_source', 'name' : sourceName, }, False ) class Integrity( _Replicant ): '''File and Registry Integrity Monitoring (FIM) service manager object.''' def getRules( self ): '''Get FIM rules in effect. Returns: Dict of rules. ''' return self._manager.replicantRequest( 'integrity', { 'action' : 'list_rules', }, False ) def addRule( self, ruleName, patterns = [], tags = [], platforms = [] ): '''Add an FIM rule. Args: ruleName (str): name of the rule to add. patterns (list of str): list of file/registry patterns to monitor. tags (list of str): list of tags sensors must posses for this rule to apply. platforms (list of str): list of platform names this rule applies to. ''' return self._manager.replicantRequest( 'integrity', { 'action' : 'add_rule', 'name' : ruleName, 'patterns' : patterns, 'tags' : tags, 'platforms' : platforms, }, False ) def removeRule( self, ruleName ): '''Remove an FIM rule. Args: ruleName (str): name of the rule to remove. ''' return self._manager.replicantRequest( 'integrity', { 'action' : 'remove_rule', 'name' : ruleName, }, False ) class Logging( _Replicant ): '''Logging service manager object.''' def getRules( self ): '''Get the Log collection rules in effect. ''' return self._manager.replicantRequest( 'logging', { 'action' : 'list_rules', }, False ) def addRule( self, ruleName, patterns = [], tags = [], platforms = [], isDeleteAfter = False, isIgnoreCert = False, daysRetention = 0 ): '''Add a Log collection rule. Args: ruleName (str): name of the rule to add. patterns (list of str): list of file patterns describing Logs to monitor and retrieve. tags (list of str): list of tags sensors must posses for this rule to apply. platforms (list of str): list of platform names this rule applies to. isDeleteAfter (bool): if True, delete the Log after retrieval. isIgnoreCert (bool): if True, sensor ignores SSL cert errors during log upload. ''' return self._manager.replicantRequest( 'logging', { 'action' : 'add_rule', 'name' : ruleName, 'patterns' : patterns, 'is_delete_after' : isDeleteAfter, 'is_ignore_cert' : isIgnoreCert, 'days_retention' : daysRetention, 'tags' : tags, 'platforms' : platforms, }, False ) def removeRule( self, ruleName ): '''Remove a Log collection rule. Args: ruleName (str): name of the rule to remove. ''' return self._manager.replicantRequest( 'logging', { 'action' : 'remove_rule', 'name' : ruleName, }, False ) class Replay( _Replicant ): '''Replay service manager object.''' def runJob( self, startTime, endTime, sid = None, ruleName = None, ruleContent = None ): '''Run a Replay service job. Args: startTime (int): epoch start time to replay. endTime (int): epoch end time to replay. sid (str): sensor ID to replay the data from. ruleName (str): optional name of an existing D&R rule to replay. ruleContent (dict): optional content of a D&R rule to replay. ''' if isinstance( sid, Sensor ): sid = sid.sid req = { 'action' : 'replay', 'start' : startTime, 'end' : endTime, } if sid is not None: req[ 'sid' ] = sid if ruleName is not None: req[ 'rule_name' ] = ruleName if ruleContent is not None: if _isStringCompat( ruleContent ): try: ruleContent = yaml.safeLoad( ruleContent ) except: try: ruleContent = json.loads( ruleContent ) except: raise LcApiException( 'rule content not JSON and not YAML' ) req[ 'rule_content' ] = ruleContent return self._manager.replicantRequest( 'replay', req, True ) class Exfil( _Replicant ): '''Exfil control service manager object.''' def getRules( self ): '''Get the exfil rules in effect. Returns: Dict of rules. ''' return self._manager.replicantRequest( 'exfil', { 'action' : 'list_rules', }, False ) def addEventRule( self, ruleName, events = [], tags = [], platforms = [] ): '''Add an event rule describing events sent to the cloud in real-time. Args: ruleName (str): name of the rule to add. events (list of str): list of event names to send in real-time. tags (list of str): list of tags sensors must posses for this rule to apply. platforms (list of str): list of platform names this applies to. ''' return self._manager.replicantRequest( 'exfil', { 'action' : 'add_event_rule', 'name' : ruleName, 'events' : events, 'tags' : tags, 'platforms' : platforms, }, False ) def removeEventRule( self, ruleName ): '''Remove an event rule. Args: ruleName (str): name of the rule to remove. ''' return self._manager.replicantRequest( 'exfil', { 'action' : 'remove_event_rule', 'name' : ruleName, }, False ) def addWatchRule( self, ruleName, event, operator, value, path = [], tags = [], platforms = [] ): '''Add a watch rule to send matching events to the cloud in real-time. Args: ruleName (str): name of the watch rule to add. event (str): name of the event this rule applies to. operator (str): comparison operator name to determine match. value (str): value to compare to for matching. path (list of str): path within the event to compare the value of, without a leading "event". tags (list of str): list of tags sensors must posses for this rule to apply. platforms (list of str): list of platform names this applies to. ''' return self._manager.replicantRequest( 'exfil', { 'action' : 'add_watch', 'name' : ruleName, 'operator' : operator, 'event' : event, 'value' : value, 'path' : path, 'tags' : tags, 'platforms' : platforms, }, False ) def removeWatchRule( self, ruleName ): '''Remove a watch rule. Args: ruleName (str): name of the rule to remove. ''' return self._manager.replicantRequest( 'exfil', { 'action' : 'remove_watch', 'name' : ruleName, }, False ) class Dumper( _Replicant ): '''Memory dumper service object.''' def dump( self, sid ): '''Dump the full memory of a given host. Args: sid (str): sensor ID to sweep. ''' if isinstance( sid, Sensor ): sid = sid.sid return self._manager.replicantRequest( 'dumper', { 'sid' : sid, }, True ) class ReliableTasking( _Replicant ): '''Reliable Tasking service object.''' def task( self, task, sid = None, tag = None, ttl = None ): '''Issue a task for a set of sensors even if offline. Args: task (str): actual task command line to send. sid (str): optional sensor ID to task or '*' for all. tag (str): optional tag to select sensors to send the task to. ttl (int): optional number of seconds before unsent tasks expire, defaults to a week. ''' req = { 'action' : 'task', 'task' : task, } if sid is not None: if isinstance( sid, Sensor ): sid = sid.sid req[ 'sid' ] = sid if tag is not None: req[ 'tag' ] = tag if ttl is not None: req[ 'ttl' ] = ttl return self._manager.replicantRequest( 'reliable-tasking', req, True ) def getTasks( self, sid = None, tag = None ): '''Issue a task for a set of sensors even if offline. Args: sid (str): optional sensor ID to get the tasks for or '*' for all. tag (str): optional tag to select sensors to get the tasks for. ''' req = { 'action' : 'list', } if sid is not None: if isinstance( sid, Sensor ): sid = sid.sid req[ 'sid' ] = sid if tag is not None: req[ 'tag' ] = tag return self._manager.replicantRequest( 'reliable-tasking', req, False )
py
b4027b7629e7595e5b52f65b7322db2234eaca09
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.base.exchange import Exchange from ccxt.base.errors import ExchangeError from ccxt.base.errors import AuthenticationError from ccxt.base.errors import PermissionDenied from ccxt.base.errors import BadRequest from ccxt.base.errors import InsufficientFunds from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import DDoSProtection from ccxt.base.errors import ExchangeNotAvailable class bitmex (Exchange): def describe(self): return self.deep_extend(super(bitmex, self).describe(), { 'id': 'bitmex', 'name': 'BitMEX', 'countries': ['SC'], # Seychelles 'version': 'v1', 'userAgent': None, 'rateLimit': 2000, 'has': { 'CORS': False, 'fetchOHLCV': True, 'withdraw': True, 'editOrder': True, 'fetchOrder': True, 'fetchOrders': True, 'fetchOpenOrders': True, 'fetchClosedOrders': True, 'fetchMyTrades': True, }, 'timeframes': { '1m': '1m', '5m': '5m', '1h': '1h', '1d': '1d', }, 'urls': { 'test': 'https://testnet.bitmex.com', 'logo': 'https://user-images.githubusercontent.com/1294454/27766319-f653c6e6-5ed4-11e7-933d-f0bc3699ae8f.jpg', 'api': 'https://www.bitmex.com', 'www': 'https://www.bitmex.com', 'doc': [ 'https://www.bitmex.com/app/apiOverview', 'https://github.com/BitMEX/api-connectors/tree/master/official-http', ], 'fees': 'https://www.bitmex.com/app/fees', 'referral': 'https://www.bitmex.com/register/rm3C16', }, 'api': { 'public': { 'get': [ 'announcement', 'announcement/urgent', 'funding', 'instrument', 'instrument/active', 'instrument/activeAndIndices', 'instrument/activeIntervals', 'instrument/compositeIndex', 'instrument/indices', 'insurance', 'leaderboard', 'liquidation', 'orderBook', 'orderBook/L2', 'quote', 'quote/bucketed', 'schema', 'schema/websocketHelp', 'settlement', 'stats', 'stats/history', 'trade', 'trade/bucketed', ], }, 'private': { 'get': [ 'apiKey', 'chat', 'chat/channels', 'chat/connected', 'execution', 'execution/tradeHistory', 'notification', 'order', 'position', 'user', 'user/affiliateStatus', 'user/checkReferralCode', 'user/commission', 'user/depositAddress', 'user/margin', 'user/minWithdrawalFee', 'user/wallet', 'user/walletHistory', 'user/walletSummary', ], 'post': [ 'apiKey', 'apiKey/disable', 'apiKey/enable', 'chat', 'order', 'order/bulk', 'order/cancelAllAfter', 'order/closePosition', 'position/isolate', 'position/leverage', 'position/riskLimit', 'position/transferMargin', 'user/cancelWithdrawal', 'user/confirmEmail', 'user/confirmEnableTFA', 'user/confirmWithdrawal', 'user/disableTFA', 'user/logout', 'user/logoutAll', 'user/preferences', 'user/requestEnableTFA', 'user/requestWithdrawal', ], 'put': [ 'order', 'order/bulk', 'user', ], 'delete': [ 'apiKey', 'order', 'order/all', ], }, }, 'exceptions': { 'exact': { 'Invalid API Key.': AuthenticationError, 'Access Denied': PermissionDenied, 'Duplicate clOrdID': InvalidOrder, 'Signature not valid': AuthenticationError, }, 'broad': { 'overloaded': ExchangeNotAvailable, 'Account has insufficient Available Balance': InsufficientFunds, }, }, 'options': { # https://blog.bitmex.com/api_announcement/deprecation-of-api-nonce-header/ # https://github.com/ccxt/ccxt/issues/4789 'api-expires': 5, # in seconds }, }) def fetch_markets(self, params={}): response = self.publicGetInstrumentActiveAndIndices(params) result = [] for i in range(0, len(response)): market = response[i] active = (market['state'] != 'Unlisted') id = market['symbol'] baseId = market['underlying'] quoteId = market['quoteCurrency'] basequote = baseId + quoteId base = self.common_currency_code(baseId) quote = self.common_currency_code(quoteId) swap = (id == basequote) # 'positionCurrency' may be empty("", as Bitmex currently returns for ETHUSD) # so let's take the quote currency first and then adjust if needed positionId = self.safe_string_2(market, 'positionCurrency', 'quoteCurrency') type = None future = False prediction = False position = self.common_currency_code(positionId) symbol = id if swap: type = 'swap' symbol = base + '/' + quote elif id.find('B_') >= 0: prediction = True type = 'prediction' else: future = True type = 'future' precision = { 'amount': None, 'price': None, } lotSize = self.safe_float(market, 'lotSize') tickSize = self.safe_float(market, 'tickSize') if lotSize is not None: precision['amount'] = self.precision_from_string(self.truncate_to_string(lotSize, 16)) if tickSize is not None: precision['price'] = self.precision_from_string(self.truncate_to_string(tickSize, 16)) limits = { 'amount': { 'min': None, 'max': None, }, 'price': { 'min': tickSize, 'max': self.safe_float(market, 'maxPrice'), }, 'cost': { 'min': None, 'max': None, }, } limitField = 'cost' if (position == quote) else 'amount' limits[limitField] = { 'min': lotSize, 'max': self.safe_float(market, 'maxOrderQty'), } result.append({ 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'baseId': baseId, 'quoteId': quoteId, 'active': active, 'precision': precision, 'limits': limits, 'taker': market['takerFee'], 'maker': market['makerFee'], 'type': type, 'spot': False, 'swap': swap, 'future': future, 'prediction': prediction, 'info': market, }) return result def fetch_balance(self, params={}): self.load_markets() request = {'currency': 'all'} response = self.privateGetUserMargin(self.extend(request, params)) result = {'info': response} for b in range(0, len(response)): balance = response[b] currencyId = self.safe_string(balance, 'currency') currencyId = currencyId.upper() code = self.common_currency_code(currencyId) account = { 'free': balance['availableMargin'], 'used': 0.0, 'total': balance['marginBalance'], } if code == 'BTC': account['free'] = account['free'] * 0.00000001 account['total'] = account['total'] * 0.00000001 account['used'] = account['total'] - account['free'] result[code] = account return self.parse_balance(result) def fetch_order_book(self, symbol, limit=None, params={}): self.load_markets() market = self.market(symbol) request = { 'symbol': market['id'], } if limit is not None: request['depth'] = limit orderbook = self.publicGetOrderBookL2(self.extend(request, params)) result = { 'bids': [], 'asks': [], 'timestamp': None, 'datetime': None, 'nonce': None, } for o in range(0, len(orderbook)): order = orderbook[o] side = 'asks' if (order['side'] == 'Sell') else 'bids' amount = self.safe_float(order, 'size') price = self.safe_float(order, 'price') # https://github.com/ccxt/ccxt/issues/4926 # https://github.com/ccxt/ccxt/issues/4927 # the exchange sometimes returns null price in the orderbook if price is not None: result[side].append([price, amount]) result['bids'] = self.sort_by(result['bids'], 0, True) result['asks'] = self.sort_by(result['asks'], 0) return result def fetch_order(self, id, symbol=None, params={}): filter = {'filter': {'orderID': id}} result = self.fetch_orders(symbol, None, None, self.deep_extend(filter, params)) numResults = len(result) if numResults == 1: return result[0] raise OrderNotFound(self.id + ': The order ' + id + ' not found.') def fetch_orders(self, symbol=None, since=None, limit=None, params={}): self.load_markets() market = None request = {} if symbol is not None: market = self.market(symbol) request['symbol'] = market['id'] if since is not None: request['startTime'] = self.iso8601(since) if limit is not None: request['count'] = limit request = self.deep_extend(request, params) # why the hassle? urlencode in python is kinda broken for nested dicts. # E.g. self.urlencode({"filter": {"open": True}}) will return "filter={'open':+True}" # Bitmex doesn't like that. Hence resorting to self hack. if 'filter' in request: request['filter'] = self.json(request['filter']) response = self.privateGetOrder(request) return self.parse_orders(response, market, since, limit) def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): filter_params = {'filter': {'open': True}} return self.fetch_orders(symbol, since, limit, self.deep_extend(filter_params, params)) def fetch_closed_orders(self, symbol=None, since=None, limit=None, params={}): # Bitmex barfs if you set 'open': False in the filter... orders = self.fetch_orders(symbol, since, limit, params) return self.filter_by(orders, 'status', 'closed') def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): self.load_markets() market = None request = {} if symbol is not None: market = self.market(symbol) request['symbol'] = market['id'] if since is not None: request['startTime'] = self.iso8601(since) if limit is not None: request['count'] = limit request = self.deep_extend(request, params) # why the hassle? urlencode in python is kinda broken for nested dicts. # E.g. self.urlencode({"filter": {"open": True}}) will return "filter={'open':+True}" # Bitmex doesn't like that. Hence resorting to self hack. if 'filter' in request: request['filter'] = self.json(request['filter']) response = self.privateGetExecutionTradeHistory(request) # # [ # { # "execID": "string", # "orderID": "string", # "clOrdID": "string", # "clOrdLinkID": "string", # "account": 0, # "symbol": "string", # "side": "string", # "lastQty": 0, # "lastPx": 0, # "underlyingLastPx": 0, # "lastMkt": "string", # "lastLiquidityInd": "string", # "simpleOrderQty": 0, # "orderQty": 0, # "price": 0, # "displayQty": 0, # "stopPx": 0, # "pegOffsetValue": 0, # "pegPriceType": "string", # "currency": "string", # "settlCurrency": "string", # "execType": "string", # "ordType": "string", # "timeInForce": "string", # "execInst": "string", # "contingencyType": "string", # "exDestination": "string", # "ordStatus": "string", # "triggered": "string", # "workingIndicator": True, # "ordRejReason": "string", # "simpleLeavesQty": 0, # "leavesQty": 0, # "simpleCumQty": 0, # "cumQty": 0, # "avgPx": 0, # "commission": 0, # "tradePublishIndicator": "string", # "multiLegReportingType": "string", # "text": "string", # "trdMatchID": "string", # "execCost": 0, # "execComm": 0, # "homeNotional": 0, # "foreignNotional": 0, # "transactTime": "2019-03-05T12:47:02.762Z", # "timestamp": "2019-03-05T12:47:02.762Z" # } # ] # return self.parse_trades(response, market, since, limit) def fetch_ticker(self, symbol, params={}): self.load_markets() market = self.market(symbol) if not market['active']: raise ExchangeError(self.id + ': symbol ' + symbol + ' is delisted') tickers = self.fetch_tickers([symbol], params) ticker = self.safe_value(tickers, symbol) if ticker is None: raise ExchangeError(self.id + ' ticker symbol ' + symbol + ' not found') return ticker def fetch_tickers(self, symbols=None, params={}): self.load_markets() response = self.publicGetInstrumentActiveAndIndices(params) result = {} for i in range(0, len(response)): ticker = self.parse_ticker(response[i]) symbol = self.safe_string(ticker, 'symbol') if symbol is not None: result[symbol] = ticker return result def parse_ticker(self, ticker, market=None): # # { symbol: "ETHH19", # rootSymbol: "ETH", # state: "Open", # typ: "FFCCSX", # listing: "2018-12-17T04:00:00.000Z", # front: "2019-02-22T12:00:00.000Z", # expiry: "2019-03-29T12:00:00.000Z", # settle: "2019-03-29T12:00:00.000Z", # relistInterval: null, # inverseLeg: "", # sellLeg: "", # buyLeg: "", # optionStrikePcnt: null, # optionStrikeRound: null, # optionStrikePrice: null, # optionMultiplier: null, # positionCurrency: "ETH", # underlying: "ETH", # quoteCurrency: "XBT", # underlyingSymbol: "ETHXBT=", # reference: "BMEX", # referenceSymbol: ".BETHXBT30M", # calcInterval: null, # publishInterval: null, # publishTime: null, # maxOrderQty: 100000000, # maxPrice: 10, # lotSize: 1, # tickSize: 0.00001, # multiplier: 100000000, # settlCurrency: "XBt", # underlyingToPositionMultiplier: 1, # underlyingToSettleMultiplier: null, # quoteToSettleMultiplier: 100000000, # isQuanto: False, # isInverse: False, # initMargin: 0.02, # maintMargin: 0.01, # riskLimit: 5000000000, # riskStep: 5000000000, # limit: null, # capped: False, # taxed: True, # deleverage: True, # makerFee: -0.0005, # takerFee: 0.0025, # settlementFee: 0, # insuranceFee: 0, # fundingBaseSymbol: "", # fundingQuoteSymbol: "", # fundingPremiumSymbol: "", # fundingTimestamp: null, # fundingInterval: null, # fundingRate: null, # indicativeFundingRate: null, # rebalanceTimestamp: null, # rebalanceInterval: null, # openingTimestamp: "2019-02-13T08:00:00.000Z", # closingTimestamp: "2019-02-13T09:00:00.000Z", # sessionInterval: "2000-01-01T01:00:00.000Z", # prevClosePrice: 0.03347, # limitDownPrice: null, # limitUpPrice: null, # bankruptLimitDownPrice: null, # bankruptLimitUpPrice: null, # prevTotalVolume: 1386531, # totalVolume: 1387062, # volume: 531, # volume24h: 17118, # prevTotalTurnover: 4741294246000, # totalTurnover: 4743103466000, # turnover: 1809220000, # turnover24h: 57919845000, # homeNotional24h: 17118, # foreignNotional24h: 579.19845, # prevPrice24h: 0.03349, # vwap: 0.03383564, # highPrice: 0.03458, # lowPrice: 0.03329, # lastPrice: 0.03406, # lastPriceProtected: 0.03406, # lastTickDirection: "ZeroMinusTick", # lastChangePcnt: 0.017, # bidPrice: 0.03406, # midPrice: 0.034065, # askPrice: 0.03407, # impactBidPrice: 0.03406, # impactMidPrice: 0.034065, # impactAskPrice: 0.03407, # hasLiquidity: True, # openInterest: 83679, # openValue: 285010674000, # fairMethod: "ImpactMidPrice", # fairBasisRate: 0, # fairBasis: 0, # fairPrice: 0.03406, # markMethod: "FairPrice", # markPrice: 0.03406, # indicativeTaxRate: 0, # indicativeSettlePrice: 0.03406, # optionUnderlyingPrice: null, # settledPrice: null, # timestamp: "2019-02-13T08:40:30.000Z", # } # symbol = None marketId = self.safe_string(ticker, 'symbol') market = self.safe_value(self.markets_by_id, marketId, market) if market is not None: symbol = market['symbol'] timestamp = self.parse8601(self.safe_string(ticker, 'timestamp')) open = self.safe_float(ticker, 'prevPrice24h') last = self.safe_float(ticker, 'lastPrice') change = None percentage = None if last is not None and open is not None: change = last - open if open > 0: percentage = change / open * 100 return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_float(ticker, 'highPrice'), 'low': self.safe_float(ticker, 'lowPrice'), 'bid': self.safe_float(ticker, 'bidPrice'), 'bidVolume': None, 'ask': self.safe_float(ticker, 'askPrice'), 'askVolume': None, 'vwap': self.safe_float(ticker, 'vwap'), 'open': open, 'close': last, 'last': last, 'previousClose': None, 'change': change, 'percentage': percentage, 'average': self.sum(open, last) / 2, 'baseVolume': self.safe_float(ticker, 'homeNotional24h'), 'quoteVolume': self.safe_float(ticker, 'foreignNotional24h'), 'info': ticker, } def parse_ohlcv(self, ohlcv, market=None, timeframe='1m', since=None, limit=None): timestamp = self.parse8601(ohlcv['timestamp']) return [ timestamp, self.safe_float(ohlcv, 'open'), self.safe_float(ohlcv, 'high'), self.safe_float(ohlcv, 'low'), self.safe_float(ohlcv, 'close'), self.safe_float(ohlcv, 'volume'), ] def fetch_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): self.load_markets() # send JSON key/value pairs, such as {"key": "value"} # filter by individual fields and do advanced queries on timestamps # filter = {'key': 'value'} # send a bare series(e.g. XBU) to nearest expiring contract in that series # you can also send a timeframe, e.g. XBU:monthly # timeframes: daily, weekly, monthly, quarterly, and biquarterly market = self.market(symbol) request = { 'symbol': market['id'], 'binSize': self.timeframes[timeframe], 'partial': True, # True == include yet-incomplete current bins # 'filter': filter, # filter by individual fields and do advanced queries # 'columns': [], # will return all columns if omitted # 'start': 0, # starting point for results(wtf?) # 'reverse': False, # True == newest first # 'endTime': '', # ending date filter for results } if limit is not None: request['count'] = limit # default 100, max 500 # if since is not set, they will return candles starting from 2017-01-01 if since is not None: ymdhms = self.ymdhms(since) request['startTime'] = ymdhms # starting date filter for results response = self.publicGetTradeBucketed(self.extend(request, params)) return self.parse_ohlcvs(response, market, timeframe, since, limit) def parse_trade(self, trade, market=None): # # fetchTrades(public) # # { # timestamp: '2018-08-28T00:00:02.735Z', # symbol: 'XBTUSD', # side: 'Buy', # size: 2000, # price: 6906.5, # tickDirection: 'PlusTick', # trdMatchID: 'b9a42432-0a46-6a2f-5ecc-c32e9ca4baf8', # grossValue: 28958000, # homeNotional: 0.28958, # foreignNotional: 2000 # } # # fetchMyTrades(private) # # { # "execID": "string", # "orderID": "string", # "clOrdID": "string", # "clOrdLinkID": "string", # "account": 0, # "symbol": "string", # "side": "string", # "lastQty": 0, # "lastPx": 0, # "underlyingLastPx": 0, # "lastMkt": "string", # "lastLiquidityInd": "string", # "simpleOrderQty": 0, # "orderQty": 0, # "price": 0, # "displayQty": 0, # "stopPx": 0, # "pegOffsetValue": 0, # "pegPriceType": "string", # "currency": "string", # "settlCurrency": "string", # "execType": "string", # "ordType": "string", # "timeInForce": "string", # "execInst": "string", # "contingencyType": "string", # "exDestination": "string", # "ordStatus": "string", # "triggered": "string", # "workingIndicator": True, # "ordRejReason": "string", # "simpleLeavesQty": 0, # "leavesQty": 0, # "simpleCumQty": 0, # "cumQty": 0, # "avgPx": 0, # "commission": 0, # "tradePublishIndicator": "string", # "multiLegReportingType": "string", # "text": "string", # "trdMatchID": "string", # "execCost": 0, # "execComm": 0, # "homeNotional": 0, # "foreignNotional": 0, # "transactTime": "2019-03-05T12:47:02.762Z", # "timestamp": "2019-03-05T12:47:02.762Z" # } # timestamp = self.parse8601(self.safe_string(trade, 'timestamp')) price = self.safe_float(trade, 'price') amount = self.safe_float_2(trade, 'size', 'lastQty') id = self.safe_string(trade, 'trdMatchID') order = self.safe_string(trade, 'orderID') side = self.safe_string(trade, 'side').lower() # price * amount doesn't work for all symbols(e.g. XBT, ETH) cost = self.safe_float(trade, 'execCost') if cost is not None: cost = abs(cost) / 100000000 fee = None if 'execComm' in trade: feeCost = self.safe_float(trade, 'execComm') feeCost = feeCost / 100000000 currencyId = self.safe_string(trade, 'currency') currencyId = currencyId.upper() feeCurrency = self.common_currency_code(currencyId) feeRate = self.safe_float(trade, 'commission') fee = { 'cost': feeCost, 'currency': feeCurrency, 'rate': feeRate, } takerOrMaker = None if fee is not None: takerOrMaker = fee['cost'] < 'maker' if 0 else 'taker' symbol = None marketId = self.safe_string(trade, 'symbol') if marketId is not None: if marketId in self.markets_by_id: market = self.markets_by_id[marketId] symbol = market['symbol'] else: symbol = marketId return { 'info': trade, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'id': id, 'order': order, 'type': None, 'takerOrMaker': takerOrMaker, 'side': side, 'price': price, 'cost': cost, 'amount': amount, 'fee': fee, } def parse_order_status(self, status): statuses = { 'New': 'open', 'PartiallyFilled': 'open', 'Filled': 'closed', 'DoneForDay': 'open', 'Canceled': 'canceled', 'PendingCancel': 'open', 'PendingNew': 'open', 'Rejected': 'rejected', 'Expired': 'expired', 'Stopped': 'open', 'Untriggered': 'open', 'Triggered': 'open', } return self.safe_string(statuses, status, status) def parse_order(self, order, market=None): status = self.parse_order_status(self.safe_string(order, 'ordStatus')) symbol = None if market is not None: symbol = market['symbol'] else: id = order['symbol'] if id in self.markets_by_id: market = self.markets_by_id[id] symbol = market['symbol'] timestamp = self.parse8601(self.safe_string(order, 'timestamp')) lastTradeTimestamp = self.parse8601(self.safe_string(order, 'transactTime')) price = self.safe_float(order, 'price') amount = self.safe_float(order, 'orderQty') filled = self.safe_float(order, 'cumQty', 0.0) remaining = None if amount is not None: if filled is not None: remaining = max(amount - filled, 0.0) average = self.safe_float(order, 'avgPx') cost = None if filled is not None: if average is not None: cost = average * filled elif price is not None: cost = price * filled result = { 'info': order, 'id': str(order['orderID']), 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': lastTradeTimestamp, 'symbol': symbol, 'type': order['ordType'].lower(), 'side': order['side'].lower(), 'price': price, 'amount': amount, 'cost': cost, 'average': average, 'filled': filled, 'remaining': remaining, 'status': status, 'fee': None, } return result def fetch_trades(self, symbol, since=None, limit=None, params={}): self.load_markets() market = self.market(symbol) request = { 'symbol': market['id'], } if since is not None: request['startTime'] = self.iso8601(since) if limit is not None: request['count'] = limit response = self.publicGetTrade(self.extend(request, params)) # # [ # { # timestamp: '2018-08-28T00:00:02.735Z', # symbol: 'XBTUSD', # side: 'Buy', # size: 2000, # price: 6906.5, # tickDirection: 'PlusTick', # trdMatchID: 'b9a42432-0a46-6a2f-5ecc-c32e9ca4baf8', # grossValue: 28958000, # homeNotional: 0.28958, # foreignNotional: 2000 # }, # { # timestamp: '2018-08-28T00:00:03.778Z', # symbol: 'XBTUSD', # side: 'Sell', # size: 1000, # price: 6906, # tickDirection: 'MinusTick', # trdMatchID: '0d4f1682-5270-a800-569b-4a0eb92db97c', # grossValue: 14480000, # homeNotional: 0.1448, # foreignNotional: 1000 # }, # ] # return self.parse_trades(response, market, since, limit) def create_order(self, symbol, type, side, amount, price=None, params={}): self.load_markets() request = { 'symbol': self.market_id(symbol), 'side': self.capitalize(side), 'orderQty': amount, 'ordType': self.capitalize(type), } if price is not None: request['price'] = price response = self.privatePostOrder(self.extend(request, params)) order = self.parse_order(response) id = order['id'] self.orders[id] = order return self.extend({'info': response}, order) def edit_order(self, id, symbol, type, side, amount=None, price=None, params={}): self.load_markets() request = { 'orderID': id, } if amount is not None: request['orderQty'] = amount if price is not None: request['price'] = price response = self.privatePutOrder(self.extend(request, params)) order = self.parse_order(response) self.orders[order['id']] = order return self.extend({'info': response}, order) def cancel_order(self, id, symbol=None, params={}): self.load_markets() response = self.privateDeleteOrder(self.extend({'orderID': id}, params)) order = response[0] error = self.safe_string(order, 'error') if error is not None: if error.find('Unable to cancel order due to existing state') >= 0: raise OrderNotFound(self.id + ' cancelOrder() failed: ' + error) order = self.parse_order(order) self.orders[order['id']] = order return self.extend({'info': response}, order) def is_fiat(self, currency): if currency == 'EUR': return True if currency == 'PLN': return True return False def withdraw(self, code, amount, address, tag=None, params={}): self.check_address(address) self.load_markets() # currency = self.currency(code) if code != 'BTC': raise ExchangeError(self.id + ' supoprts BTC withdrawals only, other currencies coming soon...') request = { 'currency': 'XBt', # temporarily 'amount': amount, 'address': address, # 'otpToken': '123456', # requires if two-factor auth(OTP) is enabled # 'fee': 0.001, # bitcoin network fee } response = self.privatePostUserRequestWithdrawal(self.extend(request, params)) return { 'info': response, 'id': response['transactID'], } def handle_errors(self, code, reason, url, method, headers, body, response): if code == 429: raise DDoSProtection(self.id + ' ' + body) if code >= 400: if body: if body[0] == '{': error = self.safe_value(response, 'error', {}) message = self.safe_string(error, 'message') feedback = self.id + ' ' + body exact = self.exceptions['exact'] if message in exact: raise exact[message](feedback) broad = self.exceptions['broad'] broadKey = self.findBroadlyMatchedKey(broad, message) if broadKey is not None: raise broad[broadKey](feedback) if code == 400: raise BadRequest(feedback) raise ExchangeError(feedback) # unknown message def nonce(self): return self.milliseconds() def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): query = '/api/' + self.version + '/' + path if method != 'PUT': if params: query += '?' + self.urlencode(params) url = self.urls['api'] + query if api == 'private': self.check_required_credentials() auth = method + query expires = self.safe_integer(self.options, 'api-expires') headers = { 'Content-Type': 'application/json', 'api-key': self.apiKey, } expires = self.sum(self.seconds(), expires) expires = str(expires) auth += expires headers['api-expires'] = expires if method == 'POST' or method == 'PUT': if params: body = self.json(params) auth += body headers['api-signature'] = self.hmac(self.encode(auth), self.encode(self.secret)) return {'url': url, 'method': method, 'body': body, 'headers': headers}
py
b4027bd972524db718c7f2bfafa6963466549ad0
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Static() result.template = "object/static/structure/general/shared_transport_debris_01.iff" result.attribute_template_id = -1 result.stfName("obj_n","unknown_object") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
py
b4027d329ad4d2019c51f1d754d9538286e6c2ea
# -*- coding: utf-8 -*- # nghttp2 - HTTP/2 C Library # Copyright (c) 2012 Tatsuhiro Tsujikawa # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # nghttp2 documentation build configuration file, created by # sphinx-quickstart on Sun Mar 11 22:57:49 2012. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) sys.path.append(os.path.abspath('../..//doc/_exts')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinxcontrib.rubydomain'] # Add any paths that contain templates here, relative to this directory. templates_path = ['../..//_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'nghttp2' copyright = u'2012, 2015, 2016, Tatsuhiro Tsujikawa' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '1.39.1' # The full version, including alpha/beta/rc tags. release = '1.39.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['manual', 'README.rst', '*-header.rst', 'sources'] # The reST default role (used for this markup: `text`) to use for all documents. default_role = 'c:func' primary_domain = 'c' # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The default language to highlight source code in. The default is 'python'. highlight_language = 'c' # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['../..//doc/_themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". #html_static_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = False # Custom sidebar templates, maps document names to template names. html_sidebars = { '**': ['menu.html', 'localtoc.html', 'relations.html', 'sourcelink.html', 'searchbox.html'] } # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. html_show_sourcelink = False html_copy_source = False # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'nghttp2doc' # -- Options for LaTeX output -------------------------------------------------- # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'nghttp2.tex', u'nghttp2 Documentation', u'Tatsuhiro Tsujikawa', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Additional stuff for the LaTeX preamble. #latex_preamble = '' # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('nghttp.1', 'nghttp', u'HTTP/2 client', [u'Tatsuhiro Tsujikawa'], 1), ('nghttpd.1', 'nghttpd', u'HTTP/2 server', [u'Tatsuhiro Tsujikawa'], 1), ('nghttpx.1', 'nghttpx', u'HTTP/2 proxy', [u'Tatsuhiro Tsujikawa'], 1), ('h2load.1', 'h2load', u'HTTP/2 benchmarking tool', [u'Tatsuhiro Tsujikawa'], 1) ]
py
b4027d5bbd10b52d465eba549b314b9364b493a6
from typing import Dict, List import demistomock as demisto from CommonServerPython import * special = ['n', 't', '\\', '"', '\'', '7', 'r'] def check_if_found_incident(res: List): if res and isinstance(res, list) and isinstance(res[0].get('Contents'), dict): if 'data' not in res[0]['Contents']: raise DemistoException(res[0].get('Contents')) elif res[0]['Contents']['data'] is None: return False return True else: raise DemistoException(f'failed to get incidents from demisto.\nGot: {res}') def is_valid_args(args: Dict): array_args: List[str] = ['id', 'name', 'status', 'notstatus', 'reason', 'level', 'owner', 'type', 'query'] error_msg: List[str] = [] for _key, value in args.items(): if _key in array_args: try: if _key == 'id': if not isinstance(value, (int, str, list)): error_msg.append( f'Error while parsing the incident id with the value: {value}. The given type: ' f'{type(value)} is not a valid type for an ID. The supported id types are: int, list and str') elif isinstance(value, str): _ = bytes(value, "utf-8").decode("unicode_escape") else: _ = bytes(value, "utf-8").decode("unicode_escape") except UnicodeDecodeError as ex: error_msg.append(f'Error while parsing the argument: "{_key}" ' f'\nError:\n- "{str(ex)}"') if len(error_msg) != 0: raise DemistoException('\n'.join(error_msg)) return True def apply_filters(incidents: List, args: Dict): names_to_filter = set(argToList(args.get('name'))) types_to_filter = set(argToList(args.get('type'))) filtered_incidents = [] for incident in incidents: if names_to_filter and incident['name'] not in names_to_filter: continue if types_to_filter and incident['type'] not in types_to_filter: continue filtered_incidents.append(incident) return filtered_incidents def add_incidents_link(data: List): server_url = demisto.demistoUrls().get('server') for incident in data: incident_link = urljoin(server_url, f'#/Details/{incident.get("id")}') incident['incidentLink'] = incident_link return data def search_incidents(args: Dict): # pragma: no cover if not is_valid_args(args): return if fromdate := arg_to_datetime(args.get('fromdate')): from_date = fromdate.isoformat() args['fromdate'] = from_date if todate := arg_to_datetime(args.get('todate')): to_date = todate.isoformat() args['todate'] = to_date if args.get('trimevents') == '0': args.pop('trimevents') # handle list of ids if args.get('id'): args['id'] = ','.join(argToList(args.get('id'))) res: List = execute_command('getIncidents', args, extract_contents=False) incident_found: bool = check_if_found_incident(res) if incident_found is False: return 'Incidents not found.', {}, {} data = apply_filters(res[0]['Contents']['data'], args) data = add_incidents_link(data) headers: List[str] = ['id', 'name', 'severity', 'status', 'owner', 'created', 'closed', 'incidentLink'] md: str = tableToMarkdown(name="Incidents found", t=data, headers=headers) return md, data, res def main(): # pragma: no cover args: Dict = demisto.args() try: readable_output, outputs, raw_response = search_incidents(args) if search_results_label := args.get('searchresultslabel'): for output in outputs: output['searchResultsLabel'] = search_results_label results = CommandResults( outputs_prefix='foundIncidents', outputs_key_field='id', readable_output=readable_output, outputs=outputs, raw_response=raw_response ) return_results(results) except DemistoException as error: return_error(str(error), error) if __name__ in ('__main__', '__builtin__', 'builtins'): # pragma: no cover main()
py
b40280b4eee78b706701206a8ddd12c2f0690232
import pytest def test_pass_to_show_in_report(rp_logger): rp_logger.info("Just a passed test") assert True is True @pytest.mark.skip(reason='no way of currently testing this') def test_the_unknown(): assert True is False @pytest.mark.command_skip def test_custom_mark_skip_command_line(): assert True is False @pytest.mark.fixture_skip def test_custom_mark_skip_fixture(): assert True is False def test_inner_skip_test(): pytest.skip("Skip from test insides")
py
b40280fab535e60850aee0dd57edfd778466d311
"""Certbot client.""" # version number like 1.2.3a0, must have at least 2 parts, like 1.2 import sys import warnings __version__ = '1.24.0.dev0' if sys.version_info[:2] == (3, 6): warnings.warn( "Python 3.6 support will be dropped in the next release of " "certbot. Please upgrade your Python version.", PendingDeprecationWarning, ) # pragma: no cover
py
b4028111d1c5aa18b9e75266591e4aaa783049cd
# -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-03-10 11:13 from __future__ import unicode_literals import django.contrib.postgres.fields.jsonb from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('home', '0008_work_link'), ] operations = [ migrations.AddField( model_name='homepage', name='linked_data', field=django.contrib.postgres.fields.jsonb.JSONField(blank=True, help_text='Linked Data in JSON', null=True), ), ]
py
b40281447097ff08c7ab984cbc09234e8ed27ee6
import typing import databases import sqlalchemy import typesystem from sqlalchemy.ext.asyncio import create_async_engine from orm.exceptions import MultipleMatches, NoMatch from orm.fields import Date, DateTime, String, Text FILTER_OPERATORS = { "exact": "__eq__", "iexact": "ilike", "contains": "like", "icontains": "ilike", "in": "in_", "gt": "__gt__", "gte": "__ge__", "lt": "__lt__", "lte": "__le__", } def _update_auto_now_fields(values, fields): for key, value in fields.items(): if isinstance(value, (DateTime, Date)) and value.auto_now: values[key] = value.validator.get_default_value() return values class ModelRegistry: def __init__(self, database: databases.Database) -> None: self.database = database self.models = {} self._metadata = sqlalchemy.MetaData() @property def metadata(self): for model_cls in self.models.values(): model_cls.build_table() return self._metadata async def create_all(self): url = self._get_database_url() engine = create_async_engine(url) async with self.database: async with engine.begin() as conn: await conn.run_sync(self.metadata.create_all) await engine.dispose() async def drop_all(self): url = self._get_database_url() engine = create_async_engine(url) async with self.database: async with engine.begin() as conn: await conn.run_sync(self.metadata.drop_all) await engine.dispose() def _get_database_url(self) -> str: url = self.database.url if not url.driver: if url.dialect == "postgresql": url = url.replace(driver="asyncpg") elif url.dialect == "mysql": url = url.replace(driver="aiomysql") elif url.dialect == "sqlite": url = url.replace(driver="aiosqlite") return str(url) class ModelMeta(type): def __new__(cls, name, bases, attrs): model_class = super().__new__(cls, name, bases, attrs) if "registry" in attrs: model_class.database = attrs["registry"].database attrs["registry"].models[name] = model_class if "tablename" not in attrs: setattr(model_class, "tablename", name.lower()) for name, field in attrs.get("fields", {}).items(): setattr(field, "registry", attrs.get("registry")) if field.primary_key: model_class.pkname = name return model_class @property def table(cls): if not hasattr(cls, "_table"): cls._table = cls.build_table() return cls._table @property def columns(cls) -> sqlalchemy.sql.ColumnCollection: return cls._table.columns class QuerySet: ESCAPE_CHARACTERS = ["%", "_"] def __init__( self, model_cls=None, filter_clauses=None, select_related=None, limit_count=None, offset=None, order_by=None, ): self.model_cls = model_cls self.filter_clauses = [] if filter_clauses is None else filter_clauses self._select_related = [] if select_related is None else select_related self.limit_count = limit_count self.query_offset = offset self._order_by = [] if order_by is None else order_by def __get__(self, instance, owner): return self.__class__(model_cls=owner) @property def database(self): return self.model_cls.registry.database @property def table(self) -> sqlalchemy.Table: return self.model_cls.table @property def schema(self): fields = {key: field.validator for key, field in self.model_cls.fields.items()} return typesystem.Schema(fields=fields) @property def pkname(self): return self.model_cls.pkname def _build_select_expression(self): tables = [self.table] select_from = self.table for item in self._select_related: model_cls = self.model_cls select_from = self.table for part in item.split("__"): model_cls = model_cls.fields[part].target table = model_cls.table select_from = sqlalchemy.sql.join(select_from, table) tables.append(table) expr = sqlalchemy.sql.select(tables) expr = expr.select_from(select_from) if self.filter_clauses: if len(self.filter_clauses) == 1: clause = self.filter_clauses[0] else: clause = sqlalchemy.sql.and_(*self.filter_clauses) expr = expr.where(clause) if self._order_by: order_by = list(map(self._prepare_order_by, self._order_by)) expr = expr.order_by(*order_by) if self.limit_count: expr = expr.limit(self.limit_count) if self.query_offset: expr = expr.offset(self.query_offset) return expr def filter( self, clause: typing.Optional[sqlalchemy.sql.expression.BinaryExpression] = None, **kwargs: typing.Any, ): if clause is not None: self.filter_clauses.append(clause) return self else: return self._filter_query(**kwargs) def exclude( self, clause: typing.Optional[sqlalchemy.sql.expression.BinaryExpression] = None, **kwargs: typing.Any, ): if clause is not None: self.filter_clauses.append(clause) return self else: return self._filter_query(_exclude=True, **kwargs) def _filter_query(self, _exclude: bool = False, **kwargs): clauses = [] filter_clauses = self.filter_clauses select_related = list(self._select_related) if kwargs.get("pk"): pk_name = self.model_cls.pkname kwargs[pk_name] = kwargs.pop("pk") for key, value in kwargs.items(): if "__" in key: parts = key.split("__") # Determine if we should treat the final part as a # filter operator or as a related field. if parts[-1] in FILTER_OPERATORS: op = parts[-1] field_name = parts[-2] related_parts = parts[:-2] else: op = "exact" field_name = parts[-1] related_parts = parts[:-1] model_cls = self.model_cls if related_parts: # Add any implied select_related related_str = "__".join(related_parts) if related_str not in select_related: select_related.append(related_str) # Walk the relationships to the actual model class # against which the comparison is being made. for part in related_parts: model_cls = model_cls.fields[part].target column = model_cls.table.columns[field_name] else: op = "exact" column = self.table.columns[key] # Map the operation code onto SQLAlchemy's ColumnElement # https://docs.sqlalchemy.org/en/latest/core/sqlelement.html#sqlalchemy.sql.expression.ColumnElement op_attr = FILTER_OPERATORS[op] has_escaped_character = False if op in ["contains", "icontains"]: has_escaped_character = any( c for c in self.ESCAPE_CHARACTERS if c in value ) if has_escaped_character: # enable escape modifier for char in self.ESCAPE_CHARACTERS: value = value.replace(char, f"\\{char}") value = f"%{value}%" if isinstance(value, Model): value = value.pk clause = getattr(column, op_attr)(value) clause.modifiers["escape"] = "\\" if has_escaped_character else None clauses.append(clause) if _exclude: filter_clauses.append(sqlalchemy.not_(sqlalchemy.sql.and_(*clauses))) else: filter_clauses += clauses return self.__class__( model_cls=self.model_cls, filter_clauses=filter_clauses, select_related=select_related, limit_count=self.limit_count, offset=self.query_offset, order_by=self._order_by, ) def search(self, term: typing.Any): if not term: return self filter_clauses = list(self.filter_clauses) value = f"%{term}%" # has_escaped_character = any(c for c in self.ESCAPE_CHARACTERS if c in term) # if has_escaped_character: # # enable escape modifier # for char in self.ESCAPE_CHARACTERS: # term = term.replace(char, f'\\{char}') # term = f"%{value}%" # # clause.modifiers['escape'] = '\\' if has_escaped_character else None search_fields = [ name for name, field in self.model_cls.fields.items() if isinstance(field, (String, Text)) ] search_clauses = [ self.table.columns[name].ilike(value) for name in search_fields ] if len(search_clauses) > 1: filter_clauses.append(sqlalchemy.sql.or_(*search_clauses)) else: filter_clauses.extend(search_clauses) return self.__class__( model_cls=self.model_cls, filter_clauses=filter_clauses, select_related=self._select_related, limit_count=self.limit_count, offset=self.query_offset, order_by=self._order_by, ) def order_by(self, *order_by): return self.__class__( model_cls=self.model_cls, filter_clauses=self.filter_clauses, select_related=self._select_related, limit_count=self.limit_count, offset=self.query_offset, order_by=order_by, ) def select_related(self, related): if not isinstance(related, (list, tuple)): related = [related] related = list(self._select_related) + related return self.__class__( model_cls=self.model_cls, filter_clauses=self.filter_clauses, select_related=related, limit_count=self.limit_count, offset=self.query_offset, order_by=self._order_by, ) async def exists(self) -> bool: expr = self._build_select_expression() expr = sqlalchemy.exists(expr).select() return await self.database.fetch_val(expr) def limit(self, limit_count: int): return self.__class__( model_cls=self.model_cls, filter_clauses=self.filter_clauses, select_related=self._select_related, limit_count=limit_count, offset=self.query_offset, order_by=self._order_by, ) def offset(self, offset: int): return self.__class__( model_cls=self.model_cls, filter_clauses=self.filter_clauses, select_related=self._select_related, limit_count=self.limit_count, offset=offset, order_by=self._order_by, ) async def count(self) -> int: expr = self._build_select_expression().alias("subquery_for_count") expr = sqlalchemy.func.count().select().select_from(expr) return await self.database.fetch_val(expr) async def all(self, **kwargs): if kwargs: return await self.filter(**kwargs).all() expr = self._build_select_expression() rows = await self.database.fetch_all(expr) return [ self.model_cls._from_row(row, select_related=self._select_related) for row in rows ] async def get(self, **kwargs): if kwargs: return await self.filter(**kwargs).get() expr = self._build_select_expression().limit(2) rows = await self.database.fetch_all(expr) if not rows: raise NoMatch() if len(rows) > 1: raise MultipleMatches() return self.model_cls._from_row(rows[0], select_related=self._select_related) async def first(self, **kwargs): if kwargs: return await self.filter(**kwargs).first() rows = await self.limit(1).all() if rows: return rows[0] def _validate_kwargs(self, **kwargs): fields = self.model_cls.fields validator = typesystem.Schema( fields={key: value.validator for key, value in fields.items()} ) kwargs = validator.validate(kwargs) for key, value in fields.items(): if value.validator.read_only and value.validator.has_default(): kwargs[key] = value.validator.get_default_value() return kwargs async def create(self, **kwargs): kwargs = self._validate_kwargs(**kwargs) instance = self.model_cls(**kwargs) expr = self.table.insert().values(**kwargs) if self.pkname not in kwargs: instance.pk = await self.database.execute(expr) else: await self.database.execute(expr) return instance async def bulk_create(self, objs: typing.List[typing.Dict]) -> None: new_objs = [self._validate_kwargs(**obj) for obj in objs] expr = self.table.insert().values(new_objs) await self.database.execute(expr) async def delete(self) -> None: expr = self.table.delete() for filter_clause in self.filter_clauses: expr = expr.where(filter_clause) await self.database.execute(expr) async def update(self, **kwargs) -> None: fields = { key: field.validator for key, field in self.model_cls.fields.items() if key in kwargs } validator = typesystem.Schema(fields=fields) kwargs = _update_auto_now_fields( validator.validate(kwargs), self.model_cls.fields ) expr = self.table.update().values(**kwargs) for filter_clause in self.filter_clauses: expr = expr.where(filter_clause) await self.database.execute(expr) async def get_or_create( self, defaults: typing.Dict[str, typing.Any], **kwargs ) -> typing.Tuple[typing.Any, bool]: try: instance = await self.get(**kwargs) return instance, False except NoMatch: kwargs.update(defaults) instance = await self.create(**kwargs) return instance, True async def update_or_create( self, defaults: typing.Dict[str, typing.Any], **kwargs ) -> typing.Tuple[typing.Any, bool]: try: instance = await self.get(**kwargs) await instance.update(**defaults) return instance, False except NoMatch: kwargs.update(defaults) instance = await self.create(**kwargs) return instance, True def _prepare_order_by(self, order_by: str): reverse = order_by.startswith("-") order_by = order_by.lstrip("-") order_col = self.table.columns[order_by] return order_col.desc() if reverse else order_col class Model(metaclass=ModelMeta): objects = QuerySet() def __init__(self, **kwargs): if "pk" in kwargs: kwargs[self.pkname] = kwargs.pop("pk") for key, value in kwargs.items(): if key not in self.fields: raise ValueError( f"Invalid keyword {key} for class {self.__class__.__name__}" ) setattr(self, key, value) @property def pk(self): return getattr(self, self.pkname) @pk.setter def pk(self, value): setattr(self, self.pkname, value) def __repr__(self): return f"<{self.__class__.__name__}: {self}>" def __str__(self): return f"{self.__class__.__name__}({self.pkname}={self.pk})" @classmethod def build_table(cls): tablename = cls.tablename metadata = cls.registry._metadata columns = [] for name, field in cls.fields.items(): columns.append(field.get_column(name)) return sqlalchemy.Table(tablename, metadata, *columns, extend_existing=True) @property def table(self) -> sqlalchemy.Table: return self.__class__.table async def update(self, **kwargs): fields = { key: field.validator for key, field in self.fields.items() if key in kwargs } validator = typesystem.Schema(fields=fields) kwargs = _update_auto_now_fields(validator.validate(kwargs), self.fields) pk_column = getattr(self.table.c, self.pkname) expr = self.table.update().values(**kwargs).where(pk_column == self.pk) await self.database.execute(expr) # Update the model instance. for key, value in kwargs.items(): setattr(self, key, value) async def delete(self) -> None: pk_column = getattr(self.table.c, self.pkname) expr = self.table.delete().where(pk_column == self.pk) await self.database.execute(expr) async def load(self): # Build the select expression. pk_column = getattr(self.table.c, self.pkname) expr = self.table.select().where(pk_column == self.pk) # Perform the fetch. row = await self.database.fetch_one(expr) # Update the instance. for key, value in dict(row._mapping).items(): setattr(self, key, value) @classmethod def _from_row(cls, row, select_related=[]): """ Instantiate a model instance, given a database row. """ item = {} # Instantiate any child instances first. for related in select_related: if "__" in related: first_part, remainder = related.split("__", 1) model_cls = cls.fields[first_part].target item[first_part] = model_cls._from_row(row, select_related=[remainder]) else: model_cls = cls.fields[related].target item[related] = model_cls._from_row(row) # Pull out the regular column values. for column in cls.table.columns: if column.name not in item: item[column.name] = row[column] return cls(**item) def __setattr__(self, key, value): if key in self.fields: # Setting a relationship to a raw pk value should set a # fully-fledged relationship instance, with just the pk loaded. value = self.fields[key].expand_relationship(value) super().__setattr__(key, value) def __eq__(self, other): if self.__class__ != other.__class__: return False for key in self.fields.keys(): if getattr(self, key, None) != getattr(other, key, None): return False return True
py
b4028181274f654a1138f68066d482cbfaf4141e
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys # sys.path.insert(0, os.path.abspath("..")) # sys.path.insert(0, os.path.abspath("../..")) # sys.path.insert(0, os.path.abspath("../../..")) sys.path.insert(0, os.path.abspath("../../OpenSMOG")) autodoc_mock_imports = ["simtk","numpy","lxml","OpenSMOG_Reporter"] # -- Project information ----------------------------------------------------- project = 'OpenSMOG' copyright = '2020-2021 The Center for Theoretical Biological Physics (CTBP) - Rice University & Northeastern University' author = 'Antonio B. Oliveira Jr., Vinícius G. Contessoto & Paul Whitford' # The full version, including alpha/beta/rc tags version = '1.0.4' release = '1.0.4' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.napoleon", "sphinx.ext.autodoc", "sphinx.ext.mathjax", "sphinx.ext.viewcode", "sphinx.ext.todo", "sphinx.ext.intersphinx", "sphinx.ext.autosummary", "sphinx.ext.autosectionlabel", "nbsphinx", "jupyter_sphinx", "sphinxcontrib.bibtex", ] bibtex_bibfiles = ["Reference/OpenSMOG.bib"] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] source_suffix = ".rst" master_doc = "index" # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [ "_build", "_templates", ] show_authors = True pygments_style = "sphinx" todo_include_todos = False # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". # html_static_path = ['_static'] #html_logo = "images/SBM_logo.png" #html_favicon = "images/SBM_icon.png" html_static_path = [] html_show_sourcelink = True nbsphinx_execute = 'never'
py
b402827c4307ce6ad09ed63cfe942ae08d797b40
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from common import git_repository from common import http_client_appengine from common import dependency from common import deps_parser _CHROMIUM_ROOT_DIR = 'src/' _CHROMIUM_REPO_MASTER = 'https://chromium.googlesource.com/chromium/src.git' class DEPSDownloader(deps_parser.DEPSLoader): """Downloads DEPS from remote Git repo.""" def __init__(self, check_deps_git_first=False): """ Args: check_deps_git_first (bool): If True, use .DEPS.git instead of DEPS. """ self.check_deps_git_first = check_deps_git_first def Load(self, repo_url, revision, deps_file): http_client = http_client_appengine.HttpClientAppengine() repo = git_repository.GitRepository(repo_url, http_client) content = None if self.check_deps_git_first and deps_file == 'DEPS': # When the given deps_file is "DEPS" and .DEPS.git should be checked # first, it's because before migration from SVN to Git, .DEPS.git contains # dependencies hosted in Git while DEPS contains those in SVN. # If .DEPS.git is not found, fallback to the given deps_file. Assume it is # a commit after migration from SVN to Git. content = repo.GetSource('.DEPS.git', revision) if content is None: content = repo.GetSource(deps_file, revision) if content is None: raise Exception( 'Failed to pull %s file from %s, at revision %s.' % ( deps_file, repo_url, revision)) return content def GetChromeDependency(revision, os_platform, check_deps_git_first=False): """Returns all dependencies of Chrome as a dict for the given revision and OS. Args: revision (str): The revision of a Chrome build. os_platform (str): The target platform of the Chrome build, should be one of 'win', 'ios', 'mac', 'unix', 'android', or 'all'. check_deps_git_first (bool): If True, use .DEPS.git instead of DEPS. Returns: A map from dependency path to the dependency info. """ root_dep = dependency.Dependency( _CHROMIUM_ROOT_DIR, _CHROMIUM_REPO_MASTER, revision, 'DEPS') deps_parser.UpdateDependencyTree( root_dep, [os_platform], DEPSDownloader(check_deps_git_first)) dependencies = {} # Flatten the dependency tree into a one-level dict. def FlattenDepTree(dep): dependencies[dep.path] = dep for child in dep.children.values(): FlattenDepTree(child) FlattenDepTree(root_dep) return dependencies def GetChromiumDEPSRolls(old_cr_revision, new_cr_revision, os_platform, check_deps_git_first=False): """Returns a list of dependency rolls between the given Chromium revisions. Args: old_cr_revision (str): The Git commit hash for the old Chromium revision. new_cr_revision (str): The Git commit hash for the new Chromium revision. os_platform (str): The target OS platform of the Chrome or test binary. check_deps_git_first (bool): If True, use .DEPS.git instead of DEPS. """ old_deps = GetChromeDependency( old_cr_revision, os_platform, check_deps_git_first) new_deps = GetChromeDependency( new_cr_revision, os_platform, check_deps_git_first) rolls = [] for path, new_dep in new_deps.iteritems(): if path == _CHROMIUM_ROOT_DIR: # Skip the root dependency -- chromium. continue old_revision = None if path in old_deps: old_revision = old_deps[path].revision if old_revision != new_dep.revision: rolls.append( dependency.DependencyRoll( path, new_dep.repo_url, old_revision, new_dep.revision)) for path, old_dep in old_deps.iteritems(): if path not in new_deps: rolls.append( dependency.DependencyRoll( path, old_dep.repo_url, old_dep.revision, None)) return rolls
py
b40282853f4426a69554c074742a5cdaf440856d
# This file was automatically generated by SWIG (http://www.swig.org). # Version 4.0.2 # # Do not make changes to this file unless you know what you are doing--modify # the SWIG interface file instead. from sys import version_info as _swig_python_version_info if _swig_python_version_info < (2, 7, 0): raise RuntimeError("Python 2.7 or later required") # Import the low-level C/C++ module if __package__ or "." in __name__: from . import _socketstream else: import _socketstream try: import builtins as __builtin__ except ImportError: import __builtin__ _swig_new_instance_method = _socketstream.SWIG_PyInstanceMethod_New _swig_new_static_method = _socketstream.SWIG_PyStaticMethod_New def _swig_repr(self): try: strthis = "proxy of " + self.this.__repr__() except __builtin__.Exception: strthis = "" return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,) def _swig_setattr_nondynamic_instance_variable(set): def set_instance_attr(self, name, value): if name == "thisown": self.this.own(value) elif name == "this": set(self, name, value) elif hasattr(self, name) and isinstance(getattr(type(self), name), property): set(self, name, value) else: raise AttributeError("You cannot add instance attributes to %s" % self) return set_instance_attr def _swig_setattr_nondynamic_class_variable(set): def set_class_attr(cls, name, value): if hasattr(cls, name) and not isinstance(getattr(cls, name), property): set(cls, name, value) else: raise AttributeError("You cannot add class attributes to %s" % cls) return set_class_attr def _swig_add_metaclass(metaclass): """Class decorator for adding a metaclass to a SWIG wrapped class - a slimmed down version of six.add_metaclass""" def wrapper(cls): return metaclass(cls.__name__, cls.__bases__, cls.__dict__.copy()) return wrapper class _SwigNonDynamicMeta(type): """Meta class to enforce nondynamic attributes (no new attributes) for a class""" __setattr__ = _swig_setattr_nondynamic_class_variable(type.__setattr__) import weakref import mfem._par.mesh import mfem._par.matrix import mfem._par.vector import mfem._par.array import mfem._par.mem_manager import mfem._par.operators import mfem._par.sort_pairs import mfem._par.ncmesh import mfem._par.vtk import mfem._par.element import mfem._par.globals import mfem._par.densemat import mfem._par.geom import mfem._par.intrules import mfem._par.table import mfem._par.hash import mfem._par.vertex import mfem._par.gridfunc import mfem._par.coefficient import mfem._par.sparsemat import mfem._par.eltrans import mfem._par.fe import mfem._par.fespace import mfem._par.fe_coll import mfem._par.lininteg import mfem._par.handle import mfem._par.hypre import mfem._par.restriction import mfem._par.bilininteg import mfem._par.linearform import mfem._par.nonlininteg class socketbuf(object): r"""Proxy of C++ mfem::socketbuf class.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, *args): r""" __init__(socketbuf self) -> socketbuf __init__(socketbuf self, int sd) -> socketbuf __init__(socketbuf self, char const [] hostname, int port) -> socketbuf """ _socketstream.socketbuf_swiginit(self, _socketstream.new_socketbuf(*args)) def attach(self, sd): r"""attach(socketbuf self, int sd) -> int""" return _socketstream.socketbuf_attach(self, sd) attach = _swig_new_instance_method(_socketstream.socketbuf_attach) def detach(self): r"""detach(socketbuf self) -> int""" return _socketstream.socketbuf_detach(self) detach = _swig_new_instance_method(_socketstream.socketbuf_detach) def open(self, hostname, port): r"""open(socketbuf self, char const [] hostname, int port) -> int""" return _socketstream.socketbuf_open(self, hostname, port) open = _swig_new_instance_method(_socketstream.socketbuf_open) def close(self): r"""close(socketbuf self) -> int""" return _socketstream.socketbuf_close(self) close = _swig_new_instance_method(_socketstream.socketbuf_close) def getsocketdescriptor(self): r"""getsocketdescriptor(socketbuf self) -> int""" return _socketstream.socketbuf_getsocketdescriptor(self) getsocketdescriptor = _swig_new_instance_method(_socketstream.socketbuf_getsocketdescriptor) def is_open(self): r"""is_open(socketbuf self) -> bool""" return _socketstream.socketbuf_is_open(self) is_open = _swig_new_instance_method(_socketstream.socketbuf_is_open) __swig_destroy__ = _socketstream.delete_socketbuf # Register socketbuf in _socketstream: _socketstream.socketbuf_swigregister(socketbuf) class socketstream(object): r"""Proxy of C++ mfem::socketstream class.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr secure_default = _socketstream.socketstream_secure_default def __init__(self, *args): r""" __init__(socketstream self, bool secure=secure_default) -> socketstream __init__(socketstream self, socketbuf buf) -> socketstream __init__(socketstream self, int s, bool secure=secure_default) -> socketstream __init__(socketstream self, char const [] hostname, int port, bool secure=secure_default) -> socketstream """ _socketstream.socketstream_swiginit(self, _socketstream.new_socketstream(*args)) def rdbuf(self): r"""rdbuf(socketstream self) -> socketbuf""" return _socketstream.socketstream_rdbuf(self) rdbuf = _swig_new_instance_method(_socketstream.socketstream_rdbuf) def open(self, hostname, port): r"""open(socketstream self, char const [] hostname, int port) -> int""" return _socketstream.socketstream_open(self, hostname, port) open = _swig_new_instance_method(_socketstream.socketstream_open) def close(self): r"""close(socketstream self) -> int""" return _socketstream.socketstream_close(self) close = _swig_new_instance_method(_socketstream.socketstream_close) def is_open(self): r"""is_open(socketstream self) -> bool""" return _socketstream.socketstream_is_open(self) is_open = _swig_new_instance_method(_socketstream.socketstream_is_open) __swig_destroy__ = _socketstream.delete_socketstream def precision(self, *args): r""" precision(socketstream self, int const p) -> int precision(socketstream self) -> int """ return _socketstream.socketstream_precision(self, *args) precision = _swig_new_instance_method(_socketstream.socketstream_precision) def send_solution(self, mesh, gf): r"""send_solution(socketstream self, Mesh mesh, GridFunction gf)""" return _socketstream.socketstream_send_solution(self, mesh, gf) send_solution = _swig_new_instance_method(_socketstream.socketstream_send_solution) def send_text(self, ostr): r"""send_text(socketstream self, char const [] ostr)""" return _socketstream.socketstream_send_text(self, ostr) send_text = _swig_new_instance_method(_socketstream.socketstream_send_text) def flush(self): r"""flush(socketstream self)""" return _socketstream.socketstream_flush(self) flush = _swig_new_instance_method(_socketstream.socketstream_flush) def good(self): r"""good(socketstream self) -> bool""" return _socketstream.socketstream_good(self) good = _swig_new_instance_method(_socketstream.socketstream_good) def __lshift__(self, *args): r""" __lshift__(socketstream self, char const [] ostr) -> socketstream __lshift__(socketstream self, int const x) -> socketstream __lshift__(socketstream self, Mesh mesh) -> socketstream __lshift__(socketstream self, GridFunction gf) -> socketstream """ return _socketstream.socketstream___lshift__(self, *args) __lshift__ = _swig_new_instance_method(_socketstream.socketstream___lshift__) def endline(self): r"""endline(socketstream self) -> socketstream""" return _socketstream.socketstream_endline(self) endline = _swig_new_instance_method(_socketstream.socketstream_endline) # Register socketstream in _socketstream: _socketstream.socketstream_swigregister(socketstream) class socketserver(object): r"""Proxy of C++ mfem::socketserver class.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, port, backlog=4): r"""__init__(socketserver self, int port, int backlog=4) -> socketserver""" _socketstream.socketserver_swiginit(self, _socketstream.new_socketserver(port, backlog)) def good(self): r"""good(socketserver self) -> bool""" return _socketstream.socketserver_good(self) good = _swig_new_instance_method(_socketstream.socketserver_good) def close(self): r"""close(socketserver self) -> int""" return _socketstream.socketserver_close(self) close = _swig_new_instance_method(_socketstream.socketserver_close) def accept(self, *args): r""" accept(socketserver self) -> int accept(socketserver self, socketstream sockstr) -> int """ return _socketstream.socketserver_accept(self, *args) accept = _swig_new_instance_method(_socketstream.socketserver_accept) __swig_destroy__ = _socketstream.delete_socketserver # Register socketserver in _socketstream: _socketstream.socketserver_swigregister(socketserver)
py
b40283388a9e37d3c44cf1e5b0dfd9e7b3d46356
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import decimal import random import re import time from oslo.config import cfg from nova.compute import power_state from nova import exception as nova_exception from nova.openstack.common import excutils from nova.openstack.common import log as logging from nova import utils from nova.virt.powervm import blockdev from nova.virt.powervm import command from nova.virt.powervm import common from nova.virt.powervm import constants from nova.virt.powervm import exception from nova.virt.powervm import lpar as LPAR LOG = logging.getLogger(__name__) CONF = cfg.CONF def get_powervm_operator(): if CONF.powervm_mgr_type == 'ivm': return IVMOperator(common.Connection(CONF.powervm_mgr, CONF.powervm_mgr_user, CONF.powervm_mgr_passwd)) def get_powervm_disk_adapter(): return blockdev.PowerVMLocalVolumeAdapter( common.Connection(CONF.powervm_mgr, CONF.powervm_mgr_user, CONF.powervm_mgr_passwd)) class PowerVMOperator(object): """PowerVM main operator. The PowerVMOperator is intended to wrap all operations from the driver and handle either IVM or HMC managed systems. """ def __init__(self): self._operator = get_powervm_operator() self._disk_adapter = get_powervm_disk_adapter() self._host_stats = {} self._update_host_stats() def get_info(self, instance_name): """Get the current status of an LPAR instance. Returns a dict containing: :state: the running state, one of the power_state codes :max_mem: (int) the maximum memory in KBytes allowed :mem: (int) the memory in KBytes used by the domain :num_cpu: (int) the number of virtual CPUs for the domain :cpu_time: (int) the CPU time used in nanoseconds :raises: PowerVMLPARInstanceNotFound """ lpar_instance = self._get_instance(instance_name) state = constants.POWERVM_POWER_STATE.get( lpar_instance['state'], power_state.NOSTATE) return {'state': state, 'max_mem': lpar_instance['max_mem'], 'mem': lpar_instance['desired_mem'], 'num_cpu': lpar_instance['max_procs'], 'cpu_time': lpar_instance['uptime']} def instance_exists(self, instance_name): lpar_instance = self._operator.get_lpar(instance_name) return True if lpar_instance else False def _get_instance(self, instance_name): """Check whether or not the LPAR instance exists and return it.""" lpar_instance = self._operator.get_lpar(instance_name) if lpar_instance is None: LOG.error(_("LPAR instance '%s' not found") % instance_name) raise exception.PowerVMLPARInstanceNotFound( instance_name=instance_name) return lpar_instance def list_instances(self): """ Return the names of all the instances known to the virtualization layer, as a list. """ lpar_instances = self._operator.list_lpar_instances() return lpar_instances def get_available_resource(self): """Retrieve resource info. :returns: dictionary containing resource info """ data = self.get_host_stats() # Memory data is in MB already. memory_mb_used = data['host_memory_total'] - data['host_memory_free'] # Convert to GB local_gb = data['disk_total'] / 1024 local_gb_used = data['disk_used'] / 1024 dic = {'vcpus': data['vcpus'], 'memory_mb': data['host_memory_total'], 'local_gb': local_gb, 'vcpus_used': data['vcpus_used'], 'memory_mb_used': memory_mb_used, 'local_gb_used': local_gb_used, 'hypervisor_type': data['hypervisor_type'], 'hypervisor_version': data['hypervisor_version'], 'hypervisor_hostname': self._operator.get_hostname(), 'cpu_info': ','.join(data['cpu_info']), 'disk_available_least': data['disk_total']} return dic def get_host_stats(self, refresh=False): """Return currently known host stats.""" if refresh: self._update_host_stats() return self._host_stats def _update_host_stats(self): memory_info = self._operator.get_memory_info() cpu_info = self._operator.get_cpu_info() # Note: disk avail information is not accurate. The value # is a sum of all Volume Groups and the result cannot # represent the real possibility. Example: consider two # VGs both 10G, the avail disk will be 20G however, # a 15G image does not fit in any VG. This can be improved # later on. disk_info = self._operator.get_disk_info() data = {} data['vcpus'] = cpu_info['total_procs'] data['vcpus_used'] = cpu_info['total_procs'] - cpu_info['avail_procs'] data['cpu_info'] = constants.POWERVM_CPU_INFO data['disk_total'] = disk_info['disk_total'] data['disk_used'] = disk_info['disk_used'] data['disk_available'] = disk_info['disk_avail'] data['host_memory_total'] = memory_info['total_mem'] data['host_memory_free'] = memory_info['avail_mem'] data['hypervisor_type'] = constants.POWERVM_HYPERVISOR_TYPE data['hypervisor_version'] = constants.POWERVM_HYPERVISOR_VERSION data['hypervisor_hostname'] = self._operator.get_hostname() data['extres'] = '' self._host_stats = data def spawn(self, context, instance, image_id, network_info): def _create_image(context, instance, image_id): """Fetch image from glance and copy it to the remote system.""" try: root_volume = self._disk_adapter.create_volume_from_image( context, instance, image_id) self._disk_adapter.attach_volume_to_host(root_volume) lpar_id = self._operator.get_lpar(instance['name'])['lpar_id'] vhost = self._operator.get_vhost_by_instance_id(lpar_id) self._operator.attach_disk_to_vhost( root_volume['device_name'], vhost) except Exception, e: LOG.exception(_("PowerVM image creation failed: %s") % str(e)) raise exception.PowerVMImageCreationFailed() spawn_start = time.time() try: try: host_stats = self.get_host_stats(refresh=True) lpar_inst = self._create_lpar_instance(instance, network_info, host_stats) #TODO(mjfork) capture the error and handle the error when the # MAC prefix already exists on the # system (1 in 2^28) self._operator.create_lpar(lpar_inst) LOG.debug(_("Creating LPAR instance '%s'") % instance['name']) except nova_exception.ProcessExecutionError: LOG.exception(_("LPAR instance '%s' creation failed") % instance['name']) raise exception.PowerVMLPARCreationFailed() _create_image(context, instance, image_id) LOG.debug(_("Activating the LPAR instance '%s'") % instance['name']) self._operator.start_lpar(instance['name']) # TODO(mrodden): probably do this a better way # that actually relies on the time module # and nonblocking threading # Wait for boot timeout_count = range(10) while timeout_count: state = self.get_info(instance['name'])['state'] if state == power_state.RUNNING: LOG.info(_("Instance spawned successfully."), instance=instance) break timeout_count.pop() if len(timeout_count) == 0: LOG.error(_("Instance '%s' failed to boot") % instance['name']) self._cleanup(instance['name']) break time.sleep(1) except exception.PowerVMImageCreationFailed: with excutils.save_and_reraise_exception(): # log errors in cleanup try: self._cleanup(instance['name']) except Exception: LOG.exception(_('Error while attempting to ' 'clean up failed instance launch.')) spawn_time = time.time() - spawn_start LOG.info(_("Instance spawned in %s seconds") % spawn_time, instance=instance) def destroy(self, instance_name, destroy_disks=True): """Destroy (shutdown and delete) the specified instance. :param instance_name: Instance name. """ try: self._cleanup(instance_name, destroy_disks) except exception.PowerVMLPARInstanceNotFound: LOG.warn(_("During destroy, LPAR instance '%s' was not found on " "PowerVM system.") % instance_name) def capture_image(self, context, instance, image_id, image_meta): """Capture the root disk for a snapshot :param context: nova context for this operation :param instance: instance information to capture the image from :param image_id: uuid of pre-created snapshot image :param image_meta: metadata to upload with captured image """ lpar = self._operator.get_lpar(instance['name']) previous_state = lpar['state'] # stop the instance if it is running if previous_state == 'Running': LOG.debug(_("Stopping instance %s for snapshot.") % instance['name']) # wait up to 2 minutes for shutdown self.power_off(instance['name'], timeout=120) # get disk_name vhost = self._operator.get_vhost_by_instance_id(lpar['lpar_id']) disk_name = self._operator.get_disk_name_by_vhost(vhost) # do capture and upload self._disk_adapter.create_image_from_volume( disk_name, context, image_id, image_meta) # restart instance if it was running before if previous_state == 'Running': self.power_on(instance['name']) def _cleanup(self, instance_name, destroy_disks=True): lpar_id = self._get_instance(instance_name)['lpar_id'] try: vhost = self._operator.get_vhost_by_instance_id(lpar_id) disk_name = self._operator.get_disk_name_by_vhost(vhost) LOG.debug(_("Shutting down the instance '%s'") % instance_name) self._operator.stop_lpar(instance_name) #dperaza: LPAR should be deleted first so that vhost is #cleanly removed and detached from disk device. LOG.debug(_("Deleting the LPAR instance '%s'") % instance_name) self._operator.remove_lpar(instance_name) if disk_name and destroy_disks: # TODO(mrodden): we should also detach from the instance # before we start deleting things... volume_info = {'device_name': disk_name} #Volume info dictionary might need more info that is lost when #volume is detached from host so that it can be deleted self._disk_adapter.detach_volume_from_host(volume_info) self._disk_adapter.delete_volume(volume_info) except Exception: LOG.exception(_("PowerVM instance cleanup failed")) raise exception.PowerVMLPARInstanceCleanupFailed( instance_name=instance_name) def power_off(self, instance_name, timeout=30): self._operator.stop_lpar(instance_name, timeout) def power_on(self, instance_name): self._operator.start_lpar(instance_name) def macs_for_instance(self, instance): return self._operator.macs_for_instance(instance) def _create_lpar_instance(self, instance, network_info, host_stats=None): inst_name = instance['name'] # CPU/Memory min and max can be configurable. Lets assume # some default values for now. # Memory mem = instance['memory_mb'] if host_stats and mem > host_stats['host_memory_free']: LOG.error(_('Not enough free memory in the host')) raise exception.PowerVMInsufficientFreeMemory( instance_name=instance['name']) mem_min = min(mem, constants.POWERVM_MIN_MEM) mem_max = mem + constants.POWERVM_MAX_MEM # CPU cpus = instance['vcpus'] if host_stats: avail_cpus = host_stats['vcpus'] - host_stats['vcpus_used'] if cpus > avail_cpus: LOG.error(_('Insufficient available CPU on PowerVM')) raise exception.PowerVMInsufficientCPU( instance_name=instance['name']) cpus_min = min(cpus, constants.POWERVM_MIN_CPUS) cpus_max = cpus + constants.POWERVM_MAX_CPUS cpus_units_min = decimal.Decimal(cpus_min) / decimal.Decimal(10) cpus_units = decimal.Decimal(cpus) / decimal.Decimal(10) # Network # To ensure the MAC address on the guest matches the # generated value, pull the first 10 characters off the # MAC address for the mac_base_value parameter and then # get the integer value of the final 2 characters as the # slot_id parameter mac = network_info[0]['address'] mac_base_value = (mac[:-2]).replace(':', '') eth_id = self._operator.get_virtual_eth_adapter_id() slot_id = int(mac[-2:], 16) virtual_eth_adapters = ('%(slot_id)s/0/%(eth_id)s//0/0' % locals()) # LPAR configuration data # max_virtual_slots is hardcoded to 64 since we generate a MAC # address that must be placed in slots 32 - 64 lpar_inst = LPAR.LPAR( name=inst_name, lpar_env='aixlinux', min_mem=mem_min, desired_mem=mem, max_mem=mem_max, proc_mode='shared', sharing_mode='uncap', min_procs=cpus_min, desired_procs=cpus, max_procs=cpus_max, min_proc_units=cpus_units_min, desired_proc_units=cpus_units, max_proc_units=cpus_max, virtual_eth_mac_base_value=mac_base_value, max_virtual_slots=64, virtual_eth_adapters=virtual_eth_adapters) return lpar_inst def _check_host_resources(self, instance, vcpus, mem, host_stats): """Checks resources on host for resize, migrate, and spawn :param vcpus: CPUs to be used :param mem: memory requested by instance :param disk: size of disk to be expanded or created """ if mem > host_stats['host_memory_free']: LOG.exception(_('Not enough free memory in the host')) raise exception.PowerVMInsufficientFreeMemory( instance_name=instance['name']) avail_cpus = host_stats['vcpus'] - host_stats['vcpus_used'] if vcpus > avail_cpus: LOG.exception(_('Insufficient available CPU on PowerVM')) raise exception.PowerVMInsufficientCPU( instance_name=instance['name']) def migrate_disk(self, device_name, src_host, dest, image_path, instance_name=None): """Migrates SVC or Logical Volume based disks :param device_name: disk device name in /dev/ :param dest: IP or DNS name of destination host/VIOS :param image_path: path on source and destination to directory for storing image files :param instance_name: name of instance being migrated :returns: disk_info dictionary object describing root volume information used for locating/mounting the volume """ dest_file_path = self._disk_adapter.migrate_volume( device_name, src_host, dest, image_path, instance_name) disk_info = {} disk_info['root_disk_file'] = dest_file_path return disk_info def deploy_from_migrated_file(self, lpar, file_path, size): # decompress file gzip_ending = '.gz' if file_path.endswith(gzip_ending): raw_file_path = file_path[:-len(gzip_ending)] else: raw_file_path = file_path self._operator._decompress_image_file(file_path, raw_file_path) try: # deploy lpar from file self._deploy_from_vios_file(lpar, raw_file_path, size) finally: # cleanup migrated file self._operator._remove_file(raw_file_path) def _deploy_from_vios_file(self, lpar, file_path, size): self._operator.create_lpar(lpar) lpar = self._operator.get_lpar(lpar['name']) instance_id = lpar['lpar_id'] vhost = self._operator.get_vhost_by_instance_id(instance_id) # Create logical volume on IVM diskName = self._disk_adapter._create_logical_volume(size) # Attach the disk to LPAR self._operator.attach_disk_to_vhost(diskName, vhost) # Copy file to device self._disk_adapter._copy_file_to_device(file_path, diskName) self._operator.start_lpar(lpar['name']) class BaseOperator(object): """Base operator for IVM and HMC managed systems.""" def __init__(self, connection): """Constructor. :param connection: common.Connection object with the information to connect to the remote ssh. """ self._connection = None self.connection_data = connection def _set_connection(self): if self._connection is None: self._connection = common.ssh_connect(self.connection_data) def get_lpar(self, instance_name, resource_type='lpar'): """Return a LPAR object by its instance name. :param instance_name: LPAR instance name :param resource_type: the type of resources to list :returns: LPAR object """ cmd = self.command.lssyscfg('-r %s --filter "lpar_names=%s"' % (resource_type, instance_name)) output = self.run_vios_command(cmd) if not output: return None lpar = LPAR.load_from_conf_data(output[0]) return lpar def list_lpar_instances(self): """List all existent LPAR instances names. :returns: list -- list with instances names. """ lpar_names = self.run_vios_command(self.command.lssyscfg( '-r lpar -F name')) if not lpar_names: return [] return lpar_names def create_lpar(self, lpar): """Receives a LPAR data object and creates a LPAR instance. :param lpar: LPAR object """ conf_data = lpar.to_string() self.run_vios_command(self.command.mksyscfg('-r lpar -i "%s"' % conf_data)) def start_lpar(self, instance_name): """Start a LPAR instance. :param instance_name: LPAR instance name """ self.run_vios_command(self.command.chsysstate('-r lpar -o on -n %s' % instance_name)) def stop_lpar(self, instance_name, timeout=30): """Stop a running LPAR. :param instance_name: LPAR instance name :param timeout: value in seconds for specifying how long to wait for the LPAR to stop """ cmd = self.command.chsysstate('-r lpar -o shutdown --immed -n %s' % instance_name) self.run_vios_command(cmd) # poll instance until stopped or raise exception lpar_obj = self.get_lpar(instance_name) wait_inc = 1 # seconds to wait between status polling start_time = time.time() while lpar_obj['state'] != 'Not Activated': curr_time = time.time() # wait up to (timeout) seconds for shutdown if (curr_time - start_time) > timeout: raise exception.PowerVMLPAROperationTimeout( operation='stop_lpar', instance_name=instance_name) time.sleep(wait_inc) lpar_obj = self.get_lpar(instance_name) def remove_lpar(self, instance_name): """Removes a LPAR. :param instance_name: LPAR instance name """ self.run_vios_command(self.command.rmsyscfg('-r lpar -n %s' % instance_name)) def get_vhost_by_instance_id(self, instance_id): """Return the vhost name by the instance id. :param instance_id: LPAR instance id :returns: string -- vhost name or None in case none is found """ instance_hex_id = '%#010x' % int(instance_id) cmd = self.command.lsmap('-all -field clientid svsa -fmt :') output = self.run_vios_command(cmd) vhosts = dict(item.split(':') for item in list(output)) if instance_hex_id in vhosts: return vhosts[instance_hex_id] return None def get_virtual_eth_adapter_id(self): """Virtual ethernet adapter id. Searches for the shared ethernet adapter and returns its id. :returns: id of the virtual ethernet adapter. """ cmd = self.command.lsmap('-all -net -field sea -fmt :') output = self.run_vios_command(cmd) sea = output[0] cmd = self.command.lsdev('-dev %s -attr pvid' % sea) output = self.run_vios_command(cmd) # Returned output looks like this: ['value', '', '1'] if output: return output[2] return None def get_hostname(self): """Returns the managed system hostname. :returns: string -- hostname """ output = self.run_vios_command(self.command.hostname()) return output[0] def get_disk_name_by_vhost(self, vhost): """Returns the disk name attached to a vhost. :param vhost: a vhost name :returns: string -- disk name """ cmd = self.command.lsmap('-vadapter %s -field backing -fmt :' % vhost) output = self.run_vios_command(cmd) if output: return output[0] return None def attach_disk_to_vhost(self, disk, vhost): """Attach disk name to a specific vhost. :param disk: the disk name :param vhost: the vhost name """ cmd = self.command.mkvdev('-vdev %s -vadapter %s') % (disk, vhost) self.run_vios_command(cmd) def get_memory_info(self): """Get memory info. :returns: tuple - memory info (total_mem, avail_mem) """ cmd = self.command.lshwres( '-r mem --level sys -F configurable_sys_mem,curr_avail_sys_mem') output = self.run_vios_command(cmd) total_mem, avail_mem = output[0].split(',') return {'total_mem': int(total_mem), 'avail_mem': int(avail_mem)} def get_cpu_info(self): """Get CPU info. :returns: tuple - cpu info (total_procs, avail_procs) """ cmd = self.command.lshwres( '-r proc --level sys -F ' 'configurable_sys_proc_units,curr_avail_sys_proc_units') output = self.run_vios_command(cmd) total_procs, avail_procs = output[0].split(',') return {'total_procs': float(total_procs), 'avail_procs': float(avail_procs)} def get_disk_info(self): """Get the disk usage information. :returns: tuple - disk info (disk_total, disk_used, disk_avail) """ vgs = self.run_vios_command(self.command.lsvg()) (disk_total, disk_used, disk_avail) = [0, 0, 0] for vg in vgs: cmd = self.command.lsvg('%s -field totalpps usedpps freepps -fmt :' % vg) output = self.run_vios_command(cmd) # Output example: # 1271 (10168 megabytes):0 (0 megabytes):1271 (10168 megabytes) (d_total, d_used, d_avail) = re.findall(r'(\d+) megabytes', output[0]) disk_total += int(d_total) disk_used += int(d_used) disk_avail += int(d_avail) return {'disk_total': disk_total, 'disk_used': disk_used, 'disk_avail': disk_avail} def run_vios_command(self, cmd, check_exit_code=True): """Run a remote command using an active ssh connection. :param command: String with the command to run. """ self._set_connection() stdout, stderr = utils.ssh_execute(self._connection, cmd, check_exit_code=check_exit_code) return stdout.strip().splitlines() def run_vios_command_as_root(self, command, check_exit_code=True): """Run a remote command as root using an active ssh connection. :param command: List of commands. """ self._set_connection() stdout, stderr = common.ssh_command_as_root( self._connection, command, check_exit_code=check_exit_code) return stdout.read().splitlines() def macs_for_instance(self, instance): pass def update_lpar(self, lpar_info): """Resizing an LPAR :param lpar_info: dictionary of LPAR information """ configuration_data = ('name=%s,min_mem=%s,desired_mem=%s,' 'max_mem=%s,min_procs=%s,desired_procs=%s,' 'max_procs=%s,min_proc_units=%s,' 'desired_proc_units=%s,max_proc_units=%s' % (lpar_info['name'], lpar_info['min_mem'], lpar_info['desired_mem'], lpar_info['max_mem'], lpar_info['min_procs'], lpar_info['desired_procs'], lpar_info['max_procs'], lpar_info['min_proc_units'], lpar_info['desired_proc_units'], lpar_info['max_proc_units'])) self.run_vios_command(self.command.chsyscfg('-r prof -i "%s"' % configuration_data)) def get_logical_vol_size(self, diskname): """Finds and calculates the logical volume size in GB :param diskname: name of the logical volume :returns: size of logical volume in GB """ configuration_data = ("ioscli lslv %s -fmt : -field pps ppsize" % diskname) output = self.run_vios_command(configuration_data) pps, ppsize = output[0].split(':') ppsize = re.findall(r'\d+', ppsize) ppsize = int(ppsize[0]) pps = int(pps) lv_size = ((pps * ppsize) / 1024) return lv_size def rename_lpar(self, instance_name, new_name): """Rename LPAR given by instance_name to new_name Note: For IVM based deployments, the name is limited to 31 characters and will be trimmed to meet this requirement :param instance_name: name of LPAR to be renamed :param new_name: desired new name of LPAR :returns: new name of renamed LPAR trimmed to 31 characters if necessary """ # grab first 31 characters of new name new_name_trimmed = new_name[:31] cmd = ''.join(['chsyscfg -r lpar -i ', '"', 'name=%s,' % instance_name, 'new_name=%s' % new_name_trimmed, '"']) self.run_vios_command(cmd) return new_name_trimmed def _decompress_image_file(self, file_path, outfile_path): command = "/usr/bin/gunzip -c %s > %s" % (file_path, outfile_path) output = self.run_vios_command_as_root(command) # Remove compressed image file command = "/usr/bin/rm %s" % file_path output = self.run_vios_command_as_root(command) return outfile_path def _remove_file(self, file_path): """Removes a file on the VIOS partition :param file_path: absolute path to file to be removed """ command = 'rm %s' % file_path self.run_vios_command_as_root(command) class IVMOperator(BaseOperator): """Integrated Virtualization Manager (IVM) Operator. Runs specific commands on an IVM managed system. """ def __init__(self, ivm_connection): self.command = command.IVMCommand() BaseOperator.__init__(self, ivm_connection) def macs_for_instance(self, instance): """Generates set of valid MAC addresses for an IVM instance.""" # NOTE(vish): We would prefer to use 0xfe here to ensure that linux # bridge mac addresses don't change, but it appears to # conflict with libvirt, so we use the next highest octet # that has the unicast and locally administered bits set # properly: 0xfa. # Discussion: https://bugs.launchpad.net/nova/+bug/921838 # NOTE(mjfork): For IVM-based PowerVM, we cannot directly set a MAC # address on an LPAR, but rather need to construct one # that can be used. Retain the 0xfa as noted above, # but ensure the final 2 hex values represent a value # between 32 and 64 so we can assign as the slot id on # the system. For future reference, the last octect # should not exceed FF (255) since it would spill over # into the higher-order octect. # # FA:xx:xx:xx:xx:[32-64] macs = set() mac_base = [0xfa, random.randint(0x00, 0xff), random.randint(0x00, 0xff), random.randint(0x00, 0xff), random.randint(0x00, 0xff), random.randint(0x00, 0x00)] for n in range(32, 64): mac_base[5] = n macs.add(':'.join(map(lambda x: "%02x" % x, mac_base))) return macs
py
b4028340a29d7e00298387b030b349417082b685
# -*- coding: utf-8 -*- r""" Word paths This module implements word paths, which is an application of Combinatorics on Words to Discrete Geometry. A word path is the representation of a word as a discrete path in a vector space using a one-to-one correspondence between the alphabet and a set of vectors called steps. Many problems surrounding 2d lattice polygons (such as questions of self-intersection, area, inertia moment, etc.) can be solved in linear time (linear in the length of the perimeter) using theory from Combinatorics on Words. On the square grid, the encoding of a path using a four-letter alphabet (for East, North, West and South directions) is also known as the Freeman chain code [1,2] (see [3] for further reading). AUTHORS: - Arnaud Bergeron (2008) : Initial version, path on the square grid - Sebastien Labbe (2009-01-14) : New classes and hierarchy, doc and functions. EXAMPLES: The combinatorial class of all paths defined over three given steps:: sage: P = WordPaths('abc', steps=[(1,2), (-3,4), (0,-3)]); P Word Paths over 3 steps This defines a one-to-one correspondence between alphabet and steps:: sage: d = P.letters_to_steps() sage: sorted(d.items()) [('a', (1, 2)), ('b', (-3, 4)), ('c', (0, -3))] Creation of a path from the combinatorial class P defined above:: sage: p = P('abaccba'); p Path: abaccba Many functions can be used on p: the coordinates of its trajectory, ask whether p is a closed path, plot it and many other:: sage: list(p.points()) [(0, 0), (1, 2), (-2, 6), (-1, 8), (-1, 5), (-1, 2), (-4, 6), (-3, 8)] sage: p.is_closed() False sage: p.plot() Graphics object consisting of 3 graphics primitives To obtain a list of all the available word path specific functions, use ``help(p)``:: sage: help(p) Help on FiniteWordPath_2d_str in module sage.combinat.words.paths object: ... Methods inherited from FiniteWordPath_2d: ... Methods inherited from FiniteWordPath_all: ... Since p is a finite word, many functions from the word library are available:: sage: p.crochemore_factorization() (a, b, a, c, c, ba) sage: p.is_palindrome() False sage: p[:3] Path: aba sage: len(p) 7 P also herits many functions from Words:: sage: P = WordPaths('rs', steps=[(1,2), (-1,4)]); P Word Paths over 2 steps sage: P.alphabet() {'r', 's'} sage: list(P.iterate_by_length(3)) [Path: rrr, Path: rrs, Path: rsr, Path: rss, Path: srr, Path: srs, Path: ssr, Path: sss] When the number of given steps is half the size of alphabet, the opposite of vectors are used:: sage: P = WordPaths('abcd', [(1,0), (0,1)]) sage: sorted(P.letters_to_steps().items()) [('a', (1, 0)), ('b', (0, 1)), ('c', (-1, 0)), ('d', (0, -1))] Some built-in combinatorial classes of paths:: sage: P = WordPaths('abAB', steps='square_grid'); P Word Paths on the square grid :: sage: D = WordPaths('()', steps='dyck'); D Finite Dyck paths sage: d = D('()()()(())'); d Path: ()()()(()) sage: d.plot() Graphics object consisting of 3 graphics primitives :: sage: P = WordPaths('abcdef', steps='triangle_grid') sage: p = P('babaddefadabcadefaadfafabacdefa') sage: p.plot() Graphics object consisting of 3 graphics primitives Vector steps may be in more than 2 dimensions:: sage: d = [(1,0,0), (0,1,0), (0,0,1)] sage: P = WordPaths(alphabet='abc', steps=d); P Word Paths over 3 steps sage: p = P('abcabcabcabcaabacabcababcacbabacacabcaccbcac') sage: p.plot() Graphics3d Object :: sage: d = [(1,3,5,1), (-5,1,-6,0), (0,0,1,9), (4,2,-1,0)] sage: P = WordPaths(alphabet='rstu', steps=d); P Word Paths over 4 steps sage: p = P('rtusuusususuturrsust'); p Path: rtusuusususuturrsust sage: p.end_point() (5, 31, -26, 30) :: sage: CubePaths = WordPaths('abcABC', steps='cube_grid'); CubePaths Word Paths on the cube grid sage: CubePaths('abcabaabcabAAAAA').plot() Graphics3d Object The input data may be a str, a list, a tuple, a callable or a finite iterator:: sage: P = WordPaths([0, 1, 2, 3]) sage: P([0,1,2,3,2,1,2,3,2]) Path: 012321232 sage: P((0,1,2,3,2,1,2,3,2)) Path: 012321232 sage: P(lambda n:n%4, length=10) Path: 0123012301 sage: P(iter([0,3,2,1]), length='finite') Path: 0321 REFERENCES: - [1] Freeman, H.: *On the encoding of arbitrary geometric configurations*. IRE Trans. Electronic Computer 10 (1961) 260-268. - [2] Freeman, H.: *Boundary encoding and processing*. In Lipkin, B., Rosenfeld, A., eds.: Picture Processing and Psychopictorics, Academic Press, New York (1970) 241-266. - [3] Braquelaire, J.P., Vialard, A.: *Euclidean paths: A new representation of boundary of discrete regions*. Graphical Models and Image Processing 61 (1999) 16-43. - [4] :wikipedia:`Regular_tiling` - [5] :wikipedia:`Dyck_word` """ # **************************************************************************** # Copyright (C) 2008 Arnaud bergeron <[email protected]>, # Copyright (C) 2009 Sebastien Labbe <[email protected]>, # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # https://www.gnu.org/licenses/ # **************************************************************************** from builtins import zip from sage.structure.sage_object import SageObject from sage.misc.cachefunc import cached_method from sage.misc.lazy_attribute import lazy_attribute from sage.combinat.words.words import FiniteWords from sage.combinat.words.word import FiniteWord_class from sage.combinat.words.alphabet import build_alphabet from sage.misc.lazy_import import lazy_import lazy_import("sage.plot.all", ["arrow", "line", "polygon", "point", "Graphics"]) from sage.modules.free_module_element import vector from sage.rings.integer_ring import ZZ from sage.rings.number_field.number_field import QuadraticField from sage.rings.real_mpfr import RR from .word_datatypes import (WordDatatype_str, WordDatatype_list, WordDatatype_tuple) #WordDatatype_cpp_basic_string) from .word_infinite_datatypes import ( WordDatatype_iter_with_caching, WordDatatype_iter, WordDatatype_callable_with_caching, WordDatatype_callable) from sage.matrix.constructor import vector_on_axis_rotation_matrix ####################################################################### # # # WordPaths function # # # ####################################################################### def WordPaths(alphabet, steps=None): r""" Returns the combinatorial class of paths of the given type of steps. INPUT: - ``alphabet`` - ordered alphabet - ``steps`` - (default is None). It can be one of the following: - an iterable ordered container of as many vectors as there are letters in the alphabet. The vectors are associated to the letters according to their order in steps. The vectors can be a tuple or anything that can be passed to vector function. - an iterable ordered container of k vectors where k is half the size of alphabet. The vectors and their opposites are associated to the letters according to their order in steps (given vectors first, opposite vectors after). - ``None``: In this case, the type of steps are guessed from the length of alphabet. - 'square_grid' or 'square': (default when size of alphabet is 4) The order is : East, North, West, South. - 'triangle_grid' or 'triangle': - 'hexagonal_grid' or 'hexagon': (default when size of alphabet is 6) - 'cube_grid' or 'cube': - 'north_east', 'ne' or 'NE': (the default when size of alphabet is 2) - 'dyck': OUTPUT: - The combinatorial class of all paths of the given type. EXAMPLES: The steps can be given explicitly:: sage: WordPaths('abc', steps=[(1,2), (-1,4), (0,-3)]) Word Paths over 3 steps Different type of input alphabet:: sage: WordPaths(range(3), steps=[(1,2), (-1,4), (0,-3)]) Word Paths over 3 steps sage: WordPaths(['cric','crac','croc'], steps=[(1,2), (1,4), (0,3)]) Word Paths over 3 steps Directions can be in three dimensions as well:: sage: WordPaths('ab', steps=[(1,2,2),(-1,4,2)]) Word Paths over 2 steps When the number of given steps is half the size of alphabet, the opposite of vectors are used:: sage: P = WordPaths('abcd', [(1,0), (0,1)]) sage: P Word Paths over 4 steps sage: sorted(P.letters_to_steps().items()) [('a', (1, 0)), ('b', (0, 1)), ('c', (-1, 0)), ('d', (0, -1))] When no steps are given, default classes are returned:: sage: WordPaths('ab') Word Paths in North and East steps sage: WordPaths(range(4)) Word Paths on the square grid sage: WordPaths(range(6)) Word Paths on the hexagonal grid There are many type of built-in steps... On a two letters alphabet:: sage: WordPaths('ab', steps='north_east') Word Paths in North and East steps sage: WordPaths('()', steps='dyck') Finite Dyck paths On a four letters alphabet:: sage: WordPaths('ruld', steps='square_grid') Word Paths on the square grid On a six letters alphabet:: sage: WordPaths('abcdef', steps='hexagonal_grid') Word Paths on the hexagonal grid sage: WordPaths('abcdef', steps='triangle_grid') Word Paths on the triangle grid sage: WordPaths('abcdef', steps='cube_grid') Word Paths on the cube grid TESTS:: sage: WordPaths(range(5)) Traceback (most recent call last): ... TypeError: Unable to make a class WordPaths from {0, 1, 2, 3, 4} sage: WordPaths('abAB', steps='square_gridd') Traceback (most recent call last): ... TypeError: Unknown type of steps : square_gridd """ #Construction of the alphabet alphabet = build_alphabet(alphabet) #If no steps are given, they are guessed from the alphabet if steps is None: if alphabet.cardinality() == 2: steps = 'north_east' elif alphabet.cardinality() == 4: steps = 'square_grid' elif alphabet.cardinality() == 6: steps = 'hexagonal_grid' else: raise TypeError("Unable to make a class WordPaths from %s"%alphabet) #Returns the class of WordPaths according to the given type of paths if isinstance(steps, str): if steps in ('square_grid', 'square'): return WordPaths_square_grid(alphabet=alphabet) elif steps in ('triangle_grid', 'triangle'): return WordPaths_triangle_grid(alphabet=alphabet) elif steps in ('hexagonal_grid', 'hexagon'): return WordPaths_hexagonal_grid(alphabet=alphabet) elif steps in ('cube_grid', 'cube'): return WordPaths_cube_grid(alphabet=alphabet) elif steps in ('north_east', 'ne', 'NE'): return WordPaths_north_east(alphabet=alphabet) elif steps == 'dyck': return WordPaths_dyck(alphabet=alphabet) else: raise TypeError("Unknown type of steps : %s"%steps) else: return WordPaths_all(alphabet=alphabet, steps=steps) ####################################################################### # # # Combinatorial classes of word paths # # # ####################################################################### class WordPaths_all(FiniteWords): r""" The combinatorial class of all paths, i.e of all words over an alphabet where each letter is mapped to a step (a vector). """ def __init__(self, alphabet, steps): r""" INPUT: - ``alphabet`` - an ordered alphabet - ``steps`` - an iterable (of same length as alphabet or half the length of alphabet) of ordered vectors EXAMPLES:: sage: from sage.combinat.words.paths import WordPaths_all sage: d = ((1,1), (-1,1), (1,-1), (-1,-1)) sage: P = WordPaths_all('abAB', d); P Word Paths over 4 steps sage: P == loads(dumps(P)) True If size of alphabet is twice the number of steps, then opposite vectors are used for the second part of the alphabet. sage: WordPaths('abcd',[(2,1),(2,4)]) Word Paths over 4 steps sage: _.letters_to_steps() {'a': (2, 1), 'b': (2, 4), 'c': (-2, -1), 'd': (-2, -4)} TESTS:: sage: from sage.combinat.words.paths import WordPaths_all sage: d = ((1,1), (-1,1), (1,-1), (-1,-1)) sage: WordPaths_all('abA', d) Traceback (most recent call last): ... TypeError: size of steps (=4) must equal the size of alphabet (=3) or half the size of alphabet. sage: d = ((1,1), 1) sage: WordPaths_all('ab', d) Traceback (most recent call last): ... ValueError: Can't make vectors from steps sage: d = ((1,1), (-1,1,0)) sage: WordPaths_all('ab', d) Traceback (most recent call last): ... ValueError: Can't make summable vectors from steps """ #Construction of the words class FiniteWords.__init__(self, alphabet) alphabet = self.alphabet() #Checking the size of alphabet and steps ls = len(steps) la = alphabet.cardinality() if la != ls and la != 2*ls: raise TypeError("size of steps (=%s) must equal the size \ of alphabet (=%s) or half the size of alphabet."%(len(steps),alphabet.cardinality())) #Construction of the steps from sage.structure.element import Vector if all((isinstance(x, Vector) for x in steps)): vsteps = steps else: try: vsteps = [vector(s) for s in steps] except (TypeError): raise ValueError("Can't make vectors from steps") try: s = sum(vsteps) except (TypeError, AttributeError): raise ValueError("Can't make summable vectors from steps") #Complete vsteps with the opposite vectors if needed if la == 2 * ls: vsteps += [-v for v in vsteps] self._steps = dict(zip(alphabet, vsteps)) self._vector_space = s.parent() def __eq__(self, other): r""" TESTS:: sage: W1 = WordPaths(['a','b'], [vector((0,1)), vector((0,2))]) sage: W2 = WordPaths(['a','b'], [vector((0,1)), vector((0,2))]) sage: W3 = WordPaths(['a','b'], [vector((0,2)), vector((1,0))]) sage: W1 == W2 True sage: W1 == W3 False """ return self is other or (type(self) == type(other) and \ self.alphabet() == other.alphabet() and \ self.vector_space() == other.vector_space() and \ self.letters_to_steps() == other.letters_to_steps()) def __ne__(self, other): r""" TESTS:: sage: W1 = WordPaths(['a','b'], [vector((0,1)), vector((0,2))]) sage: W2 = WordPaths(['a','b'], [vector((0,1)), vector((0,2))]) sage: W3 = WordPaths(['a','b'], [vector((0,2)), vector((1,0))]) sage: W1 != W2 False sage: W1 != W3 True """ return not (self == other) @lazy_attribute def _element_classes(self): r""" Returns a dictionary that gives the class of the elements of self. The word may be finite (infinite or of unknown length is not supported yet). Its data may be str, list, tuple, a callable or an iterable. For callable and iterable, the data may be cached. The dimension of the path may be 1, 2, 3 or more. TESTS:: sage: d = WordPaths('ab',steps=[(1,2),(3,4)])._element_classes sage: type(d) <class 'dict'> sage: len(d) 7 sage: d['tuple'] <class 'sage.combinat.words.paths.FiniteWordPath_2d_tuple'> :: sage: d = WordPaths('ab',steps=[(1,2,3),(3,4,5)])._element_classes sage: len(d) 7 sage: d['tuple'] <class 'sage.combinat.words.paths.FiniteWordPath_3d_tuple'> :: sage: steps = [(1,2,3,4),(3,4,5,6)] sage: d = WordPaths('ab',steps=steps)._element_classes sage: len(d) 7 sage: d['tuple'] <class 'sage.combinat.words.paths.FiniteWordPath_all_tuple'> :: sage: d = WordPaths('ab',steps=[(1,),(3,)])._element_classes sage: len(d) 7 sage: d['tuple'] <class 'sage.combinat.words.paths.FiniteWordPath_all_tuple'> """ dimension = self._vector_space.dimension() if dimension == 2: return { 'list': FiniteWordPath_2d_list, 'str': FiniteWordPath_2d_str, 'tuple': FiniteWordPath_2d_tuple, 'callable_with_caching': FiniteWordPath_2d_callable_with_caching, 'callable': FiniteWordPath_2d_callable, 'iter_with_caching': FiniteWordPath_2d_iter_with_caching, 'iter': FiniteWordPath_2d_iter, } elif dimension == 3: return { 'list': FiniteWordPath_3d_list, 'str': FiniteWordPath_3d_str, 'tuple': FiniteWordPath_3d_tuple, 'callable_with_caching': FiniteWordPath_3d_callable_with_caching, 'callable': FiniteWordPath_3d_callable, 'iter_with_caching': FiniteWordPath_3d_iter_with_caching, 'iter': FiniteWordPath_3d_iter, } else: return { 'list': FiniteWordPath_all_list, 'str': FiniteWordPath_all_str, 'tuple': FiniteWordPath_all_tuple, 'callable_with_caching': FiniteWordPath_all_callable_with_caching, 'callable': FiniteWordPath_all_callable, 'iter_with_caching': FiniteWordPath_all_iter_with_caching, 'iter': FiniteWordPath_all_iter, } def __repr__(self): r""" Returns a string representation of self. EXAMPLES:: sage: from sage.combinat.words.paths import WordPaths_all sage: d = (vector((1,1)), vector((-1,1)), vector((1,-1)), vector((-1,-1))) sage: WordPaths_all('abAB',d).__repr__() 'Word Paths over 4 steps' """ return "Word Paths over %s steps" % self.alphabet().cardinality() def letters_to_steps(self): r""" Returns the dictionary mapping letters to vectors (steps). EXAMPLES:: sage: d = WordPaths('ab').letters_to_steps() sage: sorted(d.items()) [('a', (0, 1)), ('b', (1, 0))] sage: d = WordPaths('abcd').letters_to_steps() sage: sorted(d.items()) [('a', (1, 0)), ('b', (0, 1)), ('c', (-1, 0)), ('d', (0, -1))] sage: d = WordPaths('abcdef').letters_to_steps() sage: sorted(d.items()) [('a', (1, 0)), ('b', (1/2, 1/2*sqrt3)), ('c', (-1/2, 1/2*sqrt3)), ('d', (-1, 0)), ('e', (-1/2, -1/2*sqrt3)), ('f', (1/2, -1/2*sqrt3))] """ return self._steps def vector_space(self): r""" Return the vector space over which the steps of the paths are defined. EXAMPLES:: sage: WordPaths('ab',steps='dyck').vector_space() Ambient free module of rank 2 over the principal ideal domain Integer Ring sage: WordPaths('ab',steps='north_east').vector_space() Ambient free module of rank 2 over the principal ideal domain Integer Ring sage: WordPaths('abcd',steps='square_grid').vector_space() Ambient free module of rank 2 over the principal ideal domain Integer Ring sage: WordPaths('abcdef',steps='hexagonal_grid').vector_space() Vector space of dimension 2 over Number Field in sqrt3 with defining polynomial x^2 - 3 with sqrt3 = 1.732050807568878? sage: WordPaths('abcdef',steps='cube_grid').vector_space() Ambient free module of rank 3 over the principal ideal domain Integer Ring sage: WordPaths('abcdef',steps='triangle_grid').vector_space() Vector space of dimension 2 over Number Field in sqrt3 with defining polynomial x^2 - 3 with sqrt3 = 1.732050807568878? """ return self._vector_space class WordPaths_square_grid(WordPaths_all): r""" The combinatorial class of all paths on the square grid. """ def __init__(self, alphabet): r""" The combinatorial class of all finite paths on the square grid. INPUT: - ``alphabet`` - ordered alphabet of length 4. The order for the steps is : East, North, West, South. EXAMPLES:: sage: from sage.combinat.words.paths import WordPaths_square_grid sage: P = WordPaths_square_grid('abAB'); P Word Paths on the square grid sage: P == loads(dumps(P)) True """ #Construction of the steps d = [(1 ,0), (0,1), (-1,0), (0,-1)] #Construction of the class super(WordPaths_square_grid, self).__init__(alphabet, steps=d) @lazy_attribute def _element_classes(self): r""" Returns a dictionary that gives the class of the elements of self. The word may be finite (infinite or of unknown length is not supported yet). Its data may be str, list, tuple, a callable or an iterable. For callable and iterable, the data may be cached. TESTS:: sage: d = WordPaths('abcd')._element_classes sage: type(d) <class 'dict'> sage: len(d) 7 sage: d['tuple'] <class 'sage.combinat.words.paths.FiniteWordPath_square_grid_tuple'> """ return { 'list': FiniteWordPath_square_grid_list, 'str': FiniteWordPath_square_grid_str, 'tuple': FiniteWordPath_square_grid_tuple, 'callable_with_caching': FiniteWordPath_square_grid_callable_with_caching, 'callable': FiniteWordPath_square_grid_callable, 'iter_with_caching': FiniteWordPath_square_grid_iter_with_caching, 'iter': FiniteWordPath_square_grid_iter, } def __repr__(self): r""" EXAMPLES:: sage: from sage.combinat.words.paths import WordPaths_square_grid sage: WordPaths_square_grid('abAB').__repr__() 'Word Paths on the square grid' """ return "Word Paths on the square grid" class WordPaths_triangle_grid(WordPaths_all): r""" The combinatorial class of all paths on the triangle grid. """ def __init__(self, alphabet): r""" The combinatorial class of all finite paths on the triangle grid. INPUT: - ``alphabet`` - ordered alphabet of length 6. The order for the steps is : Right, Up-Right, Up-Left, Left, Down-Left, Down-Right. EXAMPLES:: sage: from sage.combinat.words.paths import WordPaths_triangle_grid sage: P = WordPaths_triangle_grid('abcdef'); P Word Paths on the triangle grid sage: P == loads(dumps(P)) True """ K = QuadraticField(3, 'sqrt3') sqrt3 = K.gen() #Construction of the steps d = (vector(K, (1 ,0 )), vector(K, (ZZ(1)/ZZ(2), sqrt3/2)), vector(K, (ZZ(-1)/ZZ(2), sqrt3/2)), vector(K, (-1 , 0 )), vector(K, (ZZ(-1)/ZZ(2), -sqrt3/2 )), vector(K, (ZZ(1)/ZZ(2), -sqrt3/2 ))) #Construction of the class super(WordPaths_triangle_grid, self).__init__(alphabet, steps=d) self._infinite_word_class = None self._finite_word_class = FiniteWordPath_triangle_grid @lazy_attribute def _element_classes(self): r""" Returns a dictionary that gives the class of the elements of self. The word may be finite (infinite or of unknown length is not supported yet). Its data may be str, list, tuple, a callable or an iterable. For callable and iterable, the data may be cached. TESTS:: sage: d = WordPaths('abcdef', steps='triangle')._element_classes sage: len(d) 7 sage: type(d) <class 'dict'> sage: d['tuple'] <class 'sage.combinat.words.paths.FiniteWordPath_triangle_grid_tuple'> """ return { 'list': FiniteWordPath_triangle_grid_list, 'str': FiniteWordPath_triangle_grid_str, 'tuple': FiniteWordPath_triangle_grid_tuple, 'callable_with_caching': FiniteWordPath_triangle_grid_callable_with_caching, 'callable': FiniteWordPath_triangle_grid_callable, 'iter_with_caching': FiniteWordPath_triangle_grid_iter_with_caching, 'iter': FiniteWordPath_triangle_grid_iter, } def __repr__(self): r""" EXAMPLES:: sage: from sage.combinat.words.paths import WordPaths_triangle_grid sage: WordPaths_triangle_grid('abcdef').__repr__() 'Word Paths on the triangle grid' """ return "Word Paths on the triangle grid" class WordPaths_hexagonal_grid(WordPaths_triangle_grid): r""" The combinatorial class of all paths on the hexagonal grid. """ def __init__(self, alphabet): r""" The combinatorial class of all finite paths on the hexagonal grid. INPUT: - ``alphabet`` - ordered alphabet of length 6. The order for the steps is : Right, Up-Right, Up-Left, Left, Down-Left, Down-Right. EXAMPLES:: sage: from sage.combinat.words.paths import WordPaths_hexagonal_grid sage: P = WordPaths_hexagonal_grid('abcdef'); P Word Paths on the hexagonal grid sage: P == loads(dumps(P)) True """ #Construction of the class super(WordPaths_hexagonal_grid, self).__init__(alphabet) self._infinite_word_class = None self._finite_word_class = FiniteWordPath_hexagonal_grid @lazy_attribute def _element_classes(self): r""" Returns a dictionary that gives the class of the elements of self. The word may be finite (infinite or of unknown length is not supported yet). Its data may be str, list, tuple, a callable or an iterable. For callable and iterable, the data may be cached. TESTS:: sage: d = WordPaths('abcdef', steps='hexagon')._element_classes sage: type(d) <class 'dict'> sage: len(d) 7 sage: d['tuple'] <class 'sage.combinat.words.paths.FiniteWordPath_hexagonal_grid_tuple'> """ return { 'list': FiniteWordPath_hexagonal_grid_list, 'str': FiniteWordPath_hexagonal_grid_str, 'tuple': FiniteWordPath_hexagonal_grid_tuple, 'callable_with_caching': FiniteWordPath_hexagonal_grid_callable_with_caching, 'callable': FiniteWordPath_hexagonal_grid_callable, 'iter_with_caching': FiniteWordPath_hexagonal_grid_iter_with_caching, 'iter': FiniteWordPath_hexagonal_grid_iter, } def __repr__(self): r""" EXAMPLES:: sage: from sage.combinat.words.paths import WordPaths_hexagonal_grid sage: WordPaths_hexagonal_grid('abcdef').__repr__() 'Word Paths on the hexagonal grid' """ return "Word Paths on the hexagonal grid" class WordPaths_cube_grid(WordPaths_all): r""" The combinatorial class of all paths on the cube grid. """ def __init__(self, alphabet): r""" The combinatorial class of all finite paths on the cube grid. INPUT: - ``alphabet`` -- ordered alphabet of length 6. The order for the steps is `e_x, e_y, e_z, -e_x, -e_y, -e_z`, where `e_v` denotes the canonical basis. EXAMPLES:: sage: from sage.combinat.words.paths import WordPaths_cube_grid sage: P = WordPaths_cube_grid('abcABC'); P Word Paths on the cube grid sage: P == loads(dumps(P)) True """ #Construction of the class d = [(1,0,0), (0,1,0), (0,0,1), (-1,0,0), (0,-1,0), (0,0,-1)] super(WordPaths_cube_grid, self).__init__(alphabet, steps=d) self._infinite_word_class = None self._finite_word_class = FiniteWordPath_cube_grid @lazy_attribute def _element_classes(self): r""" Returns a dictionary that gives the class of the elements of self. The word may be finite (infinite or of unknown length is not supported yet). Its data may be str, list, tuple, a callable or an iterable. For callable and iterable, the data may be cached. TESTS:: sage: d = WordPaths('abcdef', steps='cube')._element_classes sage: type(d) <class 'dict'> sage: len(d) 7 sage: d['tuple'] <class 'sage.combinat.words.paths.FiniteWordPath_cube_grid_tuple'> """ return {'list': FiniteWordPath_cube_grid_list, 'str': FiniteWordPath_cube_grid_str, 'tuple': FiniteWordPath_cube_grid_tuple, 'callable_with_caching': FiniteWordPath_cube_grid_callable_with_caching, 'callable': FiniteWordPath_cube_grid_callable, 'iter_with_caching': FiniteWordPath_cube_grid_iter_with_caching, 'iter': FiniteWordPath_cube_grid_iter, } def __repr__(self): r""" EXAMPLES:: sage: from sage.combinat.words.paths import WordPaths_cube_grid sage: WordPaths_cube_grid('abcABC').__repr__() 'Word Paths on the cube grid' """ return "Word Paths on the cube grid" class WordPaths_dyck(WordPaths_all): r""" The combinatorial class of all Dyck paths. """ def __init__(self, alphabet): r""" The combinatorial class of all finite Dyck paths. INPUT: - ``alphabet`` - ordered alphabet of length 2. The order for the steps is : (1,1), (1,-1) EXAMPLES:: sage: from sage.combinat.words.paths import WordPaths_dyck sage: P = WordPaths_dyck('[]'); P Finite Dyck paths sage: P == loads(dumps(P)) True """ #Construction of the class d = [(1,1), (1,-1)] super(WordPaths_dyck, self).__init__(alphabet, steps=d) self._infinite_word_class = None self._finite_word_class = FiniteWordPath_dyck @lazy_attribute def _element_classes(self): r""" Returns a dictionary that gives the class of the elements of self. The word may be finite (infinite or of unknown length is not supported yet). Its data may be str, list, tuple, a callable or an iterable. For callable and iterable, the data may be cached. TESTS:: sage: d = WordPaths('ab', steps='dyck')._element_classes sage: type(d) <class 'dict'> sage: len(d) 7 sage: d['tuple'] <class 'sage.combinat.words.paths.FiniteWordPath_dyck_tuple'> """ return {'list': FiniteWordPath_dyck_list, 'str': FiniteWordPath_dyck_str, 'tuple': FiniteWordPath_dyck_tuple, 'callable_with_caching': FiniteWordPath_dyck_callable_with_caching, 'callable': FiniteWordPath_dyck_callable, 'iter_with_caching': FiniteWordPath_dyck_iter_with_caching, 'iter': FiniteWordPath_dyck_iter, } def __repr__(self): r""" EXAMPLES:: sage: from sage.combinat.words.paths import WordPaths_dyck sage: WordPaths_dyck('()').__repr__() 'Finite Dyck paths' """ return "Finite Dyck paths" class WordPaths_north_east(WordPaths_all): r""" The combinatorial class of all paths using North and East directions. """ def __init__(self, alphabet): r""" The combinatorial class of all finite paths using only north and east steps on the square grid. INPUT: - ``alphabet`` - ordered alphabet of length 2. The order for the steps is North, East EXAMPLES:: sage: from sage.combinat.words.paths import WordPaths_north_east sage: P = WordPaths_north_east('ab'); P Word Paths in North and East steps sage: P == loads(dumps(P)) True """ #Construction of the class d = [(0,1), (1,0)] super(WordPaths_north_east, self).__init__(alphabet, steps=d) self._infinite_word_class = None self._finite_word_class = FiniteWordPath_north_east @lazy_attribute def _element_classes(self): r""" Returns a dictionary that gives the class of the elements of self. The word may be finite (infinite or of unknown length is not supported yet). Its data may be str, list, tuple, a callable or an iterable. For callable and iterable, the data may be cached. TESTS:: sage: d = WordPaths('ab', steps='NE')._element_classes sage: type(d) <class 'dict'> sage: len(d) 7 sage: d['tuple'] <class 'sage.combinat.words.paths.FiniteWordPath_north_east_tuple'> """ return {'list': FiniteWordPath_north_east_list, 'str': FiniteWordPath_north_east_str, 'tuple': FiniteWordPath_north_east_tuple, 'callable_with_caching': FiniteWordPath_north_east_callable_with_caching, 'callable': FiniteWordPath_north_east_callable, 'iter_with_caching': FiniteWordPath_north_east_iter_with_caching, 'iter': FiniteWordPath_north_east_iter, } def __repr__(self): r""" EXAMPLES:: sage: from sage.combinat.words.paths import WordPaths_north_east sage: WordPaths_north_east('ab').__repr__() 'Word Paths in North and East steps' """ return "Word Paths in North and East steps" ####################################################################### # # # Abstract word path classes # # (all, 2d, 3d, ...) # # # ####################################################################### class FiniteWordPath_all(SageObject): def _repr_(self): r""" Returns a string representation of this path. EXAMPLES:: sage: F = WordPaths('ab',[(1,0,0,0),(0,1,0,0)]); F Word Paths over 2 steps sage: f = F('ababab') sage: f._repr_() 'Path: ababab' """ return "Path: %s"%self.string_rep() def points(self, include_last=True): r""" Returns an iterator yielding a list of points used to draw the path represented by this word. INPUT: - ``include_last`` - bool (default: True) whether to include the last point EXAMPLES: A simple closed square:: sage: P = WordPaths('abAB') sage: list(P('abAB').points()) [(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)] A simple closed square without the last point:: sage: list(P('abAB').points(include_last=False)) [(0, 0), (1, 0), (1, 1), (0, 1)] :: sage: list(P('abaB').points()) [(0, 0), (1, 0), (1, 1), (2, 1), (2, 0)] """ curpt = self.start_point() yield curpt end = len(self) if include_last else -1 for l in self[:end]: curpt += self.parent().letters_to_steps()[l] yield curpt def start_point(self): r""" Return the starting point of self. OUTPUT: vector EXAMPLES:: sage: WordPaths('abcdef')('abcdef').start_point() (0, 0) sage: WordPaths('abcdef', steps='cube_grid')('abcdef').start_point() (0, 0, 0) sage: P = WordPaths('ab', steps=[(1,0,0,0),(0,1,0,0)]) sage: P('abbba').start_point() (0, 0, 0, 0) """ return self.parent().vector_space()(0) @cached_method def end_point(self): r""" Returns the end point of the path. EXAMPLES:: sage: WordPaths('abcdef')('abababab').end_point() (6, 2*sqrt3) sage: WordPaths('abAB')('abababab').end_point() (4, 4) sage: P = WordPaths('abcABC', steps='cube_grid') sage: P('ababababCC').end_point() (4, 4, -2) sage: WordPaths('abcdef')('abcdef').end_point() (0, 0) sage: P = WordPaths('abc', steps=[(1,3,7,9),(-4,1,0,0),(0,32,1,8)]) sage: P('abcabababacaacccbbcac').end_point() (-16, 254, 63, 128) """ last = None for pt in self.points(): last = pt return last def directive_vector(self): r""" Returns the directive vector of self. The directive vector is the vector starting at the start point and ending at the end point of the path self. EXAMPLES:: sage: WordPaths('abcdef')('abababab').directive_vector() (6, 2*sqrt3) sage: WordPaths('abAB')('abababab').directive_vector() (4, 4) sage: P = WordPaths('abcABC', steps='cube_grid') sage: P('ababababCC').directive_vector() (4, 4, -2) sage: WordPaths('abcdef')('abcdef').directive_vector() (0, 0) sage: P = WordPaths('abc', steps=[(1,3,7,9),(-4,1,0,0),(0,32,1,8)]) sage: P('abcabababacaacccbbcac').directive_vector() (-16, 254, 63, 128) """ return self.end_point() - self.start_point() def is_closed(self): r""" Returns True if the path is closed, i.e. if the origin and the end of the path are equal. EXAMPLES:: sage: P = WordPaths('abcd', steps=[(1,0),(0,1),(-1,0),(0,-1)]) sage: P('abcd').is_closed() True sage: P('abc').is_closed() False sage: P().is_closed() True sage: P('aacacc').is_closed() True """ return self.start_point() == self.end_point() def is_simple(self): r""" Returns True if the path is simple, i.e. if all its points are distincts. If the path is closed, the last point is not considered. EXAMPLES:: sage: P = WordPaths('abcdef',steps='triangle_grid');P Word Paths on the triangle grid sage: P('abc').is_simple() True sage: P('abcde').is_simple() True sage: P('abcdef').is_simple() True sage: P('ad').is_simple() True sage: P('aabdee').is_simple() False """ n = 0 s = set() include_last = not self.is_closed() for p in self.points(include_last=include_last): # We need the elements to have a common parent, # so we convert the points to immutable vectors. v = vector(p) v.set_immutable() s.add(v) n += 1 if len(s) != n: return False return True def tikz_trajectory(self): r""" Returns the trajectory of self as a tikz str. EXAMPLES:: sage: P = WordPaths('abcdef') sage: p = P('abcde') sage: p.tikz_trajectory() '(0.000, 0.000) -- (1.00, 0.000) -- (1.50, 0.866) -- (1.00, 1.73) -- (0.000, 1.73) -- (-0.500, 0.866)' """ from sage.all import n f = lambda x: n(x,digits=3) l = [str(tuple(map(f, pt))) for pt in self.points()] return ' -- '.join(l) def projected_point_iterator(self, v=None, ring=None): r""" Return an iterator of the projection of the orbit points of the path into the space orthogonal to the given vector. INPUT: - ``v`` - vector (optional, default: None) If None, the directive vector (i.e. the end point minus starting point) of the path is considered. - ``ring`` - ring (optional, default: None) where to do the computations. If None, RealField(53) is used. OUTPUT: iterator of points EXAMPLES: Projected points of the Rauzy fractal:: sage: s = WordMorphism('1->12,2->13,3->1') sage: D = s.fixed_point('1') sage: v = s.pisot_eigenvector_right() sage: P = WordPaths('123',[(1,0,0),(0,1,0),(0,0,1)]) sage: w = P(D[:200]) sage: it = w.projected_point_iterator(v) sage: for i in range(6): next(it) (0.000000000000000, 0.000000000000000) (-0.526233343362516, 0.000000000000000) (0.220830337618112, -0.477656250512816) (-0.305403005744404, -0.477656250512816) (0.100767309386062, 0.400890564600664) (-0.425466033976454, 0.400890564600664) Projected points of a 2d path:: sage: P = WordPaths('ab','ne') sage: p = P('aabbabbab') sage: it = p.projected_point_iterator(ring=RealField(20)) sage: for i in range(8): next(it) (0.00000) (0.78087) (1.5617) (0.93704) (0.31235) (1.0932) (0.46852) (-0.15617) """ if v is None: v = self.directive_vector() if ring is None: ring = RR R = vector_on_axis_rotation_matrix(v, 0, ring=ring)[1:] for q in self.points(): yield R * q def plot_projection(self, v=None, letters=None, color=None, ring=None, size=12, kind='right'): r""" Return an image of the projection of the successive points of the path into the space orthogonal to the given vector. INPUT: - ``self`` - a word path in a 3 or 4 dimension vector space - ``v`` - vector (optional, default: None) If None, the directive vector (i.e. the end point minus starting point) of the path is considered. - ``letters`` - iterable (optional, default: None) of the letters to be projected. If None, then all the letters are considered. - ``color`` - dictionary (optional, default: None) of the letters mapped to colors. If None, automatic colors are chosen. - ``ring`` - ring (optional, default: None) where to do the computations. If None, RealField(53) is used. - ``size`` - number (optional, default: ``12``) size of the points. - ``kind`` - string (optional, default ``'right'``) either ``'right'`` or ``'left'``. The color of a letter is given to the projected prefix to the right or the left of the letter. OUTPUT: 2d or 3d Graphic object. EXAMPLES: The Rauzy fractal:: sage: s = WordMorphism('1->12,2->13,3->1') sage: D = s.fixed_point('1') sage: v = s.pisot_eigenvector_right() sage: P = WordPaths('123',[(1,0,0),(0,1,0),(0,0,1)]) sage: w = P(D[:200]) sage: w.plot_projection(v) # long time (2s) Graphics object consisting of 200 graphics primitives In this case, the abelianized vector doesn't give a good projection:: sage: w.plot_projection() # long time (2s) Graphics object consisting of 200 graphics primitives You can project only the letters you want:: sage: w.plot_projection(v, letters='12') # long time (2s) Graphics object consisting of 168 graphics primitives You can increase or decrease the precision of the computations by changing the ring of the projection matrix:: sage: w.plot_projection(v, ring=RealField(20)) # long time (2s) Graphics object consisting of 200 graphics primitives You can change the size of the points:: sage: w.plot_projection(v, size=30) # long time (2s) Graphics object consisting of 200 graphics primitives You can assign the color of a letter to the projected prefix to the right or the left of the letter:: sage: w.plot_projection(v, kind='left') # long time (2s) Graphics object consisting of 200 graphics primitives To remove the axis, do like this:: sage: r = w.plot_projection(v) sage: r.axes(False) sage: r # long time (2s) Graphics object consisting of 200 graphics primitives You can assign different colors to each letter:: sage: color = {'1':'purple', '2':(.2,.3,.4), '3': 'magenta'} sage: w.plot_projection(v, color=color) # long time (2s) Graphics object consisting of 200 graphics primitives The 3d-Rauzy fractal:: sage: s = WordMorphism('1->12,2->13,3->14,4->1') sage: D = s.fixed_point('1') sage: v = s.pisot_eigenvector_right() sage: P = WordPaths('1234',[(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)]) sage: w = P(D[:200]) sage: w.plot_projection(v) Graphics3d Object The dimension of vector space of the parent must be 3 or 4:: sage: P = WordPaths('ab', [(1, 0), (0, 1)]) sage: p = P('aabbabbab') sage: p.plot_projection() Traceback (most recent call last): ... TypeError: The dimension of the vector space (=2) must be 3 or 4 """ dimension = self.parent().vector_space().dimension() if dimension not in (3, 4): msg = "The dimension of the vector space (=%s) must be 3 or 4" % dimension raise TypeError(msg) if letters is None: letters = self.parent().alphabet() if color is None: from sage.plot.all import hue A = self.parent().alphabet() color = {a: hue(A.rank(a)/float(A.cardinality())) for a in A} it = self.projected_point_iterator(v, ring=ring) if kind == 'right': next(it) elif kind != 'left': raise ValueError('unknown value for kind (=%s)' % kind) tout = [point([c], color=color[a], size=size) for a, c in zip(self, it) if a in letters] return sum(tout) def projected_path(self, v=None, ring=None): r""" Return the path projected into the space orthogonal to the given vector. INPUT: - ``v`` - vector (optional, default: None) If None, the directive vector (i.e. the end point minus starting point) of the path is considered. - ``ring`` - ring (optional, default: None) where to do the computations. If None, RealField(53) is used. OUTPUT: word path EXAMPLES: The projected path of the tribonacci word:: sage: s = WordMorphism('1->12,2->13,3->1') sage: D = s.fixed_point('1') sage: v = s.pisot_eigenvector_right() sage: P = WordPaths('123',[(1,0,0),(0,1,0),(0,0,1)]) sage: w = P(D[:1000]) sage: p = w.projected_path(v) sage: p Path: 1213121121312121312112131213121121312121... sage: p[:20].plot() Graphics object consisting of 3 graphics primitives The ``ring`` argument allows to change the precision of the projected steps:: sage: p = w.projected_path(v, RealField(10)) sage: p Path: 1213121121312121312112131213121121312121... sage: p.parent().letters_to_steps() {'1': (-0.53, 0.00), '2': (0.75, -0.48), '3': (0.41, 0.88)} """ if v is None: v = self.directive_vector() if ring is None: ring = RR R = vector_on_axis_rotation_matrix(v, 0, ring=ring)[1:] d = self.parent().letters_to_steps() A = self.parent().alphabet() nvvectors = [R*d[a] for a in A] projected_parent = WordPaths(A, nvvectors) return projected_parent(self) def is_tangent(self): r""" The is_tangent() method, which is implemented for words, has an extended meaning for word paths, which is not implemented yet. TESTS:: sage: WordPaths('ab')('abbab').is_tangent() Traceback (most recent call last): ... NotImplementedError AUTHOR: - Thierry Monteil """ raise NotImplementedError class FiniteWordPath_2d(FiniteWordPath_all): def plot(self, pathoptions=dict(rgbcolor='red',thickness=3), fill=True, filloptions=dict(rgbcolor='red',alpha=0.2), startpoint=True, startoptions=dict(rgbcolor='red',pointsize=100), endarrow=True, arrowoptions=dict(rgbcolor='red',arrowsize=20,width=3), gridlines=False, gridoptions=dict()): r""" Returns a 2d Graphics illustrating the path. INPUT: - ``pathoptions`` - (dict, default:dict(rgbcolor='red',thickness=3)), options for the path drawing - ``fill`` - (boolean, default: True), if fill is True and if the path is closed, the inside is colored - ``filloptions`` - (dict, default:dict(rgbcolor='red',alpha=0.2)), options for the inside filling - ``startpoint`` - (boolean, default: True), draw the start point? - ``startoptions`` - (dict, default:dict(rgbcolor='red',pointsize=100)) options for the start point drawing - ``endarrow`` - (boolean, default: True), draw an arrow end at the end? - ``arrowoptions`` - (dict, default:dict(rgbcolor='red',arrowsize=20, width=3)) options for the end point arrow - ``gridlines``- (boolean, default: False), show gridlines? - ``gridoptions`` - (dict, default: {}), options for the gridlines EXAMPLES: A non closed path on the square grid:: sage: P = WordPaths('abAB') sage: P('abababAABAB').plot() Graphics object consisting of 3 graphics primitives A closed path on the square grid:: sage: P('abababAABABB').plot() Graphics object consisting of 4 graphics primitives A Dyck path:: sage: P = WordPaths('()', steps='dyck') sage: P('()()()((()))').plot() Graphics object consisting of 3 graphics primitives A path in the triangle grid:: sage: P = WordPaths('abcdef', steps='triangle_grid') sage: P('abcdedededefab').plot() Graphics object consisting of 3 graphics primitives A polygon of length 220 that tiles the plane in two ways:: sage: P = WordPaths('abAB') sage: P('aBababAbabaBaBABaBabaBaBABAbABABaBabaBaBABaBababAbabaBaBABaBabaBaBABAbABABaBABAbAbabAbABABaBABAbABABaBabaBaBABAbABABaBABAbAbabAbABAbAbabaBababAbABAbAbabAbABABaBABAbAbabAbABAbAbabaBababAbabaBaBABaBababAbabaBababAbABAbAbab').plot() Graphics object consisting of 4 graphics primitives With gridlines:: sage: P('ababababab').plot(gridlines=True) TESTS:: sage: P = WordPaths('abAB') sage: P().plot() Graphics object consisting of 3 graphics primitives sage: sum(map(plot,map(P,['a','A','b','B']))) Graphics object consisting of 12 graphics primitives """ G = Graphics() pts = list(self.points()) #################### #################### # FIXME Bug: plot needs float for coordinates #################### #################### pts = [[RR(i) for i in x] for x in pts] #Inside if fill and self.is_closed(): G += polygon(pts, **filloptions) #Startpoint if startpoint: G += point(pts[0], **startoptions) #The path itself if endarrow and not self.is_empty(): G += line(pts[:-1], **pathoptions) G += arrow(pts[-2], pts[-1], **arrowoptions) else: G += line(pts, **pathoptions) G.axes(False) G.set_aspect_ratio(1) #gridlines ###############BUG############## #Gridlines doesn't work fine. #It should be gridlines="integers" ###############BUG############## if gridlines: G = G.show(gridlines=True, **gridoptions) return G def animate(self): r""" Returns an animation object illustrating the path growing step by step. EXAMPLES:: sage: P = WordPaths('abAB') sage: p = P('aaababbb') sage: a = p.animate(); a # optional -- ImageMagick Animation with 9 frames sage: show(a) # optional -- ImageMagick sage: a.gif(delay=35, iterations=3) # optional -- ImageMagick :: sage: P = WordPaths('abcdef',steps='triangle') sage: p = P('abcdef') sage: p.animate() # optional -- ImageMagick Animation with 8 frames If the path is closed, the plain polygon is added at the end of the animation:: sage: P = WordPaths('abAB') sage: p = P('ababAbABABaB') sage: a = p.animate(); a # optional -- ImageMagick Animation with 14 frames Another example illustrating a Fibonacci tile:: sage: w = words.fibonacci_tile(2) sage: show(w.animate()) # optional -- ImageMagick The first 4 Fibonacci tiles in an animation:: sage: a = words.fibonacci_tile(0).animate() sage: b = words.fibonacci_tile(1).animate() sage: c = words.fibonacci_tile(2).animate() sage: d = words.fibonacci_tile(3).animate() sage: (a*b*c*d).show() # optional -- ImageMagick .. note:: If ImageMagick is not installed, you will get an error message like this:: /usr/local/share/sage/local/bin/sage-native-execute: 8: convert: not found Error: ImageMagick does not appear to be installed. Saving an animation to a GIF file or displaying an animation requires ImageMagick, so please install it and try again. See www.imagemagick.org, for example. """ from sage.plot.all import line, polygon, animate pts = list(self.points()) #################### #################### #Bug: plot needs float for coordinates #################### #################### pts = [[RR(i) for i in x] for x in pts] images = [line(pts[:i]) for i in range(1,len(pts)+1)] if self.is_closed(): images.append(polygon(pts)) #Get the window of the last image last_image = images[-1] kwds = {} kwds['xmin'] = last_image.xmin() kwds['xmax'] = last_image.xmax() kwds['ymin'] = last_image.ymin() kwds['ymax'] = last_image.ymax() kwds['aspect_ratio'] = 1 kwds['axes'] = False return animate(images, **kwds) def plot_directive_vector(self, options=dict(rgbcolor='blue')): r""" Returns an arrow 2d graphics that goes from the start of the path to the end. INPUT: - ``options`` - dictionary, default: {'rgbcolor': 'blue'} graphic options for the arrow If the start is the same as the end, a single point is returned. EXAMPLES:: sage: P = WordPaths('abcd'); P Word Paths on the square grid sage: p = P('aaaccaccacacacaccccccbbdd'); p Path: aaaccaccacacacaccccccbbdd sage: R = p.plot() + p.plot_directive_vector() sage: R.axes(False) sage: R.set_aspect_ratio(1) sage: R.plot() Graphics object consisting of 4 graphics primitives TESTS: A closed path:: sage: P('acbd').plot_directive_vector() Graphics object consisting of 1 graphics primitive """ start = self.start_point() end = self.end_point() if (start == end): G = point(start, pointsize=10, **options) else: G = arrow(start, end, **options) G.axes(False) G.set_aspect_ratio(1) return G def area(self): r""" Returns the area of a closed path. INPUT: - ``self`` - a closed path EXAMPLES:: sage: P = WordPaths('abcd',steps=[(1,1),(-1,1),(-1,-1),(1,-1)]) sage: p = P('abcd') sage: p.area() #todo: not implemented 2 """ if not self.is_closed(): raise TypeError("the path must be closed to compute its area") return NotImplemented def height(self): r""" Returns the height of self. The height of a `2d`-path is merely the difference between the highest and the lowest `y`-coordinate of each points traced by it. OUTPUT: non negative real number EXAMPLES:: sage: Freeman = WordPaths('abAB') sage: Freeman('aababaabbbAA').height() 5 The function is well-defined if self is not simple or close:: sage: Freeman('aabAAB').height() 1 sage: Freeman('abbABa').height() 2 This works for any `2d`-paths:: sage: Paths = WordPaths('ab', steps=[(1,0),(1,1)]) sage: p = Paths('abbaa') sage: p.height() 2 sage: DyckPaths = WordPaths('ab', steps='dyck') sage: p = DyckPaths('abaabb') sage: p.height() 2 sage: w = WordPaths('abcABC', steps='triangle')('ababcaaBC') sage: w.height() 2.59807621135332 """ return self.ymax() - self.ymin() def width(self): r""" Returns the width of self. The height of a `2d`-path is merely the difference between the rightmost and the leftmost `x`-coordinate of each points traced by it. OUTPUT: non negative real number EXAMPLES:: sage: Freeman = WordPaths('abAB') sage: Freeman('aababaabbbAA').width() 5 The function is well-defined if self is not simple or close:: sage: Freeman('aabAAB').width() 2 sage: Freeman('abbABa').width() 1 This works for any `2d`-paths:: sage: Paths = WordPaths('ab', steps=[(1,0),(1,1)]) sage: p = Paths('abbaa') sage: p.width() 5 sage: DyckPaths = WordPaths('ab', steps='dyck') sage: p = DyckPaths('abaabb') sage: p.width() 6 sage: w = WordPaths('abcABC', steps='triangle')('ababcaaBC') sage: w.width() 4.50000000000000 """ return self.xmax() - self.xmin() def xmin(self): r""" Returns the minimum of the x-coordinates of the path. EXAMPLES:: sage: P = WordPaths('0123') sage: p = P('0101013332') sage: p.xmin() 0 This works for any `2d`-paths:: sage: Paths = WordPaths('ab', steps=[(1,0),(-1,1)]) sage: p = Paths('abbba') sage: p.xmin() -2 sage: DyckPaths = WordPaths('ab', steps='dyck') sage: p = DyckPaths('abaabb') sage: p.xmin() 0 sage: w = WordPaths('abcABC', steps='triangle')('ababcaaBC') sage: w.xmin() 0.000000000000000 """ return min(x for (x,_) in self.points()) def ymin(self): r""" Returns the minimum of the y-coordinates of the path. EXAMPLES:: sage: P = WordPaths('0123') sage: p = P('0101013332') sage: p.ymin() 0 This works for any `2d`-paths:: sage: Paths = WordPaths('ab', steps=[(1,-1),(-1,1)]) sage: p = Paths('ababa') sage: p.ymin() -1 sage: DyckPaths = WordPaths('ab', steps='dyck') sage: p = DyckPaths('abaabb') sage: p.ymin() 0 sage: w = WordPaths('abcABC', steps='triangle')('ababcaaBC') sage: w.ymin() 0.000000000000000 """ return min(y for (_,y) in self.points()) def xmax(self): r""" Returns the maximum of the x-coordinates of the path. EXAMPLES:: sage: P = WordPaths('0123') sage: p = P('0101013332') sage: p.xmax() 3 This works for any `2d`-paths:: sage: Paths = WordPaths('ab', steps=[(1,-1),(-1,1)]) sage: p = Paths('ababa') sage: p.xmax() 1 sage: DyckPaths = WordPaths('ab', steps='dyck') sage: p = DyckPaths('abaabb') sage: p.xmax() 6 sage: w = WordPaths('abcABC', steps='triangle')('ababcaaBC') sage: w.xmax() 4.50000000000000 """ return max(x for (x,_) in self.points()) def ymax(self): r""" Returns the maximum of the y-coordinates of the path. EXAMPLES:: sage: P = WordPaths('0123') sage: p = P('0101013332') sage: p.ymax() 3 This works for any `2d`-paths:: sage: Paths = WordPaths('ab', steps=[(1,-1),(-1,1)]) sage: p = Paths('ababa') sage: p.ymax() 0 sage: DyckPaths = WordPaths('ab', steps='dyck') sage: p = DyckPaths('abaabb') sage: p.ymax() 2 sage: w = WordPaths('abcABC', steps='triangle')('ababcaaBC') sage: w.ymax() 2.59807621135332 """ return max(y for (_,y) in self.points()) class FiniteWordPath_3d(FiniteWordPath_all): def plot(self, pathoptions=dict(rgbcolor='red',arrow_head=True,thickness=3), startpoint=True, startoptions=dict(rgbcolor='red',size=10)): r""" INPUT: - ``pathoptions`` - (dict, default:dict(rgbcolor='red',arrow_head=True, thickness=3)), options for the path drawing - ``startpoint`` - (boolean, default: True), draw the start point? - ``startoptions`` - (dict, default:dict(rgbcolor='red',size=10)) options for the start point drawing EXAMPLES:: sage: d = ( vector((1,3,2)), vector((2,-4,5)) ) sage: P = WordPaths(alphabet='ab', steps=d); P Word Paths over 2 steps sage: p = P('ababab'); p Path: ababab sage: p.plot() Graphics3d Object sage: P = WordPaths('abcABC', steps='cube_grid') sage: p = P('abcabcAABBC') sage: p.plot() Graphics3d Object """ #The following line seems not to work for 3d #G = Graphics() #so we draw to start a small almost invisible point instead: G = point([self.start_point()], size=1) pts = list(self.points()) if startpoint: G += point([pts[0]], **startoptions) G += line(pts, **pathoptions) return G ####################################################################### # # # Abstract word path classes # # (square grid, hexagonal grid, etc.) # # # ####################################################################### class FiniteWordPath_square_grid(FiniteWordPath_2d): def is_closed(self): r""" Returns True if self represents a closed path and False otherwise. EXAMPLES:: sage: P = WordPaths('abAB', steps='square_grid') sage: P('aA').is_closed() True sage: P('abAB').is_closed() True sage: P('ababAABB').is_closed() True sage: P('aaabbbAABB').is_closed() False sage: P('ab').is_closed() False """ tab = self.abelian_vector() return tab[0] == tab[2] and tab[1] == tab[3] def area(self): r""" Returns the area of a closed path. INPUT: - ``self`` - a closed path EXAMPLES:: sage: P = WordPaths('abAB', steps='square_grid') sage: P('abAB').area() 1 sage: P('aabbAABB').area() 4 sage: P('aabbABAB').area() 3 The area of the Fibonacci tiles:: sage: [words.fibonacci_tile(i).area() for i in range(6)] [1, 5, 29, 169, 985, 5741] sage: [words.dual_fibonacci_tile(i).area() for i in range(6)] [1, 5, 29, 169, 985, 5741] sage: oeis(_)[0] # optional -- internet A001653: Numbers k such that 2*k^2 - 1 is a square. sage: _.first_terms() # optional -- internet (1, 5, 29, 169, 985, 5741, 33461, 195025, 1136689, 6625109, 38613965, 225058681, 1311738121, 7645370045, 44560482149, 259717522849, 1513744654945, 8822750406821, 51422757785981, 299713796309065, 1746860020068409, 10181446324101389, 59341817924539925) TESTS:: sage: P = WordPaths('abAB', steps='square_grid') sage: P('a').area() Traceback (most recent call last): ... TypeError: the path must be closed to compute its area """ if not self.is_closed(): raise TypeError("the path must be closed to compute its area") return abs(self._area_vh()) def _area_vh(self, x=0, y=0): r""" Return the area of ``self``, with starting point (x,y). This is using VH algorithm. INPUT: - x, y -- starting point (optional, default (0, 0)) EXAMPLES:: sage: P = WordPaths('abAB', steps='square_grid') sage: P('abAB')._area_vh() -1 sage: P('aabbAABB')._area_vh() -4 sage: P('aabbABAB')._area_vh() -3 REFERENCES: Annie Lacasse Memoire. """ area = 0 a, b, A, B = self.parent().alphabet() for move in self: if move == b: area -= x y += 1 elif move == B: area += x y -= 1 elif move == a: area += y x += 1 elif move == A: area -= y x -= 1 return area // 2 def is_simple(self): r""" Returns True if the path is simple, i.e. if all its points are distincts. If the path is closed, the last point is not considered. .. note:: The linear algorithm described in the thesis of Xavier Provençal should be implemented here. EXAMPLES:: sage: P = WordPaths('abAB', steps='square_grid') sage: P('abab').is_simple() True sage: P('abAB').is_simple() True sage: P('abA').is_simple() True sage: P('aabABB').is_simple() False sage: P().is_simple() True sage: P('A').is_simple() True sage: P('aA').is_simple() True sage: P('aaA').is_simple() False REFERENCES: - Provençal, X., *Combinatoires des mots, géometrie discrète et pavages*, Thèse de doctorat en Mathématiques, Montréal, UQAM, septembre 2008, 115 pages. """ return super(FiniteWordPath_square_grid,self).is_simple() def tikz_trajectory(self): r""" Returns the trajectory of self as a tikz str. EXAMPLES:: sage: f = words.fibonacci_tile(1) sage: f.tikz_trajectory() '(0, 0) -- (0, -1) -- (-1, -1) -- (-1, -2) -- (0, -2) -- (0, -3) -- (1, -3) -- (1, -2) -- (2, -2) -- (2, -1) -- (1, -1) -- (1, 0) -- (0, 0)' """ return ' -- '.join(map(str,self.points())) class FiniteWordPath_triangle_grid(FiniteWordPath_2d): # Triangle grid paths are implemented with quadratic fields, # and the ordering of such elements is currently problematic: # # sage: Q.<sqrt3> = QuadraticField(3) # sage: sqrt3 > 0 # True # sage: 0 < sqrt3 # False # sage: max(2*sqrt3, sqrt3/10) # 1/10*sqrt3 # # Therefore, the functions xmin(), xmax(), ymin() and ymax() are # redefined here with conversion to RR in order to avoid this problem def xmin(self): r""" Returns the minimum of the x-coordinates of the path. EXAMPLES:: sage: w = WordPaths('abcABC', steps='triangle')('ababcaaBC') sage: w.xmin() 0.000000000000000 sage: w = WordPaths('abcABC', steps='triangle')('ABAcacacababababcbcbAC') sage: w.xmin() -3.00000000000000 """ return min(RR(x) for (x,_) in self.points()) def ymin(self): r""" Returns the minimum of the y-coordinates of the path. EXAMPLES:: sage: w = WordPaths('abcABC', steps='triangle')('ababcaaBC') sage: w.ymin() 0.000000000000000 sage: w = WordPaths('abcABC', steps='triangle')('ABAcacacababababcbcbAC') sage: w.ymin() -0.866025403784439 """ return min(RR(y) for (_,y) in self.points()) def xmax(self): r""" Returns the maximum of the x-coordinates of the path. EXAMPLES:: sage: w = WordPaths('abcABC', steps='triangle')('ababcaaBC') sage: w.xmax() 4.50000000000000 sage: w = WordPaths('abcABC', steps='triangle')('ABAcacacababababcbcbAC') sage: w.xmax() 4.00000000000000 """ return max(RR(x) for (x,_) in self.points()) def ymax(self): r""" Returns the maximum of the y-coordinates of the path. EXAMPLES:: sage: w = WordPaths('abcABC', steps='triangle')('ababcaaBC') sage: w.ymax() 2.59807621135332 sage: w = WordPaths('abcABC', steps='triangle')('ABAcacacababababcbcbAC') sage: w.ymax() 8.66025403784439 """ return max(RR(y) for (_,y) in self.points()) #TODO: faire une verification du mot pour etre sur hexagonal grid class FiniteWordPath_hexagonal_grid(FiniteWordPath_triangle_grid): def __init__(self, parent, *args, **kwds): r""" INPUT: - ``parent`` - a parent object inheriting from Words_all that has the alphabet attribute defined - ``*args, **kwds`` - arguments accepted by AbstractWord EXAMPLES:: sage: F = WordPaths('abcdef', steps='hexagon'); F Word Paths on the hexagonal grid sage: f = F('aaabbbccddef'); f Path: aaabbbccddef :: sage: f == loads(dumps(f)) True """ super(FiniteWordPath_hexagonal_grid, self).__init__(parent, *args, **kwds) class FiniteWordPath_cube_grid(FiniteWordPath_3d): pass class FiniteWordPath_north_east(FiniteWordPath_2d): pass class FiniteWordPath_dyck(FiniteWordPath_2d): pass ####################################################################### # # # Concrete word path classes # # # # It would be nice if those were created inline... # # We must ask if Nicolas Thiery was able to convince Sage # # people about this. # # # ####################################################################### ##### Finite paths ##### class FiniteWordPath_all_list(WordDatatype_list, FiniteWordPath_all, FiniteWord_class): r""" TESTS:: sage: P = WordPaths(['a','b'],[(1,2,0,0),(3,4,0,0)]) sage: p = P(['a','b','a']);p Path: aba sage: type(p) <class 'sage.combinat.words.paths.FiniteWordPath_all_list'> sage: p == loads(dumps(p)) True """ pass class FiniteWordPath_all_str(WordDatatype_str, FiniteWordPath_all, FiniteWord_class): r""" TESTS:: sage: P = WordPaths('ab',[(1,2,0,0),(3,4,0,0)]) sage: p = P('aabbb'); p Path: aabbb sage: type(p) <class 'sage.combinat.words.paths.FiniteWordPath_all_str'> sage: p == loads(dumps(p)) True """ pass class FiniteWordPath_all_tuple(WordDatatype_tuple, FiniteWordPath_all, FiniteWord_class): r""" TESTS:: sage: P = WordPaths('ab',[(1,2,0,0),(3,4,0,0)]) sage: p = P( ('a','b','b') ); p Path: abb sage: type(p) <class 'sage.combinat.words.paths.FiniteWordPath_all_tuple'> sage: p == loads(dumps(p)) True """ pass class FiniteWordPath_all_iter_with_caching(WordDatatype_iter_with_caching, FiniteWordPath_all, FiniteWord_class): pass class FiniteWordPath_all_iter(WordDatatype_iter, FiniteWordPath_all, FiniteWord_class): pass class FiniteWordPath_all_callable_with_caching(WordDatatype_callable_with_caching, FiniteWordPath_all, FiniteWord_class): pass class FiniteWordPath_all_callable(WordDatatype_callable, FiniteWordPath_all, FiniteWord_class): pass ##### Finite paths on 2d ##### class FiniteWordPath_2d_list(WordDatatype_list, FiniteWordPath_2d, FiniteWord_class): r""" TESTS:: sage: P = WordPaths(['a','b'],[(1,2),(3,4)]) sage: p = P(['a','b','a']);p Path: aba sage: type(p) <class 'sage.combinat.words.paths.FiniteWordPath_2d_list'> sage: p == loads(dumps(p)) True """ pass class FiniteWordPath_2d_str(WordDatatype_str, FiniteWordPath_2d, FiniteWord_class): r""" TESTS:: sage: P = WordPaths(['a','b'],[(1,2),(3,4)]) sage: p = P('aba'); p Path: aba sage: type(p) <class 'sage.combinat.words.paths.FiniteWordPath_2d_str'> sage: p == loads(dumps(p)) True """ pass class FiniteWordPath_2d_tuple(WordDatatype_tuple, FiniteWordPath_2d, FiniteWord_class): r""" TESTS:: sage: P = WordPaths(['a','b'],[(1,2),(3,4)]) sage: p = P(('a','b','a'));p Path: aba sage: type(p) <class 'sage.combinat.words.paths.FiniteWordPath_2d_tuple'> sage: p == loads(dumps(p)) True """ pass class FiniteWordPath_2d_iter_with_caching(WordDatatype_iter_with_caching, FiniteWordPath_2d, FiniteWord_class): pass class FiniteWordPath_2d_iter(WordDatatype_iter, FiniteWordPath_2d, FiniteWord_class): pass class FiniteWordPath_2d_callable_with_caching(WordDatatype_callable_with_caching, FiniteWordPath_2d, FiniteWord_class): pass class FiniteWordPath_2d_callable(WordDatatype_callable, FiniteWordPath_2d, FiniteWord_class): pass ##### Finite paths on 3d ##### class FiniteWordPath_3d_list(WordDatatype_list, FiniteWordPath_3d, FiniteWord_class): r""" TESTS:: sage: P = WordPaths(['a','b'],[(1,2,0),(3,4,0)]) sage: p = P(['a','b','a']);p Path: aba sage: type(p) <class 'sage.combinat.words.paths.FiniteWordPath_3d_list'> sage: p == loads(dumps(p)) True """ pass class FiniteWordPath_3d_str(WordDatatype_str, FiniteWordPath_3d, FiniteWord_class): r""" TESTS:: sage: P = WordPaths(['a','b'],[(1,2,0),(3,4,0)]) sage: p = P('aba'); p Path: aba sage: type(p) <class 'sage.combinat.words.paths.FiniteWordPath_3d_str'> sage: p == loads(dumps(p)) True """ pass class FiniteWordPath_3d_tuple(WordDatatype_tuple, FiniteWordPath_3d, FiniteWord_class): r""" TESTS:: sage: P = WordPaths(['a','b'],[(1,2,0),(3,4,0)]) sage: p = P(('a','b','a'));p Path: aba sage: type(p) <class 'sage.combinat.words.paths.FiniteWordPath_3d_tuple'> sage: p == loads(dumps(p)) True """ pass class FiniteWordPath_3d_iter_with_caching(WordDatatype_iter_with_caching, FiniteWordPath_3d, FiniteWord_class): pass class FiniteWordPath_3d_iter(WordDatatype_iter, FiniteWordPath_3d, FiniteWord_class): pass class FiniteWordPath_3d_callable_with_caching(WordDatatype_callable_with_caching, FiniteWordPath_3d, FiniteWord_class): pass class FiniteWordPath_3d_callable(WordDatatype_callable, FiniteWordPath_3d, FiniteWord_class): pass ##### Finite paths on square grid ##### class FiniteWordPath_square_grid_list(WordDatatype_list, FiniteWordPath_square_grid, FiniteWord_class): r""" TESTS:: sage: P = WordPaths('abcd', steps='square') sage: p = P(['a','b','b']); p Path: abb sage: type(p) <class 'sage.combinat.words.paths.FiniteWordPath_square_grid_list'> sage: p == loads(dumps(p)) True """ pass class FiniteWordPath_square_grid_str(WordDatatype_str, FiniteWordPath_square_grid, FiniteWord_class): r""" TESTS:: sage: P = WordPaths('abcd', steps='square') sage: p = P('abccc'); p Path: abccc sage: type(p) <class 'sage.combinat.words.paths.FiniteWordPath_square_grid_str'> sage: p == loads(dumps(p)) True """ pass class FiniteWordPath_square_grid_tuple(WordDatatype_tuple, FiniteWordPath_square_grid, FiniteWord_class): r""" TESTS:: sage: P = WordPaths('abcd', steps='square') sage: p = P(('a','b','b')); p Path: abb sage: type(p) <class 'sage.combinat.words.paths.FiniteWordPath_square_grid_tuple'> sage: p == loads(dumps(p)) True """ pass class FiniteWordPath_square_grid_iter_with_caching(WordDatatype_iter_with_caching, FiniteWordPath_square_grid, FiniteWord_class): pass class FiniteWordPath_square_grid_iter(WordDatatype_iter, FiniteWordPath_square_grid, FiniteWord_class): pass class FiniteWordPath_square_grid_callable_with_caching(WordDatatype_callable_with_caching, FiniteWordPath_square_grid, FiniteWord_class): pass class FiniteWordPath_square_grid_callable(WordDatatype_callable, FiniteWordPath_square_grid, FiniteWord_class): pass ##### Unknown length paths on square grid (experimental) ##### #class WordPath_square_grid_iter_with_caching(WordDatatype_iter_with_caching, FiniteWordPath_square_grid, Word_class): # pass ##### Finite paths on triangle grid ##### class FiniteWordPath_triangle_grid_list(WordDatatype_list, FiniteWordPath_triangle_grid, FiniteWord_class): r""" TESTS:: sage: P = WordPaths('abcdef', steps='triangle') sage: p = P(['a','b','b']); p Path: abb sage: type(p) <class 'sage.combinat.words.paths.FiniteWordPath_triangle_grid_list'> sage: p == loads(dumps(p)) True """ pass class FiniteWordPath_triangle_grid_str(WordDatatype_str, FiniteWordPath_triangle_grid, FiniteWord_class): r""" TESTS:: sage: P = WordPaths('abcdef', steps='triangle') sage: p = P('abb'); p Path: abb sage: type(p) <class 'sage.combinat.words.paths.FiniteWordPath_triangle_grid_str'> sage: p == loads(dumps(p)) True """ pass class FiniteWordPath_triangle_grid_tuple(WordDatatype_tuple, FiniteWordPath_triangle_grid, FiniteWord_class): r""" TESTS:: sage: P = WordPaths('abcdef', steps='triangle') sage: p = P(('a','b','b')); p Path: abb sage: type(p) <class 'sage.combinat.words.paths.FiniteWordPath_triangle_grid_tuple'> sage: p == loads(dumps(p)) True """ pass class FiniteWordPath_triangle_grid_iter_with_caching(WordDatatype_iter_with_caching, FiniteWordPath_triangle_grid, FiniteWord_class): pass class FiniteWordPath_triangle_grid_iter(WordDatatype_iter, FiniteWordPath_triangle_grid, FiniteWord_class): pass class FiniteWordPath_triangle_grid_callable_with_caching(WordDatatype_callable_with_caching, FiniteWordPath_triangle_grid, FiniteWord_class): pass class FiniteWordPath_triangle_grid_callable(WordDatatype_callable, FiniteWordPath_triangle_grid, FiniteWord_class): pass ##### Finite paths on hexagonal grid ##### class FiniteWordPath_hexagonal_grid_list(WordDatatype_list, FiniteWordPath_hexagonal_grid, FiniteWord_class): r""" TESTS:: sage: P = WordPaths('abcdef', steps='hexagon') sage: p = P(['a','b','b']); p Path: abb sage: type(p) <class 'sage.combinat.words.paths.FiniteWordPath_hexagonal_grid_list'> sage: p == loads(dumps(p)) True """ pass class FiniteWordPath_hexagonal_grid_str(WordDatatype_str, FiniteWordPath_hexagonal_grid, FiniteWord_class): r""" TESTS:: sage: P = WordPaths('abcdef', steps='hexagon') sage: p = P('abb'); p Path: abb sage: type(p) <class 'sage.combinat.words.paths.FiniteWordPath_hexagonal_grid_str'> sage: p == loads(dumps(p)) True """ pass class FiniteWordPath_hexagonal_grid_tuple(WordDatatype_tuple, FiniteWordPath_hexagonal_grid, FiniteWord_class): r""" TESTS:: sage: P = WordPaths('abcdef', steps='hexagon') sage: p = P(('a','b','b')); p Path: abb sage: type(p) <class 'sage.combinat.words.paths.FiniteWordPath_hexagonal_grid_tuple'> sage: p == loads(dumps(p)) True """ pass class FiniteWordPath_hexagonal_grid_iter_with_caching(WordDatatype_iter_with_caching, FiniteWordPath_hexagonal_grid, FiniteWord_class): pass class FiniteWordPath_hexagonal_grid_iter(WordDatatype_iter, FiniteWordPath_hexagonal_grid, FiniteWord_class): pass class FiniteWordPath_hexagonal_grid_callable_with_caching(WordDatatype_callable_with_caching, FiniteWordPath_hexagonal_grid, FiniteWord_class): pass class FiniteWordPath_hexagonal_grid_callable(WordDatatype_callable, FiniteWordPath_hexagonal_grid, FiniteWord_class): pass ##### Finite paths on cube grid ##### class FiniteWordPath_cube_grid_list(WordDatatype_list, FiniteWordPath_cube_grid, FiniteWord_class): r""" TESTS:: sage: P = WordPaths('abcdef', steps='cube') sage: p = P(['a','b','b']); p Path: abb sage: type(p) <class 'sage.combinat.words.paths.FiniteWordPath_cube_grid_list'> sage: p == loads(dumps(p)) True """ pass class FiniteWordPath_cube_grid_str(WordDatatype_str, FiniteWordPath_cube_grid, FiniteWord_class): r""" TESTS:: sage: P = WordPaths('abcdef', steps='cube') sage: p = P('abb'); p Path: abb sage: type(p) <class 'sage.combinat.words.paths.FiniteWordPath_cube_grid_str'> sage: p == loads(dumps(p)) True """ pass class FiniteWordPath_cube_grid_tuple(WordDatatype_tuple, FiniteWordPath_cube_grid, FiniteWord_class): r""" TESTS:: sage: P = WordPaths('abcdef', steps='cube') sage: p = P(('a','b','b')); p Path: abb sage: type(p) <class 'sage.combinat.words.paths.FiniteWordPath_cube_grid_tuple'> sage: p == loads(dumps(p)) True """ pass class FiniteWordPath_cube_grid_iter_with_caching(WordDatatype_iter_with_caching, FiniteWordPath_cube_grid, FiniteWord_class): pass class FiniteWordPath_cube_grid_iter(WordDatatype_iter, FiniteWordPath_cube_grid, FiniteWord_class): pass class FiniteWordPath_cube_grid_callable_with_caching(WordDatatype_callable_with_caching, FiniteWordPath_cube_grid, FiniteWord_class): pass class FiniteWordPath_cube_grid_callable(WordDatatype_callable, FiniteWordPath_cube_grid, FiniteWord_class): pass ##### Finite paths on north_east ##### class FiniteWordPath_north_east_list(WordDatatype_list, FiniteWordPath_north_east, FiniteWord_class): r""" TESTS:: sage: P = WordPaths('ab', steps='ne') sage: p = P(['a','b','b']); p Path: abb sage: type(p) <class 'sage.combinat.words.paths.FiniteWordPath_north_east_list'> sage: p == loads(dumps(p)) True """ pass class FiniteWordPath_north_east_str(WordDatatype_str, FiniteWordPath_north_east, FiniteWord_class): r""" TESTS:: sage: P = WordPaths('ab', steps='ne') sage: p = P('abb'); p Path: abb sage: type(p) <class 'sage.combinat.words.paths.FiniteWordPath_north_east_str'> sage: p == loads(dumps(p)) True """ pass class FiniteWordPath_north_east_tuple(WordDatatype_tuple, FiniteWordPath_north_east, FiniteWord_class): r""" TESTS:: sage: P = WordPaths('ab', steps='ne') sage: p = P(('a','b','b')); p Path: abb sage: type(p) <class 'sage.combinat.words.paths.FiniteWordPath_north_east_tuple'> sage: p == loads(dumps(p)) True """ pass class FiniteWordPath_north_east_iter_with_caching(WordDatatype_iter_with_caching, FiniteWordPath_north_east, FiniteWord_class): pass class FiniteWordPath_north_east_iter(WordDatatype_iter, FiniteWordPath_north_east, FiniteWord_class): pass class FiniteWordPath_north_east_callable_with_caching(WordDatatype_callable_with_caching, FiniteWordPath_north_east, FiniteWord_class): pass class FiniteWordPath_north_east_callable(WordDatatype_callable, FiniteWordPath_north_east, FiniteWord_class): pass ##### Finite paths on dyck ##### class FiniteWordPath_dyck_list(WordDatatype_list, FiniteWordPath_dyck, FiniteWord_class): r""" TESTS:: sage: P = WordPaths('ab', steps='dyck') sage: p = P(['a','b','b']); p Path: abb sage: type(p) <class 'sage.combinat.words.paths.FiniteWordPath_dyck_list'> sage: p == loads(dumps(p)) True """ pass class FiniteWordPath_dyck_str(WordDatatype_str, FiniteWordPath_dyck, FiniteWord_class): r""" TESTS:: sage: P = WordPaths('ab', steps='dyck') sage: p = P('abb'); p Path: abb sage: type(p) <class 'sage.combinat.words.paths.FiniteWordPath_dyck_str'> sage: p == loads(dumps(p)) True """ pass class FiniteWordPath_dyck_tuple(WordDatatype_tuple, FiniteWordPath_dyck, FiniteWord_class): r""" TESTS:: sage: P = WordPaths('ab', steps='dyck') sage: p = P(('a','b','b')); p Path: abb sage: type(p) <class 'sage.combinat.words.paths.FiniteWordPath_dyck_tuple'> sage: p == loads(dumps(p)) True """ pass class FiniteWordPath_dyck_iter_with_caching(WordDatatype_iter_with_caching, FiniteWordPath_dyck, FiniteWord_class): pass class FiniteWordPath_dyck_iter(WordDatatype_iter, FiniteWordPath_dyck, FiniteWord_class): pass class FiniteWordPath_dyck_callable_with_caching(WordDatatype_callable_with_caching, FiniteWordPath_dyck, FiniteWord_class): pass class FiniteWordPath_dyck_callable(WordDatatype_callable, FiniteWordPath_dyck, FiniteWord_class): pass
py
b4028460ca3e52b014406018354052750545dd66
# -*- coding: utf-8 -*- import tempfile import numpy as np from pydefect.core.defect_entry import ( DefectType, DefectEntry, determine_defect_type, anchor_atom_index, divide_defect_name) from pydefect.util.testing import PydefectTest from pydefect.core.config import CUTOFF_FACTOR class DefectTypeTest(PydefectTest): def setUp(self) -> None: self.vacancy = DefectType.from_string("vacancy") self.substituted = DefectType.substituted def tests_str(self): self.assertEqual("vacancy", str(self.vacancy)) def test__raise_error(self): with self.assertRaises(AttributeError): DefectType.from_string("antisite") def test_is_defect_center_atom(self): self.assertTrue(self.substituted.is_defect_center_atom) class DetermineDefectTypeTest(PydefectTest): def setUp(self) -> None: self.vacancy = determine_defect_type( inserted_atoms=[], removed_atoms=[{"coords": [0, 0, 0]}]) self.interstitial = determine_defect_type( inserted_atoms=[{"coords": [0, 0, 0]}], removed_atoms=[]) self.substituted = determine_defect_type( inserted_atoms=[{"coords": [0, 0, 0]}], removed_atoms=[{"coords": [0, 0, 0]}]) self.complex = determine_defect_type( inserted_atoms=[{"coords": [0, 0, 0.5]}], removed_atoms=[{"coords": [0, 0, 0]}]) self.complex2 = determine_defect_type( inserted_atoms=[{"coords": [0, 0, 0]}], removed_atoms=[{"coords": [0, 0, 0]}, {"coords": [0, 0, 0.5]}]) def test(self): self.assertEqual(DefectType.vacancy, self.vacancy) self.assertEqual(DefectType.interstitial, self.interstitial) self.assertEqual(DefectType.substituted, self.substituted) self.assertEqual(DefectType.complex, self.complex) self.assertEqual(DefectType.complex, self.complex2) def test_raise_error(self): with self.assertRaises(ValueError): determine_defect_type(inserted_atoms=[], removed_atoms=[]) class DefectEntryTest(PydefectTest): def setUp(self): """ """ # DefectEntry class object for a single vacancy name = "Va_O1" defect_type = DefectType.from_string("vacancy") self.initial_structure_vacancy = \ self.get_structure_by_name(name="MgO64atoms-Va_O_0-unrelaxed") perturbed_initial_structure = self.initial_structure_vacancy.copy() removed_atoms = [{"element": "O", "index": 32, "coords": [0.25, 0, 0]}] inserted_atoms = [] changes_of_num_elements = {"O": -1} charge = 2 initial_site_symmetry = "m-3m" multiplicity = 32 neighboring_sites = [0, 4, 16, 17, 24, 26] cutoff = round(8.419456 / 4 * CUTOFF_FACTOR, 2) self.MgO_Va_O1_2 = \ DefectEntry(name=name, defect_type=defect_type, initial_structure=self.initial_structure_vacancy, perturbed_initial_structure=perturbed_initial_structure, removed_atoms=removed_atoms, inserted_atoms=inserted_atoms, changes_of_num_elements=changes_of_num_elements, charge=charge, initial_site_symmetry=initial_site_symmetry, cutoff=cutoff, neighboring_sites=neighboring_sites, multiplicity=multiplicity) name = "complex" defect_type = DefectType.from_string("complex") self.initial_structure_complex = \ self.get_structure_by_name(name="MgO64atoms-Va_Mg+Va_O+Ca_i") perturbed_initial_structure = self.initial_structure_complex.copy() removed_atoms = [{"element": "Mg", "index": 0, "coords": [0, 0, 0]}, {"element": "O", "index": 32, "coords": [0.25, 0, 0]}] inserted_atoms = [{"element": "Ca", "index": 0, "coords": [0.125, 0, 0]}] changes_of_num_elements = {"Mg": -1, "Ca": 1, "O": -1} charge = 2 initial_site_symmetry = "4mm" multiplicity = 192 neighboring_sites = [16, 17, 24, 26, 47, 48, 55, 57] cutoff = round(8.419456 / 4 * CUTOFF_FACTOR, 2) self.MgO_complex = \ DefectEntry(name=name, defect_type=defect_type, initial_structure=self.initial_structure_complex, perturbed_initial_structure=perturbed_initial_structure, removed_atoms=removed_atoms, inserted_atoms=inserted_atoms, changes_of_num_elements=changes_of_num_elements, charge=charge, initial_site_symmetry=initial_site_symmetry, cutoff=cutoff, neighboring_sites=neighboring_sites, multiplicity=multiplicity) def test_from_defect_structure(self): perfect_structure = self.get_structure_by_name(name="MgO64atoms") expected = self.MgO_Va_O1_2.as_dict() actual = DefectEntry.from_defect_structure( defect_structure=self.initial_structure_vacancy, perfect_structure=perfect_structure, defect_name="Va_O1_2").as_dict() for d in expected: self.assertEqual(expected[d], actual[d]) def test_from_defect_structure_complex(self): perfect_structure = self.get_structure_by_name(name="MgO64atoms") expected = self.MgO_complex.as_dict() actual = DefectEntry.from_defect_structure( defect_structure=self.initial_structure_complex, perfect_structure=perfect_structure, defect_name="complex_2").as_dict() for d in expected: self.assertEqual(expected[d], actual[d]) def test_msonable(self): self.assertMSONable(self.MgO_Va_O1_2) self.assertMSONable(self.MgO_complex) def test_dict_round_trip(self): """ round trip test of as_dict and from_dict """ expected = self.MgO_Va_O1_2.as_dict() actual = DefectEntry.from_dict(expected).as_dict() self.assertEqual(expected, actual) def test_json_round_trip(self): """ round trip test of to_json and from_json """ tmp_file = tempfile.NamedTemporaryFile() self.MgO_Va_O1_2.to_json_file(tmp_file.name) expected = self.MgO_Va_O1_2.as_dict() actual = DefectEntry.load_json(tmp_file.name).as_dict() self.assertTrue(expected, actual) def test_atom_mapping_to_perfect(self): expected = list(range(64)) expected.pop(32) actual = self.MgO_Va_O1_2.atom_mapping_to_perfect self.assertEqual(expected, actual) def test_atom_mapping_to_perfect_complex(self): expected = list(range(64)) expected.pop(32) expected.pop(0) expected = [None] + expected actual = self.MgO_complex.atom_mapping_to_perfect self.assertEqual(expected, actual) def test_defect_center(self): expected = [0.25, 0, 0] actual = self.MgO_Va_O1_2.defect_center_coords self.assertArrayEqual(expected, actual) def test_defect_center_complex(self): expected = [0.125, 0, 0] actual = self.MgO_complex.defect_center_coords self.assertArrayEqual(expected, actual) def test_anchor_atom_index(self): expected = 38 # Line 47 [0.75, 0.5, 0.5] actual = self.MgO_Va_O1_2.anchor_atom_index self.assertEqual(actual, expected) def test_anchor_atom_index_complex(self): expected = [8, 38] # 8 or 38 actual = self.MgO_complex.anchor_atom_index self.assertTrue(actual in expected) class AnchorAtomIndexTest(PydefectTest): def test(self): structure = self.get_structure_by_name(name="KZn4P3") actual = anchor_atom_index(structure, [0.5, 0.5, 0.5]) self.assertEqual(7, actual) class DivideDirnameTest(PydefectTest): def setUp(self): # DefectEntry class object for a single vacancy self.dirname1 = "Va_Mg1_2" self.dirname2 = "Va_O1_2_inward" self.dirname3 = "Mg_i+Va_O1*2_-2_coord1" def test_dirname1(self): self.assertEqual(("Va_Mg1", 2, None), divide_defect_name(self.dirname1)) def test_dirname2(self): self.assertEqual(("Va_O1", 2, "inward"), divide_defect_name(self.dirname2)) def test_dirname3(self): self.assertEqual(("Mg_i+Va_O1*2", -2, "coord1"), divide_defect_name(self.dirname3))
py
b4028465e34747d60fac8c6a1339f7badcfa091b
import os # Django settings for fvserver project. PROJECT_DIR = os.path.abspath(os.path.join(os.path.dirname(os.path.abspath(__file__)), os.path.pardir)) ENCRYPTED_FIELD_KEYS_DIR = os.path.join(PROJECT_DIR, 'keyset') DEBUG = False ADMINS = ( # ('Your Name', '[email protected]'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'. 'NAME': os.path.join(PROJECT_DIR, 'crypt.db'), # Or path to database file if using sqlite3. 'USER': '', # Not used with sqlite3. 'PASSWORD': '', # Not used with sqlite3. 'HOST': '', # Set to empty string for localhost. Not used with sqlite3. 'PORT': '', # Set to empty string for default. Not used with sqlite3. } } # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # In a Windows environment this must be set to your system time zone. TIME_ZONE = 'Europe/London' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-gb' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale. USE_L10N = True # If you set this to False, Django will not use timezone-aware datetimes. USE_TZ = True # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/home/media/media.lawrence.com/media/" MEDIA_ROOT = '' # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://media.lawrence.com/media/", "http://example.com/media/" MEDIA_URL = '' # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/home/media/media.lawrence.com/static/" STATIC_ROOT = os.path.join(PROJECT_DIR, 'static') # URL prefix for static files. # Example: "http://media.lawrence.com/static/" STATIC_URL = '/static/' # URL prefix for admin static files -- CSS, JavaScript and images. # Make sure to use a trailing slash. # Examples: "http://foo.com/static/admin/", "/static/admin/". # deprecated in Django 1.4, but django_wsgiserver still looks for it # when serving admin media ADMIN_MEDIA_PREFIX = '/static_admin/' # Additional locations of static files STATICFILES_DIRS = ( # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. os.path.join(PROJECT_DIR, 'site_static'), ) LOGIN_URL='/login/' LOGIN_REDIRECT_URL='/' ALLOWED_HOSTS = ['*'] # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # 'django.contrib.staticfiles.finders.DefaultStorageFinder', ) # Make this unique, and don't share it with anybody. SECRET_KEY = '6%y8=x5(#ufxd*+d+-ohwy0b$5z^cla@7tvl@n55_h_cex0qat' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ # insert your TEMPLATE_DIRS here os.path.join(PROJECT_DIR, 'templates'), ], 'APP_DIRS':True, 'OPTIONS': { 'context_processors': [ # Insert your TEMPLATE_CONTEXT_PROCESSORS here or use this # list if you haven't customized them: 'django.contrib.auth.context_processors.auth', 'django.template.context_processors.debug', 'django.template.context_processors.i18n', 'django.template.context_processors.media', 'django.template.context_processors.static', 'django.template.context_processors.tz', 'django.contrib.messages.context_processors.messages', ], 'debug': DEBUG, }, }, ] MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', # Uncomment the next line for simple clickjacking protection: # 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'fvserver.urls' # Python dotted path to the WSGI application used by Django's runserver. WSGI_APPLICATION = 'fvserver.wsgi.application' INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', # Uncomment the next line to enable the admin: 'django.contrib.admin', # Uncomment the next line to enable admin documentation: 'django.contrib.admindocs', 'server', 'bootstrap3', 'django_extensions', ) # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error when DEBUG=False. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } }
py
b40284e829aaa940c6d9ac35bbf37427f87e3b98
""" To serve with uwsgi: uwsgi --http 0.0.0.0:8002 --manage-script-name --mount /=server_flask:app To serve with python: python server_flask.py 8002 (then visit http://localhost:8002/static/index.html in your browser) """ import os, sys, posixpath import traceback import logging import pkg_resources from flask import Flask, request, make_response, redirect, send_from_directory from werkzeug.exceptions import HTTPException import msgpack as msgpack_converter def create_app(config=None): from web_gui import api RPC_ENDPOINT = '/RPC2' STATIC_PATH = pkg_resources.resource_filename('web_gui', 'static/') app = Flask(__name__, static_folder=STATIC_PATH, static_url_path='/static') app.config['SEND_FILE_MAX_AGE_DEFAULT'] = 0 @app.route('/') def root(): return redirect("static/index.html") @app.route('/robots.txt') def static_from_root(): return send_from_directory(app.static_folder, request.path[1:]) @app.errorhandler(Exception) def handle_error(e): code = 500 if isinstance(e, HTTPException): code = e.code content = {'exception': repr(e), 'traceback': traceback.format_exc()} logging.info(content['traceback']) return make_response(msgpack_converter.packb(content, use_bin_type=True), code) def wrap_method(mfunc): def wrapper(*args, **kwargs): real_kwargs = request.get_json() if request.get_data() else {} content = mfunc(*args, **real_kwargs) packed = msgpack_converter.packb(content, use_bin_type=True) response = make_response(packed) response.headers['Content-Type'] = 'application/msgpack' return response return wrapper api.initialize(config) for method in api.api_methods: mfunc = getattr(api, method) wrapped = wrap_method(mfunc) path = posixpath.join(RPC_ENDPOINT, method) shortpath = posixpath.join("/", method) app.add_url_rule(path, path, wrapped, methods=["POST"]) app.add_url_rule(shortpath, shortpath, wrapped, methods=["POST"]) from dataflow.rev import print_revision print_revision() return app if __name__ == '__main__': logging.basicConfig(level=logging.WARNING) port = 8002 if len(sys.argv) > 1: port = int(sys.argv[1]) app = create_app() app.run(port=port)
py
b402866175f1e35cf6fc24bcbee8f5e3a15f18cc
""" ASGI config for YAInstagram project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'YAInstagram.settings') application = get_asgi_application()
py
b40286f162eaa421c70ed3df68fce5ad5648516a
#!/usr/bin/env python # coding=utf-8 from __future__ import division, print_function, unicode_literals from sacred.config.config_scope import ConfigScope SIX = 6 @ConfigScope def cfg(): answer = 7 * SIX @ConfigScope def cfg2(): answer = 6 * SEVEN
py
b40287e16e63629f066a7c5a22a1d35258226e29
# Copyright (c) 2021 PPViT Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration Configuration for data, model archtecture, and training, etc. Config can be set by .yaml file or by argparser(limited usage) """ import os from yacs.config import CfgNode as CN import yaml _C = CN() _C.BASE = [''] # data settings _C.DATA = CN() _C.DATA.BATCH_SIZE = 256 #256 # train batch_size for single GPU _C.DATA.BATCH_SIZE_EVAL = 8 #64 # val batch_size for single GPU _C.DATA.DATA_PATH = '/dataset/imagenet/' # path to dataset _C.DATA.DATASET = 'imagenet2012' # dataset name _C.DATA.IMAGE_SIZE = 224 # input image size: 224 for pretrain, 384 for finetune _C.DATA.CROP_PCT = 0.875 # input image scale ratio, scale is applied before centercrop in eval mode _C.DATA.NUM_WORKERS = 2 # number of data loading threads # model settings _C.MODEL = CN() _C.MODEL.TYPE = 'VOLO' _C.MODEL.NAME = 'VOLO' _C.MODEL.RESUME = None _C.MODEL.PRETRAINED = None _C.MODEL.NUM_CLASSES = 1000 _C.MODEL.DROPOUT = 0.1 _C.MODEL.DROPPATH = 0.1 _C.MODEL.ATTENTION_DROPOUT = 0.0 _C.MODEL.STEM_HIDDEN_DIM = 128 # transformer settings _C.MODEL.TRANS = CN() _C.MODEL.TRANS.PATCH_SIZE = 32 _C.MODEL.TRANS.LAYERS = [12, 12, 20, 4] _C.MODEL.TRANS.EMBED_DIMS = [384, 768, 768, 768] _C.MODEL.TRANS.MLP_RATIOS = [4, 4, 4, 4] _C.MODEL.TRANS.DOWNSAMPLES = [True, False, False, False] _C.MODEL.TRANS.OUTLOOK_ATTENTION = [True, False, False, False] _C.MODEL.TRANS.NUM_HEADS = [12, 16, 16, 16] _C.MODEL.TRANS.QKV_BIAS = False _C.MODEL.TRANS.QK_SCALE = False # training settings _C.TRAIN = CN() _C.TRAIN.LAST_EPOCH = 0 _C.TRAIN.NUM_EPOCHS = 300 _C.TRAIN.WARMUP_EPOCHS = 3 #34 # ~ 10k steps for 4096 batch size _C.TRAIN.WEIGHT_DECAY = 0.05 #0.3 # 0.0 for finetune _C.TRAIN.BASE_LR = 0.001 #0.003 for pretrain # 0.03 for finetune _C.TRAIN.WARMUP_START_LR = 1e-6 #0.0 _C.TRAIN.END_LR = 5e-4 _C.TRAIN.GRAD_CLIP = 1.0 _C.TRAIN.ACCUM_ITER = 2 #1 _C.TRAIN.LR_SCHEDULER = CN() _C.TRAIN.LR_SCHEDULER.NAME = 'warmupcosine' _C.TRAIN.LR_SCHEDULER.MILESTONES = "30, 60, 90" # only used in StepLRScheduler _C.TRAIN.LR_SCHEDULER.DECAY_EPOCHS = 30 # only used in StepLRScheduler _C.TRAIN.LR_SCHEDULER.DECAY_RATE = 0.1 # only used in StepLRScheduler _C.TRAIN.OPTIMIZER = CN() _C.TRAIN.OPTIMIZER.NAME = 'AdamW' _C.TRAIN.OPTIMIZER.EPS = 1e-8 _C.TRAIN.OPTIMIZER.BETAS = (0.9, 0.999) # for adamW _C.TRAIN.OPTIMIZER.MOMENTUM = 0.9 # misc _C.SAVE = "./output" _C.TAG = "default" _C.SAVE_FREQ = 10 # freq to save chpt _C.REPORT_FREQ = 50 # freq to logging info _C.VALIDATE_FREQ = 100 # freq to do validation _C.SEED = 0 _C.EVAL = False # run evaluation only _C.LOCAL_RANK = 0 _C.NGPUS = -1 def _update_config_from_file(config, cfg_file): config.defrost() with open(cfg_file, 'r') as infile: yaml_cfg = yaml.load(infile, Loader=yaml.FullLoader) for cfg in yaml_cfg.setdefault('BASE', ['']): if cfg: _update_config_from_file( config, os.path.join(os.path.dirname(cfg_file), cfg) ) print('merging config from {}'.format(cfg_file)) config.merge_from_file(cfg_file) config.freeze() def update_config(config, args): """Update config by ArgumentParser Args: args: ArgumentParser contains options Return: config: updated config """ if args.cfg: _update_config_from_file(config, args.cfg) config.defrost() if args.dataset: config.DATA.DATASET = args.dataset if args.batch_size: config.DATA.BATCH_SIZE = args.batch_size if args.image_size: config.DATA.IMAGE_SIZE = args.image_size if args.data_path: config.DATA.DATA_PATH = args.data_path if args.ngpus: config.NGPUS = args.ngpus if args.eval: config.EVAL = True config.DATA.BATCH_SIZE_EVAL = args.batch_size if args.pretrained: config.MODEL.PRETRAINED = args.pretrained if args.resume: config.MODEL.RESUME = args.resume if args.last_epoch: config.TRAIN.LAST_EPOCH = args.last_epoch #config.freeze() return config def get_config(cfg_file=None): """Return a clone of config or load from yaml file""" config = _C.clone() if cfg_file: _update_config_from_file(config, cfg_file) return config
py
b402883ba0163968f84dc957a08c56e7f97cede8
from django.apps import AppConfig class EmployeeappConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'EmployeeApp'
py
b402889f28b904e9ad8f26033145ad9f7a4dd806
expressao = str(input('Digite uma expressão qualquer que use parenteses: ')).strip() # lista = expressao.split() # print(lista) if '(' or ')' in expressao: if expressao.count('(') == expressao.count(')'): print('OK') else: print('Sua expressão está errada!')
py
b402891b58e1edf33d9d13358b1c63a696f48737
from RFEM.initModel import Model, clearAtributes, ConvertToDlString class Opening(): def __init__(self, no: int = 1, lines_no: str = '1 2 3 4', comment: str = '', params: dict = None, model = Model): ''' Args: no (int): Opening Tag lines_no (str): Tags of Lines defining Opening comment (str, optional): Comments params (dict, optional): Any WS Parameter relevant to the object and its value in form of a dictionary ''' # Client model | Opening clientObject = model.clientModel.factory.create('ns0:opening') # Clears object atributes | Sets all atributes to None clearAtributes(clientObject) # Opening No. clientObject.no = no # Boundary Lines No. clientObject.boundary_lines = ConvertToDlString(lines_no) # Comment clientObject.comment = comment # Adding optional parameters via dictionary if params: for key in params: clientObject[key] = params[key] # Add Opening to client model model.clientModel.service.set_opening(clientObject)
py
b4028a9b00ece3179c0e955536f7b4de6ebf9c4b
# -*- coding: utf-8 -*- """ Combine the stresses @revision: 0 @author: etodorov @date: 14 Feb 16 """ #software imports import sys from base import TestProblem, Solver #mathematical imports import numpy as np inputList=[ 'sigma_z_r', 'sigma_z_f', 'tau_totr', 'tau_totf', 'xr', 'yr', 'z'] outputList = ["vonMisesStress_ring", 'vonMisesStress_floor' ] class MisesStress(Solver): def solve(self,Problem): """ **Stress combiner** \n sigma_z is a fucntion of (x,y,z); tau_tot is a 2d array in directions (theta, z); \n vonMisesStresses are 2D arrays (z, xsectional) """ for i in self.inputList: setattr(sys.modules[__name__], i, getattr(Problem, i)) #YOUR CODE STARTS HERE vonMisesStress_ring = np.sqrt(sigma_z_r**2+3*tau_totr**2) vonMisesStress_floor= np.sqrt(sigma_z_f**2+3*tau_totf**2) #YOUR CODE ENDS HERE for o in self.outputList: if o in locals(): setattr(Problem, o, locals()[o]) else: print "WARNING: missing output ",o mohr = MisesStress(inputList,outputList) #TODO: add unit tests if __name__=="__main__": #exectutes only when you run THIS file tp1 = TestProblem() # provide all inputs in this shape tp1.sigma_z_r = 526000000 tp1.sigma_z_f = 0 tp1.tau_totr = 100 tp1.tau_totf = 0 tp1.xr = 0 tp1.yr = 0 tp1.z = 0 #execute the solving routine mohr.solve(tp1) #verify that outputs agree with expectation print tp1.vonMisesStress_ring print tp1.vonMisesStress_floor
py
b4028aa6e517ea8a26077c174cda301370df696e
from .registry import (Serialiser, Registry) import base64 import pickle class PickleString(Serialiser): def __init__(self, cls): super(PickleString, self).__init__(cls) def encode(self, obj, make_rec): data = base64.b64encode(pickle.dumps(obj)).decode('ascii') return make_rec(data) def decode(self, cls, data): return pickle.loads( base64.b64decode(data.encode('ascii'))) def registry(): """Returns a serialisation registry that "just pickles everything". This registry can be used to bolt-on other registries and keep the pickle as the default. The objects are first pickled to a byte-array, which is subsequently encoded with base64.""" return Registry( default=PickleString(object) )
py
b4028aaf9eebf99f6293ba1b3b44712208992dae
# Generated by Django 2.0.2 on 2018-02-19 14:14 from django.conf import settings from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('interface', '0006_auto_20180216_1355'), ] operations = [ migrations.RemoveField( model_name='device', name='user', ), migrations.AddField( model_name='device', name='users', field=models.ManyToManyField(db_index=True, default=(), to=settings.AUTH_USER_MODEL), ), ]
py
b4028ab1616ed4e42c54dee977ec853c2ac53669
# You can external libraris, as long as they are in the 'requirements.txt' file import numpy as np # This is for syntax highlighting and auto completion of RedisGears stuff # during development. # I.e: 'GearsBuilder' and its functions. # It can be removed for final deployments, but can also be left as is. from redgrease import GearsBuilder def foo(_): pass rg = np.random.default_rng(1) # import matplotlib.pyplot as plt # Build a vector of 10000 normal deviates with variance 0.5^2 and mean 2 mu, sigma = 2, 0.5 v = rg.normal(mu, sigma, 10000) # Plot a normalized histogram with 50 bins # plt.hist(v, bins=50, density=1) # matplotlib version (plot) # Compute the histogram with numpy and then plot it (n, bins) = np.histogram(v, bins=50, density=True) # NumPy version (no plot) # plt.plot(.5*(bins[1:]+bins[:-1]), n) gb = GearsBuilder("CommandReader") gb.map(foo) gb.register(trigger="video")
py
b4028ba26d4f8028818d5eb405a516a8e17aed57
""" Description - Week 1 homework for 1mwtt program Author - Cristina Tarantino Date - July 2018 """ from datetime import datetime from random import randint days_in_year = 365 # year leap. Source https://en.wikipedia.org/wiki/Year#Variation_in_the_length_of_the_year_and_the_day days_in_year_leap = 365.2422 # 60 minutes/hour * 24 hours/day minutes_in_a_day = 60 * 24 # 60 seconds/minute * 60 minutes/hour * 24 hours/day seconds_in_a_day = 60 * 60 * 24 seconds_in_a_year = seconds_in_a_day * days_in_year seconds_in_a_year_leap = seconds_in_a_day * days_in_year_leap seconds_in_milliseconds = 1000 # 1. Hours in a year. How many hours are in a year? # a day has 24h and a year has 365 days # therefore # 1 common year = 365 days = (365 days) times (24 hours/day) = 8760 hours print("\nHours in a year: " + str(24 * days_in_year)) # 2. Minutes in a decade. How many minutes are in a decade? # 60 (minutes in 1 hour) times 24 (hours in a day) times 365 times 10 = 5256000 (Integer) print("\nMinutes in a decade: " + str(minutes_in_a_day * days_in_year * 10)) # If we want to be more accurate though we should know that # a year is actually 365.2422 making the calculation = to 5259487.68 (Float) # source https://en.wikipedia.org/wiki/Year#Variation_in_the_length_of_the_year_and_the_day print("\nMinutes in a decade considering leaps: " + str(minutes_in_a_day * days_in_year_leap * 10)) # 3. Your age in seconds. How many seconds old are you? # 60 seconds/minutes * 60 minutes/hours * 24 hours/days * 365.2422 days/year * 32 year my_age = 32 print("\nMy age in seconds: " + str(seconds_in_a_year_leap * my_age)) # 4. Andreea is 48618000 seconds old. Calculate her age # example showing use of escape characters andreea_seconds_old = 48618000 print('\nAndreea\'s age: ' + str(andreea_seconds_old / seconds_in_a_year_leap)) # https://github.com/1millionwomentotech/toolkitten/issues/35 print("\nAndreea's corrected age: " + str(andreea_seconds_old / seconds_in_a_year_leap * 24)) # 5. How many days does it take for a 32-bit system to timeout, if it has a bug with integer overflow? # The Binary Register Width of a processor determines the range of values that can be represented. # The maximum representable value for a 32-bit system will be 2^32-1 # When an arithmetic operation (in this case the increment of a millisecond in the time) # produces a result larger than the above we will have an `integer overflow` # To calculate the days it will take to reach that situation for a 32-bit system # we need to convert 2^32 milliseconds in days by dividing by 1000s then 60s then 60m 24h # source https://en.wikipedia.org/wiki/Integer_overflow max_value_32 = pow(2, 32) print("\nDays it will take for a 32-bit system to timeout: " + str( max_value_32 / seconds_in_milliseconds / seconds_in_a_day)) # 6. How many days does it take for a 64-bit system to timeout, if it has a bug with integer overflow? # The Binary Register Width of a processor determines the range of values that can be represented. # The maximum representable value for a 32-bit system will be 2^64-1 # When an arithmetic operation (in this case the increment of a millisecond in the time) # produces a result larger than the above we will have an `integer overflow` # To calculate the days it will take to reach that situation for a 64-bit system # we need to convert 2^64 milliseconds in days by dividing by 1000s then 60s then 60m 24h # source https://en.wikipedia.org/wiki/Integer_overflow max_value_64 = pow(2, 64) print("\nDays it will take for a 64-bit system to timeout: " + str( max_value_64 / seconds_in_milliseconds / seconds_in_a_day)) # 7. Calculate your age accurately based on your birthday # https://docs.python.org/3/library/datetime.html#datetime.timedelta.total_seconds # https://docs.python.org/3/library/stdtypes.html#printf-style-string-formatting # example showing %s string variable delta = datetime.now() - datetime(1986, 12, 8, 18, 45) print("\nMy age is %d seconds" % delta.total_seconds()) # or # print("\nMy age is {} seconds".format(delta.total_seconds())) # 8. Full name greeting. Write a program that asks for a person's first name, then middle, and then last. # Finally, it should greet the person using their full name. name = input("\nCould you please type your first name: ") middle_name = input("Could you please type your middle name: ") last_name = input("Could you please type your last name: ") print("\nHello %s %s %s! A really warm welcome to you!" % (name, middle_name, last_name)) # 9. Bigger, better favorite number. Write a program that asks for a person's favorite number. # Have your program add 1 to the number, and then suggest the result as a bigger and better favorite number. print("\nEXERCISE Bigger, better favorite number") # infinite loop while True: # try to convert the input in an integer try: favorite_number = int(input("\n" + name + " could you please type your favourite number? ")) # if it is not possible acknowledge the user and continue to prompt him to insert a number except ValueError: print("That wasn't a number!") continue # else execute the input manipulation and break the infinite loop else: big_favorite_number = str(favorite_number + 1) print("I have for you a bigger and better favourite number. What about a nice %s." % big_favorite_number) break # 10. Angry boss. Write an angry boss program that rudely asks what you want. # Whatever you answer, the angry boss should yell it back to you and then fire you. print("\nEXERCISE Angry boss") answer = input("\n" + name + " what the hell do you want? ") print(("whaddaya mean \"" + answer + "\"?!? you're fired!!").upper()) # 11. Table of contents. Here's something for you to do in order to play around more with center, ljust, and rjust: # write a program that will display a table of contents so that it looks like this: # Table of Contents # # Chapter 1: Getting Started page 1 # Chapter 2: Numbers page 9 # Chapter 3: Letters page 13 print("\nEXERCISE Table of contents") rows = [ ["\nTable of Contents", "\n"], ["Chapter 1: Getting Started", "page 1"], ["Chapter 2: Numbers", "page 9"], ["Chapter 3: Letters", "page 13"] ] # get the length of the longest world from each row in rows and for each word in row + some padding col_width = max(len(r[0]) for r in rows) + 10 # padding # for every row in rows for r in rows: # print the first word of the row leaving empty spaces to fill up the column width and then print the second element print(r[0].ljust(col_width) + r[1]) # 12. Write a program that prints out the lyrics to that beloved classic, "99 Bottles of Beer on the Wall." # source http://www.99-bottles-of-beer.net/lyrics.html print("\nEXERCISE \"99 Bottles of Beer on the Wall.\"") BEER_TOTAL = 99 # print the lyrics title print("\n", (" Lyrics of the song %s Bottles of Beer " % BEER_TOTAL).center(50, "🍺"), "\n") for i in range(BEER_TOTAL, 0, -1): # print the lyrics in the loop from 99 to 0 print("\n", i, "bottles of beer on the wall,", i, "bottles of beer." "\nTake one down and pass it around,", i - 1, "bottles of beer on the wall.\n") # print the end of the lyrics print("No more bottles of beer on the wall, no more bottles of beer." "\nGo to the store and buy some more,", BEER_TOTAL, "bottles of beer on the wall.") # 13. Deaf grandma. # Whatever you say to Grandma (whatever you type in), she should respond with this: HUH?! SPEAK UP, GIRL! # unless you shout it (type in all capitals). If you shout, she can hear you (or at least she thinks so) and yells back: # NO, NOT SINCE 1938! # To make your program really believable, have Grandma shout a different year each time, # maybe any year at random between 1930 and 1950. # You can't stop talking to Grandma until you shout BYE. print("\nEXERCISE Deaf grandma") tell_grandma = "" while tell_grandma != "BYE": tell_grandma = input("Tell something to Grandma: ") # if tell_grandma.isupper() and not tell_grandma.islower(): => this would be semantically more correct however # I think that the above method will scan the string tell_grandma twice whilst the one below only once if tell_grandma == tell_grandma.upper(): random_year = randint(1930, 1950) print("NO, NOT SINCE %s" % random_year) else: print("HUH?! SPEAK UP, GIRL!") # 14. Deaf grandma extended. What if Grandma doesn't want you to leave? # When you shout BYE, she could pretend not to hear you. # Change your previous program so that you have to shout BYE three times in a row. # Make sure to test your program: if you shout BYE three times but not in a row, you should still be talking to Grandma. print("\nEXERCISE Deaf grandma extended") tell_grandma_extended = "" num_bye = 0 while num_bye < 3: tell_grandma_extended = input("Tell something to Grandma: ") # if tell_grandma.isupper() and not tell_grandma.islower(): => this would be semantically more correct however # I think that the above method will scan the string tell_grandma twice whilst the one below only once if tell_grandma_extended == tell_grandma_extended.upper(): if tell_grandma_extended == "BYE": num_bye = num_bye + 1 else: num_bye = 0 random_year = randint(1930, 1950) print("NO, NOT SINCE %s" % random_year) else: num_bye = 0 print("HUH?! SPEAK UP, GIRL!") if num_bye == 3: print("GOODBYE HONEY!!! SEE YOU SOON! I LOVE YOU!") # 15. Leap years. # Write a program that asks for a starting year and an ending year and # then puts all the leap years between them (and including them, # if they are also leap years). Leap years are years divisible by 4 (like 1984 and 2004). # However, years divisible by 100 are not leap years (such as 1800 and 1900) # unless they are also divisible by 400 (such as 1600 and 2000, which were in fact leap years). What a mess! print("\nEXERCISE Leap years ") print("\nLet's find leap years. Type a range of two years to find all the leap years in the range.") loop_years = [] # infinite loop while True: # try to convert the input in an integer try: year_one = int(input("\nPlease type the starting year: ")) year_two = int(input("\nPlease type the ending year: ")) # check that year one is minor of year two if year_one >= year_two: raise ValueError("\nThe starting year must be greater than the ending year!") # if it is not possible acknowledge the user and continue to prompt her to insert a number except ValueError as error: if error: print(error) else: print("\nThat wasn't a valid year!") continue # else execute the input manipulation and break the infinite loop else: current_year = year_one while current_year <= year_two: if current_year % 400 == 0 or (current_year % 4 == 0 and current_year % 100 != 0): loop_years.append(current_year) current_year += 1 for y in loop_years: print(y) break # 16. Find something today in your life, that is a calculation. # I had a JavaScript interview today and the question was to perform a left rotation operation on an array. # For example, if left rotations are performed on array, then the array would become . # For example, if 2 left rotations are performed on an array [1, 2, 3, 4, 5], # then the array would become [3, 4, 5, 1, 2]. # Here is my algorithm: print("\nEXERCISE FROM YOUR LIFE") def rotate_left(array, rotations_num): return array[rotations_num:] + array[:rotations_num] # O(n) complexity alternative # def rotate_left(array, rotations_num): # a_length = len(array) # new_array = [None]*a_length # pos_to_left = rotations_num # # i = 0 # while i < a_length: # pos_to_left = pos_to_left if pos_to_left != 0 else a_length # to_index = a_length - pos_to_left # new_array[to_index] = array[i]f # pos_to_left -= 1 # i += 1 # # return new_array # O(n) complexity alternative suggested by mentor # The method above is the mere translation from JS to Python. # In Python array[-2] is a valid operation as lists are circular linked list (I presume) # In JS array[-2] is not possible so you have to reset the index # In Python therefore the function would be the below # def rotate_left(array, rotations_num): # a_length = len(array) # new_array = [None] * a_length # for i in range(a_length): # print(i - rotations_num) # new_array[i-rotations_num] = array[i] # return new_array print("\nRotate the following array [1, 2, 3, 4, 5] of 2 position to the left") print(rotate_left([1, 2, 3, 4, 5], 2)) print("\nRotate the following array [1, 2, 3, 4, 5] of 4 position to the left") print(rotate_left([1, 2, 3, 4, 5], 4)) print("\nRotate the following array [1, 2, 3, 4, 5] of 5 position to the left") print(rotate_left([1, 2, 3, 4, 5], 5)) print("\nRotate the following array [1, 2, 3, 4, 5] of 6 position to the left") print(rotate_left([1, 2, 3, 4, 5], 6)) # 17. Building and sorting an array. Write the program that asks us to type as many words as we want # (one word per line, continuing until we just press Enter on an empty line) # and then repeats the words back to us in alphabetical order. Make sure to test your program thoroughly; for example, # does hitting Enter on an empty line always exit your program? Even on the first line? And the second? # Hint: There’s a lovely array method that will give you a sorted version of an array: sorted(). Use it! print("\nEXERCISE Building and sorting an array") word_list = [] user_word = input("\nPlease type as many words as you want one word per line, " "continuing until you press Enter on an empty line " "and I will repeat them to you in alphabetical order: ") while user_word != '': word_list.append(user_word) user_word = input() print(sorted(word_list)) # 18. Table of contents. Write a table of contents program here. # Start the program with a list holding all of the information for your table of contents # (chapter names, page numbers, and so on). # Then print out the information from the list in a beautifully formatted table of contents. # Use string formatting such as left align, right align, center. print("\nEXERCISE Table of contents with function and info array") def print_contents(contents_list): # get the length of the longest world from each row in rows and for each word in row + some padding col_width = max(len(r[1]) for r in contents_list) + 10 # padding print("\nTable of Contents\n") for c in contents_list: print("Chapter " + c[0] + ": " + c[1].ljust(col_width) + "page " + c[2]) contents_table = [ ["1", "Getting Started", "1"], ["2", "Numbers", "9"], ["3", "Letters", "13"], ] print_contents(contents_table) # 19. Write a function that prints out "moo" n times. def get_input_number(callback, msg): # try to convert the input in an integer try: user_number = int(input(msg)) # if it is not possible acknowledge the user and continue to prompt him to insert a number except ValueError: print("\nThat wasn't a valid number!") return get_input_number(callback, msg) # else execute the input manipulation and break the infinite loop else: return callback(user_number) print("\nEXERCISE moo") def moo(number): print("\nmoo" * number) get_input_number(moo, "\nPlease type how many times you want to 'moo': ") # 20. Old-school Roman numerals. In the early days of Roman numerals, # the Romans didn't bother with any of this new-fangled subtraction “IX” nonsense. # No Mylady, it was straight addition, biggest to littlest—so 9 was written “VIIII,” and so on. # Write a method that when passed an integer between 1 and 3000 (or so) returns a string containing # the proper old-school Roman numeral. In other words, old_roman_numeral 4 should return 'IIII'. # Make sure to test your method on a bunch of different numbers. # # Hint: Use the integer division and modulus methods. # # For reference, these are the values of the letters used: # I = 1 # V = 5 # X = 10 # L = 50 # C = 100 # D = 500 # M = 1000 print("\nEXERCISE Old-school Roman numerals") def old_romans(number): result = '' decimal = [1000, 500, 100, 50, 10, 5, 1] roman = ["M", "D", "C", "L", "X", "V", "I"] # looping over every element of our arrays for i in range(len(decimal)): # keep trying the same number until we need to move to a smaller one while number%decimal[i] < number: # add the matching roman number to our result string result += roman[i] # subtract the decimal value of the roman number from our number number -= decimal[i] return result print(get_input_number(old_romans, "\nPlease type a number between 1 and 3000: ")) # 21. “Modern” Roman numerals. # Eventually, someone thought it would be terribly clever if putting a smaller number before a larger one meant you # had to subtract the smaller one. As a result of this development, you must now suffer. # Rewrite your previous method to return the new-style Roman numerals so when someone calls roman_numeral 4, # it should return 'IV', 90 should be 'XC' etc. print("\nEXERCISE “Modern” Roman numerals.") def modern_romans(number): result = '' decimal = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1] roman = ["M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"] # looping over every element of our arrays for i in range(len(decimal)): # keep trying the same number until we need to move to a smaller one while number%decimal[i] < number: # add the matching roman number to our result string result += roman[i] # subtract the decimal value of the roman number from our number number -= decimal[i] return result print(get_input_number(modern_romans, "\nPlease type a number between 1 and 3000: "))
py
b4028bb9d5b79d8b6a12b1556ecc1346457c8e9a
import time from requests import Response import subprocess import os import signal import tempfile import Helpers import SettingsStorage def create_ssh_tunnel(tun: dict): tunnel_id: int = tun["id"] port_to_tunnel: int = tun["port_to_tunnel"] timeout_time: str = tun["timeout_time"] temporaray_pubkey_to_accept: str = tun["temporary_pubkey_for_agent_ssh"] remote_ssh_server: str = tun["remote_ssh_server"] reverse_port: int = tun["reverse_port"] remote_ssh_port: int = tun["remote_ssh_port"] remote_ssh_fingerprint: str = tun["remote_ssh_fingerprint"] temporary_tunnel_privkey: str = tun["temporary_tunnel_privkey"] if len(remote_ssh_server) < 1: remote_ssh_server = SettingsStorage.server_domain_ip for t in SettingsStorage.datajson["tunnels"]: if t["id"] == tun["id"]: Helpers.log_that("The tunnel id {} is already running, this should not happened!".format(t["id"])) return # Fist of all, we need to add the server SSH pubkey to known_hosts Helpers.add_known_host(remote_ssh_server, remote_ssh_port, remote_ssh_fingerprint) # Ok now try to connect, the SSH server should have been prepared for a long time Helpers.log_that("Trying to create a tunnel to port {} with a reverse {} on {} ...".format(port_to_tunnel, reverse_port, remote_ssh_server)) tf = tempfile.NamedTemporaryFile(mode="w", delete=False) tf.write(temporary_tunnel_privkey) tf.close() tunnel_process = subprocess.Popen( ["ssh", "-T", "-o ServerAliveInterval 30", "-o ServerAliveCountMax 3", "-o PasswordAuthentication=no", "-R" + str(reverse_port) + ":localhost:" + str(port_to_tunnel), "-i" + tf.name, remote_ssh_server, "-p" + str(remote_ssh_port)] ) time.sleep(5) os.remove(tf.name) # if the process is alive, there is no poll. After 5 seconds this should only mean that the tunnel is a success if not tunnel_process.poll(): Helpers.log_that("TUNNEL SUCCESSFULLY CREATED") tun["pid"] = tunnel_process.pid tun["connection_state"] = Helpers.ConnectionStateEnum.connected # Adding the tunnel so we can remember SettingsStorage.datajson["tunnels"].append(tun) # Send the confirmation to the API: resp: Response = Helpers.ReqSession.post(SettingsStorage.server_url + "/agents/tunnel_changed", json=Helpers.get_tunnel_changed_json(tunnel_id, Helpers.ConnectionStateEnum.connected)) if resp.status_code == 200: Helpers.log_that("API now knows that the tunnel is connected") else: mes = "" if "detail" in resp.json().keys(): mes = resp.json()["detail"] Helpers.log_that("ERROR: The API response for tunnel_connected {} with a message {}".format(resp.status_code, mes)) # We can save the public key of a support personnel if any if len(temporaray_pubkey_to_accept) > 0: Helpers.set_ssh_auth_key(timeout_time, temporaray_pubkey_to_accept) Helpers.log_that("Auth key is set!!") else: Helpers.log_that("TUNNEL COULD NOT BE CREATED") #os.kill(tunnel_process.pid, signal.SIGTERM) # datajson["tunnels"].append(tun) # log_that("Appending tunnel to ") def destroy_ssh_tunnel(tun: dict): # we want the tunnel from the storage: for t in SettingsStorage.datajson["tunnels"]: if t["id"] == tun["id"]: tun = t break Helpers.log_that("Trying to kill Tunnel id {}".format(tun["id"])) try: os.kill(int(tun["pid"]), signal.SIGTERM) except OSError as e: Helpers.log_that("Process not there") except KeyError as e: Helpers.log_that("Process ID not in the structure :O") try: SettingsStorage.datajson["tunnels"].remove(tun) except KeyError as e: Helpers.log_that("We have no information about such tunnel") resp: Response = Helpers.ReqSession.post( SettingsStorage.server_url + "/agents/tunnel_changed", json=Helpers.get_tunnel_changed_json(tun["id"], Helpers.ConnectionStateEnum.disconnected)) if resp.status_code == 200: Helpers.log_that("API now knows that the tunnel is disconnected") else: mes = "" if "detail" in resp.json().keys(): mes = resp.json()["detail"] Helpers.log_that( "ERROR: The API response for tunnel_connected {} with a message {}".format(resp.status_code, mes))
py
b4028c35fdaec5a936bb3d84c81fa71f7c59fba1
from fontTools.misc.py23 import * from . import DefaultTable from fontTools.misc import sstruct from fontTools.misc.textTools import safeEval import struct VDMX_HeaderFmt = """ > # big endian version: H # Version number (0 or 1) numRecs: H # Number of VDMX groups present numRatios: H # Number of aspect ratio groupings """ # the VMDX header is followed by an array of RatRange[numRatios] (i.e. aspect # ratio ranges); VDMX_RatRangeFmt = """ > # big endian bCharSet: B # Character set xRatio: B # Value to use for x-Ratio yStartRatio: B # Starting y-Ratio value yEndRatio: B # Ending y-Ratio value """ # followed by an array of offset[numRatios] from start of VDMX table to the # VDMX Group for this ratio range (offsets will be re-calculated on compile); # followed by an array of Group[numRecs] records; VDMX_GroupFmt = """ > # big endian recs: H # Number of height records in this group startsz: B # Starting yPelHeight endsz: B # Ending yPelHeight """ # followed by an array of vTable[recs] records. VDMX_vTableFmt = """ > # big endian yPelHeight: H # yPelHeight to which values apply yMax: h # Maximum value (in pels) for this yPelHeight yMin: h # Minimum value (in pels) for this yPelHeight """ class table_V_D_M_X_(DefaultTable.DefaultTable): def decompile(self, data, ttFont): pos = 0 # track current position from to start of VDMX table dummy, data = sstruct.unpack2(VDMX_HeaderFmt, data, self) pos += sstruct.calcsize(VDMX_HeaderFmt) self.ratRanges = [] for i in range(self.numRatios): ratio, data = sstruct.unpack2(VDMX_RatRangeFmt, data) pos += sstruct.calcsize(VDMX_RatRangeFmt) # the mapping between a ratio and a group is defined further below ratio['groupIndex'] = None self.ratRanges.append(ratio) lenOffset = struct.calcsize('>H') _offsets = [] # temporarily store offsets to groups for i in range(self.numRatios): offset = struct.unpack('>H', data[0:lenOffset])[0] data = data[lenOffset:] pos += lenOffset _offsets.append(offset) self.groups = [] for groupIndex in range(self.numRecs): # the offset to this group from beginning of the VDMX table currOffset = pos group, data = sstruct.unpack2(VDMX_GroupFmt, data) # the group lenght and bounding sizes are re-calculated on compile recs = group.pop('recs') startsz = group.pop('startsz') endsz = group.pop('endsz') pos += sstruct.calcsize(VDMX_GroupFmt) for j in range(recs): vTable, data = sstruct.unpack2(VDMX_vTableFmt, data) vTableLength = sstruct.calcsize(VDMX_vTableFmt) pos += vTableLength # group is a dict of (yMax, yMin) tuples keyed by yPelHeight group[vTable['yPelHeight']] = (vTable['yMax'], vTable['yMin']) # make sure startsz and endsz match the calculated values minSize = min(group.keys()) maxSize = max(group.keys()) assert startsz == minSize, \ "startsz (%s) must equal min yPelHeight (%s): group %d" % \ (group.startsz, minSize, groupIndex) assert endsz == maxSize, \ "endsz (%s) must equal max yPelHeight (%s): group %d" % \ (group.endsz, maxSize, groupIndex) self.groups.append(group) # match the defined offsets with the current group's offset for offsetIndex, offsetValue in enumerate(_offsets): # when numRecs < numRatios there can more than one ratio range # sharing the same VDMX group if currOffset == offsetValue: # map the group with the ratio range thas has the same # index as the offset to that group (it took me a while..) self.ratRanges[offsetIndex]['groupIndex'] = groupIndex # check that all ratio ranges have a group for i in range(self.numRatios): ratio = self.ratRanges[i] if ratio['groupIndex'] is None: from fontTools import ttLib raise ttLib.TTLibError( "no group defined for ratRange %d" % i) def _getOffsets(self): """ Calculate offsets to VDMX_Group records. For each ratRange return a list of offset values from the beginning of the VDMX table to a VDMX_Group. """ lenHeader = sstruct.calcsize(VDMX_HeaderFmt) lenRatRange = sstruct.calcsize(VDMX_RatRangeFmt) lenOffset = struct.calcsize('>H') lenGroupHeader = sstruct.calcsize(VDMX_GroupFmt) lenVTable = sstruct.calcsize(VDMX_vTableFmt) # offset to the first group pos = lenHeader + self.numRatios*lenRatRange + self.numRatios*lenOffset groupOffsets = [] for group in self.groups: groupOffsets.append(pos) lenGroup = lenGroupHeader + len(group) * lenVTable pos += lenGroup # offset to next group offsets = [] for ratio in self.ratRanges: groupIndex = ratio['groupIndex'] offsets.append(groupOffsets[groupIndex]) return offsets def compile(self, ttFont): if not(self.version == 0 or self.version == 1): from fontTools import ttLib raise ttLib.TTLibError( "unknown format for VDMX table: version %s" % self.version) data = sstruct.pack(VDMX_HeaderFmt, self) for ratio in self.ratRanges: data += sstruct.pack(VDMX_RatRangeFmt, ratio) # recalculate offsets to VDMX groups for offset in self._getOffsets(): data += struct.pack('>H', offset) for group in self.groups: recs = len(group) startsz = min(group.keys()) endsz = max(group.keys()) gHeader = {'recs': recs, 'startsz': startsz, 'endsz': endsz} data += sstruct.pack(VDMX_GroupFmt, gHeader) for yPelHeight, (yMax, yMin) in sorted(group.items()): vTable = {'yPelHeight': yPelHeight, 'yMax': yMax, 'yMin': yMin} data += sstruct.pack(VDMX_vTableFmt, vTable) return data def toXML(self, writer, ttFont): writer.simpletag("version", value=self.version) writer.newline() writer.begintag("ratRanges") writer.newline() for ratio in self.ratRanges: groupIndex = ratio['groupIndex'] writer.simpletag( "ratRange", bCharSet=ratio['bCharSet'], xRatio=ratio['xRatio'], yStartRatio=ratio['yStartRatio'], yEndRatio=ratio['yEndRatio'], groupIndex=groupIndex ) writer.newline() writer.endtag("ratRanges") writer.newline() writer.begintag("groups") writer.newline() for groupIndex in range(self.numRecs): group = self.groups[groupIndex] recs = len(group) startsz = min(group.keys()) endsz = max(group.keys()) writer.begintag("group", index=groupIndex) writer.newline() writer.comment("recs=%d, startsz=%d, endsz=%d" % (recs, startsz, endsz)) writer.newline() for yPelHeight, (yMax, yMin) in sorted(group.items()): writer.simpletag( "record", [('yPelHeight', yPelHeight), ('yMax', yMax), ('yMin', yMin)]) writer.newline() writer.endtag("group") writer.newline() writer.endtag("groups") writer.newline() def fromXML(self, name, attrs, content, ttFont): if name == "version": self.version = safeEval(attrs["value"]) elif name == "ratRanges": if not hasattr(self, "ratRanges"): self.ratRanges = [] for element in content: if not isinstance(element, tuple): continue name, attrs, content = element if name == "ratRange": if not hasattr(self, "numRatios"): self.numRatios = 1 else: self.numRatios += 1 ratio = { "bCharSet": safeEval(attrs["bCharSet"]), "xRatio": safeEval(attrs["xRatio"]), "yStartRatio": safeEval(attrs["yStartRatio"]), "yEndRatio": safeEval(attrs["yEndRatio"]), "groupIndex": safeEval(attrs["groupIndex"]) } self.ratRanges.append(ratio) elif name == "groups": if not hasattr(self, "groups"): self.groups = [] for element in content: if not isinstance(element, tuple): continue name, attrs, content = element if name == "group": if not hasattr(self, "numRecs"): self.numRecs = 1 else: self.numRecs += 1 group = {} for element in content: if not isinstance(element, tuple): continue name, attrs, content = element if name == "record": yPelHeight = safeEval(attrs["yPelHeight"]) yMax = safeEval(attrs["yMax"]) yMin = safeEval(attrs["yMin"]) group[yPelHeight] = (yMax, yMin) self.groups.append(group)
py
b4028e7e6be0d66626b5b7469f9b60939e0bfcc7
""" .. py:module:: test_xspf :platform: Unix, Windows :synopsis: tests the xspf-related functions for the playlister utility. """ import pytest from .context import xspf class TestXSPF(object): """Groups the tests of the xspf-related functions""" def test_to_xspf_track(self): """Tests converting a track record to an xspf string""" test_track = { "Location": "/foo/bar/baz.mp3", "Total Time": "192000", "Name": "testing123", "Artist": "Kool Kat", "Album": "For the road" } result = """ <track> <location>file:///foo/bar/baz.mp3</location> <title>testing123</title> <creator>Kool Kat</creator> <album>For the road</album> <duration>192000</duration> </track>""" assert(xspf.to_xspf_track(test_track) == result)
py
b4028ece5bd95f114f4216a26a8ee36a5ff8199b
#!python """ wflow_prepare_step2 =================== wflow data preparation script. Data preparation can be done by hand or using the two scripts. This script does the resampling. This scripts need the pcraster and gdal executables to be available in you search path. Usage:: wflow_prepare_step2 [-W workdir][-f][-h] -I inifile :: -f force recreation of ldd if it already exists -h show this information -W set the working directory, default is current dir -I name of the ini file with settings $Id: $ """ import wflow.wflow_lib as tr import os import os.path import getopt import configparser import sys tr.Verbose = 1 def usage(*args): sys.stdout = sys.stderr for msg in args: print(msg) print(__doc__) sys.exit(0) def configget(config, section, var, default): """ """ try: ret = config.get(section, var) except: print("returning default (" + default + ") for " + section + ":" + var) ret = default return ret def OpenConf(fn): config = configparser.ConfigParser() config.optionxform = str if os.path.exists(fn): config.read(fn) else: print("Cannot open config file: " + fn) sys.exit(1) return config def resamplemaps(step1dir, step2dir): """ Resample the maps from step1 and rename them in the process """ os.system( "resample --clone " + step2dir + "/cutout.map " + step1dir + "/dem10.map " + step2dir + "/wflow_dem10.map" ) os.system( "resample --clone " + step2dir + "/cutout.map " + step1dir + "/dem25.map " + step2dir + "/wflow_dem25.map" ) os.system( "resample --clone " + step2dir + "/cutout.map " + step1dir + "/dem33.map " + step2dir + "/wflow_dem33.map" ) os.system( "resample --clone " + step2dir + "/cutout.map " + step1dir + "/dem50.map " + step2dir + "/wflow_dem50.map" ) os.system( "resample --clone " + step2dir + "/cutout.map " + step1dir + "/dem66.map " + step2dir + "/wflow_dem66.map" ) os.system( "resample --clone " + step2dir + "/cutout.map " + step1dir + "/dem75.map " + step2dir + "/wflow_dem75.map" ) os.system( "resample --clone " + step2dir + "/cutout.map " + step1dir + "/dem90.map " + step2dir + "/wflow_dem90.map" ) os.system( "resample --clone " + step2dir + "/cutout.map " + step1dir + "/demavg.map " + step2dir + "/wflow_dem.map" ) os.system( "resample --clone " + step2dir + "/cutout.map " + step1dir + "/demmin.map " + step2dir + "/wflow_demmin.map" ) os.system( "resample --clone " + step2dir + "/cutout.map " + step1dir + "/demmax.map " + step2dir + "/wflow_demmax.map" ) os.system( "resample --clone " + step2dir + "/cutout.map " + step1dir + "/riverlength_fact.map " + step2dir + "/wflow_riverlength_fact.map" ) os.system( "resample --clone " + step2dir + "/cutout.map " + step1dir + "/catchment_overall.map " + step2dir + "/catchment_cut.map" ) os.system( "resample --clone " + step2dir + "/cutout.map " + step1dir + "/rivers.map " + step2dir + "/wflow_riverburnin.map" ) def main(): """ """ workdir = "." inifile = "wflow_prepare.ini" try: opts, args = getopt.getopt(sys.argv[1:], "W:hI:f") except getopt.error as msg: usage(msg) for o, a in opts: if o == "-W": workdir = a if o == "-I": inifile = a if o == "-h": usage() if o == "-f": recreate = True os.chdir(workdir) config = OpenConf(workdir + "/" + inifile) step1dir = configget(config, "directories", "step1dir", "step1") step2dir = configget(config, "directories", "step2dir", "step2") snapgaugestoriver = bool( int(configget(config, "settings", "snapgaugestoriver", "1")) ) # make the directories to save results in if not os.path.isdir(step1dir + "/"): os.makedirs(step1dir) if not os.path.isdir(step2dir): os.makedirs(step2dir) ##first make the clone map try: Xul = float(config.get("settings", "Xul")) Yul = float(config.get("settings", "Yul")) Xlr = float(config.get("settings", "Xlr")) Ylr = float(config.get("settings", "Ylr")) except: print("Xul, Xul, Xlr and Ylr are required entries in the ini file") sys.exit(1) csize = float(configget(config, "settings", "cellsize", "1")) try: gauges_x = config.get("settings", "gauges_x") gauges_y = config.get("settings", "gauges_y") except: print("gauges_x and gauges_y are required entries in the ini file") sys.exit(1) strRiver = int(configget(config, "settings", "riverorder_step2", "4")) corevolume = float(configget(config, "settings", "corevolume", "1E35")) catchmentprecipitation = float( configget(config, "settings", "catchmentprecipitation", "1E35") ) corearea = float(configget(config, "settings", "corearea", "1E35")) outflowdepth = float(configget(config, "settings", "lddoutflowdepth", "1E35")) lddmethod = configget(config, "settings", "lddmethod", "dem") lddglobaloption = configget(config, "settings", "lddglobaloption", "lddout") tr.setglobaloption(lddglobaloption) nrrow = round(abs(Yul - Ylr) / csize) nrcol = round(abs(Xlr - Xul) / csize) mapstr = ( "mapattr -s -S -R " + str(nrrow) + " -C " + str(nrcol) + " -l " + str(csize) + " -x " + str(Xul) + " -y " + str(Yul) + " -P yb2t " + step2dir + "/cutout.map" ) os.system(mapstr) tr.setclone(step2dir + "/cutout.map") lu_water = configget(config, "files", "lu_water", "") lu_paved = configget(config, "files", "lu_paved", "") if lu_water: os.system( "resample --clone " + step2dir + "/cutout.map " + lu_water + " " + step2dir + "/wflow_waterfrac.map" ) if lu_paved: os.system( "resample --clone " + step2dir + "/cutout.map " + lu_paved + " " + step2dir + "/PathFrac.map" ) # try: lumap = config.get("files", "landuse") except: print("no landuse map...creating uniform map") clone = tr.readmap(step2dir + "/cutout.map") tr.report(tr.nominal(clone), step2dir + "/wflow_landuse.map") else: os.system( "resample --clone " + step2dir + "/cutout.map " + lumap + " " + step2dir + "/wflow_landuse.map" ) try: soilmap = config.get("files", "soil") except: print("no soil map..., creating uniform map") clone = tr.readmap(step2dir + "/cutout.map") tr.report(tr.nominal(clone), step2dir + "/wflow_soil.map") else: os.system( "resample --clone " + step2dir + "/cutout.map " + soilmap + " " + step2dir + "/wflow_soil.map" ) resamplemaps(step1dir, step2dir) dem = tr.readmap(step2dir + "/wflow_dem.map") demmin = tr.readmap(step2dir + "/wflow_demmin.map") demmax = tr.readmap(step2dir + "/wflow_demmax.map") # catchcut = tr.readmap(step2dir + "/catchment_cut.map") catchcut = tr.readmap(step2dir + "/cutout.map") # now apply the area of interest (catchcut) to the DEM # dem=tr.ifthen(catchcut >=1 , dem) # # See if there is a shape file of the river to burn in try: rivshp = config.get("files", "river") except: print("no river file specified") riverburn = tr.readmap(step2dir + "/wflow_riverburnin.map") else: print("river file speficied.....") # rivshpattr = config.get("files","riverattr") tr.report(dem * 0.0, step2dir + "/nilmap.map") thestr = ( "gdal_translate -of GTiff " + step2dir + "/nilmap.map " + step2dir + "/wflow_riverburnin.tif" ) os.system(thestr) rivshpattr = os.path.splitext(os.path.basename(rivshp))[0] os.system( "gdal_rasterize -burn 1 -l " + rivshpattr + " " + rivshp + " " + step2dir + "/wflow_riverburnin.tif" ) thestr = ( "gdal_translate -of PCRaster " + step2dir + "/wflow_riverburnin.tif " + step2dir + "/wflow_riverburnin.map" ) os.system(thestr) riverburn = tr.readmap(step2dir + "/wflow_riverburnin.map") # ldddem = tr.ifthenelse(riverburn >= 1.0, dem -1000 , dem) # Only burn within the original catchment riverburn = tr.ifthen(tr.scalar(catchcut) >= 1, riverburn) # Now setup a very high wall around the catchment that is scale # based on the distance to the catchment so that it slopes away from the # catchment if lddmethod != "river": print("Burning in highres-river ...") disttocatch = tr.spread(tr.nominal(catchcut), 0.0, 1.0) demmax = tr.ifthenelse( tr.scalar(catchcut) >= 1.0, demmax, demmax + (tr.celllength() * 100.0) / disttocatch, ) tr.setglobaloption("unitcell") # demregional=tr.windowaverage(demmin,100) demburn = tr.cover(tr.ifthen(tr.boolean(riverburn), demmin - 100.0), demmax) else: print("using average dem..") demburn = dem ldd = tr.lddcreate_save( step2dir + "/wflow_ldd.map", demburn, True, outflowdepth=outflowdepth, corevolume=corevolume, catchmentprecipitation=catchmentprecipitation, corearea=corearea, ) # Find catchment (overall) outlet = tr.find_outlet(ldd) sub = tr.subcatch(ldd, outlet) tr.report(sub, step2dir + "/wflow_catchment.map") tr.report(outlet, step2dir + "/wflow_outlet.map") # make river map strorder = tr.streamorder(ldd) tr.report(strorder, step2dir + "/wflow_streamorder.map") river = tr.ifthen(tr.boolean(strorder >= strRiver), strorder) tr.report(river, step2dir + "/wflow_river.map") # make subcatchments # os.system("col2map --clone " + step2dir + "/cutout.map gauges.col " + step2dir + "/wflow_gauges.map") exec("X=np.array(" + gauges_x + ")") exec("Y=np.array(" + gauges_y + ")") tr.setglobaloption("unittrue") outlmap = tr.points_to_map(dem, X, Y, 0.5) tr.report(outlmap, step2dir + "/wflow_gauges_.map") if snapgaugestoriver: print("Snapping gauges to river") tr.report(outlmap, step2dir + "/wflow_orggauges.map") outlmap = tr.snaptomap(outlmap, river) outlmap = tr.ifthen(outlmap > 0, outlmap) tr.report(outlmap, step2dir + "/wflow_gauges.map") scatch = tr.subcatch(ldd, outlmap) tr.report(scatch, step2dir + "/wflow_subcatch.map") if __name__ == "__main__": main()
py
b4028f1117d89192e9dbb8f8a037ce704dc95257
import inspect import warnings import dask import numpy as np import xarray as xr from climpred.constants import CLIMPRED_DIMS, CONCAT_KWARGS, PM_CALENDAR_STR from .checks import ( has_dims, has_valid_lead_units, warn_if_chunking_would_increase_performance, ) from .comparisons import ( ALL_COMPARISONS, COMPARISON_ALIASES, HINDCAST_COMPARISONS, __m2o, ) from .exceptions import KeywordError from .metrics import ALL_METRICS, METRIC_ALIASES from .prediction import compute_hindcast, compute_perfect_model from .reference import compute_persistence from .stats import dpp, varweighted_mean_period from .utils import ( _transpose_and_rechunk_to, assign_attrs, convert_time_index, find_start_dates_for_given_init, get_comparison_class, get_lead_cftime_shift_args, get_metric_class, lead_units_equal_control_time_stride, rechunk_to_single_chunk_if_more_than_one_chunk_along_dim, shift_cftime_singular, ) def _resample(hind, resample_dim): """Resample with replacement in dimension ``resample_dim``. Args: hind (xr.object): input xr.object to be resampled. resample_dim (str): dimension to resample along. Returns: xr.object: resampled along ``resample_dim``. """ to_be_resampled = hind[resample_dim].values smp = np.random.choice(to_be_resampled, len(to_be_resampled)) smp_hind = hind.sel({resample_dim: smp}) # ignore because then inits should keep their labels if resample_dim != "init": smp_hind[resample_dim] = hind[resample_dim].values return smp_hind def _resample_iterations(init, iterations, dim="member", dim_max=None, replace=True): """Resample over ``dim`` by index ``iterations`` times. .. note:: This gives the same result as `_resample_iterations_idx`. When using dask, the number of tasks in `_resample_iterations` will scale with iterations but constant chunksize, whereas the tasks in `_resample_iterations_idx` will stay constant with increasing chunksize. Args: init (xr.DataArray, xr.Dataset): Initialized prediction ensemble. iterations (int): Number of bootstrapping iterations. dim (str): Dimension name to bootstrap over. Defaults to ``'member'``. dim_max (int): Number of items to select in `dim`. replace (bool): Bootstrapping with or without replacement. Defaults to ``True``. Returns: xr.DataArray, xr.Dataset: Bootstrapped data with additional dim ```iteration``` """ if dim_max is not None and dim_max <= init[dim].size: # select only dim_max items select_dim_items = dim_max new_dim = init[dim].isel({dim: slice(None, dim_max)}) else: select_dim_items = init[dim].size new_dim = init[dim] if replace: idx = np.random.randint(0, init[dim].size, (iterations, select_dim_items)) elif not replace: # create 2d np.arange() idx = np.linspace( (np.arange(select_dim_items)), (np.arange(select_dim_items)), iterations, dtype="int", ) # shuffle each line for ndx in np.arange(iterations): np.random.shuffle(idx[ndx]) idx_da = xr.DataArray( idx, dims=("iteration", dim), coords=({"iteration": range(iterations), dim: new_dim}), ) init_smp = [] for i in np.arange(iterations): idx = idx_da.sel(iteration=i).data init_smp2 = init.isel({dim: idx}).assign_coords({dim: new_dim}) init_smp.append(init_smp2) init_smp = xr.concat(init_smp, dim="iteration", **CONCAT_KWARGS) init_smp["iteration"] = np.arange(1, 1 + iterations) return init_smp def _resample_iterations_idx( init, iterations, dim="member", replace=True, chunk=True, dim_max=None ): """Resample over ``dim`` by index ``iterations`` times. .. note:: This is a much faster way to bootstrap than resampling each iteration individually and applying the function to it. However, this will create a DataArray with dimension ``iteration`` of size ``iterations``. It is probably best to do this out-of-memory with ``dask`` if you are doing a large number of iterations or using spatial output (i.e., not time series data). Args: init (xr.DataArray, xr.Dataset): Initialized prediction ensemble. iterations (int): Number of bootstrapping iterations. dim (str): Dimension name to bootstrap over. Defaults to ``'member'``. replace (bool): Bootstrapping with or without replacement. Defaults to ``True``. chunk: (bool): Auto-chunk along chunking_dims to get optimal blocksize dim_max (int): Number of indices from `dim` to return. Not implemented. Returns: xr.DataArray, xr.Dataset: Bootstrapped data with additional dim ```iteration``` """ if dask.is_dask_collection(init): init = init.chunk({"lead": -1, "member": -1}) init = init.copy(deep=True) def select_bootstrap_indices_ufunc(x, idx): """Selects multi-level indices ``idx`` from xarray object ``x`` for all iterations.""" # `apply_ufunc` sometimes adds a singleton dimension on the end, so we squeeze # it out here. This leverages multi-level indexing from numpy, so we can # select a different set of, e.g., ensemble members for each iteration and # construct one large DataArray with ``iterations`` as a dimension. return np.moveaxis(x.squeeze()[idx.squeeze().transpose()], 0, -1) if dask.is_dask_collection(init): if chunk: chunking_dims = [d for d in init.dims if d not in CLIMPRED_DIMS] init = _chunk_before_resample_iterations_idx( init, iterations, chunking_dims ) # resample with or without replacement if replace: idx = np.random.randint(0, init[dim].size, (iterations, init[dim].size)) elif not replace: # create 2d np.arange() idx = np.linspace( (np.arange(init[dim].size)), (np.arange(init[dim].size)), iterations, dtype="int", ) # shuffle each line for ndx in np.arange(iterations): np.random.shuffle(idx[ndx]) idx_da = xr.DataArray( idx, dims=("iteration", dim), coords=({"iteration": range(iterations), dim: init[dim]}), ) transpose_kwargs = ( {"transpose_coords": False} if isinstance(init, xr.DataArray) else {} ) return xr.apply_ufunc( select_bootstrap_indices_ufunc, init.transpose(dim, ..., **transpose_kwargs), idx_da, dask="parallelized", output_dtypes=[float], ) def _distribution_to_ci(ds, ci_low, ci_high, dim="iteration"): """Get confidence intervals from bootstrapped distribution. Needed for bootstrapping confidence intervals and p_values of a metric. Args: ds (xarray object): distribution. ci_low (float): low confidence interval. ci_high (float): high confidence interval. dim (str): dimension to apply xr.quantile to. Default: 'iteration' Returns: uninit_hind (xarray object): uninitialize hindcast with hind.coords. """ ds = rechunk_to_single_chunk_if_more_than_one_chunk_along_dim(ds, dim) return ds.quantile(q=[ci_low, ci_high], dim=dim, skipna=False) def _pvalue_from_distributions(simple_fct, init, metric=None): """Get probability that skill of a reference forecast (e.g., persistence or uninitialized skill) is larger than initialized skill. Needed for bootstrapping confidence intervals and p_values of a metric in the hindcast framework. Checks whether a simple forecast like persistence or uninitialized performs better than initialized forecast. Need to keep in mind the orientation of metric (whether larger values are better or worse than smaller ones.) Args: simple_fct (xarray object): persistence or uninitialized skill. init (xarray object): hindcast skill. metric (Metric): metric class Metric Returns: pv (xarray object): probability that simple forecast performs better than initialized forecast. """ pv = ((simple_fct - init) > 0).sum("iteration") / init.iteration.size if not metric.positive: pv = 1 - pv return pv def bootstrap_uninitialized_ensemble(hind, hist): """Resample uninitialized hindcast from historical members. Note: Needed for bootstrapping confidence intervals and p_values of a metric in the hindcast framework. Takes hind.lead.size timesteps from historical at same forcing and rearranges them into ensemble and member dimensions. Args: hind (xarray object): hindcast. hist (xarray object): historical uninitialized. Returns: uninit_hind (xarray object): uninitialize hindcast with hind.coords. """ has_dims(hist, "member", "historical ensemble") has_dims(hind, "member", "initialized hindcast ensemble") # Put this after `convert_time_index` since it assigns 'years' attribute if the # `init` dimension is a `float` or `int`. has_valid_lead_units(hind) # find range for bootstrapping first_init = max(hist.time.min(), hind["init"].min()) n, freq = get_lead_cftime_shift_args(hind.lead.attrs["units"], hind.lead.size) hist_last = shift_cftime_singular(hist.time.max(), -1 * n, freq) last_init = min(hist_last, hind["init"].max()) hind = hind.sel(init=slice(first_init, last_init)) uninit_hind = [] for init in hind.init.values: # take uninitialized members from hist at init forcing # (Goddard et al. allows 5 year forcing range here) uninit_at_one_init_year = hist.sel( time=slice( shift_cftime_singular(init, 1, freq), shift_cftime_singular(init, n, freq), ), ).rename({"time": "lead"}) uninit_at_one_init_year["lead"] = np.arange( 1, 1 + uninit_at_one_init_year["lead"].size ) uninit_hind.append(uninit_at_one_init_year) uninit_hind = xr.concat(uninit_hind, "init") uninit_hind["init"] = hind["init"].values uninit_hind.lead.attrs["units"] = hind.lead.attrs["units"] uninit_hind["member"] = hist["member"].values return ( _transpose_and_rechunk_to( uninit_hind, hind.isel(member=[0] * uninit_hind.member.size) ) if dask.is_dask_collection(uninit_hind) else uninit_hind ) def bootstrap_uninit_pm_ensemble_from_control_cftime(init_pm, control): """Create a pseudo-ensemble from control run. Bootstrap random numbers for years to construct an uninitialized ensemble from. This assumes a continous control simulation without gaps. Note: Needed for block bootstrapping a metric in perfect-model framework. Takes random segments of length ``block_length`` from control based on ``dayofyear`` (and therefore assumes a constant climate control simulation) and rearranges them into ensemble and member dimensions. Args: init_pm (xarray object): initialized ensemble simulation. control (xarray object): control simulation. Returns: uninit_pm (xarray object): uninitialized ensemble generated from control run. """ lead_units_equal_control_time_stride(init_pm, control) # short cut if annual leads if init_pm.lead.attrs["units"] == "years": return _bootstrap_by_stacking(init_pm, control) block_length = init_pm.lead.size freq = get_lead_cftime_shift_args(init_pm.lead.attrs["units"], block_length)[1] nmember = init_pm.member.size # start and end years possible to resample the actual uninitialized ensembles from c_start_year = control.time.min().dt.year.astype("int") # dont resample from years that control wont have timesteps for all leads c_end_year = ( shift_cftime_singular(control.time.max(), -block_length, freq).dt.year.astype( "int" ) - 1 ) def sel_time(start_year_int, suitable_start_dates): """Select time segments from control from ``suitable_start_dates`` based on year ``start_year_int``.""" start_time = suitable_start_dates.time.sel(time=str(start_year_int)) end_time = shift_cftime_singular(start_time, block_length - 1, freq) new = control.sel(time=slice(*start_time, *end_time)) new["time"] = init_pm.lead.values return new def create_pseudo_members(init): """For every initialization take a different set of start years.""" startlist = np.random.randint(c_start_year, c_end_year, nmember) suitable_start_dates = find_start_dates_for_given_init(control, init) return xr.concat( (sel_time(start, suitable_start_dates) for start in startlist), dim="member", **CONCAT_KWARGS, ) uninit = xr.concat( (create_pseudo_members(init) for init in init_pm.init), dim="init", **CONCAT_KWARGS, ).rename({"time": "lead"}) uninit["member"] = init_pm.member.values uninit["lead"] = init_pm.lead # chunk to same dims transpose_kwargs = ( {"transpose_coords": False} if isinstance(init_pm, xr.DataArray) else {} ) uninit = uninit.transpose(*init_pm.dims, **transpose_kwargs) return ( _transpose_and_rechunk_to(uninit, init_pm) if dask.is_dask_collection(uninit) else uninit ) def _bootstrap_by_stacking(init_pm, control): """Bootstrap member, lead, init from control by reshaping. Fast track of function `bootstrap_uninit_pm_ensemble_from_control_cftime` when lead units is 'years'.""" assert type(init_pm) == type(control) lead_unit = init_pm.lead.attrs["units"] if isinstance(init_pm, xr.Dataset): init_pm = init_pm.to_array() init_was_dataset = True else: init_was_dataset = False if isinstance(control, xr.Dataset): control = control.to_array() init_size = init_pm.init.size * init_pm.member.size * init_pm.lead.size # select random start points new_time = np.random.randint( 0, control.time.size - init_pm.lead.size, init_size // (init_pm.lead.size) ) new_time = np.array( [np.arange(s, s + init_pm.lead.size) for s in new_time] ).flatten()[:init_size] larger = control.isel(time=new_time) fake_init = init_pm.stack(time=tuple(d for d in init_pm.dims if d in CLIMPRED_DIMS)) # exchange values transpose_kwargs = ( {"transpose_coords": False} if isinstance(init_pm, xr.DataArray) else {} ) larger = larger.transpose(*fake_init.dims, **transpose_kwargs) fake_init.data = larger.data fake_uninit = fake_init.unstack() if init_was_dataset: fake_uninit = fake_uninit.to_dataset(dim="variable") fake_uninit["lead"] = init_pm["lead"] fake_uninit.lead.attrs["units"] = lead_unit return fake_uninit def _bootstrap_hindcast_over_init_dim( hind, hist, verif, dim, reference, resample_dim, iterations, metric, comparison, compute, reference_compute, resample_uninit, **metric_kwargs, ): """Bootstrap hindcast skill over the ``init`` dimension. When bootstrapping over the ``member`` dimension, an additional dimension ``iteration`` can be added and skill can be computing over that entire dimension in parallel, since all members are being aligned the same way. However, to our knowledge, when bootstrapping over the ``init`` dimension, one must evaluate each iteration independently. I.e., in a looped fashion, since alignment of initializations and target dates is unique to each iteration. See ``bootstrap_compute`` for explanation of inputs. """ pers_skill = [] bootstrapped_init_skill = [] bootstrapped_uninit_skill = [] for i in range(iterations): # resample with replacement smp_hind = _resample(hind, resample_dim) # compute init skill init_skill = compute( smp_hind, verif, metric=metric, comparison=comparison, add_attrs=False, dim=dim, **metric_kwargs, ) # reset inits when probabilistic, otherwise tests fail if ( resample_dim == "init" and metric.probabilistic and "init" in init_skill.coords ): init_skill["init"] = hind.init.values bootstrapped_init_skill.append(init_skill) if "uninitialized" in reference: # generate uninitialized ensemble from hist uninit_hind = resample_uninit(hind, hist) # compute uninit skill bootstrapped_uninit_skill.append( compute( uninit_hind, verif, metric=metric, comparison=comparison, dim=dim, add_attrs=False, **metric_kwargs, ) ) if "persistence" in reference: # compute persistence skill # impossible for probabilistic if not metric.probabilistic: pers_skill.append( reference_compute( smp_hind, verif, metric=metric, dim=dim, add_attrs=False, **metric_kwargs, ) ) bootstrapped_init_skill = xr.concat( bootstrapped_init_skill, dim="iteration", **CONCAT_KWARGS ) if "uninitialized" in reference: bootstrapped_uninit_skill = xr.concat( bootstrapped_uninit_skill, dim="iteration", **CONCAT_KWARGS ) else: bootstrapped_uninit_skill = None if "persistence" in reference: if pers_skill != []: bootstrapped_pers_skill = xr.concat( pers_skill, dim="iteration", **CONCAT_KWARGS ) else: bootstrapped_pers_skill = None return ( bootstrapped_init_skill, bootstrapped_uninit_skill, bootstrapped_pers_skill, ) def _get_resample_func(ds): """Decide for resample function based on input `ds`. Returns: callable: `_resample_iterations`: if big and chunked `ds` `_resample_iterations_idx`: else (if small and eager `ds`) """ resample_func = ( _resample_iterations if ( dask.is_dask_collection(ds) and len(ds.dims) > 3 # > 2MB and ds.nbytes > 2000000 ) else _resample_iterations_idx ) return resample_func def _maybe_auto_chunk(ds, dims): """Auto-chunk on dimension `dims`. Args: ds (xr.object): input data. dims (list of str or str): Dimensions to auto-chunk in. Returns: xr.object: auto-chunked along `dims` """ if dask.is_dask_collection(ds) and dims is not []: if isinstance(dims, str): dims = [dims] chunks = [d for d in dims if d in ds.dims] chunks = {key: "auto" for key in chunks} ds = ds.chunk(chunks) return ds def _chunk_before_resample_iterations_idx( ds, iterations, chunking_dims, optimal_blocksize=100000000 ): """Chunk ds so small that after _resample_iteration_idx chunks have optimal size `optimal_blocksize`. Args: ds (xr.obejct): input data`. iterations (int): number of bootstrap iterations in `_resample_iterations_idx`. chunking_dims (list of str or str): Dimension(s) to chunking in. optimal_blocksize (int): dask blocksize to aim at in bytes. Defaults to 100000000. Returns: xr.object: chunked to have blocksize: optimal_blocksize/iterations. """ if isinstance(chunking_dims, str): chunking_dims = [chunking_dims] # size of CLIMPRED_DIMS climpred_dim_chunksize = 8 * np.product( np.array([ds[d].size for d in CLIMPRED_DIMS if d in ds.dims]) ) # remaining blocksize for remaining dims considering iteration spatial_dim_blocksize = optimal_blocksize / (climpred_dim_chunksize * iterations) # size of remaining dims chunking_dims_size = np.product( np.array([ds[d].size for d in ds.dims if d not in CLIMPRED_DIMS]) ) # ds.lat.size*ds.lon.size # chunks needed to get to optimal blocksize chunks_needed = chunking_dims_size / spatial_dim_blocksize # get size clon, clat for spatial chunks cdim = [1 for i in chunking_dims] nchunks = np.product(cdim) stepsize = 1 counter = 0 while nchunks < chunks_needed: for i, d in enumerate(chunking_dims): c = cdim[i] if c <= ds[d].size: c = c + stepsize cdim[i] = c nchunks = np.product(cdim) counter += 1 if counter == 100: break # convert number of chunks to chunksize chunks = dict() for i, d in enumerate(chunking_dims): chunksize = ds[d].size // cdim[i] if chunksize < 1: chunksize = 1 chunks[d] = chunksize ds = ds.chunk(chunks) return ds def bootstrap_compute( hind, verif, hist=None, alignment="same_verifs", metric="pearson_r", comparison="m2e", dim="init", reference=["uninitialized", "persistence"], resample_dim="member", sig=95, iterations=500, pers_sig=None, compute=compute_hindcast, resample_uninit=bootstrap_uninitialized_ensemble, reference_compute=compute_persistence, **metric_kwargs, ): """Bootstrap compute with replacement. Args: hind (xr.Dataset): prediction ensemble. verif (xr.Dataset): Verification data. hist (xr.Dataset): historical/uninitialized simulation. metric (str): `metric`. Defaults to 'pearson_r'. comparison (str): `comparison`. Defaults to 'm2e'. dim (str or list): dimension(s) to apply metric over. default: 'init'. reference (str, list of str): Type of reference forecasts with which to verify. One or more of ['persistence', 'uninitialized']. If None or empty, returns no p value. resample_dim (str): dimension to resample from. default: 'member':: - 'member': select a different set of members from hind - 'init': select a different set of initializations from hind sig (int): Significance level for uninitialized and initialized skill. Defaults to 95. pers_sig (int): Significance level for persistence skill confidence levels. Defaults to sig. iterations (int): number of resampling iterations (bootstrap with replacement). Defaults to 500. compute (func): function to compute skill. Choose from [:py:func:`climpred.prediction.compute_perfect_model`, :py:func:`climpred.prediction.compute_hindcast`]. resample_uninit (func): function to create an uninitialized ensemble from a control simulation or uninitialized large ensemble. Choose from: [:py:func:`bootstrap_uninitialized_ensemble`, :py:func:`bootstrap_uninit_pm_ensemble_from_control`]. reference_compute (func): function to compute a reference forecast skill with. Default: :py:func:`climpred.prediction.compute_persistence`. ** metric_kwargs (dict): additional keywords to be passed to metric (see the arguments required for a given metric in :ref:`Metrics`). Returns: results: (xr.Dataset): bootstrapped results for the three different skills: - `initialized` for the initialized hindcast `hind` and describes skill due to initialization and external forcing - `uninitialized` for the uninitialized/historical and approximates skill from external forcing - `persistence` for the persistence forecast computed by `compute_persistence` the different results: - `verify skill`: skill values - `p`: p value - `low_ci` and `high_ci`: high and low ends of confidence intervals based on significance threshold `sig` Reference: * Goddard, L., A. Kumar, A. Solomon, D. Smith, G. Boer, P. Gonzalez, V. Kharin, et al. “A Verification Framework for Interannual-to-Decadal Predictions Experiments.” Climate Dynamics 40, no. 1–2 (January 1, 2013): 245–72. https://doi.org/10/f4jjvf. See also: * climpred.bootstrap.bootstrap_hindcast * climpred.bootstrap.bootstrap_perfect_model """ warn_if_chunking_would_increase_performance(hind, crit_size_in_MB=5) if pers_sig is None: pers_sig = sig if isinstance(dim, str): dim = [dim] if isinstance(reference, str): reference = [reference] if reference is None: reference = [] p = (100 - sig) / 100 ci_low = p / 2 ci_high = 1 - p / 2 p_pers = (100 - pers_sig) / 100 ci_low_pers = p_pers / 2 ci_high_pers = 1 - p_pers / 2 # get metric/comparison function name, not the alias metric = METRIC_ALIASES.get(metric, metric) comparison = COMPARISON_ALIASES.get(comparison, comparison) # get class Metric(metric) metric = get_metric_class(metric, ALL_METRICS) # get comparison function comparison = get_comparison_class(comparison, ALL_COMPARISONS) # Perfect Model requires `same_inits` setup isHindcast = True if comparison.name in HINDCAST_COMPARISONS else False reference_alignment = alignment if isHindcast else "same_inits" chunking_dims = [d for d in hind.dims if d not in CLIMPRED_DIMS] # carry alignment for compute_reference separately metric_kwargs_reference = metric_kwargs.copy() metric_kwargs_reference["alignment"] = reference_alignment # carry alignment in metric_kwargs if isHindcast: metric_kwargs["alignment"] = alignment if hist is None: # PM path, use verif = control hist = verif # slower path for hindcast and resample_dim init if resample_dim == "init" and isHindcast: warnings.warn("resample_dim=`init` will be slower than resample_dim=`member`.") ( bootstrapped_init_skill, bootstrapped_uninit_skill, bootstrapped_pers_skill, ) = _bootstrap_hindcast_over_init_dim( hind, hist, verif, dim, reference, resample_dim, iterations, metric, comparison, compute, reference_compute, resample_uninit, **metric_kwargs, ) else: # faster: first _resample_iterations_idx, then compute skill resample_func = _get_resample_func(hind) if not isHindcast: if "uninitialized" in reference: # create more members than needed in PM to make the uninitialized # distribution more robust members_to_sample_from = 50 repeat = members_to_sample_from // hind.member.size + 1 uninit_hind = xr.concat( [resample_uninit(hind, hist) for i in range(repeat)], dim="member", **CONCAT_KWARGS, ) uninit_hind["member"] = np.arange(1, 1 + uninit_hind.member.size) if dask.is_dask_collection(uninit_hind): # too minimize tasks: ensure uninit_hind get pre-computed # alternativly .chunk({'member':-1}) uninit_hind = uninit_hind.compute().chunk() # resample uninit always over member and select only hind.member.size bootstrapped_uninit = resample_func( uninit_hind, iterations, "member", replace=False, dim_max=hind["member"].size, ) bootstrapped_uninit["lead"] = hind["lead"] # effectively only when _resample_iteration_idx which doesnt use dim_max bootstrapped_uninit = bootstrapped_uninit.isel( member=slice(None, hind.member.size) ) if dask.is_dask_collection(bootstrapped_uninit): bootstrapped_uninit = bootstrapped_uninit.chunk({"member": -1}) bootstrapped_uninit = _maybe_auto_chunk( bootstrapped_uninit, ["iteration"] + chunking_dims ) else: # hindcast if "uninitialized" in reference: uninit_hind = resample_uninit(hind, hist) if dask.is_dask_collection(uninit_hind): # too minimize tasks: ensure uninit_hind get pre-computed # maybe not needed uninit_hind = uninit_hind.compute().chunk() bootstrapped_uninit = resample_func( uninit_hind, iterations, resample_dim ) bootstrapped_uninit = bootstrapped_uninit.isel( member=slice(None, hind.member.size) ) bootstrapped_uninit["lead"] = hind["lead"] if dask.is_dask_collection(bootstrapped_uninit): bootstrapped_uninit = _maybe_auto_chunk( bootstrapped_uninit.chunk({"lead": 1}), ["iteration"] + chunking_dims, ) if "uninitialized" in reference: bootstrapped_uninit_skill = compute( bootstrapped_uninit, verif, metric=metric, comparison="m2o" if isHindcast else comparison, dim=dim, add_attrs=False, **metric_kwargs, ) # take mean if 'm2o' comparison forced before if isHindcast and comparison != __m2o: bootstrapped_uninit_skill = bootstrapped_uninit_skill.mean("member") bootstrapped_hind = resample_func(hind, iterations, resample_dim) if dask.is_dask_collection(bootstrapped_hind): bootstrapped_hind = bootstrapped_hind.chunk({"member": -1}) bootstrapped_init_skill = compute( bootstrapped_hind, verif, metric=metric, comparison=comparison, add_attrs=False, dim=dim, **metric_kwargs, ) if "persistence" in reference: if not metric.probabilistic: pers_skill = reference_compute( hind, verif, metric=metric, dim=dim, **metric_kwargs_reference, ) # bootstrap pers if resample_dim == "init": bootstrapped_pers_skill = reference_compute( bootstrapped_hind, verif, metric=metric, **metric_kwargs_reference, ) else: # member _, bootstrapped_pers_skill = xr.broadcast( bootstrapped_init_skill, pers_skill, exclude=CLIMPRED_DIMS ) else: bootstrapped_pers_skill = bootstrapped_init_skill.isnull() # calc mean skill without any resampling init_skill = compute( hind, verif, metric=metric, comparison=comparison, dim=dim, **metric_kwargs, ) if "uninitialized" in reference: # uninit skill as mean resampled uninit skill uninit_skill = bootstrapped_uninit_skill.mean("iteration") if "persistence" in reference: if not metric.probabilistic: pers_skill = reference_compute( hind, verif, metric=metric, dim=dim, **metric_kwargs_reference ) else: pers_skill = init_skill.isnull() # align to prepare for concat if set(bootstrapped_pers_skill.coords) != set(bootstrapped_init_skill.coords): if ( "time" in bootstrapped_pers_skill.dims and "init" in bootstrapped_init_skill.dims ): bootstrapped_pers_skill = bootstrapped_pers_skill.rename( {"time": "init"} ) # allow member to be broadcasted bootstrapped_init_skill, bootstrapped_pers_skill = xr.broadcast( bootstrapped_init_skill, bootstrapped_pers_skill, exclude=("init", "lead", "time"), ) # get confidence intervals CI init_ci = _distribution_to_ci(bootstrapped_init_skill, ci_low, ci_high) if "uninitialized" in reference: uninit_ci = _distribution_to_ci(bootstrapped_uninit_skill, ci_low, ci_high) # probabilistic metrics wont have persistence forecast # therefore only get CI if persistence was computed if "persistence" in reference: if "iteration" in bootstrapped_pers_skill.dims: pers_ci = _distribution_to_ci( bootstrapped_pers_skill, ci_low_pers, ci_high_pers ) else: # otherwise set all persistence outputs to false pers_ci = init_ci == -999 # pvalue whether uninit or pers better than init forecast if "uninitialized" in reference: p_uninit_over_init = _pvalue_from_distributions( bootstrapped_uninit_skill, bootstrapped_init_skill, metric=metric ) if "persistence" in reference: p_pers_over_init = _pvalue_from_distributions( bootstrapped_pers_skill, bootstrapped_init_skill, metric=metric ) # wrap results together in one xr object if reference == []: results = xr.concat( [ init_skill, init_ci.isel(quantile=0, drop=True), init_ci.isel(quantile=1, drop=True), ], dim="results", ) results["results"] = ["verify skill", "low_ci", "high_ci"] results["skill"] = ["initialized"] results = results.squeeze() elif reference == ["persistence"]: skill = xr.concat([init_skill, pers_skill], dim="skill", **CONCAT_KWARGS) skill["skill"] = ["initialized", "persistence"] # ci for each skill ci = xr.concat([init_ci, pers_ci], "skill", coords="minimal").rename( {"quantile": "results"} ) ci["skill"] = ["initialized", "persistence"] results = xr.concat([skill, p_pers_over_init], dim="results", **CONCAT_KWARGS) results["results"] = ["verify skill", "p"] if set(results.coords) != set(ci.coords): res_drop = [c for c in results.coords if c not in ci.coords] ci_drop = [c for c in ci.coords if c not in results.coords] results = results.drop_vars(res_drop) ci = ci.drop_vars(ci_drop) results = xr.concat([results, ci], dim="results", **CONCAT_KWARGS) results["results"] = ["verify skill", "p", "low_ci", "high_ci"] elif reference == ["uninitialized"]: skill = xr.concat([init_skill, uninit_skill], dim="skill", **CONCAT_KWARGS) skill["skill"] = ["initialized", "uninitialized"] # ci for each skill ci = xr.concat([init_ci, uninit_ci], "skill", coords="minimal").rename( {"quantile": "results"} ) ci["skill"] = ["initialized", "uninitialized"] results = xr.concat([skill, p_uninit_over_init], dim="results", **CONCAT_KWARGS) results["results"] = ["verify skill", "p"] if set(results.coords) != set(ci.coords): res_drop = [c for c in results.coords if c not in ci.coords] ci_drop = [c for c in ci.coords if c not in results.coords] results = results.drop_vars(res_drop) ci = ci.drop_vars(ci_drop) results = xr.concat([results, ci], dim="results", **CONCAT_KWARGS) results["results"] = ["verify skill", "p", "low_ci", "high_ci"] elif set(reference) == set(["uninitialized", "persistence"]): skill = xr.concat( [init_skill, uninit_skill, pers_skill], dim="skill", **CONCAT_KWARGS ) skill["skill"] = ["initialized", "uninitialized", "persistence"] # probability that i beats init p = xr.concat( [p_uninit_over_init, p_pers_over_init], dim="skill", **CONCAT_KWARGS ) p["skill"] = ["uninitialized", "persistence"] # ci for each skill ci = xr.concat([init_ci, uninit_ci, pers_ci], "skill", coords="minimal").rename( {"quantile": "results"} ) ci["skill"] = ["initialized", "uninitialized", "persistence"] results = xr.concat([skill, p], dim="results", **CONCAT_KWARGS) results["results"] = ["verify skill", "p"] if set(results.coords) != set(ci.coords): res_drop = [c for c in results.coords if c not in ci.coords] ci_drop = [c for c in ci.coords if c not in results.coords] results = results.drop_vars(res_drop) ci = ci.drop_vars(ci_drop) results = xr.concat([results, ci], dim="results", **CONCAT_KWARGS) results["results"] = ["verify skill", "p", "low_ci", "high_ci"] else: raise ValueError("results not created") # Attach climpred compute information to skill metadata_dict = { "confidence_interval_levels": f"{ci_high}-{ci_low}", "bootstrap_iterations": iterations, "reference": reference, } if reference is not None: metadata_dict[ "p" ] = "probability that reference performs better than initialized" metadata_dict.update(metric_kwargs) results = assign_attrs( results, hind, alignment=alignment, metric=metric, comparison=comparison, dim=dim, function_name=inspect.stack()[0][3], # take function.__name__ metadata_dict=metadata_dict, ) # Ensure that the lead units get carried along for the calculation. The attribute # tends to get dropped along the way due to ``xarray`` functionality. results["lead"] = hind["lead"] if "units" in hind["lead"].attrs and "units" not in results["lead"].attrs: results["lead"].attrs["units"] = hind["lead"].attrs["units"] return results def bootstrap_hindcast( hind, hist, verif, alignment="same_verifs", metric="pearson_r", comparison="e2o", dim="init", reference=["uninitialized", "persistence"], resample_dim="member", sig=95, iterations=500, pers_sig=None, reference_compute=compute_persistence, **metric_kwargs, ): """Bootstrap compute with replacement. Wrapper of py:func:`bootstrap_compute` for hindcasts. Args: hind (xr.Dataset): prediction ensemble. verif (xr.Dataset): Verification data. hist (xr.Dataset): historical/uninitialized simulation. metric (str): `metric`. Defaults to 'pearson_r'. comparison (str): `comparison`. Defaults to 'e2o'. dim (str): dimension to apply metric over. default: 'init'. reference (str, list of str): Type of reference forecasts with which to verify. One or more of ['persistence', 'uninitialized']. If None or empty, returns no p value. resample_dim (str or list): dimension to resample from. default: 'member'. - 'member': select a different set of members from hind - 'init': select a different set of initializations from hind sig (int): Significance level for uninitialized and initialized skill. Defaults to 95. pers_sig (int): Significance level for persistence skill confidence levels. Defaults to sig. iterations (int): number of resampling iterations (bootstrap with replacement). Defaults to 500. reference_compute (func): function to compute a reference forecast skill with. Default: :py:func:`climpred.prediction.compute_persistence`. ** metric_kwargs (dict): additional keywords to be passed to metric (see the arguments required for a given metric in :ref:`Metrics`). Returns: results: (xr.Dataset): bootstrapped results for the three different kinds of predictions: - `initialized` for the initialized hindcast `hind` and describes skill due to initialization and external forcing - `uninitialized` for the uninitialized/historical and approximates skill from external forcing - `persistence` for the persistence forecast computed by `compute_persistence` the different results: - `verify skill`: skill values - `p`: p value - `low_ci` and `high_ci`: high and low ends of confidence intervals based on significance threshold `sig` Reference: * Goddard, L., A. Kumar, A. Solomon, D. Smith, G. Boer, P. Gonzalez, V. Kharin, et al. “A Verification Framework for Interannual-to-Decadal Predictions Experiments.” Climate Dynamics 40, no. 1–2 (January 1, 2013): 245–72. https://doi.org/10/f4jjvf. See also: * climpred.bootstrap.bootstrap_compute * climpred.prediction.compute_hindcast Example: >>> hind = climpred.tutorial.load_dataset('CESM-DP-SST')['SST'] >>> hist = climpred.tutorial.load_dataset('CESM-LE')['SST'] >>> obs = load_dataset('ERSST')['SST'] >>> bootstrapped_skill = climpred.bootstrap.bootstrap_hindcast(hind, hist, obs) >>> bootstrapped_skill.coords Coordinates: * lead (lead) int64 1 2 3 4 5 6 7 8 9 10 * kind (kind) object 'initialized' 'persistence' 'uninitialized' * results (results) <U7 'verify skill' 'p' 'low_ci' 'high_ci' """ # Check that init is int, cftime, or datetime; convert ints or datetime to cftime. hind = convert_time_index(hind, "init", "hind[init]") hist = convert_time_index(hist, "time", "uninitialized[time]") verif = convert_time_index(verif, "time", "verif[time]") # Put this after `convert_time_index` since it assigns 'years' attribute if the # `init` dimension is a `float` or `int`. has_valid_lead_units(hind) if ("same_verif" in alignment) & (resample_dim == "init"): raise KeywordError( "Cannot have both alignment='same_verifs' and " "resample_dim='init'. Change `resample_dim` to 'member' to keep " "common verification alignment or `alignment` to 'same_inits' to " "resample over initializations." ) # Kludge for now. Since we're computing persistence here we need to ensure that # all products have a union in their time axis. times = np.sort( list(set(hind.init.data) & set(hist.time.data) & set(verif.time.data)) ) hind = hind.sel(init=times) hist = hist.sel(time=times) verif = verif.sel(time=times) return bootstrap_compute( hind, verif, hist=hist, alignment=alignment, metric=metric, comparison=comparison, dim=dim, reference=reference, resample_dim=resample_dim, sig=sig, iterations=iterations, pers_sig=pers_sig, compute=compute_hindcast, resample_uninit=bootstrap_uninitialized_ensemble, reference_compute=reference_compute, **metric_kwargs, ) def bootstrap_perfect_model( init_pm, control, metric="pearson_r", comparison="m2e", dim=["init", "member"], reference=["uninitialized", "persistence"], resample_dim="member", sig=95, iterations=500, pers_sig=None, reference_compute=compute_persistence, **metric_kwargs, ): """Bootstrap compute with replacement. Wrapper of py:func:`bootstrap_compute` for perfect-model framework. Args: hind (xr.Dataset): prediction ensemble. verif (xr.Dataset): Verification data. hist (xr.Dataset): historical/uninitialized simulation. metric (str): `metric`. Defaults to 'pearson_r'. comparison (str): `comparison`. Defaults to 'm2e'. dim (str): dimension to apply metric over. default: ['init', 'member']. reference (str, list of str): Type of reference forecasts with which to verify. One or more of ['persistence', 'uninitialized']. If None or empty, returns no p value. resample_dim (str or list): dimension to resample from. default: 'member'. - 'member': select a different set of members from hind - 'init': select a different set of initializations from hind sig (int): Significance level for uninitialized and initialized skill. Defaults to 95. pers_sig (int): Significance level for persistence skill confidence levels. Defaults to sig. iterations (int): number of resampling iterations (bootstrap with replacement). Defaults to 500. reference_compute (func): function to compute a reference forecast skill with. Default: :py:func:`climpred.prediction.compute_persistence`. ** metric_kwargs (dict): additional keywords to be passed to metric (see the arguments required for a given metric in :ref:`Metrics`). Returns: results: (xr.Dataset): bootstrapped results for the three different kinds of predictions: - `initialized` for the initialized hindcast `hind` and describes skill due to initialization and external forcing - `uninitialized` for the uninitialized/historical and approximates skill from external forcing - `pers` for the reference forecast computed by `reference_compute`, which defaults to `compute_persistence` the different results: - `skill`: skill values - `p`: p value - `low_ci` and `high_ci`: high and low ends of confidence intervals based on significance threshold `sig` Reference: * Goddard, L., A. Kumar, A. Solomon, D. Smith, G. Boer, P. Gonzalez, V. Kharin, et al. “A Verification Framework for Interannual-to-Decadal Predictions Experiments.” Climate Dynamics 40, no. 1–2 (January 1, 2013): 245–72. https://doi.org/10/f4jjvf. See also: * climpred.bootstrap.bootstrap_compute * climpred.prediction.compute_perfect_model Example: >>> init = climpred.tutorial.load_dataset('MPI-PM-DP-1D') >>> control = climpred.tutorial.load_dataset('MPI-control-1D') >>> bootstrapped_s = climpred.bootstrap.bootstrap_perfect_model(init, control) >>> bootstrapped_s.coords Coordinates: * lead (lead) int64 1 2 3 4 5 6 7 8 9 10 * kind (kind) object 'initialized' 'persistence' 'uninitialized' * results (results) <U7 'verify skill' 'p' 'low_ci' 'high_ci' """ if dim is None: dim = ["init", "member"] # Check init & time is int, cftime, or datetime; convert ints or datetime to cftime. init_pm = convert_time_index( init_pm, "init", "init_pm[init]", calendar=PM_CALENDAR_STR ) control = convert_time_index( control, "time", "control[time]", calendar=PM_CALENDAR_STR ) lead_units_equal_control_time_stride(init_pm, control) return bootstrap_compute( init_pm, control, hist=None, metric=metric, comparison=comparison, dim=dim, reference=reference, resample_dim=resample_dim, sig=sig, iterations=iterations, pers_sig=pers_sig, compute=compute_perfect_model, resample_uninit=bootstrap_uninit_pm_ensemble_from_control_cftime, reference_compute=reference_compute, **metric_kwargs, ) def _bootstrap_func( func, ds, resample_dim, sig=95, iterations=500, *func_args, **func_kwargs, ): """Sig % threshold of function based on iterations resampling with replacement. Reference: * Mason, S. J., and G. M. Mimmack. “The Use of Bootstrap Confidence Intervals for the Correlation Coefficient in Climatology.” Theoretical and Applied Climatology 45, no. 4 (December 1, 1992): 229–33. https://doi.org/10/b6fnsv. Args: func (function): function to be bootstrapped. ds (xr.object): first input argument of func. `chunk` ds on `dim` other than `resample_dim` for potential performance increase when multiple CPUs available. resample_dim (str): dimension to resample from. sig (int,float,list): significance levels to return. Defaults to 95. iterations (int): number of resample iterations. Defaults to 500. *func_args (type): `*func_args`. **func_kwargs (type): `**func_kwargs`. Returns: sig_level: bootstrapped significance levels with dimensions of init_pm and len(sig) if sig is list """ if not callable(func): raise ValueError(f"Please provide func as a function, found {type(func)}") warn_if_chunking_would_increase_performance(ds) if isinstance(sig, list): psig = [i / 100 for i in sig] else: psig = sig / 100 resample_func = _get_resample_func(ds) bootstraped_ds = resample_func(ds, iterations, dim=resample_dim, replace=False) bootstraped_results = func(bootstraped_ds, *func_args, **func_kwargs) bootstraped_results = rechunk_to_single_chunk_if_more_than_one_chunk_along_dim( bootstraped_results, dim="iteration" ) sig_level = bootstraped_results.quantile(dim="iteration", q=psig, skipna=False) return sig_level def dpp_threshold(control, sig=95, iterations=500, dim="time", **dpp_kwargs): """Calc DPP significance levels from re-sampled dataset. Reference: * Feng, X., T. DelSole, and P. Houser. “Bootstrap Estimated Seasonal Potential Predictability of Global Temperature and Precipitation.” Geophysical Research Letters 38, no. 7 (2011). https://doi.org/10/ft272w. See also: * climpred.bootstrap._bootstrap_func * climpred.stats.dpp """ return _bootstrap_func( dpp, control, dim, sig=sig, iterations=iterations, **dpp_kwargs ) def varweighted_mean_period_threshold(control, sig=95, iterations=500, time_dim="time"): """Calc the variance-weighted mean period significance levels from re-sampled dataset. See also: * climpred.bootstrap._bootstrap_func * climpred.stats.varweighted_mean_period """ return _bootstrap_func( varweighted_mean_period, control, time_dim, sig=sig, iterations=iterations, )
py
b4028fc2fa65efbbd8130590595e439ad6d40675
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Created on Tue Jul 16 10:37:45 2019 @author: Luke """ import cdsapi c = cdsapi.Client() c.retrieve( 'reanalysis-era5-single-levels', { 'product_type':'reanalysis', 'variable':'lake_mix_layer_temperature', 'year':[ '1979','1980','1981', '1982','1983','1984', '1985','1986','1987', '1988','1989','1990', '1991','1992','1993', '1994','1995','1996', '1997','1998','1999', '2000','2001','2002', '2003','2004','2005', '2006','2007','2008', '2009','2010','2011', '2012','2013','2014', '2015','2016','2017', '2018','2019' ], 'month':[ '01','02','03', '04','05','06', '07','08','09', '10','11','12' ], 'day':[ '01','02','03', '04','05','06', '07','08','09', '10','11','12', '13','14','15', '16','17','18', '19','20','21', '22','23','24', '25','26','27', '28','29','30', '31' ], 'time':[ '00:00','06:00','12:00', '18:00' ], 'format':'netcdf' }, 'era5_lakes_mixlayertemp_6hourly_1979_2019.nc')
py
b4029098b37c0784c3f044832381f139b15c08dd
__name__='MFParse' import numpy as np from os import listdir from os.path import join, isdir from scipy.signal import hilbert import h5py def parse_egg(pathtoegg, Vrange=5.5e-8,nbit=8 ): f=h5py.File(pathtoegg,'r') dset=f['streams']['stream0']['acquisitions']['0'] channels=list(f['channels'].keys()) Nsamp=dset.shape[1]//(2*len(channels)) ind=[] for ch in channels: ind.append(int(ch.split('l')[1])) #print(ch.split('l')) ind=np.array(ind) data=dset[0,:].reshape(ind.size,2*Nsamp) Idata=np.float64(data[:,np.arange(0,2*Nsamp,2)]) Qdata=np.float64(data[:,np.arange(1,2*Nsamp,2)]) for i in range(len(channels)): Idata[i,:]-=np.mean(Idata[i,:]) Qdata[i,:]-=np.mean(Qdata[i,:]) for i in range(len(channels)): Idata[i,:]*=Vrange/(2**nbit) Qdata[i,:]*=Vrange/(2**nbit) complexdata=Idata+1j*Qdata f.close() return complexdata def slice_egg(egg_data,slicenum,slicesize): start=slicenum*slicesize end=(slicenum+1)*slicesize return egg_data[:,start:end] def parse_testbed(path_to_data,antennakey,V_pp=0.5,adc_bits=14): parse_data={} position_paths=[] for i in [0,1,2]: if isdir(join(path_to_data,str(i))): parse_data.update({int(i):{}}) position_paths.append(join(path_to_data,str(i))) # for each position get the acqusitions for i,p in enumerate(position_paths): for j in [0,1,2]: if isdir(join(p,str(j))): parse_data[i].update({int(j):{}}) # Read and parse the csv antenna files for i,k in enumerate(parse_data): # positions for j,l in enumerate(parse_data[k]): # acquisitions for antenna in antennakey[l]: # antennas if antenna not in parse_data[k][l].keys(): parse_data[k][l].update({90-antenna:[]}) for i,pos_path in enumerate(position_paths): #print(pos_path) for j,acq in enumerate(parse_data[i]): for u in range(len(listdir(join(pos_path,str(acq))))): # This loop iterates through the antenna data x=[] with open(join(join(pos_path,str(acq)),'wave'+str(u)+'.txt'),newline='\n') as infile: for n,m in enumerate(infile): if n>=7: x.append(float(m)) parse_data[i][acq][90-antennakey[acq][u]]=np.asarray(x) # Remove DC offset and convert from adc bits to voltages for i,pos in enumerate(parse_data): # positions for j,acq in enumerate(parse_data[pos]): # iterates through acquisitions for n,ant in enumerate(parse_data[pos][acq]): # iterates through the acquisitions that antenna was in parse_data[pos][acq][ant]-=np.mean(parse_data[pos][acq][ant]) parse_data[pos][acq][ant]*=(V_pp/2**adc_bits) #for i,pos in enumerate(parse_data): # for j,acq in enumerate(parse_data[pos]): # for n,ant in enumerate(parse_data[pos][acq]): # print(np.sqrt(np.mean(np.array(parse_data[pos][acq][ant])**2)),pos) return parse_data def combine_and_calc_phis(parse_data,Nsamples=8200,Fsample=500e6): phis={} for i,pos in enumerate(parse_data): phis.update({pos:{}}) for j,acq in enumerate(parse_data[pos]): phis[pos].update({acq:{}}) for n,ant in enumerate(parse_data[pos][acq]): alpha1=np.real((np.fft.fft(parse_data[pos][acq][ant])[:Nsamples//2]) [np.argmax(abs(np.fft.fft(parse_data[pos][acq][ant])[:Nsamples//2]))]) alpha2=np.imag((np.fft.fft(parse_data[pos][acq][ant])[:Nsamples//2]) [np.argmax(abs(np.fft.fft(parse_data[pos][acq][ant])[:Nsamples//2]))]) phis[pos][acq].update({ant:np.arctan2(-alpha2,alpha1)}) corrected_data={} for i,pos in enumerate(parse_data): corrected_data.update({pos:{}}) for j,acq in enumerate(parse_data[pos]): corrected_data[pos].update({acq:{}}) for n,ant in enumerate(parse_data[pos][acq]): corrected_data[pos][acq].update({ant:hilbert(parse_data[pos][acq][ant])* np.exp(-1j*(phis[pos][0][90]-phis[pos][acq][90]))}) antennas={} # create dictionary {position:{antenna:acquisition}} for i,pos in enumerate(corrected_data): #positions antennas.update({pos:{}}) for j,acq in enumerate(corrected_data[pos]): #acquisitions for ant in corrected_data[pos][acq].keys(): # antennas if n not in antennas[pos].keys(): antennas[pos].update({ant:acq}) combined_data={} for i,pos in enumerate(antennas): combined_data.update({pos:{}}) for n,ant in enumerate(antennas[pos]): if ant not in combined_data[pos].keys(): combined_data[pos].update({ant:corrected_data[pos][antennas[pos][ant]][ant]}) #fold all antennas into the upper RH quadrant, mirror symmetry mirror_combined_data={} for i,pos in enumerate(combined_data): mirror_combined_data.update({pos:{}}) for n,ant in enumerate(combined_data[pos]): mirror_combined_data[pos].update({abs(ant):combined_data[pos][ant]}) for i,pos in enumerate(mirror_combined_data): #positions if pos == 2: for n,ant in enumerate(mirror_combined_data[pos]): # antennas mirror_combined_data[pos][ant]*=np.exp(-1j*(phis[1][0][90]-phis[2][0][90])) #for i,pos in enumerate(mirror_combined_data): # for n,ant in enumerate(mirror_combined_data[pos]): # print(np.sqrt(np.mean(np.real(mirror_combined_data[pos][ant])**2)),ant,pos) #for i,pos in enumerate(mirror_combined_data): # for n, ant in enumerate(mirror_combined_data[pos]): # mirror_combined_data[pos][ant]=np.real(mirror_combined_data[pos][ant]) return mirror_combined_data,phis def generate_array_data(combined_data,Nsamples=8200): array_data={} for i,pos in enumerate(combined_data): if pos ==0 or pos==1: array_data.update({pos:{}}) for n,ant in enumerate(combined_data[pos]): if pos ==2: continue elif pos==0: if ant != 90 and ant !=0: array_data[pos].update({ant:combined_data[pos][ant]}) array_data[pos].update({-ant:combined_data[pos][ant]}) array_data[pos].update({180-ant:combined_data[pos][ant]}) array_data[pos].update({-180+ant:combined_data[pos][ant]}) elif ant ==90 or ant==0: array_data[pos].update({ant:combined_data[pos][ant]}) array_data[pos].update({ant-180:combined_data[pos][ant]}) elif pos ==1: if ant != 90 and ant !=0: array_data[pos].update({ant:combined_data[pos][ant]}) array_data[pos].update({-ant:combined_data[pos][ant]}) array_data[pos].update({180-ant:combined_data[pos+1][ant]}) array_data[pos].update({-180+ant:combined_data[pos+1][ant]}) elif ant ==90: #don't double count 90 degrees array_data[pos].update({ant:combined_data[pos][ant]}) array_data[pos].update({ant-180:combined_data[pos][ant]}) elif ant ==0: #don't double count 90 degrees array_data[pos].update({ant:combined_data[pos][ant]}) array_data[pos].update({ant-180:combined_data[pos+1][ant]}) return array_data def check_egg_slice(eggSlice): data_grad=np.sqrt(np.gradient(np.real(eggSlice[0,:]))**2) mean_data_grad=np.sqrt(np.mean(np.gradient(np.real(eggSlice[0,:]))**2)) zero_grad=np.where(data_grad==0)[0] N_zero_grad=np.where(np.diff(zero_grad)==1)[0].size if N_zero_grad>42: return False else: return True
py
b40290ffe7e3f6d1fc1b1c7baa65203d45912040
#-*- coding: utf-8 -*- """ Copyright (c) 2012 University of Oxford Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, --INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import logging from rdfdatabank.lib.base import BaseController, render class AboutController(BaseController): def index(self): return render('/about.html')
py
b40291a36efa94c6875bcc88f02f7c304674f0ca
# ____ _ ____ __ __ # / __ )_________ _(_)___ / __ \____ _ ______ / /___ ____ _____/ / # / __ / ___/ __ `/ / __ \ / / / / __ \ | /| / / __ \/ / __ \/ __ `/ __ / # / /_/ / / / /_/ / / / / / / /_/ / /_/ / |/ |/ / / / / / /_/ / /_/ / /_/ / # /_____/_/ \__,_/_/_/ /_/ /_____/\____/|__/|__/_/ /_/_/\____/\__,_/\__,_/ # # Version : 0.9.0.201222 # Code by : Anuradha Gunawardhana(LKBrilliant) # Date : 2020.12.30 # Description : Record and save raw EEG data extracted from 5 channel Emotiv Insight headset while # displaying images or playing audio clips of multiple object classes. # Saved records contain... # Experiments > Random image persentation # > If needed change the data composition by changeing the image count # > Random Audio playing # > Left-Right Arrow Images # > This type of imagesets should contain multiple classes of arrows and a single center image named as 'Center_001.JPG' # > The GUI recognized this project by the phrase 'Arrow' in the folder name # > The center image will be shown before every image # > Visual Q&A # > This kind of image-set should contain images form multiple classes Eg. 10 classes # > The GUI recognize this type of image-set by the phrase 'Q&A' in the folder name # > GUI will add a '?' to every class name and generate a question list Eg.for 10 classes -> 10 questions # > When showing an image, a question is asked above the image to get a 'YES', 'NO' responce from the subject # > For 10 classes the program can ask 1 'YES' responce question to 9 'NO' responce questions # > But Asking the correct and incorrect question probability is set to 50% # # Limitations : > Projects of mixed audio and images does not support from PyQt5 import QtCore, QtGui, QtWidgets, QtTest from playsound import playsound from eegExport_demo import RecordThread from os import listdir from os.path import isfile, isdir, join import sys import random class Ui_MainWindow(object): def setupUi(self, MainWindow): self.interval = 0 self.files = [] self.projectName = "" self.recordingState = False self.lastName = "" self.extention = "" self.audioProject = False self.count = 0 self.comboTest = False self.directionalProj = False self.dirTempBool = True self.VQAProj = False self.centerImageName = 'Center_001.JPG' self.directionalProjName = "Arrow" self.VQAProjName = "Q&A" self.questions = [] MainWindow.setObjectName("MainWindow") MainWindow.resize(920, 910) MainWindow.setStyleSheet("background-color: #212121;") self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.gridLayout_2 = QtWidgets.QGridLayout(self.centralwidget) self.gridLayout_2.setObjectName("gridLayout_2") self.gridLayout_3 = QtWidgets.QGridLayout() self.gridLayout_3.setObjectName("gridLayout_3") self.lbl_class = QtWidgets.QLabel(self.centralwidget) self.lbl_class.setMinimumSize(QtCore.QSize(0, 0)) self.lbl_class.setMaximumSize(QtCore.QSize(2000, 72)) font = QtGui.QFont() # font.setFamily("Times New Roman") font.setFamily("Nirmala UI") font.setPointSize(28) font.setBold(True) font.setItalic(False) font.setWeight(75) self.lbl_class.setFont(font) self.lbl_class.setStyleSheet("color: #ffffff;") self.lbl_class.setAlignment(QtCore.Qt.AlignCenter) self.lbl_class.setObjectName("lbl_class") self.gridLayout_3.addWidget(self.lbl_class, 0, 0, 1, 6) self.image = QtWidgets.QLabel(self.centralwidget) self.image.setMaximumSize(QtCore.QSize(2000, 2000)) self.image.setText("") self.image.setPixmap(QtGui.QPixmap("UI_graphics/brain_download.png")) self.image.setScaledContents(False) self.image.setAlignment(QtCore.Qt.AlignCenter) self.image.setObjectName("image") self.gridLayout_3.addWidget(self.image, 1, 0, 1, 6) self.btn_main = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.btn_main.sizePolicy().hasHeightForWidth()) self.btn_main.setSizePolicy(sizePolicy) self.btn_main.setMaximumSize(QtCore.QSize(200, 100)) self.btn_main.setMinimumSize(QtCore.QSize(170, 50)) self.btn_main.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.btn_main.setStyleSheet(open("style_sheets/button_start.qss","r").read()) self.btn_main.setObjectName("btn_main") self.btn_main.clicked.connect(self.buttonPress) self.gridLayout_3.addWidget(self.btn_main, 2, 5, 2, 1) self.lbl_status = QtWidgets.QLabel(self.centralwidget) self.lbl_status.setMaximumSize(QtCore.QSize(2000, 25)) self.lbl_status.setStyleSheet("color: #505050;") self.lbl_status.setObjectName("lbl_status") self.gridLayout_3.addWidget(self.lbl_status, 3, 0, 1, 1) self.lbl_contactQuality = QtWidgets.QLabel(self.centralwidget) self.lbl_contactQuality.setMaximumSize(QtCore.QSize(2000, 25)) self.lbl_contactQuality.setStyleSheet("color: #505050;") self.lbl_contactQuality.setObjectName("lbl_contactQuality") self.gridLayout_3.addWidget(self.lbl_contactQuality, 2, 0, 1, 1) self.txt_subjectName = QtWidgets.QLineEdit(self.centralwidget) self.txt_subjectName.setMinimumSize(QtCore.QSize(100, 0)) self.txt_subjectName.setMaximumSize(QtCore.QSize(150, 25)) self.txt_subjectName.setLayoutDirection(QtCore.Qt.LeftToRight) self.txt_subjectName.setStyleSheet(open("style_sheets/lineEdit_default.qss","r").read()) self.txt_subjectName.setText("") self.txt_subjectName.setMaxLength(15) self.txt_subjectName.setAlignment(QtCore.Qt.AlignCenter) self.txt_subjectName.setDragEnabled(False) self.txt_subjectName.setObjectName("txt_subjectName") self.gridLayout_3.addWidget(self.txt_subjectName, 2, 4, 1, 1) self.comboBox = QtWidgets.QComboBox(self.centralwidget) self.comboBox.setMaximumSize(QtCore.QSize(150, 25)) self.comboBox.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.comboBox.setContextMenuPolicy(QtCore.Qt.DefaultContextMenu) self.comboBox.setLayoutDirection(QtCore.Qt.LeftToRight) self.comboBox.setStyleSheet(open("style_sheets/comboBox_default.qss","r").read()) self.comboBox.setFrame(True) self.comboBox.setObjectName("comboBox") self.comboBox.currentIndexChanged.connect(self.comboChanged) self.gridLayout_3.addWidget(self.comboBox, 3, 4, 1, 1) self.lbl_projectName = QtWidgets.QLabel(self.centralwidget) self.lbl_projectName.setMaximumSize(QtCore.QSize(120, 25)) self.lbl_projectName.setStyleSheet("color: rgb(80,80, 80);") self.lbl_projectName.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.lbl_projectName.setObjectName("lbl_projectName") self.gridLayout_3.addWidget(self.lbl_projectName, 3, 3, 1, 1) self.lbl_subjectName = QtWidgets.QLabel(self.centralwidget) self.lbl_subjectName.setMaximumSize(QtCore.QSize(100, 25)) self.lbl_subjectName.setStyleSheet("color: rgb(80,80, 80);") self.lbl_subjectName.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.lbl_subjectName.setObjectName("lbl_subjectName") self.gridLayout_3.addWidget(self.lbl_subjectName, 2, 3, 1, 1) self.txt_interval = QtWidgets.QLineEdit(self.centralwidget) self.txt_interval.setMinimumSize(QtCore.QSize(0, 0)) self.txt_interval.setMaximumSize(QtCore.QSize(60, 25)) self.txt_interval.setLayoutDirection(QtCore.Qt.LeftToRight) self.txt_interval.setStyleSheet(open("style_sheets/lineEdit_default.qss","r").read()) self.txt_interval.setMaxLength(3) self.txt_interval.setFrame(True) self.txt_interval.setAlignment(QtCore.Qt.AlignCenter) self.txt_interval.setDragEnabled(False) self.txt_interval.setObjectName("txt_interval") self.txt_interval.setToolTip('Period between two files') self.gridLayout_3.addWidget(self.txt_interval, 2, 2, 1, 1) self.lbl_interval = QtWidgets.QLabel(self.centralwidget) self.lbl_interval.setMinimumSize(QtCore.QSize(120, 0)) self.lbl_interval.setStyleSheet("color: rgb(80,80, 80);") self.lbl_interval.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.lbl_interval.setObjectName("lbl_interval") self.gridLayout_3.addWidget(self.lbl_interval, 2, 1, 1, 1) self.txt_count= QtWidgets.QLineEdit(self.centralwidget) self.txt_count.setMinimumSize(QtCore.QSize(0, 0)) self.txt_count.setMaximumSize(QtCore.QSize(60, 25)) self.txt_count.setLayoutDirection(QtCore.Qt.LeftToRight) self.txt_count.setStyleSheet(open("style_sheets/lineEdit_default.qss","r").read()) self.txt_count.setMaxLength(3) self.txt_count.setAlignment(QtCore.Qt.AlignCenter) self.txt_count.setDragEnabled(False) self.txt_count.setObjectName("txt_count") self.txt_count.setToolTip('Number of files for a recording') self.gridLayout_3.addWidget(self.txt_count, 3, 2, 1, 1) self.lbl_count= QtWidgets.QLabel(self.centralwidget) self.lbl_count.setMinimumSize(QtCore.QSize(120, 0)) self.lbl_count.setStyleSheet("color: rgb(80,80, 80);") self.lbl_count.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.lbl_count.setObjectName("lbl_count") self.gridLayout_3.addWidget(self.lbl_count, 3, 1, 1, 1) self.gridLayout_2.addLayout(self.gridLayout_3, 0, 0, 1, 1) MainWindow.setCentralWidget(self.centralwidget) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) self.record = RecordThread() # Initialize the Recording thread self.record.status.connect(self.threadMsgHandler) self.record.contactQuality.connect(self.CQHandler) self.menuVisibility('all',False) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "Brain Download")) MainWindow.setWindowIcon(QtGui.QIcon('UI_graphics/logo.png')) self.lbl_class.setText(_translate("MainWindow", "")) self.btn_main.setText(_translate("MainWindow", "Start")) self.lbl_status.setText(_translate("MainWindow", "Status:")) self.lbl_contactQuality.setText(_translate("MainWindow", "")) self.lbl_subjectName.setText(_translate("MainWindow", "Subject Name: ")) self.lbl_projectName.setText(_translate("MainWindow", "Project Name: ")) self.txt_interval.setText(_translate("MainWindow", "2")) self.lbl_interval.setText(_translate("MainWindow", "Interval(s):")) self.txt_count.setText(_translate("MainWindow", "20")) self.lbl_count.setText(_translate("MainWindow", "Count:")) def threadMsgHandler(self,result): self.statusUpdate(result) if result == "Initializing": self.btn_main.setText("Initializing") self.btn_main.setStyleSheet(open("style_sheets/button_initializing.qss","r").read()) elif result == "Initialization: Successful": self.btn_main.setText("Start Recording") self.btn_main.setStyleSheet(open("style_sheets/button_startRecording.qss","r").read()) self.menuVisibility('all',True) self.comboBoxUpdated = self.updateComboBox() elif result == "Initialization: Failed": self.btn_main.setText("Try again") self.btn_main.setStyleSheet(open("style_sheets/button_start.qss","r").read()) elif result == "Recording": self.btn_main.setText("Cancel") self.btn_main.setStyleSheet(open("style_sheets/button_stop.qss","r").read()) self.recordingState = True self.sequencing() def CQHandler(self,result): self.lbl_contactQuality.setText("Contact Quality: {}%".format(result)) def buttonPress(self): btn_text = self.btn_main.text() if btn_text == "Start": self.record.start() # start the thread elif btn_text == "Cancel": self.record.saving = False # Cancel and don't save the recording self.stopRecording() elif btn_text == "Start Recording": self.record.contactTest = False if self.prerequisiteTest(): self.interval = float(self.txt_interval.text()) self.record.interval = self.interval self.count = int(self.txt_count.text()) self.record.count = self.count self.record.audioProject = self.audioProject self.getFileList() self.record.startRecording = True # start headset data collection self.record.start() # start the thread self.menuVisibility('all',False) elif btn_text == "Try again": self.btn_main.setStyleSheet(open("style_sheets/button_initializing.qss","r").read()) self.btn_main.setText("Initializing") self.record.start() # start the thread def stopRecording(self): self.btn_main.setStyleSheet(open("style_sheets/button_startRecording.qss","r").read()) self.btn_main.setText("Start Recording") self.recordingState = False # Stop sequencing of images self.record.startRecording = False # stop headset data collection self.menuVisibility('all',True) self.record.marker = "" self.image.setPixmap(QtGui.QPixmap("UI_graphics/brain_download.png")) self.lbl_class.setText("") self.record.contactTest = True QtTest.QTest.qWait(2000) # delay some time before starting the contact quality test again self.record.start() def sequencing(self): self.timer = QtCore.QTimer() self.timer.timeout.connect(self.nextFile) self.timer.start(self.interval*1000) def nextFile(self): if self.recordingState: fileName = random.choice(self.files) while fileName == self.lastName: # avoid consecutive same file selection fileName = random.choice(self.files) self.lastName = fileName filePath = "Data/{}/{}".format(self.projectName,fileName) self.record.tick = not self.record.tick className = fileName.split('_')[0] if not self.VQAProj and not self.directionalProj: self.record.marker = className # Insert markers only if the projects are not 'VQ&A' or 'Arrow' if self.count != 0: if self.audioProject: playsound(filePath) # When Audio project selected elif self.directionalProj: # If the directional(Arrow) project was selected if self.dirTempBool: self.record.marker = 'Center' centerImgPath = "Data/{}/{}".format(self.projectName,self.centerImageName) self.dirTempBool = False self.image.setPixmap(QtGui.QPixmap(centerImgPath)) else: self.record.marker = className self.image.setPixmap(QtGui.QPixmap(filePath)) self.dirTempBool = True elif self.VQAProj: wrong = [x for x in self.questions if not className in x] # Get what can be ask as a wrong question q = random.choice(wrong) if random.choice([1,0]) else className+'?' # Get the correct probability for asking correct and incorrect question self.lbl_class.setText(q) # Ask the chosen question self.image.setPixmap(QtGui.QPixmap(filePath)) self.record.marker = 'YES' if className in q else 'NO' else: self.image.setPixmap(QtGui.QPixmap(filePath)) else: self.record.saving = True # Stop and save the recording self.stopRecording() self.count -= 1 def statusUpdate(self,message): self.lbl_status.setText("Status: {}".format(message)) def isFloat(self,num): try : float(num) return True except : return False def prerequisiteTest(self): if self.txt_subjectName.text() != "" and self.txt_interval.text() != "" and self.txt_count.text() != "" and self.comboBoxUpdated: self.txt_subjectName.setStyleSheet(open("style_sheets/lineEdit_default.qss","r").read()) self.txt_interval.setStyleSheet(open("style_sheets/lineEdit_default.qss","r").read()) self.txt_count.setStyleSheet(open("style_sheets/lineEdit_default.qss","r").read()) self.comboBox.setStyleSheet(open("style_sheets/comboBox_default.qss","r").read()) self.record.subjectName = self.txt_subjectName.text() check = True if self.txt_subjectName.text() == "": self.statusUpdate("Error:Fill the required fields") self.txt_subjectName.setStyleSheet(open("style_sheets/lineEdit_warning.qss","r").read()) check = False if not self.isFloat(self.txt_interval.text()): self.statusUpdate("Error:Fill the required fields") self.txt_interval.setStyleSheet(open("style_sheets/lineEdit_warning.qss","r").read()) check = False if not(self.txt_count.text().isdigit()): self.statusUpdate("Error:Fill the required fields") self.txt_count.setStyleSheet(open("style_sheets/lineEdit_warning.qss","r").read()) check = False if not self.comboBoxUpdated: self.statusUpdate("Error:Add project folders to the 'Data' directory") self.comboBox.setStyleSheet(open("style_sheets/comboBox_warning.qss","r").read()) check = False if not self.comboTest: self.statusUpdate("Error:Support extentions ['jpg','png','wav','mp3']") self.comboBox.setStyleSheet(open("style_sheets/comboBox_warning.qss","r").read()) check = False if check == True: return True else: return False def updateComboBox(self): path = "Data" dirs = listdir(path) if len(dirs) == 0: self.statusUpdate("Error:No Projects Found") self.comboBox.setStyleSheet(open("style_sheets/comboBox_warning.qss","r").read()) return False else: self.comboBox.addItems(dirs) return True def getFileList(self): path = "Data/{}".format(self.projectName) self.files = [f for f in listdir(path) if isfile(join(path, f))] justText = [i.split('_')[0] for i in self.files] # Get just the text from all files names uniqueText = list(set(justText)) # Get all unique names from the files uniqueText.sort() # Sort to make the order always the same if self.VQAProj: self.record.classes = ['YES','NO'] self.questions = ["{}{}".format(i,'?') for i in uniqueText] # Add a question mark '?' at the end of each class name else: self.record.classes = uniqueText def menuVisibility(self,section,state): if section == 'all': self.lbl_subjectName.setVisible(state) self.lbl_interval.setVisible(state) self.lbl_count.setVisible(state) self.lbl_projectName.setVisible(state) self.txt_subjectName.setVisible(state) self.txt_interval.setVisible(state) self.txt_count.setVisible(state) self.comboBox.setVisible(state) if section == 'part': self.lbl_interval.setVisible(state) self.txt_interval.setVisible(state) self.lbl_count.setVisible(state) self.txt_count.setVisible(state) def comboChanged(self): self.directionalProj = False self.VQAProj = False self.projectName = self.comboBox.currentText() self.record.projectName = self.comboBox.currentText() path = "Data/{}".format(self.projectName) self.files = [f for f in listdir(path) if isfile(join(path, f))] extensions = [i.split('.')[1] for i in self.files] # Get just the extentions from all files names uniqueExt = [x.lower() for x in list(set(extensions))] # list of all unique extentions in lower case self.statusUpdate("Initialization: Successful") self.comboBox.setStyleSheet(open("style_sheets/comboBox_default.qss","r").read()) self.menuVisibility('all',True) if len(uniqueExt)==0: self.statusUpdate("Error:Empty Folder") self.comboBox.setStyleSheet(open("style_sheets/comboBox_warning.qss","r").read()) self.menuVisibility('part',False) self.comboTest = False elif set(uniqueExt) <= set(['mp3','wav']): # check if uniqueExt is a subset of ['mp3,'wav'] self.audioProject = True self.comboTest = True elif set(uniqueExt) <= set(['jpg','png','txt']): self.audioProject = False self.comboTest = True if self.directionalProjName in self.projectName: self.directionalProj = True self.files.remove(self.centerImageName) # Remove the Center dot image from the arrow list if self.VQAProjName in self.projectName: self.VQAProj = True else: self.statusUpdate("Error:No Audio/Image Files") self.comboBox.setStyleSheet(open("style_sheets/comboBox_warning.qss","r").read()) self.menuVisibility('part',False) self.comboTest = False if __name__ == "__main__": app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_())
py
b40291dcb27ec44fd10086da94992d6079c4fb64
import dragonfly as df import constants class Item: def __init__(self, name: str, commands=None): self.name = name if commands is None: self.commands = self.commands_from_name(name) else: self.commands = commands def commands_from_name(self, name: str): # 'Wood Fence' -> ['wood fence'] return [name.lower()] craftable_items = ( Item("Ancient Seeds"), Item("Bait"), Item("Barbed Hook"), Item("Barrel Brazier"), Item("Basic Retaining Soil"), Item("Basic Fertilizer"), Item("Bee House"), Item("Bomb"), Item("Bone Mill"), Item("Brick Floor"), Item("Bug Steak"), Item("Campfire"), Item("Carved Brazier"), Item("Cask"), Item("Charcoal Kiln"), Item("Cheese Press"), Item("Cherry Bomb"), Item("Chest"), Item("Cobblestone Path"), Item("Cookout Kit"), Item("Cork Bobber"), Item("Crab Pot"), Item("Crystalarium"), Item("Crystal Floor"), Item("Crystal Path"), Item("Dark Sign"), Item("Deluxe Fertilizer"), Item("Deluxe Retaining Soil"), Item("Deluxe Scarecrow"), Item("Deluxe Speed-Gro", ["deluxe speed grow"]), Item("Dressed Spinner"), Item("Drum Block"), Item("Explosive Ammo"), Item("Fairy Dust"), Item("Farm Computer"), Item("Fiber Seeds"), Item("Field Snack"), Item("Flute Block"), Item("Garden Pot"), Item("Geode Crusher"), Item("Glowstone Ring"), Item("Gold Bar"), Item("Gold Brazier"), Item("Grass Starter"), Item("Gravel Path"), Item("Hardwood Fence"), Item("Hopper"), Item("Heavy Tapper"), Item("Hyper Speed-Gro", ["hyper speed grow"]), Item("Iridium Band"), Item("Iridium Sprinkler"), Item("Iron Bar"), Item("Iron Fence"), Item("Iron Lamp-post"), Item("Jack-O-Lantern", ["jack-o-lantern"]), Item("Keg"), Item("Life Elixir"), Item("Lightning Rod"), Item("Loom"), Item("Magic Bait"), Item("Magnet"), Item("Marble Brazier"), Item("Mayonnaise Machine"), Item("Mega Bomb"), Item("Mini-Jukebox", ["mini jukebox"]), Item("Mini-Obelisk", ["mini obelisk"]), Item("Monster Musk"), Item("Oil Maker"), Item("Oil Of Garlic"), Item("Ostrich Incubator"), Item("Quality Bobber"), Item("Quality Fertilizer"), Item("Quality Retaining Soil"), Item("Quality Sprinkler"), Item("Preserves Jar"), Item("Rain Totem"), Item("Recycling Machine"), Item("Ring of Yoba"), Item("Rustic Plank Floor"), Item("Scarecrow"), Item("Seed Maker"), Item("Skull Brazier"), Item("Slime Egg-Press", ["slime egg press"]), Item("Slime Incubator"), Item("Solar Panel"), Item("Speed-Gro", ["speed grow"]), Item("Spinner"), Item("Sprinkler"), Item("Staircase"), Item("Stepping Stone Path"), Item("Stone Brazier"), Item("Stone Chest"), Item("Stone Fence"), Item("Stone Floor"), Item("Stone Walkway Floor"), Item("Stone Sign"), Item("Straw Floor"), Item("Stump Brazier"), Item("Sturdy Ring"), Item("Tapper"), Item("Tea Sapling"), Item("Thorns Ring"), Item("Torch"), Item("Trap Bobber"), Item("Treasure Hunter"), Item("Tree Fertilizer"), Item("Tub o' Flowers", ["tub [of | o] flowers"]), Item("Warp Totem Beach", ["warp totem beach", "beach warp totem"]), Item("Warp Totem Farm", ["warp totem farm", "farm warp totem"]), Item("Warp Totem Island", ["warp totem island", "island warp totem"]), Item("Warp Totem Mountains", ["warp totem mountains", "mountains warp totem"]), Item("Warrior Ring"), Item("Weathered Floor"), Item("Wicked Statue"), Item("Wild Bait"), Item("Wild Seeds (Fa)", ["fall wild seeds", "wild fall seeds", "wild seeds fall"]), Item("Wild Seeds (Sp)", ["spring wild seeds", "wild spring seeds", "wild seeds spring"]), Item("Wild Seeds (Su)", ["summer wild seeds", "wild summer seeds", "wild seeds summer"]), Item("Wild Seeds (Wi)", ["winter wild seeds", "wild winter seeds", "wild seeds winter"]), Item("Worm Bin"), Item("Wood Fence"), Item("Wood Floor"), Item("Wood Lamp-post"), Item("Wood Path"), Item("Wood Sign"), Item("Wooden Brazier"), ) tools = ( Item(constants.AXE), Item(constants.FISHING_ROD, ["fishing (rod | pole)"]), Item(constants.HOE), Item(constants.PICKAXE), Item(constants.SCYTHE), Item(constants.WATERING_CAN), Item(constants.SHEARS), Item(constants.MILK_PAIL), Item(constants.PAN), ) other_items = ( Item("Small Glow Ring"), Item("Glow Ring"), Item("Small Magnet Ring"), Item("Magnet Ring"), Item("Slime Charmer Ring"), Item("Vampire Ring"), Item("Savage Ring"), Item("Yoba Ring"), Item("Sturdy Ring"), Item("Burglars Ring"), Item("Iridium Band"), Item("Jukebox Ring"), Item("Amethyst Ring"), Item("Topaz Ring"), Item("Aquamarine Ring"), Item("Jade Ring"), Item("Emerald Ring"), Item("Ruby Ring"), Item("Cowboy Hat"), Item("Bowler Hat"), Item("Top Hat"), Item("Sombrero"), Item("Straw Hat"), Item("Official Cap"), Item("Blue Bonnet"), Item("Plum Chapeau"), Item("Skeleton Mask"), Item("Goblin Mask"), Item("Chicken Mask"), Item("Earmuffs"), Item("Delicate Bow"), Item("Tropiclip"), Item("Butterfly Bow"), Item("Hunters Cap"), Item("Trucker Hast"), Item("Sailors Cap"), Item("Good Ol Cap"), Item("Fedora"), Item("Cool Cap"), Item("Lucky Bow"), Item("Polka Bow"), Item("Gnomes Cap"), Item("Eye Patch"), Item("Santa Hat"), Item("Tiara"), Item("Hard Hat"), Item("Souwester"), Item("Daisy"), Item("Watermelon Band"), Item("Mouse Ears"), Item("Cat Ears"), Item("Cowgal Hat"), Item("Cowpoke Hat"), Item("Archers Cap"), Item("Panda Hat"), Item("Blue Cowboy Hat"), Item("Red Cowboy Hat"), Item("Cone Hat"), Item("Sneakers"), Item("Rubber Boots"), Item("Leather Boots"), Item("Work Boots"), Item("Combat Boots"), Item("Tundra Boots"), Item("Thermal Boots"), Item("Dark Boots"), Item("Firewalker Boots"), Item("Genie Shoes"), Item("Space Boots"), Item("Cowboy Boots"), Item("House Plant"), Item("Keg"), Item("Furnace"), Item("Table Piece Left"), Item("Table Piece Right"), Item("Mayonnaise Machine"), Item("Seed Maker"), Item("Wood Chair"), Item("Skeleton Model"), Item("Obelisk"), Item("Chicken Statue"), Item("Stone Cairn"), Item("Suit Of Armor"), Item("Sign Of The Vessel"), Item("Basic Log"), Item("Lawn Flamingo"), Item("Big Green Cane"), Item("Green Canes"), Item("Mixed Cane"), Item("Red Canes"), Item("Big Red Cane"), Item("Ornamental Hay Bale"), Item("Log Section"), Item("Grave Stone"), Item("Seasonal Decor"), Item("Stone Frog"), Item("Stone Parrot"), Item("Stone Owl"), Item("Stone Junimo"), Item("Slime Ball"), Item("Garden Pot"), Item("Bookcase"), Item("Fancy Table"), Item("Ancient Table"), Item("Ancient Stool"), Item("Grandfather Clock"), Item("Teddy Timer"), Item("Dead Tree"), Item("Staircase"), Item("Tall Torch"), Item("Ritual Mask"), Item("Bonfire"), Item("Bongo"), Item("Decorative Spears"), Item("Boulder"), Item("Door"), Item("Locked Door"), Item("Wicked Statue"), Item("Sloth Skeleton Left"), Item("Sloth Skeleton Middle"), Item("Sloth Skeleton Right"), Item("Standing Geode"), Item("Obsidian Vase"), Item("Crystal Chair"), Item("Singing Stone"), Item("Strange Capsule"), Item("Empty Capsule"), Item("Feed Hopper"), Item("Incubator"), Item("Heater"), Item("Tapper"), Item("Camera"), Item("Plush Bunny"), Item("Rarecrow"), Item("Decorative Pitcher"), Item("Dried Sunflower Seeds"), Item("Stardew Hero Trophy"), Item("Soda Machine"), Item("Barrel"), Item("Crate"), Item("Statue Of Endless Fortune"), Item("Mushroom Box"), Item("Praire King Arcade System"), Item("Campfire"), Item("Slime Incubator"), Item("Slime Egg Press"), Item("Junimo Kart Arcade System"), Item("Statue Of Perfection"), Item("Pinky Lemon"), Item("Foroguemon"), Item("Cask"), Item("Solid Gold Lewis"), Item("Auto Grabber"), Item("Seasonal Plant"), Item("Weeds"), Item("Stone"), Item("Wild Horseradish"), Item("Daffodil"), Item("Leek"), Item("Dandelion"), Item("Parsnip"), Item("Lumber"), Item("Emerald"), Item("Aquamarine"), Item("Ruby"), Item("Amethyst"), Item("Topaz"), Item("Jade"), Item("Diamond"), Item("Prismatic Shard"), Item("Cave Carrot"), Item("Secret Note"), Item("Quartz"), Item("Fire Quartz"), Item("Frozen Tear"), Item("Earth Crystal"), Item("Coconut"), Item("Cactus Fruit"), Item("Sap"), Item("Torch"), Item("Spirit Torch"), Item("Dwarf Scroll I", ["dwarf scroll one"]), Item("Dwarf Scroll II", ["dwarf scroll two"]), Item("Dwarf Scroll III", ["dwarf scroll three"]), Item("Dwarf Scroll IV", ["dwarf scroll four"]), Item("Chipped Amphora"), Item("Arrowhead"), Item("Lost Book"), Item("Ancient Doll"), Item("Elvish Jewelry"), Item("Chewing Stick"), Item("Ornamental Fan"), Item("Dinosaur Egg"), Item("Rare Disc"), Item("Ancient Sword"), Item("Rusty Spoon"), Item("Rusty Spur"), Item("Rusty Cog"), Item("Ancient Seed"), Item("Prehistoric Tool"), Item("Dried Starfish"), Item("Anchor"), Item("Glass Shards"), Item("Bone Flute"), Item("Prehistoric Handaxe"), Item("Dwarvish Helm"), Item("Dwarf Gadget"), Item("Ancient Drum"), Item("Golden Mask"), Item("Golden Relic"), Item("Strange Doll"), Item("Pufferfish"), Item("Anchovy"), Item("Tuna"), Item("Sardine"), Item("Bream"), Item("Largemouth Bass"), Item("Smallmouth Bass"), Item("Rainbow Trout"), Item("Salmon"), Item("Walleye"), Item("Perch"), Item("Carp"), Item("Catfish"), Item("Pike"), Item("Sunfish"), Item("Red Mullet"), Item("Herring"), Item("Eel"), Item("Octopus"), Item("Red Snapper"), Item("Squid"), Item("Seaweed"), Item("Green Algae"), Item("Sea Cucumber"), Item("Super Cucumber"), Item("Ghostfish"), Item("White Algae"), Item("Stonefish"), Item("Crimsonfish"), Item("Angler"), Item("Ice Pip"), Item("Lava Eel"), Item("Legend"), Item("Sandfish"), Item("Scorpion Carp"), Item("Treasure Chest"), Item("Joja Cola"), Item("Trash"), Item("Driftwood"), Item("Broken Glasses"), Item("Broken CD"), Item("Soggy Newspaper"), Item("Large Egg"), Item("Egg"), Item("Hay"), Item("Milk"), Item("Large Milk"), Item("Goat Milk"), Item("L. Goat Milk", ["large goat milk"]), Item("Green Bean"), Item("Cauliflower"), Item("Potato"), Item("Fried Egg"), Item("Omelet"), Item("Salad"), Item("Cheese Cauliflower"), Item("Baked Fish"), Item("Parsnip Soup"), Item("Vegetable Medley"), Item("Complete Breakfast"), Item("Fried Calamari"), Item("Strange Bun"), Item("Lucky Lunch"), Item("Fried Mushroom"), Item("Pizza"), Item("Bean Hotpot"), Item("Glazed Yams"), Item("Carp Surprise"), Item("Hashbrowns"), Item("Pancakes"), Item("Salmon Dinner"), Item("Fish Taco"), Item("Crispy Bass"), Item("Pepper Poppers"), Item("Bread"), Item("Tom Kha Soup"), Item("Trout Soup"), Item("Chocolate Cake"), Item("Pink Cake"), Item("Rhubarb Pie"), Item("Cookie"), Item("Spaghetti"), Item("Fried Eel"), Item("Spicy Eel"), Item("Sashimi"), Item("Maki Roll"), Item("Tortilla"), Item("Red Plate"), Item("Eggplant Parmesan"), Item("Rice Pudding"), Item("Ice Cream"), Item("Blueberry Tart"), Item("Autumns Bounty"), Item("Pumpkin Soup"), Item("Super Meal"), Item("Cranberry Sauce"), Item("Stuffing"), Item("Farmers Lunch"), Item("Survival Burger"), Item("Dish OThe Sea"), Item("Miners Treat"), Item("Roots Platter"), Item("Sugar"), Item("Wheat Flour"), Item("Oil"), Item("Garlic"), Item("Kale"), Item("Rhubarb"), Item("Melon"), Item("Tomato"), Item("Morel"), Item("Blueberry"), Item("Fiddlehead Fern"), Item("Hot Pepper"), Item("Wheat"), Item("Radish"), Item("Red Cabbage"), Item("Starfruit"), Item("Corn"), Item("Eggplant"), Item("Artichoke"), Item("Pumpkin"), Item("Bok Choy"), Item("Yam"), Item("Chanterelle"), Item("Cranberries"), Item("Holly"), Item("Beet"), Item("Cherry Bomb"), Item("Bomb"), Item("Mega Bomb"), Item("Twig"), Item("Salmonberry"), Item("Grass Starter"), Item("Amaranth Seeds"), Item("Amaranth"), Item("Grape Starter"), Item("Hops Starter"), Item("Pale Ale"), Item("Hops"), Item("Void Egg"), Item("Mayonnaise"), Item("Duck Mayonnaise"), Item("Void Mayonnaise"), Item("Acorn"), Item("Maple Seed"), Item("Pine Cone"), Item("Dwarvish Translation Guide"), Item("Clay"), Item("Copper Bar"), Item("Iron Bar"), Item("Gold Bar"), Item("Iridium Bar"), Item("Refined Quartz"), Item("Honey"), Item("Tea Set"), Item("Pickles"), Item("Jelly"), Item("Beer"), Item("Rare Seed"), Item("Wine"), Item("Energy Tonic"), Item("Juice"), Item("Muscle Remedy"), Item("Clam"), Item("Golden Pumpkin"), Item("Poppy"), Item("Copper Ore"), Item("Iron Ore"), Item("Coal"), Item("Gold Ore"), Item("Iridium Ore"), Item("Wood"), Item("Nautilus Shell"), Item("Coral"), Item("Rainbow Shell"), Item("Coffee"), Item("Spice Berry"), Item("Sea Urchin"), Item("Grape"), Item("Spring Onion"), Item("Strawberry"), Item("Straw Floor"), Item("Sweet Pea"), Item("Field Snack"), Item("Common Mushroom"), Item("Wood Path"), Item("Wild Plum"), Item("Gravel Path"), Item("Hazelnut"), Item("Crystal Path"), Item("Blackberry"), Item("Cobblestone Path"), Item("Winter Root"), Item("Blue Slime Egg"), Item("Crystal Fruit"), Item("Stepping Stone Path"), Item("Snow Yam"), Item("Sweet Gem Berry"), Item("Crocus"), Item("Vinegar"), Item("Red Mushroom"), Item("Sunflower"), Item("Purple Mushroom"), Item("Rice"), Item("Cheese"), Item("Fairy Seeds"), Item("Goat Cheese"), Item("Tulip Bulb"), Item("Cloth"), Item("Jazz Seeds"), Item("Truffle"), Item("Sunflower Seeds"), Item("Truffle Oil"), Item("Coffee Bean"), Item("Stardrop"), Item("Red Slime Egg"), Item("Purple Slime Egg"), Item("Wool"), Item("Explosive Ammo"), Item("Duck Egg"), Item("Duck Feather"), Item("Rabbits Foot"), Item("Stone Base"), Item("Poppy Seeds"), Item("Ancient Fruit"), Item("Spangle Seeds"), Item("Algae Soup"), Item("Pale Broth"), Item("Bouquet"), Item("Mead"), Item("Mermaids Pendant"), Item("Decorative Pot"), Item("Drum Block"), Item("Flute Block"), Item("Speed Gro"), Item("Deluxe Speed Gro"), Item("Parsnip Seeds"), Item("Bean Starter"), Item("Cauliflower Seeds"), Item("Potato Seeds"), Item("Garlic Seeds"), Item("Kale Seeds"), Item("Rhubarb Seeds"), Item("Melon Seeds"), Item("Tomato Seeds"), Item("Blueberry Seeds"), Item("Pepper Seeds"), Item("Wheat Seeds"), Item("Radish Seeds"), Item("Red Cabbage Seeds"), Item("Starfruit Seeds"), Item("Corn Seeds"), Item("Eggplant Seeds"), Item("Artichoke Seeds"), Item("Pumpkin Seeds"), Item("Bok Choy Seeds"), Item("Yam Seeds"), Item("Cranberry Seeds"), Item("Beet Seeds"), Item("Spring Seeds"), Item("Summer Seeds"), Item("Fall Seeds"), Item("Winter Seeds"), Item("Ancient Seeds"), Item("Geode"), Item("Frozen Geode"), Item("Magma Geode"), Item("Alamite"), Item("Bixite"), Item("Baryte"), Item("Aerinite"), Item("Calcite"), Item("Dolomite"), Item("Esperite"), Item("Fluorapatite"), Item("Geminite"), Item("Helvite"), Item("Jamborite"), Item("Jagoite"), Item("Kyanite"), Item("Lunarite"), Item("Malachite"), Item("Neptunite"), Item("Lemon Stone"), Item("Nekoite"), Item("Orpiment"), Item("Petrified Slime"), Item("Thunder Egg"), Item("Pyrite"), Item("Ocean Stone"), Item("Ghost Crystal"), Item("Tigerseye"), Item("Jasper"), Item("Opal"), Item("Fire Opal"), Item("Celestine"), Item("Marble"), Item("Sandstone"), Item("Granite"), Item("Basalt"), Item("Limestone"), Item("Soapstone"), Item("Hematite"), Item("Mudstone"), Item("Obsidian"), Item("Slate"), Item("Fairy Stone"), Item("Star Shards"), Item("Prehistoric Scapula"), Item("Prehistoric Tibia"), Item("Prehistoric Skull"), Item("Skeletal Hand"), Item("Prehistoric Rib"), Item("Prehistoric Vertebra"), Item("Skeletal Tail"), Item("Nautilus Fossil"), Item("Amphibian Fossil"), Item("Palm Fossil"), Item("Trilobite"), Item("Artifact Spot"), Item("Tulip"), Item("Summer Spangle"), Item("Fairy Rose"), Item("Blue Jazz"), Item("Plum Pudding"), Item("Artichoke Dip"), Item("Stir Fry"), Item("Roasted Hazelnuts"), Item("Pumpkin Pie"), Item("Radish Salad"), Item("Fruit Salad"), Item("Blackberry Cobbler"), Item("Cranberry Candy"), Item("Apple"), Item("Bruschetta"), Item("Cherry Sapling"), Item("Apricot Sapling"), Item("Orange Sapling"), Item("Peach Sapling"), Item("Pomegranate Sapling"), Item("Apple Sapling"), Item("Apricot"), Item("Orange"), Item("Peach"), Item("Pomegranate"), Item("Cherry"), Item("Coleslaw"), Item("Fiddlehead Risotto"), Item("Poppyseed Muffin"), Item("Green Slime Egg"), Item("Mutant Carp"), Item("Bug Meat"), Item("Bait"), Item("Sturgeon"), Item("Tiger Trout"), Item("Bullhead"), Item("Tilapia"), Item("Chub"), Item("Magnet"), Item("Dorado"), Item("Albacore"), Item("Shad"), Item("Lingcod"), Item("Halibut"), Item("Hardwood"), Item("Lobster"), Item("Crayfish"), Item("Crab"), Item("Cockle"), Item("Mussel"), Item("Shrimp"), Item("Snail"), Item("Periwinkle"), Item("Oyster"), Item("Maple Syrup"), Item("Oak Resin"), Item("Pine Tar"), Item("Chowder"), Item("Fish Stew"), Item("Escargot"), Item("Lobster Bisque"), Item("Maple Bar"), Item("Crab Cakes"), Item("Woodskip"), Item("Strawberry Seeds"), Item("Rotten Plant"), Item("Omni Geode"), Item("Slime"), Item("Bat Wing"), Item("Solar Essence"), Item("Void Essence"), Item("Mixed Seeds"), Item("Fiber"), Item("Life Elixir"), Item("Wild Bait"), Item("Glacierfish"), Item("Battery Pack"), Item("Lost Axe"), Item("Lucky Purple Shorts"), Item("Berry Basket"), ) def item_commands(items): commands = {} for item in items: for cmd in item.commands: if cmd in commands: raise RuntimeError(f"Duplicate item {cmd}") commands[cmd] = item return commands craftable_commands = item_commands(craftable_items) other_item_commands = item_commands(other_items) tool_commands = item_commands(tools) craftable_items_choice = df.Choice("craftable_items", craftable_commands) items_choice = df.Choice("items", {**craftable_commands, **other_item_commands, **tool_commands})
py
b40291ea5ce5c7c2b3c5b71c360c644993d8732a
# $Id$ # # Copyright (C) 2003-2006 Rational Discovery LLC # # @@ All Rights Reserved @@ # This file is part of the RDKit. # The contents are covered by the terms of the BSD license # which is included in the file license.txt, found at the root # of the RDKit source tree. # from rdkit import six from rdkit import RDConfig if hasattr(RDConfig, "usePgSQL") and RDConfig.usePgSQL: from pyPgSQL import PgSQL # as of this writing (March 2004), this results in a speedup in # getting results back from the wrapper: PgSQL.fetchReturnsList = 1 from pyPgSQL.PgSQL import * sqlTextTypes = [PG_CHAR, PG_BPCHAR, PG_TEXT, PG_VARCHAR, PG_NAME] sqlIntTypes = [PG_INT8, PG_INT2, PG_INT4] sqlFloatTypes = [PG_FLOAT4, PG_FLOAT8] sqlBinTypes = [PG_OID, PG_BLOB, PG_BYTEA] getTablesSql = """select tablename from pg_tables where schemaname='public'""" getTablesAndViewsSql = """SELECT c.relname as "Name" FROM pg_catalog.pg_class c LEFT JOIN pg_catalog.pg_user u ON u.usesysid = c.relowner LEFT JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace WHERE c.relkind IN ('r','v','S','') AND n.nspname NOT IN ('pg_catalog', 'pg_toast') AND pg_catalog.pg_table_is_visible(c.oid) """ getDbSql = """ select datname from pg_database where datallowconn """ fileWildcard = None placeHolder = '%s' binaryTypeName = "bytea" binaryHolder = PgBytea RDTestDatabase = "::RDTests" elif hasattr(RDConfig, "useSqlLite") and RDConfig.useSqlLite: try: import sqlite3 as sqlite #from sqlite3 import * except ImportError: from pysqlite2 import dbapi2 as sqlite #from pysqlite2 import * sqlTextTypes = [] sqlIntTypes = [] sqlFloatTypes = [] sqlBinTypes = [] getTablesSql = """select name from SQLite_Master where type='table'""" getTablesAndViewsSql = """select name from SQLite_Master where type in ('table','view')""" getDbSql = None dbFileWildcard = '*.sqlt' placeHolder = '?' binaryTypeName = "blob" binaryHolder = memoryview if six.PY3 else buffer connect = lambda x, *args: sqlite.connect(x) else: raise ImportError("Neither sqlite nor PgSQL support found.")
py
b4029228176712b49c1b29609dad3e6ae8a1f5f8
# Copyright 2014-2016 OpenMarket Ltd # Copyright 2018-2019 New Vector Ltd # Copyright 2019 The Matrix.org Foundation C.I.C. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import logging from collections import deque from typing import ( TYPE_CHECKING, Any, Awaitable, Callable, Collection, Deque, Dict, Generic, Iterable, List, Optional, Set, Tuple, TypeVar, ) import attr from prometheus_client import Counter, Histogram from twisted.internet import defer from synapse.api.constants import EventTypes, Membership from synapse.events import EventBase from synapse.events.snapshot import EventContext from synapse.logging import opentracing from synapse.logging.context import PreserveLoggingContext, make_deferred_yieldable from synapse.metrics.background_process_metrics import run_as_background_process from synapse.storage.databases import Databases from synapse.storage.databases.main.events import DeltaState from synapse.storage.databases.main.events_worker import EventRedactBehaviour from synapse.types import ( PersistedEventPosition, RoomStreamToken, StateMap, get_domain_from_id, ) from synapse.util.async_helpers import ObservableDeferred, yieldable_gather_results from synapse.util.metrics import Measure if TYPE_CHECKING: from synapse.server import HomeServer logger = logging.getLogger(__name__) # The number of times we are recalculating the current state state_delta_counter = Counter("synapse_storage_events_state_delta", "") # The number of times we are recalculating state when there is only a # single forward extremity state_delta_single_event_counter = Counter( "synapse_storage_events_state_delta_single_event", "" ) # The number of times we are reculating state when we could have resonably # calculated the delta when we calculated the state for an event we were # persisting. state_delta_reuse_delta_counter = Counter( "synapse_storage_events_state_delta_reuse_delta", "" ) # The number of forward extremities for each new event. forward_extremities_counter = Histogram( "synapse_storage_events_forward_extremities_persisted", "Number of forward extremities for each new event", buckets=(1, 2, 3, 5, 7, 10, 15, 20, 50, 100, 200, 500, "+Inf"), ) # The number of stale forward extremities for each new event. Stale extremities # are those that were in the previous set of extremities as well as the new. stale_forward_extremities_counter = Histogram( "synapse_storage_events_stale_forward_extremities_persisted", "Number of unchanged forward extremities for each new event", buckets=(0, 1, 2, 3, 5, 7, 10, 15, 20, 50, 100, 200, 500, "+Inf"), ) state_resolutions_during_persistence = Counter( "synapse_storage_events_state_resolutions_during_persistence", "Number of times we had to do state res to calculate new current state", ) potential_times_prune_extremities = Counter( "synapse_storage_events_potential_times_prune_extremities", "Number of times we might be able to prune extremities", ) times_pruned_extremities = Counter( "synapse_storage_events_times_pruned_extremities", "Number of times we were actually be able to prune extremities", ) @attr.s(auto_attribs=True, slots=True) class _EventPersistQueueItem: events_and_contexts: List[Tuple[EventBase, EventContext]] backfilled: bool deferred: ObservableDeferred parent_opentracing_span_contexts: List = attr.ib(factory=list) """A list of opentracing spans waiting for this batch""" opentracing_span_context: Any = None """The opentracing span under which the persistence actually happened""" _PersistResult = TypeVar("_PersistResult") class _EventPeristenceQueue(Generic[_PersistResult]): """Queues up events so that they can be persisted in bulk with only one concurrent transaction per room. """ def __init__( self, per_item_callback: Callable[ [List[Tuple[EventBase, EventContext]], bool], Awaitable[_PersistResult], ], ): """Create a new event persistence queue The per_item_callback will be called for each item added via add_to_queue, and its result will be returned via the Deferreds returned from add_to_queue. """ self._event_persist_queues: Dict[str, Deque[_EventPersistQueueItem]] = {} self._currently_persisting_rooms: Set[str] = set() self._per_item_callback = per_item_callback async def add_to_queue( self, room_id: str, events_and_contexts: Iterable[Tuple[EventBase, EventContext]], backfilled: bool, ) -> _PersistResult: """Add events to the queue, with the given persist_event options. If we are not already processing events in this room, starts off a background process to to so, calling the per_item_callback for each item. Args: room_id (str): events_and_contexts (list[(EventBase, EventContext)]): backfilled (bool): Returns: the result returned by the `_per_item_callback` passed to `__init__`. """ queue = self._event_persist_queues.setdefault(room_id, deque()) # if the last item in the queue has the same `backfilled` setting, # we can just add these new events to that item. if queue and queue[-1].backfilled == backfilled: end_item = queue[-1] else: # need to make a new queue item deferred: ObservableDeferred[_PersistResult] = ObservableDeferred( defer.Deferred(), consumeErrors=True ) end_item = _EventPersistQueueItem( events_and_contexts=[], backfilled=backfilled, deferred=deferred, ) queue.append(end_item) # add our events to the queue item end_item.events_and_contexts.extend(events_and_contexts) # also add our active opentracing span to the item so that we get a link back span = opentracing.active_span() if span: end_item.parent_opentracing_span_contexts.append(span.context) # start a processor for the queue, if there isn't one already self._handle_queue(room_id) # wait for the queue item to complete res = await make_deferred_yieldable(end_item.deferred.observe()) # add another opentracing span which links to the persist trace. with opentracing.start_active_span_follows_from( "persist_event_batch_complete", (end_item.opentracing_span_context,) ): pass return res def _handle_queue(self, room_id): """Attempts to handle the queue for a room if not already being handled. The queue's callback will be invoked with for each item in the queue, of type _EventPersistQueueItem. The per_item_callback will continuously be called with new items, unless the queue becomes empty. The return value of the function will be given to the deferreds waiting on the item, exceptions will be passed to the deferreds as well. This function should therefore be called whenever anything is added to the queue. If another callback is currently handling the queue then it will not be invoked. """ if room_id in self._currently_persisting_rooms: return self._currently_persisting_rooms.add(room_id) async def handle_queue_loop(): try: queue = self._get_drainining_queue(room_id) for item in queue: try: with opentracing.start_active_span_follows_from( "persist_event_batch", item.parent_opentracing_span_contexts, inherit_force_tracing=True, ) as scope: if scope: item.opentracing_span_context = scope.span.context ret = await self._per_item_callback( item.events_and_contexts, item.backfilled ) except Exception: with PreserveLoggingContext(): item.deferred.errback() else: with PreserveLoggingContext(): item.deferred.callback(ret) finally: queue = self._event_persist_queues.pop(room_id, None) if queue: self._event_persist_queues[room_id] = queue self._currently_persisting_rooms.discard(room_id) # set handle_queue_loop off in the background run_as_background_process("persist_events", handle_queue_loop) def _get_drainining_queue(self, room_id): queue = self._event_persist_queues.setdefault(room_id, deque()) try: while True: yield queue.popleft() except IndexError: # Queue has been drained. pass class EventsPersistenceStorage: """High level interface for handling persisting newly received events. Takes care of batching up events by room, and calculating the necessary current state and forward extremity changes. """ def __init__(self, hs: "HomeServer", stores: Databases): # We ultimately want to split out the state store from the main store, # so we use separate variables here even though they point to the same # store for now. self.main_store = stores.main self.state_store = stores.state assert stores.persist_events self.persist_events_store = stores.persist_events self._clock = hs.get_clock() self._instance_name = hs.get_instance_name() self.is_mine_id = hs.is_mine_id self._event_persist_queue = _EventPeristenceQueue(self._persist_event_batch) self._state_resolution_handler = hs.get_state_resolution_handler() @opentracing.trace async def persist_events( self, events_and_contexts: Iterable[Tuple[EventBase, EventContext]], backfilled: bool = False, ) -> Tuple[List[EventBase], RoomStreamToken]: """ Write events to the database Args: events_and_contexts: list of tuples of (event, context) backfilled: Whether the results are retrieved from federation via backfill or not. Used to determine if they're "new" events which might update the current state etc. Returns: List of events persisted, the current position room stream position. The list of events persisted may not be the same as those passed in if they were deduplicated due to an event already existing that matched the transcation ID; the existing event is returned in such a case. """ partitioned: Dict[str, List[Tuple[EventBase, EventContext]]] = {} for event, ctx in events_and_contexts: partitioned.setdefault(event.room_id, []).append((event, ctx)) async def enqueue(item): room_id, evs_ctxs = item return await self._event_persist_queue.add_to_queue( room_id, evs_ctxs, backfilled=backfilled ) ret_vals = await yieldable_gather_results(enqueue, partitioned.items()) # Each call to add_to_queue returns a map from event ID to existing event ID if # the event was deduplicated. (The dict may also include other entries if # the event was persisted in a batch with other events). # # Since we use `yieldable_gather_results` we need to merge the returned list # of dicts into one. replaced_events: Dict[str, str] = {} for d in ret_vals: replaced_events.update(d) events = [] for event, _ in events_and_contexts: existing_event_id = replaced_events.get(event.event_id) if existing_event_id: events.append(await self.main_store.get_event(existing_event_id)) else: events.append(event) return ( events, self.main_store.get_room_max_token(), ) @opentracing.trace async def persist_event( self, event: EventBase, context: EventContext, backfilled: bool = False ) -> Tuple[EventBase, PersistedEventPosition, RoomStreamToken]: """ Returns: The event, stream ordering of `event`, and the stream ordering of the latest persisted event. The returned event may not match the given event if it was deduplicated due to an existing event matching the transaction ID. """ # add_to_queue returns a map from event ID to existing event ID if the # event was deduplicated. (The dict may also include other entries if # the event was persisted in a batch with other events.) replaced_events = await self._event_persist_queue.add_to_queue( event.room_id, [(event, context)], backfilled=backfilled ) replaced_event = replaced_events.get(event.event_id) if replaced_event: event = await self.main_store.get_event(replaced_event) event_stream_id = event.internal_metadata.stream_ordering # stream ordering should have been assigned by now assert event_stream_id pos = PersistedEventPosition(self._instance_name, event_stream_id) return event, pos, self.main_store.get_room_max_token() async def _persist_event_batch( self, events_and_contexts: List[Tuple[EventBase, EventContext]], backfilled: bool = False, ) -> Dict[str, str]: """Callback for the _event_persist_queue Calculates the change to current state and forward extremities, and persists the given events and with those updates. Returns: A dictionary of event ID to event ID we didn't persist as we already had another event persisted with the same TXN ID. """ replaced_events: Dict[str, str] = {} if not events_and_contexts: return replaced_events # Check if any of the events have a transaction ID that has already been # persisted, and if so we don't persist it again. # # We should have checked this a long time before we get here, but it's # possible that different send event requests race in such a way that # they both pass the earlier checks. Checking here isn't racey as we can # have only one `_persist_events` per room being called at a time. replaced_events = await self.main_store.get_already_persisted_events( (event for event, _ in events_and_contexts) ) if replaced_events: events_and_contexts = [ (e, ctx) for e, ctx in events_and_contexts if e.event_id not in replaced_events ] if not events_and_contexts: return replaced_events chunks = [ events_and_contexts[x : x + 100] for x in range(0, len(events_and_contexts), 100) ] for chunk in chunks: # We can't easily parallelize these since different chunks # might contain the same event. :( # NB: Assumes that we are only persisting events for one room # at a time. # map room_id->set[event_ids] giving the new forward # extremities in each room new_forward_extremities: Dict[str, Set[str]] = {} # map room_id->(type,state_key)->event_id tracking the full # state in each room after adding these events. # This is simply used to prefill the get_current_state_ids # cache current_state_for_room: Dict[str, StateMap[str]] = {} # map room_id->(to_delete, to_insert) where to_delete is a list # of type/state keys to remove from current state, and to_insert # is a map (type,key)->event_id giving the state delta in each # room state_delta_for_room: Dict[str, DeltaState] = {} # Set of remote users which were in rooms the server has left. We # should check if we still share any rooms and if not we mark their # device lists as stale. potentially_left_users: Set[str] = set() if not backfilled: with Measure(self._clock, "_calculate_state_and_extrem"): # Work out the new "current state" for each room. # We do this by working out what the new extremities are and then # calculating the state from that. events_by_room: Dict[str, List[Tuple[EventBase, EventContext]]] = {} for event, context in chunk: events_by_room.setdefault(event.room_id, []).append( (event, context) ) for room_id, ev_ctx_rm in events_by_room.items(): latest_event_ids = set( await self.main_store.get_latest_event_ids_in_room(room_id) ) new_latest_event_ids = await self._calculate_new_extremities( room_id, ev_ctx_rm, latest_event_ids ) if new_latest_event_ids == latest_event_ids: # No change in extremities, so no change in state continue # there should always be at least one forward extremity. # (except during the initial persistence of the send_join # results, in which case there will be no existing # extremities, so we'll `continue` above and skip this bit.) assert new_latest_event_ids, "No forward extremities left!" new_forward_extremities[room_id] = new_latest_event_ids len_1 = ( len(latest_event_ids) == 1 and len(new_latest_event_ids) == 1 ) if len_1: all_single_prev_not_state = all( len(event.prev_event_ids()) == 1 and not event.is_state() for event, ctx in ev_ctx_rm ) # Don't bother calculating state if they're just # a long chain of single ancestor non-state events. if all_single_prev_not_state: continue state_delta_counter.inc() if len(new_latest_event_ids) == 1: state_delta_single_event_counter.inc() # This is a fairly handwavey check to see if we could # have guessed what the delta would have been when # processing one of these events. # What we're interested in is if the latest extremities # were the same when we created the event as they are # now. When this server creates a new event (as opposed # to receiving it over federation) it will use the # forward extremities as the prev_events, so we can # guess this by looking at the prev_events and checking # if they match the current forward extremities. for ev, _ in ev_ctx_rm: prev_event_ids = set(ev.prev_event_ids()) if latest_event_ids == prev_event_ids: state_delta_reuse_delta_counter.inc() break logger.debug("Calculating state delta for room %s", room_id) with Measure( self._clock, "persist_events.get_new_state_after_events" ): res = await self._get_new_state_after_events( room_id, ev_ctx_rm, latest_event_ids, new_latest_event_ids, ) current_state, delta_ids, new_latest_event_ids = res # there should always be at least one forward extremity. # (except during the initial persistence of the send_join # results, in which case there will be no existing # extremities, so we'll `continue` above and skip this bit.) assert new_latest_event_ids, "No forward extremities left!" new_forward_extremities[room_id] = new_latest_event_ids # If either are not None then there has been a change, # and we need to work out the delta (or use that # given) delta = None if delta_ids is not None: # If there is a delta we know that we've # only added or replaced state, never # removed keys entirely. delta = DeltaState([], delta_ids) elif current_state is not None: with Measure( self._clock, "persist_events.calculate_state_delta" ): delta = await self._calculate_state_delta( room_id, current_state ) if delta: # If we have a change of state then lets check # whether we're actually still a member of the room, # or if our last user left. If we're no longer in # the room then we delete the current state and # extremities. is_still_joined = await self._is_server_still_joined( room_id, ev_ctx_rm, delta, current_state, potentially_left_users, ) if not is_still_joined: logger.info("Server no longer in room %s", room_id) latest_event_ids = set() current_state = {} delta.no_longer_in_room = True state_delta_for_room[room_id] = delta # If we have the current_state then lets prefill # the cache with it. if current_state is not None: current_state_for_room[room_id] = current_state await self.persist_events_store._persist_events_and_state_updates( chunk, current_state_for_room=current_state_for_room, state_delta_for_room=state_delta_for_room, new_forward_extremities=new_forward_extremities, use_negative_stream_ordering=backfilled, inhibit_local_membership_updates=backfilled, ) await self._handle_potentially_left_users(potentially_left_users) return replaced_events async def _calculate_new_extremities( self, room_id: str, event_contexts: List[Tuple[EventBase, EventContext]], latest_event_ids: Collection[str], ) -> Set[str]: """Calculates the new forward extremities for a room given events to persist. Assumes that we are only persisting events for one room at a time. """ # we're only interested in new events which aren't outliers and which aren't # being rejected. new_events = [ event for event, ctx in event_contexts if not event.internal_metadata.is_outlier() and not ctx.rejected and not event.internal_metadata.is_soft_failed() ] latest_event_ids = set(latest_event_ids) # start with the existing forward extremities result = set(latest_event_ids) # add all the new events to the list result.update(event.event_id for event in new_events) # Now remove all events which are prev_events of any of the new events result.difference_update( e_id for event in new_events for e_id in event.prev_event_ids() ) # Remove any events which are prev_events of any existing events. existing_prevs: Collection[ str ] = await self.persist_events_store._get_events_which_are_prevs(result) result.difference_update(existing_prevs) # Finally handle the case where the new events have soft-failed prev # events. If they do we need to remove them and their prev events, # otherwise we end up with dangling extremities. existing_prevs = await self.persist_events_store._get_prevs_before_rejected( e_id for event in new_events for e_id in event.prev_event_ids() ) result.difference_update(existing_prevs) # We only update metrics for events that change forward extremities # (e.g. we ignore backfill/outliers/etc) if result != latest_event_ids: forward_extremities_counter.observe(len(result)) stale = latest_event_ids & result stale_forward_extremities_counter.observe(len(stale)) return result async def _get_new_state_after_events( self, room_id: str, events_context: List[Tuple[EventBase, EventContext]], old_latest_event_ids: Set[str], new_latest_event_ids: Set[str], ) -> Tuple[Optional[StateMap[str]], Optional[StateMap[str]], Set[str]]: """Calculate the current state dict after adding some new events to a room Args: room_id: room to which the events are being added. Used for logging etc events_context: events and contexts which are being added to the room old_latest_event_ids: the old forward extremities for the room. new_latest_event_ids : the new forward extremities for the room. Returns: Returns a tuple of two state maps and a set of new forward extremities. The first state map is the full new current state and the second is the delta to the existing current state. If both are None then there has been no change. The function may prune some old entries from the set of new forward extremities if it's safe to do so. If there has been a change then we only return the delta if its already been calculated. Conversely if we do know the delta then the new current state is only returned if we've already calculated it. """ # map from state_group to ((type, key) -> event_id) state map state_groups_map = {} # Map from (prev state group, new state group) -> delta state dict state_group_deltas = {} for ev, ctx in events_context: if ctx.state_group is None: # This should only happen for outlier events. if not ev.internal_metadata.is_outlier(): raise Exception( "Context for new event %s has no state " "group" % (ev.event_id,) ) continue if ctx.state_group in state_groups_map: continue # We're only interested in pulling out state that has already # been cached in the context. We'll pull stuff out of the DB later # if necessary. current_state_ids = ctx.get_cached_current_state_ids() if current_state_ids is not None: state_groups_map[ctx.state_group] = current_state_ids if ctx.prev_group: state_group_deltas[(ctx.prev_group, ctx.state_group)] = ctx.delta_ids # We need to map the event_ids to their state groups. First, let's # check if the event is one we're persisting, in which case we can # pull the state group from its context. # Otherwise we need to pull the state group from the database. # Set of events we need to fetch groups for. (We know none of the old # extremities are going to be in events_context). missing_event_ids = set(old_latest_event_ids) event_id_to_state_group = {} for event_id in new_latest_event_ids: # First search in the list of new events we're adding. for ev, ctx in events_context: if event_id == ev.event_id and ctx.state_group is not None: event_id_to_state_group[event_id] = ctx.state_group break else: # If we couldn't find it, then we'll need to pull # the state from the database missing_event_ids.add(event_id) if missing_event_ids: # Now pull out the state groups for any missing events from DB event_to_groups = await self.main_store._get_state_group_for_events( missing_event_ids ) event_id_to_state_group.update(event_to_groups) # State groups of old_latest_event_ids old_state_groups = { event_id_to_state_group[evid] for evid in old_latest_event_ids } # State groups of new_latest_event_ids new_state_groups = { event_id_to_state_group[evid] for evid in new_latest_event_ids } # If they old and new groups are the same then we don't need to do # anything. if old_state_groups == new_state_groups: return None, None, new_latest_event_ids if len(new_state_groups) == 1 and len(old_state_groups) == 1: # If we're going from one state group to another, lets check if # we have a delta for that transition. If we do then we can just # return that. new_state_group = next(iter(new_state_groups)) old_state_group = next(iter(old_state_groups)) delta_ids = state_group_deltas.get((old_state_group, new_state_group), None) if delta_ids is not None: # We have a delta from the existing to new current state, # so lets just return that. If we happen to already have # the current state in memory then lets also return that, # but it doesn't matter if we don't. new_state = state_groups_map.get(new_state_group) return new_state, delta_ids, new_latest_event_ids # Now that we have calculated new_state_groups we need to get # their state IDs so we can resolve to a single state set. missing_state = new_state_groups - set(state_groups_map) if missing_state: group_to_state = await self.state_store._get_state_for_groups(missing_state) state_groups_map.update(group_to_state) if len(new_state_groups) == 1: # If there is only one state group, then we know what the current # state is. return state_groups_map[new_state_groups.pop()], None, new_latest_event_ids # Ok, we need to defer to the state handler to resolve our state sets. state_groups = {sg: state_groups_map[sg] for sg in new_state_groups} events_map = {ev.event_id: ev for ev, _ in events_context} # We need to get the room version, which is in the create event. # Normally that'd be in the database, but its also possible that we're # currently trying to persist it. room_version = None for ev, _ in events_context: if ev.type == EventTypes.Create and ev.state_key == "": room_version = ev.content.get("room_version", "1") break if not room_version: room_version = await self.main_store.get_room_version_id(room_id) logger.debug("calling resolve_state_groups from preserve_events") # Avoid a circular import. from synapse.state import StateResolutionStore res = await self._state_resolution_handler.resolve_state_groups( room_id, room_version, state_groups, events_map, state_res_store=StateResolutionStore(self.main_store), ) state_resolutions_during_persistence.inc() # If the returned state matches the state group of one of the new # forward extremities then we check if we are able to prune some state # extremities. if res.state_group and res.state_group in new_state_groups: new_latest_event_ids = await self._prune_extremities( room_id, new_latest_event_ids, res.state_group, event_id_to_state_group, events_context, ) return res.state, None, new_latest_event_ids async def _prune_extremities( self, room_id: str, new_latest_event_ids: Set[str], resolved_state_group: int, event_id_to_state_group: Dict[str, int], events_context: List[Tuple[EventBase, EventContext]], ) -> Set[str]: """See if we can prune any of the extremities after calculating the resolved state. """ potential_times_prune_extremities.inc() # We keep all the extremities that have the same state group, and # see if we can drop the others. new_new_extrems = { e for e in new_latest_event_ids if event_id_to_state_group[e] == resolved_state_group } dropped_extrems = set(new_latest_event_ids) - new_new_extrems logger.debug("Might drop extremities: %s", dropped_extrems) # We only drop events from the extremities list if: # 1. we're not currently persisting them; # 2. they're not our own events (or are dummy events); and # 3. they're either: # 1. over N hours old and more than N events ago (we use depth to # calculate); or # 2. we are persisting an event from the same domain and more than # M events ago. # # The idea is that we don't want to drop events that are "legitimate" # extremities (that we would want to include as prev events), only # "stuck" extremities that are e.g. due to a gap in the graph. # # Note that we either drop all of them or none of them. If we only drop # some of the events we don't know if state res would come to the same # conclusion. for ev, _ in events_context: if ev.event_id in dropped_extrems: logger.debug( "Not dropping extremities: %s is being persisted", ev.event_id ) return new_latest_event_ids dropped_events = await self.main_store.get_events( dropped_extrems, allow_rejected=True, redact_behaviour=EventRedactBehaviour.AS_IS, ) new_senders = {get_domain_from_id(e.sender) for e, _ in events_context} one_day_ago = self._clock.time_msec() - 24 * 60 * 60 * 1000 current_depth = max(e.depth for e, _ in events_context) for event in dropped_events.values(): # If the event is a local dummy event then we should check it # doesn't reference any local events, as we want to reference those # if we send any new events. # # Note we do this recursively to handle the case where a dummy event # references a dummy event that only references remote events. # # Ideally we'd figure out a way of still being able to drop old # dummy events that reference local events, but this is good enough # as a first cut. events_to_check: Collection[EventBase] = [event] while events_to_check: new_events: Set[str] = set() for event_to_check in events_to_check: if self.is_mine_id(event_to_check.sender): if event_to_check.type != EventTypes.Dummy: logger.debug("Not dropping own event") return new_latest_event_ids new_events.update(event_to_check.prev_event_ids()) prev_events = await self.main_store.get_events( new_events, allow_rejected=True, redact_behaviour=EventRedactBehaviour.AS_IS, ) events_to_check = prev_events.values() if ( event.origin_server_ts < one_day_ago and event.depth < current_depth - 100 ): continue # We can be less conservative about dropping extremities from the # same domain, though we do want to wait a little bit (otherwise # we'll immediately remove all extremities from a given server). if ( get_domain_from_id(event.sender) in new_senders and event.depth < current_depth - 20 ): continue logger.debug( "Not dropping as too new and not in new_senders: %s", new_senders, ) return new_latest_event_ids times_pruned_extremities.inc() logger.info( "Pruning forward extremities in room %s: from %s -> %s", room_id, new_latest_event_ids, new_new_extrems, ) return new_new_extrems async def _calculate_state_delta( self, room_id: str, current_state: StateMap[str] ) -> DeltaState: """Calculate the new state deltas for a room. Assumes that we are only persisting events for one room at a time. """ existing_state = await self.main_store.get_current_state_ids(room_id) to_delete = [key for key in existing_state if key not in current_state] to_insert = { key: ev_id for key, ev_id in current_state.items() if ev_id != existing_state.get(key) } return DeltaState(to_delete=to_delete, to_insert=to_insert) async def _is_server_still_joined( self, room_id: str, ev_ctx_rm: List[Tuple[EventBase, EventContext]], delta: DeltaState, current_state: Optional[StateMap[str]], potentially_left_users: Set[str], ) -> bool: """Check if the server will still be joined after the given events have been persised. Args: room_id ev_ctx_rm delta: The delta of current state between what is in the database and what the new current state will be. current_state: The new current state if it already been calculated, otherwise None. potentially_left_users: If the server has left the room, then joined remote users will be added to this set to indicate that the server may no longer be sharing a room with them. """ if not any( self.is_mine_id(state_key) for typ, state_key in itertools.chain(delta.to_delete, delta.to_insert) if typ == EventTypes.Member ): # There have been no changes to membership of our users, so nothing # has changed and we assume we're still in the room. return True # Check if any of the given events are a local join that appear in the # current state events_to_check = [] # Event IDs that aren't an event we're persisting for (typ, state_key), event_id in delta.to_insert.items(): if typ != EventTypes.Member or not self.is_mine_id(state_key): continue for event, _ in ev_ctx_rm: if event_id == event.event_id: if event.membership == Membership.JOIN: return True # The event is not in `ev_ctx_rm`, so we need to pull it out of # the DB. events_to_check.append(event_id) # Check if any of the changes that we don't have events for are joins. if events_to_check: members = await self.main_store.get_membership_from_event_ids( events_to_check ) is_still_joined = any( member and member.membership == Membership.JOIN for member in members.values() ) if is_still_joined: return True # None of the new state events are local joins, so we check the database # to see if there are any other local users in the room. We ignore users # whose state has changed as we've already their new state above. users_to_ignore = [ state_key for typ, state_key in itertools.chain(delta.to_insert, delta.to_delete) if typ == EventTypes.Member and self.is_mine_id(state_key) ] if await self.main_store.is_local_host_in_room_ignoring_users( room_id, users_to_ignore ): return True # The server will leave the room, so we go and find out which remote # users will still be joined when we leave. if current_state is None: current_state = await self.main_store.get_current_state_ids(room_id) current_state = dict(current_state) for key in delta.to_delete: current_state.pop(key, None) current_state.update(delta.to_insert) remote_event_ids = [ event_id for ( typ, state_key, ), event_id in current_state.items() if typ == EventTypes.Member and not self.is_mine_id(state_key) ] members = await self.main_store.get_membership_from_event_ids(remote_event_ids) potentially_left_users.update( member.user_id for member in members.values() if member and member.membership == Membership.JOIN ) return False async def _handle_potentially_left_users(self, user_ids: Set[str]): """Given a set of remote users check if the server still shares a room with them. If not then mark those users' device cache as stale. """ if not user_ids: return joined_users = await self.main_store.get_users_server_still_shares_room_with( user_ids ) left_users = user_ids - joined_users for user_id in left_users: await self.main_store.mark_remote_user_device_list_as_unsubscribed(user_id)
py
b40292911cf87be1db80593fab93c592710e69aa
# Configuration file for jupyter-notebook. #------------------------------------------------------------------------------ # Application(SingletonConfigurable) configuration #------------------------------------------------------------------------------ ## This is an application. ## The date format used by logging formatters for %(asctime)s #c.Application.log_datefmt = '%Y-%m-%d %H:%M:%S' ## The Logging format template #c.Application.log_format = '[%(name)s]%(highlevel)s %(message)s' ## Set the log level by value or name. #c.Application.log_level = 30 #------------------------------------------------------------------------------ # JupyterApp(Application) configuration #------------------------------------------------------------------------------ ## Base class for Jupyter applications ## Answer yes to any prompts. #c.JupyterApp.answer_yes = False ## Full path of a config file. #c.JupyterApp.config_file = '' ## Specify a config file to load. #c.JupyterApp.config_file_name = '' ## Generate default config file. #c.JupyterApp.generate_config = False #------------------------------------------------------------------------------ # NotebookApp(JupyterApp) configuration #------------------------------------------------------------------------------ ## Set the Access-Control-Allow-Credentials: true header #c.NotebookApp.allow_credentials = False ## Set the Access-Control-Allow-Origin header # # Use '*' to allow any origin to access your server. # # Takes precedence over allow_origin_pat. c.NotebookApp.allow_origin = 'localhost' ## Use a regular expression for the Access-Control-Allow-Origin header # # Requests from an origin matching the expression will get replies with: # # Access-Control-Allow-Origin: origin # # where `origin` is the origin of the request. # # Ignored if allow_origin is set. #c.NotebookApp.allow_origin_pat = '' ## Allow password to be changed at login for the notebook server. # # While loggin in with a token, the notebook server UI will give the opportunity # to the user to enter a new password at the same time that will replace the # token login mechanism. # # This can be set to false to prevent changing password from the UI/API. #c.NotebookApp.allow_password_change = True ## Whether to allow the user to run the notebook as root. #c.NotebookApp.allow_root = False ## DEPRECATED use base_url #c.NotebookApp.base_project_url = '/' ## The base URL for the notebook server. # # Leading and trailing slashes can be omitted, and will automatically be added. #c.NotebookApp.base_url = '/' ## Specify what command to use to invoke a web browser when opening the notebook. # If not specified, the default browser will be determined by the `webbrowser` # standard library module, which allows setting of the BROWSER environment # variable to override it. #c.NotebookApp.browser = '' ## The full path to an SSL/TLS certificate file. #c.NotebookApp.certfile = '' ## The full path to a certificate authority certificate for SSL/TLS client # authentication. #c.NotebookApp.client_ca = '' ## The config manager class to use #c.NotebookApp.config_manager_class = 'notebook.services.config.manager.ConfigManager' ## The notebook manager class to use. #c.NotebookApp.contents_manager_class = 'notebook.services.contents.largefilemanager.LargeFileManager' ## Extra keyword arguments to pass to `set_secure_cookie`. See tornado's # set_secure_cookie docs for details. #c.NotebookApp.cookie_options = {} ## The random bytes used to secure cookies. By default this is a new random # number every time you start the Notebook. Set it to a value in a config file # to enable logins to persist across server sessions. # # Note: Cookie secrets should be kept private, do not share config files with # cookie_secret stored in plaintext (you can read the value from a file). #c.NotebookApp.cookie_secret = b'' ## The file where the cookie secret is stored. #c.NotebookApp.cookie_secret_file = '' ## The default URL to redirect to from `/` c.NotebookApp.default_url = '/tree#examples' ## Disable cross-site-request-forgery protection # # Jupyter notebook 4.3.1 introduces protection from cross-site request # forgeries, requiring API requests to either: # # - originate from pages served by this server (validated with XSRF cookie and # token), or - authenticate with a token # # Some anonymous compute resources still desire the ability to run code, # completely without authentication. These services can disable all # authentication and security checks, with the full knowledge of what that # implies. #c.NotebookApp.disable_check_xsrf = False ## Whether to enable MathJax for typesetting math/TeX # # MathJax is the javascript library Jupyter uses to render math/LaTeX. It is # very large, so you may want to disable it if you have a slow internet # connection, or for offline use of the notebook. # # When disabled, equations etc. will appear as their untransformed TeX source. #c.NotebookApp.enable_mathjax = True ## extra paths to look for Javascript notebook extensions #c.NotebookApp.extra_nbextensions_path = [] ## handlers that should be loaded at higher priority than the default services #c.NotebookApp.extra_services = [] ## Extra paths to search for serving static files. # # This allows adding javascript/css to be available from the notebook server # machine, or overriding individual files in the IPython #c.NotebookApp.extra_static_paths = [] ## Extra paths to search for serving jinja templates. # # Can be used to override templates from notebook.templates. #c.NotebookApp.extra_template_paths = [] ## #c.NotebookApp.file_to_run = '' ## Deprecated: Use minified JS file or not, mainly use during dev to avoid JS # recompilation #c.NotebookApp.ignore_minified_js = False ## (bytes/sec) Maximum rate at which stream output can be sent on iopub before # they are limited. #c.NotebookApp.iopub_data_rate_limit = 1000000 ## (msgs/sec) Maximum rate at which messages can be sent on iopub before they are # limited. #c.NotebookApp.iopub_msg_rate_limit = 1000 ## The IP address the notebook server will listen on. c.NotebookApp.ip = 'localhost' ## Supply extra arguments that will be passed to Jinja environment. #c.NotebookApp.jinja_environment_options = {} ## Extra variables to supply to jinja templates when rendering. #c.NotebookApp.jinja_template_vars = {} ## The kernel manager class to use. #c.NotebookApp.kernel_manager_class = 'notebook.services.kernels.kernelmanager.MappingKernelManager' ## The kernel spec manager class to use. Should be a subclass of # `jupyter_client.kernelspec.KernelSpecManager`. # # The Api of KernelSpecManager is provisional and might change without warning # between this version of Jupyter and the next stable one. #c.NotebookApp.kernel_spec_manager_class = 'jupyter_client.kernelspec.KernelSpecManager' ## The full path to a private key file for usage with SSL/TLS. #c.NotebookApp.keyfile = '' ## The login handler class to use. #c.NotebookApp.login_handler_class = 'notebook.auth.login.LoginHandler' ## The logout handler class to use. #c.NotebookApp.logout_handler_class = 'notebook.auth.logout.LogoutHandler' ## The MathJax.js configuration file that is to be used. #c.NotebookApp.mathjax_config = 'TeX-AMS-MML_HTMLorMML-full,Safe' ## A custom url for MathJax.js. Should be in the form of a case-sensitive url to # MathJax, for example: /static/components/MathJax/MathJax.js #c.NotebookApp.mathjax_url = '' ## Dict of Python modules to load as notebook server extensions.Entry values can # be used to enable and disable the loading ofthe extensions. The extensions # will be loaded in alphabetical order. # notebook examples enables us to have an unmodified copy of the tutorials in the pkg dir and create a working copy c.NotebookApp.nbserver_extensions = {'nbexamples.handlers': True} import pyemma_tutorials c.Examples.reviewed_example_dir = pyemma_tutorials.notebook_location() c.Examples.unreviewed_example_dir = '' ## The directory to use for notebooks and kernels. run_dir = pyemma_tutorials.run_dir() c.NotebookApp.notebook_dir = run_dir ## Whether to open in a browser after starting. The specific browser used is # platform dependent and determined by the python standard library `webbrowser` # module, unless it is overridden using the --browser (NotebookApp.browser) # configuration option. #c.NotebookApp.open_browser = True ## Hashed password to use for web authentication. # # To generate, type in a python/IPython shell: # # from notebook.auth import passwd; passwd() # # The string should be of the form type:salt:hashed-password. #c.NotebookApp.password = '' ## Forces users to use a password for the Notebook server. This is useful in a # multi user environment, for instance when everybody in the LAN can access each # other's machine through ssh. # # In such a case, server the notebook server on localhost is not secure since # any user can connect to the notebook server via ssh. #c.NotebookApp.password_required = False ## The port the notebook server will listen on. #c.NotebookApp.port = 8888 ## The number of additional ports to try if the specified port is not available. #c.NotebookApp.port_retries = 50 ## DISABLED: use %pylab or %matplotlib in the notebook to enable matplotlib. #c.NotebookApp.pylab = 'disabled' ## If True, display a button in the dashboard to quit (shutdown the notebook # server). #c.NotebookApp.quit_button = True ## (sec) Time window used to check the message and data rate limits. #c.NotebookApp.rate_limit_window = 3 ## Reraise exceptions encountered loading server extensions? #c.NotebookApp.reraise_server_extension_failures = False ## DEPRECATED use the nbserver_extensions dict instead #c.NotebookApp.server_extensions = [] ## The session manager class to use. #c.NotebookApp.session_manager_class = 'notebook.services.sessions.sessionmanager.SessionManager' ## Shut down the server after N seconds with no kernels or terminals running and # no activity. This can be used together with culling idle kernels # (MappingKernelManager.cull_idle_timeout) to shutdown the notebook server when # it's not in use. This is not precisely timed: it may shut down up to a minute # later. 0 (the default) disables this automatic shutdown. #c.NotebookApp.shutdown_no_activity_timeout = 0 ## Supply SSL options for the tornado HTTPServer. See the tornado docs for # details. #c.NotebookApp.ssl_options = {} ## Supply overrides for terminado. Currently only supports "shell_command". #c.NotebookApp.terminado_settings = {} ## Set to False to disable terminals. # # This does *not* make the notebook server more secure by itself. Anything the # user can in a terminal, they can also do in a notebook. # # Terminals may also be automatically disabled if the terminado package is not # available. #c.NotebookApp.terminals_enabled = True ## Token used for authenticating first-time connections to the server. # # When no password is enabled, the default is to generate a new, random token. # # Setting to an empty string disables authentication altogether, which is NOT # RECOMMENDED. #c.NotebookApp.token = '<generated>' ## Supply overrides for the tornado.web.Application that the Jupyter notebook # uses. #c.NotebookApp.tornado_settings = {} ## Whether to trust or not X-Scheme/X-Forwarded-Proto and X-Real-Ip/X-Forwarded- # For headerssent by the upstream reverse proxy. Necessary if the proxy handles # SSL #c.NotebookApp.trust_xheaders = False ## DEPRECATED, use tornado_settings #c.NotebookApp.webapp_settings = {} ## Specify Where to open the notebook on startup. This is the `new` argument # passed to the standard library method `webbrowser.open`. The behaviour is not # guaranteed, but depends on browser support. Valid values are: # # - 2 opens a new tab, # - 1 opens a new window, # - 0 opens in an existing window. # # See the `webbrowser.open` documentation for details. #c.NotebookApp.webbrowser_open_new = 2 ## Set the tornado compression options for websocket connections. # # This value will be returned from # :meth:`WebSocketHandler.get_compression_options`. None (default) will disable # compression. A dict (even an empty one) will enable compression. # # See the tornado docs for WebSocketHandler.get_compression_options for details. #c.NotebookApp.websocket_compression_options = None ## The base URL for websockets, if it differs from the HTTP server (hint: it # almost certainly doesn't). # # Should be in the form of an HTTP origin: ws[s]://hostname[:port] #c.NotebookApp.websocket_url = '' #------------------------------------------------------------------------------ # ConnectionFileMixin(LoggingConfigurable) configuration #------------------------------------------------------------------------------ ## Mixin for configurable classes that work with connection files ## JSON file in which to store connection info [default: kernel-<pid>.json] # # This file will contain the IP, ports, and authentication key needed to connect # clients to this kernel. By default, this file will be created in the security # dir of the current profile, but can be specified by absolute path. #c.ConnectionFileMixin.connection_file = '' ## set the control (ROUTER) port [default: random] #c.ConnectionFileMixin.control_port = 0 ## set the heartbeat port [default: random] #c.ConnectionFileMixin.hb_port = 0 ## set the iopub (PUB) port [default: random] #c.ConnectionFileMixin.iopub_port = 0 ## Set the kernel's IP address [default localhost]. If the IP address is # something other than localhost, then Consoles on other machines will be able # to connect to the Kernel, so be careful! #c.ConnectionFileMixin.ip = '' ## set the shell (ROUTER) port [default: random] #c.ConnectionFileMixin.shell_port = 0 ## set the stdin (ROUTER) port [default: random] #c.ConnectionFileMixin.stdin_port = 0 ## #c.ConnectionFileMixin.transport = 'tcp' #------------------------------------------------------------------------------ # KernelManager(ConnectionFileMixin) configuration #------------------------------------------------------------------------------ ## Manages a single kernel in a subprocess on this host. # # This version starts kernels with Popen. ## Should we autorestart the kernel if it dies. #c.KernelManager.autorestart = True ## DEPRECATED: Use kernel_name instead. # # The Popen Command to launch the kernel. Override this if you have a custom # kernel. If kernel_cmd is specified in a configuration file, Jupyter does not # pass any arguments to the kernel, because it cannot make any assumptions about # the arguments that the kernel understands. In particular, this means that the # kernel does not receive the option --debug if it given on the Jupyter command # line. #c.KernelManager.kernel_cmd = ['python3'] ## Time to wait for a kernel to terminate before killing it, in seconds. #c.KernelManager.shutdown_wait_time = 5.0 #------------------------------------------------------------------------------ # Session(Configurable) configuration #------------------------------------------------------------------------------ ## Object for handling serialization and sending of messages. # # The Session object handles building messages and sending them with ZMQ sockets # or ZMQStream objects. Objects can communicate with each other over the # network via Session objects, and only need to work with the dict-based IPython # message spec. The Session will handle serialization/deserialization, security, # and metadata. # # Sessions support configurable serialization via packer/unpacker traits, and # signing with HMAC digests via the key/keyfile traits. # # Parameters ---------- # # debug : bool # whether to trigger extra debugging statements # packer/unpacker : str : 'json', 'pickle' or import_string # importstrings for methods to serialize message parts. If just # 'json' or 'pickle', predefined JSON and pickle packers will be used. # Otherwise, the entire importstring must be used. # # The functions must accept at least valid JSON input, and output *bytes*. # # For example, to use msgpack: # packer = 'msgpack.packb', unpacker='msgpack.unpackb' # pack/unpack : callables # You can also set the pack/unpack callables for serialization directly. # session : bytes # the ID of this Session object. The default is to generate a new UUID. # username : unicode # username added to message headers. The default is to ask the OS. # key : bytes # The key used to initialize an HMAC signature. If unset, messages # will not be signed or checked. # keyfile : filepath # The file containing a key. If this is set, `key` will be initialized # to the contents of the file. ## Threshold (in bytes) beyond which an object's buffer should be extracted to # avoid pickling. #c.Session.buffer_threshold = 1024 ## Whether to check PID to protect against calls after fork. # # This check can be disabled if fork-safety is handled elsewhere. #c.Session.check_pid = True ## Threshold (in bytes) beyond which a buffer should be sent without copying. #c.Session.copy_threshold = 65536 ## Debug output in the Session #c.Session.debug = False ## The maximum number of digests to remember. # # The digest history will be culled when it exceeds this value. #c.Session.digest_history_size = 65536 ## The maximum number of items for a container to be introspected for custom # serialization. Containers larger than this are pickled outright. #c.Session.item_threshold = 64 ## execution key, for signing messages. #c.Session.key = b'' ## path to file containing execution key. #c.Session.keyfile = '' ## Metadata dictionary, which serves as the default top-level metadata dict for # each message. #c.Session.metadata = {} ## The name of the packer for serializing messages. Should be one of 'json', # 'pickle', or an import name for a custom callable serializer. #c.Session.packer = 'json' ## The UUID identifying this session. #c.Session.session = '' ## The digest scheme used to construct the message signatures. Must have the form # 'hmac-HASH'. #c.Session.signature_scheme = 'hmac-sha256' ## The name of the unpacker for unserializing messages. Only used with custom # functions for `packer`. #c.Session.unpacker = 'json' ## Username for the Session. Default is your system username. #c.Session.username = 'marscher' #------------------------------------------------------------------------------ # MultiKernelManager(LoggingConfigurable) configuration #------------------------------------------------------------------------------ ## A class for managing multiple kernels. ## The name of the default kernel to start #c.MultiKernelManager.default_kernel_name = 'python3' ## The kernel manager class. This is configurable to allow subclassing of the # KernelManager for customized behavior. #c.MultiKernelManager.kernel_manager_class = 'jupyter_client.ioloop.IOLoopKernelManager' #------------------------------------------------------------------------------ # MappingKernelManager(MultiKernelManager) configuration #------------------------------------------------------------------------------ ## A KernelManager that handles notebook mapping and HTTP error handling ## Whether messages from kernels whose frontends have disconnected should be # buffered in-memory. # # When True (default), messages are buffered and replayed on reconnect, avoiding # lost messages due to interrupted connectivity. # # Disable if long-running kernels will produce too much output while no # frontends are connected. #c.MappingKernelManager.buffer_offline_messages = True ## Whether to consider culling kernels which are busy. Only effective if # cull_idle_timeout > 0. #c.MappingKernelManager.cull_busy = False ## Whether to consider culling kernels which have one or more connections. Only # effective if cull_idle_timeout > 0. #c.MappingKernelManager.cull_connected = False ## Timeout (in seconds) after which a kernel is considered idle and ready to be # culled. Values of 0 or lower disable culling. Very short timeouts may result # in kernels being culled for users with poor network connections. #c.MappingKernelManager.cull_idle_timeout = 0 ## The interval (in seconds) on which to check for idle kernels exceeding the # cull timeout value. #c.MappingKernelManager.cull_interval = 300 ## #c.MappingKernelManager.root_dir = '' #------------------------------------------------------------------------------ # ContentsManager(LoggingConfigurable) configuration #------------------------------------------------------------------------------ ## Base class for serving files and directories. # # This serves any text or binary file, as well as directories, with special # handling for JSON notebook documents. # # Most APIs take a path argument, which is always an API-style unicode path, and # always refers to a directory. # # - unicode, not url-escaped # - '/'-separated # - leading and trailing '/' will be stripped # - if unspecified, path defaults to '', # indicating the root path. ## Allow access to hidden files #c.ContentsManager.allow_hidden = False ## #c.ContentsManager.checkpoints = None ## #c.ContentsManager.checkpoints_class = 'notebook.services.contents.checkpoints.Checkpoints' ## #c.ContentsManager.checkpoints_kwargs = {} ## handler class to use when serving raw file requests. # # Default is a fallback that talks to the ContentsManager API, which may be # inefficient, especially for large files. # # Local files-based ContentsManagers can use a StaticFileHandler subclass, which # will be much more efficient. # # Access to these files should be Authenticated. #c.ContentsManager.files_handler_class = 'notebook.files.handlers.FilesHandler' ## Extra parameters to pass to files_handler_class. # # For example, StaticFileHandlers generally expect a `path` argument specifying # the root directory from which to serve files. #c.ContentsManager.files_handler_params = {} ## Glob patterns to hide in file and directory listings. #c.ContentsManager.hide_globs = ['__pycache__', '*.pyc', '*.pyo', '.DS_Store', '*.so', '*.dylib', '*~'] ## Python callable or importstring thereof # # To be called on a contents model prior to save. # # This can be used to process the structure, such as removing notebook outputs # or other side effects that should not be saved. # # It will be called as (all arguments passed by keyword):: # # hook(path=path, model=model, contents_manager=self) # # - model: the model to be saved. Includes file contents. # Modifying this dict will affect the file that is stored. # - path: the API path of the save destination # - contents_manager: this ContentsManager instance #c.ContentsManager.pre_save_hook = None ## #c.ContentsManager.root_dir = '/' ## The base name used when creating untitled directories. #c.ContentsManager.untitled_directory = 'Untitled Folder' ## The base name used when creating untitled files. #c.ContentsManager.untitled_file = 'untitled' ## The base name used when creating untitled notebooks. #c.ContentsManager.untitled_notebook = 'Untitled' #------------------------------------------------------------------------------ # FileManagerMixin(Configurable) configuration #------------------------------------------------------------------------------ ## Mixin for ContentsAPI classes that interact with the filesystem. # # Provides facilities for reading, writing, and copying both notebooks and # generic files. # # Shared by FileContentsManager and FileCheckpoints. # # Note ---- Classes using this mixin must provide the following attributes: # # root_dir : unicode # A directory against against which API-style paths are to be resolved. # # log : logging.Logger ## By default notebooks are saved on disk on a temporary file and then if # succefully written, it replaces the old ones. This procedure, namely # 'atomic_writing', causes some bugs on file system whitout operation order # enforcement (like some networked fs). If set to False, the new notebook is # written directly on the old one which could fail (eg: full filesystem or quota # ) #c.FileManagerMixin.use_atomic_writing = True #------------------------------------------------------------------------------ # FileContentsManager(FileManagerMixin,ContentsManager) configuration #------------------------------------------------------------------------------ ## If True (default), deleting files will send them to the platform's # trash/recycle bin, where they can be recovered. If False, deleting files # really deletes them. #c.FileContentsManager.delete_to_trash = True ## Python callable or importstring thereof # # to be called on the path of a file just saved. # # This can be used to process the file on disk, such as converting the notebook # to a script or HTML via nbconvert. # # It will be called as (all arguments passed by keyword):: # # hook(os_path=os_path, model=model, contents_manager=instance) # # - path: the filesystem path to the file just written - model: the model # representing the file - contents_manager: this ContentsManager instance #c.FileContentsManager.post_save_hook = None ## #c.FileContentsManager.root_dir = '' ## DEPRECATED, use post_save_hook. Will be removed in Notebook 5.0 #c.FileContentsManager.save_script = False #------------------------------------------------------------------------------ # NotebookNotary(LoggingConfigurable) configuration #------------------------------------------------------------------------------ ## A class for computing and verifying notebook signatures. ## The hashing algorithm used to sign notebooks. #c.NotebookNotary.algorithm = 'sha256' ## The sqlite file in which to store notebook signatures. By default, this will # be in your Jupyter data directory. You can set it to ':memory:' to disable # sqlite writing to the filesystem. #c.NotebookNotary.db_file = '' ## The secret key with which notebooks are signed. #c.NotebookNotary.secret = b'' ## The file where the secret key is stored. #c.NotebookNotary.secret_file = '' ## A callable returning the storage backend for notebook signatures. The default # uses an SQLite database. #c.NotebookNotary.store_factory = traitlets.Undefined #------------------------------------------------------------------------------ # KernelSpecManager(LoggingConfigurable) configuration #------------------------------------------------------------------------------ ## If there is no Python kernelspec registered and the IPython kernel is # available, ensure it is added to the spec list. #c.KernelSpecManager.ensure_native_kernel = True ## The kernel spec class. This is configurable to allow subclassing of the # KernelSpecManager for customized behavior. #c.KernelSpecManager.kernel_spec_class = 'jupyter_client.kernelspec.KernelSpec' ## Whitelist of allowed kernel names. # # By default, all installed kernels are allowed. #c.KernelSpecManager.whitelist = set()
py
b4029358576843db40ff507346bde29533df2961
import tensorflow as tf for gpu in tf.config.experimental.list_physical_devices('GPU'): tf.config.experimental.set_memory_growth(gpu, True)
py
b40293ac197100fead68ab42b11cc5c8a933a144
#!/usr/bin/python # -*- coding: utf-8 -*- import random import time from dataBase.noDB import JsonFile from dataBase.sqlite3 import ProbeData json = JsonFile.JsonFile() for _i in range(0,144): date = time.time() ozone = random.uniform(40,70) temperature = random.uniform(20,30) groudHumidity = random.uniform(10, 60) airHumidity = random.uniform(10,60) probeData = ProbeData.ProbeData() probeData.setValue(_i, date, ozone, temperature, groudHumidity, airHumidity) json.addData(probeData.toJson()) json.writeToJson()
py
b402945a3fa8106a78d62455088984e2b8308595
# GGearing # Simple encryption script for text # This was one my first versions of this script # 09/07/2017 from __future__ import print_function import math try: input = raw_input except NameError: pass key = int(math.pi * 1e14) text = input("Enter text: ") values =reverse= [] def encryptChar(target): # encrytion algorithm target = (((target + 42) * key) - 449) return target def decryptChar(target): target = (((target + 449) / key) - 42) return target def encrypt(input_text): col_values = [] for i in range(len(input_text)): current = ord(input_text[i]) current = encryptChar(current) col_values.append(current) return col_values def decrypt(enc_text): col_values = [] for i in range(len(enc_text)): current = int(decryptChar(enc_text[i])) current = chr(current) col_values.append(current) return col_values def readAndDecrypt(filename): file = open(filename, "r") data = file.read() datalistint = [] actualdata = [] datalist = data.split(" ") datalist.remove('') datalistint=[float(datalist[i]) for i in range(len(datalist))] for i in range(len(datalist)): current1 = int(decryptChar(datalistint[i])) current1 = chr(current1) actualdata.append(current1) file.close() return actualdata def readAndEncrypt(filename): file = open(filename, "r") data = file.read() datalist = list(data) encrypted_list = list() encrypted_list_str = list() for i in range(len(datalist)): current = ord(datalist[i]) current = encryptChar(current) encrypted_list.append(current) file.close() return encrypted_list def readAndEncryptAndSave(inp_file, out_file): enc_list = readAndEncrypt(inp_file) output = open(out_file, "w") for i in range(len(enc_list)): output.write(str(enc_list[i]) + " ") output.close() def readAndDecryptAndSave(inp_file, out_file): dec_list = readAndDecrypt(inp_file) output = open(out_file, "w") for i in range(len(dec_list)): output.write(str(dec_list[i])) output.close() # encryption for i in range(len(text)): current = ord(text[i]) current = encryptChar(current) values.append(current) # decryption for i in range(len(text)): current = int(decryptChar(values[i])) current = chr(current) reverse.append(current) print(reverse) # saves encrypted in txt file output = open("encrypted.txt", "w") for i in range(len(values)): output.write(str(values[i]) + " ") output.close() # read and decrypts print(readAndDecrypt("encrypted.txt"))
py
b4029572d36078d23b6993519bc05d5530fc3138
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class AccountFiltersOperations: """AccountFiltersOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.media.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, resource_group_name: str, account_name: str, **kwargs ) -> AsyncIterable["_models.AccountFilterCollection"]: """List Account Filters. List Account Filters in the Media Services account. :param resource_group_name: The name of the resource group within the Azure subscription. :type resource_group_name: str :param account_name: The Media Services account name. :type account_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either AccountFilterCollection or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.media.models.AccountFilterCollection] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.AccountFilterCollection"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'accountName': self._serialize.url("account_name", account_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('AccountFilterCollection', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.odata_next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize.failsafe_deserialize(_models.ApiError, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Media/mediaServices/{accountName}/accountFilters'} # type: ignore async def get( self, resource_group_name: str, account_name: str, filter_name: str, **kwargs ) -> Optional["_models.AccountFilter"]: """Get an Account Filter. Get the details of an Account Filter in the Media Services account. :param resource_group_name: The name of the resource group within the Azure subscription. :type resource_group_name: str :param account_name: The Media Services account name. :type account_name: str :param filter_name: The Account Filter name. :type filter_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: AccountFilter, or the result of cls(response) :rtype: ~azure.mgmt.media.models.AccountFilter or None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[Optional["_models.AccountFilter"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'accountName': self._serialize.url("account_name", account_name, 'str'), 'filterName': self._serialize.url("filter_name", filter_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 404]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ApiError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('AccountFilter', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Media/mediaServices/{accountName}/accountFilters/{filterName}'} # type: ignore async def create_or_update( self, resource_group_name: str, account_name: str, filter_name: str, parameters: "_models.AccountFilter", **kwargs ) -> "_models.AccountFilter": """Create or update an Account Filter. Creates or updates an Account Filter in the Media Services account. :param resource_group_name: The name of the resource group within the Azure subscription. :type resource_group_name: str :param account_name: The Media Services account name. :type account_name: str :param filter_name: The Account Filter name. :type filter_name: str :param parameters: The request parameters. :type parameters: ~azure.mgmt.media.models.AccountFilter :keyword callable cls: A custom type or function that will be passed the direct response :return: AccountFilter, or the result of cls(response) :rtype: ~azure.mgmt.media.models.AccountFilter :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.AccountFilter"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.create_or_update.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'accountName': self._serialize.url("account_name", account_name, 'str'), 'filterName': self._serialize.url("filter_name", filter_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'AccountFilter') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ApiError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('AccountFilter', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('AccountFilter', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Media/mediaServices/{accountName}/accountFilters/{filterName}'} # type: ignore async def delete( self, resource_group_name: str, account_name: str, filter_name: str, **kwargs ) -> None: """Delete an Account Filter. Deletes an Account Filter in the Media Services account. :param resource_group_name: The name of the resource group within the Azure subscription. :type resource_group_name: str :param account_name: The Media Services account name. :type account_name: str :param filter_name: The Account Filter name. :type filter_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" accept = "application/json" # Construct URL url = self.delete.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'accountName': self._serialize.url("account_name", account_name, 'str'), 'filterName': self._serialize.url("filter_name", filter_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ApiError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Media/mediaServices/{accountName}/accountFilters/{filterName}'} # type: ignore async def update( self, resource_group_name: str, account_name: str, filter_name: str, parameters: "_models.AccountFilter", **kwargs ) -> "_models.AccountFilter": """Update an Account Filter. Updates an existing Account Filter in the Media Services account. :param resource_group_name: The name of the resource group within the Azure subscription. :type resource_group_name: str :param account_name: The Media Services account name. :type account_name: str :param filter_name: The Account Filter name. :type filter_name: str :param parameters: The request parameters. :type parameters: ~azure.mgmt.media.models.AccountFilter :keyword callable cls: A custom type or function that will be passed the direct response :return: AccountFilter, or the result of cls(response) :rtype: ~azure.mgmt.media.models.AccountFilter :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.AccountFilter"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'accountName': self._serialize.url("account_name", account_name, 'str'), 'filterName': self._serialize.url("filter_name", filter_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'AccountFilter') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ApiError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('AccountFilter', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Media/mediaServices/{accountName}/accountFilters/{filterName}'} # type: ignore
py
b402963230b9f079cc8364385d5314a47918547d
import numpy as np import pandas as pd import gzip df = pd.read_csv('../233x_sequences_degdata_081120.csv') fil='predictions/Degscore_XGB_233_preds.csv' output_array = np.ones([233,1588])*np.nan for i,x in enumerate(open(fil,'r').readlines()): dat = [float(k) for k in x.strip().split(',')] output_array[i,:len(dat)] = dat np.savetxt('formatted_predictions/Degscore-XGB_FULL_233x.csv',output_array, delimiter=',') for i, row in df.iterrows(): if not np.isnan(row['startpos']): output_array[i, :int(row['startpos'])] = np.NaN output_array[i, int(row['endpos']):] = np.NaN np.savetxt('formatted_predictions/Degscore-XGB_PCR_233x.csv',output_array, delimiter=',')
py
b40296916214d68bc4cc9c06a11d1c313dfcfdc9
#!/usr/bin/env python3 """ Create a train-test-validation split for the quranic text file. Author: Hamzah Khan """ from argparse import ArgumentParser import logging import os from typing import Dict from typing import Tuple from sklearn.model_selection import train_test_split from utils.files import write_csv import utils.text as text_utils # This gives us a 60-20-20 split by default. DEFAULT_RANDOM_SEED = 1 TRAIN_SPLIT_FRACTION = 0.6 TEST_SPLIT_FRACTION = 0.2 VALIDATION_SPLIT_FRACTION = 0.2 NUM_SURAHS = 114 parser = ArgumentParser(description='Tarteel Data Train-Test-Validation Splitter') parser.add_argument('-f', '--path-to-quran-json', type=str, default='data/data-uthmani.json', help='Path to the Quran text JSON file.') parser.add_argument('-o', '--output_directory', type=str, default='.cache') parser.add_argument( '-g', '--group-identical-text', action='store_true', help='If True, ayahs with identical text will be grouped into one set, not spread across ' 'multiple sets.') parser.add_argument('--train-frac', type=float, default=TRAIN_SPLIT_FRACTION) parser.add_argument('--test-frac', type=float, default=TEST_SPLIT_FRACTION) parser.add_argument('--validation-frac', type=float, default=VALIDATION_SPLIT_FRACTION) parser.add_argument('-s', '--seed', type=int, default=DEFAULT_RANDOM_SEED) parser.add_argument( '--log', choices=['DEBUG', 'INFO', 'WARNING', 'CRITICAL'], default='INFO', help='Logging level.' ) args = parser.parse_args() numeric_level = getattr(logging, args.log, None) logging.basicConfig(level=numeric_level) def create_train_test_validation_split( ayahs_to_text: Dict, train_test_validate_fractions: Tuple[int, int, int], should_group_identical_text: bool = True, random_seed: int = DEFAULT_RANDOM_SEED): """ Create a train-test-validation split over ayahs with the same text, given the Quranic data. Returns a list of lists, each an ayah group, containing the ayah numbers. """ train_frac = train_test_validate_fractions[0] test_frac = train_test_validate_fractions[1] validate_frac = train_test_validate_fractions[2] # The fractions should sum to 1.0, or we throw an error. if abs(sum(train_test_validate_fractions) - 1.0) > 1e-6: raise Exception("Train-test-validation fractions do not sum to 1.") if should_group_identical_text: # Initialize text to ayah group dictionary. text_to_grouped_ayahs = {} # Cluster ayahs with the same text. for ayah_num in ayahs_to_text: ayah_text = ayahs_to_text[ayah_num] # Initialize if ayah text is not an entry yet. if ayah_text not in text_to_grouped_ayahs: text_to_grouped_ayahs[ayah_text] = [] text_to_grouped_ayahs[ayah_text].append(ayah_num) # Get grouped list of ayahs. ayah_groups = list(text_to_grouped_ayahs.values()) # If we want identical-text ayahs to not be grouped (and therefore allow the same text # in multiple data sets), then extract the ayah numbers. else: ayah_groups = [group for group in ayahs_to_text.keys()] # Splitting will be done in two steps, so identify the proper fractions for them. first_split_frac = train_frac + validate_frac second_split_frac = 1.0 - (validate_frac / first_split_frac) # Perform the actual splits on the indices. X_train_valid, X_test = train_test_split(range(len(ayah_groups)), train_size=first_split_frac, random_state=random_seed, shuffle=True) X_train, X_valid = train_test_split(X_train_valid, train_size=second_split_frac, random_state=random_seed, shuffle=True) # Convert the indices back into ayah groups. X_train = [ayah_groups[index] for index in X_train] X_test = [ayah_groups[index] for index in X_test] X_valid = [ayah_groups[index] for index in X_valid] return X_train, X_test, X_valid def save_split_data(output_directory, filename, split_data): """Create and saves a file for a specific split. Each line is a comma separated list of groups of ayah numbers. """ output_path = os.path.join(output_directory, filename + ".csv") headers = ('surah_num', 'ayah_num') split_data.insert(0, headers) write_csv(output_path, split_data) def save_splits(output_directory, random_seed, split_fractions, X_train, X_test, X_valid): """Save the train-test-validation splits to three files.""" # Create the filenames. train_filename = "_".join( ["train", "fraction", str(split_fractions[0]), "seed", str(random_seed)]) test_filename = "_".join( ["test", "fraction", str(split_fractions[1]), "seed", str(random_seed)]) validate_filename = "_".join( ["validate", "fraction", str(split_fractions[2]), "seed", str(random_seed)]) # Save the data to the specified location. save_split_data(output_directory, train_filename, X_train) save_split_data(output_directory, test_filename, X_test) save_split_data(output_directory, validate_filename, X_valid) if __name__ == '__main__': # Load the Qur'anic Json data. quran_json_obj = text_utils.load_quran_obj_from_json(args.path_to_quran_json) # Convert the Json data to a dictionary of ayah numbers as keys and text as values. ayahs_to_text = text_utils.convert_quran_json_to_dict( quran_json_obj, should_include_bismillah=False) # Run the ayah split, forming groups of ayah numbers with identical text. split_fractions = (args.train_frac, args.test_frac, args.validation_frac) X_train, X_test, X_valid = create_train_test_validation_split( ayahs_to_text, split_fractions, args.group_identical_text, args.seed) # Save the resulting split to a file. if args.output_directory is not None: save_splits(args.output_directory, args.seed, split_fractions, X_train, X_test, X_valid) logging.info("Split data written to files in " + args.output_directory) else: logging.info("Data splitting completed.")
py
b40296ee8cb1445021d1bee28607e6565a3ac786
import torch import torch.nn as nn import torch.nn.functional as F from operations import * from torch.autograd import Variable from genotypes import PRIMITIVES # from utils.darts_utils import drop_path, compute_speed, compute_speed_tensorrt from pdb import set_trace as bp from seg_oprs import Head import numpy as np # https://github.com/YongfeiYan/Gumbel_Softmax_VAE/blob/master/gumbel_softmax_vae.py def sample_gumbel(shape, eps=1e-20): U = torch.rand(shape) U = U.cuda() return -torch.log(-torch.log(U + eps) + eps) def gumbel_softmax_sample(logits, temperature=1): y = logits + sample_gumbel(logits.size()) return F.softmax(y / temperature, dim=-1) def gumbel_softmax(logits, temperature=1, hard=False): """ ST-gumple-softmax input: [*, n_class] return: flatten --> [*, n_class] an one-hot vector """ y = gumbel_softmax_sample(logits, temperature) if not hard: return y shape = y.size() _, ind = y.max(dim=-1) y_hard = torch.zeros_like(y).view(-1, shape[-1]) y_hard.scatter_(1, ind.view(-1, 1), 1) y_hard = y_hard.view(*shape) # Set gradients w.r.t. y_hard gradients w.r.t. y y_hard = (y_hard - y).detach() + y return y_hard class MixedOp(nn.Module): def __init__(self, C_in, C_out, stride=1, width_mult_list=[1.]): super(MixedOp, self).__init__() self._ops = nn.ModuleList() self._width_mult_list = width_mult_list for primitive in PRIMITIVES: op = OPS[primitive](C_in, C_out, stride, True, width_mult_list=width_mult_list) self._ops.append(op) def set_prun_ratio(self, ratio): for op in self._ops: op.set_ratio(ratio) def forward(self, x, weights, ratios): # int: force #channel; tensor: arch_ratio; float(<=1): force width result = 0 if isinstance(ratios[0], torch.Tensor): ratio0 = self._width_mult_list[ratios[0].argmax()] r_score0 = ratios[0][ratios[0].argmax()] else: ratio0 = ratios[0] r_score0 = 1. if isinstance(ratios[1], torch.Tensor): ratio1 = self._width_mult_list[ratios[1].argmax()] r_score1 = ratios[1][ratios[1].argmax()] else: ratio1 = ratios[1] r_score1 = 1. self.set_prun_ratio((ratio0, ratio1)) for w, op in zip(weights, self._ops): result = result + op(x) * w * r_score0 * r_score1 return result def forward_latency(self, size, weights, ratios): # int: force #channel; tensor: arch_ratio; float(<=1): force width result = 0 if isinstance(ratios[0], torch.Tensor): ratio0 = self._width_mult_list[ratios[0].argmax()] r_score0 = ratios[0][ratios[0].argmax()] else: ratio0 = ratios[0] r_score0 = 1. if isinstance(ratios[1], torch.Tensor): ratio1 = self._width_mult_list[ratios[1].argmax()] r_score1 = ratios[1][ratios[1].argmax()] else: ratio1 = ratios[1] r_score1 = 1. self.set_prun_ratio((ratio0, ratio1)) for w, op in zip(weights, self._ops): latency, size_out = op.forward_latency(size) result = result + latency * w * r_score0 * r_score1 return result, size_out class Cell(nn.Module): def __init__(self, C_in, C_out=None, down=True, width_mult_list=[1.]): super(Cell, self).__init__() self._C_in = C_in if C_out is None: C_out = C_in self._C_out = C_out self._down = down self._width_mult_list = width_mult_list self._op = MixedOp(C_in, C_out, width_mult_list=width_mult_list) if self._down: self.downsample = MixedOp(C_in, C_in*2, stride=2, width_mult_list=width_mult_list) def forward(self, input, alphas, ratios): # ratios: (in, out, down) out = self._op(input, alphas, (ratios[0], ratios[1])) assert (self._down and (ratios[2] is not None)) or ((not self._down) and (ratios[2] is None)) down = self.downsample(input, alphas, (ratios[0], ratios[2])) if self._down else None return out, down def forward_latency(self, size, alphas, ratios): # ratios: (in, out, down) out = self._op.forward_latency(size, alphas, (ratios[0], ratios[1])) assert (self._down and (ratios[2] is not None)) or ((not self._down) and (ratios[2] is None)) down = self.downsample.forward_latency(size, alphas, (ratios[0], ratios[2])) if self._down else None return out, down class Network_Multi_Path(nn.Module): def __init__(self, num_classes=19, layers=16, criterion=nn.CrossEntropyLoss(ignore_index=-1), Fch=12, width_mult_list=[1.,], prun_modes=['arch_ratio',], stem_head_width=[(1., 1.),]): super(Network_Multi_Path, self).__init__() self._num_classes = num_classes assert layers >= 3 self._layers = layers self._criterion = criterion self._Fch = Fch self._width_mult_list = width_mult_list self._prun_modes = prun_modes self.prun_mode = None # prun_mode is higher priority than _prun_modes self._stem_head_width = stem_head_width self._flops = 0 self._params = 0 self.stem = nn.ModuleList([ nn.Sequential( ConvNorm(3, self.num_filters(2, stem_ratio)*2, kernel_size=3, stride=2, padding=1, bias=False, groups=1, slimmable=False), BasicResidual2x(self.num_filters(2, stem_ratio)*2, self.num_filters(4, stem_ratio)*2, kernel_size=3, stride=2, groups=1, slimmable=False), BasicResidual2x(self.num_filters(4, stem_ratio)*2, self.num_filters(8, stem_ratio), kernel_size=3, stride=2, groups=1, slimmable=False) ) for stem_ratio, _ in self._stem_head_width ]) self.cells = nn.ModuleList() for l in range(layers): cells = nn.ModuleList() if l == 0: # first node has only one input (prev cell's output) cells.append(Cell(self.num_filters(8), width_mult_list=width_mult_list)) elif l == 1: cells.append(Cell(self.num_filters(8), width_mult_list=width_mult_list)) cells.append(Cell(self.num_filters(16), width_mult_list=width_mult_list)) elif l < layers - 1: cells.append(Cell(self.num_filters(8), width_mult_list=width_mult_list)) cells.append(Cell(self.num_filters(16), width_mult_list=width_mult_list)) cells.append(Cell(self.num_filters(32), down=False, width_mult_list=width_mult_list)) else: cells.append(Cell(self.num_filters(8), down=False, width_mult_list=width_mult_list)) cells.append(Cell(self.num_filters(16), down=False, width_mult_list=width_mult_list)) cells.append(Cell(self.num_filters(32), down=False, width_mult_list=width_mult_list)) self.cells.append(cells) self.refine32 = nn.ModuleList([ nn.ModuleList([ ConvNorm(self.num_filters(32, head_ratio), self.num_filters(16, head_ratio), kernel_size=1, bias=False, groups=1, slimmable=False), ConvNorm(self.num_filters(32, head_ratio), self.num_filters(16, head_ratio), kernel_size=3, padding=1, bias=False, groups=1, slimmable=False), ConvNorm(self.num_filters(16, head_ratio), self.num_filters(8, head_ratio), kernel_size=1, bias=False, groups=1, slimmable=False), ConvNorm(self.num_filters(16, head_ratio), self.num_filters(8, head_ratio), kernel_size=3, padding=1, bias=False, groups=1, slimmable=False)]) for _, head_ratio in self._stem_head_width ]) self.refine16 = nn.ModuleList([ nn.ModuleList([ ConvNorm(self.num_filters(16, head_ratio), self.num_filters(8, head_ratio), kernel_size=1, bias=False, groups=1, slimmable=False), ConvNorm(self.num_filters(16, head_ratio), self.num_filters(8, head_ratio), kernel_size=3, padding=1, bias=False, groups=1, slimmable=False)]) for _, head_ratio in self._stem_head_width ]) self.head0 = nn.ModuleList([ Head(self.num_filters(8, head_ratio), num_classes, False) for _, head_ratio in self._stem_head_width ]) self.head1 = nn.ModuleList([ Head(self.num_filters(8, head_ratio), num_classes, False) for _, head_ratio in self._stem_head_width ]) self.head2 = nn.ModuleList([ Head(self.num_filters(8, head_ratio), num_classes, False) for _, head_ratio in self._stem_head_width ]) self.head02 = nn.ModuleList([ Head(self.num_filters(8, head_ratio)*2, num_classes, False) for _, head_ratio in self._stem_head_width ]) self.head12 = nn.ModuleList([ Head(self.num_filters(8, head_ratio)*2, num_classes, False) for _, head_ratio in self._stem_head_width ]) # contains arch_param names: {"alphas": alphas, "betas": betas, "ratios": ratios} self._arch_names = [] self._arch_parameters = [] for i in range(len(self._prun_modes)): arch_name, arch_param = self._build_arch_parameters(i) self._arch_names.append(arch_name) self._arch_parameters.append(arch_param) self._reset_arch_parameters(i) # switch set of arch if we have more than 1 arch self.arch_idx = 0 def num_filters(self, scale, width=1.0): return int(np.round(scale * self._Fch * width)) def new(self): model_new = Network(self._num_classes, self._layers, self._criterion, self._Fch).cuda() for x, y in zip(model_new.arch_parameters(), self.arch_parameters()): x.data.copy_(y.data) return model_new def sample_prun_ratio(self, mode="arch_ratio"): ''' mode: "min"|"max"|"random"|"arch_ratio"(default) ''' assert mode in ["min", "max", "random", "arch_ratio"] if mode == "arch_ratio": ratios = self._arch_names[self.arch_idx]["ratios"] ratios0 = getattr(self, ratios[0]) ratios0_sampled = [] for layer in range(self._layers - 1): ratios0_sampled.append(gumbel_softmax(F.log_softmax(ratios0[layer], dim=-1), hard=True)) ratios1 = getattr(self, ratios[1]) ratios1_sampled = [] for layer in range(self._layers - 1): ratios1_sampled.append(gumbel_softmax(F.log_softmax(ratios1[layer], dim=-1), hard=True)) ratios2 = getattr(self, ratios[2]) ratios2_sampled = [] for layer in range(self._layers - 2): ratios2_sampled.append(gumbel_softmax(F.log_softmax(ratios2[layer], dim=-1), hard=True)) return [ratios0_sampled, ratios1_sampled, ratios2_sampled] elif mode == "min": ratios0_sampled = [] for layer in range(self._layers - 1): ratios0_sampled.append(self._width_mult_list[0]) ratios1_sampled = [] for layer in range(self._layers - 1): ratios1_sampled.append(self._width_mult_list[0]) ratios2_sampled = [] for layer in range(self._layers - 2): ratios2_sampled.append(self._width_mult_list[0]) return [ratios0_sampled, ratios1_sampled, ratios2_sampled] elif mode == "max": ratios0_sampled = [] for layer in range(self._layers - 1): ratios0_sampled.append(self._width_mult_list[-1]) ratios1_sampled = [] for layer in range(self._layers - 1): ratios1_sampled.append(self._width_mult_list[-1]) ratios2_sampled = [] for layer in range(self._layers - 2): ratios2_sampled.append(self._width_mult_list[-1]) return [ratios0_sampled, ratios1_sampled, ratios2_sampled] elif mode == "random": ratios0_sampled = [] for layer in range(self._layers - 1): ratios0_sampled.append(np.random.choice(self._width_mult_list)) ratios1_sampled = [] for layer in range(self._layers - 1): ratios1_sampled.append(np.random.choice(self._width_mult_list)) ratios2_sampled = [] for layer in range(self._layers - 2): ratios2_sampled.append(np.random.choice(self._width_mult_list)) return [ratios0_sampled, ratios1_sampled, ratios2_sampled] def forward(self, input): # out_prev: cell-state # index 0: keep; index 1: down stem = self.stem[self.arch_idx] refine16 = self.refine16[self.arch_idx] refine32 = self.refine32[self.arch_idx] head0 = self.head0[self.arch_idx] head1 = self.head1[self.arch_idx] head2 = self.head2[self.arch_idx] head02 = self.head02[self.arch_idx] head12 = self.head12[self.arch_idx] alphas0 = F.softmax(getattr(self, self._arch_names[self.arch_idx]["alphas"][0]), dim=-1) alphas1 = F.softmax(getattr(self, self._arch_names[self.arch_idx]["alphas"][1]), dim=-1) alphas2 = F.softmax(getattr(self, self._arch_names[self.arch_idx]["alphas"][2]), dim=-1) alphas = [alphas0, alphas1, alphas2] betas1 = F.softmax(getattr(self, self._arch_names[self.arch_idx]["betas"][0]), dim=-1) betas2 = F.softmax(getattr(self, self._arch_names[self.arch_idx]["betas"][1]), dim=-1) betas = [None, betas1, betas2] if self.prun_mode is not None: ratios = self.sample_prun_ratio(mode=self.prun_mode) else: ratios = self.sample_prun_ratio(mode=self._prun_modes[self.arch_idx]) out_prev = [[stem(input), None]] # stem: one cell # i: layer | j: scale for i, cells in enumerate(self.cells): # layers out = [] for j, cell in enumerate(cells): # scales # out,down -- 0: from down; 1: from keep out0 = None; out1 = None down0 = None; down1 = None alpha = alphas[j][i-j] # ratio: (in, out, down) # int: force #channel; tensor: arch_ratio; float(<=1): force width if i == 0 and j == 0: # first cell ratio = (self._stem_head_width[self.arch_idx][0], ratios[j][i-j], ratios[j+1][i-j]) elif i == self._layers - 1: # cell in last layer if j == 0: ratio = (ratios[j][i-j-1], self._stem_head_width[self.arch_idx][1], None) else: ratio = (ratios[j][i-j], self._stem_head_width[self.arch_idx][1], None) elif j == 2: # cell in last scale: no down ratio "None" ratio = (ratios[j][i-j], ratios[j][i-j+1], None) else: if j == 0: ratio = (ratios[j][i-j-1], ratios[j][i-j], ratios[j+1][i-j]) else: ratio = (ratios[j][i-j], ratios[j][i-j+1], ratios[j+1][i-j]) # out,down -- 0: from down; 1: from keep if j == 0: out1, down1 = cell(out_prev[0][0], alpha, ratio) out.append((out1, down1)) else: if i == j: out0, down0 = cell(out_prev[j-1][1], alpha, ratio) out.append((out0, down0)) else: if betas[j][i-j-1][0] > 0: out0, down0 = cell(out_prev[j-1][1], alpha, ratio) if betas[j][i-j-1][1] > 0: out1, down1 = cell(out_prev[j][0], alpha, ratio) out.append(( sum(w * out for w, out in zip(betas[j][i-j-1], [out0, out1])), sum(w * down if down is not None else 0 for w, down in zip(betas[j][i-j-1], [down0, down1])), )) out_prev = out ################################### out0 = None; out1 = None; out2 = None out0 = out[0][0] out1 = F.interpolate(refine16[0](out[1][0]), scale_factor=2, mode='bilinear', align_corners=True) out1 = refine16[1](torch.cat([out1, out[0][0]], dim=1)) out2 = F.interpolate(refine32[0](out[2][0]), scale_factor=2, mode='bilinear', align_corners=True) out2 = refine32[1](torch.cat([out2, out[1][0]], dim=1)) out2 = F.interpolate(refine32[2](out2), scale_factor=2, mode='bilinear', align_corners=True) out2 = refine32[3](torch.cat([out2, out[0][0]], dim=1)) pred0 = head0(out0) pred1 = head1(out1) pred2 = head2(out2) pred02 = head02(torch.cat([out0, out2], dim=1)) pred12 = head12(torch.cat([out1, out2], dim=1)) if not self.training: pred0 = F.interpolate(pred0, scale_factor=8, mode='bilinear', align_corners=True) pred1 = F.interpolate(pred1, scale_factor=8, mode='bilinear', align_corners=True) pred2 = F.interpolate(pred2, scale_factor=8, mode='bilinear', align_corners=True) pred02 = F.interpolate(pred02, scale_factor=8, mode='bilinear', align_corners=True) pred12 = F.interpolate(pred12, scale_factor=8, mode='bilinear', align_corners=True) return pred0, pred1, pred2, pred02, pred12 ################################### def forward_latency(self, size, alpha=True, beta=True, ratio=True): # out_prev: cell-state # index 0: keep; index 1: down stem = self.stem[self.arch_idx] if alpha: alphas0 = F.softmax(getattr(self, self._arch_names[self.arch_idx]["alphas"][0]), dim=-1) alphas1 = F.softmax(getattr(self, self._arch_names[self.arch_idx]["alphas"][1]), dim=-1) alphas2 = F.softmax(getattr(self, self._arch_names[self.arch_idx]["alphas"][2]), dim=-1) alphas = [alphas0, alphas1, alphas2] else: alphas = [ torch.ones_like(getattr(self, self._arch_names[self.arch_idx]["alphas"][0])).cuda() * 1./len(PRIMITIVES), torch.ones_like(getattr(self, self._arch_names[self.arch_idx]["alphas"][1])).cuda() * 1./len(PRIMITIVES), torch.ones_like(getattr(self, self._arch_names[self.arch_idx]["alphas"][2])).cuda() * 1./len(PRIMITIVES)] if beta: betas1 = F.softmax(getattr(self, self._arch_names[self.arch_idx]["betas"][0]), dim=-1) betas2 = F.softmax(getattr(self, self._arch_names[self.arch_idx]["betas"][1]), dim=-1) betas = [None, betas1, betas2] else: betas = [ None, torch.ones_like(getattr(self, self._arch_names[self.arch_idx]["betas"][0])).cuda() * 1./2, torch.ones_like(getattr(self, self._arch_names[self.arch_idx]["betas"][1])).cuda() * 1./2] if ratio: # ratios = self.sample_prun_ratio(mode='arch_ratio') if self.prun_mode is not None: ratios = self.sample_prun_ratio(mode=self.prun_mode) else: ratios = self.sample_prun_ratio(mode=self._prun_modes[self.arch_idx]) else: ratios = self.sample_prun_ratio(mode='max') stem_latency = 0 latency, size = stem[0].forward_latency(size); stem_latency = stem_latency + latency latency, size = stem[1].forward_latency(size); stem_latency = stem_latency + latency latency, size = stem[2].forward_latency(size); stem_latency = stem_latency + latency out_prev = [[size, None]] # stem: one cell latency_total = [[stem_latency, 0], [0, 0], [0, 0]] # (out, down) # i: layer | j: scale for i, cells in enumerate(self.cells): # layers out = [] latency = [] for j, cell in enumerate(cells): # scales # out,down -- 0: from down; 1: from keep out0 = None; out1 = None down0 = None; down1 = None alpha = alphas[j][i-j] # ratio: (in, out, down) # int: force #channel; tensor: arch_ratio; float(<=1): force width if i == 0 and j == 0: # first cell ratio = (self._stem_head_width[self.arch_idx][0], ratios[j][i-j], ratios[j+1][i-j]) elif i == self._layers - 1: # cell in last layer if j == 0: ratio = (ratios[j][i-j-1], self._stem_head_width[self.arch_idx][1], None) else: ratio = (ratios[j][i-j], self._stem_head_width[self.arch_idx][1], None) elif j == 2: # cell in last scale ratio = (ratios[j][i-j], ratios[j][i-j+1], None) else: if j == 0: ratio = (ratios[j][i-j-1], ratios[j][i-j], ratios[j+1][i-j]) else: ratio = (ratios[j][i-j], ratios[j][i-j+1], ratios[j+1][i-j]) # out,down -- 0: from down; 1: from keep if j == 0: out1, down1 = cell.forward_latency(out_prev[0][0], alpha, ratio) out.append((out1[1], down1[1] if down1 is not None else None)) latency.append([out1[0], down1[0] if down1 is not None else None]) else: if i == j: out0, down0 = cell.forward_latency(out_prev[j-1][1], alpha, ratio) out.append((out0[1], down0[1] if down0 is not None else None)) latency.append([out0[0], down0[0] if down0 is not None else None]) else: if betas[j][i-j-1][0] > 0: # from down out0, down0 = cell.forward_latency(out_prev[j-1][1], alpha, ratio) if betas[j][i-j-1][1] > 0: # from keep out1, down1 = cell.forward_latency(out_prev[j][0], alpha, ratio) assert (out0 is None and out1 is None) or out0[1] == out1[1] assert (down0 is None and down1 is None) or down0[1] == down1[1] out.append((out0[1], down0[1] if down0 is not None else None)) latency.append([ sum(w * out for w, out in zip(betas[j][i-j-1], [out0[0], out1[0]])), sum(w * down if down is not None else 0 for w, down in zip(betas[j][i-j-1], [down0[0] if down0 is not None else None, down1[0] if down1 is not None else None])), ]) out_prev = out for ii, lat in enumerate(latency): # layer: i | scale: ii if ii == 0: # only from keep if lat[0] is not None: latency_total[ii][0] = latency_total[ii][0] + lat[0] if lat[1] is not None: latency_total[ii][1] = latency_total[ii][0] + lat[1] else: if i == ii: # only from down if lat[0] is not None: latency_total[ii][0] = latency_total[ii-1][1] + lat[0] if lat[1] is not None: latency_total[ii][1] = latency_total[ii-1][1] + lat[1] else: if lat[0] is not None: latency_total[ii][0] = betas[j][i-j-1][1] * latency_total[ii][0] + betas[j][i-j-1][0] * latency_total[ii-1][1] + lat[0] if lat[1] is not None: latency_total[ii][1] = betas[j][i-j-1][1] * latency_total[ii][0] + betas[j][i-j-1][0] * latency_total[ii-1][1] + lat[1] ################################### latency0 = latency_total[0][0] latency1 = latency_total[1][0] latency2 = latency_total[2][0] latency = sum([latency0, latency1, latency2]) return latency ################################### def _loss(self, input, target, pretrain=False): loss = 0 if pretrain is not True: # "random width": sampled by gambel softmax self.prun_mode = None for idx in range(len(self._arch_names)): self.arch_idx = idx logits = self(input) loss = loss + sum(self._criterion(logit, target) for logit in logits) if len(self._width_mult_list) > 1: self.prun_mode = "max" logits = self(input) loss = loss + sum(self._criterion(logit, target) for logit in logits) self.prun_mode = "min" logits = self(input) loss = loss + sum(self._criterion(logit, target) for logit in logits) if pretrain == True: self.prun_mode = "random" logits = self(input) loss = loss + sum(self._criterion(logit, target) for logit in logits) self.prun_mode = "random" logits = self(input) loss = loss + sum(self._criterion(logit, target) for logit in logits) elif pretrain == True and len(self._width_mult_list) == 1: self.prun_mode = "max" logits = self(input) loss = loss + sum(self._criterion(logit, target) for logit in logits) return loss def _build_arch_parameters(self, idx): num_ops = len(PRIMITIVES) # define names alphas = [ "alpha_"+str(idx)+"_"+str(scale) for scale in [0, 1, 2] ] betas = [ "beta_"+str(idx)+"_"+str(scale) for scale in [1, 2] ] setattr(self, alphas[0], nn.Parameter(Variable(1e-3*torch.ones(self._layers, num_ops), requires_grad=True))) setattr(self, alphas[1], nn.Parameter(Variable(1e-3*torch.ones(self._layers-1, num_ops), requires_grad=True))) setattr(self, alphas[2], nn.Parameter(Variable(1e-3*torch.ones(self._layers-2, num_ops), requires_grad=True))) # betas are now in-degree probs # 0: from down; 1: from keep setattr(self, betas[0], nn.Parameter(Variable(1e-3*torch.ones(self._layers-2, 2), requires_grad=True))) setattr(self, betas[1], nn.Parameter(Variable(1e-3*torch.ones(self._layers-3, 2), requires_grad=True))) ratios = [ "ratio_"+str(idx)+"_"+str(scale) for scale in [0, 1, 2] ] if self._prun_modes[idx] == 'arch_ratio': # prunning ratio num_widths = len(self._width_mult_list) else: num_widths = 1 setattr(self, ratios[0], nn.Parameter(Variable(1e-3*torch.ones(self._layers-1, num_widths), requires_grad=True))) setattr(self, ratios[1], nn.Parameter(Variable(1e-3*torch.ones(self._layers-1, num_widths), requires_grad=True))) setattr(self, ratios[2], nn.Parameter(Variable(1e-3*torch.ones(self._layers-2, num_widths), requires_grad=True))) return {"alphas": alphas, "betas": betas, "ratios": ratios}, [getattr(self, name) for name in alphas] + [getattr(self, name) for name in betas] + [getattr(self, name) for name in ratios] def _reset_arch_parameters(self, idx): num_ops = len(PRIMITIVES) if self._prun_modes[idx] == 'arch_ratio': # prunning ratio num_widths = len(self._width_mult_list) else: num_widths = 1 getattr(self, self._arch_names[idx]["alphas"][0]).data = Variable(1e-3*torch.ones(self._layers, num_ops), requires_grad=True) getattr(self, self._arch_names[idx]["alphas"][1]).data = Variable(1e-3*torch.ones(self._layers-1, num_ops), requires_grad=True) getattr(self, self._arch_names[idx]["alphas"][2]).data = Variable(1e-3*torch.ones(self._layers-2, num_ops), requires_grad=True) getattr(self, self._arch_names[idx]["betas"][0]).data = Variable(1e-3*torch.ones(self._layers-2, 2), requires_grad=True) getattr(self, self._arch_names[idx]["betas"][1]).data = Variable(1e-3*torch.ones(self._layers-3, 2), requires_grad=True) getattr(self, self._arch_names[idx]["ratios"][0]).data = Variable(1e-3*torch.ones(self._layers-1, num_widths), requires_grad=True) getattr(self, self._arch_names[idx]["ratios"][1]).data = Variable(1e-3*torch.ones(self._layers-1, num_widths), requires_grad=True) getattr(self, self._arch_names[idx]["ratios"][2]).data = Variable(1e-3*torch.ones(self._layers-2, num_widths), requires_grad=True)
py
b40297ddfd0073ca088b1ceecfd40e2997bed60d
from pycoin.intbytes import byte2int, iterbytes from ..script import tools from ... import encoding from ...serialize import b2h from ..exceptions import SolvingError from .ScriptType import ScriptType from pycoin.contrib import segwit_addr class ScriptPayToAddressWit(ScriptType): TEMPLATE = tools.compile("OP_0 'PUBKEYHASH'") def __init__(self, version, hash160): assert len(version) == 1 assert isinstance(version, bytes) assert len(hash160) == 20 assert isinstance(hash160, bytes) version_int = byte2int(version) assert 0 <= version_int <= 16 self.version = version_int self.hash160 = hash160 self._address = None self._script = None @classmethod def from_script(cls, script): r = cls.match(script) if r: hash160 = r["PUBKEYHASH_LIST"][0] if len(hash160) == 20: s = cls(b'\0', hash160) return s raise ValueError("bad script") def script(self): if self._script is None: # create the script STANDARD_SCRIPT_OUT = "OP_%d %s" script_text = STANDARD_SCRIPT_OUT % (self.version, b2h(self.hash160)) self._script = tools.compile(script_text) return self._script def solve(self, **kwargs): """ The kwargs required depend upon the script type. hash160_lookup: dict-like structure that returns a secret exponent for a hash160 signature_for_hash_type_f: function returning sign value for a given signature type signature_type: usually SIGHASH_ALL (1) """ # we need a hash160 => secret_exponent lookup db = kwargs.get("hash160_lookup") if db is None: raise SolvingError("missing hash160_lookup parameter") result = db.get(self.hash160) if result is None: raise SolvingError("can't find secret exponent for %s" % self.address()) # we got it script_to_hash = tools.compile( "OP_DUP OP_HASH160 %s OP_EQUALVERIFY OP_CHECKSIG" % b2h(self.hash160)) signature_for_hash_type_f = kwargs.get("signature_for_hash_type_f").witness signature_type = kwargs.get("signature_type") secret_exponent, public_pair, compressed = result binary_signature = self._create_script_signature( secret_exponent, signature_for_hash_type_f, signature_type, script_to_hash) binary_public_pair_sec = encoding.public_pair_to_sec(public_pair, compressed=compressed) solution = [binary_signature, binary_public_pair_sec] return (b'', solution) def info(self, netcode=None): def address_f(netcode=netcode): from pycoin.networks import bech32_hrp_for_netcode from pycoin.networks.default import get_current_netcode if netcode is None: netcode = get_current_netcode() bech32_hrp = bech32_hrp_for_netcode(netcode) if bech32_hrp: return segwit_addr.encode(bech32_hrp, self.version, iterbytes(self.hash160)) return None return dict(type="pay to witness public key hash", address="DEPRECATED call address_f instead", address_f=address_f, hash160=self.hash160, script=self._script) def __repr__(self): return "<Script: pay to %s (segwit)>" % self.address()
py
b4029823029d858961461b47c58549903bd86fc0
from datetime import datetime, timedelta, time from django.contrib.auth.models import AbstractUser from django.contrib.postgres.fields import ArrayField from django.core.urlresolvers import reverse from django.db import models from django.db.models import Q from django.db.models.signals import post_save from django.dispatch import receiver from django.utils import timezone from django.utils.encoding import python_2_unicode_compatible from imagekit.models import ImageSpecField from pilkit.processors import SmartResize from .user import User from .organization import Organization class OrganizationSubscriptionManager(models.Manager): """Custom manager for Subscription.""" def create_subscription(self, organization, collaborations, contractors): """Method for quick creation of subscription.""" subscription = self.create( organization=organization, collaborations=collaborations, contractors=contractors, partner_discovery=partner_discovery, ) return subscription @python_2_unicode_compatible class OrganizationSubscription(models.Model): """Details of an organization subscription.""" # if subscription is for an org account, associate with that org # FIXME should be a one to one relationship organization = models.OneToOneField( Organization, help_text='Organization associated with this subscription if Org subscription type.', on_delete=models.CASCADE, ) # Organization functionality collaborations = models.BooleanField( default=False, help_text='The organization is using the account for base features of editorial workflow, project management and collaboration.', ) contractors = models.BooleanField( default=False, help_text='The organization is using the account to manage contractors.', ) partner_discovery = models.BooleanField( default=True, help_text='Base level subscription. Allows organization to be publicly listed for search as a potential collaborative partner. Allows org users to see other publicly listed orgs.', ) objects = OrganizationSubscriptionManager() def __str__(self): return "Organization Subscription - {organization}".format(organization=self.organization.name) class ContractorSubscriptionManager(models.Manager): """Custom manager for contractor subscription.""" def create_subscription(self, user, standard): """Method for quick creation of subscription.""" subscription = self.create( user=user, standard=standard, ) return subscription @python_2_unicode_compatible class ContractorSubscription(models.Model): """Details of a contractor subscription. V1.0 limited utility but future-facing necessity. """ # if subscription is for an org account, associate with that org user = models.ForeignKey( User, help_text='User associated with this subscription.', on_delete=models.CASCADE, ) # Organization functionality standard = models.BooleanField( default=True, help_text='If an organization is using the account for base features of editorial workflow, project management and collaboration.', ) objects = ContractorSubscriptionManager() def __str__(self): return "Contractor Subscription - {user}".format(user=self.user.credit_name)
py
b40298e2d1452d88e5c78999a512bfc95a1675f3
# buy.py
py
b402990dae88aa92c6bc5db38747380bedb4fba4
from __future__ import absolute_import, division, print_function # # Handle multiprocessing with any of the implemented methods so that this step # is abstracted away from the use case (e.g. cxi_mpi_submit). # from libtbx.utils import Sorry import os import math mp_phil_str = ''' mp { method = local *lsf sge pbs slurm shifter htcondor custom .type = choice .help = Computing environment use_mpi = True .type = bool .help = Use mpi multiprocessing nproc = 1 .type = int .help = Number of processes total (== nnodes x nproc_per_node). \ If two of the three params (nproc, nnodes, nproc_per_node) are \ specified, the last will be determined by modular arithmetic. \ If all three are specified, nnodes is ignored. nproc alone is \ sufficient for most methods. nnodes = 1 .type = int .help = Number of nodes to request nnodes_index = None .type = int .help = If defined, use this many nodes for indexing and integration. \ Currently only works for mp.method=shifter or slurm. nnodes_scale = None .type = int .help = If defined, use this many nodes for scaling. \ Currently only works for mp.method=shifter or slurm. nnodes_merge = None .type = int .help = If defined, use this many nodes for merging. \ Currently only works for mp.method=shifter or slurm. nproc_per_node = 1 .type = int .help = Number of processes to allocate per node queue = None .type = str .help = Queue to submit multiprocessing job to (optional for some methods) memory = None .type = int .help = Memory (in MB) to allocate for a job (optional) wall_time = None .type = int .help = Wall time limit (in minutes) to impose (optional) extra_options = None .type = str .multiple = True .help = Any other options to be included in the job submission command extra_args = None .type = str .multiple = True .help = Any other arguments to the main command env_script = None .type = str .multiple = True .help = Path to script sourcing a particular environment (optional) local { include_mp_in_command = True .type = bool .help = Whether to decorate command with appropiate multiprocessing \ arguments. If False, it's assumed the multiprocessing \ arguments are provided by the calling program. } shifter { submit_command = "sbatch " .type = str .help = Command used to run the zero-level script sbatch.sh. shifter_image = None .type = str .help = Name of Shifter image to use for processing, as you would use \ in an sbatch script. Example: docker:dwpaley/cctbx-xfel:fix18 sbatch_script_template = None .type = path .help = Script template to be run with sbatch. The script will be copied \ to the trial directory as sbatch.sh and modified. Must contain \ exactly one srun command of the format srun [...] <srun_script> \ (including the <> brackets). May contain additional srun commands. \ May also contain substitutables <walltime>, <partition>, <nnodes> \ and <nproc>. srun_script_template = None .type = path .help = Script template to be run with srun. The script will be copied \ to the trial directory as srun.sh and modified. Must contain \ exactly one instance of the string <command> (including the <> \ brackets) after setting up the necessary environment. partition = regular .type = str .help = Partition to run jobs on, e.g. regular or debug. jobname = LCLS_EXP .type = str .help = Job Name project = None .type = str .help = Name of NERSC project -- formerly "repo" reservation = None .type = str .help = Name of NERSC reservation constraint = haswell .type = str .help = Haswell or KNL staging = DataWarp *None .type = choice .help = Optionally stage logs to the DataWarp burst buffer. Only works \ when writing to Cori cscratch. } htcondor { executable_path = None .type = path .help = Path to executable script (should be openmpiscript or mp2script). \ See examples folder that comes with htcondor. filesystemdomain = sdfarm.kr .type = str .help = Domain of shared filesystem (see htcondor docs) } custom { submit_command_template = None .type = str .help = Job submission command template. There should be one instance of the \ string <script> (including the <> brackets) in the command template. \ Fields <queue>, <nproc>, <memory>, <walltime>, <outfile>, <errfile>, \ <envscripts>, and <args> will similarly be replaced if present. submit_script_template = None .type = path .help = Submission script template. The script will be copied to the trial \ directory and modified. There should be one instance of the string \ <command> (including the <> brackets) in the template script, which \ will be replaced with the processing command. <queue>, <nproc>, \ <memory>, <walltime>, <outfile>, <errfile>, <envscripts>, and <args> \ will similarly be replaced if present. wall_time_string = None .type = str .help = Fully formatted wall time limit (e.g. 00:30:00). For custom computing \ environments, mp.wall_time is ignored because the format is unknown. } encapsulate_submit_script = True .type = bool .help = Encapsulate the submission command itself in another script containing \ the job submission command (e.g. qsub, bsub, condor_submit, sbatch \ etc. } ''' class get_submit_command(object): def __init__(self, command, submit_path, stdoutdir, params, log_name="log.out", err_name="log.err", job_name=None, root_dir=None): """ Get a submit command for the various compute environments @param command Any command line program and its arguments @param submit_path Submit script will be written here @param stdoutdir Log file will be created in this directory @param params Multiprocessing phil params (see mp_phil_scope) @param log_name Filename for stdout (optional). @param err_name Filename for stderr (if None, combined with the stdout). @param job_name For applicable queueing systems, identifier for the job (optional). """ self.shell_path = "/bin/sh" self.source_env_scripts = [] self.options_inside_submit_script = [] self.submit_head = "qsub" self.submit_path = submit_path self.stdoutdir = stdoutdir self.log_name = log_name self.err_name = err_name self.params = params self.job_name = job_name self.root_dir = root_dir self.command = command self.options = [] self.args = [] def customize_for_method(self): pass def eval_params(self): pass def substitute(self, template, marker, value): if marker in template: if value is None: raise Sorry("No value found for %s" % marker) return template.replace(marker, value) else: return template def delete(self, template, marker): template_lines = template.split('\n') return '\n'.join([l for l in template_lines if marker not in l]) def make_executable(self, file): import stat st = os.stat(file) os.chmod(file, st.st_mode | stat.S_IXUSR) def write_script(self): command_str = " ".join([self.command] + self.args) with open(self.submit_path, 'w') as f: f.write("#! %s\n" % self.shell_path) for line in self.options_inside_submit_script: f.write("%s\n" % line) for line in self.source_env_scripts: f.write("%s\n" % line) f.write("\n") f.write("%s\n" % command_str) self.make_executable(self.submit_path) def generate_submit_command(self): return " ".join([self.submit_head] + self.options + [self.submit_path]) def encapsulate_submit(self): path, ext = os.path.splitext(self.submit_path) encapsulate_path = path + "_submit" + ext with open(encapsulate_path, 'w') as f: f.write("#! /bin/%s\n\n" % ext[1:]) f.write(self.generate_submit_command()) f.write("\n") def __call__(self): self.customize_for_method() self.eval_params() self.write_script() if self.params.encapsulate_submit_script: self.encapsulate_submit() return self.generate_submit_command() class get_local_submit_command(get_submit_command): def customize_for_method(self): if self.params.local.include_mp_in_command: if self.params.use_mpi: self.command = "mpirun -n %d %s mp.method=mpi" % (self.params.nproc, self.command) elif self.params.nproc > 1: self.command += " mp.nproc=%d" % self.params.nproc def generate_submit_command(self): return self.submit_path class get_lsf_submit_command(get_submit_command): def customize_for_method(self): self.submit_head = "bsub" if self.params.use_mpi: self.command = "mpirun %s mp.method=mpi" % self.command def eval_params(self): # -n <nproc> nproc_str = "-n %d" % self.params.nproc self.options.append(nproc_str) # -o <outfile> out_str = "-o %s" % os.path.join(self.stdoutdir, self.log_name) self.options.append(out_str) # -e <errfile> (optional) if self.err_name is not None: err_str = "-e %s" % os.path.join(self.stdoutdir, self.err_name) self.options.append(err_str) # -q <queue> (optional on LSF) if self.params.queue is not None: queue_str = "-q %s" % self.params.queue self.options.append(queue_str) # -W <wall_time_limit> (optional) if self.params.wall_time is not None: hours = self.params.wall_time // 60 minutes = self.params.wall_time % 60 wt_str = "-W %2d:%02d" % (hours, minutes) self.options.append(wt_str) # -R "rusage[mem=<memory_requested>]" (optional) if self.params.memory is not None: memory_str = "-R \"rusage[mem=%d]\"" % self.params.memory self.options.append(memory_str) # <extra_options> (optional, preceding the command) for cmd in self.params.extra_options: self.options.append(cmd) # source </path/to/env.sh> (optional) for env in self.params.env_script: env_str = "source %s\n" % env self.source_env_scripts.append(env_str) # <args> (optional, following the command) for arg in self.params.extra_args: self.args.append(arg) class get_sge_submit_command(get_submit_command): def customize_for_method(self): self.shell_path += " -q" self.options.append("-cwd") # self.options.append("mp.method=sge") if self.params.use_mpi: self.command = "mpirun -n ${NSLOTS} %s mp.method=mpi"%(self.command) #This command currently (14/10/2020) has problems at Diamond as it will randomly use incorrect number of cores else: self.command = "%s mp.nproc=${NSLOTS}"%(self.command) def eval_params(self): # -t 1-<nproc> if self.params.nproc > 1: nproc_str = "-pe smp %d" % self.params.nproc #Change the submission command to smp, as the openmpi currently confilicts with mpi of Dials and cctbx.xfel.merge self.options.append(nproc_str) # -o <outfile> out_str = "-o %s" % os.path.join(self.stdoutdir, self.log_name) self.options.append(out_str) # -j [y/n] -e <errfile> (optional) if self.err_name is not None: err_str = "-j n -e %s" % os.path.join(self.stdoutdir, self.err_name) self.options.append(err_str) else: self.options.append("-j y") # -q <queue> if self.params.queue is None: raise Sorry("Queue not specified.") queue_str = "-q %s" % self.params.queue self.options.append(queue_str) # -l h_rt=<wall_time_limit> (optional) if self.params.wall_time is not None: hours = self.params.wall_time // 60 minutes = self.params.wall_time % 60 wt_str = "-l h_rt=%02d:%02d:00" % (hours, minutes) self.options.append(wt_str) # -l mem_free=<memory_requested> (optional) if self.params.memory is not None: memory_str = "-l mem_free=%dM" % self.params.memory self.options.append(memory_str) # -N <job_name> if self.job_name is not None: name_str = "-N %s" % self.job_name self.options.append(name_str) # <extra_options> (optional, preceding the command) for cmd in self.params.extra_options: self.options.append(cmd) # source </path/to/env.sh> (optional) for env in self.params.env_script: env_str = "source %s\n" % env self.source_env_scripts.append(env_str) # <args> (optional, following the command) for arg in self.params.extra_args: self.args.append(arg) class get_pbs_submit_command(get_submit_command): def customize_for_method(self): if (self.params.nnodes > 1) or (self.params.nproc_per_node > 1): self.params.nproc = self.params.nnodes * self.params.nproc_per_node if self.params.use_mpi: self.command = "mpiexec --hostfile $PBS_NODEFILE %s mp.method=mpi" % (self.command) def eval_params(self): # # -t 1-<nproc> # deprecated # if self.params.nproc > 1: # nproc_str = "#PBS -l mppwidth=%d" % self.params.nproc # self.options_inside_submit_script.append(nproc_str) # -l nodes=<nnodes>:ppn=<procs_per_node> if max(self.params.nproc, self.params.nproc_per_node, self.params.nnodes) > 1: # If specified, nproc overrides procs_per_node and procs_per_node overrides # nnodes. One process per node is requested if only nproc is specified. if self.params.nproc > 1: import math if self.params.nproc <= self.params.nproc_per_node: procs_per_node = self.params.nproc nnodes = 1 elif self.params.nproc_per_node > 1: procs_per_node = self.params.nproc_per_node nnodes = int(math.ceil(self.params.nproc/procs_per_node)) elif self.params.nnodes > 1: procs_per_node = int(math.ceil(self.params.nproc/self.params.nnodes)) nnodes = self.params.nnodes else: # insufficient information; allocate 1 proc per node procs_per_node = 1 nnodes = self.params.nproc else: procs_per_node = self.params.nproc_per_node nnodes = self.params.nnodes nproc_str = "#PBS -l nodes=%d:ppn=%d" % (nnodes, procs_per_node) self.options_inside_submit_script.append(nproc_str) # -o <outfile> out_str = "#PBS -o %s" % os.path.join(self.stdoutdir, self.log_name) self.options_inside_submit_script.append(out_str) # [-j oe/-e <errfile>] (optional) if self.err_name is not None: err_str = "#PBS -e %s" % os.path.join(self.stdoutdir, self.err_name) self.options_inside_submit_script.append(err_str) else: self.options_inside_submit_script.append("#PBS -j oe") # -q <queue> if self.params.queue is None: raise Sorry("Queue not specified.") queue_str = "#PBS -q %s" % self.params.queue self.options_inside_submit_script.append(queue_str) # -l walltime=<wall_time_limit> (optional) if self.params.wall_time is not None: hours = self.params.wall_time // 60 minutes = self.params.wall_time % 60 wt_str = "#PBS -l walltime=%2d:%02d:00" % (hours, minutes) self.options_inside_submit_script.append(wt_str) # -l mem_free=<memory_requested> (optional) if self.params.memory is not None: memory_str = "#PBS -l mem=%dmb" % self.params.memory self.options_inside_submit_script.append(memory_str) # -N <job_name> if self.job_name is not None: name_str = "#PBS -N %s" % self.job_name self.options_inside_submit_script.append(name_str) # <extra_options> (optional, preceding the command) for cmd in self.params.extra_options: cmd_str = "#PBS %s" % cmd self.options_inside_submit_script.append(cmd_str) if self.root_dir is not None: cmd_str = "cd %s"%self.root_dir self.options_inside_submit_script.append(cmd_str) # source </path/to/env.sh> (optional) for env in self.params.env_script: env_str = "source %s\n" % env self.source_env_scripts.append(env_str) # <args> (optional, following the command) for arg in self.params.extra_args: self.args.append(arg) class get_slurm_submit_command(get_submit_command): def customize_for_method(self): self.submit_head = "sbatch" if self.params.use_mpi: self.command = "mpirun %s mp.method=mpi" % (self.command) def eval_params(self): nproc = self.params.nnodes * self.params.nproc_per_node nproc_str = "#SBATCH --nodes %d\n#SBATCH --ntasks-per-node=%d" % ( self.params.nnodes, self.params.nproc_per_node ) self.options_inside_submit_script.append(nproc_str) # -o <outfile> out_str = "#SBATCH --output=%s" % os.path.join(self.stdoutdir, self.log_name) self.options_inside_submit_script.append(out_str) # [-j oe/-e <errfile>] (optional) if self.err_name is not None: err_str = "#SBATCH --error=%s" % os.path.join(self.stdoutdir, self.err_name) self.options_inside_submit_script.append(err_str) # -q <queue> if self.params.queue is None: raise Sorry("Queue not specified.") queue_str = "#SBATCH --partition %s" % self.params.queue self.options_inside_submit_script.append(queue_str) # -l walltime=<wall_time_limit> (optional) if self.params.wall_time is not None: hours = self.params.wall_time // 60 minutes = self.params.wall_time % 60 wt_str = "#SBATCH --time=%2d:%02d:00" % (hours, minutes) self.options_inside_submit_script.append(wt_str) # -l mem_free=<memory_requested> (optional) if self.params.memory is not None: memory_str = "#SBATCH --mem=%dmb" % self.params.memory self.options_inside_submit_script.append(memory_str) # -N <job_name> if self.job_name is not None: name_str = "#SBATCH --job-name=%s" % self.job_name self.options_inside_submit_script.append(name_str) # <extra_options> (optional, preceding the command) for cmd in self.params.extra_options: cmd_str = "#SBATCH %s" % cmd self.options_inside_submit_script.append(cmd_str) # source </path/to/env.sh> (optional) for env in self.params.env_script: env_str = "source %s\n" % env self.source_env_scripts.append(env_str) # <args> (optional, following the command) for arg in self.params.extra_args: self.args.append(arg) class get_shifter_submit_command(get_submit_command): # No need for constructor -- the interited constructor is just fine for shifter def customize_for_method(self): # template for sbatch.sh self.sbatch_template = self.params.shifter.sbatch_script_template self.destination = os.path.dirname(self.submit_path) if not self.sbatch_template: from xfel.ui.db.cfgs import shifter_templates self.sbatch_contents = shifter_templates.sbatch_template else: with open(self.sbatch_template, "r") as sb: self.sbatch_contents = sb.read() self.sbatch_path = os.path.join(self.destination, "sbatch.sh") # template for srun.sh self.srun_template = self.params.shifter.srun_script_template if not self.srun_template: from xfel.ui.db.cfgs import shifter_templates self.srun_contents = shifter_templates.srun_template else: with open(self.srun_template, "r") as sr: self.srun_contents = sr.read() if self.params.use_mpi: self.command = "%s mp.method=mpi" % (self.command) self.srun_path = os.path.join(self.destination, "srun.sh") def eval_params(self): # --image <shifter_image> if self.params.shifter.shifter_image: self.sbatch_contents = self.substitute( self.sbatch_contents, "<shifter_image>", self.params.shifter.shifter_image ) else: raise Sorry("Must supply a shifter image") # -N <nnodes> self.sbatch_contents = self.substitute(self.sbatch_contents, "<nnodes>", str(self.params.nnodes)) # --tasks-per-node <nproc_per_node> (optional) self.sbatch_contents = self.substitute(self.sbatch_contents, "<nproc_per_node>", str(self.params.nproc_per_node)) # For now use nproc = nnodes*nproc_per_node # TODO: find a way for the user to specify _either_ nproc_per_node, or nproc nproc = self.params.nnodes * self.params.nproc_per_node # -n <nproc> (optional) self.sbatch_contents = self.substitute(self.sbatch_contents, "<nproc>", str(nproc)) # -W <walltime> (optional) if self.params.wall_time is not None: hours = self.params.wall_time // 60 minutes = self.params.wall_time % 60 wt_str = "%02d:%02d:00" % (hours, minutes) self.sbatch_contents = self.substitute(self.sbatch_contents, "<walltime>", wt_str) # --qos <queue> self.sbatch_contents = self.substitute(self.sbatch_contents, "<queue>", self.params.queue) # --partition <partition> self.sbatch_contents = self.substitute(self.sbatch_contents, "<partition>", self.params.shifter.partition) # --job-name self.sbatch_contents = self.substitute(self.sbatch_contents, "<jobname>", self.params.shifter.jobname) # -A self.sbatch_contents = self.substitute(self.sbatch_contents, "<project>", self.params.shifter.project) # --reservation if self.params.shifter.reservation: self.sbatch_contents = self.substitute( self.sbatch_contents, "<reservation>", self.params.shifter.reservation ) else: self.sbatch_contents = self.delete(self.sbatch_contents, "<reservation>") # --constraint self.sbatch_contents = self.substitute(self.sbatch_contents, "<constraint>", self.params.shifter.constraint) self.sbatch_contents = self.substitute(self.sbatch_contents, "<out_log>", os.path.join(self.destination , "out.log")) self.sbatch_contents = self.substitute(self.sbatch_contents, "<err_log>", os.path.join(self.destination , "err.log")) self.sbatch_contents = self.substitute(self.sbatch_contents, "<output_dir>", self.destination) # Delete datawarp instructions if we're not staging logs if self.params.shifter.staging != "DataWarp": self.sbatch_contents = self.delete(self.sbatch_contents, "#DW") # <srun_script> self.sbatch_contents = self.substitute(self.sbatch_contents, "<srun_script>", self.srun_path) # <command> and any extra args if len(self.params.extra_args) > 0: self.srun_contents = self.substitute(self.srun_contents, "<command>", "<command> %s" % " ".join(self.params.extra_args)) self.srun_contents = self.substitute(self.srun_contents, "<command>", self.command) def generate_submit_command(self): return self.params.shifter.submit_command + self.sbatch_path def encapsulate_submit(self): pass def generate_sbatch_script(self): with open(self.sbatch_path, "w") as sb: sb.write(self.sbatch_contents) sb.write("\n") self.make_executable(self.sbatch_path) def generate_srun_script(self): with open(self.srun_path, "w") as sr: sr.write(self.srun_contents) sr.write("\n") self.make_executable(self.srun_path) def write_script(self): self.generate_sbatch_script() self.generate_srun_script() class get_htcondor_submit_command(get_submit_command): def __init__(self, *args, **kwargs): super(get_htcondor_submit_command, self).__init__(*args, **kwargs) self.destination = os.path.dirname(self.submit_path) self.basename = os.path.splitext(os.path.basename(self.submit_path))[0] def customize_for_method(self): self.submit_head = "condor_submit" if self.params.use_mpi: self.command = "%s mp.method=mpi" % (self.command) def generate_submit_command(self): return "condor_submit " + os.path.join(self.destination, self.basename + "_condorparams") def eval_params(self): if self.params.use_mpi: from libtbx import easy_run d = dict(executable_path = self.params.htcondor.executable_path, arguments = self.submit_path, nproc = self.params.nproc, working_folder = self.destination, log_path = os.path.join(self.stdoutdir, self.basename + '_condor.log'), output_path = os.path.join(self.stdoutdir, self.log_name), error_path = os.path.join(self.stdoutdir, self.err_name), requirements = 'target.filesystemdomain == "%s"'% self.params.htcondor.filesystemdomain) # Find if there is a continguous set of slots available on one node r = easy_run.fully_buffered('condor_status | grep Unclaimed | grep %s'%self.params.htcondor.filesystemdomain) machines = {} for line in r.stdout_lines: try: machine = line.split()[0].split('@')[1] except IndexError: continue if machine not in machines: machines[machine] = 0 machines[machine] += 1 for machine in machines: if machines[machine] >= self.params.nproc: d['requirements'] += ' && machine == "%s"'%machine break condor_params = """ universe = parallel executable = {executable_path} arguments = {arguments} machine_count = {nproc} initialdir = {working_folder} when_to_transfer_output = on_exit log = {log_path} output = {output_path} error = {error_path} requirements = {requirements} +ParallelShutdownPolicy = "WAIT_FOR_ALL" RunAsOwner = True queue """ else: assert self.params.htcondor.executable_path is None d = dict(executable_path = self.submit_path, working_folder = self.destination, log_path = os.path.join(self.stdoutdir, self.basename + '_condor.log'), output_path = os.path.join(self.stdoutdir, self.log_name), error_path = os.path.join(self.stdoutdir, self.err_name), filesystemdomain= self.params.htcondor.filesystemdomain) condor_params = """ universe = vanilla executable = {executable_path} initialdir = {working_folder} when_to_transfer_output = on_exit log = {log_path} output = {output_path} error = {error_path} requirements = target.filesystemdomain == "{filesystemdomain}" RunAsOwner = True queue """ with open(os.path.join(self.destination, self.basename + "_condorparams"), 'w') as f: f.write(condor_params.format(**d)) # source </path/to/env.sh> (optional) for env in self.params.env_script: env_str = "source %s\n" % env self.source_env_scripts.append(env_str) class get_custom_submit_command(get_submit_command): def customize_for_method(self): # template for the script to be submitted, beginning with #! self.script_template = self.params.custom.submit_script_template if not os.path.exists(self.template): raise Sorry("Custom submission template file not found: %s" % self.template) # template for the submission command itself, e.g. qsub -n <nproc> -q <queue> script.sh self.command_template = self.params.custom.submit_command_template if self.command_template is None: raise Sorry("Custom submit command must be specified for custom environments.") def eval_params(self): # any changes to the script to be submitted with open(self.script_template, "r") as script: self.script_contents = script.read() # <command> and any <args> if len(self.params.extra_args) > 0: self.script_contents = self.script_contents.replace("<command>", "<command> %s" % " ".join(self.params.extra_args)) self.script_contents = self.script_contents.replace("<command>", self.command) # other changes to the contents of the script for marker, value in [ ("<queue>", self.params.queue), ("<nproc>", self.params.nproc), ("<memory>", self.params.memory), ("<walltime>", self.params.custom.wall_time_string), ("<outfile>", os.path.join(self.stdoutdir, self.log_name)), ("<errfile>", os.path.join(self.stdoutdir, self.err_name)), ("<envscripts>", self.params.env_script)]: self.script_contents = self.substitute(self.script_contents, marker, value) # any changes to the submission command # <script> and any extra <options> if len(self.params.extra_options) > 0: self.submit_command_contents = self.params.custom.submit_command_template.replace("<script>", "%s <script>" % " ".join(self.params.extra_options)) self.submit_command_contents = self.submit_command_contents.replace("<script>", self.submit_path) # other changes to the submission command for marker, value in [ ("<queue>", self.params.queue), ("<nproc>", self.params.nproc), ("<memory>", self.params.memory), ("<walltime>", self.params.custom.wall_time_string), ("<outfile>", os.path.join(self.stdoutdir, self.log_name)), ("<errfile>", os.path.join(self.stdoutdir, self.err_name))]: self.submit_command_contents = self.substitute(self.submit_command_contents, marker, value) def write_script(self): with open(self.submit_path, "w") as f: f.write(self.script_contents) f.write("\n") def generate_submit_command(self): return self.submit_command_contents def get_submit_command_chooser(command, submit_path, stdoutdir, params, log_name="log.out", err_name="log.err", job_name=None, root_dir=None): if params.method == "local": choice = get_local_submit_command elif params.method == "lsf": choice = get_lsf_submit_command elif params.method == "sge": choice = get_sge_submit_command elif params.method == "pbs": choice = get_pbs_submit_command elif params.method == "slurm": choice = get_slurm_submit_command elif params.method == "shifter": choice = get_shifter_submit_command elif params.method == "htcondor": choice = get_htcondor_submit_command elif params.method == "custom": choice = get_custom_submit_command else: raise Sorry("Multiprocessing method %s not recognized" % params.method) command_generator = choice(command, submit_path, stdoutdir, params, log_name=log_name, err_name=err_name, job_name=job_name, root_dir=root_dir) return command_generator()
py
b40299a3333a659fdc49e911d586fe15e1bf334f
########################################################################## # # Copyright (c) 2013, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of John Haddon nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## from .SceneViewTest import SceneViewTest from .ShaderAssignmentUITest import ShaderAssignmentUITest from .StandardGraphLayoutTest import StandardGraphLayoutTest from .SceneGadgetTest import SceneGadgetTest from .SceneInspectorTest import SceneInspectorTest from .HierarchyViewTest import HierarchyViewTest from .DocumentationTest import DocumentationTest from .ShaderViewTest import ShaderViewTest from .ShaderUITest import ShaderUITest from .TranslateToolTest import TranslateToolTest from .ScaleToolTest import ScaleToolTest from .RotateToolTest import RotateToolTest from .ContextAlgoTest import ContextAlgoTest from .CameraToolTest import CameraToolTest from .VisualiserTest import VisualiserTest from .TransformToolTest import TransformToolTest from .CropWindowToolTest import CropWindowToolTest from .NodeUITest import NodeUITest if __name__ == "__main__": unittest.main()
py
b4029abae46fa5161e0ba2a43c97da724ec0f086
#!/usr/bin/env python # coding: utf-8 # In[ ]: client_id = '1d048bcd4ddf473b84994ed5e08cb1e1' client_secret = '2fd5aac456084f0ea4b33e9adf5c0210'
py
b4029af9884d0a819ac720fbb7220ca228fdc1b0
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Description - 将知乎用户的个人信息json存储到csv文件中。 - 实现了一些必要的功能: - 从已有的csv文件中提取出所有用户,用于程序中断后重启时加载已爬取用户列表。 - 从已有的csv文件中提取指定数目的未爬取用户,用于程序中断后重启时生成任务队列。 - 类DataFile为单例模式,在程序中只有一个实例。 - 线程安全。 Info - author: "zyk" - github: "[email protected]" - date: "2017.11.17" """ import threading import csv import sys import os.path import json __author__ = "zyk" # 操作文件时使用的可重入互斥锁,用于保证线程安全 FILELOCK = threading.Lock() class Singleton(object): """ 实现单例模式,DataFile在程序中只有一个实例 Attributes: _instance: 唯一实例的引用。 """ _instance = None def __new__(cls, *args, **kw): if not cls._instance: cls._instance = super(Singleton, cls).__new__(cls, *args, **kw) return cls._instance class DataFile(Singleton): """ 操作csv文件,保存用户数据。 Attributes: FILEPATH: 存储数据文件(csv文件)的文件夹绝对路径 PREFIX: 每个csv文件的文件名前缀,包含绝对路径。每个文件名由 “前缀” + 编号 + “后缀” 组成。 SUFFIX: 每个csv文件的文件名后缀,即格式 '.csv' MAXSIZE: 每个csv文件的最大尺寸,单位Byte TABLEHEADER: 每个csv文件的表头,也就是第一行内容,方便使用csv库中的DictWriter/DictReader按dict方式存取 __currentfile: 当前操作文件的绝对路径文件名,由于数据较大,分多个文件保存,所以需要变量来指向当前操作的文件 """ def __init__(self): self.FILEPATH = os.path.join(os.path.dirname(sys.path[0]), 'datafile') # 此脚本文件路径的上一级路径 self.PREFIX = os.path.join(self.FILEPATH, 'data') self.SUFFIX = '.csv' self.MAXSIZE = 100 * 1024 * 1024 self.TABLEHEADER = ['user_url_token', 'user_data_json', 'user_following_list'] self.__currentfile = '' self.__updatecurrentfile() pass def loadusercrawled(self): """加载已爬取用户列表。 从已有的csv文件加载已经爬取用户的url token,即每个csv文件的第一列,得到一个列表。 此函数用于爬虫程序中断后重启时的状态恢复。 Args: None. Returns: list: 一个包含已经爬取用户的url token的list。 Raises: None. """ # 数据文件夹不存在,就返回一个空列表 if not os.path.exists(self.FILEPATH): return list() FILELOCK.acquire() # 从存储数据文件的文件夹中找出所有csv文件,得到一个包含所有csv绝对路径文件名的list。 csvfilelist = list() for filename in os.listdir(self.FILEPATH): filename = os.path.join(self.FILEPATH, filename) if os.path.splitext(filename)[1] == self.SUFFIX: with open(filename, 'r', encoding='utf-8') as csvfile: reader = csv.DictReader(csvfile) if reader.fieldnames == self.TABLEHEADER: csvfilelist.append(os.path.join(self.FILEPATH, filename)) # 从上面的列表中,依次遍历每个文件,得到一个包含已经爬取用户的url token的list。 usercrawled = list() for filename in csvfilelist: with open(filename, 'r', encoding='utf-8') as csvfile: reader = csv.DictReader(csvfile) for row in reader: usercrawled.append(row[self.TABLEHEADER[0]]) FILELOCK.release() return usercrawled def loaduseruncrawled(self, usercrawled_set, user_count=100000): """加载未爬取用户列表。 从已有的csv文件加载已经爬取用户的关注列表(csv文件的第三列), 并用已爬取用户列表去重,得到一个未爬取用户的列表。 默认加载100000个未爬取用户。 此函数用于爬虫程序中断后重启时的状态恢复。 Args: None. Returns: list: 一个包含未爬取用户的url token的list。 Raises: None. """ if not os.path.exists(self.FILEPATH): useruncrawled = () useruncrawled.append('excited-vczh') return useruncrawled FILELOCK.acquire() # 从存储数据文件的文件夹中找出所有csv文件,得到一个包含所有csv绝对路径文件名的list。 csvfilelist = list() for filename in os.listdir(self.FILEPATH): filename = os.path.join(self.FILEPATH, filename) if os.path.splitext(filename)[1] == self.SUFFIX: with open(filename, 'r', encoding='utf-8') as csvfile: reader = csv.DictReader(csvfile) if reader.fieldnames == self.TABLEHEADER: csvfilelist.append(os.path.join(self.FILEPATH, filename)) csvfilelist.sort() # 从上面的列表中,依次遍历每个文件,得到一个不超过100000个未爬取用户的列表。 useruncrawled = list() for filename in csvfilelist[::-1]: if len(useruncrawled) >= user_count: break with open(filename, 'r', encoding='utf-8') as csvfile: reader = csv.DictReader(csvfile) user_following_list = list() for row in reader: tempjson = json.loads(row[self.TABLEHEADER[2]]) user_following_list += tempjson['ids'] for user in user_following_list[::-1]: if len(useruncrawled) >= 100000: break if user not in usercrawled_set: useruncrawled.append(user) FILELOCK.release() if len(useruncrawled) == 0: useruncrawled.append('excited-vczh') return useruncrawled def __updatecurrentfile(self): """更新当前操作文件。 由于数据较大,分多个文件保存,每个文件不超过100MB,所以需要不断检查已有文件 的大小,当大小达到限制,就创建一个新文件,并更新__currentfile变量的文件名。 Args: None. Returns: None. Raises: None. """ # 数据文件夹不存在,创建一个数据文件夹 if not os.path.exists(self.FILEPATH): os.mkdir(self.FILEPATH) FILELOCK.acquire() # 从'data0001.csv'开始依次按序号生成文件名,判断目录下是否已存在该文件; # 若存在该文件: # 文件大小不到设置的MAXSIZE,就将该文件作为当前操作文件,并退出函数; # 文件大小已经达到设置的MAXSIZE,就继续生成下一个文件名,重复以上操作; # 若不存在该文件: # 用这个文件名创建一个新csv文件,做为当前操作文件,并退出函数。 i = 0 while True: i += 1 # generate a filename. filename = self.PREFIX + ("%04d" % i) + self.SUFFIX if os.path.exists(filename): if os.path.getsize(filename) < self.MAXSIZE: # if the file exists and the file is unfilled, set the file to currentfile. self.__currentfile = filename break else: continue else: # if the file doesn't exists, Create a new csv file, and write table header in. with open(filename, 'w', newline='', encoding='utf-8') as csvfile: # Create table header. headerrow = dict() for x in self.TABLEHEADER: headerrow[x] = x # Write in. writer = csv.DictWriter(csvfile, self.TABLEHEADER) writer.writerow(headerrow) self.__currentfile = filename break FILELOCK.release() return None def __getcurrentfile(self): """获取当前操作文件。 由于文件实时更新,所以在每次存取文件前,需要确认__currentfile指向的文件没有过期。 若__currentfile指向的文件存在且文件大小未达到MAXSIZE,则直接返回__currentfile; 若__currentfile指向的文件不存在或者文件大小达到MAXSIZE,则更新__currentfile; Args: None. Returns: str: 返回指向当前操作文件的文件名(包含绝对路径)。 Raises: None. """ if os.path.exists(self.__currentfile) and os.path.getsize(self.__currentfile) < self.MAXSIZE: return self.__currentfile else: self.__updatecurrentfile() return self.__currentfile def saveinfo(self, userinfo): """存入用户信息。 传入一个包含用户信息的dict,并写入当前操作文件。 其中dict的key与TABLEHEADER中的每个item一一对应。 Args: userinfo: 一个包含用户信息的dict, 其中TABLEHEADER中的每个item作为这个dict中的一个key, value则是每个key对应的用户信息 Returns: bool: 用户信息已经写入文件. Raises: None. """ result = True filename = self.__getcurrentfile() FILELOCK.acquire() # filename = self.PREFIX + '0002' + self.SUFFIX try: with open(filename, 'a', newline='', encoding='utf-8') as csvfile: writer = csv.DictWriter(csvfile, self.TABLEHEADER) writer.writerow(userinfo) except: result = False FILELOCK.release() return result def saveinfobatch(self, userinfolist): """批量存入用户信息。 传入一个包含多个用户信息的list,每个item与均为dict,表示一个用户,其他同saveinfo函数。 本函数用于提升写入效率,降低操作文件的次数 Args: userinfolist: 一个包含多个用户信息的list, 每个item与均为dict,表示一个用户,其他同saveinfo函数。 Returns: bool: 用户信息已经写入文件. Raises: None. """ result = True filename = self.__getcurrentfile() FILELOCK.acquire() try: with open(filename, 'a', newline='', encoding='utf-8') as csvfile: writer = csv.DictWriter(csvfile, self.TABLEHEADER) for userinfo in userinfolist: writer.writerow(userinfo) except: result = False FILELOCK.release() return result if __name__ == '__main__': pass
py
b4029b1bffa2bf2b330be0de9ace1787555e8593
__author__ = 'fujun' path = '/Users/fujun/Downloads/output/system/' import os filenames = os.listdir(path) for name in filenames: print(name) prefix = name[0: name.rindex('.')] #print(prefix) new_name = 'task'+prefix+'_englishSyssum'+prefix+'.txt' os.rename(path+name, path+new_name)
py
b4029bed90ec4cef998b6674f016a3d11be7525d
from flask import render_template from app import app from flask_login import login_required, current_user from .forms import UpdateProfile, GeneralForm, GeneralReviewForm, SaleForm, SaleReviewForm, SeductionForm, SeductionReviewForm, MusicForm, MusicReviewForm, ProjectForm, ProjectReviewForm, InterviewForm, InterviewReviewForm, AdvertisementForm, AdvertisementReviewForm from ..models import User, Interview, Advertisement, Project, Music, Sale, Seduction, General, ReviewAdvertisement, ReviewGeneral, ReviewInterview, ReviewMusic, ReviewProject, ReviewSale, ReviewSeduction, Upvote, Downvote # Views @app.route('/') def index(): ''' View root page function that returns the index page and its data ''' title = 'Home - Welcome to the Pitches website' return render_template('index.html',title = title) @main.route('/user/category/interviews') @login_required def interviews(): title = 'Interview' posts = Interview.query.all() return render_template("inter.html", posts=posts, title=title) @main.route('/user/interview/<int:id>', methods=['GET', 'POST']) @login_required def displayinterview(id): interview = Interview.query.get(id) form = InterviewReviewForm() if form.validate_on_submit(): review = form.review.data new_interviewreview = ReviewInterview( review=review, interview_id=id, user=current_user) new_interviewreview.save_reviewinterview() review = ReviewInterview.query.filter_by(interview_id=id).all() return render_template('interviewpitch.html', interview=interview, review_form=form, review=review)
py
b4029c4455aa354b76d1f29f8a956c65aa276929
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from typing import Any, Dict, List, Optional, Tuple import numpy as np import plotly.graph_objs as go from ax.core.batch_trial import BatchTrial from ax.core.data import Data from ax.core.experiment import Experiment from ax.core.multi_type_experiment import MultiTypeExperiment from ax.core.observation import Observation from ax.modelbridge.cross_validation import CVResult from ax.modelbridge.transforms.convert_metric_names import convert_mt_observations from ax.plot.base import ( AxPlotConfig, AxPlotTypes, PlotData, PlotInSampleArm, PlotMetric, Z, ) from ax.plot.scatter import _error_scatter_data, _error_scatter_trace from ax.utils.common.typeutils import not_none from plotly import tools # type alias FloatList = List[float] # Helper functions for plotting model fits def _get_min_max_with_errors( x: FloatList, y: FloatList, sd_x: FloatList, sd_y: FloatList ) -> Tuple[float, float]: """Get min and max of a bivariate dataset (across variables). Args: x: point estimate of x variable. y: point estimate of y variable. sd_x: standard deviation of x variable. sd_y: standard deviation of y variable. Returns: min_: minimum of points, including uncertainty. max_: maximum of points, including uncertainty. """ min_ = min( min(np.array(x) - np.multiply(sd_x, Z)), min(np.array(y) - np.multiply(sd_y, Z)) ) max_ = max( max(np.array(x) + np.multiply(sd_x, Z)), max(np.array(y) + np.multiply(sd_y, Z)) ) return min_, max_ def _diagonal_trace(min_: float, max_: float, visible: bool = True) -> Dict[str, Any]: """Diagonal line trace from (min_, min_) to (max_, max_). Args: min_: minimum to be used for starting point of line. max_: maximum to be used for ending point of line. visible: if True, trace is set to visible. """ return go.Scatter( x=[min_, max_], y=[min_, max_], line=dict(color="black", width=2, dash="dot"), # noqa: C408 mode="lines", hoverinfo="none", visible=visible, showlegend=False, ) def _obs_vs_pred_dropdown_plot( data: PlotData, rel: bool, show_context: bool = False, xlabel: str = "Actual Outcome", ylabel: str = "Predicted Outcome", ) -> Dict[str, Any]: """Plot a dropdown plot of observed vs. predicted values from a model. Args: data: a name tuple storing observed and predicted data from a model. rel: if True, plot metrics relative to the status quo. show_context: Show context on hover. xlabel: Label for x-axis. ylabel: Label for y-axis. """ traces = [] metric_dropdown = [] if rel and data.status_quo_name is not None: if show_context: raise ValueError( "This plot does not support both context and relativization at " "the same time." ) # pyre-fixme[6]: Expected `str` for 1st param but got `Optional[str]`. status_quo_arm = data.in_sample[data.status_quo_name] else: status_quo_arm = None for i, metric in enumerate(data.metrics): y_raw, se_raw, y_hat, se_hat = _error_scatter_data( # Expected `List[typing.Union[PlotInSampleArm, # ax.plot.base.PlotOutOfSampleArm]]` for 1st anonymous # parameter to call `ax.plot.scatter._error_scatter_data` but got # `List[PlotInSampleArm]`. # pyre-fixme[6]: list(data.in_sample.values()), y_axis_var=PlotMetric(metric, True), x_axis_var=PlotMetric(metric, False), rel=rel, status_quo_arm=status_quo_arm, ) min_, max_ = _get_min_max_with_errors(y_raw, y_hat, se_raw or [], se_hat) traces.append(_diagonal_trace(min_, max_, visible=(i == 0))) traces.append( _error_scatter_trace( # Expected `List[typing.Union[PlotInSampleArm, # ax.plot.base.PlotOutOfSampleArm]]` for 1st parameter # `arms` to call `ax.plot.scatter._error_scatter_trace` # but got `List[PlotInSampleArm]`. # pyre-fixme[6]: arms=list(data.in_sample.values()), hoverinfo="text", rel=rel, show_arm_details_on_hover=True, show_CI=True, show_context=show_context, status_quo_arm=status_quo_arm, visible=(i == 0), x_axis_label=xlabel, x_axis_var=PlotMetric(metric, False), y_axis_label=ylabel, y_axis_var=PlotMetric(metric, True), ) ) # only the first two traces are visible (corresponding to first outcome # in dropdown) is_visible = [False] * (len(data.metrics) * 2) is_visible[2 * i] = True is_visible[2 * i + 1] = True # on dropdown change, restyle metric_dropdown.append( {"args": ["visible", is_visible], "label": metric, "method": "restyle"} ) updatemenus = [ { "x": 0, "y": 1.125, "yanchor": "top", "xanchor": "left", "buttons": metric_dropdown, }, { "buttons": [ { "args": [ { "error_x.width": 4, "error_x.thickness": 2, "error_y.width": 4, "error_y.thickness": 2, } ], "label": "Yes", "method": "restyle", }, { "args": [ { "error_x.width": 0, "error_x.thickness": 0, "error_y.width": 0, "error_y.thickness": 0, } ], "label": "No", "method": "restyle", }, ], "x": 1.125, "xanchor": "left", "y": 0.8, "yanchor": "middle", }, ] layout = go.Layout( annotations=[ { "showarrow": False, "text": "Show CI", "x": 1.125, "xanchor": "left", "xref": "paper", "y": 0.9, "yanchor": "middle", "yref": "paper", } ], xaxis={ "title": xlabel, "zeroline": False, "mirror": True, "linecolor": "black", "linewidth": 0.5, }, yaxis={ "title": ylabel, "zeroline": False, "mirror": True, "linecolor": "black", "linewidth": 0.5, }, showlegend=False, hovermode="closest", updatemenus=updatemenus, width=530, height=500, ) return go.Figure(data=traces, layout=layout) def _get_batch_comparison_plot_data( observations: List[Observation], batch_x: int, batch_y: int, rel: bool = False, status_quo_name: Optional[str] = None, ) -> PlotData: """Compute PlotData for comparing repeated arms across trials. Args: observations: List of observations. batch_x: Batch for x-axis. batch_y: Batch for y-axis. rel: Whether to relativize data against status_quo arm. status_quo_name: Name of the status_quo arm. Returns: PlotData: a plot data object. """ if rel and status_quo_name is None: raise ValueError("Experiment status quo must be set for rel=True") x_observations = { observation.arm_name: observation for observation in observations if observation.features.trial_index == batch_x } y_observations = { observation.arm_name: observation for observation in observations if observation.features.trial_index == batch_y } # Assume input is well formed and metric_names are consistent across observations metric_names = observations[0].data.metric_names insample_data: Dict[str, PlotInSampleArm] = {} for arm_name, x_observation in x_observations.items(): # Restrict to arms present in both trials if arm_name not in y_observations: continue y_observation = y_observations[arm_name] arm_data = { "name": arm_name, "y": {}, "se": {}, "parameters": x_observation.features.parameters, "y_hat": {}, "se_hat": {}, "context_stratum": None, } for i, mname in enumerate(x_observation.data.metric_names): # pyre-fixme[16]: Optional type has no attribute `__setitem__`. arm_data["y"][mname] = x_observation.data.means[i] arm_data["se"][mname] = np.sqrt(x_observation.data.covariance[i][i]) for i, mname in enumerate(y_observation.data.metric_names): arm_data["y_hat"][mname] = y_observation.data.means[i] arm_data["se_hat"][mname] = np.sqrt(y_observation.data.covariance[i][i]) # Expected `str` for 2nd anonymous parameter to call `dict.__setitem__` but got # `Optional[str]`. # pyre-fixme[6]: insample_data[arm_name] = PlotInSampleArm(**arm_data) return PlotData( metrics=metric_names, in_sample=insample_data, out_of_sample=None, status_quo_name=status_quo_name, ) def _get_cv_plot_data(cv_results: List[CVResult]) -> PlotData: if len(cv_results) == 0: return PlotData( metrics=[], in_sample={}, out_of_sample=None, status_quo_name=None ) # arm_name -> Arm data insample_data: Dict[str, PlotInSampleArm] = {} # Assume input is well formed and this is consistent metric_names = cv_results[0].observed.data.metric_names for cv_result in cv_results: arm_name = cv_result.observed.arm_name arm_data = { "name": cv_result.observed.arm_name, "y": {}, "se": {}, "parameters": cv_result.observed.features.parameters, "y_hat": {}, "se_hat": {}, "context_stratum": None, } for i, mname in enumerate(cv_result.observed.data.metric_names): # pyre-fixme[16]: Optional type has no attribute `__setitem__`. arm_data["y"][mname] = cv_result.observed.data.means[i] arm_data["se"][mname] = np.sqrt(cv_result.observed.data.covariance[i][i]) for i, mname in enumerate(cv_result.predicted.metric_names): arm_data["y_hat"][mname] = cv_result.predicted.means[i] arm_data["se_hat"][mname] = np.sqrt(cv_result.predicted.covariance[i][i]) # Expected `str` for 2nd anonymous parameter to call `dict.__setitem__` but got # `Optional[str]`. # pyre-fixme[6]: insample_data[arm_name] = PlotInSampleArm(**arm_data) return PlotData( metrics=metric_names, in_sample=insample_data, out_of_sample=None, status_quo_name=None, ) def interact_empirical_model_validation(batch: BatchTrial, data: Data) -> AxPlotConfig: """Compare the model predictions for the batch arms against observed data. Relies on the model predictions stored on the generator_runs of batch. Args: batch: Batch on which to perform analysis. data: Observed data for the batch. Returns: AxPlotConfig for the plot. """ insample_data: Dict[str, PlotInSampleArm] = {} metric_names = list(data.df["metric_name"].unique()) for struct in batch.generator_run_structs: generator_run = struct.generator_run if generator_run.model_predictions is None: continue for i, arm in enumerate(generator_run.arms): arm_data = { "name": arm.name_or_short_signature, "y": {}, "se": {}, "parameters": arm.parameters, "y_hat": {}, "se_hat": {}, "context_stratum": None, } predictions = generator_run.model_predictions for _, row in data.df[ data.df["arm_name"] == arm.name_or_short_signature ].iterrows(): metric_name = row["metric_name"] # pyre-fixme[16]: Optional type has no attribute `__setitem__`. arm_data["y"][metric_name] = row["mean"] arm_data["se"][metric_name] = row["sem"] arm_data["y_hat"][metric_name] = predictions[0][metric_name][i] arm_data["se_hat"][metric_name] = predictions[1][metric_name][ metric_name ][i] # pyre-fixme[6]: Expected `Optional[Dict[str, Union[float, str]]]` for 1s... insample_data[arm.name_or_short_signature] = PlotInSampleArm(**arm_data) if not insample_data: raise ValueError("No model predictions present on the batch.") plot_data = PlotData( metrics=metric_names, in_sample=insample_data, out_of_sample=None, status_quo_name=None, ) fig = _obs_vs_pred_dropdown_plot(data=plot_data, rel=False) fig["layout"]["title"] = "Cross-validation" return AxPlotConfig(data=fig, plot_type=AxPlotTypes.GENERIC) def interact_cross_validation( cv_results: List[CVResult], show_context: bool = True ) -> AxPlotConfig: """Interactive cross-validation (CV) plotting; select metric via dropdown. Note: uses the Plotly version of dropdown (which means that all data is stored within the notebook). Args: cv_results: cross-validation results. show_context: if True, show context on hover. """ data = _get_cv_plot_data(cv_results) fig = _obs_vs_pred_dropdown_plot(data=data, rel=False, show_context=show_context) fig["layout"]["title"] = "Cross-validation" return AxPlotConfig(data=fig, plot_type=AxPlotTypes.GENERIC) def tile_cross_validation( cv_results: List[CVResult], show_arm_details_on_hover: bool = True, show_context: bool = True, ) -> AxPlotConfig: """Tile version of CV plots; sorted by 'best fitting' outcomes. Plots are sorted in decreasing order using the p-value of a Fisher exact test statistic. Args: cv_results: cross-validation results. include_measurement_error: if True, include measurement_error metrics in plot. show_arm_details_on_hover: if True, display parameterizations of arms on hover. Default is True. show_context: if True (default), display context on hover. """ data = _get_cv_plot_data(cv_results) metrics = data.metrics # make subplots (2 plots per row) nrows = int(np.ceil(len(metrics) / 2)) ncols = min(len(metrics), 2) fig = tools.make_subplots( rows=nrows, cols=ncols, print_grid=False, subplot_titles=tuple(metrics), horizontal_spacing=0.15, vertical_spacing=0.30 / nrows, ) for i, metric in enumerate(metrics): y_hat = [] se_hat = [] y_raw = [] se_raw = [] for arm in data.in_sample.values(): y_hat.append(arm.y_hat[metric]) se_hat.append(arm.se_hat[metric]) y_raw.append(arm.y[metric]) se_raw.append(arm.se[metric]) min_, max_ = _get_min_max_with_errors(y_raw, y_hat, se_raw, se_hat) fig.append_trace( _diagonal_trace(min_, max_), int(np.floor(i / 2)) + 1, i % 2 + 1 ) fig.append_trace( _error_scatter_trace( # Expected `List[typing.Union[PlotInSampleArm, # ax.plot.base.PlotOutOfSampleArm]]` for 1st anonymous # parameter to call `ax.plot.scatter._error_scatter_trace` but # got `List[PlotInSampleArm]`. # pyre-fixme[6]: list(data.in_sample.values()), y_axis_var=PlotMetric(metric, True), x_axis_var=PlotMetric(metric, False), y_axis_label="Predicted", x_axis_label="Actual", hoverinfo="text", show_arm_details_on_hover=show_arm_details_on_hover, show_context=show_context, ), int(np.floor(i / 2)) + 1, i % 2 + 1, ) # if odd number of plots, need to manually remove the last blank subplot # generated by `tools.make_subplots` if len(metrics) % 2 == 1: del fig["layout"]["xaxis{}".format(nrows * ncols)] del fig["layout"]["yaxis{}".format(nrows * ncols)] # allocate 400 px per plot (equal aspect ratio) fig["layout"].update( title="Cross-Validation", # What should I replace this with? hovermode="closest", width=800, height=400 * nrows, font={"size": 10}, showlegend=False, ) # update subplot title size and the axis labels for i, ant in enumerate(fig["layout"]["annotations"]): ant["font"].update(size=12) fig["layout"]["xaxis{}".format(i + 1)].update( title="Actual Outcome", mirror=True, linecolor="black", linewidth=0.5 ) fig["layout"]["yaxis{}".format(i + 1)].update( title="Predicted Outcome", mirror=True, linecolor="black", linewidth=0.5 ) return AxPlotConfig(data=fig, plot_type=AxPlotTypes.GENERIC) def interact_batch_comparison( observations: List[Observation], experiment: Experiment, batch_x: int, batch_y: int, rel: bool = False, status_quo_name: Optional[str] = None, ) -> AxPlotConfig: """Compare repeated arms from two trials; select metric via dropdown. Args: observations: List of observations to compute comparison. batch_x: Index of batch for x-axis. batch_y: Index of bach for y-axis. rel: Whether to relativize data against status_quo arm. status_quo_name: Name of the status_quo arm. """ if isinstance(experiment, MultiTypeExperiment): observations = convert_mt_observations(observations, experiment) if not status_quo_name and experiment.status_quo: status_quo_name = not_none(experiment.status_quo).name plot_data = _get_batch_comparison_plot_data( observations, batch_x, batch_y, rel=rel, status_quo_name=status_quo_name ) fig = _obs_vs_pred_dropdown_plot( data=plot_data, rel=rel, xlabel="Batch {}".format(batch_x), ylabel="Batch {}".format(batch_y), ) fig["layout"]["title"] = "Repeated arms across trials" return AxPlotConfig(data=fig, plot_type=AxPlotTypes.GENERIC)
py
b4029c8e21cc98cd78dfd2d278ef01d443a9bf9f
from flask_script import Manager from flask_migrate import Migrate, MigrateCommand from app import app from models import db migrate = Migrate(app, db) manager = Manager(app) manager.add_command('db', MigrateCommand) if __name__ == '__main__': manager.run()
py
b4029e10f479ea8a1140bf9e8eca5dda6c6347d2
import tensorflow as tf import os import re import sys import time import numpy as np from model.common import l2_scaling #from model.svd_tdnn import tdnn_svd6 from model.tdnn import tdnn #from model.svd_tdnn import tdnn_svd6 #from model.dynamic_tdnn import tdnn_svd from model.loss import softmax from model.loss import asoftmax, additive_margin_softmax, additive_angular_margin_softmax from model.loss import semihard_triplet_loss, angular_triplet_loss, e2e_valid_loss, generalized_angular_triplet_loss from dataset.data_loader import KaldiDataRandomQueue, KaldiDataSeqQueue, DataOutOfRange from misc.utils import substring_in_list, activation_summaries from six.moves import range class Trainer(object): """Handle the training, validation and prediction Trainer is a simple class that deals with examples having feature-label structure. TODO: Add different Trainers to deal with feature+aux_feature - label+aux_label structure. """ def __init__(self, params, model_dir, single_cpu=False): """ Args: params: Parameters loaded from JSON. model_dir: The model directory. single_cpu: Run Tensorflow on one cpu. (default = False) """ # The network configuration is set while the loss is left to the build function. # I think we can switch different loss functions during training epochs. # Then simple re-build the network can give us a different loss. The main network won't change at that case. self.network_type = params.network_type if params.network_type == "tdnn": self.network = tdnn elif params.network_type == "tdnn_svd6": self.network = tdnn_svd6 elif params.network_type == "tdnn_svd": self.network = tdnn_svd else: raise NotImplementedError("Not implement %s network" % params.network_type) self.loss_type = None self.loss_network = None # We have to save all the parameters since the different models may need different parameters self.params = params if single_cpu: self.sess_config = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1, device_count={'CPU': 1}, allow_soft_placement=True) else: self.sess_config = tf.ConfigProto(allow_soft_placement=True) self.sess = tf.Session(config=self.sess_config) # The model is saved in model/nnet and the evaluation result is saved in model/nnet/eval self.model = os.path.join(model_dir, "nnet") # The global step. Note that we don't use tf.train.create_global_step because we may extend the code to # support adversarial training, in which the global step increases by 1 after `several` updates on the critic # and encoder. The internal global_step should be carefully handled in that case. So just a placeholder here, # and use a counter to feed in this value is also an option. self.global_step = None # The learning rate is just a placeholder. I use placeholder because it gives me flexibility to dynamically # change the learning rate during training. self.learning_rate = None # Summary for the training and validation self.train_summary = None self.valid_summary = None # The output predictions. Useful in the prediction mode. self.embeddings = None self.endpoints = None # The optimizer used in the training. # The total loss is useful if we want to change the gradient or variables to optimize (e.g. in fine-tuning) self.optimizer = None self.total_loss = None # Training operation. This is called at each step self.train_op = None # Dicts for training and validation inspection. # In the basic condition, the train_ops contains optimization and training loss. # And valid loss in the valid_ops. It is possible to add other variables to the dictionaries. # Note that the valid loss should be computed from tf.metric.mean, so the valid_ops also has the update ops. # In some steps, the train_ops is required to combine with train_summary to get the summary string. # These ops are only executed once after several steps (for inspection). self.train_ops = {} self.valid_ops = {} # Model saver and summary writers # We don't create the saver or writer here, because after reset, they will be unavailable. self.saver = None self.summary_writer = None self.valid_summary_writer = None # This is an indicator to tell whether the model is built. After building the model, we can only use `reuse` # to refer to different part of the model. self.is_built = False self.is_loaded = False # In train, valid and prediction modes, we need the inputs. If tf.data is used, the input can be a node in # the graph. However, we may also use feed_dict mechanism to feed data, in which case the placeholder is placed # in the graph. # Now we define the placeholder in the build routines. self.train_features = None self.train_labels = None self.valid_features = None self.valid_labels = None self.pred_features = None def reset(self): """Reset the graph so we can create new input pipeline or graph. (Or for other purposes)""" try: self.sess.close() except tf.errors.OpError: # Maybe the session is closed before pass tf.reset_default_graph() # The session should be created again after the graph is reset. self.sess = tf.Session(config=self.sess_config) # After the graph is reset, the flag should be set self.is_built = False self.is_loaded = False # After reset the graph, it is important to reset the seed. tf.set_random_seed(self.params.seed) # Reset some variables. The previous ones have become invalid due to the graph reset. self.saver = None self.summary_writer = None self.valid_summary_writer = None def close(self): """Close the session we opened.""" try: self.sess.close() except tf.errors.OpError: pass def load(self): """Load the saved variables. If the variables have values, the current values will be changed to the saved ones :return The step of the saved model. """ tf.logging.info("Reading checkpoints...") ckpt = tf.train.get_checkpoint_state(self.model) if ckpt and ckpt.model_checkpoint_path: ckpt_name = os.path.basename(ckpt.model_checkpoint_path) step = int(next(re.finditer("(\d+)(?!.*\d)", ckpt_name)).group(0)) self.saver.restore(self.sess, os.path.join(self.model, ckpt_name)) tf.logging.info("Succeed to load checkpoint {}".format(ckpt_name)) else: sys.exit("Failed to find a checkpoint in {}".format(self.model)) self.is_loaded = True return step def save(self, step): """Save the model. Args: step: The global step. """ self.saver.save(self.sess, os.path.join(self.model, "model"), global_step=step) def entire_network(self, features, params, is_training, reuse_variables): """The definition of the entire network. Sometimes, feature normalization is applied after the main network. We combine them together (except for the loss layer). Args: features: The network input. params: The parameters. is_training: True if the network is for training. reuse_variables: Share variables. :return: The network output and the endpoints (for other usage). """ features, endpoints = self.network(features, params, is_training, reuse_variables) endpoints["output"] = features # Add more components (post-processing) after the main network. if "feature_norm" in params.dict and params.feature_norm: assert "feature_scaling_factor" in params.dict, "If feature normalization is applied, scaling factor is necessary." features = l2_scaling(features, params.feature_scaling_factor) endpoints["output"] = features return features, endpoints def build(self, mode, dim, loss_type=None, num_speakers=None, noupdate_var_list=None): """ Build a network. Currently, I use placeholder in the graph and feed data during sess.run. So no need to parse features and labels. Args: mode: `train`, `valid` or `predict`. dim: The dimension of the feature. loss_type: Which loss function do we use. Could be None when mode == predict num_speakers: The total number of speakers. Used in softmax-like network noupdate_var_list: In the fine-tuning, some variables are fixed. The list contains their names (or part of their names). We use `noupdate` rather than `notrain` because some variables are not trainable, e.g. the mean and var in the batchnorm layers. """ assert(mode == "train" or mode == "valid" or mode == "predict") is_training = (mode == "train") reuse_variables = True if self.is_built else None # Create a new path for prediction, since the training may build a tower the support multi-GPUs if mode == "predict": self.pred_features = tf.placeholder(tf.float32, shape=[None, None, dim], name="pred_features") with tf.name_scope("predict") as scope: tf.logging.info("Extract embedding from node %s" % self.params.embedding_node) # There is no need to do L2 normalization in this function, because we can do the normalization outside, # or simply a cosine similarity can do it. # Note that the output node may be different if we use different loss function. For example, if the # softmax is used, the output of 2-last layer is used as the embedding. While if the end2end loss is # used, the output of the last layer may be a better choice. So it is impossible to specify the # embedding node inside the network structure. The configuration will tell the network to output the # correct activations as the embeddings. _, endpoints = self.entire_network(self.pred_features, self.params, is_training, reuse_variables) self.embeddings = endpoints[self.params.embedding_node] if self.saver is None: self.saver = tf.train.Saver() return # global_step should be defined before loss function since some loss functions use this value to tune # some internal parameters. if self.global_step is None: self.global_step = tf.placeholder(tf.int32, name="global_step") self.params.dict["global_step"] = self.global_step # If new loss function is added, please modify the code. self.loss_type = loss_type if loss_type == "softmax": self.loss_network = softmax elif loss_type == "asoftmax": self.loss_network = asoftmax elif loss_type == "additive_margin_softmax": self.loss_network = additive_margin_softmax elif loss_type == "additive_angular_margin_softmax": self.loss_network = additive_angular_margin_softmax elif loss_type == "semihard_triplet_loss": self.loss_network = semihard_triplet_loss elif loss_type == "angular_triplet_loss": self.loss_network = angular_triplet_loss elif loss_type == "generalized_angular_triplet_loss": self.loss_network = generalized_angular_triplet_loss else: raise NotImplementedError("Not implement %s loss" % self.loss_type) if mode == "valid": tf.logging.info("Building valid network...") self.valid_features = tf.placeholder(tf.float32, shape=[None, None, dim], name="valid_features") self.valid_labels = tf.placeholder(tf.int32, shape=[None,], name="valid_labels") with tf.name_scope("valid") as scope: # We can adjust some parameters in the config when we do validation # TODO: I'm not sure whether it is necssary to change the margin for the valid set. # TODO: compare the performance! # Change the margin for the valid set. if loss_type == "softmax": pass elif loss_type == "asoftmax": train_margin = self.params.asoftmax_m self.params.asoftmax_m = 1 elif loss_type == "additive_margin_softmax": train_margin = self.params.amsoftmax_m self.params.amsoftmax_m = 0 elif loss_type == "additive_angular_margin_softmax": train_margin = self.params.arcsoftmax_m self.params.arcsoftmax_m = 0 elif loss_type == "angular_triplet_loss": # Switch loss to e2e_valid_loss train_loss_network = self.loss_network self.loss_network = e2e_valid_loss else: pass if "aux_loss_func" in self.params.dict: # No auxiliary losses during validation. train_aux_loss_func = self.params.aux_loss_func self.params.aux_loss_func = [] features, endpoints = self.entire_network(self.valid_features, self.params, is_training, reuse_variables) valid_loss, endpoints_loss = self.loss_network(features, self.valid_labels, num_speakers, self.params, is_training, reuse_variables) endpoints.update(endpoints_loss) if "aux_loss_func" in self.params.dict: self.params.aux_loss_func = train_aux_loss_func # Change the margin back!!! if loss_type == "softmax": pass elif loss_type == "asoftmax": self.params.asoftmax_m = train_margin elif loss_type == "additive_margin_softmax": self.params.amsoftmax_m = train_margin elif loss_type == "additive_angular_margin_softmax": self.params.arcsoftmax_m = train_margin elif loss_type == "angular_triplet_loss": self.loss_network = train_loss_network else: pass # We can evaluate other stuff in the valid_ops. Just add the new values to the dict. # We may also need to check other values expect for the loss. Leave the task to other functions. # During validation, I compute the cosine EER for the final output of the network. self.embeddings = endpoints["output"] self.endpoints = endpoints self.valid_ops["raw_valid_loss"] = valid_loss mean_valid_loss, mean_valid_loss_op = tf.metrics.mean(valid_loss) self.valid_ops["valid_loss"] = mean_valid_loss self.valid_ops["valid_loss_op"] = mean_valid_loss_op valid_loss_summary = tf.summary.scalar("loss", mean_valid_loss) self.valid_summary = tf.summary.merge([valid_loss_summary]) if self.saver is None: self.saver = tf.train.Saver(max_to_keep=self.params.keep_checkpoint_max) if self.valid_summary_writer is None: self.valid_summary_writer = tf.summary.FileWriter(os.path.join(self.model, "eval"), self.sess.graph) return tf.logging.info("Building training network...") self.train_features = tf.placeholder(tf.float32, shape=[None, None, dim], name="train_features") self.train_labels = tf.placeholder(tf.int32, shape=[None, ], name="train_labels") self.learning_rate = tf.placeholder(tf.float32, name="learning_rate") if "optimizer" not in self.params.dict: # The default optimizer is sgd self.params.dict["optimizer"] = "sgd" if self.params.optimizer == "sgd": if "momentum" in self.params.dict: sys.exit("Using sgd as the optimizer and you should not specify the momentum.") tf.logging.info("***** Using SGD as the optimizer.") opt = tf.train.GradientDescentOptimizer(self.learning_rate, name="optimizer") elif self.params.optimizer == "momentum": # SGD with momentum # It is also possible to use other optimizers, e.g. Adam. tf.logging.info("***** Using Momentum as the optimizer.") opt = tf.train.MomentumOptimizer(self.learning_rate, self.params.momentum, use_nesterov=self.params.use_nesterov, name="optimizer") elif self.params.optimizer == "adam": tf.logging.info("***** Using Adam as the optimizer.") opt = tf.train.AdamOptimizer(self.learning_rate, name="optimizer") else: sys.exit("Optimizer %s is not supported." % self.params.optimizer) self.optimizer = opt # Use name_space here. Create multiple name_spaces if multi-gpus # There is a copy in `set_trainable_variables` with tf.name_scope("train") as scope: features, endpoints = self.entire_network(self.train_features, self.params, is_training, reuse_variables) loss, endpoints_loss = self.loss_network(features, self.train_labels, num_speakers, self.params, is_training, reuse_variables) self.endpoints = endpoints endpoints.update(endpoints_loss) regularization_loss = tf.losses.get_regularization_loss() total_loss = loss + regularization_loss # train_summary contains all the summeries we want to inspect. # Get the summaries define in the network and loss function. # The summeries in the network and loss function are about the network variables. self.train_summary = tf.get_collection(tf.GraphKeys.SUMMARIES, scope) self.train_summary.append(tf.summary.scalar("loss", loss)) self.train_summary.append(tf.summary.scalar("regularization_loss", regularization_loss)) # We may have other losses (i.e. penalty term in attention layer) penalty_loss = tf.get_collection("PENALTY") if len(penalty_loss) != 0: penalty_loss = tf.reduce_sum(penalty_loss) total_loss += penalty_loss self.train_summary.append(tf.summary.scalar("penalty_term", penalty_loss)) self.total_loss = total_loss self.train_summary.append(tf.summary.scalar("total_loss", total_loss)) self.train_summary.append(tf.summary.scalar("learning_rate", self.learning_rate)) # The gradient ops is inside the scope to support multi-gpus if noupdate_var_list is not None: old_batchnorm_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope) batchnorm_update_ops = [] for op in old_batchnorm_update_ops: if not substring_in_list(op.name, noupdate_var_list): batchnorm_update_ops.append(op) tf.logging.info("[Info] Update %s" % op.name) else: tf.logging.info("[Info] Op %s will not be executed" % op.name) else: batchnorm_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope) if noupdate_var_list is not None: variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) train_var_list = [] for v in variables: if not substring_in_list(v.name, noupdate_var_list): train_var_list.append(v) tf.logging.info("[Info] Train %s" % v.name) else: tf.logging.info("[Info] Var %s will not be updated" % v.name) grads = opt.compute_gradients(total_loss, var_list=train_var_list) else: grads = opt.compute_gradients(total_loss) # Once the model has been built (even for a tower), we set the flag self.is_built = True if self.params.clip_gradient: grads, vars = zip(*grads) # compute gradients of variables with respect to loss grads_clip, _ = tf.clip_by_global_norm(grads, self.params.clip_gradient_norm) # l2 norm clipping # we follow the instruction in ge2e paper to scale the learning rate for w and b # Actually, I wonder that we can just simply set a large value for w (e.g. 20) and fix it. if self.loss_type == "ge2e": # The parameters w and b must be the last variables in the gradients grads_clip = grads_clip[:-2] + [0.01 * grad for grad in grads_clip[-2:]] # Simply check the position of w and b for var in vars[-2:]: assert("w" in var.name or "b" in var.name) grads = zip(grads_clip, vars) # There are some things we can do to the gradients, i.e. learning rate scaling. # # The values and gradients are added to summeries # for grad, var in grads: # if grad is not None: # self.train_summary.append(tf.summary.histogram(var.op.name + '/gradients', grad)) # self.train_summary.append(tf.summary.scalar(var.op.name + '/gradients_norm', tf.norm(grad))) self.train_summary.append(activation_summaries(endpoints)) for var in tf.trainable_variables(): self.train_summary.append(tf.summary.histogram(var.op.name, var)) self.train_summary = tf.summary.merge(self.train_summary) with tf.control_dependencies(batchnorm_update_ops): self.train_op = opt.apply_gradients(grads) # We want to inspect other values during training? self.train_ops["loss"] = total_loss self.train_ops["raw_loss"] = loss # The model saver if self.saver is None: self.saver = tf.train.Saver(max_to_keep=self.params.keep_checkpoint_max) # The training summary writer if self.summary_writer is None: self.summary_writer = tf.summary.FileWriter(self.model, self.sess.graph) return def train(self, data, spklist, learning_rate, aux_data=None): """Train the model. Args: data: The training data directory. spklist: The spklist is a file map speaker name to the index. learning_rate: The learning rate is passed by the main program. The main program can easily tune the learning rate according to the validation accuracy or anything else. aux_data: The auxiliary data (maybe useful in child class.) """ # initialize all variables # graph = tf.get_default_graph() # kernel_six = graph.get_tensor_by_name('tdnn_svd6/tdnn6.5_dense/kernel:0') # def get_semi_orthogonal(mat): #pri# nt(mat.shape) # M = tf.transpose(mat) # #M = mat # I = tf.Variable(np.identity(M.shape[0]), dtype=tf.float32) # for _ in range(10): # P = tf.matmul(M, M, transpose_b=True) # alpha2 = tf.divide(tf.trace(tf.matmul(P, P, transpose_b=True)), tf.trace(P)) # M = M - (1 / (2.0 * alpha2)) * tf.matmul(tf.subtract(P, alpha2 * I), M) # P = tf.matmul(M, M, transpose_b=True) # alpha2 = tf.divide(tf.trace(tf.matmul(P, P, transpose_b=True)), tf.trace(P)) # M = M / alpha2 # return tf.transpose(M) # semi = get_semi_orthogonal(kernel_six) # semi_op = tf.assign(kernel_six, semi) self.sess.run(tf.global_variables_initializer()) # curr_step is the real step the training at. curr_step = 0 # Load the model if we have if os.path.isfile(os.path.join(self.model, "checkpoint")): curr_step = self.load() # The data loader data_loader = KaldiDataRandomQueue(data, spklist, num_parallel=self.params.num_parallel_datasets, max_qsize=self.params.max_queue_size, num_speakers=self.params.num_speakers_per_batch, num_segments=self.params.num_segments_per_speaker, min_len=self.params.min_segment_len, max_len=self.params.max_segment_len, shuffle=True) epoch = int(curr_step / self.params.num_steps_per_epoch) data_loader.start() for step in range(curr_step % self.params.num_steps_per_epoch, self.params.num_steps_per_epoch): try: # if step % 4 == 0: # # SEMI ORTHOGONA; # self.sess.run(semi_op) if step % self.params.save_summary_steps == 0 or step % self.params.show_training_progress == 0: train_ops = [self.train_ops, self.train_op] if step % self.params.save_summary_steps == 0: train_ops.append(self.train_summary) start_time = time.time() features, labels = data_loader.fetch() train_val = self.sess.run(train_ops, feed_dict={self.train_features: features, self.train_labels: labels, self.global_step: curr_step, self.learning_rate: learning_rate}) end_time = time.time() tf.logging.info( "Epoch: [%2d] step: [%2d/%2d] time: %.4f s/step, raw loss: %f, total loss: %f" % (epoch, step, self.params.num_steps_per_epoch, end_time - start_time, train_val[0]["raw_loss"], train_val[0]["loss"])) if step % self.params.save_summary_steps == 0: self.summary_writer.add_summary(train_val[-1], curr_step) else: # Only compute optimizer. features, labels = data_loader.fetch() _ = self.sess.run(self.train_op, feed_dict={self.train_features: features, self.train_labels: labels, self.global_step: curr_step, self.learning_rate: learning_rate}) if step % self.params.save_checkpoints_steps == 0 and curr_step != 0: self.save(curr_step) curr_step += 1 except DataOutOfRange: tf.logging.info("Finished reading features.") break data_loader.stop() self.save(curr_step) return def train_tune_lr(self, data, spklist, tune_period=100, aux_data=None): """Tune the learning rate. According to: https://www.kdnuggets.com/2017/11/estimating-optimal-learning-rate-deep-neural-network.html Args: data: The training data directory. spklist: The spklist is a file map speaker name to the index. tune_period: How many steps per learning rate. aux_data: The auxiliary data directory. """ # initialize all variables self.sess.run(tf.global_variables_initializer()) # We need to load the model sometimes, since we may try to find the learning rate for fine-tuning. if os.path.isfile(os.path.join(self.model, "checkpoint")): self.load() data_loader = KaldiDataRandomQueue(data, spklist, num_parallel=self.params.num_parallel_datasets, max_qsize=self.params.max_queue_size, num_speakers=self.params.num_speakers_per_batch, num_segments=self.params.num_segments_per_speaker, min_len=self.params.min_segment_len, max_len=self.params.max_segment_len, shuffle=True) data_loader.start() # The learning rate normally varies from 1e-5 to 1 # Some common values: # 1. factor = 1.15 # tune_period = 200 # tune_times = 100 init_learning_rate = 1e-5 factor = 1.15 tune_times = 100 fp_lr = open(os.path.join(self.model, "learning_rate_tuning"), "w") for step in range(tune_period * tune_times): lr = init_learning_rate * (factor ** (step // tune_period)) try: if step % tune_period == 0: train_ops = [self.train_ops, self.train_op, self.train_summary] # train_ops = [self.train_ops, self.train_op] start_time = time.time() features, labels = data_loader.fetch() train_val = self.sess.run(train_ops, feed_dict={self.train_features: features, self.train_labels: labels, self.global_step: 0, self.learning_rate: lr}) end_time = time.time() tf.logging.info( "Epoch: step: %2d, time: %.4f s/step, lr: %f, raw loss: %f, total loss: %f" \ % (step, end_time - start_time, lr, train_val[0]["raw_loss"], train_val[0]["loss"])) fp_lr.write("%d %f %f\n" % (step, lr, train_val[0]["loss"])) self.summary_writer.add_summary(train_val[-1], step) else: features, labels = data_loader.fetch() _ = self.sess.run(self.train_op, feed_dict={self.train_features: features, self.train_labels: labels, self.global_step: 0, self.learning_rate: lr}) except DataOutOfRange: tf.logging.info("Finished reading features.") break data_loader.stop() fp_lr.close() return def valid(self, data, spklist, batch_type="softmax", output_embeddings=False, aux_data=None): """Evaluate on the validation set Args: data: The training data directory. spklist: The spklist is a file map speaker name to the index. batch_type: `softmax` or `end2end`. The batch is `softmax-like` or `end2end-like`. If the batch is `softmax-like`, each sample are from different speakers; if the batch is `end2end-like`, the samples are from N speakers with M segments per speaker. output_embeddings: Set True to output the corresponding embeddings and labels of the valid set. If output_embeddings, an additional valid metric (e.g. EER) should be computed outside the function. aux_data: The auxiliary data directory. :return: valid_loss, embeddings and labels (None if output_embeddings is False). """ # Initialization will reset all the variables in the graph. # The local variables are also need to be initialized for metrics function. self.sess.run(tf.global_variables_initializer()) self.sess.run(tf.local_variables_initializer()) assert batch_type == "softmax" or batch_type == "end2end", "The batch_type can only be softmax or end2end" curr_step = 0 # Load the model. The valid function can only be called after training (of course...) if os.path.isfile(os.path.join(self.model, "checkpoint")): curr_step = self.load() else: tf.logging.info("[Warning] Cannot find model in %s. Random initialization is used in validation." % self.model) embeddings_val = None labels_val = None num_batches = 0 if output_embeddings: # If we want to output embeddings, the features should be loaded in order data_loader = KaldiDataSeqQueue(data, spklist, num_parallel=2, max_qsize=10, batch_size=self.params.num_speakers_per_batch * self.params.num_segments_per_speaker, min_len=self.params.min_segment_len, max_len=self.params.max_segment_len, shuffle=False) data_loader.start() tf.logging.info("Generate valid embeddings.") # In this mode, the embeddings and labels will be saved and output. It needs more memory and takes longer # to process these values. while True: try: if num_batches % 100 == 0: tf.logging.info("valid step: %d" % num_batches) features, labels = data_loader.fetch() valid_emb_val, valid_labels_val = self.sess.run([self.embeddings, self.valid_labels], feed_dict={self.valid_features: features, self.valid_labels: labels, self.global_step: curr_step}) # Save the embeddings and labels if embeddings_val is None: embeddings_val = valid_emb_val labels_val = valid_labels_val else: embeddings_val = np.concatenate((embeddings_val, valid_emb_val), axis=0) labels_val = np.concatenate((labels_val, valid_labels_val), axis=0) num_batches += 1 except DataOutOfRange: break data_loader.stop() if batch_type == "softmax": data_loader = KaldiDataSeqQueue(data, spklist, num_parallel=2, max_qsize=10, batch_size=self.params.num_speakers_per_batch * self.params.num_segments_per_speaker, min_len=self.params.min_segment_len, max_len=self.params.max_segment_len, shuffle=True) elif batch_type == "end2end": # The num_valid_speakers_per_batch and num_valid_segments_per_speaker are only required when # End2End loss is used. Since we switch the loss function to softmax generalized e2e loss # when the e2e loss is used. assert "num_valid_speakers_per_batch" in self.params.dict and "num_valid_segments_per_speaker" in self.params.dict, \ "Valid parameters should be set if E2E loss is selected" data_loader = KaldiDataRandomQueue(data, spklist, num_parallel=2, max_qsize=10, num_speakers=self.params.num_valid_speakers_per_batch, num_segments=self.params.num_valid_segments_per_speaker, min_len=self.params.min_segment_len, max_len=self.params.max_segment_len, shuffle=True) else: raise ValueError data_loader.start() num_batches = 0 for _ in range(self.params.valid_max_iterations): try: if num_batches % 100 == 0: tf.logging.info("valid step: %d" % num_batches) features, labels = data_loader.fetch() _ = self.sess.run(self.valid_ops["valid_loss_op"], feed_dict={self.valid_features: features, self.valid_labels: labels, self.global_step: curr_step}) num_batches += 1 except DataOutOfRange: break data_loader.stop() loss, summary = self.sess.run([self.valid_ops["valid_loss"], self.valid_summary]) # We only save the summary for the last batch. self.valid_summary_writer.add_summary(summary, curr_step) # The valid loss is averaged over all the batches. tf.logging.info("[Validation %d batches] valid loss: %f" % (num_batches, loss)) # The output embeddings and labels can be used to compute EER or other metrics return loss, embeddings_val, labels_val def predict(self, features): """Output the embeddings :return: A numpy array which is the embeddings """ if not self.is_loaded: if os.path.isfile(os.path.join(self.model, "checkpoint")): self.load() else: sys.exit("Cannot find model in %s" % self.model) rank = len(features.shape) assert(rank == 2 or rank == 3) # Expand the feature if the rank is 2 if rank == 2: features = np.expand_dims(features, axis=0) embeddings = self.sess.run(self.embeddings, feed_dict={self.pred_features: features}) if rank == 2: embeddings = np.squeeze(embeddings, axis=0) return embeddings def set_trainable_variables(self, variable_list=None): """Set the variables which we want to optimize. The optimizer will only optimize the variables which contain sub-string in the variable list. Basically, this is copied from the training path in `build`. The batchnorm statistics can always be updated? Args: variable_list: The model variable contains sub-string in the list will be optimized. If None, all variables will be optimized. """ add_train_summary = [] variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) trainable_variables = [] if variable_list is None: tf.logging.info("[Info] Add all trainable variables to the optimizer.") trainable_variables = None else: for v in variables: if substring_in_list(v.name, variable_list): trainable_variables.append(v) tf.logging.info("[Info] Add %s to trainable list" % v.name) with tf.name_scope("train") as scope: grads = self.optimizer.compute_gradients(self.total_loss, var_list=trainable_variables) if self.params.clip_gradient: grads, vars = zip(*grads) # compute gradients of variables with respect to loss grads_clip, _ = tf.clip_by_global_norm(grads, self.params.clip_gradient_norm) # l2 norm clipping grads = zip(grads_clip, vars) # # The values and gradients are added to summeries # for grad, var in grads: # if grad is not None: # add_train_summary.append(tf.summary.histogram(var.op.name + '/gradients', grad)) # add_train_summary.append(tf.summary.scalar(var.op.name + '/gradients_norm', tf.norm(grad))) if variable_list is None: trainable_variables = tf.trainable_variables() for var in trainable_variables: add_train_summary.append(tf.summary.histogram(var.op.name, var)) self.train_summary = tf.summary.merge([self.train_summary, tf.summary.merge(add_train_summary)]) batchnorm_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope) with tf.control_dependencies(batchnorm_update_ops): self.train_op = self.optimizer.apply_gradients(grads) def get_finetune_model(self, excluded_list): """Start from a pre-trained model and other parameters are initialized using default initializer. Actually, this function is only called at the first epoch of the fine-tuning, because in succeeded epochs, we need to fully load the model rather than loading part of the graph. The pre-trained model is saved in the model directory as index 0. Backup the pre-trained model and save the new model (with random initialized parameters) as index 0 instead. Args: excluded_list: A list. Do NOT restore the parameters in the exclude_list. This is useful in fine-truning an existing model. We load a part of the pre-trained model and leave the other part randomly initialized. Deprecated: data: The training data directory. spklist: The spklist is a file map speaker name to the index. learning_rate: The learning rate is passed by the main program. The main program can easily tune the learning rate according to the validation accuracy or anything else. """ # initialize all variables self.sess.run(tf.global_variables_initializer()) # Load parts of the model variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) restore_variables = [] for v in variables: if not substring_in_list(v.name, excluded_list): restore_variables.append(v) else: tf.logging.info("[Info] Ignore %s when loading the checkpoint" % v.name) finetune_saver = tf.train.Saver(var_list=restore_variables) ckpt = tf.train.get_checkpoint_state(self.model) ckpt_name = os.path.basename(ckpt.model_checkpoint_path) finetune_saver.restore(self.sess, os.path.join(self.model, ckpt_name)) # Backup the old files import glob, shutil model_checkpoint_path = ckpt.model_checkpoint_path for filename in glob.glob(model_checkpoint_path + "*"): shutil.copyfile(filename, filename + '.bak') # Save the new model. The new model is basically the same with the pre-trained one, while parameters # NOT in the pre-trained model are random initialized. # Set the step to 0. self.save(0) return def insight(self, data, spklist, batch_type="softmax", output_embeddings=False, aux_data=None): """Just use to debug the network """ self.sess.run(tf.global_variables_initializer()) self.sess.run(tf.local_variables_initializer()) assert batch_type == "softmax" or batch_type == "end2end", "The batch_type can only be softmax or end2end" embeddings_val = None labels_val = None self.load() if output_embeddings: # If we want to output embeddings, the features should be loaded in order data_loader = KaldiDataSeqQueue(data, spklist, num_parallel=2, max_qsize=10, batch_size=self.params.num_speakers_per_batch * self.params.num_segments_per_speaker, min_len=self.params.min_segment_len, max_len=self.params.max_segment_len, shuffle=False) data_loader.start() tf.logging.info("Generate valid embeddings.") # In this mode, the embeddings and labels will be saved and output. It needs more memory and takes longer # to process these values. while True: try: features, labels = data_loader.fetch() valid_emb_val, valid_labels_val, endpoints_val = self.sess.run([self.embeddings, self.valid_labels, self.endpoints], feed_dict={self.valid_features: features, self.valid_labels: labels}) # acc = np.sum(np.equal(np.argmax(endpoints_val['logits'], axis=1), labels, dtype=np.float)) / float( # labels.shape[0]) # print("Acc: %f" % acc) # Save the embeddings and labels if embeddings_val is None: embeddings_val = valid_emb_val labels_val = valid_labels_val else: embeddings_val = np.concatenate((embeddings_val, valid_emb_val), axis=0) labels_val = np.concatenate((labels_val, valid_labels_val), axis=0) except DataOutOfRange: break data_loader.stop() if batch_type == "softmax": data_loader = KaldiDataSeqQueue(data, spklist, num_parallel=2, max_qsize=10, batch_size=self.params.num_speakers_per_batch * self.params.num_segments_per_speaker*10, min_len=self.params.min_segment_len, max_len=self.params.max_segment_len, shuffle=True) elif batch_type == "end2end": # The num_valid_speakers_per_batch and num_valid_segments_per_speaker are only required when # End2End loss is used. Since we switch the loss function to softmax generalized e2e loss # when the e2e loss is used. assert "num_valid_speakers_per_batch" in self.params.dict and "num_valid_segments_per_speaker" in self.params.dict, \ "Valid parameters should be set if E2E loss is selected" data_loader = KaldiDataRandomQueue(data, spklist, num_parallel=2, max_qsize=10, num_speakers=self.params.num_valid_speakers_per_batch, num_segments=self.params.num_valid_segments_per_speaker, min_len=self.params.min_segment_len, max_len=self.params.max_segment_len, shuffle=True) else: raise ValueError data_loader.start() while True: try: features, labels = data_loader.fetch() _, endpoints_val = self.sess.run([self.valid_ops["valid_loss_op"], self.endpoints], feed_dict={self.valid_features: features, self.valid_labels: labels}) except DataOutOfRange: break data_loader.stop() loss = self.sess.run(self.valid_ops["valid_loss"]) tf.logging.info("Shorter segments are used to test the valid loss (%d-%d)" % (self.params.min_segment_len, self.params.max_segment_len)) tf.logging.info("Loss: %f" % loss) # while True: # try: # features, labels = data_loader.fetch() # valid_ops, endpoints_val = self.sess.run([self.valid_ops, self.endpoints], feed_dict={self.valid_features: features, # self.valid_labels: labels}) # loss = valid_ops["valid_loss"] # except DataOutOfRange: # break # data_loader.stop() # tf.logging.info("Loss: %f" % loss) acc = np.sum(np.equal(np.argmax(endpoints_val['logits'], axis=1), labels, dtype=np.float)) / float(labels.shape[0]) print("Acc: %f" % acc) import pdb pdb.set_trace() # from model.test_utils import softmax # with tf.variable_scope("softmax", reuse=True): # test = tf.get_variable("output/kernel") # test_val = self.sess.run(test) return loss, embeddings_val, labels_val
py
b4029fc6ea834d686cf27012429bdfbdef665703
""" Subclasses of unittest.TestCase. """ from __future__ import absolute_import import os import os.path import shutil import threading import unittest from .. import config from .. import core from .. import logging from .. import utils def make_test_case(test_kind, *args, **kwargs): """ Factory function for creating TestCase instances. """ if test_kind not in _TEST_CASES: raise ValueError("Unknown test kind '%s'" % (test_kind)) return _TEST_CASES[test_kind](*args, **kwargs) class TestCase(unittest.TestCase): """ A test case to execute. """ def __init__(self, logger, test_kind, test_name): """ Initializes the TestCase with the name of the test. """ unittest.TestCase.__init__(self, methodName="run_test") if not isinstance(logger, logging.Logger): raise TypeError("logger must be a Logger instance") if not isinstance(test_kind, basestring): raise TypeError("test_kind must be a string") if not isinstance(test_name, basestring): raise TypeError("test_name must be a string") self.logger = logger self.test_kind = test_kind self.test_name = test_name self.fixture = None self.return_code = None self.is_configured = False def long_name(self): """ Returns the path to the test, relative to the current working directory. """ return os.path.relpath(self.test_name) def basename(self): """ Returns the basename of the test. """ return os.path.basename(self.test_name) def short_name(self): """ Returns the basename of the test without the file extension. """ return os.path.splitext(self.basename())[0] def id(self): return self.test_name def shortDescription(self): return "%s %s" % (self.test_kind, self.test_name) def configure(self, fixture, *args, **kwargs): """ Stores 'fixture' as an attribute for later use during execution. """ if self.is_configured: raise RuntimeError("configure can only be called once") self.is_configured = True self.fixture = fixture def run_test(self): """ Runs the specified test. """ raise NotImplementedError("run_test must be implemented by TestCase subclasses") def as_command(self): """ Returns the command invocation used to run the test. """ return self._make_process().as_command() def _execute(self, process): """ Runs the specified process. """ if config.INTERNAL_EXECUTOR_NAME is not None: self.logger.info("Starting %s under executor %s...\n%s", self.shortDescription(), config.INTERNAL_EXECUTOR_NAME, process.as_command()) else: self.logger.info("Starting %s...\n%s", self.shortDescription(), process.as_command()) process.start() self.logger.info("%s started with pid %s.", self.shortDescription(), process.pid) self.return_code = process.wait() if self.return_code != 0: raise self.failureException("%s failed" % (self.shortDescription())) self.logger.info("%s finished.", self.shortDescription()) def _make_process(self): """ Returns a new Process instance that could be used to run the test or log the command. """ raise NotImplementedError("_make_process must be implemented by TestCase subclasses") class CPPUnitTestCase(TestCase): """ A C++ unit test to execute. """ def __init__(self, logger, program_executable, program_options=None): """ Initializes the CPPUnitTestCase with the executable to run. """ TestCase.__init__(self, logger, "Program", program_executable) self.program_executable = program_executable self.program_options = utils.default_if_none(program_options, {}).copy() def run_test(self): try: program = self._make_process() self._execute(program) except self.failureException: raise except: self.logger.exception("Encountered an error running C++ unit test %s.", self.basename()) raise def _make_process(self): return core.process.Process(self.logger, [self.program_executable], **self.program_options) class CPPIntegrationTestCase(TestCase): """ A C++ integration test to execute. """ def __init__(self, logger, program_executable, program_options=None): """ Initializes the CPPIntegrationTestCase with the executable to run. """ TestCase.__init__(self, logger, "Program", program_executable) self.program_executable = program_executable self.program_options = utils.default_if_none(program_options, {}).copy() def configure(self, fixture, *args, **kwargs): TestCase.configure(self, fixture, *args, **kwargs) self.program_options["connectionString"] = self.fixture.get_connection_string() def run_test(self): try: program = self._make_process() self._execute(program) except self.failureException: raise except: self.logger.exception("Encountered an error running C++ integration test %s.", self.basename()) raise def _make_process(self): return core.programs.generic_program(self.logger, [self.program_executable], **self.program_options) class DBTestCase(TestCase): """ A dbtest to execute. """ def __init__(self, logger, dbtest_suite, dbtest_executable=None, dbtest_options=None): """ Initializes the DBTestCase with the dbtest suite to run. """ TestCase.__init__(self, logger, "DBTest", dbtest_suite) # Command line options override the YAML configuration. self.dbtest_executable = utils.default_if_none(config.DBTEST_EXECUTABLE, dbtest_executable) self.dbtest_suite = dbtest_suite self.dbtest_options = utils.default_if_none(dbtest_options, {}).copy() def configure(self, fixture, *args, **kwargs): TestCase.configure(self, fixture, *args, **kwargs) # If a dbpath was specified, then use it as a container for all other dbpaths. dbpath_prefix = self.dbtest_options.pop("dbpath", DBTestCase._get_dbpath_prefix()) dbpath = os.path.join(dbpath_prefix, "job%d" % (self.fixture.job_num), "unittest") self.dbtest_options["dbpath"] = dbpath shutil.rmtree(dbpath, ignore_errors=True) try: os.makedirs(dbpath) except os.error: # Directory already exists. pass def run_test(self): try: dbtest = self._make_process() self._execute(dbtest) except self.failureException: raise except: self.logger.exception("Encountered an error running dbtest suite %s.", self.basename()) raise def _make_process(self): return core.programs.dbtest_program(self.logger, executable=self.dbtest_executable, suites=[self.dbtest_suite], **self.dbtest_options) @staticmethod def _get_dbpath_prefix(): """ Returns the prefix of the dbpath to use for the dbtest executable. Order of preference: 1. The --dbpathPrefix specified at the command line. 2. Value of the TMPDIR environment variable. 3. Value of the TEMP environment variable. 4. Value of the TMP environment variable. 5. The /tmp directory. """ if config.DBPATH_PREFIX is not None: return config.DBPATH_PREFIX for env_var in ("TMPDIR", "TEMP", "TMP"): if env_var in os.environ: return os.environ[env_var] return os.path.normpath("/tmp") class JSTestCase(TestCase): """ A jstest to execute. """ # A wrapper for the thread class that lets us propagate exceptions. class ExceptionThread(threading.Thread): def __init__(self, my_target, my_args): threading.Thread.__init__(self, target=my_target, args=my_args) self.err = None def run(self): try: threading.Thread.run(self) except Exception as self.err: raise else: self.err = None def _get_exception(self): return self.err DEFAULT_CLIENT_NUM = 1 def __init__(self, logger, js_filename, shell_executable=None, shell_options=None, test_kind="JSTest"): "Initializes the JSTestCase with the JS file to run." TestCase.__init__(self, logger, test_kind, js_filename) # Command line options override the YAML configuration. self.shell_executable = utils.default_if_none(config.MONGO_EXECUTABLE, shell_executable) self.js_filename = js_filename self.shell_options = utils.default_if_none(shell_options, {}).copy() self.num_clients = JSTestCase.DEFAULT_CLIENT_NUM def configure(self, fixture, num_clients=DEFAULT_CLIENT_NUM, *args, **kwargs): TestCase.configure(self, fixture, *args, **kwargs) if self.fixture.port is not None: self.shell_options["port"] = self.fixture.port global_vars = self.shell_options.get("global_vars", {}).copy() data_dir = self._get_data_dir(global_vars) # Set MongoRunner.dataPath if overridden at command line or not specified in YAML. if config.DBPATH_PREFIX is not None or "MongoRunner.dataPath" not in global_vars: # dataPath property is the dataDir property with a trailing slash. data_path = os.path.join(data_dir, "") else: data_path = global_vars["MongoRunner.dataPath"] global_vars["MongoRunner.dataDir"] = data_dir global_vars["MongoRunner.dataPath"] = data_path test_data = global_vars.get("TestData", {}).copy() test_data["minPort"] = core.network.PortAllocator.min_test_port(fixture.job_num) test_data["maxPort"] = core.network.PortAllocator.max_test_port(fixture.job_num) # Marks the main test when multiple test clients are run concurrently, to notify the test # of any code that should only be run once. If there is only one client, it is the main one. test_data["isMainTest"] = True global_vars["TestData"] = test_data self.shell_options["global_vars"] = global_vars shutil.rmtree(data_dir, ignore_errors=True) self.num_clients = num_clients try: os.makedirs(data_dir) except os.error: # Directory already exists. pass def _get_data_dir(self, global_vars): """ Returns the value that the mongo shell should set for the MongoRunner.dataDir property. """ # Command line options override the YAML configuration. data_dir_prefix = utils.default_if_none(config.DBPATH_PREFIX, global_vars.get("MongoRunner.dataDir")) data_dir_prefix = utils.default_if_none(data_dir_prefix, config.DEFAULT_DBPATH_PREFIX) return os.path.join(data_dir_prefix, "job%d" % (self.fixture.job_num), config.MONGO_RUNNER_SUBDIR) def run_test(self): threads = [] try: # Don't thread if there is only one client. if self.num_clients == 1: shell = self._make_process(self.logger) self._execute(shell) else: # If there are multiple clients, make a new thread for each client. for i in xrange(self.num_clients): t = self.ExceptionThread(my_target=self._run_test_in_thread, my_args=[i]) t.start() threads.append(t) except self.failureException: raise except: self.logger.exception("Encountered an error running jstest %s.", self.basename()) raise finally: for t in threads: t.join() for t in threads: if t._get_exception() is not None: raise t._get_exception() def _make_process(self, logger=None, thread_id=0): # If logger is none, it means that it's not running in a thread and thus logger should be # set to self.logger. logger = utils.default_if_none(logger, self.logger) is_main_test = True if thread_id > 0: is_main_test = False return core.programs.mongo_shell_program(logger, executable=self.shell_executable, filename=self.js_filename, isMainTest=is_main_test, **self.shell_options) def _run_test_in_thread(self, thread_id): # Make a logger for each thread. logger = logging.loggers.new_logger(self.test_kind + ':' + str(thread_id), parent=self.logger) shell = self._make_process(logger, thread_id) self._execute(shell) class MongosTestCase(TestCase): """ A TestCase which runs a mongos binary with the given parameters. """ def __init__(self, logger, mongos_options): """ Initializes the mongos test and saves the options. """ self.mongos_executable = utils.default_if_none(config.MONGOS_EXECUTABLE, config.DEFAULT_MONGOS_EXECUTABLE) # Use the executable as the test name. TestCase.__init__(self, logger, "mongos", self.mongos_executable) self.options = mongos_options.copy() def configure(self, fixture, *args, **kwargs): """ Ensures the --test option is present in the mongos options. """ TestCase.configure(self, fixture, *args, **kwargs) # Always specify test option to ensure the mongos will terminate. if "test" not in self.options: self.options["test"] = "" def run_test(self): try: mongos = self._make_process() self._execute(mongos) except self.failureException: raise except: self.logger.exception("Encountered an error running %s.", mongos.as_command()) raise def _make_process(self): return core.programs.mongos_program(self.logger, executable=self.mongos_executable, **self.options) _TEST_CASES = { "cpp_unit_test": CPPUnitTestCase, "cpp_integration_test": CPPIntegrationTestCase, "db_test": DBTestCase, "js_test": JSTestCase, "mongos_test": MongosTestCase, }
py
b402a13f8cd9881c6c4b538f1998f3a0e52b1e91
# coding: utf-8 """ Notification API The eBay Notification API enables management of the entire end-to-end eBay notification experience by allowing users to:<ul><li>Browse for supported notification topics and retrieve topic details</li><li>Create, configure, and manage notification destination endpionts</li><li>Configure, manage, and test notification subscriptions</li><li>Process eBay notifications and verify the integrity of the message payload</li></ul> # noqa: E501 OpenAPI spec version: v1.1.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class Error(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'category': 'str', 'domain': 'str', 'error_id': 'int', 'input_ref_ids': 'list[str]', 'long_message': 'str', 'message': 'str', 'output_ref_ids': 'list[str]', 'parameters': 'list[ErrorParameter]', 'subdomain': 'str' } attribute_map = { 'category': 'category', 'domain': 'domain', 'error_id': 'errorId', 'input_ref_ids': 'inputRefIds', 'long_message': 'longMessage', 'message': 'message', 'output_ref_ids': 'outputRefIds', 'parameters': 'parameters', 'subdomain': 'subdomain' } def __init__(self, category=None, domain=None, error_id=None, input_ref_ids=None, long_message=None, message=None, output_ref_ids=None, parameters=None, subdomain=None): # noqa: E501 """Error - a model defined in Swagger""" # noqa: E501 self._category = None self._domain = None self._error_id = None self._input_ref_ids = None self._long_message = None self._message = None self._output_ref_ids = None self._parameters = None self._subdomain = None self.discriminator = None if category is not None: self.category = category if domain is not None: self.domain = domain if error_id is not None: self.error_id = error_id if input_ref_ids is not None: self.input_ref_ids = input_ref_ids if long_message is not None: self.long_message = long_message if message is not None: self.message = message if output_ref_ids is not None: self.output_ref_ids = output_ref_ids if parameters is not None: self.parameters = parameters if subdomain is not None: self.subdomain = subdomain @property def category(self): """Gets the category of this Error. # noqa: E501 Identifies the type of erro. # noqa: E501 :return: The category of this Error. # noqa: E501 :rtype: str """ return self._category @category.setter def category(self, category): """Sets the category of this Error. Identifies the type of erro. # noqa: E501 :param category: The category of this Error. # noqa: E501 :type: str """ self._category = category @property def domain(self): """Gets the domain of this Error. # noqa: E501 Name for the primary system where the error occurred. This is relevant for application errors. # noqa: E501 :return: The domain of this Error. # noqa: E501 :rtype: str """ return self._domain @domain.setter def domain(self, domain): """Sets the domain of this Error. Name for the primary system where the error occurred. This is relevant for application errors. # noqa: E501 :param domain: The domain of this Error. # noqa: E501 :type: str """ self._domain = domain @property def error_id(self): """Gets the error_id of this Error. # noqa: E501 A unique number to identify the error. # noqa: E501 :return: The error_id of this Error. # noqa: E501 :rtype: int """ return self._error_id @error_id.setter def error_id(self, error_id): """Sets the error_id of this Error. A unique number to identify the error. # noqa: E501 :param error_id: The error_id of this Error. # noqa: E501 :type: int """ self._error_id = error_id @property def input_ref_ids(self): """Gets the input_ref_ids of this Error. # noqa: E501 An array of request elements most closely associated to the error. # noqa: E501 :return: The input_ref_ids of this Error. # noqa: E501 :rtype: list[str] """ return self._input_ref_ids @input_ref_ids.setter def input_ref_ids(self, input_ref_ids): """Sets the input_ref_ids of this Error. An array of request elements most closely associated to the error. # noqa: E501 :param input_ref_ids: The input_ref_ids of this Error. # noqa: E501 :type: list[str] """ self._input_ref_ids = input_ref_ids @property def long_message(self): """Gets the long_message of this Error. # noqa: E501 A more detailed explanation of the error. # noqa: E501 :return: The long_message of this Error. # noqa: E501 :rtype: str """ return self._long_message @long_message.setter def long_message(self, long_message): """Sets the long_message of this Error. A more detailed explanation of the error. # noqa: E501 :param long_message: The long_message of this Error. # noqa: E501 :type: str """ self._long_message = long_message @property def message(self): """Gets the message of this Error. # noqa: E501 Information on how to correct the problem, in the end user's terms and language where applicable. # noqa: E501 :return: The message of this Error. # noqa: E501 :rtype: str """ return self._message @message.setter def message(self, message): """Sets the message of this Error. Information on how to correct the problem, in the end user's terms and language where applicable. # noqa: E501 :param message: The message of this Error. # noqa: E501 :type: str """ self._message = message @property def output_ref_ids(self): """Gets the output_ref_ids of this Error. # noqa: E501 An array of request elements most closely associated to the error. # noqa: E501 :return: The output_ref_ids of this Error. # noqa: E501 :rtype: list[str] """ return self._output_ref_ids @output_ref_ids.setter def output_ref_ids(self, output_ref_ids): """Sets the output_ref_ids of this Error. An array of request elements most closely associated to the error. # noqa: E501 :param output_ref_ids: The output_ref_ids of this Error. # noqa: E501 :type: list[str] """ self._output_ref_ids = output_ref_ids @property def parameters(self): """Gets the parameters of this Error. # noqa: E501 An array of name/value pairs that describe details the error condition. These are useful when multiple errors are returned. # noqa: E501 :return: The parameters of this Error. # noqa: E501 :rtype: list[ErrorParameter] """ return self._parameters @parameters.setter def parameters(self, parameters): """Sets the parameters of this Error. An array of name/value pairs that describe details the error condition. These are useful when multiple errors are returned. # noqa: E501 :param parameters: The parameters of this Error. # noqa: E501 :type: list[ErrorParameter] """ self._parameters = parameters @property def subdomain(self): """Gets the subdomain of this Error. # noqa: E501 Further helps indicate which subsystem the error is coming from. System subcategories include: Initialization, Serialization, Security, Monitoring, Rate Limiting, etc. # noqa: E501 :return: The subdomain of this Error. # noqa: E501 :rtype: str """ return self._subdomain @subdomain.setter def subdomain(self, subdomain): """Sets the subdomain of this Error. Further helps indicate which subsystem the error is coming from. System subcategories include: Initialization, Serialization, Security, Monitoring, Rate Limiting, etc. # noqa: E501 :param subdomain: The subdomain of this Error. # noqa: E501 :type: str """ self._subdomain = subdomain def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(Error, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Error): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
py
b402a33ed117c7433007adbb132ef7761e394bef
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2010 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from operator import itemgetter import time from openerp.osv import fields, osv from openerp import api class account_fiscal_position(osv.osv): _name = 'account.fiscal.position' _description = 'Fiscal Position' _order = 'sequence' _columns = { 'sequence': fields.integer('Sequence'), 'name': fields.char('Fiscal Position', required=True), 'active': fields.boolean('Active', help="By unchecking the active field, you may hide a fiscal position without deleting it."), 'company_id': fields.many2one('res.company', 'Company'), 'account_ids': fields.one2many('account.fiscal.position.account', 'position_id', 'Account Mapping', copy=True), 'tax_ids': fields.one2many('account.fiscal.position.tax', 'position_id', 'Tax Mapping', copy=True), 'note': fields.text('Notes'), 'auto_apply': fields.boolean('Automatic', help="Apply automatically this fiscal position."), 'vat_required': fields.boolean('VAT required', help="Apply only if partner has a VAT number."), 'country_id': fields.many2one('res.country', 'Countries', help="Apply only if delivery or invoicing country match."), 'country_group_id': fields.many2one('res.country.group', 'Country Group', help="Apply only if delivery or invocing country match the group."), } _defaults = { 'active': True, } def _check_country(self, cr, uid, ids, context=None): obj = self.browse(cr, uid, ids[0], context=context) if obj.country_id and obj.country_group_id: return False return True _constraints = [ (_check_country, 'You can not select a country and a group of countries', ['country_id', 'country_group_id']), ] @api.v7 def map_tax(self, cr, uid, fposition_id, taxes, context=None): if not taxes: return [] if not fposition_id: return map(lambda x: x.id, taxes) result = set() for t in taxes: ok = False for tax in fposition_id.tax_ids: if tax.tax_src_id.id == t.id: if tax.tax_dest_id: result.add(tax.tax_dest_id.id) ok=True if not ok: result.add(t.id) return list(result) @api.v8 # noqa def map_tax(self, taxes): result = self.env['account.tax'].browse() for tax in taxes: for t in self.tax_ids: if t.tax_src_id == tax: if t.tax_dest_id: result |= t.tax_dest_id break else: result |= tax return result @api.v7 def map_account(self, cr, uid, fposition_id, account_id, context=None): if not fposition_id: return account_id for pos in fposition_id.account_ids: if pos.account_src_id.id == account_id: account_id = pos.account_dest_id.id break return account_id @api.v8 def map_account(self, account): for pos in self.account_ids: if pos.account_src_id == account: return pos.account_dest_id return account def get_fiscal_position(self, cr, uid, company_id, partner_id, delivery_id=None, context=None): if not partner_id: return False # This can be easily overriden to apply more complex fiscal rules part_obj = self.pool['res.partner'] partner = part_obj.browse(cr, uid, partner_id, context=context) # partner manually set fiscal position always win if partner.property_account_position: return partner.property_account_position.id # if no delivery use invocing if delivery_id: delivery = part_obj.browse(cr, uid, delivery_id, context=context) else: delivery = partner domain = [ ('auto_apply', '=', True), '|', ('vat_required', '=', False), ('vat_required', '=', partner.vat_subjected), ] fiscal_position_ids = self.search(cr, uid, domain + [('country_id', '=', delivery.country_id.id)], context=context, limit=1) if fiscal_position_ids: return fiscal_position_ids[0] fiscal_position_ids = self.search(cr, uid, domain + [('country_group_id.country_ids', '=', delivery.country_id.id)], context=context, limit=1) if fiscal_position_ids: return fiscal_position_ids[0] fiscal_position_ids = self.search(cr, uid, domain + [('country_id', '=', None), ('country_group_id', '=', None)], context=context, limit=1) if fiscal_position_ids: return fiscal_position_ids[0] return False class account_fiscal_position_tax(osv.osv): _name = 'account.fiscal.position.tax' _description = 'Taxes Fiscal Position' _rec_name = 'position_id' _columns = { 'position_id': fields.many2one('account.fiscal.position', 'Fiscal Position', required=True, ondelete='cascade'), 'tax_src_id': fields.many2one('account.tax', 'Tax Source', required=True), 'tax_dest_id': fields.many2one('account.tax', 'Replacement Tax') } _sql_constraints = [ ('tax_src_dest_uniq', 'unique (position_id,tax_src_id,tax_dest_id)', 'A tax fiscal position could be defined only once time on same taxes.') ] class account_fiscal_position_account(osv.osv): _name = 'account.fiscal.position.account' _description = 'Accounts Fiscal Position' _rec_name = 'position_id' _columns = { 'position_id': fields.many2one('account.fiscal.position', 'Fiscal Position', required=True, ondelete='cascade'), 'account_src_id': fields.many2one('account.account', 'Account Source', domain=[('type','<>','view')], required=True), 'account_dest_id': fields.many2one('account.account', 'Account Destination', domain=[('type','<>','view')], required=True) } _sql_constraints = [ ('account_src_dest_uniq', 'unique (position_id,account_src_id,account_dest_id)', 'An account fiscal position could be defined only once time on same accounts.') ] class res_partner(osv.osv): _name = 'res.partner' _inherit = 'res.partner' _description = 'Partner' def _credit_debit_get(self, cr, uid, ids, field_names, arg, context=None): ctx = context.copy() ctx['all_fiscalyear'] = True query = self.pool.get('account.move.line')._query_get(cr, uid, context=ctx) cr.execute("""SELECT l.partner_id, a.type, SUM(l.debit-l.credit) FROM account_move_line l LEFT JOIN account_account a ON (l.account_id=a.id) WHERE a.type IN ('receivable','payable') AND l.partner_id IN %s AND l.reconcile_id IS NULL AND """ + query + """ GROUP BY l.partner_id, a.type """, (tuple(ids),)) maps = {'receivable':'credit', 'payable':'debit' } res = {} for id in ids: res[id] = {}.fromkeys(field_names, 0) for pid,type,val in cr.fetchall(): if val is None: val=0 res[pid][maps[type]] = (type=='receivable') and val or -val return res def _asset_difference_search(self, cr, uid, obj, name, type, args, context=None): if not args: return [] having_values = tuple(map(itemgetter(2), args)) where = ' AND '.join( map(lambda x: '(SUM(bal2) %(operator)s %%s)' % { 'operator':x[1]},args)) query = self.pool.get('account.move.line')._query_get(cr, uid, context=context) cr.execute(('SELECT pid AS partner_id, SUM(bal2) FROM ' \ '(SELECT CASE WHEN bal IS NOT NULL THEN bal ' \ 'ELSE 0.0 END AS bal2, p.id as pid FROM ' \ '(SELECT (debit-credit) AS bal, partner_id ' \ 'FROM account_move_line l ' \ 'WHERE account_id IN ' \ '(SELECT id FROM account_account '\ 'WHERE type=%s AND active) ' \ 'AND reconcile_id IS NULL ' \ 'AND '+query+') AS l ' \ 'RIGHT JOIN res_partner p ' \ 'ON p.id = partner_id ) AS pl ' \ 'GROUP BY pid HAVING ' + where), (type,) + having_values) res = cr.fetchall() if not res: return [('id','=','0')] return [('id','in',map(itemgetter(0), res))] def _credit_search(self, cr, uid, obj, name, args, context=None): return self._asset_difference_search(cr, uid, obj, name, 'receivable', args, context=context) def _debit_search(self, cr, uid, obj, name, args, context=None): return self._asset_difference_search(cr, uid, obj, name, 'payable', args, context=context) def _invoice_total(self, cr, uid, ids, field_name, arg, context=None): result = {} account_invoice_report = self.pool.get('account.invoice.report') for partner in self.browse(cr, uid, ids, context=context): domain = [('partner_id', 'child_of', partner.id)] invoice_ids = account_invoice_report.search(cr, uid, domain, context=context) invoices = account_invoice_report.browse(cr, uid, invoice_ids, context=context) result[partner.id] = sum(inv.user_currency_price_total for inv in invoices) return result def _journal_item_count(self, cr, uid, ids, field_name, arg, context=None): MoveLine = self.pool('account.move.line') AnalyticAccount = self.pool('account.analytic.account') return { partner_id: { 'journal_item_count': MoveLine.search_count(cr, uid, [('partner_id', '=', partner_id)], context=context), 'contracts_count': AnalyticAccount.search_count(cr,uid, [('partner_id', '=', partner_id)], context=context) } for partner_id in ids } def has_something_to_reconcile(self, cr, uid, partner_id, context=None): ''' at least a debit, a credit and a line older than the last reconciliation date of the partner ''' cr.execute(''' SELECT l.partner_id, SUM(l.debit) AS debit, SUM(l.credit) AS credit FROM account_move_line l RIGHT JOIN account_account a ON (a.id = l.account_id) RIGHT JOIN res_partner p ON (l.partner_id = p.id) WHERE a.reconcile IS TRUE AND p.id = %s AND l.reconcile_id IS NULL AND (p.last_reconciliation_date IS NULL OR l.date > p.last_reconciliation_date) AND l.state <> 'draft' GROUP BY l.partner_id''', (partner_id,)) res = cr.dictfetchone() if res: return bool(res['debit'] and res['credit']) return False def mark_as_reconciled(self, cr, uid, ids, context=None): return self.write(cr, uid, ids, {'last_reconciliation_date': time.strftime('%Y-%m-%d %H:%M:%S')}, context=context) _columns = { 'vat_subjected': fields.boolean('VAT Legal Statement', help="Check this box if the partner is subjected to the VAT. It will be used for the VAT legal statement."), 'credit': fields.function(_credit_debit_get, fnct_search=_credit_search, string='Total Receivable', multi='dc', help="Total amount this customer owes you."), 'debit': fields.function(_credit_debit_get, fnct_search=_debit_search, string='Total Payable', multi='dc', help="Total amount you have to pay to this supplier."), 'debit_limit': fields.float('Payable Limit'), 'total_invoiced': fields.function(_invoice_total, string="Total Invoiced", type='float', groups='account.group_account_invoice'), 'contracts_count': fields.function(_journal_item_count, string="Contracts", type='integer', multi="invoice_journal"), 'journal_item_count': fields.function(_journal_item_count, string="Journal Items", type="integer", multi="invoice_journal"), 'property_account_payable': fields.property( type='many2one', relation='account.account', string="Account Payable", domain="[('type', '=', 'payable')]", help="This account will be used instead of the default one as the payable account for the current partner", required=True), 'property_account_receivable': fields.property( type='many2one', relation='account.account', string="Account Receivable", domain="[('type', '=', 'receivable')]", help="This account will be used instead of the default one as the receivable account for the current partner", required=True), 'property_account_position': fields.property( type='many2one', relation='account.fiscal.position', string="Fiscal Position", help="The fiscal position will determine taxes and accounts used for the partner.", ), 'property_payment_term': fields.property( type='many2one', relation='account.payment.term', string ='Customer Payment Term', help="This payment term will be used instead of the default one for sale orders and customer invoices"), 'property_supplier_payment_term': fields.property( type='many2one', relation='account.payment.term', string ='Supplier Payment Term', help="This payment term will be used instead of the default one for purchase orders and supplier invoices"), 'ref_companies': fields.one2many('res.company', 'partner_id', 'Companies that refers to partner'), 'last_reconciliation_date': fields.datetime( 'Latest Full Reconciliation Date', copy=False, help='Date on which the partner accounting entries were fully reconciled last time. ' 'It differs from the last date where a reconciliation has been made for this partner, ' 'as here we depict the fact that nothing more was to be reconciled at this date. ' 'This can be achieved in 2 different ways: either the last unreconciled debit/credit ' 'entry of this partner was reconciled, either the user pressed the button ' '"Nothing more to reconcile" during the manual reconciliation process.') } def _commercial_fields(self, cr, uid, context=None): return super(res_partner, self)._commercial_fields(cr, uid, context=context) + \ ['debit_limit', 'property_account_payable', 'property_account_receivable', 'property_account_position', 'property_payment_term', 'property_supplier_payment_term', 'last_reconciliation_date'] # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
py
b402a3cc89102dbb83c7f86534897bc5e5645510
from __future__ import division, print_function, absolute_import import tflearn from tflearn.layers.core import dropout,activation,input_data,utils,fully_connected from tflearn.layers.estimator import regression import json import numpy as np def predict(data): input_layer = tflearn.input_data(shape=[None, 20]) dense1 = tflearn.fully_connected(input_layer, 128, activation='relu') dropout1 = tflearn.dropout(dense1, 0.8) dense2 = tflearn.fully_connected(dropout1, 32, activation='relu') dropout2 = tflearn.dropout(dense2, 0.8) softmax = tflearn.fully_connected(dropout2, 2, activation='softmax') sgd = tflearn.SGD(learning_rate=0.1, lr_decay=0.96, decay_step=1000) top_k = tflearn.metrics.Top_k(3) net = tflearn.regression(softmax, optimizer='adam',loss='categorical_crossentropy') model = tflearn.DNN(net) model.load("/home/vasu/HINT/backend/src/job_hell/utlis/tflearn_nn.model") x = json.loads(data) temp = [] for ix in x: temp.append(float(x[ix])) dum = np.array(temp) dum = dum.reshape(1,20) y = model.predict_label(dum) return np.argmax(y)
py
b402a42f4abce46e3f7bf55ee9b1dd47e4f1c90e
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import mock import packaging.version import grpc from grpc.experimental import aio import math import pytest from proto.marshal.rules.dates import DurationRule, TimestampRule from google.api_core import client_options from google.api_core import exceptions as core_exceptions from google.api_core import gapic_v1 from google.api_core import grpc_helpers from google.api_core import grpc_helpers_async from google.api_core import path_template from google.auth import credentials as ga_credentials from google.auth.exceptions import MutualTLSChannelError from google.cloud.dialogflow_v2.services.fulfillments import FulfillmentsAsyncClient from google.cloud.dialogflow_v2.services.fulfillments import FulfillmentsClient from google.cloud.dialogflow_v2.services.fulfillments import transports from google.cloud.dialogflow_v2.services.fulfillments.transports.base import ( _GOOGLE_AUTH_VERSION, ) from google.cloud.dialogflow_v2.types import fulfillment from google.cloud.dialogflow_v2.types import fulfillment as gcd_fulfillment from google.oauth2 import service_account from google.protobuf import field_mask_pb2 # type: ignore import google.auth # TODO(busunkim): Once google-auth >= 1.25.0 is required transitively # through google-api-core: # - Delete the auth "less than" test cases # - Delete these pytest markers (Make the "greater than or equal to" tests the default). requires_google_auth_lt_1_25_0 = pytest.mark.skipif( packaging.version.parse(_GOOGLE_AUTH_VERSION) >= packaging.version.parse("1.25.0"), reason="This test requires google-auth < 1.25.0", ) requires_google_auth_gte_1_25_0 = pytest.mark.skipif( packaging.version.parse(_GOOGLE_AUTH_VERSION) < packaging.version.parse("1.25.0"), reason="This test requires google-auth >= 1.25.0", ) def client_cert_source_callback(): return b"cert bytes", b"key bytes" # If default endpoint is localhost, then default mtls endpoint will be the same. # This method modifies the default endpoint so the client can produce a different # mtls endpoint for endpoint testing purposes. def modify_default_endpoint(client): return ( "foo.googleapis.com" if ("localhost" in client.DEFAULT_ENDPOINT) else client.DEFAULT_ENDPOINT ) def test__get_default_mtls_endpoint(): api_endpoint = "example.googleapis.com" api_mtls_endpoint = "example.mtls.googleapis.com" sandbox_endpoint = "example.sandbox.googleapis.com" sandbox_mtls_endpoint = "example.mtls.sandbox.googleapis.com" non_googleapi = "api.example.com" assert FulfillmentsClient._get_default_mtls_endpoint(None) is None assert ( FulfillmentsClient._get_default_mtls_endpoint(api_endpoint) == api_mtls_endpoint ) assert ( FulfillmentsClient._get_default_mtls_endpoint(api_mtls_endpoint) == api_mtls_endpoint ) assert ( FulfillmentsClient._get_default_mtls_endpoint(sandbox_endpoint) == sandbox_mtls_endpoint ) assert ( FulfillmentsClient._get_default_mtls_endpoint(sandbox_mtls_endpoint) == sandbox_mtls_endpoint ) assert FulfillmentsClient._get_default_mtls_endpoint(non_googleapi) == non_googleapi @pytest.mark.parametrize("client_class", [FulfillmentsClient, FulfillmentsAsyncClient,]) def test_fulfillments_client_from_service_account_info(client_class): creds = ga_credentials.AnonymousCredentials() with mock.patch.object( service_account.Credentials, "from_service_account_info" ) as factory: factory.return_value = creds info = {"valid": True} client = client_class.from_service_account_info(info) assert client.transport._credentials == creds assert isinstance(client, client_class) assert client.transport._host == "dialogflow.googleapis.com:443" @pytest.mark.parametrize( "transport_class,transport_name", [ (transports.FulfillmentsGrpcTransport, "grpc"), (transports.FulfillmentsGrpcAsyncIOTransport, "grpc_asyncio"), ], ) def test_fulfillments_client_service_account_always_use_jwt( transport_class, transport_name ): with mock.patch.object( service_account.Credentials, "with_always_use_jwt_access", create=True ) as use_jwt: creds = service_account.Credentials(None, None, None) transport = transport_class(credentials=creds, always_use_jwt_access=True) use_jwt.assert_called_once_with(True) with mock.patch.object( service_account.Credentials, "with_always_use_jwt_access", create=True ) as use_jwt: creds = service_account.Credentials(None, None, None) transport = transport_class(credentials=creds, always_use_jwt_access=False) use_jwt.assert_not_called() @pytest.mark.parametrize("client_class", [FulfillmentsClient, FulfillmentsAsyncClient,]) def test_fulfillments_client_from_service_account_file(client_class): creds = ga_credentials.AnonymousCredentials() with mock.patch.object( service_account.Credentials, "from_service_account_file" ) as factory: factory.return_value = creds client = client_class.from_service_account_file("dummy/file/path.json") assert client.transport._credentials == creds assert isinstance(client, client_class) client = client_class.from_service_account_json("dummy/file/path.json") assert client.transport._credentials == creds assert isinstance(client, client_class) assert client.transport._host == "dialogflow.googleapis.com:443" def test_fulfillments_client_get_transport_class(): transport = FulfillmentsClient.get_transport_class() available_transports = [ transports.FulfillmentsGrpcTransport, ] assert transport in available_transports transport = FulfillmentsClient.get_transport_class("grpc") assert transport == transports.FulfillmentsGrpcTransport @pytest.mark.parametrize( "client_class,transport_class,transport_name", [ (FulfillmentsClient, transports.FulfillmentsGrpcTransport, "grpc"), ( FulfillmentsAsyncClient, transports.FulfillmentsGrpcAsyncIOTransport, "grpc_asyncio", ), ], ) @mock.patch.object( FulfillmentsClient, "DEFAULT_ENDPOINT", modify_default_endpoint(FulfillmentsClient) ) @mock.patch.object( FulfillmentsAsyncClient, "DEFAULT_ENDPOINT", modify_default_endpoint(FulfillmentsAsyncClient), ) def test_fulfillments_client_client_options( client_class, transport_class, transport_name ): # Check that if channel is provided we won't create a new one. with mock.patch.object(FulfillmentsClient, "get_transport_class") as gtc: transport = transport_class(credentials=ga_credentials.AnonymousCredentials()) client = client_class(transport=transport) gtc.assert_not_called() # Check that if channel is provided via str we will create a new one. with mock.patch.object(FulfillmentsClient, "get_transport_class") as gtc: client = client_class(transport=transport_name) gtc.assert_called() # Check the case api_endpoint is provided. options = client_options.ClientOptions(api_endpoint="squid.clam.whelk") with mock.patch.object(transport_class, "__init__") as patched: patched.return_value = None client = client_class(client_options=options) patched.assert_called_once_with( credentials=None, credentials_file=None, host="squid.clam.whelk", scopes=None, client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) # Check the case api_endpoint is not provided and GOOGLE_API_USE_MTLS_ENDPOINT is # "never". with mock.patch.dict(os.environ, {"GOOGLE_API_USE_MTLS_ENDPOINT": "never"}): with mock.patch.object(transport_class, "__init__") as patched: patched.return_value = None client = client_class() patched.assert_called_once_with( credentials=None, credentials_file=None, host=client.DEFAULT_ENDPOINT, scopes=None, client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) # Check the case api_endpoint is not provided and GOOGLE_API_USE_MTLS_ENDPOINT is # "always". with mock.patch.dict(os.environ, {"GOOGLE_API_USE_MTLS_ENDPOINT": "always"}): with mock.patch.object(transport_class, "__init__") as patched: patched.return_value = None client = client_class() patched.assert_called_once_with( credentials=None, credentials_file=None, host=client.DEFAULT_MTLS_ENDPOINT, scopes=None, client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) # Check the case api_endpoint is not provided and GOOGLE_API_USE_MTLS_ENDPOINT has # unsupported value. with mock.patch.dict(os.environ, {"GOOGLE_API_USE_MTLS_ENDPOINT": "Unsupported"}): with pytest.raises(MutualTLSChannelError): client = client_class() # Check the case GOOGLE_API_USE_CLIENT_CERTIFICATE has unsupported value. with mock.patch.dict( os.environ, {"GOOGLE_API_USE_CLIENT_CERTIFICATE": "Unsupported"} ): with pytest.raises(ValueError): client = client_class() # Check the case quota_project_id is provided options = client_options.ClientOptions(quota_project_id="octopus") with mock.patch.object(transport_class, "__init__") as patched: patched.return_value = None client = client_class(client_options=options) patched.assert_called_once_with( credentials=None, credentials_file=None, host=client.DEFAULT_ENDPOINT, scopes=None, client_cert_source_for_mtls=None, quota_project_id="octopus", client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) @pytest.mark.parametrize( "client_class,transport_class,transport_name,use_client_cert_env", [ (FulfillmentsClient, transports.FulfillmentsGrpcTransport, "grpc", "true"), ( FulfillmentsAsyncClient, transports.FulfillmentsGrpcAsyncIOTransport, "grpc_asyncio", "true", ), (FulfillmentsClient, transports.FulfillmentsGrpcTransport, "grpc", "false"), ( FulfillmentsAsyncClient, transports.FulfillmentsGrpcAsyncIOTransport, "grpc_asyncio", "false", ), ], ) @mock.patch.object( FulfillmentsClient, "DEFAULT_ENDPOINT", modify_default_endpoint(FulfillmentsClient) ) @mock.patch.object( FulfillmentsAsyncClient, "DEFAULT_ENDPOINT", modify_default_endpoint(FulfillmentsAsyncClient), ) @mock.patch.dict(os.environ, {"GOOGLE_API_USE_MTLS_ENDPOINT": "auto"}) def test_fulfillments_client_mtls_env_auto( client_class, transport_class, transport_name, use_client_cert_env ): # This tests the endpoint autoswitch behavior. Endpoint is autoswitched to the default # mtls endpoint, if GOOGLE_API_USE_CLIENT_CERTIFICATE is "true" and client cert exists. # Check the case client_cert_source is provided. Whether client cert is used depends on # GOOGLE_API_USE_CLIENT_CERTIFICATE value. with mock.patch.dict( os.environ, {"GOOGLE_API_USE_CLIENT_CERTIFICATE": use_client_cert_env} ): options = client_options.ClientOptions( client_cert_source=client_cert_source_callback ) with mock.patch.object(transport_class, "__init__") as patched: patched.return_value = None client = client_class(client_options=options) if use_client_cert_env == "false": expected_client_cert_source = None expected_host = client.DEFAULT_ENDPOINT else: expected_client_cert_source = client_cert_source_callback expected_host = client.DEFAULT_MTLS_ENDPOINT patched.assert_called_once_with( credentials=None, credentials_file=None, host=expected_host, scopes=None, client_cert_source_for_mtls=expected_client_cert_source, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) # Check the case ADC client cert is provided. Whether client cert is used depends on # GOOGLE_API_USE_CLIENT_CERTIFICATE value. with mock.patch.dict( os.environ, {"GOOGLE_API_USE_CLIENT_CERTIFICATE": use_client_cert_env} ): with mock.patch.object(transport_class, "__init__") as patched: with mock.patch( "google.auth.transport.mtls.has_default_client_cert_source", return_value=True, ): with mock.patch( "google.auth.transport.mtls.default_client_cert_source", return_value=client_cert_source_callback, ): if use_client_cert_env == "false": expected_host = client.DEFAULT_ENDPOINT expected_client_cert_source = None else: expected_host = client.DEFAULT_MTLS_ENDPOINT expected_client_cert_source = client_cert_source_callback patched.return_value = None client = client_class() patched.assert_called_once_with( credentials=None, credentials_file=None, host=expected_host, scopes=None, client_cert_source_for_mtls=expected_client_cert_source, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) # Check the case client_cert_source and ADC client cert are not provided. with mock.patch.dict( os.environ, {"GOOGLE_API_USE_CLIENT_CERTIFICATE": use_client_cert_env} ): with mock.patch.object(transport_class, "__init__") as patched: with mock.patch( "google.auth.transport.mtls.has_default_client_cert_source", return_value=False, ): patched.return_value = None client = client_class() patched.assert_called_once_with( credentials=None, credentials_file=None, host=client.DEFAULT_ENDPOINT, scopes=None, client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) @pytest.mark.parametrize( "client_class,transport_class,transport_name", [ (FulfillmentsClient, transports.FulfillmentsGrpcTransport, "grpc"), ( FulfillmentsAsyncClient, transports.FulfillmentsGrpcAsyncIOTransport, "grpc_asyncio", ), ], ) def test_fulfillments_client_client_options_scopes( client_class, transport_class, transport_name ): # Check the case scopes are provided. options = client_options.ClientOptions(scopes=["1", "2"],) with mock.patch.object(transport_class, "__init__") as patched: patched.return_value = None client = client_class(client_options=options) patched.assert_called_once_with( credentials=None, credentials_file=None, host=client.DEFAULT_ENDPOINT, scopes=["1", "2"], client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) @pytest.mark.parametrize( "client_class,transport_class,transport_name", [ (FulfillmentsClient, transports.FulfillmentsGrpcTransport, "grpc"), ( FulfillmentsAsyncClient, transports.FulfillmentsGrpcAsyncIOTransport, "grpc_asyncio", ), ], ) def test_fulfillments_client_client_options_credentials_file( client_class, transport_class, transport_name ): # Check the case credentials file is provided. options = client_options.ClientOptions(credentials_file="credentials.json") with mock.patch.object(transport_class, "__init__") as patched: patched.return_value = None client = client_class(client_options=options) patched.assert_called_once_with( credentials=None, credentials_file="credentials.json", host=client.DEFAULT_ENDPOINT, scopes=None, client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) def test_fulfillments_client_client_options_from_dict(): with mock.patch( "google.cloud.dialogflow_v2.services.fulfillments.transports.FulfillmentsGrpcTransport.__init__" ) as grpc_transport: grpc_transport.return_value = None client = FulfillmentsClient(client_options={"api_endpoint": "squid.clam.whelk"}) grpc_transport.assert_called_once_with( credentials=None, credentials_file=None, host="squid.clam.whelk", scopes=None, client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) def test_get_fulfillment( transport: str = "grpc", request_type=fulfillment.GetFulfillmentRequest ): client = FulfillmentsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object(type(client.transport.get_fulfillment), "__call__") as call: # Designate an appropriate return value for the call. call.return_value = fulfillment.Fulfillment( name="name_value", display_name="display_name_value", enabled=True, generic_web_service=fulfillment.Fulfillment.GenericWebService( uri="uri_value" ), ) response = client.get_fulfillment(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == fulfillment.GetFulfillmentRequest() # Establish that the response is the type that we expect. assert isinstance(response, fulfillment.Fulfillment) assert response.name == "name_value" assert response.display_name == "display_name_value" assert response.enabled is True def test_get_fulfillment_from_dict(): test_get_fulfillment(request_type=dict) def test_get_fulfillment_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = FulfillmentsClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object(type(client.transport.get_fulfillment), "__call__") as call: client.get_fulfillment() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == fulfillment.GetFulfillmentRequest() @pytest.mark.asyncio async def test_get_fulfillment_async( transport: str = "grpc_asyncio", request_type=fulfillment.GetFulfillmentRequest ): client = FulfillmentsAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object(type(client.transport.get_fulfillment), "__call__") as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( fulfillment.Fulfillment( name="name_value", display_name="display_name_value", enabled=True, ) ) response = await client.get_fulfillment(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == fulfillment.GetFulfillmentRequest() # Establish that the response is the type that we expect. assert isinstance(response, fulfillment.Fulfillment) assert response.name == "name_value" assert response.display_name == "display_name_value" assert response.enabled is True @pytest.mark.asyncio async def test_get_fulfillment_async_from_dict(): await test_get_fulfillment_async(request_type=dict) def test_get_fulfillment_field_headers(): client = FulfillmentsClient(credentials=ga_credentials.AnonymousCredentials(),) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = fulfillment.GetFulfillmentRequest() request.name = "name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object(type(client.transport.get_fulfillment), "__call__") as call: call.return_value = fulfillment.Fulfillment() client.get_fulfillment(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "name=name/value",) in kw["metadata"] @pytest.mark.asyncio async def test_get_fulfillment_field_headers_async(): client = FulfillmentsAsyncClient(credentials=ga_credentials.AnonymousCredentials(),) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = fulfillment.GetFulfillmentRequest() request.name = "name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object(type(client.transport.get_fulfillment), "__call__") as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( fulfillment.Fulfillment() ) await client.get_fulfillment(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "name=name/value",) in kw["metadata"] def test_get_fulfillment_flattened(): client = FulfillmentsClient(credentials=ga_credentials.AnonymousCredentials(),) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object(type(client.transport.get_fulfillment), "__call__") as call: # Designate an appropriate return value for the call. call.return_value = fulfillment.Fulfillment() # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.get_fulfillment(name="name_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0].name == "name_value" def test_get_fulfillment_flattened_error(): client = FulfillmentsClient(credentials=ga_credentials.AnonymousCredentials(),) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.get_fulfillment( fulfillment.GetFulfillmentRequest(), name="name_value", ) @pytest.mark.asyncio async def test_get_fulfillment_flattened_async(): client = FulfillmentsAsyncClient(credentials=ga_credentials.AnonymousCredentials(),) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object(type(client.transport.get_fulfillment), "__call__") as call: # Designate an appropriate return value for the call. call.return_value = fulfillment.Fulfillment() call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( fulfillment.Fulfillment() ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.get_fulfillment(name="name_value",) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0].name == "name_value" @pytest.mark.asyncio async def test_get_fulfillment_flattened_error_async(): client = FulfillmentsAsyncClient(credentials=ga_credentials.AnonymousCredentials(),) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.get_fulfillment( fulfillment.GetFulfillmentRequest(), name="name_value", ) def test_update_fulfillment( transport: str = "grpc", request_type=gcd_fulfillment.UpdateFulfillmentRequest ): client = FulfillmentsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_fulfillment), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = gcd_fulfillment.Fulfillment( name="name_value", display_name="display_name_value", enabled=True, generic_web_service=gcd_fulfillment.Fulfillment.GenericWebService( uri="uri_value" ), ) response = client.update_fulfillment(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == gcd_fulfillment.UpdateFulfillmentRequest() # Establish that the response is the type that we expect. assert isinstance(response, gcd_fulfillment.Fulfillment) assert response.name == "name_value" assert response.display_name == "display_name_value" assert response.enabled is True def test_update_fulfillment_from_dict(): test_update_fulfillment(request_type=dict) def test_update_fulfillment_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = FulfillmentsClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc", ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_fulfillment), "__call__" ) as call: client.update_fulfillment() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == gcd_fulfillment.UpdateFulfillmentRequest() @pytest.mark.asyncio async def test_update_fulfillment_async( transport: str = "grpc_asyncio", request_type=gcd_fulfillment.UpdateFulfillmentRequest, ): client = FulfillmentsAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_fulfillment), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( gcd_fulfillment.Fulfillment( name="name_value", display_name="display_name_value", enabled=True, ) ) response = await client.update_fulfillment(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == gcd_fulfillment.UpdateFulfillmentRequest() # Establish that the response is the type that we expect. assert isinstance(response, gcd_fulfillment.Fulfillment) assert response.name == "name_value" assert response.display_name == "display_name_value" assert response.enabled is True @pytest.mark.asyncio async def test_update_fulfillment_async_from_dict(): await test_update_fulfillment_async(request_type=dict) def test_update_fulfillment_field_headers(): client = FulfillmentsClient(credentials=ga_credentials.AnonymousCredentials(),) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = gcd_fulfillment.UpdateFulfillmentRequest() request.fulfillment.name = "fulfillment.name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_fulfillment), "__call__" ) as call: call.return_value = gcd_fulfillment.Fulfillment() client.update_fulfillment(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "fulfillment.name=fulfillment.name/value",) in kw[ "metadata" ] @pytest.mark.asyncio async def test_update_fulfillment_field_headers_async(): client = FulfillmentsAsyncClient(credentials=ga_credentials.AnonymousCredentials(),) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = gcd_fulfillment.UpdateFulfillmentRequest() request.fulfillment.name = "fulfillment.name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_fulfillment), "__call__" ) as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( gcd_fulfillment.Fulfillment() ) await client.update_fulfillment(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ("x-goog-request-params", "fulfillment.name=fulfillment.name/value",) in kw[ "metadata" ] def test_update_fulfillment_flattened(): client = FulfillmentsClient(credentials=ga_credentials.AnonymousCredentials(),) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_fulfillment), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = gcd_fulfillment.Fulfillment() # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.update_fulfillment( fulfillment=gcd_fulfillment.Fulfillment(name="name_value"), update_mask=field_mask_pb2.FieldMask(paths=["paths_value"]), ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0].fulfillment == gcd_fulfillment.Fulfillment(name="name_value") assert args[0].update_mask == field_mask_pb2.FieldMask(paths=["paths_value"]) def test_update_fulfillment_flattened_error(): client = FulfillmentsClient(credentials=ga_credentials.AnonymousCredentials(),) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.update_fulfillment( gcd_fulfillment.UpdateFulfillmentRequest(), fulfillment=gcd_fulfillment.Fulfillment(name="name_value"), update_mask=field_mask_pb2.FieldMask(paths=["paths_value"]), ) @pytest.mark.asyncio async def test_update_fulfillment_flattened_async(): client = FulfillmentsAsyncClient(credentials=ga_credentials.AnonymousCredentials(),) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_fulfillment), "__call__" ) as call: # Designate an appropriate return value for the call. call.return_value = gcd_fulfillment.Fulfillment() call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( gcd_fulfillment.Fulfillment() ) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.update_fulfillment( fulfillment=gcd_fulfillment.Fulfillment(name="name_value"), update_mask=field_mask_pb2.FieldMask(paths=["paths_value"]), ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0].fulfillment == gcd_fulfillment.Fulfillment(name="name_value") assert args[0].update_mask == field_mask_pb2.FieldMask(paths=["paths_value"]) @pytest.mark.asyncio async def test_update_fulfillment_flattened_error_async(): client = FulfillmentsAsyncClient(credentials=ga_credentials.AnonymousCredentials(),) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.update_fulfillment( gcd_fulfillment.UpdateFulfillmentRequest(), fulfillment=gcd_fulfillment.Fulfillment(name="name_value"), update_mask=field_mask_pb2.FieldMask(paths=["paths_value"]), ) def test_credentials_transport_error(): # It is an error to provide credentials and a transport instance. transport = transports.FulfillmentsGrpcTransport( credentials=ga_credentials.AnonymousCredentials(), ) with pytest.raises(ValueError): client = FulfillmentsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # It is an error to provide a credentials file and a transport instance. transport = transports.FulfillmentsGrpcTransport( credentials=ga_credentials.AnonymousCredentials(), ) with pytest.raises(ValueError): client = FulfillmentsClient( client_options={"credentials_file": "credentials.json"}, transport=transport, ) # It is an error to provide scopes and a transport instance. transport = transports.FulfillmentsGrpcTransport( credentials=ga_credentials.AnonymousCredentials(), ) with pytest.raises(ValueError): client = FulfillmentsClient( client_options={"scopes": ["1", "2"]}, transport=transport, ) def test_transport_instance(): # A client may be instantiated with a custom transport instance. transport = transports.FulfillmentsGrpcTransport( credentials=ga_credentials.AnonymousCredentials(), ) client = FulfillmentsClient(transport=transport) assert client.transport is transport def test_transport_get_channel(): # A client may be instantiated with a custom transport instance. transport = transports.FulfillmentsGrpcTransport( credentials=ga_credentials.AnonymousCredentials(), ) channel = transport.grpc_channel assert channel transport = transports.FulfillmentsGrpcAsyncIOTransport( credentials=ga_credentials.AnonymousCredentials(), ) channel = transport.grpc_channel assert channel @pytest.mark.parametrize( "transport_class", [ transports.FulfillmentsGrpcTransport, transports.FulfillmentsGrpcAsyncIOTransport, ], ) def test_transport_adc(transport_class): # Test default credentials are used if not provided. with mock.patch.object(google.auth, "default") as adc: adc.return_value = (ga_credentials.AnonymousCredentials(), None) transport_class() adc.assert_called_once() def test_transport_grpc_default(): # A client should use the gRPC transport by default. client = FulfillmentsClient(credentials=ga_credentials.AnonymousCredentials(),) assert isinstance(client.transport, transports.FulfillmentsGrpcTransport,) def test_fulfillments_base_transport_error(): # Passing both a credentials object and credentials_file should raise an error with pytest.raises(core_exceptions.DuplicateCredentialArgs): transport = transports.FulfillmentsTransport( credentials=ga_credentials.AnonymousCredentials(), credentials_file="credentials.json", ) def test_fulfillments_base_transport(): # Instantiate the base transport. with mock.patch( "google.cloud.dialogflow_v2.services.fulfillments.transports.FulfillmentsTransport.__init__" ) as Transport: Transport.return_value = None transport = transports.FulfillmentsTransport( credentials=ga_credentials.AnonymousCredentials(), ) # Every method on the transport should just blindly # raise NotImplementedError. methods = ( "get_fulfillment", "update_fulfillment", ) for method in methods: with pytest.raises(NotImplementedError): getattr(transport, method)(request=object()) with pytest.raises(NotImplementedError): transport.close() @requires_google_auth_gte_1_25_0 def test_fulfillments_base_transport_with_credentials_file(): # Instantiate the base transport with a credentials file with mock.patch.object( google.auth, "load_credentials_from_file", autospec=True ) as load_creds, mock.patch( "google.cloud.dialogflow_v2.services.fulfillments.transports.FulfillmentsTransport._prep_wrapped_messages" ) as Transport: Transport.return_value = None load_creds.return_value = (ga_credentials.AnonymousCredentials(), None) transport = transports.FulfillmentsTransport( credentials_file="credentials.json", quota_project_id="octopus", ) load_creds.assert_called_once_with( "credentials.json", scopes=None, default_scopes=( "https://www.googleapis.com/auth/cloud-platform", "https://www.googleapis.com/auth/dialogflow", ), quota_project_id="octopus", ) @requires_google_auth_lt_1_25_0 def test_fulfillments_base_transport_with_credentials_file_old_google_auth(): # Instantiate the base transport with a credentials file with mock.patch.object( google.auth, "load_credentials_from_file", autospec=True ) as load_creds, mock.patch( "google.cloud.dialogflow_v2.services.fulfillments.transports.FulfillmentsTransport._prep_wrapped_messages" ) as Transport: Transport.return_value = None load_creds.return_value = (ga_credentials.AnonymousCredentials(), None) transport = transports.FulfillmentsTransport( credentials_file="credentials.json", quota_project_id="octopus", ) load_creds.assert_called_once_with( "credentials.json", scopes=( "https://www.googleapis.com/auth/cloud-platform", "https://www.googleapis.com/auth/dialogflow", ), quota_project_id="octopus", ) def test_fulfillments_base_transport_with_adc(): # Test the default credentials are used if credentials and credentials_file are None. with mock.patch.object(google.auth, "default", autospec=True) as adc, mock.patch( "google.cloud.dialogflow_v2.services.fulfillments.transports.FulfillmentsTransport._prep_wrapped_messages" ) as Transport: Transport.return_value = None adc.return_value = (ga_credentials.AnonymousCredentials(), None) transport = transports.FulfillmentsTransport() adc.assert_called_once() @requires_google_auth_gte_1_25_0 def test_fulfillments_auth_adc(): # If no credentials are provided, we should use ADC credentials. with mock.patch.object(google.auth, "default", autospec=True) as adc: adc.return_value = (ga_credentials.AnonymousCredentials(), None) FulfillmentsClient() adc.assert_called_once_with( scopes=None, default_scopes=( "https://www.googleapis.com/auth/cloud-platform", "https://www.googleapis.com/auth/dialogflow", ), quota_project_id=None, ) @requires_google_auth_lt_1_25_0 def test_fulfillments_auth_adc_old_google_auth(): # If no credentials are provided, we should use ADC credentials. with mock.patch.object(google.auth, "default", autospec=True) as adc: adc.return_value = (ga_credentials.AnonymousCredentials(), None) FulfillmentsClient() adc.assert_called_once_with( scopes=( "https://www.googleapis.com/auth/cloud-platform", "https://www.googleapis.com/auth/dialogflow", ), quota_project_id=None, ) @pytest.mark.parametrize( "transport_class", [ transports.FulfillmentsGrpcTransport, transports.FulfillmentsGrpcAsyncIOTransport, ], ) @requires_google_auth_gte_1_25_0 def test_fulfillments_transport_auth_adc(transport_class): # If credentials and host are not provided, the transport class should use # ADC credentials. with mock.patch.object(google.auth, "default", autospec=True) as adc: adc.return_value = (ga_credentials.AnonymousCredentials(), None) transport_class(quota_project_id="octopus", scopes=["1", "2"]) adc.assert_called_once_with( scopes=["1", "2"], default_scopes=( "https://www.googleapis.com/auth/cloud-platform", "https://www.googleapis.com/auth/dialogflow", ), quota_project_id="octopus", ) @pytest.mark.parametrize( "transport_class", [ transports.FulfillmentsGrpcTransport, transports.FulfillmentsGrpcAsyncIOTransport, ], ) @requires_google_auth_lt_1_25_0 def test_fulfillments_transport_auth_adc_old_google_auth(transport_class): # If credentials and host are not provided, the transport class should use # ADC credentials. with mock.patch.object(google.auth, "default", autospec=True) as adc: adc.return_value = (ga_credentials.AnonymousCredentials(), None) transport_class(quota_project_id="octopus") adc.assert_called_once_with( scopes=( "https://www.googleapis.com/auth/cloud-platform", "https://www.googleapis.com/auth/dialogflow", ), quota_project_id="octopus", ) @pytest.mark.parametrize( "transport_class,grpc_helpers", [ (transports.FulfillmentsGrpcTransport, grpc_helpers), (transports.FulfillmentsGrpcAsyncIOTransport, grpc_helpers_async), ], ) def test_fulfillments_transport_create_channel(transport_class, grpc_helpers): # If credentials and host are not provided, the transport class should use # ADC credentials. with mock.patch.object( google.auth, "default", autospec=True ) as adc, mock.patch.object( grpc_helpers, "create_channel", autospec=True ) as create_channel: creds = ga_credentials.AnonymousCredentials() adc.return_value = (creds, None) transport_class(quota_project_id="octopus", scopes=["1", "2"]) create_channel.assert_called_with( "dialogflow.googleapis.com:443", credentials=creds, credentials_file=None, quota_project_id="octopus", default_scopes=( "https://www.googleapis.com/auth/cloud-platform", "https://www.googleapis.com/auth/dialogflow", ), scopes=["1", "2"], default_host="dialogflow.googleapis.com", ssl_credentials=None, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) @pytest.mark.parametrize( "transport_class", [transports.FulfillmentsGrpcTransport, transports.FulfillmentsGrpcAsyncIOTransport], ) def test_fulfillments_grpc_transport_client_cert_source_for_mtls(transport_class): cred = ga_credentials.AnonymousCredentials() # Check ssl_channel_credentials is used if provided. with mock.patch.object(transport_class, "create_channel") as mock_create_channel: mock_ssl_channel_creds = mock.Mock() transport_class( host="squid.clam.whelk", credentials=cred, ssl_channel_credentials=mock_ssl_channel_creds, ) mock_create_channel.assert_called_once_with( "squid.clam.whelk:443", credentials=cred, credentials_file=None, scopes=None, ssl_credentials=mock_ssl_channel_creds, quota_project_id=None, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) # Check if ssl_channel_credentials is not provided, then client_cert_source_for_mtls # is used. with mock.patch.object(transport_class, "create_channel", return_value=mock.Mock()): with mock.patch("grpc.ssl_channel_credentials") as mock_ssl_cred: transport_class( credentials=cred, client_cert_source_for_mtls=client_cert_source_callback, ) expected_cert, expected_key = client_cert_source_callback() mock_ssl_cred.assert_called_once_with( certificate_chain=expected_cert, private_key=expected_key ) def test_fulfillments_host_no_port(): client = FulfillmentsClient( credentials=ga_credentials.AnonymousCredentials(), client_options=client_options.ClientOptions( api_endpoint="dialogflow.googleapis.com" ), ) assert client.transport._host == "dialogflow.googleapis.com:443" def test_fulfillments_host_with_port(): client = FulfillmentsClient( credentials=ga_credentials.AnonymousCredentials(), client_options=client_options.ClientOptions( api_endpoint="dialogflow.googleapis.com:8000" ), ) assert client.transport._host == "dialogflow.googleapis.com:8000" def test_fulfillments_grpc_transport_channel(): channel = grpc.secure_channel("http://localhost/", grpc.local_channel_credentials()) # Check that channel is used if provided. transport = transports.FulfillmentsGrpcTransport( host="squid.clam.whelk", channel=channel, ) assert transport.grpc_channel == channel assert transport._host == "squid.clam.whelk:443" assert transport._ssl_channel_credentials == None def test_fulfillments_grpc_asyncio_transport_channel(): channel = aio.secure_channel("http://localhost/", grpc.local_channel_credentials()) # Check that channel is used if provided. transport = transports.FulfillmentsGrpcAsyncIOTransport( host="squid.clam.whelk", channel=channel, ) assert transport.grpc_channel == channel assert transport._host == "squid.clam.whelk:443" assert transport._ssl_channel_credentials == None # Remove this test when deprecated arguments (api_mtls_endpoint, client_cert_source) are # removed from grpc/grpc_asyncio transport constructor. @pytest.mark.parametrize( "transport_class", [transports.FulfillmentsGrpcTransport, transports.FulfillmentsGrpcAsyncIOTransport], ) def test_fulfillments_transport_channel_mtls_with_client_cert_source(transport_class): with mock.patch( "grpc.ssl_channel_credentials", autospec=True ) as grpc_ssl_channel_cred: with mock.patch.object( transport_class, "create_channel" ) as grpc_create_channel: mock_ssl_cred = mock.Mock() grpc_ssl_channel_cred.return_value = mock_ssl_cred mock_grpc_channel = mock.Mock() grpc_create_channel.return_value = mock_grpc_channel cred = ga_credentials.AnonymousCredentials() with pytest.warns(DeprecationWarning): with mock.patch.object(google.auth, "default") as adc: adc.return_value = (cred, None) transport = transport_class( host="squid.clam.whelk", api_mtls_endpoint="mtls.squid.clam.whelk", client_cert_source=client_cert_source_callback, ) adc.assert_called_once() grpc_ssl_channel_cred.assert_called_once_with( certificate_chain=b"cert bytes", private_key=b"key bytes" ) grpc_create_channel.assert_called_once_with( "mtls.squid.clam.whelk:443", credentials=cred, credentials_file=None, scopes=None, ssl_credentials=mock_ssl_cred, quota_project_id=None, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) assert transport.grpc_channel == mock_grpc_channel assert transport._ssl_channel_credentials == mock_ssl_cred # Remove this test when deprecated arguments (api_mtls_endpoint, client_cert_source) are # removed from grpc/grpc_asyncio transport constructor. @pytest.mark.parametrize( "transport_class", [transports.FulfillmentsGrpcTransport, transports.FulfillmentsGrpcAsyncIOTransport], ) def test_fulfillments_transport_channel_mtls_with_adc(transport_class): mock_ssl_cred = mock.Mock() with mock.patch.multiple( "google.auth.transport.grpc.SslCredentials", __init__=mock.Mock(return_value=None), ssl_credentials=mock.PropertyMock(return_value=mock_ssl_cred), ): with mock.patch.object( transport_class, "create_channel" ) as grpc_create_channel: mock_grpc_channel = mock.Mock() grpc_create_channel.return_value = mock_grpc_channel mock_cred = mock.Mock() with pytest.warns(DeprecationWarning): transport = transport_class( host="squid.clam.whelk", credentials=mock_cred, api_mtls_endpoint="mtls.squid.clam.whelk", client_cert_source=None, ) grpc_create_channel.assert_called_once_with( "mtls.squid.clam.whelk:443", credentials=mock_cred, credentials_file=None, scopes=None, ssl_credentials=mock_ssl_cred, quota_project_id=None, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) assert transport.grpc_channel == mock_grpc_channel def test_fulfillment_path(): project = "squid" expected = "projects/{project}/agent/fulfillment".format(project=project,) actual = FulfillmentsClient.fulfillment_path(project) assert expected == actual def test_parse_fulfillment_path(): expected = { "project": "clam", } path = FulfillmentsClient.fulfillment_path(**expected) # Check that the path construction is reversible. actual = FulfillmentsClient.parse_fulfillment_path(path) assert expected == actual def test_common_billing_account_path(): billing_account = "whelk" expected = "billingAccounts/{billing_account}".format( billing_account=billing_account, ) actual = FulfillmentsClient.common_billing_account_path(billing_account) assert expected == actual def test_parse_common_billing_account_path(): expected = { "billing_account": "octopus", } path = FulfillmentsClient.common_billing_account_path(**expected) # Check that the path construction is reversible. actual = FulfillmentsClient.parse_common_billing_account_path(path) assert expected == actual def test_common_folder_path(): folder = "oyster" expected = "folders/{folder}".format(folder=folder,) actual = FulfillmentsClient.common_folder_path(folder) assert expected == actual def test_parse_common_folder_path(): expected = { "folder": "nudibranch", } path = FulfillmentsClient.common_folder_path(**expected) # Check that the path construction is reversible. actual = FulfillmentsClient.parse_common_folder_path(path) assert expected == actual def test_common_organization_path(): organization = "cuttlefish" expected = "organizations/{organization}".format(organization=organization,) actual = FulfillmentsClient.common_organization_path(organization) assert expected == actual def test_parse_common_organization_path(): expected = { "organization": "mussel", } path = FulfillmentsClient.common_organization_path(**expected) # Check that the path construction is reversible. actual = FulfillmentsClient.parse_common_organization_path(path) assert expected == actual def test_common_project_path(): project = "winkle" expected = "projects/{project}".format(project=project,) actual = FulfillmentsClient.common_project_path(project) assert expected == actual def test_parse_common_project_path(): expected = { "project": "nautilus", } path = FulfillmentsClient.common_project_path(**expected) # Check that the path construction is reversible. actual = FulfillmentsClient.parse_common_project_path(path) assert expected == actual def test_common_location_path(): project = "scallop" location = "abalone" expected = "projects/{project}/locations/{location}".format( project=project, location=location, ) actual = FulfillmentsClient.common_location_path(project, location) assert expected == actual def test_parse_common_location_path(): expected = { "project": "squid", "location": "clam", } path = FulfillmentsClient.common_location_path(**expected) # Check that the path construction is reversible. actual = FulfillmentsClient.parse_common_location_path(path) assert expected == actual def test_client_withDEFAULT_CLIENT_INFO(): client_info = gapic_v1.client_info.ClientInfo() with mock.patch.object( transports.FulfillmentsTransport, "_prep_wrapped_messages" ) as prep: client = FulfillmentsClient( credentials=ga_credentials.AnonymousCredentials(), client_info=client_info, ) prep.assert_called_once_with(client_info) with mock.patch.object( transports.FulfillmentsTransport, "_prep_wrapped_messages" ) as prep: transport_class = FulfillmentsClient.get_transport_class() transport = transport_class( credentials=ga_credentials.AnonymousCredentials(), client_info=client_info, ) prep.assert_called_once_with(client_info) @pytest.mark.asyncio async def test_transport_close_async(): client = FulfillmentsAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport="grpc_asyncio", ) with mock.patch.object( type(getattr(client.transport, "grpc_channel")), "close" ) as close: async with client: close.assert_not_called() close.assert_called_once() def test_transport_close(): transports = { "grpc": "_grpc_channel", } for transport, close_name in transports.items(): client = FulfillmentsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport ) with mock.patch.object( type(getattr(client.transport, close_name)), "close" ) as close: with client: close.assert_not_called() close.assert_called_once() def test_client_ctx(): transports = [ "grpc", ] for transport in transports: client = FulfillmentsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport ) # Test client calls underlying transport. with mock.patch.object(type(client.transport), "close") as close: close.assert_not_called() with client: pass close.assert_called()
py
b402a64499fd09f5328cce0ed16c7f47a5999d60
# # Copyright (c) 2011-2014 Exxeleron GmbH # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import struct try: from cStringIO import BytesIO except ImportError: from io import BytesIO from qpython import MetaData, CONVERSION_OPTIONS from qpython.qtype import * # @UnusedWildImport from qpython.qcollection import qlist, QList, QTemporalList, QDictionary, QTable, QKeyedTable, get_list_qtype from qpython.qtemporal import QTemporal, to_raw_qtemporal, array_to_raw_qtemporal class QWriterException(Exception): ''' Indicates an error raised during data serialization. ''' pass ENDIANNESS = '\1' if sys.byteorder == 'little' else '\0' class QWriter(object): ''' Provides serialization to q IPC protocol. :Parameters: - `stream` (`socket` or `None`) - stream for data serialization - `protocol_version` (`integer`) - version IPC protocol - `encoding` (`string`) - encoding for characters serialization :Attrbutes: - `_writer_map` - stores mapping between Python types and functions responsible for serializing into IPC representation ''' _writer_map = {} serialize = Mapper(_writer_map) def __init__(self, stream, protocol_version, encoding = 'latin-1'): self._stream = stream self._protocol_version = protocol_version self._encoding = encoding def write(self, data, msg_type, **options): '''Serializes and pushes single data object to a wrapped stream. :Parameters: - `data` - data to be serialized - `msg_type` (one of the constants defined in :class:`.MessageType`) - type of the message :Options: - `single_char_strings` (`boolean`) - if ``True`` single char Python strings are encoded as q strings instead of chars, **Default**: ``False`` :returns: if wraped stream is ``None`` serialized data, otherwise ``None`` ''' self._buffer = BytesIO() self._options = MetaData(**CONVERSION_OPTIONS.union_dict(**options)) # header and placeholder for message size self._buffer.write(('%s%s\0\0\0\0\0\0' % (ENDIANNESS, chr(msg_type))).encode(self._encoding)) self._write(data) # update message size data_size = self._buffer.tell() self._buffer.seek(4) self._buffer.write(struct.pack('i', data_size)) # write data to socket if self._stream: self._stream.sendall(self._buffer.getvalue()) else: return self._buffer.getvalue() def _write(self, data): if data is None: self._write_null() else: if isinstance(data, Exception) or (type(data) == type and issubclass(data, Exception)): data_type = Exception else: data_type = type(data) writer = self._get_writer(data_type) if writer: writer(self, data) else: qtype = Q_TYPE.get(type(data), None) if qtype: self._write_atom(data, qtype) else: raise QWriterException('Unable to serialize type: %s' % data.__class__ if isinstance(data, object) else type(data)) def _get_writer(self, data_type): return self._writer_map.get(data_type, None) def _write_null(self): self._buffer.write(struct.pack('=bx', QNULL)) @serialize(Exception) def _write_error(self, data): self._buffer.write(struct.pack('b', QERROR)) if isinstance(data, Exception): msg = data.__class__.__name__ if data.args: msg = data.args[0] else: msg = data.__name__ self._buffer.write(msg.encode(self._encoding)) self._buffer.write(b'\0') def _write_atom(self, data, qtype): try: self._buffer.write(struct.pack('b', qtype)) fmt = STRUCT_MAP[qtype] if type(data) == numpy.bool_: self._buffer.write(struct.pack(fmt, int(data))) else: self._buffer.write(struct.pack(fmt, data)) except KeyError: raise QWriterException('Unable to serialize type: %s' % data.__class__ if isinstance(data, object) else type(data)) @serialize(tuple, list) def _write_generic_list(self, data): self._buffer.write(struct.pack('=bxi', QGENERAL_LIST, len(data))) for element in data: self._write(element) @serialize(str, bytes) def _write_string(self, data): if not self._options.single_char_strings and len(data) == 1: self._write_atom(ord(data), QCHAR) else: self._buffer.write(struct.pack('=bxi', QSTRING, len(data))) if isinstance(data, str): self._buffer.write(data.encode(self._encoding)) else: self._buffer.write(data) @serialize(numpy.string_) def _write_symbol(self, data): self._buffer.write(struct.pack('=b', QSYMBOL)) if data: self._buffer.write(data) self._buffer.write(b'\0') @serialize(uuid.UUID) def _write_guid(self, data): if self._protocol_version < 3: raise QWriterException('kdb+ protocol version violation: Guid not supported pre kdb+ v3.0') self._buffer.write(struct.pack('=b', QGUID)) self._buffer.write(data.bytes) @serialize(QTemporal) def _write_temporal(self, data): try: if self._protocol_version < 1 and (data.meta.qtype == QTIMESPAN or data.meta.qtype == QTIMESTAMP): raise QWriterException('kdb+ protocol version violation: data type %s not supported pre kdb+ v2.6' % hex(data.meta.qtype)) self._buffer.write(struct.pack('=b', data.meta.qtype)) fmt = STRUCT_MAP[data.meta.qtype] self._buffer.write(struct.pack(fmt, to_raw_qtemporal(data.raw, data.meta.qtype))) except KeyError: raise QWriterException('Unable to serialize type: %s' % type(data)) @serialize(numpy.datetime64, numpy.timedelta64) def _write_numpy_temporal(self, data): try: qtype = TEMPORAL_PY_TYPE[str(data.dtype)] if self._protocol_version < 1 and (qtype == QTIMESPAN or qtype == QTIMESTAMP): raise QWriterException('kdb+ protocol version violation: data type %s not supported pre kdb+ v2.6' % hex(qtype)) self._buffer.write(struct.pack('=b', qtype)) fmt = STRUCT_MAP[qtype] self._buffer.write(struct.pack(fmt, to_raw_qtemporal(data, qtype))) except KeyError: raise QWriterException('Unable to serialize type: %s' % data.dtype) @serialize(QLambda) def _write_lambda(self, data): self._buffer.write(struct.pack('=b', QLAMBDA)) self._buffer.write(b'\0') self._write_string(data.expression) @serialize(QProjection) def _write_projection(self, data): self._buffer.write(struct.pack('=bi', QPROJECTION, len(data.parameters))) for parameter in data.parameters: self._write(parameter) @serialize(QDictionary, QKeyedTable) def _write_dictionary(self, data): self._buffer.write(struct.pack('=b', QDICTIONARY)) self._write(data.keys) self._write(data.values) @serialize(QTable) def _write_table(self, data): self._buffer.write(struct.pack('=bxb', QTABLE, QDICTIONARY)) self._write(qlist(numpy.array(data.dtype.names), qtype = QSYMBOL_LIST)) self._buffer.write(struct.pack('=bxi', QGENERAL_LIST, len(data.dtype))) for column in data.dtype.names: self._write_list(data[column], data.meta[column]) @serialize(numpy.ndarray, QList, QTemporalList) def _write_list(self, data, qtype = None): if qtype is not None: qtype = -abs(qtype) if qtype is None: qtype = get_list_qtype(data) if self._protocol_version < 1 and (abs(qtype) == QTIMESPAN_LIST or abs(qtype) == QTIMESTAMP_LIST): raise QWriterException('kdb+ protocol version violation: data type %s not supported pre kdb+ v2.6' % hex(data.meta.qtype)) if qtype == QGENERAL_LIST: self._write_generic_list(data) elif qtype == QCHAR: self._write_string(data.tobytes()) else: self._buffer.write(struct.pack('=bxi', -qtype, len(data))) if data.dtype.type in (numpy.datetime64, numpy.timedelta64): # convert numpy temporal to raw q temporal data = array_to_raw_qtemporal(data, qtype = qtype) if qtype == QSYMBOL: for symbol in data: if symbol: self._buffer.write(symbol) self._buffer.write(b'\0') elif qtype == QGUID: if self._protocol_version < 3: raise QWriterException('kdb+ protocol version violation: Guid not supported pre kdb+ v3.0') for guid in data: self._buffer.write(guid.bytes) else: self._buffer.write(data.tobytes())
py
b402a79b5f61462debcc94db0d17b102bf4d8b9f
from .basemodule import BaseModule
py
b402a7f5ebd59ada5ae94c3f419377a281bf5dc3
from __future__ import absolute_import from .base import Struct import os.path as op import six ## # 16.06.2005, c class Reader( Struct ): """ Reads and executes a Python file as a script with execfile(), storing its locals. Then sets the __dict__ of a new instance of obj_class to the stored locals. Example: >>> class A: >>> pass >>> read = Reader( '.' ) >>> instance_of_a = read( A, 'file.py' ) It is equivalent to: >>> mod = __import__( 'file' ) >>> instance_of_a = A() >>> instance_of_a.__dict__.update( mod.__dict__ ) The first way does not create the 'file.pyc'... """ ## # 16.06.2005, c def __init__( self, directory ): self.directory = directory ## # 16.06.2005, c # 17.10.2005 # 09.02.2006 def __call__( self, obj_class, name ): filename = op.join( self.directory, name + '.py' ) aux = {} execfile( filename, {}, aux ) obj = obj_class() for key, val in six.iteritems(aux): obj.__dict__[key] = val return obj
py
b402a834c10ffb54e5a871d8c019b2bad7056cb3
from allennlp_models.rc.qanet.drop_reader import DropReader from allennlp_models.rc.qanet.naqanet_model import NumericallyAugmentedQaNet from allennlp_models.rc.qanet.qanet_model import QaNet from allennlp_models.rc.qanet.qanet_encoder import QaNetEncoder from allennlp_models.rc.qanet.qanet_encoder import QaNetEncoderBlock
py
b402a8c6e8c36d29c95f7bc35f7774e8e74bfd34
import graphene from graphene import relay from ...page import models from ..core.connection import CountableDjangoObjectType from ..translations.enums import LanguageCodeEnum from ..translations.resolvers import resolve_translation from ..translations.types import PageTranslation class Page(CountableDjangoObjectType): available_on = graphene.Date( deprecation_reason=("availableOn is deprecated, use publicationDate instead") ) is_visible = graphene.Boolean( deprecation_reason=("isVisible is deprecated, use isPublished instead") ) translation = graphene.Field( PageTranslation, language_code=graphene.Argument( LanguageCodeEnum, description="A language code to return the translation for.", required=True, ), description=("Returns translated Page fields for the given language code."), resolver=resolve_translation, ) class Meta: description = """A static page that can be manually added by a shop operator through the dashboard.""" only_fields = [ "content", "content_json", "created", "id", "is_published", "publication_date", "seo_description", "seo_title", "slug", "title", ] interfaces = [relay.Node] model = models.Page @staticmethod def resolve_available_on(root: models.Page, _info): return root.publication_date @staticmethod def resolve_is_visible(root: models.Page, _info): return root.is_published
py
b402a926326ced8406323b0807d32ffae6c7c999
#if customizations are required when doing a the packaging of the code for the jpackage, will generate buildnr as well def main(j,jp): recipe=jp.getCodeMgmtRecipe() recipe.package(jp)
py
b402aa96f2a22ead078183f7e18951713d32caa2
# Tencent is pleased to support the open source community by making ncnn available. # # Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.act_0 = nn.LeakyReLU() self.act_1 = nn.LeakyReLU(negative_slope=-0.24) def forward(self, x, y, z, w): x = self.act_0(x) y = self.act_0(y) z = self.act_1(z) w = self.act_1(w) return x, y, z, w def test(): net = Model() net.eval() torch.manual_seed(0) x = torch.rand(1, 12) y = torch.rand(1, 12, 64) z = torch.rand(1, 12, 24, 64) w = torch.rand(1, 12, 24, 32, 64) a = net(x, y, z, w) # export torchscript mod = torch.jit.trace(net, (x, y, z, w)) mod.save("test_nn_LeakyReLU.pt") # torchscript to pnnx import os os.system("../../src/pnnx test_nn_LeakyReLU.pt inputshape=[1,12],[1,12,64],[1,12,24,64],[1,12,24,32,64]") # ncnn inference import test_nn_LeakyReLU_ncnn b = test_nn_LeakyReLU_ncnn.test_inference() for a0, b0 in zip(a, b): if not torch.allclose(a0, b0, 1e-4, 1e-4): return False return True if __name__ == "__main__": if test(): exit(0) else: exit(1)
py
b402aaa78538f93c4064f6a4eb93127ad8c8ee8f
import numpy as np def softmax(x): """Compute softmax values for each sets of scores in x. https://stackoverflow.com/questions/34968722/how-to-implement-the-softmax-function-in-python """ e_x = np.exp(x - np.max(x)) return e_x / e_x.sum()
py
b402ac017903b32265bca6ccf5b14bfb232a412c
from adaptivefiltering.paths import load_schema import collections import ipywidgets import ipywidgets_jsonschema import jsonschema import re class WidgetFormWithLabels(ipywidgets_jsonschema.Form): def __init__(self, *args, **kwargs): """A widget form that creates a label selection widget for arrays of strings All other functionality is inherited from :code:`ipywidgets_jsonschema.Form`. """ super().__init__(*args, **kwargs) def _construct_array(self, schema, label=None, root=False): if "items" not in schema: raise ipywidgets_jsonschema.form.FormError( "Expecting 'items' key for 'array' type" ) # Assert a number of conditions that must be true for us # to create a label widget instead of the regular array if ( "type" not in schema["items"] or schema["items"]["type"] != "string" or "maxItems" in schema["items"] or "minItems" in schema["items"] ): return super()._construct_array(schema, label=label, root=root) # List of widgets for later use in VBox widgets = [] if "title" in schema: widgets.append(ipywidgets.Label(schema["title"])) # Create the relevant widget widget = ipywidgets.TagsInput( value=[], allow_duplicates=False, tooltip=schema.get("description", None) ) widgets.append(widget) # Function to check a potential given pattern def _change_checker(change): if "pattern" in schema["items"]: for val in change["new"]: if not re.fullmatch(schema["items"]["pattern"], val): widget.value = [i for i in widget.value if i != val] widget.observe(_change_checker, names="value") def _register_observer(h, n, t): widget.observe(h, names=n, type=t) def _setter(_d): widget.value = _d def _resetter(): if "default" in schema: widget.value = schema["default"] else: widget.value = widget.trait_defaults()["value"] _resetter() return self.construct_element( getter=lambda: widget.value, setter=_setter, resetter=_resetter, widgets=[ipywidgets.VBox(widgets)], register_observer=_register_observer, ) BatchDataWidgetFormElement = collections.namedtuple( "BatchDataWidgetFormElement", [ "getter", "setter", "resetter", "widgets", "subelements", "batchdata_getter", "batchdata_setter", "register_observer", ], ) class BatchDataWidgetForm(WidgetFormWithLabels): def __init__(self, *args, nobatch_keys=[], **kwargs): """A widget form that wraps additional batch controls around widgets The additional controls affect all scalar fields (strings, integers, numbers). """ self.nobatch_keys = nobatch_keys self.disable_batching = False super().__init__(*args, **kwargs) def construct_element( self, getter=lambda: None, setter=lambda _: None, resetter=lambda: None, widgets=[], subelements=[], batchdata_getter=lambda: [], batchdata_setter=lambda _: None, register_observer=lambda h, n, t: None, ): return BatchDataWidgetFormElement( getter=getter, setter=setter, resetter=resetter, widgets=widgets, subelements=subelements, batchdata_getter=batchdata_getter, batchdata_setter=batchdata_setter, register_observer=register_observer, ) @property def batchdata(self): bdata = self._form_element.batchdata_getter() schema = load_schema("variability.json") jsonschema.validate(bdata, schema=schema) return bdata @batchdata.setter def batchdata(self, _data): self._form_element.batchdata_setter(_data) def _construct_simple(self, schema, widget, label=None, root=False): # Call the original implementation to get the basic widget original = super()._construct_simple(schema, widget, label=label, root=root) # If we blacklisted this part of the schema, we skip it now if self.disable_batching: return original # If this is something that for some reason did not produce an input # widget, we skip all the variablity part. if len(original.widgets) == 0: return original # Create additional controls for batch processing and variability # Two buttons that allow to create the additional input b1 = ipywidgets.ToggleButton( icon="layer-group", tooltip="Use a parameter batch for this parameter" ) b2 = ipywidgets.ToggleButton( icon="sitemap", tooltip="Add a variability to this parameter" ) # The widget where the variablility input is specified var = ipywidgets.Text( tooltip="Use comma separation to specify a discrete set of parameters or dashes to define a parameter range" ) # For persisitent variability, we also need some additional information name = ipywidgets.Text( tooltip="The parameter name to use for this variability. Will be displayed to the end user." ) descr = ipywidgets.Text( tooltip="The description of this parameter that will be displayed to the end user when hovering over the parameter." ) # A container widget that allows us to easily make the input widget vanish box = ipywidgets.VBox() # The handler that unfolds the input widget if necessary def handler(change): # Make sure that the two toggle buttons are mutually exclusive if b1.value and b2.value: for b in [b1, b2]: if b is not change.owner: b.value = False return # Make sure that if either button is pressed, we display the input widget if b1.value: box.children = (ipywidgets.VBox([ipywidgets.Label("Values:"), var]),) elif b2.value: box.children = ( ipywidgets.VBox([ipywidgets.Label("Values:"), var]), ipywidgets.VBox([ipywidgets.Label("Name:"), name]), ipywidgets.VBox([ipywidgets.Label("Description:"), descr]), ) else: box.children = () b1.observe(handler, names="value") b2.observe(handler, names="value") # Modify the original widgets to also include our modifications original.widgets[0].children[-1].layout = ipywidgets.Layout(width="70%") b1.layout = ipywidgets.Layout(width="15%") b2.layout = ipywidgets.Layout(width="15%") original.widgets[0].children = original.widgets[0].children[:-1] + ( ipywidgets.HBox([original.widgets[0].children[-1], b1, b2]), ) original.widgets[0].children = original.widgets[0].children + (box,) # Lazy evalution of the batch data def _getter(): ret = [] # Only record a variation if one of our buttons is pressed if b1.value or b2.value: ret.append( { "values": var.value, "persist": b2.value, "path": [], "name": name.value, "description": descr.value, "type": schema["type"], } ) return ret def _setter(_data): assert len(_data) == 1 var.value = _data[0]["values"] name.value = _data[0]["name"] descr.value = _data[0]["description"] if _data[0].get("persist", False): b2.value = True else: b1.value = True def _register_observer(h, n, t): original.register_observer(h, n, t) b1.observe(h, names=n, type=t) b2.observe(h, names=n, type=t) var.observe(h, names=n, type=t) name.observe(h, names=n, type=t) descr.observe(h, names=n, type=t) def _resetter(): original.resetter() b1.value = False b2.value = False var.value = "" # Wrap the result in our new form element return self.construct_element( getter=original.getter, setter=original.setter, resetter=_resetter, widgets=original.widgets, batchdata_getter=_getter, batchdata_setter=_setter, register_observer=_register_observer, ) def _construct_object(self, schema, label=None, root=False): if label in self.nobatch_keys: self.disable_batching = True original = super()._construct_object(schema, label=label, root=root) self.disable_batching = False def _getter(): ret = [] # Iterate over the subelements and update their path for key, subel in original.subelements.items(): data = subel.batchdata_getter() for d in data: d["path"].append({"key": key}) ret.extend(data) return ret def _setter(_data): for _d in _data: key = _d["path"][0]["key"] _d["path"] = _d["path"][1:] original.subelements[key].batchdata_setter([_d]) return self.construct_element( getter=original.getter, setter=original.setter, resetter=original.resetter, widgets=original.widgets, subelements=original.subelements, batchdata_getter=_getter, batchdata_setter=_setter, register_observer=original.register_observer, ) def _construct_array(self, schema, label=None, root=False): original = super()._construct_array(schema, label=label, root=root) def _getter(): ret = [] for i, subel in enumerate(original.subelements[: len(original.getter())]): data = subel.batchdata_getter() for d in data: d["path"].append({"index": i}) ret.extend(data) return ret def _setter(_data): for _d in _data: index = _d["path"][0]["index"] _d["path"] = _d["path"][1:] original.subelements[index].batchdata_setter([_d]) return self.construct_element( getter=original.getter, setter=original.setter, resetter=original.resetter, widgets=original.widgets, subelements=original.subelements, batchdata_getter=_getter, batchdata_setter=_setter, register_observer=original.register_observer, ) def _construct_anyof(self, schema, label=None, key="anyOf"): original = super()._construct_anyof(schema, label, key) selector = original.widgets[0].children[-1].children[0] def _setter(_data): for subel in original.subelements: try: subel.batchdata_setter(_data) return except (KeyError, IndexError): pass raise ipywidgets_jsonschema.form.FormError( "Cannot restore batchdata in anyOf schema" ) return self.construct_element( getter=original.getter, setter=original.setter, resetter=original.resetter, widgets=original.widgets, subelements=original.subelements, batchdata_getter=lambda: original.subelements[ selector.index ].batchdata_getter(), batchdata_setter=_setter, register_observer=original.register_observer, )
py
b402ac31aae008407b42c4036c28cc8c3f79236d
from collections import defaultdict, namedtuple from enum import Enum from itertools import cycle import math import os.path import sys from symspellpy.editdistance import DistanceAlgorithm, EditDistance import symspellpy.helpers as helpers class Verbosity(Enum): """Controls the closeness/quantity of returned spelling suggestions.""" # Top suggestion with the highest term frequency of the suggestions of # smallest edit distance found. TOP = 0 # All suggestions of smallest edit distance found, suggestions ordered by # term frequency. CLOSEST = 1 # All suggestions within maxEditDistance, suggestions ordered by edit # distance, then by term frequency (slower, no early termination). ALL = 2 class SymSpell(object): def __init__(self, initial_capacity=16, max_dictionary_edit_distance=2, prefix_length=7, count_threshold=1, compact_level=5): """Create a new instance of SymSpell. Specifying an accurate initial_capacity is not essential, but it can help speed up processing by aleviating the need for data restructuring as the size grows. Keyword arguments: initial_capacity -- The expected number of words in dictionary. (default 16) max_dictionary_edit_distance -- Maximum edit distance for doing lookups. (default 2) prefix_length -- The length of word prefixes used for spell checking. (default 7) count_threshold -- The minimum frequency count for dictionary words to be considered correct spellings. (default 1) compact_level -- Degree of favoring lower memory use over speed (0=fastest,most memory, 16=slowest,least memory). (default 5) """ if initial_capacity < 0: raise ValueError("initial_capacity cannot be negative") if max_dictionary_edit_distance < 0: raise ValueError("max_dictionary_edit_distance cannot be negative") if prefix_length < 1 or prefix_length <= max_dictionary_edit_distance: raise ValueError("prefix_length cannot be less than 1 or " "smaller than max_dictionary_edit_distance") if count_threshold < 0: raise ValueError("count_threshold cannot be negative") if compact_level < 0 or compact_level > 16: raise ValueError("compact_level must be between 0 and 16") self._initial_capacity = initial_capacity self._words = dict() self._below_threshold_words = dict() self._deletes = defaultdict(list) self._max_dictionary_edit_distance = max_dictionary_edit_distance self._prefix_length = prefix_length self._count_threshold = count_threshold self._compact_mask = (0xFFFFFFFF >> (3 + min(compact_level, 16))) << 2 self._distance_algorithm = DistanceAlgorithm.DAMERUAUOSA self._max_length = 0 self._replaced_words = dict() def create_dictionary_entry(self, key, count): """Create/Update an entry in the dictionary. For every word there are deletes with an edit distance of 1..max_edit_distance created and added to the dictionary. Every delete entry has a suggestions list, which points to the original term(s) it was created from. The dictionary may be dynamically updated (word frequency and new words) at any time by calling create_dictionary_entry Keyword arguments: key -- The word to add to dictionary. count -- The frequency count for word. Return: True if the word was added as a new correctly spelled word, or False if the word is added as a below threshold word, or updates an existing correctly spelled word. """ if count <= 0: # no point doing anything if count is zero, as it can't change # anything if self._count_threshold > 0: return False count = 0 # look first in below threshold words, update count, and allow # promotion to correct spelling word if count reaches threshold # threshold must be >1 for there to be the possibility of low threshold # words if self._count_threshold > 1 and key in self._below_threshold_words: count_previous = self._below_threshold_words[key] # calculate new count for below threshold word count = (count_previous + count if sys.maxsize - count_previous > count else sys.maxsize) # has reached threshold - remove from below threshold collection # (it will be added to correct words below) if count >= self._count_threshold: self._below_threshold_words.pop(key) else: self._below_threshold_words[key] = count return False elif key in self._words: count_previous = self._words[key] # just update count if it's an already added above threshold word count = (count_previous + count if sys.maxsize - count_previous > count else sys.maxsize) self._words[key] = count return False elif count < self._count_threshold: # new or existing below threshold word self._below_threshold_words[key] = count return False # what we have at this point is a new, above threshold word self._words[key] = count # edits/suggestions are created only once, no matter how often word # occurs. edits/suggestions are created as soon as the word occurs # in the corpus, even if the same term existed before in the # dictionary as an edit from another word if len(key) > self._max_length: self._max_length = len(key) # create deletes edits = self._edits_prefix(key) for delete in edits: delete_hash = self._get_str_hash(delete) self._deletes[delete_hash].append(key) return True def load_dictionary(self, corpus, term_index, count_index, encoding=None): """Load multiple dictionary entries from a file of word/frequency count pairs. Merges with any dictionary data already loaded. Keyword arguments: corpus -- The path+filename of the file. term_index -- The column position of the word. count_index -- The column position of the frequency count. encoding -- Text encoding of the dictionary file Return: True if file loaded, or False if file not found. """ if not os.path.exists(corpus): return False with open(corpus, "r", encoding=encoding) as infile: for line in infile: line_parts = line.rstrip().split(" ") if len(line_parts) >= 2: key = line_parts[term_index] count = helpers.try_parse_int64(line_parts[count_index]) if count is not None: self.create_dictionary_entry(key, count) return True def lookup(self, phrase, verbosity, max_edit_distance=None, include_unknown=False): """Find suggested spellings for a given phrase word. Keyword arguments: phrase -- The word being spell checked. verbosity -- The value controlling the quantity/closeness of the returned suggestions. max_edit_distance -- The maximum edit distance between phrase and suggested words. include_unknown -- Include phrase word in suggestions, if no words within edit distance found. Return: A list of SuggestItem object representing suggested correct spellings for the phrase word, sorted by edit distance, and secondarily by count frequency. """ if max_edit_distance is None: max_edit_distance = self._max_dictionary_edit_distance if max_edit_distance > self._max_dictionary_edit_distance: raise ValueError("Distance too large") suggestions = list() phrase_len = len(phrase) def early_exit(): if include_unknown and not suggestions: suggestions.append(SuggestItem(phrase, max_edit_distance + 1, 0)) return suggestions # early exit - word is too big to possibly match any words if phrase_len - max_edit_distance > self._max_length: return early_exit() # quick look for exact match suggestion_count = 0 if phrase in self._words: suggestion_count = self._words[phrase] suggestions.append(SuggestItem(phrase, 0, suggestion_count)) # early exit - return exact match, unless caller wants all matches if verbosity != Verbosity.ALL: return early_exit() # early termination, if we only want to check if word in dictionary or # get its frequency e.g. for word segmentation if max_edit_distance == 0: return early_exit() considered_deletes = set() considered_suggestions = set() # we considered the phrase already in the 'phrase in self._words' above considered_suggestions.add(phrase) max_edit_distance_2 = max_edit_distance candidate_pointer = 0 candidates = list() # add original prefix phrase_prefix_len = phrase_len if phrase_prefix_len > self._prefix_length: phrase_prefix_len = self._prefix_length candidates.append(phrase[: phrase_prefix_len]) else: candidates.append(phrase) distance_comparer = EditDistance(self._distance_algorithm) while candidate_pointer < len(candidates): candidate = candidates[candidate_pointer] candidate_pointer += 1 candidate_len = len(candidate) len_diff = phrase_prefix_len - candidate_len # early termination: if candidate distance is already higher than # suggestion distance, than there are no better suggestions to be # expected if len_diff > max_edit_distance_2: # skip to next candidate if Verbosity.ALL, look no # further if Verbosity.TOP or CLOSEST (candidates are # ordered by delete distance, so none are closer than current) if verbosity == Verbosity.ALL: continue break if self._get_str_hash(candidate) in self._deletes: dict_suggestions = self._deletes[self._get_str_hash(candidate)] for suggestion in dict_suggestions: if suggestion == phrase: continue suggestion_len = len(suggestion) # phrase and suggestion lengths diff > allowed/current best # distance if (abs(suggestion_len - phrase_len) > max_edit_distance_2 # suggestion must be for a different delete string, # in same bin only because of hash collision or suggestion_len < candidate_len # if suggestion len = delete len, then it either # equals delete or is in same bin only because of # hash collision or (suggestion_len == candidate_len and suggestion != candidate)): continue suggestion_prefix_len = min(suggestion_len, self._prefix_length) if (suggestion_prefix_len > phrase_prefix_len and suggestion_prefix_len - candidate_len > max_edit_distance_2): continue # True Damerau-Levenshtein Edit Distance: adjust distance, # if both distances>0 # We allow simultaneous edits (deletes) of max_edit_distance # on on both the dictionary and the phrase term. # For replaces and adjacent transposes the resulting edit # distance stays <= max_edit_distance. # For inserts and deletes the resulting edit distance might # exceed max_edit_distance. # To prevent suggestions of a higher edit distance, we need # to calculate the resulting edit distance, if there are # simultaneous edits on both sides. # Example: (bank==bnak and bank==bink, but bank!=kanb and # bank!=xban and bank!=baxn for max_edit_distance=1) # Two deletes on each side of a pair makes them all equal, # but the first two pairs have edit distance=1, the others # edit distance=2. distance = 0 min_distance = 0 if candidate_len == 0: # suggestions which have no common chars with phrase # (phrase_len<=max_edit_distance && # suggestion_len<=max_edit_distance) distance = max(phrase_len, suggestion_len) if (distance > max_edit_distance_2 or suggestion in considered_suggestions): continue elif suggestion_len == 1: distance = (phrase_len if phrase.index(suggestion[0]) < 0 else phrase_len - 1) if (distance > max_edit_distance_2 or suggestion in considered_suggestions): continue # number of edits in prefix ==maxediddistance AND no # identical suffix, then editdistance>max_edit_distance and # no need for Levenshtein calculation # (phraseLen >= prefixLength) && # (suggestionLen >= prefixLength) else: # handles the shortcircuit of min_distance assignment # when first boolean expression evaluates to False if self._prefix_length - max_edit_distance == candidate_len: min_distance = (min(phrase_len, suggestion_len) - self._prefix_length) else: min_distance = 0 # pylint: disable=C0301,R0916 if (self._prefix_length - max_edit_distance == candidate_len and (min_distance > 1 and phrase[phrase_len + 1 - min_distance :] != suggestion[suggestion_len + 1 - min_distance :]) or (min_distance > 0 and phrase[phrase_len - min_distance] != suggestion[suggestion_len - min_distance] and (phrase[phrase_len - min_distance - 1] != suggestion[suggestion_len - min_distance] or phrase[phrase_len - min_distance] != suggestion[suggestion_len - min_distance - 1]))): continue else: # delete_in_suggestion_prefix is somewhat expensive, # and only pays off when verbosity is TOP or CLOSEST if ((verbosity != Verbosity.ALL and not self._delete_in_suggestion_prefix( candidate, candidate_len, suggestion, suggestion_len)) or suggestion in considered_suggestions): continue considered_suggestions.add(suggestion) distance = distance_comparer.compare( phrase, suggestion, max_edit_distance_2) if distance < 0: continue # do not process higher distances than those already found, # if verbosity<ALL (note: max_edit_distance_2 will always # equal max_edit_distance when Verbosity.ALL) if distance <= max_edit_distance_2: suggestion_count = self._words[suggestion] si = SuggestItem(suggestion, distance, suggestion_count) if suggestions: if verbosity == Verbosity.CLOSEST: # we will calculate DamLev distance only to the # smallest found distance so far if distance < max_edit_distance_2: suggestions = list() elif verbosity == Verbosity.TOP: if (distance < max_edit_distance_2 or suggestion_count > suggestions[0].count): max_edit_distance_2 = distance suggestions[0] = si continue if verbosity != Verbosity.ALL: max_edit_distance_2 = distance suggestions.append(si) # add edits: derive edits (deletes) from candidate (phrase) and # add them to candidates list. this is a recursive process until # the maximum edit distance has been reached if (len_diff < max_edit_distance and candidate_len <= self._prefix_length): # do not create edits with edit distance smaller than # suggestions already found if (verbosity != Verbosity.ALL and len_diff >= max_edit_distance_2): continue for i in range(candidate_len): delete = candidate[: i] + candidate[i + 1 :] if delete not in considered_deletes: considered_deletes.add(delete) candidates.append(delete) if len(suggestions) > 1: suggestions.sort() return suggestions def lookup_compound(self, phrase, max_edit_distance, ignore_non_words=False): """lookup_compound supports compound aware automatic spelling correction of multi-word input strings with three cases: 1. mistakenly inserted space into a correct word led to two incorrect terms 2. mistakenly omitted space between two correct words led to one incorrect combined term 3. multiple independent input terms with/without spelling errors Find suggested spellings for a multi-word input string (supports word splitting/merging). Keyword arguments: phrase -- The string being spell checked. max_edit_distance -- The maximum edit distance between input and suggested words. Return: A List of SuggestItem object representing suggested correct spellings for the input string. """ # Parse input string into single terms term_list_1 = helpers.parse_words(phrase) # Second list of single terms with preserved cases so we can ignore # acronyms (all cap words) if ignore_non_words: term_list_2 = helpers.parse_words(phrase, True) suggestions = list() suggestion_parts = list() distance_comparer = EditDistance(self._distance_algorithm) # translate every item to its best suggestion, otherwise it remains # unchanged is_last_combi = False for i, __ in enumerate(term_list_1): if ignore_non_words: if helpers.try_parse_int64(term_list_1[i]) is not None: suggestion_parts.append(SuggestItem(term_list_1[i], 0, 0)) continue # if re.match(r"\b[A-Z]{2,}\b", term_list_2[i]): if helpers.is_acronym(term_list_2[i]): suggestion_parts.append(SuggestItem(term_list_2[i], 0, 0)) continue suggestions = self.lookup(term_list_1[i], Verbosity.TOP, max_edit_distance) # combi check, always before split if i > 0 and not is_last_combi: suggestions_combi = self.lookup( term_list_1[i - 1] + term_list_1[i], Verbosity.TOP, max_edit_distance) if suggestions_combi: best_1 = suggestion_parts[-1] if suggestions: best_2 = suggestions[0] else: best_2 = SuggestItem(term_list_1[i], max_edit_distance + 1, 0) # make sure we're comparing with the lowercase form of the # previous word distance_1 = distance_comparer.compare( term_list_1[i - 1] + " " + term_list_1[i], best_1.term.lower() + " " + best_2.term, max_edit_distance) if (distance_1 >= 0 and suggestions_combi[0].distance + 1 < distance_1): suggestions_combi[0].distance += 1 suggestion_parts[-1] = suggestions_combi[0] is_last_combi = True continue is_last_combi = False # alway split terms without suggestion / never split terms with # suggestion ed=0 / never split single char terms if (suggestions and (suggestions[0].distance == 0 or len(term_list_1[i]) == 1)): # choose best suggestion suggestion_parts.append(suggestions[0]) else: # if no perfect suggestion, split word into pairs suggestions_split = list() # add original term if suggestions: suggestions_split.append(suggestions[0]) if len(term_list_1[i]) > 1: for j in range(1, len(term_list_1[i])): part_1 = term_list_1[i][: j] part_2 = term_list_1[i][j :] suggestions_1 = self.lookup(part_1, Verbosity.TOP, max_edit_distance) if suggestions_1: # if split correction1 == einzelwort correction if (suggestions and suggestions[0].term == suggestions_1[0].term): break suggestions_2 = self.lookup(part_2, Verbosity.TOP, max_edit_distance) if suggestions_2: # if split correction1 == einzelwort correction if (suggestions and suggestions[0].term == suggestions_2[0].term): break # select best suggestion for split pair tmp_term = (suggestions_1[0].term + " " + suggestions_2[0].term) tmp_distance = distance_comparer.compare( term_list_1[i], tmp_term, max_edit_distance) if tmp_distance < 0: tmp_distance = max_edit_distance + 1 tmp_count = min(suggestions_1[0].count, suggestions_2[0].count) suggestion_split = SuggestItem( tmp_term, tmp_distance, tmp_count) suggestions_split.append(suggestion_split) # early termination of split if suggestion_split.distance == 1: break if suggestions_split: # select best suggestion for split pair suggestions_split.sort() suggestion_parts.append(suggestions_split[0]) self._replaced_words[term_list_1[i]] = suggestions_split[0]._term else: si = SuggestItem(term_list_1[i], max_edit_distance + 1, 0) suggestion_parts.append(si) self._replaced_words[term_list_1[i]] = si._term else: si = SuggestItem(term_list_1[i], max_edit_distance + 1, 0) suggestion_parts.append(si) self._replaced_words[term_list_1[i]] = si._term joined_term = "" joined_count = sys.maxsize for si in suggestion_parts: joined_term += si.term + " " joined_count = min(joined_count, si.count) suggestion = SuggestItem(joined_term.rstrip(), distance_comparer.compare( phrase, joined_term, 2 ** 31 - 1), joined_count) suggestions_line = list() suggestions_line.append(suggestion) return suggestions_line def word_segmentation(self, phrase, max_edit_distance=None, max_segmentation_word_length=None): """word_egmentation divides a string into words by inserting missing spaces at the appropriate positions misspelled words are corrected and do not affect segmentation existing spaces are allowed and considered for optimum segmentation word_segmentation uses a novel approach *without* recursion. https://medium.com/@wolfgarbe/fast-word-segmentation-for-noisy-text-2c2c41f9e8da While each string of length n can be segmented in 2^n−1 possible compositions https://en.wikipedia.org/wiki/Composition_(combinatorics) word_segmentation has a linear runtime O(n) to find the optimum composition Find suggested spellings for a multi-word input string (supports word splitting/merging). Keyword arguments: phrase -- The string being spell checked. max_segmentation_word_length -- The maximum word length that should be considered. max_edit_distance -- The maximum edit distance between input and corrected words (0=no correction/segmentation only). Return: The word segmented string, the word segmented and spelling corrected string, the Edit distance sum between input string and corrected string, the Sum of word occurence probabilities in log scale (a measure of how common and probable the corrected segmentation is). """ # number of all words in the corpus used to generate the frequency # dictionary. This is used to calculate the word occurrence # probability p from word counts c : p=c/N. N equals the sum of all # counts c in the dictionary only if the dictionary is complete, but # not if the dictionary is truncated or filtered N = 1024908267229 if max_edit_distance is None: max_edit_distance = self._max_dictionary_edit_distance if max_segmentation_word_length is None: max_segmentation_word_length = self._max_length array_size = min(max_segmentation_word_length, len(phrase)) compositions = [Composition()] * array_size circular_index = cycle(range(array_size)) idx = -1 # outer loop (column): all possible part start positions for j in range(len(phrase)): # inner loop (row): all possible part lengths (from start # position): part can't be bigger than longest word in dictionary # (other than long unknown word) imax = min(len(phrase) - j, max_segmentation_word_length) for i in range(1, imax + 1): # get top spelling correction/ed for part part = phrase[j : j + i] separator_len = 0 top_ed = 0 top_log_prob = 0.0 top_result = "" if part[0].isspace(): # remove space for levensthein calculation part = part[1 :] else: # add ed+1: space did not exist, had to be inserted separator_len = 1 # remove space from part1, add number of removed spaces to top_ed top_ed += len(part) # remove space. # add number of removed spaces to ed part = part.replace(" ", "") top_ed -= len(part) results = self.lookup(part, Verbosity.TOP, max_edit_distance) if results: top_result = results[0].term top_ed += results[0].distance # Naive Bayes Rule. We assume the word probabilities of # two words to be independent. Therefore the resulting # probability of the word combination is the product of # the two word probabilities # Instead of computing the product of probabilities we # are computing the sum of the logarithm of probabilities # because the probabilities of words are about 10^-10, # the product of many such small numbers could exceed # (underflow) the floating number range and become zero # log(ab)=log(a)+log(b) top_log_prob = math.log10(float(results[0].count) / float(N)) else: top_result = part # default, if word not found. otherwise long input text # would win as long unknown word (with ed=edmax+1), # although there there should many spaces inserted top_ed += len(part) top_log_prob = math.log10(10.0 / N / math.pow(10.0, len(part))) dest = (i + idx) % array_size # set values in first loop if j == 0: compositions[dest] = Composition(part, top_result, top_ed, top_log_prob) # pylint: disable=C0301,R0916 elif (i == max_segmentation_word_length # replace values if better probabilityLogSum, if same # edit distance OR one space difference or ((compositions[idx].distance_sum + top_ed == compositions[dest].distance_sum or compositions[idx].distance_sum + separator_len + top_ed == compositions[dest].distance_sum) and compositions[dest].log_prob_sum < compositions[idx].log_prob_sum + top_log_prob) # replace values if smaller edit distance or compositions[idx].distance_sum + separator_len + top_ed < compositions[dest].distance_sum): compositions[dest] = Composition( compositions[idx].segmented_string + " " + part, compositions[idx].corrected_string + " " + top_result, compositions[idx].distance_sum + separator_len + top_ed, compositions[idx].log_prob_sum + top_log_prob) idx = next(circular_index) return compositions[idx] def _delete_in_suggestion_prefix(self, delete, delete_len, suggestion, suggestion_len): """check whether all delete chars are present in the suggestion prefix in correct order, otherwise this is just a hash collision """ if delete_len == 0: return True if self._prefix_length < suggestion_len: suggestion_len = self._prefix_length j = 0 for i in range(delete_len): del_char = delete[i] while j < suggestion_len and del_char != suggestion[j]: j += 1 if j == suggestion_len: return False return True def _edits(self, word, edit_distance, delete_words): """inexpensive and language independent: only deletes, no transposes + replaces + inserts replaces and inserts are expensive and language dependent """ edit_distance += 1 if len(word) > 1: for i in range(len(word)): delete = word[: i] + word[i + 1 :] if delete not in delete_words: delete_words.add(delete) # recursion, if maximum edit distance not yet reached if edit_distance < self._max_dictionary_edit_distance: self._edits(delete, edit_distance, delete_words) return delete_words def _edits_prefix(self, key): hash_set = set() if len(key) <= self._max_dictionary_edit_distance: hash_set.add("") if len(key) > self._max_dictionary_edit_distance: key = key[: self._prefix_length] hash_set.add(key) return self._edits(key, 0, hash_set) def _get_str_hash(self, s): s_len = len(s) mask_len = min(s_len, 3) hash_s = 2166136261 for i in range(s_len): hash_s ^= ord(s[i]) hash_s *= 16777619 hash_s &= self._compact_mask hash_s |= mask_len return hash_s @property def deletes(self): return self._deletes @property def words(self): return self._words @property def word_count(self): return len(self._words) class SuggestItem(object): """Spelling suggestion returned from Lookup.""" def __init__(self, term, distance, count): """Create a new instance of SuggestItem. Keyword arguments: term -- The suggested word. distance -- Edit distance from search word. count -- Frequency of suggestion in dictionary. """ self._term = term self._distance = distance self._count = count def __eq__(self, other): """order by distance ascending, then by frequency count descending """ if self._distance == other.distance: return self._count == other.count else: return self._distance == other.distance def __lt__(self, other): if self._distance == other.distance: return self._count > other.count else: return self._distance < other.distance def __str__(self): return "{}, {}, {}".format(self._term, self._distance, self._count) @property def term(self): return self._term @term.setter def term(self, term): self._term = term @property def distance(self): return self._distance @distance.setter def distance(self, distance): self._distance = distance @property def count(self): return self._count @count.setter def count(self, count): self._count = count Composition = namedtuple("Composition", ["segmented_string", "corrected_string", "distance_sum", "log_prob_sum"]) Composition.__new__.__defaults__ = (None,) * len(Composition._fields)
py
b402ac3cf76f36f8400057781b081d6af87c10d7
#!/usr/bin/env python # # Copyright 2007 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Higher-level, semantic data types for the datastore. These types are expected to be set as attributes of Entities. See "Supported Data Types" in the API Guide. Most of these types are based on XML elements from Atom and GData elements from the atom and gd namespaces. For more information, see: http://www.atomenabled.org/developers/syndication/ https://developers.google.com/gdata/docs/1.0/elements The namespace schemas are: http://www.w3.org/2005/Atom http://schemas.google.com/g/2005 """ import array import base64 import binascii import calendar import datetime import os import re import struct import time from xml.sax import saxutils from google.appengine.api import cmp_compat from google.appengine.api import datastore_errors from google.appengine.api import full_app_id from google.appengine.api import namespace_manager from google.appengine.api import users from google.appengine.datastore import datastore_pbs from google.appengine.datastore import entity_v4_pb2 from google.appengine.datastore import sortable_pb_encoder import six from six.moves import range from six.moves import urllib from six.moves import zip from google.appengine.datastore import entity_bytes_pb2 as entity_pb2 if datastore_pbs._CLOUD_DATASTORE_ENABLED: from google.appengine.datastore.datastore_pbs import googledatastore _MAX_STRING_LENGTH = 1500 _MAX_LINK_PROPERTY_LENGTH = 2083 _MAX_RAW_PROPERTY_BYTES = 1048487 RESERVED_PROPERTY_NAME = re.compile('^__.*__$') KEY_SPECIAL_PROPERTY = '__key__' _KEY_SPECIAL_PROPERTY = KEY_SPECIAL_PROPERTY _UNAPPLIED_LOG_TIMESTAMP_SPECIAL_PROPERTY = '__unapplied_log_timestamp_us__' SCATTER_SPECIAL_PROPERTY = '__scatter__' _SPECIAL_PROPERTIES = frozenset( [KEY_SPECIAL_PROPERTY, _UNAPPLIED_LOG_TIMESTAMP_SPECIAL_PROPERTY, SCATTER_SPECIAL_PROPERTY]) _NAMESPACE_SEPARATOR = '!' _EMPTY_NAMESPACE_ID = 1 _EPOCH = datetime.datetime.utcfromtimestamp(0) if six.PY2: _PREFERRED_NUM_TYPE = long else: _PREFERRED_NUM_TYPE = int class UtcTzinfo(datetime.tzinfo): def utcoffset(self, dt): return datetime.timedelta(0) def dst(self, dt): return datetime.timedelta(0) def tzname(self, dt): return 'UTC' def __repr__(self): return 'datastore_types.UTC' UTC = UtcTzinfo() def typename(obj): """Returns the type of obj as a string.""" if hasattr(obj, '__class__'): return getattr(obj, '__class__').__name__ else: return type(obj).__name__ def ValidateString(value, name='unused', exception=datastore_errors.BadValueError, max_len=_MAX_STRING_LENGTH, empty_ok=False): """Raises an exception if value is not a valid string or a subclass thereof. A string is valid if it's not empty, no more than _MAX_STRING_LENGTH bytes, and not a Blob. The exception type can be specified with the exception argument; it defaults to BadValueError. Args: value: the value to validate. name: the name of this value; used in the exception message. exception: the type of exception to raise. max_len: the maximum allowed length, in bytes. empty_ok: allow empty value. """ if value is None and empty_ok: return if ( not isinstance(value, (six.text_type, six.binary_type)) or isinstance(value, Blob)): raise exception('%s should be a string; received %s (a %s):' % (name, value, typename(value))) if not value and not empty_ok: raise exception('%s must not be empty.' % name) conversion_kwargs = {} if six.PY3: conversion_kwargs = dict(errors='surrogatepass') if isinstance(value, six.text_type) and len(value.encode('utf-8', **conversion_kwargs)) > max_len: raise exception('%s must be under %d bytes.' % (name, max_len)) if isinstance(value, str) and len(value) > max_len: raise exception('%s must be under %d bytes.' % (name, max_len)) def ValidateInteger(value, name='unused', exception=datastore_errors.BadValueError, empty_ok=False, zero_ok=False, negative_ok=False): """Raises an exception if value is not a valid integer. An integer is valid if it's not negative or empty and is an integer (either int or long). The exception type raised can be specified with the exception argument; it defaults to BadValueError. Args: value: the value to validate. name: the name of this value; used in the exception message. exception: the type of exception to raise. empty_ok: allow None value. zero_ok: allow zero value. negative_ok: allow negative value. """ if value is None and empty_ok: return if not isinstance(value, six.integer_types): raise exception('%s should be an integer; received %s (a %s).' % (name, value, typename(value))) if not value and not zero_ok: raise exception('%s must not be 0 (zero)' % name) if value < 0 and not negative_ok: raise exception('%s must not be negative.' % name) def ResolveAppId(app): """Validate app id, providing a default. Args: app: The app id argument value to be validated. Returns: The value of app, or the substituted default. Always a non-empty string. Raises: BadArgumentError if the value is empty or not a string. """ if app is None: app = full_app_id.get() ValidateString(app, 'app', datastore_errors.BadArgumentError) return app def ResolveNamespace(namespace): """Validate app namespace, providing a default. If the argument is None, namespace_manager.get_namespace() is substituted. Args: namespace: The namespace argument value to be validated. Returns: The value of namespace, or the substituted default. The empty string is used to denote the empty namespace. Raises: BadArgumentError if the value is not a string. """ if namespace is None: namespace = namespace_manager.get_namespace() else: namespace_manager.validate_namespace( namespace, datastore_errors.BadArgumentError) return namespace def EncodeAppIdNamespace(app_id, namespace): """Concatenates app id and namespace into a single string. This method is needed for xml and datastore_file_stub. Args: app_id: The application id to encode namespace: The namespace to encode Returns: The string encoding for the app_id, namespace pair. """ if not namespace: return app_id else: return app_id + _NAMESPACE_SEPARATOR + namespace def DecodeAppIdNamespace(app_namespace_str): """Decodes app_namespace_str into an (app_id, namespace) pair. This method is the reverse of EncodeAppIdNamespace and is needed for datastore_file_stub. Args: app_namespace_str: An encoded app_id, namespace pair created by EncodeAppIdNamespace Returns: (app_id, namespace) pair encoded in app_namespace_str """ sep = app_namespace_str.find(_NAMESPACE_SEPARATOR) if sep < 0: return (app_namespace_str, '') else: return (app_namespace_str[0:sep], app_namespace_str[sep + 1:]) def SetNamespace(proto, namespace): """Sets the namespace for a protocol buffer or clears the field. Args: proto: An entity_pb2.Reference to update namespace: the new namespace (None or an empty string will clear out the field). """ if not namespace: proto.ClearField('name_space') else: proto.name_space = namespace def PartitionString(value, separator): """Equivalent to python2.5 str.partition() TODO use str.partition() when python 2.5 is adopted. Args: value: String to be partitioned separator: Separator string """ index = value.find(separator) if index == -1: return (value, '', value[0:0]) else: return (value[0:index], separator, value[index+len(separator):len(value)]) @cmp_compat.total_ordering_from_cmp class Key(object): """The primary key for a datastore entity. A datastore GUID. A Key instance uniquely identifies an entity across all apps, and includes all information necessary to fetch the entity from the datastore with Get(). Key implements __hash__, and key instances are immutable, so Keys may be used in sets and as dictionary keys. """ __reference = None def __init__(self, encoded=None): """Constructor. Creates a Key from a string. Args: # a base64-encoded primary key, generated by Key.__str__ encoded: str """ self._bytes = None if encoded is not None: if isinstance(encoded, bytes): pass elif isinstance(encoded, six.text_type): encoded = encoded.encode('utf-8') else: try: repr_encoded = repr(encoded) except: repr_encoded = "<couldn't encode>" raise datastore_errors.BadArgumentError( 'Key() expects a string; received %s (a %s).' % (repr_encoded, typename(encoded))) try: modulo = len(encoded) % 4 if modulo != 0: encoded += (b'=' * (4 - modulo)) self._bytes = encoded encoded_pb = base64.urlsafe_b64decode(self._bytes) self.__reference = entity_pb2.Reference.FromString(encoded_pb) assert self.__reference.IsInitialized() self._bytes = self._bytes.rstrip(b'=') except (AssertionError, TypeError, binascii.Error) as e: raise datastore_errors.BadKeyError( 'Invalid string key %s. Details: %s' % (encoded, e)) except Exception as e: if (e.__class__.__name__ == 'ProtocolBufferDecodeError' or e.__class__.__name__ == 'DecodeError'): raise datastore_errors.BadKeyError('Invalid string key %s.' % encoded) else: raise else: self.__reference = entity_pb2.Reference() def to_path(self, _default_id=None, _decode=True, _fail=True): """Construct the "path" of this key as a list. Returns: A list [kind_1, id_or_name_1, ..., kind_n, id_or_name_n] of the key path. Raises: datastore_errors.BadKeyError if this key does not have a valid path. """ path = [] for path_element in self.__reference.path.element: path.append(path_element.type) if path_element.HasField('name'): path.append(path_element.name) elif path_element.HasField('id'): path.append(path_element.id) elif _default_id is not None: path.append(_default_id) else: raise datastore_errors.BadKeyError('Incomplete key found in to_path') return path @staticmethod def from_path(*args, **kwds): """Static method to construct a Key out of a "path" (kind, id or name, ...). This is useful when an application wants to use just the id or name portion of a key in e.g. a URL, where the rest of the URL provides enough context to fill in the rest, i.e. the app id (always implicit), the entity kind, and possibly an ancestor key. Since ids and names are usually small, they're more attractive for use in end-user-visible URLs than the full string representation of a key. Args: kind: the entity kind (a str or unicode instance) id_or_name: the id (an int or long) or name (a str or unicode instance) parent: optional parent Key; default None. namespace: optional namespace to use otherwise namespace_manager's default namespace is used. Returns: A new Key instance whose .kind() and .id() or .name() methods return the *last* kind and id or name positional arguments passed. Raises: BadArgumentError for invalid arguments. BadKeyError if the parent key is incomplete. """ parent = kwds.pop('parent', None) app_id = ResolveAppId(kwds.pop('_app', None)) namespace = kwds.pop('namespace', None) if kwds: raise datastore_errors.BadArgumentError( 'Excess keyword arguments ' + repr(kwds)) if not args or len(args) % 2: raise datastore_errors.BadArgumentError( 'A non-zero even number of positional arguments is required ' '(kind, id or name, kind, id or name, ...); received %s' % repr(args)) if parent is not None: if not isinstance(parent, Key): raise datastore_errors.BadArgumentError( 'Expected None or a Key as parent; received %r (a %s).' % (parent, typename(parent))) if namespace is None: namespace = parent.namespace() if not parent.has_id_or_name(): raise datastore_errors.BadKeyError( 'The parent Key is incomplete.') if app_id != parent.app() or namespace != parent.namespace(): raise datastore_errors.BadArgumentError( 'The app/namespace arguments (%s/%s) should match ' 'parent.app/namespace() (%s/%s)' % (app_id, namespace, parent.app(), parent.namespace())) namespace = ResolveNamespace(namespace) key = Key() ref = key.__reference if parent is not None: ref.CopyFrom(parent.__reference) else: ref.app = app_id SetNamespace(ref, namespace) path = ref.path for i in range(0, len(args), 2): kind, id_or_name = args[i:i+2] if isinstance(kind, six.string_types): kind = kind.encode('utf-8') else: raise datastore_errors.BadArgumentError( 'Expected a string kind as argument %d; received %r (a %s).' % (i + 1, kind, typename(kind))) elem = path.element.add() elem.type = kind if isinstance(id_or_name, six.integer_types): elem.id = id_or_name elif isinstance(id_or_name, six.string_types): ValidateString(id_or_name, 'name') elem.name = id_or_name.encode('utf-8') else: raise datastore_errors.BadArgumentError( 'Expected an integer id or string name as argument %d; ' 'received %r (a %s).' % (i + 2, id_or_name, typename(id_or_name))) assert ref.IsInitialized() return key def app(self): """Returns this entity's app id, a string.""" if self.__reference.app: return self.__reference.app else: return None def namespace(self): """Returns this entity's namespace, a string.""" if self.__reference.HasField('name_space'): return self.__reference.name_space else: return '' def kind(self): """Returns this entity's kind, as a string.""" if self.__reference.path.element: return self.__reference.path.element[-1].type else: return None def id(self): """Returns this entity's id, or None if it doesn't have one.""" elems = self.__reference.path.element if elems and elems[-1].HasField('id') and elems[-1].id: return elems[-1].id else: return None def name(self): """Returns this entity's name, or None if it doesn't have one.""" elems = self.__reference.path.element if elems and elems[-1].HasField('name') and elems[-1].name: return elems[-1].name else: return None def id_or_name(self): """Returns this entity's id or name, whichever it has, or None.""" if self.id() is not None: return self.id() else: return self.name() def has_id_or_name(self): """Returns True if this entity has an id or name, False otherwise. """ elems = self.__reference.path.element if elems: e = elems[-1] return bool(e.name or e.id) else: return False def parent(self): """Returns this entity's parent, as a Key. If this entity has no parent, returns None.""" if len(self.__reference.path.element) > 1: parent = Key() parent.__reference.CopyFrom(self.__reference) del parent.__reference.path.element[-1] return parent else: return None def ToTagUri(self): """Returns a tag: URI for this entity for use in XML output. Foreign keys for entities may be represented in XML output as tag URIs. RFC 4151 describes the tag URI scheme. From http://taguri.org/: The tag algorithm lets people mint - create - identifiers that no one else using the same algorithm could ever mint. It is simple enough to do in your head, and the resulting identifiers can be easy to read, write, and remember. The identifiers conform to the URI (URL) Syntax. Tag URIs for entities use the app's auth domain and the date that the URI is generated. The namespace-specific part is <kind>[<key>]. For example, here is the tag URI for a Kitten with the key "Fluffy" in the catsinsinks app: tag:catsinsinks.googleapps.com,2006-08-29:Kitten[Fluffy] Raises a BadKeyError if this entity's key is incomplete. """ if not self.has_id_or_name(): raise datastore_errors.BadKeyError( 'ToTagUri() called for an entity with an incomplete key.') return u'tag:%s.%s,%s:%s[%s]' % ( saxutils.escape(EncodeAppIdNamespace(self.app(), self.namespace())), os.environ['AUTH_DOMAIN'], datetime.date.today().isoformat(), saxutils.escape(self.kind()), saxutils.escape(str(self))) ToXml = ToTagUri def entity_group(self): """Returns this key's entity group as a Key. Note that the returned Key will be incomplete if this Key is for a root entity and it is incomplete. """ group = Key._FromPb(self.__reference) del group.__reference.path.element[1:] return group @staticmethod def _FromPb(pb): """Static factory method. Creates a Key from an entity_pb2.Reference. Not intended to be used by application developers. Enforced by hiding the entity_pb2 classes. Args: pb: entity_pb2.Reference Returns: A datastore_types.Key. """ if not isinstance(pb, entity_pb2.Reference): raise datastore_errors.BadArgumentError( 'Key constructor takes an entity_pb2.Reference; received %s (a %s).' % (pb, typename(pb))) key = Key() key.__reference = entity_pb2.Reference() key.__reference.CopyFrom(pb) return key def _ToPb(self): """Converts this Key to its protocol buffer representation. Not intended to be used by application developers. Enforced by hiding the entity_pb classes.e Returns: # the Reference PB representation of this Key entity_pb2.Reference """ pb = entity_pb2.Reference() pb.CopyFrom(self.__reference) return pb def __str__(self): """Encodes this Key as an opaque string. Returns a string representation of this key, suitable for use in HTML, URLs, and other similar use cases. If the entity's key is incomplete, raises a BadKeyError. Unfortunately, this string encoding isn't particularly compact, and its length varies with the length of the path. If you want a shorter identifier and you know the kind and parent (if any) ahead of time, consider using just the entity's id or name. Returns: string """ try: if self._bytes is not None: return self._bytes.decode('utf-8') except AttributeError: pass if (self.has_id_or_name()): encoded = base64.urlsafe_b64encode(self.__reference.SerializeToString()) self._bytes = encoded.replace(b'=', b'') else: raise datastore_errors.BadKeyError( 'Cannot string encode an incomplete key!\n%s' % self.__reference) return self._bytes.decode('utf-8') def __repr__(self): """Returns an eval()able string representation of this key. Returns a Python string of the form 'datastore_types.Key.from_path(...)' that can be used to recreate this key. Returns: string """ args = [] for elem in self.__reference.path.element: args.append(six.text_type(repr(elem.type))) if elem.HasField('name'): args.append(six.text_type(repr(elem.name))) else: args.append(repr(elem.id)) args.append('_app=%r' % self.__reference.app) if self.__reference.HasField('name_space'): args.append('namespace=%r' % six.ensure_text(self.__reference.name_space)) return u'datastore_types.Key.from_path(%s)' % ', '.join(args) def __cmp__(self, other): """Returns negative, zero, or positive when comparing two keys. TODO: for API v2, we should change this to make incomplete keys, ie keys without an id or name, not equal to any other keys. Args: other: Key to compare to. Returns: Negative if self is less than "other" Zero if "other" is equal to self Positive if self is greater than "other" """ if not isinstance(other, Key): return -2 self_args = [self.__reference.app, self.__reference.name_space] self_args += self.to_path(_default_id=0, _decode=False) other_args = [other.__reference.app, other.__reference.name_space] other_args += other.to_path(_default_id=0, _decode=False) for self_component, other_component in zip(self_args, other_args): comparison = cmp_compat.cmp(self_component, other_component) if comparison != 0: return comparison return cmp_compat.cmp(len(self_args), len(other_args)) def __hash__(self): """Returns an integer hash of this key. Implements Python's hash protocol so that Keys may be used in sets and as dictionary keys. Returns: int """ args = self.to_path(_default_id=0, _fail=False) args.append(self.__reference.app) return hash(type(args)) ^ hash(tuple(args)) class _OverflowDateTime(_PREFERRED_NUM_TYPE): """Container for GD_WHEN values that don't fit into a datetime.datetime. This class only exists to safely round-trip GD_WHEN values that are too large to fit in a datetime.datetime instance e.g. that were created by Java applications. It should not be created directly. """ pass def _EmptyList(val): if val is not None: raise datastore_errors.BadValueError('value should be None.') return [] def _When(val): """Coverts a GD_WHEN value to the appropriate type.""" try: return _EPOCH + datetime.timedelta(microseconds=val) except OverflowError: return _OverflowDateTime(val) class Category(six.text_type): """A tag, ie a descriptive word or phrase. Entities may be tagged by users, and later returned by a queries for that tag. Tags can also be used for ranking results (frequency), photo captions, clustering, activity, etc. Here's a more in-depth description: http://www.zeldman.com/daily/0405d.shtml This is the Atom "category" element. In XML output, the tag is provided as the term attribute. See: http://www.atomenabled.org/developers/syndication/#category Raises BadValueError if tag is not a string or subtype. """ TERM = 'user-tag' def __init__(self, tag): super(Category, self).__init__() ValidateString(tag, 'tag') def ToXml(self): return u'<category term="%s" label=%s />' % (Category.TERM, saxutils.quoteattr(self)) class Link(six.text_type): """A fully qualified URL. Usually http: scheme, but may also be file:, ftp:, news:, among others. If you have email (mailto:) or instant messaging (aim:, xmpp:) links, consider using the Email or IM classes instead. This is the Atom "link" element. In XML output, the link is provided as the href attribute. See: http://www.atomenabled.org/developers/syndication/#link Raises BadValueError if link is not a fully qualified, well-formed URL. """ def __init__(self, link): super(Link, self).__init__() ValidateString(link, 'link', max_len=_MAX_LINK_PROPERTY_LENGTH) scheme, domain, path, _, _, _ = urllib.parse.urlparse(link) if (not scheme or (scheme != 'file' and not domain) or (scheme == 'file' and not path)): raise datastore_errors.BadValueError('Invalid URL: %s' % link) def ToXml(self): return u'<link href=%s />' % saxutils.quoteattr(self) class Email(six.text_type): """An RFC2822 email address. Makes no attempt at validation; apart from checking MX records, email address validation is a rathole. This is the gd:email element. In XML output, the email address is provided as the address attribute. See: https://developers.google.com/gdata/docs/1.0/elements#gdEmail Raises BadValueError if email is not a valid email address. """ def __init__(self, email): super(Email, self).__init__() ValidateString(email, 'email') def ToXml(self): return u'<gd:email address=%s />' % saxutils.quoteattr(self) @cmp_compat.total_ordering_from_cmp class GeoPt(object): """A geographical point, specified by floating-point latitude and longitude coordinates. Often used to integrate with mapping sites like Google Maps. May also be used as ICBM coordinates. This is the georss:point element. In XML output, the coordinates are provided as the lat and lon attributes. See: http://georss.org/ Serializes to '<lat>,<lon>'. Raises BadValueError if it's passed an invalid serialized string, or if lat and lon are not valid floating points in the ranges [-90, 90] and [-180, 180], respectively. """ lat = None lon = None def __init__(self, lat, lon=None): if lon is None: try: split = lat.split(',') lat, lon = split except (AttributeError, ValueError): raise datastore_errors.BadValueError( 'Expected a "lat,long" formatted string; received %s (a %s).' % (lat, typename(lat))) try: lat = float(lat) lon = float(lon) if abs(lat) > 90: raise datastore_errors.BadValueError( 'Latitude must be between -90 and 90; received %f' % lat) if abs(lon) > 180: raise datastore_errors.BadValueError( 'Longitude must be between -180 and 180; received %f' % lon) except (TypeError, ValueError): raise datastore_errors.BadValueError( 'Expected floats for lat and long; received %s (a %s) and %s (a %s).' % (lat, typename(lat), lon, typename(lon))) self.lat = lat self.lon = lon def __cmp__(self, other): """Returns negative, zero, or positive when comparing two GeoPts.""" if not isinstance(other, GeoPt): try: other = GeoPt(other) except datastore_errors.BadValueError: return NotImplemented lat_cmp = cmp_compat.cmp(self.lat, other.lat) if lat_cmp != 0: return lat_cmp else: return cmp_compat.cmp(self.lon, other.lon) def __hash__(self): """Returns an integer hash of this point. Implements Python's hash protocol so that GeoPts may be used in sets and as dictionary keys. Returns: int """ return hash((self.lat, self.lon)) def __repr__(self): """Returns an eval()able string representation of this GeoPt. The returned string is of the form 'datastore_types.GeoPt([lat], [lon])'. Returns: string """ return 'datastore_types.GeoPt(%r, %r)' % (self.lat, self.lon) def __unicode__(self): return u'%s,%s' % (six.text_type(self.lat), six.text_type(self.lon)) __str__ = __unicode__ def ToXml(self): return u'<georss:point>%s %s</georss:point>' % (six.text_type( self.lat), six.text_type(self.lon)) @cmp_compat.total_ordering_from_cmp class IM(object): """An instant messaging handle. Includes both an address and its protocol. The protocol value is either a standard IM scheme or a URL identifying the IM network for the protocol. Possible values include: Value Description sip SIP/SIMPLE unknown Unknown or unspecified xmpp XMPP/Jabber http://aim.com/ AIM http://icq.com/ ICQ http://talk.google.com/ Google Talk http://messenger.msn.com/ MSN Messenger http://messenger.yahoo.com/ Yahoo Messenger http://sametime.com/ Lotus Sametime http://gadu-gadu.pl/ Gadu-Gadu This is the gd:im element. In XML output, the address and protocol are provided as the address and protocol attributes, respectively. See: https://developers.google.com/gdata/docs/1.0/elements#gdIm Serializes to '<protocol> <address>'. Raises BadValueError if tag is not a standard IM scheme or a URL. """ PROTOCOLS = [ 'sip', 'unknown', 'xmpp' ] protocol = None address = None def __init__(self, protocol, address=None): if address is None: try: split = protocol.split(' ', 1) protocol, address = split except (AttributeError, ValueError): raise datastore_errors.BadValueError( 'Expected string of format "protocol address"; received %s' % (protocol,)) ValidateString(address, 'address') if protocol not in self.PROTOCOLS: Link(protocol) self.address = address self.protocol = protocol def __cmp__(self, other): """Returns negative, zero, or positive when comparing two IMs.""" if not isinstance(other, IM): try: other = IM(other) except datastore_errors.BadValueError: return NotImplemented return cmp_compat.cmp((self.address, self.protocol), (other.address, other.protocol)) def __repr__(self): """Returns an eval()able string representation of this IM. The returned string is of the form: datastore_types.IM('address', 'protocol') Returns: string """ return 'datastore_types.IM(%r, %r)' % (self.protocol, self.address) def __unicode__(self): return u'%s %s' % (self.protocol, self.address) __str__ = __unicode__ def ToXml(self): return (u'<gd:im protocol=%s address=%s />' % (saxutils.quoteattr(self.protocol), saxutils.quoteattr(self.address))) def __len__(self): return len(six.text_type(self)) class PhoneNumber(six.text_type): """A human-readable phone number or address. No validation is performed. Phone numbers have many different formats - local, long distance, domestic, international, internal extension, TTY, VOIP, SMS, and alternative networks like Skype, XFire and Roger Wilco. They all have their own numbering and addressing formats. This is the gd:phoneNumber element. In XML output, the phone number is provided as the text of the element. See: https://developers.google.com/gdata/docs/1.0/elements#gdPhoneNumber Raises BadValueError if phone is not a string or subtype. """ def __init__(self, phone): super(PhoneNumber, self).__init__() ValidateString(phone, 'phone') def ToXml(self): return u'<gd:phoneNumber>%s</gd:phoneNumber>' % saxutils.escape(self) class PostalAddress(six.text_type): """A human-readable mailing address. Again, mailing address formats vary widely, so no validation is performed. This is the gd:postalAddress element. In XML output, the address is provided as the text of the element. See: https://developers.google.com/gdata/docs/1.0/elements#gdPostalAddress Raises BadValueError if address is not a string or subtype. """ def __init__(self, address): super(PostalAddress, self).__init__() ValidateString(address, 'address') def ToXml(self): return u'<gd:postalAddress>%s</gd:postalAddress>' % saxutils.escape(self) class Rating(_PREFERRED_NUM_TYPE): """A user-provided integer rating for a piece of content. Normalized to a 0-100 scale. This is the gd:rating element. In XML output, the address is provided as the text of the element. See: https://developers.google.com/gdata/docs/1.0/elements#gdRating Serializes to the decimal string representation of the rating. Raises BadValueError if the rating is not an integer in the range [0, 100]. """ MIN = 0 MAX = 100 def __init__(self, rating): super(Rating, self).__init__() if isinstance(rating, float) or isinstance(rating, complex): raise datastore_errors.BadValueError( 'Expected int or long; received %s (a %s).' % (rating, typename(rating))) try: if (_PREFERRED_NUM_TYPE(rating) < Rating.MIN or _PREFERRED_NUM_TYPE(rating) > Rating.MAX): raise datastore_errors.BadValueError() except ValueError: raise datastore_errors.BadValueError( 'Expected int or long; received %s (a %s).' % (rating, typename(rating))) def ToXml(self): return (u'<gd:rating value="%d" min="%d" max="%d" />' % (self, Rating.MIN, Rating.MAX)) class Text(six.text_type): """A long string type. Strings of any length can be stored in the datastore using this type. It behaves identically to the Python unicode type, except for the constructor, which only accepts str and unicode arguments. """ def __new__(cls, arg=None, encoding=None): """Constructor. We only accept unicode and str instances, the latter with encoding. Args: arg: optional unicode or str instance; default u'' encoding: optional encoding; disallowed when isinstance(arg, unicode), defaults to 'ascii' when isinstance(arg, str); """ if arg is None: arg = u'' if isinstance(arg, six.text_type): if encoding is not None: raise TypeError('Text() with a unicode argument ' 'should not specify an encoding') return super(Text, cls).__new__(cls, arg) if isinstance(arg, bytes): if encoding is None: encoding = 'ascii' return super(Text, cls).__new__(cls, arg, encoding) raise TypeError('Text() argument should be str or unicode, not %s' % type(arg).__name__) class _BaseByteType(bytes): """A base class for datastore types that are encoded as bytes. This behaves identically to the Python bytes type, except for the constructor, which only accepts bytes arguments. """ def __new__(cls, arg=None): """Constructor. We only accept bytes instances. Args: arg: optional bytes instance (default b'') """ if arg is None: arg = b'' if isinstance(arg, bytes): return super(_BaseByteType, cls).__new__(cls, arg) raise TypeError('%s() argument should be bytes instance, not %s' % (cls.__name__, type(arg).__name__)) def ToXml(self): """Output bytes as XML. Returns: Base64 encoded version of itself for safe insertion in to an XML document. """ encoded = base64.urlsafe_b64encode(self).decode('utf-8') return saxutils.escape(encoded) if six.PY3: def __str__(self): return self.decode('utf-8') class Blob(_BaseByteType): """A blob type, appropriate for storing binary data of any length. This behaves identically to the Python bytes type, except for the constructor, which only accepts bytes arguments. """ def __new__(cls, *args, **kwargs): self = super(Blob, cls).__new__(cls, *args, **kwargs) self._meaning_uri = None return self @property def meaning_uri(self): return self._meaning_uri @meaning_uri.setter def meaning_uri(self, value): self._meaning_uri = value class EmbeddedEntity(_BaseByteType): """A proto encoded EntityProto. This behaves identically to Blob, except for the constructor, which accepts a bytes or EntityProto argument. Can be decoded using datastore.Entity.FromProto(), db.model_from_protobuf() or ndb.LocalStructuredProperty. """ def __new__(cls, arg=None): """Constructor. Args: arg: optional str or EntityProto instance (default '') """ if isinstance(arg, entity_pb2.EntityProto): arg = arg.SerializePartialToString() return super(EmbeddedEntity, cls).__new__(cls, arg) class ByteString(_BaseByteType): """A byte-string type, appropriate for storing short amounts of indexed data. This behaves identically to Blob, except it's used only for short, indexed byte strings. """ pass @cmp_compat.total_ordering_from_cmp class BlobKey(object): """Key used to identify a blob in Blobstore. This object wraps a string that gets used internally by the Blobstore API to identify application blobs. The BlobKey corresponds to the entity name of the underlying BlobReference entity. This class is exposed in the API in both google.appengine.ext.db and google.appengine.ext.blobstore. """ def __init__(self, blob_key): """Constructor. Used to convert a string to a BlobKey. Normally used internally by Blobstore API. Args: blob_key: Key name of BlobReference that this key belongs to. """ ValidateString(blob_key, 'blob-key', empty_ok=True) self.__blob_key = blob_key def __str__(self): """Convert to string.""" return six.ensure_str(self.__blob_key) def __repr__(self): """Returns an eval()able string representation of this key. Returns a Python string of the form 'datastore_types.BlobKey(...)' that can be used to recreate this key. Returns: string """ return 'datastore_types.%s(%r)' % (type(self).__name__, self.__blob_key) def __cmp__(self, other): if type(other) is type(self): return cmp_compat.cmp(str(self), str(other)) elif isinstance(other, six.string_types): return cmp_compat.cmp(self.__blob_key, other) else: return NotImplemented def __hash__(self): return hash(self.__blob_key) def ToXml(self): return str(self) _PROPERTY_MEANINGS = { Blob: entity_pb2.Property.BLOB, EmbeddedEntity: entity_pb2.Property.ENTITY_PROTO, ByteString: entity_pb2.Property.BYTESTRING, Text: entity_pb2.Property.TEXT, datetime.datetime: entity_pb2.Property.GD_WHEN, datetime.date: entity_pb2.Property.GD_WHEN, datetime.time: entity_pb2.Property.GD_WHEN, _OverflowDateTime: entity_pb2.Property.GD_WHEN, Category: entity_pb2.Property.ATOM_CATEGORY, Link: entity_pb2.Property.ATOM_LINK, Email: entity_pb2.Property.GD_EMAIL, GeoPt: entity_pb2.Property.GEORSS_POINT, IM: entity_pb2.Property.GD_IM, PhoneNumber: entity_pb2.Property.GD_PHONENUMBER, PostalAddress: entity_pb2.Property.GD_POSTALADDRESS, Rating: entity_pb2.Property.GD_RATING, BlobKey: entity_pb2.Property.BLOBKEY, } _PROPERTY_TYPES = frozenset([ Blob, EmbeddedEntity, ByteString, bool, Category, datetime.datetime, _OverflowDateTime, Email, float, GeoPt, IM, int, Key, Link, _PREFERRED_NUM_TYPE, PhoneNumber, PostalAddress, Rating, str, Text, type(None), six.text_type, users.User, BlobKey, bytes, ]) _RAW_PROPERTY_TYPES = (Blob, Text, EmbeddedEntity) _RAW_PROPERTY_MEANINGS = (entity_pb2.Property.BLOB, entity_pb2.Property.TEXT, entity_pb2.Property.ENTITY_PROTO) def ValidatePropertyInteger(name, value): """Raises an exception if the supplied integer is invalid. Args: name: Name of the property this is for. value: Integer value. Raises: OverflowError if the value does not fit within a signed int64. """ if not (-0x8000000000000000 <= value <= 0x7fffffffffffffff): raise OverflowError('%d is out of bounds for int64' % value) def ValidateStringLength(name, value, max_len): """Raises an exception if the supplied string is too long. Args: name: Name of the property this is for. value: String value. max_len: Maximum length the string may be. Raises: OverflowError if the value is larger than the maximum length. """ if isinstance(value, six.text_type): value = value.encode('utf-8') if len(value) > max_len: raise datastore_errors.BadValueError( 'Property %s is %d bytes long; it must be %d or less. ' 'Consider Text instead, which can store strings of any length.' % (name, len(value), max_len)) def ValidatePropertyString(name, value): """Validates the length of an indexed string property. Args: name: Name of the property this is for. value: String value. """ ValidateStringLength(name, value, max_len=_MAX_STRING_LENGTH) def ValidatePropertyLink(name, value): """Validates the length of an indexed Link property. Args: name: Name of the property this is for. value: String value. """ ValidateStringLength(name, value, max_len=_MAX_LINK_PROPERTY_LENGTH) def ValidatePropertyNothing(name, value): """No-op validation function. Args: name: Name of the property this is for. value: Not used. """ pass def ValidatePropertyKey(name, value): """Raises an exception if the supplied datastore.Key instance is invalid. Args: name: Name of the property this is for. value: A datastore.Key instance. Raises: datastore_errors.BadValueError if the value is invalid. """ if not value.has_id_or_name(): raise datastore_errors.BadValueError( 'Incomplete key found for reference property %s.' % name) _VALIDATE_PROPERTY_VALUES = { Blob: ValidatePropertyNothing, EmbeddedEntity: ValidatePropertyNothing, ByteString: ValidatePropertyNothing, bool: ValidatePropertyNothing, Category: ValidatePropertyNothing, datetime.datetime: ValidatePropertyNothing, _OverflowDateTime: ValidatePropertyInteger, Email: ValidatePropertyNothing, float: ValidatePropertyNothing, GeoPt: ValidatePropertyNothing, IM: ValidatePropertyNothing, int: ValidatePropertyInteger, Key: ValidatePropertyKey, Link: ValidatePropertyNothing, _PREFERRED_NUM_TYPE: ValidatePropertyInteger, PhoneNumber: ValidatePropertyNothing, PostalAddress: ValidatePropertyNothing, Rating: ValidatePropertyInteger, str: ValidatePropertyNothing, Text: ValidatePropertyNothing, type(None): ValidatePropertyNothing, six.text_type: ValidatePropertyNothing, bytes: ValidatePropertyNothing, users.User: ValidatePropertyNothing, BlobKey: ValidatePropertyNothing, } _PROPERTY_TYPE_TO_INDEX_VALUE_TYPE = { six.text_type: bytes, Blob: bytes, EmbeddedEntity: bytes, ByteString: bytes, bool: bool, Category: bytes, datetime.datetime: _PREFERRED_NUM_TYPE, datetime.date: _PREFERRED_NUM_TYPE, datetime.time: _PREFERRED_NUM_TYPE, _OverflowDateTime: _PREFERRED_NUM_TYPE, Email: six.binary_type, float: float, GeoPt: GeoPt, IM: six.binary_type, int: _PREFERRED_NUM_TYPE, Key: Key, Link: six.binary_type, _PREFERRED_NUM_TYPE: _PREFERRED_NUM_TYPE, PhoneNumber: six.binary_type, PostalAddress: six.binary_type, Rating: _PREFERRED_NUM_TYPE, bytes: bytes, Text: bytes, type(None): type(None), users.User: users.User, BlobKey: bytes, } if six.PY2: _PROPERTY_TYPE_TO_INDEX_VALUE_TYPE[basestring] = bytes assert set(_VALIDATE_PROPERTY_VALUES.keys()) == _PROPERTY_TYPES def ValidateProperty(name, values, read_only=False): """Helper function for validating property values. Args: name: Name of the property this is for. value: Value for the property as a Python native type. read_only: deprecated Raises: BadPropertyError if the property name is invalid. BadValueError if the property did not validate correctly or the value was an empty list. Other exception types (like OverflowError) if the property value does not meet type-specific criteria. """ ValidateString(name, 'property name', datastore_errors.BadPropertyError) values_type = type(values) if values_type is tuple: raise datastore_errors.BadValueError( 'May not use tuple property value; property %s is %s.' % (name, repr(values))) if values_type is not list: values = [values] try: for v in values: prop_validator = _VALIDATE_PROPERTY_VALUES.get(v.__class__) if prop_validator is None: raise datastore_errors.BadValueError( 'Unsupported type for property %s: %s' % (name, v.__class__)) prop_validator(name, v) except (KeyError, ValueError, TypeError, IndexError, AttributeError) as msg: raise datastore_errors.BadValueError( 'Error type checking values for property %s: %s' % (name, msg)) ValidateReadProperty = ValidateProperty def PackBlob(name, value, pbvalue): """Packs a Blob property into a entity_pb2.PropertyValue. Args: name: The name of the property as a string. value: A Blob instance. pbvalue: The entity_pbs.PropertyValue to pack this value into. """ pbvalue.stringValue = value def PackString(name, value, pbvalue): """Packs a string-typed property into a entity_pb2.PropertyValue. Args: name: The name of the property as a string. value: A string, unicode, or string-like value instance. pbvalue: The entity_pb2.PropertyValue to pack this value into. """ if isinstance(value, bytes): value.decode('ascii') pbvalue.stringValue = value else: pbvalue.stringValue = six.text_type(value).encode('utf-8') def PackDatetime(name, value, pbvalue): """Packs a datetime-typed property into a entity_pb2.PropertyValue. Args: name: The name of the property as a string. value: A datetime.datetime instance. pbvalue: The entity_pb2.PropertyValue to pack this value into. """ pbvalue.int64Value = DatetimeToTimestamp(value) def DatetimeToTimestamp(value): """Converts a datetime.datetime to microseconds since the epoch, as a float. Args: value: datetime.datetime Returns: value as a long """ if value.tzinfo: value = value.astimezone(UTC) return _PREFERRED_NUM_TYPE( calendar.timegm(value.timetuple()) * 1000000) + value.microsecond def PackGeoPt(name, value, pbvalue): """Packs a GeoPt property into a entity_pb2.PropertyValue. Args: name: The name of the property as a string. value: A GeoPt instance. pbvalue: The entity_pb2.PropertyValue to pack this value into. """ pbvalue.pointvalue.x = value.lat pbvalue.pointvalue.y = value.lon def PackUser(name, value, pbvalue): """Packs a User property into a entity_pb2.PropertyValue. Args: name: The name of the property as a string. value: A users.User instance. pbvalue: The entity_pb2.PropertyValue to pack this value into. """ pbvalue.uservalue.email = value.email().encode('utf-8') pbvalue.uservalue.auth_domain = value.auth_domain().encode('utf-8') pbvalue.uservalue.gaiaid = 0 if value.user_id() is not None: pbvalue.uservalue.obfuscated_gaiaid = value.user_id().encode('utf-8') if value.federated_identity() is not None: pbvalue.uservalue.federated_identity = value.federated_identity().encode( 'utf-8') if value.federated_provider() is not None: pbvalue.uservalue.federated_provider = value.federated_provider().encode( 'utf-8') def PackKey(name, value, pbvalue): """Packs a reference property into a entity_pb2.PropertyValue. Args: name: The name of the property as a string. value: A Key instance. pbvalue: The entity_pb2.PropertyValue to pack this value into. """ ref = value._Key__reference pbvalue.referencevalue.app = ref.app SetNamespace(pbvalue.referencevalue, ref.name_space) for elem in ref.path.element: elementCopy = pbvalue.referencevalue.pathelement.add() datastore_pbs.copy_path_element(elem, elementCopy) def PackBool(name, value, pbvalue): """Packs a boolean property into a entity_pb2.PropertyValue. Args: name: The name of the property as a string. value: A boolean instance. pbvalue: The entity_pb2.PropertyValue to pack this value into. """ pbvalue.booleanValue = value def PackInteger(name, value, pbvalue): """Packs an integer property into a entity_pb2.PropertyValue. Args: name: The name of the property as a string. value: An int or long instance. pbvalue: The entity_pb2.PropertyValue to pack this value into. """ pbvalue.int64Value = value def PackFloat(name, value, pbvalue): """Packs a float property into a entity_pb2.PropertyValue. Args: name: The name of the property as a string. value: A float instance. pbvalue: The entity_pb2.PropertyValue to pack this value into. """ pbvalue.doubleValue = value _PACK_PROPERTY_VALUES = { Blob: PackBlob, EmbeddedEntity: PackBlob, ByteString: PackBlob, bool: PackBool, Category: PackString, datetime.datetime: PackDatetime, _OverflowDateTime: PackInteger, Email: PackString, float: PackFloat, GeoPt: PackGeoPt, IM: PackString, int: PackInteger, Key: PackKey, Link: PackString, _PREFERRED_NUM_TYPE: PackInteger, PhoneNumber: PackString, PostalAddress: PackString, Rating: PackInteger, str: PackString, Text: PackString, type(None): lambda name, value, pbvalue: pbvalue.ClearField('stringValue'), six.text_type: PackString, users.User: PackUser, BlobKey: PackString, bytes: PackString, } assert set(_PACK_PROPERTY_VALUES.keys()) == _PROPERTY_TYPES def ToPropertyPb(name, values): """Creates type-specific entity_pb2.PropertyValues. Determines the type and meaning of the PropertyValue based on the Python type of the input value(s). NOTE: This function does not validate anything! Args: name: string or unicode; the property name values: The values for this property, either a single one or a list of them. All values must be a supported type. Lists of values must all be of the same type. Returns: A list of entity_pb2.Property instances. """ encoded_name = six.ensure_str(name) values_type = type(values) if values_type is list and len(values) == 0: pb = entity_pb2.Property() pb.meaning = entity_pb2.Property.EMPTY_LIST pb.name = encoded_name pb.multiple = False pb.value.ClearField('stringValue') return pb elif values_type is list: multiple = True else: multiple = False values = [values] pbs = [] for v in values: pb = entity_pb2.Property() pb.name = encoded_name pb.multiple = multiple meaning = _PROPERTY_MEANINGS.get(v.__class__) if meaning is not None: pb.meaning = meaning if hasattr(v, 'meaning_uri') and v.meaning_uri: pb.meaning_uri = v.meaning_uri pack_prop = _PACK_PROPERTY_VALUES[v.__class__] pack_prop(name, v, pb.value) pbs.append(pb) if multiple: return pbs else: return pbs[0] def FromReferenceProperty(value): """Converts a reference PropertyValue to a Key. Args: value: entity_pb2.PropertyValue Returns: Key Raises: BadValueError if the value is not a PropertyValue. """ assert isinstance(value, entity_pb2.PropertyValue) assert value.HasField('referencevalue') ref = value.referencevalue key = Key() key_ref = key._Key__reference key_ref.app = ref.app SetNamespace(key_ref, ref.name_space) for pathelem in ref.pathelement: element = key_ref.path.element.add() datastore_pbs.copy_path_element(pathelem, element) return key _PROPERTY_CONVERSIONS = { entity_pb2.Property.GD_WHEN: _When, entity_pb2.Property.ATOM_CATEGORY: Category, entity_pb2.Property.ATOM_LINK: Link, entity_pb2.Property.GD_EMAIL: Email, entity_pb2.Property.GD_IM: IM, entity_pb2.Property.GD_PHONENUMBER: PhoneNumber, entity_pb2.Property.GD_POSTALADDRESS: PostalAddress, entity_pb2.Property.GD_RATING: Rating, entity_pb2.Property.BLOB: Blob, entity_pb2.Property.ENTITY_PROTO: EmbeddedEntity, entity_pb2.Property.BYTESTRING: ByteString, entity_pb2.Property.TEXT: Text, entity_pb2.Property.BLOBKEY: BlobKey, entity_pb2.Property.EMPTY_LIST: _EmptyList, } _NON_UTF8_MEANINGS = frozenset( (entity_pb2.Property.BLOB, entity_pb2.Property.ENTITY_PROTO, entity_pb2.Property.BYTESTRING, entity_pb2.Property.INDEX_VALUE)) def FromPropertyPb(pb): """Converts a property PB to a python value. Args: pb: entity_pb2.Property Returns: # return type is determined by the type of the argument string, int, bool, double, users.User, or one of the atom or gd types """ pbval = pb.value meaning = pb.meaning if pbval.HasField('stringValue'): value = pbval.stringValue if not pb.HasField('meaning') or meaning not in _NON_UTF8_MEANINGS: value = value.decode('utf-8') elif pbval.HasField('int64Value'): value = _PREFERRED_NUM_TYPE(pbval.int64Value) elif pbval.HasField('booleanValue'): value = bool(pbval.booleanValue) elif pbval.HasField('doubleValue'): value = pbval.doubleValue elif pbval.HasField('referencevalue'): value = FromReferenceProperty(pbval) elif pbval.HasField('pointvalue'): value = GeoPt(pbval.pointvalue.x, pbval.pointvalue.y) elif pbval.HasField('uservalue'): email = pbval.uservalue.email auth_domain = pbval.uservalue.auth_domain obfuscated_gaiaid = pbval.uservalue.obfuscated_gaiaid federated_identity = None if pbval.uservalue.HasField('federated_identity'): federated_identity = pbval.uservalue.federated_identity value = users.User(email=email, _auth_domain=auth_domain, _user_id=obfuscated_gaiaid, federated_identity=federated_identity, _strict_mode=False) else: value = None try: if pb.HasField('meaning') and meaning in _PROPERTY_CONVERSIONS: conversion = _PROPERTY_CONVERSIONS[meaning] value = conversion(value) if (meaning == entity_pb2.Property.BLOB and pb.HasField('meaning_uri')): value.meaning_uri = pb.meaning_uri except (KeyError, ValueError, IndexError, TypeError, AttributeError) as msg: raise datastore_errors.BadValueError( 'Error converting pb: %s\nException was: %s' % (pb, msg)) return value def RestoreFromIndexValue(index_value, data_type): """Restores a index value to the correct datastore type. Projection queries return property values directly from a datastore index. These values are the native datastore values, one of str, bool, long, float, GeoPt, Key or User. This function restores the original value when the original type is known. This function returns the value type returned when decoding a normal entity, not necessarily of type data_type. For example, data_type=int returns a long instance. Args: index_value: The value returned by FromPropertyPb for the projected property. data_type: The type of the value originally given to ToPropertyPb Returns: The restored property value. Raises: datastore_errors.BadValueError if the value cannot be restored. """ raw_type = _PROPERTY_TYPE_TO_INDEX_VALUE_TYPE.get(data_type) if raw_type is None: raise datastore_errors.BadValueError( 'Unsupported data type (%r)' % data_type) if index_value is None: return index_value if not isinstance(index_value, raw_type): raise datastore_errors.BadValueError( 'Unsupported conversion. Expected %r got %r' % (type(index_value), raw_type)) meaning = _PROPERTY_MEANINGS.get(data_type) if isinstance(index_value, bytes) and meaning not in _NON_UTF8_MEANINGS: index_value = six.text_type(index_value, 'utf-8') conv = _PROPERTY_CONVERSIONS.get(meaning) if not conv: return index_value try: value = conv(index_value) except (KeyError, ValueError, IndexError, TypeError, AttributeError) as msg: raise datastore_errors.BadValueError( 'Error converting value: %r\nException was: %s' % (index_value, msg)) return value def PropertyTypeName(value): """Returns the name of the type of the given property value, as a string. Raises BadValueError if the value is not a valid property type. Args: value: any valid property value Returns: string """ if value.__class__ in _PROPERTY_MEANINGS: meaning = _PROPERTY_MEANINGS[value.__class__] name = entity_pb2.Property.Meaning.DESCRIPTOR.values_by_number[meaning].name return name.lower().replace('_', ':') elif isinstance(value, six.string_types): return 'string' elif isinstance(value, users.User): return 'user' elif isinstance(value, bool): return 'bool' elif isinstance(value, _PREFERRED_NUM_TYPE): return 'int' elif value is None: return 'null' else: return typename(value).lower() _PROPERTY_TYPE_STRINGS = { 'string': six.text_type, 'bool': bool, 'int': _PREFERRED_NUM_TYPE, 'null': type(None), 'float': float, 'key': Key, 'blob': Blob, 'entity:proto': EmbeddedEntity, 'bytestring': ByteString, 'text': Text, 'user': users.User, 'atom:category': Category, 'atom:link': Link, 'gd:email': Email, 'gd:when': datetime.datetime, 'georss:point': GeoPt, 'gd:im': IM, 'gd:phonenumber': PhoneNumber, 'gd:postaladdress': PostalAddress, 'gd:rating': Rating, 'blobkey': BlobKey, } def FromPropertyTypeName(type_name): """Returns the python type given a type name. Args: type_name: A string representation of a datastore type name. Returns: A python type. """ return _PROPERTY_TYPE_STRINGS[type_name] def PropertyValueFromString(type_, value_string, _auth_domain=None): """Returns an instance of a property value given a type and string value. The reverse of this method is just str() and type() of the python value. Note that this does *not* support non-UTC offsets in ISO 8601-formatted datetime strings, e.g. the -08:00 suffix in '2002-12-25 00:00:00-08:00'. It only supports -00:00 and +00:00 suffixes, which are UTC. Args: type_: A python class. value_string: A string representation of the value of the property. Returns: An instance of 'type'. Raises: ValueError if type_ is datetime and value_string has a timezone offset. """ if type_ == datetime.datetime: value_string = value_string.strip() if value_string[-6] in ('+', '-'): if value_string[-5:] == '00:00': value_string = value_string[:-6] else: raise ValueError('Non-UTC offsets in datetimes are not supported.') split = value_string.split('.') iso_date = split[0] microseconds = 0 if len(split) > 1: microseconds = int(split[1]) time_struct = time.strptime(iso_date, '%Y-%m-%d %H:%M:%S')[0:6] value = datetime.datetime(*(time_struct + (microseconds,))) return value elif type_ == Rating: return Rating(int(value_string)) elif type_ == bool: return value_string == 'True' elif type_ == users.User: return users.User(value_string, _auth_domain) elif type_ == type(None): return None elif type_ in (Blob, EmbeddedEntity, ByteString): return type_(value_string.encode('utf-8')) return type_(value_string) def ReferenceToKeyValue(key, id_resolver=None): """Converts a key into a comparable hashable "key" value. Args: key: The entity_pb2.Reference or googledatastore.Key from which to construct the key value. id_resolver: An optional datastore_pbs.IdResolver. Only necessary for googledatastore.Key values. Returns: A comparable and hashable representation of the given key that is compatible with one derived from a key property value. """ if (datastore_pbs._CLOUD_DATASTORE_ENABLED and isinstance(key, googledatastore.Key)): v1_key = key key = entity_pb2.Reference() datastore_pbs.get_entity_converter(id_resolver).v1_to_v3_reference(v1_key, key) elif isinstance(key, entity_v4_pb2.Key): v4_key = key key = entity_pb2.Reference() datastore_pbs.get_entity_converter().v4_to_v3_reference(v4_key, key) if isinstance(key, entity_pb2.Reference): element_list = key.path.element elif isinstance(key, entity_pb2.PropertyValue.ReferenceValue): element_list = key.pathelement else: raise datastore_errors.BadArgumentError( 'key arg expected to be entity_pb2.Reference or googledatastore.Key (%r)' % (key,)) result = [ entity_pb2.PropertyValue.REFERENCEVALUE_FIELD_NUMBER, key.app, key.name_space ] for element in element_list: result.append(element.type) if element.HasField('name'): result.append(element.name) else: result.append(element.id) return tuple(result) def _isFloatNegative(value, encoded): if value == 0: return encoded[0] == 128 return value < 0 def _encodeDoubleSortably(value): """Encode a double into a sortable byte buffer.""" encoded = array.array('B') encoded.fromstring(struct.pack('>d', value)) if _isFloatNegative(value, encoded): encoded[0] ^= 0xFF encoded[1] ^= 0xFF encoded[2] ^= 0xFF encoded[3] ^= 0xFF encoded[4] ^= 0xFF encoded[5] ^= 0xFF encoded[6] ^= 0xFF encoded[7] ^= 0xFF else: encoded[0] ^= 0x80 return encoded def PropertyValueToKeyValue(prop_value): """Converts a entity_pb2.PropertyValue into a comparable hashable "key" value. The values produces by this function mimic the native ording of the datastore and uniquely identify the given PropertyValue. Args: prop_value: The entity_pb2.PropertyValue from which to construct the key value. Returns: A comparable and hashable representation of the given property value. """ if not isinstance(prop_value, entity_pb2.PropertyValue): raise datastore_errors.BadArgumentError( 'prop_value arg expected to be entity_pb2.PropertyValue (%r)' % (prop_value,)) if prop_value.HasField('stringValue'): return (entity_pb2.PropertyValue.STRINGVALUE_FIELD_NUMBER, prop_value.stringValue) if prop_value.HasField('int64Value'): return (entity_pb2.PropertyValue.INT64VALUE_FIELD_NUMBER, prop_value.int64Value) if prop_value.HasField('booleanValue'): return (entity_pb2.PropertyValue.BOOLEANVALUE_FIELD_NUMBER, prop_value.booleanValue) if prop_value.HasField('doubleValue'): return (entity_pb2.PropertyValue.DOUBLEVALUE_FIELD_NUMBER, tuple(sortable_pb_encoder.EncodeDouble(prop_value.doubleValue))) if prop_value.HasField('pointvalue'): return (entity_pb2.PropertyValue.POINTVALUE_FIELD_NUMBER, prop_value.pointvalue.x, prop_value.pointvalue.y) if prop_value.HasField('referencevalue'): return ReferenceToKeyValue(prop_value.referencevalue) if prop_value.HasField('uservalue'): result = [] uservalue = prop_value.uservalue if uservalue.HasField('email'): result.append((entity_pb2.PropertyValue.UserValue.EMAIL_FIELD_NUMBER, uservalue.email)) if uservalue.HasField('auth_domain'): result.append( (entity_pb2.PropertyValue.UserValue.AUTH_DOMAIN_FIELD_NUMBER, uservalue.auth_domain)) if uservalue.HasField('nickname'): result.append((entity_pb2.PropertyValue.UserValue.NICKNAME_FIELD_NUMBER, uservalue.nickname)) if uservalue.HasField('gaiaid'): result.append((entity_pb2.PropertyValue.UserValue.GAIAID_FIELD_NUMBER, uservalue.gaiaid)) if uservalue.HasField('obfuscated_gaiaid'): result.append( (entity_pb2.PropertyValue.UserValue.OBFUSCATED_GAIAID_FIELD_NUMBER, uservalue.obfuscated_gaiaid)) if uservalue.HasField('federated_identity'): result.append( (entity_pb2.PropertyValue.UserValue.FEDERATED_IDENTITY_FIELD_NUMBER, uservalue.federated_identity)) if uservalue.HasField('federated_provider'): result.append( (entity_pb2.PropertyValue.UserValue.FEDERATED_PROVIDER_FIELD_NUMBER, uservalue.federated_provider)) result.sort() return (entity_pb2.PropertyValue.USERVALUE_FIELD_NUMBER, tuple(result)) return () def GetPropertyValueTag(value_pb): """Returns the tag constant associated with the given entity_pb2.PropertyValue.""" if value_pb.HasField('booleanValue'): return entity_pb2.PropertyValue.BOOLEANVALUE_FIELD_NUMBER elif value_pb.HasField('doubleValue'): return entity_pb2.PropertyValue.DOUBLEVALUE_FIELD_NUMBER elif value_pb.HasField('int64Value'): return entity_pb2.PropertyValue.INT64VALUE_FIELD_NUMBER elif value_pb.HasField('pointvalue'): return entity_pb2.PropertyValue.POINTVALUE_FIELD_NUMBER elif value_pb.HasField('referencevalue'): return entity_pb2.PropertyValue.REFERENCEVALUE_FIELD_NUMBER elif value_pb.HasField('stringValue'): return entity_pb2.PropertyValue.STRINGVALUE_FIELD_NUMBER elif value_pb.HasField('uservalue'): return entity_pb2.PropertyValue.USERVALUE_FIELD_NUMBER else: return 0
py
b402ac62e6203d079bd61007391dd77cb62e2b0a
import django_filters from django_filters import DateFilter, CharFilter from .models import * class FoodFilter(django_filters.FilterSet): # start_date = DateFilter(field_name="date_created", lookup_expr='gte') # end_date = DateFilter(field_name="date_created", lookup_expr='lte') # note = CharFilter(field_name='note', lookup_expr='icontains') class Meta: model = Food fields = '__all__' #exclude = ['customer', 'date_created']
py
b402ad3415f8de9e1402997dc46f8ccf82f0e13c
#!/usr/bin/env python # # Copyright (C) 2017 Andrew Chow import util import sys from PyQt5.QtWidgets import QApplication, QWidget, QPushButton, QLineEdit, QMessageBox, QInputDialog, QGroupBox, QHBoxLayout, QVBoxLayout, QGridLayout, QLabel from PyQt5.QtGui import QIcon from PyQt5.QtCore import pyqtSlot, Qt class App(QWidget): def __init__(self): super().__init__() self.title = 'Bitcoin Payment Protocol Interface' self.left = 10 self.top = 10 self.width = 700 self.height = 500 self.initUI() def initUI(self): self.setWindowTitle(self.title) self.setGeometry(self.left, self.top, self.width, self.height) self.uri_box = QLineEdit(self) go_button = QPushButton('Go!', self) go_button.clicked.connect(self.handle_entered_uri) self.main_box = QGroupBox("Bitcoin Payment Protocol Interface") main_layout = QGridLayout() main_layout.addWidget(QLabel("Bitcoin URI:"), 0, 0) main_layout.addWidget(self.uri_box, 0, 1) main_layout.addWidget(go_button, 0, 2) self.payment_data_box = QGroupBox() main_layout.addWidget(self.payment_data_box, 1, 1) self.main_box.setLayout(main_layout) windowLayout = QVBoxLayout() windowLayout.addWidget(self.main_box) self.setLayout(windowLayout) self.show() def display_pr(self, pr): if pr.error: print(pr.error) exit() else: pr.verify() self.payment_data_box.setTitle("Payment Request Data") pr_data_layout = QGridLayout() pr_data_layout.addWidget(QLabel("Network:"), 0, 0) network_lbl = QLabel(pr.details.network) network_lbl.setTextInteractionFlags(Qt.TextSelectableByMouse) pr_data_layout.addWidget(network_lbl, 0, 1) pr_data_layout.addWidget(QLabel("Requestor:"), 1, 0) requestor_lbl = QLabel(pr.get_requestor()) requestor_lbl.setTextInteractionFlags(Qt.TextSelectableByMouse) pr_data_layout.addWidget(requestor_lbl, 1, 1) pr_data_layout.addWidget(QLabel("Memo:"), 2, 0) memo_lbl = QLabel(pr.get_memo()) memo_lbl.setTextInteractionFlags(Qt.TextSelectableByMouse) pr_data_layout.addWidget(memo_lbl, 2, 1) pr_data_layout.addWidget(QLabel("Expiration:"), 3, 0) expire_lbl = QLabel(util.format_time(pr.get_expiration_date())) expire_lbl.setTextInteractionFlags(Qt.TextSelectableByMouse) pr_data_layout.addWidget(expire_lbl, 3, 1) pr_data_layout.addWidget(QLabel("Creation Time:"), 4, 0) creation_lbl = QLabel(util.format_time(pr.details.time)) creation_lbl.setTextInteractionFlags(Qt.TextSelectableByMouse) pr_data_layout.addWidget(creation_lbl, 4, 1) pr_data_layout.addWidget(QLabel("Verification status:"), 5, 0) verification_lbl = QLabel(pr.get_verify_status()) verification_lbl.setTextInteractionFlags(Qt.TextSelectableByMouse) pr_data_layout.addWidget(verification_lbl, 5, 1) pr_data_layout.addWidget(QLabel("Merchant Data:"), 6, 0) merch_lbl = QLabel(str(pr.details.merchant_data)) merch_lbl.setTextInteractionFlags(Qt.TextSelectableByMouse) pr_data_layout.addWidget(merch_lbl, 6, 1) pr_data_layout.addWidget(QLabel("Outputs:"), 7, 0) i = 0 for out in pr.get_outputs(): type_lbl = QLabel() if out[0] == util.TYPE_ADDRESS: pr_data_layout.addWidget(QLabel(" Type:"), 8 + i, 0) type_lbl.setText("Address") pr_data_layout.addWidget(QLabel(" Address:"), 8 + i + 1, 0) elif out[0] == util.TYPE_PUBKEY: pr_data_layout.addWidget(QLabel(" Type:"), 8 + i, 0) type_lbl.setText("Public Key") pr_data_layout.addWidget(QLabel(" Public Key:"), 8 + i + 1, 0) elif out[0] == util.TYPE_SCRIPT: pr_data_layout.addWidget(QLabel(" Type:"), 8 + i, 0) type_lbl.setText("Script") pr_data_layout.addWidget(QLabel(" Script:"), 8 + i + 1, 0) else: pr_data_layout.addWidget(QLabel(" Type:"), 8 + i, 0) type_lbl.setText("Unknown") pr_data_layout.addWidget(QLabel(" Data:"), 8 + i + 1, 0) type_lbl.setTextInteractionFlags(Qt.TextSelectableByMouse) pr_data_layout.addWidget(type_lbl, 8 + i, 1) data_lbl = QLabel(out[1]) data_lbl.setTextInteractionFlags(Qt.TextSelectableByMouse) pr_data_layout.addWidget(data_lbl, 8 + i + 1, 1) amt_lbl = QLabel(util.format_satoshis(out[2]) + " BTC") amt_lbl.setTextInteractionFlags(Qt.TextSelectableByMouse) pr_data_layout.addWidget(QLabel(" Amount:"), 8 + i + 2, 0) pr_data_layout.addWidget(amt_lbl, 8 + i + 2, 1) i += 3 next_button = QPushButton("Next") next_button.clicked.connect(self.make_further_instructions(pr)) pr_data_layout.addWidget(next_button, 8 + i, 0) self.payment_data_box.setLayout(pr_data_layout) @pyqtSlot() def handle_entered_uri(self): uri = self.uri_box.text().strip() util.parse_URI(uri, self.display_pr) def make_further_instructions(self, pr): def further_instructions(): response = QMessageBox.information(self, "Next Step", "To continue, send the necessary amounts of Bitcoin to the addresses specified in the 'Outputs' field above. Once broadcast, press Yes to Continue or Cancel to quit.", QMessageBox.Cancel | QMessageBox.Yes, QMessageBox.Cancel) if response == QMessageBox.Cancel: sys.exit() elif response == QMessageBox.Yes: if pr.details.payment_url: raw_tx, okPressed1 = QInputDialog.getText(self, "Enter Raw Transaction","Enter the hex of the transaction that was just made:", QLineEdit.Normal, "") if okPressed1 and raw_tx != '': ref_addr, okPressed2 = QInputDialog.getText(self, "Enter Refund Address","Enter a refund address:", QLineEdit.Normal, "") if okPressed2 and ref_addr != '': try: result = pr.send_ack(raw_tx.strip(), ref_addr.strip()) if result[0]: QMessageBox.information(self, "Complete!", "Payment request successful: " + result[1] + "\n\nClick Ok to exit", QMessageBox.Ok, QMessageBox.Ok) sys.exit() else: QMessageBox.error(self, "Error!", "Payment request was not successful: " + result[1] + "\n\nClick Ok to exit", QMessageBox.Ok, QMessageBox.Ok) sys.exit() except: QMessageBox.error(self, "Error!", "There was an error parsing the raw transaction or address. Please restart and try again.\n\nClick Ok to exit", QMessageBox.Ok, QMessageBox.Ok) sys.exit() return further_instructions if __name__ == '__main__': app = QApplication(sys.argv) ex = App() sys.exit(app.exec_())
py
b402ae63c7e270ae78f59bbb0957a27d3c8f000f
# encoding: utf-8 from __future__ import unicode_literals import mimetypes import os import re import sys from tempfile import NamedTemporaryFile from unicodedata import normalize try: from urllib.parse import urlparse except ImportError: from urlparse import urlparse import requests from twitter import TwitterError import twitter if sys.version_info < (3,): range = xrange if sys.version_info > (3,): unicode = str CHAR_RANGES = [ range(0, 4351), range(8192, 8205), range(8208, 8223), range(8242, 8247)] TLDS = [ "ac", "ad", "ae", "af", "ag", "ai", "al", "am", "an", "ao", "aq", "ar", "as", "at", "au", "aw", "ax", "az", "ba", "bb", "bd", "be", "bf", "bg", "bh", "bi", "bj", "bl", "bm", "bn", "bo", "bq", "br", "bs", "bt", "bv", "bw", "by", "bz", "ca", "cc", "cd", "cf", "cg", "ch", "ci", "ck", "cl", "cm", "cn", "co", "cr", "cu", "cv", "cw", "cx", "cy", "cz", "de", "dj", "dk", "dm", "do", "dz", "ec", "ee", "eg", "eh", "er", "es", "et", "eu", "fi", "fj", "fk", "fm", "fo", "fr", "ga", "gb", "gd", "ge", "gf", "gg", "gh", "gi", "gl", "gm", "gn", "gp", "gq", "gr", "gs", "gt", "gu", "gw", "gy", "hk", "hm", "hn", "hr", "ht", "hu", "id", "ie", "il", "im", "in", "io", "iq", "ir", "is", "it", "je", "jm", "jo", "jp", "ke", "kg", "kh", "ki", "km", "kn", "kp", "kr", "kw", "ky", "kz", "la", "lb", "lc", "li", "lk", "lr", "ls", "lt", "lu", "lv", "ly", "ma", "mc", "md", "me", "mf", "mg", "mh", "mk", "ml", "mm", "mn", "mo", "mp", "mq", "mr", "ms", "mt", "mu", "mv", "mw", "mx", "my", "mz", "na", "nc", "ne", "nf", "ng", "ni", "nl", "no", "np", "nr", "nu", "nz", "om", "pa", "pe", "pf", "pg", "ph", "pk", "pl", "pm", "pn", "pr", "ps", "pt", "pw", "py", "qa", "re", "ro", "rs", "ru", "rw", "sa", "sb", "sc", "sd", "se", "sg", "sh", "si", "sj", "sk", "sl", "sm", "sn", "so", "sr", "ss", "st", "su", "sv", "sx", "sy", "sz", "tc", "td", "tf", "tg", "th", "tj", "tk", "tl", "tm", "tn", "to", "tp", "tr", "tt", "tv", "tw", "tz", "ua", "ug", "uk", "um", "us", "uy", "uz", "va", "vc", "ve", "vg", "vi", "vn", "vu", "wf", "ws", "ye", "yt", "za", "zm", "zw", "ελ", "бел", "мкд", "мон", "рф", "срб", "укр", "қаз", "հայ", "الاردن", "الجزائر", "السعودية", "المغرب", "امارات", "ایران", "بھارت", "تونس", "سودان", "سورية", "عراق", "عمان", "فلسطين", "قطر", "مصر", "مليسيا", "پاکستان", "भारत", "বাংলা", "ভারত", "ਭਾਰਤ", "ભારત", "இந்தியா", "இலங்கை", "சிங்கப்பூர்", "భారత్", "ලංකා", "ไทย", "გე", "中国", "中國", "台湾", "台灣", "新加坡", "澳門", "香港", "한국", "neric:", "abb", "abbott", "abogado", "academy", "accenture", "accountant", "accountants", "aco", "active", "actor", "ads", "adult", "aeg", "aero", "afl", "agency", "aig", "airforce", "airtel", "allfinanz", "alsace", "amsterdam", "android", "apartments", "app", "aquarelle", "archi", "army", "arpa", "asia", "associates", "attorney", "auction", "audio", "auto", "autos", "axa", "azure", "band", "bank", "bar", "barcelona", "barclaycard", "barclays", "bargains", "bauhaus", "bayern", "bbc", "bbva", "bcn", "beer", "bentley", "berlin", "best", "bet", "bharti", "bible", "bid", "bike", "bing", "bingo", "bio", "biz", "black", "blackfriday", "bloomberg", "blue", "bmw", "bnl", "bnpparibas", "boats", "bond", "boo", "boots", "boutique", "bradesco", "bridgestone", "broker", "brother", "brussels", "budapest", "build", "builders", "business", "buzz", "bzh", "cab", "cafe", "cal", "camera", "camp", "cancerresearch", "canon", "capetown", "capital", "caravan", "cards", "care", "career", "careers", "cars", "cartier", "casa", "cash", "casino", "cat", "catering", "cba", "cbn", "ceb", "center", "ceo", "cern", "cfa", "cfd", "chanel", "channel", "chat", "cheap", "chloe", "christmas", "chrome", "church", "cisco", "citic", "city", "claims", "cleaning", "click", "clinic", "clothing", "cloud", "club", "coach", "codes", "coffee", "college", "cologne", "com", "commbank", "community", "company", "computer", "condos", "construction", "consulting", "contractors", "cooking", "cool", "coop", "corsica", "country", "coupons", "courses", "credit", "creditcard", "cricket", "crown", "crs", "cruises", "cuisinella", "cymru", "cyou", "dabur", "dad", "dance", "date", "dating", "datsun", "day", "dclk", "deals", "degree", "delivery", "delta", "democrat", "dental", "dentist", "desi", "design", "dev", "diamonds", "diet", "digital", "direct", "directory", "discount", "dnp", "docs", "dog", "doha", "domains", "doosan", "download", "drive", "durban", "dvag", "earth", "eat", "edu", "education", "email", "emerck", "energy", "engineer", "engineering", "enterprises", "epson", "equipment", "erni", "esq", "estate", "eurovision", "eus", "events", "everbank", "exchange", "expert", "exposed", "express", "fage", "fail", "faith", "family", "fan", "fans", "farm", "fashion", "feedback", "film", "finance", "financial", "firmdale", "fish", "fishing", "fit", "fitness", "flights", "florist", "flowers", "flsmidth", "fly", "foo", "football", "forex", "forsale", "forum", "foundation", "frl", "frogans", "fund", "furniture", "futbol", "fyi", "gal", "gallery", "game", "garden", "gbiz", "gdn", "gent", "genting", "ggee", "gift", "gifts", "gives", "giving", "glass", "gle", "global", "globo", "gmail", "gmo", "gmx", "gold", "goldpoint", "golf", "goo", "goog", "google", "gop", "gov", "graphics", "gratis", "green", "gripe", "group", "guge", "guide", "guitars", "guru", "hamburg", "hangout", "haus", "healthcare", "help", "here", "hermes", "hiphop", "hitachi", "hiv", "hockey", "holdings", "holiday", "homedepot", "homes", "honda", "horse", "host", "hosting", "hoteles", "hotmail", "house", "how", "hsbc", "ibm", "icbc", "ice", "icu", "ifm", "iinet", "immo", "immobilien", "industries", "infiniti", "info", "ing", "ink", "institute", "insure", "int", "international", "investments", "ipiranga", "irish", "ist", "istanbul", "itau", "iwc", "java", "jcb", "jetzt", "jewelry", "jlc", "jll", "jobs", "joburg", "jprs", "juegos", "kaufen", "kddi", "kim", "kitchen", "kiwi", "koeln", "komatsu", "krd", "kred", "kyoto", "lacaixa", "lancaster", "land", "lasalle", "lat", "latrobe", "law", "lawyer", "lds", "lease", "leclerc", "legal", "lexus", "lgbt", "liaison", "lidl", "life", "lighting", "limited", "limo", "link", "live", "lixil", "loan", "loans", "lol", "london", "lotte", "lotto", "love", "ltda", "lupin", "luxe", "luxury", "madrid", "maif", "maison", "man", "management", "mango", "market", "marketing", "markets", "marriott", "mba", "media", "meet", "melbourne", "meme", "memorial", "men", "menu", "miami", "microsoft", "mil", "mini", "mma", "mobi", "moda", "moe", "mom", "monash", "money", "montblanc", "mormon", "mortgage", "moscow", "motorcycles", "mov", "movie", "movistar", "mtn", "mtpc", "museum", "nadex", "nagoya", "name", "navy", "nec", "net", "netbank", "network", "neustar", "new", "news", "nexus", "ngo", "nhk", "nico", "ninja", "nissan", "nokia", "nra", "nrw", "ntt", "nyc", "office", "okinawa", "omega", "one", "ong", "onl", "online", "ooo", "oracle", "orange", "org", "organic", "osaka", "otsuka", "ovh", "page", "panerai", "paris", "partners", "parts", "party", "pet", "pharmacy", "philips", "photo", "photography", "photos", "physio", "piaget", "pics", "pictet", "pictures", "pink", "pizza", "place", "play", "plumbing", "plus", "pohl", "poker", "porn", "post", "praxi", "press", "pro", "prod", "productions", "prof", "properties", "property", "pub", "qpon", "quebec", "racing", "realtor", "realty", "recipes", "red", "redstone", "rehab", "reise", "reisen", "reit", "ren", "rent", "rentals", "repair", "report", "republican", "rest", "restaurant", "review", "reviews", "rich", "ricoh", "rio", "rip", "rocks", "rodeo", "rsvp", "ruhr", "run", "ryukyu", "saarland", "sakura", "sale", "samsung", "sandvik", "sandvikcoromant", "sanofi", "sap", "sarl", "saxo", "sca", "scb", "schmidt", "scholarships", "school", "schule", "schwarz", "science", "scor", "scot", "seat", "seek", "sener", "services", "sew", "sex", "sexy", "shiksha", "shoes", "show", "shriram", "singles", "site", "ski", "sky", "skype", "sncf", "soccer", "social", "software", "sohu", "solar", "solutions", "sony", "soy", "space", "spiegel", "spreadbetting", "srl", "starhub", "statoil", "studio", "study", "style", "sucks", "supplies", "supply", "support", "surf", "surgery", "suzuki", "swatch", "swiss", "sydney", "systems", "taipei", "tatamotors", "tatar", "tattoo", "tax", "taxi", "team", "tech", "technology", "tel", "telefonica", "temasek", "tennis", "thd", "theater", "tickets", "tienda", "tips", "tires", "tirol", "today", "tokyo", "tools", "top", "toray", "toshiba", "tours", "town", "toyota", "toys", "trade", "trading", "training", "travel", "trust", "tui", "ubs", "university", "uno", "uol", "vacations", "vegas", "ventures", "vermögensberater", "vermögensberatung", "versicherung", "vet", "viajes", "video", "villas", "vin", "vision", "vista", "vistaprint", "vlaanderen", "vodka", "vote", "voting", "voto", "voyage", "wales", "walter", "wang", "watch", "webcam", "website", "wed", "wedding", "weir", "whoswho", "wien", "wiki", "williamhill", "win", "windows", "wine", "wme", "work", "works", "world", "wtc", "wtf", "xbox", "xerox", "xin", "xperia", "xxx", "xyz", "yachts", "yandex", "yodobashi", "yoga", "yokohama", "youtube", "zip", "zone", "zuerich", "дети", "ком", "москва", "онлайн", "орг", "рус", "сайт", "קום", "بازار", "شبكة", "كوم", "موقع", "कॉम", "नेट", "संगठन", "คอม", "みんな", "グーグル", "コム", "世界", "中信", "中文网", "企业", "佛山", "信息", "健康", "八卦", "公司", "公益", "商城", "商店", "商标", "在线", "大拿", "娱乐", "工行", "广东", "慈善", "我爱你", "手机", "政务", "政府", "新闻", "时尚", "机构", "淡马锡", "游戏", "点看", "移动", "组织机构", "网址", "网店", "网络", "谷歌", "集团", "飞利浦", "餐厅", "닷넷", "닷컴", "삼성", "onion"] URL_REGEXP = re.compile(( r'(' r'^(?!(https?://|www\.)?\.|ftps?://|([0-9]+\.){{1,3}}\d+)' # exclude urls that start with "." r'(?:https?://|www\.)*^(?!.*@)(?:[\w+-_]+[.])' # beginning of url r'(?:{0}\b' # all tlds r'(?:[:0-9]))' # port numbers & close off TLDs r'(?:[\w+\/]?[a-z0-9!\*\'\(\);:&=\+\$/%#\[\]\-_\.,~?])*' # path/query params r')').format(r'\b|'.join(TLDS)), re.U | re.I | re.X) def calc_expected_status_length(status, short_url_length=23): """ Calculates the length of a tweet, taking into account Twitter's replacement of URLs with https://t.co links. Args: status: text of the status message to be posted. short_url_length: the current published https://t.co links Returns: Expected length of the status message as an integer. """ status_length = 0 if isinstance(status, bytes): status = unicode(status) for word in re.split(r'\s', status): if is_url(word): status_length += short_url_length else: for character in word: if any([ord(normalize("NFC", character)) in char_range for char_range in CHAR_RANGES]): status_length += 1 else: status_length += 2 status_length += len(re.findall(r'\s', status)) return status_length def is_url(text): """ Checks to see if a bit of text is a URL. Args: text: text to check. Returns: Boolean of whether the text should be treated as a URL or not. """ return bool(re.findall(URL_REGEXP, text)) def http_to_file(http): data_file = NamedTemporaryFile() req = requests.get(http, stream=True) for chunk in req.iter_content(chunk_size=1024 * 1024): data_file.write(chunk) return data_file def parse_media_file(passed_media, async_upload=False): """ Parses a media file and attempts to return a file-like object and information about the media file. Args: passed_media: media file which to parse. async_upload: flag, for validation media file attributes. Returns: file-like object, the filename of the media file, the file size, and the type of media. """ img_formats = ['image/jpeg', 'image/png', 'image/bmp', 'image/webp'] long_img_formats = [ 'image/gif' ] video_formats = ['video/mp4', 'video/quicktime'] # If passed_media is a string, check if it points to a URL, otherwise, # it should point to local file. Create a reference to a file obj for # each case such that data_file ends up with a read() method. if not hasattr(passed_media, 'read'): if passed_media.startswith('http'): data_file = http_to_file(passed_media) filename = os.path.basename(urlparse(passed_media).path) else: data_file = open(os.path.realpath(passed_media), 'rb') filename = os.path.basename(passed_media) # Otherwise, if a file object was passed in the first place, # create the standard reference to media_file (i.e., rename it to fp). else: if passed_media.mode not in ['rb', 'rb+', 'w+b']: raise TwitterError('File mode must be "rb" or "rb+"') filename = os.path.basename(passed_media.name) data_file = passed_media data_file.seek(0, 2) file_size = data_file.tell() try: data_file.seek(0) except Exception as e: pass media_type = mimetypes.guess_type(os.path.basename(filename))[0] if media_type is not None: if media_type in img_formats and file_size > 5 * 1048576: raise TwitterError({'message': 'Images must be less than 5MB.'}) elif media_type in long_img_formats and file_size > 15 * 1048576: raise TwitterError({'message': 'GIF Image must be less than 15MB.'}) elif media_type in video_formats and not async_upload and file_size > 15 * 1048576: raise TwitterError({'message': 'Videos must be less than 15MB.'}) elif media_type in video_formats and async_upload and file_size > 512 * 1048576: raise TwitterError({'message': 'Videos must be less than 512MB.'}) elif media_type not in img_formats and media_type not in video_formats and media_type not in long_img_formats: raise TwitterError({'message': 'Media type could not be determined.'}) return data_file, filename, file_size, media_type def enf_type(field, _type, val): """ Checks to see if a given val for a field (i.e., the name of the field) is of the proper _type. If it is not, raises a TwitterError with a brief explanation. Args: field: Name of the field you are checking. _type: Type that the value should be returned as. val: Value to convert to _type. Returns: val converted to type _type. """ try: return _type(val) except ValueError: raise TwitterError({ 'message': '"{0}" must be type {1}'.format(field, _type.__name__) }) def parse_arg_list(args, attr): out = [] if isinstance(args, (str, unicode)): out.append(args) elif isinstance(args, twitter.User): out.append(getattr(args, attr)) elif isinstance(args, (list, tuple)): for item in args: if isinstance(item, (str, unicode)): out.append(item) elif isinstance(item, twitter.User): out.append(getattr(item, attr)) return ",".join([str(item) for item in out])
py
b402af07b5bdb53c1165bf79f5596044fc6d2ad3
# filename = 'test.txt' # puzzleInput=[] # filename = 'input.txt' # puzzleInput=[] # initialize input # with open(filename) as file: # for line in file: # puzzleInput.append(line) #puzzleInput = [1,3,2] #puzzleInput = [1,20,8,12,0,14] puzzleInput = [14,0,12,8,20,1] lastNumber = puzzleInput[0] previousNumbers = puzzleInput[:] count = len(puzzleInput) while True: if lastNumber in previousNumbers[1:]: for i in range(1, len(previousNumbers)): if lastNumber == previousNumbers[i]: previousNumbers.insert(0, i) break else: previousNumbers.insert(0, 0) count += 1 lastNumber = previousNumbers[0] if count == 30000000: print( count, lastNumber ) break #print( count, lastNumber ) #print( previousNumbers )
py
b402af3fb95d3b9b0a4e8a2565804ac0407fe2a9
#!/usr/bin/env python #################### # Required Modules # #################### # Generic/Built-in from typing import Tuple, List, Dict, Union # Libs import syft as sy from syft.workers.websocket_client import WebsocketClientWorker # Custom from .base import BaseAlgorithm from synalgo.interfaces import Arguments, EarlyStopping, Model ################## # Configurations # ################## ######################################## # Federated Algorithm Class - FedSplit # ######################################## class FedSplit(BaseAlgorithm): """ Implements federated SNN algorithm. Attributes: action (str): Type of ML operation to be executed. Supported options are as follows: 1) 'regress': Orchestrates FL grid to perform regression 2) 'classify': Orchestrates FL grid to perform classification 3) 'cluster': TBA 4) 'associate': TBA crypto_provider (VirtualWorker): Trusted Third Party coordinating FL workers (list(WebsocketClientWorker)): All particiating CLIENT workers arguments (Arguments): Arguments to be passed into each FL function train_loader (sy.FederatedLoader): Training data in configured batches eval_loader (sy.FederatedLoader): Validation data in configured batches test_loader (sy.FederatedLoader): Testing data in configured batches global_model (Model): Federatedly-trained Global model local_models (dict(str, Models)): Most recent cache of local models loss_history (dict): Local & global losses tracked throughout FL cycle out_dir (str): Output directory for exporting models & metrics checkpoints (dict): All checkpointed models & metrics accumulated """ def __init__( self, crypto_provider: sy.VirtualWorker, workers: List[WebsocketClientWorker], arguments: Arguments, train_loader: sy.FederatedDataLoader, eval_loader: sy.FederatedDataLoader, test_loader: sy.FederatedDataLoader, global_model: Model, local_models: Dict[str, Model] = {}, out_dir: str = '.', ): super().__init__( crypto_provider=crypto_provider, workers=workers, arguments=arguments, train_loader=train_loader, eval_loader=eval_loader, test_loader=test_loader, global_model=global_model, local_models=local_models, out_dir=out_dir ) ################## # Core functions # ################## def analyse(self): """ Calculates contributions of all workers towards the final global model. """ raise NotImplementedError
py
b402af75fe3b3c7f83e74d3954732e80e005a54c
import numpy import theano import theano.tensor as tt from theano.gradient import disconnected_grad as stop_grad x = tt.dscalar('x') y = x ** 2 gy = tt.grad(y, x) f = theano.function([x], gy) f(4) numpy.allclose(f(94.2), 188.4) fy = theano.function([x], y) fy(4) def magicbox(x): return tt.exp(x-stop_grad(x)) y2 = magicbox(x ** 2) fy2 = theano.function([x], y2) fy2(4) gy2 = tt.grad(y2, x) f2 = theano.function([x], gy2) f2(4)
py
b402afa24912c65d2f66665b9cfa0eb624073fdd
from wafer.talks.models import Talk, TalkType from wafer.tests.utils import create_user def create_talk_type(name): """Create a talk type""" return TalkType.objects.create(name=name) def create_talk(title, status, username=None, user=None, talk_type=None): if sum((user is None, username is None)) != 1: raise ValueError('One of user OR username must be specified') if username: user = create_user(username) talk = Talk.objects.create( title=title, status=status, corresponding_author_id=user.id) talk.authors.add(user) talk.notes = "Some notes for talk %s" % title talk.private_notes = "Some private notes for talk %s" % title talk.save() if talk_type: talk.talk_type = talk_type talk.save() return talk
py
b402b02cba74aed287be35c2995de6df4b341aa1
#!/usr/bin/env python3 """ Generate i32x4 integer arithmetic operation cases. """ from simd_arithmetic import SimdArithmeticCase class SimdI32x4ArithmeticCase(SimdArithmeticCase): LANE_LEN = 4 LANE_TYPE = 'i32x4' @property def hex_binary_op_test_data(self): return [ ('0x3fffffff', '0x40000000'), ('0x40000000', '0x40000000'), ('-0x3fffffff', '-0x40000000'), ('-0x40000000', '-0x40000000'), ('-0x40000000', '-0x40000001'), ('0x7fffffff', '0x7fffffff'), ('0x7fffffff', '0x01'), ('0x80000000', '-0x01'), ('0x7fffffff', '0x80000000'), ('0x80000000', '0x80000000'), ('0xffffffff', '0x01'), ('0xffffffff', '0xffffffff') ] @property def hex_unary_op_test_data(self): return ['0x01', '-0x01', '-0x80000000', '-0x7fffffff', '0x7fffffff', '0x80000000', '0xffffffff'] @property def underscore_literal_test_data(self): return { 'i32x4.add': [ [['01_234_567_890', '01_234_567_890'], '02_469_135_780', ['i32x4'] * 3], [['0x0_1234_5678', '0x0_90AB_cdef'], '0x0_a2e0_2467', ['i32x4'] * 3] ], 'i32x4.sub': [ [['03_214_567_890 ', '01_234_567_890 '], '01_980_000_000', ['i32x4'] * 3], [['0x0_90AB_cdef', '0x0_1234_5678'], '0x0_7e77_7777', ['i32x4'] * 3] ], 'i32x4.mul': [ [['0_123_456_789', '0_987_654_321'], '04_227_814_277', ['i32x4'] * 3], [['0x0_1234_5678', '0x0_90AB_cdef'], '0x0_2a42_d208', ['i32x4'] * 3] ] } @property def i32x4_i8x16_test_data(self): return { 'i32x4.add': [ [['0x7fffffff', ['0', '0', '0', '0x80'] * 4], '-1', ['i32x4', 'i8x16', 'i32x4']], [['1', '255'], '0', ['i32x4', 'i8x16', 'i32x4']] ], 'i32x4.sub': [ [['0x7fffffff', ['0', '0', '0', '0x80'] * 4], '-1', ['i32x4', 'i8x16', 'i32x4']], [['1', '255'], '2', ['i32x4', 'i8x16', 'i32x4']] ], 'i32x4.mul': [ [['0x10000000', '0x10'], '0', ['i32x4', 'i8x16', 'i32x4']], [['0xffffffff', '255'], '1', ['i32x4', 'i8x16', 'i32x4']] ] } @property def i32x4_i16x8_test_data(self): return { 'i32x4.add': [ [['0x7fffffff', ['0', '0x8000'] * 4], '-1', ['i32x4', 'i16x8', 'i32x4']], [['1', '0xffff'], '0', ['i32x4', 'i16x8', 'i32x4']] ], 'i32x4.sub': [ [['0x7fffffff', ['0', '0x8000'] * 4], '-1', ['i32x4', 'i16x8', 'i32x4']], [['1', '0xffff'], '0x02', ['i32x4', 'i16x8', 'i32x4']] ], 'i32x4.mul': [ [['0x80000000', ['0', '0x02'] * 4], '0', ['i32x4', 'i16x8', 'i32x4']], [['0xffffffff', '0xffff'], '1', ['i32x4', 'i16x8', 'i32x4']] ] } @property def i32x4_f32x4_test_data(self): return { 'i32x4.add': [ [['0x80000000', '+0.0'], '0x80000000', ['i32x4', 'f32x4', 'i32x4']], [['0x80000000', '-0.0'], '0', ['i32x4', 'f32x4', 'i32x4']], [['0x80000000', '1.0'], '0xbf800000', ['i32x4', 'f32x4', 'i32x4']], [['0x80000000', '-1.0'], '0x3f800000', ['i32x4', 'f32x4', 'i32x4']], [['1', '+inf'], '0x7f800001', ['i32x4', 'f32x4', 'i32x4']], [['1', '-inf'], '0xff800001', ['i32x4', 'f32x4', 'i32x4']], [['1', 'nan'], '0x7fc00001', ['i32x4', 'f32x4', 'i32x4']] ], 'i32x4.sub': [ [['0x80000000', '+0.0'], '0x80000000', ['i32x4', 'f32x4', 'i32x4']], [['0x80000000', '-0.0'], '0', ['i32x4', 'f32x4', 'i32x4']], [['0x80000000', '1.0'], '0x40800000', ['i32x4', 'f32x4', 'i32x4']], [['0x80000000', '-1.0'], '0xc0800000', ['i32x4', 'f32x4', 'i32x4']], [['0x1', '+inf'], '0x80800001', ['i32x4', 'f32x4', 'i32x4']], [['0x1', '-inf'], '0x00800001', ['i32x4', 'f32x4', 'i32x4']], [['0x1', 'nan'], '0x80400001', ['i32x4', 'f32x4', 'i32x4']] ], 'i32x4.mul': [ [['0x8000', '+0.0'], '0', ['i32x4', 'f32x4', 'i32x4']], [['0x8000', '-0.0'], '0', ['i32x4', 'f32x4', 'i32x4']], [['0x8000', '1.0'], '0', ['i32x4', 'f32x4', 'i32x4']], [['0x8000', '-1.0'], '0', ['i32x4', 'f32x4', 'i32x4']], [['0x1', '+inf'], '0x7f800000', ['i32x4', 'f32x4', 'i32x4']], [['0x1', '-inf'], '0xff800000', ['i32x4', 'f32x4', 'i32x4']], [['0x1', 'nan'], '0x7fc00000', ['i32x4', 'f32x4', 'i32x4']] ] } @property def combine_dec_hex_test_data(self): return { 'i32x4.add': [ [[['0', '1', '2', '3'], ['0', '0xffffffff', '0xfffffffe', '0xfffffffd']], ['0'] * 16, ['i32x4'] * 3] ], 'i32x4.sub': [ [[['0', '1', '2', '3'], ['0', '0xffffffff', '0xfffffffe', '0xfffffffd']], ['0', '0x02', '0x04', '0x06'], ['i32x4'] * 3] ], 'i32x4.mul': [ [[['0', '1', '2', '3'], ['0', '0xffffffff', '0xfffffffe', '0xfffffffd']], ['0', '0xffffffff', '0xfffffffc', '0xfffffff7'], ['i32x4'] * 3] ] } @property def range_test_data(self): return { 'i32x4.add': [ [[[str(i) for i in range(4)], [str(i * 2) for i in range(4)]], [str(i * 3) for i in range(4)], ['i32x4'] * 3] ], 'i32x4.sub': [ [[[str(i) for i in range(4)], [str(i * 2) for i in range(4)]], [str(-i) for i in range(4)], ['i32x4'] * 3] ], 'i32x4.mul': [ [[[str(i) for i in range(4)], [str(i * 2) for i in range(4)]], ['0', '0x02', '0x08', '0x12'], ['i32x4'] * 3] ] } @property def full_bin_test_data(self): return [ self.i32x4_i8x16_test_data, self.i32x4_i16x8_test_data, self.i32x4_f32x4_test_data, self.combine_dec_hex_test_data, self.range_test_data, self.underscore_literal_test_data ] def gen_test_cases(): simd_i32x4_arith = SimdI32x4ArithmeticCase() simd_i32x4_arith.gen_test_cases() if __name__ == '__main__': gen_test_cases()
py
b402b040d9268729da0ea92771cd5f6b4e4b9b4d
import bz2 from collections import Counter from contextlib import contextmanager from datetime import datetime from functools import wraps import gzip import operator import os from shutil import rmtree import string import tempfile from typing import Any, Callable, ContextManager, List, Optional, Type, Union, cast import warnings import zipfile import numpy as np from numpy.random import rand, randn from pandas._config.localization import ( # noqa:F401 can_set_locale, get_locales, set_locale, ) from pandas._libs.lib import no_default import pandas._libs.testing as _testing from pandas._typing import Dtype, FilePathOrBuffer, FrameOrSeries from pandas.compat import _get_lzma_file, _import_lzma from pandas.core.dtypes.common import ( is_bool, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_extension_array_dtype, is_interval_dtype, is_number, is_numeric_dtype, is_period_dtype, is_sequence, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.missing import array_equivalent import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, IntervalIndex, MultiIndex, RangeIndex, Series, bdate_range, ) from pandas.core.algorithms import take_1d from pandas.core.arrays import ( DatetimeArray, ExtensionArray, IntervalArray, PeriodArray, TimedeltaArray, period_array, ) from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin from pandas.io.common import urlopen from pandas.io.formats.printing import pprint_thing lzma = _import_lzma() _N = 30 _K = 4 _RAISE_NETWORK_ERROR_DEFAULT = False UNSIGNED_INT_DTYPES: List[Dtype] = ["uint8", "uint16", "uint32", "uint64"] UNSIGNED_EA_INT_DTYPES: List[Dtype] = ["UInt8", "UInt16", "UInt32", "UInt64"] SIGNED_INT_DTYPES: List[Dtype] = [int, "int8", "int16", "int32", "int64"] SIGNED_EA_INT_DTYPES: List[Dtype] = ["Int8", "Int16", "Int32", "Int64"] ALL_INT_DTYPES = UNSIGNED_INT_DTYPES + SIGNED_INT_DTYPES ALL_EA_INT_DTYPES = UNSIGNED_EA_INT_DTYPES + SIGNED_EA_INT_DTYPES FLOAT_DTYPES: List[Dtype] = [float, "float32", "float64"] COMPLEX_DTYPES: List[Dtype] = [complex, "complex64", "complex128"] STRING_DTYPES: List[Dtype] = [str, "str", "U"] DATETIME64_DTYPES: List[Dtype] = ["datetime64[ns]", "M8[ns]"] TIMEDELTA64_DTYPES: List[Dtype] = ["timedelta64[ns]", "m8[ns]"] BOOL_DTYPES = [bool, "bool"] BYTES_DTYPES = [bytes, "bytes"] OBJECT_DTYPES = [object, "object"] ALL_REAL_DTYPES = FLOAT_DTYPES + ALL_INT_DTYPES ALL_NUMPY_DTYPES = ( ALL_REAL_DTYPES + COMPLEX_DTYPES + STRING_DTYPES + DATETIME64_DTYPES + TIMEDELTA64_DTYPES + BOOL_DTYPES + OBJECT_DTYPES + BYTES_DTYPES ) # set testing_mode _testing_mode_warnings = (DeprecationWarning, ResourceWarning) def set_testing_mode(): # set the testing mode filters testing_mode = os.environ.get("PANDAS_TESTING_MODE", "None") if "deprecate" in testing_mode: warnings.simplefilter("always", _testing_mode_warnings) def reset_testing_mode(): # reset the testing mode filters testing_mode = os.environ.get("PANDAS_TESTING_MODE", "None") if "deprecate" in testing_mode: warnings.simplefilter("ignore", _testing_mode_warnings) set_testing_mode() def reset_display_options(): """ Reset the display options for printing and representing objects. """ pd.reset_option("^display.", silent=True) def round_trip_pickle( obj: Any, path: Optional[FilePathOrBuffer] = None ) -> FrameOrSeries: """ Pickle an object and then read it again. Parameters ---------- obj : any object The object to pickle and then re-read. path : str, path object or file-like object, default None The path where the pickled object is written and then read. Returns ------- pandas object The original object that was pickled and then re-read. """ _path = path if _path is None: _path = f"__{rands(10)}__.pickle" with ensure_clean(_path) as temp_path: pd.to_pickle(obj, temp_path) return pd.read_pickle(temp_path) def round_trip_pathlib(writer, reader, path: Optional[str] = None): """ Write an object to file specified by a pathlib.Path and read it back Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- pandas object The original object that was serialized and then re-read. """ import pytest Path = pytest.importorskip("pathlib").Path if path is None: path = "___pathlib___" with ensure_clean(path) as path: writer(Path(path)) obj = reader(Path(path)) return obj def round_trip_localpath(writer, reader, path: Optional[str] = None): """ Write an object to file specified by a py.path LocalPath and read it back. Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- pandas object The original object that was serialized and then re-read. """ import pytest LocalPath = pytest.importorskip("py.path").local if path is None: path = "___localpath___" with ensure_clean(path) as path: writer(LocalPath(path)) obj = reader(LocalPath(path)) return obj @contextmanager def decompress_file(path, compression): """ Open a compressed file and return a file object. Parameters ---------- path : str The path where the file is read from. compression : {'gzip', 'bz2', 'zip', 'xz', None} Name of the decompression to use Returns ------- file object """ if compression is None: f = open(path, "rb") elif compression == "gzip": f = gzip.open(path, "rb") elif compression == "bz2": f = bz2.BZ2File(path, "rb") elif compression == "xz": f = _get_lzma_file(lzma)(path, "rb") elif compression == "zip": zip_file = zipfile.ZipFile(path) zip_names = zip_file.namelist() if len(zip_names) == 1: f = zip_file.open(zip_names.pop()) else: raise ValueError(f"ZIP file {path} error. Only one file per ZIP.") else: raise ValueError(f"Unrecognized compression type: {compression}") try: yield f finally: f.close() if compression == "zip": zip_file.close() def write_to_compressed(compression, path, data, dest="test"): """ Write data to a compressed file. Parameters ---------- compression : {'gzip', 'bz2', 'zip', 'xz'} The compression type to use. path : str The file path to write the data. data : str The data to write. dest : str, default "test" The destination file (for ZIP only) Raises ------ ValueError : An invalid compression value was passed in. """ if compression == "zip": compress_method = zipfile.ZipFile elif compression == "gzip": compress_method = gzip.GzipFile elif compression == "bz2": compress_method = bz2.BZ2File elif compression == "xz": compress_method = _get_lzma_file(lzma) else: raise ValueError(f"Unrecognized compression type: {compression}") if compression == "zip": mode = "w" args = (dest, data) method = "writestr" else: mode = "wb" args = (data,) method = "write" with compress_method(path, mode=mode) as f: getattr(f, method)(*args) def _get_tol_from_less_precise(check_less_precise: Union[bool, int]) -> float: """ Return the tolerance equivalent to the deprecated `check_less_precise` parameter. Parameters ---------- check_less_precise : bool or int Returns ------- float Tolerance to be used as relative/absolute tolerance. Examples -------- >>> # Using check_less_precise as a bool: >>> _get_tol_from_less_precise(False) 0.5e-5 >>> _get_tol_from_less_precise(True) 0.5e-3 >>> # Using check_less_precise as an int representing the decimal >>> # tolerance intended: >>> _get_tol_from_less_precise(2) 0.5e-2 >>> _get_tol_from_less_precise(8) 0.5e-8 """ if isinstance(check_less_precise, bool): if check_less_precise: # 3-digit tolerance return 0.5e-3 else: # 5-digit tolerance return 0.5e-5 else: # Equivalent to setting checking_less_precise=<decimals> return 0.5 * 10 ** -check_less_precise def assert_almost_equal( left, right, check_dtype: Union[bool, str] = "equiv", check_less_precise: Union[bool, int] = no_default, rtol: float = 1.0e-5, atol: float = 1.0e-8, **kwargs, ): """ Check that the left and right objects are approximately equal. By approximately equal, we refer to objects that are numbers or that contain numbers which may be equivalent to specific levels of precision. Parameters ---------- left : object right : object check_dtype : bool or {'equiv'}, default 'equiv' Check dtype if both a and b are the same type. If 'equiv' is passed in, then `RangeIndex` and `Int64Index` are also considered equivalent when doing type checking. check_less_precise : bool or int, default False Specify comparison precision. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the number of digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the **ratio** of the second number to the first number and check whether it is equivalent to 1 within the specified precision. .. deprecated:: 1.1.0 Use `rtol` and `atol` instead to define relative/absolute tolerance, respectively. Similar to :func:`math.isclose`. rtol : float, default 1e-5 Relative tolerance. .. versionadded:: 1.1.0 atol : float, default 1e-8 Absolute tolerance. .. versionadded:: 1.1.0 """ if check_less_precise is not no_default: warnings.warn( "The 'check_less_precise' keyword in testing.assert_*_equal " "is deprecated and will be removed in a future version. " "You can stop passing 'check_less_precise' to silence this warning.", FutureWarning, stacklevel=2, ) rtol = atol = _get_tol_from_less_precise(check_less_precise) if isinstance(left, pd.Index): assert_index_equal( left, right, check_exact=False, exact=check_dtype, rtol=rtol, atol=atol, **kwargs, ) elif isinstance(left, pd.Series): assert_series_equal( left, right, check_exact=False, check_dtype=check_dtype, rtol=rtol, atol=atol, **kwargs, ) elif isinstance(left, pd.DataFrame): assert_frame_equal( left, right, check_exact=False, check_dtype=check_dtype, rtol=rtol, atol=atol, **kwargs, ) else: # Other sequences. if check_dtype: if is_number(left) and is_number(right): # Do not compare numeric classes, like np.float64 and float. pass elif is_bool(left) and is_bool(right): # Do not compare bool classes, like np.bool_ and bool. pass else: if isinstance(left, np.ndarray) or isinstance(right, np.ndarray): obj = "numpy array" else: obj = "Input" assert_class_equal(left, right, obj=obj) _testing.assert_almost_equal( left, right, check_dtype=check_dtype, rtol=rtol, atol=atol, **kwargs ) def _check_isinstance(left, right, cls): """ Helper method for our assert_* methods that ensures that the two objects being compared have the right type before proceeding with the comparison. Parameters ---------- left : The first object being compared. right : The second object being compared. cls : The class type to check against. Raises ------ AssertionError : Either `left` or `right` is not an instance of `cls`. """ cls_name = cls.__name__ if not isinstance(left, cls): raise AssertionError( f"{cls_name} Expected type {cls}, found {type(left)} instead" ) if not isinstance(right, cls): raise AssertionError( f"{cls_name} Expected type {cls}, found {type(right)} instead" ) def assert_dict_equal(left, right, compare_keys: bool = True): _check_isinstance(left, right, dict) _testing.assert_dict_equal(left, right, compare_keys=compare_keys) def randbool(size=(), p: float = 0.5): return rand(*size) <= p RANDS_CHARS = np.array(list(string.ascii_letters + string.digits), dtype=(np.str_, 1)) RANDU_CHARS = np.array( list("".join(map(chr, range(1488, 1488 + 26))) + string.digits), dtype=(np.unicode_, 1), ) def rands_array(nchars, size, dtype="O"): """ Generate an array of byte strings. """ retval = ( np.random.choice(RANDS_CHARS, size=nchars * np.prod(size)) .view((np.str_, nchars)) .reshape(size) ) return retval.astype(dtype) def randu_array(nchars, size, dtype="O"): """ Generate an array of unicode strings. """ retval = ( np.random.choice(RANDU_CHARS, size=nchars * np.prod(size)) .view((np.unicode_, nchars)) .reshape(size) ) return retval.astype(dtype) def rands(nchars): """ Generate one random byte string. See `rands_array` if you want to create an array of random strings. """ return "".join(np.random.choice(RANDS_CHARS, nchars)) def close(fignum=None): from matplotlib.pyplot import close as _close, get_fignums if fignum is None: for fignum in get_fignums(): _close(fignum) else: _close(fignum) # ----------------------------------------------------------------------------- # contextmanager to ensure the file cleanup @contextmanager def ensure_clean(filename=None, return_filelike=False, **kwargs): """ Gets a temporary path and agrees to remove on close. Parameters ---------- filename : str (optional) if None, creates a temporary file which is then removed when out of scope. if passed, creates temporary file with filename as ending. return_filelike : bool (default False) if True, returns a file-like which is *always* cleaned. Necessary for savefig and other functions which want to append extensions. **kwargs Additional keywords passed in for creating a temporary file. :meth:`tempFile.TemporaryFile` is used when `return_filelike` is ``True``. :meth:`tempfile.mkstemp` is used when `return_filelike` is ``False``. Note that the `filename` parameter will be passed in as the `suffix` argument to either function. See Also -------- tempfile.TemporaryFile tempfile.mkstemp """ filename = filename or "" fd = None kwargs["suffix"] = filename if return_filelike: f = tempfile.TemporaryFile(**kwargs) try: yield f finally: f.close() else: # Don't generate tempfile if using a path with directory specified. if len(os.path.dirname(filename)): raise ValueError("Can't pass a qualified name to ensure_clean()") try: fd, filename = tempfile.mkstemp(**kwargs) except UnicodeEncodeError: import pytest pytest.skip("no unicode file names on this system") try: yield filename finally: try: os.close(fd) except OSError: print(f"Couldn't close file descriptor: {fd} (file: {filename})") try: if os.path.exists(filename): os.remove(filename) except OSError as e: print(f"Exception on removing file: {e}") @contextmanager def ensure_clean_dir(): """ Get a temporary directory path and agrees to remove on close. Yields ------ Temporary directory path """ directory_name = tempfile.mkdtemp(suffix="") try: yield directory_name finally: try: rmtree(directory_name) except OSError: pass @contextmanager def ensure_safe_environment_variables(): """ Get a context manager to safely set environment variables All changes will be undone on close, hence environment variables set within this contextmanager will neither persist nor change global state. """ saved_environ = dict(os.environ) try: yield finally: os.environ.clear() os.environ.update(saved_environ) # ----------------------------------------------------------------------------- # Comparators def equalContents(arr1, arr2) -> bool: """ Checks if the set of unique elements of arr1 and arr2 are equivalent. """ return frozenset(arr1) == frozenset(arr2) def assert_index_equal( left: Index, right: Index, exact: Union[bool, str] = "equiv", check_names: bool = True, check_less_precise: Union[bool, int] = no_default, check_exact: bool = True, check_categorical: bool = True, rtol: float = 1.0e-5, atol: float = 1.0e-8, obj: str = "Index", ) -> None: """ Check that left and right Index are equal. Parameters ---------- left : Index right : Index exact : bool or {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. If 'equiv', then RangeIndex can be substituted for Int64Index as well. check_names : bool, default True Whether to check the names attribute. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. .. deprecated:: 1.1.0 Use `rtol` and `atol` instead to define relative/absolute tolerance, respectively. Similar to :func:`math.isclose`. check_exact : bool, default True Whether to compare number exactly. check_categorical : bool, default True Whether to compare internal Categorical exactly. rtol : float, default 1e-5 Relative tolerance. Only used when check_exact is False. .. versionadded:: 1.1.0 atol : float, default 1e-8 Absolute tolerance. Only used when check_exact is False. .. versionadded:: 1.1.0 obj : str, default 'Index' Specify object name being compared, internally used to show appropriate assertion message. """ __tracebackhide__ = True def _check_types(l, r, obj="Index"): if exact: assert_class_equal(l, r, exact=exact, obj=obj) # Skip exact dtype checking when `check_categorical` is False if check_categorical: assert_attr_equal("dtype", l, r, obj=obj) # allow string-like to have different inferred_types if l.inferred_type in ("string"): assert r.inferred_type in ("string") else: assert_attr_equal("inferred_type", l, r, obj=obj) def _get_ilevel_values(index, level): # accept level number only unique = index.levels[level] level_codes = index.codes[level] filled = take_1d(unique._values, level_codes, fill_value=unique._na_value) values = unique._shallow_copy(filled, name=index.names[level]) return values if check_less_precise is not no_default: warnings.warn( "The 'check_less_precise' keyword in testing.assert_*_equal " "is deprecated and will be removed in a future version. " "You can stop passing 'check_less_precise' to silence this warning.", FutureWarning, stacklevel=2, ) rtol = atol = _get_tol_from_less_precise(check_less_precise) # instance validation _check_isinstance(left, right, Index) # class / dtype comparison _check_types(left, right, obj=obj) # level comparison if left.nlevels != right.nlevels: msg1 = f"{obj} levels are different" msg2 = f"{left.nlevels}, {left}" msg3 = f"{right.nlevels}, {right}" raise_assert_detail(obj, msg1, msg2, msg3) # length comparison if len(left) != len(right): msg1 = f"{obj} length are different" msg2 = f"{len(left)}, {left}" msg3 = f"{len(right)}, {right}" raise_assert_detail(obj, msg1, msg2, msg3) # MultiIndex special comparison for little-friendly error messages if left.nlevels > 1: left = cast(MultiIndex, left) right = cast(MultiIndex, right) for level in range(left.nlevels): # cannot use get_level_values here because it can change dtype llevel = _get_ilevel_values(left, level) rlevel = _get_ilevel_values(right, level) lobj = f"MultiIndex level [{level}]" assert_index_equal( llevel, rlevel, exact=exact, check_names=check_names, check_exact=check_exact, rtol=rtol, atol=atol, obj=lobj, ) # get_level_values may change dtype _check_types(left.levels[level], right.levels[level], obj=obj) # skip exact index checking when `check_categorical` is False if check_exact and check_categorical: if not left.equals(right): diff = np.sum((left.values != right.values).astype(int)) * 100.0 / len(left) msg = f"{obj} values are different ({np.round(diff, 5)} %)" raise_assert_detail(obj, msg, left, right) else: _testing.assert_almost_equal( left.values, right.values, rtol=rtol, atol=atol, check_dtype=exact, obj=obj, lobj=left, robj=right, ) # metadata comparison if check_names: assert_attr_equal("names", left, right, obj=obj) if isinstance(left, pd.PeriodIndex) or isinstance(right, pd.PeriodIndex): assert_attr_equal("freq", left, right, obj=obj) if isinstance(left, pd.IntervalIndex) or isinstance(right, pd.IntervalIndex): assert_interval_array_equal(left._values, right._values) if check_categorical: if is_categorical_dtype(left.dtype) or is_categorical_dtype(right.dtype): assert_categorical_equal(left._values, right._values, obj=f"{obj} category") def assert_class_equal(left, right, exact: Union[bool, str] = True, obj="Input"): """ Checks classes are equal. """ __tracebackhide__ = True def repr_class(x): if isinstance(x, Index): # return Index as it is to include values in the error message return x return type(x).__name__ if exact == "equiv": if type(left) != type(right): # allow equivalence of Int64Index/RangeIndex types = {type(left).__name__, type(right).__name__} if len(types - {"Int64Index", "RangeIndex"}): msg = f"{obj} classes are not equivalent" raise_assert_detail(obj, msg, repr_class(left), repr_class(right)) elif exact: if type(left) != type(right): msg = f"{obj} classes are different" raise_assert_detail(obj, msg, repr_class(left), repr_class(right)) def assert_attr_equal(attr: str, left, right, obj: str = "Attributes"): """ Check attributes are equal. Both objects must have attribute. Parameters ---------- attr : str Attribute name being compared. left : object right : object obj : str, default 'Attributes' Specify object name being compared, internally used to show appropriate assertion message """ __tracebackhide__ = True left_attr = getattr(left, attr) right_attr = getattr(right, attr) if left_attr is right_attr: return True elif ( is_number(left_attr) and np.isnan(left_attr) and is_number(right_attr) and np.isnan(right_attr) ): # np.nan return True try: result = left_attr == right_attr except TypeError: # datetimetz on rhs may raise TypeError result = False if not isinstance(result, bool): result = result.all() if result: return True else: msg = f'Attribute "{attr}" are different' raise_assert_detail(obj, msg, left_attr, right_attr) def assert_is_valid_plot_return_object(objs): import matplotlib.pyplot as plt if isinstance(objs, (pd.Series, np.ndarray)): for el in objs.ravel(): msg = ( "one of 'objs' is not a matplotlib Axes instance, " f"type encountered {repr(type(el).__name__)}" ) assert isinstance(el, (plt.Axes, dict)), msg else: msg = ( "objs is neither an ndarray of Artist instances nor a single " "ArtistArtist instance, tuple, or dict, 'objs' is a " f"{repr(type(objs).__name__)}" ) assert isinstance(objs, (plt.Artist, tuple, dict)), msg def assert_is_sorted(seq): """Assert that the sequence is sorted.""" if isinstance(seq, (Index, Series)): seq = seq.values # sorting does not change precisions assert_numpy_array_equal(seq, np.sort(np.array(seq))) def assert_categorical_equal( left, right, check_dtype=True, check_category_order=True, obj="Categorical" ): """ Test that Categoricals are equivalent. Parameters ---------- left : Categorical right : Categorical check_dtype : bool, default True Check that integer dtype of the codes are the same check_category_order : bool, default True Whether the order of the categories should be compared, which implies identical integer codes. If False, only the resulting values are compared. The ordered attribute is checked regardless. obj : str, default 'Categorical' Specify object name being compared, internally used to show appropriate assertion message """ _check_isinstance(left, right, Categorical) if check_category_order: assert_index_equal(left.categories, right.categories, obj=f"{obj}.categories") assert_numpy_array_equal( left.codes, right.codes, check_dtype=check_dtype, obj=f"{obj}.codes" ) else: try: lc = left.categories.sort_values() rc = right.categories.sort_values() except TypeError: # e.g. '<' not supported between instances of 'int' and 'str' lc, rc = left.categories, right.categories assert_index_equal(lc, rc, obj=f"{obj}.categories") assert_index_equal( left.categories.take(left.codes), right.categories.take(right.codes), obj=f"{obj}.values", ) assert_attr_equal("ordered", left, right, obj=obj) def assert_interval_array_equal(left, right, exact="equiv", obj="IntervalArray"): """ Test that two IntervalArrays are equivalent. Parameters ---------- left, right : IntervalArray The IntervalArrays to compare. exact : bool or {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. If 'equiv', then RangeIndex can be substituted for Int64Index as well. obj : str, default 'IntervalArray' Specify object name being compared, internally used to show appropriate assertion message """ _check_isinstance(left, right, IntervalArray) assert_index_equal(left.left, right.left, exact=exact, obj=f"{obj}.left") assert_index_equal(left.right, right.right, exact=exact, obj=f"{obj}.left") assert_attr_equal("closed", left, right, obj=obj) def assert_period_array_equal(left, right, obj="PeriodArray"): _check_isinstance(left, right, PeriodArray) assert_numpy_array_equal(left._data, right._data, obj=f"{obj}._data") assert_attr_equal("freq", left, right, obj=obj) def assert_datetime_array_equal(left, right, obj="DatetimeArray"): __tracebackhide__ = True _check_isinstance(left, right, DatetimeArray) assert_numpy_array_equal(left._data, right._data, obj=f"{obj}._data") assert_attr_equal("freq", left, right, obj=obj) assert_attr_equal("tz", left, right, obj=obj) def assert_timedelta_array_equal(left, right, obj="TimedeltaArray"): __tracebackhide__ = True _check_isinstance(left, right, TimedeltaArray) assert_numpy_array_equal(left._data, right._data, obj=f"{obj}._data") assert_attr_equal("freq", left, right, obj=obj) def raise_assert_detail(obj, message, left, right, diff=None, index_values=None): __tracebackhide__ = True msg = f"""{obj} are different {message}""" if isinstance(index_values, np.ndarray): msg += f"\n[index]: {pprint_thing(index_values)}" if isinstance(left, np.ndarray): left = pprint_thing(left) elif is_categorical_dtype(left): left = repr(left) if isinstance(right, np.ndarray): right = pprint_thing(right) elif is_categorical_dtype(right): right = repr(right) msg += f""" [left]: {left} [right]: {right}""" if diff is not None: msg += f"\n[diff]: {diff}" raise AssertionError(msg) def assert_numpy_array_equal( left, right, strict_nan=False, check_dtype=True, err_msg=None, check_same=None, obj="numpy array", index_values=None, ): """ Check that 'np.ndarray' is equivalent. Parameters ---------- left, right : numpy.ndarray or iterable The two arrays to be compared. strict_nan : bool, default False If True, consider NaN and None to be different. check_dtype : bool, default True Check dtype if both a and b are np.ndarray. err_msg : str, default None If provided, used as assertion message. check_same : None|'copy'|'same', default None Ensure left and right refer/do not refer to the same memory area. obj : str, default 'numpy array' Specify object name being compared, internally used to show appropriate assertion message. index_values : numpy.ndarray, default None optional index (shared by both left and right), used in output. """ __tracebackhide__ = True # instance validation # Show a detailed error message when classes are different assert_class_equal(left, right, obj=obj) # both classes must be an np.ndarray _check_isinstance(left, right, np.ndarray) def _get_base(obj): return obj.base if getattr(obj, "base", None) is not None else obj left_base = _get_base(left) right_base = _get_base(right) if check_same == "same": if left_base is not right_base: raise AssertionError(f"{repr(left_base)} is not {repr(right_base)}") elif check_same == "copy": if left_base is right_base: raise AssertionError(f"{repr(left_base)} is {repr(right_base)}") def _raise(left, right, err_msg): if err_msg is None: if left.shape != right.shape: raise_assert_detail( obj, f"{obj} shapes are different", left.shape, right.shape ) diff = 0 for l, r in zip(left, right): # count up differences if not array_equivalent(l, r, strict_nan=strict_nan): diff += 1 diff = diff * 100.0 / left.size msg = f"{obj} values are different ({np.round(diff, 5)} %)" raise_assert_detail(obj, msg, left, right, index_values=index_values) raise AssertionError(err_msg) # compare shape and values if not array_equivalent(left, right, strict_nan=strict_nan): _raise(left, right, err_msg) if check_dtype: if isinstance(left, np.ndarray) and isinstance(right, np.ndarray): assert_attr_equal("dtype", left, right, obj=obj) def assert_extension_array_equal( left, right, check_dtype=True, index_values=None, check_less_precise=no_default, check_exact=False, rtol: float = 1.0e-5, atol: float = 1.0e-8, ): """ Check that left and right ExtensionArrays are equal. Parameters ---------- left, right : ExtensionArray The two arrays to compare. check_dtype : bool, default True Whether to check if the ExtensionArray dtypes are identical. index_values : numpy.ndarray, default None Optional index (shared by both left and right), used in output. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. .. deprecated:: 1.1.0 Use `rtol` and `atol` instead to define relative/absolute tolerance, respectively. Similar to :func:`math.isclose`. check_exact : bool, default False Whether to compare number exactly. rtol : float, default 1e-5 Relative tolerance. Only used when check_exact is False. .. versionadded:: 1.1.0 atol : float, default 1e-8 Absolute tolerance. Only used when check_exact is False. .. versionadded:: 1.1.0 Notes ----- Missing values are checked separately from valid values. A mask of missing values is computed for each and checked to match. The remaining all-valid values are cast to object dtype and checked. """ if check_less_precise is not no_default: warnings.warn( "The 'check_less_precise' keyword in testing.assert_*_equal " "is deprecated and will be removed in a future version. " "You can stop passing 'check_less_precise' to silence this warning.", FutureWarning, stacklevel=2, ) rtol = atol = _get_tol_from_less_precise(check_less_precise) assert isinstance(left, ExtensionArray), "left is not an ExtensionArray" assert isinstance(right, ExtensionArray), "right is not an ExtensionArray" if check_dtype: assert_attr_equal("dtype", left, right, obj="ExtensionArray") if ( isinstance(left, DatetimeLikeArrayMixin) and isinstance(right, DatetimeLikeArrayMixin) and type(right) == type(left) ): # Avoid slow object-dtype comparisons # np.asarray for case where we have a np.MaskedArray assert_numpy_array_equal( np.asarray(left.asi8), np.asarray(right.asi8), index_values=index_values ) return left_na = np.asarray(left.isna()) right_na = np.asarray(right.isna()) assert_numpy_array_equal( left_na, right_na, obj="ExtensionArray NA mask", index_values=index_values ) left_valid = np.asarray(left[~left_na].astype(object)) right_valid = np.asarray(right[~right_na].astype(object)) if check_exact: assert_numpy_array_equal( left_valid, right_valid, obj="ExtensionArray", index_values=index_values ) else: _testing.assert_almost_equal( left_valid, right_valid, check_dtype=check_dtype, rtol=rtol, atol=atol, obj="ExtensionArray", index_values=index_values, ) # This could be refactored to use the NDFrame.equals method def assert_series_equal( left, right, check_dtype=True, check_index_type="equiv", check_series_type=True, check_less_precise=no_default, check_names=True, check_exact=False, check_datetimelike_compat=False, check_categorical=True, check_category_order=True, check_freq=True, rtol=1.0e-5, atol=1.0e-8, obj="Series", ): """ Check that left and right Series are equal. Parameters ---------- left : Series right : Series check_dtype : bool, default True Whether to check the Series dtype is identical. check_index_type : bool or {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. check_series_type : bool, default True Whether to check the Series class is identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the **ratio** of the second number to the first number and check whether it is equivalent to 1 within the specified precision. .. deprecated:: 1.1.0 Use `rtol` and `atol` instead to define relative/absolute tolerance, respectively. Similar to :func:`math.isclose`. check_names : bool, default True Whether to check the Series and Index names attribute. check_exact : bool, default False Whether to compare number exactly. check_datetimelike_compat : bool, default False Compare datetime-like which is comparable ignoring dtype. check_categorical : bool, default True Whether to compare internal Categorical exactly. check_category_order : bool, default True Whether to compare category order of internal Categoricals. .. versionadded:: 1.0.2 check_freq : bool, default True Whether to check the `freq` attribute on a DatetimeIndex or TimedeltaIndex. rtol : float, default 1e-5 Relative tolerance. Only used when check_exact is False. .. versionadded:: 1.1.0 atol : float, default 1e-8 Absolute tolerance. Only used when check_exact is False. .. versionadded:: 1.1.0 obj : str, default 'Series' Specify object name being compared, internally used to show appropriate assertion message. """ __tracebackhide__ = True if check_less_precise is not no_default: warnings.warn( "The 'check_less_precise' keyword in testing.assert_*_equal " "is deprecated and will be removed in a future version. " "You can stop passing 'check_less_precise' to silence this warning.", FutureWarning, stacklevel=2, ) rtol = atol = _get_tol_from_less_precise(check_less_precise) # instance validation _check_isinstance(left, right, Series) if check_series_type: assert_class_equal(left, right, obj=obj) # length comparison if len(left) != len(right): msg1 = f"{len(left)}, {left.index}" msg2 = f"{len(right)}, {right.index}" raise_assert_detail(obj, "Series length are different", msg1, msg2) # index comparison assert_index_equal( left.index, right.index, exact=check_index_type, check_names=check_names, check_exact=check_exact, check_categorical=check_categorical, rtol=rtol, atol=atol, obj=f"{obj}.index", ) if check_freq and isinstance(left.index, (pd.DatetimeIndex, pd.TimedeltaIndex)): lidx = left.index ridx = right.index assert lidx.freq == ridx.freq, (lidx.freq, ridx.freq) if check_dtype: # We want to skip exact dtype checking when `check_categorical` # is False. We'll still raise if only one is a `Categorical`, # regardless of `check_categorical` if ( is_categorical_dtype(left.dtype) and is_categorical_dtype(right.dtype) and not check_categorical ): pass else: assert_attr_equal("dtype", left, right, obj=f"Attributes of {obj}") if check_exact and is_numeric_dtype(left.dtype) and is_numeric_dtype(right.dtype): # Only check exact if dtype is numeric assert_numpy_array_equal( left._values, right._values, check_dtype=check_dtype, obj=str(obj), index_values=np.asarray(left.index), ) elif check_datetimelike_compat and ( needs_i8_conversion(left.dtype) or needs_i8_conversion(right.dtype) ): # we want to check only if we have compat dtypes # e.g. integer and M|m are NOT compat, but we can simply check # the values in that case # datetimelike may have different objects (e.g. datetime.datetime # vs Timestamp) but will compare equal if not Index(left._values).equals(Index(right._values)): msg = ( f"[datetimelike_compat=True] {left._values} " f"is not equal to {right._values}." ) raise AssertionError(msg) elif is_interval_dtype(left.dtype) and is_interval_dtype(right.dtype): assert_interval_array_equal(left.array, right.array) elif is_categorical_dtype(left.dtype) or is_categorical_dtype(right.dtype): _testing.assert_almost_equal( left._values, right._values, rtol=rtol, atol=atol, check_dtype=check_dtype, obj=str(obj), index_values=np.asarray(left.index), ) elif is_extension_array_dtype(left.dtype) and is_extension_array_dtype(right.dtype): assert_extension_array_equal( left._values, right._values, check_dtype=check_dtype, index_values=np.asarray(left.index), ) elif needs_i8_conversion(left.dtype) or needs_i8_conversion(right.dtype): # DatetimeArray or TimedeltaArray assert_extension_array_equal( left._values, right._values, check_dtype=check_dtype, index_values=np.asarray(left.index), ) else: _testing.assert_almost_equal( left._values, right._values, rtol=rtol, atol=atol, check_dtype=check_dtype, obj=str(obj), index_values=np.asarray(left.index), ) # metadata comparison if check_names: assert_attr_equal("name", left, right, obj=obj) if check_categorical: if is_categorical_dtype(left.dtype) or is_categorical_dtype(right.dtype): assert_categorical_equal( left._values, right._values, obj=f"{obj} category", check_category_order=check_category_order, ) # This could be refactored to use the NDFrame.equals method def assert_frame_equal( left, right, check_dtype=True, check_index_type="equiv", check_column_type="equiv", check_frame_type=True, check_less_precise=no_default, check_names=True, by_blocks=False, check_exact=False, check_datetimelike_compat=False, check_categorical=True, check_like=False, check_freq=True, rtol=1.0e-5, atol=1.0e-8, obj="DataFrame", ): """ Check that left and right DataFrame are equal. This function is intended to compare two DataFrames and output any differences. Is is mostly intended for use in unit tests. Additional parameters allow varying the strictness of the equality checks performed. Parameters ---------- left : DataFrame First DataFrame to compare. right : DataFrame Second DataFrame to compare. check_dtype : bool, default True Whether to check the DataFrame dtype is identical. check_index_type : bool or {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. check_column_type : bool or {'equiv'}, default 'equiv' Whether to check the columns class, dtype and inferred_type are identical. Is passed as the ``exact`` argument of :func:`assert_index_equal`. check_frame_type : bool, default True Whether to check the DataFrame class is identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the **ratio** of the second number to the first number and check whether it is equivalent to 1 within the specified precision. .. deprecated:: 1.1.0 Use `rtol` and `atol` instead to define relative/absolute tolerance, respectively. Similar to :func:`math.isclose`. check_names : bool, default True Whether to check that the `names` attribute for both the `index` and `column` attributes of the DataFrame is identical. by_blocks : bool, default False Specify how to compare internal data. If False, compare by columns. If True, compare by blocks. check_exact : bool, default False Whether to compare number exactly. check_datetimelike_compat : bool, default False Compare datetime-like which is comparable ignoring dtype. check_categorical : bool, default True Whether to compare internal Categorical exactly. check_like : bool, default False If True, ignore the order of index & columns. Note: index labels must match their respective rows (same as in columns) - same labels must be with the same data. check_freq : bool, default True Whether to check the `freq` attribute on a DatetimeIndex or TimedeltaIndex. rtol : float, default 1e-5 Relative tolerance. Only used when check_exact is False. .. versionadded:: 1.1.0 atol : float, default 1e-8 Absolute tolerance. Only used when check_exact is False. .. versionadded:: 1.1.0 obj : str, default 'DataFrame' Specify object name being compared, internally used to show appropriate assertion message. See Also -------- assert_series_equal : Equivalent method for asserting Series equality. DataFrame.equals : Check DataFrame equality. Examples -------- This example shows comparing two DataFrames that are equal but with columns of differing dtypes. >>> from pandas._testing import assert_frame_equal >>> df1 = pd.DataFrame({'a': [1, 2], 'b': [3, 4]}) >>> df2 = pd.DataFrame({'a': [1, 2], 'b': [3.0, 4.0]}) df1 equals itself. >>> assert_frame_equal(df1, df1) df1 differs from df2 as column 'b' is of a different type. >>> assert_frame_equal(df1, df2) Traceback (most recent call last): ... AssertionError: Attributes of DataFrame.iloc[:, 1] (column name="b") are different Attribute "dtype" are different [left]: int64 [right]: float64 Ignore differing dtypes in columns with check_dtype. >>> assert_frame_equal(df1, df2, check_dtype=False) """ __tracebackhide__ = True if check_less_precise is not no_default: warnings.warn( "The 'check_less_precise' keyword in testing.assert_*_equal " "is deprecated and will be removed in a future version. " "You can stop passing 'check_less_precise' to silence this warning.", FutureWarning, stacklevel=2, ) rtol = atol = _get_tol_from_less_precise(check_less_precise) # instance validation _check_isinstance(left, right, DataFrame) if check_frame_type: assert isinstance(left, type(right)) # assert_class_equal(left, right, obj=obj) # shape comparison if left.shape != right.shape: raise_assert_detail( obj, f"{obj} shape mismatch", f"{repr(left.shape)}", f"{repr(right.shape)}" ) if check_like: left, right = left.reindex_like(right), right # index comparison assert_index_equal( left.index, right.index, exact=check_index_type, check_names=check_names, check_exact=check_exact, check_categorical=check_categorical, rtol=rtol, atol=atol, obj=f"{obj}.index", ) # column comparison assert_index_equal( left.columns, right.columns, exact=check_column_type, check_names=check_names, check_exact=check_exact, check_categorical=check_categorical, rtol=rtol, atol=atol, obj=f"{obj}.columns", ) # compare by blocks if by_blocks: rblocks = right._to_dict_of_blocks() lblocks = left._to_dict_of_blocks() for dtype in list(set(list(lblocks.keys()) + list(rblocks.keys()))): assert dtype in lblocks assert dtype in rblocks assert_frame_equal( lblocks[dtype], rblocks[dtype], check_dtype=check_dtype, obj=obj ) # compare by columns else: for i, col in enumerate(left.columns): assert col in right lcol = left.iloc[:, i] rcol = right.iloc[:, i] assert_series_equal( lcol, rcol, check_dtype=check_dtype, check_index_type=check_index_type, check_exact=check_exact, check_names=check_names, check_datetimelike_compat=check_datetimelike_compat, check_categorical=check_categorical, check_freq=check_freq, obj=f'{obj}.iloc[:, {i}] (column name="{col}")', rtol=rtol, atol=atol, ) def assert_equal(left, right, **kwargs): """ Wrapper for tm.assert_*_equal to dispatch to the appropriate test function. Parameters ---------- left, right : Index, Series, DataFrame, ExtensionArray, or np.ndarray The two items to be compared. **kwargs All keyword arguments are passed through to the underlying assert method. """ __tracebackhide__ = True if isinstance(left, pd.Index): assert_index_equal(left, right, **kwargs) if isinstance(left, (pd.DatetimeIndex, pd.TimedeltaIndex)): assert left.freq == right.freq, (left.freq, right.freq) elif isinstance(left, pd.Series): assert_series_equal(left, right, **kwargs) elif isinstance(left, pd.DataFrame): assert_frame_equal(left, right, **kwargs) elif isinstance(left, IntervalArray): assert_interval_array_equal(left, right, **kwargs) elif isinstance(left, PeriodArray): assert_period_array_equal(left, right, **kwargs) elif isinstance(left, DatetimeArray): assert_datetime_array_equal(left, right, **kwargs) elif isinstance(left, TimedeltaArray): assert_timedelta_array_equal(left, right, **kwargs) elif isinstance(left, ExtensionArray): assert_extension_array_equal(left, right, **kwargs) elif isinstance(left, np.ndarray): assert_numpy_array_equal(left, right, **kwargs) elif isinstance(left, str): assert kwargs == {} assert left == right else: raise NotImplementedError(type(left)) def box_expected(expected, box_cls, transpose=True): """ Helper function to wrap the expected output of a test in a given box_class. Parameters ---------- expected : np.ndarray, Index, Series box_cls : {Index, Series, DataFrame} Returns ------- subclass of box_cls """ if box_cls is pd.array: expected = pd.array(expected) elif box_cls is pd.Index: expected = pd.Index(expected) elif box_cls is pd.Series: expected = pd.Series(expected) elif box_cls is pd.DataFrame: expected = pd.Series(expected).to_frame() if transpose: # for vector operations, we we need a DataFrame to be a single-row, # not a single-column, in order to operate against non-DataFrame # vectors of the same length. expected = expected.T elif box_cls is PeriodArray: # the PeriodArray constructor is not as flexible as period_array expected = period_array(expected) elif box_cls is DatetimeArray: expected = DatetimeArray(expected) elif box_cls is TimedeltaArray: expected = TimedeltaArray(expected) elif box_cls is np.ndarray: expected = np.array(expected) elif box_cls is to_array: expected = to_array(expected) else: raise NotImplementedError(box_cls) return expected def to_array(obj): # temporary implementation until we get pd.array in place dtype = getattr(obj, "dtype", None) if is_period_dtype(dtype): return period_array(obj) elif is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype): return DatetimeArray._from_sequence(obj) elif is_timedelta64_dtype(dtype): return TimedeltaArray._from_sequence(obj) else: return np.array(obj) # ----------------------------------------------------------------------------- # Sparse def assert_sp_array_equal(left, right): """ Check that the left and right SparseArray are equal. Parameters ---------- left : SparseArray right : SparseArray """ _check_isinstance(left, right, pd.arrays.SparseArray) assert_numpy_array_equal(left.sp_values, right.sp_values) # SparseIndex comparison assert isinstance(left.sp_index, pd._libs.sparse.SparseIndex) assert isinstance(right.sp_index, pd._libs.sparse.SparseIndex) left_index = left.sp_index right_index = right.sp_index if not left_index.equals(right_index): raise_assert_detail( "SparseArray.index", "index are not equal", left_index, right_index ) else: # Just ensure a pass assert_attr_equal("fill_value", left, right) assert_attr_equal("dtype", left, right) assert_numpy_array_equal(left.to_dense(), right.to_dense()) # ----------------------------------------------------------------------------- # Others def assert_contains_all(iterable, dic): for k in iterable: assert k in dic, f"Did not contain item: {repr(k)}" def assert_copy(iter1, iter2, **eql_kwargs): """ iter1, iter2: iterables that produce elements comparable with assert_almost_equal Checks that the elements are equal, but not the same object. (Does not check that items in sequences are also not the same object) """ for elem1, elem2 in zip(iter1, iter2): assert_almost_equal(elem1, elem2, **eql_kwargs) msg = ( f"Expected object {repr(type(elem1))} and object {repr(type(elem2))} to be " "different objects, but they were the same object." ) assert elem1 is not elem2, msg def getCols(k): return string.ascii_uppercase[:k] # make index def makeStringIndex(k=10, name=None): return Index(rands_array(nchars=10, size=k), name=name) def makeUnicodeIndex(k=10, name=None): return Index(randu_array(nchars=10, size=k), name=name) def makeCategoricalIndex(k=10, n=3, name=None, **kwargs): """ make a length k index or n categories """ x = rands_array(nchars=4, size=n) return CategoricalIndex( Categorical.from_codes(np.arange(k) % n, categories=x), name=name, **kwargs ) def makeIntervalIndex(k=10, name=None, **kwargs): """ make a length k IntervalIndex """ x = np.linspace(0, 100, num=(k + 1)) return IntervalIndex.from_breaks(x, name=name, **kwargs) def makeBoolIndex(k=10, name=None): if k == 1: return Index([True], name=name) elif k == 2: return Index([False, True], name=name) return Index([False, True] + [False] * (k - 2), name=name) def makeIntIndex(k=10, name=None): return Index(list(range(k)), name=name) def makeUIntIndex(k=10, name=None): return Index([2 ** 63 + i for i in range(k)], name=name) def makeRangeIndex(k=10, name=None, **kwargs): return RangeIndex(0, k, 1, name=name, **kwargs) def makeFloatIndex(k=10, name=None): values = sorted(np.random.random_sample(k)) - np.random.random_sample(1) return Index(values * (10 ** np.random.randint(0, 9)), name=name) def makeDateIndex(k=10, freq="B", name=None, **kwargs): dt = datetime(2000, 1, 1) dr = bdate_range(dt, periods=k, freq=freq, name=name) return DatetimeIndex(dr, name=name, **kwargs) def makeTimedeltaIndex(k=10, freq="D", name=None, **kwargs): return pd.timedelta_range(start="1 day", periods=k, freq=freq, name=name, **kwargs) def makePeriodIndex(k=10, name=None, **kwargs): dt = datetime(2000, 1, 1) dr = pd.period_range(start=dt, periods=k, freq="B", name=name, **kwargs) return dr def makeMultiIndex(k=10, names=None, **kwargs): return MultiIndex.from_product((("foo", "bar"), (1, 2)), names=names, **kwargs) _names = [ "Alice", "Bob", "Charlie", "Dan", "Edith", "Frank", "George", "Hannah", "Ingrid", "Jerry", "Kevin", "Laura", "Michael", "Norbert", "Oliver", "Patricia", "Quinn", "Ray", "Sarah", "Tim", "Ursula", "Victor", "Wendy", "Xavier", "Yvonne", "Zelda", ] def _make_timeseries(start="2000-01-01", end="2000-12-31", freq="1D", seed=None): """ Make a DataFrame with a DatetimeIndex Parameters ---------- start : str or Timestamp, default "2000-01-01" The start of the index. Passed to date_range with `freq`. end : str or Timestamp, default "2000-12-31" The end of the index. Passed to date_range with `freq`. freq : str or Freq The frequency to use for the DatetimeIndex seed : int, optional The random state seed. * name : object dtype with string names * id : int dtype with * x, y : float dtype Examples -------- >>> _make_timeseries() id name x y timestamp 2000-01-01 982 Frank 0.031261 0.986727 2000-01-02 1025 Edith -0.086358 -0.032920 2000-01-03 982 Edith 0.473177 0.298654 2000-01-04 1009 Sarah 0.534344 -0.750377 2000-01-05 963 Zelda -0.271573 0.054424 ... ... ... ... ... 2000-12-27 980 Ingrid -0.132333 -0.422195 2000-12-28 972 Frank -0.376007 -0.298687 2000-12-29 1009 Ursula -0.865047 -0.503133 2000-12-30 1000 Hannah -0.063757 -0.507336 2000-12-31 972 Tim -0.869120 0.531685 """ index = pd.date_range(start=start, end=end, freq=freq, name="timestamp") n = len(index) state = np.random.RandomState(seed) columns = { "name": state.choice(_names, size=n), "id": state.poisson(1000, size=n), "x": state.rand(n) * 2 - 1, "y": state.rand(n) * 2 - 1, } df = pd.DataFrame(columns, index=index, columns=sorted(columns)) if df.index[-1] == end: df = df.iloc[:-1] return df def index_subclass_makers_generator(): make_index_funcs = [ makeDateIndex, makePeriodIndex, makeTimedeltaIndex, makeRangeIndex, makeIntervalIndex, makeCategoricalIndex, makeMultiIndex, ] for make_index_func in make_index_funcs: yield make_index_func def all_timeseries_index_generator(k=10): """ Generator which can be iterated over to get instances of all the classes which represent time-series. Parameters ---------- k: length of each of the index instances """ make_index_funcs = [makeDateIndex, makePeriodIndex, makeTimedeltaIndex] for make_index_func in make_index_funcs: yield make_index_func(k=k) # make series def makeFloatSeries(name=None): index = makeStringIndex(_N) return Series(randn(_N), index=index, name=name) def makeStringSeries(name=None): index = makeStringIndex(_N) return Series(randn(_N), index=index, name=name) def makeObjectSeries(name=None): data = makeStringIndex(_N) data = Index(data, dtype=object) index = makeStringIndex(_N) return Series(data, index=index, name=name) def getSeriesData(): index = makeStringIndex(_N) return {c: Series(randn(_N), index=index) for c in getCols(_K)} def makeTimeSeries(nper=None, freq="B", name=None): if nper is None: nper = _N return Series(randn(nper), index=makeDateIndex(nper, freq=freq), name=name) def makePeriodSeries(nper=None, name=None): if nper is None: nper = _N return Series(randn(nper), index=makePeriodIndex(nper), name=name) def getTimeSeriesData(nper=None, freq="B"): return {c: makeTimeSeries(nper, freq) for c in getCols(_K)} def getPeriodData(nper=None): return {c: makePeriodSeries(nper) for c in getCols(_K)} # make frame def makeTimeDataFrame(nper=None, freq="B"): data = getTimeSeriesData(nper, freq) return DataFrame(data) def makeDataFrame(): data = getSeriesData() return DataFrame(data) def getMixedTypeDict(): index = Index(["a", "b", "c", "d", "e"]) data = { "A": [0.0, 1.0, 2.0, 3.0, 4.0], "B": [0.0, 1.0, 0.0, 1.0, 0.0], "C": ["foo1", "foo2", "foo3", "foo4", "foo5"], "D": bdate_range("1/1/2009", periods=5), } return index, data def makeMixedDataFrame(): return DataFrame(getMixedTypeDict()[1]) def makePeriodFrame(nper=None): data = getPeriodData(nper) return DataFrame(data) def makeCustomIndex( nentries, nlevels, prefix="#", names=False, ndupe_l=None, idx_type=None ): """ Create an index/multindex with given dimensions, levels, names, etc' nentries - number of entries in index nlevels - number of levels (> 1 produces multindex) prefix - a string prefix for labels names - (Optional), bool or list of strings. if True will use default names, if false will use no names, if a list is given, the name of each level in the index will be taken from the list. ndupe_l - (Optional), list of ints, the number of rows for which the label will repeated at the corresponding level, you can specify just the first few, the rest will use the default ndupe_l of 1. len(ndupe_l) <= nlevels. idx_type - "i"/"f"/"s"/"u"/"dt"/"p"/"td". If idx_type is not None, `idx_nlevels` must be 1. "i"/"f" creates an integer/float index, "s"/"u" creates a string/unicode index "dt" create a datetime index. "td" create a datetime index. if unspecified, string labels will be generated. """ if ndupe_l is None: ndupe_l = [1] * nlevels assert is_sequence(ndupe_l) and len(ndupe_l) <= nlevels assert names is None or names is False or names is True or len(names) is nlevels assert idx_type is None or ( idx_type in ("i", "f", "s", "u", "dt", "p", "td") and nlevels == 1 ) if names is True: # build default names names = [prefix + str(i) for i in range(nlevels)] if names is False: # pass None to index constructor for no name names = None # make singleton case uniform if isinstance(names, str) and nlevels == 1: names = [names] # specific 1D index type requested? idx_func = dict( i=makeIntIndex, f=makeFloatIndex, s=makeStringIndex, u=makeUnicodeIndex, dt=makeDateIndex, td=makeTimedeltaIndex, p=makePeriodIndex, ).get(idx_type) if idx_func: idx = idx_func(nentries) # but we need to fill in the name if names: idx.name = names[0] return idx elif idx_type is not None: raise ValueError( f"{repr(idx_type)} is not a legal value for `idx_type`, " "use 'i'/'f'/'s'/'u'/'dt'/'p'/'td'." ) if len(ndupe_l) < nlevels: ndupe_l.extend([1] * (nlevels - len(ndupe_l))) assert len(ndupe_l) == nlevels assert all(x > 0 for x in ndupe_l) tuples = [] for i in range(nlevels): def keyfunc(x): import re numeric_tuple = re.sub(r"[^\d_]_?", "", x).split("_") return [int(num) for num in numeric_tuple] # build a list of lists to create the index from div_factor = nentries // ndupe_l[i] + 1 cnt = Counter() for j in range(div_factor): label = f"{prefix}_l{i}_g{j}" cnt[label] = ndupe_l[i] # cute Counter trick result = sorted(cnt.elements(), key=keyfunc)[:nentries] tuples.append(result) tuples = list(zip(*tuples)) # convert tuples to index if nentries == 1: # we have a single level of tuples, i.e. a regular Index index = Index(tuples[0], name=names[0]) elif nlevels == 1: name = None if names is None else names[0] index = Index((x[0] for x in tuples), name=name) else: index = MultiIndex.from_tuples(tuples, names=names) return index def makeCustomDataframe( nrows, ncols, c_idx_names=True, r_idx_names=True, c_idx_nlevels=1, r_idx_nlevels=1, data_gen_f=None, c_ndupe_l=None, r_ndupe_l=None, dtype=None, c_idx_type=None, r_idx_type=None, ): """ Create a DataFrame using supplied parameters. Parameters ---------- nrows, ncols - number of data rows/cols c_idx_names, idx_names - False/True/list of strings, yields No names , default names or uses the provided names for the levels of the corresponding index. You can provide a single string when c_idx_nlevels ==1. c_idx_nlevels - number of levels in columns index. > 1 will yield MultiIndex r_idx_nlevels - number of levels in rows index. > 1 will yield MultiIndex data_gen_f - a function f(row,col) which return the data value at that position, the default generator used yields values of the form "RxCy" based on position. c_ndupe_l, r_ndupe_l - list of integers, determines the number of duplicates for each label at a given level of the corresponding index. The default `None` value produces a multiplicity of 1 across all levels, i.e. a unique index. Will accept a partial list of length N < idx_nlevels, for just the first N levels. If ndupe doesn't divide nrows/ncol, the last label might have lower multiplicity. dtype - passed to the DataFrame constructor as is, in case you wish to have more control in conjunction with a custom `data_gen_f` r_idx_type, c_idx_type - "i"/"f"/"s"/"u"/"dt"/"td". If idx_type is not None, `idx_nlevels` must be 1. "i"/"f" creates an integer/float index, "s"/"u" creates a string/unicode index "dt" create a datetime index. "td" create a timedelta index. if unspecified, string labels will be generated. Examples -------- # 5 row, 3 columns, default names on both, single index on both axis >> makeCustomDataframe(5,3) # make the data a random int between 1 and 100 >> mkdf(5,3,data_gen_f=lambda r,c:randint(1,100)) # 2-level multiindex on rows with each label duplicated # twice on first level, default names on both axis, single # index on both axis >> a=makeCustomDataframe(5,3,r_idx_nlevels=2,r_ndupe_l=[2]) # DatetimeIndex on row, index with unicode labels on columns # no names on either axis >> a=makeCustomDataframe(5,3,c_idx_names=False,r_idx_names=False, r_idx_type="dt",c_idx_type="u") # 4-level multindex on rows with names provided, 2-level multindex # on columns with default labels and default names. >> a=makeCustomDataframe(5,3,r_idx_nlevels=4, r_idx_names=["FEE","FI","FO","FAM"], c_idx_nlevels=2) >> a=mkdf(5,3,r_idx_nlevels=2,c_idx_nlevels=4) """ assert c_idx_nlevels > 0 assert r_idx_nlevels > 0 assert r_idx_type is None or ( r_idx_type in ("i", "f", "s", "u", "dt", "p", "td") and r_idx_nlevels == 1 ) assert c_idx_type is None or ( c_idx_type in ("i", "f", "s", "u", "dt", "p", "td") and c_idx_nlevels == 1 ) columns = makeCustomIndex( ncols, nlevels=c_idx_nlevels, prefix="C", names=c_idx_names, ndupe_l=c_ndupe_l, idx_type=c_idx_type, ) index = makeCustomIndex( nrows, nlevels=r_idx_nlevels, prefix="R", names=r_idx_names, ndupe_l=r_ndupe_l, idx_type=r_idx_type, ) # by default, generate data based on location if data_gen_f is None: data_gen_f = lambda r, c: f"R{r}C{c}" data = [[data_gen_f(r, c) for c in range(ncols)] for r in range(nrows)] return DataFrame(data, index, columns, dtype=dtype) def _create_missing_idx(nrows, ncols, density, random_state=None): if random_state is None: random_state = np.random else: random_state = np.random.RandomState(random_state) # below is cribbed from scipy.sparse size = int(np.round((1 - density) * nrows * ncols)) # generate a few more to ensure unique values min_rows = 5 fac = 1.02 extra_size = min(size + min_rows, fac * size) def _gen_unique_rand(rng, _extra_size): ind = rng.rand(int(_extra_size)) return np.unique(np.floor(ind * nrows * ncols))[:size] ind = _gen_unique_rand(random_state, extra_size) while ind.size < size: extra_size *= 1.05 ind = _gen_unique_rand(random_state, extra_size) j = np.floor(ind * 1.0 / nrows).astype(int) i = (ind - j * nrows).astype(int) return i.tolist(), j.tolist() def makeMissingDataframe(density=0.9, random_state=None): df = makeDataFrame() i, j = _create_missing_idx(*df.shape, density=density, random_state=random_state) df.values[i, j] = np.nan return df def optional_args(decorator): """ allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, *args, **kwargs) """ @wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and callable(args[0]) if is_decorating: f = args[0] args = [] return dec(f) else: return dec return wrapper # skip tests on exceptions with this message _network_error_messages = ( # 'urlopen error timed out', # 'timeout: timed out', # 'socket.timeout: timed out', "timed out", "Server Hangup", "HTTP Error 503: Service Unavailable", "502: Proxy Error", "HTTP Error 502: internal error", "HTTP Error 502", "HTTP Error 503", "HTTP Error 403", "HTTP Error 400", "Temporary failure in name resolution", "Name or service not known", "Connection refused", "certificate verify", ) # or this e.errno/e.reason.errno _network_errno_vals = ( 101, # Network is unreachable 111, # Connection refused 110, # Connection timed out 104, # Connection reset Error 54, # Connection reset by peer 60, # urllib.error.URLError: [Errno 60] Connection timed out ) # Both of the above shouldn't mask real issues such as 404's # or refused connections (changed DNS). # But some tests (test_data yahoo) contact incredibly flakey # servers. # and conditionally raise on exception types in _get_default_network_errors def _get_default_network_errors(): # Lazy import for http.client because it imports many things from the stdlib import http.client return (IOError, http.client.HTTPException, TimeoutError) def can_connect(url, error_classes=None): """ Try to connect to the given url. True if succeeds, False if IOError raised Parameters ---------- url : basestring The URL to try to connect to Returns ------- connectable : bool Return True if no IOError (unable to connect) or URLError (bad url) was raised """ if error_classes is None: error_classes = _get_default_network_errors() try: with urlopen(url): pass except error_classes: return False else: return True @optional_args def network( t, url="http://www.google.com", raise_on_error=_RAISE_NETWORK_ERROR_DEFAULT, check_before_test=False, error_classes=None, skip_errnos=_network_errno_vals, _skip_on_messages=_network_error_messages, ): """ Label a test as requiring network connection and, if an error is encountered, only raise if it does not find a network connection. In comparison to ``network``, this assumes an added contract to your test: you must assert that, under normal conditions, your test will ONLY fail if it does not have network connectivity. You can call this in 3 ways: as a standard decorator, with keyword arguments, or with a positional argument that is the url to check. Parameters ---------- t : callable The test requiring network connectivity. url : path The url to test via ``pandas.io.common.urlopen`` to check for connectivity. Defaults to 'http://www.google.com'. raise_on_error : bool If True, never catches errors. check_before_test : bool If True, checks connectivity before running the test case. error_classes : tuple or Exception error classes to ignore. If not in ``error_classes``, raises the error. defaults to IOError. Be careful about changing the error classes here. skip_errnos : iterable of int Any exception that has .errno or .reason.erno set to one of these values will be skipped with an appropriate message. _skip_on_messages: iterable of string any exception e for which one of the strings is a substring of str(e) will be skipped with an appropriate message. Intended to suppress errors where an errno isn't available. Notes ----- * ``raise_on_error`` supersedes ``check_before_test`` Returns ------- t : callable The decorated test ``t``, with checks for connectivity errors. Example ------- Tests decorated with @network will fail if it's possible to make a network connection to another URL (defaults to google.com):: >>> from pandas._testing import network >>> from pandas.io.common import urlopen >>> @network ... def test_network(): ... with urlopen("rabbit://bonanza.com"): ... pass Traceback ... URLError: <urlopen error unknown url type: rabit> You can specify alternative URLs:: >>> @network("http://www.yahoo.com") ... def test_something_with_yahoo(): ... raise IOError("Failure Message") >>> test_something_with_yahoo() Traceback (most recent call last): ... IOError: Failure Message If you set check_before_test, it will check the url first and not run the test on failure:: >>> @network("failing://url.blaher", check_before_test=True) ... def test_something(): ... print("I ran!") ... raise ValueError("Failure") >>> test_something() Traceback (most recent call last): ... Errors not related to networking will always be raised. """ from pytest import skip if error_classes is None: error_classes = _get_default_network_errors() t.network = True @wraps(t) def wrapper(*args, **kwargs): if check_before_test and not raise_on_error: if not can_connect(url, error_classes): skip() try: return t(*args, **kwargs) except Exception as err: errno = getattr(err, "errno", None) if not errno and hasattr(errno, "reason"): errno = getattr(err.reason, "errno", None) if errno in skip_errnos: skip(f"Skipping test due to known errno and error {err}") e_str = str(err) if any(m.lower() in e_str.lower() for m in _skip_on_messages): skip( f"Skipping test because exception message is known and error {err}" ) if not isinstance(err, error_classes): raise if raise_on_error or can_connect(url, error_classes): raise else: skip(f"Skipping test due to lack of connectivity and error {err}") return wrapper with_connectivity_check = network @contextmanager def assert_produces_warning( expected_warning=Warning, filter_level="always", check_stacklevel=True, raise_on_extra_warnings=True, ): """ Context manager for running code expected to either raise a specific warning, or not raise any warnings. Verifies that the code raises the expected warning, and that it does not raise any other unexpected warnings. It is basically a wrapper around ``warnings.catch_warnings``. Parameters ---------- expected_warning : {Warning, False, None}, default Warning The type of Exception raised. ``exception.Warning`` is the base class for all warnings. To check that no warning is returned, specify ``False`` or ``None``. filter_level : str or None, default "always" Specifies whether warnings are ignored, displayed, or turned into errors. Valid values are: * "error" - turns matching warnings into exceptions * "ignore" - discard the warning * "always" - always emit a warning * "default" - print the warning the first time it is generated from each location * "module" - print the warning the first time it is generated from each module * "once" - print the warning the first time it is generated check_stacklevel : bool, default True If True, displays the line that called the function containing the warning to show were the function is called. Otherwise, the line that implements the function is displayed. raise_on_extra_warnings : bool, default True Whether extra warnings not of the type `expected_warning` should cause the test to fail. Examples -------- >>> import warnings >>> with assert_produces_warning(): ... warnings.warn(UserWarning()) ... >>> with assert_produces_warning(False): ... warnings.warn(RuntimeWarning()) ... Traceback (most recent call last): ... AssertionError: Caused unexpected warning(s): ['RuntimeWarning']. >>> with assert_produces_warning(UserWarning): ... warnings.warn(RuntimeWarning()) Traceback (most recent call last): ... AssertionError: Did not see expected warning of class 'UserWarning'. ..warn:: This is *not* thread-safe. """ __tracebackhide__ = True with warnings.catch_warnings(record=True) as w: saw_warning = False warnings.simplefilter(filter_level) yield w extra_warnings = [] for actual_warning in w: if expected_warning and issubclass( actual_warning.category, expected_warning ): saw_warning = True if check_stacklevel and issubclass( actual_warning.category, (FutureWarning, DeprecationWarning) ): from inspect import getframeinfo, stack caller = getframeinfo(stack()[2][0]) msg = ( "Warning not set with correct stacklevel. " f"File where warning is raised: {actual_warning.filename} != " f"{caller.filename}. Warning message: {actual_warning.message}" ) assert actual_warning.filename == caller.filename, msg else: extra_warnings.append( ( actual_warning.category.__name__, actual_warning.message, actual_warning.filename, actual_warning.lineno, ) ) if expected_warning: msg = ( f"Did not see expected warning of class " f"{repr(expected_warning.__name__)}" ) assert saw_warning, msg if raise_on_extra_warnings and extra_warnings: raise AssertionError( f"Caused unexpected warning(s): {repr(extra_warnings)}" ) class RNGContext: """ Context manager to set the numpy random number generator speed. Returns to the original value upon exiting the context manager. Parameters ---------- seed : int Seed for numpy.random.seed Examples -------- with RNGContext(42): np.random.randn() """ def __init__(self, seed): self.seed = seed def __enter__(self): self.start_state = np.random.get_state() np.random.seed(self.seed) def __exit__(self, exc_type, exc_value, traceback): np.random.set_state(self.start_state) @contextmanager def with_csv_dialect(name, **kwargs): """ Context manager to temporarily register a CSV dialect for parsing CSV. Parameters ---------- name : str The name of the dialect. kwargs : mapping The parameters for the dialect. Raises ------ ValueError : the name of the dialect conflicts with a builtin one. See Also -------- csv : Python's CSV library. """ import csv _BUILTIN_DIALECTS = {"excel", "excel-tab", "unix"} if name in _BUILTIN_DIALECTS: raise ValueError("Cannot override builtin dialect.") csv.register_dialect(name, **kwargs) yield csv.unregister_dialect(name) @contextmanager def use_numexpr(use, min_elements=None): from pandas.core.computation import expressions as expr if min_elements is None: min_elements = expr._MIN_ELEMENTS olduse = expr._USE_NUMEXPR oldmin = expr._MIN_ELEMENTS expr.set_use_numexpr(use) expr._MIN_ELEMENTS = min_elements yield expr._MIN_ELEMENTS = oldmin expr.set_use_numexpr(olduse) def test_parallel(num_threads=2, kwargs_list=None): """ Decorator to run the same function multiple times in parallel. Parameters ---------- num_threads : int, optional The number of times the function is run in parallel. kwargs_list : list of dicts, optional The list of kwargs to update original function kwargs on different threads. Notes ----- This decorator does not pass the return value of the decorated function. Original from scikit-image: https://github.com/scikit-image/scikit-image/pull/1519 """ assert num_threads > 0 has_kwargs_list = kwargs_list is not None if has_kwargs_list: assert len(kwargs_list) == num_threads import threading def wrapper(func): @wraps(func) def inner(*args, **kwargs): if has_kwargs_list: update_kwargs = lambda i: dict(kwargs, **kwargs_list[i]) else: update_kwargs = lambda i: kwargs threads = [] for i in range(num_threads): updated_kwargs = update_kwargs(i) thread = threading.Thread(target=func, args=args, kwargs=updated_kwargs) threads.append(thread) for thread in threads: thread.start() for thread in threads: thread.join() return inner return wrapper class SubclassedSeries(Series): _metadata = ["testattr", "name"] @property def _constructor(self): return SubclassedSeries @property def _constructor_expanddim(self): return SubclassedDataFrame class SubclassedDataFrame(DataFrame): _metadata = ["testattr"] @property def _constructor(self): return SubclassedDataFrame @property def _constructor_sliced(self): return SubclassedSeries class SubclassedCategorical(Categorical): @property def _constructor(self): return SubclassedCategorical @contextmanager def set_timezone(tz: str): """ Context manager for temporarily setting a timezone. Parameters ---------- tz : str A string representing a valid timezone. Examples -------- >>> from datetime import datetime >>> from dateutil.tz import tzlocal >>> tzlocal().tzname(datetime.now()) 'IST' >>> with set_timezone('US/Eastern'): ... tzlocal().tzname(datetime.now()) ... 'EDT' """ import os import time def setTZ(tz): if tz is None: try: del os.environ["TZ"] except KeyError: pass else: os.environ["TZ"] = tz time.tzset() orig_tz = os.environ.get("TZ") setTZ(tz) try: yield finally: setTZ(orig_tz) def _make_skipna_wrapper(alternative, skipna_alternative=None): """ Create a function for calling on an array. Parameters ---------- alternative : function The function to be called on the array with no NaNs. Only used when 'skipna_alternative' is None. skipna_alternative : function The function to be called on the original array Returns ------- function """ if skipna_alternative: def skipna_wrapper(x): return skipna_alternative(x.values) else: def skipna_wrapper(x): nona = x.dropna() if len(nona) == 0: return np.nan return alternative(nona) return skipna_wrapper def convert_rows_list_to_csv_str(rows_list: List[str]): """ Convert list of CSV rows to single CSV-formatted string for current OS. This method is used for creating expected value of to_csv() method. Parameters ---------- rows_list : List[str] Each element represents the row of csv. Returns ------- str Expected output of to_csv() in current OS. """ sep = os.linesep expected = sep.join(rows_list) + sep return expected def external_error_raised(expected_exception: Type[Exception]) -> ContextManager: """ Helper function to mark pytest.raises that have an external error message. Parameters ---------- expected_exception : Exception Expected error to raise. Returns ------- Callable Regular `pytest.raises` function with `match` equal to `None`. """ import pytest return pytest.raises(expected_exception, match=None) cython_table = pd.core.base.SelectionMixin._cython_table.items() def get_cython_table_params(ndframe, func_names_and_expected): """ Combine frame, functions from SelectionMixin._cython_table keys and expected result. Parameters ---------- ndframe : DataFrame or Series func_names_and_expected : Sequence of two items The first item is a name of a NDFrame method ('sum', 'prod') etc. The second item is the expected return value. Returns ------- list List of three items (DataFrame, function, expected result) """ results = [] for func_name, expected in func_names_and_expected: results.append((ndframe, func_name, expected)) results += [ (ndframe, func, expected) for func, name in cython_table if name == func_name ] return results def get_op_from_name(op_name: str) -> Callable: """ The operator function for a given op name. Parameters ---------- op_name : string The op name, in form of "add" or "__add__". Returns ------- function A function performing the operation. """ short_opname = op_name.strip("_") try: op = getattr(operator, short_opname) except AttributeError: # Assume it is the reverse operator rop = getattr(operator, short_opname[1:]) op = lambda x, y: rop(y, x) return op
py
b402b0f8fb91dd12e20e4971b3ab7888d829b03c
# -*- coding: utf-8; -*- # # The MIT License (MIT) # # Copyright (c) 2014 Flavien Charlon # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import bitcoin.base58 import bitcoin.wallet class Base58Address(bytes): """Represents a Base58-encoded address. It includes a version, checksum and namespace.""" def __init__(self, data, version, namespace): """ Initializes a Base58Address object from data, version and namespace. :param bytes data: The base-58 payload. :param int version: The version byte. :param int | None namespace: The namespace byte. :return: The Base58Address instance. :rtype: Base58Address """ if not (0 <= version <= 255): raise ValueError('version must be in range 0 to 255 inclusive; got %d' % version) if namespace is not None and not (0 <= namespace <= 255): raise ValueError('namespace must be None or in range 0 to 255 inclusive; got %d' % version) if len(data) != 20: raise ValueError('The payload must be 20 bytes long') super().__init__() self.address = bitcoin.wallet.CBitcoinAddress.from_bytes(data, version) self.namespace = namespace def __new__(cls, data, version, namespace, *args, **kwargs): return super().__new__(cls, data) @classmethod def from_string(cls, base58): """ Creates a new instance of the Base58Address class. :param str base58: The Base-58 encoded address. :return: The Base58Address instance. :rtype: Base58Address """ decoded_bytes = bitcoin.base58.decode(base58) checksum = decoded_bytes[-4:] calculated_checksum = bitcoin.core.Hash(decoded_bytes[:-4])[:4] if checksum != calculated_checksum: raise bitcoin.base58.Base58ChecksumError( 'Checksum mismatch: expected %r, calculated %r' % (checksum, calculated_checksum)) if len(decoded_bytes) == 26: # The address has a namespace defined namespace, version, data = decoded_bytes[0:1], decoded_bytes[1:2], decoded_bytes[2:-4] return cls(data, version[0], namespace[0]) elif len(decoded_bytes) == 25: # The namespace is undefined version, data = decoded_bytes[0:1], decoded_bytes[1:-4] return cls(data, version[0], None) else: raise ValueError('Invalid length') def to_bytes(self): """Converts to a bytes instance. Note that it's the data represented that is converted; the checksum, version and namespace are not included. :return: The Base58Address instance. :rtype: bytes """ return b'' + self def __str__(self): """ Converts the address to a string. :return: The base-58 encoded string. :rtype: str """ if self.namespace is None: full_payload = bytes([self.address.nVersion]) + self else: full_payload = bytes([self.namespace]) + bytes([self.address.nVersion]) + self checksum = bitcoin.core.Hash(full_payload)[0:4] return bitcoin.base58.encode(full_payload + checksum)