ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
b410f4b15c5fd0a89d15b5b4c0e414358fe0fb12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import argparse import logging import struct import six import nose import numpy as np from test_cpu_helper import TestModelInferenceCPU class TestSeResnext50InferenceCPU(TestModelInferenceCPU): """ TestModelInferenceCPU Args: Return: """ def test_inference_seresnext50_cpu(self): """ Inference and check value seresnext50 cpu model Args: None Return: None """ model_name = "SE_ResNeXt50_32x4d_pretrained" tmp_path = os.path.join(self.model_root, "classification") model_path = os.path.join(tmp_path, model_name, "model") data_path = os.path.join(tmp_path, model_name, "data/data.json") delta = 0.0001 res, exp = self.get_infer_results(model_path, data_path) for i in range(len(res)): self.check_data(res[i].flatten(), exp[i].flatten(), delta)
py
b410f5f812e288641b436497121de3a018313010
#!/usr/bin/env python ''' Run brat using the built-in Python CGI server for testing purposes. Author: Pontus Stenetorp <pontus stenetorp se> Version: 2012-07-01 ''' from BaseHTTPServer import HTTPServer, test as simple_http_server_test from CGIHTTPServer import CGIHTTPRequestHandler # Note: It is a terrible idea to import the function below, but we don't have # a choice if we want to emulate the super-class is_cgi method. from CGIHTTPServer import _url_collapse_path_split from sys import stderr from urlparse import urlparse # Note: The only reason that we sub-class in order to pull is the stupid # is_cgi method that assumes the usage of specific CGI directories, I simply # refuse to play along with this kind of non-sense. class BRATCGIHTTPRequestHandler(CGIHTTPRequestHandler): def is_cgi(self): # Having a CGI suffix is really a big hint of being a CGI script. if urlparse(self.path).path.endswith('.cgi'): self.cgi_info = _url_collapse_path_split(self.path) return True else: return CGIHTTPRequestHandler.is_cgi(self) def main(args): # BaseHTTPServer will look for the port in argv[1] or default to 8000 try: try: port = int(args[1]) except ValueError: raise TypeError except TypeError: print >> stderr, '%s is not a valid port number' % args[1] return -1 except IndexError: port = 8000 print >> stderr, 'WARNING: This server is for testing purposes only!' print >> stderr, (' You can also use it for trying out brat before ' 'deploying on a "real" web server such as Apache.') print >> stderr, (' Using this web server to run brat on an open ' 'network is a security risk!') print >> stderr print >> stderr, 'You can access the test server on:' print >> stderr print >> stderr, ' http://localhost:%s/' % port print >> stderr simple_http_server_test(BRATCGIHTTPRequestHandler, HTTPServer) if __name__ == '__main__': from sys import argv exit(main(argv))
py
b410f5fc4d8b5099c752a52090a56bc098781278
#!/usr/bin/env python3 # Apache License, Version 2.0 import argparse import os import shlex import shutil import subprocess import sys def setup(): import bpy for scene in bpy.data.scenes: scene.render.engine = 'BLENDER_EEVEE' # Enable Eevee features scene = bpy.context.scene eevee = scene.eevee eevee.use_ssr = True eevee.use_ssr_refraction = True eevee.use_gtao = True eevee.use_volumetric_shadows = True eevee.volumetric_tile_size = '2' for mat in bpy.data.materials: mat.use_screen_refraction = True mat.use_sss_translucency = True # When run from inside Blender, render and exit. try: import bpy inside_blender = True except ImportError: inside_blender = False if inside_blender: try: setup() except Exception as e: print(e) sys.exit(1) def render_file(filepath, output_filepath): dirname = os.path.dirname(filepath) basedir = os.path.dirname(dirname) subject = os.path.basename(dirname) frame_filepath = output_filepath + '0001.png' command = [ BLENDER, "--background", "-noaudio", "--factory-startup", "--enable-autoexec", filepath, "-E", "BLENDER_EEVEE", "-P", os.path.realpath(__file__), "-o", output_filepath, "-F", "PNG", "-f", "1"] try: # Success output = subprocess.check_output(command) if os.path.exists(frame_filepath): shutil.copy(frame_filepath, output_filepath) os.remove(frame_filepath) if VERBOSE: print(" ".join(command)) print(output.decode("utf-8")) return None except subprocess.CalledProcessError as e: # Error if os.path.exists(frame_filepath): os.remove(frame_filepath) if VERBOSE: print(" ".join(command)) print(e.output.decode("utf-8")) if b"Error: engine not found" in e.output: return "NO_ENGINE" elif b"blender probably wont start" in e.output: return "NO_START" return "CRASH" except BaseException as e: # Crash if os.path.exists(frame_filepath): os.remove(frame_filepath) if VERBOSE: print(" ".join(command)) print(e) return "CRASH" def create_argparse(): parser = argparse.ArgumentParser() parser.add_argument("-blender", nargs="+") parser.add_argument("-testdir", nargs=1) parser.add_argument("-outdir", nargs=1) parser.add_argument("-idiff", nargs=1) return parser def main(): parser = create_argparse() args = parser.parse_args() global BLENDER, VERBOSE BLENDER = args.blender[0] VERBOSE = os.environ.get("BLENDER_VERBOSE") is not None test_dir = args.testdir[0] idiff = args.idiff[0] output_dir = args.outdir[0] from modules import render_report report = render_report.Report("Eevee Test Report", output_dir, idiff) report.set_pixelated(True) report.set_reference_dir("eevee_renders") report.set_compare_engines('eevee', 'cycles') ok = report.run(test_dir, render_file) sys.exit(not ok) if not inside_blender and __name__ == "__main__": main()
py
b410f6d5dab50cca8264501f7eb64e9cc09cf7e9
import pandas as pd from bokeh.models import HoverTool, ColumnDataSource from bokeh.plotting import figure, show from bokeh.sampledata.periodic_table import elements elements = elements.copy() elements = elements[elements.group != "-"] elements.sort_values('metal', inplace=True) colormap = { "alkali metal" : "#a6cee3", "alkaline earth metal" : "#1f78b4", "halogen" : "#fdbf6f", "metal" : "#b2df8a", "metalloid" : "#33a02c", "noble gas" : "#bbbb88", "nonmetal" : "#baa2a6", "transition metal" : "#e08e79", } source = ColumnDataSource( data=dict( atomic_number=elements["atomic number"], sym=elements["symbol"], name=elements["name"], atomic_mass = pd.to_numeric(elements['atomic mass'], errors="coerce"), density=elements['density'], metal=[x.title() for x in elements["metal"]], type_color=[colormap[x] for x in elements["metal"]] ) ) mass_format = '{0.00}' hover = HoverTool(tooltips=""" <div style="width: 62px; height: 62px; opacity: .8; padding: 5px; background-color: @type_color;> <h1 style="margin: 0; font-size: 12px;"> @atomic_number </h1> <h1 style="margin: 0; font-size: 24px;"><strong> @sym </strong></h1> <p style=" margin: 0; font-size: 8px;"><strong> @name </strong></p> <p style="margin: 0; font-size: 8px;"> @atomic_mass{mass_format} </p> </div> """.format(mass_format=mass_format) ) p = figure(plot_width=900, plot_height=450, tools=[hover], title='Densities by Atomic Mass') p.circle('atomic_mass', 'density', size=12, source=source, color='type_color', line_color="black", legend='metal', fill_alpha=0.9) p.xaxis.axis_label= 'Atomic Mass' p.yaxis.axis_label= 'Density' p.grid.grid_line_color = None p.toolbar_location = None l = p.legend[0] l.plot = None p.add_layout(l, 'right') l.border_line_color = None show(p)
py
b410f77fa7c2d7a96185b178267aac441bd21e55
# -*- coding: utf-8 -*- ''' Control Linux Containers via Salt :depends: lxc execution module ''' # Import python libs from __future__ import print_function # Import Salt libs import salt.client import salt.utils.virt import salt.key # Don't shadow built-in's. __func_alias__ = { 'list_': 'list' } def _do(name, fun): ''' Invoke a function in the lxc module with no args ''' host = find_guest(name, quiet=True) if not host: return False client = salt.client.get_local_client(__opts__['conf_file']) cmd_ret = client.cmd_iter( host, 'lxc.{0}'.format(fun), [name], timeout=60) data = next(cmd_ret) data = data.get(host, {}).get('ret', None) if data: data = {host: data} return data def _do_names(names, fun): ''' Invoke a function in the lxc module with no args ''' ret = {} hosts = find_guests(names) if not hosts: return False client = salt.client.get_local_client(__opts__['conf_file']) cmds = [] for host, sub_names in hosts.items(): for name in sub_names: cmds.append(client.cmd_iter( host, 'lxc.{0}'.format(fun), [name], timeout=60)) for cmd in cmds: data = next(cmd) data = data.get(host, {}).get('ret', None) if data: ret.update({host: data}) return ret def find_guest(name, quiet=False): ''' Returns the host for a container. .. code-block:: bash salt-run lxc.find_guest name ''' for data in _list_iter(): host, l = data.items()[0] for x in 'running', 'frozen', 'stopped': if name in l[x]: if not quiet: salt.output.display_output( host, 'lxc_find_host', __opts__) return host return None def find_guests(names): ''' Return a dict of hosts and named guests ''' ret = {} names = names.split(',') for data in _list_iter(): host, stat = data.items()[0] for state in stat: for name in stat[state]: if name in names: if host in ret: ret[host].append(name) else: ret[host] = [name] return ret def init(names, host=None, **kwargs): ''' Initialize a new container .. code-block:: bash salt-run lxc.init name host=minion_id [cpuset=cgroups_cpuset] \\ [cpushare=cgroups_cpushare] [memory=cgroups_memory] \\ [template=lxc template name] [clone=original name] \\ [nic=nic_profile] [profile=lxc_profile] \\ [nic_opts=nic_opts] [start=(true|false)] \\ [seed=(true|false)] [install=(true|false)] \\ [config=minion_config] [snapshot=(true|false)] names Name of the containers, supports a single name or a comma delimited list of names. host Minion to start the container on. Required. cpuset cgroups cpuset. cpushare cgroups cpu shares. memory cgroups memory limit, in MB. template Name of LXC template on which to base this container clone Clone this container from an existing container nic Network interfaces profile (defined in config or pillar). profile A LXC profile (defined in config or pillar). nic_opts Extra options for network interfaces. E.g: {"eth0": {"mac": "aa:bb:cc:dd:ee:ff", "ipv4": "10.1.1.1", "ipv6": "2001:db8::ff00:42:8329"}} start Start the newly created container. seed Seed the container with the minion config and autosign its key. Default: true install If salt-minion is not already installed, install it. Default: true config Optional config paramers. By default, the id is set to the name of the container. ''' if host is None: #TODO: Support selection of host based on available memory/cpu/etc. print('A host must be provided') return False names = names.split(',') print('Searching for LXC Hosts') data = __salt__['lxc.list'](host, quiet=True) for host, containers in data.items(): for name in names: if name in sum(containers.values(), []): print('Container \'{0}\' already exists on host \'{1}\''.format( name, host)) return False if host not in data: print('Host \'{0}\' was not found'.format(host)) return False kw = dict((k, v) for k, v in kwargs.items() if not k.startswith('__')) approve_key = kw.get('approve_key', True) if approve_key: for name in names: kv = salt.utils.virt.VirtKey(host, name, __opts__) if kv.authorize(): print('Container key will be preauthorized') else: print('Container key preauthorization failed') return False client = salt.client.get_local_client(__opts__['conf_file']) print('Creating container(s) \'{0}\' on host \'{1}\''.format(names, host)) cmds = [] ret = {} for name in names: args = [name] cmds.append(client.cmd_iter(host, 'lxc.init', args, kwarg=kwargs, timeout=600)) ret = {} for cmd in cmds: sub_ret = next(cmd) if sub_ret and host in sub_ret: if host in ret: ret[host].append(sub_ret[host]['ret']) else: ret[host] = [sub_ret[host]['ret']] else: ret = {} for host, returns in ret.items(): for j_ret in returns: if j_ret.get('created', False) or j_ret.get('cloned', False): print('Container \'{0}\' initialized on host \'{1}\''.format( j_ret.get('name'), host)) else: error = j_ret.get('error', 'unknown error') print('Container \'{0}\' was not initialized: {1}'.format(j_ret.get(name), error)) return ret or None def _list_iter(host=None): ''' Return a generator iterating over hosts ''' tgt = host or '*' client = salt.client.get_local_client(__opts__['conf_file']) for container_info in client.cmd_iter(tgt, 'lxc.list'): if not container_info: continue if not isinstance(container_info, dict): continue chunk = {} id_ = container_info.keys()[0] if host and host != id_: continue if not isinstance(container_info[id_], dict): continue if 'ret' not in container_info[id_]: continue if not isinstance(container_info[id_]['ret'], dict): continue chunk[id_] = container_info[id_]['ret'] yield chunk def list_(host=None, quiet=False): ''' List defined containers (running, stopped, and frozen) for the named (or all) host(s). .. code-block:: bash salt-run lxc.list [host=minion_id] ''' it = _list_iter(host) ret = {} for chunk in it: ret.update(chunk) if not quiet: salt.output.display_output(chunk, 'lxc_list', __opts__) return ret def purge(name, delete_key=True, quiet=False): ''' Purge the named container and delete its minion key if present. WARNING: Destroys all data associated with the container. .. code-block:: bash salt-run lxc.purge name ''' data = _do_names(name, 'destroy') if data is False: return data if delete_key: skey = salt.key.Key(__opts__) skey.delete_key(name) if data is None: return if not quiet: salt.output.display_output(data, 'lxc_purge', __opts__) return data def start(name, quiet=False): ''' Start the named container. .. code-block:: bash salt-run lxc.start name ''' data = _do_names(name, 'start') if data and not quiet: salt.output.display_output(data, 'lxc_start', __opts__) return data def stop(name, quiet=False): ''' Stop the named container. .. code-block:: bash salt-run lxc.stop name ''' data = _do_names(name, 'stop') if data and not quiet: salt.output.display_output(data, 'lxc_force_off', __opts__) return data def freeze(name, quiet=False): ''' Freeze the named container .. code-block:: bash salt-run lxc.freeze name ''' data = _do_names(name, 'freeze') if data and not quiet: salt.output.display_output(data, 'lxc_pause', __opts__) return data def unfreeze(name, quiet=False): ''' Unfreeze the named container .. code-block:: bash salt-run lxc.unfreeze name ''' data = _do_names(name, 'unfreeze') if data and not quiet: salt.output.display_output(data, 'lxc_resume', __opts__) return data def info(name, quiet=False): ''' Returns information about a container. .. code-block:: bash salt-run lxc.info name ''' data = _do_names(name, 'info') if data and not quiet: salt.output.display_output(data, 'lxc_info', __opts__) return data
py
b410f791be43056132e2f07b18d3ce3ab8595430
# # Copyright © 2021 United States Government as represented by the Administrator # of the National Aeronautics and Space Administration. No copyright is claimed # in the United States under Title 17, U.S. Code. All Other Rights Reserved. # # SPDX-License-Identifier: NASA-1.3 # from importlib import resources from .extern import igrf as igrf_data from .extern import aep8 as aep8_data with resources.path(igrf_data, 'dgrf1945.dat') as p: IGRF_DATA_PATH = str(p.parent.resolve()) with resources.path(aep8_data, 'ae8min.asc') as p: AEP8_DATA_PATH = str(p.parent.resolve()) del igrf_data, aep8_data
py
b410f7a066edb60de6f96e06349e607018ea1cd0
import numpy as np import pySALESetup as pss import matplotlib.pyplot as plt from math import ceil def CDF(x): # The CDF A = 2.908 B = 0.028 C = 0.320 L = 0.643 a = 99.4 return (1./a)*A/(B+C*np.exp(-L*x)) def PDF(x): # The PDF A = 2.908 B = 0.028 C = 0.320 L = 0.643 a = 99.4 pdf = (1./a)*A*L*C*np.exp(L*x)/(B+C*np.exp(L*x))**2. return pdf def lunar_pdf(x,LB_tol,UB_tol): # Integrate PDF at a value of x P = abs(CDF(x+UB_tol) - CDF(x-LB_tol)) return P def PHI_(x): """ x must be in SI (metres) for this function to work PHI is only calculated correctly when the arg is mm """ return -1.*np.log2(x*1000.) def DD_(x): return 2.**(-x) # Top and bottom mesh created separately meshA = pss.Mesh(X=500,Y=1200,cellsize=2.5e-6) meshB = pss.Mesh(X=500,Y=1200,cellsize=2.5e-6) meshA.label='A' meshB.label='B' # target volume (area) fraction vfrac = 0.5 # Store grain objects in list, 'grains' grains = [] # Minimum krubeim phi = min resolution (4 cppr) # Max ... '' '' '' '' = max resolution (200 cppr) # Max res is one which still fits in the domain minphi = -np.log2(2*4*2.5e-3) maxphi = -np.log2(2*200*2.5e-3) # create 10 different particles N = 10 # Generate N phi values and equiv radii (in cells) phi = np.linspace(minphi,maxphi,N) Rs = ((DD_(phi)*.5*1.e-3)/meshA.cellsize) # interval over which to calculate number from pdf # No. = |CDF(x+h) - CDF(x-h)| * no. of areas h = abs(phi[1]-phi[0])*.5 # target area that ALL particles should take up at end target_area = float(meshA.x*meshA.y*vfrac) for r,p in zip(Rs,phi): # generate grain object with radius r g = pss.Grain(eqr=int(r)) # calculate the target number of grains from CDF (see above) prob = abs(CDF(p+h) - CDF(p-h)) g.targetFreq = int(round(prob * (target_area/float(g.area)))) grains.append(g) # library of grains has been generated, now place them into the mesh! # Just meshA for now # order grains from largest to smallest grains = [g for _,g in sorted(zip(phi,grains))] groupA = pss.Ensemble(meshA,name='mirror_test_ens') try: i = 0 for g in grains: for f in range(g.targetFreq): g.insertRandomly(meshA, m=1) groupA.add(g,g.x,g.y) except KeyboardInterrupt: pass groupA.optimise_materials(np.array([1,2,3,4,5,6,7,8])) groupA.save() meshA.fillAll(-1) for xA,yA,gA,mA in zip(groupA.xc,groupA.yc,groupA.grains,groupA.mats): gA.place(xA,yA,mA,meshA) meshA.fillAll(9) import copy meshB = copy.deepcopy(meshA) meshB.flipMesh() meshA.blanketVel(-1500.,axis=1) meshB.blanketVel(+1500.,axis=1) meshC = pss.combine_meshes(meshA,meshB,axis=1) meshC.top_and_tail() meshC.viewMats() meshC.viewVels() meshC.save(fname='regolith_mirror_v3000.iSALE',compress=True) meshC.multiplyVels() meshC.save(fname='regolith_mirror_v1500.iSALE',compress=True) meshC.multiplyVels() meshC.save(fname='regolith_mirror_v750.iSALE',compress=True)
py
b410f852123fa07a520fbda3f224ebfd4643a72c
# -*- coding: utf-8 -*- from cornice.resource import resource, view from openprocurement.api.models import Award, Complaint, STAND_STILL_TIME, get_now from openprocurement.api.utils import ( apply_data_patch, save_tender, ) from openprocurement.api.validation import ( validate_complaint_data, validate_patch_complaint_data, ) @resource(name='Tender Award Complaints', collection_path='/tenders/{tender_id}/awards/{award_id}/complaints', path='/tenders/{tender_id}/awards/{award_id}/complaints/{complaint_id}', description="Tender award complaints") class TenderAwardComplaintResource(object): def __init__(self, request): self.request = request self.db = request.registry.db @view(content_type="application/json", permission='create_award_complaint', validators=(validate_complaint_data,), renderer='json') def collection_post(self): """Post a complaint for award """ tender = self.request.validated['tender'] if tender.status not in ['active.qualification', 'active.awarded']: self.request.errors.add('body', 'data', 'Can\'t add complaint in current tender status') self.request.errors.status = 403 return complaint_data = self.request.validated['data'] complaint = Complaint(complaint_data) self.request.validated['award'].complaints.append(complaint) save_tender(self.request) self.request.response.status = 201 self.request.response.headers['Location'] = self.request.route_url('Tender Award Complaints', tender_id=tender.id, award_id=self.request.validated['award_id'], complaint_id=complaint['id']) return {'data': complaint.serialize("view")} @view(renderer='json', permission='view_tender') def collection_get(self): """List complaints for award """ return {'data': [i.serialize("view") for i in self.request.validated['award'].complaints]} @view(renderer='json', permission='view_tender') def get(self): """Retrieving the complaint for award """ return {'data': self.request.validated['complaint'].serialize("view")} @view(content_type="application/json", permission='review_complaint', validators=(validate_patch_complaint_data,), renderer='json') def patch(self): """Post a complaint resolution for award """ tender = self.request.validated['tender'] if tender.status not in ['active.qualification', 'active.awarded']: self.request.errors.add('body', 'data', 'Can\'t update complaint in current tender status') self.request.errors.status = 403 return complaint = self.request.validated['complaint'] if complaint.status != 'pending': self.request.errors.add('body', 'data', 'Can\'t update complaint in current status') self.request.errors.status = 403 return complaint_data = self.request.validated['data'] if complaint_data: if complaint_data.get('status', '') == 'cancelled': self.request.errors.add('body', 'data', 'Can\'t cancel complaint') self.request.errors.status = 403 return complaint.import_data(apply_data_patch(complaint.serialize(), complaint_data)) if complaint.status == 'resolved': award = self.request.validated['award'] if tender.status == 'active.awarded': tender.status = 'active.qualification' tender.awardPeriod.endDate = None if award.status == 'unsuccessful': for i in tender.awards[tender.awards.index(award):]: i.status = 'cancelled' for j in i.complaints: if j.status == 'pending': j.status = 'cancelled' for i in award.contracts: i.status = 'cancelled' award.status = 'cancelled' unsuccessful_awards = [i.bid_id for i in tender.awards if i.status == 'unsuccessful'] bids = [i for i in sorted(tender.bids, key=lambda i: (i.value.amount, i.date)) if i.id not in unsuccessful_awards] if bids: bid = bids[0].serialize() award_data = { 'bid_id': bid['id'], 'status': 'pending', 'value': bid['value'], 'suppliers': bid['tenderers'], } award = Award(award_data) tender.awards.append(award) else: tender.awardPeriod.endDate = get_now() tender.status = 'active.awarded' elif complaint.status in ['declined', 'invalid'] and tender.status == 'active.awarded': pending_complaints = [ i for i in tender.complaints if i.status == 'pending' ] pending_awards_complaints = [ i for a in tender.awards for i in a.complaints if i.status == 'pending' ] stand_still_time_expired = tender.awardPeriod.endDate + STAND_STILL_TIME < get_now() if not pending_complaints and not pending_awards_complaints and stand_still_time_expired: active_awards = [ a for a in tender.awards if a.status == 'active' ] if active_awards: tender.status = 'complete' else: tender.status = 'unsuccessful' save_tender(self.request) return {'data': complaint.serialize("view")}
py
b410f8a9385591779c1b1df2eb01230d46f5a98b
from django.contrib import admin # Register your models here. from .models import * # Register your models here. class ProfileA(admin.ModelAdmin): list_display=('user', 'Department','Course','Phone_number') list_filter = ('Department','Course') admin.site.register(Profile, ProfileA)
py
b410fb7c229cc720134d59875e50f6100405ada3
from onegov.file.models.file import File, SearchableFile from onegov.file.models.fileset import FileSet from onegov.file.models.associated_files import AssociatedFiles __all__ = ( 'AssociatedFiles', 'File', 'FileSet', 'SearchableFile' )
py
b410fc8ea070fc061b00ce4355c4dd8abb4baad1
# -*- coding: utf-8 -*- # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """ Package contains modules for generating pipelines using interfaces """ __docformat__ = 'restructuredtext' from .engine import Node, MapNode, JoinNode, Workflow
py
b410fcb96d45532e4e8b08296bd2e24b6a7dc737
""" CryptoAPIs Crypto APIs 2.0 is a complex and innovative infrastructure layer that radically simplifies the development of any Blockchain and Crypto related applications. Organized around REST, Crypto APIs 2.0 can assist both novice Bitcoin/Ethereum enthusiasts and crypto experts with the development of their blockchain applications. Crypto APIs 2.0 provides unified endpoints and data, raw data, automatic tokens and coins forwardings, callback functionalities, and much more. # noqa: E501 The version of the OpenAPI document: 2.0.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ import sys import unittest import cryptoapis from cryptoapis.model.get_zilliqa_block_details_by_block_hash_ri import GetZilliqaBlockDetailsByBlockHashRI class TestGetZilliqaBlockDetailsByBlockHashRI(unittest.TestCase): """GetZilliqaBlockDetailsByBlockHashRI unit test stubs""" def setUp(self): pass def tearDown(self): pass def testGetZilliqaBlockDetailsByBlockHashRI(self): """Test GetZilliqaBlockDetailsByBlockHashRI""" # FIXME: construct object with mandatory attributes with example values # model = GetZilliqaBlockDetailsByBlockHashRI() # noqa: E501 pass if __name__ == '__main__': unittest.main()
py
b410fce2001258b264b45889d9fef8de87c06592
# Create your views here. from rest_framework import viewsets, status from rest_framework.decorators import permission_classes from rest_framework.parsers import JSONParser from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from shares.models import Share from shares.serializers import ShareSerializer # Create your views here. class ShareViewSet(viewsets.ModelViewSet): queryset = Share.objects.all() serializer_class = ShareSerializer # 指定这个view的 Content-Type 是 application/json parser_classes = (JSONParser,) def get_permissions(self): if self.action in ('create',): self.permission_classes = [IsAuthenticated] return [permission() for permission in self.permission_classes] # [GET] api/share/, 不需要授权 def list(self, request, **kwargs): users = Share.objects.all() serializer = ShareSerializer(users, many=True) return Response(serializer.data, status=status.HTTP_200_OK) # [POST] api/share/,需要授权,添加@permission_classes注解,会调用get_permissions()方法 @permission_classes((IsAuthenticated,)) def create(self, request, **kwargs): name = request.data.get('name') users = Share.objects.create(name=name) serializer = ShareSerializer(users) return Response(serializer.data, status=status.HTTP_201_CREATED)
py
b410fcf53a3daee17a32c1ae0aa94131eb4e72c8
import os import re import sys from pathlib import Path from subprocess import run from typing import Callable, Optional, List, Tuple, Dict, Set from lib.functional import flatmap from lib.model import Assignment, Check, CheckResult from lib.grade import grade from lib.checks import set_home_path, set_assignment_name from lib.print import (is_in_quiet_mode, enter_quiet_mode, leave_quiet_mode, print_error, print_message, print_usage, print_warning, print_grade, print_processing, stop_processing_spinner, print_passed, print_failed) DEFAULT_BULK_GRADE_DIRECTORY = os.path.abspath('./.repositories') bulk_grade_mode = False file_with_commit_links = None bulk_grade_directory = DEFAULT_BULK_GRADE_DIRECTORY def error(msg): print_error(msg) exit(1) def parse_options(args, option_flags): i = 0 options = list(map(lambda x: x[0], option_flags)) while len(args) > i and args[i][0] == '-': if args[i] in options: index = options.index(args[i]) if option_flags[index][2] is None: option_flags[index][1]() else: i += 1 if len(args) > i: option_flags[index][1](args[i]) else: error('option flag "' + option_flags[index][0] + '" needs an argument ' + option_flags[index][2]) else: error('unknown option: ' + args[i]) i += 1 return args[i:] def parse_assignment(args: List[str], assignments: Set[Assignment]) -> Optional[Assignment]: if len(args) == 0: return None if len(args) > 1: error('only 1 assignment allowed') possible_assignment = list(filter(lambda a: a.name == args[0], assignments)) if len(possible_assignment) == 1: return possible_assignment[0] error('unknown test: {}'.format(args)) def validate_options_for(assignment: Optional[Assignment]): if not bulk_grade_mode and is_in_quiet_mode() and assignment is None: error('please specify a assignment') def execute_with_output(check: Check) -> CheckResult: print_processing(check.msg) try: result = check.execute() finally: stop_processing_spinner() if result.result == result.should_succeed: print_passed(check.msg) else: print_failed(check.msg, result.warning, result.output, result.command) return result def check_assignment(assignment: Assignment, baseline: Assignment) -> Tuple[int, List[str]]: def check(a: Assignment): return list(map(execute_with_output, a.create_checks())) def change_result_to_mandatory(r: CheckResult): return CheckResult(r.result, r.msg, r.output, r.warning, r.should_succeed, r.command, True) if assignment != baseline: baseline_results = list(map(change_result_to_mandatory, check(baseline))) else: baseline_results = [ ] set_assignment_name(assignment.category) print_message('executing test \'{}\''.format(assignment.name)) results = baseline_results + check(assignment) set_assignment_name('') (grade_value, reasons) = grade(results) for reason in reasons: print_warning(reason) print_grade(grade_value) def enable_bulk_grader(file): global bulk_grade_mode, file_with_commit_links if not os.path.exists(file): error('the file "' + file + '" does not exist') if not os.path.isfile(file): error('the path "' + file + '" is not a file') bulk_grade_mode = True file_with_commit_links = os.path.abspath(file) def set_bulk_grade_directory(directory): global bulk_grade_directory bulk_grade_directory = os.path.abspath(directory) def parse_commit_url(url) -> Optional[Dict]: matcher = re.match( '^https://github.com/([^/]+)/([^/]+)/commit/([0-9a-f]+)$', url) if matcher is None: return None else: return { 'user': matcher.group(1), 'repo': matcher.group(2), 'commit': matcher.group(3) } def do_bulk_grading(assignment: Optional[Assignment], base_test: Assignment): if not os.path.exists(bulk_grade_directory): os.mkdir(bulk_grade_directory) working_directory = os.getcwd() os.chdir(bulk_grade_directory) with open(file_with_commit_links, 'rt') as file: for line in file.readlines(): info = parse_commit_url(line) if info is None: print_message(line + '" is not a valid github commit link') continue repo_id = '{}/{}'.format(info['user'], info['repo']) print_message(repo_id + ': ', end='', loud=True) clone_dir = os.path.join(bulk_grade_directory, repo_id) if not os.path.exists(clone_dir): status = os.system( 'git clone -q [email protected]:{} {} >/dev/null 2>&1'.format(repo_id, repo_id)) if status != 0: print_message('error when cloning ' + repo_id, loud=True) continue os.chdir(clone_dir) # remove all changes in local repository os.system('git reset --hard -q >/dev/null 2>&1') # fetch updates from github repository os.system('git fetch -q >/dev/null 2>&1') # change the local repository state using the commit ID status = os.system( 'git checkout -q {} >/dev/null 2>&1'.format(info['commit'])) if status == 0: if assignment is None: print_message('updated', loud=True) else: print_message('') check_assignment(assignment, base_test) print_message('', loud=True) else: print_message( 'commit hash "{}" is not valid'.format(info['commit'])) os.chdir(bulk_grade_directory) os.chdir(working_directory) if bulk_grade_directory is DEFAULT_BULK_GRADE_DIRECTORY: os.system('rm -rf {}'.format(bulk_grade_directory)) print_usage_flag = False def set_print_usage(): global print_usage_flag print_usage_flag = True option_flags = [ ('-q', enter_quiet_mode, None, 'only the grade is printed'), ('-h', set_print_usage, None, 'this help text'), ('-b', enable_bulk_grader, '<file>', 'bulk grade assignments defined by a file with github commit links'), ('-d', set_bulk_grade_directory, '<directory>', 'path where all bulk graded repositories should be saved') ] def reset_state(): global bulk_grade_mode, bulk_grade_directory global file_with_commit_links global print_usage_flag bulk_grade_mode = False file_with_commit_links = None bulk_grade_directory = DEFAULT_BULK_GRADE_DIRECTORY set_assignment_name('') print_usage_flag = False leave_quiet_mode() def process_arguments(argv: List[str], assignments: Set[Assignment], baseline: Assignment): try: if len(argv) <= 1: print_usage(option_flags, assignments) exit() set_home_path(Path(os.path.abspath(os.path.dirname(argv[0])))) args = parse_options(argv[1:], option_flags) assignment = parse_assignment(args, assignments) validate_options_for(assignment) if print_usage_flag: print_usage(option_flags, assignments) exit() if bulk_grade_mode: do_bulk_grading(assignment, baseline) else: check_assignment(assignment, baseline) finally: reset_state()
py
b410fd2dcca84d06c5cb7d8e0d6481381188bd00
# -*- coding: utf-8 -*- from south.db import db from django.db import models from django_lean.experiments.models import * class Migration: def forwards(self, orm): # Adding field 'DailyReport.test_group_size' db.add_column('experiments_dailyreport', 'test_group_size', orm['experiments.dailyreport:test_group_size']) # Adding field 'DailyReport.control_group_size' db.add_column('experiments_dailyreport', 'control_group_size', orm['experiments.dailyreport:control_group_size']) # Changing field 'Participant.anonymous_visitor' # (to signature: django.db.models.fields.related.ForeignKey(to=orm['experiments.AnonymousVisitor'], null=True, blank=True)) db.alter_column('experiments_participant', 'anonymous_visitor_id', orm['experiments.participant:anonymous_visitor']) def backwards(self, orm): # Deleting field 'DailyReport.test_group_size' db.delete_column('experiments_dailyreport', 'test_group_size') # Deleting field 'DailyReport.control_group_size' db.delete_column('experiments_dailyreport', 'control_group_size') # Changing field 'Participant.anonymous_visitor' # (to signature: django.db.models.fields.related.ForeignKey(to=orm['experiments.AnonymousVisitor'], null=True)) db.alter_column('experiments_participant', 'anonymous_visitor_id', orm['experiments.participant:anonymous_visitor']) models = { 'auth.group': { 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '80', 'unique': 'True'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'unique_together': "(('content_type', 'codename'),)"}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True', 'blank': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'max_length': '30', 'unique': 'True'}) }, 'contenttypes.contenttype': { 'Meta': {'unique_together': "(('app_label', 'model'),)", 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'experiments.anonymousvisitor': { 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, 'experiments.dailyreport': { 'control_group_size': ('django.db.models.fields.IntegerField', [], {}), 'control_score': ('django.db.models.fields.FloatField', [], {}), 'date': ('django.db.models.fields.DateField', [], {}), 'experiment': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['experiments.Experiment']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'test_group_size': ('django.db.models.fields.IntegerField', [], {}), 'test_score': ('django.db.models.fields.FloatField', [], {}) }, 'experiments.experiment': { 'end_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128', 'unique': 'True'}), 'start_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'state': ('django.db.models.fields.IntegerField', [], {'default': '0'}) }, 'experiments.goalrecord': { 'anonymous_visitor': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['experiments.AnonymousVisitor']"}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'goal_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['experiments.GoalType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, 'experiments.goaltype': { 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128', 'unique': 'True'}) }, 'experiments.participant': { 'Meta': {'unique_together': "(('user', 'experiment'), ('anonymous_visitor', 'experiment'))"}, 'anonymous_visitor': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['experiments.AnonymousVisitor']", 'null': 'True', 'blank': 'True'}), 'enrollment_date': ('django.db.models.fields.DateField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'experiment': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['experiments.Experiment']"}), 'group': ('django.db.models.fields.IntegerField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']", 'null': 'True'}) } } complete_apps = ['experiments']
py
b410fdceff7bcd2d58648e4a7ae98037f53adbf0
""" Support for Rflink lights. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/light.rflink/ """ import asyncio import logging from homeassistant.components.light import ( ATTR_BRIGHTNESS, SUPPORT_BRIGHTNESS, Light) from homeassistant.components.rflink import ( CONF_ALIASES, CONF_ALIASSES, CONF_AUTOMATIC_ADD, CONF_DEVICE_DEFAULTS, CONF_DEVICES, CONF_FIRE_EVENT, CONF_GROUP, CONF_GROUP_ALIASES, CONF_GROUP_ALIASSES, CONF_IGNORE_DEVICES, CONF_NOGROUP_ALIASES, CONF_NOGROUP_ALIASSES, CONF_SIGNAL_REPETITIONS, DATA_DEVICE_REGISTER, DATA_ENTITY_GROUP_LOOKUP, DATA_ENTITY_LOOKUP, DEVICE_DEFAULTS_SCHEMA, DOMAIN, EVENT_KEY_COMMAND, EVENT_KEY_ID, SwitchableRflinkDevice, cv, remove_deprecated, vol) from homeassistant.const import ( CONF_NAME, CONF_PLATFORM, CONF_TYPE, STATE_UNKNOWN) from homeassistant.helpers.deprecation import get_deprecated DEPENDENCIES = ['rflink'] _LOGGER = logging.getLogger(__name__) TYPE_DIMMABLE = 'dimmable' TYPE_SWITCHABLE = 'switchable' TYPE_HYBRID = 'hybrid' TYPE_TOGGLE = 'toggle' PLATFORM_SCHEMA = vol.Schema({ vol.Required(CONF_PLATFORM): DOMAIN, vol.Optional(CONF_IGNORE_DEVICES): vol.All(cv.ensure_list, [cv.string]), vol.Optional(CONF_DEVICE_DEFAULTS, default=DEVICE_DEFAULTS_SCHEMA({})): DEVICE_DEFAULTS_SCHEMA, vol.Optional(CONF_AUTOMATIC_ADD, default=True): cv.boolean, vol.Optional(CONF_DEVICES, default={}): vol.Schema({ cv.string: { vol.Optional(CONF_NAME): cv.string, vol.Optional(CONF_TYPE): vol.Any(TYPE_DIMMABLE, TYPE_SWITCHABLE, TYPE_HYBRID, TYPE_TOGGLE), vol.Optional(CONF_ALIASES, default=[]): vol.All(cv.ensure_list, [cv.string]), vol.Optional(CONF_GROUP_ALIASES, default=[]): vol.All(cv.ensure_list, [cv.string]), vol.Optional(CONF_NOGROUP_ALIASES, default=[]): vol.All(cv.ensure_list, [cv.string]), vol.Optional(CONF_FIRE_EVENT): cv.boolean, vol.Optional(CONF_SIGNAL_REPETITIONS): vol.Coerce(int), vol.Optional(CONF_GROUP, default=True): cv.boolean, # deprecated config options vol.Optional(CONF_ALIASSES): vol.All(cv.ensure_list, [cv.string]), vol.Optional(CONF_GROUP_ALIASSES): vol.All(cv.ensure_list, [cv.string]), vol.Optional(CONF_NOGROUP_ALIASSES): vol.All(cv.ensure_list, [cv.string]), }, }), }) def entity_type_for_device_id(device_id): """Return entity class for protocol of a given device_id. Async friendly. """ entity_type_mapping = { # KlikAanKlikUit support both dimmers and on/off switches on the same # protocol 'newkaku': TYPE_HYBRID, } protocol = device_id.split('_')[0] return entity_type_mapping.get(protocol, None) def entity_class_for_type(entity_type): """Translate entity type to entity class. Async friendly. """ entity_device_mapping = { # sends only 'dim' commands not compatible with on/off switches TYPE_DIMMABLE: DimmableRflinkLight, # sends only 'on/off' commands not advices with dimmers and signal # repetition TYPE_SWITCHABLE: RflinkLight, # sends 'dim' and 'on' command to support both dimmers and on/off # switches. Not compatible with signal repetition. TYPE_HYBRID: HybridRflinkLight, # sends only 'on' commands for switches which turn on and off # using the same 'on' command for both. TYPE_TOGGLE: ToggleRflinkLight, } return entity_device_mapping.get(entity_type, RflinkLight) def devices_from_config(domain_config, hass=None): """Parse configuration and add Rflink light devices.""" devices = [] for device_id, config in domain_config[CONF_DEVICES].items(): # Determine which kind of entity to create if CONF_TYPE in config: # Remove type from config to not pass it as and argument to entity # instantiation entity_type = config.pop(CONF_TYPE) else: entity_type = entity_type_for_device_id(device_id) entity_class = entity_class_for_type(entity_type) device_config = dict(domain_config[CONF_DEVICE_DEFAULTS], **config) remove_deprecated(device_config) is_hybrid = entity_class is HybridRflinkLight # Make user aware this can cause problems repetitions_enabled = device_config[CONF_SIGNAL_REPETITIONS] != 1 if is_hybrid and repetitions_enabled: _LOGGER.warning( "Hybrid type for %s not compatible with signal " "repetitions. Please set 'dimmable' or 'switchable' " "type explicitly in configuration", device_id) device = entity_class(device_id, hass, **device_config) devices.append(device) # Register entity (and aliases) to listen to incoming rflink events # Device id and normal aliases respond to normal and group command hass.data[DATA_ENTITY_LOOKUP][ EVENT_KEY_COMMAND][device_id].append(device) if config[CONF_GROUP]: hass.data[DATA_ENTITY_GROUP_LOOKUP][ EVENT_KEY_COMMAND][device_id].append(device) for _id in get_deprecated(config, CONF_ALIASES, CONF_ALIASSES): hass.data[DATA_ENTITY_LOOKUP][ EVENT_KEY_COMMAND][_id].append(device) hass.data[DATA_ENTITY_GROUP_LOOKUP][ EVENT_KEY_COMMAND][_id].append(device) # group_aliases only respond to group commands for _id in get_deprecated( config, CONF_GROUP_ALIASES, CONF_GROUP_ALIASSES): hass.data[DATA_ENTITY_GROUP_LOOKUP][ EVENT_KEY_COMMAND][_id].append(device) # nogroup_aliases only respond to normal commands for _id in get_deprecated( config, CONF_NOGROUP_ALIASES, CONF_NOGROUP_ALIASSES): hass.data[DATA_ENTITY_LOOKUP][ EVENT_KEY_COMMAND][_id].append(device) return devices @asyncio.coroutine def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up the Rflink light platform.""" async_add_entities(devices_from_config(config, hass)) @asyncio.coroutine def add_new_device(event): """Check if device is known, otherwise add to list of known devices.""" device_id = event[EVENT_KEY_ID] entity_type = entity_type_for_device_id(event[EVENT_KEY_ID]) entity_class = entity_class_for_type(entity_type) device_config = config[CONF_DEVICE_DEFAULTS] device = entity_class(device_id, hass, **device_config) async_add_entities([device]) # Register entity to listen to incoming Rflink events hass.data[DATA_ENTITY_LOOKUP][ EVENT_KEY_COMMAND][device_id].append(device) # Schedule task to process event after entity is created hass.async_add_job(device.handle_event, event) if config[CONF_AUTOMATIC_ADD]: hass.data[DATA_DEVICE_REGISTER][EVENT_KEY_COMMAND] = add_new_device class RflinkLight(SwitchableRflinkDevice, Light): """Representation of a Rflink light.""" pass class DimmableRflinkLight(SwitchableRflinkDevice, Light): """Rflink light device that support dimming.""" _brightness = 255 @asyncio.coroutine def async_turn_on(self, **kwargs): """Turn the device on.""" if ATTR_BRIGHTNESS in kwargs: # rflink only support 16 brightness levels self._brightness = int(kwargs[ATTR_BRIGHTNESS] / 17) * 17 # Turn on light at the requested dim level yield from self._async_handle_command('dim', self._brightness) @property def brightness(self): """Return the brightness of this light between 0..255.""" return self._brightness @property def supported_features(self): """Flag supported features.""" return SUPPORT_BRIGHTNESS class HybridRflinkLight(SwitchableRflinkDevice, Light): """Rflink light device that sends out both dim and on/off commands. Used for protocols which support lights that are not exclusively on/off style. For example KlikAanKlikUit supports both on/off and dimmable light switches using the same protocol. This type allows unconfigured KlikAanKlikUit devices to support dimming without breaking support for on/off switches. This type is not compatible with signal repetitions as the 'dim' and 'on' command are send sequential and multiple 'on' commands to a dimmable device can cause the dimmer to switch into a pulsating brightness mode. Which results in a nice house disco :) """ _brightness = 255 @asyncio.coroutine def async_turn_on(self, **kwargs): """Turn the device on and set dim level.""" if ATTR_BRIGHTNESS in kwargs: # rflink only support 16 brightness levels self._brightness = int(kwargs[ATTR_BRIGHTNESS] / 17) * 17 # if receiver supports dimming this will turn on the light # at the requested dim level yield from self._async_handle_command('dim', self._brightness) # if the receiving device does not support dimlevel this # will ensure it is turned on when full brightness is set if self._brightness == 255: yield from self._async_handle_command('turn_on') @property def brightness(self): """Return the brightness of this light between 0..255.""" return self._brightness @property def supported_features(self): """Flag supported features.""" return SUPPORT_BRIGHTNESS class ToggleRflinkLight(SwitchableRflinkDevice, Light): """Rflink light device which sends out only 'on' commands. Some switches like for example Livolo light switches use the same 'on' command to switch on and switch off the lights. If the light is on and 'on' gets sent, the light will turn off and if the light is off and 'on' gets sent, the light will turn on. """ @property def entity_id(self): """Return entity id.""" return "light.{}".format(self.name) def _handle_event(self, event): """Adjust state if Rflink picks up a remote command for this device.""" self.cancel_queued_send_commands() command = event['command'] if command == 'on': # if the state is unknown or false, it gets set as true # if the state is true, it gets set as false self._state = self._state in [STATE_UNKNOWN, False] @asyncio.coroutine def async_turn_on(self, **kwargs): """Turn the device on.""" yield from self._async_handle_command('toggle') @asyncio.coroutine def async_turn_off(self, **kwargs): """Turn the device off.""" yield from self._async_handle_command('toggle')
py
b410fec1b7dae7554b1fae456c24b309e607f02b
import requests def get_weather_data(lat, lon, weather_api_key): params = {"appid": weather_api_key, "lat": str(lat), "lon": str(lon)} weatherRequest = requests.get( "https://api.openweathermap.org/data/2.5/weather?", params=params) weatherResponse = weatherRequest.json() # Converts into type 'dict' wind_heading = weatherResponse['wind']['deg'] temperature = (weatherResponse.get('main')).get('temp') humidity = (weatherResponse.get('main')).get('humidity') visibility = weatherResponse.get('visibility') wind_speed = (weatherResponse.get('wind')).get('speed') weather_dict = { "temperature": temperature, "humidity": humidity, "visibility": visibility, "wind_speed": wind_speed, "wind_heading": wind_heading } return weather_dict
py
b411017f68be4ebca613a297f9533048c62bb2cc
""" TODO: - identify and rectify issues with Gauss Newton matrix dot and inverse issues """ #dependencies import os import csv import math import statistics import numpy as np import matplotlib.pyplot as plt import astropy.units as u from astropy import coordinates as coords from astroquery.gaia import Gaia from csv import writer from numpy.linalg import inv from numpy.linalg import det #data locations; replace with coordinates of LC DAT directory and metadata txt file, respectively LCdir = r"C:\Users\micha\Documents\BLG_data_processing\OGLE-ATLAS-RR-c\I" outputdir = r"C:\Users\micha\Documents\BLG_data_processing\PROCESSED" stardata = r"C:\Users\micha\Documents\BLG_data_processing\OGLE-ATLAS-RR-c\BLG_metadata.txt" lastsortedloc = r"C:\Users\micha\Documents\BLG_data_processing\OGLE-ATLAS-RR-c\processed.txt" colordeviationstats = r"C:\Users\micha\Documents\BLG_data_processing\OGLE-ATLAS-RR-c\stats.csv" debugloc = r"C:\Users\micha\Documents\BLG_data_processing\OGLE-ATLAS-RR-c\debug.txt" matrixbuglog = r"C:\Users\micha\Documents\BLG_data_processing\OGLE-ATLAS-RR-c\matrixbug.txt" #get file directory LCfilelist = os.listdir(LCdir) LCfilelength = len(LCfilelist) #reading all star data from DAT file (names and periods for wave fitting, RA and dec for Gaia query) names = np.loadtxt(stardata, dtype=str, skiprows=7, usecols=0) periods = np.loadtxt(stardata, skiprows=7, usecols=8) fallbackRA = np.loadtxt(stardata, dtype = "str", skiprows = 7, usecols = 2) allRA = np.loadtxt(stardata, dtype = "str", skiprows = 7, usecols = 3) alldec = np.loadtxt(stardata, dtype = "str", skiprows = 7, usecols = 4) #lastsaved lastsorted = open(lastsortedloc, "r") laststar = int(lastsorted.read()) lastsorted.close() #implementing Gauss-Newton Algorithm for curve fitting non linear regression; in this case, of the form Asin(Bx+C)+D def gaussnewton(name, phases, brightnesses, average, amplitude, mid_phase): #in case of Gauss-Newton fitting error, we may fallback onto initial guess values for fit fallback_sin = (amplitude * np.sin(((phases - mid_phase) * 2 * math.pi))) + average fallback_rms = math.sqrt((1 / (fallback_sin.size)) * np.sum(abs(np.subtract(fallback_sin, brightnesses)) ** 2)) #in case of phase flipped midpoint mis-fit phaseflip_fallback_sin = (-1 * fallback_sin) + (2 * average) phaseflip_rms = math.sqrt((1 / (phaseflip_fallback_sin.size)) * np.sum(abs(np.subtract(phaseflip_fallback_sin, brightnesses)) ** 2)) if fallback_rms > phaseflip_rms: fallback_sin = phaseflip_fallback_sin fallback_rms = phaseflip_rms #Gauss-Newton iterations and damping parameters iter = 400 damping = 0.02 #PDEs in Gauss-Newton def pdA(x, b, c): return np.sin(b * x + c) def pdB(x, a, b, c): return a * x * np.cos(b * x + c) def pdC(x, a, b, c): return a * np.cos(b * x + c) def pdD(x): return 1 #least squares def leastSquares(x, y, a, b, c, d): return y - (a * np.sin(b * x + c) + d) #standard method io x = phases y = brightnesses #initial guesses for A, B, C, D in sine B = np.matrix([[amplitude], [2 * math.pi], [(mid_phase) * 2 * math.pi], [average]]) #jacobian matrix for diff eq J = np.zeros((x.size, 4)) #least square vector r = np.zeros((x.size, 1)) for _ in range(0, iter): for i in range(0, x.size): #compute each value of r in this iteration r[i, 0] = leastSquares(x[i], y[i], B[0], B[1], B[2], B[3]) #calculate the Values of Jacobian matrix on this iteration J[i, 0] = pdA(x[i], B[1], B[2]) J[i, 1] = pdB(x[i], B[0], B[1], B[2]) J[i, 2] = pdC(x[i], B[0], B[1], B[2]) J[i, 3] = pdD(x[i]) Jt = J.T if (det(np.dot(Jt, J)) == 0.0): print("determinant is zero, inversion would kill the loop.") matrixbugfile = open(matrixbuglog, "a") matrixbugfile.write("\n") matrixbugfile.write(name) break #print("transpose " + str(Jt)) #print("dot1 " + str(np.dot(Jt, J))) #print("inv " + str(inv(np.dot(Jt, J)))) #print("dot2 " + str(np.dot(inv(np.dot(Jt, J)), Jt))) #print("dot3 " + str((np.dot(np.dot(inv(np.dot(Jt, J)), Jt), r)))) B += damping * (np.dot(np.dot(inv(np.dot(Jt, J)), Jt), r)) #print("B " + str(B)) #generate Gauss-Newton fitted sine curve, and calculate RMS gaussnewton_sin = np.array([B[0] * np.sin((B[1] * x) + B[2]) + B[3]]) rms = math.sqrt((1 / (gaussnewton_sin.size)) * np.sum(abs(np.subtract(gaussnewton_sin, brightnesses)) ** 2)) #fallback in case of fitting failure, use initial values if rms > fallback_rms: print("gaussnewton failed, fallback to standard") gaussnewton_sin = fallback_sin rms = fallback_rms #read Gauss-Newton failrate debugfiler = open(debugloc, "r") GNfail = int(debugfiler.read()) debugfiler.close() #write Gauss-Newton fail to debug debugfilew = open(debugloc, "w") debugfilew.write(str(GNfail + 1)) debugfilew.close() #shorten RMS for better visibility roundedrms = float(rms) roundedrms = round(roundedrms, 4 - int(math.floor(math.log10(abs(roundedrms)))) - 1) #return fitted curve and RMS return (gaussnewton_sin, str(rms), str(roundedrms)) #implementing method of querying Gaia data for the bp-rp color of the star def gaiaquery(starnumber, fallbackRA, allRA, alldec): #reading coords of the star RA = allRA[starnumber] #formatting issue in metadata, where they lose a column and dec is read as RA if (float(RA.split(":")[0]) < 0.0): print("metadata formatting issue, using fallback RA") dec = RA RA = fallbackRA[starnumber] else: dec = alldec[starnumber] #setting up coords query, height and width search precision coord = coords.SkyCoord(ra = RA, dec = dec, unit = (u.hourangle, u.deg), frame = "icrs") height = u.Quantity(1, u.arcsec) width = u.Quantity(1, u.arcsec) #query star = Gaia.query_object(coordinate=coord, width=width, height=height, columns=["source_id, ra, dec, bp_rp"]) #star is a table #print("star:") #print(star) if (star["bp_rp"].size == 0): color = "No color photometric data" roundedcolor = color else: color = str(star["bp_rp"][0]) if color == "--": color = "No color photometric data" roundedcolor = color else: #shorten color for better visibility roundedcolor = float(color) roundedcolor = round(roundedcolor, 5 - int(math.floor(math.log10(abs(roundedcolor))) - 1)) #return coordinates, color return (RA, dec, color, roundedcolor) def plot(phases, brightnesses, gaussnewton_sin, RA, dec, rms, color, name, outputdir): fig = plt.figure(figsize = (10,5)) fig.suptitle(str(name), fontsize = 22, fontweight = 'bold') ax = fig.add_subplot(111) fig.subplots_adjust(left = 0.1, right = 0.98, top = 0.87, bottom = 0.1) ax.set_xlabel("Phase") ax.set_ylabel("Magnitude") #plotting original LC, and fitted sine curve ax.scatter(phases, brightnesses) ax.scatter(phases, gaussnewton_sin) #adding legend to graph for readability ax.legend(["Original LC", "Fitted Sine Curve"]) #plotting the RMS deviation onto the graph ax.text(0.94, 1.03, ("RMS = " + str(rms)), verticalalignment = 'bottom', horizontalalignment = 'center', transform = ax.transAxes, color = 'purple', fontsize = 10) #plotting coords, color onto the graph ax.text(0.01, 1.09, ("RA = " + str(RA)), verticalalignment = 'bottom', horizontalalignment = 'center', transform = ax.transAxes, color = 'green', fontsize = 8) ax.text(0.01, 1.06, ("dec = " + str(dec)), verticalalignment = 'bottom', horizontalalignment = 'center', transform = ax.transAxes, color = 'green', fontsize = 8) if color == "No color photometric data": ax.text(0.01, 1.03, (str(color)), verticalalignment = 'bottom', horizontalalignment = 'center', transform = ax.transAxes, color = 'orange', fontsize = 7) else: ax.text(0.01, 1.03, ("Color = " + str(color)), verticalalignment = 'bottom', horizontalalignment = 'center', transform = ax.transAxes, color = 'orange', fontsize = 8) #show plot if testing in IDE #plt.show() #save plot plt.savefig((outputdir + "\\" + (name) + ".png"), format = "png") plt.close("all") #driver to iterate through all the stars, starting from where we last left off for countLC in range(laststar, LCfilelength, 1): #specifying the LC data file, without iterating through listdir in outer for loop file = LCfilelist[countLC] # reading LC data from LC files (dates and brightness) #trim initial whitespaces in cases where time starts with 3 digit JD, so there is whitespace before time dates = [] brightnesses = [] with open(LCdir + "\\" + file, "rt") as f: read = csv.reader(f, skipinitialspace = True) for row in read: date = float(row[0].split()[0]) brightness = float(row[0].split()[1]) dates.append(date) brightnesses.append(brightness) dates = np.array(dates) brightnesses = np.array(brightnesses) #grabbing relevant star data for current star (name, starting time, period) from DAT file name = names[countLC] starting_date = dates[0] period = periods[countLC] #simple progress indicator, tells us which star program is up to print("now processing " + name) #simple phasing calculation to convert dates to 0 to 1 of a complete phase phases = ((dates - starting_date) / period) % 1 #determining approximate values to fit the sine curve (Amplitude, Average Height Shift, Phase Shift), for initial guess values of Gauss-Newton algorithm. #mean value taken as the arithmetic mean of all y-values average = (max(brightnesses) + min(brightnesses)) / 2 #better amplitude is the mean of the differences between average and max/min amplitude = statistics.mean([(max(brightnesses) - average), average - min(brightnesses)]) #check for the closest value to the mean value of brightness (mid_brightness), find its corresponding x value (mid_index, mid_phase) brightness_diff = lambda checkbrightness: abs(checkbrightness - average) mid_brightness = min(brightnesses, key=brightness_diff) mid_index = np.where(brightnesses == mid_brightness)[0][0] mid_phase = phases[mid_index] #Gauss-Newton fit, return the y values of the fitted gauss-newton curve gaussnewton_sin, rms, roundedrms = gaussnewton(name, phases, brightnesses, average, amplitude, mid_phase) #query Gaia for color RA, dec, color, roundedcolor = gaiaquery(countLC, fallbackRA, allRA, alldec) #temp star stats data to write to CSV later tempstatsarray = [rms, color] #plotting #basic setup plot(phases, brightnesses, gaussnewton_sin, RA, dec, roundedrms, roundedcolor, name, outputdir) #autosaver and resume lastsorted = open(lastsortedloc, "w") lastsorted.write(str(countLC + 1)) lastsorted.close() #star stats for final processing with open(colordeviationstats, "a+", newline = "") as statsfile: csv_writer = writer(statsfile) csv_writer.writerow(tempstatsarray)
py
b41104799a926fc13867e47b7cecb3117b6534de
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: stfsclient/tensorflow/debug.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='stfsclient/tensorflow/debug.proto', package='tensorflow', syntax='proto3', serialized_options=_b('\n\030org.tensorflow.frameworkB\013DebugProtosP\001Z<github.com/tensorflow/tensorflow/tensorflow/go/core/protobuf\370\001\001'), serialized_pb=_b('\n!stfsclient/tensorflow/debug.proto\x12\ntensorflow\"\x8e\x01\n\x10\x44\x65\x62ugTensorWatch\x12\x11\n\tnode_name\x18\x01 \x01(\t\x12\x13\n\x0boutput_slot\x18\x02 \x01(\x05\x12\x11\n\tdebug_ops\x18\x03 \x03(\t\x12\x12\n\ndebug_urls\x18\x04 \x03(\t\x12+\n#tolerate_debug_op_creation_failures\x18\x05 \x01(\x08\"\x81\x01\n\x0c\x44\x65\x62ugOptions\x12=\n\x17\x64\x65\x62ug_tensor_watch_opts\x18\x04 \x03(\x0b\x32\x1c.tensorflow.DebugTensorWatch\x12\x13\n\x0bglobal_step\x18\n \x01(\x03\x12\x1d\n\x15reset_disk_byte_usage\x18\x0b \x01(\x08\"j\n\x12\x44\x65\x62uggedSourceFile\x12\x0c\n\x04host\x18\x01 \x01(\t\x12\x11\n\tfile_path\x18\x02 \x01(\t\x12\x15\n\rlast_modified\x18\x03 \x01(\x03\x12\r\n\x05\x62ytes\x18\x04 \x01(\x03\x12\r\n\x05lines\x18\x05 \x03(\t\"K\n\x13\x44\x65\x62uggedSourceFiles\x12\x34\n\x0csource_files\x18\x01 \x03(\x0b\x32\x1e.tensorflow.DebuggedSourceFileBj\n\x18org.tensorflow.frameworkB\x0b\x44\x65\x62ugProtosP\x01Z<github.com/tensorflow/tensorflow/tensorflow/go/core/protobuf\xf8\x01\x01\x62\x06proto3') ) _DEBUGTENSORWATCH = _descriptor.Descriptor( name='DebugTensorWatch', full_name='tensorflow.DebugTensorWatch', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='node_name', full_name='tensorflow.DebugTensorWatch.node_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='output_slot', full_name='tensorflow.DebugTensorWatch.output_slot', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='debug_ops', full_name='tensorflow.DebugTensorWatch.debug_ops', index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='debug_urls', full_name='tensorflow.DebugTensorWatch.debug_urls', index=3, number=4, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='tolerate_debug_op_creation_failures', full_name='tensorflow.DebugTensorWatch.tolerate_debug_op_creation_failures', index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=50, serialized_end=192, ) _DEBUGOPTIONS = _descriptor.Descriptor( name='DebugOptions', full_name='tensorflow.DebugOptions', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='debug_tensor_watch_opts', full_name='tensorflow.DebugOptions.debug_tensor_watch_opts', index=0, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='global_step', full_name='tensorflow.DebugOptions.global_step', index=1, number=10, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='reset_disk_byte_usage', full_name='tensorflow.DebugOptions.reset_disk_byte_usage', index=2, number=11, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=195, serialized_end=324, ) _DEBUGGEDSOURCEFILE = _descriptor.Descriptor( name='DebuggedSourceFile', full_name='tensorflow.DebuggedSourceFile', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='host', full_name='tensorflow.DebuggedSourceFile.host', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='file_path', full_name='tensorflow.DebuggedSourceFile.file_path', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='last_modified', full_name='tensorflow.DebuggedSourceFile.last_modified', index=2, number=3, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='bytes', full_name='tensorflow.DebuggedSourceFile.bytes', index=3, number=4, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='lines', full_name='tensorflow.DebuggedSourceFile.lines', index=4, number=5, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=326, serialized_end=432, ) _DEBUGGEDSOURCEFILES = _descriptor.Descriptor( name='DebuggedSourceFiles', full_name='tensorflow.DebuggedSourceFiles', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='source_files', full_name='tensorflow.DebuggedSourceFiles.source_files', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=434, serialized_end=509, ) _DEBUGOPTIONS.fields_by_name['debug_tensor_watch_opts'].message_type = _DEBUGTENSORWATCH _DEBUGGEDSOURCEFILES.fields_by_name['source_files'].message_type = _DEBUGGEDSOURCEFILE DESCRIPTOR.message_types_by_name['DebugTensorWatch'] = _DEBUGTENSORWATCH DESCRIPTOR.message_types_by_name['DebugOptions'] = _DEBUGOPTIONS DESCRIPTOR.message_types_by_name['DebuggedSourceFile'] = _DEBUGGEDSOURCEFILE DESCRIPTOR.message_types_by_name['DebuggedSourceFiles'] = _DEBUGGEDSOURCEFILES _sym_db.RegisterFileDescriptor(DESCRIPTOR) DebugTensorWatch = _reflection.GeneratedProtocolMessageType('DebugTensorWatch', (_message.Message,), { 'DESCRIPTOR' : _DEBUGTENSORWATCH, '__module__' : 'stfsclient.tensorflow.debug_pb2' # @@protoc_insertion_point(class_scope:tensorflow.DebugTensorWatch) }) _sym_db.RegisterMessage(DebugTensorWatch) DebugOptions = _reflection.GeneratedProtocolMessageType('DebugOptions', (_message.Message,), { 'DESCRIPTOR' : _DEBUGOPTIONS, '__module__' : 'stfsclient.tensorflow.debug_pb2' # @@protoc_insertion_point(class_scope:tensorflow.DebugOptions) }) _sym_db.RegisterMessage(DebugOptions) DebuggedSourceFile = _reflection.GeneratedProtocolMessageType('DebuggedSourceFile', (_message.Message,), { 'DESCRIPTOR' : _DEBUGGEDSOURCEFILE, '__module__' : 'stfsclient.tensorflow.debug_pb2' # @@protoc_insertion_point(class_scope:tensorflow.DebuggedSourceFile) }) _sym_db.RegisterMessage(DebuggedSourceFile) DebuggedSourceFiles = _reflection.GeneratedProtocolMessageType('DebuggedSourceFiles', (_message.Message,), { 'DESCRIPTOR' : _DEBUGGEDSOURCEFILES, '__module__' : 'stfsclient.tensorflow.debug_pb2' # @@protoc_insertion_point(class_scope:tensorflow.DebuggedSourceFiles) }) _sym_db.RegisterMessage(DebuggedSourceFiles) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
py
b4110546a7e3cbb0b29bc933b82bc9d946af9b60
import pygame from pygame.sprite import Sprite class Alien(Sprite): """表示单个外星人的类""" def __init__(self, ai_settings, screen): """初始化外星人并设置其起始位置""" super(Alien, self).__init__() self.screen = screen self.ai_settings = ai_settings # 加载外星人图像,并设置其rect属性 self.image = pygame.image.load('images/alien.bmp') self.rect = self.image.get_rect() # 每个外星人最初都在屏幕左上角附近 self.rect.x = self.rect.width self.rect.y = self.rect.height # 存储外星人的准确位置 self.x = float(self.rect.x) def blitme(self): """在指定位置绘制外星人""" self.screen.blit(self.image, self.rect) def check_edges(self): """如果外星人位于屏幕边缘,就返回True""" screen_rect = self.screen.get_rect() if self.rect.right >= screen_rect.right: return True elif self.rect.left <= 0: return True def update(self): """向左或向右移动外星人""" self.x += (self.ai_settings.alien_speed_factor * self.ai_settings.fleet_direction) self.rect.x = self.x
py
b41105bd0e3226ed013a6d80e480b0e8b10e2620
#!/usr/bin/python3 # SPDX-License-Identifier: GPL-2.0 # Copyright (c) 2020, F-Secure Corporation, https://foundry.f-secure.com # # pylint: disable=E1101,W0201,C0103 """ Verified boot image forgery tools and utilities This module provides services to both take apart and regenerate FIT images in a way that preserves all existing verified boot signatures, unless you manipulate nodes in the process. """ import struct import binascii from io import BytesIO # # struct parsing helpers # class BetterStructMeta(type): """ Preprocesses field definitions and creates a struct.Struct instance from them """ def __new__(cls, clsname, superclasses, attributedict): if clsname != 'BetterStruct': fields = attributedict['__fields__'] field_types = [_[0] for _ in fields] field_names = [_[1] for _ in fields if _[1] is not None] attributedict['__names__'] = field_names s = struct.Struct(attributedict.get('__endian__', '') + ''.join(field_types)) attributedict['__struct__'] = s attributedict['size'] = s.size return type.__new__(cls, clsname, superclasses, attributedict) class BetterStruct(metaclass=BetterStructMeta): """ Base class for better structures """ def __init__(self): for t, n in self.__fields__: if 's' in t: setattr(self, n, '') elif t in ('Q', 'I', 'H', 'B'): setattr(self, n, 0) @classmethod def unpack_from(cls, buffer, offset=0): """ Unpack structure instance from a buffer """ fields = cls.__struct__.unpack_from(buffer, offset) instance = cls() for n, v in zip(cls.__names__, fields): setattr(instance, n, v) return instance def pack(self): """ Pack structure instance into bytes """ return self.__struct__.pack(*[getattr(self, n) for n in self.__names__]) def __str__(self): items = ["'%s': %s" % (n, repr(getattr(self, n))) for n in self.__names__ if n is not None] return '(' + ', '.join(items) + ')' # # some defs for flat DT data # class HeaderV17(BetterStruct): __endian__ = '>' __fields__ = [ ('I', 'magic'), ('I', 'totalsize'), ('I', 'off_dt_struct'), ('I', 'off_dt_strings'), ('I', 'off_mem_rsvmap'), ('I', 'version'), ('I', 'last_comp_version'), ('I', 'boot_cpuid_phys'), ('I', 'size_dt_strings'), ('I', 'size_dt_struct'), ] class RRHeader(BetterStruct): __endian__ = '>' __fields__ = [ ('Q', 'address'), ('Q', 'size'), ] class PropHeader(BetterStruct): __endian__ = '>' __fields__ = [ ('I', 'value_size'), ('I', 'name_offset'), ] # magical constants for DTB format OF_DT_HEADER = 0xd00dfeed OF_DT_BEGIN_NODE = 1 OF_DT_END_NODE = 2 OF_DT_PROP = 3 OF_DT_END = 9 class StringsBlock: """ Represents a parsed device tree string block """ def __init__(self, values=None): if values is None: self.values = [] else: self.values = values def __getitem__(self, at): if isinstance(at, str): offset = 0 for value in self.values: if value == at: break offset += len(value) + 1 else: self.values.append(at) return offset if isinstance(at, int): offset = 0 for value in self.values: if offset == at: return value offset += len(value) + 1 raise IndexError('no string found corresponding to the given offset') raise TypeError('only strings and integers are accepted') class Prop: """ Represents a parsed device tree property """ def __init__(self, name=None, value=None): self.name = name self.value = value def clone(self): return Prop(self.name, self.value) def __repr__(self): return "<Prop(name='%s', value=%s>" % (self.name, repr(self.value)) class Node: """ Represents a parsed device tree node """ def __init__(self, name=None): self.name = name self.props = [] self.children = [] def clone(self): o = Node(self.name) o.props = [x.clone() for x in self.props] o.children = [x.clone() for x in self.children] return o def __getitem__(self, index): return self.children[index] def __repr__(self): return "<Node('%s'), %s, %s>" % (self.name, repr(self.props), repr(self.children)) # # flat DT to memory # def parse_strings(strings): """ Converts the bytes into a StringsBlock instance so it is convenient to work with """ strings = strings.split(b'\x00') return StringsBlock(strings) def parse_struct(stream): """ Parses DTB structure(s) into a Node or Prop instance """ tag = bytearray(stream.read(4))[3] if tag == OF_DT_BEGIN_NODE: name = b'' while b'\x00' not in name: name += stream.read(4) name = name.rstrip(b'\x00') node = Node(name) item = parse_struct(stream) while item is not None: if isinstance(item, Node): node.children.append(item) elif isinstance(item, Prop): node.props.append(item) item = parse_struct(stream) return node if tag == OF_DT_PROP: h = PropHeader.unpack_from(stream.read(PropHeader.size)) length = (h.value_size + 3) & (~3) value = stream.read(length)[:h.value_size] prop = Prop(h.name_offset, value) return prop if tag in (OF_DT_END_NODE, OF_DT_END): return None raise ValueError('unexpected tag value') def read_fdt(fp): """ Reads and parses the flattened device tree (or derivatives like FIT) """ header = HeaderV17.unpack_from(fp.read(HeaderV17.size)) if header.magic != OF_DT_HEADER: raise ValueError('invalid magic value %08x; expected %08x' % (header.magic, OF_DT_HEADER)) # TODO: read/parse reserved regions fp.seek(header.off_dt_struct) structs = fp.read(header.size_dt_struct) fp.seek(header.off_dt_strings) strings = fp.read(header.size_dt_strings) strblock = parse_strings(strings) root = parse_struct(BytesIO(structs)) return root, strblock # # memory to flat DT # def compose_structs_r(item): """ Recursive part of composing Nodes and Props into a bytearray """ t = bytearray() if isinstance(item, Node): t.extend(struct.pack('>I', OF_DT_BEGIN_NODE)) if isinstance(item.name, str): item.name = bytes(item.name, 'utf-8') name = item.name + b'\x00' if len(name) & 3: name += b'\x00' * (4 - (len(name) & 3)) t.extend(name) for p in item.props: t.extend(compose_structs_r(p)) for c in item.children: t.extend(compose_structs_r(c)) t.extend(struct.pack('>I', OF_DT_END_NODE)) elif isinstance(item, Prop): t.extend(struct.pack('>I', OF_DT_PROP)) value = item.value h = PropHeader() h.name_offset = item.name if value: h.value_size = len(value) t.extend(h.pack()) if len(value) & 3: value += b'\x00' * (4 - (len(value) & 3)) t.extend(value) else: h.value_size = 0 t.extend(h.pack()) return t def compose_structs(root): """ Composes the parsed Nodes into a flat bytearray instance """ t = compose_structs_r(root) t.extend(struct.pack('>I', OF_DT_END)) return t def compose_strings(strblock): """ Composes the StringsBlock instance back into a bytearray instance """ b = bytearray() for s in strblock.values: b.extend(s) b.append(0) return bytes(b) def write_fdt(root, strblock, fp): """ Writes out a complete flattened device tree (or FIT) """ header = HeaderV17() header.magic = OF_DT_HEADER header.version = 17 header.last_comp_version = 16 fp.write(header.pack()) header.off_mem_rsvmap = fp.tell() fp.write(RRHeader().pack()) structs = compose_structs(root) header.off_dt_struct = fp.tell() header.size_dt_struct = len(structs) fp.write(structs) strings = compose_strings(strblock) header.off_dt_strings = fp.tell() header.size_dt_strings = len(strings) fp.write(strings) header.totalsize = fp.tell() fp.seek(0) fp.write(header.pack()) # # pretty printing / converting to DT source # def as_bytes(value): return ' '.join(["%02X" % x for x in value]) def prety_print_value(value): """ Formats a property value as appropriate depending on the guessed data type """ if not value: return '""' if value[-1] == b'\x00': printable = True for x in value[:-1]: x = ord(x) if x != 0 and (x < 0x20 or x > 0x7F): printable = False break if printable: value = value[:-1] return ', '.join('"' + x + '"' for x in value.split(b'\x00')) if len(value) > 0x80: return '[' + as_bytes(value[:0x80]) + ' ... ]' return '[' + as_bytes(value) + ']' def pretty_print_r(node, strblock, indent=0): """ Prints out a single node, recursing further for each of its children """ spaces = ' ' * indent print((spaces + '%s {' % (node.name.decode('utf-8') if node.name else '/'))) for p in node.props: print((spaces + ' %s = %s;' % (strblock[p.name].decode('utf-8'), prety_print_value(p.value)))) for c in node.children: pretty_print_r(c, strblock, indent+1) print((spaces + '};')) def pretty_print(node, strblock): """ Generates an almost-DTS formatted printout of the parsed device tree """ print('/dts-v1/;') pretty_print_r(node, strblock, 0) # # manipulating the DT structure # def manipulate(root, strblock): """ Maliciously manipulates the structure to create a crafted FIT file """ # locate /images/kernel-1 (frankly, it just expects it to be the first one) kernel_node = root[0][0] # clone it to save time filling all the properties fake_kernel = kernel_node.clone() # rename the node fake_kernel.name = b'kernel-2' # get rid of signatures/hashes fake_kernel.children = [] # NOTE: this simply replaces the first prop... either description or data # should be good for testing purposes fake_kernel.props[0].value = b'Super 1337 kernel\x00' # insert the new kernel node under /images root[0].children.append(fake_kernel) # modify the default configuration root[1].props[0].value = b'conf-2\x00' # clone the first (only?) configuration fake_conf = root[1][0].clone() # rename and change kernel and fdt properties to select the crafted kernel fake_conf.name = b'conf-2' fake_conf.props[0].value = b'kernel-2\x00' fake_conf.props[1].value = b'fdt-1\x00' # insert the new configuration under /configurations root[1].children.append(fake_conf) return root, strblock def main(argv): with open(argv[1], 'rb') as fp: root, strblock = read_fdt(fp) print("Before:") pretty_print(root, strblock) root, strblock = manipulate(root, strblock) print("After:") pretty_print(root, strblock) with open('blah', 'w+b') as fp: write_fdt(root, strblock, fp) if __name__ == '__main__': import sys main(sys.argv) # EOF
py
b41105d3874e79f724bd3acbd2e6f34464eaf621
################################################################################ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ from abc import ABC, abstractmethod class TimerService(ABC): """ Interface for working with time and timers. """ @abstractmethod def current_processing_time(self): """ Returns the current processing time. """ pass @abstractmethod def current_watermark(self): """ Returns the current event-time watermark. """ pass @abstractmethod def register_processing_time_timer(self, timestamp: int): """ Registers a timer to be fired when processing time passes the given time. Timers can internally be scoped to keys and/or windows. When you set a timer in a keyed context, such as in an operation on KeyedStream then that context will so be active when you receive the timer notification. :param timestamp: The processing time of the timer to be registered. """ pass @abstractmethod def register_event_time_timer(self, timestamp: int): """ Registers a timer tobe fired when the event time watermark passes the given time. Timers can internally be scoped to keys and/or windows. When you set a timer in a keyed context, such as in an operation on KeyedStream then that context will so be active when you receive the timer notification. :param timestamp: The event time of the timer to be registered. """ pass def delete_processing_time_timer(self, timestamp: int): """ Deletes the processing-time timer with the given trigger time. This method has only an effect if such a timer was previously registered and did not already expire. Timers can internally be scoped to keys and/or windows. When you delete a timer, it is removed from the current keyed context. :param timestamp: The given trigger time of timer to be deleted. """ pass def delete_event_time_timer(self, timestamp: int): """ Deletes the event-time timer with the given trigger time. This method has only an effect if such a timer was previously registered and did not already expire. Timers can internally be scoped to keys and/or windows. When you delete a timer, it is removed from the current keyed context. :param timestamp: The given trigger time of timer to be deleted. """ pass
py
b41105fab6b55248e26d50b4e4842fbadff43f98
import mysql.connector from fixture.db import DbFixture from fixture.orm import ORMFixture from models.group import Group db = ORMFixture(host='127.0.0.1', name='addressbook', user='root', password='') try: l = db.get_contacts_in_group(Group(id='219')) for item in l: print(item) print(len(l)) finally: pass #db.destroy()
py
b41106ac6e6c29c31fc3f3d908cd171ba8fa6dd7
"""certificates URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path,include from accounts import views urlpatterns = [ path('admin/', admin.site.urls), path('',views.base,name='base'), path('records/',include('records.urls')), path('database/',include('database.urls')), path('accounts/',include('accounts.urls')) ]
py
b41106ddeb62c1b08c01f8d974d8422bbec0f1d7
#!/usr/bin/env python # Copyright 2016-2017 Nitor Creations Oy # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from builtins import str from builtins import range import json import os import re import subprocess import sys import yaml import six from base64 import b64encode from collections import OrderedDict from glob import glob from yaml import ScalarNode, SequenceNode, MappingNode from numbers import Number from operator import itemgetter from botocore.exceptions import ClientError from copy import copy from jmespath import search from ec2_utils.instance_info import ( resolve_account, stack_params_and_outputs_and_stack, dthandler, ) from n_utils import _to_str from n_utils.utils import ( expand_vars, expand_only_double_paranthesis_params, get_images, ParamNotAvailable, ) from n_utils.git_utils import Git from n_utils.ndt import find_include from n_utils.ecr_utils import repo_uri from n_utils.tf_utils import pull_state, flat_state, jmespath_var from n_vault import Vault from threadlocal_aws import region from threadlocal_aws.clients import ssm, ec2, connect from cloudformation_utils.tools import ( process_script_decorated as import_script, cloudformation_yaml_loads as yaml_load, ) stacks = dict() terraforms = dict() parameters = dict() ssm_params = dict() vault_params = dict() product_amis = dict() owner_amis = dict() CFG_PREFIX = "AWS::CloudFormation::Init_config_files_" CONNECT_INSTANCE_ID = None ############################################################################ # _THE_ yaml & json deserialize/serialize functions yaml.SafeDumper.yaml_representers[ None ] = lambda self, data: yaml.representer.SafeRepresenter.represent_str( self, _to_str(data), ) SOURCED_PARAMS = None def run_command(command): proc = subprocess.Popen( command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True ) output = proc.communicate() if proc.returncode: raise Exception("Failed to run " + str(command)) return output[0] def _resolve_stackref_from_dict(stack_var): if "region" in stack_var and "stackName" in stack_var and "paramName" in stack_var: return _resolve_stackref( stack_var["region"], stack_var["stackName"], stack_var["paramName"] ) elif "component" in stack_var and "stack" in stack_var and "paramName" in stack_var: param_name = stack_var["paramName"] del stack_var["paramName"] params = load_parameters(**stack_var) region = params["REGION"] stack_name = params["STACK_NAME"] return _resolve_stackref(region, stack_name, param_name) else: return None def _resolve_stackref(region, stack_name, stack_param): stack_key = region + "." + stack_name stack_params = {} if stack_key in stacks: stack_params = stacks[stack_key] else: stack_params, _ = stack_params_and_outputs_and_stack( stack_name=stack_name, stack_region=region ) stacks[stack_key] = stack_params if stack_param in stack_params: return stack_params[stack_param] return None def _resolve_tfref_from_dict(tfref_var): if ( "component" in tfref_var and "terraform" in tfref_var and ("paramName" in tfref_var or "jmespath" in tfref_var) ): with Git() as git: current_branch = git.get_current_branch() if "branch" in tfref_var: branch = tfref_var["branch"] else: branch = current_branch tf_key = (tfref_var["component"], tfref_var["terraform"], branch) if tf_key in terraforms: terraform = terraforms[tf_key] else: root = "." if branch != current_branch: root = git.export_branch(branch) terraform = pull_state( tfref_var["component"], tfref_var["terraform"], root=root ) terraforms[tf_key] = terraform if "paramName" in tfref_var: flat_state_dict = flat_state(terraform) if tfref_var["paramName"] in flat_state_dict: return flat_state_dict[tfref_var["paramName"]] else: return None if "jmespath" in tfref_var: return jmespath_var(terraform, tfref_var["jmespath"]) else: return None def _resolve_ssm_parameter(ssm_key, region=None): value = None if ssm_key in ssm_params: value = ssm_params[ssm_key] else: ssm_resp = ssm(region=region).get_parameter(Name=ssm_key, WithDecryption=True) if "Parameter" in ssm_resp and "Value" in ssm_resp["Parameter"]: value = ssm_resp["Parameter"]["Value"] ssm_params[ssm_key] = value return value def _resolve_vault_parameter(vault_key): value = None if vault_key in vault_params: value = vault_params[vault_key] else: value = Vault().lookup(vault_key) vault_params[vault_key] = value return value def _resolve_product_ami(product_code, region=None): value = None if product_code in product_amis: value = product_amis[product_code] else: ami_resp = ec2(region=region).describe_images( Filters=[{"Name": "product-code", "Values": [product_code]}], Owners=["aws-marketplace"], ) ami_ids = [ image["ImageId"] for image in sorted( ami_resp["Images"], key=itemgetter("CreationDate"), reverse=True ) ] if ami_ids: value = ami_ids[0] product_amis[product_code] = value return value def _resolve_onwer_named_ami(owner, name, region=None): value = None if (owner, name) in owner_amis: return owner_amis[(owner, name)] else: ami_resp = ec2(region=region).describe_images( Owners=[owner], Filters=[{"Name": "name", "Values": [name]}] ) ami_ids = [ image["ImageId"] for image in sorted( ami_resp["Images"], key=itemgetter("CreationDate"), reverse=True ) ] if ami_ids: value = ami_ids[0] owner_amis[(owner, name)] = value return value def _resolve_flowref(flowname): if CONNECT_INSTANCE_ID: paginator = connect().get_paginator("list_contact_flows") for page in paginator.paginate(InstanceId=CONNECT_INSTANCE_ID): for flow in page["ContactFlowSummaryList"]: if flow["Name"] == flowname: return flow["Arn"] return None def _process_infra_prop_line(line, params, used_params): key_val = line.split("=", 1) if len(key_val) == 2: key = re.sub("[^a-zA-Z0-9_]", "", key_val[0].strip()) if key in os.environ: value = os.environ[key] else: value = key_val[1] value = _process_value(value, used_params) params[key] = value if isinstance(value, six.string_types): used_params[key] = value else: used_params[key] = json_save_small(value) def _process_value(value, used_params): if isinstance(value, six.string_types): if not value.strip(): return "" value = expand_vars(value, used_params, None, []) try: yaml_value = yaml_load(value) if isinstance(yaml_value, Number): return value if not yaml_value is None: value = yaml_value except: pass value = expand_vars(value, used_params, None, []) if isinstance(value, six.string_types): value = value.strip() elif isinstance(value, OrderedDict): region = None if "REGION" in used_params: region = used_params["REGION"] # Don't go into external refs if: # a) resolving base variables like REGION and paramEnvId # b) resolving basic variables used in terraform backend configuration if ( "DO_NOT_RESOLVE_EXTERNAL_REFS" not in os.environ and "TF_INIT_OUTPUT" not in os.environ ): if "StackRef" in value: stack_value = _resolve_stackref_from_dict(value["StackRef"]) if stack_value: value = stack_value if "TFRef" in value: tf_value = _resolve_tfref_from_dict(value["TFRef"]) if tf_value: value = tf_value if "Encrypt" in value: enc_conf = value["Encrypt"] if isinstance(enc_conf, OrderedDict): to_encrypt = yaml_save(enc_conf["value"]) else: to_encrypt = enc_conf["value"] value = _process_value(to_encrypt, used_params) del enc_conf["value"] vault = Vault(**enc_conf) value = b64encode(vault.direct_encrypt(value)) if "YamlRef" in value: if "file" in value["YamlRef"] and "jmespath" in value["YamlRef"]: yaml_file = value["YamlRef"]["file"] contents = yaml_load(open(yaml_file)) value = search(value["YamlRef"]["jmespath"], contents) if value: return _process_value(value, used_params) if "SsmRef" in value: ssm_key = value["SsmRef"] ssm_value = _resolve_ssm_parameter(ssm_key, region=region) if ssm_value: value = ssm_value if "ProductAmi" in value: product_code = value["ProductAmi"] product_ami = _resolve_product_ami(product_code, region=region) if product_ami: value = product_ami if "OwnerNamedAmi" in value: if ( "owner" in value["OwnerNamedAmi"] and "name" in value["OwnerNamedAmi"] ): owner = value["OwnerNamedAmi"]["owner"] name = value["OwnerNamedAmi"]["name"] owner_ami = _resolve_onwer_named_ami(owner, name, region=region) if owner_ami: value = owner_ami if "FlowRef" in value: flow_value = _resolve_flowref(value["FlowRef"]) if flow_value: value = flow_value return value def joined_file_lines(filename): with open(filename, "r") as f: prevline = "" to_yeild = None for line in f.readlines(): if prevline.strip().endswith("\\"): to_yeild = None prevline = prevline[:-2] + "\n" + line elif line.startswith(" ") or line.startswith("\t"): to_yeild = None prevline = prevline + line elif line.startswith("#"): to_yeild = prevline.strip() prevline = "" elif prevline: to_yeild = prevline.strip() prevline = line else: to_yeild = None prevline = line if to_yeild: yield to_yeild if prevline: yield prevline.strip() def import_parameter_file(filename, params): used_params = OrderedDict(copy(os.environ)) used_params.update(params) for line in joined_file_lines(filename): _process_infra_prop_line(line, params, used_params) def _add_subcomponent_file(component, branch, type, name, files): if name: os.environ["ORIG_" + type.upper() + "_NAME"] = name files.append( component + os.sep + type + "-" + name + os.sep + "infra.properties" ) files.append( component + os.sep + type + "-" + name + os.sep + "infra-" + branch + ".properties" ) def resolve_docker_uri(component, uriParam, image_branch, git): if not git: git = Git() with git: if uriParam in os.environ: return os.environ[uriParam] docker = uriParam[14:] docker_params = load_parameters( component=component, docker=docker, branch=image_branch, git=git ) return repo_uri(docker_params["DOCKER_NAME"]) def lreplace(pattern, sub, string): return sub + string[len(pattern) :] if string.startswith(pattern) else string def rreplace(pattern, sub, string): return string[: -len(pattern)] + sub if string.endswith(pattern) else string def resolve_ami(component_params, component, image, imagebranch, branch, git): if not git: git = Git() with git: if "paramAmi" + image in os.environ: return { "ImageId": os.environ["paramAmi" + image], "Name": os.environ["paramAmiName" + image] if "paramAmiName" + image in os.environ else "Unknown", } images = [] image_params = {} job = "" if "IMAGE_JOB" in os.environ and not image: job = re.sub(r"\W", "_", os.environ["IMAGE_JOB"]) else: image_params = load_parameters( component=component, image=image, branch=imagebranch, git=git ) if "JOB_NAME" in image_params: job = re.sub(r"\W", "_", image_params["JOB_NAME"]) else: prefix = "" prefix = image_params["BUILD_JOB_PREFIX"] job = prefix + "_" + component + "_bake" if image: job = job + "_" + image job = re.sub(r"\W", "_", job) build_param = "paramAmi" + image + "Build" latest_baked = ( build_param in component_params and component_params[build_param] == "latest" ) if latest_baked: # get current branch latest images images = get_images(job) if ( build_param in component_params and component_params[build_param] != "latest" ): # resolve with a specifically set image build number build = component_params[build_param] image_tag = job + "_" + build job_tag_func = ( lambda image, image_name_prefix: len( [tag for tag in image["Tags"] if tag["Value"] == image_tag] ) > 0 ) images = get_images(job, job_tag_function=job_tag_func) elif imagebranch != branch and not latest_baked: # resolve promote job suffix = "_bake" repl_suffix = "_promote" if image: suffix += "_" + image repl_suffix += "_" + image if not image_params: image_params = load_parameters( component=component, image=image, branch=imagebranch, git=git ) this_branch_prefix = re.sub( r"\W", "_", component_params["BUILD_JOB_PREFIX"] + "_" ) image_branch_prefix = re.sub( r"\W", "_", image_params["BUILD_JOB_PREFIX"] + "_" ) job = lreplace(image_branch_prefix, this_branch_prefix, job) job = rreplace(suffix, repl_suffix, job) images = get_images(job) else: # get current branch latest images images = get_images(job) if images: return images[0] else: return None def load_parameters( component=None, stack=None, serverless=None, docker=None, image=None, cdk=None, terraform=None, azure=None, connect=None, branch=None, resolve_images=False, git=None, ): subc_type = "" subc_name = "" if stack: subc_type = "stack" subc_name = "stack=" + stack if serverless: subc_type = "serverless" subc_name = "serverless=" + serverless if docker: subc_type = "docker" subc_name = "docker=" + docker if isinstance(image, six.string_types): subc_type = "image" subc_name = "image=" + image if cdk: subc_type = "cdk" subc_name = "cdk=" + cdk if terraform: subc_type = "terraform" subc_name = "terraform=" + terraform if azure: subc_type = "azure" subc_name = "azure=" + azure if connect: subc_type = "connect" subc_name = "connect=" + connect if not git: git = Git() with git: current_branch = git.get_current_branch() if not branch: branch = current_branch branch = branch.strip().split("origin/")[-1:][0] params_key = (component, subc_name, branch) if params_key in parameters: return parameters[params_key] ret = {"GIT_BRANCH": branch} account = resolve_account() if account: ret["ACCOUNT_ID"] = account if component: ret["COMPONENT"] = component prefix = "" if current_branch != branch: prefix = git.export_branch(branch) + os.sep files = [ prefix + "branch.properties", prefix + branch + ".properties", prefix + "infra.properties", prefix + "infra-" + branch + ".properties", ] if component: files.append(prefix + component + os.sep + "infra.properties") files.append( prefix + component + os.sep + "infra-" + branch + ".properties" ) _add_subcomponent_file(prefix + component, branch, "stack", stack, files) _add_subcomponent_file( prefix + component, branch, "serverless", serverless, files ) _add_subcomponent_file(prefix + component, branch, "cdk", cdk, files) _add_subcomponent_file( prefix + component, branch, "terraform", terraform, files ) _add_subcomponent_file(prefix + component, branch, "azure", azure, files) _add_subcomponent_file(prefix + component, branch, "docker", docker, files) _add_subcomponent_file( prefix + component, branch, "connect", connect, files ) _add_subcomponent_file(prefix + component, branch, "image", image, files) if isinstance(image, six.string_types): files.append( prefix + component + os.sep + "image" + os.sep + "infra.properties" ) files.append( prefix + component + os.sep + "image" + os.sep + "infra-" + branch + ".properties" ) initial_resolve = ret.copy() os.environ["DO_NOT_RESOLVE_EXTERNAL_REFS"] = "true" for file in files: if os.path.exists(file): import_parameter_file(file, initial_resolve) del os.environ["DO_NOT_RESOLVE_EXTERNAL_REFS"] if "REGION" not in initial_resolve: ret["REGION"] = region() else: ret["REGION"] = initial_resolve["REGION"] if not "AWS_DEFAULT_REGION" in os.environ: os.environ["AWS_DEFAULT_REGION"] = ret["REGION"] if "paramEnvId" not in initial_resolve: ret["paramEnvId"] = branch else: ret["paramEnvId"] = initial_resolve["paramEnvId"] for file in files: if os.path.exists(file): import_parameter_file(file, ret) if (serverless or stack or cdk or terraform) and resolve_images: image_branch = branch if "BAKE_IMAGE_BRANCH" in ret: image_branch = ret["BAKE_IMAGE_BRANCH"] for docker in [ dockerdir.split("/docker-")[1] for dockerdir in glob(component + os.sep + "docker-*") ]: try: ret["paramDockerUri" + docker] = resolve_docker_uri( component, "paramDockerUri" + docker, image_branch, git ) except ClientError: # Best effor to load docker uris, but ignore errors since the repo might not # actually be in use. Missing and used uris will result in an error later. pass for image_name in [ imagedir.split("/image")[1].replace("-", "").lower() for imagedir in glob(component + os.sep + "image*") ]: try: image = resolve_ami( ret, component, image_name, image_branch, branch, git ) if image: ret["paramAmi" + image_name] = image["ImageId"] ret["paramAmiName" + image_name] = image["Name"] env_param_name = "AMI_ID" if image_name: env_param_name += "_" + image_name.upper() ret[env_param_name] = image["ImageId"] except ClientError: # Best effor to load ami info, but ignore errors since the image might not # actually be in use. Missing and used images will result in an error later. pass if "REGION" not in ret: ret["REGION"] = region() if "paramEnvId" not in ret: ret["paramEnvId"] = branch if "ORIG_STACK_NAME" in os.environ: ret["ORIG_STACK_NAME"] = os.environ["ORIG_STACK_NAME"] if "STACK_NAME" not in ret: ret["STACK_NAME"] = ( component + "-" + ret["ORIG_STACK_NAME"] + "-" + ret["paramEnvId"] ) if docker and "NEEDS_DOCKER" not in ret: ret["NEEDS_DOCKER"] = "y" for k, v in list(os.environ.items()): if k.startswith("ORIG_") and k.endswith("_NAME"): ret[k] = v if "ORIG_DOCKER_NAME" in os.environ: if "DOCKER_NAME" not in ret: ret["DOCKER_NAME"] = ( component + "/" + ret["paramEnvId"] + "-" + ret["ORIG_DOCKER_NAME"] ) if "BUILD_JOB_PREFIX" not in ret: if "JENKINS_JOB_PREFIX" in ret: ret["BUILD_JOB_PREFIX"] = ret["JENKINS_JOB_PREFIX"] else: ret["BUILD_JOB_PREFIX"] = "ndt" + ret["paramEnvId"] if "JENKINS_JOB_PREFIX" not in ret: ret["JENKINS_JOB_PREFIX"] = ret["BUILD_JOB_PREFIX"] if ( subc_type and subc_type.upper() + "_NAME" not in ret and "ORIG_" + subc_type.upper() + "_NAME" in ret ): ret[subc_type.upper() + "_NAME"] = ret[ "ORIG_" + subc_type.upper() + "_NAME" ] if subc_type == "azure": if "AZURE_SCOPE" not in ret: if "AZURE_SCOPE" in os.environ and os.environ["AZURE_SCOPE"]: ret["AZURE_SCOPE"] = os.environ["AZURE_SCOPE"] else: ret["AZURE_SCOPE"] = "group" if ret["AZURE_SCOPE"] == "group" and ( "AZURE_GROUP" not in ret or not ret["AZURE_GROUP"] ): ret["AZURE_GROUP"] = ( ret["BUILD_JOB_PREFIX"] + "-" + component + "-" + azure ) if ret["AZURE_SCOPE"] == "management-group" and ( "AZURE_MANAGEMENT_GROUP" not in ret or not ret["AZURE_MANAGEMENT_GROUP"] ): ret["AZURE_MANAGEMENT_GROUP"] = ( ret["BUILD_JOB_PREFIX"] + "-" + component ) parameters[params_key] = ret return ret def yaml_save(data): class OrderedDumper(yaml.SafeDumper): pass def _dict_representer(dumper, data): return dumper.represent_mapping( yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG, list(data.items()) ) OrderedDumper.add_representer(OrderedDict, _dict_representer) return yaml.dump(data, None, OrderedDumper, default_flow_style=False) def json_load(stream): return json.loads(stream, object_pairs_hook=OrderedDict) def json_save(data): return json.dumps(data, indent=2, default=dthandler) def json_save_small(data): return json.dumps(data, indent=None, default=dthandler) ############################################################################ # import_scripts gotImportErrors = False def resolve_file(filename, basefile): if filename[0] == "/": return existing(filename) if re.match(r"^(\.\./\.\./|\.\./|\./)?aws-utils/.*", filename): return existing( find_include(re.sub(r"^(\.\./\.\./|\.\./|\./)?aws-utils/", "", filename)) ) if re.match(r"^\(\(\s?includes\s?\)\)/.*", filename): return existing(find_include(re.sub(r"^\(\(\s?includes\s?\)\)/", "", filename))) base = os.path.dirname(basefile) if len(base) == 0: base = "." return existing(base + "/" + filename) def existing(filename): if filename and os.path.exists(filename): return filename else: return None PARAM_NOT_AVAILABLE = ParamNotAvailable() def _add_params(target, source, source_prop, use_value): if source_prop in source: if isinstance(source[source_prop], OrderedDict) or isinstance( source[source_prop], dict ): for k, val in list(source[source_prop].items()): target[k] = ( val["Default"] if use_value and "Default" in val else PARAM_NOT_AVAILABLE ) elif isinstance(source[source_prop], list): for list_item in source[source_prop]: for k, val in list(list_item.items()): target[k] = ( val["Default"] if use_value and "Default" in val else PARAM_NOT_AVAILABLE ) def _get_params(data, template): params = OrderedDict() # first load defaults for all parameters in "Parameters" if "Parameters" in data: _add_params(params, data, "Parameters", True) if ( "Fn::Merge" in data["Parameters"] and "Result" in data["Parameters"]["Fn::Merge"] ): _add_params(params, data["Parameters"]["Fn::Merge"], "Result", True) if ( "Fn::ImportYaml" in data["Parameters"] and "Result" in data["Parameters"]["Fn::ImportYaml"] ): _add_params(params, data["Parameters"]["Fn::ImportYaml"], "Result", True) if "resources" in data and "Parameters" in data["resources"]: params["ServerlessDeploymentBucket"] = PARAM_NOT_AVAILABLE _add_params(params, data["resources"], "Parameters", True) if ( "Fn::Merge" in data["resources"]["Parameters"] and "Result" in data["resources"]["Parameters"]["Fn::Merge"] ): _add_params( params, data["resources"]["Parameters"]["Fn::Merge"], "Result", True ) if ( "Fn::ImportYaml" in data["resources"]["Parameters"] and "Result" in data["resources"]["Parameters"]["Fn::ImportYaml"] ): _add_params( params, data["resources"]["Parameters"]["Fn::ImportYaml"], "Result", True, ) params["STACK_NAME"] = PARAM_NOT_AVAILABLE if "REGION" not in os.environ: os.environ["REGION"] = region() params["REGION"] = os.environ["REGION"] if "ACCOUNT_ID" not in os.environ: if resolve_account(): os.environ["ACCOUNT_ID"] = resolve_account() else: os.environ["ACCOUNT_ID"] = "None" params["ACCOUNT_ID"] = os.environ["ACCOUNT_ID"] global SOURCED_PARAMS if not SOURCED_PARAMS: SOURCED_PARAMS = {} # then override them with values from infra template_dir = os.path.dirname(os.path.abspath(template)) image_dir = os.path.dirname(template_dir) image_name = os.path.basename(image_dir) stack_name = os.path.basename(template_dir) stack_name = re.sub("^stack-", "", stack_name) SOURCED_PARAMS = load_parameters(component=image_name, stack=stack_name) SOURCED_PARAMS.update(os.environ) params.update(SOURCED_PARAMS) # source_infra_properties.sh always resolves a region, account id and stack # name params["AWS::Region"] = params["REGION"] params["AWS::AccountId"] = params["ACCOUNT_ID"] params["AWS::StackName"] = params["STACK_NAME"] # finally load AWS-provided and "Resources" params["AWS::NotificationARNs"] = PARAM_NOT_AVAILABLE params["AWS::NoValue"] = PARAM_NOT_AVAILABLE params["AWS::StackId"] = PARAM_NOT_AVAILABLE _add_params(params, data, "Resources", False) if "resources" in data: _add_params(params, data["resources"], "Resources", False) return params # Applies recursively source to script inline expression def apply_source(data, filename, optional, default): if isinstance(data, OrderedDict): if "Ref" in data: data["__source"] = filename if optional == "#optional": data["__optional"] = "true" data["__default"] = default for k, val in list(data.items()): apply_source(k, filename, optional, default) apply_source(val, filename, optional, default) # returns new data def _preprocess_template(data, root, basefile, path, templateParams): param_refresh_callback = lambda: templateParams.update(_get_params(root, basefile)) param_refresh_callback() global gotImportErrors if isinstance(data, OrderedDict): if "Fn::ImportFile" in data: val = data["Fn::ImportFile"] file = expand_vars(val, templateParams, None, []) script_import = resolve_file(file, basefile) if script_import: params = OrderedDict(list(templateParams.items())) params.update(data) data.clear() contents = expand_only_double_paranthesis_params( import_script(script_import), params, None, [] ) data["Fn::Join"] = ["", contents] else: print( "ERROR: " + val + ": Can't import file \"" + val + '" - file not found on include paths or relative to ' + basefile ) gotImportErrors = True elif "Fn::ImportYaml" in data: val = data["Fn::ImportYaml"] jmespath = None if "jmespath" in data and data["jmespath"]: jmespath = data["jmespath"] file = expand_vars(val, templateParams, None, []) yaml_file = resolve_file(file, basefile) del data["Fn::ImportYaml"] if yaml_file: contents = yaml_load(open(yaml_file)) params = OrderedDict(list(templateParams.items())) params.update(data) contents = expand_vars(contents, params, None, []) data["Fn::ImportYaml"] = OrderedDict() data["Fn::ImportYaml"]["Result"] = contents param_refresh_callback() while True: expanded_result = expand_vars(contents, templateParams, None, []) if expanded_result == contents: break else: contents.clear() contents.update(expanded_result) param_refresh_callback() data.clear() if isinstance(contents, OrderedDict): for k, val in list(contents.items()): data[k] = _preprocess_template( val, root, yaml_file, path + k + "_", templateParams ) elif isinstance(contents, list): data = contents for i in range(0, len(data)): data[i] = _preprocess_template( data[i], root, yaml_file, path + str(i) + "_", templateParams, ) else: print( "ERROR: " + path + ": Can't import yaml file \"" + yaml_file + "\" that isn't an associative array or" + " a list in file " + basefile ) gotImportErrors = True if jmespath: data = search(jmespath, data) else: if not ("optional" in data and data["optional"]): print( "ERROR: " + val + ": Can't import file \"" + val + '" - file not found on include paths or relative to ' + basefile ) gotImportErrors = True else: for k in list(data): del data[k] if data and "optional" in data: del data["optional"] data = _preprocess_template(data, root, yaml_file, path, templateParams) elif "Fn::Merge" in data: merge_list = ( data["Fn::Merge"]["Source"] if "Source" in data["Fn::Merge"] else data["Fn::Merge"] ) result = ( data["Fn::Merge"]["Result"] if "Result" in data["Fn::Merge"] else OrderedDict() ) data["Fn::Merge"] = OrderedDict( [("Source", merge_list), ("Result", result)] ) if not isinstance(merge_list, list): print( "ERROR: " + path + ": Fn::Merge must associate to a list in file " + basefile ) gotImportErrors = True return data merge = _preprocess_template( expand_vars(merge_list.pop(0), templateParams, None, []), root, basefile, path + "/", templateParams, ) if not result: result = merge data["Fn::Merge"] = OrderedDict( [("Source", merge_list), ("Result", result)] ) elif not isinstance(merge, type(result)): print( "ERROR: " + path + ": First Fn::Merge entries " + "were of type " + str(type(result)) + ", but the following entry was not: \n" + json.dumps(merge, indent=2) + "\nIn file " + basefile ) gotImportErrors = True elif isinstance(merge, OrderedDict): result.update(merge) elif isinstance(merge, list): result.extend(merge) else: print("ERROR: " + path + ": Unsupported " + str(type(merge))) gotImportErrors = True param_refresh_callback() while True: expanded_result = expand_vars(result, templateParams, None, []) if expanded_result == result: break else: result.clear() result.update(expanded_result) param_refresh_callback() if not merge_list: del data["Fn::Merge"] return result else: return _preprocess_template( data, root, basefile, path + "/", templateParams ) elif "StackRef" in data: stack_var = expand_vars(data["StackRef"], templateParams, None, []) stack_var = _check_refs( stack_var, basefile, path + "StackRef_", templateParams, True ) data.clear() stack_value = _resolve_stackref_from_dict(stack_var) if not stack_value: raise StackRefUnresolved( "Did not find value for: " + stack_var["paramName"] + " in stack " + stack_var["region"] + "." + stack_var["stackName"] ) param_refresh_callback() return stack_value elif "TFRef" in data: tf_var = expand_vars(data["TFRef"], templateParams, None, []) tf_var = _check_refs( tf_var, basefile, path + "TFRef_", templateParams, True ) data.clear() tf_value = _resolve_tfref_from_dict(tf_var) if not tf_value: ref = ( stack_var["paramName"] if "paramName" in stack_var else stack_var["jmespath"] ) raise TFRefUnresolved( "Did not find value for: " + ref + " in terraform compnent " + stack_var["component"] + "." + stack_var["terraform"] ) param_refresh_callback() return tf_value elif "Encrypt" in data and "value" in data["Encrypt"]: to_encrypt = data["Encrypt"]["value"] enc_conf = data["Encrypt"] del enc_conf["value"] vault = Vault(**enc_conf) resolved_value = _preprocess_template( to_encrypt, root, basefile, path + "Encrypt_", templateParams ) if not isinstance(resolved_value, six.string_types): raise EncryptException("Encrypted value needs to be a string") return b64encode(vault.direct_encrypt(resolved_value)) elif "Ref" in data: data["__source"] = basefile elif "VaultRef" in data: vault_key = expand_vars(data["VaultRef"], templateParams, None, []) return _resolve_vault_parameter(vault_key) elif "SsmRef" in data: ssm_key = expand_vars(data["SsmRef"], templateParams, None, []) return _resolve_ssm_parameter(ssm_key) elif "ProductAmi" in data: product_code = expand_vars(data["ProductAmi"], templateParams, None, []) return _resolve_product_ami(product_code) elif "OwnerNamedAmi" in data: owner_named = expand_vars(data["OwnerNamedAmi"], templateParams, None, []) if "owner" in owner_named and "name" in owner_named: return _resolve_onwer_named_ami( owner_named["owner"], owner_named["name"] ) elif "FlowRef" in data: flow_name = expand_vars(data["FlowRef"], templateParams, None, []) if flow_name: return _resolve_flowref(flow_name) else: if "Parameters" in data: data["Parameters"] = _preprocess_template( data["Parameters"], root, basefile, path + "Parameters_", templateParams, ) param_refresh_callback() for k, val in list(data.items()): if k != "Parameters": data[k] = expand_vars( _preprocess_template( val, root, basefile, path + _to_str(k) + "_", templateParams ), templateParams, None, [], ) elif isinstance(data, list): for i in range(0, len(data)): data[i] = _preprocess_template( data[i], root, basefile, path + str(i) + "_", templateParams ) return data # returns new data def _check_refs(data, templateFile, path, templateParams, resolveRefs): global gotImportErrors if isinstance(data, OrderedDict): if "Ref" in data: var_name = data["Ref"] if "__source" in data: filename = data["__source"] del data["__source"] else: filename = "unknown" if "__source_line" in data: file_line = data["__source_line"] del data["__source_line"] else: file_line = 0 # Ignore serverless framework default rest api resource that is secretly created by the framework if var_name not in templateParams and var_name != "ApiGatewayRestApi": if "__optional" in data: data = data["__default"] else: print( "ERROR: " + path + ': Referenced parameter "' + var_name + '" in file ' + filename + ":" + str(file_line) + " not declared in template parameters in " + templateFile ) gotImportErrors = True else: if resolveRefs: data = templateParams[var_name] if data == PARAM_NOT_AVAILABLE: print( "ERROR: " + path + ': Referenced parameter "' + var_name + '" in file ' + filename + " is resolved later by AWS; cannot resolve its" + " value now" ) gotImportErrors = True if "__optional" in data: del data["__optional"] if "__default" in data: del data["__default"] else: for k, val in list(data.items()): data[k] = _check_refs( val, templateFile, path + k + "_", templateParams, resolveRefs ) elif isinstance(data, list): for i in range(0, len(data)): data[i] = _check_refs( data[i], templateFile, path + str(i) + "_", templateParams, resolveRefs ) return data def import_scripts(data, basefile, extra_parameters={}): global gotImportErrors gotImportErrors = False params = _get_params(data, basefile) params.update(extra_parameters) data = expand_vars(data, params, None, []) params = _get_params(data, basefile) params.update(extra_parameters) data = _preprocess_template(data, data, basefile, "", params) params = _get_params(data, basefile) params.update(extra_parameters) data = _check_refs(data, basefile, "", params, False) if gotImportErrors: sys.exit(1) return data ############################################################################ # extract_scripts def bash_encode_parameter_name(name): return "CF_" + re.sub("::", "__", name) def encode_script_filename(prefix, path): if path.find("UserData_Fn::Base64") != -1: return prefix + "-userdata.sh" idx = path.find(CFG_PREFIX) if idx != -1: soff = idx + len(CFG_PREFIX) eoff = path.find("_content_", soff) cfg_path = path[soff:eoff] return prefix + "-" + cfg_path[cfg_path.rfind("/") + 1 :] return prefix + "-" + path def extract_script(prefix, path, join_args): # print prefix, path # "before" and "after" code blocks, placed before and after var declarations code = ["", ""] var_decls = OrderedDict() code_idx = 0 for element in join_args: if isinstance(element, OrderedDict): if "Ref" not in element: print("Dict with no ref") json_save(element) else: var_name = element["Ref"] if not len(var_name) > 0: raise Exception( "Failed to convert reference inside " + "script: " + str(element) ) bash_varname = bash_encode_parameter_name(var_name) var_decl = "" # var_decl += "#" + var_name + "\n" var_decl += bash_varname + '="";\n' var_decls[var_name] = var_decl code[code_idx] += "${" + bash_varname + "}" else: code[code_idx] += element code_idx = 1 # switch to "after" block filename = encode_script_filename(prefix, path) sys.stderr.write( prefix + ": Exported path '" + path + "' contents to file '" + filename + "'\n" ) with open(filename, "w") as script_file: # opens file with name of "test.txt" script_file.write(code[0]) script_file.write("\n") for var_name, var_decl in list(var_decls.items()): script_file.write(var_decl) script_file.write("\n") script_file.write(code[1]) return filename # data argument is mutated def extract_scripts(data, prefix, path=""): if not isinstance(data, OrderedDict): return for k, val in list(data.items()): extract_scripts(val, prefix, path + k + "_") if k == "Fn::Join": if not val[0] == "": continue if isinstance(val[1][0], six.string_types) and (val[1][0].find("#!") != 0): continue script_file = extract_script(prefix, path, val[1]) del data[k] data["Fn::ImportFile"] = script_file ############################################################################ # simple apis def yaml_to_dict(yaml_file_to_convert, merge=[], extra_parameters={}): data = OrderedDict() with open(yaml_file_to_convert) as yaml_file: data = yaml_load(yaml_file) if "connectInstanceId" in data: global CONNECT_INSTANCE_ID CONNECT_INSTANCE_ID = expand_vars(data["connectInstanceId"], {}, None, []) if merge: for i in range(0, len(merge)): with open(merge[i]) as yaml_file: merge[i] = yaml_load(yaml_file) merge.append(data) merge_data = OrderedDict() merge_data["Fn::Merge"] = merge data = merge_data data = import_scripts(data, yaml_file_to_convert, extra_parameters=extra_parameters) _patch_launchconf(data) return data def yaml_to_json(yaml_file_to_convert, merge=[]): data = yaml_to_dict(yaml_file_to_convert, merge) return json_save(data) def yaml_to_yaml(yaml_file_to_convert): data = yaml_to_dict(yaml_file_to_convert) return yaml_save(data) def json_to_yaml(json_file_to_convert): data = json_load(open(json_file_to_convert).read()) extract_scripts(data, json_file_to_convert) return yaml_save(data) ############################################################################ # misc json def locate_launchconf_metadata(data): if "Resources" in data: resources = data["Resources"] for val in list(resources.values()): if ( val and "Type" in val and val["Type"] == "AWS::AutoScaling::LaunchConfiguration" and "Metadata" in val ): return val["Metadata"] return None def locate_launchconf_userdata(data): resources = data["Resources"] for val in list(resources.values()): if "Type" in val and val["Type"] == "AWS::AutoScaling::LaunchConfiguration": if ( "Properties" in val and "UserData" in val["Properties"] and "Fn::Base64" in val["Properties"]["UserData"] and "Fn::Join" in val["Properties"]["UserData"]["Fn::Base64"] and len(val["Properties"]["UserData"]["Fn::Base64"]["Fn::Join"]) >= 2 ): return val["Properties"]["UserData"]["Fn::Base64"]["Fn::Join"][1] else: if ( "Properties" in val and "UserData" in val["Properties"] and "Fn::Base64" in val["Properties"]["UserData"] and "Fn::Sub" in val["Properties"]["UserData"]["Fn::Base64"] ): return val["Properties"]["UserData"]["Fn::Base64"]["Fn::Sub"] return None def reset_launchconf_userdata(data, lc_userdata): resources = data["Resources"] for val in list(resources.values()): if "Type" in val and val["Type"] == "AWS::AutoScaling::LaunchConfiguration": val["Properties"]["UserData"]["Fn::Base64"]["Fn::Sub"] = lc_userdata def get_refs(data, reflist=None): if not reflist: reflist = [] if isinstance(data, OrderedDict): if "Ref" in data: reflist.append(data["Ref"]) for val in list(data.values()): get_refs(val, reflist) elif isinstance(data, list): for ref in data: get_refs(ref, reflist) return reflist def _patch_launchconf(data): lc_meta = locate_launchconf_metadata(data) if lc_meta is not None: lc_userdata = locate_launchconf_userdata(data) if lc_userdata: if isinstance(lc_userdata, list): lc_userdata.append( "\nexit 0\n# metadata hash: " + str(hash(json_save(lc_meta))) + "\n" ) else: lc_userdata += ( "\nexit 0\n# metadata hash: " + str(hash(json_save(lc_meta))) + "\n" ) reset_launchconf_userdata(data, lc_userdata) lc_meta_refs = set(get_refs(lc_meta)) if len(lc_meta_refs) > 0: first = 1 for ref in lc_meta_refs: lc_userdata.append("# metadata params: " if first else ", ") lc_userdata.append({"Ref": ref}) first = 0 lc_userdata.append("\n") class StackRefUnresolved(Exception): pass class TFRefUnresolved(Exception): pass class EncryptException(Exception): pass
py
b4110809c95aed5e3984418a07619846dab610e0
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Structured error classes in MXNet. Each error class takes an error message as its input. See the example sections for for suggested message conventions. To make the code more readable, we recommended developers to copy the examples and raise errors with the same message convention. """ from .base import MXNetError, register_error __all__ = ['MXNetError', 'register'] register = register_error @register_error class InternalError(MXNetError): """Internal error in the system. Examples -------- .. code :: c++ // Example code C++ LOG(FATAL) << "InternalError: internal error detail."; .. code :: python # Example code in python raise InternalError("internal error detail") """ def __init__(self, msg): # Patch up additional hint message. if "MXNet hint:" not in msg: msg += ("\nMXNet hint: You hit an internal error. Please open an issue in " "https://github.com/apache/incubator-mxnet/issues/new/choose" " to report it.") super(InternalError, self).__init__(msg) register_error("ValueError", ValueError) register_error("TypeError", TypeError) register_error("AttributeError", AttributeError) register_error("IndexError", IndexError) register_error("NotImplementedError", NotImplementedError)
py
b41108941268bb94b46cfe540ae9ba2ff729ed01
RUN_TEST = True TEST_SOLUTION = ... TEST_INPUT_FILE = 'test_input_day_XX.txt' INPUT_FILE = 'input_day_XX.txt' ARGS = [] def main_part1(input_file, ): with open(input_file) as file: lines = list(map(lambda line: line.rstrip(), file.readlines())) ... solution = ... return solution if __name__ == '__main__': if RUN_TEST: solution = main_part1(TEST_INPUT_FILE, *ARGS) print(solution) assert (TEST_SOLUTION == solution) else: solution = main_part1(INPUT_FILE, *ARGS) print(solution)
py
b41109389b0475386ac77cc4261043485424e85f
# coding: utf-8 """ FlashArray REST API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: 2.2 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flasharray.FA_2_2 import models class ReplicaLinkPerformanceReplication(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'bytes_per_sec_from_remote': 'int', 'bytes_per_sec_to_remote': 'int', 'bytes_per_sec_total': 'int', 'direction': 'str', 'local_pod': 'FixedReference', 'remote_pod': 'FixedReference', 'remotes': 'list[FixedReference]', 'time': 'int' } attribute_map = { 'bytes_per_sec_from_remote': 'bytes_per_sec_from_remote', 'bytes_per_sec_to_remote': 'bytes_per_sec_to_remote', 'bytes_per_sec_total': 'bytes_per_sec_total', 'direction': 'direction', 'local_pod': 'local_pod', 'remote_pod': 'remote_pod', 'remotes': 'remotes', 'time': 'time' } required_args = { } def __init__( self, bytes_per_sec_from_remote=None, # type: int bytes_per_sec_to_remote=None, # type: int bytes_per_sec_total=None, # type: int direction=None, # type: str local_pod=None, # type: models.FixedReference remote_pod=None, # type: models.FixedReference remotes=None, # type: List[models.FixedReference] time=None, # type: int ): """ Keyword args: bytes_per_sec_from_remote (int): The number of bytes received per second from a remote array. bytes_per_sec_to_remote (int): The number of bytes transmitted per second to a remote array. bytes_per_sec_total (int): Total bytes transmitted and received per second. direction (str): The direction of replication. Valid values are `inbound` and `outbound`. local_pod (FixedReference): Reference to a local pod. remote_pod (FixedReference): Reference to a remote pod. remotes (list[FixedReference]): Reference to a remote array. time (int): Sample time in milliseconds since the UNIX epoch. """ if bytes_per_sec_from_remote is not None: self.bytes_per_sec_from_remote = bytes_per_sec_from_remote if bytes_per_sec_to_remote is not None: self.bytes_per_sec_to_remote = bytes_per_sec_to_remote if bytes_per_sec_total is not None: self.bytes_per_sec_total = bytes_per_sec_total if direction is not None: self.direction = direction if local_pod is not None: self.local_pod = local_pod if remote_pod is not None: self.remote_pod = remote_pod if remotes is not None: self.remotes = remotes if time is not None: self.time = time def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `ReplicaLinkPerformanceReplication`".format(key)) if key == "bytes_per_sec_from_remote" and value is not None: if value < 0: raise ValueError("Invalid value for `bytes_per_sec_from_remote`, must be a value greater than or equal to `0`") if key == "bytes_per_sec_to_remote" and value is not None: if value < 0: raise ValueError("Invalid value for `bytes_per_sec_to_remote`, must be a value greater than or equal to `0`") if key == "bytes_per_sec_total" and value is not None: if value < 0: raise ValueError("Invalid value for `bytes_per_sec_total`, must be a value greater than or equal to `0`") self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): raise AttributeError else: return value def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ReplicaLinkPerformanceReplication, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ReplicaLinkPerformanceReplication): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
py
b4110975bb7a800872a0c9cd438c40315c6e521b
#!/usr/bin/env python3 # Copyright (c) 2015-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test new Cureoptedcoin multisig prefix functionality. # from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, connect_nodes, ) class ScriptAddress2Test(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 3 self.setup_clean_chain = True self.extra_args = [['-addresstype=legacy', '-deprecatedrpc=accounts', '-txindex=1'], [], ['-txindex=1']] def setup_network(self, split=False): self.setup_nodes() connect_nodes(self.nodes[1], 0) connect_nodes(self.nodes[2], 0) self.sync_all() def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): cnt = self.nodes[0].getblockcount() # Mine some blocks self.nodes[1].generate(101) self.sync_all() if (self.nodes[0].getblockcount() != cnt + 101): raise AssertionError("Failed to mine 100 blocks") addr = self.nodes[0].getnewaddress() addr2 = self.nodes[0].getnewaddress() multisig_addr = self.nodes[0].addmultisigaddress(2, [addr, addr2], "multisigaccount")['address'] assert_equal(multisig_addr[0], 'Q') # Send to a new multisig address txid = self.nodes[1].sendtoaddress(multisig_addr, 1) self.nodes[1].generate(101) self.sync_all() tx = self.nodes[0].getrawtransaction(txid, 1) dest_addrs = [tx["vout"][0]['scriptPubKey']['addresses'][0], tx["vout"][1]['scriptPubKey']['addresses'][0]] assert(multisig_addr in dest_addrs) # Spend from the new multisig address addr3 = self.nodes[1].getnewaddress() txid = self.nodes[0].sendtoaddress(addr3, 0.8) self.nodes[0].generate(2) self.sync_all() assert(self.nodes[0].getbalance("*", 1) < 0.2) assert(self.nodes[1].listtransactions()[-1]['address'] == addr3) # Send to an old multisig address. The api addmultisigaddress # can only generate a new address so we manually compute # multisig_addr_old beforehand using an old client. priv_keys = ["cU7eeLPKzXeKMeZvnEJhvZZ3tLqVF3XGeo1BbM8dnbmV7pP3Qg89", "cTw7mRhSvTfzqCt6MFgBoTBqwBpYu2rWugisXcwjv4cAASh3iqPt"] addrs = ["mj6gNGRXPXrD69R5ApjcsDerZGrYKSfb6v", "mqET4JA3L7P7FoUjUP3F6m6YsLpCkyzzou"] self.nodes[0].importprivkey(priv_keys[0]) self.nodes[0].importprivkey(priv_keys[1]) multisig_addr_new = self.nodes[0].addmultisigaddress(2, addrs, "multisigaccount2")['address'] assert_equal(multisig_addr_new, 'QZ974ZrPrmqMmm1PSVp4m8YEgo3bCQZBbe') multisig_addr_old = "2N5nLwYz9qfnGdaFLpPn3gS6oYQbmLTWPjq" # Let's send to the old address. We can then find it in the # new address with the new client. So basically the old # address and the new one are the same thing. txid = self.nodes[1].sendtoaddress(multisig_addr_old, 1) self.nodes[1].generate(1) self.sync_all() tx = self.nodes[2].getrawtransaction(txid, 1) dest_addrs = [tx["vout"][0]['scriptPubKey']['addresses'][0], tx["vout"][1]['scriptPubKey']['addresses'][0]] assert(multisig_addr_new in dest_addrs) assert(multisig_addr_old not in dest_addrs) # Spend from the new multisig address addr4 = self.nodes[1].getnewaddress() txid = self.nodes[0].sendtoaddress(addr4, 0.8) self.nodes[0].generate(2) self.sync_all() assert(self.nodes[0].getbalance("*", 1) < 0.4) assert(self.nodes[1].listtransactions()[-1]['address'] == addr4) if __name__ == '__main__': ScriptAddress2Test().main()
py
b4110a8a71ddb134fdb435fc77828aef4a65a112
import warnings from torch.optim.lr_scheduler import _LRScheduler class WarmupWarpper(_LRScheduler): """ """ def __init__(self, scheduler, warmup_steps, total_num_update_steps, last_epoch=-1): self.scheduler = scheduler self.warmup_steps = warmup_steps self.total_num_update_steps = total_num_update_steps self.finished = False super().__init__(scheduler.optimizer, last_epoch) def get_lr(self): if self.last_epoch > self.total_num_update_steps: if not self.finished: self.finished = True return self.scheduler.get_last_lr() elif self.last_epoch < self.warmup_steps: multiplier = float(self.last_epoch) / float(max(1, self.warmup_steps)) return [lr * multiplier for lr in self.base_lrs] else: return self.scheduler.get_last_lr() def step(self): if self.last_epoch < self.warmup_steps: super().step() elif self.last_epoch < self.total_num_update_steps: self.scheduler.step() self._last_lr = self.scheduler.get_last_lr() self.last_epoch += 1 else: if self.last_epoch == self.total_num_update_steps: warnings.warn("Learning rate scheduler steps have exceeded total_num_update_steps!") super().step()
py
b4110b4d04ce90f3129fee5bd5796b66a63739f3
import json import logging import re import traceback from datetime import datetime import torndsession.sessionhandler from . import error as err from . import cache, vo from .. import config class Handler(torndsession.sessionhandler.SessionBaseHandler): def prepare(self): super().prepare() logger = logging.getLogger('app') logger.debug('{} {} {} {}'.format( self.request.method, self.request.path, self.request.arguments, self.request.headers)) def get_current_user(self): return self.session.get('user', None) def write_error(self, status_code, **kwargs): if self.settings.get('serve_traceback') and 'exc_info' in kwargs: message = traceback.format_exception(*kwargs['exc_info']) else: message = self._reason error = err.Error(message) return self.response_json(error, status_code) def response_json(self, error=None, status_code=200, **kwargs): data = { 'code': err.ERROR_CODE_OK, 'message': '' } if error: data['code'] = error.code data['message'] = ( error.message if (config.DEBUG and error.message) else err.MESSAGES.get(error.code, '') ) data.update(kwargs) ua = self.request.headers.get('User-Agent', '') if re.match(r'.+\s+MSIE\s+.+', ua): content_type = 'text/html; charset=utf-8' else: content_type = 'application/json; charset=utf-8' content = json.dumps( vo.jsonable(data), indent=(None if not config.DEBUG else 4), ensure_ascii=False) self.response(content, content_type, status_code) def response_html(self, template, error=None, status_code=200, **kwargs): data = { 'code': err.ERROR_CODE_OK, 'message': '' } if error: data['code'] = error.code data['message'] = ( error.message if (config.DEBUG and error.message) else err.MESSAGES.get(error.code, '') ) data.update(kwargs) content = self.render_string(template, **data) content_type = 'text/html; charset=utf-8' self.response(content, content_type, status_code) def response(self, content, content_type, status_code=200): self.set_status(status_code) self.set_header('Content-Type', content_type) self.finish(content)
py
b4110b6ce5f00123b8ec8100f6f7ce5f3d3ea79b
#!/usr/bin/env python3 from math import sqrt import fileinput # Write a program that computes typical stats # Count, Min, Max, Mean, Std. Dev, Median # No, you cannot import any other modules! data = [] for line in fileinput.input(): if line.startswith('#'): continue line = line.rstrip() data.append(float(line)) count = 0 sum = 0 for i in data: count += 1 sum += i mean = sum/count s = 0 for i in data: s += (i - mean) ** 2 sd = (s / count) ** 0.5 data.sort() min = data[0] max = data[-1] if count % 2 == 0: m = int((len(data)/2) - 1) n = int(len(data)/2) med = (data[m] + data[n]) / 2 else: m = int((len(data)/2) - 0.5) med = data[m] print(f'Count: {count}') print(f'Minimum: {min}') print(f'Maximum: {max}') print(f'Mean: {mean}') print(f'Std. dev: {sd:.3f}') print(f'Median: {med}') """ python3 stats.py numbers.txt Count: 10 Minimum: -1.0 Maximum: 256.0 Mean: 29.147789999999997 Std. dev: 75.777 Median 2.35914 """
py
b4110cb85a170a64d20bb18ccceea6057247ab9d
import re import random import itertools import math from collections import defaultdict from src.utilities import * from src import users, channels, status, debuglog, errlog, plog from src.functions import get_players, get_all_players from src.decorators import command, event_listener from src.containers import UserList, UserSet, UserDict, DefaultUserDict from src.messages import messages from src.status import try_misdirection, try_exchange @event_listener("transition_night_end", priority=5) def on_transition_night_end(evt, var): for blessed in get_all_players(("blessed villager",)): status.add_protection(var, blessed, blessed, "blessed villager") if var.NIGHT_COUNT == 1 or var.ALWAYS_PM_ROLE: to_send = "blessed_notify" if blessed.prefers_simple(): to_send = "blessed_simple" blessed.send(messages[to_send]) @event_listener("myrole") def on_myrole(evt, var, user): if user in var.ROLES["blessed villager"]: evt.data["messages"].append(messages["blessed_simple"]) @event_listener("get_role_metadata") def on_get_role_metadata(evt, var, kind): if kind == "role_categories": evt.data["blessed villager"] = {"Village"} # vim: set sw=4 expandtab:
py
b4110d4e61ca4c7da86e00bfb119f3b1f46c1d63
import math def square_of_sum(num): """Returns square of sum of N integers.""" squares = 0 for i in range(1, num + 1): squares += i return math.pow(squares, 2) def sum_of_squares(num): """Returns sum of square of N integers.""" sums = 0 for i in range(1, num + 1): sums += math.pow(i, 2) return sums def difference(num): """Returns difference between square_of_sum and sum_of_square for first N integers.""" return square_of_sum(num) - sum_of_squares(num)
py
b4110d56557a84933b3dbbee5c38b0e0785ba00f
import pandas as pd import os from mpl_toolkits import mplot3d import numpy as np import matplotlib.pyplot as plt import math class idm_behavior_analysis(): ''' Purpose: Creates mesh plot of acceleration values based on idm parameters and limits of velocity changes :param idm_params: dictionary of all IDM params key=parameter name => value :param speed_limits: list containing the minimum and maximum speeds ''' def __init__(self, idm_params, plot_name, speed_limits = [0,100]): self.idm_params=idm_params self.file_location = os.getcwd() + "/IDM Behavior Plots/" + plot_name # create linspace for both velocity inputs self.x = np.linspace(speed_limits[0], speed_limits[1], speed_limits[1] * 10) self.y = np.linspace(speed_limits[0], speed_limits[1], speed_limits[1] * 10) self.v_max = speed_limits[1] # create meshgrid for the maximum velocity (v_max) and the current velocity (v_0) self.v, self.v_des = np.meshgrid(self.x, self.y) self.equation() self.create_plot() self.create_csv() def equation(self): # Implement IDM behavior model equation to calculate the acceleration self.acceleration = self.idm_params['accel']*(1-(self.v/self.v_max)**self.idm_params['delta']-((self.idm_params['minGap'] + self.idm_params['tau'] * self.v \ + (self.v*(self.v-self.v_des))/(2*math.sqrt(self.idm_params['accel']*self.idm_params['decel'])))/self.idm_params['minGap'])**2) self.acceleration = np.where(self.acceleration < -self.idm_params['emergencyDecel'], -self.idm_params['emergencyDecel'], self.acceleration) return def create_plot(self): fig = plt.figure() ax = plt.axes(projection='3d') ax.contour3D(self.v, self.v_des, self.acceleration, 50, cmap='binary') ax.set_xlabel('IDM Velocity') ax.set_ylabel('Desired Velocity') ax.set_zlabel('Acceleration') fig.savefig(self.file_location) return def create_csv(self): #TODO: add method to create csv, may be unnecessary return
py
b4110e417306f84c43ad6107014960a97500fbf0
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. # # flake8: noqa # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. import argparse import bugzilla import logging import sys import xmlrpclib import yaml from launchpadlib.launchpad import Launchpad LOG = logging.getLogger(__name__) OPEN = 1 CLOSED = 2 INVALID = 3 class LaunchpadConnector(object): def __init__(self, cachedir='/tmp/.launchpadlib/cache/'): self.cachedir = cachedir self.lp = Launchpad.login_anonymously('Bugs', 'production', cachedir, version='devel') def get_bug_status(self, bug_id): try: bug = self.lp.bugs[bug_id] # We are assuming that last task have the final status # And we cannot slice from the last task = bug.bug_tasks[len(bug.bug_tasks) - 1] if task: if task.status in ['Fix Released', 'Fix Committed', 'Invalid']: return CLOSED else: return OPEN except KeyError: LOG.error('Bug {} does not exist in launchpad'.format(bug_id)) return INVALID class BugzillaConnector(object): def __init__(self, url='https://bugzilla.redhat.com/xmlrpc.cgi'): self.bugzilla = bugzilla.Bugzilla(url=url) def get_bug_status(self, bug_id): try: bug = self.bugzilla.getbug(bug_id) if bug.status == 'CLOSED': return CLOSED else: return OPEN except xmlrpclib.Fault as err: # Fault code 102 means it's a private bug and we don't have # permission to see, so we can't confirm if it's closed if err.faultCode == 102: return OPEN LOG.error('Bug {} failed with fault code {}'.format(bug_id, err.faultCode)) return INVALID class VerifyBug(object): def __init__(self): self.bugzilla = BugzillaConnector() self.launchpad = LaunchpadConnector() def check_bug_status(self, url): connector = self._get_connector(url) bug_id = self._get_id_from_url(url) return connector.get_bug_status(bug_id) def is_bug_open(self, url): status = self.check_bug_status(url) if status in [CLOSED, INVALID]: return False else: return True def _get_id_from_url(self, url): if 'launchpad' in url: # The format is https://bugs.launchpad.net/tripleo/+bug/1577769 return int(url.split('/')[-1]) elif 'bugzilla' in url: return int(url.split('=')[-1]) def _get_connector(self, url): if 'launchpad' in url: return self.launchpad elif 'bugzilla' in url: return self.bugzilla else: raise ValueError('Cannot find a connector for {}'.format(url)) class BugVerifyCmd(object): def __init__(self): self.skipped_failures = [] def parse_arguments(self, args): parser = argparse.ArgumentParser(description='Bug verify') parser.add_argument('--skip-file', dest='skip_file', help='Load skip file', required=True) parser.add_argument('--output', action='store_true', help='Print the output') parser.add_argument('--format', dest='output_format', default='yaml', help='Output format', choices=['yaml', 'txt']) parser.add_argument('--to-file', dest='to_file', help='Save the skip list to a file') parser.add_argument('--report', dest='report', action='store_true', help='Shows report at the end') parser.add_argument('--debug', dest='debug', action='store_true', help='Enable debug') self.args = parser.parse_args(args) def setup_logging(self): level = logging.DEBUG if self.args.debug else logging.INFO logging.basicConfig(level=level, format='%(asctime)s %(levelname)s %(name)s: ' '%(message)s') def load_skip_file(self): known_failures = [] try: with open(self.args.skip_file) as f: skip = yaml.safe_load(f) for t in skip.get('known_failures'): bug = {'test': t.get('test'), 'reason': t.get('reason')} if t.get('lp'): bug['lp'] = t.get('lp') if t.get('bz'): bug['bz'] = t.get('bz') known_failures.append(bug) except yaml.constructor.ConstructorError: LOG.error('Invalid yaml file {}'.format(self.args.skip_file)) except IOError: LOG.error('File not found {}'.format(self.args.skip_file)) finally: return known_failures def _print_yaml(self, known_failures): return yaml.dump({'known_failures': known_failures}, default_flow_style=False, explicit_start=True) def _print_txt(self, known_failures): output = '' for bug in known_failures: output += '# {}\n'.format(bug.get('reason')) output += '{}\n'.format(bug.get('test')) return output def get_output(self, known_failures, output_format): output = '' if output_format == 'txt': output = self._print_txt(known_failures) elif output_format == 'yaml': output = self._print_yaml(known_failures) else: raise ValueError( 'Output format not supported: {}'.format(output_format)) return output def print_output(self, known_failures, output_format): print(self.get_output(known_failures, output_format)) def show_report(self): print('Here\'s the original list:') self.print_output(self.original_failures, self.args.output_format) print('\n\n') print('Here\'s the skipped list:') self.print_output(self.skipped_failures, self.args.output_format) def save_output(self, known_failures, output_format): output = self.get_output(known_failures, output_format) f = open(self.args.to_file, 'w') f.write(output) f.close() def run(self): known_failures = self.load_skip_file() self.original_failures = known_failures open_failures = [] v_bug = VerifyBug() for bug in known_failures: LOG.debug('Checking bug: {}'.format(bug)) if not bug.get('lp') and not bug.get('bz'): open_failures.append(bug) continue bug_url = bug.get('lp') or bug.get('bz') if not v_bug.is_bug_open(bug_url): self.skipped_failures.append(bug) else: open_failures.append(bug) if self.args.output: self.print_output(open_failures, self.args.output_format) if self.args.to_file: self.save_output(open_failures, self.args.output_format) if self.args.report: self.show_report() def main(): bvc = BugVerifyCmd() bvc.parse_arguments(sys.argv[1:]) bvc.setup_logging() bvc.run() if __name__ == '__main__': sys.exit(main())
py
b4110ea1f35fa4f8af71f3465d12492ce5bc324a
#!/usr/bin/env python from setuptools import setup, find_packages from os import path this_directory = path.abspath(path.dirname(__file__)) # could add encoding='utf-8' if needed with open(path.join(this_directory, 'cued_sf2_lab', '_version.py')) as f: exec(f.read()) with open(path.join(this_directory, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='cued_sf2_lab', version=__version__, # noqa: F821 license='MIT', description='IIA Engineering SF2 Lab', long_description=long_description, long_description_content_type='text/markdown', author='Areeg Emarah', maintainer='Areeg Emarah', maintainer_email='[email protected]', url='https://github.com/areeg-98/IIB_project', packages=find_packages(), install_requires=[ 'numpy', 'scipy', 'matplotlib', 'ipympl' ], # {'package_name': 'folder_with_its_source'} package_dir={'cued_sf2_lab': 'cued_sf2_lab'}, classifiers=[ # 'Intended Audience :: Science/Research', # 'Topic :: Scientific/Engineering :: Mathematics', # 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], project_urls={ # "Bug Tracker": "https://github.com/pygae/clifford/issues", "Source Code": "https://github.com/areeg-98/IIB_project", }, python_requires='>=3.5', )
py
b4110f0481294c69d38c3480b6d5ada765468cb2
def palin(word): s="" for i in range(len(word)): s=s+word[len(word)-i-1] if s==word: print word, " is a Palindrome" else: print word," isnt a palindrome"
py
b4111001692f1d66f43fa04098ad0c86c8b7b98a
# -*- coding: utf-8 -*- #--------------------------------------------------------------------------- # Copyright 2019 VMware, Inc. All rights reserved. # AUTO GENERATED FILE -- DO NOT MODIFY! # # vAPI stub file for package com.vmware.nsx.serviceinsertion.services. #--------------------------------------------------------------------------- """ """ __author__ = 'VMware, Inc.' __docformat__ = 'restructuredtext en' import sys from vmware.vapi.bindings import type from vmware.vapi.bindings.converter import TypeConverter from vmware.vapi.bindings.enum import Enum from vmware.vapi.bindings.error import VapiError from vmware.vapi.bindings.struct import VapiStruct from vmware.vapi.bindings.stub import ( ApiInterfaceStub, StubFactoryBase, VapiInterface) from vmware.vapi.bindings.common import raise_core_exception from vmware.vapi.data.validator import (UnionValidator, HasFieldsOfValidator) from vmware.vapi.exception import CoreException from vmware.vapi.lib.constants import TaskType from vmware.vapi.lib.rest import OperationRestMetadata class ServiceInstances(VapiInterface): """ """ _VAPI_SERVICE_ID = 'com.vmware.nsx.serviceinsertion.services.service_instances' """ Identifier of the service in canonical form. """ def __init__(self, config): """ :type config: :class:`vmware.vapi.bindings.stub.StubConfiguration` :param config: Configuration to be used for creating the stub. """ VapiInterface.__init__(self, config, _ServiceInstancesStub) def create(self, service_id, base_service_instance, ): """ Adds a new Service-Instance under the specified Service. :type service_id: :class:`str` :param service_id: (required) :type base_service_instance: :class:`vmware.vapi.struct.VapiStruct` :param base_service_instance: (required) The parameter must contain all the attributes defined in :class:`com.vmware.nsx.model_client.BaseServiceInstance`. :rtype: :class:`vmware.vapi.struct.VapiStruct` :return: com.vmware.nsx.model.BaseServiceInstance The return value will contain all the attributes defined in :class:`com.vmware.nsx.model_client.BaseServiceInstance`. :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('create', { 'service_id': service_id, 'base_service_instance': base_service_instance, }) def delete(self, service_id, service_instance_id, ): """ Delete existing Service-Instance for a given Service-Insertion Service. :type service_id: :class:`str` :param service_id: (required) :type service_instance_id: :class:`str` :param service_instance_id: (required) :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('delete', { 'service_id': service_id, 'service_instance_id': service_instance_id, }) def get(self, service_id, service_instance_id, ): """ Returns Service-Instance information for a given Service-Insertion Service. :type service_id: :class:`str` :param service_id: (required) :type service_instance_id: :class:`str` :param service_instance_id: (required) :rtype: :class:`vmware.vapi.struct.VapiStruct` :return: com.vmware.nsx.model.BaseServiceInstance The return value will contain all the attributes defined in :class:`com.vmware.nsx.model_client.BaseServiceInstance`. :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('get', { 'service_id': service_id, 'service_instance_id': service_instance_id, }) def list(self, service_id, ): """ Returns all Service-Instance(s) for a given Service-Insertion Service. :type service_id: :class:`str` :param service_id: (required) :rtype: :class:`com.vmware.nsx.model_client.ServiceInstanceListResult` :return: com.vmware.nsx.model.ServiceInstanceListResult :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('list', { 'service_id': service_id, }) def update(self, service_id, service_instance_id, base_service_instance, ): """ Modifies an existing Service-Instance for a given Service-Insertion Service. :type service_id: :class:`str` :param service_id: (required) :type service_instance_id: :class:`str` :param service_instance_id: (required) :type base_service_instance: :class:`vmware.vapi.struct.VapiStruct` :param base_service_instance: (required) The parameter must contain all the attributes defined in :class:`com.vmware.nsx.model_client.BaseServiceInstance`. :rtype: :class:`vmware.vapi.struct.VapiStruct` :return: com.vmware.nsx.model.BaseServiceInstance The return value will contain all the attributes defined in :class:`com.vmware.nsx.model_client.BaseServiceInstance`. :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('update', { 'service_id': service_id, 'service_instance_id': service_instance_id, 'base_service_instance': base_service_instance, }) class _ServiceInstancesStub(ApiInterfaceStub): def __init__(self, config): # properties for create operation create_input_type = type.StructType('operation-input', { 'service_id': type.StringType(), 'base_service_instance': type.DynamicStructType('vmware.vapi.dynamic_struct', {}, VapiStruct, [type.ReferenceType('com.vmware.nsx.model_client', 'BaseServiceInstance')]), }) create_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } create_input_value_validator_list = [ HasFieldsOfValidator() ] create_output_validator_list = [ HasFieldsOfValidator() ] create_rest_metadata = OperationRestMetadata( http_method='POST', url_template='/api/v1/serviceinsertion/services/{service-id}/service-instances', request_body_parameter='base_service_instance', path_variables={ 'service_id': 'service-id', }, query_parameters={ }, content_type='application/json' ) # properties for delete operation delete_input_type = type.StructType('operation-input', { 'service_id': type.StringType(), 'service_instance_id': type.StringType(), }) delete_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } delete_input_value_validator_list = [ ] delete_output_validator_list = [ ] delete_rest_metadata = OperationRestMetadata( http_method='DELETE', url_template='/api/v1/serviceinsertion/services/{service-id}/service-instances/{service-instance-id}', path_variables={ 'service_id': 'service-id', 'service_instance_id': 'service-instance-id', }, query_parameters={ }, content_type='application/json' ) # properties for get operation get_input_type = type.StructType('operation-input', { 'service_id': type.StringType(), 'service_instance_id': type.StringType(), }) get_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } get_input_value_validator_list = [ ] get_output_validator_list = [ HasFieldsOfValidator() ] get_rest_metadata = OperationRestMetadata( http_method='GET', url_template='/api/v1/serviceinsertion/services/{service-id}/service-instances/{service-instance-id}', path_variables={ 'service_id': 'service-id', 'service_instance_id': 'service-instance-id', }, query_parameters={ }, content_type='application/json' ) # properties for list operation list_input_type = type.StructType('operation-input', { 'service_id': type.StringType(), }) list_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } list_input_value_validator_list = [ ] list_output_validator_list = [ HasFieldsOfValidator() ] list_rest_metadata = OperationRestMetadata( http_method='GET', url_template='/api/v1/serviceinsertion/services/{service-id}/service-instances', path_variables={ 'service_id': 'service-id', }, query_parameters={ }, content_type='application/json' ) # properties for update operation update_input_type = type.StructType('operation-input', { 'service_id': type.StringType(), 'service_instance_id': type.StringType(), 'base_service_instance': type.DynamicStructType('vmware.vapi.dynamic_struct', {}, VapiStruct, [type.ReferenceType('com.vmware.nsx.model_client', 'BaseServiceInstance')]), }) update_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } update_input_value_validator_list = [ HasFieldsOfValidator() ] update_output_validator_list = [ HasFieldsOfValidator() ] update_rest_metadata = OperationRestMetadata( http_method='PUT', url_template='/api/v1/serviceinsertion/services/{service-id}/service-instances/{service-instance-id}', request_body_parameter='base_service_instance', path_variables={ 'service_id': 'service-id', 'service_instance_id': 'service-instance-id', }, query_parameters={ }, content_type='application/json' ) operations = { 'create': { 'input_type': create_input_type, 'output_type': type.DynamicStructType('vmware.vapi.dynamic_struct', {}, VapiStruct, [type.ReferenceType('com.vmware.nsx.model_client', 'BaseServiceInstance')]), 'errors': create_error_dict, 'input_value_validator_list': create_input_value_validator_list, 'output_validator_list': create_output_validator_list, 'task_type': TaskType.NONE, }, 'delete': { 'input_type': delete_input_type, 'output_type': type.VoidType(), 'errors': delete_error_dict, 'input_value_validator_list': delete_input_value_validator_list, 'output_validator_list': delete_output_validator_list, 'task_type': TaskType.NONE, }, 'get': { 'input_type': get_input_type, 'output_type': type.DynamicStructType('vmware.vapi.dynamic_struct', {}, VapiStruct, [type.ReferenceType('com.vmware.nsx.model_client', 'BaseServiceInstance')]), 'errors': get_error_dict, 'input_value_validator_list': get_input_value_validator_list, 'output_validator_list': get_output_validator_list, 'task_type': TaskType.NONE, }, 'list': { 'input_type': list_input_type, 'output_type': type.ReferenceType('com.vmware.nsx.model_client', 'ServiceInstanceListResult'), 'errors': list_error_dict, 'input_value_validator_list': list_input_value_validator_list, 'output_validator_list': list_output_validator_list, 'task_type': TaskType.NONE, }, 'update': { 'input_type': update_input_type, 'output_type': type.DynamicStructType('vmware.vapi.dynamic_struct', {}, VapiStruct, [type.ReferenceType('com.vmware.nsx.model_client', 'BaseServiceInstance')]), 'errors': update_error_dict, 'input_value_validator_list': update_input_value_validator_list, 'output_validator_list': update_output_validator_list, 'task_type': TaskType.NONE, }, } rest_metadata = { 'create': create_rest_metadata, 'delete': delete_rest_metadata, 'get': get_rest_metadata, 'list': list_rest_metadata, 'update': update_rest_metadata, } ApiInterfaceStub.__init__( self, iface_name='com.vmware.nsx.serviceinsertion.services.service_instances', config=config, operations=operations, rest_metadata=rest_metadata, is_vapi_rest=False) class StubFactory(StubFactoryBase): _attrs = { 'ServiceInstances': ServiceInstances, 'service_instances': 'com.vmware.nsx.serviceinsertion.services.service_instances_client.StubFactory', }
py
b41110f3824c27b45651015e1e402b05c9f1322d
from __future__ import annotations import abc from collections import defaultdict from functools import partial import inspect import re from typing import ( TYPE_CHECKING, Any, Callable, DefaultDict, Dict, Hashable, Iterable, Iterator, List, Sequence, cast, ) import warnings import numpy as np from pandas._config import option_context from pandas._libs import lib from pandas._typing import ( AggFuncType, AggFuncTypeBase, AggFuncTypeDict, AggObjType, Axis, NDFrameT, ) from pandas.util._decorators import cache_readonly from pandas.util._exceptions import find_stack_level from pandas.core.dtypes.cast import is_nested_object from pandas.core.dtypes.common import ( is_dict_like, is_extension_array_dtype, is_list_like, is_sequence, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCNDFrame, ABCSeries, ) from pandas.core.algorithms import safe_sort from pandas.core.base import ( DataError, SelectionMixin, SpecificationError, ) import pandas.core.common as com from pandas.core.construction import ( array as pd_array, create_series_with_explicit_dtype, ensure_wrapped_if_datetimelike, ) if TYPE_CHECKING: from pandas import ( DataFrame, Index, Series, ) from pandas.core.groupby import GroupBy from pandas.core.resample import Resampler from pandas.core.window.rolling import BaseWindow ResType = Dict[int, Any] def frame_apply( obj: DataFrame, func: AggFuncType, axis: Axis = 0, raw: bool = False, result_type: str | None = None, args=None, kwargs=None, ) -> FrameApply: """construct and return a row or column based frame apply object""" axis = obj._get_axis_number(axis) klass: type[FrameApply] if axis == 0: klass = FrameRowApply elif axis == 1: klass = FrameColumnApply return klass( obj, func, raw=raw, result_type=result_type, args=args, kwargs=kwargs, ) class Apply(metaclass=abc.ABCMeta): axis: int def __init__( self, obj: AggObjType, func, raw: bool, result_type: str | None, args, kwargs, ): self.obj = obj self.raw = raw self.args = args or () self.kwargs = kwargs or {} if result_type not in [None, "reduce", "broadcast", "expand"]: raise ValueError( "invalid value for result_type, must be one " "of {None, 'reduce', 'broadcast', 'expand'}" ) self.result_type = result_type # curry if needed if ( (kwargs or args) and not isinstance(func, (np.ufunc, str)) and not is_list_like(func) ): def f(x): return func(x, *args, **kwargs) else: f = func self.orig_f: AggFuncType = func self.f: AggFuncType = f @abc.abstractmethod def apply(self) -> DataFrame | Series: pass def agg(self) -> DataFrame | Series | None: """ Provide an implementation for the aggregators. Returns ------- Result of aggregation, or None if agg cannot be performed by this method. """ obj = self.obj arg = self.f args = self.args kwargs = self.kwargs if isinstance(arg, str): return self.apply_str() if is_dict_like(arg): return self.agg_dict_like() elif is_list_like(arg): # we require a list, but not a 'str' return self.agg_list_like() if callable(arg): f = com.get_cython_func(arg) if f and not args and not kwargs: return getattr(obj, f)() # caller can react return None def transform(self) -> DataFrame | Series: """ Transform a DataFrame or Series. Returns ------- DataFrame or Series Result of applying ``func`` along the given axis of the Series or DataFrame. Raises ------ ValueError If the transform function fails or does not transform. """ obj = self.obj func = self.orig_f axis = self.axis args = self.args kwargs = self.kwargs is_series = obj.ndim == 1 if obj._get_axis_number(axis) == 1: assert not is_series return obj.T.transform(func, 0, *args, **kwargs).T if is_list_like(func) and not is_dict_like(func): func = cast(List[AggFuncTypeBase], func) # Convert func equivalent dict if is_series: func = {com.get_callable_name(v) or v: v for v in func} else: func = {col: func for col in obj} if is_dict_like(func): func = cast(AggFuncTypeDict, func) return self.transform_dict_like(func) # func is either str or callable func = cast(AggFuncTypeBase, func) try: result = self.transform_str_or_callable(func) except TypeError: raise except Exception as err: raise ValueError("Transform function failed") from err # Functions that transform may return empty Series/DataFrame # when the dtype is not appropriate if ( isinstance(result, (ABCSeries, ABCDataFrame)) and result.empty and not obj.empty ): raise ValueError("Transform function failed") if not isinstance(result, (ABCSeries, ABCDataFrame)) or not result.index.equals( obj.index ): raise ValueError("Function did not transform") return result def transform_dict_like(self, func): """ Compute transform in the case of a dict-like func """ from pandas.core.reshape.concat import concat obj = self.obj args = self.args kwargs = self.kwargs # transform is currently only for Series/DataFrame assert isinstance(obj, ABCNDFrame) if len(func) == 0: raise ValueError("No transform functions were provided") func = self.normalize_dictlike_arg("transform", obj, func) results: dict[Hashable, DataFrame | Series] = {} failed_names = [] all_type_errors = True for name, how in func.items(): colg = obj._gotitem(name, ndim=1) try: results[name] = colg.transform(how, 0, *args, **kwargs) except Exception as err: if str(err) in { "Function did not transform", "No transform functions were provided", }: raise err else: if not isinstance(err, TypeError): all_type_errors = False failed_names.append(name) # combine results if not results: klass = TypeError if all_type_errors else ValueError raise klass("Transform function failed") if len(failed_names) > 0: warnings.warn( f"{failed_names} did not transform successfully. If any error is " f"raised, this will raise in a future version of pandas. " f"Drop these columns/ops to avoid this warning.", FutureWarning, stacklevel=find_stack_level(), ) return concat(results, axis=1) def transform_str_or_callable(self, func) -> DataFrame | Series: """ Compute transform in the case of a string or callable func """ obj = self.obj args = self.args kwargs = self.kwargs if isinstance(func, str): return self._try_aggregate_string_function(obj, func, *args, **kwargs) if not args and not kwargs: f = com.get_cython_func(func) if f: return getattr(obj, f)() # Two possible ways to use a UDF - apply or call directly try: return obj.apply(func, args=args, **kwargs) except Exception: return func(obj, *args, **kwargs) def agg_list_like(self) -> DataFrame | Series: """ Compute aggregation in the case of a list-like argument. Returns ------- Result of aggregation. """ from pandas.core.reshape.concat import concat obj = self.obj arg = cast(List[AggFuncTypeBase], self.f) if not isinstance(obj, SelectionMixin): # i.e. obj is Series or DataFrame selected_obj = obj elif obj._selected_obj.ndim == 1: # For SeriesGroupBy this matches _obj_with_exclusions selected_obj = obj._selected_obj else: selected_obj = obj._obj_with_exclusions results = [] keys = [] failed_names = [] depr_nuisance_columns_msg = ( "{} did not aggregate successfully. If any error is " "raised this will raise in a future version of pandas. " "Drop these columns/ops to avoid this warning." ) # degenerate case if selected_obj.ndim == 1: for a in arg: colg = obj._gotitem(selected_obj.name, ndim=1, subset=selected_obj) try: new_res = colg.aggregate(a) except TypeError: failed_names.append(com.get_callable_name(a) or a) else: results.append(new_res) # make sure we find a good name name = com.get_callable_name(a) or a keys.append(name) # multiples else: indices = [] for index, col in enumerate(selected_obj): colg = obj._gotitem(col, ndim=1, subset=selected_obj.iloc[:, index]) try: # Capture and suppress any warnings emitted by us in the call # to agg below, but pass through any warnings that were # generated otherwise. # This is necessary because of https://bugs.python.org/issue29672 # See GH #43741 for more details with warnings.catch_warnings(record=True) as record: new_res = colg.aggregate(arg) if len(record) > 0: match = re.compile(depr_nuisance_columns_msg.format(".*")) for warning in record: if re.match(match, str(warning.message)): failed_names.append(col) else: warnings.warn_explicit( message=warning.message, category=warning.category, filename=warning.filename, lineno=warning.lineno, ) except (TypeError, DataError): failed_names.append(col) except ValueError as err: # cannot aggregate if "Must produce aggregated value" in str(err): # raised directly in _aggregate_named failed_names.append(col) elif "no results" in str(err): # reached in test_frame_apply.test_nuiscance_columns # where the colg.aggregate(arg) ends up going through # the selected_obj.ndim == 1 branch above with arg == ["sum"] # on a datetime64[ns] column failed_names.append(col) else: raise else: results.append(new_res) indices.append(index) keys = selected_obj.columns.take(indices) # if we are empty if not len(results): raise ValueError("no results") if len(failed_names) > 0: warnings.warn( depr_nuisance_columns_msg.format(failed_names), FutureWarning, stacklevel=find_stack_level(), ) try: concatenated = concat(results, keys=keys, axis=1, sort=False) except TypeError as err: # we are concatting non-NDFrame objects, # e.g. a list of scalars from pandas import Series result = Series(results, index=keys, name=obj.name) if is_nested_object(result): raise ValueError( "cannot combine transform and aggregation operations" ) from err return result else: # Concat uses the first index to determine the final indexing order. # The union of a shorter first index with the other indices causes # the index sorting to be different from the order of the aggregating # functions. Reindex if this is the case. index_size = concatenated.index.size full_ordered_index = next( result.index for result in results if result.index.size == index_size ) return concatenated.reindex(full_ordered_index, copy=False) def agg_dict_like(self) -> DataFrame | Series: """ Compute aggregation in the case of a dict-like argument. Returns ------- Result of aggregation. """ from pandas import Index from pandas.core.reshape.concat import concat obj = self.obj arg = cast(AggFuncTypeDict, self.f) if not isinstance(obj, SelectionMixin): # i.e. obj is Series or DataFrame selected_obj = obj selection = None else: selected_obj = obj._selected_obj selection = obj._selection arg = self.normalize_dictlike_arg("agg", selected_obj, arg) if selected_obj.ndim == 1: # key only used for output colg = obj._gotitem(selection, ndim=1) results = {key: colg.agg(how) for key, how in arg.items()} else: # key used for column selection and output results = { key: obj._gotitem(key, ndim=1).agg(how) for key, how in arg.items() } # set the final keys keys = list(arg.keys()) # Avoid making two isinstance calls in all and any below is_ndframe = [isinstance(r, ABCNDFrame) for r in results.values()] # combine results if all(is_ndframe): keys_to_use: Iterable[Hashable] keys_to_use = [k for k in keys if not results[k].empty] # Have to check, if at least one DataFrame is not empty. keys_to_use = keys_to_use if keys_to_use != [] else keys if selected_obj.ndim == 2: # keys are columns, so we can preserve names ktu = Index(keys_to_use) ktu._set_names(selected_obj.columns.names) keys_to_use = ktu axis = 0 if isinstance(obj, ABCSeries) else 1 result = concat( {k: results[k] for k in keys_to_use}, axis=axis, keys=keys_to_use ) elif any(is_ndframe): # There is a mix of NDFrames and scalars raise ValueError( "cannot perform both aggregation " "and transformation operations " "simultaneously" ) else: from pandas import Series # we have a dict of scalars # GH 36212 use name only if obj is a series if obj.ndim == 1: obj = cast("Series", obj) name = obj.name else: name = None result = Series(results, name=name) return result def apply_str(self) -> DataFrame | Series: """ Compute apply in case of a string. Returns ------- result: Series or DataFrame """ # Caller is responsible for checking isinstance(self.f, str) f = cast(str, self.f) obj = self.obj # Support for `frame.transform('method')` # Some methods (shift, etc.) require the axis argument, others # don't, so inspect and insert if necessary. func = getattr(obj, f, None) if callable(func): sig = inspect.getfullargspec(func) if "axis" in sig.args: self.kwargs["axis"] = self.axis elif self.axis != 0: raise ValueError(f"Operation {f} does not support axis=1") return self._try_aggregate_string_function(obj, f, *self.args, **self.kwargs) def apply_multiple(self) -> DataFrame | Series: """ Compute apply in case of a list-like or dict-like. Returns ------- result: Series, DataFrame, or None Result when self.f is a list-like or dict-like, None otherwise. """ return self.obj.aggregate(self.f, self.axis, *self.args, **self.kwargs) def normalize_dictlike_arg( self, how: str, obj: DataFrame | Series, func: AggFuncTypeDict ) -> AggFuncTypeDict: """ Handler for dict-like argument. Ensures that necessary columns exist if obj is a DataFrame, and that a nested renamer is not passed. Also normalizes to all lists when values consists of a mix of list and non-lists. """ assert how in ("apply", "agg", "transform") # Can't use func.values(); wouldn't work for a Series if ( how == "agg" and isinstance(obj, ABCSeries) and any(is_list_like(v) for _, v in func.items()) ) or (any(is_dict_like(v) for _, v in func.items())): # GH 15931 - deprecation of renaming keys raise SpecificationError("nested renamer is not supported") if obj.ndim != 1: # Check for missing columns on a frame cols = set(func.keys()) - set(obj.columns) if len(cols) > 0: cols_sorted = list(safe_sort(list(cols))) raise KeyError(f"Column(s) {cols_sorted} do not exist") is_aggregator = lambda x: isinstance(x, (list, tuple, dict)) # if we have a dict of any non-scalars # eg. {'A' : ['mean']}, normalize all to # be list-likes # Cannot use func.values() because arg may be a Series if any(is_aggregator(x) for _, x in func.items()): new_func: AggFuncTypeDict = {} for k, v in func.items(): if not is_aggregator(v): # mypy can't realize v is not a list here new_func[k] = [v] # type:ignore[list-item] else: new_func[k] = v func = new_func return func def _try_aggregate_string_function(self, obj, arg: str, *args, **kwargs): """ if arg is a string, then try to operate on it: - try to find a function (or attribute) on ourselves - try to find a numpy function - raise """ assert isinstance(arg, str) f = getattr(obj, arg, None) if f is not None: if callable(f): return f(*args, **kwargs) # people may try to aggregate on a non-callable attribute # but don't let them think they can pass args to it assert len(args) == 0 assert len([kwarg for kwarg in kwargs if kwarg not in ["axis"]]) == 0 return f f = getattr(np, arg, None) if f is not None and hasattr(obj, "__array__"): # in particular exclude Window return f(obj, *args, **kwargs) raise AttributeError( f"'{arg}' is not a valid function for '{type(obj).__name__}' object" ) class NDFrameApply(Apply): """ Methods shared by FrameApply and SeriesApply but not GroupByApply or ResamplerWindowApply """ @property def index(self) -> Index: return self.obj.index @property def agg_axis(self) -> Index: return self.obj._get_agg_axis(self.axis) class FrameApply(NDFrameApply): obj: DataFrame # --------------------------------------------------------------- # Abstract Methods @property @abc.abstractmethod def result_index(self) -> Index: pass @property @abc.abstractmethod def result_columns(self) -> Index: pass @property @abc.abstractmethod def series_generator(self) -> Iterator[Series]: pass @abc.abstractmethod def wrap_results_for_axis( self, results: ResType, res_index: Index ) -> DataFrame | Series: pass # --------------------------------------------------------------- @property def res_columns(self) -> Index: return self.result_columns @property def columns(self) -> Index: return self.obj.columns @cache_readonly def values(self): return self.obj.values @cache_readonly def dtypes(self) -> Series: return self.obj.dtypes def apply(self) -> DataFrame | Series: """compute the results""" # dispatch to agg if is_list_like(self.f): return self.apply_multiple() # all empty if len(self.columns) == 0 and len(self.index) == 0: return self.apply_empty_result() # string dispatch if isinstance(self.f, str): return self.apply_str() # ufunc elif isinstance(self.f, np.ufunc): with np.errstate(all="ignore"): results = self.obj._mgr.apply("apply", func=self.f) # _constructor will retain self.index and self.columns return self.obj._constructor(data=results) # broadcasting if self.result_type == "broadcast": return self.apply_broadcast(self.obj) # one axis empty elif not all(self.obj.shape): return self.apply_empty_result() # raw elif self.raw: return self.apply_raw() return self.apply_standard() def agg(self): obj = self.obj axis = self.axis # TODO: Avoid having to change state self.obj = self.obj if self.axis == 0 else self.obj.T self.axis = 0 result = None try: result = super().agg() except TypeError as err: exc = TypeError( "DataFrame constructor called with " f"incompatible data and dtype: {err}" ) raise exc from err finally: self.obj = obj self.axis = axis if axis == 1: result = result.T if result is not None else result if result is None: result = self.obj.apply(self.orig_f, axis, args=self.args, **self.kwargs) return result def apply_empty_result(self): """ we have an empty result; at least 1 axis is 0 we will try to apply the function to an empty series in order to see if this is a reduction function """ assert callable(self.f) # we are not asked to reduce or infer reduction # so just return a copy of the existing object if self.result_type != "reduce": return self.obj.copy() else: if len(self.agg_axis): r = self.f(Series([], dtype=np.float64)) else: r = np.nan return self.obj._constructor_sliced(r, index=self.agg_axis) def apply_raw(self): """apply to the values as a numpy array""" def wrap_function(func): """ Wrap user supplied function to work around numpy issue. see https://github.com/numpy/numpy/issues/8352 """ def wrapper(*args, **kwargs): result = func(*args, **kwargs) if isinstance(result, str): result = np.array(result, dtype=object) return result return wrapper result = np.apply_along_axis(wrap_function(self.f), self.axis, self.values) # TODO: mixed type case if result.ndim == 2: return self.obj._constructor(result, index=self.index, columns=self.columns) else: return self.obj._constructor_sliced(result, index=self.agg_axis) def apply_broadcast(self, target: DataFrame) -> DataFrame: assert callable(self.f) result_values = np.empty_like(target.values) # axis which we want to compare compliance result_compare = target.shape[0] for i, col in enumerate(target.columns): res = self.f(target[col]) ares = np.asarray(res).ndim # must be a scalar or 1d if ares > 1: raise ValueError("too many dims to broadcast") elif ares == 1: # must match return dim if result_compare != len(res): raise ValueError("cannot broadcast result") result_values[:, i] = res # we *always* preserve the original index / columns result = self.obj._constructor( result_values, index=target.index, columns=target.columns ) return result def apply_standard(self): results, res_index = self.apply_series_generator() # wrap results return self.wrap_results(results, res_index) def apply_series_generator(self) -> tuple[ResType, Index]: assert callable(self.f) series_gen = self.series_generator res_index = self.result_index results = {} with option_context("mode.chained_assignment", None): for i, v in enumerate(series_gen): # ignore SettingWithCopy here in case the user mutates results[i] = self.f(v) if isinstance(results[i], ABCSeries): # If we have a view on v, we need to make a copy because # series_generator will swap out the underlying data results[i] = results[i].copy(deep=False) return results, res_index def wrap_results(self, results: ResType, res_index: Index) -> DataFrame | Series: from pandas import Series # see if we can infer the results if len(results) > 0 and 0 in results and is_sequence(results[0]): return self.wrap_results_for_axis(results, res_index) # dict of scalars # the default dtype of an empty Series will be `object`, but this # code can be hit by df.mean() where the result should have dtype # float64 even if it's an empty Series. constructor_sliced = self.obj._constructor_sliced if constructor_sliced is Series: result = create_series_with_explicit_dtype( results, dtype_if_empty=np.float64 ) else: result = constructor_sliced(results) result.index = res_index return result def apply_str(self) -> DataFrame | Series: # Caller is responsible for checking isinstance(self.f, str) # TODO: GH#39993 - Avoid special-casing by replacing with lambda if self.f == "size": # Special-cased because DataFrame.size returns a single scalar obj = self.obj value = obj.shape[self.axis] return obj._constructor_sliced(value, index=self.agg_axis) return super().apply_str() class FrameRowApply(FrameApply): axis = 0 def apply_broadcast(self, target: DataFrame) -> DataFrame: return super().apply_broadcast(target) @property def series_generator(self): return (self.obj._ixs(i, axis=1) for i in range(len(self.columns))) @property def result_index(self) -> Index: return self.columns @property def result_columns(self) -> Index: return self.index def wrap_results_for_axis( self, results: ResType, res_index: Index ) -> DataFrame | Series: """return the results for the rows""" if self.result_type == "reduce": # e.g. test_apply_dict GH#8735 res = self.obj._constructor_sliced(results) res.index = res_index return res elif self.result_type is None and all( isinstance(x, dict) for x in results.values() ): # Our operation was a to_dict op e.g. # test_apply_dict GH#8735, test_apply_reduce_to_dict GH#25196 #37544 res = self.obj._constructor_sliced(results) res.index = res_index return res try: result = self.obj._constructor(data=results) except ValueError as err: if "All arrays must be of the same length" in str(err): # e.g. result = [[2, 3], [1.5], ['foo', 'bar']] # see test_agg_listlike_result GH#29587 res = self.obj._constructor_sliced(results) res.index = res_index return res else: raise if not isinstance(results[0], ABCSeries): if len(result.index) == len(self.res_columns): result.index = self.res_columns if len(result.columns) == len(res_index): result.columns = res_index return result class FrameColumnApply(FrameApply): axis = 1 def apply_broadcast(self, target: DataFrame) -> DataFrame: result = super().apply_broadcast(target.T) return result.T @property def series_generator(self): values = self.values values = ensure_wrapped_if_datetimelike(values) assert len(values) > 0 # We create one Series object, and will swap out the data inside # of it. Kids: don't do this at home. ser = self.obj._ixs(0, axis=0) mgr = ser._mgr if is_extension_array_dtype(ser.dtype): # values will be incorrect for this block # TODO(EA2D): special case would be unnecessary with 2D EAs obj = self.obj for i in range(len(obj)): yield obj._ixs(i, axis=0) else: for (arr, name) in zip(values, self.index): # GH#35462 re-pin mgr in case setitem changed it ser._mgr = mgr mgr.set_values(arr) ser.name = name yield ser @property def result_index(self) -> Index: return self.index @property def result_columns(self) -> Index: return self.columns def wrap_results_for_axis( self, results: ResType, res_index: Index ) -> DataFrame | Series: """return the results for the columns""" result: DataFrame | Series # we have requested to expand if self.result_type == "expand": result = self.infer_to_same_shape(results, res_index) # we have a non-series and don't want inference elif not isinstance(results[0], ABCSeries): result = self.obj._constructor_sliced(results) result.index = res_index # we may want to infer results else: result = self.infer_to_same_shape(results, res_index) return result def infer_to_same_shape(self, results: ResType, res_index: Index) -> DataFrame: """infer the results to the same shape as the input object""" result = self.obj._constructor(data=results) result = result.T # set the index result.index = res_index # infer dtypes result = result.infer_objects() return result class SeriesApply(NDFrameApply): obj: Series axis = 0 def __init__( self, obj: Series, func: AggFuncType, convert_dtype: bool, args, kwargs, ): self.convert_dtype = convert_dtype super().__init__( obj, func, raw=False, result_type=None, args=args, kwargs=kwargs, ) def apply(self) -> DataFrame | Series: obj = self.obj if len(obj) == 0: return self.apply_empty_result() # dispatch to agg if is_list_like(self.f): return self.apply_multiple() if isinstance(self.f, str): # if we are a string, try to dispatch return self.apply_str() return self.apply_standard() def agg(self): result = super().agg() if result is None: f = self.f kwargs = self.kwargs # string, list-like, and dict-like are entirely handled in super assert callable(f) # we can be called from an inner function which # passes this meta-data kwargs.pop("_level", None) # try a regular apply, this evaluates lambdas # row-by-row; however if the lambda is expected a Series # expression, e.g.: lambda x: x-x.quantile(0.25) # this will fail, so we can try a vectorized evaluation # we cannot FIRST try the vectorized evaluation, because # then .agg and .apply would have different semantics if the # operation is actually defined on the Series, e.g. str try: result = self.obj.apply(f) except (ValueError, AttributeError, TypeError): result = f(self.obj) return result def apply_empty_result(self) -> Series: obj = self.obj return obj._constructor(dtype=obj.dtype, index=obj.index).__finalize__( obj, method="apply" ) def apply_standard(self) -> DataFrame | Series: f = self.f obj = self.obj with np.errstate(all="ignore"): if isinstance(f, np.ufunc): return f(obj) # row-wise access if is_extension_array_dtype(obj.dtype) and hasattr(obj._values, "map"): # GH#23179 some EAs do not have `map` mapped = obj._values.map(f) else: values = obj.astype(object)._values # error: Argument 2 to "map_infer" has incompatible type # "Union[Callable[..., Any], str, List[Union[Callable[..., Any], str]], # Dict[Hashable, Union[Union[Callable[..., Any], str], # List[Union[Callable[..., Any], str]]]]]"; expected # "Callable[[Any], Any]" mapped = lib.map_infer( values, f, # type: ignore[arg-type] convert=self.convert_dtype, ) if len(mapped) and isinstance(mapped[0], ABCSeries): # GH 25959 use pd.array instead of tolist # so extension arrays can be used return obj._constructor_expanddim(pd_array(mapped), index=obj.index) else: return obj._constructor(mapped, index=obj.index).__finalize__( obj, method="apply" ) class GroupByApply(Apply): def __init__( self, obj: GroupBy[NDFrameT], func: AggFuncType, args, kwargs, ): kwargs = kwargs.copy() self.axis = obj.obj._get_axis_number(kwargs.get("axis", 0)) super().__init__( obj, func, raw=False, result_type=None, args=args, kwargs=kwargs, ) def apply(self): raise NotImplementedError def transform(self): raise NotImplementedError class ResamplerWindowApply(Apply): axis = 0 obj: Resampler | BaseWindow def __init__( self, obj: Resampler | BaseWindow, func: AggFuncType, args, kwargs, ): super().__init__( obj, func, raw=False, result_type=None, args=args, kwargs=kwargs, ) def apply(self): raise NotImplementedError def transform(self): raise NotImplementedError def reconstruct_func( func: AggFuncType | None, **kwargs ) -> tuple[bool, AggFuncType | None, list[str] | None, list[int] | None]: """ This is the internal function to reconstruct func given if there is relabeling or not and also normalize the keyword to get new order of columns. If named aggregation is applied, `func` will be None, and kwargs contains the column and aggregation function information to be parsed; If named aggregation is not applied, `func` is either string (e.g. 'min') or Callable, or list of them (e.g. ['min', np.max]), or the dictionary of column name and str/Callable/list of them (e.g. {'A': 'min'}, or {'A': [np.min, lambda x: x]}) If relabeling is True, will return relabeling, reconstructed func, column names, and the reconstructed order of columns. If relabeling is False, the columns and order will be None. Parameters ---------- func: agg function (e.g. 'min' or Callable) or list of agg functions (e.g. ['min', np.max]) or dictionary (e.g. {'A': ['min', np.max]}). **kwargs: dict, kwargs used in is_multi_agg_with_relabel and normalize_keyword_aggregation function for relabelling Returns ------- relabelling: bool, if there is relabelling or not func: normalized and mangled func columns: list of column names order: list of columns indices Examples -------- >>> reconstruct_func(None, **{"foo": ("col", "min")}) (True, defaultdict(<class 'list'>, {'col': ['min']}), ('foo',), array([0])) >>> reconstruct_func("min") (False, 'min', None, None) """ relabeling = func is None and is_multi_agg_with_relabel(**kwargs) columns: list[str] | None = None order: list[int] | None = None if not relabeling: if isinstance(func, list) and len(func) > len(set(func)): # GH 28426 will raise error if duplicated function names are used and # there is no reassigned name raise SpecificationError( "Function names must be unique if there is no new column names " "assigned" ) elif func is None: # nicer error message raise TypeError("Must provide 'func' or tuples of '(column, aggfunc).") if relabeling: func, columns, order = normalize_keyword_aggregation(kwargs) return relabeling, func, columns, order def is_multi_agg_with_relabel(**kwargs) -> bool: """ Check whether kwargs passed to .agg look like multi-agg with relabeling. Parameters ---------- **kwargs : dict Returns ------- bool Examples -------- >>> is_multi_agg_with_relabel(a="max") False >>> is_multi_agg_with_relabel(a_max=("a", "max"), a_min=("a", "min")) True >>> is_multi_agg_with_relabel() False """ return all(isinstance(v, tuple) and len(v) == 2 for v in kwargs.values()) and ( len(kwargs) > 0 ) def normalize_keyword_aggregation(kwargs: dict) -> tuple[dict, list[str], list[int]]: """ Normalize user-provided "named aggregation" kwargs. Transforms from the new ``Mapping[str, NamedAgg]`` style kwargs to the old Dict[str, List[scalar]]]. Parameters ---------- kwargs : dict Returns ------- aggspec : dict The transformed kwargs. columns : List[str] The user-provided keys. col_idx_order : List[int] List of columns indices. Examples -------- >>> normalize_keyword_aggregation({"output": ("input", "sum")}) (defaultdict(<class 'list'>, {'input': ['sum']}), ('output',), array([0])) """ from pandas.core.indexes.base import Index # Normalize the aggregation functions as Mapping[column, List[func]], # process normally, then fixup the names. # TODO: aggspec type: typing.Dict[str, List[AggScalar]] # May be hitting https://github.com/python/mypy/issues/5958 # saying it doesn't have an attribute __name__ aggspec: DefaultDict = defaultdict(list) order = [] columns, pairs = list(zip(*kwargs.items())) for column, aggfunc in pairs: aggspec[column].append(aggfunc) order.append((column, com.get_callable_name(aggfunc) or aggfunc)) # uniquify aggfunc name if duplicated in order list uniquified_order = _make_unique_kwarg_list(order) # GH 25719, due to aggspec will change the order of assigned columns in aggregation # uniquified_aggspec will store uniquified order list and will compare it with order # based on index aggspec_order = [ (column, com.get_callable_name(aggfunc) or aggfunc) for column, aggfuncs in aggspec.items() for aggfunc in aggfuncs ] uniquified_aggspec = _make_unique_kwarg_list(aggspec_order) # get the new index of columns by comparison col_idx_order = Index(uniquified_aggspec).get_indexer(uniquified_order) # error: Incompatible return value type (got "Tuple[defaultdict[Any, Any], # Any, ndarray]", expected "Tuple[Dict[Any, Any], List[str], List[int]]") return aggspec, columns, col_idx_order # type: ignore[return-value] def _make_unique_kwarg_list( seq: Sequence[tuple[Any, Any]] ) -> Sequence[tuple[Any, Any]]: """ Uniquify aggfunc name of the pairs in the order list Examples: -------- >>> kwarg_list = [('a', '<lambda>'), ('a', '<lambda>'), ('b', '<lambda>')] >>> _make_unique_kwarg_list(kwarg_list) [('a', '<lambda>_0'), ('a', '<lambda>_1'), ('b', '<lambda>')] """ return [ (pair[0], "_".join([pair[1], str(seq[:i].count(pair))])) if seq.count(pair) > 1 else pair for i, pair in enumerate(seq) ] def relabel_result( result: DataFrame | Series, func: dict[str, list[Callable | str]], columns: Iterable[Hashable], order: Iterable[int], ) -> dict[Hashable, Series]: """ Internal function to reorder result if relabelling is True for dataframe.agg, and return the reordered result in dict. Parameters: ---------- result: Result from aggregation func: Dict of (column name, funcs) columns: New columns name for relabelling order: New order for relabelling Examples: --------- >>> result = DataFrame({"A": [np.nan, 2, np.nan], ... "C": [6, np.nan, np.nan], "B": [np.nan, 4, 2.5]}) # doctest: +SKIP >>> funcs = {"A": ["max"], "C": ["max"], "B": ["mean", "min"]} >>> columns = ("foo", "aab", "bar", "dat") >>> order = [0, 1, 2, 3] >>> _relabel_result(result, func, columns, order) # doctest: +SKIP dict(A=Series([2.0, NaN, NaN, NaN], index=["foo", "aab", "bar", "dat"]), C=Series([NaN, 6.0, NaN, NaN], index=["foo", "aab", "bar", "dat"]), B=Series([NaN, NaN, 2.5, 4.0], index=["foo", "aab", "bar", "dat"])) """ from pandas.core.indexes.base import Index reordered_indexes = [ pair[0] for pair in sorted(zip(columns, order), key=lambda t: t[1]) ] reordered_result_in_dict: dict[Hashable, Series] = {} idx = 0 reorder_mask = not isinstance(result, ABCSeries) and len(result.columns) > 1 for col, fun in func.items(): s = result[col].dropna() # In the `_aggregate`, the callable names are obtained and used in `result`, and # these names are ordered alphabetically. e.g. # C2 C1 # <lambda> 1 NaN # amax NaN 4.0 # max NaN 4.0 # sum 18.0 6.0 # Therefore, the order of functions for each column could be shuffled # accordingly so need to get the callable name if it is not parsed names, and # reorder the aggregated result for each column. # e.g. if df.agg(c1=("C2", sum), c2=("C2", lambda x: min(x))), correct order is # [sum, <lambda>], but in `result`, it will be [<lambda>, sum], and we need to # reorder so that aggregated values map to their functions regarding the order. # However there is only one column being used for aggregation, not need to # reorder since the index is not sorted, and keep as is in `funcs`, e.g. # A # min 1.0 # mean 1.5 # mean 1.5 if reorder_mask: fun = [ com.get_callable_name(f) if not isinstance(f, str) else f for f in fun ] col_idx_order = Index(s.index).get_indexer(fun) s = s[col_idx_order] # assign the new user-provided "named aggregation" as index names, and reindex # it based on the whole user-provided names. s.index = reordered_indexes[idx : idx + len(fun)] reordered_result_in_dict[col] = s.reindex(columns, copy=False) idx = idx + len(fun) return reordered_result_in_dict # TODO: Can't use, because mypy doesn't like us setting __name__ # error: "partial[Any]" has no attribute "__name__" # the type is: # typing.Sequence[Callable[..., ScalarResult]] # -> typing.Sequence[Callable[..., ScalarResult]]: def _managle_lambda_list(aggfuncs: Sequence[Any]) -> Sequence[Any]: """ Possibly mangle a list of aggfuncs. Parameters ---------- aggfuncs : Sequence Returns ------- mangled: list-like A new AggSpec sequence, where lambdas have been converted to have unique names. Notes ----- If just one aggfunc is passed, the name will not be mangled. """ if len(aggfuncs) <= 1: # don't mangle for .agg([lambda x: .]) return aggfuncs i = 0 mangled_aggfuncs = [] for aggfunc in aggfuncs: if com.get_callable_name(aggfunc) == "<lambda>": aggfunc = partial(aggfunc) aggfunc.__name__ = f"<lambda_{i}>" i += 1 mangled_aggfuncs.append(aggfunc) return mangled_aggfuncs def maybe_mangle_lambdas(agg_spec: Any) -> Any: """ Make new lambdas with unique names. Parameters ---------- agg_spec : Any An argument to GroupBy.agg. Non-dict-like `agg_spec` are pass through as is. For dict-like `agg_spec` a new spec is returned with name-mangled lambdas. Returns ------- mangled : Any Same type as the input. Examples -------- >>> maybe_mangle_lambdas('sum') 'sum' >>> maybe_mangle_lambdas([lambda: 1, lambda: 2]) # doctest: +SKIP [<function __main__.<lambda_0>, <function pandas...._make_lambda.<locals>.f(*args, **kwargs)>] """ is_dict = is_dict_like(agg_spec) if not (is_dict or is_list_like(agg_spec)): return agg_spec mangled_aggspec = type(agg_spec)() # dict or OrderedDict if is_dict: for key, aggfuncs in agg_spec.items(): if is_list_like(aggfuncs) and not is_dict_like(aggfuncs): mangled_aggfuncs = _managle_lambda_list(aggfuncs) else: mangled_aggfuncs = aggfuncs mangled_aggspec[key] = mangled_aggfuncs else: mangled_aggspec = _managle_lambda_list(agg_spec) return mangled_aggspec def validate_func_kwargs( kwargs: dict, ) -> tuple[list[str], list[str | Callable[..., Any]]]: """ Validates types of user-provided "named aggregation" kwargs. `TypeError` is raised if aggfunc is not `str` or callable. Parameters ---------- kwargs : dict Returns ------- columns : List[str] List of user-provied keys. func : List[Union[str, callable[...,Any]]] List of user-provided aggfuncs Examples -------- >>> validate_func_kwargs({'one': 'min', 'two': 'max'}) (['one', 'two'], ['min', 'max']) """ tuple_given_message = "func is expected but received {} in **kwargs." columns = list(kwargs) func = [] for col_func in kwargs.values(): if not (isinstance(col_func, str) or callable(col_func)): raise TypeError(tuple_given_message.format(type(col_func).__name__)) func.append(col_func) if not columns: no_arg_message = "Must provide 'func' or named aggregation **kwargs." raise TypeError(no_arg_message) return columns, func
py
b411113c03c91effd3f04585278348e4775bb415
""" Populates the db with some data Used for dev purposes """ # [START imports] from database import db_session, User, Category, Book # [END imports] # Add User user1 = User(name="Mr. Clement DuBuque", email="[email protected]") db_session.add(user1) db_session.commit() user2 = User(name="Tressie Bernier", email="[email protected]") db_session.add(user2) db_session.commit() # Add categories no users = dev 1 # category1 = Category(name="Autobiography") # db_session.add(category1) # db_session.commit() # category2 = Category(name="Web Development") # db_session.add(category2) # db_session.commit() # category3 = Category(name="Science Fiction") # db_session.add(category3) # db_session.commit() # Add categories with users = dev 2 category1 = Category(name="Autobiography", user=user1) db_session.add(category1) db_session.commit() category2 = Category(name="Web Development", user=user1) db_session.add(category2) db_session.commit() category3 = Category(name="Science Fiction", user=user2) db_session.add(category3) db_session.commit() category4 = Category(name="Sport", user=user2) db_session.add(category4) db_session.commit() category5 = Category(name="Thrillers", user=user1) db_session.add(category5) db_session.commit() category6 = Category(name="Nature", user=user2) db_session.add(category6) db_session.commit() category7 = Category(name="Business", user=user1) db_session.add(category7) db_session.commit() # Add Autobiography books; remove user if dev 1 bookItem1 = Book(name="Steve Jobs: A Biography", description="Driven by demons, Jobs could drive those around " "him to fury and despair. But his personality and products " "were interrelated, just as Apples hardware and software " "tended to be, as if part of an integrated system. His tale " "is instructive and cautionary, filled with lessons about " "innovation, character, leadership, and values.", author="Walter Isaacson", price="9.99", category=category1, user=user1) db_session.add(bookItem1) db_session.commit() # Add web dev books; remove user if dev 1 bookItem2 = Book(name="Automate the Boring Stuff", description="Practical programming for total beginners. In " "Automate the Boring Stuff with Python, you'll learn how to " "use Python to write programs that do in minutes what would " "take you hours to do by hand-no prior programming " "experience required.", author="Al Sweigart", price="14.99", category=category2, user=user1) db_session.add(bookItem2) db_session.commit() bookItem3 = Book(name="Javascript and jQuery", description="Welcome to a nicer way to learn Javascript " "& jQuery", author="John Duckett", price="19.99", category=category2, user=user1) db_session.add(bookItem3) db_session.commit() bookItem4 = Book(name="Learn Python the Hard Way", description="Zed Shaw has perfected the world's best " "system for learning Python. Follow it and you will " "succeed-just like the hundreds of thousands of beginners " "Zed has taught to date! You bring the discipline, " "commitment, and persistence; the author supplies " "everything else. ", author="Zed Shaw", price="18.99", category=category2, user=user1) db_session.add(bookItem4) db_session.commit() bookItem5 = Book(name="Python for Data Analysis", description="Python for Data Analysis is concerned with " "the nuts and bolts of manipulating, processing, cleaning, " "and crunching data in Python. It is also a practical, " "modern introduction to scientific computing in Python, " "tailored for data-intensive applications.", author="Wes McKinney", price="9.99", category=category2, user=user1) db_session.add(bookItem5) db_session.commit() bookItem6 = Book(name="Hacking: Beginner to Expert Guide", description="This book will teach you how you can protect " "yourself from most common hacking attacks -- by knowing " "how hacking actually works!", author="James Patterson", price="1.99", category=category2, user=user2) db_session.add(bookItem6) db_session.commit() bookItem7 = Book(name="Make Your Own Neural Network", description="A step-by-step gentle journey through the " "mathematics of neural networks, and making your own " "using the Python computer language.", author="Tariq Rashid", price="24.99", category=category2, user=user1) db_session.add(bookItem7) db_session.commit() # Add sci fi books; remove user if dev 1 bookItem8 = Book(name="Wool", description="Thousands of them have lived underground." "They've lived there so long, there are only legends about " "people living anywhere else. Such a life requires rules. " "Strict rules. There are things that must not be discussed. " "Like going outside. Never mention you might like going " "outside.", author="Hugh Howey", price="3.99", category=category3, user=user2) db_session.add(bookItem8) db_session.commit() # Add thriller books; remove user if dev 1 bookItem9 = Book(name="Night School: A Jack Reacher Novel", description="It is 1996, and Reacher is still in the army.", author="Lee Child", price="7.99", category=category5, user=user1) db_session.add(bookItem9) db_session.commit() bookItem10 = Book(name="The Girl on the Train", description="Rachel catches the same commuter train every " "morning. She knows it will wait at the same signal each " "time, overlooking a row of back gardens. She is even " "started to feel like she knows the people who live in " "one of the houses. Jess and Jason, she calls them. " "Their life, as she sees it, is perfect. " "If only Rachel could be that happy.", author="Paula Hawkins", price="4.99", category=category5, user=user1) db_session.add(bookItem10) db_session.commit()
py
b411119ba576ae7cddd067a083256986df127a5b
# # (c) 2016 Ruben Schmidmeister # from urllib import request def fetch(url): content = '' response = request.urlopen(url) while True: chunk = response.read().decode('utf8') if not chunk: break content = content + chunk return content
py
b41112016dc9fa35d3e6c4a811871cd7f6293a15
# ------------------------------------------------------------------------------ # Copyright (c) Microsoft # Licensed under the MIT License. # Written by Ke Sun ([email protected]) # ------------------------------------------------------------------------------ import logging import os import time import numpy as np import numpy.ma as ma from tqdm import tqdm import torch import torch.nn as nn from torch.nn import functional as F from .utils.utils import AverageMeter from .utils.utils import get_confusion_matrix from .utils.utils import adjust_learning_rate def train(config, epoch, num_epoch, epoch_iters, base_lr, num_iters, trainloader, optimizer, model, writer_dict): # Training model.train() batch_time = AverageMeter() ave_loss = AverageMeter() tic = time.time() cur_iters = epoch*epoch_iters writer = writer_dict['writer'] global_steps = writer_dict['train_global_steps'] for i_iter, batch in enumerate(trainloader, 0): images, labels, _, _ = batch images = images.cuda() labels = labels.long().cuda() losses, _ = model(images, labels) loss = losses.mean() model.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - tic) tic = time.time() # update average loss ave_loss.update(loss.item()) lr = adjust_learning_rate(optimizer, base_lr, num_iters, i_iter+cur_iters) if i_iter % config.PRINT_FREQ == 0: msg = 'Epoch: [{}/{}] Iter:[{}/{}], Time: {:.2f}, ' \ 'lr: {:.6f}, Loss: {:.6f}' .format( epoch, num_epoch, i_iter, epoch_iters, batch_time.average(), lr, ave_loss.average()) logging.info(msg) writer.add_scalar('train_loss', ave_loss.average(), global_steps) writer_dict['train_global_steps'] = global_steps + 1 def validate(config, testloader, model, writer_dict): model.eval() ave_loss = AverageMeter() confusion_matrix = np.zeros( (config.DATASET.NUM_CLASSES, config.DATASET.NUM_CLASSES)) with torch.no_grad(): for _, batch in enumerate(testloader): image, label, _, _ = batch size = label.size() label = label.long().cuda() losses, pred = model(image, label) pred = F.upsample(input=pred, size=( size[-2], size[-1]), mode='bilinear') loss = losses.mean() ave_loss.update(loss.item()) confusion_matrix += get_confusion_matrix( label, pred, size, config.DATASET.NUM_CLASSES, config.TRAIN.IGNORE_LABEL) pos = confusion_matrix.sum(1) res = confusion_matrix.sum(0) tp = np.diag(confusion_matrix) IoU_array = (tp / np.maximum(1.0, pos + res - tp)) mean_IoU = IoU_array.mean() writer = writer_dict['writer'] global_steps = writer_dict['valid_global_steps'] writer.add_scalar('valid_loss', ave_loss.average(), global_steps) writer.add_scalar('valid_mIoU', mean_IoU, global_steps) writer_dict['valid_global_steps'] = global_steps + 1 return ave_loss.average(), mean_IoU, IoU_array def testval(config, test_dataset, testloader, model, sv_dir='', sv_pred=False): model.eval() confusion_matrix = np.zeros( (config.DATASET.NUM_CLASSES, config.DATASET.NUM_CLASSES)) with torch.no_grad(): for index, batch in enumerate(tqdm(testloader)): image, label, _, name = batch size = label.size() pred = test_dataset.multi_scale_inference( model, image, scales=config.TEST.SCALE_LIST, flip=config.TEST.FLIP_TEST) if pred.size()[-2] != size[-2] or pred.size()[-1] != size[-1]: pred = F.upsample(pred, (size[-2], size[-1]), mode='bilinear') confusion_matrix += get_confusion_matrix( label, pred, size, config.DATASET.NUM_CLASSES, config.TRAIN.IGNORE_LABEL) if sv_pred: sv_path = os.path.join(sv_dir,'test_results') if not os.path.exists(sv_path): os.mkdir(sv_path) test_dataset.save_pred(pred, sv_path, name) if index % 100 == 0: logging.info('processing: %d images' % index) pos = confusion_matrix.sum(1) res = confusion_matrix.sum(0) tp = np.diag(confusion_matrix) IoU_array = (tp / np.maximum(1.0, pos + res - tp)) mean_IoU = IoU_array.mean() logging.info('mIoU: %.4f' % (mean_IoU)) pos = confusion_matrix.sum(1) res = confusion_matrix.sum(0) tp = np.diag(confusion_matrix) pixel_acc = tp.sum()/pos.sum() mean_acc = (tp/np.maximum(1.0, pos)).mean() IoU_array = (tp / np.maximum(1.0, pos + res - tp)) mean_IoU = IoU_array.mean() return mean_IoU, IoU_array, pixel_acc, mean_acc def test(config, test_dataset, testloader, model, sv_dir='', sv_pred=True): model.eval() with torch.no_grad(): for _, batch in enumerate(tqdm(testloader)): image, size, name = batch size = size[0] pred = test_dataset.multi_scale_inference( model, image, scales=config.TEST.SCALE_LIST, flip=config.TEST.FLIP_TEST) if pred.size()[-2] != size[0] or pred.size()[-1] != size[1]: pred = F.upsample(pred, (size[-2], size[-1]), mode='bilinear') if sv_pred: sv_path = os.path.join(sv_dir,'test_results') if not os.path.exists(sv_path): os.mkdir(sv_path) test_dataset.save_pred(pred, sv_path, name)
py
b4111389dcd3e081f294f14b5c31e2581a1dc4e5
"""Handle the base.""" import asyncio import time import traceback import uuid from datetime import datetime, timedelta from typing import Any, Union import pytz import redis import tornado.httpclient import tornado.httputil import tornado.web import ujson as json from tornado import httputil from consoleme.config import config from consoleme.exceptions.exceptions import ( InvalidCertificateException, MissingCertificateException, MissingConfigurationValue, NoGroupsException, NoUserException, SilentException, WebAuthNError, ) from consoleme.lib.alb_auth import authenticate_user_by_alb_auth from consoleme.lib.auth import AuthenticationError from consoleme.lib.jwt import generate_jwt_token, validate_and_return_jwt_token from consoleme.lib.oidc import authenticate_user_by_oidc from consoleme.lib.plugins import get_plugin_by_name from consoleme.lib.redis import RedisHandler from consoleme.lib.saml import authenticate_user_by_saml from consoleme.lib.tracing import ConsoleMeTracer log = config.get_logger() stats = get_plugin_by_name(config.get("plugins.metrics", "default_metrics"))() auth = get_plugin_by_name(config.get("plugins.auth", "default_auth"))() group_mapping = get_plugin_by_name( config.get("plugins.group_mapping", "default_group_mapping") )() class TornadoRequestHandler(tornado.web.RequestHandler): def get_request_ip(self): trusted_remote_ip_header = config.get("auth.remote_ip.trusted_remote_ip_header") if trusted_remote_ip_header: return self.request.headers[trusted_remote_ip_header].split(",")[0] return self.request.remote_ip class BaseJSONHandler(TornadoRequestHandler): # These methods are returned in OPTIONS requests. # Default methods can be overridden by setting this variable in child classes. allowed_methods = ["GET", "HEAD", "PUT", "PATCH", "POST", "DELETE"] def __init__(self, *args, **kwargs): self.jwt_validator = kwargs.pop("jwt_validator", None) self.auth_required = kwargs.pop("auth_required", True) if self.jwt_validator is None: raise TypeError("Missing required keyword arg jwt_validator") super().__init__(*args, **kwargs) def check_xsrf_cookie(self): # CSRF token is not needed since this is protected by raw OIDC tokens pass def options(self, *args): self.set_header( "Access-Control-Allow-Headers", self.request.headers["Access-Control-Request-Headers"], ) self.set_header("Content-Length", "0") self.set_status(204) self.finish() async def prepare(self): stats.timer("base_handler.incoming_request") if self.request.method.lower() == "options": return self.request_uuid = str(uuid.uuid4()) payload = self.get_current_user() self.auth_context = payload self.user = payload["email"] def set_default_headers(self, *args, **kwargs): self.set_header("Access-Control-Allow-Origin", "*") self.set_header("Access-Control-Allow-Methods", ",".join(self.allowed_methods)) self.set_header("Access-Control-Allow-Credentials", "true") self.set_header("Content-Type", "application/json") def write_error(self, status_code, **kwargs): self.set_header("Content-Type", "application/problem+json") title = httputil.responses.get(status_code, "Unknown") message = kwargs.get("message", self._reason) # self.set_status() modifies self._reason, so this call should come after we grab the reason self.set_status(status_code) self.finish( json.dumps( {"status": status_code, "title": title, "message": message} ) # noqa ) def get_current_user(self): try: if config.get("development") and config.get("json_authentication_override"): return config.get("json_authentication_override") tkn_header = self.request.headers["authorization"] except KeyError: raise WebAuthNError(reason="Missing Authorization Header") else: tkn_str = tkn_header.split(" ")[-1] try: tkn = self.jwt_validator(tkn_str) except AuthenticationError as e: raise WebAuthNError(reason=e.message) else: return tkn class BaseHandler(TornadoRequestHandler): """Default BaseHandler.""" def log_exception(self, *args, **kwargs): if args[0].__name__ == "SilentException": pass else: super(BaseHandler, self).log_exception(*args, **kwargs) def write_error(self, status_code: int, **kwargs: Any) -> None: if self.settings.get("serve_traceback") and "exc_info" in kwargs: # in debug mode, try to send a traceback self.set_header("Content-Type", "text/plain") for line in traceback.format_exception(*kwargs["exc_info"]): self.write(line) self.finish() else: self.finish( "<html><title>%(code)d: %(message)s</title>" "<body>%(code)d: %(message)s</body></html>" % { "code": status_code, "message": f"{self._reason} - {config.get('errors.custom_website_error_message', '')}", } ) def data_received(self, chunk): """Receives the data.""" pass def initialize(self, **kwargs) -> None: self.kwargs = kwargs self.tracer = None self.responses = [] super(BaseHandler, self).initialize() async def prepare(self) -> None: self.tracer = None await self.configure_tracing() if config.get("tornado.xsrf", True): cookie_kwargs = config.get("tornado.xsrf_cookie_kwargs", {}) self.set_cookie( config.get("xsrf_cookie_name", "_xsrf"), self.xsrf_token, **cookie_kwargs, ) self.request_uuid = str(uuid.uuid4()) stats.timer("base_handler.incoming_request") return await self.authorization_flow() def write(self, chunk: Union[str, bytes, dict]) -> None: if config.get("_security_risk_full_debugging.enabled"): if not hasattr(self, "responses"): self.responses = [] self.responses.append(chunk) super(BaseHandler, self).write(chunk) async def configure_tracing(self): self.tracer = ConsoleMeTracer() primary_span_name = "{0} {1}".format( self.request.method.upper(), self.request.path ) tracer_tags = { "http.host": config.hostname, "http.method": self.request.method.upper(), "http.path": self.request.path, "ca": self.get_request_ip(), # Client IP "http.url": self.request.full_url(), } tracer = await self.tracer.configure_tracing( primary_span_name, tags=tracer_tags ) if tracer: for k, v in tracer.headers.items(): self.set_header(k, v) def on_finish(self) -> None: if hasattr(self, "tracer") and self.tracer: asyncio.ensure_future( self.tracer.set_additional_tags({"http.status_code": self.get_status()}) ) asyncio.ensure_future(self.tracer.finish_spans()) asyncio.ensure_future(self.tracer.disable_tracing()) if config.get("_security_risk_full_debugging.enabled"): responses = None if hasattr(self, "responses"): responses = self.responses request_details = { "path": self.request.path, "method": self.request.method, "body": self.request.body, "arguments": self.request.arguments, "body_arguments": self.request.body_arguments, "headers": dict(self.request.headers.items()), "query": self.request.query, "query_arguments": self.request.query_arguments, "uri": self.request.uri, "cookies": dict(self.request.cookies.items()), "response": responses, } with open(config.get("_security_risk_full_debugging.file"), "a+") as f: f.write(json.dumps(request_details, reject_bytes=False)) super(BaseHandler, self).on_finish() async def attempt_sso_authn(self) -> bool: """ ConsoleMe's configuration allows authenticating users by user/password, SSO, or both. This function helps determine how ConsoleMe should authenticate a user. If user/password login is allowed, users will be redirected to ConsoleMe's login page (/login). If SSO is also allowed, the Login page will present a button allowing the user to sign in with SSO. If user/password login is enabled, we don't want to give users the extra step of having to visit the login page, so we just authenticate them through SSO directly. allow authenticating users by a combination of user/password and SSO. In this case, we need to tell Returns: boolean """ if not config.get("auth.get_user_by_password", False): return True # force_use_sso indicates the user's intent to authenticate via SSO force_use_sso = self.request.arguments.get("use_sso", [False])[0] if force_use_sso: return True # It's a redirect from an SSO provider. Let it hit the SSO functionality if ( "code" in self.request.query_arguments and "state" in self.request.query_arguments ): return True if self.request.path == "/saml/acs": return True return False async def authorization_flow( self, user: str = None, console_only: bool = True, refresh_cache: bool = False ) -> None: """Perform high level authorization flow.""" self.eligible_roles = [] self.eligible_accounts = [] self.request_uuid = str(uuid.uuid4()) refresh_cache = ( self.request.arguments.get("refresh_cache", [False])[0] or refresh_cache ) attempt_sso_authn = await self.attempt_sso_authn() refreshed_user_roles_from_cache = False if not refresh_cache and config.get( "dynamic_config.role_cache.always_refresh_roles_cache", False ): refresh_cache = True self.red = await RedisHandler().redis() self.ip = self.get_request_ip() self.user = user self.groups = None self.user_role_name = None self.auth_cookie_expiration = 0 log_data = { "function": "Basehandler.authorization_flow", "ip": self.ip, "request_path": self.request.uri, "user-agent": self.request.headers.get("User-Agent"), "request_id": self.request_uuid, "message": "Incoming request", } log.debug(log_data) # Check to see if user has a valid auth cookie if config.get("auth_cookie_name", "consoleme_auth"): auth_cookie = self.get_cookie( config.get("auth_cookie_name", "consoleme_auth") ) # Validate auth cookie and use it to retrieve group information if auth_cookie: res = await validate_and_return_jwt_token(auth_cookie) if res and isinstance(res, dict): self.user = res.get("user") self.groups = res.get("groups") self.auth_cookie_expiration = res.get("exp") if not self.user: # Check for development mode and a configuration override that specify the user and their groups. if config.get("development") and config.get("_development_user_override"): self.user = config.get("_development_user_override") if config.get("development") and config.get("_development_groups_override"): self.groups = config.get("_development_groups_override") if not self.user: # SAML flow. If user has a JWT signed by ConsoleMe, and SAML is enabled in configuration, user will go # through this flow. if config.get("auth.get_user_by_saml", False) and attempt_sso_authn: res = await authenticate_user_by_saml(self) if not res: if ( self.request.uri != "/saml/acs" and not self.request.uri.startswith("/auth?") ): raise SilentException( "Unable to authenticate the user by SAML. " "Redirecting to authentication endpoint" ) return if not self.user: if config.get("auth.get_user_by_oidc", False) and attempt_sso_authn: res = await authenticate_user_by_oidc(self) if not res: raise SilentException( "Unable to authenticate the user by OIDC. " "Redirecting to authentication endpoint" ) if res and isinstance(res, dict): self.user = res.get("user") self.groups = res.get("groups") if not self.user: if config.get("auth.get_user_by_aws_alb_auth", False): res = await authenticate_user_by_alb_auth(self) if not res: raise Exception("Unable to authenticate the user by ALB Auth") if res and isinstance(res, dict): self.user = res.get("user") self.groups = res.get("groups") if not self.user: # Username/Password authn flow if config.get("auth.get_user_by_password", False): after_redirect_uri = self.request.arguments.get("redirect_url", [""])[0] if after_redirect_uri and isinstance(after_redirect_uri, bytes): after_redirect_uri = after_redirect_uri.decode("utf-8") self.set_status(403) self.write( { "type": "redirect", "redirect_url": f"/login?redirect_after_auth={after_redirect_uri}", "reason": "unauthenticated", "message": "User is not authenticated. Redirect to authenticate", } ) await self.finish() raise SilentException( "Redirecting user to authenticate by username/password." ) if not self.user: try: # Get user. Config options can specify getting username from headers or # OIDC, but custom plugins are also allowed to override this. self.user = await auth.get_user(headers=self.request.headers) if not self.user: raise NoUserException( f"User not detected. Headers: {self.request.headers}" ) log_data["user"] = self.user except NoUserException: self.clear() self.set_status(403) stats.count( "Basehandler.authorization_flow.no_user_detected", tags={ "request_path": self.request.uri, "ip": self.ip, "user_agent": self.request.headers.get("User-Agent"), }, ) log_data["message"] = "No user detected. Check configuration." log.error(log_data) await self.finish(log_data["message"]) raise self.contractor = config.config_plugin().is_contractor(self.user) if config.get("auth.cache_user_info_server_side", True) and not refresh_cache: try: cache_r = self.red.get(f"USER-{self.user}-CONSOLE-{console_only}") except redis.exceptions.ConnectionError: cache_r = None if cache_r: log_data["message"] = "Loading from cache" log.debug(log_data) cache = json.loads(cache_r) self.groups = cache.get("groups") self.eligible_roles = cache.get("eligible_roles") self.eligible_accounts = cache.get("eligible_accounts") self.user_role_name = cache.get("user_role_name") refreshed_user_roles_from_cache = True try: if not self.groups: self.groups = await auth.get_groups( self.user, headers=self.request.headers ) if not self.groups: raise NoGroupsException( f"Groups not detected. Headers: {self.request.headers}" ) except NoGroupsException: stats.count("Basehandler.authorization_flow.no_groups_detected") log_data["message"] = "No groups detected. Check configuration." log.error(log_data) # Set Per-User Role Name (This logic is not used in OSS deployment) if ( config.get("user_roles.opt_in_group") and config.get("user_roles.opt_in_group") in self.groups ): # Get or create user_role_name attribute self.user_role_name = await auth.get_or_create_user_role_name(self.user) self.eligible_roles = await group_mapping.get_eligible_roles( self.user, self.groups, self.user_role_name, console_only=console_only ) if not self.eligible_roles: log_data[ "message" ] = "No eligible roles detected for user. But letting them continue" log.warning(log_data) log_data["eligible_roles"] = len(self.eligible_roles) if not self.eligible_accounts: try: self.eligible_accounts = await group_mapping.get_eligible_accounts( self.eligible_roles ) log_data["eligible_accounts"] = len(self.eligible_accounts) log_data["message"] = "Successfully authorized user." log.debug(log_data) except Exception: stats.count("Basehandler.authorization_flow.exception") log.error(log_data, exc_info=True) raise if ( config.get("auth.cache_user_info_server_side", True) and self.groups # Only set role cache if we didn't retrieve user's existing roles from cache and not refreshed_user_roles_from_cache ): try: self.red.setex( f"USER-{self.user}-CONSOLE-{console_only}", config.get("dynamic_config.role_cache.cache_expiration", 60), json.dumps( { "groups": self.groups, "eligible_roles": self.eligible_roles, "eligible_accounts": self.eligible_accounts, "user_role_name": self.user_role_name, } ), ) except redis.exceptions.ConnectionError: pass if ( config.get("auth.set_auth_cookie") and config.get("auth_cookie_name", "consoleme_auth") and not self.get_cookie(config.get("auth_cookie_name", "consoleme_auth")) ): expiration = datetime.utcnow().replace(tzinfo=pytz.UTC) + timedelta( minutes=config.get("jwt.expiration_minutes", 60) ) encoded_cookie = await generate_jwt_token( self.user, self.groups, exp=expiration ) self.set_cookie( config.get("auth_cookie_name", "consoleme_auth"), encoded_cookie, expires=expiration, secure=config.get( "auth.cookie.secure", "https://" in config.get("url"), ), httponly=config.get("auth.cookie.httponly", True), samesite=config.get("auth.cookie.samesite", True), ) if self.tracer: await self.tracer.set_additional_tags({"USER": self.user}) class BaseAPIV1Handler(BaseHandler): """Default API Handler for api/v1/* routes.""" def set_default_headers(self) -> None: self.set_header("Content-Type", "application/json") class BaseAPIV2Handler(BaseHandler): """Default API Handler for api/v2/* routes.""" def set_default_headers(self) -> None: self.set_header("Content-Type", "application/json") def write_error(self, status_code: int, **kwargs: Any) -> None: if self.settings.get("serve_traceback") and "exc_info" in kwargs: # in debug mode, try to send a traceback self.set_header("Content-Type", "text/plain") self.set_status(status_code) for line in traceback.format_exception(*kwargs["exc_info"]): self.write(line) self.finish() else: self.set_header("Content-Type", "application/problem+json") title = httputil.responses.get(status_code, "Unknown") message = kwargs.get("message", self._reason) # self.set_status() modifies self._reason, so this call should come after we grab the reason self.set_status(status_code) self.finish( json.dumps( {"status": status_code, "title": title, "message": message} ) # noqa ) class BaseMtlsHandler(BaseAPIV2Handler): def initialize(self, **kwargs): self.kwargs = kwargs async def prepare(self): self.tracer = None self.span = None self.spans = {} self.responses = [] self.request_uuid = str(uuid.uuid4()) self.auth_cookie_expiration = 0 stats.timer("base_handler.incoming_request") if config.get("auth.require_mtls", False): try: await auth.validate_certificate(self.request.headers) except InvalidCertificateException: stats.count( "GetCredentialsHandler.post.invalid_certificate_header_value" ) self.set_status(403) self.write({"code": "403", "message": "Invalid Certificate"}) await self.finish() return # Extract user from valid certificate try: self.requester = await auth.extract_user_from_certificate( self.request.headers ) self.current_cert_age = await auth.get_cert_age_seconds( self.request.headers ) except (MissingCertificateException, Exception) as e: if isinstance(e, MissingCertificateException): stats.count("BaseMtlsHandler.post.missing_certificate_header") message = "Missing Certificate in Header." else: stats.count("BaseMtlsHandler.post.exception") message = f"Invalid Mtls Certificate: {e}" self.set_status(400) self.write({"code": "400", "message": message}) await self.finish() return elif config.get("auth.require_jwt", True): # Check to see if user has a valid auth cookie if config.get("auth_cookie_name", "consoleme_auth"): auth_cookie = self.get_cookie( config.get("auth_cookie_name", "consoleme_auth") ) if auth_cookie: res = await validate_and_return_jwt_token(auth_cookie) if not res: error = { "code": "invalid_jwt", "message": "JWT is invalid or has expired.", "request_id": self.request_uuid, } self.set_status(403) self.write(error) await self.finish() self.user = res.get("user") self.groups = res.get("groups") self.requester = {"type": "user", "email": self.user} self.current_cert_age = int(time.time()) - res.get("iat") self.auth_cookie_expiration = res.get("exp") else: raise MissingConfigurationValue( "Auth cookie name is not defined in configuration." ) else: raise MissingConfigurationValue("Unsupported authentication scheme.") if not hasattr(self, "requester"): raise tornado.web.HTTPError(403, "Unable to authenticate user.") self.ip = self.get_request_ip() await self.configure_tracing() def write(self, chunk: Union[str, bytes, dict]) -> None: if config.get("_security_risk_full_debugging.enabled"): self.responses.append(chunk) super(BaseMtlsHandler, self).write(chunk) def on_finish(self) -> None: if config.get("_security_risk_full_debugging.enabled"): request_details = { "path": self.request.path, "method": self.request.method, "body": self.request.body, "arguments": self.request.arguments, "body_arguments": self.request.body_arguments, "headers": dict(self.request.headers.items()), "query": self.request.query, "query_arguments": self.request.query_arguments, "uri": self.request.uri, "cookies": dict(self.request.cookies.items()), "response": self.responses, } with open(config.get("_security_risk_full_debugging.file"), "a+") as f: f.write(json.dumps(request_details, reject_bytes=False)) super(BaseMtlsHandler, self).on_finish() class NoCacheStaticFileHandler(tornado.web.StaticFileHandler): def set_default_headers(self) -> None: self.set_header( "Cache-Control", "no-store, no-cache, must-revalidate, max-age=0" )
py
b41114286852baab6d9887a984c97c9515366343
from .types import HotWaterSystem, ClimateSystem, VentilationSystem MAX_REQUEST_PARAMETERS = 15 PARAM_HOTWATER_SYSTEMS = { "1": HotWaterSystem( "Hot Water", 40014, 40013, 47041, 47387, 47050, 47048, 47044, 47047, 47043, 47049, 47045, 43424, "hot_water_boost", ), "DEW": HotWaterSystem( "Hot Water (DEW)", 40077, 40078, 47041, 47555, 47050, 47048, 47044, 47047, 47043, 47049, 47045, 43424, "hot_water_boost", ), "SCA": HotWaterSystem( "Hot Water (SCA)", 40077, 40078, 47041, 49224, 47050, 47048, 47044, 47047, 47043, 47049, 47045, 43424, "hot_water_boost", ), "AHPS": HotWaterSystem( "Hot Water (AHPS)", 40077, 40078, 47041, 48641, 47050, 47048, 47044, 47047, 47043, 47049, 47045, 43424, "hot_water_boost", ), } PARAM_CLIMATE_SYSTEMS = { # BT3 BT2 CSTH OC BT50 RSH RSC URS AA EAA CSTC OH HC MIS MAS HP # noqa: 501 "1": ClimateSystem( "S1", 40012, 40008, 43009, 48739, 40033, 47398, 48785, 47394, None, 43161, 44270, 47011, 47007, 47015, 47016, None, ), # noqa: 501 "2": ClimateSystem( "S2", 40129, 40007, 43008, 48738, 40032, 47397, 48784, 47393, 47302, 43160, 44269, 47010, 47006, 47014, 47017, 44746, ), # noqa: 501 "3": ClimateSystem( "S3", 40128, 40006, 43007, 48737, 40031, 47396, 48783, 47392, 47303, 43159, 44268, 47009, 47005, 47013, 47018, 44745, ), # noqa: 501 "4": ClimateSystem( "S4", 40127, 40005, 43006, 48736, 40030, 47395, 48782, 47391, 47304, 43158, 44267, 47008, 47004, 47012, 47019, 44744, ), # noqa: 501 } PARAM_VENTILATION_SYSTEMS = { "1": VentilationSystem( "Ventilation", 10001, 40025, 40026, 47265, 47264, 47263, 47262, 47261, "ventilation_boost", ) } PARAM_PUMP_SPEED_HEATING_MEDIUM = 43437 PARAM_COMPRESSOR_FREQUENCY = 43136 PARAM_STATUS_COOLING = 43024 SMARTHOME_MODES = { 0: "DEFAULT_OPERATION", 1: "AWAY_FROM_HOME", 2: "VACATION", }
py
b4111444ae45e8f334eb59548753846a2a39d4d6
import os import numpy as np import theano.tensor as T import theano from scipy import misc from autoencoder import Autoencoder from transform import * from scene import * from shader import * from optimize import * if not os.path.exists('output'): os.makedirs('output') #train_data = np.array([misc.imread('example.png').flatten()], dtype='float32')/255.0 train_data = np.asarray([misc.imread('15.png').flatten()], dtype='float32')/255.0 N,D = train_data.shape img_sz = int(np.sqrt(D)) def scene(capsules, obj_params): shapes = [] #TODO move the material information to attribute of capsule instance material1 = Material((0.2, 0.9, 0.4), 0.3, 0.7, 0.5, 50.) for i in xrange(len(capsules)): capsule = capsules[i] obj_param = obj_params[i] t1 = translate(obj_param[:3]) * scale(obj_param[3:]) if capsule.name == 'sphere': shapes.append(Sphere(t1, material1)) elif capsule.name == 'square': shapes.append(Square(t1, material1)) elif capsule.name == 'light': shapes.append(Light(t1, material1)) light = Light((-1., -1., 2.), (0.961, 1., 0.87)) camera = Camera(img_sz, img_sz) #shader = PhongShader() shader = DepthMapShader(6.1) scene = Scene(shapes, [light], camera, shader) return scene.build() #Hyper-parameters num_capsule = 2 epsilon = 0.0001 num_epoch = 200 ae = Autoencoder(scene, D, 300, 30, 10, num_capsule) opt = MGDAutoOptimizer(ae) train_ae = opt.optimize(train_data) get_recon = theano.function([], ae.get_reconstruct(train_data[0])[:,:,0]) get_center= theano.function([], ae.encoder(train_data[0])) recon = get_recon() center = get_center()[0] imsave('output/test_balls0.png', recon) print '...Initial center1 (%g,%g,%g)' % (center[0], center[1], center[2]) print recon.sum() n=0; while (n<num_epoch): n+=1 eps = get_epsilon(epsilon, num_epoch, n) train_loss = train_ae(eps) center = get_center()[0] print '...Epoch %d Train loss %g, Center (%g, %g, %g)' \ % (n, train_loss, center[0], center[1], center[2]) if n % 10 ==0: image = get_recon() imsave('output/test_balls%d.png' % (n,), image)
py
b41114d36c09cb5798cfc8c84f7efdd6c1848120
#! /usr/bin/env python # Copyright 2014 Hewlett-Packard Development Company, L.P. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import errno import os import time from oslo_config import cfg from oslo_log import log as logging import six from octavia.amphorae.backends.agent.api_server import util from octavia.amphorae.backends.health_daemon import health_sender from octavia.amphorae.backends.utils import haproxy_query from octavia.amphorae.backends.utils import keepalivedlvs_query if six.PY2: import Queue as queue # pylint: disable=wrong-import-order else: import queue # pylint: disable=wrong-import-order CONF = cfg.CONF LOG = logging.getLogger(__name__) SEQ = 0 # MSG_VER is an incrementing integer heartbeat message format version # this allows for backward compatibility when the amphora-agent is older # than the controller version and the message format has backwards # incompatible changes. # # ver 1 - Adds UDP listener status when no pool or members are present # MSG_VER = 1 def list_sock_stat_files(hadir=None): stat_sock_files = {} if hadir is None: hadir = CONF.haproxy_amphora.base_path listener_ids = util.get_listeners() for listener_id in listener_ids: sock_file = listener_id + ".sock" stat_sock_files[listener_id] = os.path.join(hadir, sock_file) return stat_sock_files def run_sender(cmd_queue): LOG.info('Health Manager Sender starting.') sender = health_sender.UDPStatusSender() keepalived_cfg_path = util.keepalived_cfg_path() keepalived_pid_path = util.keepalived_pid_path() while True: try: # If the keepalived config file is present check # that it is running, otherwise don't send the health # heartbeat if os.path.isfile(keepalived_cfg_path): # Is there a pid file for keepalived? with open(keepalived_pid_path, 'r') as pid_file: pid = int(pid_file.readline()) os.kill(pid, 0) message = build_stats_message() sender.dosend(message) except IOError as e: # Missing PID file, skip health heartbeat if e.errno == errno.ENOENT: LOG.error('Missing keepalived PID file %s, skipping health ' 'heartbeat.', keepalived_pid_path) else: LOG.error('Failed to check keepalived and haproxy status due ' 'to exception %s, skipping health heartbeat.', e) except OSError as e: # Keepalived is not running, skip health heartbeat if e.errno == errno.ESRCH: LOG.error('Keepalived is configured but not running, ' 'skipping health heartbeat.') else: LOG.error('Failed to check keepalived and haproxy status due ' 'to exception %s, skipping health heartbeat.', e) except Exception as e: LOG.error('Failed to check keepalived and haproxy status due to ' 'exception %s, skipping health heartbeat.', e) try: cmd = cmd_queue.get_nowait() if cmd == 'reload': LOG.info('Reloading configuration') CONF.reload_config_files() elif cmd == 'shutdown': LOG.info('Health Manager Sender shutting down.') break except queue.Empty: pass time.sleep(CONF.health_manager.heartbeat_interval) def get_stats(stat_sock_file): stats_query = haproxy_query.HAProxyQuery(stat_sock_file) stats = stats_query.show_stat() pool_status = stats_query.get_pool_status() return stats, pool_status def build_stats_message(): global SEQ msg = {'id': CONF.amphora_agent.amphora_id, 'seq': SEQ, "listeners": {}, 'ver': MSG_VER} SEQ += 1 stat_sock_files = list_sock_stat_files() for listener_id, stat_sock_file in stat_sock_files.items(): listener_dict = {'pools': {}, 'status': 'DOWN', 'stats': { 'tx': 0, 'rx': 0, 'conns': 0, 'totconns': 0, 'ereq': 0}} msg['listeners'][listener_id] = listener_dict if util.is_listener_running(listener_id): (stats, pool_status) = get_stats(stat_sock_file) listener_dict = msg['listeners'][listener_id] for row in stats: if row['svname'] == 'FRONTEND': listener_dict['stats']['tx'] = int(row['bout']) listener_dict['stats']['rx'] = int(row['bin']) listener_dict['stats']['conns'] = int(row['scur']) listener_dict['stats']['totconns'] = int(row['stot']) listener_dict['stats']['ereq'] = int(row['ereq']) listener_dict['status'] = row['status'] for oid, pool in pool_status.items(): if oid != listener_id: pool_id = oid pools = listener_dict['pools'] pools[pool_id] = {"status": pool['status'], "members": pool['members']} # UDP listener part udp_listener_ids = util.get_udp_listeners() if udp_listener_ids: listeners_stats = keepalivedlvs_query.get_udp_listeners_stats() if listeners_stats: for listener_id, listener_stats in listeners_stats.items(): pool_status = keepalivedlvs_query.get_udp_listener_pool_status( listener_id) udp_listener_dict = dict() udp_listener_dict['status'] = listener_stats['status'] udp_listener_dict['stats'] = { 'tx': listener_stats['stats']['bout'], 'rx': listener_stats['stats']['bin'], 'conns': listener_stats['stats']['scur'], 'totconns': listener_stats['stats']['stot'], 'ereq': listener_stats['stats']['ereq'] } udp_listener_dict['pools'] = {} if pool_status: udp_listener_dict['pools'] = { pool_status['lvs']['uuid']: { "status": pool_status['lvs']['status'], "members": pool_status['lvs']['members']}} msg['listeners'][listener_id] = udp_listener_dict return msg
py
b4111520f13f6e906a35b204b657729d82d70457
import torch from torch import nn from typing import Tuple, Dict from src.nlp import abstract_embeddings from src.models import abstract_preprocessor from src.utils import registry, vocab from src.datasets.hanitem import HANItem from src.datasets.han_dataset import HANDataset from src.datasets.bert_han_dataset import BERTHANDataset @registry.register('model', 'HAN') class HANModel(torch.nn.Module): class Preprocessor(abstract_preprocessor.AbstractPreproc): def __init__(self, preprocessor): super().__init__() self.preprocessor: abstract_preprocessor.AbstractPreproc = registry.instantiate( callable=registry.lookup("preprocessor", preprocessor["name"]), config=preprocessor, unused_keys=("name", "final_layer_dim", "final_layer_dropout") ) def get_vocab(self) -> vocab.Vocab: return self.preprocessor.get_vocab() def get_dataset_size(self, section: str) -> int: return self.preprocessor.get_dataset_size(section) def get_embedder(self) -> abstract_embeddings.Embedder: return self.get_embedder() def get_num_classes(self) -> int: return self.preprocessor.get_num_classes() def get_max_doc_length(self) -> int: return self.preprocessor.get_max_doc_length() def get_max_sent_length(self) -> int: return self.preprocessor.get_max_sent_length() def validate_item(self, item: HANItem, section: str) -> Tuple[bool, str]: item_result, validation_info = self.preprocessor.validate_item(item, section) return item_result, validation_info def add_item(self, item: HANItem, section: str, validation_info: str): self.preprocessor.add_item(item, section, validation_info) def clear_items(self) -> None: self.preprocessor.clear_items() def save(self) -> None: self.preprocessor.save() def load(self) -> None: self.preprocessor.load() def label_to_id_map(self) -> Dict: return self.preprocessor.label_to_id_map() def dataset(self, section): print(f"Loading dataset of section: {section}") if "bert" in str(type(self.preprocessor)).lower(): # check if it's BERT-based model or not return BERTHANDataset( self.preprocessor.dataset(section), self.label_to_id_map(), self.get_max_sent_length(), self.get_max_doc_length(), self.get_num_classes(), self.get_dataset_size(section), self.get_tokenizer(), ) return HANDataset( self.preprocessor.dataset(section), self.label_to_id_map(), self.get_vocab(), self.get_max_sent_length(), self.get_max_doc_length(), self.get_num_classes(), self.get_dataset_size(section), ) def get_tokenizer(self): return self.preprocessor.get_tokenizer() def create_validation_set(self, val_split: float, path: str) -> None: self.preprocessor.create_validation_set(val_split, path) def __init__(self, preprocessor, device, word_attention, sentence_attention, final_layer_dim, final_layer_dropout): super().__init__() self.preprocessor = preprocessor self.word_attention = registry.instantiate( callable=registry.lookup("word_attention", word_attention["name"]), config=word_attention, unused_keys=("name",), device=device, preprocessor=preprocessor.preprocessor ) self.sentence_attention = registry.instantiate( callable=registry.lookup("sentence_attention", sentence_attention["name"]), config=sentence_attention, unused_keys=("name",), device=device, ) self.mlp = nn.Sequential( torch.nn.Linear( self.sentence_attention.recurrent_size, final_layer_dim ), nn.ReLU(), nn.Dropout(final_layer_dropout), torch.nn.Linear(final_layer_dim, self.preprocessor.get_num_classes()) ) self.loss = nn.CrossEntropyLoss(reduction="mean").to(device) def forward(self, docs, doc_lengths, sent_lengths, labels=None, attention_masks=None, token_type_ids=None): """ :param docs: encoded document-level data; LongTensor (num_docs, padded_doc_length, padded_sent_length) :param doc_lengths: unpadded document lengths; LongTensor (num_docs) :param sent_lengths: unpadded sentence lengths; LongTensor (num_docs, max_sent_len) :param labels: labels; LongTensor (num_docs) :param attention_masks: BERT attention masks; LongTensor (num_docs, padded_doc_length, padded_sent_length) :param token_type_ids: BERT token type IDs; LongTensor (num_docs, padded_doc_length, padded_sent_length) :return: class scores, attention weights of words, attention weights of sentences, loss """ # get sentence embedding for each sentence by passing it in the word attention model if attention_masks is not None and token_type_ids is not None: sent_embeddings, doc_perm_idx, docs_valid_bsz, word_att_weights = self.word_attention( docs, doc_lengths, sent_lengths, attention_masks, token_type_ids ) else: sent_embeddings, doc_perm_idx, docs_valid_bsz, word_att_weights = self.word_attention( docs, doc_lengths, sent_lengths ) # get document embedding for each document by passing the sentence embeddings in the sentence attention model doc_embeds, word_att_weights, sentence_att_weights = self.sentence_attention( sent_embeddings, doc_perm_idx, docs_valid_bsz, word_att_weights ) scores = self.mlp(doc_embeds) outputs = (scores, word_att_weights, sentence_att_weights,) if labels is not None: loss = self.loss(scores, labels) return outputs + (loss,) return outputs
py
b4111525f04322c540d8cced475e4b0dd024a92d
import numpy as np import tensorflow as tf from tensorflow.python.ops import control_flow_ops slim = tf.contrib.slim def im2uint8(x): if x.__class__ == tf.Tensor: return tf.cast(tf.clip_by_value(x, 0.0, 1.0) * 255.0, tf.uint8) else: t = np.clip(x, 0.0, 1.0) * 255.0 return t.astype(np.uint8) def get_shape(x): shape = tf.shape(x) check = tf.Assert(tf.reduce_all(shape >= 0), ["EASYFLOW: Need value.shape >= 0, got ", shape]) shape = control_flow_ops.with_dependencies([check], shape) return [shape[i] for i in range(shape.shape.as_list()[0])] def zero_upsampling(x, scale_factor): dims = x.get_shape().as_list() if len(dims) == 5: n, t, h, w, c = dims y = tf.concat([x] + [tf.zeros_like(x)] * (scale_factor ** 2 - 1), -1) y = tf.reshape(y, [n, t, h, w, scale_factor, scale_factor, c]) y = tf.transpose(y, [0, 1, 2, 4, 3, 5, 6]) y = tf.reshape(y, [n, t, h * scale_factor, w * scale_factor, c]) elif len(dims) == 4: n, h, w, c = dims y = tf.concat([x] + [tf.zeros_like(x)] * (scale_factor ** 2 - 1), -1) y = tf.reshape(y, [n, h, w, scale_factor, scale_factor, c]) y = tf.transpose(y, [0, 1, 3, 2, 4, 5]) y = tf.reshape(y, [n, h * scale_factor, w * scale_factor, c]) return y def leaky_relu(x, alpha=0.1): return tf.maximum(x, alpha * x) def prelu(x): alphas = tf.get_variable('alpha', x.get_shape()[-1], initializer=tf.constant_initializer(0.0), dtype=tf.float32) pos = tf.nn.relu(x) neg = alphas * (x - tf.abs(x)) * 0.5 return pos + neg def display_tf_variables(train_vars): print ('Training Variables: ') for var in train_vars: print ('\t', var.name) def resize_images(images, size, method=2, align_corners=False): dims = len(images.get_shape()) if dims == 5: n, t, h, w, c = images.get_shape().as_list() images = tf.reshape(images, [n * t, h, w, c]) images = tf.image.resize_images(images, size, method, align_corners) if dims == 5: images = tf.reshape(images, [n, t, size[0], size[1], c]) return images def rgb2y(inputs): with tf.name_scope('rgb2y'): if inputs.get_shape()[-1].value == 1: return inputs assert inputs.get_shape()[-1].value == 3, 'Error: rgb2y input should be RGB or grayscale!' dims = len(inputs.get_shape()) if dims == 4: scale = tf.reshape([65.481, 128.553, 24.966], [1, 1, 1, 3]) / 255.0 elif dims == 5: scale = tf.reshape([65.481, 128.553, 24.966], [1, 1, 1, 1, 3]) / 255.0 output = tf.reduce_sum(inputs * scale, reduction_indices=dims - 1, keep_dims=True) output = output + 16 / 255.0 return output def rgb2ycbcr(inputs): with tf.name_scope('rgb2ycbcr'): if inputs.get_shape()[-1].value == 1: return inputs assert inputs.get_shape()[-1].value == 3, 'Error: rgb2ycbcr input should be RGB or grayscale!' ndims = len(inputs.get_shape()) origT = [[65.481, 128.553, 24.966], [-37.797, -74.203, 112], [112, -93.786, -18.214]] origOffset = [16.0, 128.0, 128.0] if ndims == 4: origT = [tf.reshape(origT[i], [1, 1, 1, 3]) / 255.0 for i in range(3)] elif ndims == 5: origT = [tf.reshape(origT[i], [1, 1, 1, 1, 3]) / 255.0 for i in range(3)] output = [] for i in range(3): output.append(tf.reduce_sum(inputs * origT[i], reduction_indices=-1, keep_dims=True) + origOffset[i] / 255.0) return tf.concat(output, -1) def ycbcr2rgb(inputs): with tf.name_scope('ycbcr2rgb'): if inputs.get_shape()[-1].value == 1: return inputs assert inputs.get_shape()[-1].value == 3, 'Error: rgb2ycbcr input should be RGB or grayscale!' ndims = len(inputs.get_shape()) # origT = np.array([[65.481, 128.553, 24.966], [-37.797 -74.203 112], [112 -93.786 -18.214]]) # T = tf.inv(origT) Tinv = [[0.00456621, 0., 0.00625893], [0.00456621, -0.00153632, -0.00318811], [0.00456621, 0.00791071, 0.]] origOffset = [16.0, 128.0, 128.0] if ndims == 4: origT = [tf.reshape(Tinv[i], [1, 1, 1, 3]) * 255.0 for i in range(3)] origOffset = tf.reshape(origOffset, [1, 1, 1, 3]) / 255.0 elif ndims == 5: origT = [tf.reshape(Tinv[i], [1, 1, 1, 1, 3]) * 255.0 for i in range(3)] origOffset = tf.reshape(origOffset, [1, 1, 1, 1, 3]) / 255.0 output = [] for i in range(3): output.append(tf.reduce_sum((inputs - origOffset) * origT[i], reduction_indices=-1, keep_dims=True)) return tf.concat(output, -1) def rgb2gray(inputs): with tf.name_scope('rgb2gray'): if inputs.get_shape()[-1].value == 1: return inputs assert inputs.get_shape()[-1].value == 3, 'Error: rgb2y input should be RGB or grayscale!' dims = len(inputs.get_shape()) if dims == 4: scale = tf.reshape([0.299, 0.587, 0.114], [1, 1, 1, 3]) elif dims == 5: scale = tf.reshape([0.299, 0.587, 0.114], [1, 1, 1, 1, 3]) output = tf.reduce_sum(inputs * scale, reduction_indices=dims - 1, keep_dims=True) return output
py
b41115adb98f5f1d3092bef70e248669408bc1eb
# -*- coding: utf-8 -*- import os class BaseConfig: DEBUG = False TESTING = False PROJECT_ROOT = os.path.abspath('.') SQLALCHEMY_DATABASE_URI = f'sqlite:///{os.path.join(PROJECT_ROOT, "db.sqlite")}' SQLALCHEMY_TRACK_MODIFICATIONS = False JWT_SECRET_KEY = os.urandom(32) JWT_IDENTITY_CLAIM = 'sub' JWT_ERROR_MESSAGE_KEY = 'error' JWT_HEADER_TYPE = 'JWT' class DevelopmentConfig(BaseConfig): DEBUG = True SQLALCHEMY_DATABASE_URI = 'postgres://postgres:postgres@db:5432/evolux_challenge' JWT_SECRET_KEY = 'mysupersecretkey' class TestingConfig(BaseConfig): TESTING = True SQLALCHEMY_DATABASE_URI = 'sqlite://' class ProductionConfig(BaseConfig): SQLALCHEMY_DATABASE_URI = os.getenv('SQLALCHEMY_DATABASE_URI') JWT_SECRET_KEY = os.getenv('JWT_SECRET_KEY')
py
b411173eb64d98d18c4482d60dd8975b4b095961
import tkinter as tk class Seekbar(tk.Canvas): def __init__(self, parent, **options): tk.Canvas.__init__(self, parent, options) self.parent = parent self.width = options['width'] self.red_rectangle = self.create_rectangle(0, 0, 0, 0, fill="red") self.seekbar_knob_image = tk.PhotoImage(file="../icons/seekbar_knob.gif") self.seekbar_knob = self.create_image( 0, 0, image=self.seekbar_knob_image) self.bind_mouse_button() def bind_mouse_button(self): self.bind('<Button-1>', self.on_seekbar_clicked) self.bind('<B1-Motion>', self.on_seekbar_clicked) self.tag_bind( self.red_rectangle, '<B1-Motion>', self.on_seekbar_clicked) self.tag_bind( self.seekbar_knob, '<B1-Motion>', self.on_seekbar_clicked) def on_seekbar_clicked(self, event=None): if event.x > 0 and event.x < self.width: self.slide_to_position(event.x) def slide_to_position(self, new_position): self.coords(self.red_rectangle, 0, 0, new_position, new_position) self.coords(self.seekbar_knob, new_position, 0) self.event_generate("<<SeekbarPositionChanged>>", x=new_position) class TestSeekBar(): def __init__(self): root = tk.Tk() root.bind("<<SeekbarPositionChanged>>", self.seek_new_position) frame = tk.Frame(root) frame.grid(row=1, pady=10, padx=10) c = Seekbar( frame, background="blue", width=360, height=10) c.grid(row=2, columnspan=10, sticky='ew', padx=5) root.mainloop() def seek_new_position(self, event): print("Dragged to x:", event.x) if __name__ == '__main__': TestSeekBar()
py
b4111920cd9d6f39b9f0f7f2cdb5ed85cdc876d3
from __future__ import unicode_literals, print_function from jinja2 import FileSystemLoader, StrictUndefined from jinja2.environment import Environment ''' >> nxos_bgp_include.j2 << feature bgp router bgp {{ local_as }} {% include 'bgp_ipv4_routes.j2' %} {# appends a separate FILE's content on this place #} neighbor {{ peer1_ip }} remote-as {{ peer1_as }} update-source loop1 ebgp-multihop 2 address-family ipv4 unicast ! {%- include eigrp_template %} {# eigrp_template is a VARIABLE defined in the dictionary #} >> bgp_ipv4_routes.j2 << address-family ipv4 unicast network {{ advertised_route1 }} network {{ advertised_route2 }} network {{ advertised_route3 }} >> eigrp_template1.j2 << router eigrp 1 ! address-family ipv4 vrf CORP network 10.115.79.49 0.0.0.0 network 10.115.79.170 0.0.0.0 network 10.115.79.174 0.0.0.0 ! network 10.115.68.0 0.0.0.255 network 10.115.78.0 0.0.0.255 passive-interface default no passive-interface Vlan920 no passive-interface Vlan921 autonomous-system 1 eigrp router-id 10.115.79.49 eigrp stub connected summary nsf exit-address-family ! ''' env = Environment(undefined=StrictUndefined) # CREATE ENVIRONMENT: defines, that every variable {{}} in the template needs also strictly # a variable value defined somewhere in the code/ Otherwise it will fail # in case you don't want a strict behavior (variable may be missing), use just "env = Environment()" env.loader = FileSystemLoader('.') # WHERE TO FIND ENVIRONMENT: defines where the template to load from. # In this case '.' it is in the current working directory bgp_vars = { 'hostname' : 'test-rt1', 'local_as' : '10', 'peer1_ip' : '10.255.255.2', 'peer1_as' : '20', 'advertised_route1' : '10.10.200.0/24', 'advertised_route2' : '10.10.201.0/24', 'advertised_route3' : '10.10.202.0/24', 'eigrp_template' : 'eigrp_template1.j2', } template_file = 'nxos_bgp_include.j2' # name of the template file template = env.get_template(template_file) # load the template file to the environment output = template.render(**bgp_vars) # loads all attributes from dictionary intf_vars print (output)
py
b41119a300129f71807aabcfc623f9dd78c1f1a5
from django.contrib.contenttypes.models import ContentType from django.core.paginator import Paginator from django.http import Http404 from django.template.response import TemplateResponse from wagtail.core.models import Page def content_type_use(request, content_type_app_name, content_type_model_name): try: content_type = ContentType.objects.get_by_natural_key( content_type_app_name, content_type_model_name ) except ContentType.DoesNotExist: raise Http404 page_class = content_type.model_class() # page_class must be a Page type and not some other random model if not issubclass(page_class, Page): raise Http404 pages = page_class.objects.all().specific(defer=True) paginator = Paginator(pages, per_page=10) pages = paginator.get_page(request.GET.get("p")) return TemplateResponse( request, "wagtailadmin/pages/content_type_use.html", { "pages": pages, "app_name": content_type_app_name, "content_type": content_type, "page_class": page_class, }, )
py
b4111a024602d8e6971dde5f36849ca1db47e89c
class Booking: def __init__(self, id = None, datetime_start = None, datetime_end = None, entry_time = None, exit_time = None, amount = None, id_user = None, id_vehicle = None, id_parking_slot = None, note = ""): self._id = id self._datetime_start = datetime_start self._datetime_end = datetime_end self._entry_time = entry_time self._exit_time = exit_time self._amount = amount self._id_user = id_user self._id_vehicle = id_vehicle self._id_parking_slot = id_parking_slot self._note = note def set_id(self, id): self._id = id def set_datetime_start(self, datetime_start): self._datetime_start = datetime_start def set_datetime_end(self, datetime_end): self._datetime_end = datetime_end def set_entry_time(self, entry_time): self._entry_time = entry_time def set_exit_time(self, exit_time): self._exit_time = exit_time # def set_amount(self, amount): # self._amount = amount # def set_id_user(self, id_user): # self._id_user = id_user # # def set_id_vehicle(self, id_vehicle): # self._id_vehicle = id_vehicle # # def set_id_parking_slot(self, id_parking_slot): # self._id_parking_slot = id_parking_slot def set_note(self, note): self._note = note def get_id(self): return self._id def get_datetime_start(self): return self._datetime_start def get_datetime_end(self): return self._datetime_end def get_entry_time(self): return self._entry_time def get_exit_time(self): return self._exit_time def get_amount(self): return self._amount def get_id_user(self): return self._id_user def get_id_vehicle(self): return self._id_vehicle def get_id_parking_slot(self): return self._id_parking_slot def get_note(self): return self._note def __eq__(self, other): if isinstance(other, Booking): return self._id == other._id return NotImplemented def __str__(self): booking_info = (f"Booking Id: {self._id}, datetime start: {self._datetime_start}, datetime end: {self._datetime_end}, entry time: {self._entry_time}, " f"exit time: {self._exit_time}, amount: {self._amount}, id user: {self._id_user}, id vehicle: {self._id_vehicle}, " f"id parking slot: {self._id_parking_slot}, note: {self._note}") return booking_info
py
b4111a6a37b74b29162256b26f67991e1c393123
import hashlib, json, requests from time import time from uuid import uuid4 from textwrap import dedent from flask import Flask, jsonify, request from urllib.parse import urlparse # block = { # 'index': 1, # 'timestamp': 1506057125.900785, # 'transactions': [ # { # 'sender': "8527147fe1f5426f9dd545de4b27ee00", # 'recipient': "a77f5cdfa2934df3954a5c7c7da5df1f", # 'amount': 5, # } # ], # 'proof': 324984774000, # 'previous_hash': "2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824" # } class Blockchain(object): def __init__(self): self.chain = [] self.current_transactions = [] self.nodes = set() # O bloco genesis self.newBlock(previous_hash=1, proof=100) def newBlock(self, proof, previous_hash=None): block = { 'index': len(self.chain) + 1, 'timestamp': time(), 'transactions': self.current_transactions, 'proof': proof, 'previous_hash': previous_hash or self.hash(self.chain[-1]) } self.current_transactions = [] # Reseta a lista de transações self.chain.append(block) # Adiciona o bloco à cadeia de blocos return block def newTransaction(self, sender, recipient, amount): self.current_transactions.append({ 'sender': sender, 'recipient': recipient, 'amount': amount }) # Adiciona transação ao bloco return self.lastBlock['index'] + 1 # Retorna o index do bloco da transação @staticmethod def hash(block): blockString = json.dumps(block, sort_keys=True).encode() # O dicionário é ordenado pelas chaves para previnir hashes inconsistentes return hashlib.sha256(blockString).hexdigest() # Transforma em hash e depois transforma em string def proofOfWork(self, last_proof): # Gera o PoW do bloco # Algoritmo: # - Encontre um número p' em que seu hash com a solução do bloco anterior seja um hash que termina em [n] [ny]s. proof = 0 while self.validProof(last_proof, proof) is False: proof += 1 return proof @staticmethod def validProof(last_proof, proof): # Valida a PoW guess = f'{last_proof}{proof}'.encode() guess_hash = hashlib.sha256(guess).hexdigest() return guess_hash[:4] == "0000" def registerNode(self, address): parsed_url = urlparse(address) self.nodes.add(parsed_url.netloc) def validChain(self, chain): lastBlock = chain[0] currentIndex = 1 while currentIndex < len(chain): block = chain[currentIndex] print(f'{lastBlock}') print(f'{block}') print(f'\n-----------\n') # Checa se o hash do bloco está correto if block['previous_hash'] != self.hash(lastBlock): return False # Checa se a PoW está correta if not self.validProof(lastBlock['proof'], block['proof']): return False last_block = block currentIndex += 1 return True def resolveConflicts(self): # Essa função se baseia no Algoritmo do Consenso, o qual resolve conflitos nos Nodes ao trocar a cadeia atual pela mais longa na rede. neighbours = self.nodes newChain = None maxLength = len(self.chain) for node in neighbours: response = requests.get(f"http://{node}/chain") if response.status_code == 200: length = response.json()['length'] chain = response.json()['chain'] # Checa se o tamanho da cadeia é maior e checa se a cadeia é válida if length > maxLength and self.validChain(chain): maxLength = length newChain = chain # Troca a cadeia se uma nova for descoberta if newChain: self.chain = newChain return True return False @property def lastBlock(self): return self.chain[-1] # Node app = Flask(__name__) # Gera um endereço único para esse Node (aleatório) nodeId = str(uuid4()).replace('-', '') # Instancia a Blockchain blockchain = Blockchain() # Criando os endpoints da API @app.route('/mine', methods=['GET']) def mine(): # To-do # - Calcular o PoW # - Dar a recompensa ao minerador, adicionando uma transação que garante 1 moeda # - Criar um novo bloco, adicionando-o à cadeia de blocos / blockchain # Calclar o PoW lastBlock = blockchain.lastBlock lastProof = lastBlock['proof'] proof = blockchain.proofOfWork(lastProof) # Dar a recompensa ao minerador, adicionando uma transação que garante 1 moeda; O 'sender' é 0 para indicar que esse Node minerou uma nova moeda blockchain.newTransaction( sender = "0", recipient = nodeId, amount = 1 ) # Criar um novo bloco, adicionando-o à cadeia de blocos / blockchain previousHash = blockchain.hash(lastBlock) block = blockchain.newBlock(proof, previousHash) # Resposta do endpoint da API response = { 'message': "Novo bloco criado", 'index': block['index'], 'transactions': block['transactions'], 'proof': block['proof'], 'previous_hash': block['previous_hash'] } return jsonify(response), 200 @app.route('/transactions/new', methods=['POST']) def newTranscation(): values = request.get_json() # Checa se todos os valores foram satisfeitos required = ['sender', 'recipient', 'amount'] if not all(k in values for k in required): return 'Valores faltando', 400 # Cria a transação index = blockchain.newTransaction(values['sender'], values['recipient'], values['amount']) response = {'message': f'A transação vai ser adicionada ao bloco {index}'} # Mensagem de resposta do endpoint return jsonify(response), 201 @app.route('/chain', methods=['GET']) def fullChain(): response = { 'chain': blockchain.chain, 'length': len(blockchain.chain), } return jsonify(response), 200 @app.route('/nodes/register', methods=['POST']) def registerNodes(): values = request.get_json() nodes = values.get('nodes') if nodes is None: return "Erro: É necessário que uma lista válida de Nodes seja passada", 400 for node in nodes: blockchain.registerNode(node) response = { 'message': 'Novos Nodes foram adicionados', 'total_nodes': list(blockchain.nodes) } return jsonify(response), 201 @app.route('/nodes/resolve', methods=['GET']) def consensus(): replaced = blockchain.resolveConflicts() if replaced: response = { 'message': 'A cadeia foi trocada', 'new_chain': blockchain.chain } else: response = { 'message': 'A cadeia permanece a mesma', 'chain': blockchain.chain } return jsonify(response), 200 # Rodando o Node if __name__ == '__main__': app.run(host='0.0.0.0', port=5000)
py
b4111ae0bfc1c440afe858ea9f8af7fc7dd02849
import os import subprocess from m2cgen import assemblers, interpreters from tests import utils from tests.e2e.executors import base EXECUTOR_CODE_TPL = """ using System; namespace TestConsoleApp {{ class Program {{ static void Main(string[] args) {{ double[] input_ = new double[args.Length]; for(int i = 0; i < input_.Length; ++i) {{ input_[i] = double.Parse(args[i]); }} {print_code} }} }} }} """ EXECUTE_AND_PRINT_SCALAR = """ double res = ML.Model.Score(input_); Console.Write(res); """ EXECUTE_AND_PRINT_VECTOR = """ double[] res = ML.Model.Score(input_); for(int i = 0; i < res.Length; ++i) { Console.Write("{0} ", res[i]); } """ class CSharpExecutor(base.BaseExecutor): target_exec_dir = None project_name = "test_model" _dotnet = "dotnet" def __init__(self, model): self.model = model self.interpreter = interpreters.CSharpInterpreter() assembler_cls = assemblers.get_assembler_cls(model) self.model_ast = assembler_cls(model).assemble() def predict(self, X): exec_args = [os.path.join(self.target_exec_dir, self.project_name)] exec_args.extend(map(utils.format_arg, X)) return utils.predict_from_commandline(exec_args) @classmethod def prepare_global(cls, **kwargs): super().prepare_global(**kwargs) if cls.target_exec_dir is None: cls.target_exec_dir = os.path.join(cls._global_tmp_dir, "bin") subprocess.call([cls._dotnet, "new", "console", "--output", cls._global_tmp_dir, "--name", cls.project_name, "--language", "C#"]) def prepare(self): if self.model_ast.output_size > 1: print_code = EXECUTE_AND_PRINT_VECTOR else: print_code = EXECUTE_AND_PRINT_SCALAR executor_code = EXECUTOR_CODE_TPL.format( print_code=print_code) model_code = self.interpreter.interpret(self.model_ast) model_file_name = os.path.join(self._global_tmp_dir, "Model.cs") executor_file_name = os.path.join(self._global_tmp_dir, "Program.cs") with open(model_file_name, "w") as f: f.write(model_code) with open(executor_file_name, "w") as f: f.write(executor_code) subprocess.call([self._dotnet, "build", os.path.join(self._global_tmp_dir, f"{self.project_name}.csproj"), "--output", self.target_exec_dir])
py
b4111affd08408261146446af27a1c333ae0160c
# parameters.py """ Exp 557 - {'Initial_genes': '5000', 'Host_mutation_rate': '0.30', 'TE_progeny': '0.00, 0, 0.55, 1, 0.30, 2, 0.15, 3', 'TE_Insertion_Distribution': 'Triangle( pmax=0, pzero=3.0/3.0 )', 'Carrying_capacity': '30', 'TE_excision_rate': '0.1', 'Junk_BP': '1.4', 'Gene_Insertion_Distribution': 'Triangle( pzero=1.0/3.0, pmax=1 )', 'mutation_effect': '0.10', 'TE_death_rate': '0.0005'} """ from TEUtil import *; # note that "#" indicates a comment # set the following to True if you want messages printed to the screen # while the program runs - search for these keywords in TESim.py to see # what each one prints out output = { "SPLAT": False, "SPLAT FITNESS": False, "INITIALIZATION": False, "GENERATION": True, "HOST EXTINCTION": True, "TE EXTINCTION": True, "TRIAL NO": True, "GENE INIT": False, "TE INIT": False, }; TE_Insertion_Distribution = Triangle( pmax=0, pzero=3.0/3.0 ); Gene_Insertion_Distribution = Triangle( pzero=1.0/3.0, pmax=1 ); # Triangle( pmax, pzero ) generates values between pmax and pzero with # a triangular probability distribution, where pmax is the point of highest # probability, and pzero is the point of lowest probability # - you can change the orientation of the triangle by reversing the values # of pmax and pzero # Flat() generates values between 0 and 1 with uniform probability Gene_length = 1000; # use 1000? TE_length = 1000; # use 1000? TE_death_rate = 0.0005; TE_excision_rate = 0.1; # set this to zero for retro transposons # for retro transposons this is the probability of the given number of progeny # for dna transposons this is the probability of the given number of progeny # ___PLUS___ the original re-inserting TE_progeny = ProbabilityTable( 0.00, 0, 0.55, 1, 0.30, 2, 0.15, 3 ); Initial_genes = 5000; Append_gene = True; # True: when the intialization routine tries to place # a gene inside another gene, it instead appends it # at the end of the original gene (use this with small # amounts of Junk_BP). # False: when the intialization routine tries to place # a gene inside another gene, try to place it somewhere # else again (don't use theis option with samll amounts # of Junk_BP). Initial_TEs = 1; MILLION = 1000000; Junk_BP = 1.4 * MILLION; Host_start_fitness = 1.0; Host_mutation_rate = 0.30; Host_mutation = ProbabilityTable( 0.40, lambda fit: 0.0, 0.30, lambda fit: fit - random.random()*0.10, 0.15, lambda fit: fit, 0.15, lambda fit: fit + random.random()*0.10 ); # what happens when a TA hits a gene Insertion_effect = ProbabilityTable(0.30, lambda fit: 0.0, 0.20, lambda fit: fit - random.random()*0.10, 0.30, lambda fit: fit, 0.20, lambda fit: fit + random.random()*0.10 ); Carrying_capacity = 30; Host_reproduction_rate = 1; # how many offspring each host has Host_survival_rate = lambda propfit: min( Carrying_capacity * propfit, 0.95 ); # propfit = proportion of fitness owned by this individual Maximum_generations = 1500; Terminate_no_TEs = True; # end simulation if there are no TEs left # seed = 0; seed = None; # if seed = None, the random number generator's initial state is # set "randomly" save_frequency = 50; # Frequency with with which to save state of experiment saved = None; # if saved = None then we start a new simulation from scratch # if saves = string, then we open that file and resume a simulation
py
b4111c3d64babf65f453f1c3a3853fc05c4d49f0
from output.models.ms_data.group.group_j004_xsd.group_j004 import ( Doc, Elem, ) __all__ = [ "Doc", "Elem", ]
py
b4111c66d3d802f08b48cdff3a0c002afae77ee7
from collections import Counter for _ in xrange(int(raw_input())): alice = Counter(''.join(raw_input().split())) bob = Counter(''.join(raw_input().split())) a = Counter(alice-bob) b = Counter(bob-alice) if sum(a.values()) != 0 and sum(b.values()) != 0: print 'You draw some.' elif sum(a.values()) == 0: print 'You lose some.' elif sum(b.values()) == 0: print 'You win some.'
py
b4111d688500c9d3309b999110e5e73f7072feb3
# Copyright (c) 2015 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import mock from sahara.plugins.hdp import confighints_helper as ch_helper from sahara.tests.unit import base as sahara_base SAMPLE_CONFIG = { 'configurations': [ { 'tag': 'tag1.xml', 'properties': [ { 'name': 'prop1', 'default_value': '1234', 'description': 'the first property of tag1' }, { 'name': 'prop2', 'default_value': '5678', 'description': 'the second property of tag1' } ] }, { 'tag': 'tag2.xml', 'properties': [ { 'name': 'prop3', 'default_value': '0000', 'description': 'the first property of tag2' } ] } ] } class ConfigHintsHelperTest(sahara_base.SaharaTestCase): @mock.patch( 'sahara.plugins.hdp.confighints_helper.load_hadoop_json_for_tag', wraps=ch_helper.load_hadoop_json_for_tag) @mock.patch( 'sahara.plugins.hdp.confighints_helper.load_json_file', return_value=SAMPLE_CONFIG) def test_get_possible_hive_config_from(self, load_json_file, load_hadoop_json_for_tag): expected_config = { 'configs': [], 'params': {} } actual_config = ch_helper.get_possible_hive_config_from( 'sample-file-name.json') load_hadoop_json_for_tag.assert_called_once_with( 'sample-file-name.json', 'hive-site.xml') self.assertEqual(expected_config, actual_config) @mock.patch( 'sahara.service.edp.oozie.workflow_creator.workflow_factory.' 'get_possible_mapreduce_configs', return_value=[]) @mock.patch( 'sahara.plugins.hdp.confighints_helper.load_hadoop_json_for_tag', wraps=ch_helper.load_hadoop_json_for_tag) @mock.patch( 'sahara.plugins.hdp.confighints_helper.load_json_file', return_value=SAMPLE_CONFIG) def test_get_possible_mapreduce_config_from(self, load_json_file, load_hadoop_json_for_tag, get_poss_mr_configs): expected_config = { 'configs': [] } actual_config = ch_helper.get_possible_mapreduce_config_from( 'sample-file-name.json') load_hadoop_json_for_tag.assert_called_once_with( 'sample-file-name.json', 'mapred-site.xml') get_poss_mr_configs.assert_called_once_with() self.assertEqual(expected_config, actual_config) @mock.patch( 'sahara.plugins.hdp.confighints_helper.load_hadoop_json_for_tag', wraps=ch_helper.load_hadoop_json_for_tag) @mock.patch( 'sahara.plugins.hdp.confighints_helper.load_json_file', return_value=SAMPLE_CONFIG) def test_get_possible_pig_config_from(self, load_json_file, load_hadoop_json_for_tag): expected_config = { 'configs': [], 'args': [], 'params': {} } actual_config = ch_helper.get_possible_pig_config_from( 'sample-file-name.json') load_hadoop_json_for_tag.assert_called_once_with( 'sample-file-name.json', 'mapred-site.xml') self.assertEqual(expected_config, actual_config) def test_get_properties_for_tag(self): expected_properties = [ { 'name': 'prop1', 'default_value': '1234', 'description': 'the first property of tag1' }, { 'name': 'prop2', 'default_value': '5678', 'description': 'the second property of tag1' } ] actual_properties = ch_helper.get_properties_for_tag( SAMPLE_CONFIG['configurations'], 'tag1.xml') self.assertEqual(expected_properties, actual_properties) @mock.patch( 'sahara.plugins.hdp.confighints_helper.load_json_file', return_value=SAMPLE_CONFIG) def test_load_hadoop_json_for_tag(self, load_json_file): expected_configs = [ { 'name': 'prop3', 'value': '0000', 'description': 'the first property of tag2' } ] actual_configs = ch_helper.load_hadoop_json_for_tag( 'sample-file-name.json', 'tag2.xml') self.assertEqual(expected_configs, actual_configs)
py
b4111e012df1207bf2917703a396c7af7d954bc1
## @file test.py # @author Arkin Modi, Leon So, Timothy Choy # @brief Testing for ScrumBot # @date Apr 5, 2020 import pytest import task, sprint, meeting, project, dict import projectList import datetime ## @brief Functional Requirement Tests for BE1 (Test Plan Section 3.1.1) class Test_FR_BE1: # Installation Test Done Manually pass ## @brief Functional Requirement Tests for BE2 (Test Plan Section 3.1.2) class Test_FR_BE2: ## @brief Creates a test project and project list for each test @pytest.fixture(autouse=True) def setup_method(self): self.test_project = project.Project("Name", "Description") self.test_projectList = projectList.ProjectList() ## @brief Check if Name and Description is retrieved correctly def test_create_project_and_getters(self): assert( self.test_project.get_name() == "Name" and self.test_project.get_desc() == "Description" ) ## @brief Check if Name and Description is retrieved correctly for a project with on description def test_create_project_and_getters_with_no_description(self): test = project.Project("Name") assert( test.get_name() == "Name" and test.get_desc() == "No description" ) ## @brief Add project to the project list def test_add_project_to_list(self): self.test_projectList.add(self.test_project) assert(self.test_projectList.to_seq()[0][1] == self.test_project) ## @brief Functional Requirement Tests for BE3 (Test Plan Section 3.1.3) class Test_FR_BE3: ## @brief Creates a test project and project list for each test @pytest.fixture(autouse=True) def setup_method(self): self.test_project = project.Project("Name", "Description") self.test_projectList = projectList.ProjectList() self.test_projectList.add(self.test_project) ## @brief Checks is it can remove a project from the project list def test_remove_project(self): assert(self.test_projectList.to_seq()[0][1] == self.test_project) self.test_projectList.remove(0) assert(self.test_projectList.to_seq() == []) ## @brief Tries to remove a project that is not in the project list def test_remove_project_not_in_list(self): with pytest.raises(KeyError): self.test_projectList.remove(1) ## @brief Functional Requirement Tests for BE4 (Test Plan Section 3.1.4) class Test_FR_BE4: ## @brief Creates a test project for each test @pytest.fixture(autouse=True) def setup_method(self): self.test_project = project.Project("Name", "Description") ## @brief Checks if the Task properties are retrieved correctly def test_add_and_get_task(self): self.test_project.add_sprint() self.test_project.add_task("Name", "2020/01/01 00:00", "Details") assert( self.test_project.get_tasks(0)[0][1][0] == "Name" and self.test_project.get_tasks(0)[0][1][1] == "Jan 01, 2020 at 12:00 AM" and self.test_project.get_tasks(0)[0][1][2] == "Details" ) ## @brief Checks if the Task properties are retrieved correctly def test_add_and_get_task_with_no_details(self): self.test_project.add_sprint() self.test_project.add_task("Name", "2020/01/01 00:00") assert( self.test_project.get_tasks(0)[0][1][0] == "Name" and self.test_project.get_tasks(0)[0][1][1] == "Jan 01, 2020 at 12:00 AM" and self.test_project.get_tasks(0)[0][1][2] == "No details" ) ## @brief Tries to get that Tasks of a Sprint that is not in the list of Sprints def test_get_tasks_of_sprint_not_in_list(self): with pytest.raises(IndexError): self.test_project.get_tasks(0) ## @brief Checks if a single Tasks properties are retrieved correctly def test_get_single_task(self): self.test_project.add_sprint() self.test_project.add_task("Name", "2020/01/01 00:00", "Details") assert( self.test_project.get_task(0, 0)[0] == "Name" and self.test_project.get_task(0, 0)[1] == "Jan 01, 2020 at 12:00 AM" and self.test_project.get_task(0, 0)[2] == "Details" ) ## @brief Tries to add a Task to a Sprint that does not exist def test_add_task_with_no_sprint(self): with pytest.raises(IndexError): self.test_project.add_task("Name", "2020/01/01 00:00", "Details") ## @brief Tries to get a single Task of a Sprint that is not in the list of Sprints def test_get_task_with_no_sprint(self): with pytest.raises(IndexError): self.test_project.get_task(0, 0) ## @brief Checks if Feedback is retrieved correctly def test_add_and_get_feedback(self): self.test_project.add_sprint() self.test_project.add_task("Name", "2020/01/01 00:00", "Details") self.test_project.add_feedback(0, "Feedback") assert( self.test_project.get_feedback(0, 0) == ["Feedback"] ) ## @brief Tries to add Feedback to a Sprint that is not in the list of Sprints def test_add_feedback_with_no_sprint(self): with pytest.raises(IndexError): self.test_project.add_feedback(0, "Feedback") ## @brief Tries to add Feedback to Sprint not in the list of Sprints def test_get_feedback_with_no_sprint(self): with pytest.raises(IndexError): self.test_project.get_feedback(0, "Feedback") ## @brief Functional Requirement Tests for BE5 (Test Plan Section 3.1.5) class Test_FR_BE5: ## @brief Creates a test project for each test @pytest.fixture(autouse=True) def setup_method(self): self.test_project = project.Project("Name", "Description") ## @brief Checks if Task is removed def test_rm_task(self): self.test_project.add_sprint() self.test_project.add_task("Name", "2020/01/01 00:00", "Details") assert( self.test_project.get_tasks(0)[0][1][0] == "Name" and self.test_project.get_tasks(0)[0][1][1] == "Jan 01, 2020 at 12:00 AM" and self.test_project.get_tasks(0)[0][1][2] == "Details" ) self.test_project.rm_task(0) assert( self.test_project.get_tasks(0) == [] ) ## @brief Tries to remove a Task of a Sprint that is not in the list of Sprints def test_rm_task_with_no_sprint(self): with pytest.raises(IndexError): self.test_project.rm_task(0) ## @brief Tries to remove a Task that is not in the list of Tasks def test_rm_task_that_is_not_in_task_list(self): with pytest.raises(KeyError): self.test_project.add_sprint() self.test_project.rm_task(0) ## @brief Checks if the Task's details can be updated def test_set_task_details(self): self.test_project.add_sprint() self.test_project.add_task("Name", "2020/01/01 00:00", "Details") assert(self.test_project.get_tasks(0)[0][1][2] == "Details") self.test_project.set_details(0, "New Details") assert(self.test_project.get_tasks(0)[0][1][2] == "New Details") ## @brief Tries to update the details of a Task that does not exist def test_set_task_details_of_empty_list_of_sprints(self): with pytest.raises(IndexError): self.test_project.set_details(0, "New Details") ## @brief Functional Requirement Tests for BE6 (Test Plan Section 3.1.6) class Test_FR_BE6: ## @brief Creates a test project for each test @pytest.fixture(autouse=True) def setup_method(self): self.test_project = project.Project("Name", "Description") ## @ brief Checks if Feedback is removed def test_rm_feedback(self): self.test_project.add_sprint() self.test_project.add_task("Name", "2020/01/01 00:00", "Details") self.test_project.add_feedback(0, "Feedback") assert( self.test_project.get_feedback(0, 0) == ["Feedback"] ) self.test_project.rm_feedback(0, 0) assert( self.test_project.get_feedback(0, 0) == [] ) ## @brief Tries to remove Feedback from a Sprint that is not in the list of Sprints def test_rm_feedback_with_no_sprint(self): with pytest.raises(IndexError): self.test_project.rm_feedback(0, 0) ## @brief Functional Requirement Tests for BE7 (Test Plan Section 3.1.7) class Test_FR_BE7: ## @brief Creates a test project for each test @pytest.fixture(autouse=True) def setup_method(self): self.test_project = project.Project("Name", "Description") ## @brief Checks if Requirement is retrieved correctly def test_add_and_get_requirement(self): self.test_project.add_rqe("Requirement") assert( self.test_project.get_rqes() == ["Requirement"] ) ## @brief Checks if Requirement is removed def test_rm_requirement(self): self.test_project.add_rqe("Requirement") assert(self.test_project.get_rqes() == ["Requirement"]) self.test_project.rm_rqe(0) assert(self.test_project.get_rqes() == []) ## @brief Tries to remove a Requirement that is not in the list of Requirements def test_rm_requirement_not_in_list(self): with pytest.raises(IndexError): self.test_project.rm_rqe(0) ## @brief Functional Requirement Tests for BE8 (Test Plan Section 3.1.8) class Test_FR_BE8: ## @brief Creates a test project for each test @pytest.fixture(autouse=True) def setup_method(self): self.test_project = project.Project("Name", "Description") self.test_project.add_meeting("Name", "2020/01/01 00:00", "grooming", "Description") ## @breif Checks if a Meeting's properties are retrieved correctly def test_add_and_get_meeting(self): assert( self.test_project.get_meetings()[0][1][0] == "Name" and self.test_project.get_meetings()[0][1][1] == "Jan 01, 2020 at 12:00 AM" and self.test_project.get_meetings()[0][1][2] == "GROOMING" ) ## @brief Checks with Meeting name and description getter are correctly functioning def test_get_meeting_name_and_description(self): assert( self.test_project.get_meeting_name(0) == "Name" and self.test_project.get_meeting_desc(0) == "Description" ) ## @brief Checks with Meeting name and description getter are correctly functioning def test_get_meeting_with_no_description(self): self.test_project.add_meeting("Name", "2020/01/01 00:00", "grooming") assert( self.test_project.get_meeting_desc(1) == "No description" ) ## @brief Tries to get the name of a Meeting that is not in the list of Meetings def test_get_meeting_name_of_meeting_not_in_list(self): with pytest.raises(KeyError): self.test_project.get_meeting_name(2) ## @brief Tries to get the description of a Meeting that is not in the list of Meetings def test_get_description_of_meeting_not_in_list(self): with pytest.raises(KeyError): self.test_project.get_meeting_desc(2) ## @brief Checks if all valid Meeting Types are correctly registered def test_all_meeting_types(self): self.test_project.add_meeting("Name", "2020/01/01 00:00", "grooming", "Description") self.test_project.add_meeting("Name", "2020/01/01 00:00", "standup", "Description") self.test_project.add_meeting("Name", "2020/01/01 00:00", "retrospective", "Description") self.test_project.add_meeting("Name", "2020/01/01 00:00", "sprintplanning", "Description") assert( self.test_project.get_meetings()[1][1][2] == "GROOMING" and self.test_project.get_meetings()[2][1][2] == "STANDUP" and self.test_project.get_meetings()[3][1][2] == "RETROSPECTIVE" and self.test_project.get_meetings()[4][1][2] == "SPRINTPLANNING" ) ## @brief Tries to register and invalid Meeting Type def test_invalid_meeting_type(self): with pytest.raises(TypeError): self.test_project.add_meeting("Name", "2020/01/01 00:00", "dance", "Description") ## @brief Functional Requirement Tests for BE9 (Test Plan Section 3.1.9) class Test_FR_BE9: ## @brief Creates a test project for each test @pytest.fixture(autouse=True) def setup_method(self): self.test_project = project.Project("Name", "Description") self.test_project.add_meeting("Name", "2020/01/01 00:00", "grooming", "Description") ## @brief Checks if Meeting was removed def test_rm_meeting(self): assert( self.test_project.get_meetings()[0][1][0] == "Name" and self.test_project.get_meetings()[0][1][1] == "Jan 01, 2020 at 12:00 AM" and self.test_project.get_meetings()[0][1][2] == "GROOMING" ) self.test_project.rm_meeting(0) assert( self.test_project.get_meetings() == [] ) ## @brief Tries to remove a Meeting that is not in the list of Meetings def test_rm_meeting_with_wrong_key(self): with pytest.raises(KeyError): self.test_project.rm_meeting(1) class Test_FR_BE10: ## @brief Creates a test project for each test @pytest.fixture(autouse=True) def setup_method(self): self.test_project = project.Project("Name", "Description") self.test_project.add_meeting("Name", "2020/01/01 00:00", "grooming", "Description") self.test_project.add_meeting("Name", "2020/01/01 00:00", "standup", "Description") self.test_project.add_meeting("Name", "2020/01/01 00:00", "retrospective", "Description") self.test_project.add_meeting("Name", "2020/01/01 00:00", "sprintplanning", "Description") ## @brief Checks if all Meeting created are correctly retrieved def test_view_all_meeting(self): assert( len(self.test_project.get_meetings()) == 4 and self.test_project.get_meetings()[0][1][2] == "GROOMING" and self.test_project.get_meetings()[1][1][2] == "STANDUP" and self.test_project.get_meetings()[2][1][2] == "RETROSPECTIVE" and self.test_project.get_meetings()[3][1][2] == "SPRINTPLANNING" ) class Test_FR_BE11: ## @brief Creates a test project for each test @pytest.fixture(autouse=True) def setup_method(self): self.test_project = project.Project("Name", "Description") self.test_project.add_sprint() ## @brief Checks if all Tasks created are correctly retrieved def test_view_all_tasks(self): self.test_project.add_task("1", "2020/01/01 00:00", "Details") self.test_project.add_task("2", "2020/01/01 00:00", "Details") self.test_project.add_task("3", "2020/01/01 00:00", "Details") assert( self.test_project.get_tasks(0)[0][1][0] == "1" and self.test_project.get_tasks(0)[1][1][0] == "2" and self.test_project.get_tasks(0)[2][1][0] == "3" )
py
b4111ebf507793baa50967e5613db7ed75e948aa
# -*- coding: utf-8 -*- """Top-level package for cuttertest.""" __author__ = """Nhlavutelo Macebele""" __email__ = '[email protected]' __version__ = '0.0'
py
b4111f5bffa4c21e4749bbda50dad8593b14dc28
import numpy as np class Vector2D: def __init__(self, x=0, y=0): self.x = x self.y = y def __eq__(self, vector): assert isinstance(vector, Vector2D) return self.x == vector.x and self.y == vector.y def __neg__(self, vector): assert isinstance(vector, Vector2D) return not (self == vector) def __neg__(self): return Vector2D(-self.x, -self.y) def __abs__(self): return Vector2D(abs(self.x), abs(self.y)) def __add__(self, vector): assert isinstance(vector, Vector2D) return Vector2D(self.x + vector.x, self.y + vector.y) def __radd__(self, vector): assert isinstance(vector, Vector2D) return vector + self def __iadd__(self, vector): assert isinstance(vector, Vector2D) self.x += vector.x self.y += vector.y return self def __sub__(self, vector): assert isinstance(vector, Vector2D) return Vector2D(self.x - vector.x, self.y - vector.y) def __rsub__(self, vector): assert isinstance(vector, Vector2D) return -vector + self def __isub__(self, vector): assert isinstance(vector, Vector2D) self.x -= vector.x self.y -= vector.y return self def __mul__(self, value): assert isinstance(value, (int, float)) return Vector2D(self.x * value, self.y * value) def __rmul__(self, value): assert isinstance(value, (int, float)) return self * value def __truediv__(self, value): assert isinstance(value, (int, float)) assert value != 0 return Vector2D(self.x / value, self.y / value) def __floordiv__(self, value): assert isinstance(value, (int, float)) assert value != 0 return Vector2D(self.x // value, self.y // value) def __pow__(self, value): assert isinstance(value, (int, float)) return Vector2D(self.x ** value, self.y ** value) def dot(self, vector): assert isinstance(vector, Vector2D) return Vector2D(self.x * vector.x, self.y * vector.y) def squared_magnitude(self): return self.x ** 2 + self.y ** 2 def magnitude(self): return np.sqrt(self.squared_magnitude()) def to_tuple(self): return (self.x, self.y) def __str__(self): return f'({self.x} {self.y})'
py
b4111f8bf593ee02bf67fe8105938401f4c5d521
#!/usr/bin/python """This script starts a web server that is listening on port 8000 on localhost. It will serve local files in the current subdirectory. An example: If this directory would contain the file "index.html", the file would be retrievable under this URL: http://localhost:8000/index.html """ from BaseHTTPServer import HTTPServer from SimpleHTTPServer import SimpleHTTPRequestHandler port = 8000 handler = SimpleHTTPRequestHandler httpd = HTTPServer(("127.0.0.1", port), handler) httpd.serve_forever()
py
b4111fda8f207297c5fe69083359dcd136607294
def test_cli_template(): from snakeobjects import snakeUtils
py
b411200d704d9b031035775e933c0723e2793ff4
""" Copyright (c) 2018 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import networkx as nx import numpy as np from mo.graph.graph import create_edge from mo.middle.pattern_match import apply_pattern from mo.ops.op import Op, PermuteAttrs from mo.ops.reshape import Reshape def mean_to_avgpool_action(graph: nx.MultiDiGraph, matches: dict): if matches['axis'].value is None or matches['input'].shape is None: return dims = len(matches['input'].shape) ones = np.ones(dims, dtype=np.int64) mean = graph.node[matches['mean'].node] mean['stride'] = np.array(ones) # TODO: need to check axis with real layout spatial_dims = np.array(matches['axis'].value) mean['spatial_dims'] = spatial_dims mean['pad'] = np.zeros((dims, 2), np.int64) mean['pad_spatial_shape'] = np.array(mean['pad'][spatial_dims]) window = np.array(ones) window[spatial_dims] = matches['input'].shape[spatial_dims] mean['window'] = window mean['TF_op'] = mean['op'] mean['op'] = 'AvgPool' mean['pool_method'] = 'avg' mean['rounding_type'] = 'ceil' mean['exclude_pad'] = 'true' mean['kernel_spatial'] = window[spatial_dims] graph.remove_edge(matches['axis'].node, matches['mean'].node) mean['permute_attrs'] = PermuteAttrs().update_attrs(attrs=[('pad', 'input:0'), ('stride', 'input:0'), ('window', 'input:0'), ('spatial_dims', 'input:0')]) if matches['mean'].keep_dims == False: output = matches['mean'].out_node() pool_node = matches['mean'] # Keep dims for AvgPool shape = np.array(output.shape) for idx in spatial_dims: shape = np.insert(shape, idx, 1) graph.remove_edge(pool_node.id, output.id) # Create new data for pool with all dims pool_data = Op.create_data_node(graph, pool_node, {'shape': np.array(shape)}) # Create and connect reshape node reshape_op = Reshape(graph, {'dim': np.array(output.shape)}) reshape_node = reshape_op.create_node([pool_data], dict(name='Reshape_', permute_attrs=PermuteAttrs().update_attrs(attrs=[('dim', 'output:0')]))) create_edge(reshape_node, output) def mean_to_avgpool(graph: nx.MultiDiGraph): """ Translate Mean as a average pooling with kernel size equals to reduced dimensions and with no padding. """ apply_pattern( graph, nodes=[ ('input', dict(kind='data')), ('axis', dict(kind='data')), ('mean', dict(kind='op', op='Mean'))], edges=[ ('input', 'mean', {'in': 0}), ('axis', 'mean', {'in': 1})], action=mean_to_avgpool_action ) return graph
py
b411204c6c3c7c24ac0b31011661143aad01bfeb
import math import torch from torch import nn, Tensor from torch.nn import init from torch.nn.parameter import Parameter from torch.nn.modules.utils import _pair from torch.jit.annotations import Optional, Tuple from torchvision.ops.deform_conv import deform_conv2d def equi_conv2d(input, weight, bias=None, stride=(1, 1), padding=(0, 0), dilation=(1, 1)): # type: (Tensor, Tensor, Tensor, Optional[Tensor], Tuple[int, int], Tuple[int, int], Tuple[int, int]) -> Tensor """ Performs Equirectangular Convolution, described in Corners for Layout : End to End Layout Recovery from 360 Images Arguments: input (Tensor[batch_size, in_channels, in_height, in_width]): input tensor weight (Tensor[out_channels, in_channels // groups, kernel_height, kernel_width]): convolution weights, split into groups of size (in_channels // groups) bias (Tensor[out_channels]): optional bias of shape (out_channels,). Default: None stride (int or Tuple[int, int]): distance between convolution centers. Default: 1 padding (int or Tuple[int, int]): height/width of padding of zeroes around each image. Default: 0 dilation (int or Tuple[int, int]): the spacing between kernel elements. Default: 1 Returns: output (Tensor[batch_sz, out_channels, out_h, out_w]): result of convolution Examples:: >>> input = torch.rand(1, 3, 10, 10) >>> kh, kw = 3, 3 >>> weight = torch.rand(5, 3, kh, kw) >>> # offset should have the same spatial size as the output >>> # of the convolution. In this case, for an input of 10, stride of 1 >>> # and kernel size of 3, without padding, the output size is 8 >>> offset = torch.rand(5, 2 * kh * kw, 8, 8) >>> out = deform_conv2d(input, offset, weight) >>> print(out.shape) >>> # returns >>> torch.Size([1, 5, 8, 8]) """ weight = weight.to(input.device) out_channels = weight.shape[0] if bias is None: bias = torch.zeros(out_channels, device=input.device, dtype=input.dtype) else: bias = bias.to(input.device) stride_h, stride_w = _pair(stride) pad_h, pad_w = _pair(padding) dil_h, dil_w = _pair(dilation) weights_h, weights_w = weight.shape[-2:] bs, n_in_channels, in_h, in_w = input.shape pano_W = int((in_w + 2*pad_w - dil_w*(weights_w-1)-1)//stride_w + 1) pano_H = int((in_h + 2*pad_h - dil_h*(weights_h-1)-1)//stride_h + 1) def rotation_matrix(axis, theta): """ code by cfernandez and jmfacil """ """ Return the rotation matrix associated with counterclockwise rotation about the given axis by theta radians. """ axis = torch.as_tensor(axis, device='cpu', dtype=input.dtype) axis = axis / math.sqrt(torch.dot(axis, axis)) a = math.cos(theta / 2.0) b, c, d = -axis * math.sin(theta / 2.0) aa, bb, cc, dd = a * a, b * b, c * c, d * d bc, ad, ac, ab, bd, cd = b * c, a * d, a * c, a * b, b * d, c * d ROT = torch.tensor([[aa + bb - cc - dd, 2 * (bc + ad), 2 * (bd - ac)], [2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)], [2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]], device='cpu', dtype=input.dtype) return ROT def equi_coord(pano_W,pano_H,k_W,k_H,u,v): """ code by cfernandez and jmfacil """ fov_w = k_W * math.radians(360./float(pano_W)) focal = (float(k_W)/2) / math.tan(fov_w/2) c_x = 0 c_y = 0 u_r, v_r = u, v u_r, v_r = u_r-float(pano_W)/2.,v_r-float(pano_H)/2. phi, theta = u_r/(pano_W) * (math.pi) *2, -v_r/(pano_H) * (math.pi) ROT = rotation_matrix((0,1,0),phi) ROT = torch.matmul(ROT,rotation_matrix((1,0,0),theta))#np.eye(3) h_range = torch.tensor(range(k_H), device='cpu', dtype=input.dtype) w_range = torch.tensor(range(k_W,), device='cpu', dtype=input.dtype) w_ones = (torch.ones(k_W, device='cpu', dtype=input.dtype)) h_ones = (torch.ones(k_H, device='cpu', dtype=input.dtype)) h_grid = torch.matmul(torch.unsqueeze(h_range,-1),torch.unsqueeze(w_ones,0))+0.5-float(k_H)/2 w_grid = torch.matmul(torch.unsqueeze(h_ones,-1),torch.unsqueeze(w_range,0))+0.5-float(k_W)/2 K = torch.tensor([[focal,0,c_x],[0,focal,c_y],[0.,0.,1.]], device='cpu', dtype=input.dtype) inv_K = torch.inverse(K) rays = torch.stack([w_grid,h_grid,torch.ones(h_grid.shape, device='cpu', dtype=input.dtype)],0) rays = torch.matmul(inv_K,rays.reshape(3,k_H*k_W)) rays /= torch.norm(rays,dim=0,keepdim=True) rays = torch.matmul(ROT,rays) rays = rays.reshape(3,k_H,k_W) phi = torch.atan2(rays[0,...],rays[2,...]) theta = torch.asin(torch.clamp(rays[1,...],-1,1)) x = (pano_W)/(2.*math.pi)*phi +float(pano_W)/2. y = (pano_H)/(math.pi)*theta +float(pano_H)/2. roi_y = h_grid+v_r +float(pano_H)/2. roi_x = w_grid+u_r +float(pano_W)/2. new_roi_y = (y) new_roi_x = (x) offsets_x = (new_roi_x - roi_x) offsets_y = (new_roi_y - roi_y) return offsets_x, offsets_y def distortion_aware_map(pano_W, pano_H, k_W, k_H, s_width = 1, s_height = 1,bs = 16): """ code by cfernandez and jmfacil """ #n=1 offset = torch.zeros(2*k_H*k_W,pano_H,pano_W, device='cpu', dtype=input.dtype) for v in range(0, pano_H, s_height): for u in range(0, pano_W, s_width): offsets_x, offsets_y = equi_coord(pano_W,pano_H,k_W,k_H,u,v) offsets = torch.cat((torch.unsqueeze(offsets_y,-1),torch.unsqueeze(offsets_x,-1)),dim=-1) total_offsets = offsets.flatten() offset[:,v,u] = total_offsets offset = torch.unsqueeze(offset, 0) offset = torch.cat([offset for _ in range(bs)],dim=0) offset.requires_grad_(False) #print(offset.shape) #print(offset) return offset offset = distortion_aware_map(pano_W, pano_H, weights_w, weights_h, s_width = stride_w, s_height = stride_h, bs = bs) offset = offset.to(input.device) return deform_conv2d(input, offset, weight, bias=bias, stride=stride, padding=padding, dilation=dilation) class EquiConv2d(nn.Module): """ See equi_conv2d """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): super(EquiConv2d, self).__init__() if in_channels % groups != 0: raise ValueError('in_channels must be divisible by groups') if out_channels % groups != 0: raise ValueError('out_channels must be divisible by groups') self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = _pair(kernel_size) self.stride = _pair(stride) self.padding = _pair(padding) self.dilation = _pair(dilation) self.groups = groups self.weight = Parameter(torch.empty(out_channels, in_channels // groups, self.kernel_size[0], self.kernel_size[1])) if bias: self.bias = Parameter(torch.empty(out_channels)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): init.kaiming_uniform_(self.weight, a=math.sqrt(5)) if self.bias is not None: fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight) bound = 1 / math.sqrt(fan_in) init.uniform_(self.bias, -bound, bound) def forward(self, input): """ Arguments: input (Tensor[batch_size, in_channels, in_height, in_width]): input tensor """ return equi_conv2d(input, self.weight, self.bias, stride=self.stride, padding=self.padding, dilation=self.dilation) def __repr__(self): s = self.__class__.__name__ + '(' s += '{in_channels}' s += ', {out_channels}' s += ', kernel_size={kernel_size}' s += ', stride={stride}' s += ', padding={padding}' if self.padding != (0, 0) else '' s += ', dilation={dilation}' if self.dilation != (1, 1) else '' s += ', groups={groups}' if self.groups != 1 else '' s += ', bias=False' if self.bias is None else '' s += ')' return s.format(**self.__dict__)
py
b411205aa93fef697abd86748b1b7c6325ce214c
# This source code is part of the Biotite package and is distributed # under the 3-Clause BSD License. Please see 'LICENSE.rst' for further # information. import numpy as np import pytest import biotite.sequence as seq import biotite.sequence.align as align K = 3 @pytest.fixture def kmer_alphabet(): return align.KmerAlphabet(seq.ProteinSequence.alphabet, K) @pytest.fixture def spaced_kmer_alphabet(): return align.KmerAlphabet(seq.ProteinSequence.alphabet, K, spacing=[0,1,2]) np.random.seed(0) N = 10 L = 30 @pytest.mark.parametrize( "ref_split_kmer_code", # Test for single instances as input list(np.random.randint(len(seq.ProteinSequence.alphabet), size=(N, K))) + # Test for multiple instances as input list(np.random.randint(len(seq.ProteinSequence.alphabet), size=(N, L, K))) ) def test_fuse_and_split(kmer_alphabet, ref_split_kmer_code): """ Check if :meth:`fuse()` and its reverse counterpart :meth:`split()` work properly by using them back and forth on random input. """ fused = kmer_alphabet.fuse(ref_split_kmer_code) test_split_kmer_code = kmer_alphabet.split(fused) assert test_split_kmer_code.tolist() == ref_split_kmer_code.tolist() np.random.seed(0) N = 10 @pytest.mark.parametrize( "split_kmer_code", np.random.randint(len(seq.ProteinSequence.alphabet), size=(N, K)) ) def test_encode_and_decode(kmer_alphabet, split_kmer_code): """ Check if :meth:`encode()` and its reverse counterpart :meth:`decode()` work properly by using them back and forth on random input. """ alph = seq.ProteinSequence.alphabet ref_kmer_symbol = alph.decode_multiple(split_kmer_code) kmer_code = kmer_alphabet.encode(ref_kmer_symbol) test_kmer_symbol = kmer_alphabet.decode(kmer_code) assert test_kmer_symbol.tolist() == ref_kmer_symbol.tolist() def test_create_continuous_kmers(kmer_alphabet): """ Test :meth:`create_kmers()` against repetitive use of :meth:`fuse()`, which rely on two different implementations. The input sequence code is randomly created. """ np.random.seed(0) LENGTH = 100 seq_code = np.random.randint( len(seq.ProteinSequence.alphabet), size=LENGTH, dtype=np.uint8 ) ref_kmers = [ kmer_alphabet.fuse(seq_code[i : i + kmer_alphabet.k]) for i in range(len(seq_code) - kmer_alphabet.k + 1) ] test_kmers = kmer_alphabet.create_kmers(seq_code) assert test_kmers.tolist() == ref_kmers N = 50 @pytest.mark.parametrize("seed", range(N)) def test_create_spaced_kmers(kmer_alphabet, spaced_kmer_alphabet, seed): """ Test :meth:`create_kmers()` for creating spaced *k-mers*. Compare results from random sequences to corresponding results from :meth:`create_kmers()` without spacing, by using a spacing model that is equivalent to non-spaced *k-mers*. """ MIN_LENGTH = 10 MAX_LENGTH = 1000 np.random.seed(seed) sequence = seq.ProteinSequence() sequence.code = np.random.randint( len(sequence.alphabet), size=np.random.randint(MIN_LENGTH, MAX_LENGTH) ) ref_kmers = kmer_alphabet.create_kmers(sequence.code) test_kmers = spaced_kmer_alphabet.create_kmers(sequence.code) assert len(test_kmers) == len(ref_kmers) assert test_kmers.tolist() == ref_kmers.tolist() def test_invalid_spacing(): """ Check if expected exceptions are raised if an invalid spacing is given. """ alphabet = seq.ProteinSequence.alphabet with pytest.raises(ValueError): # Not enough informative positions for given k align.KmerAlphabet(alphabet, 5, spacing=[0, 1, 3, 4]) with pytest.raises(ValueError): # Duplicate positions align.KmerAlphabet(alphabet, 5, spacing=[0, 1, 1, 3, 4]) with pytest.raises(ValueError): # Negative values align.KmerAlphabet(alphabet, 5, spacing=[-1, 1, 2, 3, 4])
py
b411209e81065be5435837705481f676591b20b7
import unittest from music21.converter import parseData as m21ParseData from romanyh.voicing import solveProgression from romanyh.voicing import getChordFromPitches from romanyh.voicing import getKeyFromString from romanyh.voicing import getPitchFromString from romanyh.voicing import getLeadingTone from romanyh.voicing import getVerticalIntervalsFromPitches from romanyh.voicing import getInterval from romanyh.voicing import isTriad from romanyh.voicing import voiceChord from romanyh.voicing import progressionCost from romanyh.voicing import chordCost trivial = """ Composer: Néstor Nápoles López Title: Changing keys Time signature: 4/4 m1 b1 C: I b2 I m2 I b2 I m3 I """ basic = """ Composer: Néstor Nápoles López Title: Basic Time signature: 4/4 m1 b1 C: I b3 IV m2 Cad64 b3 V m3 I """ changingKeys = """ Composer: Néstor Nápoles López Title: Changing keys Time signature: 3/4 m1 b1 C: I c: b3 I m2 C: V c: b3 V m3 C: I c: b3 I """ def cleanupCache(): getChordFromPitches.cache_clear() getKeyFromString.cache_clear() getPitchFromString.cache_clear() getLeadingTone.cache_clear() getVerticalIntervalsFromPitches.cache_clear() getInterval.cache_clear() isTriad.cache_clear() voiceChord.cache_clear() progressionCost.cache_clear() chordCost.cache_clear() def getCaches(): return ( ("getChordFromPitches", getChordFromPitches.cache_info()), ("getKeyFromString", getKeyFromString.cache_info()), ("getPitchFromString", getPitchFromString.cache_info()), ("getLeadingTone", getLeadingTone.cache_info()), ( "getVerticalIntervalsFromPitches", getVerticalIntervalsFromPitches.cache_info(), ), ("getInterval", getInterval.cache_info()), ("isTriad", isTriad.cache_info()), ("voiceChord", voiceChord.cache_info()), ("progressionCost", progressionCost.cache_info()), ("chordCost", chordCost.cache_info()), ) def romanNumeralsToPitches(romanNumerals): pitchTuples = [] for rn in romanNumerals: pitchTuples.append(tuple(p.nameWithOctave for p in rn.pitches)) return pitchTuples class TestTrivialExample(unittest.TestCase): @classmethod def setUpClass(cls): cls.testFile = trivial cls.voicingsLengthGT = (43, 43, 43, 43, 43) cls.cachesGT = ( {"hits": 3698, "misses": 46}, # getChordFromPitches {"hits": 1849, "misses": 1}, # getKeyFromString {"hits": 449, "misses": 10}, # getPitchFromString {"hits": 1848, "misses": 1}, # getLeadingTone {"hits": 3655, "misses": 43}, # getVerticalIntervalsFromPitches {"hits": 7799, "misses": 71}, # getInterval {"hits": 42, "misses": 2}, # isTriad {"hits": 4, "misses": 1}, # voiceChord {"hits": 5547, "misses": 1849}, # progressionCost {"hits": 172, "misses": 43}, # chordCost ) def setUp(self): self.s = m21ParseData(self.testFile, format="romantext") self.romanNumerals = [ rn for rn in self.s.flat.getElementsByClass("RomanNumeral") ] def test_voicing_length(self): pitchTuples = romanNumeralsToPitches(self.romanNumerals) for i, pitches in enumerate(pitchTuples): voicings = voiceChord(pitches, allowedUnisons=1) voicingLengthGT = self.voicingsLengthGT[i] with self.subTest(msg=str(pitches)): self.assertEqual(len(voicings), voicingLengthGT) def test_cache_info(self): solveProgression(self.romanNumerals, allowedUnisons=1) caches = getCaches() for i, cache in enumerate(caches): cacheName, cacheInfo = cache cacheGT = self.cachesGT[i] with self.subTest(msg=cacheName): self.assertEqual(cacheInfo.hits, cacheGT["hits"]) self.assertEqual(cacheInfo.misses, cacheGT["misses"]) def tearDown(self): cleanupCache() class TestBasicExample(TestTrivialExample): @classmethod def setUpClass(cls): cls.testFile = basic cls.voicingsLengthGT = (43, 46, 28, 46, 43) cls.cachesGT = ( {"hits": 13064, "misses": 173}, # getChordFromPitches {"hits": 6532, "misses": 1}, # getKeyFromString {"hits": 1780, "misses": 24}, # getPitchFromString {"hits": 6531, "misses": 1}, # getLeadingTone {"hits": 12901, "misses": 163}, # getVerticalIntervalsFromPitches {"hits": 27617, "misses": 266}, # getInterval {"hits": 161, "misses": 6}, # isTriad {"hits": 1, "misses": 4}, # voiceChord {"hits": 0, "misses": 6532}, # progressionCost {"hits": 43, "misses": 163}, # chordCost ) class TestChangingKeysExample(TestTrivialExample): @classmethod def setUpClass(cls): cls.testFile = changingKeys cls.voicingsLengthGT = (43, 43, 46, 46, 43, 43) cls.cachesGT = ( {"hits": 15842, "misses": 95}, # getChordFromPitches {"hits": 7921, "misses": 2}, # getKeyFromString {"hits": 1033, "misses": 17}, # getPitchFromString {"hits": 7919, "misses": 2}, # getLeadingTone {"hits": 15753, "misses": 89}, # getVerticalIntervalsFromPitches {"hits": 32469, "misses": 178}, # getInterval {"hits": 87, "misses": 4}, # isTriad {"hits": 4, "misses": 2}, # voiceChord {"hits": 1849, "misses": 7921}, # progressionCost {"hits": 175, "misses": 89}, # chordCost ) if __name__ == "__main__": unittest.main()
py
b4112158eb43a79e8bcf4d01e4f5273daf9d3992
from typing import Iterable import matplotlib.axis import matplotlib.pyplot as plt import pandas as pd import seaborn as sns def rename_teachers(data: pd.DataFrame): dic = { "leitner": "Leitner", "forward": "Conservative\nsampling", "threshold": "Myopic", } for k, v in dic.items(): data["teacher"] = data["teacher"].replace([k], v) return data def boxplot_n_learnt(data: pd.DataFrame, ax: matplotlib.axes._axes.Axes = None, ylim: Iterable = None, x_label: str = "Teacher", y_label: str = "Learned", dot_size: int = 3, dot_alpha: float = 0.7): if ax is None: fig, ax = plt.subplots() data = rename_teachers(data) data = data.rename(columns={ "n_learnt": y_label, "teacher": x_label }) order = ["Leitner", "Myopic", "Conservative\nsampling"] colors = ["C0", "C1", "C2"] sns.boxplot(x=x_label, y=y_label, data=data, ax=ax, palette=colors, order=order, showfliers=False) sns.stripplot(x=x_label, y=y_label, data=data, s=dot_size, color="0.25", alpha=dot_alpha, ax=ax, order=order) ax.set_xticklabels(ax.get_xmajorticklabels(), fontsize=13) if ylim is not None: ax.set_ylim(*ylim) ax.set_xlabel("")
py
b4112169b0d6ce81a8407be4c68918127d15f038
#!/usr/bin/env python # -*- coding: utf-8 -*- from setuptools import setup import re import os import sys def get_version(package): """ Return package version as listed in `__version__` in `init.py`. """ init_py = open(os.path.join(package, '__init__.py')).read() return re.search("__version__ = ['\"]([^'\"]+)['\"]", init_py).group(1) def get_packages(package): """ Return root package and all sub-packages. """ return [dirpath for dirpath, dirnames, filenames in os.walk(package) if os.path.exists(os.path.join(dirpath, '__init__.py'))] def get_package_data(package): """ Return all files under the root package, that are not in a package themselves. """ walk = [(dirpath.replace(package + os.sep, '', 1), filenames) for dirpath, dirnames, filenames in os.walk(package) if not os.path.exists(os.path.join(dirpath, '__init__.py'))] filepaths = [] for base, filenames in walk: filepaths.extend([os.path.join(base, filename) for filename in filenames]) return {package: filepaths} version = get_version('openapi_codec') if sys.argv[-1] == 'publish': os.system("python setup.py sdist upload") print("You probably want to also tag the version now:") print(" git tag -a %s -m 'version %s'" % (version, version)) print(" git push --tags") sys.exit() setup( name='openapi-codec', version=version, url='http://github.com/core-api/python-openapi-codec/', license='BSD', description='An OpenAPI codec for Core API.', author='Tom Christie', author_email='[email protected]', packages=get_packages('openapi_codec'), package_data=get_package_data('openapi_codec'), install_requires=['coreapi>=2.2.0'], classifiers=[ 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3', ], entry_points={ 'coreapi.codecs': [ 'openapi=openapi_codec:OpenAPICodec' ] } )
py
b41121a9c65cde3d49b0b86e84f0fd12c14d283b
#!/usr/bin/env python3 """ script for downloading genomes from NCBI """ # python modules import os import sys import argparse import pandas as pd from tqdm import tqdm from subprocess import Popen from glob import glob as glob from multiprocessing import Pool from subprocess import Popen, PIPE def calcMD5(path, md5): """ calc MD5 based on path """ # check that file exists if os.path.exists(path) is False: yield False else: command = [md5, path] p = Popen(command, stdout = PIPE) for line in p.communicate()[0].splitlines(): line = line.decode('ascii').strip().split() # check if `md5` output if line[0] == 'MD5': yield line[-1] # else assume md5sum output else: yield line[0] p.wait() yield False def md5check(f, ftp, md5, md5p, exclude): """ * comfirm that downloaded files match md5 checksum on server * if md5 is False, only check path for the download """ files = glob(f) # if no md5 file is specified: download files if path does not exist if md5 is False: if len(files) == 0: return False print('## already downloaded:', f) return True # get md5s from server ## path to md5 file on ftp server md5 = '%s/%s' % (ftp.rsplit('/', 1)[0], md5) ## read md5 table from server try: md5 = pd.read_csv(md5, delim_whitespace = True, names = ['ftp md5', 'file']) except: return False ## filter for md5 files that match file type t = f.split('*')[1] md5 = md5[md5['file'].str.contains(t)] ## remove preceding characters from file paths md5['file'] = [i.replace('./', '') for i in md5['file']] ## exclude md5s for sub directories md5 = md5[~md5['file'].str.contains('/')] ## exclude files md5 = md5[~md5['file'].str.contains(exclude.replace('*', ''))] # get local md5s md5['local md5'] = [[j for j in calcMD5(i, md5p)][0] for i in md5['file']] # return false if md5s do not match for i, File in md5.iterrows(): if File['ftp md5'] != File['local md5']: try: os.remove(File['file']) return False except: return False print('## already downloaded:', f) return True def wget(ftp, f = False, exclude = False, name = False, md5 = False, md5p = 'md5sum', tries = 10): """ download files with wget """ # file name if f is False: f = ftp.rsplit('/', 1)[-1] # downloaded file if it does not already exist # check md5s on server (optional) t = 0 while md5check(f, ftp, md5, md5p, exclude) is not True: t += 1 if name is not False: print('# downloading:', name, f) if exclude is False: command = 'wget -q --random-wait %s' % (ftp) else: command = 'wget -q --random-wait -R %s %s' % (exclude, ftp) p = Popen(command, shell = True) p.communicate() if t >= tries: print('not downloaded:', name, f) return [f, False] return [f, True] def check(line, queries): """ check that at least one of queries is in list, l """ line = line.strip() spLine = line.replace('.', ' ').split() matches = set(spLine).intersection(queries) if len(matches) > 0: return matches, line.split('\t') return matches, False def entrez(db, acc): """ search entrez using specified database and accession """ c1 = ['esearch', '-db', db, '-query', acc] c2 = ['efetch', '-db', 'BioSample', '-format', 'docsum'] p1 = Popen(c1, stdout = PIPE, stderr = PIPE) p2 = Popen(c2, stdin = p1.stdout, stdout = PIPE, stderr = PIPE) return p2.communicate() def searchAccession(acc): """ attempt to use NCBI Entrez to get BioSample ID """ # try genbank file # genome database out, error = entrez('genome', acc) for line in out.splitlines(): line = line.decode('ascii').strip() if 'Assembly_Accession' in line or 'BioSample' in line: newAcc = line.split('>')[1].split('<')[0].split('.')[0].split(',')[0] if len(newAcc) > 0: return (True, acc, newAcc) # nucleotide database out, error = entrez('nucleotide', acc) for line in out.splitlines(): line = line.decode('ascii').strip() if 'Assembly_Accession' in line or 'BioSample' in line: newAcc = line.split('>')[1].split('<')[0].split('.')[0].split(',')[0] if len(newAcc) > 0: return (True, acc, newAcc) # assembly database out, error = entrez('assembly', acc) for line in out.splitlines(): line = line.decode('ascii').strip() if 'Assembly_Accession' in line or 'BioSample' in line: newAcc = line.split('>')[1].split('<')[0].split('.')[0].split(',')[0] if len(newAcc) > 0: return (True, acc, newAcc) for error in error.splitlines(): error = error.decode('ascii').strip() if '500 Can' in error: return (False, acc, 'no network') return (False, acc, 'efetch failed') def getFTPs(accessions, ftp, search, exclude, convert = False, threads = 1, attempt = 1, max_attempts = 2): """ download genome info from NCBI """ info = wget(ftp)[0] allMatches = [] for genome in open(info, encoding = 'utf8'): genome = str(genome) matches, genomeInfo = check(genome, accessions) if genomeInfo is not False: f = genomeInfo[0] + search Gftp = genomeInfo[19] Gftp = Gftp + '/' + search allMatches.extend(matches) yield [Gftp, f, exclude, matches] # print accessions that could not be matched # and whether or not they could be converted (optional) newAccs = [] missing = accessions.difference(set(allMatches)) if convert is True: pool = Pool(threads) pool = pool.imap_unordered(searchAccession, missing) for newAcc in tqdm(pool, total = len(missing)): status, accession, newAcc = newAcc if status is True: newAccs.append(newAcc) print('not found:', accession, '->', newAcc) else: for accession in missing: print('not found:', accession) # re-try after converting accessions (optional) if len(newAccs) > 0 and attempt <= max_attempts: print('convert accession attempt', attempt) attempt += 1 for hit in getFTPs(set(newAccs), ftp, search, exclude, convert, threads = 1, attempt = attempt): yield hit def wgetGenome(pars, md5 = 'md5checksums.txt'): """ """ ftp, f, exclude, matches, md5p = pars name = ';'.join(list(matches)) return wget(ftp, f, exclude, name, md5 = md5, md5p = md5p) def download(args): """ download genomes from NCBI """ accessions, infoFTP = set(args['g']), args['i'] search, exclude, md5p = args['s'], args['e'], args['m'] FTPs = getFTPs(accessions, infoFTP, search, exclude, threads = args['t'], convert = args['convert']) FTPs = [ftp + [md5p] for ftp in FTPs] if args['test'] is True: for genome in FTPs: print('found:', ';'.join(genome[-1]), genome[0]) return FTPs pool = Pool(args['t']) pool = pool.imap_unordered(wgetGenome, FTPs) files = [] for f in tqdm(pool, total = len(accessions)): files.append(f) return files if __name__ == '__main__': ftp = 'ftp://ftp.ncbi.nih.gov/genomes/genbank/assembly_summary_genbank.txt' parser = argparse.ArgumentParser(description='# download genomes from NCBI') parser.add_argument(\ '-g', nargs = '*', action = 'store', required = True, help = 'list of genome accession numbers (- for stdin)') parser.add_argument(\ '-s', default = '*.fna.gz', required = False, help = 'search term for download (default = "*.fna.gz")') parser.add_argument(\ '-e', default = '*from_genomic*', required = False, help = 'search exclusion term, or False (default = "*from_genomic*")') parser.add_argument(\ '-i', default = ftp, required = False, help = 'genome info FTP (default: %s)' % (ftp)) parser.add_argument(\ '-m', default = 'md5sum', type = str, required = False, help = 'md5 program (default = md5sum, md5 on Mac)') parser.add_argument(\ '-t', default = 3, type = int, required = False, help = 'threads (default = 3)') parser.add_argument(\ '--convert', action = 'store_true', required = False, help = 'convert missing accessions using Entrez Direct (slow; requires `esearch` and `efetch`)') parser.add_argument(\ '--test', action = 'store_true', required = False, help = 'look for genomes, but do not download them') args = vars(parser.parse_args()) if args['e'] == 'False' or args['e'] == 'FALSE': args['e'] = False if args['g'][0] == '-': args['g'] = [i.strip() for i in sys.stdin] print('# downloading genome info:', args['i']) download(args)
py
b4112283105d2e160303cfd03a07fd64cec34e4e
"""The prompt part of a simply two process chat app.""" # # Copyright (c) 2010 Andrew Gwozdziewycz # # This file is part of pyzmq. # # pyzmq is free software; you can redistribute it and/or modify it under # the terms of the Lesser GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # pyzmq is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # Lesser GNU General Public License for more details. # # You should have received a copy of the Lesser GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import zmq try: raw_input # Python 2 except NameError: raw_input = input # Python 3 def main(addr, account): ctx = zmq.Context() socket = ctx.socket(zmq.PUB) socket.bind(addr) while True: message = raw_input("%s> " % account) socket.send_multipart((account, message)) if __name__ == '__main__': import sys if len(sys.argv) != 3: print("usage: prompt.py <address> <username>") raise SystemExit main(sys.argv[1], sys.argv[2])
py
b411239d8424def743c4f97001f58516e8f61f99
# # PySNMP MIB module NETSCREEN-ZONE-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/NETSCREEN-ZONE-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 20:11:00 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueRangeConstraint, ValueSizeConstraint, SingleValueConstraint, ConstraintsIntersection, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueRangeConstraint", "ValueSizeConstraint", "SingleValueConstraint", "ConstraintsIntersection", "ConstraintsUnion") netscreenZone, = mibBuilder.importSymbols("NETSCREEN-SMI", "netscreenZone") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") ModuleIdentity, NotificationType, MibScalar, MibTable, MibTableRow, MibTableColumn, Integer32, Gauge32, MibIdentifier, iso, IpAddress, Counter64, Unsigned32, Counter32, ObjectIdentity, TimeTicks, Bits = mibBuilder.importSymbols("SNMPv2-SMI", "ModuleIdentity", "NotificationType", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Integer32", "Gauge32", "MibIdentifier", "iso", "IpAddress", "Counter64", "Unsigned32", "Counter32", "ObjectIdentity", "TimeTicks", "Bits") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") netscreenZoneMibModule = ModuleIdentity((1, 3, 6, 1, 4, 1, 3224, 8, 0)) netscreenZoneMibModule.setRevisions(('2004-05-03 00:00', '2004-03-03 00:00', '2003-11-13 00:00', '2001-09-28 00:00', '2000-05-08 00:00',)) if mibBuilder.loadTexts: netscreenZoneMibModule.setLastUpdated('200405032022Z') if mibBuilder.loadTexts: netscreenZoneMibModule.setOrganization('Juniper Networks, Inc.') nsZoneCfg = MibIdentifier((1, 3, 6, 1, 4, 1, 3224, 8, 1)) nsZoneCfgTable = MibTable((1, 3, 6, 1, 4, 1, 3224, 8, 1, 1), ) if mibBuilder.loadTexts: nsZoneCfgTable.setStatus('current') nsZoneCfgEntry = MibTableRow((1, 3, 6, 1, 4, 1, 3224, 8, 1, 1, 1), ).setIndexNames((0, "NETSCREEN-ZONE-MIB", "nsZoneCfgId")) if mibBuilder.loadTexts: nsZoneCfgEntry.setStatus('current') nsZoneCfgId = MibTableColumn((1, 3, 6, 1, 4, 1, 3224, 8, 1, 1, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 2147483647))).setMaxAccess("readonly") if mibBuilder.loadTexts: nsZoneCfgId.setStatus('current') nsZoneCfgName = MibTableColumn((1, 3, 6, 1, 4, 1, 3224, 8, 1, 1, 1, 2), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 32))).setMaxAccess("readonly") if mibBuilder.loadTexts: nsZoneCfgName.setStatus('current') nsZoneCfgType = MibTableColumn((1, 3, 6, 1, 4, 1, 3224, 8, 1, 1, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4))).clone(namedValues=NamedValues(("regular", 0), ("layer2", 1), ("tunnel", 2), ("null", 3), ("func", 4)))).setMaxAccess("readonly") if mibBuilder.loadTexts: nsZoneCfgType.setStatus('current') nsZoneCfgVsys = MibTableColumn((1, 3, 6, 1, 4, 1, 3224, 8, 1, 1, 1, 4), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: nsZoneCfgVsys.setStatus('current') mibBuilder.exportSymbols("NETSCREEN-ZONE-MIB", nsZoneCfgVsys=nsZoneCfgVsys, nsZoneCfgName=nsZoneCfgName, nsZoneCfgTable=nsZoneCfgTable, nsZoneCfgEntry=nsZoneCfgEntry, PYSNMP_MODULE_ID=netscreenZoneMibModule, nsZoneCfgType=nsZoneCfgType, nsZoneCfg=nsZoneCfg, netscreenZoneMibModule=netscreenZoneMibModule, nsZoneCfgId=nsZoneCfgId)
py
b411242121fd86697cce125eff34296909f3f55f
#!/usr/bin/env python # The Expat License # # Copyright (c) 2017, Shlomi Fish # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import os import sys if sys.version_info > (3,): long = int xrange = range MOD = int(os.environ["MOD"]) mods = [] with open('mod_groups.txt') as f: for line in f: nums = [long(i) for i in line.rstrip('\n').split(' ')] count = nums.pop(0) for n in nums: for i in xrange(count): mods.append(n) my_len = len(mods) ret = 0 def rec(depth, m, stack): if depth == my_len: if m == 0: global ret print(stack) ret += 1 else: rec(depth+1, m, stack) rec(depth+1, (m+mods[depth]) % MOD, stack + [mods[depth]]) return rec(0, 0, []) ret -= 1 print("Num = %d" % (ret))
py
b411244c9aa30b0ce3886ceeef22c9e1738809b1
#!/usr/bin/env python import os import sys if __name__ == '__main__': os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'CollegeERP.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
py
b41124d9e3895c8038635865fa95e18d2ed9a6c9
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Telegram module, core of a bot """ # ToDo: add music player # ToDo: add RPi controls & status import telebot import helpers import ui import gpio from threading import Thread from time import sleep bot = telebot.TeleBot(helpers.token) err = '\xf0\x9f\x98\xa3' ok = '\xf0\x9f\x98\x89' verbose = True watchdog = False def convert(state): if state: return 'Enabled' return 'Disabled' def send_message(msg): bot.send_message(helpers.admin_uid, msg, parse_mode='HTML') def _watchdog(): global watchdog while watchdog: if helpers.is_pc_up(): send_message('Hey! PC now is Up and ready for use!\n\nWatchdog now is disabled {}'.format(ok)) break sleep(1) watchdog = False @bot.message_handler(commands=['menu', 'start', 'show', 'm']) def _(msg): if msg.chat.id != helpers.admin_uid: return helpers.log('message_handler', 'Call menu from {}'.format(msg.chat.id)) bot.reply_to(msg, 'Welcome <3', reply_markup=ui.show_keyboard()) @bot.message_handler(commands=['hide']) def _(msg): if msg.chat.id != helpers.admin_uid: return bot.reply_to(msg, ok, reply_markup=ui.hide_keyboard()) @bot.message_handler(content_types=['text']) def _(msg): if msg.chat.id != helpers.admin_uid: return global verbose, watchdog if msg.text == 'Status': bot.reply_to(msg, ui.status.format( convert(gpio.get_state(gpio.relay_pin1)), convert(gpio.get_state(gpio.relay_pin2)), convert(gpio.get_state(gpio.relay_pin3)), convert(gpio.get_state(gpio.relay_pin4)), convert(helpers.is_pc_up()), convert(verbose), convert(watchdog) ), parse_mode='HTML') return if msg.text == 'Turn PC': if helpers.is_pc_up(): if not (gpio.get_state(gpio.relay_pin1) and gpio.get_state(gpio.relay_pin2) and gpio.get_state(gpio.relay_pin3)): bot.reply_to(msg, 'Relays already off') return gpio.hold_off(gpio.relay_pin1) gpio.hold_off(gpio.relay_pin2) gpio.hold_off(gpio.relay_pin3) gpio.hold_off(gpio.relay_pin4) bot.reply_to(msg, 'Turning off relays') else: bot.reply_to(msg, 'Turning on PC') gpio.hold_on(gpio.relay_pin1) sleep(0.3) gpio.hold_on(gpio.relay_pin2) sleep(0.3) gpio.hold_on(gpio.relay_pin3) sleep(1) gpio.push(gpio.pc_pin) return if msg.text == 'Turn light': if gpio.get_state(gpio.relay_pin4): gpio.hold_off(gpio.relay_pin4) else: gpio.hold_on(gpio.relay_pin4) bot.reply_to(msg, 'Light now is <i>{}</i>'.format(convert(gpio.get_state(gpio.relay_pin4))), parse_mode='HTML') return if msg.text == 'Verbose': if not verbose: verbose = True else: verbose = False bot.reply_to(msg, 'Verbose mode: <i>{}</i>'.format(convert(verbose)), parse_mode='HTML') return if msg.text == 'Watchdog': if helpers.is_pc_up(): bot.reply_to(msg, 'Seems what PC already On.. {}'.format('\xf0\x9f\x98\xb3')) return if not watchdog: watchdog = True # Sorry me God for that.. Thread(target=_watchdog, args=()).start() else: watchdog = False bot.reply_to(msg, 'Watchdog mode: <i>{}</i>'.format(convert(watchdog)), parse_mode='HTML') helpers.log('message_handler', u'Receive message from {} | Text: {}'.format(msg.chat.id, msg.text)) def Start(): helpers.log('Start()', 'Run Start() function at core.telegram') try: bot.polling(True) except Exception as ex: helpers.log('Start()', 'Crash Start() function in core.telegram ({})\n\n{}'.format(__file__, ex), True)
py
b4112514730212a12966bc407ccb08184e88807e
from random import randint from typing import Union import numpy as np # 2021-01-01T00:00:00+00:00 first_timestamp = 1609459080000 open_price = randint(40, 100) close_price = randint(open_price, 110) if randint(0, 1) else randint( 30, open_price) max_price = max(open_price, close_price) high_price = max_price if randint(0, 1) else randint(max_price, max_price + 10) min_price = min(open_price, close_price) low_price = min_price if randint(0, 1) else randint(min_price, min_price + 10) def range_candles(count: int) -> np.ndarray: """ Generates a range of candles with random values. """ fake_candle(reset=True) arr = np.zeros((count, 6)) for i in range(count): arr[i] = fake_candle() return arr def candles_from_close_prices(prices: Union[list, range]) -> np.ndarray: """ Generates a range of candles from a list of close prices. The first candle has the timestamp of "2021-01-01T00:00:00+00:00" """ fake_candle(reset=True) global first_timestamp arr = [] prev_p = np.nan for p in prices: # first prev_p if np.isnan(prev_p): prev_p = p - 0.5 first_timestamp += 60000 open_p = prev_p close_p = p high_p = max(open_p, close_p) low_p = min(open_p, close_p) vol = randint(0, 200) arr.append([first_timestamp, open_p, close_p, high_p, low_p, vol]) # save prev_p for next candle prev_p = p return np.array(arr) def fake_candle(attributes: dict = None, reset: bool = False) -> np.ndarray: global first_timestamp global open_price global close_price global max_price global high_price global min_price global low_price if reset: first_timestamp = 1609459080000 open_price = randint(40, 100) close_price = randint(open_price, 110) high_price = max(open_price, close_price) low_price = min(open_price, close_price) if attributes is None: attributes = {} first_timestamp += 60000 open_price = close_price close_price += randint(1, 8) high_price = max(open_price, close_price) low_price = min(open_price - 1, close_price) volume = randint(1, 100) timestamp = first_timestamp return np.array([ attributes.get('timestamp', timestamp), attributes.get('open', open_price), attributes.get('close', close_price), attributes.get('high', high_price), attributes.get('low', low_price), attributes.get('volume', volume) ], dtype=np.float64)
py
b411268a6d3efa65c50f7cb2209a2b8986e42cf5
import pickle from typing import Any, Iterable from .fuzzyfield import FuzzyField from .errors import DomainError, FieldTypeError, MalformedFieldError from .numbers import Float _float_parser = Float() class Domain(FuzzyField): """A field which can only accept a specific set of values :param choices: collection of acceptable values. The default needs not be included. :param bool case_sensitive: ignore case when validating string input. The output will be converted to the case listed in choices. :param bool passthrough: If True, store the choices object by reference and assume it will change after this class has been initialised. The change will be reflected in the next parsed value. Example:: v1 = String("ID", unique=True) v2 = Domain("CrossRef", domain=v1.seen_values, passthrough=True) In the above example, the field 'CrossRef' must be one of the values that already appeared for the field 'ID'. passthrough comes with a performance cost; set it to False (the default) to allow for optimisations. This assumes that neither the choices collection nor the objects it contains will change in the future. :param kwargs: extra parameters for :class:`FuzzyField` """ choices: Iterable case_sensitive: bool passthrough: bool def __init__(self, choices: Iterable, *, case_sensitive: bool = True, passthrough: bool = False, **kwargs): super().__init__(**kwargs) self.choices = choices self.case_sensitive = case_sensitive self.passthrough = passthrough if not passthrough: self._parse_choices() def _parse_choices(self) -> None: """Parse choices and update several cache fields. This needs to be invoked after every time choices changes. """ self._has_numeric_choices = False self._choices_map = {} for v in self.choices: k = v if isinstance(v, str) and not self.case_sensitive: k = v.lower() elif isinstance(v, (int, float, complex)): self._has_numeric_choices = True try: self._choices_map[k] = v except TypeError: k = pickle.dumps(v, protocol=pickle.HIGHEST_PROTOCOL) self._choices_map[k] = v # Build sorted list of choices, used for string representations try: sorted_choices = sorted(self.choices) except TypeError: # choices is a mix of incomparable types, e.g. (1, '2') sorted_choices = sorted(self.choices, key=str) self._choices_str = ",".join(str(choice) for choice in sorted_choices) if len(self._choices_str) > 200: self._choices_str = self._choices_str[:200] + '...' def validate(self, value: Any) -> Any: """Validate and convert the input :raises DomainError: if the value is not one of the defined choices """ if self.passthrough: self._parse_choices() k = value if isinstance(value, str) and not self.case_sensitive: k = k.lower() # This first paragraph quickly satisfies most use cases. # Note that this returns the representation provided in the choices; # e.g. Domain(choices=[1]).parse(1.0) returns 1 try: return self._choices_map[k] except KeyError: pass except TypeError: # Unhashable k = pickle.dumps(k, protocol=pickle.HIGHEST_PROTOCOL) try: return self._choices_map[k] except KeyError: pass # Deal with string representation of numbers if self._has_numeric_choices and isinstance(k, str): try: k = _float_parser.validate(k) except (FieldTypeError, MalformedFieldError): pass else: try: return self._choices_map[k] except KeyError: pass raise DomainError(self.name, value, self._choices_str) @property def sphinxdoc(self) -> str: if self.passthrough: if not self.choices: return "Choice from a domain (dynamically defined at runtime)" self._parse_choices() return f"Any of: {self._choices_str}"
py
b411274910229a90433c4588fd5b10fc8e2cfd0b
import healpy as hp import numpy as np import matplotlib.pyplot as plt # Set the number of sources and the coordinates for the input nsources = int(20000) nside = 8 npix = hp.nside2npix(nside) # Coordinates and the density field f #thetas = np.random.random(nsources) * np.pi #phis = np.random.random(nsources) * np.pi * 2. fs = np.random.randn(nsources) with open("/home/tuos/tmp/tmp/newSTEG/m1000/eventFile2.txt") as inputFile: lines = inputFile.readlines() #print (lines[1].split()[1]) thetas=[] phis=[] for i in range(nsources): thetas.append(float(lines[i].split()[1])) phis.append(float(lines[i].split()[2])) #print(thetas) # Go from HEALPix coordinates to indices indices = hp.ang2pix(nside, thetas, phis) # Initate the map and fill it with the values hpxmap = np.zeros(npix, dtype=np.float) for i in range(nsources): #hpxmap[indices[i]] += fs[i] hpxmap[indices[i]] += 1.0 DPI = 100 SIZE = 400 # Inspect the map #plt.figure(1) ''' hp.mollview(hpxmap, xsize = SIZE) plt.savefig("plot_toyModel_2000mAll.png", dpi = DPI) ''' #plt.figure(2) # Get the power spectrum Cl = hp.anafast(hpxmap) #print(Cl) plt.plot(Cl) plt.ylabel('C_{l}') plt.savefig('plot_toyModel_power_spectrumAll.png')
py
b41127ac2ddd68ccb9ce6fb49456ca78c682460b
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: pyatv/mrp/protobuf/NowPlayingInfo.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='pyatv/mrp/protobuf/NowPlayingInfo.proto', package='', syntax='proto2', serialized_options=None, serialized_pb=_b('\n\'pyatv/mrp/protobuf/NowPlayingInfo.proto\"\xbd\x04\n\x0eNowPlayingInfo\x12\r\n\x05\x61lbum\x18\x01 \x01(\t\x12\x0e\n\x06\x61rtist\x18\x02 \x01(\t\x12\x10\n\x08\x64uration\x18\x03 \x01(\x01\x12\x13\n\x0b\x65lapsedTime\x18\x04 \x01(\x01\x12\x14\n\x0cplaybackRate\x18\x05 \x01(\x02\x12.\n\nrepeatMode\x18\x06 \x01(\x0e\x32\x1a.NowPlayingInfo.RepeatMode\x12\x30\n\x0bshuffleMode\x18\x07 \x01(\x0e\x32\x1b.NowPlayingInfo.ShuffleMode\x12\x11\n\ttimestamp\x18\x08 \x01(\x01\x12\r\n\x05title\x18\t \x01(\t\x12\x18\n\x10uniqueIdentifier\x18\n \x01(\x04\x12\x17\n\x0fisExplicitTrack\x18\x0b \x01(\x08\x12\x12\n\nisMusicApp\x18\x0c \x01(\x08\x12\x1e\n\x16radioStationIdentifier\x18\r \x01(\x03\x12\x18\n\x10radioStationHash\x18\x0e \x01(\t\x12\x18\n\x10radioStationName\x18\x0f \x01(\t\x12\x19\n\x11\x61rtworkDataDigest\x18\x10 \x01(\x0c\x12\x14\n\x0cisAlwaysLive\x18\x11 \x01(\x08\x12\x17\n\x0fisAdvertisement\x18\x12 \x01(\x08\"+\n\nRepeatMode\x12\x0b\n\x07Unknown\x10\x00\x12\x07\n\x03One\x10\x01\x12\x07\n\x03\x41ll\x10\x02\"9\n\x0bShuffleMode\x12\n\n\x06Unkown\x10\x00\x12\x07\n\x03Off\x10\x01\x12\n\n\x06\x41lbums\x10\x02\x12\t\n\x05Songs\x10\x03') ) _NOWPLAYINGINFO_REPEATMODE = _descriptor.EnumDescriptor( name='RepeatMode', full_name='NowPlayingInfo.RepeatMode', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='Unknown', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='One', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='All', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=515, serialized_end=558, ) _sym_db.RegisterEnumDescriptor(_NOWPLAYINGINFO_REPEATMODE) _NOWPLAYINGINFO_SHUFFLEMODE = _descriptor.EnumDescriptor( name='ShuffleMode', full_name='NowPlayingInfo.ShuffleMode', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='Unkown', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='Off', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='Albums', index=2, number=2, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='Songs', index=3, number=3, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=560, serialized_end=617, ) _sym_db.RegisterEnumDescriptor(_NOWPLAYINGINFO_SHUFFLEMODE) _NOWPLAYINGINFO = _descriptor.Descriptor( name='NowPlayingInfo', full_name='NowPlayingInfo', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='album', full_name='NowPlayingInfo.album', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='artist', full_name='NowPlayingInfo.artist', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='duration', full_name='NowPlayingInfo.duration', index=2, number=3, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='elapsedTime', full_name='NowPlayingInfo.elapsedTime', index=3, number=4, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='playbackRate', full_name='NowPlayingInfo.playbackRate', index=4, number=5, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='repeatMode', full_name='NowPlayingInfo.repeatMode', index=5, number=6, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='shuffleMode', full_name='NowPlayingInfo.shuffleMode', index=6, number=7, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='timestamp', full_name='NowPlayingInfo.timestamp', index=7, number=8, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='title', full_name='NowPlayingInfo.title', index=8, number=9, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='uniqueIdentifier', full_name='NowPlayingInfo.uniqueIdentifier', index=9, number=10, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='isExplicitTrack', full_name='NowPlayingInfo.isExplicitTrack', index=10, number=11, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='isMusicApp', full_name='NowPlayingInfo.isMusicApp', index=11, number=12, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='radioStationIdentifier', full_name='NowPlayingInfo.radioStationIdentifier', index=12, number=13, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='radioStationHash', full_name='NowPlayingInfo.radioStationHash', index=13, number=14, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='radioStationName', full_name='NowPlayingInfo.radioStationName', index=14, number=15, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='artworkDataDigest', full_name='NowPlayingInfo.artworkDataDigest', index=15, number=16, type=12, cpp_type=9, label=1, has_default_value=False, default_value=_b(""), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='isAlwaysLive', full_name='NowPlayingInfo.isAlwaysLive', index=16, number=17, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='isAdvertisement', full_name='NowPlayingInfo.isAdvertisement', index=17, number=18, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _NOWPLAYINGINFO_REPEATMODE, _NOWPLAYINGINFO_SHUFFLEMODE, ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=44, serialized_end=617, ) _NOWPLAYINGINFO.fields_by_name['repeatMode'].enum_type = _NOWPLAYINGINFO_REPEATMODE _NOWPLAYINGINFO.fields_by_name['shuffleMode'].enum_type = _NOWPLAYINGINFO_SHUFFLEMODE _NOWPLAYINGINFO_REPEATMODE.containing_type = _NOWPLAYINGINFO _NOWPLAYINGINFO_SHUFFLEMODE.containing_type = _NOWPLAYINGINFO DESCRIPTOR.message_types_by_name['NowPlayingInfo'] = _NOWPLAYINGINFO _sym_db.RegisterFileDescriptor(DESCRIPTOR) NowPlayingInfo = _reflection.GeneratedProtocolMessageType('NowPlayingInfo', (_message.Message,), { 'DESCRIPTOR' : _NOWPLAYINGINFO, '__module__' : 'pyatv.mrp.protobuf.NowPlayingInfo_pb2' # @@protoc_insertion_point(class_scope:NowPlayingInfo) }) _sym_db.RegisterMessage(NowPlayingInfo) # @@protoc_insertion_point(module_scope)
py
b41128f962f687dd6ca7073ec6c41130c3425eb7
class SinglyLinkedListNode(): def __init__(self): self.data = None self.next = None class SinglyLinkedList(): def __init__(self): self.head = None self.size = 0 def prepend(self, value): """ Add an element at the head of the list. Point the new element's 'next' at the previous head, shifting all remaining elements to the right. :param value: data to add """ new_node = SinglyLinkedListNode() new_node.data = value new_node.next = self.head self.head = new_node self.size += 1 def append(self, value): """ Add an element at the tail of the list. Update the previous final element's 'next' to point to the new element. :param value: data to add """ new_node = SinglyLinkedListNode() new_node.data = value curr_node = self.head prev_node = None while curr_node is not None: prev_node = curr_node curr_node = curr_node.next if prev_node: prev_node.next = new_node else: self.head = new_node self.size += 1 def insert(self, value): """ Insert an element in the list. This method exists for convenient naming. :param value: data to add """ self.prepend(value) def insert_at(self, value, position): """ Insert an element at a specified position. This method exists for convenient naming. :param value: data to add :param position: index to insert at """ if position >= self.size: raise IndexError new_node = SinglyLinkedListNode() new_node.data = value curr_node = self.head prev_node = None curr_index = 0 while curr_index < position: prev_node = curr_node curr_node = curr_node.next curr_index += 1 if prev_node: prev_node.next = new_node else: curr_node.next = curr_node curr_node = new_node self.size += 1 def find(self, value): """ Find an element in the list :param value: data to find """ curr_node = self.head while curr_node is not None: if curr_node.data == value: return curr_node curr_node = curr_node.next if curr_node is None: raise ValueError('{} not found'.format(value)) def find_at(self, position): """ Get the element at a given position :param position: index to retrieve """ if position >= self.size: raise IndexError curr_node = self.head curr_index = 0 while curr_index < position: curr_node = curr_node.next curr_index += 1 return curr_node def delete(self, value): """ Remove an element in the list. :param value: data to remove """ curr_node = self.head prev_node = None # walk the list while curr_node is not None: # if we find a match, short circuit the loop. if curr_node.data == value: break # if we don't match, update the previous elements "pointer" # to the target's "next" else: prev_node = curr_node curr_node = curr_node.next # raise if we haven't found anything if curr_node is None: raise ValueError('{} not found'.format(value)) if prev_node is not None: prev_node.next = curr_node.next else: self.head = curr_node.next self.size -= 1 def delete_at(self, position): """ Remove the element at a given index. :param position: index to remove """ if position >= self.size: raise IndexError curr_node = self.head prev_node = None curr_index = 0 # walk the list while curr_index < position: prev_node = curr_node curr_node = curr_node.next curr_index += 1 if prev_node is not None: prev_node.next = curr_node.next else: self.head = curr_node.next self.size -= 1 class DoublyLinkedListNode(): def __init__(self): self.data = None self.next = None self.prev = None class DoublyLinkedList(): def __init__(self): self.head = None self.size = 0 def prepend(self, value): """ Add an element at the head of the list. Point the new element's 'next' at the previous head, shifting all remaining elements to the right. :param value: data to add """ new_node = DoublyLinkedListNode() new_node.data = value # If we have a DLL B <-> C and prepend A, we should get A <-> B <-> C curr_head = self.head new_node.next = curr_head new_node.prev = None if curr_head is not None: curr_head.prev = new_node self.head = new_node self.size += 1 def append(self, value): """ Add an element at the tail of the list. Update the previous final element's 'next' to point to the new element. :param value: data to add """ new_node = DoublyLinkedListNode() new_node.data = value curr_node = self.head prev_node = None while curr_node is not None: prev_node = curr_node curr_node = curr_node.next if prev_node: prev_node.next = new_node new_node.prev = prev_node else: self.head = new_node self.size += 1 def insert(self, value): """ Insert an element in the list. This method exists for convenient naming. :param value: data to add """ self.prepend(value) def insert_at(self, value, position): """ Insert an element at a specified position. This method exists for convenient naming. :param value: data to add :param position: index to insert at """ if position >= self.size: raise IndexError new_node = DoublyLinkedListNode() new_node.data = value curr_node = self.head prev_node = None curr_index = 0 while curr_index < position: prev_node = curr_node curr_node = curr_node.next curr_index += 1 if prev_node: prev_node.next = new_node new_node.prev = prev_node else: curr_node.next = curr_node curr_node = new_node self.size += 1 def find(self, value): """ Find an element in the list :param value: data to find """ curr_node = self.head while curr_node is not None: if curr_node.data == value: return curr_node curr_node = curr_node.next if curr_node is None: raise ValueError('{} not found'.format(value)) def find_at(self, position): """ Get the element at a given position :param position: index to retrieve """ if position >= self.size: raise IndexError curr_node = self.head curr_index = 0 while curr_index < position: curr_node = curr_node.next curr_index += 1 return curr_node def delete(self, value): """ Remove an element in the list. :param value: data to remove """ curr_node = self.head prev_node = None # walk the list while curr_node is not None: # if we find a match, short circuit the loop. if curr_node.data == value: break # if we don't match, update the previous elements "pointer" # to the target's "next" else: prev_node = curr_node curr_node = curr_node.next # raise if we haven't found anything if curr_node is None: raise ValueError('{} not found'.format(value)) if prev_node is None: self.head = curr_node.next elif prev_node is not None and curr_node.next is not None: prev_node.next = curr_node.next curr_node.next.prev = prev_node else: prev_node.next = curr_node.next self.size -= 1 def delete_at(self, position): """ Remove the element at a given index. :param position: index to remove """ if position >= self.size: raise IndexError curr_node = self.head prev_node = None curr_index = 0 # walk the list while curr_index < position: prev_node = curr_node curr_node = curr_node.next curr_index += 1 if prev_node is None: self.head = curr_node.next elif prev_node is not None and curr_node.next is not None: prev_node.next = curr_node.next curr_node.next.prev = prev_node else: prev_node.next = curr_node.next self.size -= 1
py
b4112934d5c56f754f0b25e22a7f1f629c355312
from reportlab.platypus import Table, TableStyle, Flowable from reportlab.lib.colors import grey, white, HexColor, black, gray from matplotlib.colors import rgb2hex, LinearSegmentedColormap from matplotlib.pyplot import get_cmap import numpy as np import pandas as pd from tia.rlab.components import KeepInFrame import tia.util.fmt as fmt __all__ = [ "ConditionalRedBlack", "DynamicTable", "TableFormatter", "RegionFormatter", "IntFormatter", "FloatFormatter", "PercentFormatter", "ThousandsFormatter", "MillionsFormatter", "BillionsFormatter", "DollarCentsFormatter", "DollarFormatter", "ThousandDollarsFormatter", "MillionDollarsFormatter", "BillionDollarsFormatter", "YmdFormatter", "Y_m_dFormatter", "DynamicNumberFormatter", "BorderTypeGrid", "BorderTypeHorizontal", "BorderTypeOutline", "BorderTypeOutline", "BorderTypeVertical", "Style", "BorderTypeOutlineCols", ] DefaultHeaderStyle = { "GRID": (0.5, grey), "BOX": (0.25, black), "VALIGN": "MIDDLE", "LEADING": 6, "LEFTPADDING": 3, "RIGHTPADDING": 3, "BOTTOMPADDING": 3, "TOPPADDING": 3, "FONTSIZE": 6, "BACKGROUND": HexColor("#404040"), "FONTNAME": "Helvetica", "ALIGN": "CENTER", "TEXTCOLOR": white, } DefaultCellStyle = { "GRID": (0.5, grey), "BOX": (0.25, black), "VALIGN": "MIDDLE", "LEADING": 6, "LEFTPADDING": 3, "RIGHTPADDING": 3, "BOTTOMPADDING": 2, "TOPPADDING": 2, "ALIGN": "CENTER", "TEXTCOLOR": black, "ROWBACKGROUNDS": [[HexColor("#e3ebf4"), white]], "FONTSIZE": 6, "FONTNAME": "Helvetica", # "FONTNAME": "Courier" } DefaultIndexStyle = { "GRID": (0.5, grey), "BOX": (0.25, black), "VALIGN": "MIDDLE", "LEADING": 6, "LEFTPADDING": 3, "RIGHTPADDING": 3, "BOTTOMPADDING": 2, "TOPPADDING": 2, "ALIGN": "RIGHT", "TEXTCOLOR": black, "ROWBACKGROUNDS": [[HexColor("#e3ebf4"), white]], "FONTSIZE": 6, "FONTNAME": "Helvetica", } DefaultWeight = 0.7 AlignRight = {"ALIGN": "RIGHT"} ConditionalRedBlack = lambda x: x < 0 and dict(TEXTCOLOR=HexColor("#800000")) def pad_positive_wrapper(fmtfct): """Ensure that numbers are aligned in table by appending a blank space to postive values if 'parenthesis' are used to denote negative numbers""" def check_and_append(*args, **kwargs): result = fmtfct(*args, **kwargs) if fmtfct.parens and not result.endswith(")"): result += " " return result return check_and_append IntFormatter = pad_positive_wrapper(fmt.new_int_formatter(nan="-")) FloatFormatter = pad_positive_wrapper(fmt.new_float_formatter(nan="-")) PercentFormatter = pad_positive_wrapper(fmt.new_percent_formatter(nan="-")) ThousandsFormatter = pad_positive_wrapper(fmt.new_thousands_formatter(nan="-")) MillionsFormatter = pad_positive_wrapper(fmt.new_millions_formatter(nan="-")) BillionsFormatter = pad_positive_wrapper(fmt.new_billions_formatter(nan="-")) # Don't attempt to pad DynamicNumberFormatter = fmt.DynamicNumberFormat( method="col", nan="-", pcts=1, trunc_dot_zeros=1 ) DollarCentsFormatter = pad_positive_wrapper( fmt.new_float_formatter(prefix="$", nan="-") ) DollarFormatter = pad_positive_wrapper(fmt.new_int_formatter(prefix="$", nan="-")) ThousandDollarsFormatter = pad_positive_wrapper( fmt.new_thousands_formatter(prefix="$", nan="-") ) MillionDollarsFormatter = pad_positive_wrapper( fmt.new_millions_formatter(prefix="$", nan="-") ) BillionDollarsFormatter = pad_positive_wrapper( fmt.new_billions_formatter(prefix="$", nan="-") ) YmdFormatter = fmt.new_datetime_formatter("%Y%m%d", True) Y_m_dFormatter = fmt.new_datetime_formatter("%Y-%m-%d", True) mdYFormatter = fmt.new_datetime_formatter("%m/%d/%Y", True) class DynamicTable(Table): def __init__(self, data, on_wrap=None, **kwargs): self.on_wrap = on_wrap Table.__init__(self, data, **kwargs) self._longTableOptimize = 0 def wrap(self, awidth, aheight): self.on_wrap and self.on_wrap(self, awidth, aheight) return Table.wrap(self, awidth, aheight) def is_contiguous(idx): if len(idx) > 0: s0, s1 = idx.min(), idx.max() expected = pd.Int64Index(np.array(list(range(s0, s1 + 1)))) # return idx.isin(expected).all() return expected.isin(idx).all() def find_locations(index, match_value_or_fct, levels=None, max_matches=0): matches = [] fct = match_value_or_fct if not callable(fct): match_value = match_value_or_fct if not isinstance(match_value, str) and hasattr(match_value, "__iter__"): fct = lambda v: v in match_value else: fct = lambda v: v == match_value_or_fct for lvl, loc, val in level_iter(index, levels): if fct(val): matches.append(loc) if max_matches and len(matches) >= matches: break return matches def level_iter(index, levels=None): if levels is None: levels = list(range(index.nlevels)) elif np.isscalar(levels): levels = [levels] for level in levels: for i, v in enumerate(index.get_level_values(level)): yield level, i, v def span_iter(series): sorted = series.sort_index() isnull = pd.isnull(sorted).values isnulleq = isnull[1:] & isnull[:-1] iseq = sorted.values[1:] == sorted.values[:-1] eq = isnulleq | iseq li = 0 for i in range(len(eq)): islast = i == (len(eq) - 1) if eq[i]: # if currently true then consecutive if islast or not eq[i + 1]: yield sorted.index[li], sorted.index[i + 1] else: li = i + 1 raise StopIteration class BorderType(object): def __init__( self, weight=DefaultWeight, color=black, cap=None, dashes=None, join=None, count=None, space=None, ): args = locals() args.pop("self") self.kwargs = args def apply(self, rng, **overrides): args = self.kwargs.copy() args.update(overrides) self._do_apply(rng, args) def _do_apply(self, rng, args): raise NotImplementedError() class BorderTypeGrid(BorderType): def _do_apply(self, rng, args): rng.set_grid(**args) class BorderTypeOutline(BorderType): def _do_apply(self, rng, args): rng.set_box(**args) class BorderTypeHorizontal(BorderType): def _do_apply(self, rng, args): fct = lambda r: (r.set_lineabove(**args), r.set_linebelow(**args)) [fct(row) for row in rng.iter_rows()] class BorderTypeOutlineCols(BorderType): def _do_apply(self, rng, args): [col.set_box(**args) for col in rng.iter_cols()] class BorderTypeVertical(BorderType): def _do_apply(self, rng, args): fct = lambda r: (r.set_linebefore(**args), r.set_lineafter(**args)) [fct(col) for col in rng.iter_cols()] class Style(object): Blue = { "Light": HexColor("#dce6f1"), "Medium": HexColor("#95b3d7"), "Dark": HexColor("#4f81bd"), } Black = {"Light": HexColor("#d9d9d9"), "Medium": HexColor("#6c6c6c"), "Dark": black} Red = { "Light": HexColor("#f2dcdb"), "Medium": HexColor("#da9694"), "Dark": HexColor("#c0504d"), } Lime = { "Light": HexColor("#ebf1de"), "Medium": HexColor("#c4d79b"), "Dark": HexColor("#9bbb59"), } Purple = { "Light": HexColor("#e4dfec"), "Medium": HexColor("#b1a0c7"), "Dark": HexColor("#8064a2"), } Orange = { "Light": HexColor("#fde9d9"), "Medium": HexColor("#fabf8f"), "Dark": HexColor("#f79646"), } Cyan = { "Light": HexColor("#eff4f6"), "Medium": HexColor("#a8c2cb"), "Dark": HexColor("#3b595f"), } DarkBlue = { "Light": HexColor("#e5eaee "), "Medium": HexColor("#9aabbc"), "Dark": HexColor("#042f59"), } @staticmethod def apply_basic( formatter, font="Helvetica", font_bold="Helvetica-Bold", font_size=8, rpad=None, lpad=None, bpad=None, tpad=None, colspans=1, rowspans=0, ): lpad = 4.0 / 8.0 * font_size if lpad is None else 3 rpad = 4.0 / 8.0 * font_size if rpad is None else 3 bpad = 4.0 / 8.0 * font_size if bpad is None else 4 tpad = 4.0 / 8.0 * font_size if tpad is None else 4 formatter.all.set_font(font, size=font_size, leading=font_size) formatter.all.set_pad(lpad, bpad, rpad, tpad) formatter.all.set_valign_middle() # do the default things formatter.header.set_font(font_bold) formatter.header.set_align_center() formatter.index_header.set_font(font_bold) formatter.index_header.set_align_left() formatter.index.set_font(font_bold) formatter.index.set_align_left() formatter.cells.set_font(font) formatter.cells.set_align_right() # do col spans and row spans if rowspans and formatter.index.ncols > 1: formatter.index.iloc[:, : formatter.index.ncols - 1].detect_rowspans() if colspans and formatter.header.nrows > 1: formatter.header.iloc[: formatter.header.nrows - 1, :].detect_colspans() @staticmethod def apply_color( formatter, cmap=None, font_bw=1, stripe_rows=1, stripe_cols=0, hdr_border_clazz=BorderTypeGrid, cell_border_clazz=BorderTypeOutline, border_weight=0.7, ): """ font_bw: bool, If True use black and white fonts. If False, then use the cmap """ cmap = cmap or Style.Blue light = cmap.get("Light", white) medium = cmap.get("Medium", gray) dark = cmap.get("Dark", black) # the ranges header = formatter.all.iloc[: formatter.header.nrows] cells = formatter.all.iloc[formatter.header.nrows :] # color the header hdr_border_clazz and header.set_border_type( hdr_border_clazz, color=medium, weight=border_weight ) header.set_textcolor(font_bw and white or light) header.set_background(dark) # color the cells cell_border_clazz and cells.set_border_type( cell_border_clazz, color=medium, weight=border_weight ) stripe_rows and cells.set_row_backgrounds([light, white]) stripe_cols and cells.set_col_backgrounds([white, light]) not font_bw and cells.set_textcolor(dark) class RegionFormatter(object): def __init__(self, parent, row_ilocs, col_ilocs): self.row_ilocs = row_ilocs self.col_ilocs = col_ilocs self.parent = parent self.style_cmds = parent.style_cmds self.is_contiguous_rows = isrcont = is_contiguous(row_ilocs) self.is_contiguous_cols = isccont = is_contiguous(col_ilocs) self.iloc = _RegionIX(self, "iloc") # Build coord arrays for easy iteration if isccont: self.col_coord_tuples = [(col_ilocs.min(), col_ilocs.max())] else: self.col_coord_tuples = list(zip(col_ilocs, col_ilocs)) if isrcont: self.row_coord_tuples = [(row_ilocs.min(), row_ilocs.max())] else: self.row_coord_tuples = list(zip(row_ilocs, row_ilocs)) @property def nrows(self): return len(self.row_ilocs) @property def ncols(self): return len(self.col_ilocs) @property def last_row(self): return self.empty_frame() if self.nrows == 0 else self.iloc[-1:, :] @property def last_col(self): return self.empty_frame() if self.ncols == 0 else self.iloc[:, -1:] def is_empty(self): return self.nrows == 0 and self.ncols == 0 @property def formatted_values(self): return self.parent.formatted_values.iloc[self.row_ilocs, self.col_ilocs] @property def actual_values(self): return self.parent.actual_values.iloc[self.row_ilocs, self.col_ilocs] def new_instance(self, local_row_idxs, local_col_idxs): rows = pd.Int64Index([self.row_ilocs[r] for r in local_row_idxs]) cols = pd.Int64Index([self.col_ilocs[c] for c in local_col_idxs]) return RegionFormatter(self.parent, rows, cols) def empty_frame(self): return self.new_instance([], []) def match_column_labels( self, match_value_or_fct, levels=None, max_matches=0, empty_res=1 ): """Check the original DataFrame's column labels to find a subset of the current region :param match_value_or_fct: value or function(hdr_value) which returns True for match :param levels: [None, scalar, indexer] :param max_matches: maximum number of columns to return :return: """ allmatches = self.parent._find_column_label_positions( match_value_or_fct, levels ) # only keep matches which are within this region matches = [m for m in allmatches if m in self.col_ilocs] if max_matches and len(matches) > max_matches: matches = matches[:max_matches] if matches: return RegionFormatter(self.parent, self.row_ilocs, pd.Int64Index(matches)) elif empty_res: return self.empty_frame() def match_row_labels( self, match_value_or_fct, levels=None, max_matches=0, empty_res=1 ): """Check the original DataFrame's row labels to find a subset of the current region :param match_value_or_fct: value or function(hdr_value) which returns True for match :param levels: [None, scalar, indexer] :param max_matches: maximum number of columns to return :return: """ allmatches = self.parent._find_row_label_positions(match_value_or_fct, levels) # only keep matches which are within this region matches = [m for m in allmatches if m in self.row_ilocs] if max_matches and len(matches) > max_matches: matches = matches[:max_matches] if matches: return RegionFormatter(self.parent, pd.Int64Index(matches), self.col_ilocs) elif empty_res: return self.empty_frame() def match_any_labels( self, match_value_or_fct, levels=None, max_matches=0, empty_res=1 ): res = self.match_column_labels( match_value_or_fct, levels, max_matches, empty_res=0 ) res = res or self.match_row_labels( match_value_or_fct, levels, max_matches, empty_res ) return res def iter_rows(self, start=None, end=None): """Iterate each of the Region rows in this region""" start = start or 0 end = end or self.nrows for i in range(start, end): yield self.iloc[i, :] def iter_cols(self, start=None, end=None): """Iterate each of the Region cols in this region""" start = start or 0 end = end or self.ncols for i in range(start, end): yield self.iloc[:, i] def __repr__(self): return repr(self.formatted_values) def apply_style(self, cmd, *args): """ Apply the specified style cmd to this region. For example, set all fonts to size 12, apply_style('FONTSIZE', 12) :param cmd: reportlab format command :param args: arguments for the cmd :return: self """ for c0, c1 in self.col_coord_tuples: for r0, r1 in self.row_coord_tuples: c = [cmd, (c0, r0), (c1, r1)] + list(args) self.style_cmds.append(c) return self def apply_styles(self, cmdmap): """ Apply the set of commands defined in cmdmap. for example, apply_styles({'FONTSIZE': 12, 'BACKGROUND': white}) :param cmdmap: dict of commands mapped to the command arguments :return: self """ is_list_like = lambda arg: isinstance(arg, (list, tuple)) is_first_param_list = lambda c: c in ("COLBACKGROUNDS", "ROWBACKGROUNDS") for cmd, args in cmdmap.items(): if not is_list_like(args): args = [args] elif ( is_first_param_list(cmd) and is_list_like(args) and not is_list_like(args[0]) ): args = [args] self.apply_style(cmd, *args) return self def apply_conditional_styles(self, cbfct): """ Ability to provide dynamic styling of the cell based on its value. :param cbfct: function(cell_value) should return a dict of format commands to apply to that cell :return: self """ for ridx in range(self.nrows): for cidx in range(self.ncols): fmts = cbfct(self.actual_values.iloc[ridx, cidx]) fmts and self.iloc[ridx, cidx].apply_styles(fmts) return self def detect_colspans(self, use_actual=1): """Determine if any col spans are present in the values. :param use_actual: if True, check actual_values for span. if False, use the formatted_values :return: self """ vals = self.actual_values if use_actual else self.formatted_values if self.is_contiguous_cols: for ridx in range(self.nrows): for c0, c1 in span_iter(vals.iloc[ridx, :]): actual_idx = self.row_ilocs[ridx] self.style_cmds.append(["SPAN", (c0, actual_idx), (c1, actual_idx)]) return self def detect_rowspans(self, use_actual=1): """Determine if any row spans are present in the values. :param use_actual: if True, check actual_values for span. if False, use the formatted_values :return: self """ """ Determine if any row spans are present""" vals = self.actual_values if use_actual else self.formatted_values if self.is_contiguous_rows: for cidx in range(self.ncols): for r0, r1 in span_iter(vals.iloc[:, cidx]): actual_idx = self.col_ilocs[cidx] self.style_cmds.append(["SPAN", (actual_idx, r0), (actual_idx, r1)]) return self def detect_spans(self, colspans=1, rowspans=1, use_actual=1): colspans and self.detect_colspans(use_actual) rowspans and self.detect_rowspans(use_actual) def apply_format(self, fmtfct): """ For each cell in the region, invoke fmtfct(cell_value) and store result in the formatted_values :param fmtfct: function(cell_value) which should return a formatted value for display :return: self """ for ridx in range(self.nrows): for cidx in range(self.ncols): # MUST set the parent as local view is immutable riloc = self.row_ilocs[ridx] ciloc = self.col_ilocs[cidx] self.parent.formatted_values.iloc[riloc, ciloc] = fmtfct( self.actual_values.iloc[ridx, cidx] ) return self def apply_rowattrs(self, **kwargs): for k, v in kwargs.items(): self.parent.rowattrs.iloc[self.row_ilocs, k] = v return self def apply_colattrs(self, **kwargs): for k, v in kwargs.items(): self.parent.colattrs.loc[self.col_ilocs, k] = v return self def apply(self, **kwargs): """ Accepts the following keys: 'styles': see apply_styles for args 'cstyles': see apply_condition_styles for args 'format': see apply_format for args 'c': col width (array or scalar) 'cmin': min col width (array or scalar) 'cmax': max col width (array or scalar) 'cweight: col weight use at runtime to determine width 'r': row height (array or scalar) 'rmin': min row height (array or scalar) 'rmax': max row height (array or scalar) 'rweight: row weight use at runtime to determine height 'cspans': detect colspans 'rspans': detect rowspans 'spans': bool, detetch both rowspans and colspans @param kwargs: @return: """ def _apply_if_avail(key, fct): if key in kwargs: val = kwargs.pop(key) if val is not None: fct(val) _apply_if_avail("styles", lambda v: self.apply_styles(v)) _apply_if_avail("cstyles", lambda v: self.apply_conditional_styles(v)) _apply_if_avail("format", lambda v: self.apply_format(v)) _apply_if_avail("c", lambda v: self.apply_colattrs(value=v)) _apply_if_avail("cmin", lambda v: self.apply_colattrs(min=v)) _apply_if_avail("cmax", lambda v: self.apply_colattrs(max=v)) _apply_if_avail("cweight", lambda v: self.apply_colattrs(weight=v)) _apply_if_avail("r", lambda v: self.apply_rowattrs(value=v)) _apply_if_avail("rmin", lambda v: self.apply_rowattrs(min=v)) _apply_if_avail("rmax", lambda v: self.apply_rowattrs(max=v)) _apply_if_avail("rweight", lambda v: self.apply_rowattrs(weight=v)) _apply_if_avail("rspans", lambda v: v and self.detect_rowspans()) _apply_if_avail("cspans", lambda v: v and self.detect_colspans()) _apply_if_avail( "spans", lambda v: v and (self.detect_rowspans(), self.detect_colspans()) ) def apply_number_format(self, formatter, rb=1, align=1): styles = align and AlignRight or {} cstyles = rb and ConditionalRedBlack or None self.apply(format=formatter, styles=styles, cstyles=cstyles) return self def _do_number_format(self, rb, align, fmt_fct, fmt_args, defaults): args = {} defaults and args.update(defaults) fmt_args and args.update(fmt_args) f = pad_positive_wrapper(fmt_fct(**args)) return self.apply_number_format(f, rb=rb, align=align) def percent_format(self, rb=1, align=1, **fmt_args): defaults = {"precision": 2, "nan": "-"} return self._do_number_format( rb, align, fmt.new_percent_formatter, fmt_args, defaults ) def int_format(self, rb=1, align=1, **fmt_args): defaults = {"nan": "-"} return self._do_number_format( rb, align, fmt.new_int_formatter, fmt_args, defaults ) def float_format(self, rb=1, align=1, **fmt_args): defaults = {"precision": 2, "nan": "-"} return self._do_number_format( rb, align, fmt.new_float_formatter, fmt_args, defaults ) def thousands_format(self, rb=1, align=1, **fmt_args): defaults = {"precision": 1, "nan": "-"} return self._do_number_format( rb, align, fmt.new_thousands_formatter, fmt_args, defaults ) def millions_format(self, rb=1, align=1, **fmt_args): defaults = {"precision": 1, "nan": "-"} return self._do_number_format( rb, align, fmt.new_millions_formatter, fmt_args, defaults ) def billions_format(self, rb=1, align=1, **fmt_args): defaults = {"precision": 1, "nan": "-"} return self._do_number_format( rb, align, fmt.new_billions_formatter, fmt_args, defaults ) def guess_number_format(self, rb=1, align=1, **fmt_args): """Determine the most appropriate formatter by inspected all the region values""" fct = fmt.guess_formatter(self.actual_values, **fmt_args) return self.apply_number_format(fct, rb=rb, align=align) def guess_format(self, rb=1, align=1, **fmt_args): from tia.util.fmt import NumberFormat fct = fmt.guess_formatter(self.actual_values, **fmt_args) if isinstance(fmt, NumberFormat): return self.apply_number_format(fct, rb=rb, align=align) else: return self.apply_format(fct) def dynamic_number_format(self, rb=1, align=1, **fmt_args): """Formatter changes based on the cell value""" fct = fmt.DynamicNumberFormatter(**fmt_args) return self.apply_number_format(fct, rb=rb, align=align) # def heat_map(self, cmap=None, min=None, max=None, font_cmap=None): def heat_map(self, cmap="RdYlGn", vmin=None, vmax=None, font_cmap=None): if cmap is None: carr = ["#d7191c", "#fdae61", "#ffffff", "#a6d96a", "#1a9641"] cmap = LinearSegmentedColormap.from_list("default-heatmap", carr) if isinstance(cmap, str): cmap = get_cmap(cmap) if isinstance(font_cmap, str): font_cmap = get_cmap(font_cmap) vals = self.actual_values.astype(float) if vmin is None: vmin = vals.min().min() if vmax is None: vmax = vals.max().max() norm = (vals - vmin) / (vmax - vmin) for ridx in range(self.nrows): for cidx in range(self.ncols): v = norm.iloc[ridx, cidx] if np.isnan(v): continue color = cmap(v) hex = rgb2hex(color) styles = {"BACKGROUND": HexColor(hex)} if font_cmap is not None: styles["TEXTCOLOR"] = HexColor(rgb2hex(font_cmap(v))) self.iloc[ridx, cidx].apply_styles(styles) return self heatmap = heat_map def set_font(self, name=None, size=None, leading=None, color=None): name and self.set_fontname(name) size and self.set_fontsize(size) leading and self.set_leading(leading) color and self.set_textcolor(color) return self def set_fontname(self, name): return self.apply_style("FONTNAME", name) def set_fontsize(self, size): return self.apply_style("FONTSIZE", size) def set_textcolor(self, color): return self.apply_style("TEXTCOLOR", color) def set_leading(self, n): return self.apply_style("LEADING", n) def set_valign(self, pos): return self.apply_style("VALIGN", pos) def set_valign_middle(self): return self.set_valign("MIDDLE") def set_valign_center(self): return self.set_valign_middle() def set_valign_top(self): return self.set_valign("TOP") def set_valign_bottom(self): return self.set_valign("BOTTOM") def set_align(self, pos): return self.apply_style("ALIGN", pos) def set_align_center(self): return self.set_align("CENTER") def set_align_middle(self): return self.set_align_center() def set_align_left(self): return self.set_align("LEFT") def set_align_right(self): return self.set_align("RIGHT") def set_pad(self, left, bottom, right, top): return self.set_lpad(left).set_bpad(bottom).set_rpad(right).set_tpad(top) def set_lpad(self, n): return self.apply_style("LEFTPADDING", n) def set_bpad(self, n): return self.apply_style("BOTTOMPADDING", n) def set_rpad(self, n): return self.apply_style("RIGHTPADDING", n) def set_tpad(self, n): return self.apply_style("TOPPADDING", n) def set_box( self, weight=DefaultWeight, color=None, cap=None, dashes=None, join=None, count=None, space=None, ): return self.apply_style("BOX", weight, color, cap, dashes, join, count, space) def set_grid( self, weight=DefaultWeight, color=None, cap=None, dashes=None, join=None, count=None, space=None, ): return self.apply_style("GRID", weight, color, cap, dashes, join, count, space) def set_lineabove( self, weight=DefaultWeight, color=None, cap=None, dashes=None, join=None, count=None, space=None, ): return self.apply_style( "LINEABOVE", weight, color, cap, dashes, join, count, space ) def set_linebelow( self, weight=DefaultWeight, color=None, cap=None, dashes=None, join=None, count=None, space=None, ): return self.apply_style( "LINEBELOW", weight, color, cap, dashes, join, count, space ) def set_linebefore( self, weight=DefaultWeight, color=None, cap=None, dashes=None, join=None, count=None, space=None, ): return self.apply_style( "LINEBEFORE", weight, color, cap, dashes, join, count, space ) def set_lineafter( self, weight=DefaultWeight, color=None, cap=None, dashes=None, join=None, count=None, space=None, ): return self.apply_style( "LINEAFTER", weight, color, cap, dashes, join, count, space ) def set_border_type( self, clazz, weight=DefaultWeight, color=None, cap=None, dashes=None, join=None, count=None, space=None, ): """example: set_border_type(BorderTypePartialRows) would set a border above and below each row in the range""" args = locals() args.pop("clazz") args.pop("self") clazz(**args).apply(self) def set_background(self, color): return self.apply_style("BACKGROUND", color) def set_col_backgrounds(self, colors): """Set alternative column colors""" return self.apply_style("COLBACKGROUNDS", colors) def set_row_backgrounds(self, colors): """Set alternative row colors""" return self.apply_style("ROWBACKGROUNDS", colors) class _RegionIX(object): """ Custom version of indexer which ensures a DataFrame is created for proper use with the RangeFormatter""" def __init__(self, region, idx_fct_name="iloc"): self.region = region self.idx_fct_name = idx_fct_name def __getitem__(self, key): """Sloppy implementation as I do not handle nested tuples properly""" if isinstance(key, tuple): if len(key) != 2: raise Exception("if tuple is used, it must contain 2 indexers") ridx = key[0] cidx = key[1] else: ridx = key cidx = slice(None) region = self.region # bug when ridx is -1 and only a single row - cannot get DataFrame if np.isscalar(ridx) and ridx == -1 and len(region.formatted_values.index) == 1: ridx = [0] else: ridx = [ridx] if np.isscalar(ridx) else ridx cidx = [cidx] if np.isscalar(cidx) else cidx idx = getattr(region.formatted_values, self.idx_fct_name) result = idx[ridx, cidx] if not isinstance(result, pd.DataFrame): raise Exception( "index %s is expected to return a DataFrame, not %s" % (key, type(result)) ) return RegionFormatter(self.region.parent, result.index, result.columns) class TableFormatter(object): def __init__(self, df, inc_header=1, inc_index=1): self.df = df self.inc_header = inc_header self.inc_index = inc_index self.ncols = ncols = len(df.columns) self.nrows = nrows = len(df.index) self.nhdrs = nhdrs = inc_header and df.columns.nlevels or 0 self.nidxs = nidxs = inc_index and df.index.nlevels or 0 self.style_cmds = [] # copy the actual values to the formatted cells values = ( df.reset_index(drop=not inc_index) .T.reset_index(drop=not inc_header) .T.reset_index(drop=True) ) if inc_index and nhdrs > 1: # move index name down values.iloc[nhdrs - 1, :nidxs] = values.iloc[0, :nidxs] values.iloc[: nhdrs - 1, :nidxs] = "" formatted_values = pd.DataFrame( np.empty((nhdrs + nrows, nidxs + ncols), dtype=object) ) formatted_values.ix[:, :] = values.copy().values self.actual_values = values self.formatted_values = formatted_values self.named_regions = { "ALL": RegionFormatter( self, formatted_values.index, formatted_values.columns ), "HEADER": RegionFormatter( self, formatted_values.index[:nhdrs], formatted_values.columns[nidxs:] ), "INDEX": RegionFormatter( self, formatted_values.index[nhdrs:], formatted_values.columns[:nidxs] ), "CELLS": RegionFormatter( self, formatted_values.index[nhdrs:], formatted_values.columns[nidxs:] ), "INDEX_HEADER": RegionFormatter( self, formatted_values.index[:nhdrs], formatted_values.columns[:nidxs] ), } # Define some fields to handle weight of rows/columns self.rowattrs = pd.DataFrame( np.empty((nhdrs + nrows, 4)), columns=["weight", "min", "max", "value"] ) self.rowattrs[:] = np.nan self.colattrs = pd.DataFrame( np.empty((nidxs + ncols, 4)), columns=["weight", "min", "max", "value"] ) self.colattrs[:] = np.nan def __getitem__(self, name): return self.named_regions[name] def get_default_header_style(self, **overrides): return dict(DefaultHeaderStyle, **overrides) def apply_default_cell_style(self, **overrides): styles = dict(DefaultCellStyle, **overrides) self.cells.apply_styles(styles) return self def apply_default_header_style(self, inc_index=0, **overrides): styles = self.get_default_header_style(**overrides) self.header.apply_styles(styles) if inc_index: self.index_header.apply_styles(styles) return self def apply_default_index_style(self, **overrides): styles = dict(DefaultIndexStyle, **overrides) self.index.apply_styles(styles) return self def apply_default_style( self, inc_cells=1, inc_header=1, inc_index=1, inc_index_header=0, cells_override=None, header_override=None, index_override=None, ): inc_cells and self.apply_default_cell_style(**(cells_override or {})) inc_header and self.apply_default_header_style( inc_index=inc_index_header, **(header_override or {}) ) inc_index and self.apply_default_index_style(**(index_override or {})) return self def apply_basic_style( self, font="Helvetica", font_bold="Helvetica-Bold", font_size=8, rpad=None, lpad=None, bpad=None, tpad=None, colspans=1, rowspans=0, cmap=None, font_bw=1, stripe_rows=1, stripe_cols=0, hdr_border_clazz=BorderTypeGrid, cell_border_clazz=BorderTypeOutline, border_weight=0.7, ): Style.apply_basic( self, font=font, font_bold=font_bold, font_size=font_size, rpad=rpad, lpad=lpad, bpad=bpad, tpad=tpad, colspans=colspans, rowspans=rowspans, ) Style.apply_color( self, cmap, font_bw=font_bw, stripe_cols=stripe_cols, stripe_rows=stripe_rows, hdr_border_clazz=hdr_border_clazz, cell_border_clazz=cell_border_clazz, border_weight=border_weight, ) return self @property def all(self): return self["ALL"] @property def header(self): return self["HEADER"] @property def index(self): return self["INDEX"] @property def index_header(self): return self["INDEX_HEADER"] @property def cells(self): return self["CELLS"] def set_row_heights(self, pcts=None, amts=None, maxs=None, mins=None): """ :param pcts: the percent of available height to use or ratio is also ok :param amts: (Array or scalar) the fixed height of the rows :param maxs: (Array or scalar) the maximum height of the rows (only use when pcts is used) :param mins: (Array or scalar) the minimum height of the rows (only used when pcts is used) :return: """ for arr, attr in zip( [pcts, amts, maxs, mins], ["weight", "value", "max", "min"] ): if arr is not None: if not np.isscalar(arr): if len(arr) != len(self.formatted_values.index): raise ValueError( "%s: expected %s rows but got %s" % (attr, len(arr), len(self.formatted_values.index)) ) self.rowattrs.ix[:, attr] = arr return self def set_col_widths(self, pcts=None, amts=None, maxs=None, mins=None): """ :param pcts: the percent of available width to use or ratio is also ok :param amts: (Array or scalar) the fixed width of the cols :param maxs: (Array or scalar) the maximum width of the cols (only use when pcts is used) :param mins: (Array or scalar) the minimum width of the cols (only used when pcts is used) :return: """ for arr, attr in zip( [pcts, amts, maxs, mins], ["weight", "value", "max", "min"] ): if arr is not None: if not np.isscalar(arr): if len(arr) != len(self.formatted_values.columns): raise ValueError( "%s: expected %s cols but got %s" % (attr, len(arr), len(self.formatted_values.columns)) ) self.colattrs.ix[:, attr] = arr return self def _resolve_dims(self, available, attrs): def _clean(v): return None if np.isnan(v) else v if attrs["value"].notnull().any(): # Static values # Assume that if one is set than all are set return [_clean(a) for a in attrs["value"]] elif attrs["weight"].notnull().any(): # Dynamic values f = attrs f["active"] = (attrs["weight"] * available) / attrs["weight"].sum() f["active"] = f[["active", "min"]].max(axis=1) f["active"] = f[["active", "max"]].min(axis=1) return list(f.active.fillna(0)) elif attrs["min"].notnull().any(): return [_clean(a) for a in attrs["min"]] else: return None def resolve_col_widths(self, availWidth): return self._resolve_dims(availWidth, self.colattrs) def resolve_row_heights(self, availHeight): return self._resolve_dims(availHeight, self.rowattrs) def build(self, expand="wh", shrink="wh", vAlign="MIDDLE", hAlign="CENTER"): return TableLayout(self, expand, shrink, hAlign, vAlign) def _find_column_label_positions(self, match_value_or_fct, levels=None): """Check the original DataFrame's column labels to find the locations of columns. And return the adjusted column indexing within region (offset if including index)""" allmatches = find_locations(self.df.columns, match_value_or_fct, levels) if allmatches and self.inc_index: # tramslate back allmatches = [m + self.nidxs for m in allmatches] return allmatches def _find_row_label_positions(self, match_value_or_fct, levels=None): """Check the original DataFrame's row labels to find the locations of rows. And return the adjusted row indexing within region (offset if including index)""" allmatches = find_locations(self.df.index, match_value_or_fct, levels) if allmatches and self.inc_index: # tramslate back allmatches = [m + self.nhdrs for m in allmatches] return allmatches class TableLayout(Flowable): def __init__(self, tb, expand="wh", shrink="wh", hAlign="CENTER", vAlign="MIDDLE"): self.tb = tb self.expand = expand or "" self.shrink = shrink or "" self.vAlign = vAlign self.hAlign = hAlign self._style_and_data = None self.component = None @property def style_and_data(self): if self._style_and_data is None: data = self.tb.formatted_values.values.tolist() style = TableStyle(self.tb.style_cmds) self._style_and_data = style, data return self._style_and_data def wrap(self, aw, ah): style, data = self.style_and_data # Apply any column / row sizes requested widths = self.tb.resolve_col_widths(aw) heights = self.tb.resolve_row_heights(ah) tbl = Table( data, colWidths=widths, rowHeights=heights, style=style, vAlign=self.vAlign, hAlign=self.hAlign, repeatCols=False, repeatRows=True, ) w, h = tbl.wrap(aw, ah) pw, ph = w / float(aw), h / float(ah) shrink, expand = self.shrink, self.expand scale = 0 if expand and pw < 1.0 and ph < 1.0: scale = max("w" in expand and pw or 0, "h" in expand and ph or 0) elif shrink and (pw > 1.0 or ph > 1.0): scale = max("w" in shrink and pw or 0, "h" in expand and ph or 0) if scale: self.component = comp = KeepInFrame( aw, ah, content=[tbl], hAlign=self.hAlign, vAlign=self.vAlign ) w, h = comp.wrapOn(self.canv, aw, ah) comp._scale = scale else: self.component = tbl return w, h def drawOn(self, canvas, x, y, _sW=0): return self.component.drawOn(canvas, x, y, _sW=_sW) def split(self, aw, ah): if self.component: return self.component.split(aw, ah) else: return []
py
b4112995ed34faa28e1c4aba0c13d1666c0a2234
# Generated by Django 4.0.1 on 2022-02-07 12:10 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('user', '0003_initial'), ] operations = [ migrations.CreateModel( name='LoginModel', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('username', models.CharField(max_length=50, verbose_name='Username')), ('password', models.CharField(max_length=50, verbose_name='Password')), ], ), ]
py
b411299bd2861845cbf7bad0ec494450a179cc9d
import multiprocessing import time import random from modules import ( throw_dice, check_holiday, days_until_summer, days_until_newyear, show_color_rgb, get_coordinates, usual_lootbox, weapon_lootbox ) from telegram_bot import Bot from jsondb import JsonDB def message_handler(incoming_message): global shadow_db # default / and ? commands from commands.json commands = JsonDB("commands.json")["commands"] # quotes for bot's random quote feature quotes = JsonDB("data/quotes.json")["quotes"] result = { "method": "send_message", "chat_id": incoming_message["chat_id"], "text": "?" } for command_name in commands.keys(): if incoming_message["text"] == command_name: result["text"] = commands[command_name] # random quote feature if incoming_message["text"] == "/quote": result["text"] = random.choice(quotes) # lootboxes feature if incoming_message["text"] == "/lootbox": result["text"] = usual_lootbox() if incoming_message["text"] == "/weapon_lootbox": result["text"] = weapon_lootbox() # throwing dice feature if incoming_message["text"].startswith("/dice"): result["text"] = throw_dice(incoming_message["text"]) # random choice feature if incoming_message["text"].startswith("/random"): try: random_result = random.choice(incoming_message["text"].split(" ")[1:]) except: random_result = "Type command correctly" finally: result["text"] = random_result # days until newyear or summer feature if incoming_message["text"] == "/newyear": result["text"] = days_until_newyear() if incoming_message["text"] == "/summer": result["text"] = days_until_summer() # locations feature if incoming_message["text"].startswith("/where"): try: location = incoming_message["text"].split(" ")[1] result = { "method": "send_location", "coordinates": get_coordinates(location), "chat_id": incoming_message["chat_id"] } except: result = { "method": "send_message", "chat_id": incoming_message["chat_id"], "text": "Type command correctly" } if incoming_message["text"].startswith("/location") and incoming_message["text"] != "/locations": try: location = incoming_message["text"].split(" ")[1:] result = { "method": "send_location", "coordinates": {"latitude": float(location[0]), "longitude": float(location[1])}, "chat_id": incoming_message["chat_id"] } except: result = { "method": "send_message", "chat_id": incoming_message["chat_id"], "text": "Type command correctly" } # chat id getter if incoming_message["text"] == "/chat_id": result["text"] = incoming_message["chat_id"] # unix time feature if incoming_message["text"] == "/unix_time": result["text"] = "{} seconds since 00:00:00 1 January 1970".format(str(round(time.time()))) # holiday feature if incoming_message["text"] == "/holiday": result["text"] = check_holiday() # rgb feature if incoming_message["text"].startswith("/rgb"): try: rgb = [int(color) for color in incoming_message["text"].split(" ")[1:]] rgb = tuple(rgb) if len(rgb) != 3: raise ValueError except: rgb = (255, 255, 255) finally: result = { "method": "send_photo", "photo": open(show_color_rgb(rgb), "rb"), "caption": "Red - {}, Green - {}, Blue - {}".format(rgb[0], rgb[1], rgb[2]), "chat_id": incoming_message["chat_id"] } # drop log file feature if incoming_message["text"] == "/droplog": result = { "method": "send_document", "caption": "Log", "chat_id": incoming_message["chat_id"] } if "text" in result.keys(): if result["text"] == "?": result = None return result def bot_processor(delay): global lock, db bot = Bot(db["token"], admin_id=db["admin_id"]) while True: lock.acquire() messages = bot.get_last_messages() for message in messages: if round(time.time()) - message["date"] <= db["max_time_diff"]: try: incoming_message = {"text": message["text"], "chat_id": message["chat"]["id"]} # some messages have not text (stickers, files etc) except: continue outgoing_message = message_handler(incoming_message) if outgoing_message is None: continue elif outgoing_message["method"] == "send_message": bot.send_message(outgoing_message["chat_id"], outgoing_message["text"]) elif outgoing_message["method"] == "send_location": bot.send_location(outgoing_message["chat_id"], outgoing_message["coordinates"]) elif outgoing_message["method"] == "send_photo": bot.send_file(outgoing_message["chat_id"], outgoing_message["photo"], "photo", outgoing_message["caption"]) elif outgoing_message["method"] == "send_audio": bot.send_file(outgoing_message["chat_id"], outgoing_message["audio"], "audio") elif outgoing_message["method"] == "send_document": if outgoing_message["caption"].startswith("Log"): if outgoing_message["chat_id"] == bot.admin_id: bot.send_file(bot.admin_id, open(bot.log_file, "rb"), "document", outgoing_message["caption"]) else: bot.send_message(bot.admin_id, "Unresolved attempt to access to log file from {}".format( outgoing_message["chat_id"])) else: pass db["last_checked_update_id"] = bot.last_checked_update_id db.write() lock.release() time.sleep(delay) if __name__ == '__main__': db = JsonDB("db.json") lock = multiprocessing.Lock() manager = multiprocessing.Manager() shadow_db = manager.dict() bot_process = multiprocessing.Process(target=bot_processor, args=(db["delays"]["bot"],)) bot_process.start() bot_process.join()
py
b4112a059f046a6fce87fa439b64451b87755d40
import sys import subprocess import json import psycopg2.extras from common import conn, command, aggregate, get_aggregate def handler(obj): if hasattr(obj, 'isoformat'): return obj.isoformat() else: raise TypeError('Object of type %s with value of %s is not JSON serializable' % (type(obj), repr(obj))) cur = conn.cursor(cursor_factory=psycopg2.extras.RealDictCursor) def prepare(table, check_column): cur.execute("SELECT column_name FROM information_schema.columns WHERE table_name=%s and column_name=%s", (table, check_column)) if not cur.fetchone(): cur.execute("alter table %s add column %s boolean" % (table, check_column)) conn.commit() def run(table, check_column, update_column, id_column, app): p = subprocess.Popen([ app ], stdin=subprocess.PIPE, stdout=subprocess.PIPE) while True: cur.execute("select * from %s where %s is distinct from 't' for update skip locked limit 1" % (table, check_column)) r = cur.fetchone() if not r: break print("Processing row %s..." % r[id_column], end="") sys.stdout.flush() p.stdin.write((json.dumps(r, default=handler)+"\n").encode()) p.stdin.flush() res = p.stdout.readline() try: res = json.loads(res) except: print(" Fail.") print(res) raise if not update_column in res or not id_column in res: print(" Fail.") print(res) raise Exception("Missing %s key, broken app!" % (update_column, id_column)) cur.execute("update %s set %s = 't', %s = %s where %s = %s" % (table, check_column, update_column, '%s', id_column, '%s'), (res[update_column], res[id_column])) print(" Done.") conn.commit() if __name__ == "__main__": if len(sys.argv) < 6: print("Provide table, check_column, update_column, id_column and app!") sys.exit(2) print("Prepare start") prepare(sys.argv[1], sys.argv[2]) print("RUN") run(sys.argv[1], sys.argv[2], sys.argv[3], sys.argv[4], sys.argv[5])
py
b4112a33b7c72f91064054135362a5f77e46ebb6
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.async.base.exchange import Exchange from ccxt.base.errors import ExchangeError from ccxt.base.errors import OrderNotFound class bitflyer (Exchange): def describe(self): return self.deep_extend(super(bitflyer, self).describe(), { 'id': 'bitflyer', 'name': 'bitFlyer', 'countries': 'JP', 'version': 'v1', 'rateLimit': 1000, # their nonce-timestamp is in seconds... 'has': { 'CORS': False, 'withdraw': True, 'fetchMyTrades': True, 'fetchOrders': True, 'fetchOrder': True, 'fetchOpenOrders': 'emulated', 'fetchClosedOrders': 'emulated', }, 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/28051642-56154182-660e-11e7-9b0d-6042d1e6edd8.jpg', 'api': 'https://api.bitflyer.jp', 'www': 'https://bitflyer.jp', 'doc': 'https://bitflyer.jp/API', }, 'api': { 'public': { 'get': [ 'getmarkets/usa', # new(wip) 'getmarkets/eu', # new(wip) 'getmarkets', # or 'markets' 'getboard', # ... 'getticker', 'getexecutions', 'gethealth', 'getboardstate', 'getchats', ], }, 'private': { 'get': [ 'getpermissions', 'getbalance', 'getcollateral', 'getcollateralaccounts', 'getaddresses', 'getcoinins', 'getcoinouts', 'getbankaccounts', 'getdeposits', 'getwithdrawals', 'getchildorders', 'getparentorders', 'getparentorder', 'getexecutions', 'getpositions', 'gettradingcommission', ], 'post': [ 'sendcoin', 'withdraw', 'sendchildorder', 'cancelchildorder', 'sendparentorder', 'cancelparentorder', 'cancelallchildorders', ], }, }, 'fees': { 'trading': { 'maker': 0.25 / 100, 'taker': 0.25 / 100, }, }, }) async def fetch_markets(self): jp_markets = await self.publicGetGetmarkets() us_markets = await self.publicGetGetmarketsUsa() eu_markets = await self.publicGetGetmarketsEu() markets = self.array_concat(jp_markets, us_markets) markets = self.array_concat(markets, eu_markets) result = [] for p in range(0, len(markets)): market = markets[p] id = market['product_code'] currencies = id.split('_') base = None quote = None symbol = id numCurrencies = len(currencies) if numCurrencies == 1: base = symbol[0:3] quote = symbol[3:6] elif numCurrencies == 2: base = currencies[0] quote = currencies[1] symbol = base + '/' + quote else: base = currencies[1] quote = currencies[2] result.append({ 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'info': market, }) return result async def fetch_balance(self, params={}): await self.load_markets() response = await self.privateGetGetbalance() balances = {} for b in range(0, len(response)): account = response[b] currency = account['currency_code'] balances[currency] = account result = {'info': response} currencies = list(self.currencies.keys()) for i in range(0, len(currencies)): currency = currencies[i] account = self.account() if currency in balances: account['total'] = balances[currency]['amount'] account['free'] = balances[currency]['available'] account['used'] = account['total'] - account['free'] result[currency] = account return self.parse_balance(result) async def fetch_order_book(self, symbol, limit=None, params={}): await self.load_markets() orderbook = await self.publicGetGetboard(self.extend({ 'product_code': self.market_id(symbol), }, params)) return self.parse_order_book(orderbook, None, 'bids', 'asks', 'price', 'size') async def fetch_ticker(self, symbol, params={}): await self.load_markets() ticker = await self.publicGetGetticker(self.extend({ 'product_code': self.market_id(symbol), }, params)) timestamp = self.parse8601(ticker['timestamp']) last = float(ticker['ltp']) return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': None, 'low': None, 'bid': float(ticker['best_bid']), 'bidVolume': None, 'ask': float(ticker['best_ask']), 'askVolume': None, 'vwap': None, 'open': None, 'close': last, 'last': last, 'previousClose': None, 'change': None, 'percentage': None, 'average': None, 'baseVolume': float(ticker['volume_by_product']), 'quoteVolume': None, 'info': ticker, } def parse_trade(self, trade, market=None): side = None order = None if 'side' in trade: if trade['side']: side = trade['side'].lower() id = side + '_child_order_acceptance_id' if id in trade: order = trade[id] if order is None: order = self.safe_string(trade, 'child_order_acceptance_id') timestamp = self.parse8601(trade['exec_date']) return { 'id': str(trade['id']), 'info': trade, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': market['symbol'], 'order': order, 'type': None, 'side': side, 'price': trade['price'], 'amount': trade['size'], } async def fetch_trades(self, symbol, since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) response = await self.publicGetGetexecutions(self.extend({ 'product_code': market['id'], }, params)) return self.parse_trades(response, market, since, limit) async def create_order(self, symbol, type, side, amount, price=None, params={}): await self.load_markets() order = { 'product_code': self.market_id(symbol), 'child_order_type': type.upper(), 'side': side.upper(), 'price': price, 'size': amount, } result = await self.privatePostSendchildorder(self.extend(order, params)) # {"status": - 200, "error_message": "Insufficient funds", "data": null} return { 'info': result, 'id': result['child_order_acceptance_id'], } async def cancel_order(self, id, symbol=None, params={}): if symbol is None: raise ExchangeError(self.id + ' cancelOrder() requires a symbol argument') await self.load_markets() return await self.privatePostCancelchildorder(self.extend({ 'product_code': self.market_id(symbol), 'child_order_acceptance_id': id, }, params)) def parse_order_status(self, status): statuses = { 'ACTIVE': 'open', 'COMPLETED': 'closed', 'CANCELED': 'canceled', 'EXPIRED': 'canceled', 'REJECTED': 'canceled', } if status in statuses: return statuses[status] return status.lower() def parse_order(self, order, market=None): timestamp = self.parse8601(order['child_order_date']) amount = self.safe_float(order, 'size') remaining = self.safe_float(order, 'outstanding_size') filled = self.safe_float(order, 'executed_size') price = self.safe_float(order, 'price') cost = price * filled status = self.parse_order_status(order['child_order_state']) type = order['child_order_type'].lower() side = order['side'].lower() symbol = None if market is None: marketId = self.safe_string(order, 'product_code') if marketId is not None: if marketId in self.markets_by_id: market = self.markets_by_id[marketId] if market is not None: symbol = market['symbol'] fee = None feeCost = self.safe_float(order, 'total_commission') if feeCost is not None: fee = { 'cost': feeCost, 'currency': None, 'rate': None, } return { 'id': order['child_order_acceptance_id'], 'info': order, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'status': status, 'symbol': symbol, 'type': type, 'side': side, 'price': price, 'cost': cost, 'amount': amount, 'filled': filled, 'remaining': remaining, 'fee': fee, } async def fetch_orders(self, symbol=None, since=None, limit=100, params={}): if symbol is None: raise ExchangeError(self.id + ' fetchOrders() requires a symbol argument') await self.load_markets() market = self.market(symbol) request = { 'product_code': market['id'], 'count': limit, } response = await self.privateGetGetchildorders(self.extend(request, params)) orders = self.parse_orders(response, market, since, limit) if symbol: orders = self.filter_by(orders, 'symbol', symbol) return orders async def fetch_open_orders(self, symbol=None, since=None, limit=100, params={}): params['child_order_state'] = 'ACTIVE' return self.fetch_orders(symbol, since, limit, params) async def fetch_closed_orders(self, symbol=None, since=None, limit=100, params={}): params['child_order_state'] = 'COMPLETED' return self.fetch_orders(symbol, since, limit, params) async def fetch_order(self, id, symbol=None, params={}): if symbol is None: raise ExchangeError(self.id + ' fetchOrder() requires a symbol argument') orders = await self.fetch_orders(symbol) ordersById = self.index_by(orders, 'id') if id in ordersById: return ordersById[id] raise OrderNotFound(self.id + ' No order found with id ' + id) async def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): if symbol is None: raise ExchangeError(self.id + ' fetchMyTrades requires a symbol argument') await self.load_markets() market = self.market(symbol) request = { 'product_code': market['id'], } if limit: request['count'] = limit response = await self.privateGetGetexecutions(self.extend(request, params)) return self.parse_trades(response, market, since, limit) async def withdraw(self, code, amount, address, tag=None, params={}): self.check_address(address) await self.load_markets() if code != 'JPY' and code != 'USD' and code != 'EUR': raise ExchangeError(self.id + ' allows withdrawing JPY, USD, EUR only, ' + code + ' is not supported') currency = self.currency(code) response = await self.privatePostWithdraw(self.extend({ 'currency_code': currency['id'], 'amount': amount, # 'bank_account_id': 1234, }, params)) return { 'info': response, 'id': response['message_id'], } def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): request = '/' + self.version + '/' if api == 'private': request += 'me/' request += path if method == 'GET': if params: request += '?' + self.urlencode(params) url = self.urls['api'] + request if api == 'private': self.check_required_credentials() nonce = str(self.nonce()) auth = ''.join([nonce, method, request]) if params: if method != 'GET': body = self.json(params) auth += body headers = { 'ACCESS-KEY': self.apiKey, 'ACCESS-TIMESTAMP': nonce, 'ACCESS-SIGN': self.hmac(self.encode(auth), self.encode(self.secret)), 'Content-Type': 'application/json', } return {'url': url, 'method': method, 'body': body, 'headers': headers}
py
b4112aa75b3244722fb77d7a89ee0263ccfb2ac2
from __future__ import print_function import argparse import re import sys SECRET_REGEX = r"^kind:\ssecret" SOPS_REGEX = r"ENC.AES256" KUSTOMIZE_REGEX = r"^\$patch:\sdelete" def contains_secret(filename): with open(filename, mode="r") as file_checked: lines = file_checked.read() kubernetes_secret = re.findall( SECRET_REGEX, lines, flags=re.IGNORECASE | re.MULTILINE ) if kubernetes_secret: ignore_secret = re.findall( SOPS_REGEX, lines, flags=re.IGNORECASE | re.MULTILINE ) or re.findall(KUSTOMIZE_REGEX, lines, flags=re.IGNORECASE | re.MULTILINE) if not ignore_secret: return True return False def main(argv=None): parser = argparse.ArgumentParser() parser.add_argument("filenames", nargs="*", help="filenames to check") args = parser.parse_args(argv) files_with_secrets = [f for f in args.filenames if contains_secret(f)] return_code = 0 for file_with_secrets in files_with_secrets: print( "Unencrypted Kubernetes secret detected in file: {0}".format( file_with_secrets ) ) return_code = 1 return return_code if __name__ == "__main__": sys.exit(main(sys.argv[1:]))
py
b4112ad0907859d906954865d64d0e825f570873
# # Test base current collector submodel # import pybamm import tests import unittest class TestBaseModel(unittest.TestCase): def test_public_functions(self): param = pybamm.standard_parameters_lithium_ion submodel = pybamm.current_collector.PotentialPair1plus1D(param) variables = { "Positive current collector potential": pybamm.PrimaryBroadcast( 0, "current collector" ) } std_tests = tests.StandardSubModelTests(submodel, variables) std_tests.test_all() submodel = pybamm.current_collector.PotentialPair2plus1D(param) std_tests = tests.StandardSubModelTests(submodel, variables) std_tests.test_all() if __name__ == "__main__": print("Add -v for more debug output") import sys if "-v" in sys.argv: debug = True pybamm.settings.debug_mode = True unittest.main()
py
b4112adf18535e3c4fe9661587c65c8389cee4ed
""" Input Dialog for EELS Analysis Author: Gerd Duscher """ import numpy as np import sidpy from PyQt5 import QtCore, QtWidgets from pyTEMlib import info_dlg import pyTEMlib.interactive_eels as ieels from pyTEMlib.microscope import microscope from pyTEMlib import file_tools as ft _version = 000 class InfoDialog(QtWidgets.QDialog): """ Input Dialog for EELS Analysis Opens a PyQt5 GUi Dialog that allows to set the experimental parameter necessary for a Quantification. The dialog operates on a sidpy dataset """ def __init__(self, dataset=None): super().__init__(None, QtCore.Qt.WindowStaysOnTopHint) # Create an instance of the GUI self.ui = info_dlg.UiDialog(self) self.set_action() self.dataset = dataset self.spec_dim = [] self.energy_scale = np.array([]) self.experiment = {} self.energy_dlg = None self.axis = None self.show() if dataset is None: # make a dummy dataset for testing dataset = ft.make_dummy_dataset(sidpy.DataType.SPECTRUM) if not isinstance(dataset, sidpy.Dataset): raise TypeError('dataset has to be a sidpy dataset') self.set_dataset(dataset) self.dataset.plot() if hasattr(self.dataset.view, 'axes'): self.axis = self.dataset.view.axes[-1] elif hasattr(self.dataset.view, 'axis'): self.axis = self.dataset.view.axis self.figure = self.axis.figure self.plot() self.update() def set_dataset(self, dataset): self.dataset = dataset if not hasattr(self.dataset, '_axes'): self.dataset._axes = self.dataset.axes if not hasattr(self.dataset, 'meta_data'): self.dataset.meta_data = {} self.spec_dim = ft.get_dimensions_by_type(sidpy.DimensionType.SPECTRAL, dataset) if len(self.spec_dim) != 1: raise TypeError('We need exactly one SPECTRAL dimension') self.spec_dim = self.spec_dim[0] self.energy_scale = self.spec_dim[1].values.copy() minimum_info = {'offset': self.energy_scale[0], 'dispersion': self.energy_scale[1] - self.energy_scale[0], 'exposure_time': 0.0, 'convergence_angle': 0.0, 'collection_angle': 0.0, 'acceleration_voltage': 100.0, 'binning': 1, 'conversion': 1.0, 'flux': 1.0, 'current': 1.0, 'SI_bin_x': 1, 'SI_bin_y': 1} if 'experiment' not in self.dataset.metadata: self.dataset.metadata['experiment'] = minimum_info self.experiment = self.dataset.metadata['experiment'] for key, item in minimum_info.items(): if key not in self.experiment: self.experiment[key] = item def set_dimension(self): self.spec_dim = ft.get_dimensions_by_type(sidpy.DimensionType.SPECTRAL, self.dataset) self.spec_dim = self.spec_dim[0] old_energy_scale = self.spec_dim[1] self.dataset.set_dimension(self.spec_dim[0], sidpy.Dimension(np.array(self.energy_scale), name=old_energy_scale.name, dimension_type=sidpy.DimensionType.SPECTRAL, units='eV', quantity='energy loss')) def update(self): self.ui.offsetEdit.setText(f"{self.experiment['offset']:.3f}") self.ui.dispersionEdit.setText(f"{self.experiment['dispersion']:.3f}") self.ui.timeEdit.setText(f"{self.experiment['exposure_time']:.6f}") self.ui.convEdit.setText(f"{self.experiment['convergence_angle']:.2f}") self.ui.collEdit.setText(f"{self.experiment['collection_angle']:.2f}") self.ui.E0Edit.setText(f"{self.experiment['acceleration_voltage']/1000.:.2f}") self.ui.binningEdit.setText(f"{self.experiment['binning']}") self.ui.conversionEdit.setText(f"{self.experiment['conversion']:.2f}") self.ui.fluxEdit.setText(f"{self.experiment['flux']:.2f}") self.ui.VOAEdit.setText(f"{self.experiment['current']:.2f}") def on_enter(self): sender = self.sender() if sender == self.ui.offsetEdit: value = float(str(sender.displayText()).strip()) self.experiment['offset'] = value sender.setText(f"{value:.2f}") self.energy_scale = self.energy_scale - self.energy_scale[0] + value self.set_dimension() self.plot() elif sender == self.ui.dispersionEdit: value = float(str(sender.displayText()).strip()) self.experiment['dispersion'] = value self.energy_scale = np.arange(len(self.energy_scale)) * value + self.energy_scale[0] self.set_dimension() self.plot() sender.setText(f"{value:.3f}") elif sender == self.ui.timeEdit: value = float(str(sender.displayText()).strip()) self.experiment['exposure_time'] = value sender.setText(f"{value:.2f}") elif sender == self.ui.convEdit: value = float(str(sender.displayText()).strip()) self.experiment['convergence_angle'] = value sender.setText(f"{value:.2f}") elif sender == self.ui.collEdit: value = float(str(sender.displayText()).strip()) self.experiment['collection_angle'] = value sender.setText(f"{value:.2f}") elif sender == self.ui.E0Edit: value = float(str(sender.displayText()).strip()) self.experiment['acceleration_voltage'] = value*1000.0 sender.setText(f"{value:.2f}") elif sender == self.ui.E0Edit: value = float(str(sender.displayText()).strip()) self.experiment['acceleration_voltage'] = value sender.setText(f"{value:.2f}") elif sender == self.ui.binXEdit or sender == self.ui.binYEdit: if self.dataset.data_type == sidpy.DataType.SPECTRAL_IMAGE: bin_x = int(self.ui.binXEdit.displayText()) bin_y = int(self.ui.binYEdit.displayText()) self.experiment['SI_bin_x'] = bin_x self.experiment['SI_bin_y'] = bin_y self.dataset.view.set_bin([bin_x, bin_y]) self.ui.binXEdit.setText(str(self.dataset.view.bin_x)) self.ui.binYEdit.setText(str(self.dataset.view.bin_y)) else: print('not supported yet') def plot(self): if self.dataset.data_type == sidpy.DataType.SPECTRAL_IMAGE: spectrum = self.dataset.view.get_spectrum() self.axis = self.dataset.view.axes[1] else: spectrum = np.array(self.dataset) self.axis = self.dataset.view.axis x_limit = self.axis.get_xlim() y_limit = self.axis.get_ylim() self.axis.clear() self.axis.plot(self.energy_scale, spectrum, label='spectrum') self.axis.set_xlim(x_limit) self.axis.set_ylim(y_limit) self.figure.canvas.draw_idle() def on_list_enter(self): sender = self.sender() if sender == self.ui.TEMList: microscope.set_microscope(self.ui.TEMList.currentText()) self.experiment['microscope'] = microscope.name self.experiment['convergence_angle'] = microscope.alpha self.experiment['collection_angle'] = microscope.beta self.experiment['acceleration_voltage'] = microscope.E0 self.update() def set_energy_scale(self): self.energy_dlg = ieels.EnergySelector(self.dataset) self.energy_dlg.signal_selected[bool].connect(self.set_energy) self.energy_dlg.show() def set_energy(self, k): self.spec_dim = ft.get_dimensions_by_type(sidpy.DimensionType.SPECTRAL, self.dataset) self.spec_dim = self.spec_dim[0] self.energy_scale = self.spec_dim[1] self.experiment['offset'] = self.energy_scale[0] self.experiment['dispersion'] = self.energy_scale[1] - self.energy_scale[0] self.update() def on_check(self): pass def set_action(self): self.ui.offsetEdit.editingFinished.connect(self.on_enter) self.ui.dispersionEdit.editingFinished.connect(self.on_enter) self.ui.timeEdit.editingFinished.connect(self.on_enter) self.ui.TEMList.activated[str].connect(self.on_list_enter) self.ui.convEdit.editingFinished.connect(self.on_enter) self.ui.collEdit.editingFinished.connect(self.on_enter) self.ui.E0Edit.editingFinished.connect(self.on_enter) self.ui.binningEdit.editingFinished.connect(self.on_enter) self.ui.conversionEdit.editingFinished.connect(self.on_enter) self.ui.fluxEdit.editingFinished.connect(self.on_enter) self.ui.VOAEdit.editingFinished.connect(self.on_enter) self.ui.energy_button.clicked.connect(self.set_energy_scale) self.ui.binXEdit.editingFinished.connect(self.on_enter) self.ui.binYEdit.editingFinished.connect(self.on_enter)
py
b4112b1f0663fede4166fe0977b363f8c37472b9
from collections import defaultdict import nltk from nltk.util import ngrams from tqdm import tqdm import numpy as np import torch from torchmetrics.functional.classification.f_beta import f1, fbeta from torchmetrics.functional.classification.precision_recall import (precision,recall) # for sorting the probable word acc. to their probabilities # returns: void # arg: dict def sortProbWordDict(prob_dict): for key in prob_dict: if len(prob_dict[key]) > 1: # only at most top 2 most probable words have been taken prob_dict[key] = sorted(prob_dict[key], reverse=True) # creates the dictionaries required for computing Interpolated Knesser Ney probability # arg: dict, int # returns: dict, dict def createKNDict(ngram_dict, n): # for knesser ney probability formula we need to find to important things # first is for P(Wn|Wn-1) if find no. of ngrams which ends with Wn and no. of ngrams which starts # with Wn-1 # so we divide the formula into two parts ,first part can be found in constant time # and second term is found here # for storing count of ngram ending with Wn,key:unigram first_dict = {} # for storing count of ngram having Wn-1 as its starting part, key: trigram sentence sec_dict = {} for key in ngram_dict: # split the key sentence into tokens ngram_token = key.split() # since the indexing is from 0 ,so for quadgram we need to create a sentence of three words # so start from 0 to 2,so we subtract 1,similarly for trigram from 0 to 1 n_1gram_sen = ' '.join(ngram_token[: n - 1]) # n_1gram_sen is the word that stars in sec_dict[n_1gram_sen] number of times in ngram_dict if n_1gram_sen not in sec_dict: sec_dict[n_1gram_sen] = 1 else: sec_dict[n_1gram_sen] += 1 if ngram_token[-1] not in first_dict: first_dict[ngram_token[-1]] = 1 else: first_dict[ngram_token[-1]] += 1 return first_dict, sec_dict # Finds the Knesser Ney probability for prediction # arg: dict, dict # return: void def computeKnesserNeyProb(n_gram_dict, prob_dict): d = 0.75 # first create the dict for storing the count of Wn-1 followed by Wn and for # ngrams preceding Wn-1 n_gram_fs_dict = {} # n-gram starts from 2 so match the last ngram size it should be len(dic) + 1 last_gram_dict = n_gram_dict[len(n_gram_dict) + 1] # building first and second KNdict for n_gram in n_gram_dict: # print(n_gram) first_dict = {} sec_dict = {} first_dict, sec_dict = createKNDict(n_gram_dict[n_gram], n_gram) n_gram_fs_dict[n_gram] = {1: first_dict, 2: sec_dict} # now find the probability for the sentences for n_gram in last_gram_dict: n_gram_token = n_gram.split() n_gram_sen = ' '.join(n_gram_token[:-1]) n_gram_pred = n_gram_token[-1] prob = 0.0 for fs_n_gram in n_gram_fs_dict: first_dict = {} sec_dict = {} first_dict = n_gram_fs_dict[fs_n_gram][1] sec_dict = n_gram_fs_dict[fs_n_gram][2] ngram_dict = n_gram_dict[fs_n_gram] # check if the current ngram is equal to max ngrams given # then calculate max gram probs else normal if len(n_gram_fs_dict) + 1 == fs_n_gram: ngram_dict_before = n_gram_dict[fs_n_gram - 1] prob1 = max(ngram_dict[n_gram] - d, 0) / ngram_dict_before[n_gram_sen] prob2 = d / ngram_dict_before[n_gram_sen] * (sec_dict[n_gram_sen]) else: prob1 = max(first_dict[n_gram_pred] - d, 0) / len(ngram_dict) prob2 = (d / len(ngram_dict)) * (sec_dict[' '.join(n_gram_token[1:fs_n_gram])]) if fs_n_gram == 2: uni_prob = first_dict[n_gram_pred] / len(ngram_dict) prob = prob1 + prob2 * (uni_prob) else: prob = prob1 + prob2 * (prob) if n_gram_sen not in prob_dict: prob_dict[n_gram_sen] = [] prob_dict[n_gram_sen].append([prob, n_gram_pred]) else: prob_dict[n_gram_sen].append([prob, n_gram_pred]) def doPrediction(sen, prob_dict): if sen in prob_dict: return prob_dict[sen] else: return None def calculate_accuracy(X_test, y_test, model, k): k = max(k, 1) score = 0 total = len(X_test) for prevWords, trueWord in zip(X_test, y_test): logits = doPrediction(prevWords, model) if logits: for count, value in enumerate(logits): if count >= k: break # prob = value[0] pred = value[1] if pred == trueWord: score += 1 break return score / total def train_ngram(train_dataset, n_gram=5, smoothing=True): # variable declaration prob_dict = defaultdict(list) # for storing probability of probable words for prediction if smoothing: n_gram_dict = {} # for keeping count of sentences (n-grams) for i in range(2, n_gram + 1): print(f"\t> Building {i}-grams") # creating ngram dict temp_dict = defaultdict(int) for item in tqdm(train_dataset): tokens_stream = item['text'] for t in list(ngrams(tokens_stream, i)): sen = ' '.join(t) temp_dict[sen] += 1 n_gram_dict[i] = temp_dict # Smoothing: compute the Knesser Ney probabilities computeKnesserNeyProb(n_gram_dict, prob_dict) else: max_gram_dict = {} count_dict = defaultdict(int) for item in tqdm(train_dataset): tokens_stream = item['text'] for t in list(ngrams(tokens_stream, n_gram)): sen = ' '.join(t) count_dict[sen] += 1 prev_words, target_word = t[:-1], t[-1] if prev_words in max_gram_dict: max_gram_dict[prev_words].append(target_word) else: max_gram_dict[prev_words] = [target_word] for token, count_of_token in count_dict.items(): token = token.split() prev_words, target_word = token[:-1], token[-1] try: count_of_context = float(len(max_gram_dict[tuple(prev_words)])) prob = count_of_token / count_of_context except KeyError: prob = 0.0 prev_words = " ".join(prev_words) if prev_words in prob_dict: prob_dict[prev_words].append([prob, target_word]) else: prob_dict[prev_words] = [[prob, target_word]] # sort the probable words by their probability sortProbWordDict(prob_dict) return prob_dict def calculate_PRF(X_test, y_test, model, word_idx): preds = [] labels = [] for prevWords, trueWord in zip(X_test, y_test): logits = doPrediction(prevWords, model) if logits: preds.append(word_idx[logits[0][1]]) else: preds.append(0) # it will appedn <pad> token as pred which is near to imposible in test set labels.append(word_idx[trueWord]) preds = torch.as_tensor(preds) labels = torch.as_tensor(labels) scores = {} scores['precision'] = precision(preds, labels, average='weighted', num_classes=502) scores['recall'] = recall(preds, labels, average='weighted', num_classes=502) scores['f1'] = f1(preds, labels, average='weighted', num_classes=502, beta=1) scores['fbeta'] = fbeta(preds, labels, average='weighted', num_classes=502, beta=0.5) return scores def test_ngram(model, test_dataset, n_gram=5, word_idx=None): X_test = [] y_test = [] for item in tqdm(test_dataset): tokens_stream = item['text'] for i in range(n_gram, len(tokens_stream)): seq = tokens_stream[i - n_gram: i] X_test.append(" ".join(seq[0:-1])) y_test.append(seq[-1]) scores = calculate_PRF(X_test, y_test, model, word_idx) for i in [1, 2, 3, 4, 5, 10]: scores[f'acc_{i}'] = calculate_accuracy(X_test, y_test, model, i) return scores def predict(seed, model, context_size): logits = model[" ".join(seed[-(context_size - 1):])] # -(context_size-1) simple trick for sliding the context if not logits: return None, None # prob = logits[0][0] # pred = logits[0][1] return logits[0][0], logits[0][1] def greedy_decoder(seed, model, context_size, MaxPred): answer = seed # In n-gram model the pred word is included in context so we pad the seed with context - 2 PAD = ['<pad>'] * (context_size - 2) seed = PAD + [seed] while True: prob_pred = doPrediction(" ".join(seed[-(context_size - 1):]), model) if prob_pred is None: return answer prob, pred = prob_pred[0][0], prob_pred[0][1] # greedily taking top 1 predictions answer += " " + pred seed.append(pred) if pred in [";", "{", "}"] or len(answer.split()) > MaxPred: break return answer def beam_decoder(seed, model, context_size, MaxPred, k=5): answer = seed # In n-gram model the pred word is included in context so we pad the seed with context - 2 PAD = ['<pad>'] * (context_size - 2) seed = PAD + [seed] answers = [] prob_pred = doPrediction(" ".join(seed[-(context_size - 1):]), model) if prob_pred is None: return answer # selecting top k predictions for i in range(k): try: answers.append([(prob_pred[i][0], prob_pred[i][1])]) # prob, pred except: answers.append([(0.0, '<idf>')]) # prob, pred count = 0 while True: count += 1 for _ in range(k): seq = answers.pop(0) if seq[-1][1] in [";", "{", "}"]: answers.append(seq) continue target_seed = seed + [s[1] for s in seq] prob_pred = doPrediction(" ".join(target_seed[-(context_size - 1):]), model) if prob_pred is None: continue # selecting top k predictions for i in range(k): try: answers.append(seq + [(prob_pred[i][0], prob_pred[i][1])]) # prob, pred except: answers.append(seq + [(0.0, '<idf>')]) # prob, pred dead_list = [sum([np.log(x[0]) for x in seq]) for seq in answers] # seq[:, 1] try: top_k_idx = np.argpartition(dead_list, -k)[-k:] answers = [answers[i] for i in top_k_idx] # answers[top_k_idx] except: pass if all([s[-1][1] in [";", "{", "}"] or len(s) > MaxPred for s in answers]): break dead_list = [sum([np.log(x[0]) for x in seq]) for seq in answers] # TODO: Return k best best_answer = answers[np.argmax(dead_list)] for token in best_answer: answer += " " + token[1] return answer def template_generator(model, test_dataset, context_size=5, method='greedy', topK=1): X_true = [] X_pred = [] for item in tqdm(test_dataset): tokens_stream = item['text'] test_item = " ".join(tokens_stream) seed = test_item[0] if method == "greedy": ts = greedy_decoder(seed, model, context_size, context_size + 10) pred_item = " ".join(seed+ts) elif method == "beam": ts = beam_decoder(seed, model, context_size, context_size + 10, k=topK) pred_item = " ".join(seed+ts) else: raise "invalid method please choose 'greedy' or 'beam'" X_true.append(test_item) X_pred.append(pred_item) return X_true, X_pred
py
b4112b3b96d2e976084e985c1bb773e6bd47bfb2
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'mosaic.ui' # # Created by: PyQt5 UI code generator 5.9.2 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_GroupBox(object): def setupUi(self, GroupBox): GroupBox.setObjectName("GroupBox") GroupBox.resize(330, 183) self.horizontalLayout = QtWidgets.QHBoxLayout(GroupBox) self.horizontalLayout.setObjectName("horizontalLayout") self.objectiveLabel = QtWidgets.QLabel(GroupBox) self.objectiveLabel.setObjectName("objectiveLabel") self.horizontalLayout.addWidget(self.objectiveLabel) self.objectiveText = QtWidgets.QLabel(GroupBox) self.objectiveText.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.objectiveText.setObjectName("objectiveText") self.horizontalLayout.addWidget(self.objectiveText) self.retranslateUi(GroupBox) QtCore.QMetaObject.connectSlotsByName(GroupBox) def retranslateUi(self, GroupBox): _translate = QtCore.QCoreApplication.translate GroupBox.setWindowTitle(_translate("GroupBox", "GroupBox")) GroupBox.setTitle(_translate("GroupBox", "Mosaic")) self.objectiveLabel.setText(_translate("GroupBox", "Objective:")) self.objectiveText.setText(_translate("GroupBox", "asdf")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) GroupBox = QtWidgets.QGroupBox() ui = Ui_GroupBox() ui.setupUi(GroupBox) GroupBox.show() sys.exit(app.exec_())
py
b4112cddec670652db413dfe950eac02bcec0ad5
# Scraper for California's Fourth District Court of Appeal Division 3 # CourtID: calctapp_4th_div3 # Court Short Name: Cal. Ct. App. from juriscraper.opinions.united_states.state import calctapp_1st class Site(calctapp_1st.Site): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.court_id = self.__module__ self.court_code = "G" self.division = "4th App. Dist. Div. 3"
py
b4112d1e3bd66adcf89701f4e435a6babbb90ebd
# Generated by Django 2.1.5 on 2019-01-16 16:26 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100)), ('body', models.CharField(max_length=500)), ], ), ]
py
b4112dcb4127f9e5a1e5d3b31712df8f3ef89177
import torch import logging logger = logging.getLogger('global') def check_keys(model, pretrained_state_dict): ckpt_keys = set(pretrained_state_dict.keys()) model_keys = set(model.state_dict().keys()) used_pretrained_keys = model_keys & ckpt_keys unused_pretrained_keys = ckpt_keys - model_keys missing_keys = model_keys - ckpt_keys if len(missing_keys) > 0: logger.info('[Warning] missing keys: {}'.format(missing_keys)) logger.info('missing keys:{}'.format(len(missing_keys))) if len(unused_pretrained_keys) > 0: logger.info('[Warning] unused_pretrained_keys: {}'.format(unused_pretrained_keys)) logger.info('unused checkpoint keys:{}'.format(len(unused_pretrained_keys))) logger.info('used keys:{}'.format(len(used_pretrained_keys))) assert len(used_pretrained_keys) > 0, 'load NONE from pretrained checkpoint' return True def remove_prefix(state_dict, prefix): ''' Old style model is stored with all names of parameters share common prefix 'module.' ''' logger.info('remove prefix \'{}\''.format(prefix)) f = lambda x: x.split(prefix, 1)[-1] if x.startswith(prefix) else x return {f(key): value for key, value in state_dict.items()} def load_pretrain(model, pretrained_path): logger.info('load pretrained model from {}'.format(pretrained_path)) if not torch.cuda.is_available(): pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage) else: device = torch.cuda.current_device() pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage.cuda(device)) if "state_dict" in pretrained_dict.keys(): pretrained_dict = remove_prefix(pretrained_dict['state_dict'], 'module.') else: pretrained_dict = remove_prefix(pretrained_dict, 'module.') try: check_keys(model, pretrained_dict) except: logger.info('[Warning]: using pretrain as features. Adding "features." as prefix') new_dict = {} for k, v in pretrained_dict.items(): k = 'features.' + k new_dict[k] = v pretrained_dict = new_dict check_keys(model, pretrained_dict) model.load_state_dict(pretrained_dict, strict=False) return model def restore_from(model, optimizer, ckpt_path): logger.info('restore from {}'.format(ckpt_path)) device = torch.cuda.current_device() ckpt = torch.load(ckpt_path, map_location=lambda storage, loc: storage.cuda(device)) epoch = ckpt['epoch'] best_acc = ckpt['best_acc'] arch = ckpt['arch'] ckpt_model_dict = remove_prefix(ckpt['state_dict'], 'module.') check_keys(model, ckpt_model_dict) model.load_state_dict(ckpt_model_dict, strict=False) check_keys(optimizer, ckpt['optimizer']) # ckpt['optimizer']['param_groups'] = [ckpt['optimizer']['param_groups'][0], # ckpt['optimizer']['param_groups'][2], # ckpt['optimizer']['param_groups'][3]] optimizer.load_state_dict(ckpt['optimizer']) return model, optimizer, epoch, best_acc, arch
py
b4112ddba880d3dca99540318ce3f434f6ed6bcd
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model from msrest.exceptions import HttpOperationError class ComputerVisionError(Model): """ComputerVisionError. All required parameters must be populated in order to send to Azure. :param code: Required. The error code. Possible values include: 'InvalidImageUrl', 'InvalidImageFormat', 'InvalidImageSize', 'NotSupportedVisualFeature', 'NotSupportedImage', 'InvalidDetails', 'NotSupportedLanguage', 'BadArgument', 'FailedToProcess', 'Timeout', 'InternalServerError', 'Unspecified', 'StorageException' :type code: str or ~azure.cognitiveservices.vision.computervision.models.ComputerVisionErrorCodes :param message: Required. A message explaining the error reported by the service. :type message: str :param request_id: A unique request identifier. :type request_id: str """ _validation = { 'code': {'required': True}, 'message': {'required': True}, } _attribute_map = { 'code': {'key': 'code', 'type': 'ComputerVisionErrorCodes'}, 'message': {'key': 'message', 'type': 'str'}, 'request_id': {'key': 'requestId', 'type': 'str'}, } def __init__(self, *, code, message: str, request_id: str=None, **kwargs) -> None: super(ComputerVisionError, self).__init__(**kwargs) self.code = code self.message = message self.request_id = request_id class ComputerVisionErrorException(HttpOperationError): """Server responsed with exception of type: 'ComputerVisionError'. :param deserialize: A deserializer :param response: Server response to be deserialized. """ def __init__(self, deserialize, response, *args): super(ComputerVisionErrorException, self).__init__(deserialize, response, 'ComputerVisionError', *args)
py
b4112e41d2e8093f709fda9fb461f9df035d9254
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for backend.lib.bootstrap.""" import datetime import os import mock from google.appengine.ext import deferred # pylint: disable=unused-import from loaner.web_app.backend.clients import bigquery_client # pylint: disable=unused-import from loaner.web_app.backend.lib import bootstrap from loaner.web_app.backend.lib import datastore_yaml # pylint: disable=unused-import from loaner.web_app.backend.models import bootstrap_status_model from loaner.web_app.backend.models import config_model from loaner.web_app.backend.testing import loanertest class BootstrapTest(loanertest.TestCase): """Tests for the datastore YAML importer lib.""" @mock.patch('__main__.bootstrap.constants.BOOTSTRAP_ENABLED', True) @mock.patch('google.appengine.ext.deferred.defer') def test_run_bootstrap(self, mock_defer): """Tests that run_bootstrap defers tasks for all four methods.""" mock_defer.return_value = 'fake-task' self.assertFalse(config_model.Config.get( 'bootstrap_started')) bootstrap.run_bootstrap({ 'bootstrap_bq_history': {}, 'bootstrap_chrome_ous': {}, 'bootstrap_datastore_yaml': { 'yaml_input': 'fake-yaml' } }) self.assertEqual(len(mock_defer.mock_calls), 3) self.assertTrue(config_model.Config.get( 'bootstrap_started')) @mock.patch('__main__.bootstrap.constants.BOOTSTRAP_ENABLED', True) @mock.patch('google.appengine.ext.deferred.defer') def test_run_bootstrap_all_functions(self, mock_defer): """Tests that run_bootstrap defers tasks for all four methods.""" mock_defer.return_value = 'fake-task' self.assertFalse(config_model.Config.get( 'bootstrap_started')) bootstrap.run_bootstrap() self.assertEqual(len(mock_defer.mock_calls), 3) self.assertTrue(config_model.Config.get( 'bootstrap_started')) @mock.patch('__main__.bootstrap.constants.BOOTSTRAP_ENABLED', False) def test_run_bootstrap_while_disabled(self): """Tests that bootstrapping is disallowed when constant False.""" self.assertRaises( bootstrap.BootstrapError, bootstrap.run_bootstrap, {'bootstrap_fake_method': {}}) @mock.patch('__main__.bootstrap.constants.BOOTSTRAP_ENABLED', True) @mock.patch('__main__.bootstrap.datastore_yaml.import_yaml') def test_manage_task_being_called(self, mock_importyaml): """Tests that the manage_task decorator is doing its task management.""" del mock_importyaml # Unused. bootstrap.bootstrap_datastore_yaml(user_email='foo') expected_model = bootstrap_status_model.BootstrapStatus.get_by_id( 'bootstrap_datastore_yaml') self.assertTrue(bootstrap.bootstrap_datastore_yaml.__doc__.startswith( expected_model.description)) self.assertTrue(expected_model.success) self.assertTrue(expected_model.timestamp < datetime.datetime.utcnow()) @mock.patch('__main__.bootstrap.constants.BOOTSTRAP_ENABLED', True) @mock.patch('__main__.bootstrap.datastore_yaml.import_yaml') def test_manage_task_handles_exception(self, mock_importyaml): """Tests that the manage_task decorator kandles an exception.""" mock_importyaml.side_effect = KeyError('task-exception') self.assertRaisesRegexp( deferred.PermanentTaskFailure, 'bootstrap_datastore_yaml.*task-exception', bootstrap.bootstrap_datastore_yaml, user_email='foo') expected_model = bootstrap_status_model.BootstrapStatus.get_by_id( 'bootstrap_datastore_yaml') self.assertFalse(expected_model.success) self.assertTrue(expected_model.timestamp < datetime.datetime.utcnow()) @mock.patch('__main__.bootstrap.constants.BOOTSTRAP_ENABLED', True) @mock.patch('__main__.bootstrap.datastore_yaml.import_yaml') def test_bootstrap_datastore_yaml(self, mock_importyaml): """Tests bootstrap_datastore_yaml.""" bootstrap.bootstrap_datastore_yaml(user_email='foo') yaml_file_to_string = open(os.path.join( os.path.dirname(__file__), 'bootstrap.yaml')).read() mock_importyaml.assert_called_once_with( yaml_file_to_string, 'foo', True) @mock.patch('__main__.bootstrap.logging.info') @mock.patch('__main__.bootstrap.logging.warn') @mock.patch('__main__.bootstrap.constants.BOOTSTRAP_ENABLED', True) @mock.patch('__main__.bootstrap.directory.DirectoryApiClient') def test_bootstrap_chrome_ous( self, mock_directoryclass, mock_logwarn, mock_loginfo): mock_client = mock_directoryclass.return_value mock_client.get_org_unit.return_value = None bootstrap.bootstrap_chrome_ous(user_email='foo') self.assertEqual(3, mock_loginfo.call_count) # Everything is fine. mock_client.insert_org_unit.assert_has_calls([ mock.call(path) for _, path in bootstrap.constants.ORG_UNIT_DICT.iteritems() ]) # get_org_unit reveals an existing OU of that name. mock_client.reset_mock() mock_client.get_org_unit.return_value = {'fake': 'response'} bootstrap.bootstrap_chrome_ous(user_email='foo') mock_client.insert_org_unit.assert_not_called() mock_logwarn.assert_has_calls([ mock.call(bootstrap._ORG_UNIT_EXISTS_MSG, org_unit_name) for org_unit_name in bootstrap.constants.ORG_UNIT_DICT ]) @mock.patch('__main__.bigquery_client.BigQueryClient') def test_bootstrap_bq_history(self, mock_clientclass): """Tests bootstrap_bq_history.""" mock_client = mock.Mock() mock_clientclass.return_value = mock_client bootstrap.bootstrap_bq_history() mock_client.initialize_tables.assert_called() def test_is_bootstrap_completed(self): """Tests is_bootstrap_completed under myriad circumstances.""" self.assertFalse(bootstrap.is_bootstrap_completed()) bootstrap.config_model.Config.set('bootstrap_started', True) self.assertFalse(bootstrap.is_bootstrap_completed()) bootstrap.config_model.Config.set('bootstrap_completed', False) self.assertFalse(bootstrap.is_bootstrap_completed()) bootstrap.config_model.Config.set('bootstrap_completed', True) self.assertTrue(bootstrap.is_bootstrap_completed()) def test_is_bootstrap_started(self): self.assertFalse(bootstrap.is_bootstrap_started()) bootstrap.config_model.Config.set('bootstrap_started', True) self.assertTrue(bootstrap.is_bootstrap_started()) @mock.patch('__main__.bootstrap.constants.BOOTSTRAP_ENABLED', True) @mock.patch('__main__.bootstrap.get_all_bootstrap_functions') def test_get_bootstrap_task_status(self, mock_getall): """Tests get_bootstrap_task_status.""" yesterday = datetime.datetime.utcnow() - datetime.timedelta(days=-1) def fake_function1(): pass def fake_function2(): pass mock_getall.return_value = { 'fake_function1': fake_function1, 'fake_function2': fake_function2 } fake_entity1 = bootstrap_status_model.BootstrapStatus.get_or_insert( 'fake_function1') fake_entity1.success = True fake_entity1.timestamp = yesterday fake_entity1.details = '' fake_entity1.put() fake_entity2 = bootstrap_status_model.BootstrapStatus.get_or_insert( 'fake_function2') fake_entity2.success = False fake_entity2.timestamp = yesterday fake_entity2.details = 'Exception raise we failed oh no.' fake_entity2.put() status = bootstrap.get_bootstrap_task_status() self.assertEqual(len(status), 2) if __name__ == '__main__': loanertest.main()
py
b4112e6d0a0c5067c6ac9467b040f72b5c7a6fc4
""" Test the optional sidebars in the basic theme as well as the modindex and other generated pages. """ import pytest from bs4.element import Tag pytestmark = pytest.mark.sphinx('html', testroot='indices') @pytest.mark.parametrize('page', ['genindex.html', ], indirect=True) class TestBasicGenindex: """ Turn on the optional html_sidebars in the basic theme """ def test_heading(self, page): heading: Tag = page.select_one('h1#index') assert heading # The href on the link assert 'Index' == heading.text
py
b4112e88860cd21ebd96400079c51e1676af8f63
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle import paddle.fluid as fluid import paddle.distributed.fleet as fleet from paddle.distributed.fleet.meta_optimizers import AMPOptimizer import os from fleet_meta_optimizer_base import TestFleetMetaOptimizer paddle.enable_static() class TestFleetAMPOptimizer(TestFleetMetaOptimizer): def test_amp_optimizer_backward(self): """ test amp optimizer backward """ train_prog, startup_prog = fluid.Program(), fluid.Program() avg_cost, strategy = self.net(train_prog, startup_prog) opt = fluid.optimizer.MomentumOptimizer( learning_rate=0.001, momentum=0.9) opt = AMPOptimizer(opt) opt.user_defined_strategy = strategy params_grads = opt.backward(avg_cost, startup_prog) ops = [op.type for op in avg_cost.block.ops] self.assertIn('cast', ops) self.assertNotIn('check_finite_and_unscale', ops) def test_amp_optimizer_backward_gradients(self): """ test amp optimizer backward + gradients""" train_prog, startup_prog = fluid.Program(), fluid.Program() avg_cost, strategy = self.net(train_prog, startup_prog) opt = fluid.optimizer.MomentumOptimizer( learning_rate=0.001, momentum=0.9) opt = AMPOptimizer(opt) opt.user_defined_strategy = strategy params_grads = opt.backward(avg_cost, startup_prog) with fluid.program_guard(train_prog, startup_prog): opt.apply_gradients(params_grads) ops = [op.type for op in avg_cost.block.ops] self.assertIn('cast', ops) self.assertIn('check_finite_and_unscale', ops) def test_amp_optimizer_backward_optimize(self): """ test amp optimizer backward + optimizer """ train_prog, startup_prog = fluid.Program(), fluid.Program() avg_cost, strategy = self.net(train_prog, startup_prog) opt = fluid.optimizer.MomentumOptimizer( learning_rate=0.001, momentum=0.9) opt = AMPOptimizer(opt) opt.user_defined_strategy = strategy params_grads = opt.backward(avg_cost, startup_prog) opt.apply_optimize(avg_cost, startup_prog, params_grads) ops = [op.type for op in avg_cost.block.ops] self.assertIn('cast', ops) self.assertIn('check_finite_and_unscale', ops) def test_amp_optimizer(self): """ test amp """ train_prog, startup_prog = fluid.Program(), fluid.Program() avg_cost, strategy = self.net(train_prog, startup_prog) self.set_strategy(strategy, 'amp') self.optimizer(avg_cost, strategy, train_prog, startup_prog) ops = [op.type for op in avg_cost.block.ops] self.assertIn('cast', ops) self.assertIn('check_finite_and_unscale', ops) def test_amp_recompute_optimizer(self): """ test amp + recompute """ train_prog, startup_prog = fluid.Program(), fluid.Program() avg_cost, strategy = self.net(train_prog, startup_prog) self.set_strategy(strategy, 'amp') self.set_strategy(strategy, 'recompute') self.optimizer(avg_cost, strategy, train_prog, startup_prog) strategy = fleet._final_strategy() ops = [op.type for op in avg_cost.block.ops] outs = [ op.output('Out')[0] for op in avg_cost.block.ops if op.type == 'mul' ] self.assertIn('cast', ops) self.assertIn('check_finite_and_unscale', ops) # recompute self.assertIn('subprog', ''.join(outs)) def test_amp_recompute_lars_optimizer(self): """ test amp + recompute """ train_prog, startup_prog = fluid.Program(), fluid.Program() avg_cost, strategy = self.net(train_prog, startup_prog) self.set_strategy(strategy, 'amp') self.set_strategy(strategy, 'recompute') self.set_strategy(strategy, 'lars') self.optimizer(avg_cost, strategy, train_prog, startup_prog) strategy = fleet._final_strategy() ops = [op.type for op in avg_cost.block.ops] outs = [ op.output('Out')[0] for op in avg_cost.block.ops if op.type == 'mul' ] self.assertIn('cast', ops) self.assertIn('check_finite_and_unscale', ops) # recompute self.assertIn('subprog', ''.join(outs)) # lars self.assertIn('lars_momentum', ops) def test_amp_recompute_lamb_optimizer(self): train_prog, startup_prog = fluid.Program(), fluid.Program() avg_cost, strategy = self.net(train_prog, startup_prog) self.set_strategy(strategy, 'amp') self.set_strategy(strategy, 'recompute') self.set_strategy(strategy, 'lamb') self.optimizer(avg_cost, strategy, train_prog, startup_prog, 'adam') ops = [op.type for op in avg_cost.block.ops] outs = [ op.output('Out')[0] for op in avg_cost.block.ops if op.type == 'mul' ] self.assertIn('cast', ops) self.assertIn('check_finite_and_unscale', ops) # recompute self.assertIn('subprog', ''.join(outs)) # lamb self.assertIn('lamb', ops) if __name__ == "__main__": unittest.main()
py
b4112f37902079157e7075d56dc82d3c754c5b1e
import librosa from librosa.util import find_files from librosa import load import os import numpy as np from config import * from tqdm import tqdm from scipy.signal import butter, filtfilt db_train = "./musdb/train" def butter_lowpass(cutoff, fs, order=5): nyq = 0.5 * fs normal_cutoff = cutoff / nyq b, a = butter(order, normal_cutoff, btype='low', analog=False) return b, a def butter_lowpass_filter(data, cutoff, fs, order=5): b, a = butter_lowpass(cutoff, fs, order=order) y = filtfilt(b, a, data) return y def process(): parent = os.path.dirname(os.path.dirname(db_train)) db = os.listdir(db_train) for song_dir in tqdm(db): song_path = db_train + '/' + song_dir tracks = find_files(song_path,ext="wav") # tracks[0] --> accompaniment (instrumental) # tracks[4] --> mixture # tracks[6] --> vocals #inst,_ = load(tracks[0], sr=None) mix,_ = load(tracks[4], sr=None) vocal,_ = load(tracks[6], sr=None) #44100 is sample rate of musdb18 dataset mix = librosa.core.resample(mix,44100,SR) vocal = librosa.core.resample(vocal,44100,SR) #inst = librosa.core.resample(inst,44100,SR) S_mix = butter_lowpass_filter(mix, window_size, SR, order=5) S_vocal = butter_lowpass_filter(vocal, window_size, SR, order=5) S_mix = librosa.stft(S_mix,n_fft=window_size,hop_length=hop_length).astype(np.float32) #S_inst = np.abs(librosa.stft(inst,n_fft=window_size,hop_length=hop_length)).astype(np.float32) S_vocal = librosa.stft(S_vocal,n_fft=window_size,hop_length=hop_length).astype(np.float32) Y_mix = np.abs(S_mix) ** 2 #Y_inst Y_vocal = np.abs(S_vocal) ** 2 Y_log_mix = librosa.power_to_db(Y_mix) Y_log_vocal = librosa.power_to_db(Y_vocal) norm1 = Y_log_mix.max() norm2 = Y_log_vocal.max() Y_log_mix /= norm1 #S_inst /= norm Y_log_vocal /= norm2 spec_dir = parent + '/spectrogram/' + song_dir np.savez(spec_dir,mix=S_mix, vocal=S_vocal) if __name__ == '__main__': process()