ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
b40bd83407a1845a6e9529fcd8b0d4e39fea59bd
"""SI URL Feeds Class.""" from fmcapi.api_objects.apiclasstemplate import APIClassTemplate import logging class SIUrlFeeds(APIClassTemplate): """The SIUrlFeeds Object in the FMC.""" VALID_JSON_DATA = [ "id", "name", "type", "checksumURL", "feedURL", "updateFrequency", "overrides", "overridable", ] VALID_FOR_KWARGS = VALID_JSON_DATA + [] URL_SUFFIX = "/object/siurlfeeds" def __init__(self, fmc, **kwargs): """ Initialize SIUrlFeeds object. :param fmc: (object) FMC object :param kwargs: Any other values passed during instantiation. :return: None """ super().__init__(fmc, **kwargs) logging.debug("In __init__() for SIUrlFeeds class.") self.parse_kwargs(**kwargs) def post(self): """POST method for API for SIUrlFeeds not supported.""" logging.info("POST method for API for SIUrlFeeds not supported.") pass def put(self): """PUT method for API for SIUrlFeeds not supported.""" logging.info("PUT method for API for SIUrlFeeds not supported.") pass def delete(self): """DELETE method for API for SIUrlFeeds not supported.""" logging.info("DELETE method for API for SIUrlFeeds not supported.") pass
py
b40bd8adedacb737c421a32e60b3dd98e1bfda1f
# This code is part of Qiskit. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """The evolved operator ansatz.""" from typing import Optional import numpy as np from qiskit.circuit import ( Parameter, ParameterVector, QuantumRegister, QuantumCircuit, ParameterExpression, ) from qiskit.circuit.exceptions import CircuitError from qiskit.exceptions import QiskitError from .blueprintcircuit import BlueprintCircuit class EvolvedOperatorAnsatz(BlueprintCircuit): """The evolved operator ansatz.""" def __init__( self, operators=None, reps: int = 1, evolution=None, insert_barriers: bool = False, name: str = "EvolvedOps", initial_state: Optional[QuantumCircuit] = None, ): """ Args: operators (Optional[Union[OperatorBase, QuantumCircuit, list]): The operators to evolve. If a circuit is passed, we assume it implements an already evolved operator and thus the circuit is not evolved again. Can be a single operator (circuit) or a list of operators (and circuits). reps: The number of times to repeat the evolved operators. evolution (Optional[EvolutionBase]): An opflow converter object to construct the evolution. Defaults to Trotterization. insert_barriers: Whether to insert barriers in between each evolution. name: The name of the circuit. initial_state: A `QuantumCircuit` object to prepend to the circuit. """ if evolution is None: # pylint: disable=cyclic-import from qiskit.opflow import PauliTrotterEvolution evolution = PauliTrotterEvolution() if operators is not None: operators = _validate_operators(operators) super().__init__(name=name) self._operators = operators self._evolution = evolution self._reps = reps self._insert_barriers = insert_barriers self._initial_state = initial_state def _check_configuration(self, raise_on_failure: bool = True) -> bool: if self.operators is None: if raise_on_failure: raise ValueError("The operators are not set.") return False if self.reps < 1: if raise_on_failure: raise ValueError("The reps cannot be smaller than 1.") return False return True @property def reps(self) -> int: """The number of times the evolved operators are repeated.""" return self._reps @reps.setter def reps(self, r: int) -> None: """Sets the number of times the evolved operators are repeated.""" self._invalidate() self._reps = r @property def evolution(self): """The evolution converter used to compute the evolution. Returns: EvolutionBase: The evolution converter used to compute the evolution. """ return self._evolution @evolution.setter def evolution(self, evol) -> None: """Sets the evolution converter used to compute the evolution. Args: evol (EvolutionBase): An opflow converter object to construct the evolution. """ self._invalidate() self._evolution = evol @property def initial_state(self) -> QuantumCircuit: """The initial state.""" return self._initial_state @initial_state.setter def initial_state(self, initial_state: QuantumCircuit) -> None: """Sets the initial state.""" self._invalidate() self._initial_state = initial_state @property def operators(self): """The operators that are evolved in this circuit. Returns: list: The operators to be evolved (and circuits) contained in this ansatz. """ return self._operators @operators.setter def operators(self, operators=None) -> None: """Set the operators to be evolved. operators (Optional[Union[OperatorBase, QuantumCircuit, list]): The operators to evolve. If a circuit is passed, we assume it implements an already evolved operator and thus the circuit is not evolved again. Can be a single operator (circuit) or a list of operators (and circuits). """ operators = _validate_operators(operators) self._invalidate() self._operators = operators @property def qregs(self): """A list of the quantum registers associated with the circuit.""" if self._data is None: self._build() return self._qregs @qregs.setter def qregs(self, qregs): """Set the quantum registers associated with the circuit.""" self._qregs = qregs self._qubits = [qbit for qreg in qregs for qbit in qreg] self._invalidate() # TODO: the `preferred_init_points`-implementation can (and should!) be improved! @property def preferred_init_points(self): """Getter of preferred initial points based on the given initial state.""" if self._initial_state is None: return None else: # If an initial state was set by the user, then we want to make sure that the VQE does # not start from a random point. Thus, we return an all-zero initial point for the # optimizer which is used (unless it gets overwritten by a higher-priority setting at # runtime of the VQE). # However, in order to determine the correct length, we must build the QuantumCircuit # first, because otherwise the operators may not be set yet. self._build() return np.zeros(self.reps * len(self.operators), dtype=float) def _build(self): if self._data is not None: return self._check_configuration() self._data = [] # get the evolved operators as circuits from qiskit.opflow import PauliOp coeff = Parameter("c") circuits = [] is_evolved_operator = [] for op in self.operators: # if the operator is already the evolved circuit just append it if isinstance(op, QuantumCircuit): circuits.append(op) is_evolved_operator.append(False) # has no time coeff else: # check if the operator is just the identity, if yes, skip it if isinstance(op, PauliOp): sig_qubits = np.logical_or(op.primitive.x, op.primitive.z) if sum(sig_qubits) == 0: continue evolved_op = self.evolution.convert((coeff * op).exp_i()).reduce() circuits.append(evolved_op.to_circuit()) is_evolved_operator.append(True) # has time coeff # set the registers num_qubits = circuits[0].num_qubits try: qr = QuantumRegister(num_qubits, "q") self.add_register(qr) except CircuitError: # the register already exists, probably because of a previous composition pass # build the circuit times = ParameterVector("t", self.reps * sum(is_evolved_operator)) times_it = iter(times) evolution = QuantumCircuit(*self.qregs, name=self.name) first = True for _ in range(self.reps): for is_evolved, circuit in zip(is_evolved_operator, circuits): if first: first = False else: if self._insert_barriers: evolution.barrier() if is_evolved: bound = circuit.assign_parameters({coeff: next(times_it)}) else: bound = circuit evolution.compose(bound, inplace=True) if self.initial_state: evolution.compose(self.initial_state, front=True, inplace=True) # cast global phase to float if it has no free parameters if isinstance(evolution.global_phase, ParameterExpression): try: evolution.global_phase = float(evolution.global_phase._symbol_expr) # RuntimeError is raised if symengine is used, for SymPy it is a TypeError except (RuntimeError, TypeError): # expression contains free parameters pass try: instr = evolution.to_gate() except QiskitError: instr = evolution.to_instruction() self.append(instr, self.qubits) def _validate_operators(operators): if not isinstance(operators, list): operators = [operators] if len(operators) > 1: num_qubits = operators[0].num_qubits if any(operators[i].num_qubits != num_qubits for i in range(1, len(operators))): raise ValueError("All operators must act on the same number of qubits.") return operators
py
b40bd8be814659f2ed06a76014ded0b0a0a6fa01
def gen_fib(n): a, b, i = 1, 1, 0 for i in range(n): yield (i, a) a, b = b, a + b if __name__ == '__main__': for i, val in gen_fib(15): print(f'fib({i}) = {val}')
py
b40bd8e6252f05e97a9ee5c5e2463c879552a130
# -*- coding: utf-8 -*- import time import mendeley from mendeley.exception import MendeleyApiException from modularodm import fields from website.addons.base import AddonOAuthNodeSettingsBase from website.addons.base import AddonOAuthUserSettingsBase from website.addons.citations.utils import serialize_folder from website.addons.mendeley import serializer from website.addons.mendeley import settings from website.addons.mendeley.api import APISession from website.oauth.models import ExternalProvider from website.util import web_url_for from framework.exceptions import HTTPError class Mendeley(ExternalProvider): name = 'Mendeley' short_name = 'mendeley' client_id = settings.MENDELEY_CLIENT_ID client_secret = settings.MENDELEY_CLIENT_SECRET auth_url_base = 'https://api.mendeley.com/oauth/authorize' callback_url = 'https://api.mendeley.com/oauth/token' default_scopes = ['all'] _client = None def handle_callback(self, response): client = self._get_client(response) # make a second request for the Mendeley user's ID and name profile = client.profiles.me return { 'provider_id': profile.id, 'display_name': profile.display_name, 'profile_url': profile.link, } def _get_client(self, credentials): if not self._client: partial = mendeley.Mendeley( client_id=self.client_id, client_secret=self.client_secret, redirect_uri=web_url_for('oauth_callback', service_name='mendeley', _absolute=True), ) self._client = APISession(partial, credentials) return self._client def _get_folders(self): """Get a list of a user's folders""" client = self.client return client.folders.list().items @property def client(self): """An API session with Mendeley""" if not self._client: self._client = self._get_client({ 'access_token': self.account.oauth_key, 'refresh_token': self.account.refresh_token, 'expires_at': time.mktime(self.account.expires_at.timetuple()), 'token_type': 'bearer', }) #Check if Mendeley can be accessed try: self._client.folders.list() except MendeleyApiException as error: self._client = None if error.status == 403: raise HTTPError(403) else: raise HTTPError(error.status) return self._client def citation_lists(self, extract_folder): """List of CitationList objects, derived from Mendeley folders""" folders = self._get_folders() # TODO: Verify OAuth access to each folder all_documents = serialize_folder( 'All Documents', id='ROOT', parent_id='__' ) serialized_folders = [ extract_folder(each) for each in folders ] return [all_documents] + serialized_folders def get_list(self, list_id='ROOT'): """Get a single CitationList :param str list_id: ID for a Mendeley folder. Optional. :return CitationList: CitationList for the folder, or for all documents """ if list_id == 'ROOT': folder = None else: folder = self.client.folders.get(list_id) if folder: return self._citations_for_mendeley_folder(folder) return self._citations_for_mendeley_user() def _folder_metadata(self, folder_id): folder = self.client.folders.get(folder_id) return folder def _citations_for_mendeley_folder(self, folder): document_ids = [ document.id for document in folder.documents.iter(page_size=500) ] citations = { citation['id']: citation for citation in self._citations_for_mendeley_user() } return map(lambda id: citations[id], document_ids) def _citations_for_mendeley_user(self): documents = self.client.documents.iter(page_size=500) return [ self._citation_for_mendeley_document(document) for document in documents ] def _citation_for_mendeley_document(self, document): """Mendeley document to ``website.citations.models.Citation`` :param BaseDocument document: An instance of ``mendeley.models.base_document.BaseDocument`` :return Citation: """ csl = { 'id': document.json.get('id') } CSL_TYPE_MAP = { 'book_section': 'chapter', 'case': 'legal_case', 'computer_program': 'article', 'conference_proceedings': 'paper-conference', 'encyclopedia_article': 'entry-encyclopedia', 'film': 'motion_picture', 'generic': 'article', 'hearing': 'speech', 'journal': 'article-journal', 'magazine_article': 'article-magazine', 'newspaper_article': 'article-newspaper', 'statute': 'legislation', 'television_broadcast': 'broadcast', 'web_page': 'webpage', 'working_paper': 'report' } csl_type = document.json.get('type') if csl_type in CSL_TYPE_MAP: csl['type'] = CSL_TYPE_MAP[csl_type] else: csl['type'] = 'article' if document.json.get('abstract'): csl['abstract'] = document.json.get('abstract') if document.json.get('accessed'): csl['accessed'] = document.json.get('accessed') if document.json.get('authors'): csl['author'] = [ { 'given': person.get('first_name'), 'family': person.get('last_name'), } for person in document.json.get('authors') ] if document.json.get('chapter'): csl['chapter-number'] = document.json.get('chapter') if document.json.get('city') and document.json.get('country'): csl['publisher-place'] = document.json.get('city') + ", " + document.json.get('country') elif document.json.get('city'): csl['publisher-place'] = document.json.get('city') elif document.json.get('country'): csl['publisher-place'] = document.json.get('country') if document.json.get('edition'): csl['edition'] = document.json.get('edition') if document.json.get('editors'): csl['editor'] = [ { 'given': person.get('first_name'), 'family': person.get('last_name'), } for person in document.json.get('editors') ] if document.json.get('genre'): csl['genre'] = document.json.get('genre') # gather identifiers idents = document.json.get('identifiers') if idents is not None: if idents.get('doi'): csl['DOI'] = idents.get('doi') if idents.get('isbn'): csl['ISBN'] = idents.get('isbn') if idents.get('issn'): csl['ISSN'] = idents.get('issn') if idents.get('pmid'): csl['PMID'] = idents.get('pmid') if document.json.get('issue'): csl['issue'] = document.json.get('issue') if document.json.get('language'): csl['language'] = document.json.get('language') if document.json.get('medium'): csl['medium'] = document.json.get('medium') if document.json.get('pages'): csl['page'] = document.json.get('pages') if document.json.get('publisher'): csl['publisher'] = document.json.get('publisher') if csl_type == 'thesis': csl['publisher'] = document.json.get('institution') if document.json.get('revision'): csl['number'] = document.json.get('revision') if document.json.get('series'): csl['collection-title'] = document.json.get('series') if document.json.get('series_editor'): csl['collection-editor'] = document.json.get('series_editor') if document.json.get('short_title'): csl['shortTitle'] = document.json.get('short_title') if document.json.get('source'): csl['container-title'] = document.json.get('source') if document.json.get('title'): csl['title'] = document.json.get('title') if document.json.get('volume'): csl['volume'] = document.json.get('volume') urls = document.json.get('websites', []) if urls: csl['URL'] = urls[0] if document.json.get('year'): csl['issued'] = {'date-parts': [[document.json.get('year')]]} return csl class MendeleyUserSettings(AddonOAuthUserSettingsBase): oauth_provider = Mendeley serializer = serializer.MendeleySerializer class MendeleyNodeSettings(AddonOAuthNodeSettingsBase): oauth_provider = Mendeley serializer = serializer.MendeleySerializer mendeley_list_id = fields.StringField() _api = None @property def api(self): """authenticated ExternalProvider instance""" if self._api is None: self._api = Mendeley() self._api.account = self.external_account return self._api @property def complete(self): return bool(self.has_auth and self.user_settings.verify_oauth_access( node=self.owner, external_account=self.external_account, metadata={'folder': self.mendeley_list_id}, )) @property def selected_folder_name(self): if self.mendeley_list_id is None: return '' elif self.mendeley_list_id == 'ROOT': return 'All Documents' else: folder = self.api._folder_metadata(self.mendeley_list_id) return folder.name @property def root_folder(self): root = serialize_folder( 'All Documents', id='ROOT', parent_id='__' ) root['kind'] = 'folder' return root @property def provider_name(self): return 'mendeley' @property def folder_id(self): return self.mendeley_list_id @property def folder_name(self): return self.selected_folder_name @property def folder_path(self): return self.selected_folder_name def clear_auth(self): self.mendeley_list_id = None return super(MendeleyNodeSettings, self).clear_auth() def deauthorize(self, auth=None, add_log=True): """Remove user authorization from this node and log the event.""" if add_log: self.owner.add_log( 'mendeley_node_deauthorized', params={ 'project': self.owner.parent_id, 'node': self.owner._id, }, auth=auth, ) self.clear_auth() self.save() def set_auth(self, *args, **kwargs): self.mendeley_list_id = None return super(MendeleyNodeSettings, self).set_auth(*args, **kwargs) def set_target_folder(self, mendeley_list_id, mendeley_list_name, auth): """Configure this addon to point to a Mendeley folder :param str mendeley_list_id: :param ExternalAccount external_account: :param User user: """ # Tell the user's addon settings that this node is connecting self.user_settings.grant_oauth_access( node=self.owner, external_account=self.external_account, metadata={'folder': mendeley_list_id} ) self.user_settings.save() # update this instance self.mendeley_list_id = mendeley_list_id self.save() self.owner.add_log( 'mendeley_folder_selected', params={ 'project': self.owner.parent_id, 'node': self.owner._id, 'folder_id': mendeley_list_id, 'folder_name': mendeley_list_name, }, auth=auth, )
py
b40bdab22fcc6aaee47a8b944adabe29b98b6d2a
#!/usr/bin/env python # # Copyright (C) 2019 Databricks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function from io import open import sys from setuptools import setup from os import path DESCRIPTION = "Koalas: pandas API on Apache Spark" this_directory = path.abspath(path.dirname(__file__)) with open(path.join(this_directory, 'README.md'), encoding='utf-8') as f: LONG_DESCRIPTION = f.read() try: exec(open('databricks/koalas/version.py').read()) except IOError: print("Failed to load Koalas version file for packaging. You must be in Koalas root dir.", file=sys.stderr) sys.exit(-1) VERSION = __version__ # noqa setup( name='koalas', version=VERSION, packages=['databricks', 'databricks.koalas', 'databricks.koalas.missing', 'databricks.koalas.usage_logging'], extras_require={ 'spark': ['pyspark>=2.4.0'], 'mlflow': ['mlflow>=1.0'], }, python_requires='>=3.5', install_requires=[ 'pandas>=0.23.2,<1.0', 'pyarrow>=0.10,<0.15', 'numpy>=1.14', 'matplotlib>=3.0.0', ], maintainer="Databricks", maintainer_email="[email protected]", license='http://www.apache.org/licenses/LICENSE-2.0', url="https://github.com/databricks/koalas", project_urls={ 'Bug Tracker': 'https://github.com/databricks/koalas/issues', 'Documentation': 'https://koalas.readthedocs.io/', 'Source Code': 'https://github.com/databricks/koalas' }, description=DESCRIPTION, long_description=LONG_DESCRIPTION, long_description_content_type='text/markdown', classifiers=[ 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], )
py
b40bdaf6d5f6c2befe0a27adc2310b38ca413722
import itertools import logging import atlas_mpl_style as ampl import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import pandas as pd import hepynet.common.hepy_type as ht logger = logging.getLogger("hepynet") def plot_mva_scores( df_raw: pd.DataFrame, df: pd.DataFrame, job_config: ht.config, save_dir: ht.pathlike, file_name: str = "mva_scores", ): # initialize logger.info("Plotting MVA scores") tc = job_config.train.clone() ac = job_config.apply.clone() plot_config = ac.cfg_mva_scores_data_mc.clone() # prepare signal sig_scores_dict = {} sig_weights_dict = {} for sig_key in plot_config.sig_list: sig_score = df.loc[df["sample_name"] == sig_key, "y_pred"].values if sig_score.ndim == 1: sig_score = sig_score.reshape((-1, 1)) sig_scores_dict[sig_key] = sig_score sig_weight = df_raw.loc[df["sample_name"] == sig_key, "weight"].values sig_weights_dict[sig_key] = sig_weight # prepare background bkg_scores_dict = {} bkg_weights_dict = {} for bkg_key in plot_config.bkg_list: bkg_score = df.loc[df["sample_name"] == bkg_key, "y_pred"].values if bkg_score.ndim == 1: bkg_score = bkg_score.reshape((-1, 1)) bkg_scores_dict[bkg_key] = bkg_score bkg_weight = df_raw.loc[df["sample_name"] == bkg_key, "weight"].values bkg_weights_dict[bkg_key] = bkg_weight # prepare data # TODO: support data plots if plot_config.apply_data: data_key = plot_config.data_key data_scores = df.loc[df["sample_name"] == data_key, "y_pred"].values if data_scores.ndim == 1: data_scores = data_scores.reshape((-1, 1)) data_weights = df_raw.loc[ df["sample_name"] == data_key, "weight" ].values # make plots all_nodes = ["sig"] + tc.output_bkg_node_names for node_id, node in enumerate(all_nodes): if plot_config.show_ratio: fig = plt.figure(figsize=(50 / 3, 50 / 3)) gs = mpl.gridspec.GridSpec(4, 1, hspace=0.0, wspace=0.0) ax = fig.add_subplot(gs[0:3]) ax.tick_params(labelbottom=False) ratio_ax = fig.add_subplot(gs[3], sharex=ax) # ratio_ax.yaxis.set_major_locator( # mpl.ticker.MaxNLocator( # symmetric=True, prune="both", min_n_ticks=5, nbins=4 # ) # ) ratio_ax.autoscale(axis="x", tight=True) plt.sca(ax) else: fig, ax = plt.subplots(figsize=(50 / 3, 100 / 9)) colors = plt.rcParams["axes.prop_cycle"].by_key()["color"] color_cycle = itertools.cycle(colors) # plot bkg bkg_collect = list() bkg_scores_all = None bkg_weights_all = None for key, value in bkg_scores_dict.items(): node_score = value[:, node_id].flatten() node_weight = bkg_weights_dict[key] * plot_config.bkg_scale bkg_bins, _ = np.histogram( node_score, bins=plot_config.bins, range=plot_config.range, weights=node_weight, density=plot_config.density, ) if plot_config.bkg_scale != 1: bkg_label = f"{key} x{plot_config.bkg_scale}" else: bkg_label = key bkg = ampl.plot.Background( bkg_label, bkg_bins, color=next(color_cycle) ) bkg_collect.append(bkg) if bkg_scores_all is None: bkg_scores_all = node_score bkg_weights_all = node_weight else: bkg_scores_all = np.concatenate((bkg_scores_all, node_score)) bkg_weights_all = np.concatenate( (bkg_weights_all, node_weight) ) bkg_all_bins, bkg_edges = np.histogram( bkg_scores_all, bins=plot_config.bins, range=plot_config.range, weights=bkg_weights_all, density=plot_config.density, ) sumw2, _ = np.histogram( bkg_scores_all, bins=plot_config.bins, range=plot_config.range, weights=np.power(bkg_weights_all, 2), ) bkg_stats_errs = np.sqrt(sumw2) if plot_config.density: norm_sum = np.sum(bkg_weights_all) * (1 / plot_config.bins) bkg_stats_errs /= norm_sum ampl.plot.plot_backgrounds(bkg_collect, bkg_edges, ax=ax) # plot sig for key, value in sig_scores_dict.items(): sig_bins, sig_edges = np.histogram( value[:, node_id].flatten(), bins=plot_config.bins, range=plot_config.range, weights=sig_weights_dict[key] * plot_config.sig_scale, density=plot_config.density, ) if plot_config.sig_scale != 1: sig_label = f"{key} x{plot_config.sig_scale}" else: sig_label = key ampl.plot.plot_signal( sig_label, sig_edges, sig_bins, color=next(color_cycle), ax=ax ) # plot data if plot_config.apply_data: data_bins, data_edges = np.histogram( data_scores[:, node_id].flatten(), bins=plot_config.bins, range=plot_config.range, weights=data_weights * plot_config.data_scale, density=plot_config.density, ) sumw2, _ = np.histogram( data_scores[:, node_id].flatten(), bins=plot_config.bins, range=plot_config.range, weights=np.power(data_weights * plot_config.data_scale, 2), ) data_stats_errs = np.sqrt(sumw2) if plot_config.density: norm_sum = np.sum(data_weights * plot_config.data_scale) * ( 1 / plot_config.bins ) data_stats_errs /= norm_sum if plot_config.data_scale != 1: data_label = f"data x{plot_config.data_scale}" else: data_label = "data" ampl.plot.plot_data( data_edges, data_bins, stat_errs=data_stats_errs, label=data_label, ax=ax, ) # plot ratio if plot_config.show_ratio: ampl.plot.plot_ratio( data_edges, data_bins, data_stats_errs, bkg_all_bins, bkg_stats_errs, ratio_ax, plottype="raw", offscale_errs=True, # TODO: add as an option? ) ratio_ax.set_ylim(0, 2) ax.set_xlim(plot_config.range[0], plot_config.range[1]) ax.legend(loc="upper right", ncol=2) if ac.plot_atlas_label: ampl.plot.draw_atlas_label( 0.05, 0.95, ax=ax, **(ac.atlas_label.get_config_dict()) ) # Save lin/log plots _, y_max = ax.get_ylim() ## save lin ax.set_ylim(0, y_max * 1.4) fig.savefig( f"{save_dir}/{file_name}_node_{node}_lin.{plot_config.save_format}" ) ## save log ax.set_yscale("log") ax.set_ylim( plot_config.logy_min, y_max * np.power(10, np.log10(y_max / plot_config.logy_min) / 2), ) fig.savefig( f"{save_dir}/{file_name}_node_{node}_log.{plot_config.save_format}" ) return 0 # success run def plot_train_test_compare( df: pd.DataFrame, job_config: ht.config, save_dir: ht.pathlike ): """Plots train/test datasets' cores distribution comparison""" # initialize logger.info("Plotting train/test scores.") tc = job_config.train.clone() ac = job_config.apply.clone() plot_config = job_config.apply.cfg_train_test_compare all_nodes = ["sig"] + tc.output_bkg_node_names # get inputs train_index = df["is_train"] == True test_index = df["is_train"] == False sig_index = (df["is_sig"] == True) & (df["is_mc"] == True) bkg_index = (df["is_sig"] == False) & (df["is_mc"] == True) xs_train_scores = df.loc[sig_index & train_index, ["y_pred"]].values xs_test_scores = df.loc[sig_index & test_index, ["y_pred"]].values xs_train_weight = df.loc[sig_index & train_index, ["weight"]].values xs_test_weight = df.loc[sig_index & test_index, ["weight"]].values xb_train_scores = df.loc[bkg_index & train_index, ["y_pred"]].values xb_test_scores = df.loc[bkg_index & test_index, ["y_pred"]].values xb_train_weight = df.loc[bkg_index & train_index, ["weight"]].values xb_test_weight = df.loc[bkg_index & test_index, ["weight"]].values # plot for each nodes num_nodes = len(all_nodes) for node_num in range(num_nodes): fig, ax = plt.subplots() # plot test scores bkg_bins, bkg_edges = np.histogram( xb_test_scores, bins=plot_config.bins, range=(0, 1), weights=xb_test_weight, density=plot_config.density, ) bkg = ampl.plot.Background( "background (test)", bkg_bins, color=plot_config.bkg_color ) ampl.plot.plot_backgrounds([bkg], bkg_edges, ax=ax) sig_bins, sig_edges = np.histogram( xs_test_scores, bins=plot_config.bins, range=(0, 1), weights=xs_test_weight, density=plot_config.density, ) ampl.plot.plot_signal( "signal (test)", sig_edges, sig_bins, color=plot_config.sig_color ) # plot train scores ## bkg bkg_bins, bkg_edges = np.histogram( xb_train_scores, bins=plot_config.bins, range=(0, 1), weights=xb_train_weight, density=plot_config.density, ) sumw2, _ = np.histogram( xb_train_scores, bins=plot_config.bins, range=(0, 1), weights=np.power(xb_train_weight, 2), ) bkg_stats_errs = np.sqrt(sumw2) if plot_config.density: norm_sum = np.sum(xb_train_weight) * (1 / plot_config.bins) bkg_stats_errs /= norm_sum err_x = 0.5 * (bkg_edges[:-1] + bkg_edges[1:]) ax.errorbar( err_x, bkg_bins, bkg_stats_errs, 0.5 / plot_config.bins, fmt=".k", mfc=plot_config.bkg_color, ms=10, label="background (train)", ) ## sig sig_bins, sig_edges = np.histogram( xs_train_scores, bins=plot_config.bins, range=(0, 1), weights=xs_train_weight, density=plot_config.density, ) sumw2, _ = np.histogram( xs_train_scores, bins=plot_config.bins, range=(0, 1), weights=np.power(xs_train_weight, 2), ) sig_stats_errs = np.sqrt(sumw2) if plot_config.density: norm_sum = np.sum(xs_train_weight) * (1 / plot_config.bins) sig_stats_errs /= norm_sum err_x = 0.5 * (sig_edges[:-1] + sig_edges[1:]) ax.errorbar( err_x, sig_bins, sig_stats_errs, 0.5 / plot_config.bins, fmt=".k", mfc=plot_config.sig_color, ms=10, label="signal (train)", ) # final adjustments ax.set_xlim(0, 1) ax.legend(loc="upper right") if ac.plot_atlas_label: ampl.plot.draw_atlas_label( 0.05, 0.95, ax=ax, **(ac.atlas_label.get_config_dict()) ) ax.set_xlabel("DNN score") # Save lin/log plots file_name = f"mva_scores_{all_nodes[node_num]}" _, y_max = ax.get_ylim() ## save lin ax.set_ylim(0, y_max * 1.4) fig.savefig(save_dir / f"{file_name}_lin.{plot_config.save_format}") ## save log ax.set_yscale("log") ax.set_ylim( plot_config.logy_min, y_max * np.power(10, np.log10(y_max) / 2) ) fig.savefig(save_dir / f"{file_name}_log.{plot_config.save_format}")
py
b40bdc64dd92e4897b3c4b0e48139ba68404deaa
# Copyright 2011 OpenStack Foundation # Copyright 2013 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock import webob from nova.api.openstack import common from nova.api.openstack.compute import create_backup \ as create_backup_v21 from nova.compute import api from nova import exception from nova import test from nova.tests.unit.api.openstack.compute import admin_only_action_common from nova.tests.unit.api.openstack import fakes from nova.tests.unit import fake_instance class CreateBackupTestsV21(admin_only_action_common.CommonMixin, test.NoDBTestCase): create_backup = create_backup_v21 controller_name = 'CreateBackupController' validation_error = exception.ValidationError def setUp(self): super(CreateBackupTestsV21, self).setUp() self.controller = getattr(self.create_backup, self.controller_name)() self.compute_api = self.controller.compute_api patch_get = mock.patch.object(self.compute_api, 'get') self.mock_get = patch_get.start() self.addCleanup(patch_get.stop) @mock.patch.object(common, 'check_img_metadata_properties_quota') @mock.patch.object(api.API, 'backup') def test_create_backup_with_metadata(self, mock_backup, mock_check_image): metadata = {'123': 'asdf'} body = { 'createBackup': { 'name': 'Backup 1', 'backup_type': 'daily', 'rotation': 1, 'metadata': metadata, }, } image = dict(id='fake-image-id', status='ACTIVE', name='Backup 1', properties=metadata) instance = fake_instance.fake_instance_obj(self.context) self.mock_get.return_value = instance mock_backup.return_value = image res = self.controller._create_backup(self.req, instance.uuid, body=body) mock_check_image.assert_called_once_with(self.context, metadata) mock_backup.assert_called_once_with(self.context, instance, 'Backup 1', 'daily', 1, extra_properties=metadata) self.assertEqual(202, res.status_int) self.assertIn('fake-image-id', res.headers['Location']) def test_create_backup_no_name(self): # Name is required for backups. body = { 'createBackup': { 'backup_type': 'daily', 'rotation': 1, }, } self.assertRaises(self.validation_error, self.controller._create_backup, self.req, fakes.FAKE_UUID, body=body) def test_create_backup_name_with_leading_trailing_spaces(self): body = { 'createBackup': { 'name': ' test ', 'backup_type': 'daily', 'rotation': 1, }, } self.assertRaises(self.validation_error, self.controller._create_backup, self.req, fakes.FAKE_UUID, body=body) @mock.patch.object(common, 'check_img_metadata_properties_quota') @mock.patch.object(api.API, 'backup') def test_create_backup_name_with_leading_trailing_spaces_compat_mode( self, mock_backup, mock_check_image): body = { 'createBackup': { 'name': ' test ', 'backup_type': 'daily', 'rotation': 1, }, } image = dict(id='fake-image-id', status='ACTIVE', name='Backup 1', properties={}) instance = fake_instance.fake_instance_obj(self.context) self.mock_get.return_value = instance mock_backup.return_value = image self.req.set_legacy_v2() self.controller._create_backup(self.req, instance.uuid, body=body) mock_check_image.assert_called_once_with(self.context, {}) mock_backup.assert_called_once_with(self.context, instance, 'test', 'daily', 1, extra_properties={}) def test_create_backup_no_rotation(self): # Rotation is required for backup requests. body = { 'createBackup': { 'name': 'Backup 1', 'backup_type': 'daily', }, } self.assertRaises(self.validation_error, self.controller._create_backup, self.req, fakes.FAKE_UUID, body=body) def test_create_backup_negative_rotation(self): """Rotation must be greater than or equal to zero for backup requests """ body = { 'createBackup': { 'name': 'Backup 1', 'backup_type': 'daily', 'rotation': -1, }, } self.assertRaises(self.validation_error, self.controller._create_backup, self.req, fakes.FAKE_UUID, body=body) def test_create_backup_negative_rotation_with_string_number(self): body = { 'createBackup': { 'name': 'Backup 1', 'backup_type': 'daily', 'rotation': '-1', }, } self.assertRaises(self.validation_error, self.controller._create_backup, self.req, fakes.FAKE_UUID, body=body) def test_create_backup_no_backup_type(self): # Backup Type (daily or weekly) is required for backup requests. body = { 'createBackup': { 'name': 'Backup 1', 'rotation': 1, }, } self.assertRaises(self.validation_error, self.controller._create_backup, self.req, fakes.FAKE_UUID, body=body) def test_create_backup_non_dict_metadata(self): body = { 'createBackup': { 'name': 'Backup 1', 'backup_type': 'daily', 'rotation': 1, 'metadata': 'non_dict', }, } self.assertRaises(self.validation_error, self.controller._create_backup, self.req, fakes.FAKE_UUID, body=body) def test_create_backup_bad_entity(self): body = {'createBackup': 'go'} self.assertRaises(self.validation_error, self.controller._create_backup, self.req, fakes.FAKE_UUID, body=body) @mock.patch.object(common, 'check_img_metadata_properties_quota') @mock.patch.object(api.API, 'backup') def test_create_backup_rotation_is_zero(self, mock_backup, mock_check_image): # The happy path for creating backups if rotation is zero. body = { 'createBackup': { 'name': 'Backup 1', 'backup_type': 'daily', 'rotation': 0, }, } image = dict(id='fake-image-id', status='ACTIVE', name='Backup 1', properties={}) instance = fake_instance.fake_instance_obj(self.context) self.mock_get.return_value = instance mock_backup.return_value = image res = self.controller._create_backup(self.req, instance.uuid, body=body) mock_check_image.assert_called_once_with(self.context, {}) mock_backup.assert_called_once_with(self.context, instance, 'Backup 1', 'daily', 0, extra_properties={}) self.assertEqual(202, res.status_int) self.assertNotIn('Location', res.headers) @mock.patch.object(common, 'check_img_metadata_properties_quota') @mock.patch.object(api.API, 'backup') def test_create_backup_rotation_is_positive(self, mock_backup, mock_check_image): # The happy path for creating backups if rotation is positive. body = { 'createBackup': { 'name': 'Backup 1', 'backup_type': 'daily', 'rotation': 1, }, } image = dict(id='fake-image-id', status='ACTIVE', name='Backup 1', properties={}) instance = fake_instance.fake_instance_obj(self.context) self.mock_get.return_value = instance mock_backup.return_value = image res = self.controller._create_backup(self.req, instance.uuid, body=body) mock_check_image.assert_called_once_with(self.context, {}) mock_backup.assert_called_once_with(self.context, instance, 'Backup 1', 'daily', 1, extra_properties={}) self.assertEqual(202, res.status_int) self.assertIn('fake-image-id', res.headers['Location']) @mock.patch.object(common, 'check_img_metadata_properties_quota') @mock.patch.object(api.API, 'backup') def test_create_backup_rotation_is_string_number( self, mock_backup, mock_check_image): body = { 'createBackup': { 'name': 'Backup 1', 'backup_type': 'daily', 'rotation': '1', }, } image = dict(id='fake-image-id', status='ACTIVE', name='Backup 1', properties={}) instance = fake_instance.fake_instance_obj(self.context) self.mock_get.return_value = instance mock_backup.return_value = image res = self.controller._create_backup(self.req, instance['uuid'], body=body) mock_check_image.assert_called_once_with(self.context, {}) mock_backup.assert_called_once_with(self.context, instance, 'Backup 1', 'daily', 1, extra_properties={}) self.assertEqual(202, res.status_int) self.assertIn('fake-image-id', res.headers['Location']) @mock.patch.object(common, 'check_img_metadata_properties_quota') @mock.patch.object(api.API, 'backup') def test_create_backup_raises_conflict_on_invalid_state(self, mock_backup, mock_check_image): body_map = { 'createBackup': { 'name': 'Backup 1', 'backup_type': 'daily', 'rotation': 1, }, } instance = fake_instance.fake_instance_obj(self.context) self.mock_get.return_value = instance mock_backup.side_effect = exception.InstanceInvalidState( attr='vm_state', instance_uuid=instance.uuid, state='foo', method='backup') ex = self.assertRaises(webob.exc.HTTPConflict, self.controller._create_backup, self.req, instance.uuid, body=body_map) self.assertIn("Cannot 'createBackup' instance %(id)s" % {'id': instance.uuid}, ex.explanation) @mock.patch.object(common, 'check_img_metadata_properties_quota') def test_create_backup_with_non_existed_instance(self, mock_check_image): body_map = { 'createBackup': { 'name': 'Backup 1', 'backup_type': 'daily', 'rotation': 1, }, } uuid = fakes.FAKE_UUID self.mock_get.side_effect = exception.InstanceNotFound( instance_id=uuid) self.assertRaises(webob.exc.HTTPNotFound, self.controller._create_backup, self.req, uuid, body=body_map) mock_check_image.assert_called_once_with(self.context, {}) def test_create_backup_with_invalid_create_backup(self): body = { 'createBackupup': { 'name': 'Backup 1', 'backup_type': 'daily', 'rotation': 1, }, } self.assertRaises(self.validation_error, self.controller._create_backup, self.req, fakes.FAKE_UUID, body=body) @mock.patch.object(common, 'check_img_metadata_properties_quota') @mock.patch.object(api.API, 'backup') def test_backup_volume_backed_instance(self, mock_backup, mock_check_image): body = { 'createBackup': { 'name': 'BackupMe', 'backup_type': 'daily', 'rotation': 3 }, } instance = fake_instance.fake_instance_obj(self.context) instance.image_ref = None self.mock_get.return_value = instance mock_backup.side_effect = exception.InvalidRequest() self.assertRaises(webob.exc.HTTPBadRequest, self.controller._create_backup, self.req, instance['uuid'], body=body) mock_check_image.assert_called_once_with(self.context, {}) mock_backup.assert_called_once_with(self.context, instance, 'BackupMe', 'daily', 3, extra_properties={}) class CreateBackupPolicyEnforcementv21(test.NoDBTestCase): def setUp(self): super(CreateBackupPolicyEnforcementv21, self).setUp() self.controller = create_backup_v21.CreateBackupController() self.req = fakes.HTTPRequest.blank('') def test_create_backup_policy_failed(self): rule_name = "os_compute_api:os-create-backup" self.policy.set_rules({rule_name: "project:non_fake"}) metadata = {'123': 'asdf'} body = { 'createBackup': { 'name': 'Backup 1', 'backup_type': 'daily', 'rotation': 1, 'metadata': metadata, }, } exc = self.assertRaises( exception.PolicyNotAuthorized, self.controller._create_backup, self.req, fakes.FAKE_UUID, body=body) self.assertEqual( "Policy doesn't allow %s to be performed." % rule_name, exc.format_message()) class CreateBackupTestsV239(test.NoDBTestCase): def setUp(self): super(CreateBackupTestsV239, self).setUp() self.controller = create_backup_v21.CreateBackupController() self.req = fakes.HTTPRequest.blank('', version='2.39') @mock.patch.object(common, 'check_img_metadata_properties_quota') @mock.patch.object(common, 'get_instance') def test_create_backup_no_quota_checks(self, mock_get_instance, mock_check_quotas): # 'mock_get_instance' helps to skip the whole logic of the action, # but to make the test mock_get_instance.side_effect = webob.exc.HTTPNotFound metadata = {'123': 'asdf'} body = { 'createBackup': { 'name': 'Backup 1', 'backup_type': 'daily', 'rotation': 1, 'metadata': metadata, }, } self.assertRaises(webob.exc.HTTPNotFound, self.controller._create_backup, self.req, fakes.FAKE_UUID, body=body) # starting from version 2.39 no quota checks on Nova side are performed # for 'createBackup' action after removing 'image-metadata' proxy API mock_check_quotas.assert_not_called()
py
b40bdc940866c8a02072524e96004816b6e28fc7
# MJPEG Streaming with FIR # # This example shows off how to do MJPEG streaming to a FIREFOX webrowser # (IE and Chrome do not work). Just input your network SSID and KEY and then # connect to the IP address/port printed out from ifconfig. import sensor, image, network, usocket, fir SSID='' # Network SSID KEY='' # Network key HOST = '' # Use first available interface PORT = 8000 # Arbitrary non-privileged port # Reset sensor sensor.reset() # Set sensor settings sensor.set_contrast(1) sensor.set_brightness(1) sensor.set_saturation(1) sensor.set_gainceiling(16) sensor.set_framesize(sensor.QQVGA) sensor.set_pixformat(sensor.RGB565) # Initialize the thermal sensor fir.init() # Init wlan module and connect to network print("Trying to connect... (may take a while)...") wlan = network.WINC() wlan.connect(SSID, key=KEY, security=wlan.WPA_PSK) # We should have a valid IP now via DHCP print(wlan.ifconfig()) # Create server socket s = usocket.socket(usocket.AF_INET, usocket.SOCK_STREAM) # Bind and listen s.bind((HOST, PORT)) s.listen(5) # Set timeout to 1s s.settimeout(1.0) print ('Waiting for connections..') client, addr = s.accept() print ('Connected to ' + addr[0] + ':' + str(addr[1])) # Read request from client data = client.recv(1024) # Should parse client request here # Send multipart header client.send("HTTP/1.1 200 OK\r\n" \ "Server: OpenMV\r\n" \ "Content-Type: multipart/x-mixed-replace;boundary=openmv\r\n" \ "Cache-Control: no-cache\r\n" \ "Pragma: no-cache\r\n\r\n") # Start streaming images while (True): image = sensor.snapshot() # Capture FIR data # ta: Ambient temperature # ir: Object temperatures (IR array) # to_min: Minimum object temperature # to_max: Maximum object temperature ta, ir, to_min, to_max = fir.read_ir() # Scale the image and belnd it with the framebuffer fir.draw_ir(image, ir) # Draw ambient, min and max temperatures. image.draw_string(0, 0, "Ta: %0.2f"%ta, color = (0xFF, 0x00, 0x00)) image.draw_string(0, 8, "To min: %0.2f"%to_min, color = (0xFF, 0x00, 0x00)) image.draw_string(0, 16, "To max: %0.2f"%to_max, color = (0xFF, 0x00, 0x00)) cimage = image.compressed(quality=90) client.send("\r\n--openmv\r\n" \ "Content-Type: image/jpeg\r\n"\ "Content-Length:"+str(cimage.size())+"\r\n\r\n") client.send(cimage) client.close()
py
b40bdddc63b1d1d23c93c372004cead8a8dd5072
#!/Users/rogerurrutia/Documents/GitHub/Programacion-III/Proyecto Final/Duplicados/bin/python # Author: # Contact: [email protected] # Copyright: This module has been placed in the public domain. """ man.py ====== This module provides a simple command line interface that uses the man page writer to output from ReStructuredText source. """ import locale try: locale.setlocale(locale.LC_ALL, '') except: pass from docutils.core import publish_cmdline, default_description from docutils.writers import manpage description = ("Generates plain unix manual documents. " + default_description) publish_cmdline(writer=manpage.Writer(), description=description)
py
b40bdf91571b861293989c68439365e3e8f51b5e
# -*- coding: utf-8 -*- # the idea is to plot test (benchmark) results with C time at x axis and # language time at y axis; different languages by different colours, different # tests by different marker types import matplotlib import matplotlib.pyplot as plt from matplotlib import gridspec # provides dictionary with results import results lw = 0.7 # linewidth ms = 7 # marker size mew = 1.25 # marker edge width m = 1.2 # additional space in xlim is proportional to m - 1 defaultstyle = {'markersize': ms, 'markeredgewidth': 0} # kwargs which define different style for different languages langstyle = {'C': {'color': 'DodgerBlue'}, 'C++': {'color': 'DeepSkyBlue'}, 'Julia': {'color': 'DeepPink'}, 'Pypy': {'color': 'YellowGreen'}, 'Python': {'color': 'Gold'}, 'Haskell': {'color': 'BlueViolet'}, 'R' : {'color': 'Gray'}, 'C#': {'color': 'Thistle'}, 'Rust': {'color': 'none', 'markeredgecolor': 'DarkOrange', 'markeredgewidth': mew}} # kwargs which define different style for different tests teststyle = {'generation': {'marker': 'o'}, 'output': {'marker': '>'}, 'input': {'marker': '<'}} myset = results.set3 print(myset) f = plt.figure(figsize=(6.65, 5.9), dpi = 300) gs = gridspec.GridSpec(2, 2) gs.update(left=0.09, right=0.98, bottom=0.08, top=0.99, wspace = 0.17) font = {'family' : 'Liberation Serif', 'weight' : 'normal', 'size' : 10} matplotlib.rc('font', **font) matplotlib.rc('lines', linewidth=lw) matplotlib.rc('axes', linewidth=lw) def plotPoints(yscale, rset): maxctime = 0 for testname in rset: print(testname) ctime = rset[testname][0] if ctime > maxctime: maxctime = ctime style = {key: value for key, value in defaultstyle.items()} style.update(langstyle['C']) style.update(teststyle[testname]) plt.plot(ctime, ctime, **style) for langname in rset[testname][1]: print(' ' * 4 + langname) for langtime in rset[testname][1][langname]: print(' ' * 8 + str(langtime)) style = {key: value for key, value in defaultstyle.items()} style.update(langstyle[langname]) style.update(teststyle[testname]) plt.plot(ctime, langtime, **style) plt.xlim(0, maxctime * m) plt.ylim(0, maxctime * m * yscale) # makes y-range of plots wider yscales = [1.5, 4, 11, 50] for i in range(4): plt.subplot(gs[int(i / 2), i % 2]) plotPoints(yscales[i], myset) plt.xlabel('C time, s') plt.ylabel('lang time, s') plt.savefig('results.png')
py
b40bdfd650c53715cc151b8757e8ea4313ea806b
from taxstats.core import (taxstats) from taxstats.utils import (parse_docs, create_labels)
py
b40be0c3fc4d66fefa87a15779e7df34196e2846
# # Author: Dlo Bagari # created Date: 14-11-2019 import logging class Logger: def __init__(self, log_directory): self._log_directory = log_directory self._log = logging self._set_config() def _set_config(self): file_name = self._log_directory + "/consumer_service.log" log_format = '%(asctime)s - %(levelname)s - %(message)s' self._log.basicConfig(filename=file_name, level=logging.INFO, format=log_format) def warning(self, class_name, message): message = "{}: {}".format(class_name.__class__.__name__, message) self._log.warning(message) def critical(self, class_name, message): message = "{}: {}".format(class_name.__class__.__name__, message) self._log.critical(message) def error(self, class_name, message): message = "{}: {}".format(class_name.__class__.__name__, message) self._log.error(message) def debug(self, class_name, message): message = "{}: {}".format(class_name.__class__.__name__, message) self._log.debug(message) def info(self, class_name, message): message = "{}: {}".format(class_name.__class__.__name__, message) self._log.info(message)
py
b40be0ff4c2df1cd93bf7229194cfb43ec5a6d82
from sqlalchemy.inspection import inspect from typing import Union, List, Callable from qkoubot.models import Session, Info, Cancel, News T = Union[Info, Cancel, News] ARGS = Union[str, int] def query_to_dict(result) -> dict: """ Convert to dict from given model object such as models.Subject or models.Info and so on. Args: result: Subject, Info, Cancel, News object which was got by query Returns: Dictionary of given objects property. """ res = {} instance = inspect(result) for key, obj in instance.attrs.items(): if key != "id": res[key] = obj.value return res def insert_all(model: Callable[[ARGS], T], data_list: List[dict]) -> bool: """ Insert test data based on given model. Args: model: Info, News, Cancel, Subject model data_list: list of dict of data Returns: success is True, fail is False """ try: with Session() as session: insert = [model(**data_dict) for data_dict in data_list] session.add_all(insert) session.commit() return True except Exception: return False def delete_all(model: T) -> bool: """ Delete test data based on given model. Args: model: Info, News, Cancel, Subject model Returns: success is True, fail is False """ try: with Session() as session: exists = session.query(model).all() for exist in exists: session.delete(exist) session.commit() return True except Exception: return False
py
b40be109d33742b322fe09d66455510d49a94d0f
from rest_framework import serializers from .models import ( CyclicCommissionCategory, CyclicCommissionItem, ) class CyclicCommissionCategorySerializer(serializers.ModelSerializer): class Meta: model = CyclicCommissionCategory fields = '__all__' depth = 1 class CyclicCommissionItemSerializer(serializers.ModelSerializer): class Meta: model = CyclicCommissionItem fields = '__all__' depth = 1
py
b40be1175793cba853f5e34ac1737501fa22cbbe
class CoffeeMaker: def __init__(self): self.__resources = { "water": 300, "milk": 200, "coffee": 100, } def report(self): print(f"Water: {self.__resources['water']}ml") print(f"Milk: {self.__resources['milk']}ml") print(f"Coffee: {self.__resources['coffee']}g") def is_resource_sufficient(self, drink): can_make = True for item in drink.ingredients: if drink.ingredients[item] > self.__resources[item]: print(f"Sorry there is not enough {item}.") can_make = False return can_make def make_coffee(self, order): for item in order.ingredients: self.__resources[item] -= order.ingredients[item] print(f"Here is your {order.name} ☕️. Enjoy!")
py
b40be2535e11c4388dc84bc8adb119cdc424e251
# Copyright (C) 2019 The Raphielscape Company LLC. # # Licensed under the Raphielscape Public License, Version 1.c (the "License"); # you may not use this file except in compliance with the License. # # Asena UserBot - Yusuf Usta """ Olayları yönetmek için UserBot modülü. UserBot'un ana bileşenlerinden biri. """ import sys from asyncio import create_subprocess_shell as asyncsubshell from asyncio import subprocess as asyncsub from os import remove from time import gmtime, strftime from traceback import format_exc from telethon import events from userbot import bot, BOTLOG_CHATID, LOGSPAMMER, PATTERNS def register(**args): """ Yeni bir etkinlik kaydedin. """ pattern = args.get('pattern', None) disable_edited = args.get('disable_edited', False) groups_only = args.get('groups_only', False) trigger_on_fwd = args.get('trigger_on_fwd', False) trigger_on_inline = args.get('trigger_on_inline', False) disable_errors = args.get('disable_errors', False) if pattern: args["pattern"] = pattern.replace("^.", "^["+ PATTERNS + "]") if "disable_edited" in args: del args['disable_edited'] if "ignore_unsafe" in args: del args['ignore_unsafe'] if "groups_only" in args: del args['groups_only'] if "disable_errors" in args: del args['disable_errors'] if "trigger_on_fwd" in args: del args['trigger_on_fwd'] if "trigger_on_inline" in args: del args['trigger_on_inline'] def decorator(func): async def wrapper(check): if not LOGSPAMMER: send_to = check.chat_id else: send_to = BOTLOG_CHATID if not trigger_on_fwd and check.fwd_from: return if check.via_bot_id and not trigger_on_inline: return if groups_only and not check.is_group: await check.respond("`Bunun bir grup olduğunu sanmıyorum.`") return try: await func(check) except events.StopPropagation: raise events.StopPropagation except KeyboardInterrupt: pass except BaseException: if not disable_errors: date = strftime("%Y-%m-%d %H:%M:%S", gmtime()) text = "**USERBOT HATA RAPORU**\n" link = "[NOXUS](https://t.me/Noxus_0)" text += "İsterseniz, bunu rapor edebilirsiniz" text += f"- sadece bu mesajı buraya iletin {link}.\n" text += "Hata ve Tarih dışında hiçbir şey kaydedilmez\n" ftext = "========== UYARI ==========" ftext += "\nBu dosya sadece burada yüklendi," ftext += "\nsadece hata ve tarih kısmını kaydettik," ftext += "\ngizliliğinize saygı duyuyoruz," ftext += "\nburada herhangi bir gizli veri varsa" ftext += "\nbu hata raporu olmayabilir, kimse verilerinize ulaşamaz.\n" ftext += "================================\n\n" ftext += "--------USERBOT HATA GUNLUGU--------\n" ftext += "\nTarih: " + date ftext += "\nGrup ID: " + str(check.chat_id) ftext += "\nGönderen kişinin ID: " + str(check.sender_id) ftext += "\n\nOlay Tetikleyici:\n" ftext += str(check.text) ftext += "\n\nGeri izleme bilgisi:\n" ftext += str(format_exc()) ftext += "\n\nHata metni:\n" ftext += str(sys.exc_info()[1]) ftext += "\n\n--------USERBOT HATA GUNLUGU BITIS--------" command = "git log --pretty=format:\"%an: %s\" -10" ftext += "\n\n\nSon 10 commit:\n" process = await asyncsubshell(command, stdout=asyncsub.PIPE, stderr=asyncsub.PIPE) stdout, stderr = await process.communicate() result = str(stdout.decode().strip()) \ + str(stderr.decode().strip()) ftext += result file = open("error.log", "w+") file.write(ftext) file.close() if LOGSPAMMER: await check.client.respond("`Üzgünüm, UserBot'um çöktü.\ \nHata günlükleri UserBot günlük grubunda saklanır.`") await check.client.send_file(send_to, "error.log", caption=text) remove("error.log") else: pass if not disable_edited: bot.add_event_handler(wrapper, events.MessageEdited(**args)) bot.add_event_handler(wrapper, events.NewMessage(**args)) return wrapper return decorator
py
b40be26418fcddb4a14e9f587c76f9dd0f5a3335
#!/usr/bin/env python """Metric implementations to collect statistics.""" import abc from grr_response_core.lib.rdfvalues import stats as rdf_stats from grr_response_core.stats import stats_collector_instance from grr_response_core.stats import stats_utils class AbstractMetric(metaclass=abc.ABCMeta): """An abstract metric with a name, fields, and values. Refer to default_stats_collector._Metric and DefaultStatsCollector to see how StatsCollector handles the field definitions and values. Attributes: name: string containing the global metric name. """ def __init__(self, metadata): """Initializes a new metric and registers it with the StatsCollector.""" self.name = metadata.varname stats_collector_instance.RegisterMetric(metadata) def GetValue(self, fields=None): """Returns the value of a given metric for given field values.""" return stats_collector_instance.Get().GetMetricValue( self.name, fields=fields) def GetFields(self): """Returns all field values for the given metric.""" return stats_collector_instance.Get().GetMetricFields(self.name) class Counter(AbstractMetric): """A Counter metric that can be incremented. Refer to default_stats_collector._CounterMetric and DefaultStatsCollector to see how StatsCollector handles the field definitions and values. """ def __init__(self, name, fields=(), docstring=None, units=None): """Initializes a Counter metric and registers it with the StatsCollector.""" super().__init__( rdf_stats.MetricMetadata( varname=name, metric_type=rdf_stats.MetricMetadata.MetricType.COUNTER, value_type=rdf_stats.MetricMetadata.ValueType.INT, fields_defs=stats_utils.FieldDefinitionProtosFromTuples(fields), docstring=docstring, units=units)) def Increment(self, delta=1, fields=None): """Increments a counter metric by a given delta.""" stats_collector_instance.Get().IncrementCounter( self.name, delta, fields=fields) def Counted(self, fields=None): """Returns a decorator that counts function calls.""" return stats_utils.Counted(self, fields=fields) def SuccessesCounted(self, fields=None): """Returns a decorator that counts calls that don't raise an exception.""" return stats_utils.SuccessesCounted(self, fields=fields) def ErrorsCounted(self, fields=None): """Returns a decorator that counts calls that raise an exception.""" return stats_utils.ErrorsCounted(self, fields=fields) class Gauge(AbstractMetric): """A Gauge metric that can be set to a value. Refer to default_stats_collector._GaugeMetric and DefaultStatsCollector to see how StatsCollector handles the field definitions and values. """ def __init__(self, name, value_type, fields=(), docstring=None, units=None): """Initializes a Gauge metric and registers it with the StatsCollector.""" super().__init__( rdf_stats.MetricMetadata( varname=name, metric_type=rdf_stats.MetricMetadata.MetricType.GAUGE, value_type=stats_utils.MetricValueTypeFromPythonType(value_type), fields_defs=stats_utils.FieldDefinitionProtosFromTuples(fields), docstring=docstring, units=units)) def SetValue(self, value, fields=None): """Sets value of a given gauge metric.""" stats_collector_instance.Get().SetGaugeValue( self.name, value, fields=fields) def SetCallback(self, callback, fields=None): """Attaches a callback to the given gauge metric.""" stats_collector_instance.Get().SetGaugeCallback( self.name, callback, fields=fields) class Event(AbstractMetric): """An Event metric that records timings of events. Refer to default_stats_collector._EventMetric and DefaultStatsCollector to see how StatsCollector handles the field definitions and values. """ def __init__(self, name, bins=(), fields=(), docstring=None, units=None): """Initializes an Event metric and registers it with the StatsCollector.""" super().__init__( rdf_stats.MetricMetadata( varname=name, bins=bins, metric_type=rdf_stats.MetricMetadata.MetricType.EVENT, value_type=rdf_stats.MetricMetadata.ValueType.DISTRIBUTION, fields_defs=stats_utils.FieldDefinitionProtosFromTuples(fields), docstring=docstring, units=units)) def RecordEvent(self, value, fields=None): """Records value corresponding to the given event metric.""" stats_collector_instance.Get().RecordEvent(self.name, value, fields=fields) def Timed(self, fields=None): """Returns a decorator that records timing metrics for function calls.""" return stats_utils.Timed(self, fields=fields)
py
b40be2b5e512d9d4e968c12a6111da2095444101
from plotly.basedatatypes import BaseLayoutHierarchyType as _BaseLayoutHierarchyType import copy as _copy class Font(_BaseLayoutHierarchyType): # class properties # -------------------- _parent_path_str = "layout.title" _path_str = "layout.title.font" _valid_props = {"color", "family", "size"} # color # ----- @property def color(self): """ The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["color"] @color.setter def color(self, val): self["color"] = val # family # ------ @property def family(self): """ HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart- studio.new_plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". The 'family' property is a string and must be specified as: - A non-empty string Returns ------- str """ return self["family"] @family.setter def family(self, val): self["family"] = val # size # ---- @property def size(self): """ The 'size' property is a number and may be specified as: - An int or float in the interval [1, inf] Returns ------- int|float """ return self["size"] @size.setter def size(self, val): self["size"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size """ def __init__(self, arg=None, color=None, family=None, size=None, **kwargs): """ Construct a new Font object Sets the title font. Note that the title's font used to be customized by the now deprecated `titlefont` attribute. Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`new_plotly.graph_objs.layout.title.Font` color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size Returns ------- Font """ super(Font, self).__init__("font") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the new_plotly.graph_objs.layout.title.Font constructor must be a dict or an instance of :class:`new_plotly.graph_objs.layout.title.Font`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("color", None) _v = color if color is not None else _v if _v is not None: self["color"] = _v _v = arg.pop("family", None) _v = family if family is not None else _v if _v is not None: self["family"] = _v _v = arg.pop("size", None) _v = size if size is not None else _v if _v is not None: self["size"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
py
b40be2b9483dabc343d563a69c0d2496b3beba77
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack.package import * class PyAzureLoganalytics(PythonPackage): """Microsoft Azure Log Analytics Client Library for Python.""" homepage = "https://github.com/Azure/azure-sdk-for-python" pypi = "azure-loganalytics/azure-loganalytics-0.1.0.zip" version('0.1.0', sha256='3ceb350def677a351f34b0a0d1637df6be0c6fe87ff32a5270b17f540f6da06e') depends_on('py-setuptools', type='build') depends_on('[email protected]:1', type=('build', 'run')) depends_on('[email protected]:1', type=('build', 'run'))
py
b40be2c1fa28116588fceb37d53fbfb37178cd67
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. from .r2n2 import R2N2 from .utils import BlenderCamera, collate_batched_R2N2, render_cubified_voxels __all__ = [k for k in globals().keys() if not k.startswith("_")]
py
b40be2df291d6bc8e8a8497025fbfeb0068ed26b
import requests from time import sleep API_URI = "http://84.201.158.229:8080/api/send_message" FILENAME = "dialog_output.txt" def send_message(message_text, message_history): response = requests.post(API_URI, json={"message_text": message_text, "message_history": message_history}) return response.json()["text"] def print_to_file_decorator(func): def new_func(*args, **kwargs): func(*args, **kwargs) with open(FILENAME, "a") as f: f.write(' '.join(list(map(str, args))) + "\n") return new_func class BotClient: def __init__(self, message_history=None): self.message_history = message_history if message_history else [] def send_message(self, message): response = send_message(message, self.message_history) self.message_history.append(message) self.message_history.append(response) return response class BotConversation: def __init__(self, first_bot: BotClient, second_bot: BotClient): self.first_bot = first_bot self.second_bot = second_bot self.initial_message = "Hello!" self.message_timeout = 2 def start(self): print(f"Bot 2: {self.initial_message}") self.second_bot.message_history.append(self.initial_message) first_response = self.first_bot.send_message(self.initial_message) print(f"Bot 1: {first_response}") while True: second_response = self.second_bot.send_message(first_response) print(f"Bot 2: {second_response}") sleep(self.message_timeout) first_response = self.first_bot.send_message(second_response) print(f"Bot 1: {first_response}") sleep(self.message_timeout) open(FILENAME, "w") print = print_to_file_decorator(print) FirstBot = BotClient(["your persona: i hate you shit fuck you i am 23 and i work as photographer"]) SecondBot = BotClient(["your persona: i hate you you fucking bitch i am 17 and i am in school my hobby is airplanes"]) print("# INITIAL CONTEXTS #") print("Bot 1:", FirstBot.message_history) print("Bot 2:", SecondBot.message_history) print() print("# DIALOG #") MainBotConversation = BotConversation(FirstBot, SecondBot) MainBotConversation.start()
py
b40be307e7e54e3201e907cf98574309458ed77e
import os import json from tqdm import tqdm from pycocotools.coco import COCO def main(): bbox_dir = '/home/ruichen/Documents/Documents_from_ubuntu_1604/AiFi_model_save/1000skus/synthetic_1000skus_test' bbox = os.path.join(bbox_dir, 'bbox_modify.json') # coco = COCO(bbox) with open(bbox, 'r') as fp: bbox_json = json.load(fp) print("--- json file loaded") print("--- with length:", len(bbox_json)) pbar = tqdm(total=len(bbox_json)) for prediction in bbox_json: # step 1: xywh to xyxy x, y, w, h = prediction["bbox"] prediction["bbox"] = [x, y, x + w, y + h] # step 2: if id >= 52, id -- if prediction["category_id"] >= 52: prediction["category_id"] -= 1 pbar.update(1) pbar.close() with open('{}/bbox_fix_done.json'.format(bbox_dir), 'w') as output_json_file: json.dump(bbox_json, output_json_file) print("--- bbox fix saved") print("--- with length:", len(bbox_json)) if __name__ == '__main__': main()
py
b40be4a57af40062868481b81cac5d967521d06f
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import pytest import torch from mmcv.parallel import DataContainer as DC from mmcv.utils import assert_dict_has_keys from mmaction.datasets.pipelines import (Collect, FormatAudioShape, FormatGCNInput, FormatShape, ImageToTensor, Rename, ToDataContainer, ToTensor, Transpose) def test_rename(): org_name = 'a' new_name = 'b' mapping = {org_name: new_name} rename = Rename(mapping) results = dict(a=2) results = rename(results) assert results['b'] == 2 assert 'a' not in results def test_to_tensor(): to_tensor = ToTensor(['str']) with pytest.raises(TypeError): # str cannot be converted to tensor results = dict(str='0') to_tensor(results) # convert tensor, numpy, squence, int, float to tensor target_keys = ['tensor', 'numpy', 'sequence', 'int', 'float'] to_tensor = ToTensor(target_keys) original_results = dict( tensor=torch.randn(2, 3), numpy=np.random.randn(2, 3), sequence=list(range(10)), int=1, float=0.1) results = to_tensor(original_results) assert assert_dict_has_keys(results, target_keys) for key in target_keys: assert isinstance(results[key], torch.Tensor) assert torch.equal(results[key].data, original_results[key]) # Add an additional key which is not in keys. original_results = dict( tensor=torch.randn(2, 3), numpy=np.random.randn(2, 3), sequence=list(range(10)), int=1, float=0.1, str='test') results = to_tensor(original_results) assert assert_dict_has_keys(results, target_keys) for key in target_keys: assert isinstance(results[key], torch.Tensor) assert torch.equal(results[key].data, original_results[key]) assert repr(to_tensor) == to_tensor.__class__.__name__ + \ f'(keys={target_keys})' def test_to_data_container(): # check user-defined fields fields = (dict(key='key1', stack=True), dict(key='key2')) to_data_container = ToDataContainer(fields=fields) target_keys = ['key1', 'key2'] original_results = dict(key1=np.random.randn(10, 20), key2=['a', 'b']) results = to_data_container(original_results.copy()) assert assert_dict_has_keys(results, target_keys) for key in target_keys: assert isinstance(results[key], DC) assert np.all(results[key].data == original_results[key]) assert results['key1'].stack assert not results['key2'].stack # Add an additional key which is not in keys. original_results = dict( key1=np.random.randn(10, 20), key2=['a', 'b'], key3='value3') results = to_data_container(original_results.copy()) assert assert_dict_has_keys(results, target_keys) for key in target_keys: assert isinstance(results[key], DC) assert np.all(results[key].data == original_results[key]) assert results['key1'].stack assert not results['key2'].stack assert repr(to_data_container) == ( to_data_container.__class__.__name__ + f'(fields={fields})') def test_image_to_tensor(): original_results = dict(imgs=np.random.randn(256, 256, 3)) keys = ['imgs'] image_to_tensor = ImageToTensor(keys) results = image_to_tensor(original_results) assert results['imgs'].shape == torch.Size([3, 256, 256]) assert isinstance(results['imgs'], torch.Tensor) assert torch.equal(results['imgs'].data, original_results['imgs']) assert repr(image_to_tensor) == image_to_tensor.__class__.__name__ + \ f'(keys={keys})' def test_transpose(): results = dict(imgs=np.random.randn(256, 256, 3)) keys = ['imgs'] order = [2, 0, 1] transpose = Transpose(keys, order) results = transpose(results) assert results['imgs'].shape == (3, 256, 256) assert repr(transpose) == transpose.__class__.__name__ + \ f'(keys={keys}, order={order})' def test_collect(): inputs = dict( imgs=np.random.randn(256, 256, 3), label=[1], filename='test.txt', original_shape=(256, 256, 3), img_shape=(256, 256, 3), pad_shape=(256, 256, 3), flip_direction='vertical', img_norm_cfg=dict(to_bgr=False)) keys = ['imgs', 'label'] collect = Collect(keys) results = collect(inputs) assert sorted(list(results.keys())) == sorted( ['imgs', 'label', 'img_metas']) imgs = inputs.pop('imgs') assert set(results['img_metas'].data) == set(inputs) for key in results['img_metas'].data: assert results['img_metas'].data[key] == inputs[key] assert repr(collect) == collect.__class__.__name__ + \ (f'(keys={keys}, meta_keys={collect.meta_keys}, ' f'nested={collect.nested})') inputs['imgs'] = imgs collect = Collect(keys, nested=True) results = collect(inputs) assert sorted(list(results.keys())) == sorted( ['imgs', 'label', 'img_metas']) for k in results: assert isinstance(results[k], list) def test_format_shape(): with pytest.raises(ValueError): # invalid input format FormatShape('NHWC') # 'NCHW' input format results = dict( imgs=np.random.randn(3, 224, 224, 3), num_clips=1, clip_len=3) format_shape = FormatShape('NCHW') assert format_shape(results)['input_shape'] == (3, 3, 224, 224) # `NCTHW` input format with num_clips=1, clip_len=3 results = dict( imgs=np.random.randn(3, 224, 224, 3), num_clips=1, clip_len=3) format_shape = FormatShape('NCTHW') assert format_shape(results)['input_shape'] == (1, 3, 3, 224, 224) # `NCTHW` input format with num_clips=2, clip_len=3 results = dict( imgs=np.random.randn(18, 224, 224, 3), num_clips=2, clip_len=3) assert format_shape(results)['input_shape'] == (6, 3, 3, 224, 224) target_keys = ['imgs', 'input_shape'] assert assert_dict_has_keys(results, target_keys) assert repr(format_shape) == format_shape.__class__.__name__ + \ "(input_format='NCTHW')" # 'NPTCHW' input format results = dict( imgs=np.random.randn(72, 224, 224, 3), num_clips=9, clip_len=1, num_proposals=8) format_shape = FormatShape('NPTCHW') assert format_shape(results)['input_shape'] == (8, 9, 3, 224, 224) def test_format_audio_shape(): with pytest.raises(ValueError): # invalid input format FormatAudioShape('XXXX') # 'NCTF' input format results = dict(audios=np.random.randn(3, 128, 8)) format_shape = FormatAudioShape('NCTF') assert format_shape(results)['input_shape'] == (3, 1, 128, 8) assert repr(format_shape) == format_shape.__class__.__name__ + \ "(input_format='NCTF')" def test_format_gcn_input(): with pytest.raises(ValueError): # invalid input format FormatGCNInput('XXXX') # 'NCTVM' input format results = dict( keypoint=np.random.randn(2, 300, 17, 2), keypoint_score=np.random.randn(2, 300, 17)) format_shape = FormatGCNInput('NCTVM', num_person=2) assert format_shape(results)['input_shape'] == (3, 300, 17, 2) assert repr(format_shape) == format_shape.__class__.__name__ + \ "(input_format='NCTVM')" # test real num_person < 2 results = dict( keypoint=np.random.randn(1, 300, 17, 2), keypoint_score=np.random.randn(1, 300, 17)) assert format_shape(results)['input_shape'] == (3, 300, 17, 2) assert repr(format_shape) == format_shape.__class__.__name__ + \ "(input_format='NCTVM')" # test real num_person > 2 results = dict( keypoint=np.random.randn(3, 300, 17, 2), keypoint_score=np.random.randn(3, 300, 17)) assert format_shape(results)['input_shape'] == (3, 300, 17, 2) assert repr(format_shape) == format_shape.__class__.__name__ + \ "(input_format='NCTVM')"
py
b40be6723bc892d12e3c2d45d8d13ed963f17deb
from unittest import TestCase from keystore import FlashKeyStore import os, json import platform TEST_DIR = "testdir" def init_keystore(ks): platform.maybe_mkdir(ks.path) ks.load_secret(ks.path) ks.load_state() ks.initialized = True class FlashKeyStoreTest(TestCase): def get_keystore(self): """Clean up the test folder and create fresh keystore""" try: platform.delete_recursively(TEST_DIR) os.rmdir(TEST_DIR) except: pass FlashKeyStore.path = TEST_DIR return FlashKeyStore() def test_create_config(self): """Test initial config creation""" ks = self.get_keystore() init_keystore(ks) files = [f[0] for f in os.ilistdir(TEST_DIR)] self.assertTrue("secret" in files) self.assertTrue("pin" in files) self.assertEqual(ks.is_pin_set, False) self.assertEqual(ks.pin_attempts_left, ks.pin_attempts_max) self.assertTrue(ks.pin_attempts_left is not None) def test_change_secret(self): """Test wipe exception if secret is changed""" # create keystore ks = self.get_keystore() init_keystore(ks) files = [f[0] for f in os.ilistdir(TEST_DIR)] self.assertTrue("secret" in files) self.assertTrue("pin" in files) # now change secret value with open(TEST_DIR+"/secret", "wb") as f: # a different value f.write(b"5"*32) ks = FlashKeyStore() # check it raises with self.assertRaises(platform.CriticalErrorWipeImmediately): init_keystore(ks) # files are deleted files = [f[0] for f in os.ilistdir(TEST_DIR)] self.assertFalse("secret" in files) self.assertFalse("pin" in files) def test_change_pin_file(self): """Test wipe exception if pin state changed""" # create keystore ks = self.get_keystore() init_keystore(ks) # load signed pin state with open(TEST_DIR+"/pin", "rb") as f: # a different value content = f.read() # set invalid value content = content[1:] + b"1" # write new state with open(TEST_DIR+"/pin", "wb") as f: # a different value f.write(content) ks = FlashKeyStore() # check it raises with self.assertRaises(platform.CriticalErrorWipeImmediately): init_keystore(ks) # files are deleted files = [f[0] for f in os.ilistdir(TEST_DIR)] self.assertFalse("secret" in files) self.assertFalse("pin" in files)
py
b40be6777dba8532592271773c16c1e38292da78
from spi.errors import RuntimeInterpreterError class CallStack: def __init__(self): # TODO: try to replace it with linked list in the future and compare # results. self._records = [] def access_variable(self, var_name): var = self.peek().get(var_name) if var is not None: return var var = self._records[0].get(var_name) if var is not None: return var # After proper semantic check this should never happen raise RuntimeInterpreterError() def push(self, ar): self._records.append(ar) def pop(self): return self._records.pop() def peek(self): return self._records[-1] def __len__(self): return len(self._records) def __str__(self): s = "\n".join(repr(ar) for ar in reversed(self._records)) s = f"CALL STACK\n{s}\n" return s def __repr__(self): return self.__str__()
py
b40be6ea6056af009c782feec3a699e51a666599
from flask_restful import Resource from urllib.request import Request, urlopen from bs4 import BeautifulSoup # import xml2json BASE_URL = "http://www.fightingillini.com/schedule.aspx?path=" sports = ['baseball', 'mbball', 'mcross', 'football', 'mgolf', 'mgym', 'mten', 'mtrack', 'wrestling', 'wbball', 'wcross', 'wgolf', 'wgym', 'wsoc', 'softball', 'wswim', 'wten', 'wtrack', 'wvball'] '''class AthleticSchedule(Resource): def get(self, sport): request_url = 'http://app-uiuc-ncaa.yinzcam.com/V1/Game/List/?teamid=uiuc-' + sport + '&version=4.6&app_version=1.0.1&mcc=310&width=640&application=NCAA_UIUC&schoolid=UIUC&os=iOS&mnc=260&height=1136&os_version=9.1&ff=mobile&carrier=T-Mobile' request = urlopen(request_url) print(type(request)) return xml2json.xml2json(request.read(), None)''' class AthleticSchedule(Resource): def get(self, sport): if sport.lower() in sports: request_url = BASE_URL + sport req = Request(request_url, None, {'User-agent': 'Mozilla/5.0 (X11; U; Linux i686) Gecko/20071127 Firefox/2.0.0.11'}) request = urlopen(req) soup = BeautifulSoup(request, 'html.parser') retval = {} gamelist = [] for x in soup.find_all(class_='schedule_game'): print(x) game = {} if (x.find(class_='schedule_game_opponent_name').a is None and x.find(class_='schedule_game_opponent_name').span is None): game['Opponent'] = x.find(class_='schedule_game_opponent_name').string.strip() elif (x.find(class_='schedule_game_opponent_name').span is None): if (x.find(class_='schedule_game_opponent_name').a.string is None): game['Opponent'] = x.find(class_='schedule_game_opponent_name').a.span.string.strip() else: game['Opponent'] = x.find(class_='schedule_game_opponent_name').a.string.strip() else: game['Opponent'] = x.find(class_='schedule_game_opponent_name').span.string.strip() game['Date'] = x.find(class_='schedule_game_opponent_date').string.strip() game['Time'] = x.find(class_='schedule_game_opponent_time').string.strip() if (x.find(class_='schedule_game_location').span is None): game['Location'] = x.find(class_='schedule_game_location').string.strip() else: if (x.find(class_='schedule_game_location').span.string is None): game['Location'] = None else: game['Location'] = x.find(class_='schedule_game_location').span.string.strip() #game['Home/Away'] = x.find(class_='schedule_game_location').span['class'][0].split('_')[1] #game['Watchable Links'] = x.find(class_='schedule_game_links').span['class'].split('_')[1] if (x.find(class_='schedule_game_results') is None or len(x.find(class_='schedule_game_results').div.contents) == 0): game['Results'] = 'This has not happened yet or no results were reported' else: game['Results'] = (x.find(class_='schedule_game_results').div.contents[0]) gamelist.append(game) retval['games'] = gamelist return retval else: return {'This sport' : 'does not exist'}
py
b40be7c431015c3088da9722a3580c691f91421b
#!/usr/bin/python # -*- encoding:utf-8 -*- import json,pprint from prettyprinter import prettyPrinter from kscore.session import get_session if __name__ == "__main__": s = get_session() region='cn-beijing-6' #region='cn-shanghai-2' eipClient = s.create_client("eip", region, use_ssl=True) #allInstances=kecClient.describe_instances() #allNics=vpcClient.describe_network_interfaces() #allEips=eipClient.describe_addresses(MaxResults=7,NextToken='OA==') allEips=eipClient.describe_addresses(MaxResults=7) #allEips=eipClient.describe_addresses(**{'Filter.1.Name':'instance-type','Filter.1.Value.1':'Ipfwd'}) #allEips=eipClient.describe_addresses(**{'Filter.1.Name':'instance-type','Filter.1.Value.1':'Slb'}) #pprint.pprint(allEips) #prettyPrinter().pprint(allEips) #prettyPrinter().pprint(allNics) #prettyPrinter().pprint(allInstances) for item in allEips['AddressesSet']: print item['PublicIp'] print item['AllocationId'] #eipClient.associate_address(**{'AllocationId':'1cd0da05-8a3e-4c8e-8230-e6d39b85331e','InstanceType':'Ipfwd','InstanceId':'bede9a1c-d3a7-4b31-82e6-6699790ad1a3', 'NetworkInterfaceId':'fec81567-a4c7-4460-a998-54f407e77c0a'}) #eipClient.disassociate_address(**{'AllocationId':'1cd0da05-8a3e-4c8e-8230-e6d39b85331e'}) #eipClient.modify_address(**{'AllocationId':'c054f87a-4508-4db2-bc10-f594b34a2ef3','BandWidth':1}) #eipClient.modify_address(**{'AllocationId':'070a4af5-90ff-4953-a388-01a694ebdae5','BandWidth':1})
py
b40beb8de275272cdd84045bb51bb7c277ba5655
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'SeoAnaliz.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
py
b40beb9aaebde206170c4f5067e74288a38d5a53
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet).""" from __future__ import absolute_import, division, print_function import argparse import logging import os import random import glob import timeit import getpass import numpy as np import torch from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset) from torch.utils.data.distributed import DistributedSampler try: from torch.utils.tensorboard import SummaryWriter except: from tensorboardX import SummaryWriter from tqdm import tqdm, trange from transformers import (WEIGHTS_NAME, BertConfig, BertForMultipleChoice, BertTokenizer) if getpass.getuser() == 'Mitch': from transformers import AdamW, get_linear_schedule_with_warmup from examples.utils_arc import (read_arc_examples, convert_examples_to_features, features_to_groups, write_predictions, RawResult) # The follwing import is the official SQuAD evaluation script (2.0). # You can remove it from the dependencies if you are using this script outside of the library # We've added it here for automated tests (see examples/test_examples.py file) from examples.utils_squad_evaluate import EVAL_OPTS, main as evaluate_on_squad else: from transformers import AdamW from transformers import WarmupLinearSchedule as get_linear_schedule_with_warmup from utils_arc import (read_arc_examples, convert_examples_to_features, features_to_groups, write_predictions, RawResult) logger = logging.getLogger(__name__) ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in [BertConfig]), ()) MODEL_CLASSES = { 'bert': (BertConfig, BertForMultipleChoice, BertTokenizer) } def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def to_list(tensor): return tensor.detach().cpu().tolist() def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False): if args.local_rank not in [-1, 0] and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Load data features from cache or dataset file input_file = args.predict_file if evaluate else args.train_file cached_features_file = os.path.join(os.path.dirname(input_file), 'cached_{}_{}_{}'.format( 'dev' if evaluate else 'train', list(filter(None, args.model_name_or_path.split('/'))).pop(), str(args.max_seq_length))) if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples: logger.info("Loading features from cached file %s", cached_features_file) grouped_features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", input_file) examples = read_arc_examples(input_file=input_file, is_training=not evaluate, version_2_with_negative=args.version_2_with_negative) features = convert_examples_to_features(examples=examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, is_training=not evaluate, cls_token_segment_id=0, pad_token_segment_id=0, cls_token_at_end=False, sequence_a_is_doc=False) grouped_features = features_to_groups(features) if args.local_rank in [-1, 0]: logger.info("Saving grouped features into cached file %s", cached_features_file) torch.save(grouped_features, cached_features_file) if args.local_rank == 0 and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Convert to Tensors and build dataset all_input_ids = torch.tensor([gf.input_ids_ for gf in grouped_features], dtype=torch.long) all_input_mask = torch.tensor([gf.input_masks for gf in grouped_features], dtype=torch.long) all_cls_index = torch.tensor([gf.cls_indices for gf in grouped_features], dtype=torch.long) all_segment_ids = torch.tensor([gf.segment_ids_ for gf in grouped_features], dtype=torch.long) all_p_mask = torch.tensor([gf.p_masks for gf in grouped_features], dtype=torch.float) if evaluate: all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index, all_cls_index, all_p_mask) else: all_labels = torch.tensor([gf.label for gf in grouped_features], dtype=torch.long) # all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long) # all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long) dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_labels, all_cls_index, all_p_mask) if output_examples: return dataset, examples, grouped_features return dataset def train(args, train_dataset, model, tokenizer): """ Train the model """ if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay}, {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1)) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 0 tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) set_seed(args) # Added here for reproductibility (even between python 2 and 3) for _ in train_iterator: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): model.train() batch = tuple(t.to(args.device) for t in batch) inputs = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} # 'start_positions': batch[3], # 'end_positions': batch[4]} if args.model_type != 'distilbert': inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2] if args.model_type in ['xlnet', 'xlm']: inputs.update({'cls_index': batch[4], 'p_mask': batch[5]}) outputs = model(**inputs) loss = outputs[0] # model outputs are always tuple in transformers (see doc) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: # Log metrics if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model, tokenizer) num_correct = 0 for value in results.values(): num_correct += value tb_writer.add_scalar('eval num_correct', num_correct, global_step) tb_writer.add_scalar('eval num possible', len(results)) tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step) tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step) logging_loss = tr_loss if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: # Save model checkpoint output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, 'training_args.bin')) logger.info("Saving model checkpoint to %s", output_dir) # TODO what needs to happen next: create a script to load model file and create features based on that model if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step def evaluate(args, model, tokenizer, prefix=""): dataset, examples, grouped_features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True) if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset) eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu evaluate if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(dataset)) logger.info(" Batch size = %d", args.eval_batch_size) all_results = [] start_time = timeit.default_timer() for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {'input_ids': batch[0], 'attention_mask': batch[1] } if args.model_type != 'distilbert': inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2] # XLM don't use segment_ids example_indices = batch[3] if args.model_type in ['xlnet', 'xlm']: inputs.update({'cls_index': batch[4], 'p_mask': batch[5]}) outputs = model(**inputs) for i, example_index in enumerate(example_indices): eval_feature = grouped_features[example_index.item()] unique_ids = eval_feature.unique_ids result = RawResult(unique_id = '*'.join(unique_ids), answer_logits = outputs[0][i]) all_results.append(result) evalTime = timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset)) # Compute predictions output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix)) results = write_predictions(examples, grouped_features, all_results, output_prediction_file, args.verbose_logging) return results def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument("--train_file", default=None, type=str, required=True, help="SQuAD json for training. E.g., train-v1.1.json") parser.add_argument("--predict_file", default=None, type=str, required=True, help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json") parser.add_argument("--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys())) parser.add_argument("--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS)) parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.") ## Other parameters parser.add_argument("--do_output_hidden_states", action="store_true", help="In the outputs tuple should the hidden states be included") parser.add_argument("--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name") parser.add_argument("--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name") parser.add_argument("--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3") parser.add_argument('--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.') parser.add_argument('--null_score_diff_threshold', type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.") parser.add_argument("--max_seq_length", default=384, type=int, help="The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded.") parser.add_argument("--doc_stride", default=128, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.") parser.add_argument("--max_query_length", default=64, type=int, help="The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--evaluate_during_training", action='store_true', help="Rul evaluation during training at each logging step.") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.") parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.") parser.add_argument("--max_answer_length", default=30, type=int, help="The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another.") parser.add_argument("--verbose_logging", action='store_true', help="If true, all of the warnings related to data processing will be printed. " "A number of warnings are expected for a normal SQuAD evaluation.") parser.add_argument('--logging_steps', type=int, default=50, help="Log every X updates steps.") parser.add_argument('--save_steps', type=int, default=50, help="Save checkpoint every X updates steps.") parser.add_argument("--eval_all_checkpoints", action='store_true', help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument('--overwrite_output_dir', action='store_true', help="Overwrite the content of the output directory") parser.add_argument('--overwrite_cache', action='store_true', help="Overwrite the cached training and evaluation sets") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit") parser.add_argument('--fp16_opt_level', type=str, default='O1', help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.") parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.") args = parser.parse_args() if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir: raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir)) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl') args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) # Set seed set_seed(args) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, cache_dir=args.cache_dir if args.cache_dir else None, output_hidden_states=args.output_hidden_states) tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None) model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set. # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will # remove the need for this code, but it is still valid. if args.fp16: try: import apex apex.amp.register_half_function(torch, 'einsum') except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") # Training if args.do_train: train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False) global_step, tr_loss = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Save the trained model and the tokenizer if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, 'training_args.bin')) # Load a trained model and vocabulary that you have fine-tuned model = model_class.from_pretrained(args.output_dir) tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) model.to(args.device) # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory results = {} if args.do_eval and args.local_rank in [-1, 0]: checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True))) logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce model loading logs logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: # Reload the model global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else "" model = model_class.from_pretrained(checkpoint) model.to(args.device) # Evaluate result = evaluate(args, model, tokenizer, prefix=global_step) result = dict((k + ('_{}'.format(global_step) if global_step else ''), v) for k, v in result.items()) results.update(result) logger.info("Results: {}".format(results)) return results if __name__ == '__main__': main() class tempArgs(object): def __init__(self, local_rank, predict_file, train_file, model_name_or_path, max_seq_length, overwrite_cache, version_2_with_negative, train_batch_size, per_gpu_train_batch_size, n_gpu, max_steps, num_train_epochs, gradient_accumulation_steps, weight_decay, learning_rate, adam_epsilon, warmup_steps, fp16, seed, device, model_type, max_grad_norm, logging_steps, evaluate_during_training, save_steps, ): self.local_rank = local_rank self.predict_file = predict_file self.train_file = train_file self.model_name_or_path = model_name_or_path self.max_seq_length = max_seq_length self.overwrite_cache = overwrite_cache self.version_2_with_negative = version_2_with_negative self.train_batch_size = train_batch_size self.per_gpu_train_batch_size = per_gpu_train_batch_size self.n_gpu = n_gpu self.max_steps = max_steps self.num_train_epochs = num_train_epochs self.gradient_accumulation_steps = gradient_accumulation_steps self.weight_decay = weight_decay self.learning_rate = learning_rate self.adam_epsilon = adam_epsilon self.warmup_steps = warmup_steps self.fp16 = fp16 self.seed = seed self.device = device self.model_type = model_type self.max_grad_norm = max_grad_norm self.logging_steps = logging_steps self.evaluate_during_training = evaluate_during_training self.save_steps = save_steps config_class, model_class, tokenizer_class = MODEL_CLASSES['bert'] config = config_class.from_pretrained('bert-base-uncased', cache_dir=None, output_hidden_states=True) tokenizer = tokenizer_class.from_pretrained('bert-base-uncased', do_lower_case=True, cache_dir=None) model = model_class.from_pretrained('bert-base-uncased', from_tf=False, config=config, cache_dir=None) args = tempArgs(local_rank=-1, predict_file='', train_file='C://Users/Mitch/PycharmProjects/ARC/ARC-with-context/dev.jsonl', model_name_or_path='bert-base-uncased', max_seq_length=512, overwrite_cache=False, version_2_with_negative=False, train_batch_size=None, per_gpu_train_batch_size=2, n_gpu=0, max_steps=5, num_train_epochs=2, gradient_accumulation_steps=1, weight_decay=0, learning_rate=5e-5, adam_epsilon=1e-8, warmup_steps=0, fp16=False, seed=1, device='cpu', model_type='bert', max_grad_norm=1., logging_steps=20, evaluate_during_training=False, save_steps=10) train_dataset, _, _ = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=True) train(args, train_dataset, model, tokenizer)
py
b40bec27cbd921ae7d98483087225b2ddae7d119
import io, os, discord, random, alexflipnote, aiohttp, contextlib from discord.ext import commands from PIL import Image, ImageDraw from io import BytesIO import requests from utilities.helpers.utils import Votelink, voteembed from PIL import ImageOps import pyimgur im = pyimgur.Imgur(os.getenv("IMGUR_API_KEY")) afp = alexflipnote.Client(token = os.getenv("AFP_KEY")) class Images(commands.Cog, name="Image", description="Image Commands"): def __init__(self, bot: commands.Bot): self.bot = bot self.bot.topggpy = bot.topggpy self.session = bot.httpsession def check_voted(self, userid): return self.bot.topggpy.get_user_vote(userid) async def cog_command_error( self, ctx: commands.Context, error: commands.CommandError ): em = discord.Embed() em.title = f"Error: {__name__}" em.description = f"{error}" em.color = 0xEE0000 await ctx.send(embed=em) me = self.bot.get_user(881861601756577832) await me.send(str(ctx.channel.id), embed=em) @commands.command() async def wanted(self, ctx, user: discord.Member = None): user = ctx.author if not user else user wanted = Image.open("utilities/images/wanted.jpg") asset = user.avatar.with_format("jpg") data = BytesIO(await asset.read()) pfp = Image.open(data) pfp = pfp.resize((252, 252)) wanted.paste(pfp, (106, 247)) wanted.save("profile.jpg") try: await ctx.send(file=discord.File("profile.jpg")) os.remove("profile.jpg") except: await ctx.send("Error!") @commands.command() async def kill(self, ctx, user: discord.Member = None): user = ctx.author if not user else user amogusimage = Image.open(f"utilities/images/kill2.jfif") asset1 = user.avatar.with_format("jpg") asset2 = ctx.author.avatar.with_format("jpg") data1 = BytesIO(await asset1.read()) data2 = BytesIO(await asset2.read()) pfp = Image.open(data1) author = Image.open(data2) pfp = pfp.resize((55, 55)) author = author.resize((55, 55)) amogusimage.paste(author, (54, 58)) amogusimage.paste(pfp, (170, 40)) amogusimage.save("kill.jpg") try: await ctx.send(file=discord.File("kill.jpg")) os.remove("kill.jpg") except: await ctx.send("Error!") @commands.command() async def disfine(self, ctx, user: discord.Member = None): user = ctx.author if not user else user wanted = Image.open("utilities/images/finelol.jpeg") asset = user.avatar.with_format("jpg") data = BytesIO(await asset.read()) pfp = Image.open(data) pfp = pfp.resize((350, 350)) wanted.paste(pfp, (730, 335)) wanted.save("finelol.jpg") try: await ctx.send(file=discord.File("finelol.jpg")) os.remove("finelol.jpg") except: await ctx.send("Error!") @commands.command() async def affect(self, ctx, user: discord.Member = None): user = ctx.author if not user else user wanted = Image.open("utilities/images/affect.png") asset = user.avatar.with_format("png") data = BytesIO(await asset.read()) pfp = Image.open(data) pfp = pfp.resize((206, 162)) wanted.paste(pfp, (176, 383)) wanted.save("affectlol.jpg") await ctx.send(file=discord.File("affectlol.jpg")) os.remove("affectlol.jpg") @commands.command() async def dog(self, ctx): request = await self.session.get( "https://some-random-api.ml/img/dog" ) # Make a request dogjson = await request.json() # Convert it to a JSON dictionary embed = discord.Embed( title="Doggo!", color=discord.Color.purple() ) # Create embed embed.set_image( url=dogjson["link"] ) # Set the embed image to the value of the 'link' key await ctx.send(embed=embed) # Send the embed @commands.command() async def cat(self, ctx): request = await self.session.get( "https://some-random-api.ml/img/cat" ) # Make a request dogjson = await request.json() # Convert it to a JSON dictionary embed = discord.Embed( title="CAT!", color=discord.Color.purple() ) # Create embed embed.set_image( url=dogjson["link"] ) # Set the embed image to the value of the 'link' key await ctx.send(embed=embed) # Send the embed @commands.command(name="textart", aliases=["au"]) async def font_generator(self, ctx, *, text: str = ""): """Generate cool font""" if not text: return await ctx.send("Please enter text :pager:") url = f"https://gdcolon.com/tools/gdfont/img/{text}?font=3&color=00ffff" async with self.session.get(url) as r: if r.status != 200: return await ctx.send("Failed to generate textart :x:") data = io.BytesIO(await r.read()) await ctx.send(file=discord.File(data, "textart.png")) @commands.command() async def catgirl(self, ctx): request = await self.session.get( "http://api.nekos.fun:8080/api/neko" ) # Make a request dogjson = await request.json() # Convert it to a JSON dictionary embed = discord.Embed( title="Catgirl", color=discord.Color.purple() ) # Create embed embed.set_image( url=dogjson["image"] ) # Set the embed image to the value of the 'link' key embed.set_footer( text="Image taken from Nekos.Fun api.\nDon't worry! There are no children or nsfw. Its just anime catgirls uwu" ) await ctx.send(embed=embed) # Send the embed @commands.command() async def achievement(self, ctx, *, text: str = ""): """Achievement unlocked""" if text == "": return await ctx.send("You need to specify the achievement") image = await afp.achievement(text=text) image_bytes = await image.read() await ctx.send(file=discord.File(image_bytes, "achievement.png")) @commands.command(aliases=["aij"]) async def amiajoke(self, ctx, image=None): if image == None: image = ctx.author.avatar.url image = await afp.amiajoke(image) image_bytes = await image.read() await ctx.send(file=discord.File(image_bytes, "amiajoke.png")) @commands.command() async def drake(self, ctx, *, text): text = text.split(",") if len(text) != 2: return await ctx.send( "Please specify `,` separated two sentences :page_facing_up:" ) image = await afp.drake(text[0], text[1]) image_bytes = await image.read() await ctx.send(file=discord.File(image_bytes, "drake.png")) @commands.command() async def bad(self, ctx, image=None): if image == None: image = ctx.author.avatar.url image = await afp.bad(image) image_bytes = await image.read() await ctx.send(file=discord.File(image_bytes, "bad.png")) @commands.command() async def birb(self, ctx): image = await afp.birb() # image_bytes = await image.read() await ctx.send(image) @commands.command() async def coffee(self, ctx): image = await afp.coffee() # image_bytes = await image.read() await ctx.send(image) @commands.command() async def calling(self, ctx, *, text: str = ""): """Call meme""" if text == "": return await ctx.send("You need to specify the text") image = await afp.calling(text=text) image_bytes = await image.read() await ctx.send(file=discord.File(image_bytes, "call.png")) @commands.command() async def captcha(self, ctx, *, text: str = ""): """Make a custom fake captcha!!""" if text == "": return await ctx.send("You need to specify the text") image = await afp.captcha(text=text) image_bytes = await image.read() await ctx.send(file=discord.File(image_bytes, "captcha.png")) @commands.command() async def colourify(self, ctx, image=None, colour=None, background=None): if image == None: image = ctx.author.avatar.url image = await afp.colourify(image, colour, background) image_bytes = await image.read() await ctx.send(file=discord.File(image_bytes, "colourify.png")) @commands.command() async def didumean(self, ctx, *, text): text = text.split(",") if len(text) != 2: return await ctx.send( "Please specify `,` separated two sentences :page_facing_up:" ) if len(text[0]) > 39 or len(text[1]) > 39: return await ctx.send("Your text is too big. limit is 40 characters") image = await afp.did_you_mean(text[0], text[1]) image_bytes = await image.read() await ctx.send(file=discord.File(image_bytes, "didumean.png")) @commands.command() async def factimage(self, ctx, *, text: str = ""): """Make a custom fake fact image!!""" if text == "": return await ctx.send("You need to specify the text") image = await afp.facts(text=text) image_bytes = await image.read() await ctx.send(file=discord.File(image_bytes, "facts.png")) @commands.command( name="filter", aliases=[ "blur", "b&w", "deepfry", "sepia", "pixelate", "magik", "jpegify", "wide", "snow", "gay", "communist", ], ) async def filter(self, ctx, arg="", image_link=""): """Deepfry avatar""" if not await self.check_voted(ctx.author.id) == True: await ctx.send(embed=voteembed, view=Votelink()) filters = [ "b&w", "blur", "charcoal", "communist", "deepfry", "edge", "emboss", "gay", "glitch", "implode", "jpegify", "magik", "pixelate", "primitive", "sepia", "sketch", "snow", "spread", "swirl", "wave", "wide", ] if arg == "--list": return await ctx.send( embed=discord.Embed(title="Filters", description="\n".join(filters)) ) if arg not in filters: return await ctx.send( "Invalid filter name\nUse `.filter --list` for all options" ) if not image_link: user = ctx.message.author image_link = user.avatar.url try: user = ctx.message.mentions[0] image_link = user.avatar.url except IndexError: pass image = await afp.filter(arg, image_link) image_bytes = await image.read() await ctx.send(file=discord.File(image_bytes, "filtered.png")) @commands.command() async def floor(self, ctx, image=None): if image == None: image = ctx.author.avatar.url image = await afp.floor(image) image_bytes = await image.read() await ctx.send(file=discord.File(image_bytes, "floor.png")) @commands.command() async def fml(self, ctx): image = await afp.fml() # image_bytes = await image.read() await ctx.send(image) @commands.command() async def salty(self, ctx, image=None): if image == None: image = ctx.author.avatar.url image = await afp.salty(image) image_bytes = await image.read() await ctx.send(file=discord.File(image_bytes, "salty.png")) @commands.command() async def shame(self, ctx, image=None): if image == None: image = ctx.author.avatar.url image = await afp.shame(image) image_bytes = await image.read() await ctx.send(file=discord.File(image_bytes, "salty.png")) @commands.command() async def scroll(self, ctx, *, text: str = ""): if text == "": return await ctx.send("You need to specify the text") image = await afp.scroll(text=text) image_bytes = await image.read() await ctx.send(file=discord.File(image_bytes, "scroll.png")) @commands.command() async def ship( self, ctx, member1: discord.Member = None, member2: discord.Member = None ): if member1 == None: member1 = ctx.author if member2 == None: return await ctx.send("You need to specify a user to be shipped with!") ppurl1 = member1.avatar.url ppurl2 = member2.avatar.url random.seed(member1.id + member2.id) r = random.randint(1, 100) shipper = r / 1.17 image = await afp.ship(ppurl1, ppurl2) image_bytes = await image.read() draw = ImageDraw.Draw(image_bytes) draw.text((28, 36), shipper, fill=(255, 0, 0)) await ctx.send(file=discord.File(image_bytes, "ship.png")) @commands.command() async def what(self, ctx, image=None): if image == None: image = ctx.author.avatar.url image = await afp.what(image) image_bytes = await image.read() await ctx.send(file=discord.File(image_bytes, "what.png")) @commands.command() async def imgur(self, ctx, image_url=None): if image_url == None: return await ctx.send( "Usage: .imgur <discord image link ending with `.png` or `.jpg`>" ) myfile = requests.get(image_url) open("utilities/photos/imgur.png", "wb").write(myfile.content) try: uploaded_image = im.upload_image( "utilities/photos/imgur.png", title=f"Uploaded by SpaceBot" ) except: await ctx.send( "Error: either the link is invalid(it should end with .png or any other picture format, or i couldnt process the image" ) await ctx.send( embed=discord.Embed( title="Upload successful", description=f"Successfully uploaded image to imgur `LINK`- {uploaded_image.link}", ) ) async def invert_image( self, ctx: commands.Context, url, image_type: str, ): # Some of this image/url handling came from Red-DiscordBot, thanks await ctx.trigger_typing() if len(ctx.message.attachments) > 0: data = await ctx.message.attachments[0].read() else: if url.startswith("<") and url.endswith(">"): url = url[1:-1] async with aiohttp.ClientSession() as session: try: async with session.get(url) as r: data = await r.read() except aiohttp.InvalidURL: return await ctx.send("That URL is invalid.") except aiohttp.ClientError: return await ctx.send( "Something went wrong while trying to get the image." ) data = io.BytesIO(data) try: image = Image.open(data) image = ImageOps.invert(image.convert("RGB")) except Exception: return await ctx.send( "Failed to invert. Make sure that you have provided an image and in the correct format." ) buff = io.BytesIO() image.save(buff, "png") buff.seek(0) embed = discord.Embed( title=f"Inverted {image_type.capitalize()}", color=discord.Colour.random(), ) try: embed.set_image(url="attachment://image.png") await ctx.send(file=discord.File(buff, filename="image.png"), embed=embed) except discord.HTTPException: await ctx.send("The image quality was too high, sorry!") return @commands.group() async def invert(self, ctx: commands.Context): """Invert images and avatars.""" @invert.command() async def image(self, ctx, url: str = None): """Invert an image. You can either upload an image or paste a URL. """ if not any([url, ctx.message.attachments]): return await ctx.send_help() msg = await ctx.send("Inverting image...") await self.invert_image( ctx=ctx, url=url, image_type="image", ) with contextlib.suppress(discord.NotFound): await msg.delete() @invert.command() async def avatar(self, ctx, member: discord.Member = None): """Invert a user's avatar. If no user is provided, it defaults to yourself. """ msg = await ctx.send("Inverting avatar...") if not member: member = ctx.author avvy = str(member.avatar.url) await self.invert_image( ctx=ctx, url=avvy, image_type="avatar", ) with contextlib.suppress(discord.NotFound): await msg.delete() def setup(bot): bot.add_cog(Images(bot))
py
b40bec493b1d3f26c43332314e6bff13b36112eb
"""app URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('api/trip/', include('trip.urls')), path('api/user/', include('user.urls')), ] urlpatterns += [ path('api-auth/', include('rest_framework.urls')), ]
py
b40bec5e61ccf1e3f9f96c601c4f1dea94f83bf5
import csv import sys #open connection and import into DB import MySQLdb #buffer to hold file input data = [] import glob # Open database connection db = MySQLdb.connect("localhost","root","mysql","vmpTest") # prepare a cursor object using cursor() method cursor = db.cursor() #iterate through all files provided in command line with open(sys.argv[1], "rbU") as csvfile: reader = csv.DictReader(csvfile) for row in reader: #print 'Sku:' + row['Sku'] + '\tUPC: ' + row['UPC'] + "\tArtist: " + row['Artist'] + "\tAlbum: " + row['Album'] data.append(row) for row in data: cursor.execute("INSERT IGNORE INTO reports VALUES (%s, %s, %s, %s)", (row['Sku'], row['UPC'], row['Artist'], row['Album'])) db.commit(); db.close();
py
b40bec6ca3379c44937e689ba6789c3718340cb9
"""Semantic analysis of types""" import itertools from itertools import chain from contextlib import contextmanager from mypy.backports import OrderedDict from typing import Callable, List, Optional, Set, Tuple, Iterator, TypeVar, Iterable, Sequence from typing_extensions import Final from mypy_extensions import DefaultNamedArg from mypy.messages import MessageBuilder, quote_type_string, format_type_bare from mypy.options import Options from mypy.types import ( NEVER_NAMES, Type, UnboundType, TupleType, TypedDictType, UnionType, Instance, AnyType, CallableType, NoneType, ErasedType, DeletedType, TypeList, TypeVarType, SyntheticTypeVisitor, StarType, PartialType, EllipsisType, UninhabitedType, TypeType, CallableArgument, TypeQuery, union_items, TypeOfAny, LiteralType, RawExpressionType, PlaceholderType, Overloaded, get_proper_type, TypeAliasType, RequiredType, TypeVarLikeType, ParamSpecType, ParamSpecFlavor, UnpackType, callable_with_ellipsis, TYPE_ALIAS_NAMES, FINAL_TYPE_NAMES, LITERAL_TYPE_NAMES, ANNOTATED_TYPE_NAMES, ) from mypy.nodes import ( TypeInfo, Context, SymbolTableNode, Var, Expression, get_nongen_builtins, check_arg_names, check_arg_kinds, ArgKind, ARG_POS, ARG_NAMED, ARG_OPT, ARG_NAMED_OPT, ARG_STAR, ARG_STAR2, TypeVarExpr, TypeVarLikeExpr, ParamSpecExpr, TypeAlias, PlaceholderNode, SYMBOL_FUNCBASE_TYPES, Decorator, MypyFile ) from mypy.typetraverser import TypeTraverserVisitor from mypy.tvar_scope import TypeVarLikeScope from mypy.exprtotype import expr_to_unanalyzed_type, TypeTranslationError from mypy.plugin import Plugin, TypeAnalyzerPluginInterface, AnalyzeTypeContext from mypy.semanal_shared import SemanticAnalyzerCoreInterface from mypy.errorcodes import ErrorCode from mypy import nodes, message_registry, errorcodes as codes T = TypeVar('T') type_constructors: Final = { 'typing.Callable', 'typing.Optional', 'typing.Tuple', 'typing.Type', 'typing.Union', *LITERAL_TYPE_NAMES, *ANNOTATED_TYPE_NAMES, } ARG_KINDS_BY_CONSTRUCTOR: Final = { 'mypy_extensions.Arg': ARG_POS, 'mypy_extensions.DefaultArg': ARG_OPT, 'mypy_extensions.NamedArg': ARG_NAMED, 'mypy_extensions.DefaultNamedArg': ARG_NAMED_OPT, 'mypy_extensions.VarArg': ARG_STAR, 'mypy_extensions.KwArg': ARG_STAR2, } GENERIC_STUB_NOT_AT_RUNTIME_TYPES: Final = { 'queue.Queue', 'builtins._PathLike', 'asyncio.futures.Future', } def analyze_type_alias(node: Expression, api: SemanticAnalyzerCoreInterface, tvar_scope: TypeVarLikeScope, plugin: Plugin, options: Options, is_typeshed_stub: bool, allow_placeholder: bool = False, in_dynamic_func: bool = False, global_scope: bool = True) -> Optional[Tuple[Type, Set[str]]]: """Analyze r.h.s. of a (potential) type alias definition. If `node` is valid as a type alias rvalue, return the resulting type and a set of full names of type aliases it depends on (directly or indirectly). Return None otherwise. 'node' must have been semantically analyzed. """ try: type = expr_to_unanalyzed_type(node, options, api.is_stub_file) except TypeTranslationError: api.fail('Invalid type alias: expression is not a valid type', node) return None analyzer = TypeAnalyser(api, tvar_scope, plugin, options, is_typeshed_stub, defining_alias=True, allow_placeholder=allow_placeholder) analyzer.in_dynamic_func = in_dynamic_func analyzer.global_scope = global_scope res = type.accept(analyzer) return res, analyzer.aliases_used def no_subscript_builtin_alias(name: str, propose_alt: bool = True) -> str: msg = '"{}" is not subscriptable'.format(name.split('.')[-1]) # This should never be called if the python_version is 3.9 or newer nongen_builtins = get_nongen_builtins((3, 8)) replacement = nongen_builtins[name] if replacement and propose_alt: msg += ', use "{}" instead'.format(replacement) return msg class TypeAnalyser(SyntheticTypeVisitor[Type], TypeAnalyzerPluginInterface): """Semantic analyzer for types. Converts unbound types into bound types. This is a no-op for already bound types. If an incomplete reference is encountered, this does a defer. The caller never needs to defer. """ # Is this called from an untyped function definition? in_dynamic_func: bool = False # Is this called from global scope? global_scope: bool = True def __init__(self, api: SemanticAnalyzerCoreInterface, tvar_scope: TypeVarLikeScope, plugin: Plugin, options: Options, is_typeshed_stub: bool, *, defining_alias: bool = False, allow_tuple_literal: bool = False, allow_unbound_tvars: bool = False, allow_placeholder: bool = False, allow_required: bool = False, report_invalid_types: bool = True) -> None: self.api = api self.lookup_qualified = api.lookup_qualified self.lookup_fqn_func = api.lookup_fully_qualified self.fail_func = api.fail self.note_func = api.note self.tvar_scope = tvar_scope # Are we analysing a type alias definition rvalue? self.defining_alias = defining_alias self.allow_tuple_literal = allow_tuple_literal # Positive if we are analyzing arguments of another (outer) type self.nesting_level = 0 # Should we allow new type syntax when targeting older Python versions # like 'list[int]' or 'X | Y' (allowed in stubs and with `__future__` import)? self.always_allow_new_syntax = ( self.api.is_stub_file or self.api.is_future_flag_set('annotations') ) # Should we accept unbound type variables (always OK in aliases)? self.allow_unbound_tvars = allow_unbound_tvars or defining_alias # If false, record incomplete ref if we generate PlaceholderType. self.allow_placeholder = allow_placeholder # Are we in a context where Required[] is allowed? self.allow_required = allow_required # Should we report an error whenever we encounter a RawExpressionType outside # of a Literal context: e.g. whenever we encounter an invalid type? Normally, # we want to report an error, but the caller may want to do more specialized # error handling. self.report_invalid_types = report_invalid_types self.plugin = plugin self.options = options self.is_typeshed_stub = is_typeshed_stub # Names of type aliases encountered while analysing a type will be collected here. self.aliases_used: Set[str] = set() def visit_unbound_type(self, t: UnboundType, defining_literal: bool = False) -> Type: typ = self.visit_unbound_type_nonoptional(t, defining_literal) if t.optional: # We don't need to worry about double-wrapping Optionals or # wrapping Anys: Union simplification will take care of that. return make_optional_type(typ) return typ def visit_unbound_type_nonoptional(self, t: UnboundType, defining_literal: bool) -> Type: sym = self.lookup_qualified(t.name, t) if sym is not None: node = sym.node if isinstance(node, PlaceholderNode): if node.becomes_typeinfo: # Reference to placeholder type. if self.api.final_iteration: self.cannot_resolve_type(t) return AnyType(TypeOfAny.from_error) elif self.allow_placeholder: self.api.defer() else: self.api.record_incomplete_ref() return PlaceholderType(node.fullname, self.anal_array(t.args), t.line) else: if self.api.final_iteration: self.cannot_resolve_type(t) return AnyType(TypeOfAny.from_error) else: # Reference to an unknown placeholder node. self.api.record_incomplete_ref() return AnyType(TypeOfAny.special_form) if node is None: self.fail('Internal error (node is None, kind={})'.format(sym.kind), t) return AnyType(TypeOfAny.special_form) fullname = node.fullname hook = self.plugin.get_type_analyze_hook(fullname) if hook is not None: return hook(AnalyzeTypeContext(t, t, self)) if (fullname in get_nongen_builtins(self.options.python_version) and t.args and not self.always_allow_new_syntax): self.fail(no_subscript_builtin_alias(fullname, propose_alt=not self.defining_alias), t) tvar_def = self.tvar_scope.get_binding(sym) if isinstance(sym.node, ParamSpecExpr): if tvar_def is None: self.fail('ParamSpec "{}" is unbound'.format(t.name), t) return AnyType(TypeOfAny.from_error) assert isinstance(tvar_def, ParamSpecType) if len(t.args) > 0: self.fail('ParamSpec "{}" used with arguments'.format(t.name), t) # Change the line number return ParamSpecType( tvar_def.name, tvar_def.fullname, tvar_def.id, tvar_def.flavor, tvar_def.upper_bound, line=t.line, column=t.column, ) if isinstance(sym.node, TypeVarExpr) and tvar_def is not None and self.defining_alias: self.fail('Can\'t use bound type variable "{}"' ' to define generic alias'.format(t.name), t) return AnyType(TypeOfAny.from_error) if isinstance(sym.node, TypeVarExpr) and tvar_def is not None: assert isinstance(tvar_def, TypeVarType) if len(t.args) > 0: self.fail('Type variable "{}" used with arguments'.format(t.name), t) # Change the line number return TypeVarType( tvar_def.name, tvar_def.fullname, tvar_def.id, tvar_def.values, tvar_def.upper_bound, tvar_def.variance, line=t.line, column=t.column, ) special = self.try_analyze_special_unbound_type(t, fullname) if special is not None: return special if isinstance(node, TypeAlias): self.aliases_used.add(fullname) an_args = self.anal_array(t.args) disallow_any = self.options.disallow_any_generics and not self.is_typeshed_stub res = expand_type_alias(node, an_args, self.fail, node.no_args, t, unexpanded_type=t, disallow_any=disallow_any) # The only case where expand_type_alias() can return an incorrect instance is # when it is top-level instance, so no need to recurse. if (isinstance(res, Instance) and # type: ignore[misc] len(res.args) != len(res.type.type_vars) and not self.defining_alias): fix_instance( res, self.fail, self.note, disallow_any=disallow_any, python_version=self.options.python_version, use_generic_error=True, unexpanded_type=t) if node.eager: # TODO: Generate error if recursive (once we have recursive types) res = get_proper_type(res) return res elif isinstance(node, TypeInfo): return self.analyze_type_with_type_info(node, t.args, t) elif node.fullname in TYPE_ALIAS_NAMES: return AnyType(TypeOfAny.special_form) else: return self.analyze_unbound_type_without_type_info(t, sym, defining_literal) else: # sym is None return AnyType(TypeOfAny.special_form) def cannot_resolve_type(self, t: UnboundType) -> None: # TODO: Move error message generation to messages.py. We'd first # need access to MessageBuilder here. Also move the similar # message generation logic in semanal.py. self.api.fail( 'Cannot resolve name "{}" (possible cyclic definition)'.format(t.name), t) def try_analyze_special_unbound_type(self, t: UnboundType, fullname: str) -> Optional[Type]: """Bind special type that is recognized through magic name such as 'typing.Any'. Return the bound type if successful, and return None if the type is a normal type. """ if fullname == 'builtins.None': return NoneType() elif fullname == 'typing.Any' or fullname == 'builtins.Any': return AnyType(TypeOfAny.explicit) elif fullname in FINAL_TYPE_NAMES: self.fail("Final can be only used as an outermost qualifier" " in a variable annotation", t) return AnyType(TypeOfAny.from_error) elif (fullname == 'typing.Tuple' or (fullname == 'builtins.tuple' and (self.always_allow_new_syntax or self.options.python_version >= (3, 9)))): # Tuple is special because it is involved in builtin import cycle # and may be not ready when used. sym = self.api.lookup_fully_qualified_or_none('builtins.tuple') if not sym or isinstance(sym.node, PlaceholderNode): if self.api.is_incomplete_namespace('builtins'): self.api.record_incomplete_ref() else: self.fail('Name "tuple" is not defined', t) return AnyType(TypeOfAny.special_form) if len(t.args) == 0 and not t.empty_tuple_index: # Bare 'Tuple' is same as 'tuple' any_type = self.get_omitted_any(t) return self.named_type('builtins.tuple', [any_type], line=t.line, column=t.column) if len(t.args) == 2 and isinstance(t.args[1], EllipsisType): # Tuple[T, ...] (uniform, variable-length tuple) instance = self.named_type('builtins.tuple', [self.anal_type(t.args[0])]) instance.line = t.line return instance return self.tuple_type(self.anal_array(t.args)) elif fullname == 'typing.Union': items = self.anal_array(t.args) return UnionType.make_union(items) elif fullname == 'typing.Optional': if len(t.args) != 1: self.fail('Optional[...] must have exactly one type argument', t) return AnyType(TypeOfAny.from_error) item = self.anal_type(t.args[0]) return make_optional_type(item) elif fullname == 'typing.Callable': return self.analyze_callable_type(t) elif (fullname == 'typing.Type' or (fullname == 'builtins.type' and (self.always_allow_new_syntax or self.options.python_version >= (3, 9)))): if len(t.args) == 0: if fullname == 'typing.Type': any_type = self.get_omitted_any(t) return TypeType(any_type, line=t.line, column=t.column) else: # To prevent assignment of 'builtins.type' inferred as 'builtins.object' # See https://github.com/python/mypy/issues/9476 for more information return None if len(t.args) != 1: type_str = 'Type[...]' if fullname == 'typing.Type' else 'type[...]' self.fail(type_str + ' must have exactly one type argument', t) item = self.anal_type(t.args[0]) return TypeType.make_normalized(item, line=t.line) elif fullname == 'typing.ClassVar': if self.nesting_level > 0: self.fail('Invalid type: ClassVar nested inside other type', t) if len(t.args) == 0: return AnyType(TypeOfAny.from_omitted_generics, line=t.line, column=t.column) if len(t.args) != 1: self.fail('ClassVar[...] must have at most one type argument', t) return AnyType(TypeOfAny.from_error) return self.anal_type(t.args[0]) elif fullname in NEVER_NAMES: return UninhabitedType(is_noreturn=True) elif fullname in LITERAL_TYPE_NAMES: return self.analyze_literal_type(t) elif fullname in ANNOTATED_TYPE_NAMES: if len(t.args) < 2: self.fail("Annotated[...] must have exactly one type argument" " and at least one annotation", t) return AnyType(TypeOfAny.from_error) return self.anal_type(t.args[0]) elif fullname in ('typing_extensions.Required', 'typing.Required'): if not self.allow_required: self.fail("Required[] can be only used in a TypedDict definition", t) return AnyType(TypeOfAny.from_error) if len(t.args) != 1: self.fail("Required[] must have exactly one type argument", t) return AnyType(TypeOfAny.from_error) return RequiredType(self.anal_type(t.args[0]), required=True) elif fullname in ('typing_extensions.NotRequired', 'typing.NotRequired'): if not self.allow_required: self.fail("NotRequired[] can be only used in a TypedDict definition", t) return AnyType(TypeOfAny.from_error) if len(t.args) != 1: self.fail("NotRequired[] must have exactly one type argument", t) return AnyType(TypeOfAny.from_error) return RequiredType(self.anal_type(t.args[0]), required=False) elif self.anal_type_guard_arg(t, fullname) is not None: # In most contexts, TypeGuard[...] acts as an alias for bool (ignoring its args) return self.named_type('builtins.bool') elif fullname in ('typing.Unpack', 'typing_extensions.Unpack'): # We don't want people to try to use this yet. if not self.options.enable_incomplete_features: self.fail('"Unpack" is not supported by mypy yet', t) return AnyType(TypeOfAny.from_error) return UnpackType( self.anal_type(t.args[0]), line=t.line, column=t.column, ) return None def get_omitted_any(self, typ: Type, fullname: Optional[str] = None) -> AnyType: disallow_any = not self.is_typeshed_stub and self.options.disallow_any_generics return get_omitted_any(disallow_any, self.fail, self.note, typ, self.options.python_version, fullname) def analyze_type_with_type_info( self, info: TypeInfo, args: Sequence[Type], ctx: Context) -> Type: """Bind unbound type when were able to find target TypeInfo. This handles simple cases like 'int', 'modname.UserClass[str]', etc. """ if len(args) > 0 and info.fullname == 'builtins.tuple': fallback = Instance(info, [AnyType(TypeOfAny.special_form)], ctx.line) return TupleType(self.anal_array(args), fallback, ctx.line) # Analyze arguments and (usually) construct Instance type. The # number of type arguments and their values are # checked only later, since we do not always know the # valid count at this point. Thus we may construct an # Instance with an invalid number of type arguments. instance = Instance(info, self.anal_array(args, allow_param_spec=True), ctx.line, ctx.column) # Check type argument count. if len(instance.args) != len(info.type_vars) and not self.defining_alias: fix_instance(instance, self.fail, self.note, disallow_any=self.options.disallow_any_generics and not self.is_typeshed_stub, python_version=self.options.python_version) tup = info.tuple_type if tup is not None: # The class has a Tuple[...] base class so it will be # represented as a tuple type. if args: self.fail('Generic tuple types not supported', ctx) return AnyType(TypeOfAny.from_error) return tup.copy_modified(items=self.anal_array(tup.items), fallback=instance) td = info.typeddict_type if td is not None: # The class has a TypedDict[...] base class so it will be # represented as a typeddict type. if args: self.fail('Generic TypedDict types not supported', ctx) return AnyType(TypeOfAny.from_error) # Create a named TypedDictType return td.copy_modified(item_types=self.anal_array(list(td.items.values())), fallback=instance) return instance def analyze_unbound_type_without_type_info(self, t: UnboundType, sym: SymbolTableNode, defining_literal: bool) -> Type: """Figure out what an unbound type that doesn't refer to a TypeInfo node means. This is something unusual. We try our best to find out what it is. """ name = sym.fullname if name is None: assert sym.node is not None name = sym.node.name # Option 1: # Something with an Any type -- make it an alias for Any in a type # context. This is slightly problematic as it allows using the type 'Any' # as a base class -- however, this will fail soon at runtime so the problem # is pretty minor. if isinstance(sym.node, Var): typ = get_proper_type(sym.node.type) if isinstance(typ, AnyType): return AnyType(TypeOfAny.from_unimported_type, missing_import_name=typ.missing_import_name) # Option 2: # Unbound type variable. Currently these may be still valid, # for example when defining a generic type alias. unbound_tvar = (isinstance(sym.node, TypeVarExpr) and self.tvar_scope.get_binding(sym) is None) if self.allow_unbound_tvars and unbound_tvar: return t # Option 3: # Enum value. Note: we only want to return a LiteralType when # we're using this enum value specifically within context of # a "Literal[...]" type. So, if `defining_literal` is not set, # we bail out early with an error. # # If, in the distant future, we decide to permit things like # `def foo(x: Color.RED) -> None: ...`, we can remove that # check entirely. if isinstance(sym.node, Var) and sym.node.info and sym.node.info.is_enum: value = sym.node.name base_enum_short_name = sym.node.info.name if not defining_literal: msg = message_registry.INVALID_TYPE_RAW_ENUM_VALUE.format( base_enum_short_name, value) self.fail(msg, t) return AnyType(TypeOfAny.from_error) return LiteralType( value=value, fallback=Instance(sym.node.info, [], line=t.line, column=t.column), line=t.line, column=t.column, ) # None of the above options worked. We parse the args (if there are any) # to make sure there are no remaining semanal-only types, then give up. t = t.copy_modified(args=self.anal_array(t.args)) # TODO: Move this message building logic to messages.py. notes: List[str] = [] if isinstance(sym.node, Var): notes.append('See https://mypy.readthedocs.io/en/' 'stable/common_issues.html#variables-vs-type-aliases') message = 'Variable "{}" is not valid as a type' elif isinstance(sym.node, (SYMBOL_FUNCBASE_TYPES, Decorator)): message = 'Function "{}" is not valid as a type' if name == 'builtins.any': notes.append('Perhaps you meant "typing.Any" instead of "any"?') elif name == 'builtins.callable': notes.append('Perhaps you meant "typing.Callable" instead of "callable"?') else: notes.append('Perhaps you need "Callable[...]" or a callback protocol?') elif isinstance(sym.node, MypyFile): # TODO: suggest a protocol when supported. message = 'Module "{}" is not valid as a type' elif unbound_tvar: message = 'Type variable "{}" is unbound' short = name.split('.')[-1] notes.append(('(Hint: Use "Generic[{}]" or "Protocol[{}]" base class' ' to bind "{}" inside a class)').format(short, short, short)) notes.append('(Hint: Use "{}" in function signature to bind "{}"' ' inside a function)'.format(short, short)) else: message = 'Cannot interpret reference "{}" as a type' self.fail(message.format(name), t, code=codes.VALID_TYPE) for note in notes: self.note(note, t, code=codes.VALID_TYPE) # TODO: Would it be better to always return Any instead of UnboundType # in case of an error? On one hand, UnboundType has a name so error messages # are more detailed, on the other hand, some of them may be bogus, # see https://github.com/python/mypy/issues/4987. return t def visit_any(self, t: AnyType) -> Type: return t def visit_none_type(self, t: NoneType) -> Type: return t def visit_uninhabited_type(self, t: UninhabitedType) -> Type: return t def visit_erased_type(self, t: ErasedType) -> Type: # This type should exist only temporarily during type inference assert False, "Internal error: Unexpected erased type" def visit_deleted_type(self, t: DeletedType) -> Type: return t def visit_type_list(self, t: TypeList) -> Type: self.fail('Bracketed expression "[...]" is not valid as a type', t) self.note('Did you mean "List[...]"?', t) return AnyType(TypeOfAny.from_error) def visit_callable_argument(self, t: CallableArgument) -> Type: self.fail('Invalid type', t) return AnyType(TypeOfAny.from_error) def visit_instance(self, t: Instance) -> Type: return t def visit_type_alias_type(self, t: TypeAliasType) -> Type: # TODO: should we do something here? return t def visit_type_var(self, t: TypeVarType) -> Type: return t def visit_param_spec(self, t: ParamSpecType) -> Type: return t def visit_unpack_type(self, t: UnpackType) -> Type: raise NotImplementedError def visit_callable_type(self, t: CallableType, nested: bool = True) -> Type: # Every Callable can bind its own type variables, if they're not in the outer scope with self.tvar_scope_frame(): if self.defining_alias: variables = t.variables else: variables = self.bind_function_type_variables(t, t) special = self.anal_type_guard(t.ret_type) arg_kinds = t.arg_kinds if len(arg_kinds) >= 2 and arg_kinds[-2] == ARG_STAR and arg_kinds[-1] == ARG_STAR2: arg_types = self.anal_array(t.arg_types[:-2], nested=nested) + [ self.anal_star_arg_type(t.arg_types[-2], ARG_STAR, nested=nested), self.anal_star_arg_type(t.arg_types[-1], ARG_STAR2, nested=nested), ] else: arg_types = self.anal_array(t.arg_types, nested=nested) ret = t.copy_modified(arg_types=arg_types, ret_type=self.anal_type(t.ret_type, nested=nested), # If the fallback isn't filled in yet, # its type will be the falsey FakeInfo fallback=(t.fallback if t.fallback.type else self.named_type('builtins.function')), variables=self.anal_var_defs(variables), type_guard=special, ) return ret def anal_type_guard(self, t: Type) -> Optional[Type]: if isinstance(t, UnboundType): sym = self.lookup_qualified(t.name, t) if sym is not None and sym.node is not None: return self.anal_type_guard_arg(t, sym.node.fullname) # TODO: What if it's an Instance? Then use t.type.fullname? return None def anal_type_guard_arg(self, t: UnboundType, fullname: str) -> Optional[Type]: if fullname in ('typing_extensions.TypeGuard', 'typing.TypeGuard'): if len(t.args) != 1: self.fail("TypeGuard must have exactly one type argument", t) return AnyType(TypeOfAny.from_error) return self.anal_type(t.args[0]) return None def anal_star_arg_type(self, t: Type, kind: ArgKind, nested: bool) -> Type: """Analyze signature argument type for *args and **kwargs argument.""" # TODO: Check that suffix and kind match if isinstance(t, UnboundType) and t.name and '.' in t.name and not t.args: components = t.name.split('.') sym = self.lookup_qualified('.'.join(components[:-1]), t) if sym is not None and isinstance(sym.node, ParamSpecExpr): tvar_def = self.tvar_scope.get_binding(sym) if isinstance(tvar_def, ParamSpecType): if kind == ARG_STAR: flavor = ParamSpecFlavor.ARGS elif kind == ARG_STAR2: flavor = ParamSpecFlavor.KWARGS else: assert False, kind return ParamSpecType(tvar_def.name, tvar_def.fullname, tvar_def.id, flavor, upper_bound=self.named_type('builtins.object'), line=t.line, column=t.column) return self.anal_type(t, nested=nested) def visit_overloaded(self, t: Overloaded) -> Type: # Overloaded types are manually constructed in semanal.py by analyzing the # AST and combining together the Callable types this visitor converts. # # So if we're ever asked to reanalyze an Overloaded type, we know it's # fine to just return it as-is. return t def visit_tuple_type(self, t: TupleType) -> Type: # Types such as (t1, t2, ...) only allowed in assignment statements. They'll # generate errors elsewhere, and Tuple[t1, t2, ...] must be used instead. if t.implicit and not self.allow_tuple_literal: self.fail('Syntax error in type annotation', t, code=codes.SYNTAX) if len(t.items) == 0: self.note('Suggestion: Use Tuple[()] instead of () for an empty tuple, or ' 'None for a function without a return value', t, code=codes.SYNTAX) elif len(t.items) == 1: self.note('Suggestion: Is there a spurious trailing comma?', t, code=codes.SYNTAX) else: self.note('Suggestion: Use Tuple[T1, ..., Tn] instead of (T1, ..., Tn)', t, code=codes.SYNTAX) return AnyType(TypeOfAny.from_error) star_count = sum(1 for item in t.items if isinstance(item, StarType)) if star_count > 1: self.fail('At most one star type allowed in a tuple', t) if t.implicit: return TupleType([AnyType(TypeOfAny.from_error) for _ in t.items], self.named_type('builtins.tuple'), t.line) else: return AnyType(TypeOfAny.from_error) any_type = AnyType(TypeOfAny.special_form) # If the fallback isn't filled in yet, its type will be the falsey FakeInfo fallback = (t.partial_fallback if t.partial_fallback.type else self.named_type('builtins.tuple', [any_type])) return TupleType(self.anal_array(t.items), fallback, t.line) def visit_typeddict_type(self, t: TypedDictType) -> Type: items = OrderedDict([ (item_name, self.anal_type(item_type)) for (item_name, item_type) in t.items.items() ]) return TypedDictType(items, set(t.required_keys), t.fallback) def visit_raw_expression_type(self, t: RawExpressionType) -> Type: # We should never see a bare Literal. We synthesize these raw literals # in the earlier stages of semantic analysis, but those # "fake literals" should always be wrapped in an UnboundType # corresponding to 'Literal'. # # Note: if at some point in the distant future, we decide to # make signatures like "foo(x: 20) -> None" legal, we can change # this method so it generates and returns an actual LiteralType # instead. if self.report_invalid_types: if t.base_type_name in ('builtins.int', 'builtins.bool'): # The only time it makes sense to use an int or bool is inside of # a literal type. msg = "Invalid type: try using Literal[{}] instead?".format(repr(t.literal_value)) elif t.base_type_name in ('builtins.float', 'builtins.complex'): # We special-case warnings for floats and complex numbers. msg = "Invalid type: {} literals cannot be used as a type".format(t.simple_name()) else: # And in all other cases, we default to a generic error message. # Note: the reason why we use a generic error message for strings # but not ints or bools is because whenever we see an out-of-place # string, it's unclear if the user meant to construct a literal type # or just misspelled a regular type. So we avoid guessing. msg = 'Invalid type comment or annotation' self.fail(msg, t, code=codes.VALID_TYPE) if t.note is not None: self.note(t.note, t, code=codes.VALID_TYPE) return AnyType(TypeOfAny.from_error, line=t.line, column=t.column) def visit_literal_type(self, t: LiteralType) -> Type: return t def visit_star_type(self, t: StarType) -> Type: return StarType(self.anal_type(t.type), t.line) def visit_union_type(self, t: UnionType) -> Type: if (t.uses_pep604_syntax is True and t.is_evaluated is True and not self.always_allow_new_syntax and not self.options.python_version >= (3, 10)): self.fail("X | Y syntax for unions requires Python 3.10", t) return UnionType(self.anal_array(t.items), t.line) def visit_partial_type(self, t: PartialType) -> Type: assert False, "Internal error: Unexpected partial type" def visit_ellipsis_type(self, t: EllipsisType) -> Type: self.fail('Unexpected "..."', t) return AnyType(TypeOfAny.from_error) def visit_type_type(self, t: TypeType) -> Type: return TypeType.make_normalized(self.anal_type(t.item), line=t.line) def visit_placeholder_type(self, t: PlaceholderType) -> Type: n = None if t.fullname is None else self.api.lookup_fully_qualified(t.fullname) if not n or isinstance(n.node, PlaceholderNode): self.api.defer() # Still incomplete return t else: # TODO: Handle non-TypeInfo assert isinstance(n.node, TypeInfo) return self.analyze_type_with_type_info(n.node, t.args, t) def analyze_callable_args_for_paramspec( self, callable_args: Type, ret_type: Type, fallback: Instance, ) -> Optional[CallableType]: """Construct a 'Callable[P, RET]', where P is ParamSpec, return None if we cannot.""" if not isinstance(callable_args, UnboundType): return None sym = self.lookup_qualified(callable_args.name, callable_args) if sym is None: return None tvar_def = self.tvar_scope.get_binding(sym) if not isinstance(tvar_def, ParamSpecType): return None # TODO: Use tuple[...] or Mapping[..] instead? obj = self.named_type('builtins.object') return CallableType( [ParamSpecType(tvar_def.name, tvar_def.fullname, tvar_def.id, ParamSpecFlavor.ARGS, upper_bound=obj), ParamSpecType(tvar_def.name, tvar_def.fullname, tvar_def.id, ParamSpecFlavor.KWARGS, upper_bound=obj)], [nodes.ARG_STAR, nodes.ARG_STAR2], [None, None], ret_type=ret_type, fallback=fallback, ) def analyze_callable_type(self, t: UnboundType) -> Type: fallback = self.named_type('builtins.function') if len(t.args) == 0: # Callable (bare). Treat as Callable[..., Any]. any_type = self.get_omitted_any(t) ret = callable_with_ellipsis(any_type, any_type, fallback) elif len(t.args) == 2: callable_args = t.args[0] ret_type = t.args[1] if isinstance(callable_args, TypeList): # Callable[[ARG, ...], RET] (ordinary callable type) analyzed_args = self.analyze_callable_args(callable_args) if analyzed_args is None: return AnyType(TypeOfAny.from_error) args, kinds, names = analyzed_args ret = CallableType(args, kinds, names, ret_type=ret_type, fallback=fallback) elif isinstance(callable_args, EllipsisType): # Callable[..., RET] (with literal ellipsis; accept arbitrary arguments) ret = callable_with_ellipsis(AnyType(TypeOfAny.explicit), ret_type=ret_type, fallback=fallback) else: # Callable[P, RET] (where P is ParamSpec) maybe_ret = self.analyze_callable_args_for_paramspec( callable_args, ret_type, fallback ) if maybe_ret is None: # Callable[?, RET] (where ? is something invalid) # TODO(PEP612): change error to mention paramspec, once we actually have some # support for it self.fail('The first argument to Callable must be a list of types or "..."', t) return AnyType(TypeOfAny.from_error) ret = maybe_ret else: self.fail('Please use "Callable[[<parameters>], <return type>]" or "Callable"', t) return AnyType(TypeOfAny.from_error) assert isinstance(ret, CallableType) return ret.accept(self) def analyze_callable_args(self, arglist: TypeList) -> Optional[Tuple[List[Type], List[ArgKind], List[Optional[str]]]]: args: List[Type] = [] kinds: List[ArgKind] = [] names: List[Optional[str]] = [] for arg in arglist.items: if isinstance(arg, CallableArgument): args.append(arg.typ) names.append(arg.name) if arg.constructor is None: return None found = self.lookup_qualified(arg.constructor, arg) if found is None: # Looking it up already put an error message in return None elif found.fullname not in ARG_KINDS_BY_CONSTRUCTOR: self.fail('Invalid argument constructor "{}"'.format( found.fullname), arg) return None else: assert found.fullname is not None kind = ARG_KINDS_BY_CONSTRUCTOR[found.fullname] kinds.append(kind) if arg.name is not None and kind.is_star(): self.fail("{} arguments should not have names".format( arg.constructor), arg) return None else: args.append(arg) kinds.append(ARG_POS) names.append(None) # Note that arglist below is only used for error context. check_arg_names(names, [arglist] * len(args), self.fail, "Callable") check_arg_kinds(kinds, [arglist] * len(args), self.fail) return args, kinds, names def analyze_literal_type(self, t: UnboundType) -> Type: if len(t.args) == 0: self.fail('Literal[...] must have at least one parameter', t) return AnyType(TypeOfAny.from_error) output: List[Type] = [] for i, arg in enumerate(t.args): analyzed_types = self.analyze_literal_param(i + 1, arg, t) if analyzed_types is None: return AnyType(TypeOfAny.from_error) else: output.extend(analyzed_types) return UnionType.make_union(output, line=t.line) def analyze_literal_param(self, idx: int, arg: Type, ctx: Context) -> Optional[List[Type]]: # This UnboundType was originally defined as a string. if isinstance(arg, UnboundType) and arg.original_str_expr is not None: assert arg.original_str_fallback is not None return [LiteralType( value=arg.original_str_expr, fallback=self.named_type_with_normalized_str(arg.original_str_fallback), line=arg.line, column=arg.column, )] # If arg is an UnboundType that was *not* originally defined as # a string, try expanding it in case it's a type alias or something. if isinstance(arg, UnboundType): self.nesting_level += 1 try: arg = self.visit_unbound_type(arg, defining_literal=True) finally: self.nesting_level -= 1 # Literal[...] cannot contain Any. Give up and add an error message # (if we haven't already). arg = get_proper_type(arg) if isinstance(arg, AnyType): # Note: We can encounter Literals containing 'Any' under three circumstances: # # 1. If the user attempts use an explicit Any as a parameter # 2. If the user is trying to use an enum value imported from a module with # no type hints, giving it an implicit type of 'Any' # 3. If there's some other underlying problem with the parameter. # # We report an error in only the first two cases. In the third case, we assume # some other region of the code has already reported a more relevant error. # # TODO: Once we start adding support for enums, make sure we report a custom # error for case 2 as well. if arg.type_of_any not in (TypeOfAny.from_error, TypeOfAny.special_form): self.fail('Parameter {} of Literal[...] cannot be of type "Any"'.format(idx), ctx) return None elif isinstance(arg, RawExpressionType): # A raw literal. Convert it directly into a literal if we can. if arg.literal_value is None: name = arg.simple_name() if name in ('float', 'complex'): msg = 'Parameter {} of Literal[...] cannot be of type "{}"'.format(idx, name) else: msg = 'Invalid type: Literal[...] cannot contain arbitrary expressions' self.fail(msg, ctx) # Note: we deliberately ignore arg.note here: the extra info might normally be # helpful, but it generally won't make sense in the context of a Literal[...]. return None # Remap bytes and unicode into the appropriate type for the correct Python version fallback = self.named_type_with_normalized_str(arg.base_type_name) assert isinstance(fallback, Instance) return [LiteralType(arg.literal_value, fallback, line=arg.line, column=arg.column)] elif isinstance(arg, (NoneType, LiteralType)): # Types that we can just add directly to the literal/potential union of literals. return [arg] elif isinstance(arg, Instance) and arg.last_known_value is not None: # Types generated from declarations like "var: Final = 4". return [arg.last_known_value] elif isinstance(arg, UnionType): out = [] for union_arg in arg.items: union_result = self.analyze_literal_param(idx, union_arg, ctx) if union_result is None: return None out.extend(union_result) return out else: self.fail('Parameter {} of Literal[...] is invalid'.format(idx), ctx) return None def analyze_type(self, t: Type) -> Type: return t.accept(self) def fail(self, msg: str, ctx: Context, *, code: Optional[ErrorCode] = None) -> None: self.fail_func(msg, ctx, code=code) def note(self, msg: str, ctx: Context, *, code: Optional[ErrorCode] = None) -> None: self.note_func(msg, ctx, code=code) @contextmanager def tvar_scope_frame(self) -> Iterator[None]: old_scope = self.tvar_scope self.tvar_scope = self.tvar_scope.method_frame() yield self.tvar_scope = old_scope def infer_type_variables(self, type: CallableType) -> List[Tuple[str, TypeVarLikeExpr]]: """Return list of unique type variables referred to in a callable.""" names: List[str] = [] tvars: List[TypeVarLikeExpr] = [] for arg in type.arg_types: for name, tvar_expr in arg.accept( TypeVarLikeQuery(self.lookup_qualified, self.tvar_scope) ): if name not in names: names.append(name) tvars.append(tvar_expr) # When finding type variables in the return type of a function, don't # look inside Callable types. Type variables only appearing in # functions in the return type belong to those functions, not the # function we're currently analyzing. for name, tvar_expr in type.ret_type.accept( TypeVarLikeQuery(self.lookup_qualified, self.tvar_scope, include_callables=False) ): if name not in names: names.append(name) tvars.append(tvar_expr) return list(zip(names, tvars)) def bind_function_type_variables( self, fun_type: CallableType, defn: Context ) -> Sequence[TypeVarLikeType]: """Find the type variables of the function type and bind them in our tvar_scope""" if fun_type.variables: for var in fun_type.variables: var_node = self.lookup_qualified(var.name, defn) assert var_node, "Binding for function type variable not found within function" var_expr = var_node.node assert isinstance(var_expr, TypeVarLikeExpr) self.tvar_scope.bind_new(var.name, var_expr) return fun_type.variables typevars = self.infer_type_variables(fun_type) # Do not define a new type variable if already defined in scope. typevars = [(name, tvar) for name, tvar in typevars if not self.is_defined_type_var(name, defn)] defs: List[TypeVarLikeType] = [] for name, tvar in typevars: if not self.tvar_scope.allow_binding(tvar.fullname): self.fail('Type variable "{}" is bound by an outer class'.format(name), defn) self.tvar_scope.bind_new(name, tvar) binding = self.tvar_scope.get_binding(tvar.fullname) assert binding is not None defs.append(binding) return defs def is_defined_type_var(self, tvar: str, context: Context) -> bool: tvar_node = self.lookup_qualified(tvar, context) if not tvar_node: return False return self.tvar_scope.get_binding(tvar_node) is not None def anal_array(self, a: Iterable[Type], nested: bool = True, *, allow_param_spec: bool = False) -> List[Type]: res: List[Type] = [] for t in a: res.append(self.anal_type(t, nested, allow_param_spec=allow_param_spec)) return res def anal_type(self, t: Type, nested: bool = True, *, allow_param_spec: bool = False) -> Type: if nested: self.nesting_level += 1 old_allow_required = self.allow_required self.allow_required = False try: analyzed = t.accept(self) finally: if nested: self.nesting_level -= 1 self.allow_required = old_allow_required if (not allow_param_spec and isinstance(analyzed, ParamSpecType) and analyzed.flavor == ParamSpecFlavor.BARE): self.fail('Invalid location for ParamSpec "{}"'.format(analyzed.name), t) self.note( 'You can use ParamSpec as the first argument to Callable, e.g., ' "'Callable[{}, int]'".format(analyzed.name), t ) return analyzed def anal_var_def(self, var_def: TypeVarLikeType) -> TypeVarLikeType: if isinstance(var_def, TypeVarType): return TypeVarType( var_def.name, var_def.fullname, var_def.id.raw_id, self.anal_array(var_def.values), var_def.upper_bound.accept(self), var_def.variance, var_def.line ) else: return var_def def anal_var_defs(self, var_defs: Sequence[TypeVarLikeType]) -> List[TypeVarLikeType]: return [self.anal_var_def(vd) for vd in var_defs] def named_type_with_normalized_str(self, fully_qualified_name: str) -> Instance: """Does almost the same thing as `named_type`, except that we immediately unalias `builtins.bytes` and `builtins.unicode` to `builtins.str` as appropriate. """ python_version = self.options.python_version if python_version[0] == 2 and fully_qualified_name == 'builtins.bytes': fully_qualified_name = 'builtins.str' if python_version[0] >= 3 and fully_qualified_name == 'builtins.unicode': fully_qualified_name = 'builtins.str' return self.named_type(fully_qualified_name) def named_type(self, fully_qualified_name: str, args: Optional[List[Type]] = None, line: int = -1, column: int = -1) -> Instance: node = self.lookup_fqn_func(fully_qualified_name) assert isinstance(node.node, TypeInfo) any_type = AnyType(TypeOfAny.special_form) return Instance(node.node, args or [any_type] * len(node.node.defn.type_vars), line=line, column=column) def tuple_type(self, items: List[Type]) -> TupleType: any_type = AnyType(TypeOfAny.special_form) return TupleType(items, fallback=self.named_type('builtins.tuple', [any_type])) TypeVarLikeList = List[Tuple[str, TypeVarLikeExpr]] # Mypyc doesn't support callback protocols yet. MsgCallback = Callable[[str, Context, DefaultNamedArg(Optional[ErrorCode], 'code')], None] def get_omitted_any(disallow_any: bool, fail: MsgCallback, note: MsgCallback, orig_type: Type, python_version: Tuple[int, int], fullname: Optional[str] = None, unexpanded_type: Optional[Type] = None) -> AnyType: if disallow_any: nongen_builtins = get_nongen_builtins(python_version) if fullname in nongen_builtins: typ = orig_type # We use a dedicated error message for builtin generics (as the most common case). alternative = nongen_builtins[fullname] fail(message_registry.IMPLICIT_GENERIC_ANY_BUILTIN.format(alternative), typ, code=codes.TYPE_ARG) else: typ = unexpanded_type or orig_type type_str = typ.name if isinstance(typ, UnboundType) else format_type_bare(typ) fail( message_registry.BARE_GENERIC.format(quote_type_string(type_str)), typ, code=codes.TYPE_ARG) base_type = get_proper_type(orig_type) base_fullname = ( base_type.type.fullname if isinstance(base_type, Instance) else fullname ) # Ideally, we'd check whether the type is quoted or `from __future__ annotations` # is set before issuing this note if python_version < (3, 9) and base_fullname in GENERIC_STUB_NOT_AT_RUNTIME_TYPES: # Recommend `from __future__ import annotations` or to put type in quotes # (string literal escaping) for classes not generic at runtime note( "Subscripting classes that are not generic at runtime may require " "escaping, see https://mypy.readthedocs.io/en/stable/runtime_troubles.html" "#not-generic-runtime", typ, code=codes.TYPE_ARG) any_type = AnyType(TypeOfAny.from_error, line=typ.line, column=typ.column) else: any_type = AnyType( TypeOfAny.from_omitted_generics, line=orig_type.line, column=orig_type.column ) return any_type def fix_instance(t: Instance, fail: MsgCallback, note: MsgCallback, disallow_any: bool, python_version: Tuple[int, int], use_generic_error: bool = False, unexpanded_type: Optional[Type] = None,) -> None: """Fix a malformed instance by replacing all type arguments with Any. Also emit a suitable error if this is not due to implicit Any's. """ if len(t.args) == 0: if use_generic_error: fullname: Optional[str] = None else: fullname = t.type.fullname any_type = get_omitted_any(disallow_any, fail, note, t, python_version, fullname, unexpanded_type) t.args = (any_type,) * len(t.type.type_vars) return # Invalid number of type parameters. n = len(t.type.type_vars) s = '{} type arguments'.format(n) if n == 0: s = 'no type arguments' elif n == 1: s = '1 type argument' act = str(len(t.args)) if act == '0': act = 'none' fail('"{}" expects {}, but {} given'.format( t.type.name, s, act), t, code=codes.TYPE_ARG) # Construct the correct number of type arguments, as # otherwise the type checker may crash as it expects # things to be right. t.args = tuple(AnyType(TypeOfAny.from_error) for _ in t.type.type_vars) t.invalid = True def expand_type_alias(node: TypeAlias, args: List[Type], fail: MsgCallback, no_args: bool, ctx: Context, *, unexpanded_type: Optional[Type] = None, disallow_any: bool = False) -> Type: """Expand a (generic) type alias target following the rules outlined in TypeAlias docstring. Here: target: original target type (contains unbound type variables) alias_tvars: type variable names args: types to be substituted in place of type variables fail: error reporter callback no_args: whether original definition used a bare generic `A = List` ctx: context where expansion happens """ exp_len = len(node.alias_tvars) act_len = len(args) if exp_len > 0 and act_len == 0: # Interpret bare Alias same as normal generic, i.e., Alias[Any, Any, ...] return set_any_tvars(node, ctx.line, ctx.column, disallow_any=disallow_any, fail=fail, unexpanded_type=unexpanded_type) if exp_len == 0 and act_len == 0: if no_args: assert isinstance(node.target, Instance) # type: ignore[misc] # Note: this is the only case where we use an eager expansion. See more info about # no_args aliases like L = List in the docstring for TypeAlias class. return Instance(node.target.type, [], line=ctx.line, column=ctx.column) return TypeAliasType(node, [], line=ctx.line, column=ctx.column) if (exp_len == 0 and act_len > 0 and isinstance(node.target, Instance) # type: ignore[misc] and no_args): tp = Instance(node.target.type, args) tp.line = ctx.line tp.column = ctx.column return tp if act_len != exp_len: fail('Bad number of arguments for type alias, expected: %s, given: %s' % (exp_len, act_len), ctx) return set_any_tvars(node, ctx.line, ctx.column, from_error=True) typ = TypeAliasType(node, args, ctx.line, ctx.column) assert typ.alias is not None # HACK: Implement FlexibleAlias[T, typ] by expanding it to typ here. if (isinstance(typ.alias.target, Instance) # type: ignore and typ.alias.target.type.fullname == 'mypy_extensions.FlexibleAlias'): exp = get_proper_type(typ) assert isinstance(exp, Instance) return exp.args[-1] return typ def set_any_tvars(node: TypeAlias, newline: int, newcolumn: int, *, from_error: bool = False, disallow_any: bool = False, fail: Optional[MsgCallback] = None, unexpanded_type: Optional[Type] = None) -> Type: if from_error or disallow_any: type_of_any = TypeOfAny.from_error else: type_of_any = TypeOfAny.from_omitted_generics if disallow_any: assert fail is not None otype = unexpanded_type or node.target type_str = otype.name if isinstance(otype, UnboundType) else format_type_bare(otype) fail(message_registry.BARE_GENERIC.format(quote_type_string(type_str)), Context(newline, newcolumn), code=codes.TYPE_ARG) any_type = AnyType(type_of_any, line=newline, column=newcolumn) return TypeAliasType(node, [any_type] * len(node.alias_tvars), newline, newcolumn) def remove_dups(tvars: Iterable[T]) -> List[T]: # Get unique elements in order of appearance all_tvars: Set[T] = set() new_tvars: List[T] = [] for t in tvars: if t not in all_tvars: new_tvars.append(t) all_tvars.add(t) return new_tvars def flatten_tvars(ll: Iterable[List[T]]) -> List[T]: return remove_dups(chain.from_iterable(ll)) class TypeVarLikeQuery(TypeQuery[TypeVarLikeList]): """Find TypeVar and ParamSpec references in an unbound type.""" def __init__(self, lookup: Callable[[str, Context], Optional[SymbolTableNode]], scope: 'TypeVarLikeScope', *, include_callables: bool = True, include_bound_tvars: bool = False) -> None: self.include_callables = include_callables self.lookup = lookup self.scope = scope self.include_bound_tvars = include_bound_tvars super().__init__(flatten_tvars) def _seems_like_callable(self, type: UnboundType) -> bool: if not type.args: return False if isinstance(type.args[0], (EllipsisType, TypeList)): return True return False def visit_unbound_type(self, t: UnboundType) -> TypeVarLikeList: name = t.name node = None # Special case P.args and P.kwargs for ParamSpecs only. if name.endswith('args'): if name.endswith('.args') or name.endswith('.kwargs'): base = '.'.join(name.split('.')[:-1]) n = self.lookup(base, t) if n is not None and isinstance(n.node, ParamSpecExpr): node = n name = base if node is None: node = self.lookup(name, t) if node and isinstance(node.node, TypeVarLikeExpr) and ( self.include_bound_tvars or self.scope.get_binding(node) is None): assert isinstance(node.node, TypeVarLikeExpr) return [(name, node.node)] elif not self.include_callables and self._seems_like_callable(t): return [] elif node and node.fullname in LITERAL_TYPE_NAMES: return [] elif node and node.fullname in ANNOTATED_TYPE_NAMES and t.args: # Don't query the second argument to Annotated for TypeVars return self.query_types([t.args[0]]) else: return super().visit_unbound_type(t) def visit_callable_type(self, t: CallableType) -> TypeVarLikeList: if self.include_callables: return super().visit_callable_type(t) else: return [] def check_for_explicit_any(typ: Optional[Type], options: Options, is_typeshed_stub: bool, msg: MessageBuilder, context: Context) -> None: if (options.disallow_any_explicit and not is_typeshed_stub and typ and has_explicit_any(typ)): msg.explicit_any(context) def has_explicit_any(t: Type) -> bool: """ Whether this type is or type it contains is an Any coming from explicit type annotation """ return t.accept(HasExplicitAny()) class HasExplicitAny(TypeQuery[bool]): def __init__(self) -> None: super().__init__(any) def visit_any(self, t: AnyType) -> bool: return t.type_of_any == TypeOfAny.explicit def visit_typeddict_type(self, t: TypedDictType) -> bool: # typeddict is checked during TypedDict declaration, so don't typecheck it here. return False def has_any_from_unimported_type(t: Type) -> bool: """Return true if this type is Any because an import was not followed. If type t is such Any type or has type arguments that contain such Any type this function will return true. """ return t.accept(HasAnyFromUnimportedType()) class HasAnyFromUnimportedType(TypeQuery[bool]): def __init__(self) -> None: super().__init__(any) def visit_any(self, t: AnyType) -> bool: return t.type_of_any == TypeOfAny.from_unimported_type def visit_typeddict_type(self, t: TypedDictType) -> bool: # typeddict is checked during TypedDict declaration, so don't typecheck it here return False def collect_all_inner_types(t: Type) -> List[Type]: """ Return all types that `t` contains """ return t.accept(CollectAllInnerTypesQuery()) class CollectAllInnerTypesQuery(TypeQuery[List[Type]]): def __init__(self) -> None: super().__init__(self.combine_lists_strategy) def query_types(self, types: Iterable[Type]) -> List[Type]: return self.strategy([t.accept(self) for t in types]) + list(types) @classmethod def combine_lists_strategy(cls, it: Iterable[List[Type]]) -> List[Type]: return list(itertools.chain.from_iterable(it)) def make_optional_type(t: Type) -> Type: """Return the type corresponding to Optional[t]. Note that we can't use normal union simplification, since this function is called during semantic analysis and simplification only works during type checking. """ t = get_proper_type(t) if isinstance(t, NoneType): return t elif isinstance(t, UnionType): items = [item for item in union_items(t) if not isinstance(item, NoneType)] return UnionType(items + [NoneType()], t.line, t.column) else: return UnionType([t, NoneType()], t.line, t.column) def fix_instance_types(t: Type, fail: MsgCallback, note: MsgCallback, python_version: Tuple[int, int]) -> None: """Recursively fix all instance types (type argument count) in a given type. For example 'Union[Dict, List[str, int]]' will be transformed into 'Union[Dict[Any, Any], List[Any]]' in place. """ t.accept(InstanceFixer(fail, note, python_version)) class InstanceFixer(TypeTraverserVisitor): def __init__( self, fail: MsgCallback, note: MsgCallback, python_version: Tuple[int, int] ) -> None: self.fail = fail self.note = note self.python_version = python_version def visit_instance(self, typ: Instance) -> None: super().visit_instance(typ) if len(typ.args) != len(typ.type.type_vars): fix_instance(typ, self.fail, self.note, disallow_any=False, python_version=self.python_version, use_generic_error=True)
py
b40beceb1b24436d5ca643a2001b3d6ea750ff60
#!/usr/bin/env python # coding: utf-8 # # Automação de Sistemas e Processos com Python # # ### Desafio: # # Todos os dias, o nosso sistema atualiza as vendas do dia anterior. # O seu trabalho diário, como analista, é enviar um e-mail para a diretoria, assim que começar a trabalhar, com o faturamento e a quantidade de produtos vendidos no dia anterior # # E-mail da diretoria: [email protected]<br> # Local onde o sistema disponibiliza as vendas do dia anterior: https://drive.google.com/drive/folders/149xknr9JvrlEnhNWO49zPcw0PW5icxga?usp=sharing # # Para resolver isso, vamos usar o pyautogui, uma biblioteca de automação de comandos do mouse e do teclado # In[23]: import pyautogui import time import pyperclip #pausa padrao pyautogui.PAUSE=1 #abrir navegador #pyautogui.press("winleft") #pyautogui.write("chrome") #pyautogui.press("enter") #Alerta sobre inicio do processo pyautogui.alert("Começarei o processo, aperte OK e não mexa em mais nada!") #Abrir aba pyautogui.hotkey('ctrl', 't') #Abrir drive #Evitar pyautogui.write porque o navegador pode modificar o endereço com autocompletar #Criar uma constante com o endereço e copiá-lo diretamente link = "https://drive.google.com/drive/folders/149xknr9JvrlEnhNWO49zPcw0PW5icxga" pyperclip.copy(link) pyautogui.hotkey("ctrl", "v") pyautogui.press("enter") #Esperar para o próximo comando, evitando que a açao seja realizada durante algum delay time.sleep(10) #Parte problemática do código #Encontrar a posição do ponteiro na tela pyautogui.position() #Usar o ponteiro do mouse para clicar em uma região da tela, caso mude resolução da tela/janela/posição do objeto vai dar errado pyautogui.click(227, 194, clicks=2) time.sleep(6) pyautogui.click(227, 194) pyautogui.click(1465, 125) pyautogui.click(1362, 404) time.sleep(6) # In[26]: # Vamos agora ler o arquivo baixado para pegar os indicadores # # - Faturamento # - Quantidade de Produtos import pandas as pd df = pd.read_excel(r'C:\Users\soare\Downloads\Vendas - Dez.xlsx') display(df) faturamento = df['Valor Final'].sum() qtde_produtos = df['Quantidade'].sum() display(faturamento, qtde_produtos) # In[34]: # ### Vamos agora enviar um e-mail pelo gmail pyautogui.hotkey('ctrl', 't') pyautogui.write("mail.google.com") pyautogui.press("enter") time.sleep(6) #Criar novo email pyautogui.click(90, 190) pyautogui.write("[email protected]") pyautogui.press("tab") pyautogui.press("tab") assunto = "Relatório Imersão" pyperclip.copy(assunto) pyautogui.hotkey("ctrl", "v") pyautogui.press("tab") time.sleep(6) #Criar corpo do email texto = f""" Saudações. O faturamento de ontem foi de : R${faturamento:,.2f} A quantidade de produtos vendidos foi de: {qtde_produtos:,} Att.: Paulo Soares""" pyperclip.copy(texto) pyautogui.hotkey("ctrl", "v") pyautogui.hotkey("ctrl", "enter")
py
b40bed524c56330512b80dd8e294ae8679a02f46
# Copyright 2020 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """GeneralizedExtremeValue bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v2 as tf from tensorflow_probability.python.bijectors import bijector from tensorflow_probability.python.internal import assert_util from tensorflow_probability.python.internal import dtype_util from tensorflow_probability.python.internal import tensor_util __all__ = [ 'GeneralizedExtremeValueCDF', ] class GeneralizedExtremeValueCDF(bijector.Bijector): """Compute the GeneralizedExtremeValue CDF. Compute `Y = g(X) = exp(-t(X))`, where `t(x)` is defined to be: *`(1 + conc * (x - loc) / scale) ) ** (-1 / conc)` when `conc != 0`; *`exp(-(x - loc) / scale)` when `conc = 0`. This bijector maps inputs from the domain to `[0, 1]`, where the domain is * [loc - scale/conc, inf) when conc > 0; * (-inf, loc - scale/conc] when conc < 0; * (-inf, inf) when conc = 0; The inverse of the bijector applied to a uniform random variable `X ~ U(0, 1)` gives back a random variable with the [Generalized extreme value distribution]( https://https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution): When `concentration -> +-inf`, the probability mass concentrates near `loc`. ```none Y ~ GeneralizedExtremeValueCDF(loc, scale, conc) pdf(y; loc, scale, conc) = t(y; loc, scale, conc) ** (1 + conc) * exp( - t(y; loc, scale, conc) ) / scale where t(x) = * (1 + conc * (x - loc) / scale) ) ** (-1 / conc) when conc != 0; * exp(-(x - loc) / scale) when conc = 0. ``` """ def __init__(self, loc=0., scale=1., concentration=0, validate_args=False, name='generalizedextremevalue_cdf'): """Instantiates the `GeneralizedExtremeValueCDF` bijector. Args: loc: Float-like `Tensor` that is the same dtype and is broadcastable with `scale` and `concentration`. scale: Positive Float-like `Tensor` that is the same dtype and is broadcastable with `loc` and `concentration`. concentration: Nonzero float-like `Tensor` that is the same dtype and is broadcastable with `loc` and `scale`. validate_args: Python `bool` indicating whether arguments should be checked for correctness. name: Python `str` name given to ops managed by this object. """ parameters = dict(locals()) with tf.name_scope(name) as name: dtype = dtype_util.common_dtype([loc, scale, concentration], dtype_hint=tf.float32) self._loc = tensor_util.convert_nonref_to_tensor( loc, dtype=dtype, name='loc') self._scale = tensor_util.convert_nonref_to_tensor( scale, dtype=dtype, name='scale') self._concentration = tensor_util.convert_nonref_to_tensor( concentration, dtype=dtype, name='concentration') super(GeneralizedExtremeValueCDF, self).__init__( validate_args=validate_args, forward_min_event_ndims=0, parameters=parameters, name=name) @property def loc(self): """The location parameter in the Generalized Extreme Value CDF.""" return self._loc @property def scale(self): """The scale parameter in the Generalized Extreme Value CDF.""" return self._scale @property def concentration(self): """The concentration parameter in the Generalized Extreme Value CDF.""" return self._concentration @classmethod def _is_increasing(cls): return True def _forward(self, x): loc = tf.convert_to_tensor(self.loc) scale = tf.convert_to_tensor(self.scale) concentration = tf.convert_to_tensor(self.concentration) with tf.control_dependencies( self._maybe_assert_valid_x( x, loc=loc, scale=scale, concentration=concentration)): z = (x - loc) / scale t = tf.where( tf.equal(concentration, 0.), tf.math.exp(-z), tf.math.exp(-tf.math.log1p(z * concentration) / concentration)) return tf.exp(-t) def _inverse(self, y): with tf.control_dependencies(self._maybe_assert_valid_y(y)): t = -tf.math.log(y) conc = tf.convert_to_tensor(self.concentration) z = tf.where( tf.equal(conc, 0.), -tf.math.log(t), tf.math.expm1(-tf.math.log(t) * conc) / conc) return self.loc + self.scale * z def _forward_log_det_jacobian(self, x): loc = tf.convert_to_tensor(self.loc) scale = tf.convert_to_tensor(self.scale) concentration = tf.convert_to_tensor(self.concentration) with tf.control_dependencies( self._maybe_assert_valid_x( x, loc=loc, scale=scale, concentration=concentration)): z = (x - loc) / scale log_t = tf.where( tf.equal(concentration, 0.), -z, -tf.math.log1p(z * concentration) / concentration) return (tf.math.multiply_no_nan(concentration + 1., log_t) - tf.math.exp(log_t) - tf.math.log(scale)) def _inverse_log_det_jacobian(self, y): with tf.control_dependencies(self._maybe_assert_valid_y(y)): t = -tf.math.log(y) log_dt = tf.math.xlogy(-self.concentration - 1., t) return tf.math.log(self.scale / y) + log_dt def _maybe_assert_valid_x(self, x, loc=None, scale=None, concentration=None): if not self.validate_args: return [] loc = tf.convert_to_tensor(self.loc) if loc is None else loc scale = tf.convert_to_tensor(self.scale) if scale is None else scale concentration = ( tf.convert_to_tensor(self.concentration) if concentration is None else concentration) # The support of this bijector depends on the sign of concentration. is_in_bounds = tf.where( concentration > 0., x >= loc - scale / concentration, x <= loc - scale / concentration) # For concentration 0, the domain is the whole line. is_in_bounds = is_in_bounds | tf.math.equal(concentration, 0.) return [ assert_util.assert_equal( is_in_bounds, True, message='Forward transformation input must be inside domain.') ] def _maybe_assert_valid_y(self, y): if not self.validate_args: return [] is_positive = assert_util.assert_non_negative( y, message='Inverse transformation input must be greater than 0.') less_than_one = assert_util.assert_less_equal( y, tf.constant(1., y.dtype), message='Inverse transformation input must be less than or equal to 1.') return [is_positive, less_than_one] def _parameter_control_dependencies(self, is_init): if not self.validate_args: return [] assertions = [] if is_init != tensor_util.is_ref(self.scale): assertions.append( assert_util.assert_positive( self.scale, message='Argument `scale` must be positive.')) return assertions
py
b40bed8ebc15cf004ea580e033e417715f612b0b
from distutils.core import setup from Cython.Build import cythonize from distutils.extension import Extension import numpy extensions = [ Extension('cec2016', ['cec2016.pyx', 'cec16_test_func.cpp'], include_dirs=[numpy.get_include()], extra_compile_args=['-std=c++17'], language='c++' ), ] setup( ext_modules=cythonize(extensions), extra_compile_args=["-w", '-g', '-O3'], )
py
b40bede817be3bda2d97e5879f9bcc247df23685
""" Copyright 2018 EPAM Systems, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import json import os import click from syndicate.core import CONFIG, CONF_PATH from syndicate.core.build.artifact_processor import (build_mvn_lambdas, build_python_lambdas) from syndicate.core.build.bundle_processor import (create_bundles_bucket, load_bundle, upload_bundle_to_s3) from syndicate.core.build.deployment_processor import ( continue_deployment_resources, create_deployment_resources, remove_deployment_resources, remove_failed_deploy_resources, update_lambdas) from syndicate.core.build.meta_processor import create_meta from syndicate.core.conf.config_holder import (MVN_BUILD_TOOL_NAME, PYTHON_BUILD_TOOL_NAME) from syndicate.core.helper import (check_required_param, create_bundle_callback, handle_futures_progress_bar, resolve_path_callback, timeit, verify_bundle_callback, verify_meta_bundle_callback) # TODO - command descriptions @click.group(name='syndicate') def syndicate(): click.echo('Group syndicate') click.echo('Path to sdct.conf: ' + CONF_PATH) # ============================================================================= @syndicate.command(name='clean') @timeit @click.option('--deploy_name', nargs=1, callback=check_required_param) @click.option('--bundle_name', nargs=1, callback=check_required_param) @click.option('--clean_only_types', multiple=True) @click.option('--clean_only_resources', multiple=True) @click.option('--clean_only_resources_path', nargs=1, type=str) @click.option('--excluded_resources', multiple=True) @click.option('--excluded_resources_path', nargs=1, type=str) @click.option('--excluded_types', multiple=True) @click.option('--rollback', is_flag=True) def clean(deploy_name, bundle_name, clean_only_types, clean_only_resources, clean_only_resources_path, excluded_resources, excluded_resources_path, excluded_types, rollback): click.echo('Command clean') click.echo('Deploy name: %s' % deploy_name) if clean_only_types: click.echo('Clean only types: %s' % str(clean_only_types)) if clean_only_resources: click.echo('Clean only resources : %s' % clean_only_resources) if clean_only_resources_path: click.echo( 'Clean only resources path: %s' % clean_only_resources_path) if excluded_resources: click.echo('Excluded resources: %s' % str(excluded_resources)) if excluded_resources_path: click.echo('Excluded resources path: %s' % excluded_resources_path) if excluded_types: click.echo('Excluded types: %s' % str(excluded_types)) if clean_only_resources_path and os.path.exists( clean_only_resources_path): clean_resources_list = json.load(open(clean_only_resources_path)) clean_only_resources = tuple( set(clean_only_resources + tuple(clean_resources_list))) if excluded_resources_path and os.path.exists(excluded_resources_path): excluded_resources_list = json.load(open(excluded_resources_path)) excluded_resources = tuple( set(excluded_resources + tuple(excluded_resources_list))) if rollback: remove_failed_deploy_resources(deploy_name=deploy_name, bundle_name=bundle_name, clean_only_resources=clean_only_resources, clean_only_types=clean_only_types, excluded_resources=excluded_resources, excluded_types=excluded_types) else: remove_deployment_resources(deploy_name=deploy_name, bundle_name=bundle_name, clean_only_resources=clean_only_resources, clean_only_types=clean_only_types, excluded_resources=excluded_resources, excluded_types=excluded_types) click.echo('AWS resources were removed.') # ============================================================================= @syndicate.command(name='mvn_compile_java') @timeit @click.option('--bundle_name', nargs=1, callback=create_bundle_callback) @click.option('--project_path', '-path', nargs=1, callback=resolve_path_callback) def mvn_compile_java(bundle_name, project_path): click.echo('Command compile java project path: %s' % project_path) build_mvn_lambdas(bundle_name, project_path) click.echo('Java artifacts were prepared successfully.') @syndicate.command(name='assemble_python') @timeit @click.option('--bundle_name', nargs=1, callback=create_bundle_callback) @click.option('--project_path', '-path', nargs=1, callback=resolve_path_callback) def assemble_python(bundle_name, project_path): click.echo('Command assemble python: project_path: %s ' % project_path) build_python_lambdas(bundle_name, project_path) click.echo('Python artifacts were prepared successfully.') COMMAND_TO_BUILD_MAPPING = { MVN_BUILD_TOOL_NAME: mvn_compile_java, PYTHON_BUILD_TOOL_NAME: assemble_python } @syndicate.command(name='build_artifacts') @timeit @click.option('--bundle_name', nargs=1, callback=create_bundle_callback) @click.pass_context def build_artifacts(ctx, bundle_name): click.echo('Building artifacts ...') if CONFIG.build_projects_mapping: for key, values in CONFIG.build_projects_mapping.items(): for value in values: func = COMMAND_TO_BUILD_MAPPING.get(key) if func: ctx.invoke(func, bundle_name=bundle_name, project_path=value) else: click.echo('Build tool is not supported: %s' % key) else: click.echo('Projects to be built are not found') # ============================================================================= @syndicate.command(name='package_meta') @timeit @click.option('--bundle_name', nargs=1, callback=verify_bundle_callback) def package_meta(bundle_name): click.echo('Package meta, bundle: %s' % bundle_name) create_meta(bundle_name) click.echo('Meta was configured successfully.') # ============================================================================= @syndicate.command(name='create_deploy_target_bucket') @timeit def create_deploy_target_bucket(): click.echo('Create deploy target sdk: %s' % CONFIG.deploy_target_bucket) create_bundles_bucket() click.echo('Deploy target bucket was created successfully') @syndicate.command(name='upload_bundle') @timeit @click.option('--bundle_name', nargs=1, callback=verify_meta_bundle_callback) def upload_bundle(bundle_name): click.echo('Upload bundle: %s' % bundle_name) futures = upload_bundle_to_s3(bundle_name) handle_futures_progress_bar(futures) click.echo('Bundle was uploaded successfully') @syndicate.command(name='copy_bundle') @click.option('--bundle_name', nargs=1, callback=create_bundle_callback) @click.option('--src_account_id', '-acc_id', nargs=1, callback=check_required_param) @click.option('--src_bucket_region', '-r', nargs=1, callback=check_required_param) @click.option('--src_bucket_name', '-bucket_name', nargs=1, callback=check_required_param) @click.option('--role_name', '-role', nargs=1, callback=check_required_param) @timeit @click.pass_context def copy_bundle(ctx, bundle_name, src_account_id, src_bucket_region, src_bucket_name, role_name): click.echo('Copy bundle: %s' % bundle_name) click.echo('Bundle name: %s' % bundle_name) click.echo('Source account id: %s' % src_account_id) click.echo('Source bucket region: %s' % src_bucket_region) click.echo('Source bucket name: %s' % src_bucket_name) futures = load_bundle(bundle_name, src_account_id, src_bucket_region, src_bucket_name, role_name) handle_futures_progress_bar(futures) click.echo('Bundle was downloaded successfully') ctx.invoke(upload_bundle, bundle_name=bundle_name) click.echo('Bundle was copied successfully') # ============================================================================= @syndicate.command(name='build_bundle') @click.option('--bundle_name', nargs=1, callback=check_required_param) @click.pass_context @timeit def build_bundle(ctx, bundle_name): ctx.invoke(build_artifacts, bundle_name=bundle_name) ctx.invoke(package_meta, bundle_name=bundle_name) ctx.invoke(upload_bundle, bundle_name=bundle_name) # ============================================================================= @syndicate.command(name='deploy') @click.option('--deploy_name', nargs=1, callback=check_required_param) @click.option('--bundle_name', nargs=1, callback=check_required_param) @click.option('--deploy_only_types', multiple=True) @click.option('--deploy_only_resources', multiple=True) @click.option('--deploy_only_resources_path', nargs=1) @click.option('--excluded_resources', multiple=True) @click.option('--excluded_resources_path', nargs=1) @click.option('--excluded_types', multiple=True) @click.option('--continue_deploy', is_flag=True) @timeit def deploy(deploy_name, bundle_name, deploy_only_types, deploy_only_resources, deploy_only_resources_path, excluded_resources, excluded_resources_path, excluded_types, continue_deploy): click.echo('Command deploy backend') click.echo('Deploy name: %s' % deploy_name) if deploy_only_resources_path and os.path.exists( deploy_only_resources_path): deploy_resources_list = json.load(open(deploy_only_resources_path)) deploy_only_resources = tuple( set(deploy_only_resources + tuple(deploy_resources_list))) if excluded_resources_path and os.path.exists(excluded_resources_path): excluded_resources_list = json.load(open(excluded_resources_path)) excluded_resources = tuple( set(excluded_resources + tuple(excluded_resources_list))) if continue_deploy: deploy_success = continue_deployment_resources(deploy_name, bundle_name, deploy_only_resources, deploy_only_types, excluded_resources, excluded_types) else: deploy_success = create_deployment_resources(deploy_name, bundle_name, deploy_only_resources, deploy_only_types, excluded_resources, excluded_types) click.echo('Backend resources were deployed{0}.'.format( '' if deploy_success else ' with errors. See deploy output file')) # ============================================================================= @syndicate.command(name='publish_lambda_version') @click.option('--bundle_name', nargs=1, callback=check_required_param) @click.option('--publish_only_lambdas', multiple=True) @click.option('--publish_only_lambdas_path', nargs=1) @click.option('--excluded_lambdas_resources', multiple=True) @click.option('--excluded_lambdas_resources_path', nargs=1) @timeit def publish_lambda_version(bundle_name, publish_only_lambdas, publish_only_lambdas_path, excluded_lambdas_resources, excluded_lambdas_resources_path): click.echo('Command publish lambda version backend') click.echo('Bundle name: %s' % bundle_name) if publish_only_lambdas_path and os.path.exists( publish_only_lambdas_path): update_lambdas_list = json.load(open(publish_only_lambdas_path)) publish_only_lambdas = tuple( set(publish_only_lambdas + tuple(update_lambdas_list))) if excluded_lambdas_resources_path and os.path.exists( excluded_lambdas_resources_path): excluded_lambdas_list = json.load( open(excluded_lambdas_resources_path)) excluded_lambdas_resources = tuple( set(excluded_lambdas_resources + tuple(excluded_lambdas_list))) update_lambdas(bundle_name=bundle_name, publish_only_lambdas=publish_only_lambdas, excluded_lambdas_resources=excluded_lambdas_resources) click.echo('Lambda versions were published.')
py
b40bee3870b9118b0d8421bf8d7584c926830fc5
import sys if sys.version_info < (3, 7): from ._color import ColorValidator from ._arearatio import ArearatioValidator else: from _plotly_utils.importers import relative_import __all__, __getattr__, __dir__ = relative_import( __name__, [], ["._color.ColorValidator", "._arearatio.ArearatioValidator"] )
py
b40bee9e35bb5eb6fc14dbba142a91df97b6de3e
from django.test import TestCase from django.contrib.auth import get_user_model from django.urls import reverse from rest_framework.test import APIClient from rest_framework import status CREATE_USER_URL = reverse('user:create') TOKEN_URL = reverse('user:token') ME_URL = reverse('user:me') def create_user(**params): return get_user_model().objects.create_user(**params) class PublicUserApiTests(TestCase): """Test the users API (public)""" def setUp(self): self.client = APIClient() def test_create_valid_user_success(self): """Test creating user with valid payload is successful""" payload = { 'email': '[email protected]', 'password': 'testing', 'name': 'Test name' } res = self.client.post(CREATE_USER_URL, payload) self.assertEqual(res.status_code, status.HTTP_201_CREATED) user = get_user_model().objects.get(**res.data) self.assertTrue(user.check_password(payload['password'])) self.assertNotIn('password', res.data) def test_user_exists(self): """Test creating user that already exists fails""" payload = {'email': '[email protected]', 'password': 'testing'} create_user(**payload) res = self.client.post(CREATE_USER_URL, payload) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_password_too_short(self): """Test that pass must be more > 5 chars""" payload = {'email': '[email protected]', 'password': 'wow', 'name': 'test'} res = self.client.post(CREATE_USER_URL, payload) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) user_exists = get_user_model().objects.filter( email=payload['email'] ).exists() self.assertFalse(user_exists) def test_create_token_for_user(self): """Test that a token is created for the user""" payload = {'email': '[email protected]', 'password': 'testing'} create_user(**payload) res = self.client.post(TOKEN_URL, payload) self.assertIn('token', res.data) self.assertEqual(res.status_code, status.HTTP_200_OK) def test_create_token_invalid_credentials(self): """Test that token is not created if invalid credentials is given""" create_user(email='[email protected]', password='testing') payload = {'email': '[email protected]', 'password': 'salahpass'} res = self.client.post(TOKEN_URL, payload) self.assertNotIn('token', res.data) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_create_token_no_user(self): """Test that token is not created if user doesnt exist""" payload = {'email': '[email protected]', 'password': 'testing'} res = self.client.post(TOKEN_URL, payload) self.assertNotIn('token', res.data) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_create_token_missing_field(self): """Test that email and password are required""" res = self.client.post(TOKEN_URL, {'email': '[email protected]', 'password': ''} ) self.assertNotIn('token', res.data) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_retrieve_user_unauthorized(self): """Test that auth is required for user""" res = self.client.get(ME_URL) self.assertEqual(res.status_code, status.HTTP_401_UNAUTHORIZED) class PrivateUserApiTests(TestCase): """Test API request that requires authentication""" def setUp(self): self.user = create_user( email='[email protected]', password='testpass', name='name' ) self.client = APIClient() self.client.force_authenticate(user=self.user) def test_retrieve_profile_success(self): """Test retrieving profile for logged in used""" res = self.client.get(ME_URL) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(res.data, { 'name': self.user.name, 'email': self.user.email, }) def test_post_me_not_allowed(self): """Test that POST is not allowed in any URL""" res = self.client.post(ME_URL, {}) self.assertEqual(res.status_code, status.HTTP_405_METHOD_NOT_ALLOWED) def test_update_user_profile(self): """Test updating the user profile for authenticated user""" payload = {'name': 'new name', 'password': 'testing123123'} res = self.client.patch(ME_URL, payload) self.user.refresh_from_db() self.assertEqual(self.user.name, payload['name']) self.assertTrue(self.user.check_password(payload['password'])) self.assertEqual(res.status_code, status.HTTP_200_OK)
py
b40befcd20d7505db6e0b5323809528fc4bfc5f4
""" Django settings for app project. Generated by 'django-admin startproject' using Django 2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '1-969t2*&j!!&dd73j3hj&3bl(+pmi%968f#zu)lb3&bx8h!c3' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'rest_framework.authtoken', 'core', 'user', 'recipe' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'app.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'app.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'HOST': os.environ.get('DB_HOST'), 'NAME': os.environ.get('DB_NAME'), 'USER': os.environ.get('DB_USER'), 'PASSWORD': os.environ.get('DB_PASS'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' MEDIA_URL = '/media/' MEDIA_ROOT = '/vol/web/media/' STATIC_ROOT = '/vol/web/static/' AUTH_USER_MODEL ='core.User'
py
b40bf0623a0a5e20b960edc72ff6e2121f2c6e42
import json from stix_shifter.stix_translation.src.utils import transformers from stix_shifter.stix_translation.src.json_to_stix import json_to_stix_translator from stix_shifter.stix_translation.src.modules.bigfix import bigfix_translator interface = bigfix_translator.Translator() map_file = open(interface.mapping_filepath).read() map_data = json.loads(map_file) data_source = { "type": "identity", "id": "identity--3532c56d-ea72-48be-a2ad-1a53f4c9c6d3", "name": "BigFix", "identity_class": "events" } options = {} class TestBigFixResultsToStix(object): @staticmethod def get_first(itr, constraint): return next( (obj for obj in itr if constraint(obj)), None ) @staticmethod def get_first_of_type(itr, typ): return TestBigFixResultsToStix.get_first(itr, lambda o: type(o) == dict and o.get('type') == typ) def test_common_prop(self): data = {"computer_identity": "12369754-bigdata4545.canlab.ibm.com", "subQueryID": 1, "start_time": "1541424881", "type": "process", "process_name": "systemd", "process_id": "1", "sha256hash": "9c74c625b2aba7a2e8d8a42e2e94715c355367f7cbfa9bd5404ba52b726792a6", "sha1hash": "916933045c5c91ebcaa325e7f8302f3a732a0a3d", "md5hash": "28a9beb86c4d4c31ba572805bea8494f", "file_path": "/usr/lib/systemd/systemd"} result_bundle = json_to_stix_translator.convert_to_stix( data_source, map_data, [data], transformers.get_all_transformers(), options) print(json.dumps(result_bundle, indent=2)) assert(result_bundle['type'] == 'bundle') result_bundle_objects = result_bundle['objects'] result_bundle_identity = result_bundle_objects[0] assert(result_bundle_identity['type'] == data_source['type']) assert(result_bundle_identity['id'] == data_source['id']) assert(result_bundle_identity['name'] == data_source['name']) assert(result_bundle_identity['identity_class'] == data_source['identity_class']) observed_data = result_bundle_objects[1] print(observed_data) assert(observed_data['id'] is not None) assert(observed_data['type'] == "observed-data") assert(observed_data['created_by_ref'] == result_bundle_identity['id']) assert(observed_data['created'] is not None) assert(observed_data['first_observed'] is not None) assert(observed_data['last_observed'] is not None) def test_file_results_to_stix(self): file_name = '.X0-lock' data = {"computer_identity": "12369754-bigdata4545.canlab.ibm.com", "subQueryID": 1, "type": "file", "file_name": ".X0-lock", "sha256hash": "7236f966f07259a1de3ee0d48a3ef0ee47c4a551af7f0d76dcabbbb9d6e00940", "sha1hash": "8b5e953be1db90172af66631132f6f27dda402d2", "md5hash": "e5307d27f0eb9a27af8597a1ddc51e89", "file_path": "/tmp/.X0-lock", "modified_time": "1541424894"} result_bundle = json_to_stix_translator.convert_to_stix( data_source, map_data, [data], transformers.get_all_transformers(), options) result_bundle_objects = result_bundle['objects'] result_bundle_identity = result_bundle_objects[0] assert(result_bundle_identity['type'] == data_source['type']) observed_data = result_bundle_objects[1] assert('objects' in observed_data) objects = observed_data['objects'] file_obj = TestBigFixResultsToStix.get_first_of_type(objects.values(), 'file') assert(file_obj is not None), 'file object type not found' assert(file_obj.keys() == {'type', 'name', 'hashes', 'parent_directory_ref'}) assert(file_obj['name'] == file_name) def test_process_results_to_stix(self): process_name = 'systemd' data = {"computer_identity": "12369754-bigdata4545.canlab.ibm.com", "subQueryID": 1, "start_time": "1541424881", "type": "process", "process_name": "systemd", "process_id": "1", "sha256hash": "9c74c625b2aba7a2e8d8a42e2e94715c355367f7cbfa9bd5404ba52b726792a6", "sha1hash": "916933045c5c91ebcaa325e7f8302f3a732a0a3d", "md5hash": "28a9beb86c4d4c31ba572805bea8494f", "file_path": "/usr/lib/systemd/systemd"} result_bundle = json_to_stix_translator.convert_to_stix( data_source, map_data, [data], transformers.get_all_transformers(), options) print(json.dumps(result_bundle, indent=2)) result_bundle_objects = result_bundle['objects'] result_bundle_identity = result_bundle_objects[0] assert(result_bundle_identity['type'] == data_source['type']) observed_data = result_bundle_objects[1] assert('objects' in observed_data) objects = observed_data['objects'] process_obj = TestBigFixResultsToStix.get_first_of_type(objects.values(), 'process') assert(process_obj is not None), 'process object type not found' assert(process_obj.keys() == {'type', 'name', 'pid', 'binary_ref'}) assert(process_obj['name'] == process_name)
py
b40bf29c3880e69736ea79d85cc92b7050fa437a
import calendar import datetime from djmodels.utils.html import avoid_wrapping from djmodels.utils.timezone import is_aware, utc from djmodels.utils.translation import gettext, ngettext_lazy TIME_STRINGS = { 'year': ngettext_lazy('%d year', '%d years'), 'month': ngettext_lazy('%d month', '%d months'), 'week': ngettext_lazy('%d week', '%d weeks'), 'day': ngettext_lazy('%d day', '%d days'), 'hour': ngettext_lazy('%d hour', '%d hours'), 'minute': ngettext_lazy('%d minute', '%d minutes'), } TIMESINCE_CHUNKS = ( (60 * 60 * 24 * 365, 'year'), (60 * 60 * 24 * 30, 'month'), (60 * 60 * 24 * 7, 'week'), (60 * 60 * 24, 'day'), (60 * 60, 'hour'), (60, 'minute'), ) def timesince(d, now=None, reversed=False, time_strings=None): """ Take two datetime objects and return the time between d and now as a nicely formatted string, e.g. "10 minutes". If d occurs after now, return "0 minutes". Units used are years, months, weeks, days, hours, and minutes. Seconds and microseconds are ignored. Up to two adjacent units will be displayed. For example, "2 weeks, 3 days" and "1 year, 3 months" are possible outputs, but "2 weeks, 3 hours" and "1 year, 5 days" are not. `time_strings` is an optional dict of strings to replace the default TIME_STRINGS dict. Adapted from http://web.archive.org/web/20060617175230/http://blog.natbat.co.uk/archive/2003/Jun/14/time_since """ if time_strings is None: time_strings = TIME_STRINGS # Convert datetime.date to datetime.datetime for comparison. if not isinstance(d, datetime.datetime): d = datetime.datetime(d.year, d.month, d.day) if now and not isinstance(now, datetime.datetime): now = datetime.datetime(now.year, now.month, now.day) now = now or datetime.datetime.now(utc if is_aware(d) else None) if reversed: d, now = now, d delta = now - d # Deal with leapyears by subtracing the number of leapdays leapdays = calendar.leapdays(d.year, now.year) if leapdays != 0: if calendar.isleap(d.year): leapdays -= 1 elif calendar.isleap(now.year): leapdays += 1 delta -= datetime.timedelta(leapdays) # ignore microseconds since = delta.days * 24 * 60 * 60 + delta.seconds if since <= 0: # d is in the future compared to now, stop processing. return avoid_wrapping(gettext('0 minutes')) for i, (seconds, name) in enumerate(TIMESINCE_CHUNKS): count = since // seconds if count != 0: break result = avoid_wrapping(time_strings[name] % count) if i + 1 < len(TIMESINCE_CHUNKS): # Now get the second item seconds2, name2 = TIMESINCE_CHUNKS[i + 1] count2 = (since - (seconds * count)) // seconds2 if count2 != 0: result += gettext(', ') + avoid_wrapping(time_strings[name2] % count2) return result def timeuntil(d, now=None, time_strings=None): """ Like timesince, but return a string measuring the time until the given time. """ return timesince(d, now, reversed=True, time_strings=time_strings)
py
b40bf2e5d297529f359e3564ecb8a74033fc409e
#Análisis de Algoritmos 3CV2 # Alan Romero Lucero # Josué David Hernández Ramírez # Práctica 2 Fibonacci Iterativo # Este archivo sirve para gráficar los resultados obtenidos import matplotlib.pyplot as plt import numpy as np def graph ( count, fibo, f, n ): # Título de la ventana plt.figure ( "Fibonacci Iterative Algorithm" ) # Título de la grafica plt.title ( "Fibonacci ( " + str ( n ) + " ): " + str ( fibo ) ) # Parámetro del tiempo ( t ) de la gráfica. t = np.arange ( 0, count, ( count / ( len ( f ) + 1 ) ) ) _t = list ( map ( ( lambda x: x * ( 5 / 2 ) ), t ) ) _f = np.arange ( 0, len ( f ) + 1 ) # Nombre de los ejes. plt.xlabel ( "Time ( t )", color = ( 0.3, 0.4, 0.6 ), size = "large" ) plt.ylabel ( "Fibonacci ( f )", color = ( 0.3, 0.4, 0.6 ), size = "large" ) # Plot. plt.plot ( _f, _t, "b^", label = "g( n ) = ( 5/2 )( n )" ) plt.plot ( _f, t, "ro", label = "T( n ) = ( n )" ) plt.plot ( _f, _t, "b--") plt.plot ( _f, t, "r--") plt.legend ( loc = "lower right" ) plt.show ( )
py
b40bf35d18e73f3f4816fa154cf802b1139c8407
"""[summary] Board array of cells - game field hot cells - minos movement of cells delete complete row update score """ from config.board_config import BoardConfig from board.so_mino import Mino from board.so_metadata import GameData from board.so_board_cell import BoardCell import logging logging.basicConfig( level=logging.INFO, format='%(asctime)s | %(name)s | %(levelname)s | %(message)s') logger = logging.getLogger(__name__) class Board(): def __init__(self) -> None: self._board = [[BoardCell.empty() for y in range(BoardConfig.board_max_row)] for x in range(BoardConfig.board_max_col)] self.__spawn_next_mino() self._game_data = GameData() self._game_over = False @property def board(self): return self._board @property def game_over(self): return self._game_over # @property # def game_data(self): # return self._game_data def __spawn_next_mino(self): self._mino = Mino(self._board) success = self._mino.spawn() if(not success): logger.info("Could not spawn Mino, GAME OVER!!") self._game_over = True def move(self, direction: int): if(self._game_over): logger.info("GAME OVER!!") return success = self._mino.move(direction) if(direction == BoardConfig.DIRECTION_DOWN and not success): self.__invalidate() # check if move possible # y - move # n - freeze mino # n - check if rows completed # y - delete row # y - update score # n - spawn_next_mino pass def __invalidate(self): logger.info("Invalidate board requested!!") self._mino.freeze() count = self.__remove_completed_rows() self._game_data.on_rows_completed(count) self.__spawn_next_mino() pass def __remove_completed_rows(self): count = 0 for y in range(0, BoardConfig.board_max_row): completed = True for x in range(0, BoardConfig.board_max_col): if(self._board[x][y].active == BoardConfig.TYPE_EMPTY): completed = False if(completed == True): self.__remove_row(y) count = count + 1 return count def __remove_row(self, row_num: int): for y in range(row_num, 1, -1): for x in range(0, BoardConfig.board_max_col-1): self._board[x][y].color = self._board[x][y-1].color self._board[x][y].active = self._board[x][y-1].active for x in range(0, BoardConfig.board_max_col-1): self._board[x][0].color = BoardConfig.TYPE_EMPTY self._board[x][0].active = BoardConfig.COL_EMPTY def game_over(self): # self._game_data.on_game_completed() self._game_over = True
py
b40bf4919dc2007a37dbb0e3f024a531f8e45f7e
import logging from io import BytesIO import pytest from pyfbx import loader, Properties70, Property70, PropertyTemplate logger = logging.getLogger("tests") def test_property_70(): property70 = Property70("TestProperty", "int", "", "", 0) serialized = loader.serialize(property70) deserialized = loader.deserialize(BytesIO(serialized), Property70) assert deserialized == property70 def test_property_70_empty_value(): property70 = Property70("TestProperty", "int", "", "", None) serialized = loader.serialize(property70) deserialized = loader.deserialize(BytesIO(serialized), Property70) assert deserialized == property70 def test_property_70_multiple_value(): property70 = Property70("TestProperty", "int", "", "", 0, 1, 2) serialized = loader.serialize(property70) deserialized = loader.deserialize(BytesIO(serialized), Property70) assert deserialized == property70 def test_properties_70_empty(): properties70 = Properties70() serialized = loader.serialize(properties70) deserialized = loader.deserialize(BytesIO(serialized), Properties70) assert deserialized == properties70 def test_properties_70(): properties70 = Properties70( Property70("TestProperty1", "int", "", "", -1, 1, 0), Property70("TestProperty2", "string", "", "", "Property Value") ) serialized = loader.serialize(properties70) deserialized = loader.deserialize(BytesIO(serialized), Properties70) assert deserialized == properties70 def test_property_template(): property_template = PropertyTemplate( "TestTemplate", Properties70( Property70("TestProperty1", "int", "", "", -1, 1, 0), Property70("TestProperty2", "string", "", "", "Property Value") ) ) serialized = loader.serialize(property_template) deserialized = loader.deserialize(BytesIO(serialized), PropertyTemplate) assert deserialized == property_template
py
b40bf4af64285731151df36b5e81c1eb5c2bc5a7
r""" Diametrically point loaded 2-D disk. See :ref:`sec-primer`. Find :math:`\ul{u}` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) = 0 \;, \quad \forall \ul{v} \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. """ from __future__ import absolute_import from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson from sfepy.discrete.fem.utils import refine_mesh from sfepy import data_dir # Fix the mesh file name if you run this file outside the SfePy directory. filename_mesh = data_dir + '/meshes/2d/its2D.mesh' refinement_level = 0 filename_mesh = refine_mesh(filename_mesh, refinement_level) output_dir = '.' # set this to a valid directory you have write access to young = 2000.0 # Young's modulus [MPa] poisson = 0.4 # Poisson's ratio options = { 'output_dir' : output_dir, } regions = { 'Omega' : 'all', 'Left' : ('vertices in (x < 0.001)', 'facet'), 'Bottom' : ('vertices in (y < 0.001)', 'facet'), 'Top' : ('vertex 2', 'vertex'), } materials = { 'Asphalt' : ({'D': stiffness_from_youngpoisson(2, young, poisson)},), 'Load' : ({'.val' : [0.0, -1000.0]},), } fields = { 'displacement': ('real', 'vector', 'Omega', 1), } equations = { 'balance_of_forces' : """dw_lin_elastic.2.Omega(Asphalt.D, v, u) = dw_point_load.0.Top(Load.val, v)""", } variables = { 'u' : ('unknown field', 'displacement', 0), 'v' : ('test field', 'displacement', 'u'), } ebcs = { 'XSym' : ('Bottom', {'u.1' : 0.0}), 'YSym' : ('Left', {'u.0' : 0.0}), } solvers = { 'ls' : ('ls.scipy_direct', {}), 'newton' : ('nls.newton', { 'i_max' : 1, 'eps_a' : 1e-6, }), }
py
b40bf573c816d18e32a831aa339ddecd7b6ea670
lines = [] line = input() while line not in ('Done', 'done', 'd'): lines.append(line) line = input() for line in reversed(lines): print(line[::-1])
py
b40bf60002f6e0ba76bdfe912dac6ce673dcbb80
#!/usr/bin/env python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. '''Unit tests for grit.tool.android2grd''' import os import sys if __name__ == '__main__': sys.path.append(os.path.join(os.path.dirname(__file__), '../..')) import unittest import xml.dom.minidom from grit import grd_reader from grit import util from grit.node import empty from grit.node import io from grit.node import message from grit.node import misc from grit.tool import android2grd class Android2GrdUnittest(unittest.TestCase): def __Parse(self, xml_string): return xml.dom.minidom.parseString(xml_string).childNodes[0] def testCreateTclibMessage(self): tool = android2grd.Android2Grd() msg = tool.CreateTclibMessage(self.__Parse(r''' <string name="simple">A simple string</string>''')) self.assertEqual(msg.GetRealContent(), 'A simple string') msg = tool.CreateTclibMessage(self.__Parse(r''' <string name="outer_whitespace"> Strip leading/trailing whitespace </string>''')) self.assertEqual(msg.GetRealContent(), 'Strip leading/trailing whitespace') msg = tool.CreateTclibMessage(self.__Parse(r''' <string name="inner_whitespace">Fold multiple spaces</string>''')) self.assertEqual(msg.GetRealContent(), 'Fold multiple spaces') msg = tool.CreateTclibMessage(self.__Parse(r''' <string name="escaped_spaces">Retain \n escaped\t spaces</string>''')) self.assertEqual(msg.GetRealContent(), 'Retain \n escaped\t spaces') msg = tool.CreateTclibMessage(self.__Parse(r''' <string name="quotes"> " Quotes preserve whitespace" but only for "enclosed elements " </string>''')) self.assertEqual(msg.GetRealContent(), ''' Quotes preserve whitespace but only for enclosed elements ''') msg = tool.CreateTclibMessage(self.__Parse( r'''<string name="escaped_characters">Escaped characters: \"\'\\\t\n''' '</string>')) self.assertEqual(msg.GetRealContent(), '''Escaped characters: "'\\\t\n''') msg = tool.CreateTclibMessage(self.__Parse( '<string xmlns:xliff="urn:oasis:names:tc:xliff:document:1.2" ' 'name="placeholders">' 'Open <xliff:g id="FILENAME" example="internet.html">%s</xliff:g>?' '</string>')) self.assertEqual(msg.GetRealContent(), 'Open %s?') self.assertEqual(len(msg.GetPlaceholders()), 1) self.assertEqual(msg.GetPlaceholders()[0].presentation, 'FILENAME') self.assertEqual(msg.GetPlaceholders()[0].original, '%s') self.assertEqual(msg.GetPlaceholders()[0].example, 'internet.html') msg = tool.CreateTclibMessage(self.__Parse(r''' <string name="comment">Contains a <!-- ignore this --> comment </string>''')) self.assertEqual(msg.GetRealContent(), 'Contains a comment') def testIsTranslatable(self): tool = android2grd.Android2Grd() string_el = self.__Parse('<string>Hi</string>') self.assertTrue(tool.IsTranslatable(string_el)) string_el = self.__Parse( '<string translatable="true">Hi</string>') self.assertTrue(tool.IsTranslatable(string_el)) string_el = self.__Parse( '<string translatable="false">Hi</string>') self.assertFalse(tool.IsTranslatable(string_el)) def __ParseAndroidXml(self, options = []): tool = android2grd.Android2Grd() tool.ParseOptions(options) android_path = util.PathFromRoot('grit/testdata/android.xml') with open(android_path) as android_file: android_dom = xml.dom.minidom.parse(android_file) grd = tool.AndroidDomToGrdDom(android_dom) self.assertTrue(isinstance(grd, misc.GritNode)) return grd def testAndroidDomToGrdDom(self): grd = self.__ParseAndroidXml(['--languages', 'en-US,en-GB,ru']) # Check that the structure of the GritNode is as expected. messages = grd.GetChildrenOfType(message.MessageNode) translations = grd.GetChildrenOfType(empty.TranslationsNode) files = grd.GetChildrenOfType(io.FileNode) self.assertEqual(len(translations), 1) self.assertEqual(len(files), 3) self.assertEqual(len(messages), 5) # Check that a message node is constructed correctly. msg = filter(lambda x: x.GetTextualIds()[0] == "IDS_PLACEHOLDERS", messages) self.assertTrue(msg) msg = msg[0] self.assertTrue(msg.IsTranslateable()) self.assertEqual(msg.attrs["desc"], "A string with placeholder.") def testProductAttribute(self): grd = self.__ParseAndroidXml([]) messages = grd.GetChildrenOfType(message.MessageNode) msg = filter(lambda x: x.GetTextualIds()[0] == "IDS_SIMPLE_product_nosdcard", messages) self.assertTrue(msg) def testTranslatableAttribute(self): grd = self.__ParseAndroidXml([]) messages = grd.GetChildrenOfType(message.MessageNode) msgs = filter(lambda x: x.GetTextualIds()[0] == "IDS_CONSTANT", messages) self.assertTrue(msgs) self.assertFalse(msgs[0].IsTranslateable()) def testTranslations(self): grd = self.__ParseAndroidXml(['--languages', 'en-US,en-GB,ru,id']) files = grd.GetChildrenOfType(io.FileNode) us_file = filter(lambda x: x.attrs['lang'] == 'en-US', files) self.assertTrue(us_file) self.assertEqual(us_file[0].GetInputPath(), 'chrome_android_strings_en-US.xtb') id_file = filter(lambda x: x.attrs['lang'] == 'id', files) self.assertTrue(id_file) self.assertEqual(id_file[0].GetInputPath(), 'chrome_android_strings_id.xtb') def testOutputs(self): grd = self.__ParseAndroidXml(['--languages', 'en-US,ru,id', '--rc-dir', 'rc/dir', '--header-dir', 'header/dir', '--xtb-dir', 'xtb/dir', '--xml-dir', 'xml/dir']) outputs = grd.GetChildrenOfType(io.OutputNode) self.assertEqual(len(outputs), 7) header_outputs = filter(lambda x: x.GetType() == 'rc_header', outputs) rc_outputs = filter(lambda x: x.GetType() == 'rc_all', outputs) xml_outputs = filter(lambda x: x.GetType() == 'android', outputs) self.assertEqual(len(header_outputs), 1) self.assertEqual(len(rc_outputs), 3) self.assertEqual(len(xml_outputs), 3) # The header node should have an "<emit>" child and the proper filename. self.assertTrue(header_outputs[0].GetChildrenOfType(io.EmitNode)) self.assertEqual(util.normpath(header_outputs[0].GetFilename()), util.normpath('header/dir/chrome_android_strings.h')) id_rc = filter(lambda x: x.GetLanguage() == 'id', rc_outputs) id_xml = filter(lambda x: x.GetLanguage() == 'id', xml_outputs) self.assertTrue(id_rc) self.assertTrue(id_xml) self.assertEqual(util.normpath(id_rc[0].GetFilename()), util.normpath('rc/dir/chrome_android_strings_id.rc')) self.assertEqual(util.normpath(id_xml[0].GetFilename()), util.normpath('xml/dir/values-in/strings.xml')) us_rc = filter(lambda x: x.GetLanguage() == 'en-US', rc_outputs) us_xml = filter(lambda x: x.GetLanguage() == 'en-US', xml_outputs) self.assertTrue(us_rc) self.assertTrue(us_xml) self.assertEqual(util.normpath(us_rc[0].GetFilename()), util.normpath('rc/dir/chrome_android_strings_en-US.rc')) self.assertEqual(util.normpath(us_xml[0].GetFilename()), util.normpath('xml/dir/values-en-rUS/strings.xml')) if __name__ == '__main__': unittest.main()
py
b40bf6fbe24cda7d43a6ae1eaccc4b0374123423
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'UserProfile.activity_level' db.add_column(u'users_userprofile', 'activity_level', self.gf('django.db.models.fields.CharField')(default='EN', max_length=2), keep_default=False) def backwards(self, orm): # Deleting field 'UserProfile.activity_level' db.delete_column(u'users_userprofile', 'activity_level') models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Group']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Permission']"}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'users.userprofile': { 'Meta': {'object_name': 'UserProfile'}, 'activity_level': ('django.db.models.fields.CharField', [], {'max_length': '2'}), 'birthday': ('django.db.models.fields.DateField', [], {}), 'elbow_diameter': ('django.db.models.fields.IntegerField', [], {}), 'gender': ('django.db.models.fields.CharField', [], {'max_length': '1'}), 'height': ('django.db.models.fields.IntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'user': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['auth.User']", 'unique': 'True'}), 'weight': ('django.db.models.fields.IntegerField', [], {}) } } complete_apps = ['users']
py
b40bf890dc34bd07de52dff47c6dd5c939f40b07
from selenium import webdriver from django.test import TestCase import time DELAY = 2 class HomePageTests(TestCase): # Gavin goes to www.gavmac.com def setUp(self): self.driver = webdriver.Chrome() self.driver.get('https://ioc-experiment-one.herokuapp.com/') def tearDown(self): self.driver.close() # Gavin expects to see Home in title def test_home_in_title_of_default_route(self): self.assertIn("Home", self.driver.title) # Gavin expects to see a username and password box with Login button def test_login_form_exists_on_page(self): self.driver.find_element_by_id('username') self.driver.find_element_by_id('password') self.driver.find_element_by_id('submit') # Gavin expects to be able to enter username and password def test_able_to_enter_username_and_password(self): username = self.driver.find_element_by_id('username') username.send_keys('Gavin') password = self.driver.find_element_by_id('password') password.send_keys('TestPass') time.sleep(DELAY) # Gavin expects to be able to re-enter a username and password if both fields are empty # when Login button clicked def test_message_shown_if_username_AND_password_empty_when_login_button_clicked(self): username = self.driver.find_element_by_id('username') password = self.driver.find_element_by_id('password') username.clear() password.clear() login_button = self.driver.find_element_by_id('submit') login_button.click() message = self.driver.find_element_by_class_name('warning') self.assertEqual(message.text, 'Missing fields for username, password') # Gavin expects to be able to re-enter a username if field was empty # when Login button clicked def test_message_shown_if_username_field_is_empty_when_login_button_clicked(self): username = self.driver.find_element_by_id('username') username.clear() password = self.driver.find_element_by_id('password') password.send_keys('TestPass') login_button = self.driver.find_element_by_id('submit') login_button.click() message = self.driver.find_element_by_class_name('warning') self.assertEqual(message.text, 'Missing fields for username') # Gavin expects to be able to re-enter a password if field was empty # when Login button clicked def test_message_shown_if_password_field_is_empty_when_login_button_clicked(self): username = self.driver.find_element_by_id('username') username.send_keys('Gavin') password = self.driver.find_element_by_id('password') password.clear() login_button = self.driver.find_element_by_id('submit') login_button.click() message = self.driver.find_element_by_class_name('warning') self.assertEqual(message.text, 'Missing fields for password') # Given a valid username and password are provided then # Gavin expects to see the Welcome page when the Login button is clicked # Welcome page includes bespoke message welcoming Gavin def test_welcome_page_displayed_when_login_details_valid(self): username = self.driver.find_element_by_id('username') username.send_keys('Gavin') password = self.driver.find_element_by_id('password') password.send_keys('TestPass') login_button = self.driver.find_element_by_id('submit') login_button.click() time.sleep(DELAY) welcome_message = self.driver.find_element_by_id('welcomeMessage') self.assertEqual(welcome_message.text, 'Welcome, Gavin!') # Gavin provides correct username but incorrect password and expects to be # able to re-enter credentials to enable login def test_message_shown_if_credentials_are_not_authenticated_when_login_button_clicked(self): username = self.driver.find_element_by_id('username') username.send_keys('Gavin') password = self.driver.find_element_by_id('password') password.send_keys('InvalidPassword') login_button = self.driver.find_element_by_id('submit') login_button.click() invalid_credentials_message = self.driver.find_element_by_class_name('warning') self.assertEqual(invalid_credentials_message.text, \ 'Invalid Credentials') # Susan is a new user to www.gavmac.com and expects to a 'Invalid Credentials' # message when she trys to login. She then expects to see a sign up page when she clicks # "Sign Up" button. # After entering ddetails she expects to see a Welcome page after clicking "Sign Up" button. def test_error_page_displayed_when_login_details_invalid(self): username = self.driver.find_element_by_id('username') username.send_keys('Susan') password = self.driver.find_element_by_id('password') password.send_keys('SusanTestPass') login_button = self.driver.find_element_by_id('submit') login_button.click() time.sleep(DELAY) invalid_credentials_message = self.driver.find_element_by_class_name('warning') self.assertEqual(invalid_credentials_message.text, \ 'Invalid Credentials') username = self.driver.find_element_by_id('username') username.clear() password = self.driver.find_element_by_id('password') password.clear() signup_button = self.driver.find_element_by_id('signup') signup_button.click() time.sleep(DELAY) self.assertIn("Sign Up", self.driver.title) username = self.driver.find_element_by_id('username') username.clear() email = self.driver.find_element_by_id('email') email.clear() password = self.driver.find_element_by_id('password') password.clear() username.send_keys('Susan') email.send_keys('[email protected]') password.send_keys('SusanTestPass') time.sleep(DELAY) signup_button = self.driver.find_element_by_id('signup') signup_button.click() welcome_message = self.driver.find_element_by_id('welcomeMessage') self.assertEqual(welcome_message.text, 'Welcome, Susan!') # Susan expects to be able to see a sign up page after she clicks on 'Sign Up; # button def test_sign_up_button_renders_sign_up_pages(self): username = self.driver.find_element_by_id('username') username.clear() password = self.driver.find_element_by_id('password') password.clear() signup_button = self.driver.find_element_by_id('signup') signup_button.click() time.sleep(DELAY) self.assertIn("Sign Up", self.driver.title)
py
b40bf8a5938c2cbfee61030dd795c071b5491ed6
from __future__ import unicode_literals import os import frappe from frappe.database.db_manager import DbManager expected_settings_10_2_earlier = { "innodb_file_format": "Barracuda", "innodb_file_per_table": "ON", "innodb_large_prefix": "ON", "character_set_server": "utf8mb4", "collation_server": "utf8mb4_unicode_ci", } expected_settings_10_3_later = { "character_set_server": "utf8mb4", "collation_server": "utf8mb4_unicode_ci", } def get_mariadb_versions(): # MariaDB classifies their versions as Major (1st and 2nd number), and Minor (3rd number) # Example: Version 10.3.13 is Major Version = 10.3, Minor Version = 13 mariadb_variables = frappe._dict(frappe.db.sql("""show variables""")) version_string = mariadb_variables.get("version").split("-")[0] versions = {} versions["major"] = version_string.split(".")[0] + "." + version_string.split(".")[1] versions["minor"] = version_string.split(".")[2] return versions def setup_database(force, source_sql, verbose, no_mariadb_socket=False): frappe.local.session = frappe._dict({"user": "Administrator"}) db_name = frappe.local.conf.db_name root_conn = get_root_connection(frappe.flags.root_login, frappe.flags.root_password) dbman = DbManager(root_conn) if force or (db_name not in dbman.get_database_list()): dbman.delete_user(db_name) if no_mariadb_socket: dbman.delete_user(db_name, host="%") dbman.drop_database(db_name) else: raise Exception("Database %s already exists" % (db_name,)) dbman.create_user(db_name, frappe.conf.db_password) if no_mariadb_socket: dbman.create_user(db_name, frappe.conf.db_password, host="%") if verbose: print("Created user %s" % db_name) dbman.create_database(db_name) if verbose: print("Created database %s" % db_name) dbman.grant_all_privileges(db_name, db_name) if no_mariadb_socket: dbman.grant_all_privileges(db_name, db_name, host="%") dbman.flush_privileges() if verbose: print("Granted privileges to user %s and database %s" % (db_name, db_name)) # close root connection root_conn.close() bootstrap_database(db_name, verbose, source_sql) def setup_help_database(help_db_name): dbman = DbManager(get_root_connection(frappe.flags.root_login, frappe.flags.root_password)) dbman.drop_database(help_db_name) # make database if not help_db_name in dbman.get_database_list(): try: dbman.create_user(help_db_name, help_db_name) except Exception as e: # user already exists if e.args[0] != 1396: raise dbman.create_database(help_db_name) dbman.grant_all_privileges(help_db_name, help_db_name) dbman.flush_privileges() def drop_user_and_database(db_name, root_login, root_password): frappe.local.db = get_root_connection(root_login, root_password) dbman = DbManager(frappe.local.db) dbman.delete_user(db_name, host="%") dbman.delete_user(db_name) dbman.drop_database(db_name) def bootstrap_database(db_name, verbose, source_sql=None): import sys frappe.connect(db_name=db_name) if not check_database_settings(): print("Database settings do not match expected values; stopping database setup.") sys.exit(1) import_db_from_sql(source_sql, verbose) frappe.connect(db_name=db_name) if "tabDefaultValue" not in frappe.db.get_tables(cached=False): from click import secho secho( "Table 'tabDefaultValue' missing in the restored site. " "Database not installed correctly, this can due to lack of " "permission, or that the database name exists. Check your mysql" " root password, validity of the backup file or use --force to" " reinstall", fg="red", ) sys.exit(1) def import_db_from_sql(source_sql=None, verbose=False): if verbose: print("Starting database import...") db_name = frappe.conf.db_name if not source_sql: source_sql = os.path.join(os.path.dirname(__file__), "framework_mariadb.sql") DbManager(frappe.local.db).restore_database(db_name, source_sql, db_name, frappe.conf.db_password) if verbose: print("Imported from database %s" % source_sql) def check_database_settings(): versions = get_mariadb_versions() if versions["major"] <= "10.2": expected_variables = expected_settings_10_2_earlier else: expected_variables = expected_settings_10_3_later mariadb_variables = frappe._dict(frappe.db.sql("""show variables""")) # Check each expected value vs. actuals: result = True for key, expected_value in expected_variables.items(): if mariadb_variables.get(key) != expected_value: print( "For key %s. Expected value %s, found value %s" % (key, expected_value, mariadb_variables.get(key)) ) result = False if not result: site = frappe.local.site msg = ( "Creation of your site - {x} failed because MariaDB is not properly {sep}" "configured. If using version 10.2.x or earlier, make sure you use the {sep}" "the Barracuda storage engine. {sep}{sep}" "Please verify the settings above in MariaDB's my.cnf. Restart MariaDB. And {sep}" "then run `bench new-site {x}` again.{sep2}" "" ).format(x=site, sep2="\n" * 2, sep="\n") print_db_config(msg) return result def get_root_connection(root_login, root_password): import getpass if not frappe.local.flags.root_connection: if not root_login: root_login = "root" if not root_password: root_password = frappe.conf.get("root_password") or None if not root_password: root_password = getpass.getpass("MySQL root password: ") frappe.local.flags.root_connection = frappe.database.get_db( user=root_login, password=root_password ) return frappe.local.flags.root_connection def print_db_config(explanation): print("=" * 80) print(explanation) print("=" * 80)
py
b40bf8a96ce8533dbe515af5cea3cfa5fa1f5922
# encoding: utf-8 """ @author: xingyu liao @contact: [email protected] """ # based on: # https://github.com/NVIDIA/apex/blob/d74fda260c403f775817470d87f810f816f3d615/apex/parallel/LARC.py import torch from torch.optim.optimizer import Optimizer class LARS(Optimizer): """ :class:`LARS` is a pytorch implementation of both the scaling and clipping variants of LARC, in which the ratio between gradient and parameter magnitudes is used to calculate an adaptive local learning rate for each individual parameter. The algorithm is designed to improve convergence of large batch training. See https://arxiv.org/abs/1708.03888 for calculation of the local learning rate. In practice it modifies the gradients of parameters as a proxy for modifying the learning rate of the parameters. This design allows it to be used as a wrapper around any torch.optim Optimizer. ``` model = ... optim = torch.optim.Adam(model.parameters(), lr=...) optim = LARS(optim) ``` It can even be used in conjunction with apex.fp16_utils.FP16_optimizer. ``` model = ... optim = torch.optim.Adam(model.parameters(), lr=...) optim = LARS(optim) optim = apex.fp16_utils.FP16_Optimizer(optim) ``` Args: optimizer: Pytorch optimizer to wrap and modify learning rate for. trust_coefficient: Trust coefficient for calculating the lr. See https://arxiv.org/abs/1708.03888 clip: Decides between clipping or scaling mode of LARC. If `clip=True` the learning rate is set to `min(optimizer_lr, local_lr)` for each parameter. If `clip=False` the learning rate is set to `local_lr*optimizer_lr`. eps: epsilon kludge to help with numerical stability while calculating adaptive_lr """ def __init__(self, optimizer, trust_coefficient=0.02, clip=True, eps=1e-8): self.param_groups = optimizer.param_groups self.optim = optimizer self.trust_coefficient = trust_coefficient self.eps = eps self.clip = clip def __getstate__(self): return self.optim.__getstate__() def __setstate__(self, state): self.optim.__setstate__(state) def __repr__(self): return self.optim.__repr__() def state_dict(self): return self.optim.state_dict() def load_state_dict(self, state_dict): self.optim.load_state_dict(state_dict) def zero_grad(self): self.optim.zero_grad() def add_param_group(self, param_group): self.optim.add_param_group(param_group) def step(self): with torch.no_grad(): weight_decays = [] for group in self.optim.param_groups: # absorb weight decay control from optimizer weight_decay = group['weight_decay'] if 'weight_decay' in group else 0 weight_decays.append(weight_decay) group['weight_decay'] = 0 for p in group['params']: if p.grad is None: continue param_norm = torch.norm(p.data) grad_norm = torch.norm(p.grad.data) if param_norm != 0 and grad_norm != 0: # calculate adaptive lr + weight decay adaptive_lr = self.trust_coefficient * (param_norm) / ( grad_norm + param_norm * weight_decay + self.eps) # clip learning rate for LARC if self.clip: # calculation of adaptive_lr so that when multiplied by lr it equals `min(adaptive_lr, lr)` adaptive_lr = min(adaptive_lr / group['lr'], 1) p.grad.data += weight_decay * p.data p.grad.data *= adaptive_lr self.optim.step() # return weight decay control to optimizer for i, group in enumerate(self.optim.param_groups): group['weight_decay'] = weight_decays[i]
py
b40bf97b78a7933da1eb59e960d2420975ce5ecc
import tweepy from simple_settings import settings import os os.environ[ 'SIMPLE_SETTINGS'] = 'umask_config' def debug_print(text): """Print text if debugging mode is on""" if settings.debug: print (text) def get_last_id(statefile): """Retrieve last status ID from a file""" debug_print('Getting last ID from %s' % (statefile,)) try: f = open(statefile,'r') id = int(f.read()) f.close() except IOError: debug_print('IOError raised, returning zero (0)') return 0 debug_print('Got %d' % (id,)) return id def save_id(statefile,id): """Save last status ID to a file""" last_id = get_last_id(statefile) if last_id < id: debug_print('Saving new ID %d to %s' % (id,statefile)) f = open(statefile,'w') f.write(str(id)) # no trailing newline f.close() else: debug_print('Received smaller ID, not saving. Old: %d, New: %s' % ( last_id, id)) def add_trolls(tweet): debug_print('Agregando trolles') # Authenticate to Twitter auth = tweepy.OAuthHandler(settings.CONSUMER_KEY, settings.CONSUMER_SECRET) auth.set_access_token(settings.ACCESS_TOKEN, settings.ACCESS_TOKEN_SECRET) api = tweepy.API(auth) try: api.verify_credentials() debug_print("Authentication OK") except: debug_print("Error during authentication") tweets = [] last_id = get_last_id(settings.last_id_file) debug_print ("Busqueda:") debug_print (settings.busqueda) search_terms = settings.busqueda tweets = api.search(q=search_terms,since_id=last_id,count=3) for tweet in tweets: print(f'{tweet.id} ----- {tweet.text}') tweet.text = '#antitroll'+tweet.text api.retweet(tweet.id) save_id(settings.last_id_file,tweet.id)
py
b40bfbedf97d6f4f3fe242fb2716dc3faab52af4
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilites for mutual TLS.""" import six from google.auth import exceptions from google.auth.transport import _mtls_helper def has_default_client_cert_source(): """Check if default client SSL credentials exists on the device. Returns: bool: indicating if the default client cert source exists. """ metadata_path = _mtls_helper._check_dca_metadata_path( _mtls_helper.CONTEXT_AWARE_METADATA_PATH ) return metadata_path is not None def default_client_cert_source(): """Get a callback which returns the default client SSL credentials. Returns: Callable[[], [bytes, bytes]]: A callback which returns the default client certificate bytes and private key bytes, both in PEM format. Raises: google.auth.exceptions.DefaultClientCertSourceError: If the default client SSL credentials don't exist or are malformed. """ if not has_default_client_cert_source(): raise exceptions.MutualTLSChannelError( "Default client cert source doesn't exist" ) def callback(): try: _, cert_bytes, key_bytes = _mtls_helper.get_client_cert_and_key() except (OSError, RuntimeError, ValueError) as caught_exc: new_exc = exceptions.MutualTLSChannelError(caught_exc) six.raise_from(new_exc, caught_exc) return cert_bytes, key_bytes return callback def default_client_encrypted_cert_source(cert_path, key_path): """Get a callback which returns the default encrpyted client SSL credentials. Args: cert_path (str): The cert file path. The default client certificate will be written to this file when the returned callback is called. key_path (str): The key file path. The default encrypted client key will be written to this file when the returned callback is called. Returns: Callable[[], [str, str, bytes]]: A callback which generates the default client certificate, encrpyted private key and passphrase. It writes the certificate and private key into the cert_path and key_path, and returns the cert_path, key_path and passphrase bytes. Raises: google.auth.exceptions.DefaultClientCertSourceError: If any problem occurs when loading or saving the client certificate and key. """ if not has_default_client_cert_source(): raise exceptions.MutualTLSChannelError( "Default client encrypted cert source doesn't exist" ) def callback(): try: ( _, cert_bytes, key_bytes, passphrase_bytes, ) = _mtls_helper.get_client_ssl_credentials(generate_encrypted_key=True) with open(cert_path, "wb") as cert_file: cert_file.write(cert_bytes) with open(key_path, "wb") as key_file: key_file.write(key_bytes) except (exceptions.ClientCertError, OSError) as caught_exc: new_exc = exceptions.MutualTLSChannelError(caught_exc) six.raise_from(new_exc, caught_exc) return cert_path, key_path, passphrase_bytes return callback
py
b40bfc31fdd4745c8e048dd68fc34e270c2bf5d6
import rlkit.misc.hyperparameter as hyp from multiworld.envs.mujoco.cameras import init_sawyer_camera_v3, sawyer_pusher_camera_upright, sawyer_door_env_camera, \ sawyer_pusher_camera_top_down, sawyer_pusher_camera_upright_v2 from multiworld.envs.mujoco.sawyer_xyz.sawyer_push_and_reach_env import SawyerPushAndReachXYEnv from rlkit.launchers.launcher_util import run_experiment from rlkit.misc.ml_util import PiecewiseLinearSchedule from rlkit.torch.vae.conv_vae import ConvVAE from rlkit.torch.vae.vae_trainer import ConvVAETrainer from rlkit.torch.grill.launcher import generate_vae_dataset def experiment(variant): from rlkit.core import logger import rlkit.torch.pytorch_util as ptu beta = variant["beta"] representation_size = variant["representation_size"] train_data, test_data, info = generate_vae_dataset( **variant['generate_vae_dataset_kwargs'] ) logger.save_extra_data(info) logger.get_snapshot_dir() if 'beta_schedule_kwargs' in variant: # kwargs = variant['beta_schedule_kwargs'] # kwargs['y_values'][2] = variant['beta'] # kwargs['x_values'][1] = variant['flat_x'] # kwargs['x_values'][2] = variant['ramp_x'] + variant['flat_x'] variant['beta_schedule_kwargs']['y_values'][-1] = variant['beta'] beta_schedule = PiecewiseLinearSchedule(**variant['beta_schedule_kwargs']) else: beta_schedule = None m = ConvVAE(representation_size, input_channels=3, **variant['conv_vae_kwargs']) if ptu.gpu_enabled(): m.cuda() t = ConvVAETrainer(train_data, test_data, m, beta=beta, beta_schedule=beta_schedule, **variant['algo_kwargs']) save_period = variant['save_period'] for epoch in range(variant['num_epochs']): should_save_imgs = (epoch % save_period == 0) t.train_epoch(epoch) t.test_epoch(epoch, save_reconstruction=should_save_imgs, save_scatterplot=should_save_imgs) if should_save_imgs: t.dump_samples(epoch) if __name__ == "__main__": n_seeds = 1 mode = 'local' exp_prefix = 'sawyer_pusher_vae_arena_large_puck' # n_seeds = 1 # mode = 'ec2' # exp_prefix = 'sawyer_pusher_vae_real_world_goal_space_large_puck' use_gpu = True variant = dict( num_epochs=5000, algo_kwargs=dict( is_auto_encoder=False, batch_size=64, lr=1e-3, ), generate_vae_dataset_kwargs=dict( N=20000, oracle_dataset=True, use_cached=True, env_class=SawyerPushAndReachXYEnv, env_kwargs=dict( hide_goal_markers=True, reward_type='puck_distance', hand_low=(-0.28, 0.3, 0.05), hand_high=(0.28, 0.9, 0.3), puck_low=(-.4, .2), puck_high=(.4, 1), goal_low=(-0.28, 0.3, 0.02, -.2, .4), goal_high=(0.28, 0.9, 0.02, .2, .8), ), init_camera=sawyer_pusher_camera_upright_v2, show=False, tag='arena' ), # beta_schedule_kwargs=dict( # x_values=[0, 1000, 3000], # y_values=[0, 0, 1], # ), conv_vae_kwargs=dict(), save_period=100, beta=5, representation_size=16, ) search_space = { 'beta':[2.5] } sweeper = hyp.DeterministicHyperparameterSweeper( search_space, default_parameters=variant, ) for _ in range(n_seeds): for exp_id, variant in enumerate(sweeper.iterate_hyperparameters()): run_experiment( experiment, exp_prefix=exp_prefix, mode=mode, variant=variant, use_gpu=use_gpu, num_exps_per_instance=1, snapshot_mode='gap_and_last', snapshot_gap=500, )
py
b40bfc40ed7cf7db3555d32411d5f920ed809155
#!/usr/bin/python #-*- coding: utf-8 -*- # >.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>. # Licensed under the Apache License, Version 2.0 (the "License") # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # --- File Name: loss_hdwG.py # --- Creation Date: 19-04-2020 # --- Last Modified: Tue 21 Apr 2020 23:57:34 AEST # --- Author: Xinqi Zhu # .<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.< """ HD disentanglement model with trainable G losses. """ import numpy as np import tensorflow as tf import dnnlib.tflib as tflib from dnnlib.tflib.autosummary import autosummary from training.loss_hd import calc_vc_loss, calc_cls_loss from training.loss_hd import reparameterize, log_normal_pdf def IandMandG_hyperplane_loss(G, D, I, M, opt, training_set, minibatch_size, I_info=None, latent_type='uniform', C_global_size=10, D_global_size=0, D_lambda=0, C_lambda=1, cls_alpha=0, epsilon=1, random_eps=False, traj_lambda=None, resolution_manual=1024, use_std_in_m=False, model_type='hd_dis_model', hyperplane_lambda=1, prior_latent_size=512, hyperdir_lambda=1): _ = opt resolution_log2 = int(np.log2(resolution_manual)) nd_out_base = C_global_size // (resolution_log2 - 1) nd_out_list = [nd_out_base + C_global_size % (resolution_log2 - 1) if i == 0 else nd_out_base for i in range(resolution_log2 - 1)] nd_out_list = nd_out_list[::-1] # Sample delta latents C_delta_latents = tf.random.uniform([minibatch_size], minval=0, maxval=C_global_size, dtype=tf.int32) C_delta_latents = tf.cast(tf.one_hot(C_delta_latents, C_global_size), tf.float32) delta_var_latents = C_delta_latents all_delta_var_latents = tf.eye(C_global_size, dtype=tf.float32) labels = training_set.get_random_labels_tf(minibatch_size) # Get variation direction in prior latent space. prior_var_latents, hyperplane_constraint = M.get_output_for(delta_var_latents, is_training=True) prior_all_dirs, _ = M.get_output_for(all_delta_var_latents, is_training=True) prior_var_latents = autosummary('Loss/prior_var_latents', prior_var_latents) manipulated_prior_dir = tf.matmul(prior_var_latents, tf.transpose(prior_all_dirs)) # [batch, C_global_size] manipulated_prior_dir = manipulated_prior_dir * (1. - C_delta_latents) # [batch, C_global_size] manipulated_prior_dir = tf.matmul(manipulated_prior_dir, prior_all_dirs) # [batch, prior_latent_size] prior_dir_to_go = prior_var_latents - manipulated_prior_dir # prior_dir_to_go = prior_var_latents prior_dir_to_go = autosummary('Loss/prior_dir_to_go', prior_dir_to_go) if latent_type == 'uniform': prior_latents = tf.random.uniform([minibatch_size, prior_latent_size], minval=-2, maxval=2) elif latent_type == 'normal': prior_latents = tf.random.normal([minibatch_size, prior_latent_size]) elif latent_type == 'trunc_normal': prior_latents = tf.random.truncated_normal([minibatch_size, prior_latent_size]) else: raise ValueError('Latent type not supported: ' + latent_type) prior_latents = autosummary('Loss/prior_latents', prior_latents) if random_eps: epsilon = epsilon * tf.random.normal([minibatch_size, 1], mean=0.0, stddev=2.0) prior_delta_latents = prior_latents + epsilon * prior_dir_to_go fake1_out = G.get_output_for(prior_latents, labels, is_training=True, randomize_noise=True, normalize_latents=False) fake2_out = G.get_output_for(prior_delta_latents, labels, is_training=True, randomize_noise=True, normalize_latents=False) fake1_out = autosummary('Loss/fake1_out', fake1_out) # Send to D fake_scores_out = D.get_output_for(fake1_out, labels, is_training=True) G_loss = tf.nn.softplus(-fake_scores_out) # -log(sigmoid(fake_scores_out)) # Send to I # regress_out_list = I.get_output_for(fake1_out, fake2_out, is_training=True) # regress_out = tf.concat(regress_out_list, axis=1) regress_out = I.get_output_for(fake1_out, fake2_out, is_training=True) I_loss = calc_vc_loss(C_delta_latents, regress_out, C_global_size, D_lambda, C_lambda) I_loss = autosummary('Loss/I_loss', I_loss) dir_constraint = tf.reduce_sum(prior_var_latents * prior_dir_to_go, axis=1) norm_prior_var_latents = tf.math.sqrt(tf.reduce_sum(prior_var_latents * prior_var_latents, axis=1)) norm_prior_dir_to_go = tf.math.sqrt(tf.reduce_sum(prior_dir_to_go * prior_dir_to_go, axis=1)) dir_constraint = - dir_constraint / (norm_prior_var_latents * norm_prior_dir_to_go) dir_constraint = autosummary('Loss/dir_constraint', dir_constraint) I_loss = I_loss + hyperplane_lambda * hyperplane_constraint + hyperdir_lambda * dir_constraint + G_loss # I_loss = I_loss + hyperplane_lambda * hyperplane_constraint + G_loss return I_loss, None def IandG_vc_loss(G, D, I, M, opt, training_set, minibatch_size, I_info=None, latent_type='uniform', C_global_size=10, D_global_size=0, D_lambda=0, C_lambda=1, cls_alpha=0, epsilon=1, random_eps=False, traj_lambda=None, resolution_manual=1024, use_std_in_m=False, model_type='hd_dis_model', hyperplane_lambda=1, prior_latent_size=512, hyperdir_lambda=1): _ = opt if latent_type == 'uniform': latents = tf.random.uniform([minibatch_size, C_global_size], minval=-2, maxval=2) elif latent_type == 'normal': latents = tf.random.normal([minibatch_size, C_global_size]) elif latent_type == 'trunc_normal': latents = tf.random.truncated_normal([minibatch_size, C_global_size]) else: raise ValueError('Latent type not supported: ' + latent_type) latents = autosummary('Loss/latents', latents) # Sample delta latents C_delta_latents = tf.random.uniform([minibatch_size], minval=0, maxval=C_global_size, dtype=tf.int32) C_delta_latents = tf.cast(tf.one_hot(C_delta_latents, C_global_size), tf.float32) if not random_eps: delta_target = C_delta_latents * epsilon # delta_latents = tf.concat([tf.zeros([minibatch_size, D_global_size]), delta_target], axis=1) else: epsilon = epsilon * tf.random.normal([minibatch_size, 1], mean=0.0, stddev=2.0) # delta_target = tf.math.abs(C_delta_latents * epsilon) delta_target = C_delta_latents * epsilon # delta_latents = tf.concat([tf.zeros([minibatch_size, D_global_size]), delta_target], axis=1) delta_var_latents = delta_target delta_latents = delta_var_latents + latents labels = training_set.get_random_labels_tf(minibatch_size) # Get variation direction in prior latent space. prior_latents = M.get_output_for(latents, is_training=True) prior_delta_latents = M.get_output_for(delta_latents, is_training=True) prior_delta_latents = autosummary('Loss/prior_delta_latents', prior_delta_latents) fake1_out = G.get_output_for(prior_latents, labels, is_training=True, randomize_noise=True, normalize_latents=False) fake2_out = G.get_output_for(prior_delta_latents, labels, is_training=True, randomize_noise=True, normalize_latents=False) fake1_out = autosummary('Loss/fake1_out', fake1_out) # Send to D fake_scores_out = D.get_output_for(fake1_out, labels, is_training=True) G_loss = tf.nn.softplus(-fake_scores_out) # -log(sigmoid(fake_scores_out)) # Send to I regress_out = I.get_output_for(fake1_out, fake2_out, is_training=True) I_loss = calc_vc_loss(C_delta_latents, regress_out, C_global_size, D_lambda, C_lambda) I_loss = autosummary('Loss/I_loss', I_loss) I_loss = I_loss + G_loss return I_loss, None
py
b40bfca0a3f0b420eb3d0047237a167e9c14d603
from __future__ import absolute_import, division, print_function import time from flytekit.sdk.tasks import python_task, inputs, outputs from flytekit.sdk.types import Types from flytekit.sdk.workflow import workflow_class from six.moves import range @inputs(value1_to_add=Types.Integer, value2_to_add=Types.Integer) @outputs(out=Types.Integer) @python_task(cpu_request="5", cpu_limit="5", memory_request="32G") def sum_and_print(workflow_parameters, value1_to_add, value2_to_add, out): for i in range(11*60): print("This is load test task. I have been running for {} seconds.".format(i)) time.sleep(1) summed = sum([value1_to_add, value2_to_add]) print("Summed up to: {}".format(summed)) out.set(summed) @workflow_class class FlytePythonLoadTestWorkflow(object): print_sum = [None] * 30 for i in range(0, 30): print_sum[i] = sum_and_print( value1_to_add=1, value2_to_add=1 )
py
b40bfd2aae6ef9b61da2f1118fa7f8f558e00c33
# %% [markdown] # La descripción y ejecución de este código está disponible en el stream: # # **Zorzal TV #1: Mapas en Python** # https://www.twitch.tv/videos/1057304044?t=0h7m7s # %% import matplotlib.pyplot as plt import seaborn as sns import numpy as np import pandas as pd import geopandas as gpd import contextily as cx from sklearn.preprocessing import minmax_scale from matplotlib import colorbar from matplotlib_scalebar.scalebar import ScaleBar # https://github.com/ppinard/matplotlib-scalebar/ get_ipython().run_line_magic('matplotlib', 'inline') get_ipython().run_line_magic('config', "InlineBackend.figure_format = 'retina'") sns.set(context='paper', font='Fira Sans Extra Condensed', style='ticks', palette='colorblind', font_scale=1.0) # %% from aves.data import DATA_PATH, eod, census from aves.features.utils import normalize_rows from aves.features.geo import to_point_geodataframe, clip_area_geodataframe from aves.features.weights import weighted_mean from aves.visualization.figures import figure_from_geodataframe, small_multiples_from_geodataframe, tighten_figure from aves.visualization.maps import dot_map, choropleth_map, bubble_map, heat_map, add_labels_from_dataframe, GeographicalNodeLink from aves.visualization.colors import color_legend, colormap_from_palette from aves.visualization.fdeb import FDB # %% zones = gpd.read_file(DATA_PATH / 'processed/scl_zonas_urbanas.json').set_index('ID') zones.head() # %% zones.plot() # %% viajes = eod.read_trips() print(len(viajes)) # descartamos sectores que no sean relevantes en los orígenes y destinos de los viajes viajes = viajes[(viajes['SectorOrigen'] != 'Exterior a RM') & (viajes['SectorDestino'] != 'Exterior a RM') & (viajes['SectorOrigen'] != 'Extensión Sur-Poniente') & (viajes['SectorDestino'] != 'Extensión Sur-Poniente') & pd.notnull(viajes['SectorOrigen']) & pd.notnull(viajes['SectorDestino']) # también descartamos viajes que hayan sido imputados en la encuesta & (viajes['Imputada'] == 0) # y finalmente descartamos viajes cuya distancia indique que son viajes cortísimos o bien demasiado largos para el tamaño de la ciudad & (viajes['DistManhattan'].between(500, 45000))] print(len(viajes)) # %% personas = eod.read_people() personas.head() # %% viajes_persona = viajes.merge(personas) viajes_persona.head() # %% viajes_persona['PesoLaboral'] = viajes_persona['FactorLaboralNormal'] * viajes_persona['Factor_LaboralNormal'] # %% viajes_persona = viajes_persona[pd.notnull(viajes_persona['PesoLaboral'])] len(viajes_persona) # %% print('{} viajes expandidos a {}'.format(len(viajes_persona), int(viajes_persona['PesoLaboral'].sum()))) # %% [markdown] # ## 1. ¿Cuál es la distribución geográfica de los viajes al trabajo desde el hogar de acuerdo al modo de transporte? # %% viajes_persona[['OrigenCoordX', 'OrigenCoordY']].head() # %% origenes_viajes = to_point_geodataframe(viajes_persona, 'OrigenCoordX', 'OrigenCoordY', crs='epsg:32719') origenes_viajes.head() # %% zones = zones.to_crs(origenes_viajes.crs) zones.plot() # %% fig, ax = figure_from_geodataframe(zones, height=6, remove_axes=True) zones.plot(ax=ax, color='#efefef', edgecolor='#abacab', linewidth=1) origenes_viajes.plot(ax=ax, markersize=1, marker='.', alpha=0.5) tighten_figure(fig) # %% # los parámetros lsuffix y rsuffix indican el sufijo a agregar a las columnas de cada tabla print(len(origenes_viajes)) origenes_urbanos = gpd.sjoin(origenes_viajes, zones, op='within', lsuffix='_l', rsuffix='_r') print(len(origenes_urbanos)) # %% fig, ax = figure_from_geodataframe(zones, height=6, remove_axes=True) zones.plot(ax=ax, color='#efefef', edgecolor='#abacab', linewidth=1) origenes_urbanos.plot(ax=ax, markersize=1, marker='.', alpha=0.5) tighten_figure(fig) # %% origenes_urbanos.ModoDifusion.value_counts(normalize=True) # %% origenes_a_graficar = origenes_urbanos[(origenes_urbanos.Proposito == 'Al trabajo') & (origenes_urbanos.ModoDifusion.isin(['Bip!', 'Auto', 'Caminata', 'Bicicleta']))] # %% fig, ax = figure_from_geodataframe(zones, height=6, remove_axes=True) zones.plot(ax=ax, color='#efefef', edgecolor='#abacab', linewidth=1) dot_map(ax, origenes_a_graficar, category='ModoDifusion', size=10, palette='Set3') tighten_figure(fig) # %% origenes_urbanos['PesoLaboral'].describe() # %% origenes_urbanos['PesoVisual'] = minmax_scale(origenes_urbanos['PesoLaboral'], (0.01, 1.0)) origenes_urbanos['PesoVisual'].describe() # %% fig, ax = figure_from_geodataframe(zones, height=6, remove_axes=True) zones.plot(ax=ax, color='#efefef', edgecolor='white', linewidth=1) bubble_map(ax, origenes_urbanos[(origenes_urbanos.Proposito == 'Al trabajo') & origenes_urbanos.ModoDifusion.isin(['Bip!', 'Auto', 'Caminata', 'Bicicleta'])], category='ModoDifusion', size='PesoVisual', scale=500, sort_categories=False, palette='husl', alpha=0.45, edge_color='none') tighten_figure(fig) # %% fig, axes = small_multiples_from_geodataframe(zones, 4, height=6, col_wrap=2, remove_axes=True) colors = sns.color_palette('cool', n_colors=4) # el método zip nos permite iterar sobre tres listas simultáneamente for ax, modo, color in zip(axes, ['Auto', 'Bip!', 'Caminata', 'Bicicleta'], colors): zones.plot(ax=ax, color='#efefef', edgecolor='#abacab', linewidth=0.5) ax.set_title(modo) origenes_a_graficar = origenes_urbanos[(origenes_urbanos.Proposito == 'Al trabajo') & (origenes_urbanos.ModoDifusion == modo)] bubble_map(ax, origenes_a_graficar, size='PesoVisual', scale=500, color=color, edge_color='none', alpha=0.45) tighten_figure(fig) # %% fig, ax = figure_from_geodataframe(zones, height=6, remove_axes=True) zones.plot(ax=ax, color='#efefef', edgecolor='white', linewidth=1) heat_map(ax, origenes_urbanos[origenes_urbanos.Proposito == 'Al trabajo'], weight_column='PesoLaboral', alpha=0.75, palette='inferno', n_levels=10, # área de influencia bandwidth=1000 ) tighten_figure(fig) # %% fig, axes = small_multiples_from_geodataframe(zones, 4, height=6, col_wrap=2, remove_axes=True) for ax, modo in zip(axes, ['Auto', 'Bip!', 'Caminata', 'Bicicleta']): zones.plot(ax=ax, color='#efefef', edgecolor='#abacab', linewidth=0.5) ax.set_title(modo) origenes_a_graficar = origenes_urbanos[(origenes_urbanos.Proposito == 'Al trabajo') & (origenes_urbanos.ModoDifusion == modo)] heat_map(ax, origenes_a_graficar, n_levels=10, weight_column='PesoLaboral', alpha=0.75, palette='inferno', # área de influencia bandwidth=1000, # no pintar áreas con valores muy bajos low_threshold=0.05 ) tighten_figure(fig) cax = fig.add_axes([0.25, -0.012, 0.5, 0.01]) color_legend(cax, colormap_from_palette('inferno', n_colors=10), remove_axes=True) cax.set_title('Magnitud relativa de los viajes, de menor a mayor', loc='center', fontsize=8) # %% [markdown] # ## 2. ¿Cuán lejos queda el trabajo de acuerdo al lugar de residencia? # %% viajes_trabajo = viajes_persona[(viajes_persona.Proposito == 'Al trabajo') & (pd.notnull(viajes_persona.PesoLaboral))] print(len(viajes_trabajo), viajes_trabajo.PesoLaboral.sum()) # %% viajes_trabajo['DistEuclidiana'].describe() # %% viajes_trabajo['DistEuclidiana'].mean(), weighted_mean(viajes_trabajo, 'DistEuclidiana', 'PesoLaboral') # %% distancia_zonas = (viajes_trabajo .groupby(['ZonaOrigen']) .apply(lambda x: weighted_mean(x, 'DistEuclidiana', 'PesoLaboral')) .rename('distancia_al_trabajo') ) distancia_zonas # %% distancia_zonas.plot(kind='kde') plt.xlim([0, distancia_zonas.max()]) plt.title('Distancia al Trabajo por Zonas') plt.xlabel('Distancia') plt.ylabel('Densidad (KDE)') sns.despine() # %% fig, ax = figure_from_geodataframe(zones, height=8, remove_axes=True) ax, cax = choropleth_map(ax, zones.join(distancia_zonas, how='inner'), 'distancia_al_trabajo', k=6, legend_type='hist', binning='fisher_jenks', cbar_location='lower center', cbar_height=0.4, cbar_width=6) cax.set_title('Distancia al Trabajo') tighten_figure(fig); # %% # %% comunas = census.read_census_map('comuna').to_crs(zones.crs) comunas.plot() # %% comunas_urbanas = comunas[comunas['COMUNA'].isin(zones['Com'].unique())].drop('NOM_COMUNA', axis=1).copy() comunas_urbanas['NombreComuna'] = comunas_urbanas['COMUNA'].map(dict(zip(zones['Com'], zones['Comuna']))) comunas_urbanas.plot() # %% bounding_box = zones.total_bounds bounding_box # %% comunas_urbanas = clip_area_geodataframe(comunas_urbanas, zones.total_bounds, buffer=500) comunas_urbanas.plot() # %% fig, ax = figure_from_geodataframe(zones, height=8, remove_axes=True) ax, cax = choropleth_map(ax, zones.join(distancia_zonas, how='inner'), 'distancia_al_trabajo', k=6, legend_type='hist', binning='quantiles', cbar_location='lower center', cbar_height=0.1, cbar_width=6, linewidth=0) comunas_urbanas.plot(ax=ax, facecolor='none', edgecolor='black', linewidth=0.5) cax.set_title('Distancia al Trabajo') # %% fig, ax = figure_from_geodataframe(zones, height=8, remove_axes=True) ax, cax = choropleth_map(ax, zones.join(distancia_zonas, how='inner'), 'distancia_al_trabajo', k=6, legend_type='colorbar', binning='quantiles', cmap='RdPu', cbar_location='lower center', cbar_height=0.1, cbar_width=6, linewidth=0, ) comunas_urbanas.plot(ax=ax, facecolor='none', edgecolor='black', linewidth=0.5) add_labels_from_dataframe(ax, comunas_urbanas, 'NombreComuna', font_size=9, outline_width=1) cax.set_title('Distancia al Trabajo') fig.tight_layout() # %% fig, ax = figure_from_geodataframe(zones, height=15, remove_axes=True) cx.add_basemap(ax, crs=zones.crs.to_string(), source="../data/processed/scl_toner_12.tif", interpolation='hanning', zorder=0) ax, cax = choropleth_map(ax, zones.join(distancia_zonas, how='inner'), 'distancia_al_trabajo', k=6, legend_type='colorbar', binning='quantiles', cmap='RdPu', cbar_location='center right', cbar_height=4, cbar_width=0.2, linewidth=0, cbar_orientation='vertical', alpha=0.8) cax.set_title('Distancia al Trabajo') ax.add_artist(ScaleBar(1, location='lower right', color='#abacab')) x, y, arrow_length = 0.95, 0.1, 0.05 ax.annotate('N', xy=(x, y), xytext=(x, y-arrow_length), arrowprops=dict(facecolor='#444444', width=5, headwidth=15), ha='center', va='center', fontsize=20, fontname='Fira Sans Extra Condensed', color='#444444', xycoords=ax.transAxes); # %% fig, axes = small_multiples_from_geodataframe(zones, 4, height=6, col_wrap=2, remove_axes=True) for ax, modo in zip(axes, ['Auto', 'Bip!', 'Caminata', 'Bicicleta']): #zones.plot(ax=ax, color='#efefef', edgecolor='#abacab', linewidth=0.5) ax.set_title(f'Viajes al trabajo en {modo}') cx.add_basemap(ax, crs=zones.crs.to_string(), source="../data/processed/scl_toner_12.tif", interpolation='hanning', zorder=0) origenes_a_graficar = origenes_urbanos[(origenes_urbanos.Proposito == 'Al trabajo') & (origenes_urbanos.ModoDifusion == modo)] heat_map(ax, origenes_a_graficar, n_levels=10, weight_column='PesoLaboral', alpha=0.75, palette='inferno', # área de influencia bandwidth=750, # no pintar áreas con valores muy bajos low_threshold=0.01, legend_type=None, return_heat=True ) fig.tight_layout() cax = fig.add_axes([0.25, -0.012, 0.5, 0.01]) cax.set_title('Magnitud relativa de los viajes, de menor a mayor', loc='center', fontsize=8) cax.set_axis_off() cb3 = colorbar.ColorbarBase(cax, cmap=colormap_from_palette('inferno', n_colors=10), alpha=0.75, #norm=norm, ticks=range(10), spacing='uniform', orientation='horizontal') # %% [markdown] # # 3. ¿Cómo se conecta la ciudad de acuerdo a las relaciones origen-destino? # %% matriz = (viajes_trabajo[(viajes_trabajo['ComunaOrigen'].isin(comunas_urbanas['NombreComuna'])) & (viajes_trabajo['ComunaDestino'].isin(comunas_urbanas['NombreComuna']))] .groupby(['ComunaOrigen', 'ComunaDestino']) .agg(n_viajes=('PesoLaboral', 'sum')) .reset_index() ) matriz.head() # %% fig, ax = plt.subplots(figsize=(12, 9)) sns.heatmap(matriz.set_index(['ComunaOrigen', 'ComunaDestino'])['n_viajes'].unstack(fill_value=0).pipe(normalize_rows), cmap='inferno_r', linewidth=1) # %% comunas_urbanas.head() # %% geonodelink = GeographicalNodeLink.from_edgelist_and_geodataframe( matriz[matriz['n_viajes'] > matriz['n_viajes'].quantile(0.25)], comunas_urbanas, source='ComunaOrigen', target='ComunaDestino', node_column='NombreComuna', weight='n_viajes') # %% fig, ax = figure_from_geodataframe(zones, height=6, set_limits=True, remove_axes=True) comunas_urbanas.plot(ax=ax, facecolor='none', edgecolor='#abacab', zorder=0) geonodelink.plot_nodes(ax, color='white', edgecolor='black', size=250, zorder=5, use_weights='in-degree', min_size=5) geonodelink.plot_weighted_edges(ax, palette='plasma', log_transform=False, weight_bins=4, min_linewidth=1.0, linewidth=4, min_alpha=0.5, alpha=0.95, with_arrows=True, arrow_shrink=3, arrow_scale=10, zorder=4) ax.set_title('Viajes al trabajo en Santiago (en días laborales, EOD 2012)'); # %% matriz_zonas = (viajes_trabajo[(viajes_trabajo['ZonaOrigen'] != viajes_trabajo['ZonaDestino']) & (viajes_trabajo['ZonaOrigen'].isin(zones.index)) & (viajes_trabajo['ZonaDestino'].isin(zones.index))] .groupby(['ComunaOrigen', 'ZonaOrigen', 'ZonaDestino']) .agg(n_viajes=('PesoLaboral', 'sum')) .sort_values('n_viajes', ascending=False) .assign(cumsum_viajes=lambda x: x['n_viajes'].cumsum()) .assign(cumsum_viajes=lambda x: x['cumsum_viajes'] / x['cumsum_viajes'].max()) .reset_index() ) matriz_zonas.head() # %% matriz_zonas['cumsum_viajes'].plot() # %% matriz_zonas = matriz_zonas[matriz_zonas['cumsum_viajes'] <= 0.5] matriz_zonas.shape # %% merged_zones = zones.reset_index().dissolve('ID') # %% zone_nodelink = GeographicalNodeLink.from_edgelist_and_geodataframe( matriz_zonas, merged_zones, source='ZonaOrigen', target='ZonaDestino', weight='n_viajes') # %% fig, ax = figure_from_geodataframe(zones, height=6, set_limits=True, remove_axes=True) zones.plot(ax=ax, facecolor='none', edgecolor='#abacab', zorder=0) comunas_urbanas.plot(ax=ax, facecolor='none', edgecolor='black', linewidth=0.5, zorder=0) zone_nodelink.plot_nodes(ax, color='white', edgecolor='black', size=300, zorder=5, use_weights='in-degree', min_size=3) zone_nodelink.plot_weighted_edges(ax, palette='plasma', log_transform=False, weight_bins=4, min_linewidth=1.0, linewidth=4, min_alpha=0.5, alpha=0.95, with_arrows=True, arrow_shrink=3, arrow_scale=10, zorder=4) ax.set_title('Viajes al trabajo en Santiago (en días laborales, EOD 2012)'); # %% bundled_zone_network = FDB(zone_nodelink, # más alto más resistencia K=1, # más alto más jiggly las líneas S=500, I=10, compatibility_threshold=0.6) # %% fig, ax = figure_from_geodataframe(zones, height=8, set_limits=True, remove_axes=True) zones.plot(ax=ax, facecolor='none', edgecolor='#abacab', zorder=0) comunas_urbanas.plot(ax=ax, facecolor='none', edgecolor='black', linewidth=0.5, zorder=0) zone_nodelink.plot_nodes(ax, color='white', edgecolor='black', size=250, zorder=5, use_weights='in-degree', min_size=5) zone_nodelink.plot_weighted_edges(ax, palette='plasma', log_transform=False, weight_bins=10, min_linewidth=0.5, linewidth=1.5, min_alpha=0.5, alpha=0.9, with_arrows=True, arrow_shrink=3, arrow_scale=10, zorder=4) # %% fig, ax = figure_from_geodataframe(zones, height=8, set_limits=True, remove_axes=True) cx.add_basemap(ax, crs=zones.crs.to_string(), source="../data/processed/scl_toner_12.tif", interpolation='hanning', zorder=0) zone_nodelink.plot_nodes(ax, color='white', edgecolor='black', size=250, zorder=5, use_weights='in-degree', min_size=5) zone_nodelink.plot_weighted_edges(ax, palette='plasma', log_transform=False, weight_bins=10, min_linewidth=0.5, linewidth=1.5, min_alpha=0.5, alpha=0.9, with_arrows=True, arrow_shrink=3, arrow_scale=10, zorder=4)
py
b40bfd36e5c3abd76869562b368e2330d74a9497
import os from django.test import TestCase from mock import patch class InheritanceTests(TestCase): @patch.dict(os.environ, clear=True, DJANGO_CONFIGURATION='Inheritance', DJANGO_SETTINGS_MODULE='tests.settings.single_inheritance') def test_inherited(self): from tests.settings import single_inheritance self.assertEqual( single_inheritance.ALLOWED_HOSTS, ['test'] ) @patch.dict(os.environ, clear=True, DJANGO_CONFIGURATION='Inheritance', DJANGO_SETTINGS_MODULE='tests.settings.multiple_inheritance') def test_inherited2(self): from tests.settings import multiple_inheritance self.assertEqual( multiple_inheritance.ALLOWED_HOSTS, ['test', 'test-test'] ) @patch.dict(os.environ, clear=True, DJANGO_CONFIGURATION='Inheritance', DJANGO_SETTINGS_MODULE='tests.settings.mixin_inheritance') def test_inherited3(self): from tests.settings import mixin_inheritance self.assertEqual( mixin_inheritance.ALLOWED_HOSTS, ['test1', 'test2', 'test3'] )
py
b40bfe1586b2223aa4cbbbed4c4029e7a2a6d0d7
#!/usr/bin/env python3 import numpy as np import matplotlib.pyplot as plt class SIF: def __init__(self, fname, width = 25, height = 6): with open('input', 'r') as f: self.data = [int(i) for i in f.read().strip()] self.width = width self.height = height self.data = np.asarray(self.data) self.layers = self.data.reshape(-1, height, width) def collapse(self): self.collapsed = np.zeros((self.height, self.width)).astype(int) - 1 for idx, v in np.ndenumerate(self.layers): l, h, w = idx if self.collapsed[(h, w)] == -1: # not filled yet if v != 2: self.collapsed[(h, w)] = v return self.collapsed if __name__ == '__main__': sif = SIF('input') # part 1 zero_min_layer = np.argmin((sif.layers.reshape(-1, sif.width*sif.height) == 0).sum(axis = 1)) l = sif.layers[zero_min_layer] print(np.sum(l == 1)*np.sum(l == 2)) # part 2 plt.imshow(sif.collapse()) plt.show()
py
b40c02bf34ed2d6e6c5d5932ab016b58f451040c
import socket from contextlib import closing import json from tempfile import NamedTemporaryFile from subprocess import Popen, PIPE import logging import zmq from aiozmq import create_zmq_stream import asyncio def find_free_port() -> int: with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock: sock.bind(('', 0)) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) return sock.getsockname()[1] async def test_kernel() -> None: transport = 'tcp' ip = '127.0.0.1' shell_port = find_free_port() control_port = find_free_port() stdin_port = find_free_port() iopub_port = find_free_port() heartbeat_port = find_free_port() configuration = { 'transport': transport, 'ip': ip, 'shell_port': shell_port, 'control_port': control_port, 'stdin_port': stdin_port, 'iopub_port': iopub_port, 'hb_port': heartbeat_port, 'key': 'a7d9f4f3-acad37f08d4fe05069a03422', 'signature_scheme': 'hmac-sha256' } configuration_json = json.dumps(configuration) with NamedTemporaryFile() as configuration_file: configuration_file.write(str.encode(configuration_json)) configuration_file.flush() with Popen(['/app/build/apps/rocketjoe_kernel/rocketjoe_kernel', '--jupyter_connection', configuration_file.name]) as rocketjoe: shell_stream = await create_zmq_stream( zmq.DEALER, connect=f'{transport}://{ip}:{shell_port}' ) control_stream = await create_zmq_stream( zmq.DEALER, connect=f'{transport}://{ip}:{control_port}' ) stdin_stream = await create_zmq_stream( zmq.DEALER, connect=f'{transport}://{ip}:{stdin_port}' ) iopub_stream = await create_zmq_stream( zmq.SUB, connect=f'{transport}://{ip}:{iopub_port}' ) iopub_stream.transport.subscribe(b'') heartbeat_stream = await create_zmq_stream( zmq.REQ, connect=f'{transport}://{ip}:{heartbeat_port}' ) rocketjoe.poll() if rocketjoe.returncode is None: #logging.info(await iopub_stream.read()) shell_stream.write([ b'<IDS|MSG>', b'bd4f43215c9d72a4cb53599fd054d5c4cc21d6d0a6654fe4fe5aa0767637500c', b'{"msg_id":"59435563b60d4158a5e96614bdcfb9f7_0","msg_type":"kernel_info_request","username":"username","session":"59435563b60d4158a5e96614bdcfb9f7","date":"2020-07-08T17:21:46.644570Z","version":"5.3"}', b'{}', b'{}', b'{}' ]) raw_datas = await shell_stream.read() data = [raw_data.decode('ascii') for raw_data in raw_datas] header = json.loads(data[2]) parent_header = json.loads(data[3]) metadata = json.loads(data[4]) content = json.loads(data[5]) for key in ['date', 'msg_id', 'session', 'username', 'version']: del header[key] del parent_header[key] del content['banner'] del content['language_info']['version'] assert header == {'msg_type': 'kernel_info_reply'} assert parent_header == {'msg_type': 'kernel_info_request'} assert metadata == {} assert content == { 'help_links': '', 'implementation': 'ipython', 'implementation_version': 'ipython', 'language_info': { 'codemirror_mode': { 'name': 'ipython', 'version': 3 }, 'file_extension': '.py', 'mimetype': 'text/x-python', 'name': 'python', 'nbconvert_exporter': 'python', 'pygments_lexer': 'ipython3' }, 'protocol_version': '5.3' } rocketjoe.kill() logging.basicConfig(level=logging.DEBUG) loop = asyncio.get_event_loop() loop.run_until_complete(test_kernel())
py
b40c03464195dd8b6ed89af9857a4b98d0e33046
# -*- coding: utf-8 -*- # Generated by Django 1.11.29 on 2020-04-29 09:45 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0003_post_content_html'), ] operations = [ migrations.AddField( model_name='post', name='is_md', field=models.BooleanField(default=False, verbose_name='markdown语法'), ), ]
py
b40c0463a6cbeeab09f195c82d8a9546420e3b4a
from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import ray def setup(*args): if not hasattr(setup, "is_initialized"): ray.init(num_workers=4, num_cpus=4) setup.is_initialized = True @ray.remote def sleep(x): time.sleep(x) class WaitSuite(object): timeout = 10 timer = time.time def time_wait_task(self): ray.wait([sleep.remote(0.1)]) def time_wait_many_tasks(self, num_returns): tasks = [sleep.remote(i / 5) for i in range(4)] ray.wait(tasks, num_returns=num_returns) time_wait_many_tasks.params = list(range(1, 4)) time_wait_many_tasks.param_names = ["num_returns"] def time_wait_timeout(self, timeout): ray.wait([sleep.remote(0.5)], timeout=timeout) time_wait_timeout.params = [200, 800] time_wait_timeout.param_names = ["timeout_ms"]
py
b40c046ef7fbef3d0c89b8173ca79c3dce7d0f0e
# Copyright (c) 2017 The Verde Developers. # Distributed under the terms of the BSD 3-Clause License. # SPDX-License-Identifier: BSD-3-Clause # # This code is part of the Fatiando a Terra project (https://www.fatiando.org) # """ Trend Estimation ================ Trend estimation and removal is a common operation, particularly when dealing with geophysical data. Moreover, some of the interpolation methods, like :class:`verde.Spline`, can struggle with long-wavelength trends in the data. The :class:`verde.Trend` class fits a 2D polynomial trend of arbitrary degree to the data and can be used to remove it. """ import matplotlib.pyplot as plt import cartopy.crs as ccrs import numpy as np import verde as vd ######################################################################################## # Our sample air temperature data from Texas has a clear trend from land to the ocean: data = vd.datasets.fetch_texas_wind() coordinates = (data.longitude, data.latitude) plt.figure(figsize=(8, 6)) ax = plt.axes(projection=ccrs.Mercator()) plt.scatter( data.longitude, data.latitude, c=data.air_temperature_c, s=100, cmap="plasma", transform=ccrs.PlateCarree(), ) plt.colorbar().set_label("Air temperature (C)") vd.datasets.setup_texas_wind_map(ax) plt.show() ######################################################################################## # We can estimate the polynomial coefficients for this trend: trend = vd.Trend(degree=1).fit(coordinates, data.air_temperature_c) print(trend.coef_) ######################################################################################## # More importantly, we can predict the trend values and remove them from our data: trend_values = trend.predict(coordinates) residuals = data.air_temperature_c - trend_values fig, axes = plt.subplots( 1, 2, figsize=(10, 6), subplot_kw=dict(projection=ccrs.Mercator()) ) ax = axes[0] ax.set_title("Trend") tmp = ax.scatter( data.longitude, data.latitude, c=trend_values, s=60, cmap="plasma", transform=ccrs.PlateCarree(), ) plt.colorbar(tmp, ax=ax, orientation="horizontal", pad=0.06) vd.datasets.setup_texas_wind_map(ax) ax = axes[1] ax.set_title("Residuals") maxabs = vd.maxabs(residuals) tmp = ax.scatter( data.longitude, data.latitude, c=residuals, s=60, cmap="bwr", vmin=-maxabs, vmax=maxabs, transform=ccrs.PlateCarree(), ) plt.colorbar(tmp, ax=ax, orientation="horizontal", pad=0.08) vd.datasets.setup_texas_wind_map(ax) plt.show() ######################################################################################## # The fitting, prediction, and residual calculation can all be done in a single step # using the :meth:`~verde.Trend.filter` method: # filter always outputs coordinates and weights as well, which we don't need and will # ignore here. __, res_filter, __ = vd.Trend(degree=1).filter(coordinates, data.air_temperature_c) print(np.allclose(res_filter, residuals)) ######################################################################################## # Additionally, :class:`verde.Trend` implements the :ref:`gridder interface <overview>` # and has the :meth:`~verde.Trend.grid` and :meth:`~verde.Trend.profile` methods.
py
b40c060034ba64b675213792e527f8695e747a03
from django.contrib.auth import get_user_model from django.core.exceptions import ValidationError as DjangoValidationError from django.http import HttpRequest from django.urls.exceptions import NoReverseMatch from django.utils.translation import gettext_lazy as _ from requests.exceptions import HTTPError from rest_framework import serializers from rest_framework.reverse import reverse try: from allauth.account import app_settings as allauth_settings from allauth.account.adapter import get_adapter from allauth.account.utils import setup_user_email from allauth.socialaccount.helpers import complete_social_login from allauth.socialaccount.models import SocialAccount from allauth.socialaccount.providers.base import AuthProcess from allauth.utils import email_address_exists, get_username_max_length except ImportError: raise ImportError('allauth needs to be added to INSTALLED_APPS.') class SocialAccountSerializer(serializers.ModelSerializer): """ serialize allauth SocialAccounts for use with a REST API """ class Meta: model = SocialAccount fields = ( 'id', 'provider', 'uid', 'last_login', 'date_joined', ) class SocialLoginSerializer(serializers.Serializer): access_token = serializers.CharField(required=False, allow_blank=True) code = serializers.CharField(required=False, allow_blank=True) id_token = serializers.CharField(required=False, allow_blank=True) def _get_request(self): request = self.context.get('request') if not isinstance(request, HttpRequest): request = request._request return request def get_social_login(self, adapter, app, token, response): """ :param adapter: allauth.socialaccount Adapter subclass. Usually OAuthAdapter or Auth2Adapter :param app: `allauth.socialaccount.SocialApp` instance :param token: `allauth.socialaccount.SocialToken` instance :param response: Provider's response for OAuth1. Not used in the :returns: A populated instance of the `allauth.socialaccount.SocialLoginView` instance """ request = self._get_request() social_login = adapter.complete_login(request, app, token, response=response) social_login.token = token return social_login def set_callback_url(self, view, adapter_class): # first set url from view self.callback_url = getattr(view, 'callback_url', None) if not self.callback_url: # auto generate base on adapter and request try: self.callback_url = reverse( viewname=adapter_class.provider_id + '_callback', request=self._get_request(), ) except NoReverseMatch: raise serializers.ValidationError( _('Define callback_url in view'), ) def validate(self, attrs): view = self.context.get('view') request = self._get_request() if not view: raise serializers.ValidationError( _('View is not defined, pass it as a context variable'), ) adapter_class = getattr(view, 'adapter_class', None) if not adapter_class: raise serializers.ValidationError(_('Define adapter_class in view')) adapter = adapter_class(request) app = adapter.get_provider().get_app(request) # More info on code vs access_token # http://stackoverflow.com/questions/8666316/facebook-oauth-2-0-code-and-token access_token = attrs.get('access_token') code = attrs.get('code') # Case 1: We received the access_token if access_token: tokens_to_parse = {'access_token': access_token} token = access_token # For sign in with apple id_token = attrs.get('id_token') if id_token: tokens_to_parse['id_token'] = id_token # Case 2: We received the authorization code elif code: self.set_callback_url(view=view, adapter_class=adapter_class) self.client_class = getattr(view, 'client_class', None) if not self.client_class: raise serializers.ValidationError( _('Define client_class in view'), ) provider = adapter.get_provider() scope = provider.get_scope(request) client = self.client_class( request, app.client_id, app.secret, adapter.access_token_method, adapter.access_token_url, self.callback_url, scope, scope_delimiter=adapter.scope_delimiter, headers=adapter.headers, basic_auth=adapter.basic_auth, ) token = client.get_access_token(code) access_token = token['access_token'] tokens_to_parse = {'access_token': access_token} # If available we add additional data to the dictionary for key in ['refresh_token', 'id_token', adapter.expires_in_key]: if key in token: tokens_to_parse[key] = token[key] else: raise serializers.ValidationError( _('Incorrect input. access_token or code is required.'), ) social_token = adapter.parse_token(tokens_to_parse) social_token.app = app try: login = self.get_social_login(adapter, app, social_token, token) complete_social_login(request, login) except HTTPError: raise serializers.ValidationError(_('Incorrect value')) if not login.is_existing: # We have an account already signed up in a different flow # with the same email address: raise an exception. # This needs to be handled in the frontend. We can not just # link up the accounts due to security constraints if allauth_settings.UNIQUE_EMAIL: # Do we have an account already with this email address? account_exists = get_user_model().objects.filter( email=login.user.email, ).exists() if account_exists: raise serializers.ValidationError( _('User is already registered with this e-mail address.'), ) login.lookup() login.save(request, connect=True) attrs['user'] = login.account.user return attrs class SocialConnectMixin: def get_social_login(self, *args, **kwargs): """ Set the social login process state to connect rather than login Refer to the implementation of get_social_login in base class and to the allauth.socialaccount.helpers module complete_social_login function. """ social_login = super().get_social_login(*args, **kwargs) social_login.state['process'] = AuthProcess.CONNECT return social_login class SocialConnectSerializer(SocialConnectMixin, SocialLoginSerializer): pass class RegisterSerializer(serializers.Serializer): username = serializers.CharField( max_length=get_username_max_length(), min_length=allauth_settings.USERNAME_MIN_LENGTH, required=allauth_settings.USERNAME_REQUIRED, ) email = serializers.EmailField(required=allauth_settings.EMAIL_REQUIRED) password1 = serializers.CharField(write_only=True) password2 = serializers.CharField(write_only=True) def validate_username(self, username): username = get_adapter().clean_username(username) return username def validate_email(self, email): email = get_adapter().clean_email(email) if allauth_settings.UNIQUE_EMAIL: if email and email_address_exists(email): raise serializers.ValidationError( _('A user is already registered with this e-mail address.'), ) return email def validate_password1(self, password): return get_adapter().clean_password(password) def validate(self, data): if data['password1'] != data['password2']: raise serializers.ValidationError(_("The two password fields didn't match.")) return data def custom_signup(self, request, user): pass def get_cleaned_data(self): return { 'username': self.validated_data.get('username', ''), 'password1': self.validated_data.get('password1', ''), 'email': self.validated_data.get('email', ''), } def save(self, request): adapter = get_adapter() user = adapter.new_user(request) self.cleaned_data = self.get_cleaned_data() user = adapter.save_user(request, user, self, commit=False) if "password1" in self.cleaned_data: try: adapter.clean_password(self.cleaned_data['password1'], user=user) except DjangoValidationError as exc: raise serializers.ValidationError( detail=serializers.as_serializer_error(exc) ) user.save() self.custom_signup(request, user) setup_user_email(request, user, []) return user class VerifyEmailSerializer(serializers.Serializer): key = serializers.CharField() class ResendEmailVerificationSerializer(serializers.Serializer): email = serializers.EmailField(required=allauth_settings.EMAIL_REQUIRED)
bzl
b40c076204049585d94e0be35126acca6f0f12ee
# Copyright 2017 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Rule for building a Container image. In addition to the base container_image rule, we expose its constituents (attr, outputs, implementation) directly so that others may expose a more specialized build leveraging the same implementation. """ load("@bazel_skylib//lib:dicts.bzl", "dicts") load( "@bazel_tools//tools/build_defs/hash:hash.bzl", _hash_tools = "tools", _sha256 = "sha256", ) load( "@io_bazel_rules_docker//container:providers.bzl", "ImageInfo", "LayerInfo", ) load( "//container:layer.bzl", _layer = "layer", ) load( "//container:layer_tools.bzl", _assemble_image = "assemble", _gen_img_args = "generate_args_for_image", _get_layers = "get_from_target", _incr_load = "incremental_load", _layer_tools = "tools", ) load( "//skylib:filetype.bzl", container_filetype = "container", ) load( "//skylib:label.bzl", _string_to_label = "string_to_label", ) load( "//skylib:path.bzl", _join_path = "join", ) def _get_base_config(ctx, name, base): if ctx.files.base or base: # The base is the first layer in container_parts if provided. layer = _get_layers(ctx, name, ctx.attr.base, base) return layer.get("config") return None def _get_base_manifest(ctx, name, base): if ctx.files.base or base: # The base is the first layer in container_parts if provided. layer = _get_layers(ctx, name, ctx.attr.base, base) return layer.get("manifest") return None def _add_create_image_config_args( ctx, args, inputs, manifest, config, labels, entrypoint, cmd, null_cmd, null_entrypoint, creation_time, env, workdir, layer_names, base_config, base_manifest, architecture, operating_system, os_version): """ Add args for the create_image_config Go binary. """ args.add("-outputConfig", config) args.add("-outputManifest", manifest) if null_entrypoint: args.add("-nullEntryPoint") if null_cmd: args.add("-nullCmd") args.add_all(entrypoint, before_each = "-entrypoint") args.add_all(cmd, before_each = "-command") args.add_all(ctx.attr.ports, before_each = "-ports") args.add_all(ctx.attr.volumes, before_each = "-volumes") stamp = None # If base image is having enabled stamping then it is propagated # to child images. if ctx.attr.stamp == True: stamp = ctx.attr.stamp elif ctx.attr.base and ImageInfo in ctx.attr.base: stamp = ctx.attr.base[ImageInfo].stamp if creation_time: args.add("-creationTime", creation_time) elif stamp: # If stamping is enabled, and the creation_time is not manually defined, # default to '{BUILD_TIMESTAMP}'. args.add("-creationTime", "{BUILD_TIMESTAMP}") for key, value in labels.items(): args.add("-labels", "{}={}".format(key, value)) for key, value in env.items(): args.add("-env", "%s" % "=".join([ ctx.expand_make_variables("env", key, {}), ctx.expand_make_variables("env", value, {}), ])) if ctx.attr.user: args.add("-user", ctx.attr.user) if workdir: args.add("-workdir", workdir) inputs += layer_names args.add_all(layer_names, before_each = "-layerDigestFile", format_each = "@%s") if ctx.attr.label_files: inputs += ctx.files.label_files if base_config: args.add("-baseConfig", base_config) inputs.append(base_config) if base_manifest: args.add("-baseManifest", base_manifest) inputs.append(base_manifest) if architecture: args.add("-architecture", architecture) if operating_system: args.add("-operatingSystem", operating_system) if os_version: args.add("-osVersion", os_version) if stamp: stamp_inputs = [ctx.info_file, ctx.version_file] args.add_all(stamp_inputs, before_each = "-stampInfoFile") inputs += stamp_inputs if ctx.attr.launcher_args and not ctx.attr.launcher: fail("launcher_args does nothing when launcher is not specified.", attr = "launcher_args") if ctx.attr.launcher: args.add("-entrypointPrefix", ctx.file.launcher.basename, format = "/%s") args.add_all(ctx.attr.launcher_args, before_each = "-entrypointPrefix") def _format_legacy_label(t): return ("--labels=%s=%s" % (t[0], t[1])) def _image_config( ctx, name, layer_names, entrypoint = None, cmd = None, creation_time = None, env = None, base_config = None, base_manifest = None, architecture = None, operating_system = None, os_version = None, layer_name = None, workdir = None, null_entrypoint = False, null_cmd = False): """Create the configuration for a new container image.""" config = ctx.actions.declare_file(name + "." + layer_name + ".config") manifest = ctx.actions.declare_file(name + "." + layer_name + ".manifest") label_file_dict = _string_to_label( ctx.files.label_files, ctx.attr.label_file_strings, ) labels = dict() for label in ctx.attr.labels: fname = ctx.attr.labels[label] if fname[0] == "@": labels[label] = "@" + label_file_dict[fname[1:]].path else: labels[label] = fname args = ctx.actions.args() inputs = [] executable = None _add_create_image_config_args( ctx, args, inputs, manifest, config, labels, entrypoint, cmd, null_cmd, null_entrypoint, creation_time, env, workdir, layer_names, base_config, base_manifest, architecture, operating_system, os_version, ) ctx.actions.run( executable = ctx.executable.create_image_config, arguments = [args], inputs = inputs, outputs = [config, manifest], use_default_shell_env = True, mnemonic = "ImageConfig", ) return config, _sha256(ctx, config), manifest, _sha256(ctx, manifest) def _repository_name(ctx): """Compute the repository name for the current rule.""" if ctx.attr.legacy_repository_naming: # Legacy behavior, off by default. return _join_path(ctx.attr.repository, ctx.label.package.replace("/", "_")) # Newer Docker clients support multi-level names, which are a part of # the v2 registry specification. return _join_path(ctx.attr.repository, ctx.label.package) def _assemble_image_digest(ctx, name, image, image_tarball, output_digest): img_args, inputs = _gen_img_args(ctx, image) args = ctx.actions.args() args.add_all(img_args) args.add("--dst", output_digest) args.add("--format=Docker") ctx.actions.run( outputs = [output_digest], inputs = inputs, tools = ([image["legacy"]] if image.get("legacy") else []), executable = ctx.executable._digester, arguments = [args], mnemonic = "ImageDigest", progress_message = "Extracting image digest of %s" % image_tarball.short_path, ) def _impl( ctx, name = None, base = None, files = None, file_map = None, empty_files = None, empty_dirs = None, directory = None, entrypoint = None, cmd = None, creation_time = None, symlinks = None, env = None, layers = None, compression = None, compression_options = None, experimental_tarball_format = None, debs = None, tars = None, architecture = None, operating_system = None, os_version = None, output_executable = None, output_tarball = None, output_config = None, output_config_digest = None, output_digest = None, output_layer = None, workdir = None, null_cmd = None, null_entrypoint = None): """Implementation for the container_image rule. You can write a customized container_image rule by writing something like: load( "@io_bazel_rules_docker//container:container.bzl", _container="container", ) def _impl(ctx): ... return _container.image.implementation(ctx, ... kwarg overrides ...) _foo_image = rule( attrs = _container.image.attrs + { # My attributes, or overrides of _container.image.attrs defaults. ... }, executable = True, outputs = _container.image.outputs, implementation = _impl, ) Args: ctx: The bazel rule context name: str, overrides ctx.label.name or ctx.attr.name base: File, overrides ctx.attr.base and ctx.files.base[0] files: File list, overrides ctx.files.files file_map: Dict[str, File], defaults to {} empty_files: str list, overrides ctx.attr.empty_files empty_dirs: Dict[str, str], overrides ctx.attr.empty_dirs directory: str, overrides ctx.attr.directory entrypoint: str List, overrides ctx.attr.entrypoint cmd: str List, overrides ctx.attr.cmd creation_time: str, overrides ctx.attr.creation_time symlinks: str Dict, overrides ctx.attr.symlinks env: str Dict, overrides ctx.attr.env layers: label List, overrides ctx.attr.layers compression: str, overrides ctx.attr.compression compression_options: str list, overrides ctx.attr.compression_options experimental_tarball_format: str, overrides ctx.attr.experimental_tarball_format debs: File list, overrides ctx.files.debs tars: File list, overrides ctx.files.tars architecture: str, overrides ctx.attr.architecture operating_system: Operating system to target (e.g. linux, windows) os_version: Operating system version to target output_executable: File to use as output for script to load docker image output_tarball: File, overrides ctx.outputs.out output_config: File, overrides ctx.outputs.config output_config_digest: File, overrides ctx.outputs.config_digest output_digest: File, overrides ctx.outputs.digest output_layer: File, overrides ctx.outputs.layer workdir: str, overrides ctx.attr.workdir null_cmd: bool, overrides ctx.attr.null_cmd null_entrypoint: bool, overrides ctx.attr.null_entrypoint """ name = name or ctx.label.name entrypoint = entrypoint or ctx.attr.entrypoint cmd = cmd or ctx.attr.cmd architecture = architecture or ctx.attr.architecture compression = compression or ctx.attr.compression compression_options = compression_options or ctx.attr.compression_options experimental_tarball_format = experimental_tarball_format or ctx.attr.experimental_tarball_format operating_system = operating_system or ctx.attr.operating_system os_version = os_version or ctx.attr.os_version creation_time = creation_time or ctx.attr.creation_time build_executable = output_executable or ctx.outputs.build_script output_tarball = output_tarball or ctx.outputs.out output_digest = output_digest or ctx.outputs.digest output_config = output_config or ctx.outputs.config output_config_digest = output_config_digest or ctx.outputs.config_digest output_layer = output_layer or ctx.outputs.layer build_script = ctx.outputs.build_script null_cmd = null_cmd or ctx.attr.null_cmd null_entrypoint = null_entrypoint or ctx.attr.null_entrypoint # If this target specifies docker_run_flags, they are always used. # Fall back to the base image's run flags if present, otherwise use the default value. # # We do not use the default argument of attrs.string() in order to distinguish between # an image using the default and an image intentionally overriding the base's run flags. # Since this is a string attribute, the default value is the empty string. if ctx.attr.docker_run_flags != "": docker_run_flags = ctx.attr.docker_run_flags elif ctx.attr.base and ImageInfo in ctx.attr.base: docker_run_flags = ctx.attr.base[ImageInfo].docker_run_flags else: # Run the container using host networking, so that the service is # available to the developer without having to poke around with # docker inspect. docker_run_flags = "-i --rm --network=host" if ctx.attr.launcher: if not file_map: file_map = {} file_map["/" + ctx.file.launcher.basename] = ctx.file.launcher # composite a layer from the container_image rule attrs, image_layer = _layer.implementation( ctx = ctx, name = name, files = files, file_map = file_map, empty_files = empty_files, empty_dirs = empty_dirs, directory = directory, symlinks = symlinks, compression = compression, compression_options = compression_options, debs = debs, tars = tars, env = env, operating_system = operating_system, output_layer = output_layer, ) layer_providers = layers or ctx.attr.layers layers = [provider[LayerInfo] for provider in layer_providers] + image_layer # Get the layers and shas from our base. # These are ordered as they'd appear in the v2.2 config, # so they grow at the end. parent_parts = _get_layers(ctx, name, ctx.attr.base, base) zipped_layers = parent_parts.get("zipped_layer", []) + [layer.zipped_layer for layer in layers] shas = parent_parts.get("blobsum", []) + [layer.blob_sum for layer in layers] unzipped_layers = parent_parts.get("unzipped_layer", []) + [layer.unzipped_layer for layer in layers] layer_diff_ids = [layer.diff_id for layer in layers] diff_ids = parent_parts.get("diff_id", []) + layer_diff_ids new_files = [f for f in file_map or []] new_emptyfiles = empty_files or [] new_symlinks = [f for f in symlinks or []] parent_transitive_files = parent_parts.get("transitive_files", depset()) transitive_files = depset(new_files + new_emptyfiles + new_symlinks, transitive = [parent_transitive_files]) # Get the config for the base layer config_file = _get_base_config(ctx, name, base) config_digest = None # Get the manifest for the base layer manifest_file = _get_base_manifest(ctx, name, base) manifest_digest = None # Generate the new config layer by layer, using the attributes specified and the diff_id for i, layer in enumerate(layers): config_file, config_digest, manifest_file, manifest_digest = _image_config( ctx, name = name, layer_names = [layer_diff_ids[i]], entrypoint = entrypoint, cmd = cmd, creation_time = creation_time, env = layer.env, base_config = config_file, base_manifest = manifest_file, architecture = architecture, operating_system = operating_system, os_version = os_version, layer_name = str(i), workdir = workdir or ctx.attr.workdir, null_entrypoint = null_entrypoint, null_cmd = null_cmd, ) # Construct a temporary name based on the build target. tag_name = "{}:{}".format(_repository_name(ctx), name) # These are the constituent parts of the Container image, which each # rule in the chain must preserve. container_parts = { # A list of paths to the layer digests. "blobsum": shas, # The path to the v2.2 configuration file. "config": config_file, "config_digest": config_digest, # A list of paths to the layer diff_ids. "diff_id": diff_ids, # The File containing digest of the image. "digest": output_digest, # At the root of the chain, we support deriving from a tarball # base image. "legacy": parent_parts.get("legacy"), # The path to the v2.2 manifest file. "manifest": manifest_file, "manifest_digest": manifest_digest, # Keep track of all files/emptyfiles/symlinks that we have already added to the image layers. "transitive_files": transitive_files, # A list of paths to the layer .tar files "unzipped_layer": unzipped_layers, # A list of paths to the layer .tar.gz files "zipped_layer": zipped_layers, } # We support incrementally loading or assembling this single image # with a temporary name given by its build rule. images = { tag_name: container_parts, } _incr_load( ctx, images, build_executable, run = not ctx.attr.legacy_run_behavior, run_flags = docker_run_flags, ) _assemble_image( ctx, images, output_tarball, experimental_tarball_format, ) _assemble_image_digest(ctx, name, container_parts, output_tarball, output_digest) # Copy config file and its sha file for usage in tests ctx.actions.run_shell( outputs = [output_config], inputs = [config_file], command = "cp %s %s" % (config_file.path, output_config.path), ) ctx.actions.run_shell( outputs = [output_config_digest], inputs = [config_digest], command = "cp %s %s" % (config_digest.path, output_config_digest.path), ) runfiles = ctx.runfiles( files = unzipped_layers + diff_ids + [config_file, config_digest, output_config_digest] + ([container_parts["legacy"]] if container_parts["legacy"] else []), ) # Stamp attribute needs to be propagated between definitions to enhance actions # with ability to determine properly whether root image has activated stamping. # # This covers the following example case: # container_image( # name = “base_image”, # base = “@base//image”, # stamp = True, # ) # # lang_image( # base = “:base_image”, # ) stamp = None if ctx.attr.stamp: stamp = ctx.attr.stamp elif ctx.attr.base and ImageInfo in ctx.attr.base: stamp = ctx.attr.base[ImageInfo].stamp return [ ImageInfo( container_parts = container_parts, legacy_run_behavior = ctx.attr.legacy_run_behavior, docker_run_flags = docker_run_flags, stamp = stamp, ), DefaultInfo( executable = build_executable, files = depset([output_layer]), runfiles = runfiles, ), coverage_common.instrumented_files_info( ctx, dependency_attributes = ["files"], ), ] _attrs = dicts.add(_layer.attrs, { "architecture": attr.string( doc = "The desired CPU architecture to be used as label in the container image.", default = "amd64", ), "base": attr.label( allow_files = container_filetype, doc = "The base layers on top of which to overlay this layer, equivalent to FROM.", ), "cmd": attr.string_list( doc = """List of commands to execute in the image. See https://docs.docker.com/engine/reference/builder/#cmd The behavior between using `""` and `[]` may differ. Please see [#1448](https://github.com/bazelbuild/rules_docker/issues/1448) for more details. Set `cmd` to `None`, `[]` or `""` will set the `Cmd` of the image to be `null`. This field supports stamp variables.""", ), "compression": attr.string( default = "gzip", doc = """Compression method for image layer. Currently only gzip is supported. This affects the compressed layer, which is by the `container_push` rule. It doesn't affect the layers specified by the `layers` attribute.""", ), "compression_options": attr.string_list( doc = """Command-line options for the compression tool. Possible values depend on `compression` method. This affects the compressed layer, which is used by the `container_push` rule. It doesn't affect the layers specified by the `layers` attribute.""", ), "create_image_config": attr.label( default = Label("//container/go/cmd/create_image_config:create_image_config"), cfg = "host", executable = True, allow_files = True, ), "creation_time": attr.string( doc = """The image's creation timestamp. Acceptable formats: Integer or floating point seconds since Unix Epoch, RFC 3339 date/time. This field supports stamp variables. If not set, defaults to {BUILD_TIMESTAMP} when stamp = True, otherwise 0""", ), "docker_run_flags": attr.string( doc = """Optional flags to use with `docker run` command. Only used when `legacy_run_behavior` is set to `False`.""", ), "entrypoint": attr.string_list( doc = """List of entrypoints to add in the image. See https://docs.docker.com/engine/reference/builder/#entrypoint Set `entrypoint` to `None`, `[]` or `""` will set the `Entrypoint` of the image to be `null`. The behavior between using `""` and `[]` may differ. Please see [#1448](https://github.com/bazelbuild/rules_docker/issues/1448) for more details. This field supports stamp variables.""", ), "experimental_tarball_format": attr.string( values = [ "legacy", "compressed", ], default = "legacy", doc = ("The tarball format to use when producing an image .tar file. " + "Defaults to \"legacy\", which contains uncompressed layers. " + "If set to \"compressed\", the resulting tarball will contain " + "compressed layers, but is only loadable by newer versions of " + "docker. This is an experimental attribute, which is subject " + "to change or removal: do not depend on its exact behavior."), ), "label_file_strings": attr.string_list(), # Implicit/Undocumented dependencies. "label_files": attr.label_list( allow_files = True, ), "labels": attr.string_dict( doc = """Dictionary from custom metadata names to their values. See https://docs.docker.com/engine/reference/builder/#label You can also put a file name prefixed by '@' as a value. Then the value is replaced with the contents of the file. Example: labels = { "com.example.foo": "bar", "com.example.baz": "@metadata.json", ... }, The values of this field support stamp variables.""", ), "launcher": attr.label( allow_single_file = True, doc = """If present, prefix the image's ENTRYPOINT with this file. Note that the launcher should be a container-compatible (OS & Arch) single executable file without any runtime dependencies (as none of its runfiles will be included in the image).""", ), "launcher_args": attr.string_list( default = [], doc = """Optional arguments for the `launcher` attribute. Only valid when `launcher` is specified.""", ), "layers": attr.label_list( doc = """List of `container_layer` targets. The data from each `container_layer` will be part of container image, and the environment variable will be available in the image as well.""", providers = [LayerInfo], ), "legacy_repository_naming": attr.bool( default = False, doc = """Whether to use the legacy strategy for setting the repository name embedded in the resulting tarball. e.g. `bazel/{target.replace('/', '_')}` vs. `bazel/{target}`""", ), "legacy_run_behavior": attr.bool( # TODO(mattmoor): Default this to False. default = True, doc = ("If set to False, `bazel run` will directly invoke `docker run` " + "with flags specified in the `docker_run_flags` attribute. " + "Note that it defaults to False when using <lang>_image rules."), ), # null_cmd and null_entrypoint are hidden attributes from users. # They are needed because specifying cmd or entrypoint as {None, [] or ""} # and not specifying them at all in the container_image rule would both make # ctx.attr.cmd or ctx.attr.entrypoint to be []. # We need these flags to distinguish them. "null_cmd": attr.bool(default = False), "null_entrypoint": attr.bool(default = False), "os_version": attr.string( doc = "The desired OS version to be used in the container image config.", ), # Starlark doesn't support int_list... "ports": attr.string_list( doc = """List of ports to expose. See https://docs.docker.com/engine/reference/builder/#expose""", ), "repository": attr.string( default = "bazel", doc = """The repository for the default tag for the image. Images generated by `container_image` are tagged by default to `bazel/package_name:target` for a `container_image` target at `//package/name:target`. Setting this attribute to `gcr.io/dummy` would set the default tag to `gcr.io/dummy/package_name:target`.""", ), "stamp": attr.bool( default = False, doc = """If true, enable use of workspace status variables (e.g. `BUILD_USER`, `BUILD_EMBED_LABEL`, and custom values set using `--workspace_status_command`) in tags. These fields are specified in attributes using Python format syntax, e.g. `foo{BUILD_USER}bar`.""", ), "user": attr.string( doc = """The user that the image should run as. See https://docs.docker.com/engine/reference/builder/#user Because building the image never happens inside a Docker container, this user does not affect the other actions (e.g., adding files). This field supports stamp variables.""", ), "volumes": attr.string_list( doc = """List of volumes to mount. See https://docs.docker.com/engine/reference/builder/#volumes""", ), "workdir": attr.string( doc = """Initial working directory when running the Docker image. See https://docs.docker.com/engine/reference/builder/#workdir Because building the image never happens inside a Docker container, this working directory does not affect the other actions (e.g., adding files). This field supports stamp variables.""", ), "_digester": attr.label( default = "//container/go/cmd/digester", cfg = "host", executable = True, ), }, _hash_tools, _layer_tools) _outputs = dict(_layer.outputs) _outputs["out"] = "%{name}.tar" _outputs["digest"] = "%{name}.digest" _outputs["config"] = "%{name}.json" _outputs["config_digest"] = "%{name}.json.sha256" _outputs["build_script"] = "%{name}.executable" image = struct( attrs = _attrs, outputs = _outputs, implementation = _impl, ) container_image_ = rule( attrs = _attrs, doc = "Called by the `container_image` macro with **kwargs, see below", executable = True, outputs = _outputs, toolchains = ["@io_bazel_rules_docker//toolchains/docker:toolchain_type"], implementation = _impl, ) # This validates the two forms of value accepted by # ENTRYPOINT and CMD, turning them into a canonical # python list form. # # The Dockerfile construct: # ENTRYPOINT "/foo" for Linux: # Results in: # "Entrypoint": [ # "/bin/sh", # "-c", # "\"/foo\"" # ], # ENTRYPOINT "foo" for Windows: # Results in: # "Entrypoint": [ # "%WinDir%\system32\cmd.exe", # "/c", # "\"foo\"" # ], # Whereas: # ENTRYPOINT ["/foo", "a"] # Results in: # "Entrypoint": [ # "/foo", # "a" # ], # NOTE: prefacing a command with 'exec' just ends up with the former def _validate_command(name, argument, operating_system): if type(argument) == type(""): if (operating_system == "windows"): return ["%WinDir%\\system32\\cmd.exe", "/c", argument] else: return ["/bin/sh", "-c", argument] elif type(argument) == type([]): return argument elif argument: fail("The %s attribute must be a string or list, if specified." % name) else: return None def container_image(**kwargs): """Package a docker image. Produces a new container image tarball compatible with 'docker load', which is a single additional layer atop 'base'. The goal is to have relatively complete support for building container image, from the Dockerfile spec. For more information see the 'Config' section of the image specification: https://github.com/opencontainers/image-spec/blob/v0.2.0/serialization.md Only 'name' is required. All other fields have sane defaults. container_image( name="...", visibility="...", # The base layers on top of which to overlay this layer, # equivalent to FROM. base="//another/build:rule", # The base directory of the files, defaulted to # the package of the input. # All files structure relatively to that path will be preserved. # A leading '/' mean the workspace root and this path is relative # to the current package by default. data_path="...", # The directory in which to expand the specified files, # defaulting to '/'. # Only makes sense accompanying one of files/tars/debs. directory="...", # The set of archives to expand, or packages to install # within the chroot of this layer files=[...], tars=[...], debs=[...], # The set of symlinks to create within a given layer. symlinks = { "/path/to/link": "/path/to/target", ... }, # Other layers built from container_layer rule layers = [":c-lang-layer", ":java-lang-layer", ...] # https://docs.docker.com/engine/reference/builder/#entrypoint entrypoint="...", or entrypoint=[...], -- exec form Set entrypoint to None, [] or "" will set the Entrypoint of the image to be null. # https://docs.docker.com/engine/reference/builder/#cmd cmd="...", or cmd=[...], -- exec form Set cmd to None, [] or "" will set the Cmd of the image to be null. # https://docs.docker.com/engine/reference/builder/#expose ports=[...], # https://docs.docker.com/engine/reference/builder/#user # NOTE: the normal directive affects subsequent RUN, CMD, # and ENTRYPOINT user="...", # https://docs.docker.com/engine/reference/builder/#volume volumes=[...], # https://docs.docker.com/engine/reference/builder/#workdir # NOTE: the normal directive affects subsequent RUN, CMD, # ENTRYPOINT, ADD, and COPY, but this attribute only affects # the entry point. workdir="...", # https://docs.docker.com/engine/reference/builder/#env env = { "var1": "val1", "var2": "val2", ... "varN": "valN", }, # Compression method and command-line options. compression = "gzip", compression_options = ["--fast"], experimental_tarball_format = "compressed", ) This rule generates a sequence of genrules the last of which is named 'name', so the dependency graph works out properly. The output of this rule is a tarball compatible with 'docker save/load' with the structure: {layer-name}: layer.tar VERSION json {image-config-sha256}.json ... manifest.json repositories top # an implementation detail of our rules, not consumed by Docker. This rule appends a single new layer to the tarball of this form provided via the 'base' parameter. The images produced by this rule are always named `bazel/tmp:latest` when loaded (an internal detail). The expectation is that the images produced by these rules will be uploaded using the `docker_push` rule below. The implicit output targets are: - `[name].tar`: A full Docker image containing all the layers, identical to what `docker save` would return. This is only generated on demand. - `[name].digest`: An image digest that can be used to refer to that image. Unlike tags, digest references are immutable i.e. always refer to the same content. - `[name]-layer.tar`: A Docker image containing only the layer corresponding to that target. It is used for incremental loading of the layer. **Note:** this target is not suitable for direct consumption. It is used for incremental loading and non-docker rules should depend on the Docker image (`[name].tar`) instead. - `[name]`: The incremental image loader. It will load only changed layers inside the Docker registry. This rule references the `@io_bazel_rules_docker//toolchains/docker:toolchain_type`. See [How to use the Docker Toolchain](toolchains/docker/readme.md#how-to-use-the-docker-toolchain) for details. Args: **kwargs: Attributes are described by `container_image_` above. """ operating_system = None if ("operating_system" in kwargs): operating_system = kwargs["operating_system"] if operating_system != "linux" and operating_system != "windows": fail( "invalid operating_system(%s) specified. Must be 'linux' or 'windows'" % operating_system, attr = operating_system, ) reserved_attrs = [ "label_files", "label_file_strings", "null_cmd", "null_entrypoint", ] for reserved in reserved_attrs: if reserved in kwargs: fail("reserved for internal use by container_image macro", attr = reserved) if "labels" in kwargs: files = sorted({v[1:]: None for v in kwargs["labels"].values() if v[0] == "@"}.keys()) kwargs["label_files"] = files kwargs["label_file_strings"] = files # If cmd is set but set to None, [] or "", # we interpret it as users want to set it to null. if "cmd" in kwargs: if not kwargs["cmd"]: kwargs["null_cmd"] = True # _impl defines "cmd" as string_list. Turn "" into [] before # passing to it. if kwargs["cmd"] == "": kwargs["cmd"] = [] else: kwargs["cmd"] = _validate_command("cmd", kwargs["cmd"], operating_system) # If entrypoint is set but set to None, [] or "", # we interpret it as users want to set it to null. if "entrypoint" in kwargs: if not kwargs["entrypoint"]: kwargs["null_entrypoint"] = True # _impl defines "entrypoint" as string_list. Turn "" into [] before # passing to it. if kwargs["entrypoint"] == "": kwargs["entrypoint"] = [] else: kwargs["entrypoint"] = _validate_command("entrypoint", kwargs["entrypoint"], operating_system) container_image_(**kwargs)
py
b40c085c437adf40285fd5f3120a2656d2aad5e5
import warnings from abc import ABC, abstractmethod from typing import Dict, Generator, Optional, Union import numpy as np import torch as th from gym import spaces try: # Check memory used by replay buffer when possible import psutil except ImportError: psutil = None from stable_baselines3.common.preprocessing import get_action_dim, get_obs_shape from stable_baselines3.common.type_aliases import ReplayBufferSamples, RolloutBufferSamples from stable_baselines3.common.vec_env import VecNormalize class BaseBuffer(ABC): """ Base class that represent a buffer (rollout or replay) :param buffer_size: Max number of element in the buffer :param observation_space: Observation space :param action_space: Action space :param device: PyTorch device to which the values will be converted :param n_envs: Number of parallel environments """ def __init__( self, buffer_size: int, observation_space: spaces.Space, action_space: spaces.Space, device: Union[th.device, str] = "cpu", n_envs: int = 1, ): super(BaseBuffer, self).__init__() self.buffer_size = buffer_size self.observation_space = observation_space self.action_space = action_space self.obs_shape = get_obs_shape(observation_space) self.action_dim = get_action_dim(action_space) self.pos = 0 self.full = False self.device = device self.n_envs = n_envs @staticmethod def swap_and_flatten(arr: np.ndarray) -> np.ndarray: """ Swap and then flatten axes 0 (buffer_size) and 1 (n_envs) to convert shape from [n_steps, n_envs, ...] (when ... is the shape of the features) to [n_steps * n_envs, ...] (which maintain the order) :param arr: :return: """ shape = arr.shape if len(shape) < 3: shape = shape + (1,) return arr.swapaxes(0, 1).reshape(shape[0] * shape[1], *shape[2:]) def size(self) -> int: """ :return: The current size of the buffer """ if self.full: return self.buffer_size return self.pos def add(self, *args, **kwargs) -> None: """ Add elements to the buffer. """ raise NotImplementedError() def extend(self, *args, **kwargs) -> None: """ Add a new batch of transitions to the buffer """ # Do a for loop along the batch axis for data in zip(*args): self.add(*data) def reset(self) -> None: """ Reset the buffer. """ self.pos = 0 self.full = False def sample(self, batch_size: int, env: Optional[VecNormalize] = None): """ :param batch_size: Number of element to sample :param env: associated gym VecEnv to normalize the observations/rewards when sampling :return: """ upper_bound = self.buffer_size if self.full else self.pos batch_inds = np.random.randint(0, upper_bound, size=batch_size) return self._get_samples(batch_inds, env=env) @abstractmethod def _get_samples( self, batch_inds: np.ndarray, env: Optional[VecNormalize] = None ) -> Union[ReplayBufferSamples, RolloutBufferSamples]: """ :param batch_inds: :param env: :return: """ raise NotImplementedError() def to_torch(self, array: np.ndarray, copy: bool = True) -> th.Tensor: """ Convert a numpy array to a PyTorch tensor. Note: it copies the data by default :param array: :param copy: Whether to copy or not the data (may be useful to avoid changing things be reference) :return: """ if copy: return th.tensor(array).to(self.device) return th.as_tensor(array).to(self.device) @staticmethod def _normalize_obs( obs: Union[np.ndarray, Dict[str, np.ndarray]], env: Optional[VecNormalize] = None ) -> Union[np.ndarray, Dict[str, np.ndarray]]: if env is not None: return env.normalize_obs(obs) return obs @staticmethod def _normalize_reward(reward: np.ndarray, env: Optional[VecNormalize] = None) -> np.ndarray: if env is not None: return env.normalize_reward(reward).astype(np.float32) return reward class ReplayBuffer(BaseBuffer): """ Replay buffer used in off-policy algorithms like SAC/TD3. :param buffer_size: Max number of element in the buffer :param observation_space: Observation space :param action_space: Action space :param device: :param n_envs: Number of parallel environments :param optimize_memory_usage: Enable a memory efficient variant of the replay buffer which reduces by almost a factor two the memory used, at a cost of more complexity. See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195 and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274 """ def __init__( self, buffer_size: int, observation_space: spaces.Space, action_space: spaces.Space, device: Union[th.device, str] = "cpu", n_envs: int = 1, optimize_memory_usage: bool = False, ): super(ReplayBuffer, self).__init__(buffer_size, observation_space, action_space, device, n_envs=n_envs) assert n_envs == 1, "Replay buffer only support single environment for now" # Check that the replay buffer can fit into the memory if psutil is not None: mem_available = psutil.virtual_memory().available self.optimize_memory_usage = optimize_memory_usage self.observations = np.zeros((self.buffer_size, self.n_envs) + self.obs_shape, dtype=observation_space.dtype) if optimize_memory_usage: # `observations` contains also the next observation self.next_observations = None else: self.next_observations = np.zeros((self.buffer_size, self.n_envs) + self.obs_shape, dtype=observation_space.dtype) self.actions = np.zeros((self.buffer_size, self.n_envs, self.action_dim), dtype=action_space.dtype) self.rewards = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32) self.dones = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32) if psutil is not None: total_memory_usage = self.observations.nbytes + self.actions.nbytes + self.rewards.nbytes + self.dones.nbytes if self.next_observations is not None: total_memory_usage += self.next_observations.nbytes if total_memory_usage > mem_available: # Convert to GB total_memory_usage /= 1e9 mem_available /= 1e9 warnings.warn( "This system does not have apparently enough memory to store the complete " f"replay buffer {total_memory_usage:.2f}GB > {mem_available:.2f}GB" ) def add(self, obs: np.ndarray, next_obs: np.ndarray, action: np.ndarray, reward: np.ndarray, done: np.ndarray) -> None: # Copy to avoid modification by reference self.observations[self.pos] = np.array(obs).copy() if self.optimize_memory_usage: self.observations[(self.pos + 1) % self.buffer_size] = np.array(next_obs).copy() else: self.next_observations[self.pos] = np.array(next_obs).copy() self.actions[self.pos] = np.array(action).copy() self.rewards[self.pos] = np.array(reward).copy() self.dones[self.pos] = np.array(done).copy() self.pos += 1 if self.pos == self.buffer_size: self.full = True self.pos = 0 def sample(self, batch_size: int, env: Optional[VecNormalize] = None) -> ReplayBufferSamples: """ Sample elements from the replay buffer. Custom sampling when using memory efficient variant, as we should not sample the element with index `self.pos` See https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274 :param batch_size: Number of element to sample :param env: associated gym VecEnv to normalize the observations/rewards when sampling :return: """ if not self.optimize_memory_usage: return super().sample(batch_size=batch_size, env=env) # Do not sample the element with index `self.pos` as the transitions is invalid # (we use only one array to store `obs` and `next_obs`) if self.full: batch_inds = (np.random.randint(1, self.buffer_size, size=batch_size) + self.pos) % self.buffer_size else: batch_inds = np.random.randint(0, self.pos, size=batch_size) return self._get_samples(batch_inds, env=env) def _get_samples(self, batch_inds: np.ndarray, env: Optional[VecNormalize] = None) -> ReplayBufferSamples: if self.optimize_memory_usage: next_obs = self._normalize_obs(self.observations[(batch_inds + 1) % self.buffer_size, 0, :], env) else: next_obs = self._normalize_obs(self.next_observations[batch_inds, 0, :], env) data = ( self._normalize_obs(self.observations[batch_inds, 0, :], env), self.actions[batch_inds, 0, :], next_obs, self.dones[batch_inds], self._normalize_reward(self.rewards[batch_inds], env), ) return ReplayBufferSamples(*tuple(map(self.to_torch, data))) class PrioritizedReplayBuffer(BaseBuffer): """ Replay buffer used in off-policy algorithms like SAC/TD3. :param buffer_size: Max number of element in the buffer :param observation_space: Observation space :param action_space: Action space :param device: :param n_envs: Number of parallel environments :param optimize_memory_usage: Enable a memory efficient variant of the replay buffer which reduces by almost a factor two the memory used, at a cost of more complexity. See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195 and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274 """ def __init__( self, buffer_size: int, observation_space: spaces.Space, action_space: spaces.Space, device: Union[th.device, str] = "cpu", n_envs: int = 1, optimize_memory_usage: bool = False, ): super(PrioritizedReplayBuffer, self).__init__(buffer_size, observation_space, action_space, device, n_envs=n_envs) assert n_envs == 1, "Replay buffer only support single environment for now" self.priorities1 = np.zeros(self.buffer_size) self.max_prio1 = 1.0 self.priorities2 = np.zeros(self.buffer_size) self.max_prio2 = 1.0 # Check that the replay buffer can fit into the memory if psutil is not None: mem_available = psutil.virtual_memory().available self.optimize_memory_usage = optimize_memory_usage self.observations = np.zeros((self.buffer_size, self.n_envs) + self.obs_shape, dtype=observation_space.dtype) if optimize_memory_usage: # `observations` contains also the next observation self.next_observations = None else: self.next_observations = np.zeros((self.buffer_size, self.n_envs) + self.obs_shape, dtype=observation_space.dtype) self.actions = np.zeros((self.buffer_size, self.n_envs, self.action_dim), dtype=action_space.dtype) self.rewards = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32) self.dones = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32) if psutil is not None: total_memory_usage = self.observations.nbytes + self.actions.nbytes + self.rewards.nbytes + self.dones.nbytes if self.next_observations is not None: total_memory_usage += self.next_observations.nbytes if total_memory_usage > mem_available: # Convert to GB total_memory_usage /= 1e9 mem_available /= 1e9 warnings.warn( "This system does not have apparently enough memory to store the complete " f"replay buffer {total_memory_usage:.2f}GB > {mem_available:.2f}GB" ) def add(self, obs: np.ndarray, next_obs: np.ndarray, action: np.ndarray, reward: np.ndarray, done: np.ndarray) -> None: # Copy to avoid modification by reference self.observations[self.pos] = np.array(obs).copy() if self.optimize_memory_usage: self.observations[(self.pos + 1) % self.buffer_size] = np.array(next_obs).copy() else: self.next_observations[self.pos] = np.array(next_obs).copy() self.actions[self.pos] = np.array(action).copy() self.rewards[self.pos] = np.array(reward).copy() self.dones[self.pos] = np.array(done).copy() self.pos += 1 if self.pos == self.buffer_size: self.full = True self.pos = 0 self.priorities1[self.pos] = self.max_prio1 self.priorities2[self.pos] = self.max_prio2 else: self.priorities1[self.pos] = self.max_prio1 self.priorities2[self.pos] = self.max_prio2 def sample(self, batch_size: int, env: Optional[VecNormalize] = None): """ Sample elements from the replay buffer. Custom sampling when using memory efficient variant, as we should not sample the element with index `self.pos` See https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274 :param batch_size: Number of element to sample :param env: associated gym VecEnv to normalize the observations/rewards when sampling :return: """ #if not self.optimize_memory_usage: # print("ok!") # return super().sample(batch_size=batch_size, env=env) # Do not sample the element with index `self.pos` as the transitions is invalid # (we use only one array to store `obs` and `next_obs`) if self.full: batch_inds0 = (np.random.randint(1, self.buffer_size, size=batch_size) + self.pos) % self.buffer_size not_pos = False while not_pos == False: probs1 = self.priorities1/np.sum(self.priorities1) print(probs1.shape) print(np.arange(self.buffer_size).shape) batch_inds1 = np.random.choice(self.buffer_size, batch_size, p=probs1) if self.pos not in batch_inds1: not_pos = True not_pos = False while not_pos == False: probs2 = self.priorities2/np.sum(self.priorities2) batch_inds2 = np.random.choice(self.buffer_size, batch_size, p=probs2) if self.pos not in batch_inds2: not_pos = True else: batch_inds0 = np.random.randint(0, self.pos, size=batch_size) probs1 = self.priorities1/np.sum(self.priorities1) #print(probs1.shape) #print(np.arange(self.buffer_size).shape) batch_inds1 = np.random.choice(self.buffer_size, batch_size, p=probs1) probs2 = self.priorities2/np.sum(self.priorities2) batch_inds2 = np.random.choice(self.buffer_size, batch_size, p=probs2) selected_probs1 = probs1[batch_inds1] selected_probs2 = probs2[batch_inds2] return (self._get_samples(batch_inds1, env=env), batch_inds1, selected_probs1, self._get_samples(batch_inds2, env=env), batch_inds2, selected_probs2, self._get_samples(batch_inds0, env=env)) def update_priorities1(self, batch_indices, batch_priorities): for idx, prio in zip(batch_indices, batch_priorities): self.priorities1[idx] = abs(prio) if abs(prio) > self.max_prio1: self.max_prio1 = abs(prio) def update_priorities2(self, batch_indices, batch_priorities): for idx, prio in zip(batch_indices, batch_priorities): self.priorities2[idx] = abs(prio) if abs(prio) > self.max_prio2: self.max_prio2 = abs(prio) def _get_samples(self, batch_inds: np.ndarray, env: Optional[VecNormalize] = None) -> ReplayBufferSamples: if self.optimize_memory_usage: next_obs = self._normalize_obs(self.observations[(batch_inds + 1) % self.buffer_size, 0, :], env) else: next_obs = self._normalize_obs(self.next_observations[batch_inds, 0, :], env) data = ( self._normalize_obs(self.observations[batch_inds, 0, :], env), self.actions[batch_inds, 0, :], next_obs, self.dones[batch_inds], self._normalize_reward(self.rewards[batch_inds], env), ) return ReplayBufferSamples(*tuple(map(self.to_torch, data))) class RolloutBuffer(BaseBuffer): """ Rollout buffer used in on-policy algorithms like A2C/PPO. It corresponds to ``buffer_size`` transitions collected using the current policy. This experience will be discarded after the policy update. In order to use PPO objective, we also store the current value of each state and the log probability of each taken action. The term rollout here refers to the model-free notion and should not be used with the concept of rollout used in model-based RL or planning. Hence, it is only involved in policy and value function training but not action selection. :param buffer_size: Max number of element in the buffer :param observation_space: Observation space :param action_space: Action space :param device: :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator Equivalent to classic advantage when set to 1. :param gamma: Discount factor :param n_envs: Number of parallel environments """ def __init__( self, buffer_size: int, observation_space: spaces.Space, action_space: spaces.Space, device: Union[th.device, str] = "cpu", gae_lambda: float = 1, gamma: float = 0.99, n_envs: int = 1, ): super(RolloutBuffer, self).__init__(buffer_size, observation_space, action_space, device, n_envs=n_envs) self.gae_lambda = gae_lambda self.gamma = gamma self.observations, self.actions, self.rewards, self.advantages = None, None, None, None self.returns, self.dones, self.values, self.log_probs = None, None, None, None self.generator_ready = False self.reset() def reset(self) -> None: self.observations = np.zeros((self.buffer_size, self.n_envs) + self.obs_shape, dtype=np.float32) self.actions = np.zeros((self.buffer_size, self.n_envs, self.action_dim), dtype=np.float32) self.rewards = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32) self.returns = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32) self.dones = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32) self.values = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32) self.log_probs = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32) self.advantages = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32) self.generator_ready = False super(RolloutBuffer, self).reset() def compute_returns_and_advantage(self, last_values: th.Tensor, dones: np.ndarray) -> None: """ Post-processing step: compute the returns (sum of discounted rewards) and GAE advantage. Adapted from Stable-Baselines PPO2. Uses Generalized Advantage Estimation (https://arxiv.org/abs/1506.02438) to compute the advantage. To obtain vanilla advantage (A(s) = R - V(S)) where R is the discounted reward with value bootstrap, set ``gae_lambda=1.0`` during initialization. :param last_values: :param dones: """ # convert to numpy last_values = last_values.clone().cpu().numpy().flatten() last_gae_lam = 0 for step in reversed(range(self.buffer_size)): if step == self.buffer_size - 1: next_non_terminal = 1.0 - dones next_values = last_values else: next_non_terminal = 1.0 - self.dones[step + 1] next_values = self.values[step + 1] delta = self.rewards[step] + self.gamma * next_values * next_non_terminal - self.values[step] last_gae_lam = delta + self.gamma * self.gae_lambda * next_non_terminal * last_gae_lam self.advantages[step] = last_gae_lam self.returns = self.advantages + self.values def add( self, obs: np.ndarray, action: np.ndarray, reward: np.ndarray, done: np.ndarray, value: th.Tensor, log_prob: th.Tensor ) -> None: """ :param obs: Observation :param action: Action :param reward: :param done: End of episode signal. :param value: estimated value of the current state following the current policy. :param log_prob: log probability of the action following the current policy. """ if len(log_prob.shape) == 0: # Reshape 0-d tensor to avoid error log_prob = log_prob.reshape(-1, 1) # Reshape needed when using multiple envs with discrete observations # as numpy cannot broadcast (n_discrete,) to (n_discrete, 1) if isinstance(self.observation_space, spaces.Discrete): obs = obs.reshape((self.n_envs,) + self.obs_shape) self.observations[self.pos] = np.array(obs).copy() self.actions[self.pos] = np.array(action).copy() self.rewards[self.pos] = np.array(reward).copy() self.dones[self.pos] = np.array(done).copy() self.values[self.pos] = value.clone().cpu().numpy().flatten() self.log_probs[self.pos] = log_prob.clone().cpu().numpy() self.pos += 1 if self.pos == self.buffer_size: self.full = True def get(self, batch_size: Optional[int] = None) -> Generator[RolloutBufferSamples, None, None]: assert self.full, "" indices = np.random.permutation(self.buffer_size * self.n_envs) # Prepare the data if not self.generator_ready: for tensor in ["observations", "actions", "values", "log_probs", "advantages", "returns"]: self.__dict__[tensor] = self.swap_and_flatten(self.__dict__[tensor]) self.generator_ready = True # Return everything, don't create minibatches if batch_size is None: batch_size = self.buffer_size * self.n_envs start_idx = 0 while start_idx < self.buffer_size * self.n_envs: yield self._get_samples(indices[start_idx : start_idx + batch_size]) start_idx += batch_size def _get_samples(self, batch_inds: np.ndarray, env: Optional[VecNormalize] = None) -> RolloutBufferSamples: data = ( self.observations[batch_inds], self.actions[batch_inds], self.values[batch_inds].flatten(), self.log_probs[batch_inds].flatten(), self.advantages[batch_inds].flatten(), self.returns[batch_inds].flatten(), ) return RolloutBufferSamples(*tuple(map(self.to_torch, data)))
py
b40c0afb6b53a17e6162ed8306e5b30b3c500b0d
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # Modifications Copyright 2017 Abigail See # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """This file contains some utility functions""" import tensorflow as tf import time import os from tensorflow.python.client import device_lib FLAGS = tf.app.flags.FLAGS def get_available_gpus(): gpus_list_file = os.path.join(os.getcwd(), "gpus.txt") lines = open(os.path.realpath(gpus_list_file), "r").readlines() gpus = [ str(line) for line in lines if not str(line).startswith("#") ] if( gpus[0] == "all"): local_device_protos = device_lib.list_local_devices() gpus = [str(x.name) for x in local_device_protos if x.device_type == 'GPU'] return gpus if len(gpus) > 0 else ['/gpu:0'] def get_config(): """Returns config for tf.session""" config = tf.ConfigProto(allow_soft_placement=True) config.gpu_options.allow_growth=True return config def load_ckpt(saver, sess, ckpt_dir="train"): """Load checkpoint from the ckpt_dir (if unspecified, this is train dir) and restore it to saver and sess, waiting 10 secs in the case of failure. Also returns checkpoint name.""" while True: try: latest_filename = "checkpoint_best" if ckpt_dir=="eval" else None ckpt_dir = os.path.join(FLAGS.log_root, ckpt_dir) ckpt_state = tf.train.get_checkpoint_state(ckpt_dir, latest_filename=latest_filename) tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path) saver.restore(sess, ckpt_state.model_checkpoint_path) return ckpt_state.model_checkpoint_path except: tf.logging.info("Failed to load checkpoint from %s. Sleeping for %i secs...", ckpt_dir, 10) time.sleep(10)
py
b40c0c20ee9baa70c489f2bfcea5decddb8c5b3e
import numpy as np import chainer from chainer import cuda, Function, report, training, utils, Variable from chainer import datasets, iterators, optimizers, serializers, reporter from chainer.dataset import convert from chainer.dataset import iterator as iterator_module from chainer.datasets import tuple_dataset from chainer import Link, Chain, ChainList from chainer import Link, Chain, ChainList import chainer.functions as F import chainer.links as L from chainer.training import extensions import os.path # Check version # Python 2.7.12 on win32 (Windows version) # numpy (1.14.0) # chainer (1.20.0.1) class SimpleCNN2(Chain): def __init__(self,num_filter, size_filter, stride0=1): super(SimpleCNN2, self).__init__( conv1 = L.Convolution2D(1, num_filter, size_filter, stride=stride0), conv2 = L.Convolution2D(num_filter, num_filter * 2, size_filter, stride=stride0), l1 = L.Linear(5408, 10), ) self.train = True #print ('num_filter', num_filter) #print ('size_filter', size_filter) def __call__(self, x): h1 = F.relu(self.conv1(x)) #print ('h1.shape ', h1.data.shape) h2 = F.relu(self.conv2(h1)) #print ('h2.shape ', h2.data.shape) h3 = self.l1(h2) return h3 def get_dataset(IN_DIR='DataSet', train_ratio=9): # load data set and convert to tuple in this.py train_data = np.load(os.path.join(IN_DIR,'train_data.npy')) train_label = np.load(os.path.join(IN_DIR,'train_label.npy')) #print ( train_data.shape[0]) # dvide train and test per the ratio threshold = np.int32(train_data.shape[0]/10*train_ratio) train = tuple_dataset.TupleDataset(train_data[0:threshold], train_label[0:threshold]) test = tuple_dataset.TupleDataset(train_data[threshold:], train_label[threshold:]) return train, test if __name__=='__main__': model = L.Classifier(SimpleCNN2(num_filter=16, size_filter=6,stride0=2)) train,test=get_dataset() optimizer = chainer.optimizers.Adam() optimizer.setup(model) train_iter = chainer.iterators.SerialIterator(train, batch_size=30) test_iter = chainer.iterators.SerialIterator(test, batch_size=30, repeat=False, shuffle=False) updater = training.StandardUpdater(train_iter, optimizer, device=-1) ### output dir "logs" OUT_DIR='result' trainer = training.Trainer(updater, (10, 'epoch'), out=OUT_DIR) trainer.extend(extensions.Evaluator(test_iter, model, device=-1)) trainer.extend(extensions.LogReport()) trainer.extend(extensions.PrintReport( ['epoch', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', 'elapsed_time'])) trainer.extend(extensions.ProgressBar()) trainer.extend(extensions.PlotReport(['main/loss', 'validation/main/loss'], x_key='epoch', file_name='loss.png')) trainer.extend(extensions.PlotReport(['main/accuracy','validation/main/accuracy'], x_key='epoch', file_name='accuracy.png')) # output result as save_npz trainer.extend(extensions.snapshot()) trainer.run() # This file uses TAB
py
b40c0c94e6ddaf80892a69fa9d6c2b057c3614dd
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from argparse import REMAINDER, ArgumentParser, Namespace from typing import List, Optional from idb.cli import ClientCommand from idb.common.signal import signal_handler_event from idb.common.types import Client class LogCommand(ClientCommand): @property def description(self) -> str: return "Obtain logs from the target" @property def name(self) -> str: return "log" def add_parser_arguments(self, parser: ArgumentParser) -> None: parser.add_argument( "log_arguments", help="""\ Example: idb log -- --style json Possible arguments: --system | --process (pid|process) | --parent (pid|process) ] [ --level default|info|debug][ --predicate <predicate> ] [ --source ][ --style (syslog|json) ] [ --timeout <num>[m|h|d] ][ --type activity|log|trace ] Examples: log stream --level=info log stream --predicate examples: --predicate 'eventMessage contains "my message"' --predicate 'eventType == logEvent and messageType == info' --predicate 'processImagePath endswith "d"' --predicate 'not processImagePath contains[c] "some spammer"' --predicate 'processID < 100' --predicate 'senderImagePath beginswith "my sender"'""", default=[], nargs=REMAINDER, ) super().add_parser_arguments(parser) async def run_with_client(self, args: Namespace, client: Client) -> None: async for chunk in client.tail_logs( stop=signal_handler_event("log"), arguments=self.normalise_log_arguments(args.log_arguments), ): print(chunk, end="") print("") def normalise_log_arguments( self, log_arguments: Optional[List[str]] ) -> Optional[List[str]]: if log_arguments is None: return None if len(log_arguments) > 0 and log_arguments[0] == "--": log_arguments = log_arguments[1:] return log_arguments class CompanionLogCommand(ClientCommand): @property def description(self) -> str: return "Obtain logs from the companion" @property def name(self) -> str: return "log" async def run_with_client(self, args: Namespace, client: Client) -> None: async for chunk in client.tail_companion_logs(stop=signal_handler_event("log")): print(chunk, end="") print("")
py
b40c0db703cc0cf7e4f6f8fa3915a534c6602fb3
#!/usr/bin/env python3 # Copyright (c) 2017-2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test various command line arguments and configuration file parameters.""" import os from test_framework.test_framework import BitcoinTestFramework class ConfArgsTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 def test_config_file_parser(self): # Assume node is stopped inc_conf_file_path = os.path.join(self.nodes[0].datadir, 'include.conf') with open(os.path.join(self.nodes[0].datadir, 'litecoinz.conf'), 'a', encoding='utf-8') as conf: conf.write('includeconf={}\n'.format(inc_conf_file_path)) self.nodes[0].assert_start_raises_init_error( expected_msg='Error: Error parsing command line arguments: Invalid parameter -dash_cli', extra_args=['-dash_cli=1'], ) with open(inc_conf_file_path, 'w', encoding='utf-8') as conf: conf.write('dash_conf=1\n') with self.nodes[0].assert_debug_log(expected_msgs=['Ignoring unknown configuration value dash_conf']): self.start_node(0) self.stop_node(0) with open(inc_conf_file_path, 'w', encoding='utf-8') as conf: conf.write('-dash=1\n') self.nodes[0].assert_start_raises_init_error(expected_msg='Error: Error reading configuration file: parse error on line 1: -dash=1, options in configuration file must be specified without leading -') if self.is_wallet_compiled(): with open(inc_conf_file_path, 'w', encoding='utf8') as conf: conf.write("wallet=foo\n") self.nodes[0].assert_start_raises_init_error(expected_msg='Error: Config setting for -wallet only applied on regtest network when in [regtest] section.') with open(inc_conf_file_path, 'w', encoding='utf-8') as conf: conf.write('regtest=0\n') # mainnet conf.write('acceptnonstdtxn=1\n') self.nodes[0].assert_start_raises_init_error(expected_msg='Error: acceptnonstdtxn is not currently supported for main chain') with open(inc_conf_file_path, 'w', encoding='utf-8') as conf: conf.write('nono\n') self.nodes[0].assert_start_raises_init_error(expected_msg='Error: Error reading configuration file: parse error on line 1: nono, if you intended to specify a negated option, use nono=1 instead') with open(inc_conf_file_path, 'w', encoding='utf-8') as conf: conf.write('server=1\nrpcuser=someuser\nrpcpassword=some#pass') self.nodes[0].assert_start_raises_init_error(expected_msg='Error: Error reading configuration file: parse error on line 3, using # in rpcpassword can be ambiguous and should be avoided') with open(inc_conf_file_path, 'w', encoding='utf-8') as conf: conf.write('server=1\nrpcuser=someuser\nmain.rpcpassword=some#pass') self.nodes[0].assert_start_raises_init_error(expected_msg='Error: Error reading configuration file: parse error on line 3, using # in rpcpassword can be ambiguous and should be avoided') with open(inc_conf_file_path, 'w', encoding='utf-8') as conf: conf.write('server=1\nrpcuser=someuser\n[main]\nrpcpassword=some#pass') self.nodes[0].assert_start_raises_init_error(expected_msg='Error: Error reading configuration file: parse error on line 4, using # in rpcpassword can be ambiguous and should be avoided') inc_conf_file2_path = os.path.join(self.nodes[0].datadir, 'include2.conf') with open(os.path.join(self.nodes[0].datadir, 'litecoinz.conf'), 'a', encoding='utf-8') as conf: conf.write('includeconf={}\n'.format(inc_conf_file2_path)) with open(inc_conf_file_path, 'w', encoding='utf-8') as conf: conf.write('testnot.datadir=1\n') with open(inc_conf_file2_path, 'w', encoding='utf-8') as conf: conf.write('[testnet]\n') self.restart_node(0) self.nodes[0].stop_node(expected_stderr='Warning: ' + inc_conf_file_path + ':1 Section [testnot] is not recognized.' + os.linesep + 'Warning: ' + inc_conf_file2_path + ':1 Section [testnet] is not recognized.') with open(inc_conf_file_path, 'w', encoding='utf-8') as conf: conf.write('') # clear with open(inc_conf_file2_path, 'w', encoding='utf-8') as conf: conf.write('') # clear def test_log_buffer(self): with self.nodes[0].assert_debug_log(expected_msgs=['Warning: parsed potentially confusing double-negative -connect=0\n']): self.start_node(0, extra_args=['-noconnect=0']) self.stop_node(0) def run_test(self): self.stop_node(0) self.test_log_buffer() self.test_config_file_parser() # Remove the -datadir argument so it doesn't override the config file self.nodes[0].args = [arg for arg in self.nodes[0].args if not arg.startswith("-datadir")] default_data_dir = self.nodes[0].datadir new_data_dir = os.path.join(default_data_dir, 'newdatadir') new_data_dir_2 = os.path.join(default_data_dir, 'newdatadir2') # Check that using -datadir argument on non-existent directory fails self.nodes[0].datadir = new_data_dir self.nodes[0].assert_start_raises_init_error(['-datadir=' + new_data_dir], 'Error: Specified data directory "' + new_data_dir + '" does not exist.') # Check that using non-existent datadir in conf file fails conf_file = os.path.join(default_data_dir, "litecoinz.conf") # datadir needs to be set before [regtest] section conf_file_contents = open(conf_file, encoding='utf8').read() with open(conf_file, 'w', encoding='utf8') as f: f.write("datadir=" + new_data_dir + "\n") f.write(conf_file_contents) self.nodes[0].assert_start_raises_init_error(['-conf=' + conf_file], 'Error: Error reading configuration file: specified data directory "' + new_data_dir + '" does not exist.') # Create the directory and ensure the config file now works os.mkdir(new_data_dir) self.start_node(0, ['-conf='+conf_file, '-wallet=w1']) self.stop_node(0) assert os.path.exists(os.path.join(new_data_dir, 'regtest', 'blocks')) if self.is_wallet_compiled(): assert os.path.exists(os.path.join(new_data_dir, 'regtest', 'wallets', 'w1')) # Ensure command line argument overrides datadir in conf os.mkdir(new_data_dir_2) self.nodes[0].datadir = new_data_dir_2 self.start_node(0, ['-datadir='+new_data_dir_2, '-conf='+conf_file, '-wallet=w2']) assert os.path.exists(os.path.join(new_data_dir_2, 'regtest', 'blocks')) if self.is_wallet_compiled(): assert os.path.exists(os.path.join(new_data_dir_2, 'regtest', 'wallets', 'w2')) if __name__ == '__main__': ConfArgsTest().main()
py
b40c0df8c91a0f52b412b094d70135e7dbeb74eb
from BlockDevice import BlockDevice import os.path import os class PartBlockDevice(BlockDevice): def __init__(self, raw_blkdev, part_blk, auto_close=False): self.raw_blkdev = raw_blkdev self.part_blk = part_blk self.blk_off = 0 self.auto_close = auto_close def open(self): # extract geometry from partition block dos_env = self.part_blk.dos_env lo_cyl = dos_env.low_cyl hi_cyl = dos_env.high_cyl cyls = hi_cyl - lo_cyl + 1 heads = dos_env.surfaces secs = dos_env.blk_per_trk block_bytes = dos_env.block_size * 4 reserved = dos_env.reserved boot_blocks = dos_env.boot_blocks if boot_blocks == 0: boot_blocks = 2 self._set_geometry(cyls, heads, secs, block_bytes, reserved, boot_blocks) # calc block offset of partition self.blk_off = heads * secs * lo_cyl return True def flush(self): self.raw_blkdev.flush() def close(self): # auto close containing rdisk if self.auto_close: self.raw_blkdev.close() def read_block(self, blk_num): if blk_num >= self.num_blocks: raise ValueError("Invalid Part block num: got %d but max is %d" % (blk_num, self.num_blocks)) return self.raw_blkdev.read_block(self.blk_off + blk_num) def write_block(self, blk_num, data): if blk_num >= self.num_blocks: raise ValueError("Invalid Part block num: got %d but max is %d" % (blk_num, self.num_blocks)) if len(data) != self.block_bytes: raise ValueError("Invalid Part block size written: got %d but size is %d" % (len(data), self.block_bytes)) self.raw_blkdev.write_block(self.blk_off + blk_num, data)
py
b40c0ead5c221e4b3c98dc0a7f268049b5a224b3
""" Generate base anchors on index 0 """ from __future__ import print_function import sys import numpy as np def anchors_plane(height, width, stride, base_anchors): """ Parameters ---------- height: height of plane width: width of plane stride: stride ot the original image anchors_base: (A, 4) a base set of anchors Returns ------- all_anchors: (height, width, A, 4) ndarray of anchors spreading over the plane """ A = base_anchors.shape[0] all_anchors = np.zeros((height, width, A, 4), dtype=int) iw = 0 ih = 0 k = 0 sh = 0 sw = 0 for iw in range(width): sw = iw * stride for ih in range(height): sh = ih * stride for k in range(A): all_anchors[ih, iw, k, 0] = base_anchors[k, 0] + sw all_anchors[ih, iw, k, 1] = base_anchors[k, 1] + sh all_anchors[ih, iw, k, 2] = base_anchors[k, 2] + sw all_anchors[ih, iw, k, 3] = base_anchors[k, 3] + sh return all_anchors def generate_anchors(base_size=16, ratios=[0.5, 1, 2], scales=2 ** np.arange(3, 6), stride=16, dense_anchor=False): """ Generate anchor (reference) windows by enumerating aspect ratios X scales wrt a reference (0, 0, 15, 15) window. """ base_anchor = np.array([1, 1, base_size, base_size]) - 1 ratio_anchors = _ratio_enum(base_anchor, ratios) anchors = np.vstack([_scale_enum(ratio_anchors[i, :], scales) for i in range(ratio_anchors.shape[0])]) if dense_anchor: assert stride%2==0 anchors2 = anchors.copy() anchors2[:,:] += int(stride/2) anchors = np.vstack( (anchors, anchors2) ) #print('GA',base_anchor.shape, ratio_anchors.shape, anchors.shape) return anchors def generate_anchors_fpn(cfg, dense_anchor=False): #assert(False) """ Generate anchor (reference) windows by enumerating aspect ratios X scales wrt a reference (0, 0, 15, 15) window. """ RPN_FEAT_STRIDE = [] for k in cfg: RPN_FEAT_STRIDE.append( int(k) ) RPN_FEAT_STRIDE = sorted(RPN_FEAT_STRIDE, reverse=True) anchors = [] for k in RPN_FEAT_STRIDE: v = cfg[str(k)] bs = v['BASE_SIZE'] __ratios = np.array(v['RATIOS']) __scales = np.array(v['SCALES']) stride = int(k) #print('anchors_fpn', bs, __ratios, __scales, file=sys.stderr) r = generate_anchors(bs, __ratios, __scales, stride, dense_anchor) #print('anchors_fpn', r.shape, file=sys.stderr) anchors.append(r) return anchors def _whctrs(anchor): """ Return width, height, x center, and y center for an anchor (window). """ w = anchor[2] - anchor[0] + 1 h = anchor[3] - anchor[1] + 1 x_ctr = anchor[0] + 0.5 * (w - 1) y_ctr = anchor[1] + 0.5 * (h - 1) return w, h, x_ctr, y_ctr def _mkanchors(ws, hs, x_ctr, y_ctr): """ Given a vector of widths (ws) and heights (hs) around a center (x_ctr, y_ctr), output a set of anchors (windows). """ ws = ws[:, np.newaxis] hs = hs[:, np.newaxis] anchors = np.hstack((x_ctr - 0.5 * (ws - 1), y_ctr - 0.5 * (hs - 1), x_ctr + 0.5 * (ws - 1), y_ctr + 0.5 * (hs - 1))) return anchors def _ratio_enum(anchor, ratios): """ Enumerate a set of anchors for each aspect ratio wrt an anchor. """ w, h, x_ctr, y_ctr = _whctrs(anchor) size = w * h size_ratios = size / ratios ws = np.round(np.sqrt(size_ratios)) hs = np.round(ws * ratios) anchors = _mkanchors(ws, hs, x_ctr, y_ctr) return anchors def _scale_enum(anchor, scales): """ Enumerate a set of anchors for each scale wrt an anchor. """ w, h, x_ctr, y_ctr = _whctrs(anchor) ws = w * scales hs = h * scales anchors = _mkanchors(ws, hs, x_ctr, y_ctr) return anchors
py
b40c0eb2dc2202c5217ce6382e5450a493f0f648
from django.apps import apps from django.db import connection from django.db.models.signals import post_save, pre_delete from django_rq import job import django_rq from haystack.signals import BaseSignalProcessor from cache_tools.jobs import auto_invalidate_cache, get_stale_objects from .search_indexes import get_haystack_index def auto_update_haystack(action, instance): for obj in get_stale_objects(instance, all_relations=True): model = obj.__class__ index = get_haystack_index(model) if index is None: continue if action == 'delete': index.remove_object(obj) else: index.update_object(obj) @job def auto_invalidate(action, app_label, model_name, pk): model = apps.get_model(app_label, model_name) if action == 'delete': # Quand un objet est supprimé, la seule chose à faire est de supprimer # l'entrée du moteur de recherche. En effet, aucun autre objet ne # de devrait être impacté car on a protégé les FK pour éviter # les suppressions en cascade. # WARNING: À surveiller tout de même. index = get_haystack_index(model) if index is not None: index.remove_object('%s.%s.%s' % (app_label, model_name, pk)) return instance = model._default_manager.get(pk=pk) auto_invalidate_cache(instance) auto_update_haystack(action, instance) class AutoInvalidatorSignalProcessor(BaseSignalProcessor): def setup(self): post_save.connect(self.enqueue_save) pre_delete.connect(self.enqueue_delete) def teardown(self): post_save.disconnect(self.enqueue_save) pre_delete.disconnect(self.enqueue_delete) def enqueue_save(self, sender, instance, created, **kwargs): def inner(): if created: return self.enqueue('create', instance, sender, **kwargs) return self.enqueue('save', instance, sender, **kwargs) return connection.on_commit(inner) def enqueue_delete(self, sender, instance, **kwargs): return self.enqueue('delete', instance, sender, **kwargs) def enqueue(self, action, instance, sender, **kwargs): if sender._meta.label in ('admin.LogEntry', 'sessions.Session', 'reversion.Revision', 'reversion.Version'): return django_rq.enqueue( auto_invalidate, args=(action, instance._meta.app_label, instance._meta.model_name, instance.pk), result_ttl=0, # Doesn't store result timeout=3600, # Avoids never-ending jobs )
py
b40c0f3868d13c415a030ce5da9ba4ada7c5c4ec
from Objects.Item import Item from Objects.Projectile import Projectile from Engine.World import CreateObject, Object class Taser(Item): defName = "Taser" defSprite = "taser" def InteractWith(self, object): if object is None: return False if not object.position or object.position == self.position: return False self.CreateProjectile(object.position - self.position) return True def ClickTile(self, tile): if tile is None: return False if not tile.pos: return False self.CreateProjectile(tile.pos.xy() - self.position) return True def CreateProjectile(self, direction): projectile = CreateObject("Objects.Projectile.Projectile", self.tile) projectile.SetShotDirection(direction)
py
b40c12136bbe4725b66feb2ed867437b3a16c8e9
from collections import defaultdict import json import os import logging logger = logging.getLogger('LoRaPark-rules') class Rules: _rules = dict() def __init__(self, config): self._config = config logger.info('Loading rules...') for file in os.listdir(config['rules_directory']): if file.endswith('.json'): with open(os.path.join(config['rules_directory'], file)) as json_file: rule = json.load(json_file) id = file.removesuffix('.json') rule['id'] = id self._rules[id] = rule logger.info('Done.') def get_ids(self): return list(self._rules.keys()) def get_rules(self, ids=None): if ids == None: ids = self.get_ids() return [self.get_rule(id) for id in ids] def get_rule(self, id): if not id in self._rules: return None return self._rules[id] def get_rule_description(self, id): rule = self.get_rule(id) if not rule: return None return {k: rule[k] for k in rule if k in ['id', 'name', 'description']} def get_rules_description(self, ids=None): if ids == None: ids = self.get_ids() return [self.get_rule_description(id) for id in ids]
py
b40c13e2b185a197d24615cfbe6b3023e7391704
import pymel.core as pm import unittest from luna import static from luna.test import TestCase import luna_rig class CharacterTests(TestCase): def setUp(self): pm.newFile(f=1) def tearDown(self): super(CharacterTests, self).tearDown() pm.newFile(f=1) def test_create_default(self): instance = luna_rig.components.Character.create() # Assertions # Metanode attributes self.assertTrue(pm.hasAttr(instance.pynode, "rootCtl")) self.assertTrue(pm.hasAttr(instance.pynode, "characterName")) self.assertTrue(pm.hasAttr(instance.pynode, "rootCtl")) self.assertTrue(pm.hasAttr(instance.pynode, "controlRig")) self.assertTrue(pm.hasAttr(instance.pynode, "deformationRig")) self.assertTrue(pm.hasAttr(instance.pynode, "geometryGroup")) self.assertTrue(pm.hasAttr(instance.pynode, "locatorsGroup")) self.assertTrue(pm.hasAttr(instance.pynode, "worldLocator")) # Instance members self.assertEqual(instance.tag, "character") self.assertEqual(str(instance.control_rig), static.CharacterMembers.control_rig.value) self.assertEqual(str(instance.deformation_rig), static.CharacterMembers.deformation_rig.value) self.assertEqual(str(instance.geometry_grp), static.CharacterMembers.geometry.value) self.assertEqual(str(instance.locators_grp), static.CharacterMembers.locators.value) self.assertTrue(pm.objExists(instance.world_locator)) # Save test scene pm.renameFile(self.get_temp_filename("character_component_test_create_default.ma")) pm.saveFile(f=1) def test_intance_from_meta(self): new_character = luna_rig.components.Character.create() instance = luna_rig.components.Character(new_character.pynode.name()) # Assertions # Meta node attributes self.assertTrue(pm.hasAttr(instance.pynode, "rootCtl")) self.assertTrue(pm.hasAttr(instance.pynode, "characterName")) self.assertTrue(pm.hasAttr(instance.pynode, "rootCtl")) self.assertTrue(pm.hasAttr(instance.pynode, "controlRig")) self.assertTrue(pm.hasAttr(instance.pynode, "deformationRig")) self.assertTrue(pm.hasAttr(instance.pynode, "geometryGroup")) self.assertTrue(pm.hasAttr(instance.pynode, "locatorsGroup")) self.assertTrue(pm.hasAttr(instance.pynode, "worldLocator")) # Main groups self.assertEqual(str(instance.control_rig), static.CharacterMembers.control_rig.value) self.assertEqual(str(instance.deformation_rig), static.CharacterMembers.deformation_rig.value) self.assertEqual(str(instance.geometry_grp), static.CharacterMembers.geometry.value) self.assertEqual(str(instance.locators_grp), static.CharacterMembers.locators.value) self.assertTrue(pm.objExists(instance.world_locator)) # Data struct self.assertEqual(instance.side, "char") self.assertEqual(instance.name, "character") self.assertEqual(instance.tag, "character") # Save test scene pm.renameFile(self.get_temp_filename("character_component_test_instance_from_meta.ma")) pm.saveFile(f=1) if __name__ == "__main__": unittest.main(exit=False)
py
b40c151d1849e417d1a0d197923225e1394b01ef
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack.package import * class Ovito(Package): """OVITO is a scientific visualization and analysis software for atomistic and particle simulation data. It helps scientists gain better insights into materials phenomena and physical processes. OVITO Basic is freely available for all major platforms under an open source license. It has served in a growing number of computational simulation studies as a powerful tool to analyze, understand and illustrate simulation results.""" homepage = "https://www.ovito.org" url = "https://www.ovito.org/download/master/ovito-basic-3.6.0-x86_64.tar.xz" version('3.6.0', '6ac43a3a39b1ec3cccab577602756a8b7010cc1f1f046c4f6a939590d12f0339') def install(self, spec, prefix): # Once we've unpacked the tarball, copy it's contents to the prefix copy_tree('.', prefix)
py
b40c173c96aee151966dccb45ad06d09a181ad5d
# Authors: Soledad Galli <[email protected]> # License: BSD 3 clause from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier from sklearn.model_selection import GridSearchCV from feature_engine.variable_manipulation import _define_variables from feature_engine.base_transformers import BaseNumericalTransformer class DecisionTreeDiscretiser(BaseNumericalTransformer): """ The DecisionTreeDiscretiser() divides continuous numerical variables into discrete, finite, values estimated by a decision tree. The methods is inspired by the following article from the winners of the KDD 2009 competition: http://www.mtome.com/Publications/CiML/CiML-v3-book.pdf At the moment, this transformer only works for binary classification or regression. Multi-class classification is not supported. The DecisionTreeDiscretiser() works only with numerical variables. A list of variables can be passed as an argument. Alternatively, the discretiser will automatically select all numerical variables. The DecisionTreeDiscretiser() first trains a decision tree for each variable, fit. The DecisionTreeDiscretiser() then transforms the variables, that is, makes predictions based on the variable values, using the trained decision tree, transform. Parameters ---------- cv : int, default=3 Desired number of cross-validation fold to be used to fit the decision tree. scoring: str, default='neg_mean_squared_error' Desired metric to optimise the performance for the tree. Comes from sklearn metrics. See DecisionTreeRegressor or DecisionTreeClassifier model evaluation documentation for more options: https://scikit-learn.org/stable/modules/model_evaluation.html variables : list The list of numerical variables that will be transformed. If None, the discretiser will automatically select all numerical type variables. regression : boolean, default=True Indicates whether the discretiser should train a regression or a classification decision tree. param_grid : dictionary, default=None The list of parameters over which the decision tree should be optimised during the grid search. The param_grid can contain any of the permitted parameters for Scikit-learn's DecisionTreeRegressor() or DecisionTreeClassifier(). If None, then param_grid = {'max_depth': [1, 2, 3, 4]} random_state : int, default=None The random_state to initialise the training of the decision tree. It is one of the parameters of the Scikit-learn's DecisionTreeRegressor() or DecisionTreeClassifier(). For reproducibility it is recommended to set the random_state to an integer. """ def __init__( self, cv=3, scoring="neg_mean_squared_error", variables=None, param_grid=None, regression=True, random_state=None, ): if param_grid is None: param_grid = {"max_depth": [1, 2, 3, 4]} if not isinstance(cv, int) or cv < 0: raise ValueError("cv can only take only positive integers") if not isinstance(regression, bool): raise ValueError("regression can only take True or False") self.cv = cv self.scoring = scoring self.regression = regression self.variables = _define_variables(variables) self.param_grid = param_grid self.random_state = random_state def fit(self, X, y): """ Fits the decision trees. One tree per variable to be transformed. Parameters ---------- X : pandas dataframe of shape = [n_samples, n_features] The training input samples. Can be the entire dataframe, not just the variables to transform. y : pandas series. Target variable. Required to train the decision tree. Attributes ---------- binner_dict_: dictionary The dictionary containing the {variable: fitted tree} pairs. scores_dict_ : dictionary The score of the best decision tree, over the train set. Provided in case the user wishes to understand the performance of the decision tree. """ # check input dataframe X = super().fit(X, y) self.binner_dict_ = {} self.scores_dict_ = {} for var in self.variables: if self.regression: model = DecisionTreeRegressor(random_state=self.random_state) else: model = DecisionTreeClassifier(random_state=self.random_state) tree_model = GridSearchCV( model, cv=self.cv, scoring=self.scoring, param_grid=self.param_grid ) # fit the model to the variable tree_model.fit(X[var].to_frame(), y) self.binner_dict_[var] = tree_model self.scores_dict_[var] = tree_model.score(X[var].to_frame(), y) self.input_shape_ = X.shape return self def transform(self, X): """ Returns the predictions of the tree, based of the variable original values. The tree outcome is finite, aka, discrete. Parameters ---------- X : pandas dataframe of shape = [n_samples, n_features] The input samples. Returns ------- X_transformed : pandas dataframe of shape = [n_samples, n_features] The dataframe with transformed variables. """ # check input dataframe and if class was fitted X = super().transform(X) for feature in self.variables: if self.regression: X[feature] = self.binner_dict_[feature].predict(X[feature].to_frame()) else: tmp = self.binner_dict_[feature].predict_proba(X[feature].to_frame()) X[feature] = tmp[:, 1] return X
py
b40c17d093a863c6056e226d5d31141ef2f3a963
import datetime from typing import Dict, Optional def handle_result( created_on: datetime.datetime, category: str, test_suite: str, test_name: str, status: str, results: Dict, artifacts: Dict, last_logs: str, team: str, ) -> Optional[str]: assert test_suite == "xgboost_tests" time_taken = results.get("time_taken", float("inf")) num_terminated = results.get("trial_states", {}).get("TERMINATED", 0) if test_name in ["distributed_api_test", "ft_small_elastic", "ft_small_nonelastic"]: if not status == "finished": return f"Test script did not finish successfully ({status})." return None elif test_name.startswith("tune_"): msg = "" if test_name == "tune_small": target_terminated = 4 target_time = 90 elif test_name == "tune_4x32": target_terminated = 4 target_time = 120 elif test_name == "tune_32x4": target_terminated = 32 target_time = 600 else: return None if num_terminated < target_terminated: msg += ( f"Some trials failed " f"(num_terminated={num_terminated} < {target_terminated}). " ) if time_taken > target_time: msg += ( f"Took too long to complete " f"(time_taken={time_taken} > {target_time}). " ) return msg or None else: # train scripts if test_name == "train_small": # Leave a couple of seconds for ray connect setup # (without connect it should finish in < 30) target_time = 45 elif test_name == "train_moderate": target_time = 60 elif test_name == "train_gpu": target_time = 40 else: return None if time_taken > target_time: return ( f"Took too long to complete " f"(time_taken={time_taken:.2f} > {target_time}). " ) return None
py
b40c19df5b2707e95a784e1ca7255ed71fcea1e4
import copy import datetime import unittest from unittest import mock from unittest.mock import Mock, MagicMock from freezegun import freeze_time from airflow.models import TaskInstance from airflow.models import Connection from airflow.settings import Session from airflow.utils import timezone from airflow.utils.state import State from sentry_sdk import configure_scope from sentry_airflow.hooks.sentry_hook import ( SentryHook, get_task_instances, add_tagging, add_breadcrumbs, get_dsn, ) EXECUTION_DATE = timezone.utcnow() DAG_ID = "test_dag" TASK_ID = "test_task" OPERATOR = "test_operator" RUN_ID = "example-run-id" STATE = State.SUCCESS DURATION = None TEST_SCOPE = { "dag_id": DAG_ID, "task_id": TASK_ID, "execution_date": EXECUTION_DATE, "operator": OPERATOR, } TASK_DATA = TEST_SCOPE.copy() TASK_DATA.update({"state": STATE, "operator": OPERATOR, "duration": DURATION}) CRUMB_DATE = datetime.datetime(2019, 5, 15) CRUMB = { "timestamp": CRUMB_DATE, "type": "default", "category": "completed_tasks", "data": TASK_DATA, "level": "info", } class MockQuery: """ Mock Query for when session is called. """ def __init__(self, task_instance): task_instance.state = STATE self.arr = [task_instance] def filter(self, *args, **kwargs): return self def all(self): return self.arr def first(self): return self.arr[0] def delete(self): pass # TODO: Update to use pytest fixtures class TestSentryHook(unittest.TestCase): @mock.patch("sentry_airflow.hooks.sentry_hook.SentryHook.get_connection") def setUp(self, mock_get_connection): self.assertEqual(TaskInstance._sentry_integration_, True) mock_get_connection.return_value = Connection(host="https://[email protected]/123") self.sentry_hook = SentryHook("sentry_default") self.assertEqual(TaskInstance._sentry_integration_, True) self.dag = Mock(dag_id=DAG_ID) self.dag.task_ids = [TASK_ID] self.task = Mock(dag=self.dag, dag_id=DAG_ID, task_id=TASK_ID) self.task.__class__.__name__ = OPERATOR self.session = Session() self.ti = TaskInstance(self.task, execution_date=EXECUTION_DATE) self.ti.operator = OPERATOR self.session.query = MagicMock(return_value=MockQuery(self.ti)) def test_add_tags(self): """ Test adding tags. """ add_tagging(self.ti, run_id=RUN_ID) with configure_scope() as scope: for key, value in scope._tags.items(): if key is "executor": self.assertEqual(value, "SequentialExecutor") elif key is "run_id": self.assertEqual(value, RUN_ID) else: self.assertEqual(TEST_SCOPE[key], value) def test_get_task_instances(self): """ Test getting instances that have already completed. """ ti = get_task_instances(DAG_ID, [TASK_ID], EXECUTION_DATE, self.session) self.assertEqual(ti[0], self.ti) @freeze_time(CRUMB_DATE.isoformat()) def test_add_breadcrumbs(self): """ Test adding breadcrumbs. """ add_breadcrumbs(self.ti, self.session) with configure_scope() as scope: test_crumb = scope._breadcrumbs.pop() self.assertEqual(CRUMB, test_crumb) def test_get_dsn_host(self): """ Test getting dsn just from host """ conn = Connection(host="https://[email protected]/123") dsn = get_dsn(conn) self.assertEqual(dsn, "https://[email protected]/123") def test_get_dsn_env_var(self): """ Test getting dsn from host, conn_type, login and schema """ conn = Connection( conn_type="http", login="bar", host="getsentry.io", schema="987" ) dsn = get_dsn(conn) self.assertEqual(dsn, "http://[email protected]/987") def test_get_dsn_from_host_with_none(self): """ Test getting dsn from host if other parameters are None """ conn = Connection( conn_type="http", login=None, host="https://[email protected]/123" ) dsn = get_dsn(conn) self.assertEqual(dsn, "https://[email protected]/123")
py
b40c1ac4d302b2063c07b44e43dca21aed22c531
from functools import wraps def exception_resistant(func): num_fails = 0 max_fails = 6 @wraps(func) def wrapper(*args, **kwargs): nonlocal num_fails func_name = func.__name__ try: return func(*args, **kwargs) except Exception as e: num_fails += 1 if num_fails == 1: print(('Something went wrong in `{}`. ' + 'The process will continue to ' + 'execute.').format(func_name)) if num_fails <= max_fails: print('`{}`: {}'.format(func_name, e)) elif num_fails == max_fails + 1: print(('The rest of the `{}` errors ' + 'are hidden.').format(func_name)) return wrapper
py
b40c1b502ebedec37cb317db228aa1da88e2c776
# # Copyright (c) 2022 Airbyte, Inc., all rights reserved. # import sys from airbyte_cdk.entrypoint import launch from source_file import SourceFile if __name__ == "__main__": source = SourceFile() launch(source, sys.argv[1:])
py
b40c1c164a052154aff730f1abd73f8c3c082214
from multiprocessing import Pool import time COUNT = 50000000 def countdown(n): while n>0: n -= 1 if __name__ == '__main__': pool = Pool(processes=2) start = time.time() r1 = pool.apply_async(countdown, [COUNT//2]) r2 = pool.apply_async(countdown, [COUNT//2]) pool.close() pool.join() end = time.time() print('Time taken in seconds -', end - start) # output = 'Time taken in seconds - ' 1.8036038875579834
py
b40c1d3bf94079d0093ced566458026d28b477ba
from django.contrib import admin from .base_admin import BaseAttachmentAdmin from .models import Attachment class AttachmentAdmin(BaseAttachmentAdmin): list_display = ('id', 'file', 'name', 'download_link', 'download_key') admin.site.register(Attachment, AttachmentAdmin)
py
b40c1d600ad797037c275aab02b8c35ec1bf77cf
def entity_data_cleanse(entity: str, type: str, term: str, ): """ Ignores twitter handles, quantity, date, original search term, links """ return "@" not in entity and \ type != "QUANTITY" and \ type != "DATE" and \ entity != term.lower() and \ "http:" not in entity and \ "https:" not in entity
py
b40c1d7da44111860df2a8c86b12fa9325373318
# Generated by Django 4.0.2 on 2022-02-10 08:15 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Account', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('address', models.CharField(max_length=100)), ('balance', models.IntegerField()), ], ), ]
py
b40c1daf8bb57831668ff6f18130452e2025bf4d
__author__ = 'admin' class SessionHelper: def __init__(self, app): self.app = app def login(self, username, password): wd = self.app.wd self.app.navigation.open_home_page() # login wd.find_element_by_name("user").click() wd.find_element_by_name("user").clear() wd.find_element_by_name("user").send_keys(username) wd.find_element_by_name("pass").click() wd.find_element_by_name("pass").clear() wd.find_element_by_name("pass").send_keys(password) wd.find_element_by_css_selector("input[type=\"submit\"]").click() def safe_login(self, username, password): # logout wd = self.app.wd if self.is_logged_in(): if self.is_logged_in_as_user(username): return else: self.logout() self.login(username, password) def logout(self): # logout wd = self.app.wd wd.find_element_by_link_text("Logout").click() def safe_logout(self): # logout wd = self.app.wd if self.is_logged_in(): self.logout() def is_logged_in(self): wd = self.app.wd return len(wd.find_elements_by_link_text("Logout")) > 0 def is_logged_in_as_user(self, username): wd = self.app.wd return wd.find_element_by_xpath("//div/div[1]/form/b").text == "("+ username +")"
py
b40c1dd2ce522c2f2497e93d9095e9beefcec550
class ListSecure(list): def get(self, index, default=None): try: return self.__getitem__(index) except IndexError: return default
py
b40c1f867009f65f2f54e02d23ab959f2094c4a1
""" Description: Find peptide which matches across the different conditions """ # Import packages import pandas as pd from tqdm import tqdm def find_matching_hits(hits37: pd.DataFrame, hits42: pd.DataFrame, hits42zn: pd.DataFrame, output: str) -> pd.DataFrame: hit_list: pd.DataFrame = pd.DataFrame(columns=['Sequence', 'Modifications', 'Start', 'End', 'Charge', '14N m/z', '15N m/z', '14N Mass (Exp)', '15N Mass (Exp)']) for _, hit37 in tqdm(hits37.iterrows(), total=hits37.shape[0]): for _, hit42 in hits42.iterrows(): if hit37['Sequence'] == hit42['Sequence'] and \ hit37['Modifications'] == hit42['Modifications'] and \ hit37['Start'] == hit42['Start']: for _, hit42zn in hits42zn.iterrows(): if hit37['Sequence'] == hit42['Sequence'] == hit42zn['Sequence'] and \ hit37['Modifications'] == hit42['Modifications'] == hit42zn['Modifications'] and \ hit37['Start'] == hit42['Start'] == hit42zn['Start']: hit_list = hit_list.append(pd.DataFrame([[hit37['Sequence'], hit37['Modifications'], hit37['Start'], hit37['End'], hit37['Charge'], hit37['14N m/z'], hit37['15N m/z'], hit37['14N Mass (Exp)'], hit37['15N Mass (Exp)']]], columns=['Sequence', 'Modifications', 'Start', 'End', 'Charge', '14N m/z', '15N m/z', '14N Mass (Exp)', '15N Mass (Exp)']), ignore_index=True) hit_list = hit_list.drop_duplicates(subset=['Sequence', 'Modifications']) hit_list = hit_list.sort_values(by=['Start']) hit_list = hit_list.reset_index(drop=True) hit_list.to_excel(output, sheet_name="List") if __name__ == '__main__': hits37_df: pd.DataFrame = pd.read_excel(io=r"C:\Users\Mads\Desktop\ISA_Spring_2021\Autodigestion\Hits\hits_37.xlsx", sheet_name="List") hits42_df: pd.DataFrame = pd.read_excel(io=r"C:\Users\Mads\Desktop\ISA_Spring_2021\Autodigestion\Hits\hits_42.xlsx", sheet_name="List") hits42_zn_df: pd.DataFrame = pd.read_excel(io=r"C:\Users\Mads\Desktop\ISA_Spring_2021\Autodigestion\Hits\hits_42_Zn" r".xlsx", sheet_name="List") output_file: str = r"C:\Users\Mads\Desktop\ISA_Spring_2021\Autodigestion\Hits\MatchingHits.xlsx" matching_hits: pd.DataFrame = find_matching_hits(hits37=hits37_df, hits42=hits42_df, hits42zn=hits42_zn_df, output=output_file)
py
b40c1fcaa94f3641a2cc32477d9e9b5812113d15
r"""Functions for the branching ratios and effective lifetimes of the leptonic decays $B_q \to \ell^+\ell^-$, where $q=d$ or $s$ and $\ell=e$, $\mu$. or $\tau$.""" from math import pi,sqrt from flavio.physics import ckm from flavio.physics.running import running from flavio.physics.bdecays.common import meson_quark, lambda_K from flavio.classes import Observable, Prediction from flavio.config import config from flavio.physics.bdecays.wilsoncoefficients import wctot_dict def br_lifetime_corr(y, ADeltaGamma): r"""Correction factor relating the experimentally measured branching ratio (time-integrated) to the theoretical one (instantaneous), see e.g. eq. (8) of arXiv:1204.1735. Parameters ---------- - `y`: relative decay rate difference, $y_q = \tau_{B_q} \Delta\Gamma_q /2$ - `ADeltaGamma`: $A_{\Delta\Gamma_q}$ as defined, e.g., in arXiv:1204.1735 Returns ------- $\frac{1-y_q^2}{1+A_{\Delta\Gamma_q} y_q}$ """ return (1 - y**2)/(1 + ADeltaGamma*y) def amplitudes(par, wc, B, l1, l2): r"""Amplitudes P and S entering the $B_q\to\ell_1^+\ell_2^-$ observables. Parameters ---------- - `par`: parameter dictionary - `B`: should be `'Bs'` or `'B0'` - `l1` and `l2`: should be `'e'`, `'mu'`, or `'tau'` Returns ------- `(P, S)` where for the special case `l1 == l2` one has - $P = \frac{2m_\ell}{m_{B_q}} (C_{10}-C_{10}') + m_{B_q} (C_P-C_P')$ - $S = m_{B_q} (C_S-C_S')$ """ scale = config['renormalization scale']['bll'] # masses ml1 = par['m_'+l1] ml2 = par['m_'+l2] mB = par['m_'+B] mb = running.get_mb(par, scale, nf_out=5) # get the mass of the spectator quark if B=='Bs': mspec = running.get_ms(par, scale, nf_out=5) elif B=='B0': mspec = running.get_md(par, scale, nf_out=5) # Wilson coefficients qqll = meson_quark[B] + l1 + l2 # For LFV expressions see arXiv:1602.00881 eq. (5) C9m = wc['C9_'+qqll] - wc['C9p_'+qqll] # only relevant for l1 != l2! C10m = wc['C10_'+qqll] - wc['C10p_'+qqll] CPm = wc['CP_'+qqll] - wc['CPp_'+qqll] CSm = wc['CS_'+qqll] - wc['CSp_'+qqll] P = (ml2 + ml1)/mB * C10m + mB * mb/(mb + mspec) * CPm S = (ml2 - ml1)/mB * C9m + mB * mb/(mb + mspec) * CSm return P, S def ADeltaGamma(par, wc, B, lep): P, S = amplitudes(par, wc, B, lep, lep) # cf. eq. (17) of arXiv:1204.1737 return ((P**2).real - (S**2).real)/(abs(P)**2 + abs(S)**2) def br_inst(par, wc, B, l1, l2): r"""Branching ratio of $B_q\to\ell_1^+\ell_2^-$ in the absence of mixing. Parameters ---------- - `par`: parameter dictionary - `B`: should be `'Bs'` or `'B0'` - `lep`: should be `'e'`, `'mu'`, or `'tau'` """ # paramaeters GF = par['GF'] alphaem = running.get_alpha(par, 4.8)['alpha_e'] ml1 = par['m_'+l1] ml2 = par['m_'+l2] mB = par['m_'+B] tauB = par['tau_'+B] fB = par['f_'+B] # appropriate CKM elements if B == 'Bs': xi_t = ckm.xi('t','bs')(par) elif B == 'B0': xi_t = ckm.xi('t','bd')(par) N = xi_t * 4*GF/sqrt(2) * alphaem/(4*pi) beta = sqrt(lambda_K(mB**2,ml1**2,ml2**2))/mB**2 beta_p = sqrt(1 - (ml1 + ml2)**2/mB**2) beta_m = sqrt(1 - (ml1 - ml2)**2/mB**2) prefactor = abs(N)**2 / 32. / pi * mB**3 * tauB * beta * fB**2 P, S = amplitudes(par, wc, B, l1, l2) return prefactor * ( beta_m**2 * abs(P)**2 + beta_p**2 * abs(S)**2 ) def br_timeint(par, wc, B, l1, l2): r"""Time-integrated branching ratio of $B_q\to\ell^+\ell^-$.""" if l1 != l2: raise ValueError("Time-integrated branching ratio only defined for equal lepton flavours") lep = l1 br0 = br_inst(par, wc, B, lep, lep) y = par['DeltaGamma/Gamma_'+B]/2. ADG = ADeltaGamma(par, wc, B, lep) corr = br_lifetime_corr(y, ADG) return br0 / corr def bqll_obs(function, wc_obj, par, B, l1, l2): scale = config['renormalization scale']['bll'] label = meson_quark[B]+l1+l2 if l1 == l2: # include SM contributions for LF conserving decay wc = wctot_dict(wc_obj, label, scale, par) else: wc = wc_obj.get_wc(label, scale, par) return function(par, wc, B, l1, l2) def bqll_obs_lsum(function, wc_obj, par, B, l1, l2): if l1 == l2: raise ValueError("This function is defined only for LFV decays") scale = config['renormalization scale']['bll'] wc12 = wc_obj.get_wc(meson_quark[B]+l1+l2, scale, par) wc21 = wc_obj.get_wc(meson_quark[B]+l2+l1, scale, par) return function(par, wc12, B, l1, l2) + function(par, wc21, B, l2, l1) def bqll_obs_function(function, B, l1, l2): return lambda wc_obj, par: bqll_obs(function, wc_obj, par, B, l1, l2) def bqll_obs_function_lsum(function, B, l1, l2): return lambda wc_obj, par: bqll_obs_lsum(function, wc_obj, par, B, l1, l2) # Bs -> l+l- effective lifetime def tau_ll(wc, par, B, lep): r"""Effective B->l+l- lifetime as defined in eq. (26) of arXiv:1204.1737 . This formula one either gets by integrating eq. (21) or by inverting eq. (27) of arXiv:1204.1737. Parameters ---------- - `wc` : dict of Wilson coefficients - `par` : parameter dictionary - `B` : should be `'Bs'` or `'B0'` - `lep` : lepton: 'e', 'mu' or 'tau' Returns ------- $-\frac{\tau_{B_s} \left(y_s^2+2 A_{\Delta\Gamma_q} ys+1\right)}{\left(ys^2-1\right) (A_{\Delta\Gamma_q} ys+1)}$ """ ADG = ADeltaGamma(par, wc, B, lep) y = .5*par['DeltaGamma/Gamma_'+B] tauB = par['tau_'+B] return -(((1 + y**2 + 2*y*ADG)*tauB)/((-1 + y**2)*(1 + y*ADG))) def tau_ll_func(wc_obj, par, B, lep): scale = config['renormalization scale']['bll'] label = meson_quark[B]+lep+lep wc = wctot_dict(wc_obj, label, scale, par) return tau_ll(wc, par, B, lep) def ADG_func(wc_obj, par, B, lep): scale = config['renormalization scale']['bll'] label = meson_quark[B]+lep+lep wc = wctot_dict(wc_obj, label, scale, par) return ADeltaGamma(par, wc, B, lep) def ADeltaGamma_func(B, lep): def ADG_func(wc_obj, par): scale = config['renormalization scale']['bll'] label = meson_quark[B]+lep+lep wc = wctot_dict(wc_obj, label, scale, par) return ADeltaGamma(par, wc, B, lep) return ADG_func # Observable and Prediction instances _tex = {'e': 'e', 'mu': '\mu', 'tau': r'\tau'} for l in ['e', 'mu', 'tau']: _process_taxonomy = r'Process :: $b$ hadron decays :: FCNC decays :: $B\to\ell^+\ell^-$ :: $' # For the B^0 decay, we take the time-integrated branching ratio _obs_name = "BR(Bs->"+l+l+")" _obs = Observable(_obs_name) _process_tex = r"B_s\to "+_tex[l]+r"^+"+_tex[l]+r"^-" _obs.set_description(r"Time-integrated branching ratio of $" + _process_tex + r"$.") _obs.tex = r"$\overline{\text{BR}}(" + _process_tex + r")$" _obs.add_taxonomy(_process_taxonomy + _process_tex + r"$") Prediction(_obs_name, bqll_obs_function(br_timeint, 'Bs', l, l)) # Add the effective lifetimes for Bs _obs_name = 'tau_'+l+l _obs = Observable(_obs_name) _obs.set_description(r"Effective lifetime for $"+ _process_tex + r"$.") _obs.tex = r"$\tau_{B_s \to " +_tex[l] +_tex[l] + "}$" _obs.add_taxonomy(_process_taxonomy + _process_tex + r"$") if l=='e': Prediction(_obs_name, lambda wc_obj, par: tau_ll_func(wc_obj, par, 'Bs', 'e')) if l=='mu': Prediction(_obs_name, lambda wc_obj, par: tau_ll_func(wc_obj, par, 'Bs', 'mu')) if l=='tau': Prediction(_obs_name, lambda wc_obj, par: tau_ll_func(wc_obj, par, 'Bs', 'tau')) _obs_name = 'ADeltaGamma(Bs->'+l+l+')' _obs = Observable(_obs_name) _process_tex = r"B_s\to "+_tex[l]+r"^+"+_tex[l]+r"^-" _obs.set_description(r"Mass-eigenstate rate asymmetry in $" + _process_tex + r"$.") _obs.tex = r"$A_{\Delta\Gamma}(" + _process_tex + r")$" _obs.add_taxonomy(_process_taxonomy + _process_tex + r"$") Prediction(_obs_name, ADeltaGamma_func('Bs', l)) # For the B^0 decay, we take the prompt branching ratio since DeltaGamma is negligible _obs_name = "BR(B0->"+l+l+")" _obs = Observable(_obs_name) _process_tex = r"B^0\to "+_tex[l]+r"^+"+_tex[l]+r"^-" _obs.set_description(r"Branching ratio of $" + _process_tex + r"$") _obs.tex = r"$\text{BR}(" + _process_tex + r")$" _obs.add_taxonomy(_process_taxonomy + _process_tex + r"$") Prediction(_obs_name, bqll_obs_function(br_inst, 'B0', l, l)) _tex_l = {'e': 'e', 'mu': r'\mu', 'tau': r'\tau'} _tex_B = {'B0': r'\bar B^0', 'Bs': r'\bar B_s'} _tex_lfv = {'emu': r'e^+\mu^-', 'mue': r'\mu^+e^-', 'taue': r'\tau^+e^-', 'etau': r'e^+\tau^-', 'taumu': r'\tau^+\mu^-', 'mutau': r'\mu^+\tau^-'} for ll_1 in [('e','mu'), ('e','tau'), ('mu','tau'),]: for B in ['Bs', 'B0']: ll_2 = ll_1[::-1] # now if ll_1 is (e, mu), ll_2 is (mu, e) for ll in [ll_1, ll_2]: # the individual BRs _obs_name = "BR("+B+"->"+''.join(ll)+")" _obs = Observable(_obs_name) _process_tex = _tex_B[B]+r"\to "+_tex_lfv[''.join(ll)] _obs.set_description(r"Branching ratio of $" + _process_tex + r"$") _obs.tex = r"$\text{BR}(" + _process_tex + r")$" _obs.add_taxonomy(r'Process :: $b$ hadron decays :: FCNC decays :: $B\to\ell^+\ell^-$ :: $' + _process_tex + r'$') Prediction(_obs_name, bqll_obs_function(br_inst, B, ll[0], ll[1])) # the individual BR where ll' and l'l are added _obs_name = "BR("+B+"->"+''.join(ll_1)+","+''.join(ll_2)+")" _obs = Observable(_obs_name) for ll in [ll_1, ll_1]: _process_tex = _tex_B[B]+r"\to "+_tex_lfv[''.join(ll)] _obs.add_taxonomy(r'Process :: $b$ hadron decays :: FCNC decays :: $B\to\ell^+\ell^-$ :: $' + _process_tex + r'$') _process_tex = _tex_B[B]+r"\to "+_tex_l[ll_1[0]]+r"^\pm "+_tex_l[ll_1[1]]+r"^\mp" _obs.tex = r"$\text{BR}(" + _process_tex + r")$" _obs.set_description(r"Branching ratio of $" + _process_tex + r"$") Prediction(_obs_name, bqll_obs_function_lsum(br_inst, B, ll_1[0], ll_1[1]))
py
b40c203a3e0b436f61564e616a361f4692e9a98c
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import re import sys from pathlib import Path from typing import Set from setuptools import find_packages, setup def read_reqs(reqs_path: Path) -> Set[str]: return { r for r in re.findall( r"(^[^#\n-][\w\[,\]]+[-~>=<.\w]*)", reqs_path.read_text(), re.MULTILINE, ) if isinstance(r, str) } CURRENT_DIR = Path(sys.argv[0] if __name__ == "__main__" else __file__).resolve().parent NAME = "simcore-service-api-server" VERSION = (CURRENT_DIR / "VERSION").read_text().strip() AUTHORS = "Pedro Crespo-Valero (pcrespov)" DESCRIPTION = "Platform's API Server for external clients" README = (CURRENT_DIR / "README.md").read_text() PROD_REQUIREMENTS = tuple( read_reqs(CURRENT_DIR / "requirements" / "_base.txt") | { "simcore-models-library", "simcore-postgres-database", "simcore-sdk>=1.1.0", "simcore-service-library[fastapi]", "simcore-settings-library", } ) TEST_REQUIREMENTS = tuple(read_reqs(CURRENT_DIR / "requirements" / "_test.txt")) SETUP = dict( name=NAME, version=VERSION, author=AUTHORS, description=DESCRIPTION, long_description=README, license="MIT license", python_requires="~=3.8", packages=find_packages(where="src"), package_dir={ "": "src", }, include_package_data=True, install_requires=PROD_REQUIREMENTS, test_suite="tests", tests_require=TEST_REQUIREMENTS, extras_require={"test": TEST_REQUIREMENTS}, entry_points={ "console_scripts": [ "simcore-service-api-server = simcore_service_api_server.cli:main", ], }, ) if __name__ == "__main__": setup(**SETUP)
py
b40c21409340f6e4185715473c03801c8cd77f57
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: list_event.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.protobuf import struct_pb2 as google_dot_protobuf_dot_struct__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='list_event.proto', package='proxy', syntax='proto3', serialized_options=None, serialized_pb=_b('\n\x10list_event.proto\x12\x05proxy\x1a\x1cgoogle/protobuf/struct.proto\"f\n\x10ListEventRequest\x12\x11\n\tclusterId\x18\x01 \x01(\t\x12\x11\n\tnamespace\x18\x02 \x01(\t\x12\x15\n\rfieldSelector\x18\x03 \x01(\t\x12\x15\n\rlabelSelector\x18\x04 \x01(\t\"s\n\x18ListEventResponseWrapper\x12\x0c\n\x04\x63ode\x18\x01 \x01(\x05\x12\x13\n\x0b\x63odeExplain\x18\x02 \x01(\t\x12\r\n\x05\x65rror\x18\x03 \x01(\t\x12%\n\x04\x64\x61ta\x18\x04 \x01(\x0b\x32\x17.google.protobuf.Structb\x06proto3') , dependencies=[google_dot_protobuf_dot_struct__pb2.DESCRIPTOR,]) _LISTEVENTREQUEST = _descriptor.Descriptor( name='ListEventRequest', full_name='proxy.ListEventRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='clusterId', full_name='proxy.ListEventRequest.clusterId', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='namespace', full_name='proxy.ListEventRequest.namespace', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='fieldSelector', full_name='proxy.ListEventRequest.fieldSelector', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='labelSelector', full_name='proxy.ListEventRequest.labelSelector', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=57, serialized_end=159, ) _LISTEVENTRESPONSEWRAPPER = _descriptor.Descriptor( name='ListEventResponseWrapper', full_name='proxy.ListEventResponseWrapper', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='code', full_name='proxy.ListEventResponseWrapper.code', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='codeExplain', full_name='proxy.ListEventResponseWrapper.codeExplain', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='error', full_name='proxy.ListEventResponseWrapper.error', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data', full_name='proxy.ListEventResponseWrapper.data', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=161, serialized_end=276, ) _LISTEVENTRESPONSEWRAPPER.fields_by_name['data'].message_type = google_dot_protobuf_dot_struct__pb2._STRUCT DESCRIPTOR.message_types_by_name['ListEventRequest'] = _LISTEVENTREQUEST DESCRIPTOR.message_types_by_name['ListEventResponseWrapper'] = _LISTEVENTRESPONSEWRAPPER _sym_db.RegisterFileDescriptor(DESCRIPTOR) ListEventRequest = _reflection.GeneratedProtocolMessageType('ListEventRequest', (_message.Message,), { 'DESCRIPTOR' : _LISTEVENTREQUEST, '__module__' : 'list_event_pb2' # @@protoc_insertion_point(class_scope:proxy.ListEventRequest) }) _sym_db.RegisterMessage(ListEventRequest) ListEventResponseWrapper = _reflection.GeneratedProtocolMessageType('ListEventResponseWrapper', (_message.Message,), { 'DESCRIPTOR' : _LISTEVENTRESPONSEWRAPPER, '__module__' : 'list_event_pb2' # @@protoc_insertion_point(class_scope:proxy.ListEventResponseWrapper) }) _sym_db.RegisterMessage(ListEventResponseWrapper) # @@protoc_insertion_point(module_scope)
py
b40c2149ca0e86c92ec76209983036720d8d40c8
# from __future__ import division import stl_path from trex.stl.api import * import json import argparse import sys import time import math import imp from copy import deepcopy class Rate: def __init__(self, rate): """ A rate repressenting class. :parameters: rate: float Rate in bps """ self.rate = float(rate) def convert_percent_to_rate(self, percent_of_rate): """ Converts percent of the rate (defined in init) to an actual rate. :parameters: percent_of_rate: float Percentage of rate that defined when class initialized. :returns: float,Rate in bps """ return (float(percent_of_rate) / 100.00) * self.rate def convert_rate_to_percent_of_max_rate(self, rate_portion): """ Converts a rate in bps to percentage of rate that was defined in init. :parameters: rate_portion: float Rate in bps :returns: float, percentage """ return (float(rate_portion) / float(self.rate)) * 100.00 def is_close(self, rate, rel_tol=0.05, abs_tol=1000000): """ Returns if a rate is close to the rate that was defined in init. :parameters: rate: float Rate to compare to the rate that was defined upon initialization. rel_tol: float is a relative tolerance, it is multiplied by the greater of the magnitudes of the two arguments; as the values get larger, so does the allowed difference between them while still considering them equal. Default Value = 5%. abs_tol: int is an absolute tolerance that is applied as-is in all cases. If the difference is less than either of those tolerances, the values are considered equal. Default value = 1 Mbit :returns: A boolean flag indicating it the given rate is close. """ return abs(self.rate-rate) <= max(rel_tol * max(abs(self.rate), abs(rate)), abs_tol) class NdrBenchConfig: def __init__(self, ports, title='Title', cores=1, iteration_duration=20.00, q_full_resolution=2.00, first_run_duration=20.00, pdr=0.1, pdr_error=1.0, ndr_results=1, max_iterations=10, max_latency=0, lat_tolerance=0, verbose=False, bi_dir=False, plugin_file=None, tunables={}, opt_binary_search=False, opt_binary_search_percentage=5, **kwargs): """ Configuration parameters for the benchmark. :parameters: ports: list List of ports to transmit. Even ports will transmit and odd ones will receive, unless bi-directional traffic. title: string Title of the benchmark. cores: int Number of cores. iteration_duration: float Duration of the iteration. q_full_resolution: float Percent of queue full allowed. first_run_duration: float Duration of the first run. pdr: float Percentage of drop rate. pdr_error: float Percentage of allowed error in pdr. ndr_results: int Calculates the benchmark at each point scaled linearly under NDR [1-10]. Number of points max_iterations: int Max number of iterations allowed. max_latency: int Max value of latency allowed in msec. lat_tolerance: int Percentage of latency packets allowed above max latency. Default value is 0 %. (Max Latency will be compared against total max) verbose: boolean Verbose mode bi_dir: boolean Bi-directional traffic if true, else uni-directional. plugin_file: string Path to the plugin file. tunables: dict Tunables for the plugin file. opt_binary_search: boolean Flag to indicate if to search using the optimized binary mode or not. opt_binary_search_percentage: int Percentage around assumed ndr allowed to search. kwargs: dict """ self.bi_dir = bi_dir # The sleep call divides the duration by 2 self.iteration_duration = (iteration_duration * 2) self.q_full_resolution = q_full_resolution self.first_run_duration = first_run_duration self.pdr = pdr # desired percent of drop-rate. pdr = 0 is NO drop-rate self.pdr_error = pdr_error self.ndr_results = ndr_results self.max_iterations = max_iterations self.verbose = verbose self.title = title self.cores = cores self.ports = list(ports) self.transmit_ports = [self.ports[i] for i in range(0, len(self.ports), 2)] self.receive_ports = [self.ports[i] for i in range(1, len(self.ports), 2)] if self.bi_dir: self.transmit_ports = self.ports self.receive_ports = self.ports self.transmit_core_masks = self.get_optimal_core_mask(num_of_cores=self.cores, num_of_ports=len(self.ports)) self.plugin_file = plugin_file self.plugin_enabled = False if self.plugin_file is not None: self.plugin_enabled = True self.plugin = self.load_plugin(self.plugin_file) self.tunables = tunables self.opt_binary_search = opt_binary_search self.opt_binary_search_percentage = opt_binary_search_percentage self.latency = False self.max_latency = max_latency self.lat_tolerance = lat_tolerance self.max_latency_set = True if self.max_latency != 0 else False def get_optimal_core_mask(self, num_of_cores, num_of_ports): """ Optimal core mask in case of bi directional traffic. :parameters: num_of_cores: int Number of cores per dual port num_of_ports: int Number of ports :returns: List of masks per each port to offer optimal traffic. """ if not self.bi_dir: return None else: # Half of the cores are given to the first port and the second half to second port. # In case of an odd number of cores, one core (the middle one) is shared. half_of_cores = int(math.ceil(num_of_cores / 2.00)) first_mask = (1 << num_of_cores) - (1 << (num_of_cores - half_of_cores)) second_mask = (1 << half_of_cores) - 1 return [first_mask, second_mask] * int(num_of_ports / 2) @classmethod def load_plugin(cls, plugin_file): """ Load dynamically a plugin module so that we can provide the user with pre and post iteration API. :parameters: plugin_file: string Path to the plugin file. """ # check filename if not os.path.isfile(plugin_file): raise TRexError("File '{0}' does not exist".format(plugin_file)) basedir = os.path.dirname(plugin_file) sys.path.insert(0, basedir) try: file = os.path.basename(plugin_file).split('.')[0] module = __import__(file, globals(), locals(), [], 0) imp.reload(module) # reload the update plugin = module.register() return plugin except Exception as e: a, b, tb = sys.exc_info() x =''.join(traceback.format_list(traceback.extract_tb(tb)[1:])) + a.__name__ + ": " + str(b) + "\n" summary = "\nPython Traceback follows:\n\n" + x raise TRexError(summary) finally: sys.path.remove(basedir) def config_to_dict(self): """ Create a dictionary of the configuration. :returns: Dictionary of configurations """ config_dict = {'iteration_duration': self.iteration_duration, 'q_full_resolution': self.q_full_resolution, 'first_run_duration': self.first_run_duration, 'pdr': self.pdr, 'pdr_error': self.pdr_error, 'ndr_results': self.ndr_results, 'max_iterations': self.max_iterations, 'ports': self.ports, 'cores': self.cores, 'verbose': self.verbose, 'title': self.title, 'bi_dir' : self.bi_dir, 'plugin_file': self.plugin_file, 'tunables': self.tunables, 'opt_binary_search': self.opt_binary_search, 'opt_binary_search_percentage': self.opt_binary_search_percentage} return config_dict class NdrBenchResults: def __init__(self, config=None, results={}): """ NDR Bench Results :parameters: config: :class:`.NdrBenchConfig` User configuration of parameters. Default value is none. results: dict A dictionary containing partial or full results from a run. """ self.stats = dict(results) self.init_time = float(time.time()) self.config = config self.stats['total_iterations'] = 0 def update(self, updated_dict): """ Updates the elapsed time, and the stats of the class with the parameter :parameters: updated_dict: dict Dictionary that we use as an reference to update our stats. """ updated_dict['Elapsed Time'] = (float(time.time()) - self.init_time) self.stats.update(updated_dict) def convert_rate(self, rate_bps, packet=False): """ Converts rate from bps or pps to a string. :parameters: rate_bps: float Value of of rate in bps or pps based on the packet parameter. packet: boolean If true then the rate is PPS, else bps. :returns: Rate as a formatted string. """ converted = float(rate_bps) magnitude = 0 while converted > 1000.00: magnitude += 1 converted /= 1000.00 converted = round(converted, 2) if packet: postfix = "PPS" else: postfix = "bps" if magnitude == 0: return str(converted) + postfix elif magnitude == 1: converted = round(converted) return str(converted) + " K" + postfix elif magnitude == 2: return str(converted) + " M" + postfix elif magnitude == 3: return str(converted) + " G" + postfix def print_latency(self): """ Prints the latency stats in case there are any. """ try: for k in self.stats['latency'].keys(): print("Latency stats on port/pg_id :%d" % k) print (" Average :%0.2f" % self.stats['latency'][k]['average']) print (" Jitter :%0.2f" % self.stats['latency'][k]['jitter']) print (" Total Max :%0.2f" % self.stats['latency'][k]['total_max']) print (" Total Min :%0.2f" % self.stats['latency'][k]['total_min']) print (" Histogram :%s " % self.stats['latency'][k]['histogram']) except TypeError: pass def print_run_stats(self): """ Prints the T-REX stats after a run (transmission). """ if self.config.bi_dir: traffic_dir = "bi-directional " else: traffic_dir = "uni-directional" print("Elapsed Time :%0.2f seconds" % self.stats['Elapsed Time']) print("BW Per Core :%0.2f Gbit/Sec @100%% per core" % float(self.stats['bw_per_core'])) print("TX PPS %s :%s" % (traffic_dir, self.convert_rate(float(self.stats['tx_pps']), True))) print("RX PPS %s :%s" % (traffic_dir, self.convert_rate(float(self.stats['rx_pps']), True))) print("TX Utilization :%0.2f %%" % self.stats['tx_util']) print("TRex CPU :%0.2f %%" % self.stats['cpu_util']) print("Total TX L1 %s :%s " % (traffic_dir, self.convert_rate(float(self.stats['total_tx_L1'])))) print("Total RX L1 %s :%s " % (traffic_dir, self.convert_rate(float(self.stats['total_rx_L1'])))) print("Total TX L2 %s :%s " % (traffic_dir, self.convert_rate(float(self.stats['tx_bps'])))) print("Total RX L2 %s :%s " % (traffic_dir, self.convert_rate(float(self.stats['rx_bps'])))) if 'rate_difference' in self.stats: print("Distance from current Optimum :%0.2f %%" % self.stats['rate_difference']) if self.config.latency: self.print_latency() def print_iteration_data(self): """ Prints data regarding the current iteration. """ if 'title' in self.stats: print("\nTitle :%s" % self.stats['title']) if 'iteration' in self.stats: print("Iteration :{}".format(self.stats['iteration'])) print("Running Rate :%s" % self.convert_rate(float(self.stats['rate_tx_bps']))) print("Running Rate (%% of max) :%0.2f %%" % self.stats['rate_p']) print("Max Rate :%s " % self.convert_rate(float(self.stats['max_rate_bps']))) print("Drop Rate :%0.5f %% of oPackets" % self.stats['drop_rate_percentage']) print("Queue Full :%0.2f %% of oPackets" % self.stats['queue_full_percentage']) if self.config.latency and self.config.max_latency_set: print("Valid Latency :%s" % self.stats['valid_latency']) self.print_run_stats() def print_final(self): """ Prints the final data regarding where the NDR is found. """ if self.config.bi_dir: traffic_dir = "bi-directional " else: traffic_dir = "uni-directional" print("\nTitle :%s" % self.stats['title']) if 'iteration' in self.stats: print("Total Iterations :{}".format(self.stats['total_iterations'])) print("Max Rate :%s " % self.convert_rate(float(self.stats['max_rate_bps']))) print("Optimal P-Drop Rate :%s" % self.convert_rate(float(self.stats['rate_tx_bps']))) print("P-Drop Rate (%% of max) :%0.2f %%" % self.stats['rate_p']) print("Drop Rate at Optimal P-Drop Rate :%0.5f %% of oPackets" % self.stats['drop_rate_percentage']) print("Queue Full at Optimal P-Drop Rate :%0.2f %% of oPackets" % self.stats['queue_full_percentage']) if self.config.latency and self.config.max_latency_set: print("Valid Latency at Opt. P-Drop Rate :%s" % self.stats['valid_latency']) self.print_run_stats() for x in self.stats['ndr_points']: print("NDR(s) %s :%s " % (traffic_dir, self.convert_rate(x))) def to_json(self): """ Output the results to a json. """ total_output = {'results': self.stats, 'config': self.config.config_to_dict()} return json.dumps(total_output) @staticmethod def print_state(state, high_bound, low_bound): print("\n\nStatus :%s" % state) if high_bound: print("Interval :[%d,%d]" % (low_bound, high_bound)) def human_readable_dict(self): """ Return a human readable dictionary of the results. """ hu_dict = {'Queue Full [%]': str(round(self.stats['queue_full_percentage'], 2)) + "%", 'BW per core [Gbit/sec @100% per core]': str( round(float(self.stats['bw_per_core']), 2)) + 'Gbit/Sec @100% per core', 'RX [MPPS]': self.convert_rate(float(self.stats['rx_pps']), True), 'TX [MPPS]': self.convert_rate(float(self.stats['tx_pps']), True), 'Line Utilization [%]': str(round(self.stats['tx_util'], 2)), 'CPU Utilization [%]': str(round(self.stats['cpu_util'],2)), 'Total TX L1': self.convert_rate(float(self.stats['total_tx_L1'])), 'Total RX L1': self.convert_rate(float(self.stats['total_rx_L1'])), 'TX [bps]': self.convert_rate(float(self.stats['tx_bps'])), 'RX [bps]': self.convert_rate(float(self.stats['rx_bps'])), 'OPT TX Rate [bps]': self.convert_rate(float(self.stats['rate_tx_bps'])), 'OPT RX Rate [bps]': self.convert_rate(float(self.stats['rate_rx_bps'])), 'OPT Rate (Multiplier) [%]': str(self.stats['rate_p']), 'Max Rate [bps]': self.convert_rate(float(self.stats['max_rate_bps'])), 'Drop Rate [%]': str(round(self.stats['drop_rate_percentage'], 2)), 'Elapsed Time [Sec]': str(round(self.stats['Elapsed Time'], 2)), 'NDR points': [self.convert_rate(float(x)) for x in self.stats['ndr_points']], 'Total Iterations': self.stats.get('iteration', None), 'Title': self.stats['title'], 'latency': dict(self.stats['latency']), 'valid_latency': self.stats['valid_latency']} return hu_dict class NdrBench: def __init__(self, stl_client, config): """ NDR Bench :parameters: stl_client: :class:`.STLClient` STL Client config: :class:`.NdrBenchConfig` Configurations and parameters for the benchmark """ self.config = config self.results = NdrBenchResults(config) self.stl_client = stl_client self.results.update({'title': self.config.title}) self.opt_run_stats = {} self.opt_run_stats['rate_p'] = 0 # percent def plugin_pre_iteration(self, finding_max_rate, run_results=None, **kwargs): """ Plugin pre iteration wrapper in order to pass the plugin a deep copy of the run results, since the user might change the actual run results. Consult the Plugin API for more information. """ self.config.plugin.pre_iteration(finding_max_rate, deepcopy(run_results), **kwargs) def plugin_post_iteration(self, finding_max_rate, run_results, **kwargs): """ Plugin pre iteration wrapper in order to pass the plugin a deep copy of the run results, since the user might change the actual run results. Consult the Plugin API for more information. """ return self.config.plugin.post_iteration(finding_max_rate, deepcopy(run_results), **kwargs) def max_iterations_reached(self, current_run_stats, high_bound, low_bound): if current_run_stats['iteration'] == self.config.max_iterations: self.opt_run_stats.update(current_run_stats) if self.config.verbose: self.results.print_state("Max Iterations reached. Results might not be fully accurate", high_bound, low_bound) return True return False def calculate_max_latency_received(self, latency_data): """ Calculates the max latency of a run. Call this only if latency tolerance is 0%. :parameters: latency_data: dict The latency field of get_stats() of the :class:`.STLClient` :returns: The max latency in that run. """ max_latency = 0 for pg_id in latency_data.keys(): if type(pg_id) != int: continue max_latency = max(latency_data[pg_id]['latency']['total_max'], max_latency) return max_latency def calculate_latency_percentage(self, latency_data): """ Calculates the percentage of latency packets beyond the max latency parameter. The percentage is calculated independently for each pg id and the maximal percentage is returned. Call this only if latency tolerance is more than 0%. :parameters: latency_data: dict The latency field of get_stats() of the :class:`.STLClient` :returns: A float represeting the percentage of latency packets above max latency. """ latency_percentage = 0 for pg_id in latency_data.keys(): if type(pg_id) != int: continue pg_id_histogram = latency_data[pg_id]['latency']['histogram'] total_packets = sum(pg_id_histogram.values()) packets_above_max_latency = sum(pg_id_histogram[index] for index in pg_id_histogram.keys() if index >= self.config.max_latency) packets_above_max_latency_percentage = float(packets_above_max_latency) / total_packets * 100 latency_percentage = max(latency_percentage, packets_above_max_latency_percentage) return latency_percentage def is_valid_latency(self, latency_data): """ Returns a boolean flag indicating if the latency of a run is valid. In case latency was not set then it returns True. :parameters: latency_data: dict The latency field of get_stats() of the :class:`.STLClient` :returns: A boolean flag indiciating the latency was valid. """ if self.config.latency and self.config.max_latency_set: if self.config.lat_tolerance == 0: return self.config.max_latency >= self.calculate_max_latency_received(latency_data) else: return self.config.lat_tolerance >= self.calculate_latency_percentage(latency_data) else: return True def calculate_ndr_points(self): """ Calculates NDR points based on the ndr_results parameter in the :class:`.NdrBenchConfig` object. """ ndr_res = [self.results.stats['tx_bps']] if self.config.ndr_results > 1: ndr_range = range(1, self.config.ndr_results + 1, 1) ndr_range.reverse() ndr_res = [float((self.results.stats['tx_bps'])) / float(t) for t in ndr_range] self.results.update({'ndr_points': ndr_res}) def update_opt_stats(self, new_stats): """ Updates the optimal stats if the new_stats are better. :parameters: new_stats: dict Statistics of some run. """ if new_stats['queue_full_percentage'] <= self.config.q_full_resolution and new_stats['drop_rate_percentage'] <= self.config.pdr \ and new_stats['valid_latency']: if new_stats['rate_p'] > self.opt_run_stats['rate_p']: self.opt_run_stats.update(new_stats) def optimized_binary_search(self, lost_percentage, lost_allowed_percentage, stat_type): """ Performs the Optimized Binary search algorithm. :parameters: lost_percentage: float Percentage of drops/queue full in the previous run. lost_allowed_percentage: float Percentage/Resolution of allowed drops/queue full. stat_type: string Type of statistic that had drops. stat_type should be either "drop_rate_percentage", "queue_full_percentage" or "valid_latency". Drops have priority over queue full which has priority over valid_latency, :returns: Dictionary of the optimal run stats found in the interval, based on the criterions defined in :class:`.NdrBenchConfig`, """ max_rate = Rate(self.results.stats['max_rate_bps']) plugin_enabled = self.config.plugin_enabled plugin_stop = False current_run_stats = deepcopy(self.results.stats) assumed_ndr_rate = Rate(max_rate.convert_percent_to_rate(100 - lost_percentage)) upper_bound = min(max_rate.rate, assumed_ndr_rate.convert_percent_to_rate(100 + self.config.opt_binary_search_percentage)) upper_bound_percentage_of_max_rate = max_rate.convert_rate_to_percent_of_max_rate(upper_bound) if not max_rate.is_close(upper_bound): # in case we are not close to the max rate, try with the upper bound of the assumed NDR current_run_stats['rate_p'] = upper_bound_percentage_of_max_rate current_run_stats['rate_tx_bps'] = upper_bound current_run_stats['iteration'] = "Upper bound of assumed NDR" if plugin_enabled: self.plugin_pre_iteration(finding_max_rate=False, run_results=current_run_stats, **self.config.tunables) if self.config.verbose: self.results.print_state("Trying upper bound of assumed rate!", None, None) current_run_stats.update(self.perf_run(upper_bound_percentage_of_max_rate)) self.results.update(current_run_stats) self.update_opt_stats(current_run_stats) if self.config.verbose: self.results.print_iteration_data() if plugin_enabled: plugin_stop = self.plugin_post_iteration(finding_max_rate=False, run_results=current_run_stats, **self.config.tunables) if plugin_stop: if self.config.verbose: self.results.print_state("Plugin decided to stop trying upper bound of assumed rate!", None, None) return current_run_stats if stat_type == "valid_latency": upper_bound_valid = current_run_stats[stat_type] else: upper_bound_valid = current_run_stats[stat_type] <= lost_allowed_percentage if upper_bound_valid: if self.config.verbose: self.results.print_state("Upper bound of assumed NDR drops are below desired rate :)",\ 100, upper_bound_percentage_of_max_rate) return self.perf_run_interval(100, upper_bound_percentage_of_max_rate) # if you got here -> upper bound of assumed ndr has too many drops lower_bound = assumed_ndr_rate.convert_percent_to_rate(100 - self.config.opt_binary_search_percentage) lower_bound_percentage_of_max_rate = max_rate.convert_rate_to_percent_of_max_rate(lower_bound) current_run_stats['rate_p'] = lower_bound_percentage_of_max_rate current_run_stats['rate_tx_bps'] = lower_bound current_run_stats['iteration'] = "Lower bound of assumed NDR" if plugin_enabled: self.plugin_pre_iteration(finding_max_rate=False, run_results=current_run_stats, **self.config.tunables) if self.config.verbose: self.results.print_state("Trying lower bound of assumed rate!", None, None) current_run_stats.update(self.perf_run(lower_bound_percentage_of_max_rate)) self.results.update(current_run_stats) self.update_opt_stats(current_run_stats) if self.config.verbose: self.results.print_iteration_data() if plugin_enabled: plugin_stop = self.plugin_post_iteration(finding_max_rate=False, run_results=current_run_stats, **self.config.tunables) if plugin_stop: if self.config.verbose: self.results.print_state("Plugin decided to stop trying lower bound of assumed rate!", None, None) return current_run_stats if stat_type == "valid_latency": lower_bound_valid = current_run_stats[stat_type] else: lower_bound_valid = current_run_stats[stat_type] <= lost_allowed_percentage if lower_bound_valid: self.results.print_state("Lower bound of assumed NDR drops are below desired rate :)",\ upper_bound_percentage_of_max_rate, lower_bound_percentage_of_max_rate) return self.perf_run_interval(upper_bound_percentage_of_max_rate, lower_bound_percentage_of_max_rate) # if you got here -> lower bound of assumed ndr has too many drops else: self.results.print_state("Lower bound of assumed NDR drops are beyond desired rate :(",\ lower_bound_percentage_of_max_rate, 0) return self.perf_run_interval(lower_bound_percentage_of_max_rate, 0) def perf_run(self, rate_mb_percent, run_max=False): """ Transmits traffic through the STL client object in the class. :parameters: rate_mb_percent: float Rate of transmit in Mbit. run_max: boolean Flag indicating if we are transmitting the maximal rate. :returns: Dictionary with the results of the run. """ self.stl_client.stop(ports=self.config.ports) # allow time for counters to settle from previous runs time.sleep(15) self.stl_client.clear_stats() duration = 0 if run_max: duration = self.config.first_run_duration self.stl_client.start(ports=self.config.transmit_ports, mult="100%", duration=duration, core_mask=self.config.transmit_core_masks) rate_mb_percent = 100 else: m_rate = Rate(self.results.stats['max_rate_bps']) if rate_mb_percent == 0: rate_mb_percent += 1 run_rate = m_rate.convert_percent_to_rate(rate_mb_percent) duration = self.config.iteration_duration self.stl_client.start(ports=self.config.transmit_ports, mult=str(run_rate) + "bps", duration=duration, core_mask=self.config.transmit_core_masks) time.sleep(duration / 2) stats = self.stl_client.get_stats() self.stl_client.stop(ports=self.config.ports) opackets = stats['total']['opackets'] ipackets = stats['total']['ipackets'] lost_p = opackets - ipackets lost_p_percentage = (float(lost_p) / float(opackets)) * 100.00 if lost_p_percentage < 0: lost_p_percentage = 0 q_full_packets = stats['global']['queue_full'] q_full_percentage = float((q_full_packets / float(opackets)) * 100.000) latency_stats = stats['latency'] if run_max and latency_stats: # first run & latency -> update that we have latency traffic self.config.latency = True self.results.latency = True latency_groups = {} if self.config.latency: for i in latency_stats.keys(): if type(i) != int: continue latency_dict = latency_stats[i]['latency'] latency_groups[i] = latency_dict tx_bps = [stats[x]['tx_bps'] for x in self.config.transmit_ports] rx_bps = [stats[x]['rx_bps'] for x in self.config.receive_ports] tx_util_norm = sum([stats[x]['tx_util'] for x in self.config.transmit_ports]) / len(self.config.transmit_ports) self.results.stats['total_iterations'] = self.results.stats['total_iterations'] + 1 if not run_max else self.results.stats['total_iterations'] run_results = {'queue_full_percentage': q_full_percentage, 'drop_rate_percentage': lost_p_percentage, 'valid_latency': self.is_valid_latency(latency_stats), 'rate_tx_bps': min(tx_bps), 'rate_rx_bps': min(rx_bps), 'tx_util': tx_util_norm, 'latency': latency_groups, 'cpu_util': stats['global']['cpu_util'], 'tx_pps': stats['total']['tx_pps'], 'bw_per_core': stats['global']['bw_per_core'], 'rx_pps': stats['total']['rx_pps'], 'rate_p': float(rate_mb_percent), 'total_tx_L1': stats['total']['tx_bps_L1'], 'total_rx_L1': stats['total']['rx_bps_L1'], 'tx_bps': stats['total']['tx_bps'], 'rx_bps': stats['total']['rx_bps'], 'total_iterations': self.results.stats['total_iterations']} return run_results def __find_max_rate(self): """ Finds the maximal rate the hardware can transmit. This rate might have drops or queue full. :returns: Dictionary with the results of the iteration, it also updates the :class:`.NdrBenchResults` object in the class. """ if self.config.verbose: self.results.print_state("Calculation of max rate for DUT", None, None) run_results = self.perf_run(100, True) run_results['max_rate_bps'] = run_results['rate_tx_bps'] self.results.update(run_results) if self.results.stats['drop_rate_percentage'] < 0: self.results.stats['drop_rate_percentage'] = 0 if self.config.verbose: if run_results['rate_tx_bps'] < run_results['rate_rx_bps']: self.results.print_state("TX rate is slower than RX rate", None, None) self.results.print_iteration_data() return run_results def perf_run_interval(self, high_bound, low_bound): """ Searches for NDR in an given interval bounded by the two parameters. Based on the number of iterations which is supplied in the :class:`.NdrBenchConfig` object of the class will perform multiple transmitting runs until one of the stopping conditions is met. :parameters: high_bound: float In percents of maximal rate. low_bound: float In percents of maximal rate :returns: Dictionary of the optimal run stats found in the interval, based on the criterions defined in :class:`.NdrBenchConfig`, """ current_run_results = NdrBenchResults(self.config) current_run_stats = self.results.stats max_rate = Rate(self.results.stats['max_rate_bps']) current_run_stats['max_rate_bps'] = max_rate.rate current_run_stats['iteration'] = 0 plugin_enabled = self.config.plugin_enabled plugin_stop = False while current_run_stats['iteration'] <= self.config.max_iterations: current_run_stats['rate_p'] = float((high_bound + low_bound)) / 2.00 current_run_stats['rate_tx_bps'] = max_rate.convert_percent_to_rate(current_run_stats['rate_p']) if plugin_enabled: self.plugin_pre_iteration(finding_max_rate=False, run_results=current_run_stats, **self.config.tunables) current_run_stats.update(self.perf_run(str(current_run_stats['rate_p']))) if plugin_enabled: plugin_stop = self.plugin_post_iteration(finding_max_rate=False, run_results=current_run_stats, **self.config.tunables) lost_p_percentage = current_run_stats['drop_rate_percentage'] q_full_percentage = current_run_stats['queue_full_percentage'] valid_latency = current_run_stats['valid_latency'] current_run_stats['rate_difference'] = abs(current_run_stats['rate_p'] - self.opt_run_stats['rate_p']) current_run_results.update(current_run_stats) if self.config.verbose: if q_full_percentage > self.config.q_full_resolution: current_run_results.print_state("Queue Full Occurred", high_bound, low_bound) elif lost_p_percentage > self.config.pdr: current_run_results.print_state("Drops beyond Desired rate occurred", high_bound, low_bound) elif not valid_latency: current_run_results.print_state("Invalid Latency", high_bound, low_bound) else: current_run_results.print_state("Looking for NDR", high_bound, low_bound) current_run_results.print_iteration_data() if plugin_stop: if self.config.verbose: current_run_results.print_state("Plugin decided to stop after the iteration!", high_bound, low_bound) self.update_opt_stats(current_run_stats) break if q_full_percentage <= self.config.q_full_resolution and lost_p_percentage <= self.config.pdr and valid_latency: if current_run_stats['rate_p'] > self.opt_run_stats['rate_p']: self.opt_run_stats.update(current_run_stats) if current_run_stats['rate_difference'] <= self.config.pdr_error: break low_bound = current_run_stats['rate_p'] current_run_stats['iteration'] += 1 if self.max_iterations_reached(current_run_stats, high_bound, low_bound): break else: continue else: break else: if current_run_stats['rate_difference'] <= self.config.pdr_error: break high_bound = current_run_stats['rate_p'] current_run_stats['iteration'] += 1 if self.max_iterations_reached(current_run_stats, high_bound, low_bound): break self.opt_run_stats['iteration'] = current_run_stats['iteration'] self.opt_run_stats['total_iterations'] = current_run_stats['total_iterations'] self.opt_run_stats['rate_difference'] = 0 return self.opt_run_stats def find_ndr(self): """ Finds the NDR of the STL client that the class received. The function updates the :class:`.NdrBenchResults` object that :class:`.NdrBench` contains. Decisions which algorithms to choose or if to apply a plugin are based on the object of type :class:`.NdrBenchConfig` that this class contains. This is the top level function that finds the NDR and the user can use. """ plugin_enabled = self.config.plugin_enabled plugin_stop = False if plugin_enabled: self.plugin_pre_iteration(finding_max_rate=True, run_results=None, **self.config.tunables) first_run_results = self.__find_max_rate() self.update_opt_stats(first_run_results) if plugin_enabled: plugin_stop = self.plugin_post_iteration(finding_max_rate=True, run_results=first_run_results, **self.config.tunables) if plugin_stop: if self.config.verbose: self.results.print_state("Plugin decided to stop after trying to find the max rate!", None, None) self.calculate_ndr_points() return drop_percent = self.results.stats['drop_rate_percentage'] q_full_percent = self.results.stats['queue_full_percentage'] valid_latency = self.results.stats['valid_latency'] if drop_percent > self.config.pdr: if self.config.opt_binary_search: if self.config.verbose: self.results.print_state("Drops happened, searching for NDR with optimized binary search", None, None) self.results.update(self.optimized_binary_search(drop_percent, self.config.pdr, 'drop_rate_percentage')) else: if self.config.verbose: self.results.print_state("Drops happened, searching for NDR", 100, 0) self.results.update(self.perf_run_interval(100, 0)) elif q_full_percent >= self.config.q_full_resolution: if self.config.opt_binary_search: if self.config.verbose: self.results.print_state("DUT Queue is Full, Looking for no queue full rate with optimized binary search", None, None) self.results.update(self.optimized_binary_search(q_full_percent, self.config.q_full_resolution, 'queue_full_percentage')) else: if self.config.verbose: self.results.print_state("DUT Queue is Full, Looking for no queue full rate", 100, 0) self.results.update(self.perf_run_interval(100.00, 0.00)) elif not valid_latency: if self.config.opt_binary_search: if self.config.verbose: self.results.print_state("Invalid Latency, looking for NDR latency with optimized binary search", None, None) self.results.update(self.optimized_binary_search(q_full_percent, 0, 'valid_latency')) else: if self.config.verbose: self.results.print_state("Invalid Latency, Looking for latency below tolerance", None, None) self.results.update(self.perf_run_interval(100.00, 0.00)) else: if self.config.verbose: self.results.print_state("NDR found at max rate", None, None) self.calculate_ndr_points() if __name__ == '__main__': print('Designed to be imported, not as stand-alone script.')
py
b40c214c00e091a3ba96ebbfcdfe8b88dd3013f7
import requests from lxml.html import fromstring def Get_Headers(): url = 'https://www.whatismybrowser.com/guides/the-latest-user-agent/chrome' response = requests.get(url) parser = fromstring(response.text) Headers = parser.xpath('//tbody//td[2]/span/text()') return Headers[0] print(Get_Headers())
py
b40c221e063a5f55aed65e3693226dad19d8efa9
from sqlalchemy import and_ from .db import models from openstates.metadata import lookup def jurisdiction_filter(j: str, *, jid_field): if not j: # an empty object can't equal anything return False # check either by Jurisdiction.name or a specified field's jurisdiction_id if len(j) == 2: try: return jid_field == lookup(abbr=j).jurisdiction_id except KeyError: return and_( models.Jurisdiction.name == j, models.Jurisdiction.classification == "state", ) elif j.startswith("ocd-jurisdiction"): return jid_field == j else: return and_( models.Jurisdiction.name == j, models.Jurisdiction.classification == "state" )
py
b40c229a64ed32dd0b706bf75cdefa9a4b10414b
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: # Test numpy bindings import numpy as np from ....testing import * from .. import (c_types, fff_type, npy_type, copy_vector, pass_vector, pass_vector_via_iterator) MAX_TEST_SIZE = 30 def random_shape(size): """ Output random dimensions in the range (2, MAX_TEST_SIZE) """ aux = np.random.randint(MAX_TEST_SIZE-1, size=size) + 2 if size==1: return aux else: return tuple(aux) # # Test type conversions # def test_type_conversions_to_fff(): # use np.sctypes for testing numpy types, np.typeDict.values # contains a lot of duplicates. There are 140 values in # np.typeDict, but only 21 unique numpy types. But only 11 fff # types in c_types. for type_key in np.sctypes: for npy_t in np.sctypes[type_key]: t, nbytes = fff_type(np.dtype(npy_t)) if not t == 'unknown type': yield assert_equal, nbytes, np.dtype(npy_t).itemsize def test_type_conversions_in_C(): for t in c_types: npy_t, nbytes = npy_type(t) yield assert_equal, npy_t, t # # Test bindings # def _test_copy_vector(x): # use fff y0 = copy_vector(x, 0) # use numpy y1 = copy_vector(x, 1) yield assert_equal, y0, x yield assert_equal, y1, x def test_copy_vector_contiguous(): x = (1000*np.random.rand(1e6)).astype('int32') _test_copy_vector(x) def test_copy_vector_strided(): x0 = (1000*np.random.rand(2e6)).astype('int32') x = x0[::2] _test_copy_vector(x) """ def test_copy_vector_int32(): x = np.random.rand(1e6).astype('int32') print('int32 buffer copy') _test_copy_vector(x) def test_copy_vector_uint8(): x = np.random.rand(1e6).astype('uint8') print('uint8 buffer copy') _test_copy_vector(x) """ def _test_pass_vector(x): y = pass_vector(x) assert_equal(y, x) def test_pass_vector(): x = np.random.rand(random_shape(1))-.5 _test_pass_vector(x) def test_pass_vector_int32(): x = (1000*(np.random.rand(random_shape(1))-.5)).astype('int32') _test_pass_vector(x) def test_pass_vector_uint8(): x = (256*(np.random.rand(random_shape(1)))).astype('uint8') _test_pass_vector(x) def _test_pass_matrix(x): y = pass_matrix(x) yield assert_equal, y, x y = pass_matrix(x.T) yield assert_equal, y, x.T def test_pass_matrix(): d0, d1 = random_shape(2) x = np.random.rand(d0, d1)-.5 _test_pass_matrix(x) def test_pass_matrix_int32(): d0, d1 = random_shape(2) x = (1000*(np.random.rand(d0, d1)-.5)).astype('int32') _test_pass_matrix(x) def test_pass_matrix_uint8(): d0, d1 = random_shape(2) x = (256*(np.random.rand(d0, d1))).astype('uint8') _test_pass_matrix(x) def _test_pass_array(x): y = pass_array(x) yield assert_equal, y, x y = pass_array(x.T) yield assert_equal, y, x.T def test_pass_array(): d0, d1, d2, d3 = random_shape(4) x = np.random.rand(d0, d1, d2, d3)-.5 _test_pass_array(x) def test_pass_array_int32(): d0, d1, d2, d3 = random_shape(4) x = (1000*(np.random.rand(d0, d1, d2, d3)-.5)).astype('int32') _test_pass_array(x) def test_pass_array_uint8(): d0, d1, d2, d3 = random_shape(4) x = (256*(np.random.rand(d0, d1, d2, d3))).astype('uint8') _test_pass_array(x) # # Multi-iterator testing # def _test_pass_vector_via_iterator(X, pos=0): """ Assume X.ndim == 2 """ # axis == 0 x = pass_vector_via_iterator(X, axis=0, niters=pos) yield assert_equal, x, X[:, pos] # axis == 1 x = pass_vector_via_iterator(X, axis=1, niters=pos) yield assert_equal, x, X[pos, :] def test_pass_vector_via_iterator(): d0, d1 = random_shape(2) X = np.random.rand(d0, d1)-.5 _test_pass_vector_via_iterator(X) def test_pass_vector_via_iterator_int32(): d0, d1 = random_shape(2) X = (1000*(np.random.rand(d0, d1)-.5)).astype('int32') _test_pass_vector_via_iterator(X) def test_pass_vector_via_iterator_uint8(): d0, d1 = random_shape(2) X = (100*(np.random.rand(d0, d1))).astype('uint8') _test_pass_vector_via_iterator(X) def test_pass_vector_via_iterator_shift(): d0, d1 = random_shape(2) X = np.random.rand(d0, d1)-.5 _test_pass_vector_via_iterator(X, pos=1) def test_pass_vector_via_iterator_shift_int32(): d0, d1 = random_shape(2) X = (1000*(np.random.rand(d0, d1)-.5)).astype('int32') _test_pass_vector_via_iterator(X, pos=1) def test_pass_vector_via_iterator_shift_uint8(): d0, d1 = random_shape(2) X = (100*(np.random.rand(d0, d1))).astype('uint8') _test_pass_vector_via_iterator(X, pos=1) def _test_copy_via_iterators(Y): for axis in range(4): Z = copy_via_iterators(Y, axis) yield assert_equal, Z, Y ZT = copy_via_iterators(Y.T, axis) yield assert_equal, ZT, Y.T def test_copy_via_iterators(): d0, d1, d2, d3 = random_shape(4) Y = np.random.rand(d0, d1, d2, d3) _test_copy_via_iterators(Y) def test_copy_via_iterators_int32(): d0, d1, d2, d3 = random_shape(4) Y = (1000*(np.random.rand(d0, d1, d2, d3)-.5)).astype('int32') _test_copy_via_iterators(Y) def test_copy_via_iterators_uint8(): d0, d1, d2, d3 = random_shape(4) Y = (256*(np.random.rand(d0, d1, d2, d3))).astype('uint8') _test_copy_via_iterators(Y) def _test_sum_via_iterators(Y): for axis in range(4): Z = sum_via_iterators(Y, axis) yield assert_almost_equal, Z, Y.sum(axis) ZT = sum_via_iterators(Y.T, axis) yield assert_almost_equal, ZT, Y.T.sum(axis) def test_sum_via_iterators(): d0, d1, d2, d3 = random_shape(4) Y = np.random.rand(d0, d1, d2, d3) _test_sum_via_iterators(Y) def test_sum_via_iterators_int32(): d0, d1, d2, d3 = random_shape(4) Y = (1000*(np.random.rand(d0, d1, d2, d3)-.5)).astype('int32') _test_sum_via_iterators(Y) def test_sum_via_iterators_uint8(): d0, d1, d2, d3 = random_shape(4) Y = (256*(np.random.rand(d0, d1, d2, d3))).astype('uint8') _test_sum_via_iterators(Y) if __name__ == "__main__": import nose nose.run(argv=['', __file__])
py
b40c231501f77fb9ca6e4fda135a869e8b74eeef
# Copyright 2021 The Pigweed Authors # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. """UI Color Styles for ConsoleApp.""" import logging from dataclasses import dataclass from prompt_toolkit.styles import Style from prompt_toolkit.filters import has_focus _LOG = logging.getLogger(__package__) @dataclass class HighContrastDarkColors: # pylint: disable=too-many-instance-attributes default_bg = '#100f10' default_fg = '#ffffff' dim_bg = '#000000' dim_fg = '#e0e6f0' button_active_bg = '#4e4e4e' button_inactive_bg = '#323232' active_bg = '#323232' active_fg = '#f4f4f4' inactive_bg = '#1e1e1e' inactive_fg = '#bfc0c4' line_highlight_bg = '#2f2f2f' dialog_bg = '#3c3c3c' red_accent = '#ffc0bf' orange_accent = '#f5ca80' yellow_accent = '#d2e580' green_accent = '#88ef88' cyan_accent = '#60e7e0' blue_accent = '#92d9ff' purple_accent = '#cfcaff' magenta_accent = '#ffb8ff' @dataclass class DarkColors: # pylint: disable=too-many-instance-attributes default_bg = '#2e2e2e' default_fg = '#bbc2cf' dim_bg = '#262626' dim_fg = '#dfdfdf' button_active_bg = '#626262' button_inactive_bg = '#525252' active_bg = '#525252' active_fg = '#dfdfdf' inactive_bg = '#3f3f3f' inactive_fg = '#bfbfbf' line_highlight_bg = '#1e1e1e' dialog_bg = '#3c3c3c' red_accent = '#ff6c6b' orange_accent = '#da8548' yellow_accent = '#ffcc66' green_accent = '#98be65' cyan_accent = '#66cccc' blue_accent = '#6699cc' purple_accent = '#a9a1e1' magenta_accent = '#c678dd' @dataclass class NordColors: # pylint: disable=too-many-instance-attributes default_bg = '#2e3440' default_fg = '#eceff4' dim_bg = '#272c36' dim_fg = '#e5e9f0' button_active_bg = '#4c566a' button_inactive_bg = '#434c5e' active_bg = '#434c5e' active_fg = '#eceff4' inactive_bg = '#373e4c' inactive_fg = '#d8dee9' line_highlight_bg = '#191c25' dialog_bg = '#2c333f' red_accent = '#bf616a' orange_accent = '#d08770' yellow_accent = '#ebcb8b' green_accent = '#a3be8c' cyan_accent = '#88c0d0' blue_accent = '#81a1c1' purple_accent = '#a9a1e1' magenta_accent = '#b48ead' @dataclass class NordLightColors: # pylint: disable=too-many-instance-attributes default_bg = '#e5e9f0' default_fg = '#3b4252' dim_bg = '#d8dee9' dim_fg = '#2e3440' button_active_bg = '#aebacf' button_inactive_bg = '#b8c5db' active_bg = '#b8c5db' active_fg = '#3b4252' inactive_bg = '#c2d0e7' inactive_fg = '#60728c' line_highlight_bg = '#f0f4fc' dialog_bg = '#d8dee9' red_accent = '#99324b' orange_accent = '#ac4426' yellow_accent = '#9a7500' green_accent = '#4f894c' cyan_accent = '#398eac' blue_accent = '#3b6ea8' purple_accent = '#842879' magenta_accent = '#97365b' @dataclass class MoonlightColors: # pylint: disable=too-many-instance-attributes default_bg = '#212337' default_fg = '#c8d3f5' dim_bg = '#191a2a' dim_fg = '#b4c2f0' button_active_bg = '#444a73' button_inactive_bg = '#2f334d' active_bg = '#2f334d' active_fg = '#c8d3f5' inactive_bg = '#222436' inactive_fg = '#a9b8e8' line_highlight_bg = '#383e5c' dialog_bg = '#1e2030' red_accent = '#d95468' orange_accent = '#d98e48' yellow_accent = '#8bd49c' green_accent = '#ebbf83' cyan_accent = '#70e1e8' blue_accent = '#5ec4ff' purple_accent = '#b62d65' magenta_accent = '#e27e8d' _THEME_NAME_MAPPING = { 'moonlight': MoonlightColors(), 'nord': NordColors(), 'nord-light': NordLightColors(), 'dark': DarkColors(), 'high-contrast-dark': HighContrastDarkColors(), } # yapf: disable def get_theme_colors(theme_name=''): theme = _THEME_NAME_MAPPING.get(theme_name, DarkColors()) return theme def generate_styles(theme_name='dark'): """Return prompt_toolkit styles for the given theme name.""" # Use DarkColors() if name not found. theme = _THEME_NAME_MAPPING.get(theme_name, DarkColors()) pw_console_styles = { # Default text and background. 'default': 'bg:{} {}'.format(theme.default_bg, theme.default_fg), # Dim inactive panes. 'pane_inactive': 'bg:{} {}'.format(theme.dim_bg, theme.dim_fg), # Use default for active panes. 'pane_active': 'bg:{} {}'.format(theme.default_bg, theme.default_fg), # Brighten active pane toolbars. 'toolbar_active': 'bg:{} {}'.format(theme.active_bg, theme.active_fg), 'toolbar_inactive': 'bg:{} {}'.format(theme.inactive_bg, theme.inactive_fg), # Dimmer toolbar. 'toolbar_dim_active': 'bg:{} {}'.format(theme.active_bg, theme.active_fg), 'toolbar_dim_inactive': 'bg:{} {}'.format(theme.default_bg, theme.inactive_fg), # Used for pane titles 'toolbar_accent': theme.cyan_accent, 'toolbar-button-decoration': '{}'.format(theme.cyan_accent), 'toolbar-setting-active': 'bg:{} {}'.format( theme.green_accent, theme.active_bg, ), 'toolbar-button-active': 'bg:{}'.format(theme.button_active_bg), 'toolbar-button-inactive': 'bg:{}'.format(theme.button_inactive_bg), # prompt_toolkit scrollbar styles: 'scrollbar.background': 'bg:{} {}'.format(theme.default_bg, theme.default_fg), # Scrollbar handle, bg is the bar color. 'scrollbar.button': 'bg:{} {}'.format(theme.purple_accent, theme.default_bg), 'scrollbar.arrow': 'bg:{} {}'.format(theme.default_bg, theme.blue_accent), # Unstyled scrollbar classes: # 'scrollbar.start' # 'scrollbar.end' # Top menu bar styles 'menu-bar': 'bg:{} {}'.format(theme.inactive_bg, theme.inactive_fg), 'menu-bar.selected-item': 'bg:{} {}'.format(theme.blue_accent, theme.inactive_bg), # Menu background 'menu': 'bg:{} {}'.format(theme.dialog_bg, theme.dim_fg), # Menu item separator 'menu-border': theme.magenta_accent, # Top bar logo + keyboard shortcuts 'logo': '{} bold'.format(theme.magenta_accent), 'keybind': '{} bold'.format(theme.purple_accent), 'keyhelp': theme.dim_fg, # Help window styles 'help_window_content': 'bg:{} {}'.format(theme.dialog_bg, theme.dim_fg), 'frame.border': 'bg:{} {}'.format(theme.dialog_bg, theme.purple_accent), 'pane_indicator_active': 'bg:{}'.format(theme.magenta_accent), 'pane_indicator_inactive': 'bg:{}'.format(theme.inactive_bg), 'pane_title_active': '{} bold'.format(theme.magenta_accent), 'pane_title_inactive': '{}'.format(theme.purple_accent), 'window-tab-active': 'bg:{} {}'.format(theme.active_bg, theme.cyan_accent), 'window-tab-inactive': 'bg:{} {}'.format(theme.inactive_bg, theme.inactive_fg), 'pane_separator': 'bg:{} {}'.format(theme.default_bg, theme.purple_accent), # Search matches 'search': 'bg:{} {}'.format(theme.cyan_accent, theme.default_bg), 'search.current': 'bg:{} {}'.format(theme.cyan_accent, theme.default_bg), # Highlighted line styles 'selected-log-line': 'bg:{}'.format(theme.line_highlight_bg), 'cursor-line': 'bg:{} nounderline'.format(theme.line_highlight_bg), # Messages like 'Window too small' 'warning-text': 'bg:{} {}'.format(theme.default_bg, theme.yellow_accent), 'log-time': 'bg:{} {}'.format(theme.default_fg, theme.default_bg), # Apply foreground only for level and column values. This way the text # can inherit the background color of the parent window pane or line # selection. 'log-level-{}'.format(logging.CRITICAL): '{} bold'.format( theme.red_accent), 'log-level-{}'.format(logging.ERROR): '{}'.format(theme.red_accent), 'log-level-{}'.format(logging.WARNING): '{}'.format( theme.yellow_accent), 'log-level-{}'.format(logging.INFO): '{}'.format(theme.purple_accent), 'log-level-{}'.format(logging.DEBUG): '{}'.format(theme.blue_accent), 'log-table-column-0': '{}'.format(theme.cyan_accent), 'log-table-column-1': '{}'.format(theme.green_accent), 'log-table-column-2': '{}'.format(theme.yellow_accent), 'log-table-column-3': '{}'.format(theme.magenta_accent), 'log-table-column-4': '{}'.format(theme.purple_accent), 'log-table-column-5': '{}'.format(theme.blue_accent), 'log-table-column-6': '{}'.format(theme.orange_accent), 'log-table-column-7': '{}'.format(theme.red_accent), 'search-bar-title': 'bg:{} {}'.format(theme.cyan_accent, theme.default_bg), 'search-bar-setting': '{}'.format(theme.cyan_accent), 'search-bar': 'bg:{}'.format(theme.inactive_bg), 'filter-bar-title': 'bg:{} {}'.format(theme.red_accent, theme.default_bg), 'filter-bar-setting': '{}'.format(theme.cyan_accent), 'filter-bar-delete': '{}'.format(theme.red_accent), 'filter-bar': 'bg:{}'.format(theme.inactive_bg), 'filter-bar-delimiter': '{}'.format(theme.purple_accent), # Progress Bar Styles # Entire set of ProgressBars - no title is used in pw_console 'title': '', # Actual bar title 'label': 'bold', 'percentage': '{}'.format(theme.green_accent), 'bar': '{}'.format(theme.magenta_accent), # Filled part of the bar 'bar-a': '{} bold'.format(theme.cyan_accent), # End of current progress 'bar-b': '{} bold'.format(theme.purple_accent), # Empty part of the bar 'bar-c': '', # current/total counts 'current': '{}'.format(theme.cyan_accent), 'total': '{}'.format(theme.cyan_accent), 'time-elapsed': '{}'.format(theme.purple_accent), 'time-left': '{}'.format(theme.magenta_accent), # Named theme color classes for use in user plugins. 'theme-fg-red': '{}'.format(theme.red_accent), 'theme-fg-orange': '{}'.format(theme.orange_accent), 'theme-fg-yellow': '{}'.format(theme.yellow_accent), 'theme-fg-green': '{}'.format(theme.green_accent), 'theme-fg-cyan': '{}'.format(theme.cyan_accent), 'theme-fg-blue': '{}'.format(theme.blue_accent), 'theme-fg-purple': '{}'.format(theme.purple_accent), 'theme-fg-magenta': '{}'.format(theme.magenta_accent), 'theme-bg-red': 'bg:{}'.format(theme.red_accent), 'theme-bg-orange': 'bg:{}'.format(theme.orange_accent), 'theme-bg-yellow': 'bg:{}'.format(theme.yellow_accent), 'theme-bg-green': 'bg:{}'.format(theme.green_accent), 'theme-bg-cyan': 'bg:{}'.format(theme.cyan_accent), 'theme-bg-blue': 'bg:{}'.format(theme.blue_accent), 'theme-bg-purple': 'bg:{}'.format(theme.purple_accent), 'theme-bg-magenta': 'bg:{}'.format(theme.magenta_accent), 'theme-bg-active': 'bg:{}'.format(theme.active_bg), 'theme-fg-active': '{}'.format(theme.active_fg), 'theme-bg-inactive': 'bg:{}'.format(theme.inactive_bg), 'theme-fg-inactive': '{}'.format(theme.inactive_fg), 'theme-fg-default': '{}'.format(theme.default_fg), 'theme-bg-default': 'bg:{}'.format(theme.default_bg), 'theme-fg-dim': '{}'.format(theme.dim_fg), 'theme-bg-dim': 'bg:{}'.format(theme.dim_bg), 'theme-bg-dialog': 'bg:{}'.format(theme.dialog_bg), 'theme-bg-line-highlight': 'bg:{}'.format(theme.line_highlight_bg), 'theme-bg-button-active': 'bg:{}'.format(theme.button_active_bg), 'theme-bg-button-inactive': 'bg:{}'.format(theme.button_inactive_bg), } # yapf: disable return Style.from_dict(pw_console_styles) def get_toolbar_style(pt_container, dim=False) -> str: """Return the style class for a toolbar if pt_container is in focus.""" if has_focus(pt_container.__pt_container__())(): return 'class:toolbar_dim_active' if dim else 'class:toolbar_active' return 'class:toolbar_dim_inactive' if dim else 'class:toolbar_inactive' def get_button_style(pt_container) -> str: """Return the style class for a toolbar if pt_container is in focus.""" if has_focus(pt_container.__pt_container__())(): return 'class:toolbar-button-active' return 'class:toolbar-button-inactive' def get_pane_style(pt_container) -> str: """Return the style class for a pane title if pt_container is in focus.""" if has_focus(pt_container.__pt_container__())(): return 'class:pane_active' return 'class:pane_inactive' def get_pane_indicator(pt_container, title, mouse_handler=None, hide_indicator=False): """Return formatted text for a pane indicator and title.""" if mouse_handler: inactive_indicator = ('class:pane_indicator_inactive', ' ', mouse_handler) active_indicator = ('class:pane_indicator_active', ' ', mouse_handler) inactive_title = ('class:pane_title_inactive', title, mouse_handler) active_title = ('class:pane_title_active', title, mouse_handler) else: inactive_indicator = ('class:pane_indicator_inactive', ' ') active_indicator = ('class:pane_indicator_active', ' ') inactive_title = ('class:pane_title_inactive', title) active_title = ('class:pane_title_active', title) fragments = [] if has_focus(pt_container.__pt_container__())(): if not hide_indicator: fragments.append(active_indicator) fragments.append(active_title) else: if not hide_indicator: fragments.append(inactive_indicator) fragments.append(inactive_title) return fragments
py
b40c23b5ad8fc07a3e58d9bc78d7d486cea525c1
# # This file is part of Evergreen. See the NOTICE for more information. # try: from time import monotonic as _time except ImportError: from time import time as _time import _jega from jega.event import Event from jega.locks import Condition, Lock # from jega.log import log FIRST_COMPLETED = 'FIRST_COMPLETED' FIRST_EXCEPTION = 'FIRST_EXCEPTION' ALL_COMPLETED = 'ALL_COMPLETED' _AS_COMPLETED = '_AS_COMPLETED' # Possible future states (for internal use by the futures package). PENDING = 'PENDING' RUNNING = 'RUNNING' # The future was cancelled by the user... CANCELLED = 'CANCELLED' # ...and _Waiter.add_cancelled() was called by a worker. CANCELLED_AND_NOTIFIED = 'CANCELLED_AND_NOTIFIED' FINISHED = 'FINISHED' _FUTURE_STATES = [ PENDING, RUNNING, CANCELLED, CANCELLED_AND_NOTIFIED, FINISHED ] _STATE_TO_DESCRIPTION_MAP = { PENDING: "pending", RUNNING: "running", CANCELLED: "cancelled", CANCELLED_AND_NOTIFIED: "cancelled", FINISHED: "finished" } class Error(Exception): """Base class for all future-related exceptions.""" pass class CancelledError(Error): """The Future was cancelled.""" pass class TimeoutError(Error): """The operation exceeded the given deadline.""" pass class _Waiter(object): """Provides the event that wait() and as_completed() block on.""" def __init__(self): self.event = Event() self.finished_futures = [] def add_result(self, future): self.finished_futures.append(future) def add_exception(self, future): self.finished_futures.append(future) def add_cancelled(self, future): self.finished_futures.append(future) class _AsCompletedWaiter(_Waiter): """Used by as_completed().""" def __init__(self): super(_AsCompletedWaiter, self).__init__() self.lock = Lock() def add_result(self, future): with self.lock: super(_AsCompletedWaiter, self).add_result(future) self.event.set() def add_exception(self, future): with self.lock: super(_AsCompletedWaiter, self).add_exception(future) self.event.set() def add_cancelled(self, future): with self.lock: super(_AsCompletedWaiter, self).add_cancelled(future) self.event.set() class _FirstCompletedWaiter(_Waiter): """Used by wait(return_when=FIRST_COMPLETED).""" def add_result(self, future): super(_FirstCompletedWaiter, self).add_result(future) self.event.set() def add_exception(self, future): super(_FirstCompletedWaiter, self).add_exception(future) self.event.set() def add_cancelled(self, future): super(_FirstCompletedWaiter, self).add_cancelled(future) self.event.set() class _AllCompletedWaiter(_Waiter): """Used by wait(return_when=FIRST_EXCEPTION and ALL_COMPLETED).""" def __init__(self, num_pending_calls, stop_on_exception): self.num_pending_calls = num_pending_calls self.stop_on_exception = stop_on_exception self.lock = Lock() super(_AllCompletedWaiter, self).__init__() def _decrement_pending_calls(self): with self.lock: self.num_pending_calls -= 1 if not self.num_pending_calls: self.event.set() def add_result(self, future): super(_AllCompletedWaiter, self).add_result(future) self._decrement_pending_calls() def add_exception(self, future): super(_AllCompletedWaiter, self).add_exception(future) if self.stop_on_exception: self.event.set() else: self._decrement_pending_calls() def add_cancelled(self, future): super(_AllCompletedWaiter, self).add_cancelled(future) self._decrement_pending_calls() class _AcquireFutures(object): """A context manager that does an ordered acquire of Future conditions.""" def __init__(self, futures): self.futures = sorted(futures, key=id) def __enter__(self): for future in self.futures: future._condition.acquire() def __exit__(self, *args): for future in self.futures: future._condition.release() def _create_and_install_waiters(fs, return_when): if return_when == _AS_COMPLETED: waiter = _AsCompletedWaiter() elif return_when == FIRST_COMPLETED: waiter = _FirstCompletedWaiter() else: pending_count = sum(f._state not in [CANCELLED_AND_NOTIFIED, FINISHED] for f in fs) if return_when == FIRST_EXCEPTION: waiter = _AllCompletedWaiter(pending_count, stop_on_exception=True) elif return_when == ALL_COMPLETED: waiter = _AllCompletedWaiter(pending_count, stop_on_exception=False) else: raise ValueError("Invalid return condition: %r" % return_when) for f in fs: f._waiters.append(waiter) return waiter def as_completed(fs, timeout=None): """An iterator over the given futures that yields each as it completes. Args: fs: The sequence of Futures (possibly created by different Executors) to iterate over. timeout: The maximum number of seconds to wait. If None, then there is no limit on the wait time. Returns: An iterator that yields the given Futures as they complete (finished or cancelled). Raises: TimeoutError: If the entire result iterator could not be generated before the given timeout. """ if timeout is not None: end_time = timeout + _time() with _AcquireFutures(fs): finished = set(f for f in fs if f._state in [CANCELLED_AND_NOTIFIED, FINISHED]) pending = set(fs) - finished waiter = _create_and_install_waiters(fs, _AS_COMPLETED) try: for future in finished: yield future while pending: if timeout is None: wait_timeout = None else: wait_timeout = end_time - _time() if wait_timeout < 0: raise TimeoutError('%d (of %d) futures unfinished' % (len(pending), len(fs))) waiter.event.wait(wait_timeout) with waiter.lock: finished = waiter.finished_futures waiter.finished_futures = [] waiter.event.clear() for future in finished: yield future pending.remove(future) finally: for f in fs: f._waiters.remove(waiter) def wait(fs, timeout=None, return_when=ALL_COMPLETED): """Wait for the futures in the given sequence to complete. Args: fs: The sequence of Futures (possibly created by different Executors) to wait upon. timeout: The maximum number of seconds to wait. If None, then there is no limit on the wait time. return_when: Indicates when this function should return. The options are: FIRST_COMPLETED - Return when any future finishes or is cancelled. FIRST_EXCEPTION - Return when any future finishes by raising an exception. If no future raises an exception then it is equivalent to ALL_COMPLETED. ALL_COMPLETED - Return when all futures finish or are cancelled. Returns: A 2-tuple of sets. The first set, contains the futures that completed (is finished or cancelled) before the wait completed. The second set, contains uncompleted futures. """ with _AcquireFutures(fs): done = set(f for f in fs if f._state in [CANCELLED_AND_NOTIFIED, FINISHED]) not_done = set(fs) - done if (return_when == FIRST_COMPLETED) and done: return (done, not_done) elif (return_when == FIRST_EXCEPTION) and done: if any(f for f in done if not f.cancelled() and f.exception() is not None): return (done, not_done) if len(done) == len(fs): return (done, not_done) waiter = _create_and_install_waiters(fs, return_when) waiter.event.wait(timeout) for f in fs: f._waiters.remove(waiter) done.update(waiter.finished_futures) return (done, set(fs) - done) class Future(object): def __init__(self): self._condition = Condition() self._state = PENDING self._used = False self._result = None self._exception = None self._callbacks = [] self._waiters = [] def __repr__(self): with self._condition: if self._state == FINISHED: if self._exception: text = 'raised %s' % self._exception.__class__.__name__ else: text = 'returned %s' % self._result.__class__.__name__ return '<%s at %s state=%s %s>' % ( self.__class__.__name__, hex(id(self)), _STATE_TO_DESCRIPTION_MAP[self._state], text) return '<%s at %s state=%s>' % ( self.__class__.__name__, hex(id(self)), _STATE_TO_DESCRIPTION_MAP[self._state]) def cancel(self): with self._condition: if self._state in (RUNNING, FINISHED): return False elif self._state in (CANCELLED, CANCELLED_AND_NOTIFIED): return True self._state = CANCELLED self._condition.notify_all() self._run_callbacks() return True @property def cancelled(self): with self._condition: return self._state in (CANCELLED, CANCELLED_AND_NOTIFIED) @property def running(self): with self._condition: return self._state == RUNNING @property def done(self): with self._condition: return self._state in (CANCELLED, CANCELLED_AND_NOTIFIED, FINISHED) def result(self, timeout=0): with self._condition: if self._state in (CANCELLED, CANCELLED_AND_NOTIFIED): raise CancelledError() elif self._state == FINISHED: return self._get_result() self._condition.wait(timeout) if self._state in (CANCELLED, CANCELLED_AND_NOTIFIED): raise CancelledError() elif self._state == FINISHED: return self._get_result() else: raise TimeoutError() get = result def exception(self, timeout=None): with self._condition: if self._state in (CANCELLED, CANCELLED_AND_NOTIFIED): raise CancelledError() elif self._state == FINISHED: return self._exception self._condition.wait(timeout) if self._state in (CANCELLED, CANCELLED_AND_NOTIFIED): raise CancelledError() elif self._state == FINISHED: return self._exception else: raise TimeoutError() def add_done_callback(self, func): with self._condition: if self._state not in (CANCELLED, CANCELLED_AND_NOTIFIED, FINISHED): self._callbacks.append(func) return func(self) # Internal def _get_result(self): if self._used: raise RuntimeError('the result of a futue can only be fetched once') try: if self._exception: raise self._exception else: return self._result finally: self._used = True self._exception = self._result = None def _run_callbacks(self): for cb in self._callbacks: try: cb(self) except Exception: pass # log.exception('exception calling callback for %r', self) self._callbacks = [] def set_running_or_notify_cancel(self): with self._condition: if self._state == CANCELLED: self._state = CANCELLED_AND_NOTIFIED for waiter in self._waiters: waiter.add_cancelled(self) # self._condition.notify_all() is not necessary because # self.cancel() triggers a notification. return False elif self._state == PENDING: self._state = RUNNING return True else: raise RuntimeError('Future in unexpected state: %s' % self._state) def set_result(self, result): with self._condition: self._result = result self._state = FINISHED for waiter in self._waiters: waiter.add_result(self) self._condition.notify_all() self._run_callbacks() def set_exception(self, exception): with self._condition: self._exception = exception self._state = FINISHED for waiter in self._waiters: waiter.add_exception(self) self._condition.notify_all() self._run_callbacks() class Executor(object): def submit(self, fn, *args, **kwargs): """Submits a callable to be executed with the given arguments. Schedules the callable to be executed as fn(*args, **kwargs) and returns a Future instance representing the execution of the callable. Returns: A Future representing the given call. """ raise NotImplementedError def map(self, fn, *iterables, **kwargs): """Returns a iterator equivalent to map(fn, iter). Args: fn: A callable that will take take as many arguments as there are passed iterables. timeout: The maximum number of seconds to wait. If None, then there is no limit on the wait time. Returns: An iterator equivalent to: map(func, *iterables) but the calls may be evaluated out-of-order. Raises: TimeoutError: If the entire result iterator could not be generated before the given timeout. Exception: If fn(*args) raises for any values. """ timeout = kwargs.get('timeout') if timeout is not None: end_time = timeout + _time() fs = [self.submit(fn, *args) for args in zip(*iterables)] # Yield must be hidden in closure so that the futures are submitted # before the first iterator value is required. def result_iterator(): try: for future in fs: if timeout is None: yield future.get() else: yield future.get(end_time - _time()) finally: for future in fs: future.cancel() return result_iterator() def shutdown(self, wait=True): """Clean-up the resources associated with the Executor. It is safe to call this method several times. Otherwise, no other methods can be called after this one. Args: wait: If True then shutdown will not return until all running futures have finished executing and the resources used by the executor have been reclaimed. """ pass def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.shutdown(wait=True) return False class InfiniteHandler(object): """Helper class to create a handler that keeps the loop alive until it's cancelled. """ def __init__(self, loop): self.loop = loop self._cb() def _cb(self): self.handler = self.loop.call_later(24*3600, self._cb) def cancel(self): if self.handler: self.handler.cancel() self.handler = self.loop = None
py
b40c23bf2cb44ec6a28c823a9afdcbae54929668
''' <table class="ee-notebook-buttons" align="left"> <td><a target="_blank" href="https://github.com/giswqs/earthengine-py-notebooks/tree/master/Reducer/stats_of_columns.ipynb"><img width=32px src="https://www.tensorflow.org/images/GitHub-Mark-32px.png" /> View source on GitHub</a></td> <td><a target="_blank" href="https://nbviewer.jupyter.org/github/giswqs/earthengine-py-notebooks/blob/master/Reducer/stats_of_columns.ipynb"><img width=26px src="https://upload.wikimedia.org/wikipedia/commons/thumb/3/38/Jupyter_logo.svg/883px-Jupyter_logo.svg.png" />Notebook Viewer</a></td> <td><a target="_blank" href="https://mybinder.org/v2/gh/giswqs/earthengine-py-notebooks/master?filepath=Reducer/stats_of_columns.ipynb"><img width=58px src="https://mybinder.org/static/images/logo_social.png" />Run in binder</a></td> <td><a target="_blank" href="https://colab.research.google.com/github/giswqs/earthengine-py-notebooks/blob/master/Reducer/stats_of_columns.ipynb"><img src="https://www.tensorflow.org/images/colab_logo_32px.png" /> Run in Google Colab</a></td> </table> ''' # %% ''' ## Install Earth Engine API Install the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geehydro](https://github.com/giswqs/geehydro). The **geehydro** Python package builds on the [folium](https://github.com/python-visualization/folium) package and implements several methods for displaying Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, `Map.centerObject()`, and `Map.setOptions()`. The magic command `%%capture` can be used to hide output from a specific cell. Uncomment these lines if you are running this notebook for the first time. ''' # %% # %%capture # !pip install earthengine-api # !pip install geehydro # %% ''' Import libraries ''' # %% import ee import folium import geehydro # %% ''' Authenticate and initialize Earth Engine API. You only need to authenticate the Earth Engine API once. Uncomment the line `ee.Authenticate()` if you are running this notebook for the first time or if you are getting an authentication error. ''' # %% # ee.Authenticate() ee.Initialize() # %% ''' ## Create an interactive map This step creates an interactive map using [folium](https://github.com/python-visualization/folium). The default basemap is the OpenStreetMap. Additional basemaps can be added using the `Map.setOptions()` function. The optional basemaps can be `ROADMAP`, `SATELLITE`, `HYBRID`, `TERRAIN`, or `ESRI`. ''' # %% Map = folium.Map(location=[40, -100], zoom_start=4) Map.setOptions('HYBRID') # %% ''' ## Add Earth Engine Python script ''' # %% # Load US cenus data as a FeatureCollection. census = ee.FeatureCollection('TIGER/2010/Blocks') # Filter the collection to include only Benton County, OR. benton = census.filter( ee.Filter.And( ee.Filter.eq('statefp10', '41'), ee.Filter.eq('countyfp10', '003') ) ) # Display Benton County cenus blocks. Map.setCenter(-123.27, 44.57, 13) Map.addLayer(ee.Image().paint(benton, 1, 3), {}, 'Benten County, OR') # Compute sums of the specified properties. properties = ['pop10', 'housing10'] sums = benton \ .filter(ee.Filter.notNull(properties)) \ .reduceColumns(**{ 'reducer': ee.Reducer.sum().repeat(2), 'selectors': properties }) # Print the resultant Dictionary. print(sums.getInfo()) # %% ''' ## Display Earth Engine data layers ''' # %% Map.setControlVisibility(layerControl=True, fullscreenControl=True, latLngPopup=True) Map