ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
b41742b9ed877085556492817d0943bcd6863d16
#!/usr/bin/env python import os, sys, re, platform import subprocess import ConfigParser import collections from optparse import OptionParser HANDLE_DUPS = True PKG_NOT_INSTALLED=0 PKG_INSTALLED=0x1 PKG_HOLD=0x2 class MultiDict(dict): def __setitem__(self, key, value): if isinstance(value, list) and key in self: self[key].extend(value) else: super(self.__class__, self).__setitem__(key, value) class PackageInfo(object): '''Information describing a package''' def __init__(self, name=None, state=0, version=None, requiredVersion=None, candidateVersion=None, arch=None): self._name = name self._state = state self._version = version self._required_version = requiredVersion self._arch = arch self._custom_action = None self._candidate_version = candidateVersion def isInstalled(self): return 0 != (self._state & PKG_INSTALLED) def isOnHold(self): return 0 != (self._state & PKG_INSTALLED) and 0 != (self._state & PKG_HOLD) def getName(self): return self._name def getVersion(self, raw=False): if raw: return self._version or 'none' return self._version or 'latest' def getRequiredVersion(self, raw=False): if raw: return self._required_version or 'none' return self._required_version or 'latest' def getCandidateVersion(self, raw=False): if raw: return self._candidate_version or 'none' if self.getRequiredVersion() == 'latest': return 'latest' return self._candidate_version or 'latest' def getCustomAction(self): return self._custom_action allPackageMgrs = {} class PackageMgr(object): '''Generic package manager class ''' def __init__(self, name=None, noroot=False): self._name = name self._noroot = noroot @classmethod def addPackageMgr(cls): allPackageMgrs[cls.__name__] = cls @staticmethod def getPackageMgr(name): return allPackageMgrs.get(name) def getName(self): return self._name def getPackageInfo(self, names, debug=True): '''Get installed list of PackageInfo instances Override this in derived classes. ''' raise NotImplemented() def installPackages(self, packageList, update, debug, verbose): '''Install packages. Override this in derived classes. Args: packageList: list of PackageInfo instances update: boolean indicating if an update of available packages is required. debug: If true commands are sent to stdout but not executed. ''' raise NotImplemented() def refreshPackageCandidates(self, packageList, debug): '''Refresh candidate version.. Override this in derived classes. Args: packageList: list of PackageInfo instances debug: If true commands are sent to stdout but not executed. ''' raise NotImplemented() def execute(self, command, debug, verbose=False): if debug: print(command) return True else: if verbose: print(command) return 0 == os.system(command) def executeAsRoot(self, command, debug, verbose=False): if not self._noroot and os.getuid() != 0: command = 'sudo ' + command; return self.execute(command, debug=debug, verbose=verbose) def checkVersionLess(self, ver1, ver2): '''Check if ver1 < ver2 ''' ver1 = ver1.replace('-','.').split('.') ver2 = ver2.replace('-','.').split('.') for i in range(min(len(ver1),len(ver2))): v1 = int(ver1[i]) v2 = int(ver2[i]) if v1 < v2: return True elif v1 > v2: return False # must be equal so far return len(ver1) < len(ver2) def prepareInstall(self, pkgs): # Prepare package install into to lists to_install = [] needs_update = [] for p in pkgs: if not p.isInstalled(): if p.getRequiredVersion() == 'latest': to_install.append(p) elif p.getCandidateVersion() != 'latest' and \ self.checkVersionLess(p.getRequiredVersion(), p.getCandidateVersion()): to_install.append(p) else: needs_update.append(p) elif p.isOnHold(): warning('%s is on hold, ignoring install request' % p.getName()) elif p.isInstalled() and p.getRequiredVersion() != 'latest' \ and self.checkVersionLess(p.getVersion(),p.getRequiredVersion()): needs_update.append(p) return (to_install, needs_update) class AptPackageMgr(PackageMgr): '''Apt''' def __init__(self, *args, **kwargs): super(self.__class__, self).__init__(*args, **kwargs) self._threshold = 500 # just a guess # dpkg-query sample output # un www-browser # ii x11-common 1:7.7+1ubuntu8.1 # ii x11proto-composite-dev 1:0.4.2-2 # ii x11proto-core-dev 7.0.26-1~ubuntu2 # ii x11proto-xinerama-dev 1.2.1-2 # ii xauth 1:1.0.7-1ubuntu1 # ii xfonts-encodings 1:1.0.4-1ubuntu1 # ii xfonts-utils 1:7.7+1 # ii cmake 3.2.2-2~ubuntu14.04.1~ppa1 self._dpkg_query = re.compile(r'^([a-zA-Z ]{3})\s([+.\w_-]+)(?::\w+)?\s(?:\d+:)?(\d[.\d-]*\d)[~+.\w_-]*\s*$') # apt-cache policy git sample output # git: # Installed: 1:1.9.1-1ubuntu0.3 # Candidate: 1:1.9.1-1ubuntu0.3 # Version table: # 1:1.9.1-1ubuntu0.3 0 # 500 http://us-east-1.ec2.archive.ubuntu.com/ubuntu/ trusty-updates/main amd64 Packages # 500 http://security.ubuntu.com/ubuntu/ trusty-security/main amd64 Packages # *** 1:1.9.1-1ubuntu0.3 0 # 100 /var/lib/dpkg/status # 1:1.9.1-1 0 # 500 http://us-east-1.ec2.archive.ubuntu.com/ubuntu/ trusty/main amd64 Packages # cmake: # Installed: 3.2.2-2~ubuntu14.04.1~ppa1 # Candidate: 3.2.2-2~ubuntu14.04.1~ppa1 # Version table: # *** 3.2.2-2~ubuntu14.04.1~ppa1 0 # 500 http://ppa.launchpad.net/george-edison55/cmake-3.x/ubuntu/ trusty/main amd64 Packages # 100 /var/lib/dpkg/status # 2.8.12.2-0ubuntu3 0 # 500 http://us-east-1.ec2.archive.ubuntu.com/ubuntu/ trusty/main amd64 Packages #self._apt_query = re.compile(r'^\s*installed:(?:\d+:)?(?P<installed>\d[.\d-]*\d)[~+.\w_-]*\s*$|^\s*candidate:(?:\d+:)?(?P<candidate>\d[.\d-]*\d)[~+.\w_-]*\s*$', \ self._apt_query = re.compile(r'^\s*installed:\s*(?:\d+:)?(?P<installed>\d[.\d-]*\d)\D.*$|^\s*candidate:\s*(?:\d+:)?(?P<candidate>\d[.\d-]*\d)\D.*$', \ flags=re.MULTILINE|re.IGNORECASE) def _parseDpkgQuery(self, result): # ii zlib1g-dev:amd64 1:1.2.8.dfsg-1ubuntu1 srch = self._dpkg_query.match(result) if srch is not None: #print("DEBUG " + str((srch.group(0),srch.group(1),srch.group(2),srch.group(3)))) pkg = PackageInfo(name=srch.group(2), version=srch.group(3)) if srch.group(1)[0] in 'i': pkg._state = PKG_INSTALLED elif srch.group(1)[0] == 'h': pkg._state = PKG_INSTALLED|PKG_HOLD return pkg return None def _queryApt(self, pkgname, FNULL=None, debug=False): if debug: print(' Running apt-cache policy %s' % pkgname); if FNULL is None: with open(os.devnull, 'w') as FNULL: result = subprocess.Popen(['apt-cache', 'policy', pkgname], \ stderr=FNULL, stdout=subprocess.PIPE).communicate()[0] else: result = subprocess.Popen(['apt-cache', 'policy', pkgname], \ stderr=FNULL, stdout=subprocess.PIPE).communicate()[0] srch = self._apt_query.search(result) if srch is not None: candidate = None installed = None if srch.group('installed') is not None and len(srch.group('installed')): installed = srch.group('installed') if srch.group('candidate') is not None and len(srch.group('candidate')) != 0: candidate = srch.group('candidate') if debug: if installed is None and candidate is None: print(' result inconclusive') print('--------------') print(result) print('--------------') else: print(' result = (%r,%r)' % (installed, candidate)) return (installed, candidate) elif debug: print(' no results') print('--------------') print(result) print('--------------') return (None,None) def installPackages(self, packageList, update=False, debug=False, verbose=False): '''Install packages. Args: packageList: list of PackageInfo instances update: if True then an update of available packages is required before install. debug: If true commands are sent to stdout but not executed. ''' if self._noroot or os.getuid() == 0: updatefmt = 'aptitude %s' installfmt = 'aptitude -y install %s' else: updatefmt = 'sudo aptitude %s' installfmt = 'sudo aptitude -y install %s' if update: self.execute(updatefmt % 'update', debug=debug, verbose=verbose) self.execute(updatefmt % '-y upgrade', debug=debug, verbose=verbose) args = '' for pkg in packageList: if (len(pkg.getName()) + 1 + len(args)) > 80: self.execute(installfmt % args, debug=debug, verbose=verbose) args = '' args += ' ' + pkg.getName() if len(args) != 0: self.execute(installfmt % args, debug=debug, verbose=verbose) def refreshPackageCandidates(self, packageList, debug=False): '''Refresh candidate version.. Args: packageList: list of PackageInfo instances debug: If true commands are sent to stdout but not executed. ''' with open(os.devnull, 'w') as FNULL: for pkg in packageList: pkg._version,pkg._candidate_version = self._queryApt(pkg.getName(), FNULL, debug=debug) def getPackageInfo(self, names, debug=True): '''Get packages in same order a names Args: names: list of package names. debug: If true commands are sent to stdout but not executed. Returns: A tuple (list of PackageInfo instances, list of missing names). ''' if not isinstance(names, collections.Iterable): names = { names: 'latest' } pkgs = [] missing = [] if len(names) > self._threshold and not debug: # At some threshold its cheaper to get all packages installed. allpkgs = {} with open(os.devnull, 'w') as FNULL: results = subprocess.Popen(['dpkg-query', '-f=${db:Status-Abbrev} ${binary:Package} ${Version}\n', '-W', '*'], \ stderr=FNULL, stdout=subprocess.PIPE).communicate()[0] results = results.split('\n') for result in results: if len(result) == 0: continue pkg = self._parseDpkgQuery(result) if pkg is not None: allpkgs[pkg.getName()] = pkg for nm in names: pkg = allpkgs.get(nm[0]) if pkg is not None: pkg._required_version = nm[1] if len(nm) == 3: pkg._custom_action = nm[2] if pkg.getRequiredVersion() != 'latest': # Check using apt-cache _,pkg._candidate_version = self._queryApt(nm[0], debug=debug) pkgs.append(pkg) else: # Check using apt-cache installed, candidate = self._queryApt(nm[0], debug=debug) if installed is not None: warning('dpkg-query parse failure - check regex in this script') pkg = PackageInfo(name=nm[0],state=PKG_INSTALLED,version=installed,requiredVersion=nm[1],candidateVersion=candidate) pkgs.append(pkg) elif candidate is not None: pkg = PackageInfo(name=nm[0],version=installed,requiredVersion=nm[1],candidateVersion=candidate) pkgs.append(pkg) else: # will need to do apt-get update missing.append(nm) else: for nm in names: with open(os.devnull, 'w') as FNULL: result = subprocess.Popen(['dpkg-query', '-f=${db:Status-Abbrev} ${binary:Package} ${Version}\n', '-W', nm[0]], \ stderr=FNULL, stdout=subprocess.PIPE).communicate()[0] result = result.strip('\n') if debug: print('dpkg-query %s result=%s' % (nm[0], result)) pkg = self._parseDpkgQuery(result) if pkg is not None: pkg._required_version = nm[1] if len(nm) == 3: pkg._custom_action = nm[2] if pkg.getRequiredVersion() != 'latest': # Check using apt-cache _,pkg._candidate_version = self._queryApt(nm[0], debug=debug) pkgs.append(pkg) else: # Check using apt-cache installed, candidate = self._queryApt(nm[0], debug=debug) if installed is not None: warning('dpkg-query parse failure - check regex in this script') pkg = PackageInfo(name=nm[0],state=PKG_INSTALLED,version=installed,requiredVersion=nm[1],candidateVersion=candidate) pkgs.append(pkg) elif candidate is not None: pkg = PackageInfo(name=nm[0],version=installed,requiredVersion=nm[1],candidateVersion=candidate) pkgs.append(pkg) else: # will need to do apt-get update missing.append(nm) return (pkgs, missing) class PipPackageMgr(PackageMgr): '''Pip''' def __init__(self, *args, **kwargs): super(self.__class__, self).__init__(*args, **kwargs) # scikit-image (0.12.3) # scikit-learn (0.17.1) # scipy (0.17.1) self._pip_list = re.compile(r'(?P<pkgname>[\w.~-]+)\s*\((?P<installed>\d+[.\d-]*)\)') self._pip_search1 = re.compile(r'^(?P<pkgname>[\w.~-]+)\s*\((?P<candidate>\d+[.\d-]*)\)') self._pip_search2 = re.compile(r'^\s*INSTALLED:\s*(?P<installed>\d+[.\d-]*)') def _parsePipSearch1(self, result): srch = self._pip_search1.search(result) if srch is not None: pkg = PackageInfo(name=srch.group('pkgname'), candidateVersion=srch.group('candidate')) return pkg return None def _parsePipSearch2(self, pkg, result): srch = self._pip_search2.search(result) if srch is not None: pkg._version = srch.group('installed') return True return False def _parsePipList(self, result): srch = self._pip_list.search(result) if srch is not None: pkg = PackageInfo(name=srch.group('pkgname'), version=srch.group('installed')) pkg._state = PKG_INSTALLED return pkg return None def getPackageInfo(self, names, debug=True): '''Get packages in same order a names Args: names: list of package names. debug: If true commands are sent to stdout but not executed. Returns: A tuple (list of PackageInfo instances, list of missing names). ''' if not isinstance(names, collections.Iterable): names = { names: 'latest' } pkgs = [] missing = [] allpkgs = {} with open(os.devnull, 'w') as FNULL: results = subprocess.Popen(['pip', 'list'], stderr=FNULL, stdout=subprocess.PIPE).communicate()[0] results = results.split('\n') for result in results: if len(result) == 0: continue pkg = self._parsePipList(result) if pkg is not None: allpkgs[pkg.getName()] = pkg todo = [] for nm in names: pkg = allpkgs.get(nm[0]) if pkg is not None: pkg._required_version = nm[1] if len(nm) == 3: pkg._custom_action = nm[2] pkgs.append(pkg) else: todo.append(nm) with open(os.devnull, 'w') as FNULL: for nm in todo: pkg = None # Handle pips woeful search facilty inherited from pypi. target = re.split('[\d,.~-]', nm[0]) results = subprocess.Popen(['pip', 'search', target[0]], stderr=FNULL, stdout=subprocess.PIPE).communicate()[0] if debug: print('Searching for %s' % nm[0]) print('---------') print(results) print('---------') results = results.split('\n') for r in results: if pkg is not None: self._parsePipSearch2(pkg, r) break if r.find(nm[0]) == 0: if debug: print('found partial match: %s' % r) pkg = self._parsePipSearch1(r) if pkg is not None and pkg.getName() != nm[0]: pkg = None continue elif pkg is not None: pkgs.append(pkg) if pkg is None: missing.append(nm) return (pkgs, missing) def installPackages(self, packageList, update, debug, verbose): '''Install packages. Args: packageList: list of PackageInfo instances update: Ignored for PIP. debug: If true commands are sent to stdout but not executed. ''' for pkg in packageList: if pkg.getRequiredVersion() != 'latest': self.executeAsRoot('pip install %s==%s' (pkg.getName(), pkg.getRequiredVersion()), debug=debug, verbose=verbose) else: self.executeAsRoot('pip install ' + pkg.getName(), debug=debug, verbose=verbose) def refreshPackageCandidates(self, packageList, debug): '''Refresh candidate version.. Does nothing for PIP. Args: packageList: list of PackageInfo instances debug: If true commands are sent to stdout but not executed. ''' pass def die(msg=None): if msg is not None: print("Error: %s" % msg) sys.exit(1) def warning(msg): print("Warning: %s" % msg) def prepCustomAction(items): m = {} for k,v in items: m[k] = v if m.get('run') is None: return None if m.get('version') is None: m['version'] = 'latest' return m def extractPackageNames(pkgs): '''Extract package names from a list of PackageInfo instances. Args: pkgs: A list of PackageInfo instances. Returns: A list of packages names ''' if not isinstance(pkgs, collections.Iterable): pkgs = [ pkgs ] names = [] for p in pkgs: names.append(p.getName()) def grep_platform(regex): try: regex = regex.split('/') if len(regex) == 3 and len(regex[0]) == 0: flags = 0 if 'i' in regex[2]: flags |= re.IGNORECASE return re.search(regex[1], platform.platform(), flags=flags) except: pass die('bad regex %s in package-selector section' % regex) return False def printPackageInfo(packages): for u in packages: # 0 1 2 3 4 5 6 # 0123456789012345678901234567890123456789012345678901234567890 print(' Package Name Installed Required Candidate') print(' ------------ --------- -------- ---------') print(' %-16s %-14s %-12s %-14s' % (u.getName(), u.getVersion(True), u.getRequiredVersion(True), u.getCandidateVersion(True))) if __name__ == '__main__': print('Package Dependency Helper V0.1') # Parse command line usage = '%prog [[options] [file1.conf ...]]' parser = OptionParser(usage) parser.add_option('-l', '--list', action='store_true', dest='pkglist', help='list selected packages on stdout') parser.add_option('-v', '--verbose', action='store_true', dest='verbose', help='verbose output') parser.add_option('-i', '--install', action='store_true', dest='pkginstall', help='install selected packages') parser.add_option('-r', '--noroot', action='store_true', dest='noroot', help='do not install as root') parser.add_option('-d', '--debug', action='store_true', dest='debug', help='used with install, print commands but don\'t execute') (options, args) = parser.parse_args() if args is None or len(args) == 0: die('no confguration file so nothing to do') # FIXME: custom action paths should be relative to the conf file # At the moment they are relative to the first conf file if len(args) > 1: warning("Custom actions are relative the first configuration file path.") base_path = os.path.abspath(os.path.dirname(args[0])) # Add supported package managers AptPackageMgr.addPackageMgr() PipPackageMgr.addPackageMgr() # Parse configuration files if HANDLE_DUPS: cfg = ConfigParser.ConfigParser(dict_type=MultiDict) else: cfg = ConfigParser.ConfigParser(dict_type=dict) cfg.optionxform = str # preserve case on keys success = cfg.read(args) mgrs = {} if not cfg.has_section('package-managers'): die('no package-managers in configuration file(s)') mgrMap = {} items = cfg.items('package-managers') for k,v in items: cls = PackageMgr.getPackageMgr(v) if cls is None: warning('%s package-manager class not found' % v) continue mgrMap[k] = cls(name=k, noroot=options.noroot) if len(mgrMap) == 0: die('no package-managers map to classes') # Disabled. # # Map package manager to platform # if not cfg.has_section('package-selector'): # die('no package-selector in configuration file(s)') if cfg.has_section('package-selector'): # Remove package-managers not related to this platform mgr = None items = cfg.items('package-selector') for k,v in items: if mgrMap.get(k) is None: # No package-manager for this key so remove sections cfg.remove_section(k) elif not grep_platform(v): # This platform is not being used so remove from map and remove sections # in configuration mgrMap.pop(k) cfg.remove_section(k) if len(mgrMap) == 0: die('no package-managers after processing package-selector section') # Load packages for each package-manager selections = [] for k,mgr in mgrMap.iteritems(): if not cfg.has_section(k): continue items = cfg.items(k) # Check duplicates if HANDLE_DUPS: for T in items: tmp = T[1].split('\n') if len(tmp) > 1: die('requested multiple versions for package %s:%s' % (T[0],tmp)) # Check for custom actions custom = [] xitems = [] for T in items: if cfg.has_section(T[1]): CA = prepCustomAction(cfg.items(T[1])) if CA is None: die('incomplete custom action %s' % T) custom.append((T[0],CA['version'],CA['run'])) else: xitems.append(T) pkgs,missing = mgr.getPackageInfo(xitems, options.debug); selections.append((mgr, pkgs, missing, custom)) if options.pkglist: # First print packages not installed for mgr,pkgs,missing,custom in selections: print('%s PACKAGES' % mgr.getName().upper()) for p in pkgs: if not options.verbose: if not p.isInstalled(): print(' _ %s' % p.getName()) elif p.isOnHold(): print(' h %s' % p.getName()) elif p.isInstalled(): print(' i %s' % p.getName()) else: print(' _ %s' % p.getName()) for m in missing: print(' m %s' % m[0]) for c in custom: print(' c %s' % c[0]) if options.pkginstall: for mgr,pkgs,missing,custom in selections: # Install packages first todo, update = mgr.prepareInstall(pkgs) if len(todo) == 0 and len(update) == 0: print('Packages up to date - no action required') else: mgr.installPackages(packageList=todo, update=len(update) != 0, debug=options.debug, verbose=options.verbose) mgr.refreshPackageCandidates(update) todo, update = mgr.prepareInstall(update) mgr.installPackages(packageList=todo, update=False, debug=options.debug, verbose=options.verbose) if len(update) !=0: warning('unable to satisfy all package constraints') printPackageInfo(update) # Now handle custom actions caPkgs,caMissing = mgr.getPackageInfo(custom, options.debug) todo, update = mgr.prepareInstall(caPkgs) if len(caMissing) != 0 or len(update) != 0: for ca in custom: exe_path = os.path.join(base_path, ca[2]) if os.path.isfile(exe_path): if not mgr.executeAsRoot(exe_path, debug=options.debug, verbose=options.verbose): die('execution failed %s' % exe_path) else: die('cannot locate custom action %s' % exe_path) elif len(todo) == 0: print('Custom packages up to date - no action required') else: mgr.installPackages(packageList=todo, update=len(update) != 0, debug=options.debug, verbose=options.verbose) mgr.refreshPackageCandidates(update) todo, update = mgr.prepareInstall(update) mgr.installPackages(packageList=todo, update=False, debug=options.debug, verbose=options.verbose) if len(update) !=0: warning('unable to satisfy all package constraints for custom actions') printPackageInfo(update) # if we had missing custom packages must do one more retry if len(caMissing) > 0: caPkgs,caMissing = mgr.getPackageInfo(custom, options.debug) todo, updateRequired = mgr.prepareInstall(caPkgs) mgr.installPackages(packageList=todo, update=True, debug=options.debug, verbose=options.verbose) caPkgs,caMissing = mgr.getPackageInfo(custom, options.debug) if len(caMissing): warning('cannot resolve missing packages %s' % str(caMissing))
py
b41742bd9b4bfcb7e570786ea1892c92c61fe3cd
from PyQt5.QtCore import Qt from PyQt5.QtWidgets import QTreeWidgetItem from qtawesome import icon from ...types import TreeItemStatus class TreeItem(QTreeWidgetItem): _STATUSES = { TreeItemStatus.Normal: (None, None), TreeItemStatus.Loading: ('mdi.progress-clock', None), TreeItemStatus.Error: ('mdi.alert', 'red'), } def __init__(self, texts): super().__init__(texts) self.setStatus(TreeItemStatus.Normal) def setStatus(self, status, toolTip=''): name, color = self._STATUSES[status] if not name: self.setIcon(1, icon()) else: self.setIcon(1, icon(name, color=color)) self.setToolTip(1, toolTip) self._status = status @property def name(self): return self.text(0) @name.setter def name(self, newValue): self.setText(0, newValue) if self.parent(): self.parent().sortChildren(0, Qt.AscendingOrder) @property def status(self): return self._status def illegalNames(self): target = self.parent() or self.treeWidget() return target.illegalChildNames() - {self.name} def illegalChildNames(self): return {'', *(self.child(i).name for i in range(self.childCount()))}
py
b41743710266461b9ed1c7dd42b8ea2ea62553a3
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import itertools import mock from oslo_config import cfg from oslo_serialization import jsonutils from watcher.applier import rpcapi as aapi from watcher.common import utils from watcher.db import api as db_api from watcher import objects from watcher.tests.api import base as api_base from watcher.tests.objects import utils as obj_utils class TestListActionPlan(api_base.FunctionalTest): def setUp(self): super(TestListActionPlan, self).setUp() obj_utils.create_test_goal(self.context) obj_utils.create_test_strategy(self.context) obj_utils.create_test_audit(self.context) def test_empty(self): response = self.get_json('/action_plans') self.assertEqual([], response['action_plans']) def _assert_action_plans_fields(self, action_plan): action_plan_fields = [ 'uuid', 'audit_uuid', 'strategy_uuid', 'strategy_name', 'state', 'global_efficacy', 'efficacy_indicators'] for field in action_plan_fields: self.assertIn(field, action_plan) def test_one(self): action_plan = obj_utils.create_test_action_plan(self.context) response = self.get_json('/action_plans') self.assertEqual(action_plan.uuid, response['action_plans'][0]["uuid"]) self._assert_action_plans_fields(response['action_plans'][0]) def test_one_soft_deleted(self): action_plan = obj_utils.create_test_action_plan(self.context) action_plan.soft_delete() response = self.get_json('/action_plans', headers={'X-Show-Deleted': 'True'}) self.assertEqual(action_plan.uuid, response['action_plans'][0]["uuid"]) self._assert_action_plans_fields(response['action_plans'][0]) response = self.get_json('/action_plans') self.assertEqual([], response['action_plans']) def test_get_one_ok(self): action_plan = obj_utils.create_test_action_plan(self.context) obj_utils.create_test_efficacy_indicator( self.context, action_plan_id=action_plan['id']) response = self.get_json('/action_plans/%s' % action_plan['uuid']) self.assertEqual(action_plan.uuid, response['uuid']) self._assert_action_plans_fields(response) self.assertEqual( [{'description': 'Test indicator', 'name': 'test_indicator', 'value': 0.0, 'unit': '%'}], response['efficacy_indicators']) def test_get_one_soft_deleted(self): action_plan = obj_utils.create_test_action_plan(self.context) action_plan.soft_delete() response = self.get_json('/action_plans/%s' % action_plan['uuid'], headers={'X-Show-Deleted': 'True'}) self.assertEqual(action_plan.uuid, response['uuid']) self._assert_action_plans_fields(response) response = self.get_json('/action_plans/%s' % action_plan['uuid'], expect_errors=True) self.assertEqual(404, response.status_int) def test_detail(self): action_plan = obj_utils.create_test_action_plan(self.context) response = self.get_json('/action_plans/detail') self.assertEqual(action_plan.uuid, response['action_plans'][0]["uuid"]) self._assert_action_plans_fields(response['action_plans'][0]) def test_detail_soft_deleted(self): action_plan = obj_utils.create_test_action_plan(self.context) action_plan.soft_delete() response = self.get_json('/action_plans/detail', headers={'X-Show-Deleted': 'True'}) self.assertEqual(action_plan.uuid, response['action_plans'][0]["uuid"]) self._assert_action_plans_fields(response['action_plans'][0]) response = self.get_json('/action_plans/detail') self.assertEqual([], response['action_plans']) def test_detail_against_single(self): action_plan = obj_utils.create_test_action_plan(self.context) response = self.get_json( '/action_plan/%s/detail' % action_plan['uuid'], expect_errors=True) self.assertEqual(404, response.status_int) def test_many(self): action_plan_list = [] for id_ in range(5): action_plan = obj_utils.create_test_action_plan( self.context, id=id_, uuid=utils.generate_uuid()) action_plan_list.append(action_plan.uuid) response = self.get_json('/action_plans') self.assertEqual(len(action_plan_list), len(response['action_plans'])) uuids = [s['uuid'] for s in response['action_plans']] self.assertEqual(sorted(action_plan_list), sorted(uuids)) def test_many_with_soft_deleted_audit_uuid(self): action_plan_list = [] audit1 = obj_utils.create_test_audit(self.context, id=2, uuid=utils.generate_uuid()) audit2 = obj_utils.create_test_audit(self.context, id=3, uuid=utils.generate_uuid()) for id_ in range(0, 2): action_plan = obj_utils.create_test_action_plan( self.context, id=id_, uuid=utils.generate_uuid(), audit_id=audit1.id) action_plan_list.append(action_plan.uuid) for id_ in range(2, 4): action_plan = obj_utils.create_test_action_plan( self.context, id=id_, uuid=utils.generate_uuid(), audit_id=audit2.id) action_plan_list.append(action_plan.uuid) self.delete('/audits/%s' % audit1.uuid) response = self.get_json('/action_plans') self.assertEqual(len(action_plan_list), len(response['action_plans'])) for id_ in range(0, 2): action_plan = response['action_plans'][id_] self.assertIsNone(action_plan['audit_uuid']) for id_ in range(2, 4): action_plan = response['action_plans'][id_] self.assertEqual(audit2.uuid, action_plan['audit_uuid']) def test_many_with_audit_uuid(self): action_plan_list = [] audit = obj_utils.create_test_audit(self.context, id=2, uuid=utils.generate_uuid()) for id_ in range(2, 5): action_plan = obj_utils.create_test_action_plan( self.context, id=id_, uuid=utils.generate_uuid(), audit_id=audit.id) action_plan_list.append(action_plan.uuid) response = self.get_json('/action_plans') self.assertEqual(len(action_plan_list), len(response['action_plans'])) for action in response['action_plans']: self.assertEqual(audit.uuid, action['audit_uuid']) def test_many_with_audit_uuid_filter(self): action_plan_list1 = [] audit1 = obj_utils.create_test_audit(self.context, id=2, uuid=utils.generate_uuid()) for id_ in range(2, 5): action_plan = obj_utils.create_test_action_plan( self.context, id=id_, uuid=utils.generate_uuid(), audit_id=audit1.id) action_plan_list1.append(action_plan.uuid) audit2 = obj_utils.create_test_audit(self.context, id=3, uuid=utils.generate_uuid()) action_plan_list2 = [] for id_ in [5, 6, 7]: action_plan = obj_utils.create_test_action_plan( self.context, id=id_, uuid=utils.generate_uuid(), audit_id=audit2.id) action_plan_list2.append(action_plan.uuid) response = self.get_json('/action_plans?audit_uuid=%s' % audit2.uuid) self.assertEqual(len(action_plan_list2), len(response['action_plans'])) for action in response['action_plans']: self.assertEqual(audit2.uuid, action['audit_uuid']) def test_many_without_soft_deleted(self): action_plan_list = [] for id_ in [1, 2, 3]: action_plan = obj_utils.create_test_action_plan( self.context, id=id_, uuid=utils.generate_uuid()) action_plan_list.append(action_plan.uuid) for id_ in [4, 5]: action_plan = obj_utils.create_test_action_plan( self.context, id=id_, uuid=utils.generate_uuid()) action_plan.soft_delete() response = self.get_json('/action_plans') self.assertEqual(3, len(response['action_plans'])) uuids = [s['uuid'] for s in response['action_plans']] self.assertEqual(sorted(action_plan_list), sorted(uuids)) def test_many_with_soft_deleted(self): action_plan_list = [] for id_ in [1, 2, 3]: action_plan = obj_utils.create_test_action_plan( self.context, id=id_, uuid=utils.generate_uuid()) action_plan_list.append(action_plan.uuid) for id_ in [4, 5]: action_plan = obj_utils.create_test_action_plan( self.context, id=id_, uuid=utils.generate_uuid()) action_plan.soft_delete() action_plan_list.append(action_plan.uuid) response = self.get_json('/action_plans', headers={'X-Show-Deleted': 'True'}) self.assertEqual(5, len(response['action_plans'])) uuids = [s['uuid'] for s in response['action_plans']] self.assertEqual(sorted(action_plan_list), sorted(uuids)) def test_many_with_sort_key_audit_uuid(self): audit_list = [] for id_ in range(2, 5): audit = obj_utils.create_test_audit(self.context, id=id_, uuid=utils.generate_uuid()) obj_utils.create_test_action_plan( self.context, id=id_, uuid=utils.generate_uuid(), audit_id=audit.id) audit_list.append(audit.uuid) response = self.get_json('/action_plans/?sort_key=audit_uuid') self.assertEqual(3, len(response['action_plans'])) uuids = [s['audit_uuid'] for s in response['action_plans']] self.assertEqual(sorted(audit_list), uuids) def test_links(self): uuid = utils.generate_uuid() obj_utils.create_test_action_plan(self.context, id=1, uuid=uuid) response = self.get_json('/action_plans/%s' % uuid) self.assertIn('links', response.keys()) self.assertEqual(2, len(response['links'])) self.assertIn(uuid, response['links'][0]['href']) for l in response['links']: bookmark = l['rel'] == 'bookmark' self.assertTrue(self.validate_link(l['href'], bookmark=bookmark)) def test_collection_links(self): for id_ in range(5): obj_utils.create_test_action_plan( self.context, id=id_, uuid=utils.generate_uuid()) response = self.get_json('/action_plans/?limit=3') self.assertEqual(3, len(response['action_plans'])) next_marker = response['action_plans'][-1]['uuid'] self.assertIn(next_marker, response['next']) def test_collection_links_default_limit(self): cfg.CONF.set_override('max_limit', 3, 'api') for id_ in range(5): obj_utils.create_test_action_plan( self.context, id=id_, uuid=utils.generate_uuid()) response = self.get_json('/action_plans') self.assertEqual(3, len(response['action_plans'])) next_marker = response['action_plans'][-1]['uuid'] self.assertIn(next_marker, response['next']) class TestDelete(api_base.FunctionalTest): def setUp(self): super(TestDelete, self).setUp() obj_utils.create_test_goal(self.context) obj_utils.create_test_strategy(self.context) obj_utils.create_test_audit(self.context) self.action_plan = obj_utils.create_test_action_plan( self.context) p = mock.patch.object(db_api.BaseConnection, 'destroy_action_plan') self.mock_action_plan_delete = p.start() self.mock_action_plan_delete.side_effect = \ self._simulate_rpc_action_plan_delete self.addCleanup(p.stop) def _simulate_rpc_action_plan_delete(self, audit_uuid): action_plan = objects.ActionPlan.get_by_uuid(self.context, audit_uuid) action_plan.destroy() def test_delete_action_plan_without_action(self): self.delete('/action_plans/%s' % self.action_plan.uuid) response = self.get_json('/action_plans/%s' % self.action_plan.uuid, expect_errors=True) self.assertEqual(404, response.status_int) self.assertEqual('application/json', response.content_type) self.assertTrue(response.json['error_message']) def test_delete_action_plan_with_action(self): action = obj_utils.create_test_action( self.context, id=1) self.delete('/action_plans/%s' % self.action_plan.uuid) ap_response = self.get_json('/action_plans/%s' % self.action_plan.uuid, expect_errors=True) acts_response = self.get_json( '/actions/?action_plan_uuid=%s' % self.action_plan.uuid) act_response = self.get_json( '/actions/%s' % action.uuid, expect_errors=True) # The action plan does not exist anymore self.assertEqual(404, ap_response.status_int) self.assertEqual('application/json', ap_response.content_type) self.assertTrue(ap_response.json['error_message']) # Nor does the action self.assertEqual(0, len(acts_response['actions'])) self.assertEqual(404, act_response.status_int) self.assertEqual('application/json', act_response.content_type) self.assertTrue(act_response.json['error_message']) def test_delete_action_plan_not_found(self): uuid = utils.generate_uuid() response = self.delete('/action_plans/%s' % uuid, expect_errors=True) self.assertEqual(404, response.status_int) self.assertEqual('application/json', response.content_type) self.assertTrue(response.json['error_message']) class TestPatch(api_base.FunctionalTest): def setUp(self): super(TestPatch, self).setUp() obj_utils.create_test_goal(self.context) obj_utils.create_test_strategy(self.context) obj_utils.create_test_audit(self.context) self.action_plan = obj_utils.create_test_action_plan( self.context, state=objects.action_plan.State.RECOMMENDED) p = mock.patch.object(db_api.BaseConnection, 'update_action_plan') self.mock_action_plan_update = p.start() self.mock_action_plan_update.side_effect = \ self._simulate_rpc_action_plan_update self.addCleanup(p.stop) def _simulate_rpc_action_plan_update(self, action_plan): action_plan.save() return action_plan @mock.patch('oslo_utils.timeutils.utcnow') def test_replace_denied(self, mock_utcnow): test_time = datetime.datetime(2000, 1, 1, 0, 0) mock_utcnow.return_value = test_time new_state = objects.action_plan.State.DELETED response = self.get_json( '/action_plans/%s' % self.action_plan.uuid) self.assertNotEqual(new_state, response['state']) response = self.patch_json( '/action_plans/%s' % self.action_plan.uuid, [{'path': '/state', 'value': new_state, 'op': 'replace'}], expect_errors=True) self.assertEqual('application/json', response.content_type) self.assertEqual(400, response.status_int) self.assertTrue(response.json['error_message']) def test_replace_non_existent_action_plan_denied(self): response = self.patch_json( '/action_plans/%s' % utils.generate_uuid(), [{'path': '/state', 'value': objects.action_plan.State.PENDING, 'op': 'replace'}], expect_errors=True) self.assertEqual(404, response.status_int) self.assertEqual('application/json', response.content_type) self.assertTrue(response.json['error_message']) def test_add_non_existent_property_denied(self): response = self.patch_json( '/action_plans/%s' % self.action_plan.uuid, [{'path': '/foo', 'value': 'bar', 'op': 'add'}], expect_errors=True) self.assertEqual('application/json', response.content_type) self.assertEqual(400, response.status_int) self.assertTrue(response.json['error_message']) def test_remove_denied(self): # We should not be able to remove the state of an action plan response = self.get_json( '/action_plans/%s' % self.action_plan.uuid) self.assertIsNotNone(response['state']) response = self.patch_json( '/action_plans/%s' % self.action_plan.uuid, [{'path': '/state', 'op': 'remove'}], expect_errors=True) self.assertEqual('application/json', response.content_type) self.assertEqual(400, response.status_int) self.assertTrue(response.json['error_message']) def test_remove_uuid_denied(self): response = self.patch_json( '/action_plans/%s' % self.action_plan.uuid, [{'path': '/uuid', 'op': 'remove'}], expect_errors=True) self.assertEqual(400, response.status_int) self.assertEqual('application/json', response.content_type) self.assertTrue(response.json['error_message']) def test_remove_non_existent_property_denied(self): response = self.patch_json( '/action_plans/%s' % self.action_plan.uuid, [{'path': '/non-existent', 'op': 'remove'}], expect_errors=True) self.assertEqual(400, response.status_code) self.assertEqual('application/json', response.content_type) self.assertTrue(response.json['error_message']) @mock.patch.object(aapi.ApplierAPI, 'launch_action_plan') def test_replace_state_pending_ok(self, applier_mock): new_state = objects.action_plan.State.PENDING response = self.get_json( '/action_plans/%s' % self.action_plan.uuid) self.assertNotEqual(new_state, response['state']) response = self.patch_json( '/action_plans/%s' % self.action_plan.uuid, [{'path': '/state', 'value': new_state, 'op': 'replace'}]) self.assertEqual('application/json', response.content_type) self.assertEqual(200, response.status_code) applier_mock.assert_called_once_with(mock.ANY, self.action_plan.uuid) ALLOWED_TRANSITIONS = [ {"original_state": objects.action_plan.State.RECOMMENDED, "new_state": objects.action_plan.State.PENDING}, {"original_state": objects.action_plan.State.RECOMMENDED, "new_state": objects.action_plan.State.CANCELLED}, {"original_state": objects.action_plan.State.ONGOING, "new_state": objects.action_plan.State.CANCELLING}, {"original_state": objects.action_plan.State.PENDING, "new_state": objects.action_plan.State.CANCELLED}, ] class TestPatchStateTransitionDenied(api_base.FunctionalTest): STATES = [ ap_state for ap_state in objects.action_plan.State.__dict__ if not ap_state.startswith("_") ] scenarios = [ ( "%s -> %s" % (original_state, new_state), {"original_state": original_state, "new_state": new_state}, ) for original_state, new_state in list(itertools.product(STATES, STATES)) # from DELETED to ... # NOTE: Any state transition from DELETED (To RECOMMENDED, PENDING, # ONGOING, CANCELLED, SUCCEEDED and FAILED) will cause a 404 Not Found # because we cannot retrieve them with a GET (soft_deleted state). # This is the reason why they are not listed here but they have a # special test to cover it if original_state != objects.action_plan.State.DELETED and original_state != new_state and {"original_state": original_state, "new_state": new_state} not in ALLOWED_TRANSITIONS ] def setUp(self): super(TestPatchStateTransitionDenied, self).setUp() obj_utils.create_test_goal(self.context) obj_utils.create_test_strategy(self.context) obj_utils.create_test_audit(self.context) @mock.patch.object( db_api.BaseConnection, 'update_action_plan', mock.Mock(side_effect=lambda ap: ap.save() or ap)) def test_replace_state_pending_denied(self): action_plan = obj_utils.create_test_action_plan( self.context, state=self.original_state) initial_ap = self.get_json('/action_plans/%s' % action_plan.uuid) response = self.patch_json( '/action_plans/%s' % action_plan.uuid, [{'path': '/state', 'value': self.new_state, 'op': 'replace'}], expect_errors=True) updated_ap = self.get_json('/action_plans/%s' % action_plan.uuid) self.assertNotEqual(self.new_state, initial_ap['state']) self.assertEqual(self.original_state, updated_ap['state']) self.assertEqual(400, response.status_code) self.assertEqual('application/json', response.content_type) self.assertTrue(response.json['error_message']) class TestPatchStateTransitionOk(api_base.FunctionalTest): scenarios = [ ( "%s -> %s" % (transition["original_state"], transition["new_state"]), transition ) for transition in ALLOWED_TRANSITIONS ] def setUp(self): super(TestPatchStateTransitionOk, self).setUp() obj_utils.create_test_goal(self.context) obj_utils.create_test_strategy(self.context) obj_utils.create_test_audit(self.context) @mock.patch.object( db_api.BaseConnection, 'update_action_plan', mock.Mock(side_effect=lambda ap: ap.save() or ap)) @mock.patch.object(aapi.ApplierAPI, 'launch_action_plan', mock.Mock()) def test_replace_state_pending_ok(self): action_plan = obj_utils.create_test_action_plan( self.context, state=self.original_state) initial_ap = self.get_json('/action_plans/%s' % action_plan.uuid) response = self.patch_json( '/action_plans/%s' % action_plan.uuid, [{'path': '/state', 'value': self.new_state, 'op': 'replace'}]) updated_ap = self.get_json('/action_plans/%s' % action_plan.uuid) self.assertNotEqual(self.new_state, initial_ap['state']) self.assertEqual(self.new_state, updated_ap['state']) self.assertEqual('application/json', response.content_type) self.assertEqual(200, response.status_code) class TestActionPlanPolicyEnforcement(api_base.FunctionalTest): def setUp(self): super(TestActionPlanPolicyEnforcement, self).setUp() obj_utils.create_test_goal(self.context) obj_utils.create_test_strategy(self.context) obj_utils.create_test_audit(self.context) def _common_policy_check(self, rule, func, *arg, **kwarg): self.policy.set_rules({ "admin_api": "(role:admin or role:administrator)", "default": "rule:admin_api", rule: "rule:defaut"}) response = func(*arg, **kwarg) self.assertEqual(403, response.status_int) self.assertEqual('application/json', response.content_type) self.assertTrue( "Policy doesn't allow %s to be performed." % rule, jsonutils.loads(response.json['error_message'])['faultstring']) def test_policy_disallow_get_all(self): self._common_policy_check( "action_plan:get_all", self.get_json, '/action_plans', expect_errors=True) def test_policy_disallow_get_one(self): action_plan = obj_utils.create_test_action_plan(self.context) self._common_policy_check( "action_plan:get", self.get_json, '/action_plans/%s' % action_plan.uuid, expect_errors=True) def test_policy_disallow_detail(self): self._common_policy_check( "action_plan:detail", self.get_json, '/action_plans/detail', expect_errors=True) def test_policy_disallow_update(self): action_plan = obj_utils.create_test_action_plan(self.context) self._common_policy_check( "action_plan:update", self.patch_json, '/action_plans/%s' % action_plan.uuid, [{'path': '/state', 'value': objects.action_plan.State.DELETED, 'op': 'replace'}], expect_errors=True) def test_policy_disallow_delete(self): action_plan = obj_utils.create_test_action_plan(self.context) self._common_policy_check( "action_plan:delete", self.delete, '/action_plans/%s' % action_plan.uuid, expect_errors=True) class TestActionPlanPolicyEnforcementWithAdminContext(TestListActionPlan, api_base.AdminRoleTest): def setUp(self): super(TestActionPlanPolicyEnforcementWithAdminContext, self).setUp() self.policy.set_rules({ "admin_api": "(role:admin or role:administrator)", "default": "rule:admin_api", "action_plan:delete": "rule:default", "action_plan:detail": "rule:default", "action_plan:get": "rule:default", "action_plan:get_all": "rule:default", "action_plan:update": "rule:default"})
py
b417445c10ae254489683cedc31de9ba3717f970
from typing import Callable, Optional, Union import torch from ignite.metrics.metrics_lambda import MetricsLambda from ignite.metrics.precision import Precision from ignite.metrics.recall import Recall __all__ = ["Fbeta"] def Fbeta( beta: float, average: bool = True, precision: Optional[Precision] = None, recall: Optional[Recall] = None, output_transform: Optional[Callable] = None, device: Union[str, torch.device] = torch.device("cpu"), ) -> MetricsLambda: r"""Calculates F-beta score. .. math:: F_\beta = \left( 1 + \beta^2 \right) * \frac{ \text{precision} * \text{recall} } { \left( \beta^2 * \text{precision} \right) + \text{recall} } where :math:`\beta` is a positive real factor. Args: beta (float): weight of precision in harmonic mean average (bool, optional): if True, F-beta score is computed as the unweighted average (across all classes in multiclass case), otherwise, returns a tensor with F-beta score for each class in multiclass case. precision (Precision, optional): precision object metric with `average=False` to compute F-beta score recall (Precision, optional): recall object metric with `average=False` to compute F-beta score output_transform (callable, optional): a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. It is used only if precision or recall are not provided. device (str or torch.device): specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. Returns: MetricsLambda, F-beta metric """ if not (beta > 0): raise ValueError(f"Beta should be a positive integer, but given {beta}") if precision is not None and output_transform is not None: raise ValueError("If precision argument is provided, output_transform should be None") if recall is not None and output_transform is not None: raise ValueError("If recall argument is provided, output_transform should be None") if precision is None: precision = Precision( output_transform=(lambda x: x) if output_transform is None else output_transform, # type: ignore[arg-type] average=False, device=device, ) elif precision._average: raise ValueError("Input precision metric should have average=False") if recall is None: recall = Recall( output_transform=(lambda x: x) if output_transform is None else output_transform, # type: ignore[arg-type] average=False, device=device, ) elif recall._average: raise ValueError("Input recall metric should have average=False") fbeta = (1.0 + beta ** 2) * precision * recall / (beta ** 2 * precision + recall + 1e-15) if average: fbeta = fbeta.mean().item() return fbeta
py
b41744e8d4836476ec86b154bd3892b11012a0d3
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: tensorflow/core/protobuf/meta_graph.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.protobuf import any_pb2 as google_dot_protobuf_dot_any__pb2 from tensorflow.core.framework import graph_pb2 as tensorflow_dot_core_dot_framework_dot_graph__pb2 from tensorflow.core.framework import op_def_pb2 as tensorflow_dot_core_dot_framework_dot_op__def__pb2 from tensorflow.core.framework import tensor_shape_pb2 as tensorflow_dot_core_dot_framework_dot_tensor__shape__pb2 from tensorflow.core.framework import types_pb2 as tensorflow_dot_core_dot_framework_dot_types__pb2 from tensorflow.core.protobuf import saver_pb2 as tensorflow_dot_core_dot_protobuf_dot_saver__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='tensorflow/core/protobuf/meta_graph.proto', package='tensorflow', syntax='proto3', serialized_pb=_b('\n)tensorflow/core/protobuf/meta_graph.proto\x12\ntensorflow\x1a\x19google/protobuf/any.proto\x1a%tensorflow/core/framework/graph.proto\x1a&tensorflow/core/framework/op_def.proto\x1a,tensorflow/core/framework/tensor_shape.proto\x1a%tensorflow/core/framework/types.proto\x1a$tensorflow/core/protobuf/saver.proto\"\xe3\x05\n\x0cMetaGraphDef\x12;\n\rmeta_info_def\x18\x01 \x01(\x0b\x32$.tensorflow.MetaGraphDef.MetaInfoDef\x12\'\n\tgraph_def\x18\x02 \x01(\x0b\x32\x14.tensorflow.GraphDef\x12\'\n\tsaver_def\x18\x03 \x01(\x0b\x32\x14.tensorflow.SaverDef\x12\x43\n\x0e\x63ollection_def\x18\x04 \x03(\x0b\x32+.tensorflow.MetaGraphDef.CollectionDefEntry\x12\x41\n\rsignature_def\x18\x05 \x03(\x0b\x32*.tensorflow.MetaGraphDef.SignatureDefEntry\x12\x30\n\x0e\x61sset_file_def\x18\x06 \x03(\x0b\x32\x18.tensorflow.AssetFileDef\x1a\xe9\x01\n\x0bMetaInfoDef\x12\x1a\n\x12meta_graph_version\x18\x01 \x01(\t\x12,\n\x10stripped_op_list\x18\x02 \x01(\x0b\x32\x12.tensorflow.OpList\x12&\n\x08\x61ny_info\x18\x03 \x01(\x0b\x32\x14.google.protobuf.Any\x12\x0c\n\x04tags\x18\x04 \x03(\t\x12\x1a\n\x12tensorflow_version\x18\x05 \x01(\t\x12\x1e\n\x16tensorflow_git_version\x18\x06 \x01(\t\x12\x1e\n\x16stripped_default_attrs\x18\x07 \x01(\x08\x1aO\n\x12\x43ollectionDefEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12(\n\x05value\x18\x02 \x01(\x0b\x32\x19.tensorflow.CollectionDef:\x02\x38\x01\x1aM\n\x11SignatureDefEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\'\n\x05value\x18\x02 \x01(\x0b\x32\x18.tensorflow.SignatureDef:\x02\x38\x01\"\xdf\x03\n\rCollectionDef\x12\x37\n\tnode_list\x18\x01 \x01(\x0b\x32\".tensorflow.CollectionDef.NodeListH\x00\x12\x39\n\nbytes_list\x18\x02 \x01(\x0b\x32#.tensorflow.CollectionDef.BytesListH\x00\x12\x39\n\nint64_list\x18\x03 \x01(\x0b\x32#.tensorflow.CollectionDef.Int64ListH\x00\x12\x39\n\nfloat_list\x18\x04 \x01(\x0b\x32#.tensorflow.CollectionDef.FloatListH\x00\x12\x35\n\x08\x61ny_list\x18\x05 \x01(\x0b\x32!.tensorflow.CollectionDef.AnyListH\x00\x1a\x19\n\x08NodeList\x12\r\n\x05value\x18\x01 \x03(\t\x1a\x1a\n\tBytesList\x12\r\n\x05value\x18\x01 \x03(\x0c\x1a\x1e\n\tInt64List\x12\x11\n\x05value\x18\x01 \x03(\x03\x42\x02\x10\x01\x1a\x1e\n\tFloatList\x12\x11\n\x05value\x18\x01 \x03(\x02\x42\x02\x10\x01\x1a.\n\x07\x41nyList\x12#\n\x05value\x18\x01 \x03(\x0b\x32\x14.google.protobuf.AnyB\x06\n\x04kind\"\xa0\x02\n\nTensorInfo\x12\x0e\n\x04name\x18\x01 \x01(\tH\x00\x12\x36\n\ncoo_sparse\x18\x04 \x01(\x0b\x32 .tensorflow.TensorInfo.CooSparseH\x00\x12#\n\x05\x64type\x18\x02 \x01(\x0e\x32\x14.tensorflow.DataType\x12\x32\n\x0ctensor_shape\x18\x03 \x01(\x0b\x32\x1c.tensorflow.TensorShapeProto\x1a\x65\n\tCooSparse\x12\x1a\n\x12values_tensor_name\x18\x01 \x01(\t\x12\x1b\n\x13indices_tensor_name\x18\x02 \x01(\t\x12\x1f\n\x17\x64\x65nse_shape_tensor_name\x18\x03 \x01(\tB\n\n\x08\x65ncoding\"\xa0\x02\n\x0cSignatureDef\x12\x34\n\x06inputs\x18\x01 \x03(\x0b\x32$.tensorflow.SignatureDef.InputsEntry\x12\x36\n\x07outputs\x18\x02 \x03(\x0b\x32%.tensorflow.SignatureDef.OutputsEntry\x12\x13\n\x0bmethod_name\x18\x03 \x01(\t\x1a\x45\n\x0bInputsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12%\n\x05value\x18\x02 \x01(\x0b\x32\x16.tensorflow.TensorInfo:\x02\x38\x01\x1a\x46\n\x0cOutputsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12%\n\x05value\x18\x02 \x01(\x0b\x32\x16.tensorflow.TensorInfo:\x02\x38\x01\"M\n\x0c\x41ssetFileDef\x12+\n\x0btensor_info\x18\x01 \x01(\x0b\x32\x16.tensorflow.TensorInfo\x12\x10\n\x08\x66ilename\x18\x02 \x01(\tB0\n\x18org.tensorflow.frameworkB\x0fMetaGraphProtosP\x01\xf8\x01\x01\x62\x06proto3') , dependencies=[google_dot_protobuf_dot_any__pb2.DESCRIPTOR,tensorflow_dot_core_dot_framework_dot_graph__pb2.DESCRIPTOR,tensorflow_dot_core_dot_framework_dot_op__def__pb2.DESCRIPTOR,tensorflow_dot_core_dot_framework_dot_tensor__shape__pb2.DESCRIPTOR,tensorflow_dot_core_dot_framework_dot_types__pb2.DESCRIPTOR,tensorflow_dot_core_dot_protobuf_dot_saver__pb2.DESCRIPTOR,]) _METAGRAPHDEF_METAINFODEF = _descriptor.Descriptor( name='MetaInfoDef', full_name='tensorflow.MetaGraphDef.MetaInfoDef', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='meta_graph_version', full_name='tensorflow.MetaGraphDef.MetaInfoDef.meta_graph_version', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='stripped_op_list', full_name='tensorflow.MetaGraphDef.MetaInfoDef.stripped_op_list', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='any_info', full_name='tensorflow.MetaGraphDef.MetaInfoDef.any_info', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tags', full_name='tensorflow.MetaGraphDef.MetaInfoDef.tags', index=3, number=4, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tensorflow_version', full_name='tensorflow.MetaGraphDef.MetaInfoDef.tensorflow_version', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tensorflow_git_version', full_name='tensorflow.MetaGraphDef.MetaInfoDef.tensorflow_git_version', index=5, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='stripped_default_attrs', full_name='tensorflow.MetaGraphDef.MetaInfoDef.stripped_default_attrs', index=6, number=7, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=633, serialized_end=866, ) _METAGRAPHDEF_COLLECTIONDEFENTRY = _descriptor.Descriptor( name='CollectionDefEntry', full_name='tensorflow.MetaGraphDef.CollectionDefEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='tensorflow.MetaGraphDef.CollectionDefEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='value', full_name='tensorflow.MetaGraphDef.CollectionDefEntry.value', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=868, serialized_end=947, ) _METAGRAPHDEF_SIGNATUREDEFENTRY = _descriptor.Descriptor( name='SignatureDefEntry', full_name='tensorflow.MetaGraphDef.SignatureDefEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='tensorflow.MetaGraphDef.SignatureDefEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='value', full_name='tensorflow.MetaGraphDef.SignatureDefEntry.value', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=949, serialized_end=1026, ) _METAGRAPHDEF = _descriptor.Descriptor( name='MetaGraphDef', full_name='tensorflow.MetaGraphDef', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='meta_info_def', full_name='tensorflow.MetaGraphDef.meta_info_def', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='graph_def', full_name='tensorflow.MetaGraphDef.graph_def', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='saver_def', full_name='tensorflow.MetaGraphDef.saver_def', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='collection_def', full_name='tensorflow.MetaGraphDef.collection_def', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='signature_def', full_name='tensorflow.MetaGraphDef.signature_def', index=4, number=5, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='asset_file_def', full_name='tensorflow.MetaGraphDef.asset_file_def', index=5, number=6, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[_METAGRAPHDEF_METAINFODEF, _METAGRAPHDEF_COLLECTIONDEFENTRY, _METAGRAPHDEF_SIGNATUREDEFENTRY, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=287, serialized_end=1026, ) _COLLECTIONDEF_NODELIST = _descriptor.Descriptor( name='NodeList', full_name='tensorflow.CollectionDef.NodeList', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='value', full_name='tensorflow.CollectionDef.NodeList.value', index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1335, serialized_end=1360, ) _COLLECTIONDEF_BYTESLIST = _descriptor.Descriptor( name='BytesList', full_name='tensorflow.CollectionDef.BytesList', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='value', full_name='tensorflow.CollectionDef.BytesList.value', index=0, number=1, type=12, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1362, serialized_end=1388, ) _COLLECTIONDEF_INT64LIST = _descriptor.Descriptor( name='Int64List', full_name='tensorflow.CollectionDef.Int64List', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='value', full_name='tensorflow.CollectionDef.Int64List.value', index=0, number=1, type=3, cpp_type=2, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\020\001'))), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1390, serialized_end=1420, ) _COLLECTIONDEF_FLOATLIST = _descriptor.Descriptor( name='FloatList', full_name='tensorflow.CollectionDef.FloatList', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='value', full_name='tensorflow.CollectionDef.FloatList.value', index=0, number=1, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\020\001'))), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1422, serialized_end=1452, ) _COLLECTIONDEF_ANYLIST = _descriptor.Descriptor( name='AnyList', full_name='tensorflow.CollectionDef.AnyList', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='value', full_name='tensorflow.CollectionDef.AnyList.value', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1454, serialized_end=1500, ) _COLLECTIONDEF = _descriptor.Descriptor( name='CollectionDef', full_name='tensorflow.CollectionDef', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='node_list', full_name='tensorflow.CollectionDef.node_list', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='bytes_list', full_name='tensorflow.CollectionDef.bytes_list', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='int64_list', full_name='tensorflow.CollectionDef.int64_list', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='float_list', full_name='tensorflow.CollectionDef.float_list', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='any_list', full_name='tensorflow.CollectionDef.any_list', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[_COLLECTIONDEF_NODELIST, _COLLECTIONDEF_BYTESLIST, _COLLECTIONDEF_INT64LIST, _COLLECTIONDEF_FLOATLIST, _COLLECTIONDEF_ANYLIST, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='kind', full_name='tensorflow.CollectionDef.kind', index=0, containing_type=None, fields=[]), ], serialized_start=1029, serialized_end=1508, ) _TENSORINFO_COOSPARSE = _descriptor.Descriptor( name='CooSparse', full_name='tensorflow.TensorInfo.CooSparse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='values_tensor_name', full_name='tensorflow.TensorInfo.CooSparse.values_tensor_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='indices_tensor_name', full_name='tensorflow.TensorInfo.CooSparse.indices_tensor_name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='dense_shape_tensor_name', full_name='tensorflow.TensorInfo.CooSparse.dense_shape_tensor_name', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1686, serialized_end=1787, ) _TENSORINFO = _descriptor.Descriptor( name='TensorInfo', full_name='tensorflow.TensorInfo', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='tensorflow.TensorInfo.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='coo_sparse', full_name='tensorflow.TensorInfo.coo_sparse', index=1, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='dtype', full_name='tensorflow.TensorInfo.dtype', index=2, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tensor_shape', full_name='tensorflow.TensorInfo.tensor_shape', index=3, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[_TENSORINFO_COOSPARSE, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='encoding', full_name='tensorflow.TensorInfo.encoding', index=0, containing_type=None, fields=[]), ], serialized_start=1511, serialized_end=1799, ) _SIGNATUREDEF_INPUTSENTRY = _descriptor.Descriptor( name='InputsEntry', full_name='tensorflow.SignatureDef.InputsEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='tensorflow.SignatureDef.InputsEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='value', full_name='tensorflow.SignatureDef.InputsEntry.value', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1949, serialized_end=2018, ) _SIGNATUREDEF_OUTPUTSENTRY = _descriptor.Descriptor( name='OutputsEntry', full_name='tensorflow.SignatureDef.OutputsEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='tensorflow.SignatureDef.OutputsEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='value', full_name='tensorflow.SignatureDef.OutputsEntry.value', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2020, serialized_end=2090, ) _SIGNATUREDEF = _descriptor.Descriptor( name='SignatureDef', full_name='tensorflow.SignatureDef', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='inputs', full_name='tensorflow.SignatureDef.inputs', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='outputs', full_name='tensorflow.SignatureDef.outputs', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='method_name', full_name='tensorflow.SignatureDef.method_name', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[_SIGNATUREDEF_INPUTSENTRY, _SIGNATUREDEF_OUTPUTSENTRY, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1802, serialized_end=2090, ) _ASSETFILEDEF = _descriptor.Descriptor( name='AssetFileDef', full_name='tensorflow.AssetFileDef', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='tensor_info', full_name='tensorflow.AssetFileDef.tensor_info', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='filename', full_name='tensorflow.AssetFileDef.filename', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2092, serialized_end=2169, ) _METAGRAPHDEF_METAINFODEF.fields_by_name['stripped_op_list'].message_type = tensorflow_dot_core_dot_framework_dot_op__def__pb2._OPLIST _METAGRAPHDEF_METAINFODEF.fields_by_name['any_info'].message_type = google_dot_protobuf_dot_any__pb2._ANY _METAGRAPHDEF_METAINFODEF.containing_type = _METAGRAPHDEF _METAGRAPHDEF_COLLECTIONDEFENTRY.fields_by_name['value'].message_type = _COLLECTIONDEF _METAGRAPHDEF_COLLECTIONDEFENTRY.containing_type = _METAGRAPHDEF _METAGRAPHDEF_SIGNATUREDEFENTRY.fields_by_name['value'].message_type = _SIGNATUREDEF _METAGRAPHDEF_SIGNATUREDEFENTRY.containing_type = _METAGRAPHDEF _METAGRAPHDEF.fields_by_name['meta_info_def'].message_type = _METAGRAPHDEF_METAINFODEF _METAGRAPHDEF.fields_by_name['graph_def'].message_type = tensorflow_dot_core_dot_framework_dot_graph__pb2._GRAPHDEF _METAGRAPHDEF.fields_by_name['saver_def'].message_type = tensorflow_dot_core_dot_protobuf_dot_saver__pb2._SAVERDEF _METAGRAPHDEF.fields_by_name['collection_def'].message_type = _METAGRAPHDEF_COLLECTIONDEFENTRY _METAGRAPHDEF.fields_by_name['signature_def'].message_type = _METAGRAPHDEF_SIGNATUREDEFENTRY _METAGRAPHDEF.fields_by_name['asset_file_def'].message_type = _ASSETFILEDEF _COLLECTIONDEF_NODELIST.containing_type = _COLLECTIONDEF _COLLECTIONDEF_BYTESLIST.containing_type = _COLLECTIONDEF _COLLECTIONDEF_INT64LIST.containing_type = _COLLECTIONDEF _COLLECTIONDEF_FLOATLIST.containing_type = _COLLECTIONDEF _COLLECTIONDEF_ANYLIST.fields_by_name['value'].message_type = google_dot_protobuf_dot_any__pb2._ANY _COLLECTIONDEF_ANYLIST.containing_type = _COLLECTIONDEF _COLLECTIONDEF.fields_by_name['node_list'].message_type = _COLLECTIONDEF_NODELIST _COLLECTIONDEF.fields_by_name['bytes_list'].message_type = _COLLECTIONDEF_BYTESLIST _COLLECTIONDEF.fields_by_name['int64_list'].message_type = _COLLECTIONDEF_INT64LIST _COLLECTIONDEF.fields_by_name['float_list'].message_type = _COLLECTIONDEF_FLOATLIST _COLLECTIONDEF.fields_by_name['any_list'].message_type = _COLLECTIONDEF_ANYLIST _COLLECTIONDEF.oneofs_by_name['kind'].fields.append( _COLLECTIONDEF.fields_by_name['node_list']) _COLLECTIONDEF.fields_by_name['node_list'].containing_oneof = _COLLECTIONDEF.oneofs_by_name['kind'] _COLLECTIONDEF.oneofs_by_name['kind'].fields.append( _COLLECTIONDEF.fields_by_name['bytes_list']) _COLLECTIONDEF.fields_by_name['bytes_list'].containing_oneof = _COLLECTIONDEF.oneofs_by_name['kind'] _COLLECTIONDEF.oneofs_by_name['kind'].fields.append( _COLLECTIONDEF.fields_by_name['int64_list']) _COLLECTIONDEF.fields_by_name['int64_list'].containing_oneof = _COLLECTIONDEF.oneofs_by_name['kind'] _COLLECTIONDEF.oneofs_by_name['kind'].fields.append( _COLLECTIONDEF.fields_by_name['float_list']) _COLLECTIONDEF.fields_by_name['float_list'].containing_oneof = _COLLECTIONDEF.oneofs_by_name['kind'] _COLLECTIONDEF.oneofs_by_name['kind'].fields.append( _COLLECTIONDEF.fields_by_name['any_list']) _COLLECTIONDEF.fields_by_name['any_list'].containing_oneof = _COLLECTIONDEF.oneofs_by_name['kind'] _TENSORINFO_COOSPARSE.containing_type = _TENSORINFO _TENSORINFO.fields_by_name['coo_sparse'].message_type = _TENSORINFO_COOSPARSE _TENSORINFO.fields_by_name['dtype'].enum_type = tensorflow_dot_core_dot_framework_dot_types__pb2._DATATYPE _TENSORINFO.fields_by_name['tensor_shape'].message_type = tensorflow_dot_core_dot_framework_dot_tensor__shape__pb2._TENSORSHAPEPROTO _TENSORINFO.oneofs_by_name['encoding'].fields.append( _TENSORINFO.fields_by_name['name']) _TENSORINFO.fields_by_name['name'].containing_oneof = _TENSORINFO.oneofs_by_name['encoding'] _TENSORINFO.oneofs_by_name['encoding'].fields.append( _TENSORINFO.fields_by_name['coo_sparse']) _TENSORINFO.fields_by_name['coo_sparse'].containing_oneof = _TENSORINFO.oneofs_by_name['encoding'] _SIGNATUREDEF_INPUTSENTRY.fields_by_name['value'].message_type = _TENSORINFO _SIGNATUREDEF_INPUTSENTRY.containing_type = _SIGNATUREDEF _SIGNATUREDEF_OUTPUTSENTRY.fields_by_name['value'].message_type = _TENSORINFO _SIGNATUREDEF_OUTPUTSENTRY.containing_type = _SIGNATUREDEF _SIGNATUREDEF.fields_by_name['inputs'].message_type = _SIGNATUREDEF_INPUTSENTRY _SIGNATUREDEF.fields_by_name['outputs'].message_type = _SIGNATUREDEF_OUTPUTSENTRY _ASSETFILEDEF.fields_by_name['tensor_info'].message_type = _TENSORINFO DESCRIPTOR.message_types_by_name['MetaGraphDef'] = _METAGRAPHDEF DESCRIPTOR.message_types_by_name['CollectionDef'] = _COLLECTIONDEF DESCRIPTOR.message_types_by_name['TensorInfo'] = _TENSORINFO DESCRIPTOR.message_types_by_name['SignatureDef'] = _SIGNATUREDEF DESCRIPTOR.message_types_by_name['AssetFileDef'] = _ASSETFILEDEF _sym_db.RegisterFileDescriptor(DESCRIPTOR) MetaGraphDef = _reflection.GeneratedProtocolMessageType('MetaGraphDef', (_message.Message,), dict( MetaInfoDef = _reflection.GeneratedProtocolMessageType('MetaInfoDef', (_message.Message,), dict( DESCRIPTOR = _METAGRAPHDEF_METAINFODEF, __module__ = 'tensorflow.core.protobuf.meta_graph_pb2' # @@protoc_insertion_point(class_scope:tensorflow.MetaGraphDef.MetaInfoDef) )) , CollectionDefEntry = _reflection.GeneratedProtocolMessageType('CollectionDefEntry', (_message.Message,), dict( DESCRIPTOR = _METAGRAPHDEF_COLLECTIONDEFENTRY, __module__ = 'tensorflow.core.protobuf.meta_graph_pb2' # @@protoc_insertion_point(class_scope:tensorflow.MetaGraphDef.CollectionDefEntry) )) , SignatureDefEntry = _reflection.GeneratedProtocolMessageType('SignatureDefEntry', (_message.Message,), dict( DESCRIPTOR = _METAGRAPHDEF_SIGNATUREDEFENTRY, __module__ = 'tensorflow.core.protobuf.meta_graph_pb2' # @@protoc_insertion_point(class_scope:tensorflow.MetaGraphDef.SignatureDefEntry) )) , DESCRIPTOR = _METAGRAPHDEF, __module__ = 'tensorflow.core.protobuf.meta_graph_pb2' # @@protoc_insertion_point(class_scope:tensorflow.MetaGraphDef) )) _sym_db.RegisterMessage(MetaGraphDef) _sym_db.RegisterMessage(MetaGraphDef.MetaInfoDef) _sym_db.RegisterMessage(MetaGraphDef.CollectionDefEntry) _sym_db.RegisterMessage(MetaGraphDef.SignatureDefEntry) CollectionDef = _reflection.GeneratedProtocolMessageType('CollectionDef', (_message.Message,), dict( NodeList = _reflection.GeneratedProtocolMessageType('NodeList', (_message.Message,), dict( DESCRIPTOR = _COLLECTIONDEF_NODELIST, __module__ = 'tensorflow.core.protobuf.meta_graph_pb2' # @@protoc_insertion_point(class_scope:tensorflow.CollectionDef.NodeList) )) , BytesList = _reflection.GeneratedProtocolMessageType('BytesList', (_message.Message,), dict( DESCRIPTOR = _COLLECTIONDEF_BYTESLIST, __module__ = 'tensorflow.core.protobuf.meta_graph_pb2' # @@protoc_insertion_point(class_scope:tensorflow.CollectionDef.BytesList) )) , Int64List = _reflection.GeneratedProtocolMessageType('Int64List', (_message.Message,), dict( DESCRIPTOR = _COLLECTIONDEF_INT64LIST, __module__ = 'tensorflow.core.protobuf.meta_graph_pb2' # @@protoc_insertion_point(class_scope:tensorflow.CollectionDef.Int64List) )) , FloatList = _reflection.GeneratedProtocolMessageType('FloatList', (_message.Message,), dict( DESCRIPTOR = _COLLECTIONDEF_FLOATLIST, __module__ = 'tensorflow.core.protobuf.meta_graph_pb2' # @@protoc_insertion_point(class_scope:tensorflow.CollectionDef.FloatList) )) , AnyList = _reflection.GeneratedProtocolMessageType('AnyList', (_message.Message,), dict( DESCRIPTOR = _COLLECTIONDEF_ANYLIST, __module__ = 'tensorflow.core.protobuf.meta_graph_pb2' # @@protoc_insertion_point(class_scope:tensorflow.CollectionDef.AnyList) )) , DESCRIPTOR = _COLLECTIONDEF, __module__ = 'tensorflow.core.protobuf.meta_graph_pb2' # @@protoc_insertion_point(class_scope:tensorflow.CollectionDef) )) _sym_db.RegisterMessage(CollectionDef) _sym_db.RegisterMessage(CollectionDef.NodeList) _sym_db.RegisterMessage(CollectionDef.BytesList) _sym_db.RegisterMessage(CollectionDef.Int64List) _sym_db.RegisterMessage(CollectionDef.FloatList) _sym_db.RegisterMessage(CollectionDef.AnyList) TensorInfo = _reflection.GeneratedProtocolMessageType('TensorInfo', (_message.Message,), dict( CooSparse = _reflection.GeneratedProtocolMessageType('CooSparse', (_message.Message,), dict( DESCRIPTOR = _TENSORINFO_COOSPARSE, __module__ = 'tensorflow.core.protobuf.meta_graph_pb2' # @@protoc_insertion_point(class_scope:tensorflow.TensorInfo.CooSparse) )) , DESCRIPTOR = _TENSORINFO, __module__ = 'tensorflow.core.protobuf.meta_graph_pb2' # @@protoc_insertion_point(class_scope:tensorflow.TensorInfo) )) _sym_db.RegisterMessage(TensorInfo) _sym_db.RegisterMessage(TensorInfo.CooSparse) SignatureDef = _reflection.GeneratedProtocolMessageType('SignatureDef', (_message.Message,), dict( InputsEntry = _reflection.GeneratedProtocolMessageType('InputsEntry', (_message.Message,), dict( DESCRIPTOR = _SIGNATUREDEF_INPUTSENTRY, __module__ = 'tensorflow.core.protobuf.meta_graph_pb2' # @@protoc_insertion_point(class_scope:tensorflow.SignatureDef.InputsEntry) )) , OutputsEntry = _reflection.GeneratedProtocolMessageType('OutputsEntry', (_message.Message,), dict( DESCRIPTOR = _SIGNATUREDEF_OUTPUTSENTRY, __module__ = 'tensorflow.core.protobuf.meta_graph_pb2' # @@protoc_insertion_point(class_scope:tensorflow.SignatureDef.OutputsEntry) )) , DESCRIPTOR = _SIGNATUREDEF, __module__ = 'tensorflow.core.protobuf.meta_graph_pb2' # @@protoc_insertion_point(class_scope:tensorflow.SignatureDef) )) _sym_db.RegisterMessage(SignatureDef) _sym_db.RegisterMessage(SignatureDef.InputsEntry) _sym_db.RegisterMessage(SignatureDef.OutputsEntry) AssetFileDef = _reflection.GeneratedProtocolMessageType('AssetFileDef', (_message.Message,), dict( DESCRIPTOR = _ASSETFILEDEF, __module__ = 'tensorflow.core.protobuf.meta_graph_pb2' # @@protoc_insertion_point(class_scope:tensorflow.AssetFileDef) )) _sym_db.RegisterMessage(AssetFileDef) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('\n\030org.tensorflow.frameworkB\017MetaGraphProtosP\001\370\001\001')) _METAGRAPHDEF_COLLECTIONDEFENTRY.has_options = True _METAGRAPHDEF_COLLECTIONDEFENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')) _METAGRAPHDEF_SIGNATUREDEFENTRY.has_options = True _METAGRAPHDEF_SIGNATUREDEFENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')) _COLLECTIONDEF_INT64LIST.fields_by_name['value'].has_options = True _COLLECTIONDEF_INT64LIST.fields_by_name['value']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\020\001')) _COLLECTIONDEF_FLOATLIST.fields_by_name['value'].has_options = True _COLLECTIONDEF_FLOATLIST.fields_by_name['value']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\020\001')) _SIGNATUREDEF_INPUTSENTRY.has_options = True _SIGNATUREDEF_INPUTSENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')) _SIGNATUREDEF_OUTPUTSENTRY.has_options = True _SIGNATUREDEF_OUTPUTSENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')) try: # THESE ELEMENTS WILL BE DEPRECATED. # Please use the generated *_pb2_grpc.py files instead. import grpc from grpc.beta import implementations as beta_implementations from grpc.beta import interfaces as beta_interfaces from grpc.framework.common import cardinality from grpc.framework.interfaces.face import utilities as face_utilities except ImportError: pass # @@protoc_insertion_point(module_scope)
py
b41746717716f9a7f1ad217a7af99a013ce50e66
import backports import isodate import itertools import pandas as pd import pytz import tzlocal from backports.datetime_fromisoformat import MonkeyPatch from bson.codec_options import CodecOptions from bson.objectid import ObjectId from datetime import date, datetime, timedelta from girderformindlogger.models.applet import Applet as AppletModel from girderformindlogger.models.user import User as UserModel from girderformindlogger.models.response_folder import ResponseItem from girderformindlogger.utility import clean_empty from pandas.api.types import is_numeric_dtype from pymongo import ASCENDING, DESCENDING MonkeyPatch.patch_fromisoformat() def getSchedule(currentUser, timezone=None): from .jsonld_expander import formatLdObject return({ applet['applet'].get('_id', ''): { applet['activities'][activity].get('_id', ''): { 'lastResponse': getLatestResponseTime( currentUser['_id'], applet['applet']['_id'].split('applet/')[-1], activity, tz=timezone ) #, # 'nextScheduled': None, # 'lastScheduled': None } for activity in list( applet.get('activities', {}).keys() ) } for applet in [ formatLdObject( applet, 'applet', currentUser ) for applet in AppletModel().getAppletsForUser( user=currentUser, role='user' ) ] }) def getLatestResponse(informantId, appletId, activityURL): from .jsonld_expander import reprolibCanonize, reprolibPrefix responses = list(ResponseItem().find( query={ "baseParentType": 'user', "baseParentId": informantId if isinstance( informantId, ObjectId ) else ObjectId(informantId), "meta.applet.@id": { "$in": [ appletId, ObjectId(appletId) ] }, "meta.activity.url": { "$in": [ activityURL, reprolibPrefix(activityURL), reprolibCanonize(activityURL) ] } }, force=True, sort=[("updated", DESCENDING)] )) if len(responses): return(responses[0]) return(None) def getLatestResponseTime(informantId, appletId, activityURL, tz=None): latestResponse = getLatestResponse(informantId, appletId, activityURL) try: latestResponse['updated'].isoformat( ) if tz is None else latestResponse['updated'].astimezone(pytz.timezone( tz )).isoformat() except TypeError: pass except: import sys, traceback print(sys.exc_info()) print(traceback.print_tb(sys.exc_info()[2])) return( ( latestResponse['updated'].astimezone(pytz.timezone( tz )).isoformat() if ( isinstance(tz, str) and tz in pytz.all_timezones ) else latestResponse['updated'].isoformat() ) if ( isinstance(latestResponse, dict) and isinstance( latestResponse.get('updated'), datetime ) ) else None ) def aggregate(metadata, informant, startDate=None, endDate=None, getAll=False): """ Function to calculate aggregates """ thisResponseTime = datetime.now( tzlocal.get_localzone() ) startDate = datetime.fromisoformat(startDate.isoformat( )).astimezone(pytz.utc).replace(tzinfo=None) if startDate is not None else None endDate = datetime.fromisoformat(( thisResponseTime if endDate is None else endDate ).isoformat()).astimezone(pytz.utc).replace(tzinfo=None) query = { "baseParentType": 'user', "baseParentId": informant.get("_id") if isinstance( informant, dict ) else informant, "updated": { "$gte": startDate, "$lt": endDate } if startDate else { "$lt": endDate }, "meta.applet.@id": metadata.get("applet", {}).get("@id"), "meta.activity.url": metadata.get("activity", {}).get("url"), "meta.subject.@id": metadata.get("subject", {}).get("@id") } definedRange = list(ResponseItem().find( query=query, force=True, sort=[("updated", ASCENDING)] )) if not len(definedRange): # TODO: I'm afraid of some asynchronous database writes # that sometimes make defined range an empty list. # For now I'm exiting, but this needs to be looked # into. print('\n\n defined range returns an empty list.') return # raise ValueError("The defined range doesn't have a length") startDate = min([response.get( 'updated', endDate ) for response in definedRange]) if startDate is None else startDate duration = isodate.duration_isoformat( delocalize(endDate) - delocalize(startDate) ) responseIRIs = _responseIRIs(definedRange) for itemIRI in responseIRIs: for response in definedRange: if itemIRI in response.get( 'meta', {} ).get('responses', {}): completedDate(response) aggregated = { "schema:startDate": startDate, "schema:endDate": endDate, "schema:duration": duration, "responses": { itemIRI: [ { "value": response.get('meta', {}).get('responses', {}).get( itemIRI ), "date": completedDate(response) } for response in definedRange if itemIRI in response.get( 'meta', {} ).get('responses', {}) ] for itemIRI in responseIRIs } if getAll else countResponseValues(definedRange, responseIRIs) } return(aggregated) def completedDate(response): completed = response.get("updated", {}) return completed def formatResponse(response): try: metadata = response.get('meta', response) if any([ key not in metadata.keys() for key in [ 'allTime', 'last7Days' ] ]): aggregateAndSave(response, response.get('baseParentId')) thisResponse = { "thisResponse": { "schema:startDate": isodatetime( metadata.get( 'responseStarted', response.get( 'updated', datetime.now() ) ) ), "schema:endDate": isodatetime( metadata.get( 'responseCompleted', response.get( 'updated', datetime.now() ) ) ), "responses": { itemURI: metadata['responses'][ itemURI ] for itemURI in metadata.get('responses', {}) } }, "allToDate": metadata.get("allTime"), "last7Days": metadata.get("last7Days") } if isinstance(metadata, dict) and all([ key in metadata.keys() for key in [ 'responses', 'applet', 'activity', 'subject' ] ]) else {} except Exception as e: import sys, traceback print(sys.exc_info()) print(traceback.print_tb(sys.exc_info()[2])) thisResponse = None return(clean_empty(thisResponse)) def string_or_ObjectID(s): return([str(s), ObjectId(s)]) def _responseIRIs(definedRange): return(list(set(itertools.chain.from_iterable([list( response.get('meta', {}).get('responses', {}).keys() ) for response in definedRange if isinstance(response, dict)])))) def _flattenDF(df, columnName): if isinstance(columnName, list): for c in columnName: df = _flattenDF(df, c) return(df) prefix = columnName if columnName not in ['meta', 'responses'] else "" newDf = pd.concat( [ df[columnName].apply( pd.Series ), df.drop(columnName, axis=1) ], axis=1 ) return( ( newDf.rename( { col: "{}-{}".format( prefix, col ) for col in list( df[columnName][0].keys() ) }, axis='columns' ) if len(prefix) else newDf ).dropna('columns', 'all') ) def countResponseValues(definedRange, responseIRIs=None): responseIRIs = _responseIRIs( definedRange ) if responseIRIs is None else responseIRIs pd.set_option('display.max_colwidth', -1) pd.set_option('display.max_columns', None) df = pd.DataFrame(definedRange) df = _flattenDF(df, ['meta', 'applet', 'activity', 'responses']) counts = { responseIRI: ( df[responseIRI].astype(str) if not(is_numeric_dtype( df[responseIRI] )) else df[responseIRI] ).value_counts().to_dict( ) for responseIRI in responseIRIs if isinstance( df[responseIRI], pd.Series ) } return( { responseIRI: [ { "value": value, "count": counts[responseIRI][value] } for value in counts[responseIRI] ] for responseIRI in counts } ) def delocalize(dt): print("delocalizing {} ({}; {})".format( dt, type(dt), dt.tzinfo if isinstance(dt, datetime) else "" )) if isinstance(dt, datetime): if dt.tzinfo is None: return(dt) print(dt.astimezone(pytz.utc).replace( tzinfo=None )) return(dt.astimezone(pytz.utc).replace( tzinfo=None )) elif isinstance(dt, str): return(datetime.fromisoformat(dt).astimezone(pytz.utc).replace( tzinfo=None )) print("Here's the problem: {}".format(dt)) raise TypeError def aggregateAndSave(item, informant): if item == {} or item is None: return({}) metadata = item.get("meta", {}) # Save 1 (of 3) if metadata and metadata != {}: item = ResponseItem().setMetadata(item, metadata) # sevenDay ... metadata = item.get("meta", {}) endDate = datetime.now( tzlocal.get_localzone() ) startDate = (endDate - timedelta(days=7)).date() print("From {} to {}".format( startDate.strftime("%c"), endDate.strftime("%c") )) metadata["last7Days"] = aggregate( metadata, informant, startDate=startDate, endDate=endDate, getAll=True ) # save (2 of 3) if metadata and metadata != {}: item = ResponseItem().setMetadata(item, metadata) # allTime metadata = item.get("meta", {}) metadata["allTime"] = aggregate( metadata, informant, endDate=endDate, getAll=False ) # save (3 of 3) if metadata and metadata != {}: item = ResponseItem().setMetadata(item, metadata) return(item) def last7Days( appletId, appletInfo, informantId, reviewer, subject=None, referenceDate=None ): from bson import json_util from .jsonld_expander import loadCache, reprolibCanonize, reprolibPrefix referenceDate = delocalize( datetime.now( tzlocal.get_localzone() ) if referenceDate is None else referenceDate # TODO allow timeless dates ) # we need to get the activities cachedApplet = loadCache(appletInfo['cached']) listOfActivities = [ reprolibPrefix(activity) for activity in list( cachedApplet['activities'].keys() ) ] getLatestResponsesByAct = lambda activityURI: list(ResponseItem().find( query={ "baseParentType": 'user', "baseParentId": informantId if isinstance( informantId, ObjectId ) else ObjectId(informantId), "updated": { "$lte": referenceDate }, "meta.applet.@id": { "$in": [ appletId, ObjectId(appletId) ] }, "meta.activity.url": { "$in": [ activityURI, reprolibPrefix(activityURI), reprolibCanonize(activityURI) ] } }, force=True, sort=[("updated", DESCENDING)] )) latestResponses = [getLatestResponsesByAct(act) for act in listOfActivities] # destructure the responses # TODO: we are assuming here that activities don't share items. # might not be the case later on, so watch out. outputResponses = {} for resp in latestResponses: if len(resp): latest = resp[0] # the last 7 days for the most recent entry for the activity l7 = latest.get('meta', {}).get('last7Days', {}).get('responses', {}) # the current response for the most recent entry for the activity currentResp = latest.get('meta', {}).get('responses', {}) # update the l7 with values from currentResp for (key, val) in currentResp.items(): if key in l7.keys(): l7[key].append(dict(date=latest['updated'], value=val)) else: l7[key] = [dict(date=latest['updated'], value=val)] outputResponses.update(l7) l7d = {} l7d["responses"] = _oneResponsePerDate(outputResponses) endDate = referenceDate.date() l7d["schema:endDate"] = endDate.isoformat() startDate = endDate - timedelta(days=7) l7d["schema:startDate"] = startDate.isoformat() l7d["schema:duration"] = isodate.duration_isoformat( endDate - startDate ) return l7d def determine_date(d): if isinstance(d, int): while (d > 10000000000): d = d/10 d = datetime.fromtimestamp(d) return(( datetime.fromisoformat( d ) if isinstance(d, str) else d ).date()) def isodatetime(d): if isinstance(d, int): while (d > 10000000000): d = d/10 d = datetime.fromtimestamp(d) return(( datetime.fromisoformat( d ) if isinstance(d, str) else d ).isoformat()) def responseDateList(appletId, userId, reviewer): from girderformindlogger.models.profile import Profile userId = ProfileModel().getProfile(userId, reviewer) if not isinstance(userId, dict): return([]) userId = userId.get('userId') rdl = list(set([ determine_date( response.get("meta", {}).get( "responseCompleted", response.get("updated") ) ).isoformat() for response in list(ResponseItem().find( query={ "baseParentType": 'user', "baseParentId": userId, "meta.applet.@id": appletId }, sort=[("updated", DESCENDING)] )) ])) rdl.sort(reverse=True) return(rdl) def _oneResponsePerDate(responses): newResponses = {} for response in responses: df = pd.DataFrame(responses[response]) df["datetime"] = df.date df["date"] = df.date.apply(determine_date) df.sort_values(by=['datetime'], ascending=False, inplace=True) df = df.groupby('date').first() df.drop('datetime', axis=1, inplace=True) df['date'] = df.index newResponses[response] = df.to_dict(orient="records") return(newResponses)
py
b41747456c10227ba4705b0582692784b4c875d6
import sys from dataclasses import (_FIELD, _FIELD_INITVAR, _FIELDS, _HAS_DEFAULT_FACTORY, _POST_INIT_NAME, MISSING, _create_fn, _field_init, _init_param, _set_new_attribute, dataclass, field, fields) # change of signature introduced in python 3.10.1 if sys.version_info >= (3, 10, 1): _field_init_real = _field_init def _field_init(f, frozen, locals, self_name): return _field_init_real(f, frozen, locals, self_name, False)
py
b41748a5f494027e9776a10fd8bc09aa739831fa
import boto3 import os import json print(os.environ['AWS_ACCESS_KEY_ID']) session = boto3.Session( aws_access_key_id=os.environ['AWS_ACCESS_KEY_ID'], aws_secret_access_key=os.environ['AWS_SECRET_ACCESS_KEY'] ) dynamodb = session.resource('dynamodb', region_name='us-east-2') db = dynamodb.Table('esVerbDefs') print(db.creation_date_time) data = json.load(open('verbs.json')) for key, value in data.items(): if(value[0]['tense'] == 'Infinitive'): for en in value[0]['translation'].split('; '): if(en[:3] != 'to '): en = 'to ' + en db.put_item( Item = { 'EN': en, 'ES': key, 'score': 0 } ) print("EN: " + en + " / ES: " + key)
py
b41748caf0170bd36ab1210a4e1c728c8a124e93
from django.apps import AppConfig as BaseAppConfig from django.utils.translation import ugettext_lazy as _ class AppConfig(BaseAppConfig): name = "pinax.points" label = "pinax_points" verbose_name = _("Pinax Points")
py
b417496d5037969bacd8a15834051e6f71cb9b97
import os from configparser import ConfigParser from appdirs import user_data_dir class ConfigManager: def __init__(self): self.config_file = None self.config_dict = None # get("UI.language") or get("UI", "language") def get(self, *keys): if len(keys) == 1: keys = keys[0].split(".") return self.config_dict.get(*keys) # set("UI.language", "en") or set("UI", "language", "en") def set(self, *keys_and_value): if len(keys_and_value) == 2: keys_and_value = keys_and_value[0].split(".") + [keys_and_value[1]] self.config_dict.set(*keys_and_value) self._save_config() def init(self): data_dir = self._get_app_data_dir() if not os.path.exists(data_dir): os.mkdir(data_dir) self.config_file = os.path.join(data_dir, "config.ini") if os.path.exists(self.config_file): self.config_dict = ConfigParser() self.config_dict.read(self.config_file) else: self.config_dict = self._get_default_config() self._save_config() self._ensure_dir_exists() return self def _save_config(self): with open(self.config_file, 'w') as configfile: self.config_dict.write(configfile) def _ensure_dir_exists(self): dir_list = [self.get("PATH", "notes_dir"), self.get("PATH", "notes_index_dir")] for dir_item in dir_list: if not os.path.exists(dir_item): os.mkdir(dir_item) @classmethod def _get_app_data_dir(cls): return user_data_dir(appname="OrchidNote", appauthor=False) @classmethod def _get_default_config(cls): data_dir = cls._get_app_data_dir() config_parser = ConfigParser() config_parser["DEFAULT"] = { "db_file": os.path.join(data_dir, "note.sqlite"), "notes_dir": os.path.join(data_dir, "notes"), "notes_index_dir": os.path.join(data_dir, "notes_index"), "language": "en" } config_parser["PATH"] = { "db_file": os.path.join(data_dir, "note.sqlite"), "notes_dir": os.path.join(data_dir, "notes"), "notes_index_dir": os.path.join(data_dir, "notes_index") } config_parser["APP"] = { "language": "en", "window_title": "Orchid Note" } config_parser["UI"] = { "todo_finished_color": "#00FF00", "todo_progress_bg_color": "#FFFFFF", "todo_progress_bg_start": "#00FF00", "todo_progress_bg_end": '#006600' } return config_parser config = ConfigManager().init()
py
b41749bb9f6210509a3ff281d23502294cbb19ee
""" Django settings for breakout project. Generated by 'django-admin startproject' using Django 3.1.4. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os import json from pathlib import Path from django.utils.translation import ugettext_lazy as _ try: with open('/etc/breakout_config.json') as config_file: config = json.load(config_file) except Exception: with open('~/Documents/dev/srv/breakout/breakout_config.json') as config_file: config = json.load(config_file) PROJECT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) BASE_DIR = os.path.dirname(PROJECT_DIR) SITE_ID = 1 INTERNAL_IPS = [ # ... '127.0.0.1', '192.168.178.27', # ... ] # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # Application definition DJANGO_CORE_APPS = [ 'mailer', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sitemaps', 'django.contrib.sites', ] THIRD_PARTY_APPS = [ 'wagtail.contrib.forms', 'wagtail.contrib.redirects', 'wagtail.contrib.routable_page', 'wagtail.contrib.styleguide', 'wagtail.embeds', 'wagtail.sites', 'wagtail.users', 'wagtail.snippets', 'wagtail.documents', 'wagtail.images', 'wagtail.search', 'wagtail.admin', 'wagtail.core', 'wagtail.contrib.modeladmin', "wagtail.contrib.table_block", 'wagtail.contrib.settings', 'wagtail_modeltranslation', 'wagtail_modeltranslation.makemigrations', 'wagtail_modeltranslation.migrate', 'wagtailfontawesome', 'modeltranslation', 'modelcluster', 'taggit', 'paypal.standard.ipn', 'cookie_consent', # 'blog', 'django_extensions', 'captcha', 'wagtailcaptcha', # 'wagtail_svgmap', 'django_crontab', 'wagtailyoast', 'wagtail.locales', 'django_inlinecss', ] MY_APPS = [ 'apps.wagtail.home.apps.HomePageConfig', # has to come before flex 'apps.wagtail.myblog.apps.MyblogConfig', 'apps.wagtail.flex.apps.FlexConfig', 'apps.wagtail.site_settings.apps.SiteSettingsConfig', 'apps.wagtail.streams.apps.StreamsConfig', 'apps.wagtail.search', 'apps.users.apps.UsersConfig', 'apps.booking.apps.BookingConfig', 'apps.wagtail.menus.apps.MenusConfig', ] INSTALLED_APPS = DJANGO_CORE_APPS + THIRD_PARTY_APPS + MY_APPS COOKIE_CONSENT_NAME = "cookie_consent" MIDDLEWARE = [ 'debug_toolbar.middleware.DebugToolbarMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', 'wagtail.contrib.redirects.middleware.RedirectMiddleware', 'django.middleware.locale.LocaleMiddleware', # should be after SessionMiddleware and before CommonMiddleware ] ROOT_URLCONF = 'breakout.urls' WAGTAIL_SVGMAP_IE_COMPAT: False TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join(PROJECT_DIR, 'templates'), ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'wagtail.contrib.settings.context_processors.settings', ], }, }, ] WSGI_APPLICATION = 'breakout.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } DEFAULT_AUTO_FIELD='django.db.models.AutoField' # auth AUTH_USER_MODEL = 'users.CustomUser' # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'de' WY_LOCALE = 'de_DE' TIME_ZONE = 'Europe/Berlin' USE_I18N = True USE_L10N = True USE_TZ = True LOCALE_PATHS = ( os.path.join(BASE_DIR, 'locale'), ) WAGTAIL_CONTENT_LANGUAGES = LANGUAGES = ( ('de', _('German')), ('en', _('English')), ) # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATICFILES_FINDERS = [ 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', ] STATICFILES_DIRS = [ os.path.join(PROJECT_DIR, 'static'), ] # ManifestStaticFilesStorage is recommended in production, to prevent outdated # JavaScript / CSS assets being served from cache (e.g. after a Wagtail upgrade). # See https://docs.djangoproject.com/en/3.1/ref/contrib/staticfiles/#manifeststaticfilesstorage STATICFILES_STORAGE = 'django.contrib.staticfiles.storage.ManifestStaticFilesStorage' STATIC_ROOT = os.path.join(BASE_DIR, 'static/') STATIC_URL = '/static/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media/') MEDIA_URL = '/media/' # Wagtail settings WAGTAIL_SITE_NAME = "breakout" # Base URL to use when referring to full URLs within the Wagtail admin backend - # e.g. in notification emails. Don't include '/admin' or a trailing slash BASE_URL = 'https://breakout-escaperoom.de' # SITE_ID_FOR_SETTINGS = 1 # email setup EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' EMAIL_BACKEND = 'mailer.backend.DbBackend' SERVER_EMAIL = '[email protected]' EMAIL_HOST = 'smtp.strato.de' EMAIL_PORT = 587 EMAIL_HOST_USER = '[email protected]' EMAIL_HOST_PASSWORD = config['EMAIL_HOST_PASSWORD'] EMAIL_USE_TLS = True #paypal # recaptcha NOCAPTCHA = True # crontab CRONJOBS = [ ('0 3 * * *', 'apps.booking.cron.delete_unused_carts') ]
py
b4174a6b42cd8f1b01d89e8330621dad35658103
#!/usr/bin/env python """ Plot mesh connectivities, facet orientations, global and local DOF ids etc. """ from optparse import OptionParser from sfepy.base.base import output from sfepy.discrete.fem import Mesh, FEDomain import sfepy.postprocess.plot_cmesh as pc usage = '%prog [options] filename\n' + __doc__.rstrip() helps = { } def main(): parser = OptionParser(usage=usage, version='%prog') options, args = parser.parse_args() if len(args) == 1: filename = args[0] else: parser.print_help(), return mesh = Mesh.from_file(filename) output('Mesh:') output(' dimension: %d, vertices: %d, elements: %d' % (mesh.dim, mesh.n_nod, mesh.n_el)) domain = FEDomain('domain', mesh) output(domain.cmesh) domain.cmesh.cprint(1) dim = domain.cmesh.dim ax = pc.plot_wireframe(None, domain.cmesh) ax = pc.plot_entities(ax, domain.cmesh, 0, 'k') ax = pc.label_global_entities(ax, domain.cmesh, 0, 'k', 12) ax = pc.label_local_entities(ax, domain.cmesh, 0, 'k', 8) ax = pc.plot_entities(ax, domain.cmesh, 1, 'b') ax = pc.label_global_entities(ax, domain.cmesh, 1, 'b', 12) ax = pc.label_local_entities(ax, domain.cmesh, 1, 'b', 8) if dim == 3: ax = pc.plot_entities(ax, domain.cmesh, 2, 'g') ax = pc.label_global_entities(ax, domain.cmesh, 2, 'g', 12) ax = pc.label_local_entities(ax, domain.cmesh, 2, 'g', 8) ax = pc.plot_entities(ax, domain.cmesh, dim, 'r') ax = pc.label_global_entities(ax, domain.cmesh, dim, 'r', 12) pc.plt.show() if __name__ == '__main__': main()
py
b4174a8c23825c644f479575628d4e8e88638b3d
import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name="deepfake-ecg", # Replace with your own username version="1.1.2", author="Vajira Thambawita", author_email="[email protected]", description="Unlimited 10-sec 8-leads Deep Fake ECG generator.", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/vlbthambawita/deepfake-ecg", packages=setuptools.find_packages(), include_package_data=True, package_data={'deepfakeecg': ['checkpoints/g_stat.pt']}, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', install_requires=[ 'numpy', 'tqdm', 'pandas', ], )
py
b4174bfe2d6e54ec61cefbed110b626aa55123fa
import zmq from .messages import serialize class ZMQClientChannel(object): def __init__(self, listening): self.listening = listening self.context = zmq.Context.instance() self.socket = self.context.socket(zmq.DEALER) self.socket.connect('tcp://127.0.0.1:5556') def send(self, event): msg = serialize(event) if self.listening: msg.append(b'Listening') self.socket.send_multipart(msg) msg = self.socket.recv_multipart() print (msg) def receive(self): return self.socket.recv_multipart()
py
b4174c22e4ec72097c23297c9d4c4056e138a41c
class Solution: def longestCommonPrefix(self, strs: List[str]) -> str:
py
b4174d9cd7733df00bc213142918ac6f4cd14e8a
#!/usr/bin/env python """ Convert text data to embeddings using doc2vec __author__ = "Hide Inada" __copyright__ = "Copyright 2018, Hide Inada" __license__ = "The MIT License" __email__ = "[email protected]" """ import os import logging import re import numpy as np import keras from gensim.models.doc2vec import Doc2Vec from project.text_to_id import map_text_to_word_list from project.normalize_words import normalize_words log = logging.getLogger(__name__) logging.basicConfig(level=os.environ.get("LOGLEVEL", "INFO")) # Change the 2nd arg to INFO to suppress debug logging RESERVED_WORD_LIST = ["<UNK>", "<EOS>", "<PAD>"] MODEL_FILE = "/tmp/tp/doc2vec_newsgroup.model" def map_text_list_to_embedding(text_list, label_for_text_list, num_labels, label_to_id): """ Parameters ---------- text_list: list of str List of text label_for_text_list: list of str List of labels, which is the ground truth for each text on the text_list num_labels: Number of labels label_to_id: dict Label to integer id mapping Returns ------- x: ndarray Numpy array of mean word embeddings for each text. y: ndarray Numpy array of indices representing labels """ model = Doc2Vec.load(MODEL_FILE) x_list = list() y_list = list() for i, text in enumerate(text_list): log.debug("Processing post: [%d]" % (i + 1)) word_list = normalize_words(text) v = model.infer_vector(word_list) # For now, do not change non-zero element to 1. label_id = label_to_id[label_for_text_list[i]] label_id = keras.utils.to_categorical(label_id, num_labels).astype(np.float32) label_id = label_id.reshape(1, num_labels) x_list.append(v) y_list.append(label_id) x = np.array(x_list) print(x.shape) y = np.concatenate(y_list) return x, y
py
b4174da166e95b215f168db284e5bc133c25092d
# ============================================================================= # # Copyright (c) Kitware, Inc. # All rights reserved. # See LICENSE.txt for details. # # This software is distributed WITHOUT ANY WARRANTY; without even # the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR # PURPOSE. See the above copyright notice for more information. # # ============================================================================= """Common base class for writers""" import os print("loading", os.path.basename(__file__)) import smtk import smtk.attribute import smtk.model from .shared_data import instance as shared TypeStringMap = { smtk.attribute.Item.DoubleType: "double", smtk.attribute.Item.IntType: "int", smtk.attribute.Item.StringType: "string", smtk.attribute.Item.VoidType: "bool", smtk.attribute.Item.FileType: "string", } FLOAT_FORMAT = r"{:e}" def _fetch_subgroup_values(group, name): values = [] for i in range(group.numberOfGroups()): v = group.find(i, name, smtk.attribute.SearchStyle.IMMEDIATE) values.append(v.value()) return r"{" + ",".join([FLOAT_FORMAT.format(x) for x in values]) + r"}" class BaseWriter: """Base writer class for ATS input files. Should ONLY contain methods (no member data) """ def __init__(self): """""" # Do NOT include any member data pass def _get_native_model_path(self, resource): """""" # We only support model resource filenames for now model_res = smtk.model.Resource.CastTo(resource) if model_res is None: return None # Unfortunately, this logic is all part of SMTK lore. uuids = model_res.entitiesMatchingFlags(smtk.model.MODEL_ENTITY, True) if not uuids: raise RuntimeError("No model entities in model resource") model_uuid = uuids.pop() if not model_res.hasStringProperty(model_uuid, "url"): raise RuntimeError('Model resource missing "url" property') prop_list = model_res.stringProperty(model_uuid, "url") return prop_list[0] def _new_list(self, parent, list_name, list_type="ParameterList"): """Appends ParameterList element to parent If list_type is None, then that xml attribute is omitted """ new_list = shared.xml_doc.createElement("ParameterList") new_list.setAttribute("name", list_name) if list_type is not None: new_list.setAttribute("type", list_type) parent.appendChild(new_list) return new_list def _new_param(self, list_elem, param_name, param_type, param_value): """Appends Parameter element to list_elem""" if not isinstance(param_value, str): raise TypeError( "trying to insert and invalid value for: ({}: {})".format( param_name, param_value ) ) new_param = shared.xml_doc.createElement("Parameter") new_param.setAttribute("name", param_name) new_param.setAttribute("type", param_type) new_param.setAttribute("value", param_value) list_elem.appendChild(new_param) return new_param def _render_associations(self, parent_elem, att, elem_name_or_list): """Generates Parameter element for attribute associations.""" ref_item = att.associations() if ref_item is None: print( 'Warning: expected attribute "{}" to have associations'.format( att.name() ) ) return n = ref_item.numberOfValues() if n == 0: print( 'Warning: expected attribute "{}" to have associations'.format( att.name() ) ) return if isinstance(elem_name_or_list, (list, tuple)) and len(elem_name_or_list) > 1: elem_name = elem_name_or_list[0] array_name = elem_name_or_list[1] else: elem_name = elem_name_or_list array_name = elem_name # Generate list of attribute names value_list = list() for i in range(n): if ref_item.isSet(i): value_att = ref_item.value(i) value_list.append(value_att.name()) if len(value_list) == 0: print( 'Warning: expected attribute "{}" to have associations'.format( att.name() ) ) return if len(value_list) == 1: self._new_param(parent_elem, elem_name, "string", value_list[0]) return # (else) n > 1 value_string = ",".join(value_list) array_string = "{{{}}}".format(value_string) self._new_param(parent_elem, array_name, "Array(string)", array_string) def _render_items( self, parent_elem, att, param_names, force_array=False, index=None ): """Generates Parameter elements for items specified by param_names""" assert isinstance(param_names, list) for param_name in param_names: if index is not None: item = att.find(index, param_name) else: item = att.find(param_name) if item is None: continue # TODO: we need to handle `ComponentType` # skip over optional items if not enabled. Bools are never optional... weird logic here. if item.type() != smtk.attribute.Item.VoidType and not item.isEnabled(): continue type_string = TypeStringMap.get(item.type()) value = None if item.type() == smtk.attribute.Item.VoidType: value = "true" if item.isEnabled() else "false" elif hasattr(item, "numberOfValues") and ( force_array or item.numberOfValues() > 1 ): type_string = "Array({})".format(type_string) value_list = list() for i in range(item.numberOfValues()): value_list.append(item.value(i)) string_list = [str(x) for x in value_list] value = r"{" + ",".join(string_list) + r"}" elif hasattr(item, "value"): value = str(item.value()) if isinstance(value, float): value = FLOAT_FORMAT.format(value) else: value = str(value) else: raise NotImplementedError( "({}) for ({}) is not handled".format(item.type(), param_name) ) self._new_param(parent_elem, param_name, type_string, value) return def _render_io_event_specs(self, parent_elem, io_event): extensible_groups = { "cycles start period stop": { "array": ["Start Cycle", "Cycle Period", "Stop Cycle",], "items": [], }, "times start period stop": { "array": ["Start Time", "Time Period", "Stop Time",], "items": ["units"], # NOTE: assumes all items are string }, "times": {"array": ["times"], "items": ["units"],}, } sub_items = [ "cycles", # Int ] # add the sub items self._render_items(parent_elem, io_event, sub_items) # add each array of values dbl_type_string = "Array({})".format("double") def _get_array_values(group, items, idx=0): string_list = [str(group.find(idx, nm).value()) for nm in items] values = r"{" + ",".join(string_list) + r"}" return values for group_name in extensible_groups.keys(): if group_name.startswith("cycle"): type_string = "Array({})".format("int") else: type_string = "Array({})".format("double") event_group = io_event.find(group_name) if event_group.isEnabled(): meta = extensible_groups[group_name] item_names = meta["items"] array_names = meta["array"] n = event_group.numberOfGroups() if n > 1: for i in range(n): name = group_name + " {}".format(i) values = _get_array_values(event_group, array_names, i) self._new_param(parent_elem, name, type_string, values) for item in item_names: value = str(event_group.find(i, item).value()) self._new_param( parent_elem, name + " " + item, "string", value ) else: values = _get_array_values(event_group, array_names) self._new_param(parent_elem, group_name, type_string, values) for item in item_names: value = str(event_group.find(item).value()) self._new_param( parent_elem, group_name + " " + item, "string", value ) # TODO: handle times group (non extensible) return def _render_function(self, parent_elem, params): """`params` is the `function` string item: att.find(_i, "function")""" func_type = params.value() if func_type == "constant": constant_elem = self._new_list(parent_elem, "function-constant") self._render_items(constant_elem, params, ["value",]) elif func_type == "function-tabular": tabular_elem = self._new_list(parent_elem, "function-tabular") group = params.find("tabular-data") x_values = _fetch_subgroup_values(group, "X") y_values = _fetch_subgroup_values(group, "Y") self._new_param(tabular_elem, "x values", "Array(double)", x_values) self._new_param(tabular_elem, "y values", "Array(double)", y_values) forms = params.find("forms") values = [] if forms.find("linear").isEnabled(): values.append("linear") if forms.find("constant").isEnabled(): values.append("constant") if len(values): forms_values = r"{" + ",".join([x for x in values]) + r"}" self._new_param(tabular_elem, "forms", "Array(string)", forms_values) elif func_type == "function-linear": linear_elem = self._new_list(parent_elem, "function-linear") # breakpoint() y = params.find("y0").value() self._new_param(linear_elem, "y0", "double", FLOAT_FORMAT.format(y)) group = params.find("linear-data") x_values = _fetch_subgroup_values(group, "x0") g_values = _fetch_subgroup_values(group, "gradient") self._new_param(linear_elem, "x0", "Array(double)", x_values) self._new_param(linear_elem, "gradient", "Array(double)", g_values) elif func_type == "function-file": tabular_elem = self._new_list(parent_elem, "function-tabular") options = ["file", "x header", "y header"] self._render_items(tabular_elem, params, options) def _render_region_function( self, parent_elem, att, name=None, _i=0, _recursive=True ): if att.numberOfGroups() > 1 and _recursive: for i in range(att.numberOfGroups()): self._render_region_function( parent_elem, att, name=None, _i=i, _recursive=False ) return if name is None: name = att.find(_i, "function name").value() the_group = self._new_list(parent_elem, name) # add region regions_comp = att.find(_i, "regions") value_list = [ regions_comp.value(k).name() for k in range(regions_comp.numberOfValues()) ] if len(value_list) == 1: self._new_param(the_group, "region", "string", value_list[0]) else: regions = r"{" + ", ".join(value_list) + r"}" self._new_param(the_group, "regions", "Array(string)", regions) # add components component = str(att.find(_i, "components").value()) if component in ("cell", "face", "boundary_face"): self._new_param(the_group, "component", "string", component) else: components = "{" + component + "}" self._new_param(the_group, "components", "Array(string)", components) function_sub_elem = self._new_list(the_group, "function") params = att.find(_i, "function") self._render_function(function_sub_elem, params)
py
b4174de912f2ba34e2087ce800a9205d1516232b
""" Django settings for info_service project. Generated by 'django-admin startproject' using Django 3.2.6. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path import os # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-y9cw-woo75!@e%s^=n6rx46t@5q93ot#-a(lpxpk7w_i*=%_z2' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = False ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', # Third-Party Apps "rest_framework", "django.contrib.postgres", # Local Apps "info_service.coreapp", ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'info_service.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'info_service.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases if 'RDS_DB_NAME' in os.environ: DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': os.environ['RDS_DB_NAME'], 'USER': os.environ['RDS_USERNAME'], 'PASSWORD': os.environ['RDS_PASSWORD'], 'HOST': os.environ['RDS_HOSTNAME'], 'PORT': os.environ['RDS_PORT'], } } else: DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'cird', 'USER': 'cird', 'PASSWORD': 'cird', 'HOST': 'localhost', 'PORT': '5432', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' ALLOWED_HOSTS = ['*']
py
b4174eaa12142b28a66980219d9e793201eab417
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 8 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import isi_sdk_8_2_1 from isi_sdk_8_2_1.models.smb_openfiles import SmbOpenfiles # noqa: E501 from isi_sdk_8_2_1.rest import ApiException class TestSmbOpenfiles(unittest.TestCase): """SmbOpenfiles unit test stubs""" def setUp(self): pass def tearDown(self): pass def testSmbOpenfiles(self): """Test SmbOpenfiles""" # FIXME: construct object with mandatory attributes with example values # model = isi_sdk_8_2_1.models.smb_openfiles.SmbOpenfiles() # noqa: E501 pass if __name__ == '__main__': unittest.main()
py
b41752f6e4a92c93a60a49be63c8b07d70432271
# Generated by Django 3.0.5 on 2020-04-15 21:42 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ("core", "0001_initial"), ] operations = [ migrations.AlterModelOptions( name="service", options={"ordering": ["name", "uuid"]}, ), ]
py
b417534bee39db15f1bebaf5c7ffaec967597c73
import colors import part1, part2 day = '13' test1answer = 17 test2answer = None if __name__ == '__main__': print('AdventOfCode 2021 Day ' + day) print('\nTESTING') print('Part 1: ', end='') outcome = part1.part1('day' + day + '/test1.txt') if outcome == test1answer: print(colors.bcolors.OK + 'Answer: ' + str(outcome) + ', Expected: ' + str(test1answer) + ' [PASSED]' + colors.bcolors.RESET) else: print(colors.bcolors.FAIL + 'Answer: ' + str(outcome) + ', Expected: ' + str(test1answer) + ' [FAILED]' + colors.bcolors.RESET) print('Part 2: ', end='') outcome = part2.part2('day' + day + '/test2.txt') if outcome == test2answer: print(colors.bcolors.OK + 'Answer: ' + str(outcome) + ', Expected: ' + str(test2answer) + ' [PASSED]' + colors.bcolors.RESET) else: print(colors.bcolors.FAIL + 'Answer: ' + str(outcome) + ', Expected: ' + str(test2answer) + ' [FAILED]' + colors.bcolors.RESET) print('\nSOLUTIONS') print('Solution part 1: ' + str(part1.part1('day' + day + '/input.txt'))) print('Solution part 2: ' + str(part2.part2('day' + day + '/input.txt')))
py
b417537aa1314c6ab762d09cf4072b0571006a11
import _plotly_utils.basevalidators class CustomdatasrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__(self, plotly_name="customdatasrc", parent_name="funnel", **kwargs): super(CustomdatasrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), **kwargs, )
py
b417538daab4754d00fbcb99f883cf385519c48a
# -*- coding: utf-8 -*- # Copyright 2013 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains gsutil base unit test case class.""" from __future__ import absolute_import from __future__ import print_function from __future__ import division from __future__ import unicode_literals import logging import os import sys import tempfile import six import boto from boto.utils import get_utf8able_str from gslib import project_id from gslib import wildcard_iterator from gslib.boto_translation import BotoTranslation from gslib.cloud_api_delegator import CloudApiDelegator from gslib.command_runner import CommandRunner from gslib.cs_api_map import ApiMapConstants from gslib.cs_api_map import ApiSelector from gslib.discard_messages_queue import DiscardMessagesQueue from gslib.tests.mock_logging_handler import MockLoggingHandler from gslib.tests.testcase import base import gslib.tests.util as util from gslib.tests.util import unittest from gslib.tests.util import WorkingDirectory from gslib.utils.constants import UTF8 from gslib.utils.text_util import print_to_fd def _AttemptToCloseSysFd(fd): """Suppress IOError when closing sys.stdout or sys.stderr in tearDown.""" # In PY2, if another sibling thread/process tried closing it at the same # time we did, it succeeded either way, so we just continue. This approach # was taken from https://github.com/pytest-dev/pytest/pull/3305. if not six.PY2: # This doesn't happen in PY3, AFAICT. fd.close() return try: fd.close() except IOError: pass class GsutilApiUnitTestClassMapFactory(object): """Class map factory for use in unit tests. BotoTranslation is used for all cases so that GSMockBucketStorageUri can be used to communicate with the mock XML service. """ @classmethod def GetClassMap(cls): """Returns a class map for use in unit tests.""" gs_class_map = { ApiSelector.XML: BotoTranslation, ApiSelector.JSON: BotoTranslation } s3_class_map = {ApiSelector.XML: BotoTranslation} class_map = {'gs': gs_class_map, 's3': s3_class_map} return class_map @unittest.skipUnless(util.RUN_UNIT_TESTS, 'Not running integration tests.') class GsUtilUnitTestCase(base.GsUtilTestCase): """Base class for gsutil unit tests.""" @classmethod def setUpClass(cls): base.GsUtilTestCase.setUpClass() cls.mock_bucket_storage_uri = util.GSMockBucketStorageUri cls.mock_gsutil_api_class_map_factory = GsutilApiUnitTestClassMapFactory cls.logger = logging.getLogger() cls.command_runner = CommandRunner( bucket_storage_uri_class=cls.mock_bucket_storage_uri, gsutil_api_class_map_factory=cls.mock_gsutil_api_class_map_factory) # Ensure unit tests don't fail if no default_project_id is defined in the # boto config file. project_id.UNIT_TEST_PROJECT_ID = 'mock-project-id-for-unit-tests' def setUp(self): super(GsUtilUnitTestCase, self).setUp() self.bucket_uris = [] self.stdout_save = sys.stdout self.stderr_save = sys.stderr fd, self.stdout_file = tempfile.mkstemp() sys.stdout = os.fdopen(fd, 'wb+') fd, self.stderr_file = tempfile.mkstemp() # do not set sys.stderr to be 'wb+' - it will blow up the logger sys.stderr = os.fdopen(fd, 'w+') self.accumulated_stdout = [] self.accumulated_stderr = [] self.root_logger = logging.getLogger() self.is_debugging = self.root_logger.isEnabledFor(logging.DEBUG) self.log_handlers_save = self.root_logger.handlers fd, self.log_handler_file = tempfile.mkstemp() self.log_handler_stream = os.fdopen(fd, 'w+') self.temp_log_handler = logging.StreamHandler(self.log_handler_stream) self.root_logger.handlers = [self.temp_log_handler] def tearDown(self): super(GsUtilUnitTestCase, self).tearDown() self.root_logger.handlers = self.log_handlers_save self.temp_log_handler.flush() self.temp_log_handler.close() self.log_handler_stream.seek(0) log_output = self.log_handler_stream.read() self.log_handler_stream.close() os.unlink(self.log_handler_file) sys.stdout.seek(0) sys.stderr.seek(0) if six.PY2: stdout = sys.stdout.read() stderr = sys.stderr.read() else: try: stdout = sys.stdout.read() stderr = sys.stderr.read() except UnicodeDecodeError: sys.stdout.seek(0) sys.stderr.seek(0) stdout = sys.stdout.buffer.read() stderr = sys.stderr.buffer.read() [six.ensure_text(string) for string in self.accumulated_stderr] [six.ensure_text(string) for string in self.accumulated_stdout] stdout = six.ensure_text(get_utf8able_str(stdout)) stderr = six.ensure_text(get_utf8able_str(stderr)) stdout += ''.join(self.accumulated_stdout) stderr += ''.join(self.accumulated_stderr) _AttemptToCloseSysFd(sys.stdout) _AttemptToCloseSysFd(sys.stderr) sys.stdout = self.stdout_save sys.stderr = self.stderr_save os.unlink(self.stdout_file) os.unlink(self.stderr_file) _id = six.ensure_text(self.id()) if self.is_debugging and stdout: print_to_fd('==== stdout {} ====\n'.format(_id), file=sys.stderr) print_to_fd(stdout, file=sys.stderr) print_to_fd('==== end stdout ====\n', file=sys.stderr) if self.is_debugging and stderr: print_to_fd('==== stderr {} ====\n'.format(_id), file=sys.stderr) print_to_fd(stderr, file=sys.stderr) print_to_fd('==== end stderr ====\n', file=sys.stderr) if self.is_debugging and log_output: print_to_fd('==== log output {} ====\n'.format(_id), file=sys.stderr) print_to_fd(log_output, file=sys.stderr) print_to_fd('==== end log output ====\n', file=sys.stderr) def RunCommand(self, command_name, args=None, headers=None, debug=0, return_stdout=False, return_stderr=False, return_log_handler=False, cwd=None): """Method for calling gslib.command_runner.CommandRunner. Passes parallel_operations=False for all tests, optionally saving/returning stdout output. We run all tests multi-threaded, to exercise those more complicated code paths. TODO: Change to run with parallel_operations=True for all tests. At present when you do this it causes many test failures. Args: command_name: The name of the command being run. args: Command-line args (arg0 = actual arg, not command name ala bash). headers: Dictionary containing optional HTTP headers to pass to boto. debug: Debug level to pass in to boto connection (range 0..3). return_stdout: If True, will save and return stdout produced by command. return_stderr: If True, will save and return stderr produced by command. return_log_handler: If True, will return a MockLoggingHandler instance that was attached to the command's logger while running. cwd: The working directory that should be switched to before running the command. The working directory will be reset back to its original value after running the command. If not specified, the working directory is left unchanged. Returns: One or a tuple of requested return values, depending on whether return_stdout, return_stderr, and/or return_log_handler were specified. Return Types: stdout - binary stderr - str (binary in Py2, text in Py3) log_handler - MockLoggingHandler """ args = args or [] command_line = six.ensure_text(' '.join([command_name] + args)) if self.is_debugging: print_to_fd('\nRunCommand of {}\n'.format(command_line), file=self.stderr_save) # Save and truncate stdout and stderr for the lifetime of RunCommand. This # way, we can return just the stdout and stderr that was output during the # RunNamedCommand call below. sys.stdout.seek(0) sys.stderr.seek(0) stdout = sys.stdout.read() stderr = sys.stderr.read() if stdout: self.accumulated_stdout.append(stdout) if stderr: self.accumulated_stderr.append(stderr) sys.stdout.seek(0) sys.stderr.seek(0) sys.stdout.truncate() sys.stderr.truncate() mock_log_handler = MockLoggingHandler() logging.getLogger(command_name).addHandler(mock_log_handler) if debug: logging.getLogger(command_name).setLevel(logging.DEBUG) try: with WorkingDirectory(cwd): self.command_runner.RunNamedCommand(command_name, args=args, headers=headers, debug=debug, parallel_operations=False, do_shutdown=False) finally: sys.stdout.seek(0) sys.stderr.seek(0) if six.PY2: stdout = sys.stdout.read() stderr = sys.stderr.read() else: try: stdout = sys.stdout.read() stderr = sys.stderr.read() except UnicodeDecodeError: sys.stdout.seek(0) sys.stderr.seek(0) stdout = sys.stdout.buffer.read().decode(UTF8) stderr = sys.stderr.buffer.read().decode(UTF8) logging.getLogger(command_name).removeHandler(mock_log_handler) mock_log_handler.close() log_output = '\n'.join( '%s:\n ' % level + '\n '.join(records) for level, records in six.iteritems(mock_log_handler.messages) if records) _id = six.ensure_text(self.id()) if self.is_debugging and log_output: print_to_fd('==== logging RunCommand {} {} ====\n'.format( _id, command_line), file=self.stderr_save) print_to_fd(log_output, file=self.stderr_save) print_to_fd('\n==== end logging ====\n', file=self.stderr_save) if self.is_debugging and stdout: print_to_fd('==== stdout RunCommand {} {} ====\n'.format( _id, command_line), file=self.stderr_save) print_to_fd(stdout, file=self.stderr_save) print_to_fd('==== end stdout ====\n', file=self.stderr_save) if self.is_debugging and stderr: print_to_fd('==== stderr RunCommand {} {} ====\n'.format( _id, command_line), file=self.stderr_save) print_to_fd(stderr, file=self.stderr_save) print_to_fd('==== end stderr ====\n', file=self.stderr_save) # Reset stdout and stderr files, so that we won't print them out again # in tearDown if debugging is enabled. sys.stdout.seek(0) sys.stderr.seek(0) sys.stdout.truncate() sys.stderr.truncate() to_return = [] if return_stdout: to_return.append(stdout) if return_stderr: to_return.append(stderr) if return_log_handler: to_return.append(mock_log_handler) if len(to_return) == 1: return to_return[0] return tuple(to_return) @classmethod def MakeGsUtilApi(cls, debug=0): gsutil_api_map = { ApiMapConstants.API_MAP: (cls.mock_gsutil_api_class_map_factory.GetClassMap()), ApiMapConstants.SUPPORT_MAP: { 'gs': [ApiSelector.XML, ApiSelector.JSON], 's3': [ApiSelector.XML] }, ApiMapConstants.DEFAULT_MAP: { 'gs': ApiSelector.JSON, 's3': ApiSelector.XML } } return CloudApiDelegator(cls.mock_bucket_storage_uri, gsutil_api_map, cls.logger, DiscardMessagesQueue(), debug=debug) @classmethod def _test_wildcard_iterator(cls, uri_or_str, debug=0): """Convenience method for instantiating a test instance of WildcardIterator. This makes it unnecessary to specify all the params of that class (like bucket_storage_uri_class=mock_storage_service.MockBucketStorageUri). Also, naming the factory method this way makes it clearer in the test code that WildcardIterator needs to be set up for testing. Args are same as for wildcard_iterator.wildcard_iterator(), except there are no class args for bucket_storage_uri_class or gsutil_api_class. Args: uri_or_str: StorageUri or string representing the wildcard string. debug: debug level to pass to the underlying connection (0..3) Returns: WildcardIterator, over which caller can iterate. """ # TODO: Remove when tests no longer pass StorageUri arguments. uri_string = uri_or_str if hasattr(uri_or_str, 'uri'): uri_string = uri_or_str.uri return wildcard_iterator.CreateWildcardIterator(uri_string, cls.MakeGsUtilApi()) @staticmethod def _test_storage_uri(uri_str, default_scheme='file', debug=0, validate=True): """Convenience method for instantiating a testing instance of StorageUri. This makes it unnecessary to specify bucket_storage_uri_class=mock_storage_service.MockBucketStorageUri. Also naming the factory method this way makes it clearer in the test code that StorageUri needs to be set up for testing. Args, Returns, and Raises are same as for boto.storage_uri(), except there's no bucket_storage_uri_class arg. Args: uri_str: Uri string to create StorageUri for. default_scheme: Default scheme for the StorageUri debug: debug level to pass to the underlying connection (0..3) validate: If True, validate the resource that the StorageUri refers to. Returns: StorageUri based on the arguments. """ return boto.storage_uri(uri_str, default_scheme, debug, validate, util.GSMockBucketStorageUri) def CreateBucket(self, bucket_name=None, test_objects=0, storage_class=None, provider='gs'): """Creates a test bucket. The bucket and all of its contents will be deleted after the test. Args: bucket_name: Create the bucket with this name. If not provided, a temporary test bucket name is constructed. test_objects: The number of objects that should be placed in the bucket or a list of object names to place in the bucket. Defaults to 0. storage_class: storage class to use. If not provided we us standard. provider: string provider to use, default gs. Returns: StorageUri for the created bucket. """ bucket_name = bucket_name or self.MakeTempName('bucket') bucket_uri = boto.storage_uri( '%s://%s' % (provider, bucket_name.lower()), suppress_consec_slashes=False, bucket_storage_uri_class=util.GSMockBucketStorageUri) bucket_uri.create_bucket(storage_class=storage_class) self.bucket_uris.append(bucket_uri) try: iter(test_objects) except TypeError: test_objects = [self.MakeTempName('obj') for _ in range(test_objects)] for i, name in enumerate(test_objects): self.CreateObject(bucket_uri=bucket_uri, object_name=name, contents='test {}'.format(i).encode(UTF8)) return bucket_uri def CreateObject(self, bucket_uri=None, object_name=None, contents=None): """Creates a test object. Args: bucket_uri: The URI of the bucket to place the object in. If not specified, a new temporary bucket is created. object_name: The name to use for the object. If not specified, a temporary test object name is constructed. contents: The contents to write to the object. If not specified, the key is not written to, which means that it isn't actually created yet on the server. Returns: A StorageUri for the created object. """ bucket_uri = bucket_uri or self.CreateBucket(provider=self.default_provider) object_name = object_name or self.MakeTempName('obj') key_uri = bucket_uri.clone_replace_name(object_name) if contents is not None: key_uri.set_contents_from_string(contents) return key_uri
py
b4175413a395486a159c7b7438d893b87918dc80
import seaborn as sns print(sns.__version__) """# Analisando as notas em geral""" import pandas as pd notas = pd.read_csv("ratings.csv") notas.head() notas.shape notas.columns = ["usuarioId", "filmeId", "nota", "momento"] notas.head() notas['nota'].unique() notas['nota'].value_counts() print("Media",notas['nota'].mean()) print("Mediana",notas['nota'].median()) notas.nota.head() notas.nota.plot(kind='hist') notas.nota.describe() import seaborn as sns sns.boxplot(notas.nota) """# Olhando os filmes""" filmes = pd.read_csv("movies.csv") filmes.columns = ["filmeId", "titulo", "generos"] filmes.head() notas.head() """# Analisando algumas notas especificas por filme""" notas.query("filmeId==1").nota.mean() notas.query("filmeId==2").nota.mean() medias_por_filme = notas.groupby("filmeId").mean().nota medias_por_filme.head() medias_por_filme.plot(kind='hist') import matplotlib.pyplot as plt plt.figure(figsize=(5,8)) sns.boxplot(y=medias_por_filme) medias_por_filme.describe() sns.distplot(medias_por_filme) plt.hist(medias_por_filme) plt.title("Histograma das médias dos filmes") tmdb = pd.read_csv("tmdb_5000_movies.csv") tmdb.head() tmdb.original_language.unique() # categorica nominal # primeiro grau # segundo grau # terceiro grau # 1 grau < 2 grau < 3 grau # categorica ordinal # budget => orcamento => quantitativa continuo # quantidade de votos => 1, 2, 3, 4, nao tem 2.5 votos. # notas do movielens => 0.5, 1, 1.5, ... ,5 nao tem 2.7 tmdb["original_language"].value_counts().index tmdb["original_language"].value_counts().values contagem_de_lingua = tmdb["original_language"].value_counts().to_frame().reset_index() contagem_de_lingua.columns = ["original_language", "total"] contagem_de_lingua.head() sns.barplot(x="original_language", y = "total", data = contagem_de_lingua) sns.catplot(x = "original_language", kind="count", data = tmdb) plt.pie(contagem_de_lingua["total"], labels = contagem_de_lingua["original_language"]) total_por_lingua = tmdb["original_language"].value_counts() total_geral = total_por_lingua.sum() total_de_ingles = total_por_lingua.loc["en"] total_do_resto = total_geral - total_de_ingles print(total_de_ingles, total_do_resto) dados = { 'lingua' : ['ingles','outros'], 'total' : [total_de_ingles, total_do_resto] } dados = pd.DataFrame(dados) sns.barplot(x="lingua", y="total", data = dados) plt.pie(dados["total"], labels = dados["lingua"]) total_por_lingua_de_outros_filmes = tmdb.query("original_language != 'en'").original_language.value_counts() total_por_lingua_de_outros_filmes filmes_sem_lingua_original_em_ingles = tmdb.query("original_language != 'en'") sns.catplot(x = "original_language", kind="count", data = filmes_sem_lingua_original_em_ingles) sns.catplot(x = "original_language", kind="count", data = filmes_sem_lingua_original_em_ingles, aspect = 2, palette="GnBu_d", order = total_por_lingua_de_outros_filmes.index) """# Revisando o papel da média, mediana, medidas de tendência central, dispersão, desvio padrão, box plot, histograma""" filmes.head(2) notas_do_toy_story = notas.query("filmeId==1") notas_do_jumanji = notas.query("filmeId==2") print(len(notas_do_toy_story), len(notas_do_jumanji)) print("Nota média do Toy Story %.2f" % notas_do_toy_story.nota.mean()) print("Nota média do Jumanji %.2f" % notas_do_jumanji.nota.mean()) print(notas_do_toy_story.nota.std(), notas_do_jumanji.nota.std()) print("Nota mediana do Toy Story %.2f" % notas_do_toy_story.nota.median()) print("Nota mediana do Jumanji %.2f" % notas_do_jumanji.nota.median()) import numpy as np filme1 = np.append(np.array([2.5] * 10), np.array([3.5] * 10)) filme2 = np.append(np.array([5] * 10), np.array([1] * 10)) print(filme1.mean(), filme2.mean()) print(np.std(filme1), np.std(filme2)) print(np.median(filme1), np.median(filme2)) plt.hist(filme1) plt.hist(filme2) plt.boxplot([filme1, filme2]) plt.boxplot([notas_do_toy_story.nota, notas_do_jumanji.nota]) sns.boxplot(x = "filmeId", y = "nota", data = notas.query("filmeId in [1,2,3,4,5]"))
py
b4175451c3bf3e6c152bf7acfd21496292072176
# Generated by Django 3.2.7 on 2021-11-28 13:16 import cloudinary.models from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('pics', '0001_initial'), ] operations = [ migrations.RenameModel( old_name='tags', new_name='Category', ), migrations.AddField( model_name='image', name='category', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='pics.category'), ), migrations.AlterField( model_name='image', name='description', field=models.TextField(max_length=60), ), migrations.AlterField( model_name='image', name='image', field=cloudinary.models.CloudinaryField(max_length=255, verbose_name='image'), ), ]
py
b41754811e363f3dc0012eaac81d7acb4ae46fc5
from torch import nn class Encoder(nn.Module): def __init__(self, seq_len, n_features, embedding_dim): super(Encoder, self).__init__() self.seq_len, self.n_features = seq_len, n_features self.embedding_dim, self.hidden_dim = embedding_dim, 2 * embedding_dim self.rnn1 = nn.LSTM( input_size=n_features, hidden_size=self.hidden_dim, num_layers=1, batch_first=True ) self.rnn2 = nn.LSTM( input_size=self.hidden_dim, hidden_size=embedding_dim, num_layers=1, batch_first=True ) def forward(self, x): x = x.reshape((1, self.seq_len, self.n_features)) x, (_, _) = self.rnn1(x) x, (hidden_n, _) = self.rnn2(x) return hidden_n.reshape((self.n_features, self.embedding_dim)) class Decoder(nn.Module): def __init__(self, seq_len, input_dim, n_features=1): super(Decoder, self).__init__() self.seq_len, self.input_dim = seq_len, input_dim self.hidden_dim, self.n_features = 2 * input_dim, n_features self.rnn1 = nn.LSTM( input_size=input_dim, hidden_size=input_dim, num_layers=1, batch_first=True ) self.rnn2 = nn.LSTM( input_size=input_dim, hidden_size=self.hidden_dim, num_layers=1, batch_first=True ) self.output_layer = nn.Linear(self.hidden_dim, n_features) def forward(self, x): x = x.repeat(self.seq_len, self.n_features) x = x.reshape((self.n_features, self.seq_len, self.input_dim)) x, (hidden_n, cell_n) = self.rnn1(x) x, (hidden_n, cell_n) = self.rnn2(x) x = x.reshape((self.seq_len, self.hidden_dim)) return self.output_layer(x) class RecurrentAutoencoder(nn.Module): def __init__(self, seq_len, n_features, embedding_dim, device): super(RecurrentAutoencoder, self).__init__() self.encoder = Encoder(seq_len, n_features, embedding_dim).to(device) self.decoder = Decoder(seq_len, embedding_dim, n_features).to(device) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x
py
b41754a05c1aa10639fe385c873487cf47bedb9f
from open_publishing.core.enums import ValueStatus from open_publishing.core import Field from open_publishing.core.enums import Subscription class SubscriptionsField(Field): def __init__(self, user): super(SubscriptionsField, self).__init__(database_object=user, aspect='email.*') self._value = None @property def value(self): if self.status is ValueStatus.none: raise RuntimeError('Accessing to field which is not set') else : return self._value.copy() def hard_set(self, value): if isinstance(value, set): for sub in value: if sub not in Subscription: raise ValueError('Unknown subscriptions used : {0}'.format(sub)) self._value = value self._status = ValueStatus.hard else: raise ValueError('Expected set of subscriptions, got {0}'.format(type(value))) def update(self, gjp): if self._status is not ValueStatus.hard: master_obj = self._master_object(gjp) if 'email' in master_obj: self._value = set() if master_obj['email']['grin_info_mail']: if master_obj['email']['buyer_newsletter']: self._value.add(Subscription.buyer) if master_obj['email']['author_newsletter']: self._value.add(Subscription.author) if master_obj['email']['general_newsletter']: self._value.add(Subscription.general) self._status = ValueStatus.soft def gjp(self, gjp): if self._status is ValueStatus.hard: if 'email' not in gjp: gjp['email'] = {} gjp['email']['grin_info_mail'] = True if self._value else False gjp['email']['buyer_newsletter'] = Subscription.buyer in self._value gjp['email']['author_newsletter'] = Subscription.author in self._value gjp['email']['general_newsletter'] = Subscription.general in self._value
py
b41754f9905c71ccb81712b268957f94d9b75608
import click from model.utils.data_generator import DataGenerator from model.img2seq import Img2SeqModel from model.utils.lr_schedule import LRSchedule from model.utils.general import Config from model.utils.text import Vocab from model.utils.image import greyscale @click.command() @click.option('--data', default="configs/data_small.json", help='Path to data json config') @click.option('--vocab', default="configs/vocab_small.json", help='Path to vocab json config') @click.option('--training', default="configs/training_small.json", help='Path to training json config') @click.option('--model', default="configs/model.json", help='Path to model json config') @click.option('--output', default="results/small/", help='Dir for results and model weights') def main(data, vocab, training, model, output): # Load configs dir_output = output config = Config([data, vocab, training, model]) config.save(dir_output) vocab = Vocab(config) # Load datasets train_set = DataGenerator(path_formulas=config.path_formulas_train, dir_images=config.dir_images_train, img_prepro=greyscale, max_iter=config.max_iter, bucket=config.bucket_train, path_matching=config.path_matching_train, max_len=config.max_length_formula, form_prepro=vocab.form_prepro) val_set = DataGenerator(path_formulas=config.path_formulas_val, dir_images=config.dir_images_val, img_prepro=greyscale, max_iter=config.max_iter, bucket=config.bucket_val, path_matching=config.path_matching_val, max_len=config.max_length_formula, form_prepro=vocab.form_prepro) # Define learning rate schedule n_batches_epoch = ((len(train_set) + config.batch_size - 1) // config.batch_size) lr_schedule = LRSchedule(lr_init=config.lr_init, start_decay=config.start_decay*n_batches_epoch, end_decay=config.end_decay*n_batches_epoch, end_warm=config.end_warm*n_batches_epoch, lr_warm=config.lr_warm, lr_min=config.lr_min) # Build model and train model = Img2SeqModel(config, dir_output, vocab) model.build_train(config) model.train(config, train_set, val_set, lr_schedule) if __name__ == "__main__": main()
py
b41755358495baa31d9fe5a8e868fecc94dbd26d
import glob_conf from util import Util import pandas as pd class Test_predictor(): def __init__(self, model, orig_df, label_encoder, name): """Constructor setting up name and configuration""" self.model = model self.orig_df = orig_df self.label_encoder = label_encoder self.target = glob_conf.config['DATA']['target'] self.util = Util() self.name = name def predict_and_store(self): predictions = self.model.get_predictions() df = pd.DataFrame(index = self.orig_df.index) df['speaker'] = self.orig_df['speaker'] df['gender'] = self.orig_df['gender'] df[self.target] = self.label_encoder.inverse_transform(predictions) df.to_csv(self.name)
py
b41755a154e0ef3875b703d6feb30743f47c7b2e
# -*- coding: utf-8 -*- # File : train.py # Author : Kai Ao # Email : [email protected] # Date : 2020/12/12 11:10 # # This file is part of Rotation-Decoupled Detector. # https://github.com/Capino512/pytorch-rotation-decoupled-detector # Distributed under MIT License. import sys sys.path.append('.') import os import tqdm import torch import gc from torch import optim from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from data.aug.compose import Compose from data.aug import ops from data.dataset import Deepscores from model.rdd import RDD from model.backbone import resnet from utils.adjust_lr import adjust_lr_multi_step from utils.parallel import convert_model, CustomDetDataParallel def main(): gc.collect() torch.cuda.empty_cache() dir_weight = os.path.join(dir_save, 'weight') dir_log = os.path.join(dir_save, 'log') os.makedirs(dir_weight, exist_ok=True) writer = SummaryWriter(dir_log) indexes = [int(os.path.splitext(path)[0]) for path in os.listdir(dir_weight)] current_step = max(indexes) if indexes else 0 image_size = 768 lr = 1e-3 batch_size = 4 num_workers = 4 max_step = 2500 lr_cfg = [[1000, lr], [2000, lr / 10], [max_step, lr / 50]] warm_up = [10, lr / 5, lr] save_interval = 1000 aug = Compose([ ops.ToFloat(), ops.PhotometricDistort(), ops.RandomHFlip(), ops.RandomVFlip(), ops.RandomRotate90(), ops.ResizeJitter([0.8, 1.2]), ops.PadSquare(), ops.Resize(image_size), ops.BBoxFilter(24 * 24 * 0.4) ]) dataset = Deepscores(dir_dataset, ['val'], aug) loader = DataLoader(dataset, batch_size, shuffle=True, num_workers=num_workers, pin_memory=True, drop_last=True, collate_fn=dataset.collate) num_classes = len(dataset.names) prior_box = { 'strides': [8, 16, 32, 64, 128], 'sizes': [3] * 5, 'aspects': [[1, 2, 4, 8]] * 5, 'scales': [[2 ** 0, 2 ** (1 / 3), 2 ** (2 / 3)]] * 5, } cfg = { 'prior_box': prior_box, 'num_classes': num_classes, 'extra': 2, } model = RDD(backbone(fetch_feature=True), cfg) model.build_pipe(shape=[2, 3, image_size, image_size]) if current_step: model.restore(os.path.join(dir_weight, '%d.pth' % current_step)) else: model.init() if len(device_ids) > 1: model = convert_model(model) model = CustomDetDataParallel(model, device_ids) model.cuda() optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=5e-4) training = True while training and current_step < max_step: tqdm_loader = tqdm.tqdm(loader) for images, targets, infos in tqdm_loader: current_step += 1 adjust_lr_multi_step(optimizer, current_step, lr_cfg, warm_up) images = images.cuda() / 255 losses = model(images, targets) loss = sum(losses.values()) loss.backward() optimizer.step() optimizer.zero_grad() for key, val in list(losses.items()): losses[key] = val.item() writer.add_scalar(key, val, global_step=current_step) writer.flush() tqdm_loader.set_postfix(losses) tqdm_loader.set_description(f'<{current_step}/{max_step}>') if current_step % save_interval == 0: save_path = os.path.join(dir_weight, '%d.pth' % current_step) state_dict = model.state_dict() if len(device_ids) == 1 else model.module.state_dict() torch.save(state_dict, save_path) cache_file = os.path.join(dir_weight, '%d.pth' % (current_step - save_interval)) if os.path.exists(cache_file): os.remove(cache_file) if current_step >= max_step: training = False writer.close() break if __name__ == '__main__': torch.manual_seed(0) torch.backends.cudnn.benchmark = True #device_ids = [0, 1] device_ids = [0] torch.cuda.set_device(device_ids[0]) backbone = resnet.resnet101 dir_dataset = '../ds2_dense/' dir_save = '../output_train/' main()
py
b41755a9635c805290fc3a2f1cbd0dc24810161d
#!/usr/bin/env python import signal import os import time import pty def signal_handler (signum, frame): print 'Signal handler called with signal:', signum print 'signal.SIGCHLD=', signal.SIGKILL # First thing we do is set up a handler for SIGCHLD. signal.signal (signal.SIGCHLD, signal.SIG_IGN) print 'PART 1 -- Test signal handling with empty pipe.' # Create a child process for us to kill. try: pid, fd = pty.fork() except Exception as e: print str(e) if pid == 0: # os.write (sys.stdout.fileno(), 'This is a test.\n This is a test.') time.sleep(10000) print 'Sending SIGKILL to child pid:', pid os.kill (pid, signal.SIGKILL) # SIGCHLD should interrupt sleep. # Note that this is a race. # It is possible that the signal handler will get called # before we try to sleep, but this has not happened yet. # But in that case we can only tell by order of printed output. print 'Entering sleep...' try: time.sleep(10) except: print 'sleep was interrupted by signal.' # Just for fun let's see if the process is alive. try: os.kill(pid, 0) print 'Child is alive. This is ambiguous because it may be a Zombie.' except OSError as e: print 'Child appears to be dead.' print 'PART 2 -- Test signal handling with full pipe.' # Create a child process for us to kill. try: pid, fd = pty.fork() except Exception as e: print str(e) if pid == 0: os.write (sys.stdout.fileno(), 'This is a test.\n This is a test.') time.sleep(10000) print 'Sending SIGKILL to child pid:', pid os.kill (pid, signal.SIGKILL) # SIGCHLD should interrupt sleep. # Note that this is a race. # It is possible that the signal handler will get called # before we try to sleep, but this has not happened yet. # But in that case we can only tell by order of printed output. print 'Entering sleep...' try: time.sleep(10) except: print 'sleep was interrupted by signal.' # Just for fun let's see if the process is alive. try: os.kill(pid, 0) print 'Child is alive. This is ambiguous because it may be a Zombie.' except OSError as e: print 'Child appears to be dead.'
py
b41757ee6741eed421f529e6a140b82e9c65ce47
import re from odoo import http from odoo.http import request from werkzeug.exceptions import Forbidden import odoo.addons.website_sale.controllers.main as main # from odoo.addons.br_base.tools.fiscal import validate_cnpj, validate_cpf from odoo.addons.portal.controllers.portal import CustomerPortal class L10nBrWebsiteSale(main.WebsiteSale): def _get_mandatory_billing_fields(self): res = super(L10nBrWebsiteSale, self)._get_mandatory_billing_fields() res.remove("city") return res + [ "l10n_br_cnpj_cpf", "zip", "l10n_br_number", "l10n_br_district", "state_id", "city_id", ] def _get_mandatory_shipping_fields(self): res = super(L10nBrWebsiteSale, self)._get_mandatory_shipping_fields() res.remove("city") return res + [ "zip", "l10n_br_number", "l10n_br_district", "state_id", "city_id", ] @http.route( ["/shop/get_cities"], type="json", auth="public", methods=["POST"], website=True, ) def get_cities_json(self, state_id): if state_id and state_id.isdigit(): cities = ( request.env["res.city"] .sudo() .search([("state_id", "=", int(state_id))]) ) return [(city.id, city.name) for city in cities] return [] @http.route( ["/shop/get_states"], type="json", auth="public", methods=["POST"], website=True, ) def get_states_json(self, country_id): if country_id and country_id.isdigit(): states = ( request.env["res.country.state"] .sudo() .search([("country_id", "=", int(country_id))]) ) return [(state.id, state.name) for state in states] return [] def checkout_form_validate(self, mode, all_form_values, data): errors, error_msg = super( L10nBrWebsiteSale, self ).checkout_form_validate(mode, all_form_values, data) cnpj_cpf = data.get("l10n_br_cnpj_cpf", "0") email = data.get("email", False) # TODO Validar campos # if cnpj_cpf and len(cnpj_cpf) == 18: # # if not validate_cnpj(cnpj_cpf): # errors["l10n_br_cnpj_cpf"] = u"invalid" # error_msg.append(('CNPJ Inválido!')) # elif cnpj_cpf and len(cnpj_cpf) == 14: # # if not validate_cpf(cnpj_cpf): # errors["l10n_br_cnpj_cpf"] = u"invalid" # error_msg.append(('CPF Inválido!')) partner_id = data.get("partner_id", False) if cnpj_cpf: domain = [("l10n_br_cnpj_cpf", "=", cnpj_cpf)] if partner_id and mode[0] == "edit": domain.append(("id", "!=", partner_id)) existe = request.env["res.partner"].sudo().search_count(domain) if existe > 0: errors["l10n_br_cnpj_cpf"] = u"invalid" error_msg.append(("CPF/CNPJ já cadastrado")) if email: domain = [("email", "=", email)] if partner_id and mode[0] == "edit": domain.append(("id", "!=", partner_id)) existe = request.env["res.partner"].sudo().search_count(domain) if existe > 0: errors["email"] = u"invalid" error_msg.append(("E-mail já cadastrado")) return errors, error_msg def values_postprocess(self, order, mode, values, errors, error_msg): new_values, errors, error_msg = super( L10nBrWebsiteSale, self ).values_postprocess(order, mode, values, errors, error_msg) new_values["l10n_br_cnpj_cpf"] = values.get("l10n_br_cnpj_cpf", None) new_values["company_type"] = values.get("company_type", None) is_comp = ( False if values.get("company_type", None) == "person" else True ) new_values["is_company"] = is_comp if "city_id" in values and values["city_id"] != "": new_values["city_id"] = int(values.get("city_id", 0)) if "state_id" in values and values["state_id"] != "": new_values["state_id"] = int(values.get("state_id", 0)) if "country_id" in values and values["country_id"] != "": new_values["country_id"] = int(values.get("country_id", 0)) new_values["l10n_br_number"] = values.get("l10n_br_number", None) new_values["street2"] = values.get("street2", None) new_values["l10n_br_district"] = values.get("l10n_br_district", None) return new_values, errors, error_msg def _checkout_form_save(self, mode, checkout, all_values): Partner = request.env["res.partner"] if mode[0] == "new": partner_id = Partner.sudo().create(checkout) elif mode[0] == "edit": partner_id = int(all_values.get("partner_id", 0)) if partner_id: # double check order = request.website.sale_get_order() shippings = Partner.sudo().search( [ ( "id", "child_of", order.partner_id.commercial_partner_id.ids, ) ] ) if ( partner_id not in shippings.mapped("id") and partner_id != order.partner_id.id ): return Forbidden() Partner.browse(partner_id).sudo().write(checkout) return partner_id @http.route() def address(self, **kw): result = super(L10nBrWebsiteSale, self).address(**kw) partner_id = 0 if "partner_id" in result.qcontext: partner_id = result.qcontext["partner_id"] if partner_id > 0: partner_id = request.env["res.partner"].sudo().browse(partner_id) result.qcontext["city"] = partner_id.city_id.id result.qcontext["state"] = partner_id.state_id.id if "city_id" in kw and kw["city_id"]: result.qcontext["city"] = kw["city_id"] return result @http.route( ["/shop/zip_search"], type="json", auth="public", methods=["POST"], website=True, ) def search_zip_json(self, zip): if len(zip) >= 8: cep = re.sub("[^0-9]", "", zip) vals = ( request.env["res.partner"].sudo().search_address_by_zip(cep) ) if vals: return { "sucesso": True, "street": vals["street"], "l10n_br_district": vals["l10n_br_district"], "city_id": vals["city_id"], "state_id": vals["state_id"], "country_id": vals["country_id"], } return {"sucesso": False} class BrWebsiteMyAccount(CustomerPortal): MANDATORY_BILLING_FIELDS = [ "name", "phone", "email", "street", "l10n_br_cnpj_cpf", "l10n_br_number", "l10n_br_district", "zipcode", "company_type", "city_id", "state_id", "country_id", ] OPTIONAL_BILLING_FIELDS = ["street2"] @http.route(["/my/account"], type="http", auth="user", website=True) def account(self, redirect=None, **post): if "zip" in post: post["zipcode"] = post.pop("zip") return super(BrWebsiteMyAccount, self).account( redirect=redirect, **post )
py
b417582536589c830e68b792b02351bcb1693ea6
import requests from bs4 import BeautifulSoup import JokeManager url = "http://www.qiushibaike.com/text/" headers = { 'Connection':'keep-alive', 'Cache-Control':'max-age=0', 'Accept': 'text/html, */*; q=0.01', 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2272.89 Safari/537.36', 'Accept-Encoding': 'gzip, deflate', 'Accept-Language': 'zh-CN,zh;q=0.8,ja;q=0.6' } s = requests.session() s.headers.update(headers) res = s.get(url,headers = headers) if res.ok: html = res.content.decode(encoding='utf-8') html = BeautifulSoup(html,'html.parser') divs = html.find_all(name='div',attrs={"class":"article block untagged mb15"}) jokes = [] for div in divs: # print(div) joke_id = int(div.get('id').split('_')[2]) content_div = div.find_all(name='div',attrs={'class':'content'})[0] jokes.append((joke_id,content_div.get_text().strip())) # 保存到redis JokeManager.saveJokesToRedis(jokes) print('done.') else: print('error when accessing url:%s' % url)
py
b41759287c72907cc0d0ab1620e27744ec74de6f
import numpy as np import freud from benchmark import Benchmark from benchmarker import run_benchmarks class BenchmarkDensityRDF(Benchmark): def __init__(self, rmax, dr, rmin): self.rmax = rmax self.dr = dr self.rmin = rmin def bench_setup(self, N): self.box_size = self.rmax*3.1 np.random.seed(0) self.points = np.random.random_sample((N, 3)).astype(np.float32) \ * self.box_size - self.box_size/2 self.rdf = freud.density.RDF(self.rmax, self.dr, rmin=self.rmin) self.box = freud.box.Box.cube(self.box_size) def bench_run(self, N): self.rdf.accumulate(self.box, self.points) self.rdf.compute(self.box, self.points) def run(): Ns = [1000, 10000] rmax = 10.0 dr = 1.0 rmin = 0 number = 100 name = 'freud.density.RDF' classobj = BenchmarkDensityRDF return run_benchmarks(name, Ns, number, classobj, rmax=rmax, dr=dr, rmin=rmin) if __name__ == '__main__': run()
py
b4175928ec00287f8823de3e03c440ed2bdeef8c
from tqdm import tqdm from numpy import float32 import copy import os import itertools from collections import OrderedDict import tensorflow as tf import numpy as np # TODO check if optimizers are always ops? Maybe there is a better check def is_optimizer(x): return hasattr(x, 'op_def') def is_summary(x): return isinstance(x, tf.Tensor) and x.dtype is tf.string def is_float(x): return isinstance(x, tf.Tensor) and x.dtype is tf.float32 def is_scalar(x): return isinstance(x, tf.Tensor) and x.dtype is tf.float32 and len(x.shape) == 0 class Evaluator(object): def __init__(self, provided_sources, scope="", writer=None, network=None, tokenizer=None): # debug purpose only, do not use in the code self.provided_sources = provided_sources self.scope = scope self.writer = writer if len(scope) > 0 and not scope.endswith("/"): self.scope += "/" self.use_summary = False # Debug tools (should be removed on the long run) self.network=network self.tokenizer = tokenizer def process(self, sess, iterator, outputs, out_net=None,inference=False, listener=None,type_data="train"): assert isinstance(outputs, list), "outputs must be a list" original_outputs = list(outputs) is_training = any([is_optimizer(x) for x in outputs]) # if listener is not None: # outputs += [listener.require()] # add require outputs # # outputs = flatten(outputs) # flatten list (when multiple requirement) # outputs = list(OrderedDict.fromkeys(outputs)) # remove duplicate while preserving ordering # listener.before_epoch(is_training) n_iter = 1. aggregated_outputs = [0.0 for v in outputs if is_scalar(v) and v in original_outputs] good_predict = {} bad_predict = {} image_id = None self.good_predict = 0 self.bad_predict = 0 for batch in tqdm(iterator): # Appending is_training flag to the feed_dict batch["is_training"] = is_training if inference: image_id = batch["image_id"] batch_1 = {} batch_2 = {} question= batch["question_word"] images_id = batch["image_id"] # crops_id = batch["crop_id"] for key,values in batch.items(): if key!="question_word" and key!= "image_id": pass elif type(values) != bool : batch_1[key] = [values[0]] batch_2[key] = [values[1]] else: batch_1[key] = values batch_2[key] = values if inference == False: batch = {key:value for key,value in batch.items() if key!="question_word" and key!= "image_id"} results = self.execute(sess, outputs,batch,type_data ) if inference: old_batch = batch batch = {key:value for key,value in batch.items() if key!="question_word" and key!= "image_id"} prediction = self.execute(sess,out_net,batch, type_data) results = self.execute(sess, outputs,batch, type_data ) # for question,gold,prediction in zip(old_batch["question"],old_batch["answer"],prediction): # gold_argmax = np.argmax(gold) # predict_argmax = np.argmax(prediction) # self.good_predict += 1 # if gold_argmax == predict_argmax: # self.good_predict += 1 # print("GOOD | Image_id ={}, Question= {}, Categorie_object={}, gold={}, prediction={}, proba_predict = {}".format(image_id,question,categories_object,gold_argmax,predict_argmax,prediction) ) # # print("GOOD | Question= {}, gold={}, prediction={}, proba_predict = {}".format(question,gold_argmax,predict_argmax,prediction) ) # else: # self.bad_predict += 1 # print("BAD | Image_id ={}, Question= {}, Categorie_object={}, gold={}, prediction={}, proba_predict = {}".format(image_id,question,categories_object,gold_argmax,predict_argmax,prediction) ) # # print("BAD | Question= {}, gold={}, prediction={}, proba_predict = {}".format(question,gold_argmax,predict_argmax,prediction) ) # exit() print(".... old__batch={} ".format(old_batch)) for image_id,question,categories_object,gold,prediction in zip(old_batch["image_id"],old_batch["question_word"],old_batch["category"],old_batch["answer"],prediction): print("....... image ..............") gold_argmax = np.argmax(gold) predict_argmax = np.argmax(prediction) self.good_predict += 1 if gold_argmax == predict_argmax: self.good_predict += 1 print("GOOD | Image_id ={}, Question= {}, Categorie_object={}, gold={}, prediction={}, proba_predict = {}".format(image_id,question,categories_object,gold_argmax,predict_argmax,prediction) ) else: self.bad_predict += 1 print("BAD | Image_id ={}, Question= {}, Categorie_object={}, gold={}, prediction={}, proba_predict = {}".format(image_id,question,categories_object,gold_argmax,predict_argmax,prediction) ) i = 0 for var, result in zip(outputs, results): if is_scalar(var) and var in original_outputs: # moving average aggregated_outputs[i] = ((n_iter - 1.) / n_iter) * aggregated_outputs[i] + result / n_iter i += 1 elif is_summary(var): # move into listener? self.writer.add_summary(result) if listener is not None and listener.valid(var): listener.after_batch(result, batch, is_training) n_iter += 1 if listener is not None: listener.after_epoch(is_training) print(" Result good_predict = {} , bad_predict={}".format(self.good_predict,self.bad_predict)) return aggregated_outputs def execute(self, sess, output, batch,type_data = "Train"): #print("+++++++++++++++++++++",batch.items()) feed_dict = {self.scope +key + ":0": value for key, value in batch.items() if key in self.provided_sources} # print("-- [{}] question = {}--".format(type_data, feed_dict["oracle/question:0"])) # print("shape = {} ".format(np.asarray(feed_dict["oracle/question:0"]).shape )) # for key,value in feed_dict.items(): # print("-- [{}] Feed_Dict = {} : {}-- ".format(type_data,key,np.asarray(value).shape )) # exit() # print("answer = {}".format(feed_dict["oracle/answer:0"])) # print("-- [{}] image_values = {}--".format(type_data, feed_dict["oracle/image:0"])) # print("========================================================================") # print("-- [{}] Output = {} ".format(type_data, output)) # print("-- [{}] result = {} ".format(type_data,sess.run(output, feed_dict=feed_dict))) # print("") if type_data == "Valid": # out = output[0].eval(feed_dict = feed_dict) # print("Sess_emb = {}".format(out)) # print("Shape = {}".format(out.shape)) # print("Other = {}".format(tf.get_variable("oracle/l2_normalize:0").eval(feed_dict = feed_dict))) # print("ouput = {}".format(sess.run(output[1], feed_dict=feed_dict))) # exit() pass # print("resultat_softmax = {}".format(sess.run(tf.get_variable("oracle/mlp/Softmax_1:0"), feed_dict=feed_dict))) # exit() return sess.run(output, feed_dict=feed_dict) class MultiGPUEvaluator(object): """ Wrapper for evaluating on multiple GPUOptions parameters ---------- provided_sources: list of sources Each source has num_gpus placeholders with name: name_scope[gpu_index]/network_scope/source network_scope: str Variable scope of the model name_scopes: list of str List that defines name_scope for each GPU """ def __init__(self, provided_sources, name_scopes, writer=None, networks=None, tokenizer=None): #Debug purpose only, do not use here # Dispatch sources self.provided_sources = provided_sources self.name_scopes = name_scopes self.writer = writer self.multi_gpu_sources = [] for source in self.provided_sources: for name_scope in name_scopes: self.multi_gpu_sources.append(os.path.join(name_scope, source)) # Debug tools, do not use in the code! self.networks = networks self.tokenizer = tokenizer def process(self, sess, iterator, outputs, listener=None): assert listener is None, "Listener are not yet supported with multi-gpu evaluator" assert isinstance(outputs, list), "outputs must be a list" # check for optimizer to define training/eval mode is_training = any([is_optimizer(x) for x in outputs]) # Prepare epoch n_iter = 1. aggregated_outputs = [0.0 for v in outputs if is_scalar(v)] scope_to_do = list(self.name_scopes) multi_gpu_batch = dict() for batch in tqdm(iterator): assert len(scope_to_do) > 0 # apply training mode batch['is_training'] = is_training # update multi-gpu batch name_scope = scope_to_do.pop() for source, v in batch.items(): multi_gpu_batch[os.path.join(name_scope, source)] = v if not scope_to_do: # empty list -> multi_gpu_batch is ready! n_iter += 1 # Execute the batch results = self.execute(sess, outputs, multi_gpu_batch) # reset mini-batch scope_to_do = list(self.name_scopes) multi_gpu_batch = dict() # process the results i = 0 for var, result in zip(outputs, results): if is_scalar(var) and var in outputs: # moving average aggregated_outputs[i] = ((n_iter - 1.) / n_iter) * aggregated_outputs[i] + result / n_iter i += 1 elif is_summary(var): # move into listener? self.writer.add_summary(result) # No listener as "results" may arrive in different orders... need to find a way to unshuffle them return aggregated_outputs def execute(self, sess, output, batch): feed_dict = {key + ":0": value for key, value in batch.items() if key in self.multi_gpu_sources} return sess.run(output, feed_dict=feed_dict)
py
b417599877c47ad536fa85be56d8389ea17dd3b0
# -*- coding: utf-8 -*- ## # Copyright (C) 2007 Ingeniweb # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program; see the file LICENSE. If not, write to the # Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. """ Unit test main script """ from Products.PloneGlossary.tests import PloneGlossaryTestCase from Products.PloneGlossary.utils import html2text from Products.PloneGlossary.utils import find_word from Products.PloneGlossary.utils import encode_ascii from Products.PloneGlossary.utils import LOG class TestPloneGlossary(PloneGlossaryTestCase.PloneGlossaryTestCase): def afterSetUp(self): self.loginAsPortalOwner() self.glossary = self.addGlossary( self.portal, u'General', (u'Sport', u'Tennis \t\n', u'Open source')) self.logout() def testGetGlossaries(self): self.loginAsPortalOwner() medical_glossary = self.addGlossary( self.portal, u'Medical', (u'ADN', u'Bone', u'Heart')) uids = [] uids.append(self.glossary.UID()) uids.append(medical_glossary.UID()) uids.sort() # Test PloneGlossaryTool->getGlossaryUIDs glossary_uids = sorted(self.glossary_tool.getGlossaryUIDs()) self.assertEquals(glossary_uids, uids) # Test PloneGlossaryTool->getGlossaries glossary_uid = self.glossary.UID() glossaries = self.glossary_tool.getGlossaries( glossary_uids=[glossary_uid]) glossary = glossaries[0] self.assertEquals(glossary.UID(), glossary_uid) glossary_uids = [x.UID() for x in self.glossary_tool.getGlossaries()] glossary_uids.sort() self.assertEquals(glossary_uids, uids) self.logout() def testGetAvailableGlossaryMetaTypes(self): self.loginAsPortalOwner() tool = self.glossary_tool available_metatypes = tool.getAvailableGlossaryMetaTypes() glossary_metatypes = tool.glossary_metatypes # test available metatypes, base glossary selected by default self.assertEquals(available_metatypes, ('PloneGlossary', 'ExampleGlossary')) self.assertEquals(glossary_metatypes, ('PloneGlossary',)) # test : only selected metatypes are returned by getGlossaryUIDs glossary = self.glossary glossaryuid = glossary.UID() exampleglossary = self.addExampleGlossary( self.portal, 'Example', (u'Sport', u'Tennis', u'Open source')) exampleuid = exampleglossary.UID() # test : glossary_uids = sorted(self.glossary_tool.getGlossaryUIDs()) self.assertEquals(glossary_uids, [glossaryuid]) # test : add a glossary type tool.glossary_metatypes = ('PloneGlossary', 'ExampleGlossary') glossary_uids = list(self.glossary_tool.getGlossaryUIDs()) glossary_uids.sort() uids = [glossaryuid, exampleuid] uids.sort() self.assertEquals(glossary_uids, uids) LOG.info("testGetAvailableGlossaryMetaTypes passed") self.logout() def testGetGeneralGlossaryUIDs(self): self.loginAsPortalOwner() medical_glossary = self.addGlossary(self.portal, u'Medical', (u'ADN', u'Bone', u'Heart')) all_uids = [] all_uids.append(self.glossary.UID()) all_uids.append(medical_glossary.UID()) all_uids.sort() general_glossaries_uids = sorted( self.glossary_tool.getGeneralGlossaryUIDs()) self.assertEquals(general_glossaries_uids, all_uids) self.glossary_tool.general_glossary_uids = (medical_glossary.UID(),) general_glossaries_uids = self.glossary_tool.getGeneralGlossaryUIDs() self.assertEquals(list(general_glossaries_uids), [medical_glossary.UID()]) def testTextRelatedTerms(self): self.loginAsPortalOwner() gtool = self.glossary_tool glossary_uids = gtool.getGlossaryUIDs() glossary_term_items = gtool._getGlossaryTermItems(glossary_uids) terms = sorted(self.glossary_tool._getTextRelatedTermItems( "Le tennis est un sport", glossary_term_items)) terms = [t['title'] for t in terms] self.assertEquals(terms, ['Sport', u'Tennis \t\n']) terms = list(self.glossary_tool._getTextRelatedTermItems( "Le tennis est un sport", glossary_term_items, excluded_terms=('Tennis',))) terms.sort() terms = [t['title'] for t in terms] self.assertEquals(terms, ['Sport']) def testObjectRelatedTerms(self): self.loginAsPortalOwner() # Add french document doc = self.addFrenchDocument( self.portal, self.encodeInSiteCharset(u'Sport fran\xe7ais')) glossary_uids = self.glossary_tool.getGlossaryUIDs() terms = sorted(self.glossary_tool.getObjectRelatedTerms( doc, glossary_uids)) result = ['Sport'] self.assertEquals(terms, result) # Test terms using 2 words like "open source" doc = self.addDocument( self.portal, self.encodeInSiteCharset( u'English documentation'), self.encodeInSiteCharset(u'This is an open source'),) terms = list(self.glossary_tool.getObjectRelatedTerms( doc, glossary_uids)) terms.sort() result = ['Open source'] self.assertEquals(terms, result) self.logout() def testObjectRelatedDefinitions(self): self.loginAsPortalOwner() # Add french document doc = self.addFrenchDocument( self.portal, self.encodeInSiteCharset(u'Sport fran\xe7ais')) # no glossary_uid result = self.glossary_tool.getObjectRelatedDefinitions(doc, ()) self.assertEquals(result, []) # test normal glossary_uids = self.glossary_tool.getGlossaryUIDs() definitions = list(self.glossary_tool.getObjectRelatedDefinitions( doc, glossary_uids)) self.assertEquals(len(definitions), 1) definition = definitions[0] self.assertEquals(definition['url'], 'http://nohost/plone/general/sport') self.assertEquals(definition['description'], u'Definition of term') self.assertEquals(definition['variants'], ()) self.assertEquals(definition['id'], 'sport') self.assertEquals(definition['title'], u'Sport') self.logout() def testGlossaryTerms(self): self.loginAsPortalOwner() glossary_uids = self.glossary_tool.getGlossaryUIDs() terms = sorted(self.glossary_tool.getGlossaryTerms(glossary_uids)) result = ['Open source', 'Sport', u'Tennis \t\n'] self.assertEquals(terms, result) self.logout() def testGetAbcedaire(self): """We should have the 1st letters of all words (merged)""" self.loginAsPortalOwner() abcedaire = self.glossary_tool.getAbcedaire([self.glossary.UID()]) result = ('o', 's', 't') self.assertEquals(abcedaire, result) brains = self.glossary_tool.getAbcedaireBrains([self.glossary.UID()], letters=['s']) self.assertEquals(len(brains), 1) brain = brains[0] self.assertEquals(brain.Title, 'Sport') self.logout() def testSearchResults(self): self.loginAsPortalOwner() brains = self.glossary_tool.searchResults( [self.glossary.UID()], Title='Sport') self.assertEquals(len(brains), 1) brain = brains[0] self.assertEquals(brain.Title, 'Sport') self.logout() def testFindWord(self): """Test find_word function in utils""" # The text is the word word = "ete" text = "ete" result = find_word(word, text) expected_result = (0,) self.assertEquals(result, expected_result) # Many words text = "l'ete ou ete" result = find_word(word, text) expected_result = (2, 9,) self.assertEquals(result, expected_result) def testVariants(self): """Test variants""" self.loginAsPortalOwner() # Add glossary self.glossary = self.addGlossary( self.portal, u'Produits laitiers', (u'Lait', u'Beurre', u'Fromage', u'Crème', u'Desserts lactés')) # Variants of yaourt are yoghourt and yogourt self.addGlossaryDefinition( self.glossary, title=u'Yaourt', definition=u'Lait caillé ayant subi une fermentation acide.', variants=(u'Yaourts', u'Yoghourt', u'Yoghourts \t', u'yogourt', u'yogourts')) # Variants of fruits, to test white space in variants. But # white space is stripped on save there. So not much # interesting happens. self.addGlossaryDefinition( self.glossary, title=u'Fruits', definition=u'Commes des légumes, mais un peut autre.', variants=(u'Apples', u'Fraises \t', u'Framboises')) doc = self.addDocument( self.portal, "Dessert", ("Notre chef vous propose des fraises au yaourt et des yoghourts " "à la vanille.")) brains = self.glossary_tool.searchResults([self.glossary.UID()], SearchableText='Yoghourt') self.assertEquals(brains[0].Title, 'Yaourt') brains = self.glossary_tool.searchResults([self.glossary.UID()], SearchableText='Fraises') self.assertEquals(brains[0].Title, 'Fruits') definitions = self.portal.portal_glossary.getObjectRelatedDefinitions( doc, glossary_uids=[self.glossary.UID()]) self.assertEquals(len(definitions), 3) definition = definitions[0] self.assertEquals(definition['terms'], ['yaourt']) self.assertEquals(definition['show'], 1) definition = definitions[1] self.assertEquals(definition['terms'], ['yoghourts']) self.assertEquals(definition['show'], 0) definition = definitions[2] self.assertEquals(definition['terms'], ['fraises']) self.assertEquals(definition['show'], 1) def testEncoding(self): """Test encoding""" self.loginAsPortalOwner() # Add glossary self.glossary = self.addGlossary( self.portal, u'Parfums Femme Chanel', (u'Lancôme : Ô Oui', u"Dior : J´Adore", u'Cerruti 1881 pour Femme', )) # Variants of yaourt are yoghourt and yogourt self.addGlossaryDefinition( self.glossary, title=u'Chanel N° 5', definition=(u"Un bouquet de fleurs abstraites d'une " u"indéfinissable féminité."), variants=(u'N° 5', )) doc = self.addDocument( self.portal, "Le parfum de ma mère!", ("Alors pour vous dire, une très grande histoire d'amour!! et ce " "n'est pas par hasard que ça fait maintenant plus de 80ans que " "Chanel N° 5 se vend!")) brains = self.glossary_tool.searchResults([self.glossary.UID()], SearchableText='N° 5') self.assertEquals(brains[0].Title, 'Chanel N° 5') definitions = self.portal.portal_glossary.getObjectRelatedDefinitions( doc, glossary_uids=[self.glossary.UID()]) definition = definitions[0] self.assertEquals(definition['terms'], ['Chanel N° 5']) self.assertEquals(definition['show'], 1) def testEncodeAscii(self): """Test encode_ascii function from utils modules""" utext = u'Ellipsis\u2026' atext = encode_ascii(utext) self.assertEquals(len(utext), len(atext)) self.assertEquals(atext, "ellipsis.") def testHTML2Text(self): """Test correct splitting of HTML""" text = html2text("<div>line1\r\nline2</div>") self.assertEquals(text, "line1 line2") text = html2text("<div>line1\r\n line2</div>") self.assertEquals(text, "line1 line2") text = html2text("<div>line1 \r\n line2</div>") self.assertEquals(text, "line1 line2") text = html2text("<div>line1 \r \n line2</div>") self.assertEquals(text, "line1 line2") text = html2text("<div><ul><li>Seleção campeã!</li></ul></div>") self.assertEquals(text, u"- Seleção campeã!".encode("utf-8")) text = html2text( "<div><ul><li>Sele&ccedil;&atilde;o campe&atilde;!</li>" "</ul></div>") self.assertEquals(text, u"- Seleção campeã!".encode("utf-8")) text = html2text( "<div><ul><li>Sele&#231;&#227;o campe&#227;!</li></ul></div>") self.assertEquals(text, u"- Seleção campeã!".encode("utf-8")) def test_suite(): from unittest import TestSuite, makeSuite suite = TestSuite() suite.addTest(makeSuite(TestPloneGlossary)) return suite
py
b4175a378d6f064f44dbb108abd0ace32ad70d23
""" Python wrappers to external libraries ===================================== lapack -- wrappers for LAPACK/ATLAS libraries blas -- wrappers for BLAS/ATLAS libraries """ from __future__ import division, print_function, absolute_import __all__ = ['lapack','blas'] from numpy.testing import Tester test = Tester().test
py
b4175ac5d8951b4d07dd381a922feb50f8856fda
#!/usr/bin/env python3 # Copyright 1996-2020 Cyberbotics Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert world file from R2020a to R2020b keeping the NUE coordinate system.""" import sys from transforms3d import quaternions from webots_parser import WebotsParser from converted_protos import converted_protos def rotation(value, r): q0 = quaternions.axangle2quat([float(value[0]), float(value[1]), float(value[2])], float(value[3])) q1 = quaternions.axangle2quat([r[0], r[1], r[2]], r[3]) qr = quaternions.qmult(q0, q1) v, theta = quaternions.quat2axangle(qr) return [WebotsParser.str(v[0]), WebotsParser.str(v[1]), WebotsParser.str(v[2]), WebotsParser.str(theta)] def convert_to_nue(filename): world = WebotsParser() world.load(filename) for node in world.content['root']: if node['name'] == 'WorldInfo': for field in node['fields']: if field['name'] == 'gravity': gravity = float(field['value'][1]) if gravity != 0: gravity = -gravity field['value'] = WebotsParser.str(gravity) field['type'] = 'SFFloat' if field['name'] == 'coordinateSystem': # world file already updated return node['fields'].append({'name': 'coordinateSystem', 'value': 'NUE', 'type': 'SFString'}) elif node['name'] in converted_protos: print('Rotating', node['name']) rotation_found = False for field in node['fields']: if field['name'] in ['rotation']: rotation_found = True field['value'] = rotation(field['value'], converted_protos[node['name']]) if not rotation_found: node['fields'].append({'name': 'rotation', 'value': rotation(['0', '1', '0', '0'], converted_protos[node['name']]), 'type': 'SFRotation'}) world.save(filename) if __name__ == "__main__": # execute only if run as a script for filename in sys.argv: if not filename.endswith('.wbt'): continue print(filename) convert_to_nue(filename)
py
b4175aeeab691dc765f3f8dcb63a8be972348ab8
# ============================================================================= # OWSLib. Copyright (C) 2005 Sean C. Gillies # # Contact email: [email protected] # # $Id: wfs.py 503 2006-02-01 17:09:12Z dokai $ # ============================================================================= #owslib imports: from owslib.ows import ServiceIdentification, ServiceProvider, OperationsMetadata from owslib.etree import etree from owslib.util import nspath, testXMLValue from owslib.crs import Crs from owslib.feature import WebFeatureService_ from owslib.namespaces import Namespaces #other imports import cgi from cStringIO import StringIO from urllib import urlencode from urllib2 import urlopen import logging from owslib.util import log n = Namespaces() WFS_NAMESPACE = n.get_namespace("wfs20") OWS_NAMESPACE = n.get_namespace("ows110") OGC_NAMESPACE = n.get_namespace("ogc") GML_NAMESPACE = n.get_namespace("gml") FES_NAMESPACE = n.get_namespace("fes") class ServiceException(Exception): pass class WebFeatureService_2_0_0(WebFeatureService_): """Abstraction for OGC Web Feature Service (WFS). Implements IWebFeatureService. """ def __new__(self,url, version, xml, parse_remote_metadata=False, timeout=30): """ overridden __new__ method @type url: string @param url: url of WFS capabilities document @type xml: string @param xml: elementtree object @type parse_remote_metadata: boolean @param parse_remote_metadata: whether to fully process MetadataURL elements @param timeout: time (in seconds) after which requests should timeout @return: initialized WebFeatureService_2_0_0 object """ obj=object.__new__(self) obj.__init__(url, version, xml, parse_remote_metadata, timeout) return obj def __getitem__(self,name): ''' check contents dictionary to allow dict like access to service layers''' if name in self.__getattribute__('contents').keys(): return self.__getattribute__('contents')[name] else: raise KeyError, "No content named %s" % name def __init__(self, url, version, xml=None, parse_remote_metadata=False, timeout=30): """Initialize.""" if log.isEnabledFor(logging.DEBUG): log.debug('building WFS %s'%url) self.url = url self.version = version self.timeout = timeout self._capabilities = None reader = WFSCapabilitiesReader(self.version) if xml: self._capabilities = reader.readString(xml) else: self._capabilities = reader.read(self.url) self._buildMetadata(parse_remote_metadata) def _buildMetadata(self, parse_remote_metadata=False): '''set up capabilities metadata objects: ''' #serviceIdentification metadata serviceidentelem=self._capabilities.find(nspath('ServiceIdentification')) self.identification=ServiceIdentification(serviceidentelem) #need to add to keywords list from featuretypelist information: featuretypelistelem=self._capabilities.find(nspath('FeatureTypeList', ns=WFS_NAMESPACE)) featuretypeelems=featuretypelistelem.findall(nspath('FeatureType', ns=WFS_NAMESPACE)) for f in featuretypeelems: kwds=f.findall(nspath('Keywords/Keyword',ns=OWS_NAMESPACE)) if kwds is not None: for kwd in kwds[:]: if kwd.text not in self.identification.keywords: self.identification.keywords.append(kwd.text) #TODO: update serviceProvider metadata, miss it out for now serviceproviderelem=self._capabilities.find(nspath('ServiceProvider')) self.provider=ServiceProvider(serviceproviderelem) #serviceOperations metadata self.operations=[] for elem in self._capabilities.find(nspath('OperationsMetadata'))[:]: if elem.tag !=nspath('ExtendedCapabilities'): self.operations.append(OperationsMetadata(elem)) #serviceContents metadata: our assumption is that services use a top-level #layer as a metadata organizer, nothing more. self.contents={} featuretypelist=self._capabilities.find(nspath('FeatureTypeList',ns=WFS_NAMESPACE)) features = self._capabilities.findall(nspath('FeatureTypeList/FeatureType', ns=WFS_NAMESPACE)) for feature in features: cm=ContentMetadata(feature, featuretypelist, parse_remote_metadata) self.contents[cm.id]=cm #exceptions self.exceptions = [f.text for f \ in self._capabilities.findall('Capability/Exception/Format')] def getcapabilities(self): """Request and return capabilities document from the WFS as a file-like object. NOTE: this is effectively redundant now""" reader = WFSCapabilitiesReader(self.version) return urlopen(reader.capabilities_url(self.url), timeout=self.timeout) def items(self): '''supports dict-like items() access''' items=[] for item in self.contents: items.append((item,self.contents[item])) return items def getfeature(self, typename=None, filter=None, bbox=None, featureid=None, featureversion=None, propertyname=None, maxfeatures=None,storedQueryID=None, storedQueryParams={}, method='Get', outputFormat=None, startindex=None): """Request and return feature data as a file-like object. #TODO: NOTE: have changed property name from ['*'] to None - check the use of this in WFS 2.0 Parameters ---------- typename : list List of typenames (string) filter : string XML-encoded OGC filter expression. bbox : tuple (left, bottom, right, top) in the feature type's coordinates == (minx, miny, maxx, maxy) featureid : list List of unique feature ids (string) featureversion : string Default is most recent feature version. propertyname : list List of feature property names. '*' matches all. maxfeatures : int Maximum number of features to be returned. method : string Qualified name of the HTTP DCP method to use. outputFormat: string (optional) Requested response format of the request. startindex: int (optional) Start position to return feature set (paging in combination with maxfeatures) There are 3 different modes of use 1) typename and bbox (simple spatial query) 2) typename and filter (==query) (more expressive) 3) featureid (direct access to known features) """ url = data = None if typename and type(typename) == type(""): typename = [typename] if method.upper() == "GET": (url) = self.getGETGetFeatureRequest(typename, filter, bbox, featureid, featureversion, propertyname, maxfeatures, storedQueryID, storedQueryParams, outputFormat, 'Get', startindex) if log.isEnabledFor(logging.DEBUG): log.debug('GetFeature WFS GET url %s'% url) else: (url,data) = self.getPOSTGetFeatureRequest() # If method is 'Post', data will be None here u = urlopen(url, data, self.timeout) # check for service exceptions, rewrap, and return # We're going to assume that anything with a content-length > 32k # is data. We'll check anything smaller. try: length = int(u.info()['Content-Length']) have_read = False except KeyError: data = u.read() have_read = True length = len(data) if length < 32000: if not have_read: data = u.read() try: tree = etree.fromstring(data) except BaseException: # Not XML return StringIO(data) else: if tree.tag == "{%s}ServiceExceptionReport" % OGC_NAMESPACE: se = tree.find(nspath('ServiceException', OGC_NAMESPACE)) raise ServiceException(str(se.text).strip()) else: return StringIO(data) else: if have_read: return StringIO(data) return u def getpropertyvalue(self, query=None, storedquery_id=None, valuereference=None, typename=None, method=nspath('Get'),**kwargs): ''' the WFS GetPropertyValue method''' try: base_url = next((m.get('url') for m in self.getOperationByName('GetPropertyValue').methods if m.get('type').lower() == method.lower())) except StopIteration: base_url = self.url request = {'service': 'WFS', 'version': self.version, 'request': 'GetPropertyValue'} if query: request['query'] = str(query) if valuereference: request['valueReference'] = str(valuereference) if storedquery_id: request['storedQuery_id'] = str(storedquery_id) if typename: request['typename']=str(typename) if kwargs: for kw in kwargs.keys(): request[kw]=str(kwargs[kw]) encoded_request=urlencode(request) u = urlopen(base_url + encoded_request) return u.read() def _getStoredQueries(self): ''' gets descriptions of the stored queries available on the server ''' sqs=[] #This method makes two calls to the WFS - one ListStoredQueries, and one DescribeStoredQueries. The information is then #aggregated in 'StoredQuery' objects method=nspath('Get') #first make the ListStoredQueries response and save the results in a dictionary if form {storedqueryid:(title, returnfeaturetype)} try: base_url = next((m.get('url') for m in self.getOperationByName('ListStoredQueries').methods if m.get('type').lower() == method.lower())) except StopIteration: base_url = self.url request = {'service': 'WFS', 'version': self.version, 'request': 'ListStoredQueries'} encoded_request = urlencode(request) u = urlopen(base_url, data=encoded_request, timeout=self.timeout) tree=etree.fromstring(u.read()) tempdict={} for sqelem in tree[:]: title=rft=id=None id=sqelem.get('id') for elem in sqelem[:]: if elem.tag==nspath('Title', WFS_NAMESPACE): title=elem.text elif elem.tag==nspath('ReturnFeatureType', WFS_NAMESPACE): rft=elem.text tempdict[id]=(title,rft) #store in temporary dictionary #then make the DescribeStoredQueries request and get the rest of the information about the stored queries try: base_url = next((m.get('url') for m in self.getOperationByName('DescribeStoredQueries').methods if m.get('type').lower() == method.lower())) except StopIteration: base_url = self.url request = {'service': 'WFS', 'version': self.version, 'request': 'DescribeStoredQueries'} encoded_request = urlencode(request) u = urlopen(base_url, data=encoded_request, timeout=to) tree=etree.fromstring(u.read()) tempdict2={} for sqelem in tree[:]: params=[] #list to store parameters for the stored query description id =sqelem.get('id') for elem in sqelem[:]: if elem.tag==nspath('Abstract', WFS_NAMESPACE): abstract=elem.text elif elem.tag==nspath('Parameter', WFS_NAMESPACE): newparam=Parameter(elem.get('name'), elem.get('type')) params.append(newparam) tempdict2[id]=(abstract, params) #store in another temporary dictionary #now group the results into StoredQuery objects: for key in tempdict.keys(): abstract='blah' parameters=[] sqs.append(StoredQuery(key, tempdict[key][0], tempdict[key][1], tempdict2[key][0], tempdict2[key][1])) return sqs storedqueries = property(_getStoredQueries, None) def getOperationByName(self, name): """Return a named content item.""" for item in self.operations: if item.name == name: return item raise KeyError, "No operation named %s" % name class StoredQuery(object): '''' Class to describe a storedquery ''' def __init__(self, id, title, returntype, abstract, parameters): self.id=id self.title=title self.returnfeaturetype=returntype self.abstract=abstract self.parameters=parameters class Parameter(object): def __init__(self, name, type): self.name=name self.type=type class ContentMetadata: """Abstraction for WFS metadata. Implements IMetadata. """ def __init__(self, elem, parent, parse_remote_metadata=False, timeout=30): """.""" self.id = elem.find(nspath('Name',ns=WFS_NAMESPACE)).text self.title = elem.find(nspath('Title',ns=WFS_NAMESPACE)).text abstract = elem.find(nspath('Abstract',ns=WFS_NAMESPACE)) if abstract is not None: self.abstract = abstract.text else: self.abstract = None self.keywords = [f.text for f in elem.findall(nspath('Keywords',ns=WFS_NAMESPACE))] # bboxes self.boundingBoxWGS84 = None b = elem.find(nspath('WGS84BoundingBox',ns=OWS_NAMESPACE)) if b is not None: lc = b.find(nspath("LowerCorner",ns=OWS_NAMESPACE)) uc = b.find(nspath("UpperCorner",ns=OWS_NAMESPACE)) ll = [float(s) for s in lc.text.split()] ur = [float(s) for s in uc.text.split()] self.boundingBoxWGS84 = (ll[0],ll[1],ur[0],ur[1]) # there is no such think as bounding box # make copy of the WGS84BoundingBox self.boundingBox = (self.boundingBoxWGS84[0], self.boundingBoxWGS84[1], self.boundingBoxWGS84[2], self.boundingBoxWGS84[3], Crs("epsg:4326")) # crs options self.crsOptions = [Crs(srs.text) for srs in elem.findall(nspath('OtherCRS',ns=WFS_NAMESPACE))] defaultCrs = elem.findall(nspath('DefaultCRS',ns=WFS_NAMESPACE)) if len(defaultCrs) > 0: self.crsOptions.insert(0,Crs(defaultCrs[0].text)) # verbs self.verbOptions = [op.tag for op \ in parent.findall(nspath('Operations/*',ns=WFS_NAMESPACE))] self.verbOptions + [op.tag for op \ in elem.findall(nspath('Operations/*',ns=WFS_NAMESPACE)) \ if op.tag not in self.verbOptions] #others not used but needed for iContentMetadata harmonisation self.styles=None self.timepositions=None self.defaulttimeposition=None # MetadataURLs self.metadataUrls = [] for m in elem.findall('MetadataURL'): metadataUrl = { 'type': testXMLValue(m.attrib['type'], attrib=True), 'format': m.find('Format').text.strip(), 'url': testXMLValue(m.find('OnlineResource').attrib['{http://www.w3.org/1999/xlink}href'], attrib=True) } if metadataUrl['url'] is not None and parse_remote_metadata: # download URL try: content = urllib2.urlopen(metadataUrl['url'], timeout=timeout) doc = etree.parse(content) try: # FGDC metadataUrl['metadata'] = Metadata(doc) except: # ISO metadataUrl['metadata'] = MD_Metadata(doc) except Exception, err: metadataUrl['metadata'] = None self.metadataUrls.append(metadataUrl) class WFSCapabilitiesReader(object): """Read and parse capabilities document into a lxml.etree infoset """ def __init__(self, version='2.0.0'): """Initialize""" self.version = version self._infoset = None def capabilities_url(self, service_url): """Return a capabilities url """ qs = [] if service_url.find('?') != -1: qs = cgi.parse_qsl(service_url.split('?')[1]) params = [x[0] for x in qs] if 'service' not in params: qs.append(('service', 'WFS')) if 'request' not in params: qs.append(('request', 'GetCapabilities')) if 'version' not in params: qs.append(('version', self.version)) urlqs = urlencode(tuple(qs)) return service_url.split('?')[0] + '?' + urlqs def read(self, url, timeout=30): """Get and parse a WFS capabilities document, returning an instance of WFSCapabilitiesInfoset Parameters ---------- url : string The URL to the WFS capabilities document. timeout : number A timeout value (in seconds) for the request. """ request = self.capabilities_url(url) u = urlopen(request, timeout=timeout) return etree.fromstring(u.read()) def readString(self, st): """Parse a WFS capabilities document, returning an instance of WFSCapabilitiesInfoset string should be an XML capabilities document """ if not isinstance(st, str): raise ValueError("String must be of type string, not %s" % type(st)) return etree.fromstring(st)
py
b4175b4d5974de2bccad390f088ecf01c0709e10
#!/usr/bin/env python3 ''' read in kmer counts assemble into contigs based on simple frequency cut off ''' import sys import argparse from kmer_module import * def walk_forwards(contig,kmer_length,kmer_counts): 'walk the contig forwards through all unique extensions' while True: #extract the last kmer-length-minus-one bases of the contig starting_seq = contig[-(kmer_length-1):] #search for a unique extension in the remaining kmers next_base = extend_sequence(starting_seq,kmer_counts) #walk ends when no unique extension is found if next_base == None: return contig #extend the contig using the unique match contig += next_base def extend_sequence(seq,kmer_counts): 'try to forward-extend seq by one base using the kmer dictionary' next_base = None unique = True #find all possible extensions and remove them from the kmer dictionary for base in 'ATCG': kmer = seq + base #ensure we only look up canonical kmers rev = reverse_complement(kmer) if rev < kmer: kmer = rev if kmer in kmer_counts: del kmer_counts[kmer] if next_base == None: #possible unique extension next_base = base else: #extension is not unique unique = False if next_base != None and unique == True: return next_base return None if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--min-count', type=int,required=True, help='Minimum kmer count filter') parser.add_argument('--kmer-counts', type=str, required=True, help='File containung kmer counts') args = parser.parse_args() input_file = args.kmer_counts min_count = args.min_count kmer_counts = {} with open(input_file) as f: for line in f: column = line.strip().split() kmer = column[0] count = int(column[1]) if count < min_count: continue kmer_counts[kmer] = count contig_list = [] while len(kmer_counts) > 0: #pick a seed kmer from the remaining kmers seed_kmer = next(iter(kmer_counts)) kmer_length = len(seed_kmer) contig = seed_kmer del kmer_counts[seed_kmer] #walk the contig forward through the kmer graph contig = walk_forwards(contig,kmer_length,kmer_counts) #reverse compliment the contig to allow walking backwards contig = reverse_complement(contig) #walk the (now reversed) contig forward through the kmer graph again contig = walk_forwards(contig,kmer_length,kmer_counts) #append completed contig to final list contig_list.append(contig) #print contigs for seq_counter,contig in enumerate(contig_list): print("contig" + str(seq_counter) + ' ' + contig)
py
b4175b52b8f7d39d9bab7ff3d762c394e261427e
from .losses import * # noqa from .postprocess import * # noqa
py
b4175bbe5d5f07b52d5dc7ba6bb8bf28549be0f7
"""This module implements classifier-based density ratio estimation.""" # Carl is free software; you can redistribute it and/or modify it # under the terms of the Revised BSD License; see LICENSE file for # more details. import numpy as np from sklearn.base import BaseEstimator from sklearn.base import RegressorMixin from sklearn.base import clone from sklearn.utils import check_random_state from .base import DensityRatioMixin from ..learning import as_classifier class ClassifierRatio(BaseEstimator, DensityRatioMixin): """Classifier-based density ratio estimator. This class approximates a density ratio `r(x) = p0(x) / p1(x)` as `s(x) / 1 - s(x)`, where `s` is a classifier trained to distinguish samples `x ~ p0` from samples `x ~ p1`, and where `s(x)` is the classifier approximate of the probability `p0(x) / (p0(x) + p1(x))`. This class can be used in the likelihood-free setup, i.e. either - with known data `X` drawn from `p0` and `p1`, or - with generators `p0` and `p1` implementing sampling through `rvs`. """ def __init__(self, base_estimator, random_state=None): """Constructor. Parameters ---------- * `base_estimator` [`BaseEstimator`]: A scikit-learn classifier or regressor. * `random_state` [integer or RandomState object]: The random seed. """ self.base_estimator = base_estimator self.random_state = random_state def fit(self, X=None, y=None, sample_weight=None, numerator=None, denominator=None, n_samples=None, **kwargs): """Fit the density ratio estimator. The density ratio estimator `r(x) = p0(x) / p1(x)` can be fit either - from data, using `fit(X, y)` or - from distributions, using `fit(numerator=p0, denominator=p1, n_samples=N)` Parameters ---------- * `X` [array-like, shape=(n_samples, n_features), optional]: Training data. * `y` [array-like, shape=(n_samples,), optional]: Labels. Samples labeled with `y=0` correspond to data from the numerator distribution, while samples labeled with `y=1` correspond data from the denominator distribution. * `sample_weight` [array-like, shape=(n_samples,), optional]: The sample weights. * `numerator` [`DistributionMixin`, optional]: The numerator distribution `p0`, if `X` and `y` are not provided. This object is required to implement sampling through the `rvs` method. * `denominator` [`DistributionMixin`, optional]: The denominator distribution `p1`, if `X` and `y` are not provided. This object is required to implement sampling through the `rvs` method. * `n_samples` [integer, optional] The total number of samples to draw from the numerator and denominator distributions, if `X` and `y` are not provided. Returns ------- * `self` [object]: `self`. """ # Check for identity self.identity_ = (numerator is not None) and (numerator is denominator) if self.identity_: return self # Build training data rng = check_random_state(self.random_state) if (numerator is not None and denominator is not None and n_samples is not None): X = np.vstack( (numerator.rvs(n_samples // 2, random_state=rng, **kwargs), denominator.rvs(n_samples - (n_samples // 2), random_state=rng, **kwargs))) y = np.zeros(n_samples, dtype=np.int) y[n_samples // 2:] = 1 sample_weight = None elif X is not None and y is not None: if sample_weight is None: n_num = (y == 0).sum() n_den = (y == 1).sum() if n_num != n_den: sample_weight = np.ones(len(y), dtype=np.float) sample_weight[y == 1] *= 1.0 * n_num / n_den else: sample_weight = None else: raise ValueError # Fit base estimator clf = clone(self.base_estimator) if isinstance(clf, RegressorMixin): clf = as_classifier(clf) if sample_weight is None: self.classifier_ = clf.fit(X, y) else: self.classifier_ = clf.fit(X, y, sample_weight=sample_weight) return self def predict(self, X, log=False, **kwargs): """Predict the density ratio `r(x_i)` for all `x_i` in `X`. Parameters ---------- * `X` [array-like, shape=(n_samples, n_features)]: The samples. * `log` [boolean, default=False]: If true, return the log-ratio `log r(x) = log(p0(x)) - log(p1(x))`. Returns ------- * `r` [array, shape=(n_samples,)]: The predicted ratio `r(X)`. """ if self.identity_: if log: return np.zeros(len(X)) else: return np.ones(len(X)) else: p = self.classifier_.predict_proba(X) if log: return np.log(p[:, 0]) - np.log(p[:, 1]) else: return np.divide(p[:, 0], p[:, 1])
py
b4175cf448c7dedc3a8db8921831ad77ec14c691
#Copyright 2008 Erik Tollerud # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This package contains a variety of utilities and algorithms for processing and visualizing astronomical data. **Modules** * constants: physical constants and conversions, Cosmology objects for choosing related sets of constants * coords: Astronomical coordinate systems, distance measurements, and related objects * obstools: Tools and corrections for observations (mostly optical) * models: Fitting functions/models and related calculations * objcat: Object Catalog objects and functions * phot: Photometry objects and related functions * spec: Spectrum objects and related functions * ccd: Functions and tools for processing CCD images. """ #If True, the add_docs and similar functions will only replace with empty #strings - this is used by sphinx to _ignore_add_docs = False #Large-scale TODO list: #Add Obsplots #ccd tweaks/todos #instrument registry along with site #objcat testing w/ M31 catalog #ZODB/Web objcat integration #pipeline gui and mid-saving #Phot reworking/clean up docs
py
b4175f482a986ba32caaececb34ce662811f3c2b
import os from urllib.parse import urljoin from django.conf import settings from django.core.files.storage import FileSystemStorage class CustomStorage(FileSystemStorage): """Custom storage for django_ckeditor_5 images.""" location = os.path.join(settings.MEDIA_ROOT, "django_ckeditor_5") base_url = urljoin(settings.MEDIA_URL, "django_ckeditor_5/")
py
b4175fe081dbee80c37ed2cb3e3e2d613c1d59e6
from .user import User from .users import Users from .login import Login from .signup import SignUp from .logout import (LogoutAccess, LogoutRefresh) from .token_refresh import TokenRefresh from .policy import Policy from .policies import Policies
py
b417604e3d60492b76f4b3d2e7d1a7323e015832
from django.test import TestCase from django.contrib.auth import get_user_model from django.core.exceptions import ValidationError # from rest_framework import status class ModelTests(TestCase): def test_user_with_email_created(self): """Test that a user with an email is created""" email = '[email protected]' password = 'jksj12af22' user = get_user_model().objects.create_user( email=email, password=password ) self.assertEqual(user.email, email) self.assertTrue(user.check_password(password)) def test_new_user_email_normalized(self): """Test that new user email is normalized""" email = '[email protected]' user = get_user_model().objects.create_user( email, 'asd321asd' ) self.assertEqual(email.lower(), user.email) def test_new_user_no_email(self): """Test creating user with no email raises error""" email = None with self.assertRaises(ValueError): get_user_model().objects.create_user( email, 'asdjhfksjdh' ) def test_new_user_valid_email(self): """Test creating new user with an invalid email raises error""" email1 = 'oijo@' email2 = 'koko@loko' email3 = '--' with self.assertRaises(ValidationError): get_user_model().objects.create_user(email1, 'ksdfjklsldk') with self.assertRaises(ValidationError): get_user_model().objects.create_user(email2, 'lsdkjfou5i') with self.assertRaises(ValidationError): get_user_model().objects.create_user(email3, 'laksflks11d') def test_new_superuser(self): """Test creating a new superuser""" email = '[email protected]' password = 'jsdhfioiqw4' user = get_user_model().objects.create_superuser( email=email, password=password, name='Bobo' ) self.assertTrue(user.is_staff) self.assertTrue(user.is_superuser)
py
b41760c8ba169589013cccae240072e597559df4
class PathReinforcementType(ElementType,IDisposable): """ An object that specifies the type of a Structural Path Reinforcement element in Autodesk Revit. """ @staticmethod def CreateDefaultPathReinforcementType(ADoc): """ CreateDefaultPathReinforcementType(ADoc: Document) -> ElementId Creates a new PathReinforcementType object with a default name. ADoc: The document. Returns: The newly created type id. """ pass def Dispose(self): """ Dispose(self: Element,A_0: bool) """ pass def getBoundingBox(self,*args): """ getBoundingBox(self: Element,view: View) -> BoundingBoxXYZ """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: Element,disposing: bool) """ pass def setElementType(self,*args): """ setElementType(self: Element,type: ElementType,incompatibleExceptionMessage: str) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass
py
b417610ad55565611e17c97183cf2b2ba321b4c6
import cv2, argparse ## construindo parser ap = argparse.ArgumentParser() ap.add_argument("-i","--image", required = True, help="C:\\repos\\find_musk\\foto-oficial.jpg") ap.add_argument("-t","--template", required=True, help="C:\\repos\\find_musk\\foto-gabriel.jpg") args = vars(ap.parse_args()) print('vida') ## carrega imagens de entrada print("[INFO] loading images..", args) image = cv2.imread(args["image"]) template = cv2.imread(args["template"]) templateResiz = cv2.resize(template, (58,58)) cv2.imshow("Image", image) cv2.imshow("Template", template) cv2.waitKey() ## realiza comparação de padrão print("[INFO] template matching..") result = cv2.matchTemplate(image,templateResiz, cv2.TM_CCOEFF_NORMED) (minVal,maxVal,minLoc,maxLoc) = cv2.minMaxLoc(result) ## determina local onde foi encontrado o padrão (startX,startY) = maxLoc endX = startX + templateResiz.shape[1] endY = startY + templateResiz.shape[0] ## desenha quadrado ao redor do padrão encontrado cv2.rectangle(image, (startX,startY),(endX,endY), (255,0,0),10) ## mostra imagem completa com padrão destacado cv2.namedWindow("output", cv2.WINDOW_NORMAL) imgResiz = cv2.resize(image, (960,600)) cv2.imshow("Output", imgResiz) cv2.waitKey(0)
py
b41761e7fa771535fb776f1988347603366f08e9
"""Module to find insects from data.""" from typing import Optional, Tuple import numpy as np import numpy.ma as ma from scipy.ndimage.filters import gaussian_filter from cloudnetpy import utils from cloudnetpy.categorize import droplet from cloudnetpy.categorize.containers import ClassData def find_insects(obs: ClassData, melting_layer: np.ndarray, liquid_layers: np.ndarray, prob_lim: Optional[float] = 0.8) -> Tuple[np.ndarray, np.ndarray]: """Returns insect probability and boolean array of insect presence. Insects are classified by estimating heuristic probability of insects from various individual radar parameters and combining these probabilities. Insects typically yield small echo and spectral width but high linear depolarization ratio (ldr), and they are present in warm temperatures. The combination of echo, ldr and temperature is generally the best proxy for insects. If ldr is not available, we use other radar parameters. Insects are finally screened from liquid layers and melting layer - and above melting layer. Args: obs: The :class:`ClassData` instance. melting_layer: 2D array denoting melting layer. liquid_layers: 2D array denoting liquid layers. prob_lim: Probability higher than this will lead to positive detection. Default is 0.8. Returns: tuple: 2-element tuple containing - 2-D probability of pixel containing insects. - 2-D boolean flag of insects presence. Notes: This insect detection method is novel and needs to be validated. """ probabilities = _insect_probability(obs) insect_prob = _screen_insects(*probabilities, melting_layer, liquid_layers, obs) is_insects = insect_prob > prob_lim return is_insects, ma.masked_where(insect_prob == 0, insect_prob) def _insect_probability(obs: ClassData) -> Tuple[np.ndarray, np.ndarray]: prob = _get_probabilities(obs) prob_from_ldr = _calc_prob_from_ldr(prob) prob_from_others = _calc_prob_from_all(prob) prob_from_others = _adjust_for_radar(obs, prob, prob_from_others) prob_combined = _fill_missing_pixels(prob_from_ldr, prob_from_others) return prob_combined, prob_from_others def _get_probabilities(obs: ClassData) -> dict: smooth_v = _get_smoothed_v(obs) lwp_interp = droplet.interpolate_lwp(obs) fun = utils.array_to_probability return { 'width': fun(obs.width, 1, 0.3, True) if hasattr(obs, 'width') else 1, 'z_strong': fun(obs.z, 0, 8, True), 'z_weak': fun(obs.z, -20, 8, True), 'ldr': fun(obs.ldr, -25, 5) if hasattr(obs, 'ldr') else None, 'temp_loose': fun(obs.tw, 268, 2), 'temp_strict': fun(obs.tw, 274, 1), 'v': fun(smooth_v, -3.5, 2), 'lwp': utils.transpose(fun(lwp_interp, 150, 50, invert=True)), 'v_sigma': fun(obs.v_sigma, 0.01, 0.1)} def _get_smoothed_v(obs: ClassData, sigma: Optional[Tuple[float, float]] = (5, 5)) -> np.ndarray: smoothed_v = gaussian_filter(obs.v, sigma) smoothed_v = ma.masked_where(obs.v.mask, smoothed_v) return smoothed_v def _calc_prob_from_ldr(prob: dict) -> np.ndarray: """This is the most reliable proxy for insects.""" if prob['ldr'] is None: return np.zeros(prob['z_strong'].shape) return prob['ldr'] * prob['temp_loose'] def _calc_prob_from_all(prob: dict) -> np.ndarray: """This can be tried when LDR is not available. To detect insects without LDR unambiguously is difficult and might result in many false positives and/or false negatives.""" return prob['z_weak'] * prob['temp_strict'] * prob['width'] * prob['v'] def _adjust_for_radar(obs: ClassData, prob: dict, prob_from_others: np.ndarray) -> np.ndarray: """Adds radar-specific weighting to insect probabilities.""" if 'mira' in obs.radar_type.lower(): prob_from_others *= prob['lwp'] return prob_from_others def _fill_missing_pixels(prob_from_ldr: np.ndarray, prob_from_others: np.ndarray) -> np.ndarray: prob_combined = np.copy(prob_from_ldr) no_ldr = np.where(prob_from_ldr == 0) prob_combined[no_ldr] = prob_from_others[no_ldr] return prob_combined def _screen_insects(insect_prob, insect_prob_no_ldr, melting_layer, liquid_layers, obs): def _screen_liquid_layers(): prob[liquid_layers == 1] = 0 def _screen_above_melting(): above_melting = utils.ffill(melting_layer) prob[above_melting == 1] = 0 def _screen_above_liquid(): above_liquid = utils.ffill(liquid_layers) prob[(above_liquid == 1) & (insect_prob_no_ldr > 0)] = 0 def _screen_rainy_profiles(): prob[obs.is_rain == 1, :] = 0 prob = np.copy(insect_prob) _screen_liquid_layers() _screen_above_melting() _screen_above_liquid() _screen_rainy_profiles() return prob
py
b41761f2865ca1dc28cf7b1eb03e8add108498a5
# -*- coding: utf-8 -*- { '!langcode!': 'ru', '!langname!': 'Русский', '"update" is an optional expression like "field1=\'newvalue\'". You cannot update or delete the results of a JOIN': '"Изменить" - необязательное выражение вида "field1=\'новое значение\'". Результаты операции JOIN нельзя изменить или удалить.', '%d days ago': '%d %%{день} тому', '%d hours ago': '%d %%{час} тому', '%d minutes ago': '%d %%{минуту} тому', '%d months ago': '%d %%{месяц} тому', '%d seconds ago': '%d %%{секунду} тому', '%d weeks ago': '%d %%{неделю} тому', '%d years ago': '%d %%{год} тому', '%d.%m.%Y %H:%M': '%d.%m.%Y %H:%M', '%s %%{row} deleted': '%%{!удалена[0]} %s %%{строка[0]}', '%s %%{row} updated': '%%{!изменена[0]} %s %%{строка[0]}', '%s selected': '%%{!выбрана[0]} %s %%{запись[0]}', '%Y-%m-%d': '%Y-%m-%d', '%Y-%m-%d %H:%M:%S': '%Y-%m-%d %H:%M:%S', '(**%.0d MB**)': '(**%.0d MB**)', '**%(items)s** %%{item(items)}, **%(bytes)s** %%{byte(bytes)}': '**%(items)s** %%{item(items)}, **%(bytes)s** %%{byte(bytes)}', '**%(items)s** items, **%(bytes)s** %%{byte(bytes)}': '**%(items)s** items, **%(bytes)s** %%{byte(bytes)}', '**not available** (requires the Python [[guppy http://pypi.python.org/pypi/guppy/ popup]] library)': '**not available** (requires the Python [[guppy http://pypi.python.org/pypi/guppy/ popup]] library)', '1 day ago': '1 день тому', '1 hour ago': '1 час тому', '1 minute ago': '1 минуту тому', '1 month ago': '1 месяц тому', '1 second ago': '1 секунду тому', '1 week ago': '1 неделю тому', '1 year ago': '1 год тому', '?': '?', '@markmin\x01An error occured, please [[reload %s]] the page': 'An error occured, please [[reload %s]] the page', '@markmin\x01Number of entries: **%s**': 'Number of entries: **%s**', '``**not available**``:red (requires the Python [[guppy http://pypi.python.org/pypi/guppy/ popup]] library)': '``**not available**``:red (requires the Python [[guppy http://pypi.python.org/pypi/guppy/ popup]] library)', 'About': 'About', 'Access Control': 'Access Control', 'admin': 'admin', 'Administrative Interface': 'Administrative Interface', 'Administrative interface': 'административный интерфейс', 'Ajax Recipes': 'Ajax Recipes', 'An error occured, please [[reload %s]] the page': 'An error occured, please [[reload %s]] the page', 'appadmin is disabled because insecure channel': 'appadmin is disabled because insecure channel', 'Are you sure you want to delete this object?': 'Вы уверены, что хотите удалить этот объект?', 'Available Databases and Tables': 'Базы данных и таблицы', 'Buy this book': 'Buy this book', "Buy web2py's book": "Buy web2py's book", 'cache': 'cache', 'Cache': 'Cache', 'Cache Cleared': 'Cache Cleared', 'Cache contains items up to **%(hours)02d** %%{hour(hours)} **%(min)02d** %%{minute(min)} **%(sec)02d** %%{second(sec)} old.': 'Cache contains items up to **%(hours)02d** %%{hour(hours)} **%(min)02d** %%{minute(min)} **%(sec)02d** %%{second(sec)} old.', 'Cache Keys': 'Cache Keys', 'Cannot be empty': 'Пустое значение недопустимо', 'Change Password': 'Смените пароль', 'Check to delete': 'Удалить', 'Check to delete:': 'Удалить:', 'Clear CACHE?': 'Clear CACHE?', 'Clear DISK': 'Clear DISK', 'Clear RAM': 'Clear RAM', 'Client IP': 'Client IP', 'Community': 'Community', 'Components and Plugins': 'Components and Plugins', 'Config.ini': 'Config.ini', 'Confirm Password': 'Confirm Password', 'Controller': 'Controller', 'Copyright': 'Copyright', 'Current request': 'Текущий запрос', 'Current response': 'Текущий ответ', 'Current session': 'Текущая сессия', 'customize me!': 'настройте внешний вид!', 'data uploaded': 'данные загружены', 'Database': 'Database', 'Database %s select': 'выбор базы данных %s', 'Database Administration (appadmin)': 'Database Administration (appadmin)', 'db': 'БД', 'DB Model': 'DB Model', 'Delete:': 'Удалить:', 'Demo': 'Demo', 'Deployment Recipes': 'Deployment Recipes', 'Description': 'Описание', 'design': 'дизайн', 'Design': 'Design', 'DISK': 'DISK', 'Disk Cache Keys': 'Disk Cache Keys', 'Disk Cleared': 'Disk Cleared', 'DISK contains items up to **%(hours)02d** %%{hour(hours)} **%(min)02d** %%{minute(min)} **%(sec)02d** %%{second(sec)} old.': 'DISK contains items up to **%(hours)02d** %%{hour(hours)} **%(min)02d** %%{minute(min)} **%(sec)02d** %%{second(sec)} old.', 'Documentation': 'Documentation', "Don't know what to do?": "Don't know what to do?", 'done!': 'готово!', 'Download': 'Download', 'E-mail': 'E-mail', 'Edit current record': 'Редактировать текущую запись', 'Edit Profile': 'Редактировать профиль', 'Email and SMS': 'Email and SMS', 'Enter a number between %(min)g and %(max)g': 'Enter a number between %(min)g and %(max)g', 'Enter an integer between %(min)g and %(max)g': 'Enter an integer between %(min)g and %(max)g', 'enter an integer between %(min)g and %(max)g': 'enter an integer between %(min)g and %(max)g', 'Errors': 'Errors', 'export as csv file': 'экспорт в csv-файл', 'FAQ': 'FAQ', 'First name': 'Имя', 'Forgot username?': 'Forgot username?', 'Forms and Validators': 'Forms and Validators', 'Free Applications': 'Free Applications', 'Graph Model': 'Graph Model', 'Group ID': 'Group ID', 'Groups': 'Groups', 'Hello World': 'Заработало!', 'Helping web2py': 'Helping web2py', 'Hit Ratio: **%(ratio)s%%** (**%(hits)s** %%{hit(hits)} and **%(misses)s** %%{miss(misses)})': 'Hit Ratio: **%(ratio)s%%** (**%(hits)s** %%{hit(hits)} and **%(misses)s** %%{miss(misses)})', 'Home': 'Home', 'How did you get here?': 'How did you get here?', 'import': 'import', 'Import/Export': 'Импорт/экспорт', 'insert new': 'добавить', 'insert new %s': 'добавить %s', 'Internal State': 'Внутренне состояние', 'Introduction': 'Introduction', 'Invalid email': 'Неверный email', 'Invalid login': 'Неверный логин', 'Invalid password': 'Неверный пароль', 'Invalid Query': 'Неверный запрос', 'invalid request': 'неверный запрос', 'Key': 'Key', 'Last name': 'Фамилия', 'Layout': 'Layout', 'Layout Plugins': 'Layout Plugins', 'Layouts': 'Layouts', 'Live Chat': 'Live Chat', 'Log In': 'Log In', 'Log Out': 'Log Out', 'Logged in': 'Вход выполнен', 'Logged out': 'Выход выполнен', 'login': 'вход', 'Login': 'Вход', 'logout': 'выход', 'Logout': 'Выход', 'Lost Password': 'Забыли пароль?', 'Lost password?': 'Lost password?', 'Manage %(action)s': 'Manage %(action)s', 'Manage Access Control': 'Manage Access Control', 'Manage Cache': 'Manage Cache', 'Memberships': 'Memberships', 'Menu Model': 'Menu Model', 'My Sites': 'My Sites', 'Name': 'Name', 'New password': 'Новый пароль', 'New Record': 'Новая запись', 'new record inserted': 'новая запись добавлена', 'next %s rows': 'next %s rows', 'next 100 rows': 'следующие 100 строк', 'No databases in this application': 'В приложении нет баз данных', 'now': 'сейчас', 'Number of entries: **%s**': 'Number of entries: **%s**', 'Object or table name': 'Object or table name', 'Old password': 'Старый пароль', 'Online book': 'Online book', 'Online examples': 'примеры он-лайн', 'or import from csv file': 'или импорт из csv-файла', 'Origin': 'Происхождение', 'Other Plugins': 'Other Plugins', 'Other Recipes': 'Other Recipes', 'Overview': 'Overview', 'Password': 'Пароль', 'password': 'пароль', "Password fields don't match": 'Пароли не совпадают', 'Permission': 'Permission', 'Permissions': 'Permissions', 'Plugins': 'Plugins', 'Powered by': 'Powered by', 'Preface': 'Preface', 'previous %s rows': 'previous %s rows', 'previous 100 rows': 'предыдущие 100 строк', 'Profile': 'Profile', 'profile': 'профиль', 'pygraphviz library not found': 'pygraphviz library not found', 'Python': 'Python', 'Query:': 'Запрос:', 'Quick Examples': 'Quick Examples', 'RAM': 'RAM', 'RAM Cache Keys': 'RAM Cache Keys', 'Ram Cleared': 'Ram Cleared', 'RAM contains items up to **%(hours)02d** %%{hour(hours)} **%(min)02d** %%{minute(min)} **%(sec)02d** %%{second(sec)} old.': 'RAM contains items up to **%(hours)02d** %%{hour(hours)} **%(min)02d** %%{minute(min)} **%(sec)02d** %%{second(sec)} old.', 'Recipes': 'Recipes', 'Record': 'Record', 'record does not exist': 'запись не найдена', 'Record ID': 'ID записи', 'Record id': 'id записи', 'Register': 'Зарегистрироваться', 'Registration identifier': 'Registration identifier', 'Registration key': 'Ключ регистрации', 'Remember me (for 30 days)': 'Запомнить меня (на 30 дней)', 'Reset Password key': 'Сбросить ключ пароля', 'Role': 'Роль', 'Roles': 'Roles', 'Rows in Table': 'Строк в таблице', 'Rows selected': 'Выделено строк', 'Save model as...': 'Save model as...', 'Semantic': 'Semantic', 'Services': 'Services', 'Sign Up': 'Sign Up', 'Size of cache:': 'Size of cache:', 'state': 'состояние', 'Statistics': 'Statistics', 'Stylesheet': 'Stylesheet', 'submit': 'submit', 'Submit': 'Отправить', 'Support': 'Support', 'Sure you want to delete this object?': 'Подтвердите удаление объекта', 'Table': 'таблица', 'Table name': 'Имя таблицы', 'The "query" is a condition like "db.table1.field1==\'value\'". Something like "db.table1.field1==db.table2.field2" results in a SQL JOIN.': '"Запрос" - это условие вида "db.table1.field1==\'значение\'". Выражение вида "db.table1.field1==db.table2.field2" формирует SQL JOIN.', 'The Core': 'The Core', 'The output of the file is a dictionary that was rendered by the view %s': 'The output of the file is a dictionary that was rendered by the view %s', 'The Views': 'The Views', 'This App': 'This App', 'Time in Cache (h:m:s)': 'Time in Cache (h:m:s)', 'Timestamp': 'Отметка времени', 'Too short': 'Too short', 'Traceback': 'Traceback', 'Twitter': 'Twitter', 'unable to parse csv file': 'нечитаемый csv-файл', 'Update:': 'Изменить:', 'Use (...)&(...) for AND, (...)|(...) for OR, and ~(...) for NOT to build more complex queries.': 'Для построение сложных запросов используйте операторы "И": (...)&(...), "ИЛИ": (...)|(...), "НЕ": ~(...).', 'User': 'User', 'User %(id)s Logged-in': 'Пользователь %(id)s вошёл', 'User %(id)s Logged-out': 'Пользователь %(id)s вышел', 'User %(id)s Password changed': 'Пользователь %(id)s сменил пароль', 'User %(id)s Profile updated': 'Пользователь %(id)s обновил профиль', 'User %(id)s Registered': 'Пользователь %(id)s зарегистрировался', 'User ID': 'ID пользователя', 'Username': 'Username', 'Users': 'Users', 'Verify Password': 'Повторите пароль', 'Videos': 'Videos', 'View': 'View', 'Welcome': 'Welcome', 'Welcome to web2py': 'Добро пожаловать в web2py', 'Welcome to web2py!': 'Welcome to web2py!', 'Which called the function %s located in the file %s': 'Which called the function %s located in the file %s', 'Working...': 'Working...', 'You are successfully running web2py': 'You are successfully running web2py', 'You can modify this application and adapt it to your needs': 'You can modify this application and adapt it to your needs', 'You visited the url %s': 'You visited the url %s', }
py
b41762cb6aaa5b53687976da7cfa08f0267c7613
#!/usr/bin/env python """ <Program Name> test_in_toto_run.py <Author> Lukas Puehringer <[email protected]> <Started> Nov 28, 2016 <Copyright> See LICENSE for licensing information. <Purpose> Test in_toto_run command line tool. """ import os import sys import unittest import glob import tempfile # Use external backport 'mock' on versions under 3.3 if sys.version_info >= (3, 3): import unittest.mock as mock # pylint: disable=no-name-in-module,import-error else: import mock # pylint: disable=import-error from in_toto.models.metadata import Metablock from in_toto.in_toto_run import main as in_toto_run_main from in_toto.models.link import FILENAME_FORMAT from tests.common import CliTestCase, TmpDirMixin, GPGKeysMixin, GenKeysMixin import securesystemslib.interface # pylint: disable=unused-import class TestInTotoRunTool(CliTestCase, TmpDirMixin, GPGKeysMixin, GenKeysMixin): """Test in_toto_run's main() - requires sys.argv patching; and in_toto_run- calls runlib and error logs/exits on Exception. """ cli_main_func = staticmethod(in_toto_run_main) @classmethod def setUpClass(self): """Create and change into temporary directory, generate key pair, dummy artifact and base arguments. """ self.set_up_test_dir() self.set_up_gpg_keys() self.set_up_keys() self.test_step = "test_step" self.test_link_rsa = FILENAME_FORMAT.format( step_name=self.test_step, keyid=self.rsa_key_id) self.test_link_ed25519 = FILENAME_FORMAT.format( step_name=self.test_step, keyid=self.ed25519_key_id) self.test_link_rsa_enc = FILENAME_FORMAT.format( step_name=self.test_step, keyid=self.rsa_key_enc_id) self.test_link_ed25519_enc = FILENAME_FORMAT.format( step_name=self.test_step, keyid=self.ed25519_key_enc_id) self.test_artifact = "test_artifact" open(self.test_artifact, "w").close() @classmethod def tearDownClass(self): self.tear_down_test_dir() def tearDown(self): for link in glob.glob("*.link"): os.remove(link) def test_main_required_args(self): """Test CLI command with required arguments. """ args = ["--step-name", self.test_step, "--key", self.rsa_key_path, "--", "python", "--version"] self.assert_cli_sys_exit(args, 0) self.assertTrue(os.path.exists(self.test_link_rsa)) def test_main_optional_args(self): """Test CLI command with optional arguments. """ named_args = ["--step-name", self.test_step, "--key", self.rsa_key_path, "--materials", self.test_artifact, "--products", self.test_artifact, "--record-streams"] positional_args = ["--", "python", "--version"] # Test and assert recorded artifacts args1 = named_args + positional_args self.assert_cli_sys_exit(args1, 0) link_metadata = Metablock.load(self.test_link_rsa) self.assertTrue(self.test_artifact in list(link_metadata.signed.materials.keys())) self.assertTrue(self.test_artifact in list(link_metadata.signed.products.keys())) # Test and assert exlcuded artifacts args2 = named_args + ["--exclude", "*test*"] + positional_args self.assert_cli_sys_exit(args2, 0) link_metadata = Metablock.load(self.test_link_rsa) self.assertFalse(link_metadata.signed.materials) self.assertFalse(link_metadata.signed.products) # Test with base path args3 = named_args + ["--base-path", self.test_dir] + positional_args self.assert_cli_sys_exit(args3, 0) link_metadata = Metablock.load(self.test_link_rsa) self.assertListEqual(list(link_metadata.signed.materials.keys()), [self.test_artifact]) self.assertListEqual(list(link_metadata.signed.products.keys()), [self.test_artifact]) # Test with bogus base path args4 = named_args + ["--base-path", "bogus/path"] + positional_args self.assert_cli_sys_exit(args4, 1) # Test with lstrip path strip_prefix = self.test_artifact[:-1] args5 = named_args + ["--lstrip-paths", strip_prefix] + positional_args self.assert_cli_sys_exit(args5, 0) link_metadata = Metablock.load(self.test_link_rsa) self.assertListEqual(list(link_metadata.signed.materials.keys()), [self.test_artifact[len(strip_prefix):]]) self.assertListEqual(list(link_metadata.signed.products.keys()), [self.test_artifact[len(strip_prefix):]]) def test_main_with_metadata_directory(self): """Test CLI command with metadata directory. """ tmp_dir = os.path.realpath(tempfile.mkdtemp(dir=os.getcwd())) args = ["--step-name", self.test_step, "--key", self.rsa_key_path, "--metadata-directory", tmp_dir, "--", "python", "--version"] self.assert_cli_sys_exit(args, 0) linkpath = os.path.join(tmp_dir, self.test_link_rsa) self.assertTrue(os.path.exists(linkpath)) def test_main_with_unencrypted_ed25519_key(self): """Test CLI command with ed25519 key. """ args = ["-n", self.test_step, "--key", self.ed25519_key_path, "--key-type", "ed25519", "--", "ls"] self.assert_cli_sys_exit(args, 0) self.assertTrue(os.path.exists(self.test_link_ed25519)) def test_main_with_encrypted_keys(self): """Test CLI command with encrypted ed25519 key. """ for key_type, key_path, link_path in [ ("rsa", self.rsa_key_enc_path, self.test_link_rsa_enc), ("ed25519", self.ed25519_key_enc_path, self.test_link_ed25519_enc)]: # Define common arguments passed to in in-toto-run below args = [ "-n", self.test_step, "--key", key_path, "--key-type", key_type] cmd = ["--", "python", "--version"] # Make sure the link file to be generated doesn't already exist self.assertFalse(os.path.exists(link_path)) # Test 1: Call in-toto-run entering signing key password on prompt with mock.patch('securesystemslib.interface.get_password', return_value=self.key_pw): self.assert_cli_sys_exit(args + ["--password"] + cmd, 0) self.assertTrue(os.path.exists(link_path)) os.remove(link_path) # Test 2: Call in-toto-run passing signing key password self.assert_cli_sys_exit(args + ["--password", self.key_pw] + cmd, 0) self.assertTrue(os.path.exists(link_path)) os.remove(link_path) def test_main_with_specified_gpg_key(self): """Test CLI command with specified gpg key. """ args = ["-n", self.test_step, "--gpg", self.gpg_key_85DA58, "--gpg-home", self.gnupg_home, "--", "python", "--version"] self.assert_cli_sys_exit(args, 0) link_filename = FILENAME_FORMAT.format(step_name=self.test_step, keyid=self.gpg_key_85DA58) self.assertTrue(os.path.exists(link_filename)) def test_main_with_default_gpg_key(self): """Test CLI command with default gpg key. """ args = ["-n", self.test_step, "--gpg", "--gpg-home", self.gnupg_home, "--", "python", "--version"] self.assert_cli_sys_exit(args, 0) link_filename = FILENAME_FORMAT.format(step_name=self.test_step, keyid=self.gpg_key_D924E9) self.assertTrue(os.path.exists(link_filename)) def test_main_no_command_arg(self): """Test CLI command with --no-command argument. """ args = ["in_toto_run.py", "--step-name", self.test_step, "--key", self.rsa_key_path, "--no-command"] self.assert_cli_sys_exit(args, 0) self.assertTrue(os.path.exists(self.test_link_rsa)) def test_main_wrong_args(self): """Test CLI command with missing arguments. """ wrong_args_list = [ [], ["--step-name", "some"], ["--key", self.rsa_key_path], ["--", "echo", "blub"], ["--step-name", "test-step", "--key", self.rsa_key_path], ["--step-name", "--", "echo", "blub"], ["--key", self.rsa_key_path, "--", "echo", "blub"], ["--step-name", "test-step", "--key", self.rsa_key_path, "--"], ["--step-name", "test-step", "--key", self.rsa_key_path, "--gpg", "--", "echo", "blub"] ] for wrong_args in wrong_args_list: self.assert_cli_sys_exit(wrong_args, 2) self.assertFalse(os.path.exists(self.test_link_rsa)) def test_main_wrong_key_exits(self): """Test CLI command with wrong key argument, exits and logs error """ args = ["--step-name", self.test_step, "--key", "non-existing-key", "--", "echo", "test"] self.assert_cli_sys_exit(args, 1) self.assertFalse(os.path.exists(self.test_link_rsa)) def test_main_encrypted_key_but_no_pw(self): """Test CLI command exits 1 with encrypted key but no pw. """ args = ["-n", self.test_step, "--key", self.rsa_key_enc_path, "-x"] self.assert_cli_sys_exit(args, 1) self.assertFalse(os.path.exists(self.test_link_rsa_enc)) args = ["-n", self.test_step, "--key", self.ed25519_key_enc_path, "-x"] self.assert_cli_sys_exit(args, 1) self.assertFalse(os.path.exists(self.test_link_ed25519_enc)) if __name__ == "__main__": unittest.main()
py
b41763acd858027431428776cf743cab4cd866cb
from rest_framework import serializers from profiles_api import models class HelloSerializer(serializers.Serializer): """Serializes a name field for testing our APIView""" name = serializers.CharField(max_length=10) class UserProfileSerializer(serializers.ModelSerializer): """Serializes a user profile object""" class Meta: model = models.UserProfile fields = ('id', 'email', 'name', 'password') extra_kwargs = { 'password': { 'write_only': True, 'style': {'input_type': 'password'} } } def create(self, validated_data): """Create and return a new user""" user = models.UserProfile.objects.create_user( email=validated_data['email'], name=validated_data['name'], password=validated_data['password'] ) return user class ProfileFeedItemSerializer(serializers.ModelSerializer): """Serializes profile feed items""" class Meta: model = models.ProfileFeedItem fields = ('id', 'user_profile', 'status_text', 'created_on') extra_kwargs = {'user_profile': {'read_only': True}}
py
b4176412a95a1784d7bd5df67cc9a79e4dc93092
# Generated by Django 4.0.3 on 2022-03-26 03:03 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Author', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ], ), migrations.CreateModel( name='Book', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='app.author')), ], ), ]
py
b4176435029b253383206d045218417b7cf829af
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'lambdamud.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
py
b417643518d435a69ed2f1dfb12d632a81c25110
# Generated by Django 2.0.8 on 2018-10-05 13:31 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('app_questions', '0001_initial'), ] operations = [ migrations.AlterField( model_name='question', name='poll', field=models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='app_polls.Poll'), ), ]
py
b417645155eb721a5453126ef90e0f0540a477b1
import os.path __dir__ = os.path.split(os.path.abspath(os.path.realpath(__file__)))[0] data_location = os.path.join(__dir__, "verilog") src = "https://github.com/RapidSilicon/uart_axi" version_str = "1.1.0.post190" version_tuple = (1, 1, 0, 190) try: from packaging.version import Version as V pversion = V("1.1.0.post190") except ImportError: pass data_version_str = "1.1.0.post40" data_version_tuple = (1, 1, 0, 40) try: from packaging.version import Version as V pdata_version = V("1.1.0.post40") except ImportError: pass data_git_hash = "39789e40bc57f628507909e6ff493708980b25f0" data_git_describe = "1.1.0-40-39789e4" data_git_msg = """\ commit 39789e40bc57f628507909e6ff493708980b25f0 Author: asadaleem-rs <[email protected]> Date: Fri Jan 7 02:39:27 2022 +0100 Makefile to build python package added """ tool_version_str = "0.0.post144" tool_version_tuple = (0, 0, 144) try: from packaging.version import Version as V ptool_version = V("0.0.post144") except ImportError: pass def data_file(f): """Get absolute path for file inside pythondata_ip_uart16550.""" fn = os.path.join(data_location, f) fn = os.path.abspath(fn) if not os.path.exists(fn): raise IOError("File {f} doesn't exist in pythondata_ip_uart16550".format(f)) return fn
py
b4176584dda2025fc3284894978afd67f5f831c9
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import argparse import cv2 from maskrcnn_benchmark.config import cfg from predictor import COCODemo import time def main(): parser = argparse.ArgumentParser(description="PyTorch Object Detection Webcam Demo") parser.add_argument( "--config-file", default="../configs/caffe2/e2e_mask_rcnn_R_50_FPN_1x_caffe2.yaml", metavar="FILE", help="path to config file", ) parser.add_argument( "--confidence-threshold", type=float, default=0.7, help="Minimum score for the prediction to be shown", ) parser.add_argument( "--min-image-size", type=int, default=224, help="Smallest size of the image to feed to the model. " "Model was trained with 800, which gives best results", ) parser.add_argument( "--show-mask-heatmaps", dest="show_mask_heatmaps", help="Show a heatmap probability for the top masks-per-dim masks", action="store_true", ) parser.add_argument( "--masks-per-dim", type=int, default=2, help="Number of heatmaps per dimension to show", ) parser.add_argument( "opts", help="Modify model config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() # load config from file and command-line arguments cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() # prepare object that handles inference plus adds predictions on top of image coco_demo = COCODemo( cfg, confidence_threshold=args.confidence_threshold, show_mask_heatmaps=args.show_mask_heatmaps, masks_per_dim=args.masks_per_dim, min_image_size=args.min_image_size, ) # cam = cv2.VideoCapture(0) # while True: # start_time = time.time() # ret_val, img = cam.read() # composite = coco_demo.run_on_opencv_image(img) # print("Time: {:.2f} s / img".format(time.time() - start_time)) # cv2.imshow("COCO detections", composite) # if cv2.waitKey(1) == 27: # break # esc to quit # cv2.destroyAllWindows() start_time = time.time() import os root = "/workspace/mnt/group/ocr/qiutairu/code/maskrcnn-benchmark/demo" img = cv2.imread(os.path.join(root, "test.jpg")) composite = coco_demo.run_on_opencv_image(img) print("Time: {:.2f} s / img".format(time.time() - start_time)) cv2.imwrite(os.path.join(root, "test_result.jpg"), composite) if __name__ == "__main__": main()
py
b41765858221c94abdfdfb75bd68b4a0afc4b22d
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- # List of pretrained models: https://huggingface.co/transformers/pretrained_models.html # Pretrained model name to a tuple of input names, opset_version, use_external_data_format and optimization model type MODELS = { # BERT "bert-base-uncased": (["input_ids", "attention_mask", "token_type_ids"], 11, False, "bert"), "bert-large-uncased": (["input_ids", "attention_mask", "token_type_ids"], 11, False, "bert"), "bert-base-cased": (["input_ids", "attention_mask", "token_type_ids"], 11, False, "bert"), "bert-large-cased": (["input_ids", "attention_mask", "token_type_ids"], 11, False, "bert"), "bert-base-multilingual-uncased": (["input_ids", "attention_mask", "token_type_ids"], 11, False, "bert"), "bert-base-multilingual-cased": (["input_ids", "attention_mask", "token_type_ids"], 11, False, "bert"), "bert-base-chinese": (["input_ids", "attention_mask", "token_type_ids"], 11, False, "bert"), "bert-base-german-cased": (["input_ids", "attention_mask", "token_type_ids"], 11, False, "bert"), "bert-large-uncased-whole-word-masking": (["input_ids", "attention_mask", "token_type_ids"], 11, False, "bert"), "bert-large-cased-whole-word-masking": (["input_ids", "attention_mask", "token_type_ids"], 11, False, "bert"), "bert-large-uncased-whole-word-masking-finetuned-squad": (["input_ids", "attention_mask", "token_type_ids"], 11, False, "bert"), "bert-large-cased-whole-word-masking-finetuned-squad": (["input_ids", "attention_mask", "token_type_ids"], 11, False, "bert"), "bert-base-cased-finetuned-mrpc": (["input_ids", "attention_mask", "token_type_ids"], 11, False, "bert"), "bert-base-german-dbmdz-cased": (["input_ids", "attention_mask", "token_type_ids"], 11, False, "bert"), "bert-base-german-dbmdz-uncased": (["input_ids", "attention_mask", "token_type_ids"], 11, False, "bert"), # todo: more models to add # GPT "openai-gpt": (["input_ids"], 11, False, "gpt2"), # no past state inputs # GPT-2 "gpt2": (["input_ids"], 11, False, "gpt2"), # no past state inputs & outputs "gpt2-medium": (["input_ids"], 11, False, "gpt2"), "gpt2-large": (["input_ids"], 11, True, "gpt2"), # Model>2GB. Need use_external_data_format=True to export it. No past state inputs for GPT models. "gpt2-xl": (["input_ids"], 11, True, "gpt2"), "distilgpt2": (["input_ids"], 11, False, "gpt2"), # no past state inputs & outputs # Transformer-XL #"transfo-xl-wt103": (["input_ids"], 11, False, "bert"), # XLNet #"xlnet-base-cased": (["input_ids"], 12, False, "bert"), # Models uses Einsum, which need opset version 12 and PyTorch 1.5.0 or above. #"xlnet-large-cased": (["input_ids"], 12, False, "bert"), # Models uses Einsum, which need opset version 12 and PyTorch 1.5.0 or above. # XLM "xlm-mlm-en-2048": (["input_ids"], 11, True, "bert"), "xlm-mlm-ende-1024": (["input_ids"], 11, False, "bert"), "xlm-mlm-enfr-1024": (["input_ids"], 11, False, "bert"), "xlm-mlm-enro-1024": (["input_ids"], 11, False, "bert"), "xlm-mlm-xnli15-1024": (["input_ids"], 11, False, "bert"), "xlm-mlm-tlm-xnli15-1024": (["input_ids"], 11, False, "bert"), "xlm-clm-enfr-1024": (["input_ids"], 11, False, "bert"), "xlm-clm-ende-1024": (["input_ids"], 11, False, "bert"), "xlm-mlm-17-1280": (["input_ids"], 11, True, "bert"), "xlm-mlm-100-1280": (["input_ids"], 11, True, "bert"), # RoBERTa "roberta-base": (["input_ids", "attention_mask"], 11, False, "bert"), "roberta-large": (["input_ids", "attention_mask"], 11, False, "bert"), "roberta-large-mnli": (["input_ids", "attention_mask"], 11, False, "bert"), "distilroberta-base": (["input_ids", "attention_mask"], 11, False, "bert"), "roberta-base-openai-detector": (["input_ids", "attention_mask"], 11, False, "bert"), "roberta-large-openai-detector": (["input_ids", "attention_mask"], 11, False, "bert"), # DistilBERT "distilbert-base-uncased": (["input_ids", "attention_mask"], 11, False, "bert"), "distilbert-base-uncased-distilled-squad": (["input_ids", "attention_mask"], 11, False, "bert"), "distilbert-base-cased": (["input_ids", "attention_mask"], 11, False, "bert"), "distilbert-base-cased-distilled-squad": (["input_ids", "attention_mask"], 11, False, "bert"), "distilbert-base-german-cased": (["input_ids", "attention_mask"], 11, False, "bert"), "distilbert-base-multilingual-cased": (["input_ids", "attention_mask"], 11, False, "bert"), # CTRL "ctrl": (["input_ids"], 11, True, "bert"), # CamemBERT "camembert-base": (["input_ids"], 11, False, "bert"), # ALBERT # Models uses Einsum, which need opset version 12 and PyTorch 1.5.0 or above. "albert-base-v1": (["input_ids"], 12, False, "bert"), "albert-large-v1": (["input_ids"], 12, False, "bert"), "albert-xlarge-v1": (["input_ids"], 12, True, "bert"), "albert-xxlarge-v1": (["input_ids"], 12, True, "bert"), "albert-base-v2": (["input_ids"], 12, False, "bert"), "albert-large-v2": (["input_ids"], 12, False, "bert"), "albert-xlarge-v2": (["input_ids"], 12, True, "bert"), "albert-xxlarge-v2": (["input_ids"], 12, True, "bert"), # T5 #"t5-small": (["input_ids"], 11, False, "bert"), #"t5-base": (["input_ids"], 11, False, "bert"), #"t5-large": (["input_ids"], 11, False, "bert"), #"t5-3b": (["input_ids"], 11, False, "bert"), #"t5-11b": (["input_ids"], 11, False, "bert"), # XLM-RoBERTa "xlm-roberta-base": (["input_ids"], 11, False, "bert"), "xlm-roberta-large": (["input_ids"], 11, True, "bert"), # FlauBERT "flaubert/flaubert_small_cased": (["input_ids"], 11, False, "bert"), "flaubert/flaubert_base_uncased": (["input_ids"], 11, False, "bert"), "flaubert/flaubert_base_cased": (["input_ids"], 11, False, "bert"), "flaubert/flaubert_large_cased": (["input_ids"], 11, False, "bert"), # Bart #"facebook/bart-large": (["input_ids"], 11, False, "bert"), #"facebook/bart-base": (["input_ids"], 11, False, "bert"), #"facebook/bart-large-mnli": (["input_ids"], 11, False, "bert"), #"facebook/bart-large-cnn": (["input_ids"], 11, False, "bert"), #"facebook/mbart-large-en-ro": (["input_ids"], 11, True, "bert"), # DialoGPT "microsoft/DialoGPT-small": (["input_ids"], 11, False, "gpt2"), "microsoft/DialoGPT-medium": (["input_ids"], 11, False, "gpt2"), "microsoft/DialoGPT-large": (["input_ids"], 11, True, "gpt2"), # Reformer #"google/reformer-enwik8": (["input_ids"], 11, False, "bert"), #"google/reformer-crime-and-punishment": (["input_ids"], 11, False, "bert"), # MarianMT #"Helsinki-NLP/opus-mt-ROMANCE-en": (["input_ids"], 12, False, "bert"), # Longformer #"allenai/longformer-base-4096": (["input_ids"], 12, False, "bert"), #"allenai/longformer-large-4096": (["input_ids"], 12, False, "bert"), }
py
b4176776f3b9be805507b120ca8fcc6f580f0740
# coding=utf-8 import sys from unittest import TestResult, TextTestRunner import datetime import re from teamcity.messages import TeamcityServiceMessages from teamcity.common import is_string, get_class_fullname, convert_error_to_string, limit_output, split_output _real_stdout = sys.stdout class TeamcityTestResult(TestResult): separator2 = "\n" # noinspection PyUnusedLocal def __init__(self, stream=_real_stdout, descriptions=None, verbosity=None): super(TeamcityTestResult, self).__init__() # Some code may ask for self.failfast, see unittest2.case.TestCase.subTest self.failfast = getattr(self, "failfast", False) self.test_started_datetime_map = {} self.failed_tests = set() self.subtest_failures = {} self.messages = TeamcityServiceMessages(_real_stdout) @staticmethod def get_test_id(test): if is_string(test): return test # Force test_id for doctests if get_class_fullname(test) != "doctest.DocTestCase": desc = test.shortDescription() test_method_name = getattr(test, "_testMethodName", "") if desc and desc != test.id() and desc != test_method_name: return "%s (%s)" % (test.id(), desc.replace('.', '_')) return test.id() def addSuccess(self, test): super(TeamcityTestResult, self).addSuccess(test) def addExpectedFailure(self, test, err): _super = super(TeamcityTestResult, self) if hasattr(_super, "addExpectedFailure"): _super.addExpectedFailure(test, err) err = convert_error_to_string(err) test_id = self.get_test_id(test) self.messages.testIgnored(test_id, message="Expected failure: " + err, flowId=test_id) def get_subtest_block_id(self, test, subtest): test_id = self.get_test_id(test) subtest_id = self.get_test_id(subtest) if subtest_id.startswith(test_id): block_id = subtest_id[len(test_id):].strip() else: block_id = subtest_id if len(block_id) == 0: block_id = test_id return block_id def addSkip(self, test, reason=""): if sys.version_info >= (2, 7): super(TeamcityTestResult, self).addSkip(test, reason) if reason: reason_str = ": " + str(reason) else: reason_str = "" test_class_name = get_class_fullname(test) if test_class_name == "unittest.case._SubTest" or test_class_name == "unittest2.case._SubTest": parent_test = test.test_case parent_test_id = self.get_test_id(parent_test) subtest = test block_id = self.get_subtest_block_id(parent_test, subtest) self.messages.subTestBlockOpened(block_id, subTestResult="Skip", flowId=parent_test_id) self.messages.testStdOut(parent_test_id, out="SubTest skipped" + reason_str + "\n", flowId=parent_test_id) self.messages.blockClosed(block_id, flowId=parent_test_id) else: test_id = self.get_test_id(test) self.messages.testIgnored(test_id, message="Skipped" + reason_str, flowId=test_id) def addUnexpectedSuccess(self, test): _super = super(TeamcityTestResult, self) if hasattr(_super, "addUnexpectedSuccess"): _super.addUnexpectedSuccess(test) test_id = self.get_test_id(test) self.messages.testFailed(test_id, message='Failure', details="Test should not succeed since it's marked with @unittest.expectedFailure", flowId=test_id) def addError(self, test, err, *k): super(TeamcityTestResult, self).addError(test, err) test_class = get_class_fullname(test) if test_class == "unittest.suite._ErrorHolder" or test_class == "unittest2.suite._ErrorHolder": # This is a standalone error test_name = test.id() # patch setUpModule (__main__) -> __main__.setUpModule test_name = re.sub(r'^(.*) \((.*)\)$', r'\2.\1', test_name) self.messages.testStarted(test_name, flowId=test_name) # noinspection PyTypeChecker self.report_fail(test_name, 'Failure', err) self.messages.testFinished(test_name, flowId=test_name) elif get_class_fullname(err[0]) == "unittest2.case.SkipTest": message = "" if hasattr(err[1], "message"): message = getattr(err[1], "message", "") elif hasattr(err[1], "args"): message = getattr(err[1], "args", [""])[0] self.addSkip(test, message) else: self.report_fail(test, 'Error', err) def addFailure(self, test, err, *k): super(TeamcityTestResult, self).addFailure(test, err) self.report_fail(test, 'Failure', err) def addSubTest(self, test, subtest, err): _super = super(TeamcityTestResult, self) if hasattr(_super, "addSubTest"): _super.addSubTest(test, subtest, err) test_id = self.get_test_id(test) subtest_id = self.get_test_id(subtest) if subtest_id.startswith(test_id): # Replace "." -> "_" since '.' is a test hierarchy separator # See i.e. https://github.com/JetBrains/teamcity-messages/issues/134 (https://youtrack.jetbrains.com/issue/PY-23846) block_id = subtest_id[len(test_id):].strip().replace(".", "_") else: block_id = subtest_id if len(block_id) == 0: block_id = subtest_id if err is not None: self.add_subtest_failure(test_id, block_id) if issubclass(err[0], test.failureException): self.messages.subTestBlockOpened(block_id, subTestResult="Failure", flowId=test_id) self.messages.testStdErr(test_id, out="SubTest failure: %s\n" % convert_error_to_string(err), flowId=test_id) self.messages.blockClosed(block_id, flowId=test_id) else: self.messages.subTestBlockOpened(block_id, subTestResult="Error", flowId=test_id) self.messages.testStdErr(test_id, out="SubTest error: %s\n" % convert_error_to_string(err), flowId=test_id) self.messages.blockClosed(block_id, flowId=test_id) else: self.messages.subTestBlockOpened(block_id, subTestResult="Success", flowId=test_id) self.messages.blockClosed(block_id, flowId=test_id) def add_subtest_failure(self, test_id, subtest_block_id): fail_array = self.subtest_failures.get(test_id, []) fail_array.append(subtest_block_id) self.subtest_failures[test_id] = fail_array def get_subtest_failure(self, test_id): fail_array = self.subtest_failures.get(test_id, []) return ", ".join(fail_array) def report_fail(self, test, fail_type, err): test_id = self.get_test_id(test) if is_string(err): details = err elif get_class_fullname(err) == "twisted.python.failure.Failure": details = err.getTraceback() else: details = convert_error_to_string(err) subtest_failures = self.get_subtest_failure(test_id) if subtest_failures: details = "Failed subtests list: " + subtest_failures + "\n\n" + details.strip() details = details.strip() self.messages.testFailed(test_id, message=fail_type, details=details, flowId=test_id) self.failed_tests.add(test_id) def startTest(self, test): super(TeamcityTestResult, self).startTest(test) test_id = self.get_test_id(test) self.test_started_datetime_map[test_id] = datetime.datetime.now() self.messages.testStarted(test_id, captureStandardOutput='true', flowId=test_id) def stopTest(self, test): test_id = self.get_test_id(test) if getattr(self, 'buffer', None): # Do not allow super() method to print output by itself self._mirrorOutput = False output = sys.stdout.getvalue() if output: for chunk in split_output(limit_output(output)): self.messages.testStdOut(test_id, chunk, flowId=test_id) error = sys.stderr.getvalue() if error: for chunk in split_output(limit_output(error)): self.messages.testStdErr(test_id, chunk, flowId=test_id) super(TeamcityTestResult, self).stopTest(test) if test_id not in self.failed_tests: subtest_failures = self.get_subtest_failure(test_id) if subtest_failures: self.report_fail(test, "One or more subtests failed", "") time_diff = datetime.datetime.now() - self.test_started_datetime_map[test_id] self.messages.testFinished(test_id, testDuration=time_diff, flowId=test_id) def printErrors(self): pass class TeamcityTestRunner(TextTestRunner): resultclass = TeamcityTestResult if sys.version_info < (2, 7): def _makeResult(self): return TeamcityTestResult(self.stream, self.descriptions, self.verbosity) def run(self, test): # noinspection PyBroadException try: total_tests = test.countTestCases() TeamcityServiceMessages(_real_stdout).testCount(total_tests) except: pass return super(TeamcityTestRunner, self).run(test) if __name__ == '__main__': from unittest import main main(module=None, testRunner=TeamcityTestRunner())
py
b41768abb79e067c956bef7a16adea968c6f8f10
""" django-bitfield ~~~~~~~~~~~~~~~ """ try: VERSION = __import__('pkg_resources') \ .get_distribution('bitfield').version except Exception: VERSION = 'unknown' from bitfield.models import Bit, BitHandler, CompositeBitField, BitField # noqa
py
b4176975490c60bb3860063ead576823b412535c
from flask import current_app def add_to_index(index, model): if not current_app.elasticsearch: return payload = {} for field in model.__searchable__: payload[field] = getattr(model, field) current_app.elasticsearch.index( index=index, doc_type=index, id=model.id, body=payload) def remove_from_index(index, model): if not current_app.elasticsearch: return current_app.elasticsearch.delete(index=index, doc_type=index, id=model.id) def query_index(index, query, page, per_page): if not current_app.elasticsearch: return [], 0 search = current_app.elasticsearch.search( index=index, doc_type=index, body={ 'query': { 'multi_match': { 'query': query, 'fields': ['*'] } }, 'from': (page - 1) * per_page, 'size': per_page }) ids = [int(hit['_id']) for hit in search['hits']['hits']] return ids, search['hits']['total']
py
b41769df42c3f07f7a11e6e9e031174991c5dc04
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2019 Tomoki Hayashi # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) import numpy as np import pytest import torch from argparse import Namespace from espnet.nets.pytorch_backend.e2e_tts_transformer import subsequent_mask from espnet.nets.pytorch_backend.e2e_tts_transformer import Transformer from espnet.nets.pytorch_backend.nets_utils import pad_list def make_transformer_args(**kwargs): defaults = dict( embed_dim=32, spk_embed_dim=None, eprenet_conv_layers=2, eprenet_conv_filts=5, eprenet_conv_chans=32, dprenet_layers=2, dprenet_units=32, adim=32, aheads=4, elayers=2, eunits=32, dlayers=2, dunits=32, postnet_layers=2, postnet_filts=5, postnet_chans=32, eprenet_dropout_rate=0.1, dprenet_dropout_rate=0.5, postnet_dropout_rate=0.1, transformer_enc_dropout_rate=0.1, transformer_enc_positional_dropout_rate=0.1, transformer_enc_attn_dropout_rate=0.0, transformer_dec_dropout_rate=0.1, transformer_dec_positional_dropout_rate=0.1, transformer_dec_attn_dropout_rate=0.3, transformer_enc_dec_attn_dropout_rate=0.0, spk_embed_integration_type="add", use_masking=True, use_weighted_masking=False, bce_pos_weight=1.0, use_batch_norm=True, use_scaled_pos_enc=True, encoder_normalize_before=True, decoder_normalize_before=True, encoder_concat_after=False, decoder_concat_after=False, transformer_init="pytorch", initial_encoder_alpha=1.0, initial_decoder_alpha=1.0, reduction_factor=1, loss_type="L1", use_guided_attn_loss=False, num_heads_applied_guided_attn=2, num_layers_applied_guided_attn=2, guided_attn_loss_sigma=0.4, guided_attn_loss_lambda=1.0, modules_applied_guided_attn=["encoder", "decoder", "encoder-decoder"] ) defaults.update(kwargs) return defaults def make_inference_args(**kwargs): defaults = dict( threshold=0.5, maxlenratio=5.0, minlenratio=0.0 ) defaults.update(kwargs) return defaults def prepare_inputs(idim, odim, ilens, olens, spk_embed_dim=None, device=torch.device('cpu')): xs = [np.random.randint(0, idim, l) for l in ilens] ys = [np.random.randn(l, odim) for l in olens] ilens = torch.LongTensor(ilens).to(device) olens = torch.LongTensor(olens).to(device) xs = pad_list([torch.from_numpy(x).long() for x in xs], 0).to(device) ys = pad_list([torch.from_numpy(y).float() for y in ys], 0).to(device) labels = ys.new_zeros(ys.size(0), ys.size(1)) for i, l in enumerate(olens): labels[i, l - 1:] = 1 batch = { "xs": xs, "ilens": ilens, "ys": ys, "labels": labels, "olens": olens, } if spk_embed_dim is not None: batch["spembs"] = torch.FloatTensor(np.random.randn(len(ilens), spk_embed_dim)).to(device) return batch @pytest.mark.parametrize( "model_dict", [ ({}), ({"use_masking": False}), ({"spk_embed_dim": 16, "spk_embed_integration_type": "concat"}), ({"spk_embed_dim": 16, "spk_embed_integration_type": "add"}), ({"use_scaled_pos_enc": False}), ({"bce_pos_weight": 10.0}), ({"reduction_factor": 2}), ({"reduction_factor": 3}), ({"encoder_normalize_before": False}), ({"decoder_normalize_before": False}), ({"encoder_normalize_before": False, "decoder_normalize_before": False}), ({"encoder_concat_after": True}), ({"decoder_concat_after": True}), ({"encoder_concat_after": True, "decoder_concat_after": True}), ({"loss_type": "L1"}), ({"loss_type": "L2"}), ({"loss_type": "L1+L2"}), ({"use_masking": False}), ({"use_masking": False, "use_weighted_masking": True}), ({"use_guided_attn_loss": True}), ({"use_guided_attn_loss": True, "reduction_factor": 3}), ({"use_guided_attn_loss": True, "modules_applied_guided_attn": ["encoder-decoder"]}), ({"use_guided_attn_loss": True, "modules_applied_guided_attn": ["encoder", "decoder"]}), ({"use_guided_attn_loss": True, "num_heads_applied_guided_attn": -1}), ({"use_guided_attn_loss": True, "num_layers_applied_guided_attn": -1}), ({"use_guided_attn_loss": True, "modules_applied_guided_attn": ["encoder"], "elayers": 2, "dlayers": 3}), ]) def test_transformer_trainable_and_decodable(model_dict): # make args model_args = make_transformer_args(**model_dict) inference_args = make_inference_args() # setup batch idim = 5 odim = 10 ilens = [10, 5] olens = [20, 15] batch = prepare_inputs(idim, odim, ilens, olens, model_args["spk_embed_dim"]) # define model model = Transformer(idim, odim, Namespace(**model_args)) optimizer = torch.optim.Adam(model.parameters()) # trainable loss = model(**batch).mean() optimizer.zero_grad() loss.backward() optimizer.step() # check gradient of ScaledPositionalEncoding if model.use_scaled_pos_enc: assert model.encoder.embed[1].alpha.grad is not None assert model.decoder.embed[1].alpha.grad is not None # decodable model.eval() with torch.no_grad(): if model_args["spk_embed_dim"] is None: spemb = None else: spemb = batch["spembs"][0] model.inference(batch["xs"][0][:batch["ilens"][0]], Namespace(**inference_args), spemb=spemb) model.calculate_all_attentions(**batch) @pytest.mark.skipif(not torch.cuda.is_available(), reason="gpu required") @pytest.mark.parametrize( "model_dict", [ ({}), ({"spk_embed_dim": 16, "spk_embed_integration_type": "concat"}), ({"spk_embed_dim": 16, "spk_embed_integration_type": "add"}), ({"use_masking": False}), ({"use_scaled_pos_enc": False}), ({"bce_pos_weight": 10.0}), ({"encoder_normalize_before": False}), ({"decoder_normalize_before": False}), ({"encoder_normalize_before": False, "decoder_normalize_before": False}), ({"decoder_concat_after": True}), ({"encoder_concat_after": True, "decoder_concat_after": True}), ({"use_masking": False}), ({"use_masking": False, "use_weighted_masking": True}), ]) def test_transformer_gpu_trainable_and_decodable(model_dict): # make args model_args = make_transformer_args(**model_dict) inference_args = make_inference_args() idim = 5 odim = 10 ilens = [10, 5] olens = [20, 15] device = torch.device('cuda') batch = prepare_inputs(idim, odim, ilens, olens, model_args["spk_embed_dim"], device=device) # define model model = Transformer(idim, odim, Namespace(**model_args)) model.to(device) optimizer = torch.optim.Adam(model.parameters()) # trainable loss = model(**batch).mean() optimizer.zero_grad() loss.backward() optimizer.step() # check gradient of ScaledPositionalEncoding if model.use_scaled_pos_enc: assert model.encoder.embed[1].alpha.grad is not None assert model.decoder.embed[1].alpha.grad is not None # decodable model.eval() with torch.no_grad(): if model_args["spk_embed_dim"] is None: spemb = None else: spemb = batch["spembs"][0] model.inference(batch["xs"][0][:batch["ilens"][0]], Namespace(**inference_args), spemb=spemb) model.calculate_all_attentions(**batch) @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="multi gpu required") @pytest.mark.parametrize( "model_dict", [ ({}), ({"spk_embed_dim": 16, "spk_embed_integration_type": "concat"}), ({"spk_embed_dim": 16, "spk_embed_integration_type": "add"}), ({"use_masking": False}), ({"use_scaled_pos_enc": False}), ({"bce_pos_weight": 10.0}), ({"encoder_normalize_before": False}), ({"decoder_normalize_before": False}), ({"encoder_normalize_before": False, "decoder_normalize_before": False}), ({"decoder_concat_after": True}), ({"encoder_concat_after": True, "decoder_concat_after": True}), ({"use_masking": False}), ({"use_masking": False, "use_weighted_masking": True}), ]) def test_transformer_multi_gpu_trainable(model_dict): # make args model_args = make_transformer_args(**model_dict) # setup batch idim = 5 odim = 10 ilens = [10, 5] olens = [20, 15] device = torch.device('cuda') batch = prepare_inputs(idim, odim, ilens, olens, model_args["spk_embed_dim"], device=device) # define model ngpu = 2 device_ids = list(range(ngpu)) model = Transformer(idim, odim, Namespace(**model_args)) model = torch.nn.DataParallel(model, device_ids) model.to(device) optimizer = torch.optim.Adam(model.parameters()) # trainable loss = model(**batch).mean() optimizer.zero_grad() loss.backward() optimizer.step() # check gradient of ScaledPositionalEncoding if model.module.use_scaled_pos_enc: assert model.module.encoder.embed[1].alpha.grad is not None assert model.module.decoder.embed[1].alpha.grad is not None @pytest.mark.parametrize( "model_dict", [ ({}), ]) def test_attention_masking(model_dict): # make args model_args = make_transformer_args(**model_dict) # setup batch idim = 5 odim = 10 ilens = [10, 5] olens = [20, 15] batch = prepare_inputs(idim, odim, ilens, olens) # define model model = Transformer(idim, odim, Namespace(**model_args)) # test encoder self-attention xs = model.encoder.embed(batch["xs"]) xs[1, ilens[1]:] = float("nan") x_masks = model._source_mask(batch["ilens"]) a = model.encoder.encoders[0].self_attn a(xs, xs, xs, x_masks) aws = a.attn.detach().numpy() for aw, ilen in zip(aws, batch["ilens"]): assert not np.isnan(aw[:, :ilen, :ilen]).any() np.testing.assert_almost_equal(aw[:, :ilen, :ilen].sum(), float(aw.shape[0] * ilen), decimal=4) assert aw[:, ilen:, ilen:].sum() == 0.0 # test encoder-decoder attention ys = model.decoder.embed(batch["ys"]) ys[1, olens[1]:] = float("nan") xy_masks = x_masks a = model.decoder.decoders[0].src_attn a(ys, xs, xs, xy_masks) aws = a.attn.detach().numpy() for aw, ilen, olen in zip(aws, batch["ilens"], batch["olens"]): assert not np.isnan(aw[:, :olen, :ilen]).any() np.testing.assert_almost_equal(aw[:, :olen, :ilen].sum(), float(aw.shape[0] * olen), decimal=4) assert aw[:, olen:, ilen:].sum() == 0.0 # test decoder self-attention y_masks = model._target_mask(batch["olens"]) a = model.decoder.decoders[0].self_attn a(ys, ys, ys, y_masks) aws = a.attn.detach().numpy() for aw, olen in zip(aws, batch["olens"]): assert not np.isnan(aw[:, :olen, :olen]).any() np.testing.assert_almost_equal(aw[:, :olen, :olen].sum(), float(aw.shape[0] * olen), decimal=4) assert aw[:, olen:, olen:].sum() == 0.0 @pytest.mark.parametrize( "model_dict", [ ({}), ({"reduction_factor": 3}), ({"reduction_factor": 4}), ({"decoder_normalize_before": False}), ({"encoder_normalize_before": False, "decoder_normalize_before": False}), ({"decoder_concat_after": True}), ({"encoder_concat_after": True, "decoder_concat_after": True}), ]) def test_forward_and_inference_are_equal(model_dict): # make args model_args = make_transformer_args(dprenet_dropout_rate=0.0, **model_dict) # setup batch idim = 5 odim = 10 ilens = [10] olens = [20] batch = prepare_inputs(idim, odim, ilens, olens) xs = batch["xs"] ilens = batch["ilens"] ys = batch["ys"] olens = batch["olens"] # define model model = Transformer(idim, odim, Namespace(**model_args)) model.eval() # TODO(kan-bayashi): update following ugly part with torch.no_grad(): # --------- forward calculation --------- x_masks = model._source_mask(ilens) hs_fp, h_masks = model.encoder(xs, x_masks) if model.reduction_factor > 1: ys_in = ys[:, model.reduction_factor - 1::model.reduction_factor] olens_in = olens.new([olen // model.reduction_factor for olen in olens]) else: ys_in, olens_in = ys, olens ys_in = model._add_first_frame_and_remove_last_frame(ys_in) y_masks = model._target_mask(olens_in) zs, _ = model.decoder(ys_in, y_masks, hs_fp, h_masks) before_outs = model.feat_out(zs).view(zs.size(0), -1, model.odim) logits = model.prob_out(zs).view(zs.size(0), -1) after_outs = before_outs + model.postnet(before_outs.transpose(1, 2)).transpose(1, 2) # --------- forward calculation --------- # --------- inference calculation --------- hs_ir, _ = model.encoder(xs, None) maxlen = ys_in.shape[1] minlen = ys_in.shape[1] idx = 0 # this is the inferene calculation but we use groundtruth to check the behavior ys_in_ = ys_in[0, idx].view(1, 1, model.odim) np.testing.assert_array_equal( ys_in_.new_zeros(1, 1, model.odim).detach().cpu().numpy(), ys_in_.detach().cpu().numpy(), ) outs, probs = [], [] while True: idx += 1 y_masks = subsequent_mask(idx).unsqueeze(0) z = model.decoder.forward_one_step(ys_in_, y_masks, hs_ir)[0] # (B, idx, adim) outs += [model.feat_out(z).view(1, -1, model.odim)] # [(1, r, odim), ...] probs += [torch.sigmoid(model.prob_out(z))[0]] # [(r), ...] if idx >= maxlen: if idx < minlen: continue outs = torch.cat(outs, dim=1).transpose(1, 2) # (1, L, odim) -> (1, odim, L) if model.postnet is not None: outs = outs + model.postnet(outs) # (1, odim, L) outs = outs.transpose(2, 1).squeeze(0) # (L, odim) probs = torch.cat(probs, dim=0) break ys_in_ = torch.cat((ys_in_, ys_in[0, idx].view(1, 1, model.odim)), dim=1) # (1, idx + 1, odim) # --------- inference calculation --------- # check both are equal np.testing.assert_array_almost_equal( hs_fp.detach().cpu().numpy(), hs_ir.detach().cpu().numpy(), ) np.testing.assert_array_almost_equal( after_outs.squeeze(0).detach().cpu().numpy(), outs.detach().cpu().numpy(), ) np.testing.assert_array_almost_equal( torch.sigmoid(logits.squeeze(0)).detach().cpu().numpy(), probs.detach().cpu().numpy(), )
py
b4176abab8bb0f0f10fe7fd2a0a68461e352f84b
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. __all__ = ['__version__'] import pbr.version version_info = pbr.version.VersionInfo('python-congressclient') try: __version__ = version_info.version_string() except AttributeError: __version__ = None
py
b4176c3a241e741c4a48ed53777d7205226fcf99
from io import BytesIO import pytest from thefuck.specific.npm import get_scripts run_script_stdout = b''' Lifecycle scripts included in code-view-web: test jest available via `npm run-script`: build cp node_modules/ace-builds/src-min/ -a resources/ace/ && webpack --progress --colors -p --config ./webpack.production.config.js develop cp node_modules/ace-builds/src/ -a resources/ace/ && webpack-dev-server --progress --colors watch-test jest --verbose --watch ''' @pytest.mark.usefixtures('no_memoize') def test_get_scripts(mocker): patch = mocker.patch('thefuck.specific.npm.Popen') patch.return_value.stdout = BytesIO(run_script_stdout) assert get_scripts() == ['build', 'develop', 'watch-test']
py
b4176d0c1efb60793fd5b065128e84c0053246e9
from __future__ import print_function import os import sys import numpy as np import torch import random from torch.autograd import Variable import torch.nn.functional as F import torch.optim as optim from tqdm import tqdm from copy import deepcopy from q_net import NStepQNet, greedy_actions sys.path.append('%s/../common' % os.path.dirname(os.path.realpath(__file__))) from cmd_args import cmd_args from rl_common import GraphEdgeEnv, local_args, load_graphs, load_base_model from nstep_replay_mem import NstepReplayMem sys.path.append('%s/../graph_classification' % os.path.dirname(os.path.realpath(__file__))) from graph_common import loop_dataset class Agent(object): def __init__(self, g_list, test_g_list, env): self.g_list = g_list if test_g_list is None: self.test_g_list = g_list else: self.test_g_list = test_g_list self.mem_pool = NstepReplayMem(memory_size=50000, n_steps=2) self.env = env # self.net = QNet() self.net = NStepQNet(2) self.old_net = NStepQNet(2) if cmd_args.ctx == 'gpu': self.net = self.net.cuda() self.old_net = self.old_net.cuda() self.eps_start = 1.0 self.eps_end = 1.0 self.eps_step = 10000 self.burn_in = 100 self.step = 0 self.best_eval = None self.pos = 0 self.sample_idxes = list(range(len(g_list))) random.shuffle(self.sample_idxes) self.take_snapshot() def take_snapshot(self): self.old_net.load_state_dict(self.net.state_dict()) def make_actions(self, time_t, greedy=False): self.eps = self.eps_end + max(0., (self.eps_start - self.eps_end) * (self.eps_step - max(0., self.step)) / self.eps_step) if random.random() < self.eps and not greedy: actions = self.env.uniformRandActions() else: cur_state = self.env.getStateRef() actions, _, _ = self.net(time_t, cur_state, None, greedy_acts=True) actions = list(actions.cpu().numpy()) return actions def run_simulation(self): # I think this shuffles the batches? pos is batch_id? if (self.pos + 1) * cmd_args.batch_size > len(self.sample_idxes): self.pos = 0 random.shuffle(self.sample_idxes) # setup env with a batch selected_idx = self.sample_idxes[self.pos * cmd_args.batch_size : (self.pos + 1) * cmd_args.batch_size] self.pos += 1 self.env.setup([self.g_list[idx] for idx in selected_idx]) t = 0 while not env.isTerminal(): list_at = self.make_actions(t) list_st = self.env.cloneState() self.env.step(list_at) assert (env.rewards is not None) == env.isTerminal() if env.isTerminal(): rewards = env.rewards s_prime = None else: rewards = np.zeros(len(list_at), dtype=np.float32) s_prime = self.env.cloneState() self.mem_pool.add_list(list_st, list_at, rewards, s_prime, [env.isTerminal()] * len(list_at), t) t += 1 def eval(self): self.env.setup(deepcopy(self.test_g_list)) t = 0 while not self.env.isTerminal(): list_at = self.make_actions(t, greedy=True) self.env.step(list_at) t += 1 test_loss = loop_dataset(env.g_list, env.classifier, list(range(len(env.g_list)))) print('\033[93m average test: loss %.5f acc %.5f\033[0m' % (test_loss[0], test_loss[1])) if cmd_args.phase == 'train' and self.best_eval is None or test_loss[1] < self.best_eval: print('----saving to best attacker since this is the best attack rate so far.----') torch.save(self.net.state_dict(), cmd_args.save_dir + '/epoch-best.model') with open(cmd_args.save_dir + '/epoch-best.txt', 'w') as f: f.write('%.4f\n' % test_loss[1]) self.best_eval = test_loss[1] reward = np.mean(self.env.rewards) print(reward) return reward, test_loss[1] def train(self): log_out = open(cmd_args.logfile, 'w', 0) # do a burn in phase pbar = tqdm(range(self.burn_in), unit='batch') for p in pbar: self.run_simulation() # local_args.num_steps = 100000 pbar = tqdm(range(local_args.num_steps), unit='steps') optimizer = optim.Adam(self.net.parameters(), lr=cmd_args.learning_rate) for self.step in pbar: # run a simulation and add to self.mem_pool (memory replay buffer) self.run_simulation() # save/print statistics every 100 steps if self.step % 100 == 0: self.take_snapshot() if self.step % 100 == 0: r, acc = self.eval() log_out.write('%d %.6f %.6f\n' % (self.step, r, acc)) # sample from the replay memory? cur_time, list_st, list_at, list_rt, list_s_primes, list_term = self.mem_pool.sample(batch_size=cmd_args.batch_size) list_target = torch.Tensor(list_rt) if cmd_args.ctx == 'gpu': list_target = list_target.cuda() cleaned_sp = [] nonterms = [] for i in range(len(list_st)): if not list_term[i]: cleaned_sp.append(list_s_primes[i]) nonterms.append(i) if len(cleaned_sp): # if len(cleaned_sp) > 0 _, _, banned = zip(*cleaned_sp) _, q_t_plus_1, prefix_sum_prime = self.old_net(cur_time + 1, cleaned_sp, None) _, q_rhs = greedy_actions(q_t_plus_1, prefix_sum_prime, banned) list_target[nonterms] = q_rhs # list_target = get_supervision(self.env.classifier, list_st, list_at) list_target = Variable(list_target.view(-1, 1)) _, q_sa, _ = self.net(cur_time, list_st, list_at) loss = F.mse_loss(q_sa, list_target) optimizer.zero_grad() loss.backward() optimizer.step() pbar.set_description('exp: %.5f, loss: %0.5f' % (self.eps, loss) ) log_out.close() if __name__ == '__main__': # set seed random.seed(cmd_args.seed) np.random.seed(cmd_args.seed) torch.manual_seed(cmd_args.seed) # load test graphs label_map, _, g_list = load_graphs() random.shuffle(g_list) base_classifier = load_base_model(label_map, g_list) env = GraphEdgeEnv(base_classifier, n_edges = 1) # split dataset into train and test? if cmd_args.frac_meta > 0: num_train = int( len(g_list) * (1 - cmd_args.frac_meta) ) agent = Agent(g_list[:num_train], g_list[num_train:], env) else: agent = Agent(g_list, None, env) if cmd_args.phase == 'train': agent.train() else: agent.net.load_state_dict(torch.load(cmd_args.save_dir + '/epoch-best.model')) agent.eval() # env.setup([g_list[idx] for idx in selected_idx]) # t = 0 # while not env.isTerminal(): # policy_net = net_list[t] # t += 1 # batch_graph, picked_nodes = env.getState() # log_probs, prefix_sum = policy_net(batch_graph, picked_nodes) # actions = env.sampleActions(torch.exp(log_probs).data.cpu().numpy(), prefix_sum.data.cpu().numpy(), greedy=True) # env.step(actions) # test_loss = loop_dataset(env.g_list, base_classifier, list(range(len(env.g_list)))) # print('\033[93maverage test: loss %.5f acc %.5f\033[0m' % (test_loss[0], test_loss[1])) # print(np.mean(avg_rewards), np.mean(env.rewards))
py
b4176e897f956f932d301c79ba9b026c1129ddd8
"""Base class for validation.""" from __future__ import annotations from time import monotonic from typing import TYPE_CHECKING from ..enums import HacsCategory from ..exceptions import HacsException if TYPE_CHECKING: from ..repositories.base import HacsRepository class ValidationException(HacsException): """Raise when there is a validation issue.""" class ActionValidationBase: """Base class for action validation.""" categories: list[HacsCategory] = [] more_info: str = "https://hacs.xyz/docs/publish/action" def __init__(self, repository: HacsRepository) -> None: self.hacs = repository.hacs self.repository = repository self.failed = False @property def slug(self) -> str: """Return the check slug.""" return self.__class__.__module__.rsplit(".", maxsplit=1)[-1] async def async_validate(self) -> None: """Validate the repository.""" async def execute_validation(self, *_, **__) -> None: """Execute the task defined in subclass.""" self.hacs.log.info("<Validation %s> Starting validation", self.slug) start_time = monotonic() self.failed = False try: await self.async_validate() except ValidationException as exception: self.failed = True self.hacs.log.error( "<Validation %s> failed: %s (More info: %s)", self.slug, exception, self.more_info, ) else: self.hacs.log.info( "<Validation %s> took %.3f seconds to complete", self.slug, monotonic() - start_time )
py
b4176eea28b7336155a6335403dc70d4af6bd082
from rest_framework import serializers from .models import Room, Booking class BookingSerializer(serializers.ModelSerializer): class Meta: model = Booking fields = '__all__' # exclude = ['start_timing', 'end_timing'] class RoomSerializer(serializers.ModelSerializer): bookings = BookingSerializer(many=True, read_only=True) class Meta: model = Room fields = '__all__'
py
b4176f4dfb75b04c6ff51473ef2d8fa6f6597d39
# -*- coding: utf-8 -*- from __future__ import unicode_literals from six import PY3 from six import StringIO from tests.compat import unittest from webob import Request, Response import warnings import mock from webtest import TestApp from webtest.compat import to_bytes from webtest.lint import check_headers from webtest.lint import check_content_type from webtest.lint import check_environ from webtest.lint import IteratorWrapper from webtest.lint import WriteWrapper from webtest.lint import ErrorWrapper from webtest.lint import InputWrapper from webtest.lint import to_string from webtest.lint import middleware from webtest.lint import _assert_latin1_str from six import BytesIO def application(environ, start_response): req = Request(environ) resp = Response() env_input = environ['wsgi.input'] len_body = len(req.body) env_input.input.seek(0) if req.path_info == '/read': resp.body = env_input.read(len_body) elif req.path_info == '/read_line': resp.body = env_input.readline(len_body) elif req.path_info == '/read_lines': resp.body = b'-'.join(env_input.readlines(len_body)) elif req.path_info == '/close': resp.body = env_input.close() return resp(environ, start_response) class TestLatin1Assertion(unittest.TestCase): def test_valid_type(self): value = "useful-inførmation-5" if not PY3: value = value.encode("latin1") assert value == _assert_latin1_str(value, "fail") def test_invalid_type(self): value = b"useful-information-5" if not PY3: value = value.decode("utf8") self.assertRaises(AssertionError, _assert_latin1_str, value, "fail") class TestToString(unittest.TestCase): def test_to_string(self): self.assertEqual(to_string('foo'), 'foo') self.assertEqual(to_string(b'foo'), 'foo') class TestMiddleware(unittest.TestCase): def test_lint_too_few_args(self): linter = middleware(application) with self.assertRaisesRegexp(AssertionError, "Two arguments required"): linter() with self.assertRaisesRegexp(AssertionError, "Two arguments required"): linter({}) def test_lint_no_keyword_args(self): linter = middleware(application) with self.assertRaisesRegexp(AssertionError, "No keyword arguments " "allowed"): linter({}, 'foo', baz='baz') # TODO: test start_response_wrapper @mock.patch.multiple('webtest.lint', check_environ=lambda x: True, # don't block too early InputWrapper=lambda x: True) def test_lint_iterator_returned(self): linter = middleware(lambda x, y: None) # None is not an iterator msg = "The application must return an iterator, if only an empty list" with self.assertRaisesRegexp(AssertionError, msg): linter({'wsgi.input': 'foo', 'wsgi.errors': 'foo'}, 'foo') class TestInputWrapper(unittest.TestCase): def test_read(self): app = TestApp(application) resp = app.post('/read', 'hello') self.assertEqual(resp.body, b'hello') def test_readline(self): app = TestApp(application) resp = app.post('/read_line', 'hello\n') self.assertEqual(resp.body, b'hello\n') def test_readlines(self): app = TestApp(application) resp = app.post('/read_lines', 'hello\nt\n') self.assertEqual(resp.body, b'hello\n-t\n') def test_close(self): input_wrapper = InputWrapper(None) self.assertRaises(AssertionError, input_wrapper.close) def test_iter(self): data = to_bytes("A line\nAnother line\nA final line\n") input_wrapper = InputWrapper(BytesIO(data)) self.assertEquals(to_bytes("").join(input_wrapper), data, '') def test_seek(self): data = to_bytes("A line\nAnother line\nA final line\n") input_wrapper = InputWrapper(BytesIO(data)) input_wrapper.seek(0) self.assertEquals(to_bytes("").join(input_wrapper), data, '') class TestMiddleware2(unittest.TestCase): def test_exc_info(self): def application_exc_info(environ, start_response): body = to_bytes('body stuff') headers = [ ('Content-Type', 'text/plain; charset=utf-8'), ('Content-Length', str(len(body)))] # PEP 3333 requires native strings: headers = [(str(k), str(v)) for k, v in headers] start_response(to_bytes('200 OK'), headers, ('stuff',)) return [body] app = TestApp(application_exc_info) app.get('/') # don't know what to assert here... a bit cheating, just covers code class TestCheckContentType(unittest.TestCase): def test_no_content(self): status = "204 No Content" headers = [ ('Content-Type', 'text/plain; charset=utf-8'), ('Content-Length', '4') ] self.assertRaises(AssertionError, check_content_type, status, headers) def test_no_content_type(self): status = "200 OK" headers = [ ('Content-Length', '4') ] self.assertRaises(AssertionError, check_content_type, status, headers) class TestCheckHeaders(unittest.TestCase): @unittest.skipIf(PY3, 'unicode is str in Python3') def test_header_unicode_name(self): headers = [(u'X-Price', str('100'))] self.assertRaises(AssertionError, check_headers, headers) @unittest.skipIf(PY3, 'unicode is str in Python3') def test_header_unicode_value(self): headers = [(str('X-Price'), u'100')] self.assertRaises(AssertionError, check_headers, headers) @unittest.skipIf(not PY3, 'bytes is str in Python2') def test_header_bytes_name(self): headers = [(b'X-Price', '100')] self.assertRaises(AssertionError, check_headers, headers) @unittest.skipIf(not PY3, 'bytes is str in Python2') def test_header_bytes_value(self): headers = [('X-Price', b'100')] self.assertRaises(AssertionError, check_headers, headers) def test_header_non_latin1_value(self): headers = [(str('X-Price'), '100€')] self.assertRaises(AssertionError, check_headers, headers) def test_header_non_latin1_name(self): headers = [('X-€', str('foo'))] self.assertRaises(AssertionError, check_headers, headers) class TestCheckEnviron(unittest.TestCase): def test_no_query_string(self): environ = { 'REQUEST_METHOD': str('GET'), 'SERVER_NAME': str('localhost'), 'SERVER_PORT': str('80'), 'wsgi.version': (1, 0, 1), 'wsgi.input': StringIO('test'), 'wsgi.errors': StringIO(), 'wsgi.multithread': None, 'wsgi.multiprocess': None, 'wsgi.run_once': None, 'wsgi.url_scheme': 'http', 'PATH_INFO': str('/'), } with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") check_environ(environ) self.assertEqual(len(w), 1, "We should have only one warning") self.assertTrue( "QUERY_STRING" in str(w[-1].message), "The warning message should say something about QUERY_STRING") def test_no_valid_request(self): environ = { 'REQUEST_METHOD': str('PROPFIND'), 'SERVER_NAME': str('localhost'), 'SERVER_PORT': str('80'), 'wsgi.version': (1, 0, 1), 'wsgi.input': StringIO('test'), 'wsgi.errors': StringIO(), 'wsgi.multithread': None, 'wsgi.multiprocess': None, 'wsgi.run_once': None, 'wsgi.url_scheme': 'http', 'PATH_INFO': str('/'), 'QUERY_STRING': str(''), } with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") check_environ(environ) self.assertEqual(len(w), 1, "We should have only one warning") self.assertTrue( "REQUEST_METHOD" in str(w[-1].message), "The warning message should say something " "about REQUEST_METHOD") def test_handles_native_strings_in_variables(self): # "native string" means unicode in py3, but bytes in py2 path = '/umläut' if not PY3: path = path.encode('utf-8') environ = { 'REQUEST_METHOD': str('GET'), 'SERVER_NAME': str('localhost'), 'SERVER_PORT': str('80'), 'wsgi.version': (1, 0, 1), 'wsgi.input': StringIO('test'), 'wsgi.errors': StringIO(), 'wsgi.multithread': None, 'wsgi.multiprocess': None, 'wsgi.run_once': None, 'wsgi.url_scheme': 'http', 'PATH_INFO': path, 'QUERY_STRING': str(''), } with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") check_environ(environ) self.assertEqual(0, len(w), "We should have no warning") class TestIteratorWrapper(unittest.TestCase): def test_close(self): class MockIterator(object): def __init__(self): self.closed = False def __iter__(self): return self def __next__(self): return None next = __next__ def close(self): self.closed = True mock = MockIterator() wrapper = IteratorWrapper(mock, None) wrapper.close() self.assertTrue(mock.closed, "Original iterator has not been closed") class TestWriteWrapper(unittest.TestCase): def test_wrong_type(self): write_wrapper = WriteWrapper(None) self.assertRaises(AssertionError, write_wrapper, 'not a binary') def test_normal(self): class MockWriter(object): def __init__(self): self.written = [] def __call__(self, s): self.written.append(s) data = to_bytes('foo') mock = MockWriter() write_wrapper = WriteWrapper(mock) write_wrapper(data) self.assertEqual( mock.written, [data], "WriterWrapper should call original writer when data is binary " "type") class TestErrorWrapper(unittest.TestCase): def test_dont_close(self): error_wrapper = ErrorWrapper(None) self.assertRaises(AssertionError, error_wrapper.close) class FakeError(object): def __init__(self): self.written = [] self.flushed = False def write(self, s): self.written.append(s) def writelines(self, lines): for line in lines: self.write(line) def flush(self): self.flushed = True def test_writelines(self): fake_error = self.FakeError() error_wrapper = ErrorWrapper(fake_error) data = [to_bytes('a line'), to_bytes('another line')] error_wrapper.writelines(data) self.assertEqual(fake_error.written, data, "ErrorWrapper should call original writer") def test_flush(self): fake_error = self.FakeError() error_wrapper = ErrorWrapper(fake_error) error_wrapper.flush() self.assertTrue( fake_error.flushed, "ErrorWrapper should have called original wsgi_errors's flush")
py
b4176facd3f511c55c080463eeb061b9f487d7d5
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from torch import nn class MultiHead(nn.Module): def __init__(self, in_size, out_sizes, *args, **kwargs): super(MultiHead, self).__init__(*args, **kwargs) if isinstance(in_size, torch.Size): assert len(in_size) == 1, 'Multhihead expect 1d inputs, got {}'\ .format(in_size) in_size = in_size[0] heads = [nn.Linear(in_size, out) for i, out in enumerate(out_sizes)] # heads = [nn.Linear(in_size, 1 if out in [1, 2] else out) for i, out in enumerate(out_sizes)] self.heads = nn.ModuleList(heads) self.n_out = len(out_sizes) def forward(self, input): return [head(input) for head in self.heads] class Flatten(nn.Module): def forward(self, x): return x.view(x.size(0), -1) def make_model(*blocks, seq=nn.Sequential): blocks_list = [] for block in blocks: if isinstance(block, nn.Module): block = [block] assert isinstance(block, list) blocks_list += block model = seq(*blocks_list) model.n_out = blocks_list[-1].n_out return model def get_conv_out_size(in_size, kernel_size, padding, stride): return [(d+padding - (kernel_size-1) + 1) // stride for d in in_size]
py
b4177100f9f3763bb7ee3b94d880cf405cfe52c7
""" Degeneracy maps """ from __future__ import absolute_import #***************************************************************************** # Sage: System for Algebra and Geometry Experimentation # # Copyright (C) 2005 William Stein <[email protected]> # # Distributed under the terms of the GNU General Public License (GPL) # # This code is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # The full text of the GPL is available at: # # http://www.gnu.org/licenses/ #***************************************************************************** from . import morphism class DegeneracyMap(morphism.HeckeModuleMorphism_matrix): """ A degeneracy map between Hecke modules of different levels. EXAMPLES: We construct a number of degeneracy maps:: sage: M = ModularSymbols(33) sage: d = M.degeneracy_map(11) sage: d Hecke module morphism degeneracy map corresponding to f(q) |--> f(q) defined by the matrix [ 1 0 0] [ 0 0 1] [ 0 0 -1] [ 0 1 -1] [ 0 0 1] [ 0 -1 1] [-1 0 0] [-1 0 0] [-1 0 0] Domain: Modular Symbols space of dimension 9 for Gamma_0(33) of weight ... Codomain: Modular Symbols space of dimension 3 for Gamma_0(11) of weight ... sage: d.t() 1 sage: d = M.degeneracy_map(11,3) sage: d.t() 3 The parameter d must be a divisor of the quotient of the two levels:: sage: d = M.degeneracy_map(11,2) Traceback (most recent call last): ... ValueError: The level of self (=33) must be a divisor or multiple of level (=11), and t (=2) must be a divisor of the quotient. Degeneracy maps can also go from lower level to higher level:: sage: M.degeneracy_map(66,2) Hecke module morphism degeneracy map corresponding to f(q) |--> f(q^2) defined by the matrix [ 2 0 0 0 0 0 1 0 0 0 1 -1 0 0 0 -1 1 0 0 0 0 0 0 0 -1] [ 0 0 1 -1 0 -1 1 0 -1 2 0 0 0 -1 0 0 -1 1 2 -2 0 0 0 -1 1] [ 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 -1 1 0 0 -1 1 0 0 0] [ 0 0 0 0 0 0 0 0 0 2 -1 0 0 1 0 0 -1 1 0 0 1 0 -1 -1 1] [ 0 -1 0 0 1 0 0 0 0 0 0 1 0 0 1 1 -1 0 0 -1 0 0 0 0 0] [ 0 0 0 0 0 0 0 1 -1 0 0 2 -1 0 0 1 0 0 0 -1 0 -1 1 -1 1] [ 0 0 0 0 1 -1 0 1 -1 0 0 0 0 0 -1 2 0 0 0 0 1 0 1 0 0] [ 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0] [ 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 1 1 1 0 0 0] Domain: Modular Symbols space of dimension 9 for Gamma_0(33) of weight ... Codomain: Modular Symbols space of dimension 25 for Gamma_0(66) of weight ... """ def __init__(self, matrix, domain, codomain, t): r""" Initialise a degeneracy map. EXAMPLES:: sage: D = ModularSymbols(Gamma0(100)).degeneracy_map(2,5); D Hecke module morphism degeneracy map corresponding to f(q) |--> f(q^5) defined by the matrix 31 x 1 dense matrix over Rational Field Domain: Modular Symbols space of dimension 31 for Gamma_0(100) of weight ... Codomain: Modular Symbols space of dimension 1 for Gamma_0(2) of weight ... sage: D == loads(dumps(D)) True """ self.__t = t H = domain.Hom(codomain) if t == 1: pow = "" else: pow = "^%s"%t name = "degeneracy map corresponding to f(q) |--> f(q%s)"%(pow) morphism.HeckeModuleMorphism_matrix.__init__(self, H, matrix, name) def t(self): """ Return the divisor of the quotient of the two levels associated to the degeneracy map. EXAMPLES:: sage: M = ModularSymbols(33) sage: d = M.degeneracy_map(11,3) sage: d.t() 3 sage: d = M.degeneracy_map(11,1) sage: d.t() 1 """ return self.__t
py
b417710ed9938982a41450376d0598c198f9ad54
from threading import current_thread from getTweets import getTweets from sentiment import getSentiment from tweet_subroutines import * count1 = 0 def tweets_handler(api, query, cur_date, prev_date, sentiments, all_locs): global count1 """ This methods handle the operations on tweets, from extracting them fro twitter api, to cleaning them and getting sentiments from them """ # Calling subroutine to get tweet objects from specified range tweets = getTweets(api, query, cur_date, prev_date) count1 += 1 if count1 == 7: print("Data Collected", flush=True) print("Calculating Sentiments", flush=True) # Calling subroutine to open up the tweet batches tweets = open_tweet_obj(tweets) # Calling subroutine to remove duplicate tweets, if given by twitter tweets = remove_duplicate_tweets(tweets) # Calling subroutine to extract tweet_text and loc of tweeter from tweet object, now tweets = {"text": ..,"loc":..} tweets = extract_data(tweets) # calling subroutine for removing promotional tweets tweets = remove_promotional_tweets(tweets) # calling subroutine cleaning the tweets # tweets_text = tweet_cleaner(tweets) cur_day_locations = make_loc_dict(tweets) # calling subroutine for getting sentiment from the tweets cur_day_sentiment = getSentiment(tweets, cur_day_locations) # updating sentiments list thread_no = current_thread().name sentiments[int(thread_no) - 1] = cur_day_sentiment all_loc = merge(all_locs, cur_day_locations)
py
b41771a946c85a4756d3b25bcbc20887573915ac
from dowel import logger, tabular import numpy as np import scipy.optimize import tensorflow as tf from garage.misc.overrides import overrides from garage.tf.algos.batch_polopt import BatchPolopt from garage.tf.misc import tensor_utils from garage.tf.misc.tensor_utils import filter_valids from garage.tf.misc.tensor_utils import filter_valids_dict from garage.tf.misc.tensor_utils import flatten_batch from garage.tf.misc.tensor_utils import flatten_batch_dict from garage.tf.misc.tensor_utils import flatten_inputs from garage.tf.misc.tensor_utils import graph_inputs from garage.tf.optimizers import LbfgsOptimizer class REPS(BatchPolopt): """Relative Entropy Policy Search. References ---------- [1] J. Peters, K. Mulling, and Y. Altun, "Relative Entropy Policy Search," Artif. Intell., pp. 1607-1612, 2008. Example: $ python garage/examples/tf/reps_gym_cartpole.py Args: env_spec (garage.envs.EnvSpec): Environment specification. policy (garage.tf.policies.base.Policy): Policy. baseline (garage.tf.baselines.Baseline): The baseline. scope (str): Scope for identifying the algorithm. Must be specified if running multiple algorithms simultaneously, each using different environments and policies. max_path_length (int): Maximum length of a single rollout. discount (float): Discount. gae_lambda (float): Lambda used for generalized advantage estimation. center_adv (bool): Whether to rescale the advantages so that they have mean 0 and standard deviation 1. positive_adv (bool): Whether to shift the advantages so that they are always positive. When used in conjunction with center_adv the advantages will be standardized before shifting. fixed_horizon (bool): Whether to fix horizon. epsilon (float): dual func parameter. l2_reg_dual (float): coefficient for dual func l2 regularization. l2_reg_loss (float): coefficient for policy loss l2 regularization. dual_optimizer (object): dual func optimizer. dual_optimizer_args (dict): arguments of the dual optimizer. name (str): Name of the algorithm. """ def __init__(self, env_spec, policy, baseline, max_path_length=500, discount=0.99, gae_lambda=1, center_adv=True, positive_adv=False, fixed_horizon=False, epsilon=0.5, l2_reg_dual=0., l2_reg_loss=0., optimizer=LbfgsOptimizer, optimizer_args=dict(max_opt_itr=50), dual_optimizer=scipy.optimize.fmin_l_bfgs_b, dual_optimizer_args=dict(maxiter=50), name='REPS'): self.name = name self._name_scope = tf.name_scope(self.name) with self._name_scope: self.optimizer = optimizer(**optimizer_args) self.dual_optimizer = dual_optimizer self.dual_optimizer_args = dual_optimizer_args self.epsilon = float(epsilon) self.l2_reg_dual = float(l2_reg_dual) self.l2_reg_loss = float(l2_reg_loss) super(REPS, self).__init__( env_spec=env_spec, policy=policy, baseline=baseline, max_path_length=max_path_length, discount=discount, gae_lambda=gae_lambda, center_adv=center_adv, positive_adv=positive_adv, fixed_horizon=fixed_horizon) @overrides def init_opt(self): """Initialize the optimization procedure.""" pol_loss_inputs, pol_opt_inputs, dual_opt_inputs = self._build_inputs() self._policy_opt_inputs = pol_opt_inputs self._dual_opt_inputs = dual_opt_inputs pol_loss = self._build_policy_loss(pol_loss_inputs) self.optimizer.update_opt( loss=pol_loss, target=self.policy, inputs=flatten_inputs(self._policy_opt_inputs)) def __getstate__(self): data = self.__dict__.copy() del data['_name_scope'] del data['_policy_opt_inputs'] del data['_dual_opt_inputs'] del data['f_dual'] del data['f_dual_grad'] del data['f_policy_kl'] return data def __setstate__(self, state): self.__dict__ = state self._name_scope = tf.name_scope(self.name) self.init_opt() @overrides def get_itr_snapshot(self, itr): """Return the data should saved in the snapshot.""" return dict( itr=itr, policy=self.policy, ) @overrides def optimize_policy(self, itr, samples_data): """Perform the policy optimization.""" # Initial BFGS parameter values. x0 = np.hstack([self.param_eta, self.param_v]) # Set parameter boundaries: \eta>=1e-12, v unrestricted. bounds = [(-np.inf, np.inf) for _ in x0] bounds[0] = (1e-12, np.inf) # Optimize dual eta_before = self.param_eta logger.log('Computing dual before') self.feat_diff = self._features(samples_data) dual_opt_input_values = self._dual_opt_input_values(samples_data) dual_before = self.f_dual(*dual_opt_input_values) logger.log('Optimizing dual') def eval_dual(x): self.param_eta = x[0] self.param_v = x[1:] dual_opt_input_values = self._dual_opt_input_values(samples_data) return self.f_dual(*dual_opt_input_values) def eval_dual_grad(x): self.param_eta = x[0] self.param_v = x[1:] dual_opt_input_values = self._dual_opt_input_values(samples_data) grad = self.f_dual_grad(*dual_opt_input_values) eta_grad = np.float(grad[0]) v_grad = grad[1] return np.hstack([eta_grad, v_grad]) params_ast, _, _ = self.dual_optimizer( func=eval_dual, x0=x0, fprime=eval_dual_grad, bounds=bounds, **self.dual_optimizer_args) logger.log('Computing dual after') self.param_eta, self.param_v = params_ast[0], params_ast[1:] dual_opt_input_values = self._dual_opt_input_values(samples_data) dual_after = self.f_dual(*dual_opt_input_values) # Optimize policy policy_opt_input_values = self._policy_opt_input_values(samples_data) logger.log('Computing policy loss before') loss_before = self.optimizer.loss(policy_opt_input_values) logger.log('Computing policy KL before') policy_kl_before = self.f_policy_kl(*policy_opt_input_values) logger.log('Optimizing policy') self.optimizer.optimize(policy_opt_input_values) logger.log('Computing policy KL') policy_kl = self.f_policy_kl(*policy_opt_input_values) logger.log('Computing policy loss after') loss_after = self.optimizer.loss(policy_opt_input_values) tabular.record('EtaBefore', eta_before) tabular.record('EtaAfter', self.param_eta) tabular.record('DualBefore', dual_before) tabular.record('DualAfter', dual_after) tabular.record('{}/LossBefore'.format(self.policy.name), loss_before) tabular.record('{}/LossAfter'.format(self.policy.name), loss_after) tabular.record('{}/dLoss'.format(self.policy.name), loss_before - loss_after) tabular.record('{}/KLBefore'.format(self.policy.name), policy_kl_before) tabular.record('{}/KL'.format(self.policy.name), policy_kl) def _build_inputs(self): """Decalre graph inputs variables.""" observation_space = self.policy.observation_space action_space = self.policy.action_space policy_dist = self.policy.distribution with tf.name_scope('inputs'): obs_var = observation_space.to_tf_placeholder( name='obs', batch_dims=2) # yapf: disable action_var = action_space.to_tf_placeholder( name='action', batch_dims=2) # yapf: disable reward_var = tensor_utils.new_tensor( name='reward', ndim=2, dtype=tf.float32) # yapf: disable valid_var = tensor_utils.new_tensor( name='valid', ndim=2, dtype=tf.float32) # yapf: disable feat_diff = tensor_utils.new_tensor( name='feat_diff', ndim=2, dtype=tf.float32) # yapf: disable param_v = tensor_utils.new_tensor( name='param_v', ndim=1, dtype=tf.float32) # yapf: disable param_eta = tensor_utils.new_tensor( name='param_eta', ndim=0, dtype=tf.float32) # yapf: disable policy_state_info_vars = { k: tf.compat.v1.placeholder( tf.float32, shape=[None] * 2 + list(shape), name=k) for k, shape in self.policy.state_info_specs } # yapf: disable policy_state_info_vars_list = [ policy_state_info_vars[k] for k in self.policy.state_info_keys ] # yapf: disable policy_old_dist_info_vars = { k: tf.compat.v1.placeholder( tf.float32, shape=[None] * 2 + list(shape), name='policy_old_%s' % k) for k, shape in policy_dist.dist_info_specs } policy_old_dist_info_vars_list = [ policy_old_dist_info_vars[k] for k in policy_dist.dist_info_keys ] with tf.name_scope('flat'): obs_flat = flatten_batch(obs_var, name='obs_flat') action_flat = flatten_batch(action_var, name='action_flat') reward_flat = flatten_batch(reward_var, name='reward_flat') valid_flat = flatten_batch(valid_var, name='valid_flat') feat_diff_flat = flatten_batch( feat_diff, name='feat_diff_flat') # yapf: disable policy_state_info_vars_flat = flatten_batch_dict( policy_state_info_vars, name='policy_state_info_vars_flat') # yapf: disable policy_old_dist_info_vars_flat = flatten_batch_dict( policy_old_dist_info_vars, name='policy_old_dist_info_vars_flat') with tf.name_scope('valid'): reward_valid = filter_valids( reward_flat, valid_flat, name='reward_valid') # yapf: disable action_valid = filter_valids( action_flat, valid_flat, name='action_valid') # yapf: disable policy_state_info_vars_valid = filter_valids_dict( policy_state_info_vars_flat, valid_flat, name='policy_state_info_vars_valid') policy_old_dist_info_vars_valid = filter_valids_dict( policy_old_dist_info_vars_flat, valid_flat, name='policy_old_dist_info_vars_valid') pol_flat = graph_inputs( 'PolicyLossInputsFlat', obs_var=obs_flat, action_var=action_flat, reward_var=reward_flat, valid_var=valid_flat, feat_diff=feat_diff_flat, policy_state_info_vars=policy_state_info_vars_flat, policy_old_dist_info_vars=policy_old_dist_info_vars_flat, ) pol_valid = graph_inputs( 'PolicyLossInputsValid', reward_var=reward_valid, action_var=action_valid, policy_state_info_vars=policy_state_info_vars_valid, policy_old_dist_info_vars=policy_old_dist_info_vars_valid, ) policy_loss_inputs = graph_inputs( 'PolicyLossInputs', obs_var=obs_var, action_var=action_var, reward_var=reward_var, valid_var=valid_var, feat_diff=feat_diff, param_eta=param_eta, param_v=param_v, policy_state_info_vars=policy_state_info_vars, policy_old_dist_info_vars=policy_old_dist_info_vars, flat=pol_flat, valid=pol_valid, ) policy_opt_inputs = graph_inputs( 'PolicyOptInputs', obs_var=obs_var, action_var=action_var, reward_var=reward_var, valid_var=valid_var, feat_diff=feat_diff, param_eta=param_eta, param_v=param_v, policy_state_info_vars_list=policy_state_info_vars_list, policy_old_dist_info_vars_list=policy_old_dist_info_vars_list, ) dual_opt_inputs = graph_inputs( 'DualOptInputs', reward_var=reward_var, valid_var=valid_var, feat_diff=feat_diff, param_eta=param_eta, param_v=param_v, policy_state_info_vars_list=policy_state_info_vars_list, policy_old_dist_info_vars_list=policy_old_dist_info_vars_list, ) return policy_loss_inputs, policy_opt_inputs, dual_opt_inputs def _build_policy_loss(self, i): """Initialize policy loss complie function based on inputs i.""" pol_dist = self.policy.distribution is_recurrent = self.policy.recurrent # Initialize dual params self.param_eta = 15. self.param_v = np.random.rand( self.env_spec.observation_space.flat_dim * 2 + 4) if is_recurrent: raise NotImplementedError policy_dist_info_flat = self.policy.dist_info_sym( i.flat.obs_var, i.flat.policy_state_info_vars, name='policy_dist_info_flat') policy_dist_info_valid = filter_valids_dict( policy_dist_info_flat, i.flat.valid_var, name='policy_dist_info_valid') with tf.name_scope('bellman_error'): delta_v = i.valid.reward_var + tf.tensordot( i.feat_diff, i.param_v, 1) with tf.name_scope('policy_loss'): ll = pol_dist.log_likelihood_sym(i.valid.action_var, policy_dist_info_valid) loss = -tf.reduce_mean(ll * tf.exp( delta_v / i.param_eta - tf.reduce_max(delta_v / i.param_eta))) reg_params = self.policy.get_params(regularizable=True) loss += self.l2_reg_loss * tf.reduce_sum( [tf.reduce_mean(tf.square(param)) for param in reg_params]) / len(reg_params) with tf.name_scope('kl'): kl = pol_dist.kl_sym( i.valid.policy_old_dist_info_vars, policy_dist_info_valid, ) pol_mean_kl = tf.reduce_mean(kl) with tf.name_scope('dual'): dual_loss = i.param_eta * self.epsilon + i.param_eta * tf.math.log( tf.reduce_mean( tf.exp(delta_v / i.param_eta - tf.reduce_max(delta_v / i.param_eta))) ) + i.param_eta * tf.reduce_max(delta_v / i.param_eta) dual_loss += self.l2_reg_dual * ( tf.square(i.param_eta) + tf.square(1 / i.param_eta)) dual_grad = tf.gradients(dual_loss, [i.param_eta, i.param_v]) self.f_dual = tensor_utils.compile_function( flatten_inputs(self._dual_opt_inputs), dual_loss, log_name='f_dual') self.f_dual_grad = tensor_utils.compile_function( flatten_inputs(self._dual_opt_inputs), dual_grad, log_name='f_dual_grad') self.f_policy_kl = tensor_utils.compile_function( flatten_inputs(self._policy_opt_inputs), pol_mean_kl, log_name='f_policy_kl') return loss def _dual_opt_input_values(self, samples_data): """Update dual func optimize input values based on samples data.""" policy_state_info_list = [ samples_data['agent_infos'][k] for k in self.policy.state_info_keys ] # yapf: disable policy_old_dist_info_list = [ samples_data['agent_infos'][k] for k in self.policy.distribution.dist_info_keys ] dual_opt_input_values = self._dual_opt_inputs._replace( reward_var=samples_data['rewards'], valid_var=samples_data['valids'], feat_diff=self.feat_diff, param_eta=self.param_eta, param_v=self.param_v, policy_state_info_vars_list=policy_state_info_list, policy_old_dist_info_vars_list=policy_old_dist_info_list, ) return flatten_inputs(dual_opt_input_values) def _policy_opt_input_values(self, samples_data): """Update policy optimize input values based on samples data.""" policy_state_info_list = [ samples_data['agent_infos'][k] for k in self.policy.state_info_keys ] # yapf: disable policy_old_dist_info_list = [ samples_data['agent_infos'][k] for k in self.policy.distribution.dist_info_keys ] # pylint: disable=locally-disabled, unexpected-keyword-arg policy_opt_input_values = self._policy_opt_inputs._replace( obs_var=samples_data['observations'], action_var=samples_data['actions'], reward_var=samples_data['rewards'], valid_var=samples_data['valids'], feat_diff=self.feat_diff, param_eta=self.param_eta, param_v=self.param_v, policy_state_info_vars_list=policy_state_info_list, policy_old_dist_info_vars_list=policy_old_dist_info_list, ) return flatten_inputs(policy_opt_input_values) def _features(self, samples_data): """Get valid view features based on samples data.""" paths = samples_data['paths'] feat_diff = [] for path in paths: o = np.clip(path['observations'], self.env_spec.observation_space.low, self.env_spec.observation_space.high) lr = len(path['rewards']) al = np.arange(lr).reshape(-1, 1) / self.max_path_length feats = np.concatenate( [o, o**2, al, al**2, al**3, np.ones((lr, 1))], axis=1) feats = np.vstack([feats, np.zeros(feats.shape[1])]) feat_diff.append(feats[1:] - feats[:-1]) return np.vstack(feat_diff)
py
b417726b70b05a7f0bac9fcb175d8c0dd38380ef
# Phase Correlation to Estimate Pose import cv2 import numpy as np import matplotlib.pyplot as plt # matplotlibの描画系 import math class imregpoc_nowindow: def __init__(self,iref,icmp,*,threshold = 0.06, alpha=0.5, beta=0.8): self.ref = iref.astype(np.float32) self.cmp = icmp.astype(np.float32) self.th = threshold self.center = np.array(iref.shape)/2.0 self.alpha = alpha self.beta = beta self.param = [0,0,0,1] self.peak = 0 self.affine = np.float32([1,0,0,0,1,0]).reshape(2,3) self.perspective = np.float32([1,0,0,0,1,0,0,0,0]).reshape(3,3) self.match() def match(self): height,width = self.ref.shape self.hanw = np.ones((height,width),dtype='float32') # Windowing and FFT G_a = np.fft.fft2(self.ref) G_b = np.fft.fft2(self.cmp) # 1.1: Frequency Whitening self.LA = np.fft.fftshift(np.log(np.absolute(G_a)+1)) self.LB = np.fft.fftshift(np.log(np.absolute(G_b)+1)) # 1.2: Log polar Transformation cx = self.center[1] cy = self.center[0] self.Mag = width/math.log(width) self.LPA = cv2.logPolar(self.LA, (cy, cx), self.Mag, flags=cv2.INTER_LINEAR+cv2.WARP_FILL_OUTLIERS) self.LPB = cv2.logPolar(self.LB, (cy, cx), self.Mag, flags=cv2.INTER_LINEAR+cv2.WARP_FILL_OUTLIERS) # 1.3:filtering LPmin = math.floor(self.Mag*math.log(self.alpha*width/2.0/math.pi)) LPmax = min(width, math.floor(self.Mag*math.log(width*self.beta/2))) assert LPmax > LPmin, 'Invalid condition!\n Enlarge lpmax tuning parameter or lpmin_tuning parameter' Tile = np.repeat([0.0,1.0,0.0],[LPmin-1,LPmax-LPmin+1,width-LPmax]) self.Mask = np.tile(Tile,[height,1]) self.LPA_filt = self.LPA*self.Mask self.LPB_filt = self.LPB*self.Mask # 1.4: Phase Correlate to Get Rotation and Scaling Diff,peak,self.r_rotatescale = self.PhaseCorrelation(self.LPA_filt,self.LPB_filt) theta1 = 2*math.pi * Diff[1] / height; # deg theta2 = theta1 + math.pi; # deg theta ambiguity invscale = math.exp(Diff[0]/self.Mag) # 2.1: Correct rotation and scaling b1 = self.Warp_4dof(self.cmp,[0,0,theta1,invscale]) b2 = self.Warp_4dof(self.cmp,[0,0,theta2,invscale]) # 2.2 : Translation estimation diff1, peak1, self.r1 = self.PhaseCorrelation(self.ref,b1) #diff1, peak1 = PhaseCorrelation(a,b1) diff2, peak2, self.r2 = self.PhaseCorrelation(self.ref,b2) #diff2, peak2 = PhaseCorrelation(a,b2) # Use cv2.phaseCorrelate(a,b1) because it is much faster # 2.3: Compare peaks and choose true rotational error if peak1 > peak2: Trans = diff1 peak = peak1 theta = -theta1 else: Trans = diff2 peak = peak2 theta = -theta2 if theta > math.pi: theta -= math.pi*2 elif theta < -math.pi: theta += math.pi*2 # Results self.param = [Trans[0],Trans[1],theta,1/invscale] self.peak = peak self.perspective = self.poc2warp(self.center,self.param) self.affine = self.perspective[0:2,:] def match_new(self, newImg): self.cmp = newImg height,width = self.cmp.shape cy,cx = height/2,width/2 G_b = np.fft.fft2(self.cmp) self.LB = np.fft.fftshift(np.log(np.absolute(G_b)+1)) self.LPB = cv2.logPolar(self.LB, (cy, cx), self.Mag, flags=cv2.INTER_LINEAR+cv2.WARP_FILL_OUTLIERS) self.LPB_filt = self.LPB*self.Mask # 1.4: Phase Correlate to Get Rotation and Scaling Diff,peak,self.r_rotatescale = self.PhaseCorrelation(self.LPA_filt,self.LPB_filt) theta1 = 2*math.pi * Diff[1] / height; # deg theta2 = theta1 + math.pi; # deg theta ambiguity invscale = math.exp(Diff[0]/self.Mag) # 2.1: Correct rotation and scaling b1 = self.Warp_4dof(self.cmp,[0,0,theta1,invscale]) b2 = self.Warp_4dof(self.cmp,[0,0,theta2,invscale]) # 2.2 : Translation estimation diff1, peak1, self.r1 = self.PhaseCorrelation(self.ref,b1) #diff1, peak1 = PhaseCorrelation(a,b1) diff2, peak2, self.r2 = self.PhaseCorrelation(self.ref,b2) #diff2, peak2 = PhaseCorrelation(a,b2) # Use cv2.phaseCorrelate(a,b1) because it is much faster # 2.3: Compare peaks and choose true rotational error if peak1 > peak2: Trans = diff1 peak = peak1 theta = -theta1 else: Trans = diff2 peak = peak2 theta = -theta2 if theta > math.pi: theta -= math.pi*2 elif theta < -math.pi: theta += math.pi*2 # Results self.param = [Trans[0],Trans[1],theta,1/invscale] self.peak = peak self.perspective = self.poc2warp(self.center,self.param) self.affine = self.perspective[0:2,:] def poc2warp(self,center,param): cx,cy = center dx,dy,theta,scale = param cs = scale * math.cos(theta) sn = scale * math.sin(theta) Rot = np.float32([[cs, sn, 0],[-sn, cs,0],[0,0,1]]) center_Trans = np.float32([[1,0,cx],[0,1,cy],[0,0,1]]) center_iTrans = np.float32([[1,0,-cx],[0,1,-cy],[0,0,1]]) cRot = np.dot(np.dot(center_Trans,Rot),center_iTrans) Trans = np.float32([[1,0,dx],[0,1,dy],[0,0,1]]) Affine = np.dot(cRot,Trans) return Affine # Waro Image based on poc parameter def Warp_4dof(self,Img,param): center = np.array(Img.shape)/2 rows,cols = Img.shape Affine = self.poc2warp(center,param) outImg = cv2.warpPerspective(Img, Affine, (cols,rows), cv2.INTER_LINEAR) return outImg # Get peak point def CenterOfGravity(self,mat): hei,wid = mat.shape if hei != wid: # if mat size is not square, there must be something wrong print("Skip subpixel estimation!") return [0,0] Tile=np.arange(wid,dtype=float)-(wid-1.0)/2.0 Tx = np.tile(Tile,[hei,1]) # Ty = Tx.T Sum = np.sum(mat) #print(mat) Ax = np.sum(mat*Tx)/Sum Ay = np.sum(mat*Tx.T)/Sum return [Ay,Ax] # Weighted Center Of Gravity def WeightedCOG(self,mat): if mat.size == 0: print("Skip subpixel estimation!") Res = [0,0] else: peak = mat.max() newmat = mat*(mat>peak/10) # discard information of lower peak Res = self.CenterOfGravity(newmat) return Res # Phase Correlation def PhaseCorrelation(self, a, b): height,width = a.shape #dt = a.dtype # data type # Windowing # FFT G_a = np.fft.fft2(a*self.hanw) G_b = np.fft.fft2(b*self.hanw) conj_b = np.ma.conjugate(G_b) R = G_a*conj_b R /= np.absolute(R) r = np.fft.fftshift(np.fft.ifft2(R).real) # Get result and Interpolation DY,DX = np.unravel_index(r.argmax(), r.shape) # Subpixel Accuracy boxsize = 5 box = r[DY-int((boxsize-1)/2):DY+int((boxsize-1)/2)+1,DX-int((boxsize-1)/2):DX+int((boxsize-1)/2)+1] # x times x box #TY,TX= CenterOfGravity(box) TY,TX= self.WeightedCOG(box) sDY = TY+DY sDX = TX+DX # Show the result return [width/2-sDX,height/2-sDY],r[DY,DX],r def MoveCenter(self,Affine,center,newcenter): dx = newcenter[1] - center[1] dy = newcenter[0] - center[0] center_Trans = np.float32([[1,0,dx],[0,1,dy],[0,0,1]]) center_iTrans = np.float32([[1,0,-dx],[0,1,-dy],[0,0,1]]) newAffine = center_iTrans.dot( Affine.dot(center_Trans)) return newAffine def getParam(self): return self.param def getPeak(self): return self.peak def getAffine(self): return self.affine def getPerspective(self): return self.perspective def showRotatePeak(self): plt.imshow(self.r_rotatescale,vmin=self.r_rotatescale.min(),vmax=self.r_rotatescale.max(),cmap='gray') plt.show() def showTranslationPeak(self): plt.subplot(211) plt.imshow(self.r1,vmin=self.r1.min(),vmax=self.r1.max(),cmap='gray') plt.subplot(212) plt.imshow(self.r2,vmin=self.r2.min(),vmax=self.r2.max(),cmap='gray') plt.show() def showLPA(self): plt.imshow(self.LPA,vmin=self.LPA.min(),vmax=self.LPA.max(),cmap='gray') plt.show() def showLPB(self): plt.imshow(self.LPB,vmin=self.LPB.min(),vmax=self.LPB.max(),cmap='gray') plt.show() def showMAT(self,MAT): plt.figure() plt.imshow(MAT,vmin=MAT.min(),vmax=MAT.max(),cmap='gray') plt.show() def saveMat(self,MAT,name): cv2.imwrite(name,cv2.normalize(MAT, MAT, 0, 255, cv2.NORM_MINMAX)) def isSucceed(self): if self.peak > self.th: return 1 return 0 class imregpoc_noLP: def __init__(self,iref,icmp,*,threshold = 0.06, alpha=0.5, beta=100): self.ref = iref.astype(np.float32) self.cmp = icmp.astype(np.float32) self.th = threshold self.center = np.array(iref.shape)/2.0 self.alpha = alpha self.beta = beta self.param = [0,0,0,1] self.peak = 0 self.affine = np.float32([1,0,0,0,1,0]).reshape(2,3) self.perspective = np.float32([1,0,0,0,1,0,0,0,0]).reshape(3,3) self.match() def match(self): height,width = self.ref.shape self.hanw = cv2.createHanningWindow((height, width),cv2.CV_64F) # Windowing and FFT G_a = np.fft.fft2(self.ref*self.hanw) G_b = np.fft.fft2(self.cmp*self.hanw) # 1.1: Frequency Whitening self.LA = np.fft.fftshift(np.log(np.absolute(G_a)+1)) self.LB = np.fft.fftshift(np.log(np.absolute(G_b)+1)) # 1.2: Log polar Transformation cx = self.center[1] cy = self.center[0] self.Mag = width/math.log(width) self.LPA = cv2.logPolar(self.LA, (cy, cx), self.Mag, flags=cv2.INTER_LINEAR+cv2.WARP_FILL_OUTLIERS) self.LPB = cv2.logPolar(self.LB, (cy, cx), self.Mag, flags=cv2.INTER_LINEAR+cv2.WARP_FILL_OUTLIERS) # 1.3:filtering LPmin = math.floor(self.Mag*math.log(self.alpha*width/2.0/math.pi)) LPmax = min(width, math.floor(self.Mag*math.log(width*self.beta/2))) assert LPmax > LPmin, 'Invalid condition!\n Enlarge lpmax tuning parameter or lpmin_tuning parameter' Tile = np.repeat([0.0,1.0,0.0],[LPmin-1,LPmax-LPmin+1,width-LPmax]) self.Mask = np.tile(Tile,[height,1]) self.LPA_filt = self.LPA*self.Mask self.LPB_filt = self.LPB*self.Mask # 1.4: Phase Correlate to Get Rotation and Scaling Diff,peak,self.r_rotatescale = self.PhaseCorrelation(self.LPA_filt,self.LPB_filt) theta1 = 2*math.pi * Diff[1] / height; # deg theta2 = theta1 + math.pi; # deg theta ambiguity invscale = math.exp(Diff[0]/self.Mag) # 2.1: Correct rotation and scaling b1 = self.Warp_4dof(self.cmp,[0,0,theta1,invscale]) b2 = self.Warp_4dof(self.cmp,[0,0,theta2,invscale]) # 2.2 : Translation estimation diff1, peak1, self.r1 = self.PhaseCorrelation(self.ref,b1) #diff1, peak1 = PhaseCorrelation(a,b1) diff2, peak2, self.r2 = self.PhaseCorrelation(self.ref,b2) #diff2, peak2 = PhaseCorrelation(a,b2) # Use cv2.phaseCorrelate(a,b1) because it is much faster # 2.3: Compare peaks and choose true rotational error if peak1 > peak2: Trans = diff1 peak = peak1 theta = -theta1 else: Trans = diff2 peak = peak2 theta = -theta2 if theta > math.pi: theta -= math.pi*2 elif theta < -math.pi: theta += math.pi*2 # Results self.param = [Trans[0],Trans[1],theta,1/invscale] self.peak = peak self.perspective = self.poc2warp(self.center,self.param) self.affine = self.perspective[0:2,:] def match_new(self, newImg): self.cmp = newImg height,width = self.cmp.shape cy,cx = height/2,width/2 G_b = np.fft.fft2(self.cmp*self.hanw) self.LB = np.fft.fftshift(np.log(np.absolute(G_b)+1)) self.LPB = cv2.logPolar(self.LB, (cy, cx), self.Mag, flags=cv2.INTER_LINEAR+cv2.WARP_FILL_OUTLIERS) self.LPB_filt = self.LPB*self.Mask # 1.4: Phase Correlate to Get Rotation and Scaling Diff,peak,self.r_rotatescale = self.PhaseCorrelation(self.LPA_filt,self.LPB_filt) theta1 = 2*math.pi * Diff[1] / height; # deg theta2 = theta1 + math.pi; # deg theta ambiguity invscale = math.exp(Diff[0]/self.Mag) # 2.1: Correct rotation and scaling b1 = self.Warp_4dof(self.cmp,[0,0,theta1,invscale]) b2 = self.Warp_4dof(self.cmp,[0,0,theta2,invscale]) # 2.2 : Translation estimation diff1, peak1, self.r1 = self.PhaseCorrelation(self.ref,b1) #diff1, peak1 = PhaseCorrelation(a,b1) diff2, peak2, self.r2 = self.PhaseCorrelation(self.ref,b2) #diff2, peak2 = PhaseCorrelation(a,b2) # Use cv2.phaseCorrelate(a,b1) because it is much faster # 2.3: Compare peaks and choose true rotational error if peak1 > peak2: Trans = diff1 peak = peak1 theta = -theta1 else: Trans = diff2 peak = peak2 theta = -theta2 if theta > math.pi: theta -= math.pi*2 elif theta < -math.pi: theta += math.pi*2 # Results self.param = [Trans[0],Trans[1],theta,1/invscale] self.peak = peak self.perspective = self.poc2warp(self.center,self.param) self.affine = self.perspective[0:2,:] def poc2warp(self,center,param): cx,cy = center dx,dy,theta,scale = param cs = scale * math.cos(theta) sn = scale * math.sin(theta) Rot = np.float32([[cs, sn, 0],[-sn, cs,0],[0,0,1]]) center_Trans = np.float32([[1,0,cx],[0,1,cy],[0,0,1]]) center_iTrans = np.float32([[1,0,-cx],[0,1,-cy],[0,0,1]]) cRot = np.dot(np.dot(center_Trans,Rot),center_iTrans) Trans = np.float32([[1,0,dx],[0,1,dy],[0,0,1]]) Affine = np.dot(cRot,Trans) return Affine # Waro Image based on poc parameter def Warp_4dof(self,Img,param): center = np.array(Img.shape)/2 rows,cols = Img.shape Affine = self.poc2warp(center,param) outImg = cv2.warpPerspective(Img, Affine, (cols,rows), cv2.INTER_LINEAR) return outImg # Get peak point def CenterOfGravity(self,mat): hei,wid = mat.shape if hei != wid: # if mat size is not square, there must be something wrong print("Skip subpixel estimation!") return [0,0] Tile=np.arange(wid,dtype=float)-(wid-1.0)/2.0 Tx = np.tile(Tile,[hei,1]) # Ty = Tx.T Sum = np.sum(mat) #print(mat) Ax = np.sum(mat*Tx)/Sum Ay = np.sum(mat*Tx.T)/Sum return [Ay,Ax] # Weighted Center Of Gravity def WeightedCOG(self,mat): if mat.size == 0: print("Skip subpixel estimation!") Res = [0,0] else: peak = mat.max() newmat = mat*(mat>peak/10) # discard information of lower peak Res = self.CenterOfGravity(newmat) return Res # Phase Correlation def PhaseCorrelation(self, a, b): height,width = a.shape #dt = a.dtype # data type # Windowing # FFT G_a = np.fft.fft2(a*self.hanw) G_b = np.fft.fft2(b*self.hanw) conj_b = np.ma.conjugate(G_b) R = G_a*conj_b R /= np.absolute(R) r = np.fft.fftshift(np.fft.ifft2(R).real) # Get result and Interpolation DY,DX = np.unravel_index(r.argmax(), r.shape) # Subpixel Accuracy boxsize = 5 box = r[DY-int((boxsize-1)/2):DY+int((boxsize-1)/2)+1,DX-int((boxsize-1)/2):DX+int((boxsize-1)/2)+1] # x times x box #TY,TX= CenterOfGravity(box) TY,TX= self.WeightedCOG(box) sDY = TY+DY sDX = TX+DX # Show the result return [width/2-sDX,height/2-sDY],r[DY,DX],r def MoveCenter(self,Affine,center,newcenter): dx = newcenter[1] - center[1] dy = newcenter[0] - center[0] center_Trans = np.float32([[1,0,dx],[0,1,dy],[0,0,1]]) center_iTrans = np.float32([[1,0,-dx],[0,1,-dy],[0,0,1]]) newAffine = center_iTrans.dot( Affine.dot(center_Trans)) return newAffine def getParam(self): return self.param def getPeak(self): return self.peak def getAffine(self): return self.affine def getPerspective(self): return self.perspective def showRotatePeak(self): plt.imshow(self.r_rotatescale,vmin=self.r_rotatescale.min(),vmax=self.r_rotatescale.max(),cmap='gray') plt.show() def showTranslationPeak(self): plt.subplot(211) plt.imshow(self.r1,vmin=self.r1.min(),vmax=self.r1.max(),cmap='gray') plt.subplot(212) plt.imshow(self.r2,vmin=self.r2.min(),vmax=self.r2.max(),cmap='gray') plt.show() def showLPA(self): plt.imshow(self.LPA,vmin=self.LPA.min(),vmax=self.LPA.max(),cmap='gray') plt.show() def showLPB(self): plt.imshow(self.LPB,vmin=self.LPB.min(),vmax=self.LPB.max(),cmap='gray') plt.show() def showMAT(self,MAT): plt.figure() plt.imshow(MAT,vmin=MAT.min(),vmax=MAT.max(),cmap='gray') plt.show() def saveMat(self,MAT,name): cv2.imwrite(name,cv2.normalize(MAT, MAT, 0, 255, cv2.NORM_MINMAX)) def isSucceed(self): if self.peak > self.th: return 1 return 0 class imregpoc_noWCOG: def __init__(self,iref,icmp,*,threshold = 0.06, alpha=0.5, beta=0.8): self.ref = iref.astype(np.float32) self.cmp = icmp.astype(np.float32) self.th = threshold self.center = np.array(iref.shape)/2.0 self.alpha = alpha self.beta = beta self.param = [0,0,0,1] self.peak = 0 self.affine = np.float32([1,0,0,0,1,0]).reshape(2,3) self.perspective = np.float32([1,0,0,0,1,0,0,0,0]).reshape(3,3) self.match() def match(self): height,width = self.ref.shape self.hanw = cv2.createHanningWindow((height, width),cv2.CV_64F) # Windowing and FFT G_a = np.fft.fft2(self.ref*self.hanw) G_b = np.fft.fft2(self.cmp*self.hanw) # 1.1: Frequency Whitening self.LA = np.fft.fftshift(np.log(np.absolute(G_a)+1)) self.LB = np.fft.fftshift(np.log(np.absolute(G_b)+1)) # 1.2: Log polar Transformation cx = self.center[1] cy = self.center[0] self.Mag = width/math.log(width) self.LPA = cv2.logPolar(self.LA, (cy, cx), self.Mag, flags=cv2.INTER_LINEAR+cv2.WARP_FILL_OUTLIERS) self.LPB = cv2.logPolar(self.LB, (cy, cx), self.Mag, flags=cv2.INTER_LINEAR+cv2.WARP_FILL_OUTLIERS) # 1.3:filtering LPmin = math.floor(self.Mag*math.log(self.alpha*width/2.0/math.pi)) LPmax = min(width, math.floor(self.Mag*math.log(width*self.beta/2))) assert LPmax > LPmin, 'Invalid condition!\n Enlarge lpmax tuning parameter or lpmin_tuning parameter' Tile = np.repeat([0.0,1.0,0.0],[LPmin-1,LPmax-LPmin+1,width-LPmax]) self.Mask = np.tile(Tile,[height,1]) self.LPA_filt = self.LPA*self.Mask self.LPB_filt = self.LPB*self.Mask # 1.4: Phase Correlate to Get Rotation and Scaling Diff,peak,self.r_rotatescale = self.PhaseCorrelation(self.LPA_filt,self.LPB_filt) theta1 = 2*math.pi * Diff[1] / height; # deg theta2 = theta1 + math.pi; # deg theta ambiguity invscale = math.exp(Diff[0]/self.Mag) # 2.1: Correct rotation and scaling b1 = self.Warp_4dof(self.cmp,[0,0,theta1,invscale]) b2 = self.Warp_4dof(self.cmp,[0,0,theta2,invscale]) # 2.2 : Translation estimation diff1, peak1, self.r1 = self.PhaseCorrelation(self.ref,b1) #diff1, peak1 = PhaseCorrelation(a,b1) diff2, peak2, self.r2 = self.PhaseCorrelation(self.ref,b2) #diff2, peak2 = PhaseCorrelation(a,b2) # Use cv2.phaseCorrelate(a,b1) because it is much faster # 2.3: Compare peaks and choose true rotational error if peak1 > peak2: Trans = diff1 peak = peak1 theta = -theta1 else: Trans = diff2 peak = peak2 theta = -theta2 if theta > math.pi: theta -= math.pi*2 elif theta < -math.pi: theta += math.pi*2 # Results self.param = [Trans[0],Trans[1],theta,1/invscale] self.peak = peak self.perspective = self.poc2warp(self.center,self.param) self.affine = self.perspective[0:2,:] def match_new(self, newImg): self.cmp = newImg height,width = self.cmp.shape cy,cx = height/2,width/2 G_b = np.fft.fft2(self.cmp*self.hanw) self.LB = np.fft.fftshift(np.log(np.absolute(G_b)+1)) self.LPB = cv2.logPolar(self.LB, (cy, cx), self.Mag, flags=cv2.INTER_LINEAR+cv2.WARP_FILL_OUTLIERS) self.LPB_filt = self.LPB*self.Mask # 1.4: Phase Correlate to Get Rotation and Scaling Diff,peak,self.r_rotatescale = self.PhaseCorrelation(self.LPA_filt,self.LPB_filt) theta1 = 2*math.pi * Diff[1] / height; # deg theta2 = theta1 + math.pi; # deg theta ambiguity invscale = math.exp(Diff[0]/self.Mag) # 2.1: Correct rotation and scaling b1 = self.Warp_4dof(self.cmp,[0,0,theta1,invscale]) b2 = self.Warp_4dof(self.cmp,[0,0,theta2,invscale]) # 2.2 : Translation estimation diff1, peak1, self.r1 = self.PhaseCorrelation(self.ref,b1) #diff1, peak1 = PhaseCorrelation(a,b1) diff2, peak2, self.r2 = self.PhaseCorrelation(self.ref,b2) #diff2, peak2 = PhaseCorrelation(a,b2) # Use cv2.phaseCorrelate(a,b1) because it is much faster # 2.3: Compare peaks and choose true rotational error if peak1 > peak2: Trans = diff1 peak = peak1 theta = -theta1 else: Trans = diff2 peak = peak2 theta = -theta2 if theta > math.pi: theta -= math.pi*2 elif theta < -math.pi: theta += math.pi*2 # Results self.param = [Trans[0],Trans[1],theta,1/invscale] self.peak = peak self.perspective = self.poc2warp(self.center,self.param) self.affine = self.perspective[0:2,:] def poc2warp(self,center,param): cx,cy = center dx,dy,theta,scale = param cs = scale * math.cos(theta) sn = scale * math.sin(theta) Rot = np.float32([[cs, sn, 0],[-sn, cs,0],[0,0,1]]) center_Trans = np.float32([[1,0,cx],[0,1,cy],[0,0,1]]) center_iTrans = np.float32([[1,0,-cx],[0,1,-cy],[0,0,1]]) cRot = np.dot(np.dot(center_Trans,Rot),center_iTrans) Trans = np.float32([[1,0,dx],[0,1,dy],[0,0,1]]) Affine = np.dot(cRot,Trans) return Affine # Waro Image based on poc parameter def Warp_4dof(self,Img,param): center = np.array(Img.shape)/2 rows,cols = Img.shape Affine = self.poc2warp(center,param) outImg = cv2.warpPerspective(Img, Affine, (cols,rows), cv2.INTER_LINEAR) return outImg # Get peak point def CenterOfGravity(self,mat): hei,wid = mat.shape if hei != wid: # if mat size is not square, there must be something wrong print("Skip subpixel estimation!") return [0,0] Tile=np.arange(wid,dtype=float)-(wid-1.0)/2.0 Tx = np.tile(Tile,[hei,1]) # Ty = Tx.T Sum = np.sum(mat) #print(mat) Ax = np.sum(mat*Tx)/Sum Ay = np.sum(mat*Tx.T)/Sum return [Ay,Ax] # Weighted Center Of Gravity def WeightedCOG(self,mat): if mat.size == 0: print("Skip subpixel estimation!") Res = [0,0] else: peak = mat.max() newmat = mat # discard information of lower peak Res = self.CenterOfGravity(newmat) return Res # Phase Correlation def PhaseCorrelation(self, a, b): height,width = a.shape #dt = a.dtype # data type # Windowing # FFT G_a = np.fft.fft2(a*self.hanw) G_b = np.fft.fft2(b*self.hanw) conj_b = np.ma.conjugate(G_b) R = G_a*conj_b R /= np.absolute(R) r = np.fft.fftshift(np.fft.ifft2(R).real) # Get result and Interpolation DY,DX = np.unravel_index(r.argmax(), r.shape) # Subpixel Accuracy boxsize = 5 box = r[DY-int((boxsize-1)/2):DY+int((boxsize-1)/2)+1,DX-int((boxsize-1)/2):DX+int((boxsize-1)/2)+1] # x times x box #TY,TX= CenterOfGravity(box) TY,TX= self.WeightedCOG(box) sDY = TY+DY sDX = TX+DX # Show the result return [width/2-sDX,height/2-sDY],r[DY,DX],r def MoveCenter(self,Affine,center,newcenter): dx = newcenter[1] - center[1] dy = newcenter[0] - center[0] center_Trans = np.float32([[1,0,dx],[0,1,dy],[0,0,1]]) center_iTrans = np.float32([[1,0,-dx],[0,1,-dy],[0,0,1]]) newAffine = center_iTrans.dot( Affine.dot(center_Trans)) return newAffine def getParam(self): return self.param def getPeak(self): return self.peak def getAffine(self): return self.affine def getPerspective(self): return self.perspective def showRotatePeak(self): plt.imshow(self.r_rotatescale,vmin=self.r_rotatescale.min(),vmax=self.r_rotatescale.max(),cmap='gray') plt.show() def showTranslationPeak(self): plt.subplot(211) plt.imshow(self.r1,vmin=self.r1.min(),vmax=self.r1.max(),cmap='gray') plt.subplot(212) plt.imshow(self.r2,vmin=self.r2.min(),vmax=self.r2.max(),cmap='gray') plt.show() def showLPA(self): plt.imshow(self.LPA,vmin=self.LPA.min(),vmax=self.LPA.max(),cmap='gray') plt.show() def showLPB(self): plt.imshow(self.LPB,vmin=self.LPB.min(),vmax=self.LPB.max(),cmap='gray') plt.show() def showMAT(self,MAT): plt.figure() plt.imshow(MAT,vmin=MAT.min(),vmax=MAT.max(),cmap='gray') plt.show() def saveMat(self,MAT,name): cv2.imwrite(name,cv2.normalize(MAT, MAT, 0, 255, cv2.NORM_MINMAX)) def isSucceed(self): if self.peak > self.th: return 1 return 0 class imregpoc_largeM: def __init__(self,iref,icmp,*,threshold = 0.06, alpha=0.5, beta=0.8): self.ref = iref.astype(np.float32) self.cmp = icmp.astype(np.float32) self.th = threshold self.center = np.array(iref.shape)/2.0 self.alpha = alpha self.beta = beta self.param = [0,0,0,1] self.peak = 0 self.affine = np.float32([1,0,0,0,1,0]).reshape(2,3) self.perspective = np.float32([1,0,0,0,1,0,0,0,0]).reshape(3,3) self.match() def match(self): height,width = self.ref.shape self.hanw = cv2.createHanningWindow((height, width),cv2.CV_64F) # Windowing and FFT G_a = np.fft.fft2(self.ref*self.hanw) G_b = np.fft.fft2(self.cmp*self.hanw) # 1.1: Frequency Whitening self.LA = np.fft.fftshift(np.log(np.absolute(G_a)+1)) self.LB = np.fft.fftshift(np.log(np.absolute(G_b)+1)) # 1.2: Log polar Transformation cx = self.center[1] cy = self.center[0] self.Mag = width/(math.log(width)-math.log(2)*0.5) self.LPA = cv2.logPolar(self.LA, (cy, cx), self.Mag, flags=cv2.INTER_LINEAR+cv2.WARP_FILL_OUTLIERS) self.LPB = cv2.logPolar(self.LB, (cy, cx), self.Mag, flags=cv2.INTER_LINEAR+cv2.WARP_FILL_OUTLIERS) # 1.3:filtering LPmin = math.floor(self.Mag*math.log(self.alpha*width/2.0/math.pi)) LPmax = min(width, math.floor(self.Mag*math.log(width*self.beta/2))) assert LPmax > LPmin, 'Invalid condition!\n Enlarge lpmax tuning parameter or lpmin_tuning parameter' Tile = np.repeat([0.0,1.0,0.0],[LPmin-1,LPmax-LPmin+1,width-LPmax]) self.Mask = np.tile(Tile,[height,1]) self.LPA_filt = self.LPA*self.Mask self.LPB_filt = self.LPB*self.Mask # 1.4: Phase Correlate to Get Rotation and Scaling Diff,peak,self.r_rotatescale = self.PhaseCorrelation(self.LPA_filt,self.LPB_filt) theta1 = 2*math.pi * Diff[1] / height; # deg theta2 = theta1 + math.pi; # deg theta ambiguity invscale = math.exp(Diff[0]/self.Mag) # 2.1: Correct rotation and scaling b1 = self.Warp_4dof(self.cmp,[0,0,theta1,invscale]) b2 = self.Warp_4dof(self.cmp,[0,0,theta2,invscale]) # 2.2 : Translation estimation diff1, peak1, self.r1 = self.PhaseCorrelation(self.ref,b1) #diff1, peak1 = PhaseCorrelation(a,b1) diff2, peak2, self.r2 = self.PhaseCorrelation(self.ref,b2) #diff2, peak2 = PhaseCorrelation(a,b2) # Use cv2.phaseCorrelate(a,b1) because it is much faster # 2.3: Compare peaks and choose true rotational error if peak1 > peak2: Trans = diff1 peak = peak1 theta = -theta1 else: Trans = diff2 peak = peak2 theta = -theta2 if theta > math.pi: theta -= math.pi*2 elif theta < -math.pi: theta += math.pi*2 # Results self.param = [Trans[0],Trans[1],theta,1/invscale] self.peak = peak self.perspective = self.poc2warp(self.center,self.param) self.affine = self.perspective[0:2,:] def match_new(self, newImg): self.cmp = newImg height,width = self.cmp.shape cy,cx = height/2,width/2 G_b = np.fft.fft2(self.cmp*self.hanw) self.LB = np.fft.fftshift(np.log(np.absolute(G_b)+1)) self.LPB = cv2.logPolar(self.LB, (cy, cx), self.Mag, flags=cv2.INTER_LINEAR+cv2.WARP_FILL_OUTLIERS) self.LPB_filt = self.LPB*self.Mask # 1.4: Phase Correlate to Get Rotation and Scaling Diff,peak,self.r_rotatescale = self.PhaseCorrelation(self.LPA_filt,self.LPB_filt) theta1 = 2*math.pi * Diff[1] / height; # deg theta2 = theta1 + math.pi; # deg theta ambiguity invscale = math.exp(Diff[0]/self.Mag) # 2.1: Correct rotation and scaling b1 = self.Warp_4dof(self.cmp,[0,0,theta1,invscale]) b2 = self.Warp_4dof(self.cmp,[0,0,theta2,invscale]) # 2.2 : Translation estimation diff1, peak1, self.r1 = self.PhaseCorrelation(self.ref,b1) #diff1, peak1 = PhaseCorrelation(a,b1) diff2, peak2, self.r2 = self.PhaseCorrelation(self.ref,b2) #diff2, peak2 = PhaseCorrelation(a,b2) # Use cv2.phaseCorrelate(a,b1) because it is much faster # 2.3: Compare peaks and choose true rotational error if peak1 > peak2: Trans = diff1 peak = peak1 theta = -theta1 else: Trans = diff2 peak = peak2 theta = -theta2 if theta > math.pi: theta -= math.pi*2 elif theta < -math.pi: theta += math.pi*2 # Results self.param = [Trans[0],Trans[1],theta,1/invscale] self.peak = peak self.perspective = self.poc2warp(self.center,self.param) self.affine = self.perspective[0:2,:] def poc2warp(self,center,param): cx,cy = center dx,dy,theta,scale = param cs = scale * math.cos(theta) sn = scale * math.sin(theta) Rot = np.float32([[cs, sn, 0],[-sn, cs,0],[0,0,1]]) center_Trans = np.float32([[1,0,cx],[0,1,cy],[0,0,1]]) center_iTrans = np.float32([[1,0,-cx],[0,1,-cy],[0,0,1]]) cRot = np.dot(np.dot(center_Trans,Rot),center_iTrans) Trans = np.float32([[1,0,dx],[0,1,dy],[0,0,1]]) Affine = np.dot(cRot,Trans) return Affine # Waro Image based on poc parameter def Warp_4dof(self,Img,param): center = np.array(Img.shape)/2 rows,cols = Img.shape Affine = self.poc2warp(center,param) outImg = cv2.warpPerspective(Img, Affine, (cols,rows), cv2.INTER_LINEAR) return outImg # Get peak point def CenterOfGravity(self,mat): hei,wid = mat.shape if hei != wid: # if mat size is not square, there must be something wrong print("Skip subpixel estimation!") return [0,0] Tile=np.arange(wid,dtype=float)-(wid-1.0)/2.0 Tx = np.tile(Tile,[hei,1]) # Ty = Tx.T Sum = np.sum(mat) #print(mat) Ax = np.sum(mat*Tx)/Sum Ay = np.sum(mat*Tx.T)/Sum return [Ay,Ax] # Weighted Center Of Gravity def WeightedCOG(self,mat): if mat.size == 0: print("Skip subpixel estimation!") Res = [0,0] else: peak = mat.max() newmat = mat*(mat>peak/10)# discard information of lower peak Res = self.CenterOfGravity(newmat) return Res # Phase Correlation def PhaseCorrelation(self, a, b): height,width = a.shape #dt = a.dtype # data type # Windowing # FFT G_a = np.fft.fft2(a*self.hanw) G_b = np.fft.fft2(b*self.hanw) conj_b = np.ma.conjugate(G_b) R = G_a*conj_b R /= np.absolute(R) r = np.fft.fftshift(np.fft.ifft2(R).real) # Get result and Interpolation DY,DX = np.unravel_index(r.argmax(), r.shape) # Subpixel Accuracy boxsize = 5 box = r[DY-int((boxsize-1)/2):DY+int((boxsize-1)/2)+1,DX-int((boxsize-1)/2):DX+int((boxsize-1)/2)+1] # x times x box #TY,TX= CenterOfGravity(box) TY,TX= self.WeightedCOG(box) sDY = TY+DY sDX = TX+DX # Show the result return [width/2-sDX,height/2-sDY],r[DY,DX],r def MoveCenter(self,Affine,center,newcenter): dx = newcenter[1] - center[1] dy = newcenter[0] - center[0] center_Trans = np.float32([[1,0,dx],[0,1,dy],[0,0,1]]) center_iTrans = np.float32([[1,0,-dx],[0,1,-dy],[0,0,1]]) newAffine = center_iTrans.dot( Affine.dot(center_Trans)) return newAffine def getParam(self): return self.param def getPeak(self): return self.peak def getAffine(self): return self.affine def getPerspective(self): return self.perspective def showRotatePeak(self): plt.imshow(self.r_rotatescale,vmin=self.r_rotatescale.min(),vmax=self.r_rotatescale.max(),cmap='gray') plt.show() def showTranslationPeak(self): plt.subplot(211) plt.imshow(self.r1,vmin=self.r1.min(),vmax=self.r1.max(),cmap='gray') plt.subplot(212) plt.imshow(self.r2,vmin=self.r2.min(),vmax=self.r2.max(),cmap='gray') plt.show() def showLPA(self): plt.imshow(self.LPA,vmin=self.LPA.min(),vmax=self.LPA.max(),cmap='gray') plt.show() def showLPB(self): plt.imshow(self.LPB,vmin=self.LPB.min(),vmax=self.LPB.max(),cmap='gray') plt.show() def showMAT(self,MAT): plt.figure() plt.imshow(MAT,vmin=MAT.min(),vmax=MAT.max(),cmap='gray') plt.show() def saveMat(self,MAT,name): cv2.imwrite(name,cv2.normalize(MAT, MAT, 0, 255, cv2.NORM_MINMAX)) def isSucceed(self): if self.peak > self.th: return 1 return 0 class imregpoc_NoWhite: def __init__(self,iref,icmp,*,threshold = 0.06, alpha=0.5, beta=0.8): self.ref = iref.astype(np.float32) self.cmp = icmp.astype(np.float32) self.th = threshold self.center = np.array(iref.shape)/2.0 self.alpha = alpha self.beta = beta self.param = [0,0,0,1] self.peak = 0 self.affine = np.float32([1,0,0,0,1,0]).reshape(2,3) self.perspective = np.float32([1,0,0,0,1,0,0,0,0]).reshape(3,3) self.match() def match(self): height,width = self.ref.shape self.hanw = cv2.createHanningWindow((height, width),cv2.CV_64F) # Windowing and FFT G_a = np.fft.fft2(self.ref*self.hanw) G_b = np.fft.fft2(self.cmp*self.hanw) # 1.1: Frequency Whitening self.LA = np.fft.fftshift(np.absolute(G_a)) self.LB = np.fft.fftshift(np.absolute(G_b)) # 1.2: Log polar Transformation cx = self.center[1] cy = self.center[0] self.Mag = width/math.log(width) self.LPA = cv2.logPolar(self.LA, (cy, cx), self.Mag, flags=cv2.INTER_LINEAR+cv2.WARP_FILL_OUTLIERS) self.LPB = cv2.logPolar(self.LB, (cy, cx), self.Mag, flags=cv2.INTER_LINEAR+cv2.WARP_FILL_OUTLIERS) # 1.3:filtering LPmin = math.floor(self.Mag*math.log(self.alpha*width/2.0/math.pi)) LPmax = min(width, math.floor(self.Mag*math.log(width*self.beta/2))) assert LPmax > LPmin, 'Invalid condition!\n Enlarge lpmax tuning parameter or lpmin_tuning parameter' Tile = np.repeat([0.0,1.0,0.0],[LPmin-1,LPmax-LPmin+1,width-LPmax]) self.Mask = np.tile(Tile,[height,1]) self.LPA_filt = self.LPA*self.Mask self.LPB_filt = self.LPB*self.Mask # 1.4: Phase Correlate to Get Rotation and Scaling Diff,peak,self.r_rotatescale = self.PhaseCorrelation(self.LPA_filt,self.LPB_filt) theta1 = 2*math.pi * Diff[1] / height; # deg theta2 = theta1 + math.pi; # deg theta ambiguity invscale = math.exp(Diff[0]/self.Mag) # 2.1: Correct rotation and scaling b1 = self.Warp_4dof(self.cmp,[0,0,theta1,invscale]) b2 = self.Warp_4dof(self.cmp,[0,0,theta2,invscale]) # 2.2 : Translation estimation diff1, peak1, self.r1 = self.PhaseCorrelation(self.ref,b1) #diff1, peak1 = PhaseCorrelation(a,b1) diff2, peak2, self.r2 = self.PhaseCorrelation(self.ref,b2) #diff2, peak2 = PhaseCorrelation(a,b2) # Use cv2.phaseCorrelate(a,b1) because it is much faster # 2.3: Compare peaks and choose true rotational error if peak1 > peak2: Trans = diff1 peak = peak1 theta = -theta1 else: Trans = diff2 peak = peak2 theta = -theta2 if theta > math.pi: theta -= math.pi*2 elif theta < -math.pi: theta += math.pi*2 # Results self.param = [Trans[0],Trans[1],theta,1/invscale] self.peak = peak self.perspective = self.poc2warp(self.center,self.param) self.affine = self.perspective[0:2,:] def match_new(self, newImg): self.cmp = newImg height,width = self.cmp.shape cy,cx = height/2,width/2 G_b = np.fft.fft2(self.cmp*self.hanw) self.LB = np.fft.fftshift(np.absolute(G_b)) self.LPB = cv2.logPolar(self.LB, (cy, cx), self.Mag, flags=cv2.INTER_LINEAR+cv2.WARP_FILL_OUTLIERS) self.LPB_filt = self.LPB*self.Mask # 1.4: Phase Correlate to Get Rotation and Scaling Diff,peak,self.r_rotatescale = self.PhaseCorrelation(self.LPA_filt,self.LPB_filt) theta1 = 2*math.pi * Diff[1] / height; # deg theta2 = theta1 + math.pi; # deg theta ambiguity invscale = math.exp(Diff[0]/self.Mag) # 2.1: Correct rotation and scaling b1 = self.Warp_4dof(self.cmp,[0,0,theta1,invscale]) b2 = self.Warp_4dof(self.cmp,[0,0,theta2,invscale]) # 2.2 : Translation estimation diff1, peak1, self.r1 = self.PhaseCorrelation(self.ref,b1) #diff1, peak1 = PhaseCorrelation(a,b1) diff2, peak2, self.r2 = self.PhaseCorrelation(self.ref,b2) #diff2, peak2 = PhaseCorrelation(a,b2) # Use cv2.phaseCorrelate(a,b1) because it is much faster # 2.3: Compare peaks and choose true rotational error if peak1 > peak2: Trans = diff1 peak = peak1 theta = -theta1 else: Trans = diff2 peak = peak2 theta = -theta2 if theta > math.pi: theta -= math.pi*2 elif theta < -math.pi: theta += math.pi*2 # Results self.param = [Trans[0],Trans[1],theta,1/invscale] self.peak = peak self.perspective = self.poc2warp(self.center,self.param) self.affine = self.perspective[0:2,:] def poc2warp(self,center,param): cx,cy = center dx,dy,theta,scale = param cs = scale * math.cos(theta) sn = scale * math.sin(theta) Rot = np.float32([[cs, sn, 0],[-sn, cs,0],[0,0,1]]) center_Trans = np.float32([[1,0,cx],[0,1,cy],[0,0,1]]) center_iTrans = np.float32([[1,0,-cx],[0,1,-cy],[0,0,1]]) cRot = np.dot(np.dot(center_Trans,Rot),center_iTrans) Trans = np.float32([[1,0,dx],[0,1,dy],[0,0,1]]) Affine = np.dot(cRot,Trans) return Affine # Waro Image based on poc parameter def Warp_4dof(self,Img,param): center = np.array(Img.shape)/2 rows,cols = Img.shape Affine = self.poc2warp(center,param) outImg = cv2.warpPerspective(Img, Affine, (cols,rows), cv2.INTER_LINEAR) return outImg # Get peak point def CenterOfGravity(self,mat): hei,wid = mat.shape if hei != wid: # if mat size is not square, there must be something wrong print("Skip subpixel estimation!") return [0,0] Tile=np.arange(wid,dtype=float)-(wid-1.0)/2.0 Tx = np.tile(Tile,[hei,1]) # Ty = Tx.T Sum = np.sum(mat) #print(mat) Ax = np.sum(mat*Tx)/Sum Ay = np.sum(mat*Tx.T)/Sum return [Ay,Ax] # Weighted Center Of Gravity def WeightedCOG(self,mat): if mat.size == 0: print("Skip subpixel estimation!") Res = [0,0] else: peak = mat.max() newmat = mat*(mat>peak/10) # discard information of lower peak Res = self.CenterOfGravity(newmat) return Res # Phase Correlation def PhaseCorrelation(self, a, b): height,width = a.shape #dt = a.dtype # data type # Windowing # FFT G_a = np.fft.fft2(a*self.hanw) G_b = np.fft.fft2(b*self.hanw) conj_b = np.ma.conjugate(G_b) R = G_a*conj_b R /= np.absolute(R) r = np.fft.fftshift(np.fft.ifft2(R).real) # Get result and Interpolation DY,DX = np.unravel_index(r.argmax(), r.shape) # Subpixel Accuracy boxsize = 5 box = r[DY-int((boxsize-1)/2):DY+int((boxsize-1)/2)+1,DX-int((boxsize-1)/2):DX+int((boxsize-1)/2)+1] # x times x box #TY,TX= CenterOfGravity(box) TY,TX= self.WeightedCOG(box) sDY = TY+DY sDX = TX+DX # Show the result return [width/2-sDX,height/2-sDY],r[DY,DX],r def MoveCenter(self,Affine,center,newcenter): dx = newcenter[1] - center[1] dy = newcenter[0] - center[0] center_Trans = np.float32([[1,0,dx],[0,1,dy],[0,0,1]]) center_iTrans = np.float32([[1,0,-dx],[0,1,-dy],[0,0,1]]) newAffine = center_iTrans.dot( Affine.dot(center_Trans)) return newAffine def getParam(self): return self.param def getPeak(self): return self.peak def getAffine(self): return self.affine def getPerspective(self): return self.perspective def showRotatePeak(self): plt.imshow(self.r_rotatescale,vmin=self.r_rotatescale.min(),vmax=self.r_rotatescale.max(),cmap='gray') plt.show() def showTranslationPeak(self): plt.subplot(211) plt.imshow(self.r1,vmin=self.r1.min(),vmax=self.r1.max(),cmap='gray') plt.subplot(212) plt.imshow(self.r2,vmin=self.r2.min(),vmax=self.r2.max(),cmap='gray') plt.show() def showLPA(self): plt.imshow(self.LPA,vmin=self.LPA.min(),vmax=self.LPA.max(),cmap='gray') plt.show() def showLPB(self): plt.imshow(self.LPB,vmin=self.LPB.min(),vmax=self.LPB.max(),cmap='gray') plt.show() def showMAT(self,MAT): plt.figure() plt.imshow(MAT,vmin=MAT.min(),vmax=MAT.max(),cmap='gray') plt.show() def saveMat(self,MAT,name): cv2.imwrite(name,cv2.normalize(MAT, MAT, 0, 255, cv2.NORM_MINMAX)) def isSucceed(self): if self.peak > self.th: return 1 return 0
py
b41772ba88d14bd218d0f7ff69049c96a086bb23
from connector import create_connection def insert_coord(data): values = data.split(' ') tracking_id = values[0] names = get_names(tracking_id) insert_data(tracking_id, values[3], values[4], values[2], values[1], names[0][0]) def get_names(tracking_id): cnx2 = create_connection() cursor = cnx2.cursor() query = ("Select ownerID from Animal where trackingID = %s") cursor.execute(query, (tracking_id, )) result = cursor.fetchall() cursor.close() cnx2.close() return result def insert_data(tracking_id, longitude, latitude, time, date, owner): cnx2 = create_connection() cursor = cnx2.cursor() query = ("Insert into currentCoordinates (trackingID,longitude,latitude,time,date, username) values(%s, %s, %s,%s, %s, %s)") cursor.execute(query, (tracking_id, longitude, latitude, time, date, str(owner))) cnx2.commit() cursor.close() cnx2.close()
py
b41774e9a652e06f11b1ab29a862360c18597fe6
#!/usr/bin/env python # coding=utf-8 """Environment Information. # Authors: MohammadHossein GohariNejad <[email protected]> # License: BSD 3 clause """ import os import signal import sys from time import gmtime,strftime import rospy; import tf; from geometry_msgs.msg import *; from nav_msgs.msg import *; from std_msgs.msg import *; import threading; import math robots_list=["robot0","robot1","robot2","robot3"]; info_list=[]; map_logger=None; path_logger=None; base_time=0; def on_exit(*args): global information_logger print ( "\n EXITING MESSAGE HANDLER") if path_logger!=None : path_logger.write("\n The Test has finished on "+strftime("%Y-%m-%d %H:%M:%S", gmtime()) + " GMT time \n") path_logger.write("\n ======================== \n ======================== \n \n \n") path_logger.close() sys.exit(0) class path_wrapper: def __init__(self,robot_name_space,t_lock_path,subscribing_topic): self.path_sub=rospy.Subscriber("/"+robot_name_space+"/"+subscribing_topic, Path, self.path_callback); self.poses=[]; self.poses_lenght=0; self.path_lenght=0.0; self.t_lock_path=t_lock_path; self.robot=robot_name_space; def path_callback(self,input_path_data): self.t_lock_path.acquire(); self.poses=list(input_path_data.poses); self.t_lock_path.release(); def path_lenght_calculator(self): self.t_lock_path.acquire(); for i in range(self.poses_lenght,len(self.poses)): if (i==0):continue x=(self.poses[i].pose.position.x-self.poses[i-1].pose.position.x)*(self.poses[i].pose.position.x-self.poses[i-1].pose.position.x) y=(self.poses[i].pose.position.y-self.poses[i-1].pose.position.y)*(self.poses[i].pose.position.y-self.poses[i-1].pose.position.y) self.path_lenght+=float("{0:.2f}".format(math.sqrt(y+x))); self.poses_lenght=len(self.poses); self.t_lock_path.release(); return self.path_lenght; def main(): global info_list; global path_logger; global map_logger; global base_time; global logfile; global robots_list; signal.signal(signal.SIGINT, on_exit) signal.signal(signal.SIGTERM, on_exit) rospy.init_node('path_node', anonymous=True) debuger_mode=True; if debuger_mode==True: log_file=rospy.get_param("log_file",default="results") log_folder=rospy.get_param("log_folder",default="map") if not os.path.exists("/home/sosvr/communication_node_project/communication_node2/results_pack/"+log_folder): os.makedirs("/home/sosvr/communication_node_project/communication_node2/results_pack/"+log_folder) path_logger = open("/home/sosvr/communication_node_project/communication_node2/results_pack/"+log_folder+"/"+log_file+"_path.log", "w") path_logger.write("\n \n \n ###################### \n ###################### \n") path_logger.write("\n This is the result of test on "+strftime("%Y-%m-%d %H:%M:%S", gmtime()) + " GMT time \n") for i in robots_list: info_list.append(path_wrapper(i,threading.Lock(),"trajectory")); rate = rospy.Rate(0.05) base_time = 0; while (not rospy.is_shutdown()) and base_time<1500: if(base_time%100==0):print(str(base_time/100),"seconds"); if debuger_mode==True: for i in info_list: i.path_lenght_calculator(); path_logger.write("\n "+i.robot+","+str(i.path_lenght)+" ,"+str(int(base_time))); base_time+=20; rate.sleep(); print("finished"); rospy.spin() main();
py
b41775f3c8b4182bb6c0bf2080e9f3f243b83244
import dash import dash_auth import dash_core_components as dcc import dash_html_components as html import plotly # Keep this out of source code repository - save in a file or a database VALID_USERNAME_PASSWORD_PAIRS = { 'hello': 'world' } external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) auth = dash_auth.BasicAuth( app, VALID_USERNAME_PASSWORD_PAIRS ) app.layout = html.Div([ html.H1('Welcome to the app'), html.H3('You are successfully authorized'), dcc.Dropdown( id='dropdown', options=[{'label': i, 'value': i} for i in ['A', 'B']], value='A' ), dcc.Graph(id='graph') ], className='container') @app.callback( dash.dependencies.Output('graph', 'figure'), [dash.dependencies.Input('dropdown', 'value')]) def update_graph(dropdown_value): return { 'layout': { 'title': 'Graph of {}'.format(dropdown_value), 'margin': { 'l': 20, 'b': 20, 'r': 10, 't': 60 } }, 'data': [{'x': [1, 2, 3], 'y': [4, 1, 2]}] } if __name__ == '__main__': app.run_server(debug=True)
py
b4177667e982cfa4df308f6c4ceb3a3341b843a3
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._inputs import * __all__ = ['GalleryImageVersionArgs', 'GalleryImageVersion'] @pulumi.input_type class GalleryImageVersionArgs: def __init__(__self__, *, gallery_image_name: pulumi.Input[str], gallery_name: pulumi.Input[str], publishing_profile: pulumi.Input['GalleryImageVersionPublishingProfileArgs'], resource_group_name: pulumi.Input[str], gallery_image_version_name: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None): """ The set of arguments for constructing a GalleryImageVersion resource. :param pulumi.Input[str] gallery_image_name: The name of the gallery Image Definition in which the Image Version is to be created. :param pulumi.Input[str] gallery_name: The name of the Shared Image Gallery in which the Image Definition resides. :param pulumi.Input['GalleryImageVersionPublishingProfileArgs'] publishing_profile: The publishing profile of a gallery Image Version. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[str] gallery_image_version_name: The name of the gallery Image Version to be created. Needs to follow semantic version name pattern: The allowed characters are digit and period. Digits must be within the range of a 32-bit integer. Format: <MajorVersion>.<MinorVersion>.<Patch> :param pulumi.Input[str] location: Resource location :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags """ pulumi.set(__self__, "gallery_image_name", gallery_image_name) pulumi.set(__self__, "gallery_name", gallery_name) pulumi.set(__self__, "publishing_profile", publishing_profile) pulumi.set(__self__, "resource_group_name", resource_group_name) if gallery_image_version_name is not None: pulumi.set(__self__, "gallery_image_version_name", gallery_image_version_name) if location is not None: pulumi.set(__self__, "location", location) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter(name="galleryImageName") def gallery_image_name(self) -> pulumi.Input[str]: """ The name of the gallery Image Definition in which the Image Version is to be created. """ return pulumi.get(self, "gallery_image_name") @gallery_image_name.setter def gallery_image_name(self, value: pulumi.Input[str]): pulumi.set(self, "gallery_image_name", value) @property @pulumi.getter(name="galleryName") def gallery_name(self) -> pulumi.Input[str]: """ The name of the Shared Image Gallery in which the Image Definition resides. """ return pulumi.get(self, "gallery_name") @gallery_name.setter def gallery_name(self, value: pulumi.Input[str]): pulumi.set(self, "gallery_name", value) @property @pulumi.getter(name="publishingProfile") def publishing_profile(self) -> pulumi.Input['GalleryImageVersionPublishingProfileArgs']: """ The publishing profile of a gallery Image Version. """ return pulumi.get(self, "publishing_profile") @publishing_profile.setter def publishing_profile(self, value: pulumi.Input['GalleryImageVersionPublishingProfileArgs']): pulumi.set(self, "publishing_profile", value) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="galleryImageVersionName") def gallery_image_version_name(self) -> Optional[pulumi.Input[str]]: """ The name of the gallery Image Version to be created. Needs to follow semantic version name pattern: The allowed characters are digit and period. Digits must be within the range of a 32-bit integer. Format: <MajorVersion>.<MinorVersion>.<Patch> """ return pulumi.get(self, "gallery_image_version_name") @gallery_image_version_name.setter def gallery_image_version_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "gallery_image_version_name", value) @property @pulumi.getter def location(self) -> Optional[pulumi.Input[str]]: """ Resource location """ return pulumi.get(self, "location") @location.setter def location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "location", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ Resource tags """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) class GalleryImageVersion(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, gallery_image_name: Optional[pulumi.Input[str]] = None, gallery_image_version_name: Optional[pulumi.Input[str]] = None, gallery_name: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, publishing_profile: Optional[pulumi.Input[pulumi.InputType['GalleryImageVersionPublishingProfileArgs']]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): """ Specifies information about the gallery Image Version that you want to create or update. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] gallery_image_name: The name of the gallery Image Definition in which the Image Version is to be created. :param pulumi.Input[str] gallery_image_version_name: The name of the gallery Image Version to be created. Needs to follow semantic version name pattern: The allowed characters are digit and period. Digits must be within the range of a 32-bit integer. Format: <MajorVersion>.<MinorVersion>.<Patch> :param pulumi.Input[str] gallery_name: The name of the Shared Image Gallery in which the Image Definition resides. :param pulumi.Input[str] location: Resource location :param pulumi.Input[pulumi.InputType['GalleryImageVersionPublishingProfileArgs']] publishing_profile: The publishing profile of a gallery Image Version. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags """ ... @overload def __init__(__self__, resource_name: str, args: GalleryImageVersionArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Specifies information about the gallery Image Version that you want to create or update. :param str resource_name: The name of the resource. :param GalleryImageVersionArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(GalleryImageVersionArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, gallery_image_name: Optional[pulumi.Input[str]] = None, gallery_image_version_name: Optional[pulumi.Input[str]] = None, gallery_name: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, publishing_profile: Optional[pulumi.Input[pulumi.InputType['GalleryImageVersionPublishingProfileArgs']]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = GalleryImageVersionArgs.__new__(GalleryImageVersionArgs) if gallery_image_name is None and not opts.urn: raise TypeError("Missing required property 'gallery_image_name'") __props__.__dict__["gallery_image_name"] = gallery_image_name __props__.__dict__["gallery_image_version_name"] = gallery_image_version_name if gallery_name is None and not opts.urn: raise TypeError("Missing required property 'gallery_name'") __props__.__dict__["gallery_name"] = gallery_name __props__.__dict__["location"] = location if publishing_profile is None and not opts.urn: raise TypeError("Missing required property 'publishing_profile'") __props__.__dict__["publishing_profile"] = publishing_profile if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["tags"] = tags __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["replication_status"] = None __props__.__dict__["storage_profile"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:compute/v20180601:GalleryImageVersion"), pulumi.Alias(type_="azure-native:compute:GalleryImageVersion"), pulumi.Alias(type_="azure-nextgen:compute:GalleryImageVersion"), pulumi.Alias(type_="azure-native:compute/v20190301:GalleryImageVersion"), pulumi.Alias(type_="azure-nextgen:compute/v20190301:GalleryImageVersion"), pulumi.Alias(type_="azure-native:compute/v20190701:GalleryImageVersion"), pulumi.Alias(type_="azure-nextgen:compute/v20190701:GalleryImageVersion"), pulumi.Alias(type_="azure-native:compute/v20191201:GalleryImageVersion"), pulumi.Alias(type_="azure-nextgen:compute/v20191201:GalleryImageVersion"), pulumi.Alias(type_="azure-native:compute/v20200930:GalleryImageVersion"), pulumi.Alias(type_="azure-nextgen:compute/v20200930:GalleryImageVersion")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(GalleryImageVersion, __self__).__init__( 'azure-native:compute/v20180601:GalleryImageVersion', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'GalleryImageVersion': """ Get an existing GalleryImageVersion resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = GalleryImageVersionArgs.__new__(GalleryImageVersionArgs) __props__.__dict__["location"] = None __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["publishing_profile"] = None __props__.__dict__["replication_status"] = None __props__.__dict__["storage_profile"] = None __props__.__dict__["tags"] = None __props__.__dict__["type"] = None return GalleryImageVersion(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def location(self) -> pulumi.Output[str]: """ Resource location """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ The provisioning state, which only appears in the response. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="publishingProfile") def publishing_profile(self) -> pulumi.Output['outputs.GalleryImageVersionPublishingProfileResponse']: """ The publishing profile of a gallery Image Version. """ return pulumi.get(self, "publishing_profile") @property @pulumi.getter(name="replicationStatus") def replication_status(self) -> pulumi.Output['outputs.ReplicationStatusResponse']: """ This is the replication status of the gallery Image Version. """ return pulumi.get(self, "replication_status") @property @pulumi.getter(name="storageProfile") def storage_profile(self) -> pulumi.Output['outputs.GalleryImageVersionStorageProfileResponse']: """ This is the storage profile of a gallery Image Version. """ return pulumi.get(self, "storage_profile") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type """ return pulumi.get(self, "type")
py
b41776823f36bf9b2a9b13e51c39fa6836f3334a
#!/usr/bin/env python # Copyright 2021-2022 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function import argparse import os import subprocess import sys from distutils.command.build_py import build_py from distutils.core import setup # We need to know the prefix for the installation # so we can know where to get the library parser = argparse.ArgumentParser() parser.add_argument("--prefix", required=False) parser.add_argument( "--recurse", required=False, default=False, action="store_true" ) args, _ = parser.parse_known_args() class my_build_py(build_py): def run(self): if not self.dry_run: self.mkpath(self.build_lib) # Compile up our C header here and insert it as a string # into legate_core_cffi.py so that it is installed with # the python library directly root_dir = os.path.dirname(os.path.realpath(__file__)) header_src = os.path.join( root_dir, "src", "cunumeric", "cunumeric_c.h" ) output_dir = os.path.join(root_dir, "cunumeric") include_dir = os.path.join(args.prefix, "include") header = subprocess.check_output( [ os.getenv("CC", "gcc"), "-E", "-DLEGATE_USE_PYTHON_CFFI", "-I" + str(include_dir), "-P", header_src, ] ).decode("utf-8") libpath = os.path.join(args.prefix, "lib") with open(os.path.join(output_dir, "install_info.py.in")) as f: content = f.read() content = content.format( header=repr(header), libpath=repr(libpath) ) with open(os.path.join(output_dir, "install_info.py"), "wb") as f: f.write(content.encode("utf-8")) build_py.run(self) # If we haven't been called from install.py then do that first if args.recurse: # Remove the recurse argument from the list sys.argv.remove("--recurse") setup( name="cunumeric", version="22.03", packages=[ "cunumeric", "cunumeric.linalg", "cunumeric.random", "cunumeric._ufunc", ], cmdclass={"build_py": my_build_py}, ) else: with open("install.py") as f: code = compile(f.read(), "install.py", "exec") exec(code)
py
b417775064388ac0cfcc6d1eddacec66eaf1b127
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.async_support.base.exchange import Exchange import hashlib import math import json from ccxt.base.errors import ExchangeError from ccxt.base.errors import AuthenticationError from ccxt.base.errors import AccountSuspended from ccxt.base.errors import InsufficientFunds from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import OrderNotCached from ccxt.base.errors import CancelPending from ccxt.base.errors import DDoSProtection from ccxt.base.errors import ExchangeNotAvailable from ccxt.base.errors import InvalidNonce from ccxt.base.errors import RequestTimeout class poloniex (Exchange): def describe(self): return self.deep_extend(super(poloniex, self).describe(), { 'id': 'poloniex', 'name': 'Poloniex', 'countries': ['US'], 'rateLimit': 1000, # up to 6 calls per second 'has': { 'createDepositAddress': True, 'fetchDepositAddress': True, 'CORS': False, 'editOrder': True, 'createMarketOrder': False, 'fetchOHLCV': True, 'fetchOrderTrades': True, 'fetchMyTrades': True, 'fetchOrder': 'emulated', 'fetchOrders': 'emulated', 'fetchOpenOrders': True, 'fetchClosedOrders': 'emulated', 'fetchTickers': True, 'fetchTradingFees': True, 'fetchCurrencies': True, 'withdraw': True, }, 'timeframes': { '5m': 300, '15m': 900, '30m': 1800, '2h': 7200, '4h': 14400, '1d': 86400, }, 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/27766817-e9456312-5ee6-11e7-9b3c-b628ca5626a5.jpg', 'api': { 'public': 'https://poloniex.com/public', 'private': 'https://poloniex.com/tradingApi', }, 'www': 'https://poloniex.com', 'doc': [ 'https://poloniex.com/support/api/', 'http://pastebin.com/dMX7mZE0', ], 'fees': 'https://poloniex.com/fees', }, 'api': { 'public': { 'get': [ 'return24hVolume', 'returnChartData', 'returnCurrencies', 'returnLoanOrders', 'returnOrderBook', 'returnTicker', 'returnTradeHistory', ], }, 'private': { 'post': [ 'buy', 'cancelLoanOffer', 'cancelOrder', 'closeMarginPosition', 'createLoanOffer', 'generateNewAddress', 'getMarginPosition', 'marginBuy', 'marginSell', 'moveOrder', 'returnActiveLoans', 'returnAvailableAccountBalances', 'returnBalances', 'returnCompleteBalances', 'returnDepositAddresses', 'returnDepositsWithdrawals', 'returnFeeInfo', 'returnLendingHistory', 'returnMarginAccountSummary', 'returnOpenLoanOffers', 'returnOpenOrders', 'returnOrderTrades', 'returnTradableBalances', 'returnTradeHistory', 'sell', 'toggleAutoRenew', 'transferBalance', 'withdraw', ], }, }, 'fees': { 'trading': { 'maker': 0.0015, 'taker': 0.0025, }, 'funding': {}, }, 'limits': { 'amount': { 'min': 0.00000001, 'max': 1000000000, }, 'price': { 'min': 0.00000001, 'max': 1000000000, }, 'cost': { 'min': 0.00000000, 'max': 1000000000, }, }, 'precision': { 'amount': 8, 'price': 8, }, 'commonCurrencies': { 'AIR': 'AirCoin', 'APH': 'AphroditeCoin', 'BCC': 'BTCtalkcoin', 'BDG': 'Badgercoin', 'BTM': 'Bitmark', 'CON': 'Coino', 'GOLD': 'GoldEagles', 'GPUC': 'GPU', 'HOT': 'Hotcoin', 'ITC': 'Information Coin', 'PLX': 'ParallaxCoin', 'KEY': 'KEYCoin', 'STR': 'XLM', 'SOC': 'SOCC', 'XAP': 'API Coin', }, 'options': { 'limits': { 'cost': { 'min': { 'BTC': 0.0001, 'ETH': 0.0001, 'XMR': 0.0001, 'USDT': 1.0, }, }, }, }, }) def calculate_fee(self, symbol, type, side, amount, price, takerOrMaker='taker', params={}): market = self.markets[symbol] key = 'quote' rate = market[takerOrMaker] cost = float(self.cost_to_precision(symbol, amount * rate)) if side == 'sell': cost *= price else: key = 'base' return { 'type': takerOrMaker, 'currency': market[key], 'rate': rate, 'cost': float(self.fee_to_precision(symbol, cost)), } def parse_ohlcv(self, ohlcv, market=None, timeframe='5m', since=None, limit=None): return [ ohlcv['date'] * 1000, ohlcv['open'], ohlcv['high'], ohlcv['low'], ohlcv['close'], ohlcv['quoteVolume'], ] async def fetch_ohlcv(self, symbol, timeframe='5m', since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) if since is None: since = 0 request = { 'currencyPair': market['id'], 'period': self.timeframes[timeframe], 'start': int(since / 1000), } if limit is not None: request['end'] = self.sum(request['start'], limit * self.timeframes[timeframe]) response = await self.publicGetReturnChartData(self.extend(request, params)) return self.parse_ohlcvs(response, market, timeframe, since, limit) async def fetch_markets(self): markets = await self.publicGetReturnTicker() keys = list(markets.keys()) result = [] for p in range(0, len(keys)): id = keys[p] market = markets[id] quote, base = id.split('_') base = self.common_currency_code(base) quote = self.common_currency_code(quote) symbol = base + '/' + quote minCost = self.safe_float(self.options['limits']['cost']['min'], quote, 0.0) result.append(self.extend(self.fees['trading'], { 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'active': True, 'precision': { 'amount': 8, 'price': 8, }, 'limits': { 'amount': { 'min': 0.00000001, 'max': 1000000000, }, 'price': { 'min': 0.00000001, 'max': 1000000000, }, 'cost': { 'min': minCost, 'max': 1000000000, }, }, 'info': market, })) return result async def fetch_balance(self, params={}): await self.load_markets() balances = await self.privatePostReturnCompleteBalances(self.extend({ 'account': 'all', }, params)) result = {'info': balances} currencies = list(balances.keys()) for c in range(0, len(currencies)): id = currencies[c] balance = balances[id] currency = self.common_currency_code(id) account = { 'free': float(balance['available']), 'used': float(balance['onOrders']), 'total': 0.0, } account['total'] = self.sum(account['free'], account['used']) result[currency] = account return self.parse_balance(result) async def fetch_trading_fees(self, params={}): await self.load_markets() fees = await self.privatePostReturnFeeInfo() return { 'info': fees, 'maker': self.safe_float(fees, 'makerFee'), 'taker': self.safe_float(fees, 'takerFee'), 'withdraw': {}, 'deposit': {}, } async def fetch_order_book(self, symbol, limit=None, params={}): await self.load_markets() request = { 'currencyPair': self.market_id(symbol), } if limit is not None: request['depth'] = limit # 100 response = await self.publicGetReturnOrderBook(self.extend(request, params)) orderbook = self.parse_order_book(response) orderbook['nonce'] = self.safe_integer(response, 'sec') return orderbook def parse_ticker(self, ticker, market=None): timestamp = self.milliseconds() symbol = None if market: symbol = market['symbol'] open = None change = None average = None last = self.safe_float(ticker, 'last') relativeChange = self.safe_float(ticker, 'percentChange') if relativeChange != -1: open = last / self.sum(1, relativeChange) change = last - open average = self.sum(last, open) / 2 return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_float(ticker, 'high24hr'), 'low': self.safe_float(ticker, 'low24hr'), 'bid': self.safe_float(ticker, 'highestBid'), 'bidVolume': None, 'ask': self.safe_float(ticker, 'lowestAsk'), 'askVolume': None, 'vwap': None, 'open': open, 'close': last, 'last': last, 'previousClose': None, 'change': change, 'percentage': relativeChange * 100, 'average': average, 'baseVolume': self.safe_float(ticker, 'quoteVolume'), 'quoteVolume': self.safe_float(ticker, 'baseVolume'), 'info': ticker, } async def fetch_tickers(self, symbols=None, params={}): await self.load_markets() tickers = await self.publicGetReturnTicker(params) ids = list(tickers.keys()) result = {} for i in range(0, len(ids)): id = ids[i] market = self.markets_by_id[id] symbol = market['symbol'] ticker = tickers[id] result[symbol] = self.parse_ticker(ticker, market) return result async def fetch_currencies(self, params={}): currencies = await self.publicGetReturnCurrencies(params) ids = list(currencies.keys()) result = {} for i in range(0, len(ids)): id = ids[i] currency = currencies[id] # todo: will need to rethink the fees # to add support for multiple withdrawal/deposit methods and # differentiated fees for each particular method precision = 8 # default precision, todo: fix "magic constants" code = self.common_currency_code(id) active = (currency['delisted'] == 0) and not currency['disabled'] result[code] = { 'id': id, 'code': code, 'info': currency, 'name': currency['name'], 'active': active, 'fee': self.safe_float(currency, 'txFee'), # todo: redesign 'precision': precision, 'limits': { 'amount': { 'min': math.pow(10, -precision), 'max': math.pow(10, precision), }, 'price': { 'min': math.pow(10, -precision), 'max': math.pow(10, precision), }, 'cost': { 'min': None, 'max': None, }, 'withdraw': { 'min': currency['txFee'], 'max': math.pow(10, precision), }, }, } return result async def fetch_ticker(self, symbol, params={}): await self.load_markets() market = self.market(symbol) tickers = await self.publicGetReturnTicker(params) ticker = tickers[market['id']] return self.parse_ticker(ticker, market) def parse_trade(self, trade, market=None): timestamp = self.parse8601(trade['date']) symbol = None base = None quote = None if (not market) and('currencyPair' in list(trade.keys())): currencyPair = trade['currencyPair'] if currencyPair in self.markets_by_id: market = self.markets_by_id[currencyPair] else: parts = currencyPair.split('_') quote = parts[0] base = parts[1] symbol = base + '/' + quote if market is not None: symbol = market['symbol'] base = market['base'] quote = market['quote'] side = trade['type'] fee = None cost = self.safe_float(trade, 'total') amount = self.safe_float(trade, 'amount') if 'fee' in trade: rate = self.safe_float(trade, 'fee') feeCost = None currency = None if side == 'buy': currency = base feeCost = amount * rate else: currency = quote if cost is not None: feeCost = cost * rate fee = { 'type': None, 'rate': rate, 'cost': feeCost, 'currency': currency, } return { 'info': trade, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'id': self.safe_string(trade, 'tradeID'), 'order': self.safe_string(trade, 'orderNumber'), 'type': 'limit', 'side': side, 'price': self.safe_float(trade, 'rate'), 'amount': amount, 'cost': cost, 'fee': fee, } async def fetch_trades(self, symbol, since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) request = { 'currencyPair': market['id'], } if since is not None: request['start'] = int(since / 1000) request['end'] = self.seconds() # last 50000 trades by default trades = await self.publicGetReturnTradeHistory(self.extend(request, params)) return self.parse_trades(trades, market, since, limit) async def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): await self.load_markets() market = None if symbol is not None: market = self.market(symbol) pair = market['id'] if market else 'all' request = {'currencyPair': pair} if since is not None: request['start'] = int(since / 1000) request['end'] = self.seconds() # limit is disabled(does not really work as expected) if limit is not None: request['limit'] = int(limit) response = await self.privatePostReturnTradeHistory(self.extend(request, params)) result = [] if market is not None: result = self.parse_trades(response, market) else: if response: ids = list(response.keys()) for i in range(0, len(ids)): id = ids[i] market = None if id in self.markets_by_id: market = self.markets_by_id[id] trades = self.parse_trades(response[id], market) for j in range(0, len(trades)): result.append(trades[j]) return self.filter_by_since_limit(result, since, limit) def parse_order(self, order, market=None): timestamp = self.safe_integer(order, 'timestamp') if not timestamp: timestamp = self.parse8601(order['date']) trades = None if 'resultingTrades' in order: trades = self.parse_trades(order['resultingTrades'], market) symbol = None if market: symbol = market['symbol'] price = self.safe_float(order, 'price') remaining = self.safe_float(order, 'amount') amount = self.safe_float(order, 'startingAmount', remaining) filled = None cost = 0 if amount is not None: if remaining is not None: filled = amount - remaining if price is not None: cost = filled * price if filled is None: if trades is not None: filled = 0 cost = 0 for i in range(0, len(trades)): trade = trades[i] tradeAmount = trade['amount'] tradePrice = trade['price'] filled = self.sum(filled, tradeAmount) cost += tradePrice * tradeAmount return { 'info': order, 'id': order['orderNumber'], 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'status': order['status'], 'symbol': symbol, 'type': order['type'], 'side': order['side'], 'price': price, 'cost': cost, 'amount': amount, 'filled': filled, 'remaining': remaining, 'trades': trades, 'fee': None, } def parse_open_orders(self, orders, market, result): for i in range(0, len(orders)): order = orders[i] extended = self.extend(order, { 'status': 'open', 'type': 'limit', 'side': order['type'], 'price': order['rate'], }) result.append(self.parse_order(extended, market)) return result async def fetch_orders(self, symbol=None, since=None, limit=None, params={}): await self.load_markets() market = None if symbol is not None: market = self.market(symbol) pair = market['id'] if market else 'all' response = await self.privatePostReturnOpenOrders(self.extend({ 'currencyPair': pair, })) openOrders = [] if market is not None: openOrders = self.parse_open_orders(response, market, openOrders) else: marketIds = list(response.keys()) for i in range(0, len(marketIds)): marketId = marketIds[i] orders = response[marketId] m = self.markets_by_id[marketId] openOrders = self.parse_open_orders(orders, m, openOrders) for j in range(0, len(openOrders)): self.orders[openOrders[j]['id']] = openOrders[j] openOrdersIndexedById = self.index_by(openOrders, 'id') cachedOrderIds = list(self.orders.keys()) result = [] for k in range(0, len(cachedOrderIds)): id = cachedOrderIds[k] if id in openOrdersIndexedById: self.orders[id] = self.extend(self.orders[id], openOrdersIndexedById[id]) else: order = self.orders[id] if order['status'] == 'open': order = self.extend(order, { 'status': 'closed', 'cost': None, 'filled': order['amount'], 'remaining': 0.0, }) if order['cost'] is None: if order['filled'] is not None: order['cost'] = order['filled'] * order['price'] self.orders[id] = order order = self.orders[id] if market is not None: if order['symbol'] == symbol: result.append(order) else: result.append(order) return self.filter_by_since_limit(result, since, limit) async def fetch_order(self, id, symbol=None, params={}): since = self.safe_value(params, 'since') limit = self.safe_value(params, 'limit') request = self.omit(params, ['since', 'limit']) orders = await self.fetch_orders(symbol, since, limit, request) for i in range(0, len(orders)): if orders[i]['id'] == id: return orders[i] raise OrderNotCached(self.id + ' order id ' + str(id) + ' is not in "open" state and not found in cache') def filter_orders_by_status(self, orders, status): result = [] for i in range(0, len(orders)): if orders[i]['status'] == status: result.append(orders[i]) return result async def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): orders = await self.fetch_orders(symbol, since, limit, params) return self.filter_orders_by_status(orders, 'open') async def fetch_closed_orders(self, symbol=None, since=None, limit=None, params={}): orders = await self.fetch_orders(symbol, since, limit, params) return self.filter_orders_by_status(orders, 'closed') async def create_order(self, symbol, type, side, amount, price=None, params={}): if type == 'market': raise ExchangeError(self.id + ' allows limit orders only') await self.load_markets() method = 'privatePost' + self.capitalize(side) market = self.market(symbol) price = float(price) amount = float(amount) response = await getattr(self, method)(self.extend({ 'currencyPair': market['id'], 'rate': self.price_to_precision(symbol, price), 'amount': self.amount_to_precision(symbol, amount), }, params)) timestamp = self.milliseconds() order = self.parse_order(self.extend({ 'timestamp': timestamp, 'status': 'open', 'type': type, 'side': side, 'price': price, 'amount': amount, }, response), market) id = order['id'] self.orders[id] = order return self.extend({'info': response}, order) async def edit_order(self, id, symbol, type, side, amount, price=None, params={}): await self.load_markets() price = float(price) request = { 'orderNumber': id, 'rate': self.price_to_precision(symbol, price), } if amount is not None: amount = float(amount) request['amount'] = self.amount_to_precision(symbol, amount) response = await self.privatePostMoveOrder(self.extend(request, params)) result = None if id in self.orders: self.orders[id]['status'] = 'canceled' newid = response['orderNumber'] self.orders[newid] = self.extend(self.orders[id], { 'id': newid, 'price': price, 'status': 'open', }) if amount is not None: self.orders[newid]['amount'] = amount result = self.extend(self.orders[newid], {'info': response}) else: market = None if symbol is not None: market = self.market(symbol) result = self.parse_order(response, market) self.orders[result['id']] = result return result async def cancel_order(self, id, symbol=None, params={}): await self.load_markets() response = None try: response = await self.privatePostCancelOrder(self.extend({ 'orderNumber': id, }, params)) except Exception as e: if isinstance(e, CancelPending): # A request to cancel the order has been sent already. # If we then attempt to cancel the order the second time # before the first request is processed the exchange will # raise a CancelPending exception. Poloniex won't show the # order in the list of active(open) orders and the cached # order will be marked as 'closed'(see #1801 for details). # To avoid that we proactively mark the order as 'canceled' # here. If for some reason the order does not get canceled # and still appears in the active list then the order cache # will eventually get back in sync on a call to `fetchOrder`. if id in self.orders: self.orders[id]['status'] = 'canceled' raise e if id in self.orders: self.orders[id]['status'] = 'canceled' return response async def fetch_order_status(self, id, symbol=None): await self.load_markets() orders = await self.fetch_open_orders(symbol) indexed = self.index_by(orders, 'id') return 'open' if (id in list(indexed.keys())) else 'closed' async def fetch_order_trades(self, id, symbol=None, params={}): await self.load_markets() trades = await self.privatePostReturnOrderTrades(self.extend({ 'orderNumber': id, }, params)) return self.parse_trades(trades) async def create_deposit_address(self, code, params={}): await self.load_markets() currency = self.currency(code) response = await self.privatePostGenerateNewAddress({ 'currency': currency['id'], }) address = None if response['success'] == 1: address = self.safe_string(response, 'response') self.check_address(address) return { 'currency': code, 'address': address, 'tag': None, 'info': response, } async def fetch_deposit_address(self, code, params={}): await self.load_markets() currency = self.currency(code) response = await self.privatePostReturnDepositAddresses() currencyId = currency['id'] address = self.safe_string(response, currencyId) self.check_address(address) return { 'currency': code, 'address': address, 'tag': None, 'info': response, } async def withdraw(self, code, amount, address, tag=None, params={}): self.check_address(address) await self.load_markets() currency = self.currency(code) request = { 'currency': currency['id'], 'amount': amount, 'address': address, } if tag: request['paymentId'] = tag result = await self.privatePostWithdraw(self.extend(request, params)) return { 'info': result, 'id': result['response'], } def nonce(self): return self.milliseconds() def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): url = self.urls['api'][api] query = self.extend({'command': path}, params) if api == 'public': url += '?' + self.urlencode(query) else: self.check_required_credentials() query['nonce'] = self.nonce() body = self.urlencode(query) headers = { 'Content-Type': 'application/x-www-form-urlencoded', 'Key': self.apiKey, 'Sign': self.hmac(self.encode(body), self.encode(self.secret), hashlib.sha512), } return {'url': url, 'method': method, 'body': body, 'headers': headers} def handle_errors(self, code, reason, url, method, headers, body): response = None try: response = json.loads(body) except Exception as e: # syntax error, resort to default error handler return if 'error' in response: message = response['error'] feedback = self.id + ' ' + self.json(response) if message == 'Invalid order number, or you are not the person who placed the order.': raise OrderNotFound(feedback) elif message == 'Connection timed out. Please try again.': raise RequestTimeout(feedback) elif message == 'Internal error. Please try again.': raise ExchangeNotAvailable(feedback) elif message == 'Order not found, or you are not the person who placed it.': raise OrderNotFound(feedback) elif message == 'Invalid API key/secret pair.': raise AuthenticationError(feedback) elif message == 'Please do not make more than 8 API calls per second.': raise DDoSProtection(feedback) elif message.find('Total must be at least') >= 0: raise InvalidOrder(feedback) elif message.find('This account is frozen.') >= 0: raise AccountSuspended(feedback) elif message.find('Not enough') >= 0: raise InsufficientFunds(feedback) elif message.find('Nonce must be greater') >= 0: raise InvalidNonce(feedback) elif message.find('You have already called cancelOrder or moveOrder on self order.') >= 0: raise CancelPending(feedback) else: raise ExchangeError(self.id + ' unknown error ' + self.json(response))
py
b4177754aef28b59565ac33a74702728faa5b3e3
# -*- coding: utf-8 -*- # # Rayleigh documentation build configuration file, created by # sphinx-quickstart on Sun May 5 22:54:33 2013. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os import cloud_sptheme as csp # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('..')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode'] extensions += ['numpydoc'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Rayleigh' copyright = u'2013, Sergey Karayev' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '1.0' # The full version, including alpha/beta/rc tags. release = '1.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'cloud' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { "roottarget": "index" } # Add any paths that contain custom themes here, relative to this directory. html_theme_path = [csp.get_theme_dir()] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'Rayleighdoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'Rayleigh.tex', u'Rayleigh Documentation', u'Sergey Karayev', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'rayleigh', u'Rayleigh Documentation', [u'Sergey Karayev'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'Rayleigh', u'Rayleigh Documentation', u'Sergey Karayev', 'Rayleigh', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
py
b41778693d6f77f42440d6a3bb4e46d6b1ef43a0
import unittest from django.utils.ipv6 import clean_ipv6_address, is_valid_ipv6_address class TestUtilsIPv6(unittest.TestCase): def test_validates_correct_plain_address(self): self.assertTrue(is_valid_ipv6_address("fe80::223:6cff:fe8a:2e8a")) self.assertTrue(is_valid_ipv6_address("2a02::223:6cff:fe8a:2e8a")) self.assertTrue(is_valid_ipv6_address("1::2:3:4:5:6:7")) self.assertTrue(is_valid_ipv6_address("::")) self.assertTrue(is_valid_ipv6_address("::a")) self.assertTrue(is_valid_ipv6_address("2::")) def test_validates_correct_with_v4mapping(self): self.assertTrue(is_valid_ipv6_address("::ffff:254.42.16.14")) self.assertTrue(is_valid_ipv6_address("::ffff:0a0a:0a0a")) def test_validates_incorrect_plain_address(self): self.assertFalse(is_valid_ipv6_address("foo")) self.assertFalse(is_valid_ipv6_address("127.0.0.1")) self.assertFalse(is_valid_ipv6_address("12345::")) self.assertFalse(is_valid_ipv6_address("1::2:3::4")) self.assertFalse(is_valid_ipv6_address("1::zzz")) self.assertFalse(is_valid_ipv6_address("1::2:3:4:5:6:7:8")) self.assertFalse(is_valid_ipv6_address("1:2")) self.assertFalse(is_valid_ipv6_address("1:::2")) self.assertFalse(is_valid_ipv6_address("fe80::223: 6cff:fe8a:2e8a")) self.assertFalse(is_valid_ipv6_address("2a02::223:6cff :fe8a:2e8a")) def test_validates_incorrect_with_v4mapping(self): self.assertFalse(is_valid_ipv6_address("::ffff:999.42.16.14")) self.assertFalse(is_valid_ipv6_address("::ffff:zzzz:0a0a")) # The ::1.2.3.4 format used to be valid but was deprecated # in rfc4291 section 2.5.5.1 self.assertTrue(is_valid_ipv6_address("::254.42.16.14")) self.assertTrue(is_valid_ipv6_address("::0a0a:0a0a")) self.assertFalse(is_valid_ipv6_address("::999.42.16.14")) self.assertFalse(is_valid_ipv6_address("::zzzz:0a0a")) def test_cleans_plain_address(self): self.assertEqual(clean_ipv6_address("DEAD::0:BEEF"), "dead::beef") self.assertEqual( clean_ipv6_address("2001:000:a:0000:0:fe:fe:beef"), "2001:0:a::fe:fe:beef" ) self.assertEqual( clean_ipv6_address("2001::a:0000:0:fe:fe:beef"), "2001:0:a::fe:fe:beef" ) def test_cleans_with_v4_mapping(self): self.assertEqual(clean_ipv6_address("::ffff:0a0a:0a0a"), "::ffff:10.10.10.10") self.assertEqual(clean_ipv6_address("::ffff:1234:1234"), "::ffff:18.52.18.52") self.assertEqual(clean_ipv6_address("::ffff:18.52.18.52"), "::ffff:18.52.18.52") self.assertEqual(clean_ipv6_address("::ffff:0.52.18.52"), "::ffff:0.52.18.52") self.assertEqual(clean_ipv6_address("::ffff:0.0.0.0"), "::ffff:0.0.0.0") def test_unpacks_ipv4(self): self.assertEqual( clean_ipv6_address("::ffff:0a0a:0a0a", unpack_ipv4=True), "10.10.10.10" ) self.assertEqual( clean_ipv6_address("::ffff:1234:1234", unpack_ipv4=True), "18.52.18.52" ) self.assertEqual( clean_ipv6_address("::ffff:18.52.18.52", unpack_ipv4=True), "18.52.18.52" )
py
b41778f8c180516d65cbd61e69647fa03d502da7
import requests from selenium import webdriver from selenium.webdriver import ActionChains from flask import Blueprint, current_app, request, jsonify import time import html.parser import re import os import random from app import db bp = Blueprint('camping_data', __name__, url_prefix='/camping_data') @bp.route('/crawling', methods=['GET']) def get_result(): # form = request.form # region = form['region_give'] # region = request.args.get('region_give') lists = ["서울시", "부산시", "대구시", "인천시", "광주시", "대전시", "울산시", "세종시", "경기도", "강원도", "충청북도", "충청남도", "전라북도", "전라남도", "경상북도", "경상남도", "제주도"] db.campsite.remove({}) for region in lists: url = "https://dapi.kakao.com/v2/local/search/keyword.json?query={} 캠핑장&size=9".format(region) headers = {"Authorization": "KakaoAK " + current_app.config['REST_API']} data = requests.get(url, headers=headers) data = data.json()['documents'] documents = [] if data: for d in data: document = { 'region': region, 'campsite_name': re.sub('<[^>]*>', ' ', html.unescape(d['place_name'])), 'category' : d['category_name'], 'address' : d['address_name'], 'road_address' : d['road_address_name'], 'phone': d['phone'], 'link' : d['place_url'], 'x' : d['x'], 'y' : d['y'] } documents.append(document) print(documents) for document in documents: place_id = document['link'].split('/')[-1] document['tag'] = [] document['image'] = '' document['description'] = '' URL_DETAILS_PAGE = "https://place.map.kakao.com/main/v/" place_details = requests.get(URL_DETAILS_PAGE + place_id).json() try: tags = place_details['basicInfo']['metaKeywordList'] for tag in tags: document['tag'].append(tag) photo_list = place_details['photo'] time.sleep(0.1) for p in photo_list['photoList'][0]['list']: if 'daum' in p['orgurl'] or 'kakao' in p['orgurl']: document['image'] = p['orgurl'] else: document['image'] = '../static/assets/img/bg-showcase-' + str(random.randint(1, 5)) + '.jpg' # document['image'] = photo_list['photoList'][0]['list'][0]['orgurl'] document['description'] = place_details['basicInfo']['introduction'] except: pass db.campsite.insert_many(documents) result = {'result': 'success'} return jsonify(result) @bp.route('/', methods=['GET']) def list_result(): # form = request.form # region = form['region_give'] region_give = request.args.get('region_give') data = list(db.campsite.find({'region': region_give}, {'_id': False})) result = { 'result': 'success', 'articles': data, } return jsonify(result)
py
b4177a60c114ad8a861bfc3d42ad3e941fdb77fa
""" Tools for working with alpha shapes. """ __all__ = ['alphashape'] import itertools import logging from shapely.ops import unary_union, polygonize from shapely.geometry import MultiPoint, MultiLineString from scipy.spatial import Delaunay import numpy as np from typing import Union, Tuple, List try: import geopandas USE_GP = True except ImportError: USE_GP = False def circumcenter(points: Union[List[Tuple[float]], np.ndarray]) -> np.ndarray: """ Calculate the circumcenter of a set of points in barycentric coordinates. Args: points: An `N`x`K` array of points which define an (`N`-1) simplex in K dimensional space. `N` and `K` must satisfy 1 <= `N` <= `K` and `K` >= 1. Returns: The circumcenter of a set of points in barycentric coordinates. """ points = np.asarray(points) num_rows, num_columns = points.shape A = np.bmat([[2 * np.dot(points, points.T), np.ones((num_rows, 1))], [np.ones((1, num_rows)), np.zeros((1, 1))]]) b = np.hstack((np.sum(points * points, axis=1), np.ones((1)))) return np.linalg.solve(A, b)[:-1] def circumradius(points: Union[List[Tuple[float]], np.ndarray]) -> float: """ Calculte the circumradius of a given set of points. Args: points: An `N`x`K` array of points which define an (`N`-1) simplex in K dimensional space. `N` and `K` must satisfy 1 <= `N` <= `K` and `K` >= 1. Returns: The circumradius of a given set of points. """ points = np.asarray(points) return np.linalg.norm(points[0, :] - np.dot(circumcenter(points), points)) def alphasimplices(points: Union[List[Tuple[float]], np.ndarray]) -> \ Union[List[Tuple[float]], np.ndarray]: """ Returns an iterator of simplices and their circumradii of the given set of points. Args: points: An `N`x`M` array of points. Yields: A simplex, and its circumradius as a tuple. """ coords = np.asarray(points) tri = Delaunay(coords) for simplex in tri.simplices: simplex_points = coords[simplex] try: yield simplex, circumradius(simplex_points) except np.linalg.LinAlgError: logging.warn('Singular matrix. Likely caused by all points ' 'lying in an N-1 space.') def alphashape(points: Union[List[Tuple[float]], np.ndarray], alpha: Union[None, float] = None): """ Compute the alpha shape (concave hull) of a set of points. If the number of points in the input is three or less, the convex hull is returned to the user. For two points, the convex hull collapses to a `LineString`; for one point, a `Point`. Args: points (list or ``shapely.geometry.MultiPoint`` or \ ``geopandas.GeoDataFrame``): an iterable container of points alpha (float): alpha value Returns: ``shapely.geometry.Polygon`` or ``shapely.geometry.LineString`` or ``shapely.geometry.Point`` or ``geopandas.GeoDataFrame``: \ the resulting geometry """ # If given a geodataframe, extract the geometry if USE_GP and isinstance(points, geopandas.GeoDataFrame): crs = points.crs points = points['geometry'] else: crs = None # If given a triangle for input, or an alpha value of zero or less, # return the convex hull. if len(points) < 4 or (alpha is not None and not callable( alpha) and alpha <= 0): if not isinstance(points, MultiPoint): points = MultiPoint(list(points)) result = points.convex_hull if crs: gdf = geopandas.GeoDataFrame(geopandas.GeoSeries(result)).rename( columns={0: 'geometry'}).set_geometry('geometry') gdf.crs = crs return gdf else: return result # Determine alpha parameter if one is not given if alpha is None: try: from optimizealpha import optimizealpha except ImportError: from .optimizealpha import optimizealpha alpha = optimizealpha(points) # Convert the points to a numpy array if USE_GP and isinstance(points, geopandas.geoseries.GeoSeries): coords = np.array([point.coords[0] for point in points]) else: coords = np.array(points) # Create a set to hold unique edges of simplices that pass the radius # filtering edges = set() # Create a set to hold unique edges of perimeter simplices. # Whenever a simplex is found that passes the radius filter, its edges # will be inspected to see if they already exist in the `edges` set. If an # edge does not already exist there, it will be added to both the `edges` # set and the `permimeter_edges` set. If it does already exist there, it # will be removed from the `perimeter_edges` set if found there. This is # taking advantage of the property of perimeter edges that each edge can # only exist once. perimeter_edges = set() for point_indices, circumradius in alphasimplices(coords): if callable(alpha): resolved_alpha = alpha(point_indices, circumradius) else: resolved_alpha = alpha # Radius filter if circumradius < 1.0 / resolved_alpha: for edge in itertools.combinations( point_indices, r=coords.shape[-1]): if all([e not in edges for e in itertools.combinations( edge, r=len(edge))]): edges.add(edge) perimeter_edges.add(edge) else: perimeter_edges -= set(itertools.combinations( edge, r=len(edge))) if coords.shape[-1] > 3: return perimeter_edges elif coords.shape[-1] == 3: import trimesh result = trimesh.Trimesh(vertices=coords, faces=list(perimeter_edges)) trimesh.repair.fix_normals(result) return result # Create the resulting polygon from the edge points m = MultiLineString([coords[np.array(edge)] for edge in perimeter_edges]) triangles = list(polygonize(m)) result = unary_union(triangles) # Convert to pandas geodataframe object if that is what was an input if crs: gdf = geopandas.GeoDataFrame(geopandas.GeoSeries(result)).rename( columns={0: 'geometry'}).set_geometry('geometry') gdf.crs = crs return gdf else: return result
py
b4177b0753fdff63ed8d815351b71896214c18a6
from decimal import Decimal class Parameter: host = "host" region = "region" endpoint_name = "endpoint_name" endpoint_config_name = "endpoint_config_name" model_name = "model_name" instance_type = "instance_type" initial_instance_count = "initial_instance_count" ramp_start_tps = "ramp_start_tps" ramp_minutes = "ramp_minutes" steady_state_tps = "steady_state_tps" steady_state_minutes = "steady_state_minutes" class SageMaker: SAFETY_FACTOR = Decimal("0.5") class AwsRegion: US_EAST_2 = "us-east-2" # US East (Ohio) US_EAST_1 = "us-east-1" # US East (N. Virginia) US_WEST_1 = "us-west-1" # US West (N. California) US_WEST_2 = "us-west-2" # US West (Oregon) AF_SOUTH_1 = "af-south-1" # Africa (Cape Town) AP_EAST_1 = "ap-east-1" # Asia Pacific (Hong Kong) AP_SOUTH_1 = "ap-south-1" # Asia Pacific (Mumbai) AP_NORTHEAST_3 = "ap-northeast-3" # Asia Pacific (Osaka) AP_NORTHEAST_2 = "ap-northeast-2" # Asia Pacific (Seoul) AP_SOUTHEAST_1 = "ap-southeast-1" # Asia Pacific (Singapore) AP_SOUTHEAST_2 = "ap-southeast-2" # Asia Pacific (Sydney) AP_NORTHEAST_1 = "ap-northeast-1" # Asia Pacific (Tokyo) CA_CENTRAL_1 = "ca-central-1" # Canada (Central) EU_CENTRAL_1 = "eu-central-1" # Europe (Frankfurt) EU_WEST_1 = "eu-west-1" # Europe (Ireland) EU_WEST_2 = "eu-west-2" # Europe (London) EU_SOUTH_1 = "eu-south-1" # Europe (Milan) EU_WEST_3 = "eu-west-3" # Europe (Paris) EU_NORTH_1 = "eu-north-1" # Europe (Stockholm) ME_SOUTH_1 = "me-south-1" # Middle East (Bahrain) SA_EAST_1 = "sa-east-1" # South America (São Paulo)
py
b4177b7b1828700b92c141b2a6c716193ef8235f
#!/usr/bin/python from __future__ import (absolute_import, division, print_function) # Copyright 2019 Fortinet, Inc. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. __metaclass__ = type ANSIBLE_METADATA = {'status': ['preview'], 'supported_by': 'community', 'metadata_version': '1.1'} DOCUMENTATION = ''' --- module: fortios_firewall_ssl_ssh_profile short_description: Configure SSL/SSH protocol options in Fortinet's FortiOS and FortiGate. description: - This module is able to configure a FortiGate or FortiOS by allowing the user to set and modify firewall feature and ssl_ssh_profile category. Examples include all parameters and values need to be adjusted to datasources before usage. Tested with FOS v6.0.2 version_added: "2.8" author: - Miguel Angel Munoz (@mamunozgonzalez) - Nicolas Thomas (@thomnico) notes: - Requires fortiosapi library developed by Fortinet - Run as a local_action in your playbook requirements: - fortiosapi>=0.9.8 options: host: description: - FortiOS or FortiGate ip address. required: true username: description: - FortiOS or FortiGate username. required: true password: description: - FortiOS or FortiGate password. default: "" vdom: description: - Virtual domain, among those defined previously. A vdom is a virtual instance of the FortiGate that can be configured and used as a different unit. default: root https: description: - Indicates if the requests towards FortiGate must use HTTPS protocol type: bool default: true firewall_ssl_ssh_profile: description: - Configure SSL/SSH protocol options. default: null suboptions: state: description: - Indicates whether to create or remove the object choices: - present - absent caname: description: - CA certificate used by SSL Inspection. Source vpn.certificate.local.name. comment: description: - Optional comments. ftps: description: - Configure FTPS options. suboptions: allow-invalid-server-cert: description: - When enabled, allows SSL sessions whose server certificate validation failed. choices: - enable - disable client-cert-request: description: - Action based on client certificate request. choices: - bypass - inspect - block ports: description: - Ports to use for scanning (1 - 65535, default = 443). status: description: - Configure protocol inspection status. choices: - disable - deep-inspection unsupported-ssl: description: - Action based on the SSL encryption used being unsupported. choices: - bypass - inspect - block untrusted-cert: description: - Allow, ignore, or block the untrusted SSL session server certificate. choices: - allow - block - ignore https: description: - Configure HTTPS options. suboptions: allow-invalid-server-cert: description: - When enabled, allows SSL sessions whose server certificate validation failed. choices: - enable - disable client-cert-request: description: - Action based on client certificate request. choices: - bypass - inspect - block ports: description: - Ports to use for scanning (1 - 65535, default = 443). status: description: - Configure protocol inspection status. choices: - disable - certificate-inspection - deep-inspection unsupported-ssl: description: - Action based on the SSL encryption used being unsupported. choices: - bypass - inspect - block untrusted-cert: description: - Allow, ignore, or block the untrusted SSL session server certificate. choices: - allow - block - ignore imaps: description: - Configure IMAPS options. suboptions: allow-invalid-server-cert: description: - When enabled, allows SSL sessions whose server certificate validation failed. choices: - enable - disable client-cert-request: description: - Action based on client certificate request. choices: - bypass - inspect - block ports: description: - Ports to use for scanning (1 - 65535, default = 443). status: description: - Configure protocol inspection status. choices: - disable - deep-inspection unsupported-ssl: description: - Action based on the SSL encryption used being unsupported. choices: - bypass - inspect - block untrusted-cert: description: - Allow, ignore, or block the untrusted SSL session server certificate. choices: - allow - block - ignore mapi-over-https: description: - Enable/disable inspection of MAPI over HTTPS. choices: - enable - disable name: description: - Name. required: true pop3s: description: - Configure POP3S options. suboptions: allow-invalid-server-cert: description: - When enabled, allows SSL sessions whose server certificate validation failed. choices: - enable - disable client-cert-request: description: - Action based on client certificate request. choices: - bypass - inspect - block ports: description: - Ports to use for scanning (1 - 65535, default = 443). status: description: - Configure protocol inspection status. choices: - disable - deep-inspection unsupported-ssl: description: - Action based on the SSL encryption used being unsupported. choices: - bypass - inspect - block untrusted-cert: description: - Allow, ignore, or block the untrusted SSL session server certificate. choices: - allow - block - ignore rpc-over-https: description: - Enable/disable inspection of RPC over HTTPS. choices: - enable - disable server-cert: description: - Certificate used by SSL Inspection to replace server certificate. Source vpn.certificate.local.name. server-cert-mode: description: - Re-sign or replace the server's certificate. choices: - re-sign - replace smtps: description: - Configure SMTPS options. suboptions: allow-invalid-server-cert: description: - When enabled, allows SSL sessions whose server certificate validation failed. choices: - enable - disable client-cert-request: description: - Action based on client certificate request. choices: - bypass - inspect - block ports: description: - Ports to use for scanning (1 - 65535, default = 443). status: description: - Configure protocol inspection status. choices: - disable - deep-inspection unsupported-ssl: description: - Action based on the SSL encryption used being unsupported. choices: - bypass - inspect - block untrusted-cert: description: - Allow, ignore, or block the untrusted SSL session server certificate. choices: - allow - block - ignore ssh: description: - Configure SSH options. suboptions: inspect-all: description: - Level of SSL inspection. choices: - disable - deep-inspection ports: description: - Ports to use for scanning (1 - 65535, default = 443). ssh-algorithm: description: - Relative strength of encryption algorithms accepted during negotiation. choices: - compatible - high-encryption ssh-policy-check: description: - Enable/disable SSH policy check. choices: - disable - enable ssh-tun-policy-check: description: - Enable/disable SSH tunnel policy check. choices: - disable - enable status: description: - Configure protocol inspection status. choices: - disable - deep-inspection unsupported-version: description: - Action based on SSH version being unsupported. choices: - bypass - block ssl: description: - Configure SSL options. suboptions: allow-invalid-server-cert: description: - When enabled, allows SSL sessions whose server certificate validation failed. choices: - enable - disable client-cert-request: description: - Action based on client certificate request. choices: - bypass - inspect - block inspect-all: description: - Level of SSL inspection. choices: - disable - certificate-inspection - deep-inspection unsupported-ssl: description: - Action based on the SSL encryption used being unsupported. choices: - bypass - inspect - block untrusted-cert: description: - Allow, ignore, or block the untrusted SSL session server certificate. choices: - allow - block - ignore ssl-anomalies-log: description: - Enable/disable logging SSL anomalies. choices: - disable - enable ssl-exempt: description: - Servers to exempt from SSL inspection. suboptions: address: description: - IPv4 address object. Source firewall.address.name firewall.addrgrp.name. address6: description: - IPv6 address object. Source firewall.address6.name firewall.addrgrp6.name. fortiguard-category: description: - FortiGuard category ID. id: description: - ID number. required: true regex: description: - Exempt servers by regular expression. type: description: - Type of address object (IPv4 or IPv6) or FortiGuard category. choices: - fortiguard-category - address - address6 - wildcard-fqdn - regex wildcard-fqdn: description: - Exempt servers by wildcard FQDN. Source firewall.wildcard-fqdn.custom.name firewall.wildcard-fqdn.group.name. ssl-exemptions-log: description: - Enable/disable logging SSL exemptions. choices: - disable - enable ssl-server: description: - SSL servers. suboptions: ftps-client-cert-request: description: - Action based on client certificate request during the FTPS handshake. choices: - bypass - inspect - block https-client-cert-request: description: - Action based on client certificate request during the HTTPS handshake. choices: - bypass - inspect - block id: description: - SSL server ID. required: true imaps-client-cert-request: description: - Action based on client certificate request during the IMAPS handshake. choices: - bypass - inspect - block ip: description: - IPv4 address of the SSL server. pop3s-client-cert-request: description: - Action based on client certificate request during the POP3S handshake. choices: - bypass - inspect - block smtps-client-cert-request: description: - Action based on client certificate request during the SMTPS handshake. choices: - bypass - inspect - block ssl-other-client-cert-request: description: - Action based on client certificate request during an SSL protocol handshake. choices: - bypass - inspect - block untrusted-caname: description: - Untrusted CA certificate used by SSL Inspection. Source vpn.certificate.local.name. use-ssl-server: description: - Enable/disable the use of SSL server table for SSL offloading. choices: - disable - enable whitelist: description: - Enable/disable exempting servers by FortiGuard whitelist. choices: - enable - disable ''' EXAMPLES = ''' - hosts: localhost vars: host: "192.168.122.40" username: "admin" password: "" vdom: "root" tasks: - name: Configure SSL/SSH protocol options. fortios_firewall_ssl_ssh_profile: host: "{{ host }}" username: "{{ username }}" password: "{{ password }}" vdom: "{{ vdom }}" https: "False" firewall_ssl_ssh_profile: state: "present" caname: "<your_own_value> (source vpn.certificate.local.name)" comment: "Optional comments." ftps: allow-invalid-server-cert: "enable" client-cert-request: "bypass" ports: "8" status: "disable" unsupported-ssl: "bypass" untrusted-cert: "allow" https: allow-invalid-server-cert: "enable" client-cert-request: "bypass" ports: "15" status: "disable" unsupported-ssl: "bypass" untrusted-cert: "allow" imaps: allow-invalid-server-cert: "enable" client-cert-request: "bypass" ports: "22" status: "disable" unsupported-ssl: "bypass" untrusted-cert: "allow" mapi-over-https: "enable" name: "default_name_27" pop3s: allow-invalid-server-cert: "enable" client-cert-request: "bypass" ports: "31" status: "disable" unsupported-ssl: "bypass" untrusted-cert: "allow" rpc-over-https: "enable" server-cert: "<your_own_value> (source vpn.certificate.local.name)" server-cert-mode: "re-sign" smtps: allow-invalid-server-cert: "enable" client-cert-request: "bypass" ports: "41" status: "disable" unsupported-ssl: "bypass" untrusted-cert: "allow" ssh: inspect-all: "disable" ports: "47" ssh-algorithm: "compatible" ssh-policy-check: "disable" ssh-tun-policy-check: "disable" status: "disable" unsupported-version: "bypass" ssl: allow-invalid-server-cert: "enable" client-cert-request: "bypass" inspect-all: "disable" unsupported-ssl: "bypass" untrusted-cert: "allow" ssl-anomalies-log: "disable" ssl-exempt: - address: "<your_own_value> (source firewall.address.name firewall.addrgrp.name)" address6: "<your_own_value> (source firewall.address6.name firewall.addrgrp6.name)" fortiguard-category: "63" id: "64" regex: "<your_own_value>" type: "fortiguard-category" wildcard-fqdn: "<your_own_value> (source firewall.wildcard-fqdn.custom.name firewall.wildcard-fqdn.group.name)" ssl-exemptions-log: "disable" ssl-server: - ftps-client-cert-request: "bypass" https-client-cert-request: "bypass" id: "72" imaps-client-cert-request: "bypass" ip: "<your_own_value>" pop3s-client-cert-request: "bypass" smtps-client-cert-request: "bypass" ssl-other-client-cert-request: "bypass" untrusted-caname: "<your_own_value> (source vpn.certificate.local.name)" use-ssl-server: "disable" whitelist: "enable" ''' RETURN = ''' build: description: Build number of the fortigate image returned: always type: str sample: '1547' http_method: description: Last method used to provision the content into FortiGate returned: always type: str sample: 'PUT' http_status: description: Last result given by FortiGate on last operation applied returned: always type: str sample: "200" mkey: description: Master key (id) used in the last call to FortiGate returned: success type: str sample: "id" name: description: Name of the table used to fulfill the request returned: always type: str sample: "urlfilter" path: description: Path of the table used to fulfill the request returned: always type: str sample: "webfilter" revision: description: Internal revision number returned: always type: str sample: "17.0.2.10658" serial: description: Serial number of the unit returned: always type: str sample: "FGVMEVYYQT3AB5352" status: description: Indication of the operation's result returned: always type: str sample: "success" vdom: description: Virtual domain used returned: always type: str sample: "root" version: description: Version of the FortiGate returned: always type: str sample: "v5.6.3" ''' from ansible.module_utils.basic import AnsibleModule def login(data, fos): host = data['host'] username = data['username'] password = data['password'] fos.debug('on') if 'https' in data and not data['https']: fos.https('off') else: fos.https('on') fos.login(host, username, password) def filter_firewall_ssl_ssh_profile_data(json): option_list = ['caname', 'comment', 'ftps', 'https', 'imaps', 'mapi-over-https', 'name', 'pop3s', 'rpc-over-https', 'server-cert', 'server-cert-mode', 'smtps', 'ssh', 'ssl', 'ssl-anomalies-log', 'ssl-exempt', 'ssl-exemptions-log', 'ssl-server', 'untrusted-caname', 'use-ssl-server', 'whitelist'] dictionary = {} for attribute in option_list: if attribute in json and json[attribute] is not None: dictionary[attribute] = json[attribute] return dictionary def firewall_ssl_ssh_profile(data, fos): vdom = data['vdom'] firewall_ssl_ssh_profile_data = data['firewall_ssl_ssh_profile'] filtered_data = filter_firewall_ssl_ssh_profile_data(firewall_ssl_ssh_profile_data) if firewall_ssl_ssh_profile_data['state'] == "present": return fos.set('firewall', 'ssl-ssh-profile', data=filtered_data, vdom=vdom) elif firewall_ssl_ssh_profile_data['state'] == "absent": return fos.delete('firewall', 'ssl-ssh-profile', mkey=filtered_data['name'], vdom=vdom) def is_successful_status(status): return status['status'] == "success" or \ status['http_method'] == "DELETE" and status['http_status'] == 404 def fortios_firewall(data, fos): login(data, fos) if data['firewall_ssl_ssh_profile']: resp = firewall_ssl_ssh_profile(data, fos) fos.logout() return not is_successful_status(resp), \ resp['status'] == "success", \ resp def main(): fields = { "host": {"required": True, "type": "str"}, "username": {"required": True, "type": "str"}, "password": {"required": False, "type": "str", "no_log": True}, "vdom": {"required": False, "type": "str", "default": "root"}, "https": {"required": False, "type": "bool", "default": True}, "firewall_ssl_ssh_profile": { "required": False, "type": "dict", "options": { "state": {"required": True, "type": "str", "choices": ["present", "absent"]}, "caname": {"required": False, "type": "str"}, "comment": {"required": False, "type": "str"}, "ftps": {"required": False, "type": "dict", "options": { "allow-invalid-server-cert": {"required": False, "type": "str", "choices": ["enable", "disable"]}, "client-cert-request": {"required": False, "type": "str", "choices": ["bypass", "inspect", "block"]}, "ports": {"required": False, "type": "int"}, "status": {"required": False, "type": "str", "choices": ["disable", "deep-inspection"]}, "unsupported-ssl": {"required": False, "type": "str", "choices": ["bypass", "inspect", "block"]}, "untrusted-cert": {"required": False, "type": "str", "choices": ["allow", "block", "ignore"]} }}, "https": {"required": False, "type": "dict", "options": { "allow-invalid-server-cert": {"required": False, "type": "str", "choices": ["enable", "disable"]}, "client-cert-request": {"required": False, "type": "str", "choices": ["bypass", "inspect", "block"]}, "ports": {"required": False, "type": "int"}, "status": {"required": False, "type": "str", "choices": ["disable", "certificate-inspection", "deep-inspection"]}, "unsupported-ssl": {"required": False, "type": "str", "choices": ["bypass", "inspect", "block"]}, "untrusted-cert": {"required": False, "type": "str", "choices": ["allow", "block", "ignore"]} }}, "imaps": {"required": False, "type": "dict", "options": { "allow-invalid-server-cert": {"required": False, "type": "str", "choices": ["enable", "disable"]}, "client-cert-request": {"required": False, "type": "str", "choices": ["bypass", "inspect", "block"]}, "ports": {"required": False, "type": "int"}, "status": {"required": False, "type": "str", "choices": ["disable", "deep-inspection"]}, "unsupported-ssl": {"required": False, "type": "str", "choices": ["bypass", "inspect", "block"]}, "untrusted-cert": {"required": False, "type": "str", "choices": ["allow", "block", "ignore"]} }}, "mapi-over-https": {"required": False, "type": "str", "choices": ["enable", "disable"]}, "name": {"required": True, "type": "str"}, "pop3s": {"required": False, "type": "dict", "options": { "allow-invalid-server-cert": {"required": False, "type": "str", "choices": ["enable", "disable"]}, "client-cert-request": {"required": False, "type": "str", "choices": ["bypass", "inspect", "block"]}, "ports": {"required": False, "type": "int"}, "status": {"required": False, "type": "str", "choices": ["disable", "deep-inspection"]}, "unsupported-ssl": {"required": False, "type": "str", "choices": ["bypass", "inspect", "block"]}, "untrusted-cert": {"required": False, "type": "str", "choices": ["allow", "block", "ignore"]} }}, "rpc-over-https": {"required": False, "type": "str", "choices": ["enable", "disable"]}, "server-cert": {"required": False, "type": "str"}, "server-cert-mode": {"required": False, "type": "str", "choices": ["re-sign", "replace"]}, "smtps": {"required": False, "type": "dict", "options": { "allow-invalid-server-cert": {"required": False, "type": "str", "choices": ["enable", "disable"]}, "client-cert-request": {"required": False, "type": "str", "choices": ["bypass", "inspect", "block"]}, "ports": {"required": False, "type": "int"}, "status": {"required": False, "type": "str", "choices": ["disable", "deep-inspection"]}, "unsupported-ssl": {"required": False, "type": "str", "choices": ["bypass", "inspect", "block"]}, "untrusted-cert": {"required": False, "type": "str", "choices": ["allow", "block", "ignore"]} }}, "ssh": {"required": False, "type": "dict", "options": { "inspect-all": {"required": False, "type": "str", "choices": ["disable", "deep-inspection"]}, "ports": {"required": False, "type": "int"}, "ssh-algorithm": {"required": False, "type": "str", "choices": ["compatible", "high-encryption"]}, "ssh-policy-check": {"required": False, "type": "str", "choices": ["disable", "enable"]}, "ssh-tun-policy-check": {"required": False, "type": "str", "choices": ["disable", "enable"]}, "status": {"required": False, "type": "str", "choices": ["disable", "deep-inspection"]}, "unsupported-version": {"required": False, "type": "str", "choices": ["bypass", "block"]} }}, "ssl": {"required": False, "type": "dict", "options": { "allow-invalid-server-cert": {"required": False, "type": "str", "choices": ["enable", "disable"]}, "client-cert-request": {"required": False, "type": "str", "choices": ["bypass", "inspect", "block"]}, "inspect-all": {"required": False, "type": "str", "choices": ["disable", "certificate-inspection", "deep-inspection"]}, "unsupported-ssl": {"required": False, "type": "str", "choices": ["bypass", "inspect", "block"]}, "untrusted-cert": {"required": False, "type": "str", "choices": ["allow", "block", "ignore"]} }}, "ssl-anomalies-log": {"required": False, "type": "str", "choices": ["disable", "enable"]}, "ssl-exempt": {"required": False, "type": "list", "options": { "address": {"required": False, "type": "str"}, "address6": {"required": False, "type": "str"}, "fortiguard-category": {"required": False, "type": "int"}, "id": {"required": True, "type": "int"}, "regex": {"required": False, "type": "str"}, "type": {"required": False, "type": "str", "choices": ["fortiguard-category", "address", "address6", "wildcard-fqdn", "regex"]}, "wildcard-fqdn": {"required": False, "type": "str"} }}, "ssl-exemptions-log": {"required": False, "type": "str", "choices": ["disable", "enable"]}, "ssl-server": {"required": False, "type": "list", "options": { "ftps-client-cert-request": {"required": False, "type": "str", "choices": ["bypass", "inspect", "block"]}, "https-client-cert-request": {"required": False, "type": "str", "choices": ["bypass", "inspect", "block"]}, "id": {"required": True, "type": "int"}, "imaps-client-cert-request": {"required": False, "type": "str", "choices": ["bypass", "inspect", "block"]}, "ip": {"required": False, "type": "str"}, "pop3s-client-cert-request": {"required": False, "type": "str", "choices": ["bypass", "inspect", "block"]}, "smtps-client-cert-request": {"required": False, "type": "str", "choices": ["bypass", "inspect", "block"]}, "ssl-other-client-cert-request": {"required": False, "type": "str", "choices": ["bypass", "inspect", "block"]} }}, "untrusted-caname": {"required": False, "type": "str"}, "use-ssl-server": {"required": False, "type": "str", "choices": ["disable", "enable"]}, "whitelist": {"required": False, "type": "str", "choices": ["enable", "disable"]} } } } module = AnsibleModule(argument_spec=fields, supports_check_mode=False) try: from fortiosapi import FortiOSAPI except ImportError: module.fail_json(msg="fortiosapi module is required") fos = FortiOSAPI() is_error, has_changed, result = fortios_firewall(module.params, fos) if not is_error: module.exit_json(changed=has_changed, meta=result) else: module.fail_json(msg="Error in repo", meta=result) if __name__ == '__main__': main()
py
b4177ba1129f7fa1ecc4d76c1ea41b2970c55389
from geoscript.render.image import Image class PNG(Image): """ Renderer that produces a PNG image. """ def __init__(self): Image.__init__(self, 'png')
py
b4177c10c267c7724e45eacb2ee48ca378489480
""" Module to read MODFLOW 6 binary grid files (*.grb) that define the model grid binary output files. The module contains the MfGrdFile class that can be accessed by the user. """ import numpy as np import collections from ..utils.utils_def import FlopyBinaryData from ..utils.reference import SpatialReference, SpatialReferenceUnstructured class MfGrdFile(FlopyBinaryData): """ The MfGrdFile class. Parameters ---------- filename : str Name of the MODFLOW 6 binary grid file precision : string 'single' or 'double'. Default is 'double'. verbose : bool Write information to the screen. Default is False. Attributes ---------- Methods ------- See Also -------- Notes ----- The MfGrdFile class provides simple ways to retrieve data from binary MODFLOW 6 binary grid files (.grb). The binary grid file contains data that can be used for post processing MODFLOW 6 model results. Examples -------- >>> import flopy >>> gobj = flopy.utils.MfGrdFile('test.dis.grb') """ def __init__(self, filename, precision='double', verbose=False): """ Class constructor. """ # Call base class init super(MfGrdFile, self).__init__() # set attributes self.set_float(precision=precision) self.verbose = verbose self._initial_len = 50 self._recorddict = collections.OrderedDict() self._datadict = collections.OrderedDict() self._recordkeys = [] if self.verbose: print('\nProcessing binary grid file: {}'.format(filename)) # open the grb file self.file = open(filename, 'rb') # grid type line = self.read_text(self._initial_len).strip() t = line.split() self._grid = t[1] # version line = self.read_text(self._initial_len).strip() t = line.split() self._version = t[1] # version line = self.read_text(self._initial_len).strip() t = line.split() self._ntxt = int(t[1]) # length of text line = self.read_text(self._initial_len).strip() t = line.split() self._lentxt = int(t[1]) # read text strings for idx in range(self._ntxt): line = self.read_text(self._lentxt).strip() t = line.split() key = t[0] dt = t[1] if dt == 'INTEGER': dtype = np.int32 elif dt == 'SINGLE': dtype = np.float32 elif dt == 'DOUBLE': dtype = np.float64 else: dtype = None nd = int(t[3]) if nd > 0: shp = [int(v) for v in t[4:]] shp = tuple(shp[::-1]) else: shp = (0,) self._recorddict[key] = (dtype, nd, shp) self._recordkeys.append(key) if self.verbose: s = '' if nd > 0: s = shp msg = ' File contains data for {} '.format(key) + \ 'with shape {}'.format(s) print(msg) if self.verbose: msg = 'Attempting to read {} '.format(self._ntxt) + \ 'records from {}'.format(filename) print(msg) for key in self._recordkeys: if self.verbose: msg = ' Reading {}'.format(key) print(msg) dt, nd, shp = self._recorddict[key] # read array data if nd > 0: count = 1 for v in shp: count *= v v = self.read_record(count=count, dtype=dt) # read variable data else: if dt == np.int32: v = self.read_integer() elif dt == np.float32: v = self.read_real() elif dt == np.float64: v = self.read_real() self._datadict[key] = v if self.verbose: if nd == 0: msg = ' {} = {}'.format(key, v) print(msg) else: msg = ' {}: '.format(key) + \ 'min = {} max = {}'.format(v.min(), v.max()) print(msg) # set the spatial reference self.sr = self._set_spatialreference() # close the grb file self.file.close() def _set_spatialreference(self): """ Define structured or unstructured spatial reference based on MODFLOW 6 discretization type. Returns ------- sr : SpatialReference """ sr = None try: if self._grid == 'DISV' or self._grid == 'DISU': try: iverts, verts = self.get_verts() vertc = self.get_centroids() xc = vertc[:, 0] yc = vertc[:, 1] sr = SpatialReferenceUnstructured(xc, yc, verts, iverts, [xc.shape[0]]) except: msg = 'could not set spatial reference for ' + \ '{} discretization '.format(self._grid) + \ 'defined in {}'.format(self.file.name) print(msg) elif self._grid == 'DIS': delr, delc = self._datadict['DELR'], self._datadict['DELC'] xorigin, yorigin, rot = self._datadict['XORIGIN'], \ self._datadict['YORIGIN'], \ self._datadict['ANGROT'] sr = SpatialReference(delr=delr, delc=delc, xll=xorigin, yll=yorigin, rotation=rot) except: print('could not set spatial reference for {}'.format( self.file.name)) return sr def get_spatialreference(self): """ Get the SpatialReference based on the MODFLOW 6 discretization type Returns ------- sr : SpatialReference Examples -------- >>> import flopy >>> gobj = flopy.utils.MfGrdFile('test.dis.grb') >>> sr = gobj.get_spatialreference() """ return self.sr def get_centroids(self): """ Get the centroids for a MODFLOW 6 GWF model that uses the DIS, DISV, or DISU discretization. Returns ------- vertc : np.ndarray Array with x, y pairs of the centroid for every model cell Examples -------- >>> import flopy >>> gobj = flopy.utils.MfGrdFile('test.dis.grb') >>> vertc = gobj.get_centroids() """ try: if self._grid in ['DISV', 'DISU']: x = self._datadict['CELLX'] y = self._datadict['CELLY'] elif self._grid == 'DIS': nlay = self._datadict['NLAY'] x = np.tile(self.sr.xcentergrid.flatten(), nlay) y = np.tile(self.sr.ycentergrid.flatten(), nlay) return np.column_stack((x, y)) except: msg = 'could not return centroids' + \ ' for {}'.format(self.file.name) raise KeyError(msg) def get_verts(self): """ Get a list of the vertices that define each model cell and the x, y pair for each vertex. Returns ------- iverts : list of lists List with lists containing the vertex indices for each model cell. verts : np.ndarray Array with x, y pairs for every vertex used to define the model. Examples -------- >>> import flopy >>> gobj = flopy.utils.MfGrdFile('test.dis.grb') >>> iverts, verts = gobj.get_verts() """ if self._grid == 'DISV': try: iverts = [] iavert = self._datadict['IAVERT'] javert = self._datadict['JAVERT'] shpvert = self._recorddict['VERTICES'][2] for ivert in range(self._datadict['NCPL']): i0 = iavert[ivert] - 1 i1 = iavert[ivert + 1] - 1 iverts.append((javert[i0:i1] - 1).tolist()) if self.verbose: msg = 'returning vertices for {}'.format(self.file.name) print(msg) return iverts, self._datadict['VERTICES'].reshape(shpvert) except: msg = 'could not return vertices for ' + \ '{}'.format(self.file.name) raise KeyError(msg) elif self._grid == 'DISU': try: iverts = [] iavert = self._datadict['IAVERT'] javert = self._datadict['JAVERT'] shpvert = self._recorddict['VERTICES'][2] for ivert in range(self._datadict['NODES']): i0 = iavert[ivert] - 1 i1 = iavert[ivert + 1] - 1 iverts.append((javert[i0:i1] - 1).tolist()) if self.verbose: msg = 'returning vertices for {}'.format(self.file.name) print(msg) return iverts, self._datadict['VERTICES'].reshape(shpvert) except: msg = 'could not return vertices for {}'.format(self.file.name) raise KeyError(msg) elif self._grid == 'DIS': try: nlay, nrow, ncol = self._datadict['NLAY'], \ self._datadict['NROW'], \ self._datadict['NCOL'] iv = 0 verts = [] iverts = [] for k in range(nlay): for i in range(nrow): for j in range(ncol): ivlist = [] v = self.sr.get_vertices(i, j) for (x, y) in v: verts.append((x, y)) ivlist.append(iv) iv += 1 iverts.append(ivlist) verts = np.array(verts) return iverts, verts except: msg = 'could not return vertices for {}'.format(self.file.name) raise KeyError(msg) return
py
b4177c66063976e4ee206298bc2ee0dd0dbe3ddf
import unittest import bill_info # parsing various kinds of action text to extract metadata and establish state def parse_bill_action(line, state, bill_id, title): return bill_info.parse_bill_action({"text": line}, state, bill_id, title) class BillActions(unittest.TestCase): def test_veto(self): bill_id = "hjres64-111" title = "Making further continuing appropriations for fiscal year 2010, and for other purposes." state = "PASSED:BILL" line = "Vetoed by President." new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['type'], "vetoed") self.assertEqual(new_state, "PROV_KILL:VETO") def test_pocket_veto(self): bill_id = "hr2415-106" title = "United Nations Reform Act of 1999" state = "PASSED:BILL" line = "Pocket Vetoed by President." new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['type'], "vetoed") self.assertEqual(new_action['pocket'], "1") self.assertEqual(new_state, "VETOED:POCKET") def test_reported_from_committee(self): bill_id = "s968-112" title = "A bill to prevent online threats to economic creativity and theft of intellectual property, and for other purposes." state = "REFERRED" line = "Committee on the Judiciary. Ordered to be reported with an amendment in the nature of a substitute favorably." new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['type'], 'calendar') # self.assertEqual(new_action['committee'], "Committee on the Judiciary") self.assertEqual(new_state, "REPORTED") def test_added_to_calendar(self): bill_id = "s968-112" title = "A bill to prevent online threats to economic creativity and theft of intellectual property, and for other purposes." state = "REPORTED" line = "Placed on Senate Legislative Calendar under General Orders. Calendar No. 70." new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['type'], 'calendar') self.assertEqual(new_action['calendar'], "Senate Legislative") self.assertEqual(new_action['under'], "General Orders") self.assertEqual(new_action['number'], "70") self.assertEqual(new_state, None) def test_enacted_as_public_law(self): bill_id = "hr3590-111" title = "An act entitled The Patient Protection and Affordable Care Act." state = "ENACTED:SIGNED" line = "Became Public Law No: 111-148." new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['type'], "enacted") self.assertEqual(new_action['congress'], "111") self.assertEqual(new_action['number'], "148") self.assertEqual(new_action['law'], "public") def test_cleared_for_whitehouse(self): bill_id = "hr3590-111" title = "An act entitled The Patient Protection and Affordable Care Act." state = "PASSED:BILL" line = "Cleared for White House." new_action, new_state = parse_bill_action(line, state, bill_id, title) # should not be marked as presented to president, since it hasn't been yet # self.assertEqual(new_action['type'], 'action') def test_presented_to_president(self): bill_id = "hr3590-111" title = "An act entitled The Patient Protection and Affordable Care Act." state = "PASSED:BILL" line = "Presented to President." new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['type'], 'topresident') def test_signed_by_president(self): bill_id = "hr3590-111" title = "An act entitled The Patient Protection and Affordable Care Act." state = "PASSED:BILL" line = "Signed by President." new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['type'], 'signed') # voting tests def test_vote_normal_roll(self): bill_id = "hr3590-111" title = "An act entitled The Patient Protection and Affordable Care Act." state = "INTRODUCED" line = "On motion to suspend the rules and pass the bill Agreed to by the Yeas and Nays: (2/3 required): 416 - 0 (Roll no. 768)." new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['type'], "vote") self.assertEqual(new_action['vote_type'], "vote") self.assertEqual(new_action['where'], "h") self.assertEqual(new_action['how'], "roll") self.assertEqual(new_action['result'], "pass") self.assertEqual(new_action['roll'], "768") self.assertEqual(new_state, "PASS_OVER:HOUSE") def test_vote_normal_roll_second(self): bill_id = "hr3590-111" title = "An act entitled The Patient Protection and Affordable Care Act." state = "PASS_OVER:HOUSE" line = "Passed Senate with an amendment and an amendment to the Title by Yea-Nay Vote. 60 - 39. Record Vote Number: 396." new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['type'], "vote") self.assertEqual(new_action['vote_type'], "vote2") self.assertEqual(new_action['where'], "s") self.assertEqual(new_action['how'], "roll") self.assertEqual(new_action['result'], "pass") self.assertEqual(new_action['roll'], "396") self.assertEqual(new_state, "PASS_BACK:SENATE") def test_cloture_vote_verbose(self): bill_id = "s1982-113" title = "Comprehensive Veterans Health and Benefits and Military Retirement Pay Restoration Act of 2014" line = "Cloture motion on the motion to proceed to the measure invoked in Senate by Yea-Nay Vote. 99 - 0. Record Vote Number: 44." state = "REPORTED" new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['type'], "vote-aux") self.assertEqual(new_action['vote_type'], "cloture") self.assertEqual(new_action['where'], "s") self.assertEqual(new_action['how'], "roll") self.assertEqual(new_action['result'], "pass") self.assertEqual(new_action['roll'], "44") self.assertEqual(new_state, None) def test_vote_roll_pingpong(self): bill_id = "hr3590-111" title = "An act entitled The Patient Protection and Affordable Care Act." state = "PASS_BACK:SENATE" line = "On motion that the House agree to the Senate amendments Agreed to by recorded vote: 219 - 212 (Roll no. 165)." new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['roll'], "165") self.assertEqual(new_action['type'], "vote") self.assertEqual(new_action['vote_type'], "pingpong") self.assertEqual(new_action['where'], "h") self.assertEqual(new_action['how'], "roll") self.assertEqual(new_action['result'], "pass") def test_vote_cloture(self): bill_id = "hr3590-111" title = "An act entitled The Patient Protection and Affordable Care Act." state = "PASS_OVER:HOUSE" # should not change line = "Cloture on the motion to proceed to the bill invoked in Senate by Yea-Nay Vote. 60 - 39. Record Vote Number: 353." new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['roll'], "353") self.assertEqual(new_action['type'], "vote-aux") self.assertEqual(new_action['vote_type'], "cloture") self.assertEqual(new_action['where'], "s") self.assertEqual(new_action['how'], "roll") self.assertEqual(new_action['result'], "pass") self.assertEqual(new_state, None) # unchanged def test_vote_cloture_2(self): bill_id = "hr3590-111" title = "An act entitled The Patient Protection and Affordable Care Act." state = "PASS_OVER:HOUSE" # should not change line = "Cloture invoked in Senate by Yea-Nay Vote. 60 - 39. Record Vote Number: 395." new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['roll'], "395") self.assertEqual(new_action['type'], "vote-aux") self.assertEqual(new_action['vote_type'], "cloture") self.assertEqual(new_action['where'], "s") self.assertEqual(new_action['how'], "roll") self.assertEqual(new_action['result'], "pass") self.assertEqual(new_state, None) # unchanged # not sure whether to include votes that are on process, not passage or cloture # def test_vote_process_voice_senate(self): # bill_id = "hr3590-111" # title = "An act entitled The Patient Protection and Affordable Care Act." # state = "PASS_OVER:HOUSE" # should not change # line = "Motion to proceed to consideration of measure agreed to in Senate by Unanimous Consent." # new_action, new_state = parse_bill_action(line, state, bill_id, title) # self.assertEqual(new_action['type'], 'vote') # self.assertEqual(new_action['vote_type'], 'other') # self.assertEqual(new_action['how'], 'Unanimous Consent') # self.assertEqual(new_action['where'], 's') # self.assertEqual(new_action['result'], 'pass') # self.assertEqual(new_state, None) # def test_vote_commit_roll_failure(self): # bill_id = "hr3590-111" # title = "An act entitled The Patient Protection and Affordable Care Act." # state = "PASS_OVER:HOUSE" # should not change # line = "Motion by Senator McCain to commit to Senate Committee on Finance under the order of 12/2/2009, not having achieved 60 votes in the affirmative, the motion was rejected in Senate by Yea-Nay Vote. 42 - 58. Record Vote Number: 358." # new_action, new_state = parse_bill_action(line, state, bill_id, title) # self.assertEqual(new_action['type'], 'vote') # self.assertEqual(new_action['vote_type'], 'other') # self.assertEqual(new_action['how'], 'roll') # self.assertEqual(new_action['where'], 's') # self.assertEqual(new_action['result'], 'fail') # self.assertEqual(new_action['roll'], "358") # self.assertEqual(new_state, None) # def test_vote_motion_conference(self): # bill_id = "hr3630-112" # title = "A bill to extend the payroll tax holiday, unemployment compensation, Medicare physician payment, provide for the consideration of the Keystone XL pipeline, and for other purposes." # state = "PASS_BACK:SENATE" # line = "On motion that the House disagree to the Senate amendments, and request a conference Agreed to by the Yeas and Nays: 229 - 193 (Roll no. 946)." # new_action, new_state = parse_bill_action(line, state, bill_id, title) # self.assertEqual(new_action['type'], 'vote') # self.assertEqual(new_action['vote_type'], 'other') # self.assertEqual(new_action['how'], 'roll') # self.assertEqual(new_action['where'], 'h') # self.assertEqual(new_action['result'], 'pass') # self.assertEqual(new_action['roll'], "946") # self.assertEqual(new_state, None) # def test_vote_motion_instruct_conferees(self): # bill_id = "hr3630-112" # title = "A bill to extend the payroll tax holiday, unemployment compensation, Medicare physician payment, provide for the consideration of the Keystone XL pipeline, and for other purposes." # state = "PASS_BACK:SENATE" # line = "On motion that the House instruct conferees Agreed to by the Yeas and Nays: 397 - 16 (Roll no. 9)." # new_action, new_state = parse_bill_action(line, state, bill_id, title) # self.assertEqual(new_action['type'], 'vote') # self.assertEqual(new_action['vote_type'], 'other') # self.assertEqual(new_action['how'], 'roll') # self.assertEqual(new_action['where'], 'h') # self.assertEqual(new_action['result'], 'pass') # self.assertEqual(new_action['roll'], "9") # self.assertEqual(new_state, None) def test_vote_conference_report_house_pass(self): bill_id = "hr3630-112" title = "A bill to extend the payroll tax holiday, unemployment compensation, Medicare physician payment, provide for the consideration of the Keystone XL pipeline, and for other purposes." state = "PASS_BACK:SENATE" line = "On agreeing to the conference report Agreed to by the Yeas and Nays: 293 - 132 (Roll no. 72)." new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['type'], 'vote') self.assertEqual(new_action['vote_type'], 'conference') self.assertEqual(new_action['how'], 'roll') self.assertEqual(new_action['where'], 'h') self.assertEqual(new_action['result'], 'pass') self.assertEqual(new_action['roll'], "72") self.assertEqual(new_state, 'CONFERENCE:PASSED:HOUSE') def test_vote_conference_report_senate_pass(self): bill_id = "hr3630-112" title = "A bill to extend the payroll tax holiday, unemployment compensation, Medicare physician payment, provide for the consideration of the Keystone XL pipeline, and for other purposes." state = "CONFERENCE:PASSED:HOUSE" line = "Senate agreed to conference report by Yea-Nay Vote. 60 - 36. Record Vote Number: 22." new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['type'], 'vote') self.assertEqual(new_action['vote_type'], 'conference') self.assertEqual(new_action['how'], 'roll') self.assertEqual(new_action['where'], 's') self.assertEqual(new_action['result'], 'pass') self.assertEqual(new_action['roll'], "22") self.assertEqual(new_state, 'PASSED:BILL') def test_vote_veto_override_fail(self): bill_id = "hjres64-111" title = "Making further continuing appropriations for fiscal year 2010, and for other purposes." state = "PROV_KILL:VETO" line = "On passage, the objections of the President to the contrary notwithstanding Failed by the Yeas and Nays: (2/3 required): 143 - 245, 1 Present (Roll no. 2).On passage, the objections of the President to the contrary notwithstanding Failed by the Yeas and Nays: (2/3 required): 143 - 245, 1 Present (Roll no. 2)." new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['type'], "vote") self.assertEqual(new_action['vote_type'], "override") self.assertEqual(new_action['where'], "h") self.assertEqual(new_action["result"], "fail") self.assertEqual(new_action["how"], "roll") self.assertEqual(new_action["roll"], "2") self.assertEqual(new_state, "VETOED:OVERRIDE_FAIL_ORIGINATING:HOUSE") def test_veto_override_success_once(self): bill_id = "hr6331-110" title = "Medicare Improvements for Patients and Providers Act of 2008" state = "PROV_KILL:VETO" line = "Two-thirds of the Members present having voted in the affirmative the bill is passed, Passed by the Yeas and Nays: (2/3 required): 383 - 41 (Roll no. 491)." new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['type'], "vote") self.assertEqual(new_action['vote_type'], "override") self.assertEqual(new_action['where'], "h") self.assertEqual(new_action["result"], "pass") self.assertEqual(new_action["how"], "roll") self.assertEqual(new_action["roll"], "491") self.assertEqual(new_state, "VETOED:OVERRIDE_PASS_OVER:HOUSE") def test_veto_override_success_twice(self): bill_id = "hr6331-110" title = "Medicare Improvements for Patients and Providers Act of 2008" state = "VETOED:OVERRIDE_PASS_OVER:HOUSE" line = "Passed Senate over veto by Yea-Nay Vote. 70 - 26. Record Vote Number: 177." new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['type'], "vote") self.assertEqual(new_action['vote_type'], "override") self.assertEqual(new_action['where'], "s") self.assertEqual(new_action["result"], "pass") self.assertEqual(new_action["how"], "roll") self.assertEqual(new_action["roll"], "177") # self.assertEqual(new_state, "VETOED:OVERRIDE_COMPLETE:SENATE") # Fictional bill, no constitutional amendment passed by both Houses # in the THOMAS era (1973-present). # The 26th was passed by Congress in 1971, 27th passed by Congress in 1789. # The line here is taken from hjres10-109, when the House passed a # flag burning amendment. (A separate version later failed the Senate by one vote.) def test_passed_constitutional_amendment(self): bill_id = "sjres64-1000" title = "Proposing an amendment to the Constitution of the United States authorizing the Congress to prohibit the physical desecration of the flag of the United States." state = "PASS_OVER:SENATE" line = "On passage Passed by the Yeas and Nays: (2/3 required): 286 - 130 (Roll no. 296)." new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['type'], "vote") self.assertEqual(new_action['vote_type'], "vote2") self.assertEqual(new_action['where'], "h") self.assertEqual(new_action["result"], "pass") self.assertEqual(new_action["how"], "roll") self.assertEqual(new_action["roll"], "296") self.assertEqual(new_state, "PASSED:CONSTAMEND") def test_passed_concurrent_resolution(self): bill_id = "hconres74-112" title = "Providing for a joint session of Congress to receive a message from the President." state = "PASS_OVER:HOUSE" line = "Received in the Senate, considered, and agreed to without amendment by Unanimous Consent." new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['type'], "vote") self.assertEqual(new_action['vote_type'], "vote2") self.assertEqual(new_action['where'], "s") self.assertEqual(new_action["result"], "pass") self.assertEqual(new_action["how"], "by Unanimous Consent") self.assertEqual(new_state, "PASSED:CONCURRENTRES") def test_passed_simple_resolution_house(self): bill_id = "hres9-112" title = "Instructing certain committees to report legislation replacing the job-killing health care law." state = "REPORTED" line = "On agreeing to the resolution, as amended Agreed to by the Yeas and Nays: 253 - 175 (Roll no. 16)." new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['type'], "vote") self.assertEqual(new_action['vote_type'], "vote") self.assertEqual(new_action['where'], "h") self.assertEqual(new_action["result"], "pass") self.assertEqual(new_action["how"], "roll") self.assertEqual(new_action['roll'], "16") self.assertEqual(new_state, "PASSED:SIMPLERES") def test_passed_simple_resolution_senate(self): bill_id = "sres484-112" title = "A resolution designating June 7, 2012, as \"National Hunger Awareness Day\"." state = "REPORTED" line = "Submitted in the Senate, considered, and agreed to without amendment and with a preamble by Unanimous Consent." new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['type'], "vote") self.assertEqual(new_action['vote_type'], "vote") self.assertEqual(new_action['where'], "s") self.assertEqual(new_action["result"], "pass") self.assertEqual(new_action["how"], "by Unanimous Consent") self.assertEqual(new_state, "PASSED:SIMPLERES") def test_failed_simple_resolution_senate(self): bill_id = "sres5-113" title = "A resolution amending the Standing Rules of the Senate to provide for cloture to be invoked with less than a three-fifths majority after additional debate." state = "INTRODUCED" line = "Disagreed to in Senate by Voice Vote." new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['type'], "vote") self.assertEqual(new_action['vote_type'], "vote") self.assertEqual(new_action['where'], "s") self.assertEqual(new_action["result"], "fail") self.assertEqual(new_action["how"], "by Voice Vote") self.assertEqual(new_state, "FAIL:ORIGINATING:SENATE") def test_failed_suspension_vote(self): bill_id = "hr1954-112" title = "To implement the President's request to increase the statutory limit on the public debt." state = "REFERRED" line = "On motion to suspend the rules and pass the bill Failed by the Yeas and Nays: (2/3 required): 97 - 318, 7 Present (Roll no. 379)." new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['type'], "vote") self.assertEqual(new_action['vote_type'], "vote") self.assertEqual(new_action['where'], "h") self.assertEqual(new_action["result"], "fail") self.assertEqual(new_action["how"], "roll") self.assertEqual(new_action['roll'], "379") self.assertEqual(new_state, "PROV_KILL:SUSPENSIONFAILED") def test_passed_by_special_rule(self): bill_id = "hres240-109" title = "Amending the Rules of the House of Representatives to reinstate certain provisions of the rules relating to procedures of the Committee on Standards of Official Conduct to the form in which those provisions existed at the close of the 108th Congress." state = "INTRODUCED" line = "Passed House pursuant to H. Res. 241." new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['type'], "vote") self.assertEqual(new_action['vote_type'], "vote") self.assertEqual(new_action['where'], "h") self.assertEqual(new_action["result"], "pass") self.assertEqual(new_action["how"], "by special rule") self.assertEqual(new_state, "PASSED:SIMPLERES") self.assertEqual(new_action['bill_ids'], ["hres241-109"]) def test_referral_committee(self): bill_id = "hr547-113" title = "To provide for the establishment of a border protection strategy for the international land borders of the United States, to address the ecological and environmental impacts of border security infrastructure, measures, and activities along the international land borders of the United States, and for other purposes." state = "INTRODUCED" line = "Referred to the Committee on Homeland Security, and in addition to the Committees on Armed Services, Agriculture, and Natural Resources, for a period to be subsequently determined by the Speaker, in each case for consideration of such provisions as fall within the jurisdiction of the committee concerned." new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['type'], "referral") self.assertEqual(new_state, "REFERRED") def test_referral_subcommittee(self): bill_id = "hr547-113" title = "To provide for the establishment of a border protection strategy for the international land borders of the United States, to address the ecological and environmental impacts of border security infrastructure, measures, and activities along the international land borders of the United States, and for other purposes." state = "INTRODUCED" line = "Referred to the Subcommittee Indian and Alaska Native Affairs." new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['type'], "referral") self.assertEqual(new_state, "REFERRED") def test_hearings_held(self): bill_id = "s54-113" title = "A bill to increase public safety by punishing and deterring firearms trafficking." state = "REFERRED" line = "Committee on the Judiciary Subcommittee on the Constitution, Civil Rights and Human Rights. Hearings held." new_action, new_state = parse_bill_action(line, state, bill_id, title) self.assertEqual(new_action['type'], "hearings") # self.assertEqual(new_action['committees'], "Committee on the Judiciary Subcommittee on the Constitution, Civil Rights and Human Rights") self.assertEqual(new_state, None) # did not change state
py
b4177d043257f366000def63f49b15f3f30370c5
# Импортировали драйвер устройства. import pycuda.driver as drv # Определили какой именно GPU в нашей системе доступен для работы import pycuda.autoinit # Директива компилятора nVidia (nvcc). from pycuda.compiler import SourceModule import numpy # Сформировали матрицу 5 x 5, значения которой выбираются случайным образом. a = numpy.random.randn(5, 5) # GPU поддерживает только одинарную точность. a = a.astype(numpy.float32) # Выделили память на устройстве для нашей матрицы. a_gpu = drv.mem_alloc(a.nbytes) # Перенесли матрицу на устройство. drv.memcpy_htod(a_gpu, a) # Сформировали исполнительный модуль. mod = SourceModule(""" __global__ void doubles_matrix(float *a){ int idx = threadIdx.x + threadIdx.y*4; a[idx] *= 2;} """) # Указали исполняемую функцию. func = mod.get_function("doubles_matrix") # Запустили функцию ядра. func(a_gpu, block=(5, 5, 1)) # Выделили область памяти для скопированной матрицы. a_doubled = numpy.empty_like(a) # Перенесли новую матрицу с устройства в оперативную память drv.memcpy_dtoh(a_doubled, a_gpu) # Отобразили результат. print("ORIGINAL MATRIX") print(a) print("DOUBLED MATRIX AFTER PyCUDA EXECUTION") print(a_doubled)
py
b4177d4b0a31864d9bda9df129eb5503ce1a5961
#!/usr/bin/env python import argparse def parse_args(): parser = argparse.ArgumentParser("Produces BED file of bam where read depth is at or above a threshold") parser.add_argument('--input_fasta', '-i', dest='input_fasta', required=True, type=str, help='Input fasta file') parser.add_argument('--output_prefix', '-o', dest='output_prefix', default="output_", type=str, help="Output will be of form ${OUTPUT_PREFIX}${IDX}${OUTPUT_SUFFIX}") parser.add_argument('--output_suffix', '-O', dest='output_suffix', default=".fasta", type=str, help="Output will be of form ${OUTPUT_PREFIX}${IDX}${OUTPUT_SUFFIX}") parser.add_argument('--minimum_lines', '-l', dest='minimum_lines', required=True, type=int, help='Minimum number of fasta lines to keep per file') parser.add_argument('--index_format', '-d', dest='index_format', default="%03d", help='Format string for chunk index') args = parser.parse_args() return args def main(): # prep args = parse_args() with open(args.input_fasta, 'r') as infile: current_line = 0 current_idx = 0 current_outfile = None try: for line in infile: if current_outfile is None or (line.startswith(">") and current_line >= args.minimum_lines): if current_outfile is not None: current_outfile.close() outfile_idx = args.index_format % current_idx outfilename = args.output_prefix + outfile_idx + args.output_suffix print("Writing to file {} after writing {} lines".format(outfilename, current_line)) current_outfile = open(outfilename, 'w') current_line = 0 current_idx += 1 current_outfile.write(line) current_line += 1 finally: if current_outfile is not None: current_outfile.close() if __name__ == "__main__": main()
py
b4177f9fc853331d7c9af7e4e51a8f55f1c914ed
""" Linear search is a very simple search algorithm. In this type of search, a sequential search is made over all items one by one. Every item is checked and if a match is found then that particular item is returned, otherwise the search continues till the end of the data collection. """ a = [1, 5, 6, 7, 8, 9, 0, 'john', 56, 74, 456, 3, 6, 42, 53] def maf_linear(a, x): """ Step 1: Set i to 1 Step 2: if i > n then go to step 7 Step 3: if A[i] = x then go to step 6 Step 4: Set i to i + 1 Step 5: Go to Step 2 Step 6: Print Element x Found at index i and go to step 8 Step 7: Print element not found Step 8: Exit """ e = "Item Not Found" for i in a: if i == x: print('Item found at index:', a.index(i)) return a.index(i) elif i != a: print(e) v = 'john' normal = maf_linear(a, v) print("Results from for Loop", normal) def maf_lin_com(a, x): """ comprehensive linear search""" e = "Item Not Found" return [a.index(i) for i in a if i == x] print("Results from List Comprehension:", maf_lin_com(a, v) )
py
b41781bf824f10cd4f0744e62313db51c54a5d29
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import traceback import oneflow.python.framework.session_context as session_ctx import oneflow.python.framework.attr_util as attr_util import oneflow._oneflow_internal.oneflow.core.job.job_conf as job_conf_cfg from contextlib import contextmanager from oneflow.python.oneflow_export import oneflow_export, oneflow_deprecate import oneflow._oneflow_internal @oneflow_export("experimental.scope.config") def api_scope_config(**kwargs): name2default = session_ctx.GetDefaultSession().scope_attr_name2default_val def SetScopeProto(scope_proto): for attr_name, py_value in kwargs.items(): assert attr_name in name2default attr_util.SetAttrValue( scope_proto.mutable_attr_name2attr_value()[attr_name], py_value, name2default[attr_name], ) sess = session_ctx.GetDefaultSession() scope = MakeScope( lambda old_scope, builder: builder.BuildScopeByProtoSetter( old_scope, SetScopeProto ) ) return ScopeContext(scope) @oneflow_export("current_scope") def api_current_scope(): r""" Return current scope """ return oneflow._oneflow_internal.GetCurrentScope() @oneflow_export("scope.current_scope") @oneflow_deprecate() def deprecated_current_scope(*args, **kwargs): print( "WARNING:", "oneflow.scope.current_scope", "will be removed in the future, use {} instead.".format( "oneflow.current_scope" ), ) print(traceback.format_stack()[-2]) return api_current_scope(*args, **kwargs) def MakeScope(build_func): scope = None old_scope = oneflow._oneflow_internal.GetCurrentScope() assert old_scope is not None def BuildScope(builder): nonlocal scope scope = build_func(old_scope, builder) assert scope is not None oneflow._oneflow_internal.deprecated.LogicalRun(BuildScope) return scope def MakeInitialScope(job_conf, device_tag, machine_device_ids, hierarchy, is_mirrored): scope = None def BuildInitialScope(builder): nonlocal scope session_id = session_ctx.GetDefaultSession().id scope = builder.BuildInitialScope( session_id, job_conf, device_tag, machine_device_ids, hierarchy, is_mirrored ) oneflow._oneflow_internal.deprecated.LogicalRun(BuildInitialScope) return scope def InitScopeStack(): job_conf = job_conf_cfg.JobConfigProto() job_conf.mutable_predict_conf() job_conf.set_job_name("") scope = MakeInitialScope(job_conf, "cpu", ["0:0"], None, is_mirrored=False) oneflow._oneflow_internal.InitGlobalScopeStack(scope) @contextmanager def ScopeContext(scope): old_scope = oneflow._oneflow_internal.GetCurrentScope() oneflow._oneflow_internal.GlobalScopeStackPush(scope) try: yield finally: assert oneflow._oneflow_internal.GetCurrentScope() is scope oneflow._oneflow_internal.GlobalScopeStackPop() assert oneflow._oneflow_internal.GetCurrentScope() is old_scope
py
b41782578043c2c5b9a5a12711b99321d2b54cd3
#!/usr/bin/python3 # Creates DNS zone files for all of the domains of all of the mail users # and mail aliases and restarts nsd. ######################################################################## import sys, os, os.path, urllib.parse, datetime, re, hashlib, base64 import ipaddress import rtyaml import dns.resolver from mailconfig import get_mail_domains from utils import shell, load_env_vars_from_file, safe_domain_name, sort_domains def get_dns_domains(env): # Add all domain names in use by email users and mail aliases and ensure # PRIMARY_HOSTNAME is in the list. domains = set() domains |= get_mail_domains(env) domains.add(env['PRIMARY_HOSTNAME']) return domains def get_dns_zones(env): # What domains should we create DNS zones for? Never create a zone for # a domain & a subdomain of that domain. domains = get_dns_domains(env) # Exclude domains that are subdomains of other domains we know. Proceed # by looking at shorter domains first. zone_domains = set() for domain in sorted(domains, key=lambda d : len(d)): for d in zone_domains: if domain.endswith("." + d): # We found a parent domain already in the list. break else: # 'break' did not occur: there is no parent domain. zone_domains.add(domain) # Make a nice and safe filename for each domain. zonefiles = [] for domain in zone_domains: zonefiles.append([domain, safe_domain_name(domain) + ".txt"]) # Sort the list so that the order is nice and so that nsd.conf has a # stable order so we don't rewrite the file & restart the service # meaninglessly. zone_order = sort_domains([ zone[0] for zone in zonefiles ], env) zonefiles.sort(key = lambda zone : zone_order.index(zone[0]) ) return zonefiles def do_dns_update(env, force=False): # What domains (and their zone filenames) should we build? domains = get_dns_domains(env) zonefiles = get_dns_zones(env) # Custom records to add to zones. additional_records = list(get_custom_dns_config(env)) # Write zone files. os.makedirs('/etc/nsd/zones', exist_ok=True) updated_domains = [] for i, (domain, zonefile) in enumerate(zonefiles): # Build the records to put in the zone. records = build_zone(domain, domains, additional_records, env) # See if the zone has changed, and if so update the serial number # and write the zone file. if not write_nsd_zone(domain, "/etc/nsd/zones/" + zonefile, records, env, force): # Zone was not updated. There were no changes. continue # If this is a .justtesting.email domain, then post the update. try: justtestingdotemail(domain, records) except: # Hmm. Might be a network issue. If we stop now, will we end # up in an inconsistent state? Let's just continue. pass # Mark that we just updated this domain. updated_domains.append(domain) # Sign the zone. # # Every time we sign the zone we get a new result, which means # we can't sign a zone without bumping the zone's serial number. # Thus we only sign a zone if write_nsd_zone returned True # indicating the zone changed, and thus it got a new serial number. # write_nsd_zone is smart enough to check if a zone's signature # is nearing expiration and if so it'll bump the serial number # and return True so we get a chance to re-sign it. sign_zone(domain, zonefile, env) # Now that all zones are signed (some might not have changed and so didn't # just get signed now, but were before) update the zone filename so nsd.conf # uses the signed file. for i in range(len(zonefiles)): zonefiles[i][1] += ".signed" # Write the main nsd.conf file. if write_nsd_conf(zonefiles, additional_records, env): # Make sure updated_domains contains *something* if we wrote an updated # nsd.conf so that we know to restart nsd. if len(updated_domains) == 0: updated_domains.append("DNS configuration") # Kick nsd if anything changed. if len(updated_domains) > 0: shell('check_call', ["/usr/sbin/service", "nsd", "restart"]) # Write the OpenDKIM configuration tables. if write_opendkim_tables(domains, env): # Settings changed. Kick opendkim. shell('check_call', ["/usr/sbin/service", "opendkim", "restart"]) if len(updated_domains) == 0: # If this is the only thing that changed? updated_domains.append("OpenDKIM configuration") if len(updated_domains) == 0: # if nothing was updated (except maybe OpenDKIM's files), don't show any output return "" else: return "updated DNS: " + ",".join(updated_domains) + "\n" ######################################################################## def build_zone(domain, all_domains, additional_records, env, is_zone=True): records = [] # For top-level zones, define the authoritative name servers. # # Normally we are our own nameservers. Some TLDs require two distinct IP addresses, # so we allow the user to override the second nameserver definition so that # secondary DNS can be set up elsewhere. # # 'False' in the tuple indicates these records would not be used if the zone # is managed outside of the box. if is_zone: # Obligatory definition of ns1.PRIMARY_HOSTNAME. records.append((None, "NS", "ns1.%s." % env["PRIMARY_HOSTNAME"], False)) # Define ns2.PRIMARY_HOSTNAME or whatever the user overrides. secondary_ns = get_secondary_dns(additional_records) or ("ns2." + env["PRIMARY_HOSTNAME"]) records.append((None, "NS", secondary_ns+'.', False)) # In PRIMARY_HOSTNAME... if domain == env["PRIMARY_HOSTNAME"]: # Define ns1 and ns2. # 'False' in the tuple indicates these records would not be used if the zone # is managed outside of the box. records.append(("ns1", "A", env["PUBLIC_IP"], False)) records.append(("ns2", "A", env["PUBLIC_IP"], False)) if env.get('PUBLIC_IPV6'): records.append(("ns1", "AAAA", env["PUBLIC_IPV6"], False)) records.append(("ns2", "AAAA", env["PUBLIC_IPV6"], False)) # Set the A/AAAA records. Do this early for the PRIMARY_HOSTNAME so that the user cannot override them # and we can provide different explanatory text. records.append((None, "A", env["PUBLIC_IP"], "Required. Sets the IP address of the box.")) if env.get("PUBLIC_IPV6"): records.append((None, "AAAA", env["PUBLIC_IPV6"], "Required. Sets the IPv6 address of the box.")) # Add a DANE TLSA record for SMTP. records.append(("_25._tcp", "TLSA", build_tlsa_record(env), "Recommended when DNSSEC is enabled. Advertises to mail servers connecting to the box that mandatory encryption should be used.")) # Add a SSHFP records to help SSH key validation. One per available SSH key on this system. for value in build_sshfp_records(): records.append((None, "SSHFP", value, "Optional. Provides an out-of-band method for verifying an SSH key before connecting. Use 'VerifyHostKeyDNS yes' (or 'VerifyHostKeyDNS ask') when connecting with ssh.")) # The MX record says where email for the domain should be delivered: Here! records.append((None, "MX", "10 %s." % env["PRIMARY_HOSTNAME"], "Required. Specifies the hostname (and priority) of the machine that handles @%s mail." % domain)) # Add DNS records for any subdomains of this domain. We should not have a zone for # both a domain and one of its subdomains. subdomains = [d for d in all_domains if d.endswith("." + domain)] for subdomain in subdomains: subdomain_qname = subdomain[0:-len("." + domain)] subzone = build_zone(subdomain, [], additional_records, env, is_zone=False) for child_qname, child_rtype, child_value, child_explanation in subzone: if child_qname == None: child_qname = subdomain_qname else: child_qname += "." + subdomain_qname records.append((child_qname, child_rtype, child_value, child_explanation)) has_rec_base = list(records) # clone current state def has_rec(qname, rtype, prefix=None): for rec in has_rec_base: if rec[0] == qname and rec[1] == rtype and (prefix is None or rec[2].startswith(prefix)): return True return False # The user may set other records that don't conflict with our settings. # Don't put any TXT records above this line, or it'll prevent any custom TXT records. for qname, rtype, value in filter_custom_records(domain, additional_records): # Don't allow custom records for record types that override anything above. # But allow multiple custom records for the same rtype --- see how has_rec_base is used. if has_rec(qname, rtype): continue # The "local" keyword on A/AAAA records are short-hand for our own IP. # This also flags for web configuration that the user wants a website here. if rtype == "A" and value == "local": value = env["PUBLIC_IP"] if rtype == "AAAA" and value == "local": if "PUBLIC_IPV6" in env: value = env["PUBLIC_IPV6"] else: continue records.append((qname, rtype, value, "(Set by user.)")) # Add defaults if not overridden by the user's custom settings (and not otherwise configured). # Any "CNAME" record on the qname overrides A and AAAA. has_rec_base = records defaults = [ (None, "A", env["PUBLIC_IP"], "Required. May have a different value. Sets the IP address that %s resolves to for web hosting and other services besides mail. The A record must be present but its value does not affect mail delivery." % domain), ("www", "A", env["PUBLIC_IP"], "Optional. Sets the IP address that www.%s resolves to, e.g. for web hosting." % domain), (None, "AAAA", env.get('PUBLIC_IPV6'), "Optional. Sets the IPv6 address that %s resolves to, e.g. for web hosting. (It is not necessary for receiving mail on this domain.)" % domain), ("www", "AAAA", env.get('PUBLIC_IPV6'), "Optional. Sets the IPv6 address that www.%s resolves to, e.g. for web hosting." % domain), ] for qname, rtype, value, explanation in defaults: if value is None or value.strip() == "": continue # skip IPV6 if not set if not is_zone and qname == "www": continue # don't create any default 'www' subdomains on what are themselves subdomains # Set the default record, but not if: # (1) there is not a user-set record of the same type already # (2) there is not a CNAME record already, since you can't set both and who knows what takes precedence # (2) there is not an A record already (if this is an A record this is a dup of (1), and if this is an AAAA record then don't set a default AAAA record if the user sets a custom A record, since the default wouldn't make sense and it should not resolve if the user doesn't provide a new AAAA record) if not has_rec(qname, rtype) and not has_rec(qname, "CNAME") and not has_rec(qname, "A"): records.append((qname, rtype, value, explanation)) # SPF record: Permit the box ('mx', see above) to send mail on behalf of # the domain, and no one else. # Skip if the user has set a custom SPF record. if not has_rec(None, "TXT", prefix="v=spf1 "): records.append((None, "TXT", 'v=spf1 mx -all', "Recommended. Specifies that only the box is permitted to send @%s mail." % domain)) # Append the DKIM TXT record to the zone as generated by OpenDKIM. # Skip if the user has set a DKIM record already. opendkim_record_file = os.path.join(env['STORAGE_ROOT'], 'mail/dkim/mail.txt') with open(opendkim_record_file) as orf: m = re.match(r'(\S+)\s+IN\s+TXT\s+\( "([^"]+)"\s+"([^"]+)"\s*\)', orf.read(), re.S) val = m.group(2) + m.group(3) if not has_rec(m.group(1), "TXT", prefix="v=DKIM1; "): records.append((m.group(1), "TXT", val, "Recommended. Provides a way for recipients to verify that this machine sent @%s mail." % domain)) # Append a DMARC record. # Skip if the user has set a DMARC record already. if not has_rec("_dmarc", "TXT", prefix="v=DMARC1; "): records.append(("_dmarc", "TXT", 'v=DMARC1; p=quarantine', "Optional. Specifies that mail that does not originate from the box but claims to be from @%s is suspect and should be quarantined by the recipient's mail system." % domain)) # For any subdomain with an A record but no SPF or DMARC record, add strict policy records. all_resolvable_qnames = set(r[0] for r in records if r[1] in ("A", "AAAA")) for qname in all_resolvable_qnames: if not has_rec(qname, "TXT", prefix="v=spf1 "): records.append((qname, "TXT", 'v=spf1 a mx -all', "Prevents unauthorized use of this domain name for outbound mail by requiring outbound mail to originate from the indicated host(s).")) dmarc_qname = "_dmarc" + ("" if qname is None else "." + qname) if not has_rec(dmarc_qname, "TXT", prefix="v=DMARC1; "): records.append((dmarc_qname, "TXT", 'v=DMARC1; p=reject', "Prevents unauthorized use of this domain name for outbound mail by requiring a valid DKIM signature.")) # Sort the records. The None records *must* go first in the nsd zone file. Otherwise it doesn't matter. records.sort(key = lambda rec : list(reversed(rec[0].split(".")) if rec[0] is not None else "")) return records ######################################################################## def build_tlsa_record(env): # A DANE TLSA record in DNS specifies that connections on a port # must use TLS and the certificate must match a particular certificate. # # Thanks to http://blog.huque.com/2012/10/dnssec-and-certificates.html # for explaining all of this! # Get the hex SHA256 of the DER-encoded server certificate: certder = shell("check_output", [ "/usr/bin/openssl", "x509", "-in", os.path.join(env["STORAGE_ROOT"], "ssl", "ssl_certificate.pem"), "-outform", "DER" ], return_bytes=True) certhash = hashlib.sha256(certder).hexdigest() # Specify the TLSA parameters: # 3: This is the certificate that the client should trust. No CA is needed. # 0: The whole certificate is matched. # 1: The certificate is SHA256'd here. return "3 0 1 " + certhash def build_sshfp_records(): # The SSHFP record is a way for us to embed this server's SSH public # key fingerprint into the DNS so that remote hosts have an out-of-band # method to confirm the fingerprint. See RFC 4255 and RFC 6594. This # depends on DNSSEC. # # On the client side, set SSH's VerifyHostKeyDNS option to 'ask' to # include this info in the key verification prompt or 'yes' to trust # the SSHFP record. # # See https://github.com/xelerance/sshfp for inspiriation. algorithm_number = { "ssh-rsa": 1, "ssh-dss": 2, "ecdsa-sha2-nistp256": 3, } # Get our local fingerprints by running ssh-keyscan. The output looks # like the known_hosts file: hostname, keytype, fingerprint. The order # of the output is arbitrary, so sort it to prevent spurrious updates # to the zone file (that trigger bumping the serial number). keys = shell("check_output", ["ssh-keyscan", "localhost"]) for key in sorted(keys.split("\n")): if key.strip() == "" or key[0] == "#": continue try: host, keytype, pubkey = key.split(" ") yield "%d %d ( %s )" % ( algorithm_number[keytype], 2, # specifies we are using SHA-256 on next line hashlib.sha256(base64.b64decode(pubkey)).hexdigest().upper(), ) except: # Lots of things can go wrong. Don't let it disturb the DNS # zone. pass ######################################################################## def write_nsd_zone(domain, zonefile, records, env, force): # On the $ORIGIN line, there's typically a ';' comment at the end explaining # what the $ORIGIN line does. Any further data after the domain confuses # ldns-signzone, however. It used to say '; default zone domain'. # The SOA contact address for all of the domains on this system is hostmaster # @ the PRIMARY_HOSTNAME. Hopefully that's legit. # For the refresh through TTL fields, a good reference is: # http://www.peerwisdom.org/2013/05/15/dns-understanding-the-soa-record/ zone = """ $ORIGIN {domain}. $TTL 1800 ; default time to live @ IN SOA ns1.{primary_domain}. hostmaster.{primary_domain}. ( __SERIAL__ ; serial number 7200 ; Refresh (secondary nameserver update interval) 1800 ; Retry (when refresh fails, how often to try again) 1209600 ; Expire (when refresh fails, how long secondary nameserver will keep records around anyway) 1800 ; Negative TTL (how long negative responses are cached) ) """ # Replace replacement strings. zone = zone.format(domain=domain, primary_domain=env["PRIMARY_HOSTNAME"]) # Add records. for subdomain, querytype, value, explanation in records: if subdomain: zone += subdomain zone += "\tIN\t" + querytype + "\t" if querytype == "TXT": value = value.replace('\\', '\\\\') # escape backslashes value = value.replace('"', '\\"') # escape quotes value = '"' + value + '"' # wrap in quotes zone += value + "\n" # DNSSEC requires re-signing a zone periodically. That requires # bumping the serial number even if no other records have changed. # We don't see the DNSSEC records yet, so we have to figure out # if a re-signing is necessary so we can prematurely bump the # serial number. force_bump = False if not os.path.exists(zonefile + ".signed"): # No signed file yet. Shouldn't normally happen unless a box # is going from not using DNSSEC to using DNSSEC. force_bump = True else: # We've signed the domain. Check if we are close to the expiration # time of the signature. If so, we'll force a bump of the serial # number so we can re-sign it. with open(zonefile + ".signed") as f: signed_zone = f.read() expiration_times = re.findall(r"\sRRSIG\s+SOA\s+\d+\s+\d+\s\d+\s+(\d{14})", signed_zone) if len(expiration_times) == 0: # weird force_bump = True else: # All of the times should be the same, but if not choose the soonest. expiration_time = min(expiration_times) expiration_time = datetime.datetime.strptime(expiration_time, "%Y%m%d%H%M%S") if expiration_time - datetime.datetime.now() < datetime.timedelta(days=3): # We're within three days of the expiration, so bump serial & resign. force_bump = True # Set the serial number. serial = datetime.datetime.now().strftime("%Y%m%d00") if os.path.exists(zonefile): # If the zone already exists, is different, and has a later serial number, # increment the number. with open(zonefile) as f: existing_zone = f.read() m = re.search(r"(\d+)\s*;\s*serial number", existing_zone) if m: # Clear out the serial number in the existing zone file for the # purposes of seeing if anything *else* in the zone has changed. existing_serial = m.group(1) existing_zone = existing_zone.replace(m.group(0), "__SERIAL__ ; serial number") # If the existing zone is the same as the new zone (modulo the serial number), # there is no need to update the file. Unless we're forcing a bump. if zone == existing_zone and not force_bump and not force: return False # If the existing serial is not less than a serial number # based on the current date plus 00, increment it. Otherwise, # the serial number is less than our desired new serial number # so we'll use the desired new number. if existing_serial >= serial: serial = str(int(existing_serial) + 1) zone = zone.replace("__SERIAL__", serial) # Write the zone file. with open(zonefile, "w") as f: f.write(zone) return True # file is updated ######################################################################## def write_nsd_conf(zonefiles, additional_records, env): # Write the list of zones to a configuration file. nsd_conf_file = "/etc/nsd/zones.conf" nsdconf = "" # Append the zones. for domain, zonefile in zonefiles: nsdconf += """ zone: name: %s zonefile: %s """ % (domain, zonefile) # If a custom secondary nameserver has been set, allow zone transfers # and notifies to that nameserver. if get_secondary_dns(additional_records): # Get the IP address of the nameserver by resolving it. hostname = get_secondary_dns(additional_records) resolver = dns.resolver.get_default_resolver() response = dns.resolver.query(hostname+'.', "A") ipaddr = str(response[0]) nsdconf += """\tnotify: %s NOKEY provide-xfr: %s NOKEY """ % (ipaddr, ipaddr) # Check if the file is changing. If it isn't changing, # return False to flag that no change was made. if os.path.exists(nsd_conf_file): with open(nsd_conf_file) as f: if f.read() == nsdconf: return False # Write out new contents and return True to signal that # configuration changed. with open(nsd_conf_file, "w") as f: f.write(nsdconf) return True ######################################################################## def dnssec_choose_algo(domain, env): if '.' in domain and domain.rsplit('.')[-1] in \ ("email", "guide", "fund"): # At GoDaddy, RSASHA256 is the only algorithm supported # for .email and .guide. # A variety of algorithms are supported for .fund. This # is preferred. return "RSASHA256" # For any domain we were able to sign before, don't change the algorithm # on existing users. We'll probably want to migrate to SHA256 later. return "RSASHA1-NSEC3-SHA1" def sign_zone(domain, zonefile, env): algo = dnssec_choose_algo(domain, env) dnssec_keys = load_env_vars_from_file(os.path.join(env['STORAGE_ROOT'], 'dns/dnssec/%s.conf' % algo)) # In order to use the same keys for all domains, we have to generate # a new .key file with a DNSSEC record for the specific domain. We # can reuse the same key, but it won't validate without a DNSSEC # record specifically for the domain. # # Copy the .key and .private files to /tmp to patch them up. # # Use os.umask and open().write() to securely create a copy that only # we (root) can read. files_to_kill = [] for key in ("KSK", "ZSK"): if dnssec_keys.get(key, "").strip() == "": raise Exception("DNSSEC is not properly set up.") oldkeyfn = os.path.join(env['STORAGE_ROOT'], 'dns/dnssec/' + dnssec_keys[key]) newkeyfn = '/tmp/' + dnssec_keys[key].replace("_domain_", domain) dnssec_keys[key] = newkeyfn for ext in (".private", ".key"): if not os.path.exists(oldkeyfn + ext): raise Exception("DNSSEC is not properly set up.") with open(oldkeyfn + ext, "r") as fr: keydata = fr.read() keydata = keydata.replace("_domain_", domain) # trick ldns-signkey into letting our generic key be used by this zone fn = newkeyfn + ext prev_umask = os.umask(0o77) # ensure written file is not world-readable try: with open(fn, "w") as fw: fw.write(keydata) finally: os.umask(prev_umask) # other files we write should be world-readable files_to_kill.append(fn) # Do the signing. expiry_date = (datetime.datetime.now() + datetime.timedelta(days=30)).strftime("%Y%m%d") shell('check_call', ["/usr/bin/ldns-signzone", # expire the zone after 30 days "-e", expiry_date, # use NSEC3 "-n", # zonefile to sign "/etc/nsd/zones/" + zonefile, # keys to sign with (order doesn't matter -- it'll figure it out) dnssec_keys["KSK"], dnssec_keys["ZSK"], ]) # Create a DS record based on the patched-up key files. The DS record is specific to the # zone being signed, so we can't use the .ds files generated when we created the keys. # The DS record points to the KSK only. Write this next to the zone file so we can # get it later to give to the user with instructions on what to do with it. # # We want to be able to validate DS records too, but multiple forms may be valid depending # on the digest type. So we'll write all (both) valid records. Only one DS record should # actually be deployed. Preferebly the first. with open("/etc/nsd/zones/" + zonefile + ".ds", "w") as f: for digest_type in ('2', '1'): rr_ds = shell('check_output', ["/usr/bin/ldns-key2ds", "-n", # output to stdout "-" + digest_type, # 1=SHA1, 2=SHA256 dnssec_keys["KSK"] + ".key" ]) f.write(rr_ds) # Remove our temporary file. for fn in files_to_kill: os.unlink(fn) ######################################################################## def write_opendkim_tables(domains, env): # Append a record to OpenDKIM's KeyTable and SigningTable for each domain # that we send mail from (zones and all subdomains). opendkim_key_file = os.path.join(env['STORAGE_ROOT'], 'mail/dkim/mail.private') if not os.path.exists(opendkim_key_file): # Looks like OpenDKIM is not installed. return False config = { # The SigningTable maps email addresses to a key in the KeyTable that # specifies signing information for matching email addresses. Here we # map each domain to a same-named key. # # Elsewhere we set the DMARC policy for each domain such that mail claiming # to be From: the domain must be signed with a DKIM key on the same domain. # So we must have a separate KeyTable entry for each domain. "SigningTable": "".join( "*@{domain} {domain}\n".format(domain=domain) for domain in domains ), # The KeyTable specifies the signing domain, the DKIM selector, and the # path to the private key to use for signing some mail. Per DMARC, the # signing domain must match the sender's From: domain. "KeyTable": "".join( "{domain} {domain}:mail:{key_file}\n".format(domain=domain, key_file=opendkim_key_file) for domain in domains ), } did_update = False for filename, content in config.items(): # Don't write the file if it doesn't need an update. if os.path.exists("/etc/opendkim/" + filename): with open("/etc/opendkim/" + filename) as f: if f.read() == content: continue # The contents needs to change. with open("/etc/opendkim/" + filename, "w") as f: f.write(content) did_update = True # Return whether the files changed. If they didn't change, there's # no need to kick the opendkim process. return did_update ######################################################################## def get_custom_dns_config(env): try: custom_dns = rtyaml.load(open(os.path.join(env['STORAGE_ROOT'], 'dns/custom.yaml'))) if not isinstance(custom_dns, dict): raise ValueError() # caught below except: return [ ] for qname, value in custom_dns.items(): # Short form. Mapping a domain name to a string is short-hand # for creating A records. if isinstance(value, str): values = [("A", value)] # A mapping creates multiple records. elif isinstance(value, dict): values = value.items() # No other type of data is allowed. else: raise ValueError() for rtype, value2 in values: if isinstance(value2, str): yield (qname, rtype, value2) elif isinstance(value2, list): for value3 in value2: yield (qname, rtype, value3) # No other type of data is allowed. else: raise ValueError() def filter_custom_records(domain, custom_dns_iter): for qname, rtype, value in custom_dns_iter: # We don't count the secondary nameserver config (if present) as a record - that would just be # confusing to users. Instead it is accessed/manipulated directly via (get/set)_custom_dns_config. if qname == "_secondary_nameserver": continue # Is this record for the domain or one of its subdomains? # If `domain` is None, return records for all domains. if domain is not None and qname != domain and not qname.endswith("." + domain): continue # Turn the fully qualified domain name in the YAML file into # our short form (None => domain, or a relative QNAME) if # domain is not None. if domain is not None: if qname == domain: qname = None else: qname = qname[0:len(qname)-len("." + domain)] yield (qname, rtype, value) def write_custom_dns_config(config, env): # We get a list of (qname, rtype, value) triples. Convert this into a # nice dictionary format for storage on disk. from collections import OrderedDict config = list(config) dns = OrderedDict() seen_qnames = set() # Process the qnames in the order we see them. for qname in [rec[0] for rec in config]: if qname in seen_qnames: continue seen_qnames.add(qname) records = [(rec[1], rec[2]) for rec in config if rec[0] == qname] if len(records) == 1 and records[0][0] == "A": dns[qname] = records[0][1] else: dns[qname] = OrderedDict() seen_rtypes = set() # Process the rtypes in the order we see them. for rtype in [rec[0] for rec in records]: if rtype in seen_rtypes: continue seen_rtypes.add(rtype) values = [rec[1] for rec in records if rec[0] == rtype] if len(values) == 1: values = values[0] dns[qname][rtype] = values # Write. config_yaml = rtyaml.dump(dns) with open(os.path.join(env['STORAGE_ROOT'], 'dns/custom.yaml'), "w") as f: f.write(config_yaml) def set_custom_dns_record(qname, rtype, value, action, env): # validate qname for zone, fn in get_dns_zones(env): # It must match a zone apex or be a subdomain of a zone # that we are otherwise hosting. if qname == zone or qname.endswith("."+zone): break else: # No match. if qname != "_secondary_nameserver": raise ValueError("%s is not a domain name or a subdomain of a domain name managed by this box." % qname) # validate rtype rtype = rtype.upper() if value is not None and qname != "_secondary_nameserver": if rtype in ("A", "AAAA"): if value != "local": # "local" is a special flag for us v = ipaddress.ip_address(value) # raises a ValueError if there's a problem if rtype == "A" and not isinstance(v, ipaddress.IPv4Address): raise ValueError("That's an IPv6 address.") if rtype == "AAAA" and not isinstance(v, ipaddress.IPv6Address): raise ValueError("That's an IPv4 address.") elif rtype in ("CNAME", "TXT", "SRV", "MX"): # anything goes pass else: raise ValueError("Unknown record type '%s'." % rtype) # load existing config config = list(get_custom_dns_config(env)) # update newconfig = [] made_change = False needs_add = True for _qname, _rtype, _value in config: if action == "add": if (_qname, _rtype, _value) == (qname, rtype, value): # Record already exists. Bail. return False elif action == "set": if (_qname, _rtype) == (qname, rtype): if _value == value: # Flag that the record already exists, don't # need to add it. needs_add = False else: # Drop any other values for this (qname, rtype). made_change = True continue elif action == "remove": if (_qname, _rtype, _value) == (qname, rtype, value): # Drop this record. made_change = True continue if value == None and (_qname, _rtype) == (qname, rtype): # Drop all qname-rtype records. made_change = True continue else: raise ValueError("Invalid action: " + action) # Preserve this record. newconfig.append((_qname, _rtype, _value)) if action in ("add", "set") and needs_add and value is not None: newconfig.append((qname, rtype, value)) made_change = True if made_change: # serialize & save write_custom_dns_config(newconfig, env) return made_change ######################################################################## def get_secondary_dns(custom_dns): for qname, rtype, value in custom_dns: if qname == "_secondary_nameserver": return value return None def set_secondary_dns(hostname, env): if hostname in (None, ""): # Clear. set_custom_dns_record("_secondary_nameserver", "A", None, "set", env) else: # Validate. hostname = hostname.strip().lower() resolver = dns.resolver.get_default_resolver() try: response = dns.resolver.query(hostname, "A") except (dns.resolver.NoNameservers, dns.resolver.NXDOMAIN, dns.resolver.NoAnswer): raise ValueError("Could not resolve the IP address of %s." % hostname) # Set. set_custom_dns_record("_secondary_nameserver", "A", hostname, "set", env) # Apply. return do_dns_update(env) ######################################################################## def justtestingdotemail(domain, records): # If the domain is a subdomain of justtesting.email, which we own, # automatically populate the zone where it is set up on dns4e.com. # Ideally if dns4e.com supported NS records we would just have it # delegate DNS to us, but instead we will populate the whole zone. import subprocess, json, urllib.parse if not domain.endswith(".justtesting.email"): return for subdomain, querytype, value, explanation in records: if querytype in ("NS",): continue if subdomain in ("www", "ns1", "ns2"): continue # don't do unnecessary things if subdomain == None: subdomain = domain else: subdomain = subdomain + "." + domain if querytype == "TXT": # nsd requires parentheses around txt records with multiple parts, # but DNS4E requires there be no parentheses; also it goes into # nsd with a newline and a tab, which we replace with a space here value = re.sub("^\s*\(\s*([\w\W]*)\)", r"\1", value) value = re.sub("\s+", " ", value) else: continue print("Updating DNS for %s/%s..." % (subdomain, querytype)) resp = json.loads(subprocess.check_output([ "curl", "-s", "https://api.dns4e.com/v7/%s/%s" % (urllib.parse.quote(subdomain), querytype.lower()), "--user", "2ddbd8e88ed1495fa0ec:A97TDJV26CVUJS6hqAs0CKnhj4HvjTM7MwAAg8xb", "--data", "record=%s" % urllib.parse.quote(value), ]).decode("utf8")) print("\t...", resp.get("message", "?")) ######################################################################## def build_recommended_dns(env): ret = [] domains = get_dns_domains(env) zonefiles = get_dns_zones(env) additional_records = list(get_custom_dns_config(env)) for domain, zonefile in zonefiles: records = build_zone(domain, domains, additional_records, env) # remove records that we don't dislay records = [r for r in records if r[3] is not False] # put Required at the top, then Recommended, then everythiing else records.sort(key = lambda r : 0 if r[3].startswith("Required.") else (1 if r[3].startswith("Recommended.") else 2)) # expand qnames for i in range(len(records)): if records[i][0] == None: qname = domain else: qname = records[i][0] + "." + domain records[i] = { "qname": qname, "rtype": records[i][1], "value": records[i][2], "explanation": records[i][3], } # return ret.append((domain, records)) return ret if __name__ == "__main__": from utils import load_environment env = load_environment() if sys.argv[-1] == "--lint": write_custom_dns_config(get_custom_dns_config(env), env) else: for zone, records in build_recommended_dns(env): for record in records: print("; " + record['explanation']) print(record['qname'], record['rtype'], record['value'], sep="\t") print()
py
b417826b8e7e11d9e462bf9b061f592724d7b7ec
import antlr3 import testbase import unittest class t011lexer(testbase.ANTLRTest): def setUp(self): self.compileGrammar() def lexerClass(self, base): class TLexer(base): def emitErrorMessage(self, msg): # report errors to /dev/null pass def reportError(self, re): # no error recovery yet, just crash! raise re return TLexer def testValid(self): stream = antlr3.StringStream('foobar _Ab98 \n A12sdf') lexer = self.getLexer(stream) token = lexer.nextToken() self.assertEqual(token.type, self.lexerModule.IDENTIFIER) self.assertEqual(token.start, 0) self.assertEqual(token.stop, 5) self.assertEqual(token.text, 'foobar') token = lexer.nextToken() self.assertEqual(token.type, self.lexerModule.WS) self.assertEqual(token.start, 6) self.assertEqual(token.stop, 6) self.assertEqual(token.text, ' ') token = lexer.nextToken() self.assertEqual(token.type, self.lexerModule.IDENTIFIER) self.assertEqual(token.start, 7) self.assertEqual(token.stop, 11) self.assertEqual(token.text, '_Ab98') token = lexer.nextToken() self.assertEqual(token.type, self.lexerModule.WS) self.assertEqual(token.start, 12) self.assertEqual(token.stop, 14) self.assertEqual(token.text, ' \n ') token = lexer.nextToken() self.assertEqual(token.type, self.lexerModule.IDENTIFIER) self.assertEqual(token.start, 15) self.assertEqual(token.stop, 20) self.assertEqual(token.text, 'A12sdf') token = lexer.nextToken() self.assertEqual(token.type, self.lexerModule.EOF) def testMalformedInput(self): stream = antlr3.StringStream('a-b') lexer = self.getLexer(stream) lexer.nextToken() try: token = lexer.nextToken() self.fail(token) except antlr3.NoViableAltException as exc: self.assertEqual(exc.unexpectedType, '-') self.assertEqual(exc.charPositionInLine, 1) self.assertEqual(exc.line, 1) if __name__ == '__main__': unittest.main()
py
b41782b81ebe33c904b6add06c059b4a7efa13a7
from flask import (Flask, send_from_directory, make_response, render_template) app = Flask(__name__, template_folder='',static_url_path='', static_folder='') @app.route('/') def index(): response = make_response(render_template('static/html/index.html')) return response if __name__ == '__main__': app.run(host='0.0.0.0', port=8080)
py
b41782e6379a46d294a60a2382f1d1a33649880b
#!d:\workspaces\program workspace\python\project\python_gmail_je\venv\scripts\python.exe # $Id: rst2odt_prepstyles.py 8346 2019-08-26 12:11:32Z milde $ # Author: Dave Kuhlman <[email protected]> # Copyright: This module has been placed in the public domain. """ Fix a word-processor-generated styles.odt for odtwriter use: Drop page size specifications from styles.xml in STYLE_FILE.odt. """ # Author: Michael Schutte <[email protected]> from __future__ import print_function from lxml import etree import sys import zipfile from tempfile import mkstemp import shutil import os NAMESPACES = { "style": "urn:oasis:names:tc:opendocument:xmlns:style:1.0", "fo": "urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0" } def prepstyle(filename): zin = zipfile.ZipFile(filename) styles = zin.read("styles.xml") root = etree.fromstring(styles) for el in root.xpath("//style:page-layout-properties", namespaces=NAMESPACES): for attr in el.attrib: if attr.startswith("{%s}" % NAMESPACES["fo"]): del el.attrib[attr] tempname = mkstemp() zout = zipfile.ZipFile(os.fdopen(tempname[0], "w"), "w", zipfile.ZIP_DEFLATED) for item in zin.infolist(): if item.filename == "styles.xml": zout.writestr(item, etree.tostring(root)) else: zout.writestr(item, zin.read(item.filename)) zout.close() zin.close() shutil.move(tempname[1], filename) def main(): args = sys.argv[1:] if len(args) != 1: print(__doc__, file=sys.stderr) print("Usage: %s STYLE_FILE.odt\n" % sys.argv[0], file=sys.stderr) sys.exit(1) filename = args[0] prepstyle(filename) if __name__ == '__main__': main()
py
b4178566f27d748da7842c6f2cb3ac66c434182d
from .urdk import cUrdk
py
b41785ce16c110faffe4f4e18f034c6283baa219
''' Copyright (C) 2016 Turi All rights reserved. This software may be modified and distributed under the terms of the BSD license. See the LICENSE file for details. ''' from .show import show, show_dispatch
py
b417864d8ee88c2841124f9d6d4dc3bad0778239
from tkinter import * from constantes import * import random class Jogo(object): """ Classe que organiza os elementos do jogo """ def __init__(self): #Criamos o conteiner principal do jogo self.root = Tk() self.root.geometry('%ix%i'%(LARGURA, ALTURA)) self.root.resizable(False, False) self.root.title('Joguinho Besta') #E uma frame para conter o canvas self.frame=Frame(bg="black") self.frame.pack() #Criamos a tela do jogo self.canvas = Canvas(self.frame, bg="black",width=CANVAS_L,height=CANVAS_A, cursor = 'target') self.canvas.pack() #E colocamos um botã para começar o jogo self.começar = Button(self.root, text = 'START') self.começar.pack() #self.canvas.create_polygon((100, 200), (150, 250), (250, 250), (300, 200), (300, 100), (250, 50), (150, 50), (100, 100), fill = 'white') self.novoJogo() self.root.mainloop() def novoJogo(self): """ Cria os elementos de um novo jogo """ self.canvas.create_rectangle((CANVAS_L//2, 350), (CANVAS_L//2 + 100, 370), fill = 'green') #Cria a bola do jogo raio = 30 p = (100, 200) self.canvas.create_oval(p[0],p[1], p[0] + raio, p[1] + raio, fill='red', outline='white') #Cria um arco dentro da bola #self.canvas.create_arc(p[0], p[1], p[0] + raio, p[1] + raio, fill = 'orange', start = 60)#, extent = 90) #Lista dos retângulos self.r = [] #E por fim as diversas fileiras de retângulos l, c, e = 5, 8, 2 #linhas, colunas e espaçamento b, h, y0 = 48, 20, 50 #Base, altura e posição inicial dos retângulos for i in range(l): cor = random.choice(['green', 'orange', 'white', 'lightgray', 'yellow', 'purple']) for j in range(c): self.canvas.create_rectangle(b*j+(j+1)*e, i*h+(i+1)*e + y0,b*j+(j+1)*e + b, i*h+(i+1)*e + y0 + h, fill = cor) self.canvas.create_text(CANVAS_L/2, CANVAS_A/2, text = 'OLA COLEGA!', fill = 'white') if __name__ == '__main__': Jogo()
py
b417865afece2a42ec25ed952909a190aa583728
# DROP TABLES songplay_table_drop = "DROP TABLE IF EXISTS songplays" user_table_drop = "DROP TABLE IF EXISTS users" song_table_drop = "DROP TABLE IF EXISTS songs" artist_table_drop = "DROP TABLE IF EXISTS artists" time_table_drop = "DROP TABLE IF EXISTS time" # CREATE TABLES songplay_table_create = ("""CREATE TABLE IF NOT EXISTS songplays (songplay_id SERIAL PRIMARY KEY, start_time bigint NOT NULL, user_id int NOT NULL, level varchar NOT NULL, song_id varchar, artist_id varchar, session_id int NOT NULL, location varchar NOT NULL, user_agent varchar NOT NULL) """) user_table_create = ("""CREATE TABLE IF NOT EXISTS users ( user_id int PRIMARY KEY, first_name varchar NOT NULL, last_name varchar NOT NULL, gender varchar NOT NULL, level varchar NOT NULL) """) song_table_create = ("""CREATE TABLE IF NOT EXISTS songs ( song_id varchar PRIMARY KEY, title varchar NOT NULL, artist_id varchar NOT NULL, year int, duration float) """) artist_table_create = ("""CREATE TABLE IF NOT EXISTS artists ( artist_id varchar PRIMARY KEY, name varchar NOT NULL, location varchar, latitude float, longitude float) """) time_table_create = ("""CREATE TABLE IF NOT EXISTS time ( start_time bigint NOT NULL, hour int NOT NULL, day int NOT NULL, week int NOT NULL, month int NOT NULL, year int NOT NULL, weekday int NOT NULL) """) # INSERT RECORDS songplay_table_insert = ("""INSERT INTO songplays (start_time, user_id, level, song_id, artist_id, session_id, location, user_agent) VALUES (%s, %s, %s, %s, %s, %s, %s, %s) ON CONFLICT DO NOTHING """) user_table_insert = ("""INSERT INTO users (user_id, first_name, last_name, gender, level) VALUES (%s, %s, %s, %s, %s) ON CONFLICT(user_id) DO UPDATE SET level = excluded.level """) song_table_insert = ("""INSERT INTO songs (song_id, title, artist_id, year, duration) VALUES (%s, %s, %s, %s, %s) ON CONFLICT DO NOTHING """) artist_table_insert = ("""INSERT INTO artists (artist_id, name, location, latitude, longitude) VALUES (%s, %s, %s, %s, %s) ON CONFLICT DO NOTHING """) time_table_insert = ("""INSERT INTO time (start_time, hour, day, week, month, year, weekday) VALUES (%s, %s, %s, %s, %s, %s, %s) ON CONFLICT DO NOTHING """) # FIND SONGS song_select = ("""SELECT song_id, artists.artist_id FROM songs JOIN artists ON songs.artist_id=artists.artist_id WHERE title = %s AND name = %s AND duration = %s """) # QUERY LISTS create_table_queries = [songplay_table_create, user_table_create, song_table_create, artist_table_create, time_table_create] drop_table_queries = [songplay_table_drop, user_table_drop, song_table_drop, artist_table_drop, time_table_drop]